content
stringlengths
5
1.05M
from dimagi.ext import jsonobject from dimagi.utils.logging import notify_exception from soil.progress import STATES, get_task_status from soil.util import get_task class TaskStatus(jsonobject.StrictJsonObject): # takes on values of soil.progress.STATES state = jsonobject.IntegerProperty() progress = jsonobject.ObjectProperty(lambda: TaskStatusProgress) result = jsonobject.ObjectProperty(lambda: TaskStatusResult) def is_finished(self): return self.state in (STATES.success, STATES.failed) class TaskStatusProgress(jsonobject.StrictJsonObject): percent = jsonobject.IntegerProperty() class TaskStatusResult(jsonobject.StrictJsonObject): match_count = jsonobject.IntegerProperty() created_count = jsonobject.IntegerProperty() num_chunks = jsonobject.IntegerProperty() errors = jsonobject.ListProperty(lambda: TaskStatusResultError) class TaskStatusResultError(jsonobject.StrictJsonObject): title = jsonobject.StringProperty() description = jsonobject.StringProperty() column = jsonobject.StringProperty() # usually an int, but field has been hijacked to include other debug info # search 'row_number=' in tasks.py # longer-term solution would be to have another field for debug info rows = jsonobject.ListProperty() def normalize_task_status_result(result): if result: return TaskStatusResult( match_count=result['match_count'], created_count=result['created_count'], num_chunks=result['num_chunks'], errors=normalize_task_status_result_errors(result), ) else: return None def normalize_task_status_result_errors(result): """ result is the return value of do_import it is important that when changes are made to the return value of do_import this function remains backwards compatible, i.e. compatible with old return values of do_import, because those values are saved directly in the database, and we need to be able to process them in the future """ result_errors = [] for _, columns_to_error_value in result['errors'].items(): for column_name, error_value in columns_to_error_value.items(): result_errors.append(TaskStatusResultError( title=str(error_value['error']), description=str(error_value['description']), column=column_name, rows=error_value['rows'] )) return result_errors def get_task_status_json(task_id): try: task_status = get_task_status(get_task(task_id)) except Exception: # There was a period of time where the format of metadata we were setting # from the task would cause a celery-internal failure notify_exception(None, "Error fetching task") return TaskStatus( state=STATES.failed, progress=None, result=TaskStatusResult(errors=[TaskStatusResultError(description='Unknown Failure')]), ) if task_status.state == STATES.failed: errors = ( task_status.error if isinstance(task_status.error, (list, tuple)) else [task_status.error] ) return TaskStatus( state=task_status.state, progress=TaskStatusProgress( percent=task_status.progress.percent, ), result=TaskStatusResult(errors=[TaskStatusResultError(description=error) for error in errors]), ) else: return TaskStatus( state=task_status.state, progress=TaskStatusProgress( percent=task_status.progress.percent, ), result=normalize_task_status_result(task_status.result), ) def make_task_status_success(result): return TaskStatus( state=STATES.success, progress=TaskStatusProgress( percent=0, ), result=normalize_task_status_result(result), )
from typing import Callable, Dict import json from decimal import Decimal from collections import namedtuple import urllib.request import urllib.parse import asyncio import websockets # Define urls needed for order book streams URL_ORDER_BOOK = "https://api.binance.com/api/v1/depth" URL_ORDER_BOOK_PERP = "https://dapi.binance.com/dapi/v1/depth" # OrderBook object OrderBook = namedtuple("OrderBook", "bids asks") def on_order_book(symbol: str, limit: int = 1000) -> OrderBook: """Get the full order book of a pair on Binance through public endpoint. Parameters ---------- symbol: str Pair without underscore in between base/quote coin, e.g: BTCETH, ETHBRL. limit: int Maximum depth for the order book, which should be 1000 by default. Returns ------- order_book: OrderBook """ bids, asks = list(), list() attributes = {"symbol": symbol, "limit": limit} if '_' in symbol: url = f'{URL_ORDER_BOOK_PERP}?{urllib.parse.urlencode(attributes)}' else: url = f'{URL_ORDER_BOOK}?{urllib.parse.urlencode(attributes)}' try: req = urllib.request.Request(url, method='GET') resp = urllib.request.urlopen(req) res = json.loads(resp.read()) except urllib.error.HTTPError as e: raise Exception(f'{e.read()}') for bid in res['bids']: bids.append((Decimal(bid[0]), Decimal(bid[1]))) for ask in res['asks']: asks.append((Decimal(ask[0]), Decimal(ask[1]))) order_book = OrderBook(bids, asks) return order_book class OrderBookStream: def __init__(self): """Handles order book updates every 1000ms by creating asynchronous tasks for each streaming object. Map objects to keep track of each streaming object with the symbol as key. """ self._order_books = dict() self._order_books_perp = dict() self._sockets = set() self._tasks = dict() def get_order_book(self, symbol: str) -> Dict: return self._order_books[symbol] def get_order_book_perp(self, symbol: str) -> Dict: return self._order_books_perp[symbol] def update_order_book(self, symbol: str, updates: Dict): """With incoming stream updates for the order book, update this object by each depth. Overwrites existing depth level price with update's quantity or remove the depth level with no remaining quantity. Parameters ---------- symbol: str Pair without underscore in between base/quote coin, e.g: BTCETH, ETHBRL. updates: Dict Dict containing order book updates. """ # TODO: easiest way to differentiate spots from perpetuals if '_' in symbol: book = self._order_books_perp[symbol] else: book = self._order_books[symbol] # initialize the order book. if len(book['asks']) == 0 and len(book['bids']) == 0: order_book = on_order_book(symbol) for (p, q) in order_book.asks: book['asks'][p] = q for (p, q) in order_book.bids: book['bids'][p] = q # update order book with incoming updates across each depth. asks, bids = updates['a'], updates['b'] for ask in asks: p, q = Decimal(ask[0]), Decimal(ask[1]) if q > 0: book['asks'][p] = q elif p in book['asks']: del book['asks'][p] for bid in bids: p, q = Decimal(bid[0]), Decimal(bid[1]) if q > 0: book['bids'][p] = q elif p in book['bids']: del book['bids'][p] def open_stream_order_book(self, symbol: str, callback: Callable): """Open order book stream for the given pair, provides callback function for the asynchronous task for streaming order book object which is used to process the updated depth levels of the order book. From Binance's API doc: The data in each event is the absolute quantity for a price level. If the quantity is 0, remove the price level. Receiving an event that removes a price level that is not in your local order book can happen and is normal. Parameters ---------- symbol: str Pair without underscore in between base/quote coin, e.g: BTCETH, ETHBRL. callback: Callable Callback to handle the processing of the stream data. """ self._order_books[symbol] = {'bids': {}, 'asks': {}} url = f'wss://stream.binance.com:9443/ws/{symbol.lower()}@depth' asyncio.Task( self.run(url=url, id=f'depth_{symbol.lower()}', callback=callback)) def open_stream_order_book_perp(self, symbol: str, callback: Callable): """For perpetual only, open order book stream for the given pair, provides callback function for the asynchronous task for streaming order book object which is used to process the updated depth levels of the order book. From Binance's API doc: The data in each event is the absolute quantity for a price level. If the quantity is 0, remove the price level. Receiving an event that removes a price level that is not in your local order book can happen and is normal. Parameters ---------- symbol: str Pair without underscore in between base/quote coin, e.g: BTCETH, ETHBRL. callback: Callable Callback to handle the processing of the stream data. """ self._order_books_perp[symbol] = {'bids': {}, 'asks': {}} url = f'wss://dstream.binance.com/stream?streams={symbol.lower()}@depth' asyncio.Task(self.run(url=url, id=f'depth_perp_{symbol.lower()}', callback=callback)) async def run(self, url: str, id: str, callback: Callable): """Responsible for opening a stream for a given object, such as order book. Able to handle multiple streams and update the stored objects from incoming updates. Once the stored objects have been updated, the provided callback for the stream object is used for process/handle the updated object. Parameters ---------- url: str URL. id: str Identifier for the object, which should refer to v1 url. callback: Callable Callback to handle the processing of the stream data. """ # keeping track of streams to avoid duplicates. if id in self._sockets: print(f'Warning: socket {id} already opened!') return print(f'Starting stream: {url}') # keep track of opened sockets and async tasks. # process the updates based on stream object's ID. async with websockets.connect(url) as socket: self._sockets.add(id) while id in self._sockets: recv_task = asyncio.Task(socket.recv()) self._tasks[id] = recv_task data = await recv_task data = json.loads(data) del self._tasks[id] if id.find('depth') == 0: if id.find('depth_perp') == 0: data = data['data'] symbol = data['s'] self.update_order_book(symbol=symbol, updates=data) callback(data) await(asyncio.sleep(.1)) def close(self): """Close all streams upon keyboard interruption for all async tasks used for streaming, also doable by setting a timer for the duration of the streams. """ print('closing all streams') for key in self._tasks: self._tasks[key].cancel() self._sockets.clear() print('closed all streams')
import json import os import random import time import requests from bs4 import BeautifulSoup from firebase import init_firebase, updateData base_url = 'https://movie.naver.com/movie/point/af/list.nhn?&page={}' init_firebase() def main(): while True: for idx in range(1, 1001): print(f'Page #{idx}') url = base_url.format(idx) response = requests.get(url) if response.status_code == 200: soup = BeautifulSoup(response.text, 'html.parser') trs = soup.select('table.list_netizen tbody tr') for tr in trs: # 평점 번호 id = tr.find(class_='ac num').text title = tr.find(class_='title') # 감상평 document = title.select_one('br').next_sibling.strip() # 평점 score = title.select_one('div.list_netizen_score em').text # 이미 해당 id 를 가진 리뷰를 크롤링 했으면 종료한다. if os.path.exists(f'./jsons/{id}.json'): print(f'{id} is already crawled.') continue with open(f'./jsons/{id}.json', 'w', encoding='utf-8') as f: print(f'{id} has been successfully crawled.') data = {'document': document, 'score': int(score)} updateData({ id: data }) json.dump(data, f, ensure_ascii=False, indent=2) # 1 ~ 10 초 사이 랜덤한 시간 만큼 멈춘다 -> 너무 빠르게 하면 block 가능성이 있습니다. time.sleep(random.uniform(1.0, 10.0)) else: raise NotImplementedError # 1시간 정도 기다리기 ( 데이터는 계속 모이기 때문 ) time.sleep(3600) pass if __name__ == '__main__': main()
#!/usr/bin/env python3 # -*- coding: utf-8 -*- from PythonMiddleware.graphene import Graphene from PythonMiddleware.instance import set_shared_graphene_instance from pprint import pprint import time #nodeAddress = "wss://api.cocosbcx.net" nodeAddress = "ws://test.cocosbcx.net" #nodeAddress = "ws://127.0.0.1:8049" gph = Graphene(node=nodeAddress) set_shared_graphene_instance(gph) while True: print('>> info') pprint(gph.info()) time.sleep(2)
from django.shortcuts import render, get_object_or_404 from django.http import HttpResponse, JsonResponse, HttpResponseRedirect from django.urls import reverse from django.contrib.auth.decorators import login_required from rest_framework.parsers import JSONParser from rest_framework.decorators import api_view from .models import Camera import json @login_required # Create your views here. def index(request): cameras = Camera.objects.all()[:15] context= { 'cameras': cameras } return render(request, 'cameras/index.html', context) @login_required def create(request): return render(request, 'cameras/create.html') @login_required def edit(request, id): camera = get_object_or_404(Camera, pk=id) return render(request, 'cameras/edit.html', { 'camera': camera }) @login_required def search(request): q = request.GET['q'] cameras = Camera.objects.filter(description__contains=q).values('description', 'url') return JsonResponse({ 'cameras': json.dumps(list(cameras)) }, safe=False) @login_required @api_view(['POST']) def store(request): try: body = request.data camera = Camera.objects.create(description=body['description'], url=body['url']) return JsonResponse({ 'message': 'Successfully created a camera.' }, safe=False) except Exception as e: return JsonResponse({ 'message': str(e) }, safe=False, status=400) @login_required @api_view(['PATCH']) def update(request, id): try: body = request.data camera = Camera.objects.get(pk=id) camera.url = body['url'] camera.description = body['description'] camera.save() return JsonResponse({ 'message': 'Successfully updated a camera.' }, safe=False) except Camera.DoesNotExist: return JsonResponse({ 'message': 'Camera does not exists.' }, safe=False, status=400) except Exception as e: return JsonResponse({ 'message': str(e) }, safe=False, status=400) @login_required @api_view(['DELETE']) def delete(request, id): try: camera = Camera.objects.get(pk=id) camera.delete() return JsonResponse({ 'message': 'Successfully deleted a camera.' }) except Camera.DoesNotExist: return JsonResponse({ 'message': 'Camera does not exists.' }, safe=False, status=400) except Exception as e: return JsonResponse({ 'message': str(e) }, safe=False, status=400)
''' Что покажет приведенный ниже фрагмент кода? ''' counter = 0 for i in range(99, 102): temp = i while temp > 0: counter += 1 temp //= 10 print(counter)
"""ordia.query. Usage: ordia.query iso639-to-q <iso639> ordia.query get-wikidata-language-codes [options] ordia.query form-to-iso639 <form> Options: --min-count=<min-count> Minimum count [default: 0] Description: Functions in this module query the Wikidata Query Service and thus requires Internet access. Examples -------- $ python -m ordia.query iso639-to-q en Q1860 """ from __future__ import absolute_import, division, print_function from re import compile from six import string_types try: from functools import lru_cache except ImportError: # For Python 2. from functools32 import lru_cache import requests USER_AGENT = 'Ordia' HEADERS = {'User-Agent': USER_AGENT} FORM_PATTERN = compile(r'L[1-9]\d*-F[1-9]\d*') def escape_string(string): r"""Escape string to be used in SPARQL query. Parameters ---------- string : str String to be escaped. Returns ------- escaped_string : str Excaped string. Examples -------- >>> escape_string('"hello"') '\\"hello\\"' >>> escape_string(r'\"hello"') '\\\\\\"hello\\"' """ return string.replace('\\', '\\\\').replace('"', r'\"') def form_to_representation_and_iso639(form): """Return representation and iso639 for a form. Parameters ---------- form : str String for the form identifier. Returns ------- representation_and_form : tuple with str or None Tuple with two strings or None if not found Raises ------ ValueError If the `form` input argument does not matches the form identifier. Examples -------- >>> result = form_to_representation_and_iso639('L33930-F1') >>> result == ("fyr", "da") True """ # Validate input if not isinstance(form, string_types): raise ValueError('`form` input should be a string') if not FORM_PATTERN.match(form): raise ValueError(('`form` input should be a form identifier, ' 'e.g., "L33930-F1"')) lexeme = form.split('-')[0] url = "https://www.wikidata.org/wiki/Special:EntityData/{}.json".format( lexeme) response = requests.get(url, headers=HEADERS) # Handle response if not response.ok: return None data = response.json() if 'entities' in data and lexeme in data['entities']: entities = data['entities'][lexeme] for entity_form in entities['forms']: if form == entity_form['id']: break else: return None if 'representations' in entity_form: representations = entity_form['representations'] if len(representations) > 0: first_representation = next(iter(representations.values())) representation = first_representation['value'] iso639 = first_representation['language'] return (representation, iso639) return None def get_wikidata_language_codes(min_count=0): """Get all Wikidata language codes. Query the Wikidata Query Service to get language codes that Wikidata uses for the lemmas. Parameters ---------- min_count : int, optional Minimum count of lexemes for a particular language. The default is 0 meaning that all language will be returned. Returns ------- codes : list of str List of strings with language codes, e.g., ['ru', 'en', ...]. Examples -------- >>> codes = get_wikidata_language_codes() >>> 'da' in codes True """ query = """ # tool: Ordia SELECT (COUNT(?lexeme) AS ?count) ?language { ?lexeme wikibase:lemma ?lemma . BIND(LANG(?lemma) AS ?language) . } GROUP BY ?language """ if min_count: try: min_count_value = int(min_count) if min_count_value < 0: raise ValueError('min_count should be non-negative') except ValueError: raise ValueError('min_count should be an integer.') query += "\nHAVING (?count > {})".format(min_count_value) query += "\nORDER BY DESC(?count)" url = 'https://query.wikidata.org/sparql' params = {'query': query, 'format': 'json'} response = requests.get(url, params=params, headers=HEADERS) data = response.json() bindings = data['results']['bindings'] if bindings: return [binding['language']['value'] for binding in bindings] else: return [] @lru_cache(maxsize=128) def get_wikidata_language_codes_cached(*args, **kwargs): """Get unique language codes from Wikidata's lexemes. Cached version of `get_wikidata_language_codes`. Parameters ---------- min_count : int, optional Minimum count of lexemes for a particular language. The default is 0 meaning that all language will be returned. Returns ------- codes : list of str List of strings with language codes, e.g., ['ru', 'en', ...]. """ return get_wikidata_language_codes(*args, **kwargs) def iso639_to_q(iso639): """Convert ISO 639 to Wikidata ID. Convert an ISO 639-1 or ISO 639-2 identifier to the associated Q identifier by a lookup with the Wikidata Query Service. Parameters ---------- iso639 : str ISO 639 identifier as a string. Returns ------- q : str String with Wikidata ID. It is empty if the code is not found. Examples -------- >>> iso639_to_q('en') == 'Q1860' True >>> iso639_to_q('xnx') == '' True >>> iso639_to_q('dan') == 'Q9035' True """ if len(iso639) == 2: property = "wdt:P218" elif len(iso639) == 3: property = "wdt:P219" else: raise ValueError('Wrong length of `iso639`') query = 'SELECT ?code WHERE {{ ?code {property} "{iso639}" }}'.format( property=property, iso639=escape_string(iso639)) url = 'https://query.wikidata.org/sparql' params = {'query': query, 'format': 'json'} response = requests.get(url, params=params, headers=HEADERS) data = response.json() bindings = data['results']['bindings'] if bindings: return bindings[0]['code']['value'][31:] else: return "" @lru_cache(maxsize=1048) def spacy_token_to_lexemes(token): """Identify Wikidata lexeme from spaCy token. Parameters ---------- token : spacy.tokens.token.Token Returns ------- lexemes : list of strings Examples -------- >>> class Token(object): ... pass >>> token = Token() >>> setattr(token, 'lang_', 'da') >>> setattr(token, 'norm_', 'biler') >>> setattr(token, 'pos_', 'NOUN') >>> spacy_token_to_lexemes(token) ['L36385'] """ POSTAG_TO_Q = { "ADJ": "Q34698", "ADV": "Q380057", "INTJ": "Q83034", "NOUN": "Q1084", "PROPB": "Q147276", "VERB": "Q24905", "ADP": "Q134316", "AUX": "Q24905", "CCONJ": "Q36484", "DET": "Q576271", "NUM": "Q63116", "PART": "Q184943", "PRON": "Q36224", "SCONJ": "Q36484", } if token.pos_ in ['PUNCT', 'SYM', 'X']: return [] iso639 = token.lang_ language = iso639_to_q(iso639) representation = token.norm_ if token.pos_ not in POSTAG_TO_Q: return [] lexical_category = POSTAG_TO_Q[token.pos_] query = ''' SELECT DISTINCT ?lexeme {{ ?lexeme dct:language wd:{language} ; wikibase:lexicalCategory / wdt:P279* wd:{lexical_category} ; ontolex:lexicalForm / ontolex:representation "{representation}"@{iso639} . }}'''.format(language=language, lexical_category=lexical_category, representation=representation, iso639=iso639) url = 'https://query.wikidata.org/sparql' params = {'query': query, 'format': 'json'} response = requests.get(url, params=params, headers=HEADERS) data = response.json() bindings = data['results']['bindings'] if bindings: lexemes = [binding['lexeme']['value'][31:] for binding in bindings] return lexemes else: return [] def main(): """Handle command-line interface.""" from docopt import docopt arguments = docopt(__doc__) if arguments['form-to-iso639']: result = form_to_representation_and_iso639(arguments['<form>']) if result is not None: print(result[1]) elif arguments['iso639-to-q']: q = iso639_to_q(arguments['<iso639>']) print(q) elif arguments['get-wikidata-language-codes']: if arguments['--min-count']: try: min_count = int(arguments['--min-count']) except ValueError: raise ValueError('min-count parameter should be an integer') language_codes = get_wikidata_language_codes(min_count=min_count) else: language_codes = get_wikidata_language_codes() for language_code in language_codes: print(language_code) if __name__ == '__main__': main()
# app/elephant_queries.py import os from dotenv import load_dotenv import psycopg2 load_dotenv() #> loads contents of the .env file into the script's environment DB_NAME = os.getenv("DB_NAME") DB_USER = os.getenv("DB_USER") DB_PASSWORD = os.getenv("DB_PASSWORD") DB_HOST = os.getenv("DB_HOST") connection = psycopg2.connect(dbname=DB_NAME, user=DB_USER, password=DB_PASSWORD, host=DB_HOST) print("CONNECTION:", connection) cursor = connection.cursor() print("CURSOR:", cursor) cursor.execute('SELECT * from test_table;') result = cursor.fetchall() print(result) query = ''' CREATE TABLE if not exists titanic ( id Serial Primary Key, Survived int, Pclass int, Name varchar, Sex varchar, Age int, Siblings_Spouses_Aboard int, Parents_Children_Aboard int, Fare int ); ''' cursor.execute(query) # inserting records (single) insertion_query = """ INSERT INTO titanic (Survived, Pclass, Name, Sex, Age, Siblings_Spouses_Aboard, Parents_Children_Aboard, Fare) VALUES (%s, %s, %s, %s, %s, %s, %s, %s) """ record_to_insert = (0, 3, 'Mr. Owen Harris Brown', 'male', 22, 1, 0, 7.25) cursor.execute(insertion_query, record_to_insert) # save the transactions connection.commit() cursor.close() connection.close()
__version__ = "4.0.1" # __version__ has to be define in the first line """ pysal.lib: Python Spatial Analysis Library (core) ================================================ Documentation ------------- PySAL documentation is available in two forms: python docstrings and an html \ webpage at http://pysal.org/ Available sub-packages ---------------------- cg Basic data structures and tools for Computational Geometry examples Example data sets for testing and documentation io Basic functions used by several sub-packages weights Tools for creating and manipulating weights """ from . import cg from . import io from . import weights from . import examples
from rest_framework import permissions from rest_framework.viewsets import ReadOnlyModelViewSet from ggongsul.agreement.models import Agreement from ggongsul.agreement.serializers import ( AgreementFullSerializer, AgreementShortSerializer, ) class AgreementViewSet(ReadOnlyModelViewSet): queryset = Agreement.objects.all() permission_classes = [permissions.AllowAny] def get_serializer_class(self): if self.action == "list": return AgreementShortSerializer return AgreementFullSerializer
""" recursive parse """ from typing import List, Any, Union, Tuple def parse(filename: str) -> List[Any]: with open(filename, "r") as file: lines = [line.rstrip() for line in file.readlines()] # remove newline character lines = [line for line in lines if len(line) > 0] # remove empty lines return parse_lines(lines) def parse_lines(lines: List[str]) -> List[Any]: """Iterate over each line to parse it. If it find a list it will capture the corresponding lines and recursively call itself on the captured lines to parse the list""" parsed:List[Any] = [] if len(lines) == 0: return parsed tabs = find_tabs(lines[0]) while len(lines) > 0: line = lines.pop(0) key, end = find_group(line, tabs) if end == len(line) and (len(lines) == 0 or lines[0][tabs] != "\t"): # On this line we found a list item parsed.append(key) elif end < len(line): # On this line we found a key value pair start = find_tabs(line, end) value, _ = find_group(line, start) parsed.append((key, value)) else: # On this line we found the start of a list next_level = [] while len(lines) > 0 and lines[0][tabs] == "\t": next_level.append(lines.pop(0)) parsed.append((key, parse_lines(next_level))) return parsed def find_group(line: str, start: int) -> Tuple[str, int]: """Capture the group of non tabs character return the capture group and the end position of the group""" end = start length = len(line) while end < length and line[end].isalnum(): end += 1 return line[start:end], end def find_tabs(line: str, start: int = 0) -> int: """return the position of the next non tabs character in the string""" while line[start] == "\t": start += 1 return start
import numpy as np import torch import os from common import tensor from pde2d_base import RegularPDE from spinn2d import Plotter2D, App2D, SPINN2D from mayavi import mlab class SquareSlit(RegularPDE): def __init__(self, n_nodes, ns, nb=None, nbs=None, sample_frac=1.0): self.sample_frac = sample_frac # Interior nodes n = round(np.sqrt(n_nodes) + 0.49) self.n = n dxb2 = 1.0/(n + 1) xl, xr = dxb2 - 1.0, 1.0 - dxb2 sl = slice(xl, xr, n*1j) x, y = np.mgrid[sl, sl] cond = ~((x >= 0) & (np.abs(y) < dxb2)) self.i_nodes = (x[cond].ravel(), y[cond].ravel()) # Fixed nodes nb = n if nb is None else nb self.nb = nb dxb2 = 1.0/(nb + 1) _x = np.linspace(dxb2 - 1.0, 1.0 - dxb2, nb) _o = np.ones_like(_x) nslit = int(nb//2 + 1) x = np.hstack((_x, _o, _x, -1*_o, np.linspace(0, 1, nslit))) y = np.hstack((_o*-1, _x, _o, _x, np.zeros(nslit))) self.f_nodes = (x, y) # Interior samples self.ns = ns = round(np.sqrt(ns) + 0.49) dxb2 = 1.0/(ns) xl, xr = dxb2 - 1.0, 1.0 - dxb2 sl = slice(xl, xr, ns*1j) x, y = np.mgrid[sl, sl] cond = ~((x >= 0) & (np.abs(y) < dxb2)) xs, ys = (tensor(t.ravel(), requires_grad=True) for t in (x[cond], y[cond])) self.p_samples = (xs, ys) self.n_interior = len(self.p_samples[0]) self.rng_interior = np.arange(self.n_interior) self.sample_size = int(self.sample_frac*self.n_interior) # Boundary samples nbs = ns if nbs is None else nbs self.nbs = nbs sl = slice(-1.0, 1.0, nbs*1j) x, y = np.mgrid[sl, sl] cond = ((x < xl) | (x > xr)) | ((y < xl) | (y > xr)) x, y = x[cond].ravel(), y[cond].ravel() nslit = int(nbs//2 + 1) xb = np.hstack((x, np.linspace(0, 1.0, nslit))) yb = np.hstack((y, np.zeros(nslit))) xb, yb = (tensor(t, requires_grad=True) for t in (xb, yb)) self.b_samples = (xb, yb) def plot_points(self): n = self.ns*2 x, y = np.mgrid[-1:1:n*1j, -1:1:n*1j] return x, y def pde(self, x, y, u, ux, uy, uxx, uyy): return uxx + uyy + 1.0 def has_exact(self): return False def boundary_loss(self, nn): xb, yb = self.boundary() u = nn(xb, yb) ub = 0.0 bc = u - ub return (bc**2).sum() def _vtu2data(fname): src = mlab.pipeline.open(fname, figure=False) ug = src.reader.output pts = ug.points.to_array() scalar = ug.point_data.scalars.to_array() return pts, scalar def _get_errors(nn, fvtu): pts, u_exact = _vtu2data(fvtu) x = pts[:,0] y = pts[:,1] xt, yt = tensor(x.ravel()), tensor(y.ravel()) u = nn(xt, yt).detach().cpu().numpy() u.shape = x.shape du = u - u_exact L1 = np.mean(np.abs(du)) L2 = np.sqrt(np.mean(du**2)) Linf = np.max(np.abs(du)) return L1, L2, Linf class FEM(Plotter2D): def save(self, dirname): '''Save the model and results. ''' fvtu = 'code/fem/poisson_solution000000.vtu' modelfname = os.path.join(dirname, 'model.pt') torch.save(self.nn.state_dict(), modelfname) rfile = os.path.join(dirname, 'results.npz') pts, u_exact = _vtu2data(fvtu) x = pts[:,0] y = pts[:,1] xt, yt = tensor(x.ravel()), tensor(y.ravel()) u = self.nn(xt, yt).detach().cpu().numpy() u.shape = x.shape du = u - u_exact L1 = np.mean(np.abs(du)) L2 = np.sqrt(np.mean(du**2)) Linf = np.max(np.abs(du)) np.savez(rfile, x=x, y=y, u=u, u_exact=u_exact, L1=L1, L2=L2, Linf=Linf) if __name__ == '__main__': app = App2D( pde_cls=SquareSlit, nn_cls=SPINN2D, plotter_cls=FEM ) app.run(nodes=200, samples=600, n_train=10000, lr=1e-3, tol=1e-4) # fvtu = 'fem/poisson_solution000000.vtu' # L1, L2, Linf = _get_errors(app.nn, fvtu) # print("L1 error = ", L1) # print("L2 error = ", L2) # print("Linf error = ", Linf)
# Copyright (C) 2020 TU Dresden # Licensed under the ISC license (see LICENSE.txt) # # Authors: Robert Khasanov import copy from mocasin.representations import SimpleVectorRepresentation from mocasin.tetris.schedule import ( Schedule, MultiJobSegmentMapping, SingleJobSegmentMapping, ) class BaseVariantSelector: """Base Variant Selector class. Finalize the schedule by selecting non-overlapped mapping variants in each segment. """ def __init__(self, platform): self.platform = platform def finalize_schedule(self, schedule): """Finalize the schedule. This method takes the schedule consisting of the canonical mappings. The output returns the schedule, where no mappings overlap in the same segment, and each transformed mapping is equivalent to the original one. """ raise NotImplementedError( "This method needs to be overridden by a subclass" ) def _update_job_segment_mapping(job, mapping): """Copy a job segment with the new mapping.""" return SingleJobSegmentMapping( job.request, mapping, start_time=job.start_time, start_cratio=job.start_cratio, end_time=job.end_time, ) class CounterVariantSelector(BaseVariantSelector): """Counter-based Variant Selector. Finalize the schedule by selecting non-overlapped mapping variants in each segment. In this version, the mapping variant is selected by choosing the first available cores in the list. If the preselected operating point for the application is the same during subsequent segments, the variant selector selects a single variant on these segments. """ def __init__(self, platform): super().__init__(platform) self._processor_id = {} for index, processor in enumerate(sorted(platform.processors())): self._processor_id[processor] = index def finalize_schedule(self, schedule): """Finalize the schedule. This method takes the schedule consisting of the canonical mappings. The output returns the schedule, where no mappings overlap in the same segment, and each transformed mapping is equivalent to the original one. """ if not schedule: return None # TODO: Check that the transformed mapping is equivalent. (Check that # SymmetryRepresentation does not create the whole orbit for that.) rotated_schedule = Schedule(self.platform) prev_segment = None prev_rotated = None for segment in schedule.segments(): rotated_segment = self._finalize_segment( segment, prev=prev_segment, prev_rotated=prev_rotated ) rotated_schedule.add_segment(rotated_segment) prev_segment = segment prev_rotated = rotated_segment return rotated_schedule def _finalize_segment(self, segment, prev=None, prev_rotated=None): """Rotate mappings in the segment. This method is called during the schedule finalization. Args: segment (MultiJobSegmentMapping): a segment to be transformed prev (MultiJobSegmentMapping): a previous segment in the original schedule prev_rotated (MultiJobSegmentMapping): a rotated segment variant of `prev`. """ rotated_segment = MultiJobSegmentMapping(self.platform) processors = set(self.platform.processors()) # Find jobs with equal mappings as in previous one keep_mapping = self._find_keeping_mappings(segment, prev) for job in keep_mapping: prev_job = prev_rotated.find_job_segment(job.request) rotated_job = _update_job_segment_mapping(job, prev_job.mapping) rotated_segment.append_job(rotated_job) # update available processors processors = processors - prev_job.mapping.get_used_processors() for job in segment.jobs(): if job in keep_mapping: continue rotated_mapping = self._adjust_mapping_to_processors( job.mapping, processors ) rotated_job = _update_job_segment_mapping(job, rotated_mapping) rotated_segment.append_job(rotated_job) # update available processors processors = processors - rotated_mapping.get_used_processors() return rotated_segment def _adjust_mapping_to_processors(self, mapping, processors): """Adjust mapping to the given processors.""" mapping_pes = mapping.get_used_processors() # If the current mapping fits the given processor list, use it. if mapping_pes.issubset(processors): return mapping available_pe_dict = {} for pe in sorted(processors): if pe.type not in available_pe_dict: available_pe_dict[pe.type] = [] available_pe_dict[pe.type].append(pe) mapping_pe_dict = {} for pe in mapping_pes: if pe.type not in mapping_pe_dict: mapping_pe_dict[pe.type] = [] mapping_pe_dict[pe.type].append(pe) perm = {} for ptype, cores in mapping_pe_dict.items(): available = available_pe_dict[ptype] if len(cores) > len(available): raise RuntimeError( f"Not enough available processors of the type {ptype}" ) for in_core, out_core in zip(cores, available): perm[in_core] = out_core return self._permutate_mapping(mapping, perm) def _permutate_mapping(self, mapping, perm): # This custom permutation is probably better to implement in one of # the representations. TODO: Consider it rep = SimpleVectorRepresentation(mapping.graph, self.platform) mapping_list = rep.toRepresentation(mapping) _perm = {} for k, v in perm.items(): _perm[self._processor_id[k]] = self._processor_id[v] rotated_list = list(map(lambda x: _perm[x], mapping_list)) rotated_mapping = rep.fromRepresentation(rotated_list) rotated_mapping.metadata = copy.copy(mapping.metadata) return rotated_mapping def _find_keeping_mappings(self, segment, prev): """Find jobs which use the same mapping as in a previous segment.""" res = [] if not prev: return res for job in segment.jobs(): job_prev = prev.find_job_segment(job.request) if not job_prev: continue if job.mapping == job_prev.mapping: res.append(job) return res
from setuptools import setup, Extension import numpy import os from setuptools import Extension, setup ### --- # peakfinder8 Cython installation adapted from OnDA: https://github.com/ondateam/onda DIFFRACTEM_USE_CYTHON = os.getenv("DIFFRACTEM_USE_CYTHON") ext = ".pyx" if DIFFRACTEM_USE_CYTHON else ".c" # pylint: disable=invalid-name peakfinder8_ext = Extension( # pylint: disable=invalid-name name="diffractem.peakfinder8_extension", include_dirs=[numpy.get_include()], libraries=["stdc++"], sources=[ "src/peakfinder8_extension/peakfinder8.cpp", "src/peakfinder8_extension/peakfinder8_extension.pyx", ] if DIFFRACTEM_USE_CYTHON else [ "src/peakfinder8_extension/peakfinder8_extension.cpp", "src/peakfinder8_extension/peakfinder8.cpp", ], language="c++", ) if DIFFRACTEM_USE_CYTHON: from Cython.Build import cythonize print('USING CYTHON') extensions = cythonize(peakfinder8_ext) # pylint: disable=invalid-name else: extensions = [peakfinder8_ext] # pylint: disable=invalid-name ### --- setup( name='diffractem', version='0.3.2', packages=['diffractem'], url='https://github.com/robertbuecker/diffractem', license='', scripts=['bin/nxs2tif.py', 'bin/edview.py'], # scripts=['bin/nxs2tif.py', 'bin/edview.py', 'bin/quick_proc.py'], entry_points={ 'console_scripts': [ 'pre_process = diffractem.quick_proc:main', 'stream2sol = diffractem.stream_convert:main' ], }, author='Robert Buecker', author_email='robert.buecker@mpsd.mpg.de', description='Some tools for working with serial electron microscopy data.', install_requires=['h5py', 'numpy', 'pandas', 'tables', 'hdf5plugin', 'dask[complete]', 'tifffile', 'scipy', 'astropy', 'matplotlib', 'numba', 'pyqtgraph', 'pyyaml', 'scikit-learn', 'scikit-image', 'ruamel.yaml', 'opencv-python-headless', 'PyQt5', 'cfelpyutils'], classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", ], ext_modules = extensions )
# Using py.test framework from service import Intro, MNIST def test_example_message(client): """Example message should be returned""" client.app.add_route('/mnist', Intro()) result = client.simulate_get('/mnist') assert result.json == { 'message': 'This service verifies a model using the MNIST Test data set. ' 'Invoke using the form /mnist/<index of test sample>. For example, /mnist/24'}, \ "The service test will fail until a trained model has been approved" def test_classification_request(client): """Expected classification for Iris sample should be returned""" client.app.add_route('/mnist/{index:int(min=0)}', MNIST()) result = client.simulate_get('/mnist/1') assert result.status == "200 OK", "The service test will fail until a trained model has been approved" assert all(k in result.json for k in ( "index", "predicted_label", "predicted")), "The service test will fail until a trained model has been approved"
from __future__ import print_function import cv2 as cv import numpy as np import argparse source_window = 'Source image' corners_window = 'Corners detected' max_thresh = 255 def cornerHarris_demo(val): thresh = val # Detector parameters blockSize = 2 apertureSize = 3 k = 0.04 # Detecting corners dst = cv.cornerHarris(src_gray, blockSize, apertureSize, k) # Normalizing dst_norm = np.empty(dst.shape, dtype=np.float32) cv.normalize(dst, dst_norm, alpha=0, beta=255, norm_type=cv.NORM_MINMAX) dst_norm_scaled = cv.convertScaleAbs(dst_norm) # Drawing a circle around corners for i in range(dst_norm.shape[0]): for j in range(dst_norm.shape[1]): if int(dst_norm[i,j]) > thresh: cv.circle(dst_norm_scaled, (j,i), 5, (0), 2) # Showing the result cv.namedWindow(corners_window) cv.imshow(corners_window, dst_norm_scaled) # Load source image and convert it to gray parser = argparse.ArgumentParser(description='Code for Harris corner detector tutorial.') parser.add_argument('--input', help='Path to input image.', default='data/demo/cows.jpg') args = parser.parse_args() src = cv.imread(cv.samples.findFile(args.input)) if src is None: print('Could not open or find the image:', args.input) exit(0) src_gray = cv.cvtColor(src, cv.COLOR_BGR2GRAY) # Create a window and a trackbar cv.namedWindow(source_window) thresh = 200 # initial threshold cv.createTrackbar('Threshold: ', source_window, thresh, max_thresh, cornerHarris_demo) cv.imshow(source_window, src) cornerHarris_demo(thresh) cv.waitKey()
