content
stringlengths
5
1.05M
from django.contrib import admin from django.utils.translation import ugettext as _ from django.utils.safestring import mark_safe from django.core.urlresolvers import reverse from django.utils.html import escape from django import forms from django.forms.models import inlineformset_factory, BaseInlineFormSet from django.conf import settings from django.contrib.auth import get_user_model from django.contrib.auth.models import Group from django.contrib.auth.admin import UserAdmin from django.contrib.auth.forms import ReadOnlyPasswordHashField from journal import models as app_models # User admin: # TODO: organization list in list_display # TODO: article count (published, new etc) if Group in admin.site._registry: admin.site.unregister(Group) class JournalAdmin(admin.ModelAdmin): class Media: js = ('admin/js/jquery.init-global.js', 'js/jquery.autosize.min.js', 'admin/js/misc.js') class SectionNameInline(admin.TabularInline): model = app_models.SectionName extra = len(settings.LANGUAGES) max_num = len(settings.LANGUAGES) class SectionAdmin(JournalAdmin): raw_id_fields = ['moderators'] list_display = ('__unicode__', 'display_moderators', 'articles_count') search_fields = ['sectionname__name'] inlines = [SectionNameInline] def display_moderators(self, obj=None): if obj: return u', '.join(map(unicode, obj.moderators.all())) return u'' display_moderators.short_description = _(u'Moderators') def articles_count(self, obj=None): if obj: return obj.article_set.all().count() return u'' articles_count.short_description = _(u'Articles') # TODO: check staff memebership for moderators, make select with only valid choices # TODO: count all published, all in moderation separately # TODO: pending reviews class OrganizationLocalizedContentInline(admin.StackedInline): model = app_models.OrganizationLocalizedContent extra = len(settings.LANGUAGES) max_num = len(settings.LANGUAGES) class OrganizationAdmin(JournalAdmin): inlines = [OrganizationLocalizedContentInline] list_display = ('__unicode__', 'short_name', 'moderation_status', 'obsolete', 'display_site') list_filter = ('moderation_status', 'obsolete') search_fields = ('organizationlocalizedcontent__name', 'alt_names', 'short_name', 'previous__organizationlocalizedcontent__name', 'previous__alt_names') raw_id_fields = ['previous'] def display_site(self, obj=None): if obj and obj.site: return mark_safe(u'<a href="%s" target="_blank">%s</a>' % (escape(obj.site), escape(obj.site))) return u'' display_site.short_description = _(u'Site') display_site.admin_order_field = 'site' class ArticleSourceInline(admin.TabularInline): model = app_models.ArticleSource extra = 0 class ArticleResolutionInline(admin.TabularInline): model = app_models.ArticleResolution extra = 0 raw_id_fields = ['reviews'] class ArticleAuthorInline(admin.TabularInline): model = app_models.ArticleAuthor extra = 0 raw_id_fields = ('user', 'organization') class ArticleAttachInline(admin.TabularInline): model = app_models.ArticleAttach extra = 0 class LocalizedArticleContentInline(admin.StackedInline): model = app_models.LocalizedArticleContent extra = len(settings.LANGUAGES) max_num = len(settings.LANGUAGES) class ReviewInline(admin.StackedInline): model = app_models.Review extra = 0 fields = ('reviewer', 'status', 'date_created', 'comment_for_authors', 'comment_for_editors', 'resolution', 'render') readonly_fields = ('render', 'date_created') view_on_site = False class ArticleAdmin(JournalAdmin): search_fields = ('old_number', 'localizedarticlecontent__title', 'localizedarticlecontent__abstract', 'localizedarticlecontent__references', 'articleauthor__user__localizedname__last_name') list_filter = ('status', 'type', 'issue', 'sections') list_display = ('display_title', 'id', 'status', 'type', 'issue', 'date_published', 'date_in', 'display_authors', 'display_reviews') inlines = (LocalizedArticleContentInline, ArticleAuthorInline, ArticleSourceInline, ArticleAttachInline, ReviewInline, ArticleResolutionInline) raw_id_fields = ['senders'] readonly_fields = ['article_link'] fieldsets = ( (None, {'fields': (('status', 'article_link'), 'doi', 'issue', ('date_in', 'date_published'), 'old_number')}), (None, {'fields': ('content', )}), (None, {'fields': ('senders', 'image', 'type', 'lang', 'report', 'sections')}), ) def formfield_for_manytomany(self, db_field, request, **kwargs): if db_field.name == "sections": kwargs['widget'] = forms.CheckboxSelectMultiple return super(ArticleAdmin, self).formfield_for_manytomany(db_field, request, **kwargs) def article_link(self, obj): if obj.issue: return settings.SITE_URL + obj.get_absolute_url() else: return u'' article_link.short_description = _(u'Article link') def display_title(self, obj=None, max_length=64): if not obj: return u'' if len(obj.title) > max_length: return unicode(obj)[:max_length-4].rstrip() + '...' return unicode(obj) display_title.short_description = _(u'Title') def display_authors(self, obj=None): if not obj: return u'' out = [] for user, orgs in obj.get_authors().iteritems(): out.append(u'<a href="%s" target="_blank">%s</a>' % ( reverse('admin:journal_journaluser_change', args=[user.id]), user.str_compact())) return mark_safe(u', '.join(out)) display_authors.short_description = _(u'Authors') def display_reviews(self, obj=None): if not obj: return u'' out = [] for review in obj.review_set.all(): out.append(u'%s: %s' % ( review.reviewer.str_compact(), u'%s - %s' % (review.get_status_display(), review.get_resolution_display()) if review.resolution else review.get_status_display())) return mark_safe(u'<br />'.join(out)) display_reviews.short_description = _(u'Reviews') class ReviewFieldAdmin(JournalAdmin): list_display = ('name', 'field_type') class LocalizedIssueContentInline(admin.StackedInline): model = app_models.LocalizedIssueContent max_num = len(settings.LANGUAGES) extra = len(settings.LANGUAGES) fields = ('lang', 'title', 'description') class IssueAdmin(JournalAdmin): inlines = (LocalizedIssueContentInline, ) list_display = ('__unicode__', 'is_active', 'articles_count') def articles_count(self, obj=None): if obj: return obj.article_set.all().count() return u'' articles_count.short_description = _(u'Articles') class LocalizedNameInline(admin.TabularInline): model = app_models.LocalizedName extra = len(settings.LANGUAGES) max_num = len(settings.LANGUAGES) class StaffMemberInline(admin.StackedInline): extra = 0 model = app_models.StaffMember max_num = 1 ordering = ['id'] class JournalUserChangeForm(forms.ModelForm): password = ReadOnlyPasswordHashField(label=_("Password"), help_text=_("Raw passwords are not stored, so there is no way to see " "this user's password, but you can change the password " "using <a href=\"password/\">this form</a>.")) class Meta: model = app_models.JournalUser fields = '__all__' def __init__(self, *args, **kwargs): super(JournalUserChangeForm, self).__init__(*args, **kwargs) f = self.fields.get('user_permissions', None) if f is not None: f.queryset = f.queryset.select_related('content_type') def clean_password(self): return self.initial["password"] class PositionInOrganizationInline(admin.TabularInline): model = app_models.PositionInOrganization extra = 0 raw_id_fields = ('organization', ) class JournalUserAdmin(UserAdmin): form = JournalUserChangeForm add_form = forms.ModelForm inlines = (StaffMemberInline, LocalizedNameInline, PositionInOrganizationInline) fieldsets = ( (None, {'fields': ('email', 'password')}), (_('Permissions'), {'fields': ('moderation_status', 'is_active', 'is_staff', 'is_superuser')}), (_('Profile'), {'fields': ('degree', )}), (_('Important dates'), {'fields': ('last_login', 'date_joined')}), ) add_fieldsets = ( (None, { 'classes': ('wide', ), 'fields': ('email',), }), ) readonly_fields = ('last_login', 'date_joined') list_display = ('__unicode__', 'email', 'is_active', 'moderation_status', 'is_staff') list_filter = ('is_staff', 'is_active', 'moderation_status', 'staffmember__editor') search_fields = ('localizedname__first_name', 'localizedname__last_name', 'email') ordering = None # handled inside get_queryset def get_formsets_with_inlines(self, request, obj=None): if obj is None: return () return super(JournalUserAdmin, self).get_formsets_with_inlines(request, obj) def get_queryset(self, request): from django.db import models qs = self.model._default_manager.get_queryset() # For ordering by localizedname__last_name ordering = self.get_ordering(request) + ('localizedname__last_name__max', ) qs = qs.annotate(models.Max('localizedname__last_name')).order_by(*ordering).distinct() return qs admin.site.register(app_models.Organization, OrganizationAdmin) admin.site.register(app_models.Section, SectionAdmin) admin.site.register(app_models.Article, ArticleAdmin) admin.site.register(app_models.ReviewField, ReviewFieldAdmin) admin.site.register(app_models.Issue, IssueAdmin) admin.site.register(app_models.JournalUser, JournalUserAdmin)
import click def yellow(message): return click.style(message, fg="yellow", bold=True) def red(message): return click.style(message, fg="red", bold=True) def green(message): return click.style(message, fg="green", bold=True) def gray(message): return click.style(message, fg="white", bold=False) def white(message): return click.style(message, fg="white", bold=True) def prompt(message): return click.style(message, fg="green") def default(message): return white(message) def blue(message): return click.style(message, fg="blue", bold=True) def format_command(a, b="", prefix=""): return white(prefix) + blue("%s: " % a) + white(b)
# -*- coding: utf-8 -*- value1 = input() value2 = input() prod = value1+value2 print("SOMA = " + str(prod))
from datetime import date import boundaries boundaries.register('Grimsby wards', domain='Grimsby, ON', last_updated=date(2016, 1, 1), name_func=lambda f: 'Ward %s' % f.get('Ward'), id_func=boundaries.attr('Ward'), authority='Town of Grimsby', licence_url='https://niagaraopendata.ca/pages/open-government-license-2-0-grimsby', encoding='iso-8859-1', extra={'division_id': 'ocd-division/country:ca/csd:3526065'}, )
# -*- coding: utf-8 -*- import re import glob from geotext import GeoText #ES: error tracking code for py 2 ------------- import logging import time import os #---------------------------------------------- def compileSubs(folderName,fileName,files,t_list,interviewer,interviewee,pass2,language,resampleSubtitles,removeStamps,removeLoneWords): #files = [['_High_freq_timestamping',0,False]] for fil in files: #fil = ['name',60,False] #print fil min_timelapse_between_stamps = fil[1] place_based_timestamping = fil[2] if place_based_timestamping: min_timelapse_between_stamps = 10000000000000 list_false_positives = ['David','Un','Mon'] #ES: LIST OF SUBTITLE FILE SNIPPETS # Find all sub in the folder sub_files = glob.glob(folderName + '/*.vtt') #print sub_files #ES: list of NEW subtitles file elements new_sub = ["WEBVTT\nKind: captions\nLanguage: "+str(language)] c = 0 t_list_pos = 0 #ES: USEFUL FUNC PROBABLY def hms_to_s(time): time = unicode(time, "UTF-8") time = time.split(" --> ") #print time #print "--------" try: t_0 = time[0].split(":") t_1 = time[1].split(":") except IndexError as e: print e print "var 'time' in function 'hms_to_s' not valid" print t_0 print t_1 exit() t0 = float(int(t_0[0])*3600) + int(float(t_0[1])*60) + int(float(t_0[2])) t1 = float(int(t_1[0])*3600) + int(float(t_1[1])*60) + int(float(t_1[2])) t0 = float(t_0[0])*3600 + float(t_0[1])*60 + float(t_0[2]) t1 = float(t_1[0])*3600 + float(t_1[1])*60 + float(t_1[2]) #return [int(t0),int(t1)] #print t0,t1 return [t0,t1] def s_to_hms(seconds): #print seconds m, sec = divmod(seconds, 60) h, m = divmod(m, 60) #print str(int(h)) + ":" + str(int(m)) + ":" + str(int(s)) #return str(int(h)) + ":" + str(int(m)) + ":" + str(int(sec)) return str(int(h)) + ":" + str(int(m)) + ":" + str(float("{0:.2f}".format(round(sec,2)))) last = [0,0] offset = last new_line = True sentence = [] ee = "" first_pass = True last_timestamp = 0 cc = 0 ccc = -1 sub_times = []#ES: new final subtitles file list of timestamps sub_text = []#ES: new final subtitles file list of text elements #ES: custom list for the last timestamp of the prev vid (table_sentenses). this way we keep RG's resampling while maintaining original final timestamp of youtube-created timestamps. last_t22 = [] #FUNCTION process-transform-aggregate-snippets z = 0 #ES: FOR EACH SNIPPET IN LIST OF .VTT SNIPPETS for s in sub_files: #print "" #ES: GO if (pass2 == False and s != folderName + "/" + fileName + ".vtt") or (pass2 == True and "pass" in s): print "" print s c += 1 #FUNCTION extract-to-table_sentenses #ES: text READLINES IN .VTT FILES with open(s) as f: text = f.readlines() text = [x.strip() for x in text] table_sentenses = [] row = [] whereAreWe = s #ES: for line in snippet for t in text: count = 0 #ES: clean snippet line while count < 3: try: t = t.replace('\n','') from chardet import detect encoding = lambda x: detect(x)['encoding'] #print t,encoding(t) if '&nbsp;' in t: t = t.replace('&nbsp;','') #print t if '…' in t: t = t.replace('…','...') #print t #ES: if line is not Nothing if t != "": #print t,t != "" and t[0].isdigit() and ":" in t,t != "" and (not t[0].isdigit() and ":" not in t) and "WEBVTT" not in t and "Kind" not in t and "Language" not in t #ES: if first element in line is a digit and there is a colon in that line if t != "" and t[0].isdigit() and t[2] is ':': #print t if row != []: table_sentenses.append(row) row = [] #ES: t needs to be turned into numbers in the current format and be part of a list in format of text3 so that it the said list can be put through the t in text3 loop (below, line 291) #ES: last_t is t transformed into seconds (numbers) last_t = hms_to_s(t) row.append(last_t) if t != "" and (t[0].isdigit() == False or t[2] is not ":") and "WEBVTT" not in t and "Kind" not in t and "Language" not in t: t = t.replace("&nbsp;","") t = t.replace("\xc2\xab...\xc2\xbb","[Pause]") t = t.replace(" "," ") t = t.replace(". ",".&&&") #t = t.replace(' "','"') #t = t.replace('" ','"') t = t.replace("‘’",'"') #t = t.replace("[Pause]","[Pause]&&&") t = t.replace("[Pause]","[...]") t = t.replace("? ","?&&&") #ES: adding conditional statements to preserve full functionality when user inputs no interviewer/ee variables. if interviewer != "": t = t.replace(interviewer,"&&&" + interviewer) if interviewee != "": t = t.replace(interviewee,"&&&" + interviewee) #ES: split t after periods or before person names (interviewee/interviewer). sentences = t.split("&&&") #print sentences for s in sentences: if interviewer != "": if s != '' and s != interviewer + ": ": row.append(s.strip().replace(" "," "))# + ".") else: if s != '': row.append(s.strip().replace(" "," ")) #print row #print "" except Exception as ex: logging.exception('full stack trace:') print "--------" print "retrying to read t from ", whereAreWe, " - try #", count+1 print "will retry 3 times. If unsuccesful, you will encounter an error. If so, run 'main.py' again with only 'combineSubtitles' set to True and it should work" count += 1 time.sleep(8) continue break #END-FUNCTION extract-to-table_sentenses #ES: add a period to end of last line in snippet to make it look like ".." try: lastChar = row[len(row)-1][len(row[len(row)-1])-1] except IndexError: print "IndexError was handled for var 'row': ", row print "Using len(row)-2 instead..." lastChar = row[len(row)-2][len(row[len(row)-1])-1] if lastChar != "." or lastChar != "," or lastChar != "?" or lastChar != "!": row[len(row)-1] += "." #ES: identifies final timestamp and appends to list of snippet sentences. table_sentenses.append(row) last_t2 = [last_t[1],last_t[1]] #ES: last_t22 is a list of raw final timestamps that are used as offsets (i added this to fix the lagging concatenated timestamps) last_t22.append([last_t[1],last_t[1]]) if len(last_t22) > 1: z += 1 last_t22[z] = [a+b for a, b in zip(last_t22[z], last_t22[z-1])] table_sentenses.append([last_t2]) """ print "printing table_sentenses" print "=======================" print table_sentenses """ #FUNCTION table_sentenses-to-text2 #ES: this is the code that is RESAMPLING and remixing the text... #ES: should this be ignored? if resampleSubtitles == True: resampled_text = [] for ts in range(len(table_sentenses)): #print table_sentenses[ts] previousInterpolated = [0,0] #print table_sentenses[ts] if len(table_sentenses[ts]) > 0: listOfElements = [] prev_ts_2 = 0 for ts_2 in table_sentenses[ts]: if isinstance(ts_2, list) == False: listOfElements.append([prev_ts_2,len(ts_2) + prev_ts_2]) prev_ts_2 += len(ts_2) c_ts2 = 0 for ts_2 in table_sentenses[ts]: if isinstance(ts_2, list) == False: interpolated = len(ts_2) maximum = listOfElements[len(listOfElements)-1][1] #print ts_2,table_sentenses[ts][0] #print c_ts2,table_sentenses[ts][0],(float(listOfElements[c_ts2][0]) / float(maximum)) * (table_sentenses[ts][0][1] - table_sentenses[ts][0][0]) + table_sentenses[ts][0][0] #(10/100)*500+20 interpolated = [(float(listOfElements[c_ts2][0]) / float(maximum)) * (table_sentenses[ts][0][1] - table_sentenses[ts][0][0]) + table_sentenses[ts][0][0],0] c_ts2 += 1 resampled_text.append(interpolated) resampled_text.append(ts_2) #else: #resampled_text.append(ts_2) #print "" # for tts in range(len(table_sentenses[ts])): # if (str(table_sentenses[ts][tts][0]).isalpha() or table_sentenses[ts][tts][0] == '[' or table_sentenses[ts][tts][0] == 'à' or table_sentenses[ts][tts][0] == 'é') and (str(table_sentenses[ts][tts-1][0]).isalpha() or table_sentenses[ts][tts-1][0] == '[' or table_sentenses[ts][tts-1][0] == 'à' or table_sentenses[ts][tts-1][0] == 'é'): # try: # interpolated = [float(previous_time[0])+(((table_sentenses[ts+1][0][0]-float(previous_time[0]))/(len(table_sentenses[ts][1])+len(table_sentenses[ts][2])))*len(table_sentenses[ts][1])),0] # previousInterpolated = interpolated #- moins # except: # interpolated = [(float(previous_time[0]) + float(previous_time[1])) / 2.0,0] # #previousInterpolated = interpolated # interpolated = [float("{0:.2f}".format(round(interpolated[0],2))),0] # resampled_text.append(interpolated) # resampled_text.append(table_sentenses[ts][tts]) # else: # if isinstance(table_sentenses[ts][tts][0], int) or isinstance(table_sentenses[ts][tts][0], float): # previous_time = table_sentenses[ts][tts] # resampled_text.append(table_sentenses[ts][tts]) # else: # resampled_text.append(table_sentenses[ts][tts]) #for iiiii in resampled_text: # print iiiii #print resampled_text[len(resampled_text)-1] text2 = [resampled_text[0]] # Retirer les timestamps qui coupent les phrases #ES: the current conditional loop is necessary where the previous process is applied, and should therefore be removed along with it if removeStamps == True: for rt in range(len(resampled_text)-1): passAnyway = False if ((isinstance(resampled_text[rt][0], int) == False and isinstance(resampled_text[rt][0], float) == False) and resampled_text[rt][len(resampled_text[rt])-1] != "." and resampled_text[rt][len(resampled_text[rt])-1] != "!" and resampled_text[rt][len(resampled_text[rt])-1] != "?"): rien = 0 if (isinstance(resampled_text[rt+1][0], int) == False and isinstance(resampled_text[rt+1][0], float) == False): #print "---------",resampled_text[rt+1] passAnyway = True else: #print resampled_text[rt+1] text2.append(resampled_text[rt+1]) if passAnyway == True: #print resampled_text[rt+1] text2.append(resampled_text[rt+1]) else: for rt in range(len(resampled_text)-1): text2.append(resampled_text[rt+1]) #ES: forget text2, same as table_sentenses but resampled and reformatted slightly # [[41.99, 43.44], 'grande famille de six enfants; plus Papa et', 'Maman \xc3\xa7a fait huit.', 'Et on est tous ici au'], [[43.44, 48.4], 'Qu\xc3\xa9bec.', 'S.I.:: Et quel est votre \xc3\xa9tat matrimonial?'], [[48.4, 52.92], 'A.M.::Pas mari\xc3\xa9e.', 'S.I.:: Pas mari\xc3\xa9e, O.K.', 'Vous avez dit que'], #to #[43.0775, 0], 'Et on est tous ici au', [43.44, 0], 'Qu\xc3\xa9bec.', [44.218039215686275, 0], 'S.I.:: Et quel est votre \xc3\xa9tat matrimonial?', [48.4, 0], 'A.M.::Pas mari\xc3\xa9e.', [49.77898305084746, 0], 'S.I.:: Pas mari\xc3\xa9e, O.K.', [51.617627118644066, 0], 'Vous avez dit que', #END-FUNCTION table_sentenses-to-text2 """ print "printing text2" print "=======================" print text2 """ #ES: new interpolated 'smart' times (which need removing) #FUNCTION reformat-text2-as-vtt-list/text3 text3 = ['WEBVTT','Kind: captions','Language: '+str(language),''] for t2 in text2: #print t2 if isinstance(t2[0], int): t2[0],t2[1] = float(t2[0]),float(t2[1]) if isinstance(t2[0], float): for aa in text2: #print 2,aa if (isinstance(aa[0], float) or isinstance(aa[0], int)) and aa[0] > t2[0]: #print 2,aa break if not isinstance(aa[0],str): t2[1] = aa[0] else: t2[1] = t2[0] + 3.0 #print 3,t2 #t2 = [s_to_hms(t2[0]),s_to_hms(t2[1])] #print s_to_hms(t2[0])#.split(':') #print type(t2[1]) #ES: function for turning time list into srt format timestamp t2 = str(s_to_hms(t2[0]).split(':')[0]) + ":" + str(s_to_hms(t2[0]).split(':')[1]) + ":" + str(s_to_hms(t2[0]).split(':')[2]) + " --> " + str(s_to_hms(t2[1]).split(':')[0]) + ":" + str(s_to_hms(t2[1]).split(':')[1]) + ":" + str(s_to_hms(t2[1]).split(':')[2]) #ES: t2 is now same format as t text3.append(t2) #END-FUNCTION reformat-text2-as-vtt-list/text3 #del text3[-1] #ES: text3 is yet another iteration of the snippet version, this time with time formatted as TT ---> TT instead of [TT,TT] like text2 #ES: might need to put table_sentenses through the spinner that transformed text2 into text3 #ES: the following loop could have table_sentenses as input... #ES: this is the "cumulative" or "concatenation" loop (so there might be something wrong going on here) #ES: requires that what is being looped is a list in format of text3 """ print "printing text3" print "=======================" print text3 """ #ES: code added as an option to avoid using the resampling method and simply use native Youtube sub style else: text3 = ['WEBVTT','Kind: captions','Language: '+str(language),''] for t in table_sentenses: for el in t: if isinstance(el, list) == True: timestampES = str(s_to_hms(t[0][0]).split(':')[0]) + ":" + str(s_to_hms(t[0][0]).split(':')[1]) + ":" + str(s_to_hms(t[0][0]).split(':')[2]) + " --> " + str(s_to_hms(t[0][1]).split(':')[0]) + ":" + str(s_to_hms(t[0][1]).split(':')[1]) + ":" + str(s_to_hms(t[0][1]).split(':')[2]) text3.append(timestampES) else: text3.append(el) #ES: AT THIS POINT, TEXT3 IS SAME FORMAT AS PREV TEXT3 EXCEPT THAT TIMESTAMPS NATURALLY DON'T OCCUR AT EVERY 2ND ELEMENT #ES: once the snippet text is scanned and transposed into the list 'text3', each line in text3 is looped through for concatenation. #print "TEXT3: ",text3 #FUNCTION concatenate_text3 for t in text3: if "WEBVTT" not in t and "Kind" not in t and "Language" not in t: #ES: if timestamp #ES: change this conditional slightly if t is in table_sentenses instead of text3 if t != "" and t[0].isdigit() and t[1] is ':': #ES: if timestamp is in between first and last timestamp in snippet """ print "t", t#timestamp being processed print "hms_to_s(t)",hms_to_s(t)[0]#the timestamp in seconds (for comparison) print "last", last#last represents the previous timestamp. print "offset", offset#offset inherited by last """ #ES: when last is at the beginning of a new snippet loop, it is naturally larger than the present timestamp (since it represents the last timestamp from the prev snippet), triggering the following code if hms_to_s(t)[0] < last[0]: #ES: in RG's code, offset is equal to last (last is the last timestamp of the prev snippet). However, since these last timestamps are erroneous and go beyond the actual video length due to the resampling of subtitles by RG, i am using the raw Youtube final (un-resampled) timestamps as offsets. try: offset = [t_list[t_list_pos],t_list[t_list_pos]] #print "t_list",t_list #print "t_list_pos",t_list_pos #print "offsets used: " + str(offset) t_list_pos += 1 except IndexError as e: print e print "\nvar 't_list' doesn't have any timestamps in it because you are not running the whole pipeline. Program will proceed by using the last timestamp of the previous .vtt file as offset." offset = last pass """ print "last: ",last print "offset: ",offset print "t : "+ str(t) print "t_list : "+ str(t_list) print "t_list_pos : "+ str(t_list_pos) """ #offset = [last_t22[z-1][0],last_t22[z-1][1]] #ES: OFFSET is the variable containing the cumulative timestamps #print 1,offset[1] #print "" #ES: when dealing with the first timestamp in a vtt file, make the opening time of this caption 0.0, otherwise concatenation can be problematic, resulting in subtitle lag (i.e. youtube doesn't always set the first caption to minute 0.0 in a video snippet) t_1 = t.split(" --> ") t_1[0] = "0:0:0.0" t_2 = " --> ".join(t_1) t = t_2 timestamp = hms_to_s(t) else: timestamp = hms_to_s(t) """ print "timestamp", timestamp#ES: t to number array """ #ES: t will be directly in the form taken by timestamp if we use table_sentenses instead of text3 #print 1,t,hms_to_s(t) new_timestamp = "\n" + s_to_hms(timestamp[0] + offset[1]) + " --> " + s_to_hms(timestamp[1] + offset[1]) """ print "new timesamp", new_timestamp#ES: new_timestamp adds offset[1] (end-timestamp of last timestamp in prev snippet) to current t """ #new_sub.append(new_timestamp) last = hms_to_s(t) t = new_timestamp #print t t = hms_to_s(t) """ print "t new_timestamp", t#ES: new timestamp in s form. """ t = [float("{0:.2f}".format(round(t[0],2))),float("{0:.2f}".format(round(t[1],2)))] """ print "t rounded", t#ES: removes nanoseconds (worth keeping since these are only very small, rare numbers) """ t = s_to_hms(t[0]) + " --> " + s_to_hms(t[1]) """ print "t final", t """ #print t,offset[1] latest_timestamp = s_to_hms(timestamp[1] + offset[1])#ES: the end-time of the current (new, unrounded) timestamp #ES: I don't see the point in processing t and latest_timestamp... #print len(sentence),sentence #ES: following code is not needed. it doesn't run if place_based_timestamping is False (which it always is) place = False #ES: following code is not needed if len(sentence) > 0: ee = "" for e in sentence: ee += e countries,cities = GeoText(ee).countries,GeoText(ee).cities nbr_places = 0 for countr in countries: if countr not in list_false_positives: nbr_places += 1 for citi in cities: if citi not in list_false_positives: nbr_places += 1 #print cities if place_based_timestamping == False: nbr_places = 0 #if len(GeoText(ee).countries) > 0 or len(GeoText(ee).cities) > 0: if nbr_places > 0 or " là-bas " in ee or " chez " in ee or " vers " in ee: place = True #print GeoText(ee).countries,GeoText(ee).cities,"là-bas" in ee , "chez" in ee , "vers" in ee #print "" #places.cities if fil[2] == False: place = False #ES: not sure what the following "passes" are about... if (hms_to_s(t)[0]-last_timestamp > min_timelapse_between_stamps or first_pass == True): delay_passed = True first_pass = False else: delay_passed = False #ES ADDED 24/03. removing delaypassed to see what this does.. # it doesn't do any good #delay_passed = False if delay_passed == True or place == True: #ES new_sub.append(new_timestamp) sub_times.append(new_timestamp) last_timestamp = hms_to_s(t)[0] #print "new_timestamp: ", new_timestamp #print "new_sub.append(new_timestamp): ", new_sub #print "sub_times.append(new_timestamp): ", sub_times #print "last_timestamp: ", last_timestamp #ES: adds interviewer and interviewee codes if len(sentence) > 0: ee = "" for e in sentence: if interviewer != "": #print e if interviewer[:-1] in e and interviewer not in e: #print e e = e.replace(interviewer[:-1],interviewer) #print e if interviewee != "": if interviewee[:-1] in e and interviewee not in e: e.replace(interviewee[:-1],interviewee) #print e e.replace(" ", "") e.rstrip('\n') if ".:" in e and len(ee) > 0: ee += "\n" ee += e + " " #print "" #print "2. ee : ", ee if ee != '': new_sub.append(ee) sub_text.append(ee) new_sub.append(new_timestamp) sentence = [] #print "3. new_sub: ", new_sub else: #sentence = [] #print sentence#,t if len(t) > 0: sentence.append(t) #print "4. sentence: t: ", t #END_FUNCTION concatenate_text3 """ """ #print new_sub #ES: set to false to prevent redistribution of lone words if removeLoneWords == True: ee = "" for e in sentence: #print e e.replace(" ", "") e.rstrip('\n') if ".:" in e and len(ee) > 0: ee += "\n" ee += e + " " new_sub.append(ee) sub_text.append(ee) new_sub2 = ["WEBVTT\nKind: captions\nLanguage: "+str(language)] c = 0 #ES: 2nd PROCESS... cleans the resampled subs.. for i in range(len(sub_times)): #print sub_text[i] for s in sub_text[i].split("\n"): # If there is a lone word on a line if len(s.split()) == 1: sub_text[i-1] = sub_text[i-1] + s sub_text[i] = sub_text[i].replace(s + "\n",'') # if there is a lone word, separated by a "." at the begining or end of a line #print sub_text[i] if sub_text[i][-2] != '?' and sub_text[i][-2] != '!' and sub_text[i][-2] != '.' and sub_text[i][-2] != ',' and sub_text[i][-2] != ';' and sub_text[i][-2] != ':': #print s for p in s.split("."): p = p.strip() if len(p) > 1 and len(p.split()) == 1 and p != ":O":# and p != '[Pause]': #print p,len(p),p.split(),len(p.split()) c += 1 if p.replace(" ","") in s.split()[0]: #print s,p,"devant" sub_text[i-1] = sub_text[i-1] + p.replace(" ","") + "." sub_text[i] = sub_text[i].replace(p + ". ",'') elif p.replace(" ","") in s.split()[-1]: #print s,p,"derrière" sub_text[i+1] = p.replace(" ","") + " " + sub_text[i+1] sub_text[i] = sub_text[i].replace(p.replace(" ",""),'') new_sub2.append(sub_times[i]) new_sub2.append(sub_text[i]) #END-FUNCTION process-transform-aggregate-snippets #for i in new_sub2: # print i new_sub2 = ["WEBVTT\nKind: captions\nLanguage: "+str(language)] for i in range(len(sub_times)): new_sub2.append(sub_times[i]) if not sub_text[i].isspace(): new_sub2.append(sub_text[i]) #for i in new_sub2: # print i """ print "==========================" print "new_sub2" print new_sub2 """ new_sub = new_sub2 #print new_sub sub = "" sub_srt = "" sub_txt = "" sub_txt_debug = "" all_time_stamps =[] #print "printing new_sub or text3: ",new_sub for i in new_sub: #if "A.M" in i and "A.M.:" not in i: if i[1].isdigit() and i[2] is ':': #print i,hms_to_s(i) all_time_stamps.append(hms_to_s(i)) #all_time_stamps.append([float(hms_to_s(i)[0]),float(hms_to_s(i)[1])]) #ES WRITE EXCEPTION for i in range(len(all_time_stamps)): all_time_stamps[i][0] = s_to_hms(all_time_stamps[i][0]) try: all_time_stamps[i][1] = s_to_hms(all_time_stamps[i+1][0]) except: all_time_stamps[i][1] = s_to_hms(all_time_stamps[i][1]) all_time_stamps[len(all_time_stamps)-1][1] = latest_timestamp all_time_stamps2 = [] for i in all_time_stamps: if len(i[0].split(":")[0]) == 1: h1 = "0" + i[0].split(":")[0] else: h1 = i[0].split(":")[0] if len(i[0].split(":")[1]) == 1: m1 = "0" + i[0].split(":")[1] else: m1 = i[0].split(":")[1] if len(i[0].split(":")[2]) == 1: s1 = "0" + i[0].split(":")[2] else: s1 = i[0].split(":")[2] if len(i[1].split(":")[0]) == 1: h2 = "0" + i[1].split(":")[0] else: h2 = i[1].split(":")[0] if len(i[1].split(":")[1]) == 1: m2 = "0" + i[1].split(":")[1] else: m2 = i[1].split(":")[1] if len(i[1].split(":")[2]) == 1: s2 = "0" + i[1].split(":")[2] else: s2 = i[1].split(":")[2] #ES: add zeros to seconds if s2[1] == '.': s2 = '0' + s2 if len(s2) == 4: s2 = s2 + '00' if len(s2) == 5: s2 = s2 + '0' if s1[1] == '.': s1 = '0' + s1 if len(s1) == 4: s1 = s1 + '00' if len(s1) == 5: s1 = s1 + '0' """ if i[10] == ' ': i = i[:10] + '0' + i[10:] if i[9] == ' ': i = i[:9] + '00' + i[9:] if len(i) == 26: i = i + '0' if len(i) == 25: i = i + '00' """ all_time_stamps2.append([h1 + ":" + m1 + ":" + s1,h2 + ":" + m2 + ":" + s2]) c = 0 for i in new_sub: #ES: the below replacement was done for berthe's story, since there were many distracting " ... " in the transcript. i = i.replace('" ... "','[...]') i = i.replace('::',':') i = i.replace('‘’','"') i = i.replace(' ',' ') if i[1].isdigit() and i[2] is ':': i = "\n" + all_time_stamps2[c][0] + " --> " + all_time_stamps2[c][1] c += 1 if i != "" or not i.isspace(): sub += i + "\n" c = 0 for i in new_sub: i = i.replace('‘’','"') i = i.replace(' ',' ') if i[1].isdigit() and i[2] is ':': i = "\n" + str(c+1) + "\n" + all_time_stamps2[c][0] + " --> " + all_time_stamps2[c][1] c += 1 if (i != "" or not i.isspace()) and "WEBVTT" not in i: sub_srt += i + "\n" c = 0 for i in new_sub: i = i.replace('‘’','"') i = i.replace(' ',' ') if i[1].isdigit() and i[2] is ':': #i = "\n" + all_time_stamps2[c][0] i = "[" + all_time_stamps2[c][0] + "]" c += 1 if (i != "" or not i.isspace()) and "WEBVTT" not in i: if interviewer != "": i = i.replace(interviewer + ":", interviewer + "::") if interviewee != "": i = i.replace(interviewee + ":", interviewee + "::") i = i.replace("\n"," ") sub_txt += i + " " c = 0 for i in new_sub: i = i.replace('‘’','"') i = i.replace(' ',' ') if i[1].isdigit() and i[2] is ':': i = "\n" + all_time_stamps2[c][0] #i = "[" + all_time_stamps2[c][0] + "]" c += 1 if (i != "" or not i.isspace()) and "WEBVTT" not in i: if interviewer != "": i = i.replace(interviewer + ":", interviewer + "::") if interviewee != "": i = i.replace(interviewee + ":", interviewee + "::") sub_txt_debug += i + "\n" if fil[1] <= 10: print "\nprinting final subtitles to files...\n" try: os.mkdir(folderName + "/output") except Exception as e: print "Output folder already exists. \nOverwriting..." thefile = open(folderName + "/output/" + fileName + "_" + language + ".vtt", 'w') thefile.write(sub) thefile = open(folderName + "/output/" + fileName + "_" + language + ".srt", 'w') thefile.write(sub_srt) thefile = open(folderName + "/output/" + fileName + fil[0] + "_" + language + ".txt", 'w') thefile.write(sub_txt) thefile = open(folderName + "/output/" + fileName + fil[0] + "_" + language + "_readable" + ".txt", 'w') thefile.write(sub_txt_debug) try: os.remove(folderName + "/" + "delete me.txt") except: pass print "Compiled subtitle files are now available in '" + folderName + "/output' folder." return sub_srt """ except Exception as ex: print "an error occurred" print ex logging.exception('full stack trace:') pass """ """ interviewer = "S.G." interviewee = "O.G." folderName = 'Oscar' fileName = 'Oscar_complete' originalVideo = "Oscar.mp4" compiledSubs = compileSubs(folderName,fileName,[['_High_freq_timestamping',0,False]],interviewer,interviewee,True) """
""" Implementation of Cosmic RIM estimator""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf physical_devices = tf.config.experimental.list_physical_devices('GPU') print(physical_devices) assert len(physical_devices) > 0, "Not enough GPU hardware devices available" config = tf.config.experimental.set_memory_growth(physical_devices[0], True) import tensorflow_probability as tfp import numpy as np import os, sys, argparse, time from scipy.interpolate import InterpolatedUnivariateSpline as iuspline from scipy.interpolate import interp1d import matplotlib matplotlib.use('Agg') from matplotlib import pyplot as plt import flowpm from flowpm import linear_field, lpt_init, nbody, cic_paint from flowpm.utils import r2c3d, c2r3d sys.path.append('../../utils/') import tools import tools from getbiasparams import getbias import diagnostics as dg class HaloData(): def __init__(self, args): self.args = args @tf.function def pmpos(self, linear): args = self.args if args.nbody: print('Nobdy sim') state = lpt_init(linear, a0=args.a0, order=args.lpt_order) final_state = nbody(state, args.stages, args.nc) else: print('ZA/2LPT sim') final_state = lpt_init(linear, a0=args.af, order=args.lpt_order) tfinal_field = cic_paint(tf.zeros_like(linear), final_state[0]) return tfinal_field, final_state[0] @tf.function def biasfield(self, linear, bias): args = self.args b1, b2 = bias[0], bias[1] final_field, fpos = self.pmpos(linear) w0 = tf.reshape(linear, (linear.shape[0], -1)) w0 = w0 - tf.expand_dims(tf.reduce_mean(w0, 1), -1) w2 = w0*w0 w2 = w2 - tf.expand_dims(tf.reduce_mean(w2, 1), -1) weight = b1*w0 + b2*w2 bmodel = cic_paint(tf.zeros_like(linear), fpos, weight = weight) return bmodel @tf.function( # input_signature=[tf.TensorSpec(shape=[1, nc, nc, nc], dtype=tf.float32), # tf.TensorSpec(shape=[1, nc, nc, nc], dtype=tf.float32), # tf.TensorSpec(shape=[2], dtype=tf.float32), # tf.TensorSpec(shape=[nc, nc, nc], dtype=tf.float32) ] ) def recon(self, linear, data, bias, errormesh): args = self.args bs, nc = args.bs, args.nc kmesh = args.kmesh priorwt = args.priorwt linear = tf.reshape(linear, data.shape) bmodel = self.biasfield(linear, bias) residual = bmodel - data base = residual resk = r2c3d(base, norm=nc**3) reskmesh = tf.square(tf.cast(tf.abs(resk), tf.float32)) chisq = tf.reduce_sum(tf.multiply(reskmesh, 1/errormesh)) #chisq = tf.reduce_mean(tf.multiply(reskmesh, 1/errormesh)) #chisq = chisq * bs**3/nc**1.5 if args.prior: lineark = r2c3d(linear, norm=nc**3) priormesh = tf.square(tf.cast(tf.abs(lineark), tf.float32)) prior = tf.reduce_mean(tf.multiply(priormesh, 1/priorwt)) prior = prior * bs**3/nc**1.5 else: print('\nRIM does not use prior\n') prior = 0. loss = chisq + prior return loss, chisq, prior ## ## bmodel = self.biasfield(linear, bias) ## residual = bmodel - data ## resk = r2c3d(residual, norm=args.nc**3) ## reskmesh = tf.square(tf.cast(tf.abs(resk), tf.float32)) ## chisq = tf.reduce_sum(tf.multiply(reskmesh, 1/errormesh)) ## chisq = chisq*bs**3 /nc**1.5 ## ## if args.prior: ## lineark = r2c3d(linear, norm=args.nc**3) ## priormesh = tf.square(tf.cast(tf.abs(lineark), tf.float32)) ## prior = tf.reduce_mean(tf.multiply(priormesh, 1/args.priorwt)) ## prior = prior*bs**3 / nc**1.5 ## else: prior = 0. ## loss = chisq + prior ## ## return loss, chisq, prior ## #return loss*nc**3, chisq*nc**3, prior*nc**3 ## ## @tf.function def recon_grad(self, x, y, bias, errormesh): with tf.GradientTape() as tape: tape.watch(x) loss = self.recon(x, y, bias, errormesh)[0] grad = tape.gradient(loss, x) return grad @tf.function def reconstruct_loss(self, linear, data, bias, errormesh, Rsm=tf.constant(0.), useprior=True): """ """ args = self.args bs, nc = args.bs, args.nc kmesh = args.kmesh priorwt = args.priorwt linear = tf.reshape(linear, data.shape) bmodel = self.biasfield(linear, bias) residual = bmodel - data base = residual print("\nAdd annealing section to graph\n") Rsmsq = tf.multiply(Rsm*bs/nc, Rsm*bs/nc) smwts = tf.exp(tf.multiply(-kmesh**2, Rsmsq)) basek = r2c3d(base, norm=nc**3) basek = tf.multiply(basek, tf.cast(smwts, tf.complex64)) base = c2r3d(basek, norm=nc**3) resk = r2c3d(base, norm=nc**3) reskmesh = tf.square(tf.cast(tf.abs(resk), tf.float32)) chisq = tf.reduce_mean(tf.multiply(reskmesh, 1/errormesh)) chisq = chisq * bs**3/nc**1.5 if useprior: lineark = r2c3d(linear, norm=nc**3) priormesh = tf.square(tf.cast(tf.abs(lineark), tf.float32)) prior = tf.reduce_mean(tf.multiply(priormesh, 1/priorwt)) prior = prior * bs**3/nc**1.5 else: prior = 0. loss = chisq + prior return loss #, chisq, prior ## residual = bmodel - data ## resk = r2c3d(residual, norm=args.nc**3) ## ## print('\nAdd annealing graph\n') ## Rsmsq = tf.multiply(Rsm*bs/nc, Rsm*bs/nc) ## smwts = tf.exp(tf.multiply(-args.kmesh**2, Rsmsq)) ## resk = tf.multiply(resk, tf.cast(smwts, tf.complex64)) ## ## reskmesh = tf.square(tf.cast(tf.abs(resk), tf.float32)) ## logprob = tf.reduce_mean(tf.multiply(reskmesh, 1/errormesh)) ## logprob = logprob *bs**3/nc**1.5 ## ## #Prior ## if useprior: ## lineark = r2c3d(linear, norm=nc**3) ## priormesh = tf.square(tf.cast(tf.abs(lineark), tf.float32)) ## prior = tf.reduce_mean(tf.multiply(priormesh, 1/args.priorwt)) ## prior = tf.multiply(prior, bs**3 / nc**1.5, name='prior') ## else: prior = 0. ## loss = logprob + prior ## ## return loss ## def reconstruct(self, data, bias, errormesh, RRs=[1.0, 0.0], niter=100, lr=0.1, x_init=None, useprior=True): print('reconstructing') args = self.args bs, nc = args.bs, args.nc @tf.function def grad(x, Rsm): with tf.GradientTape() as tape: tape.watch(x) loss = self.reconstruct_loss(x, data, bias, errormesh, Rsm, useprior=useprior) grad = tape.gradient(loss, x) return grad # Create an optimizer for Adam. opt = tf.keras.optimizers.Adam(learning_rate=lr) ##Reconstruction if x_init is None: x_init = np.random.normal(0, 1, nc**3).reshape(data.shape).astype(np.float32) linear = tf.Variable(name='linmesh', shape=data.shape, dtype=tf.float32, initial_value=x_init, trainable=True) for iR, RR in enumerate(RRs): print('For smoothing scale : ', RR) for i in range(niter): grads = grad([linear], tf.constant(RR, dtype=tf.float32)) opt.apply_gradients(zip(grads, [linear])) minic = tf.reshape(linear, data.shape) # print('\nminimized\n') minsample = self.biasfield(minic, bias) #tf.constant(minic, dtype=tf.float32), bias).numpy() return minic, minsample def setupbias(self, traindata, nsims = 10, cutoff=1.5): args = self.args bs, nc = args.bs, args.nc b1, b2, perr = [], [], [] for i in range(nsims): idx = np.random.randint(0, traindata.shape[0], 1) xx = traindata[idx, 0].astype(np.float32) yy = traindata[idx, 1].astype(np.float32) _, fpos = self.pmpos(tf.constant(xx)) fpos = fpos[0].numpy() *bs/nc bparams, bmodel = getbias(bs, nc, yy[0]+1, xx[0], fpos) bmodeltf = self.biasfield(xx, tf.constant([bparams[0], bparams[1]], dtype=tf.float32)).numpy() errormesh = yy - bmodeltf# np.expand_dims(bmodel, 0) kerror, perror = tools.power(errormesh[0]+1, boxsize=bs) kerror, perror = kerror[1:], perror[1:] perr += [perror] b1 += [bparams[0]] b2 += [bparams[1]] print("b1 : %0.3f $\pm$ %0.2f"%(np.array(b1).mean(), np.array(b1).std())) print("b2 : : %0.3f $\pm$ %0.2f"%(np.array(b2).mean(), np.array(b2).std())) b1, b2 = np.array(b1).mean(), np.array(b2).mean() perr = np.array(perr).mean(axis=0) kny = nc*np.pi/bs cutoff = 1.5 perr[np.where(kerror > cutoff*kny)] = perr[np.where(kerror > cutoff*kny)[0][0]] ipkerror = interp1d(kerror, perr, bounds_error=False, fill_value=(perr[0], perr.max())) errormesh = tf.expand_dims(tf.constant(ipkerror(args.kmesh), dtype=tf.float32), 0) #ipkerror = lambda x: 10**np.interp(np.log10(x), np.log10(kerror), np.log10(perr)) #errormesh = tf.constant(ipkerror(args.kmesh), dtype=tf.float32) bias = tf.constant([b1, b2], dtype=tf.float32) return bias, errormesh # def get_data(args, testfrac=0.9): bs, nc = args.bs, args.nc nsims = args.nsims numd = args.numd try: R=args.Rstd except: R=128 path = '//mnt/ceph/users/cmodi/cosmo4d/z00/' #path = '/project/projectdirs/m3058/chmodi/rim-data/halos/z00/' path = path + '/L%04d_N%04d_D%04d//'%(bs, nc, numd*1e4) alldata = np.array([np.load(path + 'S%04d.npy'%i) for i in range(100, 100+nsims)]).astype(np.float32) if args.posdata: traindata, testdata = alldata[:int(testfrac*nsims), [0,1]], alldata[int(testfrac*nsims):, [0,1]] else: traindata, testdata = alldata[:int(testfrac*nsims), [0,2]], alldata[int(testfrac*nsims):, [0,2]] if args.stdinit: initdata = np.array([np.load(path + 'stdR%d_S%04d.npy'%(R,i)) for i in range(100, 100+nsims)]).astype(np.float32) traindatainit, testdatainit = initdata[:int(testfrac*nsims)], initdata[int(testfrac*nsims):] traindata = np.concatenate([traindata, np.expand_dims(traindatainit, 1)], axis=1) testdata = np.concatenate([testdata, np.expand_dims(testdatainit, 1)], axis=1) return traindata, testdata def get_diff_spectra(args, ipklin, nsims=10, nsteps=3): bs, nc = args.bs, args.nc nsims = args.nsims numd = args.numd try: R=args.Rstd except: R=128 ncf=args.ncf path = '//mnt/ceph/users/cmodi/cosmo4d/z00/' dpath = path + '/L%04d_N%04d_D%04d//'%(bs, nc, numd*1e4) alldata = np.array([np.load(dpath + 'S%04d.npy'%i) for i in range(100, 100+nsims)]).astype(np.float32) initdata = np.array([np.load(dpath + 'stdR%d_S%04d.npy'%(R,i)) for i in range(100, 100+nsims)]).astype(np.float32) try: dyn = "%02dstep"%nsteps path = '//mnt/ceph/users/cmodi/cosmo4d/z00/' path = path + '/L%04d_N%04d_%s//'%(bs, nc, dyn) final = np.array([tools.readbigfile(path + '/L%04d_N%04d_S%04d_%02dstep/mesh/d/'%(bs, nc, seed, nsteps)) for seed in range(100, 100+nsims)]).astype(np.float32) except: dyn = "%02dstep_B1"%nsteps path = '//mnt/ceph/users/cmodi/cosmo4d/z00/' path = path + '/L%04d_N%04d_%s//'%(bs, nc, dyn) final = np.array([tools.readbigfile(path + '/L%04d_N%04d_S%04d_%02dstep/mesh/d/'%(bs, nc, seed, nsteps)) for seed in range(100, 100+nsims)]).astype(np.float32) print('alldata shape :', alldata.shape) pdiffs, bb = [], [] for j in range(nsims): k, pfin = tools.power(final[j], boxsize=bs) ph = tools.power(1+alldata[j, 1], boxsize=bs)[1] bias = ((ph[1:5]/pfin[1:5])**0.5).mean() bb.append(bias) recon = initdata[j] / bias precon =tools.power(1+recon, boxsize=bs)[1] pdiff = ipklin(k) - precon pdiffs.append(pdiff) pdiff = np.array(pdiffs).mean(axis=0) bias = np.array(bb).mean(axis=0) xx, yy = k[pdiff > 0], pdiff[pdiff > 0] ipkdiff = lambda x: 10**np.interp(np.log10(x), np.log10(xx), np.log10(yy)) return ipkdiff, bias def get_ps(bs, iterand, truth): ic, fin = truth ic1, fin1 = iterand pks = [] #if abs(ic1[0].mean()) < 1e-3: ic1[0] += 1 #if abs(ic[0].mean()) < 1e-3: ic[0] += 1 k, p1 = tools.power(ic1[0], boxsize=bs) k, p2 = tools.power(ic[0], boxsize=bs) k, p12 = tools.power(ic1[0], f2=ic[0], boxsize=bs) pks.append([p1, p2, p12]) #if fin1[0].mean() < 1e-3: fin1[0] += 1 #if fin[0].mean() < 1e-3: fin[0] += 1 k, p1 = tools.power(fin1[0], boxsize=bs) k, p2 = tools.power(fin[0], boxsize=bs) k, p12 = tools.power(fin1[0], f2=fin[0], boxsize=bs) pks.append([p1, p2, p12]) return k, pks def check_im(xx, x_init, pred, fname=None): fig, ax = plt.subplots(1, 3, figsize = (12, 4)) vmin, vmax = xx.sum(axis=0).min(), xx.sum(axis=0).max() ax[0].imshow(xx.sum(axis=0), vmin=vmin, vmax=vmax) ax[0].set_title('Truth') ax[1].imshow(x_init.sum(axis=0), vmin=vmin, vmax=vmax) ax[1].set_title('initial point') ax[2].imshow(pred.sum(axis=0), vmin=vmin, vmax=vmax) ax[2].set_title('RIM recon') if fname is not None: plt.savefig(fname) else: plt.savefig(ofolder + 'rim-im.png') plt.close() def check_2pt(datamodel, rim_test, fid_test, grad_params, fname): nc, bs = datamodel.args.nc, datamodel.args.bs fig, axar = plt.subplots(2, 2, figsize=(9, 9)) a, b = rim_test xx, yy = a x_init, pred = b k, pks = get_ps(bs, [x_init.numpy(), datamodel.biasfield(x_init, grad_params[0]).numpy()], [xx.numpy(), yy.numpy()]) for i in range(2): ax = axar[i] ax[0].plot(k, pks[i][2]/(pks[i][0]*pks[i][1])**0.5, 'C0:', lw=1, label='Init') ax[1].plot(k, (pks[i][0]/pks[i][1])**0.5, 'C0:', lw=1) k, pks = get_ps(bs, [pred.numpy(), datamodel.biasfield(pred, grad_params[0]).numpy()], [xx.numpy(), yy.numpy()]) for i in range(2): ax= axar[i] ax[0].plot(k, pks[i][2]/(pks[i][0]*pks[i][1])**0.5, 'C%d'%1, label='RIM') ax[1].plot(k, (pks[i][0]/pks[i][1])**0.5, 'C%d'%1) # a, b = fid_test xx, yy = a pred_adam, pred_adam10, minic = b k, pks = get_ps(bs, [pred_adam.numpy(), datamodel.biasfield(pred_adam, grad_params[0]).numpy()], [xx.numpy(), yy.numpy()]) for i in range(2): ax = axar[i] ax[0].plot(k, pks[i][2]/(pks[i][0]*pks[i][1])**0.5, 'C%d:'%2, lw=1, label='Adam') ax[1].plot(k, (pks[i][0]/pks[i][1])**0.5, 'C%d:'%2, lw=0.5) k, pks = get_ps(bs, [pred_adam10.numpy(), datamodel.biasfield(pred_adam10, grad_params[0]).numpy()], [xx.numpy(), yy.numpy()]) for i in range(2): ax = axar[i] ax[0].plot(k, pks[i][2]/(pks[i][0]*pks[i][1])**0.5, 'C%d'%2, label='Adam x10') ax[1].plot(k, (pks[i][0]/pks[i][1])**0.5, 'C%d'%2) k, pks = get_ps(bs, [minic.numpy(), datamodel.biasfield(minic, grad_params[0]).numpy()], [xx.numpy(), yy.numpy()]) for i in range(2): ax = axar[i] ax[0].plot(k, pks[i][2]/(pks[i][0]*pks[i][1])**0.5, 'C%d-'%3, label='Annealed') ax[1].plot(k, (pks[i][0]/pks[i][1])**0.5, 'C%d-'%3) for axis in axar.flatten(): axis.legend() axis.semilogx() axis.grid(which='both') for ax in axar: ax[0].set_ylim(-0.1, 1.2) ax[1].set_ylim(-0.5, 2.5) plt.savefig(fname) plt.close() ##def check_2pt(xx, yy, rim, grad_fn, grad_params, compares, nrim=10, fname=None): ## truemesh = [xx[0], yy[0]] ## rimpreds = [] ## for it in range(nrim): ## x_init = np.random.normal(size=xx.size).reshape(xx.shape).astype(np.float32) ## #x_init = (yy - (yy.max() - yy.min())/2.)/yy.std() + np.random.normal(size=xx.size).reshape(xx.shape).astype(np.float32) ## pred = rim(tf.constant(x_init), tf.constant(yy), grad_fn, grad_params)[-1] ## rimpreds.append([pred[0].numpy(), biasfield(pred, grad_params[0])[0].numpy()]) ## ## fig, ax = plt.subplots(1, 2, figsize=(9, 4), sharex=True) ## for ip, preds in enumerate(rimpreds): ## k, pks = tools.get_ps(preds, truemesh, bs) ## for i in range(2): ## lbl = None ## if ip == 0 and i == 0: lbl = 'Linear' ## if ip == 0 and i == 1: lbl = 'Final' ## ax[0].plot(k, pks[i][2]/(pks[i][0]*pks[i][1])**0.5, 'C%d-'%i, alpha=0.4, label=lbl) ## ax[1].plot(k, (pks[i][0]/pks[i][1])**0.5, 'C%d-'%i, alpha=0.4) ## ## lss = ['-', '--', ':', '-.'] ## lws = [ 1, 1, 2, 2] ## lbls = ['Adam', 'Adam 10x', 'Best recon'] ## #for ip, preds in enumerate([pred_adam, pred_adam10]): ## for ip, preds in enumerate(compares): ## k, pks = tools.get_ps(preds, truemesh, bs) ## for i in range(2): ## lbl = None ## if i == 0: lbl = lbls[ip] ## ax[0].plot(k, pks[i][2]/(pks[i][0]*pks[i][1])**0.5, 'C%d'%i, ls=lss[ip+1], lw=lws[ip+1]) ## ax[1].plot(k, (pks[i][0]/pks[i][1])**0.5, 'C%d'%i, label=lbl, ls=lss[ip+1], lw=lws[ip+1]) ## ## for axis in ax: ## axis.semilogx() ## axis.grid(which='both') ## axis.legend(fontsize=12) ## axis.set_xlabel('k(h/Mpc)', fontsize=12) ## ax[0].set_ylim(-0.1, 1.2) ## ax[1].set_ylim(-0.5, 2.0) ## ax[0].set_ylabel('$r_c$', fontsize=12) ## ax[1].set_ylabel('$t_f$', fontsize=12) ## plt.tight_layout() ## if fname is not None: plt.savefig(fname) ## else: plt.savefig('rim-2pt.png') ## plt.close() ## ##
def center_align(text, max_length): to_add = max_length - len(text) pad = ' ' * (to_add//2) return ''.join([pad, text, pad])
''' Let's plot Brady's theory for our variables... ''' import sys import os import numpy as np import math import matplotlib.pyplot as plt def computeActivity(VP, TAUR, SIG): return (3.0 * VP * TAUR / SIG) tau_R = 1.0 / 3.0 sigma = 1.0 particle_Area = np.pi * ((sigma / 2.0)**2) def computeBradyMono(PHI, PE, APART, PHICP): '''Computes pressure, straight from the Brady paper''' ndense = APART / PHI return ndense * ((PE**2)/6.0) * ( 1 - PHI - PHI**2 + PHI*(9.0/(2.0 * PE)) * (PHICP/(1-PHI)) ) def compute2DMonoSpinodal(PHI, PHICP): top = (3 * 0.2 * (PHI**2)) + (2 * PHI) - 1 term = 1.0 - (PHI/PHICP) bottom1 = 2.0 * PHI * ((term)**-1) bottom2 = ((PHI**2)/PHICP) * ((term)**-2) return top / ((4.0 / np.pi) * (bottom1 + bottom2)) def compute3DMonoSpinodal(PHI, PHICP): top = (3 * (PHI**2)) + (2 * PHI) - 1 term = 1.0 - (PHI/PHICP) bottom1 = 2.0 * PHI * ((term)**-1) bottom2 = ((PHI**2)/PHICP) * ((term)**-2) return top / (3.0 * (bottom1 + bottom2)) inPhis = np.arange(0.2, 0.9, 0.001) PeRs2D = np.zeros_like(inPhis) PeRs3D = np.zeros_like(inPhis) Pes2D = np.zeros_like(inPhis) Pes3D = np.zeros_like(inPhis) #phi02D = np.pi / (2.0 * np.sqrt(3.0)) phi02D = 0.9 # this is what Brady uses phi03D = 0.64 # this is what Brady uses for i in xrange(len(inPhis)): PeRs2D[i] = compute2DMonoSpinodal(inPhis[i], phi02D) PeRs3D[i] = compute3DMonoSpinodal(inPhis[i], phi03D) # This fixes issues with plotting against conventional Pe if inPhis[i] <= 0.444: Pes2D[i] = 1000 else: Pes2D[i] = (PeRs2D[i])**-1 * (3.0/2.0) if inPhis[i] <= 0.336 or inPhis[i] >= 0.6: Pes3D[i] = 1000 else: Pes3D[i] = (PeRs3D[i])**-1 * (3.0/2.0) # Fix PeR weirdness if inPhis[i] >= 0.62: PeRs3D[i] = 10**-4 # Plotting individually: #plt.semilogy(inPhis, PeRs2D) #plt.xlim(0.2, 0.9) #plt.ylim(2*10**-3, 4*10**-1) #plt.xlabel(r'$\phi$') #plt.ylabel(r'$Pe_{R}$') #plt.title(r'2D Spinodal') #plt.show() # #plt.plot(inPhis, Pes2D) #plt.xlim(0.2, 0.9) #plt.ylim(0, 500) #plt.xlabel(r'$\phi$') #plt.ylabel(r'$Pe$') #plt.title(r'2D Spinodal') #plt.show() # #plt.plot(inPhis, Pes3D) #plt.xlim(0.2, 0.7) #plt.ylim(0, 500) #plt.xlabel(r'$\phi$') #plt.ylabel(r'$Pe$') #plt.title(r'3D Spinodal') #plt.show() ## Make a figure #fig, ax = plt.subplots(1, 4, figsize=(14,4)) #ax[0].semilogy(inPhis, PeRs2D) #ax[1].semilogy(inPhis, PeRs3D) #ax[2].plot(inPhis, Pes2D) #ax[3].plot(inPhis, Pes3D) ## Limits #ax[0].set_xlim(0.2, 0.9) #ax[1].set_xlim(0.2, 0.9) #ax[2].set_xlim(0.2, 0.9) #ax[3].set_xlim(0.2, 0.9) #ax[0].set_ylim(10**-3, 10**-1) #ax[1].set_ylim(10**-3, 10**-1) #ax[2].set_ylim(0, 500) #ax[3].set_ylim(0, 500) ## Labels #ax[0].set_title(r'2D') #ax[1].set_title(r'3D') #ax[2].set_title(r'2D') #ax[3].set_title(r'3D') #ax[0].set_ylabel(r'$Pe_{R}$') #ax[2].set_ylabel(r'$Pe$') #ax[0].set_xlabel(r'$\phi$') #ax[1].set_xlabel(r'$\phi$') #ax[2].set_xlabel(r'$\phi$') #ax[3].set_xlabel(r'$\phi$') #ax[0].text(0.75, 1.1, 'Spinodal (vs. $Pe_{R}$)', size=16, transform=ax[0].transAxes) #ax[2].text(0.75, 1.1, 'Spinodal (vs. $Pe$)', size=16, transform=ax[2].transAxes) ## Ticks #ax[1].set_yticklabels([]) #ax[3].set_yticklabels([]) #for i in xrange(4): # ax[i].tick_params(direction='in', which='both') #plt.tight_layout(pad=2.0, w_pad=0.5, h_pad=1.0) #plt.savefig('Brady_spinodals.png', dpi=1000) #plt.close() # We need to do this with symbolic python import sympy as sp # 2D Parameters beta = 4.0 / np.pi xi = 0.2 phi0 = 0.90 # 3D Parameters beta = 3.0 xi = 1.0 phi0 = 0.64 PHI, PER = sp.symbols("PHI PER") # Each term gets its own line sp.plot_implicit(sp.Eq( ((PHI / (1.0 - PHI)) * ((1.0/PHI) + (((beta * PER * phi0) / phi0) * ((1.0-(PHI/phi0))**-1)) + (3.0*xi*(PHI**2)) - (PHI) + (((beta * PER * phi0) / phi0) * (1.0 - phi0) * ((1.0-(PHI/phi0))**-2)) - (3.0) + ((beta * PER * phi0)))) - (1.0) + (2.0*PHI) + (xi * (PHI**2)) - (((beta * PER * phi0) / phi0) * ((2.0*PHI)*((1.0-(PHI/phi0))**-1)) + (((PHI**2)/phi0)*((1.0-(PHI/phi0))**-2)))), (PHI, 0.2, 0.7), (PER, 10**-3, 10**1), yscale='log') # Modify this plot with the following link # https://stackoverflow.com/questions/40747474/sympy-and-plotting
from pathlib import Path import numpy as np import torch import soundfile as sf # load file list text file # comments are escaped using '#' # file names should be relative to path of the file list # in case each example corresponds to multiple files, this can be handled by # omitting extensions in the file list or using only the 'root' part of the file names, # and let the Dataset load the corresponding files with different extensions and/or suffixes def load_file_list(fn_filelist_txt): fn_filelist_txt = Path(fn_filelist_txt) root_dir = fn_filelist_txt.parent examples = [] with open(fn_filelist_txt, 'r') as f: for ln in f: # handle comment b_comment = ln.find('#') if b_comment >= 0: ln = ln[:b_comment] # strip white space ln = ln.strip() # skip empty lines (e.g. entire line is comment) if len(ln) == 0: continue # add example to list example = str(root_dir / ln) examples.append(example) return examples class WavDataset(torch.utils.data.Dataset): # file_list list (full filename without extension) def __init__(self, file_list, seq_dur, sr, on_too_short='raise'): super().__init__() self.file_list = file_list self.seq_len = int(np.rint(seq_dur*sr)) self.sr = sr self.on_too_short = on_too_short def __getitem__(self, index): fn_base = self.file_list[index] fn_wav = '{}.wav'.format(fn_base) # XXX: here, we read the entire file from disk and then do random crop # alternatively we could use pysoundfile.read()'s start/stop arguments # we assume that all files are relatively short, and reading the entire # probably makes caching disk i/o easier for the OS # read file x, sr = sf.read(fn_wav, always_2d=True, dtype='float32') n = len(x) x = x.T # TC -> CT sr = float(sr) assert sr == self.sr # random crop if n < self.seq_len: if self.on_too_short == 'raise': # XXX: if file is shorter than request file length, just raise exception # assuming should files are already filtered from the file list when preprocessing the dataset # alternatively, short files can be zero padded, but this may have some (minor) side effects (affecting loss, gradients, etc.) raise IOError('file too short for requested training sequence length; pre-filter file list') elif self.on_too_short == 'pad': # XXX: maybe in different cases padding should be left/right/centered raise NotImplementedError('file too short for requested training sequence length; implement padding') else: raise ValueError('invalid on_too_short') else: b = np.random.randint(0, n - self.seq_len + 1) # [lo, hi[ e = b + self.seq_len x = x[:, b:e] # to pytroch tensor x = torch.from_numpy(x) return x def __len__(self): return len(self.file_list)
from common.database_api import DatabaseApi from common.loggable_api import Loggable from common.message_broker_api import MessageBrokerApi class BackendTasksApi(Loggable): """ This is an abstract class. It contains logic common to any backend tasks class. """ def __init__(self, service_name, descendant_class_name): """ Raises RuntimeError. Arguments: - service_name -- str. - descendant_class_name -- str. """ super().__init__(service_name, descendant_class_name) self._database = DatabaseApi(service_name) self._message_broker = MessageBrokerApi(service_name) def consumeMessage(self, callback_function): """ Returns void. Raises RuntimeError. Arguments: - callback_function -- Function -- Execution steps upon receiving a message from message broker. """ try: self._debug("consumeMessage", "Start") self._message_broker.subscribe(callback_function) self._debug("consumeMessage", "Finish") except Exception as err: err_msg = "%s -- consumeMessage -- Failed\n%s" % (self._class_name, str(err)) raise RuntimeError(err_msg) def createTestDocument(self): """ Returns void. Raises RuntimeError. """ try: self._debug("createTestDocument", "Start") self._database.createTestDocument({"field_a": "value_a"}) self._debug("createTestDocument", "Finish") except RuntimeError as err: err_msg = "%s -- createTestDocument -- Failed\n%s" % (self._class_name, str(err)) raise RuntimeError(err_msg) def deleteTestDocument(self): """ Returns void. Raises RuntimeError. """ try: self._debug("deleteTestDocument", "Start") self._database.deleteTestDocumentBy({"field_a": "value_a"}) self._debug("deleteTestDocument", "Finish") except RuntimeError as err: err_msg = "%s -- deleteTestDocument -- Failed\n%s" % (self._class_name, str(err)) raise RuntimeError(err_msg) def publishTestMessage(self): """ Returns void. Raises RuntimeError. """ try: self._debug("publishTestMessage", "Start") self._message_broker.publish("Test message") self._debug("publishTestMessage", "Finish") except Exception as err: err_msg = "%s -- publishTestMessage -- Failed\n%s" % (self._class_name, str(err)) raise RuntimeError(err_msg)
from numpy.core.numeric import normalize_axis_tuple import torch import custom_transforms from path import Path class DataLoaderCreator(): def __init__(self, args): self.args = args def create(self, mode, seq_length=1): if self.args.dataset_format == 'stacked': from datasets.stacked_sequence_folders import SequenceFolder elif self.args.dataset_format == 'sequential': from datasets.sequence_folders import SequenceFolder if mode == 'train': # Data loading code train_transform = custom_transforms.Compose([ custom_transforms.RandomHorizontalFlip(), # custom_transforms.RandomScaleCrop(), custom_transforms.ArrayToTensor(), custom_transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) ]) print("=> fetching scenes in '{}'".format(self.args.dataset_dir)) train_set = SequenceFolder( self.args.dataset_dir, transform=train_transform, seed=self.args.seed, train=True, sequence_length=self.args.sequence_length ) print('{} samples found in {} train scenes'.format(len(train_set), len(train_set.scenes))) train_loader = torch.utils.data.DataLoader( train_set, batch_size=self.args.batch_size, shuffle=not(self.args.no_shuffle), num_workers=self.args.workers, pin_memory=True) return train_loader elif mode == "validate": # Data loading code normalize = custom_transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) valid_transform = custom_transforms.Compose([custom_transforms.ArrayToTensor(), normalize]) # if no Groundtruth is avalaible, Validation set is the same type as training set to measure photometric loss from warping if self.args.with_gt: if self.args.with_pose: from datasets.validation_folders import ValidationSetWithPose val_set = ValidationSetWithPose( self.args.dataset_dir, sequence_length=self.args.sequence_length, transform=valid_transform) else: from datasets.validation_folders import ValidationSet val_set = ValidationSet( self.args.dataset_dir, transform=valid_transform ) else: val_set = SequenceFolder( self.args.dataset_dir, transform=valid_transform, seed=self.args.seed, train=False, sequence_length=self.args.sequence_length, ) print('{} samples found in {} valid scenes'.format(len(val_set), len(val_set.scenes))) val_loader = torch.utils.data.DataLoader( val_set, batch_size=self.args.batch_size, shuffle=False, num_workers=self.args.workers, pin_memory=True) return val_loader elif mode == 'test_dispnet': if self.args.gt_type == 'KITTI': from kitti_eval.depth_evaluation_utils import test_framework_KITTI as test_framework elif self.args.gt_type == 'stillbox': from stillbox_eval.depth_evaluation_utils import test_framework_stillbox as test_framework dataset_dir = Path(self.args.dataset_dir) if self.args.dataset_list is not None: with open(self.args.dataset_list, 'r') as f: test_files = list(f.read().splitlines()) else: test_files = [file.relpathto(dataset_dir) for file in sum([dataset_dir.files('*.{}'.format(ext)) for ext in self.args.img_exts], [])] print('{} files to test'.format(len(test_files))) framework = test_framework(dataset_dir, test_files, 1, self.args.min_depth, self.args.max_depth) return framework elif mode == 'test_posenet': from kitti_eval.pose_evaluation_utils import test_framework_KITTI as test_framework dataset_dir = Path(self.args.dataset_dir) framework = test_framework(dataset_dir, self.args.sequences, seq_length) return framework elif mode == 'infer_dispnet': dataset_dir = Path(self.args.dataset_dir) if self.args.dataset_list is not None: with open(self.args.dataset_list, 'r') as f: test_files = [dataset_dir/file for file in f.read().splitlines()] else: test_files = sum([list(dataset_dir.walkfiles('*.{}'.format(ext))) for ext in self.args.img_exts], []) return test_files
