content
stringlengths
5
1.05M
# Copyright 2021 The Duet Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import abc import collections import contextlib import functools import inspect from concurrent.futures import CancelledError from typing import ( Any, AsyncIterator, Awaitable, Callable, Deque, Dict, List, Optional, Set, Tuple, TypeVar, ) import duet.impl as impl from duet.aitertools import aenumerate, aiter, AnyIterable, AsyncCollector from duet.futuretools import AwaitableFuture T = TypeVar("T") U = TypeVar("U") try: asynccontextmanager = contextlib.asynccontextmanager except AttributeError: # In python 3.6 asynccontextmanager isn't available from the standard library, so we are using # equivalent third-party implementation. from aiocontext import async_contextmanager asynccontextmanager = async_contextmanager def run(func: Callable[..., Awaitable[T]], *args, **kwds) -> T: """Run an async function to completion. Args: func: The async function to run. *args: Positional arguments to pass to func. **kwds: Keyword arguments to pass to func. Returns: The final result of the async function. """ with impl.Scheduler() as scheduler: task = scheduler.spawn(func(*args, **kwds)) return task.result def sync(f: Callable[..., Awaitable[T]]) -> Callable[..., T]: """Decorator that adds a sync version of async function or method.""" sig = inspect.signature(f) first_arg = next(iter(sig.parameters), None) if first_arg == "self" or first_arg == "cls": # For class or instance methods, look up the method to call on the given # class or instance. This ensures that we call the right method even it # has been overridden in a subclass. To illustrate, consider: # # class Parent: # async def foo(self): ... # foo_sync = duet.sync(foo) # # class Child(Parent): # async def foo(self): ... # # A manual implementation of foo_sync would call duet.run(self.foo) so # that Child().foo_sync() would call Child.foo instead of Parent.foo. # We want the foo_sync wrapper to work the same way. But the wrapper # was called with Parent.foo only, so we must look up the appropriate # function by name at runtime, using getattr. @functools.wraps(f) def wrapped(self_or_cls, *args, **kw): method = getattr(self_or_cls, f.__name__, None) if inspect.ismethod(method) and id(method.__func__) == wrapped_id: return run(f, self_or_cls, *args, **kw) return run(method, *args, **kw) wrapped_id = id(wrapped) else: @functools.wraps(f) def wrapped(*args, **kw): return run(f, *args, **kw) return wrapped def awaitable(value): """Wraps a value to ensure that it is awaitable.""" if inspect.isawaitable(value): return value if AwaitableFuture.isfuture(value): return AwaitableFuture.wrap(value) return _awaitable_value(value) async def _awaitable_value(value): return value def awaitable_func(function): """Wraps a function to ensure that it returns an awaitable.""" if inspect.iscoroutinefunction(function): return function if inspect.isgeneratorfunction(function): raise TypeError( "cannot use generator function with duet; please convert to " f"async function instead: {function.__name__}" ) @functools.wraps(function) async def wrapped(*args, **kw): return await awaitable(function(*args, **kw)) return wrapped async def pmap_async( func: Callable[[T], Awaitable[U]], iterable: AnyIterable[T], limit: Optional[int] = None, ) -> List[U]: """Apply an async function to every item in iterable. Args: func: Async function called for each element in iterable. iterable: Iterated over to produce values that are fed to func. limit: The maximum number of function calls to make concurrently. Returns: List of results of all function calls. """ async with new_scope() as scope: return [x async for x in pmap_aiter(scope, func, iterable, limit)] pmap = sync(pmap_async) async def pstarmap_async( func: Callable[..., Awaitable[U]], iterable: AnyIterable[Any], limit: Optional[int] = None, ) -> List[U]: """Apply an async function to every tuple of args in iterable. Args: func: Async function called with each tuple of args in iterable. iterable: Iterated over to produce arg tuples that are fed to func. limit: The maximum number of function calls to make concurrently. Returns: List of results of all function calls. """ return await pmap_async(lambda args: func(*args), iterable, limit) pstarmap = sync(pstarmap_async) async def pmap_aiter( scope: "Scope", func: Callable[[T], Awaitable[U]], iterable: AnyIterable[T], limit: Optional[int] = None, ) -> AsyncIterator[U]: """Apply an async function to every item in iterable. Args: scope: Scope in which the returned async iterator must be used. func: Async function called for each element in iterable. iterable: Iterated over to produce values that are fed to func. limit: The maximum number of function calls to make concurrently. Returns: Asynchronous iterator that yields results in order as they become available. """ collector = AsyncCollector[Tuple[int, U]]() async def task(i, arg, slot): try: value = await func(arg) collector.add((i, value)) finally: slot.release() async def generate(): try: limiter = Limiter(limit) async with new_scope() as gen_scope: async for i, arg in aenumerate(iterable): slot = await limiter.acquire() gen_scope.spawn(task, i, arg, slot) except Exception as e: collector.error(e) else: collector.done() scope.spawn(generate) buffer: Dict[int, U] = {} next_idx = 0 async for i, value in collector: buffer[i] = value while next_idx in buffer: yield buffer.pop(next_idx) next_idx += 1 while buffer: yield buffer.pop(next_idx) next_idx += 1 def pstarmap_aiter( scope: "Scope", func: Callable[..., Awaitable[U]], iterable: AnyIterable[Any], limit: Optional[int] = None, ) -> AsyncIterator[U]: """Apply an async function to every tuple of args in iterable. Args: scope: Scope in which the returned async iterator must be used. func: Async function called with each tuple of args in iterable. iterable: Iterated over to produce arg tuples that are fed to func. limit: The maximum number of function calls to make concurrently. Returns: Asynchronous iterator that yields results in order as they become available. """ return pmap_aiter(scope, lambda args: func(*args), iterable, limit) async def sleep(time: float) -> None: """Sleeps for the given length of time in seconds.""" try: async with timeout_scope(time): await AwaitableFuture() except TimeoutError: pass @asynccontextmanager async def deadline_scope(deadline: float) -> AsyncIterator[None]: """Enter a scope that will exit when the deadline elapses. Args: deadline: Absolute time in epoch seconds when the scope should exit. """ async with new_scope(deadline=deadline): yield @asynccontextmanager async def timeout_scope(timeout: float) -> AsyncIterator[None]: """Enter a scope that will exit when the timeout elapses. Args: timeout: Time in seconds from now when the scope should exit. """ async with new_scope(timeout=timeout): yield @asynccontextmanager async def new_scope( *, deadline: Optional[float] = None, timeout: Optional[float] = None ) -> AsyncIterator["Scope"]: """Creates a scope in which asynchronous tasks can be launched. This is inspired by the concept of "nurseries" in trio: https://trio.readthedocs.io/en/latest/reference-core.html#nurseries-and-spawning We define the lifetime of a scope using an `async with` statement. Inside this block we can then spawn new asynchronous tasks which will run in the background, and the block will only exit when all spawned tasks are done. If an error is raised by the code in the block itself or by any of the spawned tasks, all other background tasks will be interrupted and the block will raise an error. Args: deadline: Absolute time in epoch seconds when the scope should exit. timeout: Time in seconds from now when the scope should exit. If both deadline and timeout are given, the actual deadline will be whichever one will elapse first. """ main_task = impl.current_task() scheduler = main_task.scheduler tasks: Set[impl.Task] = set() async def finish_tasks(): while True: await impl.any_ready(tasks) tasks.intersection_update(scheduler.active_tasks) if not tasks: break if timeout is not None: if deadline is None: deadline = scheduler.time() + timeout else: deadline = min(deadline, scheduler.time() + timeout) if deadline is not None: main_task.push_deadline(deadline) try: yield Scope(main_task, scheduler, tasks) await finish_tasks() except (impl.Interrupt, Exception) as exc: # Interrupt remaining tasks. for task in tasks: if not task.done: task.interrupt(main_task, RuntimeError("scope exited")) # Finish remaining tasks while ignoring further interrupts. main_task.interruptible = False await finish_tasks() main_task.interruptible = True # If interrupted, raise the underlying error but suppress the context # (the Interrupt itself) when displaying the traceback. if isinstance(exc, impl.Interrupt): exc = exc.error exc.__suppress_context__ = True raise exc finally: if deadline is not None: main_task.pop_deadline() class Scope: """Bounds the lifetime of async tasks spawned in the background.""" def __init__( self, main_task: impl.Task, scheduler: impl.Scheduler, tasks: Set[impl.Task] ) -> None: self._main_task = main_task self._scheduler = scheduler self._tasks = tasks def cancel(self) -> None: self._main_task.interrupt(self._main_task, CancelledError()) def spawn(self, func: Callable[..., Awaitable[Any]], *args, **kwds) -> None: """Starts a background task that will run the given function.""" task = self._scheduler.spawn(self._run(func, *args, **kwds), main_task=self._main_task) self._tasks.add(task) async def _run(self, func: Callable[..., Awaitable[Any]], *args, **kwds) -> None: task = impl.current_task() try: await func(*args, **kwds) finally: self._tasks.discard(task) class Limiter: """Limits concurrent access to critical resources or code blocks. A Limiter is created with a fixed capacity (or None to indicate no limit), and can then be used with async with blocks to limit access, e.g.: limiter = Limiter(10) ... async with limiter: # At most 10 async calls can be in this section at once. ... In certain situations, it may not be possible to use async with blocks to demarcate the critical section. In that case, one can instead call acquire to get a "slot" that must be released later when done using the resource: limiter = Limiter(10) ... slot = await limiter.acquire() ... slot.release() """ def __init__(self, capacity: Optional[int]) -> None: self._capacity = capacity self._count = 0 self._waiters: Deque[AwaitableFuture[None]] = collections.deque() self._available_waiters: List[AwaitableFuture[None]] = [] def is_available(self) -> bool: """Returns True if the limiter is available, False otherwise.""" return self._capacity is None or self._count < self._capacity async def __aenter__(self) -> None: if not self.is_available(): f = AwaitableFuture[None]() self._waiters.append(f) await f self._count += 1 async def acquire(self) -> "Slot": await self.__aenter__() return Slot(self._release) async def __aexit__(self, exc_type, exc, tb) -> None: self._release() def _release(self): self._count -= 1 if self._waiters: f = self._waiters.popleft() f.try_set_result(None) if self._available_waiters: for f in self._available_waiters: f.try_set_result(None) self._available_waiters = [] async def available(self) -> None: """Wait until this limiter is available (i.e. not full to capacity). Note that this always yields control to the scheduler, even if the limiter is currently available, to ensure that throttled iterators do not race ahead of downstream work. """ f = AwaitableFuture[None]() if self.is_available(): f.set_result(None) else: self._available_waiters.append(f) await f async def throttle(self, iterable: AnyIterable[T]) -> AsyncIterator[T]: async for value in aiter(iterable): await self.available() yield value @property def capacity(self) -> Optional[int]: return self._capacity @capacity.setter def capacity(self, capacity: int) -> None: self._capacity = capacity class Slot: def __init__(self, release_func): self.release_func = release_func self.called = False def release(self): if self.called: raise Exception("Already released.") self.called = True self.release_func() class LimitedScope(abc.ABC): """Combined Scope (for running async iters) and Limiter (for throttling). Provides convenience methods for running coroutines in parallel within this scope while throttling to prevent iterators from running too far ahead. """ @property @abc.abstractmethod def scope(self) -> Scope: pass @property @abc.abstractmethod def limiter(self) -> Limiter: pass def spawn(self, func: Callable[..., Awaitable[Any]], *args, **kwds) -> None: """Starts a background task that will run the given function.""" self.scope.spawn(func, *args, **kwds) async def pmap_async( self, func: Callable[[T], Awaitable[U]], iterable: AnyIterable[T], ) -> List[U]: return [x async for x in self.pmap_aiter(func, iterable)] def pmap_aiter( self, func: Callable[[T], Awaitable[U]], iterable: AnyIterable[T], ) -> AsyncIterator[U]: return pmap_aiter(self.scope, func, self.limiter.throttle(iterable)) async def pstarmap_async( self, func: Callable[..., Awaitable[U]], iterable: AnyIterable[Any], ) -> List[U]: return [x async for x in self.pstarmap_aiter(func, iterable)] def pstarmap_aiter( self, func: Callable[..., Awaitable[U]], iterable: AnyIterable[Any], ) -> AsyncIterator[U]: return pstarmap_aiter(self.scope, func, self.limiter.throttle(iterable))
""" Nisarg Shah 1001553132 """ import sys import math import numpy as np from statistics import stdev as stdev def gaussian(x, mean=0.0, sigma=1.0): temp = float((x-mean)/sigma) e_factor = np.exp(-(np.power(temp,2) / 2)) deno = sigma*(np.sqrt(2*np.pi)) return e_factor / deno def naive_bayes(train_file, test_file): #print(train_file, test_file) try: import pandas as pd train_data = pd.read_csv(train_file, header = None) test_data = pd.read_csv(test_file, header=None) X_test = train_data.iloc[:,:-1] X_test = X_test.astype(np.float) y_test = train_data.iloc[:,-1] y_test = y_test.astype(np.int) X_train = test_data.iloc[:,-1] X_train = X_train.astype(np.float) y_train = test_data.iloc[:,-1] y_train = y_train.astype(np.int) #print("From Pandas") except: train_data = np.genfromtxt(train_file) test_data = np.genfromtxt(test_file) X_test = test_data[:, :-1] X_train = train_data[:, :-1] y_test = test_data[:, -1] y_train = train_data[:, -1] X_test = X_test.astype(np.float) y_test = y_test.astype(np.int) X_train = X_train.astype(np.float) y_train = y_train.astype(np.int) #Seperating Training examples and labels. #print(X_train) class_means = [] class_std = [] #print(X_train[0][1]) indexes = [] y_train = np.asarray(y_train) for i in range(1,11): x = np.where(y_train == i) #print(x) x = np.asarray(x) temp = [] #print(x[0]) for j in range(0, x.shape[1]): temp.append(X_train[x[0][j],:]) #print(temp) temp = np.asarray(temp) for j in range(0,8): temp2 = temp[:,j] temp2 = np.asarray(temp2) mean = temp2.mean() #std = temp2.std() std = stdev(temp2) if std<=0.01: std = 0.01 class_means.append(mean) class_std.append(std) #print("mean %.2f std %.2f" %(mean, std)) a = 0 for i in range(1,11): for j in range(1,9): print("Class %d, attribute %d, mean = %.2f, std = %.2f" % (i, j, class_means[a], class_std[a])) a+=1 #Finding the prior Probability for each class. num_classes = len(np.unique(y_train)) #print(num_classes) #print(y_train.min()) min_class = y_train.min() prior_prob = [] training_examples = (X_train.shape[0]) for i in range(min_class,num_classes+1): ind = np.where(y_train == i) ind = np.asarray(ind) p_C = ind.shape[1]/training_examples prior_prob.append(p_C) #print(" Class ",i, "Prior Probability " ,p_C) prior_prob = np.asarray(prior_prob) final_prob = [] class_final = [] a = 0 q=0 p_x_given_C = 1 ###Classification Stage: for i in range(0,len(y_test)): temp_prob = [] for j in range(0, num_classes): for k in range(0,X_train.shape[1]): attr = X_test[i][k] p_x_given_C *= gaussian(attr, class_means[a], class_std[a]) #print(p_x_given_C) a+=1 prob = p_x_given_C*prior_prob[j] #print(p_x_given_C) #print(prob) temp_prob.append(prob) p_x_given_C = 1 a=0 q=0 #print(X_train.shape[1]) temp_prob[:] = [x/np.sum(temp_prob) for x in temp_prob] final_prob.append(max(temp_prob)) #print(final_prob) class_final.append(temp_prob.index(max(temp_prob))) temp_prob.clear() acc = [] for i in range(0,len(class_final)): if class_final[i]+1 == y_test[i]: acc.append(1) else: acc.append(0) print("ID=%5d, predicted=%3d, probability = %.4f, true=%3d, accuracy=%4.2f\n"%(i+1, class_final[i]+1, final_prob[i], y_test[i], acc[i])) P=1 acc = np.asarray(acc) print("Accuracy : %.4f"%(np.sum(acc)/len(acc)) ) if __name__ == "__main__": naive_bayes(sys.argv[1],sys.argv[2])
