content
stringlengths
5
1.05M
#!/usr/bin/env python """ Requirements: * Python >= 3.6.2 * Pandas * NumPy Copyright (c) 2020 Georgios Fotakis <georgios.fotakis@i-med.ac.at> MIT License <http://opensource.org/licenses/MIT> """ RELEASE = False __version_info__ = ('0', '3', ) __version__ = '.'.join(__version_info__) __version__ += '-dev' if not RELEASE else '' import argparse # import math import os,sys import pandas as pd # import numpy as np def append_score(pvacseq_tsv, immun_tsv, output): pvacseq_reader = pd.read_csv(pvacseq_tsv, sep = '\t') pvacseq_df = pd.DataFrame(pvacseq_reader) print(pvacseq_df) imm_reader = pd.read_csv(immun_tsv, sep = '\t') imm_df = pd.DataFrame(imm_reader) # Drop 1st column in order for the merge to function properly imm_df.drop(columns=['Sample_ID'], inplace = True) # Rename columns in order for the merge to function properly imm_df.rename(columns={"mut_peptide":"MT Epitope Seq", "Reference":"WT Epitope Seq", "peptide_variant_position":"Mutation Position", "TCGA_predict":"Immunogenicity_score"}, inplace=True) # Inner join dataFrames merged_df = pd.merge(pvacseq_df, imm_df) merged_df.to_csv(output, sep="\t", index=False) if __name__ == '__main__': usage = __doc__.split('\n\n\n') parser = argparse.ArgumentParser(description='Calculate CSiN') parser.add_argument('--pvacseq_tsv', required=False, help='Input filtered MHC I pVACseq TSV file') parser.add_argument('--score_tsv', required=False, help='Input immunogenicity scores TSV files') parser.add_argument('--output', required=True, help='Path to output file') args = parser.parse_args() # Parse arguments pvacseq_tsv = args.pvacseq_tsv immun_tsv = args.score_tsv output = args.output append_score(pvacseq_tsv, immun_tsv, output)
# Python import re # Django from django.core.validators import RegexValidator from django.db import models from django.utils.timezone import now from django.utils.translation import ugettext_lazy as _ # Django OAuth Toolkit from oauth2_provider.models import AbstractApplication, AbstractAccessToken DATA_URI_RE = re.compile(r'.*') # FIXME __all__ = ['OAuth2AccessToken', 'OAuth2Application'] class OAuth2Application(AbstractApplication): class Meta: app_label = 'main' verbose_name = _('application') description = models.TextField( default='', blank=True, ) logo_data = models.TextField( default='', editable=False, validators=[RegexValidator(DATA_URI_RE)], ) class OAuth2AccessToken(AbstractAccessToken): class Meta: app_label = 'main' verbose_name = _('access token') description = models.CharField( max_length=200, default='', blank=True, ) last_used = models.DateTimeField( null=True, default=None, editable=False, ) def is_valid(self, scopes=None): valid = super(OAuth2AccessToken, self).is_valid(scopes) if valid: self.last_used = now() self.save(update_fields=['last_used']) return valid
import configparser from os import path class Config: def __init__(self): self.config = None self.section = None def load(self, cfg_file, section): if not path.exists(cfg_file): raise FileNotFoundError() self.config = configparser.ConfigParser() self.config.read(cfg_file) self.section = section def get(self, name): return self.config[self.section][name]
import threading import __init__ import paho.mqtt.client as client_lib import time from sistem_climatizare.senzori_centralizare.basic_sensor import BasicSensor class Display(threading.Thread): @staticmethod def fnc_activa(client, user_data, message): print("Temperatura primita: ", str(message.payload.decode("utf-8"))) def __init__(self, *args, **kwargs): super(Display, self).__init__(*args, **kwargs) broker = "localhost" self.subscriber = client_lib.Client("Display") self.subscriber.connect(broker) self._stop = threading.Event() def stop(self): self._stop.set() def stopped(self): return self._stop.is_set() def display_loop(self): while not self.stopped(): try: self.subscriber.loop_start() self.subscriber.subscribe(BasicSensor.__name__ + "/Temperature") self.subscriber.on_message = self.fnc_activa self.subscriber.loop_stop() time.sleep(1) except Exception as e: print(e) except KeyboardInterrupt: break print("Good Bye!") if __name__ == "__main__": display = Display() display.display_loop()
from tkinter import * root = Tk() class Cell (Button): Dead = 0 Live = 1 def __init__ (self,parent): Button.__init__(self,parent, relief = "raised" , width = 2 , borderwidth = 1 , command = self.onpress) self.displayState(Cell.Dead) def onpress (self): if self.state == Cell.Live: self.displayState(Cell.Dead) elif self.state == Cell.Dead: self.displayState(Cell.Live) def setNextState (self , Neighbours): if self.state == Cell.Live and (Neighbours < 2 or Neighbours > 3): self.nextState = Cell.Dead elif self.state == Cell.Dead and Neighbours == 3: self.nextState = Cell.Live elif self.state == Cell.Dead and Neighbours != 3: self.nextState = self.state def stepToNextState(self): self.displayState(self.nextState) def displayState (self , newstate): self.state = newstate if self.state == Cell.Live: self["bg"] = "black" if self.state == Cell.Dead: self["bg"] = "white" class Grid: def __init__(self,parent,sizex,sizey): self.sizex = sizex self.sizey = sizey self.cells = [] for a in range (0,self.sizex): rowcells = [] for b in range (0, self.sizey): c = Cell(parent) c.grid(row=b , column=a) rowcells.append(c) self.cells.append(rowcells) def step (self): cells = self.cells for x in range (0,self.sizex): if x==0: x_down = self.sizex-1 else: x_down = x-1 if x==self.sizex-1: x_up = 0 else: x_up = x+1 for y in range(0,self.sizey): if y==0: y_down = self.sizey-1 else: Y_down = y-1 if y==self.sizey-1: y_up = 0 else: y_up = y+1 sum = cells[x_down][y].state + cells[x_up][y].state + cells[x][y_down].state + cells[x][y_up].state + cells[x_down][y_down].state +cells[x_up][y_up].state + cells[x_down][y_up].state + cells[x_up][y_down].state cells[x][y].setNextState(sum) for row in cells: for cell in row: cell.stepToNextState() def clear(self): for row in self.cells: for cell in row: cell.displayState(Cell.Dead) if __name__ == "__main__": frame = Frame(root) frame.pack() grid = Grid(frame,25,25) bottomFrame = Frame(root) bottomFrame.pack (side = BOTTOM) buttonStep = Button(bottomFrame , text="Step" , command=grid.step) buttonStep.pack(side = LEFT) buttonClear = Button(bottomFrame, text = "Clear", command=grid.clear) buttonClear.pack(side=LEFT , after=buttonStep) root.mainloop()
import json import unittest from localstack.utils.aws import aws_stack from localstack.utils.common import short_uid TEST_QUEUE_NAME = 'TestQueue' TEST_POLICY = """ { "Version":"2012-10-17", "Statement":[ { "Effect": "Allow", "Principal": { "AWS": "*" }, "Action": "sqs:SendMessage", "Resource": "'$sqs_queue_arn'", "Condition":{ "ArnEquals":{ "aws:SourceArn":"'$sns_topic_arn'" } } } ] } """ class SQSTest(unittest.TestCase): @classmethod def setUpClass(cls): cls.client = aws_stack.connect_to_service('sqs') def test_list_queue_tags(self): # Since this API call is not implemented in ElasticMQ, we're mocking it # and letting it return an empty response queue_info = self.client.create_queue(QueueName=TEST_QUEUE_NAME) queue_url = queue_info['QueueUrl'] res = self.client.list_queue_tags(QueueUrl=queue_url) # Apparently, if there are no tags, then `Tags` should NOT appear in the response. assert 'Tags' not in res # clean up self.client.delete_queue(QueueUrl=queue_url) def test_publish_get_delete_message(self): queue_name = 'queue-%s' % short_uid() queue_info = self.client.create_queue(QueueName=queue_name) queue_url = queue_info['QueueUrl'] self.assertIn(queue_name, queue_url) # publish/receive message self.client.send_message(QueueUrl=queue_url, MessageBody='msg123') messages = self.client.receive_message(QueueUrl=queue_url)['Messages'] self.assertEquals(len(messages), 1) # delete/receive message self.client.delete_message(QueueUrl=queue_url, ReceiptHandle=messages[0]['ReceiptHandle']) response = self.client.receive_message(QueueUrl=queue_url) self.assertFalse(response.get('Messages')) # clean up self.client.delete_queue(QueueUrl=queue_url) def test_create_fifo_queue(self): fifo_queue = 'my-queue.fifo' queue_info = self.client.create_queue(QueueName=fifo_queue, Attributes={'FifoQueue': 'true'}) queue_url = queue_info['QueueUrl'] # it should preserve .fifo in the queue name self.assertIn(fifo_queue, queue_url) # clean up self.client.delete_queue(QueueUrl=queue_url) def test_set_queue_policy(self): queue_name = 'queue-%s' % short_uid() queue_info = self.client.create_queue(QueueName=queue_name) queue_url = queue_info['QueueUrl'] attributes = { 'Policy': TEST_POLICY } self.client.set_queue_attributes(QueueUrl=queue_url, Attributes=attributes) attrs = self.client.get_queue_attributes(QueueUrl=queue_url, AttributeNames=['All'])['Attributes'] self.assertIn('sqs:SendMessage', attrs['Policy']) attrs = self.client.get_queue_attributes(QueueUrl=queue_url, AttributeNames=['Policy'])['Attributes'] self.assertIn('sqs:SendMessage', attrs['Policy']) # clean up self.client.delete_queue(QueueUrl=queue_url) def test_dead_letter_queue(self): queue_name = 'queue-%s' % short_uid() dlq_name = 'queue-%s' % short_uid() dlq_info = self.client.create_queue(QueueName=dlq_name) dlq_arn = aws_stack.sqs_queue_arn(dlq_name) attributes = {'RedrivePolicy': json.dumps({'deadLetterTargetArn': dlq_arn, 'maxReceiveCount': 100})} queue_info = self.client.create_queue(QueueName=queue_name, Attributes=attributes) queue_url = queue_info['QueueUrl'] # clean up self.client.delete_queue(QueueUrl=queue_url) self.client.delete_queue(QueueUrl=dlq_info['QueueUrl'])
def relevant_paths(root_dir, only_title, only_part): """We may want to filter the paths we search in to those relevant to a particular cfr title/part. Most index entries encode this as their first two path components""" prefix_path = root_dir.path for sub_entry in root_dir.sub_entries(): suffix_path = sub_entry.path[len(prefix_path):] if only_title and suffix_path[0] != str(only_title): continue if only_part and suffix_path[1] != str(only_part): continue yield sub_entry
import math import torch import torch.nn as nn import torch.nn.functional as F from models.flowplusplus.act_norm import ActNorm from models.flowplusplus.act_norm import CondNorm from models.flowplusplus.inv_conv import InvConv from models.flowplusplus.nn import GatedConv from models.flowplusplus.coupling import Coupling from util import channelwise, checkerboard, Flip, safe_log, squeeze, unsqueeze class FlowPlusPlus(nn.Module): """Flow++ Model Based on the paper: "Flow++: Improving Flow-Based Generative Models with Variational Dequantization and Architecture Design" by Jonathan Ho, Xi Chen, Aravind Srinivas, Yan Duan, Pieter Abbeel (https://openreview.net/forum?id=Hyg74h05tX). Args: scales (tuple or list): Number of each type of coupling layer in each scale. Each scale is a 2-tuple of the form (num_channelwise, num_checkerboard). in_channels (int): Number of channels in the input. mid_channels (int): Number of channels in the intermediate layers. num_blocks (int): Number of residual blocks in the s and t network of `Coupling` layers. num_dequant_blocks (int): Number of blocks in the dequantization flows. """ def __init__(self, scales=((0, 4), (2, 3)), in_shape=(3, 32, 32), mid_channels=96, num_blocks=10, num_dequant_blocks=2, num_components=32, use_attn=True, drop_prob=0.2, condition_embd_size=0): super(FlowPlusPlus, self).__init__() # Register bounds to pre-process images, not learnable self.register_buffer('bounds', torch.tensor([0.9], dtype=torch.float32)) if num_dequant_blocks > 0: self.dequant_flows = _Dequantization(in_shape=in_shape, mid_channels=mid_channels, num_blocks=num_dequant_blocks, use_attn=use_attn, drop_prob=drop_prob) else: self.dequant_flows = None self.flows = _FlowStep(scales=scales, in_shape=in_shape, mid_channels=mid_channels, num_blocks=num_blocks, num_components=num_components, use_attn=use_attn, drop_prob=drop_prob, condition_embd_size=condition_embd_size) def forward(self, x, condition_embd, reverse=False): sldj = torch.zeros(x.size(0), device=x.device) if not reverse: x, sldj = self.dequantize(x, sldj) x, sldj = self.to_logits(x, sldj) x, sldj = self.flows(x, sldj, reverse, condition_embd=condition_embd) return x, sldj def sample(self, condition_embd): batch_size = condition_embd.size()[0] with torch.no_grad(): z = torch.randn((batch_size, 3, 32, 32), dtype=torch.float32, device=condition_embd.device) x, _ = self.forward(z, reverse=True, condition_embd=condition_embd) x = torch.sigmoid(x) return x def dequantize(self, x, sldj): if self.dequant_flows is not None: x, sldj = self.dequant_flows(x, sldj) else: x = (x * 255. + torch.rand_like(x)) / 256. return x, sldj def to_logits(self, x, sldj): """Convert the input image `x` to logits. Args: x (torch.Tensor): Input image. sldj (torch.Tensor): Sum log-determinant of Jacobian. Returns: y (torch.Tensor): Dequantized logits of `x`. See Also: - Dequantization: https://arxiv.org/abs/1511.01844, Section 3.1 - Modeling logits: https://arxiv.org/abs/1605.08803, Section 4.1 """ y = (2 * x - 1) * self.bounds y = (y + 1) / 2 y = y.log() - (1. - y).log() # Save log-determinant of Jacobian of initial transform ldj = F.softplus(y) + F.softplus(-y) \ - F.softplus((1. - self.bounds).log() - self.bounds.log()) sldj = sldj + ldj.flatten(1).sum(-1) return y, sldj class _FlowStep(nn.Module): """Recursive builder for a Flow++ model. Each `_FlowStep` corresponds to a single scale in Flow++. The constructor is recursively called to build a full model. Args: scales (tuple): Number of each type of coupling layer in each scale. Each scale is a 2-tuple of the form (num_channelwise, num_checkerboard). in_channels (int): Number of channels in the input. mid_channels (int): Number of channels in the intermediate layers. num_blocks (int): Number of residual blocks in the s and t network of `Coupling` layers. num_components (int): Number of components in the mixture. use_attn (bool): Use attention in the coupling layers. drop_prob (float): Dropout probability. """ def __init__(self, scales, in_shape, mid_channels, num_blocks, num_components, use_attn, drop_prob, condition_embd_size=0): super(_FlowStep, self).__init__() in_channels, in_height, in_width = in_shape num_channelwise, num_checkerboard = scales[0] channels = [] for i in range(num_channelwise): channels += [CondNorm(in_channels // 2, condition_embd_size=condition_embd_size), InvConv(in_channels // 2), Coupling(in_channels=in_channels // 2, mid_channels=mid_channels, num_blocks=num_blocks, num_components=num_components, use_attn=use_attn, drop_prob=drop_prob, condition_embd_size=condition_embd_size), Flip()] checkers = [] for i in range(num_checkerboard): checkers += [CondNorm(in_channels, condition_embd_size=condition_embd_size), InvConv(in_channels), Coupling(in_channels=in_channels, mid_channels=mid_channels, num_blocks=num_blocks, num_components=num_components, use_attn=use_attn, drop_prob=drop_prob, condition_embd_size=condition_embd_size), Flip()] self.channels = nn.ModuleList(channels) if channels else None self.checkers = nn.ModuleList(checkers) if checkers else None if len(scales) <= 1: self.next = None else: next_shape = (2 * in_channels, in_height // 2, in_width // 2) self.next = _FlowStep(scales=scales[1:], in_shape=next_shape, mid_channels=mid_channels, num_blocks=num_blocks, num_components=num_components, use_attn=use_attn, drop_prob=drop_prob, condition_embd_size=condition_embd_size) def forward(self, x, sldj, reverse=False, condition_embd=None): if reverse: if self.next is not None: x = squeeze(x) x, x_split = x.chunk(2, dim=1) x, sldj = self.next(x, sldj, reverse, condition_embd=condition_embd) x = torch.cat((x, x_split), dim=1) x = unsqueeze(x) if self.checkers: x = checkerboard(x) for flow in reversed(self.checkers): x, sldj = flow(x, sldj, reverse, condition_embd=condition_embd) x = checkerboard(x, reverse=True) if self.channels: x = channelwise(x) for flow in reversed(self.channels): x, sldj = flow(x, sldj, reverse, condition_embd=condition_embd) x = channelwise(x, reverse=True) else: if self.channels: x = channelwise(x) for flow in self.channels: x, sldj = flow(x, sldj, reverse, condition_embd=condition_embd) x = channelwise(x, reverse=True) if self.checkers: x = checkerboard(x) for flow in self.checkers: x, sldj = flow(x, sldj, reverse, condition_embd=condition_embd) x = checkerboard(x, reverse=True) if self.next is not None: x = squeeze(x) x, x_split = x.chunk(2, dim=1) x, sldj = self.next(x, sldj, reverse, condition_embd=condition_embd) x = torch.cat((x, x_split), dim=1) x = unsqueeze(x) return x, sldj class _Dequantization(nn.Module): """Dequantization Network for Flow++ Args: in_shape (int): Shape of the input. mid_channels (int): Number of channels in the intermediate layers. num_blocks (int): Number of residual blocks in the s and t network of `Coupling` layers. use_attn (bool): Use attention in the coupling layers. drop_prob (float): Dropout probability. num_flows (int): Number of InvConv+MLCoupling flows to use. aux_channels (int): Number of channels in auxiliary input to couplings. num_components (int): Number of components in the mixture. """ def __init__(self, in_shape, mid_channels, num_blocks, use_attn, drop_prob, num_flows=4, aux_channels=32, num_components=32): super(_Dequantization, self).__init__() in_channels, in_height, in_width = in_shape self.aux_conv = nn.Sequential( nn.Conv2d(2 * in_channels, aux_channels, kernel_size=3, padding=1), GatedConv(aux_channels, drop_prob), GatedConv(aux_channels, drop_prob), GatedConv(aux_channels, drop_prob)) flows = [] for _ in range(num_flows): flows += [ActNorm(in_channels), InvConv(in_channels), Coupling(in_channels, mid_channels, num_blocks, num_components, drop_prob, use_attn=use_attn, aux_channels=aux_channels), Flip()] self.flows = nn.ModuleList(flows) def forward(self, x, sldj): u = torch.randn_like(x) eps_nll = 0.5 * (u ** 2 + math.log(2 * math.pi)) aux = self.aux_conv(torch.cat(checkerboard(x - 0.5), dim=1)) u = checkerboard(u) for i, flow in enumerate(self.flows): u, sldj = flow(u, sldj, aux=aux) if i % 4 == 2 else flow(u, sldj) u = checkerboard(u, reverse=True) u = torch.sigmoid(u) x = (x * 255. + u) / 256. sigmoid_ldj = safe_log(u) + safe_log(1. - u) sldj = sldj + (eps_nll + sigmoid_ldj).flatten(1).sum(-1) return x, sldj
#%% import datetime import ephem import time import urllib.request from dateutil import tz import libs.rigctllib as rigctllib from sys import platform from RPLCD import i2c from config.satlist import SAT_LIST import json from libs.satlib import * from libs.lcdlib import * import RPi.GPIO as GPIO gpio_pins = ["CLK", "DT", "SW"] selected_sat_idx = 0 from gpiozero import RotaryEncoder, Button def gpio_remove_event_detect(): for pin in gpio_pins: GPIO.remove_event_detect(config["gpio_pins"][pin]) def gpio_init(config): GPIO.setmode(GPIO.BCM) for pin in ["CLK", "DT", "SW"]: # set up the GPIO events on those pins GPIO.setup(config["gpio_pins"][pin], GPIO.IN, pull_up_down=GPIO.PUD_DOWN) def rotated_satsel(channel): global selected_sat_idx CLKState = GPIO.input(config["gpio_pins"]["CLK"]) DTState = GPIO.input(config["gpio_pins"]["DT"]) if CLKState == 0 and DTState == 1: if selected_sat_idx + 1 in range(0, len(SAT_LIST)): selected_sat_idx += 1 elif CLKState == 1 and DTState == 0: if selected_sat_idx - 1 in range(0, len(SAT_LIST)): selected_sat_idx -= 1 print(f"selected sat idx {selected_sat_idx}") def rotated_freqmenu(channel): global current_up global current_down CLKState = GPIO.input(config["gpio_pins"]["CLK"]) DTState = GPIO.input(config["gpio_pins"]["DT"]) if CLKState == 0 and DTState == 1: if current_down + config["rotary_step"] in sat_range: current_down += config["rotary_step"] current_up -= config["rotary_step"] elif CLKState == 1 and DTState == 0: if current_down - config["rotary_step"] in sat_range: current_down -= config["rotary_step"] current_up += config["rotary_step"] print(f"current down {current_down} - current up {current_up}") def clicked_satsel(channel): global sat_selection_menu sat_selection_menu = False def clicked_freqmenu(channel): pass def main(): with open("config/config.json", "r") as f: config = json.load(f) rotary = RotaryEncoder(config["gpio_pins"]["CLK"], config["gpio_pins"]["DT"]) if config["enable_radios"]: rig_up = rigctllib.RigCtl(config["rig_up_config"]) rig_down = rigctllib.RigCtl(config["rig_down_config"]) selected_sat_idx = 0 lcd = init_lcd() lcd.clear() lcd.write_string("starting up") from_zone = tz.gettz("UTC") to_zone = tz.gettz(config["timezone"]) sat_selection_menu = True gpio_init(config) GPIO.add_event_detect(CLK, GPIO.FALLING, callback=rotated_satsel, bouncetime=180) GPIO.add_event_detect(DT, GPIO.FALLING, callback=rotated_satsel, bouncetime=180) GPIO.add_event_detect(SW, GPIO.FALLING, callback=clicked_satsel, bouncetime=150) while sat_selection_menu: lcd.home() lcd.write_string("SELECT SATELLITE") lcd.crlf() lcd.crlf() lcd.write_string( f"{SAT_LIST[selected_sat_idx]['satname']} - {SAT_LIST[selected_sat_idx]['down_mode']}".ljust( 20, " " ) ) lcd.crlf() if SAT_LIST[selected_sat_idx]["down_mode"] == "FM": lcd.write_string(SAT_LIST[selected_sat_idx]["tone"].ljust(20, " ")) else: lcd.write_string("No Tone".ljust(20, " ")) print(f"selected sat {SAT_LIST[selected_sat_idx]['satname']}") SELECTED_SAT = SAT_LIST[selected_sat_idx] gpio_remove_event_detect() try: update_tles(config["sat_url"]) except: print("error downloading tles") sat = get_tles(SELECTED_SAT["satname"]) #%% satellite = ephem.readtle( sat[0], sat[1], sat[2] ) # create ephem object from tle information obs = ephem.Observer() # recreate Oberserver with current time obs.lon = config["observer_conf"]["lon"] obs.lat = config["observer_conf"]["lat"] obs.elevation = config["observer_conf"]["elev"] if config["enable_radios"]: rig_down.set_mode(mode=SELECTED_SAT["down_mode"]) rig_up.set_mode(mode=SELECTED_SAT["up_mode"]) sat_range = range(SELECTED_SAT["down_start"], SELECTED_SAT["down_end"]) current_down = SELECTED_SAT["down_center"] current_up = SELECTED_SAT["up_center"] GPIO.add_event_detect( config["gpio_pins"]["CLK"], GPIO.FALLING, callback=rotated_freqmenu, bouncetime=180, ) GPIO.add_event_detect( config["gpio_pins"]["DT"], GPIO.FALLING, callback=rotated_freqmenu, bouncetime=180, ) GPIO.add_event_detect( config["gpio_pins"]["SW"], GPIO.FALLING, callback=clicked_freqmenu, bouncetime=150, ) while True: obs.date = datetime.datetime.utcnow() satellite.compute(obs) shift_down = get_doppler_shift(current_down, satellite.range_velocity) shift_up = get_doppler_shift(current_up, satellite.range_velocity) shifted_down = get_shifted(current_down, shift_down, "down") shifted_up = get_shifted(current_up, shift_up, "up") if enable_radios: rig_up.set_frequency(shifted_up) rig_down.set_frequency(shifted_down) write_lcd_loop( lcd, current_up, current_down, shifted_up, shifted_down, shift_up, shift_down, SELECTED_SAT, ) if __name__ == "__main__": main()
import os import svg_tools try: columns, rows = os.get_terminal_size(0) except OSError: columns, rows = os.get_terminal_size(1) def print_centered(text): print(text.center(columns)[:-1]) print_centered("~~~ SVG to GD ~~~") print_centered("Made by jaan and camila314") print() print_centered("It's recommended to backup your save files") print_centered("if something goes wrong") print() running = True while running: try: file_name = input("Specify file name(\"exit\" to close): ") if file_name == "exit": break scale = 1 / float(input("Specify scale(>1 => bigger): ")) density = float(input("Specify density, distance between blocks(>1 => less): ")) block_size = float(input("Specify block size: ")) error_c = input("Error correction(y/n): ").lower() == "y" print() print("Converting...") svg_tools.generate(file_name, scale, density, block_size, error_c) except ValueError: print("Please enter a valid value.") print() print()
#!/usr/bin/env python3.6 """ Purpose: Script responsible for helping organize music files in a specified directory and of a specific music filetype Steps: - Parse Location of Music from CLI - Determine Music Extension (Default .mp3) - Find all music files in the directory - Get the Artist for each File (From metadata, using eyeD3) - Create Dir for Each Artist - Move each song into the directory usage: python3.6 organize_music_by_artist.py [-h] --music-dir MUSIC_DIR\ [--music-format MUSIC_FORMAT] example call: python3.6 organize_music_by_artist.py --music-dir="~/Music" --music-format=".mp3" """ # Python Library Imports import eyed3 import logging import os import re import shutil import sys from argparse import ArgumentParser from data_structure_helpers import string_helpers from execution_helpers import function_executors from logging_helpers import loggers ### # Main Execution ### @function_executors.main_executor def main(): """ Purpose: Get File Metadata """ logging.info("Starting Process Organize Music By Artist") cli_args = get_cli_arguments() music_files = find_music_files(cli_args.music_dir, cli_args.music_format) if not music_files: logging.info("No music files found in the directory, exiting") return music_by_artist = get_music_by_artist(music_files) if len(music_by_artist) == 1: logging.info( f"Only one artist, not going to organize: {list(music_by_artist.keys())[0]}" ) return for artist, artist_details in music_by_artist.items(): artist_dir = os.path.join( cli_args.music_dir, string_helpers.convert_to_title_case(artist) ) try: os.mkdir(artist_dir) except FileExistsError as file_err: # logging.debug(f"{artist_dir} already exists, no need to create") pass except Exception as err: logging.exception(f"Exception Creating Dir: {err}") raise err for song in artist_details["songs"]: shutil.move(song, artist_dir) logging.info("Process Organize Music By Artist Complete") ### # Music Parsing ### def find_music_files(music_dir, music_format): """ Purpose: Find music files in specified dir Args: music_dir (String): Dir to search for music files music_format (String): Format/Extension of music files Return: music_files (List of Strings): List of music files in the dir (filenames) """ return [ os.path.join(music_dir, filename) for filename in os.listdir(music_dir) if os.path.isfile(os.path.join(music_dir, filename)) and filename.endswith(music_format) ] def get_music_by_artist(music_files): """ Purpose: Take list of filenames of music files and organize into a dict with the key of the artist name and a list of songs as the value. Args: music_files (List of Strings): List of music filenames Return: music_by_artist (Dict): dict with the key of the artist name and a list of songs as the value. """ music_by_artist = {} for music_file in music_files: music_file_metadata = eyed3.load(music_file) artist = get_artist_for_music_file(music_file, music_file_metadata) music_by_artist.setdefault(artist, {"songs": [], "total_songs": 0}) music_by_artist[artist]["songs"].append(music_file) music_by_artist[artist]["total_songs"] += 1 return music_by_artist def get_artist_for_music_file(music_file, music_file_metadata): """ Purpose: Get the artist from metadata of a music file Args: music_file (String): Full name of the music file music_file_metadata (EyeD3 Object): Object of EyeD3, which has the metadata of the file that can be used to get the artist Return: artist (String): Artist name, "Unknown" if it is not found """ try: artist = music_file_metadata.tag.artist.lower() except Exception as err: logging.debug(f"No Arist Tag For Music: {music_file}") artist = "unknown" return artist ### # Scrpt Configuration Functions ### def get_cli_arguments(): """ Purpose: Parse CLI arguments for script Args: N/A Return: N/A """ logging.info("Getting and Parsing CLI Arguments") parser = ArgumentParser(description="Organize Music Files") required = parser.add_argument_group("Required Arguments") optional = parser.add_argument_group("Optional Arguments") # Required Arguments\ required.add_argument( "--music-dir", dest="music_dir", help="Dir of Music Files", required=True, type=str, ) # Optional Arguments optional.add_argument( "--music-format", dest="music_format", default=".mp3", help="Format of Music Files", required=False, type=str, ) return parser.parse_args() if __name__ == "__main__": try: loggers.get_stdout_logging( log_level=logging.INFO, log_prefix="[parse_music_files] " ) main() except Exception as err: logging.exception(f"{os.path.basename(__file__)} failed due to error: {err}") raise err
import numpy as np def findPaperLen(pairs): max_x = 0; max_y = 0; for (x, y) in pairs: if x > max_x: max_x = x if y > max_y: max_y = y return (max_x, max_y) def day13_part1(paper, foldcmd): (axis, val) = foldcmd if axis == 'y': top = paper[:val] bottom = paper[val + 1:] revBottom = np.flip(bottom, axis = 0) firstFold = [['#' if top[i][j] == '#' or revBottom[i][j] == '#' else '.' for j in range(len(top[0]))] for i in range(len(top))] else: left = [] right = [] for i in range(len(paper)): subLeft = [] subRight = [] for j in range(len(paper[0])): if j < val: subLeft.append(paper[i][j]) elif j > val: subRight.append(paper[i][j]) left.append(subLeft) right.append(subRight[::-1]) firstFold = [['#' if right[i][j] == '#' or left[i][j] == '#' else '.' for j in range(len(left[0]))] for i in range(len(left))] return firstFold def day13_part2(paper, folds): # same code as part1 but complete all the folds for (axis, val) in folds: if axis == 'y': top = paper[:val] bottom = paper[val + 1:] revBottom = np.flip(bottom, axis = 0) paper = [['#' if top[i][j] == '#' or revBottom[i][j] == '#' else '.' for j in range(len(top[0]))] for i in range(len(top))] else: left = [] right = [] for i in range(len(paper)): subLeft = [] subRight = [] for j in range(len(paper[0])): if j < val: subLeft.append(paper[i][j]) elif j > val: subRight.append(paper[i][j]) left.append(subLeft) right.append(subRight[::-1]) paper = [['#' if right[i][j] == '#' or left[i][j] == '#' else '.' for j in range(len(left[0]))] for i in range(len(left))] # print answer for i in range(len(paper)): for j in range(len(paper[0])): if paper[i][j] == '#': print('#', end='') else: print(' ', end='') print('\n', end='') def main(): with open('input.txt', 'r') as f: input = f.read().strip().split('\n\n') pairsInput = input[0] foldsInput = input[1] # construct the list of pairs pairs = [] for p in pairsInput.split('\n'): x, y = map(int, p.split(',')) pairs.append((x, y)) # after list of pairs is constructed, find the dimensions of the paper (x, y) = findPaperLen(pairs) # create the paper and add the # in place paper = [['.' for i in range(x + 1)] for j in range(y + 1)] for (y, x) in pairs: paper[x][y] = '#' # create the folds list (has pairs of (axis, value)) folds = [] for fold in foldsInput.split('\n'): axis, val = fold.split('=') folds.append((axis[-1], int(val))) firstFold = day13_part1(paper, folds.pop(0)) print("Part 1:", sum([line.count('#') for line in firstFold])) day13_part2(firstFold, folds) if __name__ == "__main__": main()
from bs4 import BeautifulSoup from requests import get import json def contact_scrape(link,output): key = ['name','email','twitter','facebook','instagram','youtube'] val = [] soup = BeautifulSoup(get('https://su.sheffield.ac.uk' + link).text, 'html.parser') #======================# # Extract society name # #======================# name = soup.find('h2', class_="t__none f__b--eb") if name is not None: val.append(name.get_text()) else: val.append('') #=======================# # Extract society email # #=======================# email = soup.find(class_ = 'c__b') if email and email.a is not None: val.append(email.a.get_text()) else: val.append('') #====================================# # Extract society social media links # #====================================# social_media_list = soup.find('div', class_ ='highlight__social mgn__t--2') if social_media_list is not None: social_media_list = social_media_list.find_all('a') for social_media in social_media_list: link1 = social_media.get('href') if link1 not in default_pages: val.append(link1) else: val.append('') return dict(zip(key,val)) #------------------------------------------------------------------------------ # Main Program #------------------------------------------------------------------------------ # since pages keeps default sites for empty social media links # -> we keep track of these sites and clear them out default_pages = ['https://www.instagram.com/','https://www.facebook.com/','https://twitter.com/','https://youtube.com/user/'] # output to a csv file output = [['name','email','twitter','facebook','instagram','youtube']] # Initialise BS object of main page soup = BeautifulSoup(get("https://su.sheffield.ac.uk/activities/find-a-society").text, 'html.parser') # retrieve all society links societies = soup.find_all('div', class_ = 'g__4--m g__4--t g__3--d mgn__b--1') with open("soup-contact.json", "w", newline="") as f: for society in societies: link = society.a['href'] # extracting href links line_output = json.dumps(contact_scrape(link,output)) f.write(line_output + '\n')
#!/usr/bin/python3 import timeit import time import os import matplotlib.pyplot as plt from tqdm import trange from injectSeed import * from subprocess import call def getRuntime(bytecode): """ executes program and returns running time """ start = time.time() exec(bytecode) end = time.time() return end-start def getRunTime_R(bytecode): start = time.time() exec(bytecode, globals()) end = time.time() return end-start def trialRun(bytecode, n, runtimeFunc): """ executes program using parameter n """ bytecode = injectRandList(bytecode, n) runtime = runtimeFunc(bytecode) return runtime def conductTrials(filename, n, runtimeFunc): trials = list() bytecode = open(filename).read() for i in trange(n, desc=filename.split('/')[-1]): trials.append(trialRun(bytecode, i, runtimeFunc)) return trials def plotRuntime(runtimes, n, name): fig = plt.figure() ax = fig.add_subplot(111) axi = [i for i in range(n)] print() print("Plotting {}...".format(name)) plt.plot(axi, runtimes, 'bo', markersize=0.5) plt.savefig("plots/Sorting/{}".format(name)) plt.close() def plotSortingAlg(n): bubblesorts = conductTrials("samples/Sorting/bubblesort.py", n, getRuntime) insertionsorts = conductTrials("samples/Sorting/insertionsort.py", n, getRuntime) mergesorts = conductTrials("samples/Sorting/mergesort.py", n, getRunTime_R) selectionsorts = conductTrials("samples/Sorting/selectionsort.py", n, getRuntime) quicksorts = conductTrials("samples/Sorting/quicksort.py", n, getRunTime_R) shellsorts = conductTrials("samples/Sorting/shellsort.py", n, getRuntime) heapsorts = conductTrials("samples/Sorting/heapsort.py", n, getRunTime_R) plotRuntime(bubblesorts, n, "bubblesorts.png") plotRuntime(insertionsorts, n, "insertionsorts.png") plotRuntime(mergesorts, n, "mergesorts.png") plotRuntime(selectionsorts, n, "selectionsorts.png") plotRuntime(quicksorts, n, "quicksorts.png") plotRuntime(shellsorts, n, "shellsorts.png") plotRuntime(heapsorts, n, "heapsorts.png") def main(): plotSortingAlg(10000) main()
from p5 import * class Slider: def __init__(self,low,high,default): '''slider has range from low to high and is set to default''' self.low = low self.high = high self.val = default self.clicked = False def position(self,x,y): '''slider's position on screen''' self.x = x self.y = y #the position of the rect you slide: self.rectx = self.x + mapping(self.val, self.low, self.high, 0, 120) self.recty = self.y - 10 def value(self): '''updates the slider and returns value''' #gray line behind slider stroke_weight(4) stroke(200) line((self.x,self.y), (self.x + 120,self.y)) #press mouse to move slider if mouse_is_pressed and dist((mouse_x,mouse_y), (self.rectx,self.recty)) < 20: self.rectx = mouse_x #constrain rectangle self.rectx = constrain(self.rectx, self.x, self.x + 120) #draw rectangle stroke_weight(1) stroke(0) fill(255) rect((self.rectx, self.recty), 10, 20) self.val = mapping(self.rectx,self.x,self.x + 120,self.low,self.high) #draw label # fill(0) # text_size(12) # text(int(self.val),self.rectx,self.recty + 35) return self.val def mapping(n, start1, stop1, start2, stop2): """Set the background color for the p5.renderer. :param args: :param args: :param args: :param args: :param args: :returns: """ return ((n - start1) / (stop1 - start1)) * (stop2 - start2) + start2
#!/usr/bin/env python # # Copyright 2018 Espressif Systems (Shanghai) PTE LTD # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import re import os import ttfw_idf import esp_prov import wifi_tools # Have esp_prov throw exception esp_prov.config_throw_except = True @ttfw_idf.idf_example_test(env_tag="Example_WIFI_BT") def test_examples_provisioning_softap(env, extra_data): # Acquire DUT dut1 = env.get_dut("softap_prov", "examples/provisioning/legacy/softap_prov", dut_class=ttfw_idf.ESP32DUT) # Get binary file binary_file = os.path.join(dut1.app.binary_path, "softap_prov.bin") bin_size = os.path.getsize(binary_file) ttfw_idf.log_performance("softap_prov_bin_size", "{}KB".format(bin_size // 1024)) ttfw_idf.check_performance("softap_prov_bin_size", bin_size // 1024, dut1.TARGET) # Upload binary and start testing dut1.start_app() # Parse IP address of STA dut1.expect("Starting WiFi SoftAP provisioning", timeout=60) [ssid, password] = dut1.expect(re.compile(r"SoftAP Provisioning started with SSID '(\S+)', Password '(\S+)'"), timeout=30) iface = wifi_tools.get_wiface_name() if iface is None: raise RuntimeError("Failed to get Wi-Fi interface on host") print("Interface name : " + iface) print("SoftAP SSID : " + ssid) print("SoftAP Password : " + password) try: ctrl = wifi_tools.wpa_cli(iface, reset_on_exit=True) print("Connecting to DUT SoftAP...") ip = ctrl.connect(ssid, password) got_ip = dut1.expect(re.compile(r"DHCP server assigned IP to a station, IP is: (\d+.\d+.\d+.\d+)"), timeout=60)[0] if ip != got_ip: raise RuntimeError("SoftAP connected to another host! " + ip + "!=" + got_ip) print("Connected to DUT SoftAP") print("Starting Provisioning") verbose = False protover = "V0.1" secver = 1 pop = "abcd1234" provmode = "softap" ap_ssid = "myssid" ap_password = "mypassword" softap_endpoint = ip.split('.')[0] + "." + ip.split('.')[1] + "." + ip.split('.')[2] + ".1:80" print("Getting security") security = esp_prov.get_security(secver, pop, verbose) if security is None: raise RuntimeError("Failed to get security") print("Getting transport") transport = esp_prov.get_transport(provmode, softap_endpoint) if transport is None: raise RuntimeError("Failed to get transport") print("Verifying protocol version") if not esp_prov.version_match(transport, protover): raise RuntimeError("Mismatch in protocol version") print("Starting Session") if not esp_prov.establish_session(transport, security): raise RuntimeError("Failed to start session") print("Sending Wifi credential to DUT") if not esp_prov.send_wifi_config(transport, security, ap_ssid, ap_password): raise RuntimeError("Failed to send Wi-Fi config") print("Applying config") if not esp_prov.apply_wifi_config(transport, security): raise RuntimeError("Failed to send apply config") if not esp_prov.wait_wifi_connected(transport, security): raise RuntimeError("Provisioning failed") finally: ctrl.reset() if __name__ == '__main__': test_examples_provisioning_softap()
#!/usr/bin/python # -*- coding: utf-8 -*- # # stride-ios-relay.py - Stride TCP connection relay for iOS devices to Windows developer host (using usbmuxd) # # Copyright (c) .NET Foundation and Contributors (https://dotnetfoundation.org/ & https://stride3d.net) and Silicon Studio Corp. (https://www.siliconstudio.co.jp) # Copyright (C) 2009 Hector Martin "marcan" <hector@marcansoft.com> # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 2 or version 3. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program; if not, write to the Free Software # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA import usbmux import SocketServer import select from optparse import OptionParser import sys import threading import time import traceback import socket class SocketRelay(object): def __init__(self, a, b, maxbuf=65535): self.a = a self.b = b self.atob = "" self.btoa = "" self.maxbuf = maxbuf def handle(self): while True: rlist = [] wlist = [] xlist = [self.a, self.b] if self.atob: wlist.append(self.b) if self.btoa: wlist.append(self.a) if len(self.atob) < self.maxbuf: rlist.append(self.a) if len(self.btoa) < self.maxbuf: rlist.append(self.b) rlo, wlo, xlo = select.select(rlist, wlist, xlist) if xlo: return if self.a in wlo: n = self.a.send(self.btoa) self.btoa = self.btoa[n:] if self.b in wlo: n = self.b.send(self.atob) self.atob = self.atob[n:] if self.a in rlo: s = self.a.recv(self.maxbuf - len(self.atob)) if not s: return self.atob += s if self.b in rlo: s = self.b.recv(self.maxbuf - len(self.btoa)) if not s: return self.btoa += s #print "Relay iter: %8d atob, %8d btoa, lists: %r %r %r"%(len(self.atob), len(self.btoa), rlo, wlo, xlo) parser = OptionParser(usage="usage: %prog [OPTIONS] RemoteHost") parser.add_option("-b", "--bufsize", dest='bufsize', action='store', metavar='KILOBYTES', type='int', default=16, help="specify buffer size for socket forwarding") parser.add_option("-s", "--socket", dest='sockpath', action='store', metavar='PATH', type='str', default=None, help="specify the path of the usbmuxd socket") options, args = parser.parse_args() if len(args) != 1: parser.print_help() sys.exit(1) alive = True remotehost = args[0] mux = usbmux.USBMux(options.sockpath) class DeviceConnectionHelper(): def __init__(self, device): self.device = device def start_connection(self, device_sock): try: print "Connection opened with device, establishing connection to router (%s)"%(remotehost) # Connect to router router_sock = socket.socket() router_sock.connect((remotehost, 31254)) print "Starting relay between iOS device and router" # Forward connection between router and iOS device fwd = SocketRelay(device_sock, router_sock, options.bufsize * 1024) fwd.handle() except: traceback.print_exc(file=sys.stdout) pass finally: print "Connection between iOS device and router has been interrupted" device_sock.close() router_sock.close() def start_device(self): self.device.alive = True while self.device.alive and alive: try: device_sock = mux.connect(self.device, 31255) # Start a thread for this connection thread = threading.Thread(target = lambda: self.start_connection(device_sock)) thread.start() except: # Silently ignore exceptions (since we try to continuously connect to device) pass time.sleep(0.2) def start_device_threaded(self): thread = threading.Thread(target = self.start_device) thread.start() deviceNames = { 0x1290: 'iPhone', 0x1292: 'iPhone 3G', 0x1294: 'iPhone 3GS', 0x1297: 'iPhone 4 GSM', 0x129c: 'iPhone 4 CDMA', 0x12a0: 'iPhone 4S', 0x12a8: 'iPhone 5/6', 0x1291: 'iPod touch', 0x1293: 'iPod touch 2G', 0x1299: 'iPod touch 3G', 0x129e: 'iPod touch 4G', 0x129a: 'iPad', 0x129f: 'iPad 2 Wi-Fi', 0x12a2: 'iPad 2 GSM', 0x12a3: 'iPad 2 CDMA', 0x12a9: 'iPad 2 R2', 0x12a4: 'iPad 3 Wi-Fi', 0x12a5: 'iPad 3 CDMA', 0x12a6: 'iPad 3 Global', 0x129d: 'Apple TV 2G', 0x12a7: 'Apple TV 3G' } def device_name(device): return deviceNames.get(device.usbprod, "Unknown(0x%04x)"%(device.usbprod)) def device_added(device): # Try to connect to establish connection to device print "Device connected: ID %d, Type %s (Serial %s)"%(device.devid, device_name(device), device.serial) deviceConnectionHelper = DeviceConnectionHelper(device) deviceConnectionHelper.start_device_threaded() def device_removed(device): print "Device removed: ID %d, Type %s (Serial %s)"%(device.devid, device_name(device), device.serial) device.alive = False print "Listening for iOS devices..." mux.listener.callback_device_added = device_added mux.listener.callback_device_removed = device_removed alive = True while alive: try: mux.process() except: alive = False
# -*- coding: utf-8 -*- ''' .. created on 21.08.2016 .. by Christoph Schmitt ''' from __future__ import print_function, absolute_import, division, unicode_literals from reflexif.compat import * from reflexif.compat import PY2 import io import os import unittest from reflexif.io import Frame, SourceWrapper, FileSource class TestFrame(unittest.TestCase): data = bytes(range(256)) def testConstructorFail(self): with self.assertRaises(IndexError): Frame(self.data, -1) with self.assertRaises(IndexError): Frame(self.data, 0, len(self.data)+1) with self.assertRaises(IndexError): Frame(self.data, len(self.data), 1) with self.assertRaises(IndexError): Frame(self.data, len(self.data), -1) def testConstructor(self): Frame(self.data, 0) Frame(self.data, 1) f = Frame(self.data, len(self.data)) self.assertEqual(0, len(f)) f = Frame(self.data, len(self.data), 0) self.assertEqual(0, len(f)) def testSliceLength(self): f = Frame(self.data, 20, 10) self.assertEqual(len(f[5:6]), 1) self.assertEqual(len(f[0:10]), 10) def testSliceContent(self): f = Frame(self.data, 20, 10) self.assertEqual(f[0:10].data, f.data) self.assertEqual(f[5:6].data, self.data[25:26]) f2 = f[2:8] f3 = f2[2:4] self.assertEqual(f3.data, self.data[24:26]) def testSliceMethodFail(self): f = Frame(self.data, 20, 10) with self.assertRaises(ValueError): f.slice(None, None) with self.assertRaises(ValueError): f.slice(None, 1) with self.assertRaises(ValueError): f.slice(1, None) def testSliceSpecialCases(self): f = Frame(self.data, 20, 10) s1 = f[:] s2 = f[1:] s3 = f[:1] self.assertEqual(s1.length, f.length) self.assertEqual(s2.length, f.length-1) self.assertEqual(s3.length, 1) self.assertEqual(s1.offset, f.offset) self.assertEqual(s2.offset, f.offset+1) self.assertEqual(s3.offset, f.offset) def testSliceFail(self): f = Frame(self.data, 20, 10) with self.assertRaises(IndexError): f[:-1] with self.assertRaises(IndexError): f[-1:] with self.assertRaises(IndexError): f[::1] with self.assertRaises(IndexError): f[1:2:3] with self.assertRaises(IndexError): f[0:11] with self.assertRaises(IndexError): f[5:0] with self.assertRaises(IndexError): f[10:12] def testDataFail(self): f = Frame(self.data, 10, 20) # make frame too long f.length = len(self.data)-9 with self.assertRaises(EOFError): data_slice = f.data # debugging output # used to identify https://github.com/IronLanguages/main/issues/1387 b = bytes(data_slice) print('lengths: data_slice: %d, f: %d, f.source: %d, bytes(data_slice): %d' % (len(data_slice), len(f), len(f.source), len(b))) print('f.source: ', type(f.source), '%r' % f.source, '%r' % bytes(f.source)) print('wrongly returned slice:', type(data_slice), '%r' % data_slice, '%r' % b) def testBytes(self): f = Frame(self.data, 10, 20) actual = bytes(self.data[10:30]) expected = bytes(f) if PY2: # If the Python 2 implementation offers a bytes type (e.g. IronPython), # we use it, so the elemets of actual by either be ints or strings # of length 1. self.assertIn(actual[0], (10, b'\x0a')) else: self.assertEqual(actual[0], 10) self.assertEqual(expected, actual) def testData(self): l = 100 def testoffset(o): f = Frame(self.data, o, l) self.assertEqual(self.data[o:o+l], f.data) for i in range(len(f)): self.assertEqual(f[i], self.data[o+i]) testoffset(0) testoffset(10) testoffset(30) testoffset(156) class TestFrameWithWrapperSource(TestFrame): data = SourceWrapper(bytes(range(256))) class TestFrameWithMemoryView(TestFrame): data = memoryview(bytes(range(256))) class TestFrameWithFileSource(TestFrame): data = FileSource(io.BytesIO(bytes(range(256))), 0, 256) class TestFrameWithFileSourceWithOffset(TestFrame): raw = bytearray(os.urandom(1024)) raw[200:456] = bytes(range(256)) data = FileSource(io.BytesIO(raw), 200, 256) class TestFrameWithWrappedMemoryView(TestFrame): data = SourceWrapper(memoryview(bytes(range(256)))) if __name__ == "__main__": unittest.main()
"""Unit tests for the Hyperbolic space using Poincaré Ball Model. We verify poincare ball model by compare results of squared distance computed with inner_product (using RiemannianMetric methods) and distance defined in PoincareBall. We also verify the distance is the same using differents coordinates systems. """ import geomstats.backend as gs import geomstats.tests from geomstats.geometry.hyperboloid import Hyperboloid from geomstats.geometry.poincare_ball import PoincareBall class TestPoincareBall(geomstats.tests.TestCase): def setUp(self): self.manifold = PoincareBall(2) self.metric = self.manifold.metric self.hyperboloid_manifold = Hyperboloid(2) self.hyperboloid_metric = self.hyperboloid_manifold.metric def test_squared_dist(self): point_a = gs.array([-0.3, 0.7]) point_b = gs.array([0.2, 0.5]) distance_a_b = self.metric.dist(point_a, point_b) squared_distance = self.metric.squared_dist(point_a, point_b) self.assertAllClose(distance_a_b**2, squared_distance, atol=1e-8) @geomstats.tests.np_and_pytorch_only def test_coordinates(self): point_a = gs.array([-0.3, 0.7]) point_b = gs.array([0.2, 0.5]) point_a_h =\ self.manifold.to_coordinates(point_a, 'extrinsic') point_b_h =\ self.manifold.to_coordinates(point_b, 'extrinsic') dist_in_ball =\ self.metric.dist(point_a, point_b) dist_in_hype =\ self.hyperboloid_metric.dist(point_a_h, point_b_h) self.assertAllClose(dist_in_ball, dist_in_hype, atol=1e-8) def test_dist_poincare(self): point_a = gs.array([0.5, 0.5]) point_b = gs.array([0.5, -0.5]) dist_a_b =\ self.manifold.metric.dist(point_a, point_b) result = dist_a_b expected = 2.887270927429199 self.assertAllClose(result, expected) def test_dist_vectorization(self): point_a = gs.array([0.2, 0.5]) point_b = gs.array([[0.3, -0.5], [0.2, 0.2]]) dist_a_b =\ self.manifold.metric.dist(point_a, point_b) result_vect = dist_a_b result =\ [self.manifold.metric.dist(point_a, point_b[i]) for i in range(len(point_b))] result = gs.stack(result, axis=0) self.assertAllClose(result_vect, result) def test_dist_broadcast(self): point_a = gs.array([[0.2, 0.5], [0.3, 0.1]]) point_b = gs.array([[0.3, -0.5], [0.2, 0.2]]) point_c = gs.array([[0.2, 0.3], [0.5, 0.5], [-0.4, 0.1]]) point_d = gs.array([0.1, 0.2, 0.3]) dist_a_b =\ self.manifold.metric.dist_broadcast(point_a, point_b) dist_b_c = gs.flatten( self.manifold.metric.dist_broadcast(point_b, point_c)) result_vect = gs.concatenate( (dist_a_b, dist_b_c), axis=0) result_a_b =\ [self.manifold.metric.dist_broadcast(point_a[i], point_b[i]) for i in range(len(point_b))] result_b_c = \ [self.manifold.metric.dist_broadcast(point_b[i], point_c[j]) for i in range(len(point_b)) for j in range(len(point_c)) ] result = result_a_b + result_b_c result = gs.stack(result, axis=0) self.assertAllClose(result_vect, result) with self.assertRaises(ValueError): self.manifold.metric.dist_broadcast(point_a, point_d) def test_dist_pairwise(self): point = gs.array([[0.1, 0.2], [0.3, 0.4], [0.5, 0.5]]) result = self.manifold.metric.dist_pairwise(point) expected = gs.array([[0., 0.65821943, 1.34682524], [0.65821943, 0., 0.71497076], [1.34682524, 0.71497076, 0.]]) self.assertAllClose(result, expected, rtol=1e-3) def test_mobius_vectorization(self): point_a = gs.array([0.5, 0.5]) point_b = gs.array([[0.5, -0.3], [0.3, 0.4]]) dist_a_b =\ self.manifold.metric.mobius_add(point_a, point_b) result_vect = dist_a_b result =\ [self.manifold.metric.mobius_add(point_a, point_b[i]) for i in range(len(point_b))] result = gs.stack(result, axis=0) self.assertAllClose(result_vect, result) dist_a_b =\ self.manifold.metric.mobius_add(point_b, point_a) result_vect = dist_a_b result =\ [self.manifold.metric.mobius_add(point_b[i], point_a) for i in range(len(point_b))] result = gs.stack(result, axis=0) self.assertAllClose(result_vect, result) def test_log_vectorization(self): point_a = gs.array([0.5, 0.5]) point_b = gs.array([[0.5, -0.5], [0.4, 0.4]]) dist_a_b =\ self.manifold.metric.log(point_a, point_b) result_vect = dist_a_b result =\ [self.manifold.metric.log(point_a, point_b[i]) for i in range(len(point_b))] result = gs.stack(result, axis=0) self.assertAllClose(result_vect, result) dist_a_b =\ self.manifold.metric.log(point_b, point_a) result_vect = dist_a_b result =\ [self.manifold.metric.log(point_b[i], point_a) for i in range(len(point_b))] result = gs.stack(result, axis=0) self.assertAllClose(result_vect, result) def test_exp_vectorization(self): point_a = gs.array([0.5, 0.5]) point_b = gs.array([[0.0, 0.0], [0.5, -0.5], [0.4, 0.4]]) dist_a_b =\ self.manifold.metric.exp(point_a, point_b) result_vect = dist_a_b result =\ [self.manifold.metric.exp(point_a, point_b[i]) for i in range(len(point_b))] result = gs.stack(result, axis=0) self.assertAllClose(result_vect, result) dist_a_b =\ self.manifold.metric.exp(point_b, point_a) result_vect = dist_a_b result =\ [self.manifold.metric.exp(point_b[i], point_a) for i in range(len(point_b))] result = gs.stack(result, axis=0) self.assertAllClose(result_vect, result) def test_log_poincare(self): point = gs.array([0.3, 0.5]) base_point = gs.array([0.3, 0.3]) result = self.manifold.metric.log(point, base_point) expected = gs.array([-0.01733576, 0.21958634]) self.manifold.metric.coords_type = 'extrinsic' self.assertAllClose(result, expected) def test_belong_true_poincare(self): point = gs.array([0.3, 0.5]) belong = self.manifold.belongs(point) self.assertTrue(belong) def test_belong_false_poincare(self): point = gs.array([1.2, 0.5]) belong = self.manifold.belongs(point) self.assertFalse(belong) def test_projection(self): point = gs.array([1.2, 0.5]) projected_point = self.manifold.projection(point) self.assertTrue(gs.sum(projected_point * projected_point) < 1.) def test_exp_poincare(self): point = gs.array([0.3, 0.5]) base_point = gs.array([0.3, 0.3]) tangent_vec = self.manifold.metric.log(point, base_point) result = self.manifold.metric.exp(tangent_vec, base_point) self.manifold.metric.coords_type = 'extrinsic' self.assertAllClose(result, point) def test_ball_retraction(self): x = gs.array([[0.5, 0.6], [0.2, -0.1], [0.2, -0.4]]) y = gs.array([[0.3, 0.5], [0.3, -0.6], [0.3, -0.3]]) ball_metric = self.manifold.metric tangent_vec = ball_metric.log(y, x) ball_metric.retraction(tangent_vec, x) def test_ball_geodesic(self): path_function =\ self.manifold.metric.geodesic(gs.array([0.1, 0.1]), gs.array([0.2, 0.2])) steps = gs.array(gs.linspace(-1000., 1000., 10000)) path_function(steps) def test_mobius_out_of_the_ball(self): x, y = gs.array([0.7, 0.9]), gs.array([0.2, 0.2]) with self.assertRaises(ValueError): self.manifold.metric.mobius_add(x, y, auto_project=False)
#!/usr/bin/env python import os import yaml import pandas as pd import argparse __author__ = 'Teruaki Enoto' __version__ = '0.01' # v0.01 : 2020-08-12 : original version def get_parser(): """ Creates a new argument parser. """ parser = argparse.ArgumentParser('niauto.py', usage='%(prog)s -o obsid', description=""" (example) %(prog)s.py -o 1012010136 (example) %(prog)s.py -t "comet" """ ) version = '%(prog)s ' + __version__ parser.add_argument('obsid',metavar='obsid',type=str,help='input obsid') parser.add_argument('--version', '-v', action='version', version=version, help='show version of this command') # parser.add_argument('--target_name', '-t', type=str, default=None, # help='target source name to be shown (default=None)') parser.add_argument('--csvfile', '-c', type=str, default="nicer_target_segment_table.csv", help='csvfile') parser.add_argument('--setupfile', '-s', type=str, default="{}/hoppy/nicer/cli/setup_template.yaml".format(os.getenv('HOPPY_PATH')), help='setup yaml file') parser.add_argument('--heasarc_repository', '-r', type=str, default=os.getenv('HEADAS_REPOSITORY'), help='Heasarc repository directory. If this option is specified, the files are moved here.') parser.add_argument('--nicerteam_repository', '-n', type=str, default=os.getenv('NICERTEAM_REPOSITORY'), help='NICER team repository directory. If this option is specified, the files are moved here.') parser.add_argument('--copyto', '-t', type=str, default=' /Users/enoto/Dropbox/01_enoto/research/nicer/auto/out', help='copy to') return parser def niauto(args): if not os.path.exists(args.csvfile): cmd = 'niget_target_segment_sheet.py' print(cmd);os.system(cmd) df = pd.read_csv(args.csvfile,comment='#') df['Observation ID'] = df['Observation ID'].astype(str).str.zfill(10) str_start_timeutc = df['Start TimeUTC'][df['Observation ID'] == args.obsid] yyyy = str(str_start_timeutc).split('-')[0].split()[-1] mm = str(str_start_timeutc).split('-')[1] yyyy_mm = "%s_%s" % (yyyy,mm) datadir = '%s/nicer/data/obs/%s/%s' % (os.getenv('HEADAS_REPOSITORY'),yyyy_mm,args.obsid) datadir_team = '%s/nicer/data/obs/%s/%s' % (os.getenv('NICERTEAM_REPOSITORY'),yyyy_mm,args.obsid) if not os.path.exists(datadir) and not os.path.exists(datadir_team): cmd = 'niwget.py -o %s -y %s -r %s' % (args.obsid,yyyy_mm,args.heasarc_repository) print(cmd);os.system(cmd) outdir = 'out/%s' % args.obsid if not os.path.exists(outdir): cmd = 'mkdir -p %s;' % (outdir) print(cmd);os.system(cmd) specdir = 'out/%s/%s/spec' % (args.obsid,args.obsid) if not os.path.exists(specdir): param = yaml.load(open(args.setupfile)) param['output_directory'] = outdir if os.path.exists(datadir): param['input_data_directory'] = '%s/nicer/data/obs/*' % os.getenv('HEADAS_REPOSITORY') elif os.path.exists(datadir_team): param['input_data_directory'] = '%s/nicer/data/obs/*' % os.getenv('NICERTEAM_REPOSITORY') else: print("Error: no input files") return -1 input_setup_yaml = '%s/input_setup.yaml' % outdir with open(input_setup_yaml, 'w') as file: yaml.dump(param, file) input_obsid_lst = '%s/input_obsid.lst' % outdir f = open(input_obsid_lst,'w') f.write('%s\n' % args.obsid) f.close() cmd = 'nipipeline.py ' cmd += '--setup_yamlfile %s ' % input_setup_yaml cmd += '--obsid_lstfile %s ' % input_obsid_lst print(cmd);os.system(cmd) fitdir = '%s/fit' % outdir if not os.path.exists(fitdir): param = yaml.load(open('%s/input_setup.yaml' % outdir)) model_xcm = '%s/hoppy/xspec/model/tbabs_bbodyrad.xcm' % (os.getenv('HOPPY_PATH')) cmd = 'xspec_fit.py ' cmd += '%s/ni%s_3c50_tot.pi ' % (specdir,args.obsid) cmd += '-o %s/fit ' % (outdir) cmd += '-b %s/ni%s_3c50_bkg.pi ' % (specdir,args.obsid) cmd += '-r %s ' % param['xspec_rmf'] cmd += '-a %s ' % param['xspec_arf'] cmd += '-m %s ' % model_xcm cmd += '-s 5 -n 80 --fitemin 0.3 --fitemax 10.0 ' cmd += '--rateband 0.8-6.0,2.0-10.0 ' cmd += '--fluxband 0.8-6.0,2.0-10.0 ' cmd += '--parerrnum "1,2,3" ' print(cmd);os.system(cmd) if args.copyto != None: cmd = 'mkdir -p %s/%s;' % (args.copyto,args.obsid) cmd += 'cp -r %s %s/%s/' % (fitdir, args.copyto,args.obsid) print(cmd);os.system(cmd) print("finished...\n") def main(args=None): parser = get_parser() args = parser.parse_args(args) niauto(args) if __name__=="__main__": main()
print "\nSTRINGS" s = 'hello' print ('h' in s) == True print ('H' in s) == False print ('e' not in s) == False print ('L' not in s) == True print ('hello' + ' world') == 'hello world' print 'a'*3 == 'aaa' print 2*'hello' == 'hellohello' s = '01234' print s[4] == '4' print s[-1] == '4' print s[0:3] == s[:3] == s[None:3] == '012' print s[0:] == s[0:None] == s[:] == '01234' print s[1:3] == '12' print s[-1:3] == '' print s[-3:3] == '2' print s[-4:-1] == '123' print s[0:5:1] == s[:5:1] == s[0::1] == s[0:5:] == s[0::] == s[:5:] == s[::1] == s[::] =='01234' print s[::-1] == '43210' print s[4:2:-1] == '43' print s[-1:2:-2] == '4' print len(s) == 5 print min(s) == '0' print max(s) == '4' print "\nLISTS" l = [0,1,2,3,4] print (0 in l) == True print (5 in l) == False print (4 not in l) == False print ('hello' not in l) == True print ([0,1,2] + [3,4]) == l print [0]*3 == [0,0,0] print 2*[1,2] == [1,2,1,2] l2 = [[]]*3 l2[0].append(3) print l2 == [[3],[3],[3]] print l[4] == 4 print l[-1] == 4 print l[0:3] == l[:3] == l[None:3] == [0,1,2] print l[0:] == l[0:None] == l[:] == [0,1,2,3,4] print l[1:3] == [1,2] print l[-1:3] == [] print l[-3:3] == [2] print l[-4:-1] == [1,2,3] print l[0:5:1] == l[:5:1] == l[0::1] == l[0:5:] == l[0::] == l[:5:] == l[::1] == l[::] == [0,1,2,3,4] print l[::-1] == [4,3,2,1,0] print l[4:2:-1] == [4,3] print l[-1:2:-2] == [4] print len(l) == 5 print min(l) == 0 print max(l) == 4 print "\nTUPLES" t = (0,1,2,3,4) print (0 in t) == True print (5 in t) == False print (4 not in t) == False print ('hello' not in t) == True print ((0,1,2) + (3,4)) == t print (0,)*3 == (0,0,0) print 2*(1,2) == (1,2,1,2) print t[4] == 4 print t[-1] == 4 print t[0:3] == t[:3] == t[None:3] == (0,1,2) print t[0:] == t[0:None] == t[:] == (0,1,2,3,4) print t[1:3] == (1,2) print t[-1:3] == () print t[-3:3] == (2,) print t[-4:-1] == (1,2,3) print t[0:5:1] == t[:5:1] == t[0::1] == t[0:5:] == t[0::] == t[:5:] == t[::1] == t[::] == (0,1,2,3,4) print t[::-1] == (4,3,2,1,0) print t[4:2:-1] == (4,3) print t[-1:2:-2] == (4,) print len(t) == 5 print min(t) == 0 print max(t) == 4
#Done by Carlos Amaral (20/07/2020) #try 15.5- Refactoring """ The fill_walk() method is lengthy. Create a new method called get_step() to determine the direction and distance for each step, and then calculate the step. You should end up with two calls to get_step() in fill_walk() : x_step = self.get_step() y_step = self.get_step() This refactoring should reduce the size of fill_walk() and make the method easier to read and understand. """ import matplotlib.pyplot as plt from random_walk3 import RandomWalk #Keep making new walks as long as the program is active. while True: #Make a random walk. rw = RandomWalk(5000) rw.fill_walk() #Plot the points in the walk. plt.style.use('classic') fig, ax = plt.subplots() point_numbers = range(rw.num_points) ax.plot(rw.x_values, rw.y_values, linewidth=2) #Emphasize the first and last points ax.scatter(rw.x_values, rw.y_values, c=point_numbers, cmap=plt.cm.Blues, edgecolors='none', s=15) ax.scatter(rw.x_values[-1], rw.y_values[-1], c='red', edgecolors='none', s=100) plt.show() keep_running = input("Make another walk? (y/n): ") if keep_running == 'n': break
from torchtext import data import os class SST1Dataset(data.TabularDataset): dirname = 'data' @classmethod def splits(cls, text_field, label_field, train='phrases.train.tsv', validation='dev.tsv', test='test.tsv'): prefix_name = 'stsa.fine.' path = './data' return super(SST1Dataset, cls).splits( os.path.join(path, prefix_name), train, validation, test, format='TSV', fields=[('label', label_field), ('text', text_field)] )
from dataloader import dataloader from dataloader.db.session import mapping_session objectList = ['obj A', 'obj B'] #export sf = dataloader(instance = 'test', userName = '<source-username>', password = '<source-password>', securityToken = '<source-token>' ) sf.exportRelationship(objectList) for item in objectList: sf.exportData(item) #import db = mapping_session('<unique-ID>','<source>','<destination>') sf = dataloader( instance = 'test', userName = '<destination-username>', password = '<destination-password>', securityToken = '<destination-token>' ) for item in objectList: sf.insertData(item, db) for item in objectList: sf.updateData(item, db)
import sys from weird_mesh import getWeirdMesh argument = sys.argv[1] n = int(sys.argv[2]) maillages = {"cartesian": "o", "triangle": "/\\//", "checkerboard": "o+", "raf_loc": "o123456789"} xmin, xmax, ymin, ymax = 0., 1., 0., 1. if argument == "raf_loc": f = lambda x, y: 2 * (int(x > 0.5 and y < 0.5) + int(x > 0.75 and y < 0.25)) else: f = None if argument == "checkerboard": n += 1 getWeirdMesh(xmin, xmax, ymin, ymax, list(range(n + 1)), list(range(n + 1)), maillages[argument], func=f).write("mesh.med", 2)
import pandas as pd import json def create_hourly_elective_prob_json( path_to_patient_df_csv: str, output_directory: str = "." ) -> pd.DataFrame: """ This function uses data from "patient_df.csv" to create "hourly_elective_prob.json". This is needed to create the forecast. It is important that "patient_df.csv" follows this data dictionary including all required fields and field formats: "../../config/patient_data_dictionary.json". Parameters ---------- path_to_patient_df_csv : str The input is the path to the ""patient_df.csv"" file. With format: "../../config/patient_data_dictionary.json" output_directory: str The directory where "create_hourly_elective_prob.json" will be saved. The default is to be saved in the same directory as this file. Returns ---------- df : pd.DataFrame The dataframe aggregates the data from path_to_patient_df_csv and summarises the proportion of elective patients per date and hour. json file: Called - "create_hourly_elective_prob.json". This file is required to run the forecast and contains the df as summarised above. The file is saved in the directory define as the input. """ # read in path to pandas dataframe. df_csv = pd.read_csv(path_to_patient_df_csv) # Group by "ADMIT_HOUR" and "ELECTIVE" and count number of patient in those categories. df = ( df_csv.groupby(["ADMIT_HOUR", "ELECTIVE"])["DIM_PATIENT_ID"] .count() .reset_index() ) # Group by "ADMIT_HOUR" and "ELECTIVE" and count number of patient in those categories. df = df.pivot( index="ADMIT_HOUR", columns="ELECTIVE", values="DIM_PATIENT_ID" ) # Check there are only two categories in field "ELECTIVE" if not throw an error assert ( len(df.columns) == 2 ), f"ELECTIVE field must only contain 1 and 0. Current df columns: {df.columns}" # Add together the non elective and elective patient groupped by admit_hour try: df["sum"] = df[0] + df[1] # Throw value error if the columns 0 and 1 are not found except KeyError as e: raise ValueError("Elective field must only contain 1 and 0.") from e # For each hour state the proportion of elective patients per hour df["elective_prob"] = df[1] / df["sum"] # Round to two decimal places and fill in missing values df["elective_prob"] = df["elective_prob"].round(2).fillna(0) # Write dataframe to json format df["elective_prob"].to_json( f"{output_directory}/hourly_elective_prob.json" ) # Message to show script has run print( f"Fake Data Generated! File saved: {output_directory}/hourly_elective_prob.json." ) return df def create_specialty_info_json( path_to_patient_df_csv: str, path_to_is_medical_json: str, output_directory: str = ".", ) -> pd.DataFrame: """ This function uses data from "patient_df.csv" to create "specialty_info.json". This is needed to create the forecast. It is important that "patient_df.csv" follows this data dictionary including all required fields and field formats: "../../config/patient_data_dictionary.json". Parameters ---------- path_to_patient_df_csv : str The input is the path to the "patient_df.csv" file. With format: "../../config/patient_data_dictionary.json" path_to_is_medical_json: str This json file maps the categories "ADMIT_SPEC" to whether it is "is_medical" or not with "true" and "false". An example file to create can be found here: "../../config/fake_data_categories/fake_speciality_is_medical_mapping.json" output_directory: str The directory where "specialty_info.json" will be saved. The default is to be saved in the same directory as this file. Returns ---------- df : pd.DataFrame The dataframe aggregates the data from path_to_patient_df_csv and summarises the proportion of elective patients per date and hour. json file: Called - "specialty_info.json". This file is required to run the forecast and contains the df as summarised above. The file is saved in the directory define as the input. """ # read in path to pandas dataframe. df_csv = pd.read_csv(path_to_patient_df_csv) # Group by admission speciality and count number of patients # reset index df = df_csv.groupby(["ADMIT_SPEC"])["DIM_PATIENT_ID"].count().reset_index() # Define the portion patients of that speiciality by taking the total patients # and dividing by the total for that specilaity df["probability"] = df["DIM_PATIENT_ID"] / sum(df["DIM_PATIENT_ID"]) # Round to two decimal places and fill in missing values # AS commented out as prevents sum to 1 used later in patient_sampler.py#L279 # df["probability"] = df["probability"].round(2).fillna(0) # define if the department is medical or not # Load data_description.json to get columns required for training data mapping = load_is_medical_mapping(path_to_is_medical_json) # Add mappings to dataframe df = df.merge(mapping, on="ADMIT_SPEC") # Format for json" df.set_index("ADMIT_SPEC", drop=True, inplace=True) df_dict = df[["probability", "is_medical"]].transpose().to_dict() # Save to json file with open(f"{output_directory}/specialty_info.json", "w") as outfile: json.dump(df_dict, outfile) # Message to show script has run print( f"Fake Data Generated! File saved: {output_directory}/specialty_info.json." ) return df def load_is_medical_mapping(path_to_is_medical_json: str) -> pd.DataFrame: """ This function takes the defined json value Parameters ---------- path_to_is_medical_json: str This will contain a list of specilaities listed in `ADMIT_SPEC` in the `patient_df.csv` file and state whether it is medical or not by `true` or `false` in a python dictionary format, e.g. {"Urology" : false, "Cardiology": True}. An example of the file which needs to be created can be found here: "../../config/fake_data_categories/fake_speciality_is_medical_mapping.json". Returns ---------- mapping_df : pd.DataFrame The dataframe contains the contents from the json file. """ # Load json file with open(path_to_is_medical_json, "r") as file: mapping = json.load(file) # Read contents and fornat mapping_df = pd.DataFrame.from_dict(mapping, orient="index") mapping_df.reset_index(level=0, inplace=True) # Rename columns in dataframe mapping_df.rename( {"index": "ADMIT_SPEC", 0: "is_medical"}, axis=1, inplace=True ) return mapping_df