# incomplete_iteration.py # # LICENSE # # The MIT License # # Copyright (c) 2020 TileDB, Inc. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # # DESCRIPTION # # Please refer to the TileDB and TileDB-Py documentation for more information: # https://docs.tiledb.com/main/solutions/tiledb-embedded/api-usage # https://tiledb-inc-tiledb.readthedocs-hosted.com/projects/tiledb-py/en/stable/python-api.html # # When run, this program will create a 1D dense array, write some data # to it, and read slices back by iteration over incomplete queries. # import numpy as np import sys import tiledb # Name of the array to create. array_name = "incomplete_iteration" def create_array(): # The array will be 100 cells with dimensions "x". dom = tiledb.Domain(tiledb.Dim(name="x", domain=(0, 99), tile=100, dtype=np.int64)) # The array will be dense with a single string typed attribute "a" schema = tiledb.ArraySchema( domain=dom, sparse=True, attrs=[tiledb.Attr(name="a", dtype=str)] ) # Create the (empty) array on disk. tiledb.SparseArray.create(array_name, schema) def write_array(): # Open the array and write to it. with tiledb.open(array_name, mode="w") as A: extent = A.schema.domain.dim("x").domain ncells = extent[1] - extent[0] + 1 # Data is the Latin alphabet with varying repeat lengths data = [chr(i % 26 + 97) * (i % 52) for i in range(ncells)] # Coords are the dimension range coords = np.arange(extent[0], extent[1] + 1) A[coords] = data def read_array_iterated(): # in order to force iteration, restrict the buffer sizes # this setting gives 5 iterations for the example data init_buffer_bytes = 800 cfg = tiledb.Config( { "py.init_buffer_bytes": init_buffer_bytes, "py.exact_init_buffer_bytes": "true", } ) with tiledb.open(array_name, config=cfg) as A: # iterate over results as a dataframe iterable = A.query(return_incomplete=True).df[:] for i, result in enumerate(iterable): print(f"--- result {i} is a '{type(result)}' with size {len(result)}") print(result) print("---") print(f"Query completed after {i} iterations") create_array() write_array() read_array_iterated()
# -*- coding: utf-8 -*- import itertools from metrika.contender import Contender from metrika.variable import * __author__ = 'Javier Pimás' class Suite: def __init__(self, name=""): self.name = name self.variables = [] def add_variable_from_dict(self, name, values): values = [NamedValue(name, value) for name, value in values.items()] self.variables.append(Variable(name, values)) def add_variable_from_list(self, name, values): values = [AnonValue(value) for value in values] self.variables.append(Variable(name, values)) def restrict(self, arguments): # for arg in arguments: # if self.typical_parameters[arg] is None: # args.append(arg) # else: # args.append(self.typical_parameters[arg]) if arguments.restrict is not None: for restriction in arguments.restrict.split(','): (var, value) = restriction.split('=') variable = next(x for x in self.variables if x.name == var) variable.restrict_to(value) def instances(self): names = [var.name for var in self.variables] values = [var.values for var in self.variables] tuples = itertools.product(*values) return [Contender(names, variation) for variation in list(tuples)]
import gtk class DragTarget(object): """ A DragTarget supports a certain mime type and has methods to figure out if a drag is possible as well as to retrieve the actual text-data representation for the drag """ app = 0 widget = 0 actions = gtk.gdk.ACTION_COPY | gtk.gdk.ACTION_MOVE | gtk.gdk.ACTION_LINK def get_data(self, widget, context): """ called when the destination requests the data may also be called to find out if a particular widget state (selection) supports this target as a drag source. In this case, context will be None """ raise NotImplementedError def delete_data(self, widget, context): """ called when the drag operation finished and the destination requests to delete the original data """ pass
import unittest from .. import util class TestUtil(unittest.TestCase): def test_state_dict_names(self): state_dict = { 'conv1.weight': 0, 'conv1.bias': 0, 'fc1.weight': 0, 'fc2.weight': 0, 'fc2.bias': 0 } layer_names = util.state_dict_layer_names(state_dict) self.assertListEqual(sorted(layer_names), ['conv1', 'fc1', 'fc2']) if __name__ == '__main__': unittest.main()
""" Name: thomas.py Goal: Numerical resolution of linear equations with the method of Thomas Author: HOUNSI madouvi antoine-sebastien Date: 08/03/2022 """ from os.path import join, dirname import sys import numpy as np from linearEq.utils.gaussForVal import gauss class Thomas: def __init__(self, file): self.matrix = None self.vect = None self.file = join(dirname(__file__), file) self.dim = self.countLine(self.file) def getData(self, file): self.matrix = list() self.vect = list() sys.stdin = open(file) for _ in range(self.dim): line = sys.stdin.readline().split("|") self.matrix.append([float(x) for x in line[0].split()]) self.vect.append(float(line[1])) def countLine(self, file): """ :param file: :return: nbOfLine """ cpt = 0 with open(file) as f: for line in f: if not line.isspace(): cpt += 1 return cpt @staticmethod def isTridiagonal(matrix, dim): for i in range(dim): counter = 0 for j in range(dim): if matrix[i][j] != 0: counter += 1 if (i == 0 or i == dim - 1) and counter > 2: return False if counter > 3: return False return True def factorization(self, matrix, dim): matL = np.identity(dim) matU = np.zeros([dim, dim]) matU[0][0] = matrix[0][0] for i in range(dim): if i != dim - 1: matU[i][i + 1] = matrix[i][i + 1] if i > 0: matL[i][i - 1] = matrix[i][i - 1] / matU[i - 1][i - 1] matU[i][i] = matrix[i][i] - matL[i][i - 1] * matU[i - 1][i] return matL, matU def solution(self): """ :return: solution """ try: dim = self.dim self.getData(self.file) if not self.isTridiagonal(self.matrix, dim): return "Votre matrice n'est pas tridiagonale" matL, matU = self.factorization(self.matrix, dim) sY = list() sY.append(self.vect[0]) for i in range(1, dim): s1 = self.vect[i] - sY[i - 1] * matL[i][i - 1] sY.append(s1) # lTM => s s = list() s.append(sY[dim - 1] / matU[dim - 1][dim - 1]) for i in range(dim - 2, -1, -1): try: val = (sY[i] - matU[i][i + 1] * s[len(s) - 1]) / matU[i][i] s.append(val) except ZeroDivisionError: return "Veuillez réessayer" s = [round(i, 2) for i in s] s.reverse() return s except ZeroDivisionError: return "division per zéro" except RuntimeError: return "Erreur lors de l'execution" except TypeError: return "Données non variables, veuillez resaisir les données" except IndexError: return "Erreur lors de l'indexation, veuillez resaisir les données" except EOFError: return "Eof error" except ValueError: return "Erreur lors de la saisie"
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from sqlalchemy import column from superset.db_engine_specs.bigquery import BigQueryEngineSpec from tests.db_engine_specs.base_tests import DbEngineSpecTestCase class BigQueryTestCase(DbEngineSpecTestCase): def test_bigquery_sqla_column_label(self): label = BigQueryEngineSpec.make_label_compatible(column("Col").name) label_expected = "Col" self.assertEqual(label, label_expected) label = BigQueryEngineSpec.make_label_compatible(column("SUM(x)").name) label_expected = "SUM_x__5f110" self.assertEqual(label, label_expected) label = BigQueryEngineSpec.make_label_compatible(column("SUM[x]").name) label_expected = "SUM_x__7ebe1" self.assertEqual(label, label_expected) label = BigQueryEngineSpec.make_label_compatible(column("12345_col").name) label_expected = "_12345_col_8d390" self.assertEqual(label, label_expected) def test_convert_dttm(self): dttm = self.get_dttm() self.assertEqual( BigQueryEngineSpec.convert_dttm("DATE", dttm), "CAST('2019-01-02' AS DATE)" ) self.assertEqual( BigQueryEngineSpec.convert_dttm("DATETIME", dttm), "CAST('2019-01-02T03:04:05.678900' AS DATETIME)", ) self.assertEqual( BigQueryEngineSpec.convert_dttm("TIMESTAMP", dttm), "CAST('2019-01-02T03:04:05.678900' AS TIMESTAMP)", )
# Copyright (c) 2017 Intel Corporation. All rights reserved. # Use of this source code is governed by a MIT-style # license that can be found in the LICENSE file. from tests.integration.utils.test_blockdevices.test_blockdevice import TestBlockDevice class TestBlockDeviceLinux(TestBlockDevice): _supported_device_types = ['linux'] def __init__(self, device_type, device_path): super(TestBlockDeviceLinux, self).__init__(device_type, device_path) @property def preferred_fstype(self): return 'ldiskfs' @property def device_path(self): return self._device_path @property def destroy_commands(self): return ['wipefs -a {}'.format(self.device_path)] def __str__(self): return '%s' % self.device_path
import unittest import requests from unittest import mock from dataverk.connectors import NaisS3Connector from tests.dataverk.connectors.storage.test_resources.mock_nais_s3_api import mock_requests_put, mock_requests_get from tests.dataverk.connectors.storage.test_resources.nais_s3_storage_common import NAIS_S3_ENDPOINT, NAIS_S3_BLOB_NAME, \ NAIS_S3_RESOURCE_FMT, NAIS_S3_BUCKET_NAME, NAIS_S3_RESOURCE_CONTENT class TestNaisS3Connector(unittest.TestCase): def test_class_instantiation(self): s3_conn = NaisS3Connector(NAIS_S3_BUCKET_NAME, NAIS_S3_ENDPOINT) self.assertIsInstance(s3_conn, NaisS3Connector) @mock.patch("requests.put", side_effect=mock_requests_put) def test_write_valid(self, mock_put): s3_conn = NaisS3Connector(NAIS_S3_BUCKET_NAME, NAIS_S3_ENDPOINT) s3_conn.write(data=NAIS_S3_RESOURCE_CONTENT, destination_blob_name=NAIS_S3_BLOB_NAME, fmt=NAIS_S3_RESOURCE_FMT) @mock.patch("requests.get", side_effect=mock_requests_get) def test_read_valid(self, mock_get): s3_conn = NaisS3Connector(NAIS_S3_BUCKET_NAME, NAIS_S3_ENDPOINT) resource = s3_conn.read(blob_name=f"{NAIS_S3_BLOB_NAME}.{NAIS_S3_RESOURCE_FMT}") self.assertEqual(resource, NAIS_S3_RESOURCE_CONTENT) @mock.patch("requests.get", side_effect=mock_requests_get) def test_read_invalid_resource_not_found(self, mock_get): s3_conn = NaisS3Connector(NAIS_S3_BUCKET_NAME, NAIS_S3_ENDPOINT) with self.assertRaises(requests.exceptions.HTTPError): resource = s3_conn.read(blob_name=f"resource/not-found.{NAIS_S3_RESOURCE_FMT}")
''' Core algorithm. Key algorithm parameters: - ga_priority (p) = probability that the next task issued is a GA evaluation - population (n) - workers (w) = number of parallel workers - task_limit (l) = number of function evaluations to carry out Describing the algorithm as (p, n, w, l): - (0, 1, 1, L) = single sequential local search for L function evaluations - (0, N, N, L) = N parallel local search runs for L total function evaluations - (1, N, 1, N * G) = standard GA with G generations on population size N, evaluated sequentially - (1, N, W, L) = standard GA with G generations on population size N, evaluated in parallel by W workers with opportunistic local search ''' import asyncio import dataclasses import heapq import time import typing @dataclasses.dataclass(order=True) class LSTask: ''' Priority queueable LS task. :solution is a neighbour of :base. :base_fitness is the known fitness of :base. This allows a worker to evaluate solution and submit a new neighbour of the better of ;base and :solution for subsequent LS ops. ''' priority: typing.Any=dataclasses.field() base: typing.Any=dataclasses.field(compare=False) base_fitness: typing.Any=dataclasses.field(compare=False) solution: typing.Any=dataclasses.field(compare=False) @dataclasses.dataclass class GATask: ''' GA task simply requires :solution to be evaluated. ''' solution: typing.Any=dataclasses.field(compare=False) @dataclasses.dataclass class Queue: ''' Manage both queues and record statistics. ''' ga_queue: typing.List ls_queue: typing.List ga_results: typing.List best_solution: typing.Any ga_tasks_issued: int ls_tasks_issued: int generations: int total_evals: int record: typing.List def print_state(self, elapsed): print( f"Elapsed: {elapsed} " f"Evals: {self.total_evals} " f"Fittest: {self.best_solution[1]} " f"Generation: {self.generations} " f"GA Issued: {self.ga_tasks_issued} " f"LS Issued: {self.ls_tasks_issued} " f"Pending: {len(self.ga_queue) + len(self.ls_queue)} " f"Completed: {len(self.ga_results)}") async def worker(queue, *, rstate, evaluate, neighbour, next_population, task_limit, ga_priority, population_size): ''' Worker coroutine. Carries out atomic queue update operations GetTask, LSResult, GAResult as outlined in the paper. Asynchronously evaluates solutions. ''' while queue.ls_tasks_issued + queue.ga_tasks_issued < task_limit: # Get task from queue according to the priority rules. if (len(queue.ls_queue) == 0) or (len(queue.ga_queue) > 0 and queue.ga_tasks_issued <= ga_priority * (queue.ls_tasks_issued + queue.ga_tasks_issued)): queue.ga_tasks_issued += 1 task = queue.ga_queue.pop() else: queue.ls_tasks_issued += 1 task = heapq.heappop(queue.ls_queue) # Evaluate fitness asynchronously. fitness = await evaluate(task.solution) queue.total_evals += 1 # Update incumbent and statistics. if queue.best_solution is None or fitness > queue.best_solution[1]: if type(task) is GATask: if queue.generations == 0: source = 'initial' else: source = 'genetic' else: source = 'local' queue.record.append({ 'source': source, 'fitness': fitness, 'step': queue.ls_tasks_issued + queue.ga_tasks_issued}) queue.best_solution = task.solution, fitness # Update the queues if type(task) is GATask: # Update GA results and create a new population if required. queue.ga_results.append(dict(solution=task.solution, fitness=fitness)) if len(queue.ga_results) >= population_size: queue.ga_queue = [ GATask(ind) for ind in next_population(queue.ga_results)] queue.ga_results = [] queue.generations += 1 # Submit a local search task for a neighbour of this solution. heapq.heappush(queue.ls_queue, LSTask( priority=-fitness, solution=neighbour(task.solution), base=task.solution, base_fitness=fitness)) else: # Submit a neighbour if this solution is better, otherwise backtrack # (i.e. submit a neighbour of the previous solution instead). if fitness > task.base_fitness: heapq.heappush(queue.ls_queue, LSTask( priority=-fitness, solution=neighbour(task.solution), base=task.solution, base_fitness=fitness)) else: heapq.heappush(queue.ls_queue, LSTask( priority=-task.base_fitness, solution=neighbour(task.base), base=task.base, base_fitness=task.base_fitness)) async def monitor(queue, start, log_seconds): while True: await asyncio.sleep(log_seconds) queue.print_state(time.monotonic() - start) async def run(*, population, workers, log_seconds, **kwargs): ''' Main function to run the parallelised hybrid strategy. See onemax.py for an example of use. Create queue with initial GA population. Run workers until the evaluation budget (max evaluated solutions) is exhausted. Report evaluation statistics and return the best known solution. population: List of initial candidate solutions. rstate: Seeded random.Random object. evaluate: Coroutine to asynchronously evaluation fitness. neighbour: Function to generate a local neighbour from a solution. next_population: Function to generate a new population given an existing population with evaluated fitnesses. workers: Number of parallel workers. ga_priority: Fraction of evaluations put towards evaluating GA solutions vs LS solutions. task_limit: Maximum fitness evaluations before termination. ''' loop = asyncio.get_event_loop() queue = Queue( ga_queue=[GATask(ind) for ind in population], ls_queue=[], ga_results=[], best_solution=None, ga_tasks_issued=0, ls_tasks_issued=0, generations=0, record=[], total_evals=0) start = time.monotonic() asyncio.ensure_future(monitor(queue, start, log_seconds)) await asyncio.gather(*( worker(queue, population_size=len(population), **kwargs) for _ in range(workers))) queue.print_state(time.monotonic() - start) return queue
import torch import torch.nn as nn import torch.nn.functional as F import torch.autograd as autograd from torch.autograd import Variable from utils import * from config import parameters START_TAG = '<START>' STOP_TAG = '<STOP>' def to_scalar(var): return var.view(-1).data.tolist()[0] def argmax(vec): _, idx = torch.max(vec, 1) return to_scalar(idx) def prepare_sequence(seq, to_ix): idxs = [to_ix[w] for w in seq] tensor = torch.LongTensor(idxs) return Variable(tensor) def log_sum_exp(vec): # vec 2D: 1 * tagset_size max_score = vec[0, argmax(vec)] max_score_broadcast = max_score.view(1, -1).expand(1, vec.size()[1]) return max_score + torch.log(torch.sum(torch.exp(vec - max_score_broadcast))) class Neural_CRF_AE(nn.Module): def __init__(self, vocab_size, tag_to_ix, embedding_dim, hidden_dim, char_lstm_dim=parameters['char_lstm_dim'], char_to_ix=None, pre_word_embeds=None, char_embedding_dim=parameters['char_dim'], use_gpu=False, n_cap=None, cap_embedding_dim=None, use_crf=True, char_mode='CNN', features_dim = parameters["features_dim"], gazetter_dim = parameters["gazetter_dim"], gazetteer_lambda = parameters["gazetteer_lambda"], pos_lambda = parameters["pos_lambda"], wordshape_lambda = parameters["wordshape_lambda"]): super(Neural_CRF_AE, self).__init__() self.use_gpu = use_gpu self.embedding_dim = embedding_dim self.hidden_dim = hidden_dim self.vocab_size = vocab_size self.tag_to_ix = tag_to_ix self.n_cap = n_cap self.cap_embedding_dim = cap_embedding_dim self.use_crf = use_crf self.tagset_size = len(tag_to_ix) self.out_channels = char_lstm_dim self.char_mode = char_mode self.hidden2gazetteer = nn.Linear(hidden_dim*2, gazetter_dim) # self.hidden2deps = nn.Linear(hidden_dim*2, 45) self.hidden2pos = nn.Linear(hidden_dim*2, 45) self.hidden2shape = nn.Linear(hidden_dim*2, 151) init_linear(self.hidden2gazetteer) # init_linear(self.hidden2deps) init_linear(self.hidden2pos) init_linear(self.hidden2shape) self.pos_lambda = pos_lambda self.wordshape_lambda = wordshape_lambda self.gazetteer_lambda = gazetteer_lambda if char_embedding_dim is not None: self.char_lstm_dim = char_lstm_dim self.char_embeds = nn.Embedding(len(char_to_ix), char_embedding_dim) init_embedding(self.char_embeds.weight) self.char_cnn3 = nn.Conv2d(in_channels=1, out_channels=self.out_channels, kernel_size=(3, char_embedding_dim), padding=(2,0)) self.word_embeds = nn.Embedding(vocab_size, embedding_dim) if pre_word_embeds is not None: self.pre_word_embeds = True self.word_embeds.weight = nn.Parameter(torch.FloatTensor(pre_word_embeds)) else: self.pre_word_embeds = False self.dropout = nn.Dropout(0.5) self.lstm = nn.LSTM(embedding_dim+self.out_channels+features_dim+gazetter_dim, hidden_dim, bidirectional=True) init_lstm(self.lstm) self.hw_trans = nn.Linear(self.out_channels, self.out_channels) self.hw_gate = nn.Linear(self.out_channels, self.out_channels) self.h2_h1 = nn.Linear(hidden_dim*2, hidden_dim) self.tanh = nn.Tanh() self.hidden2tag = nn.Linear(hidden_dim*2, self.tagset_size) init_linear(self.h2_h1) init_linear(self.hidden2tag) init_linear(self.hw_gate) init_linear(self.hw_trans) self.transitions = nn.Parameter(torch.zeros(self.tagset_size, self.tagset_size)) self.transitions.data[tag_to_ix[START_TAG], :] = -10000 self.transitions.data[:, tag_to_ix[STOP_TAG]] = -10000 def _score_sentence(self, feats, tags): # tags is ground_truth, a list of ints, length is len(sentence) # feats is a 2D tensor, len(sentence) * tagset_size r = torch.LongTensor(range(feats.size()[0])) if self.use_gpu: r = r.cuda() pad_start_tags = torch.cat([torch.cuda.LongTensor([self.tag_to_ix[START_TAG]]), tags]) pad_stop_tags = torch.cat([tags, torch.cuda.LongTensor([self.tag_to_ix[STOP_TAG]])]) else: pad_start_tags = torch.cat([torch.LongTensor([self.tag_to_ix[START_TAG]]), tags]) pad_stop_tags = torch.cat([tags, torch.LongTensor([self.tag_to_ix[STOP_TAG]])]) score = torch.sum(self.transitions[pad_stop_tags, pad_start_tags]) + torch.sum(feats[r, tags]) return score def _get_lstm_features(self, sentence, chars2, caps, chars2_length, d, feature, gazetteer): chars_embeds = self.char_embeds(chars2).unsqueeze(1) chars_cnn_out3 = nn.functional.relu(self.char_cnn3(chars_embeds)) chars_embeds = nn.functional.max_pool2d(chars_cnn_out3,kernel_size=(chars_cnn_out3.size(2), 1)).view(chars_cnn_out3.size(0), self.out_channels) embeds = self.word_embeds(sentence) embeds = torch.cat((embeds, chars_embeds, feature, gazetteer), 1) embeds = embeds.unsqueeze(1) embeds = self.dropout(embeds) lstm_out, _ = self.lstm(embeds) lstm_out = lstm_out.view(len(sentence), self.hidden_dim*2) lstm_out = self.dropout(lstm_out) gaze_feat = self.hidden2gazetteer(lstm_out) lstm_feats = self.hidden2tag(lstm_out) # deps_feats = self.hidden2deps(lstm_out) shape_feats = self.hidden2shape(lstm_out) pos_feats = self.hidden2pos(lstm_out) return lstm_feats, gaze_feat, shape_feats, pos_feats def _forward_alg(self, feats): # calculate in log domain # feats is len(sentence) * tagset_size # initialize alpha with a Tensor with values all equal to -10000. init_alphas = torch.Tensor(1, self.tagset_size).fill_(-10000.) init_alphas[0][self.tag_to_ix[START_TAG]] = 0. forward_var = autograd.Variable(init_alphas) if self.use_gpu: forward_var = forward_var.cuda() for feat in feats: emit_score = feat.view(-1, 1) tag_var = forward_var + self.transitions + emit_score max_tag_var, _ = torch.max(tag_var, dim=1) tag_var = tag_var - max_tag_var.view(-1, 1) forward_var = max_tag_var + torch.log(torch.sum(torch.exp(tag_var), dim=1)).view(1, -1) # ).view(1, -1) terminal_var = (forward_var + self.transitions[self.tag_to_ix[STOP_TAG]]).view(1, -1) alpha = log_sum_exp(terminal_var) # Z(x) return alpha def viterbi_decode(self, feats): backpointers = [] # analogous to forward init_vvars = torch.Tensor(1, self.tagset_size).fill_(-10000.) init_vvars[0][self.tag_to_ix[START_TAG]] = 0 forward_var = Variable(init_vvars) if self.use_gpu: forward_var = forward_var.cuda() for feat in feats: next_tag_var = forward_var.view(1, -1).expand(self.tagset_size, self.tagset_size) + self.transitions _, bptrs_t = torch.max(next_tag_var, dim=1) bptrs_t = bptrs_t.squeeze().data.cpu().numpy() next_tag_var = next_tag_var.data.cpu().numpy() viterbivars_t = next_tag_var[range(len(bptrs_t)), bptrs_t] viterbivars_t = Variable(torch.FloatTensor(viterbivars_t)) if self.use_gpu: viterbivars_t = viterbivars_t.cuda() forward_var = viterbivars_t + feat backpointers.append(bptrs_t) terminal_var = forward_var + self.transitions[self.tag_to_ix[STOP_TAG]] terminal_var.data[self.tag_to_ix[STOP_TAG]] = -10000. terminal_var.data[self.tag_to_ix[START_TAG]] = -10000. best_tag_id = argmax(terminal_var.unsqueeze(0)) path_score = terminal_var[best_tag_id] best_path = [best_tag_id] for bptrs_t in reversed(backpointers): best_tag_id = bptrs_t[best_tag_id] best_path.append(best_tag_id) start = best_path.pop() assert start == self.tag_to_ix[START_TAG] best_path.reverse() return path_score, best_path def neg_log_likelihood(self, sentence, tags, chars2, caps, chars2_length, d, feature, gazetteer, gaze_targets, shape_label, pos_label): # sentence, tags is a list of ints # features is a 2D tensor, len(sentence) * self.tagset_size feats, gaze, shapes, pos = self._get_lstm_features(sentence, chars2, caps, chars2_length, d, feature, gazetteer) lst = [3, 0.5, 3] if self.use_gpu: cls_weights = torch.cuda.FloatTensor(lst) else: cls_weights = torch.FloatTensor(lst) # hand_loss = self.feature_lambda * nn.functional.mse_loss(handcrafted, feature) gaze_loss = self.gazetteer_lambda * nn.functional.cross_entropy(gaze, gaze_targets, weight=cls_weights) # dep_loss = nn.functional.cross_entropy(deps, deps_label) shape_loss = nn.functional.cross_entropy(shapes, shape_label) pos_loss = nn.functional.cross_entropy(pos, pos_label) if self.use_crf: forward_score = self._forward_alg(feats) gold_score = self._score_sentence(feats, tags) return forward_score - gold_score + self.gazetteer_lambda*gaze_loss + self.wordshape_lambda*shape_loss + self.pos_lambda*pos_loss else: tags = Variable(tags) scores = nn.functional.cross_entropy(feats, tags) return scores + self.gazetteer_lambda*gaze_loss + self.wordshape_lambda*shape_loss + self.pos_lambda*pos_loss def forward(self, sentence, chars, caps, chars2_length, d, feature, gazetteer): feats, _, _, _ = self._get_lstm_features(sentence, chars, caps, chars2_length, d, feature, gazetteer) # viterbi to get tag_seq if self.use_crf: score, tag_seq = self.viterbi_decode(feats) else: score, tag_seq = torch.max(feats, 1) tag_seq = list(tag_seq.cpu().data) return score, tag_seq
import os, sys, inspect cmd_subfolder = os.path.realpath(os.path.abspath(os.path.join(os.path.split(inspect.getfile( inspect.currentframe() ))[0],".."))) if cmd_subfolder not in sys.path: sys.path.insert(0, cmd_subfolder)
#coding: UTF-8 '''Message is the carrier of a simple Pub/Sub system on top of ccnet''' import datetime import re import uuid import time MESSAGE_PATTERN = re.compile(r'(?P<flags>[\d]+) (?P<from>[^ ]+) (?P<to>[^ ]+) (?P<id>[^ ]+) (?P<ctime>[^ ]+) (?P<rtime>[^ ]+) (?P<app>[^ ]+) (?P<body>.*)') class Message(object): def __init__(self, d): self.flags = int(d['flags']) self.from_ = d['from'] self.to = d['to'] self.id = d['id'] self.ctime = float(d['ctime']) self.rtime = float(d['rtime']) self.app = d['app'] self.body = d['body'] def message_from_string(s): results = MESSAGE_PATTERN.match(s) if results is None: raise RuntimeError('Bad message: %s' % s) d = results.groupdict() return Message(d) def gen_inner_message_string(self_id, app, content): result = "%d %s %s %s %d %d %s %s\000" % (0, self_id, self_id, str(uuid.uuid1()), int(time.time()), 0, app, content) return result def message_to_string(msg): f = '%(flags)s %(from_)s %(to)s %(id)s %(ctime)s %(rtime)s %(app)s %(body)s' return f % dict(flags=msg.flags, from_=msg.from_, to=msg.to, id=msg.id, ctime=msg.ctime, rtime=msg.rtime, app=msg.app, body=msg.body)
#!/usr/bin/env python # coding: utf-8 # # Generate Long Audio Sample from trained model # ## Boilerplate # In[1]: import os, sys root_dir, _ = os.path.split(os.getcwd()) script_dir = os.path.join(root_dir, 'scripts') sys.path.append(script_dir) os.environ['CUDA_VISIBLE_DEVICES'] = '0' # In[2]: import tensorflow as tf print("GPU Available: ", tf.test.is_gpu_available()) # In[3]: tf.keras.backend.clear_session() # tf.keras.backend.set_floatx('float16') # tf.debugging.set_log_device_placement(True) gpus = tf.config.experimental.list_physical_devices('GPU') # In[4]: from hparams import hparams from waveglow_model import WaveGlow import training_utils as utils import random import pathlib import pandas as pd import numpy as np import IPython.display as ipd # In[19]: show_audio = False save_audio = True # ## Load Long Audio Dataset # In[5]: test_dataset = utils.load_single_file_tfrecords( record_file=os.path.join(hparams['tfrecords_dir'], hparams['test_file'])) test_dataset = test_dataset.batch( hparams['train_batch_size']) # ## Load long samples # In[6]: data_root_orig = tf.keras.utils.get_file(origin='https://data.keithito.com/data/speech/LJSpeech-1.1.tar.bz2', fname='LJSpeech-1.1', untar=True, cache_dir=hparams['data_dir']) data_root = pathlib.Path(data_root_orig) # In[7]: # data_root = pathlib.Path(hparams['data_dir']) all_sound_paths = list(data_root.glob('*/*')) all_sound_paths = [str(path) for path in all_sound_paths] random.seed(a=1234) random.shuffle(all_sound_paths) # ## Load preprocessed long audio split mel spectrograms # In[8]: long_audio_record_file = os.path.join(hparams['tfrecords_dir'], hparams['long_audio_file']) long_audio_dataset = utils.load_long_audio_tfrecords(long_audio_record_file).batch(hparams['train_batch_size']) # ## Instantiate model # In[9]: myWaveGlow = WaveGlow(hparams=hparams, name='myWaveGlow') optimizer = utils.get_optimizer(hparams=hparams) # ## Model Checkpoints : Initialise or Restore # In[10]: checkpoint = tf.train.Checkpoint(step=tf.Variable(0), optimizer=optimizer, net=myWaveGlow) manager_checkpoint = tf.train.CheckpointManager( checkpoint, directory=hparams['checkpoint_dir'], max_to_keep=hparams['max_to_keep']) checkpoint.restore(manager_checkpoint.latest_checkpoint) if manager_checkpoint.latest_checkpoint: tf.print('Restored from {checkpoint_dir}'.format(**hparams)) else: raise ValueError('Fetch a valid checkpoint!') # In[11]: batched_long_audios = [] for x_train in long_audio_dataset: batched_long_audios.append(myWaveGlow.infer(x_train['mel'])) # In[17]: audios = dict() originals = dict() for x_train, samples in zip(long_audio_dataset, batched_long_audios): splits = tf.unique_with_counts(x_train['path']) long_audios = [audio for audio in tf.split(samples, splits.count)] for index, path in enumerate(splits.y.numpy()): if path.decode('utf-8') in audios.keys(): audios[path.decode('utf-8')] = tf.concat([audios[path.decode('utf-8')], tf.reshape(long_audios[index], [-1])], axis=0) else: audios[path.decode('utf-8')] = tf.reshape(long_audios[index], [-1]) signal = tf.io.read_file(path) original = np.squeeze(tf.audio.decode_wav(signal).audio.numpy()) originals[path.decode('utf-8')] = original # In[20]: if show_audio: for original, audio in zip(originals.values(), audios.values()): print('original') ipd.display(ipd.Audio(original[:audio.shape[0]], rate=hparams['sample_rate'])) print('generated') ipd.display(ipd.Audio(audio, rate=hparams['sample_rate'])) # In[23]: if save_audio: for (path, original), audio in zip(originals.items(), audios.values()): print(path) _ , name = os.path.split(path) original_wav = tf.audio.encode_wav(tf.expand_dims(original[:audio.shape[0]], axis=1), sample_rate=hparams['sample_rate']) tf.io.write_file(filename=os.path.join(os.getcwd(), '..', 'data', 'audio_samples', 'original_' + name), contents=original_wav) audio_wav = tf.audio.encode_wav(tf.expand_dims(audio, axis=1), sample_rate=hparams['sample_rate']) tf.io.write_file(filename=os.path.join(os.getcwd(), '..', 'data', 'audio_samples', 'generated_' + name), contents=audio_wav) # In[ ]:
import random import torch import torch.nn as nn import torch.nn.functional as F from torchvision.models import resnet50, resnet18 class ReorderResNet(nn.Module): def __init__(self, resnet_type='resnet50', pretrained=True): super(ReorderResNet, self).__init__() self.resnet_type = resnet_type self.pretrained = pretrained if self.resnet_type == 'resnet50': resnet = resnet50(self.pretrained) self.resnet_out_channels = 2048 else: resnet = resnet18(self.pretrained) self.resnet_out_channels = 512 self.res = nn.Sequential(*list(resnet.children())[:-1]) self.predictor = nn.Linear(self.resnet_out_channels * 3, 1) def get_feature(self, x): x = self.res(x) x = x.view(-1, self.resnet_out_channels) return x def get_ordering(self, x): x = self.predictor(x) return x def get_reorder_loss(self, images, device, args, labels): images_shape = images.shape batch_size, num_images = images.shape[:2] # Change view so that we can put everything through the model at once. images = images.view(batch_size * num_images, *images.shape[2:]) pose = self.get_feature(images) pose = pose.view(batch_size, num_images, *pose.shape[1:]) # Get the ordering. flattened = pose.view(batch_size, -1) ordering = self.get_ordering(flattened).squeeze(-1) loss_ordering = F.binary_cross_entropy_with_logits(ordering, labels) predictions = torch.sigmoid(ordering) > 0.5 # DEBUG # print('{:.3f}'.format( # torch.sum(predictions.detach().cpu()).item() / len(predictions))) accuracy = (predictions == labels).float().mean().item() total_loss = sum([ args.lambda_ordering * loss_ordering, # args.lambda_object_sim * loss_objects ]) stats = { 'accuracy': accuracy, # 'objects_sim_loss': loss_objects.item(), # 'presence_sparsity_loss': loss_sparsity.item(), 'ordering_loss': loss_ordering.item() } return total_loss, stats