# Helper functions used by other files from io import BytesIO import aiohttp import re import os def convert_to_url(url): """ Makes a search string url-friendly """ # Use regex to remove anything that isn't a number or letter url = re.sub(r"[^\w\s]", '', url) # Substitute spaces with a '+' symbol url = re.sub(r"\s+", '+', url) return url async def get_img(ctx): """Returns the most recent attachment posted to the channel""" # regex to check if there is an image url within the message url_regex = r'(\b(?:(?:https?)|(?:ftp)|(?:file)):\/\/[-A-Z0-9+&@#\/%?=~_|!:,.;]*(?:(?:\.jpg)|(?:\.jpeg)|(?:\.png)|(?:\.gif)))' log = ctx.message.channel.history(limit=50) # check last 50 messages async for i in log: if i.attachments: # if the message has an attachment url = i.attachments[0].url # attachment url elif re.search(url_regex,i.clean_content,flags=re.IGNORECASE): # look for url using regex url = re.search(url_regex,i.clean_content,flags=re.IGNORECASE).group(0) try: async with aiohttp.ClientSession() as sess: async with sess.get(url) as r: # access the url if r.status == 200: return BytesIO(await r.read()) except: pass def abs_path(path): """Returns absolute path of file given""" script_dir = os.path.dirname(__file__) # absolute path of helpers.py rel_path = path # relative path return os.path.join(script_dir, rel_path) # absolute path of file def islambda(v): """ Checks if v is a lambda function """ LAMBDA = lambda:0 return isinstance(v, type(LAMBDA)) and v.__name__ == LAMBDA.__name__
""".""" from flask import Blueprint, current_app, request, jsonify from werkzeug.exceptions import BadRequest, Unauthorized import jwt from arxiv import status import arxiv.users.domain from arxiv.base import logging from .services import sessions logger = logging.getLogger(__name__) blueprint = Blueprint('authenticator', __name__, url_prefix='') @blueprint.route('/auth', methods=['GET']) def authorize(): """Authorize the request.""" try: cookie_name = current_app.config['AUTH_SESSION_COOKIE_NAME'] except KeyError as e: raise RuntimeError('Configuration error: missing parameter') from e # An authorization token may reside in either the Authorization header # or in a cookie (set at login). auth_header = request.headers.get('Authorization') auth_cookie = request.cookies.get(cookie_name) if auth_header: # Try the header first. try: auth_token = auth_header.split()[1] except IndexError: logger.error('Authorization header malformed') raise BadRequest('Authorization header is malformed') logger.debug('Got auth token: %s', auth_token) claims = _authorize_from_header(auth_token) elif auth_cookie: # Try the cookie second. logger.debug('Got auth cookie: %s', auth_cookie) claims = _authorize_from_cookie(auth_cookie) else: logger.error('Authorization token not found') return jsonify({}), status.HTTP_200_OK, {} jwt_secret = current_app.config['JWT_SECRET'] headers = {'Token': jwt.encode(claims, jwt_secret)} return jsonify({}), status.HTTP_200_OK, headers def _authorize_from_cookie(auth_cookie: str) -> dict: """Authorize the request based on an auth cookie.""" try: session = sessions.load(auth_cookie) except (sessions.exceptions.InvalidToken, sessions.exceptions.ExpiredToken, sessions.exceptions.UnknownSession): logger.error('Invalid user session token') raise Unauthorized('Not a valid user session token') claims = arxiv.users.domain.to_dict(session) return claims def _authorize_from_header(auth_token: str) -> dict: """Authorize the request based on an auth token.""" try: session = sessions.load_by_id(auth_token) except (sessions.exceptions.InvalidToken, sessions.exceptions.ExpiredToken, sessions.exceptions.UnknownSession): logger.error('Invalid auth token') raise Unauthorized('Not a valid auth token') claims = arxiv.users.domain.to_dict(session) return claims
# red-r linux setup. Several things we need to do here. # imports import sys, os, subprocess # install the required files os.system("apt-get install python-qt4") os.system("apt-get install python-docutils") os.system("apt-get install python-numpy") os.system("apt-get install python-qwt5-qt4") os.system('apt-get install python-rpy python-dev python-numarray-ext python-numeric-ext python-matplotlib python-qt4-dev libqwt5-qt4-dev pyqt4-dev-tools sip4 python-qwt5-qt4') # install the rpy3 and conversion libraries os.system("python rpy3-setup/setup.py build") import platform if platform.architecture()[0] == "64bit": os.system("cp -r rpy3-setup/build/lib.linux*/rpy3 linux64/rpy3") else: os.system("cp -r rpy3-setup/build/lib.linux*/rpy3 linux32/rpy3") os.system("python redrrpy-setup/setup.py build") import platform if platform.architecture()[0] == "64bit": os.system("cp -r redrrpy-setup/build/lib.linux*/_conversion.so linux64/redrrpy/_conversion.so") else: os.system("cp -r redrrpy-setup/build/lib.linux*/_conversion.so linux32/redrrpy/_conversion.so") # output the shell script file with open("/usr/bin/RedR", 'w') as f: f.write(""" #!/bin/bash # Shell wrapper for R executable. python %s/canvas/red-RCanvas.pyw""" % os.path.abspath(os.path.split(sys.argv[0])[0])) f.close() os.system('chmod 755 /usr/bin/RedR')
"""Tests for ops. """ import unittest import numpy as np import tensorflow as tf from tf_utils import utils from tf_utils import ops class TestOps(unittest.TestCase): def test_concat_with_shape(self): data = np.array([[0.5, 0.5, 0.0, 0.0, 0.6, 0.0], [0.0, 0.6, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.8, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.9, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 0.2, 0.0, 0.0], [0.0, 0.0, 0.0, 0.7, 0.7, 0.7]], dtype=np.float32) with utils.device_cpu(): with tf.Session(): data_0 = tf.constant(data) data_1 = tf.constant(data) concat_0 = ops.concat_with_shape( 0, [data_0, data_1]) concat_1 = ops.concat_with_shape( 1, [data_0, data_1]) concat_0_np = concat_0.eval() concat_1_np = concat_1.eval() self.assertTrue(np.array_equal(concat_0_np.shape, [14, 6])) self.assertTrue(np.array_equal(concat_1_np.shape, [7, 12])) def test_mask_one_row(self): data = np.array([[0.1, 0.1, 0.1], [0.1, 0.05, 0.0], [0.0, 0.0, 0.0], [0.1, 0.2, 0.3]], dtype=np.float32) ref = np.array([[0.1, 0.0, 0.0], [0.1, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.3]], dtype=np.float32) with utils.device_cpu(): with tf.Session(): res = ops.mask_argmax_row(tf.constant(data)) self.assertTrue(np.array_equal(res.eval(), ref)) if __name__ == '__main__': unittest.main()
import tensorflow as tf hparams = tf.contrib.training.HParams( # Audio: num_mels=80, n_fft=1024, sample_rate=22050, win_length=1024, hop_length=256, preemphasis=0.97, min_level_db=-100, ref_level_db=20, # train lr=6e-4, #1e-3 train_steps=1000000, epochs=100, save_model_every=20000, gen_test_wave_every=20000, gen_file='./data/mel_spect/LJ001-0001.mel', logdir_root='./logdir', tfrecords_dir="./data/tfrecords/", train_files = 'ljs_train', # Evaluation tfrecords filename eval_file = 'ljs_eval.tfrecords', # Test tfrecords filename test_file = 'ljs_test.tfrecords', decay_steps=5000 ,# 8000, sigma=1.0,#0.707, # paper 1.0 # network sample_size=16000, batch_size=12, upsampling_rate=256, # same as hop_length n_flows=12, n_group=8, n_early_every=4, n_early_size=2, # local condition conv1d lc_conv1d=False, #True lc_conv1d_layers=2, lc_conv1d_filter_size=5, lc_conv1d_filter_num=80, # local condition encoding lc_encode=False, lc_encode_layers=2, lc_encode_size=128, # upsampling by transposed conv transposed_upsampling=True, transposed_conv_layers=2, transposed_conv_layer1_stride= 16 , transposed_conv_layer2_stride=16, transposed_conv_layer1_filter_width= 16*2,#1024 ,# 16*5, # filter width greater than stride, then could leverage context lc transposed_conv_layer2_filter_width=16*2, transposed_conv_channels=80, # wavenet n_layers=8, residual_channels=256, skip_channels=256, kernel_size=3, )
import requests import sys import json import os import time import logging import tabulate import yaml import pandas as pd from pandas import ExcelWriter from logging.handlers import TimedRotatingFileHandler requests.packages.urllib3.disable_warnings() from requests.packages.urllib3.exceptions import InsecureRequestWarning def get_logger(logfile, level): ''' Create a logger ''' if logfile is not None: ''' Create the log directory if it doesn't exist ''' fldr = os.path.dirname(logfile) if not os.path.exists(fldr): os.makedirs(fldr) logger = logging.getLogger() logger.setLevel(level) log_format = '%(asctime)s | %(levelname)-8s | %(funcName)-20s | %(lineno)-3d | %(message)s' formatter = logging.Formatter(log_format) file_handler = TimedRotatingFileHandler(logfile, when='midnight', backupCount=7) file_handler.setFormatter(formatter) file_handler.setLevel(level) logger.addHandler(file_handler) return logger return None class Authentication: @staticmethod def get_jsessionid(vmanage_host, vmanage_port, username, password): api = "/j_security_check" base_url = "https://%s:%s"%(vmanage_host, vmanage_port) url = base_url + api payload = {'j_username' : username, 'j_password' : password} response = requests.post(url=url, data=payload, verify=False) try: cookies = response.headers["Set-Cookie"] jsessionid = cookies.split(";") return(jsessionid[0]) except: if logger is not None: logger.error("No valid JSESSION ID returned\n") exit() @staticmethod def get_token(vmanage_host, vmanage_port, jsessionid): headers = {'Cookie': jsessionid} base_url = "https://%s:%s"%(vmanage_host, vmanage_port) api = "/dataservice/client/token" url = base_url + api response = requests.get(url=url, headers=headers, verify=False) if response.status_code == 200: return(response.text) else: return None if __name__ == '__main__': try: log_level = logging.DEBUG logger = get_logger("log/app_route_report.txt", log_level) try: start_date = input("Please enter start date(YYYY-MM-DD): ") time.strptime(start_date, '%Y-%m-%d') except ValueError: raise ValueError("Incorrect start data format, please enter in YYYY-MM-DD") try: end_date = input("Please enter end date(YYYY-MM-DD): ") time.strptime(end_date, '%Y-%m-%d') except ValueError: raise ValueError("Incorrect end data format, please enter in YYYY-MM-DD") if logger is not None: logger.info("Loading vManage login details from YAML\n") with open("vmanage_login.yaml") as f: config = yaml.safe_load(f.read()) vmanage_host = config["vmanage_host"] vmanage_port = config["vmanage_port"] username = config["vmanage_username"] password = config["vmanage_password"] Auth = Authentication() jsessionid = Auth.get_jsessionid(vmanage_host,vmanage_port,username,password) token = Auth.get_token(vmanage_host,vmanage_port,jsessionid) if token is not None: headers = {'Content-Type': "application/json",'Cookie': jsessionid, 'X-XSRF-TOKEN': token} else: headers = {'Content-Type': "application/json",'Cookie': jsessionid} base_url = "https://%s:%s/dataservice"%(vmanage_host,vmanage_port) # Get Device Inventory details api_url = "/device" url = base_url + api_url response = requests.get(url=url, headers=headers, verify=False) device_inv = dict() if response.status_code == 200: temp = response.json()["data"] for item in temp: if item["personality"] == "vedge": device_inv[item["system-ip"]] = [{'hostname' : item["host-name"]} , {'siteid' : item["site-id"]}] else: if logger is not None: logger.error("Failed to retrieve device inventory\n") # Get app route statistics for tunnels between Hub routers and Spoke routers. # open excel file filename = 'Tunnel Statistics %s.xlsx'%time.strftime("%Y-%m-%d") writer = ExcelWriter(filename) for hub in config["hub_routers"]: api_url = "/statistics/approute/fec/aggregation" payload = { "query": { "condition": "AND", "rules": [ { "value": [ start_date+"T00:00:00 UTC", end_date+"T23:59:59 UTC" ], "field": "entry_time", "type": "date", "operator": "between" }, { "value": [ hub["system_ip"] ], "field": "local_system_ip", "type": "string", "operator": "in" } ] }, "aggregation": { "field": [ { "property": "name", "sequence": 1, "size": 6000 }, { "property": "proto", "sequence": 2 }, { "property": "local_system_ip", "sequence": 3 }, { "property": "remote_system_ip", "sequence": 4 } ], "histogram": { "property": "entry_time", "type": "hour", "interval": 24, "order": "asc" }, "metrics": [ { "property": "latency", "type": "avg" }, { "property": "jitter", "type": "avg" }, { "property": "loss_percentage", "type": "avg" }, { "property": "vqoe_score", "type": "avg" } ] } } url = base_url + api_url response = requests.post(url=url, headers=headers, data=json.dumps(payload), verify=False) if response.status_code == 200: app_route_stats = response.json()["data"] app_route_stats_headers = ["Date", "Hub", "Hub Siteid", "Spoke", "Spoke Siteid", "Tunnel name", "vQoE score", "Latency", "Loss percentage", "Jitter"] table = list() date_list = list() hub_list = list() hub_siteid_list = list() spoke_list = list() spoke_siteid_list = list() tunnel_name_list = list() vqoe_list = list() latency_list = list() loss_list = list() jitter_list = list() print("\nAverage App route statistics between %s and spokes for %s and %s\n"%(device_inv[hub["system_ip"]][0]['hostname'],start_date,end_date)) for item in app_route_stats: tr = [time.strftime('%m/%d/%Y', time.gmtime(item['entry_time']/1000.)), device_inv[item['local_system_ip']][0]['hostname'], device_inv[item['local_system_ip']][1]['siteid'], device_inv[item['remote_system_ip']][0]['hostname'], device_inv[item['remote_system_ip']][1]['siteid'], item['name'], item['vqoe_score'], item['latency'], item['loss_percentage'], item['jitter']] table.append(tr) date_list.append(time.strftime('%m/%d/%Y', time.gmtime(item['entry_time']/1000.))) hub_list.append(device_inv[item['local_system_ip']][0]['hostname']) hub_siteid_list.append(device_inv[item['local_system_ip']][1]['siteid']) spoke_list.append(device_inv[item['remote_system_ip']][0]['hostname']) spoke_siteid_list.append(device_inv[item['remote_system_ip']][1]['siteid']) tunnel_name_list.append(item['name']) vqoe_list.append(item['vqoe_score']) latency_list.append(item['latency']) loss_list.append(item['loss_percentage']) jitter_list.append(item['jitter']) try: #print(tabulate.tabulate(table, app_route_stats_headers, tablefmt="fancy_grid")) excel_content = dict() excel_content["Date"] = date_list excel_content["Hub"] = hub_list excel_content["Hub Siteid"] = hub_siteid_list excel_content["Spoke"] = spoke_list excel_content["Spoke Siteid"] = spoke_siteid_list excel_content["Tunnel name"] = tunnel_name_list excel_content["vQoE score"] = vqoe_list excel_content["Latency"] = latency_list excel_content["Loss percentage"] = loss_list excel_content["Jitter"] = jitter_list df = pd.DataFrame(excel_content) df.to_excel(writer, device_inv[hub["system_ip"]][0]['hostname'] ,index=False) except UnicodeEncodeError: print(tabulate.tabulate(table, app_route_stats_headers, tablefmt="grid")) else: if logger is not None: logger.error("Failed to retrieve app route statistics %s\n"%response.text) writer.save() print("\nCreated report %s"%filename) except Exception as e: print('Exception line number: {}'.format(sys.exc_info()[-1].tb_lineno), type(e).__name__, e)