import datasetRead import dataInputFormat import pickle from sklearn.neural_network import MLPClassifier from sklearn.metrics import accuracy_score from sklearn.tree import DecisionTreeClassifier from sklearn.svm import SVC from datasetRead import Dataset from dataInputFormat import DataInput_Categorical, DataInput_Labelled d = Dataset() dIFLabelled = DataInput_Labelled() dIFCategorical = DataInput_Categorical() class ourSVMClassifier: def trainModel(self): d.ReadLabelledDataSet() self.TrainedSVMclf = SVC(kernel="linear") self.TrainedSVMclf.fit(d.X_train, d.Y_train) def dumpPickle(self): SVMPickleFile = "Pickle_SVMClf.pkl" SVMPickledModel = open(SVMPickleFile,'wb') pickle.dump(self.TrainedSVMclf,SVMPickledModel) SVMPickledModel.close() def loadPickle(self): SVMPickleFile = "Pickle_SVMClf.pkl" SVMPickledModel = open(SVMPickleFile,'rb') self.SVMclf = pickle.load(SVMPickledModel) def accuracyCheck(self): d.ReadLabelledDataSet() print("\nSVM Classifier:") test_predicted = self.TrainedSVMclf.predict(d.X_test) print("Accuracy for Testing Dataset:",accuracy_score(d.Y_test, test_predicted)) train_predicted = self.TrainedSVMclf.predict(d.X_train) print("Accuracy for Training Dataset:",accuracy_score(d.Y_train, train_predicted)) def runModel(self,inputPrediction,t1,t2): winnerTeam = self.SVMclf.predict([inputPrediction]) return winnerTeam[0] class ourMLPClassifier: def trainModel(self): d.ReadCategoricalDataSet() self.TrainedMLPclf = MLPClassifier(solver='lbfgs', alpha=1e-5, hidden_layer_sizes=(100, 32), random_state=1) self.TrainedMLPclf.fit(d.X_train, d.Y_train) def dumpPickle(self): MLPPickleFile = "Pickle_MLPClf.pkl" MLPPickledModel = open(MLPPickleFile,'wb') pickle.dump(self.TrainedMLPclf,MLPPickledModel) MLPPickledModel.close() def loadPickle(self): MLPPickleFile = "Pickle_MLPClf.pkl" MLPPickledModel = open(MLPPickleFile,'rb') self.MLPclf = pickle.load(MLPPickledModel) def accuracyCheck(self): d.ReadCategoricalDataSet() print("\nMulti Layer Perceptron Classifer:") test_predicted = self.TrainedMLPclf.predict(d.X_test) print("Accuracy for Testing Dataset:",accuracy_score(d.Y_test, test_predicted)) train_predicted = self.TrainedMLPclf.predict(d.X_train) print("Accuracy for Training Dataset:",accuracy_score(d.Y_train, train_predicted)) def runModel(self,inputPrediction,t1,t2): ourPrediction = self.MLPclf.predict_proba([inputPrediction]) dIFCategorical.hashingTargetWinners() totalPrediction = ourPrediction[0][dIFCategorical.winnerIndex[t1]] + ourPrediction[0][dIFCategorical.winnerIndex[t2]] predictionT1 = (ourPrediction[0][dIFCategorical.winnerIndex[t1]]/totalPrediction) * 100 predictionT2 = (ourPrediction[0][dIFCategorical.winnerIndex[t2]]/totalPrediction) * 100 predictionT1 = format(float(predictionT1), '.4f') predictionT2 = format(float(predictionT2), '.4f') if dIFCategorical.winnerIndex[t1] in [1,6,8,13,15,17,18,21] and float(predictionT1) < 10.0: predictionT1 = float(predictionT1) + 20 predictionT2 = float(predictionT2) - 20 elif dIFCategorical.winnerIndex[t1] in [1,6,8,13,15,17,18,21] and float(predictionT1) < 20.0: predictionT1 = float(predictionT1) + 10 predictionT2 = float(predictionT2) - 10 if dIFCategorical.winnerIndex[t2] in [1,6,8,13,15,17,18,21] and float(predictionT2) < 10.0: predictionT2 = float(predictionT2) + 20 predictionT1 = float(predictionT1) - 20 elif dIFCategorical.winnerIndex[t2] in [1,6,8,13,15,17,18,21] and float(predictionT2) < 20.0: predictionT2 = float(predictionT2) + 10 predictionT1 = float(predictionT1) - 10 winnerTeam="" if predictionT1>predictionT2: winnerTeam=t1 else: winnerTeam=t2 return winnerTeam class ourDTClassifier: def trainModel(self): d.ReadCategoricalDataSet() self.TrainedDTclf = DecisionTreeClassifier() self.TrainedDTclf.fit(d.X_train, d.Y_train) def dumpPickle(self): DTPickleFile = "Pickle_DTClf.pkl" DTPickledModel = open(DTPickleFile,'wb') pickle.dump(self.TrainedDTclf,DTPickledModel) DTPickledModel.close() def loadPickle(self): DTPickleFile = "Pickle_DTClf.pkl" DTPickledModel = open(DTPickleFile,'rb') self.DTclf = pickle.load(DTPickledModel) def accuracyCheck(self): d.ReadCategoricalDataSet() print("\nDecision Tree Classifier:") test_predicted = self.TrainedDTclf.predict(d.X_test) print("Accuracy for Testing Dataset:",accuracy_score(d.Y_test, test_predicted)) train_predicted = self.TrainedDTclf.predict(d.X_train) print("Accuracy for Training Dataset:",accuracy_score(d.Y_train, train_predicted)) def runModel(self,inputPrediction,t1,t2): ourPrediction = self.DTclf.predict([inputPrediction]) dIFCategorical.hashingTargetWinners() indexTeam1 = dIFCategorical.winnerIndex[t1] indexTeam2 = dIFCategorical.winnerIndex[t2] winnerTeam = "" if ourPrediction[0][indexTeam1] == 1: winnerTeam = t1 elif ourPrediction[0][indexTeam2] == 1: winnerTeam = t2 else: winnerTeam = "DT Classifier Can't Predict!" return winnerTeam
print(__file__) print("Loading isstools, preparing GUI...") import functools import isstools.xlive import collections import atexit import PyQt5 from bluesky.examples import motor motor.move = motor.set detector_dictionary = {colmirror_diag.name: {'obj': colmirror_diag, 'elements': [colmirror_diag.stats1.total.name, colmirror_diag.stats2.total.name]}, screen_diag.name: {'obj': screen_diag, 'elements': [screen_diag.stats1.total.name, screen_diag.stats2.total.name]}, mono_diag.name: {'obj': mono_diag, 'elements': [mono_diag.stats1.total.name, mono_diag.stats2.total.name]}, dcr_diag.name: {'obj': dcr_diag, 'elements': [dcr_diag.stats1.total.name, dcr_diag.stats2.total.name]}, #pba1.adc1.name: {'obj': pba1.adc1, 'elements': ['pba1_adc1_volt']}, pba1.adc3.name: {'obj': pba1.adc3, 'elements': ['pba1_adc3_volt']}, pba1.adc4.name: {'obj': pba1.adc4, 'elements': ['pba1_adc4_volt']}, pba1.adc5.name: {'obj': pba1.adc5, 'elements': ['pba1_adc5_volt']}, pba1.adc6.name: {'obj': pba1.adc6, 'elements': ['pba1_adc6_volt']}, pba1.adc7.name: {'obj': pba1.adc7, 'elements': ['pba1_adc7_volt']}, pba1.adc8.name: {'obj': pba1.adc8, 'elements': ['pba1_adc8_volt']}, pb1.enc1.name: {'obj': pb1.enc1, 'elements': ['pb1_enc1_pos_I']}, } motors_dictionary = {#jj_slits.top.name: {'name': jj_slits.top.name, 'description':jj_slits.top.name, 'object': jj_slits.top}, # jj_slits.bottom.name: {'name': jj_slits.bottom.name, 'description':jj_slits.bottom.name, 'object': jj_slits.bottom}, # jj_slits.outboard.name: {'name': jj_slits.outboard.name, 'description':jj_slits.outboard.name, 'object': jj_slits.outboard}, # jj_slits.inboard.name: {'name': jj_slits.inboard.name, 'description':jj_slits.inboard.name, 'object': jj_slits.inboard}, beamstop.horizontal.name: {'name': beamstop.horizontal.name, 'description': beamstop.horizontal.name, 'object':beamstop.horizontal}, beamstop.vertical.name: {'name': beamstop.vertical.name, 'description': beamstop.vertical.name, 'object': beamstop.vertical}, ip_y_stage.name: {'name': ip_y_stage.name, 'description': ip_y_stage.name, 'object': ip_y_stage}, sample_stage1.rotary.name: {'name': sample_stage1.rotary.name, 'description':sample_stage1.rotary.name, 'object':sample_stage1.rotary}, sample_stage1.x.name: {'name': sample_stage1.x.name, 'description':sample_stage1.x.name, 'object':sample_stage1.x}, sample_stage1.y.name: {'name': sample_stage1.y.name, 'description':sample_stage1.y.name, 'object':sample_stage1.y}, sample_stage1.z.name: {'name': sample_stage1.z.name, 'description':sample_stage1.z.name, 'object':sample_stage1.z}, sample_stage1.theta.name: {'name': sample_stage1.theta.name, 'description':sample_stage1.theta.name, 'object':sample_stage1.theta}, sample_stage1.chi.name: {'name': sample_stage1.chi.name, 'description':sample_stage1.chi.name, 'object':sample_stage1.chi}, } shutters_dictionary = { shutter_fe.name: shutter_fe, shutter_ph.name: shutter_ph, shutter_fs.name: shutter_fs, } sample_stages = [{'x': sample_stage1.x.name, 'y': sample_stage1.y.name}] print(mono1) newApp = PyQt5.QtWidgets.QApplication(sys.argv) xlive_gui = isstools.xlive.XliveGui(plan_funcs=[tscan, tscan_xs3, get_offsets, xs_count], prep_traj_plan=prep_traj_plan, diff_plans=[count_qas, dark_frame_preprocessor], RE=RE, db=db, accelerator=nsls_ii, mono=mono1, sdd = xs, shutters_dict=shutters_dictionary, det_dict=detector_dictionary, aux_plan_funcs ={ 'set_reference_foil': set_reference_foil, 'get_reference_foil': get_reference_foil, }, motors_dict=motors_dictionary, general_scan_func=general_scan, sample_stages = sample_stages, window_title="XLive @QAS/7-BM NSLS-II", ) sys.stdout = xlive_gui.emitstream_out def xlive(): xlive_gui.show() #sys.stdout = xlive_gui.emitstream_out #sys.stderr = xlive_gui.emitstream_err #from isstools.xview import XviewGui #xview_gui = XviewGui(PB_PULSES_PER_DEGREE) ## jlynch 8/30 #import pyinstrument #profiler = pyinstrument.Profiler() #profiler.start() #print('starting pyinstrument profiler') ## jlynch 8/30 xlive()
def suggest_params(trial): dropout = trial.suggest_float('dropout', 0, 0.3, step=0.05) # used twice activation = trial.suggest_categorical('activation', ['linear', 'leakyrelu']) # used for conditional sampling rna_hidden = trial.suggest_int('rna_hidden', 500, 2000, step=250) # hdim should be less than rna_hidden hdim = trial.suggest_int('hdim', 100, min(rna_hidden, 800), step=100) # shared_hidden should be less than hdim shared_hidden = trial.suggest_int('shared_hidden', 100, min(hdim * 2, 500), step=100) # zdim should be less than shared_hidden num_layers = trial.suggest_int('num_layers', 1, 3, step=1) if activation == 'leakyrelu' else 1 rna_num_layers = trial.suggest_int('rna_num_layers', 1, 3, step=1) loss_weights_kl = trial.suggest_float('loss_weights_kl', 1e-10, 1e-4, log=True) params = { 'batch_size': 512, 'learning_rate': trial.suggest_float('lr', 1e-5, 1e-3, log=True), 'loss_weights': [1.0, 0.0, loss_weights_kl], 'joint': { 'activation': activation, 'batch_norm': True, 'dropout': dropout, 'hdim': hdim, 'losses': ['MSE', 'CE'], 'num_layers': num_layers, 'shared_hidden': [shared_hidden] * num_layers, 'zdim': trial.suggest_int('zdim', 5, min(shared_hidden, 50), step=5), 'c_embedding_dim': 20, }, 'rna': { 'activation': 'leakyrelu', 'batch_norm': True, 'dropout': dropout, 'gene_hidden': [rna_hidden] * rna_num_layers, 'num_layers': rna_num_layers, 'output_activation': 'linear' }, 'seq_model_hyperparams': None, } return params
import copy import torch from federatedscope.core.auxiliaries.optimizer_builder import get_optimizer from federatedscope.core.trainers.trainer import GeneralTorchTrainer from federatedscope.core.optimizer import wrap_regularized_optimizer from typing import Type def wrap_DittoTrainer( base_trainer: Type[GeneralTorchTrainer]) -> Type[GeneralTorchTrainer]: """ Build a `DittoTrainer` with a plug-in manner, by registering new functions into specific `BaseTrainer` The Ditto implementation, "Ditto: Fair and Robust Federated Learning Through Personalization. (ICML2021)" based on the Algorithm 2 in their paper and official codes: https://github.com/litian96/ditto """ # ---------------- attribute-level plug-in ----------------------- init_Ditto_ctx(base_trainer) # ---------------- action-level plug-in ----------------------- base_trainer.register_hook_in_train( new_hook=hook_on_fit_start_set_regularized_para, trigger="on_fit_start", insert_pos=0) base_trainer.register_hook_in_train( new_hook=hook_on_batch_start_switch_model, trigger="on_batch_start", insert_pos=0) base_trainer.replace_hook_in_train( new_hook=_hook_on_batch_forward_flop_count, target_trigger="on_batch_forward", target_hook_name="_hook_on_batch_forward_flop_count") # evaluation is based on the local personalized model base_trainer.register_hook_in_eval( new_hook=hook_on_fit_start_switch_local_model, trigger="on_fit_start", insert_pos=0) base_trainer.register_hook_in_eval( new_hook=hook_on_fit_end_switch_global_model, trigger="on_fit_end", insert_pos=-1) base_trainer.register_hook_in_train(new_hook=hook_on_fit_end_free_cuda, trigger="on_fit_end", insert_pos=-1) base_trainer.register_hook_in_eval(new_hook=hook_on_fit_end_free_cuda, trigger="on_fit_end", insert_pos=-1) return base_trainer def init_Ditto_ctx(base_trainer): """ init necessary attributes used in Ditto, `global_model` acts as the shared global model in FedAvg; `local_model` acts as personalized model will be optimized with regularization based on weights of `global_model` """ ctx = base_trainer.ctx cfg = base_trainer.cfg ctx.global_model = copy.deepcopy(ctx.model) ctx.local_model = copy.deepcopy(ctx.model) # the personalized model ctx.models = [ctx.local_model, ctx.global_model] ctx.optimizer_for_global_model = get_optimizer( cfg.optimizer.type, ctx.global_model, cfg.optimizer.lr, weight_decay=cfg.optimizer.weight_decay) ctx.optimizer_for_local_model = get_optimizer( cfg.optimizer.type, ctx.local_model, cfg.personalization.lr, weight_decay=cfg.optimizer.weight_decay) ctx.optimizer_for_local_model = wrap_regularized_optimizer( ctx.optimizer_for_local_model, cfg.personalization.regular_weight) ctx.model = ctx.global_model del ctx.optimizer # track the batch_num, epoch_num, for local & global model respectively ctx.num_train_batch_for_local_model, ctx.num_train_batch_last_epoch_for_local_model, \ ctx.num_train_epoch_for_local_model, ctx.num_total_train_batch = \ ctx.pre_calculate_batch_epoch_num(cfg.personalization.local_update_steps) # In the first `num_train_batch`, `num_train_batch_last_epoch`, and `num_train_epoch`, # we will manipulate local models, and manipulate global model in the remaining steps ctx.num_train_batch += ctx.num_train_batch_for_local_model ctx.num_train_batch_last_epoch += ctx.num_train_batch_last_epoch_for_local_model ctx.num_train_epoch += ctx.num_train_epoch_for_local_model def hook_on_fit_start_set_regularized_para(ctx): # set the compared model data for local personalized model ctx.global_model.to(ctx.device) ctx.local_model.to(ctx.device) ctx.global_model.train() ctx.local_model.train() compared_global_model_para = [{ "params": list(ctx.global_model.parameters()) }] ctx.optimizer_for_local_model.set_compared_para_group( compared_global_model_para) def _hook_on_batch_forward_flop_count(ctx): if ctx.monitor.flops_per_sample == 0: # calculate the flops_per_sample x, _ = [_.to(ctx.device) for _ in ctx.data_batch] from fvcore.nn import FlopCountAnalysis flops_one_batch = FlopCountAnalysis(ctx.model, x).total() # besides the normal forward flops, the regularization adds the cost of number of model parameters flops_one_batch += ctx.monitor.total_model_size / 2 ctx.monitor.track_avg_flops(flops_one_batch, ctx.batch_size) ctx.monitor.total_flops += ctx.monitor.flops_per_sample * ctx.batch_size def hook_on_batch_start_switch_model(ctx): last_epoch_use_local_model = ctx.cur_epoch_i == (ctx.num_train_epoch - 1) and \ ctx.cur_batch_i <= ctx.num_train_batch_last_epoch_for_local_model use_local_model = last_epoch_use_local_model or ctx.cur_epoch_i <= ctx.num_train_epoch_for_local_model or \ ctx.cur_batch_i <= ctx.num_train_batch_for_local_model if use_local_model: ctx.model = ctx.local_model ctx.optimizer = ctx.optimizer_for_local_model else: ctx.model = ctx.global_model ctx.optimizer = ctx.optimizer_for_global_model # Note that Ditto only updates the para of global_model received from other FL participants, # and in the remaining steps, ctx.model has been = ctx.global_model, thus we do not need register the following hook # def hook_on_fit_end_link_global_model(ctx): # ctx.model = ctx.global_model def hook_on_fit_start_switch_local_model(ctx): ctx.model = ctx.local_model ctx.model.eval() def hook_on_fit_end_switch_global_model(ctx): ctx.model = ctx.global_model def hook_on_fit_end_free_cuda(ctx): ctx.global_model.to(torch.device("cpu")) ctx.local_model.to(torch.device("cpu"))
from __future__ import print_function, unicode_literals, absolute_import __all__=["emacs", "notemacs", "vi"] from . import emacs, notemacs, vi editingmodes = [emacs.EmacsMode, notemacs.NotEmacsMode, vi.ViMode] #add check to ensure all modes have unique mode names
# # The Template-Python distribution is Copyright (C) Sean McAfee 2007-2008, # derived from the Perl Template Toolkit Copyright (C) 1996-2007 Andy # Wardley. All Rights Reserved. # # The file "LICENSE" at the top level of this source distribution describes # the terms under which this file may be distributed. # import locale as Locale import re import time as Time from template.plugin import Plugin from template.util import TemplateException """ template.plugin.date - Plugin to generate formatted date strings SYNOPSIS [% USE date %] # use current time and default format [% date.format %] # specify time as seconds since epoch or 'h:m:s d-m-y' string [% date.format(960973980) %] [% date.format('4:20:36 21/12/2000') %] # specify format [% date.format(mytime, '%H:%M:%S') %] # specify locale [% date.format(date.now, '%a %d %b %y', 'en_GB') %] # named parameters [% date.format(mytime, format = '%H:%M:%S') %] [% date.format(locale = 'en_GB') %] [% date.format(time = date.now, format = '%H:%M:%S', locale = 'en_GB) %] # specify default format to plugin [% USE date(format = '%H:%M:%S', locale = 'de_DE') %] [% date.format %] ... DESCRIPTION The Date plugin provides an easy way to generate formatted time and date strings by delegating to the POSIX strftime() routine. The plugin can be loaded via the familiar USE directive. [% USE date %] This creates a plugin object with the default name of 'date'. An alternate name can be specified as such: [% USE myname = date %] The plugin provides the format() method which accepts a time value, a format string and a locale name. All of these parameters are optional with the current system time, default format ('%H:%M:%S %d-%b-%Y') and current locale being used respectively, if undefined. Default values for the time, format and/or locale may be specified as named parameters in the USE directive. [% USE date(format = '%a %d-%b-%Y', locale = 'fr_FR') %] When called without any parameters, the format() method returns a string representing the current system time, formatted by strftime() according to the default format and for the default locale (which may not be the current one, if locale is set in the USE directive). [% date.format %] The plugin allows a time/date to be specified as seconds since the epoch, as is returned by time(). File last modified: [% date.format(filemod_time) %] The time/date can also be specified as a string of the form 'h:m:s d/m/y'. Any of the characters : / - or space may be used to delimit fields. [% USE day = date(format => '%A', locale => 'en_GB') %] [% day.format('4:20:00 9-13-2000') %] Output: Tuesday A format string can also be passed to the format() method, and a locale specification may follow that. [% date.format(filemod, '%d-%b-%Y') %] [% date.format(filemod, '%d-%b-%Y', 'en_GB') %] A fourth parameter allows you to force output in GMT, in the case of seconds-since-the-epoch input: [% date.format(filemod, '%d-%b-%Y', 'en_GB', 1) %] Note that in this case, if the local time is not GMT, then also specifying '%Z' (time zone) in the format parameter will lead to an extremely misleading result. Any or all of these parameters may be named. Positional parameters should always be in the order ($time, $format, $locale). [% date.format(format => '%H:%M:%S') %] [% date.format(time => filemod, format => '%H:%M:%S') %] [% date.format(mytime, format => '%H:%M:%S') %] [% date.format(mytime, format => '%H:%M:%S', locale => 'fr_FR') %] [% date.format(mytime, format => '%H:%M:%S', gmt => 1) %] ...etc... The now() method returns the current system time in seconds since the epoch. [% date.format(date.now, '%A') %] """ # Default strftime() format: FORMAT = "%H:%M:%S %d-%b-%Y" LOCALE_SUFFIX = (".ISO8859-1", ".ISO_8859-15", ".US-ASCII", ".UTF-8"); GMTIME = { True: Time.gmtime, False: Time.localtime } class Date(Plugin): """Plugin to generate formatted date strings.""" def __init__(self, context, params=None): self.params = params or {} def now(self): return int(Time.time()) def format(self, *args): """Returns a formatted time/date string for the specified time (or the current system time if unspecified) using the format, locale, and gmt values specified as arguments or internal values set defined at construction time. Specifying a true value for gmt will override the local time zone and force the output to be for GMT. Any or all of the arguments may be specified as named parameters which get passed as a dictionary as the final argument. """ args, params = self._split_arguments(args) args = list(args) def get(name): if args: return args.pop(0) else: return params.get(name) or self.params.get(name) time = get("time") or self.now() format = get("format") or FORMAT locale = get("locale") gmt = get("gmt") try: # If time is numeric, we assume it's seconds since the epoch: time = int(time) except StandardError: # Otherwise, we try to parse it as a 'H:M:S D:M:Y' string: date = re.split(r"[-/ :]", str(time)) if len(date) < 6: raise TemplateException( "date", "bad time/date string: expects 'h:m:s d:m:y' got: '%s'" % time) date = [str(int(x)) for x in date[:6]] date = Time.strptime(" ".join(date), "%H %M %S %d %m %Y") else: date = GMTIME[bool(gmt)](time) if locale is not None: old_locale = Locale.setlocale(Locale.LC_ALL) try: for suffix in ("",) + LOCALE_SUFFIX: try_locale = "%s%s" % (locale, suffix) try: setlocale = Locale.setlocale(Locale.LC_ALL, try_locale) except Locale.Error: continue else: if try_locale == setlocale: locale = try_locale break datestr = Time.strftime(format, date) finally: Locale.setlocale(Locale.LC_ALL, old_locale) else: datestr = Time.strftime(format, date) return datestr def calc(self): self.throw("Failed to load date calculation module") def manip(self): self.throw("Failed to load date manipulation module") def throw(self, *args): raise TemplateException("date", ", ".join(str(x) for x in args))
import numpy as np import torch from torch.autograd import Variable from tqdm import tqdm import utils from Classifiers.Fashion_Classifier import Fashion_Classifier from Classifiers.Mnist_Classifier import Mnist_Classifier from Classifiers.Cifar_Classifier import Cifar_Classifier from Data.load_dataset import load_dataset_full, load_dataset_test, get_iter_dataset from log_utils import * from Data.data_loader import DataLoader from Evaluation.tools import calculate_frechet_distance mpl.use('Agg') class Reviewer(object): def __init__(self, args): # parameters self.args = args self.epoch_Review = args.epoch_Review self.sample_num = 64 self.batch_size = args.batch_size self.save_dir = args.save_dir self.result_dir = args.result_dir self.sample_dir = args.sample_dir self.dataset = args.dataset self.log_dir = args.log_dir self.gpu_mode = args.gpu_mode self.model_name = args.gan_type self.data_dir = args.data_dir self.gen_dir = args.gen_dir self.verbose = args.verbose self.lr = args.lrC self.momentum = args.momentum self.log_interval = 100 self.sample_num = 100 self.size_epoch = args.size_epoch self.gan_type = args.gan_type self.conditional = args.conditional self.device = args.device self.trainEval = args.trainEval self.num_task = args.num_task self.task_type = args.task_type self.context = args.context self.seed = args.seed if self.conditional: self.model_name = 'C' + self.model_name # Load the generator parameters # The reviewer evaluate generate dataset (loader train) on true data (loader test) # not sur yet if valid should be real or not (it was before) dataset_train, dataset_valid, list_class_train, list_class_valid = load_dataset_full(self.data_dir, args.dataset) dataset_test, list_class_test = load_dataset_test(self.data_dir, args.dataset, args.batch_size) # create data loader for validation and testing self.valid_loader = get_iter_dataset(dataset_valid) self.test_loader = get_iter_dataset(dataset_test) if self.dataset == 'mnist': self.input_size = 1 self.size = 28 elif self.dataset == 'fashion': self.input_size = 1 self.size = 28 elif self.dataset == 'cifar10': self.input_size = 3 self.size = 32 if self.dataset == 'mnist': self.Classifier = Mnist_Classifier(args) elif self.dataset == 'fashion': self.Classifier = Fashion_Classifier(args) elif self.dataset == 'cifar10': self.Classifier = Cifar_Classifier(args) else: print('Not implemented') # this should be train on task def train_classifier(self, epoch, data_loader_train, ind_task): self.Classifier.net.train() train_loss_classif, train_accuracy = self.Classifier.train_on_task(data_loader_train, ind_task=ind_task, epoch=epoch, additional_loss=None) val_loss_classif, valid_accuracy, classe_prediction, classe_total, classe_wrong = self.Classifier.eval_on_task( self.valid_loader, self.verbose) if self.verbose: print( 'Epoch: {} Train set: Average loss: {:.4f}, Accuracy: ({:.2f}%)\n Valid set: Average loss: {:.4f}, Accuracy: ({:.2f}%)'.format( epoch, train_loss_classif, train_accuracy, val_loss_classif, valid_accuracy)) return train_loss_classif, train_accuracy, val_loss_classif, valid_accuracy, ( 100. * classe_prediction) / classe_total def compute_all_tasks_FID(self, args, Best=False): if Best: id = "Best_" else: id = '' list_FID = [] for ind_task in range(self.num_task): list_FID.append(self.compute_FID(args, ind_task, Best)) assert len(list_FID) == self.num_task list_FID = np.array(list_FID) np.savetxt(os.path.join(self.log_dir, id + 'Frechet_Inception_Distance_All_Tasks.txt'), list_FID) def compute_FID(self, args, ind_task, Best=False): if Best: id = "Best_" else: id = '' # load true data : upperbound_disjoint if 'upperbound' in self.task_type: test_file = self.task_type + '_' + str(self.num_task) + '_test.pt' else: test_file = 'upperbound_' + self.task_type + '_' + str(self.num_task) + '_test.pt' true_DataLoader = DataLoader(torch.load(os.path.join(self.data_dir, 'Tasks', self.dataset, test_file)), args)[ self.num_task-1] # load generated data path = os.path.join(self.gen_dir, id + 'train_Task_' + str(ind_task) + '.pt') gen_DataLoader = DataLoader(torch.load(path), args) # compute FID return self.Frechet_Inception_Distance(gen_DataLoader, true_DataLoader, ind_task) def review(self, data_loader_train, task, Best=False): if Best: id = "Best_" else: id = '' if self.dataset == 'mnist': self.Classifier = Mnist_Classifier(self.args) elif self.dataset == 'fashion': self.Classifier = Fashion_Classifier(self.args) else: print('Not implemented') best_accuracy = -1 train_loss = [] train_acc = [] val_loss = [] val_acc = [] valid_acc = [] valid_acc_classes = [] if self.verbose: print("some sample from the generator") path = os.path.join(self.sample_dir, id + 'samples4review_task_' + str(task) + '.png') data_loader_train.visualize_sample(path, self.sample_num, [self.size, self.size, self.input_size]) print("Task : " + str(task)) early_stop = 0. # Training classifier for epoch in range(self.epoch_Review): tr_loss, tr_acc, v_loss, v_acc, v_acc_classes = self.train_classifier(epoch, data_loader_train, task) train_loss.append(tr_loss) train_acc.append(tr_acc) val_loss.append(v_loss) val_acc.append(v_acc) # Save best model if v_acc > best_accuracy: if self.verbose: print("New Best Classifier") print(v_acc) best_accuracy = v_acc self.save(best=True) early_stop = 0. if early_stop == 60: break else: early_stop += 1 valid_acc.append(np.array(v_acc)) valid_acc_classes.append(np.array(v_acc_classes)) # Then load best model self.load() loss, test_acc, classe_prediction, classe_total, classe_wrong = self.Classifier.eval_on_task( self.test_loader, self.verbose) test_acc_classes = 100. * classe_prediction / classe_total if self.verbose: print('\nTest set: Average loss: {:.4f}, Accuracy : ({:.2f}%)'.format( loss, test_acc)) for i in range(10): print('Classe {} Accuracy: {}/{} ({:.3f}%, Wrong : {})'.format( i, classe_prediction[i], classe_total[i], 100. * classe_prediction[i] / classe_total[i], classe_wrong[i])) print('\n') # loss, test_acc, test_acc_classes = self.test() # self.test_classifier(epoch) np.savetxt(os.path.join(self.log_dir, id + 'data_classif_' + self.dataset + '-task' + str(task) + '.txt'), np.transpose([train_loss, train_acc, val_loss, val_acc])) np.savetxt(os.path.join(self.log_dir, id + 'best_score_classif_' + self.dataset + '-task' + str(task) + '.txt'), np.transpose([test_acc])) np.savetxt( os.path.join(self.log_dir, id + 'data_classif_classes' + self.dataset + '-task' + str(task) + '.txt'), np.transpose([test_acc_classes])) return valid_acc, valid_acc_classes def eval_on_train(self, data_loader_train, task): if self.dataset == 'mnist': self.Classifier = Mnist_Classifier(self.args) elif self.dataset == 'fashion': self.Classifier = Fashion_Classifier(self.args) else: print('Not implemented') self.Classifier.load_expert() self.Classifier.net.eval() print("trainEval Task : " + str(task)) loss, train_acc, classe_prediction, classe_total, classe_wrong = self.Classifier.eval_on_task(data_loader_train, self.verbose) train_acc_classes = 100. * classe_prediction / classe_total if self.verbose: print('\nTest set: Average loss: {:.4f}, Accuracy : ({:.2f}%)'.format( loss, train_acc)) for i in range(10): print('Classe {} Accuracy: {}/{} ({:.3f}%, Wrong : {})'.format( i, classe_prediction[i], classe_total[i], 100. * classe_prediction[i] / classe_total[i], classe_wrong[i])) print('\n') return train_acc, train_acc_classes def eval_balanced_on_train(self, data_loader_train): cpt_classes = np.zeros(10) for i, (data, target) in enumerate(data_loader_train): for i in range(target.shape[0]): cpt_classes[target[i]] += 1 print(cpt_classes.astype(int)) return cpt_classes.astype(int) def review_all_tasks(self, args, Best=False): # before launching the programme we check that all files are here to nnot lose time for i in range(self.num_task): if Best: # Best can be use only for Baseline path = os.path.join(self.gen_dir, 'Best_train_Task_' + str(i) + '.pt') else: path = os.path.join(self.gen_dir, 'train_Task_' + str(i) + '.pt') assert os.path.isfile(path) for i in range(self.num_task): if Best: # Best can be use only for Baseline path = os.path.join(self.gen_dir, 'Best_train_Task_' + str(i) + '.pt') else: path = os.path.join(self.gen_dir, 'train_Task_' + str(i) + '.pt') data_loader_train = DataLoader(torch.load(path), args) self.review(data_loader_train, i, Best) def review_all_trainEval(self, args, Best=False): if Best: id = "Best_" else: id = '' list_trainEval = [] list_trainEval_classes = [] list_balance_classes = [] # before launching the programme we check that all files are here to nnot lose time for i in range(self.num_task): if Best: # Best can be use only for Baseline path = os.path.join(self.gen_dir, 'Best_train_Task_' + str(i) + '.pt') else: path = os.path.join(self.gen_dir, 'train_Task_' + str(i) + '.pt') assert os.path.isfile(path) for i in range(self.num_task): if Best: # Best can be use only for Baseline path = os.path.join(self.gen_dir, 'Best_train_Task_' + str(i) + '.pt') else: path = os.path.join(self.gen_dir, 'train_Task_' + str(i) + '.pt') data_loader_train = DataLoader(torch.load(path), args) if self.conditional or Best: train_acc, train_acc_classes = self.eval_on_train(data_loader_train, self.verbose) list_trainEval.append(train_acc) list_trainEval_classes.append(train_acc_classes) else: classe_balance = self.eval_balanced_on_train(data_loader_train) list_balance_classes.append(classe_balance) if self.conditional or Best: assert len(list_trainEval) == self.num_task list_trainEval = np.array(list_trainEval) list_trainEval_classes = np.array(list_trainEval) np.savetxt(os.path.join(self.log_dir, id + 'TrainEval_All_Tasks.txt'), list_trainEval) np.savetxt(os.path.join(self.log_dir, id + 'TrainEval_classes_All_Tasks.txt'), list_trainEval_classes) else: assert len(list_balance_classes) == self.num_task np.savetxt(os.path.join(self.log_dir, id + 'Balance_classes_All_Tasks.txt'), list_balance_classes) # save a classifier or the best classifier def save(self, best=False): if not os.path.exists(self.save_dir): os.makedirs(self.save_dir) if best: torch.save(self.Classifier.net.state_dict(), os.path.join(self.save_dir, self.model_name + '_Classifier_Best.pkl')) else: torch.save(self.Classifier.net.state_dict(), os.path.join(self.save_dir, self.model_name + '_Classifier.pkl')) # load the best classifier or the reference classifier trained on true data only def load(self, reference=False): if reference: save_dir = os.path.join(self.save_dir, "..", "..", "..", "Classifier", 'seed_' + str(self.seed)) self.Classifier.net.load_state_dict(torch.load(os.path.join(save_dir, 'Classifier_Classifier_Best.pkl'))) else: self.Classifier.net.load_state_dict( torch.load(os.path.join(self.save_dir, self.model_name + '_Classifier_Best.pkl'))) def load_best_baseline(self): # best seed searched in the list define in get_best_baseline function, liste_seed = [1, 2, 3, 4, 5, 6, 7, 8] best_seed = utils.get_best_baseline(self.log_dir, self.dataset) save_dir = os.path.join(self.save_dir, "..", "..", "..", "Classifier", 'seed_' + str(best_seed)) self.Classifier.net.load_state_dict(torch.load(os.path.join(save_dir, 'Classifier_Classifier_Best.pkl'))) def Frechet_Inception_Distance(self, Gen_DataLoader, True_DataLoader, ind_task): eval_size = 50 # 0. load reference classifier # self.load_best_baseline() # we load the best classifier self.Classifier.load_expert() self.Classifier.net.eval() if self.dataset == "mnist": latent_size = 320 elif self.dataset == "fashion": latent_size = 320 real_output_table = torch.FloatTensor(eval_size * self.batch_size, latent_size) gen_output_table = torch.FloatTensor(eval_size * self.batch_size, latent_size) # print("get activations on test data") for i, (data, target) in enumerate(True_DataLoader): if i >= eval_size or i >= ( int(len(True_DataLoader) / self.batch_size) - 1): # (we throw away the last batch) break if self.gpu_mode: data, target = data.cuda(self.device), target.cuda(self.device) batch = Variable(data) label = Variable(target.squeeze()) activation = self.Classifier.net(batch, FID=True) real_output_table[i * self.batch_size:(i + 1) * self.batch_size, :] = activation.data # print("get activations on generated data") Gen_DataLoader.shuffle_task() for i, (data, target) in enumerate(Gen_DataLoader): if i >= eval_size or i >= ( int(len(Gen_DataLoader) / self.batch_size) - 1): # (we throw away the last batch) break # 2. use the reference classifier to compute the output vector if self.gpu_mode: data, target = data.cuda(self.device), target.cuda(self.device) batch = Variable(data) label = Variable(target.squeeze()) activation = self.Classifier.net(batch, FID=True) gen_output_table[i * self.batch_size:(i + 1) * self.batch_size, :] = activation.data # compute mu_real and sigma_real mu_real = real_output_table.cpu().numpy().mean(0) cov_real = np.cov(real_output_table.cpu().numpy().transpose()) assert mu_real.shape[0] == latent_size assert cov_real.shape[0] == cov_real.shape[1] == latent_size mu_gen = gen_output_table.cpu().numpy().mean(0) cov_gen = np.cov(gen_output_table.cpu().numpy().transpose()) assert mu_gen.shape[0] == latent_size assert cov_gen.shape[0] == cov_gen.shape[1] == latent_size Frechet_Inception_Distance = calculate_frechet_distance(mu_real, cov_real, mu_gen, cov_gen) if self.verbose: print("Frechet Inception Distance") print(Frechet_Inception_Distance) return Frechet_Inception_Distance
from django.conf.urls import patterns, url from django.utils.translation import ugettext_lazy as _ from connect.discover import views urlpatterns = patterns( '', url(_(r'^map/$'), views.member_map, name='map'), )
from django.db.models import Model, CharField, DecimalField class LeasingMode(Model): """yearly and weekly costs to own a vehicle""" name = CharField(max_length=127) factor_yearly = DecimalField(max_digits=4, decimal_places=2) factor_weekly = DecimalField(max_digits=4, decimal_places=2) def __str__(self): return self.name
from tensorflow import keras import tensorflow as tf from tensorflow.keras.applications import vgg16 from tensorflow.keras.layers import Input def get_loss_network(): loss_net = vgg16.VGG16(include_top=False, weights="imagenet", input_tensor=Input(shape=(256,256,3))) loss_net_outputs = dict([(layer.name, layer.output) for layer in loss_net.layers]) loss_net_activations = keras.Model(inputs=loss_net.inputs, outputs=loss_net_outputs) return loss_net_activations def gram_matrix(x): """ Computes the gram matrix with batch dimension. y = xT * x Inputs: x -- tf.tensor with batch dimension (batch_dim, x1, x2, x3) """ x = tf.transpose(x, (0,3,1,2)) features = tf.reshape(x, (tf.shape(x)[0], tf.shape(x)[1], -1)) gram = tf.matmul(features, tf.transpose(features, (0,2,1))) return gram def compute_content_loss(generated, content, dimensions): """ Computes the content loss from the given features. Equation 2 in paper. Args: generated: Tensor feature map of the generated image. content: Tensor feature map of the content image. dimensions: List of layer dimensions [height, width, channels] """ # Check dimensions assert generated.shape[0] == content.shape[0], "Batch dimensions of generated and content image don't match!" height, width, channels = dimensions[0], dimensions[1], dimensions[2] scaling_factor = (int(height/4) * int(width/4) * channels) # H, W, C # Sum over all elements, including the batch_size to get average loss over the batch. content_reconstruction_loss = tf.math.reduce_sum(tf.square(generated - content)) / (scaling_factor * generated.shape[0]) return content_reconstruction_loss def compute_style_loss(generated, style, dimensions): """ Compute style loss for one layer. """ # Dimensions height, width, channels = dimensions[0], dimensions[1], dimensions[2] scaling_factor = (channels * height * width)**2 generated = gram_matrix(generated) style = gram_matrix(style) # Compute the total average loss over all elements in the batch. res = tf.reduce_sum(tf.square(generated - style)) / (scaling_factor * generated.shape[0]) return res def compute_perceptual_loss(generated_image, content_image, style_image, loss_net_activations, batch_size, content_layers, style_layers): """ Computes the loss with the loss network. Args: tf.tensors, scaled to [0,1] with dim (b,h,w,c), RGB. """ # Combine input tensors to make one pass with all in parallel. input_tensors = tf.concat([generated_image, content_image, style_image], axis=0) # Preprocess input_tensors for vgg16. Expects range [0, 255] input_tensors = tf.keras.applications.vgg16.preprocess_input(input_tensors*255) # Forward pass to get loss from loss network. features = loss_net_activations(input_tensors, training=False) # Initialize loss loss = tf.zeros(shape=()) # Compute content loss for content_layer in content_layers.keys(): layer_features = features[content_layer] generated_features = layer_features[0:batch_size,:,:,:] content_features = layer_features[batch_size:2*batch_size,:,:,:] loss += compute_content_loss(generated_features, content_features, content_layers[content_layer]) # Compute style loss for style_layer in style_layers.keys(): layer_features = features[style_layer] generated_features = layer_features[0:batch_size,:,:,:] style_features = layer_features[2*batch_size,:,:,:] style_features = tf.expand_dims(style_features, 0) loss += compute_style_loss(generated_features, style_features, style_layers[style_layer]) return loss @tf.function def compute_loss_and_grads(content_image, style_image, transform_network, optimizer, loss_net_activations, batch_size, content_layers, style_layers): """ Takes in content and style images as tf.tensors with batch dimension and scaled to range [0,1]. """ with tf.GradientTape() as tape: # Forward pass generated_image = transform_network(content_image, training=True) # Convert to range [0,1] generated_image = ((generated_image * 0.5) + 0.5) # Get loss loss = compute_perceptual_loss(generated_image, content_image, style_image, loss_net_activations, batch_size, content_layers, style_layers) # Get gradients and upate weights grads = tape.gradient(loss, transform_network.trainable_weights) optimizer.apply_gradients(zip(grads, transform_network.trainable_weights)) return loss
# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ VOC2012 DATASET EVALUATE """ import os import time import logging import argparse import cv2 import numpy from src.dataset import pt_dataset, pt_transform import src.utils.functions_args as fa from src.utils.p_util import AverageMeter, intersectionAndUnion, check_makedirs, colorize import mindspore.numpy as np from mindspore import Tensor import mindspore.dataset as ds from mindspore import context import mindspore.nn as nn import mindspore.ops as ops from mindspore.train.serialization import load_param_into_net, load_checkpoint cv2.ocl.setUseOpenCL(False) device_id = int(os.getenv('DEVICE_ID')) context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=device_id, save_graphs=False) def get_parser(): """ Read parameter file -> for ADE20k: ./src/config/voc2012_pspnet50.yaml -> for voc2012: ./src/config/voc2012_pspnet50.yaml """ parser = argparse.ArgumentParser(description='MindSpore Semantic Segmentation') parser.add_argument('--config', type=str, required=True, default='./src/config/voc2012_pspnet50.yaml', help='config file') parser.add_argument('opts', help='see ./src/config/voc2012_pspnet50.yaml for all options', default=None, nargs=argparse.REMAINDER) args_ = parser.parse_args() assert args_.config is not None cfg = fa.load_cfg_from_cfg_file(args_.config) if args_.opts is not None: cfg = fa.merge_cfg_from_list(cfg, args_.opts) return cfg def get_logger(): """ logger """ logger_name = "main-logger" logger_ = logging.getLogger(logger_name) logger_.setLevel(logging.INFO) handler = logging.StreamHandler() fmt = "[%(asctime)s %(levelname)s %(filename)s line %(lineno)d %(process)d] %(message)s" handler.setFormatter(logging.Formatter(fmt)) logger_.addHandler(handler) return logger_ def check(local_args): """ check args """ assert local_args.classes > 1 assert local_args.zoom_factor in [1, 2, 4, 8] assert local_args.split in ['train', 'val', 'test'] if local_args.arch == 'psp': assert (local_args.train_h - 1) % 8 == 0 and (local_args.train_w - 1) % 8 == 0 else: raise Exception('architecture not supported {} yet'.format(local_args.arch)) def main(): """ The main function of the evaluate process """ check(args) logger.info("=> creating model ...") logger.info("Classes: %s", args.classes) value_scale = 255 mean = [0.485, 0.456, 0.406] mean = [item * value_scale for item in mean] std = [0.229, 0.224, 0.225] std = [item * value_scale for item in std] gray_folder = os.path.join(args.result_path, 'gray') color_folder = os.path.join(args.result_path, 'color') test_transform = pt_transform.Compose([pt_transform.Normalize(mean=mean, std=std, is_train=False)]) test_data = pt_dataset.SemData( split='val', data_root=args.data_root, data_list=args.val_list, transform=test_transform) test_loader = ds.GeneratorDataset(test_data, column_names=["data", "label"], shuffle=False) test_loader.batch(1) colors = numpy.loadtxt(args.color_txt).astype('uint8') names = [line.rstrip('\n') for line in open(args.name_txt)] from src.model import pspnet PSPNet = pspnet.PSPNet( feature_size=args.feature_size, num_classes=args.classes, backbone=args.backbone, pretrained=False, pretrained_path="", aux_branch=False, deep_base=True ) ms_checkpoint = load_checkpoint(args.ckpt) load_param_into_net(PSPNet, ms_checkpoint, strict_load=True) PSPNet.set_train(False) test(test_loader, test_data.data_list, PSPNet, args.classes, mean, std, args.base_size, args.test_h, args.test_w, args.scales, gray_folder, color_folder, colors) if args.split != 'test': cal_acc(test_data.data_list, gray_folder, args.classes, names) def net_process(model, image, mean, std=None, flip=True): """ Give the input to the model""" transpose = ops.Transpose() input_ = transpose(image, (2, 0, 1)) # (473, 473, 3) -> (3, 473, 473) mean = np.array(mean) std = np.array(std) if std is None: input_ = input_ - mean[:, None, None] else: input_ = (input_ - mean[:, None, None]) / std[:, None, None] expand_dim = ops.ExpandDims() input_ = expand_dim(input_, 0) if flip: flip_ = ops.ReverseV2(axis=[3]) flip_input = flip_(input_) concat = ops.Concat(axis=0) input_ = concat((input_, flip_input)) model.set_train(False) output = model(input_) _, _, h_i, w_i = input_.shape _, _, h_o, w_o = output.shape if (h_o != h_i) or (w_o != w_i): bi_linear = nn.ResizeBilinear() output = bi_linear(output, size=(h_i, w_i), align_corners=True) softmax = nn.Softmax(axis=1) output = softmax(output) if flip: flip_ = ops.ReverseV2(axis=[2]) output = (output[0] + flip_(output[1])) / 2 else: output = output[0] output = transpose(output, (1, 2, 0)) # Tensor output = output.asnumpy() return output def scale_process(model, image, classes, crop_h, crop_w, h, w, mean, std=None, stride_rate=2 / 3): """ Process input size """ ori_h, ori_w, _ = image.shape pad_h = max(crop_h - ori_h, 0) pad_w = max(crop_w - ori_w, 0) pad_h_half = int(pad_h / 2) pad_w_half = int(pad_w / 2) if pad_h > 0 or pad_w > 0: image = cv2.copyMakeBorder(image, pad_h_half, pad_h - pad_h_half, pad_w_half, pad_w - pad_w_half, cv2.BORDER_CONSTANT, value=mean) new_h, new_w, _ = image.shape image = Tensor.from_numpy(image) stride_h = int(numpy.ceil(crop_h * stride_rate)) stride_w = int(numpy.ceil(crop_w * stride_rate)) grid_h = int(numpy.ceil(float(new_h - crop_h) / stride_h) + 1) grid_w = int(numpy.ceil(float(new_w - crop_w) / stride_w) + 1) prediction_crop = numpy.zeros((new_h, new_w, classes), dtype=float) count_crop = numpy.zeros((new_h, new_w), dtype=float) for index_h in range(0, grid_h): for index_w in range(0, grid_w): s_h = index_h * stride_h e_h = min(s_h + crop_h, new_h) s_h = e_h - crop_h s_w = index_w * stride_w e_w = min(s_w + crop_w, new_w) s_w = e_w - crop_w image_crop = image[s_h:e_h, s_w:e_w].copy() count_crop[s_h:e_h, s_w:e_w] += 1 prediction_crop[s_h:e_h, s_w:e_w, :] += net_process(model, image_crop, mean, std) prediction_crop /= numpy.expand_dims(count_crop, 2) prediction_crop = prediction_crop[pad_h_half:pad_h_half + ori_h, pad_w_half:pad_w_half + ori_w] prediction = cv2.resize(prediction_crop, (w, h), interpolation=cv2.INTER_LINEAR) return prediction def test(test_loader, data_list, model, classes, mean, std, base_size, crop_h, crop_w, scales, gray_folder, color_folder, colors): """ Generate evaluate image """ logger.info('>>>>>>>>>>>>>>>> Start Evaluation >>>>>>>>>>>>>>>>') data_time = AverageMeter() batch_time = AverageMeter() model.set_train(False) end = time.time() for i, (input_, _) in enumerate(test_loader): data_time.update(time.time() - end) input_ = input_.asnumpy() image = numpy.transpose(input_, (1, 2, 0)) h, w, _ = image.shape prediction = numpy.zeros((h, w, classes), dtype=float) for scale in scales: long_size = round(scale * base_size) new_h = long_size new_w = long_size if h > w: new_w = round(long_size / float(h) * w) else: new_h = round(long_size / float(w) * h) image_scale = cv2.resize(image, (new_w, new_h), interpolation=cv2.INTER_LINEAR) prediction += scale_process(model, image_scale, classes, crop_h, crop_w, h, w, mean, std) prediction /= len(scales) prediction = numpy.argmax(prediction, axis=2) batch_time.update(time.time() - end) end = time.time() if ((i + 1) % 10 == 0) or (i + 1 == len(data_list)): logger.info('Test: [{}/{}] ' 'Data {data_time.val:.3f} ({data_time.avg:.3f}) ' 'Batch {batch_time.val:.3f} ({batch_time.avg:.3f}).'.format(i + 1, len(data_list), data_time=data_time, batch_time=batch_time)) check_makedirs(gray_folder) check_makedirs(color_folder) gray = numpy.uint8(prediction) color = colorize(gray, colors) image_path, _ = data_list[i] image_name = image_path.split('/')[-1].split('.')[0] gray_path = os.path.join(gray_folder, image_name + '.png') color_path = os.path.join(color_folder, image_name + '.png') cv2.imwrite(gray_path, gray) color.save(color_path) logger.info('<<<<<<<<<<<<<<<<< End Evaluation <<<<<<<<<<<<<<<<<') def cal_acc(data_list, pred_folder, classes, names): """ Calculation evaluating indicator """ intersection_meter = AverageMeter() union_meter = AverageMeter() target_meter = AverageMeter() for i, (image_path, target_path) in enumerate(data_list): image_name = image_path.split('/')[-1].split('.')[0] pred = cv2.imread(os.path.join(pred_folder, image_name + '.png'), cv2.IMREAD_GRAYSCALE) target = cv2.imread(target_path, cv2.IMREAD_GRAYSCALE) if args.prefix == 'ADE': target -= 1 intersection, union, target = intersectionAndUnion(pred, target, classes) intersection_meter.update(intersection) union_meter.update(union) target_meter.update(target) accuracy = sum(intersection_meter.val) / (sum(target_meter.val) + 1e-10) logger.info( 'Evaluating {0}/{1} on image {2}, accuracy {3:.4f}.'.format(i + 1, len(data_list), image_name + '.png', accuracy)) iou_class = intersection_meter.sum / (union_meter.sum + 1e-10) accuracy_class = intersection_meter.sum / (target_meter.sum + 1e-10) mIoU = numpy.mean(iou_class) mAcc = numpy.mean(accuracy_class) allAcc = sum(intersection_meter.sum) / (sum(target_meter.sum) + 1e-10) logger.info('Eval result: mIoU/mAcc/allAcc {:.4f}/{:.4f}/{:.4f}.'.format(mIoU, mAcc, allAcc)) for i in range(classes): logger.info('Class_{} result: iou/accuracy {:.4f}/{:.4f}, name: {}.'.format(i, iou_class[i], accuracy_class[i], names[i])) if __name__ == '__main__': args = get_parser() logger = get_logger() main()
from go_ml_transpiler.model.xgboost.regressor import Regressor from go_ml_transpiler.utils.model.xgboost import build_tree import os class XGBRegressor(Regressor): SUPPORTED_OBJECTIVE = [ "reg:linear" ] SUPPORTED_BOOSTER = [ "gbtree", "dart", ] def __init__(self, model, indent, **kwargs): super(XGBRegressor, self).__init__(model=model, indent=indent, **kwargs) self._sanity_check() def transpile(self, package_name, method_name, export_method, float_type, **kwargs): low_method_name = method_name.lower() boosters = [] booster_calls = [] for i, booster in enumerate(self.raw_boosters): booster = booster.split() boosters.append( self.template("booster.template").format( package_name=package_name, import_packages=self.template("import.template").format( packages="\n".join( ['{0}"{1}"'.format(self.indent, package) for package in self.import_packages])) if self.import_packages else "", method_name=low_method_name, method_index=i, booster=build_tree( booster, indent=self.indent, missing_condition=self.missing_condition, float_type=float_type), float_type=float_type ) ) booster_calls.append( "\n".join( [ ("" if i == 0 else self.indent) + line for i, line in enumerate( self.template("booster_call.template").format( method_name=low_method_name, method_index=i ).splitlines()) ] ) ) k = { "package_name": package_name, "method_name": method_name.capitalize() if export_method else method_name, "method_calls": "\n".join([("" if i == 0 else self.indent) + line for i, line in enumerate(booster_calls)]), "n_classes": 1, "base_score": float(self.model.base_score), "float_type": float_type } method = self.template("method.template").format(**k) self.transpiled_model = {"transpiled_model": {"boosters": boosters, "method": method}} return self.transpiled_model def write(self, directory): if self.transpiled_model is None: raise ValueError("You should first transpile the model") for i, booster in enumerate(self.transpiled_model["transpiled_model"]["boosters"]): with open(os.path.join(directory, "booster{}.go".format(i)), "w") as f: f.write(booster) with open(os.path.join(directory, "predict.go"), "w") as f: f.write(self.transpiled_model["transpiled_model"]["method"]) def _sanity_check(self): if self.model.objective not in self.SUPPORTED_OBJECTIVE: raise ValueError("Unsupported objective: {}".format(self._objective_error)) if self.model.booster not in self.SUPPORTED_BOOSTER: raise ValueError("Unsupported booster: {}".format(self._booster_error))
from dataclasses import dataclass from typing import List, Optional @dataclass class User: id: int username: str nickname: Optional[str] = "" avatar: str = None email: Optional[str] = None school: Optional[str] = None def __repr__(self) -> str: return f"<User {self.username}>" def __hash__(self): return self.id @dataclass class Team: members: List[User]
#!/usr/bin/python3 # 文件名:mysql_createtable.py import pymysql # 打开数据库连接 db = pymysql.connect('localhost','root','1234','fdtest') # 使用cursor()方法创建一个游标对象cursor cursor = db.cursor() # 使用execute() 方法执行SQL查询 cursor.execute("DROP TABLE IF EXISTS EMPLOYEE") # 使用预处理语句创建表 sql = """CREATE TABLE EMPLOYEE( FIRST_NAME CHAR(20) NOT NULL, LAST_NAME CHAR(20), AGE INT, SEX CHAR(1), INCOME FLOAT)""" cursor.execute(sql) # 关闭数据库连接 db.close()
#Parts of code in this file have been taken (copied) from https://github.com/ml-jku/lsc #Copyright (C) 2018 Andreas Mayr nrLayers = hyperParams.iloc[paramNr].nrLayers nrNodes = hyperParams.iloc[paramNr].nrNodes basicArchitecture = hyperParams.iloc[paramNr].basicArchitecture nrInputFeatures = nrDenseFeatures + nrSparseFeatures hiddenLayerSizes = [nrNodes] * nrLayers layerSizes = [nrInputFeatures] + hiddenLayerSizes + [nrOutputTargets] if basicArchitecture == "selu": activationFunction = actLib.selu dropoutFunction = actLib.dropout_stableVariance idropoutFunction = actLib.dropout_stableVariance initScale = 1.0 tf.reset_default_graph() if "session" in dir(): session.close() session = tf.InteractiveSession(config=tf.ConfigProto(gpu_options=gpu_options)) if nrDenseFeatures > 0.5: xDenseData = tf.placeholder(tf.float32, [None, nrDenseFeatures]) sh0 = tf.shape(xDenseData)[0] if nrSparseFeatures > 0.5: xIndices = tf.placeholder(tf.int64, [None, 2]) xValues = tf.placeholder(tf.float32, [None]) xDim = tf.placeholder(tf.int64, [2]) xSparseData = tf.SparseTensor(indices=xIndices, values=xValues, dense_shape=xDim) sparseMeanInit = tf.placeholder(tf.float32, [1, nrSparseFeatures]) sparseMean = tf.Variable(tf.zeros([1, nrSparseFeatures]), trainable=False, dtype=tf.float32) sh0 = tf.shape(xSparseData)[0] yDenseData = tf.placeholder(tf.float32, [None, nrOutputTargets]) yIndices = tf.placeholder(tf.int64, [None, 2]) yValues = tf.placeholder(tf.float32, [None]) yDim = tf.placeholder(tf.int64, [2]) ySparseData = tf.SparseTensor(indices=yIndices, values=yValues, dense_shape=yDim) ySparseMask = tf.SparseTensor(indices=yIndices, values=tf.ones_like(yValues), dense_shape=yDim) inputDropout = tf.placeholder(tf.float32) hiddenDropout = tf.placeholder(tf.float32) lrGeneral = tf.placeholder(tf.float32) lrWeight = tf.placeholder(tf.float32) lrBias = tf.placeholder(tf.float32) l2PenaltyWeight = tf.placeholder(tf.float32) l2PenaltyBias = tf.placeholder(tf.float32) l1PenaltyWeight = tf.placeholder(tf.float32) l1PenaltyBias = tf.placeholder(tf.float32) mom = tf.placeholder(tf.float32) biasInit = tf.placeholder(tf.float32, [nrOutputTargets]) is_training = tf.placeholder(tf.bool) weightTensors = [] biasTensors = [] hidden = [] hiddenAct = [] hiddenActMod = [] with tf.variable_scope('layer_' + str(0)): hiddenActl = [] hiddenActModl = [] if nrDenseFeatures > 0.5: hiddenActl.append(xDenseData) hiddenActModl.append( xDenseData * tf.to_float(tf.random_uniform([sh0, tf.shape(xDenseData)[1]]) < (1.0 - inputDropout))) if nrSparseFeatures > 0.5: hiddenActl.append(xSparseData) if not (normalizeGlobalSparse or normalizeLocalSparse): hiddenActModl.append(tf.sparse_retain(xSparseData, tf.random_uniform([tf.shape(xSparseData.values)[0]]) < ( 1.0 - inputDropout))) else: hiddenActModl.append(xSparseData) hiddenActInit = hiddenActl hiddenActModInit = hiddenActModl weightTensors.append(None) biasTensors.append(None) hidden.append(None) hiddenAct.append(hiddenActl) hiddenActMod.append(hiddenActModl) idTensors = [] hdTensors = [] layernr = 1 with tf.variable_scope('layer_' + str(layernr)): wList = [] if nrDenseFeatures > 0.5: WlDense = tf.get_variable("W" + str(layernr) + "_dense", trainable=True, initializer=tf.random_normal([nrDenseFeatures, layerSizes[layernr]], stddev=np.sqrt( initScale / float(layerSizes[layernr - 1])))) wList.append(WlDense) if nrSparseFeatures > 0.5: WlSparse = tf.get_variable("W" + str(layernr) + "_sparse", trainable=True, initializer=tf.random_normal([nrSparseFeatures, layerSizes[layernr]], stddev=np.sqrt( initScale / float(layerSizes[layernr - 1])))) wList.append(WlSparse) sparseMeanWSparse = tf.matmul(sparseMean, WlSparse) bl = tf.get_variable('b' + str(layernr), shape=[layerSizes[layernr]], trainable=True, initializer=tf.zeros_initializer()) regRaw = l2PenaltyBias * tf.nn.l2_loss(bl) + l1PenaltyBias * tf.reduce_sum(tf.abs(bl)) if nrDenseFeatures > 0.5: if nrSparseFeatures > 0.5: regRaw = regRaw + l2PenaltyWeight * (tf.nn.l2_loss(WlSparse) + tf.nn.l2_loss(WlDense)) + l1PenaltyWeight * ( tf.reduce_sum(tf.abs(WlSparse)) + tf.reduce_sum(tf.abs(WlDense))) hiddenl = tf.matmul(hiddenActModl[0], WlDense) + tf.sparse_tensor_dense_matmul(hiddenActModl[1], WlSparse) + ( bl + sparseMeanWSparse) else: regRaw = regRaw + l2PenaltyWeight * tf.nn.l2_loss(WlDense) + l1PenaltyWeight * tf.reduce_sum( tf.abs(WlDense)) hiddenl = tf.matmul(hiddenActModl[0], WlDense) + bl else: if nrSparseFeatures > 0.5: regRaw = regRaw + l2PenaltyWeight * tf.nn.l2_loss(WlSparse) + l1PenaltyWeight * tf.reduce_sum( tf.abs(WlSparse)) hiddenl = tf.sparse_tensor_dense_matmul(hiddenActModl[0], WlSparse) + (bl + sparseMeanWSparse) hiddenActModl = hiddenl * tf.to_float( tf.random_uniform([sh0, tf.shape(hiddenl)[1]]) < (1.0 - hiddenDropout)) hiddenActl = activationFunction(hiddenActModl) weightTensors.append(wList) biasTensors.append(bl) hidden.append(hiddenl) hiddenAct.append(hiddenActl) hiddenActMod.append(hiddenActModl) if nrDenseFeatures > 0.5: hdTensors.append(WlDense) idTensors.append(WlDense) if nrSparseFeatures > 0.5: hdTensors.append(WlSparse) if not (normalizeGlobalSparse or normalizeLocalSparse): idTensors.append(WlSparse) for layernr in range(2, len(layerSizes) - 1): with tf.variable_scope('layer_' + str(layernr)): Wl = tf.get_variable("W" + str(layernr), trainable=True, initializer=tf.random_normal([layerSizes[layernr - 1], layerSizes[layernr]], stddev=np.sqrt(initScale / float(layerSizes[layernr - 1])))) bl = tf.get_variable('b' + str(layernr), shape=[layerSizes[layernr]], trainable=True, initializer=tf.zeros_initializer()) regRaw = regRaw + l2PenaltyWeight * tf.nn.l2_loss(Wl) + l1PenaltyWeight * tf.reduce_sum( tf.abs(Wl)) + l2PenaltyBias * tf.nn.l2_loss(bl) + l1PenaltyBias * tf.reduce_sum(tf.abs(bl)) hiddenl = tf.matmul(hiddenActl, Wl) + bl hiddenActModl = hiddenl * tf.to_float( tf.random_uniform([sh0, tf.shape(hiddenl)[1]]) < (1.0 - hiddenDropout)) hiddenActl = activationFunction(hiddenActModl) weightTensors.append(Wl) biasTensors.append(bl) hidden.append(hiddenl) hiddenAct.append(hiddenActl) hiddenActMod.append(hiddenActModl) hdTensors.append(Wl) layernr = len(layerSizes) - 1 with tf.variable_scope('layer_' + str(layernr)): Wl = tf.get_variable("W" + str(layernr), trainable=True, initializer=tf.random_normal([layerSizes[layernr - 1], layerSizes[layernr]], stddev=np.sqrt(initScale / float(layerSizes[layernr - 1])))) bl = tf.get_variable('b' + str(layernr), shape=[layerSizes[layernr]], trainable=True, initializer=tf.zeros_initializer()) regRaw = regRaw + l2PenaltyWeight * tf.nn.l2_loss(Wl) + l1PenaltyWeight * tf.reduce_sum( tf.abs(Wl)) + l2PenaltyBias * tf.nn.l2_loss(bl) + l1PenaltyBias * tf.reduce_sum(tf.abs(bl)) hiddenl = tf.matmul(hiddenActl, Wl) + bl weightTensors.append(Wl) biasTensors.append(bl) hidden.append(hiddenl) hiddenAct.append(None) hiddenActMod.append(None) naMat = tf.where(tf.abs(yDenseData) < 0.5, tf.zeros_like(yDenseData), tf.ones_like(yDenseData)) lossRawDense = tf.nn.sigmoid_cross_entropy_with_logits(labels=(yDenseData + 1.0) / 2.0, logits=hiddenl) * naMat errOverallDense = tf.reduce_mean(tf.reduce_sum(lossRawDense, 1)) + regRaw predNetworkDense = tf.nn.sigmoid(hiddenl) optimizerDense = tf.train.MomentumOptimizer(momentum=mom, learning_rate=lrGeneral).minimize(errOverallDense) hiddenlSelected = tf.gather_nd(hiddenl, yIndices) lossRawSelected = tf.nn.sigmoid_cross_entropy_with_logits(labels=(yValues + 1.0) / 2.0, logits=hiddenlSelected) lossRawSparse = tf.SparseTensor(indices=yIndices, values=lossRawSelected, dense_shape=yDim) errOverallSparse = tf.reduce_mean(tf.sparse_reduce_sum(lossRawSparse, 1)) + regRaw predNetworkSparse = tf.nn.sigmoid(hiddenlSelected) optimizerSparse = tf.train.MomentumOptimizer(momentum=mom, learning_rate=lrGeneral).minimize(errOverallSparse) predNetwork = tf.nn.sigmoid(hiddenl) class MyNoOp: op = tf.no_op() init = tf.global_variables_initializer() biasInitOp = biasTensors[-1].assign(biasInit) if nrSparseFeatures > 0.5: sparseMeanWSparseOp = MyNoOp() sparseMeanInitOp = sparseMean.assign(sparseMeanInit) scaleTrainHd = [tf.assign(hdTensors[i], hdTensors[i] / tf.sqrt(1.0 - hiddenDropout)).op for i in range(0, len(hdTensors))] scalePredictHd = [tf.assign(hdTensors[i], hdTensors[i] * tf.sqrt(1.0 - hiddenDropout)).op for i in range(0, len(hdTensors))] scaleTrainId = [tf.assign(idTensors[i], idTensors[i] / (1.0 - inputDropout)).op for i in range(0, len(idTensors))] scalePredictId = [tf.assign(idTensors[i], idTensors[i] * (1.0 - inputDropout)).op for i in range(0, len(idTensors))] checkNA = [tf.reduce_any(tf.is_nan(x)) for x in weightTensors[1] + weightTensors[2:] + biasTensors[1:]]
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.response.AlipayResponse import AlipayResponse class AlipayOpenAppYiyiyiwuQueryResponse(AlipayResponse): def __init__(self): super(AlipayOpenAppYiyiyiwuQueryResponse, self).__init__() self._chucan = None @property def chucan(self): return self._chucan @chucan.setter def chucan(self, value): self._chucan = value def parse_response_content(self, response_content): response = super(AlipayOpenAppYiyiyiwuQueryResponse, self).parse_response_content(response_content) if 'chucan' in response: self.chucan = response['chucan']
def leiaInt(txt): while True: try: n = int(input(txt)) except: print('ERRO! DIGITE UM NÚMERO INTEIRO VÁLIDO!') else: break return n def leiaFloat(txt): while True: try: n = float(input(txt).replace(',', '.')) except: print('ERRO! DIGITE UM NÚMERO REAL VÁLIDO!') else: break return n # Programa Principal n = leiaInt('Digite um número inteiro: ') f = leiaFloat('Digite um número real: ') print(f'Você acabou de digitar os números {n} e {f}')
""" Created by Epic at 9/1/20 """ import logging from asyncio import AbstractEventLoop __all__ = ("OpcodeDispatcher", "EventDispatcher") class OpcodeDispatcher: """ Receives events identified by their opcode, and handles them by running them through the event loop. Parameters ---------- loop: AbstractEventLoop An AbstractEventLoop used to create callbacks. """ def __init__(self, loop: AbstractEventLoop): self.logger = logging.getLogger("speedcord.dispatcher") self.loop = loop # A dict of the opcode int and a list of coroutines to execute once # an event is sent self.event_handlers = {} def dispatch(self, opcode, *args, **kwargs): """ Dispatches an event to listeners registered to this opcode. Parameters ---------- opcode: int The opcode of the event sent by Discord API. """ self.logger.debug("Dispatching event with opcode: " + str(opcode)) for event in self.event_handlers.get(opcode, []): self.loop.create_task(event(*args, **kwargs)) def register(self, opcode, func): """ Register a handler for a specific opcode. This handler will be called whenever a matching opcode is dispatched. Parameters ---------- opcode: int The opcode from Discord to listen to. func: Callable[[DefaultShard], Any] The function that will be called when the event is dispatched. """ event_handlers = self.event_handlers.get(opcode, []) event_handlers.append(func) self.event_handlers[opcode] = event_handlers class EventDispatcher: """ Receives events identified by their name and handles them by running them through the event loop. Parameters ---------- loop: AbstractEventLoop An AbstractEventLoop used to create callbacks. """ def __init__(self, loop: AbstractEventLoop): self.logger = logging.getLogger("speedcord.dispatcher") self.loop = loop # A dict of the event name and a list of coroutines to execute once # a event is sent self.event_handlers = {} def dispatch(self, event_name, *args, **kwargs): """ Dispatches an event to listeners registered to specified event_name. Parameters ---------- event_name: str The name of the event sent by Discord API. *args: Any Positional arguments to call the event function with. **kwargs: Any Keyword-only arguments to call the event function with. """ self.logger.debug("Dispatching event with name: " + str(event_name)) for event in self.event_handlers.get(event_name, []): self.loop.create_task(event(*args, **kwargs)) def register(self, event_name, func): """ Register a handler for a specific event. This handler will be called whenever an event matching the registered event_name is dispatched. Parameters ---------- event_name: str The event name from Discord to listen to. func: Callable[[DefaultShard], Any] The function that will be called when the event is dispatched. """ event_name = event_name.upper() event_handlers = self.event_handlers.get(event_name, []) event_handlers.append(func) self.event_handlers[event_name] = event_handlers
from elasticsearch import Elasticsearch from elasticsearch.helpers import bulk from elasticsearch import helpers import json import time class ElasticSearchClient(object): # 实例和事务化单个node,若需要多个node,需要重构代码 def __init__(self, host="localhost", port=9200): self.host = host self.port = port self.es_servers = [{ "host": self.host, "port": self.port }] # http_auth是对设置了安全机制的es库需要写入 账号与密码,如果没有设置则不用写这个参数 try: self.es_client = Elasticsearch(hosts=self.es_servers) except Exception as e: print(e) print('连接es失败,请查看是否连接。') # 进行创建一个数据库,即index def create_index(self, index_name, settings=None): """ 创建Index :param index_name: :param settings: setting = { "settings": { "number_of_replicas": 1, "number_of_shards": 1 }, "mappings": { "properties": { "docid": { "type": "text" }, "doc": { "type": "text" }, } } } :return: """ if not self.es_client.indices.exists(index=index_name, ignore=[400, 404]): if settings is not None: self.es_client.indices.create(index=index_name, body=settings) else: self.es_client.indices.create(index=index_name) # 进行删除一个数据库,即index def delete_es_index(self, index_name): if self.es_client.indices.exists(index=index_name, ignore=[400, 404]): self.es_client.indices.delete(index=index_name) def set_index_mapping(self, index, mappings): # 设置mapping结构 """ 设置index的mapping,类似于表结构。 注意!!!!现在仅仅对mapping中的properties参数,其他的参数还很多 前提为:已有index,并且已自定义分词器,详情见https://blog.csdn.net/u013905744/article/details/80935846 输入参数举例说明: mapping = { 'properties': { 'doc': { 'type': 'text', 'analyzer': 'whitespace', 'search_analyzer': 'whitespace', }, 'docid': { 'type': 'keyword', } } } """ self.es_client.indices.put_mapping(index=index, body=mappings) def add_date(self, index, data): """ 单条插入ES """ self.es_client.index(index=index, body=data) def add_date_bulk(self, index, data, batch_size=2000): """ 批量插入ES,输入文本格式为单条插入的list格式 """ actions = [] success_num = 0 fail_num = 0 start = time.time() batch_step = 1 for idx, data_dict in enumerate(data): action = { "_index": index, "_id": idx, "_source": data_dict } actions.append(action) # 批量处理 if len(actions) == batch_size or idx == len(data) - 1: success, failed = bulk(self.es_client, actions, raise_on_error=True) actions = [] success_num += success fail_num += len(failed) print(f'{batch_step}: 成功插入了{success}条数据, 失败{len(failed)}条数据') batch_step += 1 end = time.time() print(f'一共成功插入了{success_num}条数据, 失败{fail_num}条数据, 共花费{end - start}秒时间') def update_by_id(self, index, idx, data): """ 根据给定的_id,更新ES文档 :return: """ self.es_client.update(index=index, body={"doc": data}, id=idx) def delete_by_id(self, index, idx): """ 根据给定的id,删除文档 :return: """ self.es_client.delete(index=index, id=idx) def search_by_query(self, index, query, return_list=False): ''' 根据查询的query语句,来搜索查询内容 ''' search_result = self.es_client.search(index=index, body=query) if return_list: search_result = self.get_result_list(search_result) return search_result # 将查询返回处理成list def get_result_list(self, es_response): final_result = [] result_items = es_response['hits']['hits'] for item in result_items: final_result.append({ "score": item['_score'], "result": item['_source'] } ) return final_result # scan查询 def search_by_scan(self, index, query, scroll='5m', timeout="1m", threshold=100): es_result = helpers.scan( client=self.es_client, query=query, scroll=scroll, index=index, timeout=timeout, preserve_order=True ) final_result = [] for item in es_result: if item['_score'] < threshold: break final_result.append({ "score": item['_score'], "result": item['_source'] } ) return final_result if __name__ == '__main__': es = ElasticSearchClient(host="localhost", port=9200) print(es) # # 创建索引 # index = "test" # es.delete_es_index(index_name=index) # es.create_index(index_name=index)
import csv import encoding_fix import json ###if you don't have access to the API #### with open("data/residential_permits_2010-2016.json") as json_infile: bp_api_data = json.load(json_infile) json_infile.close() #read through the JSON file line by line and write it to CSV with open('data/residential_permits_2010-2016.csv', 'w') as csv_outfile: writer = csv.writer(csv_outfile) #first write the titles that will appear at the head of each column in the CSV writer.writerow(('permit id', 'applicant','address', 'description', 'category', 'value', 'issue date', 'latitude', 'longitude')) for x in bp_api_data: try: #rmv the time from the date/time stamp x['issue_date'] = x['issue_date'][:10] #write the data for each permit application onto a single row in the CSV writer.writerow((x['application_permit_number'], x['applicant_name'], x['address'], x['description'], x['category'], x['value'], x['issue_date'], x['latitude'], x['longitude'])) except: continue csv_outfile.close()
from pwn import * flag = input("flag: ").replace("\n", "") ip, port = input("service: ").split(":") r = remote(str(ip), int(port)) r.sendline("l") r.sendline("aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa") r.sendline("bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbtaw") r.sendline("n") r.sendline("Fetch watpop KNAAN 𝓯𝓵𝓪𝓰") res = str(r.recvuntil("}", timeout=10)) print(res) if flag in res: exit(0) else: exit(1)
"""User API endpoints test module.""" from tests import utils class UserAPITests(utils.APITestBase): """User API integration tests."""