import numpy as np from ..affine import power_L def basil_inner_loop(path_obj, lagrange_subseq, initial_data, # (solution, grad) pair inner_tol=1.e-5, verbose=False, initial_step=None, check_active=False, step_nvar=50, candidate_set=None, solve_args={}): debug = True coef_stop = False # take a guess at the inverse step size if initial_step is None: _lipschitz = power_L(path_obj.X, max_its=50) final_step = 1000. / _lipschitz else: final_step = initial_step # gradient of restricted elastic net at lambda_max solution, grad_solution = initial_data solution = solution.copy() last_grad = grad_solution.copy() inactive_ranks = path_obj.check_KKT(grad_solution, solution, path_obj.alpha * np.min(lagrange_subseq))[1] linear_predictor = path_obj.X.dot(solution) unpen = np.zeros(path_obj.group_shape, np.bool) unpen[path_obj.unpenalized[1]] = True ever_active = list(path_obj.updated_ever_active(unpen)) # unpenalized groups solutions = [] lagrange_solved = [] all_failing = np.zeros(path_obj.group_shape, np.bool) M = min(step_nvar, (inactive_ranks >= 0).sum()) candidate_bool = np.zeros(path_obj.group_shape, np.bool) subproblem_set = path_obj.updated_ever_active((inactive_ranks < M) * (inactive_ranks >= 0) + unpen) if candidate_set is not None: subproblem_set = sorted(set(subproblem_set + candidate_set)) for lagrange in lagrange_subseq: (final_step, subproblem_grad, subproblem_soln, subproblem_linpred, subproblem_vars) = path_obj.solve_subproblem(solution, # for warm start subproblem_set, lagrange, tol=inner_tol, start_step=final_step, debug=debug and verbose, coef_stop=coef_stop, **solve_args) saturated_grad = path_obj.saturated_loss.smooth_objective(subproblem_linpred, 'grad') # as subproblem always contains ever active, # rest of solution should be 0 solution[subproblem_vars] = subproblem_soln enet_grad = path_obj.enet_grad(solution, path_obj._penalized_vars, lagrange) grad_solution[:] = (path_obj.full_gradient(path_obj.saturated_loss, subproblem_linpred) + enet_grad) failing_A, failing_I_ranks = path_obj.check_KKT(grad_solution, solution, path_obj.alpha * lagrange) if check_active: all_failing = failing_A + (failing_I_ranks >= 0) else: all_failing = failing_I_ranks >= 0 if not all_failing.sum(): ever_active_incr = path_obj.updated_ever_active(path_obj.active_set(solution)) ever_active = sorted(set(ever_active + ever_active_incr)) linear_predictor[:] = subproblem_linpred solutions.append(solution.T.copy()) last_grad = grad_solution.copy() lagrange_solved.append(lagrange) else: ever_active1 = ever_active + list(subproblem_set) ever_active2 = path_obj.updated_ever_active(all_failing) ever_active = sorted(set(ever_active1 + ever_active2)) break return (lagrange_solved, solutions, last_grad, ever_active) def basil(path_obj, lagrange_seq, initial_data, # (solution, grad) pair inner_tol=1.e-5, verbose=False, initial_step=None, check_active=False, step_nvar=50, step_lagrange=5, solve_args={}): lagrange_solved, solutions, candidate_set = [np.inf], [], [] cur_data = initial_data while True: lagrange_start = np.sum(lagrange_seq >= np.min(lagrange_solved)) lagrange_cand = lagrange_seq[lagrange_start:(lagrange_start + step_lagrange)] if len(lagrange_cand) > 0: (lagrange_incr, solution_incr, last_grad, candidate_set) = basil_inner_loop(path_obj, lagrange_cand, cur_data, inner_tol=inner_tol, step_nvar=step_nvar, candidate_set=candidate_set, solve_args=solve_args) if len(solution_incr) > 0: cur_soln = (solution_incr[-1], last_grad) solutions.extend(solution_incr) lagrange_solved.extend(lagrange_incr) else: break return np.array(solutions)
''' Calculate various quantities considered surface brightness such as: - net counts - net count Rate - net photon flux - net energy flux (two options) see further documentation parameters: evt_file - classic event fits file (e.g. 'acsif_#####_repro_evt2') if merged ('merged_evt') energy_range - energy range in electron volts (e.g. 500:2000) region - region of interest (e.g. 'simple') background - background .reg file without extension (e.g. 'simple_bkg') exposure - boolean to use exposure fluxes (e.g. True) (See documentation) merged - boolean for merged data set or not (e.g. True) outputs: .par file containing all calculated quantities (.e.g. 'aprates_'+region+'.par') Notes: Usually we use the region name along with the arf files to calculate the monochromatic energy, but if the data set is merged then we must use the evt_file name (see documentation). This is handled in the code but be sure to name things appropriately! ''' from ciao_contrib.runtool import * from astropy.io import fits def calc_flux(evt_file,energy_range,region,background,exposure = False,merged = False,merged_obs = ['']): #Rearrange energy ranges energies = [float(x) for x in energy_range.split(':')] energy_range2 = str(energies[0]/1000)+':'+str(energies[1]/1000) #for effective energy (eV) energy_range3 = str(energies[0]/1000)+'-'+str(energies[1]/1000) #For average effective exposures (eV) #Get counts for region and background print("Calculating all data needed to calculate flux") dmextract.infile = evt_file+".fits[energy="+energy_range+"][bin sky=region("+region+".reg)]" dmextract.outfile = region+'_counts.fits' dmextract.opt = 'generic' dmextract.bkg = evt_file+".fits[energy="+energy_range+"][bin sky=region("+background+".reg)]" dmextract.clobber = True dmextract() dmstat.infile = region+'_counts.fits[cols counts]' dmstat() counts = float(dmstat.out_sum) dmstat.infile = region+'_counts.fits[cols area]' dmstat() area = float(dmstat.out_sum) dmstat.infile = region+'_counts.fits[cols bg_counts]' dmstat() bg_counts = float(dmstat.out_sum) dmstat.infile = region+'_counts.fits[cols bg_area]' dmstat() bg_area = float(dmstat.out_sum) #Set PSF elements alpha = 1 #PSF fraction in source aperature; 1-perfect beta = 0 #PSF fraction in background aperature; 0-perfect #Exposure Time if merged == False: hdu = fits.open(evt_file+'.fits') hdr = hdu[0].header T_s = hdr['TSTOP']-hdr['TSTART'] T_b = T_s hdu.close() #Calculate exposure maps effen = calc_effenergy(region,energy_range2) #Create Exposure Map for the band of interest fluximage.punlearn() fluximage.infile = evt_file+".fits" fluximage.outroot = region+"flux/" fluximage.bands = energy_range2+":"+str(effen) fluximage.binsize = "1" fluximage.units = "default" fluximage.clobber = True fluximage.cleanup = True fluximage() dmstat.punlearn() dmstat.infile = region+"flux/"+energy_range3+'_thresh.expmap[sky=region('+region+'.reg)]' dmstat.centroid = False dmstat() E_s = dmstat.out_mean dmstat.punlearn() dmstat.infile = region+"flux/"+energy_range3+'_thresh.expmap[sky=region('+background+'.reg)]' dmstat.centroid = False dmstat() E_b = dmstat.out_mean if merged == True: T_s = 0 T_b = 0 for obsid in merged_obs: hdu = fits.open(obsid+'.fits') hdr = hdu[0].header T_s += hdr['TSTOP']-hdr['TSTART'] T_b += T_s hdu.close() #Calculate average effective exposures dmstat.punlearn() dmstat.infile = energy_range3+'_thresh.expmap[sky=region('+region+'.reg)]' dmstat.centroid = False dmstat() E_s = dmstat.out_mean dmstat.punlearn() dmstat.infile = energy_range3+'_thresh.expmap[sky=region('+background+'.reg)]' dmstat.centroid = False dmstat() E_b = dmstat.out_mean #Calculate average photon energies in source and background aperature if exposure == False: dmtcalc.punlearn() dmtcalc.infile = evt_file+".fits[energy="+energy_range+",sky=region("+region+".reg)]" dmtcalc.outfile = region+"_source_energy.fits" dmtcalc.expression = 'energy=1.6e-12*energy' #Convert to ergs dmtcalc.clobber = True dmtcalc() dmstat.punlearn() dmstat.infile = region+'_source_energy.fits[cols energy]' dmstat() eng_s = dmstat.out_mean dmtcalc.punlearn() dmtcalc.infile = evt_file+".fits[energy="+energy_range+",sky=region("+background+".reg)]" dmtcalc.outfile = region+"_background_energy.fits" dmtcalc.expression = 'energy=1.6e-12*energy' #Convert to ergs dmtcalc.clobber = True dmtcalc() dmstat.punlearn() dmstat.infile = region+'_background_energy.fits[cols energy]' dmstat() eng_b = dmstat.out_mean #set flux_s,flux_b to zero to ignore exposure flux_s = 1; flux_b = 1 if exposure == True: eff2evt.punlearn() eff2evt.infile = evt_file+".fits[energy="+energy_range+"][sky=region("+region+".reg)]" eff2evt.outfile = region+"_source_effexp.fits" eff2evt.clobber = True eff2evt() dmstat.punlearn() dmstat.infile = region+'_source_effexp.fits[cols flux]' dmstat() flux_s = dmstat.out_mean eff2evt.punlearn() eff2evt.infile = evt_file+".fits[energy="+energy_range+"][sky=region("+background+".reg)]" eff2evt.outfile = region+"_background_effexp.fits" eff2evt.clobber = True eff2evt() dmstat.punlearn() dmstat.infile = region+'_background_effexp.fits[cols flux]' dmstat() flux_b = dmstat.out_mean #Conversely set eng_s,eng_b to one to signify we are using effective exposure eng_s = 1; eng_b = 1 #Calculate energy flux and bounds print("Setting aprates values") aprates.punlearn() aprates.conf = 0.90 aprates.n = counts aprates.m = bg_counts aprates.A_s = area aprates.A_b = bg_area aprates.alpha = alpha aprates.beta = beta aprates.T_s = T_s aprates.T_b = T_b aprates.E_s = E_s aprates.E_b = E_b aprates.eng_s = eng_s aprates.eng_b = eng_b aprates.flux_s = flux_s aprates.flux_b = flux_b aprates.outfile = 'aprates_'+region+'.par' aprates.clobber = True aprates.pdf = 'alternate' print("Running aprates for flux value") aprates() return None
import primes import matplotlib.pyplot as plt P = primes.prange(1001) Y = [] for i in range(len(P)-1): Y.append(P[i+1]-P[i]) plt.plot(Y,'x') plt.xlabel('n') plt.ylabel('p(n)-p(n-1)') plt.show()
# (C) Copyright 2021 Hewlett Packard Enterprise Development LP. # Aruba Fabric Composer classes import requests from requests.auth import HTTPBasicAuth from requests.structures import CaseInsensitiveDict import classes.classes import urllib3 import json urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning) def obtainafcToken(afcipaddress,afcusername,afcpassword): response={} try: url="https://" + afcipaddress + "/api/auth/token" headers = CaseInsensitiveDict() headers["Content-Type"] = "application/json" headers['accept'] = "application/json; version=1.0" headers["X-Auth-Username"] = afcusername headers["X-Auth-Password"] = afcpassword headers["Content-Length"] = "0" response = requests.post(url, headers=headers, verify=False) return response.text except ConnectionError: response.update({"message":"Connection error, no response from AFC"}) return response except Exception as err: response.update({"message":"Failed to establish a connection to AFC"}) return response def checkafcToken(afcipaddress, afctoken): response={} try: url="https://" + afcipaddress + "/api/ping" headers = CaseInsensitiveDict() headers["Content-Type"] = "application/json" headers['accept'] = "application/json; version=1.0" headers["Authorization"] = afctoken try: result = requests.get(url, headers=headers, verify=False, timeout=2) except: response.update({"message":"No response from AFC"}) return response if result: response.update({"status_code": result.status_code}) else: response.update({"message":"No response from AFC"}) return response except ConnectionError: response.update({"message":"Connection error, no response from AFC"}) return response except Exception as err: response.update({"message":"Failed to establish a connection to AFC"}) return response except: response.update({"message":"Failed to establish a connection to AFC"}) return response def getRestafc(url): afcvars=classes.classes.obtainVars('sysafc') response={} if len(afcvars)>0: if isinstance(afcvars,str): afcvars=json.loads(afcvars) if not "afctoken" in afcvars: response= obtainafcToken(afcvars['afcipaddress'],afcvars['afcusername'], afcvars['afcpassword']) if isinstance(response,str): response=json.loads(response) afcvars.update({"afctoken":response['result']}) queryStr="update systemconfig set datacontent='{}' where configtype='sysafc'".format(json.dumps(afcvars)) classes.classes.sqlQuery(queryStr,"update") url="https://" + afcvars['afcipaddress'] + "/" + url result={} headers = CaseInsensitiveDict() headers["Content-Type"] = "application/json" headers['accept'] = "application/json; version=1.0" headers["Authorization"] = afcvars['afctoken'] response=checkafcToken(afcvars['afcipaddress'],afcvars['afctoken']) if "status_code" in response: if response['status_code']==204: # Token seems to be valid, we can issue the query response = requests.get(url, headers=headers, verify=False) response = response.json() if response['result']=="Authentication credential is not valid; please log in again": # Authorization token is still not valid. We need to refresh response= obtainafcToken(afcvars['afcipaddress'], afcvars['afcusername'], afcvars['afcpassword']) if isinstance(response,str): response = json.loads(response) if "count" in response: # Result is the afctoken. We need to update the afcvars afcvars.update({"afctoken":response['result']}) queryStr="update systemconfig set datacontent='{}' where configtype='sysafc'".format(json.dumps(afcvars)) classes.classes.sqlQuery(queryStr,"update") # And issue the get request again headers["Authorization"] = afcvars['afctoken'] response = requests.get(url, headers=headers, verify=False) response = response.json() else: # Statuscode is not 204, try to refresh the token response= obtainafcToken(afcipaddress, afcusername, afcpassword) if isinstance(response,str): response = json.loads(response) if "count" in response: # Result is the afctoken. We need to update the afcvars afcvars.update({"afctoken":response['result']}) queryStr="update systemconfig set datacontent='{}' where configtype='sysafc'".format(json.dumps(afcvars)) classes.classes.sqlQuery(queryStr,"update") # And issue the get request again headers["Authorization"] = afcvars['afctoken'] response = requests.get(url, headers=headers, verify=False) response = response.json() else: # There is something wrong with the connectivity, return an error response.update({"message":"Unable to obtain information, verify AFC credentials"}) else: response.update({"message":"No AFC integration information available"}) return response def getafcSwitches(formresult): afcswitches=[] formresult=formresult.to_dict(flat=True) try: queryStr="select jsondata,message from afc where infotype='fabrics'" fabricInfo=classes.classes.sqlQuery(queryStr,"selectone") afcfabrics=json.loads(fabricInfo['jsondata']) except: afcfabrics=[] try: queryStr="select jsondata,message from afc where infotype='switches'" switchInfo=classes.classes.sqlQuery(queryStr,"selectone") afcSwitches=json.loads(switchInfo['jsondata']) except Exception as e: print(e) afcSwitches=[] totalentries=0 if formresult and len(afcSwitches)>0: entryperpage=int(formresult['entryperpage']) if not "pageoffset" in formresult: pageoffset=0 else: pageoffset=int(formresult['pageoffset'])-1 afcfabric=formresult['afcfabric'] try: if switchInfo['jsondata']!='"Authentication token header required"': # First go through the list and filter on the fabric (if this is selected) if afcfabric=="allfabrics": if len(afcSwitches)>0: totalentries=len(afcSwitches) afcswitches=[afcSwitches[i:i+entryperpage] for i in range(0, len(afcSwitches), entryperpage)][pageoffset] else: totalentries=0 elif afcfabric=="unassigned": # We need to filter out the switches that are not a member of the any fabric if len(afcSwitches)>0: for items in afcSwitches: if items['fabric_uuid']=="": # This switch is not assigned to any fabric. Add it to the (new) list of dicts afcswitches.append(items) totalentries=len(afcswitches) if totalentries>0: afcswitches=[afcswitches[i:i+entryperpage] for i in range(0, len(afcswitches), entryperpage)][pageoffset] else: # A fabric is selected, we need to filter out the switches that are not a member of the selected fabric # the afcfabric uuid is the fabric uuid, this needs to be assigned to the switches if len(afcSwitches)>0: for items in afcSwitches: if items['fabric_uuid']==afcfabric: # This switch is assigned to the fabric. Add it to the (new) list of dicts afcswitches.append(items) totalentries=len(afcswitches) if totalentries>0: afcswitches=[afcswitches[i:i+entryperpage] for i in range(0, len(afcswitches), entryperpage)][pageoffset] else: # There is no valid information in the switch Information afcswitches=[] jsonData={} jsonData['message']=switchInfo['jsondata'] afcswitches.append(jsonData) afcfabric="allfabrics" except: entryperpage=10 pageoffset=0 afcswitches=[] jsonData={} jsonData['message']="No switch information" afcswitches.append(jsonData) afcfabric="allfabrics" else: entryperpage=10 pageoffset=0 try: queryStr="select jsondata,message from afc where infotype='switches'" switchInfo=classes.classes.sqlQuery(queryStr,"selectone") if switchInfo['jsondata']!='"Authentication token header required"': jsonData=json.loads(switchInfo['jsondata']) if len(jsonData)>0: totalentries=len(jsonData) # and we should only show the first 10 switches in the list afcswitches=[jsonData[i:i+entryperpage] for i in range(0, len(jsonData), entryperpage)][pageoffset] else: afcswitches=[] jsonData={} jsonData['message']=switchInfo['jsondata'] afcswitches.append(jsonData) afcfabric="allfabrics" except: afcswitches=[] jsonData={} jsonData['message']="No switch information" afcswitches.append(jsonData) afcfabric="allfabrics" return {'afcswitches':afcswitches, 'afcfabrics': afcfabrics, 'afcfabric': afcfabric, 'totalentries': totalentries, 'pageoffset': pageoffset, 'entryperpage': entryperpage} def afcauditInfo(formresult): formresult=formresult.to_dict(flat=True) totalentries=0 if formresult: entryperpage=formresult['entryperpage'] if not "pageoffset" in formresult: pageoffset=0 else: pageoffset=int(formresult['pageoffset'])-1 # Need to check if there are any search criteria. If not just select the last entries from the table if formresult['searchRecordtype']!="" or formresult['searchStreamid']!="" or formresult['searchSeverity']!="" or formresult['searchDescription']!="": constructQuery = " where" else: constructQuery = " " if formresult['searchRecordtype']: constructQuery += " record_type like'%" + formresult['searchRecordtype'] + "%' AND " if formresult['searchStreamid']: constructQuery += " stream_id like '%" + formresult['searchStreamid'] + "%' AND " if formresult['searchSeverity']: constructQuery += " severity='" + formresult['searchSeverity'] + "' AND " if formresult['searchDescription']: constructQuery += " description like'%" + formresult['searchDescription'] + "%' AND " # We have to construct the query based on the formresult information (entryperpage, totalpages, pageoffset) queryStr="select COUNT(*) as totalentries from afcaudit " + constructQuery[:-4] navResult=classes.classes.navigator(queryStr,formresult) totalentries=navResult['totalentries'] entryperpage=navResult['entryperpage'] # If the entry per page value has changed, need to reset the pageoffset if formresult['entryperpage']!=formresult['currententryperpage']: pageoffset=0 else: pageoffset=navResult['pageoffset'] # We have to construct the query based on the formresult information (entryperpage, totalpages, pageoffset) queryStr = "select * from afcaudit " + constructQuery[:-4] + " ORDER BY log_date DESC LIMIT {} offset {}".format(entryperpage,pageoffset) afcauditInfo=classes.classes.sqlQuery(queryStr,"select") else: entryperpage=10 pageoffset=0 queryStr="select count(*) as totalCount from afcaudit" auditCount=classes.classes.sqlQuery(queryStr,"selectone") totalentries=auditCount['totalCount'] queryStr="SELECT * FROM afcaudit ORDER BY log_date DESC LIMIT {} OFFSET 0".format(entryperpage) afcauditInfo=classes.classes.sqlQuery(queryStr,"select") return {'auditInfo':afcauditInfo, 'totalentries': totalentries, 'pageoffset': pageoffset, 'entryperpage': entryperpage} def afcswitchInfo(uuid): afcswitchInfo={} afcswitchInfo['info']={} afcswitchInfo['portInfo']={} queryStr="select jsondata,message from afc where infotype='switches'" switchInfo=classes.classes.sqlQuery(queryStr,"selectone") jsonData=json.loads(switchInfo['jsondata']) # Obtain the right switch from the list for items in jsonData: if items['uuid']==uuid: # This is the switch, return the information to the calling function # Extract the port information and order the interface list portInfo=sorted(items['ports'], key=lambda d: int(d['silkscreen'])) afcswitchInfo['info']=items.copy() afcswitchInfo['portInfo']=portInfo.copy() return afcswitchInfo def afcvmwareInventory(): # Obtain the host information queryStr="select jsondata,message from afc where infotype='vmwareinventory'" vmInfo=classes.classes.sqlQuery(queryStr,"selectone") if vmInfo==None: vmInfo={} vmInfo['jsondata']=[] vmInfo['message']="No VMWare inventory information available" vmTree=[] else: vmTree=[] jsonData=json.loads(vmInfo['jsondata']) for items in jsonData: for items2 in items['hosts']: vmConstruct = {} # Host info vmDict={} vmConstruct['name'] = items2['name'] vmConstruct['itemtype']="host" vmConstruct['power_state'] = items2['power_state'] vmConstruct['uuid'] = items2['uuid'] vmDict2={} vmDict3={} vmDict4={} vmDict5={} vmConstruct['children']=[] for index, items3 in enumerate(items2['nics']): # We need to create dictionaries in this list. This dictionary contains a data dictionary and children list(s) vmDict[index]={} vmDict[index]['itemtype']="nic" vmDict[index]['name'] = items3['name']; vmDict[index]['uuid'] = items3['uuid']; vmDict[index]['mac_address'] = items3['mac_address']; vmDict[index]['ip_address'] = items3['ip_address']; vmDict[index]['vlan'] = items3['vlan']; vmDict[index]['vni'] = items3['vni']; vmDict[index]['vtep'] = items3['vtep']; vmConstruct['children'].append(vmDict[index].copy()) for index2, items4 in enumerate(items3['portgroups']): vmConstruct['children'][index]['children']=[] vmDict2[index2]={} vmDict2[index2]['itemtype']="portgroup" vmDict2[index2]['name'] = items4['name']; vmDict2[index2]['uuid'] = items4['uuid']; vmDict2[index2]['type'] = items4['type']; vmDict2[index2]['vlans'] = items4['vlans']; vmConstruct['children'][index]['children'].append(vmDict2[index2].copy()) # There is only one vswitch assigned to a port group, therefore no for-next vmConstruct['children'][index]['children'][index2]['children']=[] vmDict3['itemtype']="vswitch" vmDict3['name']=items4['vswitch']['name'] vmDict3['uuid']=items4['vswitch']['uuid'] vmDict3['type']=items4['vswitch']['type'] vmConstruct['children'][index]['children'][index2]['children'].append(vmDict3.copy()) vmConstruct['children'][index]['children'][index2]['children'][0]['children']=[] for index3, items5 in enumerate(items4['vswitch']['nic']): vmDict4[index3]={} vmDict4[index3]['itemtype']="vnic" vmDict4[index3]['name'] = items5['name']; vmDict4[index3]['link_speed'] = items5['link_speed']; vmDict4[index3]['connection_status'] = items5['connection_status']; vmDict4[index3]['uuid'] = items5['uuid']; vmDict4[index3]['mac_address'] = items5['mac_address']; vmDict4[index3]['children']=[] if len(items5['switch'])>0: vmDict5={} vmDict5['itemtype']="switch" vmDict5['name'] = items5['switch']['hostname']; vmDict5['switch_port_id'] = items5['switch_port_id']; vmDict5['uuid'] = items5['switch']['uuid']; vmDict5['ip_address'] = items5['switch']['ip_address']; vmDict5['mac_address'] = items5['switch']['mac_address']; vmDict5['serial_number'] = items5['switch']['serial_number']; vmDict5['description'] = items5['switch']['description']; vmDict5['role'] = items5['switch']['role']; vmDict5['fabric'] = items5['switch']['fabric']; vmDict5['fabric_class'] = items5['switch']['fabric_class']; vmDict4[index3]['children'].append(vmDict5.copy()) vmConstruct['children'][index]['children'][index2]['children'][0]['children'].append(vmDict4[index3].copy()) vmTree.append(vmConstruct) return json.dumps(vmTree)
import functools import sys import types import inspect __all__ = [ 'partial_cls', 'register_partial_cls' ] def partial_cls(base_cls, name, module, fix=None, default=None): # helper function def insert_if_not_present(dict_a, dict_b): for kw,val in dict_b.items(): if kw not in dict_a: dict_a[kw] = val return dict_a # helper function def insert_call_if_present(dict_a, dict_b, callback): for kw,val in dict_b.items(): if kw not in dict_a: dict_a[kw] = val else: callback(kw) return dict_a # helper class class PartialCls(object): def __init__(self, base_cls, name, module, fix=None, default=None): self.base_cls = base_cls self.name = name self.module = module self.fix = [fix, {}][fix is None] self.default = [default, {}][default is None] if self.fix.keys() & self.default.keys(): raise TypeError('fix and default share keys') # remove binded kw self._allowed_kw = self._get_allowed_kw() def _get_allowed_kw(self): argspec = inspect.getfullargspec(base_cls.__init__) args, varargs, varkw, defaults, kwonlyargs, kwonlydefaults, annotations = argspec if varargs is not None: raise TypeError('partial_cls can only be used if __init__ has no varargs') if varkw is not None: raise TypeError('partial_cls can only be used if __init__ has no varkw') if kwonlyargs is not None and kwonlyargs != []: raise TypeError('partial_cls can only be used without kwonlyargs') if args is None or len(args) < 1: raise TypeError('seems like self is missing') return [kw for kw in args[1:] if kw not in self.fix] def _build_kw(self, args, kwargs): # handle *args if len(args) > len(self._allowed_kw): raise TypeError("to many arguments") all_args = {} for arg, akw in zip(args, self._allowed_kw): all_args[akw] = arg # handle **kwargs intersection = self.fix.keys() & kwargs.keys() if len(intersection) >= 1: kw = intersection.pop() raise TypeError("`{}.__init__` got unexpected keyword argument '{}'".format(name, kw)) def raise_cb(kw): raise TypeError("{}.__init__ got multiple values for argument '{}'".format(name, kw)) all_args = insert_call_if_present(all_args, kwargs, raise_cb) # handle fixed arguments def raise_cb(kw): raise TypeError() all_args = insert_call_if_present(all_args, self.fix, raise_cb) # handle defaults all_args = insert_if_not_present(all_args, self.default) # handle fixed all_args.update(self.fix) return all_args def build_cls(self): def new_init(self_of_new_cls, *args, **kwargs): combined_args = self._build_kw(args=args, kwargs=kwargs) #call base cls init super(self_of_new_cls.__class__, self_of_new_cls).__init__(**combined_args) return type(name, (self.base_cls,), { '__module__': self.module, '__init__' : new_init }) return cls return PartialCls(base_cls=base_cls, name=name, module=module, fix=fix, default=default).build_cls() def register_partial_cls(base_cls, name, module, fix=None, default=None): module_dict = sys.modules[module].__dict__ generatedClass = partial_cls(base_cls=base_cls,name=name, module=module, fix=fix, default=default) module_dict[generatedClass.__name__] = generatedClass del generatedClass if __name__ == "__main__": class Conv(object): def __init__(self, dim, activation, stride=1): print(f"dim {dim} act {activation} stride {stride}") Conv2D = partial_cls(Conv,'Conv2D',__name__, fix=dict(dim=2), default=dict(stride=2)) #obj = Conv2D(activation='a') #obj = Conv2D('a',activation='a', stride=3) obj = Conv2D('fu','bar')
# create executable binary from python code, toy example # inspired by http://masnun.rocks/2016/10/01/creating-an-executable-file-using-cython/ # cython --embed -o hello_world.c hello_world.py # gcc -v -Os \ # -L /usr/local/Frameworks/Python.framework/Versions/3.7/lib/ \ # -I /usr/local/Frameworks/Python.framework/Versions/3.7/include/python3.7m/ \ # -lpython3.7 -lpthread -lm -lutil -ldl # -o hello \ # hello_world.c #gcc -v -Os -I /Users/xxx/.pyenv/versions/3.5.1/include/python3.5m -L /usr/local/Frameworks/Python.framework/Versions/3.5/lib -o test test.c -lpython3.5 -lpthread -lm -lutil -ldl print("Hello World!")
pre = '/Users/phr/Desktop' # train_file = pre+'/Parser/files/small-bin.txt' # train_file = pre+'/Parser/files/medium.txt' dev_file = pre+'/Parser/files/small-dev.txt' train_file = pre+'/Parser/files/train.txt' # train_file = pre+'/Parser/files/dev.txt' output_dir = pre+'/Parser/output/' import os if not os.path.exists(output_dir): os.makedirs(output_dir) print('Output directory created.') nonterminal_cutoff = 10 terminal_cutoff = 5 train = None dev = None nonterminal_map = None terminal_map = None pcfg = None I, O = None, None Inode, Onode = None, None singular_value_cutoff = 0.01 max_state = 32 proj = None lpcfg = None rule3s_lookupC = None rule1s_lookup = None # Smooth params C = 30 v = 0.6 unary_cutoff = 1000 prune_cutoff = 1e-5 numba_ready = False import torch def save(): print('Saving parameters.') torch.save(nonterminal_map, output_dir+'nonterminal_map.pt') torch.save(terminal_map, output_dir + 'terminal_map.pt') torch.save(pcfg, output_dir + 'pcfg.pt') torch.save(lpcfg, output_dir + 'lpcfg.pt') torch.save(rule3s_lookupC, output_dir + 'rule3s_lookupC.pt') torch.save(rule1s_lookup, output_dir + 'rule1s_lookup.pt') print('Done!') def load(): global nonterminal_map, terminal_map global pcfg, lpcfg global rule3s_lookupC, rule1s_lookup nonterminal_map = torch.load(output_dir+'nonterminal_map.pt') terminal_map = torch.load(output_dir+'terminal_map.pt') pcfg = torch.load(output_dir+'pcfg.pt') lpcfg = torch.load(output_dir + 'lpcfg.pt') rule3s_lookupC = torch.load(output_dir+'rule3s_lookupC.pt') rule1s_lookup = torch.load(output_dir+'rule1s_lookup.pt')
import os import numpy.ctypeslib as npct from ctypes import * import csv import numpy as np from contextlib import contextmanager import sys def getColumn(filename, column): results = csv.reader(open(filename), delimiter=",") # next(results, None) # skip the headers return [result[column] for result in results] # This function converts an input numpy array into a different # data type and ensure that it is contigious. def convert_type(in_array, new_dtype): ret_array = in_array if not isinstance(in_array, np.ndarray): ret_array = np.array(in_array, dtype=new_dtype) elif in_array.dtype != new_dtype: ret_array = np.array(ret_array, dtype=new_dtype) if ret_array.flags['C_CONTIGUOUS'] == False: ret_array = np.ascontiguousarray(ret_array) return ret_array #from stackoverflow # https://stackoverflow.com/questions/5081657/how-do-i-prevent-a-c-shared-library-to-print-on-stdout-in-python def redirect_stdout(): print ("Verbose mode is false. Redirecting C shared library stdout to /dev/null") sys.stdout.flush() # <--- important when redirecting to files newstdout = os.dup(1) devnull = os.open(os.devnull, os.O_WRONLY) os.dup2(devnull, 1) os.close(devnull) sys.stdout = os.fdopen(newstdout, 'w') #from stackoverflow # https://stackoverflow.com/questions/5081657/how-do-i-prevent-a-c-shared-library-to-print-on-stdout-in-python @contextmanager def stdout_redirected(to=os.devnull): ''' import os with stdout_redirected(to=filename): print("from Python") os.system("echo non-Python applications are also supported") ''' print ("Verbose mode is false. Redirecting C shared library stdout to /dev/null") fd = sys.stdout.fileno() ##### assert that Python and C stdio write using the same file descriptor ####assert libc.fileno(ctypes.c_void_p.in_dll(libc, "stdout")) == fd == 1 def _redirect_stdout(to): sys.stdout.close() # + implicit flush() os.dup2(to.fileno(), fd) # fd writes to 'to' file sys.stdout = os.fdopen(fd, 'w') # Python writes to fd with os.fdopen(os.dup(fd), 'w') as old_stdout: with open(to, 'w') as file: _redirect_stdout(to=file) try: yield # allow code to be run with the redirected stdout finally: _redirect_stdout(to=old_stdout) # restore stdout. # buffering and flags such as # CLOEXEC may be different #from here: https://www.py4u.net/discuss/15884 class SuppressStream(object): def __init__(self, stream=sys.stderr): self.orig_stream_fileno = stream.fileno() def __enter__(self): self.orig_stream_dup = os.dup(self.orig_stream_fileno) self.devnull = open(os.devnull, 'w') os.dup2(self.devnull.fileno(), self.orig_stream_fileno) def __exit__(self, type, value, traceback): os.close(self.orig_stream_fileno) os.dup2(self.orig_stream_dup, self.orig_stream_fileno) os.close(self.orig_stream_dup) self.devnull.close() #https://stackoverflow.com/questions/5081657/how-do-i-prevent-a-c-shared-library-to-print-on-stdout-in-python class HideOutput(object): ''' A context manager that block stdout for its scope, usage: with HideOutput(): os.system('ls -l') ''' def __init__(self, *args, **kw): sys.stdout.flush() self._origstdout = sys.stdout self._oldstdout_fno = os.dup(sys.stdout.fileno()) self._devnull = os.open(os.devnull, os.O_WRONLY) def __enter__(self): self._newstdout = os.dup(1) os.dup2(self._devnull, 1) os.close(self._devnull) sys.stdout = os.fdopen(self._newstdout, 'w') def __exit__(self, exc_type, exc_val, exc_tb): sys.stdout = self._origstdout sys.stdout.flush() os.dup2(self._oldstdout_fno, 1) def computeIndexRangesForEachObject(objId): start_index_arr=[] end_index_arr=[] unique_obj_ids_arr=[] lastId=objId[0] unique_obj_ids_arr.append(objId[0]) start_index_arr.append(0) for x in range(0, len(objId)): if(objId[x]!=lastId): end_index_arr.append(x-1) start_index_arr.append(x) lastId=objId[x] #update the list of unique object ids unique_obj_ids_arr.append(objId[x]) #last one needs to be populated end_index_arr.append(len(objId)-1) start_index_arr=np.asarray(start_index_arr, dtype=int) end_index_arr=np.asarray(end_index_arr, dtype=int) unique_obj_ids_arr=np.asarray(unique_obj_ids_arr) return start_index_arr, end_index_arr, unique_obj_ids_arr #https://www.codeforests.com/2020/11/05/python-suppress-stdout-and-stderr/ @contextmanager def nullify_output(suppress_stdout=True, suppress_stderr=True): stdout = sys.stdout stderr = sys.stderr devnull = open(os.devnull, "w") try: if suppress_stdout: sys.stdout = devnull if suppress_stderr: sys.stderr = devnull yield finally: if suppress_stdout: sys.stdout = stdout if suppress_stderr: sys.stderr = stderr def enumerateObjects(start_index_arr, end_index_arr): enumObjectId=[] for x in range (start_index_arr.size): numElems=end_index_arr[x]-start_index_arr[x]+1 # print("Num elems: %d" %(numElems)) enumObjectId.extend(numElems*[x]) enumObjectId=np.asarray(enumObjectId, dtype=int) # print("Total number of lines after enumeration: %d" %(enumObjectId.size)) # print("Total number of unique objects after enumeration: %d" %(np.unique(enumObjectId).size)) return enumObjectId #Use the formulation in Richards et al. 2011 def computeNumFreqAuto(objId, timeX, fmin, fmax): start_index_arr, end_index_arr, _ = computeIndexRangesForEachObject(objId) timeXLocal=np.asfarray(timeX) observing_window_arr=[] for x in range (0, start_index_arr.size): idxStart=start_index_arr[x] idxEnd=end_index_arr[x] observing_window_arr.append(timeXLocal[idxEnd]-timeXLocal[idxStart]) observing_window_arr=np.asarray(observing_window_arr, dtype=float) maximumObservingWindow=np.max(observing_window_arr) deltaf=0.1/maximumObservingWindow num_freqs=(fmax-fmin)/deltaf num_freqs=int(num_freqs) print("*********************") print("Automatically generating the number of frequencies based on maximum observing window:") print("Max. Observing Window: %f, Delta f: %f" %(maximumObservingWindow, deltaf)) print("Number of frequencies: ", num_freqs) print("*********************") return num_freqs #wrapper to enable the verbose option def lombscargle(objId, timeX, magY, minFreq, maxFreq, error, mode, magDY=None, freqToTest="auto", dtype="float", verbose=False): if(verbose==False): with HideOutput(): ret_uniqueObjectIdsOrderedWrapper, ret_periodsWrapper, ret_pgramWrapper = lombscarglemain(objId, timeX, magY, minFreq, maxFreq, error, mode, magDY, freqToTest, dtype) else: ret_uniqueObjectIdsOrderedWrapper, ret_periodsWrapper, ret_pgramWrapper = lombscarglemain(objId, timeX, magY, minFreq, maxFreq, error, mode, magDY, freqToTest, dtype, verbose) return ret_uniqueObjectIdsOrderedWrapper, ret_periodsWrapper, ret_pgramWrapper #main L-S function def lombscarglemain(objId, timeX, magY, minFreq, maxFreq, error, mode, magDY=None, freqToTest="auto", dtype="float", verbose=False): #store the minimum/maximum frequencies (needed later for period calculation) minFreqStandard=minFreq maxFreqStandard=maxFreq #convert oscillating frequencies into angular minFreq=2.0*np.pi*minFreq maxFreq=2.0*np.pi*maxFreq ############################### #Check for valid parameters and set verbose mode and generate frequencies for auto mode #prevent C output from printing to screen # if (verbose==False): # redirect_stdout() # stdout_redirected() #if the user doesn't specify the number of frequencies if (freqToTest=="auto"): freqToTest=computeNumFreqAuto(objId, timeX, minFreqStandard, maxFreqStandard) #check which mode to use in the C shared library # 1- GPU Batch of Objects Lomb-Scargle") # 2- GPU Single Object Lomb-Scargle") # 3- None # 4- CPU Batch of Objects Lomb-Scargle") # 5- CPU Single Object Lomb-Scargle") numObjects=np.size(np.unique(objId)) if (mode=="GPU" and numObjects>1): setmode=1 elif (mode=="GPU" and numObjects==1): setmode=2 elif (mode=="CPU" and numObjects>1): setmode=4 elif (mode=="CPU" and numObjects==1): setmode=5 #check that if the error is true, that magDY is not None (None is the default parameter) if (error==True and magDY==None): print("[Python] Error: No input error array, but the error mode is True. Set error mode to False.") exit(0) ############################### #enumerate objId so that we can process objects with non-numeric Ids #original objects are stored in ret_uniqueObjectIdsOrdered start_index_arr, end_index_arr, ret_uniqueObjectIdsOrdered = computeIndexRangesForEachObject(objId) objId = enumerateObjects(start_index_arr, end_index_arr) # Create variables that define C interface array_1d_double = npct.ndpointer(dtype=c_double, ndim=1, flags='CONTIGUOUS') array_1d_float = npct.ndpointer(dtype=c_float, ndim=1, flags='CONTIGUOUS') array_1d_unsigned = npct.ndpointer(dtype=c_uint, ndim=1, flags='CONTIGUOUS') #load the shared library (either the noerror/error and float/double versions) lib_path = os.getcwd() if (error==False and dtype=="float"): liblombscarglenoerrorfloat = npct.load_library('libpylsnoerrorfloat.so', lib_path) elif (error==False and dtype=="double"): liblombscarglenoerrordouble = npct.load_library('libpylsnoerrordouble.so', lib_path) elif (error==True and dtype=="float"): liblombscargleerrorfloat = npct.load_library('libpylserrorfloat.so', lib_path) elif (error==True and dtype=="double"): liblombscargleerrordouble = npct.load_library('libpylserrordouble.so', lib_path) #total number of rows in file sizeData=len(objId) print("[Python] Number of rows in file: %d" %(sizeData)) #convert input from lists to numpy arrays objId=np.asarray(objId, dtype=int) timeX=np.asfarray(timeX) magY=np.asfarray(magY) if(error==True): magDY=np.asfarray(magDY) #if error is false, we still need to send dummy array to C shared library #set all values to 1.0, although we don't use it for anything if(error==False): magDY=np.full(objId.size, 1.0) #convert to CTYPES if (dtype=="float"): c_objId=convert_type(objId, c_uint) c_timeX=convert_type(timeX, c_float) c_magY=convert_type(magY, c_float) c_magDY=convert_type(magDY, c_float) elif (dtype=="double"): c_objId=convert_type(objId, c_uint) c_timeX=convert_type(timeX, c_double) c_magY=convert_type(magY, c_double) c_magDY=convert_type(magDY, c_double) df=(maxFreq-minFreq)/freqToTest*1.0 dfstandard=(maxFreqStandard-minFreqStandard)/freqToTest*1.0 # Allocate arrays for results uniqueObjects=np.size(np.unique(objId)) print("[Python] Unique objects: %d" % (uniqueObjects)) if (dtype=="float"): ret_pgram = np.zeros(uniqueObjects*freqToTest, dtype=c_float) pgramDataGiB=((ret_pgram.size*4.0)/(1024*1024*1024)) elif (dtype=="double"): ret_pgram = np.zeros(uniqueObjects*freqToTest, dtype=c_double) pgramDataGiB=((ret_pgram.size*8.0)/(1024*1024*1024)) print("[Python] Size of pgram in elems: %d (%f GiB)" %(ret_pgram.size, pgramDataGiB)) #without error -- float if (error==False and dtype=="float"): #define the argument types liblombscarglenoerrorfloat.LombScarglePy.argtypes = [array_1d_unsigned, array_1d_float, array_1d_float, array_1d_float, c_uint, c_double, c_double, c_uint, c_int, array_1d_float] #call the library liblombscarglenoerrorfloat.LombScarglePy(c_objId, c_timeX, c_magY, c_magDY, c_uint(sizeData), c_double(minFreq), c_double(maxFreq), c_uint(freqToTest), c_int(setmode), ret_pgram) #without error -- double if (error==False and dtype=="double"): #define the argument types liblombscarglenoerrordouble.LombScarglePy.argtypes = [array_1d_unsigned, array_1d_double, array_1d_double, array_1d_double, c_uint, c_double, c_double, c_uint, c_int, array_1d_double] #call the library liblombscarglenoerrordouble.LombScarglePy(c_objId, c_timeX, c_magY, c_magDY, c_uint(sizeData), c_double(minFreq), c_double(maxFreq), c_uint(freqToTest), c_int(setmode), ret_pgram) #with error -- float if (error==True and dtype=="float"): #define the argument types liblombscargleerrorfloat.LombScarglePy.argtypes = [array_1d_unsigned, array_1d_float, array_1d_float, array_1d_float, c_uint, c_double, c_double, c_uint, c_int, array_1d_float] #call the library liblombscargleerrorfloat.LombScarglePy(c_objId, c_timeX, c_magY, c_magDY, c_uint(sizeData), c_double(minFreq), c_double(maxFreq), c_uint(freqToTest), c_int(setmode), ret_pgram) #with error -- double if (error==True and dtype=="double"): #define the argument types liblombscargleerrordouble.LombScarglePy.argtypes = [array_1d_unsigned, array_1d_double, array_1d_double, array_1d_double, c_uint, c_double, c_double, c_uint, c_int, array_1d_double] #call the library liblombscargleerrordouble.LombScarglePy(c_objId, c_timeX, c_magY, c_magDY, c_uint(sizeData), c_double(minFreq), c_double(maxFreq), c_uint(freqToTest), c_int(setmode), ret_pgram) #for convenience, reshape the pgrams as a 2-D array ret_pgram=ret_pgram.reshape([uniqueObjects, freqToTest]) ret_periods=np.zeros(uniqueObjects) #to compute best periods, work back in regular oscillating frequencies (not angular) for x in range(0, uniqueObjects): # ret_periods[x]=1.0/(minFreq+(df*np.argmax(ret_pgram[x]))) ret_periods[x]=1.0/(minFreqStandard+(dfstandard*np.argmax(ret_pgram[x]))) if(uniqueObjects>1): print("[Python] Sum of all periods: %f" %(np.sum(ret_periods))) else: print("[Python] Period for object: %f" %ret_periods[0]) # sys.stdout.flush() return ret_uniqueObjectIdsOrdered, ret_periods, ret_pgram
import abc import traitlets.config class EventSink(traitlets.config.LoggingConfigurable): """ A sink for JupyterLab telemetry events. Subclasses should do something useful with the event that are recieved (such as sending it to an event store or writing them to a file). """ @abc.abstractmethod def handle_event(self, event: dict, metadata: dict): raise NotImplementedError()
SID = '' AUTH_TOKEN = '' FROM_NUMBER ='' TO_NUMBER = '' API_KEY='' DEVICE_NAME='BOLT'
#!/usr/bin/env python3 from pymongo import MongoClient #### # Indicate start #### print("============================") print(" Starting my_python_app ") print("============================") print('\n') #### # Main start function #### def main(): # MongoDB Connection mongo_client = MongoClient(MONGODB_URL) db = mongo_client[DATABASE] patients_collection = db[COLLECTION] # Define the query # Comment/uncomment one of the following query variables to either enable a filter or return all # Projection returns a subset of fields query = { 'year' : {'$gte' : 2015}, 'cast' : 'Chris Pratt' } #query = {} projection = {'_id': 0, 'title' : 1, 'cast' : 1} for doc in patients_collection.find(query, projection): print(doc) #### # Constants #### MONGODB_URL = '### Your MongoDB Atlas URL ###' DATABASE = 'sample_mflix' COLLECTION = 'movies' #### # Main #### if __name__ == '__main__': main() #### # Indicate End #### print('\n') print("============================") print(" Ending my_python_app ") print("============================")
# -*- coding:utf8 -*- import fixpath import okpy G_ERROR_NUMBER = None def outer_exception(): return 1/0-3 def catcher_exception(n): return 1/(n-2) @okpy.ready def are_you_ready(): global G_ERROR_NUMBER G_ERROR_NUMBER = 2 @okpy.cleaner def i_am_cleaner(): global G_ERROR_NUMBER G_ERROR_NUMBER = None @okpy.test def check_it_true(): assert 1 != 2 @okpy.test def check_it_wrong(): assert (1 - 2) > 0 @okpy.test def check_it_no_name_but_doc(): """ this is a __doc__ """ a = outer_exception() @okpy.test def check_it_catch(): assert okpy.catch(catcher_exception, G_ERROR_NUMBER) in (ZeroDivisionError,) @okpy.benchmark(n=1000, timeout=1000) def benchmark_is_ok(): n = 0 for x in xrange(100): n += x @okpy.benchmark(n=1, timeout=1) def benchmark_is_fail(): import time time.sleep(3) if __name__ == '__main__': okpy.run()
from .quick_logger import *
#! /usr/bin/env python3 # # Copyright (C) 2018 Gaëtan Harter <gaetan.harter@fu-berlin.de> # # This file is subject to the terms and conditions of the GNU Lesser # General Public License v2.1. See the file LICENSE in the top level # directory for more details. # """ lazysponge Adaptation of moreutils `sponge` with added functionnality that it does not modify the output file if the content would be unchanged. Description ----------- Reads standard input and writes it to the specified file if its content was different. The file is not changed if the content is the same so modification timestamp is unchanged. Note ---- It only works with input provided by a `pipe` and not interractive input. The reason is that `ctrl+c` would not be handled properly in that case. Usage ----- usage: lazysponge.py [-h] outfile Soak up all input from stdin and write it to <outfile> if it differs from previous content. If the content is the same, file is not modified. positional arguments: outfile Output file optional arguments: -h, --help show this help message and exit """ import os import sys import argparse import hashlib DESCRIPTION = ('Soak up all input from stdin and write it to <outfile>' ' if it differs from previous content.\n' ' If the content is the same, file is not modified.') PARSER = argparse.ArgumentParser(description=DESCRIPTION) PARSER.add_argument('outfile', help='Output file') PARSER.add_argument('--verbose', '-v', help='Verbose output', default=False, action='store_true') def _print_hash_debug_info(outfilename, oldbytes, newbytes): """Print debug information on hashs.""" oldhash = hashlib.md5(oldbytes).hexdigest() if oldbytes is not None else '' newhash = hashlib.md5(newbytes).hexdigest() if oldbytes == newbytes: msg = 'Keeping old {} ({})'.format(outfilename, oldhash) else: msg = 'Replacing {} ({} != {})'.format(outfilename, oldhash, newhash) print(msg, file=sys.stderr) def main(): """Write stdin to given <outfile> if it would change its content.""" opts = PARSER.parse_args() # No support for 'interactive' input as catching Ctrl+c breaks in 'read' if os.isatty(sys.stdin.fileno()): print('Interactive input not supported. Use piped input', file=sys.stderr) print(' echo message | {}'.format(' '.join(sys.argv)), file=sys.stderr) exit(1) try: with open(opts.outfile, 'rb') as outfd: oldbytes = outfd.read() except FileNotFoundError: oldbytes = None stdinbytes = sys.stdin.buffer.read() if opts.verbose: _print_hash_debug_info(opts.outfile, oldbytes, stdinbytes) if oldbytes == stdinbytes: return with open(opts.outfile, 'wb') as outfd: outfd.write(stdinbytes) if __name__ == '__main__': main()
from enum import IntEnum from blatann.nrf.nrf_types import * from blatann.nrf.nrf_dll_load import driver import blatann.nrf.nrf_driver_types as util class BLEEvent(object): evt_id = None def __init__(self, conn_handle): self.conn_handle = conn_handle def __str__(self): return self.__repr__() class EvtUserMemoryRequest(BLEEvent): evt_id = driver.BLE_EVT_USER_MEM_REQUEST def __init__(self, conn_handle, request_type): super(EvtUserMemoryRequest, self).__init__(conn_handle) self.type = request_type @classmethod def from_c(cls, event): return cls(event.evt.common_evt.conn_handle, event.evt.common_evt.params.user_mem_request.type) def __repr__(self): return "{}(conn_handle={!r}, type={!r})".format(self.__class__.__name__, self.conn_handle, self.type) class EvtTxComplete(BLEEvent): evt_id = driver.BLE_EVT_TX_COMPLETE def __init__(self, conn_handle, count): super(EvtTxComplete, self).__init__(conn_handle) self.count = count @classmethod def from_c(cls, event): tx_complete_evt = event.evt.common_evt.params.tx_complete return cls(conn_handle=event.evt.common_evt.conn_handle, count=tx_complete_evt.count) def __repr__(self): return "{}(conn_handle={!r}, count={!r})".format(self.__class__.__name__, self.conn_handle, self.count)
# DO NOT EDIT THIS FILE. This file will be overwritten when re-running go-raml. import os from path_if import path_if from sanic import Sanic from sanic.response import json dir_path = os.path.dirname(os.path.realpath(__file__)) app = Sanic(__name__) app.blueprint(path_if) if __name__ == "__main__": app.run(debug=True, port=5000, workers=2)
"""SMTP Email connector to gmail. Sends email to organization member via gmail SMTP using config.py credentials """ import json import requests from requests.auth import HTTPBasicAuth import smtplib from email.MIMEMultipart import MIMEMultipart from email.MIMEText import MIMEText import config def getEmailAddress(url): member_response = requests.get(url, auth=HTTPBasicAuth(config.username, config.password)) member_data = json.loads(member_response.text) return member_data["email"] def send(profile): fromaddr = config.gmailuser toaddr = getEmailAddress(profile) willSend = str(raw_input("Send email to " + toaddr + "? (Y/N)" )) if willSend.lower() != "y": print("Skipping email to " + toaddr) return else: #userprofile = "https://github.com/" + username username = profile.rsplit('/', 1)[-1] profilelink = "https://github.com/account" msg = MIMEMultipart() msg['From'] = fromaddr msg['To'] = toaddr msg['Subject'] = "Profile update request" body = "Noticed you don't have a profile name on your Github account. Here's a link to your github profile " + profilelink + ". I'd recommend going to Github through your browser - it's safer that way. Links in emails are not secure." msg.attach(MIMEText(body, 'plain')) server = smtplib.SMTP('smtp.gmail.com:587') server.ehlo() server.starttls() try: server.login(fromaddr, config.gmailpass) except smtplib.SMTPAuthenticationError: print ("\nPlease verify gmail credentials in config.py\n" "verify less secure apps is enabled and\n" "Captcha is disabled for gmail SMTP provider\n" "see readme for more details\n") raise SystemExit text = msg.as_string() server.sendmail(fromaddr, toaddr, text) server.quit() print("Email sent to " + toaddr) return
#! /usr/bin/python # -*- coding: utf-8 -*- import sys import math ayuda = f''' NOMBRE {sys.argv[0]} Aplicación python para calcular los ajustes del PLL para MCUs: dsPIC33Ep y PIC24EP SINOPSIS {sys.argv[0]} [-h|--help] {sys.argv[0]} [[-fi] <Freq_de_entrada>[k|K|M]] [-fo] <Freq_de_salida>[k|K|M]] Se requiere al menos un argumento de entrada para indicar la frecuencia de salida requerida. La frecuencia ha de especificarse como un número que expresará Hz, kHz o MHz añadiendo los sufijos correspondientes. por ejemplo las siguientes llamadas son eqivalentes: {sys.argv[0]} 22118400 {sys.argv[0]} 22118.4K {sys.argv[0]} 22.1184M Por omisión se toma la frecuencia de entrada del oscilador INTRC = 7,37MHz. También puede especificar la frecuencia de entrada, y puesto que no existe solapamiento entre los intervalos de definición de ambas frecuencias, pueden especificarse ambas sin más, y en cualquier orden. Por ejemplo: {sys.argv[0]} 8M 100M {sys.argv[0]} 100M 8M En ambos casos la frecuencia de entrada es de 8MHz y la de salida de 100MHz. Pero también puede ser mas explícito, asignando las frecuencas de entrada y salida mediante los parámetros: -fo, -fi, --fout, --fin. Por ejemplo: {sys.argv[0]} -fi 8M -fo 100M PARAMETROS: -h, --help: Muestran esta ayuda -fo, --fout: Antecede al parámetro que especifica la frecuencia de salida -fi, --fin: Antecede al parámetro que especifica la frecuencia de entrada ''' import sys import math '''\ Convierte una cadena que contiene un valor numérico que puede contener, o no, un sufijo para expresar Hz, kHz o MHz, en un número entero. Si la conversión falla lanzará una excepción @args token Cadena del tipo n[0-9][k,K,M] ''' def getHz(token): if token[-1] == 'k' or token[-1] == 'K': return round(abs(float(token[:-1])) * 1000) elif token[-1] == 'M': return round(abs(float(token[:-1])) * 1000000) else: return round(abs(float(token))) def pll(fi, prescaler, postscaler, divider): return fi * divider / prescaler / postscaler def desviacion(objetivo, efectivo): return abs((efectivo - objetivo) / objetivo) # ------------------------------------------------------------------------------ # Calcula los parámetros de configuración del PLL: pll_prescaler, # pll_postscaler y pll_feedback_divisor, # El cálculo tratará de obtener la mejor aproximación a la frecuencia de salida # requerida. # En algunos casos habrá mas de una solución, en estos casos se ofrecerá # la solución en la que el punto de trabajo de fplli y fvco estén mas # centrados respecto de su intervalo de funcionamiento. # definición. # @arguments: # fin: Frecuencia de entrada al prescaler. # fout: Frecuencia requerida de salida # @return: # Devuelve una tupla cde tres números que se han de interpretar como: # (pll_prescaler, pll_postscaler, pll_feedback_divisor) o # (N1, N2, M) # def pll_settings(fin, fout): # Restricciones aplicadas al cálculo. fplli_min = 800000 # Frecuencia mínima de entrada al PLL fplli_max = 8000000 # Frecuencia máxima de salida al PLL fplli_mid = (fplli_min + fplli_max) / 2 fvco_min = 120000000 # Frecuencia mínima de salida del VCO fvco_max = 340000000 # Frecuencia máxima de salida del VCO fvco_mid = (fvco_min + fvco_max) / 2 pllpre_min = 2 pllpre_max = 33 ###pllpre_mid = (pllpre_min + pllpre_max)/2 plldiv_min = 2 plldiv_max = 513 ###plldiv_mid = (plldiv_min + plldiv_max)/2 pllpost_set = [2, 4, 8] ###pllpost_mid = 4 # Antes de comenzar a iterar se determinan los límites en los que el cálculo # queda dentro de las restricciones físicas. n1_min = math.ceil(fin / fplli_max) if n1_min < pllpre_min: n1_min = pllpre_min n1_max = math.floor(fin / fplli_min) if n1_max > pllpre_max: n1_max = pllpre_max n2_min = math.ceil(fvco_min / fout) if n2_min < pllpost_set[0]: n2_min = pllpost_set[0] n2_max = math.floor(fvco_max / fout) if n2_max > pllpost_set[-1]: n2_max = pllpost_set[-1] # Variables a empleadas en las iteraciones de cálculo. pll_n1 = 0 pll_n2 = 0 fout_error = fout test_fout = 0 for test_post in pllpost_set: # sólo se itera sobre los valores previamente acotados para descartar las soluciones # que no encajan con las restricciones físicas del mcu. if test_post < n2_min: continue elif test_post > n2_max: break for test_pre in range(n1_min, n1_max + 1): for test_div in range(plldiv_min, plldiv_max + 1): test_fout = pll(fin, test_pre, test_post, test_div) test_error = abs(fout - test_fout) if test_error < fout_error: fout_error = test_error pll_n1 = test_pre pll_n2 = test_post pll_div = test_div elif test_error == fout_error: # Desviación del punto de funcionamiento medio de la solución actual desv_fplli = desviacion(fplli_mid, fin / pll_n1) test_fplli = desviacion(fplli_mid, fin / test_pre) desv_fvco = desviacion(fvco_mid, fout * pll_n2) test_fvco = desviacion(fvco_mid, fout * test_post) if (test_fplli * test_fvco) < (desv_fplli * desv_fvco): fout_error = test_error pll_n1 = test_pre pll_n2 = test_post pll_div = test_div return pll_n1, pll_n2, pll_div def main(): # límites: pllfin_min = 1600000 pllfin_max = 8000000 pllfout_min = 15000000 pllfout_max = 140000000 # Variables de entrada para hacer los cálculos: # pll_fin: Por omisión, se asume conectado a INTRC = 7,37MHz pll_fin = int(7.37e6) # # pll_fout: debe ser establecida mediante parámetro de línea de comando pll_fout = 0 # Parámetros del ejecución: verbose = 5 # Evaluación de parámetros: if len(sys.argv) < 2: msg_error = f''' ERROR: Se requiere al menos un parámetro para especificar la frecuencia de salida requerida en Hz, kHz o MHz. Por ejemplo: {sys.argv[0]} 100M Proporcionará los ajustes para obtener una frecuencia de 100MHz a partir del oscilador interno INTRC de 7,37MHz Utilice el parámetro -h o --help para mas información.\n ''' print(msg_error) exit() # Variable para para asignar correctamente el significado de cada token # en los argumentos compuestos. next_token = 'name' for token in sys.argv[1:]: if next_token == 'name': if token == '-h' or token == '--help': print(ayuda) exit(-1) elif token == '-fo' or token == '-fout' or token == '--fout': next_token = 'fout_val' elif token == '-fi' or token == '-fin' or token == '--fin': next_token = 'fin_val' # En última instancia se aceptan argumentos sin nombre tales que # que se interpretarán como una especificación de frecuencia # de entrada o salida en función a su valor. else: try: freq = getHz(token) if freq >= pllfout_min and freq <= pllfout_max: pll_fout = freq elif freq >= pllfin_min and freq <= pllfin_max: pll_fin = freq else: msg_error = f''' ERROR: La frecuencia: {token} está fuera del intervalo aceptable para las frecuencias de entrada y de salida. ''' print(msg_error) except ValueError: msg_error = f''' ERROR: No se reconoce el argumento: {token} como un argumento válido.''' print(msg_error) exit(-1) elif next_token == 'fout_val': try: pll_fout = getHz(token) except ValueError: msg_error = f''' ERROR: En el valor especificado para --fout {token} {token} no tiene el formato adecuado. ''' print(msg_error) exit(-1) next_token = 'name' elif next_token == 'fin_val': try: pll_fin = getHz(token) except ValueError: msg_error = f''' ERROR: En el valor especificado para --fin {token} {token} no tiene el formato adecuado. ''' print(msg_error) exit(-1) next_token = 'name' if pll_fout == 0: print('ERROR: No ha especificado una frecuencia de salida válida') exit(-1) if pll_fin < pllfin_min or pll_fin > pllfin_max: print(f'Frecuencia de entrada fuera del intervalo admitido: ({pllfin_min/1000000}M, {pllfin_max/1000000}M)') exit(-1) if pll_fout < pllfout_min or pll_fout > pllfout_max: print(f'Frecuencia de salida fuera del intervalo admitido: ({pllfout_min/1000000}M, {pllfout_max/1000000}M)') exit(-1) if verbose > 0: print(f'Calculando para: Fin={pll_fin / 1000000}MHz, Fout={pll_fout / 1000000}MHz') pll_n1, pll_n2, pll_m = pll_settings(pll_fin, pll_fout) print(f'N1 = {pll_n1}') print(f'N2 = {pll_n2}') print(f'M = {pll_m}') act_fout = pll(pll_fin, pll_n1, pll_n2, pll_m) print(f'Frecuencia obtenida: Fout={act_fout / 1000000}MHz') print(f'error: {100 * (act_fout - pll_fout) / pll_fout}%') print(f'Punto de funcionamiento: fplli = {pll_fin / pll_n1 / 1000000}MHz, fvco = {pll_fout * pll_n2 / 1000000}MHz') if __name__ == '__main__': main()
from collections import defaultdict from datetime import datetime, timedelta from random import randint from re import search from time import time from . import db from .cmds import games welcomed = [] messages = defaultdict(int) def process(bot, user, message): update_records(bot, user) if user["id"] not in welcomed: welcome(bot, user) elif "bye" in message: say_goodbye(bot, user) # if user["id"] != "190089937" check_activity(bot, user) if (match := search(r'cheer[0-9]+', message)) is not None: thank_for_cheer(bot, user, match) if (h := games.heist) is not None: if h.start_time <= time() and not h.running: games.run_heist(bot) elif h.end_time <= time() and h.running: games.end_heist(bot) def add_user(bot, user): db.execute("INSERT OR IGNORE INTO users (UserID, UserName) VALUES (?, ?)", user["id"], user["name"].lower()) def update_records(bot, user): db.execute("UPDATE users SET UserName = ?, MessagesSent = MessagesSent + 1 WHERE UserID = ?", user["name"].lower(), user["id"]) stamp = db.field("SELECT CoinLock FROM users WHERE UserID = ?", user["id"]) if datetime.strptime(stamp, "%Y-%m-%d %H:%M:%S") < datetime.utcnow(): coinlock = (datetime.utcnow()+timedelta(seconds=60)).strftime("%Y-%m-%d %H:%M:%S") db.execute("UPDATE users SET Coins = Coins + ?, CoinLock = ? WHERE UserID = ?", randint(1, 5), coinlock, user["id"]) def welcome(bot, user): bot.send_message(f"Welcome to the stream {user['name']}!") welcomed.append(user["id"]) def say_goodbye(bot, user): bot.send_message(f"See ya later {user['name']}!") welcomed.remove(user["id"]) def check_activity(bot, user): messages[user["id"]] += 1 if (count := messages[user["id"]]) % 3 == 0: bot.send_message(f"Thanks for being active in chat {user['name']} - you've sent {count:,} messages! Keep it up!") def thank_for_cheer(bot, user, match): bot.send_message(f"Thanks for the {match.group[5:]:,} bits {user['name']}! That's really appreciated!")