#!/usr/bin/env python3 """Module containing the MakeNdx class and the command line interface.""" import os import argparse from pathlib import Path from biobb_common.generic.biobb_object import BiobbObject from biobb_common.configuration import settings from biobb_common.tools import file_utils as fu from biobb_common.tools.file_utils import launchlogger from biobb_md.gromacs.common import get_gromacs_version from biobb_md.gromacs.common import GromacsVersionError class MakeNdx(BiobbObject): """ | biobb_md MakeNdx | Wrapper of the `GROMACS make_ndx <http://manual.gromacs.org/current/onlinehelp/gmx-make_ndx.html>`_ module. | The GROMACS make_ndx module, generates an index file using the atoms of the selection. Args: input_structure_path (str): Path to the input GRO/PDB/TPR file. File type: input. `Sample file <https://github.com/bioexcel/biobb_md/raw/master/biobb_md/test/data/gromacs/make_ndx.tpr>`_. Accepted formats: gro (edam:format_2033), pdb (edam:format_1476), tpr (edam:format_2333). output_ndx_path (str): Path to the output index NDX file. File type: output. `Sample file <https://github.com/bioexcel/biobb_md/raw/master/biobb_md/test/reference/gromacs/ref_make_ndx.ndx>`_. Accepted formats: ndx (edam:format_2033). input_ndx_path (str) (Optional): Path to the input index NDX file. File type: input. Accepted formats: ndx (edam:format_2033). properties (dict - Python dictionary object containing the tool parameters, not input/output files): * **selection** (*str*) - ("a CA C N O") Heavy atoms. Atom selection string. * **gmx_lib** (*str*) - (None) Path set GROMACS GMXLIB environment variable. * **gmx_path** (*str*) - ("gmx") Path to the GROMACS executable binary. * **remove_tmp** (*bool*) - (True) [WF property] Remove temporal files. * **restart** (*bool*) - (False) [WF property] Do not execute if output files exist. * **container_path** (*str*) - (None) Path to the binary executable of your container. * **container_image** (*str*) - ("gromacs/gromacs:latest") Container Image identifier. * **container_volume_path** (*str*) - ("/data") Path to an internal directory in the container. * **container_working_dir** (*str*) - (None) Path to the internal CWD in the container. * **container_user_id** (*str*) - (None) User number id to be mapped inside the container. * **container_shell_path** (*str*) - ("/bin/bash") Path to the binary executable of the container shell. Examples: This is a use example of how to use the building block from Python:: from biobb_md.gromacs.make_ndx import make_ndx prop = { 'selection': 'a CA C N O' } make_ndx(input_structure_path='/path/to/myStructure.gro', output_ndx_path='/path/to/newIndex.ndx', properties=prop) Info: * wrapped_software: * name: GROMACS MakeNdx * version: >5.1 * license: LGPL 2.1 * ontology: * name: EDAM * schema: http://edamontology.org/EDAM.owl """ def __init__(self, input_structure_path: str, output_ndx_path: str, input_ndx_path: str = None, properties: dict = None, **kwargs) -> None: properties = properties or {} # Call parent class constructor super().__init__(properties) # Input/Output files self.io_dict = { "in": {"input_structure_path": input_structure_path, "input_ndx_path": input_ndx_path}, "out": {"output_ndx_path": output_ndx_path} } # Properties specific for BB self.selection = properties.get('selection', "a CA C N O") # Properties common in all GROMACS BB self.gmx_lib = properties.get('gmx_lib', None) self.gmx_path = properties.get('gmx_path', 'gmx') self.gmx_nobackup = properties.get('gmx_nobackup', True) self.gmx_nocopyright = properties.get('gmx_nocopyright', True) if self.gmx_nobackup: self.gmx_path += ' -nobackup' if self.gmx_nocopyright: self.gmx_path += ' -nocopyright' if not self.container_path: self.gmx_version = get_gromacs_version(self.gmx_path) # Check the properties fu.check_properties(self, properties) @launchlogger def launch(self) -> int: """Execute the :class:`MakeNdx <gromacs.make_ndx.MakeNdx>` object.""" # Setup Biobb if self.check_restart(): return 0 self.stage_files() # Create command line self.cmd = ['echo', '-e', '\'' + self.selection + '\\nq' + '\'', '|', self.gmx_path, 'make_ndx', '-f', self.stage_io_dict["in"]["input_structure_path"], '-o', self.stage_io_dict["out"]["output_ndx_path"] ] if self.stage_io_dict["in"].get("input_ndx_path")\ and Path(self.stage_io_dict["in"].get("input_ndx_path")).exists(): self.cmd.append('-n') self.cmd.append(self.stage_io_dict["in"].get("input_ndx_path")) if self.gmx_lib: self.environment = os.environ.copy() self.environment['GMXLIB'] = self.gmx_lib # Check GROMACS version if not self.container_path: if self.gmx_version < 512: raise GromacsVersionError("Gromacs version should be 5.1.2 or newer %d detected" % self.gmx_version) fu.log("GROMACS %s %d version detected" % (self.__class__.__name__, self.gmx_version), self.out_log) # create_cmd_line and execute_command self.run_biobb() # Retrieve results self.copy_to_host() # Remove temporal files self.tmp_files.append(self.stage_io_dict.get("unique_dir")) self.remove_tmp_files() return self.return_code def make_ndx(input_structure_path: str, output_ndx_path: str, input_ndx_path: str = None, properties: dict = None, **kwargs) -> int: """Create :class:`MakeNdx <gromacs.make_ndx.MakeNdx>` class and execute the :meth:`launch() <gromacs.make_ndx.MakeNdx.launch>` method.""" return MakeNdx(input_structure_path=input_structure_path, output_ndx_path=output_ndx_path, input_ndx_path=input_ndx_path, properties=properties, **kwargs).launch() def main(): """Command line execution of this building block. Please check the command line documentation.""" parser = argparse.ArgumentParser(description="Wrapper for the GROMACS make_ndx module.", formatter_class=lambda prog: argparse.RawTextHelpFormatter(prog, width=99999)) parser.add_argument('-c', '--config', required=False, help="This file can be a YAML file, JSON file or JSON string") # Specific args of each building block required_args = parser.add_argument_group('required arguments') required_args.add_argument('--input_structure_path', required=True) required_args.add_argument('--output_ndx_path', required=True) parser.add_argument('--input_ndx_path', required=False) args = parser.parse_args() config = args.config if args.config else None properties = settings.ConfReader(config=config).get_prop_dic() # Specific call of each building block make_ndx(input_structure_path=args.input_structure_path, output_ndx_path=args.output_ndx_path, input_ndx_path=args.input_ndx_path, properties=properties) if __name__ == '__main__': main()
"""Replacement for Django's migrate command.""" from __future__ import unicode_literals from django.conf import settings from django.core.management import call_command from django.core.management.base import CommandError from django.utils.translation import ugettext as _ try: from django.core.management.commands.migrate import Command as BaseCommand has_migrate = True except ImportError: from django_evolution.compat.commands import BaseCommand has_migrate = False class Command(BaseCommand): """Command for working with Django migrations. This wraps the original ``migrate`` command. If Django Evolution is enabled, this will call ``evolve`` with the necessary parameters for the ``migrate`` call. If disabled, this will call Django's ``migrate``. There are some differences in our ``migrate``: * ``--fake`` is not supported, and will show an error if used. * ``--run-syncdb`` and ``--fake-initial`` are always implied, and cannot be turned off. * ``initial_data`` fixtures are not loaded (they were removed in Django 1.9 anyway). * ``--no-initial-data`` isn't directly handled, but since initial data isn't supported, that doesn't impact anything. """ def handle(self, *args, **options): """Handle the command. This will validate the arguments and run through the evolution process. Args: *args (list of unicode): Positional arguments passed on the command line. **options (dict): Options parsed by the argument parser. Raises: django.core.management.base.CommandError: Arguments were invalid or something went wrong. Details are in the message. """ if not has_migrate: raise CommandError( _('migrate is not available on this version of Django. ' 'Use `syncdb` instead.')) if not getattr(settings, 'DJANGO_EVOLUTION_ENABLED', True): # Run the original migrate command. return super(Command, self).handle(*args, **options) if options.get('migration_name'): raise CommandError( _('The migrate command cannot apply a specific migration ' 'name when Django Evolution is in use. Set ' '`DJANGO_EVOLUTION_ENABLED = False` in your settings.py ' 'to use the original migrate command.')) if options.get('fake'): raise CommandError( _('The migrate command cannot use --fake when Django ' 'Evolution is in use. Set ' '`DJANGO_EVOLUTION_ENABLED = False` in your settings.py ' 'to use the original migrate command.')) app_labels = [] if options.get('app_label'): app_labels.append(options.get('app_label')) call_command('evolve', *app_labels, verbosity=options.get('verbosity'), interactive=options.get('interactive'), database=options.get('database'), execute=True)
#!/usr/bin/env python3 import nelly.main if '__main__' == __name__: nelly.main.main()
from records_mover.records.records_format import DelimitedRecordsFormat import unittest import json class TestDelimitedRecordsFormat(unittest.TestCase): def test_dumb(self): records_format = DelimitedRecordsFormat(variant='dumb') # Should match up with # https://github.com/bluelabsio/records-mover/blob/master/docs/RECORDS_SPEC.md#dumb-variant expected_hints = { 'compression': 'GZIP', 'dateformat': 'YYYY-MM-DD', 'datetimeformat': 'YYYY-MM-DD HH:MI:SS', 'datetimeformattz': 'YYYY-MM-DD HH:MI:SSOF', 'doublequote': False, 'encoding': 'UTF8', 'escape': None, 'field-delimiter': ',', 'quotechar': '"', 'quoting': None, 'record-terminator': '\n', 'timeonlyformat': 'HH24:MI:SS', 'header-row': False, } self.assertEqual(expected_hints, records_format.hints) def test_csv(self): records_format = DelimitedRecordsFormat(variant='csv') # Should match up with # https://github.com/bluelabsio/records-mover/blob/master/docs/RECORDS_SPEC.md#csv-variant expected_hints = { 'compression': 'GZIP', 'dateformat': 'MM/DD/YY', 'datetimeformat': 'MM/DD/YY HH24:MI', 'datetimeformattz': 'MM/DD/YY HH24:MI', 'doublequote': True, 'encoding': 'UTF8', 'escape': None, 'field-delimiter': ',', 'quotechar': '"', 'quoting': 'minimal', 'record-terminator': '\n', 'timeonlyformat': 'HH24:MI:SS', 'header-row': True, } self.assertEqual(expected_hints, records_format.hints) def test_with_altered_hints(self): records_format = DelimitedRecordsFormat(variant='csv').alter_hints({'quotechar': 'A'}) # Should match up with # https://github.com/bluelabsio/records-mover/blob/master/docs/RECORDS_SPEC.md#csv-variant expected_hints = { 'compression': 'GZIP', 'dateformat': 'MM/DD/YY', 'datetimeformat': 'MM/DD/YY HH24:MI', 'datetimeformattz': 'MM/DD/YY HH24:MI', 'doublequote': True, 'encoding': 'UTF8', 'escape': None, 'field-delimiter': ',', 'quotechar': 'A', 'quoting': 'minimal', 'record-terminator': '\n', 'timeonlyformat': 'HH24:MI:SS', 'header-row': True, } self.assertEqual(expected_hints, records_format.hints) self.assertEqual({'quotechar': 'A'}, records_format.custom_hints) def test_eq(self): records_format_1 = DelimitedRecordsFormat() records_format_2 = DelimitedRecordsFormat() self.assertTrue(records_format_1 == records_format_2) def test_eq_error(self): records_format_1 = DelimitedRecordsFormat() records_format_2 = "wrong type" self.assertTrue(records_format_1 != records_format_2) def test_unsupported_variant(self): with self.assertRaises(NotImplementedError): DelimitedRecordsFormat(variant='fake_thing_i_just_made_up') def test_json(self): records_format = DelimitedRecordsFormat() self.assertEqual({ 'hints': { 'compression': 'GZIP', 'dateformat': 'YYYY-MM-DD', 'datetimeformat': 'YYYY-MM-DD HH24:MI:SS', 'datetimeformattz': 'YYYY-MM-DD HH:MI:SSOF', 'doublequote': False, 'encoding': 'UTF8', 'escape': '\\', 'field-delimiter': ',', 'header-row': False, 'quotechar': '"', 'quoting': None, 'record-terminator': '\n', 'timeonlyformat': 'HH24:MI:SS'}, 'type': 'delimited', 'variant': 'bluelabs' }, json.loads(records_format.json())) def test_repr(self): records_format = DelimitedRecordsFormat() self.assertEqual('DelimitedRecordsFormat(bluelabs)', repr(records_format)) def test_generate_filename_gzip(self): records_format = DelimitedRecordsFormat(hints={'compression': 'GZIP'}) self.assertEqual('foo.csv.gz', records_format.generate_filename('foo')) def test_generate_filename_bzip(self): records_format = DelimitedRecordsFormat(hints={'compression': 'BZIP'}) self.assertEqual('foo.csv.bz2', records_format.generate_filename('foo')) def test_generate_filename_no_compression(self): records_format = DelimitedRecordsFormat(hints={'compression': None}) self.assertEqual('foo.csv', records_format.generate_filename('foo')) def test_alter_variant(self): records_format = DelimitedRecordsFormat(variant='csv', hints={'compression': 'BZIP'}) new_records_format = records_format.alter_variant('bigquery') self.assertEqual(records_format.variant, 'csv') self.assertEqual(new_records_format.variant, 'bigquery')