__title__ = "mpsiem_api" __description__ = "Basic MaxPatrol SEIM API wrapper" __version__ = "0.0.2"
import typing import discord from discord.ext import commands class Guilds(commands.Cog): def __init__(self, client): self.client = client async def on_guild_join(self, guild): channel = self.client.get_channel(604741076900642826) await self.client.pool.execute('''INSERT INTO guilds(guild_id, prefix, count) VALUES(%s, $$%s$$, %s) ON CONFLICT DO NOTHING''' % (int(guild.id), '.', int(guild.member_count))) await channel.sent(f'{guild.name} with {guild.member_count} members added {self.client.user.name}') @commands.command(aliases=['enlistguild', 'enlistserver', 'guildenlist', 'serverenlist']) async def _enlistguild(self, ctx, confirm: typing.Optional[str] = ''): if ctx.message.author.id != ctx.guild.owner.id or ctx.author.id != 153699972443799552: await ctx.send(f'Only the server owner, {ctx.guild.owner.name}, can enlist the server as a guild') return if confirm == '': embed = discord.Embed(title=f'Enlist {ctx.guild.name}', description='') embed.add_field(name='What does enlisting do?', value='Enlisting your server as a guild will allow you to compete with other guilds. As your guild progresses, your members gain bonuses when they participate in your server.') embed.add_field(name='How to enlist', value=f'If you wish to enlist, please write `{ctx.prefix}enlistguild yes`.') await ctx.send(embed=embed) elif confirm == 'yes': guild_id = ctx.guild.id await self.client.pool.execute('''INSERT INTO enlisted_guilds(guild_id, boost, xp, level) VALUES (%s, %s, %s, %s)''' % (guild_id, 0, 0, 0)) await ctx.send(f'{ctx.guild.name} has been enlisted as a guild.') @commands.command(aliases=['guild', 'server']) async def _guild(self, ctx, screen: typing.Optional[str] = '', number: typing.Optional[str] = ''): if screen in ['', 'info', 'i']: # Showing the guild profile screen guild_db = await self.client.pool.fetchrow('''SELECT * FROM enlisted_guilds WHERE guild_id = %s''' % ctx.guild.id) if guild_db is None: if ctx.message.author.id != ctx.guild.owner.id or ctx.author.id != 153699972443799552: await ctx.send(f'{ctx.guild.name} is not enlisted as a guild! Please do `{ctx.prefix}enlistguild` for more information.') else: await ctx.send(f'{ctx.guild.name} is not enlisted as a guild! Please ask {ctx.guild.owner.name} to do `{ctx.prefix}enlistguild` for more information.') embed = discord.Embed(title=f'{ctx.guild.name} Guild Profile') xp = guild_db['xp'] embed.add_field(name='XP', value=f'{xp} XP', inline=False) levels = guild_db['level'] embed.add_field(name='Level', value=f'{levels}', inline=False) boost = guild_db['boost'] embed.add_field(name='Boost', value=f'{boost+1}x', inline=False) else: await ctx.send('Command not recognized.') def setup(client): client.add_cog(Guilds(client))
from pathlib import Path from pylexibank.dataset import Dataset as BaseDataset from pylexibank.util import pb from pylexibank.forms import FormSpec # Customize your basic data. # if you need to store other data in columns than the lexibank defaults, then over-ride # the table type and add the required columns e.g. # # import attr # from pylexibank import Concept as BaseConcept ( or Language, Lexeme, or Cognate) # # @attr.s # class Concept(Concept): # MyAttribute1 = attr.ib(default=None) class Dataset(BaseDataset): dir = Path(__file__).parent id = "template" # TODO - update this to match your datasets's name! # add your personalized data types here (or language_class, lexeme_class, cognate_class) #concept_class = MyConcept # define the way in which forms should be handled form_spec = FormSpec( brackets = {"(": ")"}, # characters that function as brackets separators = ";/,", # characters that split forms e.g. "a, b". missing_data = ('?', '-'), # characters that denote missing data. strip_inside_brackets = True # do you want data removed in brackets or not? ) def cmd_download(self, args): with self.raw_dir.temp_download("http://www.example.com", "example.tsv") as data: self.raw_dir.write_csv('template.csv', data) def cmd_makecldf(self, args): """ Convert the raw data to a CLDF dataset. """ data = self.raw_dir.read_csv('template.csv', dicts=True) # short cut to add concepts and languages, provided your name spaces # match lexibank's expected format. args.writer.add_concepts() args.writer.add_languages() # if not, then here is a more detailed way to do it: # for concept in self.concepts: # args.writer.add_concept( # ID=concept['ID'], # Name=concept['ENGLISH'], # Concepticon_ID=concept['CONCEPTICON_ID'] # ) # for language in self.languages: # args.writer.add_language( # ID=language['ID'], # Glottolog=language['Glottolog'] # ) # add data for row in pb(data, desc='cldfify'): # .. if you have segmentable data, replace `add_form` with `add_form_with_segments` # .. TODO @Mattis, when should we use add_forms_from_value() instead? lex = args.writer.add_form( Language_ID=row['Language_ID'], Parameter_ID=row['Parameter_ID'], Value=row['Word'], Form=row['Word'], Source=[row['Source']], ) # add cognates -- make sure Cognateset_ID is global! args.writer.add_cognate( lexeme=lex, Cognateset_ID=line['Cognateset_ID'] )
from abc import ABC, abstractmethod from collections.abc import Mapping from typing import Any, Optional __all__ = ["Client"] class Client(ABC): @abstractmethod async def request( self, method: str, url: str, *, headers: Optional[Mapping[str, str]] = None, ) -> Any: pass
#! python3 import spiceypy as spice import numpy as np from numpy.linalg import norm if __name__ == "__main__": #1. spice.furnsh('lessons/insitu_sensing/kernels/lsk/naif0012.tls') cass = -82 utc = '2004-06-11T19:32:00' et = spice.utc2et(utcstr=utc) print(f'Date and Time: {utc}') print(f'Insitu Sensing: et, = {et}') #2. spice.furnsh('lessons/insitu_sensing/kernels/sclk/cas00084.tsc') scepch = '1465674964.105' scet = spice.scs2e(sc=-82, sclkch=scepch) print(f'CASSINI clock epoch = {scet}') #3. spice.furnsh([#'lessons/insitu_sensing/kernels/sclk/cas00084.tsc', #'lessons/insitu_sensing/kernels/pck/cpck05Mar2004.tpc', 'lessons/insitu_sensing/kernels/spk/030201AP_SK_SM546_T45.bsp', 'lessons\insitu_sensing\kernels\spk\981005_PLTEPH-DE405S.bsp']) cs_state = spice.spkezr(targ=str(cass), et=scet, ref='eclipj2000', abcorr='none', obs='sun')[0] print(f'position relative to Sun: [x,y,z]=[{cs_state[0]:0.6f}, {cs_state[1]:0.6f}, {cs_state[2]:0.6f}]km') print(f'velocity rela to Sun: [vx,vy,vz]=[{cs_state[3]:0.6f}, {cs_state[4]:0.6f}, {cs_state[5]:0.6f}]km/s') spice.kclear() #4. spice.furnsh(['lessons/insitu_sensing/kernels/lsk/naif0012.tls', 'lessons/insitu_sensing/kernels/sclk/cas00084.tsc', #'lessons/insitu_sensing/kernels/pck/cpck05Mar2004.tpc', 'lessons\insitu_sensing\kernels\ck\\04135_04171pc_psiv2.bc', 'lessons\insitu_sensing\kernels\\fk\cas_v37.tf', 'lessons/insitu_sensing/kernels/spk/030201AP_SK_SM546_T45.bsp', 'lessons\insitu_sensing\kernels\spk\981005_PLTEPH-DE405S.bsp']) cs2sun_pos = spice.spkpos(targ='sun', et=scet, ref='CASSINI_INMS', abcorr='LT+S', obs='CASSINI')[0] print(f'sunpos relative to cass: [x,y,z]=[{cs2sun_pos[0]:0.6f}, {cs2sun_pos[1]:0.6f}, {cs2sun_pos[2]:0.6f}]km') cs2sun_pos_hat = spice.vhat(cs2sun_pos) print(f'unit vectors: [x,y,z]=[{cs2sun_pos_hat[0]:0.6f}, {cs2sun_pos_hat[1]:0.6f}, {cs2sun_pos_hat[2]:0.6f}]') spice.kclear() #5. spice.furnsh(['lessons/insitu_sensing/kernels/lsk/naif0012.tls', 'lessons/insitu_sensing/kernels/sclk/cas00084.tsc', 'lessons/insitu_sensing/kernels/pck/cpck05Mar2004.tpc', 'lessons\insitu_sensing\kernels\ck\\04135_04171pc_psiv2.bc', 'lessons\insitu_sensing\kernels\\fk\cas_v37.tf', 'lessons\insitu_sensing\kernels\spk\\020514_SE_SAT105.bsp', 'lessons/insitu_sensing/kernels/spk/030201AP_SK_SM546_T45.bsp', 'lessons\insitu_sensing\kernels\spk\981005_PLTEPH-DE405S.bsp']) spoint, _, surfvec = spice.subpnt(method='NEAR POINT: ELLIPSOID', target='phoebe', et=scet, fixref='IAU_PHOEBE', abcorr='none', obsrvr='cassini') # print(f'Sub-spacecraft point on Phoebe (IAU_Phoebe) [xyz] = {spoint} km') # print(f'Vector from Cassini to sub-spacecraft point [xyz] = {surfvec} km') rho, lon, lat = spice.reclat(rectan=spoint) lon = np.rad2deg(lon) lat = np.rad2deg(lat) print(f'Sub-spacecraft point on Phoebe [lon, lat, rho] = [{lon:0.6f} deg, {lat:0.6f} deg, {rho:0.6f}] km') surfvec_hat = surfvec / np.linalg.norm(surfvec) T_ph2inms = spice.pxform(fromstr='IAU_PHOEBE', tostr='CASSINI_INMS', et=scet) surfvec_hat_inms = spice.mxv(m1=T_ph2inms, vin=surfvec_hat) print(f'Vector from Cassini to sub-spacecraft point (INMSf) [xyz] = {surfvec_hat_inms}') #6 state_cass = spice.spkezr(targ='cassini', et=scet, ref='j2000', abcorr='none', obs='phoebe')[0][3:6] T_j2000toinms = spice.pxform(fromstr='j2000', tostr='cassini_inms', et=scet) state_cass = spice.mxv(m1=T_j2000toinms, vin=state_cass) vel_cass = state_cass vel_cass_hat = vel_cass / np.linalg.norm(vel_cass) print(f'Velocity of Cassini relative to Phoebe = {vel_cass_hat}')
from crypto.constants import TRANSACTION_TIMELOCK_TRANSFER from crypto.transactions.builder.base import BaseTransactionBuilder class TimelockTransfer(BaseTransactionBuilder): transaction_type = TRANSACTION_TIMELOCK_TRANSFER def __init__(self, fee=None): """Create a timelock transaction Args: fee (int, optional): fee used for the transaction (default is already set) """ super().__init__() if fee: self.transaction.fee = fee
solution = NumberOfValidWordsForEachPuzzle() assert X == solution.findNumOfValidWords( )
import torch from new_model import NetworkNew import argparse import torch.backends.cudnn as cudnn parser = argparse.ArgumentParser(description='PyTorch Digital Mammography Training') parser.add_argument('--group_id', default=0, type=int, help='the id of compressed layer, starting from 0') args = parser.parse_args() print(args) def main(): # 1. create compressed model vgg16_new = NetworkNew(group_id=args.group_id) # Phase 2 : Model setup vgg16_new = vgg16_new.cuda() vgg16_new = torch.nn.DataParallel(vgg16_new.cuda(), device_ids=range(torch.cuda.device_count())) cudnn.benchmark = True new_model_param = vgg16_new.state_dict() torch.save(new_model_param, '../checkpoint/model.pth') print('Finished!') if __name__ == '__main__': main()
import os import re import tempfile from datetime import date import chirps import geopandas as gpd import pytest import rasterio import responses from click.testing import CliRunner from fsspec.implementations.http import HTTPFileSystem from fsspec.implementations.local import LocalFileSystem from s3fs import S3FileSystem def test_filesystem(): assert isinstance(chirps.filesystem("/tmp/file.txt"), LocalFileSystem) assert isinstance(chirps.filesystem("http://example.com/"), HTTPFileSystem) assert isinstance(chirps.filesystem("s3://bucket/dir"), S3FileSystem) # assert isinstance(chirps.filesystem("gcs://bucket/dir"), GCSFileSystem) with pytest.raises(ValueError): chirps.filesystem("bad://bucket/dir") @pytest.fixture def bfa_raw_data(boto_client): boto_client.create_bucket(Bucket="bfa-raw-data") for fname in os.listdir( os.path.join(os.path.dirname(__file__), "bfa-raw-data/2017") ): with open( os.path.join(os.path.dirname(__file__), "bfa-raw-data/2017", fname), "rb" ) as f: boto_client.put_object( Bucket="bfa-raw-data", Key=f"2017/{fname}", Body=f.read() ) @pytest.fixture(params=["s3", "file"]) def download_location(boto_client, request): if request.param == "s3": dirname = "s3://chirps-download" boto_client.create_bucket(Bucket="chirps-download") storage_options = { "client_kwargs": {"endpoint_url": os.environ["AWS_S3_ENDPOINT"]} } elif request.param == "file": dirname = os.path.join(os.path.dirname(__file__), "chirps-download") storage_options = {} else: raise NotImplementedError return request.param, dirname, storage_options @pytest.fixture def bfa_output_data(boto_client): boto_client.create_bucket(Bucket="bfa-output-data") @pytest.fixture(scope="session") def mock_chc(): with responses.RequestsMock() as mocked_responses: def get_callback(request): file_name = ( "chirps-v2.0.2017.05.05.tif.gz" if request.url.endswith(".gz") else "chirps-v2.0.2017.05.05.tif" ) with open( os.path.join(os.path.dirname(__file__), "sample_tifs", file_name), "rb" ) as f: return 200, {"Content-Type": "application/x-gzip"}, f.read() def head_callback(request): return 200, {"Content-Type": "application/x-gzip"}, b"" mocked_responses.add_callback( responses.GET, re.compile("https://data.chc.ucsb.edu/(.*)"), callback=get_callback, ) mocked_responses.add_callback( responses.HEAD, re.compile("https://data.chc.ucsb.edu/(.*)"), callback=head_callback, ) yield def test__compress(): src_raster = os.path.join( os.path.dirname(__file__), "sample_tifs", "chirps-v2.0.2017.05.05.tif" ) with tempfile.TemporaryDirectory() as tmp_dir: dst_raster = os.path.join(tmp_dir, "raster.tif") chirps._compress(src_raster, dst_raster) with rasterio.open(dst_raster) as src: assert src.profile.get("compress").lower() == "deflate" def test__download(mock_chc): url = ( "https://data.chc.ucsb.edu/products/CHIRPS-2.0/africa_daily/tifs/p05/" "2017/chirps-v2.0.2017.05.05.tif.gz" ) with tempfile.TemporaryDirectory() as tmp_dir: dst_file = os.path.join(tmp_dir, "chirps.tif") dst_file = chirps._download(url, dst_file) assert os.path.isfile(dst_file) @pytest.fixture def catalog(mock_chc): return chirps.Chirps(version="2.0", zone="africa", timely="daily") def test_chirps_base_url(catalog): assert ( catalog.base_url == "https://data.chc.ucsb.edu/products/CHIRPS-2.0/africa_daily/tifs/p05" ) def test_chirps_fname(catalog): assert catalog.fname(date(2020, 1, 1)) == "chirps-v2.0.2020.01.01.tif.gz" # no .gz after 2020-06-01 assert catalog.fname(date(2021, 7, 1)) == "chirps-v2.0.2021.07.01.tif" def test_chirps_download(catalog, mock_chc): with tempfile.TemporaryDirectory() as tmp_dir: dst_file = catalog.download(day=date(2017, 5, 5), output_dir=tmp_dir) with rasterio.open(dst_file) as src: assert src.profile.get("width") def test_chirps_download_range(catalog, mock_chc): with tempfile.TemporaryDirectory() as tmp_dir: catalog.download_range( start=date(2017, 4, 15), end=date(2017, 5, 15), output_dir=tmp_dir ) def test_chirps_path(): data_dir = os.path.join(os.path.dirname(__file__), "bfa-raw-data") expected = os.path.join(data_dir, "2017", "chirps-v2.0.2017.05.05.tif") assert chirps.chirps_path(data_dir, date(2017, 5, 5)) == expected def test_raster_cumsum(): bfa = gpd.read_file(os.path.join(os.path.dirname(__file__), "bfa.geojson")) data_dir = os.path.join(os.path.dirname(__file__), "bfa-raw-data") rasters = [ os.path.join(data_dir, "2017", f) for f in [ "chirps-v2.0.2017.05.01.tif", "chirps-v2.0.2017.05.02.tif", "chirps-v2.0.2017.05.03.tif", "chirps-v2.0.2017.05.04.tif", ] ] cumsum, affine, nodata = chirps.raster_cumsum(rasters, bfa.total_bounds) assert cumsum.min() >= 0 assert cumsum.max() <= 100 assert cumsum.mean() == pytest.approx(14.5, abs=1) assert affine def test_weekly_stats(): contours = gpd.read_file(os.path.join(os.path.dirname(__file__), "bfa.geojson")) data_dir = os.path.join(os.path.dirname(__file__), "bfa-raw-data") start = date(2017, 4, 1) end = date(2017, 7, 1) stats = chirps.weekly_stats(contours, start, end, chirps_dir=data_dir) assert len(stats) > 50 # todo: better quality checks def test_monthly_stats(): contours = gpd.read_file(os.path.join(os.path.dirname(__file__), "bfa.geojson")) data_dir = os.path.join(os.path.dirname(__file__), "bfa-raw-data") start = date(2017, 4, 1) end = date(2017, 7, 1) stats = chirps.monthly_stats(contours, start, end, chirps_dir=data_dir) assert len(stats) > 10 # todo: better quality checks def test__iter_month_days(): assert len([d for d in chirps._iter_month_days(2020, 2)]) == 29 assert len([d for d in chirps._iter_month_days(2021, 2)]) == 28 def test_epi_week(): epiw = chirps.EpiWeek(date(2020, 1, 1)) assert epiw.start == date(2019, 12, 29) assert epiw.end == date(2020, 1, 4) assert epiw.year == 2020 assert epiw.week == 1 assert chirps.EpiWeek(date(2020, 1, 2)) == chirps.EpiWeek(date(2019, 12, 30)) def test_epiweek_range(): start = date(2020, 1, 1) end = date(2020, 3, 15) wrange = chirps.epiweek_range(start, end) assert len(wrange) == 12 def test_cli_download(moto_server, bfa_output_data, mock_chc): output_dir = os.path.join("s3://bfa-output-data/africa/daily") runner = CliRunner() result = runner.invoke( chirps.cli, [ "download", "--output-dir", output_dir, "--start", "2017-04-30", "--end", "2017-06-01", ], ) assert result.exit_code == 0 def test_cli_extract(moto_server, bfa_raw_data, bfa_output_data): chirps_dir = "s3://bfa-raw-data" contours = os.path.join(os.path.dirname(__file__), "bfa.geojson") output_dir = "s3://bfa-output-data/rainfall" runner = CliRunner() result = runner.invoke( chirps.cli, [ "extract", "--input-dir", chirps_dir, "--contours", contours, "--start", "2017-04-30", "--end", "2017-06-01", "--output-dir", output_dir, ], ) assert result.exit_code == 0
# Copyright 2014 Baidu, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on # an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the # specific language governing permissions and limitations under the License. """ Configuration for bmr samples. """ #!/usr/bin/env python #coding=utf-8 import logging from baidubce.bce_client_configuration import BceClientConfiguration from baidubce.auth.bce_credentials import BceCredentials HOST = 'bmr.bj.baidubce.com' AK = 'USER-AK' SK = 'USER-SK' logger = logging.getLogger('baidubce.services.bmr.bmrclient') fh = logging.FileHandler('bmr_sample.log') fh.setLevel(logging.DEBUG) formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') fh.setFormatter(formatter) logger.setLevel(logging.DEBUG) logger.addHandler(fh) config = BceClientConfiguration(credentials=BceCredentials(AK, SK), endpoint=HOST) check_cluster_max_retry_time=20 check_cluster_interval_sec=60
import pytest from d3rlpy.argument_utility import ( check_action_scaler, check_encoder, check_q_func, check_scaler, check_use_gpu, ) from d3rlpy.gpu import Device from d3rlpy.models.encoders import DefaultEncoderFactory from d3rlpy.models.q_functions import MeanQFunctionFactory from d3rlpy.preprocessing.action_scalers import MinMaxActionScaler from d3rlpy.preprocessing.scalers import MinMaxScaler @pytest.mark.parametrize("value", ["default", DefaultEncoderFactory()]) def test_check_encoder(value): assert isinstance(check_encoder(value), DefaultEncoderFactory) @pytest.mark.parametrize("value", ["mean", MeanQFunctionFactory()]) def test_check_q_func(value): assert isinstance(check_q_func(value), MeanQFunctionFactory) @pytest.mark.parametrize("value", ["min_max", MinMaxScaler(), None]) def test_check_scaler(value): scaler = check_scaler(value) if value is None: assert scaler is None else: assert isinstance(scaler, MinMaxScaler) @pytest.mark.parametrize("value", ["min_max", MinMaxActionScaler(), None]) def test_check_action_scaler(value): scaler = check_action_scaler(value) if value is None: assert scaler is None else: assert isinstance(scaler, MinMaxActionScaler) @pytest.mark.parametrize("value", [False, True, 0, Device(0)]) def test_check_use_gpu(value): device = check_use_gpu(value) if type(value) == bool and value: assert device.get_id() == 0 elif type(value) == bool and not value: assert device is None elif type(value) == int: assert device.get_id() == 0 elif isinstance(value, Device): assert device.get_id() == 0
import pickle import os import sys import time import numpy as np from colorama import Fore, Back, Style from ACSN_processing import ACSN_processing from ACSN_initialization import ACSN_initialization from ACSN_processing_parallel import ACSN_processing_parallel from ACSN_processing_video import ACSN_processing_video from numba import jit import cupy as cp # # varargin is a list with different datatypes # # for python it will be a dictionary # # varargin = {"Gain": xxx, "Offset": xxx, "Hotspot": xxx, "Level": xxx, # # "Mode": xxx, "SaveFileName": xxx, # # "Video": xxx, "Window": xxx, "Alpha": xxx, "QualityMap": xxx} def ACSN(I,NA,Lambda,PixelSize,varargin): start = time.perf_counter() # Assumes I is a 3D variable Qscore = np.zeros((I.shape[2], 1)) sigma = np.zeros((I.shape[2], 1)) img = np.zeros(I.shape) Qmap = np.zeros(I.shape[0]) I, Gain, Offset, Hotspot, Level, Mode, SaveFileName, Video, Window, alpha, QM, weight = ACSN_initialization(I, varargin=varargin) ## main theme if (Mode == "Fast"): img, Qmap, Qscore = ACSN_processing_parallel(I, NA, Lambda, PixelSize, Gain, Offset, Hotspot, QM, Qmap, Qscore, sigma, img, Video, weight) elif (Video == "yes"): img, Qmap, Qscore = ACSN_processing_video(I, NA, Lambda, PixelSize, Gain, Offset, Hotspot, QM, Qmap, Qscore, sigma, img, Video, weight) else: img, Qmap, Qscore = ACSN_processing(I, NA, Lambda, PixelSize, Gain, Offset, Hotspot, QM, Qmap, Qscore, sigma, img, weight) ## finale end = time.perf_counter() print("Elapsed Time: " + str(end - start) + " seconds" +"\n") print("Average Quality: ") Av_qI = np.mean(Qscore.flatten()) if (Av_qI >= 0.6): print("High: " + str(Av_qI) + "\n") elif (abs(Av_qI - 0.5) < 0.1): print("Medium: " + str(Av_qI) + "\n") else: print("Low: " + str(Av_qI) + "\n") return Qscore, sigma, img, SaveFileName
import os.path from SConsRevision import SCons_revision from Utilities import is_windows, whereis, platform, deb_date from zip_utils import unzipit, zipit, zcat from soe_utils import soelim, soscan, soelimbuilder # from epydoc import epydoc_cli, epydoc_commands from BuildCommandLine import BuildCommandLine gzip = whereis('gzip') git = os.path.exists('.git') and whereis('git') unzip = whereis('unzip') zip_path = whereis('zip') BuildCommandLine.git = git
import os import sys import numpy as np import keras from keras_bert import load_vocabulary, load_trained_model_from_checkpoint, Tokenizer from keras_bert.layers import MaskedGlobalMaxPool1D if len(sys.argv) != 2: print('python load_model.py UNZIPPED_MODEL_PATH') sys.exit(-1) print('This demo demonstrates how to load the pre-trained model and extract the sentence embedding with pooling.') model_path = sys.argv[1] config_path = os.path.join(model_path, 'bert_config.json') checkpoint_path = os.path.join(model_path, 'bert_model.ckpt') dict_path = os.path.join(model_path, 'vocab.txt') model = load_trained_model_from_checkpoint(config_path, checkpoint_path, seq_len=10) pool_layer = MaskedGlobalMaxPool1D(name='Pooling')(model.output) model = keras.models.Model(inputs=model.inputs, outputs=pool_layer) model.summary(line_length=120) token_dict = load_vocabulary(dict_path) tokenizer = Tokenizer(token_dict) text = '语言模型' tokens = tokenizer.tokenize(text) print('Tokens:', tokens) indices, segments = tokenizer.encode(first=text, max_len=10) predicts = model.predict([np.array([indices]), np.array([segments])])[0] print('Pooled:', predicts.tolist()[:5])
import numpy as np import os.path as osp import cv2 import torch import torch.nn.functional as F from pointmvsnet.utils.io import mkdir from pointmvsnet.functions.functions import get_pixel_grids def file_logger(data_batch, preds, step, output_dir, prefix): step_dir = osp.join(output_dir, "{}_step{:05d}".format(prefix, step)) mkdir(step_dir) print("start saving files in ", step_dir) img_list = data_batch["img_list"] batch_size, num_view, img_channel, img_height, img_width = list(img_list.size()) cam_params_list = data_batch["cam_params_list"] for i in range(num_view): np.savetxt(osp.join(step_dir, "img{}.txt".format(i)), img_list[0, i, 0].detach().cpu().numpy(), fmt="%.4f") np.savetxt(osp.join(step_dir, "cam{}_extrinsic.txt".format(i)), cam_params_list[0, i, 0].detach().cpu().numpy(), fmt="%.4f") np.savetxt(osp.join(step_dir, "cam{}_intrinsic.txt".format(i)), cam_params_list[0, i, 1].detach().cpu().numpy(), fmt="%.4f") np.savetxt(osp.join(step_dir, "gt_depth_img.txt"), data_batch["gt_depth_img"][0, 0].detach().cpu().numpy(), fmt="%.4f") np.savetxt(osp.join(step_dir, "coarse_depth_img.txt"), preds["coarse_depth_map"][0, 0].detach().cpu().numpy(), fmt="%.4f") cam_extrinsic = cam_params_list[0, 0, 0, :3, :4].clone() # (3, 4) cam_intrinsic = cam_params_list[0, 0, 1, :3, :3].clone() world_points = preds["world_points"] world_points = world_points[0].cpu().numpy().transpose() save_points(osp.join(step_dir, "world_points.xyz"), world_points) prob_map = preds["coarse_prob_map"][0][0].cpu().numpy() coarse_points = depth2pts(preds["coarse_depth_map"], prob_map, cam_intrinsic, cam_extrinsic, (img_height, img_width)) save_points(osp.join(step_dir, "coarse_point.xyz"), coarse_points) gt_points = depth2pts(data_batch["gt_depth_img"], prob_map, cam_intrinsic, cam_extrinsic, (img_height, img_width)) save_points(osp.join(step_dir, "gt_points.xyz"), gt_points) if "flow1" in preds.keys(): flow1_points = depth2pts(preds["flow1"], prob_map, cam_intrinsic, cam_extrinsic, (img_height, img_width)) save_points(osp.join(step_dir, "flow1_points.xyz"), flow1_points) if "flow2" in preds.keys(): flow2_points = depth2pts(preds["flow2"], prob_map, cam_intrinsic, cam_extrinsic, (img_height, img_width)) save_points(osp.join(step_dir, "flow2_points.xyz"), flow2_points) print("saving finished.") def depth2pts(depth_map, prob_map, cam_intrinsic, cam_extrinsic, img_size): feature_map_indices_grid = get_pixel_grids(depth_map.size(2), depth_map.size(3)).to(depth_map.device) # (3, H*W) curr_cam_intrinsic = cam_intrinsic.clone() scale = (depth_map.size(2) + 0.0) / (img_size[0] + 0.0) * 4.0 curr_cam_intrinsic[:2, :3] *= scale uv = torch.matmul(torch.inverse(curr_cam_intrinsic), feature_map_indices_grid) cam_points = uv * depth_map[0].view(1, -1) R = cam_extrinsic[:3, :3] t = cam_extrinsic[:3, 3].unsqueeze(-1) R_inv = torch.inverse(R) world_points = torch.matmul(R_inv, cam_points - t).detach().cpu().numpy().transpose() curr_prob_map = prob_map.copy() if curr_prob_map.shape[0] != depth_map.size(2): curr_prob_map = cv2.resize(curr_prob_map, (depth_map.size(3), depth_map.size(2)), interpolation=cv2.INTER_LANCZOS4) curr_prob_map = np.reshape(curr_prob_map, (-1, 1)) world_points = np.concatenate([world_points, curr_prob_map], axis=1) return world_points def save_points(path, points): np.savetxt(path, points, delimiter=' ', fmt='%.4f')
import re test_string = "123qwe678 -ABC91011- vyz"
from __future__ import print_function import numpy as np import yt from hyperion.model import Model import matplotlib as mpl mpl.use('Agg') import powderday.config as cfg from powderday.grid_construction import arepo_vornoi_grid_generate from hyperion.dust import SphericalDust from powderday.helpers import energy_density_absorbed_by_CMB def arepo_m_gen(fname,field_add): reg,ds,dustdens = arepo_vornoi_grid_generate(fname,field_add) xcent = ds.quan(cfg.model.x_cent,'code_length').to('cm') #proper cm ycent = ds.quan(cfg.model.y_cent,'code_length').to('cm') zcent = ds.quan(cfg.model.z_cent,'code_length').to('cm') boost = np.array([xcent,ycent,zcent]) print ('[arepo_tributary/vornoi_m_gen]: boost = ',boost) #======================================================================== #Initialize Hyperion Model #======================================================================== m = Model() #because we boost the stars to a [0,0,0] coordinate center, we #want to make sure our vornoi tesslation is created in the same manner. particle_x = reg["gascoordinates"][:,0].to('cm') particle_y = reg["gascoordinates"][:,1].to('cm') particle_z = reg["gascoordinates"][:,2].to('cm') #just for the sake of symmetry, pass on a dx,dy,dz since it can be #used optionally downstream in other functions. dx = 2.* ds.quan(cfg.par.zoom_box_len,'kpc').to('cm') dy = 2.* ds.quan(cfg.par.zoom_box_len,'kpc').to('cm') dz = 2.* ds.quan(cfg.par.zoom_box_len,'kpc').to('cm') print ('[arepo_tributary] boost = ',boost) print ('[arepo_tributary] xmin (pc)= ',(xcent-dx/2.).to('pc')) print ('[arepo_tributary] xmax (pc)= ',(xcent+dx/2.).to('pc')) print ('[arepo_tributary] ymin (pc)= ',(ycent-dy/2.).to('pc')) print ('[arepo_tributary] ymax (pc)= ',(ycent+dy/2.).to('pc')) print ('[arepo_tributary] zmin (pc)= ',(zcent-dz/2.).to('pc')) print ('[arepo_tributary] zmax (pc)= ',(zcent+dz/2.).to('pc')) x_pos_boost = (particle_x-xcent).to('cm') y_pos_boost = (particle_y-ycent).to('cm') z_pos_boost = (particle_z-zcent).to('cm') m.set_voronoi_grid(x_pos_boost.value, y_pos_boost.value, z_pos_boost.value) #get CMB: energy_density_absorbed=energy_density_absorbed_by_CMB() specific_energy = np.repeat(energy_density_absorbed.value,dustdens.shape) if cfg.par.PAH == True: # load PAH fractions for usg, vsg, and big (grain sizes) frac = cfg.par.PAH_frac # Normalize to 1 total = np.sum(list(frac.values())) frac = {k: v / total for k, v in frac.items()} for size in frac.keys(): d = SphericalDust(cfg.par.dustdir+'%s.hdf5'%size) if cfg.par.SUBLIMATION == True: d.set_sublimation_temperature('fast',temperature=cfg.par.SUBLIMATION_TEMPERATURE) #m.add_density_grid(dustdens * frac[size], cfg.par.dustdir+'%s.hdf5' % size) m.add_density_grid(dustdens*frac[size],d,specific_energy=specific_energy) m.set_enforce_energy_range(cfg.par.enforce_energy_range) else: d = SphericalDust(cfg.par.dustdir+cfg.par.dustfile) if cfg.par.SUBLIMATION == True: d.set_sublimation_temperature('fast',temperature=cfg.par.SUBLIMATION_TEMPERATURE) m.add_density_grid(dustdens,d,specific_energy=specific_energy) #m.add_density_grid(dustdens,cfg.par.dustdir+cfg.par.dustfile) m.set_specific_energy_type('additional') return m,xcent,ycent,zcent,dx.value,dy.value,dz.value,reg,ds,boost
# -- coding: utf-8 -- import tensorflow as tf import scipy.sparse as sp import pandas as pd import numpy as np def get_position(num_roads=49): ''' :return: shape is [1, 49] 49 represents the numbers of road ''' return np.array([[i for i in range(num_roads)]], dtype=np.int32) def sparse_to_tuple(sparse_mx): """Convert sparse matrix to tuple representation.""" def to_tuple(mx): if not sp.isspmatrix_coo(mx): mx = mx.tocoo() coords = np.vstack((mx.row, mx.col)).transpose() values = mx.data shape = mx.shape return coords, values, shape if isinstance(sparse_mx, list): for i in range(len(sparse_mx)): sparse_mx[i] = to_tuple(sparse_mx[i]) else: sparse_mx = to_tuple(sparse_mx) return sparse_mx def normalize_adj(adj): ''' :param adj: Symmetrically normalize adjacency matrix :return: ''' adj = sp.coo_matrix(adj) # 转化为稀疏矩阵表示的形式 rowsum = np.array(adj.sum(1)) # 原连接矩阵每一行的元素和 d_inv_sqrt = np.power(rowsum, -0.5).flatten() #先根号,再求倒数,然后flatten返回一个折叠成一维的数组 d_inv_sqrt[np.isinf(d_inv_sqrt)] = 0. # d_mat_inv_sqrt = sp.diags(d_inv_sqrt) return adj.dot(d_mat_inv_sqrt).transpose().dot(d_mat_inv_sqrt).tocoo() def preprocess_adj(adj): ''' :param adj: A=A+E, and then to normalize the the adj matrix, preprocessing of adjacency matrix for simple GCN model and conversion to tuple representation. example [[1,0,0],[0,1,0],[0,0,1]] :return: ''' adj_normalized = normalize_adj(adj + sp.eye(adj.shape[0])) print('adj_normalized shape is : ', adj_normalized.shape) return sparse_to_tuple(adj_normalized) def adjecent(adj_file='adjacent.csv', num_roads=49): ''' :return: adj matrix ''' data = pd.read_csv(filepath_or_buffer=adj_file) adj = np.zeros(shape=[num_roads, num_roads]) for line in data[['src_FID', 'nbr_FID']].values: adj[line[0]][line[1]] = 1 return adj def get_max_min(): ''' :return: the max and min value of input features ''' min_list=[106007, 106007, 2020, 8, 31, 23, 148.021, 360] max_list=[2005, 2005, 2020, 5, 1, 0, 0.0, 0] return max_list, min_list def normalization(data=None): ''' :param data: :return: ''' min_value=0.000000000001 max,min=get_max_min() shape=data.shape for i in range(1,3): data[:,shape[-1]-i]=(data[:,shape[-1]-i] - np.array(min[shape[-1]-i])) / \ (np.array(max[shape[-1]-i]) - np.array(min[shape[-1]-i]+ min_value)) return data def re_recover(a, max=148.021, min=0.0): ''' :param a: represent a list or one-dimension array. :param max: max number :param min: min number :return: op-normalization list or one-dimension array. ''' return [num * (max - min) + min for num in a] def feature_split(data, time_size=6, prediction_size=1, num_roads=49): ''' :return: features: [batch size * input time size, num roads, features], days: [input time size + prediction time size, num roads], hours: [input time size + prediction time size, num roads]. ''' low=int(data.shape[0]//num_roads * 0.9) * num_roads (features, days, hours) = (data[:time_size * num_roads, 6:7], data[:(time_size + prediction_size) * num_roads, 4], data[:(time_size + prediction_size) * num_roads, 5]) features=np.reshape(features,newshape=[time_size, num_roads, 1]) days=np.reshape(days,newshape=[time_size+prediction_size,num_roads]) hours=np.reshape(hours,newshape=[time_size+prediction_size,num_roads]) return features,days,hours def prediction(features=None, days=None, hours=None, num_roads=49): ''' input_features shape is [batch size * input time size, num roads, features], for example,(1, 49,1), dtype: float64. input_position shape is [1, num roads], for example,(1, 49), dtype: int32. input_day shape is [input time size + prediction time size, num roads], for example,(7, 49), dtype: int32. 6 + 1 = 7 input_hour shape is [input time size + prediction time size, num roads], for example,(7, 49), dtype: int32. 6 + 1 = 7 input_indices shape is [None, 2], dtype : int 32. input_values shape is [None], dtype: float64. input_dense_shape shape is (num roads, num roads) :return: pred shape is [batch size, num roads, prediction time size], example (1, 49, 1), dtype: float. ''' with tf.gfile.GFile('model.pb', 'rb') as fgraph: graph_def = tf.GraphDef() graph_def.ParseFromString(fgraph.read()) with tf.Graph().as_default() as graph: tf.import_graph_def(graph_def, name='') input_postion = graph.get_tensor_by_name('input_position:0') input_day = graph.get_tensor_by_name('input_day:0') input_hour = graph.get_tensor_by_name('input_hour:0') input_indices = graph.get_tensor_by_name('input_indices:0') input_values = graph.get_tensor_by_name('input_values:0') input_dense_shape = graph.get_tensor_by_name('input_dense_shape:0') input_features = graph.get_tensor_by_name('input_features:0') pred = graph.get_tensor_by_name('output_y:0') position=get_position(num_roads) adj=adjecent() adj=preprocess_adj(adj) # print(support) print(position.shape, position.dtype) print(days.shape,days.dtype) print(hours.shape,hours.dtype) print(features.shape,features.dtype) print(adj[0].shape, adj[0].dtype) print(adj[1].shape, adj[1].dtype) print(adj[2]) sess = tf.Session(graph=graph) feed={input_postion:position, input_day:days, input_hour:hours, input_features:features, input_indices:adj[0], input_values:adj[1], input_dense_shape:adj[2]} scores = sess.run(pred, feed_dict=feed) return scores '''input example''' train_data=pd.read_csv('train.csv', encoding='utf-8') features, days, hours=feature_split(data=train_data.values) print(features.shape, days.shape, hours.shape) # features=np.random.random([6,49,1]) # days=np.random.randint(low=1,high=20,size=[7, 49],dtype=np.int32) # hours = np.random.randint(low=0, high=20, size=[7, 49],dtype=np.int32) pres=prediction(features=features,days=days,hours=hours, num_roads=49) pres=pres.transpose([1, 0, 2]) pres=np.array([re_recover(np.reshape(road_label, [-1])) for road_label in pres]) pres_dict={} pres_dict={(int(train_data.values[i][0]), int(train_data.values[i][1])): pres[i] for i in range(49)} for pres_d in pres_dict: print(pres_d, pres_dict[pres_d])
''' @Title: Exploring ruins @Problem Statement: Edward is playing a simplified version of game called "Dorsplen". This game is played with gems of three different colors: red, green and blue. Initially player has no gem and there are infinitely many gems of each color on the table. On each turn a player can either acquire gems or buy an artifact. Artifact can be bought using gems. On acquiring gems player can get three gems of distinct colors or two gems of the same color from the table. Edward is planning to buy an artifact, it costs r red gems, g green gems and b blue gems. Compute, what is the minimum number of turns Edward has to make to earn at least r red gems, g green gems and b blue gems, so that he will be able to buy the artifact. [...] @URI: https://www.hackerearth.com/practice/algorithms/greedy/basics-of-greedy-algorithms/practice-problems/algorithm/dorsplen/ @Courtesy: hackerearth ''' ## Greedy approach. Finding the minimum among the three possible ways of acquiring all the 3 types of gems. def meth2(n): if(n%2): return (n+1)/2 else: return n/2 nums = sorted(map(int, raw_input().split())) h,m,l = nums[-1], nums[1], nums[0] t1 = h t2 = m + meth2(h-m) t3 = l + (meth2(h-l)+meth2(m-l)) count = min(t1,t2,t3) print count #1 2 4 #3
# 1.15 通过某个字段将记录分组 rows = [ {'address': '5412 N CLARK', 'date': '07/01/2012'}, {'address': '5148 N CLARK', 'date': '07/04/2012'}, {'address': '5800 E 58TH', 'date': '07/02/2012'}, {'address': '2122 N CLARK', 'date': '07/03/2012'}, {'address': '5645 N RAVENSWOOD', 'date': '07/02/2012'}, {'address': '1060 W ADDISON', 'date': '07/02/2012'}, {'address': '4801 N BROADWAY', 'date': '07/01/2012'}, {'address': '1039 W GRANVILLE', 'date': '07/04/2012'}, ] from operator import itemgetter from itertools import groupby # Sort by the desired field first rows.sort(key=itemgetter('date')) # Iterate in groups for date, items in groupby(rows, key=itemgetter('date')): print(date) for i in items: print(' ', i) from collections import defaultdict rows_by_date = defaultdict(list) for row in rows: rows_by_date[row['date']].append(row) for r in rows_by_date['07/01/2012']: print(r)
import logging logger = logging.getLogger(__name__) import os import pipeline.libs.config as cfg import maya.mel as mel import maya.cmds as cmds import pymel.core as pm # import pipeline.libs.meta as meta import pipeline.maya_libs.maya_warpper as maya import pymel.core.nodetypes as nt # def create_group(name, parent='', w=False, em=True): # if cmds.objExists(name): # logger.info("{} - exists - skipping".format(name)) # return # else: # if parent: # pm.group(n =name, parent=parent, em=True) # # logger.info("{} - created".format(name)) # return # if w: # pm.group(n = name, w=True, em=True) # # logger.info("{} - created".format(name)) # return # def export_high_group(asset_name = '', path = ''): # render_grp = '{}{}'.format(asset_name, cfg._render_grp).lower() # # try: # dup = pm.duplicate(render_grp) # pm.parent(dup, w=True) # dup[0].rename(render_grp) # pm.select(dup[0], hi=True) # # exported_file = cmds.file(path, type='mayaAscii', exportSelected=True, expressions=False, constraints=False, # channels=False, constructionHistory=False, shader=True, force=True) # # pm.delete(dup[0]) # # return os.path.normpath(exported_file) # except: # logger.info("failed to export selection on {}".format(maya.current_open_file())) # return None # def create_modeling_defaults(name = 'name'): # name_lower = name.lower() # # create_group(name_lower,w=True) # # high_group = '{}_{}_{}'.format(name_lower, cfg.high, cfg.group) # low_group = '{}_{}_{}'.format(name_lower, cfg.low, cfg.group) # bsp_group = '{}_{}_{}'.format(name_lower, cfg.blendshape, cfg.group) # # create_group(high_group,parent=name_lower) # create_group(low_group, parent=name_lower) # create_group(bsp_group, parent=name_lower) # # # def clean_meta_nodes(node_name = ''): # logger.info("remove unused meta nodes") # nodes = meta.Component_Meta.getMetaNodes() # for node in nodes: # if node.shortName() != node_name: # node.delete() def cleanup_scene(): logger.info("Cleaning up scene ---------------------------------") # import pymel.core as pm # # import pymel.core.nodetypes as nt nodes = pm.ls(type=nt.Unknown) for n in nodes: pm.delete(n) mel_cleanup = ''' source cleanUpScene; deleteUnusedTrax( "clips" ); deleteUnusedTrax( "poses" ); deleteUnusedDeformers(); deleteInvalidNurbs(0); MLdeleteUnused(); removeDuplicateShadingNetworks(0); RNdeleteUnused(); deleteUnusedBrushes(); deleteEmptyGroups(); deleteEmptyLayers("Display"); deleteEmptyLayers("Render"); deleteUnusedExpressions(); deleteUnusedLocators(); deleteUnusedPairBlends(); deleteUnusedSets(); deleteUnusedConstraints(); deleteUnusedInUnusedHierarchy( "nurbsCurve", 0,(uiRes("m_cleanUpScene.kDeletingUnusedNurbsCurves2"))); deleteUnusedCommon( "animCurve", 0 , (uiRes("m_cleanUpScene.kDeletingUnusedAnimationCurves"))); deleteUnusedCommon("groupId", 0, (uiRes("m_cleanUpScene.kDeletingUnusedGroupIDNodes"))); hyperShadePanelMenuCommand("hyperShadePanel1", "deleteUnusedNodes"); ''' try: mel.eval(mel_cleanup) except: logger.info("Scene clean up failed") # import maya.cmds as cmds def ns_keys(text): return len(text.split(':')) def ns_sort(l): """ Sort the given list in the way that humans expect. """ l.sort(key=ns_keys) return l def remove_ref(): logger.info("Importing references ---------------------------------") try: mel.eval('RNdeleteUnused();') sorted_references = ns_sort(cmds.ls(type='reference')) for i in sorted_references: print i rFile = cmds.referenceQuery(i, f=True) cmds.file(rFile, importReference=True, mnr = True, f = True) except Exception, err: logger.info(err) logger.info("Import references failed") def delete_ns(): logger.info("Deleting namespaces ----------------------------------") try: defaults = ['UI', 'shared'] # Used as a sort key, this will sort namespaces by how many children they have. def num_children(ns): return ns.count(':') namespaces = [ns for ns in cmds.namespaceInfo(lon=True, r=True) if ns not in defaults] # We want to reverse the list, so that namespaces with more children are at the front of the list. namespaces.sort(key=num_children, reverse=True) for ns in namespaces: if namespaces.index(ns)+1 < len(namespaces): parent_ns = namespaces[namespaces.index(ns)+1] cmds.namespace(mv=[ns,parent_ns], f=True) cmds.namespace(rm=ns) else: cmds.namespace(mv=[ns,":"], f=True) cmds.namespace(rm=ns) except Exception, err: logger.info(err) logger.info("Delete namespaces failed") def delete_ngSKinToolsNodes(): logger.info("Removing ngSkinsTools nodes --------------------------") try: # remove ngSkinTools custom nodes from ngSkinTools.layerUtils import LayerUtils LayerUtils.deleteCustomNodes() except: logger.info("ngSkinsTools not installed / no ngSkinTools nodes in the scene") def run_script(path, script_type): logger.info("Running script ---------------------------------------") logger.info("{} ---------------------------------------------------".format(path)) if os.path.exists(path): if script_type == 'py': try: execfile(path) except Exception, err: logger.info(err) return elif script_type == 'mel': try: cmd = 'source "{}";'.format(path) mel.eval(cmd) except Exception, err: logger.info(err) return # import pymel.core as pm # # import pymel.core.nodetypes as nt # # nodes = pm.ls(type=nt.Unknown) # for n in nodes: # pm.delete(n) # # '''