import sys import os import berserk import chess from pathlib import Path from lichs.Game import Game from lichs.api_key import set_api def main(): try: set_api(sys.argv[1]) os._exit(0) except: try: token_file = Path(__file__).parent.absolute() / "key" token = token_file.read_text() session = berserk.TokenSession(token) client = berserk.clients.Client(session) board = berserk.clients.Board(session) except: print("The API token is either empty or wrong. Please run the command 'lichess' and input your API token as a second argument, i.e 'lichs <api_token>'. If you need more help, please see the instructions in the Github README: \nhttps://github.com/Cqsi/lichs#how-to-generate-a-personal-api-token") os._exit(0) # Gets your account data, e.g ["id"], ["username"] account_data = client.account.get() player_id = account_data["id"] # Welcome text print("Welcome to Lichess!\n") print("What kind of chess do you want to play?") print("1. Rapid (10+0)\n2. Classical (30+0)\n") num = input("Enter 1 or 2: ") time = 0 if num=="1": time=10 elif num=="2": time=30 else: # This needs improvement, something like a while/for loop print("Something went wrong, please enter the lichess command again.") sys.exit() print("Searching after opponent...") board.seek(time, 0) for event in board.stream_incoming_events(): if event['type'] == 'gameStart': print("An opponent was found!") isWhite = True color = "Black" # We set the color to the opposite color of the player if player_id != client.games.export(event['game']['id'])['players']['white']['user']['id']: isWhite = False color = "White" print("You're playing as black!") print("White's turn...") else: print("You're playing as white!") game = Game(board, event['game']['id'], player_id, isWhite, color) game.start()
# https://www.acmicpc.net/problem/9498 a = int(input()) if (a >= 90) and (a <= 100): print("A") elif (a >= 80) and (a < 90): print("B") elif (a >= 70) and (a < 80): print("C") elif (a >= 60) and (a < 70): print("D") else: print("F")
"""Main functions to retrieve the relevant data of the article corresponding to the given arXiv identifier. Also helper function to check if arXiv identifier exists. """ import re import requests from lxml import html import src.article as article def get_year(ax_id): """Extract the year from an arXiv identifier (in format YYYY).""" modern_ax_id = re.compile(r"([0-9]{2})([0-9]{2})\.([0-9]+)") search_modern = re.search(modern_ax_id, ax_id) if search_modern: year = "20" + search_modern[1] else: old_ax_id = re.compile(r"([a-zA-Z]+[-]?[a-zA-Z]+)/([0-9]{2})([0-9]+)") search_old = re.search(old_ax_id, ax_id) # get century right if search_old[2][0] == "9": year = "19" + search_old[2] else: year = "20" + search_old[2] return year def arxiv(ax_id): """Ask for arXiv identifier and return corresponding Article class or None if arXiv identifier does not exist. """ # python 3 truncates leading zeros but these might occur # in arxiv identifiers. TODO: check! if not check(ax_id): print("Not a correct arXiv identifier. Please try again.") return None ax_id = str(ax_id).zfill(9) article_year = get_year(ax_id) abs_url = "https://arxiv.org/abs/{}".format(ax_id) src_abs = requests.get(abs_url) # obtain a _structured_ document ("tree") of source of abs_url page_tree = html.fromstring(src_abs.content) # extract title and abstract from page tree title_xpath = page_tree.xpath('//meta[@name="citation_title"]/@content') title = " ".join(title_xpath) abstract = " ".join( page_tree.xpath('//meta[@property="og:description"]' + "/@content") ) # get main subject from page tree subject_xpath = page_tree.xpath('//span [@class="primary-subject"]') main_subject = subject_xpath[0].text_content() # first get all authors (formate compatible with bibtex) all_authors = page_tree.xpath('//meta[@name="citation_author"]/@content') if len(all_authors) > 1: authors_name = " and ".join(all_authors) else: authors_name = all_authors[0] # second create a short and 'contracted' authors' name, e.g. # to create file name or bibtex key authors_short_list = [a.split(", ")[0] for a in all_authors[:3]] if len(all_authors) > 3: authors_short = authors_short_list[0] + " et al" authors_contracted = authors_short_list[0] + "EtAl" elif 1 < len(all_authors) <= 3: authors_short = ", ".join(authors_short_list[:-1]) authors_short += " and " + authors_short_list[-1] authors_contracted = "".join(authors_short_list) else: authors_short = authors_short_list[0] # TODO: IMPROVE!?!? authors_contracted = authors_short return article.Article( title=title, authors=authors_name, authors_short=authors_short, authors_contracted=authors_contracted, abstract=abstract, ax_id=ax_id, year=article_year, main_subject=main_subject, ) def check(ax_id): """"Helper function to check if arXiv identifier exists.""" abs_url = "https://arxiv.org/abs/{}".format(ax_id) req = requests.get(abs_url) # check status of request return req.status_code == requests.codes.ok
""" 4차원 데이터를 2차원으로 변환한 후에 max pooling 구현 """ import numpy as np from common.util import im2col if __name__ == '__main__': np.random.seed(116) # 가상의 이미지 데이터(c,h,w) = (3,4,4) 1개를 난수로 생성 -> (1,3,4,4) x = np.random.randint(10, size=(1, 3, 4, 4)) print(x, 'shape:', x.shape) # 4차원 데이터를 2차원 ndarray로 변환 col = im2col(x, filter_h=2, filter_w=2, stride=2, pad=0) print(col, 'shape:', col.shape) # 4*12 # max pooling : 채널별로 최댓값을 찾음 # 채널별 최댓값을 쉽게 찾기 위해 2차원 배열의 Shape을 변환 col = col.reshape(-1, 2 * 2) # (-1, fh*fw) print(col, 'shape:', col.shape) # 각 행(row)에서 최댓값을 찾음. out = np.max(col, axis=1) print(out, 'shape:', out.shape) # 1차원 pooling의 결과를 4차원으로 변환: (n, oh, ow, c) → (n, c, oh, ow) out = out.reshape(1, 2, 2, 3) print(out) out = out.transpose(0, 3, 1, 2)
import slam.plot as splt import slam.io as sio import slam.remeshing as srem if __name__ == '__main__': # source object files source_mesh_file = 'data/example_mesh.gii' source_texture_file = 'data/example_texture.gii' source_spherical_mesh_file = 'data/example_mesh_spherical.gii' # target object files target_mesh_file = 'data/example_mesh_2.gii' target_spherical_mesh_file = 'data/example_mesh_2_spherical.gii' source_mesh = sio.load_mesh(source_mesh_file) source_tex = sio.load_texture(source_texture_file) source_spherical_mesh = sio.load_mesh(source_spherical_mesh_file) target_mesh = sio.load_mesh(target_mesh_file) target_spherical_mesh = sio.load_mesh(target_spherical_mesh_file) interpolated_tex_values = \ srem.spherical_interpolation_nearest_neigbhor(source_spherical_mesh, target_spherical_mesh, source_tex.darray[0]) # plot visb_sc = splt.visbrain_plot(mesh=source_mesh, tex=source_tex.darray[0], caption='source with curvature', cblabel='curvature') visb_sc = splt.visbrain_plot(mesh=source_spherical_mesh, tex=source_tex.darray[0], caption='spherical source mesh', cblabel='curvature', visb_sc=visb_sc) visb_sc = splt.visbrain_plot(mesh=target_mesh, tex=interpolated_tex_values, caption='target mesh with curvature ' 'from source mesh', cblabel='curvature', visb_sc=visb_sc) visb_sc.preview()
''' Created on Jan 4, 2019 @author: bergr ''' import numpy as np from suitcase.nxstxm.stxm_types import scan_types, two_posner_scans from suitcase.nxstxm.device_names import * #from suitcase.nxstxm.utils import dct_get, dct_put from suitcase.nxstxm.roi_dict_defs import * # from suitcase.nxstxm.nxstxm_utils import (make_signal, _dataset, _string_attr, _group, make_1d_array, \ # get_nx_standard_epu_mode, get_nx_standard_epu_harmonic_new, translate_pol_id_to_stokes_vector, \ # readin_base_classes, make_NXclass, remove_unused_NXsensor_fields) from suitcase.nxstxm.nxstxm_utils import _dataset, _string_attr, make_1d_array import suitcase.nxstxm.nx_key_defs as nxkd MARK_DATA = False # parent.modify_single_image_ctrl_str_attrs(cntrl_nxgrp, doc) # parent.modify_single_image_ctrl_data_grps(cntrl_nxgrp, doc) def modify_single_image_ctrl_data_grps(parent, nxgrp, doc, scan_type): ''' :param nxgrp: :param doc: :return: ''' resize_data = False rois = parent.get_rois_from_current_md(doc['run_start']) x_src = parent.get_devname(rois[SPDB_X][POSITIONER]) x_posnr_nm = parent.fix_posner_nm(rois[SPDB_X][POSITIONER]) # x_posnr_src = rois[SPDB_X]['SRC'] y_src = parent.get_devname(rois[SPDB_Y][POSITIONER]) y_posnr_nm = parent.fix_posner_nm(rois[SPDB_Y][POSITIONER]) # y_posnr_src = rois[SPDB_Y]['SRC'] xnpoints = int(rois[SPDB_X][NPOINTS]) ynpoints = int(rois[SPDB_Y][NPOINTS]) ttlpnts = xnpoints * ynpoints # uid = list(parent._cur_scan_md.keys())[0] # primary_det_nm = parent.get_primary_det_nm(uid) # prim_data_lst = parent._data['primary'][primary_det_nm]['data'] # if (len(prim_data_lst) < ttlpnts): resize_data = True # scan was aborted so use setpoint data here xdata = np.array(rois[SPDB_X][SETPOINTS], dtype=np.float32) ydata = np.array(rois[SPDB_Y][SETPOINTS], dtype=np.float32) # else: # # use actual data # # xdata is teh first xnpoints # xdata = np.array(parent._data['primary'][x_src]['data'][0:xnpoints], dtype=np.float32) # # ydata is every ynpoint # ydata = np.array(parent._data['primary'][y_src]['data'][0::ynpoints], dtype=np.float32) _dataset(nxgrp, y_posnr_nm, ydata, 'NX_FLOAT') _dataset(nxgrp, x_posnr_nm, xdata, 'NX_FLOAT') # this should be an array the same shape as the 'data' group in NXdata filled with the storagering current #_sr_data = parent._data['baseline'][uid][parent.get_devname(DNM_RING_CURRENT) + '_val']['data'] _sr_data = parent.get_baseline_all_data(parent.get_devname(DNM_RING_CURRENT) + '_val') sr_data = np.linspace(_sr_data[0], _sr_data[1], ttlpnts) #if (resize_data): # sr_data = np.resize(sr_data, (ttlpnts,)) _dataset(nxgrp, 'data', np.reshape(sr_data, (ynpoints, xnpoints)), 'NX_NUMBER') modify_single_image_ctrl_str_attrs(parent, nxgrp, doc) def modify_single_image_ctrl_str_attrs(parent, nxgrp, doc): ''' :param nxgrp: :param doc: :return: ''' rois = parent.get_rois_from_current_md(doc['run_start']) x_posnr_nm = parent.fix_posner_nm(rois[SPDB_X][POSITIONER]) y_posnr_nm = parent.fix_posner_nm(rois[SPDB_Y][POSITIONER]) _string_attr(nxgrp, 'axes', [y_posnr_nm, x_posnr_nm]) def modify_single_image_nxdata_group(parent, data_nxgrp, doc, scan_type): ''' :param entry_nxgrp: :param cntr_nm: :param doc: :param scan_type: :return: ''' resize_data = False rois = parent.get_rois_from_current_md(doc['run_start']) x_src = parent.get_devname(rois[SPDB_X][POSITIONER]) x_posnr_nm = parent.fix_posner_nm(rois[SPDB_X][POSITIONER]) # x_posnr_src = rois[SPDB_X]['SRC'] y_src = parent.get_devname(rois[SPDB_Y][POSITIONER]) y_posnr_nm = parent.fix_posner_nm(rois[SPDB_Y][POSITIONER]) # y_posnr_src = rois[SPDB_Y]['SRC'] xnpoints = rois[SPDB_X][NPOINTS] ynpoints = rois[SPDB_Y][NPOINTS] ttlpnts = xnpoints * ynpoints #prim_data_lst = parent._data['primary'][x_src]['data'] #uid = list(parent._cur_scan_md.keys())[0] uid = parent.get_current_uid() primary_det_nm = parent.get_primary_det_nm(uid) prim_data_arr = np.array(parent._data['primary'][primary_det_nm][uid]['data']) if(scan_types(scan_type) is scan_types.PATTERN_GEN_SCAN): rows, cols = ynpoints, xnpoints else: rows, cols = prim_data_arr.shape #rows, cols = prim_data_arr.shape if ((rows * cols) < ttlpnts): #scn had been aborted resize_data = True # scan was aborted so use setpoint data here xdata = np.array(rois[SPDB_X][SETPOINTS], dtype=np.float32) ydata = np.array(rois[SPDB_Y][SETPOINTS], dtype=np.float32) else: if(x_src not in parent._data['primary'].keys()): xdata = np.array(rois[SPDB_X][SETPOINTS], dtype=np.float32) ydata = np.array(rois[SPDB_Y][SETPOINTS], dtype=np.float32) else: # use actual data # xdata is teh first xnpoints xdata = np.array(parent._data['primary'][x_src][uid]['data'][0:xnpoints], dtype=np.float32) # ydata is every ynpoint ydata = np.array(parent._data['primary'][y_src][uid]['data'][0::ynpoints], dtype=np.float32) _dataset(data_nxgrp, y_posnr_nm, ydata, 'NX_FLOAT') _dataset(data_nxgrp, x_posnr_nm, xdata, 'NX_FLOAT') _string_attr(data_nxgrp, 'axes', [y_posnr_nm, x_posnr_nm]) _string_attr(data_nxgrp, 'signal', 'data') det_nm = parent.get_primary_det_nm(doc['run_start']) # three_d_scans = [scan_types.DETECTOR_IMAGE, scan_types.OSA_IMAGE, scan_types.OSA_FOCUS, scan_types.SAMPLE_FOCUS, scan_types.SAMPLE_IMAGE_STACK, \ # scan_types.COARSE_IMAGE_SCAN, scan_types.COARSE_GONI_SCAN, scan_types.TOMOGRAPHY_SCAN] three_d_scans = [scan_types.DETECTOR_IMAGE, scan_types.OSA_IMAGE, scan_types.OSA_FOCUS, scan_types.SAMPLE_FOCUS, \ scan_types.COARSE_IMAGE_SCAN, scan_types.COARSE_GONI_SCAN, scan_types.TOMOGRAPHY_SCAN] if(scan_types(scan_type) in three_d_scans): # det_data = np.array(parent._data['primary'][det_nm]['data'], dtype=np.float32).reshape((1, ynpoints, xnpoints)) det_data = np.array(parent._data['primary'][det_nm][uid]['data'], dtype=np.float32) if (resize_data): det_data = parent.fix_aborted_data(det_data, ttlpnts) det_data = np.reshape(det_data, (1, ynpoints, xnpoints)) if(MARK_DATA): # put a black box in corner c = int(xnpoints / 3) r = int(xnpoints / 3) for n in range(r): det_data[0, n, 0:c] = 0 else: # det_data = np.array(parent._data['primary'][det_nm]['data'], dtype=np.float32).reshape((ynpoints, xnpoints)) det_data = np.array(parent._data['primary'][det_nm][uid]['data'], dtype=np.float32) _dataset(data_nxgrp, 'data', det_data, 'NX_NUMBER') def modify_single_image_instrument_group(parent, inst_nxgrp, doc, scan_type): ''' :param nxgrp: :param doc: :param scan_type: :return: ''' rois = parent.get_rois_from_current_md(doc['run_start']) dwell = parent._cur_scan_md[doc['run_start']]['dwell'] * 0.001 det_nm = parent.get_primary_det_nm(doc['run_start']) scan_type = parent.get_stxm_scan_type(doc['run_start']) ttl_pnts = rois[SPDB_X][NPOINTS] * rois[SPDB_Y][NPOINTS] uid = parent.get_current_uid() det_data = np.array(parent._data['primary'][det_nm][uid]['data']) # .reshape((ynpoints, xnpoints)) parent.make_detector(inst_nxgrp, parent._primary_det_prefix, det_data, dwell, ttl_pnts, units='counts') sample_x_data = make_1d_array(ttl_pnts, parent.get_sample_x_data('start')) sample_y_data = make_1d_array(ttl_pnts, parent.get_sample_y_data('start')) parent.make_detector(inst_nxgrp, nxkd.SAMPLE_X, sample_x_data, dwell, ttl_pnts, units='um') parent.make_detector(inst_nxgrp, nxkd.SAMPLE_Y, sample_y_data, dwell, ttl_pnts, units='um') if (scan_type in two_posner_scans): xnpoints = rois[SPDB_X][NPOINTS] ynpoints = rois[SPDB_Y][NPOINTS] ttl_pnts = rois[SPDB_X][NPOINTS] * rois[SPDB_Y][NPOINTS] x_src = parent.get_devname(rois[SPDB_X][POSITIONER]) x_posnr_nm = parent.fix_posner_nm(rois[SPDB_X][POSITIONER]) y_src = parent.get_devname(rois[SPDB_Y][POSITIONER]) y_posnr_nm = parent.fix_posner_nm(rois[SPDB_Y][POSITIONER]) # xdata is teh first xnpoints if(x_src not in parent._data['primary'].keys()): xdata = np.array(rois[SPDB_X][SETPOINTS], dtype=np.float32) ydata = np.array(rois[SPDB_Y][SETPOINTS], dtype=np.float32) else: xdata = parent._data['primary'][x_src]['data'][0:xnpoints] # ydata is every ynpoint ydata = parent._data['primary'][y_src]['data'][0::ynpoints] parent.make_detector(inst_nxgrp, y_posnr_nm, np.tile(ydata, ynpoints), dwell, ttl_pnts, units='um') parent.make_detector(inst_nxgrp, x_posnr_nm, np.tile(xdata, xnpoints), dwell, ttl_pnts, units='um')
#!/usr/bin/env python3 import shutil, os, argparse, sys, stat sys.path.append("scripts/pyUtils") sys.path.append("scripts/setUpScripts") from utils import Utils from genFuncs import genHelper def main(): name = "TwoBit" libs = "njhcpp:v2.6.3" args = genHelper.parseNjhConfigureArgs() cmd = genHelper.mkConfigCmd(name, libs, sys.argv) Utils.run(cmd) main()
def distanceCentrality(network): n = network.GetNodes() Components = snap.TCnComV() # holds the connected components in a network snap.GetSccs(network, Components) nodeCloseness = dict() # dictionary {node: degree} for NI in network.Nodes(): NId = NI.GetId() farness = snap.GetFarnessCentr( network, NId, True, True) # this call gives us the farness (un-normalized) sum to the nodes in this node's connected component if farness == 0: # this node has an out-degree of 0 and can't reach other nodes nodeCloseness[ NI.GetId() ] = n-1 # normalized avg distance to other nodes continue disconnected_nodes = 0 # how many nodes are disconnected from current node for CnCom in Components: if NId in CnCom: # we found the CnCom disconnected_nodes = n - CnCom.Len() # subtract away the size of our connected component break nodeCloseness[ NI.GetId() ] = farness #+ disconnected_nodes * n sorted_nodeCloseness = sorted( ((value, key) for (key,value) in nodeCloseness.items()), reverse = False) # sort, ascending with open("distanceCentrality.txt", "w") as f3: for pair in sorted_nodeCloseness: # (value, node) format f3.write( str(pair[1]) + "\t" + str(pair[0]) + "\n" )
import os import numpy import gym from gym import spaces try: import gym_minigrid from gym_minigrid.wrappers import * except: pass def make_env(env_id, seed, rank, log_dir): def _thunk(): env = gym.make(env_id) env.seed(seed + rank) # Maxime: until RL code supports dict observations, squash observations into a flat vector if isinstance(env.observation_space, spaces.Dict): env = FlatObsWrapper(env) return env return _thunk
#!/usr/bin/python from nn_f0nDuration import ANN import pandas as pd import numpy as np from sklearn.datasets import load_boston flag_arctic_duration = 0 flag_boston_prices = 1 if flag_boston_prices == 1: boston = load_boston() print 'Loaded Data successfully' X = boston.data Y = boston.target from sklearn import preprocessing xscaler = preprocessing.StandardScaler().fit(X) X_mean = xscaler.mean_ X_std = xscaler.scale_ X = xscaler.transform(X) min_max_scaler = preprocessing.MinMaxScaler() Y_train_minmax=min_max_scaler.fit_transform(Y) Y = Y_train_minmax + 0.00001 print ' Training Data normalized' np.savetxt('../data/boston/boston.data',X, fmt='%1.3f') np.savetxt('../data/boston/boston.target',Y,fmt='%1.3f') NN = ANN() NN.ANN('../data/boston/boston.data', '../data/boston/boston.target')
#!/usr/bin/env python # -*- coding: utf-8 -*- import sys import os, argparse, time from util import util # gestion des options en ligne de commande parser = argparse.ArgumentParser (description='MQTT metrics gateway to InfluxDB') parser.add_argument ('--broker', '-b', default='127.0.0.1', help='MQTT broker address - default to localhost') parser.add_argument ('--port', '-p', default=1883, type=int, help='MQTT broker port - default to 1883') parser.add_argument ('--id', '-i', default='monitor', help='Id of MQTT client - default to monitor') parser.add_argument ('--user', '-u', default='monitor', help='username to connect to MQTT broker') parser.add_argument ('--debug', '-d', action='store_true', help='Enable MQTT tracing') parser.add_argument ('--quiet', '-q', action='store_true', help='Disable console tracing') args = parser.parse_args () # initialisation des logs logger = util.init_log ('mqttmonitor', args.quiet) # import des librairies try: import requests import paho.mqtt.client as mqtt except ImportError as e: logger.error (e) exit (1) # mise en place call-backs MQTT Mosquito ('userdata' correspond au logger) def on_connect (client, userdata, flags, rc): if rc != 0: if rc == 1: userdata.error ('MQTT connexion Error: incorrect protocol') elif rc == 2: userdata.error ('MQTT connexion Error: invalid client identifier') elif rc == 3: userdata.critical ('MQTT connexion Error: server unavailable') elif rc == 4: userdata.error ('MQTT connexion Error: bad username or password') elif rc == 5: userdata.error ('MQTT connexion Error: not authorized') else: userdata.critical ('MQTT connexion error: {code}'.format(code=str(rc))) exit (1) userdata.info ('MQTT connexion success') def on_subscribe (client, userdata, mid, granted_qos): userdata.info ('subscribe: {q} - {m}'.format (q=str(granted_qos[0]), m=str(mid))) def on_message (client, userdata, msg): userdata.info ('msg: {t}:{p}'.format (t=msg.topic, p=str(msg.payload))) def on_bytes (client, userdata, msg): userdata.info ('bytes: {t}:{p}'.format (t=msg.topic, p=str(msg.payload))) if msg.topic.find ('sent') >= 0: data = 'bytes,direction=sent value={0}'.format (msg.payload) elif msg.topic.find ('received') >= 0: data = 'bytes,direction=received value={0}'.format (msg.payload) else: userdata.error ('unexpected topic: {t}'.format (t=msg.topic)) data = None if data is not None: params = {'db': 'mqtt'} r = requests.post ('http://127.0.0.1:8086/write', params=params, data=data) if r.status_code != 204: userdata.warning ('influxdb: error {0} - {1}'.format (str(r.status_code), r.text)) def on_publish (client, userdata, msg): userdata.info ('bytes: {t}:{p}'.format (t=msg.topic, p=str(msg.payload))) if msg.topic.find ('dropped') >= 0: data = 'publish,direction=dropped value={0}'.format (msg.payload) elif msg.topic.find ('received') >= 0: data = 'publish,direction=received value={0}'.format (msg.payload) elif msg.topic.find ('sent') >= 0: data = 'publish,direction=sent value={0}'.format (msg.payload) else: userdata.error ('unexpected topic: {t}'.format (t=msg.topic)) data = None if data is not None: params = {'db': 'mqtt'} r = requests.post ('http://127.0.0.1:8086/write', params=params, data=data) if r.status_code != 204: userdata.warning ('influxdb: error {0} - {1}'.format (str(r.status_code), r.text)) def on_msg (client, userdata, msg): userdata.info ('message: {t}:{p}'.format (t=msg.topic, p=str(msg.payload))) if msg.topic.find ('sent') >= 0: data = 'messages,direction=sent value={0}'.format (msg.payload) elif msg.topic.find ('received') >= 0: data = 'messages,direction=received value={0}'.format (msg.payload) else: userdata.error ('unexpected topic: {t}'.format (t=msg.topic)) data = None if data is not None: params = {'db': 'mqtt'} r = requests.post ('http://127.0.0.1:8086/write', params=params, data=data) if r.status_code != 204: userdata.warning ('influxdb: error {0} - {1}'.format (str(r.status_code), r.text)) def on_disconnect (client, userdata, rc): userdata.info ('deconnected: {code}'.format (code=str(rc))) def on_log (client, userdata, level, buf): userdata.info ('MQTT log: {l}-{b}'.format (l=level, b=buf)) # récupération mot de passe pour connexion MQTT broker try: mqtt_passwd = os.environ['MQTT_PASSWD'] except KeyError as e: logger.error ('Please set MQTT_PASSWD environment variable') exit (1) # création du client MQTT et mise en place du 'will' client = mqtt.Client (client_id=args.id, clean_session=True, userdata=logger) client.will_set (topic='monitor/monitor', payload='Aborting', qos=0, retain=True) client.username_pw_set (username=args.user, password=mqtt_passwd) # mise en place des call-backs client.on_connect = on_connect client.on_subscribe = on_subscribe client.on_message = on_message client.on_disconnect = on_disconnect if args.debug is True: client.on_log = on_log # création base influxdb params = {'q': 'CREATE DATABASE mqtt WITH DURATION 2d NAME mqttmon'} r = requests.post ('http://127.0.0.1:8086/query', params=params) if r.status_code != 204: logger.error (r.text) # connection au broker MQTT try: client.connect (host=args.broker, port=args.port, keepalive=60) except IOError as e: logger.critical (e) exit (1) # abonnement métriques broker client.subscribe (topic='$SYS/broker/load/bytes/+/1min') client.subscribe (topic='$SYS/broker/load/messages/+/1min') client.subscribe (topic='$SYS/broker/load/publish/+/1min') client.message_callback_add (sub='$SYS/broker/load/bytes/+/1min', callback=on_bytes) client.message_callback_add (sub='$SYS/broker/load/messages/+/1min', callback=on_msg) client.message_callback_add (sub='$SYS/broker/load/publish/+/1min', callback=on_publish) logger.info ('Starting program') # boucle évènements try: client.loop_forever () except KeyboardInterrupt as e: logger.info (e) client.disconnect () logger.info ('Ending Program')
# Generated file.
import json import asyncio import discord import os import config import requests import aiohttp # kgs room id ROOM=788560 # kgs bot account name kgs_bot = "LooselyBot" # kgs json api to read data kgs_url = "http://www.gokgs.com/json/access" # bold wrapper def bold(fn): def wrapper(user): # insert some bold before and after text return "**" + fn(user) + "**" return wrapper async def login(session, status): if status == 200: return # need to put your account name/password message = { "type": "LOGIN", "name": kgs_bot, "password": "", "locale": "en_US", } formatted_message = json.dumps(message) await session.post(kgs_url, data=formatted_message) async def logout(session): session.post(kgs_url, json.dumps({"type": "LOGOUT"})) @bold def formatted_username(user): """ user: KGS player dict yes_status: boolean to dicate whether to contain status of user Given a KGS player dict user, return a string containing user information """ rank = "" if "g" in user["flags"]: rank = "Guest" elif "rank" in user: rank = user["rank"] else: rank = "-" return user['name'] + " [" + rank + "]" def formatted_user_status(user): if "flags" not in user: return "" for k, v in config.kgs_user_flags_status.items(): if k in user["flags"]: return v def formatted_name(player): """ Given a KGS player dict, return a str: username(rank) https://www.gokgs.com/json/dataTypes.html#user """ text = "**" + player['name'] + "**" if 'rank' in player: text += " (" + player['rank'] + ")" return def result(score): """ Returns a string indicating the result of a game https://www.gokgs.com/json/dataTypes.html#score """ if type(score) == float: if score > 0: out = "Black + " + str(score) else: out = "White + " + str(-score) else: out = score return out async def get_kgs_players(m, session, bot, channel): if m["type"] == "ROOM_JOIN" and m["channelId"] == ROOM and "users" in m: text = "" for u in m["users"]: text += "\n" + formatted_username(u)+ ": " text += formatted_user_status(u) await send_discord_message(bot, channel, text) await send_kgs_messages(session, text) async def handle_message(session, bot, channel, data, op): if data is None or not "messages" in data: #print("not in message") return if "messages" in data: for m in data["messages"]: if "channelId" in m and "type" in m: if op == 1: await get_kgs_players(m, session, bot, channel) #text = "" #for u in m["users"]: # text += "\n" + formatted_username(u)+ ": " # text += formatted_user_status(u) #await send_discord_message(bot, channel, text) # await send_kgs_messages(session, text) if op == 0 and m['type'] == 'CHAT' and m['channelId'] == ROOM: if m['user']['name'] != kgs_bot: text = formatted_username(m["user"]) + ": " #if (m["text"].startswith("/") and m["text"] in config.clyde_command) if m["text"] in config.clyde_command: text += config.clyde_command[m["text"]] await send_kgs_messages(session, [config.clyde_command[m["text"]]]) elif m["text"] in config.addon_command: text += config.addon_command[m["text"]] await send_kgs_messages(session, [config.addon_command[m["text"]]]) else: text += m["text"] # await send_discord_message(bot, channel, m["text"]) #text = formatted_username(m["user"]) + ": " + m["text"] #print("text is " , text) await send_discord_message(bot, channel, text) if m['type'] == 'LOGOUT': await login(session, 0) async def get_messages(session, bot, channel, op): async with session.get(kgs_url) as r: data = await r.json() await handle_message(session, bot, channel, await r.json(), op) #print(data) #print(json.dumps(data)) # if "messages" in data: # for m in data["messages"]: # if m["type"] == "CHAT" and m["channelId"] == ROOM: # text = m["user"]["name"] + " [" + m["user"]["rank"] + "]: " + m["text"] # print(text) # await send_discord_message(text, bot) async def send_discord_message(bot, channel, message): await bot.send_message(channel, message) async def send_kgs_messages(session, messages): for text in messages: message = { "type": "CHAT", "text": text, "channelId": ROOM } formatted_message = json.dumps(message) await session.post(kgs_url, data=formatted_message)
# -*- coding: utf-8 -*- """ Zurich Instruments LabOne Python API Example Demonstrate how to connect to a Zurich Instruments UHF Lock-in Amplifier and obtain output from the Input PWA and Boxcar using ziDAQServer's poll() command. """ # Copyright 2016 Zurich Instruments AG from __future__ import print_function import time import numpy as np import zhinst.utils def run_example(device_id, do_plot=False): """ Run the example: Connect to a Zurich Instruments UHF Lock-in Amplifier and obtain Input PWA and Boxcar data via ziDAQServer's synchronous poll command. Requirements: UHFLI with UHF-BOX Boxcar Averager Option. Hardware configuration: Connect signal output 1 to signal input 1 with a BNC cable. Arguments: device_id (str): The ID of the device to run the example with. For example, `dev2006` or `uhf-dev2006`. do_plot (bool, optional): Specify whether to plot the boxcar and inputpwa output. Default is no plot output. Returns: sample (dict): A dictionary containing the boxcar sample. Raises: Exception: If the BOX Option is not installed. RuntimeError: If the device is not "discoverable" from the API. See the "LabOne Programing Manual" for further help, available: - On Windows via the Start-Menu: Programs -> Zurich Instruments -> Documentation - On Linux in the LabOne .tar.gz archive in the "Documentation" sub-folder. """ apilevel_example = 6 # The API level supported by this example. err_msg = "This example can only be ran on UHF Instruments with the BOX option enabled." # Call a zhinst utility function that returns: # - an API session `daq` in order to communicate with devices via the data server. # - the device ID string that specifies the device branch in the server's node hierarchy. # - the device's discovery properties. (daq, device, props) = zhinst.utils.create_api_session(device_id, apilevel_example, required_devtype='UHF', required_options=['BOX'], required_err_msg=err_msg) zhinst.utils.api_server_version_check(daq) # Create a base configuration: Disable all available outputs, awgs, demods, scopes,... zhinst.utils.disable_everything(daq, device) # Now configure the instrument for this experiment. The following channels # and indices work on all device configurations. The values below may be # changed if the instrument has multiple input/output channels and/or either # the Multifrequency or Multidemodulator options installed. out_channel = 0 out_mixer_channel = zhinst.utils.default_output_mixer_channel(props) in_channel = 0 osc_index = 0 frequency = 400e3 boxcar_index = 0 inputpwa_index = 0 amplitude = 0.5 frequency = 9.11e6 windowstart = 75 # boxcar windowstart [degrees] windowsize = 3e-9 # boxcar windowsize [seconds] periods_vals = np.logspace(0, 9, 10, base=2) exp_setting = [['/%s/sigins/%d/imp50' % (device, in_channel), 1], ['/%s/sigins/%d/ac' % (device, in_channel), 0], ['/%s/sigins/%d/range' % (device, in_channel), 2*amplitude], ['/%s/inputpwas/%d/oscselect' % (device, inputpwa_index), osc_index], ['/%s/inputpwas/%d/inputselect' % (device, inputpwa_index), in_channel], ['/%s/inputpwas/%d/mode' % (device, inputpwa_index), 1], ['/%s/inputpwas/%d/shift' % (device, inputpwa_index), 0.0], ['/%s/inputpwas/%d/harmonic' % (device, inputpwa_index), 1], ['/%s/inputpwas/%d/enable' % (device, inputpwa_index), 1], ['/%s/boxcars/%d/oscselect' % (device, boxcar_index), osc_index], ['/%s/boxcars/%d/inputselect' % (device, boxcar_index), in_channel], ['/%s/boxcars/%d/windowstart' % (device, boxcar_index), windowstart], ['/%s/boxcars/%d/windowsize' % (device, boxcar_index), windowsize], ['/%s/boxcars/%d/limitrate' % (device, boxcar_index), 1e3], ['/%s/boxcars/%d/periods' % (device, boxcar_index), periods_vals[0]], ['/%s/boxcars/%d/enable' % (device, boxcar_index), 1], ['/%s/oscs/%d/freq' % (device, osc_index), frequency], ['/%s/sigouts/%d/on' % (device, out_channel), 1], ['/%s/sigouts/%d/enables/%d' % (device, out_channel, out_mixer_channel), 1], ['/%s/sigouts/%d/range' % (device, out_channel), 1], ['/%s/sigouts/%d/amplitudes/%d' % (device, out_channel, out_mixer_channel), amplitude]] daq.set(exp_setting) # Wait for boxcar output to settle time.sleep(periods_vals[0]/frequency) # Perform a global synchronisation between the device and the data server: # Ensure that the settings have taken effect on the device before issuing # the poll(). daq.sync() # Get the values that were actually set on the device frequency_set = daq.getDouble('/%s/oscs/%d/freq' % (device, osc_index)) windowstart_set = daq.getDouble('/%s/boxcars/%d/windowstart' % (device, boxcar_index)) windowsize_set = daq.getDouble('/%s/boxcars/%d/windowsize' % (device, boxcar_index)) # Subscribe to the nodes we would like to record data from boxcar_sample_path = '/%s/boxcars/%d/sample' % (device, boxcar_index) boxcar_periods_path = '/%s/boxcars/%d/periods' % (device, boxcar_index) inputpwa_wave_path = '/%s/inputpwas/%d/wave' % (device, inputpwa_index) daq.subscribe([boxcar_sample_path, boxcar_periods_path, inputpwa_wave_path]) # We use getAsEvent() to ensure we obtain the first ``periods`` value; if # its value didn't change, the server won't report the first value. daq.getAsEvent(boxcar_periods_path) for periods in periods_vals: time.sleep(0.5) daq.setInt(boxcar_periods_path, int(periods)) # Poll the data poll_length = 0.1 # [s] poll_timeout = 500 # [ms] poll_flags = 0 poll_return_flat_dict = True data = daq.poll(poll_length, poll_timeout, poll_flags, poll_return_flat_dict) # Unsubscribe from all paths daq.unsubscribe('*') # Check the dictionary returned by poll contains the subscribed data. The # data returned is a dictionary with keys corresponding to the recorded # data's path in the node hierarchy assert data, "poll returned an empty data dictionary, did you subscribe to any paths?" assert boxcar_sample_path in data, "data dictionary has no key '%s'" % boxcar_sample_path assert boxcar_periods_path in data, "data dictionary has no key '%s'" % boxcar_periods_path assert inputpwa_wave_path in data, "data dictionary has no key '%s'" % inputpwa_wave_path sample = data[boxcar_sample_path] # When using API Level 4 (or higher) poll() returns both the 'value' and # 'timestamp' of the node. These are two vectors of the same length; # which consist of (timestamp, value) pairs. boxcar_value = sample['value'] boxcar_timestamp = sample['timestamp'] boxcar_periods_value = data[boxcar_periods_path]['value'] boxcar_periods_timestamp = data[boxcar_periods_path]['timestamp'] print("Measured average boxcar amplitude is {:.5e} V.".format(np.mean(boxcar_value))) if do_plot: # get the sample rate of the device's ADCs clockbase = float(daq.getInt('/%s/clockbase' % device)) # convert timestamps from ticks to seconds via clockbase boxcar_t = (boxcar_timestamp - boxcar_timestamp[0])/clockbase boxcar_periods_t = (boxcar_periods_timestamp - boxcar_periods_timestamp[0])/clockbase boxcar_periods_t[0] = boxcar_t[0] # Create plot import matplotlib.pyplot as plt fig = plt.figure() ax1 = fig.add_subplot(111) ax2 = ax1.twinx() plt.grid(True) ax1.plot(boxcar_t, boxcar_value, label='boxcar output') plt.xlabel('Time (s)') ax2.step(np.append(boxcar_periods_t, boxcar_t[-1]), np.append(boxcar_periods_value, boxcar_periods_value[-1]), '-r', label='Averaging periods') ax2.set_yscale("log") plt.xlim(min(boxcar_t[0], boxcar_periods_t[0]), max(boxcar_t[-1], boxcar_periods_t[-1])) ax2.legend(loc=1) plt.title('Boxcar output: The effect of averaging\nperiods on the boxcar value.') ax1.legend(loc=4) ax1.set_ylabel('Boxcar value (V)') ax2.set_ylabel('Number of Averaging Periods') plt.draw() plt.show() plt.figure() plt.grid(True) pwa_wave = data[inputpwa_wave_path][-1] pwa_wave['binphase'] = pwa_wave['binphase']*360/(2*np.pi) plt.axhline(0, color='k') # The inputpwa waveform is stored in 'x', currently 'y' is unused. plt.plot(pwa_wave['binphase'], pwa_wave['x']) windowsize_set_degrees = 360*frequency_set*windowsize_set phase_window = (pwa_wave['binphase'] >= windowstart_set) & \ (pwa_wave['binphase'] <= windowstart_set + windowsize_set_degrees) plt.fill_between(pwa_wave['binphase'], 0, pwa_wave['x'], where=phase_window, alpha=0.5) plt.xlim(0, 360) title = 'Input PWA waveform, the shaded region shows the portion\n of the waveform the boxcar is integrating.' plt.title(title) plt.xlabel('Phase (degrees)') plt.ylabel('Amplitude (V)') plt.draw() plt.show() return sample
from abc import abstractmethod, ABC from torch import nn class Recomputable(ABC): @abstractmethod def recompute(self): pass def recompute(module: nn.Module): if isinstance(module, Recomputable): module.recompute()
from sklearn.feature_extraction.text import TfidfVectorizer class TermClassifier: def _tfidf(self, data=[]): """ term weighting """ vector = TfidfVectorizer() transformed = vector.fit_transform(data) return transformed.toarray()
nums = [3,41,12,9,74,15] print((len(nums))) print(max(nums)) print(min(nums)) print(sum(nums)) newsum = sum(nums)/len(nums) print("{:.4f}".format(newsum))
import os import gc from psana.psexp.tools import mode world_size = 1 if mode == 'mpi': from mpi4py import MPI world_size = MPI.COMM_WORLD.Get_size() rank = MPI.COMM_WORLD.Get_rank() # set a unique jobid (rank 0 process id) for prometheus client if rank == 0: prometheus_jobid = os.getpid() else: prometheus_jobid = None prometheus_jobid = MPI.COMM_WORLD.bcast(prometheus_jobid, root=0) os.environ['PS_PROMETHEUS_JOBID'] = str(prometheus_jobid) else: os.environ['PS_PROMETHEUS_JOBID'] = str(os.getpid()) class InvalidDataSource(Exception): pass from psana.psexp.serial_ds import SerialDataSource from psana.psexp.singlefile_ds import SingleFileDataSource from psana.psexp.shmem_ds import ShmemDataSource from psana.psexp.legion_ds import LegionDataSource from psana.psexp.null_ds import NullDataSource def DataSource(*args, **kwargs): # force garbage collection to clean up old DataSources, in # particular to cause destructors to run to close old shmem msg queues gc.collect() args = tuple(map(str, args)) # Hack: workaround for unicode and str being different types in Python 2 # ==== shared memory ==== if 'shmem' in kwargs: if world_size > 1: PS_SRV_NODES = int(os.environ.get('PS_SRV_NODES', '0')) if PS_SRV_NODES == world_size: raise RuntimeError('All allocated cores are smalldata servers ' '(%d of %d)!' % (PS_SRV_NODES, world_size)) world_group = MPI.COMM_WORLD.Get_group() server_group = world_group.Incl(range(PS_SRV_NODES)) client_group = world_group.Excl(range(PS_SRV_NODES)) smalldata_kwargs = {'server_group': server_group, 'client_group': client_group} kwargs['smalldata_kwargs'] = smalldata_kwargs # create NullDataSource for ranks 0...PS_SRV_NODES-1 # all others are normal ShmemDataSources if rank < PS_SRV_NODES: return NullDataSource(*args, **kwargs) else: return ShmemDataSource(*args, **kwargs) else: # world_size == 1 return ShmemDataSource(*args, **kwargs) # ==== from experiment directory ==== elif 'exp' in kwargs: # experiment string - assumed multiple files if mode == 'mpi': if world_size == 1: return SerialDataSource(*args, **kwargs) else: # >> these lines are here to AVOID initializing node.comms # that class instance sets up the MPI environment, which # is global... and can interfere with other uses of MPI # (particularly shmem). Therefore we wish to isolate it # as much as possible. from psana.psexp.node import Communicators from psana.psexp.mpi_ds import MPIDataSource comms = Communicators() smalldata_kwargs = {'server_group' : comms.srv_group(), 'client_group' : comms.bd_group()} kwargs['smalldata_kwargs'] = smalldata_kwargs if comms._nodetype in ['smd0', 'eb', 'bd']: return MPIDataSource(comms, *args, **kwargs) else: return NullDataSource(*args, **kwargs) elif mode == 'legion': return LegionDataSource(*args, **kwargs) elif mode == 'none': return SerialDataSource(*args, **kwargs) else: raise InvalidDataSource("Incorrect mode. DataSource mode only supports either mpi, legion, or none (non parallel mode).") # ==== from XTC file(s) ==== elif 'files' in kwargs: # an xtc file return SingleFileDataSource(*args, **kwargs) else: raise InvalidDataSource("Expected keyword(s) not found. DataSource requires exp, shmem, or files keywords.")