# coding=utf-8 # Copyright 2021 The Reach ML Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Defines the tf agent.""" import enum from ibc.ibc.agents import ibc_agent from ibc.ibc.agents import mdn_agent from ibc.ibc.agents import mse_agent import tensorflow as tf class LossType(enum.Enum): EBM = 'ebm' MSE = 'mse' MDN = 'mdn' class WarmupSchedule(tf.keras.optimizers.schedules.LearningRateSchedule): """Implements learning rate warmup.""" def __init__(self, lr, d_model=32, warmup_steps=4000): super(WarmupSchedule, self).__init__() self.d_model = d_model self.d_model = tf.cast(self.d_model, tf.float32) self.warmup_steps = warmup_steps self.lr = lr def __call__(self, step): arg1 = tf.math.rsqrt(step) arg2 = step * (self.warmup_steps ** -1.5) return tf.math.rsqrt(self.d_model) * tf.math.minimum(arg1, arg2) * self.lr def get_agent(loss_type, time_step_tensor_spec, action_tensor_spec, action_sampling_spec, obs_norm_layer, act_norm_layer, act_denorm_layer, learning_rate, use_warmup, cloning_network, train_step, decay_steps): """Creates tfagent.""" if use_warmup: learning_rate_schedule = WarmupSchedule(lr=learning_rate) else: learning_rate_schedule = ( tf.keras.optimizers.schedules.ExponentialDecay( learning_rate, decay_steps=decay_steps, decay_rate=0.99)) optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate_schedule) if loss_type == LossType.EBM.value: agent_class = ibc_agent.ImplicitBCAgent elif loss_type == LossType.MSE.value: agent_class = mse_agent.MseBehavioralCloningAgent elif loss_type == LossType.MDN.value: agent_class = mdn_agent.MdnBehavioralCloningAgent else: raise ValueError("Unsupported loss type, can't retrieve an agent.") agent = agent_class( time_step_spec=time_step_tensor_spec, action_spec=action_tensor_spec, action_sampling_spec=action_sampling_spec, obs_norm_layer=obs_norm_layer, act_norm_layer=act_norm_layer, act_denorm_layer=act_denorm_layer, cloning_network=cloning_network, optimizer=optimizer, train_step_counter=train_step) agent.initialize() return agent
import sys sys.path.append('..') from utils import iplib if __name__ == "__main__": if len(sys.argv) < 2: print(f"Usage: {sys.argv[0]} <IP address>") exit(-1) try: ip = iplib.IPAddress(sys.argv[1]) except: print(f"{sys.argv[1]} is not a valid IPv4 address") exit(-1) print(f"{sys.argv[1]} is from class {ip.get_class()}")
from common_fixtures import * # NOQA from test_services \ import service_with_healthcheck_enabled from test_machine \ import action_on_digital_ocean_machine, get_dropletid_for_ha_hosts ha_droplets = [] if_test_host_down = pytest.mark.skipif( not os.environ.get('DIGITALOCEAN_KEY') or not os.environ.get('TEST_HOST_DOWN'), not os.environ.get('HOST_DISCONN_ACTIVE_TIMEOUT'), not os.environ.get('HOST_ACTIVE_DISCONN_TIMEOUT'), reason='HOST DOWN PARAMETERS not set') HOST_DISCONN_ACTIVE_TIMEOUT = os.environ.get('HOST_DISCONN_ACTIVE_TIMEOUT', 900) HOST_ACTIVE_DISCONN_TIMEOUT = os.environ.get('HOST_ACTIVE_DISCONN_TIMEOUT', 900) @pytest.fixture(scope='session', autouse=True) def get_host_droplets(ha_hosts, socat_containers): ha_droplets.append(get_dropletid_for_ha_hosts()) @pytest.fixture def check_host_state_power_on(client): print "Power on hosts that are in disconnected or reconnecting state" print ha_droplets inactive_hosts = client.list_host( kind='docker', removed_null=True, agentState="disconnected") print "Disconnected hosts:" print inactive_hosts reconn_hosts = client.list_host( kind='docker', removed_null=True, agentState="reconnecting") print "Reconnecting hosts:" print reconn_hosts inactive_hosts_dropletids = [] inactive_hosts_list = [] # Get droplet Id and hosts from disconnected hosts for host in inactive_hosts: host_name = host.hostname print host_name droplet_id = ha_droplets[0][host_name] inactive_hosts_dropletids.append(droplet_id) inactive_hosts_list.append(host) # Get droplet Id and hosts from reconnecting hosts # and append to the inactive host/droplet lists for host in reconn_hosts: host_name = host.hostname print host_name droplet_id = ha_droplets[0][host_name] inactive_hosts_dropletids.append(droplet_id) inactive_hosts_list.append(host) print "List of all disconnected/reconnecting hosts" print inactive_hosts_list print inactive_hosts_dropletids # Power on the droplets for dropletid in inactive_hosts_dropletids: print "Power on droplet " + str(droplet_id) action_on_digital_ocean_machine(dropletid, "power_on") # Wait for the host agent state to become active for host in inactive_hosts_list: print "In host wait method" wait_for_host_agent_state(client, host, "active", 600) @if_test_host_down def test_service_with_healthcheck_1_host_down( client, ha_hosts, socat_containers, check_host_state_power_on): host_down_with_healthcheck_services( client, host_down_count=1) @if_test_host_down def test_service_with_healthcheck_2_host_down( client, ha_hosts, socat_containers, check_host_state_power_on): host_down_with_healthcheck_services( client, host_down_count=2) @if_test_host_down def test_service_with_healthcheck_3_host_down( client, ha_hosts, socat_containers, check_host_state_power_on): host_down_with_healthcheck_services( client, host_down_count=3) @if_test_host_down def test_service_with_healthcheck_and_retainIp_2_host_down( client, ha_hosts, socat_containers, check_host_state_power_on): host_down_with_healthcheck_services( client, host_down_count=2, retainIp=True) @if_test_host_down def test_lbservice_with_healthcheck_1_host_down( client, ha_hosts, socat_containers, check_host_state_power_on): lb_port = "7770" host_down_with_lb_services( client, lb_port, host_down_count=1) @if_test_host_down def test_lbservice_with_healthcheck_2_host_down( client, ha_hosts, socat_containers, check_host_state_power_on): lb_port = "7771" host_down_with_lb_services( client, lb_port, host_down_count=2) @if_test_host_down def test_global_lbservice_with_healthcheck_1_host_down( client, ha_hosts, socat_containers, check_host_state_power_on): lb_port = "7772" host_down_with_lb_services( client, lb_port, host_down_count=1, globalf=True) @if_test_host_down def test_global_lbservice_with_healthcheck_2_host_down( client, ha_hosts, socat_containers, check_host_state_power_on): lb_port = "7773" host_down_with_lb_services( client, lb_port, host_down_count=2, globalf=True) @if_test_host_down def test_service_with_host_down( client, ha_hosts, socat_containers, check_host_state_power_on): host_down_with_services( client, host_down_count=2) @if_test_host_down def test_global_service_with_host_down( client, ha_hosts, socat_containers, check_host_state_power_on): host_down_with_services( client, host_down_count=2, globalf=True) @if_test_host_down def test_global_service_with_reconnecting_host( client, ha_hosts, socat_containers, check_host_state_power_on): global_service_with_reconn_disconn_host(client, state="reconnecting") @if_test_host_down def test_global_service_with_disconnected_host( client, ha_hosts, socat_containers, check_host_state_power_on): global_service_with_reconn_disconn_host(client, state="disconnected") def global_service_with_reconn_disconn_host(client, state): # Pick one of the host and power down hosts host_down = ha_host_list[0] host_name = ha_host_list[0].hostname print "power down- " + host_name action_on_digital_ocean_machine(ha_droplets[0][host_name], "power_off") wait_for_host_agent_state(client, host_down, state, HOST_ACTIVE_DISCONN_TIMEOUT) # Create service launch_config = {"imageUuid": HEALTH_CHECK_IMAGE_UUID} launch_config["labels"] = {"io.rancher.scheduler.global": "true"} service, env = create_env_and_svc(client, launch_config) service = service.activate() service = client.wait_success(service, 300) assert service.state == "active" container_list = get_service_container_list(client, service) assert len(container_list) == get_service_instance_count(client, service) # Power on the host action_on_digital_ocean_machine(ha_droplets[0][host_name], "power_on") wait_for_host_agent_state(client, host_down, "active", HOST_DISCONN_ACTIVE_TIMEOUT) service = wait_success(client, service, 300) container_list = get_service_container_list(client, service) assert len(container_list) == get_service_instance_count(client, service) instance_list = get_containers_on_host_for_service( client, host_down, service) assert len(instance_list) == 1 @if_test_host_down def test_global_service_with_inactive_host( client, ha_hosts, socat_containers, check_host_state_power_on): # Pick one of the host and deactivate this host host_down = ha_host_list[0] host_name = ha_host_list[0].hostname print "Deactivate " + host_name host_down.deactivate() host_down = wait_for_condition(client, host_down, lambda x: x.state == "inactive", lambda x: 'Host state is ' + x.state, timeout=300) # Create service launch_config = {"imageUuid": HEALTH_CHECK_IMAGE_UUID} launch_config["labels"] = {"io.rancher.scheduler.global": "true"} service, env = create_env_and_svc(client, launch_config) service = service.activate() service = wait_success(client, service, 300) assert service.state == "active" container_list = get_service_container_list(client, service) assert len(container_list) == get_service_instance_count(client, service) # Activate the host that is in deactivated state print "Activate " + host_name host_down.activate() host_down = wait_for_condition(client, host_down, lambda x: x.state == "active", lambda x: 'Host state is ' + x.state, timeout=300) service = wait_success(client, service, 300) container_list = get_service_container_list(client, service) assert len(container_list) == get_service_instance_count(client, service) instance_list = get_containers_on_host_for_service( client, host_down, service) assert len(instance_list) == 1 def host_down_with_lb_services(client, lb_port, host_down_count, scale=2, lb_scale=2, globalf=False): # Wait for hosts in "reconnecting" state to get to "active" state check_hosts_state(client) # Create environment with lb_service and 2 healthcheck enabled # service targets env, lb_service, service1, service2 = \ env_with_lb_service_with_health_check_enabled_targets( client, lb_port, scale, lb_scale, globalf) # Pick hosts (and collect instances that will fgo unhealthy) that need # to be powered down down_hosts = [] down_instances = [] for i in range(0, len(ha_host_list)): host = ha_host_list[i] instance_list = \ get_containers_on_host_for_service(client, host, lb_service) if len(instance_list) > 0: down_instances.extend(instance_list) down_hosts.append(host) if len(down_hosts) == host_down_count: break # Power Down hosts where lb service instances are running for host in down_hosts: host_name = host.hostname print "power down- " + host_name print ha_droplets[0] action_on_digital_ocean_machine(ha_droplets[0][host_name], "power_off") print "Waiting for the hosts to go to disconnected state" for host in down_hosts: wait_for_host_agent_state(client, host, "disconnected", HOST_ACTIVE_DISCONN_TIMEOUT) # Check for service reconcile check_for_service_reconcile( client, lb_service, down_instances, instance_list, globalf) validate_lb_service(client, lb_service, lb_port, [service1, service2]) # Power on hosts that were powered off for host in down_hosts: host_name = host.hostname print "power on- " + host_name action_on_digital_ocean_machine(ha_droplets[0][host_name], "power_on") print "Waiting for the hosts to go to active state" for host in down_hosts: wait_for_host_agent_state(client, host, "active", HOST_DISCONN_ACTIVE_TIMEOUT) # if service is global, validate that new instances of the service gets # created on the host that gets powered on if (globalf): check_hosts_state(client) wait_for_scale_to_adjust(client, service1, timeout=300) wait_for_scale_to_adjust(client, service2, timeout=300) wait_for_scale_to_adjust(client, lb_service, timeout=300) validate_lb_service(client, lb_service, lb_port, [service1, service2]) delete_all(client, [env]) def host_down_with_healthcheck_services(client, host_down_count, retainIp=False): # Wait for hosts in "reconnecting" state to get to "active" state check_hosts_state(client) # Create service that is healthcheck enabled scale = 10 env, service = service_with_healthcheck_enabled( client, scale, retainIp=retainIp) # Pick hosts (and collect instances that will fgo unhealthy) that need # to be powered down down_hosts = [] down_instances = [] for i in range(0, len(ha_host_list)): host = ha_host_list[i] instance_list = \ get_containers_on_host_for_service(client, host, service) if len(instance_list) > 0: down_instances.extend(instance_list) down_hosts.append(host) if len(down_hosts) == host_down_count: break # Power Down hosts where service instances are running for host in down_hosts: host_name = host.hostname print "power down- " + host_name print ha_droplets[0] action_on_digital_ocean_machine(ha_droplets[0][host_name], "power_off") print "Waiting for the hosts to go to disconnected state" for host in down_hosts: wait_for_host_agent_state(client, host, "disconnected", HOST_ACTIVE_DISCONN_TIMEOUT) # Check for service reconcile check_for_service_reconcile( client, service, down_instances, instance_list) # If retainIp is turned on , make sure that ip address assigned to # reconciled instances are the same if (retainIp): for con in down_instances: container_name = con.name containers = client.list_container(name=container_name, removed_null=True) assert len(containers) == 1 container = containers[0] assert container.primaryIpAddress == con.primaryIpAddress assert container.externalId != con.externalId # Power on hosts that were powered off delete_all(client, [env]) for host in down_hosts: host_name = host.hostname print "power on- " + host_name action_on_digital_ocean_machine(ha_droplets[0][host_name], "power_on") print "Waiting for the hosts to go to active state" for host in down_hosts: wait_for_host_agent_state(client, host, "active", HOST_DISCONN_ACTIVE_TIMEOUT) def host_down_with_services(client, host_down_count, globalf=False): # Wait for hosts in "reconnecting" state to get to "active" state check_hosts_state(client) # Create service launch_config = {"imageUuid": HEALTH_CHECK_IMAGE_UUID} if globalf: launch_config["labels"] = {"io.rancher.scheduler.global": "true"} scale = 0 else: scale = 10 service, env = create_env_and_svc(client, launch_config, scale) service = service.activate() service = client.wait_success(service, 300) assert service.state == "active" container_list = get_service_container_list(client, service) assert len(container_list) == get_service_instance_count(client, service) # Pick hosts (and collect instances that will go unhealthy) that need # to be powered down down_hosts = [] down_instances = [] for i in