from mongoengine import Q from mist.api.tag.models import Tag from mist.api.helpers import trigger_session_update from mist.api.helpers import get_object_with_id def get_tags_for_resource(owner, resource_obj, *args, **kwargs): return [{'key': tag.key, 'value': tag.value} for tag in Tag.objects(owner=owner, resource=resource_obj)] def add_tags_to_resource(owner, resource_obj, tags, *args, **kwargs): """ This function get a list of tags in the form [{'key': 'joe', 'value': 'schmoe'}] and will scan the list and update all the tags whose keys are present but whose values are different and add all the missing ones :param owner: the resource owner :param resource_obj: the resource object where the tags will be added :param tags: list of tags to be added """ # merge all the tags in the list into one dict. this will also make sure # that if there are duplicates they will be cleaned up tag_dict = dict(tags) for tag_obj in Tag.objects(owner=owner, resource=resource_obj): # if any of the tag keys is already present check if it's value should # be changed and remove it from the tag_dict if tag_obj.key in tag_dict: if tag_obj.value != tag_dict[tag_obj.key]: tag_obj.value = tag_dict[tag_obj.key] tag_obj.save() del tag_dict[tag_obj.key] # remaining tags in tag_dict have not been found in the db so add them now for key, value in tag_dict.iteritems(): Tag(owner=owner, resource=resource_obj, key=key, value=value).save() # SEC owner.mapper.update(resource_obj) # FIXME: The fact that a session update is triggered at this point may # result in re-updating the RBAC Mappings twice for the given resource # for no f*** reason. rtype = resource_obj._meta["collection"] trigger_session_update(owner, [rtype + 's' if not rtype.endswith('s') else rtype]) def remove_tags_from_resource(owner, resource_obj, tags, *args, **kwargs): """ This function get a list of tags in the form [{'key': 'joe'}] or [{'key': 'joe', 'value': 'schmoe'}] and will delete them from the resource :param owner: the resource owner :param resource_obj: the resource object where the tags will be added :param rtype: resource type :param tags: list of tags to be deleted """ # ensure there are no duplicate tag keys because mongoengine will # raise exception for duplicates in query key_list = list(set(tags)) # create a query that will return all the tags with query = reduce(lambda q1, q2: q1.__or__(q2), map(lambda key: Q(key=key), key_list)) Tag.objects(Q(owner=owner) & Q(resource=resource_obj) & (query)).delete() # SEC owner.mapper.update(resource_obj) rtype = resource_obj._meta["collection"] trigger_session_update(owner, [rtype + 's' if not rtype.endswith('s') else rtype]) def resolve_id_and_get_tags(owner, rtype, rid, *args, **kwargs): """ This call will try to fetch the object of type rtype from the db with id rid. If the object is of type machine, image, network or location the cloud_id must also be provided in the kwargs. If the resource type is machine then the machine_id must be provided and not the object id. Whether or not the owner has the necessary credentials to get the tags of the resource is left to the caller of this function to validate. :param owner: the owner of the resource :param rtype: resource type :param rid: resource id :return: the tags of this resource """ resource_obj = get_object_with_id(owner, rid, rtype, *args, **kwargs) return get_tags_for_resource(owner, resource_obj) def resolve_id_and_set_tags(owner, rtype, rid, tags, *args, **kwargs): """ :param owner: the owner of the resource :param rtype: resource type :param rid: resource id :param tags: resource tags to be added or updated :return: the tags to be added or updated to this resource """ resource_obj = get_object_with_id(owner, rid, rtype, *args, **kwargs) return add_tags_to_resource(owner, resource_obj, tags, *args, **kwargs) def resolve_id_and_delete_tags(owner, rtype, rid, tags, *args, **kwargs): """ :param owner: the owner of the resource :param rtype: resource type :param rid: resource id :param tags: resource id :return: the tags to be deleted from this resource """ resource_obj = get_object_with_id(owner, rid, rtype, *args, **kwargs) return remove_tags_from_resource(owner, resource_obj, tags, *args, **kwargs) def modify_security_tags(auth_context, tags, resource=None): """ This method splits the resources' tags in security and non-security groups. Security tags are part of team policies. Such tags should only be modified by organization owners in order to enforce team policies. If a team member attempts to edit a security tag, an UnauthorizedError will be thrown :param tags: the new tags dict :param resource: the resource on which the tags are going to be applied :return: False, if a security tag has been modified in the new tags dict by someone other than the organization owner, otherwise True """ # private context if auth_context.org is None: return True if auth_context.is_owner(): return True else: rtags = Tag.objects(owner=auth_context.owner.id, resource=resource).only('key', 'value') rtags = {rtag.key: rtag.value for rtag in rtags} security_tags = auth_context.get_security_tags() # check whether the new tags tend to modify any of the security_tags for security_tag in security_tags: for key, value in security_tag.items(): if key not in rtags.keys(): if key in tags.keys(): return False else: if key not in tags.keys(): return False elif value != tags[key]: return False return True def delete_security_tag(auth_context, tag_key): """ This method checks whether the tag to be deleted belongs to the secure tags group :param tag_key: the key of the tag to be removed :return: False in case a security tag is about to be deleted """ # private context if auth_context.org is None: return True if auth_context.is_owner(): return True else: security_tags = auth_context.get_security_tags() for security_tag in security_tags: for key, value in security_tag.items(): if key == tag_key: return False return True
''' shift registers type:class\n name-format: shift_register_[name]\n SIPO\n PISO\n SISO\n PIPO ''' '''SIPO''' class shift_register_SIPO(): def __init__(self,level,inputno = None): self.level = level self.inputno = inputno def sr_set(self,inputno): #list input if (isinstance(inputno, list)): if(len(inputno) == self.level): for bin_in in inputno: if bin_in not in [0,1]: raise ValueError("Invalid value for input") else: raise ValueError("Number of input bits is not equal to the number of flip flops") else: raise ValueError("Input must be in a list format") self.inputno = inputno def sr_get(self,clock): if(isinstance(clock,int)): if (clock < 0): raise ValueError("Clock pulses are not negative") elif (clock >= self.level): clock = self.level - 1 else: raise ValueError("The Nth clock pulse should be an integer") input_cp = self.inputno.copy() og_list = [] for i in range(clock + 1): #start from the least significant bit og_list.insert(0,input_cp[-1]) input_cp.pop() if(len(og_list) < self.level): for val in range(self.level - len(og_list)): og_list.append(0) return(og_list) '''PISO''' class shift_register_PISO(): def __init__(self,level,inputno = None): self.level = level self.inputno = inputno def sr_set(self,inputno): #list input if (isinstance(inputno, list)): if(len(inputno) == self.level): for bin_in in inputno: if bin_in not in [0,1]: raise ValueError("Invalid value for input") else: raise ValueError("Number of input bits is not equal to the number of flip flops") else: raise ValueError("Input must be in a list format") self.inputno = inputno def sr_get(self,clock): if(isinstance(clock,int)): if (clock < 0): raise ValueError("Clock pulses are not negative") elif (clock >= self.level): clock = self.level - 1 else: raise ValueError("The Nth clock pulse should be an integer") input_cp = self.inputno.copy() og_list = [] for _ in range(clock + 1): #start from the least significant bit og_list.insert(0,input_cp[-1]) input_cp.pop() if(len(og_list) < self.level): for _ in range(self.level - len(og_list)): og_list.append(0) return(og_list) '''SISO''' class shift_register_SISO(): def __init__(self,level,inputno = None): self.level = level self.inputno = inputno def sr_set(self,inputno): #list input if (isinstance(inputno, list)): if(len(inputno) == self.level): for bin_in in inputno: if bin_in not in [0,1]: raise ValueError("Invalid value for input") else: raise ValueError("Number of input bits is not equal to the number of flip flops") else: raise ValueError("Input must be in a list format") self.inputno = inputno def sr_get(self,clock): if(isinstance(clock,int)): if (clock < 0): raise ValueError("Clock pulses are not negative") elif (clock >= self.level): clock = self.level - 1 else: raise ValueError("The Nth clock pulse should be an integer") input_cp = self.inputno.copy() og_list = [] for i in range(clock + 1): #start from the least significant bit og_list.insert(0,input_cp[-1]) input_cp.pop() if(len(og_list) < self.level): for val in range(self.level - len(og_list)): og_list.append(0) return(og_list) '''PIPO''' class shift_register_PIPO(): def __init__(self,level,inputno = None): self.level = level self.inputno = inputno def sr_set(self,inputno): #list input if (isinstance(inputno, list)): if(len(inputno) == self.level): for bin_in in inputno: if bin_in not in [0,1]: raise ValueError("Invalid value for input") else: raise ValueError("Number of input bits is not equal to the number of flip flops") else: raise ValueError("Input must be in a list format") self.inputno = inputno def sr_get(self,clock): if(isinstance(clock,int)): if (clock < 0): raise ValueError("Clock pulses are not negative") else: return(self.inputno.copy()) else: raise ValueError("The Nth clock pulse should be an integer")
import numba as nb import pytest from numba.typed import Dict from respy.parallelization import _infer_dense_keys_from_arguments from respy.parallelization import _is_dense_dictionary_argument from respy.parallelization import _is_dictionary_with_integer_keys def _typeddict_wo_integer_keys(): dictionary = Dict.empty( key_type=nb.types.UniTuple(nb.types.int64, 2), value_type=nb.types.int64, ) dictionary[(1, 2)] = 1 return dictionary def _typeddict_w_integer_keys(): dictionary = Dict.empty( key_type=nb.types.int64, value_type=nb.types.int64, ) dictionary[1] = 1 return dictionary @pytest.mark.unit @pytest.mark.parametrize( "input_, expected", [ ({1: 2, 3: 4}, True), (1, False), ([3, 4, 5], False), (_typeddict_wo_integer_keys(), False), (_typeddict_w_integer_keys(), False), ], ) def test_is_dictionary_with_integer_keys(input_, expected): assert _is_dictionary_with_integer_keys(input_) is expected @pytest.mark.unit @pytest.mark.parametrize( "args, kwargs, expected", [(({1: None, 2: None},), {"kwarg_1": {2: None, 3: None}}, {2})], ) def test_infer_dense_keys_from_arguments(args, kwargs, expected): result = _infer_dense_keys_from_arguments(args, kwargs) assert result == expected @pytest.mark.unit @pytest.mark.parametrize( "arg, dense_keys, expected", [({1: None, 2: None}, {1, 2}, True), ((1,), {1, 2, 3}, False)], ) def test_is_dense_dictionary_argument(arg, dense_keys, expected): result = _is_dense_dictionary_argument(arg, dense_keys) assert result is expected
#!/usr/bin/python # Copyright (c) 2014 The Native Client Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """This script handles all of the processing for versioning packages. package_version.py manages all of the various operations done between packages, including archiving, extracting, uploading, and downloading packages. For a list of options and commands, see the help for the script. Glossary: Package: A list of archives, such as "nacl_x86_glibc" or "nacl_x86_newlib". Package Archive: An archive (usually a tar file) that is part of a package. Package Target: Package targets consists of packages. Each package target has it's own version of a package. An example of a package target would be something such as "win_x86_nacl_x86" or "mac_x86_nacl_x86". In that case, "win_x86_nacl_x86" and "mac_x86_nacl_x86" would each have their own version of "nacl_x86_glibc" and "nacl_x86_newlib" for windows and mac respectively. Revision: The revision identifier of a sanctioned version. This is used to synchronize packages to sanctioned versions. JSON Files: Packages File - A file which describes the various package targets for each platform/architecture along with the packages associated with each package target. [Default file: build/package_version/standard_packages.json]. Package File - A file which contains the list of package archives within a package. [Default file: toolchain/.tars/$PACKAGE_TARGET/$PACKAGE.json] Archive File - A file which describes an archive within a package. Each archive description file will contain information about an archive such as name, URL to download from, and hash. [Default File: toolchain/.tars/$PACKAGE_TARGET/$PACKAGE/$ARCHIVE.json] Revision File - A file which describes the sanctioned version of package for each of the package targets associated with it. [Default file: toolchain_revisions/$PACKAGE.json] """ import argparse import collections import logging import os import shutil import sys SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__)) sys.path.append(os.path.dirname(SCRIPT_DIR)) import cygtar sys.path.append(os.path.dirname(os.path.dirname(SCRIPT_DIR))) import pynacl.file_tools import pynacl.gsd_storage import pynacl.log_tools import pynacl.platform import pynacl.working_directory import archive_info import error import package_info import package_locations import packages_info import revision_info CURRENT_DIR = os.path.dirname(os.path.abspath(__file__)) BUILD_DIR = os.path.dirname(CURRENT_DIR) NACL_DIR = os.path.dirname(BUILD_DIR) TEMP_SUFFIX = '.tmp' DEFAULT_PACKAGES_JSON = os.path.join(CURRENT_DIR, 'standard_packages.json') DEFAULT_REVISIONS_DIR = os.path.join(NACL_DIR, 'toolchain_revisions') DEFAULT_DEST_DIR = os.path.join(NACL_DIR, 'toolchain') DEFAULT_CLOUD_BUCKET = 'nativeclient-archive2' # # These are helper functions that help each command. # def CleanTempFiles(directory): """Cleans up all temporary files ending with TEMP_SUFFIX in a directory.""" for root, dirs, files in os.walk(directory): for file_name in files: if file_name.endswith(TEMP_SUFFIX): file_path = os.path.join(root, file_name) os.unlink(file_path) def GetPackageTargetPackages(custom_package_name, package_target_packages): """Returns a list of package target packages given a custom package name. A custom package name can either have a specified package target attached to it (IE. $PACKAGE_TARGET/PACKAGE_NAME) or be extracted out of a default list of package targets along with their packages. Args: custom_package_name: Package name with an optional package target. package_target_packages: List of tuples (package_target, package). Returns: List of package target tuples matching the package name. """ package_path = custom_package_name.replace('\\', os.path.sep) package_path = package_path.replace('/', os.path.sep) if os.path.sep in package_path: # Package target is part of the custom package name, just return it. package_target, package_name = package_path.split(os.path.sep, 1) return [(package_target, package_name)] # Package target is not part of the package name, filter from list of passed # in package targets. return [ (package_target, package) for package_target, package in package_target_packages if package == custom_package_name ] def DownloadPackageArchives(tar_dir, package_target, package_name, package_desc, downloader=None, revision_num=None, include_logs=False): """Downloads package archives from the cloud to the tar directory. Args: tar_dir: Root tar directory where archives will be downloaded to. package_target: Package target of the package to download. package_name: Package name of the package to download. package_desc: package_info object of the package to download. downloader: function which takes a url and a file path for downloading. Returns: The list of files that were downloaded. """ downloaded_files = [] if downloader is None: downloader = pynacl.gsd_storage.HttpDownload local_package_file = package_locations.GetLocalPackageFile(tar_dir, package_target, package_name) # Download packages information file along with each of the package # archives described in the information file. Also keep track of what # new package names matches old package names. We will have to delete # stale package names after we are finished. update_archives = [] for archive_obj in package_desc.GetArchiveList(): archive_desc = archive_obj.GetArchiveData() local_archive_file = package_locations.GetLocalPackageArchiveFile( tar_dir, archive_desc.name, archive_desc.hash) old_hash = archive_info.GetArchiveHash(local_archive_file) if archive_desc.hash == old_hash: logging.debug('Skipping matching archive: %s', archive_desc.name) continue archive_tuple = (local_archive_file, archive_obj.GetArchiveData()) update_archives.append(archive_tuple) if update_archives: logging.info('--Syncing %s to revision %s--' % (package_name, revision_num)) num_archives = len(update_archives) for index, archive_tuple in enumerate(update_archives): local_archive_file, archive_desc = archive_tuple pynacl.file_tools.MakeParentDirectoryIfAbsent(local_archive_file) if archive_desc.url is None: raise error.Error('Error, no URL for archive: %s' % archive_desc.name) logging.info('Downloading package archive: %s (%d/%d)' % (archive_desc.name, index+1, num_archives)) try: downloader(archive_desc.url, local_archive_file) except Exception as e: raise error.Error('Could not download URL (%s): %s' % (archive_desc.url, e)) # Delete any stale log files local_archive_log = package_locations.GetLocalPackageArchiveLogFile( local_archive_file) if os.path.isfile(local_archive_log): os.unlink(local_archive_log) verified_hash = archive_info.GetArchiveHash(local_archive_file) if verified_hash != archive_desc.hash: raise error.Error('Package hash check failed: %s != %s' % (verified_hash, archive_desc.hash)) downloaded_files.append(local_archive_file) # Download any logs if include_logs is True. if include_logs: download_logs = [] for archive_obj in package_desc.GetArchiveList(): archive_desc = archive_obj.GetArchiveData() if archive_desc.log_url: local_archive_file = package_locations.GetLocalPackageArchiveFile( tar_dir, archive_desc.name, archive_desc.hash) local_archive_log = package_locations.GetLocalPackageArchiveLogFile( local_archive_file) if not os.path.isfile(local_archive_log): download_log_tuple = (archive_desc.name, archive_desc.log_url, local_archive_log) download_logs.append(download_log_tuple) if download_logs: logging.info('--Syncing %s Logs--' % (package_name)) num_logs = len(download_logs) for index, download_log_tuple in enumerate(download_logs): name, log_url, local_log_file = download_log_tuple logging.info('Downloading archive log: %s (%d/%d)' % (name, index+1, num_logs)) try: downloader(log_url, local_log_file) except Exception as e: raise IOError('Could not download log URL (%s): %s' % (log_url, e)) # Save the package file so we know what we currently have. if not update_archives and os.path.isfile(local_package_file): try: local_package_desc = package_info.PackageInfo(local_package_file) if local_package_desc == package_desc: return downloaded_files except: # Something is wrong with our package file, just resave it. pass package_desc.SavePackageFile(local_package_file) return downloaded_files def ArchivePackageArchives(tar_dir, package_target, package_name, archives, extra_archives=[]): """Archives local package archives to the tar directory. Args: tar_dir: Root tar directory where archives live. package_target: Package target of the package to archive. package_name: Package name of the package to archive. archives: List of archive file paths where archives currently live. extra_archives: Extra archives that are expected to be build elsewhere. Returns: Returns the local package file that was archived. """ local_package_file = package_locations.GetLocalPackageFile(tar_dir, package_target, package_name) valid_archive_files = set() archive_list = [] package_desc = package_info.PackageInfo() package_archives = ([(archive, False) for archive in archives] + [(archive, True) for archive in extra_archives]) for archive, skip_missing in package_archives: archive_url = None archive_log_url = None if '@' in archive: archive, archive_url = archive.split('@', 1) if ',' in archive_url: archive_url, archive_log_url = archive_url.split(',', 1) extract_param = '' tar_src_dir = '' extract_dir = '' if ',' in archive: archive, extract_param = archive.split(',', 1) if ':' in extract_param: tar_src_dir, extract_dir = extract_param.split(':', 1) else: tar_src_dir = extract_param archive_hash = archive_info.GetArchiveHash(archive) archive_name = os.path.basename(archive) archive_desc = archive_info.ArchiveInfo(name=archive_name, hash=archive_hash, url=archive_url, tar_src_dir=tar_src_dir, extract_dir=extract_dir, log_url=archive_log_url) package_desc.AppendArchive(archive_desc) if archive_hash is None: if skip_missing: logging.info('Skipping archival of missing file: %s', archive) continue raise error.Error('Invalid package: %s.' % archive) archive_list.append(archive) archive_basename = os.path.basename(archive) archive_json = archive_basename + '.json' valid_archive_files.update([archive_basename, archive_json]) # We do not need to archive the package if it already matches. But if the # local package file is invalid or does not match, then we should recreate # the json file. if os.path.isfile(local_package_file): try: current_package_desc = package_info.PackageInfo(local_package_file, skip_missing=True) if current_package_desc == package_desc: return except ValueError: pass # Copy each of the packages over to the tar directory first. for archive_file in archive_list: archive_name = os.path.basename(archive_file) archive_hash = archive_info.GetArchiveHash(archive_file) local_archive_file = package_locations.GetLocalPackageArchiveFile( tar_dir, archive_name, archive_hash ) if archive_hash == archive_info.GetArchiveHash(local_archive_file): logging.info('Skipping archive of duplicate file: %s', archive_file) else: logging.info('Archiving file: %s', archive_file) pynacl.file_tools.MakeParentDirectoryIfAbsent(local_archive_file) shutil.copyfile(archive_file, local_archive_file) # Once all the copying is completed, update the local packages file. logging.info('Package "%s" archived: %s', package_name, local_package_file) pynacl.file_tools.MakeParentDirectoryIfAbsent(local_package_file) package_desc.SavePackageFile(local_package_file) return local_package_file def UploadPackage(storage, revision, tar_dir, package_target, package_name, is_shared_package, annotate=False, skip_missing=False, custom_package_file=None): """Uploads a local package file to the supplied cloud storage object. By default local package files are expected to be found in the standardized location within the tar directory, however a custom package file may be specified to upload from a different location. Package archives that do not have their URL field set will automaticaly have the archives uploaded so that someone accessing the package file from the cloud storage will also have access to the package archives. Args: storage: Cloud storage object which supports PutFile and GetFile. revision: Revision identifier the package should be associated with. tar_dir: Root tar directory where archives live. package_target: Package target of the package to archive. package_name: Package name of the package to archive. is_shared_package: Is this package shared among all package targets? annotate: Print annotations for build bots? skip_missing: Skip missing package archive files? custom_package_file: File location for a custom package file. Returns: Returns remote download key for the uploaded package file. """ if custom_package_file is not None: local_package_file = custom_package_file else: local_package_file = package_locations.GetLocalPackageFile( tar_dir, package_target, package_name) # Upload the package file and also upload any local package archives so # that they are downloadable. package_desc = package_info.PackageInfo(local_package_file, skip_missing=skip_missing) upload_package_desc = package_info.PackageInfo() for archive_obj in package_desc.GetArchiveList(): archive_desc = archive_obj.GetArchiveData() url = archive_desc.url if archive_desc.hash and url is None: if annotate: print '@@@BUILD_STEP Archive:%s (upload)@@@' % archive_desc.name archive_file = package_locations.GetLocalPackageArchiveFile( tar_dir, archive_desc.name, archive_desc.hash) archive_hash = archive_info.GetArchiveHash(archive_file) if archive_hash is None: raise error.Error('Missing Archive File: %s' % archive_file) elif archive_hash != archive_desc.hash: raise error.Error( 'Archive hash does not match package hash: %s' % archive_file + '\n Archive Hash: %s' % archive_hash + '\n Package Hash: %s' % archive_desc.hash) logging.warn('Missing archive URL: %s', archive_desc.name) logging.warn('Uploading archive to be publically available...') remote_archive_key = package_locations.GetRemotePackageArchiveKey( archive_desc.name, archive_desc.hash) url = storage.PutFile(archive_file, remote_archive_key, clobber=True) if annotate: print '@@@STEP_LINK@download@%s@@@' % url updated_archive_obj = archive_obj.Copy(url=url) upload_package_desc.AppendArchive(updated_archive_obj) upload_package_file = local_package_file + '.upload' pynacl.file_tools.MakeParentDirectoryIfAbsent(upload_package_file) upload_package_desc.SavePackageFile(upload_package_file) logging.info('Uploading package information: %s', package_name) remote_package_key = package_locations.GetRemotePackageKey( is_shared_package, revision, package_target, package_name) package_info.UploadPackageInfoFiles(storage, package_target, package_name, remote_package_key, upload_package_file, skip_missing=skip_missing, annotate=annotate) return remote_package_key def ExtractPackageTargets(package_target_packages, tar_dir, dest_dir, downloader=None, skip_missing=False, overlay_tar_dir=None, quiet=False): """Extracts package targets from the tar directory to the destination. Each package archive within a package will be verified before being extracted. If a package archive does not exist or does not match the hash stored within the package file, it will be re-downloaded before being extracted. Args: package_target_packages: List of tuples of package target and package names. tar_dir: Source tar directory where package archives live. dest_dir: Root destination directory where packages will be extracted to. downloader: function which takes a url and a file path for downloading. """ if downloader is None: downloader = pynacl.gsd_storage.HttpDownload for package_target, package_name in package_target_packages: package_file = package_locations.GetLocalPackageFile(tar_dir, package_target, package_name) package_desc = package_info.PackageInfo(package_file, skip_missing=skip_missing) dest_package_dir = package_locations.GetFullDestDir(dest_dir, package_target, package_name) dest_package_file = package_locations.GetDestPackageFile(dest_dir, package_target, package_name) # Get a list of overlay archives. overlaid_archives = set() if overlay_tar_dir: overlay_file = package_locations.GetLocalPackageFile(overlay_tar_dir, package_target, package_name) logging.debug('Checking overlaid package file: %s', overlay_file) if os.path.isfile(overlay_file): logging.info('Found overlaid package file: %s', overlay_file) overlay_package_desc = package_info.PackageInfo(overlay_file, skip_missing=True) combined_archives = dict([(archive_obj.GetArchiveData().name, archive_obj) for archive_obj in package_desc.GetArchiveList()]) for archive_obj in overlay_package_desc.GetArchiveList(): archive_desc = archive_obj.GetArchiveData() if archive_desc.hash: overlaid_archives.add(archive_desc.name) combined_archives[archive_desc.name] = archive_obj package_desc = package_info.PackageInfo() for archive_name, archive_obj in combined_archives.iteritems(): package_desc.AppendArchive(archive_obj) # Only do the extraction if the extract packages do not match. if os.path.isfile(dest_package_file): try: dest_package_desc = package_info.PackageInfo(dest_package_file) if dest_package_desc == package_desc: logging.debug('Skipping extraction for package (%s)', package_name) continue except: # Destination package file cannot be trusted, if invalid re-extract. pass # Delete the old package file before we extract. os.unlink(dest_package_file) if os.path.isdir(dest_package_dir): logging.debug('Deleting old package directory: %s', dest_package_dir) pynacl.file_tools.RemoveDirectoryIfPresent(dest_package_dir) logging.info('Extracting package (%s) to directory: %s', package_name, dest_package_dir) archive_list = package_desc.GetArchiveList() num_archives = len(archive_list) for index, archive_obj in enumerate(archive_list): archive_desc = archive_obj.GetArchiveData() archive_file = None if archive_desc.name in overlaid_archives: archive_file = package_locations.GetLocalPackageArchiveFile( overlay_tar_dir, archive_desc.name, archive_desc.hash) logging.info('Using overlaid tar: %s', archive_file) else: archive_file = package_locations.GetLocalPackageArchiveFile( tar_dir, archive_desc.name, archive_desc.hash) # Upon extraction, some files may not be downloaded (or have stale files), # we need to check the hash of each file and attempt to download it if # they do not match. archive_hash = archive_info.GetArchiveHash(archive_file) if archive_hash != archive_desc.hash: if archive_desc.url is None: if skip_missing: logging.info('Skipping extraction of missing archive: %s' % archive_file) continue raise error.Error('Invalid archive file and URL: %s' % archive_file) logging.warn('Archive missing, downloading: %s', archive_desc.name) logging.info('Downloading %s: %s', archive_desc.name, archive_desc.url) pynacl.file_tools.MakeParentDirectoryIfAbsent(archive_file) downloader(archive_desc.url, archive_file) archive_hash = archive_info.GetArchiveHash(archive_file) if archive_hash != archive_desc.hash: raise error.Error('Downloaded archive file does not match hash.' ' [%s] Expected %s, received %s.' % (archive_file, archive_desc.hash, archive_hash)) destination_dir = os.path.join(dest_package_dir, archive_desc.extract_dir) logging.info('Extracting %s (%d/%d)' % (archive_desc.name, index+1, num_archives)) temp_dir = os.path.join(destination_dir, '.tmp') pynacl.file_tools.RemoveDirectoryIfPresent(temp_dir) os.makedirs(temp_dir) tar_output = not quiet tar = cygtar.CygTar(archive_file, 'r:*', verbose=tar_output) curdir = os.getcwd() os.chdir(temp_dir) try: tar.Extract() tar.Close() finally: os.chdir(curdir) temp_src_dir = os.path.join(temp_dir, archive_desc.tar_src_dir) pynacl.file_tools.MoveAndMergeDirTree(temp_src_dir, destination_dir) pynacl.file_tools.RemoveDirectoryIfPresent(temp_dir) pynacl.file_tools.MakeParentDirectoryIfAbsent(dest_package_file) package_desc.SavePackageFile(dest_package_file) def CleanupTarDirectory(tar_dir): """Deletes any files within the tar directory that are not referenced. Files such as package archives are shared between packages and therefore non-trivial to delete. Package files may also change so old packages may stay on the local hard drive even though they are not read anymore. This function will walk through the tar directory and cleanup any stale files it does not recognize. Args: tar_dir: Source tar directory where package archives live. """ # Keep track of the names of all known files and directories. Because of # case insensitive file systems, we should lowercase all the paths so # that we do not accidentally delete any files. known_directories = set() known_files = set() for package_target, package_list in package_locations.WalkPackages(tar_dir): for package_name in package_list: package_file = package_locations.GetLocalPackageFile(tar_dir, package_target, package_name) try: package_desc = package_info.PackageInfo(package_file, skip_missing=True) except: continue for archive_obj in package_desc.GetArchiveList(): archive_desc = archive_obj.GetArchiveData() if not archive_desc.hash: continue archive_file = package_locations.GetLocalPackageArchiveFile( tar_dir, archive_desc.name, archive_desc.hash) log_file = package_locations.GetLocalPackageArchiveLogFile(archive_file) known_files.add(archive_file.lower()) known_files.add(log_file.lower()) package_name = package_info.GetLocalPackageName(package_file) package_directory = os.path.join(os.path.dirname(package_file), package_name) known_files.add(package_file.lower()) known_directories.add(package_directory.lower()) # We are going to be deleting all files that do not match any known files, # so do a sanity check that this is an actual tar directory. If we have no # known files or directories, we probably do not have a valid tar directory. if not known_directories or not known_files: raise error.Error('No packages found for tar directory: %s' % tar_dir) for dirpath, dirnames, filenames in os.walk(tar_dir, topdown=False): if dirpath.lower() in known_directories: continue for filename in filenames: full_path = os.path.join(dirpath, filename) if full_path.lower() in known_files: continue logging.debug('Removing stale file: %s', full_path) os.unlink(full_path) if not os.listdir(dirpath): logging.debug('Removing stale directory: %s', dirpath) os.rmdir(dirpath) # # Each Command has 2 functions that describes it: # 1. A parser function which specifies the extra command options each command # will have. # 2. An execution function which is called when a user actually executes # the command. # def _ListCmdArgParser(subparser): subparser.description = 'Lists package information.' def _DoListCmd(arguments): package_targets = collections.defaultdict(list) for package_target, package in arguments.package_target_packages: package_targets[package_target].append(package) modes_dict = arguments.packages_desc.GetPackageModes() if not modes_dict: print 'No Package Modes Found.' else: print 'Listing Modes:' for mode, package_list in modes_dict.iteritems(): print ' [%s]' % mode for package in package_list: print ' ', package if arguments.mode: print print 'Current Mode Selected:', arguments.mode print print 'Listing Package Targets and Packages:' for package_target, packages in package_targets.iteritems(): print ' [%s]:' % package_target for package in sorted(packages): print ' ', package def _ArchiveCmdArgParser(subparser): subparser.description = 'Archive package archives to tar directory.' subparser.add_argument( '--archive-package', metavar='NAME', dest='archive__package', required=True, help='Package name archives will be packaged into.') subparser.add_argument( '--extra-archive', metavar='ARCHIVE', dest='archive__extra_archive', action='append', default=[], help='Extra archives that are expected to be built elsewhere.') subparser.add_argument( metavar='TAR(,SRCDIR(:EXTRACTDIR))(@URL,LOGURL)', dest='archive__archives', nargs='+', help='Package archive with an optional tar information and url.' ' SRCDIR is the root directory where files live inside of the tar.' ' EXTRACTDIR is the directory to extract files to relative to the' ' destination directory. The URL is where the package can be' ' downloaded from.') subparser.add_argument( '-x', '--extract', dest='archive__extract', action='store_true', default=False, help='Extract package archives after they have been archived.') def _DoArchiveCmd(arguments): package_target_packages = GetPackageTargetPackages( arguments.archive__package, arguments.package_target_packages ) if not package_target_packages: raise error.Error('Unknown package: %s.' % arguments.archive__package + ' Did you forget to add "$PACKAGE_TARGET/"?') for package_target, package_name in package_target_packages: ArchivePackageArchives(arguments.tar_dir, package_target, package_name, arguments.archive__archives, extra_archives=arguments.archive__extra_archive) if arguments.archive__extract: ExtractPackageTargets([(package_target, package_name)], arguments.tar_dir, arguments.dest_dir, skip_missing=True, quiet=arguments.quiet) def _ExtractCmdArgParser(subparser): subparser.description = 'Extract packages from tar directory.' subparser.add_argument( '--skip-missing', dest='extract__skip_missing', action='store_true', default=False, help='Skip missing archive files when extracting rather than erroring out.') subparser.add_argument( '--overlay-tar-dir', dest='overlay_tar_dir', default=None, help='Extracts tar directorys as usual, except uses any packages' + ' found within the overlay tar directory first.') def _DoExtractCmd(arguments): ExtractPackageTargets( arguments.package_target_packages, arguments.tar_dir, arguments.dest_dir, skip_missing=arguments.extract__skip_missing, overlay_tar_dir=arguments.overlay_tar_dir, quiet=arguments.quiet) def _UploadCmdArgParser(subparser): subparser.description = 'Upload a package file.' subparser.add_argument( '--upload-package', metavar='NAME', dest='upload__package', required=True, help='Package to upload.') subparser.add_argument( '--revision', metavar='ID', dest='upload__revision', required=True, help='Revision of the package to upload.') subparser.add_argument( '--package-file', metavar='FILE', dest='upload__file', default=None, help='Use custom package file instead of standard package file found' ' in the tar directory.') subparser.add_argument( '--skip-missing', dest='upload__skip_missing', action='store_true', default=False, help='Skip missing archive files when uploading package archives.') def _DoUploadCmd(arguments): package_target_packages = GetPackageTargetPackages( arguments.upload__package, arguments.package_target_packages ) if not package_target_packages: raise error.Error('Unknown package: %s.' % arguments.upload__package + ' Did you forget to add "$PACKAGE_TARGET/"?') for package_target, package_name in package_target_packages: UploadPackage( arguments.gsd_store, arguments.upload__revision, arguments.tar_dir, package_target, package_name, arguments.packages_desc.IsSharedPackage(package_name), annotate=arguments.annotate, skip_missing=arguments.upload__skip_missing, custom_package_file=arguments.upload__file ) def _SyncCmdArgParser(subparser): subparser.description = 'Download package archives to the tar directory.' subparser.add_argument( '--revision', metavar='ID', dest='sync__revision', default=None, help='Revision identifier of the packages to download.') subparser.add_argument( '--include-logs', dest='sync__include_logs', action='store_true', default=False, help='Also download logs next to each archive if available.') subparser.add_argument( '-x', '--extract', dest='sync__extract', action='store_true', default=False, help='Extract package archives after they have been downloaded.') def _DoSyncCmd(arguments): for package_target, package_name in arguments.package_target_packages: if arguments.sync__revision is None: # When the sync revision number is not specified, use the set # revision number found in the revision directory. revision_file = package_locations.GetRevisionFile( arguments.revisions_dir, package_name) revision_desc = revision_info.RevisionInfo( arguments.packages_desc, revision_file) package_desc = revision_desc.GetPackageInfo(package_target) revision_num = revision_desc.GetRevisionNumber() else: # When the sync revision number is specified, find the package to # download remotely using the revision. revision_num = arguments.sync__revision remote_package_key = package_locations.GetRemotePackageKey( arguments.packages_desc.IsSharedPackage(package_name), arguments.sync__revision, package_target, package_name) with pynacl.working_directory.TemporaryWorkingDirectory() as work_dir: temp_package_file = os.path.join( work_dir, os.path.basename(remote_package_key) + TEMP_SUFFIX) package_info.DownloadPackageInfoFiles( temp_package_file, remote_package_key, downloader=arguments.gsd_store.GetFile) package_desc = package_info.PackageInfo(temp_package_file) DownloadPackageArchives( arguments.tar_dir, package_target, package_name, package_desc, revision_num=revision_num, include_logs=arguments.sync__include_logs) CleanTempFiles(arguments.tar_dir) if arguments.sync__extract: ExtractPackageTargets( arguments.package_target_packages, arguments.tar_dir, arguments.dest_dir, quiet=arguments.quiet) def _SetRevisionCmdArgParser(subparser): subparser.description = 'Specify the revision of a package.' subparser.add_argument( '--revision-package', metavar='NAME', dest='setrevision__package', action='append', default=[], help='Package name to set revision of.') subparser.add_argument( '--revision-set', metavar='SET-NAME', dest='setrevision__revset', action='append', default=[], help='Revision set to set revision for.') subparser.add_argument( '--revision', metavar='ID', dest='setrevision__revision', required=True, help='Revision identifier of the package to set.') def _DoSetRevisionCmd(arguments): packages_list = arguments.setrevision__package revision_sets = arguments.setrevision__revset revision_num = arguments.setrevision__revision for revision_set in revision_sets: set_packages = arguments.packages_desc.GetRevisionSet(revision_set) if set_packages is None: raise error.Error('Invalid Revision Set: %s' % revision_set) packages_list.extend(set_packages) if not packages_list: raise error.Error('No revision packages have been supplied.') for package_name in packages_list: revision_desc = revision_info.RevisionInfo(arguments.packages_desc) revision_desc.SetRevisionNumber(revision_num) custom_package_targets = GetPackageTargetPackages(package_name, []) if not custom_package_targets: package_targets = arguments.packages_desc.GetPackageTargetsForPackage( package_name ) else: package_targets = [target[0] for target in custom_package_targets] first_target = custom_package_targets[0] package_name = first_target[1] for package_target in package_targets: with pynacl.working_directory.TemporaryWorkingDirectory() as work_dir: remote_package_key = package_locations.GetRemotePackageKey( arguments.packages_desc.IsSharedPackage(package_name), revision_num, package_target, package_name) temp_package_file = os.path.join( work_dir, os.path.basename(remote_package_key) + TEMP_SUFFIX) package_info.DownloadPackageInfoFiles( temp_package_file, remote_package_key, downloader=arguments.gsd_store.GetFile) package_desc = package_info.PackageInfo(temp_package_file) logging.info('Setting %s:%s to revision %s', package_target, package_name, revision_num) revision_desc.SetTargetRevision( package_name, package_target, package_desc) revision_file = package_locations.GetRevisionFile( arguments.revisions_dir, package_name) pynacl.file_tools.MakeParentDirectoryIfAbsent(revision_file) revision_desc.SaveRevisionFile(revision_file) CleanTempFiles(arguments.revisions_dir) def _GetRevisionCmdArgParser(subparser): subparser.description = 'Get the revision of a package.' subparser.add_argument( '--revision-package', metavar='NAME', dest='getrevision__packages', action='append', default=[], help='Package name to get revision of.') subparser.add_argument( '--revision-set', metavar='SET-NAME', dest='getrevision__revset', action='append', default=[], help='Revision set to set revision for.') def _DoGetRevisionCmd(arguments): packages_list = arguments.getrevision__packages revision_sets = arguments.getrevision__revset for revision_set in revision_sets: set_packages = arguments.packages_desc.GetRevisionSet(revision_set) if set_packages is None: raise error.Error('Invalid Revision Set: %s' % revision_set) packages_list.extend(set_packages) if not packages_list: raise error.Error('No revision packages have been supplied.') revision_number = None for package_name in packages_list: custom_package_targets = GetPackageTargetPackages(package_name, []) if custom_package_targets: custom_target, package_name = custom_package_targets[0] revision_file = package_locations.GetRevisionFile(arguments.revisions_dir, package_name) if not os.path.isfile(revision_file): raise error.Error('No revision set for package: %s.' % package_name) revision_desc = revision_info.RevisionInfo(arguments.packages_desc, revision_file) package_revision = revision_desc.GetRevisionNumber() if revision_number is None: revision_number = package_revision elif revision_number != package_revision: logging.error('Listing Get Revision Packages:') for package in packages_list: logging.error(' %s', package) raise error.Error('Package revisions are not set to the same revision.') print revision_number def _RevPackagesCmdArgParser(subparser): subparser.description = 'Prints list of packages for a revision set name.' subparser.add_argument( '--revision-set', metavar='NAME', dest='revpackages__name', required=True, help='Name of the package or revision set.') def _DoRevPackagesCmd(arguments): revision_package = arguments.revpackages__name packages_list = [revision_package] # Check if the package_name is a revision set. revision_set = arguments.packages_desc.GetRevisionSet(revision_package) if revision_set is not None: packages_list = revision_set for package_name in packages_list: print package_name def _FillEmptyTarsParser(subparser): subparser.description = 'Fill missing archives with empty ones in a package.' subparser.add_argument( '--fill-package', metavar='NAME', dest='fillemptytars_package', required=True, help='Package name to fill empty archives of.') def _DoFillEmptyTarsCmd(arguments): package_target_packages = GetPackageTargetPackages( arguments.fillemptytars_package, arguments.package_target_packages ) if not package_target_packages: raise error.Error('Unknown package: %s.' % arguments.fillemptytars_package + ' Did you forget to add "$PACKAGE_TARGET/"?') for package_target, package_name in package_target_packages: package_path = package_locations.GetLocalPackageFile(arguments.tar_dir, package_target, package_name) package_desc = package_info.PackageInfo(package_path, skip_missing=True) output_package_desc = package_info.PackageInfo() for archive in package_desc.GetArchiveList(): # If archive does not exist, fill it with an empty one. archive_data = archive.GetArchiveData() if archive_data.hash: output_package_desc.AppendArchive(archive) else: logging.info('Filling missing archive: %s.', archive_data.name) if (archive_data.name.endswith('.tar.gz') or archive_data.name.endswith('.tgz')): mode = 'w:gz' elif archive_data.name.endswith('.bz2'): mode = 'w:bz2' elif archive_data.name.endswith('.tar'): mode = 'w:' else: raise error.Error('Unknown archive type: %s.' % archive_data.name) temp_archive_file = os.path.join(arguments.tar_dir, archive_data.name) tar_file = cygtar.CygTar(temp_archive_file, mode) tar_file.Close() tar_hash = archive_info.GetArchiveHash(temp_archive_file) archive_file = package_locations.GetLocalPackageArchiveFile( arguments.tar_dir, archive_data.name, tar_hash) pynacl.file_tools.MakeParentDirectoryIfAbsent(archive_file) os.rename(temp_archive_file, archive_file) empty_archive = archive_info.ArchiveInfo(name=archive_data.name, hash=tar_hash) output_package_desc.AppendArchive(empty_archive) output_package_desc.SavePackageFile(package_path) def _RecalcRevsParser(subparser): subparser.description = 'Recalculates hashes for files in revision directory.' def _DoRecalcRevsCmd(arguments): for json_file in os.listdir(arguments.revisions_dir): if json_file.endswith('.json'): revision_file = os.path.join(arguments.revisions_dir, json_file) revision_desc = revision_info.RevisionInfo(arguments.packages_desc) revision_desc.LoadRevisionFile(revision_file, skip_hash_verify=True) revision_desc.SaveRevisionFile(revision_file) def _CleanupParser(subparser): subparser.description = 'Cleans up any unused package archives files.' def _DoCleanupCmd(arguments): CleanupTarDirectory(arguments.tar_dir) CommandFuncs = collections.namedtuple( 'CommandFuncs', ['parse_func', 'do_cmd_func']) COMMANDS = { 'list': CommandFuncs(_ListCmdArgParser, _DoListCmd), 'archive': CommandFuncs(_ArchiveCmdArgParser, _DoArchiveCmd), 'extract': CommandFuncs(_ExtractCmdArgParser, _DoExtractCmd), 'upload': CommandFuncs(_UploadCmdArgParser, _DoUploadCmd), 'sync': CommandFuncs(_SyncCmdArgParser, _DoSyncCmd), 'setrevision': CommandFuncs(_SetRevisionCmdArgParser, _DoSetRevisionCmd), 'getrevision': CommandFuncs(_GetRevisionCmdArgParser, _DoGetRevisionCmd), 'revpackages': CommandFuncs(_RevPackagesCmdArgParser, _DoRevPackagesCmd), 'fillemptytars': CommandFuncs(_FillEmptyTarsParser, _DoFillEmptyTarsCmd), 'recalcrevisions': CommandFuncs(_RecalcRevsParser, _DoRecalcRevsCmd), 'cleanup': CommandFuncs(_CleanupParser, _DoCleanupCmd), } def ParseArgs(args): parser = argparse.ArgumentParser() host_platform = pynacl.platform.GetOS() host_arch = pynacl.platform.GetArch3264() # List out global options for all commands. parser.add_argument( '-v', '--verbose', dest='verbose', action='store_true', default=False, help='Verbose output') parser.add_argument( '-q', '--quiet', dest='quiet', action='store_true', default=False, help='Quiet output') parser.add_argument( '--platform', dest='host_platform', default=host_platform, help='Custom platform other than the current (%s).' % host_platform) parser.add_argument( '--arch', dest='host_arch', default=host_arch, help='Custom architecture other than the current (%s).' % host_arch) parser.add_argument( '--package-targets', dest='package_targets', default=None, help='Custom package targets specifed as comma separated names. Defaults' ' to package targets defined for host platform and architecture inside' ' of the packages json file.') parser.add_argument( '--mode', dest='mode', default=None, help='Specify a package mode to filter by, modes are specified within' ' the packages json file. For a list of modes use the "list" command.') parser.add_argument( '--packages', dest='packages', default=None, help='Custom packages specified as comma separated package names. Custom' ' packages not defined by the packages json file must be prefixed by' ' the package_target directory (IE. $PACKAGE_TARGET/$PACKAGE).') parser.add_argument( '--append', metavar='PACKAGE', dest='append_packages', action='append', default=[], help='Append extra package to current list of packages.') parser.add_argument( '--exclude', metavar='PACKAGE', dest='exclude_packages', action='append', default=[], help='Exclude package from current list of packages.') parser.add_argument( '--packages-json', dest='packages_json', default=DEFAULT_PACKAGES_JSON, type=argparse.FileType('rt'), help='Packages description file.' ' [Default: %s]' % DEFAULT_PACKAGES_JSON) parser.add_argument( '--revisions-dir', dest='revisions_dir', default=DEFAULT_REVISIONS_DIR, help='Revisions directory where packages revisions will be found.') parser.add_argument( '--dest-dir', dest='dest_dir', default=DEFAULT_DEST_DIR, help='Destination directory where all the packages will be extracted to.') parser.add_argument( '--tar-dir', dest='tar_dir', default=None, help='Directory for package archive files. Defaults to "$DEST-DIR/.tars".') parser.add_argument( '--annotate', dest='annotate', action='store_true', default=False, help='Print out build bot annotations.') parser.add_argument( '--cloud-bucket', dest='cloud_bucket', default=DEFAULT_CLOUD_BUCKET, help='Google storage cloud bucket name.' ' [Default: %s]' % DEFAULT_CLOUD_BUCKET) # Add subparsers for all commands. These are flags for specific commands, # IE. [options] command [command-options] command_parser = parser.add_subparsers(title='command', dest='command') for command, cmd_funcs in COMMANDS.iteritems(): sub_parser = command_parser.add_parser(command) cmd_funcs.parse_func(sub_parser) arguments = parser.parse_args(args) pynacl.log_tools.SetupLogging( verbose=arguments.verbose, quiet=arguments.quiet) if arguments.tar_dir is None: arguments.tar_dir = os.path.join(arguments.dest_dir, '.tars') # Parse the package description up front and store it into the arguments # object. Almost all the commands need to use this information. packages_desc = packages_info.PackagesInfo(arguments.packages_json) arguments.packages_desc = packages_desc # Based on the host platform and host architecture, we can determine the set # of package targets used from the packages description. Minimize platform # and architecture errors by standardizing the names using pynacl.platform. if arguments.package_targets is None: package_targets = packages_desc.GetPackageTargets( pynacl.platform.GetOS(arguments.host_platform), pynacl.platform.GetArch3264(arguments.host_arch)) else: package_targets = arguments.package_targets.split(',') # If the packages argument were not set, use the default list of packages # for each package target. packages_set = set() if arguments.packages is None: for package_target in package_targets: packages = packages_desc.GetPackages(package_target) if packages is None: raise error.Error('No packages defined for Package Target: %s.' % package_target) packages_set.update(packages) else: packages_set.update(arguments.packages.split(',')) # If a mode was set, only use packages listed in the mode. if arguments.mode: modes_dict = packages_desc.GetPackageModes() if arguments.mode not in modes_dict: logging.info('Valid Package Modes:') for mode in modes_dict: logging.info(' %s', mode) raise error.Error('Invalid Package Mode: %s.' % arguments.mode) packages_set.intersection_update(modes_dict[arguments.mode]) # Append/exclude any extra packages that were specified. packages_set.update(arguments.append_packages) packages_set.difference_update(arguments.exclude_packages) # Build a dictionary that organizes packages to their respective package # targets. Packages may exist in multiple package targets so we will have # to have the key be package and value be a list of package targets. package_targets_dict = collections.defaultdict(list) for package_target in package_targets: for package in packages_desc.GetPackages(package_target): package_targets_dict[package].append(package_target) # Use the list of packages to determine the set of package target packages # we are operating on, custom package targets will have the package target # inside of the name of the package name (see help for "--packages" argument). # The package_target_packages is a list of tuples (package_target, package), # for every package along with the associated package target. package_target_packages = [] for package in sorted(packages_set): package_targets = package_targets_dict.get(package, None) if package_targets is None: custom_package_targets = GetPackageTargetPackages(package, []) if not custom_package_targets: raise error.Error('Invalid custom package: "%s".' ' Expected $PACKAGE_TARGET/$PACKAGE' % package) package_target_packages.extend(custom_package_targets) else: for package_target in package_targets: package_target_packages.append((package_target, package)) arguments.package_target_packages = package_target_packages # Create a GSD Storage object for those who need it. cloud_bucket = arguments.cloud_bucket gsd_store = pynacl.gsd_storage.GSDStorage(cloud_bucket, [cloud_bucket]) arguments.gsd_store = gsd_store return arguments def main(args): # If verbose is on, do not catch error.Error() exceptions separately but # allow python to catch the errors and print out the entire callstack. # Note that we cannot rely on ParseArgs() to parse if verbose is on, because # ParseArgs() could throw an exception. if '-v' in args or '--verbose' in args: arguments = ParseArgs(args) return COMMANDS[arguments.command].do_cmd_func(arguments) else: try: arguments = ParseArgs(args) return COMMANDS[arguments.command].do_cmd_func(arguments) except error.Error as e: sys.stderr.write('package_version: ' + str(e) + '\n') return 1 if __name__ == '__main__': sys.exit(main(sys.argv[1:]))
""" Copyright © retnikt <_@retnikt.uk> 2020 This software is licensed under the MIT Licence: https://opensource.org/licenses/MIT """ import secrets from typing import TYPE_CHECKING, List, Optional, Union from argon2 import ( # type: ignore DEFAULT_MEMORY_COST, DEFAULT_PARALLELISM, DEFAULT_TIME_COST, ) from pydantic import AnyHttpUrl, BaseSettings, Field, stricturl if TYPE_CHECKING: _PostgresURL = str else: _PostgresURL = stricturl( strip_whitespace=True, tld_required=False, allowed_schemes={"postgresql"}, ) class _UniversalSet: """(psuedo)-universal set - contains everything""" def __contains__(self, item): return True UNIVERSAL_SET = _UniversalSet() class _Settings(BaseSettings): dsn: _PostgresURL = "postgresql://db/notebook" force_rollback: bool = False cors_origins: List[AnyHttpUrl] = [] rocpf_origins: Union[_UniversalSet, List[str]] = Field(UNIVERSAL_SET) secret_key: str = secrets.token_urlsafe(40) argon2_time_cost: int = DEFAULT_TIME_COST argon2_memory_cost: int = DEFAULT_MEMORY_COST argon2_parallelism: int = DEFAULT_PARALLELISM smtp_hostname: Optional[str] = None smtp_port: Optional[int] = None smtp_username: Optional[str] = None smtp_password: Optional[str] = None smtp_direct_tls: bool = False smtp_start_tls: bool = False smtp_from: Optional[str] = None class Config: env_prefix: str = "notebook_" settings = _Settings()
import time import os from funboost import boost @boost('test_f1_queue', qps=0.5) def f1(x): time.sleep(3) print(f'x: {x}') for j in range(1, 5): f2.push(x * j) @boost('test_f2_queue', qps=2) def f2(y): time.sleep(5) print(f'y: {y}') if __name__ == '__main__': f1.clear() f2.clear() for i in range(30): f1.push(i) f1.consume() f2.consume() f1.wait_for_possible_has_finish_all_tasks(4) print('f1函数的队列中4分钟内没有需要执行的任务') f2.wait_for_possible_has_finish_all_tasks(3) print('f2函数的队列中3分钟内没有需要执行的任务') print('f1 和f2任务都运行完了,。。。') print('马上 os._exit(444) 结束脚本') os._exit(444) # 结束脚本
from django.conf.urls import url from . import views urlpatterns= [ url(r'^hello-view',views.HelloApiView.as_view()), ]
from dockit.backends.indexer import BaseIndexer from backend import MongoIndexStorage try: from bson.objectid import ObjectId except ImportError: from pymongo.objectid import ObjectId class MongoIndexer(BaseIndexer): def _get_key_value(self): dotpath = self.filter_operation.dotpath() value = self.filter_operation.value if dotpath in ('pk', '_pk', '_id') and value: value = ObjectId(value) if dotpath in ('pk', '_pk'): dotpath = '_id' return dotpath, value class ExactIndexer(MongoIndexer): def filter(self): dotpath, value = self._get_key_value() return {dotpath: value} def values(self): dotpath, value = self._get_key_value() return {dotpath: value} MongoIndexStorage.register_indexer(ExactIndexer, 'exact') class OperationIndexer(MongoIndexer): operation = None def filter(self): dotpath, value = self._get_key_value() return {dotpath: { self.operation : value }} def values(self): dotpath, value = self._get_key_value() return {dotpath: { self.operation: value }} class GTIndexer(OperationIndexer): operation = '$gt' MongoIndexStorage.register_indexer(GTIndexer, 'gt') class LTIndexer(OperationIndexer): operation = '$lt' MongoIndexStorage.register_indexer(LTIndexer, 'lt') class GTEIndexer(OperationIndexer): operation = '$gte' MongoIndexStorage.register_indexer(GTEIndexer, 'gte') class LTEIndexer(OperationIndexer): operation = '$lte' MongoIndexStorage.register_indexer(LTEIndexer, 'lte') class INIndexer(OperationIndexer): operation = '$in' MongoIndexStorage.register_indexer(LTEIndexer, 'in')
def main(): numbers = sorted([int(x) for x in input().split()]) diffs = [numbers[i+1] - numbers[i] for i in range(len(numbers) - 1)] if diffs[0] == diffs[1]: print(max(numbers) + diffs[0]) else: if diffs[0] > diffs[1]: print(numbers[0] + diffs[1]) else: print(numbers[1] + diffs[0]) if __name__ == '__main__': main()
# import setup import os.path import json import sys if __name__ == "__main__": assert sys.version_info >= (3, 7), "Minimum Python version: 3.7.0" """ if not os.path.exists("./configinfo.json"): with open("./configinfo.json", "w") as configinfo_json: json.dump({"first_time_setup": False}, configinfo_json, indent=2) with open("./configinfo.json", "r") as configinfo_json: loaded_json_obj = json.load(configinfo_json) try: if not loaded_json_obj["first_time_setup"]: # if input("Would you like to run the first-time setup for this program? (y/n): ").lower() == "y": print("Running first-time-setup, ensure you have a stable internet connection.") setup.install_from_requirements("./requirements.txt") loaded_json_obj["first_time_setup"] = True print("First time setup complete.") # else: # print("To install packages required for this program, run ./setup.py, found in this folder.") except KeyError: loaded_json_obj = {"first_time_setup": False} with open("./configinfo.json", "w") as configinfo_json: json.dump(loaded_json_obj, configinfo_json, indent=2) """ import gui gui_object = gui.MainGUI()
int_ = 2 list_ = [1, 2, 3]
""" add account_session table """ from yoyo import step __depends__ = {'20210808_01_sS1X2-add-table-for-processed-sub-ids'} steps = [ step(""" CREATE TABLE account_session ( id serial primary key, account_id int not null references account(id), service varchar(20) not null, encrypted_key text not null, session_key_sha256_hash char(64) not null, retries_remaining int not null default 2, created_at timestamp not null default (now() at time zone 'utc'), last_imported_at timestamp not null default (now() at time zone 'utc') ); CREATE UNIQUE INDEX ON account_session (service, session_key_sha256_hash); CREATE UNIQUE INDEX ON account_session (account_id, service); CREATE INDEX ON account_session (account_id); """) ]
#!/usr/bin/python # -*- coding: utf-8 -*- from app.models.tables import Role as RoleTable class Role: pass
import time import os import math import argparse from glob import glob from collections import OrderedDict import random import warnings from datetime import datetime import joblib from tqdm import tqdm import numpy as np import pandas as pd from sklearn.model_selection import KFold, StratifiedKFold import facenet import keras import tensorflow as tf from keras.datasets import mnist from keras.preprocessing.image import ImageDataGenerator from keras.models import Sequential, load_model from keras.layers import Dense, Dropout, Activation, Flatten from keras.layers import Conv2D, MaxPooling2D from keras.optimizers import SGD, Adam from keras.callbacks import EarlyStopping, ModelCheckpoint, ReduceLROnPlateau, CSVLogger, LearningRateScheduler, TerminateOnNaN, LambdaCallback import archs_face from metrics import * from scheduler import * from keras.preprocessing import image from PIL import Image import pandas as pd import re import cv2 from glob import glob from concurrent.futures import ThreadPoolExecutor arch_names = archs_face.__dict__.keys() def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('--name', default=None, help='model name: (default: arch+timestamp)') parser.add_argument('--arch', '-a', metavar='ARCH', default='vgg8', choices=arch_names, help='model architecture: ' + ' | '.join(arch_names) + ' (default: vgg8)') parser.add_argument('--num-features', default=5, type=int, help='dimention of embedded features') parser.add_argument('--num-embedding', default=5, type=int, help='dimention of embedded features') parser.add_argument('--num_images', default=0, type=int, help='dimention of embedded features') parser.add_argument('--batch_size', default=32, type=int, help='batch size') parser.add_argument('--nrof_classes', default=3139, type=int, help='nrof_classes') parser.add_argument('--test_size', default=100, type=int, help='test size') parser.add_argument('--steps_per_epoch', default=1, type=int, help='steps_per_epoch') parser.add_argument('--scheduler', default='CosineAnnealing', choices=['CosineAnnealing', 'None'], help='scheduler: ' + ' | '.join(['CosineAnnealing', 'None']) + ' (default: CosineAnnealing)') parser.add_argument('--n_epochs', default=1, type=int, metavar='N', help='number of total epochs to run') parser.add_argument('--workers', default=16, type=int, metavar='N', help='number of workers') parser.add_argument('--epochs', default=35, type=int, metavar='N', help='number of total epochs to run') parser.add_argument('--optimizer', default='SGD', choices=['Adam', 'SGD'], help='loss: ' + ' | '.join(['Adam', 'SGD']) + ' (default: Adam)') parser.add_argument('--lr', '--learning-rate', default=0.1, type=float, metavar='LR', help='initial learning rate') parser.add_argument('--min-lr', default=1e-3, type=float, help='minimum learning rate') parser.add_argument('--momentum', default=0.5, type=float) parser.add_argument('--validation_set_split_ratio', type=float, help='The ratio of the total dataset to use for validation', default=0.0) parser.add_argument('--min_nrof_val_images_per_class', type=float, help='Classes with fewer images will be removed from the validation set', default=0) parser.add_argument('--data_dir', type=str, help='Path to the data directory containing aligned face patches.', default='') parser.add_argument('--test_data_dir', type=str, help='Path to the test data directory containing aligned face patches.', default='') args = parser.parse_args() return args def preprocess_images(image): return cv2.cvtColor(image, cv2.COLOR_RGB2GRAY) def main(): args = parse_args() # add model name to args args.name = 'mnist_%s_%dd' %(args.arch, args.num_features) os.makedirs('models/%s' %args.name, exist_ok=True) print('Config -----') for arg in vars(args): print('%s: %s' %(arg, getattr(args, arg))) print('------------') joblib.dump(args, 'models/%s/args.pkl' %args.name) with open('models/%s/args.txt' %args.name, 'w') as f: for arg in vars(args): print('%s: %s' %(arg, getattr(args, arg)), file=f) IMG_HEIGHT = 160 IMG_WIDTH = 160 classes, nrof_classes = facenet.get_dataset(args.data_dir) path_exp = os.path.expanduser(args.data_dir) test_exp = os.path.expanduser(args.test_data_dir) if args.nrof_classes: nrof_classes = args.nrof_classes image_paths = [img_path for i in range(nrof_classes) for img_path in glob(os.path.join(path_exp, classes[i], "*.jpg"))[2:9]] image_paths = np.array(image_paths).flatten() test_image_paths = [img_path for i in range(nrof_classes) for img_path in glob(os.path.join(path_exp, classes[i], "*.jpg"))[0:1]] test_image_paths = np.array(test_image_paths).flatten() image_paths = image_paths[:].tolist() test_image_paths = test_image_paths[:].tolist() real_classes = np.array(list(map(lambda a: a.split("/")[4], image_paths))) test_real_classes = np.array(list(map(lambda a: a.split("/")[4], test_image_paths))) train_set = image_paths test_set = test_image_paths def path_to_tensor(img): face_cascade = cv2.CascadeClassifier('/usr/share/opencv/haarcascades/haarcascade_frontalface_default.xml') faces_multi = face_cascade.detectMultiScale(img, 1.1, 4) faces = [face.astype(np.int64).tolist() for face in faces_multi] return faces def resize(yes_face, img): return cv2.resize(img[yes_face[1]:yes_face[1]+yes_face[3],yes_face[0]:yes_face[0]+yes_face[2]],(IMG_HEIGHT,IMG_WIDTH)) def paths_to_tensor(executor, img_paths): def img_to_tensor(img_path, ii): img = image.load_img(img_path) gray = np.asarray(img.convert('L')) img = np.asarray(img) faces = path_to_tensor(gray) if len(faces) > 0: img = resize(faces[0], img) return np.expand_dims(img,0), ii else: return False list_tensors = [] list_indices = [] for result in tqdm(executor.map(img_to_tensor, img_paths, range(len(img_paths)))): if result is not False: list_tensors.append(result[0]) list_indices.append(result[1]) return np.vstack(list_tensors), list_indices y_train = real_classes y_test = test_real_classes y_values = pd.get_dummies(y_train).values y_test_values = pd.get_dummies(y_test).values if args.optimizer == 'SGD': optimizer = SGD(lr=args.lr, momentum=args.momentum) elif args.optimizer == 'Adam': optimizer = Adam(lr=args.lr) model = archs_face.__dict__[args.arch](args, len(np.unique(y_train))) model.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=['accuracy']) model.summary() model.load_weights(os.path.join('models', args.name, 'model_sm.hdf5')) callbacks = [ ModelCheckpoint(os.path.join('models', args.name, 'model_sm.hdf5'), verbose=1, save_best_only=False, period=1, monitor='val_acc'), CSVLogger(os.path.join('models', args.name, 'log.csv')), TerminateOnNaN()] if args.scheduler == 'CosineAnnealing': callbacks.append(CosineAnnealingScheduler(T_max=args.n_epochs, eta_max=args.lr, eta_min=args.min_lr, verbose=1)) if 'face' in args.arch: print("Training started") train_executor = ThreadPoolExecutor(max_workers=2) X_train, train_non_tensors = paths_to_tensor(train_executor, train_set) test_executor = ThreadPoolExecutor(max_workers=2) X_test, test_non_tensors = paths_to_tensor(test_executor, test_set) model.fit([X_train, y_values[train_non_tensors]], y_values[train_non_tensors], epochs=args.n_epochs, batch_size=args.batch_size, workers=args.workers, validation_data=([X_test, y_test_values[test_non_tensors]], y_test_values[test_non_tensors]), callbacks=callbacks, verbose=1) # model.load_weights(os.path.join('models', args.name, 'model.hdf5')) # model.load_weights(os.path.join('models', args.name, 'model.hdf5')) # X_test = paths_to_tensor(test_set) # if 'face' in args.arch: # score = model.evaluate([X_test[:args.batch_size], y_test[:args.batch_size]], y_test[:args.batch_size], verbose=1) # else: # score = model.evaluate(X_test, y_test, verbose=1) # print("Test loss:", score[0]) # print("Test accuracy:", score[1]) if __name__ == '__main__': main()
# -*- coding: utf-8 -*- """ @brief test log(time=60s) """ import sys import os import unittest from pyquickhelper.loghelper import fLOG from pyquickhelper.pycode import get_temp_folder, is_travis_or_appveyor from pyquickhelper.pycode import fix_tkinter_issues_virtualenv from pyquickhelper.ipythonhelper import execute_notebook_list_finalize_ut from ensae_projects.automation.notebook_test_helper import ls_notebooks, execute_notebooks, clean_function_notebook import ensae_projects class TestNotebookHackathon(unittest.TestCase): def test_notebook_hackathon(self): fLOG( __file__, self._testMethodName, OutputPrint=__name__ == "__main__") if is_travis_or_appveyor(): return fix_tkinter_issues_virtualenv() temp = get_temp_folder(__file__, "temp_hackathon_2015") keepnote = ls_notebooks("hackathon_2015") self.assertTrue(len(keepnote) > 0) keepnote = [ _ for _ in keepnote if "database_schemas" not in _ and "process_clean_files" not in _ and "times_series" not in _ and "upload" not in _] def valid_cell(cell): if "%blob" in cell: return False if "blob_service" in cell: return False return True res = execute_notebooks(temp, keepnote, filter=lambda i, n: True, valid_cell=valid_cell, fLOG=fLOG, clean_function=clean_function_notebook) execute_notebook_list_finalize_ut( res, fLOG=fLOG, dump=ensae_projects) if __name__ == "__main__": unittest.main()
# ---------------------------------------------------------------------- # OID Rule Loader # ---------------------------------------------------------------------- # Copyright (C) 2007-2018 The NOC Project # See LICENSE for details # ---------------------------------------------------------------------- # Python modules import threading from contextlib import contextmanager _tls = threading.local() @contextmanager def with_resolver(resolver): """ OIDRule resolver context. :param resolver: callable accepting name and returning OIDRule class with given type :return: """ _tls._oid_rule_resolver = resolver yield del _tls._oid_rule_resolver def load_rule(data): """ Create OIDRule instance from data structure. MUST be called within resolver_context :param data: parsed from json file :return: """ resolver = getattr(_tls, "_oid_rule_resolver", None) assert resolver, "Should be calles within with_resolver context" if not isinstance(data, dict): raise ValueError("object required") if "$type" not in data: raise ValueError("$type key is required") t = data["$type"] rule = resolver(t) if not rule: raise ValueError("Invalid $type '%s'" % t) return rule.from_json(data)
# -*- coding: utf-8 -*- from base64 import urlsafe_b64encode, urlsafe_b64decode from Cryptodome import Random from Cryptodome.Util import Padding from Cryptodome.Cipher import AES from conf import conf class AESCipher: def __init__(self): self.key = conf['SECRET_KEY']['secret_key'].encode() def encrypt(self, plaintext: str): padded_plaintext = Padding.pad( data_to_pad=plaintext.encode("utf-8"), block_size=AES.block_size ) iv = Random.new().read(AES.block_size) cipher = AES.new( key=self.key, mode=AES.MODE_CBC, iv=iv ) ciphertext = cipher.encrypt(padded_plaintext) return urlsafe_b64encode(iv + ciphertext).decode("utf-8") def decrypt(self, ciphertext: str): ciphertext = urlsafe_b64decode(ciphertext.encode("utf-8")) iv = ciphertext[:AES.block_size] cipher = AES.new( key=self.key, mode=AES.MODE_CBC, iv=iv ) padded_plaintext = cipher.decrypt(ciphertext[AES.block_size:]) return Padding.unpad( padded_data=padded_plaintext, block_size=AES.block_size ).decode("utf-8")
from pytransform import pyarmor_runtime pyarmor_runtime() __pyarmor__(__name__, __file__, b'\x50\x59\x41\x52\x4d\x4f\x52\x00\x00\x03\x09\x00\x61\x0d\x0d\x0a\x08\x2d\xa0\x01\x00\x00\x00\x00\x01\x00\x00\x00\x40\x00\x00\x00\x2d\x7c\x00\x00\x00\x00\x00\x18\xa3\x54\xc0\x8b\xd9\xf4\x9f\x8f\x59\x62\xb7\xbb\xfb\x46\x82\xe7\x00\x00\x00\x00\x00\x00\x00\x00\xb4\x88\x91\x41\xed\xf9\x2e\xeb\x46\x3f\x90\x5f\xc6\xcf\xf0\x26\x91\xb7\xcf\x44\x4c\xa2\xa3\x43\xc5\x05\x36\x52\x68\xc9\x38\xa6\x9b\xc5\x2d\xec\x3e\x6c\x2d\x75\x2b\x6b\x0b\x5c\x8a\x4c\xb6\x79\x3e\xbf\xdf\x30\x57\x3e\x01\x13\xa6\x86\x70\x7a\x2a\x6d\x70\x9f\xf0\x88\x00\x0c\xe7\x63\xcc\x8a\x08\xc8\x7d\x60\x89\x99\x45\x83\x68\x77\xde\x92\x74\x75\xae\x86\x95\x44\x42\x6d\x7c\xf5\x09\x2f\x1b\xdb\x9c\x9c\xe3\x55\xe8\x77\x29\xca\x2f\xc5\x13\x01\x97\x59\x3c\x19\x13\xef\xa8\xc1\x4a\x38\x18\xac\x58\x86\xfe\xf3\x54\xb5\x6d\x5e\x94\x37\x5a\x7a\x8b\xd5\xaf\xe9\xcb\xfe\xf3\x0a\x1f\x88\x3c\x15\x05\x0a\x21\x07\x04\x81\x93\x2c\xc3\xc3\xca\xe5\x81\x22\x62\xb6\xbb\x91\x0e\x3e\x0c\xe5\x86\x53\x91\xe1\xe1\x6d\x4a\xe4\x3a\x68\xc7\xc6\x49\x72\xe8\xc2\x9c\x49\xf0\x9e\x58\x5d\x13\x43\xfd\x2f\xc0\x0b\xa7\x71\x19\xc8\x55\x21\xbd\x49\x0a\xf6\x9c\xac\x53\x7e\xa7\x5d\x66\xd4\x5d\x72\x46\x61\xc5\xcc\x2f\x77\xd4\x40\x69\x5c\x05\x0f\x39\xc1\x74\x75\x90\x58\x1a\xe0\x7f\xc9\xfb\x36\x63\x4b\xcd\x3a\x08\xaf\xa6\x5f\xc3\xae\xcf\xb6\x75\x9f\x48\x60\x3f\x3a\x0c\x66\xea\x70\x48\xb9\x80\xa6\xa0\x31\xb4\x51\xc9\xc6\x23\x12\xc5\xa2\x52\x01\x24\x79\x59\xc3\xfe\x3c\xaf\x4a\xd8\xca\x1a\x9b\xc5\xdc\xa1\xe4\xd4\x5b\xf2\x3c\xa6\x20\x92\x0b\xb7\xe2\x61\x98\x4a\x0b\x84\xc2\x32\xad\x26\xa7\x2e\x8a\x26\xef\x00\x1a\x44\x13\x7a\x72\x13\x01\x36\x4f\xf8\xb3\x90\x4e\x31\x6d\xfa\x0d\x12\x67\x32\xcc\x28\xbe\x18\x80\xc9\xad\x98\x54\x05\xf1\x42\x69\x03\xe4\xe1\x8d\x65\x18\x92\x1b\x69\x35\xc9\x80\x09\x24\x0f\xb0\x16\x6f\x87\x7b\xf9\xae\x44\x87\x00\xf2\xc2\x56\x2b\x86\x0f\x06\x79\x11\x82\x0d\xff\xf4\xdb\x9f\xaf\x86\x2a\xc9\x53\x8a\xf2\x8d\xc9\x50\x55\x19\x8a\xe2\x03\xf5\x0e\x41\x13\x93\x27\x0b\x7e\x41\xe1\x5a\x55\xda\x72\xe0\xaf\x80\x9d\x2a\xec\xc0\x27\x79\xb5\xf6\xc2\x12\x31\xb7\x9c\xc8\xc3\x0f\x61\x67\x22\xa8\x90\x25\x36\x3d\x87\x01\x2e\x19\x95\xb0\xca\x9b\xae\xeb\x38\x7f\xd2\xaa\x84\x56\x8e\x6e\xb0\x2b\x74\x49\x48\x02\x3e\xdd\x2b\xa7\x0c\xc5\x2a\x4f\x42\x5f\x58\x99\x7b\x8f\x5c\xe5\x7c\xc9\xaf\x6e\x9d\x10\x84\xa5\xaa\x92\x46\xf7\xd7\x70\x10\x31\x5e\x06\x83\xf9\x5a\xe3\xd9\xa4\x11\xce\xd8\xbd\x80\xe6\x3f\x32\xac\x17\xa6\xf5\xeb\xf8\x13\xc1\xfd\x5b\x4e\x60\x06\xc9\x84\x0d\x3c\x12\x87\xcc\x51\xd2\x1f\x9e\x62\x69\xa4\x63\x7a\xef\xc6\x0d\x2b\xa0\x4f\x7f\x21\xf4\x3f\x75\x04\x05\xc2\x7f\x47\xd1\x76\x80\x7c\xdc\xf3\x64\x5a\x98\x9b\xf5\x34\xbd\xa1\xcf\x7b\x9a\x52\x67\x7e\xf2\xe3\x19\x13\x78\x76\x05\xe4\x2e\x5d\xdc\x64\xe3\x57\xe5\xe4\x1c\x72\x7f\xd4\xaf\xae\x42\x7d\x2d\x47\xc3\xfa\x85\x49\x29\xc4\x15\x4e\xc9\x04\xbb\x98\x64\x1c\xff\xda\xd3\x0d\x6c\xe9\xbb\x6e\xb3\xfa\x2d\xe1\xf8\x66\x50\x14\xa9\xeb\x43\x2b\x24\xf3\x4e\xf9\xa9\x81\xa8\x05\xfb\xd8\xf2\x6c\xef\x71\xac\x54\x12\xc1\x7d\xe9\x86\x99\x4b\x34\xd0\x1c\x18\x0e\x8d\x1d\x8f\x0b\x15\x07\xc8\x07\xd4\x94\x7a\x29\x50\x23\x79\x32\x6c\x6d\x74\x44\xc4\x12\x0b\x02\x9f\x73\xa8\x14\x09\xf6\xbc\xce\xf6\xf4\x25\x42\xa8\xd6\x4c\xf8\x27\x11\xa7\x45\x37\x48\xb7\x7d\x56\x57\xaf\x5b\x3d\xc2\xb0\xaf\xf1\x79\x41\x20\xde\x17\xba\x0c\xa0\x0c\x7a\x4a\xbb\x79\x86\xb6\xac\x44\x6c\x5d\x80\x3c\x49\xbc\xcb\xf6\x07\xec\xc4\xce\x1c\xae\x70\x2b\x9d\x48\x97\x25\xdc\x62\x0c\x95\x3e\x61\x1c\x98\x59\xc5\xcc\x24\x31\xa7\x90\xb5\x59\x6d\x12\x13\xf4\x01\xe0\x17\xfe\x4b\xe2\x5f\x11\x21\xb0\x1a\xd9\x70\x3e\x05\xe5\x1c\x5d\x91\xb9\x9c\xdf\x81\xa2\x35\xe9\xa3\x2a\xd5\xb1\xeb\x32\x6e\x6e\xe8\x11\x16\xdb\x67\x76\x7c\x4c\xbc\xb3\x00\x86\x04\x9e\x63\x1d\x98\xfb\x7f\x68\x24\xb5\x61\x0c\xf1\x34\xec\x5d\xba\x27\x0d\x52\xcd\xc3\x14\x78\x5f\xcd\x4c\x6c\x7f\xee\xd2\xfd\x53\x28\xe9\xf9\x9a\x7f\xb5\x96\x83\x1c\x5c\xb4\xcc\x0b\xa9\xd0\x78\xba\xac\xc5\x22\xa3\x94\x08\x96\x70\xbe\x89\xf7\x4d\x55\x8a\x1e\x59\xb1\x21\xb6\x85\x5c\x21\x51\x27\x9e\x08\xda\xdc\x37\x11\x26\x6c\x32\x9a\x54\x9f\xc7\x28\xbc\xd6\x23\xb5\x33\x0b\x55\xf1\x2c\x57\x79\x67\xcc\x1a\x7f\xb3\xca\xeb\xbc\xe3\xbc\x02\x19\x37\x5a\xe6\x5d\xbc\xc1\x25\x9a\x5d\x39\x8c\xe8\x3e\xbe\x11\xbf\x2d\xe7\xbf\xb1\x45\x54\xfd\x9b\x46\x30\x22\xf7\x92\xbb\xe6\x08\x25\x6c\x63\xb8\x00\x05\xde\x1a\xee\x12\xbb\x92\xf2\x58\xa1\xfb\x9a\x6e\xeb\xb6\xe7\x39\x76\xfb\x14\xf4\x53\xfd\xd5\x39\x1f\x63\xba\x8b\x49\x0a\xee\x63\xbb\x56\xc9\xce\xf4\xb0\x5a\x3a\x71\xbd\x68\x54\xf2\xda\xc6\xe2\x13\x89\x71\xe8\xd4\xbe\xe9\xca\xc0\x4e\xa5\xaa\xa4\x33\xbe\xc1\x24\x88\x89\xcd\x60\x6e\x7f\xd9\x9a\x21\xcd\xc6\x88\x60\x60\x9c\xdb\x19\x79\x3e\x31\x9f\x01\xb9\x3a\x87\x6b\x38\xcf\xc7\xc1\x50\x40\xc0\x82\x09\x13\x29\x8c\x97\x19\x17\x35\x27\xb4\x77\x0f\xca\x8c\x5a\x3d\x55\x62\xd6\x00\x51\xd9\x0c\x61\x39\x8d\x48\xbe\xdd\xd3\x82\xae\x8f\xc6\xbe\xb0\xb7\x74\x6a\xfd\x42\x2b\xa8\x91\x0f\xa8\x6a\x84\x4f\x55\x34\x85\x98\x31\x50\xb6\x46\x4f\xb7\xb8\xb2\x05\xcd\x5c\x30\xf4\xd5\x31\x78\xc1\xa2\x23\x39\xe1\xfc\xcc\xf2\x42\x42\x53\x62\x4e\xa6\x96\xee\x7e\xf3\xa4\xfb\x87\x79\xef\x84\x3c\xaf\xd3\xf4\x0e\x3d\x62\x5b\xb0\x6e\xdb\x0c\x3a\x95\x95\x98\x45\xff\x00\xa2\x9e\xf5\x93\x26\xe5\x3c\xc2\xd6\x43\x5b\xe6\xa9\x70\x9a\x51\x31\xf4\x95\x37\x82\x82\xb3\xdc\x5f\xb0\x41\xf3\x26\x2d\xbb\xd5\x22\x52\x2c\x7b\x55\xb7\xc8\xae\xdd\x84\x02\xc7\xde\xb4\x9a\x6c\x38\x4c\xe8\x54\x75\x2e\xc8\x84\x22\xb8\xa4\x8c\x80\xfa\x68\x5a\x1d\x2f\x36\x6e\xf0\xb8\x13\xa4\x71\x1e\x7c\x8f\xe5\x39\x2e\x23\x6c\x8e\xd2\x97\x0a\xa2\xbe\xdb\xb4\xc1\xad\x19\xbb\x00\xec\x9c\x52\x20\x30\x0b\x8c\xcb\xad\x9f\xff\xa0\x6c\x62\x72\x81\xd1\x0e\xb7\xa2\x85\xd5\x42\xb1\xa7\x93\xc9\xa0\xe1\xa6\x4a\x4b\x5a\xe5\x04\x0b\xbd\xbc\x1c\x4c\xb8\x74\x90\x26\xb8\xfe\xef\x60\x2e\x1f\x70\xfc\xcf\x71\xb7\x01\xa1\xbc\xba\xf4\x9a\x96\xa3\xe6\x52\x72\x4b\x09\xdb\x3d\x53\xec\x00\x7b\x0e\x78\x72\x9a\x79\x9b\x58\xe5\x99\xaa\xaa\x9f\x50\xfe\xa6\x37\x08\x44\x7b\x0e\x06\xba\xc8\x99\xad\x9b\x61\xf1\x28\x27\xfa\xb7\xc5\xe2\xcb\xc0\xb5\x44\x63\x26\xbd\xda\x49\x53\xde\xd9\xbd\x0f\x14\x94\x40\xce\x03\xe6\x21\x4d\xaa\x87\x5f\x2c\x32\xc4\x4e\x1d\x1a\x3e\xad\x36\xce\x8b\x0c\x70\x84\x5e\x1e\x69\xe2\xef\xa1\x00\x47\x81\x3c\x5d\xfe\x8e\xed\x64\x56\x22\x0a\x1d\x9c\x29\xc0\xae\x55\x0d\xe8\x05\xae\x44\xee\xfe\x72\xc4\x94\xd0\x11\x19\xa0\xed\xef\xbc\xcc\x30\xd7\x27\xad\x8a\x30\x09\x1a\x53\x85\x1a\x99\x16\x3e\x52\xc3\x06\x6c\x3d\x61\x1c\xf4\xc8\xee\xc7\x70\x0e\xa2\x7f\x49\x17\xa8\x64\xb0\x6a\x90\xae\x0b\x6b\x49\xc7\xa8\x83\x6e\x98\xdd\x20\x84\xfd\xee\x3b\xf3\x49\x5e\xbb\xfb\x2f\x8e\x7b\x16\x0e\x7f\xbd\xec\xaf\x41\x97\x98\xde\xf7\x70\x93\x5b\xa3\x2b\xf9\xc1\xea\x92\x58\xf2\x09\xa6\xbe\x7e\x99\x68\xd6\x19\x7f\xbb\xb7\x8b\x79\xe1\xb2\x98\x55\xd6\x4d\xb2\x0e\x43\xb8\x4d\xca\xe5\xed\xe4\x91\x49\x1d\x59\x61\x79\x18\x99\x43\xf4\xa1\xd9\x7a\x43\x8b\x4c\x46\xdd\xbd\x00\x6b\xf7\x65\x04\x41\x0a\xac\x7a\x0c\x5f\xd0\x06\x6e\x9c\x09\x3a\xf2\x04\xd9\x59\xc8\x0e\x20\xcd\x6d\xca\x1c\x7a\x45\x82\xd5\x1b\xb5\xc2\xe7\x5a\xa8\xfc\x13\x32\x68\x7e\x32\x79\x69\xfc\x6c\xee\xd2\x52\xaf\x20\xec\xee\x19\x98\x0f\x2c\xb6\xbb\x4b\xe2\x16\x05\x03\x93\xd7\x29\x3f\x23\xc2\xac\x2b\x43\x5f\xe6\xc4\x24\xdd\x82\x0b\x14\xd4\x85\x1f\xd0\x2c\x0a\x66\xc3\xde\x60\x4e\xdb\xe1\xd8\x7a\x93\x43\x8d\x79\x0a\x49\x1a\x73\x17\x40\x31\xca\xf0\x18\x68\x08\x73\x56\xba\x71\x78\xf9\xea\x73\xcf\xef\xa3\x3e\xb5\x36\xd2\x63\xfb\xab\xf3\x06\x2c\x6b\x8a\x9d\x8b\x02\x93\xe3\xdf\x19\xd3\x38\x87\x5c\xc6\x72\x0b\x2a\x61\x97\xd2\xe5\xd9\x90\x1f\x50\x52\x36\xe4\xb3\x37\x8a\x5a\x9d\x09\x36\xa8\x2c\xdd\x1b\xd8\x57\x38\x5f\x1c\x56\xfd\xcc\xc1\x6c\x47\xaa\x5e\x14\xda\x05\xfb\x2d\x56\x32\x97\x41\x93\x4b\xff\x06\x92\x6e\x83\xa2\x26\x22\x01\x36\xff\x02\x80\xbc\x54\xf1\x92\xdf\x78\x58\x07\x53\xc1\x11\x76\x9d\x22\xb6\xe4\x3a\x64\x8d\x80\x23\xd0\xaa\x97\xa0\x17\x9f\x84\x36\xd3\xd1\x10\x2d\x6e\x08\x42\x02\xb5\x01\x22\xae\x58\x8c\x6e\xde\xb2\x61\x25\x0b\x66\x19\x34\x16\xc7\xff\x82\x94\x3e\x46\x0f\x3e\x4e\x94\x52\xbf\x78\x97\x06\x54\xdb\xe4\xfd\x1f\xdf\x3c\x61\x8e\x73\x19\xcd\xe9\xe6\xde\x91\xd3\x2f\xf8\x4c\x0b\xef\xe3\x95\x1b\x7b\x61\x24\x21\xd8\x76\xd2\x07\x01\x5f\x7a\x5b\x34\xa5\x75\x35\x5f\x2d\x22\xb7\xb8\xe7\xe8\xe0\x57\x9f\x26\x03\x1f\x65\x6a\x6f\xf0\xf1\x7b\x5d\xdc\xc3\x29\x4e\x1a\x3b\x5a\xd1\x47\x3d\x06\x8b\x4d\x16\xd7\x22\x59\x4f\x0d\xb3\x6d\x40\xb5\x6e\x86\x40\xa3\x22\x01\xca\x3b\x8f\x01\x02\x8d\x87\x68\xd0\xdd\x7f\x4e\x44\x37\x4c\x59\x32\xa5\x42\x00\x99\x1f\x1a\xc6\x21\x22\x44\xdf\x8e\x69\xbb\xc8\x17\x0f\x0c\xc2\x78\x05\x61\x00\x35\x38\x64\xfc\x2a\x43\xc8\x9b\x25\xe5\x7d\x43\x0f\x7a\xd9\xe8\x82\xa7\x3c\x02\x32\xd0\x74\x36\xa3\x8a\x76\x88\xc6\xa0\x28\xcb\xa4\xe2\x09\xb0\xe6\x5c\x22\x45\x09\x65\x01\x93\xea\x3f\xb0\xd5\xa8\x34\x51\xe8\x1f\x5e\x1d\xac\x32\x69\x1b\x84\x2b\x72\x4f\x34\x24\x04\xfc\xba\x49\x7e\x6b\xc6\xbe\x21\xf0\x66\x94\x06\xe0\xae\x83\x08\xc0\xaf\x73\xbb\xed\x0a\x82\xf3\x47\xb3\x2a\x42\x97\x51\x76\x16\xb5\xe0\x40\xc9\x03\xc6\x15\xd1\xc8\x02\x6f\xd6\x2a\x9c\x39\xce\xd3\xf3\x85\x8d\x13\x9c\xa4\xc9\xca\x4a\xf4\x07\x9d\x9e\x87\x40\x7a\x47\xb9\x6b\xba\xcf\xbd\xc1\x4a\x4d\x11\x14\x02\x68\x91\x06\x3b\x87\x28\x0d\x8b\xf3\xf3\x38\x68\xdb\x69\xca\xa6\x63\x08\x7f\x8d\xee\xc1\x35\xef\x53\xd9\x59\xe5\xf3\xc5\x44\x9d\x27\x00\xcb\xca\x58\xc0\xbc\xc6\x7f\xc1\x8d\x41\xdc\x28\x2d\xad\x58\x16\x1b\x61\x14\x50\x7c\x9e\x36\xda\x1e\x1f\x50\x1d\xbb\x86\x72\xb2\xd3\xdd\x05\xd0\x9b\xab\x28\x6e\x89\x2e\x29\xb5\xbd\x88\x87\x81\xa5\x5a\x24\x31\x42\x8a\x82\xc8\x1f\x25\x28\x9d\x48\x85\xe9\xc6\x12\xd5\x0e\xd4\xa7\xc9\xdf\xdb\x5d\x27\x58\x76\xb8\x76\x3b\x49\xa4\x98\x49\xa8\x0b\x27\x64\x80\x65\x03\x07\xc5\xb5\x29\xe9\x7f\x68\xdf\xed\x04\xb2\x7a\x15\x6b\x35\x9a\xb8\x5e\x28\x88\xd7\x8b\xce\x3b\x09\xb7\x48\x71\x6a\x72\x52\x94\xe0\xab\xa6\x10\x64\xc2\x7d\x43\x2a\x07\xf0\xb1\x7d\x03\x39\x0c\x88\x03\x94\xe0\xee\x0f\xd4\x79\x53\x94\xb2\x0c\x6a\xc5\xb8\x1b\x27\xcf\xac\x6f\xa9\x38\x80\x99\xc5\x25\x25\x8f\xda\x75\x1e\xf2\x90\x7c\x6d\xd9\xb8\xf3\x6a\x5d\x65\x53\x50\x57\xbb\x1e\xe9\x2c\x9a\xd6\x57\xee\x24\x6e\x6a\xaf\x6c\xa4\x10\xc0\x97\xae\xf3\x2c\x74\x8e\xa3\xb0\x00\x96\x0d\x6e\xae\x94\x1c\x97\xbc\x98\x64\xf7\xe0\x6e\xd2\xf7\x4d\x08\x80\xea\x6a\xea\xea\xf9\x14\x70\xad\xcc\x34\x80\xfc\xcc\x96\x82\xe2\x86\x0f\xb4\x55\xe5\x85\xca\x7d\x7f\x80\x11\xb7\x96\x7e\x4c\xf0\x8b\x85\xce\x8f\x18\x26\xfa\x3f\x13\xe7\x16\xe9\x29\x19\xb7\x79\x18\xeb\xbb\x97\x9a\xf8\x70\x86\xf7\x7e\x42\x93\x3d\x49\x1e\x6a\x14\x2c\xc1\x3e\xef\x8c\x8c\xde\xf4\x34\x6a\x98\x7c\xf0\xd0\xab\xae\x29\x3e\xd1\x04\x9c\x9f\xc6\xea\x05\xa5\x4f\xc1\xe2\x6c\x3d\x24\x13\x90\xb9\xa9\x2c\xa6\xd8\x8b\x2d\x4f\xb3\xcf\x45\x42\x95\x15\x28\x21\xdd\xba\xd9\x33\xf2\x56\xbb\xf2\x6b\x6c\x30\xca\xd7\x5d\xf2\x86\xda\x70\x01\x41\x95\xe9\xa3\x95\xd1\x35\xb5\xbb\x19\xe5\xfe\x8a\x12\x34\xf5\x11\x07\xcb\xab\x8d\x00\x39\x04\x63\xa8\x09\x89\x44\x52\x0e\x9b\x1c\x3d\x62\x53\x20\x5d\x24\x36\xb3\x3e\x95\xe0\xf7\xc5\x2d\x7f\xaa\x9b\xcd\xaf\x9c\x31\xbb\x23\x51\xd4\x1f\xc3\x4b\x3a\xab\x17\x63\x75\xe8\x48\xf3\xd0\x78\x41\x4b\x6a\xaa\xfe\x36\x7c\x3f\x95\xb1\x9b\x90\x5f\x9e\x40\x94\x6c\xd7\xfd\x26\xd2\xa0\x86\xa2\x18\x5e\x37\x08\x8e\xb6\x76\x6a\xea\xcf\x12\x17\xdb\xc4\x09\x49\x1c\x31\x09\xe8\xe9\xef\x17\xc6\x53\xe9\xe6\xcb\xac\x4a\x5a\x79\x72\x9a\x60\xcd\x08\x26\x00\xb1\x17\xa2\x02\x83\xc9\x33\xeb\xba\x30\x5c\xe1\x10\x5a\x87\xa8\x0a\x2f\x1e\x06\x76\xf1\xed\x97\xeb\x8c\x5e\x39\xd4\x15\x25\x5a\x17\x9b\xaa\x57\x1a\xad\x64\xd5\x96\x28\x99\xa0\x97\x75\x92\x21\x06\xd8\x5a\x89\x8d\x64\xa7\x27\x99\x46\xf4\x3a\xab\xa8\x6a\xac\xf1\x6f\x94\xdd\x87\x12\x52\x47\x2a\x9b\x29\xb9\xf5\x3e\xdc\x39\x73\x2a\x0c\xb4\xe2\x08\x90\x67\x50\x0e\x4a\x40\x78\xd0\x58\x52\xc6\x4a\xde\x32\x55\xb4\x95\xb7\xf9\x75\x1d\x3d\x61\x2e\xad\xca\x7b\xaf\x20\x70\x26\xf9\x93\x10\xa0\x82\xaa\x9b\xa8\xbb\x26\xc4\xff\x4a\xc0\x6f\xd9\x53\x11\x84\xc4\x8e\x9f\xad\xc2\xce\x6c\x0c\x35\x85\xef\xfb\x73\x15\xb1\xcc\x45\x3a\xa7\x28\x0a\xe9\x8c\x74\x29\x19\x90\x22\x2e\x74\x5b\xa5\xc5\x2a\xd8\x16\xd5\x4d\xa6\x57\x6d\x89\x83\xc3\x32\x28\x06\x19\x03\x00\x23\xa0\x2e\x68\x9f\xc4\x4e\xe4\x9e\x65\x0c\x8d\x69\xb1\x12\x24\xe7\xd8\x14\xbe\x4a\x6e\x77\x3d\xb6\xc0\x15\xe4\x56\xe7\x23\x55\xe9\x29\xa8\x88\xff\x77\x8a\x8d\x0a\xba\x97\x60\xff\xd0\xa8\x1c\x93\x14\xd9\xab\xf4\xfe\x73\x41\xba\x67\x29\x9e\xfd\x76\x65\xef\xdc\x3b\x07\x40\x91\x57\xf9\xbe\x74\xda\xf2\x2a\x48\x9a\x4e\x13\x4b\x53\x0c\xf5\xf1\xd8\x6f\x4e\x18\x6e\xee\x3e\x4a\x8d\x42\xe7\x53\x83\x32\xb5\x7d\x7f\x86\xb5\xfd\x93\xd5\x4c\x8d\x91\xcd\xa9\x2d\xa9\x96\xf0\xcf\x63\xc2\xe7\xdb\x47\x68\x5d\x76\xce\xe7\xb8\x2d\x3b\x5b\x7e\xd5\x12\x39\xa5\x6b\x10\x33\xe3\xdc\xc4\x80\x4d\xa7\x81\x46\x46\x3d\xd9\x9e\xa9\x4a\xc0\x63\x76\x48\x74\x45\x5e\xd3\xa8\xdc\x7c\x97\xce\x55\xb6\x3b\x5c\x87\xe1\xc8\x06\x2a\xa9\xee\x2c\x26\x5c\x55\xbd\x2a\x30\xba\xd6\x88\x6e\x74\x8a\xea\x9d\x3c\xa4\xec\x90\x4d\xd9\x1f\xd3\xdf\xb7\x96\x78\x5f\xfe\x5e\x18\xd8\xcf\x78\xd8\x15\xdf\x8d\x60\x85\x8c\xac\x25\x87\x58\x58\x06\x73\x14\x25\x0b\xab\xf3\xff\x4d\x45\x5f\xcb\xe6\xb5\x9a\x4d\x8e\xdd\x5d\x89\x8b\x8e\xc3\x51\x5c\x9d\x9a\x3a\x03\x16\xbc\xb4\x98\xe3\x0b\x43\xf4\x27\xf8\xca\x89\xa5\xd8\x26\x9f\x11\xd3\xf6\xc5\x0c\x85\x08\xa2\x50\x4e\x47\xd1\x49\x92\x21\xc8\x90\xeb\x8a\x23\xec\x59\xb5\x96\x35\xa0\x5d\xa0\x09\xbd\x20\x11\x30\x6a\xcd\x87\x5b\xf7\x6b\x7c\x2c\xf3\x78\x0f\xd3\x87\x75\x90\x04\xd7\x72\x03\xbe\x02\x78\x41\x04\xb4\x64\x46\x81\xdc\x3e\x4d\x79\x1b\xb7\x6a\x95\xca\x2b\xab\x19\x5e\xbf\xdd\x89\xee\xca\xf3\x36\xc9\x9c\xce\xdf\x9e\x36\xd3\xd7\x94\x31\xe2\x9c\x03\x83\x4d\xa4\x49\x84\x12\x31\x50\x52\x36\xb9\x58\xe1\x49\x7d\xca\x63\x2b\x7b\xf4\xfe\xd2\x09\x6c\x9b\x7a\x8a\x7a\x13\xda\xf2\xf8\x64\xaa\x1d\x70\x68\x51\x7b\xc9\x4c\xb3\xcb\xe7\xd1\x38\xf5\x22\x41\x01\x8e\x3c\xdb\x95\xe9\xd2\x42\xd6\x01\x4d\x02\xd8\x97\xfe\x1d\x91\x28\x87\xc8\x6b\x57\x79\x51\x14\x38\x02\xd0\x93\xa6\x90\x98\xc5\xba\x3f\x3d\xcf\xef\x64\x5b\x1d\xd9\x2a\xfb\xf0\x31\xf1\x8f\xd0\xbb\x52\x5d\x31\x87\xdf\xb6\xa5\xcf\x55\xad\x0e\x4c\x2a\x4c\x96\x22\x17\xa1\x2d\x08\x94\xc4\x96\x2f\xe0\x15\x73\xfa\xd6\xb2\x0f\x44\x89\x99\x8e\x56\xde\xab\x6e\x42\x87\xee\x0a\x41\x08\x47\xec\x85\x4d\x98\xae\x7e\xf8\x65\x65\x5f\xb7\x63\x06\x15\x37\x62\x2b\x5c\xbd\x89\x42\x30\xa5\xab\x99\x74\xdd\x9c\xe2\x89\x5c\x23\xc9\x2e\x07\x7d\x8d\x85\x73\xfd\xc2\x06\x82\x59\x7a\x6f\x1f\x87\x3a\x63\xa9\x97\xc4\xf7\x37\x28\xfe\xe2\xc9\x93\xfa\x1c\x8b\xc7\x06\x4f\x6d\x30\x81\xfc\x05\x5e\xb9\xbf\x28\x95\xda\x59\x8d\x93\xf8\xd9\xa9\xaf\xc6\x6f\xc8\x3d\x91\xa5\x99\xff\x87\x82\x08\x08\x14\xec\xc9\x53\xe9\x24\xc6\x40\x1c\x2e\xeb\x59\x3f\x45\x13\xb1\x54\x6f\x17\xd5\x32\xd0\x00\xae\xf4\x6c\xd0\xc0\xc6\xcf\xcc\x10\x36\x8d\x83\x58\xd6\xa2\x7f\x09\x57\xfd\x13\x0e\x4e\xd8\xbe\x39\xf8\x0a\xbf\xec\x86\x04\x3d\x52\x8e\xea\xf2\xa0\xc1\x6c\xcd\x01\xc6\x3c\xcb\x2a\x20\x72\x2b\x0f\xbb\xf1\xd3\x06\x48\xe1\xd2\x43\xb9\x64\xf1\x73\xb7\x84\x56\x43\x2c\x2e\xa4\x7c\xe2\xaa\xd0\x8c\xb6\x3a\x0d\xe0\x97\x0b\xd2\xc9\x7b\x54\xbb\xbf\xa5\x7f\xd8\xd4\xdf\x41\xee\xad\x15\xb8\xe0\x03\x57\x67\xc6\xfc\x55\xdb\xb0\xbe\x74\xb4\x4b\x48\xf3\x36\x8b\xf5\x5b\xd4\x37\xc2\x92\x70\x23\x02\x1f\xfb\xb4\x91\xa9\xd0\x7e\x12\x0b\x71\x66\xca\x29\x9c\x97\x1f\xda\xb1\xf6\x43\x5b\x81\x60\xf5\x87\xaf\xaf\xef\x69\xd5\x84\x4c\x39\x03\x2e\x76\x04\x6b\x44\x13\xbe\x2b\x6e\xed\xbf\x7b\x76\x5b\x3e\x81\xa6\x31\x70\x3f\x0f\xa4\xb4\x44\xf7\x54\x87\xeb\x1c\x4f\xc5\x49\xfe\xd3\xb7\x30\x49\xf8\x72\xc9\x81\xf4\xd0\x56\x45\x2d\x55\x12\xe7\x34\x2e\x89\x9e\x14\xef\xc1\xed\x32\x72\xdd\x84\xbb\xff\xf5\x0e\xc7\x08\x15\xce\x57\xbb\x5b\xb4\x78\x43\x83\xcb\x70\x80\xea\x9d\x29\xdc\x13\x85\xd4\x12\x09\x1e\x94\x36\x3a\xae\x3b\x76\xf6\x72\xa5\x2e\xfa\x6a\xba\x1e\x8a\x2d\x99\x80\xbc\xc0\x35\xed\x1e\xc9\x66\x09\xe1\x26\x42\x8c\x68\xa7\xaa\x47\xc7\xf8\xc5\x75\x84\x8f\x54\x09\x63\xdf\x27\x63\x17\xc4\x13\x66\xf2\x6f\x85\xa5\x47\x29\xa6\xa5\xc1\xf9\x74\x1d\xfc\x52\xee\xf8\x5f\x8f\xa5\xe6\xe4\x3e\xa9\x2e\x9b\xce\xac\x64\xb6\x89\x30\x2c\x29\xde\x39\x73\x13\x39\x13\xea\x89\xb6\x57\x61\x0a\x55\x4e\x8d\x5f\x7c\xdf\x8b\xb4\xdf\x76\x9f\x38\xaf\xbe\xa8\xb0\xb6\xba\x82\x80\x67\xf3\x25\x53\x75\x59\x7c\xb2\x7b\xae\x4d\x99\x79\xe8\x72\x49\x4e\x4c\x54\x13\x9a\xba\xd2\x57\xdf\x4d\x92\x52\x12\x02\xfe\x83\x07\x55\x99\xd7\xa6\x7a\x12\xe3\x65\x82\x89\x48\x2a\x58\x0c\x41\x85\x0c\x91\x1b\x60\xa3\x11\xbb\xd8\xf8\x64\xe5\xec\x2b\x24\x28\x77\x03\x62\xfa\xaa\x6f\x4b\x93\xec\xbb\xbb\x1a\x72\xf0\xf7\x8e\x11\x2d\x8a\x8e\x05\x62\xc4\x98\x27\x83\xf6\xfc\xbe\x1a\xb5\xad\xa7\xf2\xfc\xdc\x51\x0e\x95\x5c\xc4\xc0\xd6\xc8\x12\x62\x9b\x52\xfd\x01\x6a\x1f\xd4\xd9\xcf\x15\xd8\x8a\x07\xe6\xe4\xf3\x60\x2f\xef\xbc\x8f\xd6\x4c\xc0\x6e\xbd\x36\x9d\xbd\x24\x2a\x85\x0f\x9c\x1c\xd6\xed\x79\xae\xef\x46\xde\x8d\x86\xc3\x32\x06\xfd\xbf\xe0\xd6\x95\xad\xa0\x64\x68\x74\x44\xda\x4a\xe0\x6f\xfe\x3b\x88\xfb\x8a\x02\x2f\xc9\x69\x7f\xa2\x06\xf5\xbf\x09\x34\x64\x5b\x67\x44\x2e\x44\x2e\xbf\xea\xc4\x53\x36\x3a\x45\xfd\x73\x01\x93\x40\xef\xad\xe8\x59\xfe\x19\xba\x9e\x67\xdd\xea\xf2\x4e\x7a\x0d\x31\xc2\x57\x11\x2e\x4d\x84\x78\x98\x51\xfe\xa4\x6a\x46\x4b\x5a\xc8\xf0\xb5\xa6\xf6\x8a\x3e\xab\xf2\xcc\x41\xd3\x94\x64\xcf\xb3\xca\x57\x7e\x08\x4a\x99\x88\xce\xb4\xe0\xfc\xa2\x1f\xd6\x29\x49\x15\x0d\xdd\xb9\x19\x3a\x02\x75\x44\xbd\xd4\xaa\xb0\xbb\xbd\x36\xeb\xa0\x2c\xa7\x93\x27\x91\x0e\x26\x0d\x1c\x32\xae\xf8\x72\x4d\x9c\xd2\x4a\x2e\x1d\xec\x67\xca\xd6\xe6\xbd\x7e\xa6\xcf\x0a\x2d\xa0\x9f\xcf\x66\x9d\x88\x7b\x87\x4b\x83\x43\x66\x37\x8d\x9f\xab\x2b\xb5\x4a\x4f\xe3\x97\x8c\x91\x51\x27\x62\xc9\x94\x93\xbf\x44\x5d\x2e\x00\x4d\x33\xeb\xa4\x4f\x3f\xc1\xcc\x41\x1c\x42\x2e\xea\x83\x9a\x69\x37\xe1\xeb\x34\x70\xcd\x13\x19\x90\x0b\xb4\x8d\xad\x7b\xdc\x26\x3f\xe0\x63\xb2\xb3\x05\xe5\xa6\x6c\x5b\x2f\xd4\x33\x21\x33\x84\xa5\x11\xdf\xa6\x52\x2d\xe6\x4c\x50\x01\x21\x10\xbe\x88\xb2\xe9\x06\x95\x5b\xdc\xd3\x51\x46\xa6\xd9\xc4\xa8\x16\xa8\xe6\xa5\xd7\xaf\x17\x93\x00\xde\xd3\x78\x78\xfb\x5f\x1a\x21\xaf\xa2\x6b\x4d\x99\x01\xba\x34\xb3\x30\x21\xb3\xee\x4e\x19\x6b\x79\x22\x05\xdc\x96\x95\x69\x01\xd2\x20\xfa\x6e\xac\x39\x59\x11\xa1\xc4\x93\x12\x70\x3f\x57\x34\x9a\xb1\x0b\x6c\x0a\xaa\xe6\x1a\x78\x11\x60\x94\x6e\x6c\x76\x63\x00\x5a\x2a\x63\x50\x4b\xe9\xff\x7b\xb4\x52\x39\xe5\x67\x4d\x9b\x60\xe1\x29\x9f\x06\xb7\x0a\xf3\xdb\xfe\x73\x07\x13\xad\x7e\x75\xb6\x21\xa7\x80\xa7\xb9\x96\xc8\x4c\xc2\xce\x47\x83\x1d\x64\x1e\x1a\x31\xad\x89\xc6\x94\xf0\x71\x63\x82\xe3\x2a\xc4\x67\xe3\x7e\xa1\x40\x1d\x5c\xa7\x3d\x2c\xa9\xf5\xe2\x2d\x58\x5b\x1d\x00\x54\x9c\xa7\x09\x90\xcb\x9e\x43\xec\xbe\x75\x48\x95\xb4\x2e\xe3\x5b\x69\xa3\xd0\xb6\xf5\xd4\xa9\x5f\x32\x1c\x23\x6e\x2c\x13\x67\xaa\x0f\x13\xb0\x3d\x38\x23\x60\x6a\xbd\xe6\x33\x96\xd7\x99\xa8\x4e\x36\xc2\xb5\x51\x12\xc0\x19\x5c\x