import pytest import tensorflow as tf from tensorflow import keras import sys sys.path.append(".") from keras_cv_attention_models import attention_layers # Not included: batchnorm_with_activation, conv2d_no_bias, drop_block, hard_swish, phish, mish, layer_norm def test_add_pre_post_process_tf(): input_shape = (224, 224, 3) fake_input = tf.random.uniform([1, *input_shape]) * 255 mm = keras.models.Sequential() rescale_mode = "tf" attention_layers.add_pre_post_process(mm, rescale_mode=rescale_mode, input_shape=input_shape) aa = mm.preprocess_input(fake_input) bb = keras.applications.imagenet_utils.preprocess_input(fake_input, mode=rescale_mode) tf.assert_less(tf.abs(aa - bb), 1e-7) aa = mm.preprocess_input(fake_input[0]) bb = keras.applications.imagenet_utils.preprocess_input(fake_input, mode=rescale_mode) tf.assert_less(tf.abs(aa - bb), 1e-7) def test_add_pre_post_process_torch(): input_shape = (224, 224, 3) fake_input = tf.random.uniform([1, *input_shape]) * 255 mm = keras.models.Sequential() rescale_mode = "torch" attention_layers.add_pre_post_process(mm, rescale_mode=rescale_mode, input_shape=input_shape) aa = mm.preprocess_input(fake_input) bb = keras.applications.imagenet_utils.preprocess_input(fake_input, mode=rescale_mode) tf.assert_less(tf.abs(aa - bb), 1e-7) aa = mm.preprocess_input(fake_input[0]) bb = keras.applications.imagenet_utils.preprocess_input(fake_input, mode=rescale_mode) tf.assert_less(tf.abs(aa - bb), 1e-7) def test_add_pre_post_process_raw(): input_shape = (224, 224, 3) fake_input = tf.random.uniform([1, *input_shape]) * 255 mm = keras.models.Sequential() rescale_mode = "raw" attention_layers.add_pre_post_process(mm, rescale_mode=rescale_mode, input_shape=input_shape) aa = mm.preprocess_input(fake_input) tf.assert_less(tf.abs(aa - fake_input), 1e-7) def test_anti_alias_downsample(): input_shape = [2, 28, 28, 192] strides = 2 out = attention_layers.anti_alias_downsample(tf.ones(input_shape), kernel_size=3, strides=strides) assert out.shape == [input_shape[0], input_shape[1] // strides, input_shape[2] // strides, input_shape[3]] def test_BiasLayer(): aa = attention_layers.BiasLayer() input_shape = [2, 14, 14, 192] assert aa(tf.ones(input_shape)).shape == input_shape def test_ChannelAffine(): aa = attention_layers.ChannelAffine() input_shape = [2, 14, 14, 192] assert aa(tf.ones(input_shape)).shape == input_shape def test_ClassToken(): aa = attention_layers.ClassToken() input_shape = [2, 14 * 14, 192] assert aa(tf.ones(input_shape)).shape == [input_shape[0], input_shape[1] + 1, input_shape[2]] def test_ConvPositionalEncoding(): aa = attention_layers.ConvPositionalEncoding() input_shape = [1, 1 + 14 * 14, 256] assert aa(tf.ones(input_shape)).shape == input_shape def test_ConvRelativePositionalEncoding(): aa = attention_layers.ConvRelativePositionalEncoding() input_shape = [1, 8, 1 + 14 * 14, 6] assert aa(tf.ones(input_shape), tf.ones(input_shape)).shape == input_shape def test_cot_attention(): input_shape = [2, 28, 28, 192] assert attention_layers.cot_attention(tf.ones(input_shape), kernel_size=3).shape == input_shape def test_eca_module(): input_shape = [2, 28, 28, 192] out = attention_layers.eca_module(tf.ones(input_shape)) assert out.shape == input_shape def test_fold_by_conv2d_transpose(): inputs = tf.random.uniform([1, 64, 27, 192]) pad_inputs = tf.pad(inputs, [[0, 0], [1, 1], [1, 1], [0, 0]]) pathes = attention_layers.CompatibleExtractPatches(sizes=3, strides=2, rates=1, padding="VALID")(pad_inputs) reverse = attention_layers.fold_by_conv2d_transpose(pathes, inputs.shape[1:], kernel_size=3, strides=2, padding="SAME") assert reverse.shape == inputs.shape def test_halo_attention(): input_shape = [2, 12, 16, 256] out_shape = 384 out = attention_layers.halo_attention(tf.ones(input_shape), num_heads=4, out_shape=out_shape) assert out.shape == [input_shape[0], input_shape[1], input_shape[2], out_shape] def test_mhsa_with_multi_head_position_and_strides(): input_shape = [2, 28 * 28, 192] strides = 2 output_dim = 384 out = attention_layers.mhsa_with_multi_head_position_and_strides(tf.ones(input_shape), output_dim=output_dim, num_heads=4, key_dim=16, strides=strides) assert out.shape == [input_shape[0], input_shape[1] // strides // strides, output_dim] def test_mhsa_with_relative_position_embedding(): input_shape = [2, 14, 16, 256] out_shape = 384 out = attention_layers.mhsa_with_relative_position_embedding(tf.ones(input_shape), num_heads=4, out_shape=out_shape) assert out.shape == [input_shape[0], input_shape[1], input_shape[2], out_shape] def test_mhsa_with_multi_head_relative_position_embedding(): input_shape = [2, 14, 16, 256] out_shape = 384 out = attention_layers.mhsa_with_multi_head_relative_position_embedding(tf.ones(input_shape), num_heads=4, out_shape=out_shape) assert out.shape == [input_shape[0], input_shape[1], input_shape[2], out_shape] def test_mixer_block(): input_shape = [2, 28 * 28, 192] out = attention_layers.mixer_block(tf.ones(input_shape), tokens_mlp_dim=14 * 14, channels_mlp_dim=9 * 4) assert out.shape == input_shape def test_mlp_block(): input_shape = [2, 28 * 28, 192] out = attention_layers.mlp_block(tf.ones(input_shape), hidden_dim=9 * 4) assert out.shape == input_shape def test_MultiHeadPositionalEmbedding(): aa = attention_layers.MultiHeadPositionalEmbedding() input_shape = [2, 8, 16, 49] assert aa(tf.ones(input_shape)).shape == input_shape def test_MultiHeadRelativePositionalEmbedding(): aa = attention_layers.MultiHeadRelativePositionalEmbedding() input_shape = [2, 8, 29 * 29 + 1, 29 * 29 + 1] assert aa(tf.ones(input_shape)).shape == input_shape def test_outlook_attention(): input_shape = [2, 28, 28, 192] out = attention_layers.outlook_attention(tf.ones(input_shape), embed_dim=192, num_heads=4) assert out.shape == input_shape def test_outlook_attention_simple(): input_shape = [2, 28, 28, 192] out = attention_layers.outlook_attention_simple(tf.ones(input_shape), embed_dim=192, num_heads=4) assert out.shape == input_shape def test_PositionalEmbedding(): aa = attention_layers.PositionalEmbedding() input_shape = [2, 8, 16, 49] assert aa(tf.ones(input_shape)).shape == input_shape def test_RelativePositionalEmbedding(): aa = attention_layers.RelativePositionalEmbedding() hh = pos_hh = 14 ww = pos_ww = 16 input_shape = [2, 4, hh, ww, 32] assert aa(tf.ones(input_shape)).shape == [input_shape[0], input_shape[1], hh, ww, pos_hh, pos_ww] def test_rsoftmax(): input_shape = [2, 1, 1, 49 * 2] out = attention_layers.rsoftmax(tf.ones(input_shape), groups=2) assert out.shape == input_shape def test_ScaledStandardizedConv2D(): filters = 64 aa = attention_layers.ScaledStandardizedConv2D(filters=filters, kernel_size=3, padding="SAME") input_shape = [2, 28, 28, 32] assert aa(tf.ones(input_shape)).shape == [*input_shape[:3], filters] def test_se_module(): input_shape = [2, 28, 28, 192] out = attention_layers.se_module(tf.ones(input_shape), se_ratio=0.25) assert out.shape == input_shape def test_spatial_gating_block(): input_shape = [2, 28 * 28, 192] out = attention_layers.spatial_gating_block(tf.ones(input_shape)) assert out.shape == [*input_shape[:2], input_shape[-1] // 2] def test_split_attention_conv2d(): input_shape = [2, 28, 28, 192] filters = 384 out = attention_layers.split_attention_conv2d(tf.ones(input_shape), filters=filters) assert out.shape == [*input_shape[:3], filters] def test_CompatibleExtractPatches(): inputs = tf.random.uniform([1, 64, 27, 192]) pad_inputs = tf.pad(inputs, [[0, 0], [1, 1], [1, 1], [0, 0]]) pathes = tf.image.extract_patches(pad_inputs, [1, 3, 3, 1], [1, 2, 2, 1], [1, 1, 1, 1], padding="VALID") patches_by_conv2d = attention_layers.CompatibleExtractPatches(sizes=3, strides=2, rates=1, padding="SAME")(inputs) tf.assert_less(tf.abs(pathes - patches_by_conv2d), 1e-7) patches_1 = attention_layers.CompatibleExtractPatches(sizes=3, strides=2, rates=1, padding="SAME", compressed=False)(inputs) patches_tpu_1 = attention_layers.CompatibleExtractPatches(3, 2, 1, padding="SAME", compressed=False, force_conv=True)(inputs) tf.assert_less(tf.abs(patches_1 - patches_tpu_1), 1e-7) patches_2 = attention_layers.CompatibleExtractPatches(sizes=3, strides=2, rates=1, padding="SAME", compressed=True)(inputs) patches_tpu_2 = attention_layers.CompatibleExtractPatches(3, 2, 1, padding="SAME", compressed=True, force_conv=True)(inputs) tf.assert_less(tf.abs(patches_2 - patches_tpu_2), 1e-7) def test_ZeroInitGain(): aa = attention_layers.ZeroInitGain() input_shape = [2, 28, 28, 32] assert aa(tf.ones(input_shape)).shape == input_shape
import unittest import torch import math from model_utils_torch.ops import * from model_utils_torch.more_ops.multiple_pad import test_center_multiple_pad class TestOps(unittest.TestCase): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.test_data_2d = torch.randn(5, 10, 16, 16) def test_channel_shuffle(self): a = torch.arange(4).reshape(1, 4, 1, 1) y = channel_shuffle(a, 2).reshape(-1) self.assertEqual((0, 2, 1, 3), tuple(y)) def test_resize_ref(self): a = torch.randn(5, 10, 32, 32) y = resize_ref(self.test_data_2d, a) self.assertEqual((5, 10, 32, 32), tuple(y.shape)) def test_add_coord(self): y = add_coord(self.test_data_2d) self.assertEqual((5, 12, 16, 16), tuple(y.shape)) def test_pixelwise_norm(self): y = pixelwise_norm(self.test_data_2d) self.assertEqual((5, 10, 16, 16), tuple(y.shape)) def test_flatten(self): y = flatten(self.test_data_2d) self.assertEqual((5, 2560), tuple(y.shape)) def test_adaptive_instance_normalization(self): style = torch.randn(5, 10, 1, 1) y = adaptive_instance_normalization(self.test_data_2d, style) self.assertEqual((5, 10, 16, 16), tuple(y.shape)) def test_minibatch_stddev(self): y = minibatch_stddev(self.test_data_2d, 5, 1) self.assertEqual((5, 11, 16, 16), tuple(y.shape)) def test_pixelshuffle(self): a = torch.randn(5, 16, 32, 32) y = pixelshuffle(a, (2, 2)) y2 = F.pixel_shuffle(a, 2) b = torch.equal(y, y2) self.assertTrue(b) def test_pixelshuffle_invert(self): a = torch.randn(5, 16, 32, 32) x = F.pixel_shuffle(a, 2) y = pixelshuffle_invert(x, (2, 2)) b = torch.equal(a, y) self.assertTrue(b) def test_one_hot(self): # dim == -1 a = torch.randint(0, 100, [100, 100, 10]) arr = one_hot(a, 100, dtype=torch.long) restruct_a = one_hot_invert(arr) b = torch.all(a == restruct_a) self.assertTrue(b) # dim != -1 a = torch.randint(0, 100, [100, 100, 10]) arr = one_hot(a, 100, dim=1, dtype=torch.long) restruct_a = one_hot_invert(arr, dim=1) b = torch.all(a == restruct_a) self.assertTrue(b) test_one_hot_invert = test_one_hot def test_multiple_pad(self): b = test_center_multiple_pad() self.assertTrue(b)
import datetime from django.utils.timezone import utc from django.shortcuts import render, get_object_or_404, redirect from django.urls import reverse from django.contrib.auth.decorators import login_required from .forms import OptionForm, TitleForm from .models import Emails, Options, Titles, Voted from django.contrib import messages import time from django.core.mail import send_mail from django.conf import settings # def SendResults(title): # if title.emailed == '0' and title.published == '1': # title.emailed = 1 # title.save() # voted = Voted.objects.filter(title = title) # if len(voted) != 0: # for email in voted: # send_mail( # 'Results for '+str(title), # 'The results for '+str(title)+'\nHave been declared at :'+str(settings.MY_SITE_NAME)+'\nCheck it out \nHear '+str(settings.MY_SITE_NAME)+str(reverse('pols', args=[title.id])), # from_email = settings.EMAIL_HOST_USER, # recipient_list=[email.email], # fail_silently=False, # ) def get_client_ip(request): x_forwarded_for = request.META.get('HTTP_X_FORWARDED_FOR') if x_forwarded_for: ip = x_forwarded_for.split(',')[0] else: ip = request.META.get('REMOTE_ADDR') return ip def home(request): titles = Titles.objects.filter(published ='1').order_by('-id') data = {'title':'Home', 'titles':titles} return render(request, 'VotingApp/home.html', data) def TitleEdit(request,id): if request.method == "POST": title = get_object_or_404(Titles, id=id) if title.published == '0': d=1 title.title = request.POST['title'] try: days = int(request.POST['end_in']) title.published =1 date = utc.localize(datetime.datetime.today()) + datetime.timedelta(days=days) title.end = date title.save() except: title.save() return redirect(reverse('titles',args=[id])) def VoteView(request, id): data = {} d=0 title = get_object_or_404(Titles, id=id) now = utc.localize(datetime.datetime.utcnow()) options = Options.objects.filter(title=title) data = {"options": options, "title": title} if title.published == '0': data.update({'error':'Preview Mode'}) if title.user == request.user: data.update({'this':'true'}) return render(request, 'VotingApp/index.html', data) title.end = title.end+datetime.timedelta(hours=6) - datetime.timedelta(minutes=30) if title.end <= now: # SendResults(title) data.update({'error':'Polls have ended results are'}) return render(request, 'VotingApp/index.html', data) # now = now.replace(tzinfo=utc).strftime('%D: %H:%M:%S') time_left = (title.end-now-datetime.timedelta(hours=5)-datetime.timedelta(minutes=30)) data.update({"time_left" : str(time_left)[:-7]}) if request.method == "POST" and d == 0: user_email = get_client_ip(request) if Emails.objects.filter(email=user_email).exists(): newemail = Emails.objects.filter(email=user_email)[0] else: newemail = Emails.objects.create() newemail.email = user_email newemail.save() emailss = Voted.objects.filter(email=newemail) if emailss.filter(title=title).exists(): data.update({'error' : "You have already placed a vote !!"}) return render(request, 'VotingApp/index.html', data) instance = Options.objects.get(name=request.POST['name']) instance.vote +=1 instance.save() Voted.objects.create(email=newemail, title=title) data.update({'message' : "Suckessfully Voted for "+ request.POST['name']}) return render(request, 'VotingApp/index.html', data) @login_required def PanelView(request): r_message = messages.get_messages(request) data = {"title":"DashBoard", 'r_message':r_message} if request.method == "POST": name = request.POST['name'] # days = request.POST['end_in'] # days = int(days) time = datetime.datetime.today() + datetime.timedelta(days=1000) Titles.objects.create(user=request.user, title=name, end=time) titles = Titles.objects.filter(user=request.user) titles = titles.order_by('-id') data.update({'titles':titles}) return render(request, 'VotingApp/panel.html', data) @login_required def TitlesView(request, id): r_message = messages.get_messages(request) title = get_object_or_404(Titles, id=id) data = {'title':title} if title.user == request.user: options = Options.objects.filter(title=title).order_by('-id') data.update({'object':title, 'options':options}) if title.published == '0': if request.method == "POST": form = OptionForm(request.POST, request.FILES) form.title = title if form.is_valid(): form.save() else: print(form) print("not saved") # print(str(request.PUT)) # if request.method == "POST": # pass # print(str(request.POST)) else: data.update({"time_left" : str(title.end)[:-7]}) return render(request, 'VotingApp/title_detail.html', data) else: return redirect(reverse('pols', args=[id])) @login_required def DeleteTitle(request, id): title = get_object_or_404(Titles, id=id) if title.user == request.user: title.delete() return redirect('dashboard') def tester(request, id): form = OptionForm() return render(request,'tester/t.html', {'form':form}) @login_required def EditOption(request, id): option = get_object_or_404(Options, id=id) if option.title.user == request.user: if option.title.published == '0': print(option.id) if request.method == "POST": form = OptionForm(request.POST, request.FILES, instance=option) form.title = option.title if form.is_valid(): form.save() else: print('!!!!!!!!!!!!!!!!') print(form) print('!!!!!!!!!!!!!!!!') messages.success(request, "Change Failed") return redirect(reverse('titles', args=[option.title.id])) @login_required def DeleteOption(request, id): option = get_object_or_404(Options, id=id) if option.title.user == request.user: option.delete() return redirect(reverse('titles', args=[option.title.id]))
#!/usr/bin/env python # -*- coding: utf8 -*- from __future__ import unicode_literals from ..helpers import HEADERS from base_scraper import BaseScraper import lxml.html import requests import time from unicodedata import normalize class IMDB(BaseScraper): BASE_URL = "http://www.imdb.com" SEARCH_PATH = "/find?q=" URL_END = "&s=all" def __init__(self): pass def construct_search_url(self, title): """ Construct search results url for specified title """ safe_title = normalize("NFC", title).replace(" ", "+").replace("&", "%26").replace("?", "%3F").lower() return "{}{}{}{}".format(IMDB.BASE_URL, IMDB.SEARCH_PATH, safe_title, IMDB.URL_END) def get_title(self, xml_doc): try: return xml_doc.xpath('//div[@class="title_block"]//h1/text()')[0].strip() except IndexError: return '' def get_alternative_title(self, xml_doc): try: return xml_doc.xpath('//div[@class="title_wrapper"]//div[@class="originalTitle"]/text()') except IndexError: return '' def get_description(self, xml_doc): try: return xml_doc.xpath('//div[@class="summary_text"]')[0].text_content().strip().replace('See full summary', '').replace('»', '').strip() except IndexError: return '' def get_director(self, xml_doc): try: return map(lambda x: x.text, xml_doc.xpath('//div[@class="plot_summary_wrapper"]//div[@class="credit_summary_item"][1]//a')) except IndexError: return '' def get_rating(self, xml_doc): try: return xml_doc.xpath('//div[@class="ratingValue"]/strong/span/text()')[0].strip() except IndexError: return '' def get_genres(self, xml_doc): try: return xml_doc.xpath('//div[@class="titleBar"]//div[@class="title_wrapper"]/div[@class="subtext"]/a/text()')[0:-1] except IndexError: return '' def get_votes(self, xml_doc): try: return xml_doc.xpath('//div[@class="imdbRating"]/a/span/text()')[0].strip() except IndexError: return '' def get_running_time(self, xml_doc): try: return xml_doc.xpath('//div[@class="titleBar"]//div[@class="title_wrapper"]//time/text()')[0].strip() except IndexError: return '' def get_content_rating(self, xml_doc): try: return xml_doc.xpath('//div[@class="titleBar"]/div[2]/div[@class="subtext"]/text()')[0].strip() except IndexError: return '' def get_stars(self, xml_doc): try: res = map(lambda x: x.text, xml_doc.xpath('//div[@class="plot_summary_wrapper"]//div[@class="credit_summary_item"][3]//a'))[0:-1] if not res: return map(lambda x: x.text, xml_doc.xpath('//div[@class="plot_summary_wrapper"]//div[@class="credit_summary_item"][2]//a'))[0:-1] except IndexError: try: return xml_doc.xpath('//div[@class="plot_summary_wrapper"]/div[1]/div[3]/span/a/span/text()') except IndexError: return '' def get_languages(self, xml_doc): try: if xml_doc.xpath('//*[@id="titleDetails"]/div[3]/h4/text()') == ['Language:']: return xml_doc.xpath('//*[@id="titleDetails"]/div[3]/a/text()') else: return xml_doc.xpath('//*[@id="titleDetails"]/div[2]/a/text()') except IndexError: return '' def get_image_url(self, xml_doc): try: return xml_doc.xpath('//*[@class="poster"]/a/img/@src')[0] except IndexError: return '' # Movie specific functions def get_movie_year(self, xml_doc): try: return xml_doc.xpath('//*[@class="title_wrapper"]//span[@id="titleYear"]/a/text()')[0] except IndexError: return '' def get_awards(self, xml_doc): try: awards = xml_doc.xpath('//*[@id="titleAwardsRanks"]/span[@class="awards-blurb"]/b/text()')[0].strip() if not "oscar" in awards.lower(): return '' else: if awards[-1] == ".": return " ".join(xml_doc.xpath('//div[@id="titleAwardsRanks"]//span[@class="awards-blurb"]/b/text()')[0].strip().split()) try: return IMDB.BASE_URL + xml_doc.xpath('//*[@id="titleAwardsRanks"]/span[@class="see-more inline"]/a/@href')[0] except IndexError: return '' except IndexError: return '' # Series Specific Functions def get_series_year(self, xml_doc): try: return xml_doc.xpath('//div[@class="title_wrapper"]//div[@class="subtext"]/a/text()')[-1].strip().split('(')[-1].split(')')[0].strip() except IndexError: return '' def get_creator(self, xml_doc): try: return map(lambda x: x.text, xml_doc.xpath('//div[@class="plot_summary_wrapper"]//div[@class="credit_summary_item"][1]//a')) except IndexError: return '' def get_series_stars(self, xml_doc): try: cast = map(lambda x: x.text, xml_doc.xpath('//div[@class="plot_summary_wrapper"]//div[@class="credit_summary_item"][2]//a'))[0:-1] if cast: return cast else: # Some series do not list a creator, so cast is the first element in the credit summary pane at the top of the page # The better solution is to search for the <h4> matching the term "Cast" and then take the next 3 elements return xml_doc.xpath('//div[@class="plot_summary_wrapper"]//div[@class="credit_summary_item"][1]//a/text()')[0:3] except IndexError: return '' # Full Response Payloads def get_search_page(self, asset): """ Get search page listing all matching titles (from which the url of the title will be extracted) """ search_url = self.construct_search_url(asset) return lxml.html.document_fromstring(requests.get(search_url, headers=HEADERS).content) def get_movie_page_url(self, title): """ return URL associated with movie page by parsing search page DOM return None if no results are found """ invalid_results = ["(TV Episode)", "(TV Series)", "(TV Mini-Series)", "(Short)", "(Video Game)"] search_page = self.get_search_page(title) try: for index, section in enumerate(search_page.xpath('//*[@id="main"]/div[1]/div')): if len(section.xpath('h3/text()')) > 0: # Find the Div associated with Titles (rather than Characters, etc) if section.xpath('h3/text()')[0] == "Titles": # Select first in list which doesn't contain invalid_results for index, list_title in enumerate(search_page.xpath('//*[@id="main"]/div[1]/div[2]/table[1]/tr')): if not any(x in list_title.text_content() for x in invalid_results): endpoint = search_page.xpath('//*[@id="main"]/div[1]/div[2]/table[1]/tr[%i]/td/a' %(index+1))[0].attrib['href'] return IMDB.BASE_URL + endpoint except IndexError: return def get_series_page_url(self, title): """ return URL associated with series page by parsing search page DOM return None if no results are found """ valid_results = ["(TV Series)", "(TV Mini-Series)"] search_page = self.get_search_page(title) try: for index, section in enumerate(search_page.xpath('//*[@id="main"]/div[1]/div')): if len(section.xpath('h3/text()')) > 0: # Find the Div associated with Titles (rather than Characters, etc) if section.xpath('h3/text()')[0] == "Titles": # Select first in list which doesn't contain invalid_results for index, list_title in enumerate(search_page.xpath('//*[@id="main"]/div[1]/div[2]/table[1]/tr')): if any(x in list_title.text_content() for x in valid_results): # Some items listed as "TV Episode" also contain a link with the term "TV Series" below if "(TV Episode)" not in list_title.text_content(): endpoint = search_page.xpath('//*[@id="main"]/div[1]/div[2]/table[1]/tr[%i]/td/a' %(index+1))[0].attrib['href'] return IMDB.BASE_URL + endpoint except IndexError: return None def get_movie_details(self, movie, movie_url): """ Scrape movie page for attributes specified below """ if movie_url != None: movie_page = lxml.html.document_fromstring(requests.get(movie_url, headers=HEADERS).content) return { 'url': movie_url, 'info_retrieved': time.strftime("%Y-%m-%d"), 'title': self.get_title(movie_page), 'alternative_title': self.get_alternative_title(movie_page), 'year': self.get_movie_year(movie_page), 'description': self.get_description(movie_page), 'director': self.get_director(movie_page), 'stars': self.get_stars(movie_page), 'genre': self.get_genres(movie_page), 'rating': self.get_rating(movie_page), 'votes': self.get_votes(movie_page), 'running_time': self.get_running_time(movie_page), 'languages': self.get_languages(movie_page), 'content_rating': self.get_content_rating(movie_page), 'awards': self.get_awards(movie_page), 'image_url': self.get_image_url(movie_page), } def get_series_details(self, series, series_url): """ Scrape series page for attributes specified below """ if series_url != None: series_page = lxml.html.document_fromstring(requests.get(series_url, headers=HEADERS).content) return { 'url': series_url, 'info_retrieved': time.strftime("%Y-%m-%d"), 'title': self.get_title(series_page), 'year': self.get_series_year(series_page), 'description': self.get_description(series_page), 'creator': self.get_creator(series_page), 'stars': self.get_series_stars(series_page), 'genre': self.get_genres(series_page), 'rating': self.get_rating(series_page), 'votes': self.get_votes(series_page), 'running_time': self.get_running_time(series_page), 'languages': self.get_languages(series_page), 'content_rating': self.get_content_rating(series_page), 'image_url': self.get_image_url(series_page), }
# # #ok get the csv files to text # do it for all (use blob) #FAAACCCKKKKKKK import csv import os def nameG(a, b): #get the file's names which are going to deal with c = [] for i in range(b): if i==0: continue if i < 10: c.append(a +"tobacco_plant00"+ str(i)+"_bbox.csv") if i > 10 and i <100: c.append(a+"tobacco_plant0"+str(i)+"_bbox.csv") if i > 100: c.append(a+"tobacco_plant"+str(i)+"_bbox.csv") return c dataPath=Path='/home/csse/DATASETS/DataSets/mtcnn-head-detection-master' #dataPath = "/home/caleb/Downloads/DataSets/plantDB/Phenotyping_Leaf_detection_dataset/Plant_Phenotyping_Datasets/Plant_Phenotyping_Datasets/Plant/Tobacco/" outPath= "/home/caleb/Downloads/Datasets/plantDB/Phenotyping_Leaf_detection_dataset/" #csv_file = raw_input(dataPath +"ara2012_plant001_bbox.csv") txt_file = "/home/caleb/Downloads/DataSets/plantDB/Phenotyping_Leaf_detection_dataset/bbox_all_tobacco.txt" fileNames = nameG(dataPath,121) print(fileNames) with open(txt_file, "w") as txtOut: for i in fileNames: with open(i,"r") as csvIn: txtOut.write(i[0:len(i)-8]+"rgb.png") txtOut.write(" ") [txtOut.write(" ".join(row)+"") for row in csv.reader(csvIn)] txtOut.write("\n") txtOut.close()
from django.shortcuts import render def admin_home(request): return render(request, 'admin_template/admin_home.html')
from __future__ import annotations from ..expressions import Expression class ExpressionVisitor: def __init__(self): self.visited = {} self._top_level = True def visit(self, expression): is_top_level = False if self._top_level: is_top_level = True self._top_level = False if expression not in self.visited: method_name = "visit_%s" % expression.__class__.__name__ visitor = getattr(self, method_name, self.generic_visit) self.visited[expression] = visitor(expression) if is_top_level: self._top_level = True return self.visited[expression] def generic_visit(self, expression): for value in expression.__dict__.values(): if isinstance(value, Expression): self.visit(value) elif isinstance(value, (list, tuple, set)): for sub_value in value: if isinstance(sub_value, Expression): self.visit(sub_value) return expression __all__ = ["ExpressionVisitor"]
import numpy as np def merge_colinear(x, y): """Processes boundary coordinates in polyline with vertices X, Y to remove redundant colinear points. Polyline is not assumed to be open or closed. Parameters ---------- x : array_like One dimensional array of horizontal boundary coordinates. y : array_like One dimensional array of vertical boundary coordinates. Returns ------- xout : array_like X with colinear boundary points removed. yout : array_like Y with colinear boundary points removed. """ # compute boundary differences dX = np.diff(x) dY = np.diff(y) # detect and delete stationary repeats Repeats = np.argwhere((dX == 0) & (dY == 0)) np.delete(x, Repeats) np.delete(y, Repeats) np.delete(dX, Repeats) np.delete(dY, Repeats) # calculate slope transitions slope = dY / dX # find transitions dslope = np.diff(slope) dslope[np.isnan(dslope)] = 0 transitions = np.argwhere(dslope != 0) # construct merged sequences xout = np.append(x[0], x[transitions + 1]) yout = np.append(y[0], y[transitions + 1]) xout = np.append(xout, x[-1]) yout = np.append(yout, y[-1]) return xout, yout
from typing import Tuple import ema_workbench import LESO import json from tinydb import TinyDB import pandas as pd from LESO import AttrDict def load_ema_leso_results( run_id: int, exp_prefix: str, results_folder: str, return_db_as_df=True, exclude_solver_errors = True, ) -> Tuple[pd.DataFrame, dict, pd.DataFrame]: """Small helper function to load results easily from the document structure""" ema_results = f"{exp_prefix}_ema_results_{run_id}.tar.gz" experiments, outcomes = ema_workbench.load_results(results_folder / ema_results) db_file = f"{exp_prefix}_db{run_id}.json" db = TinyDB(results_folder / db_file) if return_db_as_df: db = convert_db_to_df(db) if exclude_solver_errors: db = db[db.solver_status == "ok"] return experiments, outcomes, db def convert_db_to_df(db: TinyDB): """Note that this is not stable for non-structured (e.g. document-type) dbs""" df = pd.DataFrame( {key: [document.get(key, None) for document in db] for key in db.all()[0]} ) return df def annualized_cost(component: LESO.Component, system: LESO.System) -> float: """Calculate the annualized cost of a LESO component""" LESO.finance.set_finance_variables(component, system) return component.capex * component.crf + component.opex def quick_lcoe(component: LESO.Component, system: LESO.System) -> float: """Calculates the LCOE based on annualized cost and yearly production""" return annualized_cost(component, system) / component.state.power.sum() def open_leso_experiment_file(filepath: str) -> AttrDict: """Open a LESO experiment file (json write-out) and return an AttrDict""" with open(filepath, "r") as infile: di = AttrDict(json.load(infile)) return di
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union from ... import _utilities, _tables from . import outputs from ._enums import * from ._inputs import * __all__ = ['ScheduleResource'] class ScheduleResource(pulumi.CustomResource): def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, daily_recurrence: Optional[pulumi.Input[pulumi.InputType['DayDetailsArgs']]] = None, hourly_recurrence: Optional[pulumi.Input[pulumi.InputType['HourDetailsArgs']]] = None, id: Optional[pulumi.Input[str]] = None, lab_name: Optional[pulumi.Input[str]] = None, location: Optional[pulumi.Input[str]] = None, name: Optional[pulumi.Input[str]] = None, provisioning_state: Optional[pulumi.Input[str]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, status: Optional[pulumi.Input[Union[str, 'EnableStatus']]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, task_type: Optional[pulumi.Input[Union[str, 'TaskType']]] = None, time_zone_id: Optional[pulumi.Input[str]] = None, type: Optional[pulumi.Input[str]] = None, weekly_recurrence: Optional[pulumi.Input[pulumi.InputType['WeekDetailsArgs']]] = None, __props__=None, __name__=None, __opts__=None): """ A schedule. :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[pulumi.InputType['DayDetailsArgs']] daily_recurrence: The daily recurrence of the schedule. :param pulumi.Input[pulumi.InputType['HourDetailsArgs']] hourly_recurrence: The hourly recurrence of the schedule. :param pulumi.Input[str] id: The identifier of the resource. :param pulumi.Input[str] lab_name: The name of the lab. :param pulumi.Input[str] location: The location of the resource. :param pulumi.Input[str] name: The name of the resource. :param pulumi.Input[str] provisioning_state: The provisioning status of the resource. :param pulumi.Input[str] resource_group_name: The name of the resource group. :param pulumi.Input[Union[str, 'EnableStatus']] status: The status of the schedule. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] tags: The tags of the resource. :param pulumi.Input[Union[str, 'TaskType']] task_type: The task type of the schedule. :param pulumi.Input[str] time_zone_id: The time zone id. :param pulumi.Input[str] type: The type of the resource. :param pulumi.Input[pulumi.InputType['WeekDetailsArgs']] weekly_recurrence: The weekly recurrence of the schedule. """ if __name__ is not None: warnings.warn("explicit use of __name__ is deprecated", DeprecationWarning) resource_name = __name__ if __opts__ is not None: warnings.warn("explicit use of __opts__ is deprecated, use 'opts' instead", DeprecationWarning) opts = __opts__ if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = dict() __props__['daily_recurrence'] = daily_recurrence __props__['hourly_recurrence'] = hourly_recurrence __props__['id'] = id if lab_name is None and not opts.urn: raise TypeError("Missing required property 'lab_name'") __props__['lab_name'] = lab_name __props__['location'] = location __props__['name'] = name __props__['provisioning_state'] = provisioning_state if resource_group_name is None and not opts.urn: raise TypeError("Missing required property 'resource_group_name'") __props__['resource_group_name'] = resource_group_name __props__['status'] = status __props__['tags'] = tags __props__['task_type'] = task_type __props__['time_zone_id'] = time_zone_id __props__['type'] = type __props__['weekly_recurrence'] = weekly_recurrence alias_opts = pulumi.ResourceOptions(aliases=[pulumi.Alias(type_="azure-nextgen:devtestlab/v20150521preview:ScheduleResource"), pulumi.Alias(type_="azure-native:devtestlab:ScheduleResource"), pulumi.Alias(type_="azure-nextgen:devtestlab:ScheduleResource"), pulumi.Alias(type_="azure-native:devtestlab/latest:ScheduleResource"), pulumi.Alias(type_="azure-nextgen:devtestlab/latest:ScheduleResource"), pulumi.Alias(type_="azure-native:devtestlab/v20160515:ScheduleResource"), pulumi.Alias(type_="azure-nextgen:devtestlab/v20160515:ScheduleResource"), pulumi.Alias(type_="azure-native:devtestlab/v20180915:ScheduleResource"), pulumi.Alias(type_="azure-nextgen:devtestlab/v20180915:ScheduleResource")]) opts = pulumi.ResourceOptions.merge(opts, alias_opts) super(ScheduleResource, __self__).__init__( 'azure-native:devtestlab/v20150521preview:ScheduleResource', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None) -> 'ScheduleResource': """ Get an existing ScheduleResource resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = dict() __props__["daily_recurrence"] = None __props__["hourly_recurrence"] = None __props__["location"] = None __props__["name"] = None __props__["provisioning_state"] = None __props__["status"] = None __props__["tags"] = None __props__["task_type"] = None __props__["time_zone_id"] = None __props__["type"] = None __props__["weekly_recurrence"] = None return ScheduleResource(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter(name="dailyRecurrence") def daily_recurrence(self) -> pulumi.Output[Optional['outputs.DayDetailsResponse']]: """ The daily recurrence of the schedule. """ return pulumi.get(self, "daily_recurrence") @property @pulumi.getter(name="hourlyRecurrence") def hourly_recurrence(self) -> pulumi.Output[Optional['outputs.HourDetailsResponse']]: """ The hourly recurrence of the schedule. """ return pulumi.get(self, "hourly_recurrence") @property @pulumi.getter def location(self) -> pulumi.Output[Optional[str]]: """ The location of the resource. """ return pulumi.get(self, "location") @property @pulumi.getter def name(self) -> pulumi.Output[Optional[str]]: """ The name of the resource. """ return pulumi.get(self, "name") @property @pulumi.getter(name="provisioningState") def provisioning_state(self) -> pulumi.Output[Optional[str]]: """ The provisioning status of the resource. """ return pulumi.get(self, "provisioning_state") @property @pulumi.getter def status(self) -> pulumi.Output[Optional[str]]: """ The status of the schedule. """ return pulumi.get(self, "status") @property @pulumi.getter def tags(self) -> pulumi.Output[Optional[Mapping[str, str]]]: """ The tags of the resource. """ return pulumi.get(self, "tags") @property @pulumi.getter(name="taskType") def task_type(self) -> pulumi.Output[Optional[str]]: """ The task type of the schedule. """ return pulumi.get(self, "task_type") @property @pulumi.getter(name="timeZoneId") def time_zone_id(self) -> pulumi.Output[Optional[str]]: """ The time zone id. """ return pulumi.get(self, "time_zone_id") @property @pulumi.getter def type(self) -> pulumi.Output[Optional[str]]: """ The type of the resource. """ return pulumi.get(self, "type") @property @pulumi.getter(name="weeklyRecurrence") def weekly_recurrence(self) -> pulumi.Output[Optional['outputs.WeekDetailsResponse']]: """ The weekly recurrence of the schedule. """ return pulumi.get(self, "weekly_recurrence") def translate_output_property(self, prop): return _tables.CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop def translate_input_property(self, prop): return _tables.SNAKE_TO_CAMEL_CASE_TABLE.get(prop) or prop
from tensorflow.keras.models import Sequential model3 = Sequential([ embedding_layer, Flatten(), ]) labels_to_encode = np.array([[3]]) print(model3.predict(labels_to_encode))
"""Constant values for the modules""" # system constants APP_NAME = "SelfStabilizingReconfiguration" RUN_SLEEP = 1 INTEGRATION_RUN_SLEEP = 0.05 FD_SLEEP = 0.25 FD_TIMEOUT = 5 MAX_QUEUE_SIZE = 10 # Max allowed amount of messages in send queue # FD BEAT_THRESHOLD = 30 # Threshold for liveness, beat-variable CNT_THRESHOLD = 20 # Threshold for progress, cnt-variable NOT_PARTICIPANT = 'NOT_PARTICIPANT' BOTTOM = 'BOTTOM' DFLT_NTF = (0, BOTTOM) RECSA_MSG_TYPE = 2 RECMA_MSG_TYPE = 3 # ABD READ_REQUEST = "READ_REQUEST" READ_CONFIRM = "READ_CONFIRM" WRITE = "WRITE" BOT = -1 NOT_SENT = "NOT_SENT" NOT_ACKED = "NOT_ACKED" ACKED = "ACKED" WRITE_ACK = "WRITE_ACK" READ_CONFIRM_ACK = "READ_CONFIRM_ACK" READ_REQUEST_ACK = "READ_REQUEST_ACK"
from fastapi import APIRouter from .api.endpoints import api_router from .health.endpoints import health_router base_router = APIRouter() base_router.include_router(api_router, prefix='/api') base_router.include_router(health_router, prefix='/health')
from SBaaS_base.postgresql_orm_base import * #IS #internal_standard class internal_standard(Base): #__table__ = make_table('internal_standard') __tablename__ = 'internal_standard' is_id = Column(Integer, nullable = False); is_date = Column(DateTime, nullable = False); experimentor_id = Column(String(50), nullable = False); extraction_method_id = Column(String(50)) __table_args__ = (PrimaryKeyConstraint('is_id'), ForeignKeyConstraint(['is_id'],['internal_standard_storage.is_id']), ) def __init__(self,data_dict_I): self.experimentor_id=data_dict_I['experimentor_id']; self.is_id=data_dict_I['is_id']; self.is_date=data_dict_I['is_date']; self.extraction_method_id=data_dict_I['extraction_method_id']; #internal_standard_storage class internal_standard_storage(Base): #__table__ = make_table('internal_standard_storage') __tablename__ = 'internal_standard_storage' is_id = Column(Integer, nullable = False); concentration = Column(Float); concentration_units = Column(String(10)); aliquots = Column(Integer); aliquot_volume = Column(Float); aliquot_volume_units = Column(String(10)); solvent = Column(String(100)); ph = Column(Float); box = Column(Integer); posstart = Column(Integer); posend = Column(Integer) __table_args__ = (PrimaryKeyConstraint('is_id'), ) def __init__(self,data_dict_I): self.ph=data_dict_I['ph']; self.is_id=data_dict_I['is_id']; self.concentration=data_dict_I['concentration']; self.concentration_units=data_dict_I['concentration_units']; self.aliquots=data_dict_I['aliquots']; self.aliquot_volume=data_dict_I['aliquot_volume']; self.posstart=data_dict_I['posstart']; self.aliquot_volume_units=data_dict_I['aliquot_volume_units']; self.posend=data_dict_I['posend']; self.solvent=data_dict_I['solvent']; self.box=data_dict_I['box'];
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import paddle import numpy as np from PIL import Image from paddleseg.cvlibs import manager from paddleseg.transforms import Compose @manager.DATASETS.add_component class Dataset(paddle.io.Dataset): """ Pass in a custom dataset that conforms to the format. Args: transforms (list): Transforms for image. dataset_root (str): The dataset directory. num_classes (int): Number of classes. mode (str): which part of dataset to use. it is one of ('train', 'val', 'test'). Default: 'train'. train_path (str): The train dataset file. When mode is 'train', train_path is necessary. The contents of train_path file are as follow: image1.jpg ground_truth1.png image2.jpg ground_truth2.png val_path (str): The evaluation dataset file. When mode is 'val', val_path is necessary. The contents is the same as train_path test_path (str): The test dataset file. When mode is 'test', test_path is necessary. The annotation file is not necessary in test_path file. separator (str): The separator of dataset list. Default: ' '. Examples: import paddleseg.transforms as T from paddleseg.datasets import Dataset transforms = [T.RandomPaddingCrop(crop_size=(512,512)), T.Normalize()] dataset_root = 'dataset_root_path' train_path = 'train_path' num_classes = 2 dataset = Dataset(transforms = transforms, dataset_root = dataset_root, num_classes = 2, train_path = train_path, mode = 'train') """ def __init__(self, transforms, dataset_root, num_classes, mode='train', train_path=None, val_path=None, test_path=None, separator=' ', ignore_index=255): self.dataset_root = dataset_root self.transforms = Compose(transforms) self.file_list = list() mode = mode.lower() self.mode = mode self.num_classes = num_classes self.ignore_index = ignore_index if mode.lower() not in ['train', 'val', 'test']: raise ValueError( "mode should be 'train', 'val' or 'test', but got {}.".format( mode)) if self.transforms is None: raise ValueError("`transforms` is necessary, but it is None.") self.dataset_root = dataset_root if not os.path.exists(self.dataset_root): raise FileNotFoundError('there is not `dataset_root`: {}.'.format( self.dataset_root)) if mode == 'train': if train_path is None: raise ValueError( 'When `mode` is "train", `train_path` is necessary, but it is None.' ) elif not os.path.exists(train_path): raise FileNotFoundError( '`train_path` is not found: {}'.format(train_path)) else: file_path = train_path elif mode == 'val': if val_path is None: raise ValueError( 'When `mode` is "val", `val_path` is necessary, but it is None.' ) elif not os.path.exists(val_path): raise FileNotFoundError( '`val_path` is not found: {}'.format(val_path)) else: file_path = val_path else: if test_path is None: raise ValueError( 'When `mode` is "test", `test_path` is necessary, but it is None.' ) elif not os.path.exists(test_path): raise FileNotFoundError( '`test_path` is not found: {}'.format(test_path)) else: file_path = test_path with open(file_path, 'r') as f: for line in f: items = line.strip().split(separator) if len(items) != 2: if mode == 'train' or mode == 'val': raise ValueError( "File list format incorrect! In training or evaluation task it should be" " image_name{}label_name\\n".format(separator)) image_path = os.path.join(self.dataset_root, items[0]) label_path = None else: image_path = os.path.join(self.dataset_root, items[0]) label_path = os.path.join(self.dataset_root, items[1]) self.file_list.append([image_path, label_path]) def __getitem__(self, idx): image_path, label_path = self.file_list[idx] if self.mode == 'test': im, im_info, _ = self.transforms(im=image_path) im = im[np.newaxis, ...] return im, im_info, image_path elif self.mode == 'val': im, im_info, _ = self.transforms(im=image_path) im = im[np.newaxis, ...] label = np.asarray(Image.open(label_path)) label = label[np.newaxis, np.newaxis, :, :] return im, im_info, label else: im, im_info, label = self.transforms( im=image_path, label=label_path) return im, label def __len__(self): return len(self.file_list)
# coding: utf-8 """ Flat API The Flat API allows you to easily extend the abilities of the [Flat Platform](https://flat.io), with a wide range of use cases including the following: * Creating and importing new music scores using MusicXML, MIDI, Guitar Pro (GP3, GP4, GP5, GPX, GP), PowerTab, TuxGuitar and MuseScore files * Browsing, updating, copying, exporting the user's scores (for example in MP3, WAV or MIDI) * Managing educational resources with Flat for Education: creating & updating the organization accounts, the classes, rosters and assignments. The Flat API is built on HTTP. Our API is RESTful It has predictable resource URLs. It returns HTTP response codes to indicate errors. It also accepts and returns JSON in the HTTP body. The [schema](/swagger.yaml) of this API follows the [OpenAPI Initiative (OAI) specification](https://www.openapis.org/), you can use and work with [compatible Swagger tools](http://swagger.io/open-source-integrations/). This API features Cross-Origin Resource Sharing (CORS) implemented in compliance with [W3C spec](https://www.w3.org/TR/cors/). You can use your favorite HTTP/REST library for your programming language to use Flat's API. This specification and reference is [available on Github](https://github.com/FlatIO/api-reference). Getting Started and learn more: * [API Overview and interoduction](https://flat.io/developers/docs/api/) * [Authentication (Personal Access Tokens or OAuth2)](https://flat.io/developers/docs/api/authentication.html) * [SDKs](https://flat.io/developers/docs/api/sdks.html) * [Rate Limits](https://flat.io/developers/docs/api/rate-limits.html) * [Changelog](https://flat.io/developers/docs/api/changelog.html) # noqa: E501 OpenAPI spec version: 2.7.0 Contact: developers@flat.io Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six class OrganizationInvitation(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'id': 'str', 'organization': 'str', 'organization_role': 'OrganizationRoles', 'custom_code': 'str', 'email': 'str', 'invited_by': 'str', 'used_by': 'str' } attribute_map = { 'id': 'id', 'organization': 'organization', 'organization_role': 'organizationRole', 'custom_code': 'customCode', 'email': 'email', 'invited_by': 'invitedBy', 'used_by': 'usedBy' } def __init__(self, id=None, organization=None, organization_role=None, custom_code=None, email=None, invited_by=None, used_by=None): # noqa: E501 """OrganizationInvitation - a model defined in OpenAPI""" # noqa: E501 self._id = None self._organization = None self._organization_role = None self._custom_code = None self._email = None self._invited_by = None self._used_by = None self.discriminator = None if id is not None: self.id = id if organization is not None: self.organization = organization if organization_role is not None: self.organization_role = organization_role if custom_code is not None: self.custom_code = custom_code if email is not None: self.email = email if invited_by is not None: self.invited_by = invited_by if used_by is not None: self.used_by = used_by @property def id(self): """Gets the id of this OrganizationInvitation. # noqa: E501 The invitation unique identifier # noqa: E501 :return: The id of this OrganizationInvitation. # noqa: E501 :rtype: str """ return self._id @id.setter def id(self, id): """Sets the id of this OrganizationInvitation. The invitation unique identifier # noqa: E501 :param id: The id of this OrganizationInvitation. # noqa: E501 :type: str """ self._id = id @property def organization(self): """Gets the organization of this OrganizationInvitation. # noqa: E501 The unique identifier of the Organization owning this class # noqa: E501 :return: The organization of this OrganizationInvitation. # noqa: E501 :rtype: str """ return self._organization @organization.setter def organization(self, organization): """Sets the organization of this OrganizationInvitation. The unique identifier of the Organization owning this class # noqa: E501 :param organization: The organization of this OrganizationInvitation. # noqa: E501 :type: str """ self._organization = organization @property def organization_role(self): """Gets the organization_role of this OrganizationInvitation. # noqa: E501 :return: The organization_role of this OrganizationInvitation. # noqa: E501 :rtype: OrganizationRoles """ return self._organization_role @organization_role.setter def organization_role(self, organization_role): """Sets the organization_role of this OrganizationInvitation. :param organization_role: The organization_role of this OrganizationInvitation. # noqa: E501 :type: OrganizationRoles """ self._organization_role = organization_role @property def custom_code(self): """Gets the custom_code of this OrganizationInvitation. # noqa: E501 Enrollment code to use when joining this organization # noqa: E501 :return: The custom_code of this OrganizationInvitation. # noqa: E501 :rtype: str """ return self._custom_code @custom_code.setter def custom_code(self, custom_code): """Sets the custom_code of this OrganizationInvitation. Enrollment code to use when joining this organization # noqa: E501 :param custom_code: The custom_code of this OrganizationInvitation. # noqa: E501 :type: str """ self._custom_code = custom_code @property def email(self): """Gets the email of this OrganizationInvitation. # noqa: E501 The email address this invitation was sent to # noqa: E501 :return: The email of this OrganizationInvitation. # noqa: E501 :rtype: str """ return self._email @email.setter def email(self, email): """Sets the email of this OrganizationInvitation. The email address this invitation was sent to # noqa: E501 :param email: The email of this OrganizationInvitation. # noqa: E501 :type: str """ self._email = email @property def invited_by(self): """Gets the invited_by of this OrganizationInvitation. # noqa: E501 The unique identifier of the User who created this invitation # noqa: E501 :return: The invited_by of this OrganizationInvitation. # noqa: E501 :rtype: str """ return self._invited_by @invited_by.setter def invited_by(self, invited_by): """Sets the invited_by of this OrganizationInvitation. The unique identifier of the User who created this invitation # noqa: E501 :param invited_by: The invited_by of this OrganizationInvitation. # noqa: E501 :type: str """ self._invited_by = invited_by @property def used_by(self): """Gets the used_by of this OrganizationInvitation. # noqa: E501 The unique identifier of the User who used this invitation # noqa: E501 :return: The used_by of this OrganizationInvitation. # noqa: E501 :rtype: str """ return self._used_by @used_by.setter def used_by(self, used_by): """Sets the used_by of this OrganizationInvitation. The unique identifier of the User who used this invitation # noqa: E501 :param used_by: The used_by of this OrganizationInvitation. # noqa: E501 :type: str """ self._used_by = used_by def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, OrganizationInvitation): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
# -*- coding: utf-8 -*- # Generated by Django 1.9.2 on 2016-02-13 18:34 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Category', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=50)), ('slug', models.SlugField(help_text='Unique value for product page URL, created from name.', unique=True)), ('description', models.TextField()), ('is_active', models.BooleanField(default=True)), ('meta_keywords', models.CharField(help_text='Comma-delimited set of SEO keywords for meta tag', max_length=255, verbose_name='Meta keywords')), ('meta_description', models.CharField(help_text='Content of description meta tag', max_length=255, verbose_name='Meta Description')), ('created_at', models.DateTimeField(auto_now_add=True)), ('updated_at', models.DateTimeField(auto_now=True)), ], options={ 'ordering': ['name'], 'db_table': 'categories', 'verbose_name_plural': 'Categories', }, ), migrations.CreateModel( name='Product', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=255, unique=True)), ('slug', models.SlugField(help_text='Unique value for product page URL, created from name.', max_length=255, unique=True)), ('brand', models.CharField(max_length=50)), ('sku', models.CharField(max_length=50)), ('price', models.DecimalField(decimal_places=2, max_digits=15)), ('old_price', models.DecimalField(blank=True, decimal_places=2, default=0.0, max_digits=15)), ('image', models.CharField(max_length=50)), ('is_active', models.BooleanField(default=True)), ('is_bestseller', models.BooleanField(default=False)), ('is_featured', models.BooleanField(default=False)), ('quantity', models.IntegerField()), ('description', models.TextField()), ('meta_keywords', models.CharField(help_text='Comma-delimited set of SEO keywords for meta tag', max_length=255, verbose_name='Meta keywords')), ('meta_description', models.CharField(help_text='Content of description meta tag', max_length=255, verbose_name='Meta Description')), ('created_at', models.DateTimeField(auto_now_add=True)), ('updated_at', models.DateTimeField(auto_now=True)), ('categories', models.ManyToManyField(to='catalog.Category')), ], options={ 'ordering': ['-created_at'], 'db_table': 'products', }, ), ]
"""Reader for the GMSH file format.""" from __future__ import division, absolute_import __copyright__ = "Copyright (C) 2009 Xueyu Zhu, Andreas Kloeckner" __license__ = """ Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from six.moves import range from functools import reduce import numpy as np #import numpy.linalg as la from pytools import memoize_method, Record from meshpy.gmsh import ( # noqa ScriptSource, LiteralSource, FileSource, ScriptWithFilesSource) __doc__ = """ .. exception:: GmshFileFormatError Element types ------------- .. autoclass:: GmshElementBase Simplex Elements ^^^^^^^^^^^^^^^^ .. autoclass:: GmshSimplexElementBase .. autoclass:: GmshPoint .. autoclass:: GmshIntervalElement .. autoclass:: GmshTriangularElement .. autoclass:: GmshIncompleteTriangularElement .. autoclass:: GmshTetrahedralElement Tensor Product Elements ^^^^^^^^^^^^^^^^^^^^^^^ .. autoclass:: GmshTensorProductElementBase .. autoclass:: GmshQuadrilateralElement .. autoclass:: GmshHexahedralElement Receiver interface ------------------ .. autoclass:: GmshMeshReceiverBase Receiver example implementation ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. autoclass:: GmshMeshReceiverNumPy Reader ------ .. autoclass:: ScriptSource .. autoclass:: FileSource .. autoclass:: ScriptWithFilesSource .. autofunction:: read_gmsh .. autofunction:: generate_gmsh """ # {{{ tools def generate_triangle_vertex_tuples(order): yield (0, 0) yield (order, 0) yield (0, order) def generate_triangle_edge_tuples(order): for i in range(1, order): yield (i, 0) for i in range(1, order): yield (order-i, i) for i in range(1, order): yield (0, order-i) def generate_triangle_volume_tuples(order): for i in range(1, order): for j in range(1, order-i): yield (j, i) def generate_quad_vertex_tuples(dim, order): from pytools import \ generate_nonnegative_integer_tuples_below for tup in generate_nonnegative_integer_tuples_below(2, dim): yield tuple(order * i for i in tup) class LineFeeder: def __init__(self, line_iterable): self.line_iterable = iter(line_iterable) self.next_line = None def has_next_line(self): if self.next_line is not None: return True try: self.next_line = next(self.line_iterable) except StopIteration: return False else: return True def get_next_line(self): if self.next_line is not None: nl = self.next_line self.next_line = None return nl.strip() try: nl = next(self.line_iterable) except StopIteration: raise GmshFileFormatError("unexpected end of file") else: return nl.strip() # }}} # {{{ element info class GmshElementBase(object): """ .. automethod:: vertex_count .. automethod:: node_count .. automethod:: lexicographic_node_tuples .. automethod:: get_lexicographic_gmsh_node_indices .. method:: equidistant_unit_nodes (Implemented by subclasses) """ def __init__(self, order): self.order = order # {{{ simplices class GmshSimplexElementBase(GmshElementBase): def vertex_count(self): return self.dimensions + 1 @memoize_method def node_count(self): """Return the number of interpolation nodes in this element.""" d = self.dimensions o = self.order from operator import mul from pytools import factorial return int(reduce(mul, (o + 1 + i for i in range(d)), 1) / factorial(d)) @memoize_method def lexicographic_node_tuples(self): """Generate tuples enumerating the node indices present in this element. Each tuple has a length equal to the dimension of the element. The tuples constituents are non-negative integers whose sum is less than or equal to the order of the element. """ from pytools import \ generate_nonnegative_integer_tuples_summing_to_at_most result = list( generate_nonnegative_integer_tuples_summing_to_at_most( self.order, self.dimensions)) assert len(result) == self.node_count() return result @memoize_method def get_lexicographic_gmsh_node_indices(self): gmsh_tup_to_index = dict( (tup, i) for i, tup in enumerate(self.gmsh_node_tuples())) return np.array([gmsh_tup_to_index[tup] for tup in self.lexicographic_node_tuples()], dtype=np.intp) class GmshPoint(GmshSimplexElementBase): dimensions = 