range(0, len(ha_host_list)): host = ha_host_list[i] instance_list = \ get_containers_on_host_for_service(client, host, service) if len(instance_list) > 0: down_instances.extend(instance_list) down_hosts.append(host) if len(down_hosts) == host_down_count: break # Power Down hosts where service instances are running for host in down_hosts: host_name = host.hostname print "power down- " + host_name print ha_droplets[0] action_on_digital_ocean_machine(ha_droplets[0][host_name], "power_off") print "Waiting for the hosts to go to disconnected state" for host in down_hosts: wait_for_host_agent_state(client, host, "disconnected", HOST_DISCONN_ACTIVE_TIMEOUT) # There will be no service reconcile since the instances will continue # to be "running" state in rancher-server for con in down_instances: assert con.state == "running" service = client.reload(service) assert service.state == "active" # Power on hosts that were powered off . # "stopped" state of the containers on the host will get synced and # service reconcile will trigger containers to be started. for host in down_hosts: host_name = host.hostname print "power on- " + host_name action_on_digital_ocean_machine(ha_droplets[0][host_name], "power_on") print "Waiting for the hosts to go to active state" for host in down_hosts: wait_for_host_agent_state(client, host, "active", HOST_DISCONN_ACTIVE_TIMEOUT) wait_for_condition( client, service, lambda x: x.state == 'active', lambda x: 'State is: ' + x.state) for con in down_instances: assert con.state == "running" delete_all(client, [env]) def get_containers_on_host_for_service(client, host, service): instance_list = [] hosts = client.list_host( kind='docker', removed_null=True, state='active', uuid=host.uuid, include="instances") assert len(hosts) == 1 for instance in hosts[0].instances: containers = client.list_container( state='running', uuid=instance.uuid, include="services") assert len(containers) <= 1 if (len(containers) == 1 and containers[0].createIndex is not None and containers[0].services[0].id == service.id): instance_list.append(instance) return instance_list def check_for_service_reconcile(client, service, unhealthy_con_list, instance_list, globalf=False): # Validate that unhealthy instances in the service get deleted # This code segment is commented as unhealthy state is # transient and hard to catch # for con in unhealthy_con_list: # wait_for_condition( # client, con, # lambda x: x.healthState == 'unhealthy', # lambda x: 'State is: ' + x.healthState, timeout=180) # con = client.reload(con) # assert con.healthState == "unhealthy" for con in unhealthy_con_list: wait_for_condition( client, con, lambda x: x.state in ('removed', 'purged'), lambda x: 'State is: ' + x.healthState, timeout=120) wait_for_scale_to_adjust(client, service, timeout=300) con = client.reload(con) assert con.state in ('removed', 'purged') # Validate all instances in the service are healthy container_list = get_service_container_list(client, service) if globalf is False: assert len(container_list) == service.scale for con in container_list: wait_for_condition( client, con, lambda x: x.healthState == 'healthy', lambda x: 'State is: ' + x.healthState, timeout=120) # Validate all existing healthy instances in the service were not deleted # and recreated for unhealthy_con in unhealthy_con_list: for con in instance_list: if (unhealthy_con.name == con.name): instance_list.remove(con) for healthy_con in instance_list: healthy_con = client.reload(healthy_con) assert healthy_con.state == "running" assert healthy_con.healthState == "healthy" service = client.reload(service) assert service.state == "active" assert service.healthState == "healthy" def check_hosts_state(client, timeout=300): print "Check if host state is active" start = time.time() disconn_host = 1 while disconn_host != 0: time.sleep(.5) hosts = client.list_host( kind='docker', removed_null=True, agentState="disconnected") disconn_host = len(hosts) if time.time() - start > timeout: raise Exception( 'Timed out waiting for all hosts to be active in the setup') # Give some time for hosts that just got to"Active" state to settle down time.sleep(30) print "Host is Active" def env_with_lb_service_with_health_check_enabled_targets(client, lb_port, scale=2, lb_scale=2, globalf=False): # Create Environment with 2 health check enabled service and 1 LB service health_check = {"name": "check1", "responseTimeout": 2000, "interval": 2000, "healthyThreshold": 2, "unhealthyThreshold": 3, "requestLine": "GET /name.html HTTP/1.0", "port": 80} launch_config = {"imageUuid": HEALTH_CHECK_IMAGE_UUID, "healthCheck": health_check } lb_launch_config = {"ports": [lb_port], "imageUuid": get_haproxy_image()} if (globalf): launch_config["labels"] = {"io.rancher.scheduler.global": "true"} lb_launch_config["labels"] = {"io.rancher.scheduler.global": "true"} scale = None lb_scale = None service1, env = create_env_and_svc( client, launch_config, scale) service1 = activate_svc(client, service1) container_list = get_service_container_list(client, service1) assert len(container_list) == get_service_instance_count(client, service1) for con in container_list: wait_for_condition( client, con, lambda x: x.healthState == 'healthy', lambda x: 'State is: ' + x.healthState) service2 = create_svc(client, env, launch_config, scale) service2 = activate_svc(client, service2) container_list = get_service_container_list(client, service2) assert len(container_list) == get_service_instance_count(client, service2) for con in container_list: wait_for_condition( client, con, lambda x: x.healthState == 'healthy', lambda x: 'State is: ' + x.healthState) port_rule1 = {"serviceId": service1.id, "sourcePort": lb_port, "targetPort": "80", "protocol": "http" } port_rule2 = {"serviceId": service2.id, "sourcePort": lb_port, "targetPort": "80", "protocol": "http" } lb_Config = {"portRules": [port_rule1, port_rule2]} lb_service = client.create_loadBalancerService( name="lb-1", stackId=env.id, launchConfig=lb_launch_config, scale=lb_scale, lbConfig=lb_Config) lb_service = client.wait_success(lb_service) assert lb_service.state == "inactive" lb_service = activate_svc(client, lb_service) service_link1 = {"serviceId": service1.id} service_link2 = {"serviceId": service2.id} lb_service.setservicelinks( serviceLinks=[service_link1, service_link2]) validate_lb_service(client, lb_service, lb_port, [service1, service2]) return env, lb_service, service1, service2
# Generated by Django 3.0.2 on 2020-01-11 13:34 import django.core.validators from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [] operations = [ migrations.CreateModel( name="Accruals", fields=[ ( "id", models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name="ID", ), ), ( "cutoff_date", models.DateField(unique=True, verbose_name="cutoff date"), ), ( "accruals", models.DecimalField( decimal_places=2, max_digits=10, validators=[django.core.validators.MinValueValidator(0)], verbose_name="accruals", ), ), ], options={ "verbose_name": "accruals", "verbose_name_plural": "accruals", "ordering": ["-cutoff_date"], }, ), ]
import sys from PyQt5 import QtWidgets from ui import UI app = QtWidgets.QApplication(sys.argv) ui = UI(app) sys.exit(app.exec_())
from alfred.utils.config import * from alfred.utils.directory_tree import * from alfred.utils.misc import create_logger, select_storage_dirs def get_args(): parser = argparse.ArgumentParser() parser.add_argument('--from_file', type=str, default=None, help="Path containing all the storage_names") parser.add_argument('--storage_name', type=str, default=None) parser.add_argument("--root_dir", default=None, type=str) return parser.parse_args() def _anonymize_config(from_file, storage_name, root_dir): logger = create_logger(name="ANONYMIZE CONFIG", loglevel=logging.INFO) logger.info("\nANONYMIZING Config") # Select storage_dirs to run over storage_dirs = select_storage_dirs(from_file, storage_name, root_dir) # Sanity-check that storages exist storage_dirs = [storage_dir for storage_dir in storage_dirs if sanity_check_exists(storage_dir, logger)] for storage_to_copy in storage_dirs: logger.info(str(storage_to_copy)) seeds_to_copy = get_all_seeds(storage_to_copy) # find the path to all the configs files for dir in seeds_to_copy: config_path = dir / 'config.json' config = load_dict_from_json(str(config_path)) if 'experiment_name' in config: logger.info(f"ANONYMIZE -- Removing experiment_name from {str(config_path)}") del(config['experiment_name']) else: logger.info(f"PASS -- {str(config_path)} has no experiment_name. ") save_dict_to_json(config, filename=str(config_path)) if __name__ == "__main__": args = get_args() print(args.__dict__) _anonymize_config(from_file=args.from_file, storage_name=args.storage_name, root_dir=args.root_dir)
#!/usr/bin/env python3 # wb2sc_file_converter.py # # Copyright 2019 E. Decker # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A simple tool converting files created by wortverbund_builder to files that sign_compare can work with.""" import csv import os import tkinter as tk class WortverbundSelecter(tk.Frame): """GUI-frame to select a wortverbund of a project and to convert it.""" def __init__(self, master, project): tk.Frame.__init__(self) tk.Button(self, font='Arial 16', text='Back', width=7, command=self.__del__).pack() self.label = tk.Label(self, font='Arial 16', text='Select a wortverbund to convert to a sc-file: ') self.label.pack() self.wortverbund_listbox = tk.Listbox(self, font='Arial 16', height=18, width=26) self.wortverbund_listbox.pack() self.project = project if os.listdir('wb_files/'+self.project): for wortverbund_file in os.listdir('wb_files/'+self.project): self.wortverbund_listbox.insert('end', wortverbund_file[:-4]) self.convert_button = tk.Button(self, font='Arial 16', text='Convert', width=7, command=self.convert_wortverbund) self.convert_button.pack() else: self.label.forget() self.wortverbund_listbox.forget() tk.Label(self, font='Arial 16', text='There is no wortverbund in the project.').pack() def __del__(self): self.forget() ROOT_FRAME.pack() def convert_wortverbund(self): """Converts the selected wortverbund_builder file to a sign_compare file by reading the features saved in the input file (wortverbund_builder file) and writing them into the output file (sign_compare file).""" self.wortverbund_listbox.forget() self.convert_button.forget() try: with open('wb_files/'+self.project+'/'+self.wortverbund_listbox.get('active')+'.csv', 'r') as csv_file: content_of_csv_file = csv.reader(csv_file, delimiter=';') self.feature_string = '' for row in content_of_csv_file: if row[0]: self.feature_string += row[0]+';' if self.feature_string: # If there is no sign_compare file (or even no directory) with # the same name as the selected wortverbund_builder file: # creates a new sign_compare file. if not os.path.exists('sc_files'): os.makedirs('sc_files') if not os.path.exists('sc_files/'+self.wortverbund_listbox.get('active')+'.txt'): self.save_converted_file_0(0) # If a sign_compare file with the same name as the selected # wortverbund_builder file already exists: 3 new options. else: self.label['text'] = 'A sign \"'+self.wortverbund_listbox.get('active')+'\" already exists!\nWhat do you want to do?' self.convert_button = tk.Button(self, font='Arial 16', text='Append existing file', width=40, command=self.save_by_appending) self.convert_button.pack() self.replace_button = tk.Button(self, font='Arial 16', text='Replace existing file (the old file will be lost)', width=40, command=self.save_by_replacing) self.replace_button.pack() self.rename_button = tk.Button(self, font='Arial 16', text='Rename existing file and save the newly converted', width=40, command=self.rename_and_save) self.rename_button.pack() else: self.label['text'] = '\"'+self.wortverbund_listbox.get('active')+'\" was not converted because there are no features in it!' except IOError: self.label['text'] = 'Sorry, \"'+self.wortverbund_listbox.get('active')+'\" couldn\'t be converted!' def save_by_appending(self): """Saves the features of the input file (wortverbund_builder file) in an already existing sign_compare file by adding them to it.""" self.save_converted_file_0(0) def save_by_replacing(self): """Saves the features of the input file (wortverbund_builder file) in a "new" sign_compare file replacing the one that already existed - this means that the old sign_compare file gets lost.""" self.save_converted_file_0(1) def rename_and_save(self): """Allows to rename an already existing sign_compare file and to save the features of the input file (wortverbund_builder file) in a new sign_compare file - i.e. creating a new file and keeping the old one.""" self.convert_button.forget() self.replace_button.forget() self.rename_button.forget() self.label['text'] = 'Enter new name for the existing sign \"'+self.wortverbund_listbox.get('active')+'\": ' self.entry = tk.Entry(self, font='Arial 16', width=16) self.entry.pack() self.convert_button = tk.Button(self, font='Arial 16', text='Rename and save', width=15, command=self.save_converted_file_1) self.convert_button.pack() def save_converted_file_0(self, case): self.convert_button.forget() try: self.replace_button.forget() self.rename_button.forget() except AttributeError: pass if case == 0: # coming from "self.save_by_appending" sign_compare_file = open('sc_files/'+self.wortverbund_listbox.get('active')+'.txt', 'a') else: # coming from "self.save_by_replacing" sign_compare_file = open('sc_files/'+self.wortverbund_listbox.get('active')+'.txt', 'w') sign_compare_file.write(self.feature_string) sign_compare_file.close() self.label['text'] = '\"'+self.wortverbund_listbox.get('active')+'\" converted!' def save_converted_file_1(self): # coming from "self.rename_and_save" self.convert_button.forget() self.entry.forget() try: os.rename('sc_files/'+self.wortverbund_listbox.get('active')+'.txt', 'sc_files/'+self.entry.get()+'.txt') with open('sc_files/'+self.wortverbund_listbox.get('active')+'.txt', 'w') as sign_compare_file: sign_compare_file.write(self.feature_string) self.label['text'] = '\"'+self.wortverbund_listbox.get('active')+'\" converted and already existing file renamed \"'+self.entry.get()+'\"!' except: self.label['text'] = 'Your new file name was not accepted!' def select_project(): ROOT_FRAME.forget() WortverbundSelecter(ROOT, project_listbox.get('active')).pack() ROOT = tk.Tk() ROOT.title('wb2sc_file_converter') # Main frame to select a wortverbund_builder project. ROOT_FRAME = tk.Frame(ROOT) project_listbox = tk.Listbox(ROOT_FRAME, font='Arial 16', height=18, width=26) project_listbox.pack() try: no_projects = True for project in os.listdir('wb_files'): if not '.' in project: project_listbox.insert('end', project) no_projects = False if no_projects: raise IOError else: tk.Button(ROOT_FRAME, font='Arial 16', text='Select project', width=26, command=select_project).pack() except IOError: project_listbox.forget() tk.Label(ROOT_FRAME, font='Arial 16', text='\nThere are no wortverbund_builder projects!\n').pack() ROOT_FRAME.pack() ROOT.mainloop()