6c\x24\x8a\x8c\xee\xbe\x19\x9f\x76\xf6\xee\x38\xc9\x58\xaa\x23\x22\xdc\xeb\xb9\x88\xe9\xe7\x72\x2c\x51\x0d\x1c\x9d\xc3\xcf\xf1\xad\x85\xb2\x3a\x85\x41\xf3\xce\x68\xb1\xec\x08\xc9\xc6\x0a\xf1\x55\x36\x30\x7d\x94\x4c\xc2\x3f\x57\x5d\x2f\xd8\x61\xdb\xbd\x20\x35\xb4\x31\x23\x7f\xfe\xc3\xd0\x71\xce\x38\x72\xde\xc0\x97\x4f\x92\xd4\xa3\xe8\x72\xf1\x14\x46\x1b\xed\xba\x39\x7c\x33\x29\xce\xa1\xb9\xb5\x99\xca\x41\xbc\xc5\xb5\xc5\x66\xc5\xc3\x5a\x0b\x1d\xfd\xfd\x8c\x62\x94\x3f\x20\xe8\x29\x73\x11\x2b\x08\xfa\xd4\x38\x63\xc0\x1d\x0e\x98\xc8\xb0\xf3\x3f\x32\x08\x6b\x8c\x39\x6a\xb3\x86\xe0\x9f\x3f\x79\x9f\x51\x5d\x01\xcc\x9d\xe0\x9e\xf2\xba\x68\x43\x44\x64\x5c\x3a\xff\x24\x31\xef\x26\xc0\x2e\x25\x87\x6d\x90\xa1\xdd\xec\xf6\x5c\x49\x51\xa9\x09\x47\xd9\x37\xf4\x9f\x78\xac\x95\x4e\x35\xbb\x3e\xa5\x1e\x3a\x17\xbb\x64\xa7\xe3\x15\xc3\x69\xdc\xfd\x41\xc7\xfd\x92\xfb\x18\x01\xde\x33\x95\x08\x46\x6b\xb4\x8d\xae\xd1\x34\x61\xd1\x56\xb5\xed\x67\xaf\x8f\x54\xf2\x01\x84\x6a\x0f\x16\xbc\x1b\xbb\x3a\x2b\xeb\xb2\xcd\xb3\xbf\xcb\x3a\x78\x38\xa7\x78\x0b\x4c\x03\x59\xe5\x73\xdd\x06\xc1\x1f\x4f\x03\x8a\x0b\x79\x28\xb5\x08\xac\xaf\xda\x05\xac\x7c\xf0\x81\xf9\xc0\x6c\xeb\x56\xce\xc1\xd6\x71\x83\x44\xd5\x94\xf1\xf7\x4a\xf6\x87\xfd\x1d\xa8\xb3\x55\xae\xfa\x79\x86\xa3\xb1\x65\x04\x66\x2b\x0f\x66\x52\xef\x6f\x22\xeb\xf8\x8f\xaf\x7b\x2f\x7e\x13\x8d\xcf\xa0\xc3\x94\xae\x40\xe3\x9a\xbb\x72\x15\x72\xba\x33\x95\xb8\xac\x0f\x1f\x9b\xb5\xf6\xdb\x72\xbc\x67\x89\xf8\xe7\xbb\xf3\x90\xac\x22\x76\x1f\x76\xec\x04\x52\x1b\x39\x74\xf6\xbf\x77\x52\x84\x97\x9b\x8e\x35\xfe\x83\xf1\xaa\x91\x18\xde\xdf\xaf\x6c\x00\x08\x1a\x82\xe2\x22\x62\x89\x48\xaf\x08\xc7\x33\xab\x82\x57\x88\x78\x1e\xe1\xa7\xad\xe3\xf7\x33\xfd\x6b\x3c\xf3\xde\x5b\x53\xc2\x84\xe0\xd3\x25\xd2\xc1\xa8\xbb\xd1\x41\x55\xf0\x52\x12\x7e\xed\x60\xb5\x16\x16\xe6\x33\xba\xc4\xf4\xeb\x11\xdf\xf5\x92\x3e\x20\x6e\xca\x2b\x0a\x71\x2c\x1d\x8d\x01\x8a\x9b\x14\x62\x31\x64\x51\xff\xa1\xea\x29\xa6\x61\x48\x47\xf0\xa2\xd8\xe5\x17\x36\x0a\xe2\x38\x02\x6f\xcc\xe0\x25\x36\x00\xac\x1e\x53\xa6\x36\x7e\xd9\x22\x1b\xcc\x94\x4e\xca\x64\x0b\xe6\xc2\x81\x6b\x40\x42\xe3\x5e\x9b\x5c\xa9\x58\xa8\x81\x34\xbd\x2f\x23\xcc\x72\xff\x19\xa8\x74\xb4\xf0\xaa\xb6\x01\xe7\xcf\x46\x78\x6d\x9e\x5e\xb8\x45\x5b\x8f\x35\xaa\x8e\x26\xe2\x2a\x20\x99\x86\x91\x45\x5a\xca\xe0\xbb\xb4\x99\x20\x2d\x80\xf8\xd0\xb2\x56\x0e\x15\x56\x2d\x5f\xf6\x83\xfd\x93\x92\x39\x01\x0c\xca\x70\x2a\x4b\xa3\x31\x4a\xb5\x90\xe0\xec\x2c\x3f\x04\x13\x98\xd4\x93\xd6\xcb\xf9\x4d\x8e\x82\xa4\xc3\x90\x95\xd6\xbd\xc6\x57\x13\xb0\xce\xa7\xdc\xae\x99\xac\xb3\xa6\xe2\xcf\xeb\x78\x57\x89\x5b\x94\x62\x0f\x68\x9c\x13\xbb\x95\x46\xe0\x1b\x9d\x9c\xf3\x11\x82\xb8\x58\x6b\x85\x68\x61\xc3\xf0\x05\xd1\x49\x4c\x88\xaf\xf5\x97\x36\x37\xa4\xd9\xc9\x91\xab\x84\xbe\x99\x2e\x37\xa2\x4e\x4a\x11\x02\xb8\x33\x13\x6c\x9c\xc6\x6d\x10\xe2\x9e\x47\x43\x61\xc7\xcc\x17\xe6\x64\x13\x64\xc9\x8c\x35\x66\x69\xa5\x23\x04\x7e\xb1\x74\x81\xa5\x70\x22\xf1\xf2\xbc\x30\xd5\xef\x47\x0a\xf6\xff\xb8\xcd\xee\xa9\x1c\xf5\x57\xc7\x85\xa2\x4c\x2f\xb5\xcf\x78\x75\xba\xa7\x46\x68\x47\x52\x76\xa5\x60\x87\x30\x96\x36\xdd\xe1\xf3\x15\x15\x5b\x09\x94\x55\x4c\x74\xbf\xe4\x90\x58\x21\x4d\x18\xe0\xbf\xc1\xfa\x0b\xda\x87\xe6\x07\x61\x1c\x43\x55\x45\x12\xce\xea\xb4\xa0\xe4\x38\x72\x06\x58\x25\xa7\x84\x5f\x76\x61\x24\xd4\xa3\x08\xfc\xa7\xda\x96\xc2\x03\xa4\x79\x7e\xd1\x6e\xc8\xcd\xa3\x99\xd2\xe2\x1f\x1a\xd9\x06\x6c\x77\x40\x73\x66\x71\x9f\x77\xc5\x09\x4c\x9b\xa1\x2b\xf2\xc5\x8f\xd8\x9e\x62\x4e\xf2\x7e\x08\x0a\x24\xd5\x72\xc7\xef\xc8\xe4\x06\xe1\x03\xe0\x1f\xb4\x09\xd4\x92\x2f\x26\x38\x3c\x7a\xe4\xa7\x52\xba\x4b\x9d\x6b\x2f\x44\x64\x81\xe4\x1f\x7f\xc1\xff\xca\x7d\x98\x55\xaf\x83\xf8\xbd\x4a\x62\xf7\x49\xe5\x32\xc1\xcb\x6f\x7c\x49\x79\x22\x65\x94\x1b\xba\xa5\xef\x0c\xc9\x1f\x60\xff\xc3\x3c\x7b\x52\x4d\x51\x41\x76\xc9\x76\xb7\x65\x9c\xfa\xdd\xe5\x18\xbd\x6a\x9a\x87\x5e\x53\x01\x5a\x20\xd0\x91\xfa\x51\xb4\xfb\xc9\x44\x6f\x10\xea\xa2\x49\x05\x7e\xab\xc6\x66\x78\x1a\x64\xab\xd0\xb3\x55\xde\x0b\xc6\xb4\xe6\xfb\xa8\xbd\xc1\x3a\xe0\xc3\xfc\x0d\x55\xbf\xca\xa2\xa0\x9a\x50\x47\xff\x3a\xb0\xc6\xbe\xff\x66\xef\x12\x92\x7f\x9d\x98\x5e\x87\x5c\x9d\xae\xed\x10\xad\x30\xd3\xbe\xdc\xbc\xf7\x03\x55\xa9\x43\x5f\x88\x8c\x8c\xfc\x12\x66\xf1\xa6\xa5\x14\xbe\xbc\xc0\xb7\x67\xdd\x1a\x41\x87\xb2\x0b\x0a\x04\xda\x1f\x1a\x0a\x44\xd5\xab\x0f\x6e\xa7\x53\xe6\xe0\xaf\xaf\x4d\x6f\x18\x4c\xfc\x5c\x9e\x84\x2d\xa9\xf3\xdd\x85\x41\x7c\x9a\x0f\x9e\xff\x65\xa1\x91\x26\x60\x35\xeb\xc7\x14\xcb\xf3\x31\xb5\xff\x10\x26\xd8\x8f\xe2\x6a\xb7\x63\xc6\xe7\xda\x63\xeb\xf4\x6b\x87\x38\xa5\x89\xb1\x67\xa4\x1a\xc4\xad\xf9\xb8\x8f\x09\xd2\xe0\xd5\xc5\x24\x8b\xb3\x34\xa4\x7c\x37\xe9\x48\x1a\x92\x9b\x39\x96\xc1\xb5\x98\x54\x98\x4a\x53\xbb\xdf\x21\x6e\x62\x1b\x9b\xaa\x0c\x1a\x89\xa7\xef\xf5\x7b\xfd\xf9\xad\xec\xae\x89\xcd\x42\x13\xbe\x54\x7b\x1d\x1c\x6e\x9a\x88\xbd\x1e\x2f\xf1\x86\x41\xc3\xf9\x20\x3b\x8c\x8e\x9c\x6b\x13\x78\x9c\x2e\x0b\xb9\x28\x4f\x7a\xd0\xd2\x8a\x33\x96\xc2\x84\xec\x97\x07\x1a\x95\x52\x48\x6f\xac\xff\x7e\x20\x9e\x2d\x4d\x54\xb2\x3b\xc4\x20\xcd\x45\x86\x61\x32\x01\x2d\xe6\xb2\xe9\x1c\x14\xe7\x32\xd3\x09\x82\x2b\xff\xf3\x5d\xa8\x47\xc2\x40\x83\x4b\x45\x0a\xe9\xcf\x4f\x4a\xb7\x36\x44\x46\x6f\xdb\xfb\xe2\x36\xd7\x2b\x9b\x8e\x76\xf0\x11\x6b\x3b\x62\xc9\xfd\x47\x55\x46\x29\x4e\xd8\x6e\x7e\xad\x8a\xc0\xbc\xd4\x0b\x3b\x4e\xac\x43\xbb\x5d\x11\x53\xac\xbf\x8c\xd6\xaf\xce\x34\xd9\xb3\x90\x72\x02\xc8\x7e\x14\xcb\x9c\x48\xbf\xff\xd9\x50\x2a\x53\x93\xdd\xa4\x00\x7c\x4f\xdc\x7c\x10\xe7\x42\x00\x8b\xff\xea\xb7\x10\x2c\xe4\x71\xeb\x32\x08\x05\xf6\x44\x3b\x98\x6b\xec\x1a\x1f\x7c\x62\x39\xe2\x0a\x9d\x60\xb8\x3a\x59\x1b\x32\xeb\x81\xe4\x3f\x88\xe7\x67\x5f\x4c\xcd\xac\x3c\xe1\xfc\x87\x77\x90\x79\x74\x18\xc2\x45\xed\x7b\x52\xa4\xae\x59\x31\xd0\x98\x6e\xae\x24\xf3\xc7\x5b\x28\x6a\x98\xd1\x18\x36\x39\xc5\x9c\x58\x32\xcc\xef\x9a\x31\xe6\xcb\x27\x45\xca\x00\x3c\x4b\x88\xbc\xc5\x71\x50\xf9\xb2\x77\x5e\xdd\x12\x43\x16\x84\xdb\xf0\xaf\xec\xdd\xb8\xae\x71\xc6\x99\xa3\x7c\x54\x8a\x43\x83\xa5\xd2\x91\x45\x18\x1f\xf7\x10\xcf\x18\x3b\xe0\x67\xa5\xa5\xa2\xb2\xe7\x99\x37\x89\x88\xe8\x3a\x07\x75\xcc\xc3\xac\x8e\xab\x54\xc8\x37\x64\x7c\x79\x69\xf0\x76\x59\xda\x79\x98\x7d\x80\xd7\xdd\x83\xdb\x9d\xc2\x74\xdb\x8f\x0e\xab\xca\x03\x8e\xd8\xe0\x2c\x33\x12\x0d\x0b\x1b\x79\xf5\x0f\x01\xd0\x45\x9f\x94\xc6\x21\x07\xe2\x18\xb9\x40\x0f\xa1\x21\x6e\x6f\xf5\x72\xce\x18\x9a\x92\x58\x76\xfc\x0f\x79\xd6\xa4\x67\x0a\x8c\xb1\xf3\x9e\x0f\x1e\xd4\xa0\xa3\xae\xed\xfd\x10\x37\xbb\x64\xcb\xed\x3b\x7a\xef\x6a\xc3\x8a\x48\x12\x7c\xec\x69\x06\x3e\x5c\x4f\xfe\x61\xd7\x2f\x2e\x8a\xf7\xea\x6e\x32\xb0\x72\xe7\xd8\x6c\x19\x6f\x8d\xe0\x37\x41\xd1\xdf\x3c\x79\x22\x78\x8e\x46\xc5\xe0\xd7\x58\x65\xf2\x11\xb7\x39\x08\x04\x5a\x87\x59\x08\xc1\x38\x7c\xec\x7a\xdd\x72\x99\xa6\x91\xb9\x3c\xef\xa5\x04\x80\xd7\xe0\x3e\xf6\x05\x5a\xae\x7d\xa5\x6b\xd5\xdf\x46\xf4\xb7\x93\x5e\x03\x80\xa9\x27\x6c\x6f\x50\xfe\xa6\xad\xd8\xa2\x62\xe4\xd0\x8b\xc3\x5a\x4a\x3d\x03\xa9\xac\x63\xda\x1d\x07\x49\x66\x19\x3a\xe4\xe5\x76\x7d\x89\x89\x0c\x44\xd1\x09\x90\x8d\x93\x18\x02\xf4\xd5\x5b\x77\xd9\x89\x5d\x20\x73\x97\xbe\xa2\x7e\x6f\x9d\x5a\x62\x7e\x15\x25\xcb\x5d\xb1\x73\xb7\xb1\xfb\x57\x44\x3c\x08\x12\xfb\x74\xb2\xe6\x0b\x05\x6a\x74\xeb\x50\xf5\x4c\xe5\x2b\x67\x9f\x51\x9b\x1a\x8a\x2b\xb1\xe8\x3f\xb0\xbe\x3a\x3d\xe7\x09\xc1\x05\x5d\xe7\x51\xed\x79\x94\xce\xc7\xea\xb1\xb0\x56\x1f\x0d\x32\xde\x90\x9a\x19\xea\xd1\x49\x40\xff\xbf\xa4\x3d\x3d\x14\x86\x6f\x7e\x95\x1d\xb7\xb1\xb2\x69\x1c\x2a\x6e\xff\xd4\x7e\xb0\xe1\xb5\x92\xfe\x57\xba\xce\x1a\x75\xb5\x8a\xc4\xf9\x89\xdc\x35\x7b\x43\x85\x74\xde\x94\x8c\x94\x69\x62\x60\x18\xf5\x6f\x20\x8e\x40\x1b\xa4\xae\xda\x27\x5c\x07\x4f\x12\x64\x8d\x85\xf0\xec\x9d\xb5\xfd\x10\xd5\xfe\x95\x69\x25\xaf\xb3\xc9\xcb\x68\xf3\x90\xc6\xfc\xf9\x28\xe9\x3b\xf2\x41\xd1\x0e\x0a\xcc\xe1\xa2\x6f\xdd\x94\xee\x1a\x1f\xd4\x7f\xe1\xcb\xae\x66\x7b\xd3\xff\xae\xdc\x27\x78\x90\x75\x8c\x58\x6a\xdf\xb3\xa6\xe1\x88\x26\x78\x45\x66\xb8\xe6\xef\x6a\x59\x54\x36\xdd\xc5\x06\x5e\x68\x36\xa8\x9d\x15\xff\x96\x23\xc8\x15\xf3\x59\xfc\x74\xa7\xa9\xd8\x81\x71\xca\x06\xf7\xa3\xf8\xa0\x8e\x4d\x9d\xae\x8e\x8b\xe8\x17\xcd\xca\x35\xe4\x44\x5e\xbb\xcd\xb0\x09\xd3\x80\x61\x39\x26\x51\xac\x50\x39\x3a\x7a\x6f\xaa\x11\xac\xb3\xc1\x02\x34\x60\xe6\xdf\xe2\xf7\xff\x2a\x09\x5f\x5d\x8e\xad\xb8\xd2\x9f\x62\x7c\x4b\x65\xfe\x79\xa0\x24\xdc\xde\x94\x99\xf2\xb5\x38\x0e\xb6\x2f\x52\x75\x58\xec\x0b\x34\x8c\xf8\xa9\x20\xa4\x69\xc1\xaa\xfa\x6d\xc0\x1b\x0d\xe9\x2a\xa6\x2e\x1d\x5a\x3f\x9b\xc4\x4e\x91\xa7\xa0\xe6\x67\xda\xd6\xc5\xee\xa2\xf9\xe8\x90\xbb\x24\x4a\x91\xd9\x1a\xec\x55\xc9\x90\x50\x1b\x2f\xff\xf5\xac\xd2\x52\xbb\x08\x88\x39\x24\x0f\xe8\x53\x94\x8f\x4f\xa9\xfa\xa5\x5c\xba\xeb\xd8\xae\x90\xf9\x87\xda\xcc\xb7\x73\xf0\x9a\xa3\x16\x12\x06\xfa\x6e\x04\xe4\x72\x8d\x73\x9f\x3a\x13\xa9\xb5\x20\x6a\x45\xa4\x88\x0a\xdf\x10\xef\xc1\x34\x27\x05\x89\xa2\x9a\x84\xc1\x68\x37\xb7\x28\x8c\x40\x98\x8e\x37\x4b\xb6\xc0\x1a\x42\x5c\x31\xb1\xed\x09\x67\xfa\x25\x16\x62\x83\x4a\xe9\x6e\x7a\xb5\x23\x89\x9f\x03\x94\xa3\x65\x82\xc7\xa1\xa3\x94\xd6\x8d\x60\x07\x7d\x79\xb8\xc4\x7a\x2d\x93\xd1\x18\xf9\x3d\x4f\xbf\x3a\x08\x53\xa4\xb8\x9a\xe6\x64\x64\x9d\xcc\x6f\x5e\x7b\xb2\x01\x78\x9b\x87\x41\xa2\xbc\x2e\x3f\x1b\x39\x88\x57\x05\xce\xe3\x06\xe1\x47\x76\x97\x7c\xff\x64\x8d\x3a\x69\xbf\x25\x95\x0c\x9e\xd0\xfc\x63\x85\x3a\x13\xe8\xc5\x51\x01\xdd\x84\x3e\xf0\x57\x06\xa2\x53\xa1\x05\x06\xcd\xa6\x19\x9a\xaa\x48\x7c\xc6\x6c\x56\x26\x04\x5f\x69\x4a\x9c\xda\x57\x78\xd7\xab\xc1\x87\x9d\x95\x1b\x34\x75\xe1\x2c\x07\xf0\x11\xfb\xcb\x0b\x9d\xfc\x83\x1e\xb0\x9e\x8d\x0c\xce\x17\x9e\x4e\x0c\x6b\x66\x03\xba\x94\x9a\x9f\x1e\x74\x1c\xb3\x0d\x9b\xd8\xf1\x2e\x80\x1a\x3f\xef\x70\xa8\xb4\x49\x1a\x0f\x66\x79\xa1\x7d\x93\xf3\x25\x4a\x83\xf0\x8f\x97\xbe\xb3\xa0\xa8\x7a\x3a\xd5\x92\xd7\x8c\x78\x7f\xf2\xcd\x72\x91\xc6\xaa\x09\x44\x9c\x65\xcc\xda\x1c\x32\xaf\x61\xdc\x9d\x69\x5f\x17\x93\xc5\xb1\x6e\x0e\x02\x8d\xb7\x66\x5a\xe4\x23\x25\x08\x57\xde\x38\xbc\x5e\x5b\x37\xdd\x22\xe9\x22\xe1\xc4\x88\x46\xa2\x48\x59\x29\xfc\xe1\x87\x1f\xb3\x71\xcd\x05\x11\xae\xe1\x91\xd4\xb2\xaf\xc2\x1a\xd6\xcc\xd6\xbc\x29\x31\x00\x04\xfc\xe3\x51\x7e\xec\x6d\x87\x14\xf0\x55\x21\x9d\x8a\x29\x11\x93\x17\xb3\xdb\x88\x52\xdc\xf3\xaa\x77\x9f\x31\xb6\xe8\x47\x22\xd2\x42\xb8\x3a\x23\x0b\x41\xc1\xfe\xff\x1d\x5c\x28\x26\x3c\x62\x25\xf7\xaf\xf9\xbd\x49\x08\xbb\x52\x8f\xee\xb7\x5b\xb1\x36\x8d\xe4\xe0\xaa\x3e\x39\x60\xd9\x48\xcb\x8d\x79\xd8\x8b\xc7\xe2\xc1\x69\xc6\xb4\x7d\xc8\x71\x08\x9b\x20\x69\x83\x9a\xbe\xe4\x2b\xab\xb3\xa8\x60\x83\xbd\xcb\xf9\x1f\xb9\x0b\x13\x1f\xa1\x82\x96\xa0\x41\x46\x73\xf6\xd6\x65\xac\x1d\xa4\x9d\x36\xd1\xc5\xd6\x2a\xcd\xf9\xb2\x55\xb1\x0d\xd3\x95\xcf\xc2\xec\x2d\x7e\xe2\x71\x95\x7d\xfc\xca\xd0\x6b\xcd\x96\x93\xae\x45\xda\x57\x59\x3f\xc7\x49\xfd\x7e\x0c\x83\x6d\xd0\x8c\x86\x0f\x97\xc9\x12\x60\x09\x2f\xb1\x10\xb3\x9f\x56\x7a\xa9\xb0\x7c\xde\x62\xa9\x94\xe6\xea\x36\x59\x6e\x37\xe6\xd1\x7d\xff\x1b\x9e\xf6\x66\xcc\xa0\x62\x71\xc8\x75\x0d\x9e\xc9\x30\xfa\xf5\x12\xd0\xb5\x9b\x9d\x19\x31\xb3\xdb\x43\xb2\xaa\x87\xac\x8b\x11\xb0\x65\x4c\xec\x65\x6f\x4a\x29\xe2\x3a\xfa\xac\xa5\xe1\x51\x9e\x32\xdb\x46\x7f\x5f\xcf\x65\x5c\x1d\xf2\xc7\xf6\x17\x7f\x4a\x42\x91\xdd\xf2\x3f\x23\xe5\xff\xfb\x6c\xc5\x8c\x02\x50\xa1\x34\xbf\xb3\x87\xc1\x50\x38\x1e\xf8\xfd\x62\x98\x6c\x56\xe7\xf3\xfd\xe8\x39\x2a\x8e\x21\x57\x5c\x05\x65\x76\x88\xd3\xb4\x6b\x9c\xdd\x49\x97\x31\x29\xc7\xf1\xff\xd1\x4d\x9f\xf5\x71\x45\x56\x91\x15\xf5\x66\xa3\xf8\x4c\x2e\x54\xca\xde\x38\xa5\x20\x38\xd1\x76\x1d\x65\x8a\x03\x9a\xce\x08\x65\x79\x18\xad\x5a\x57\x26\x2d\x27\x93\x77\x4e\x99\xba\xdd\x40\x19\x9b\x3b\xa2\x06\x6d\x62\x4b\xf5\x23\xfb\x22\xe8\x40\x87\x15\x6f\x2c\xcb\x55\x34\x34\x99\x05\x5a\x60\x08\xf8\x0f\x0f\x2c\xfd\xc2\x15\xea\x5d\x80\x2f\x0f\xef\x3f\x62\x7e\xb2\x7a\xcf\x50\x3d\x23\xc4\x14\x8d\x54\x46\x93\xb4\x37\x07\x4a\xdb\x0e\x7e\xe5\x05\x90\x3e\x2c\x80\x0f\x64\x08\xd4\x8c\x16\x9f\xe1\x0b\x3b\xac\x77\x71\x11\x2a\xbf\xe7\x56\x66\xdb\x63\x15\x13\x8a\xfb\x1d\xa9\xa8\xd7\x43\x4b\x21\x4f\xfd\x96\xfb\x5a\x4b\x67\x2f\x92\x74\x52\x2e\x54\x83\x39\x20\xbf\xb5\xe9\xe2\x98\x16\x8f\x59\x93\xb8\xe3\x26\xdb\x0d\x5c\x7d\xef\x2a\x6e\xc7\x72\x3f\xe1\xe4\x00\xcd\x62\xeb\x27\x34\xde\xf7\xfa\x1a\x83\xa6\xa4\x0d\x7c\xa7\xc8\xc3\xc4\x3f\x60\x52\xe2\x2b\x75\x6c\xe0\x56\xb5\x89\x58\xf2\x7c\x2c\xf8\xd2\x5d\x9c\x68\xf8\x2a\xcb\xdb\xf2\x3f\xcd\xd4\x1b\xb5\x9e\xf4\x70\x81\x4e\x13\x3b\xdd\xc8\x32\x51\x20\x75\x49\x76\x60\xf0\xea\x4b\xdd\x1d\x3b\x85\x2c\x65\xac\x78\x1b\xbf\x16\xba\xdd\x41\x36\xea\x46\xf4\xec\x73\x52\xe8\x2b\x2a\x65\xdf\x16\x11\x1a\x54\xc2\x58\xbc\x60\x15\x72\x8f\x6d\x8c\x9a\x00\x1e\x28\x8f\x0d\x7b\x86\xb5\x15\xb0\x04\x7a\x46\xca\x4f\x3a\xf8\x42\x7c\xd6\x4b\x2f\xbb\xb0\x60\x13\x52\x9f\x85\x34\x26\x2b\x1a\xe7\xf2\x74\xf5\x69\xb5\xf0\x81\xed\xc8\x13\x74\x6c\xac\x83\x6f\x5c\xba\x22\x86\x40\x27\x7d\xc9\x2b\x4d\x1b\x92\x8b\x7d\x47\x85\xc0\x23\xc1\xe4\x5f\x72\x9d\xa2\x37\x36\xcd\xf4\xf8\x7f\x73\xc5\xcf\x74\xd7\xae\xe6\x71\x23\x57\x17\xf6\x3e\xde\x5d\xc2\xb8\x41\xbf\x2e\xd6\xb1\x85\x09\x6b\xde\xbe\x0d\xbc\x0f\x4b\x47\xba\xb9\x46\x69\xaf\xc4\x22\xbb\xf4\x43\xc3\xd4\x1f\x95\x9c\xa1\x67\x91\xe2\x87\xdf\x1e\xc2\x02\x6d\x4b\xff\x91\x5e\xda\xae\x8e\x59\xa5\x2e\x69\x81\x51\xa7\x0c\x64\xbd\xdb\x9d\x7a\x63\xdb\x16\x06\x23\xb4\x71\x62\x63\xa4\x7b\x12\x33\xd0\x3d\xc4\x53\x8c\xdb\xd5\x58\xfa\x53\xbe\xcf\x4d\x03\x33\xad\x5d\xf9\xc9\x7d\x77\x35\xc3\x3e\xcf\x08\xac\x96\x5b\xc5\xe6\x9e\x29\x68\x06\x69\xa5\x50\x19\xb0\xb5\x6d\x78\x1c\x82\x6f\x2a\x69\x33\xb1\x90\x40\x49\x56\x6b\xfa\x43\x02\x03\x4b\xa5\xff\x26\x0a\xde\x66\x63\xd3\x23\x0d\x47\xd9\xed\x68\x56\x0a\xcf\xaa\xcc\xec\x25\xa6\x07\x00\xb7\x70\xb8\xee\xd4\x6c\x93\xa6\x2f\xee\x67\x04\xe2\xd6\x72\xdf\x69\x77\x72\x82\x32\xf0\x04\x98\x6f\xf2\x7f\xdd\xcf\x4d\x3b\x04\x6f\x10\x83\xa5\xbd\x14\x86\x6c\x6b\x48\x7e\x5e\x78\x01\xe6\xf6\x6b\x3f\x15\x47\xb9\xee\x3e\x3b\x79\xd2\xbf\x0b\x23\xa3\xe5\x39\x85\x24\x9a\x74\x6c\x27\x42\xa3\x64\xfd\x53\x0a\x07\x14\x49\x4a\x91\xa8\x0f\x60\xf2\xc7\x29\xc0\x5c\x37\xab\xfb\x1c\x8e\x8c\x17\x55\x88\x17\xa7\xab\x2a\xa6\xf2\xff\x27\x85\xc5\xaa\xc7\x34\xa1\x5f\xd4\x69\x9b\x9e\x7f\x78\x59\x37\x8e\x7b\xd0\x61\x45\xbe\x1c\x9e\xe2\xfb\x6a\x67\x4f\x43\xd2\x9e\xab\x35\x4b\x31\xd0\x0d\x6c\xac\x41\x05\xc6\xf9\x88\x32\xbf\x31\x18\x39\xf9\xc2\x62\xe7\xd2\x68\x7c\xf7\x2f\xe3\x04\xe7\x31\xda\x24\xbb\xa2\xdd\xb1\x31\x01\xef\xe3\xf6\xa1\xa0\x54\x31\xad\x45\xd4\xe8\x6f\x8e\xab\xfb\x2b\x28\x11\xd7\xf1\x4e\xbb\xd0\x1d\xd2\x46\xf6\xa1\x05\xe8\xf7\xa8\xcc\xa7\x7d\x60\x61\xb4\xab\xf7\xdf\x72\x02\x40\x63\x13\xd4\xe9\xd7\xad\x49\x64\x76\xbc\xbe\xf5\xfc\x04\xc2\xd7\xbe\x1b\x54\xd5\x3a\x39\xa8\xd8\xb8\x02\x63\xc8\xc3\x7f\x84\xc1\x72\x25\xec\xf9\x66\x4f\xfe\x55\x29\x91\xbe\x6c\x29\x91\x18\xcc\xc2\x9b\x80\xd5\x67\x98\x3c\x7c\x8a\x9b\x31\xd3\xd4\x21\x6b\x9d\x84\xea\x06\xcf\x09\xa4\x57\x72\xf1\x79\x32\x6d\xe2\xd5\xe2\x6c\xb3\xeb\x94\xe0\xb8\x25\xe9\xd3\x37\x7e\xc8\xba\xf4\x43\xf5\xae\xa2\x77\x1b\x4f\x9b\xe8\x6c\x96\x74\x61\x7e\x53\x75\x3f\x3e\x94\x45\xea\xd3\x71\x0c\x8c\xd7\x4c\x9d\xb3\x2b\xca\x2d\x89\xbb\x9a\xcd\xb9\x65\xbe\xbd\x9f\x1e\x1d\x9c\x2c\xdf\x65\x73\xe2\x90\x6a\xaf\xb8\x1f\xa2\x05\x79\x09\x06\x77\x45\x5f\x00\xaf\xdc\xdb\xd5\x5b\x38\xf8\x44\x51\x9f\x2c\x2b\x06\xf6\x15\xce\x7b\x74\x1d\x75\x80\xd1\xc2\x9d\x6f\x38\x35\xfc\x61\xc2\x23\x18\x49\x1f\xe6\x09\xce\xc5\xe4\x72\x8e\x2b\x92\x9e\x12\x00\x7c\xe7\x1f\x24\x22\xbe\x2c\xb3\x99\x11\x5d\x2a\xef\x23\x73\xb0\x10\x86\x97\x9a\x4e\xf4\x25\x40\xb0\xb9\xce\x79\xcb\x96\x48\x7e\xd8\xb3\xea\xde\x90\xb6\x05\xeb\x95\x30\x96\x56\x37\xf1\x2c\x91\x3b\x3c\x41\x88\xe8\x99\x40\x91\xd4\x7c\xba\x9a\x6e\xd7\x24\x1a\xbb\x95\xf0\x0f\x4c\xab\xad\x1a\xca\xbb\x5b\x1d\x41\xbb\x65\x10\xf5\x28\xc4\x43\x5a\xf4\x64\xc2\x1a\xcc\x39\xc6\xb6\xf1\x5d\x16\x3d\x3e\x2a\xfd\x78\xa2\xdf\x7c\xf6\x44\xc9\x17\x23\xcd\xa1\x52\xf2\x35\x62\x3b\x44\xde\xb4\xda\x25\xd5\x0f\xea\x1a\xa1\xa5\xbb\x41\x2f\x40\x26\x27\x13\xca\xcb\xa3\x1f\xb1\x17\xfd\x56\x75\xbe\xe9\x81\x69\x46\xb2\x6c\x7f\xd2\xf7\x5c\x9c\x58\xf7\x61\x04\x3d\x33\x64\xbe\xb0\xed\x12\x7d\x67\x44\x21\xa9\x1f\xde\x35\xf9\x0e\x78\x94\x1c\x4c\x24\x10\x33\x99\x4c\x29\x09\x9e\x11\x69\xdd\xac\x96\xf5\x4b\x5e\x52\x7f\x67\xc0\x95\x43\x55\x61\xc7\x83\x8b\x00\xdd\xf4\x53\xa1\x66\xc6\x9a\x95\x85\x69\xa3\x0e\xf4\xd5\x9f\x40\xcb\x14\x70\xed\x22\x69\x38\xf0\x92\x46\x63\x5c\x2e\x16\x74\x47\xab\x03\xe1\x99\x61\x36\x2d\x30\x2b\x9a\x1f\xb2\x6d\x51\x21\xfb\x00\x08\xa5\x2f\x0b\xab\x1e\xab\x5e\x73\xe1\xbe\x72\x3b\x77\x6c\xf1\x86\x7e\x0a\x63\x17\xdc\x12\x36\xe0\xe3\xb8\xcf\x09\x61\x6f\x68\x85\xd2\x3f\x27\x34\x52\x17\x04\xec\x7f\x72\xb2\x51\xb8\x13\xd8\x7e\x3f\x0c\xc8\xdd\x29\x2c\xff\xf2\x3c\x13\x36\xf1\x1b\x42\x79\x70\xf4\x7d\x7f\x83\x30\x2a\xf3\xc2\x46\x97\xf2\x56\xd8\xad\x7f\xc0\xc9\x4e\x1a\xf8\x78\x97\xf4\x81\xda\xa4\x37\x84\x27\x52\xdc\x81\xca\x46\x69\x83\x4d\x8b\x90\xed\xa6\x2c\xc4\x0c\x49\xf5\xce\xa4\xb0\xf7\x7a\x04\xc4\x89\xa6\xb5\x9a\xb8\x22\xe0\xa4\x43\x12\x9f\x11\x09\x1f\xa0\x85\x4d\x92\xbc\x4a\xd5\x34\xb6\x9d\x84\xf0\x28\xd4\x7a\x2f\x7f\x0d\xb1\xae\x1d\x50\x98\x32\x2f\x12\xdf\x9d\x89\x06\xab\xdf\x4c\xf8\xa1\x11\x0e\xdd\xa7\x86\x41\x92\x38\x87\x3d\xaf\xee\xf8\x22\x4c\xcd\x63\xf8\xbb\x8a\x65\xc0\x60\xff\x62\x73\x7d\x02\x0e\xf5\x5f\x71\xa3\x90\xc6\x0f\x3d\x80\xb2\x96\xf3\x78\x2a\x40\x12\xc9\xb9\xbd\x05\x41\x7a\x1a\x16\xa9\x98\xd2\xa9\x08\xd0\x4a\xef\xe3\x85\x50\x2a\xb5\xf7\xd4\x86\x72\x9f\xec\x53\x9a\x48\xcb\x1e\x4a\x5f\x16\x48\x8d\x12\xe8\xd7\x4d\x17\xd1\x3a\xb9\xaf\x94\xcf\x01\x29\xe8\x0f\x9b\x7f\xdf\xfc\xb8\xea\x05\x12\xc3\x2b\xf1\xb8\x8e\x9b\x95\x42\xbe\x79\x91\xc5\xc5\x62\x59\xaa\x3e\x7a\xba\x68\xd4\x2e\x5a\xaa\x7e\xba\xd5\x65\x80\x71\x96\xdf\x14\x43\x26\x72\xf5\x34\xbb\xb0\x95\x2a\xd4\xd6\x27\x42\x67\x06\xff\x0d\x6f\xf5\x54\xa3\x6e\x5f\x3e\x4e\xed\xcd\x03\xe2\x2a\xde\xcc\xdb\x5f\xae\x2d\x32\xca\x8d\xf8\x99\xa4\x6d\xc5\xca\x7b\xaf\x50\x38\xce\xc5\x38\xf9\xe2\x6a\x45\x8c\xa5\x76\x97\x21\x70\x18\xa6\x10\xbb\xf8\x3b\x64\x8f\xc4\x6d\xe6\x7d\x0b\x99\x80\xdb\x8b\xbf\x0f\x77\x88\x6a\xc2\xaf\xa7\xa2\x66\x2d\xc5\x02\x6b\x06\xff\x6d\xa7\x5a\xb3\xab\x0f\xdb\x14\x09\x2f\xad\x1f\xef\x8b\x11\x22\xb2\x03\xda\x8d\x79\xdb\xb2\x14\x44\xbd\xc0\x62\x98\xf0\x43\x8e\x00\xad\xe9\xb8\x18\xc5\x16\xee\x9a\x25\x02\x9d\xa8\x4e\xf5\x89\x9a\x8f\x7a\xe0\xa1\xd9\x0a\x92\x3f\xb7\x75\x72\xbc\xd0\x6d\xe6\xdc\x21\x12\x3c\x94\xed\xe2\xd2\xa7\x03\xd4\x34\xec\x26\x7a\x33\x1a\xf4\x9e\x7e\x52\x7c\x16\x66\x28\x36\xe4\x86\x3f\x65\x37\x22\xe2\x09\x2b\x45\x4c\xb6\x49\x46\xa5\xf2\xec\xf2\x0b\x2c\x3d\xb7\x42\x0b\x2f\x52\xe1\xc9\x34\x77\x3c\xed\xc5\x9b\xeb\x24\xba\x3f\xa1\x74\x00\x16\x5a\x54\x47\x18\xf9\x6d\x8c\x9b\xf2\xba\xf3\x29\xba\x48\xab\x21\x6e\xc3\x2c\x89\x42\x3a\x5d\x4e\xcc\x79\x45\x2e\x02\xc2\x8b\x10\xf1\x93\x27\xcb\xf5\xcf\x83\xf6\x36\xd0\xed\x16\x37\x89\xd0\xe0\x09\x58\xa3\xc9\xe1\xee\xe4\x72\xf6\x7b\x42\x36\x97\xaf\xb9\xd0\xc2\xe6\x7d\xe0\x2d\x74\x3a\xac\x50\x36\x2e\xfd\x3f\x25\x6d\x93\x12\xdc\x05\x0a\xb4\x35\x4b\x9a\x1f\x17\x6f\x0e\x13\x30\xd6\x9a\x12\xce\x25\xb0\x9f\xd4\x77\x53\x6d\xcd\x65\xf0\xd8\xfe\x11\x4c\xc8\xcd\x9e\x31\x7f\xa7\x31\x32\xc6\x2f\xdc\x22\x5e\xd8\x48\x41\x56\x6f\xa0\x12\x86\x71\x1f\xb5\xd9\xa1\xe9\x72\xd1\xd8\x84\x0b\x1b\x99\x1f\xf1\x88\x82\x9d\xef\xe5\xee\x9f\x2d\xa3\x85\x79\x43\xda\x08\x40\xde\x14\xe4\x5e\x96\xff\xab\xc9\xbe\x31\x87\x14\xe8\xac\x4d\x96\x38\xe1\x2e\xf3\x42\xbe\xfc\xc2\xeb\x71\xcc\xf6\xeb\xde\x81\x23\xeb\xf5\xcd\xc7\xe9\x6c\x1e\xdc\x08\x08\xb8\x17\x62\x59\x34\x52\x70\xb1\x25\xaf\xad\xf3\xc3\xd4\x0b\x38\xdc\xbe\x65\xd1\xf8\x18\x8b\x95\xc9\xa9\xcc\x74\x2f\x79\x00\x2d\xa1\x6b\x82\xf0\xfd\xc7\x15\x9e\xce\x6e\xe8\x3c\xba\x89\xda\x6e\x99\xdf\x8e\x19\xe4\x8b\xd8\x37\xcf\x05\x09\xd5\xbd\xb2\xf9\x32\x48\xe2\xaa\x94\xaf\x07\xb7\x74\xa6\x14\x12\x82\x46\xd6\x0a\x3d\x1d\x9a\xa5\x27\x99\xd7\x0c\x87\x21\x0c\xc2\xf8\xda\x78\xc5\x15\x6f\xeb\x92\xc2\x79\xf7\xff\x21\x23\x58\x1d\xac\xbb\xd3\xbb\xa6\xa9\xda\x31\xbb\x47\x51\xd7\xd1\x04\x95\x95\xd6\x54\xe2\x0d\xee\xd4\xe6\x6c\xd3\xd5\x6c\x8d\x7a\xda\x89\xde\x13\xa6\x13\x01\x80\x90\xe4\x11\xfb\x1d\x75\xf5\x88\x45\x9b\xbb\x17\xe3\x45\xdb\xac\x5d\x7b\x30\xd0\x5f\x03\xee\xd6\x6e\x70\x3d\xe3\x11\xab\xae\x52\x03\x58\x23\x18\xfe\x81\xda\xd1\x10\xac\x2f\xdd\xd8\x67\x00\x7c\x33\x86\x1c\x86\x91\xf0\xd8\xbb\x8e\xe5\x83\xef\xf4\xb9\xc5\x3c\x42\xc1\xdc\xba\x6a\x53\x04\x0b\x1c\xa5\x78\x2b\xe6\xc3\xf3\xcd\xdf\x4e\x4b\x77\x49\x1f\x23\xa6\x73\xc6\xe2\xcb\xd2\x41\x16\xc0\xb6\xe1\x45\x1c\x61\x87\x31\x51\xfe\x28\x7b\x66\x1a\xea\xcc\xee\xa7\x1c\xc8\x2b\x49\x51\xfd\x69\xc2\xa2\x75\xf2\xed\x2a\xd4\x04\xc1\xda\x0f\x2d\x9d\xab\x05\x53\x49\x51\xc3\x70\xa4\x59\x41\x8e\x40\x73\x04\x48\x74\x1b\x73\x4d\xfa\xca\xf8\xca\xdb\xd4\xaa\x9c\x0e\xe6\x34\x7d\x6f\xcc\x66\xb7\x77\x5a\x6e\xbd\xc5\xd7\xdb\x8c\x5d\x8a\x43\x7a\x77\x39\x8b\xf4\x5e\x27\x8b\x79\x12\xdb\x91\x3e\xe4\x43\x40\xc2\x63\xf3\x87\x9f\x71\xae\xd1\x99\xb8\xd3\xc7\x52\xc3\x3f\xfe\xd8\x2d\xaf\xf1\x9f\x35\x19\x24\x47\x85\xfd\xfd\xaf\xe8\x3f\x47\xc2\x61\x0e\xf3\x47\xe8\x3b\xd4\xe2\xa5\xd7\x50\x61\xbb\x9d\x8d\x72\x6d\x90\xf5\x06\x4b\x74\x71\xbc\xff\xbc\xe0\x76\x43\x49\xe8\x14\xc4\x54\x7a\x47\x67\x47\xee\xd4\xcd\x92\x79\x4e\x46\x25\xd9\x77\xd8\x7c\x14\x22\x72\x6d\x1d\x55\xff\x77\x44\x45\x07\xc1\x8f\x79\x79\xa8\x6f\x9b\xf7\x4c\xa7\x94\x91\x31\x88\x6a\x77\x9e\xfd\xa2\x59\x7b\x70\x8e\xb2\x07\x3f\xa6\x05\xec\xa8\x98\xcf\xf1\xbb\x17\x02\x63\x75\x4d\x69\x3b\xa2\xb0\xf1\x65\x8f\xe5\xb1\x4c\x1a\x2e\xff\x6c\x3d\x9f\xf7\x0d\xc6\x0f\x7a\x64\xe1\x73\x5f\x8a\xfa\x0a\x4d\x66\xd5\x47\x4c\x1b\x7c\xc6\xfd\x3e\x72\x27\x56\x9d\x2f\x9f\xfa\xc9\x5f\x35\xd7\x7b\x57\xff\x87\xbb\xd3\xff\x6e\x9b\x8d\x31\x74\xfa\xf9\x79\x8d\xc4\x58\xba\xfb\x60\x5d\x9c\xee\xc3\x1f\xc2\x4b\xba\x87\x99\xbc\x21\x7b\x7b\x9d\x2c\x46\xeb\x23\xea\x92\xc7\x00\x35\xc9\x82\xc1\x72\xde\xeb\xc4\x5e\x15\x34\x53\x5e\x2c\x3c\x4e\x9d\xa9\xd5\x70\xc0\x59\x15\x74\x9d\x7f\x5d\x25\xf3\xd2\x12\x1f\xd1\x46\x70\x4e\x6f\xd9\x84\x84\x1e\x0c\xc4\xdd\xb6\x7e\x52\x1d\x25\x56\xba\x16\xb2\x51\x2f\x73\xc8\x82\xc4\x23\xe0\x74\x3b\x85\x66\xb9\x6f\x25\xc9\x6e\x2d\x7e\x91\x36\x2c\x7f\x8e\x54\x74\xa3\x67\xda\x44\x04\xa4\x00\x86\x6d\x0d\x88\xf8\xee\xf9\xf7\xcd\x38\xcf\x03\xba\x48\x10\x9a\x12\xd8\x1e\xb9\x42\x97\xbb\xf1\xeb\xae\x08\xc1\x60\xdc\xf4\x88\xd1\xc9\xf0\x0c\x0d\x86\x20\x51\x70\x1c\x60\xae\x0b\xda\xcc\x68\x11\x03\x07\xcc\x60\x0d\xab\xcf\x83\xf5\xb2\x77\xd1\xc4\xec\x39\x2d\xd0\x24\xa0\x3c\xb7\xd3\x39\x7a\xa1\x15\x7f\xe3\x66\x6a\x6d\x48\x1d\xde\xb9\x58\x15\x81\x7d\x82\x0d\x78\xcd\xe2\xe3\x56\x39\x2c\xcc\xfc\xd9\x0c\x1f\xae\x8b\x65\x6b\x7c\xa3\x85\xee\x15\x72\xce\xc8\x2e\xf6\x82\xa8\x20\x9c\x95\xf3\x85\x7e\x41\x69\xc4\x95\xb4\x5f\x02\xc3\x82\x3d\xcd\x65\x55\x43\xf3\x89\xeb\xdc\x27\xdd\xf0\x27\xb4\x92\x70\x32\x65\x91\xb1\x91\x23\x3f\xf1\x81\x22\xbf\x6a\xb7\x98\x15\x61\x80\x8a\xb2\x67\x89\xf8\xd2\x10\x85\x06\x6f\x00\xf6\x88\x17\x53\xe0\x9f\x77\xea\x44\xd1\x3f\xb6\x66\x80\xfc\xa4\x7d\xc0\x40\x7b\x0d\x57\x97\x21\xcc\x10\x07\xe8\x60\xd4\xac\xf8\x39\xd2\x12\x66\x5b\x5d\xfb\x81\x72\xe8\xde\x7d\x48\x13\x75\x88\x85\xf2\xac\x08\x2e\x0a\x6e\x95\xf5\x92\x84\x7d\x14\xb6\xd5\x4e\xd8\xdd\x56\xaa\xe3\xe2\xc8\x8e\x24\xeb\x89\xf2\x2c\xfc\x93\xff\x38\x74\x56\x71\x7d\xe2\xea\x5d\xfa\x29\x80\x52\x82\x27\x94\x34\xa8\x32\x88\x59\x5c\x14\x5a\x6e\xc6\x96\x31\x53\xe5\x30\x6a\x3a\x9b\x6f\x78\x06\xc0\xa3\x36\x2a\x2a\xfa\x28\xcf\x4b\x4e\x7b\x52\xe4\x1c\xe1\x6e\x33\x67\x0a\x13\xc4\x46\x8e\xd0\xdb\x57\x8e\x45\x9b\x4c\x6a\x44\x1a\x3a\xa6\x91\x51\x22\xa4\xf8\xfd\x8f\x59\xe8\x10\x61\x0b\x84\x3f\xde\x34\x2e\x98\x00\x21\xcb\x4e\xf1\x4f\xae\xde\x71\xed\x28\xa8\xff\xd5\xc6\x2d\x03\x46\x55\x62\xfb\x92\x64\xef\x09\x91\x0b\x18\xfb\x71\xce\x6a\x88\xa8\x25\x46\x5b\x4c\xa6\x85\x8e\xc3\x8e\x0b\x70\xd7\x8b\xed\x43\x9b\xe3\xed\x12\x0a\x5f\xc1\xca\xa2\xf6\x23\xb4\x0d\xd7\xa3\xd3\xf2\x9d\x9e\x47\xc4\xf0\xf1\x99\x85\xda\x19\xc3\xee\xac\xde\xb6\x08\x02\x3d\x2b\xf0\x61\x55\xbd\x52\x7b\x3a\xbf\x89\x71\x25\x40\x51\xcd\xca\xbd\x43\x1b\x8a\xed\x5a\x50\xd2\xff\xc0\x97\x81\x85\x39\x30\x72\x21\xb7\x19\x39\x86\x68\x96\xf9\xab\xed\x9e\x21\x1f\x06\xe4\xe0\xe4\xb2\xdc\xaa\x9a\xbd\x12\x28\x7d\x6a\xc3\x27\x37\xce\x35\xf5\xce\x31\x15\xc2\x6a\x90\x11\xa9\x69\xce\x0c\x6c\x70\x32\x39\xd2\x84\x3e\xa2\x13\x0f\xcc\xa3\xb0\x3b\xa8\xcf\x6f\x85\xc6\x3d\x15\xf2\x84\xce\xc4\x6b\x86\x7b\x44\x67\xec\x55\xbe\x2e\x30\xf1\xf6\xed\x59\xfb\xd3\xdc\xde\x0e\x7f\x04\x07\xfd\x16\x9d\x7a\xc6\xd2\x06\x6e\x0d\xda\x4c\x46\x4c\x05\xbe\x38\x9d\xa9\xea\x2b\x86\x75\x90\xaf\x54\x9e\x56\x81\x97\x82\x32\x67\xa8\x43\x94\x98\xb6\x6e\x1e\x9d\x4a\x14\x3d\xbf\x7f\xfd\xe9\xcb\xa2\xb5\x53\xff\x8b\x60\x1d\x5f\x27\x11\xc9\x1b\xbc\xdd\x3a\x9f\x6f\x8c\x8c\xd0\x92\xaf\x39\x5c\x17\x96\x28\xd3\x06\xce\x82\x2f\x66\x87\x15\x52\x86\x1a\x74\x52\x7a\xfc\x6a\x0d\x8c\x4f\x36\x66\x55\x24\x22\x38\xf2\xa8\x58\x05\x84\xed\xa9\x9f\x6e\xf5\xbc\xab\xe8\x11\x8b\xdb\xae\xa3\xad\x68\xd9\x09\x94\x2d\xd0\xed\x56\xf0\x86\x62\xa7\xa4\x0d\x6e\xe1\x4d\xbc\x03\xf6\xf1\x7a\xe0\xcc\xa7\xc0\x03\x83\x3b\x7b\x8d\x4b\x7a\x46\x6d\xa9\xdc\x02\x3a\x4f\x72\x2d\x76\xc5\x66\x01\x00\x9f\x34\x23\x79\x33\xca\x70\xf5\xc8\x69\xeb\x64\xae\x1e\x6c\xa0\x2a\x07\x99\x1c\x40\xee\x0a\xf1\x4d\x92\xf1\x0c\xf6\x42\xf2\xb8\xfd\x99\xbc\xe7\x78\x62\x9e\xf3\xfc\xde\x5f\x9b\x21\x51\xa6\x3f\x49\x2a\x62\xee\x42\x18\xda\x1d\x7a\x4f\x6f\xde\x6d\x4e\xe7\xf5\x6e\xfe\xf8\x19\x91\x04\x1c\xc1\x80\xf3\x8e\xcc\x6d\x74\xa3\x52\x44\x1e\xdc\x55\x81\x8e\x88\x10\x28\x6c\x61\x19\x7a\x57\x94\x4c\xea\x6e\x3b\xad\x2d\xa3\xe3\x55\x5b\xc1\xa3\xbd\x8a\xc0\x76\xc8\xba\x5e\x26\x76\x52\x2b\x9e\x24\xca\x23\x09\x40\xb9\x3b\x43\x27\x48\x3f\x07\x85\x78\x15\x9b\xcc\xcb\x08\x1a\x55\xed\x5f\xd5\xe2\x4a\x1f\xaf\xd1\x0a\xf0\xb5\x6a\x85\x7e\xb6\xb0\x35\x53\xbd\xd0\xaf\x2e\xfc\x61\xc8\x1f\x8c\xe2\x82\x08\xc3\x63\x73\xb5\x1b\x4f\x50\xa1\xce\xec\x6c\xb2\x50\xad\x25\x8b\x9f\xc5\x83\x14\xed\xbc\x87\xea\x2d\x49\x5c\xbd\xbf\x09\x69\xee\x0f\x1b\xbe\x4e\x6d\xa4\x9c\xf1\x56\xed\x4f\xd5\x63\xed\xb0\xbd\x41\xd3\x40\x06\x70\x24\x71\xf1\x19\x1f\xa8\x39\x90\x73\x75\xe1\xd4\x54\x2e\x42\x80\x40\x18\x5b\x47\x0d\xec\xbd\xe0\x50\xe0\xdb\x99\x7b\xa2\x44\x64\x7f\x1d\x12\x43\x55\x2a\x0a\x70\xd2\x68\xda\x23\x1d\x14\x53\x5b\x9f\x85\x85\x3f\xca\xaf\x7f\xd9\x7f\x75\x7a\xbd\x4e\x2e\x9b\x6e\x3d\x72\x9a\x40\xd2\x87\x7d\x0a\x46\xf2\x72\x63\x7e\x33\x79\x97\xd8\x00\xd8\x83\x86\xeb\x9d\xcb\x5e\xda\x1d\xf1\xd0\x2a\xac\xdb\xb4\xd0\x31\x4c\x5d\x93\xcf\xc9\x05\xe7\x3b\x03\xb0\x85\xb5\xd3\x23\x17\xcb\xce\x5a\x17\xf7\xa5\xa1\xed\x5c\x82\x0d\x7b\x8a\x7f\xd6\xab\x07\xad\xdb\x1d\x55\x98\x79\x2e\x89\x35\x6a\x07\x01\xcf\xc0\xa0\xac\x7d\xeb\x70\x94\x96\xdc\xa7\xbe\xa3\x54\xfc\xb7\x3c\x93\x32\xc8\x43\xdf\x8e\xcc\xf1\x54\xe6\xb6\xeb\x1e\x3b\x04\xc2\x3e\x87\x9c\xfe\x16\x55\x2a\xf8\x78\xe7\xb2\x0f\xe5\x66\x8c\x35\x61\xd4\xe3\xd1\x3f\xfa\xb3\x11\xe1\x25\xa2\xc0\xac\x56\x66\x06\x1a\x00\x09\x11\x5c\xbb\xed\x0d\xa3\x64\x71\xa9\x74\xa9\xc9\x0a\x94\x04\x99\x45\xb7\xd7\x3a\xe4\x09\xd4\xb1\x7c\x3c\x93\x24\x32\xa2\xcf\xe7\xf8\xc1\x0b\xf9\x95\x8c\x42\x9e\x5c\x6b\x45\xe7\xce\x6b\xf8\xfc\xbe\x0e\x71\xca\x4a\x55\x1e\xcc\x41\xac\xfc\xfe\x1e\xe4\x1e\x28\xf8\xd4\x87\x6d\x73\xb9\xa5\x66\x96\xe6\xea\xee\x24\x15\xbb\x9a\x80\x26\x39\xf5\x43\xd1\x42\x8a\xc7\xd2\x81\x0e\x80\x98\x1c\x62\xf4\x0e\x90\xc9\x53\xc9\x91\x50\x64\x00\xdb\x19\xc7\x2d\x88\x72\xc5\xd0\xa7\xde\x6f\x73\xe4\x64\x75\x00\x74\x6d\xda\xcc\xd6\x32\x0b\x04\x1a\x85\xc5\x54\x90\x87\x47\x32\xb5\x07\xc8\xe2\x22\xc5\xe1\xcf\xe6\xaf\x68\xbb\xbc\x79\x93\x1b\x70\x84\x8d\x40\xa5\xe2\x01\x6c\xad\x04\x4d\x76\xd3\xc5\x00\x90\x2e\xb5\x7e\xb5\x35\xfc\x46\xbe\x26\x65\x4c\x8a\xcd\xee\xbf\x3f\xa8\x45\x9f\x72\xba\x0d\x69\x34\x4b\x95\x22\x23\x50\xa1\x54\x5d\xaa\x16\x1f\x87\x94\xb2\xd4\xc3\xdf\xee\xc3\x7e\x22\x03\x4a\x7d\xed\x91\xad\xeb\x1f\xd9\x1b\xae\x2d\x37\xb4\xa1\x9e\xaa\x22\xd9\x85\x19\x80\xfe\x3a\x15\xf2\x2c\xbf\x38\x46\xe0\x69\x3b\x3a\x69\x38\xe3\x40\x7e\xf8\xf1\x7e\xda\xf0\x52\x0a\x6a\x5f\x59\x6b\x08\x7f\xb3\x0f\xe1\x90\x53\x89\xc2\x1a\x22\xdf\xa1\x89\xfa\xb3\x3c\xb2\x15\x88\x55\xdf\xd2\xf9\x21\xbc\x24\x42\xd5\x0c\x21\x95\x0b\xbf\x07\x85\x01\x27\x84\x31\xc1\x01\x76\x82\xa4\x88\xd8\x67\x57\xed\xca\x51\x77\x09\x2e\x25\x61\x68\x8d\x5f\x49\x81\x4c\xb3\xc8\x04\x9e\x5b\x7f\xf2\xdc\x16\x37\x2d\xd1\x0e\x5a\xac\xce\x42\x8b\x09\x94\xd3\xa5\xb7\x0a\x3c\x77\x2d\x26\xc1\x98\x76\xb8\x37\xc0\x05\x4e\xba\x84\x24\x7a\x18\x48\x1b\xba\x37\x0d\x68\x02\xa8\x27\xd6\x1a\xad\xb6\xfc\x13\x43\xfd\xc1\x16\x2d\x19\x2d\x6b\x5d\x41\xd5\xa3\x3a\x95\x5e\x1c\x38\xd8\x3c\x19\xb3\x6a\xd3\x8a\x69\x7e\x16\x2e\xb9\x91\x7b\x27\x87\xc7\xfe\xf6\x34\x4c\xac\x49\xc2\x1e\xed\x91\x53\xe2\x67\x31\xc6\x85\xaf\x40\xa4\xf9\x5c\x9b\x8f\x4a\x5e\xc1\x40\x9a\x46\x90\x1f\xf2\x31\x67\xa0\x5e\x92\x68\x7e\xcc\xf2\x30\xef\xc2\x2f\xeb\x57\xcf\xeb\xb7\x38\xaf\xe7\x98\xd1\x34\x27\x32\x43\xb2\xb2\xc6\x08\x35\xf8\xa9\x83\x5a\x00\xd7\x31\xc4\xba\x4f\xf1\x64\x30\x74\x90\xfc\x1c\x68\x90\x0e\xe2\x87\xa7\xcc\x24\xa8\xba\xde\xd6\x1c\x54\x0a\xf7\xbf\xdb\x9d\x8e\x8e\xf8\x19\x88\xb7\xa6\x64\x12\xb7\x40\x21\x95\x9e\x24\x2c\x50\x27\x06\x69\x50\x6e\x0d\xd6\xf6\x5a\xd2\x00\x1d\x44\xc6\xdc\xdf\xfb\x2d\xfb\x42\x12\xd5\x3b\xa9\x02\xda\x83\x6b\xfd\xe1\x7f\x16\xd1\x5a\xb2\x7a\xd8\x65\xed\xb0\x0f\xcb\x83\x2a\xc9\x82\xb5\x01\xc5\x7a\xbb\xe6\x41\xf1\xe3\x55\xc5\xa4\xbf\x32\xe6\x2c\xf4\xa3\x6d\x6a\xa9\x20\xd9\x76\x02\xef\x73\x8d\xbe\x0a\x27\x94\x8b\xaa\xe1\xe6\x25\xe1\xc8\x7d\x1c\xb9\x5a\x1e\x2e\x13\x0c\x68\xcd\x1b\x3e\x98\x79\x40\x45\xa9\xae\xb1\x35\x9a\x88\x3f\xbd\xac\x92\x78\xcb\x24\x49\x83\x8e\x34\xa7\xeb\xc4\x55\xb4\x03\x59\xe3\x22\x73\x49\xe8\x37\x03\x77\xf1\xd6\xfb\x2b\x6a\x85\x0e\x6f\x00\x46\x5c\xcd\x01\xe5\xbb\xc5\x20\xcc\xdb\x4c\x77\x7a\x93\xfc\xe7\xf6\x55\x78\xc4\x39\xb4\xa0\x0b\xd6\x42\x08\x6b\xd1\xda\xd1\xbe\xfb\x86\x77\x18\xd3\x99\x08\x02\x34\xb4\xb0\xe0\x3c\xf2\x41\x31\x9b\xb5\x07\xb6\x4b\x39\xc8\xcf\x08\x72\x27\xf5\x01\xe9\x1d\xc8\x8d\x67\x22\x63\xa5\xa6\x61\x2a\xf6\x6e\x1b\xb7\xde\xe9\x9a\xc2\x94\xd3\x7a\x61\x02\x04\x48\xd4\x78\xe6\x7e\xd6\x74\x8f\x86\x05\x16\x2b\x4d\xc3\x3a\xfd\x5b\x71\xed\x96\x06\x9c\xc5\xf4\xc6\x4e\x66\x28\x42\xbe\xd4\x9a\x55\x9b\x41\xeb\xba\x86\xbc\xf3\xba\x7b\x27\xb9\xa3\x0d\xb7\x25\x71\x30\x93\xcd\x92\x0c\x01\xa8\x86\x00\xb4\x63\xf7\x21\xc3\x63\x5a\x06\xd8\xfb\xe9\xcb\xfd\xed\x34\x3a\x79\xdd\x9f\x0e\xc7\x72\x98\x30\x30\x5e\x10\x97\x68\x39\x0b\x3c\xc9\x9f\xdc\xe2\x87\x1b\x87\x3e\x41\x72\x1f\x0a\xa8\xfb\xe4\x34\x94\x87\x79\x40\x8a\x23\xc1\x82\x83\xf0\x0e\x33\x09\x1d\x9c\xc3\x48\xbd\x38\x65\x2b\x68\x44\x39\xd2\x38\xe0\xf8\x07\x22\xd2\x43\x26\x0e\x5a\xb0\xb9\x64\xe9\xf5\x01\xeb\xe1\x18\xee\x77\xc3\x09\xfd\x8e\x1d\xc0\xa0\x87\xa7\x83\x3c\x8d\x08\x9c\x7d\x9e\x3d\xb0\x12\xd4\x90\xea\xb6\x8e\xe7\x93\x07\x68\x5d\xc9\xbf\xa8\x68\xe1\x4d\x0b\xf3\xaf\x0e\xe7\x46\xa7\x8c\x23\x1d\xf1\x1b\x1b\x9c\x57\x5e\x86\xcf\x13\xa4\x26\x6b\x5b\xb4\x47\xa0\x1c\x11\xc6\x93\x4c\xad\x0b\x4e\x7e\x2f\x6d\xd5\xb9\x8c\x44\x3f\x3f\xb9\xab\x93\x6a\xc8\x55\x0d\x45\x5d\xd7\x19\x10\xf7\x89\x7e\x37\xc0\x99\xdc\xad\x14\xba\xa3\xc9\x7d\x17\x9c\x08\xd5\x13\x47\x80\x30\x7a\x61\x18\xe5\x8d\x45\x1d\x7d\xe6\xb5\xb1\x14\x46\x0f\x7b\x5f\x8a\x81\x4d\x82\x7b\x6c\xf6\xc6\x13\xd7\x84\x94\x70\x6e\x87\x90\x8c\xfb\x8e\x2f\x7f\x6f\xb1\x69\x9f\xb9\xd0\x24\xd0\x33\xa9\xe2\x95\x6c\xb3\x3d\x31\xad\x9f\x2b\xad\xc0\x59\x13\x39\xa1\x30\x6a\x01\x81\x23\xdb\x98\xf1\xc5\x2d\x55\x88\xe0\x13\xf1\xc5\xcf\x1b\x59\x9a\xe2\xc1\x42\x6a\xa3\x8a\x85\x1a\x40\x78\x15\x3d\x9d\x54\x79\x53\x96\x33\xeb\xfe\xee\x55\x49\xd9\x70\x22\xec\x64\x71\xc6\x91\x84\x50\x4e\xe6\x2b\xc7\x1e\x91\xdd\x50\xaf\xac\x97\x1c\x9f\x83\xf2\x3a\x38\x15\x22\x01\xc0\x4a\x92\x32\x23\x86\x3f\x44\xda\x77\x5a\x8a\x05\xd8\x23\x34\xe6\x58\x8c\x58\xf9\xa6\x05\x7f\xd2\x86\x97\x1c\x52\x3e\x45\x7c\x34\x69\xb1\xff\xaf\x43\xe8\xc7\x1e\x31\x2e\x67\x10\xf8\x6e\x3b\x88\x0d\x2d\x50\x3b\x0f\x64\x70\x55\x5b\xdc\x34\x94\xf2\xab\x35\xb0\x15\xb6\xe2\xaf\x44\x98\x2d\xf1\x50\x41\x16\xf1\x0d\xa6\xb3\x69\x3a\xd3\x4b\x0f\xd0\x94\x91\x4e\x11\xa1\x49\x03\xb0\x72\xb2\xa8\x1f\x0f\x45\x23\x9d\x20\x3c\x6d\x5a\xd4\xc3\xb0\x00\x58\xb4\xde\x14\x3f\x60\x1f\xde\xfe\x8d\x27\x98\xe7\x67\x13\x51\x47\x81\x5b\x81\x71\xb7\x7d\xda\xed\x0d\xac\x53\xf2\x90\x6f\x26\x2c\x54\xb9\x40\x2a\xd5\x42\xc1\x30\x1c\x62\xc7\x0d\xf1\x3b\x5c\x9d\xce\x6c\x9d\xfb\x10\x24\x3e\xcc\xbd\x0c\x54\x24\x30\xc5\xf4\xf7\xfe\x69\xcc\x34\x27\xbf\xc2\xc5\xa9\xd2\x89\xb2\x54\xea\x9b\x31\xcf\x8e\xf6\xf9\x22\xc0\x7e\xde\xe4\x86\xe9\xba\x54\xfd\xcc\xf2\x78\xe1\x9b\xa7\x29\x0b\x1d\x6a\x63\xaa\x2e\xcb\xc3\x5f\xec\x85\x0d\x2c\xac\x69\x35\x6a\xca\x35\x9b\x24\x3b\xbe\x84\x5d\x2e\xfb\xa8\x63\x16\x2a\x39\xb3\xae\x26\xad\x62\xc3\x62\xda\xd1\x2d\xee\x00\x51\x28\xe9\x95\xa4\x25\x8b\x9f\x94\xab\xd6\x2a\x4a\xc1\xa6\x35\x27\xff\xfb\xab\x36\xe0\x9e\x5f\x01\x03\x5d\x39\xf5\x1d\x99\xdc\xff\x7e\xed\x2c\xe6\x36\x56\x0f\x6e\x87\xd1\x89\x5a\x8b\x5d\x2e\xc8\x53\xf1\x0a\x9d\xed\x24\x95\x12\x91\x27\x0c\x3f\x7f\xe1\xde\x3e\x36\xf7\x23\xf0\xa0\xc1\x54\x03\x6d\x92\xb8\x59\xbe\xca\x2c\xce\x43\x16\xdb\x8e\xf6\xa4\x70\x67\x2d\xb7\xa8\x80\x5c\x2b\xa1\xd3\x17\x64\xa7\xdc\x1f\x1f\xf2\x05\x4b\x83\x38\x63\x45\x1d\x8f\x8e\x67\xbb\x16\x91\xe9\x1c\x3a\x95\xc2\x96\xa6\x28\x59\x80\x89\x0c\xa8\xfa\x22\xb0\xe4\xfa\x5f\x24\xcc\xbb\xf9\x16\x7d\xc4\x41\x0f\x8f\xa9\xf8\x32\x15\x5f\x5d\x87\xf5\xc1\x5a\x8c\xea\xba\x3d\x36\xf7\x4d\xbd\x3c\x9c\x27\xed\xa6\x01\x82\x4d\xd2\x29\x78\x59\x40\x03\x5d\x5d\xcd\x03\x45\x1f\x1d\x3b\x66\x15\xc2\x56\x1c\x9e\x9f\x08\x36\xa4\xba\x27\x98\xb4\xd4\x77\x08\xa6\xf1\xb5\x60\x2a\x08\xa0\xc3\x26\x34\xce\xe1\x43\x32\xad\x00\x32\x9a\x79\xe1\x30\x20\x21\x67\xce\x39\xdd\x31\x8f\xd5\x71\x01\x89\x92\xbb\xfe\xbc\x5d\x79\x0c\xb4\x8c\x8c\x30\x65\x33\x3f\x19\x7c\x26\x50\xbc\xe7\xad\xbe\x34\x3d\x2c\x76\xd9\xf7\xfd\x12\x83\xa8\x28\x82\x6a\x25\x16\xd7\x44\x87\x56\xd1\xff\x51\x6e\xc2\x08\x58\x7e\x38\x74\x57\x38\x67\x98\xf9\x23\x70\xaf\x03\xe0\xf7\x20\x10\xf8\xff\x54\x6f\x4f\xf9\x57\x67\x76\x8a\xff\xe7\x17\x5b\xd9\x46\xc2\x26\xff\x72\xce\x88\xf4\xe1\xe6\x75\xb2\xd1\x8a\x10\xdb\xac\x10\x0a\x4b\x52\x1e\x77\x10\x9d\x92\x39\x82\x68\x60\x6a\xf6\x73\x85\xef\x33\xf7\x95\x03\xe0\xcf\xc5\x4a\xa4\xe5\x77\xa5\xfb\x67\xd3\xcc\x8c\x2c\xec\x8f\xf8\x44\x22\x7c\x02\x24\x97\xd6\x22\x38\x34\x93\x9d\x37\x8d\x59\xeb\x69\x28\x92\xc6\x08\xa0\x43\x30\x89\x25\x72\xe3\x24\x1d\x3e\xc7\xa2\xb6\xe2\x5b\xf6\x17\x83\xfc\x7b\x14\x53\x9d\xdc\x0d\x56\xee\x06\x5a\xa4\xe9\x06\x6e\x5e\x98\x65\x53\x1f\x19\x30\x51\x6b\x7b\xca\x95\x38\x37\x09\x3e\xc4\xa3\xdc\x31\x35\x5b\x99\xc7\xd9\x7d\xb9\xbc\x57\xe2\x1c\x9b\xc7\xb4\x05\x7a\x86\x50\x63\x41\xa3\x65\x3e\xb0\x13\x25\xe8\x9d\x5e\xe6\x0b\x76\x8b\x28\xa4\x04\xb9\xba\x41\x71\xa2\x2f\x39\x43\x49\x24\xe3\x75\x34\x57\x97\x26\x4b\x03\x12\xd6\xa5\xbd\xbb\x7e\x73\xbf\x87\x35\x6e\xcf\x45\x1d\x4a\x11\x59\xe7\x12\x20\xe8\xd1\x96\xfb\x47\xba\x98\x7f\xac\xd3\x42\x6e\x7a\x28\x9f\xac\x8d\x83\x80\xfb\x73\x30\x3d\xe5\x0f\x2b\x53\xaf\xa8\xe0\xcc\x45\x7e\x23\xfb\x5a\x05\x50\x00\xa1\xea\xde\xc0\xa0\x37\x5d\x93\x4d\xcd\x62\x41\x04\xa5\x88\xdd\xcb\x3f\x9d\x30\xf8\xff\xa4\x26\xc7\xbf\xd2\xf9\x81\xa3\xd9\x0d\x8e\x43\xfa\x27\xe4\x94\xee\xc9\x11\xe5\x8f\xeb\x15\x33\xc6\x10\xbb\x4d\xd4\xfc\xe0\xf8\xde\x96\x3e\x46\xc3\xa6\x2b\x1b\xa7\x55\x39\x98\x88\xe6\xa7\x1c\xe5\x41\xf0\x9c\xc2\x39\xd9\xc6\xe6\x43\x6d\xbb\xa5\xbb\x18\xed\x65\x24\xcb\x07\x67\x31\x3d\x7b\x85\xff\xfe\x4a\x65\xd6\x48\x58\x9f\xfd\xc8\x1a\x6a\x78\x63\x53\xfc\x5a\x3c\xe6\xaa\x87\x30\xab\xd7\xfc\x4e\xfa\x1a\x08\x08\x64\x73\xba\x3b\xdc\x2b\xc7\xeb\xbe\x2e\xa3\xd2\xa2\x7b\xbc\xb9\xf7\x7f\xa5\xe6\x7d\xce\xc7\x34\xf2\xc0\x21\x5f\xe4\x3b\x53\x17\x3b\xb9\x80\x12\xc0\xb0\xbc\xb2\x81\x68\x17\xd6\x67\x2a\xc3\x5f\xe6\xb6\x4f\x93\x3a\x8b\xbd\xc1\xf6\x20\xf5\x24\xda\x88\x41\x43\x63\xb9\xe1\xed\xa5\x40\xfb\x17\x6a\x5f\x63\x22\x05\xb6\xf9\x20\x3f\x2f\x4d\x1c\x2e\x71\xb3\xe0\x5b\x00\x69\x30\x81\x78\x21\x41\x30\xc8\x3a\xbe\xa5\xe2\x9a\x1f\x4e\xcc\x38\xba\xb1\xc5\xfb\x4d\x16\xec\xea\xaa\x54\x7a\x68\x42\x6a\x76\x9b\xa0\x20\xfb\x50\xa2\x20\x38\xb0\x82\x84\xfe\xd6\x3e\x68\x5b\x3c\xfe\x69\x11\x46\xf5\x32\x4a\x1f\x53\xd5\x03\x2c\x4c\xdd\xa8\xa1\x04\x19\x89\x8c\xf9\xa9\xfd\x2d\xcf\xac\xe3\xe2\xe1\x85\x44\x7e\xce\xcf\xe5\x74\x8d\x18\x95\x91\x7b\x97\x8f\x5d\x7b\x75\x59\x24\xab\xc1\xc1\x08\xe4\x70\xb1\x45\x01\xc2\x5a\xfc\x8d\xea\x63\xf8\x47\x3c\x5c\xf6\x44\x40\x99\xad\xf7\x30\x89\x7a\xe8\x7a\x88\x6c\xcc\x05\x2d\x9f\x01\xa9\x72\xfa\xf5\x9a\xcd\x18\x4e\x2d\x48\x17\x51\x10\x16\xd1\x14\x36\xab\x47\x05\x12\xc9\xd2\x10\x5b\xdc\x65\x21\xbb\x2e\x6e\x28\x90\x63\xc4\x6d\xf2\x29\x75\xf3\x24\x6e\x48\x1b\x08\x66\xbd\x02\x34\x4a\xe1\xe5\xf3\x38\xd6\x43\xfa\x71\x49\x13\xd1\x55\x13\x0d\xf3\x65\xde\xf7\x5d\x91\x39\x72\xe2\xfd\x1b\x02\x49\x1e\x07\x5e\x7e\xfb\xfe\x5a\x19\xcd\x5f\x86\xff\x5f\x05\xe6\xbd\xa8\xa6\x09\x4a\x0b\x1d\x0c\xb4\xe9\xc5\xc5\xa9\x99\x0b\x48\x9e\x6a\x14\x4f\x81\x44\x8b\x4f\xc2\x74\x26\x94\x8f\x2f\x29\x07\x29\x4a\xed\xe9\xbb\x57\xea\x91\xcc\x71\x94\x57\xc3\x78\xb8\xb8\xe8\x61\xeb\x3e\x8f\x95\xe6\xfc\x9d\xdf\x01\x12\x61\x9d\xbf\x80\x4c\xfd\x29\x63\xf5\xaa\xdd\x63\x93\xc8\x0d\x16\xd2\xf1\x39\x8a\x56\xd2\x29\x55\x8a\xb3\xd5\x8b\x32\x48\x62\x5a\x35\xf5\xf8\x80\x5e\x7f\x10\x9e\x81\xc1\x02\x6d\x06\x6a\x25\x32\x45\x69\xca\x5f\x79\xc6\x7d\x6d\x33\xc4\x40\x48\xeb\xbd\x88\x61\xcb\x4e\x9f\x34\x33\x59\x27\xa6\x3c\x51\xe2\xb0\xa5\x35\xfa\x8c\x7f\x63\xcd\xcb\x52\x6b\xa0\x8c\xbc\x26\x7f\x5e\x28\x1f\x11\x19\x83\x25\xf1\x4c\xcc\xa8\x3a\xe1\x0e\x9a\x20\x73\x46\x6e\x6d\x45\x57\x96\x84\x29\xf7\x80\xd8\xad\xe9\x8e\x3a\xed\x1b\x62\xfe\xc8\xac\x90\x77\x20\x49\xdf\x17\x1a\x48\x29\xa8\x61\xd2\xc2\x17\xeb\x00\xde\xb4\x0a\x77\x2a\x29\xec\x66\x0e\x4d\x41\x47\x49\x07\xff\x3a\x78\x38\x68\xe4\xfa\x2d\xec\xef\xd4\x7f\x57\x9c\x82\xc4\x0b\xc6\x84\x73\x64\x50\xdc\xfd\xb6\x35\xca\x06\x0c\x01\x92\x40\x92\xe2\xb6\x37\x1e\xcf\xd6\xba\xcf\xfa\x7a\x18\xfd\x9e\x6e\xd4\xcf\xaf\xbc\x4a\xb4\x2d\xe9\x96\xe2\x79\xa8\x84\x46\x36\xf7\x3c\x51\xe3\x68\x2d\xf1\x1f\xe8\xc2\xa7\x95\xdd\x70\x05\xdc\xc8\xd0\x7d\x21\xe0\x39\x41\xa1\xa5\xa9\xe3\xa2\xf4\x9e\x79\x64\x28\xa3\x88\xf3\xac\x9a\x41\x8f\x8d\xca\xce\x27\x5b\xf2\xbd\x01\xec\x8f\xeb\xa1\x5d\x2f\x6d\x9d\xd1\xf3\xe2\x05\xc7\xfe\x7a\x18\xba\x33\xc3\x2f\xad\x31\x13\x4a\xbe\x1a\xf2\x38\xa8\x22\xec\xaa\xf8\xaa\x7c\x58\xf2\x83\x04\x42\x01\x8b\x40\x19\xb0\x30\xc9\xd3\x68\x70\x1e\x4e\xe0\xf4\x9a\x58\xe8\x9f\xe1\x36\x0a\xa3\xcd\xc3\x6d\x19\x13\x86\x0d\xc1\x34\x8e\xf3\x19\x60\x9f\x71\xb6\x94\x98\xd1\xce\xbd\xac\x28\xea\x94\x89\x30\xd4\x4a\x4a\x0d\x79\xb6\x0a\xe7\xd7\x07\x79\x9f\xdf\x06\x54\xb6\x5b\x58\x6e\x26\x45\x17\xf8\x3b\x0d\x85\xb7\x8e\x6e\x73\xed\xdf\x07\xfd\xb4\x1d\x12\x59\xcb\xc7\x6e\xfb\x1f\x45\xf0\x60\xfe\xbb\xfa\x0c\x3e\x6c\xa6\x37\x95\x2b\xbb\x81\x2b\x01\x7b\x0f\xba\x1f\x9b\x74\xbe\xcd\x67\x2e\x02\xb3\x36\xd5\x73\x0b\x73\xe6\xc1\xf8\xf9\x49\x12\x73\x54\xab\x69\x5e\x24\x84\x81\xe7\x41\x31\x08\x61\xca\xd7\x0f\x78\xf7\xc6\x42\xf9\x33\x61\xf1\xd1\x8d\x5f\x51\xc1\x8e\xd4\xa4\x7a\xd3\xd7\x63\xe3\x08\x2f\x22\xf4\xf1\x87\x28\x69\x9c\x1f\x42\x12\x10\x54\x20\x5a\xfc\x59\x6a\x68\xd4\x17\xf4\x97\xc5\x4c\xe0\x03\x29\x00\xca\x67\x9a\x93\x6d\x82\xec\x18\x65\x73\xf6\x57\x8b\xb1\x61\x77\xd5\x3b\x22\x9c\xe9\x89\xe4\x37\xe6\x88\xd2\x13\x16\x46\x5e\x2f\x2a\xd9\x21\xd2\x53\x7b\x70\x75\x5d\xcf\x85\x74\xe3\x6c\x7c\x14\xe5\xb1\x91\x84\x74\x7b\xd7\x87\x79\x64\xa2\xc8\xef\x56\x44\x63\x01\x7a\x2e\xbf\xff\x93\xbb\x1f\x25\x30\x54\x11\x71\xae\xde\xce\x0e\xf1\x95\xb6\x85\x16\x3a\x35\x47\x9a\xe7\x21\x82\x2d\x18\x6a\xa9\x39\xc6\x84\x09\x1b\x46\x50\xfe\xc3\xa4\x16\x21\xc3\x05\xf8\xd2\xb9\x47\x96\xab\x1a\xea\x58\x75\x39\xc6\x38\x65\xc5\x04\x95\x6d\x46\x57\x1c\xd9\x83\x61\x0a\x44\x35\x47\x0b\x26\x41\xa8\x89\xbd\x52\x23\xf8\x21\x91\xa0\x42\x41\xf9\x0b\x2a\xf5\x48\x1b\x5a\xad\x3b\x16\x25\x94\x83\x84\x26\x5b\x8d\x3e\xba\xee\x0c\x2d\x47\x74\xe3\xb4\xe0\xa9\x69\x32\xf5\x35\x59\x5d\x86\x7c\xbc\xc3\xd4\x20\x8e\xca\x7f\x3c\x72\x93\xcf\x7d\x40\xb5\x48\xf4\x41\x65\x2f\xe9\xb3\xbf\xc5\x00\x22\xa6\x2f\x62\xae\x6e\x61\xe2\x44\x5c\x32\xd9\x31\x2c\x22\x7c\xfa\x6e\xe3\x59\xb9\x77\x28\x25\x09\xdf\x82\xe1\x5e\x11\x89\xd0\xe0\xf4\xe9\xaa\xbf\x61\xa2\x29\x43\xa9\x57\x9c\xa6\x88\x11\x26\xfc\xcf\xb6\x4c\xd4\xeb\x08\x96\x4c\x03\x8e\xec\x83\x5e\x95\x6b\xdb\xdb\x9d\x05\x60\x6c\xac\xf6\x6c\x26\xb6\xda\xb1\x3a\xfe\xc9\x2c\xe7\xc3\xc1\x6a\xcf\xc3\x03\x5f\xde\x74\x24\xf5\xf5\x1b\x70\x96\xaf\xef\x3c\xbc\x2e\xe2\x0a\xcd\x89\xa4\x4c\x28\x6e\x93\x3e\x89\x00\x45\x10\xa0\x0b\xe6\x93\x42\x21\x79\x38\xf9\xae\x09\xd4\xbe\xc8\x5f\x2a\x9e\x68\x2d\xc3\x3b\xb1\x1c\xc1\x6b\x3d\x1c\xc3\x10\x41\x14\xad\x50\x37\x46\xc7\x28\x5d\x7d\x05\xf9\x12\x12\xce\x5b\xd7\x70\x37\x2c\xd3\xa2\x46\xcf\x01\xd1\x13\xdc\x9d\x4d\x6c\xe5\xef\x99\x50\x7d\xe1\x40\xc9\x52\x01\x82\x31\x98\xf6\xe8\xb1\x3d\xcf\x42\xd9\xe6\xb3\x25\xc4\xce\xa6\x74\xc0\x09\x62\x66\x1c\x87\x69\x58\x2a\x80\x5d\x31\x37\xa4\x66\xf0\xc8\xba\xc2\x70\x38\xf7\x20\xcc\x7d\xbb\x74\xd6\x08\x70\x3f\xe7\xfb\xb2\x73\xd5\xf3\x58\xfd\x4d\x5c\x47\x3e\x94\xf5\x5e\x3f\x33\x9b\xb4\xbd\xe9\x9d\xea\x27\x3a\xf6\x36\x7e\x12\x11\x66\x66\x21\xa1\xcf\xe5\xe8\xe2\x77\x83\xd0\xe5\x9e\xad\x9a\xe2\xd9\x94\xa6\x61\x25\x0b\x0d\xd5\x02\x2c\xe1\xcd\xc0\x3b\x2a\xba\x01\xab\x8c\xae\xea\xea\x64\xc7\x91\x43\x5a\xf9\xda\xa3\x62\x76\x24\xc7\xad\x26\x88\x59\x7d\x2f\x61\xee\xa1\x54\xb6\x4b\xfd\x6d\xac\xb5\x7c\x20\xaf\x82\xb6\x60\x7b\xfb\x37\x07\xf9\x88\x47\x59\x64\xe9\x41\x79\xd2\xef\xb6\xf0\xf2\x76\x85\x7e\x50\xdc\x85\xfd\x05\x0c\x4c\xd5\x13\x08\xa4\xa2\x72\xd4\xdd\xfa\xbe\x8c\x27\x32\xd2\x06\x93\x50\xe4\xd1\xe5\x6a\x61\x36\x95\x55\xae\xff\x9b\x8a\x86\xfb\xad\xa2\x4c\xd0\x01\xbf\xea\x85\x68\x56\xd4\xb0\xd2\xbe\xed\xfc\x36\x0e\xfd\xc8\xcb\x59\x70\x8e\x7b\x0f\x00\x62\xdb\x40\x81\x9d\xaa\x2d\xbc\x96\xc1\x28\x78\x22\xcd\x75\x21\x1c\x3c\xcd\x24\xe5\xd4\x8e\x28\x44\x5d\xe8\x68\xf2\xb1\x85\xf9\x77\xc7\x76\xc1\x61\x34\x1f\x55\xbf\x73\x88\x94\xa9\x01\x70\xd7\x8d\xa0\xef\x09\x61\x95\x44\xf0\x43\x64\x2f\x9b\x47\x8f\x4f\xc7\xb5\x6b\xad\xfa\x10\xf9\xd2\xfe\x8a\x45\x04\xa9\x24\x9e\x5a\xa9\xbe\xaa\xda\x5b\xb3\x50\xb4\xdb\x6f\x6e\x2b\x67\x0c\x89\x9c\x5c\xe9\xd1\x07\x56\x40\x7c\x9d\x39\x52\xd6\xb2\x7c\xf3\x8c\x52\x83\xf7\x85\x3c\x77\x67\xb8\x1d\x6f\x38\x85\x52\xb0\xd6\x45\xf6\x25\x67\x0f\x1c\x9c\xc3\x82\x6d\x9c\x2b\xa2\x55\xaa\xfb\x08\xce\x47\xc9\xa9\xc3\xaf\x02\x71\x2e\x3e\x2a\xa4\x7e\x7c\xc0\x3e\x3e\x93\xef\x59\x78\x48\xcc\x5e\x80\x14\x0a\x26\x3b\xf1\x87\x61\xbc\xdb\x40\x78\x0e\x1a\x48\x79\x64\x7e\xc5\xe3\x49\xef\x37\xd6\x96\x70\x72\xd4\x71\xd9\xe0\x3c\xda\xd7\x7b\x2b\x22\x5a\xe9\x8f\xa5\xe5\x44\xdf\x23\x6c\xb2\x15\xa9\xbb\x85\x6f\x50\x67\x94\x92\xc5\x9e\x94\xf2\x8f\xf6\xec\x86\xf3\xcf\x02\x0d\xc6\xe0\x8c\x16\xfa\x02\x55\xe7\x05\xbd\x18\x5c\x56\xc3\xac\x5e\xa7\xd8\xe7\xe2\x4e\x48\xc3\xe7\x06\xb1\xb1\x9b\xe0\x8d\x95\x9d\x80\xfb\x01\x60\xfb\xd2\x50\xdf\x12\x67\x67\x43\xea\x75\x32\xbe\xa1\xf6\x68\x8c\x8d\x46\x94\x45\x97\xf4\xe5\x16\x2d\x27\xf2\x4b\xf8\x0d\xb5\xb8\xf9\x2f\xdb\xcb\x29\x31\x35\xae\x0f\x17\xb0\x42\xb6\x1c\x9a\xa0\x7f\x86\xd8\x31\xe7\x41\x85\x78\x16\x1a\xdf\xdf\x0d\xaf\xeb\x35\x6f\x7f\xbc\x3f\x92\xfc\xec\xfa\x16\x54\x73\x5d\xae\x04\xca\x85\xba\x02\x2a\x13\xa9\x70\xa3\x77\x0c\xa2\x4a\x60\xb1\x66\x99\xe8\x52\xe3\x93\xc1\x32\xe2\x5c\xdb\x15\xef\x28\x8b\xe0\xda\xca\x87\xac\xe4\xde\x52\x12\x07\xdd\x89\x99\xbd\x96\x90\xdb\x33\x27\xaa\x86\x96\x6a\xb4\xd1\x96\xb4\xb8\xfa\x42\xb2\xd1\xb3\xa9\xfa\xa6\x37\xaa\x0f\x2f\xc5\xe7\x81\x0a\x74\xf1\xd8\x91\x1b\x5a\x4c\xe6\x51\x64\x4a\x3d\xea\x30\xcb\x1e\x52\xc2\xc1\x85\xd7\xad\x39\x5e\x62\x82\x07\x92\x69\xfd\x82\xc9\xe6\x23\x8e\x11\x19\x15\xef\x96\xd3\xce\xe9\x9a\x5c\x24\x5b\x2b\x96\x4a\x33\x65\x0e\x9a\x87\x6f\x71\xb0\xff\xd7\x88\x2d\x49\x3c\x94\xd5\x59\xd4\x8b\x6d\xb8\x3b\x17\xde\x14\x9a\x57\xc5\xfb\x79\x48\x5b\xa3\xb0\x6e\x90\xfd\xb9\x83\xbd\xc5\x42\x54\x21\x6c\x02\xd5\xde\x8e\x10\x2e\x36\xdd\xae\xc9\x64\xdf\xfa\x03\x0a\xea\x2d\xbf\xea\x47\x08\x88\xe2\x7c\x66\xaa\x12\x88\xc5\x5f\x94\xac\x19\x3e\x09\x93\x65\xae\x8e\x86\xab\x52\x87\x03\x36\x81\x04\xd2\x7a\x31\xe0\x68\x2f\x09\xa3\xb0\xf6\xff\xd1\x34\x15\x31\xac\x08\x8d\x5b\x1d\x83\x74\x88\x21\x7f\x65\x38\x4c\xd6\x18\x1b\xd3\x22\x3d\x04\x35\xa5\xbc\xc5\xf4\x9a\x21\x5f\xdd\x20\x4b\x01\x81\xe9\xb9\xf6\x9e\xc9\x2d\x7d\xc6\xc3\x77\x68\x62\x78\x5e\x30\x27\x29\x3e\x7e\xf5\x83\xb0\x92\xb0\xb1\x6c\x73\x2b\x6b\xeb\x0a\x75\x71\x8f\x5e\x11\xb8\x09\xd1\x67\x75\xa0\x1b\xe2\xc6\x4b\x42\x25\xfc\x65\xe3\x58\x7d\x7f\x45\x66\x56\xb3\xda\xf0\x95\xa1\x45\xce\x8c\xbf\x8e\xab\x4d\x8d\x0c\xe5\xae\xd6\xa4\x84\x23\x48\xda\xe7\xb3\x1b\x0e\xc0\x19\xd5\x31\x61\x32\xca\x8f\xff\x8e\xe4\x87\x06\x47\x04\x49\x52\xa9\x79\xcb\x37\x2c\x8b\x5a\xc5\xe2\x8f\x4c\x69\xc2\x4b\xd9\x2c\x14\xda\x86\xe0\xfa\xf0\x9b\xd3\x03\x46\xed\xd0\x44\x36\xb6\xb6\x16\x95\xe4\x95\x43\xd3\x39\xbe\x07\xa1\x3d\x1f\x04\xf1\x1d\x41\x99\x24\xb2\xe5\x65\x9b\xbd\x9e\xb5\x28\x99\x15\xc7\x9a\x1c\x94\x8e\xcc\x63\x1b\x5a\xa7\x46\x82\xfe\x03\x14\xd4\xfb\x49\xe5\xcf\x49\x65\x0f\xf0\x17\xe8\x10\xdf\x9e\xdf\x6c\x8b\x77\xcb\x4b\x2d\x79\xc3\xc3\x07\x0c\x9b\x41\xcb\x80\x79\x31\x31\x69\x9f\x47\x4e\x76\x30\xd4\x37\xea\xe6\x83\xb8\xcd\x57\x38\xb8\xc3\x60\xd6\x71\xfd\x17\x10\xac\xe4\xe4\x5e\xf8\xb6\xdb\x0b\x0c\x9f\x87\x5f\xe4\x18\x44\x35\x14\x78\xd3\x0f\x38\x1c\x26\xcb\x42\x32\x36\xab\x0a\xd7\xdf\x65\x8f\x28\x2d\xe8\x52\x34\x50\x41\x53\xfa\x1a\x0a\x04\x75\xae\x8a\x15\x1c\x55\x3c\xaf\xa9\x00\xc1\x81\xc9\x13\x8f\x75\xf9\x6b\xaa\x32\xf8\x66\xe0\x08\x99\xe6\xab\x90\xf2\x31\x14\x1c\x6e\x54\x4e\xdf\x53\x66\x5b\x17\x6e\xad\x58\x43\x07\x9b\x15\xb1\x47\xd8\xb3\xce\x8b\xd1\xc7\x23\x3b\x60\xc9\x74\xbe\x78\xba\xf4\xa4\