0 @memoize_method def gmsh_node_tuples(self): return [()] class GmshIntervalElement(GmshSimplexElementBase): dimensions = 1 @memoize_method def gmsh_node_tuples(self): return [(0,), (self.order,), ] + [ (i,) for i in range(1, self.order)] class GmshIncompleteTriangularElement(GmshSimplexElementBase): dimensions = 2 def __init__(self, order): self.order = order @memoize_method def gmsh_node_tuples(self): result = [] for tup in generate_triangle_vertex_tuples(self.order): result.append(tup) for tup in generate_triangle_edge_tuples(self.order): result.append(tup) return result class GmshTriangularElement(GmshSimplexElementBase): dimensions = 2 @memoize_method def gmsh_node_tuples(self): return { 1: [ (0, 0), (1, 0), (0, 1), ], 2: [ (0, 0), (2, 0), (0, 2), (1, 0), (1, 1), (0, 1), ], 3: [ (0, 0), (3, 0), (0, 3), (1, 0), (2, 0), (2, 1), (1, 2), (0, 2), (0, 1), (1, 1), ], 4: [ (0, 0), (4, 0), (0, 4), (1, 0), (2, 0), (3, 0), (3, 1), (2, 2), (1, 3), (0, 3), (0, 2), (0, 1), (1, 1), (2, 1), (1, 2), ], 5: [ (0, 0), (5, 0), (0, 5), (1, 0), (2, 0), (3, 0), (4, 0), (4, 1), (3, 2), (2, 3), (1, 4), (0, 4), (0, 3), (0, 2), (0, 1), (1, 1), (3, 1), (1, 3), (2, 1), (2, 2), (1, 2), ], }[self.order] class GmshTetrahedralElement(GmshSimplexElementBase): dimensions = 3 @memoize_method def gmsh_node_tuples(self): # gmsh's node ordering is on crack return { 1: [(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)], 2: [ (0, 0, 0), (2, 0, 0), (0, 2, 0), (0, 0, 2), (1, 0, 0), (1, 1, 0), (0, 1, 0), (0, 0, 1), (0, 1, 1), (1, 0, 1)], 3: [ (0, 0, 0), (3, 0, 0), (0, 3, 0), (0, 0, 3), (1, 0, 0), (2, 0, 0), (2, 1, 0), (1, 2, 0), (0, 2, 0), (0, 1, 0), (0, 0, 2), (0, 0, 1), (0, 1, 2), (0, 2, 1), (1, 0, 2), (2, 0, 1), (1, 1, 0), (1, 0, 1), (0, 1, 1), (1, 1, 1)], 4: [ (0, 0, 0), (4, 0, 0), (0, 4, 0), (0, 0, 4), (1, 0, 0), (2, 0, 0), (3, 0, 0), (3, 1, 0), (2, 2, 0), (1, 3, 0), (0, 3, 0), (0, 2, 0), (0, 1, 0), (0, 0, 3), (0, 0, 2), (0, 0, 1), (0, 1, 3), (0, 2, 2), (0, 3, 1), (1, 0, 3), (2, 0, 2), (3, 0, 1), (1, 1, 0), (1, 2, 0), (2, 1, 0), (1, 0, 1), (2, 0, 1), (1, 0, 2), (0, 1, 1), (0, 1, 2), (0, 2, 1), (1, 1, 2), (2, 1, 1), (1, 2, 1), (1, 1, 1)], 5: [ (0, 0, 0), (5, 0, 0), (0, 5, 0), (0, 0, 5), (1, 0, 0), (2, 0, 0), (3, 0, 0), (4, 0, 0), (4, 1, 0), (3, 2, 0), (2, 3, 0), (1, 4, 0), (0, 4, 0), (0, 3, 0), (0, 2, 0), (0, 1, 0), (0, 0, 4), (0, 0, 3), (0, 0, 2), (0, 0, 1), (0, 1, 4), (0, 2, 3), (0, 3, 2), (0, 4, 1), (1, 0, 4), (2, 0, 3), (3, 0, 2), (4, 0, 1), (1, 1, 0), (1, 3, 0), (3, 1, 0), (1, 2, 0), (2, 2, 0), (2, 1, 0), (1, 0, 1), (3, 0, 1), (1, 0, 3), (2, 0, 1), (2, 0, 2), (1, 0, 2), (0, 1, 1), (0, 1, 3), (0, 3, 1), (0, 1, 2), (0, 2, 2), (0, 2, 1), (1, 1, 3), (3, 1, 1), (1, 3, 1), (2, 1, 2), (2, 2, 1), (1, 2, 2), (1, 1, 1), (2, 1, 1), (1, 2, 1), (1, 1, 2)], }[self.order] # }}} # {{{ tensor product elements class GmshTensorProductElementBase(GmshElementBase): def vertex_count(self): return 2**self.dimensions @memoize_method def node_count(self): return (self.order+1) ** self.dimensions @memoize_method def lexicographic_node_tuples(self): """Generate tuples enumerating the node indices present in this element. Each tuple has a length equal to the dimension of the element. The tuples constituents are non-negative integers whose sum is less than or equal to the order of the element. """ from pytools import \ generate_nonnegative_integer_tuples_below result = list( generate_nonnegative_integer_tuples_below( self.order+1, self.dimensions)) assert len(result) == self.node_count() return result @memoize_method def get_lexicographic_gmsh_node_indices(self): gmsh_tup_to_index = dict( (tup, i) for i, tup in enumerate(self.gmsh_node_tuples())) return np.array([gmsh_tup_to_index[tup] for tup in self.lexicographic_node_tuples()], dtype=np.intp) class GmshQuadrilateralElement(GmshTensorProductElementBase): dimensions = 2 @memoize_method def gmsh_node_tuples(self): # gmsh's node ordering is still on crack return { 1: [(0, 0), (0, 1), (1, 1), (1, 0), ], 2: [ # start index 0: vertices (0, 0), (0, 2), (2, 2), (2, 0), # start index 4: edges (1, 0), (2, 1), (1, 2), (0, 1), # start index 8: volume (1, 1)], 3: [ # vertices (0, 0), (0, 3), (3, 3), (3, 0), # edges (1, 0), (2, 0), (3, 1), (3, 2), (1, 3), (2, 3), (0, 1), (0, 2), # volume (1, 1), (2, 1), (1, 2), (2, 2), ], }[self.order] class GmshHexahedralElement(GmshTensorProductElementBase): dimensions = 3 @memoize_method def gmsh_node_tuples(self): # gmsh's node ordering is always on crack # obtained by using the files in # contrib/extract-gmsh-node-order # with gmsh 2.7.1 return { 1: [ (0, 0, 0), (0, 1, 0), (1, 1, 0), (1, 0, 0), (0, 0, 1), (0, 1, 1), (1, 1, 1), (1, 0, 1), ], 2: [ (0, 0, 0), (0, 0, 2), (2, 0, 2), (2, 0, 0), (0, 2, 0), (0, 2, 2), (2, 2, 2), (2, 2, 0), (0, 0, 1), (1, 0, 0), (0, 1, 0), (1, 0, 2), (0, 1, 2), (2, 0, 1), (2, 1, 2), (2, 1, 0), (0, 2, 1), (1, 2, 0), (1, 2, 2), (2, 2, 1), (1, 0, 1), (0, 1, 1), (1, 1, 0), (1, 1, 2), (2, 1, 1), (1, 2, 1), (1, 1, 1), ], 3: [ (0, 3, 3), (3, 3, 3), (3, 0, 3), (0, 0, 3), (0, 3, 0), (3, 3, 0), (3, 0, 0), (0, 0, 0), (1, 3, 3), (2, 3, 3), (0, 2, 3), (0, 1, 3), (0, 3, 2), (0, 3, 1), (3, 2, 3), (3, 1, 3), (3, 3, 2), (3, 3, 1), (2, 0, 3), (1, 0, 3), (3, 0, 2), (3, 0, 1), (0, 0, 2), (0, 0, 1), (1, 3, 0), (2, 3, 0), (0, 2, 0), (0, 1, 0), (3, 2, 0), (3, 1, 0), (2, 0, 0), (1, 0, 0), (1, 2, 3), (1, 1, 3), (2, 1, 3), (2, 2, 3), (1, 3, 2), (2, 3, 2), (2, 3, 1), (1, 3, 1), (0, 2, 2), (0, 2, 1), (0, 1, 1), (0, 1, 2), (3, 2, 2), (3, 1, 2), (3, 1, 1), (3, 2, 1), (2, 0, 2), (1, 0, 2), (1, 0, 1), (2, 0, 1), (1, 2, 0), (2, 2, 0), (2, 1, 0), (1, 1, 0), (1, 2, 2), (2, 2, 2), (2, 1, 2), (1, 1, 2), (1, 2, 1), (2, 2, 1), (2, 1, 1), (1, 1, 1), ], 4: [ (4, 0, 0), (4, 4, 0), (0, 4, 0), (0, 0, 0), (4, 0, 4), (4, 4, 4), (0, 4, 4), (0, 0, 4), (4, 1, 0), (4, 2, 0), (4, 3, 0), (3, 0, 0), (2, 0, 0), (1, 0, 0), (4, 0, 1), (4, 0, 2), (4, 0, 3), (3, 4, 0), (2, 4, 0), (1, 4, 0), (4, 4, 1), (4, 4, 2), (4, 4, 3), (0, 3, 0), (0, 2, 0), (0, 1, 0), (0, 4, 1), (0, 4, 2), (0, 4, 3), (0, 0, 1), (0, 0, 2), (0, 0, 3), (4, 1, 4), (4, 2, 4), (4, 3, 4), (3, 0, 4), (2, 0, 4), (1, 0, 4), (3, 4, 4), (2, 4, 4), (1, 4, 4), (0, 3, 4), (0, 2, 4), (0, 1, 4), (3, 1, 0), (1, 1, 0), (1, 3, 0), (3, 3, 0), (2, 1, 0), (1, 2, 0), (2, 3, 0), (3, 2, 0), (2, 2, 0), (4, 1, 1), (4, 3, 1), (4, 3, 3), (4, 1, 3), (4, 2, 1), (4, 3, 2), (4, 2, 3), (4, 1, 2), (4, 2, 2), (3, 0, 1), (3, 0, 3), (1, 0, 3), (1, 0, 1), (3, 0, 2), (2, 0, 3), (1, 0, 2), (2, 0, 1), (2, 0, 2), (3, 4, 1), (1, 4, 1), (1, 4, 3), (3, 4, 3), (2, 4, 1), (1, 4, 2), (2, 4, 3), (3, 4, 2), (2, 4, 2), (0, 3, 1), (0, 1, 1), (0, 1, 3), (0, 3, 3), (0, 2, 1), (0, 1, 2), (0, 2, 3), (0, 3, 2), (0, 2, 2), (3, 1, 4), (3, 3, 4), (1, 3, 4), (1, 1, 4), (3, 2, 4), (2, 3, 4), (1, 2, 4), (2, 1, 4), (2, 2, 4), (3, 1, 1), (3, 3, 1), (1, 3, 1), (1, 1, 1), (3, 1, 3), (3, 3, 3), (1, 3, 3), (1, 1, 3), (3, 2, 1), (2, 1, 1), (3, 1, 2), (2, 3, 1), (3, 3, 2), (1, 2, 1), (1, 3, 2), (1, 1, 2), (3, 2, 3), (2, 1, 3), (2, 3, 3), (1, 2, 3), (2, 2, 1), (3, 2, 2), (2, 1, 2), (2, 3, 2), (1, 2, 2), (2, 2, 3), (2, 2, 2), ] }[self.order] # }}} # }}} # {{{ receiver interface class GmshMeshReceiverBase(object): """ .. attribute:: gmsh_element_type_to_info_map .. automethod:: set_up_nodes .. automethod:: add_node .. automethod:: finalize_nodes .. automethod:: set_up_elements .. automethod:: add_element .. automethod:: finalize_elements .. automethod:: add_tag .. automethod:: finalize_tags """ gmsh_element_type_to_info_map = { 1: GmshIntervalElement(1), 2: GmshTriangularElement(1), 3: GmshQuadrilateralElement(1), 4: GmshTetrahedralElement(1), 5: GmshHexahedralElement(1), 8: GmshIntervalElement(2), 9: GmshTriangularElement(2), 10: GmshQuadrilateralElement(2), 11: GmshTetrahedralElement(2), 12: GmshHexahedralElement(2), 15: GmshPoint(0), 20: GmshIncompleteTriangularElement(3), 21: GmshTriangularElement(3), 22: GmshIncompleteTriangularElement(4), 23: GmshTriangularElement(4), 24: GmshIncompleteTriangularElement(5), 25: GmshTriangularElement(5), 26: GmshIntervalElement(3), 27: GmshIntervalElement(4), 28: GmshIntervalElement(5), 29: GmshTetrahedralElement(3), 30: GmshTetrahedralElement(4), 31: GmshTetrahedralElement(5), 92: GmshHexahedralElement(3), 93: GmshHexahedralElement(4), } def set_up_nodes(self, count): pass def add_node(self, node_nr, point): pass def finalize_nodes(self): pass def set_up_elements(self, count): pass def add_element(self, element_nr, element_type, vertex_nrs, lexicographic_nodes, tag_numbers): pass def finalize_elements(self): pass def add_tag(self, name, index, dimension): pass def finalize_tags(self): pass # }}} # {{{ receiver example class GmshMeshReceiverNumPy(GmshMeshReceiverBase): """GmshReceiver that emulates the semantics of :class:`meshpy.triangle.MeshInfo` and :class:`meshpy.tet.MeshInfo` by using similar fields, but instead of loading data into ForeignArrays, load into NumPy arrays. Since this class is not wrapping any libraries in other languages -- the Gmsh data is obtained via parsing text -- use :mod:`numpy` arrays as the base array data structure for convenience. .. versionadded:: 2014.1 """ def __init__(self): # Use data fields similar to meshpy.triangle.MeshInfo and # meshpy.tet.MeshInfo self.points = None self.elements = None self.element_types = None self.element_markers = None self.tags = None # Gmsh has no explicit concept of facets or faces; certain faces are a type # of element. Consequently, there are no face markers, but elements can be # grouped together in physical groups that serve as markers. def set_up_nodes(self, count): # Preallocate array of nodes within list; treat None as sentinel value. # Preallocation not done for performance, but to assign values at indices # in random order. self.points = [None] * count def add_node(self, node_nr, point): self.points[node_nr] = point def finalize_nodes(self): pass def set_up_elements(self, count): # Preallocation of arrays for assignment elements in random order. self.elements = [None] * count self.element_types = [None] * count self.element_markers = [None] * count self.tags = [] def add_element(self, element_nr, element_type, vertex_nrs, lexicographic_nodes, tag_numbers): self.elements[element_nr] = vertex_nrs self.element_types[element_nr] = element_type self.element_markers[element_nr] = tag_numbers # TODO: Add lexicographic node information def finalize_elements(self): pass def add_tag(self, name, index, dimension): self.tags.append((name, index, dimension)) def finalize_tags(self): pass # }}} # {{{ file reader class GmshFileFormatError(RuntimeError): pass def read_gmsh(receiver, filename, force_dimension=None): """Read a gmsh mesh file from *filename* and feed it to *receiver*. :param receiver: Implements the :class:`GmshMeshReceiverBase` interface. :param force_dimension: if not None, truncate point coordinates to this many dimensions. """ mesh_file = open(filename, 'rt') try: result = parse_gmsh(receiver, mesh_file, force_dimension=force_dimension) finally: mesh_file.close() return result def generate_gmsh(receiver, source, dimensions=None, order=None, other_options=[], extension="geo", gmsh_executable="gmsh", force_dimension=None, output_file_name="output.msh"): """Run gmsh and feed the output to *receiver*. :arg source: an instance of :class:`LiteralSource` or :class:`FileSource` :param receiver: Implements the :class:`GmshMeshReceiverBase` interface. """ from meshpy.gmsh import GmshRunner runner = GmshRunner(source, dimensions, order=order, other_options=other_options, extension=extension, gmsh_executable=gmsh_executable, output_file_name=output_file_name) runner.__enter__() try: result = parse_gmsh(receiver, runner.output_file, force_dimension=force_dimension) finally: runner.__exit__(None, None, None) return result def parse_gmsh(receiver, line_iterable, force_dimension=None): """ :arg source: an instance of :class:`LiteralSource` or :class:`FileSource` :arg receiver: This object will be fed the entities encountered in reading the GMSH file. See :class:`GmshMeshReceiverBase` for the interface this object needs to conform to. :param force_dimension: if not None, truncate point coordinates to this many dimensions. """ feeder = LineFeeder(line_iterable) # collect the mesh information class ElementInfo(Record): pass while feeder.has_next_line(): next_line = feeder.get_next_line() if not next_line.startswith("$"): raise GmshFileFormatError( "expected start of section, '%s' found instead" % next_line) section_name = next_line[1:] if section_name == "MeshFormat": line_count = 0 while True: next_line = feeder.get_next_line() if next_line == "$End"+section_name: break if line_count == 0: version_number, file_type, data_size = next_line.split() if line_count > 0: raise GmshFileFormatError( "more than one line found in MeshFormat section") if version_number not in ["2.1", "2.2"]: from warnings import warn warn("unexpected mesh version number '%s' found" % version_number) if file_type != "0": raise GmshFileFormatError( "only ASCII gmsh file type is supported") line_count += 1 elif section_name == "Nodes": node_count = int(feeder.get_next_line()) receiver.set_up_nodes(node_count) node_idx = 1 while True: next_line = feeder.get_next_line() if next_line == "$End"+section_name: break parts = next_line.split() if len(parts) != 4: raise GmshFileFormatError( "expected four-component line in $Nodes section") read_node_idx = int(parts[0]) if read_node_idx != node_idx: raise GmshFileFormatError("out-of-order node index found") if force_dimension is not None: point = [float(x) for x in parts[1:force_dimension+1]] else: point = [float(x) for x in parts[1:]] receiver.add_node( node_idx-1, np.array(point, dtype=np.float64)) node_idx += 1 if node_count+1 != node_idx: raise GmshFileFormatError("unexpected number of nodes found") receiver.finalize_nodes() elif section_name == "Elements": element_count = int(feeder.get_next_line()) receiver.set_up_elements(element_count) element_idx = 1 while True: next_line = feeder.get_next_line() if next_line == "$End"+section_name: break parts = [int(x) for x in next_line.split()] if len(parts) < 4: raise GmshFileFormatError("too few entries in element line") read_element_idx = parts[0] if read_element_idx != element_idx: raise GmshFileFormatError("out-of-order node index found") el_type_num = parts[1] try: element_type = \ receiver.gmsh_element_type_to_info_map[el_type_num] except KeyError: raise GmshFileFormatError("unexpected element type %d" % el_type_num) tag_count = parts[2] tags = parts[3:3+tag_count] # convert to zero-based node_indices = np.array( [x-1 for x in parts[3+tag_count:]], dtype=np.intp) if element_type.node_count() != len(node_indices): raise GmshFileFormatError( "unexpected number of nodes in element") gmsh_vertex_nrs = node_indices[:element_type.vertex_count()] zero_based_idx = element_idx - 1 tag_numbers = [tag for tag in tags[:1] if tag != 0] receiver.add_element(element_nr=zero_based_idx, element_type=element_type, vertex_nrs=gmsh_vertex_nrs, lexicographic_nodes=node_indices[ element_type.get_lexicographic_gmsh_node_indices()], tag_numbers=tag_numbers) element_idx += 1 if element_count+1 != element_idx: raise GmshFileFormatError("unexpected number of elements found") receiver.finalize_elements() elif section_name == "PhysicalNames": name_count = int(feeder.get_next_line()) name_idx = 1 while True: next_line = feeder.get_next_line() if next_line == "$End"+section_name: break dimension, number, name = next_line.split(" ", 2) dimension = int(dimension) number = int(number) if not name[0] == '"' or not name[-1] == '"': raise GmshFileFormatError("expected quotes around physical name") receiver.add_tag(name[1:-1], number, dimension) name_idx += 1 if name_count+1 != name_idx: raise GmshFileFormatError( "unexpected number of physical names found") receiver.finalize_tags() else: # unrecognized section, skip from warnings import warn warn("unrecognized section '%s' in gmsh file" % section_name) while True: next_line = feeder.get_next_line() if next_line == "$End"+section_name: break # }}} # vim: fdm=marker
# Copyright 2021 Hakan Kjellerstrand hakank@gmail.com # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Costas array in OR-tools CP-SAT Solver. From http://mathworld.wolfram.com/CostasArray.html: ''' An order-n Costas array is a permutation on {1,...,n} such that the distances in each row of the triangular difference table are distinct. For example, the permutation {1,3,4,2,5} has triangular difference table {2,1,-2,3}, {3,-1,1}, {1,2}, and {4}. Since each row contains no duplications, the permutation is therefore a Costas array. ''' Also see http://en.wikipedia.org/wiki/Costas_array About this model: This model is based on Barry O'Sullivan's model: http://www.g12.cs.mu.oz.au/mzn/costas_array/CostasArray.mzn and my small changes in http://hakank.org/minizinc/costas_array.mzn Since there is no symmetry breaking of the order of the Costas array it gives all the solutions for a specific length of the array, e.g. those listed in http://mathworld.wolfram.com/CostasArray.html 1 1 (1) 2 2 (1, 2), (2,1) 3 4 (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2) 4 12 (1, 2, 4, 3), (1, 3, 4, 2), (1, 4, 2, 3), (2, 1, 3, 4), (2, 3, 1, 4), (2, 4, 3, 1), (3, 1, 2, 4), (3, 2, 4, 1), (3, 4, 2, 1), (4, 1, 3, 2), (4, 2, 1, 3), (4, 3, 1, 2) .... See http://www.research.att.com/~njas/sequences/A008404 for the number of solutions for n=1.. 1, 2, 4, 12, 40, 116, 200, 444, 760, 2160, 4368, 7852, 12828, 17252, 19612, 21104, 18276, 15096, 10240, 6464, 3536, 2052, 872, 200, 88, 56, 204,... This is a port of my old CP solver model costas_array.py This model was created by Hakan Kjellerstrand (hakank@gmail.com) Also see my other OR-tools models: http://www.hakank.org/or_tools/ """ from __future__ import print_function from ortools.sat.python import cp_model as cp import math, sys # from cp_sat_utils import * class SolutionPrinter(cp.CpSolverSolutionCallback): """SolutionPrinter""" def __init__(self, costas, differences): cp.CpSolverSolutionCallback.__init__(self) self.__costas = costas self.__differences = differences self.__solution_count = 0 def OnSolutionCallback(self): self.__solution_count += 1 print("costas:", [self.Value(self.__costas[i]) for i in range(n)]) print("differences:") for i in range(n): for j in range(n): v = self.Value(self.__differences[i, j]) if v == -n + 1: print(" ", end=" ") else: print("%2d" % v, end=" ") print() print() def SolutionCount(self): return self.__solution_count def main(n=6): model = cp.CpModel() # # data # print("n:", n) # # declare variables # costas = [model.NewIntVar(1, n, "costas[%i]" % i) for i in range(n)] differences = {} for i in range(n): for j in range(n): differences[(i, j)] = model.NewIntVar(-n + 1, n - 1, "differences[%i,%i]" % (i, j)) # # constraints # # Fix the values in the lower triangle in the # difference matrix to -n+1. This removes variants # of the difference matrix for the the same Costas array. for i in range(n): for j in range(i + 1): model.Add(differences[i, j] == -n + 1) # hakank: All the following constraints are from # Barry O'Sullivans's original model. # model.AddAllDifferent(costas) # "How do the positions in the Costas array relate # to the elements of the distance triangle." for i in range(n): for j in range(n): if i < j: model.Add(differences[(i, j)] == costas[j] - costas[j - i - 1]) # "All entries in a particular row of the difference # triangle must be distint." for i in range(n - 2): model.AddAllDifferent([differences[i, j] for j in range(n) if j > i]) # # "All the following are redundant - only here to speed up search." # # "We can never place a 'token' in the same row as any other." for i in range(n): for j in range(n): if i < j: model.Add(differences[i, j] != 0) for k in range(2, n): for l in range(2, n): if k < l: model.Add(differences[k - 2, l - 1] + differences[k, l] == differences[k - 1, l - 1] + differences[k - 1, l]) # # search and result # solver = cp.CpSolver() # status = solver.Solve(model) solution_printer = SolutionPrinter(costas, differences) status = solver.SearchForAllSolutions(model,solution_printer) if status == cp.OPTIMAL: print("costas:", [solver.Value(costas[i]) for i in range(n)]) print("differences:") for i in range(n): for j in range(n): v = solver.Value(differences[i, j]) if v == -n + 1: print(" ", end=" ") else: print("%2d" % v, end=" ") print() print() print() print("NumSolutions:", solution_printer.SolutionCount()) print("NumConflicts:", solver.NumConflicts()) print("NumBranches:", solver.NumBranches()) print("WallTime:", solver.WallTime()) n = 6 if __name__ == "__main__": if len(sys.argv) > 1: n = int(sys.argv[1]) main(n)
# -*- coding: utf-8 -*- # Generated by Django 1.11.27 on 2020-02-12 20:29 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('projects', '0006_auto_20200212_1151'), ] operations = [ migrations.AddField( model_name='publication', name='booktitle', field=models.CharField(max_length=500, null=True), ), migrations.AddField( model_name='publication', name='publisher', field=models.CharField(max_length=500, null=True), ), migrations.AlterField( model_name='publication', name='journal', field=models.CharField(max_length=500, null=True), ), ]
import flask import logging from flask import Flask, send_from_directory, render_template, jsonify, url_for, request, redirect from dirToPod import RssGenerator from reverse_proxied import ReverseProxied from eyed3 import id3 from random import random from logging.handlers import RotatingFileHandler import shutil import os import subprocess app = Flask(__name__) app.wsgi_app = ReverseProxied(app.wsgi_app) SERVER_ROOT = '/var/www/books' AUDIOBOOK_DIRECTORY = '/data/audiobooks' LOGSIZE = 1000000 # 1MB # Setup simple logging log = logging.Logger('appLog') log.addHandler(RotatingFileHandler('/tmp/dirToPod.log', maxBytes=LOGSIZE, backupCount=1)) @app.route("/") def index(): pageText = '' for item in sorted(os.listdir(AUDIOBOOK_DIRECTORY)): if not item.startswith('.'): pageText += '<p><a href="%s">%s</a></p>' % (url_for('getRss', path=item.replace(' ', '_')), item) return pageText @app.route("/audiobook/<path:path>") def getRss(path): # if not os.path.exists("%s/%s.xml" % (SERVER_ROOT, path)): RssGenerator('http://{0}{1}'.format(request.host, url_for('index')[:-1]), "%s/%s" % (AUDIOBOOK_DIRECTORY, path.replace('_',' ')), path) return send_from_directory(SERVER_ROOT, "%s.xml" % path) #return redirect("http://%s/%s.xml" % (request.headers['Host'], path)) @app.route("/files") def files(): return render_template('files.html') @app.route("/api/joinFiles", methods=['POST']) def joinFiles(): newName = request.json['newName'] fileList = request.json['fileList'] newName = newName + '.mp3' if not newName.endswith('.mp3') else newName cwd = fileList[0] if os.path.isdir(fileList[0]) else os.path.dirname(fileList[0]) filesToJoin = [aFile for aFile in fileList if aFile.endswith('.mp3')] map(lambda aFile: id3.tag.Tag.remove(aFile), filesToJoin) filesToJoin = sorted([os.path.relpath(aFile, cwd) for aFile in filesToJoin]) args = ['/usr/bin/ffmpeg', '-i', 'concat:%s' % '|'.join(filesToJoin), '-y', '-acodec', 'copy', newName] runProcess(args, cwd) args = ['/usr/bin/vbrfix', '-always', newName, newName] runProcess(args, cwd) # cleanup crap leftover from vbrfix leftoverCrap = [os.path.join(cwd, crapFile) for crapFile in ['vbrfix.log', 'vbrfix.tmp'] if os.path.isfile(os.path.join(cwd, crapFile))] map(lambda crap: os.remove(crap), leftoverCrap) return "" @app.route("/api/hierarchy", methods=['GET']) def getHierarchy(): def addEntries(entryList, icon): for entry in entryList: data.append({ 'id' : os.path.join(root, entry), 'text' : entry, 'parent' : root, 'icon' : icon}) data = [{'id' : AUDIOBOOK_DIRECTORY, 'text' : 'audiobooks', 'parent' : '#'}] for root,dirs,files in os.walk(AUDIOBOOK_DIRECTORY): files = [f for f in files if not f[0] == '.'] dirs[:] = [d for d in dirs if not d[0] == '.'] addEntries(dirs, 'jstree-folder') addEntries(files, 'jstree-file') return jsonify(data=data) @app.route('/api/delete', methods=['POST']) def delete(): if request.json.has_key('nodeList'): nodeList = request.json['nodeList'] else: nodeList = [] nodeList.append(request.json['node']) for node in nodeList: if os.path.isdir(node): shutil.rmtree(node) elif os.path.isfile(node): os.remove(node) #If its not a file or directory, we either already deleted it by deleting the directory, or we've got a symlink, which we ideally wanna keep around return '' @app.route('/api/rename', methods=['POST']) def rename(): oldPath = request.json['oldPath'] newPath = os.path.join(os.path.dirname(oldPath), request.json['newNode']) if os.path.exists(newPath): raise OSError('Path already exists!') os.rename(oldPath, newPath) return '' @app.route('/api/move', methods=['POST']) def move(): oldPath = request.json['oldPath'] dropTo = request.json['dropTo'] if os.path.isdir(dropTo): newPath = dropTo elif os.path.isfile(dropTo): newPath = os.path.dirname(dropTo) else: log.debug('Trying to drop on file that is neither directory or file...what is it?') newPath = newPath + os.path.sep + os.path.basename(oldPath) if os.path.exists(newPath): raise OSError('Path already exists!') shutil.move(oldPath, newPath) return '' @app.route('/api/reencode', methods=['POST']) def reencode(): fileList = request.json['fileList'] for aFile in fileList: if aFile.endswith('.mp3'): fileDir = os.path.dirname(aFile) filename = os.path.basename(aFile) oldDir = os.path.join(fileDir, 'old') if not os.path.isdir(oldDir): os.mkdir(oldDir) os.rename(aFile, os.path.join(oldDir, filename)) args = ['/usr/bin/ffmpeg', '-i', os.path.join(oldDir, filename), '-ab', '96k', aFile] runProcess(args, fileDir) return '' def runProcess(args, cwd): log.debug(args) stdout = '/tmp/stdout%s' % str(random()).split('.')[1] with open(stdout, 'w') as out: pobj = subprocess.Popen(args, stdout=out, stderr=subprocess.STDOUT, cwd=cwd) ret = pobj.wait() with open(stdout, 'r') as out: log.debug(out.read()) os.remove(stdout) if __name__ == "__main__": app.run('0.0.0.0', port=8881, debug=True)
from pymongo import MongoClient from data_prep.config import mongo, neo4j from py2neo import Graph, Node, Relationship, authenticate class DBCrawl: def __init__(self): self.db = mongo['db_name'] self.host = mongo['host'] self.port = mongo['port'] self.client = MongoClient(self.host, self.port) authenticate(neo4j['host'] + ':' + neo4j['port'], neo4j['username'], neo4j['password']) self.graph = Graph() def _getCollections(self): collections = self.client.db.getCollectionNames() for collection in collections: return collections def _migrate_data(self, collection, neo4j_label): ''' :param collection: The collection object that need to be _migrate_data :param neo4j_label: The label to be used in Neo4j for this collection ''' for item in collection.find({}): try: item.pop('_id', None) node = Node(neo4j_label, **item) self.graph.create(node) except Exception as e: print(str(e)) def migrate_relations_acquisition_company(self): for acq in self.graph.find("Acquisition"): comp = self.graph.find_one( "Company", "name", acq.properties['acquirer_name']) ac_to_comp = Relationship(acq, "details", comp) self.graph.create(ac_to_comp) def migrate_relations_company_acquisition(self): for comp in self.graph.find("Company"): acq = self.graph.find_one( "Acquisition", "company_name", comp.properties['name']) comp_to_ac = Relationship(comp, "acquisition", acq) self.graph.create(comp_to_ac) def migrate_all_collections(self): collections = self._getCollections() for collection in collections: self._migrate_data(collection, collection.name) self.migrate_relations_company_acquisition() self.migrate_relations_acquisition_company()
import numpy as np from utils.test_env import EnvTest class LinearSchedule(object): def __init__(self, eps_begin, eps_end, nsteps): """ Args: eps_begin: initial exploration eps_end: end exploration nsteps: number of steps between the two values of eps """ self.epsilon = eps_begin self.eps_begin = eps_begin self.eps_end = eps_end self.nsteps = nsteps def update(self, t): """ Updates epsilon Args: t: int frame number """ if t > self.nsteps: self.epsilon = self.eps_end else: alpha = (1.0 * t) / self.nsteps self.epsilon = (alpha * self.eps_end) \ + ((1-alpha) * self.eps_begin) class LinearExploration(LinearSchedule): def __init__(self, env, eps_begin, eps_end, nsteps): """ Args: env: gym environment eps_begin: float initial exploration rate eps_end: float final exploration rate nsteps: int number of steps taken to linearly decay eps_begin to eps_end """ self.env = env super(LinearExploration, self).__init__(eps_begin, eps_end, nsteps) def get_action(self, best_action): """ Returns a random action with prob epsilon, otherwise returns the best_action Args: best_action: int best action according some policy Returns: an action """ ############################################################## if np.random.uniform(0, 1) < self.epsilon: return self.env.action_space.sample() else: return best_action
from collections import defaultdict from ipaddress import ip_address, IPv4Address, IPv6Address from typing import Dict, Union, List from twisted.internet import defer from twisted.names import dns from twisted.python.failure import Failure from dnsagent import logger from dnsagent.resolver.base import BaseResolver from dnsagent.utils import watch_modification __all__ = ('HostsResolver',) Name2IpListType = Dict[str, List[Union[IPv4Address, IPv6Address]]] def validate_domain_name(name: str): # TODO: # name = name.encode('utf-8').decode('idna').lower() return True def parse_hosts_file(lines) -> Name2IpListType: def bad_line(lineno, line): logger.error('bad host file. line %d, %r', lineno, line) name2ip = defaultdict(list) for lineno, line in enumerate(lines): line = line.partition('#')[0].strip() if line: # TODO: distinguish between canonical name and aliases ip, *domains = line.split() if not domains: bad_line(lineno, line) continue try: ipobj = ip_address(ip) except ValueError: bad_line(lineno, line) continue for do in domains: name = do.lower() if not validate_domain_name(name): logger.error('bad domain. line %d, domain %r', lineno, name) continue if ipobj not in name2ip[name]: name2ip[name].append(ipobj) return dict(name2ip) def read_hosts_file(filename: str): with open(filename, 'rt') as fp: return parse_hosts_file(fp) class HostsResolver(BaseResolver): """ A resolver that services hosts(5) format files. ref: twisted.names.hosts.Resolver """ def __init__(self, *, filename=None, mapping=None, ttl=60*60, reload=False): super().__init__() self.filename = filename self.ttl = ttl if filename is not None: assert mapping is None self._load_hosts() if reload: watch_modification(filename, self._load_hosts) elif mapping is not None: self.name2iplist = dict() # type: Name2IpListType for domain, value in mapping.items(): if isinstance(value, str): value = [value] self.name2iplist[domain.lower()] = [ip_address(ip) for ip in value] def _load_hosts(self): logger.debug('loading hosts file: %s', self.filename) self.name2iplist = read_hosts_file(self.filename) _ipversion_to_dns_type = { 4: dns.A, 6: dns.AAAA, } _ipversion_to_record_type = { 4: dns.Record_A, 6: dns.Record_AAAA, } def _get_records(self, name: Union[str, bytes], ip_versions): if isinstance(name, bytes): name_str, name_bytes = name.decode('ascii').lower(), name else: name_str, name_bytes = name, name.encode('idna') return tuple( dns.RRHeader( name_bytes, self._ipversion_to_dns_type[addr.version], dns.IN, self.ttl, self._ipversion_to_record_type[addr.version](addr.exploded, self.ttl), ) for addr in self.name2iplist.get(name_str, []) if addr.version in ip_versions ) def _respond(self, name, records, **kwargs): """ Generate a response for the given name containing the given result records, or a failure if there are no result records. @param name: The DNS name the response is for. @type name: C{str} @param records: A tuple of L{dns.RRHeader} instances giving the results that will go into the response. @return: A L{Deferred} which will fire with a three-tuple of result records, authority records, and additional records, or which will fail with L{dns.DomainError} if there are no result records. """ if records: logger.info('[%d]answer from hosts: %r', kwargs.get('request_id', -1), records) return defer.succeed((records, (), ())) else: return defer.fail(Failure(dns.DomainError(name))) def lookupAddress(self, name, timeout=None, **kwargs): """ Return any IPv4 addresses from C{self.name2ip} as L{Record_A} instances. """ return self._respond(name, self._get_records(name, {4}), **kwargs) def lookupIPV6Address(self, name, timeout=None, **kwargs): """ Return any IPv6 addresses from C{self.name2ip} as L{Record_AAAA} instances. """ return self._respond(name, self._get_records(name, {6}), **kwargs) def lookupAllRecords(self, name, timeout=None, **kwargs): """ Return any addresses from C{self.name2ip} as either L{Record_AAAA} or L{Record_A} instances. """ return self._respond(name, self._get_records(name, {4, 6}), **kwargs) def lookupPointer(self, name, timeout=None, **kwargs): # TODO: ptr return defer.fail(NotImplementedError("HostsResolver.lookupPointer")) def __repr__(self): return '<Hosts: {}>'.format(self.filename)
#!/usr/bin/env python # -*- coding: utf-8 -*- #****************************************************************************** # # mask_all.py # --------------------------------------------------------- # Apply raster B to raster A to add 0 where raster A values are nodata or missing (but exist in raster B) # More: http://github.com/nextgis/dhi # # Usage: # patch_raster.py [-h] [-o OUTPUT_FOLDER] (-rs INPUT_RASTERS | -if INPUT_FOLDER) template value # where: # -h show this help message and exit # -rs INPUT_RASTERS input GeoTIFF rasters to be patched, separated by comma # -if INPUT_FOLDER input folder of GeoTIFF rasters to be patched # -of OUTPUT_FOLDER output folder, if missing input will be overwritten # # Example: # python mask_all.py -if x:\MOD13A2\2002\tif-evi-qa -of x:\MOD13A2\2002\tif-evi-qa-mask # # Copyright (C) 2015 Maxim Dubinin (sim@gis-lab.info), Alexander Muriy (amuriy AT gmail.com) # # This source is free software; you can redistribute it and/or modify it under # the terms of the GNU General Public License as published by the Free # Software Foundation; either version 2 of the License, or (at your option) # any later version. # # This code is distributed in the hope that it will be useful, but WITHOUT ANY # WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS # FOR A PARTICULAR PURPOSE. See the GNU General Public License for more # details. # # A copy of the GNU General Public License is available on the World Wide Web # at <http://www.gnu.org/copyleft/gpl.html>. You can also obtain it by writing # to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, # MA 02111-1307, USA. # #****************************************************************************** import os import sys import shutil import argparse import glob parser = argparse.ArgumentParser() parser.add_argument('-if','--input_folder', help='Input folder with GeoTIFF(s)') parser.add_argument('-rs','--input_rasters', help='Input GeoTIFF(s) separated by comma') parser.add_argument('-of','--output_folder', help='Output folder, if missing input(s) will be overwritten') parser.add_argument('-m','--mask', help='Path to the raster which will be used as a binary mask') parser.add_argument('-o','--overwrite', action="store_true", help='Overwrite outputs') args = parser.parse_args() def sanitize(folder): if not folder.endswith('\\'): folder = folder + '\\' return folder if __name__ == '__main__': if not args.input_folder: print('Please select the input folder') sys.exit(1) od = '' if args.output_folder: od = sanitize(args.output_folder) if args.input_folder: id = sanitize(args.input_folder) os.chdir(args.input_folder) if args.input_rasters: inputs = args.input_rasters.split(',') inputs = [id + os.sep + x for x in inputs] else: inputs = glob.glob(id + '*.tif') elif args.input_rasters and not args.input_folder: inputs = args.input_rasters.split(',') # gisbase = os.environ['GISBASE'] = "c:/OSGeo4W/apps/grass/grass-7.0.3/" # gisdbase = os.environ['GISDBASE'] = "e:/users/maxim/thematic/dhi/" # location = "dhi_grass" # mapset = "gpp" # sys.path.append(os.path.join(gisbase, "etc", "python")) # import grass.script as grass # import grass.script.setup as gsetup # gsetup.init(gisbase, gisdbase, location, mapset) # grass.run_command('r.in.gdal', input_ = 'y:/dhi/masks/Fpar_NoData_sin.tif', output = 'Fpar_NoData_sin_b', overwrite = True) for input in inputs: if os.path.exists(input): input_name = os.path.basename(input).replace('.tif','') print('Processing ' + input) # grass.run_command('r.in.gdal', input_ = input, output = input_name, overwrite = True) # grass.mapcalc(input_name + '_0 = if(isnull(' + input_name + '),Fpar_NoData_sin_b,' + input_name + ')', overwrite = True) # grass.run_command('r.out.gdal', input_ = input_name + '_0', output = id + input_name + '_0.tif', overwrite = True) cmd = 'gdal_calc.py --overwrite ' + ' -A ' + args.mask + ' -B ' + input + ' --outfile=' + od + input_name + '.tif' + ' --calc="A*B"' + ' --NoDataValue=255' # cmd = 'gdal_calc.py --overwrite ' + ' -A y:/dhi/masks/Fpar_NoData_sin_b.tif ' + ' -B ' + id + input_name + '_0.tif' + ' --outfile=' + od + input_name + '.tif' + ' --calc="A*B" --NoDataValue=255' + ' --overwrite' print cmd os.system(cmd)
def findSep(self): text = self.text data = list(text) found="-1" for x in data: found=type(x) if (found != "-1"): break return found def type(i): switcher={ ' ':'space', ',':'comma', ';':'semi-colon', ':':'colon', '|':'ampersand', '.':'period', } return switcher.get(i,"-1")
# -*- coding: utf-8 -*- """ Created on Sat Apr 25 18:37:11 2020 @author: autol """ #%% import numpy as np import pandas as pd df = pd.DataFrame({'a': np.random.randn(1000), 'b': np.random.randn(1000), 'N': np.random.randint(100, 1000, (1000)), 'x': 'x'}) def f(x): return x * (x - 1) def integrate_f(a, b, N): s = 0 dx = (b - a) / N for i in range(N): s += f(a + i * dx) return s * dx #%% %timeit df.apply(lambda x: integrate_f(x['a'], x['b'], x['N']), axis=1) %prun -l 4 df.apply(lambda x: integrate_f(x['a'], x['b'], x['N']), axis=1) #%% %load_ext Cython #%% %%cython def f_plain(x): return x * (x - 1) def integrate_f_plain(a, b, N): s = 0 dx = (b - a) / N for i in range(N): s += f_plain(a + i * dx) return s * dx #%% %timeit df.apply(lambda x: integrate_f_plain(x['a'], x['b'], x['N']), axis=1)
#!/usr/bin/python # # Copyright 2019 Copyright (c) 2019 SAP SE or an SAP affiliate company. All rights reserved. This file is licensed under the Apache Software License, v. 2 except as noted otherwise in the LICENSE file. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys def main(argv): pass if __name__ == '__main__': main(sys.argv) class Dockerfile: def __init__(self, from_image, commands): self.from_image = "FROM {}\n".format(from_image) self.commands = commands self.layers = [] def create(self): for command in self.commands: if command.required_instruction == "copy": for line in command.get_lines(): self.layers.append(DockerLayer(command.required_instruction)) self.layers[-1].append(line) else: if len(self.layers) == 0 or not self.layers[-1].supports_command_instruction(command.required_instruction): self.layers.append(DockerLayer(command.required_instruction)) for line in command.get_lines(): self.layers[-1].append(line) def to_string(self): output = self.from_image for layer in self.layers: output += layer.get_layer_as_string() return output def add_welcome_message(self, message): header="This container comes with the following preinstalled tools:\\n\\" self.layers.append(DockerLayer("run", False)) self.layers[-1].append( """echo '[ ! -z "$TERM" -a -r /etc/motd ] && cat /etc/issue && cat /etc/motd' >> /etc/bash.bashrc; echo "\\\n{}{}" > /etc/motd""" .format(header, message)) class DockerLayer: def __init__(self, instruction, reindent_string_output=True): self.instruction = instruction self.commands = [] self.reindent_string_output = reindent_string_output def supports_command_instruction(self, instruction): if instruction == "copy": return False else: return self.instruction == instruction def append(self, command): if len(self.commands) != 0: self.commands[-1] += ";\\\n" self.commands.append(command) def get_layer_as_string(self): output = self.instruction + " " for command in self.commands: output += command if self.reindent_string_output: return self.reindent(output) return output @staticmethod def reindent(command): command_lines = command.split('\n') command_lines = command_lines[:1] + [(4 * ' ') + command_line.lstrip() for command_line in command_lines[1:]] return '\n'.join(command_lines) + '\n'
from typing import Dict, List, Any, Optional import timm import torch import torch.nn as nn class BaseTimmModel(nn.Module): """Convolution models from timm name: `str` timm model name num_classes: `int` number of classes from_pretrained: `bool` whether to use timm pretrained classnames: `Optional[List]` list of classnames """ def __init__( self, name: str, num_classes: int = 1000, from_pretrained: bool = True, classnames: Optional[List] = None, **kwargs ): super().__init__() self.name = name self.classnames = classnames if num_classes != 1000: self.model = timm.create_model(name, pretrained=from_pretrained, num_classes=num_classes) else: self.model = timm.create_model(name, pretrained=from_pretrained) def get_model(self): """ Return the full architecture of the model, for visualization """ return self.model def forward(self, x: torch.Tensor): outputs = self.model(x) return outputs def get_prediction(self, adict: Dict[str, Any], device: torch.device): """ Inference using the model. adict: `Dict[str, Any]` dictionary of inputs device: `torch.device` current device """ inputs = adict['inputs'].to(device) outputs = self.model(inputs) probs, outputs = torch.max(torch.softmax(outputs, dim=1), dim=1) probs = probs.cpu().detach().numpy() classids = outputs.cpu().detach().numpy() if self.classnames: classnames = [self.classnames[int(clsid)] for clsid in classids] else: classnames = [] return { 'labels': classids, 'confidences': probs, 'names': classnames, }
""" Given an account name and a shard_id, make a request to the bulk stash tab API of Path of Exile http://api.pathofexile.com/public-stash-tabs If the account is not found in the payload, update the scheduler with the next invocation and shardId and return, if it is, then update the account in the database and return """ import requests import json POE_URL = "http://api.pathofexile.com/public-stash-tabs" def hello(event, context): r = requests.get(url=POE_URL) body = json.loads(r.text) matches = filter(lambda x: x["accountName"] == event["account"], body["stashes"]) count = sum(1 for _ in matches) return "Found " + str(count) + " matches for account name " + event["account"]
"""Creates a table of transfer functions for a StateSpace (MIMO) model.""" import controlSBML.constants as cn import controlSBML as ctl from controlSBML.option_management.option_manager import OptionManager import control from docstring_expander.expander import Expander import matplotlib.pyplot as plt import numpy as np import pandas as pd NUM_FREQ = 100 # Number of frequences in radians/sec FREQ_RNG = [1e-2, 1e2] LOW = 0 HIGH = 1 class StateSpaceTF(object): def __init__(self, mimo_sys, input_names=None, output_names=None): """ Parameters ---------- mimo_sys: control.StateSpace control.StateSpace input_names: list-str names of the inputs output_names: list-str names of the outputs """ self.dataframe = self.ss2tf(mimo_sys, input_names=input_names, output_names=output_names) self.input_names = list(self.dataframe.columns) self.output_names = list(self.dataframe.index) self.num_state, self.num_input, self.num_output = self.getSystemShape( mimo_sys) def __str__(self): stgs = ["(input, output)\n\n"] indents = " " for inp in self.dataframe.columns: for out in self.dataframe.index: pfx = "(%s, %s): " % (inp, out) stg = str(self.dataframe.loc[inp, out])[:-1] # Exclude nl stg = stg.replace("\n", "", 1) stg = stg.replace("\n", "\n" + indents) stgs.append(pfx + stg + "\n") return ("\n").join(stgs) @staticmethod def getSystemShape(sys): """ Provides the number of states, number of inputs, and number of outputs. Parameters ---------- sys: control.StateSpace Returns ------- int: num states int: num inputs int: num outputs """ return sys.nstates, sys.ninputs, sys.noutputs @classmethod def ss2tf(cls, mimo_sys, input_names=None, output_names=None): """ Creates a dataframe of transform functions for each combination of inputs and outputs. Parameters ---------- mimo_sys: control.StateSpace Returns ------- DataFrame column: input index: output value: control.TransferFunction """ num_state, num_input, num_output = cls.getSystemShape(mimo_sys) A_mat = mimo_sys.A if input_names is None: input_names = [str(n) for n in range(1, num_input+1)] else: input_names = list(input_names) if output_names is None: output_names = [str(n) for n in range(1, num_output+1)] else: output_names = list(output_names) # Construct matrices for a 1-input, 1-output state space model B_base_mat = np.reshape(np.repeat(0, num_state), (num_state, 1)) C_base_mat = np.reshape(np.repeat(0, num_state), (1, num_state)) D_mat = np.repeat(0, 1) # Construct the dataframe entries dct = {n: [] for n in output_names} for out_idx, output_name in enumerate(output_names): for inp_idx, input_name in enumerate(input_names): # Construct the SISO system input_name = input_names[inp_idx] B_mat = np.array(B_base_mat) B_mat[inp_idx, 0] = 1 C_mat = np.array(C_base_mat) C_mat[0, out_idx] = 1 new_sys = control.StateSpace(A_mat, B_mat, C_mat, D_mat) siso_tf = control.ss2tf(new_sys) dct[output_name].append(siso_tf) # df = pd.DataFrame(dct).transpose() df.index = output_names df.columns = input_names df.index.name = "Outputs" df.columns.name = "Inputs" return df @Expander(cn.KWARGS, cn.ALL_KWARGS) def plotBode(self, is_magnitude=True, is_phase=True, **kwargs): """ Constructs bode plots for a MIMO system. This is done by constructing n*n SISO systems where there n states. Parameters ---------- is_magnitude: bool Do magnitude plots is_phase: bool Do phase plots is_plot: bool Display plots #@expand """ # Calculate magnitudes and phases for al inputs and outputs freq_arr = np.array(range(NUM_FREQ)) delta = (FREQ_RNG[HIGH] - FREQ_RNG[LOW])/NUM_FREQ freq_arr = (freq_arr + FREQ_RNG[LOW])*delta mgr = OptionManager(kwargs) legends = [] for out_idx, out_name in enumerate(self.output_names): for inp_idx, inp_name in enumerate(self.input_names): siso_tf = self.dataframe.loc[out_name, inp_name] # Create the plot data _ = control.bode(siso_tf, freq_arr) # Construct the plot legend =" %s->%s" % (inp_name, out_name) legends.append(legend) mgr.plot_opts.set(cn.O_LEGEND_SPEC, default=ctl.LegendSpec(legends, crd=mgr.plot_opts[cn.O_LEGEND_CRD])) mgr.doPlotOpts() mgr.doFigOpts()
# using nltk vader built in lexicon classifier because generating dataset for # classifier myself would take too long, might create custom dataset tho import nltk from nltk.sentiment.vader import SentimentIntensityAnalyzer import constants financial_word_classification = { "bullish": 1, "bearish": -1, "volatile": -0.3, "risen": 0.5, "fell": -0.5, "growth": 0.5, "rally": 0.5, "buy": 0.7, "sell": -0.7, } # add other words nltk.download("vader_lexicon") sentiment_polarity_analyzer = SentimentIntensityAnalyzer() sentiment_polarity_analyzer.lexicon.update(financial_word_classification) def sentiment_analyzer(sentences): summation = 0 number_of_neutral = 0 for sentence in sentences: sentence_score = sentiment_polarity_analyzer.polarity_scores(sentence)["compound"] summation += sentence_score if sentence_score == 0: number_of_neutral += 1 if len(sentences) >= constants.ARTICLE_MIN_COUNT_NEWS: return summation / (len(sentences) - number_of_neutral / 2) return 0
from shelf.metadata.result import Result from shelf.metadata.error_code import ErrorCode import copy class Manager(object): """ Responsible for maintaining metadata integrity between multiple places. Not only should the metadata match but it also needs to be initialized with some values if it doesn't already exist. Although they should always match, the cloud storage is our source of truth. """ def __init__(self, container): self.container = container self.update_manager = self.container.update_manager self.identity = self.container.resource_identity self.portal = self.container.bucket_container.cloud_portal self.initializer = self.container.bucket_container.initializer self._metadata = None @property def metadata(self): """ Can be used like a dict Returns shelf.metadata.wrapper.Wrapper """ if not self._metadata: data = self.load() self._metadata = self.container.create_wrapper(data) return self._metadata def _notify_updated_hook(self): self.container.hook_manager.notify_metadata_updated(self.container.resource_identity) def load(self): """ Loads metadata from the cloud. Returns dict """ data = self.portal.load(self.identity.cloud_metadata) if self.initializer.needs_update(data): data = self.initializer.update(self.identity, data) self.portal.update(self.identity.cloud_metadata, data) return data def write(self): """ Updates the cloud to contain the metadata set on this instance. """ self.portal.update(self.identity.cloud_metadata, self.metadata) formatted_metadata = self.container.mapper.to_response(self.metadata) self.update_manager.update(self.identity.search, formatted_metadata) def try_update(self, data): """ Overwrites the metadata with the data provided. The only caveat is that if you try to set metadata that is immutable it will be ignored. Args: data(schemas/metadata.json) Returns: shelf.metadata.result.Result """ data = self.container.mapper.from_response(data) old_meta = copy.deepcopy(self.metadata) for key, val in old_meta.iteritems(): new_meta = data.get(key) if new_meta: if not self.metadata.is_immutable(key): self.metadata[key] = new_meta data.pop(key) else: if not self.metadata.is_immutable(key): del self.metadata[key] if len(data) > 0: self.metadata.update(data) # assuming success if it hasn't thrown an exception self.write() self._notify_updated_hook() return Result() def try_update_property(self, key, value): """ Updates a single metadata property Args: key(string) value(schemas/metadata-property.json) Returns: shelf.metadata.result.Result """ result = Result() result = self._try_update_property_with_result(key, value, result) return result def try_create_property(self, key, value): """ Creates a single metadata property. Will error if the property already exists. Args: key(string) value(schemas/metadata-property.json) Returns: shelf.metadata.result.Result """ result = Result() if self.metadata.get(key): result.add_error(ErrorCode.DUPLICATE) else: result = self._try_update_property_with_result(key, value, result) return result def try_delete_property(self, key): """ Deletes a single metadata property. Args: key(string): Name of the metadata property Returns: shelf.metadata.result.Result """ result = Result() if self.metadata.is_immutable(key): result.add_error(ErrorCode.IMMUTABLE) else: del self.metadata[key] self.write() self._notify_updated_hook() return result def _try_update_property_with_result(self, key, value, result): if not self.metadata.is_immutable(key): value = self.container.mapper.from_response_property(value) self.metadata[key] = value self.write() result.value = value self._notify_updated_hook() else: result.add_error(ErrorCode.IMMUTABLE) return result
#!/usr/bin/env python # -*- coding: utf-8 -*- #http://stackoverflow.com/questions/4629595/using-pysides-qtwebkit-under-windows-with-py2exe #http://qt-project.org/wiki/Packaging_PySide_applications_on_Windows __author__ = 'joseph' from distutils.core import setup import py2exe import sys # If run without args, build executables, in quiet mode. if len(sys.argv) == 1: sys.argv.append("py2exe") sys.argv.append("-q") RT_MANIFEST = 24 INCLUDES = ["encodings","encodings.*","PySide.QtNetwork"] options = {"py2exe" : {"compressed" : 1, "optimize" : 2, "bundle_files" : 3, "includes" : INCLUDES, "excludes" : [], "dll_excludes": [ ] }} windows = [{"script": "editor.py", "icon_resources": [], }] setup(name = "PtEditor", version = "1.0", description = "PtEditor", author = "joseph", author_email ="", maintainer = "", maintainer_email = "", license = "Licence", url = "", data_files = [], #zipfile=None, options = options, windows = windows, )
import wx import vdesk import win32con import sys import movementindicator class Model(object): def __init__(self): pass def shortcut_data(self): def generate_shortcut(Modifiers, Key, Function): return { "Modifiers": Modifiers, "Key": Key, "Function": Function } return ( generate_shortcut( win32con.MOD_ALT | win32con.MOD_WIN, win32con.VK_RIGHT, lambda Controller: Controller.display_next() ), generate_shortcut( win32con.MOD_ALT | win32con.MOD_WIN, win32con.VK_LEFT, lambda Controller: Controller.display_previous() ), generate_shortcut( win32con.MOD_CONTROL | win32con.MOD_WIN, win32con.VK_RIGHT, lambda Controller: Controller.move_window_to_next_desktop_and_display() ), generate_shortcut( win32con.MOD_CONTROL | win32con.MOD_WIN, win32con.VK_LEFT, lambda Controller: Controller.move_window_to_previous_desktop_and_display() ) ) class Controller(object): def __init__(self): self.EventIDs = [] self.DesktopManager = vdesk.DesktopManager() self.Model = Model() self.Window = Window(self) self.TaskBarIcon = TaskBarIcon(self.Window, self) self.register_hot_keys(self.Model.shortcut_data()) self.MIController = movementindicator.Controller() def register_hot_keys(self, Hotkeys): def register_hotkey(Hotkey): ID = wx.NewId() self.Window.RegisterHotKey(ID, Hotkey["Modifiers"], Hotkey["Key"]) self.Window.Bind(wx.EVT_HOTKEY, lambda Event: Hotkey["Function"](self), id=ID) self.EventIDs.append(ID) [register_hotkey(Hotkey) for Hotkey in Hotkeys] def unregister_hotkeys(self): for ID in self.EventIDs: self.Window.UnregisterHotKey(ID) self.EventIDs = [] def display_next_desktop(self): self.DesktopManager.display_next() self.MIController.next() def display_previous_desktop(self): self.DesktopManager.display_previous() self.MIController.previous() def move_window_to_next_desktop_and_display(self): try: self.DesktopManager.move_window_to_next_desktop_and_display() self.MIController.next() except vdesk.NoForegroundWindow: pass def move_window_to_previous_desktop_and_display(self): try: self.DesktopManager.move_window_to_previous_desktop_and_display() self.MIController.previous() except vdesk.NoForegroundWindow: pass def close(self): self.Window.Hide() def exit(self): self.unregister_hotkeys() self.DesktopManager.show_all_windows() self.TaskBarIcon.RemoveIcon() sys.exit(1) def icon_dbl_click(self): if self.Window.IsIconized(): self.Window.Iconize(False) if not self.Window.IsShown(): self.Window.Show(True) self.Window.Raise() class TaskBarIcon(wx.TaskBarIcon): def __init__(self, Parent, Controller): wx.TaskBarIcon.__init__(self) def create_child_widgets(): self.Icon = wx.EmptyIcon() self.ParentFrame = Parent self.Controller = Controller self.Menu = wx.Menu() def configure(): self.EventIDs = { "NextDesktop": wx.NewId(), "PreviousDesktop": wx.NewId(), "Exit": wx.NewId(), "LaunchPreferences": wx.NewId(), "LaunchMenu": wx.NewId() } def load_bitmap(): image = wx.Image("Resources/icon.bmp", wx.BITMAP_TYPE_ANY) image.SetMaskColour(255, 0, 255) return wx.BitmapFromImage(image) self.Icon.CopyFromBitmap(load_bitmap()) self.SetIcon(self.Icon, "WindowPusher") self.Menu.Append(self.EventIDs["NextDesktop"], "Display Next Desktop") self.Menu.Append(self.EventIDs["PreviousDesktop"], "Display Previous Desktop") self.Menu.AppendSeparator() self.Menu.Append(self.EventIDs["Exit"], "Exit") def bind_events(): self.Bind(wx.EVT_TASKBAR_LEFT_DCLICK, lambda event: self.Controller.icon_dbl_click()) self.Bind(wx.EVT_TASKBAR_RIGHT_UP, lambda event: self.PopupMenu(self.Menu)) self.Bind(wx.EVT_MENU, lambda event: self.Controller.exit(), id=self.EventIDs["Exit"]) self.Bind(wx.EVT_MENU, lambda event: self.Controller.display_next(), id=self.EventIDs["NextDesktop"]) self.Bind(wx.EVT_MENU, lambda event: self.Controller.display_previous(), id=self.EventIDs["PreviousDesktop"]) create_child_widgets() configure() bind_events() class GeneralTab(wx.Panel): def __init__(self, parent, controller): wx.Panel.__init__(self, parent=parent, id=wx.ID_ANY) self.Controller = controller def create_child_widgets(): self.RootSizer = wx.BoxSizer(wx.VERTICAL) self.stNumDesktops = wx.StaticText(self, wx.ID_ANY, label="Number of Desktops?") self.scNumDesktops = wx.SpinCtrl(self, wx.ID_ANY, size=(40, -1)) self.sbDesktopIndicator = wx.CheckBox(self, wx.ID_ANY, "Show Desktop Indicator?") self.stDesktopIndicatorDelay = wx.StaticText(self, wx.ID_ANY, label="Desktop Indicator Delay?") self.slDesktopIndicatorDelay = wx.Slider(self, wx.ID_ANY, 1, 0, 30, wx.DefaultPosition, (250, -1), wx.SL_HORIZONTAL) self.sbStartWithWindows = wx.CheckBox(self, wx.ID_ANY, "Start with Windows?") self.btnKeyboardShortcuts = wx.Button(self, wx.ID_ANY, "Keyboard Shortcuts", (50, 130)) def configure(): def horizontal_sizer(Widgets): sizer = wx.BoxSizer(wx.HORIZONTAL) for Widget in Widgets: sizer.Add(Widget, 0, wx.ALL, 5) return sizer self.scNumDesktops.SetRange(1, 4) self.scNumDesktops.SetValue(4) sizerNumDesktops = horizontal_sizer((self.stNumDesktops, self.scNumDesktops)) sizerDesktopIndicatorDelay = horizontal_sizer( (self.stDesktopIndicatorDelay, self.slDesktopIndicatorDelay) ) self.RootSizer.Add(sizerNumDesktops, 0, wx.LEFT) self.RootSizer.Add(self.sbStartWithWindows, 0, wx.LEFT) self.RootSizer.AddSpacer(5) self.RootSizer.Add(self.sbDesktopIndicator, 0, wx.LEFT) self.RootSizer.Add(sizerDesktopIndicatorDelay, 0, wx.LEFT) self.RootSizer.AddSpacer(10) self.RootSizer.Add(self.btnKeyboardShortcuts, 0, wx.LEFT) self.SetSizer(self.RootSizer) def bind_events(): pass create_child_widgets() configure() bind_events() class PreferencesNotebook(wx.Notebook): def __init__(self, Parent, Controller): wx.Notebook.__init__(self, Parent, id=wx.ID_ANY, style=wx.BK_DEFAULT) self.Controller = Controller def create_child_widgets(): self.General = GeneralTab(self, Controller) def configure(): self.AddPage(self.General, "General") def bind_events(): pass create_child_widgets() configure() bind_events() class Window(wx.Frame): def __init__(self, Controller): wx.Frame.__init__(self, None, -1, "WindowPusher", (100, 100), (300, 300), style=wx.CLOSE_BOX | wx.SYSTEM_MENU | wx.CAPTION | wx.FRAME_TOOL_WINDOW) self.Controller = Controller self.EventIDs = [] def create_child_widgets(): self.Panel = wx.Panel(self, wx.ID_ANY) self.RootSizer = wx.BoxSizer(wx.VERTICAL) self.Notebook = PreferencesNotebook(self.Panel, Controller) self.btnClose = wx.Button(self.Panel, wx.ID_ANY, "Close", (50, 130)) self.btnApply = wx.Button(self.Panel, wx.ID_ANY, "Apply", (50, 130)) def configure(): self.Controller = Controller self.EventIDs = [] ButtonSizer = wx.BoxSizer(wx.HORIZONTAL) ButtonSizer.Add(self.btnClose, 0, wx.ALL, 5) ButtonSizer.Add(self.btnApply, 0, wx.ALL, 5) self.RootSizer.Add(self.Notebook, 1, wx.EXPAND | wx.ALL, 5) self.RootSizer.Add(ButtonSizer, 0, wx.ALIGN_BOTTOM | wx.ALIGN_RIGHT, 5) self.Panel.SetSizer(self.RootSizer) self.Panel.Layout() # self.Layout() def bind_events(): self.Bind(wx.EVT_CLOSE, lambda Event: self.Controller.close()) self.btnClose.Bind(wx.EVT_BUTTON, lambda Event: self.Controller.close()) self.btnApply.Bind(wx.EVT_BUTTON, lambda Event: self.Controller.close()) create_child_widgets() configure() bind_events()