def countSegments(s): s = s.lstrip() s = s.rstrip() count = 1 for i in range (len(s)): if s[i]==" " and s[i+1]!=" ": count+=1 return count s = ", , , , a, eaefa" print(countSegments(s))
import time class SessionHelper: def __init__(self, app): self.app = app def Marker_login(self, username, password): wd = self.app.wd self.app.open_marker_home_page() wd.find_element_by_css_selector("button.mainbtn").click() wd.find_element_by_name("username").click() wd.find_element_by_name("username").clear() wd.find_element_by_name("username").click() wd.find_element_by_name("username").send_keys(username) time.sleep(5) wd.find_element_by_name("password").click() wd.find_element_by_name("password").clear() wd.find_element_by_name("username").click() wd.find_element_by_name("password").send_keys(password) time.sleep(5) wd.find_element_by_css_selector("button.navbar-btn.mainbtn").click() def Marker_logout(self): wd = self.app.wd wd.find_element_by_css_selector("div.headernav__uname").click() wd.find_element_by_link_text("Выйти из системы").click() def ensure_Marker_logout(self): wd = self.app.wd if self.is_logged_in_marker(): self.Marker_logout() def is_logged_in_marker(self): wd = self.app.wd return len(wd.find_elements_by_css_selector("img.headernav__icon.notifyico")) > 0 def is_logged_in_as_marker(self, username): wd = self.app.wd return self.get_logged_user_marker() == username def get_logged_user_marker(self): wd = self.app.wd wd.find_element_by_css_selector("div.headernav__uname").click() wd.find_element_by_link_text("Личный кабинет").click() fulltext = wd.find_element_by_xpath("//ng-component/main/ng-component/div/div[2]/div/div[1]/div[1]/div/div[2]/span").text return wd.find_element_by_xpath("//ng-component/main/ng-component/div/div[2]/div/div[1]/div[1]/div/div[2]/span").text[11:len(fulltext)] def ensure_login_marker(self, username, password): wd = self.app.wd if self.is_logged_in_marker(): if self.is_logged_in_as_marker(username): return else: self.Marker_logout() self.Marker_login(username, password) def open_marker_page(self, page): wd = self.app.wd baseUrlMarker = self.app.baseUrlMarker wd.get(baseUrlMarker + page) self.app.wait_page_load2(60) def sm_login(self, username, password): wd = self.app.wd self.app.open_sm_home_page() wd.find_element_by_css_selector("a.button.login").click() #if not self.is_logged_in_sm(): wd.find_element_by_name("UserName").click() wd.find_element_by_name("UserName").clear() wd.find_element_by_name("UserName").click() wd.find_element_by_name("UserName").send_keys(username) time.sleep(5) wd.find_element_by_name("Password").click() wd.find_element_by_name("Password").clear() wd.find_element_by_name("UserName").click() wd.find_element_by_name("Password").send_keys(password) time.sleep(5) wd.find_element_by_xpath("//form[@id='form-login']//button[.='Войти']").click() def sm_admin_login(self, username, password): wd = self.app.wd self.app.open_sm_admin_home_page() wd.find_element_by_css_selector("a.button.login").click() #if not self.is_logged_in_sm(): wd.find_element_by_name("UserName").click() wd.find_element_by_name("UserName").clear() wd.find_element_by_name("UserName").click() wd.find_element_by_name("UserName").send_keys(username) time.sleep(5) wd.find_element_by_name("Password").click() wd.find_element_by_name("Password").clear() wd.find_element_by_name("UserName").click() wd.find_element_by_name("Password").send_keys(password) time.sleep(5) wd.find_element_by_xpath("//form[@id='form-login']//button[.='Войти']").click() def sm_logout(self): wd = self.app.wd baseUrlSM = self.app.baseUrlSM smlogout = self.app.smlogout #wd.maximize_window() wd.get(baseUrlSM + smlogout) def sm_admin_logout(self): wd = self.app.wd baseAdminUrlMarker = self.app.baseAdminUrlMarker smlogout = self.app.smlogout #wd.maximize_window() wd.get(baseAdminUrlMarker + smlogout) def ensure_logout_sm(self): wd = self.app.wd if self.is_logged_in_sm(): self.sm_logout() def is_logged_in_sm(self): wd = self.app.wd return len(wd.find_elements_by_css_selector("span.hdr_user-menu_name")) > 0 def is_logged_in_as_sm(self, username): wd = self.app.wd return self.get_logged_user_sm() == username def get_logged_user_sm(self): wd = self.app.wd self.app.wait_smBlock(60) text1 = wd.find_element_by_css_selector("span.hdr_user-menu_name").get_attribute("textContent") return text1 def ensure_login_sm(self, username, password): wd = self.app.wd self.app.wait_smBlock(60) if self.is_logged_in_sm(): if self.is_logged_in_as_sm(username): return else: self.sm_logout() self.sm_login(username, password) def ensure_admin_login_sm(self, username, password): wd = self.app.wd self.app.wait_smBlock(60) if self.is_logged_in_sm(): if self.is_logged_in_as_sm(username): return else: self.sm_admin_logout() self.sm_admin_login(username, password) def open_SM_page(self, page): wd = self.app.wd baseUrlSM = self.app.baseUrlSM wd.get(baseUrlSM + page) self.app.wait_smBlock(5) def open_admin_SM_page(self, page): wd = self.app.wd baseAdminUrlMarker = self.app.baseAdminUrlMarker wd.get(baseAdminUrlMarker + page) self.app.wait_smBlock(5) def open_href_page(self, page): wd = self.app.wd wd.get(page) self.app.wait_smBlock(5) def is_marker(self): try: self.app.wd.current_url.startswith(self.app.baseUrlMarker) return True except: return False def is_sm_blocked(self): try: text = self.app.wd.find_element_by_id("smBlock").value_of_css_property("display") if text == 'block': return True except: return False def is_sm_artef_blocked(self): try: text = self.app.wd.find_element_by_css_selector("div.dlg-content_loader.dlg-content_loader--center").value_of_css_property("display") if text == 'block': return True except: return False
# Copyright (c) 2020-2021, NVIDIA CORPORATION. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import pytest from cuml.test.utils import unit_param, \ quality_param, \ stress_param from cuml.neighbors import KNeighborsRegressor as lKNNReg from cuml.dask.neighbors import KNeighborsRegressor as dKNNReg from sklearn.datasets import make_multilabel_classification from sklearn.datasets import make_regression from sklearn.model_selection import train_test_split from sklearn.metrics import r2_score import dask.array as da import dask.dataframe as dd from cuml.dask.common.dask_arr_utils import to_dask_cudf from cudf.core.dataframe import DataFrame import numpy as np import cudf def generate_dask_array(np_array, n_parts): n_samples = np_array.shape[0] n_samples_per_part = int(n_samples / n_parts) chunks = [n_samples_per_part] * n_parts chunks[-1] += n_samples % n_samples_per_part chunks = tuple(chunks) return da.from_array(np_array, chunks=(chunks, -1)) @pytest.fixture( scope="module", params=[ unit_param({'n_samples': 3000, 'n_features': 30, 'n_classes': 5, 'n_targets': 2}), quality_param({'n_samples': 8000, 'n_features': 35, 'n_classes': 12, 'n_targets': 3}), stress_param({'n_samples': 20000, 'n_features': 40, 'n_classes': 12, 'n_targets': 4}) ]) def dataset(request): X, y = make_multilabel_classification( n_samples=int(request.param['n_samples'] * 1.2), n_features=request.param['n_features'], n_classes=request.param['n_classes'], n_labels=request.param['n_classes'], length=request.param['n_targets']) new_x = [] new_y = [] for i in range(y.shape[0]): a = np.argwhere(y[i] == 1)[:, 0] if len(a) >= request.param['n_targets']: new_x.append(i) np.random.shuffle(a) a = a[:request.param['n_targets']] new_y.append(a) if len(new_x) >= request.param['n_samples']: break X = X[new_x] noise = np.random.normal(0, 5., X.shape) X += noise y = np.array(new_y, dtype=np.float32) return train_test_split(X, y, test_size=0.3) def exact_match(l_outputs, d_outputs): # Check shapes assert l_outputs.shape == d_outputs.shape # Predictions should match correct_queries = (l_outputs == d_outputs).all(axis=1) assert np.mean(correct_queries) > 0.95 @pytest.mark.parametrize("datatype", ['dask_array', 'dask_cudf']) @pytest.mark.parametrize("parameters", [(1, 3, 256), (8, 8, 256), (9, 3, 128)]) def test_predict_and_score(dataset, datatype, parameters, client): n_neighbors, n_parts, batch_size = parameters X_train, X_test, y_train, y_test = dataset l_model = lKNNReg(n_neighbors=n_neighbors) l_model.fit(X_train, y_train) l_outputs = l_model.predict(X_test) handmade_local_score = r2_score(y_test, l_outputs) handmade_local_score = round(float(handmade_local_score), 3) X_train = generate_dask_array(X_train, n_parts) X_test = generate_dask_array(X_test, n_parts) y_train = generate_dask_array(y_train, n_parts) y_test = generate_dask_array(y_test, n_parts) if datatype == 'dask_cudf': X_train = to_dask_cudf(X_train, client) X_test = to_dask_cudf(X_test, client) y_train = to_dask_cudf(y_train, client) y_test = to_dask_cudf(y_test, client) d_model = dKNNReg(client=client, n_neighbors=n_neighbors, batch_size=batch_size) d_model.fit(X_train, y_train) d_outputs = d_model.predict(X_test, convert_dtype=True) d_outputs = d_outputs.compute() d_outputs = d_outputs.as_matrix() \ if isinstance(d_outputs, DataFrame) \ else d_outputs exact_match(l_outputs, d_outputs) distributed_score = d_model.score(X_test, y_test) distributed_score = round(float(distributed_score), 3) assert distributed_score == pytest.approx(handmade_local_score, abs=1e-2) @pytest.mark.parametrize('input_type', ['array', 'dataframe']) def test_predict_1D_labels(input_type, client): # Testing that nothing crashes with 1D labels X, y = make_regression(n_samples=10000) if input_type == 'array': dX = da.from_array(X) dy = da.from_array(y) elif input_type == 'dataframe': X = cudf.DataFrame(X) y = cudf.Series(y) dX = dd.from_pandas(X, npartitions=1) dy = dd.from_pandas(y, npartitions=1) clf = dKNNReg() clf.fit(dX, dy) clf.predict(dX)
import numpy as np import pytest from highway_env.road.lane import StraightLane, CircularLane, PolyLane from highway_env.road.road import Road, RoadNetwork from highway_env.vehicle.controller import ControlledVehicle @pytest.fixture def net() -> RoadNetwork: # Diamond net = RoadNetwork() net.add_lane(0, 1, StraightLane([0, 0], [10, 0])) net.add_lane(1, 2, StraightLane([10, 0], [5, 5])) net.add_lane(2, 0, StraightLane([5, 5], [0, 0])) net.add_lane(1, 3, StraightLane([10, 0], [5, -5])) net.add_lane(3, 0, StraightLane([5, -5], [0, 0])) print(net.graph) return net def test_network(net): # Road road = Road(network=net) v = ControlledVehicle(road, [5, 0], heading=0, target_speed=2) road.vehicles.append(v) assert v.lane_index == (0, 1, 0) # Lane changes dt = 1/15 lane_index = v.target_lane_index lane_changes = 0 for _ in range(int(20/dt)): road.act() road.step(dt) if lane_index != v.target_lane_index: lane_index = v.target_lane_index lane_changes += 1 assert lane_changes >= 3 def test_network_to_from_config(net): config_dict = net.to_config() net_2 = RoadNetwork.from_config(config_dict) assert len(net.graph) == len(net_2.graph) def test_polylane(): lane = CircularLane( center=[0, 0], radius=10, start_phase=0, end_phase=3.14, ) num_samples = int(lane.length / 5) sampled_centreline = [ lane.position(longitudinal=lon, lateral=0) for lon in np.linspace(0, lane.length, num_samples) ] sampled_left_boundary = [ lane.position(longitudinal=lon, lateral=0.5 * lane.width_at(longitudinal=lon)) for lon in np.linspace(0, lane.length, num_samples) ] sampled_right_boundary = [ lane.position(longitudinal=lon, lateral=-0.5 * lane.width_at(longitudinal=lon)) for lon in np.linspace(0, lane.length, num_samples) ] polylane = PolyLane( lane_points=sampled_centreline, left_boundary_points=sampled_left_boundary, right_boundary_points=sampled_right_boundary, ) # sample boundaries from both lanes and assert equal num_samples = int(lane.length / 3) # original lane sampled_centreline = [ lane.position(longitudinal=lon, lateral=0) for lon in np.linspace(0, lane.length, num_samples) ] sampled_left_boundary = [ lane.position(longitudinal=lon, lateral=0.5 * lane.width_at(longitudinal=lon)) for lon in np.linspace(0, lane.length, num_samples) ] sampled_right_boundary = [ lane.position(longitudinal=lon, lateral=-0.5 * lane.width_at(longitudinal=lon)) for lon in np.linspace(0, lane.length, num_samples) ] # polylane polylane_sampled_centreline = [ polylane.position(longitudinal=lon, lateral=0) for lon in np.linspace(0, polylane.length, num_samples) ] polylane_sampled_left_boundary = [ polylane.position( longitudinal=lon, lateral=0.5 * polylane.width_at(longitudinal=lon) ) for lon in np.linspace(0, polylane.length, num_samples) ] polylane_sampled_right_boundary = [ polylane.position( longitudinal=lon, lateral=-0.5 * polylane.width_at(longitudinal=lon) ) for lon in np.linspace(0, polylane.length, num_samples) ] # assert equal (very coarse because of coarse sampling) assert all( np.linalg.norm( np.array(sampled_centreline) - np.array(polylane_sampled_centreline), axis=1 ) < 0.7 ) assert all( np.linalg.norm( np.array(sampled_left_boundary) - np.array(polylane_sampled_left_boundary), axis=1, ) < 0.7 ) assert all( np.linalg.norm( np.array(sampled_right_boundary) - np.array(polylane_sampled_right_boundary), axis=1, ) < 0.7 )
from OpenGLCffi.GL import params @params(api='gl', prms=['pname', 'param']) def glConservativeRasterParameteriNV(pname, param): pass
num = int(input('Digite um número inteiro: ')) choose = int(input('Qual a base de conversão?' '\n[1] para binário' '\n[2] para octal' '\n[3] para hexadecimal ' '\nDigite sua opção: ')) if choose == 1: print(f'\033[37;1m{num}\033[m convertido para binário vale \033[31;1m{num:b}') elif choose == 2: print(f'\033[37;1m{num}\033[m convertido para octal vale \033[32;1m{num:o}') elif choose == 3: hexa = f'{num:x}' print(f'\033[37;1m{num}\033[m convertido hexadecimal vale \033[33;1m{hexa.upper()}') else: print('Digite um número\033[36;1m correspondente\033[m a uma base')
import spacy import pandas as pd import wikipediaapi import csv from IPython.display import display from tabulate import tabulate wiki_wiki = wikipediaapi.Wikipedia('en') while True: try: chemical = input("Write the name of entity: ") page_py = wiki_wiki.page(chemical) sumary = page_py.summary[0:] nlp = spacy.load('en_core_web_sm') sent_list = [sent.text for sent in nlp(sumary).sents] cumul_sent_list = [sent_list[0], ' '.join(sent_list[:2]), ' '.join(sent_list)] df = pd.DataFrame({'Entity': chemical, 'Description': cumul_sent_list}) df["Sentences"] = pd.Series([f"Sentence1-{i+1}" for i in range(len(cumul_sent_list))]) df = df.pivot(index="Entity", columns="Sentences", values="Description") #for col1,col2 in zip(text1, text2): filename = 'out.csv' df.to_csv(filename, mode='a', header=False) print(tabulate(df, headers = 'keys', tablefmt = 'psql')) except wikipedia.exception.PageError as e: print(e.message) if chemical == "": break else: print('Continue to the next entities...')