# -*- coding: utf-8 -*- """Shared test cases.""" import os from dfvfs.file_io import tsk_file_io from dfvfs.file_io import tsk_partition_file_io from dfvfs.lib import definitions from dfvfs.lib import errors from dfvfs.path import factory as path_spec_factory from dfvfs.path import tsk_path_spec from dfvfs.path import tsk_partition_path_spec from dfvfs.resolver import context from dfvfs.resolver import resolver from tests import test_lib as shared_test_lib class Ext2ImageFileTestCase(shared_test_lib.BaseTestCase): """Shared functionality for storage media image with an ext2 file system.""" _INODE_ANOTHER_FILE = 15 _INODE_PASSWORDS_TXT = 14 def setUp(self): """Sets up the needed objects used throughout the test.""" self._resolver_context = context.Context() def tearDown(self): """Cleans up the needed objects used throughout the test.""" self._resolver_context.Empty() def _TestOpenCloseInode(self, parent_path_spec): """Test the open and close functionality using an inode. Args: parent_path_spec (PathSpec): parent path specification. """ path_spec = path_spec_factory.Factory.NewPathSpec( definitions.PREFERRED_EXT_BACK_END, inode=self._INODE_PASSWORDS_TXT, parent=parent_path_spec) file_object = resolver.Resolver.OpenFileObject( path_spec, resolver_context=self._resolver_context) self.assertEqual(file_object.get_size(), 116) def _TestOpenCloseLocation(self, parent_path_spec): """Test the open and close functionality using a location. Args: parent_path_spec (PathSpec): parent path specification. """ path_spec = path_spec_factory.Factory.NewPathSpec( definitions.PREFERRED_EXT_BACK_END, location='/passwords.txt', parent=parent_path_spec) file_object = resolver.Resolver.OpenFileObject( path_spec, resolver_context=self._resolver_context) self.assertEqual(file_object.get_size(), 116) def _TestSeek(self, parent_path_spec): """Test the seek functionality. Args: parent_path_spec (PathSpec): parent path specification. """ path_spec = path_spec_factory.Factory.NewPathSpec( definitions.PREFERRED_EXT_BACK_END, inode=self._INODE_ANOTHER_FILE, location='/a_directory/another_file', parent=parent_path_spec) file_object = resolver.Resolver.OpenFileObject( path_spec, resolver_context=self._resolver_context) self.assertEqual(file_object.get_size(), 22) file_object.seek(10) self.assertEqual(file_object.read(5), b'other') self.assertEqual(file_object.get_offset(), 15) file_object.seek(-10, os.SEEK_END) self.assertEqual(file_object.read(5), b'her f') file_object.seek(2, os.SEEK_CUR) self.assertEqual(file_object.read(2), b'e.') # Conforming to the POSIX seek the offset can exceed the file size # but reading will result in no data being returned. file_object.seek(300, os.SEEK_SET) self.assertEqual(file_object.get_offset(), 300) self.assertEqual(file_object.read(2), b'') with self.assertRaises(IOError): file_object.seek(-10, os.SEEK_SET) # On error the offset should not change. self.assertEqual(file_object.get_offset(), 300) with self.assertRaises(IOError): file_object.seek(10, 5) # On error the offset should not change. self.assertEqual(file_object.get_offset(), 300) def _TestRead(self, parent_path_spec): """Test the read functionality. Args: parent_path_spec (PathSpec): parent path specification. """ path_spec = path_spec_factory.Factory.NewPathSpec( definitions.PREFERRED_EXT_BACK_END, inode=self._INODE_PASSWORDS_TXT, location='/passwords.txt', parent=parent_path_spec) file_object = resolver.Resolver.OpenFileObject( path_spec, resolver_context=self._resolver_context) read_buffer = file_object.read() expected_buffer = ( b'place,user,password\n' b'bank,joesmith,superrich\n' b'alarm system,-,1234\n' b'treasure chest,-,1111\n' b'uber secret laire,admin,admin\n') self.assertEqual(read_buffer, expected_buffer) # TODO: add boundary scenarios. class ImageFileTestCase(shared_test_lib.BaseTestCase): """The unit test case for storage media image based test data.""" _INODE_ANOTHER_FILE = 16 _INODE_PASSWORDS_TXT = 15 def setUp(self): """Sets up the needed objects used throughout the test.""" self._resolver_context = context.Context() def tearDown(self): """Cleans up the needed objects used throughout the test.""" self._resolver_context.Empty() def _TestOpenCloseInode(self, parent_path_spec): """Test the open and close functionality using an inode. Args: parent_path_spec (PathSpec): parent path specification. """ path_spec = tsk_path_spec.TSKPathSpec( inode=self._INODE_PASSWORDS_TXT, parent=parent_path_spec) file_object = tsk_file_io.TSKFile(self._resolver_context, path_spec) file_object.Open() self.assertEqual(file_object.get_size(), 116) def _TestOpenCloseLocation(self, parent_path_spec): """Test the open and close functionality using a location. Args: parent_path_spec (PathSpec): parent path specification. """ path_spec = tsk_path_spec.TSKPathSpec( location='/passwords.txt', parent=parent_path_spec) file_object = tsk_file_io.TSKFile(self._resolver_context, path_spec) file_object.Open() self.assertEqual(file_object.get_size(), 116) def _TestSeek(self, parent_path_spec): """Test the seek functionality. Args: parent_path_spec (PathSpec): parent path specification. """ path_spec = tsk_path_spec.TSKPathSpec( inode=self._INODE_ANOTHER_FILE, location='/a_directory/another_file', parent=parent_path_spec) file_object = tsk_file_io.TSKFile(self._resolver_context, path_spec) file_object.Open() self.assertEqual(file_object.get_size(), 22) file_object.seek(10) self.assertEqual(file_object.read(5), b'other') self.assertEqual(file_object.get_offset(), 15) file_object.seek(-10, os.SEEK_END) self.assertEqual(file_object.read(5), b'her f') file_object.seek(2, os.SEEK_CUR) self.assertEqual(file_object.read(2), b'e.') # Conforming to the POSIX seek the offset can exceed the file size # but reading will result in no data being returned. file_object.seek(300, os.SEEK_SET) self.assertEqual(file_object.get_offset(), 300) self.assertEqual(file_object.read(2), b'') with self.assertRaises(IOError): file_object.seek(-10, os.SEEK_SET) # On error the offset should not change. self.assertEqual(file_object.get_offset(), 300) with self.assertRaises(IOError): file_object.seek(10, 5) # On error the offset should not change. self.assertEqual(file_object.get_offset(), 300) def _TestRead(self, parent_path_spec): """Test the read functionality. Args: parent_path_spec (PathSpec): parent path specification. """ path_spec = tsk_path_spec.TSKPathSpec( inode=self._INODE_PASSWORDS_TXT, location='/passwords.txt', parent=parent_path_spec) file_object = tsk_file_io.TSKFile(self._resolver_context, path_spec) file_object.Open() read_buffer = file_object.read() expected_buffer = ( b'place,user,password\n' b'bank,joesmith,superrich\n' b'alarm system,-,1234\n' b'treasure chest,-,1111\n' b'uber secret laire,admin,admin\n') self.assertEqual(read_buffer, expected_buffer) # TODO: add boundary scenarios. class NTFSImageFileTestCase(shared_test_lib.BaseTestCase): """Shared functionality for storage media image with a NTFS file system.""" _MFT_ENTRY_ANOTHER_FILE = 67 _MFT_ENTRY_PASSWORDS_TXT = 66 def setUp(self): """Sets up the needed objects used throughout the test.""" self._resolver_context = context.Context() def tearDown(self): """Cleans up the needed objects used throughout the test.""" self._resolver_context.Empty() def _TestOpenCloseMFTEntry(self, file_object): """Test the open and close functionality using a MFT entry. Args: file_object (FileIO): file-like object. """ file_object.Open() self.assertEqual(file_object.get_size(), 116) # TODO: add a failing scenario. def _TestOpenCloseLocation(self, file_object): """Test the open and close functionality using a location. Args: file_object (FileIO): file-like object. """ file_object.Open() self.assertEqual(file_object.get_size(), 116) def _TestSeek(self, file_object): """Test the seek functionality. Args: file_object (FileIO): file-like object. """ file_object.Open() self.assertEqual(file_object.get_size(), 22) file_object.seek(10) self.assertEqual(file_object.read(5), b'other') self.assertEqual(file_object.get_offset(), 15) file_object.seek(-10, os.SEEK_END) self.assertEqual(file_object.read(5), b'her f') file_object.seek(2, os.SEEK_CUR) self.assertEqual(file_object.read(2), b'e.') # Conforming to the POSIX seek the offset can exceed the file size # but reading will result in no data being returned. file_object.seek(300, os.SEEK_SET) self.assertEqual(file_object.get_offset(), 300) self.assertEqual(file_object.read(2), b'') with self.assertRaises(IOError): file_object.seek(-10, os.SEEK_SET) # On error the offset should not change. self.assertEqual(file_object.get_offset(), 300) with self.assertRaises(IOError): file_object.seek(10, 5) # On error the offset should not change. self.assertEqual(file_object.get_offset(), 300) def _TestRead(self, file_object): """Test the read functionality. Args: file_object (FileIO): file-like object. """ file_object.Open() read_buffer = file_object.read() expected_buffer = ( b'place,user,password\n' b'bank,joesmith,superrich\n' b'alarm system,-,1234\n' b'treasure chest,-,1111\n' b'uber secret laire,admin,admin\n') self.assertEqual(read_buffer, expected_buffer) # TODO: add boundary scenarios. def _TestReadADS(self, file_object): """Test the read functionality on an alternate data stream (ADS). Args: file_object (FileIO): file-like object. """ file_object.Open() expected_buffer = ( b'\xf0\x12\x03\xf8\x00\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00') read_buffer = file_object.read(size=16) self.assertEqual(read_buffer, expected_buffer) file_object.seek(-8, os.SEEK_END) expected_buffer = b'\x20\x00\x00\x00\x20\x02\x00\x00' read_buffer = file_object.read(size=16) self.assertEqual(read_buffer, expected_buffer) class MBRPartitionedImageFileTestCase(shared_test_lib.BaseTestCase): """Tests for MBR partitioned storage media image based test data.""" # mmls test_data/mbr.raw # DOS Partition Table # Offset Sector: 0 # Units are in 512-byte sectors # # Slot Start End Length Description # 000: Meta 0000000000 0000000000 0000000001 Primary Table (#0) # 001: ------- 0000000000 0000000000 0000000001 Unallocated # 002: 000:000 0000000001 0000000129 0000000129 Linux (0x83) # 003: Meta 0000000130 0000008191 0000008062 DOS Extended (0x05) # 004: Meta 0000000130 0000000130 0000000001 Extended Table (#1) # 005: ------- 0000000130 0000000130 0000000001 Unallocated # 006: 001:000 0000000131 0000000259 0000000129 Linux (0x83) # 007: ------- 0000000260 0000008191 0000007932 Unallocated _BYTES_PER_SECTOR = 512 _OFFSET_P1 = 1 * _BYTES_PER_SECTOR _SIZE_P1 = 129 * _BYTES_PER_SECTOR _OFFSET_P2 = 131 * _BYTES_PER_SECTOR _SIZE_P2 = 129 * _BYTES_PER_SECTOR def setUp(self): """Sets up the needed objects used throughout the test.""" self._resolver_context = context.Context() def tearDown(self): """Cleans up the needed objects used throughout the test.""" self._resolver_context.Empty() def _TestOpenClose(self, parent_path_spec): """Test the open and close functionality. Args: parent_path_spec (PathSpec): parent path specification. """ path_spec = tsk_partition_path_spec.TSKPartitionPathSpec( part_index=2, parent=parent_path_spec) file_object = tsk_partition_file_io.TSKPartitionFile( self._resolver_context, path_spec) file_object.Open() self.assertEqual(file_object.get_size(), self._SIZE_P1) path_spec = tsk_partition_path_spec.TSKPartitionPathSpec( part_index=13, parent=parent_path_spec) file_object = tsk_partition_file_io.TSKPartitionFile( self._resolver_context, path_spec) with self.assertRaises(errors.PathSpecError): file_object.Open() path_spec = tsk_partition_path_spec.TSKPartitionPathSpec( location='/p2', parent=parent_path_spec) file_object = tsk_partition_file_io.TSKPartitionFile( self._resolver_context, path_spec) file_object.Open() self.assertEqual(file_object.get_size(), self._SIZE_P2) path_spec = tsk_partition_path_spec.TSKPartitionPathSpec( location='/p0', parent=parent_path_spec) file_object = tsk_partition_file_io.TSKPartitionFile( self._resolver_context, path_spec) with self.assertRaises(errors.PathSpecError): file_object.Open() path_spec = tsk_partition_path_spec.TSKPartitionPathSpec( location='/p3', parent=parent_path_spec) file_object = tsk_partition_file_io.TSKPartitionFile( self._resolver_context, path_spec) with self.assertRaises(errors.PathSpecError): file_object.Open() path_spec = tsk_partition_path_spec.TSKPartitionPathSpec( start_offset=self._OFFSET_P2, parent=parent_path_spec) file_object = tsk_partition_file_io.TSKPartitionFile( self._resolver_context, path_spec) file_object.Open() self.assertEqual(file_object.get_size(), self._SIZE_P2) path_spec = tsk_partition_path_spec.TSKPartitionPathSpec( start_offset=self._SIZE_P1, parent=parent_path_spec) file_object = tsk_partition_file_io.TSKPartitionFile( self._resolver_context, path_spec) with self.assertRaises(errors.PathSpecError): file_object.Open() def _TestSeek(self, parent_path_spec): """Test the seek functionality. Args: parent_path_spec (PathSpec): parent path specification. """ path_spec = tsk_partition_path_spec.TSKPartitionPathSpec( part_index=6, parent=parent_path_spec) file_object = tsk_partition_file_io.TSKPartitionFile( self._resolver_context, path_spec) file_object.Open() self.assertEqual(file_object.get_size(), self._SIZE_P2) file_object.seek(4128) self.assertEqual(file_object.get_offset(), 0x11620 - self._OFFSET_P2) self.assertEqual( file_object.read(16), b'lost+found\x00\x00\x0c\x00\x00\x00') self.assertEqual(file_object.get_offset(), 0x11630 - self._OFFSET_P2) file_object.seek(-28156, os.SEEK_END) self.assertEqual(file_object.get_offset(), 0x19a04 - self._OFFSET_P2) data = file_object.read(8) self.assertEqual(data, b' is a te') self.assertEqual(file_object.get_offset(), 0x19a0c - self._OFFSET_P2) file_object.seek(4, os.SEEK_CUR) self.assertEqual(file_object.get_offset(), 0x19a10 - self._OFFSET_P2) data = file_object.read(7) self.assertEqual(data, b'ile.\n\nW') self.assertEqual(file_object.get_offset(), 0x19a17 - self._OFFSET_P2) # Conforming to the POSIX seek the offset can exceed the file size # but reading will result in no data being returned. expected_offset = self._SIZE_P2 + 100 file_object.seek(expected_offset, os.SEEK_SET) self.assertEqual(file_object.get_offset(), expected_offset) self.assertEqual(file_object.read(20), b'') with self.assertRaises(IOError): file_object.seek(-10, os.SEEK_SET) # On error the offset should not change. self.assertEqual(file_object.get_offset(), expected_offset) with self.assertRaises(IOError): file_object.seek(10, 5) # On error the offset should not change. self.assertEqual(file_object.get_offset(), expected_offset) def _TestRead(self, parent_path_spec): """Test the read functionality. Args: parent_path_spec (PathSpec): parent path specification. """ path_spec = tsk_partition_path_spec.TSKPartitionPathSpec( part_index=6, parent=parent_path_spec) file_object = tsk_partition_file_io.TSKPartitionFile( self._resolver_context, path_spec) file_object.Open() self.assertEqual(file_object.get_size(), self._SIZE_P2) file_object.seek(0x19e00 - self._OFFSET_P2) data = file_object.read(32) self.assertEqual(data, b'place,user,password\nbank,joesmit') class SylogTestCase(shared_test_lib.BaseTestCase): """The unit test case for the syslog test data.""" def _TestGetSizeFileObject(self, file_object): """Runs the get size tests on the file-like object. Args: file_object (file): file-like object with the test data. """ self.assertEqual(file_object.get_size(), 1247) def _TestReadFileObject(self, file_object, base_offset=167): """Runs the read tests on the file-like object. Args: file_object (file): file-like object with the test data. base_offset (Optional[int]): base offset use in the tests. """ file_object.seek(base_offset, os.SEEK_SET) self.assertEqual(file_object.get_offset(), base_offset) expected_buffer = ( b'Jan 22 07:53:01 myhostname.myhost.com CRON[31051]: (root) CMD ' b'(touch /var/run/crond.somecheck)\n') read_buffer = file_object.read(95) self.assertEqual(read_buffer, expected_buffer) expected_offset = base_offset + 95 self.assertEqual(file_object.get_offset(), expected_offset) def _TestSeekFileObject(self, file_object, base_offset=167): """Runs the seek tests on the file-like object. Args: file_object (file): file-like object with the test data. base_offset (Optional[int]): base offset use in the tests. """ file_object.seek(base_offset + 10) self.assertEqual(file_object.read(5), b'53:01') expected_offset = base_offset + 15 self.assertEqual(file_object.get_offset(), expected_offset) file_object.seek(-10, os.SEEK_END) self.assertEqual(file_object.read(5), b'times') file_object.seek(2, os.SEEK_CUR) self.assertEqual(file_object.read(2), b'--') # Conforming to the POSIX seek the offset can exceed the file size # but reading will result in no data being returned. file_object.seek(2000, os.SEEK_SET) self.assertEqual(file_object.get_offset(), 2000) self.assertEqual(file_object.read(2), b'') # Test with an invalid offset. with self.assertRaises(IOError): file_object.seek(-10, os.SEEK_SET) # On error the offset should not change. self.assertEqual(file_object.get_offset(), 2000) # Test with an invalid whence. with self.assertRaises(IOError): file_object.seek(10, 5) # On error the offset should not change. self.assertEqual(file_object.get_offset(), 2000) class PaddedSyslogTestCase(SylogTestCase): """The unit test case for padded syslog test data. The syslog test data is padded with '=' characters. """ def setUp(self): """Sets up the needed objects used throughout the test.""" self.padding_size = 0 def _TestGetSizeFileObject(self, file_object): """Runs the get size tests on the file-like object. Args: file_object (file): file-like object with the test data. """ self.assertEqual(file_object.get_size(), 1247 + self.padding_size) def _TestSeekFileObject(self, file_object, base_offset=167): """Runs the seek tests on the file-like object. Args: file_object (file): file-like object with the test data. base_offset (Optional[int]): base offset use in the tests. """ file_object.seek(base_offset + 10) self.assertEqual(file_object.read(5), b'53:01') expected_offset = base_offset + 15 self.assertEqual(file_object.get_offset(), expected_offset) file_object.seek(-10 - self.padding_size, os.SEEK_END) self.assertEqual(file_object.read(5), b'times') file_object.seek(2, os.SEEK_CUR) self.assertEqual(file_object.read(2), b'--') # Conforming to the POSIX seek the offset can exceed the file size # but reading will result in no data being returned. file_object.seek(2000, os.SEEK_SET) self.assertEqual(file_object.get_offset(), 2000) self.assertEqual(file_object.read(2), b'') # Test with an invalid offset. with self.assertRaises(IOError): file_object.seek(-10, os.SEEK_SET) # On error the offset should not change. self.assertEqual(file_object.get_offset(), 2000) # Test with an invalid whence. with self.assertRaises(IOError): file_object.seek(10, 5) # On error the offset should not change. self.assertEqual(file_object.get_offset(), 2000) class WindowsFATImageFileTestCase(shared_test_lib.BaseTestCase): """Shared functionality for storage media image with a FAT file system.""" _INODE_ANOTHER_FILE = 615 _INODE_PASSWORDS_TXT = 10 def setUp(self): """Sets up the needed objects used throughout the test.""" self._resolver_context = context.Context() def tearDown(self): """Cleans up the needed objects used throughout the test.""" self._resolver_context.Empty() def _TestOpenCloseMFTEntry(self, parent_path_spec): """Test the open and close functionality using a MFT entry. Args: parent_path_spec (PathSpec): parent path specification. """ path_spec = tsk_path_spec.TSKPathSpec( inode=self._INODE_PASSWORDS_TXT, parent=parent_path_spec) file_object = tsk_file_io.TSKFile(self._resolver_context, path_spec) file_object.Open() self.assertEqual(file_object.get_size(), 126) # TODO: add a failing scenario. def _TestOpenCloseLocation(self, parent_path_spec): """Test the open and close functionality using a location. Args: parent_path_spec (PathSpec): parent path specification. """ path_spec = tsk_path_spec.TSKPathSpec( location='/passwords.txt', parent=parent_path_spec) file_object = tsk_file_io.TSKFile(self._resolver_context, path_spec) file_object.Open() self.assertEqual(file_object.get_size(), 126) def _TestSeek(self, parent_path_spec): """Test the seek functionality. Args: parent_path_spec (PathSpec): parent path specification. """ path_spec = tsk_path_spec.TSKPathSpec( inode=self._INODE_ANOTHER_FILE, location='/a_directory/another_file', parent=parent_path_spec) file_object = tsk_file_io.TSKFile(self._resolver_context, path_spec) file_object.Open() self.assertEqual(file_object.get_size(), 24) file_object.seek(10) self.assertEqual(file_object.read(5), b'other') self.assertEqual(file_object.get_offset(), 15) file_object.seek(-12, os.SEEK_END) self.assertEqual(file_object.read(5), b'her f') file_object.seek(2, os.SEEK_CUR) self.assertEqual(file_object.read(2), b'e.') # Conforming to the POSIX seek the offset can exceed the file size # but reading will result in no data being returned. file_object.seek(300, os.SEEK_SET) self.assertEqual(file_object.get_offset(), 300) self.assertEqual(file_object.read(2), b'') with self.assertRaises(IOError): file_object.seek(-10, os.SEEK_SET) # On error the offset should not change. self.assertEqual(file_object.get_offset(), 300) with self.assertRaises(IOError): file_object.seek(10, 5) # On error the offset should not change. self.assertEqual(file_object.get_offset(), 300) def _TestRead(self, parent_path_spec): """Test the read functionality. Args: parent_path_spec (PathSpec): parent path specification. """ path_spec = tsk_path_spec.TSKPathSpec( inode=self._INODE_PASSWORDS_TXT, location='/passwords.txt', parent=parent_path_spec) file_object = tsk_file_io.TSKFile(self._resolver_context, path_spec) file_object.Open() read_buffer = file_object.read() expected_buffer = ( b'place,user,password \r\n' b'bank,joesmith,superrich \r\n' b'alarm system,-,1234 \r\n' b'treasure chest,-,1111 \r\n' b'uber secret laire,admin,admin \r\n') self.assertEqual(read_buffer, expected_buffer) # TODO: add boundary scenarios. class WindowsNTFSImageFileTestCase(shared_test_lib.BaseTestCase): """Shared functionality for storage media image with a NTFS file system.""" _MFT_ENTRY_ANOTHER_FILE = 36 _MFT_ENTRY_PASSWORDS_TXT = 35 def setUp(self): """Sets up the needed objects used throughout the test.""" self._resolver_context = context.Context() def tearDown(self): """Cleans up the needed objects used throughout the test.""" self._resolver_context.Empty() def _TestOpenCloseMFTEntry(self, parent_path_spec): """Test the open and close functionality using a MFT entry. Args: parent_path_spec (PathSpec): parent path specification. """ path_spec = path_spec_factory.Factory.NewPathSpec( definitions.PREFERRED_NTFS_BACK_END, mft_attribute=1, mft_entry=self._MFT_ENTRY_PASSWORDS_TXT, parent=parent_path_spec) file_object = resolver.Resolver.OpenFileObject( path_spec, resolver_context=self._resolver_context) self.assertEqual(file_object.get_size(), 126) # TODO: add a failing scenario. def _TestOpenCloseLocation(self, parent_path_spec): """Test the open and close functionality using a location. Args: parent_path_spec (PathSpec): parent path specification. """ if definitions.PREFERRED_NTFS_BACK_END == definitions.TYPE_INDICATOR_TSK: location = '/passwords.txt' else: location = '\\passwords.txt' path_spec = path_spec_factory.Factory.NewPathSpec( definitions.PREFERRED_NTFS_BACK_END, location=location, parent=parent_path_spec) file_object = resolver.Resolver.OpenFileObject( path_spec, resolver_context=self._resolver_context) self.assertEqual(file_object.get_size(), 126) # Try open with a path specification that has no parent. path_spec.parent = None with self.assertRaises(errors.PathSpecError): resolver.Resolver.OpenFileObject( path_spec, resolver_context=self._resolver_context) def _TestSeek(self, parent_path_spec): """Test the seek functionality. Args: parent_path_spec (PathSpec): parent path specification. """ if definitions.PREFERRED_NTFS_BACK_END == definitions.TYPE_INDICATOR_TSK: location = '/a_directory/another_file' else: location = '\\a_directory\\another_file' path_spec = path_spec_factory.Factory.NewPathSpec( definitions.PREFERRED_NTFS_BACK_END, location=location, mft_attribute=2, mft_entry=self._MFT_ENTRY_ANOTHER_FILE, parent=parent_path_spec) file_object = resolver.Resolver.OpenFileObject( path_spec, resolver_context=self._resolver_context) self.assertEqual(file_object.get_size(), 24) file_object.seek(10) self.assertEqual(file_object.read(5), b'other') self.assertEqual(file_object.get_offset(), 15) file_object.seek(-12, os.SEEK_END) self.assertEqual(file_object.read(5), b'her f') file_object.seek(2, os.SEEK_CUR) self.assertEqual(file_object.read(2), b'e.') # Conforming to the POSIX seek the offset can exceed the file size # but reading will result in no data being returned. file_object.seek(300, os.SEEK_SET) self.assertEqual(file_object.get_offset(), 300) self.assertEqual(file_object.read(2), b'') with self.assertRaises(IOError): file_object.seek(-10, os.SEEK_SET) # On error the offset should not change. self.assertEqual(file_object.get_offset(), 300) with self.assertRaises(IOError): file_object.seek(10, 5) # On error the offset should not change. self.assertEqual(file_object.get_offset(), 300) def _TestRead(self, parent_path_spec): """Test the read functionality. Args: parent_path_spec (PathSpec): parent path specification. """ if definitions.PREFERRED_NTFS_BACK_END == definitions.TYPE_INDICATOR_TSK: location = '/passwords.txt' else: location = '\\passwords.txt' path_spec = path_spec_factory.Factory.NewPathSpec( definitions.PREFERRED_NTFS_BACK_END, location=location, mft_attribute=2, mft_entry=self._MFT_ENTRY_PASSWORDS_TXT, parent=parent_path_spec) file_object = resolver.Resolver.OpenFileObject( path_spec, resolver_context=self._resolver_context) read_buffer = file_object.read() expected_buffer = ( b'place,user,password \r\n' b'bank,joesmith,superrich \r\n' b'alarm system,-,1234 \r\n' b'treasure chest,-,1111 \r\n' b'uber secret laire,admin,admin \r\n') self.assertEqual(read_buffer, expected_buffer) # TODO: add boundary scenarios.
from flask import Flask, jsonify, request, Response from functools import wraps from werkzeug.routing import Rule from optparse import OptionParser from pprint import pprint import time VERBOSE = 'verbose' BASIC_AUTH = 'basic_auth' AUTH_USERNAME = 'auth_username' AUTH_PASSWORD = 'auth_password' config = { BASIC_AUTH: False, VERBOSE: False } app = Flask(__name__) app.url_map.add(Rule('/', defaults={'path' : ''}, endpoint='index')) app.url_map.add(Rule('/<path:path>', endpoint='index')) def validate_status_code(status_code): if status_code < 600: return True return False def extract(d): return {key: value for (key, value) in d.items()} def check_auth(username, password): if AUTH_USERNAME not in config or AUTH_PASSWORD not in config: return False return username == config[AUTH_USERNAME] and password == config[AUTH_PASSWORD] def authenticate(): return Response( 'Could not verify your access level for that URL.\n' 'You have to login with proper credentials', 401, {'WWW-Authenticate': 'Basic realm="Login Required"'}) def requires_auth(f): @wraps(f) def decorated(*args, **kwargs): if not config[BASIC_AUTH]: return f(*args, **kwargs) auth = request.authorization if not auth or not check_auth(auth.username, auth.password): return authenticate() return f(*args, **kwargs) return decorated @app.endpoint('index') @requires_auth def echo(path): status_code = request.args.get('status') or 200 status_code = int(status_code) if not validate_status_code(status_code): status_code = 200 data = { 'success' : True, 'status' : status_code, 'time' : time.time(), 'path' : request.path, 'script_root' : request.script_root, 'url' : request.url, 'base_url' : request.base_url, 'url_root' : request.url_root, 'method' : request.method, 'headers' : extract(request.headers), 'data' : request.data.decode(encoding='UTF-8'), 'host' : request.host, 'args' : extract(request.args), 'form' : extract(request.form), 'json' : request.json, 'cookies' : extract(request.cookies) } if config[VERBOSE]: pprint(data) response = jsonify(data) response.status_code = status_code print(extract(request.form)) return response def main(): parser = OptionParser() parser.add_option('--port', dest='port', default=8888, help='port to run server on - default 5000') parser.add_option('--auth', dest='auth', help='basic authentication credentials, should be passed in like "username:password"') parser.add_option('-v', '--verbose', dest='verbose', default=False, action='store_true', help='increased verbosity - outputs response to console') parser.add_option('--debug', dest='debug', default=False, action='store_true', help='enable debug mode in flask') (options, args) = parser.parse_args() config[VERBOSE] = options.verbose if options.auth: username, password = options.auth.split(':') if username is None or password is None: parser.error('Invalid auth credentials {0}'.format(options.auth)) config[BASIC_AUTH] = True config[AUTH_USERNAME] = username config[AUTH_PASSWORD] = password app.debug = options.debug app.run(port=int(options.port)) if __name__ == '__main__': main()
''' *************************************************************************** * (c) Andrew Robinson (andrew.robinson@latrobe.edu.au) 2013 * * La Trobe University & * * Life Sciences Computation Centre (LSCC, part of VLSCI) * * * * This program is free software; you can redistribute it and/or modify * * it under the terms of the GNU Library General Public License (LGPL) * * as published by the Free Software Foundation; either version 2 of * * the License, or (at your option) any later version. * * * * ScienceScripts is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU Library General Public License for more details. * * * * You should have received a copy of the GNU Library General Public * * License along with ScienceScripts; if not, write to the Free Software * * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 * * USA * * * *************************************************************************** Created on 19/09/2013 @author: arobinson ''' import sys, getopt from Bio import SeqIO from BCBio import GFF def main(argv): '''For each subject feature find the nearest neighbour sequence in each direction. NOTE: it takes into account the strand of the subject so that its 3' and 5' neighbours are reported correctly''' neighbourGffFilename = None subjectGffFilename = None subjectFeatureNames = 'gene' neighbourFeatureNames = 'region' verbose = False titles = False delimiter = "\t" naValue = 'N/a' cmdmsg = '''nearestfeat.py [-h] -S <subject.feature.names> -N <neighbour.feature.names> -s <subject.gff> -n <neighbours.gff>''' helpmsg = '''For each subject feature find the nearest neighbour sequence in each direction. %s -h Print this help msg -v Print a summary (counts) at end of processing -t Print titles in first row -S <str> Subject feature names, a comma separated list (no spaces), (default: gene) -N <str> Neighbour feature names, a comma separated list (no spaces), (default: region) -s <str> GFF file containing subject information. -n <str> GFF file containing the Neighbour features. ''' % cmdmsg # parse arguments try: opts, args = getopt.getopt(argv,"htvS:N:s:n:",[]) except getopt.GetoptError: print cmdmsg sys.exit(2) for opt, arg in opts: if opt == '-h': print helpmsg sys.exit() elif opt == "-S": subjectFeatureNames = arg elif opt == "-N": neighbourFeatureNames = arg elif opt == "-s": subjectGffFilename = arg elif opt == "-n": neighbourGffFilename = arg elif opt == "-v": verbose = True elif opt == "-t": titles = True # compute extra options subjectFeatureNamesList = subjectFeatureNames.split(',') neighbourFeatureNamesList = neighbourFeatureNames.split(',') counter = SafeCounter(['+', '-', '.', '?', 1, -1, 'ne']) ### (1) parse the neighbour gff file ### limitInfo = {'gff_type': neighbourFeatureNamesList} neighbourHandle = open(neighbourGffFilename, 'rU') neighbourTags = [] neighbourTagLists = {} for sequence in GFF.parse(neighbourHandle, limit_info=limitInfo): # make a list of neighbour locations # Note: this performs gene consolidation via a delayed appending loop neighbourTags = [] lastNeighbour = None for feature in sequence.features: subject = (int(feature.location.start), int(feature.location.end)) # delayed processing to check for overlaps if lastNeighbour: # true on 2+ iteration if lastNeighbour[1] >= subject[0]: # overlap? lastNeighbour = (lastNeighbour[0], subject[1]) else: neighbourTags.append((lastNeighbour[0], True)) neighbourTags.append((lastNeighbour[1], False)) lastNeighbour = subject else: lastNeighbour = subject counter.inc('ne') # ^ next feature ^ # finish off the last neighbour (if exists) if lastNeighbour: neighbourTags.append((lastNeighbour[0], True)) neighbourTags.append((lastNeighbour[1], False)) neighbourTags.sort() neighbourTagLists[sequence.id] = neighbourTags # ^ next sequence ^ neighbourHandle.close() # print column titles if requested if titles: print str(delimiter).join(['Feature id', 'Label', "5' Distance", "3' Distance", 'Strand', ]) ### (2) process the subjects (1-by-1) ### limitInfo = {'gff_type': subjectFeatureNamesList} subjectHandle = open(subjectGffFilename, 'rU') for sequence in GFF.parse(subjectHandle, limit_info=limitInfo): try: neighbourTags = neighbourTagLists[sequence.id] except: neighbourTags = [] for subject in sequence.features: (int(subject.location.start), int(subject.location.end)) i = -1 ## find first tag after subject end ## endDist = naValue for i in xrange(len(neighbourTags)): neighbourTag = neighbourTags[i] if neighbourTag[0] >= subject.location.end: if neighbourTag[1]: # is start neighbour? endDist = neighbourTag[0] - subject.location.end else: endDist = 0 break # find the first tag before subject start startDist = naValue for i in xrange(i,-1,-1): # backwards from where first loop ended neighbourTag = neighbourTags[i] if neighbourTag[0] <= subject.location.start: if neighbourTag[1]: # is start neighbour? startDist = 0 else: startDist = subject.location.start - neighbourTag[0] break counter.inc(subject.strand) label = "%s-%s-%s" % (sequence.id, subject.location.start, subject.location.end) fid = label if 'ID' in subject.qualifiers: fid = " & ".join(subject.qualifiers['ID']) if subject.strand in ('+', '.', '?', 1): print str(delimiter).join([ fid, label, str(startDist), str(endDist), "+", ]) elif subject.strand in ('-', -1): print str(delimiter).join([ fid, label, str(endDist), str(startDist), "-", ]) elif verbose: print "Unknown strand: %s" % subject.strand # ^ next subject ^ # ^ next sequence ^ subjectHandle.close() if verbose: print '' print '[Feature counts]' print 'Total: %s' % (counter.total - counter.counters['ne']) print '+ve: %s' % (counter.counters['+'] + counter.counters[1]) print '-ve: %s' % (counter.counters['-'] + counter.counters[-1]) print 'non-stranded: %s' % counter.counters['.'] print 'unknown: %s' % counter.counters['?'] print 'others: %s' % counter.others print '' print '[Neighbour counts]' print 'Total: %s' % counter.counters['ne'] class SafeCounter(object): '''''' def __init__(self, lists): self.counters = {} for val in lists: self.counters[val] = 0 self.total = 0 self.others = 0 def inc(self, key): try: self.counters[key] += 1 except KeyError: self.others += 1; self.total += 1 ## end SafeCounter if __name__ == "__main__": main(sys.argv[1:]) ## EOF ##
from django.contrib import admin from .models import ExampleSlackModel class ExampleSlackAdmin(admin.ModelAdmin): """Simple admin view for looking over data""" admin.site.register(ExampleSlackModel, ExampleSlackAdmin)
# -*- coding: utf-8 -*- from guillotina import configure from guillotina.behaviors.instance import AnnotationBehavior from guillotina.behaviors.properties import FunctionProperty from guillotina.interfaces import IResource from guillotina.utils import get_authenticated_user_id from guillotina_cms.interfaces import IFollowing from guillotina_cms.interfaces import IFollowingMarker @configure.behavior( title="Following", provides=IFollowing, marker=IFollowingMarker, for_=IResource) class Following(AnnotationBehavior): __local__properties__ = ('favorite',) def get_favorite(self): user = get_authenticated_user_id() return user in (self.favorites or []) def set_favorite(self, value): pass favorite = FunctionProperty( 'favorite', get_favorite, set_favorite)
from collections import namedtuple from functools import partial from typing import Any, Dict, Union from quilldelta import utils as _ __all__ = ['Insert', 'Retain', 'Delete', 'OperationType', 'is_retain', 'is_insert', 'is_delete', 'it_insert_text', 'load_operation'] def _sum_operation(instance, other): type_op = type(instance) type_other = type(other) if type(other) != type_op: raise ValueError(f'Operations are not the same type ' f'{type_op.__name__} != {type_other}') if hasattr(instance, 'attributes'): instance_attr = instance.attributes if instance.attributes else None other_attr = other.attributes if other.attributes else None if instance_attr != other_attr: raise ValueError("Can't sum operations with different attributes") return type_op(instance.value + other.value, other_attr) else: return type_op(instance.value + other.value) class Insert(namedtuple('Insert', 'value, attributes')): __slots__ = () __str__ = _.instance_as_json __add__ = _sum_operation as_data = _.instance_as_dict as_json = _.instance_as_json @classmethod def fromdict(cls, data): data.setdefault('attributes', None) return _.dict_to_class(cls, data) @property def length(self): if isinstance(self.value, str): return len(self.value) return 1 class Retain(namedtuple('Retain', 'value, attributes')): __slots__ = () __str__ = _.instance_as_json __add__ = _sum_operation as_data = _.instance_as_dict as_json = _.instance_as_json @classmethod def fromdict(cls, data: dict): data.setdefault('attributes', None) return _.dict_to_class(cls, data) @property def length(self): return self.value @length.setter def length(self, val: int): assert isinstance(val, int) self.value = val class Delete(namedtuple('Delete', 'value')): __slots__ = () __str__ = _.instance_as_json __add__ = _sum_operation as_data = _.instance_as_dict as_json = _.instance_as_json @classmethod def fromdict(cls, data: dict): return _.dict_to_class(cls, data) @property def length(self): return self.value @length.setter def length(self, val: int): assert isinstance(val, int) self.value = val OperationType = Union[Insert, Retain, Delete, Dict] def load_operation(data: OperationType): if isinstance(data, (Insert, Retain, Delete)): return data elif isinstance(data, Dict): if 'insert' in data: return Insert.fromdict(data) elif 'retain' in data: return Retain.fromdict(data) elif 'delete' in data: return Delete.fromdict(data) raise ValueError('Unknown operation for %s' % data) def _isinstance(op: Any, class_or_tuple): return isinstance(op, class_or_tuple) is_insert = partial(_isinstance, class_or_tuple=Insert) is_retain = partial(_isinstance, class_or_tuple=Retain) is_delete = partial(_isinstance, class_or_tuple=Delete) def it_insert_text(op: Any): return is_insert(op) and isinstance(op.value, str)
import binascii import uuid from base64 import b64decode from datetime import datetime, timedelta from urllib.parse import parse_qs, parse_qsl, urlencode, urlparse, urlunparse from django.core.exceptions import ImproperlyConfigured from django.db.models import F, Func, TextField from rest_framework.pagination import BasePagination from rest_framework.response import Response from rest_framework.settings import api_settings class ActivityCursorPagination(BasePagination): """ Cursor pagination for activities. The activity stream service scrapes specified endpoints at regular intervals to get the activity feed from various services. It scrapes all the pages and more frequently: the last page only. If the last page has a "next" link, it scrapes that and updates the pointer to the last page. The default LIMIT-ORDER pagination gets slower as you progress through the pages so we decided to use cursor pagination here because we needed to render the last page quite frequently. The built-in Django Rest Framework Cursor pagination is not used, since it - has a lot of code that isn't applicable to this use case, which makes it tricky to extend or debug, e.g. for peformance issues - uses an almost-unique value + offset cursor that isn't needed when we have a completely unique compound cursor: (modified_on, id) """ page_size = api_settings.PAGE_SIZE summary = None def _get_summary(self): if self.summary is None: raise ImproperlyConfigured( f'{self.__class__.__name__} requires definition of `summary` attribute ' 'or a `_get_summary()` method', ) return self.summary def _replace_query_param(self, url, key, vals): """ Replaces all of the values of `key` of the query in `url` with `vals` The DRF version of this function is not used, since it always replaces all of the values of `key` with a single value. """ parsed = urlparse(url) return urlunparse(parsed._replace(query=urlencode(tuple( (_key, val) for (_key, val) in parse_qsl(parsed.query, keep_blank_values=True) if _key != key ) + tuple((key, val) for val in vals)))) def paginate_queryset(self, queryset, request, view=None): """ Returns a page of results based on the cursor query string parameter. Designed to make the last page empty """ # Extract cursor from query string. Inclues partial support for DRF's base64-encoded cursor # of timestamp + offset, the previous pagination mechanism. This is so that at the time # of deployment the Activity Stream can carry on from at most a few pages before where it # was. Once this is live and working, the DRF support can be removed try: after_ts_str = parse_qs(b64decode(request.GET.getlist('cursor')[0]))[b'p'][0].decode() after_id_str = '00000000-0000-0000-0000-000000000000' except (IndexError, KeyError, binascii.Error): after_ts_str, after_id_str = request.GET.getlist( 'cursor', ('0001-01-01 00:00:00.000000+00:00', '00000000-0000-0000-0000-000000000000'), ) after_ts = datetime.fromisoformat(after_ts_str) after_id = uuid.UUID(after_id_str) # Filter queryset to be after cursor. # # A composite/row/tuple lexicographic comparison is used to have the biggest chance of # fully using a multicolumn index. When tested on interactions in production, these queries # take ~50ms. If doing the comparison "manually", such queries take take ~1.5s+ # # To do this in the Django ORM requires 'annotate', which itself requires a small hack: the # setting of an output_field, which can be anything since we don't access the value. modified_on_id = Func(F('modified_on'), F('id'), function='ROW', output_field=TextField()) after_ts_id = Func(after_ts, after_id, function='ROW') # Mitigate the risk of timestamps being committed slightly out of order, which could result # in activities being missed when the last page is polled one_second_ago = datetime.now() - timedelta(seconds=1) page = list(queryset .annotate(modified_on_id=modified_on_id) .filter(modified_on_id__gt=after_ts_id, modified_on__lt=one_second_ago) # Do not use ROW expressions in order_by: it seems to have an extremely # negative performance impact .order_by('modified_on', 'id')[:self.page_size]) # Build and store next link for all non-empty pages to be used in get_paginated_response if not page: self.next_link = None else: final_instance = page[-1] next_after_ts_str = final_instance.modified_on.isoformat(timespec='microseconds') next_after_id_str = str(final_instance.id) self.next_link = self._replace_query_param( request.build_absolute_uri(), 'cursor', (next_after_ts_str, next_after_id_str), ) return page def get_paginated_response(self, data): """ Overriding this function to re-format the response according to activity stream spec. """ return Response( { '@context': 'https://www.w3.org/ns/activitystreams', 'summary': self._get_summary(), 'type': 'OrderedCollectionPage', 'orderedItems': data, 'next': self.next_link, }, )