# -*- coding: utf-8 -*- import unittest from equivalence.AstraRastr import RASTR from equivalence.Load import LoadFile from equivalence.actions.zeroing import Zeroing from equivalence.tables.Tables import Node from equivalence.test.model_test_RUSTab.path_model import absolute_path_to_file class TestZeroing(unittest.TestCase): def setUp(self) -> None: # загружаем тестовую 9-ти узловую схему RastrWin3 LoadFile(rastr_win=RASTR) \ .load( name_shabl_russian='динамика', path_file=rf'{absolute_path_to_file}\model_test_RUSTab\test9.rst') self.zeroing_obj = Zeroing(rastr_win=RASTR) def test_row(self): self.zeroing_obj.node() _table = RASTR.Tables(Node.table) _table.SetSel("sel=1") count_table_node = _table.Count self.assertEqual( first=count_table_node, second=0 )
""" Requires OpenCV2: https://docs.opencv.org/master/d7/d9f/tutorial_linux_install.html """ import pickle import socket import struct import numpy as np import cv2 from snr.proc_endpoint import ProcEndpoint from snr.node import Node from snr.utils import debug from snr.cv import find_plants from snr.cv.boxes import apply_boxes HOST = "localhost" # Number of frames to skip to calculate the box FRAME_SKIP_COUNT = 5 # Title of the window WINDOW_TITLE = 'Video' TICK_RATE_HZ = 0.0 # never sleep the server class VideoReceiver(ProcEndpoint): """Video stream receiving endpoint. Shows video received over IP in window. """ def __init__(self, parent: Node, name: str, receiver_port: int): super().__init__(parent, name, self.init_receiver, self.monitor_stream, TICK_RATE_HZ) self.receiver_port = receiver_port self.window_name = f"Raspberry Pi Stream: {self.name}" self.count = 0 # Frame count self.boxes = [] # Cache of cv boxes self.start_loop() def init_receiver(self): try: self.s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) self.dbg("camera_event", "{}: Socket created on {}", [self.name, self.receiver_port]) self.s.bind((HOST, self.receiver_port)) self.s.listen(10) self.dbg("camera_event", "{}: Socket now listening on {}", [self.name, self.receiver_port]) self.conn, self.addr = self.s.accept() except Exception as e: if isinstance(e, KeyboardInterrupt): raise(e) else: self.set_terminate_flag() return self.data = b'' self.payload_size = struct.calcsize("=L") def monitor_stream(self): try: # Retrieve message size while len(self.data) < self.payload_size: self.data += self.conn.recv(4096) packed_msg_size = self.data[:self.payload_size] self.data = self.data[self.payload_size:] msg_size = struct.unpack("=L", packed_msg_size)[0] # Retrieve all data based on message size while len(self.data) < msg_size: self.data += self.conn.recv(4096) frame_data = self.data[:msg_size] self.data = self.data[msg_size:] # Extract frame frame = pickle.loads(frame_data) self.count += 1 # Select frames for processing if ((self.count % FRAME_SKIP_COUNT) == 0): self.boxes = find_plants.box_image(frame) frame = apply_boxes(frame, self.boxes, find_plants.color, find_plants.LINE_THICKNESS) # Display cv2.imshow(self.window_name, frame) cv2.waitKey(15) except Exception as e: if isinstance(e, KeyboardInterrupt): raise(e) self.dbg("camera_error", "receiver monitor error: {}", [e]) self.set_terminate_flag() def terminate(self): cv2.destroyAllWindows() self.parent.datastore.store(f"{self.name}_recvd_frames", self.count)
#!/usr/bin/python # Probably belongs here... from flask import Flask, request, jsonify, send_from_directory from datetime import datetime import datahit from datahit import datahithtml, datahitlog import json from elasticsearch import Elasticsearch import yaml import sys app = Flask(__name__, static_url_path='') rundate = datetime.now().strftime("%Y-%m-%d %H:%M:%S") # TODO: Make config file a command line option config = yaml.safe_load(open("config.yaml")) app = Flask(__name__) # TODO: Make ES information configurable in config file eshost = config['eshost'] esport = int(config['esport']) esindex = config['esindex'] esdoc_type = "datarec" es = Elasticsearch([{'host': eshost, 'port': esport}]) datahitlog.log("Connected to Elasticsearch") esMappings = { "mappings" : { esdoc_type : { "properties" : { "userID" : { "type" : "string", "index" : "not_analyzed" }, "recID" : { "type" : "string", "index" : "not_analyzed" } } } } } res = es.indices.create(index=esindex, ignore=400, body=esMappings) # For development until/when auth is implemented userID = "869b0838-b103-4b79-bc02-d9ea6a9d6710" # this is a random guid @app.route("/editor", methods=["POST","GET"]) def datahiteditor(): recID = request.form['recID'] datarec = {} query = {"query": { "ids" : { "type" : "datarec", "values" : [recID] }}} r = es.search(index=esindex, body=query) hitsTotal = int(r['hits']['total']) if hitsTotal == 0: with open('static/schemas/default.json') as f: datarec = json.loads(f.read()) datahitlog.log("Loading default record data.") elif hitsTotal == 1: datarec = r['hits']['hits'][0]['_source']['datarec'] datahitlog.log("Loading data record " + recID) values = { 'date': rundate, 'recID': recID, 'datarec': json.dumps(datarec) } return datahithtml.render("templates/editor.html", values, config['cacheJavascript']) @app.route("/list") def hitlist(): query = { "query" : { "constant_score" : { "filter" : { "term" : { "userID" : userID } } } } } print(json.dumps(query)) r = es.search(index=esindex, doc_type=esdoc_type, body=query) recTable = datahithtml.createRecTable(r['hits']['hits']) values = {'recTable': recTable } return datahithtml.render("templates/list.html", values, config['cacheJavascript']) @app.route("/saverec", methods=["POST"]) def saveplan(): recDoc = request.get_json() recDoc['userID'] = userID res = es.index(index=esindex, doc_type=esdoc_type, id=recDoc['recID'], body=recDoc) print(json.dumps(res)) return "Record saved!" @app.route('/static/<path:path>') def send_static(path): return send_from_directory('static', path) if __name__ == '__main__': app.run(host='0.0.0.0',port=config['port'],threaded=True)
# Copyright (c) 2008 Mikael Lind # # Permission is hereby granted, free of charge, to any person # obtaining a copy of this software and associated documentation # files (the "Software"), to deal in the Software without # restriction, including without limitation the rights to use, # copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following # conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES # OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT # HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, # WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR # OTHER DEALINGS IN THE SOFTWARE. import numpy, pygame from pygame.locals import * from OpenGL.GL import * class Display(object): def __init__(self, (width, height), caption): self.__width = width self.__height = height pygame.display.set_mode((width, height), OPENGL | DOUBLEBUF | SWSURFACE) pygame.display.set_caption("%s - tics" % caption) glClearColor(0.0, 0.0, 0.0, 0.0) glEnable(GL_BLEND) glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA) glPixelStorei(GL_PACK_ALIGNMENT, 1) glPixelStorei(GL_PACK_SKIP_PIXELS, 0) glPixelStorei(GL_PACK_SKIP_ROWS, 0) glPixelStorei(GL_PACK_SKIP_IMAGES, 0) glPixelStorei(GL_PACK_ROW_LENGTH, self.__width) glPixelStorei(GL_PACK_IMAGE_HEIGHT, self.__height) def draw_image(self, image): glClear(GL_COLOR_BUFFER_BIT) image.draw() pygame.display.flip() def read_pixels(self): glFinish() pixels = glReadPixelsub(0, 0, self.__width, self.__height, GL_RGB) return numpy.array(pixels.flat)
# Import Libraries import pandas as pd import numpy as np import yfinance as yf import time # Import Libraries from scipy import stats import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split # Import Libraries from ta.momentum import RSIIndicator from ta.trend import SMAIndicator # import numpy as np # import pandas as pd # import matplotlib.pyplot as plt # import yfinance as yf import math class YinsML: """ Yin's Machine Learning Package Copyright © W.Y.N. Associates, LLC, 2009 – Present """ # Define function def LogisticRegression_Classifier(X_train, X_test, y_train, y_test, random_state = 0): # Import Modules import numpy as np import matplotlib.pyplot as plt import pandas as pd import random from sklearn.linear_model import LogisticRegression # Train LOGIT_Clf = LogisticRegression( random_state=random_state ) LOGIT_Clf = LOGIT_Clf.fit(X_train, y_train) # Report In-sample Estimators y_train_hat_ = LOGIT_Clf.predict(X_train) y_train_hat_score = LOGIT_Clf.predict_proba(X_train) from sklearn.metrics import confusion_matrix confusion_train = pd.DataFrame(confusion_matrix(y_train_hat_, y_train)) confusion_train train_acc = sum(np.diag(confusion_train)) / sum(sum(np.array(confusion_train))) train_acc y_test_hat_ = LOGIT_Clf.predict(X_test) y_test_hat_score = LOGIT_Clf.predict_proba(X_test) confusion_test = pd.DataFrame(confusion_matrix(y_test_hat_, y_test)) confusion_test test_acc = sum(np.diag(confusion_test)) / sum(sum(np.array(confusion_test))) test_acc # Output return { 'Data': { 'X_train': X_train, 'y_train': y_train, 'X_test': X_test, 'y_test': y_test }, 'Model': LOGIT_Clf, 'Train Result': { 'y_train_hat_': y_train_hat_, 'y_train_hat_score': y_train_hat_score, 'confusion_train': confusion_train, 'train_acc': train_acc }, 'Test Result': { 'y_test_hat_': y_test_hat_, 'y_test_hat_score': y_test_hat_score, 'confusion_test': confusion_test, 'test_acc': test_acc } } # End of function # Define function def KNN_Classifier(X_train, X_test, y_train, y_test, n_neighbors = 3): # Import Modules import numpy as np import matplotlib.pyplot as plt import pandas as pd import random from sklearn.neighbors import KNeighborsClassifier # Train KNN_Clf = KNeighborsClassifier( n_neighbors=n_neighbors ) KNN_Clf = KNN_Clf.fit(X_train, y_train) # Report In-sample Estimators y_train_hat_ = KNN_Clf.predict(X_train) y_train_hat_score = KNN_Clf.predict_proba(X_train) from sklearn.metrics import confusion_matrix confusion_train = pd.DataFrame(confusion_matrix(y_train_hat_, y_train)) confusion_train train_acc = sum(np.diag(confusion_train)) / sum(sum(np.array(confusion_train))) train_acc y_test_hat_ = KNN_Clf.predict(X_test) y_test_hat_score = KNN_Clf.predict_proba(X_test) confusion_test = pd.DataFrame(confusion_matrix(y_test_hat_, y_test)) confusion_test test_acc = sum(np.diag(confusion_test)) / sum(sum(np.array(confusion_test))) test_acc # Output return { 'Data': { 'X_train': X_train, 'y_train': y_train, 'X_test': X_test, 'y_test': y_test }, 'Model': KNN_Clf, 'Train Result': { 'y_train_hat_': y_train_hat_, 'y_train_hat_score': y_train_hat_score, 'confusion_train': confusion_train, 'train_acc': train_acc }, 'Test Result': { 'y_test_hat_': y_test_hat_, 'y_test_hat_score': y_test_hat_score, 'confusion_test': confusion_test, 'test_acc': test_acc } } # End of function # Define function def DecisionTree_Classifier( X_train, X_test, y_train, y_test, maxdepth = 3, verbose=True, figsize=(12,6), fontsize=12): # Import Modules import numpy as np import matplotlib.pyplot as plt import pandas as pd import random from sklearn import tree # Train DCT = tree.DecisionTreeClassifier(max_depth=maxdepth) DCT = DCT.fit(X_train, y_train) # Plot if verbose: plt.figure(figsize=figsize) tree.plot_tree(DCT, feature_names=X_train.columns, fontsize=fontsize) # Report In-sample Estimators y_train_hat_ = DCT.predict(X_train) y_train_hat_score = DCT.predict_proba(X_train) from sklearn.metrics import confusion_matrix confusion_train = pd.DataFrame(confusion_matrix(y_train_hat_, y_train)) confusion_train train_acc = sum(np.diag(confusion_train)) / sum(sum(np.array(confusion_train))) train_acc y_test_hat_ = DCT.predict(X_test) y_test_hat_score = DCT.predict_proba(X_test) confusion_test = pd.DataFrame(confusion_matrix(y_test_hat_, y_test)) confusion_test test_acc = sum(np.diag(confusion_test)) / sum(sum(np.array(confusion_test))) test_acc # Output return { 'Data': { 'X_train': X_train, 'y_train': y_train, 'X_test': X_test, 'y_test': y_test }, 'Model': DCT, 'Train Result': { 'y_train_hat_': y_train_hat_, 'y_train_hat_score': y_train_hat_score, 'confusion_train': confusion_train, 'train_acc': train_acc }, 'Test Result': { 'y_test_hat_': y_test_hat_, 'y_test_hat_score': y_test_hat_score, 'confusion_test': confusion_test, 'test_acc': test_acc } } # End of function # define function def DecisionTree_Regressor( X_train, X_test, y_train, y_test, maxdepth=3, verbose=True, figsize=(12,6), fontsize=12): # Import Modules import numpy as np import matplotlib.pyplot as plt import pandas as pd import random from sklearn import tree # Train DCT = tree.DecisionTreeRegressor(max_depth=maxdepth) DCT = DCT.fit(X_train, y_train) # Report In-sample Estimators y_train_hat_ = DCT.predict(X_train) RMSE_train = np.sqrt(np.mean((y_train_hat_ - y_train)**2)) # Report Out-of-sample Estimators y_test_hat_ = DCT.predict(X_test) RMSE_test = np.sqrt(np.mean((y_test_hat_ - y_test)**2)) # Plot if verbose: plt.figure(figsize=figsize) tree.plot_tree(DCT, feature_names=X_train.columns, fontsize=fontsize) # Output return { 'Data': { 'X_train': X_train, 'y_train': y_train, 'X_test': X_test, 'y_test': y_test }, 'Model': DCT, 'Train Result': { 'y_train_hat_': y_train_hat_, 'RMSE_train': RMSE_train }, 'Test Result': { 'y_test_hat_': y_test_hat_, 'RMSE_test': RMSE_test } } # End of function # Define function def RandomForest_Classifier(X_train, X_test, y_train, y_test, maxdepth = 3): # Import Modules import numpy as np import matplotlib.pyplot as plt import pandas as pd import random from sklearn import ensemble # Train RF_Clf = ensemble.RandomForestClassifier(max_depth=maxdepth) RF_Clf = RF_Clf.fit(X_train, y_train) # Report In-sample Estimators y_train_hat_ = RF_Clf.predict(X_train) y_train_hat_score = RF_Clf.predict_proba(X_train) from sklearn.metrics import confusion_matrix confusion_train = pd.DataFrame(confusion_matrix(y_train_hat_, y_train)) confusion_train train_acc = sum(np.diag(confusion_train)) / sum(sum(np.array(confusion_train))) train_acc y_test_hat_ = RF_Clf.predict(X_test) y_test_hat_score = RF_Clf.predict_proba(X_test) confusion_test = pd.DataFrame(confusion_matrix(y_test_hat_, y_test)) confusion_test test_acc = sum(np.diag(confusion_test)) / sum(sum(np.array(confusion_test))) test_acc # Output return { 'Data': { 'X_train': X_train, 'y_train': y_train, 'X_test': X_test, 'y_test': y_test }, 'Model': RF_Clf, 'Train Result': { 'y_train_hat_': y_train_hat_, 'y_train_hat_score': y_train_hat_score, 'confusion_train': confusion_train, 'train_acc': train_acc }, 'Test Result': { 'y_test_hat_': y_test_hat_, 'y_test_hat_score': y_test_hat_score, 'confusion_test': confusion_test, 'test_acc': test_acc } } # End of function # define function def RandomForest_Regressor( X_train, X_test, y_train, y_test, n_trees=100, maxdepth=3, figsize=(4,4), dpi=800, font_size=12, verbose=True): # Import Modules import numpy as np import matplotlib.pyplot as plt import pandas as pd import random from sklearn import tree from sklearn.ensemble import RandomForestRegressor import time # Train RF = RandomForestRegressor( n_estimators=n_trees, max_depth=maxdepth) RF = RF.fit(X_train, y_train) # Visualization if verbose: cn=None fig, axes = plt.subplots(nrows=1, ncols=1, figsize=figsize, dpi=dpi) tree.plot_tree(RF.estimators_[0], feature_names = X_train.columns, class_names=cn, filled = True); fig.savefig('rf_individualtree.png') # Feature Importance if verbose: start_time = time.time() importances = RF.feature_importances_ std = np.std([tree.feature_importances_ for tree in RF.estimators_], axis=0) elapsed_time = time.time() - start_time print(f"Elapsed time to compute the importances: {elapsed_time:.3f} seconds") forest_importances = pd.Series(importances, index=X_train.columns) fig, ax = plt.subplots(figsize=figsize) forest_importances.plot.bar(yerr=std, ax=ax) plt.rc('font', size=font_size) ax.set_title("Feature importances using MDI") ax.set_ylabel("Mean Decrease in Impurity (MDI)") # fig.tight_layout() # Report In-sample Estimators y_train_hat_ = RF.predict(X_train) RMSE_train = np.sqrt(np.mean((y_train_hat_ - y_train)**2)) # Report Out-of-sample Estimators y_test_hat_ = RF.predict(X_test) RMSE_test = np.sqrt(np.mean((y_test_hat_ - y_test)**2)) # Output return { 'Data': { 'X_train': X_train, 'y_train': y_train, 'X_test': X_test, 'y_test': y_test }, 'Model': RF, 'Train Result': { 'y_train_hat_': y_train_hat_, 'RMSE_train': RMSE_train }, 'Test Result': { 'y_test_hat_': y_test_hat_, 'RMSE_test': RMSE_test } } # End of function # Define function def GradientBoosting_Classifier(X_train, X_test, y_train, y_test, n_estimators = 100, learning_rate = 0.2, maxdepth = 3, random_state = 0): # Import Modules import numpy as np import matplotlib.pyplot as plt import pandas as pd import random from sklearn import ensemble # Train GB_Clf = ensemble.GradientBoostingClassifier( n_estimators=n_estimators, learning_rate=learning_rate, max_depth=maxdepth, random_state=random_state ) GB_Clf = GB_Clf.fit(X_train, y_train) # Report In-sample Estimators y_train_hat_ = GB_Clf.predict(X_train) y_train_hat_score = GB_Clf.predict_proba(X_train) from sklearn.metrics import confusion_matrix confusion_train = pd.DataFrame(confusion_matrix(y_train_hat_, y_train)) confusion_train train_acc = sum(np.diag(confusion_train)) / sum(sum(np.array(confusion_train))) train_acc y_test_hat_ = GB_Clf.predict(X_test) y_test_hat_score = GB_Clf.predict_proba(X_test) confusion_test = pd.DataFrame(confusion_matrix(y_test_hat_, y_test)) confusion_test test_acc = sum(np.diag(confusion_test)) / sum(sum(np.array(confusion_test))) test_acc # Output return { 'Data': { 'X_train': X_train, 'y_train': y_train, 'X_test': X_test, 'y_test': y_test }, 'Model': GB_Clf, 'Train Result': { 'y_train_hat_': y_train_hat_, 'y_train_hat_score': y_train_hat_score, 'confusion_train': confusion_train, 'train_acc': train_acc }, 'Test Result': { 'y_test_hat_': y_test_hat_, 'y_test_hat_score': y_test_hat_score, 'confusion_test': confusion_test, 'test_acc': test_acc } } # End of function # define function def GradientBoosting_Regressor( X_train, X_test, y_train, y_test, n_estimators = 100, learning_rate = 0.2, maxdepth = 3, random_state = 0): # Import Modules import numpy as np import matplotlib.pyplot as plt import pandas as pd from sklearn import ensemble import time # Train GB_Reg = ensemble.GradientBoostingRegressor( n_estimators=n_estimators, learning_rate=learning_rate, max_depth=maxdepth, random_state=random_state ) GB_Reg = GB_Reg.fit(X_train, y_train) # Features feature_importance = pd.DataFrame([GB_Reg.feature_importances_], columns=X_train.columns) # Report In-sample Estimators y_train_hat_ = GB_Reg.predict(X_train) RMSE_train = np.sqrt(np.mean((y_train_hat_ - y_train)**2)) # Report Out-of-sample Estimators y_test_hat_ = GB_Reg.predict(X_test) RMSE_test = np.sqrt(np.mean((y_test_hat_ - y_test)**2)) # Output return { 'Data': { 'X_train': X_train, 'y_train': y_train, 'X_test': X_test, 'y_test': y_test }, 'Model': GB_Reg, 'Feature Importance': feature_importance, 'Train Result': { 'y_train_hat_': y_train_hat_, 'RMSE_train': RMSE_train }, 'Test Result': { 'y_test_hat_': y_test_hat_, 'RMSE_test': RMSE_test } } # End of function # define SVM_Regressor function: def SVM_Regressor( X_train=None, y_train=None, X_valid=None, y_valid=None, X_test=None, y_test=None, useStandardScaler=True, kernel='rbf', gamma='auto', C=1.0, epsilon=0.2, axis_font_size=20, verbose=True ): # library import pandas as pd import time # checkpoint start = time.time() # build model from sklearn.svm import SVR from sklearn.pipeline import make_pipeline from sklearn.preprocessing import StandardScaler import numpy as np # source: https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html if useStandardScaler: regr = make_pipeline(StandardScaler(), SVR(kernel=kernel, gamma=gamma, C=C, epsilon=epsilon, verbose=verbose)) else: # kernel='rbf', gamma='auto', C=1.0, epsilon=0.2 regr = SVR(kernel=kernel, gamma=gamma, C=C, epsilon=epsilon, verbose=verbose) # fit model regr.fit(X_train, y_train) # checkpoint end = time.time() if verbose: print('Training time consumption ' + str(end-start) + ' seconds.') # prediction on train set y_train_hat_ = regr.predict(X_train) # prediction on test set y_test_hat_ = regr.predict(X_test) # library import numpy as np # mean square error on train set y_train_hat_ = y_train_hat_.reshape(-1) RMSE_train = (np.sum((y_train_hat_ - y_train) ** 2) / len(y_train)) ** 0.5 # mean square error on test set y_test_hat_ = y_test_hat_.reshape(-1) RMSE_test = (np.sum((y_test_hat_ - y_test) ** 2) / len(y_test)) ** 0.5 # visualize if verbose: import seaborn as sns residuals = y_test - y_test_hat_ residuals = pd.Series(residuals, name='Residuials') fitted = pd.Series(y_test_hat_, name='Fitted Value') ax = sns.regplot(x=residuals, y=fitted, color='g').set(title='Residuals vs. Fitted Values (Test)') print("Reminder: A good fit leads to Gaussian-like residuals.") # Output return { 'Data': { 'X_train': X_train, 'y_train': y_train, 'X_test': X_test, 'y_test': y_test }, 'Model': regr, 'Train Result': { 'y_train_hat_': y_train_hat_, 'RMSE_train': RMSE_train }, 'Test Result': { 'y_test_hat_': y_test_hat_, 'RMSE_test': RMSE_test } } # End of function # Define function def Adam_Regressor(Xadam, y, batch_size = 10, lr = 0.01, epochs = 200, period = 20, verbose=True): # Library import numpy as np import pandas as pd import matplotlib.pyplot as plt # Adam def adam(params, vs, sqrs, lr, batch_size, t): beta1 = 0.1 beta2 = 0.111 eps_stable = 1e-9 for param, v, sqr in zip(params, vs, sqrs): g = param.grad / batch_size v[:] = beta1 * v + (1. - beta1) * g sqr[:] = beta2 * sqr + (1. - beta2) * nd.square(g) v_bias_corr = v / (1. - beta1 ** t) sqr_bias_corr = sqr / (1. - beta2 ** t) div = lr * v_bias_corr / (nd.sqrt(sqr_bias_corr) + eps_stable) param[:] = param - div # Library import mxnet as mx from mxnet import autograd from mxnet import ndarray as nd from mxnet import gluon import random mx.random.seed(1) random.seed(1) # Generate data. # Xadam = covid19_confirmed_china_rolling_data.iloc[:, [1,2,3,5]] <=== this is input num_inputs = pd.DataFrame(Xadam).shape[1] num_examples = pd.DataFrame(Xadam).shape[0] X = nd.array(Xadam) # y = nd.array(covid19_confirmed_china_rolling_data['Y']) <=== this is input dataset = gluon.data.ArrayDataset(X, y) # Construct data iterator. def data_iter(batch_size): idx = list(range(num_examples)) random.shuffle(idx) for batch_i, i in enumerate(range(0, num_examples, batch_size)): j = nd.array(idx[i: min(i + batch_size, num_examples)]) yield batch_i, X.take(j), y.take(j) # Initialize model parameters. def init_params(): w = nd.random_normal(scale=1, shape=(num_inputs, 1)) b = nd.zeros(shape=(1,)) params = [w, b] vs = [] sqrs = [] for param in params: param.attach_grad() vs.append(param.zeros_like()) sqrs.append(param.zeros_like()) return params, vs, sqrs # Linear regression. def net(X, w, b): return nd.dot(X, w) + b # Loss function. def square_loss(yhat, y): return (yhat - y.reshape(yhat.shape)) ** 2 / 2 # %matplotlib inline import matplotlib as mpl mpl.rcParams['figure.dpi']= 120 import matplotlib.pyplot as plt import numpy as np def train(batch_size, lr, epochs, period): assert period >= batch_size and period % batch_size == 0 [w, b], vs, sqrs = init_params() total_loss = [np.mean(square_loss(net(X, w, b), y).asnumpy())] t = 0 # Epoch starts from 1. for epoch in range(1, epochs + 1): for batch_i, data, label in data_iter(batch_size): with autograd.record(): output = net(data, w, b) loss = square_loss(output, label) loss.backward() # Increment t before invoking adam. t += 1 adam([w, b], vs, sqrs, lr, batch_size, t) if batch_i * batch_size % period == 0: total_loss.append(np.mean(square_loss(net(X, w, b), y).asnumpy())) print("Batch size %d, Learning rate %f, Epoch %d =========================> loss %.4e" % (batch_size, lr, epoch, total_loss[-1])) print('w:', np.reshape(w.asnumpy(), (1, -1)), 'b:', b.asnumpy()[0], '\n') x_axis = np.linspace(0, epochs, len(total_loss), endpoint=True) plt.semilogy(x_axis, total_loss) plt.xlabel('epoch') plt.ylabel('loss') plt.show() return w, b w, b = train(batch_size = batch_size, lr = lr, epochs = epochs, period = period) w_adam = [] for w_i in range(len(list(w.asnumpy()))): w_adam.append(list(w.asnumpy())[w_i][0]) if verbose: print('Weight:', w_adam) b_adam = list(b.asnumpy())[0] if verbose: print('Bias:', b_adam) y_hat_adam = np.dot(Xadam, w_adam) + b_adam return { 'parameters': {'w': w, 'b': b}, 'y_estimate': y_hat_adam } # End of function # Define function def ResultAUCROC(y_test, y_test_hat): from sklearn.metrics import roc_curve, auc, roc_auc_score fpr, tpr, thresholds = roc_curve(y_test, y_test_hat) areaUnderROC = auc(fpr, tpr) resultsROC = { 'false positive rate': fpr, 'true positive rate': tpr, 'thresholds': thresholds, 'auc': round(areaUnderROC, 3) } import matplotlib.pyplot as plt plt.figure() plt.plot(fpr, tpr, color='r', lw=2, label='ROC curve') plt.plot([0, 1], [0, 1], color='k', lw=2, linestyle='--') plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Receiver operating characteristic: \ Area under the curve = {0:0.3f}'.format(areaUnderROC)) plt.legend(loc="lower right") plt.show() def AutoMachineLearningClassifier( X = None, y = None, cutoff = 0.1, random_state = 123, selected_algorithm = ['AdaBoostClassifier', 'BaggingClassifier', 'BernoulliNB', 'CalibratedClassifierCV', 'DecisionTreeClassifier', 'DummyClassifier', 'ExtraTreeClassifier', 'ExtraTreesClassifier', 'GaussianNB', 'KNeighborsClassifier', 'LabelPropagation', 'LabelSpreading', 'LinearDiscriminantAnalysis', 'LinearSVC', 'LogisticRegression', 'NearestCentroid', 'NuSVC', 'PassiveAggressiveClassifier', 'Perceptron', 'QuadraticDiscriminantAnalysis', 'RandomForestClassifier', 'RidgeClassifier', 'RidgeClassifierCV', 'SGDClassifier', 'SVC', 'XGBClassifier', 'LGBMClassifier'] ): # library import lazypredict from lazypredict.Supervised import LazyClassifier # split train test X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=cutoff, random_state=random_state) # fit clf = LazyClassifier(verbose=0, ignore_warnings=True, custom_metric=None) results, predictions = clf.fit(X_train, X_test, y_train, y_test) models_ = clf.provide_models(X_train, X_test, y_train, y_test) # prediction y_train_hat_mat_ = [] y_test_hat_mat_ = [] for some_algo in selected_algorithm: y_train_hat_mat_.append(models_[some_algo].predict(X_train)) y_test_hat_mat_.append(models_[some_algo].predict(X_test)) # convert y_train_hat_mat_ = pd.DataFrame(np.asarray(y_train_hat_mat_)).transpose().values y_test_hat_mat_ = pd.DataFrame(np.asarray(y_test_hat_mat_)).transpose().values # output return { 'Data': { 'X_train': X_train, 'y_train': y_train, 'X_test': X_test, 'y_test': y_test }, 'Model': models_, 'List of Algorithms': models_.keys(), 'Results': results, 'Predictions': { 'y_train_hat_mat_': y_train_hat_mat_, 'y_test_hat_mat_': y_test_hat_mat_ } } def AutoMachineLearningRegressor( X = None, y = None, cutoff = 0.1, random_state = 123, selected_algorithm = ['AdaBoostRegressor', 'BaggingRegressor', 'BayesianRidge', 'DecisionTreeRegressor', 'DummyRegressor', 'ElasticNet', 'ElasticNetCV', 'ExtraTreeRegressor', 'ExtraTreesRegressor', 'GammaRegressor', 'GaussianProcessRegressor', 'GeneralizedLinearRegressor', 'GradientBoostingRegressor', 'HistGradientBoostingRegressor', 'HuberRegressor', 'KNeighborsRegressor', 'KernelRidge', 'Lars', 'LarsCV', 'Lasso', 'LassoCV', 'LassoLars', 'LassoLarsCV', 'LassoLarsIC', 'LinearRegression', 'LinearSVR', 'MLPRegressor', 'NuSVR', 'OrthogonalMatchingPursuit', 'OrthogonalMatchingPursuitCV', 'PassiveAggressiveRegressor', 'PoissonRegressor', 'RANSACRegressor', 'RandomForestRegressor', 'Ridge', 'RidgeCV', 'SGDRegressor', 'SVR', 'TransformedTargetRegressor', 'TweedieRegressor', 'XGBRegressor', 'LGBMRegressor'] ): # library import lazypredict from lazypredict.Supervised import LazyRegressor # split train test X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=cutoff, random_state=random_state) # fit reg = LazyRegressor(verbose=0, ignore_warnings=True, custom_metric=None) results, predictions = reg.fit(X_train, X_test, y_train, y_test) models_ = reg.provide_models(X_train, X_test, y_train, y_test) # prediction y_train_hat_mat_ = [] y_test_hat_mat_ = [] for some_algo in selected_algorithm: y_train_hat_mat_.append(models_[some_algo].predict(X_train)) y_test_hat_mat_.append(models_[some_algo].predict(X_test)) # convert y_train_hat_mat_ = pd.DataFrame(np.asarray(y_train_hat_mat_)).transpose().values y_test_hat_mat_ = pd.DataFrame(np.asarray(y_test_hat_mat_)).transpose().values # output return { 'Data': { 'X_train': X_train, 'y_train': y_train, 'X_test': X_test, 'y_test': y_test }, 'Model': models_, 'List of Algorithms': models_.keys(), 'Results': results, 'Predictions': { 'y_train_hat_mat_': y_train_hat_mat_, 'y_test_hat_mat_': y_test_hat_mat_ } }
import zipfile import tempfile from typing import Union import tensorflow as tf from tensorflow.keras.preprocessing.image import ImageDataGenerator from tensorflow import keras from PIL import Image from keras.preprocessing import image import numpy as np import datetime from matplotlib import pyplot as plt from tensorflow.keras.layers import * import os from tqdm import trange import keras.models from tabulate import tabulate from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelBinarizer from tensorflow.keras.utils import to_categorical from tensorflow.keras.applications import ResNet50V2 from tensorflow.keras.models import Model from tensorflow.keras.preprocessing.image import load_img, img_to_array from tensorflow.keras.applications.mobilenet_v2 import preprocess_input import cv2 import numpy as np from tensorflow.keras.preprocessing.image import img_to_array from tensorflow.keras.applications.mobilenet_v2 import preprocess_input from tensorflow.keras.optimizers import Adam import traceback class KerasTrain(object): def __init__(self, model=None, batch_size=32, epochs=25, workers=1, use_multiprocessing=False) -> None: super().__init__() self.model = model self.batch_size = batch_size self.epochs = epochs self.workers = workers self.use_multiprocessing = use_multiprocessing self.model_classes_ = {} self.size = (150, 150) self.lr = 1e-5 self.log_dir = "logs/fit/" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S") prototxtPath = "deploy.prototxt" weightsPath = "res10_300x300_ssd_iter_140000.caffemodel" print("[INFO] Loading face detector model...") self.net = cv2.dnn.readNet(prototxtPath, weightsPath) self.tensorboard_callback = tf.keras.callbacks.TensorBoard( log_dir=self.log_dir, histogram_freq=1) for i, _dir in enumerate(os.listdir("dataset"), 0): self.model_classes_[_dir] = i def loadTensorImg(self, img_path): img = image.load_img(img_path, target_size=self.size) imgTensor = image.img_to_array(img) # (1, height, width, channels), add a dimension because the model expects this shape: (batch_size, height, width, channels) imgTensor = np.expand_dims(imgTensor, axis=0) # imshow expects values in the range [0, 1] imgTensor /= 255. return imgTensor def predict(self, img: Union[str, np.ndarray], mode="category", modelPath=None, **kwargs): # model = keras.models.load_model("model.h5") if modelPath is not None: self.model = self.loadModel(modelPath) if isinstance(img, str) and not img.endswith(".png"): imgPil = Image.open(img) imgPil = imgPil.convert("RGB") imgPil.save(img.split(".")[0] + ".png") # imageToPredict = self.loadTensorImg(imgPath) prediction = self.model.predict(img, callbacks=[ self.tensorboard_callback], workers=self.workers, use_multiprocessing=self.use_multiprocessing, **kwargs) return prediction def train(self, imageDataGeneratorArgs: dict = {}, modelPath="model.h5", **kwargs): aug = ImageDataGenerator(**imageDataGeneratorArgs) files = [] dirlist = ["dataset/"] while len(dirlist) > 0: for (dirpath, dirnames, filenames) in os.walk(dirlist.pop()): dirlist.extend(dirnames) files.extend(map(lambda n: os.path.join( *n), zip([dirpath] * len(filenames), filenames))) data = [] labels = [] # loop over the image paths for imagePath in files: # extract the class label from the filename label = imagePath.split(os.path.sep)[-2] image = load_img(imagePath, target_size=self.size) image = img_to_array(image) image = preprocess_input(image) # update the data and labels lists, respectively data.append(image) labels.append(label) # convert the data and labels to NumPy arrays data = np.array(data, dtype="float32") labels = np.array(labels) lb = LabelBinarizer() labels = lb.fit_transform(labels) labels = to_categorical(labels) (x_train, x_test, y_train, y_test) = train_test_split(data, labels, test_size=0.20, stratify=labels, random_state=42) baseModel = ResNet50V2(weights="imagenet", include_top=False, input_tensor=Input(shape=(150, 150, 3))) headModel = baseModel.output headModel = Conv2D(32, kernel_size=( 3, 3), activation='relu', input_shape=(150, 150, 3))(headModel) headModel = Conv2D(64, (3, 3), activation='relu')(headModel) headModel = MaxPooling2D(pool_size=(1, 1))(headModel) headModel = Dropout(0.25)(headModel) headModel = Flatten()(headModel) headModel = Dense(128, activation='relu')(headModel) headModel = Dropout(0.5)(headModel) headModel = Dense(len(self.model_classes_), activation="softmax", name="output")(headModel) # place the head FC model on top of the base model (this will become # the actual model we will train) self.model = Model(inputs=baseModel.input, outputs=headModel) # loop over all layers in the base model and freeze them so they will # *not* be updated during the first training process for layer in baseModel.layers: layer.trainable = False opt = Adam(learning_rate=self.lr, decay=self.lr / self.epochs) self.model.compile(loss="binary_crossentropy", optimizer=opt, metrics=["accuracy"]) history = self.model.fit( aug.flow(x_train, y_train, batch_size=self.batch_size), validation_data=(x_test, y_test), validation_steps=len(x_test) // self.batch_size, epochs=self.epochs, steps_per_epoch=len(x_train) // self.batch_size, workers=self.workers, use_multiprocessing=self.use_multiprocessing, callbacks=[self.tensorboard_callback] ) self.model.save(modelPath) plt.style.use("ggplot") plt.figure() plt.plot(history.history['accuracy'], label="train_acc") plt.plot(history.history['val_accuracy'], label="test_acc") plt.plot(history.history['loss'], label="train_loss") plt.plot(history.history['val_loss'], label="test_loss") plt.xlabel("Epochs #") plt.ylabel("Loss/Accuracy") plt.legend(loc="lower left") plt.savefig(f"loss-accuracy-{self.epochs}-{self.batch_size}.png") plt.clf() return history, self.model @staticmethod def loadModel(path="model.h5"): model = keras.models.load_model(path) return KerasTrain( model=model ) def displayPredictions(self, predictions: np.ndarray, imgPath: str, coords_msg: str): print(f"Prediction for :{imgPath}") dic = {} for i in range(len(self.model_classes_)): dic[list(self.model_classes_.keys())[i]] = predictions[0][i]*100 print(tabulate({k: f"{v:.2f}%" for k, v in dic.items() }.items(), headers=["Class", "Confidence"])) idx = np.argmax(predictions, axis=1)[0] print( f">>> Prediction final \"{list(self.model_classes_.keys())[idx]}\" with {predictions[0][idx]*100:.2f}% confidence {coords_msg}\n") def predictDirectory(self, dirPath: str = "dataset"): if os.path.isdir(dirPath): files = [] dirlist = [dirPath] while len(dirlist) > 0: for (dirpath, dirnames, filenames) in os.walk(dirlist.pop()): dirlist.extend(dirnames) files.extend(map(lambda n: os.path.join( *n), zip([dirpath] * len(filenames), filenames))) else: files = [dirPath] for i, f in enumerate(files): if "." not in f: continue split_f = f.split("/")[-1].split(".") output_dir = f"output" if not os.path.exists(output_dir): os.makedirs(output_dir) f_output = f"{output_dir}/{os.path.basename(split_f[0])}-{i}.{split_f[1]}" if f_output[-4:] == ".png" or f_output[-4:] == ".jpg": self.detectFaceAndPredict(f, f_output) print(f"{f_output} processed") def detectFaceAndPredict(self, img_path: str, output_path: str): try: baseImage = cv2.imread(img_path) bW, bH, bC = baseImage.shape image = cv2.resize(baseImage, (600, 600)) resizedW, resizedH, resizedC = image.shape (h, w) = image.shape[:2] blob = cv2.dnn.blobFromImage(image, 1.0, (350, 350), (104.0, 177.0, 123.0)) print("[INFO] computing face detections...") self.net.setInput(blob) detections = self.net.forward() for i in range(0, detections.shape[2]): confidence = detections[0, 0, i, 2] if confidence > 0.4: box = detections[0, 0, i, 3:7] * np.array([w, h, w, h]) (startX, startY, endX, endY) = box.astype("int") (startX, startY) = (max(0, startX), max(0, startY)) (endX, endY) = (min(w - 1, endX), min(h - 1, endY)) face = image[startY:endY, startX:endX] is_single_img = False try: if not len(face): face = cv2.cvtColor(baseImage, cv2.COLOR_BGR2RGB) face = cv2.resize(face, self.size) face = img_to_array(face) face = preprocess_input(face) face = np.expand_dims(face, axis=0) prediction = self.predict(face) (startX, startY, endX, endY) = (0, w - 5, h - 5, 0) is_single_img = True else: face = cv2.cvtColor(face, cv2.COLOR_BGR2RGB) face = cv2.resize(face, self.size) face = img_to_array(face) face = preprocess_input(face) face = np.expand_dims(face, axis=0) prediction = self.model.predict(face) except Exception: traceback.print_exc() continue (mask, withoutMask) = prediction[0] label = "Mask" if mask > withoutMask else "No Mask" color = (0, 255, 0) if label == "Mask" else (0, 0, 255) coords_msg = f"on face coords -> ({startX}, {startY}) ({endX}, {endY})" self.displayPredictions(prediction, img_path, coords_msg) label = "{}: {:.2f}%".format( label, max(mask, withoutMask) * 100) startX = round((startX / resizedH) * bH) startY = round((startY / resizedW) * bW) endX = round((endX / resizedH) * bH) endY = round((endY / resizedW) * bW) cv2.putText(baseImage, label, (startX, startY - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.35, color, 1) cv2.rectangle(baseImage, (startX, startY), (endX, endY), color, 2) if is_single_img: break cv2.imwrite(output_path, baseImage) except Exception: print(f"Cannot detect faces : {traceback.format_exc()}") def testBatchSize(self): batches = [] testBatches = [] losses = [] lossesTests = [] nbBatches = list(range(1, 257, 32)) for batch in trange(1, 257, 32): trainer = KerasTrain(batch_size=batch, epochs=25, workers=self.workers, use_multiprocessing=self.use_multiprocessing) history, model = trainer.train( dict( rotation_range=20, zoom_range=0.15, width_shift_range=0.2, height_shift_range=0.2, shear_range=0.15, horizontal_flip=True, fill_mode="nearest" ), modelPath=f"model-{batch}.h5" ) batches.append(max(history.history["accuracy"]) * 100) testBatches.append(max(history.history["val_accuracy"]) * 100) losses.append(max(history.history['loss'])) lossesTests.append(max(history.history['val_loss'])) plt.style.use("ggplot") plt.plot(nbBatches, batches, label="train_acc") plt.plot(nbBatches, testBatches, label="train_test") plt.plot(nbBatches, losses, label="train_loss") plt.plot(nbBatches, lossesTests, label="test_loss") plt.title(f'Model loss/accuracy batch size variation') plt.ylabel('Loss/Accuracy') plt.xlabel('Batch size #') plt.legend(loc='lower left') plt.savefig(f"loss_accuracy-batch_size.png") plt.clf() if __name__ == "__main__": trainer = KerasTrain() trainer.testBatchSize()
import torch import cv2 import numpy as np from argparse import ArgumentParser from torch.utils.data.sampler import SubsetRandomSampler from models.model import Model def argument_setting(inhert=False): class Range(object): def __init__(self, start, end): self.start = start self.end = end def __eq__(self, other): return self.start <= other <= self.end parser = ArgumentParser() parser.add_argument('--cuda', type=int, default=0, help='set the model to run on which gpu (default: 0)') # dataset argument parser.add_argument('--holdout-p', type=float, default=0.8, help='set hold out CV probability (default: 0.8)') parser.add_argument('--num-workers', type=int, default=8, help='set the number of processes to run (default: 8)') # training argument parser.add_argument('--batch-size', type=int, default=1, help='set the batch size (default: 1)') parser.add_argument('--epochs', type=int, default=1, help='set the epochs (default: 1)') parser.add_argument( '--model', type=str, choices=Model().get_model_list(), metavar='MODEL_NAME', default='VGG19', help=f'set model name.\nThe acceptable models are {Model().get_model_list()} (default: "VGG19")' ) parser.add_argument('--iteration', action="store_true", default=False, help='set to decrease learning rate each iteration (default: False)') parser.add_argument('--train-all', action="store_true", default=False, help='set to update all parameters of model (default: False)') # optimizer argument parser.add_argument('--optim', type=str, default='SGD', help='set optimizer (default: SGD)') parser.add_argument('--lr', type=float, default=1e-5, help='set the learning rate (default: 1e-5)') parser.add_argument('--momentum', type=float, default=0.9, help='set momentum of SGD (default: 0.9)') # scheduler argument parser.add_argument('--scheduler', action="store_true", default=False, help='training with step or multi step scheduler (default: False)') parser.add_argument('--gamma', type=float, default=0.99985, help='set decreate factor (default: 0.99985)') # post-processing argument parser.add_argument( '--threshold', type=float, choices=[Range(0.0, 1.0)], default=0.99, metavar='THRESHOLD', help='the number thresholds the output answer (Float number >= 0 and <=1) (default: 0.99)' ) parser.add_argument('--output-path', type=str, default='./output/', help='output file (csv, txt, pth) path (default: ./output)') parser.add_argument('--train-path', type=str, default='./data/train/', help='training dataset path (default: ./data/train/)') parser.add_argument('--test-path', type=str, default='./data/test1/', help='evaluating dataset path (default: ./data/test1/)') parser.add_argument('--submit-csv', type=str, default='./data/sample_submission.csv', help='submission CSV file (default: ./data/sample_submission.csv)') # for the compatiable if inhert is True: return parser return parser.parse_args() def cross_validation(full_set, p=0.8): """ hold out cross validation """ train_len = len(full_set) # get shuffled indices indices = np.random.permutation(range(train_len)) split_idx = int(train_len * p) train_idx, valid_idx = indices[:split_idx], indices[split_idx:] full_set = np.array(full_set) train_set = full_set[list(SubsetRandomSampler(train_idx))] valid_set = full_set[list(SubsetRandomSampler(valid_idx))] train_set = torch.from_numpy(train_set) valid_set = torch.from_numpy(valid_set) return train_set, valid_set def threshold_function(data, threshold, device='cpu'): data = torch.where(data >= threshold, torch.tensor(1.0, dtype=data.dtype).to(device), data) data = torch.where(data < (1-threshold), torch.tensor(0.0, dtype=data.dtype).to(device), data) return data def adaptive_threshold(img): gray_img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) bilateral = cv2.bilateralFilter(gray_img, 11, 75, 75) blur = cv2.GaussianBlur(bilateral, (5, 5), 1) adaptive_threshold = cv2.adaptiveThreshold( blur, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV, 11, 2 ) return adaptive_threshold
""" Copyright 2015 Rackspace Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from tempest_lib.exceptions import NotFound from functionaltests.api.v2.models.recordset_model import RecordsetModel from functionaltests.api.v2.models.recordset_model import RecordsetListModel from functionaltests.common.client import ClientMixin from functionaltests.common import utils class RecordsetClient(ClientMixin): @classmethod def recordsets_uri(cls, zone_id): return "/v2/zones/{0}/recordsets".format(zone_id) @classmethod def recordset_uri(cls, zone_id, recordset_id): return "{0}/{1}".format(cls.recordsets_uri(zone_id), recordset_id) def list_recordsets(self, zone_id, **kwargs): resp, body = self.client.get(self.recordsets_uri(zone_id), **kwargs) return self.deserialize(resp, body, RecordsetListModel) def get_recordset(self, zone_id, recordset_id, **kwargs): resp, body = self.client.get(self.recordset_uri(zone_id, recordset_id), **kwargs) return self.deserialize(resp, body, RecordsetModel) def post_recordset(self, zone_id, recordset_model, **kwargs): resp, body = self.client.post(self.recordsets_uri(zone_id), body=recordset_model.to_json(), **kwargs) return self.deserialize(resp, body, RecordsetModel) def put_recordset(self, zone_id, recordset_id, recordset_model, **kwargs): resp, body = self.client.put(self.recordset_uri(zone_id, recordset_id), body=recordset_model.to_json(), **kwargs) return self.deserialize(resp, body, RecordsetModel) def delete_recordset(self, zone_id, recordset_id, **kwargs): resp, body = self.client.delete( self.recordset_uri(zone_id, recordset_id), **kwargs) return self.deserialize(resp, body, RecordsetModel) def wait_for_recordset(self, zone_id, recordset_id): utils.wait_for_condition( lambda: self.is_recordset_active(zone_id, recordset_id)) def wait_for_404(self, zone_id, recordset_id): utils.wait_for_condition( lambda: self.is_recordset_404(zone_id, recordset_id)) def is_recordset_active(self, zone_id, recordset_id): resp, model = self.get_recordset( zone_id, recordset_id) assert resp.status == 200 if model.status == 'ACTIVE': return True elif model.status == 'ERROR': raise Exception("Saw ERROR status") return False def is_recordset_404(self, zone_id, recordset_id): try: self.get_recordset(zone_id, recordset_id) except NotFound: return True return False
import unittest from max_sub_array_2 import Solution from ddt import ddt, data, unpack @ddt class Tester(unittest.TestCase): def setUp(self): self.s = Solution() @data( [[1], 1], [[-2,1,-3,4,-1,2,1,-5,4], 6], [[-2,-1],-1], [[0,-1],0] ) @unpack def test(self, nums, expected): ret = self.s.maxSubArray(nums) self.assertEqual(ret, expected) if __name__ == '__main__': unittest.main()
import numpy as np import matplotlib.pyplot as plt import h5py import scipy.io import math import sklearn import sklearn.datasets def init_mome(parameters): L = len(parameters) // 2 # number of layers v = {} # Initialize velocity for l in range(L): v["dW" + str(l+1)] = np.zeros((parameters["W" + str(l+1)].shape[0], parameters["W" + str(l+1)].shape[1])) v["db" + str(l+1)] = np.zeros((parameters["b" + str(l+1)].shape[0], parameters["b" + str(l+1)].shape[1])) return v def update_params_mome(parameters, grads, v, beta, learning_rate): L = len(parameters) // 2 # number of layers in the neural networks # Momentum update for l in range(L): # velocities v["dW" + str(l+1)] = beta*v["dW" + str(l+1)] + (1 - beta)*grads['dW' + str(l+1)] v["db" + str(l+1)] = beta*v["db" + str(l+1)] + (1 - beta)*grads['db' + str(l+1)] # update params parameters["W" + str(l+1)] = parameters["W" + str(l+1)] - learning_rate*v["dW" + str(l+1)] parameters["b" + str(l+1)] = parameters["b" + str(l+1)] - learning_rate*v["db" + str(l+1)] return parameters, v
import warnings from statsmodels.stats.diagnostic import ( CompareCox, CompareJ, HetGoldfeldQuandt, OLS, ResultsStore, acorr_breusch_godfrey, acorr_ljungbox, acorr_lm, breaks_cusumolsresid, breaks_hansen, compare_cox, compare_j, het_arch, het_breuschpagan, het_goldfeldquandt, het_white, linear_harvey_collier, linear_lm, linear_rainbow, recursive_olsresiduals, spec_white ) from statsmodels.tsa.stattools import adfuller __all__ = ["CompareCox", "CompareJ", "HetGoldfeldQuandt", "OLS", "ResultsStore", "acorr_breusch_godfrey", "acorr_ljungbox", "acorr_lm", "adfuller", "breaks_cusumolsresid", "breaks_hansen", "compare_cox", "compare_j", "het_arch", "het_breuschpagan", "het_goldfeldquandt", "het_white", "linear_harvey_collier", "linear_lm", "linear_rainbow", "recursive_olsresiduals", "spec_white"] warnings.warn("The statsmodels.sandbox.stats.diagnostic module is deprecated. " "Use statsmodels.stats.diagnostic.", DeprecationWarning, stacklevel=2)