#!/usr/bin/python #https://practice.geeksforgeeks.org/problems/common-subsequence/0 def sol(a, b): """ Follows the standard DP approach of finding common subsequence. The common length can be >=1 so if we find a common character in both the strings, it does the job """ m = len(a) n = len(b) dp = [[0 for _ in range(n+1)] for _ in range(m+1)] for i in range(1, m+1): for j in range(1, n+1): if a[i-1] == b[j-1]: dp[i][j] = 1 + dp[i-1][j-1] else: dp[i][j] = max(dp[i-1][j], dp[i][j-1]) if dp[i][j] >= 1: return 1 return 0
from charm import SplunkCharm from ops.testing import Harness import pytest @pytest.fixture def harness(): _harness = Harness(SplunkCharm) _harness.set_model_name("testing") _harness.begin() yield _harness _harness.cleanup()
from django.contrib import admin from paper.models import PaperInfo @admin.register(PaperInfo) class PaperInfoAdmin(admin.ModelAdmin): # 表头显示 list_display = ( 'paper_id', 'title', 'degree', 'subject', 'score', 'owner_id', 'creator_id', 'is_public', 'create_time', 'update_time' ) # 支持搜索的字段 search_fields = ( 'paper_id', 'title', 'owner_id', 'creator_id' ) # 支持进入编辑模式的字段 list_display_links = ( 'title', ) # 过滤器 list_filter = ( 'degree', 'is_public' ) # 分页页数 list_per_page = 20
mixed_list = ['cat', 5, 'flower', 10] string_list = [] num_list = [] for item in mixed_list: if type(item)== str: string_list.append(item) else: num_list.append(item) print(string_list) print(num_list)
from credentials import INSTANCE_CONNECTION_NAME def main(): f = open("Makefile", 'a') sql = '"{}"=tcp:{}'.format(INSTANCE_CONNECTION_NAME, 3306) f.write(sql) f.close() print("Makefile updated!") if __name__ == "__main__": main()
""" This scripts allows the user to create train, validation, test datasets by: * Dropping unnecessary columns * Removing Duplicates * Creating time window pairs * Splitting with Session UID to prevent any data leakages This file can be imported as a module to use following functions: * prepare_datasets() * get_dfs() Usage: from src.data_prep import prepare_datasets, get_dfs train_df, val_df, test_df = prepare_datasets(data_path, single_val_cols, multi_val_cols) """ from audioop import mul from genericpath import exists import pandas as pd import numpy as np from tqdm import tqdm import random import os.path as op import os # to create subsequence data samples time_windows = { "5": [(0, 5), (5, 10), (10, 15)], "10": [(0, 10), (5, 15)], "15": [(0, 15), (15, 30)], "30": [(0, 30), (30, 60), (60, 90), (90, 120)], "60": [(0, 60), (60, 120)] } def clean_dataframe_dct(data, single_val_cols, multi_val_cols): """ Removes rows that has no forecast samples Selects rows that contain relevant forecast sample for each (session_uid, timestamp) tuple Parameters ---------- data : DataFrame The dataframe which is created from weather.csv file single_val_cols : list Columns which has only single values. Example: "M_TOTAL_LAPS" multi_val_cols : list Columns which might have multiple values. Example: "M_WEATHER_FORECAST_SAMPLES_M_WEATHER", Returns ------- dct: Dictionary that maps (session_uid, timestamp) tuples to tables that has corresponding forecast sample rows """ dct = {} columns = ["M_SESSION_UID","TIMESTAMP"] + single_val_cols + multi_val_cols data = data[data["M_NUM_WEATHER_FORECAST_SAMPLES"]>0] for (sid, ts), data_sid_ts in tqdm(data.groupby(["M_SESSION_UID", "TIMESTAMP"])): num_samples = list(data_sid_ts["M_NUM_WEATHER_FORECAST_SAMPLES"])[0] sess_col = "M_WEATHER_FORECAST_SAMPLES_M_SESSION_TYPE" num_nans = data_sid_ts[sess_col].isna().sum() for sess_type, data_sid_ts_sess in data_sid_ts.iloc[num_nans:num_nans+num_samples].groupby(sess_col): dct[(sid, ts, sess_type)] = data_sid_ts_sess[columns] return dct def create_processed_frame(dct, single_val_cols, multi_val_cols): """ Creates a table where each row corresponds to a single (session_uid, timestamp) tuple and its all possible future forecasts Puts NaN values for forecasts that are not given Parameters ---------- dct : Dictionary Gets the dataframe Dictionary single_val_cols : list Columns which has only single values. Example: "M_TOTAL_LAPS" multi_val_cols : list Columns which might have multiple values. Example: "M_WEATHER_FORECAST_SAMPLES_M_WEATHER", Returns ------- df: DataFrame Generated a tabular form. """ times = ["0", "5", "10", "15", "30", "45", "60", "90", "120"] multi_val_cols_timed = [f"{el}_{time}" for time in times for el in multi_val_cols] rows = [] for table in tqdm(dct.values()): nans = [np.nan]*(len(times)-len(table)) single_vals = list(table[["M_SESSION_UID", "TIMESTAMP"] + single_val_cols].iloc[0]) multi_vals = np.array([list(table[col])+nans for col in multi_val_cols]).T.flatten() row = single_vals + list(multi_vals) rows.append(row) columns = ["M_SESSION_UID", "TIMESTAMP"] + \ single_val_cols + multi_val_cols_timed df = pd.DataFrame(columns = columns, data=rows) return df #adds flag information columns to given processed dset def add_flag_info(original_dset, processed_dset): ls = [] for i in range(len(processed_dset)): sess_uid, ts = processed_dset[["M_SESSION_UID", "TIMESTAMP"]].iloc[i] flags = set(original_dset[(original_dset["M_SESSION_UID"] == sess_uid) & ( original_dset["TIMESTAMP"] == ts)]["M_ZONE_FLAG"].dropna()) ls.append([1 if f in flags else 0 for f in [1, 2, 3, 4]]) processed_dset[["IS_GREEN_FLAG_UP", "IS_BLUE_FLAG_UP", "IS_YELLOW_FLAG_UP", "IS_RED_FLAG_UP"]] = ls return processed_dset # calls clean_dataframe_dct, create_processed_frame for the weather.csv # and then splits the cleaned df into train, val, test partition considering session uids def prepare_datasets(dataset_path, single_val_cols, multi_val_cols, train_ratio = 0.7, val_ratio = 0.2, use_flag_info=True): """ Main function which calls clean_dataframe_dct and create_processed_frame functions Splits them into Train, Validation Test set by session uids Parameters ---------- dataset_path : str Path for preprocessed_data single_val_cols : list Columns which has only single values. Example: "M_TOTAL_LAPS" multi_val_cols : list Columns which might have multiple values. Example: "M_WEATHER_FORECAST_SAMPLES_M_WEATHER", train_ratio,val_ratio,test_ratio : Ratio of session_uids for the given dataset Returns ------- train_df: DataFrame val_df: Dataframe test_df: Dataframe Note: Splitting by session_uids do not guarantee that data will split exactly as the given ratio since each session_uid have different amount of rows. """ data = pd.read_csv(dataset_path) if "Unnamed: 58" in data.columns: data = data.drop(["Unnamed: 58"],axis=1) print("Creating (session_uid, timestamp) pairs:") cleaned_dct = clean_dataframe_dct(data, single_val_cols, multi_val_cols) print("Converting into dataframe:") processed_df = create_processed_frame(cleaned_dct, single_val_cols, multi_val_cols) # drops duplicates ignoring NA temp_na_token = -999 processed_df[processed_df.isna()] = temp_na_token ignored_cols = ["M_SESSION_UID", "TIMESTAMP"] processed_df = processed_df.drop_duplicates( subset=[col for col in processed_df.columns if col not in ignored_cols]) processed_df[processed_df==temp_na_token] = pd.NA session_uids = list(set(processed_df["M_SESSION_UID"])) random.shuffle(session_uids) train_uids, val_uids, test_uids = np.split(session_uids, [int(len(session_uids)*train_ratio), int(len(session_uids)*(train_ratio+val_ratio))]) train_df = processed_df[[uid in train_uids for uid in processed_df["M_SESSION_UID"]]] val_df = processed_df[[ uid in val_uids for uid in processed_df["M_SESSION_UID"]]] test_df = processed_df[[uid in test_uids for uid in processed_df["M_SESSION_UID"]]] if use_flag_info: train_df = add_flag_info(data, train_df) val_df = add_flag_info(data, val_df) test_df = add_flag_info(data, test_df) train_df = train_df.drop(["M_SESSION_UID", "TIMESTAMP"], axis=1) val_df = val_df.drop(["M_SESSION_UID", "TIMESTAMP"], axis=1) test_df = test_df.drop(["M_SESSION_UID", "TIMESTAMP"], axis=1) train_df.to_csv(op.join("data","train.csv"), index=False) val_df.to_csv(op.join("data","val.csv"), index=False) test_df.to_csv(op.join("data","test.csv"), index=False) return train_df, val_df, test_df # for given time offset creates a table that has all relevant input features and outputs def create_dataset(dset_dct, time_offset, single_val_cols, multi_val_cols, drop_duplicates=False): flag_cols = [col for col in dset_dct["train"].columns if "FLAG" in col] columns = single_val_cols + multi_val_cols + flag_cols + ["TARGET_WEATHER", "TARGET_RAIN_PERCENTAGE"] windows = time_windows[time_offset] processed_dset_dct = {} os.makedirs(op.join("data", str(time_offset)), exist_ok=True) for typ, dset in dset_dct.items(): tables = [] for w in windows: y_cols = [f"M_WEATHER_FORECAST_SAMPLES_M_WEATHER_{w[1]}", f"M_RAIN_PERCENTAGE_{w[1]}"] tmp_cols = single_val_cols + [f"{c}_{w[0]}" for c in multi_val_cols] + flag_cols + y_cols dset_tmp = dset[tmp_cols] dset_tmp = dset_tmp.dropna() tables.append(dset_tmp.__array__()) rows = [row for table in tables for row in table] df = pd.DataFrame(columns=columns, data=rows) df["TARGET_WEATHER"] = df["TARGET_WEATHER"].astype("int64") # drop duplicates only from train if drop_duplicates and typ=="train": df = df.drop_duplicates() df.to_csv(op.join("data", str(time_offset), typ+".csv"), index=False) processed_dset_dct[typ] = df return processed_dset_dct # calls create_dataset if the dataset is not saved otherwise reads it def get_df(df_dct, time_offset, single_val_cols, multi_val_cols, force_recreate=False): """ Gets single dataframes for single Time Offset Parameters ---------- df_dct : Dictionary Dictionary which holds main train,val,test dataset. single_val_cols : list Columns which has only single values. Example: "M_TOTAL_LAPS" multi_val_cols : list Columns which might have multiple values. Example: "M_WEATHER_FORECAST_SAMPLES_M_WEATHER", force_recreate : Optional, Default: False Returns ------- df_dct for a single offset """ if force_recreate or not op.exists(op.join("data", time_offset, "train.csv")) or \ not op.exists(op.join("data", time_offset, "val.csv")) or not op.exists(op.join("data", time_offset, "test.csv")): df_t_min_dct = create_dataset( df_dct, time_offset, single_val_cols, multi_val_cols) else: train_df = pd.read_csv(op.join("data", time_offset, "train.csv")) val_df = pd.read_csv(op.join("data", time_offset, "val.csv")) test_df = pd.read_csv(op.join("data", time_offset, "test.csv")) df_t_min_dct = {"train": train_df, "val": val_df, "test": test_df} return df_t_min_dct # calls get_df for all possible time_offset values def get_dfs(df_dct, single_val_cols, multi_val_cols): """ Main function to get all the dataframes Parameters ---------- df_dct : Dictionary Dictionary which holds main train,val,test dataset. single_val_cols : list Columns which has only single values. Example: "M_TOTAL_LAPS" multi_val_cols : list Columns which might have multiple values. Example: "M_WEATHER_FORECAST_SAMPLES_M_WEATHER", Returns ------- df_timed_dct: Dictionary of Time Offset Dictionary. """ df_timed_dct = {} for time_offset in ["5","10","15","30","60"]: print("Creating dataset for time_offset={}".format(time_offset)) df_timed_dct[time_offset] = get_df( df_dct, time_offset, single_val_cols, multi_val_cols) return df_timed_dct
n = int(input()) for i in range(0, n): if i == n - 1: print("Ho!") else: print("Ho ", end="")
from .read_tles import ( read_tles, satellite_ephem_to_str ) from .generate_tles_from_scratch import ( generate_tles_from_scratch_manual, generate_tles_from_scratch_with_sgp )
#!/usr/bin/env python3 # Copyright (c) 2020 The Bitcoin Unlimited developers """ Tests specific for the electrum call 'blockchain.scripthash.get_history' """ import asyncio from test_framework.util import assert_equal from test_framework.electrumutil import ( ElectrumTestFramework, ElectrumConnection, script_to_scripthash, sync_electrum_height) from test_framework.blocktools import create_transaction, pad_tx from test_framework.script import CScript, OP_TRUE, OP_DROP, OP_NOP GET_HISTORY = "blockchain.scripthash.get_history" class ElectrumScripthashGetHistory(ElectrumTestFramework): def run_test(self): n = self.nodes[0] self.bootstrap_p2p() coinbases = self.mine_blocks(n, 100) async def async_tests(loop): cli = ElectrumConnection(loop) await cli.connect() await self.test_blockheight_confirmed(n, cli, coinbases.pop(0)) loop = asyncio.get_event_loop() loop.run_until_complete(async_tests(loop)) async def test_blockheight_confirmed(self, n, cli, unspent): # Just a unique anyone-can-spend scriptpubkey scriptpubkey = CScript([OP_TRUE, OP_DROP, OP_NOP]) scripthash = script_to_scripthash(scriptpubkey) # There should exist any history for scripthash assert_equal(0, len(await cli.call(GET_HISTORY, scripthash))) # Send tx to scripthash and confirm it tx = create_transaction(unspent, n = 0, value = unspent.vout[0].nValue, sig = CScript([OP_TRUE]), out = scriptpubkey) pad_tx(tx) self.mine_blocks(n, 1, txns = [tx]) sync_electrum_height(n) # History should now have 1 entry at current tip height res = await cli.call(GET_HISTORY, scripthash) assert_equal(1, len(res)) assert_equal(n.getblockcount(), res[0]['height']) assert_equal(tx.hash, res[0]['tx_hash']) if __name__ == '__main__': ElectrumScripthashGetHistory().main()