import gc import torch import numpy as np import random from transformers import AutoTokenizer, AutoModelForSequenceClassification def cleanup(): gc.collect() torch.cuda.empty_cache() def turn_off_grad(model): for param in model.parameters(): param.requires_grad = False def turn_on_grad(model): for param in model.parameters(): param.requires_grad = True def load_model( model_name=None, model_class=AutoModelForSequenceClassification, use_cuda=True ): if model_name is None: raise ValueError('model_name should be provided') model = model_class.from_pretrained(model_name) if torch.cuda.is_available() and use_cuda: model.cuda() tokenizer = AutoTokenizer.from_pretrained(model_name) return model, tokenizer def set_seed(seed: int): torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False np.random.seed(seed) random.seed(seed) def static_vars(**kwargs): def decorate(func): for k in kwargs: setattr(func, k, kwargs[k]) return func return decorate
# twitter/views_admin.py # Brought to you by We Vote. Be good. # -*- coding: UTF-8 -*- from .controllers import delete_possible_twitter_handles, retrieve_possible_twitter_handles from .models import TwitterLinkPossibility from admin_tools.views import redirect_to_sign_in_page from candidate.models import CandidateCampaign, CandidateCampaignManager from django.contrib.auth.decorators import login_required from django.contrib import messages from django.core.urlresolvers import reverse from django.http import HttpResponseRedirect from voter.models import voter_has_authority from wevote_functions.functions import convert_to_int, positive_value_exists import wevote_functions.admin from wevote_settings.models import RemoteRequestHistory, RETRIEVE_POSSIBLE_TWITTER_HANDLES logger = wevote_functions.admin.get_logger(__name__) @login_required def delete_possible_twitter_handles_view(request, candidate_campaign_we_vote_id): authority_required = {'verified_volunteer'} # admin, verified_volunteer if not voter_has_authority(request, authority_required): return redirect_to_sign_in_page(request, authority_required) candidate_manager = CandidateCampaignManager() results = candidate_manager.retrieve_candidate_campaign_from_we_vote_id(candidate_campaign_we_vote_id) if not results['candidate_campaign_found']: messages.add_message(request, messages.INFO, results['status']) return HttpResponseRedirect(reverse('candidate:candidate_edit_we_vote_id', args=(candidate_campaign_we_vote_id,))) candidate_campaign = results['candidate_campaign'] results = delete_possible_twitter_handles(candidate_campaign) messages.add_message(request, messages.INFO, 'Possibilities deleted.') return HttpResponseRedirect(reverse('candidate:candidate_edit_we_vote_id', args=(candidate_campaign_we_vote_id,))) @login_required def retrieve_possible_twitter_handles_view(request, candidate_campaign_we_vote_id): authority_required = {'verified_volunteer'} # admin, verified_volunteer if not voter_has_authority(request, authority_required): return redirect_to_sign_in_page(request, authority_required) candidate_manager = CandidateCampaignManager() results = candidate_manager.retrieve_candidate_campaign_from_we_vote_id(candidate_campaign_we_vote_id) if not results['candidate_campaign_found']: messages.add_message(request, messages.INFO, results['status']) return HttpResponseRedirect(reverse('candidate:candidate_edit_we_vote_id', args=(candidate_campaign_we_vote_id,))) candidate_campaign = results['candidate_campaign'] results = retrieve_possible_twitter_handles(candidate_campaign) messages.add_message(request, messages.INFO, 'Number of possibilities found: ' + results['num_of_possibilities']) return HttpResponseRedirect(reverse('candidate:candidate_edit_we_vote_id', args=(candidate_campaign_we_vote_id,))) @login_required def bulk_retrieve_possible_twitter_handles_view(request): authority_required = {'verified_volunteer'} # admin, verified_volunteer if not voter_has_authority(request, authority_required): return redirect_to_sign_in_page(request, authority_required) google_civic_election_id = convert_to_int(request.GET.get('google_civic_election_id', 0)) hide_candidate_tools = request.GET.get('hide_candidate_tools', False) page = request.GET.get('page', 0) state_code = request.GET.get('state_code', '') limit = convert_to_int(request.GET.get('show_all', 0)) if not positive_value_exists(google_civic_election_id) and not positive_value_exists(state_code) \ and not positive_value_exists(limit): messages.add_message(request, messages.ERROR, 'bulk_retrieve_possible_twitter_handles_view, LIMITING_VARIABLE_REQUIRED') return HttpResponseRedirect(reverse('candidate:candidate_list', args=()) + '?google_civic_election_id=' + str(google_civic_election_id) + '&state_code=' + str(state_code) + '&hide_candidate_tools=' + str(hide_candidate_tools) + '&page=' + str(page) ) try: candidate_list = CandidateCampaign.objects.all() if positive_value_exists(google_civic_election_id): candidate_list = candidate_list.filter(google_civic_election_id=google_civic_election_id) if positive_value_exists(state_code): candidate_list = candidate_list.filter(state_code__iexact=state_code) candidate_list = candidate_list.order_by('candidate_name') if positive_value_exists(limit): candidate_list = candidate_list[:limit] candidate_list_count = candidate_list.count() # Run Twitter account search and analysis on candidates without a linked or possible Twitter account number_of_candidates_to_search = 25 current_candidate_index = 0 while positive_value_exists(number_of_candidates_to_search) \ and (current_candidate_index < candidate_list_count): one_candidate = candidate_list[current_candidate_index] if not positive_value_exists(one_candidate.candidate_twitter_handle): # Candidate does not have a Twitter account linked # Check to see if we have already tried to find their information from Twitter. We don't want to # search Twitter more than once. request_history_query = RemoteRequestHistory.objects.filter( candidate_campaign_we_vote_id__iexact=one_candidate.we_vote_id, kind_of_action=RETRIEVE_POSSIBLE_TWITTER_HANDLES) request_history_list = list(request_history_query) if not positive_value_exists(request_history_list): # Twitter account search and analysis has not been run on this candidate yet results = retrieve_possible_twitter_handles(one_candidate) number_of_candidates_to_search -= 1 current_candidate_index += 1 except CandidateCampaign.DoesNotExist: # This is fine, do nothing pass return HttpResponseRedirect(reverse('candidate:candidate_list', args=()) + '?google_civic_election_id=' + str(google_civic_election_id) + '&state_code=' + str(state_code) + '&hide_candidate_tools=' + str(hide_candidate_tools) + '&page=' + str(page) )
import logging from asreview.ascii import welcome_message from asreview.config import DEFAULT_MODEL, DEFAULT_FEATURE_EXTRACTION from asreview.config import DEFAULT_QUERY_STRATEGY from asreview.config import DEFAULT_BALANCE_STRATEGY from asreview.config import DEFAULT_N_INSTANCES from asreview.config import DEFAULT_N_PRIOR_EXCLUDED from asreview.config import DEFAULT_N_PRIOR_INCLUDED from asreview.entry_points.base import BaseEntryPoint, _base_parser from asreview.review import review_simulate class SimulateEntryPoint(BaseEntryPoint): description = "Simulate the performance of ASReview." def execute(self, argv): parser = _simulate_parser() args = parser.parse_args(argv) args_dict = vars(args) path = args_dict.pop("dataset") verbose = args_dict.get("verbose", 0) if verbose == 0: logging.getLogger().setLevel(logging.WARNING) elif verbose == 1: logging.getLogger().setLevel(logging.INFO) elif verbose >= 2: logging.getLogger().setLevel(logging.DEBUG) print(welcome_message()) review_simulate(path, **args_dict) DESCRIPTION_SIMULATE = """ Automated Systematic Review (ASReview) for simulation runs. The simulation modus is used to measure the performance of our software on existing systematic reviews. The software shows how many papers you could have potentially skipped during the systematic review.""" def _simulate_parser(prog="simulate", description=DESCRIPTION_SIMULATE): parser = _base_parser(prog=prog, description=description) # Active learning parameters # File path to the data. parser.add_argument( "dataset", type=str, nargs="*", help="File path to the dataset or one of the built-in datasets." ) # Initial data (prior knowledge) parser.add_argument( "--n_prior_included", default=DEFAULT_N_PRIOR_INCLUDED, type=int, help="Sample n prior included papers. " "Only used when --prior_included is not given. " f"Default {DEFAULT_N_PRIOR_INCLUDED}") parser.add_argument( "--n_prior_excluded", default=DEFAULT_N_PRIOR_EXCLUDED, type=int, help="Sample n prior excluded papers. " "Only used when --prior_excluded is not given. " f"Default {DEFAULT_N_PRIOR_EXCLUDED}") return parser
# -*- coding: utf-8 -*- # @Time : 2021/2/22 18:54 # @Author : duyu # @Email : abelazady@foxmail.com # @File : my_hook.py # @Software: PyCharm import torch from mmcv.runner import HOOKS, Hook from mmcv.runner.hooks.optimizer import OptimizerHook @HOOKS.register_module() class MyOptimizerHook(OptimizerHook): def __init__(self): super(MyOptimizerHook,self).__init__() def after_train_iter(self, runner): runner.optimizer.zero_grad() runner.outputs['loss'].backward() if self.grad_clip is not None: grad_norm = self.clip_grads(runner.model.parameters()) if grad_norm is not None: # Add grad norm to the logger runner.log_buffer.update({'grad_norm': float(grad_norm)}, runner.outputs['num_samples']) runner.optimizer.step() @HOOKS.register_module() class MyHook(Hook): def __init__(self): pass def before_run(self, runner): # print(dir(runner)) pass def after_run(self, runner): pass def before_epoch(self, runner): pass def after_epoch(self, runner): pass def before_iter(self, runner): pass def after_iter(self, runner): pass def hook_fn_backward(module,grad_input,grad_output): # print(module) # print(module.weight) # print(grad_output) pass
n=int(input('tabuada de qual numero vc quer?')) for c in range(0,11): print(n,'*' , c,'=' ,n* c)
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from .services.reachability_service import ReachabilityServiceClient from .services.reachability_service import ReachabilityServiceAsyncClient from .types.connectivity_test import ConnectivityTest from .types.connectivity_test import Endpoint from .types.connectivity_test import LatencyDistribution from .types.connectivity_test import LatencyPercentile from .types.connectivity_test import ProbingDetails from .types.connectivity_test import ReachabilityDetails from .types.reachability import CreateConnectivityTestRequest from .types.reachability import DeleteConnectivityTestRequest from .types.reachability import GetConnectivityTestRequest from .types.reachability import ListConnectivityTestsRequest from .types.reachability import ListConnectivityTestsResponse from .types.reachability import OperationMetadata from .types.reachability import RerunConnectivityTestRequest from .types.reachability import UpdateConnectivityTestRequest from .types.trace import AbortInfo from .types.trace import CloudSQLInstanceInfo from .types.trace import DeliverInfo from .types.trace import DropInfo from .types.trace import EndpointInfo from .types.trace import FirewallInfo from .types.trace import ForwardInfo from .types.trace import ForwardingRuleInfo from .types.trace import GKEMasterInfo from .types.trace import InstanceInfo from .types.trace import LoadBalancerBackend from .types.trace import LoadBalancerInfo from .types.trace import NetworkInfo from .types.trace import RouteInfo from .types.trace import Step from .types.trace import Trace from .types.trace import VpnGatewayInfo from .types.trace import VpnTunnelInfo __all__ = ( 'ReachabilityServiceAsyncClient', 'AbortInfo', 'CloudSQLInstanceInfo', 'ConnectivityTest', 'CreateConnectivityTestRequest', 'DeleteConnectivityTestRequest', 'DeliverInfo', 'DropInfo', 'Endpoint', 'EndpointInfo', 'FirewallInfo', 'ForwardInfo', 'ForwardingRuleInfo', 'GKEMasterInfo', 'GetConnectivityTestRequest', 'InstanceInfo', 'LatencyDistribution', 'LatencyPercentile', 'ListConnectivityTestsRequest', 'ListConnectivityTestsResponse', 'LoadBalancerBackend', 'LoadBalancerInfo', 'NetworkInfo', 'OperationMetadata', 'ProbingDetails', 'ReachabilityDetails', 'ReachabilityServiceClient', 'RerunConnectivityTestRequest', 'RouteInfo', 'Step', 'Trace', 'UpdateConnectivityTestRequest', 'VpnGatewayInfo', 'VpnTunnelInfo', )
# Packages up pygw so it's pip-installable from setuptools import setup, find_packages with open('README.md', 'r') as fh: long_description = fh.read() def get_version(): try: from maven_version import get_maven_version version = get_maven_version() except ModuleNotFoundError: # If maven version isn't found, it must be from the distribution from pkg_resources import get_distribution from pkg_resources import DistributionNotFound version = get_distribution('pygw').version return version setup( name='pygw', author='GeoWave Contributors', author_email='geowave.python@gmail.com', description='GeoWave bindings for Python3', long_description=long_description, long_description_content_type='text/markdown', url='https://locationtech.github.io/geowave/', project_urls={ 'Documentation': 'https://locationtech.github.io/geowave/pydocs/', 'Source': 'https://github.com/locationtech/geowave/tree/master/python/src/main/python', }, version=get_version(), packages=find_packages(), classifiers=[ 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.0', 'Programming Language :: Python :: 3.1', 'Programming Language :: Python :: 3.2', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'License :: OSI Approved :: Apache Software License', 'Operating System :: OS Independent', ], install_requires=['py4j==0.10.8.1','shapely==1.6'], python_requires='>=3,<3.8' # py4j does not support python 3.8 yet )
import pytest from mars_profiling.profile_report import ProfileReport def test_phases_empty(): profile = ProfileReport(None) with pytest.raises(ValueError) as e: profile.to_html() assert ( e.value.args[0] == "Can not describe a `lazy` ProfileReport without a DataFrame." )
import random from datetime import date, datetime, timedelta, timezone from typing import List, Optional from fastapi.exceptions import HTTPException from starlette import status from app.models.phq import AvgAndEstimatedPhqScore, Phq, SingleQuestionAvgScore from app.models.user import User from app.schema.phq import ( GraphEntry, Question, SingleQuestionResponse, SingleQuestionResponseFloat, ) QV1 = [ "I have little interest or pleasure in doing things", "I feel down and depressed and hopeless", "I have trouble with sleep", "I have been feeling tired and have little energy", "I have a poor appetite or am overeating", "I feel guilty or bad about myself", "I have trouble concentrating", "I am moving slower or fidgeting more", "I would be better off dead or hurting myself", ] QV2 = [ "I have lots of interest or pleasure in doing things", "I feel up and bright and hopeful", "I have been sleeping well", "I have been feeling active and have lots of enery", "I am eating the right amount of food", "I feel positive and good about myself", "I can concentrate well", "I am not fidgety or feel weighed down either", "I do not want to hurt or kill myself", ] def all_questions(user: User) -> List[Question]: # returns the list of all questions record = AvgAndEstimatedPhqScore.objects(user=user).first() questions = [] for i in range(0, 9): version = random.choice([1, 2]) question = "" if version == 1: question = QV1[i] else: question = QV2[i] average_score = 0 if record: average_score = record.average_scores.get(str(i + 1)).average if version == 2: average_score = 3 - average_score average_score = int(average_score) # questions.append([i+1, question, version, average_score]) questions.append( { "qno": i + 1, "question": question, "version": version, "average_score": average_score, } ) return questions def three_questions(user: User) -> List[Question]: # if user has submitted his first record, then he won't get any more questions on same day # record = AvgAndEstimatedPhqScore.objects(user=user).first() record = ( Phq.objects( user=user, ) .order_by("+datetime") .first() ) if record: if record.datetime.date() == datetime.now(tz=timezone.utc).date(): return [] # get records for current user that have datetime greater than or equal to todays date at midnight # sort the records in desc order of datetime todays_records = Phq.objects( user=user, datetime__gte=datetime.combine(datetime.now().date(), datetime.min.time()), ).order_by("-datetime") all_ques = all_questions(user) # if no records for that day, send 3 random questions if len(todays_records) == 0: return random.sample(list(all_ques), k=3) if len(todays_records) < 3: # if no records past 4 hour, select 3 random questions if ( datetime.now(tz=timezone.utc) - todays_records[0].datetime ).total_seconds() / 60 > 0.5: return random.sample(list(all_ques), k=3) return [] def get_score(response: SingleQuestionResponse) -> int: # if question version was 1, return score as it is # if question version was 2, return 3-score if response: if response.version == 1: return response.score elif response.version == 2: return 3 - response.score def add_answers_to_db(user: User, body: List[SingleQuestionResponse]): answers = {} for response in body: answers.update({str(response.qno): get_score(response)}) phq = Phq(user=user, datetime=datetime.now(tz=timezone.utc), answers=answers) phq.save() def update_avg_and_estm_phq( user: User, body: list, date: Optional[date] = None, fixed=False, ): # update the average of each question and the estimated phq after each response if not date: date = datetime.now(tz=timezone.utc).date() if not body: # if no records for that day, update fixed value only # should only run when fix function is called that_days_record = AvgAndEstimatedPhqScore.objects(user=user, date=date).first() that_days_record.fixed = fixed that_days_record.save() return # fetch all records in desc order of date so 1st record will be latest all_records = AvgAndEstimatedPhqScore.objects(user=user).order_by("-date") todays_record = None if all_records: if all_records[0].date == date: todays_record = all_records[0] # if record for that day exists, update that record if todays_record: for response in body: # update values for all questions present in body qno = str(response.qno) score = get_score(response) old_avg = todays_record.average_scores.get(qno).average old_total_records = todays_record.average_scores.get(qno).total_records todays_record.estimated_phq += score - old_avg new_entry = SingleQuestionAvgScore( average=(old_avg * old_total_records + score) / (old_total_records + 1), total_records=old_total_records + 1, ) todays_record.average_scores.update({qno: new_entry}) todays_record.fixed = fixed # save the updated record todays_record.save() # if record for that day doesn't exists but their are previous records # in that case, we take latest record because if todays record doesn't exists, latest record gonna be yesterdays # and create new record for current day using yesterdays record and form values # assuming that we are running fix records function before this function on post request elif all_records: yesterdays_record = all_records[0] estimated_phq = yesterdays_record.estimated_phq average_scores = yesterdays_record.average_scores.copy() for response in body: qno = str(response.qno) score = get_score(response) yesterdays_avg = yesterdays_record.average_scores.get(qno).average yesterdays_total_records = yesterdays_record.average_scores.get( qno ).total_records estimated_phq += score - yesterdays_avg todays_entry = SingleQuestionAvgScore( average=(yesterdays_avg * yesterdays_total_records + score) / (yesterdays_total_records + 1), total_records=yesterdays_total_records + 1, ) average_scores.update({qno: todays_entry}) new_record = AvgAndEstimatedPhqScore( user=user, date=date, fixed=fixed, average_scores=average_scores, estimated_phq=estimated_phq, ) # add this new record to db new_record.save() # if no record for user exists, first record is created # create new record else: average_scores = {} estimated_phq = 0 for response in body: qno = str(response.qno) score = get_score(response) todays_entry = SingleQuestionAvgScore(average=score, total_records=1) estimated_phq += score average_scores.update({qno: todays_entry}) new_record = AvgAndEstimatedPhqScore( user=user, date=date, fixed=fixed, average_scores=average_scores, estimated_phq=estimated_phq, ) new_record.save() def fix_missing_records(user, last_fix_date: date): # this function should take care of user not inputting all three records a day # as well as question not being asked single time for given day def daterange(start_date, end_date): # returns the range of dates to iterate on for n in range(int((end_date - start_date).days)): yield start_date + timedelta(n) for day in daterange(last_fix_date, datetime.now(tz=timezone.utc).date()): # fetch the records of particular day # check for the questiions that haven't answered at all in that days records # and create entry for those missing questions using previous day's average records = Phq.objects( user=user, datetime__gte=datetime.combine(day, datetime.min.time()), datetime__lt=datetime.combine(day + timedelta(days=1), datetime.min.time()), ) estimated_phq_record = AvgAndEstimatedPhqScore.objects( user=user, date=last_fix_date ).first() entry = [] for i in range(1, 10): entry_exists = False for record in records: if record.answers.get(str(i)) is not None: entry_exists = True if not entry_exists: entry.append( SingleQuestionResponseFloat( qno=i, score=estimated_phq_record.average_scores.get(str(i)).average, version=1, ) ) update_avg_and_estm_phq(user, entry, day, fixed=True) def generate_graph_values(user: User) -> List[GraphEntry]: graph_details = [] records = AvgAndEstimatedPhqScore.objects(user=user).order_by("+date") # if no records, raise exception if records is None: raise HTTPException( status_code=status.HTTP_404_NOT_FOUND, detail="No data found 😞", ) phq_records = list(Phq.objects(user=user).order_by("+date")) for record in records: sum_of_avg = 0 q9_sum = 0 q9_count = 0 for i in range(1, 10): sum_of_avg += record.average_scores.get(str(i)).average for i in range(3): # check the 1st three records of phq table in ascending order of date # if record has same date as average table record, calculate q9 average of that day # otherwise keep it 0 if phq_records: if phq_records[0].datetime.date() == record.date: if (score := phq_records[0].answers.get("9")) is not None: q9_sum += score q9_count += 1 # remove record that has been used so next record become 1st phq_records.pop(0) else: break graph_details.append( GraphEntry( date=record.date, estimated_phq=record.estimated_phq, sum_of_avg=sum_of_avg, q9_avg=(q9_sum / q9_count) if q9_count != 0 else 0, ) ) if len(graph_details) > 14: graph_details = graph_details[-14:] return graph_details
import StringIO import json import logging import random import urllib import urllib2 import requests # for sending images from PIL import Image import multipart # standard app engine imports from google.appengine.api import urlfetch from google.appengine.ext import ndb import webapp2 TOKEN = '356407842:AAFndoaIMeEfF7tXCAEq0pU5Rlekm5k2asw' BASE_URL = 'https://api.telegram.org/bot' + TOKEN + '/' # ================================ class EnableStatus(ndb.Model): # key name: str(chat_id) enabled = ndb.BooleanProperty(indexed=False, default=False) # ================================ def setEnabled(chat_id, yes): es = EnableStatus.get_or_insert(str(chat_id)) es.enabled = yes es.put() def getEnabled(chat_id): es = EnableStatus.get_by_id(str(chat_id)) if es: return es.enabled return False # ================================ class MeHandler(webapp2.RequestHandler): def get(self): urlfetch.set_default_fetch_deadline(60) self.response.write(json.dumps(json.load(urllib2.urlopen(BASE_URL + 'getMe')))) class GetUpdatesHandler(webapp2.RequestHandler): def get(self): urlfetch.set_default_fetch_deadline(60) self.response.write(json.dumps(json.load(urllib2.urlopen(BASE_URL + 'getUpdates')))) class SetWebhookHandler(webapp2.RequestHandler): def get(self): urlfetch.set_default_fetch_deadline(60) url = self.request.get('url') if url: self.response.write(json.dumps(json.load(urllib2.urlopen(BASE_URL + 'setWebhook', urllib.urlencode({'url': url}))))) class WebhookHandler(webapp2.RequestHandler): def post(self): urlfetch.set_default_fetch_deadline(60) body = json.loads(self.request.body) logging.info('request body:') logging.info(body) self.response.write(json.dumps(body)) update_id = body['update_id'] try: message = body['message'] except: message = body['edited_message'] message_id = message.get('message_id') date = message.get('date') text = message.get('text') fr = message.get('from') chat = message['chat'] chat_id = chat['id'] if not text: logging.info('no text') return def reply(msg=None, img=None): if msg: resp = urllib2.urlopen(BASE_URL + 'sendMessage', urllib.urlencode({ 'chat_id': str(chat_id), 'text': msg.encode('utf-8'), 'disable_web_page_preview': 'true', 'reply_to_message_id': str(message_id), })).read() elif img: resp = multipart.post_multipart(BASE_URL + 'sendPhoto', [ ('chat_id', str(chat_id)), ('reply_to_message_id', str(message_id)), ], [ ('photo', 'image.jpg', img), ]) else: logging.error('no msg or img specified') resp = None logging.info('send response:') logging.info(resp) if text.startswith('/'): if text == '/start': reply('Bot enabled') setEnabled(chat_id, True) elif text == '/stop': reply('Bot disabled') setEnabled(chat_id, False) elif text == '/image': img = Image.new('RGB', (512, 512)) base = random.randint(0, 16777216) pixels = [base+i*j for i in range(512) for j in range(512)] # generate sample image img.putdata(pixels) output = StringIO.StringIO() img.save(output, 'JPEG') reply(img=output.getvalue()) else: reply('What command?') # CUSTOMIZE FROM HERE elif 'who are you' in text: reply('College Enquiry Chatbot created by George J Padayatti & Jose Thomas Dominic') elif 'what time' in text: reply('look at the corner of your screen!') else: if getEnabled(chat_id): message_text = '+'.join(text.split(" ")) server_url = "http://ccbserver.herokuapp.com/api/msg/" final_url = server_url+message_text resp = requests.get(final_url) msg = json.loads(resp.text) msg = msg['response'][0]['output'] reply(msg) else: logging.info('not enabled for chat_id {}'.format(chat_id)) app = webapp2.WSGIApplication([ ('/me', MeHandler), ('/updates', GetUpdatesHandler), ('/set_webhook', SetWebhookHandler), ('/webhook', WebhookHandler), ], debug=True)
import os #Predicates = {} class dataset: current_path = os.path.dirname(os.path.realpath(__file__)) os.chdir(current_path) def get_resource(self): # current_path= os.path.dirname(os.path.realpath(__file__)) # os.chdir(current_path) Rfile = open(".\\Resources.txt", 'r') Resources = Rfile.read().split('\n') return Resources def get_Predicates(self): Rfile = open(".\\Property.txt", 'r') Predicates = Rfile.read().split('\n') return Predicates # def get_Predicates(self): # Pfile=open(".\\Property.txt",'r') # lines=Pfile.read().splitlines() # for line in lines: # sline=line.split('\t') # key=sline.pop(0) # Predicates[key]=sline # return Predicates if __name__ == '__main__': print(os.getcwd())
""" Policy Network for training imitation learning model. For discrete case, we use classifier. For continuous case, we use regressor. """ import numpy as np import torch import torch.nn as nn from torchlib.common import move_tensor_to_gpu, convert_numpy_to_tensor, enable_cuda from torchlib.deep_rl import BaseAgent from torchlib.deep_rl.algorithm.model_based.utils import StateActionPairDataset from tqdm.auto import tqdm class ImitationPolicy(BaseAgent): def __init__(self, model: nn.Module, optimizer): self.model = model self.optimizer = optimizer self.state_mean = None self.state_std = None self.loss_fn = None if enable_cuda: self.model.cuda() def train(self): self.model.train() def eval(self): self.model.eval() @property def state_dict(self): states = { 'model': self.model.state_dict(), 'state_mean': self.state_mean, 'state_std': self.state_std } return states def load_state_dict(self, state_dict): self.model.load_state_dict(state_dict['model']) self.state_mean = state_dict['state_mean'] self.state_std = state_dict['state_std'] def set_state_stats(self, state_mean, state_std): self.state_mean = convert_numpy_to_tensor(state_mean).unsqueeze(dim=0) self.state_std = convert_numpy_to_tensor(state_std).unsqueeze(dim=0) def predict(self, state): """ Args: state: (ob_dim,) Returns: """ raise NotImplementedError def fit(self, dataset: StateActionPairDataset, epoch=10, batch_size=128, verbose=False): t = range(epoch) if verbose: t = tqdm(t) train_data_loader, val_data_loader = dataset.random_iterator(batch_size=batch_size) for i in t: losses = [] for state, action in train_data_loader: self.optimizer.zero_grad() state = move_tensor_to_gpu(state) action = move_tensor_to_gpu(action) state = (state - self.state_mean) / self.state_std output = self.model.forward(state) loss = self.loss_fn(output, action) loss.backward() self.optimizer.step() losses.append(loss.item()) self.eval() val_losses = [] with torch.no_grad(): for state, action in val_data_loader: state = move_tensor_to_gpu(state) action = move_tensor_to_gpu(action) state = (state - self.state_mean) / self.state_std output = self.model.forward(state) loss = self.loss_fn(output, action) val_losses.append(loss.item()) self.train() if verbose: t.set_description('Epoch {}/{} - Avg policy train loss: {:.4f} - Avg policy val loss: {:.4f}'.format( i + 1, epoch, np.mean(losses), np.mean(val_losses))) class DiscreteImitationPolicy(ImitationPolicy): def __init__(self, model: nn.Module, optimizer): super(DiscreteImitationPolicy, self).__init__(model=model, optimizer=optimizer) self.loss_fn = nn.CrossEntropyLoss() def predict(self, state): state = np.expand_dims(state, axis=0) with torch.no_grad(): state = convert_numpy_to_tensor(state) state = (state - self.state_mean) / self.state_std action = self.model.forward(state) action = torch.argmax(action, dim=-1) return action.cpu().numpy()[0] class ContinuousImitationPolicy(ImitationPolicy): """ For continuous policy, we assume the action space is between -1 and 1. So we use tanh as final activation layer. """ def __init__(self, model: nn.Module, optimizer): super(ContinuousImitationPolicy, self).__init__(model=model, optimizer=optimizer) self.loss_fn = nn.MSELoss() def predict(self, state): state = np.expand_dims(state, axis=0) with torch.no_grad(): state = convert_numpy_to_tensor(state) state = (state - self.state_mean) / self.state_std action = self.model.forward(state) return action.cpu().numpy()[0]
from marshmallow_jsonapi import Schema, fields from marshmallow import validate from flask.ext.sqlalchemy import SQLAlchemy from sqlalchemy.exc import SQLAlchemyError db = SQLAlchemy(session_options={"autoflush": True}) class CRUD(): def add(self, resource): db.session.add(resource) return db.session.commit() def update(self): return db.session.commit() def delete(self, resource): db.session.delete(resource) return db.session.commit() class Representative(db.Model, CRUD): __tablename__ = 'haulers_representative' id = db.Column(db.Integer, primary_key=True) HAULER_ID = db.Column(db.Integer, nullable=False) email = db.Column(db.String(64), unique=True, nullable=False) password = db.Column(db.String(64)) class RepresentativeSchema(Schema): not_blank = validate.Length(min=1, error='Field cannot be blank') id = fields.Integer(primary_key=True) HAULER_ID = fields.Integer() email = fields.String(validate=not_blank) #self links def get_top_level_links(self, data, many): self_link = '' if many: self_link = "/representative/" else: if 'attributes' in data: self_link = "/representative/{}".format(data['attributes']['id']) return {'self': self_link} class Meta: type_ = 'representative'
__author__ = 'filipkulig' import time from board import Board from draw import Draw class Engine(): draw = None board = None def __init__(self): self.draw = Draw() self.board = Board() self.draw.set_board(self.board) def run(self): info = self.draw.get_board_info() self.board.set_cols(info['cols']) self.board.set_lines(info['lines']) self.draw.draw_board() while True: self.board.update() self.draw.draw_board() time.sleep(0.1)
#!/usr/bin/env python # Copyright 2020 Stanford University, Los Alamos National Laboratory # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from __future__ import absolute_import, division, print_function, unicode_literals import argparse import os import subprocess def find_flexflow_header(ffhome_dir): def try_prefix(prefix_dir): flexflow_ch_path = os.path.join(prefix_dir, 'python', 'flexflow_c.h') flexflow_cxxh_path = os.path.join(prefix_dir, 'include', 'model.h') if os.path.exists(flexflow_ch_path) and os.path.exists(flexflow_cxxh_path): flexflow_cxxh_dir = os.path.join(prefix_dir, 'include') return flexflow_cxxh_dir, flexflow_ch_path result = try_prefix(ffhome_dir) if result: return result raise Exception('Unable to locate flexflow_c.h and flexflow.h header file') def build(output_dir, libname, ffhome_dir): flexflow_cxxh_dir, flexflow_ch_path = find_flexflow_header(ffhome_dir) header = subprocess.check_output(['gcc', '-I', flexflow_cxxh_dir, '-E', '-P', flexflow_ch_path]).decode('utf-8') with open(os.path.join(os.path.dirname(os.path.realpath(__file__)), 'flexflow_cffi_header.py.in')) as f: content = f.read() content = content.format(header=repr(header), libname=repr(libname)) if output_dir is None: output_dir = os.path.dirname(os.path.realpath(__file__)) with open(os.path.join(output_dir, 'flexflow_cffi_header.py'), 'wb') as f: f.write(content.encode('utf-8')) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('--ffhome-dir', required=True) parser.add_argument('--libname', required=True) parser.add_argument('--output-dir', required=False) args = parser.parse_args() build(args.output_dir, args.libname, args.ffhome_dir)