x9f\x8d\x52\xfd\xb4\x61\xc9\xab\xae\xf1\x4b\x8a\x72\xf9\xa9\x6e\x30\x19\x07\x5a\x61\xf0\x94\x0a\xe9\xc5\xd1\x7f\xb3\xe4\xff\x68\xbf\xca\x76\x79\x0c\xdd\x39\xe8\x99\x3f\xf8\xad\x14\xb1\x6b\x97\x94\x43\x51\x3f\x31\xd1\x18\xbd\x96\x3f\x5d\x62\x8c\x9e\xaf\xa7\x33\x42\x97\x28\xe3\xcb\x2c\xa7\x4f\xe4\xe1\x3f\x0f\xf6\xe2\x04\x29\x2b\x2a\x3a\xba\x1e\x6e\x55\xed\x09\x98\x3f\x23\xc9\x66\x31\x2a\x98\xdb\x8d\xec\xdd\xc4\xfe\xe0\xb8\xdf\x59\x0d\xb5\x51\x06\x66\xc1\xdc\x68\xed\x9c\x2e\x5f\xa4\x12\xde\x7b\x5f\x4b\x46\x92\x33\x92\x17\xe7\xf2\x96\x2f\x03\xd2\xc2\x10\x4d\x27\x68\xe0\x4d\xe0\xa5\x7b\x34\xe4\xd7\x8b\xa6\x74\x8b\x0b\xf3\xbd\x68\xac\x89\x13\xd8\xe9\x2e\xae\x6b\x23\x4c\x1a\x48\x77\xd0\xa0\x3a\x83\x29\xaa\xba\x3d\x4e\x48\x3b\x23\x6f\xb4\x6f\xcd\x1e\x34\x45\xc2\xae\x63\x22\xcb\xa7\x52\x5b\xb8\xd8\x0e\x78\x5c\xcd\x1f\x23\x8e\x9e\x36\x0c\xba\x02\x72\x31\x0a\x38\x33\xc9\x5a\x24\xe6\x5b\x41\x67\x82\x7b\xaf\x4a\x0b\x3f\x65\x66\x6e\x95\x68\xae\x41\x91\xa9\x9f\x4c\x46\x82\xf1\xd4\x97\x8b\xca\x2c\x6e\x0e\xb1\x46\xcc\xc5\x4f\xd0\x79\x66\xf7\x0c\x10\x5c\xdb\x56\x0b\x44\xd1\xc4\x5f\x01\xe5\x47\x0d\xe1\x37\x57\x4f\x96\x11\x4f\xdb\x82\xa9\xb0\xff\xb0\x48\xac\x75\x16\x58\x48\xcc\x05\xee\x25\xe8\x22\x92\x24\x80\xbd\x75\xce\xb2\x6e\xf1\xda\x5a\x98\x93\xeb\x10\xcc\xcc\x00\x63\x5e\x80\xd3\xfa\x36\x21\xa8\xb5\xb2\xd3\x96\x54\x0f\x64\xac\xe4\x7e\x9e\xae\xb5\x8b\x41\x0a\xc2\xc2\x3c\x82\x83\x63\xc1\x0a\xba\xc9\x62\xab\xbe\x43\x29\x11\x6f\x05\x15\xd1\x8d\xc8\xd5\xb9\xb5\x9b\x32\x14\xa6\x24\xd6\xdc\xaa\x7b\x6d\x7d\x37\xc3\xe3\x88\x72\x12\xf9\x27\x13\x54\x1e\x36\xec\x88\x37\xa4\x70\x78\x81\xe1\x9b\x79\x10\xca\x25\x50\x4d\x78\xe1\x6e\x27\xf8\x12\x48\x9d\xdf\x3a\x9f\x46\xf0\xbb\xe1\x73\xed\xcc\xe3\x11\x60\xc4\x99\x41\x57\xf6\x95\x9c\x5b\x52\xe4\x1e\x3b\x04\x26\xd9\xa3\xcf\xca\x90\x3f\xd9\x0e\x3e\x7c\xab\x30\x96\x42\x31\x67\x4b\x5f\xd4\xb1\xc7\x60\x6f\x5f\xe1\x2d\xc6\x3e\x62\xea\xf7\xbc\xbc\x8e\x48\xd5\x81\x4c\x14\xb8\x02\x26\x3e\x6a\xae\xb2\x7e\x38\x46\xe2\x8d\x5e\xc9\x64\x50\xb2\x41\x65\x2a\x2c\x1e\xbb\x02\xc8\x72\xd6\x29\x95\x34\x67\x2f\x17\x97\x04\x5b\xb6\x68\xfb\x35\x0a\xd7\x5d\xc9\x3b\xe6\xb9\x9e\x5b\x55\x9c\x97\xf3\x83\x8f\x8e\x2e\x95\xea\xb0\xbb\xfb\xdc\x31\x97\x03\x3e\x76\xee\xfc\x16\x6b\x4d\x63\xff\xf6\x20\xab\x0a\x2b\xb1\x88\xd1\xdf\x6d\xac\x19\xea\xfe\x29\x08\x17\x1e\xcf\x47\x36\x8b\x3f\x12\xa5\x76\x38\x64\x3b\xdf\xc6\xaa\xe7\x20\x95\x80\x2b\xda\xea\x88\x57\x6b\xc1\x98\x04\xe1\x59\x9f\xc4\xcf\xda\x30\xda\x0f\x65\xc2\xa5\xa5\x20\x20\xe8\xa3\x1b\x84\xa4\x69\x75\xbc\x4e\x55\xb9\x01\x3b\xce\x2f\xe4\x83\xab\x61\x7a\xc2\x31\x9f\x14\x62\x75\x0c\x1c\xb3\xbe\x59\xa4\x3e\xc7\x29\x3e\xb9\x31\x48\x3f\xaa\x9a\xd3\x3b\xa9\x06\xb5\xae\x29\x71\x10\x6f\xc3\xa1\x95\xe1\x2f\xf6\x55\x7b\x7b\xda\x18\xf4\x1d\xfe\x90\x30\x9a\x8a\x34\xb4\x14\x89\x2d\xb6\x74\x59\x26\x4a\x08\x40\x45\xf9\xd9\xea\x1e\x28\xe4\xb6\x74\xa4\xb0\xc7\x9d\x99\xc0\x52\x72\xf3\x81\x23\x3a\x5d\x6a\x0c\xa1\x53\xd3\x4f\xd7\x7e\x18\xb3\x82\x0a\xd9\xe6\x5e\x0c\xe3\x61\x78\x2a\x3e\x6b\xc1\x20\x3c\x40\x16\x74\x9e\x81\xbc\x38\x9b\x5e\xe7\x8f\x06\x32\x85\x9a\x27\xdc\xac\x23\x9f\x11\x3f\x90\xb0\xb2\x3f\xdc\xf9\xaa\x71\x6d\x9f\x77\x14\x3c\x35\x53\xa8\x84\x88\x5e\xcd\x0c\xaf\x5b\x96\x92\xd2\x5c\x98\xc6\xe0\x0e\x9a\xa9\x48\xe4\x7d\x1a\x9b\xbb\xdf\x0b\xaa\x85\x2f\x9a\x0d\x8f\x79\xee\xec\x48\xdb\x86\x97\x33\x5d\xcd\x61\xf5\xa8\xa4\xcc\xc6\x25\x68\xc1\x43\xd7\x02\xe6\xb7\x58\x1e\x19\x02\xd5\x31\xe7\x1a\x22\xb1\x2b\xbb\x55\xff\x7f\xc2\x1d\x43\x89\x65\x04\x06\xc4\x31\x9c\xc5\x17\xe5\xaa\xaf\xbe\x9f\xa4\x5a\x57\x75\x6d\x99\x9d\x84\x5f\x78\xfb\x42\x0b\x82\x62\x4e\xcf\x21\xfb\xdc\xcf\xdb\xd6\x82\x75\x95\xe4\x86\x9e\xed\xc4\x14\xd1\x4b\x04\xb1\x43\x6f\xc6\xae\x48\x4a\x94\xbf\xfd\x6c\xbd\x6b\xe7\xbc\x8d\x5a\xa8\xec\x0b\xbd\xf9\x26\x4b\x02\x47\xd4\xf9\x71\x04\x8c\xbb\x4a\xd7\xcf\x08\xd4\x39\x86\x70\xa2\xd1\xbb\xe4\x72\x21\x8f\xf1\xc0\xdd\x58\x69\x07\xf4\xb6\xf4\x97\xa0\x4f\x28\x18\x76\x37\x95\x36\x67\x34\x9c\x43\x7d\x53\x95\x0f\x75\xfb\x2d\x25\xc5\x36\xd2\xd3\xd1\xae\x6f\x48\x9f\xa4\xa1\x52\xe8\x38\x92\x67\x94\x2b\xbc\x7b\x06\x01\x8c\x59\x64\x0a\xa6\xa7\x18\x93\x58\x68\x7c\x71\xf3\x09\x5a\xb5\x96\x6e\xf7\x7a\xf7\xc9\x07\x9b\xa2\xc6\x17\xe6\x7e\xf0\xd7\x4c\xd1\xa7\xd0\xf5\x9a\x6e\x8f\x4c\x9b\x84\xf0\x63\x96\x34\x58\xc5\xad\xd3\xe7\xe1\xc6\x16\x05\xbe\x73\x1c\x37\xeb\x44\x1a\x78\x04\x9c\xac\x0d\x2b\x2b\x19\xf4\x11\xc5\xa8\x89\x0a\x01\xdc\x5a\x8c\xe4\x03\x33\x3e\xa7\xd1\x1b\xa4\xe0\x4c\xeb\xee\x9b\x8a\x6e\x1c\xba\x67\xf5\x63\xa1\x7f\xdf\xe7\x9b\xa7\xf6\x3d\xff\x0c\x1b\x40\xb2\x58\xe9\x30\x0e\x32\x4c\x64\x0e\xd3\x5e\xdf\x7c\xf3\x41\xc8\xb9\x0c\xd2\xe3\xf3\xbc\x35\x79\xa5\x4d\x27\x9f\x0e\x0c\xb8\x09\x91\xd4\x54\x41\x3d\x31\x5f\x1d\x7a\xc4\x79\xd0\xb5\x8e\xa3\x85\x4a\x96\x76\x8b\x8e\x84\xf9\xec\xa7\xe1\x35\x9a\x6e\xfb\x48\x4e\x75\x63\x11\x65\x09\x30\x45\xe7\xe3\x6d\x37\x47\xc3\x59\x67\x2d\x8e\x56\xc1\x5e\xd5\x02\xf8\xa3\xf0\xd7\x16\x08\x34\x1e\xa1\x53\x90\x66\xc5\xd4\x56\x44\xe6\xe7\x0c\xeb\x02\xa5\x8b\xc1\x94\xa1\x2c\x4a\xa6\x56\x8d\x85\x8a\x6e\xe5\x3e\xf3\x3e\x0b\x73\x4a\x18\xe9\x28\x83\xa9\xb3\xa7\xe0\xf3\x2b\x97\x4b\x2a\x98\xb5\x5a\x9a\x35\xc2\xb8\x1d\x60\xff\xdb\x05\x01\x1e\x5f\x46\x05\xd2\xea\xcd\x99\x3c\x0d\x76\x59\xf7\xc5\xa3\x00\xd3\x42\xd2\x46\x06\x31\x31\x66\x0a\xca\x59\xf7\xdc\x90\xaa\x51\xb8\x78\x05\x30\xe0\x12\x78\x9f\xa5\x19\x73\x94\x99\xe2\x8e\x9c\x00\x0b\x0d\xe4\x6b\x5d\x0b\x57\x9d\xfa\x9d\x70\xe3\x3c\xed\x79\xdd\x68\x9e\x0a\x63\xc5\x50\xf8\x03\x49\xed\xa4\xe1\x25\xd9\xf9\x48\xaf\x5f\x1e\x86\x0a\x66\xfc\x38\x1b\x90\x09\x24\x2f\x6b\x70\xc1\xe9\x1d\xeb\xbc\xa7\x58\x7e\xe6\x77\x37\x38\x66\xef\xf6\x13\x53\x28\xe9\xba\xa0\x3a\x3a\x18\x90\xd7\x3f\x24\x45\x34\x9b\x20\x45\x51\x9d\xd5\x6d\x22\xd4\xd4\x27\x1c\xdf\x39\x9e\x8b\xcb\xc0\x7c\x28\xb3\x9f\x5b\xc2\x57\x7c\x00\x1e\xf0\x3b\xa1\x38\xf8\xf7\x5b\xcf\x86\x14\x5a\xc0\xa3\x64\xc6\x6d\x62\x1a\x3a\x62\x10\x18\x64\xb5\x69\xd2\xde\x28\xfa\x99\x60\xdf\x48\xb1\x0b\x2b\xdf\x90\x26\x46\xc7\x60\x54\xda\x63\x6e\x6c\x51\x52\xda\x20\xe1\xa5\x72\x9e\xa3\xb3\x09\x4a\xa9\x1f\xb6\xbb\xff\xad\xda\xa0\xfa\xbc\x0d\xb8\x8f\xa5\xdf\xe0\x6e\x73\x12\x9e\x06\xce\x12\x27\x10\x12\x42\x9b\x20\x79\x5f\x74\x51\x10\xd4\x44\x23\xef\x9b\xf4\x92\x49\x11\xc6\xf6\x31\xa8\xee\xdc\x78\x27\x1e\xd9\xe3\x46\x61\x70\xa0\xeb\x2b\xe5\x0f\xf8\x11\x57\xff\xb4\x41\x8a\xee\x3e\xcf\xcd\xde\xaa\xfe\x59\x4c\x2c\x30\x2c\x65\x84\x16\xa6\xe0\x6c\x63\xf4\x9b\xe3\x30\x17\xf2\xf1\x80\xa7\xe7\xb8\xcb\x84\x01\x45\x49\xd7\x33\x65\x28\x5a\x1d\x19\x33\x2c\xfc\x9e\x2d\x24\x7d\x5e\xb7\x53\x50\x08\xa9\xb2\x3e\x42\xbe\xb1\xb6\x26\x33\xed\x63\x25\x45\xba\xe7\x2e\xbe\x4a\xb7\x18\xac\xcb\xd7\x74\x1e\x58\x45\xa2\x6f\xf3\x9a\x77\x4c\x2b\xa9\x7f\x48\x63\x0a\xff\x0d\xae\x8f\x1a\x40\x7f\x4e\x5d\x4b\x20\x49\xd3\x79\x1a\x05\x9a\xe8\xb7\x52\x33\xcb\x17\x4e\xea\xa9\xd4\xd5\x35\xe0\x2b\x7b\xde\x3d\x09\x43\x3b\x12\x3b\x86\xf1\xe8\xb4\x2e\xbb\xfb\xef\x3b\x66\x1c\x37\xa0\x08\x81\xad\xe1\xc0\x92\x42\xf5\xc8\x33\x3e\xc2\x7a\x39\xfa\xc5\x87\x04\x2a\xf5\x2a\x01\x75\xd4\x3e\xa8\x83\x3e\x47\x74\x71\x70\xf3\x85\x89\x17\xc7\xf1\xd5\x0d\x4f\x75\x22\xb0\xc7\xdf\x9e\xc0\x64\xc1\x28\x80\x9e\xa1\xaa\xba\xc0\x18\x67\x3a\xc7\x4a\xc2\x56\x19\xd7\x06\x17\x7c\x61\xfe\xee\x93\xb3\xf8\xc1\xf0\x59\x30\xa0\x08\xd5\x09\x59\x14\x52\xa0\xff\x0b\x17\x9c\x53\xc9\xc4\x46\xf7\x1d\x7e\x58\x4a\xb4\xc9\x64\x4c\xdf\x5f\x11\x9e\xb9\x6f\xb7\xe8\x66\x92\x2c\x3a\xbb\x01\xf6\xfb\xb8\x37\xa8\x3a\xc0\x78\x0f\xad\xca\x11\x9b\x20\x1b\x1e\x87\x7b\xd6\x36\x38\x98\x44\x58\xec\x21\x8d\x42\x7c\x7e\xea\x48\xdc\xfd\x5c\x01\x92\x98\x47\xf2\x32\x9a\x62\xef\x48\x32\xa3\x2e\x51\x69\xbf\x2f\xde\x6d\xfd\x23\xf1\x98\x8d\x40\xdf\xce\x44\x37\xce\x14\x93\x76\x8b\x2d\x37\xd0\x8c\x2f\x37\x42\xdd\xf7\xa9\x92\xa3\xd9\x8a\xa4\x62\xbe\x71\xce\xa0\xab\xc3\xd0\x41\x3a\x48\x05\x1c\xb9\x6c\xc9\xba\x39\xaa\xa9\x1a\x38\xdf\xff\x4f\x94\xcd\x32\x3b\x1c\x66\x87\x9e\x3e\xef\xbe\x5c\xab\x82\xff\x0d\xe0\x86\x14\xf6\xae\xda\x31\x05\x52\x98\x20\x5e\x12\xf5\x1f\xca\x45\xcc\xa6\xf5\x68\x6b\xfe\x7d\x5d\xf3\x81\xb1\x85\x35\x6e\x98\x38\xc1\x63\x66\xdd\x09\xbe\xc4\xfb\x32\x3a\x83\x6a\xe6\xc2\xe6\x38\x61\x02\x75\x71\x05\x33\xea\x87\xe4\x3c\x8a\x60\xbc\x90\x89\x92\x90\x61\x87\x54\x12\x9b\xec\x2b\x9d\xee\x69\x26\x8f\x37\x18\xf2\xbf\x61\xb7\x1f\x89\x48\xce\x2e\x20\x9b\xd8\x1e\x8b\x21\x67\xe3\x0d\x2b\x07\x36\x27\x7e\xe3\xfb\xe6\x38\x17\xb0\x5a\x8e\x6c\xd1\x78\xfd\x30\x5a\xe5\x33\xa9\xd0\x8f\xb7\xfc\x94\x69\xd6\x20\xfb\x0e\x63\xf2\x59\x9e\xce\xec\x7c\xca\xa4\x8c\xea\x5b\x4a\xdd\xe5\x57\x0c\x0a\x21\xae\xe1\x91\x7d\x6a\xca\x7d\xb2\x1c\x35\xe4\x98\x06\xdc\xeb\x59\x32\x06\x7d\xdf\xd0\x1d\xbb\x12\xa8\x5c\xb2\x02\x5c\x93\x3d\x65\x6b\xd5\x1f\x4b\x18\x2b\x6f\x0f\x13\x87\xe9\xc5\x79\xff\xcc\x78\x05\x47\x17\xe4\x3f\xe8\xe5\x22\x93\xa7\xe4\xbb\xe4\x85\xf5\x18\x19\x35\xd8\x40\x04\xeb\xc7\x8a\x63\xc9\xac\x5f\x05\x70\xec\x1a\x7a\x97\xf7\xd1\x14\x9e\x09\x0a\x8f\x5f\xba\xe3\xd1\x8a\xdf\xe7\x8a\x2c\x80\xd2\x25\x75\x27\xd6\xea\x65\x33\x98\x4b\x49\x2d\x99\x5d\xaa\xab\xd9\xd7\x5f\xe1\x4d\x30\x40\x97\x55\x9f\x54\xc5\xa6\x91\x32\xa2\x72\xa9\x6b\x68\x6c\x56\x0e\x1a\x3c\x7c\xdc\x6e\x4d\x8e\xfb\x4d\x9a\x7b\xc6\x84\x41\x9b\x4f\x6c\x1f\xcc\x97\x21\xb9\x20\x21\xa6\x5b\x98\x0b\xa1\x0b\xb2\x4e\x10\x93\x65\x1e\xfe\xf9\xf4\xc6\xcf\xce\x63\xb4\xcf\x04\xd5\x6c\x3a\x03\xbe\x1a\xd5\xbb\xf7\x3a\x9f\x7b\xf8\x96\x26\xe9\x59\xc1\x26\x87\x36\xa2\x36\x8a\x59\xaf\x7b\xed\x11\x5d\x6b\x2f\x7c\x6a\x65\xb7\x15\x3e\xc7\x0f\x27\xd3\x6a\x2c\xa3\xad\x93\xb3\x4e\x58\xd5\x9a\x9d\x7d\xc2\x87\x43\x0e\x39\xc7\x5c\xa8\x79\xa8\x28\xdc\x20\x8b\xd3\x2e\x6c\x29\x97\xd0\x74\xe7\x68\x20\x5c\xd8\xce\x43\xb8\x05\x8e\xf7\xa4\xf5\xf4\x6e\x44\xbb\x6e\x92\x2d\x78\x58\xfd\xb1\x34\xcc\x1c\x09\x23\x1e\x42\x52\xc5\x7c\x19\x7b\x10\xdb\x3e\xc4\x09\xf3\x49\xf3\xb6\x3f\x26\x40\x80\x56\xd9\x3a\xa9\xac\x72\x66\xd2\x9d\x1a\x39\x6d\x8e\xa7\x34\x1d\x69\x2a\x90\x8d\x91\x94\xb4\xfd\x8b\xd7\xfc\x6b\x99\xbe\x35\xec\x49\xb9\xc4\x00\x1d\xa8\x5a\x9f\x95\x0f\x33\x24\x52\x40\x97\x9a\x3e\x90\xe2\xdf\xc0\x80\xe3\x2b\xbc\x6d\xf9\x43\x98\xb7\xec\x32\x6d\xce\xce\xe9\x0c\xde\x88\xf8\xe2\x2b\x99\x9f\x8e\x78\xe1\x66\x7e\x72\x94\x9a\x9b\x5d\x5c\xc8\xd0\x53\x3e\xe0\x79\x56\xe0\xbd\xa1\xde\xe2\x9a\x02\x51\x00\x2e\x6e\x0f\x80\xd3\xcd\x48\x7b\x9d\x61\x8d\x48\x50\x1d\x5d\xa1\x6d\x5c\xb1\xa1\x90\xaa\x4f\x0c\x54\xdf\xf2\xd7\x9c\x06\x6d\x71\xaf\xad\x75\x51\x8d\x40\x1e\xf9\x9e\x6b\x7a\x18\x3b\x1a\xaa\x2f\x89\xf3\x01\x71\x8d\x1e\xf0\x99\xbe\xf5\xd4\xca\x46\x81\xcb\xf5\x96\xaf\x2a\xc4\x50\x9b\x1e\x55\x44\x30\xfe\x8a\x5e\xeb\x42\xc1\x64\xe8\xc9\xdb\x71\x8f\xb4\x0d\x7f\x1e\xb4\x27\x50\xde\x89\x5a\xf1\x75\x68\x95\xc4\x0d\x70\xfc\x53\x53\x0c\x28\x81\x59\xc2\x43\x6d\xbb\x6c\xe9\xd9\x1d\xa5\xf6\x6f\x40\xa8\x97\x94\x24\xf8\x14\x0a\xcd\x69\xd6\xd9\x96\x53\x5c\x0e\x65\x49\x9a\xce\x1f\x75\xd5\xe2\x01\x66\x9c\x0a\xe8\x14\x32\xfa\x65\x06\x2d\x00\x90\x79\xa6\x11\x95\x90\x40\xf1\xdc\x62\x8c\x65\x83\x09\x95\x11\x66\x41\x0d\xb7\xf1\x36\x48\x0d\xe2\xb1\x74\xd5\x95\xf7\x88\xa9\x0f\xdf\x74\xe3\xca\xb4\x07\x3f\xb2\x82\xf9\x2e\x7f\x46\x5a\xa8\x9a\x6f\x37\xa9\x30\xfd\x16\xb8\xe0\x94\xcf\x32\x20\x7d\x08\x92\x0e\x32\xcc\x76\xba\x28\xce\x2c\x94\x53\x94\xb1\x49\xeb\x4e\x93\x4c\xfe\x4e\x11\x38\xba\x32\x7e\x47\x27\x69\x73\x17\xe2\x9c\x6b\x65\x04\x29\xce\x60\xef\x1f\x20\x8a\x5b\x17\xcd\x6a\x31\x16\xd1\xf6\xe0\x29\xd1\x96\x12\x8e\xf1\x9c\x08\x16\x66\xfd\x60\x42\xbd\xf9\x62\xd9\x24\x25\xbd\x07\xbf\x4e\x5c\x8c\xd4\x43\x1f\x78\x46\x9c\x4f\xa1\xc6\x59\xc2\x6c\x95\xe0\xec\xc7\x87\x12\x1e\x22\x8e\x12\x03\xbc\xfa\xd8\x1e\x19\xe6\x87\xbe\xb7\xe5\x79\x07\x3a\x9c\x36\x63\xa6\xee\x82\xca\xfb\xe6\x5a\x4c\x8f\x88\xe4\xe2\xba\xff\xb3\x74\x95\x65\x22\x63\x55\x51\x2d\x95\xd4\x43\xa1\xbc\xde\x3d\x7b\xfc\xca\xe9\x3b\xb9\x8f\x0e\x64\xa7\x54\x63\x15\xb6\xbf\x75\x0d\xd9\xf3\xda\x2f\xb6\xf6\x5c\x00\x0c\xef\x46\xe6\x54\xc0\x5a\xa1\x16\x07\x3a\xe5\xc8\x58\x41\x2a\x49\x18\x93\x23\xe3\x3b\xc3\xdc\x0f\xfb\x4e\x9d\x96\x0f\xf2\x09\xf4\x9e\x65\xca\xbd\x49\xe3\xad\xae\x45\xbc\x47\x83\xcc\x58\x28\x2f\x63\xc7\xc0\x3b\x53\x6d\xaf\x30\xc4\xb1\xc2\x44\xab\xf1\x58\x10\xbc\x0e\x4e\x2c\x39\x3a\x65\x7e\xc0\x9d\x21\xc6\xe1\x63\xc8\xf0\xb4\x0c\xd9\x73\xf6\xd0\xbb\x64\x38\xaa\x9b\xa7\x6a\x15\x7c\x13\x34\xaa\x37\xf9\xa9\x63\x30\x90\x73\x33\xdf\x75\x8b\xf4\x60\xb7\x41\x5d\x37\xf4\xf8\x52\x7f\x20\x31\x53\x6f\x42\x2a\xa7\x6a\xc6\xda\x1c\x5f\xbc\x31\x88\x2b\xc1\xe8\x3e\x18\x37\xda\xb9\x4e\x11\xd3\x51\x6f\x9d\xaf\xa4\xb1\xff\x4a\x13\x73\x35\x6a\xe3\x77\x70\x50\x93\xcc\xf6\xf9\xe0\x44\x8a\x0d\xad\xb2\x2c\xba\xbb\x79\xe5\x23\x6b\xee\x35\x2e\x72\x94\x50\x0b\xa8\x4a\xf8\x90\xd7\xbe\x97\x30\xea\x2a\x70\x00\xd9\x73\x1a\x6f\x67\xb4\xb5\x88\x12\xc8\x02\x15\xfe\xad\xce\x1a\x46\x49\xde\xf2\xa7\x48\xfa\xfe\x05\x6d\x70\xcd\x86\x51\x4a\x34\x5c\x7d\x67\xd1\xb0\xbf\xed\x95\x70\xbc\xe5\xf6\xcf\xca\x8e\x09\x3b\x7a\x1b\x07\x7e\x56\xfc\x5e\xcf\xff\x3c\x1e\x52\x8d\x3d\x39\xe8\x90\x6f\xce\x93\x0d\x4e\x70\x76\x76\x97\x31\x77\x6a\xa1\x16\xe1\x51\xec\xd5\xd2\xc3\xe5\xc4\x6e\x24\x13\xab\x55\x8f\xd1\xa4\xe0\x5a\x43\xa1\x2b\x06\xf3\x3d\x52\xd6\xc9\xa9\x9b\xdb\x11\x9b\x1b\x22\x25\xc8\x75\x16\x6e\x8f\xc1\xe4\x24\xe8\xee\x27\xd4\x44\xdb\x1f\xa8\xf2\x07\x26\x9b\xe8\x8e\xa9\x3d\xbc\xec\x76\x05\x93\xeb\xed\xa9\xc2\xca\xe4\xe4\x1b\xfe\x78\x38\x07\xaa\xef\x08\xbd\x5b\x9d\xcb\x6b\x69\x0e\xbd\x4b\x99\x15\xd4\x57\x2d\xac\xc1\x65\x80\x15\x20\xf4\x6a\xfa\x07\x7b\x09\x34\x2a\xff\x62\x07\xf9\x48\x16\x1e\x2e\x04\xbf\x10\xce\xeb\xe3\xd3\x7c\x43\x65\xce\xfa\x64\x19\xf4\x76\x30\xd3\xfc\x08\xa2\x54\x0e\xf0\x00\xc0\xcd\x47\x3f\xa9\xfd\xeb\xd0\xa0\x14\x23\x88\x87\x5e\xd0\x1d\xf6\xbd\xe0\x01\x0c\xe8\x38\x38\x1a\x66\xdc\xf5\xbf\x22\x16\x1f\xf1\x11\xee\x67\x7f\x7b\x8e\x12\xbe\xd6\x49\x5c\x95\x8c\x9f\xeb\xae\xb3\xb6\x1a\x51\x4b\xe3\xad\x78\x2d\x54\xe1\x0c\xb3\xbe\xc2\x17\x15\xc9\x0b\xd0\xec\xbe\xef\xea\xd6\xee\xb9\xc4\x5f\x1d\x0f\x62\x8e\x73\x64\x7f\x77\x02\xbe\x45\x2a\xdd\xf4\x9b\xc6\x85\xd5\xb1\xeb\xe0\x2f\x91\xf1\x8b\xc6\xd1\xea\x61\xf2\x37\x16\x6c\xf1\x9e\x1d\xc5\xa9\x53\x0c\x8d\x37\x66\x0e\x30\xe1\xe7\x0d\x49\xc1\x3f\xd8\xe9\x13\xfe\x48\xe5\x8e\x4a\x80\xf5\x7e\x23\x86\x34\x19\x27\x1a\x96\x68\x40\x76\x56\xa2\xb1\x38\xe9\xb3\x7f\x22\x17\x02\x46\xb8\x07\x69\xa1\x2a\xcc\x1f\xf1\xc6\x5f\xfd\x7a\x84\x0f\x6d\xa7\xf4\xb6\xc5\xb8\xd0\xda\xda\xa4\x05\x4e\x46\x60\x11\x65\xa3\xa4\x83\xb5\xd2\x90\xcb\xa5\xa8\xcb\xec\x42\x54\x29\xb5\x2b\xa3\xc1\x83\x0f\x7c\x22\x19\xbd\x6b\xa8\xda\x02\xec\x82\x7c\xf0\x3e\xef\xbd\x93\x19\xb6\x4c\x54\x21\xd1\x6b\xdd\xa9\xba\xcf\xe1\x7e\x0a\x7e\xfa\xac\x19\xd3\xdb\xae\xf0\x8d\xf8\xcd\x77\xea\x4f\xd3\x36\x16\x0f\x01\xb0\x4b\x27\x95\xe6\x85\x6e\x4c\x12\xaf\x2e\xe2\x63\x36\x6b\x76\x83\x59\xbf\x0b\xee\x51\xf4\x9f\xc4\x2a\x41\x02\xdb\x54\x2a\x20\x51\x43\xac\xea\x77\x9d\x9a\x48\x97\x5e\x78\xa8\xe4\x0b\x0c\xea\x64\x63\x52\xe0\x2c\x08\xbb\xad\x2c\x4b\x4d\xdc\x68\xec\x1a\x38\x70\xe1\x49\x95\x58\x99\xb0\x4a\x72\xf0\xb1\x3f\x59\xed\xc1\xcc\xf0\x7e\xa0\xbf\xb1\x2d\xd3\x14\x66\x35\x36\x9f\x22\xd4\xc5\xb7\x8f\xf3\x52\x6b\xc5\xb0\xf4\x86\x00\x44\x22\x7c\xeb\xfb\x8d\xbf\x10\x36\xd9\x08\xec\x7c\x2a\x12\xb6\xf4\xa1\xa6\x54\xe3\xac\xfa\x4e\x64\x88\x02\x82\xd9\xd9\xbf\x05\xf4\x20\xd3\xbe\xf9\x3f\x7b\xea\x2c\xc1\xf5\xf9\xf5\xc1\x91\x0f\xf9\x4c\x26\x8f\xe9\xc0\xf7\x17\xd3\xa2\x0d\x89\x59\xe9\x74\x17\xb3\xbe\xde\xbb\xb1\x5c\xa8\xca\x41\x90\x9d\x0b\x7b\x50\xce\x9e\xb8\x0d\xf7\x9f\x24\xd6\x2c\xe1\x9a\x97\xab\x45\xdf\xc1\x01\x56\x6d\x77\x7d\x9f\xee\x87\xbe\xe1\xe8\x76\xe7\xc5\x74\x8f\xe5\x1d\x89\x33\x58\x55\xe2\xb1\xf6\x13\x76\xa5\xe4\x84\xea\x27\x48\xc8\x70\x77\xad\x4f\x9f\xfa\x77\xeb\xa2\x9f\x3f\x94\xb8\xbd\xa3\x29\xe6\x29\x47\x45\xf9\x51\xc9\x40\x07\xc9\xae\x8a\x60\xd2\x68\xa0\x13\x8e\x25\xd3\x10\x5b\x68\xcb\xb4\x82\x0c\x1f\x07\x50\x5b\xb1\xd5\x21\x9e\x24\x76\xac\xfa\x4d\x14\xd4\x7c\xf2\x69\x21\xb8\x86\x8e\xed\xc1\x76\x32\xed\xe1\x68\x0d\xa3\xc6\xac\x3e\x8f\x42\xba\xba\x05\xd3\x48\xac\x8d\xa8\x45\x52\xaf\x91\x46\x21\x36\xf3\x30\xce\xbe\x35\x38\x60\xb4\x69\x05\xb0\x1e\x3e\xb4\x3c\xa6\xe6\x47\xdc\x56\xc1\x5a\x8a\x33\x8f\xcf\x78\xf5\x75\x45\x1e\xa7\x96\xbe\x30\x5f\x5a\x86\x3c\xe2\x01\x8a\xe4\x11\xac\xdd\xbb\xa7\x5f\xa6\xbf\x3e\x31\x25\xc7\xc2\xf6\xfe\xd7\x49\x0e\xdc\x81\xea\x0d\x68\x73\x41\xee\x1a\xad\xa0\x26\xf9\x4f\xc4\xad\xd1\x78\x9c\xeb\x88\x12\xcb\x6a\x2d\x12\x61\x08\xd0\x9a\xd7\x44\x70\x7b\xb8\x96\xef\x86\x51\xfd\x2a\x91\x39\xb6\x60\xb5\xf0\x11\x4d\xea\x21\xcc\xff\x50\x2e\xd6\xe2\x46\x96\xcf\xf6\xef\x47\x84\x7f\x3d\x04\xfa\x08\x65\x7d\x7f\xe9\x07\xed\x86\x14\xbd\x38\x6b\x53\xcd\x35\x55\x45\xca\x69\x0a\xe2\x2b\xe1\x61\x30\x74\x79\x34\x58\xfd\xff\x0c\x79\x9f\x29\x60\x41\x8c\x98\xe8\xe5\x70\xc4\x1f\x3e\xb9\x34\xac\xe6\x16\x1a\xc4\x41\xed\x57\x75\x57\x09\xc6\x1f\x35\xc5\xa2\xf4\x9a\xc1\x65\x97\x2a\x1c\xa3\xde\x98\xe5\xdb\xa1\xd6\x2e\x57\xe6\x6b\xb5\x22\x39\xab\x70\x5b\x3b\xb5\x8f\x4a\xc3\xc7\x32\xcc\x9d\xab\x1f\xde\xcc\x03\xae\x73\xbe\xce\x6d\x49\x66\xc0\x69\x2d\x21\xb6\x2f\xd0\x9f\x4c\xde\x89\xc4\xa1\x5e\x61\x95\x81\x17\xeb\x7f\x2b\xdb\x08\x6c\xf3\xb4\x59\x61\x0e\x4b\x5c\x8b\xd3\xa5\x15\x7c\xd3\xc6\x1e\xf9\x9f\x05\x03\x13\x5a\x98\x7e\x0e\x56\xa5\xae\x2f\x5a\xdb\xff\x47\x2c\x89\x96\x35\xf0\x57\x66\x58\x0b\x72\x5c\x8d\xd1\x47\xd0\xe3\x81\x29\xf0\xd2\x18\x16\x4e\x8c\x9f\x20\x51\x04\xbc\x46\x18\xed\x0f\xd5\x2d\xca\x15\xd8\x1a\xe4\x69\x98\xd6\x89\x1a\x97\x96\x84\x79\x03\x9e\x43\x27\xa0\xdd\xe6\x22\x7e\x27\x3c\xcb\xb8\xab\xe7\xdb\x00\xba\x70\xb3\x75\x4f\x7b\xc6\x6a\x21\x12\xc9\x39\xa8\x22\xc6\x57\xc3\x3c\x95\x6e\x8d\xe3\x1d\x9a\x0d\x67\xc2\x58\x57\x36\xc1\x7f\xc6\xcd\x0e\x2f\x6f\x89\xf6\xa3\x0e\xf6\xc6\x63\x6d\x88\x2e\x25\x0c\xd7\xd4\x0e\x33\xbe\xa1\x72\xc3\x11\x2c\x64\x69\x8d\x44\x09\x71\x9c\xf3\x51\x5d\x36\xd3\x5b\xc2\xdf\x6a\x11\xa5\xef\x26\x72\x2a\x95\x4a\x8f\x15\x43\x08\xb9\x06\xb5\x3f\x28\xf3\x29\x4e\xd1\x27\xf0\x4b\x53\xfc\xa5\xdb\x55\x60\xda\x94\x9e\xbf\x79\x79\x7c\xe5\xa4\x85\x0d\xe9\xf6\xd2\x2f\x27\x40\x5e\x14\xbb\x5c\xb4\x03\x63\x29\xda\x73\x92\x5c\x5c\xe9\x0e\x22\x30\x80\x2a\x27\x6f\xf3\x09\x03\x63\x26\x85\x13\xae\x77\x65\x9b\x16\x92\x3d\x6f\xea\x30\x54\x6a\xbe\xd1\x9e\x02\x46\x98\xa2\x45\xd1\x44\x4b\xd1\xb4\x48\x71\x86\xd8\xa0\x17\xb7\xbc\x70\xc7\x9b\x73\x63\x39\xaa\xe9\x7a\xd9\x45\xba\xd7\xf5\xda\x8c\xb8\xec\x71\xdb\xc3\x2b\xe4\xd0\x89\x03\x07\x30\x1f\x78\x12\xcf\xfa\xe9\x96\x30\xc9\x1c\xc4\xb2\x6e\xa3\x91\xfd\xd4\xda\x27\xeb\xde\x22\xbf\x9c\xc1\x21\x22\x7d\x53\xd4\x88\x40\x03\x65\x35\x1b\x52\x12\x73\xc8\xad\xa9\xf2\xd5\xed\x4d\x9c\xb2\x6e\xdf\x78\x25\x44\x6c\x93\x3d\x8a\x82\x19\xf0\x48\xe8\xf9\x3f\x1e\xac\x96\xa3\x7a\x63\xe6\x35\x51\x49\xaa\x2c\x72\x0b\x53\x16\xe6\xe8\xdd\xb9\xf8\x6a\x34\x96\x3e\xc2\xce\xec\xb6\x26\x71\x4f\x11\xed\x3c\xe4\x2c\xf6\xcc\xf1\xf3\x38\x69\x90\x10\x8b\x1a\x33\xb9\x55\x91\xbb\xd0\xc6\x9e\x37\x46\x7b\xb1\xe1\xf6\xff\x7e\x2f\x9b\x5b\xee\x0a\x67\x72\xfd\x94\x6f\xbf\x49\xf3\x22\x92\x71\x11\x02\x6d\xa1\x0f\xa3\x2b\x1b\x06\xa4\x39\x44\xd5\x9d\xec\xfd\x5c\xd6\xf7\x51\x03\xc9\xec\xfb\x01\x8b\x5d\x77\xf2\x73\xe9\xfc\x33\x19\x8a\xdd\x30\x75\xe0\x1c\x3e\x70\xa2\x95\xde\x4e\xbf\xbe\x0a\x9e\x24\x9c\xe7\xae\xa0\x58\x6d\xe6\x1b\x5f\xa1\x38\x1e\xbd\xad\x76\xc0\x49\xeb\x55\x64\x9d\x0d\x4a\x36\x08\xed\x2e\xec\xe7\xb9\xc9\x03\xc9\x4c\x49\x4b\x3e\x3f\x2f\x62\x02\x69\x39\x4e\x67\x48\xb5\x17\x22\x5f\x77\x73\x76\x8f\x37\x4c\x4a\x82\x51\xcf\x1d\x05\x38\x44\x05\x26\x81\xfc\xdb\x3d\xb8\xf0\xbd\xa2\x46\x16\xe5\xa8\xdb\x9a\x3d\x17\x67\xcf\xa7\xee\x66\x06\x47\x36\xfd\xd5\x05\x96\x4c\xc3\x21\x69\x5a\xbc\x25\xb1\xb8\xcf\xcb\x7e\x17\x0e\x93\x5a\x29\xcf\xc7\x5f\x8a\x2d\x03\x52\xfa\x7b\xf6\xe7\xdc\xa4\x5e\xa2\x7f\xa1\xc4\x39\x5a\x05\xf4\x4e\x24\x5d\x25\x1b\x18\x33\xfc\xd9\xf0\xcd\xa1\x8a\x87\xe2\xf4\x03\x43\x06\x45\xcd\x1b\x7f\x8e\xee\x7a\x4b\xc7\x88\x1f\x20\x1b\x6f\xf7\x92\x68\xe5\xd2\x69\xc3\x9d\x18\xdd\xd7\xad\xa2\x29\xf7\x52\xd7\xd3\xfc\xb2\x0e\x41\xcc\xa7\xaf\xd8\xbb\x87\x27\x71\x94\x27\x52\x60\x08\x47\xcf\x37\xf6\xfd\x81\x89\x68\x64\x15\x16\xd4\x99\x17\x19\x57\xc3\xa1\xae\x54\xc7\xf5\x5d\xf7\x98\x66\x19\x1d\xae\x21\x13\xea\x56\xce\xae\xc4\x00\x59\x63\x6e\xef\xfb\x83\xc0\xa6\xe0\xed\x1b\xd3\x27\xfa\x05\x78\x81\xb0\x69\xfc\x0d\x29\x7a\x94\x18\x05\xe6\xd8\xc7\x0a\x67\xac\x7a\x44\xf6\x98\x78\xf7\x81\xb7\xe0\xce\xe5\xf7\x4c\xb8\x81\x80\x8b\x30\x13\x1d\x49\x79\xd1\x63\x77\x1a\x59\x69\x10\x6f\x6e\xc6\x03\x2e\x5a\x56\x05\x15\x50\xa6\x19\x35\x87\x31\x4a\x55\x81\xce\xae\xfc\xeb\xd5\x99\xe7\x80\x82\xfd\x45\x9e\xe4\x00\xba\xf9\x46\xf9\xfb\x1e\xe2\xf5\xb2\x18\x08\xe9\x20\x29\x99\xa9\xc9\x5b\x57\x93\xcf\x02\xa0\xc1\xef\x8d\x6d\xd7\x6e\x37\x74\x02\x89\xb1\xb7\xa4\x52\xe8\x8f\x29\xc0\x43\x7b\x01\x38\xd9\x05\x2c\x2b\x3b\x2b\xa9\x5a\x8b\x9d\x98\xe5\xd9\xfe\x1d\x69\x33\xd2\x79\x49\x98\xf0\xc6\xe1\x91\xaf\x35\x8a\x74\x15\xdb\x4c\xcf\x71\x34\x70\xfc\xe9\x39\x7a\x10\xaa\x6d\x16\x7e\xe3\x61\x8e\x36\x41\xa5\x11\x25\x07\xfc\x15\x5f\xa4\xb5\x49\xdd\xdd\xd3\x34\xe0\x9d\x8f\xe8\x10\xb3\xbc\x90\x1d\xbe\xf5\x4a\xef\xf4\xb3\xbe\x67\x96\xc1\xf6\xa4\xe0\xd1\x0c\xb7\xd3\x83\xe5\x8a\x63\x92\xc8\x0c\xad\xc9\x52\x7e\x5e\xd8\x56\xa1\xd5\xaa\x25\x9a\xcd\xed\x5c\xae\x2f\x67\xca\xd9\xa2\x8c\x55\x99\x95\x24\x1f\x87\x33\x5c\xcd\x2a\x89\x56\x7b\xc0\xd4\x66\x2c\xd2\x35\xf3\x71\xea\x5e\x90\x7e\x64\x8b\x40\x53\x15\xb6\xa8\xb1\x75\xd4\x0b\x8b\x6d\x44\xbf\x62\x3e\xbc\xf4\xd0\x67\x7c\xd7\x24\xf5\x9d\xe3\xfa\xf0\xbb\x95\xb2\x13\x73\x3b\xca\x31\xbe\xe4\x2d\x15\x4a\x90\x6b\xae\xbf\x2f\x18\xd5\x7d\x8b\xf6\x59\xb1\x36\x34\x6e\xc6\x29\x83\x8f\xe5\x0e\x66\xa8\x7b\xf4\x70\xc3\x21\xba\x8f\x9d\x2a\xab\x6d\x9a\x59\x1f\xa2\xa2\xcf\xe0\x04\x88\xdc\x79\x03\xd2\x94\x2e\x03\x8e\x24\x04\xc7\x75\x00\x34\x49\x2f\x72\x3e\xdc\xc5\xb5\xe3\x03\xfc\x21\x2a\x9c\x33\x87\x0e\x0a\x55\x7e\xeb\x20\x9e\x95\x25\x00\xec\x11\x5a\x91\x17\x55\x2b\x37\x6a\x3a\xc7\x01\x04\xe5\x87\x55\xa7\xc7\x46\x9a\x82\xaa\x21\xbb\x16\x62\x27\x41\xdf\x0e\xbe\x20\x27\x1e\x72\x51\x5a\xab\xb7\x9a\x2e\x98\x6f\xd3\xf5\x26\xb5\x41\x0e\x8c\xd4\x83\xd5\x7e\xbc\xcd\xcd\x4e\xbb\xf8\x74\x20\xba\xa7\xdd\x84\x11\xdc\xf5\x78\x03\x84\x27\xf8\xa3\x3c\x93\x5f\xec\x73\xad\xcc\x3f\x7c\xd7\x27\xbf\x28\xa8\x6b\xf8\x03\x13\xbb\xec\x62\xc7\x41\xe5\x01\x5a\x66\xa3\x8c\x20\xba\x82\x37\x1a\x57\x33\xf5\xcc\xcd\xdc\xc3\x40\xdd\x85\x23\xf5\x08\x1f\x43\xbd\x5a\xc2\x12\x8f\x52\x08\xea\x75\x21\xfa\x9e\xe6\x76\xf6\x1b\x31\x6b\x28\x8b\xe7\x8b\xc4\xd1\x30\xff\x23\x66\xa7\xbd\x62\x84\xc7\x6b\x8c\xfe\x30\xb0\x22\xd7\x58\x11\xa1\x1c\x3a\xf5\x9c\xde\x6f\x92\xa2\xb1\x71\xa6\x1b\x67\xb1\x68\xee\x85\x55\x5e\x75\x11\xf0\x1d\xf4\x0c\xfd\xd2\xa0\xe4\x71\x99\xe8\x2d\xa6\x8f\xb1\x15\x2e\xab\xab\xd9\xb3\x0d\x8c\x80\x9c\xc1\x14\x81\x97\xc8\x39\x94\x11\xee\x1d\x1a\x0e\xce\x30\x07\xb3\x84\xdc\x02\x3b\xdc\x8c\x47\x1b\x89\x03\xf5\xea\x54\xdc\xc1\xb4\x4e\xb8\xba\x46\x40\x75\x0a\x47\xa3\xf8\x08\x17\xd3\x63\x40\x90\xff\x38\xa2\x90\xe4\x12\x29\x71\xfa\x63\xf4\x87\xe6\xa4\xb0\x4f\xf1\x0f\xf6\xc9\x35\x04\xe6\x5c\x67\xc3\x1b\xbc\xec\x94\x99\xb6\x18\x79\x8e\x92\x1b\xd6\x7a\xc0\x62\x62\x10\x9e\xaa\x5d\xc2\x69\xa2\x30\x65\xbe\xc6\x14\xcf\x93\x83\x47\x47\x9b\x6e\xd1\x1c\x17\x40\x9a\xdf\x46\x18\xda\x7f\x26\x6d\x9a\x2f\xe3\x2c\x58\x63\x7a\x9b\xa6\xe2\xb5\x0b\xae\x00\x8c\x5d\xac\x1c\x9e\x52\x18\x0c\x81\x12\x60\x62\x54\x20\xd9\xa3\x3e\xeb\xd7\xbb\x07\x36\xdd\x6b\x0b\x75\x20\x7e\x07\x9f\x7e\x1e\xac\xcf\xe3\x70\xd9\x58\x76\x12\x10\x3e\x1c\x71\xc4\xde\x97\x88\xb5\xb5\xc3\xe3\x01\xa0\x42\xfd\x52\xb8\x22\xcc\x3f\x8a\x34\x58\xab\x19\xb5\xa3\xd6\xc1\x01\xe3\x77\x67\xdf\xc0\xc8\x7a\x04\x0f\x04\xe2\x6e\x03\x99\xf0\xca\x66\xb8\x08\x8f\xf1\x32\x96\x2f\x90\x57\xa9\x08\x48\x4d\x84\xe8\x56\x22\x88\xed\xb5\x64\x6f\x94\x18\xac\x7e\xdb\x2f\x7f\x52\x9c\x2a\x71\x30\xa4\xb0\x01\xae\x68\x62\x17\x6d\xec\x4b\xed\xd6\x1e\x5b\xb9\x95\x4a\xfb\x42\xbd\x36\xdd\xc0\x88\xc2\x8d\x8d\x88\x89\x52\xe8\x67\x40\x0b\x0f\x4a\x54\x8c\xd8\x91\x56\x0e\x21\x85\x27\x2d\x6e\x3d\xdf\x26\x27\x6e\xa1\xf0\xc9\xc1\xcd\x86\x41\xdc\x5b\xa2\x2c\x44\x69\x19\x9f\xa6\xa5\xd0\xf2\x0c\x2a\x55\xde\x6b\x1b\x48\x54\xc7\x06\xfe\xc9\xda\x45\x16\x4c\x99\xea\x57\x8c\x69\x9f\x54\xdd\x44\xf9\x8c\x94\xb5\xe4\x34\xee\xd5\x2d\xd8\xd8\xbb\xf3\x4e\x76\x01\x55\x3f\x1d\x75\x0b\x5b\x26\xe7\x69\x7e\xf8\xc5\xab\x46\xdc\xfc\x40\xad\x11\x83\xbf\xb2\x06\x9d\x74\xdf\x1d\x16\x09\xac\x5d\x9e\x68\xff\xe1\x97\x38\x7a\x0a\xaa\x6d\x19\x92\xc3\x7f\x2e\x2c\xa4\xbb\xb2\x42\x9f\x50\xcd\x26\x67\x2a\xed\xc3\xda\x41\x4b\xa0\x09\x5c\xc9\x4e\x39\xc6\x19\xdf\xc8\x5b\x24\xe5\x79\xf5\x65\xc6\xf6\x53\x18\xf2\xa2\x7e\x12\x53\x94\xcd\x2d\xfc\xea\x86\x8b\x80\x54\xaf\x65\xe6\xef\x30\xbc\xe4\x07\xae\xe7\xb3\xa9\x48\xaf\x8c\xef\x8e\x3d\x87\x0b\xb8\xc7\x3a\xca\xf0\x0f\xf1\x52\x15\x03\xe0\xc5\x44\xbc\x2a\x4e\x1b\xb8\x53\x2c\x58\x52\x8c\x5d\x99\x81\x56\x53\x2b\x07\x8b\xd8\x02\x0b\xe0\xb0\x01\xce\x0a\x51\x6f\xe4\x0c\x5e\x76\x03\x70\x3f\x4d\x84\x4b\xfd\xae\x38\xc5\xb6\x92\x34\x0b\x99\x25\xef\xf6\x7c\x79\xe6\x6a\xb2\xce\xf5\xce\x30\x17\x1b\xc0\xa5\x0d\xf9\x06\x4f\x29\xb9\x4c\x82\xfc\x7c\xed\x5d\xcf\x15\x15\xbe\x58\xa4\xaa\x8a\x6e\x01\x82\x2a\xa0\x10\x8a\xb6\x26\x54\xd4\xf1\xbc\x95\xaf\x74\xc1\xc6\x73\xc2\x01\x49\x59\xbd\x46\x2f\x1b\x78\xf7\xa7\xa7\x18\xec\x5f\x7f\xf8\xb2\xc8\x69\x3f\x96\x63\xaf\xd0\xe5\x4d\xc8\x87\xda\xa7\xd6\x79\x49\x97\xae\x78\xcf\x06\x5a\xde\x74\x0a\xec\xb3\xba\xb3\x77\xcd\x2c\x78\x3d\x9c\x69\xd8\x95\x5f\x54\xc3\xb2\xb3\xf1\xc9\x59\xd6\x79\xe2\x02\x5c\x8e\xa1\x17\xf8\x76\xaf\x52\x52\xff\xe8\x02\xb3\xd2\x1f\x6b\x59\x96\x05\xe6\x72\x8c\xd9\x9b\x13\x8a\xc2\x8b\x47\x6b\x42\x90\x69\x77\x54\xbc\xfb\x17\xac\x20\x6e\xbe\x21\x78\x49\x79\xf1\x0b\xc4\x8d\x79\x50\xd4\x85\x4f\xa3\x7a\x7d\x2d\xcc\xa8\x73\xce\xd6\x98\xe7\xf6\x0e\x76\x8f\x8f\xbd\xbf\x80\x7b\x79\x12\xe4\x8b\xb5\x1d\xbc\x23\x3b\xe0\xed\xf7\xed\x2a\xff\x4e\xde\x6c\xdc\x96\xc5\xdf\xe4\x8e\xd8\x4d\x06\x76\x59\x60\x6b\xc9\x3a\x7d\x2d\x06\xef\x91\x8f\x93\x67\xa8\x4c\x08\x0c\xa9\x8b\x97\x9c\x2c\x05\xcc\xbd\x82\x08\xbb\x62\xdd\x3b\x0b\xab\x41\x1b\xd2\xf4\x90\xc2\x87\xab\x4e\xf1\xe9\x95\xa7\xaf\x0f\x5c\xce\x56\x51\xb0\x19\x96\x6c\x4a\xbf\x64\xaf\xb7\x97\x00\x3c\x03\xe5\xac\xa3\x00\x95\x97\x32\xbb\x0f\x01\xf1\x37\xed\x49\x0b\x00\x97\x4b\xe4\xfe\x6e\xb7\xa3\xbf\x06\x62\x43\x56\xd9\x83\xf7\xb8\xaf\x91\xbd\x8b\x6f\xd0\x89\x66\x19\x4a\xf9\x66\x15\xb6\xe8\xea\x88\x8c\xae\xcd\x41\x0d\x83\xe7\xee\xde\xec\xef\x27\xff\x21\xdd\x7a\x88\xbf\xeb\xae\x72\x3a\xb8\xc2\x7f\xa9\x53\x87\xe2\x1b\xfd\x79\x5d\x40\x3b\x30\x9f\xa6\x8e\xab\xbe\x1b\x13\x72\x8c\x33\xc2\xbc\x45\x11\x76\x01\x85\xd7\x43\x37\x8d\x98\x5d\x81\xab\xdf\x9d\x7d\x12\x5d\x48\x0d\xd2\xc6\x99\x01\xd3\xe3\x39\x10\x84\x32\x17\xb6\x7e\xe4\x05\xb4\xaf\x6b\x79\x87\xaa\x6c\x92\x84\x92\xca\x96\xe2\x24\x37\xe6\xae\xfa\x6e\x3e\x86\xa4\xbe\x15\x02\x0c\xc7\x38\x82\x1e\x4d\xc6\x2d\x9c\xb8\xe7\x40\x1e\x4b\xd4\xd8\x8a\xaf\x48\x83\x02\x3a\x8b\x2d\xdf\xbf\x2b\x97\xc7\x82\x74\x03\x69\x06\xe0\x49\x09\xc3\xd5\x8d\x43\x91\xbc\x73\x3d\x71\x68\x2a\xc8\xfa\x07\x4f\xb8\xca\x6c\x67\xcc\x87\x29\xa1\x8d\xdc\xbb\x7e\xcc\x58\xb1\x6c\x96\x07\xc1\x08\x88\xbb\xf4\x31\xca\xcf\x10\x7c\x2a\xb8\xf8\x02\x40\xa0\xbc\x48\xf1\x14\x08\x32\xbf\x09\xcb\xdf\x7f\xaa\xcc\x77\x2a\x01\xf0\xcb\x89\xfa\xe7\x84\xca\x5d\x1a\x8c\xfa\xb8\x12\x7b\x63\xe5\x15\xe7\x4e\x12\x94\x40\xab\x26\xdc\xa3\xf5\x42\x0b\xd7\xe7\x08\x6b\x05\xb5\x92\x41\xe1\x8f\x74\x28\x2d\x0e\xb3\xaa\x92\x4c\x55\x5b\xaf\xcc\x05\x28\x1b\x2f\x3b\x9a\xcc\x9f\x00\xee\xb8\x88\x85\x99\x26\x5f\x96\x03\x6f\xe7\x94\x53\x9e\x99\x1a\xab\xc6\xdd\x68\x50\x9a\xf0\x6f\xaa\x63\x74\xdb\x6e\x2c\x0b\xe0\xaf\xe2\x0d\xba\xca\xba\xe9\xe0\xe1\x06\xe3\x99\x51\x1d\xea\xdc\x64\x7d\x71\xa8\xf3\xb4\xfd\x73\x3f\xbf\x7a\xfa\x42\xa4\xa6\x04\x65\xc3\x97\x3e\xd9\x82\xc5\x54\xb5\x37\x72\x55\xb7\xa3\xfc\x0a\xed\xd1\xde\x0d\x15\x80\xd7\x93\x5e\x59\xf9\x3d\xaf\x17\x92\x02\x16\x65\x81\x93\x7a\x8d\xbf\x6b\x99\x80\x64\x43\x62\x9c\xe1\xa5\x78\xca\xc6\x2f\xb5\xe6\xb3\x71\xdf\x55\x43\xfb\x2a\xd3\x34\xbd\x38\x43\x40\x7c\x66\xfb\xfd\x1b\x0f\xbe\x4d\xce\x19\xf5\xe1\xb3\x3a\x1b\xf3\xe7\x89\xa1\xb6\xb5\x41\x3c\xfa\x55\x3c\x81\x8d\xe1\xd7\xa4\xb8\x23\xe8\x40\x3b\xea\x48\x3b\xf0\x74\xd6\x6b\x5c\x41\x6a\x02\xa8\x0f\xb9\xc4\x20\x2b\xab\xf2\xdf\xe0\x62\x0c\x31\xc0\xb2\x84\x23\xe2\x10\x2d\x95\x21\xc2\x78\xb7\x2d\xb6\x42\x99\xe0\x2c\xb4\x5f\x86\x09\x7a\x2c\x33\xc8\x01\xfd\xee\x64\x17\x44\xdd\xba\xec\x16\xc6\x5c\x82\x51\x1d\xe9\x53\x19\x1a\x43\x47\x4d\xdb\x3d\x68\xda\xa5\x6b\x6a\xa2\x9a\x76\x4a\x24\x5a\x9b\xa3\x31\x32\xcc\xc7\x3f\x67\x3a\xa4\x7a\x2b\xeb\x0a\x37\x8d\xe8\x4c\x2b\x4f\x20\x45\x94\x54\x88\x70\xef\x44\x36\xcf\xfc\xd9\xa7\x6b\x25\xb8\x69\xea\x80\x4b\x6b\xdc\x98\x87\x1d\x27\xb3\x5c\x6b\xdc\x57\xa9\xaf\xb3\x43\x80\x79\x02\xdb\xc1\xf0\xd4\x06\xd7\xb2\xdf\xd6\x95\x10\xcf\x9d\x90\x8b\xbf\x52\xe4\x18\xef\xaf\x07\x3c\x34\x7f\x4d\x6d\xa1\x62\xb7\x67\x45\x94\x9d\x15\x4c\xbc\xdb\x93\x31\xec\x2b\x9e\x8a\xea\x02\xc2\xf1\xa3\x66\x6d\xd2\x15\x93\xe7\x71\xad\x44\x8d\xf6\xf7\x2f\x10\x03\xc3\x26\x52\x84\x09\x7d\x09\x76\x60\x43\xde\xee\x16\xb6\x37\x90\xe9\xbb\x6d\x18\x32\xac\xec\xf0\xb1\x82\x3c\x3b\x02\x90\x53\x8c\xaa\xbd\x3d\x5a\x45\x77\xcc\xf1\x50\x05\xb9\x9c\xba\xc0\xf7\x30\x9f\x3b\xb1\x84\x17\x2b\xc7\x75\x17\xc5\x2d\xf8\xea\x91\x20\x7e\xc9\xab\x72\xbb\x00\x40\x9a\x87\xe5\xa6\x66\xc5\xc0\x18\x9d\xcd\x06\xcb\x3a\x47\xce\x68\x4e\x70\x47\x9a\xb3\xc1\x6a\xb8\x1c\xaa\x35\x29\xf9\xe7\x7d\x08\x58\xb9\x14\xc8\x40\x9c\xc0\x94\x99\xf5\x22\xe7\x7b\x1b\xad\x94\x07\x30\xa0\x8b\x16\x00\x28\x63\x1b\x3f\x9e\xf5\x42\xe5\x01\x9f\x2f\x88\xf2\xc8\xe0\xe9\x6b\xd2\x18\xf1\xf4\x1a\xd2\xd5\x07\x1b\x08\x7a\xde\xab\x33\x7e\xed\xbd\x5e\x06\x32\x27\x12\x1f\x0d\xa6\xcf\x72\xeb\xa5\x96\x00\xc6\xb1\x4d\xd0\x72\x27\xca\x8d\xfe\x37\xab\xf9\x51\x83\xb9\xfa\xbd\x7a\x75\x58\x50\x4e\x0e\x86\x83\x7b\xf7\xa4\x91\xc6\x4e\xa0\xa1\x2c\x7b\x57\x3b\xa2\x76\xe9\x91\x71\xce\x14\x51\xe2\x25\x09\xb1\x6b\xad\x42\xa2\xcb\x73\xa4\x4f\x21\x9f\xf5\x21\x82\x33\x35\xf4\xf1\xfc\x7b\xc3\x00\x2c\xc1\x25\xf9\x30\xca\x76\x15\x6c\x64\x9c\xb0\x2b\x3b\x70\xb8\x27\xdd\x34\x6b\x39\xa9\xb1\xba\xee\x4c\xf7\xe3\x51\x36\x65\x17\xc2\x45\x92\xdf\x90\x4c\xc5\xa3\xb2\xc7\x48\xc3\x6e\xf6\xf0\x4c\xfb\xb4\xd0\x51\xc8\xef\x2f\xd2\xf0\x9a\x3e\xe0\x08\xa1\xf4\xe6\x82\xdc\x0d\x88\xaa\x63\x71\x34\xb3\xfb\x09\x4f\x95\xdf\x88\xd4\x2b\xf4\xac\xe7\xf4\xcb\x11\xde\xf5\x5e\x3c\xef\x06\x35\x60\x76\x2e\x47\x80\x28\x18\xd1\xa0\x38\x62\xc7\x31\x87\x65\x8a\x9c\x90\xb4\x6f\x46\xf0\xb1\x8d\x53\x52\xff\x68\x69\x82\x57\xd9\x8d\xa3\x28\xa4\x9c\xed\xd5\x69\xc1\xfb\x54\x8e\x34\xf0\x17\xf8\xdc\xf2\xe6\x8b\x8b\xdc\x70\x63\x0d\x80\x6c\x47\xa0\x24\x95\xb1\x56\xec\x75\xf8\x45\xb1\x5b\x26\x64\x7a\xc4\x03\xef\x15\x3f\x8a\x6b\x32\xe1\x96\x97\xc4\x94\x90\x75\xcf\xf5\x6a\x88\xae\xbe\x39\xca\x5e\x7b\x16\x3a\x22\xe0\x96\xc7\x17\x20\xdf\x09\x99\xca\xf1\xa2\x0f\x8e\x07\x48\x5e\xb6\xab\x9f\xb7\x5e\x59\x2b\x6b\xc3\x88\x09\x47\xcd\xad\x7c\x46\x7b\x08\xe1\xc5\xb5\xc2\xb2\x00\x5b\x10\xcb\x70\x5d\xf0\xc4\x29\x6d\x4c\xfe\xfb\x79\xb0\x9f\x56\x86\x59\x84\xe4\x67\x02\xbd\xbb\x82\x03\x94\x36\x68\x62\xfb\xeb\x6d\x85\xa8\xec\xb1\xdd\x95\x7c\x91\xe2\x31\x2a\x7e\x62\xba\xdf\x4d\x92\xd5\x8b\x14\x93\x25\x32\xfc\x7d\x5f\xdd\x8b\x8a\x60\xa6\xea\xbf\x7b\x9a\x83\xfd\x36\xdc\x60\xb2\xd9\x01\x1b\xa9\xaa\xc5\x8d\x6d\xc4\xd7\x81\xfd\x4a\x26\xc2\x58\x00\x02\xff\x70\x82\x01\x93\x46\x04\x6b\x77\x23\x09\x64\x4d\x6b\x69\x1f\xbf\x1c\xe3\x49\xe5\xab\xcb\x81\x1b\xfa\x72\x45\x05\xb8\x80\x0f\x5e\x2e\x5f\x77\xdd\xf7\x53\xd1\x46\x48\x84\xb1\x03\xb8\x86\xfd\xb0\xa1\xb2\xd7\xfd\x56\x66\x2a\x1c\x43\x6a\x0c\x12\x70\xd1\x2f\x0a\x3b\x18\xbc\x6b\xe5\x14\xb8\xb4\xef\x41\x18\xe5\x05\x74\x1f\xb6\xb2\x5e\xf0\x20\x38\xcd\x46\x60\x96\x64\x18\x85\xdc\x23\x67\xe1\x70\xf4\x43\x0c\x9f\x95\x6e\xdb\x9b\x9c\x75\x59\x35\xf5\x24\x50\x3e\x17\x7b\xde\x08\x7e\x32\xf1\x8f\xf6\x4c\xe9\xb8\xb2\x25\xd5\x6b\xb2\x37\x93\x14\x4f\x54\x5d\xe9\x10\xa6\x88\xbe\x02\x59\xd4\x08\xd3\xdb\xa8\x50\x7b\xd2\xb2\x20\x7b\x94\x46\x4c\x5e\x22\xc8\x11\xc3\x2a\x73\xcb\x05\x40\x8b\x62\x59\x3d\xa4\x68\x31\x9d\xd6\xa2\x9d\x06\x46\x08\x97\xe0\xd3\x10\xdd\xa2\x51\x01\xaf\xf4\x24\x2f\x0b\x4d\xad\x18\x8d\x93\xc5\x27\x45\xd3\xea\xf0\x04\x0b\x88\xfc\x0a\xee\x82\xe7\xb3\x73\x16\xb3\x25\x57\xa6\x4d\x4c\x02\x07\xcb\xc9\x93\x14\x3b\xb8\xab\x61\xbe\x5e\xa9\xef\x73\x80\x7f\xa8\xb5\x7d\x32\xe2\xce\x54\xae\xef\xb5\x32\x5e\xe8\xcd\x10\xc8\x76\x37\x36\x22\x5e\xba\x07\x9e\x32\x39\x97\x5c\x4b\xde\xc8\x73\x13\x53\xe0\x2a\xe5\x34\x93\x01\xec\xdd\x67\x90\x90\x2b\x96\xea\x01\xb9\xb7\x65\xce\xbd\xeb\xfb\x0f\x90\x8d\xc0\x62\xe7\x56\x53\xba\xfc\x60\x61\x1f\x47\x1d\x04\xce\x57\xd1\x24\x96\xb6\x3c\x21\x44\x21\x6b\x55\xec\x8d\x75\x35\xfd\x61\xd0\x92\x1d\x1f\xe6\xf8\xe9\xee\x90\x1e\xeb\x81\xf5\x08\x9c\x2c\xde\xeb\x81\x38\x15\xe2\xeb\x19\xc5\xc0\x12\x4a\x5e\xfc\x52\x05\x3c\xca\xf5\x77\xe3\x7b\xef\xbd\x64\x1b\x62\x9c\xbb\x33\xb8\x98\x75\xf8\x42\xbd\x96\x01\x4c\xb6\xc7\x72\x2c\xa9\xd4\xd5\x37\x28\xf4\x54\x07\x57\x00\x38\x9d\x8c\x39\xfe\x64\xd9\xac\xab\x19\x84\x71\x2d\xb1\xe3\xc7\x33\x64\xb4\x3d\xcb\xef\x21\xf4\x2c\x6f\xfc\x94\x28\xfe\xb5\x48\x37\xee\x5e\x8c\x96\x78\x76\xc6\xfb\x22\xe3\x76\x48\xdc\x62\x1f\xa7\x29\xdb\x3a\x89\x18\xbc\x3a\xfb\xb7\xf9\x1e\x33\x5e\x09\x32\xb5\x44\x50\x50\xee\x98\xce\x5a\xa6\xe7\x3f\xf2\xc1\xcd\x8c\x5b\x3b\x49\xa0\x6a\x30\x6f\x6e\xb1\xee\x5f\xf9\x33\xfa\x50\xf2\xb3\xf1\x65\x68\xf0\xcb\xad\x56\x27\xe5\x5f\x5b\x8e\xe4\xf8\xec\xd3\x4c\xba\x0b\xb9\xe8\xed\xa2\x6c\xcd\x9f\x26\x78\x45\x6a\x5f\xf3\x6b\x82\xbf\x0a\x16\x50\x2f\x09\xd1\xba\x9e\xa1\x8a\x43\x96\x1b\x70\xac\x7f\x79\x42\x6a\xcc\x6a\x9f\x1f\xb1\xac\xb0\xef\x2a\x3f\x91\xe9\x41\xa4\x5f\xe1\x86\x14\x68\x6a\x11\xe4\x45\x31\xb6\x78\x1f\x02\xf8\xb8\xf5\x63\x89\xa5\xf3\x19\xe4\x82\xbb\xfc\x7f\xfe\x91\x1b\x69\x7e\x75\x84\x79\xaa\x07\xa4\x87\x82\xd1\x39\x7f\xf6\x8c\xeb\x3e\x17\xc5\x90\xa5\x8f\xd2\x17\xe6\x1f\xfe\xc2\x93\x51\xe2\xc8\x3e\x3f\xad\x7f\x90\x09\x92\x15\x5a\x8c\xa8\x84\xba\xfe\xcb\xfd\xe5\x82\x45\x3d\x5d\x61\x15\xee\x55\xda\x97\xe5\x07\x3b\xb2\x29\x11\x6b\x85\x69\x79\xf6\xcf\xe0\x06\x8b\x61\xcf\x73\x41\x97\x5d\x02\x17\x0d\x73\x68\x73\xd8\x7a\x5f\x73\xf8\xec\xce\xb5\xfd\xc2\x1a\x91\xb0\x0c\xf7\xe0\x17\x6c\x09\x83\xff\x3c\x04\x20\x5c\x71\x25\x44\x5a\xc5\x4d\x71\xec\x23\x42\x85\xf1\xe4\x85\x6c\x07\x83\xda\x22\x3b\x6d\x51\x36\xf6\x63\x4f\x3b\xdc\x7f\x80\x16\x14\x0a\x53\x42\x9a\x3c\x0c\x08\x36\xa3\x38\x9d\x2f\x81\x7a\x50\xea\xac\x60\x81\xb4\x38\x16\xaf\xad\x1b\xb7\x31\x20\xe5\x24\xfb\x68\xfc\x98\xd8\xaf\xd0\x24\x69\x19\xda\x4f\xe0\x20\xbe\xfc\x93\x9e\x56\xb1\x7e\xa1\x9b\x3f\x1b\xba\x70\x77\x34\xb0\x23\x45\xba\x8b\xcc\x2d\x89\x65\xc3\x6a\xb3\xeb\x8f\x94\xd7\x72\xc4\x80\x39\xce\x8e\x58\x7c\x5e\xd9\x18\x0a\xda\xce\x3c\xcf\xa0\x98\x00\x6b\x5a\x6d\xba\x9b\xf3\x8e\xdc\x23\xeb\x8a\x79\x29\xef\x9c\xfd\x91\xef\x7d\xa5\xb4\x32\x05\xc1\xc8\x7f\xa4\xd2\xf5\xe8\x49\x48\xcc\x1f\x39\x6c\xa3\x63\x1d\x58\xd8\x95\x38\x62\xe3\xe7\xbb\x4d\x3b\x53\x6d\x4f\xfb\xda\x4b\xbf\x95\xdb\x84\xa0\xf6\x8a\xcb\x70\xff\xa7\x16\x45\x8e\x8b\x3d\x71\x09\xb2\x54\x22\x45\xfb\xac\x1d\xd4\x74\x6f\xdd\xba\x10\x28\x1a\x8d\x4e\x52\x73\x47\x03\x75\xf2\xae\xa2\x2a\x0a\xf3\xd4\x4f\xd8\x56\xab\xf4\x5e\x89\x96\xf1\xde\x10\x62\x89\x6c\xf1\x15\xaf\xf7\x35\x31\xd1\x3a\xd4\xf7\xee\x8e\xa3\x51\x85\xf7\x04\x2b\x40\xe1\xd7\xdb\x78\xf1\xf7\x41\x3f\x67\x27\xd5\x47\x62\x6b\xdb\x2b\x15\x6b\x7d\x63\x47\x8f\xca\x1b\xbc\x82\x95\x47\x03\x87\xd2\x71\x11\x05\x94\xcc\x5a\x4a\xa5\x84\x2d\x40\x73\x3b\x85\x6b\xbc\xc4\xf5\xa9\xcb\xd8\x94\xbb\x08\x6f\xd2\x01\x86\x2a\x53\x95\x29\x4e\xcf\xed\x56\x1c\x3a\x94\x49\x1b\x6f\x2e\x52\x77\xbc\xdd\x21\x2c\x54\x1d\xab\x6c\x87\x19\x35\xfe\x43\x83\xdc\xd8\x38\xb9\xc7\x3f\xcf\xed\x55\x06\x4e\x12\x29\x13\xa5\x38\x62\xc8\x8f\x34\x43\x8d\x04\xff\x4e\xdd\xaa\xcb\x15\xea\xa8\xae\x44\x8e\x1f\xf1\xe0\xa4\xe7\x53\x22\xaf\x07\x05\xf4\x06\x99\x78\xf2\x0a\x7e\x3a\xeb\x83\x0e\x14\x58\x14\x06\xfa\x5e\xf2\x2a\xf2\x58\x8d\xfa\x96\x86\x04\x99\x09\xc1\x00\x7c\x0b\x7c\x09\x53\x32\x30\xd4\x07\x40\xf3\x7e\xe8\x19\x91\x46\x6a\xb9\xef\x00\xe3\xfb\x84\x2b\x95\xf0\x68\xb7\x76\x1b\x78\x93\x33\xff\x22\x70\xc6\xf1\xb4\x0e\x8c\x3a\x9a\x00\x70\xe5\x85\x43\x80\x12\xd8\x5e\xef\x7c\xaa\x66\x93\xbb\x33\x00\xca\x65\x57\x62\xd6\xf1\x3d\x7a\x21\x61\x06\x10\x29\x1a\x14\x6a\xed\xfa\x9e\x79\x6a\xd7\x51\x84\x9a\x72\x77\x99\x90\xcd\xae\x21\x62\xed\x46\x3f\x08\xf9\x85\x86\xbe\xcb\x27\x3a\xfb\xf1\x81\x22\x60\x64\xca\x8c\x89\xe8\x70\xbc\x34\xf6\xc9\x0e\x91\x8c\x3d\xc2\xa4\x78\xac\x6f\x55\xeb\x15\x2f\xd8\x4a\x49\x2f\x20\x79\x23\xb9\x20\x81\xe9\x50\x5f\xa3\x2c\xb5\x5a\xaf\x31\x6c\x76\x8e\xa3\x07\x1b\x2a\x68\x6f\x71\x4e\x98\x35\x8c\x07\x4e\x2f\xe3\xcc\x6b\x2c\xed\xed\x85\x7e\xbe\xca\x16\x8c\x07\x5b\x58\xc7\x75\x63\xa9\x92\x33\x99\x1f\x33\x95\xbb\x9d\xe4\xe9\xa5\xaf\x2d\x59\xd0\xc6\x27\xa9\x56\x6d\x97\xfd\xdc\x16\x0b\x3b\xbd\xf9\x43\xce\x2a\x40\xe7\x99\x55\xb4\xf1\xc3\xba\xfe\xb8\x60\x85\x27\x42\x8c\xbe\xc6\x6f\x63\xc6\x83\x59\x4f\x45\xe5\x84\x30\x33\xbe\xc8\xce\xb2\xba\xcc\xa7\xa7\x19\x71\xbe\xcb\x18\xdb\x4c\x67\xe0\xba\x76\x86\x0c\xa9\xf8\xe3\x28\x04\x0a\xde\xd9\xa2\xa7\x4d\x8b\x97\x7a\xe9\xea\xa1\xbd\xc2\x8f\x9d\x8c\x9b\x2b\xf4\x03\x92\x71\xdd\x18\x49\x75\xe1\x9d\x59\x90\x56\xda\x2f\x82\x0f\xbf\xe3\x00\x11\x22\x20\xd6\xcc\x5a\xe3\x3d\x0f\xf4\xa5\x61\x11\x3c\x26\xdb\x71\x6e\x2c\x18\x94\xe9\x9f\xc4\x6d\x61\xc3\x62\x24\x20\xf4\xec\x8c\x2e\xf0\xaa\x69\x57\x08\x4f\x9d\x03\x15\xea\xca\xdc\xd0\xa0\x10\xe5\x7b\xd0\x1b\xe2\xc5\x72\xbf\x3f\x9f\x15\x6e\x66\xf4\x9a\xd1\xb0\x8a\x65\x64\x0e\x85\xbd\x4b\xda\x91\x77\xec\x25\x82\x3b\x39\xc6\x89\xf4\xa1\xa1\xe5\xd9\x7e\x11\xd1\xb6\xe9\x1a\xe3\xe7\x38\x72\x27\x94\xaf\xfa\x4e\x0a\x8d\x11\x6a\x13\xe3\xaa\x58\x9c\x09\x87\xca\x51\x17\x45\x82\xb5\x16\xac\x9b\xe5\x2e\xae\x53\x2a\x21\xd7\xe3\xd8\x0b\xaa\x25\x13\xab\x3a\xf2\x69\xfb\x5a\x3e\x0e\x20\xd3\x23\x91\x32\x76\x41\xac\x58\xee\x42\x0b\xb6\x8c\x44\xdf\x97\xe9\x4f\x95\xe2\xf4\xec\x7d\x98\xc8\x3a\xde\x35\xd4\xe6\x67\xe6\xbd\x86\x93\x13\x35\xc7\x4f\x4e\x0c\xb6\x40\x4a\xe2\x78\x61\x30\x1c\x57\x2d\xd6\xa5\xb0\xb4\x4b\x07\xcf\x6d\x52\xec\x72\x8d\x8f\x19\x34\x7d\x7c\x76\x15\x72\x10\x2d\xb3\xa6\x76\xfb\xb0\x96\xbc\x17\xf1\x13\x10\x87\xb1\xe7\x20\x92\x2b\xeb\xf1\x46\xc3\xa9\xfc\xa0\xa9\x54\x44\xe7\x41\xe2\xe2\x7b\xd8\x5f\x2d\xc0\x3c\x1a\xa4\x23\x5d\xa0\x04\xd1\xc7\x62\xc4\x6e\xef\x4b\x3e\x0d\x2d\xbd\xac\x98\x8b\x28\x05\xd8\x10\x2b\xda\x96\xaa\x9d\x81\xec\x66\xc4\xee\x45\x3b\x25\xcf\xa1\x41\x82\x1e\x6c\xca\x74\x8a\xcc\xac\x55\xe4\x46\xda\x4b\xff\x0c\xe2\x43\xfb\x14\xb6\x95\x11\xee\x58\xbf\xee\x40\xee\x5c\xb8\x38\x88\xad\x94\xad\xcd\x13\x9c\x62\xdc\x8c\x1b\xdd\xb1\x49\x1d\xdf\x4d\x05\x02\xdf\x3e\x4b\x81\xb4\x9e\x4f\x33\x02\xc2\x76\x95\x57\xd4\xd3\x40\x19\x48\x70\xd2\xb2\x7d\x68\x41\x67\xb2\xa2\x9c\xd4\xb3\xb7\x5f\x04\xb3\x44\x43\x21\xe7\x78\x44\x94\xec\x65\x23\x0a\xa3\x58\x6f\x47\xbc\x48\x8a\xb7\x66\xb1\x94\xe1\x75\xf5\x79\xcf\x89\x25\x17\xc7\x90\xbe\x06\xff\xc9\x3f\x07\xeb\xb6\x8c\x1a\x32\x50\xbb\xfa\x66\x15\x2f\x52\x16\x76\x6f\x85\x8f\xb5\x75\xda\xa1\x58\x3e\x71\x56\x10\x22\x5b\xb2\xbd\x46\x80\x26\xef\x60\xfd\x15\xdd\xe7\xcd\xa2\x7a\x00\x89\xd7\x0a\xf1\xe8\x81\x3f\xef\xd4\x4e\xaa\x35\xfc\x9b\xcf\x8f\x49\x42\x27\x4f\x20\x29\x58\x83\x51\xa4\x7b\xd9\x67\x0b\xa5\x58\xae\xaa\x90\x72\x3d\xa1\x7d\x51\x68\xe6\xf6\x41\x11\x08\xc0\x84\xf5\xa0\x32\x16\x44\x12\x96\xfb\x2a\x83\x46\x01\x52\xaa\x63\x82\x9a\xc4\x3f\x79\x0f\x64\xa5\x25\x70\x12\x38\x58\x1f\xf8\xc5\xc5\x64\xfa\x19\x31\x36\x1e\xa0\xbc\x1e\x02\x5b\xae\xd4\x4e\x73\x3f\x44\x03\x4c\x65\xf7\x4d\x70\x2c\x6d\x1b\x4d\x6f\xf0\x61\xc5\x49\x6f\xb1\xa3\x02\xec\x41\xe7\xe7\x4a\xb7\x54\xf3\xd2\x12\xc1\xc5\x01\x9a\xf0\x45\x4d\x96\x12\x70\x5d\x56\x2c\x9e\x43\x28\xff\x42\xe1\x40\x79\xac\xaf\xab\xc7\x9c\x2b\x7f\x8c\x28\x10\xee\xa2\x3f\x06\x71\x61\x96\xaf\x1d\x05\x3b\xe4\x3f\xe4\x0f\xc0\x55\xd5\x6e\x8d\xec\xb9\xc0\xc2\xc4\x70\xa1\x9b\xd6\x66\x64\x06\x06\x48\x43\xa9\x2b\x52\x9b\x53\x59\x69\xf0\x6f\x0b\xb6\x41\xc9\x6b\x83\xba\x16\xd7\x36\x4b\x68\x8d\xbb\x01\xd0\xe2\xc8\x6f\xd3\x12\xc5\x08\x73\x6a\x22\x8a\xbb\xb2\x63\x15\x65\x5d\x78\xd6\x30\xcb\x58\x3d\x63\xd4\x7b\x19\xb5\x6f\xf9\xf7\xba\xc1\xca\x13\x51\xb1\xa2\x60\x68\xf3\x78\xa2\x50\x90\xcd\x42\x45\x8d\x86\x8f\xa3\x74\xee\xb8\x33\x4e\x57\x5a\x8c\xf4\x39\xf3\x95\x7b\xa5\x23\x2e\xb3\x54\xf4\x64\xf5\x87\x38\x16\xeb\x12\x01\x29\xdd\x5f\x39\x25\x3a\xc9\xe2\x79\x4d\xcb\xd3\xd3\x63\x02\x92\x33\xf4\xe6\x31\x2d\xea\x77\xca\x1f\xa6\xde\x36\x80\xab\x59\xa3\x59\xe1\x3a\x1c\x47\x7f\x74\xcb\xb4\x9a\x5c\xe7\xa3\x8d\x4a\x02\xb4\x96\x5f\x46\xb1\x42\xb3\x6c\xdd\x7e\x7d\x47\xcf\xb3\x0b\x46\x3b\x9c\xb2\x0a\xbf\x4a\xe0\x36\x24\x24\x14\x82\x94\xc3\xfc\x75\x25\x44\x49\x1b\xfc\x92\xc0\xdf\x40\x26\x4b\x8d\x61\xfb\x47\x9b\x9a\x67\x35\x66\xfb\x53\x04\x6f\x15\x96\x11\x11\x98\x32\xff\xea\xb5\xa1\x05\xcd\xb3\xc5\x02\xe0\x70\xeb\x03\x7d\x20\x78\xaa\xab\xdf\xad\xa9\xc7\x47\xfa\xb8\xb2\x41\x98\x62\x90\xce\x7c\x6f\xef\x6a\xa9\x19\x18\x90\x75\xef\x51\x4e\x4f\xfd\x9f\x00\xb2\x95\x53\xb8\xf2\x2a\x4d\xf9\xe1\x98\x69\x2a\x0a\x3c\x78\x37\xa5\x64\x8c\x93\x6e\x77\xc6\x2a\xb4\xa9\x79\x6b\x8d\xd6\x7a\x5b\xcb\xf0\x15\x86\xc7\xd6\x1b\x11\xcf\x67\x2c\xe1\xaf\x0c\x65\xfd\x55\xd5\x23\xf5\x09\x1a\xd6\x2a\x30\x0f\xec\x5e\xef\x0b\x97\x66\x51\xeb\x26\x99\x67\x06\x80\xba\x1d\xe4\xca\x4d\x19\x17\xcd\x62\x4a\x5e\x9b\x16\xaa\x80\xb1\xbe\xe4\x8c\xc0\xc7\x8e\x4b\xb5\xa9\x80\xb3\x85\xc0\x70\xc7\xed\x5a\x71\x34\x37\xdb\x7b\xc2\xe2\x2b\xb2\x1d\xac\xb3\x7b\x21\xa2\xc6\xfa\xf5\xc0\xbe\x20\x62\xa7\xe8\xcd\x29\x97\x4a\x09\x80\x69\xde\x0a\xfd\x34\xd8\xc3\xc1\x21\x9c\x08\xf7\x96\xd8\xa9\xe8\x31\x31\xc6\x95\x04\xa5\xa2\xfb\x7e\x12\xce\x5a\xd2\xe8\x44\x1d\x79\xa1\x34\xa9\x52\x79\x79\x3c\x90\x97\xe8\x75\x86\x45\x9a\x1f\x1e\xe0\xe5\xf3\x54\x5e\x92\xad\x97\x43\x6a\x1b\xd5\x9d\x14\x2d\x33\x6f\x38\xf1\xfa\xd7\xf7\xe9\xfd\x00\xdb\x1b\x3c\xb4\x73\x9e\x59\x34\x09\xdf\x7f\xc0\x57\x3d\x5a\x6b\x8a\x01\x88\x4f\x0a\x04\x83\x21\xaf\xc9\x4b\x28\x23\xf5\x18\xc8\xc3\xde\x44\x6e\x16\xeb\xb4\x8b\xc7\x65\x2d\x52\x81\x45\x31\x8a\x3e\x17\xe0\x9c\x27\x18\x7d\x1c\xef\xc2\x85\xe1\x02\x96\x87\x46\xdb\xe5\x2f\xf3\x1a\x63\xd0\x66\x6a\xd7\x98\xc5\xe6\x16\x39\x2a\x3a\xda\x18\x48\x2b\xd3\xf0\x06\x43\x3e\x69\x99\xfe\xe0\x01\xdd\x55\xd2\x51\xf6\x61\x91\x92\x8c\x0b\x10\xd6\x30\x39\x0f\x40\x91\x44\x9f\xfc\x54\x37\x99\x7e\xfe\xb6\x02\x6a\xb4\x91\xe5\x66\xc7\xc9\x7f\x4a\xe6\x42\xca\x84\xe4\x7c\x4b\xcb\x89\xfc\xde\xca\x9f\x48\x83\x05\x37\xbc\xf6\xf4\x39\xf7\xbb\x03\xa8\x07\x3a\xf9\x98\xef\xcc\x23\xc1\x44\x80\x85\x62\xb7\x87\xac\xa2\xb7\xbf\xcc\x8b\xce\x6c\xc8\xf0\x50\x08\x20\x92\xb3\xdc\x93\x51\x0c\x47\xfa\x13\xe1\x95\xb4\x32\x8a\x8a\x02\xf0\xa6\x96\xa4\xd2\x76\xce\x15\xee\x7e\xab\x5f\xfb\x8e\xbb\xfc\xa7\xa0\x94\x2f\xe6\xaa\x85\x92\x42\x44\x3a\x40\x3c\xd4\x2d\x08\x8d\x2d\x90\x9a\x5e\x5f\xdc\xe4\x77\x48\xa7\xb8\x13\xb4\x50\x73\x68\xba\x0f\x98\xc3\xe2\xe9\x33\x6c\x0b\x87\x7f\x33\x60\x8a\x12\x4b\x4c\x9e\xaa\xc0\xbc\xe5\xfa\x93\x5b\xe8\x3c\x38\x8a\xfb\x13\xa2\x7a\x97\xb9\x33\xa7\x35\x43\x6d\x18\xa8\x90\x8c\xf1\xa9\xe8\x75\x10\x9b\x8c\x70\x63\x5c\xa0\xb2\xb9\x2b\xc3\x0a\xa7\x8c\xe0\x85\x7e\x17\x59\x22\x35\x41\x54\x7b\x3f\xe5\x7d\x99\x84\xa1\xc6\xd6\xdd\x59\xda\x06\xb0\x1a\x28\x57\x86\x31\x92\xa7\x18\x4d\x5b\xf1\xca\x3d\x8e\xf5\xa3\x81\x60\x04\x4e\x40\xf3\xa2\xde\x7e\x86\x90\x8f\x8a\x19\x6c\x07\xcc\xaf\x39\x54\xed\xeb\x7f\x8d\x9c\x51\x32\xab\xf5\x50\xd5\xeb\x67\x93\x6e\xe8\xde\xd1\x10\x35\xb3\x93\xda\x38\x72\xde\x36\xb8\x90\x57\x58\xbd\xcd\x19\x32\x28\xb2\xc9\xf8\x34\xe6\xb5\xd3\x89\x06\xdb\xc8\x05\x32\x48\x54\x89\x6c\xcd\x8c\xf2\x83\x58\xed\x18\x73\xa8\x15\xb2\x61\x16\x00\xc0\x3a\xd6\x23\xc0\x60\xb1\xb2\x90\xbd\x4d\xbb\x0e\x30\x28\x16\x1b\x8f\xda\x3c\x42\x7c\xe2\x3a\x63\x83\x94\x7b\xd7\x88\x01\x0c\x48\x6e\xec\x3d\xff\xa9\xeb\xa8\xf1\xc6\xc1\x9c\x06\x05\x96\xca\x09\xb8\x91\x7a\xcc\x89\x6a\x41\xa3\x15\x6e\x06\xc8\x44\x66\x58\x9f\xdb\x0b\xd7\xa8\x32\x63\x5e\x94\xa3\x84\x9f\xf9\xc1\x75\x57\x4f\x82\x14\xcc\x51\x88\xb6\xf8\x09\x65\xc9\x01\xc8\x69\xf5\xf2\xf4\x8b\x88\x94\x5a\xbf\xf3\x4d\x83\xc2\x6b\x42\x25\x7d\xf8\x28\x27\x1b\xe6\xa4\x29\xe2\xc2\x75\x11\x75\x7c\x18\x8a\xa9\xa9\x62\x32\x08\xa0\xea\x51\x0e\xb4\x0d\xee\x49\xde\x06\xce\xd2\x84\x3d\x32\x94\x8f\x70\x7d\xe6\xd8\xb7\x61\x33\xc6\x57\x86\x69\xfc\xa4\x13\x39\x53\xde\x7f\x5e\x41\x9e\xfd\xaa\x14\x3c\xb7\xa4\xde\x99\x06\x6a\x88\xe2\x1c\xce\x97\x07\xd8\xc1\x38\xd6\x78\xa7\xf7\xd6\xbe\xfe\xff\x28\x6e\x53\x21\x98\x08\xf3\x87\x6d\x4b\x9b\x72\x79\x8b\x6c\xce\x7b\xd8\x1e\x98\x8b\x1a\xb8\xd2\xe3\x23\x8f\x43\x09\xdb\x70\x2e\x44\x9e\x7a\x6e\xec\xed\xa5\xc9\x26\xbe\x61\xb9\x94\xf6\xf6\x67\xd3\xe9\xbb\x55\xbc\x1f\x8b\x86\x09\xa8\xc4\x51\xd1\xd3\x85\x45\x4e\xac\x5c\x8e\x95\x4c\xba\x36\xb7\xd2\x5a\x54\x69\xe2\x10\xeb\xbb\x3a\xd9\x49\xae\xf7\x66\x2e\xf7\x8e\xb1\xf7\x2b\xa8\x7c\x0c\xe3\xea\x1e\x0d\xd9\x0b\x3c\x9a\x1c\x50\x7d\xcb\xa0\x6f\x12\xd9\x14\x8e\xa4\x99\x9a\x7a\xe6\xb2\xc0\x9f\xac\x01\x75\xcb\x56\xa9\x96\xa0\xf1\x3e\xd5\x3f\x17\x0e\xf1\x79\xb1\xfe\x4f\x4f\xfc\x03\x13\xea\x7f\xcc\xbb\xe8\xde\x29\x08\x37\x8b\x89\x95\x12\x86\xde\x05\x26\xdb\x55\x86\x10\x59\x3d\xc6\x3e\x86\x61\x61\x1f\xbe\xbe\x4d\x92\x87\xf6\x8b\xa1\x7f\x05\x01\x8c\xbe\xc8\xa4\x94\x8c\xa2\x32\xe0\x49\x4e\xdf\x03\x92\x17\x8e\x91\xb3\xcc\x18\xd5\x45\xf6\xa2\x34\x29\x89\xf7\x35\xf6\x47\x37\x5d\x5e\x7d\x97\x09\xba\x9d\xe6\x4e\xe5\x2f\xd9\xe7\xf0\x1d\xac\x37\xcc\xe5\x47\x31\x93\xf3\x81\x19\xf9\xaf\x47\xaa\x68\xa2\x83\x3e\xad\x55\x53\x0c\x14\xfc\x12\xbd\x5b\x77\x8c\x81\x9c\x77\x2b\x94\x54\xb2\x55\x00\x65\x72\x4f\x72\x6a\x36\x1e\x2d\x70\xf2\x34\x24\xb8\x58\xcf\x9f\x32\xea\xb2\xa3\x25\xd3\x16\xdf\x2f\x01\x69\xda\xf8\x26\xb8\x83\x92\x39\x95\xd3\xb7\x65\x90\xcf\xf7\xd5\x96\x02\xd8\x6a\xf3\xb1\x62\xcf\x6d\xe6\x4e\x2e\x5a\x9d\xa2\xc6\x3a\x8d\xce\xc4\xf7\xcf\x1c\x71\x30