import hashlib import datetime # import pyecharts from django.http import HttpResponseNotFound from django.shortcuts import render, redirect, render_to_response from django.template import RequestContext from django.core.paginator import Paginator from pyecharts import Line from user.models import * from device.models import * from data.models import * # pyecharts.configure( # global_theme='roma' # ) def sha256(password): return hashlib.sha256(password.encode()).hexdigest() def page_not_found(request, exception, template_name="error-404.html"): # response = render_to_response('error-404.html') # response.status_code = 404 # return response # return render(request, 'error-404.html') return render(request, template_name, status=404) def page_error(request): return render(request, 'error-500.html', status=500) def logout(request): log = UserLogModel() log.data_time = datetime.datetime.now() log.phone_number = request.session.get('phone_number', '') log.action = '0' if request.META.get('HTTP_X_FORWARDED_FOR', ''): ip = request.META['HTTP_X_FORWARDED_FOR'] else: ip = request.META['REMOTE_ADDR'] log.ip = ip log.save() if request.session.get('phone_number', ''): request.session.flush() return redirect('/login/') def login(request): context = { 'title': "欢迎来到实验室用电信息统计平台" } if request.method == "POST": # print(request.POST) phone_number = request.POST.get('phone_number', '0') password = sha256(request.POST.get('password')) # print(UserModel.objects.all()) users = UserModel.objects.filter(phone_number=phone_number) # print(users) if users: if users[0].password == password: context['title'] = "登录成功" request.session['phone_number'] = phone_number user = UserModel.objects.get(phone_number=phone_number) user.last_login_time = datetime.datetime.now() user.save() log = UserLogModel() log.data_time = datetime.datetime.now() log.phone_number = request.session.get('phone_number', '') log.action = '1' if request.META.get('HTTP_X_FORWARDED_FOR', ''): ip = request.META['HTTP_X_FORWARDED_FOR'] else: ip = request.META['REMOTE_ADDR'] log.ip = ip log.save() # print(request.POST.get('remember_me', 'off')) if request.POST.get('remember_me', 'off') == 'on': request.session.set_expiry(3600*24*7) # return dashboard(request) return redirect('/dashboard/') else: log = UserLogModel() log.data_time = datetime.datetime.now() log.phone_number = request.POST.get('phone_number', '') log.action = '2' if request.META.get('HTTP_X_FORWARDED_FOR', ''): ip = request.META['HTTP_X_FORWARDED_FOR'] else: ip = request.META['REMOTE_ADDR'] log.ip = ip log.save() context['title'] = "密码错误" else: log = UserLogModel() log.data_time = datetime.datetime.now() log.phone_number = request.POST.get('phone_number', '') log.action = '2' if request.META.get('HTTP_X_FORWARDED_FOR', ''): ip = request.META['HTTP_X_FORWARDED_FOR'] else: ip = request.META['REMOTE_ADDR'] log.ip = ip log.save() context['title'] = "用户不存在" elif request.session.get('phone_number', ''): return redirect('/dashboard/') else: context['title'] = "欢迎来到实验室用电信息统计平台" return render(request, 'login_staradmin.html', context=context) def dashboard(request): phone_number = request.session.get('phone_number', '') if phone_number == '': return redirect('/') user = UserModel.objects.get(phone_number=phone_number) time_delta = datetime.datetime.now() - datetime.datetime(2019, 1, 1) if user.is_admin: data = DataModel.objects.order_by('data_time')[0:51] user_number = UserModel.objects.count() device_number = DeviceModel.objects.count() data_number = DataModel.objects.count() if user.device_id: device = DeviceModel.objects.get(device_id=user.device_id) status = device.status else: device = '管理员设备' status = True else: user_number = UserModel.objects.filter(phone_number=phone_number).count() device_number = DeviceModel.objects.filter(device_id=user.device_id).count() data_number = DataModel.objects.filter(device_id=user.device_id).count() device = DeviceModel.objects.get(device_id=user.device_id) data = DataModel.objects.filter(device_id=device.device_id).order_by('data_time')[0:51] status = device.status status = 'offline' if status is False else 'online' attr = [str(dat.data_time).split('.')[0] for dat in data] current_values = [float(dat.current_value) for dat in data] active_power_values = [float(dat.active_power_value) for dat in data] total_active_power_values = [float(dat.total_active_power_value) for dat in data] line = Line("近50条数据", "电流、有功功率和有功总电量") line.add("电流", attr, current_values, is_fill=True, mark_point=["max", "min"]) line.add("有功功率", attr, active_power_values, mark_point=["max", "min"]) line.add("有功总电量", attr, total_active_power_values, mark_point=["max", "min"]) # if user.is_admin: # devices = DeviceModel.objects.filter(device_id=user.device_id) # status = 'offline' # if devices: # status = devices[0].status # else: # status = 'online' # user_number = UserModel.objects.count() # device_number = DeviceModel.objects.count() # data_number = DataModel.objects.count() context_data = { 'name': user.name, 'device_id': user.device_id, 'device_status': status, 'instruction': '若系统使用时遇到问题,请及时向系统管理员进行反馈。谢谢大家的配合~', 'user_number': user_number, 'device_number': device_number, 'running_days': time_delta.days, 'data_number': data_number, 'current_peak_value': max([dat.current_value for dat in data]) if len(data) > 0 else 0, 'active_power_peak_value': max([dat.active_power_value for dat in data]) if len(data) > 0 else 0, 'total_active_power_peak_value': max([dat.total_active_power_value for dat in data]) if len(data) > 0 else 0, 'dashboard_chart': line.render_embed(), } # else: # device = DeviceModel.objects.get(device_id=user.device_id) # data = DataModel.objects.filter(device_id=device.device_id).order_by('data_time')[0:50] # print(data) # # attr = [str(dat.data_time).split('.')[0] for dat in data] # current_values = [dat.current_value for dat in data] # active_power_values = [dat.active_power_value for dat in data] # total_active_power_values = [dat.total_active_power_value for dat in data] # # line = Line("近50条数据", "电流、有功功率和有功总电量") # # line.use_theme('macarons') # line.add("电流", attr, current_values, is_fill=True, mark_point=["max", "min"]) # line.add("有功功率", attr, active_power_values, mark_point=["max", "min"]) # line.add("有功总电量", attr, total_active_power_values, mark_point=["max", "min"]) # # context_data = { # 'name': user.name, # 'device_id': user.device_id, # 'device_status': 'online' if device.status == '1' else 'offline', # 'instruction': '若系统使用时遇到问题,请及时向系统管理员进行反馈。谢谢大家的配合~', # 'user_number': 1, # 'device_number': 1, # 'running_days': time_delta.days, # 'data_number': len(data), # 'current_peak_value': max([dat.current_value for dat in data]), # 'active_power_peak_value': max([dat.active_power_value for dat in data]), # 'total_active_power_peak_value': max([dat.total_active_power_value for dat in data]), # 'dashboard_chart': line.render_embed(), # } # print(line.get_js_dependencies()) return render(request, 'dashboard_homepage.html', context=context_data) def user(request): phone_number = request.session.get('phone_number', '') if phone_number == '': return redirect('/') user = UserModel.objects.get(phone_number=phone_number) if user.is_admin: if user.device_id: device = DeviceModel.objects.get(device_id=user.device_id) status = device.status users = UserModel.objects.all() else: device = '管理员设备' status = True users = UserModel.objects.all() else: users = UserModel.objects.filter(phone_number=phone_number) device = DeviceModel.objects.get(device_id=user.device_id) status = device.status # print(devices) status = 'offline' if status is False else 'online' limit = 11 paginator = Paginator(users, limit) page = request.GET.get('page', 1) loaded = paginator.page(page) # print([dat.data_time for dat in devices[0:6]]) context_data = { 'name': user.name, 'device_id': device.device_id, 'device_status': status, 'users': loaded, } return render(request, 'user_base.html', context=context_data) def log(request): phone_number = request.session.get('phone_number', '') if phone_number == '': return redirect('/') user = UserModel.objects.get(phone_number=phone_number) if user.is_admin: if user.device_id: device = DeviceModel.objects.get(device_id=user.device_id) status = device.status logs = UserLogModel.objects.order_by('-data_time') else: device = '管理员设备' status = True logs = UserLogModel.objects.order_by('-data_time') else: logs = UserLogModel.objects.filter(phone_number=user.phone_number).order_by('-data_time') device = DeviceModel.objects.get(device_id=user.device_id) status = device.status status = 'offline' if status is False else 'online' limit = 10 paginator = Paginator(logs, limit) page = request.GET.get('page', 1) loaded = paginator.page(page) # print([dat.data_time for dat in devices[0:6]]) context_data = { 'name': user.name, 'device_id': device.device_id, 'device_status': status, 'logs': loaded, } return render(request, 'user_log.html', context=context_data) def new(request): phone_number = request.session.get('phone_number', '') if phone_number == '': return redirect('/') user = UserModel.objects.get(phone_number=phone_number) if user.is_admin: if user.device_id: device = DeviceModel.objects.get(device_id=user.device_id) status = device.status else: device = '管理员设备' status = True else: device = DeviceModel.objects.get(device_id=user.device_id) status = device.status status = 'offline' if status is False else 'online' context_data = { 'name': user.name, 'device_id': user.device_id, 'device_status': status, 'return_instruction': '', } if request.method == "GET": return render(request, 'user_new.html', context=context_data) if not user.is_admin: context_data['return_instruction'] = "只有管理员才有权限新增用户!" return render(request, 'user_base.html', context=context_data) if request.POST.get('phone_number', '') == '': context_data['return_instruction'] = "请注意,电话号码不能为空" return render(request, 'user_base.html', context=context_data) try: device = DeviceModel.objects.get(device_id=request.POST.get('device_id', '')) except: context_data['return_instruction'] = "设备号不存在!" return render(request, 'user_base.html', context=context_data) user_new = UserModel() user_new.phone_number = request.POST.get('phone_number', '') user_new.device_id = request.POST.get('device_id', '') user_new.password = sha256(request.POST.get('password', '')) user_new.name = request.POST.get('name', '') user_new.class_number = request.POST.get('class_number', '') user_new.id_number = request.POST.get('id_number', '') user_new.is_admin = True if request.POST.get('is_admin', '') == '是' else False user_new.comment = request.POST.get('comment', '') user_new.date_joined = datetime.datetime.now() user_new.save() context_data['return_instruction'] = "保存成功" return render(request, 'user_new.html', context=context_data) def edit(request): phone_number = request.session.get('phone_number', '') if phone_number == '': return redirect('/') user = UserModel.objects.get(phone_number=phone_number) if user.is_admin: if user.device_id: device = DeviceModel.objects.get(device_id=user.device_id) status = device.status else: device = '管理员设备' status = True else: device = DeviceModel.objects.get(device_id=user.device_id) status = device.status status = 'offline' if status is False else 'online' if request.method == "GET": edit_user = UserModel.objects.get(phone_number=request.GET.get('phone_number', '')) context_data = { 'name': user.name, 'device_id': user.device_id, 'device_status': status, 'return_instruction': '', 'edit_phone_number': request.GET.get('phone_number', ''), 'edit_device_id': edit_user.device_id, 'edit_name': edit_user.name, 'edit_class_number': edit_user.class_number, 'edit_id_number': edit_user.id_number, 'edit_comment': edit_user.comment, } if not user.is_admin: context_data['return_instruction'] = "只有管理员才有权限编辑用户!" return render(request, 'user_base.html', context=context_data) else: return render(request, 'user_edit.html', context=context_data) if request.POST: edit_user = UserModel.objects.get(phone_number=request.POST.get('edit_phone_number', '')) if request.POST.get('device_id', ''): try: dev = DeviceModel.objects.get(device_id=request.POST.get('device_id', '')) except: context_data = {} context_data['return_instruction'] = "设备不存在!" return render(request, 'user_edit.html', context=context_data) edit_user.device_id = request.POST.get('device_id', '') edit_user.name = request.POST.get('name', '') edit_user.class_number = request.POST.get('class_number', '') edit_user.id_number = request.POST.get('id_number', '') edit_user.is_admin = True if request.POST.get('is_admin', '') == '是' else False edit_user.comment = request.POST.get('comment', '') if request.POST.get('password', ''): edit_user.password = sha256(request.POST.get('password', '')) edit_user.save() context_data = { 'name': user.name, 'device_id': user.device_id, 'device_status': status, 'return_instruction': '', 'edit_phone_number': request.GET.get('phone_number', ''), 'edit_device_id': edit_user.device_id, 'edit_name': edit_user.name, 'edit_class_number': edit_user.class_number, 'edit_id_number': edit_user.id_number, 'edit_comment': edit_user.comment, } context_data['return_instruction'] = "编辑成功" return render(request, 'user_edit.html', context=context_data) def delete(request): phone_number = request.session.get('phone_number', '') if phone_number == '': return redirect('/') user = UserModel.objects.get(phone_number=phone_number) if user.is_admin: if user.device_id: device = DeviceModel.objects.get(device_id=user.device_id) status = device.status else: device = '管理员设备' status = True else: device = DeviceModel.objects.get(device_id=user.device_id) status = device.status status = 'offline' if status is False else 'online' context_data = { 'name': user.name, 'device_id': user.device_id, 'device_status': status, 'return_instruction': '', } if not user.is_admin: context_data['return_instruction'] = "只有管理员才有权限删除设备!" return render(request, 'user_base.html', context=context_data) if request.GET.get('phone_number', '') == '': context_data['return_instruction'] = "请注意,手机号不能为空" return render(request, 'user_base.html', context=context_data) UserModel.objects.filter(phone_number=request.GET.get('phone_number', '')).delete() context_data['return_instruction'] = "删除成功" # print('删除成功') return redirect('/user/user/') def search(request): phone_number = request.session.get('phone_number', '') if phone_number == '': return redirect('/') user = UserModel.objects.get(phone_number=phone_number) if user.is_admin: if user.device_id: device = DeviceModel.objects.get(device_id=user.device_id) status = device.status users = UserModel.objects.filter(phone_number=request.GET.get('phone_number', '')) else: device = '管理员设备' status = True users = UserModel.objects.filter(phone_number=request.GET.get('phone_number', '')) else: device = DeviceModel.objects.get(device_id=user.device_id) status = device.status if request.GET.get('phone_number', '') != user.phone_number: users = [] else: users = UserModel.objects.filter(phone_number=user.phone_number) # print(devices) status = 'offline' if status is False else 'online' limit = 11 paginator = Paginator(users, limit) page = request.GET.get('page', 1) loaded = paginator.page(page) # print([dat.data_time for dat in devices[0:6]]) context_data = { 'name': user.name, 'device_id': device.device_id, 'device_status': status, 'users': loaded, } return render(request, 'user_base.html', context=context_data) def log_search(request): req_action = request.GET.get('action', '') req_phone_number = request.GET.get('phone_number', '') if req_phone_number == '': return redirect('/') filter_terms = {} if req_action: filter_terms['action'] = req_action if req_phone_number: filter_terms['phone_number'] = req_phone_number phone_number = request.session.get('phone_number', '') user = UserModel.objects.get(phone_number=phone_number) if user.is_admin: if user.device_id: device = DeviceModel.objects.get(device_id=user.device_id) status = device.status logs = UserLogModel.objects.filter(**filter_terms).order_by('-data_time') else: device = '管理员设备' status = True logs = UserLogModel.objects.filter(**filter_terms).order_by('-data_time') else: logs = UserLogModel.objects.filter(phone_number=user.phone_number).order_by('-data_time') device = DeviceModel.objects.get(device_id=user.device_id) status = device.status if req_phone_number != user.phone_number: logs = [] context_data = { 'name': user.name, 'device_id': device.device_id, 'device_status': status, 'logs': logs, 'return_instruction': '您无权查看其它用户的日志', } return render(request, 'user_log.html', context=context_data) status = 'offline' if status is False else 'online' limit = 10 paginator = Paginator(logs, limit) page = request.GET.get('page', 1) loaded = paginator.page(page) # print([dat.data_time for dat in devices[0:6]]) context_data = { 'name': user.name, 'device_id': device.device_id, 'device_status': status, 'logs': loaded, } return render(request, 'user_log.html', context=context_data)
#!/usr/bin/env python # -*- coding: utf-8 -*- ################################################################### # Author: Mu yanru # Date : 2019.2 # Email : muyanru345@163.com ################################################################### """ MDivider """ import six from dayu_widgets.label import MLabel from dayu_widgets.qt import QWidget, Qt, QFrame, QHBoxLayout, Property class MDivider(QWidget): ''' A divider line separates different content. Property: dayu_text: six.string_types ''' _alignment_map = { Qt.AlignCenter: 50, Qt.AlignLeft: 20, Qt.AlignRight: 80, } def __init__(self, text='', orientation=Qt.Horizontal, alignment=Qt.AlignCenter, parent=None): super(MDivider, self).__init__(parent) self._orient = orientation self._text_label = MLabel().secondary() self._left_frame = QFrame() self._right_frame = QFrame() self._main_lay = QHBoxLayout() self._main_lay.setContentsMargins(0, 0, 0, 0) self._main_lay.setSpacing(0) self._main_lay.addWidget(self._left_frame) self._main_lay.addWidget(self._text_label) self._main_lay.addWidget(self._right_frame) self.setLayout(self._main_lay) if orientation == Qt.Horizontal: self._left_frame.setFrameShape(QFrame.HLine) self._left_frame.setFrameShadow(QFrame.Sunken) self._right_frame.setFrameShape(QFrame.HLine) self._right_frame.setFrameShadow(QFrame.Sunken) else: self._text_label.setVisible(False) self._right_frame.setVisible(False) self._left_frame.setFrameShape(QFrame.VLine) self._left_frame.setFrameShadow(QFrame.Plain) self.setFixedWidth(2) self._main_lay.setStretchFactor(self._left_frame, self._alignment_map.get(alignment, 50)) self._main_lay.setStretchFactor(self._right_frame, 100 - self._alignment_map.get(alignment, 50)) self._text = None self.set_dayu_text(text) def set_dayu_text(self, value): """ Set the divider's text. When text is empty, hide the text_label and right_frame to ensure the divider not has a gap. :param value: six.string_types :return: None """ self._text = value self._text_label.setText(value) if self._orient == Qt.Horizontal: self._text_label.setVisible(bool(value)) self._right_frame.setVisible(bool(value)) def get_dayu_text(self): """ Get current text :return: six.string_types """ return self._text dayu_text = Property(six.string_types[0], get_dayu_text, set_dayu_text) @classmethod def left(cls, text=''): """Create a horizontal divider with text at left.""" return cls(text, alignment=Qt.AlignLeft) @classmethod def right(cls, text=''): """Create a horizontal divider with text at right.""" return cls(text, alignment=Qt.AlignRight) @classmethod def center(cls, text=''): """Create a horizontal divider with text at center.""" return cls(text, alignment=Qt.AlignCenter) @classmethod def vertical(cls): """Create a vertical divider""" return cls(orientation=Qt.Vertical)
"""Seawater-ice equilibrium functions. This module provides thermodynamic functions for seawater in equilibrium with ice (sea-ice), e.g. the enthalpy of melting. It also provides a Gibbs free energy function for sea-ice parcels, with primary variables being the total salinity (mass of salt per mass of salt, liquid, and ice), temperature, and pressure. :Examples: >>> temperature(salt=0.035,pres=1e5) 271.240373585159 >>> enthalpymelt(salt=0.035,pres=1e5) 329942.976285 >>> volumemelt(salt=0.035,pres=1e5) -9.10140854473e-5 >>> pressure(salt=0.035,temp=270.) 16132047.4385 >>> enthalpymelt(salt=0.035,temp=270.) 326829.393605 >>> volumemelt(salt=0.035,temp=270.) -9.67135426848e-5 >>> salinity(temp=270.,pres=1e5) 0.05602641503 >>> enthalpymelt(temp=270.,pres=1e5) 328249.119579 >>> volumemelt(temp=270.,pres=1e5) -9.18186917900e-5 >>> brinesalinity(270.,1e5) 0.05602641503 >>> meltingpressure(0.035,270.) 16132047.4385 >>> freezingtemperature(0.035,1e5) 271.240373585 >>> dtfdp(0.035,1e5) 7.48210942879e-8 >>> dtfds(0.035,1e5) -56.8751336296 >>> seaice_g(0,0,0,0.035,270.,1e5) -414.0175745 >>> seaice_g(0,1,0,0.035,270.,1e5) 500.445444181 >>> seaice_g(0,1,1,0.035,270.,1e5) -1.658664467e-05 >>> brinefraction(0.035,270.,1e5) 0.6247053284 >>> cp(0.035,270.,1e5) 62868.90151 >>> density(0.035,270.,1e5) 993.156434117 >>> enthalpy(0.035,270.,1e5) -135534.287504 >>> entropy(0.035,270.,1e5) -500.445444181 >>> expansion(0.035,270.,1e5) -1.647313287e-02 >>> kappa_t(0.035,270.,1e5) 1.56513441348e-9 :Functions: * :func:`eq_stp`: Calculate primary variables for sea-ice at any two of the seawater salinity, temperature, and pressure. * :func:`densityice`: Sea-ice ice density. * :func:`densitysea`: Sea-ice seawater density. * :func:`enthalpyice`: Sea-ice ice enthalpy. * :func:`enthalpysea`: Sea-ice seawater enthalpy. * :func:`entropyice`: Sea-ice ice entropy for sea ice. * :func:`entropysea`: Sea-ice seawater entropy. * :func:`pressure`: Sea-ice pressure. * :func:`temperature`: Sea-ice temperature. * :func:`salinity`: Sea-ice salinity. * :func:`enthalpymelt`: Enthalpy of melting. * :func:`volumemelt`: Specific volume of melting. * :func:`brinesalinity`: Salinity of seawater in equilibrium with ice. * :func:`meltingpressure`: Pressure of seawater in equilibrium with ice. * :func:`freezingtemperature`: Temperature of seawater in equilibrium with ice. * :func:`dtfdp`: Freezing point depression of seawater due to pressure. * :func:`dtfds`: Freezing point depression of seawater due to salinity. * :func:`eq_seaice`: Calculate primary variables for a sea-ice parcel at the given total salinity, temperature, and pressure. * :func:`seaice_g`: Sea-ice Gibbs free energy with derivatives. * :func:`brinefraction`: Sea-ice seawater mass fraction. * :func:`cp`: Sea-ice isobaric heat capacity. * :func:`density`: Sea-ice total density. * :func:`enthalpy`: Sea-ice specific enthalpy. * :func:`entropy`: Sea-ice specific entropy. * :func:`expansion`: Sea-ice thermal expansion coefficient. * :func:`kappa_t`: Sea-ice isothermal compressibility. """ __all__ = ['eq_stp','densityice','densitysea','enthalpyice','enthalpysea', 'entropyice','entropysea','pressure','temperature','salinity', 'enthalpymelt','volumemelt', 'brinesalinity','meltingpressure','freezingtemperature','dtfdp','dtfds', 'eq_seaice','seaice_g','brinefraction','cp','density','enthalpy','entropy', 'expansion','kappa_t'] import warnings import numpy from teospy import constants0 from teospy import flu1 from teospy import ice1 from teospy import flu2 from teospy import ice2 from teospy import sal2 from teospy import maths3 from teospy import flu3a from teospy import sea3a from teospy import maths4 _CHKTOL = constants0.CHKTOL _MSAL = constants0.MSAL _RUNIV = constants0.RUNIV _RWAT = constants0.RWAT _TTP = constants0.TTP _PTPE = constants0.PTPE _DLTP = constants0.DLTP _DITP = constants0.DITP _LILTP = constants0.LILTP _CLIQ = constants0.CLIQ _CICE = constants0.CICE _SAL0 = constants0.SAL0 _RSAL = _RUNIV / _MSAL _VLTP = _DLTP**(-1) _VITP = _DITP**(-1) _C_SP = 0.396166676603 _E = numpy.exp(1) _chkflubnds = constants0.chkflubnds _chkicebnds = constants0.chkicebnds _chksalbnds = constants0.chksalbnds _flu_f = flu1.flu_f _ice_g = ice1.ice_g _eq_pressure = flu2.eq_pressure _eq_chempot = flu2.eq_chempot _sal_g = sal2.sal_g _eq_liqpot = sal2.eq_liqpot _newton = maths3.newton _dliq_default = flu3a._dliq_default ## Equilibrium functions def _approx_st(salt,temp): """Approximate PDl at ST. Approximate the pressure and liquid water density of sea-ice with the given salinity and temperature. :arg float salt: Salinity in kg/kg. :arg float temp: Temperature in K. :returns: Pressure and liquid water density (both in SI units). """ dmu = ((_CLIQ-_CICE)*(temp - _TTP - temp*numpy.log(temp/_TTP)) + -_LILTP/_TTP*(temp - _TTP) - _RSAL*temp*salt) pres = _PTPE + dmu/(_VITP-_VLTP) dliq = _dliq_default(temp,pres) return pres, dliq def _approx_sp(salt,pres): """Approximate TDl at SP. Approximate the temperature and liquid water density of sea-ice with the given salinity and pressure. :arg float salt: Salinity in kg/kg. :arg float pres: Pressure in Pa. :returns: Temperature and liquid water density (both in SI units). """ CDIF = _CLIQ-_CICE R0 = _LILTP/_TTP / CDIF r1 = (pres-_PTPE) * (_VITP-_VLTP)/_TTP / CDIF r2 = _RSAL*salt / CDIF w = -(1 - R0 + r1) * numpy.exp(-(1 - R0 - r2)) negz = 1 - (1 + _E*w)**_C_SP temp = (1 - R0 + r1)*_TTP/negz dliq = _dliq_default(temp,pres) return temp, dliq def _approx_sp2(salt,pres): """Approximate TDl at SP. Approximate the temperature and liquid water density of sea-ice with the given salinity and pressure. :arg float salt: Salinity in kg/kg. :arg float pres: Pressure in Pa. :returns: Temperature and liquid water density (both in SI units). """ x = (_RSAL*_TTP*salt + (pres-_PTPE)*(_VITP-_VLTP)) / _LILTP temp = _TTP * (1-x) dliq = _dliq_default(temp,pres) return temp, dliq def _approx_tp(temp,pres,dliq): """Approximate S at TP. Approximate the salinity of sea-ice with the given temperature and pressure. :arg float temp: Temperature in K. :arg float pres: Pressure in Pa. :arg float dliq: Liquid water density in kg/m3 (unused). :returns: Salinity in kg/kg. """ dmu = ((_CLIQ-_CICE) * (temp-_TTP-temp*numpy.log(temp/_TTP)) + -_LILTP/_TTP*(temp-_TTP) - (pres-_PTPE)*(_VITP-_VLTP)) salt = dmu / (_RSAL*temp) return salt def _diff_st(p,dl,salt,temp,useext=False): """Calculate sea-ice disequilibrium at ST. Calculate both sides of the equations given pressure = pressure of liquid water chemical potential of ice = potential of liquid water and their Jacobians with respect to pressure and liquid water density. Solving these equations gives equilibrium values at the given salinity and temperature. :arg float p: Pressure in Pa. :arg float dl: Liquid water density in kg/m3. :arg float salt: Salinity in kg/kg. :arg float temp: Temperature in K. :arg bool useext: If False (default) then the salt contribution is calculated from _GSCOEFFS; if True, from _GSCOEFFS_EXT. :returns: Left-hand side of the equation, right-hand side, Jacobian of LHS, and Jacobian of RHS. :rtype: tuple(array(float)) """ pl = _eq_pressure(0,0,temp,dl) gi = _ice_g(0,0,temp,p) gl = _eq_chempot(0,0,temp,dl) gl += _eq_liqpot(0,0,0,salt,temp,p,useext=useext) lhs = numpy.array([p, gi]) rhs = numpy.array([pl, gl]) pl_d = _eq_pressure(0,1,temp,dl) gi_p = _ice_g(0,1,temp,p) gl_d = _eq_chempot(0,1,temp,dl) gl_p = _eq_liqpot(0,0,1,salt,temp,p,useext=useext) dlhs = numpy.array([[1.,0.], [gi_p,0.]]) drhs = numpy.array([[0.,pl_d], [gl_p,gl_d]]) return lhs, rhs, dlhs, drhs def _diff_sp(t,dl,salt,pres,useext=False): """Calculate sea-ice disequilibrium at SP. Calculate both sides of the equations given pressure = pressure of liquid water chemical potential of ice = potential of liquid water and their Jacobians with respect to temperature and liquid water density. Solving these equations gives equilibrium values at the given salinity and pressure. :arg float t: Temperature in K. :arg float dl: Liquid water density in kg/m3. :arg float salt: Salinity in kg/kg. :arg float pres: Pressure in Pa. :arg bool useext: If False (default) then the salt contribution is calculated from _GSCOEFFS; if True, from _GSCOEFFS_EXT. :returns: Left-hand side of the equation, right-hand side, Jacobian of LHS, and Jacobian of RHS. :rtype: tuple(array(float)) """ pl = _eq_pressure(0,0,t,dl) gi = _ice_g(0,0,t,pres) gl = _eq_chempot(0,0,t,dl) gl += _eq_liqpot(0,0,0,salt,t,pres,useext=useext) lhs = numpy.array([pres, gi]) rhs = numpy.array([pl, gl]) pl_t = _eq_pressure(1,0,t,dl) pl_d = _eq_pressure(0,1,t,dl) gi_t = _ice_g(1,0,t,pres) gl_t = _eq_chempot(1,0,t,dl) gl_t += _eq_liqpot(0,1,0,salt,t,pres,useext=useext) gl_d = _eq_chempot(0,1,t,dl) dlhs = numpy.array([[0.,0.], [gi_t,0.]]) drhs = numpy.array([[pl_t,pl_d], [gl_t,gl_d]]) return lhs, rhs, dlhs, drhs def _diff_tp(s,temp,pres,dliq,useext=False): """Calculate sea-ice disequilibrium at TP. Calculate both sides of the equation chemical potential of ice = potential of liquid water and their derivatives with respect to salinity. Solving these equations gives the equilibrium salinity at the given temperature and pressure. :arg float s: Salinity in kg/kg. :arg float temp: Temperature in K. :arg float pres: Pressure in Pa. :arg float dliq: Liquid water density in kg/m3. :arg bool useext: If False (default) then the salt contribution is calculated from _GSCOEFFS; if True, from _GSCOEFFS_EXT. :returns: Left-hand side of the equation, right-hand side, derivative of LHS, and derivative of RHS. :rtype: tuple(float) """ gi = _ice_g(0,0,temp,pres) gl = _eq_chempot(0,0,temp,dliq) gl += _eq_liqpot(0,0,0,s,temp,pres,useext=useext) lhs = gi rhs = gl gl_s = _eq_liqpot(1,0,0,s,temp,pres,useext=useext) dlhs = 0. drhs = gl_s return lhs, rhs, dlhs, drhs def eq_stp(salt=None,temp=None,pres=None,dliq=None,chkvals=False, chktol=_CHKTOL,salt0=None,temp0=None,pres0=None,dliq0=None,chkbnd=False, useext=False,mathargs=None): """Get primary sea-ice variables at STP. Get the values of all primary variables for sea-ice in equilibrium. At least two of the salinity, temperature, and pressure must be provided. If the calculation has already been done, the results can be passed to avoid unnecessary repeat calculations. If enough values are passed, they will be checked for consistency if chkvals is True. :arg salt: Salinity in kg/kg. If unknown, pass None (default) and it will be calculated. :type salt: float or None :arg temp: Temperature in K. If unknown, pass None (default) and it will be calculated. :type temp: float or None :arg pres: Pressure in Pa. If unknown, pass None (default) and it will be calculated. :type pres: float or None :arg dliq: Density of liquid water in seawater in kg/m3. If unknown, pass None (default) and it will be calculated. :type dliq: float or None :arg bool chkvals: If True (default False) and all values are given, this function will calculate the disequilibrium and raise a warning if the results are not within a given tolerance. :arg float chktol: Tolerance to use when checking values (default _CHKTOL). :arg salt0: Initial guess for the salinity in kg/kg. If None (default) then `_approx_tp` is used. :type salt0: float or None :arg temp0: Initial guess for the temperature in K. If None (default) then `_approx_sp` is used. :type temp0: float or None :arg pres0: Initial guess for the pressure in Pa. If None (default) then `_approx_st` is used. :type pres0: float or None :arg dliq0: Initial guess for the liquid water density in kg/m3. If None (default) then `flu3a._dliq_default` is used. :type dliq0: float or None :arg bool chkbnd: If True then warnings are raised when the given values are valid but outside the recommended bounds (default False). :arg bool useext: If False (default) then the salt contribution is calculated from _GSCOEFFS; if True, from _GSCOEFFS_EXT. :arg mathargs: Keyword arguments to the root-finder :func:`_newton <maths3.newton>` (e.g. maxiter, rtol). If None (default) then no arguments are passed and default parameters will be used. :returns: Salinity, temperature, pressure, and seawater liquid density (all in SI units). :raises ValueError: If fewer than two of salt, temp, and pres are provided. :raises RuntimeWarning: If the relative disequilibrium is more than chktol, if chkvals is True and all values are given. """ if sum(val is None for val in (salt,temp,pres)) > 1: errmsg = 'Must provide at least two of (salt,temp,pres)' raise ValueError(errmsg) if mathargs is None: mathargs = dict() fkwargs = {'useext': useext} if salt is None: dliq = flu3a.eq_tp_liq(temp,pres,dliq=dliq,dliq0=dliq0, mathargs=mathargs) fargs = (temp,pres,dliq) salt = _newton(_diff_tp,salt0,_approx_tp,fargs=fargs,fkwargs=fkwargs, **mathargs) elif temp is None: x0 = (temp0,dliq0) fargs = (salt,pres) x1 = _newton(_diff_sp,x0,_approx_sp,fargs=fargs,fkwargs=fkwargs, **mathargs) temp, dliq = x1 elif pres is None: x0 = (pres0,dliq0) fargs = (salt,temp) x1 = _newton(_diff_st,x0,_approx_st,fargs=fargs,fkwargs=fkwargs, **mathargs) pres, dliq = x1 elif dliq is None: dliq = flu3a.eq_tp_liq(temp,pres,dliq0=dliq0,mathargs=mathargs) _chkflubnds(temp,dliq,chkbnd=chkbnd) _chkicebnds(temp,pres,chkbnd=chkbnd) _chksalbnds(salt,temp,pres,chkbnd=chkbnd) if not chkvals: return salt, temp, pres, dliq lhs, rhs, __, __ = _diff_st(pres,dliq,salt,temp,useext=useext) errs = list() for (l,r) in zip(lhs,rhs): if abs(r) >= chktol: errs.append(abs(l/r-1)) else: errs.append(abs(l-r)) if max(errs) > chktol: warnmsg = ('Given values {0} and solutions {1} disagree to more than ' 'the tolerance {2}').format(lhs,rhs,chktol) warnings.warn(warnmsg,RuntimeWarning) return salt, temp, pres, dliq ## Thermodynamic functions def densityice(salt=None,temp=None,pres=None,dliq=None,chkvals=False, chktol=_CHKTOL,salt0=None,temp0=None,pres0=None,dliq0=None, chkbnd=False,useext=False,mathargs=None): """Calculate sea-ice ice density. Calculate the density of ice in sea-ice. :arg salt: Salinity in kg/kg. If unknown, pass None (default) and it will be calculated. :type salt: float or None :arg temp: Temperature in K. If unknown, pass None (default) and it will be calculated. :type temp: float or None :arg pres: Pressure in Pa. If unknown, pass None (default) and it will be calculated. :type pres: float or None :arg dliq: Density of liquid water in seawater in kg/m3. If unknown, pass None (default) and it will be calculated. :type dliq: float or None :arg bool chkvals: If True (default False) and all values are given, this function will calculate the disequilibrium and raise a warning if the results are not within a given tolerance. :arg float chktol: Tolerance to use when checking values (default _CHKTOL). :arg salt0: Initial guess for the salinity in kg/kg. If None (default) then `_approx_tp` is used. :type salt0: float or None :arg temp0: Initial guess for the temperature in K. If None (default) then `_approx_sp` is used. :type temp0: float or None :arg pres0: Initial guess for the pressure in Pa. If None (default) then `_approx_st` is used. :type pres0: float or None :arg dliq0: Initial guess for the liquid water density in kg/m3. If None (default) then `flu3a._dliq_default` is used. :type dliq0: float or None :arg bool chkbnd: If True then warnings are raised when the given values are valid but outside the recommended bounds (default False). :arg bool useext: If False (default) then the salt contribution is calculated from _GSCOEFFS; if True, from _GSCOEFFS_EXT. :arg mathargs: Keyword arguments to the root-finder :func:`_newton <maths3.newton>` (e.g. maxiter, rtol). If None (default) then no arguments are passed and default parameters will be used. :returns: Density in kg/m3. :raises ValueError: If fewer than two of salt, temp, and pres are provided. :raises RuntimeWarning: If the relative disequilibrium is more than chktol, if chkvals is True and all values are given. :Examples: >>> densityice(salt=0.035,pres=1e5) 917.000739687 >>> densityice(salt=0.035,temp=270.) 918.898527655 >>> densityice(temp=270.,pres=1e5) 917.181167192 """ salt, temp, pres, dliq = eq_stp(salt=salt,temp=temp,pres=pres,dliq=dliq, chkvals=chkvals,chktol=chktol,salt0=salt0,temp0=temp0,pres0=pres0, dliq0=dliq0,chkbnd=chkbnd,useext=useext,mathargs=mathargs) dice = ice2.density(temp,pres) return dice def densitysea(salt=None,temp=None,pres=None,dliq=None,chkvals=False, chktol=_CHKTOL,salt0=None,temp0=None,pres0=None,dliq0=None, chkbnd=False,useext=False,mathargs=None): """Calculate sea-ice seawater density. Calculate the density of seawater in sea-ice. :arg salt: Salinity in kg/kg. If unknown, pass None (default) and it will be calculated. :type salt: float or None :arg temp: Temperature in K. If unknown, pass None (default) and it will be calculated. :type temp: float or None :arg pres: Pressure in Pa. If unknown, pass None (default) and it will be calculated. :type pres: float or None :arg dliq: Density of liquid water in seawater in kg/m3. If unknown, pass None (default) and it will be calculated. :type dliq: float or None :arg bool chkvals: If True (default False) and all values are given, this function will calculate the disequilibrium and raise a warning if the results are not within a given tolerance. :arg float chktol: Tolerance to use when checking values (default _CHKTOL). :arg salt0: Initial guess for the salinity in kg/kg. If None (default) then `_approx_tp` is used. :type salt0: float or None :arg temp0: Initial guess for the temperature in K. If None (default) then `_approx_sp` is used. :type temp0: float or None :arg pres0: Initial guess for the pressure in Pa. If None (default) then `_approx_st` is used. :type pres0: float or None :arg dliq0: Initial guess for the liquid water density in kg/m3. If None (default) then `flu3a._dliq_default` is used. :type dliq0: float or None :arg bool chkbnd: If True then warnings are raised when the given values are valid but outside the recommended bounds (default False). :arg bool useext: If False (default) then the salt contribution is calculated from _GSCOEFFS; if True, from _GSCOEFFS_EXT. :arg mathargs: Keyword arguments to the root-finder :func:`_newton <maths3.newton>` (e.g. maxiter, rtol). If None (default) then no arguments are passed and default parameters will be used. :returns: Density in kg/m3. :raises ValueError: If fewer than two of salt, temp, and pres are provided. :raises RuntimeWarning: If the relative disequilibrium is more than chktol, if chkvals is True and all values are given. :Examples: >>> densitysea(salt=0.035,pres=1e5) 1028.05199645 >>> densitysea(salt=0.035,temp=270.) 1035.73670169 >>> densitysea(temp=270.,pres=1e5) 1045.16805918 """ salt, temp, pres, dliq = eq_stp(salt=salt,temp=temp,pres=pres,dliq=dliq, chkvals=chkvals,chktol=chktol,salt0=salt0,temp0=temp0,pres0=pres0, dliq0=dliq0,chkbnd=chkbnd,useext=useext,mathargs=mathargs) dsea = sea3a.density(salt,temp,pres,dliq=dliq,useext=useext) return dsea def enthalpyice(salt=None,temp=None,pres=None,dliq=None,chkvals=False, chktol=_CHKTOL,salt0=None,temp0=None,pres0=None,dliq0=None, chkbnd=False,useext=False,mathargs=None): """Calculate sea-ice ice enthalpy. Calculate the specific enthalpy of ice in sea-ice. :arg salt: Salinity in kg/kg. If unknown, pass None (default) and it will be calculated. :type salt: float or None :arg temp: Temperature in K. If unknown, pass None (default) and it will be calculated. :type temp: float or None :arg pres: Pressure in Pa. If unknown, pass None (default) and it will be calculated. :type pres: float or None :arg dliq: Density of liquid water in seawater in kg/m3. If unknown, pass None (default) and it will be calculated. :type dliq: float or None :arg bool chkvals: If True (default False) and all values are given, this function will calculate the disequilibrium and raise a warning if the results are not within a given tolerance. :arg float chktol: Tolerance to use when checking values (default _CHKTOL). :arg salt0: Initial guess for the salinity in kg/kg. If None (default) then `_approx_tp` is used. :type salt0: float or None :arg temp0: Initial guess for the temperature in K. If None (default) then `_approx_sp` is used. :type temp0: float or None :arg pres0: Initial guess for the pressure in Pa. If None (default) then `_approx_st` is used. :type pres0: float or None :arg dliq0: Initial guess for the liquid water density in kg/m3. If None (default) then `flu3a._dliq_default` is used. :type dliq0: float or None :arg bool chkbnd: If True then warnings are raised when the given values are valid but outside the recommended bounds (default False). :arg bool useext: If False (default) then the salt contribution is calculated from _GSCOEFFS; if True, from _GSCOEFFS_EXT. :arg mathargs: Keyword arguments to the root-finder :func:`_newton <maths3.newton>` (e.g. maxiter, rtol). If None (default) then no arguments are passed and default parameters will be used. :returns: Enthalpy in J/kg. :raises ValueError: If fewer than two of salt, temp, and pres are provided. :raises RuntimeWarning: If the relative disequilibrium is more than chktol, if chkvals is True and all values are given. :Examples: >>> enthalpyice(salt=0.035,pres=1e5) -337351.999358 >>> enthalpyice(salt=0.035,temp=270.) -323205.968289 >>> enthalpyice(temp=270.,pres=1e5) -339929.555499 """ salt, temp, pres, dliq = eq_stp(salt=salt,temp=temp,pres=pres,dliq=dliq, chkvals=chkvals,chktol=chktol,salt0=salt0,temp0=temp0,pres0=pres0, dliq0=dliq0,chkbnd=chkbnd,useext=useext,mathargs=mathargs) hice = ice2.enthalpy(temp,pres) return hice def enthalpysea(salt=None,temp=None,pres=None,dliq=None,chkvals=False, chktol=_CHKTOL,salt0=None,temp0=None,pres0=None,dliq0=None, chkbnd=False,useext=False,mathargs=None): """Calculate sea-ice seawater enthalpy. Calculate the specific enthalpy of seawater in sea-ice. :arg salt: Salinity in kg/kg. If unknown, pass None (default) and it will be calculated. :type salt: float or None :arg temp: Temperature in K. If unknown, pass None (default) and it will be calculated. :type temp: float or None :arg pres: Pressure in Pa. If unknown, pass None (default) and it will be calculated. :type pres: float or None :arg dliq: Density of liquid water in seawater in kg/m3. If unknown, pass None (default) and it will be calculated. :type dliq: float or None :arg bool chkvals: If True (default False) and all values are given, this function will calculate the disequilibrium and raise a warning if the results are not within a given tolerance. :arg float chktol: Tolerance to use when checking values (default _CHKTOL). :arg salt0: Initial guess for the salinity in kg/kg. If None (default) then `_approx_tp` is used. :type salt0: float or None :arg temp0: Initial guess for the temperature in K. If None (default) then `_approx_sp` is used. :type temp0: float or None :arg pres0: Initial guess for the pressure in Pa. If None (default) then `_approx_st` is used. :type pres0: float or None :arg dliq0: Initial guess for the liquid water density in kg/m3. If None (default) then `flu3a._dliq_default` is used. :type dliq0: float or None :arg bool chkbnd: If True then warnings are raised when the given values are valid but outside the recommended bounds (default False). :arg bool useext: If False (default) then the salt contribution is calculated from _GSCOEFFS; if True, from _GSCOEFFS_EXT. :arg mathargs: Keyword arguments to the root-finder :func:`_newton <maths3.newton>` (e.g. maxiter, rtol). If None (default) then no arguments are passed and default parameters will be used. :returns: Enthalpy in J/kg. :raises ValueError: If fewer than two of salt, temp, and pres are provided. :raises RuntimeWarning: If the relative disequilibrium is more than chktol, if chkvals is True and all values are given. :Examples: >>> enthalpysea(salt=0.035,pres=1e5) -7613.193379 >>> enthalpysea(salt=0.035,temp=270.) 2832.949104 >>> enthalpysea(temp=270.,pres=1e5) -12742.86649 """ salt, temp, pres, dliq = eq_stp(salt=salt,temp=temp,pres=pres,dliq=dliq, chkvals=chkvals,chktol=chktol,salt0=salt0,temp0=temp0,pres0=pres0, dliq0=dliq0,chkbnd=chkbnd,useext=useext,mathargs=mathargs) hsea = sea3a.enthalpy(salt,temp,pres,dliq=dliq,useext=useext) return hsea def entropyice(salt=None,temp=None,pres=None,dliq=None,chkvals=False, chktol=_CHKTOL,salt0=None,temp0=None,pres0=None,dliq0=None, chkbnd=False,useext=False,mathargs=None): """Calculate sea-ice ice entropy. Calculate the specific entropy of ice in sea-ice. :arg salt: Salinity in kg/kg. If unknown, pass None (default) and it will be calculated. :type salt: float or None :arg temp: Temperature in K. If unknown, pass None (default) and it will be calculated. :type temp: float or None :arg pres: Pressure in Pa. If unknown, pass None (default) and it will be calculated. :type pres: float or None :arg dliq: Density of liquid water in seawater in kg/m3. If unknown, pass None (default) and it will be calculated. :type dliq: float or None :arg bool chkvals: If True (default False) and all values are given, this function will calculate the disequilibrium and raise a warning if the results are not within a given tolerance. :arg float chktol: Tolerance to use when checking values (default _CHKTOL). :arg salt0: Initial guess for the salinity in kg/kg. If None (default) then `_approx_tp` is used. :type salt0: float or None :arg temp0: Initial guess for the temperature in K. If None (default) then `_approx_sp` is used. :type temp0: float or None :arg pres0: Initial guess for the pressure in Pa. If None (default) then `_approx_st` is used. :type pres0: float or None :arg dliq0: Initial guess for the liquid water density in kg/m3. If None (default) then `flu3a._dliq_default` is used. :type dliq0: float or None :arg bool chkbnd: If True then warnings are raised when the given values are valid but outside the recommended bounds (default False). :arg bool useext: If False (default) then the salt contribution is calculated from _GSCOEFFS; if True, from _GSCOEFFS_EXT. :arg mathargs: Keyword arguments to the root-finder :func:`_newton <maths3.newton>` (e.g. maxiter, rtol). If None (default) then no arguments are passed and default parameters will be used. :returns: Entropy in J/kg/K. :raises ValueError: If fewer than two of salt, temp, and pres are provided. :raises RuntimeWarning: If the relative disequilibrium is more than chktol, if chkvals is True and all values are given. :Examples: >>> entropyice(salt=0.035,pres=1e5) -1235.44872812 >>> entropyice(salt=0.035,temp=270.) -1247.71314646 >>> entropyice(temp=270.,pres=1e5) -1244.97335506 """ salt, temp, pres, dliq = eq_stp(salt=salt,temp=temp,pres=pres,dliq=dliq, chkvals=chkvals,chktol=chktol,salt0=salt0,temp0=temp0,pres0=pres0, dliq0=dliq0,chkbnd=chkbnd,useext=useext,mathargs=mathargs) sice = ice2.entropy(temp,pres) return sice def entropysea(salt=None,temp=None,pres=None,dliq=None,chkvals=False, chktol=_CHKTOL,salt0=None,temp0=None,pres0=None,dliq0=None, chkbnd=False,useext=False,mathargs=None): """Calculate sea-ice seawater entropy. Calculate the specific entropy of seawater in sea-ice. :arg salt: Salinity in kg/kg. If unknown, pass None (default) and it will be calculated. :type salt: float or None :arg temp: Temperature in K. If unknown, pass None (default) and it will be calculated. :type temp: float or None :arg pres: Pressure in Pa. If unknown, pass None (default) and it will be calculated. :type pres: float or None :arg dliq: Density of liquid water in seawater in kg/m3. If unknown, pass None (default) and it will be calculated. :type dliq: float or None :arg bool chkvals: If True (default False) and all values are given, this function will calculate the disequilibrium and raise a warning if the results are not within a given tolerance. :arg float chktol: Tolerance to use when checking values (default _CHKTOL). :arg salt0: Initial guess for the salinity in kg/kg. If None (default) then `_approx_tp` is used. :type salt0: float or None :arg temp0: Initial guess for the temperature in K. If None (default) then `_approx_sp` is used. :type temp0: float or None :arg pres0: Initial guess for the pressure in Pa. If None (default) then `_approx_st` is used. :type pres0: float or None :arg dliq0: Initial guess for the liquid water density in kg/m3. If None (default) then `flu3a._dliq_default` is used. :type dliq0: float or None :arg bool chkbnd: If True then warnings are raised when the given values are valid but outside the recommended bounds (default False). :arg bool useext: If False (default) then the salt contribution is calculated from _GSCOEFFS; if True, from _GSCOEFFS_EXT. :arg mathargs: Keyword arguments to the root-finder :func:`_newton <maths3.newton>` (e.g. maxiter, rtol). If None (default) then no arguments are passed and default parameters will be used. :returns: Entropy in J/kg/K. :raises ValueError: If fewer than two of salt, temp, and pres are provided. :raises RuntimeWarning: If the relative disequilibrium is more than chktol, if chkvals is True and all values are given. :Examples: >>> entropysea(salt=0.035,pres=1e5) -27.9264598103 >>> entropysea(salt=0.035,temp=270.) -46.7361169560 >>> entropysea(temp=270.,pres=1e5) -53.1667911144 """ salt, temp, pres, dliq = eq_stp(salt=salt,temp=temp,pres=pres,dliq=dliq, chkvals=chkvals,chktol=chktol,salt0=salt0,temp0=temp0,pres0=pres0, dliq0=dliq0,chkbnd=chkbnd,useext=useext,mathargs=mathargs) ssea = sea3a.entropy(salt,temp,pres,dliq=dliq,useext=useext) return ssea def pressure(salt=None,temp=None,pres=None,dliq=None,chkvals=False, chktol=_CHKTOL,salt0=None,temp0=None,pres0=None,dliq0=None, chkbnd=False,useext=False,mathargs=None): """Calculate sea-ice pressure. Calculate the pressure of sea-ice. :arg salt: Salinity in kg/kg. If unknown, pass None (default) and it will be calculated. :type salt: float or None :arg temp: Temperature in K. If unknown, pass None (default) and it will be calculated. :type temp: float or None :arg pres: Pressure in Pa. If unknown, pass None (default) and it will be calculated. :type pres: float or None :arg dliq: Density of liquid water in seawater in kg/m3. If unknown, pass None (default) and it will be calculated. :type dliq: float or None :arg bool chkvals: If True (default False) and all values are given, this function will calculate the disequilibrium and raise a warning if the results are not within a given tolerance. :arg float chktol: Tolerance to use when checking values (default _CHKTOL). :arg salt0: Initial guess for the salinity in kg/kg. If None (default) then `_approx_tp` is used. :type salt0: float or None :arg temp0: Initial guess for the temperature in K. If None (default) then `_approx_sp` is used. :type temp0: float or None :arg pres0: Initial guess for the pressure in Pa. If None (default) then `_approx_st` is used. :type pres0: float or None :arg dliq0: Initial guess for the liquid water density in kg/m3. If None (default) then `flu3a._dliq_default` is used. :type dliq0: float or None :arg bool chkbnd: If True then warnings are raised when the given values are valid but outside the recommended bounds (default False). :arg bool useext: If False (default) then the salt contribution is calculated from _GSCOEFFS; if True, from _GSCOEFFS_EXT. :arg mathargs: Keyword arguments to the root-finder :func:`_newton <maths3.newton>` (e.g. maxiter, rtol). If None (default) then no arguments are passed and default parameters will be used. :returns: Pressure in Pa. :raises ValueError: If fewer than two of salt, temp, and pres are provided. :raises RuntimeWarning: If the relative disequilibrium is more than chktol, if chkvals is True and all values are given. :Examples: >>> pressure(salt=0.035,temp=270.) 16132047.4385 """ salt, temp, pres, dliq = eq_stp(salt=salt,temp=temp,pres=pres,dliq=dliq, chkvals=chkvals,chktol=chktol,salt0=salt0,temp0=temp0,pres0=pres0, dliq0=dliq0,chkbnd=chkbnd,useext=useext,mathargs=mathargs) return pres def temperature(salt=None,temp=None,pres=None,dliq=None,chkvals=False, chktol=_CHKTOL,salt0=None,temp0=None,pres0=None,dliq0=None, chkbnd=False,useext=False,mathargs=None): """Calculate sea-ice temperature. Calculate the temperature of sea-ice. :arg salt: Salinity in kg/kg. If unknown, pass None (default) and it will be calculated. :type salt: float or None :arg temp: Temperature in K. If unknown, pass None (default) and it will be calculated. :type temp: float or None :arg pres: Pressure in Pa. If unknown, pass None (default) and it will be calculated. :type pres: float or None :arg dliq: Density of liquid water in seawater in kg/m3. If unknown, pass None (default) and it will be calculated. :type dliq: float or None :arg bool chkvals: If True (default False) and all values are given, this function will calculate the disequilibrium and raise a warning if the results are not within a given tolerance. :arg float chktol: Tolerance to use when checking values (default _CHKTOL). :arg salt0: Initial guess for the salinity in kg/kg. If None (default) then `_approx_tp` is used. :type salt0: float or None :arg temp0: Initial guess for the temperature in K. If None (default) then `_approx_sp` is used. :type temp0: float or None :arg pres0: Initial guess for the pressure in Pa. If None (default) then `_approx_st` is used. :type pres0: float or None :arg dliq0: Initial guess for the liquid water density in kg/m3. If None (default) then `flu3a._dliq_default` is used. :type dliq0: float or None :arg bool chkbnd: If True then warnings are raised when the given values are valid but outside the recommended bounds (default False). :arg bool useext: If False (default) then the salt contribution is calculated from _GSCOEFFS; if True, from _GSCOEFFS_EXT. :arg mathargs: Keyword arguments to the root-finder :func:`_newton <maths3.newton>` (e.g. maxiter, rtol). If None (default) then no arguments are passed and default parameters will be used. :returns: Temperature in K. :raises ValueError: If fewer than two of salt, temp, and pres are provided. :raises RuntimeWarning: If the relative disequilibrium is more than chktol, if chkvals is True and all values are given. :Examples: >>> temperature(salt=0.035,pres=1e5) 271.240373585159 """ salt, temp, pres, dliq = eq_stp(salt=salt,temp=temp,pres=pres,dliq=dliq, chkvals=chkvals,chktol=chktol,salt0=salt0,temp0=temp0,pres0=pres0, dliq0=dliq0,chkbnd=chkbnd,useext=useext,mathargs=mathargs) return temp def salinity(salt=None,temp=None,pres=None,dliq=None,chkvals=False, chktol=_CHKTOL,salt0=None,temp0=None,pres0=None,dliq0=None, chkbnd=False,useext=False,mathargs=None): """Calculate sea-ice salinity. Calculate the salinity of sea-ice. :arg salt: Salinity in kg/kg. If unknown, pass None (default) and it will be calculated. :type salt: float or None :arg temp: Temperature in K. If unknown, pass None (default) and it will be calculated. :type temp: float or None :arg pres: Pressure in Pa. If unknown, pass None (default) and it will be calculated. :type pres: float or None :arg dliq: Density of liquid water in seawater in kg/m3. If unknown, pass None (default) and it will be calculated. :type dliq: float or None :arg bool chkvals: If True (default False) and all values are given, this function will calculate the disequilibrium and raise a warning if the results are not within a given tolerance. :arg float chktol: Tolerance to use when checking values (default _CHKTOL). :arg salt0: Initial guess for the salinity in kg/kg. If None (default) then `_approx_tp` is used. :type salt0: float or None :arg temp0: Initial guess for the temperature in K. If None (default) then `_approx_sp` is used. :type temp0: float or None :arg pres0: Initial guess for the pressure in Pa. If None (default) then `_approx_st` is used. :type pres0: float or None :arg dliq0: Initial guess for the liquid water density in kg/m3. If None (default) then `flu3a._dliq_default` is used. :type dliq0: float or None :arg bool chkbnd: If True then warnings are raised when the given values are valid but outside the recommended bounds (default False). :arg bool useext: If False (default) then the salt contribution is calculated from _GSCOEFFS; if True, from _GSCOEFFS_EXT. :arg mathargs: Keyword arguments to the root-finder :func:`_newton <maths3.newton>` (e.g. maxiter, rtol). If None (default) then no arguments are passed and default parameters will be used. :returns: Salinity in kg/kg. :raises ValueError: If fewer than two of salt, temp, and pres are provided. :raises RuntimeWarning: If the relative disequilibrium is more than chktol, if chkvals is True and all values are given. :Examples: >>> salinity(temp=270.,pres=1e5) 0.05602641503 """ salt, temp, pres, dliq = eq_stp(salt=salt,temp=temp,pres=pres,dliq=dliq, chkvals=chkvals,chktol=chktol,salt0=salt0,temp0=temp0,pres0=pres0, dliq0=dliq0,chkbnd=chkbnd,useext=useext,mathargs=mathargs) return salt def enthalpymelt(salt=None,temp=None,pres=None,dliq=None,chkvals=False, chktol=_CHKTOL,salt0=None,temp0=None,pres0=None,dliq0=None, chkbnd=False,useext=False,mathargs=None): """Calculate the enthalpy of melting. Calculate the specific enthalpy of melting of sea-ice. :arg salt: Salinity in kg/kg. If unknown, pass None (default) and it will be calculated. :type salt: float or None :arg temp: Temperature in K. If unknown, pass None (default) and it will be calculated. :type temp: float or None :arg pres: Pressure in Pa. If unknown, pass None (default) and it will be calculated. :type pres: float or None :arg dliq: Density of liquid water in seawater in kg/m3. If unknown, pass None (default) and it will be calculated. :type dliq: float or None :arg bool chkvals: If True (default False) and all values are given, this function will calculate the disequilibrium and raise a warning if the results are not within a given tolerance. :arg float chktol: Tolerance to use when checking values (default _CHKTOL). :arg salt0: Initial guess for the salinity in kg/kg. If None (default) then `_approx_tp` is used. :type salt0: float or None :arg temp0: Initial guess for the temperature in K. If None (default) then `_approx_sp` is used. :type temp0: float or None :arg pres0: Initial guess for the pressure in Pa. If None (default) then `_approx_st` is used. :type pres0: float or None :arg dliq0: Initial guess for the liquid water density in kg/m3. If None (default) then `flu3a._dliq_default` is used. :type dliq0: float or None :arg bool chkbnd: If True then warnings are raised when the given values are valid but outside the recommended bounds (default False). :arg bool useext: If False (default) then the salt contribution is calculated from _GSCOEFFS; if True, from _GSCOEFFS_EXT. :arg mathargs: Keyword arguments to the root-finder :func:`_newton <maths3.newton>` (e.g. maxiter, rtol). If None (default) then no arguments are passed and default parameters will be used. :returns: Enthalpy in J/kg. :raises ValueError: If fewer than two of salt, temp, and pres are provided. :raises RuntimeWarning: If the relative disequilibrium is more than chktol, if chkvals is True and all values are given. :Examples: >>> enthalpymelt(salt=0.035,pres=1e5) 329942.976285 >>> enthalpymelt(salt=0.035,temp=270.) 326829.393605 >>> enthalpymelt(temp=270.,pres=1e5) 328249.119579 """ salt, temp, pres, dliq = eq_stp(salt=salt,temp=temp,pres=pres,dliq=dliq, chkvals=chkvals,chktol=chktol,salt0=salt0,temp0=temp0,pres0=pres0, dliq0=dliq0,chkbnd=chkbnd,useext=useext,mathargs=mathargs) fl_t = _flu_f(1,0,temp,dliq) gs_t = _sal_g(0,1,0,salt,temp,pres,useext=useext) gs_st = _sal_g(1,1,0,salt,temp,pres,useext=useext) gi_t = _ice_g(1,0,temp,pres) hmelt = temp * (gi_t - (fl_t + gs_t - salt*gs_st)) return hmelt def volumemelt(salt=None,temp=None,pres=None,dliq=None,chkvals=False, chktol=_CHKTOL,salt0=None,temp0=None,pres0=None,dliq0=None, chkbnd=False,useext=False,mathargs=None): """Calculate the volume of melting. Calculate the specific volume of melting of sea-ice. :arg salt: Salinity in kg/kg. If unknown, pass None (default) and it will be calculated. :type salt: float or None :arg temp: Temperature in K. If unknown, pass None (default) and it will be calculated. :type temp: float or None :arg pres: Pressure in Pa. If unknown, pass None (default) and it will be calculated. :type pres: float or None :arg dliq: Density of liquid water in seawater in kg/m3. If unknown, pass None (default) and it will be calculated. :type dliq: float or None :arg bool chkvals: If True (default False) and all values are given, this function will calculate the disequilibrium and raise a warning if the results are not within a given tolerance. :arg float chktol: Tolerance to use when checking values (default _CHKTOL). :arg salt0: Initial guess for the salinity in kg/kg. If None (default) then `_approx_tp` is used. :type salt0: float or None :arg temp0: Initial guess for the temperature in K. If None (default) then `_approx_sp` is used. :type temp0: float or None :arg pres0: Initial guess for the pressure in Pa. If None (default) then `_approx_st` is used. :type pres0: float or None :arg dliq0: Initial guess for the liquid water density in kg/m3. If None (default) then `flu3a._dliq_default` is used. :type dliq0: float or None :arg bool chkbnd: If True then warnings are raised when the given values are valid but outside the recommended bounds (default False). :arg bool useext: If False (default) then the salt contribution is calculated from _GSCOEFFS; if True, from _GSCOEFFS_EXT. :arg mathargs: Keyword arguments to the root-finder :func:`_newton <maths3.newton>` (e.g. maxiter, rtol). If None (default) then no arguments are passed and default parameters will be used. :returns: Specific volume in m3/kg. :raises ValueError: If fewer than two of salt, temp, and pres are provided. :raises RuntimeWarning: If the relative disequilibrium is more than chktol, if chkvals is True and all values are given. :Examples: >>> volumemelt(salt=0.035,pres=1e5) -9.10140854473e-5 >>> volumemelt(salt=0.035,temp=270.) -9.67135426848e-5 >>> volumemelt(temp=270.,pres=1e5) -9.18186917900e-5 """ salt, temp, pres, dliq = eq_stp(salt=salt,temp=temp,pres=pres,dliq=dliq, chkvals=chkvals,chktol=chktol,salt0=salt0,temp0=temp0,pres0=pres0, dliq0=dliq0,chkbnd=chkbnd,useext=useext,mathargs=mathargs) gs_p = _sal_g(0,0,1,salt,temp,pres,useext=useext) gs_sp = _sal_g(1,0,1,salt,temp,pres,useext=useext) gi_p = _ice_g(0,1,temp,pres) vmelt = dliq**(-1) + gs_p - salt*gs_sp - gi_p return vmelt ## Thermodynamic functions of two variables def brinesalinity(temp,pres,salt=None,dliq=None,chkvals=False, chktol=_CHKTOL,salt0=None,temp0=None,pres0=None,dliq0=None, chkbnd=False,useext=False,mathargs=None): """Calculate sea-ice brine salinity. Calculate the salinity of seawater (brine) in equilibrium with ice of the given temperature and pressure. :arg float temp: Temperature in K. :arg float pres: Pressure in Pa. :arg salt: Salinity in kg/kg. If unknown, pass None (default) and it will be calculated. :type salt: float or None :arg dliq: Density of liquid water in seawater in kg/m3. If unknown, pass None (default) and it will be calculated. :type dliq: float or None :arg bool chkvals: If True (default False) and all values are given, this function will calculate the disequilibrium and raise a warning if the results are not within a given tolerance. :arg float chktol: Tolerance to use when checking values (default _CHKTOL). :arg salt0: Initial guess for the salinity in kg/kg. If None (default) then `_approx_tp` is used. :type salt0: float or None :arg dliq0: Initial guess for the liquid water density in kg/m3. If None (default) then `flu3a._dliq_default` is used. :type dliq0: float or None :arg bool chkbnd: If True then warnings are raised when the given values are valid but outside the recommended bounds (default False). :arg bool useext: If False (default) then the salt contribution is calculated from _GSCOEFFS; if True, from _GSCOEFFS_EXT. :arg mathargs: Keyword arguments to the root-finder :func:`_newton <maths3.newton>` (e.g. maxiter, rtol). If None (default) then no arguments are passed and default parameters will be used. :returns: Salinity in kg/kg. :raises RuntimeWarning: If the relative disequilibrium is more than chktol, if chkvals is True and all values are given. :Examples: >>> brinesalinity(270.,1e5) 0.05602641503 """ salt, __, __, dliq = eq_stp(temp=temp,pres=pres,salt=salt,dliq=dliq, chkvals=chkvals,chktol=chktol,salt0=salt0,dliq0=dliq0,chkbnd=chkbnd, useext=useext,mathargs=mathargs) return salt def meltingpressure(salt,temp,pres=None,dliq=None,chkvals=False, chktol=_CHKTOL,pres0=None,dliq0=None,chkbnd=False,useext=False, mathargs=None): """Calculate sea-ice melting pressure. Calculate the pressure required to melt ice into seawater at the given salinity and temperature. :arg float salt: Salinity in kg/kg. :arg float temp: Temperature in K. :arg pres: Pressure in Pa. If unknown, pass None (default) and it will be calculated. :type pres: float or None :arg dliq: Density of liquid water in seawater in kg/m3. If unknown, pass None (default) and it will be calculated. :type dliq: float or None :arg bool chkvals: If True (default False) and all values are given, this function will calculate the disequilibrium and raise a warning if the results are not within a given tolerance. :arg float chktol: Tolerance to use when checking values (default _CHKTOL). :arg pres0: Initial guess for the pressure in Pa. If None (default) then `_approx_st` is used. :type pres0: float or None :arg dliq0: Initial guess for the liquid water density in kg/m3. If None (default) then `flu3a._dliq_default` is used. :type dliq0: float or None :arg bool chkbnd: If True then warnings are raised when the given values are valid but outside the recommended bounds (default False). :arg bool useext: If False (default) then the salt contribution is calculated from _GSCOEFFS; if True, from _GSCOEFFS_EXT. :arg mathargs: Keyword arguments to the root-finder :func:`_newton <maths3.newton>` (e.g. maxiter, rtol). If None (default) then no arguments are passed and default parameters will be used. :returns: Pressure in Pa. :raises RuntimeWarning: If the relative disequilibrium is more than chktol, if chkvals is True and all values are given. :Examples: >>> meltingpressure(0.035,270.) 