# # This file is part of Bakefile (http://bakefile.org) # # Copyright (C) 2009-2013 Vaclav Slavik # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to # deal in the Software without restriction, including without limitation the # rights to use, copy, modify, merge, publish, distribute, sublicense, and/or # sell copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS # IN THE SOFTWARE. # """ Keep track of properties for extensions or model parts. Also define standard, always available, properties. """ import expr, api, utils from vartypes import IdType, EnumType, ListType, PathType, StringType, BoolType, TheAnyType from api import Property def _std_model_part_props(): return [ Property("_condition", type=BoolType(), default=True, readonly=True, inheritable=False, doc=""" Whether to include this object in the build. Typically a more complicated boolean expression. """), ] def std_file_props(): """Creates list of all standard source file properties.""" return _std_model_part_props() + [ Property("_filename", type=PathType(), default=[], readonly=True, inheritable=False, doc="Source file name."), Property("compile-commands", type=ListType(StringType()), default=[], inheritable=False, doc=""" Command or commands to run to compile this source file, i.e. to generate other file(s) from it. This can be used for generating some files or for compiling custom file types. Two placeholders can be used in the commands, ``%(in)`` and ``%(out)``. They are replaced with the name of the source file and ``outputs`` respectively. Both placeholders are optional. """), Property("compile-message", type=StringType(), default=expr.NullExpr(), inheritable=False, doc=""" Message shown to the user when running the command. The same placeholder as in *compiler-commands* can be used. """), Property("outputs", type=ListType(PathType()), default=lambda t: None if t["compile-commands"] else expr.NullExpr(), inheritable=False, doc=""" Output files created by the build step that compiles this file Only applicable if *compile-commands* is set. """), Property("dependencies", type=ListType(PathType()), default=[], inheritable=False, doc=""" List of additional files that the commands that compiles this source file depend on. Only applicable if *compile-commands* is set. """), ] def std_target_props(): """Creates list of all standard target properties.""" return _std_model_part_props() + [ Property("id", type=IdType(), default=lambda t: expr.LiteralExpr(t.name), readonly=True, inheritable=False, doc="Target's unique name (ID)."), Property("deps", type=ListType(IdType()), default=[], inheritable=False, doc=""" Dependencies of the target (list of IDs). The dependencies are handled in target-specific ways. At the very least, they are added to the list of dependencies in generated makefiles or projects to ensure correct build order. Some targets may be smart about some kinds of the dependencies and do more. In particular, compiled targets (executables, DLLs) will automatically link against all libraries found in `deps`. """), Property("pre-build-commands", type=ListType(StringType()), default=[], inheritable=False, doc=""" Custom commands to run before building the target. The value is a list of shell commands to run. Notice that the commands are platform-specific and so typically need to be set conditionally depending on the value of ``toolset``. Currently only implemented by Visual Studio. """), Property("post-build-commands", type=ListType(StringType()), default=[], inheritable=False, doc=""" Custom commands to run after building the target. The value is a list of shell commands to run. Notice that the commands are platform-specific and so typically need to be set conditionally depending on the value of ``toolset``. Currently only implemented by Visual Studio. """), Property("configurations", type=ListType(StringType()), # FIXME: use a custom type that validates config names default="Debug Release", inheritable=True, doc=""" List of configurations to use for this target. See :ref:`configurations` for more information. """ ), ] def std_module_props(): """Creates list of all standard module properties.""" toolsets_enum_type = EnumType("toolset", sorted(api.Toolset.all_names())) return [ Property("toolsets", type=ListType(toolsets_enum_type), default=[], inheritable=True, doc="List of toolsets to generate makefiles/projects for."), Property("_srcdir", type=PathType(), default=lambda x: x.srcdir_as_path(), readonly=True, inheritable=False, doc="The value of @srcdir anchor for the module."), ] def std_project_props(): """Creates list of all standard project properties.""" toolsets_enum_type = EnumType("toolset", sorted(api.Toolset.all_names())) return [ Property("toolset", type=toolsets_enum_type, default=expr.PlaceholderExpr("toolset"), readonly=True, inheritable=False, doc="The toolset makefiles or projects are being generated for. " "This property is set by Bakefile and can be used for performing " "toolset-specific tasks or modifications." ), Property("config", type=StringType(), default=expr.PlaceholderExpr("config"), readonly=True, inheritable=False, doc=""" Current configuration. This property is set by Bakefile and can be used for performing per-configuration modifications. The value is one of the *configurations* values specified for the target. See :ref:`configurations` for more information. """ ), Property("arch", type=StringType(), default=expr.PlaceholderExpr("arch"), readonly=True, inheritable=False, doc=""" Current architecture. This property is set by Bakefile and can be used for performing per-architecture modifications (if the toolset supports it, which currently only Visual Studio does). The value is one of the *archs* values specified for the target. """ ), ] def std_setting_props(): """Creates list of all standard Setting properties.""" return _std_model_part_props() + [ Property("help", type=StringType(), default=expr.NullExpr(), inheritable=False, doc=""" Documentation for the setting. This will be used in the generated output to explain the setting to the user, if supported by the toolset. """ ), Property("default", type=TheAnyType, default=expr.NullExpr(), inheritable=False, doc="Default value of the setting, if any." ), ] class PropertiesDict(utils.OrderedDict): """ Dictionary of properties, keyed by their names. """ def __init__(self, scope): super(PropertiesDict, self).__init__() self.scope = scope def add(self, prop, as_inherited=False): if prop.name in self: # The same property may be shared by different target types (e.g. # "defines" for any native compiled target: programs, shared or # static libraries, ...). # That is OK, the property comes from a common base class then and # is the same instance. Having two different properties with the # same name is not OK, though. if self[prop.name] is not prop: raise RuntimeError("property \"%s\" defined more than once at the same scope (%s)" % (prop.name, self.scope)) if as_inherited: assert prop.scopes # must have assigned scope from elsewhere already else: prop._add_scope(self.scope) self[prop.name] = prop def _fill_prop_dict(props, scope): d = PropertiesDict(scope) for p in props: d.add(p) return d def _propagate_inheritables(props, into): """ Add inheritable properties from *props* into *into* dictionary, which holds properties for a higher-level scope. """ for p in props.itervalues(): if p.inheritable: into.add(p, as_inherited=True) def _collect_properties_from_others(variable_name): """ Yields properties from "external" source -- i.e. not defined on the model part type (e.g. target type) itself, but in toolset. """ for toolset in api.Toolset.all(): for p in toolset.all_properties(variable_name): p._add_toolset(toolset.name) yield p for step in api.CustomStep.all(): for p in step.all_properties(variable_name): yield p class PropertiesRegistry(object): """ Registry of existing properties. """ def __init__(self): self._init_vars() def _init_vars(self): self._initialized = False self.all_targets = None self.all_files = None self.modules = None self.project = None self.settings = None self.target_types = {} def get_project_prop(self, name): """ Returns property *name* on module level if such property exists, or :const:`None` otherwise. """ if not self._initialized: self._init_props() return self.project.get(name, None) def get_module_prop(self, name): """ Returns property *name* on module level if such property exists, or :const:`None` otherwise. """ if not self._initialized: self._init_props() return self.modules.get(name, None) def get_target_prop(self, target_type, name): """ Returns property *name* on target level for targets of type *target_type* if such property exists, or :const:`None` otherwise. """ if not self._initialized: self._init_props() if name in self.all_targets: return self.all_targets[name] else: return self.target_types[target_type].get(name, None) def get_file_prop(self, name): """ Returns property *name* on source file level if such property exists, or :const:`None` otherwise. """ if not self._initialized: self._init_props() return self.all_files.get(name, None) def get_setting_prop(self, name): """ Returns property *name* of a Setting object if such property exists, or :const:`None` otherwise. """ if not self._initialized: self._init_props() return self.settings.get(name, None) def enum_project_props(self): if not self._initialized: self._init_props() for p in self.project.itervalues(): yield p def enum_module_props(self): if not self._initialized: self._init_props() for p in self.modules.itervalues(): yield p def enum_target_props(self, target_type): if not self._initialized: self._init_props() for p in self.target_types[target_type].itervalues(): yield p for p in self.all_targets.itervalues(): yield p def enum_file_props(self): if not self._initialized: self._init_props() for p in self.all_files.itervalues(): yield p def enum_setting_props(self): if not self._initialized: self._init_props() for p in self.settings.itervalues(): yield p def _init_props(self): assert not self._initialized # Project: self.project = _fill_prop_dict(std_project_props(), api.Property.SCOPE_PROJECT) for p in _collect_properties_from_others("properties_project"): self.project.add(p) # Modules: self.modules = _fill_prop_dict(std_module_props(), api.Property.SCOPE_MODULE) for p in _collect_properties_from_others("properties_module"): self.modules.add(p) # All targets: self.all_targets = _fill_prop_dict(std_target_props(), api.Property.SCOPE_TARGET) for p in _collect_properties_from_others("properties_target"): self.all_targets.add(p) _propagate_inheritables(self.all_targets, self.modules) # Specific target types: for target_type in api.TargetType.all(): props = _fill_prop_dict(target_type.all_properties(), target_type.name) for p in _collect_properties_from_others("properties_%s" % target_type): props.add(p) self.target_types[target_type] = props _propagate_inheritables(props, self.modules) # File types: self.all_files = _fill_prop_dict(std_file_props(), api.Property.SCOPE_FILE) for p in _collect_properties_from_others("properties_file"): self.all_files.add(p) _propagate_inheritables(self.all_files, self.all_targets) _propagate_inheritables(self.all_files, self.modules) # Settings: self.settings = _fill_prop_dict(std_setting_props(), api.Property.SCOPE_SETTING) for p in _collect_properties_from_others("properties_setting"): self.settings.add(p) self._initialized = True def force_rescan(self): """Force re-scanning of properties""" self._init_vars() registry = PropertiesRegistry() get_project_prop = registry.get_project_prop get_module_prop = registry.get_module_prop get_target_prop = registry.get_target_prop get_file_prop = registry.get_file_prop get_setting_prop = registry.get_setting_prop enum_project_props = registry.enum_project_props enum_module_props = registry.enum_module_props enum_target_props = registry.enum_target_props enum_file_props = registry.enum_file_props enum_setting_props = registry.enum_setting_props
# %% ####################################### def split_string(string: str, size: int): """Splits a string into smaller strings of the desired size value. Examples: >>> string = 'hey hey hiya'\n >>> split_string(string, 4)\n ['hey ', 'hey ', 'hiya'] References: https://youtu.be/pG3L2Ojh1UE?t=336 """ created_step_points = range(0, len(string), size) sublists_created = [string[i : i + size] for i in created_step_points] return sublists_created
import torch import torch.nn as nn import torchvision.models as models import torch.nn.functional as F from scipy.optimize import linear_sum_assignment class DetrLoss(nn.Module): def __init__(self, matcher, num_classes, eos_coef, losses): super().__init__() self.num_classes = num_classes self.matcher = matcher self.eos_coef = eos_coef self.losses = losses empty_weight = torch.ones(self.num_classes + 1) empty_weight[-1] = self.eos_coef self.register_buffer("empty_weight", empty_weight) def loss_labels(self, outputs, targets, indices, num_boxes): """ Classification loss (NLL) targets dicts must contain the key "class_labels" containing a tensor of dim [nb_target_boxes] """ assert "logits" in outputs, "No logits were found in the outputs" src_logits = outputs["logits"] idx = self._get_src_permutation_idx(indices) target_classes_o = torch.cat([t["labels"][J] for t, (_, J) in zip(targets, indices)]) target_classes = torch.full( src_logits.shape[:2], self.num_classes, dtype=torch.int64, device=src_logits.device ) target_classes[idx] = target_classes_o loss_ce = nn.functional.cross_entropy(src_logits.transpose(1, 2), target_classes, self.empty_weight) losses = {"loss_ce": loss_ce} return losses def loss_boxes(self, outputs, targets, indices, num_boxes): """ Compute the losses related to the bounding boxes, the L1 regression loss and the GIoU loss. Targets dicts must contain the key "boxes" containing a tensor of dim [nb_target_boxes, 4]. The target boxes are expected in format (center_x, center_y, w, h), normalized by the image size. """ assert "bboxes" in outputs, "No predicted boxes found in outputs" idx = self._get_src_permutation_idx(indices) src_boxes = outputs["bboxes"][idx] target_boxes = torch.cat([t["bboxes"][i] for t, (_, i) in zip(targets, indices)], dim=0) loss_bbox = nn.functional.l1_loss(src_boxes, target_boxes, reduction="none") losses = {} losses["loss_bbox"] = loss_bbox.sum() / num_boxes return losses def _get_src_permutation_idx(self, indices): # permute predictions following indices batch_idx = torch.cat([torch.full_like(src, i) for i, (src, _) in enumerate(indices)]) src_idx = torch.cat([src for (src, _) in indices]) return batch_idx, src_idx def forward(self, outputs, targets): outputs_without_aux = {k: v for k, v in outputs.items() if k != "auxiliary_outputs"} indices = self.matcher(outputs_without_aux, targets) num_boxes = sum(len(t["labels"]) for t in targets) num_boxes = torch.as_tensor([num_boxes], dtype=torch.float, device=next(iter(outputs.values())).device) num_boxes = torch.clamp(num_boxes, min=1).item() losses = {} for loss in self.losses: losses.update(self.get_loss(loss, outputs, targets, indices, num_boxes)) return losses def get_loss(self, loss, outputs, targets, indices, num_boxes): loss_map = { "labels": self.loss_labels, "boxes": self.loss_boxes } assert loss in loss_map, f"Loss {loss} not supported" return loss_map[loss](outputs, targets, indices, num_boxes) class HungarianMatcher(nn.Module): @torch.no_grad() def forward(self, predictions, targets): # prediction {"labels": [...], "bboxes": np.ndarray} # targets: dict with "labels" and "bboxes" as lists bs, num_queries = predictions["logits"].shape[:2] output_probs = predictions['logits'].flatten(0, 1).softmax(-1) output_bboxes = predictions['bboxes'].flatten(0, 1) gt_labels = torch.cat([target['labels'] for target in targets]) gt_bboxes = torch.cat([target['bboxes'] for target in targets]) class_cost = -output_probs[:, gt_labels] bbox_loss = torch.cdist(output_bboxes, gt_bboxes) matrix_loss = bbox_loss + class_cost matrix_loss = matrix_loss.view(bs, num_queries, -1) sizes = [len(v["bboxes"]) for v in targets] indxes = [] for i, cost_part in enumerate(matrix_loss.split(sizes, -1)): i_match, j_match = linear_sum_assignment(cost_part[i]) indxes.append((torch.as_tensor(i_match, dtype=torch.int64), torch.as_tensor(j_match, dtype=torch.int64))) return indxes class PositionEncoder(nn.Module): def __init__(self, max_hw=50, hidden_dim=256) -> None: super().__init__() self.row_encoding = nn.Embedding(max_hw, hidden_dim // 2) self.col_encoding = nn.Embedding(max_hw, hidden_dim // 2) def forward(self, x): b, c, h, w = x.shape rows_embs = self.row_encoding(torch.arange(0, h, device=x.device)) rows_embs = rows_embs.unsqueeze(1).repeat(1, 1, w, 1) cols_embs = self.col_encoding(torch.arange(0, w, device=x.device)) cols_embs = cols_embs.unsqueeze(0).repeat(1, h, 1, 1) embds = torch.cat((rows_embs, cols_embs), dim=-1).permute(0, 3, 1, 2) return embds class MLPBoxDecoder(nn.Module): def __init__(self, input_dim, hidden_dim, output_dim) -> None: super().__init__() self.fc1 = nn.Linear(input_dim, hidden_dim) self.fc2 = nn.Linear(hidden_dim, hidden_dim) self.fc3 = nn.Linear(hidden_dim, output_dim) def forward(self, x): x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) return self.fc3(x) class DETR(nn.Module): def __init__( self, num_classes, num_queries, hidden_dim, n_head, num_encoder_layers, num_decoder_layers, dropout, ) -> None: super().__init__() self.encoder = nn.Sequential(*models.resnet50(pretrained=True).children())[:-2] self.encoder_downsampler = nn.Conv2d( 2048, hidden_dim, kernel_size=1 ) # 2048 resnet self.position_encoder = PositionEncoder(hidden_dim=hidden_dim) self.object_queries = nn.Parameter(torch.randn(num_queries, hidden_dim)) self.decoder = nn.Transformer( d_model=hidden_dim, nhead=n_head, dim_feedforward=hidden_dim * 4, num_encoder_layers=num_encoder_layers, num_decoder_layers=num_decoder_layers, batch_first=True, dropout=dropout, ) self.final_ln = nn.LayerNorm(hidden_dim) self.class_projection = nn.Linear(hidden_dim, num_classes + 1) self.bbox_projection = MLPBoxDecoder(hidden_dim, hidden_dim, 4) def forward(self, x): b, c, h, w = x.shape features = self.encoder(x) features = self.encoder_downsampler(features) pos_embds = self.position_encoder(features) features += pos_embds features = features.flatten(2).permute(0, 2, 1) obj_queries = self.object_queries.repeat(b, 1, 1) output = self.decoder(features, obj_queries) output = self.final_ln(output) classes = self.class_projection(output) bboxes = self.bbox_projection(output) out = {} out['logits'] = classes out['bboxes'] = torch.sigmoid(bboxes) return out if __name__ == "__main__": detr = DETR(30, 256) example_input = torch.randn((4, 3, 224, 224)) output = detr(example_input)
# -*- coding: utf-8 -*- # __author__ = "wynterwang" # __date__ = "2020/9/24" from __future__ import absolute_import __all__ = ["ResourceIsolation", "ResourceIsolationByUser"] class ResourceIsolation: def isolation_filters(self, request): """ :param request: request object :type request: restful_falcon.core.request.Request :return: filter list :rtype: list """ raise NotImplementedError() class ResourceIsolationByUser(ResourceIsolation): def isolation_filters(self, request): if not request.user.is_admin: return [("created_by", request.user.user_id)]
''' This script is used to rerun previously run scenarios during the fuzzing process ''' import sys import os sys.path.append('pymoo') carla_root = '../carla_0994_no_rss' sys.path.append(carla_root+'/PythonAPI/carla/dist/carla-0.9.9-py3.7-linux-x86_64.egg') sys.path.append(carla_root+'/PythonAPI/carla') sys.path.append(carla_root+'/PythonAPI') sys.path.append('.') sys.path.append('fuzzing_utils') sys.path.append('carla_lbc') sys.path.append('carla_lbc/leaderboard') sys.path.append('carla_lbc/leaderboard/team_code') sys.path.append('carla_lbc/scenario_runner') sys.path.append('carla_lbc/carla_project') sys.path.append('carla_lbc/carla_project/src') sys.path.append('carla_lbc/carla_specific_utils') # os.system('export PYTHONPATH=/home/zhongzzy9/anaconda3/envs/carla99/bin/python') import random import pickle import atexit import numpy as np from datetime import datetime import traceback from distutils.dir_util import copy_tree import json import torch import torch.nn as nn import torch.optim as optim import torch.utils.data as Data import torchvision.utils from torchvision import models import argparse from carla_lbc.carla_specific_utils.carla_specific import run_carla_simulation, get_event_location_and_object_type, check_bug, get_unique_bugs, get_if_bug_list from object_types import pedestrian_types, vehicle_types, static_types, vehicle_colors from customized_utils import make_hierarchical_dir, exit_handler, process_X, inverse_process_X, get_sorted_subfolders, load_data, get_picklename parser = argparse.ArgumentParser() parser.add_argument('-p','--port', type=int, default=2045, help='TCP port(s) to listen to') parser.add_argument('--ego_car_model', type=str, default='', help='model to rerun chosen scenarios. If not specified, the original one will be used.') parser.add_argument('--rerun_mode', type=str, default='all', help="need to set to one of ['all', 'train', 'test']") parser.add_argument('--data_category', type=str, default='bugs', help="need to set to one of ['bugs', 'non_bugs']") parser.add_argument('--parent_folder', type=str, default='', help='the parent folder that consists of fuzzing data. It should include both bugs and non_bugs folder.') parser.add_argument('--record_every_n_step', type=int, default=5, help='how many frames to save camera images') parser.add_argument('--is_save', type=int, default=1, help='save rerun results') parser.add_argument('--has_display', type=int, default=1, help='display the simulation during rerun.') parser.add_argument("--debug", type=int, default=0, help="whether using the debug mode: planned paths will be visualized.") arguments = parser.parse_args() port = arguments.port # ['lbc', 'lbc_augment', 'auto_pilot'] ego_car_model = arguments.ego_car_model # ['train', 'test'] rerun_mode = arguments.rerun_mode # ['bugs', 'non_bugs'] data_category = arguments.data_category parent_folder = arguments.parent_folder record_every_n_step = arguments.record_every_n_step is_save = arguments.is_save debug = arguments.debug assert os.path.isdir(parent_folder), parent_folder+' does not exist locally' os.environ['CUBLAS_WORKSPACE_CONFIG'] = ':4096:8' random.seed(0) np.random.seed(0) torch.manual_seed(0) torch.use_deterministic_algorithms(True) torch.backends.cudnn.benchmark = False os.environ['HAS_DISPLAY'] = str(arguments.has_display) os.environ['CUDA_VISIBLE_DEVICES'] = '0' def rerun_simulation(pickle_filename, is_save, rerun_save_folder, ind, sub_folder_name, scenario_file, ego_car_model='', x=[], record_every_n_step=10): is_bug = False # parameters preparation if ind == 0: launch_server = True else: launch_server = False counter = ind with open(pickle_filename, 'rb') as f_in: pf = pickle.load(f_in) x = pf['x'] fuzzing_content = pf['fuzzing_content'] fuzzing_arguments = pf['fuzzing_arguments'] sim_specific_arguments = pf['sim_specific_arguments'] dt_arguments = pf['dt_arguments'] route_type = pf['route_type'] route_str = pf['route_str'] if not ego_car_model: ego_car_model = pf['ego_car_model'] mask = pf['mask'] labels = pf['labels'] tmp_save_path = pf['tmp_save_path'] fuzzing_arguments.record_every_n_step = record_every_n_step fuzzing_arguments.ego_car_model = ego_car_model fuzzing_arguments.debug = debug folder = '_'.join([route_type, route_str, ego_car_model]) parent_folder = make_hierarchical_dir([rerun_save_folder, folder]) fuzzing_arguments.parent_folder = parent_folder fuzzing_arguments.mean_objectives_across_generations_path = os.path.join(parent_folder, 'mean_objectives_across_generations.txt') # TBD: temporary fix to be compatible with earlier data fuzzing_arguments.terminate_on_collision = True objectives, run_info = run_carla_simulation(x, fuzzing_content, fuzzing_arguments, sim_specific_arguments, dt_arguments, launch_server, counter, port) is_bug = int(check_bug(objectives)) # save data if is_save: print('sub_folder_name', sub_folder_name) if is_bug: rerun_folder = make_hierarchical_dir([parent_folder, 'rerun_bugs']) print('\n'*3, 'rerun also causes a bug!!!', '\n'*3) else: rerun_folder = make_hierarchical_dir([parent_folder, 'rerun_non_bugs']) try: new_path = os.path.join(rerun_folder, sub_folder_name) copy_tree(tmp_save_path, new_path) except: print('fail to copy from', tmp_save_path) traceback.print_exc() raise cur_info = {'x':x, 'objectives':objectives, 'labels':run_info['labels'], 'mask':run_info['mask'], 'is_bug':is_bug, 'fuzzing_content': run_info['fuzzing_content'], 'fuzzing_arguments': run_info['fuzzing_arguments'], 'sim_specific_arguments': run_info['sim_specific_arguments'], 'dt_arguments': run_info['dt_arguments'], 'route_type': run_info['route_type'], 'route_str': run_info['route_str']} with open(new_path+'/'+'cur_info.pickle', 'wb') as f_out: pickle.dump(cur_info, f_out) return is_bug, objectives def rerun_list_of_scenarios(parent_folder, rerun_save_folder, scenario_file, data_category, mode, ego_car_model, record_every_n_step=10, is_save=True): import re subfolder_names = get_sorted_subfolders(parent_folder, data_category) print('len(subfolder_names)', len(subfolder_names)) mid = len(subfolder_names) // 2 random.shuffle(subfolder_names) train_subfolder_names = subfolder_names[:mid] test_subfolder_names = subfolder_names[-mid:] if mode == 'train': chosen_subfolder_names = train_subfolder_names elif mode == 'test': chosen_subfolder_names = test_subfolder_names elif mode == 'all': chosen_subfolder_names = subfolder_names bug_num = 0 objectives_avg = 0 for ind, sub_folder in enumerate(chosen_subfolder_names): print('episode:', ind+1, '/', len(chosen_subfolder_names), 'bug num:', bug_num) sub_folder_name = re.search(".*/([0-9]*)$", sub_folder).group(1) print('sub_folder', sub_folder) print('sub_folder_name', sub_folder_name) if os.path.isdir(sub_folder): pickle_filename = os.path.join(sub_folder, 'cur_info.pickle') if os.path.exists(pickle_filename): print('pickle_filename', pickle_filename) is_bug, objectives = rerun_simulation(pickle_filename, is_save, rerun_save_folder, ind, sub_folder_name, scenario_file, ego_car_model=ego_car_model, record_every_n_step=record_every_n_step) objectives_avg += np.array(objectives) if is_bug: bug_num += 1 print('bug_ratio :', bug_num / len(chosen_subfolder_names)) print('objectives_avg :', objectives_avg / len(chosen_subfolder_names)) if __name__ == '__main__': time_str = datetime.now().strftime("%Y_%m_%d_%H_%M_%S") scenario_folder = 'carla_lbc/scenario_files' if not os.path.exists(scenario_folder): os.mkdir(scenario_folder) scenario_file = scenario_folder+'/'+'current_scenario_'+time_str+'.json' atexit.register(exit_handler, [port]) print('ego_car_model', ego_car_model, 'data_category', data_category, 'mode', rerun_mode) rerun_save_folder = make_hierarchical_dir(['carla_lbc', 'rerun', rerun_mode, time_str]) rerun_list_of_scenarios(parent_folder, rerun_save_folder, scenario_file, data_category, rerun_mode, ego_car_model, record_every_n_step=record_every_n_step)
import unittest from pathlib import Path import json import pandas as pd from filmweb_integrator.fwimdbmerge.filmweb import Filmweb from pandas.io.json import json_normalize DATA_STATIC = str(Path(__file__).parent.parent.parent.parent.absolute()) + '/data_static' FILMWEB_EXAMPLE_JSON = DATA_STATIC + '/example_test_01_json.json' FILMWEB_EXAMPLE_CSV = DATA_STATIC + '/example_test_01_json.csv' FILMWEB_EXAMPLE_FILMWEB = DATA_STATIC + '/example_test_01_json.json' """ self = TestFilmweb() self.setUp() """ class TestFilmweb(unittest.TestCase): def setUp(self): self.sut = Filmweb() def test_get_json_shuold_return_dataframe(self): json_text = open(FILMWEB_EXAMPLE_JSON).read() df = json_normalize(json.loads(json_text)) self.assertEqual(46, len(df)) def test_get_dataframe_should_return_simple_dataframe(self): # given df = pd.read_csv(FILMWEB_EXAMPLE_CSV) # when result = self.sut.get_dataframe(df, extended=False, use_saved_scraped=True) # then self.assertEqual(13, len(result.columns)) # def test_get_dataframe_should_return_extended_dataframe(self): # # given # df = pd.read_csv(FILMWEB_EXAMPLE_CSV) # # when # result = self.sut.get_dataframe(df, extended=True, use_saved_scraped=True) # # then # self.assertEqual(59, len(result.columns))
# V0 # V1 # http://bookshadow.com/weblog/2018/06/17/leetcode-exam-room/ # https://blog.csdn.net/fuxuemingzhu/article/details/83141523 # IDEA : bisect.insort : https://www.cnblogs.com/skydesign/archive/2011/09/02/2163592.html class ExamRoom(object): def __init__(self, N): """ :type N: int """ self.N, self.L = N, list() def seat(self): """ :rtype: int """ N, L = self.N, self.L if not self.L: res = 0 else: d, res = L[0], 0 # d means cur distance, res means cur pos for a, b in zip(L, L[1:]): if (b - a) / 2 > d: d = (b - a) / 2 res = (b + a) / 2 if N - 1 - L[-1] > d: res = N - 1 bisect.insort(L, res) return res def leave(self, p): """ :type p: int :rtype: void """ self.L.remove(p) # Your ExamRoom object will be instantiated and called as such: # obj = ExamRoom(N) # param_1 = obj.seat() # obj.leave(p) # V2 # Time: seat: O(logn), amortized # leave: O(logn) # Space: O(n) import heapq class ExamRoom(object): def __init__(self, N): """ :type N: int """ self.__num = N self.__seats = {-1: [-1, self.__num], self.__num: [-1, self.__num]} self.__max_heap = [(-self.__distance((-1, self.__num)), -1, self.__num)] def seat(self): """ :rtype: int """ while self.__max_heap[0][1] not in self.__seats or \ self.__max_heap[0][2] not in self.__seats or \ self.__seats[self.__max_heap[0][1]][1] != self.__max_heap[0][2] or \ self.__seats[self.__max_heap[0][2]][0] != self.__max_heap[0][1]: heapq.heappop(self.__max_heap) # lazy deletion _, left, right = heapq.heappop(self.__max_heap) mid = 0 if left == -1 \ else self.__num-1 if right == self.__num \ else (left+right) // 2 self.__seats[mid] = [left, right] heapq.heappush(self.__max_heap, (-self.__distance((left, mid)), left, mid)) heapq.heappush(self.__max_heap, (-self.__distance((mid, right)), mid, right)) self.__seats[left][1] = mid self.__seats[right][0] = mid return mid def leave(self, p): """ :type p: int :rtype: void """ left, right = self.__seats[p] self.__seats.pop(p) self.__seats[left][1] = right self.__seats[right][0] = left heapq.heappush(self.__max_heap, (-self.__distance((left, right)), left, right)) def __distance(self, segment): return segment[1]-segment[0]-1 if segment[0] == -1 or segment[1] == self.__num \ else (segment[1]-segment[0]) // 2
# Copyright 2021 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import contextlib import difflib import filecmp import os import shutil import tempfile import unittest from json5_generator import Json5File, Writer @contextlib.contextmanager def tmp_dir(): tmp = tempfile.mkdtemp() try: yield tmp finally: shutil.rmtree(tmp) def path_to_test_file(*path): return os.path.join(os.path.dirname(__file__), 'tests', *path) def diff(filename1, filename2): with open(filename1) as file1: file1_lines = file1.readlines() with open(filename2) as file2: file2_lines = file2.readlines() # Use Python's difflib module so that diffing works across platforms return ''.join(difflib.context_diff(file1_lines, file2_lines)) def is_identical_file(reference_filename, output_filename): reference_basename = os.path.basename(reference_filename) if not os.path.isfile(reference_filename): print 'Missing reference file!' print '(if adding new test, update reference files)' print reference_basename print return False if not filecmp.cmp(reference_filename, output_filename): # cmp is much faster than diff, and usual case is "no difference", # so only run diff if cmp detects a difference print 'FAIL: %s' % reference_basename print diff(reference_filename, output_filename) return False return True def compare_output_dir(reference_dir, output_dir): """ Compares output files in both reference_dir and output_dir. Note: this function ignores subdirectory content in both reference dir and output_dir. Note: reference_dir should have all ref files ending with .ref suffix. '.ref' suffix is added to bypass code formatter on reference files. :returns {bool}: Whether files in output dir matches files in ref dir """ ref_content = { f[:-4] for f in os.listdir(reference_dir) if f.endswith('.ref') } output_content = set(os.listdir(output_dir)) if ref_content != output_content: print 'Output files does not match.' print 'Following files are extra: {}'.format(output_content - ref_content) print 'Following files are missing: {}'.format(ref_content - output_content) return False for file_name in ref_content: ref_file = os.path.join(reference_dir, file_name) + '.ref' output_file = os.path.join(output_dir, file_name) if os.path.isdir(ref_file) and os.path.isdir(output_file): continue elif os.path.isdir(ref_file) or os.path.isdir(output_file): return False elif not is_identical_file(ref_file, output_file): return False return True class WriterTest(unittest.TestCase): def _test_writer(self, writer_class, json5_files, reference_dir): """ :param writer_class {Writer}: a subclass to Writer :param json5_files {List[str]}: json5 test input files :param reference_dir {str}: directory to expected output files """ with tmp_dir() as tmp: writer = writer_class(json5_files, tmp) writer.write_files(tmp) writer.cleanup_files(tmp) self.assertTrue(compare_output_dir(reference_dir, tmp))
from Classes.EdgeData import EdgeData class Edges(object): """Class to store and process edge data. Attributes ---------- rec_edge_method: str Method used to determine coef for rec. edge 'Fixed', 'Variable'. vel_method: str Method used to compute the velocity used 'MeasMag', 'VectorProf'. left: EdgeData Object of EdgeData for left edge. right: EdgeData Object of EdgeData for right edge. """ def __init__(self): """Initialize Edges. """ self.rec_edge_method = None self.vel_method = None self.left = EdgeData() self.right = EdgeData() def populate_data(self, rec_edge_method, vel_method): """Store the general methods used for edge data. Parameters ---------- rec_edge_method: str Method used to determine coef for rec. edge 'Fixed', 'Variable'. vel_method: str Method used to compute the velocity used 'MeasMag', 'VectorProf'. """ self.rec_edge_method = rec_edge_method self.vel_method = vel_method def populate_from_qrev_mat(self, transect): """Populates the object using data from previously saved QRev Matlab file. Parameters ---------- transect: mat_struct Matlab data structure obtained from sio.loadmat """ if hasattr(transect, 'edges'): if hasattr(transect.edges, 'left'): self.left = EdgeData() self.left.populate_from_qrev_mat(transect.edges.left) if hasattr(transect.edges, 'right'): self.right = EdgeData() self.right.populate_from_qrev_mat(transect.edges.right) self.rec_edge_method = transect.edges.recEdgeMethod self.vel_method = transect.edges.velMethod def change_property(self, prop, setting, edge=None): """Change edge property Parameters ---------- prop: str Name of property. setting: New property setting. edge: str Edge to change (left, right) """ if edge is None: setattr(self, prop, setting) else: temp = getattr(self, edge) temp.change_property(prop, setting)
# Created On: 2011-11-27 # Copyright 2013 Hardcoded Software (http://www.hardcoded.net) # # This software is licensed under the "BSD" License as described in the "LICENSE" file, # which should be included with this package. The terms are also available at # http://www.hardcoded.net/licenses/bsd_license from qtlib.column import Column from ..base.results_model import ResultsModel as ResultsModelBase class ResultsModel(ResultsModelBase): COLUMNS = [ Column('marked', defaultWidth=30), Column('name', defaultWidth=200), Column('folder_path', defaultWidth=180), Column('size', defaultWidth=60), Column('extension', defaultWidth=40), Column('dimensions', defaultWidth=100), Column('exif_timestamp', defaultWidth=120), Column('mtime', defaultWidth=120), Column('percentage', defaultWidth=60), Column('dupe_count', defaultWidth=80), ]
import requests import json RIDEEM_HOST = 'https://rideem.io' def API(key = None, host = RIDEEM_HOST): return Rideem(key, host) class Rideem(object): def __init__(self, key = None, host = RIDEEM_HOST): self._key = key # app private key self._host = host def create_app(self, name, email = None): """ Creates an app with name and email. """ params = { 'email' : email } if email else {} return self._op('apps', name, method = 'post', data = params) def update_app(self, app): """ Updates an app. """ params = {} self._add_key_param(params, app) return self._op('apps', app, method = 'post', data = app, params = params) def delete_app(self, app): """ Deletes an app. """ params = {} self._add_key_param(params, app) return self._op('apps', app, method = 'delete', params = params) def get_app(self, name): """ Gets an app by name. """ params = {} self._add_key_param(params) return self._op('apps', name, params = params) def create_promo_for(self, app, name = None, codes = None, delay = 60, private = False, start = None, end = None): """ Creates a promo for the app. """ params = {} self._add_key_param(params, app) promo = { 'name' : name, 'code' : codes if codes else [], 'delay' : delay, 'private' : private, 'start' : start, 'end' : end, } return self._op('promos', app, method = 'post', data = promo, params = params) def update_promo_for(self, app, promo): """ Updates a promo. """ params = {} self._add_key_param(params, app) p = promo.copy() p['code'] = p['codes'] del p['key'] del p['codes'] return self._op('promos', app, method = 'post', data = p, params = params) def delete_promo_from(self, app, promo): """ Deletes promo for the app. """ params = {} self._add_key_param(params, app) name = promo['name'] if name: params.update({'name' : name}) return self._op('promos', app, method = 'delete', params = params) def get_promo_from(self, app, name = ''): """ Gets promo named name for an app. """ params = {} self._add_key_param(params, app) if name: params.update({'name' : name}) return self._op('promos', app, params = params) def code_from(self, app, promo = None, key = None): """ Redeems a code from an app for promo using key. Note: app and promo can be strings or dicts. """ params = {} suffix = None if type(app) is str: self._add_key_param(params) else: self._add_key_param(params, app) promo_name = None if type(promo) is str: promo_name = promo elif promo: promo_name = promo['name'] if key: params.update({'key' : key}) if promo_name: suffix = '/for/{}'.format(promo_name) return self._op('from', app, suffix = suffix, params = params) def request(self, app, get = False): """ Request codes for an app. Note: app can be a string or dict. """ method = 'post' if not get else 'get' return self._op('request', app, method = method) def verify(self, app, token): """ Verifies an app using token. """ params = { 'token' : token } if token else {} return self._op('verify', app, params = params) def _op(self, endpoint, app, params = None, method = 'get', data = None, suffix = None): app_name = app if type(app) is str else app['name'] suffix = suffix if suffix else '' endpoint = '/rideem/{}/{}{}'.format(endpoint, app_name, suffix) if method == 'post': r = self._post(endpoint, data, params = params) else: r = self._request(method, endpoint, params = params) return r def _request(self, method, ep, **kwargs): url = self._host + ep requester = getattr(requests, method) response = requester(url, **kwargs) r = response.json() if len(response.text) > 0 else {} return r, response.status_code def _post(self, url, o, params): data = json.dumps(o) headers = {'Content-type': 'application/json'} return self._request('post', url, data = data, headers = headers, params = params) def _add_key_param(self, params, o = None): key = None key = o['key'] if o and 'key' in o else None if not key: key = self._key if key: params.update({ 'key' : key }) @property def key(self): return self._key @key.setter def key(self, k): self._key = k @property def host(self): return self._host @host.setter def host(self, h): self._host = h