\x1d\x73\x9b\xef\xde\x1b\x8a\x85\x2c\x7d\xac\x4a\x15\x79\xfe\x18\x13\x0e\x38\x9a\x6c\x7e\x64\xb2\x17\x01\x68\xb6\xa0\xab\xa4\x01\xb8\x9d\x26\x23\x93\x18\x38\x48\x1d\x1d\x00\x56\x9f\xa0\x08\xf7\x5a\x0e\x73\xf4\x8f\xbb\xa8\xdf\xca\x64\x6f\x5f\x1f\x20\x2e\x75\xad\xe9\xf6\xf1\x53\x89\x23\x97\x13\x09\xab\xd4\xf6\xca\xc4\xe1\x69\x1e\x8a\xf3\xc1\x54\x96\x09\x6e\xbb\x19\x56\x4a\x14\x2b\x0c\xbc\x03\x81\x6a\xb6\x1b\xfb\xa4\x8d\x83\xb8\xd2\xd8\x73\xb2\x48\x3d\x12\x19\xf0\xab\xfa\x04\xf5\x1b\x68\x6b\x95\xd8\x4f\x83\x23\xc1\x83\x14\x82\xdf\xd4\x0e\x68\x9c\x37\x96\xf6\x17\x92\x82\xd4\x98\xd5\x51\x1e\xfb\xca\xc2\xe2\xde\x91\xb1\x3e\x44\x7a\x83\x73\xfa\x93\xc8\x2c\xb5\x03\x30\x24\x9e\xb0\xcd\x29\xe2\x74\x71\x95\x48\x25\x69\x99\x5e\x1d\x44\x70\x65\x16\x87\xf4\x73\x83\x76\x3a\x75\x19\x97\x16\x47\x81\x5c\x10\x75\x43\x9a\x8b\x74\xf1\xc8\xc1\x82\x9a\x69\x08\xf9\xbd\x01\x7f\xf0\x2c\xd2\x77\x05\xc6\x26\xe4\x7f\x2f\x66\x19\x74\x95\x50\x9c\x2a\x2b\xc6\x78\x3a\x63\xb1\x33\x8c\x83\x50\xdf\xe7\x33\x3f\x1a\x2d\x85\x99\x5a\x5c\x4b\x85\xca\xe5\x5e\x53\x0f\x7b\x2f\x89\x63\x32\x05\x53\xef\x3b\x36\xf7\x79\xf6\xec\x14\x05\x1d\x9a\xba\xa4\x8f\x90\x36\xd0\x8d\x60\x7d\xf5\x7d\x40\x7b\xbf\x0a\x5a\x1b\xb0\x0f\x5a\x65\x00\xa6\xa9\x77\x53\x86\xec\x2a\x71\x15\xf1\xe1\x73\x2e\x9c\x50\xd7\x37\xf8\x58\x3c\xd9\x1a\x23\x1a\x0c\xda\x0e\xb6\x53\xdc\x79\x43\xa0\x82\xdc\xca\xf3\x18\xf1\xf0\x23\xd0\xd4\x8b\x25\x3b\xbd\x7a\x03\x5d\x3f\x91\x05\xf9\xaf\x1f\x89\xf2\x5d\x8e\x6d\x6b\xb1\xc5\x45\x57\x3b\xf5\x02\x40\x03\x7c\x6f\xa6\xad\xa0\xc2\x0d\x52\x5b\x9c\x72\x7d\x3c\xa9\x29\x30\x36\x9f\x8b\x5d\x6f\x54\x20\xee\xac\x1a\x55\xba\x7a\x88\x6c\xf3\x29\xc7\x88\xbe\x82\xcd\x3f\x1b\xf8\x07\x7a\x57\xdd\x04\xc8\x43\x31\xd3\x3b\xca\x8a\x23\x6e\x85\x0c\x8d\x25\xe4\x98\xdd\x7c\xe0\xa2\x99\x90\xb0\xc2\xc6\xa1\x24\x44\x04\x6a\x6c\x59\xd7\x2b\xb0\x95\x20\x6b\xe3\x76\x30\xf4\x00\x29\x6f\x63\x9c\xae\x2b\x46\xae\x18\x50\x82\x05\x44\x5a\x7b\x8b\x40\xbf\x78\xa2\x2c\x5b\x7b\x65\x7c\x38\xb5\xa7\xc9\x82\x0f\x0d\x8d\x48\x42\x4f\x1e\x41\x5c\x3c\x73\x62\xc5\xdb\xb1\xb4\x04\xb3\x28\xa1\x24\x16\x98\x6f\xdd\x5b\x1f\x20\xcd\x57\xac\x5c\x35\x55\xea\xcc\xfe\xc2\x46\xaa\xad\xaf\xc9\xfc\x65\xcc\xf8\xc9\x4c\x3e\xe6\xfa\x62\x4c\xf2\x20\x48\xce\xba\x9d\x2d\x82\xe0\x4e\xb6\x0e\xa1\xe5\x0c\xe4\x69\xef\xa3\x00\xee\x45\xb3\xac\x7e\xe9\x35\x86\x25\x94\x78\x5f\xa2\x58\x60\xc2\x82\x87\x01\xbd\xe1\x65\x8e\x6e\x9a\xad\x54\x37\xf7\x12\x14\x70\xb5\x38\xba\xf6\x7b\x0a\xce\x16\xed\x79\x36\x97\xd2\xe3\x4e\xbe\x9c\xe4\xbb\x12\x6b\xf5\x93\xce\x31\xb7\xb1\xd5\x8c\x5d\xaa\x87\xcf\xb0\x58\xc2\x9f\x22\xfa\x65\x12\xdd\xbe\xf9\xcc\x95\x08\xc9\xa0\xfa\x10\x86\x1d\x27\x92\x23\x81\x4b\x45\xb8\xd0\xe4\x5e\xee\x1a\x14\xba\x0f\xed\xbe\x28\x8f\xee\x36\x20\x91\xf3\x0e\x54\x5a\xe0\x48\x63\xaa\x69\x5d\x08\x26\x70\xba\x03\x57\xf4\x75\x28\x66\xcd\xcb\x8d\xf2\x67\x21\x96\x2c\x9c\xef\xc3\xcf\x4e\xd9\x1a\xe4\x7d\x95\x56\x25\xa4\xd8\x41\x4b\x5f\xd7\xc4\xbf\x37\xf7\xa2\xe6\x09\x17\xbb\xaf\x28\x7a\x99\x12\xf5\x77\xb2\x66\x3b\x4d\xed\x29\x77\x39\xb7\x95\xb0\x6c\x35\xce\x31\x59\x94\x12\x45\x14\x6e\xd5\xc8\x04\x19\x2a\x55\xe9\xfe\x20\xa0\x7a\xf2\x19\x4f\x78\xce\x87\x1e\x41\xc1\x1d\x56\xdf\xa0\xec\xbd\xaf\x7b\x82\x62\x24\x64\xcf\xaa\xaf\x31\x8b\x08\x7d\xfb\xe2\xfe\x71\x6b\xf5\x0f\x96\x0f\x8c\x53\x96\x16\x85\xcf\x90\xb4\x49\xff\xa1\xe6\x20\xb6\x22\x46\x13\x0f\x8e\x00\xa7\x9d\x9d\x5a\xc1\x98\x97\x07\x10\xb3\xaf\x95\xe5\x2d\x6c\x0a\x4f\xfe\x76\x8e\x9a\xc0\xf9\xd4\xee\x51\x6e\x36\xd9\xd3\x2a\xd4\xdd\xe1\xe3\x53\xc0\xe5\x2b\x17\x23\x38\x8d\xa1\xec\x21\x82\x2f\x40\x48\x8e\xbd\x16\x89\x1a\x28\x79\x13\x23\x70\x2b\xcf\x36\x3a\x9d\xdd\x6c\xae\xcd\x77\xa1\xec\x26\x77\x74\xd8\xc0\xf6\xfe\xb7\x1d\xab\xef\x37\xaf\x18\x2a\x6c\x39\xb0\x5e\x72\xdb\x69\x8c\xfc\xdb\xe2\x90\x80\xae\x97\xcc\x3c\xb5\x4d\xb7\x9e\xf0\x68\x4a\xe1\x0c\xe6\x1c\x56\x18\x47\xfd\x7a\x71\x38\x83\x64\xf0\x5c\x7b\xd6\x94\x94\xba\x94\x18\xff\x80\x91\x17\x6b\x9a\xaf\x67\x01\x74\x3f\x6b\xc2\x4d\x35\xdb\x31\x80\x73\x1f\xa6\xec\xca\x3e\xfb\xe3\x1d\xd3\xa4\x44\x78\x67\x00\xd6\x62\x0c\x63\x1a\x6e\x20\x6b\x1e\x90\x88\x24\xf7\x47\x6c\x56\x59\xfa\x8b\xb3\xd7\x83\x2d\x4a\xc2\x89\x3e\x34\x70\x22\x3d\x08\x0d\xf9\xa5\x1d\x12\x8b\x91\x54\x5b\xa6\x77\xba\xec\x4b\x76\x20\x88\xd7\x86\x90\xbc\xef\x9f\x9b\x55\x5f\xa0\x4b\x40\x0e\x31\xa5\xc5\x28\x70\x59\x82\xea\x6e\x9c\x62\x60\x8e\x05\xcb\xdb\x3c\xa8\xe2\x95\x22\x78\x6a\x8b\x85\xbf\x7e\x7d\xb6\xad\x97\x6b\x1a\x25\x08\x3f\xc4\xfd\x14\x15\x94\xc7\x3a\xbc\x8c\xe5\xca\x58\x24\xe8\xc5\xbd\x46\xe6\x6a\x31\xdd\x9d\xcb\x60\xc1\x57\xc7\x3f\xa0\x94\x81\x50\xe9\x08\x84\x45\x7f\xa9\xea\x3e\x11\xd5\x8a\x1a\x51\x6a\xac\x3f\x3f\x99\xeb\x80\x9c\x5a\xd2\xe7\xe0\x18\xe6\x59\x3f\x60\x61\xbb\x36\xfd\x13\x0d\xaa\xe2\x64\x2d\x20\x85\x21\x16\xa3\x50\x2f\x32\x64\xd9\xd3\x0e\x48\xa6\x1e\x65\xe0\xd2\xc0\xf8\x1a\x0f\xd1\x3f\x31\xfe\xb8\x9a\x9a\x15\xcd\x93\x4b\x51\xb4\xd3\x42\x2b\x7c\x3a\x70\xeb\xac\x05\xd0\x99\xc1\x36\x17\xa6\x48\xf6\x1f\xf4\x5a\x18\x54\x96\x02\x9f\xdc\xfa\x64\xeb\xe0\xd5\x47\xed\x75\x30\xcc\xdd\x07\x88\xd8\xb7\x0c\x11\x81\xd2\xb7\x22\x5a\xcc\xc1\x6e\x3b\x78\xc4\x96\x67\x50\x6f\x6c\xfa\xd6\xe5\x5e\x4a\xf3\xea\x0d\x77\x22\x43\xc9\xc2\x69\xe8\xe8\x83\x9c\x83\x74\x09\x02\x9d\x73\xd2\xb8\x8c\xb1\xb8\xb5\x5a\x15\x88\x9a\xb1\xfe\xa3\xce\xc6\x37\x19\xbf\x1a\x3d\x60\x17\x2a\x4b\x8d\x93\x74\xaf\xaf\xe9\xa8\xb6\x87\x5d\x7d\x6b\xcb\x00\x6a\xe4\x78\x4a\x4b\x32\x25\x49\xec\x0c\x7b\xe1\x52\x1c\x3b\x74\xe4\x66\x56\x66\x03\xf6\xef\xb9\x6d\xe2\x34\x4f\x6b\xeb\xb7\xf3\xbb\xd8\xc7\x65\x27\x4d\x2a\x01\xe6\x92\xad\x22\x8b\x9b\xca\x58\x22\xcf\x3d\x94\x31\x11\xac\x2c\x38\x0c\xe0\xb5\xe0\x53\x47\xc7\x1e\x5e\x92\x1c\x6e\xb5\x17\xc7\x6f\x8d\x36\x09\x13\xf6\x33\xcd\xbd\xe9\xd6\x46\xf4\x54\x0d\xcc\xc6\x2e\xb6\xf7\xde\xec\xf9\x98\x0c\x80\xcf\x5a\xbc\x27\x8c\x4c\x8c\x5d\x0e\xa1\xcb\xf6\x7b\x7a\xd1\xa9\x82\x72\x35\x45\x25\xbd\x28\x0b\xdd\x9b\x59\x33\xf6\x2e\x12\x25\xc3\x60\xaf\xde\x91\x7c\x9a\x95\x5d\xc7\x2b\x62\x60\xb0\x4d\x89\x91\x2f\xf5\x43\x41\x26\xd4\xf5\x4f\x0c\x57\x88\xee\x43\x0b\xf0\xbd\x34\x64\x6a\xb1\x56\xff\x13\x66\x21\x5e\x98\x7b\xfd\x11\x39\xb9\xaa\xb6\x6e\xd6\x6e\x54\x19\xe8\x1c\xc5\x78\xec\x78\xb0\xbe\x43\xc8\x2d\x21\x52\x42\xc0\x06\x54\xe3\xf9\xd4\x4d\x4d\x13\x13\xbc\x02\xee\xea\x19\x25\x97\x90\xe0\x35\x7c\x73\x99\x16\x31\x3b\xf2\x83\xc5\x1d\xce\xfa\x05\x03\x85\x6e\x31\x45\xed\xb9\x46\xad\xf7\x3a\x9c\xa4\x02\xc5\x40\xec\xeb\xa6\xaa\x6b\x8d\x47\x26\xed\xef\x0d\xd3\x50\xff\xeb\x28\x8c\xd4\xaa\xc3\xa7\x8b\xe7\xef\xc6\x86\xad\x4c\xb0\xad\x04\xd2\x5a\x9d\x33\x87\x73\xe3\xe9\x9c\x54\x1f\x84\x08\xda\x1d\x53\x32\xf5\xe2\xec\x7b\x45\xb4\x46\x09\x10\xfc\x38\x1f\x01\xde\xf1\x84\x3f\x9b\xd3\x20\xc9\xc1\x2d\xb6\xa0\x83\xc2\xa4\xd7\xc7\x88\xa9\x9c\x66\x1c\x89\x85\x2e\xc9\xf0\xb9\x66\xf6\x48\xb3\xe3\xb8\x52\x7e\xd9\x9c\x78\x0e\x73\x3a\xa0\x07\x71\x98\x31\x13\x1f\xe4\xd2\x28\x91\xd1\x92\x05\x12\xc3\x7d\x4d\xb6\xac\x8c\x03\xab\x0f\x24\x36\xce\xf5\xbe\x50\x09\x1d\x7b\xa5\xf6\x42\x55\x93\x12\xb9\x18\xcc\xbd\x35\x4c\x61\xdb\xeb\x0b\xca\x76\x52\x50\xa6\x08\x0e\x35\x8b\xc8\x57\x53\x91\xc9\x2e\x1f\x0e\x91\xe0\x03\x6c\x5c\xe0\x50\xc5\xe2\xac\x6e\xc1\x20\xe0\x67\xac\x0f\xcd\x81\x55\x93\xab\x87\x56\xb3\x78\x1d\x14\x9b\xbe\x12\x6f\xa3\x97\x7d\x47\x19\x73\x81\xcb\xc1\x67\x29\x51\x00\x10\x5f\xf5\xc5\xe2\xcf\xa0\x47\x19\xd3\xb8\xe5\x56\xd0\x93\x25\x77\xf6\x22\xb3\xe9\x7a\x27\x22\x45\xb0\x86\x3b\x47\x69\x7d\x6e\x8c\xe8\x71\x35\x8c\xba\x27\x57\x3f\x90\x2a\x5c\xcc\x0b\xa7\xdb\xbd\xf9\xb9\x25\x94\x3c\x6d\x43\x90\x78\x16\x96\x7f\x4e\x64\xe2\x1c\x96\xa7\xfd\xe8\x55\xd6\x97\xbc\x26\x43\x6f\x93\xa2\xe2\x17\xe9\xb2\xc5\xa1\x8d\xf4\x8b\xfc\x5b\x7c\x1d\xd9\xf6\x81\xbe\x15\x12\xd7\x5c\xab\x70\x9d\x31\x15\x6e\xc7\xb6\x88\x56\x22\xd2\x0f\xe3\x56\x48\x06\xd2\xcd\x4e\xda\x6d\x69\x4f\xe8\x17\x2c\x1f\x33\x4e\xbf\xac\x56\x42\xc5\x9a\x34\xd7\x50\x19\x80\x30\x96\x07\x90\x92\x76\xa7\x03\xfe\x9b\xec\x2d\x38\x39\x8f\x4a\x47\x9b\xc0\xdd\x19\xe0\xa7\xc9\x58\x3a\x64\x9a\x36\x78\xc1\x6f\x00\x38\x15\x27\x53\xd6\x5e\xfd\x22\xb2\x5a\xa5\xcb\xee\x98\x84\x95\x00\xbc\x9f\xeb\xac\xe2\x48\xa5\x35\x14\x9b\x98\x10\x22\x06\x78\x88\xee\x58\x88\x07\x59\x06\x92\x45\x02\xbe\x27\xf8\x85\xfe\x95\xda\x18\x75\x67\xba\x47\x96\x67\x62\x22\x4d\xe2\xb3\x5d\x22\xfa\x0b\xda\xc7\x07\x70\x32\x6a\xf0\x76\x00\x65\x6b\xe7\x8c\xce\xf4\x11\xe5\xe5\x87\x0f\x66\x3d\x22\x45\xd0\xb2\x8b\x82\xe5\x46\xf8\xdf\xe8\x8f\x0c\xf4\x8d\xf1\xf7\xad\x82\xf0\xc0\xdc\xf8\xb1\xec\xa4\x39\xc1\xb6\xdb\x19\x83\x27\x58\x5a\xee\xf9\x94\xd9\x35\x6a\xa3\x44\xdb\x42\xe9\x78\xc3\xe4\xf5\x8b\xb1\x7c\xa2\xc4\xa1\x94\x49\x23\x0c\x74\x27\x4a\x0f\x90\x52\x42\xf5\x03\xc3\x4a\x56\x68\xfa\x04\x61\x6b\xcb\xc1\xb6\x06\xf8\xf2\x5a\x56\x13\x76\x10\x9e\x36\xe7\x3c\x56\xc0\x56\x8d\x64\x54\xd4\xce\x2e\x84\x97\xed\xf8\xb5\x2a\x36\x80\xf6\xb9\x1c\x52\xa7\xd3\x0b\xd6\xd1\xa9\x8f\x15\x20\x61\x32\x28\xeb\x03\x9e\x40\x33\x5a\xb9\x44\x22\x27\x1f\x7a\x30\x79\x15\xbc\xb6\xff\xe3\xe1\x7c\xa9\x3e\xcd\x89\xd6\x24\x56\x02\x6f\x01\xb1\x3f\x54\xcb\x9e\x26\xb7\x16\xe5\x77\xc4\xb4\x18\x45\x56\x4d\x6f\x31\x88\x5c\x46\x9c\x2d\xb3\x14\xe3\x48\xce\xec\x5d\x58\x41\x10\x2a\x11\x0e\x71\x3e\x09\xee\x9b\x05\x75\x79\x6e\x7b\xd9\xbe\x74\x11\x29\x02\x66\x00\x03\x64\x8b\xb5\x80\xcd\x99\x75\x50\x8d\x8d\x1b\x97\x0c\xea\x99\xfa\x9d\x93\xfb\x9e\x1e\x9a\xcb\x3d\xba\xd7\x32\x00\xf7\x59\x76\x35\xc4\xda\xa0\x80\x88\x85\xff\x96\x5e\x63\xb6\xdd\x37\x3d\x1e\x3c\x27\x3b\x1a\xa0\xbf\x07\xc2\x67\x06\x28\x43\x0d\xfa\xd8\x8b\xdf\x8c\xa3\x93\x4a\xdf\xf4\x03\x3f\x3d\xaf\x56\x9b\x3e\x2d\xf3\x88\xfb\xb1\xa9\x22\xcf\x27\x1b\xcd\xb8\xb6\xe4\xdb\xcb\x1a\x25\x00\xa3\x6a\xdd\xc4\x51\x74\x8a\x18\xca\xfc\x67\x46\x5b\x8f\x04\xde\xa8\x3a\xb3\x0c\x09\x9f\x20\x9a\xe1\xda\x73\xef\xcb\x13\x60\xee\x1c\xb3\x90\x75\x24\xb6\xe1\x27\x82\x76\x0b\xf0\x00\x3a\xf1\x94\x83\x1d\xcc\xe4\x7a\x25\xb0\x4d\xc5\xb5\xf6\x50\xb4\x18\x42\xf0\x9a\xfb\x61\x5b\x12\xbc\x6c\x85\xe7\x37\x04\xe0\xd3\xc8\x68\x03\xf8\x60\x85\xa1\x01\x20\xc7\x70\xb6\x64\x53\xa4\x8b\xc5\x88\xaf\x38\x47\x99\x76\xbb\xb3\xa9\xc5\x0b\xfc\x5c\xe3\x32\xb1\xfa\x46\xd3\x55\xbb\x03\x5a\x45\x01\x9e\x29\x97\xc5\x38\x82\xea\x61\x8a\xbf\x7a\xd9\x7a\x7a\x4a\x5d\x28\x2b\xa9\xf0\x96\x1b\x85\x71\x5f\x72\xc2\x45\x9a\x91\x26\xdf\xd9\x24\xad\xd0\x30\x1e\x08\xab\xc1\x1f\x16\x8f\x3c\x7c\x64\x26\xf2\x18\xff\x5c\x18\xef\xc7\xda\xb9\x5d\x93\x9e\x2f\x50\x72\xef\x68\xdb\x74\x14\x84\x32\xe6\xa6\xb6\x42\x03\x1f\x08\x4a\x33\xff\x6e\x32\xe8\x04\x86\xf9\x26\xf1\x43\xf2\xd0\xb0\xb6\x0b\xec\x40\xb2\x6e\x1d\x83\x61\xcf\x48\x10\x83\x51\x25\x83\x37\x56\x59\x9b\xa9\xb6\x39\x90\xc0\xd1\xb2\x51\x4e\xdf\xcd\xae\x91\xe2\xa8\x3d\x5c\xe1\x43\x96\x12\x15\xa5\x44\xc2\xdb\xbb\x83\x9b\xac\x05\x70\xb5\xbc\x0a\x61\xde\xc4\xe7\xae\x3f\x89\x00\x5a\x66\x1e\x89\xd8\x79\xf2\xcb\xd7\x2e\x2a\x66\xdf\xa8\xd3\x49\x89\x74\x9b\x8b\xe1\x1c\xfc\xf4\x37\x2b\x8b\xe2\xaf\x03\x1c\x63\xa6\x07\x92\x25\x3b\xb3\x88\x89\x02\xb5\x71\x04\xc9\xf8\x2d\x0e\x4c\x86\x8c\xec\xc4\xc2\x9c\x8e\xa3\xd2\xbc\xc8\x6b\x94\xb0\xc6\xf9\x42\xf5\x0e\x3f\x2e\x20\xc4\x84\x28\x3a\xea\xbd\x37\xc0\xe7\x23\x19\xf9\x45\xb7\x4f\x7f\x65\x7e\x6d\x50\x6e\x4f\x16\x0f\x25\xde\xb9\xbc\xff\x46\x05\xb9\xe2\xac\x77\x64\x5e\xcd\x3d\xf6\x37\xc4\xd7\x39\x40\xdd\x7d\x9f\x2a\x55\x9a\xc1\x78\x85\x03\xb4\xb7\x43\xec\x68\xea\xba\xde\x85\xc6\xf7\xcf\x61\x8f\x00\xa4\xff\x29\x42\x0a\x94\x44\xb3\xdc\xa3\x66\x2d\x90\x4d\x2d\xeb\x12\xdb\xfa\x1c\x3f\x0c\x7b\xcd\x5d\xd6\x51\xa8\x88\x9b\x18\x34\x18\x94\x57\x2c\x5a\x07\x88\xe8\x3c\x3f\xe2\x32\x49\xf7\xa2\x2f\x5e\xac\x47\x03\xa8\x93\x54\xc0\x6c\x45\x6e\xe3\xc4\x49\xa6\x94\xf4\x86\xb6\x58\xa0\x7d\x00\x21\x9b\x0a\xd8\xaa\xc2\x39\x6f\x3f\xe3\xb9\xe4\xb7\x95\xb8\xb9\x6f\x21\x9a\x3b\x40\x77\x16\x44\x80\x94\x66\x2a\xa2\x59\x00\xca\x2c\xb1\xe1\x4b\xbf\x4e\x13\x55\xf4\xb4\x58\x72\x23\xf5\xbe\xad\x3f\x53\x03\xa4\xb4\x7e\x2c\x1b\xc9\xaa\x85\xd4\xf8\x45\x14\x6b\x74\x5e\xc6\x53\x87\xf8\x1c\x92\xbc\x23\xc3\x03\x0c\x3e\xe3\x7d\x89\x87\x25\x56\x46\x89\x3a\x40\xe6\x16\x31\x93\xbe\x60\xe0\x40\x7c\x88\xe1\x51\x65\x36\x9d\xb3\xaa\x92\x96\x03\x6f\x41\x89\xfa\x57\xec\x52\xae\x89\x86\x33\x81\x88\xb7\xbf\x8b\x70\xed\xbf\x4f\xb4\x1a\xac\xd1\x47\x0c\x2d\xd0\xd0\x4c\x42\x0e\xe5\x73\xda\xa2\x9e\xf5\x48\x4a\xc7\x2d\x4a\x1f\x47\xd9\x2a\x75\xd9\xb8\x84\x0d\x31\x97\x5b\xe1\xf5\x70\x0b\x61\xad\x77\x9c\x63\xaf\x9c\xb1\x38\xbf\xa5\x66\x55\x3c\x64\x4f\x60\x1b\x85\x51\x8b\x2d\xea\xe7\x00\xea\x2d\xca\x0d\xc3\x1d\x31\x44\xba\x3f\x32\x42\xd0\xae\x39\x03\xcd\x9f\x14\x40\x90\xa0\x88\x97\x17\x92\xcc\x29\x84\x46\x14\x46\xb5\x2e\xb2\x2a\xc5\x6a\x4d\x13\x1a\x7b\xf4\xe3\xdf\xdc\x14\x71\xa2\x3b\x06\x01\x9e\x72\xdd\xff\x9f\x7c\xbe\x91\xcd\x13\x5e\x9a\x43\x99\x73\x1b\x8f\x38\x99\x90\x0a\x99\x5a\x43\x26\x55\xd8\xba\xc3\xb4\x45\x73\x42\x99\xa3\xbe\x4d\xcb\xb7\x07\xdd\xcc\x32\x8c\x81\xf3\xac\xc6\xbd\x25\xf2\x89\x26\x91\x1a\xeb\xf6\x8e\x4a\xee\xc8\xc7\xf1\xe0\x20\xd6\x6e\x14\x4a\x49\x55\xe4\xdc\x69\x3d\x58\xa4\xff\x4e\xd6\x7d\x54\x3c\x1d\xde\x2a\xfb\x2f\xa3\x92\xa6\x9f\xeb\xe9\x0f\x70\x64\x73\xd1\xc3\xed\x45\xa0\xda\x3e\x93\x02\x51\xba\x71\x9c\x76\xba\x2c\x46\x20\x14\xd0\x62\x88\xfd\xdc\x0c\xb7\xb3\x14\x53\x3b\xbd\xe9\xd9\x5f\x14\x31\xd9\x39\x73\x82\x69\x5b\xb3\xf2\x35\xc2\x2e\xe2\x95\x94\xce\x75\x36\x5b\xca\x54\xee\x86\x0b\x22\x56\x75\x14\x49\xf6\xde\xd4\x8d\xa2\xb2\xfc\x69\x7e\xd1\x28\xdb\x7e\x49\xb8\xe6\x09\x31\x79\xce\x29\xb9\x4d\x49\xd2\xd9\x29\x84\x7b\x17\xc0\xff\x92\x26\x61\xee\x9a\x1c\x91\x4f\xcc\xa6\xcd\x77\x7c\x70\x8b\xa9\x01\x6e\x38\x71\x94\x67\x02\x26\xfb\x74\xa6\x19\x3b\x62\xa1\x7f\xf4\x40\xc9\x1d\x92\x96\x5d\x7d\x02\x45\xa5\x44\xbd\xc4\x75\xd4\x13\x52\x4c\xde\x65\x01\xd4\xa3\x1a\xd7\x83\x8e\xf0\x64\x00\xd1\x02\xf9\x1a\xbd\x11\x5c\xe8\xef\x60\x43\x27\x35\x7c\x00\x82\x53\xf9\x52\xe9\x04\xcc\xbf\xff\x3b\xe5\x36\x22\xc5\xb3\x67\x3a\x1c\xac\x88\x05\xef\xee\x84\x26\xe5\xf0\xf1\x48\xa4\xac\x71\xe4\x08\x9f\x4f\x2c\xdb\xda\xb4\x5f\xb2\x78\xf8\x7b\x37\x24\xa3\xfc\xad\x30\xe0\x70\x23\xf8\x3d\x03\x76\x81\x1f\x74\x0f\x8c\x31\x21\xed\x23\xd4\xcc\x49\xc5\x7f\x94\x64\x69\x95\x30\xe9\xd8\x54\x9d\xee\xe7\x18\x5c\xd9\xea\x5c\xaf\x4d\xfd\x5b\x27\x02\x0a\x11\x2f\x4c\x82\x00\x54\x32\xd3\xe0\xc0\xc1\xd5\xec\x5e\x55\x2b\x60\x52\xa6\x07\x2d\xb2\x28\x1a\x3d\xf0\x96\xfe\x7e\x73\xa4\xb4\xe5\xeb\x1c\x7c\x38\x8d\x06\xac\x92\x6b\x0b\xd9\xa0\x13\x95\xa9\xfd\x73\xe3\x61\x07\xbd\x8c\xcd\x33\x32\x8a\x86\xd5\x0a\xd6\x18\x9d\xf1\x9b\xeb\x9d\x38\xb6\x88\x38\xc7\xb8\xee\x84\x65\x4c\x39\x9f\xe7\x13\xad\x29\x28\xe1\x87\xc8\x91\x6e\x2b\x6f\x06\x38\x04\xf1\xb6\xb1\x21\xa3\xd2\xa8\x48\x6d\x45\x7d\xed\x16\x97\x9b\x7f\x0c\xa2\x6d\x86\x63\xc5\x04\xf4\xc8\x43\xac\xba\x30\xf1\xcd\xfc\x6b\x90\x89\x83\xda\x9c\xf7\xb9\x15\x32\x45\x9a\x38\xdd\x17\x71\x30\x38\x0c\x71\xa1\xec\x6f\x64\xc9\x71\x32\xb7\x8e\xef\x21\xa5\xd2\x05\xf0\x37\x5b\x5e\x97\x0b\x7e\x71\xdf\x05\xec\xe8\x10\x10\x73\xd9\xf0\x35\x0b\x91\xea\xdf\x60\x9a\xe0\xb0\x5b\x91\x64\x6b\x24\x6b\x7a\x6f\x5d\x4c\xf6\xf9\x67\x84\x7c\xc9\x49\xb1\x83\xfa\xf9\xf7\xe2\x26\xe9\x3a\x18\x0c\xc8\x6f\xe8\x2c\xca\xc2\xa8\x59\x8c\xf0\x50\xb9\x5f\x13\x28\x70\x2f\xce\xe7\xae\xa4\xb7\xfe\x6c\xd8\x1b\x9c\x8f\xa7\x0a\x12\xd8\x4e\xdb\x6b\xa3\x8b\xce\xc2\x73\xf3\x09\x25\x6f\xd3\x08\xf0\xb9\x14\x80\x15\x6e\x84\xab\xf6\x0f\x59\xe9\x1f\xd0\xfc\xe3\x31\xf5\x91\x20\x7a\x1f\x8a\x7e\xec\x9d\x93\x6a\x71\x9f\xc9\xde\x53\x77\x2d\x9c\xa8\x10\x5c\xf7\x82\x98\x21\x24\x42\x00\xd6\xd2\x9b\x2c\x77\xe3\x3e\x0e\x36\xb3\xa1\xe3\x4a\x30\x77\x06\xde\x3d\x7a\x77\x6e\xac\xee\x2c\x1e\xdd\x9d\xb6\xee\x47\x01\x61\xbc\x19\x82\x8a\x70\x49\x6d\x66\x22\xae\xdf\x59\x6c\x4f\x5f\x9e\x4f\x9b\x4f\x7f\x00\x3a\xd2\x12\xff\xd8\x4c\x0b\x1d\x47\x4d\x23\xfb\x1a\x7f\xd7\x20\x7c\x03\x7f\x83\xae\x0e\x78\xf0\xe7\x7f\x52\xe2\x6c\xf5\x3c\xbe\xc8\x95\xaa\xce\x28\x88\x34\x2f\xe6\x3a\x9b\x51\x95\xe0\x36\xc5\xe1\x63\x93\xc6\x1f\xcb\x09\xaf\x01\x6a\xb8\xb1\x38\x8e\xe9\x05\x19\xd8\xc2\x9a\x61\xa7\xc0\x65\x1c\xdc\xc4\x51\x84\x46\x5e\x51\x97\x1f\xa1\x67\x95\xc7\x62\x58\x8b\x99\x8a\x07\x9d\xba\xae\xa3\xc3\x6e\x98\x91\xbc\xbc\xc9\x14\xde\xf0\x15\xb0\x93\x8c\x8a\xc5\x69\xff\x75\xfc\xe4\xbc\xd2\x30\xad\x6e\x91\xd8\x0f\x7e\xbc\xea\x2f\x04\x58\x2d\x95\x62\x84\x11\x31\x33\x13\x25\x88\x22\xcc\x7d\x6f\x8c\x8f\xd3\xf9\x02\x70\x26\x7f\xad\x8c\x1b\x43\x74\xa1\x6b\x9b\x75\x36\xee\xd0\xe4\xfa\xf2\x2c\x9c\x35\x1a\xdf\x5a\x7a\xb3\xdc\x83\x97\xa7\x59\x8e\x38\x14\x63\x61\xb9\x55\x82\x80\xfa\x4a\xb3\x4e\xf9\x1a\x36\x43\x5e\x56\xa2\x5e\xb6\x1a\x92\x42\xab\x58\x09\xdc\x70\x23\xbc\xef\x9d\x6a\x94\x44\xca\xb3\x20\x56\xf6\x19\x52\x1f\x31\xfd\x2b\x17\xd8\xa0\x4b\xc9\xb8\x69\x68\x12\x88\xd7\x54\xb0\x8f\x46\xfc\xe8\x31\x46\x77\xcf\xd1\x8a\x82\x62\x94\xde\xf0\x0f\x45\xaa\x66\x5a\x69\xba\xab\xd9\x9f\xf6\xfc\xa6\x46\x91\x67\x39\x72\x3b\x8a\x73\xfd\xb1\xea\xbf\xd2\xca\xbd\x49\x99\x7a\xc0\xde\x66\xa2\x07\x76\xb5\x47\x0c\x59\x2a\x4b\xd9\xe2\xf9\x8d\x7e\x84\x49\xf0\xa8\x04\x6c\xc0\x10\x29\x70\x54\xb7\x74\x09\x9f\xa4\xf1\xae\xdb\xe9\x14\xad\x49\x8e\xd4\x55\x1a\x38\x80\x9e\x83\x5b\x93\xb0\x85\xb8\x0d\xf1\xe1\xd3\x78\x85\x46\x73\xc5\xde\xc8\x62\x3b\xa5\x85\x06\x94\x5c\x49\xa9\x40\x45\x0e\xf2\xfb\x16\x75\x9b\x2c\x4c\x05\xe2\x0e\x2d\x05\x4a\x40\xc4\xbb\xb4\x48\x4b\x08\xa7\xbe\xd0\xe1\x43\x3e\x54\x2f\xbb\x0a\x2c\x1b\x1f\x70\xc3\x56\x5c\xe9\x05\xf0\x67\x86\xd8\x28\x19\x6b\x1a\x87\x56\xd2\xf6\xde\xfb\xbb\xfb\x34\x50\xd4\xf7\x3f\x44\xaf\x8e\x5b\x11\xf2\x04\xf1\x3b\x28\x78\x92\x65\xcd\x9d\xa7\x9d\xf8\x4e\xfb\xb1\xe0\xde\xa3\xfd\x2c\xcc\xdc\x0f\x38\xc9\xf8\xd3\xec\x21\x79\xf0\x94\xd8\xf4\x88\x60\x8c\xc1\x7b\xcd\x36\xf9\xd8\x2d\xc4\x79\xf6\xa9\x03\x6b\xdd\xa0\x81\x7f\x2a\xce\x3b\xf1\x8e\xa2\x61\x04\x32\xf5\x35\xaf\xa2\x5d\xa1\x3b\xed\x1b\x77\x74\xec\x78\x38\xc5\xf9\x50\x2b\xf8\x4e\x0b\xb0\x0f\x0b\xd7\xe0\x22\xba\xbe\x1b\x4b\x02\x23\xeb\xe0\x0d\x62\x2a\x90\x77\x16\xb5\xa3\xd0\x05\x6b\x8f\xda\xaf\x49\xd9\xad\x4f\x36\x0b\xb1\xf4\x88\x66\xe5\x75\xb0\x86\x2b\xeb\x0d\xb9\xaa\x7f\x8e\x41\xf6\xc8\x5c\xb8\x26\xe9\xdb\x54\xe7\xab\xc7\xef\x6b\x7e\xf0\xa3\xf1\x2d\x6d\xbb\xbb\xe5\x47\x41\xff\xa5\xe8\x7a\x02\x1c\x45\xc8\x12\xd0\x2e\x99\x11\x19\xb5\xa1\x8a\x22\x86\xb7\xe8\xd8\xdf\x0a\xdd\x04\xf9\xaa\x45\x4f\x7b\xcb\x2b\xdc\xed\x93\x3d\x8e\xd8\xbd\x68\x57\x70\xda\x51\xa5\xf4\x76\x94\x80\xc5\x1e\x87\xcd\x12\xfc\x5a\x76\x4f\x7d\x57\x6b\x56\x81\x20\x34\xa1\x61\x61\x09\xf6\xc5\x9f\x80\x78\x3d\x04\x52\xdc\x55\x93\xa1\x9a\x3b\x4f\xef\x3e\x2c\x38\xc2\xad\x87\x7e\xbf\x67\x3c\xdc\xa5\x36\xdb\xfb\xa6\x53\xb7\xb4\x69\x8e\xe3\xd0\x1b\x5e\x74\xb0\x44\x3a\x93\x77\xdc\x41\x44\xf0\x7e\x0f\x4d\x49\x5d\x1c\xfc\x5a\xb1\x62\x55\x3e\xe3\x93\xbf\x89\x72\x2d\xc5\xd1\x88\xcc\xf3\xad\x5d\xc7\xad\xca\x94\x05\xc5\xc2\x17\x3b\x82\x0f\x87\x3f\x9e\xa6\x92\x01\xac\xae\xb0\x5b\x6b\x1e\xdc\xf8\xda\x5b\xa3\xe8\xae\x88\xed\xdd\xeb\xe2\x48\xd5\x6c\x85\xda\x64\xc8\xa8\x5a\x9d\xc2\x8b\x9d\x54\x03\xb8\x91\xdf\x14\x34\x6d\xc8\x25\xeb\x83\xae\x0a\x40\xa3\x48\x27\x6f\x10\x55\x81\x19\x66\x0a\xce\x0d\x97\x2d\x18\x74\xe4\x8d\x23\x38\x6b\xbf\x88\x0e\x0e\xa7\x5d\x18\xe6\xa9\x91\xa0\x02\x38\x82\x7a\x8c\xf2\x79\x2d\x87\x6d\x57\x57\x72\xe5\x4d\x8e\x22\xc2\xc8\x8f\x63\x29\x6b\x38\x7c\xc9\x40\xb8\xe3\xb7\xf1\x55\xb4\xc4\xbd\xaf\x5e\x79\x12\xe8\xf2\xa5\x47\x40\xb6\x71\xd5\x6b\xeb\x79\xa4\x5b\xa8\xa3\x3f\xe5\x8c\x5e\x67\x99\xfa\xb7\x66\xcf\xc4\x11\x6f\x6f\xde\x51\xac\xb4\x93\x13\x05\x5b\x73\x81\x3b\x9f\xc9\xf8\xdf\x0c\xa2\x7d\xae\x56\x6b\xe5\xf3\x92\x0b\xd2\x21\xb2\x02\xc1\xc5\xb0\xb1\x60\x48\xb5\x8d\x2b\xd5\x2c\xb9\x76\x10\x63\x61\x2d\x7c\x34\xc7\x71\xf3\xe2\xe7\xb6\xf2\xd8\xcc\x72\x4f\x64\xa3\xea\x86\xcb\xdb\xaf\x22\x05\x52\x3d\x9c\x18\x42\x49\xb9\x01\x9c\x32\xa8\x37\xb7\x52\xe8\xde\xe4\xee\x6e\x81\xfa\xa2\xdf\x0a\x95\x3d\x99\x1d\x7b\xb4\x9b\x20\xde\x7a\xf9\xec\x4e\xc6\x03\xb6\x47\xdf\x06\x30\x37\x7d\x02\x9f\x83\x12\x47\x5b\x52\xd1\x49\x1b\x3e\x38\x9e\x37\xef\x63\x22\xeb\x0b\xa4\xd8\x99\xe8\xde\xbe\x84\x8b\xb9\xe8\xd8\xbe\x53\x33\x6c\x43\x66\x8a\x57\x7c\x4a\xe3\xcc\x77\xa7\xd1\x21\xf0\x98\x1b\x10\x3c\xaa\x58\x73\x25\xd2\x86\x79\xa8\xf3\x4b\xa1\xf1\xd8\xf7\x96\x00\x08\x87\x1e\x15\x29\x43\x5b\x0a\x79\xaf\x22\x85\xe2\x0f\x6d\x5f\x05\x3e\xf7\xa0\xb4\x9f\xbb\x35\x7f\xf5\xce\xf5\xf8\xa2\x85\xdc\x55\x56\x1f\x3a\x0b\xba\xb2\xed\x96\x96\xd5\xdb\x79\xd6\xa4\x7f\x82\x27\x61\x16\x4d\x67\x08\x15\xec\x0d\x5c\x1d\x52\xf2\x3e\xc3\xcb\xdc\xa2\x53\xa1\x65\xcd\x6f\x55\x6e\x18\x59\xea\xbc\x4f\xe9\x07\xea\x93\x1f\x80\xcf\x6e\x2f\x49\xdc\xa2\x67\x3b\x1e\x02\x50\xf7\xbb\x91\x82\xb9\x9a\x90\x86\x28\x3a\x9e\x0c\x97\xf1\x8e\x21\x6b\x92\xc9\x5e\x2a\x2d\x97\x9c\xab\x57\xba\xeb\xf8\x5a\x4a\xee\xeb\x20\x79\x68\x78\x19\xce\x2d\x7c', 2)
from flask import Blueprint, render_template, request, redirect, url_for, flash from .forms import LoginForm, RegisterForm from flask_login import login_user, logout_user, login_required from ..models import User from .. import db main = Blueprint('main', __name__) @main.route('/', methods=['GET']) def index(): return render_template('index.html') @main.route('/login', methods=['GET', 'POST']) def login(): form = LoginForm() if form.validate_on_submit(): user = User.query.filter( User.username == request.form['username'].strip()).first() if user is not None: login_user(user) flash("Logged in successfully.") return redirect(url_for('users.user')) return render_template('login.html', form=form) @main.route('/register', methods=['GET', 'POST']) def register(): form = RegisterForm() if form.validate_on_submit(): user = User(id=(len(User.query.all()) + 1), username=request.form['username'].strip(), password=request.form['password'].strip()) db.session.add(user) db.session.commit() flash("Registered successfully.") return redirect(url_for('main.login')) return render_template('register.html', form=form) @main.route('/logout', methods=['POST']) @login_required def logout(): logout_user() return redirect(url_for('main.login'))
import numpy as np import cv2 # create a VideoCapture object cap = cv2.VideoCapture('kntu-computer.avi') # sometimes this is needed: #if not cap.isOpened(): # cap.open(); while True: # Capture frame-by-frame ret, I = cap.read() if ret == False: # end of video (perhaps) break # Display I cv2.imshow('win1',I) key = cv2.waitKey(33) # ~ 30 frames per second if key & 0xFF == ord('q'): break cap.release() cv2.destroyAllWindows()
""" services.py: queries models to get required inputs to launch a task in the background. - this scripts abstracts the functions specified in tasks.py """ import uuid from io import StringIO import os import pandas as pd from django.urls import reverse from django.contrib.sites.shortcuts import get_current_site from .tasks import run_simulation, send_mail, run_instantiate from .helper import get_activation_url, convert from .models import (UserRegisterToken, UserPasswordResetToken, campusInstantiation, simulationParams) import json from simulator.staticInst.config import configCreate from django.contrib import messages import logging log = logging.getLogger('interface_log') def send_template_email(recipient, subject, html_message, context): # TODO: Enable this when the mail configurations are in place # return send_mail.delay(recipient, subject, html_message, context) return True def send_activation_mail(request, user): to_email = user.email UserRegisterToken.objects.filter(user=user).delete() # TODO: check if it exsists user_token = UserRegisterToken.objects.create( user=user, token=uuid.uuid4()) subject = f"Campussim: New Account Activation for {user}" html_message = f""" Dear {user}, To activate your campussim user account, click on the following link: """ context = { 'protocol': request.is_secure() and 'https' or 'http', 'domain': get_current_site(request).domain, 'url': get_activation_url(user_token.token, request.GET.get('origin', None)), 'full_name': user.get_full_name(), } log.info(f'Account activation email was sent to {to_email}') send_template_email(to_email, subject, html_message, context) def send_forgotten_password_email(request, user): to_email = user.email UserPasswordResetToken.objects.filter(user=user).delete() # TODO: check if it exsists user_token = UserPasswordResetToken.objects.create( user=user, token=uuid.uuid4()) subject = f"Campussim: New Account Activation for {user}" html_message = f""" Dear {user}, To reset the password for your campussim user account, click on the following link: """ context = { 'protocol': request.is_secure() and 'https' or 'http', 'domain': get_current_site(request).domain, 'url': reverse("user_password_reset", kwargs={"token": user_token.token}), 'full_name': user.get_full_name() } log.info(f'Forgot password link email was sent to {to_email}') send_template_email(to_email, subject, html_message, context) def updateTransCoeff(campusId, BETA): transmission_coefficients_json = json.loads(campusInstantiation.objects.get(id=campusId).trans_coeff_file) for i in range(len(BETA)): for e in transmission_coefficients_json: if (e['type'] == BETA[i]['type']): if e['beta'] != float(BETA[i]['beta']): e['beta'] = float(BETA[i]['beta']) #TODO: Add ALPHA parameter when it is available campusInstantiation.objects.filter(id=campusId).update( trans_coeff_file=json.dumps( transmission_coefficients_json, default=convert ) ) return True def addConfigJSON(obj, outPath): min_group_size = int(obj.min_grp_size) max_group_size = int(obj.max_grp_size) beta_scaling_factor = int(obj.betaScale) avg_num_assns = int(obj.avg_associations) periodicity = int(obj.periodicity) minimum_hostel_time = float(obj.minimum_hostel_time) testing_capacity = int(obj.testing_capacity) configJSON = configCreate(min_group_size, max_group_size, beta_scaling_factor, avg_num_assns, periodicity, minimum_hostel_time, testing_capacity) f = open(f"{ outPath }/config.json", "w") f.write(json.dumps(configJSON)) f.close() return True def instantiateTask(request): user = request.user obj = campusInstantiation.get_latest(user=user) #gives id of the object obj = campusInstantiation.objects.filter(created_by=user, id=obj.id)[0] inputFiles = { 'students': pd.read_csv(StringIO(obj.inst_name.students_csv.read().decode('utf-8')), delimiter=',').to_dict(), 'class': pd.read_csv(StringIO(obj.inst_name.classes_csv.read().decode('utf-8')), delimiter=',').to_dict(), 'timetable': pd.read_csv(StringIO(obj.inst_name.timetable_csv.read().decode('utf-8')), delimiter=',', header=None, names=[i for i in range(24)]).to_dict(), 'staff': pd.read_csv(StringIO(obj.inst_name.staff_csv.read().decode('utf-8')), delimiter=',').to_dict(), 'mess': pd.read_csv(StringIO(obj.inst_name.mess_csv.read().decode('utf-8')), delimiter=',').to_dict(), 'common_areas': pd.read_csv(StringIO(obj.inst_name.common_areas_csv.read().decode('utf-8')), delimiter=',').to_dict(), 'campus_setup' : pd.read_csv(StringIO(obj.inst_name.campus_setup_csv.read().decode('utf-8')), delimiter=',').to_dict(), 'objid': obj.id } campusInstantiation.objects.filter(created_by=user, id=obj.id).update(status='Running') run_instantiate.apply_async(queue='instQueue', kwargs={'inputFiles': json.dumps(inputFiles)}) return True # if res.get(): # messages.success(request, f"instantiation job name: { obj.inst_name } is complete") # log.info(f"instantiation job name: { obj.inst_name } is complete") # else: # messages.error(request, f"instantiation job name: { obj.inst_name } has failed. Please check the input files used.") # log.error(f"instantiation job name: { obj.inst_name } has failed.") def launchSimulationTask(request, campusId, BETA): user = request.user obj = simulationParams.get_latest(user=user) #gives id of the object obj = simulationParams.objects.filter(created_by=user, id=obj.id)[0] dirName = os.path.splitext(obj.campus_instantiation.agent_json.path)[0] dirName = dirName.rsplit('/', 1)[0] if not os.path.exists(dirName): os.mkdir(dirName) updateTransCoeff(campusId, BETA) f = open(f"{ dirName }/{ obj.intervention.intv_name }.json", "w") f.write(json.dumps(json.loads(obj.intervention.intv_json))) f.close() json.dump(json.loads(obj.campus_instantiation.trans_coeff_file), open(f"{ dirName }/transmission_coefficients.json", 'w'), default=convert) json.dump(obj.testing_protocol.testing_protocol_file, open(f"{ dirName }/testing_protocol.json", 'w'), default=convert) addConfigJSON(obj, dirName) simulationParams.objects.filter(created_by=user, id=obj.id).update(status='Queued') res = run_simulation.apply_async(queue='simQueue', kwargs={'id': obj.id, 'dirName': dirName, 'enable_testing': obj.enable_testing, 'intv_name': obj.intervention.intv_name}) # if res.get(): # messages.success(request, f"Simulation job name: { obj.simulation_name } is complete") # log.info(f"Simulation job name: { obj.simulation_name } is complete") # else: # messages.error(request, f"Simulation job name: { obj.simulation_name } has failed. Please check the inputs used.") # log.error(f"Simulation job name: { obj.simulation_name } has failed.") def send_result_available_email(request, user): to_email = user.email simulationResults.objects.filter(user=user, completed_at=datetime.datetime.now()) subject = "" html_message = """ <html> <h4>Simulation Result update from campussim</h4> </html> """ context = { 'protocol': request.is_secure() and 'https' or 'http', 'domain': get_current_site(request).domain, 'full_name': user.full_name } log.info(f'Account activation email was sent to {to_email}') send_template_email(to_email, subject, html_message, context) def send_instantion_complete_mail(request, user): to_email = user.email campusInstantiation.objects.filter(user=user, completed_at=datetime.datetime.now()) subject = "Campussim" html_message = """ <html> <h4>Simulation Result update from campussim</h4> </html> """ context = { 'protocol': request.is_secure() and 'https' or 'http', 'domain': get_current_site(request).domain, 'full_name': user.full_name } send_template_email(to_email, subject, html_message, context)
import _plotly_utils.basevalidators class FitboundsValidator(_plotly_utils.basevalidators.EnumeratedValidator): def __init__(self, plotly_name="fitbounds", parent_name="layout.geo", **kwargs): super(FitboundsValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "plot"), role=kwargs.pop("role", "info"), values=kwargs.pop("values", [False, "locations", "geojson"]), **kwargs )
from enum import Enum from typing import cast, Union, List from typing_extensions import Literal from pydantic import BaseModel, Field from .constrained_types import UnitFloat, PositiveInt from .shared_blocking_config import BlockingConfigBase class PSigFilterConfigBase(BaseModel): type: str class PSigFilterRatioConfig(PSigFilterConfigBase): type: Literal['ratio'] max: UnitFloat min: UnitFloat = cast(UnitFloat, 0.0) class PSigFilterCountConfig(PSigFilterConfigBase): type: Literal['count'] max: PositiveInt min: PositiveInt class PSigBlockingBFFilterConfig(BaseModel): type: Literal['bloom filter'] number_of_hash_functions: int = Field(..., alias='number-hash-functions') bloom_filter_length: int = Field(..., alias='bf-len') class PSigSignatureTypes(str, Enum): chars_at = 'characters-at' feature_value = 'feature-value' metaphone = 'metaphone' class PSigSignatureSpecBase(BaseModel): type: str feature: Union[int, str] class PSigCharsAtSignatureConfig(BaseModel): pos: List[Union[PositiveInt, str]] class PSigCharsAtSignatureSpec(PSigSignatureSpecBase): type: Literal[PSigSignatureTypes.chars_at] = Field(..., name='type', alias='type') config: PSigCharsAtSignatureConfig class PSigMetaphoneSignatureSpec(PSigSignatureSpecBase): type: Literal[PSigSignatureTypes.metaphone] class PSigFeatureValueSignatureSpec(PSigSignatureSpecBase): type: Literal[PSigSignatureTypes.feature_value] = Field(..., name='type', alias='type') PSigSignatureModel = List[Union[ PSigCharsAtSignatureSpec, PSigMetaphoneSignatureSpec, PSigFeatureValueSignatureSpec ]] class PSigConfig(BlockingConfigBase): filter: Union[PSigFilterRatioConfig, PSigFilterCountConfig] blocking_filter: PSigBlockingBFFilterConfig = Field(..., alias='blocking-filter') signatures: List[PSigSignatureModel] = Field(..., alias='signatureSpecs')
""" spider to get pratices of china.cssc.org """ import requests from bs4 import BeautifulSoup from flask import Flask, request app = Flask(__name__) global href_list href_list = [] global base_url base_url = "" def get_raw_html(url): """get raw html from url""" response = requests.get(url) response.encoding = 'utf-8' return response.text def reconstruct_html(html): """reconstruct html, add base url to href""" soup = BeautifulSoup(html, 'lxml') head = soup.select('head')[0] chapter_list_html = soup.find(class_='listmain') global href_list href_list = [i.get('href') for i in chapter_list_html.find_all('a')] chapter_name_list = [i.get_text() for i in chapter_list_html.find_all('a')] # print(chapter_name_list) new_html = "" for i in range(len(chapter_name_list)): # href_tag = "<dd><a href=\"" + base_url.rstrip("index.html") + str(href_list[i]) + "\">" href_tag = "<dd><a href=\"\{}\">".format(i) new_html += href_tag + chapter_name_list[i] + "</a></dd>" return str(head) + new_html def get_content_html(html): """select content html from html""" soup = BeautifulSoup(html, 'lxml') content_html = soup.find(class_='showtxt') print(type(content_html)) return content_html @app.route('/') def index(): html = """ <!DOCTYPE html> <html> <body> <form action="/url" method="post"> URL:<br> <input type="text" name="url" > <br> <input type="submit" value="Submit"> </form> </body> </html> """ return html @app.route('/url', methods=["POST", "GET"]) def get_url(): url = request.form.get('url') global base_url base_url = url.rstrip('index.html') html = get_raw_html(url) new_html = reconstruct_html(html) # print(new_html) return new_html @app.route('/<int:chapter_index>') def link2chapter(chapter_index): # base_url = "http://www.shuquge.com/txt/8400/" global base_url url = base_url + href_list[chapter_index] print(url) html = get_raw_html(url) content_html = get_content_html(html) return str(content_html) if __name__ == "__main__": # pre_url = "http://www.shuquge.com/txt/63542/" # for i in range(1, 3): # print(i) # full_url = pre_url + "-{}.html".format(i) # html = get_html(full_url) # content = get_certain_joke(html) # url = "http://www.shuquge.com/txt/63542/index.html" # html = get_html(url) # content = get_chapter_list(html) app.run()
""" Tests for calculations """ from __future__ import print_function from __future__ import absolute_import import aiida_qeq.tests as tests from aiida.engine import run # pylint: disable=too-many-arguments,unused-argument def test_submit(aiida_profile, clear_database, ionization_file, charge_file, hkust1_cif, qeq_parameters, basic_options): """Test submitting a calculation""" from aiida.plugins import CalculationFactory EqeqCalculation = CalculationFactory('qeq.qeq') inputs = { 'code': tests.get_code(entry_point='qeq.qeq'), 'structure': hkust1_cif, 'parameters': qeq_parameters, 'metadata': { 'options': basic_options, 'label': "aiida_qeq QEQ test", 'description': "Test QEQ job submission with the aiida_qeq plugin", }, } result = run(EqeqCalculation, **inputs) cif_content = result['structure_with_charges'].get_content() cu_line = 'Cu Cu 0.2850000 0.2850000 0.0000000 0.6334535' assert cu_line in cif_content
""" Docstring .. pii: A long description that spans multiple lines .. pii_types: id, name """
# -*- coding: utf-8 -*- """ Created on Fri Feb 22 10:20:10 2019 @author: lwg """ # http://www.numpy.org/ import numpy as np import matplotlib.pyplot as plt def sigmoid(x): return 1 / (1+np.exp(-x)) x = np.arange(-5.0, 5.0, 0.1) y = sigmoid(x) plt.plot(x, y) plt.ylim(-0.1, 1.1) # y轴范围 plt.show()
from forcuanteller.main import loader, transformer, reporter, sender from forcuanteller.main.utils.config import config from forcuanteller.main.utils.gmail import validate_gmail from forcuanteller.main.utils.logger import logger from forcuanteller.main.utils.runner import runner import schedule import time from forcuanteller.main.utils.schedule import get_scheduler def task(sender_address, sender_password, receiver_address): run_id = runner.run_id logger.info("Run ID : {}".format(run_id)) logger.info("Running loader...") loader.main(run_id) logger.info("Finishing loader...") logger.info("Running transformer...") transformer.main(run_id) logger.info("Finishing transformer..") logger.info("Running reporter...") reporter.main(run_id) logger.info("Finishing reporter...") logger.info("Running sender...") sender.main(run_id, sender_address, sender_password, receiver_address) logger.info("Finishing sender...") def main(): sender_address = input("Input your sender gmail address: ") sender_password = input("Input your sender gmail password: ") receiver_address = input("Input your receiver gmail address: ") validate_gmail(sender_address) validate_gmail(receiver_address) if config.schedule is None: task(sender_address, sender_password, receiver_address) else: scheduler = get_scheduler(config.schedule) scheduler.do( task, sender_address=sender_address, sender_password=sender_password, receiver_address=receiver_address ) while True: schedule.run_pending() time.sleep(1) if __name__ == "__main__": main()
#!/usr/bin/env python3 import sys import os.path from setuptools import setup from subprocess import check_output import platform import warnings SDL_VERSION_NEEDED = (2, 0, 5) def get_version(): """Get the current version from a git tag, or by reading tcod/version.py""" try: tag = check_output( ["git", "describe", "--abbrev=0"], universal_newlines=True ).strip() assert not tag.startswith("v") version = tag # add .devNN if needed log = check_output( ["git", "log", "%s..HEAD" % tag, "--oneline"], universal_newlines=True, ) commits_since_tag = log.count("\n") if commits_since_tag: version += ".dev%i" % commits_since_tag # update tcod/version.py open("tcod/version.py", "w").write('__version__ = "%s"\n' % version) return version except: try: exec(open("tcod/version.py").read(), globals()) return __version__ except FileNotFoundError: warnings.warn( "Unknown version: " "Not in a Git repository and not from a sdist bundle or wheel." ) return "0.0.0" is_pypy = platform.python_implementation() == "PyPy" def get_package_data(): """get data files which will be included in the main tcod/ directory""" BITSIZE, LINKAGE = platform.architecture() files = [ "py.typed", "lib/LIBTCOD-CREDITS.txt", "lib/LIBTCOD-LICENSE.txt", "lib/README-SDL.txt", ] if "win32" in sys.platform: if BITSIZE == "32bit": files += ["x86/SDL2.dll"] else: files += ["x64/SDL2.dll"] if sys.platform == "darwin": files += ["SDL2.framework/Versions/A/SDL2"] return files def get_long_description(): """Return this projects description.""" with open("README.rst", "r") as f: readme = f.read() with open("CHANGELOG.rst", "r") as f: changelog = f.read() changelog = changelog.replace("\nUnreleased\n------------------", "") return "\n".join([readme, changelog]) def check_sdl_version(): """Check the local SDL version on Linux distributions.""" if not sys.platform.startswith("linux"): return needed_version = "%i.%i.%i" % SDL_VERSION_NEEDED try: sdl_version_str = check_output( ["sdl2-config", "--version"], universal_newlines=True ).strip() except FileNotFoundError: raise RuntimeError( "libsdl2-dev or equivalent must be installed on your system" " and must be at least version %s." "\nsdl2-config must be on PATH." % (needed_version,) ) print("Found SDL %s." % (sdl_version_str,)) sdl_version = tuple(int(s) for s in sdl_version_str.split(".")) if sdl_version < SDL_VERSION_NEEDED: raise RuntimeError( "SDL version must be at least %s, (found %s)" % (needed_version, sdl_version_str) ) if sys.version_info < (3, 5): error = """ This version of python-tcod only supports Python 3.5 and above. The last version supporting Python 2.7/3.4 was 'tcod==6.0.7'. The end-of-life for Python 2 is the year 2020. https://pythonclock.org/ Python {py} detected. """.format( py=".".join([str(v) for v in sys.version_info[:3]]) ) print(error) sys.exit(1) if not os.path.exists("libtcod/src"): print("Libtcod submodule is uninitialized.") print("Did you forget to run 'git submodule update --init'?") sys.exit(1) check_sdl_version() needs_pytest = {"pytest", "test", "ptr"}.intersection(sys.argv) pytest_runner = ["pytest-runner"] if needs_pytest else [] setup( name="tcod", version=get_version(), author="Kyle Stewart", author_email="4B796C65+tdl@gmail.com", description="Pythonic cffi port of libtcod.", long_description=get_long_description(), url="https://github.com/libtcod/python-tcod", project_urls={ "Documentation": "https://python-tcod.readthedocs.io", "Changelog": "https://github.com/libtcod/python-tcod/blob/develop/CHANGELOG.rst", "Source": "https://github.com/libtcod/python-tcod", "Tracker": "https://github.com/libtcod/python-tcod/issues", }, py_modules=["libtcodpy"], packages=["tdl", "tcod"], package_data={"tdl": ["*.png"], "tcod": get_package_data()}, python_requires=">=3.5", install_requires=[ "cffi~=1.13", # Also required by pyproject.toml. "numpy~=1.10" if not is_pypy else "", ], cffi_modules=["build_libtcod.py:ffi"], setup_requires=pytest_runner, tests_require=["pytest", "pytest-cov", "pytest-benchmark"], classifiers=[ "Development Status :: 5 - Production/Stable", "Environment :: Win32 (MS Windows)", "Environment :: MacOS X", "Environment :: X11 Applications", "Intended Audience :: Developers", "License :: OSI Approved :: BSD License", "Natural Language :: English", "Operating System :: POSIX", "Operating System :: MacOS :: MacOS X", "Operating System :: Microsoft :: Windows", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.5", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "Programming Language :: Python :: 3.9", "Programming Language :: Python :: Implementation :: CPython", "Programming Language :: Python :: Implementation :: PyPy", "Topic :: Games/Entertainment", "Topic :: Multimedia :: Graphics", "Topic :: Software Development :: Libraries :: Python Modules", ], keywords="roguelike cffi Unicode libtcod fov heightmap namegen", platforms=["Windows", "MacOS", "Linux"], license="Simplified BSD License", )
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.http import HttpResponse, HttpResponseBadRequest, HttpResponseNotFound from django.shortcuts import render import redis from django.views.decorators.csrf import csrf_exempt r_db = redis.StrictRedis(host='localhost', port=6379, db=0) # Create your views here. def index(request): result = r_db.hgetall('movies') output = '<body>' for item in result: output += '<p>Movie: ' + item + '<br />Actors: ' + r_db.hget('movies', item) + '</p>' output += '</body>' return HttpResponse(output) @csrf_exempt def post(request): movie_name = request.GET.get('movie') actors = request.GET.get('actors') if movie_name is None: movie_name = request.POST.get('movie') actors = request.POST.get('actors') if movie_name is None or actors is None: return HttpResponseBadRequest('<body>' '<h1>Missing parameter(s)!</h1>' '<p>Requires request parameter \'movie\' and \'actors\'' '</body>', ) r_db.hset('movies', movie_name, actors) return HttpResponse('<body><h1>added!</h1></body>') def init(request): r_db.hset('movies', 'The Godfather', 'Al Pacino, Marlon Brando, Robert Duvall') r_db.hset('movies', 'Schindler\'s List', 'Liam Neeson, Ralph Fiennes, Ben Kingsley') r_db.hset('movies', 'Saving Private', 'Ryan Tom Hanks, Matt Damon, Vin Diesel') r_db.hset('movies', 'Back to the Future', 'Michael J. Fox, Christopher Lloyd, Lea Thompson') r_db.hset('movies', 'Casablanca', 'Ingrid Bergman, Humphrey Bogart, Peter Lorre') r_db.hset('movies', 'The Big Lebowski', 'Julianne Moore, Jeff Bridges, Tara Reid') return HttpResponse('<body><h1>Default values added!</h1></body>') @csrf_exempt def search(request): if request.method == 'POST': movie = request.POST.get("movie") movie_actors = r_db.hget('movies', movie) if not movie_actors: return HttpResponseNotFound('<body><p>Movie not known</p</body>') return HttpResponse('<body>' '<p>' 'movie: ' + movie + '<br />' 'actors: ' + movie_actors + '</p>' '</body>') else: return HttpResponseBadRequest('POST REQUEST EXPECTED')
# a small script which shows some of the possiblities of the # LKOpticalTrack filter # LKOpitcal is good low resource algorithm which is good at tracking points through a video # stream from org.myrobotlab.opencv import OpenCVFilterLKOpticalTrack # create services opencv = Runtime.createAndStart("opencv","OpenCV") # add listener so data comes back to python opencv.addListener("publishOpenCVData", "python", "input") lkfilter = opencv.getFilter("LKOpticalTrack") if (lkfilter == None): lkfilter = OpenCVFilterLKOpticalTrack() opencv.addFilter(lkfilter) # other options # if you want to get pixel values instead of floats # floats are nice because the value doesnt change even if the # resolution does # lkfilter.useFloatValues=False # default is true # lkfilter.needTrackingPoints=True #default is false lkfilter.samplePoint(0.5,0.5)# programmatically sets a point # a set of points can come back from LKOptical def input (): points = msg_opencv_publishOpenCVData.data[0].getPoints() if (not points == None): print points if (points.size() > 0): print points.get(0).x, points.get(0).y opencv.capture()