16132047.4385 """ __, __, pres, dliq = eq_stp(temp=temp,pres=pres,salt=salt,dliq=dliq, chkvals=chkvals,chktol=chktol,pres0=pres0,dliq0=dliq0,chkbnd=chkbnd, useext=useext,mathargs=mathargs) return pres def freezingtemperature(salt,pres,temp=None,dliq=None,chkvals=False, chktol=_CHKTOL,temp0=None,dliq0=None,chkbnd=False,useext=False, mathargs=None): """Calculate sea-ice freezing temperature. Calculate the temperature required to freeze seawater at the given salinity and pressure. :arg float salt: Salinity in kg/kg. :arg float pres: Pressure in Pa. :arg temp: Temperature in K. If unknown, pass None (default) and it will be calculated. :type temp: float or None :arg dliq: Density of liquid water in seawater in kg/m3. If unknown, pass None (default) and it will be calculated. :type dliq: float or None :arg bool chkvals: If True (default False) and all values are given, this function will calculate the disequilibrium and raise a warning if the results are not within a given tolerance. :arg float chktol: Tolerance to use when checking values (default _CHKTOL). :arg temp0: Initial guess for the temperature in K. If None (default) then `_approx_sp` is used. :type temp0: float or None :arg dliq0: Initial guess for the liquid water density in kg/m3. If None (default) then `flu3a._dliq_default` is used. :type dliq0: float or None :arg bool chkbnd: If True then warnings are raised when the given values are valid but outside the recommended bounds (default False). :arg bool useext: If False (default) then the salt contribution is calculated from _GSCOEFFS; if True, from _GSCOEFFS_EXT. :arg mathargs: Keyword arguments to the root-finder :func:`_newton <maths3.newton>` (e.g. maxiter, rtol). If None (default) then no arguments are passed and default parameters will be used. :returns: Temperature in K. :raises RuntimeWarning: If the relative disequilibrium is more than chktol, if chkvals is True and all values are given. :Examples: >>> freezingtemperature(0.035,1e5) 271.240373585 """ __, temp, __, dliq = eq_stp(temp=temp,pres=pres,salt=salt,dliq=dliq, chkvals=chkvals,chktol=chktol,temp0=temp0,dliq0=dliq0,chkbnd=chkbnd, useext=useext,mathargs=mathargs) return temp def dtfdp(salt,pres,temp=None,dliq=None,chkvals=False,chktol=_CHKTOL, temp0=None,dliq0=None,chkbnd=False,useext=False,mathargs=None): """Calculate sea-ice freezing point pressure lowering. Calculate the effect of pressure on lowering the freezing point of sea-ice. :arg float salt: Salinity in kg/kg. :arg float pres: Pressure in Pa. :arg temp: Temperature in K. If unknown, pass None (default) and it will be calculated. :type temp: float or None :arg dliq: Density of liquid water in seawater in kg/m3. If unknown, pass None (default) and it will be calculated. :type dliq: float or None :arg bool chkvals: If True (default False) and all values are given, this function will calculate the disequilibrium and raise a warning if the results are not within a given tolerance. :arg float chktol: Tolerance to use when checking values (default _CHKTOL). :arg temp0: Initial guess for the temperature in K. If None (default) then `_approx_sp` is used. :type temp0: float or None :arg dliq0: Initial guess for the liquid water density in kg/m3. If None (default) then `flu3a._dliq_default` is used. :type dliq0: float or None :arg bool chkbnd: If True then warnings are raised when the given values are valid but outside the recommended bounds (default False). :arg bool useext: If False (default) then the salt contribution is calculated from _GSCOEFFS; if True, from _GSCOEFFS_EXT. :arg mathargs: Keyword arguments to the root-finder :func:`_newton <maths3.newton>` (e.g. maxiter, rtol). If None (default) then no arguments are passed and default parameters will be used. :returns: Freezing point lowering in K/Pa. :raises RuntimeWarning: If the relative disequilibrium is more than chktol, if chkvals is True and all values are given. :Examples: >>> dtfdp(0.035,1e5) 7.48210942879e-8 """ __, temp, __, dliq = eq_stp(temp=temp,pres=pres,salt=salt,dliq=dliq, chkvals=chkvals,chktol=chktol,temp0=temp0,dliq0=dliq0,chkbnd=chkbnd, useext=useext,mathargs=mathargs) fl_t = _flu_f(1,0,temp,dliq) gs_t = _sal_g(0,1,0,salt,temp,pres,useext=useext) gs_p = _sal_g(0,0,1,salt,temp,pres,useext=useext) gs_st = _sal_g(1,1,0,salt,temp,pres,useext=useext) gs_sp = _sal_g(1,0,1,salt,temp,pres,useext=useext) gi_t = _ice_g(1,0,temp,pres) gi_p = _ice_g(0,1,temp,pres) dent = fl_t + gs_t - salt*gs_st - gi_t dvol = dliq**(-1) + gs_p - salt*gs_sp - gi_p dtfdp = dvol/dent return dtfdp def dtfds(salt,pres,temp=None,dliq=None,chkvals=False,chktol=_CHKTOL, temp0=None,dliq0=None,chkbnd=False,useext=False,mathargs=None): """Calculate sea-ice freezing point salt lowering. Calculate the effect of salinity on lowering the freezing point of sea-ice. :arg float salt: Salinity in kg/kg. :arg float pres: Pressure in Pa. :arg temp: Temperature in K. If unknown, pass None (default) and it will be calculated. :type temp: float or None :arg dliq: Density of liquid water in seawater in kg/m3. If unknown, pass None (default) and it will be calculated. :type dliq: float or None :arg bool chkvals: If True (default False) and all values are given, this function will calculate the disequilibrium and raise a warning if the results are not within a given tolerance. :arg float chktol: Tolerance to use when checking values (default _CHKTOL). :arg temp0: Initial guess for the temperature in K. If None (default) then `_approx_sp` is used. :type temp0: float or None :arg dliq0: Initial guess for the liquid water density in kg/m3. If None (default) then `flu3a._dliq_default` is used. :type dliq0: float or None :arg bool chkbnd: If True then warnings are raised when the given values are valid but outside the recommended bounds (default False). :arg bool useext: If False (default) then the salt contribution is calculated from _GSCOEFFS; if True, from _GSCOEFFS_EXT. :arg mathargs: Keyword arguments to the root-finder :func:`_newton <maths3.newton>` (e.g. maxiter, rtol). If None (default) then no arguments are passed and default parameters will be used. :returns: Freezing point lowering in K/(kg/kg). :raises RuntimeWarning: If the relative disequilibrium is more than chktol, if chkvals is True and all values are given. :Examples: >>> dtfds(0.035,1e5) -56.8751336296 """ __, temp, __, dliq = eq_stp(temp=temp,pres=pres,salt=salt,dliq=dliq, chkvals=chkvals,chktol=chktol,temp0=temp0,dliq0=dliq0,chkbnd=chkbnd, useext=useext,mathargs=mathargs) fl_t = _flu_f(1,0,temp,dliq) gs_t = _sal_g(0,1,0,salt,temp,pres,useext=useext) gs_ss = _sal_g(2,0,0,salt,temp,pres,useext=useext) gs_st = _sal_g(1,1,0,salt,temp,pres,useext=useext) gi_t = _ice_g(1,0,temp,pres) dent = fl_t + gs_t - salt*gs_st - gi_t dtfds = salt*gs_ss / dent return dtfds ## Seawater-ice combined system def eq_seaice(sisal,temp,pres,salt=None,dliq=None,chkvals=False, chktol=_CHKTOL,salt0=None,dliq0=None,chkbnd=False,useext=False, mathargs=None): """Get primary sea-ice variables at SsiTP. Get the values of all primary variables for a seawater-ice parcel at the given total salinity, temperature, and pressure. Total salinity here is the ratio of the mass of salt to the total parcel mass (salt + liquid water + ice). If the calculation has already been done, the results can be passed to avoid unnecessary repeat calculations. If enough values are passed, they will be checked for consistency if chkvals is True. :arg float sisal: Total sea-ice salinity in kg/kg. :arg float temp: Temperature in K. :arg float pres: Pressure in Pa. :arg salt: Seawater salinity in kg/kg. If unknown, pass None (default) and it will be calculated. :type salt: float or None :arg dliq: Seawater liquid water density in kg/m3. If unknown, pass None (default) and it will be calculated. :type dliq: float or None :arg dvap: Water vapour density in kg/m3. If unknown, pass None (default) and it will be calculated. :type dvap: float or None :arg bool chkvals: If True (default False) and all values are given, this function will calculate the disequilibrium and raise a warning if the results are not within a given tolerance. :arg float chktol: Tolerance to use when checking values (default _CHKTOL). :arg salt0: Initial guess for the seawater salinity in kg/kg. If None (default) then `_approx_tp` is used. :type salt0: float or None :arg dliq0: Initial guess for the seawater liquid water density in kg/m3. If None (default) then `flu3a._dliq_default` is used. :type dliq0: float or None :arg bool chkbnd: If True then warnings are raised when the given values are valid but outside the recommended bounds (default False). :arg bool useext: If False (default) then the salt contribution is calculated from _GSCOEFFS; if True, from _GSCOEFFS_EXT. :arg mathargs: Keyword arguments to the root-finder :func:`_newton <maths3.newton>` (e.g. maxiter, rtol). If None (default) then no arguments are passed and default parameters will be used. :returns: Seawater salinity and liquid water density (both in SI units). :raises RuntimeWarning: If the relative disequilibrium is more than chktol, if chkvals is True and all values are given. :raises RuntimeWarning: If the equilibrium seawater salinity is lower than the total parcel salinity. """ if salt is None or dliq is None: salt, __, __, dliq = eq_stp(temp=temp,pres=pres,salt=salt,dliq=dliq, chkvals=chkvals,chktol=chktol,salt0=salt0,dliq0=dliq0,chkbnd=chkbnd, useext=useext,mathargs=mathargs) if salt < sisal: warnmsg = ('Equilibrium salinity {0} is lower than the total parcel ' 'salinity {1}').format(salt,sisal) warnings.warn(warnmsg,RuntimeWarning) salt = sisal return salt, dliq def seaice_g(drvs,drvt,drvp,sisal,temp,pres,salt=None,dliq=None, chkvals=False,chktol=_CHKTOL,salt0=None,dliq0=None,chkbnd=False, useext=False,mathargs=None): """Calculate sea-ice Gibbs free energy with derivatives. Calculate the specific Gibbs free energy of a sea-ice parcel or its derivatives with respect to total salinity, temperature, and pressure. :arg int drvs: Number of total salinity derivatives. :arg int drvt: Number of temperature derivatives. :arg int drvp: Number of pressure derivatives. :arg float sisal: Total sea-ice salinity in kg/kg. :arg float temp: Temperature in K. :arg float pres: Pressure in Pa. :arg salt: Seawater salinity in kg/kg. If unknown, pass None (default) and it will be calculated. :type salt: float or None :arg dliq: Seawater liquid water density in kg/m3. If unknown, pass None (default) and it will be calculated. :type dliq: float or None :arg dvap: Water vapour density in kg/m3. If unknown, pass None (default) and it will be calculated. :type dvap: float or None :arg bool chkvals: If True (default False) and all values are given, this function will calculate the disequilibrium and raise a warning if the results are not within a given tolerance. :arg float chktol: Tolerance to use when checking values (default _CHKTOL). :arg salt0: Initial guess for the seawater salinity in kg/kg. If None (default) then `_approx_tp` is used. :type salt0: float or None :arg dliq0: Initial guess for the seawater liquid water density in kg/m3. If None (default) then `flu3a._dliq_default` is used. :type dliq0: float or None :arg bool chkbnd: If True then warnings are raised when the given values are valid but outside the recommended bounds (default False). :arg bool useext: If False (default) then the salt contribution is calculated from _GSCOEFFS; if True, from _GSCOEFFS_EXT. :arg mathargs: Keyword arguments to the root-finder :func:`_newton <maths3.newton>` (e.g. maxiter, rtol). If None (default) then no arguments are passed and default parameters will be used. :returns: Gibbs free energy in units of (J/kg) / (kg/kg)^drvs / K^drvt / Pa^drvp. :raises ValueError: If any of (drvs,drvt,drvp) are negative or if (drvs+drvt+drvp) > 2. :raises RuntimeWarning: If the relative disequilibrium is more than chktol, if chkvals is True and all values are given. :raises RuntimeWarning: If the equilibrium seawater salinity is lower than the total parcel salinity. :Examples: >>> seaice_g(0,0,0,0.035,270.,1e5) -414.0175745 >>> seaice_g(1,0,0,0.035,270.,1e5) 96363.77305 >>> seaice_g(0,1,0,0.035,270.,1e5) 500.445444181 >>> seaice_g(0,0,1,0.035,270.,1e5) 1.00689072300e-3 >>> seaice_g(2,0,0,0.035,270.,1e5) 0. >>> seaice_g(1,1,0,0.035,270.,1e5) -21272.2260252 >>> seaice_g(1,0,1,0.035,270.,1e5) -2.383040378e-03 >>> seaice_g(0,2,0,0.035,270.,1e5) -232.847783380 >>> seaice_g(0,1,1,0.035,270.,1e5) -1.658664467e-05 >>> seaice_g(0,0,2,0.035,270.,1e5) -1.57591932118e-12 """ drvtup = (drvs,drvt,drvp) if any(drv < 0 for drv in drvtup) or sum(drvtup) > 2: errmsg = 'Derivatives {0} not recognized'.format(drvtup) raise ValueError(errmsg) salt, dliq = eq_seaice(sisal,temp,pres,salt=salt,dliq=dliq,chkvals=chkvals, chktol=chktol,salt0=salt0,dliq0=dliq0,chkbnd=chkbnd,useext=useext, mathargs=mathargs) seaf = sisal/salt # Straightforward derivatives if (drvs,drvt,drvp) == (0,0,0): gl = _eq_chempot(0,0,temp,dliq) gs = _sal_g(0,0,0,salt,temp,pres,useext=useext) gi = _ice_g(0,0,temp,pres) g = seaf*(gl + gs) + (1-seaf)*gi return g elif (drvs,drvt,drvp) == (1,0,0): gs_s = _sal_g(1,0,0,salt,temp,pres,useext=useext) g_s = gs_s return g_s elif (drvs,drvt,drvp) == (0,1,0): fl_t = _flu_f(1,0,temp,dliq) gs_t = _sal_g(0,1,0,salt,temp,pres,useext=useext) gi_t = _ice_g(1,0,temp,pres) g_t = seaf*(fl_t + gs_t) + (1-seaf)*gi_t return g_t elif (drvs,drvt,drvp) == (0,0,1): gs_p = _sal_g(0,0,1,salt,temp,pres,useext=useext) gi_p = _ice_g(0,1,temp,pres) g_p = seaf*(dliq**(-1) + gs_p) + (1-seaf)*gi_p return g_p elif (drvs,drvt,drvp) == (2,0,0): g_ss = 0.0 return g_ss elif (drvs,drvt,drvp) == (1,1,0): fl_t = _flu_f(1,0,temp,dliq) gs_t = _sal_g(0,1,0,salt,temp,pres,useext=useext) gi_t = _ice_g(1,0,temp,pres) g_st = (fl_t + gs_t - gi_t)/salt return g_st elif (drvs,drvt,drvp) == (1,0,1): gs_p = _sal_g(0,0,1,salt,temp,pres,useext=useext) gi_p = _ice_g(0,1,temp,pres) g_sp = (dliq**(-1) + gs_p - gi_p)/salt return g_sp # Other derivatives require inversion cl = _eq_pressure(0,1,temp,dliq) gs_ss = _sal_g(2,0,0,salt,temp,pres,useext=useext) if drvt > 0: fl_t = _flu_f(1,0,temp,dliq) gs_t = _sal_g(0,1,0,salt,temp,pres,useext=useext) gs_st = _sal_g(1,1,0,salt,temp,pres,useext=useext) gi_t = _ice_g(1,0,temp,pres) dentr = fl_t + gs_t - salt*gs_st - gi_t if drvp > 0: gs_p = _sal_g(0,0,1,salt,temp,pres,useext=useext) gs_sp = _sal_g(1,0,1,salt,temp,pres,useext=useext) gi_p = _ice_g(0,1,temp,pres) dvol = dliq**(-1) + gs_p - salt*gs_sp - gi_p s_p = dvol / (salt*gs_ss) dl_p = cl**(-1) if (drvs,drvt,drvp) == (0,2,0): fl_tt = _flu_f(2,0,temp,dliq) fl_td = _flu_f(1,1,temp,dliq) gs_tt = _sal_g(0,2,0,salt,temp,pres,useext=useext) gi_tt = _ice_g(2,0,temp,pres) s_t = dentr / (salt*gs_ss) dl_t = -dliq**2*fl_td/cl gb_tt = fl_tt + fl_td*dl_t + gs_tt g_tt = -seaf/salt*dentr*s_t + seaf*gb_tt + (1-seaf)*gi_tt return g_tt elif (drvs,drvt,drvp) == (0,1,1): fl_td = _flu_f(1,1,temp,dliq) gs_tp = _sal_g(0,1,1,salt,temp,pres,useext=useext) gi_tp = _ice_g(1,1,temp,pres) gb_tp = fl_td*dl_p + gs_tp g_tp = -seaf/salt*dentr*s_p + seaf*gb_tp + (1-seaf)*gi_tp return g_tp elif (drvs,drvt,drvp) == (0,0,2): gs_pp = _sal_g(0,0,2,salt,temp,pres,useext=useext) gi_pp = _ice_g(0,2,temp,pres) gb_pp = -dl_p/dliq**2 + gs_pp g_pp = -seaf/salt*dvol*s_p + seaf*gb_pp + (1-seaf)*gi_pp return g_pp # Should not have made it this far! errmsg = 'Derivatives {0} not recognized'.format((drvs,drvt,drvp)) raise ValueError(errmsg) def brinefraction(sisal,temp,pres,salt=None,dliq=None,chkvals=False, chktol=_CHKTOL,salt0=None,dliq0=None,chkbnd=False,useext=False, mathargs=None): """Calculate sea-ice brine fraction. Calculate the mass fraction of seawater (brine) in a sea-ice parcel, the ratio of the mass of seawater (salt + liquid water) to the total mass (salt + liquid water + ice). :arg float sisal: Total sea-ice salinity in kg/kg. :arg float temp: Temperature in K. :arg float pres: Pressure in Pa. :arg salt: Seawater salinity in kg/kg. If unknown, pass None (default) and it will be calculated. :type salt: float or None :arg dliq: Seawater liquid water density in kg/m3. If unknown, pass None (default) and it will be calculated. :type dliq: float or None :arg dvap: Water vapour density in kg/m3. If unknown, pass None (default) and it will be calculated. :type dvap: float or None :arg bool chkvals: If True (default False) and all values are given, this function will calculate the disequilibrium and raise a warning if the results are not within a given tolerance. :arg float chktol: Tolerance to use when checking values (default _CHKTOL). :arg salt0: Initial guess for the seawater salinity in kg/kg. If None (default) then `_approx_tp` is used. :type salt0: float or None :arg dliq0: Initial guess for the seawater liquid water density in kg/m3. If None (default) then `flu3a._dliq_default` is used. :type dliq0: float or None :arg bool chkbnd: If True then warnings are raised when the given values are valid but outside the recommended bounds (default False). :arg bool useext: If False (default) then the salt contribution is calculated from _GSCOEFFS; if True, from _GSCOEFFS_EXT. :arg mathargs: Keyword arguments to the root-finder :func:`_newton <maths3.newton>` (e.g. maxiter, rtol). If None (default) then no arguments are passed and default parameters will be used. :returns: Brine fraction in kg/kg. :raises RuntimeWarning: If the relative disequilibrium is more than chktol, if chkvals is True and all values are given. :raises RuntimeWarning: If the equilibrium seawater salinity is lower than the total parcel salinity. :Examples: >>> brinefraction(0.035,270.,1e5) 0.6247053284 """ salt, dliq = eq_seaice(sisal,temp,pres,salt=salt,dliq=dliq,chkvals=chkvals, chktol=chktol,salt0=salt0,dliq0=dliq0,chkbnd=chkbnd,useext=useext, mathargs=mathargs) seaf = sisal/salt return seaf def cp(sisal,temp,pres,salt=None,dliq=None,chkvals=False,chktol=_CHKTOL, salt0=None,dliq0=None,chkbnd=False,useext=False,mathargs=None): """Calculate sea-ice isobaric heat capacity. Calculate the isobaric heat capacity of sea-ice. :arg float sisal: Total sea-ice salinity in kg/kg. :arg float temp: Temperature in K. :arg float pres: Pressure in Pa. :arg salt: Seawater salinity in kg/kg. If unknown, pass None (default) and it will be calculated. :type salt: float or None :arg dliq: Seawater liquid water density in kg/m3. If unknown, pass None (default) and it will be calculated. :type dliq: float or None :arg dvap: Water vapour density in kg/m3. If unknown, pass None (default) and it will be calculated. :type dvap: float or None :arg bool chkvals: If True (default False) and all values are given, this function will calculate the disequilibrium and raise a warning if the results are not within a given tolerance. :arg float chktol: Tolerance to use when checking values (default _CHKTOL). :arg salt0: Initial guess for the seawater salinity in kg/kg. If None (default) then `_approx_tp` is used. :type salt0: float or None :arg dliq0: Initial guess for the seawater liquid water density in kg/m3. If None (default) then `flu3a._dliq_default` is used. :type dliq0: float or None :arg bool chkbnd: If True then warnings are raised when the given values are valid but outside the recommended bounds (default False). :arg bool useext: If False (default) then the salt contribution is calculated from _GSCOEFFS; if True, from _GSCOEFFS_EXT. :arg mathargs: Keyword arguments to the root-finder :func:`_newton <maths3.newton>` (e.g. maxiter, rtol). If None (default) then no arguments are passed and default parameters will be used. :returns: Heat capacity in J/kg/K. :raises RuntimeWarning: If the relative disequilibrium is more than chktol, if chkvals is True and all values are given. :raises RuntimeWarning: If the equilibrium seawater salinity is lower than the total parcel salinity. :Examples: >>> cp(0.035,270.,1e5) 62868.90151 """ g_tt = seaice_g(0,2,0,sisal,temp,pres,salt=salt,dliq=dliq,chkvals=chkvals, chktol=chktol,salt0=salt0,dliq0=dliq0,chkbnd=chkbnd,useext=useext, mathargs=mathargs) cp = -temp * g_tt return cp def density(sisal,temp,pres,salt=None,dliq=None,chkvals=False, chktol=_CHKTOL,salt0=None,dliq0=None,chkbnd=False,useext=False, mathargs=None): """Calculate sea-ice total density. Calculate the total density of a sea-ice parcel. :arg float sisal: Total sea-ice salinity in kg/kg. :arg float temp: Temperature in K. :arg float pres: Pressure in Pa. :arg salt: Seawater salinity in kg/kg. If unknown, pass None (default) and it will be calculated. :type salt: float or None :arg dliq: Seawater liquid water density in kg/m3. If unknown, pass None (default) and it will be calculated. :type dliq: float or None :arg dvap: Water vapour density in kg/m3. If unknown, pass None (default) and it will be calculated. :type dvap: float or None :arg bool chkvals: If True (default False) and all values are given, this function will calculate the disequilibrium and raise a warning if the results are not within a given tolerance. :arg float chktol: Tolerance to use when checking values (default _CHKTOL). :arg salt0: Initial guess for the seawater salinity in kg/kg. If None (default) then `_approx_tp` is used. :type salt0: float or None :arg dliq0: Initial guess for the seawater liquid water density in kg/m3. If None (default) then `flu3a._dliq_default` is used. :type dliq0: float or None :arg bool chkbnd: If True then warnings are raised when the given values are valid but outside the recommended bounds (default False). :arg bool useext: If False (default) then the salt contribution is calculated from _GSCOEFFS; if True, from _GSCOEFFS_EXT. :arg mathargs: Keyword arguments to the root-finder :func:`_newton <maths3.newton>` (e.g. maxiter, rtol). If None (default) then no arguments are passed and default parameters will be used. :returns: Density in kg/m3. :raises RuntimeWarning: If the relative disequilibrium is more than chktol, if chkvals is True and all values are given. :raises RuntimeWarning: If the equilibrium seawater salinity is lower than the total parcel salinity. :Examples: >>> density(0.035,270.,1e5) 993.156434117 """ g_p = seaice_g(0,0,1,sisal,temp,pres,salt=salt,dliq=dliq,chkvals=chkvals, chktol=chktol,salt0=salt0,dliq0=dliq0,chkbnd=chkbnd,useext=useext, mathargs=mathargs) rho = g_p**(-1) return rho def enthalpy(sisal,temp,pres,salt=None,dliq=None,chkvals=False, chktol=_CHKTOL,salt0=None,dliq0=None,chkbnd=False,useext=False, mathargs=None): """Calculate sea-ice enthalpy. Calculate the specific enthalpy of a sea-ice parcel. :arg float sisal: Total sea-ice salinity in kg/kg. :arg float temp: Temperature in K. :arg float pres: Pressure in Pa. :arg salt: Seawater salinity in kg/kg. If unknown, pass None (default) and it will be calculated. :type salt: float or None :arg dliq: Seawater liquid water density in kg/m3. If unknown, pass None (default) and it will be calculated. :type dliq: float or None :arg dvap: Water vapour density in kg/m3. If unknown, pass None (default) and it will be calculated. :type dvap: float or None :arg bool chkvals: If True (default False) and all values are given, this function will calculate the disequilibrium and raise a warning if the results are not within a given tolerance. :arg float chktol: Tolerance to use when checking values (default _CHKTOL). :arg salt0: Initial guess for the seawater salinity in kg/kg. If None (default) then `_approx_tp` is used. :type salt0: float or None :arg dliq0: Initial guess for the seawater liquid water density in kg/m3. If None (default) then `flu3a._dliq_default` is used. :type dliq0: float or None :arg bool chkbnd: If True then warnings are raised when the given values are valid but outside the recommended bounds (default False). :arg bool useext: If False (default) then the salt contribution is calculated from _GSCOEFFS; if True, from _GSCOEFFS_EXT. :arg mathargs: Keyword arguments to the root-finder :func:`_newton <maths3.newton>` (e.g. maxiter, rtol). If None (default) then no arguments are passed and default parameters will be used. :returns: Enthalpy in J/kg. :raises RuntimeWarning: If the relative disequilibrium is more than chktol, if chkvals is True and all values are given. :raises RuntimeWarning: If the equilibrium seawater salinity is lower than the total parcel salinity. :Examples: >>> enthalpy(0.035,270.,1e5) -135534.287504 """ salt, dliq = eq_seaice(sisal,temp,pres,salt=salt,dliq=dliq,chkvals=chkvals, chktol=chktol,salt0=salt0,dliq0=dliq0,chkbnd=chkbnd,useext=useext, mathargs=mathargs) g = seaice_g(0,0,0,sisal,temp,pres,salt=salt,dliq=dliq,useext=useext) g_t = seaice_g(0,1,0,sisal,temp,pres,salt=salt,dliq=dliq,useext=useext) h = g - temp*g_t return h def entropy(sisal,temp,pres,salt=None,dliq=None,chkvals=False, chktol=_CHKTOL,salt0=None,dliq0=None,chkbnd=False,useext=False, mathargs=None): """Calculate sea-ice entropy. Calculate the specific entropy of a sea-ice parcel. :arg float sisal: Total sea-ice salinity in kg/kg. :arg float temp: Temperature in K. :arg float pres: Pressure in Pa. :arg salt: Seawater salinity in kg/kg. If unknown, pass None (default) and it will be calculated. :type salt: float or None :arg dliq: Seawater liquid water density in kg/m3. If unknown, pass None (default) and it will be calculated. :type dliq: float or None :arg dvap: Water vapour density in kg/m3. If unknown, pass None (default) and it will be calculated. :type dvap: float or None :arg bool chkvals: If True (default False) and all values are given, this function will calculate the disequilibrium and raise a warning if the results are not within a given tolerance. :arg float chktol: Tolerance to use when checking values (default _CHKTOL). :arg salt0: Initial guess for the seawater salinity in kg/kg. If None (default) then `_approx_tp` is used. :type salt0: float or None :arg dliq0: Initial guess for the seawater liquid water density in kg/m3. If None (default) then `flu3a._dliq_default` is used. :type dliq0: float or None :arg bool chkbnd: If True then warnings are raised when the given values are valid but outside the recommended bounds (default False). :arg bool useext: If False (default) then the salt contribution is calculated from _GSCOEFFS; if True, from _GSCOEFFS_EXT. :arg mathargs: Keyword arguments to the root-finder :func:`_newton <maths3.newton>` (e.g. maxiter, rtol). If None (default) then no arguments are passed and default parameters will be used. :returns: Entropy in J/kg/K. :raises RuntimeWarning: If the relative disequilibrium is more than chktol, if chkvals is True and all values are given. :raises RuntimeWarning: If the equilibrium seawater salinity is lower than the total parcel salinity. :Examples: >>> entropy(0.035,270.,1e5) -500.445444181 """ g_t = seaice_g(0,1,0,sisal,temp,pres,salt=salt,dliq=dliq,chkvals=chkvals, chktol=chktol,salt0=salt0,dliq0=dliq0,chkbnd=chkbnd,useext=useext, mathargs=mathargs) s = -g_t return s def expansion(sisal,temp,pres,salt=None,dliq=None,chkvals=False, chktol=_CHKTOL,salt0=None,dliq0=None,chkbnd=False,useext=False, mathargs=None): """Calculate sea-ice thermal expansion coefficient. Calculate the thermal expansion coefficient of a sea-ice parcel. :arg float sisal: Total sea-ice salinity in kg/kg. :arg float temp: Temperature in K. :arg float pres: Pressure in Pa. :arg salt: Seawater salinity in kg/kg. If unknown, pass None (default) and it will be calculated. :type salt: float or None :arg dliq: Seawater liquid water density in kg/m3. If unknown, pass None (default) and it will be calculated. :type dliq: float or None :arg dvap: Water vapour density in kg/m3. If unknown, pass None (default) and it will be calculated. :type dvap: float or None :arg bool chkvals: If True (default False) and all values are given, this function will calculate the disequilibrium and raise a warning if the results are not within a given tolerance. :arg float chktol: Tolerance to use when checking values (default _CHKTOL). :arg salt0: Initial guess for the seawater salinity in kg/kg. If None (default) then `_approx_tp` is used. :type salt0: float or None :arg dliq0: Initial guess for the seawater liquid water density in kg/m3. If None (default) then `flu3a._dliq_default` is used. :type dliq0: float or None :arg bool chkbnd: If True then warnings are raised when the given values are valid but outside the recommended bounds (default False). :arg bool useext: If False (default) then the salt contribution is calculated from _GSCOEFFS; if True, from _GSCOEFFS_EXT. :arg mathargs: Keyword arguments to the root-finder :func:`_newton <maths3.newton>` (e.g. maxiter, rtol). If None (default) then no arguments are passed and default parameters will be used. :returns: Expansion coefficient in 1/K. :raises RuntimeWarning: If the relative disequilibrium is more than chktol, if chkvals is True and all values are given. :raises RuntimeWarning: If the equilibrium seawater salinity is lower than the total parcel salinity. :Examples: >>> expansion(0.035,270.,1e5) -1.647313287e-02 """ salt, dliq = eq_seaice(sisal,temp,pres,salt=salt,dliq=dliq,chkvals=chkvals, chktol=chktol,salt0=salt0,dliq0=dliq0,chkbnd=chkbnd,useext=useext, mathargs=mathargs) g_p = seaice_g(0,0,1,sisal,temp,pres,salt=salt,dliq=dliq,useext=useext) g_tp = seaice_g(0,1,1,sisal,temp,pres,salt=salt,dliq=dliq,useext=useext) alpha = g_tp / g_p return alpha def kappa_t(sisal,temp,pres,salt=None,dliq=None,chkvals=False, chktol=_CHKTOL,salt0=None,dliq0=None,chkbnd=False,useext=False, mathargs=None): """Calculate sea-ice isothermal compressibility. Calculate the isothermal compressibility of a sea-ice parcel. :arg float sisal: Total sea-ice salinity in kg/kg. :arg float temp: Temperature in K. :arg float pres: Pressure in Pa. :arg salt: Seawater salinity in kg/kg. If unknown, pass None (default) and it will be calculated. :type salt: float or None :arg dliq: Seawater liquid water density in kg/m3. If unknown, pass None (default) and it will be calculated. :type dliq: float or None :arg dvap: Water vapour density in kg/m3. If unknown, pass None (default) and it will be calculated. :type dvap: float or None :arg bool chkvals: If True (default False) and all values are given, this function will calculate the disequilibrium and raise a warning if the results are not within a given tolerance. :arg float chktol: Tolerance to use when checking values (default _CHKTOL). :arg salt0: Initial guess for the seawater salinity in kg/kg. If None (default) then `_approx_tp` is used. :type salt0: float or None :arg dliq0: Initial guess for the seawater liquid water density in kg/m3. If None (default) then `flu3a._dliq_default` is used. :type dliq0: float or None :arg bool chkbnd: If True then warnings are raised when the given values are valid but outside the recommended bounds (default False). :arg bool useext: If False (default) then the salt contribution is calculated from _GSCOEFFS; if True, from _GSCOEFFS_EXT. :arg mathargs: Keyword arguments to the root-finder :func:`_newton <maths3.newton>` (e.g. maxiter, rtol). If None (default) then no arguments are passed and default parameters will be used. :returns: Compressibility in 1/Pa. :raises RuntimeWarning: If the relative disequilibrium is more than chktol, if chkvals is True and all values are given. :raises RuntimeWarning: If the equilibrium seawater salinity is lower than the total parcel salinity. :Examples: >>> kappa_t(0.035,270.,1e5) 1.56513441348e-9 """ salt, dliq = eq_seaice(sisal,temp,pres,salt=salt,dliq=dliq,chkvals=chkvals, chktol=chktol,salt0=salt0,dliq0=dliq0,chkbnd=chkbnd,useext=useext, mathargs=mathargs) g_p = seaice_g(0,0,1,sisal,temp,pres,salt=salt,dliq=dliq,useext=useext) g_pp = seaice_g(0,0,2,sisal,temp,pres,salt=salt,dliq=dliq,useext=useext) kappa = -g_pp / g_p return kappa
from __future__ import annotations import os import re import shutil import stat import tempfile from collections.abc import Mapping from contextlib import contextmanager from pathlib import Path from typing import TYPE_CHECKING from typing import Any from typing import Callable from typing import Iterator if TYPE_CHECKING: from poetry.core.packages.package import Package from requests import Session from poetry.config.config import Config _canonicalize_regex = re.compile("[-_]+") def canonicalize_name(name: str) -> str: return _canonicalize_regex.sub("-", name).lower() def module_name(name: str) -> str: return canonicalize_name(name).replace(".", "_").replace("-", "_") def _del_ro(action: Callable, name: str, exc: Exception) -> None: os.chmod(name, stat.S_IWRITE) os.remove(name) @contextmanager def temporary_directory(*args: Any, **kwargs: Any) -> Iterator[str]: name = tempfile.mkdtemp(*args, **kwargs) yield name shutil.rmtree(name, onerror=_del_ro) def get_cert(config: Config, repository_name: str) -> Path | None: cert = config.get(f"certificates.{repository_name}.cert") if cert: return Path(cert) else: return None def get_client_cert(config: Config, repository_name: str) -> Path | None: client_cert = config.get(f"certificates.{repository_name}.client-cert") if client_cert: return Path(client_cert) else: return None def _on_rm_error(func: Callable, path: str, exc_info: Exception) -> None: if not os.path.exists(path): return os.chmod(path, stat.S_IWRITE) func(path) def safe_rmtree(path: str) -> None: if Path(path).is_symlink(): return os.unlink(str(path)) shutil.rmtree(path, onerror=_on_rm_error) def merge_dicts(d1: dict, d2: dict) -> None: for k in d2.keys(): if k in d1 and isinstance(d1[k], dict) and isinstance(d2[k], Mapping): merge_dicts(d1[k], d2[k]) else: d1[k] = d2[k] def download_file( url: str, dest: str, session: Session | None = None, chunk_size: int = 1024, ) -> None: import requests get = requests.get if not session else session.get response = get(url, stream=True) response.raise_for_status() with open(dest, "wb") as f: for chunk in response.iter_content(chunk_size=chunk_size): if chunk: f.write(chunk) def get_package_version_display_string( package: Package, root: Path | None = None ) -> str: if package.source_type in ["file", "directory"] and root: path = Path(os.path.relpath(package.source_url, root.as_posix())).as_posix() return f"{package.version} {path}" return package.full_pretty_version def paths_csv(paths: list[Path]) -> str: return ", ".join(f'"{c!s}"' for c in paths) def is_dir_writable(path: Path, create: bool = False) -> bool: try: if not path.exists(): if not create: return False path.mkdir(parents=True, exist_ok=True) with tempfile.TemporaryFile(dir=str(path)): pass except OSError: return False else: return True def pluralize(count: int, word: str = "") -> str: if count == 1: return word return word + "s"
# Variational Bayes for binary logistic regression using JJ bound and mean field Gaussian-Gamma. # Also, Laplace approx with EB for multiclass. # Written by Amazasp Shaumyan #https://github.com/AmazaspShumik/sklearn-bayes/blob/master/skbayes/linear_models/bayes_logistic.py import numpy as np from scipy.optimize import fmin_l_bfgs_b from sklearn.utils.optimize import newton_cg from scipy.special import expit, exprel from scipy.linalg import eigvalsh from sklearn.utils.multiclass import check_classification_targets from sklearn.linear_model.base import LinearClassifierMixin, BaseEstimator from sklearn.utils import check_X_y from scipy.linalg import solve_triangular from sklearn.linear_model.logistic import ( _logistic_loss_and_grad, _logistic_loss, _logistic_grad_hess,) class BayesianLogisticRegression(LinearClassifierMixin, BaseEstimator): ''' Superclass for two different implementations of Bayesian Logistic Regression ''' def __init__(self, n_iter, tol, fit_intercept, verbose): self.n_iter = n_iter self.tol = tol self.fit_intercept = fit_intercept self.verbose = verbose def fit(self,X,y): ''' Fits Bayesian Logistic Regression Parameters ----------- X: array-like of size (n_samples, n_features) Training data, matrix of explanatory variables y: array-like of size (n_samples, ) Target values Returns ------- self: object self ''' # preprocess data X,y = check_X_y( X, y , dtype = np.float64) check_classification_targets(y) self.classes_ = np.unique(y) n_classes = len(self.classes_) # prepare for ovr if required n_samples, n_features = X.shape if self.fit_intercept: X = self._add_intercept(X) if n_classes < 2: raise ValueError("Need samples of at least 2 classes") if n_classes > 2: self.coef_, self.sigma_ = [0]*n_classes,[0]*n_classes self.intercept_ = [0]*n_classes else: self.coef_, self.sigma_, self.intercept_ = [0],[0],[0] # make classifier for each class (one-vs-the rest) for i in range(len(self.coef_)): if n_classes == 2: pos_class = self.classes_[1] else: pos_class = self.classes_[i] mask = (y == pos_class) y_bin = np.ones(y.shape, dtype=np.float64) y_bin[~mask] = self._mask_val coef_, sigma_ = self._fit(X,y_bin) if self.fit_intercept: self.intercept_[i],self.coef_[i] = self._get_intercept(coef_) else: self.coef_[i] = coef_ self.sigma_[i] = sigma_ self.coef_ = np.asarray(self.coef_) return self def predict_proba(self,X): ''' Predicts probabilities of targets for test set Parameters ---------- X: array-like of size [n_samples_test,n_features] Matrix of explanatory variables (test set) Returns ------- probs: numpy array of size [n_samples_test] Estimated probabilities of target classes ''' # construct separating hyperplane scores = self.decision_function(X) if self.fit_intercept: X = self._add_intercept(X) # probit approximation to predictive distribution sigma = self._get_sigma(X) ks = 1. / ( 1. + np.pi*sigma / 8)**0.5 probs = expit(scores.T*ks).T # handle several class cases if probs.shape[1] == 1: probs = np.hstack([1 - probs, probs]) else: probs /= np.reshape(np.sum(probs, axis = 1), (probs.shape[0],1)) return probs def _add_intercept(self,X): '''Adds intercept to data matrix''' raise NotImplementedError def _get_intercept(self,coef): ''' Extracts value of intercept from coefficients ''' raise NotImplementedError def _get_sigma(self,X): ''' Computes variance of predictive distribution (which is then used in probit approximation of sigmoid) ''' raise NotImplementedError class EBLogisticRegression(BayesianLogisticRegression): ''' Implements Bayesian Logistic Regression with type II maximum likelihood (sometimes it is called Empirical Bayes), uses Gaussian (Laplace) method for approximation of evidence function. Parameters ---------- n_iter: int, optional (DEFAULT = 50) Maximum number of iterations before termination tol: float, optional (DEFAULT = 1e-3) If absolute change in precision parameter for weights is below threshold algorithm terminates. solver: str, optional (DEFAULT = 'lbfgs_b') Optimization method that is used for finding parameters of posterior distribution ['lbfgs_b','newton_cg'] n_iter_solver: int, optional (DEFAULT = 15) Maximum number of iterations before termination of solver tol_solver: float, optional (DEFAULT = 1e-3) Convergence threshold for solver (it is used in estimating posterior distribution), fit_intercept : bool, optional ( DEFAULT = True ) If True will use intercept in the model. If set to false, no intercept will be used in calculations alpha: float (DEFAULT = 1e-6) Initial regularization parameter (precision of prior distribution) verbose : boolean, optional (DEFAULT = True) Verbose mode when fitting the model Attributes ---------- coef_ : array, shape = (n_features) Coefficients of the regression model (mean of posterior distribution) sigma_ : array, shape = (n_features, ) eigenvalues of covariance matrix alpha_: float Precision parameter of weight distribution intercept_: array, shape = (n_features) intercept References: ----------- [1] Pattern Recognition and Machine Learning, Bishop (2006) (pages 293 - 294) ''' def __init__(self, n_iter = 50, tol = 1e-3,solver = 'lbfgs_b',n_iter_solver = 15, tol_solver = 1e-3, fit_intercept = True, alpha = 1e-6, verbose = False): super(EBLogisticRegression,self).__init__(n_iter, tol, fit_intercept, verbose) self.n_iter_solver = n_iter_solver self.tol_solver = tol_solver self.alpha = alpha if solver not in ['lbfgs_b','newton_cg']: raise ValueError(('Only "lbfgs_b" and "newton_cg" ' 'solvers are implemented')) self.solver = solver # masking value (this is set for use in lbfgs_b and newton_cg) self._mask_val = -1. def _fit(self,X,y): ''' Maximizes evidence function (type II maximum likelihood) ''' # iterative evidence maximization alpha = self.alpha n_samples,n_features = X.shape w0 = np.zeros(n_features) for i in range(self.n_iter): alpha0 = alpha # find mean & covariance of Laplace approximation to posterior w, d = self._posterior(X, y, alpha, w0) mu_sq = np.sum(w**2) # use Iterative updates for Bayesian Logistic Regression # Note in Bayesian Logistic Gull-MacKay fixed point updates # and Expectation - Maximization algorithm give the same update # rule alpha = X.shape[1] / (mu_sq + np.sum(d)) # check convergence delta_alpha = abs(alpha - alpha0) if delta_alpha < self.tol or i==self.n_iter-1: break # after convergence we need to find updated MAP vector of parameters # and covariance matrix of Laplace approximation coef_, sigma_ = self._posterior(X, y, alpha , w) self.alpha_ = alpha return coef_, sigma_ def _add_intercept(self,X): ''' Adds intercept to data (intercept column is not used in lbfgs_b or newton_cg it is used only in Hessian) ''' return np.hstack((X,np.ones([X.shape[0],1]))) def _get_intercept(self,coef): ''' Returns intercept and coefficients ''' return coef[-1], coef[:-1] def _get_sigma(self,X): ''' Compute variance of predictive distribution''' return np.asarray([ np.sum(X**2*s,axis = 1) for s in self.sigma_]) def _posterior(self, X, Y, alpha0, w0): ''' Iteratively refitted least squares method using l_bfgs_b or newton_cg. Finds MAP estimates for weights and Hessian at convergence point ''' n_samples,n_features = X.shape if self.solver == 'lbfgs_b': f = lambda w: _logistic_loss_and_grad(w,X[:,:-1],Y,alpha0) w = fmin_l_bfgs_b(f, x0 = w0, pgtol = self.tol_solver, maxiter = self.n_iter_solver)[0] elif self.solver == 'newton_cg': f = _logistic_loss grad = lambda w,*args: _logistic_loss_and_grad(w,*args)[1] hess = _logistic_grad_hess args = (X[:,:-1],Y,alpha0) w = newton_cg(hess, f, grad, w0, args=args, maxiter=self.n_iter, tol=self.tol)[0] else: raise NotImplementedError('Liblinear solver is not yet implemented') # calculate negative of Hessian at w xw = np.dot(X,w) s = expit(xw) R = s * (1 - s) Hess = np.dot(X.T*R,X) Alpha = np.ones(n_features)*alpha0 if self.fit_intercept: Alpha[-1] = np.finfo(np.float16).eps np.fill_diagonal(Hess, np.diag(Hess) + Alpha) e = eigvalsh(Hess) return w,1./e #============== VB Logistic Regression (with Jaakola Jordan bound) ================== def lam(eps): ''' Calculates lambda eps (used for Jaakola & Jordan local bound) ''' eps = -abs(eps) return 0.25 * exprel(eps) / (np.exp(eps) + 1) class VBLogisticRegression(BayesianLogisticRegression): ''' Variational Bayesian Logistic Regression with local variational approximation. Parameters: ----------- n_iter: int, optional (DEFAULT = 50 ) Maximum number of iterations tol: float, optional (DEFAULT = 1e-3) Convergence threshold, if cange in coefficients is less than threshold algorithm is terminated fit_intercept: bool, optinal ( DEFAULT = True ) If True uses bias term in model fitting a: float, optional (DEFAULT = 1e-6) Rate parameter for Gamma prior on precision parameter of coefficients b: float, optional (DEFAULT = 1e-6) Shape parameter for Gamma prior on precision parameter of coefficients verbose: bool, optional (DEFAULT = False) Verbose mode Attributes ---------- coef_ : array, shape = (n_features) Coefficients of the regression model (mean of posterior distribution) sigma_ : array, shape = (n_features, n_features) estimated covariance matrix of the weights, computed only for non-zero coefficients intercept_: array, shape = (n_features) intercepts References: ----------- [1] Bishop 2006, Pattern Recognition and Machine Learning ( Chapter 10 ) [2] Murphy 2012, Machine Learning A Probabilistic Perspective ( Chapter 21 ) ''' def __init__(self, n_iter = 50, tol = 1e-3, fit_intercept = True, a = 1e-4, b = 1e-4, verbose = True): super(VBLogisticRegression,self).__init__(n_iter, tol, fit_intercept, verbose) self.a = a self.b = b self._mask_val = 0. def _fit(self,X,y): ''' Fits single classifier for each class (for OVR framework) ''' eps = 1 n_samples, n_features = X.shape XY = np.dot( X.T , (y-0.5)) w0 = np.zeros(n_features) # hyperparameters of q(alpha) (approximate distribution of precision # parameter of weights) a = self.a + 0.5 * n_features b = self.b for i in range(self.n_iter): # In the E-step we update approximation of # posterior distribution q(w,alpha) = q(w)*q(alpha) # --------- update q(w) ------------------ l = lam(eps) w,Ri = self._posterior_dist(X,l,a,b,XY) # -------- update q(alpha) --------------- if self.fit_intercept: b = self.b + 0.5*(np.sum(w[1:]**2) + np.sum(Ri[1:,:]**2)) else: b = self.b + 0.5*(np.sum(w**2) + np.sum(Ri**2)) # -------- update eps ------------ # In the M-step we update parameter eps which controls # accuracy of local variational approximation to lower bound XMX = np.dot(X,w)**2 XSX = np.sum( np.dot(X,Ri.T)**2, axis = 1) eps = np.sqrt( XMX + XSX ) #print('iter {}'.format(i)) #print(a) #print(b) #print(w) # convergence if np.sum(abs(w-w0) > self.tol) == 0 or i==self.n_iter-1: break w0 = w l = lam(eps) coef_, sigma_ = self._posterior_dist(X,l,a,b,XY,True) self.a = a self.b = b return coef_, sigma_ def _add_intercept(self,X): '''Adds intercept to data matrix''' return np.hstack((np.ones([X.shape[0],1]),X)) def _get_intercept(self, coef): ''' Returns intercept and coefficients ''' return coef[0], coef[1:] def _get_sigma(self,X): ''' Compute variance of predictive distribution''' return np.asarray([np.sum(np.dot(X,s)*X,axis = 1) for s in self.sigma_]) def _posterior_dist(self,X,l,a,b,XY,full_covar = False): ''' Finds gaussian approximation to posterior of coefficients using local variational approximation of Jaakola & Jordan ''' sigma_inv = 2*np.dot(X.T*l,X) alpha_vec = np.ones(X.shape[1])*float(a) / b if self.fit_intercept: alpha_vec[0] = np.finfo(np.float16).eps np.fill_diagonal(sigma_inv, np.diag(sigma_inv) + alpha_vec) R = np.linalg.cholesky(sigma_inv) Z = solve_triangular(R,XY, lower = True) mean = solve_triangular(R.T,Z,lower = False) # is there any specific function in scipy that efficently inverts # low triangular matrix ???? Ri = solve_triangular(R,np.eye(X.shape[1]), lower = True) if full_covar: sigma = np.dot(Ri.T,Ri) return mean, sigma else: return mean , Ri
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf from pykg2vec.core.KGMeta import ModelMeta, InferenceMeta class TuckER(ModelMeta, InferenceMeta): """ `TuckER-Tensor Factorization for Knowledge Graph Completion`_ TuckER is a Tensor-factorization-based embedding technique based on the Tucker decomposition of a third-order binary tensor of triplets. Although being fully expressive, the number of parameters used in Tucker only grows linearly with respect to embedding dimension as the number of entities or relations in a knowledge graph increases. Args: config (object): Model configuration parameters. Attributes: config (object): Model configuration. data_stats (object): ModelMeta object instance. It consists of the knowledge graph metadata. model_name (str): Name of the model. Examples: >>> from pykg2vec.core.TuckER import TuckER >>> from pykg2vec.utils.trainer import Trainer >>> model = TuckER() >>> trainer = Trainer(model=model, debug=False) >>> trainer.build_model() >>> trainer.train_model() .. _TuckER-Tensor Factorization for Knowledge Graph Completion: https://arxiv.org/pdf/1901.09590.pdf """ def __init__(self, config=None): self.config = config self.data_stats = self.config.kg_meta self.model_name = 'TuckER' self.def_layer() def def_inputs(self): """Defines the inputs to the model. Attributes: h (Tensor): Head entities ids. r (Tensor): Relation ids of the triple. t (Tensor): Tail entity ids of the triple. hr_t (Tensor): Tail tensor list for (h,r) pair. rt_h (Tensor): Head tensor list for (r,t) pair. test_h_batch (Tensor): Batch of head ids for testing. test_r_batch (Tensor): Batch of relation ids for testing test_t_batch (Tensor): Batch of tail ids for testing. """ self.h = tf.placeholder(tf.int32, [None]) self.r = tf.placeholder(tf.int32, [None]) self.t = tf.placeholder(tf.int32, [None]) self.hr_t = tf.placeholder(tf.float32, [None, self.data_stats.tot_entity]) self.rt_h = tf.placeholder(tf.float32, [None, self.data_stats.tot_entity]) self.test_h_batch = tf.placeholder(tf.int32, [None]) self.test_t_batch = tf.placeholder(tf.int32, [None]) self.test_r_batch = tf.placeholder(tf.int32, [None]) def def_parameters(self): """Defines the model parameters. Attributes: num_total_ent (int): Total number of entities. num_total_rel (int): Total number of relations. d2 (Tensor): Size of the latent dimension for relations. d1 (Tensor): Size of the latent dimension for entities . parameter_list (list): List of Tensor parameters. E (Tensor Variable): Lookup variable containing embedding of the entities. R (Tensor Variable): Lookup variable containing embedding of the relations. W (Tensor Varible): Transformation matrix. """ num_total_ent = self.data_stats.tot_entity num_total_rel = self.data_stats.tot_relation self.d1 = self.config.ent_hidden_size self.d2 = self.config.rel_hidden_size with tf.name_scope("embedding"): self.ent_embeddings = tf.get_variable(name="ent_embedding", shape=[num_total_ent, self.d1], initializer=tf.contrib.layers.xavier_initializer(uniform=False)) self.rel_embeddings = tf.get_variable(name="rel_embedding", shape=[num_total_rel, self.d2], initializer=tf.contrib.layers.xavier_initializer(uniform=False)) with tf.name_scope("W"): self.W = tf.get_variable(name="W", shape=[self.d2, self.d1, self.d1], initializer=tf.initializers.random_uniform(minval=-1, maxval=1)) self.parameter_list = [self.ent_embeddings, self.rel_embeddings, self.W] def def_layer(self): """Defines the layers of the algorithm.""" self.inp_drop = tf.keras.layers.Dropout(rate=self.config.input_dropout) self.hidden_dropout1 = tf.keras.layers.Dropout(rate=self.config.hidden_dropout1) self.hidden_dropout2 = tf.keras.layers.Dropout(rate=self.config.hidden_dropout2) self.bn0 = tf.keras.layers.BatchNormalization(trainable=True) self.bn1 = tf.keras.layers.BatchNormalization(trainable=True) def forward(self, e1, r): """Implementation of the layer. Args: e1(Tensor): entities id. r(Tensor): Relation id. Returns: Tensors: Returns the activation values. """ norm_E = tf.nn.l2_normalize(self.ent_embeddings, axis=1) norm_R = tf.nn.l2_normalize(self.rel_embeddings, axis=1) e1 = tf.nn.embedding_lookup(norm_E, e1) rel = tf.squeeze(tf.nn.embedding_lookup(norm_R, r)) e1 = self.bn0(e1) e1 = self.inp_drop(e1) e1 = tf.reshape(e1, [-1, 1, self.config.ent_hidden_size]) W_mat = tf.matmul(rel, tf.reshape(self.W, [self.d2, -1])) W_mat = tf.reshape(W_mat, [-1, self.d1, self.d1]) W_mat = self.hidden_dropout1(W_mat) x = tf.matmul(e1, W_mat) x = tf.reshape(x, [-1, self.d1]) x = self.bn1(x) x = self.hidden_dropout2(x) x = tf.matmul(x, tf.transpose(norm_E)) return tf.nn.sigmoid(x) def def_loss(self): """Defines the loss function for the algorithm.""" pred_tails = self.forward(self.h, self.r) pred_heads = self.forward(self.t, self.r) hr_t = self.hr_t * (1.0 - self.config.label_smoothing) + 1.0 / self.data_stats.tot_entity rt_h = self.rt_h * (1.0 - self.config.label_smoothing) + 1.0 / self.data_stats.tot_entity loss_tails = tf.reduce_mean(tf.keras.backend.binary_crossentropy(hr_t, pred_tails)) loss_heads = tf.reduce_mean(tf.keras.backend.binary_crossentropy(rt_h, pred_heads)) reg_losses = tf.nn.l2_loss(self.ent_embeddings) + tf.nn.l2_loss(self.rel_embeddings) + tf.nn.l2_loss(self.W) self.loss = loss_heads + loss_tails + self.config.lmbda * reg_losses def test_batch(self): """Function that performs batch testing for the algorithm. Returns: Tensors: Returns ranks of head and tail. """ pred_tails = self.forward(self.test_h_batch, self.test_r_batch) pred_heads = self.forward(self.test_t_batch, self.test_r_batch) _, head_rank = tf.nn.top_k(pred_tails, k=self.data_stats.tot_entity) _, tail_rank = tf.nn.top_k(pred_heads, k=self.data_stats.tot_entity) return head_rank, tail_rank # Override def dissimilarity(self, h, r, t): """Function to calculate dissimilarity measure in embedding space. Args: h (Tensor): Head entities ids. r (Tensor): Relation ids of the triple. t (Tensor): Tail entity ids of the triple. axis (int): Determines the axis for reduction Returns: Tensors: Returns the dissimilarity measure. """ if self.config.L1_flag: return tf.reduce_sum(tf.abs(h + r - t), axis=1) # L1 norm else: return tf.reduce_sum((h + r - t) ** 2, axis=1) # L2 norm def embed(self, h, r, t): """Function to get the embedding value. Args: h (Tensor): Head entities ids. r (Tensor): Relation ids of the triple. t (Tensor): Tail entity ids of the triple. Returns: Tensors: Returns real and imaginary values of head, relation and tail embedding. """ emb_h = tf.nn.embedding_lookup(self.ent_embeddings, h) emb_r = tf.nn.embedding_lookup(self.rel_embeddings, r) emb_t = tf.nn.embedding_lookup(self.ent_embeddings, t) return emb_h, emb_r, emb_t def get_embed(self, h, r, t, sess=None): """Function to get the embedding value in numpy. Args: h (Tensor): Head entities ids. r (Tensor): Relation ids of the triple. t (Tensor): Tail entity ids of the triple. Returns: Tensors: Returns real and imaginary values of head, relation and tail embedding. """ emb_h, emb_r, emb_t = self.embed(h, r, t) h, r, t = sess.run([emb_h, emb_r, emb_t]) return h, r, t def get_proj_embed(self, h, r, t, sess): """Function to get the projected embedding value in numpy. Args: h (Tensor): Head entities ids. r (Tensor): Relation ids of the triple. t (Tensor): Tail entity ids of the triple. """ return self.get_embed(h, r, t, sess)