#!/usr/bin/python3 """ Given a non-negative integer, you could swap two digits at most once to get the maximum valued number. Return the maximum valued number you could get. Example 1: Input: 2736 Output: 7236 Explanation: Swap the number 2 and the number 7. Example 2: Input: 9973 Output: 9973 Explanation: No swap. Note: The given number is in the range [0, 108] """ class Solution: def maximumSwap(self, num: int) -> int: """ stk maintain a increasing stack from right to left """ stk = [] nums = list(str(num)) n = len(nums) for i in range(n-1, -1, -1): if stk and stk[-1][1] >= nums[i]: # only keep the rightmost duplicate continue stk.append((i, nums[i])) for i in range(n): while stk and stk[-1][0] <= i: stk.pop() if stk and stk[-1][1] > nums[i]: j = stk[-1][0] nums[i], nums[j] = nums[j], nums[i] break return int("".join(nums)) if __name__ == "__main__": assert Solution().maximumSwap(2736) == 7236 assert Solution().maximumSwap(9973) == 9973
# coding: utf-8 from django.conf import settings from django.conf.urls import include, patterns, url from django.contrib.auth.views import logout from django.contrib import admin from django.views.generic.base import TemplateView urlpatterns = patterns( '', url(r'^', include('mapa_cidadao.core.urls')), url(r'', include('social_auth.urls')), url(r'^logout/$', logout, {"next_page": "/"}, name="logout"), url(r'^admin/', include(admin.site.urls)), ) if settings.DEBUG: urlpatterns += patterns( '', ( r'^media/(?P<path>.*)$', 'django.views.static.serve', { 'document_root': settings.MEDIA_ROOT } ), (r'^404/$', TemplateView.as_view(template_name='404.html')), )
import io import platform import os import sys import setuptools try: from numpy import get_include except ImportError: import subprocess errno = subprocess.call([sys.executable, '-m', 'pip', 'install', 'numpy']) if errno: print('Please install numpy') raise SystemExit(errno) else: from numpy import get_include try: from Cython.Build import cythonize except ImportError: import subprocess errno = subprocess.call([sys.executable, '-m', 'pip', 'install', 'Cython']) if errno: print('Please install Cython') raise SystemExit(errno) else: from Cython.Build import cythonize # Package meta-data. NAME = 'river' DESCRIPTION = 'Online machine learning in Python' LONG_DESCRIPTION_CONTENT_TYPE = 'text/markdown' URL = 'https://github.com/online-ml/river' EMAIL = 'maxhalford25@gmail.com' AUTHOR = 'Max Halford' REQUIRES_PYTHON = '>=3.6.0' # Package requirements. base_packages = ['numpy>=1.18.1', 'scipy>=1.4.1', 'pandas>=1.0.1'] compat_packages = base_packages + [ 'scikit-learn', 'scikit-surprise', 'sqlalchemy', 'torch', 'vaex' ] dev_packages = base_packages + [ 'asv', 'flake8>=3.7.9', 'graphviz>=0.10.1', 'matplotlib>=3.0.2', 'mypy>=0.761', 'pytest>=4.5.0', 'pytest-cov>=2.6.1', 'pytest-cython>=0.1.0', 'scikit-learn>=0.22.1', 'sqlalchemy>=1.3.15' ] docs_packages = dev_packages + [ 'flask', 'ipykernel', 'jupyter-client', 'mike==0.5.3', 'mkdocs', 'mkdocs-awesome-pages-plugin', 'mkdocs-material', 'nbconvert', 'numpydoc' ] here = os.path.abspath(os.path.dirname(__file__)) # Import the README and use it as the long-description. with io.open(os.path.join(here, 'README.md'), encoding='utf-8') as f: long_description = '\n' + f.read() # Load the package's __version__.py module as a dictionary. about = {} with open(os.path.join(here, NAME, '__version__.py')) as f: exec(f.read(), about) # Where the magic happens: setuptools.setup( name=NAME, version=about['__version__'], description=DESCRIPTION, long_description=long_description, long_description_content_type=LONG_DESCRIPTION_CONTENT_TYPE, author=AUTHOR, author_email=EMAIL, python_requires=REQUIRES_PYTHON, url=URL, packages=setuptools.find_packages(exclude=('tests', 'scikit-multiflow')), install_requires=base_packages, extras_require={ 'dev': dev_packages, 'compat': compat_packages, 'docs': docs_packages }, include_package_data=True, license='BSD-3', classifiers=[ # Trove classifiers # Full list: https://pypi.python.org/pypi?%3Aaction=list_classifiers 'License :: OSI Approved :: BSD License', 'Programming Language :: Python', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: Implementation :: CPython', 'Programming Language :: Python :: Implementation :: PyPy' ], ext_modules=cythonize( module_list=[ setuptools.Extension( '*', sources=['**/*.pyx'], include_dirs=[get_include()], libraries=[] if platform.system() == 'Windows' else ['m'] ) ], compiler_directives={ 'language_level': 3, 'binding': True, 'embedsignature': True } ) + [setuptools.Extension( 'river.neighbors.libNearestNeighbor', sources=[os.path.join('river', 'neighbors', 'src', 'libNearestNeighbor', 'nearestNeighbor.cpp')], include_dirs=[get_include()], libraries=[] if platform.system() == 'Windows' else ['m'], language='c++' )] )
#!/usr/bin/python # Copyright (c) 2017 Ansible Project # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) ANSIBLE_METADATA = {'metadata_version': '1.1', 'status': ['preview'], 'supported_by': 'community'} DOCUMENTATION = ''' --- module: iam_user short_description: Manage AWS IAM users description: - Manage AWS IAM users version_added: "2.5" author: Josh Souza, @joshsouza options: name: description: - The name of the user to create. required: true managed_policy: description: - A list of managed policy ARNs or friendly names to attach to the user. To embed an inline policy, use M(iam_policy). required: false state: description: - Create or remove the IAM user required: true choices: [ 'present', 'absent' ] purge_policy: description: - Detach policies which are not included in managed_policy list required: false default: false requirements: [ botocore, boto3 ] extends_documentation_fragment: - aws - ec2 ''' EXAMPLES = ''' # Note: These examples do not set authentication details, see the AWS Guide for details. # Note: This module does not allow management of groups that users belong to. # Groups should manage their membership directly using `iam_group`, # as users belong to them. # Create a user - iam_user: name: testuser1 state: present # Create a user and attach a managed policy using its ARN - iam_user: name: testuser1 managed_policy: - arn:aws:iam::aws:policy/AmazonSNSFullAccess state: present # Remove all managed policies from an existing user with an empty list - iam_user: name: testuser1 state: present purge_policy: true # Delete the user - iam_user: name: testuser1 state: absent ''' RETURN = ''' user: description: dictionary containing all the user information returned: success type: complex contains: arn: description: the Amazon Resource Name (ARN) specifying the user type: string sample: "arn:aws:iam::1234567890:user/testuser1" create_date: description: the date and time, in ISO 8601 date-time format, when the user was created type: string sample: "2017-02-08T04:36:28+00:00" user_id: description: the stable and unique string identifying the user type: string sample: AGPAIDBWE12NSFINE55TM user_name: description: the friendly name that identifies the user type: string sample: testuser1 path: description: the path to the user type: string sample: / ''' from ansible.module_utils._text import to_native from ansible.module_utils.basic import AnsibleModule from ansible.module_utils.ec2 import camel_dict_to_snake_dict, ec2_argument_spec, get_aws_connection_info, boto3_conn from ansible.module_utils.ec2 import HAS_BOTO3 import traceback try: from botocore.exceptions import ClientError, ParamValidationError except ImportError: pass # caught by imported HAS_BOTO3 def compare_attached_policies(current_attached_policies, new_attached_policies): # If new_attached_policies is None it means we want to remove all policies if len(current_attached_policies) > 0 and new_attached_policies is None: return False current_attached_policies_arn_list = [] for policy in current_attached_policies: current_attached_policies_arn_list.append(policy['PolicyArn']) if not set(current_attached_policies_arn_list).symmetric_difference(set(new_attached_policies)): return True else: return False def convert_friendly_names_to_arns(connection, module, policy_names): # List comprehension that looks for any policy in the 'policy_names' list # that does not begin with 'arn'. If there aren't any, short circuit. # If there are, translate friendly name to the full arn if not any([not policy.startswith('arn:') for policy in policy_names if policy is not None]): return policy_names allpolicies = {} paginator = connection.get_paginator('list_policies') policies = paginator.paginate().build_full_result()['Policies'] for policy in policies: allpolicies[policy['PolicyName']] = policy['Arn'] allpolicies[policy['Arn']] = policy['Arn'] try: return [allpolicies[policy] for policy in policy_names] except KeyError as e: module.fail_json(msg="Couldn't find policy: " + str(e)) def create_or_update_user(connection, module): params = dict() params['UserName'] = module.params.get('name') managed_policies = module.params.get('managed_policy') purge_policy = module.params.get('purge_policy') changed = False if managed_policies: managed_policies = convert_friendly_names_to_arns(connection, module, managed_policies) # Get user user = get_user(connection, module, params['UserName']) # If user is None, create it if user is None: # Check mode means we would create the user if module.check_mode: module.exit_json(changed=True) try: connection.create_user(**params) changed = True except ClientError as e: module.fail_json(msg="Unable to create user: {0}".format(to_native(e)), exception=traceback.format_exc(), **camel_dict_to_snake_dict(e.response)) except ParamValidationError as e: module.fail_json(msg="Unable to create user: {0}".format(to_native(e)), exception=traceback.format_exc()) # Manage managed policies current_attached_policies = get_attached_policy_list(connection, module, params['UserName']) if not compare_attached_policies(current_attached_policies, managed_policies): current_attached_policies_arn_list = [] for policy in current_attached_policies: current_attached_policies_arn_list.append(policy['PolicyArn']) # If managed_policies has a single empty element we want to remove all attached policies if purge_policy: # Detach policies not present for policy_arn in list(set(current_attached_policies_arn_list) - set(managed_policies)): changed = True if not module.check_mode: try: connection.detach_user_policy(UserName=params['UserName'], PolicyArn=policy_arn) except ClientError as e: module.fail_json(msg="Unable to detach policy {0} from user {1}: {2}".format( policy_arn, params['UserName'], to_native(e)), exception=traceback.format_exc(), **camel_dict_to_snake_dict(e.response)) except ParamValidationError as e: module.fail_json(msg="Unable to detach policy {0} from user {1}: {2}".format( policy_arn, params['UserName'], to_native(e)), exception=traceback.format_exc()) # If there are policies to adjust that aren't in the current list, then things have changed # Otherwise the only changes were in purging above if set(managed_policies).difference(set(current_attached_policies_arn_list)): changed = True # If there are policies in managed_policies attach each policy if managed_policies != [None] and not module.check_mode: for policy_arn in managed_policies: try: connection.attach_user_policy(UserName=params['UserName'], PolicyArn=policy_arn) except ClientError as e: module.fail_json(msg="Unable to attach policy {0} to user {1}: {2}".format( policy_arn, params['UserName'], to_native(e)), exception=traceback.format_exc(), **camel_dict_to_snake_dict(e.response)) except ParamValidationError as e: module.fail_json(msg="Unable to attach policy {0} to user {1}: {2}".format( policy_arn, params['UserName'], to_native(e)), exception=traceback.format_exc()) if module.check_mode: module.exit_json(changed=changed) # Get the user again user = get_user(connection, module, params['UserName']) module.exit_json(changed=changed, iam_user=camel_dict_to_snake_dict(user)) def destroy_user(connection, module): params = dict() params['UserName'] = module.params.get('name') if get_user(connection, module, params['UserName']): # Check mode means we would remove this user if module.check_mode: module.exit_json(changed=True) # Remove any attached policies otherwise deletion fails try: for policy in get_attached_policy_list(connection, module, params['UserName']): connection.detach_user_policy(UserName=params['UserName'], PolicyArn=policy['PolicyArn']) except ClientError as e: module.fail_json(msg="Unable to detach policy {0} from user {1}: {2}".format( policy['PolicyArn'], params['UserName'], to_native(e)), exception=traceback.format_exc(), **camel_dict_to_snake_dict(e.response)) except ParamValidationError as e: module.fail_json(msg="Unable to detach policy {0} from user {1}: {2}".format( policy['PolicyArn'], params['UserName'], to_native(e)), exception=traceback.format_exc()) try: connection.delete_user(**params) except ClientError as e: module.fail_json(msg="Unable to delete user {0}: {1}".format(params['UserName'], to_native(e)), exception=traceback.format_exc(), **camel_dict_to_snake_dict(e.response)) except ParamValidationError as e: module.fail_json(msg="Unable to delete user {0}: {1}".format(params['UserName'], to_native(e)), exception=traceback.format_exc()) else: module.exit_json(changed=False) module.exit_json(changed=True) def get_user(connection, module, name): params = dict() params['UserName'] = name try: return connection.get_user(**params) except ClientError as e: if e.response['Error']['Code'] == 'NoSuchEntity': return None else: module.fail_json(msg="Unable to get user {0}: {1}".format(name, to_native(e)), **camel_dict_to_snake_dict(e.response)) def get_attached_policy_list(connection, module, name): try: return connection.list_attached_user_policies(UserName=name)['AttachedPolicies'] except ClientError as e: if e.response['Error']['Code'] == 'NoSuchEntity': return None else: module.fail_json(msg="Unable to get policies for user {0}: {1}".format(name, to_native(e)), **camel_dict_to_snake_dict(e.response)) def main(): argument_spec = ec2_argument_spec() argument_spec.update( dict( name=dict(required=True, type='str'), managed_policy=dict(default=[], type='list'), state=dict(choices=['present', 'absent'], required=True), purge_policy=dict(default=False, type='bool') ) ) module = AnsibleModule( argument_spec=argument_spec, supports_check_mode=True ) if not HAS_BOTO3: module.fail_json(msg='boto3 required for this module') region, ec2_url, aws_connect_params = get_aws_connection_info(module, boto3=True) connection = boto3_conn(module, conn_type='client', resource='iam', region=region, endpoint=ec2_url, **aws_connect_params) state = module.params.get("state") if state == 'present': create_or_update_user(connection, module) else: destroy_user(connection, module) if __name__ == '__main__': main()
import pytest from libqtile.widget import BatteryIcon from libqtile import images import cairocffi from .conftest import TEST_DIR def test_images_fail(): """Test BatteryIcon() with a bad theme_path This theme path doesn't contain all of the required images. """ battery = BatteryIcon(theme_path=TEST_DIR) with pytest.raises(images.LoadingError): battery.setup_images() def test_images_good(tmpdir, fake_bar, svg_img_as_pypath): """Test BatteryIcon() with a good theme_path This theme path does contain all of the required images. """ for name in BatteryIcon.icon_names: target = tmpdir.join(name + '.svg') svg_img_as_pypath.copy(target) batt = BatteryIcon(theme_path=str(tmpdir)) batt.fontsize = 12 batt.bar = fake_bar batt.setup_images() assert len(batt.surfaces) == len(BatteryIcon.icon_names) for name, surfpat in batt.surfaces.items(): assert isinstance(surfpat, cairocffi.SurfacePattern) def test_images_default(fake_bar): """Test BatteryIcon() with the default theme_path Ensure that the default images are successfully loaded. """ batt = BatteryIcon() batt.fontsize = 12 batt.bar = fake_bar batt.setup_images() assert len(batt.surfaces) == len(BatteryIcon.icon_names) for name, surfpat in batt.surfaces.items(): assert isinstance(surfpat, cairocffi.SurfacePattern)
# views_counter plugin server # Developed by Raven, 2021.12.28 # Copyright (c) RavenKiller # This source code is licensed under the MIT License found in the # LICENSE file in the root directory of this source tree. import tornado.ioloop import tornado.web import hashlib import sqlite3 from datetime import datetime as dt import sys SQL_CREATE_TABLE = '''CREATE TABLE IF NOT EXISTS views (id INTEGER PRIMARY KEY, site_hash TEXT NOT NULL, page_hash TEXT NOT NULL, user_hash TEXT NOT NULL, time TEXT NOT NULL );''' # wildcard: (site_hash, page_hash, user_hash, time) SQL_INSERT_RECORD = "INSERT INTO views VALUES (NULL, ?, ?, ?, ?);" # wildcard: (page_hash) SQL_PAGE_VIEWS = "SELECT COUNT(*) FROM views WHERE page_hash=?;" # wildcard: (site_hash) SQL_SITE_VIEWS = "SELECT COUNT(*) FROM views WHERE site_hash=?;" SQL_PAGE_USERS = "SELECT DISTINCT page_hash, user_hash FROM views;" SQL_SITE_USERS = "SELECT DISTINCT site_hash, user_hash FROM views;" class MainHandler(tornado.web.RequestHandler): def get(self): self.render("demo.html") class VCHandler(tornado.web.RequestHandler): def set_default_headers(self): self.set_header("Access-Control-Allow-Origin", "*") self.set_header("Access-Control-Allow-Headers", "x-requested-with") self.set_header('Access-Control-Allow-Methods', 'POST, GET, OPTIONS') def post(self): res = {"success":0, "vc_page_views":0, "vc_site_views":0, "vc_page_users":0, "vc_site_users":0} # Extract information src = self.get_argument("src", "") ip = self.request.remote_ip user_agent = self.request.headers.get("User-Agent", "") origin = self.request.headers.get("Origin", "") if not src or not ip or not user_agent or not origin: self.finish(res) # Hash page_hash = hashlib.md5(src.encode("utf-8")).hexdigest() site_hash = hashlib.md5(origin.encode("utf-8")).hexdigest() user_hash = hashlib.md5((ip+user_agent).encode("utf-8")).hexdigest() # Open DB now = dt.now() conn = sqlite3.connect('views.db') c = conn.cursor() try: # Insert record c.execute(SQL_INSERT_RECORD, (site_hash, page_hash, user_hash, now.strftime("%Y-%m-%d %H:%M:%S"))) # Page views c.execute(SQL_PAGE_VIEWS, (page_hash, )) res["vc_page_views"] = c.fetchall()[0][0] # Site views c.execute(SQL_SITE_VIEWS, (site_hash, )) res["vc_site_views"] = c.fetchall()[0][0] # Page users c.execute(SQL_PAGE_USERS) res["vc_page_users"] = len(c.fetchall()) # Site users c.execute(SQL_SITE_USERS) res["vc_site_users"] = len(c.fetchall()) # Close and return conn.commit() conn.close() res["success"] = 1 self.finish(res) except: conn.rollback() conn.close() res["success"] = 0 self.finish(res) def make_app(): return tornado.web.Application([ (r"/", MainHandler), (r"/views", VCHandler) ]) if __name__ == "__main__": conn = sqlite3.connect('views.db') c = conn.cursor() c.execute(SQL_CREATE_TABLE) conn.commit() conn.close() app = make_app() app.listen(int(sys.argv[1])) tornado.ioloop.IOLoop.current().start()
import sys def triple_trouble(one, two, three): s = '' for i in range(len(one)): s += one[i] s += two[i] s += three[i] return s if __name__ == "__main__": if len(sys.argv) == 4: print(triple_trouble(one=sys.argv[1], two=sys.argv[2], three=sys.argv[3])) else: sys.exit(1)
#!/usr/bin/python3 """ Creating table investment """ import models from datetime import datetime import sqlalchemy from sqlalchemy import Column, String, ForeignKey from sqlalchemy import Integer, DateTime, Float from models import investor from models.base_model import BaseModel, Base class Investment(BaseModel, Base): """Representation of Investment""" __tablename__ = 'investment' # id = Column(Integer, primary_key=True, # nullable=False, autoincrement=True) investor = Column(String(60), ForeignKey('investor.id'), nullable=False, autoincrement=False) amount = Column(Float, nullable=False) term_in_months = Column(Integer, nullable=False) rentability = Column(Float, nullable=False) status = Column(String(15), nullable=False) investment_date = Column(DateTime, nullable=False) return_date = Column(DateTime, nullable=False) created_at = Column(DateTime, default=datetime.utcnow) updated_at = Column(DateTime, default=datetime.utcnow) def __init__(self, *args, **kwargs): """Initializes investment""" super().__init__(*args, **kwargs)
import os import torch from torch import autograd from ..infer.line_of_best_fit import line_of_best_fit # A system for autonomous steering using an LSTM network to generate a steering angle based on the slope and intercept # of the line of best fit calculated for the center line of the road # Created by brendon-ai, November 2017 # Main class, instantiated with a trained model class LSTMSteeringEngine: # Trained model used for inference of steering angles trained_model = None # Externally accessible storage for the center line center_line_of_best_fit = None # Set global trained model provided as an argument def __init__(self, trained_model_path): # Get the global path of the model, not relative to the home folder global_path = os.path.expanduser(trained_model_path) # Load the model from disk and remap it onto the CPU self.trained_model = torch.load(global_path, map_location=lambda storage, location: storage) # Compute a steering angle, given points down the center of the road def compute_steering_angle(self, center_points): # Calculate the line of best fit of the provided points self.center_line_of_best_fit = line_of_best_fit(center_points) # Add two empty axes to the returned list to represent the batch and sequence center_line_empty_axes = [[self.center_line_of_best_fit]] # Convert the list to an Autograd Variable center_line_variable = autograd.Variable(torch.FloatTensor(center_line_empty_axes)) # Run inference using the provided model to get a steering angle steering_angle = self.trained_model(center_line_variable) # Return the steering angle along with dummy values for the proportional error and line slope return steering_angle, 0, 0
########################################################################## # # Copyright (c) 2019, Cinesite VFX Ltd. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above # copyright notice, this list of conditions and the following # disclaimer. # # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided with # the distribution. # # * Neither the name of John Haddon nor the names of # any other contributors to this software may be used to endorse or # promote products derived from this software without specific prior # written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS # IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ########################################################################## import os import six import imath import IECore import Gaffer import GafferUITest import GafferScene import GafferSceneUI class TransformToolTest( GafferUITest.TestCase ) : def testSelectionEditability( self ) : script = Gaffer.ScriptNode() script["box"] = Gaffer.Box() script["box"]["plane"] = GafferScene.Plane() Gaffer.PlugAlgo.promote( script["box"]["plane"]["out"] ) # Box is editable, so all fields of the selection should be useable. selection = GafferSceneUI.TransformTool.Selection( script["box"]["out"], "/plane", script.context(), None ) self.assertEqual( selection.scene(), script["box"]["out"] ) self.assertEqual( selection.path(), "/plane" ) self.assertEqual( selection.context(), script.context() ) self.assertEqual( selection.upstreamScene(), script["box"]["plane"]["out"] ) self.assertEqual( selection.upstreamPath(), "/plane" ) self.assertEqual( selection.upstreamContext()["scene:path"], IECore.InternedStringVectorData( [ "plane" ] ) ) self.assertTrue( selection.editable() ) self.assertEqual( selection.editTarget(), script["box"]["plane"]["transform"] ) self.assertEqual( selection.transformSpace(), imath.M44f() ) # Reference internals are not editable, so attempts to access invalid # fields should throw. referenceFileName = os.path.join( self.temporaryDirectory(), "test.grf" ) script["box"].exportForReference( referenceFileName ) script["reference"] = Gaffer.Reference() script["reference"].load( referenceFileName ) selection = GafferSceneUI.TransformTool.Selection( script["reference"]["out"], "/plane", script.context(), None ) self.assertEqual( selection.scene(), script["reference"]["out"] ) self.assertEqual( selection.path(), "/plane" ) self.assertEqual( selection.context(), script.context() ) self.assertEqual( selection.upstreamScene(), script["reference"]["plane"]["out"] ) self.assertEqual( selection.upstreamPath(), "/plane" ) self.assertEqual( selection.upstreamContext()["scene:path"], IECore.InternedStringVectorData( [ "plane" ] ) ) self.assertFalse( selection.editable() ) with six.assertRaisesRegex( self, RuntimeError, "Selection is not editable" ) : selection.editTarget() with six.assertRaisesRegex( self, RuntimeError, "Selection is not editable" ) : selection.transformSpace() def testSelectionEditScopes( self ) : # Start with an EditScope that isn't even connected. plane = GafferScene.Plane() editScope = Gaffer.EditScope() editScope.setup( plane["out"] ) selection = GafferSceneUI.TransformTool.Selection( plane["out"], "/plane", Gaffer.Context(), None ) self.assertTrue( selection.editable() ) self.assertEqual( selection.editTarget(), plane["transform"] ) self.assertIsNone( selection.editScope() ) selection = GafferSceneUI.TransformTool.Selection( plane["out"], "/plane", Gaffer.Context(), editScope ) self.assertFalse( selection.editable() ) self.assertEqual( selection.warning(), "EditScope not in history" ) self.assertRaises( RuntimeError, selection.acquireTransformEdit ) self.assertRaises( RuntimeError, selection.transformSpace ) self.assertEqual( selection.editScope(), editScope ) # Connect it and it should start to work, even if there is a downstream # Transform node. editScope["in"].setInput( plane["out"] ) transform = GafferScene.Transform() transform["in"].setInput( editScope["out"] ) selection = GafferSceneUI.TransformTool.Selection( transform["out"], "/plane", Gaffer.Context(), editScope ) self.assertTrue( selection.editable() ) self.assertEqual( selection.warning(), "" ) self.assertEqual( selection.upstreamScene(), editScope["out"] ) self.assertEqual( selection.editScope(), editScope ) # Disable the EditScope and the selection should become non-editable. editScope["enabled"].setValue( False ) selection = GafferSceneUI.TransformTool.Selection( transform["out"], "/plane", Gaffer.Context(), editScope ) self.assertFalse( selection.editable() ) self.assertEqual( selection.warning(), "EditScope disabled" ) self.assertEqual( selection.editScope(), editScope ) editScope["enabled"].setValue( True ) selection = GafferSceneUI.TransformTool.Selection( transform["out"], "/plane", Gaffer.Context(), editScope ) self.assertTrue( selection.editable() ) self.assertEqual( selection.warning(), "" ) self.assertEqual( selection.editScope(), editScope ) # Make the downstream node author a transform that would override the # EditScope. The selection should become non-editable again. pathFilter = GafferScene.PathFilter() pathFilter["paths"].setValue( IECore.StringVectorData( [ "/plane" ] ) ) transform["filter"].setInput( pathFilter["out"] ) selection = GafferSceneUI.TransformTool.Selection( transform["out"], "/plane", Gaffer.Context(), editScope ) self.assertFalse( selection.editable() ) self.assertEqual( selection.warning(), "EditScope overridden downstream" ) self.assertEqual( selection.upstreamScene(), transform["out"] ) # Disable the downstream node and we should be back in business. transform["enabled"].setValue( False ) selection = GafferSceneUI.TransformTool.Selection( transform["out"], "/plane", Gaffer.Context(), editScope ) self.assertTrue( selection.editable() ) self.assertEqual( selection.warning(), "" ) self.assertEqual( selection.upstreamScene(), editScope["out"] ) def testSceneReaderSelectionEditability( self ) : sceneReader = GafferScene.SceneReader() sceneReader["fileName"].setValue( "${GAFFER_ROOT}/python/GafferSceneTest/alembicFiles/groupedPlane.abc" ) selection = GafferSceneUI.TransformTool.Selection( sceneReader["out"], "/group/plane", Gaffer.Context(), None ) self.assertTrue( selection.editable() ) self.assertEqual( selection.path(), "/group" ) self.assertEqual( selection.editTarget(), sceneReader["transform"] ) selection = GafferSceneUI.TransformTool.Selection( sceneReader["out"], "/group", Gaffer.Context(), None ) self.assertTrue( selection.editable() ) self.assertEqual( selection.path(), "/group" ) self.assertEqual( selection.editTarget(), sceneReader["transform"] ) def testInvalidSelection( self ) : plane = GafferScene.Plane() selection = GafferSceneUI.TransformTool.Selection( plane["out"], "/cube", Gaffer.Context(), None ) self.assertFalse( selection.editable() ) self.assertEqual( selection.warning(), "Location does not exist" ) def testAcquireTransformEdit( self ) : plane = GafferScene.Plane() selection = GafferSceneUI.TransformTool.Selection( plane["out"], "/plane", Gaffer.Context(), None ) edit = selection.acquireTransformEdit() self.assertEqual( edit.translate, plane["transform"]["translate"] ) self.assertEqual( edit.rotate, plane["transform"]["rotate"] ) self.assertEqual( edit.scale, plane["transform"]["scale"] ) self.assertEqual( edit.pivot, plane["transform"]["pivot"] ) editScope = Gaffer.EditScope() editScope.setup( plane["out"] ) editScope["in"].setInput( plane["out"] ) selection = GafferSceneUI.TransformTool.Selection( editScope["out"], "/plane", Gaffer.Context(), editScope ) self.assertIsNone( selection.acquireTransformEdit( createIfNecessary = False ) ) edit = selection.acquireTransformEdit() self.assertTrue( editScope.isAncestorOf( edit.translate ) ) def testDontEditUpstreamOfReference( self ) : script = Gaffer.ScriptNode() script["plane"] = GafferScene.Plane() script["box"] = Gaffer.Box() script["box"]["filter"] = GafferScene.PathFilter() script["box"]["filter"]["paths"].setValue( IECore.StringVectorData( [ "/plane" ] ) ) script["box"]["transform"] = GafferScene.Transform() script["box"]["transform"]["filter"].setInput( script["box"]["filter"]["out"] ) Gaffer.PlugAlgo.promote( script["box"]["transform"]["in"] ) Gaffer.PlugAlgo.promote( script["box"]["transform"]["out"] ) script["box"]["in"].setInput( script["plane"]["out"] ) # Box is editable selection = GafferSceneUI.TransformTool.Selection( script["box"]["out"], "/plane", script.context(), None ) self.assertEqual( selection.upstreamScene(), script["box"]["transform"]["out"] ) self.assertEqual( selection.upstreamPath(), "/plane" ) self.assertEqual( selection.upstreamContext()["scene:path"], IECore.InternedStringVectorData( [ "plane" ] ) ) self.assertTrue( selection.editable() ) self.assertEqual( selection.editTarget(), script["box"]["transform"]["transform"] ) # Reference internals are not editable, so we can't edit the transform any more. # Make sure we don't accidentally traverse through the reference and try to edit # the Plane directly. referenceFileName = os.path.join( self.temporaryDirectory(), "test.grf" ) script["box"].exportForReference( referenceFileName ) script["reference"] = Gaffer.Reference() script["reference"].load( referenceFileName ) script["reference"]["in"].setInput( script["plane"]["out"] ) selection = GafferSceneUI.TransformTool.Selection( script["reference"]["out"], "/plane", script.context(), None ) self.assertEqual( selection.upstreamScene(), script["reference"]["transform"]["out"] ) self.assertEqual( selection.upstreamPath(), "/plane" ) self.assertEqual( selection.upstreamContext()["scene:path"], IECore.InternedStringVectorData( [ "plane" ] ) ) self.assertFalse( selection.editable() ) if __name__ == "__main__": unittest.main()
import torch import torch.nn as nn from model import common import math def make_model(opt): return LAUNet(opt) class Evaluator(nn.Module): def __init__(self, n_feats): super(Evaluator, self).__init__() self.conv1 = nn.Sequential(nn.Conv2d(3, n_feats, kernel_size=3, stride=2)) self.conv2 = nn.Sequential(nn.Conv2d(n_feats, n_feats, kernel_size=3, stride=2)) self.bn1 = nn.BatchNorm2d(n_feats) self.relu1 = nn.ReLU(inplace=True) self.avg_layer = torch.nn.AdaptiveAvgPool2d((1, 1)) self.linear_layer = nn.Conv2d(in_channels=n_feats, out_channels=2, kernel_size=1, stride=1) self.prob_layer = nn.Softmax() # saved actions and rewards self.saved_action = None self.rewards = [] self.eva_threshold = 0.5 def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu1(x) x = self.conv2(x) x = self.avg_layer(x) x = self.linear_layer(x).squeeze() softmax = self.prob_layer(x) if self.training: m = torch.distributions.Categorical(softmax) action = m.sample() self.saved_action = action else: action = softmax[1] action = torch.where(action > self.eva_threshold, 1, 0) self.saved_action = action m = None return action, m class LAUNet(nn.Module): def __init__(self, opt, conv=common.default_conv): super(LAUNet, self).__init__() self.opt = opt self.scale = opt.scale[-1] self.level = int(math.log(self.scale, 2)) self.saved_actions = [] self.softmaxs = [] n_blocks = opt.n_blocks n_feats = 64 kernel_size = 3 n_height = 1024 # main SR network self.upsample = [nn.Upsample(scale_factor=2**(i+1), mode='bicubic', align_corners=False) for i in range(self.level)] self.upsample = nn.ModuleList(self.upsample) rgb_mean = (0.4737, 0.4397, 0.4043) rgb_std = (1.0, 1.0, 1.0) # data preprocessing self.sub_mean = common.MeanShift(opt.rgb_range, rgb_mean, rgb_std) # head conv self.head = conv(opt.n_colors, n_feats) # CA Dense net self.body = [common.CADensenet(conv, n_feats, n_CADenseBlocks=(self.level-i)*n_blocks) for i in range(self.level)] self.body = nn.ModuleList(self.body) # upsample blocks self.up_blocks = [common.Upsampler(common.default_conv, 2, n_feats, act=False) for _ in range(2*self.level-1)] self.up_blocks += [common.Upsampler(common.default_conv, 2**i, 3, act=False) for i in range(self.level-1,0,-1)] self.up_blocks = nn.ModuleList(self.up_blocks) # tail conv that output sr ODIs self.tail = [conv(n_feats, opt.n_colors) for _ in range(self.level+1)] self.tail = nn.ModuleList(self.tail) # data postprocessing self.add_mean = common.MeanShift(opt.rgb_range, rgb_mean, rgb_std, 1) # evaluator subnet self.evaluator = nn.ModuleList() for p in range(opt.n_evaluator): self.evaluator.append(Evaluator(n_feats)) def merge(self, imglist, radio): if radio[0] == 0 and radio[-1] == 0: return imglist[-1] else: result = [imglist[0]] for i in range(1, len(imglist)): north, middle, south = torch.split(result[-1], [radio[0]*i, result[-1].size(2)-radio[0]*i-radio[-1]*i, radio[-1]*i], dim=2) result.append(torch.cat((north, imglist[i], south), dim=2)) return result[-1] def forward(self, lr): results = [] masks = [] gprobs = [] x = self.sub_mean(lr) g1 = self.upsample[0](x) g2 = self.upsample[1](x) g3 = self.upsample[2](x) x = self.head(x) # 1st level b1 = self.body[0](x) f1 = self.up_blocks[2](b1) f1 = self.tail[0](f1) g1 = self.add_mean(f1 + g1) eva_g1 = g1.detach() patchlist = torch.chunk(eva_g1, self.opt.n_evaluator, dim=2) for i in range(len(patchlist)): action, gprob = self.evaluator[i](patchlist[i]) threshold = action.size(0) if self.training else 1 mask = 1 if int(action.sum()) == threshold else 0 self.saved_actions.append(action) self.softmaxs.append(gprob) masks.append(mask) gprobs.append(gprob) crop_n, remain, crop_s = 0, 0, 0 for i in range(self.opt.n_evaluator//(2**self.level)): if masks[i] == 1: crop_n += b1.size(2)//self.opt.n_evaluator else: break for j in range(self.opt.n_evaluator-1, self.opt.n_evaluator*((2**self.level-1)//(2**self.level)), -1): if masks[j] == 1: crop_s += b1.size(2)//self.opt.n_evaluator else: break remain = b1.size(2)-crop_n-crop_s if crop_n or crop_s: _, b1re, _ = torch.split(b1, [crop_n, remain, crop_s], dim=2) _, g2, _ = torch.split(g2, [crop_n*4, remain*4, crop_s*4], dim=2) else: b1re = b1 # 2ed level b2 = self.up_blocks[0](b1re) b2 = self.body[1](b2) f2 = self.up_blocks[3](b2) f2 = self.tail[1](f2) g2 = self.add_mean(f2 + g2) # 3rd level if crop_n or crop_s: _, b2re, _ = torch.split(b2, [crop_n * 2, b2.size(2)-crop_n * 2-crop_s * 2, crop_s * 2], dim=2) _, g3, _ = torch.split(g3, [crop_n * 16, g3.size(2)-crop_n * 16 - crop_s * 16, crop_s * 16], dim=2) else: b2re = b2 b3 = self.up_blocks[1](b2re) b3 = self.body[2](b3) f3 = self.up_blocks[4](b3) f3 = self.tail[2](f3) g3 = self.add_mean(f3 + g3) g1up = self.up_blocks[5](g1) g2up = self.up_blocks[6](g2) g4 = self.merge([g1up, g2up, g3], [crop_n*8, remain*8, crop_s*8]) results = [g1up, g2up, g3, g4] return results
import unittest import src.Models.AircraftDynamics as ad import numpy as np class AircraftDynamicsTest(unittest.TestCase): def test_stright_line(self): dynamics = ad.AircraftDynamics(step_time=0.001, cruise_speed=20.0) start_state = np.array([10, 10, np.pi/4.0]) end_state = dynamics.update(start_state, 0, 10.0) dx = 200.0/np.sqrt(2) dy = dx correct_end_state = np.array([10+dx, 10+dy, np.pi/4.0]) self.assertTrue(np.allclose(correct_end_state, end_state, atol=0.1)) def test_arc(self): dynamics = ad.AircraftDynamics(step_time=0.001, cruise_speed=20.0, fast_update=False) start_state = np.array([10, 10, np.pi / 2.0]) end_state = dynamics.update(start_state, -20, np.pi) correct_end_state = np.array([50, 10, 3.0/2.0 * np.pi]) start_state2 = np.array([10, 10, np.pi / 2.0]) end_state2 = dynamics.update(start_state2, 20, np.pi) correct_end_state2 = np.array([-30, 10, 3.0 / 2.0 * np.pi]) start_state3 = np.array([10, 10, np.pi / 2.0]) end_state3 = dynamics.update(start_state3, 20, np.pi / 2.0) correct_end_state3 = np.array([-10, 30, np.pi]) start_state4 = np.array([10, 10, np.pi / 2.0]) end_state4 = dynamics.update(start_state4, -20, np.pi / 2.0) correct_end_state4 = np.array([30, 30, 0]) self.assertTrue(np.allclose(correct_end_state, end_state, atol=0.1)) self.assertTrue(np.allclose(correct_end_state2, end_state2, atol=0.1)) self.assertTrue(np.allclose(correct_end_state3, end_state3, atol=0.1)) self.assertTrue(np.allclose(correct_end_state4, end_state4, atol=0.1)) def test_arc_fast(self): dynamics = ad.AircraftDynamics(step_time=0.001, cruise_speed=20.0, fast_update=True) start_state = np.array([10, 10, np.pi / 2.0]) end_state = dynamics.update(start_state, -20, np.pi) correct_end_state = np.array([50, 10, 3.0/2.0 * np.pi]) start_state2 = np.array([10, 10, np.pi / 2.0]) end_state2 = dynamics.update(start_state2, 20, np.pi) correct_end_state2 = np.array([-30, 10, 3.0 / 2.0 * np.pi]) start_state3 = np.array([10, 10, np.pi / 2.0]) end_state3 = dynamics.update(start_state3, 20, np.pi/2.0) correct_end_state3 = np.array([-10, 30, np.pi]) start_state4 = np.array([10, 10, np.pi / 2.0]) end_state4 = dynamics.update(start_state4, -20, np.pi / 2.0) correct_end_state4 = np.array([30, 30, 0]) self.assertTrue(np.allclose(correct_end_state, end_state, atol=0.1)) self.assertTrue(np.allclose(correct_end_state2, end_state2, atol=0.1)) self.assertTrue(np.allclose(correct_end_state3, end_state3, atol=0.1)) self.assertTrue(np.allclose(correct_end_state4, end_state4, atol=0.1)) if __name__ == '__main__': unittest.main()
from django.http import JsonResponse from django.utils.deprecation import MiddlewareMixin class FirstMiddleware(MiddlewareMixin): def process_request(self, request): print('FirstMiddleware: process_request') # return JsonResponse({'Hello': 'Django BBS'}) def process_view(self, request, view_func, view_args, view_kwargs): print('FirstMiddleware: process_view') # return JsonResponse({'Hello': 'Django BBS'}) def process_response(self, request, response): print('FirstMiddleware: process_response') return response def process_exception(self, request, exception): print('FirstMiddleware: process_exception') return JsonResponse({'exception': str(exception)}) def process_template_response(self, request, response): print('FirstMiddleware: process_template_response') return response class SecondMiddleware(MiddlewareMixin): def process_request(self, request): print('SecondMiddleware: process_request') def process_view(self, request, view_func, view_args, view_kwargs): print('SecondMiddleware: process_view') def process_response(self, request, response): print('SecondMiddleware: process_response') return response
import yt import os as os from glob import glob import pandas as pd from tqdm import tqdm import pyrats sims=[] init=1 for s in sims: cx=[]; cy=[]; cz=[]; t=[]; x=[]; y=[]; z=[] os.chdir('/home/pfister/scratch/'+s) files=glob('output_*') #for i in tqdm(range(3)): for i in tqdm(range(len(files)-init+1)): ds=pyrats.load(i+init, dm=True, bh=True, stars=True) d=ds.all_data() t+=[float(ds.current_time.in_units('Gyr'))] ccx=float(d['dm','particle_position_x'].mean()) ccy=float(d['dm','particle_position_y'].mean()) ccz=float(d['dm','particle_position_z'].mean()) for r in [3000,2500,2000,1500,1000,750,500,300]: sp=ds.sphere([ccx,ccy,ccz], (r,'pc')) ccx=float(sp['dm','particle_position_x'].mean()) ccy=float(sp['dm','particle_position_y'].mean()) ccz=float(sp['dm','particle_position_z'].mean()) #arg=d['deposit','stars_cic'].argmax() #cx+=[float(d['index','x'][arg])] #cy+=[float(d['index','y'][arg])] #cz+=[float(d['index','z'][arg])] cx+=[ccx] cy+=[ccy] cz+=[ccz] x+=[float(d['sink','particle_position_x'].mean())] y+=[float(d['sink','particle_position_y'].mean())] z+=[float(d['sink','particle_position_z'].mean())] gal={'cx':cx, 'cy':cy, 'cz':cz, 't':t, 'x':x, 'y':y, 'z':z} gal=pd.DataFrame(data=gal) gal.to_csv('GalCenter.csv', index=False)
from typing import cast import gym from gym.spaces import Discrete def get_action_size_from_env(env: gym.Env) -> int: if isinstance(env.action_space, Discrete): return cast(int, env.action_space.n) return cast(int, env.action_space.shape[0])
#!/usr/bin/env python import os import subprocess import os.path as p import sys DIR_OF_THIS_SCRIPT = p.dirname( p.abspath( __file__ ) ) DIR_OF_THIRD_PARTY = p.join( DIR_OF_THIS_SCRIPT, 'third_party' ) DIR_OF_YCMD_THIRD_PARTY = p.join( DIR_OF_THIRD_PARTY, 'ycmd', 'third_party' ) python_path = [] for folder in os.listdir( DIR_OF_THIRD_PARTY ): python_path.append( p.abspath( p.join( DIR_OF_THIRD_PARTY, folder ) ) ) for folder in os.listdir( DIR_OF_YCMD_THIRD_PARTY ): # We skip python-future because it needs to be inserted in sys.path AFTER # the standard library imports but we can't do that with PYTHONPATH because # the std lib paths are always appended to PYTHONPATH. We do it correctly in # prod in ycmd/utils.py because we have access to the right sys.path. # So for dev, we rely on python-future being installed correctly with # pip install -r test_requirements.txt # # Pip knows how to install this correctly so that it doesn't matter where in # sys.path the path is. if folder == 'python-future': continue python_path.append( p.abspath( p.join( DIR_OF_YCMD_THIRD_PARTY, folder ) ) ) if os.environ.get( 'PYTHONPATH' ): python_path.append( os.environ[ 'PYTHONPATH' ] ) os.environ[ 'PYTHONPATH' ] = os.pathsep.join( python_path ) sys.path.insert( 1, p.abspath( p.join( DIR_OF_YCMD_THIRD_PARTY, 'argparse' ) ) ) import argparse def RunFlake8(): print( 'Running flake8' ) subprocess.check_call( [ 'flake8', p.join( DIR_OF_THIS_SCRIPT, 'python' ) ] ) def ParseArguments(): parser = argparse.ArgumentParser() parser.add_argument( '--skip-build', action = 'store_true', help = 'Do not build ycmd before testing.' ) parser.add_argument( '--no-flake8', action = 'store_true', help = 'Do not run flake8' ) return parser.parse_known_args() def BuildYcmdLibs( args ): if not args.skip_build: subprocess.check_call( [ sys.executable, p.join( DIR_OF_THIS_SCRIPT, 'third_party', 'ycmd', 'build.py' ) ] ) def NoseTests( extra_args ): subprocess.check_call( [ 'nosetests', '-v', '-w', p.join( DIR_OF_THIS_SCRIPT, 'python' ) ] + extra_args ) def Main(): ( parsed_args, extra_args ) = ParseArguments() if not parsed_args.no_flake8: RunFlake8() BuildYcmdLibs( parsed_args ) NoseTests( extra_args ) if __name__ == "__main__": Main()
import dataiku INPUT_DATASET = "mydataset" COLUMN_TO_PARTITION_BY = "mypartitioningcolumn" dataset = dataiku.Dataset(INPUT_DATASET) df = dataset.get_dataframe(columns = [COLUMN_TO_PARTITION_BY]) combinations = df[COLUMN_TO_PARTITION_BY].unique() combinations_str = "/".join(combinations) client = dataiku.api_client() project = client.get_project(dataiku.default_project_key()) variables = project.get_variables() variables["standard"]["myPartitionList"] = combinations_str project.set_variables(variables)
#! /home/alessap/miniconda3/bin/python import subprocess print("Setting pointers properties") # xinput_output = str(subprocess.check_output(["xinput"])).split("\n").split("\n") # print([line for line in xinput_output if "Master" in line]) ps = subprocess.Popen(("xinput"), stdout=subprocess.PIPE) output = str(subprocess.check_output(("grep", "Logitech MX Master"), stdin=ps.stdout)) ps.wait() print(output.split("id=")[1].split("\\t")[0]) mouse_name = "Logitech MX Master" touch_pad_name = "SynPS/2 Synaptics TouchPad" # # set natural scrolling # xinput set-prop 'SynPS/2 Synaptics TouchPad' 'libinput Natural Scrolling Enabled' 1 # # # xinput set-prop "SynPS/2 Synaptics TouchPad" "Tapping Enabled" 1 # # # # # natural scrolling touchpad and MX Master mouse # xinput set-prop 'pointer:Logitech MX Master' 'libinput Natural Scrolling Enabled' 0 # xinput set-prop 11 306 0 # xinput set-prop 11 303 1 # # # enable tapping touchpad # xinput set-prop 'SynPS/2 Synaptics TouchPad' 306 1 # xinput set-prop 11 306 1
""" PEP8+ code style for better code ============================================================================= PEP8 is the defacto standard for coding style for Python. Code conforming to that is fairly readable, but some cases could be better. From experience, I have learned additional guidelines to improve code readability and robustness, hence PEP8+. To ensure conformity to PEP8, flake8 can be used to check. The additional guidelines would need to be checked manually. This non-working program demonstrates many PEP8 styles along with the additional guidelines. References ----------------------------------------------------------------------------- PEP8: https://www.python.org/dev/peps/pep-0008/ flake8: http://flake8.pycqa.org/en/latest/ """ # Standard libraries. Imports should be sorted in alphabetical order. import logging import random # 3rd-party libraries from mysql import FakeDBConnection # Local libraries from mycompany.models import DataTable log = logging.getLogger(__name__) CONSTANTS = 'can be listed here too' def main(): # GUIDELINE #1: Use new string format # ----------------------------------------------------------------------- # String formatting should use f-string or .format() instead of % # as % substitute is not as flexible and may become deprecated in the # future. See https://www.python.org/dev/peps/pep-3101/ hello = 'hello {}'.format('world') greeting = f'{hello}, how are you' # The only place where %s is used would be methods that accept them # natively, which may have performance improvements. E.g. logging # module would skip string formatting if the log level is higher. log.debug('This %s formatting does not happen for INFO level', greeting) # GUIDELINE #2: Separate/group logic blocks # ----------------------------------------------------------------------- # For `if` blocks, add an extra blank line to group each block to improve # readability. if len(hello) < 1: print('nothing') print('was') print('said') elif len(hello) < 5: print('quick hello') else: print('long') print('greeting') # Same for `try/except` blocks. try: 1/0 except Exception: log.info('Yep, that happened') # GUIDELINE #3: Use bare except with care # ----------------------------------------------------------------------- # While we are talking about exceptions, never use bare except without # re-throwing. Generally, it should not be used unless there is a need to # handle system exceptions, such as SystemExit, to rollback a database # transaction. See https://docs.python.org/2/howto/doanddont.html#except db = FakeDBConnection() try: db.insert(DataTable, []) db.update(DataTable, column1='new value') db.commit() except: # noqa db.rollback() raise # Always re-raise bare except so system exceptions are handled # GUIDELINE #4: Separate/group related code # ----------------------------------------------------------------------- # Related/similar stuff should be separated by blank line for readability hello = 1 world = 2 hello_world = hello / world print(f'{hello} + {world} = ', 3) print(f'{hello} / {world} = {hello_world}') # GUIDELINE #5: Use parenthesis instead of backward slash # ----------------------------------------------------------------------- # Parenthesis is more readable than backward slash that appears at the # end of each line. if (hello > world and world > hello_world): print('This is not so ' 'bad, right?') else: print('No backward slash used') class Superhero: """ A hero with superpowers. """ #: This is a class level constant CLASS_LEVEL_CONSTANT = True def __init__(self, powers): """ Initialize the superhero with powers. :param list[str] powers: List of superpowers. It's possible to use type hints in Python 3, but the readability isn't great for optional args with default values, so *I* prefer to continue documenting them via docstrings. """ #: List of superpowers. self.powers = powers # Hidden power that no one knows about self._hidden_power = 'glow in the dark' def fight(self): """ Fight villian using one of the superpowers """ print(random.choice(self.powers)) if random.random() > 0.99: print(self._hidden_power) if __name__ == "__main__": main()
"""Imports Tapis CLI settings to a Jinja environment Prefixes TAPIS_PY and TAPIS_CLI are stripped and key names are lowercased. """ import re from tapis_cli import settings BLACKLIST = ['TAPIS_CLI_ALLOW_EMPTY_VARS'] __all__ = ['key_values'] def key_values(): key_vals = dict() cli_settings = settings.all_settings() for k, v in cli_settings.items(): if k not in BLACKLIST and not k.startswith('_'): k = k.lower() k = re.sub('^tapis_py_', '', k) k = re.sub('^tapis_cli_', '', k) key_vals[k] = v return key_vals
from django.apps import AppConfig from django.db.models.signals import pre_save class NodeConfig(AppConfig): name = 'node' def ready(self): from node.models import IncomingNode from node.signals.node.pre_save import node_pre_save pre_save.connect(node_pre_save, sender=IncomingNode)
import numpy as np import csv import time np.random.seed(1234) # seed 고정 def randomize(): np.random.seed(time.time()) # 현재시각을 seed로 RND_MEAN = 0 RND_STD = 0.0030 LEARNING_RATE = 0.001 def abalone_exec(epoch_count=10, mb_size=10, report=1): load_abalone_dataset() init_model() train_and_test(epoch_count, mb_size, report) def load_abalone_dataset(): with open('./data/abalone.csv', 'r') as csvfile: csvreader = csv.reader(csvfile) # next()는 iterator의 __next__() 호출시 next item을 검색함. 첫줄이 header row라서 건너뛰기 위함. next(csvreader, None) rows = [] for row in csvreader: rows.append(row) global data, input_cnt, output_cnt input_cnt, output_cnt = 10, 1 data = np.zeros(shape=(len(rows), input_cnt+output_cnt)) for n, row in enumerate(rows): if row[0] == 'I': data[n, 0] = 1 if row[0] == 'M': data[n, 1] = 1 if row[0] == 'F': data[n, 2] = 1 data[n, 3:] = row[1:] def init_model(): """ initialize a model weight and bias """ global weight, bias, input_cnt, output_cnt weight = np.random.normal(RND_MEAN, RND_STD, [input_cnt, output_cnt]) bias = np.zeros(output_cnt) def train_and_test(epoch_count, mb_size, report): step_count = arrange_data(mb_size) test_x, test_y = get_test_data() for epoch in range(epoch_count): losses, accs = [], [] for n in range(step_count): train_x, train_y = get_train_data(mb_size, n) loss, acc = run_train(train_x, train_y) losses.append(loss) accs.append(acc) if report > 0 and (epoch+1) % report == 0: acc = run_test(test_x, test_y) print('Epoch {0}: loss={1:5.3f}, accuracy={2:5.3f}/{3:5.3f}'.\ format(epoch+1, np.mean(losses), np.mean(accs), acc)) final_acc = run_test(test_x, test_y) print('\nFinal Test: final accuracy = {:5.3f}'.format(final_acc)) def arrange_data(mb_size): global data, shuffle_map, test_begin_idx shuffle_map = np.arange(data.shape[0]) np.random.shuffle(shuffle_map) step_count = int(data.shape[0] *0.8) // mb_size test_begin_idx = step_count * mb_size return step_count def get_train_data(mb_size, nth): global data, shuffle_map, test_begin_idx, output_cnt if nth == 0: np.random.shuffle(shuffle_map[:test_begin_idx]) train_data = data[shuffle_map[mb_size*nth:mb_size*(nth+1)]] return train_data[:,:-output_cnt], train_data[:,-output_cnt:] def get_test_data(): global data, shuffle_map, test_begin_idx, output_cnt test_data = data[shuffle_map[test_begin_idx:]] return test_data[:, :-output_cnt], test_data[:, -output_cnt:] def run_train(x, y): output, aux_nn = forward_neuralnet(x) loss, aux_pp = forward_postproc(output, y) accuracy = eval_accuracy(output, y) G_loss = 1.0 G_output = backprop_postproc(G_loss, aux_pp) backprop_neuralnet(G_output, aux_nn) return loss, accuracy def run_test(x, y): output, _ = forward_neuralnet(x) accuracy = eval_accuracy(output, y) return accuracy def forward_neuralnet(x): global weight, bias output = np.matmul(x, weight) + bias return output, x def backprop_neuralnet(G_output, x): global weight, bias g_output_w = x.transpose() G_w = np.matmul(g_output_w, G_output) G_b = np.sum(G_output, axis=0) weight -= LEARNING_RATE * G_w bias -= LEARNING_RATE * G_b def forward_postproc(output, y): diff = output - y square = np.square(diff) loss = np.mean(square) return loss, diff def backprop_postproc(G_loss, diff): shape = diff.shape g_loss_square = np.ones(shape) / np.prod(shape) g_square_diff = 2 * diff g_diff_output = 1 G_square = g_loss_square * G_loss G_diff = g_square_diff * G_square G_output = g_diff_output * G_diff return G_output def eval_accuracy(output, y): mdiff = np.mean(np.abs((output - y) / y)) return 1 - mdiff if __name__ == "__main__": """ * 출력결과 loss는 지속적으로 줄어드는 반면 accuracy는 그대로인 것을 볼 때 전복의 외형으로 고리수를 예측한다는 문제 자체가 한계로 작용했을 수 있다. * 학습률과 배치 사이즈는 학습에 큰 영향을 주는 하이퍼파라미터이다. 그래서 여러 경우로 학습해서 비교해보는 것이 필요하다. """ print("Epoch: 10, batch size: 10, Learning rate: {}".format(LEARNING_RATE)) abalone_exec() print("="*100) LEARNING_RATE = 0.01 print("Epoch: 40, batch size: 40, Learning rate: {}".format(LEARNING_RATE)) abalone_exec(40, 40, 4)
import numpy as np import pytest import unittest from mvc.models.metrics.base_metric import BaseMetric class BaseMetricTest(unittest.TestCase): def setUp(self): self.metric = BaseMetric() def test_add(self): with pytest.raises(NotImplementedError): self.metric.add(np.random.random()) def test_get(self): with pytest.raises(NotImplementedError): self.metric.get() def test_reset(self): with pytest.raises(NotImplementedError): self.metric.reset()
# coding: utf-8 import lxml.html from .abstract import get_strategy class TestTags: def test_adding_tags_for_page(self): # Given strategy = get_strategy({ 'start_urls': [{ 'url': 'http://foo.bar/api', 'tags': ["test"] }] }) strategy.dom = lxml.html.fromstring(""" <html><body> <h1>Foo</h1> </body></html> """) # When actual = strategy.get_records_from_dom("http://foo.bar/api") # Then assert actual[0]['tags'] == ["test"] def test_adding_tags_for_subpage(self): # Given strategy = get_strategy({ 'start_urls': [{ 'url': 'http://foo.bar/api', 'tags': ["test"] }] }) strategy.dom = lxml.html.fromstring(""" <html><body> <h1>Foo</h1> </body></html> """) # When actual = strategy.get_records_from_dom("http://foo.bar/api/test") # Then assert actual[0]['tags'] == ["test"] def test_regex_start_urls(self): # Given # Stub ENV variables read by ConfigLoader strategy = get_strategy({ 'start_urls': [ { 'url': 'http://foo.bar/.*', 'tags': ["test"] } ] }) strategy.dom = lxml.html.fromstring(""" <html><body> <h1>Foo</h1> </body></html> """) # When actual = strategy.get_records_from_dom("http://foo.bar/api/test") # Then assert actual[0]['tags'] == ["test"]
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. # ################################################################################## # Module: args # Purpose: Module defining all switches and arguments used by Audit UI # # Notes: # ################################################################################## import sys import logging import data_pipeline.logger.logging_loader import argparse logger = logging.getLogger(__name__) def parse_args(arg_list): logger.info("Parsing command line arguments: {}".format(arg_list)) args_parser = argparse.ArgumentParser() args_parser.add_argument("--quiet", action="store_true", help="quiet mode") args_parser.add_argument("--verbose", action="store_true", help="verbose mode") args_parser.add_argument("--veryverbose", action="store_true", help="very verbose mode") args_parser.add_argument("--audituser", nargs='?', help="process audit user credentials requried for logging processing metrics") args_parser.add_argument("--httphost", nargs='?', default = '0.0.0.0', help="process audit web server http host") args_parser.add_argument("--httpport", nargs='?', default = '5000', help="process audit web server http port") parsed_args = args_parser.parse_args(arg_list) return parsed_args def get_program_args(): return parse_args(sys.argv[1:])
# Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. import os import argparse from azureml.core import Datastore import aml_utils def main(datastore, data_path): # Get snapshot of your data and save it in datastore os.makedirs(data_path, exist_ok=True) with open(os.path.join(data_path, 'data.csv'), 'w') as f: f.write('column1,column2,column3\n1,2,3\n4,5,6\n7,8,9\n') ws = aml_utils.retrieve_workspace() datastore = Datastore(ws, name=datastore) datastore.upload( src_dir=data_path, target_path=data_path, overwrite=False ) print(f'Snapshot saved in datastore {datastore}, path {data_path}') def parse_args(args_list=None): parser = argparse.ArgumentParser() parser.add_argument('--datastore', type=str, required=True) parser.add_argument('--path', type=str, required=True) args_parsed = parser.parse_args(args_list) return args_parsed if __name__ == "__main__": args = parse_args() main( datastore=args.datastore, data_path=args.path )
"""The package with different tools serving as helpers in other modules.""" from .xmath import Xmath as xmath __all__ = ["xmath", ]
import pickle from conftest import Benchmark, random_rat from donuts import RationalFunction def test_rat_to_string(benchmark: Benchmark) -> None: r = random_rat(nterms=1000) result = benchmark(str, r) assert result def test_rat_from_string(benchmark: Benchmark) -> None: r = random_rat(nterms=1000) s = str(r) result = benchmark(RationalFunction, s) assert result def test_rat_dumps(benchmark: Benchmark) -> None: r = random_rat(nterms=1000) result = benchmark(pickle.dumps, r) assert result def test_rat_loads(benchmark: Benchmark) -> None: r = random_rat(nterms=1000) s = pickle.dumps(r) result = benchmark(pickle.loads, s) assert result def test_rat_add(benchmark: Benchmark) -> None: r1 = random_rat(nterms=100, seed=1) r2 = random_rat(nterms=100, seed=2) result = benchmark(lambda a, b: a + b, r1, r2) assert result def test_rat_mul(benchmark: Benchmark) -> None: r1 = random_rat(nterms=100, seed=1) r2 = random_rat(nterms=100, seed=2) result = benchmark(lambda a, b: a * b, r1, r2) assert result
from datetime import datetime, timedelta from random import randint from zeeguu_core_test.rules.article_rule import ArticleRule from zeeguu_core_test.rules.base_rule import BaseRule from zeeguu_core_test.rules.language_rule import LanguageRule from zeeguu_core_test.rules.rss_feed_rule import RSSFeedRule from zeeguu_core_test.rules.url_rule import UrlRule from zeeguu_core_test.rules.user_rule import UserRule from zeeguu_core.model import Article from zeeguu_core.model.user_article import UserArticle class UserArticleRule(BaseRule): """ Creates a User Article object with random data and saves it to the database. """ def __init__(self): super().__init__() self.user_article = self._create_model_object() self.save(self.user_article) def _create_model_object(self): user = UserRule().user article = ArticleRule().article user_article = UserArticle(user, article) if self._exists_in_db(user_article): return self._create_model_object() return user_article @staticmethod def _exists_in_db(obj): return UserArticle.exists(obj)
from Blueprint3DJSBPY.bp3dpy.model.half_edge import HalfEdge; from mathutils import Vector; class Room(): def __init__(self, name, floorplan, corners): self.__name = name; self.__floorplan = floorplan; self.__corners = corners; self.__walls = []; self.__interiorCorners = []; self.__interiorCorners3D = []; self.__edgePointer = None; self.__floorRectangleSize = None; self.updateWalls(); self.updateInteriorCorners(); for corner in self.__corners: corner.attachRoom(self); def updateWalls(self): prevEdge = None; firstEdge = None; self.__walls = []; for i, firstCorner in enumerate(self.__corners): secondCorner = self.__corners[(i+1) % len(self.__corners)]; wallTo = firstCorner.wallTo(secondCorner); wallFrom = firstCorner.wallFrom(secondCorner); edge = None; if(wallTo): edge = HalfEdge(self, wallTo, True); elif(wallFrom): edge = HalfEdge(self, wallFrom, False); else: print('corners arent connected by a wall, uh oh'); if(wallTo and not wallTo in self.__walls): self.__walls.append(wallTo); wallTo.addRoom(self); if(wallFrom and not wallFrom in self.__walls): self.__walls.append(wallFrom); wallFrom.addRoom(self); if(i == 0): firstEdge = edge; else: edge.prev = prevEdge; prevEdge.next = edge; if(i + 1 == len(self.__corners)): firstEdge.prev = edge; edge.next = firstEdge; prevEdge = edge; self.__edgePointer = firstEdge; def updateInteriorCorners(self): minB, maxB = Vector((1e10, 1e10)), Vector((-1e10, -1e10)); self.__interiorCorners = []; edge = self.__edgePointer; iterateWhile = True; while(iterateWhile): iStart = edge.interiorStart(); cStart = edge.getStart(); minB.x = min(iStart.x, minB.x); minB.y = min(iStart.y, minB.y); maxB.x = max(maxB.x, iStart.x); maxB.y = max(maxB.y, iStart.y); self.__interiorCorners.append(iStart); self.__interiorCorners3D.append(Vector((iStart.x, iStart.y, cStart.elevation))); if(edge.next == self.__edgePointer): break; else: edge = edge.next; self.__floorRectangleSize = maxB - minB; def getUuid(self): cornerIds = [corner.id for corner in self.__corners]; cornerIds = sorted(cornerIds); return ','.join(cornerIds); def getTexture(self): uuid = self.getUuid(); tex = self.__floorplan.getFloorTexture(uuid); return tex; @property def floorRectangleSize(self): return self.__floorRectangleSize; @property def edgePointer(self): return self.__edgePointer; @property def interiorCorners(self): return self.__interiorCorners; @property def interiorCorners3D(self): return self.__interiorCorners3D;
# -*- coding: utf-8 -*- # Generated by Django 1.10.2 on 2016-11-26 10:54 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('premises', '0001_initial'), ] operations = [ migrations.AddField( model_name='premise', name='key_indirect_object', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.DO_NOTHING, related_name='key_indirect_object', to='premises.Noun'), ), migrations.AlterField( model_name='premise', name='key_predicate', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.DO_NOTHING, to='premises.Verb'), ), migrations.AlterField( model_name='premise', name='premise_type', field=models.IntegerField(choices=[(1, 'Categorization'), (3, 'Comparison'), (4, 'Deduction'), (5, 'Diagnosis'), (6, 'Proposal')], default=1), ), migrations.AlterField( model_name='premisevote', name='value', field=models.IntegerField(), ), migrations.AlterUniqueTogether( name='premise', unique_together=set([('premise_type', 'key_subject', 'key_predicate', 'key_object', 'key_complement', 'key_indirect_object')]), ), ]
# Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You # may not use this file except in compliance with the License. A copy of # the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific # language governing permissions and limitations under the License. """Example showing how to disable commitment. Note: This configuration should only be used as part of a migration from version 1.x to 2.x, or for advanced users with specialized requirements. We recommend that AWS Encryption SDK users enable commitment whenever possible. """ import aws_encryption_sdk from aws_encryption_sdk import CommitmentPolicy def encrypt_decrypt(key_arn, source_plaintext, botocore_session=None): """Encrypts and then decrypts a string under one KMS customer master key (CMK). :param str key_arn: Amazon Resource Name (ARN) of the KMS CMK :param bytes source_plaintext: Data to encrypt :param botocore_session: existing botocore session instance :type botocore_session: botocore.session.Session """ kwargs = dict(key_ids=[key_arn]) if botocore_session is not None: kwargs["botocore_session"] = botocore_session # Set up an encryption client with an explicit commitment policy disallowing encryption with algorithms that # provide commitment client = aws_encryption_sdk.EncryptionSDKClient(commitment_policy=CommitmentPolicy.FORBID_ENCRYPT_ALLOW_DECRYPT) # Create master key provider using the ARN of the key and the session (botocore_session) kms_key_provider = aws_encryption_sdk.StrictAwsKmsMasterKeyProvider(**kwargs) # Encrypt the plaintext using the AWS Encryption SDK. It returns the encrypted message and the header. Note: in # order for decrypt to succeed, the key_ids value must be the key ARN of the CMK. ciphertext, encrypted_message_header = client.encrypt(source=source_plaintext, key_provider=kms_key_provider) # Decrypt the encrypted message using the AWS Encryption SDK. It returns the decrypted message and the header plaintext, decrypted_message_header = client.decrypt(source=ciphertext, key_provider=kms_key_provider) # Verify that the original message and the decrypted message are the same assert source_plaintext == plaintext # Verify that the encryption context of the encrypted message and decrypted message match assert all( pair in encrypted_message_header.encryption_context.items() for pair in decrypted_message_header.encryption_context.items() )
#!/usr/bin/env python import copy from importlib import import_module import logging import numpy as np from openquake.hazardlib.gsim.base import GMPE from openquake.hazardlib.gsim.boore_2014 import BooreEtAl2014 from openquake.hazardlib.gsim.campbell_bozorgnia_2014 import CampbellBozorgnia2014 from openquake.hazardlib.imt import PGA, PGV, SA from openquake.hazardlib import const from openquake.hazardlib.valid import gsim from openquake.hazardlib.contexts import RuptureContext from shakelib.conversions.imt.abrahamson_bhasin_2020 import AbrahamsonBhasin2020 from shakelib.conversions.imc.boore_kishida_2017 import BooreKishida2017 from shakelib.sites import Sites # Special case GMPEs: from shakelib.gmpe.nga_east import NGAEast def set_sites_depth_parameters(sites, gmpe): """ Need to select the appropriate z1pt0 value for different GMPEs. Note that these are required site parameters, so even though OQ has these equations built into the class in most cases. I have submitted an issue to OQ requesting subclasses of these methods that do not require the depth parameters in the SitesContext to make this easier. Args: sites:1 An OQ sites context. gmpe: An OQ GMPE instance. Returns: An OQ sites context with the depth parameters set for the requested GMPE. """ if gmpe == "[MultiGMPE]": return sites Sites._addDepthParameters(sites) if ( gmpe == "[AbrahamsonEtAl2014]" or gmpe == "[AbrahamsonEtAl2014]\nregion = 'TWN'" or gmpe == "[AbrahamsonEtAl2014]\nregion = 'CHN'" ): sites.z1pt0 = sites.z1pt0_ask14_cal if gmpe == "[AbrahamsonEtAl2014]\nregion = 'JPN'": sites.z1pt0 = sites.z1pt0_ask14_jpn if gmpe == "[ChiouYoungs2014]" or isinstance(gmpe, BooreEtAl2014): sites.z1pt0 = sites.z1pt0_cy14_cal if isinstance(gmpe, CampbellBozorgnia2014): if ( gmpe == "[CampbellBozorgnia2014JapanSite]" or gmpe == "[CampbellBozorgnia2014HighQJapanSite]" or gmpe == "[CampbellBozorgnia2014LowQJapanSite]" ): sites.z2pt5 = sites.z2pt5_cb14_jpn else: sites.z2pt5 = sites.z2pt5_cb14_cal if ( gmpe == "[ChiouYoungs2008]" or gmpe == "[Bradley2013]" or gmpe == "[Bradley2013Volc]" ): sites.z1pt0 = sites.z1pt0_cy08 if gmpe == "[CampbellBozorgnia2008]": sites.z2pt5 = sites.z2pt5_cb07 if gmpe == "[AbrahamsonSilva2008]": sites.z1pt0 = gmpe._compute_median_z1pt0(sites.vs30) return sites def stuff_context(sites, rup, dists): """ Function to fill a rupture context with the contents of all of the other contexts. Args: sites (SiteCollection): A SiteCollection object. rup (RuptureContext): A RuptureContext object. dists (DistanceContext): A DistanceContext object. Returns: RuptureContext: A new RuptureContext whose attributes are all of the elements of the three inputs. """ ctx = RuptureContext() for name in [name for name in vars(sites) if not name.startswith("__")]: setattr(ctx, name, getattr(sites, name)) for name in [name for name in vars(rup) if not name.startswith("__")]: setattr(ctx, name, getattr(rup, name)) for name in [name for name in vars(dists) if not name.startswith("__")]: setattr(ctx, name, getattr(dists, name)) return ctx def get_gmpe_from_name(name, conf): # Only import the NullGMPE when we're testing # We'll want to import any other GMPEs we add at the top of this module # so that gsim() picks them up; anything in OQ is already included if name == "NullGMPE": mod = import_module(conf["gmpe_modules"][name][1]) return gsim(name) class MultiGMPE(GMPE): """ Implements a GMPE that is the combination of multiple GMPEs. """ DEFINED_FOR_TECTONIC_REGION_TYPE = None DEFINED_FOR_INTENSITY_MEASURE_TYPES = None DEFINED_FOR_INTENSITY_MEASURE_COMPONENT = None DEFINED_FOR_STANDARD_DEVIATION_TYPES = set([const.StdDev.TOTAL]) REQUIRES_SITES_PARAMETERS = None REQUIRES_RUPTURE_PARAMETERS = None REQUIRES_DISTANCES = None def get_mean_and_stddevs(self, sites, rup, dists, imt, stddev_types): """ See superclass `method <http://docs.openquake.org/oq-hazardlib/master/gsim/index.html#openquake.hazardlib.gsim.base.GroundShakingIntensityModel.get_mean_and_stddevs>`__. Unlike the superclass method, the stddev list returned by this function will have twice as many arrays as are requested in stddev_types: The first set will include the standard deviation inflation due to the point-source to finite fault conversion (if any), and the second set will not include this inflation. In the case where a finite rupture is provided (and, thus, no point-source to finite rupture adjustments are made) the two sets of stddev arrays will be identical. Thus, if:: stddev_types = [const.StdDev.TOTAL, const.StdDev.INTRA_EVENT, const.StdDev.INTER_EVENT] the returned stddev list will contain six arrays: the first three will include the point-source inflation, and the second three will not. """ # noqa # --------------------------------------------------------------------- # Sort out shapes of the sites and dists elements # Need to turn all 2D arrays into 1D arrays because of # inconsistencies in how arrays are handled in OpenQuake. # --------------------------------------------------------------------- shapes = [] for k, v in sites.__dict__.items(): if k == "_slots_": continue if (k != "lons") and (k != "lats"): shapes.append(v.shape) sites.__dict__[k] = np.reshape(sites.__dict__[k], (-1,)) for k, v in dists.__dict__.items(): if k == "_slots_": continue if (k != "lons") and (k != "lats") and v is not None: shapes.append(v.shape) dists.__dict__[k] = np.reshape(dists.__dict__[k], (-1,)) shapeset = set(shapes) if len(shapeset) != 1: raise Exception("All dists and sites elements must have same shape.") else: orig_shape = list(shapeset)[0] sd_avail = self.DEFINED_FOR_STANDARD_DEVIATION_TYPES if not sd_avail.issuperset(set(stddev_types)): raise Exception("Requested an unavailable stddev_type.") # Evaluate MultiGMPE: lnmu, lnsd = self.__get_mean_and_stddevs__(sites, rup, dists, imt, stddev_types) # Check for large-distance cutoff/weights if hasattr(self, "CUTOFF_DISTANCE"): lnmu_large, lnsd_large = self.__get_mean_and_stddevs__( sites, rup, dists, imt, stddev_types, large_dist=True ) # Stomp on lnmu and lnsd at large distances dist_cutoff = self.CUTOFF_DISTANCE lnmu[dists.rjb > dist_cutoff] = lnmu_large[dists.rjb > dist_cutoff] for i in range(len(lnsd)): lnsd[i][dists.rjb > dist_cutoff] = lnsd_large[i][ dists.rjb > dist_cutoff ] # Undo reshapes of inputs for k, v in dists.__dict__.items(): if k == "_slots_": continue if (k != "lons") and (k != "lats") and v is not None: dists.__dict__[k] = np.reshape(dists.__dict__[k], orig_shape) for k, v in sites.__dict__.items(): if k == "_slots_": continue if (k != "lons") and (k != "lats"): sites.__dict__[k] = np.reshape(sites.__dict__[k], orig_shape) # Reshape output lnmu = np.reshape(lnmu, orig_shape) for i in range(len(lnsd)): lnsd[i] = np.reshape(lnsd[i], orig_shape) return lnmu, lnsd def __get_mean_and_stddevs__( self, sites, rup, dists, imt, stddev_types, large_dist=False ): # --------------------------------------------------------------------- # Sort out which set of weights to use # --------------------------------------------------------------------- if large_dist is False: wts = self.WEIGHTS else: wts = self.WEIGHTS_LARGE_DISTANCE # --------------------------------------------------------------------- # This is the array to hold the weighted combination of the GMPEs # --------------------------------------------------------------------- lnmu = np.zeros_like(sites.vs30) # --------------------------------------------------------------------- # Hold on to the individual means and stddevs so we can compute the # combined stddev # --------------------------------------------------------------------- lnmu_list = [] lnsd_list = [] for i, gmpe in enumerate(self.GMPES): # ----------------------------------------------------------------- # Loop over GMPE list # ----------------------------------------------------------------- set_sites_depth_parameters(sites, gmpe) # ----------------------------------------------------------------- # Select the IMT # ----------------------------------------------------------------- gmpe_imts = [ imt.__name__ for imt in list(gmpe.DEFINED_FOR_INTENSITY_MEASURE_TYPES) ] if ( not isinstance(gmpe, MultiGMPE) and (imt.string == "PGV") and ("PGV" not in gmpe_imts) ): ab2020 = AbrahamsonBhasin2020(rup.mag) timt = SA(ab2020.getTref()) else: timt = imt # ----------------------------------------------------------------- # Grab GMPE_LIMITS in gmpe instance for later as the multigmpe # nests downward. # ----------------------------------------------------------------- if hasattr(self, "GMPE_LIMITS"): # Remember that GMPE_LIMITS is only present if it is getting # loaded from a config... we could change this eventually. gmpe.GMPE_LIMITS = self.GMPE_LIMITS # ----------------------------------------------------------------- # Apply GMPE_LIMITS if applicable # ----------------------------------------------------------------- if hasattr(gmpe, "GMPE_LIMITS"): gmpes_with_limits = list(gmpe.GMPE_LIMITS.keys()) gmpe_class_str = str(gmpe).replace("[", "").replace("]", "") if gmpe_class_str in gmpes_with_limits: limit_dict = gmpe.GMPE_LIMITS[gmpe_class_str] for k, v in limit_dict.items(): if k == "vs30": vs30min = float(v[0]) vs30max = float(v[1]) sites.vs30 = np.clip(sites.vs30, vs30min, vs30max) Sites._addDepthParameters(sites) # ----------------------------------------------------------------- # Evaluate # ----------------------------------------------------------------- if not isinstance(gmpe, MultiGMPE): ctx = stuff_context(sites, rup, dists) lmean, lsd = gmpe.get_mean_and_stddevs( ctx, ctx, ctx, timt, stddev_types ) else: lmean, lsd = gmpe.get_mean_and_stddevs( sites, rup, dists, timt, stddev_types ) if not isinstance(gmpe, MultiGMPE): # ------------------------------------------------------------- # We may need to inflate the standard deviations to account for # the point-source to finite rupture conversion. # ------------------------------------------------------------- lsd_new = self.__inflatePSSigma__( gmpe, lmean, lsd, sites, rup, dists, timt, stddev_types ) for sd in lsd: lsd_new.append(sd) lsd = lsd_new # ------------------------------------------------------------- # If IMT is PGV and PGV is not given by the GMPE, then # convert from the appropriate PSA # ------------------------------------------------------------- if (imt.string == "PGV") and ("PGV" not in gmpe_imts): lmean, lsd = ab2020.getPGVandSTDDEVS( lmean, lsd, stddev_types, ctx.rrup, ctx.vs30 ) # ------------------------------------------------------------- # ------------------------------------------------------------- if self.HAS_SITE[i] is False: lamps = self.__get_site_factors__( sites, rup, dists, timt, default=True ) lmean = lmean + lamps # ------------------------------------------------------------- # Convertions due to component definition # ------------------------------------------------------------- imc_in = gmpe.DEFINED_FOR_INTENSITY_MEASURE_COMPONENT imc_out = self.DEFINED_FOR_INTENSITY_MEASURE_COMPONENT if imc_in != imc_out: bk17 = BooreKishida2017(imc_in, imc_out) lmean = bk17.convertAmps(imt, lmean, dists.rrup, rup.mag) # # The extra sigma from the component conversion appears to # apply to the total sigma, so the question arises as to # how to apportion it between the intra- and inter-event # sigma. Here we assume it all enters as intra-event sigma. # for j, stddev_type in enumerate(stddev_types): if stddev_type == const.StdDev.INTER_EVENT: continue lsd[j] = bk17.convertSigmas(imt, lsd[j]) # End: if GMPE is not MultiGMPE # # At this point lsd will have 2 * len(stddev_types) entries, the # first group will have the point-source to finite rupture # inflation (if any), and the second set will not; in cases where # a finite rupture is used, the two sets will be identical # # ----------------------------------------------------------------- # Compute weighted mean and collect the elements to compute sd # ----------------------------------------------------------------- lnmu = lnmu + wts[i] * lmean lnmu_list.append(lmean) lnsd_list = lnsd_list + lsd # ----------------------------------------------------------------- # The mean is a weighted sum of random variables, so the stddev # is the weighted sum of of their covariances (effectively). See: # https://en.wikipedia.org/wiki/Variance#Weighted_sum_of_variables # for an explanation. Also see: # http://usgs.github.io/shakemap/manual4_0/tg_processing.html#ground-motion-prediction # for a discussion on the way this is implemented here. # -------------------------------------------------------------- # noqa nwts = len(wts) npwts = np.array(wts).reshape((1, -1)) nsites = len(lnmu) # Find the correlation coefficients among the gmpes; if there are # fewer than 10 points, just use an approximation (noting that the # correlation among GMPEs tends to be quite high). if nsites < 10: cc = np.full((nwts, nwts), 0.95) np.fill_diagonal(cc, 1.0) else: np.seterr(divide="ignore", invalid="ignore") cc = np.reshape(np.corrcoef(lnmu_list), (nwts, nwts)) np.seterr(divide="warn", invalid="warn") cc[np.isnan(cc)] = 1.0 # Multiply the correlation coefficients by the weights matrix # (this is cheaper than multiplying all of elements of each # stddev array by their weights since we have to multiply # everything by the correlation coefficient matrix anyway)) cc = ((npwts * npwts.T) * cc).reshape((nwts, nwts, 1)) nstds = len(stddev_types) lnsd_new = [] for i in range(nstds * 2): sdlist = [] for j in range(nwts): sdlist.append(lnsd_list[j * nstds * 2 + i].reshape((1, 1, -1))) sdstack = np.hstack(sdlist) wcov = (sdstack * np.transpose(sdstack, axes=(1, 0, 2))) * cc # This sums the weighted covariance as each point in the output lnsd_new.append(np.sqrt(wcov.sum((0, 1)))) return lnmu, lnsd_new @classmethod def __from_config__(cls, conf, filter_imt=None): """ Construct a MultiGMPE from a config file. Args: conf (dict): Dictionary of config options. filter_imt (IMT): An optional IMT to filter/reweight the GMPE list. Returns: MultiGMPE object. """ IMC = getattr(const.IMC, conf["interp"]["component"]) selected_gmpe = conf["modeling"]["gmpe"] logging.debug(f"selected_gmpe: {selected_gmpe}") logging.debug(f"IMC: {IMC}") # --------------------------------------------------------------------- # Allow for selected_gmpe to be found in either conf['gmpe_sets'] or # conf['gmpe_modules'], if it is a GMPE set, then all entries must be # either a GMPE or a GMPE set (cannot have a GMPE set that is a mix of # GMPEs and GMPE sets). # --------------------------------------------------------------------- if selected_gmpe in conf["gmpe_sets"].keys(): selected_gmpe_sets = conf["gmpe_sets"][selected_gmpe]["gmpes"] gmpe_set_weights = [ float(w) for w in conf["gmpe_sets"][selected_gmpe]["weights"] ] logging.debug(f"selected_gmpe_sets: {selected_gmpe_sets}") logging.debug(f"gmpe_set_weights: {gmpe_set_weights}") # ----------------------------------------------------------------- # If it is a GMPE set, does it contain GMPEs or GMPE sets? # ----------------------------------------------------------------- set_of_gmpes = all([s in conf["gmpe_modules"] for s in selected_gmpe_sets]) set_of_sets = all([s in conf["gmpe_sets"] for s in selected_gmpe_sets]) if set_of_sets is True: mgmpes = [] for s in selected_gmpe_sets: mgmpes.append( cls.__multigmpe_from_gmpe_set__(conf, s, filter_imt=filter_imt) ) out = MultiGMPE.__from_list__(mgmpes, gmpe_set_weights, imc=IMC) elif set_of_gmpes is True: out = cls.__multigmpe_from_gmpe_set__( conf, selected_gmpe, filter_imt=filter_imt ) else: raise TypeError( "%s must consist exclusively of keys in " "conf['gmpe_modules'] or conf['gmpe_sets']" % selected_gmpe ) elif selected_gmpe in conf["gmpe_modules"].keys(): modinfo = conf["gmpe_modules"][selected_gmpe] # mod = import_module(modinfo[1]) # tmpclass = getattr(mod, modinfo[0]) # out = MultiGMPE.__from_list__([tmpclass()], [1.0], imc=IMC) out = MultiGMPE.__from_list__( [get_gmpe_from_name(modinfo[0], conf)], [1.0], imc=IMC ) else: raise TypeError( "conf['modeling']['gmpe'] must be a key in " "conf['gmpe_modules'] or conf['gmpe_sets']" ) out.DESCRIPTION = selected_gmpe # --------------------------------------------------------------------- # Deal with GMPE limits # --------------------------------------------------------------------- gmpe_lims = conf["gmpe_limits"] # We need to replace the short name in the dictionary key with module # name here since the conf is not available within the MultiGMPE class. mods = conf["gmpe_modules"] mod_keys = mods.keys() new_gmpe_lims = {} for k, v in gmpe_lims.items(): if k in mod_keys: new_gmpe_lims[mods[k][0]] = v else: new_gmpe_lims[k] = v out.GMPE_LIMITS = new_gmpe_lims return out def __multigmpe_from_gmpe_set__(conf, set_name, filter_imt=None): """ Private method for constructing a MultiGMPE from a set_name. Args: conf (ConfigObj): A ShakeMap config object. filter_imt (IMT): An optional IMT to filter/reweight the GMPE list. set_name (str): Set name; must correspond to a key in conf['set_name']. Returns: MultiGMPE. """ IMC = getattr(const.IMC, conf["interp"]["component"]) selected_gmpes = conf["gmpe_sets"][set_name]["gmpes"] selected_gmpe_weights = [ float(w) for w in conf["gmpe_sets"][set_name]["weights"] ] # Check for large distance GMPEs if "weights_large_dist" in conf["gmpe_sets"][set_name].keys(): if not conf["gmpe_sets"][set_name]["weights_large_dist"]: selected_weights_large_dist = None else: selected_weights_large_dist = [ float(w) for w in conf["gmpe_sets"][set_name]["weights_large_dist"] ] else: selected_weights_large_dist = None if "dist_cutoff" in conf["gmpe_sets"][set_name].keys(): if np.isnan(conf["gmpe_sets"][set_name]["dist_cutoff"]): selected_dist_cutoff = None else: selected_dist_cutoff = float(conf["gmpe_sets"][set_name]["dist_cutoff"]) else: selected_dist_cutoff = None if "site_gmpes" in conf["gmpe_sets"][set_name].keys(): if not conf["gmpe_sets"][set_name]["site_gmpes"]: selected_site_gmpes = None else: selected_site_gmpes = conf["gmpe_sets"][set_name]["site_gmpes"] else: selected_site_gmpes = None if "weights_site_gmpes" in conf["gmpe_sets"][set_name].keys(): if not conf["gmpe_sets"][set_name]["weights_site_gmpes"]: selected_weights_site_gmpes = None else: selected_weights_site_gmpes = conf["gmpe_sets"][set_name][ "weights_site_gmpes" ] else: selected_weights_site_gmpes = None # --------------------------------------------------------------------- # Import GMPE modules and initialize classes into list # --------------------------------------------------------------------- gmpes = [] for g in selected_gmpes: # This is the old school way of importing the modules; I'm # leaving it in here temporarily just for documentation. # mod = import_module(conf['gmpe_modules'][g][1]) # tmpclass = getattr(mod, conf['gmpe_modules'][g][0]) # gmpes.append(tmpclass()) gmpe_name = conf["gmpe_modules"][g][0] gmpes.append(get_gmpe_from_name(gmpe_name, conf)) # --------------------------------------------------------------------- # Filter out GMPEs not applicable to this period # --------------------------------------------------------------------- if filter_imt is not None: filtered_gmpes, filtered_wts = filter_gmpe_list( gmpes, selected_gmpe_weights, filter_imt ) else: filtered_gmpes, filtered_wts = gmpes, selected_gmpe_weights # --------------------------------------------------------------------- # Import site GMPEs # --------------------------------------------------------------------- if selected_site_gmpes is not None: if isinstance(selected_site_gmpes, str): selected_site_gmpes = [selected_site_gmpes] site_gmpes = [] for g in selected_site_gmpes: # This is the old school way of importing the modules; I'm # leaving it in here temporarily just for documentation. # mod = import_module(conf['gmpe_modules'][g][1]) # tmpclass = getattr(mod, conf['gmpe_modules'][g][0]) # site_gmpes.append(tmpclass()) gmpe_name = conf["gmpe_modules"][g][0] site_gmpes.append(get_gmpe_from_name(gmpe_name, conf)) else: site_gmpes = None # --------------------------------------------------------------------- # Filter out site GMPEs not applicable to this period # --------------------------------------------------------------------- if site_gmpes is not None: if filter_imt is not None: filtered_site_gmpes, filtered_site_wts = filter_gmpe_list( site_gmpes, selected_weights_site_gmpes, filter_imt ) else: filtered_site_gmpes = copy.copy(site_gmpes) filtered_site_wts = copy.copy(selected_weights_site_gmpes) else: filtered_site_gmpes = None filtered_site_wts = None # --------------------------------------------------------------------- # Construct MultiGMPE # --------------------------------------------------------------------- logging.debug(f" filtered_gmpes: {filtered_gmpes}") logging.debug(f" filtered_wts: {filtered_wts}") mgmpe = MultiGMPE.__from_list__( filtered_gmpes, filtered_wts, default_gmpes_for_site=filtered_site_gmpes, default_gmpes_for_site_weights=filtered_site_wts, imc=IMC, ) # --------------------------------------------------------------------- # Append large-distance info if specified # --------------------------------------------------------------------- if selected_dist_cutoff is not None: if filter_imt is not None: filtered_gmpes_ld, filtered_wts_ld = filter_gmpe_list( gmpes, selected_weights_large_dist, filter_imt ) else: filtered_wts_ld = copy.copy(selected_weights_large_dist) mgmpe.CUTOFF_DISTANCE = copy.copy(selected_dist_cutoff) mgmpe.WEIGHTS_LARGE_DISTANCE = copy.copy(filtered_wts_ld) mgmpe.DESCRIPTION = set_name return mgmpe @classmethod def __from_list__( cls, gmpes, weights, imc=const.IMC.GREATER_OF_TWO_HORIZONTAL, default_gmpes_for_site=None, default_gmpes_for_site_weights=None, reference_vs30=760, ): """ Construct a MultiGMPE instance from lists of GMPEs and weights. Args: gmpes (list): List of OpenQuake `GMPE <http://docs.openquake.org/oq-hazardlib/master/gsim/index.html#built-in-gsims>`__ instances. weights (list): List of weights; must sum to 1.0. imc: Requested intensity measure component. Must be one listed `here <http://docs.openquake.org/oq-hazardlib/master/const.html?highlight=imc#openquake.hazardlib.const.IMC>`__. The amplitudes returned by the GMPEs will be converted to this IMT. Default is 'GREATER_OF_TWO_HORIZONTAL', which is used by ShakeMap. See discussion in `this section <http://usgs.github.io/shakemap/tg_choice_of_parameters.html#use-of-peak-values-rather-than-mean>`__ of the ShakeMap manual. default_gmpes_for_site (list): Optional list of OpenQuake GMPE instance to use as a site term for any of the GMPEs that do not have a site term. Notes: * We do not check for consistency in the reference rock defintion, so the user nees to be aware of this issue and holds responsibiilty for ensuring compatibility. * We check whether or not a GMPE has a site term by c hecking the REQUIRES_SITES_PARAMETERS slot for vs30. default_gmpes_for_site_weights: Weights for default_gmpes_for_site. Must sum to one and be same length as default_gmpes_for_site. If None, then weights are set to be equal. reference_vs30: Reference rock Vs30 in m/s. We do not check that this matches the reference rock in the GMPEs so this is the responsibility of the user. """ # noqa # --------------------------------------------------------------------- # Check that GMPE weights sum to 1.0: # --------------------------------------------------------------------- if np.abs(np.sum(weights) - 1.0) > 1e-7: raise Exception("Weights must sum to one.") # --------------------------------------------------------------------- # Check that length of GMPE weights equals length of gmpe list # --------------------------------------------------------------------- if len(weights) != len(gmpes): raise Exception("Length of weights must match length of GMPE list.") # --------------------------------------------------------------------- # Check that gmpes is a list of OQ GMPE instances # --------------------------------------------------------------------- for g in gmpes: if not isinstance(g, GMPE): raise Exception(f'"{g}" is a {type(g)} not a GMPE instance.') self = cls() self.GMPES = gmpes self.WEIGHTS = weights # --------------------------------------------------------------------- # Combine the intensity measure types. This is problematic: # - Logically, we should only include the intersection of the sets # of imts for the different GMPEs. # - In practice, this is not feasible because most GMPEs in CEUS and # subduction zones do not have PGV. # - So instead we will use the union of the imts and then convert # to get the missing imts later in get_mean_and_stddevs. # --------------------------------------------------------------------- imts = [set(g.DEFINED_FOR_INTENSITY_MEASURE_TYPES) for g in gmpes] self.DEFINED_FOR_INTENSITY_MEASURE_TYPES = set.union(*imts) # --------------------------------------------------------------------- # For VirtualIPE class, we also want to know if ALL of the GMPEs are # defined for PGV, in which case we will convert from PGV to MI, # otherwise use PGA or Sa. # --------------------------------------------------------------------- haspgv = [PGV in set(g.DEFINED_FOR_INTENSITY_MEASURE_TYPES) for g in gmpes] self.ALL_GMPES_HAVE_PGV = all(haspgv) # --------------------------------------------------------------------- # Store intensity measure types for conversion in get_mean_and_stddevs. # --------------------------------------------------------------------- self.IMCs = [g.DEFINED_FOR_INTENSITY_MEASURE_COMPONENT for g in gmpes] # --------------------------------------------------------------------- # Store the component # --------------------------------------------------------------------- self.DEFINED_FOR_INTENSITY_MEASURE_COMPONENT = imc # --------------------------------------------------------------------- # Intersection of GMPE standard deviation types # --------------------------------------------------------------------- stdlist = [set(g.DEFINED_FOR_STANDARD_DEVIATION_TYPES) for g in gmpes] self.DEFINED_FOR_STANDARD_DEVIATION_TYPES = set.intersection(*stdlist) # --------------------------------------------------------------------- # Need union of site parameters, but it is complicated by the # different depth parameter flavors. # --------------------------------------------------------------------- sitepars = [set(g.REQUIRES_SITES_PARAMETERS) for g in gmpes] self.REQUIRES_SITES_PARAMETERS = set.union(*sitepars) # --------------------------------------------------------------------- # Construct a list of whether or not each GMPE has a site term # --------------------------------------------------------------------- self.HAS_SITE = ["vs30" in g.REQUIRES_SITES_PARAMETERS for g in gmpes] # --------------------------------------------------------------------- # Checks and sort out defaults # --------------------------------------------------------------------- # things to check if default_gmpes_for_site is provided if default_gmpes_for_site is not None: # check that default_gmpe_for_site are OQ GMPEs or None for g in default_gmpes_for_site: if not isinstance(g, GMPE): raise Exception(f'"{g}" is not a GMPE instance.') # apply default weights if necessary if default_gmpes_for_site_weights is None: n = len(default_gmpes_for_site) default_gmpes_for_site_weights = [1 / n] * n # Things to check if one or more GMPE does not have a site term if not all(self.HAS_SITE): # Raise an exception if no default site is provided if default_gmpes_for_site is None: raise Exception( "Must provide default_gmpes_for_site if one or" " more GMPE does not have site term." ) # If weights are unspecified, use equal weight if default_gmpes_for_site_weights is None: default_gmpes_for_site_weights = [ 1 / len(default_gmpes_for_site) ] * len(default_gmpes_for_site) # check that length of default_gmpe_for_site matches length of # default_gmpe_for_site_weights if len(default_gmpes_for_site_weights) != len(default_gmpes_for_site): raise Exception( "Length of default_gmpes_for_site_weights " "must match length of default_gmpes_for_site " "list." ) # check weights sum to one if needed if not all(self.HAS_SITE): if np.sum(default_gmpes_for_site_weights) != 1.0: raise Exception( "default_gmpes_for_site_weights must sum" " to one." ) # Note: if ALL of the GMPEs do not have a site term (requiring Vs30), # then REQUIRES_SITES_PARAMETERS for the MultiGMPE will not # include Vs30 even though it will be needed to compute the # default site term. So if the site checks have passed to this # point, we should add Vs30 to the set of required site pars: self.REQUIRES_SITES_PARAMETERS = set.union( set(self.REQUIRES_SITES_PARAMETERS), set(["vs30"]) ) self.DEFAULT_GMPES_FOR_SITE = default_gmpes_for_site self.DEFAULT_GMPES_FOR_SITE_WEIGHTS = default_gmpes_for_site_weights self.REFERENCE_VS30 = reference_vs30 # --------------------------------------------------------------------- # Union of rupture parameters # --------------------------------------------------------------------- ruppars = [set(g.REQUIRES_RUPTURE_PARAMETERS) for g in gmpes] self.REQUIRES_RUPTURE_PARAMETERS = set.union(*ruppars) # --------------------------------------------------------------------- # Union of distance parameters # --------------------------------------------------------------------- distpars = [set(g.REQUIRES_DISTANCES) for g in gmpes] self.REQUIRES_DISTANCES = set.union(*distpars) return self def __get_site_factors__(self, sites, rup, dists, imt, default=False): """ Method for computing site amplification factors from the defalut GMPE to be applied to GMPEs which do not have a site term. **NOTE** Amps are calculated in natural log units and so the ln(amp) is returned. Args: sites (SitesContext): Instance of SitesContext. rup (RuptureContext): Instance of RuptureContext. dists (DistancesContext): Instance of DistancesContext. imt: An instance openquake.hazardlib.imt. default (bool): Boolean of whether or not to return the amplificaiton factors for the gmpes or default_gmpes_for_site. This argument is primarily only intended to be used internally for when we just need to access the default amplifications to apply to those GMPEs that do not have site terms. Returns: Site amplifications in natural log units. """ # --------------------------------------------------------------------- # Make reference sites context # --------------------------------------------------------------------- ref_sites = copy.deepcopy(sites) ref_sites.vs30 = np.full_like(sites.vs30, self.REFERENCE_VS30) # TODO: Should we reset the Sites depth parameters here? Probably. # --------------------------------------------------------------------- # If default True, construct new MultiGMPE with default GMPE/weights # --------------------------------------------------------------------- if default is True: tmp = MultiGMPE.__from_list__( self.DEFAULT_GMPES_FOR_SITE, self.DEFAULT_GMPES_FOR_SITE_WEIGHTS, self.DEFINED_FOR_INTENSITY_MEASURE_COMPONENT, ) # --------------------------------------------------------------------- # If default False, just use self # --------------------------------------------------------------------- else: tmp = self lmean, lsd = tmp.get_mean_and_stddevs( sites, rup, dists, imt, list(tmp.DEFINED_FOR_STANDARD_DEVIATION_TYPES) ) lmean_ref, lsd = tmp.get_mean_and_stddevs( ref_sites, rup, dists, imt, list(tmp.DEFINED_FOR_STANDARD_DEVIATION_TYPES) ) lamps = lmean - lmean_ref return lamps def __describe__(self): """ Construct a dictionary that describes the MultiGMPE. Note: For simplicity, this method ignores issues related to GMPEs used for the site term and changes in the GMPE with distance. For this level of detail, please see the config files. Returns: A dictionary representation of the MultiGMPE. """ gmpe_dict = {"gmpes": [], "weights": [], "name": self.DESCRIPTION} for i in range(len(self.GMPES)): gmpe_dict["weights"].append(self.WEIGHTS[i]) if isinstance(self.GMPES[i], MultiGMPE): gmpe_dict["gmpes"].append(self.GMPES[i].__describe__()) else: gmpe_dict["gmpes"].append(str(self.GMPES[i])) return gmpe_dict def __inflatePSSigma__( self, gmpe, lmean, lsd, sites, rup, dists, imt, stddev_types ): """ If the point-source to finite-fault factors are used, we need to inflate the intra-event and total standard deviations. We do this by standard propagation of error techniques: taking the (numerical) derivative of the GMPE (as a function of distance) squared times the additional variance from the conversion, added to the variance of the GMPE (then taking the square root). We do this separately for each of Rrup and Rjb and sum the results. If Rrup and Rjb are calculated from a finite rupture model, their variance arrays will be "None" and lsd will remain unchanged. Otherwise the error inflation will be applied. Normally one or the other of Rrup/Rjb will not be used and so that term will be zero; in some cases both may be used and both may result in non-zero derivatives. Args: gmpe: The GMPE to use for the calculations. Must be a base GMPE and not a GMPE set, otherwise no action is taken. lmean: The mean values returned by the "normal" evaluation of the GMPE. lsd: The standard deviations returned by the "normal" evaluation of the GMPE. sites: The sites context required by the GMPE. rup: The rupture context required by the GMPE. dists: The distance context required by the GMPE. imt: The intensity measure type being evaluated. stddev_types: The list of stddev types found in lsd. Returns: list: A list of arrays of inflated standard deviations corresponding to the elements of lsd. """ new_sd = [] delta_distance = 0.01 delta_var = [0, 0] for i, dtype in enumerate(("rrup", "rjb")): # Skip dtype if the gmpe does not require it if dtype not in gmpe.REQUIRES_DISTANCES: continue # Skip dtype if it has not been subject to a point-source to # finite rupture conversion dvar = getattr(dists, dtype + "_var", None) if dvar is None: continue # Add a small amound to the rupture distance (rrup or rjb) # and re-evaluate the GMPE rup_dist = getattr(dists, dtype) rup_dist += delta_distance ctx = stuff_context(sites, rup, dists) tmean, tsd = gmpe.get_mean_and_stddevs(ctx, ctx, ctx, imt, stddev_types) # Find the derivative w.r.t. the rupture distance dm_dr = (lmean - tmean) / delta_distance # The additional variance is (dm/dr)^2 * dvar delta_var[i] = dm_dr ** 2 * dvar # Put the rupture distance back to what it was rup_dist -= delta_distance for i, stdtype in enumerate(stddev_types): if stdtype == const.StdDev.INTER_EVENT: new_sd.append(lsd[i].copy()) continue new_sd.append(np.sqrt(lsd[i] ** 2 + delta_var[0] + delta_var[1])) return new_sd def filter_gmpe_list(gmpes, wts, imt): """ Method to remove GMPEs from the GMPE list that are not applicable to a specific IMT. Rescales the weights to sum to one. Args: gmpes (list): List of GMPE instances. wts (list): List of floats indicating the weight of the GMPEs. imt (IMT): OQ IMT to filter GMPE list for. Returns: tuple: List of GMPE instances and list of weights. """ if wts is None: n = len(gmpes) wts = [1 / n] * n per_max = [np.max(get_gmpe_sa_periods(g)) for g in gmpes] per_min = [np.min(get_gmpe_sa_periods(g)) for g in gmpes] if imt == PGA(): sgmpe = [g for g in gmpes if PGA in g.DEFINED_FOR_INTENSITY_MEASURE_TYPES] swts = [ w for g, w in zip(gmpes, wts) if PGA in g.DEFINED_FOR_INTENSITY_MEASURE_TYPES ] elif imt == PGV(): sgmpe = [] swts = [] for i in range(len(gmpes)): if (PGV in gmpes[i].DEFINED_FOR_INTENSITY_MEASURE_TYPES) or ( per_max[i] >= 1.0 and per_min[i] <= 1.0 ): sgmpe.append(gmpes[i]) swts.append(wts[i]) else: per = imt.period sgmpe = [] swts = [] for i in range(len(gmpes)): if per_max[i] >= per and per_min[i] <= per: sgmpe.append(gmpes[i]) swts.append(wts[i]) if len(sgmpe) == 0: raise KeyError(f"No applicable GMPEs from GMPE list for {str(imt)}") # Scale weights to sum to one swts = np.array(swts) swts = swts / np.sum(swts) return sgmpe, swts def get_gmpe_sa_periods(gmpe): """ Method to extract the SA periods defined by a GMPE. Args: gmpe (GMPE): A GMPE instance. Retunrs: list: List of periods. """ if gmpe == "[NGAEast]": per = gmpe.per_array else: ctab = get_gmpe_coef_table(gmpe).sa_coeffs ilist = list(ctab.keys()) per = [i.period for i in ilist] return per def get_gmpe_coef_table(gmpe): """ Method for finding the (or "a") GMPE table. Notes: * The reason for the complexity here is that there can be multiple coefficient tables, and some of them may not have the sa_coeffs attribute, which is the main reason for getting the table. * We are also assuming that if there are more than one coefficient table, the range of periods will be the same across all of the tables. Args: gmpe (GMPE): An OQ GMPE instance. Returns: The associated coefficient table. """ stuff = gmpe.__dir__() coef_list = [s for s in stuff if "COEFFS" in s] for coef_sel in coef_list: cobj = getattr(gmpe, coef_sel) if "sa_coeffs" in cobj.__dir__(): return cobj raise Exception(f"GMPE {gmpe} does not contain sa_coeffs attribute.")
# Author: Mathieu Blondel, 2019 # License: BSD import numpy as np from scipy.optimize import fmin_l_bfgs_b from sklearn.base import BaseEstimator from sklearn.preprocessing import LabelBinarizer from sklearn.preprocessing import LabelEncoder from sklearn.utils.extmath import safe_sparse_dot from sklearn.preprocessing import add_dummy_feature from sklearn.metrics.pairwise import pairwise_kernels from polytopes import UnitCube from polytopes import ProbabilitySimplex from polytopes import Knapsack from polytopes import CartesianProduct from polytopes import Birkhoff from polytopes import Permutahedron from polytopes import OrderSimplex class Reals(object): def Euclidean_project(self, theta): # Identity function. return theta def MAP(self, theta): # For ordinal regression only. return np.round(theta).ravel() def Shannon_negentropy(u): mask = u > 0 return np.sum(u[mask] * np.log(u[mask])) class Estimator(BaseEstimator): def __init__(self, projection_type="Euclidean", projection_set="unit-cube", map_set=None, min_labels=0, max_labels=None, alpha=1.0, fit_intercept=True, kernel=None, degree=3, coef0=1, gamma=1, max_iter=500, tol=1e-5, random_state=None, verbose=0): self.projection_type = projection_type self.projection_set = projection_set self.map_set = map_set self.min_labels = min_labels self.max_labels = max_labels self.alpha = alpha self.fit_intercept = fit_intercept self.kernel = kernel self.degree = degree self.coef0 = coef0 self.gamma = gamma self.max_iter = max_iter self.tol = tol self.random_state = random_state self.verbose = verbose def _get_set(self, name): d = { "reals": Reals(), "unit-cube": UnitCube(), "simplex": ProbabilitySimplex(), "Cartesian-cube": CartesianProduct(UnitCube()), "Cartesian-simplex": CartesianProduct(ProbabilitySimplex()), "knapsack": Knapsack(min_labels=self.min_labels, max_labels=self.max_labels), "Birkhoff": Birkhoff(), "permutahedron": Permutahedron(), "order-simplex": OrderSimplex(), } if not name in d: raise ValueError("Invalid polytope / set name.") return d[name] def _get_projection_set(self): return self._get_set(self.projection_set) def _get_map_set(self): if self.map_set is None: map_set = self.projection_set else: map_set = self.map_set return self._get_set(map_set) def _solve_lbfgs(self, X, Y): n_samples, n_features = X.shape # If Y.shape = n_samples x n_classes, then d = n_classes # If Y.shape = n_samples x n_classes x n_classes, then d = n_classes^2 d = np.prod(Y.shape[1:]) polytope = self._get_projection_set() Y_flat = Y.reshape(n_samples, -1) def _func(coef): coef = coef.reshape(d, n_features) # n_samples x d theta = safe_sparse_dot(X, coef.T) if self.projection_type == "Euclidean": u = polytope.Euclidean_project(theta) loss = np.sum(theta * u) loss -= 0.5 * np.sum(u ** 2) loss += 0.5 * np.sum(Y ** 2) elif self.projection_type == "KL": u = polytope.KL_project(theta) loss = np.sum(theta * u) loss -= Shannon_negentropy(u) loss += Shannon_negentropy(Y) else: raise ValueError("Invalid projection type.") loss -= np.sum(Y_flat * theta) loss /= n_samples # d x n_features grad = safe_sparse_dot(u.T, X) grad -= safe_sparse_dot(Y_flat.T, X) grad /= n_samples # Regularization term loss += 0.5 * self.alpha * np.sum(coef ** 2) grad += self.alpha * coef return loss, grad.ravel() coef0 = np.zeros(d * n_features, dtype=np.float64) coef, funcval, infodic = fmin_l_bfgs_b(_func, coef0, maxiter=self.max_iter) if infodic["warnflag"] != 0: print("NOT CONVERGED: ", infodic["task"]) return coef.reshape(d, n_features) def _kernel(self, X): return pairwise_kernels(X, self.X_tr_, metric=self.kernel, degree=self.degree, coef0=self.coef0, gamma=self.gamma, filter_params=True) def fit(self, X, Y): if self.kernel is not None: self.X_tr_ = X.copy() X = self._kernel(X) if self.fit_intercept: X = add_dummy_feature(X) if hasattr(Y, "toarray"): raise ValueError("scipy sparse matrices not supported for Y") Y = np.array(Y) self.coef_ = self._solve_lbfgs(X, Y) return self def decision_function(self, X): if self.kernel is not None: X = self._kernel(X) if self.fit_intercept: X = add_dummy_feature(X) return safe_sparse_dot(X, self.coef_.T) def predict(self, X, V=None, b=None): """ V and/or b can be passed to do calibrated decoding (see paper). """ df = self.decision_function(X) polytope = self._get_projection_set() if self.projection_type == "Euclidean": df = polytope.Euclidean_project(df) elif self.projection_type == "KL": df = polytope.KL_project(df) else: raise ValueError("Projection type not implemented") if V is not None: if hasattr(V, "mvec"): df = -V.mvec(df) else: df = df.dot(-V) if b is not None: df -= b return self._get_map_set().MAP(df) class RegressionEstimator(Estimator): def __init__(self, *args, **kw): super(RegressionEstimator, self).__init__(*args, **kw) self.projection_set = "reals" def fit(self, X, y): Y = y.reshape(-1, 1) return super(RegressionEstimator, self).fit(X, Y) def predict(self, X): ret = super(RegressionEstimator, self).predict(X) return ret.ravel() class MulticlassEstimator(Estimator): def __init__(self, *args, **kw): super(MulticlassEstimator, self).__init__(*args, **kw) self.projection_set = "simplex" def fit(self, X, y): self.label_encoder_ = LabelEncoder().fit(y) y = self.label_encoder_.transform(y) lb = LabelBinarizer(neg_label=0) Y = lb.fit_transform(y) return super(MulticlassEstimator, self).fit(X, Y) def predict(self, X): ret = super(MulticlassEstimator, self).predict(X) return self.label_encoder_.inverse_transform(ret)
################################################################################ # (c) 2006, The Honeynet Project # Author: Jed Haile jed.haile@thelogangroup.biz # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA # ################################################################################ # $Id$ class Base(object): """ This should be a base class that provides commonly used functions. I decided to add this late in the game. There are replicated functions in the below classes that should be put in here. """ def __init__(self): self.p = None self.file = None self.filter = None self.out = lambda x: str(x) self.listeners = [] #self.out = None def setOutput(self, obj): """ obj needs to be callable, taking 1 arg #TODO: check that obj isinstance of Output?? """ self.out = obj def doOutput(self, m): self.out(m) def setFilter(self, filter): self.filter = filter self.p.setfilter(filter) class Output(object): """ This class will provide a generic output interface so we can output in text, html, whatever. """ def write(): pass
from setuptools import setup, find_packages setup(name='busypenguin', version='0.0.0', description='Publish slack notifications for tasks using context managers', url='https://github.com/kyrias/busypenguin', author='Johannes Löthberg', author_email='johannes@kyriasis.com', license='ISC', packages=find_packages(), install_requires=['slackclient'])
import argparse import logging import os import sys from src.utils import construct_new_filename logging.basicConfig( format="%(asctime)s - %(name)s - %(levelname)s - %(message)s", level=logging.INFO, ) def main(): a_p = argparse.ArgumentParser( "Rename all 'MacOS screenshot files' like %Y-%m-%d-%H-%M-%S." ) a_p.add_argument( "-d", "--directory", required=True, ) args = a_p.parse_args() directory = args.directory if not os.path.exists(directory): logging.info( "there doesn't exist a directory at '%s'; aborting!", directory, ) sys.exit(1) if not os.path.isdir(directory): logging.info( "'%s' exists but is not a directory; aborting!", directory, ) sys.exit(2) logging.info( "beginning to loop through the contents of the following folder %s", directory, ) for dir_entry in os.listdir(directory): source = os.path.join(directory, dir_entry) if not os.path.isfile(source): logging.info("'%s' is not a file; skipping it", dir_entry) continue else: new_filename = construct_new_filename(dir_entry) target = os.path.join(directory, new_filename) logging.info("'%s' is a file; renaming it to '%s'", dir_entry, new_filename) os.rename(source, target) if __name__ == "__main__": main()