# -*- coding: utf-8 -*- # Copyright 2018 the HERA Project # Licensed under the MIT License '''Tests for abscal.py''' import nose.tools as nt import os import shutil import json import numpy as np import aipy import optparse import sys from pyuvdata import UVCal, UVData from pyuvdata import utils as uvutils import hera_cal as hc from hera_cal.data import DATA_PATH from collections import OrderedDict as odict import copy from hera_cal.datacontainer import DataContainer import glob from hera_cal.utils import split_pol class Test_AbsCal_Funcs: def setUp(self): np.random.seed(0) # load into pyuvdata object self.data_file = os.path.join(DATA_PATH, "zen.2458043.12552.xx.HH.uvORA") self.uvd = UVData() self.uvd.read_miriad(self.data_file) self.freq_array = np.unique(self.uvd.freq_array) self.antpos, self.ants = self.uvd.get_ENU_antpos(center=True, pick_data_ants=True) self.antpos = odict(zip(self.ants, self.antpos)) self.time_array = np.unique(self.uvd.time_array) # configure data into dictionaries data, flgs = hc.io.load_vis(self.uvd, pop_autos=True) wgts = odict() for k in flgs.keys(): wgts[k] = (~flgs[k]).astype(np.float) wgts = hc.datacontainer.DataContainer(wgts) # configure baselines bls = odict([(x, self.antpos[x[0]] - self.antpos[x[1]]) for x in data.keys()]) # make mock data abs_gain = 0.5 TT_phi = np.array([-0.004, 0.006, 0]) model = odict() for i, k in enumerate(data.keys()): model[k] = data[k] * np.exp(abs_gain + 1j * np.dot(TT_phi, bls[k])) # assign data self.data = data self.bls = bls self.model = model self.wgts = wgts def test_data_key_to_array_axis(self): m, pk = hc.abscal.data_key_to_array_axis(self.model, 2) nt.assert_equal(m[(24, 25)].shape, (60, 64, 1)) nt.assert_equal('XX' in pk, True) # test w/ avg_dict m, ad, pk = hc.abscal.data_key_to_array_axis(self.model, 2, avg_dict=self.bls) nt.assert_equal(m[(24, 25)].shape, (60, 64, 1)) nt.assert_equal(ad[(24, 25)].shape, (3,)) nt.assert_equal('XX' in pk, True) def test_array_axis_to_data_key(self): m, pk = hc.abscal.data_key_to_array_axis(self.model, 2) m2 = hc.abscal.array_axis_to_data_key(m, 2, ['XX']) nt.assert_equal(m2[(24, 25, 'XX')].shape, (60, 64)) # copy dict m, ad, pk = hc.abscal.data_key_to_array_axis(self.model, 2, avg_dict=self.bls) m2, cd = hc.abscal.array_axis_to_data_key(m, 2, ['XX'], copy_dict=ad) nt.assert_equal(m2[(24, 25, 'XX')].shape, (60, 64)) nt.assert_equal(cd[(24, 25, 'XX')].shape, (3,)) def test_interp2d(self): # test interpolation w/ warning m, mf = hc.abscal.interp2d_vis(self.data, self.time_array, self.freq_array, self.time_array, self.freq_array, flags=self.wgts, medfilt_flagged=False) nt.assert_equal(m[(24, 25, 'XX')].shape, (60, 64)) # downsampling w/ no flags m, mf = hc.abscal.interp2d_vis(self.data, self.time_array, self.freq_array, self.time_array[::2], self.freq_array[::2]) nt.assert_equal(m[(24, 25, 'XX')].shape, (30, 32)) # test flag propagation m, mf = hc.abscal.interp2d_vis(self.data, self.time_array, self.freq_array, self.time_array, self.freq_array, flags=self.wgts, medfilt_flagged=True) nt.assert_true(mf[(24, 25, 'XX')][10, 0]) # test flag extrapolation m, mf = hc.abscal.interp2d_vis(self.data, self.time_array, self.freq_array, self.time_array + .0001, self.freq_array, flags=self.wgts, flag_extrapolate=True) nt.assert_true(mf[(24, 25, 'XX')][-1].min()) def test_wiener(self): # test smoothing d = hc.abscal.wiener(self.data, window=(5, 15), noise=None, medfilt=True, medfilt_kernel=(1, 13)) nt.assert_equal(d[(24, 37, 'XX')].shape, (60, 64)) nt.assert_equal(d[(24, 37, 'XX')].dtype, np.complex) # test w/ noise d = hc.abscal.wiener(self.data, window=(5, 15), noise=0.1, medfilt=True, medfilt_kernel=(1, 13)) nt.assert_equal(d[(24, 37, 'XX')].shape, (60, 64)) # test w/o medfilt d = hc.abscal.wiener(self.data, window=(5, 15), medfilt=False) nt.assert_equal(d[(24, 37, 'XX')].shape, (60, 64)) # test as array d = hc.abscal.wiener(self.data[(24, 37, 'XX')], window=(5, 15), medfilt=False, array=True) nt.assert_equal(d.shape, (60, 64)) nt.assert_equal(d.dtype, np.complex) def test_Baseline(self): # test basic execution keys = self.data.keys() k1 = (24, 25, 'XX') # 14.6 m E-W i1 = keys.index(k1) k2 = (24, 37, 'XX') # different i2 = keys.index(k2) k3 = (52, 53, 'XX') # 14.6 m E-W i3 = keys.index(k3) bls = map(lambda k: hc.abscal.Baseline(self.antpos[k[1]] - self.antpos[k[0]], tol=2.0), keys) bls_conj = map(lambda k: hc.abscal.Baseline(self.antpos[k[0]] - self.antpos[k[1]], tol=2.0), keys) nt.assert_equal(bls[i1], bls[i1]) nt.assert_false(bls[i1] == bls[i2]) nt.assert_equal(bls[i1] == bls_conj[i1], 'conjugated') # test different yet redundant baselines still agree nt.assert_equal(bls[i1], bls[i3]) # test tolerance works as expected bls = map(lambda k: hc.abscal.Baseline(self.antpos[k[1]] - self.antpos[k[0]], tol=1e-4), keys) nt.assert_not_equal(bls[i1], bls[i3]) def test_match_red_baselines(self): model = copy.deepcopy(self.data) model = DataContainer(odict([((k[0] + 1, k[1] + 1, k[2]), model[k]) for i, k in enumerate(model.keys())])) del model[(25, 54, 'XX')] model_antpos = odict([(k + 1, self.antpos[k]) for i, k in enumerate(self.antpos.keys())]) new_model = hc.abscal.match_red_baselines(model, model_antpos, self.data, self.antpos, tol=2.0, verbose=False) nt.assert_equal(len(new_model.keys()), 8) nt.assert_true((24, 37, 'XX') in new_model) nt.assert_false((24, 53, 'XX') in new_model) def test_mirror_data_to_red_bls(self): # make fake data reds = hc.redcal.get_reds(self.antpos, pols=['XX']) data = DataContainer(odict(map(lambda k: (k[0], self.data[k[0]]), reds[:5]))) # test execuation d = hc.abscal.mirror_data_to_red_bls(data, self.antpos) nt.assert_equal(len(d.keys()), 16) nt.assert_true((24, 25, 'XX') in d) # test correct value is propagated nt.assert_almost_equal(data[(24, 25, 'XX')][30, 30], d[(38, 39, 'XX')][30, 30]) # test reweighting w = hc.abscal.mirror_data_to_red_bls(self.wgts, self.antpos, weights=True) nt.assert_equal(w[(24, 25, 'XX')].dtype, np.float) nt.assert_almost_equal(w[(24, 25, 'XX')].max(), 16.0) def test_echo(self): hc.abscal.echo('hi', verbose=True) hc.abscal.echo('hi', type=1, verbose=True) def test_flatten(self): l = hc.abscal.flatten([['hi']]) nt.assert_equal(np.array(l).ndim, 1) def test_avg_data_across_red_bls(self): # test basic execution wgts = copy.deepcopy(self.wgts) wgts[(24, 25, 'XX')][45, 45] = 0.0 data, flags, antpos, ants, freqs, times, lsts, pols = hc.io.load_vis(self.data_file, return_meta=True) rd, rf, rk = hc.abscal.avg_data_across_red_bls(data, antpos, wgts=wgts, tol=2.0, broadcast_wgts=False) nt.assert_equal(rd[(24, 25, 'XX')].shape, (60, 64)) nt.assert_true(rf[(24, 25, 'XX')][45, 45] > 0.0) # test various kwargs wgts[(24, 25, 'XX')][45, 45] = 0.0 rd, rf, rk = hc.abscal.avg_data_across_red_bls(data, antpos, tol=2.0, wgts=wgts, broadcast_wgts=True) nt.assert_equal(len(rd.keys()), 9) nt.assert_equal(len(rf.keys()), 9) nt.assert_almost_equal(rf[(24, 25, 'XX')][45, 45], 0.0) # test averaging worked rd, rf, rk = hc.abscal.avg_data_across_red_bls(data, antpos, tol=2.0, broadcast_wgts=False) v = np.mean([data[(52, 53, 'XX')], data[(37, 38, 'XX')], data[(24, 25, 'XX')], data[(38, 39, 'XX')]], axis=0) nt.assert_true(np.isclose(rd[(24, 25, 'XX')], v).min()) # test mirror_red_data rd, rf, rk = hc.abscal.avg_data_across_red_bls(data, antpos, wgts=self.wgts, tol=2.0, mirror_red_data=True) nt.assert_equal(len(rd.keys()), 21) nt.assert_equal(len(rf.keys()), 21) def test_avg_file_across_red_bls(self): rd, rf, rk = hc.abscal.avg_file_across_red_bls(self.data_file, write_miriad=False, output_data=True) if os.path.exists('ex'): shutil.rmtree('ex') hc.abscal.avg_file_across_red_bls(self.data_file, outdir='.', output_fname='ex', write_miriad=True, output_data=False) nt.assert_true(os.path.exists('ex')) if os.path.exists('ex'): shutil.rmtree('ex') def test_match_times(self): dfiles = map(lambda f: os.path.join(DATA_PATH, f), ['zen.2458043.12552.xx.HH.uvORA', 'zen.2458043.13298.xx.HH.uvORA']) mfiles = map(lambda f: os.path.join(DATA_PATH, f), ['zen.2458042.12552.xx.HH.uvXA', 'zen.2458042.13298.xx.HH.uvXA']) # test basic execution relevant_mfiles = hc.abscal.match_times(dfiles[0], mfiles) nt.assert_equal(len(relevant_mfiles), 2) # test basic execution relevant_mfiles = hc.abscal.match_times(dfiles[1], mfiles) nt.assert_equal(len(relevant_mfiles), 1) # test exception mfiles = sorted(glob.glob(os.path.join(DATA_PATH, 'zen.2458045.*.xx.HH.uvXRAA'))) relevant_mfiles = hc.abscal.match_times(dfiles[0], mfiles) nt.assert_equal(len(relevant_mfiles), 0) def test_rephase_vis(self): dfile = os.path.join(DATA_PATH, 'zen.2458043.12552.xx.HH.uvORA') mfiles = map(lambda f: os.path.join(DATA_PATH, f), ['zen.2458042.12552.xx.HH.uvXA']) m, mf, mantp, mant, mfr, mt, ml, mp = hc.io.load_vis(mfiles, return_meta=True) d, df, dantp, dant, dfr, dt, dl, dp = hc.io.load_vis(dfile, return_meta=True) bls = odict(map(lambda k: (k, dantp[k[0]] - dantp[k[1]]), d.keys())) # basic execution new_m, new_f = hc.abscal.rephase_vis(m, ml, dl, bls, dfr) k = new_m.keys()[0] nt.assert_equal(new_m[k].shape, d[k].shape) nt.assert_true(new_f[k][-1].min()) nt.assert_false(new_f[k][0].max()) def test_cut_bl(self): Nbls = len(self.data) _data = hc.abscal.cut_bls(self.data, self.bls, 20.0) nt.assert_true(Nbls, 21) nt.assert_true(len(_data), 12) class Test_AbsCal: def setUp(self): np.random.seed(0) # load into pyuvdata object self.data_fname = os.path.join(DATA_PATH, "zen.2458043.12552.xx.HH.uvORA") self.model_fname = os.path.join(DATA_PATH, "zen.2458042.12552.xx.HH.uvXA") self.AC = hc.abscal.AbsCal(self.data_fname, self.model_fname, refant=24) # make custom gain keys d, fl, ap, a, f, t, l, p = hc.io.load_vis(self.data_fname, return_meta=True, pick_data_ants=False) self.freq_array = f self.antpos = ap gain_pols = np.unique(map(split_pol, p)) self.ap = ap self.gk = hc.abscal.flatten(map(lambda p: map(lambda k: (k, p), a), gain_pols)) self.freqs = f def test_init(self): # init with no meta AC = hc.abscal.AbsCal(self.AC.model, self.AC.data) nt.assert_almost_equal(AC.bls, None) # init with meta AC = hc.abscal.AbsCal(self.AC.model, self.AC.data, antpos=self.AC.antpos, freqs=self.AC.freqs) nt.assert_almost_equal(AC.bls[(24, 25, 'XX')][0], -14.607842046642745) # init with meta AC = hc.abscal.AbsCal(self.AC.model, self.AC.data) # test feeding file and refant and bl_cut and bl_taper AC = hc.abscal.AbsCal(self.model_fname, self.data_fname, refant=24, antpos=self.AC.antpos, bl_cut=26.0, bl_taper_fwhm=15.0) # test ref ant nt.assert_equal(AC.refant, 24) nt.assert_almost_equal(np.linalg.norm(AC.antpos[24]), 0.0) # test bl cut nt.assert_false((np.array(map(lambda k: np.linalg.norm(AC.bls[k]), AC.bls.keys())) > 26.0).any()) # test bl taper nt.assert_true(np.median(AC.wgts[(24, 25, 'XX')]) > np.median(AC.wgts[(24, 39, 'XX')])) def test_abs_amp_logcal(self): # test execution and variable assignments self.AC.abs_amp_logcal(verbose=False) nt.assert_equal(self.AC.abs_eta[(24, 'jxx')].shape, (60, 64)) nt.assert_equal(self.AC.abs_eta_gain[(24, 'jxx')].shape, (60, 64)) nt.assert_equal(self.AC.abs_eta_arr.shape, (7, 60, 64, 1)) nt.assert_equal(self.AC.abs_eta_gain_arr.shape, (7, 60, 64, 1)) # test Nones AC = hc.abscal.AbsCal(self.AC.model, self.AC.data) nt.assert_equal(AC.abs_eta, None) nt.assert_equal(AC.abs_eta_arr, None) nt.assert_equal(AC.abs_eta_gain, None) nt.assert_equal(AC.abs_eta_gain_arr, None) # test propagation to gain_arr AC.abs_amp_logcal(verbose=False) AC._abs_eta_arr *= 0 nt.assert_almost_equal(np.abs(AC.abs_eta_gain_arr[0, 0, 0, 0]), 1.0) # test custom gain g = self.AC.custom_abs_eta_gain(self.gk) nt.assert_equal(len(g), 47) # test w/ no wgts AC.wgts = None AC.abs_amp_logcal(verbose=False) def test_TT_phs_logcal(self): # test execution self.AC.TT_phs_logcal(verbose=False) nt.assert_equal(self.AC.TT_Phi_arr.shape, (7, 2, 60, 64, 1)) nt.assert_equal(self.AC.TT_Phi_gain_arr.shape, (7, 60, 64, 1)) nt.assert_equal(self.AC.abs_psi_arr.shape, (7, 60, 64, 1)) nt.assert_equal(self.AC.abs_psi_gain_arr.shape, (7, 60, 64, 1)) nt.assert_equal(self.AC.abs_psi[(24, 'jxx')].shape, (60, 64)) nt.assert_equal(self.AC.abs_psi_gain[(24, 'jxx')].shape, (60, 64)) nt.assert_equal(self.AC.TT_Phi[(24, 'jxx')].shape, (2, 60, 64)) nt.assert_equal(self.AC.TT_Phi_gain[(24, 'jxx')].shape, (60, 64)) nt.assert_true(np.isclose(np.angle(self.AC.TT_Phi_gain[(24, 'jxx')]), 0.0).all()) # test merge pols self.AC.TT_phs_logcal(verbose=False, four_pol=True) nt.assert_equal(self.AC.TT_Phi_arr.shape, (7, 2, 60, 64, 1)) nt.assert_equal(self.AC.abs_psi_arr.shape, (7, 60, 64, 1)) # test Nones AC = hc.abscal.AbsCal(self.AC.model, self.AC.data, antpos=self.antpos) nt.assert_equal(AC.abs_psi_arr, None) nt.assert_equal(AC.abs_psi_gain_arr, None) nt.assert_equal(AC.TT_Phi_arr, None) nt.assert_equal(AC.TT_Phi_gain_arr, None) nt.assert_equal(AC.abs_psi, None) nt.assert_equal(AC.abs_psi_gain, None) nt.assert_equal(AC.TT_Phi, None) nt.assert_equal(AC.TT_Phi_gain, None) # test custom gain g = self.AC.custom_TT_Phi_gain(self.gk, self.ap) nt.assert_equal(len(g), 47) g = self.AC.custom_abs_psi_gain(self.gk) nt.assert_equal(g[(0, 'jxx')].shape, (60, 64)) # test w/ no wgts AC.wgts = None AC.TT_phs_logcal(verbose=False) def test_amp_logcal(self): self.AC.amp_logcal(verbose=False) nt.assert_equal(self.AC.ant_eta[(24, 'jxx')].shape, (60, 64)) nt.assert_equal(self.AC.ant_eta_gain[(24, 'jxx')].shape, (60, 64)) nt.assert_equal(self.AC.ant_eta_arr.shape, (7, 60, 64, 1)) nt.assert_equal(self.AC.ant_eta_arr.dtype, np.float) nt.assert_equal(self.AC.ant_eta_gain_arr.shape, (7, 60, 64, 1)) nt.assert_equal(self.AC.ant_eta_gain_arr.dtype, np.complex) # test Nones AC = hc.abscal.AbsCal(self.AC.model, self.AC.data) nt.assert_equal(AC.ant_eta, None) nt.assert_equal(AC.ant_eta_gain, None) nt.assert_equal(AC.ant_eta_arr, None) nt.assert_equal(AC.ant_eta_gain_arr, None) # test w/ no wgts AC.wgts = None AC.amp_logcal(verbose=False) def test_phs_logcal(self): self.AC.phs_logcal(verbose=False) nt.assert_equal(self.AC.ant_phi[(24, 'jxx')].shape, (60, 64)) nt.assert_equal(self.AC.ant_phi_gain[(24, 'jxx')].shape, (60, 64)) nt.assert_equal(self.AC.ant_phi_arr.shape, (7, 60, 64, 1)) nt.assert_equal(self.AC.ant_phi_arr.dtype, np.float) nt.assert_equal(self.AC.ant_phi_gain_arr.shape, (7, 60, 64, 1)) nt.assert_equal(self.AC.ant_phi_gain_arr.dtype, np.complex) nt.assert_true(np.isclose(np.angle(self.AC.ant_phi_gain[(24, 'jxx')]), 0.0).all()) self.AC.phs_logcal(verbose=False, avg=True) AC = hc.abscal.AbsCal(self.AC.model, self.AC.data) nt.assert_equal(AC.ant_phi, None) nt.assert_equal(AC.ant_phi_gain, None) nt.assert_equal(AC.ant_phi_arr, None) nt.assert_equal(AC.ant_phi_gain_arr, None) # test w/ no wgts AC.wgts = None AC.phs_logcal(verbose=False) def test_delay_lincal(self): # test w/o offsets self.AC.delay_lincal(verbose=False, kernel=(1, 3), medfilt=False, solve_offsets=False) nt.assert_equal(self.AC.ant_dly[(24, 'jxx')].shape, (60, 1)) nt.assert_equal(self.AC.ant_dly_gain[(24, 'jxx')].shape, (60, 64)) nt.assert_equal(self.AC.ant_dly_arr.shape, (7, 60, 1, 1)) nt.assert_equal(self.AC.ant_dly_gain_arr.shape, (7, 60, 64, 1)) # test w/ offsets self.AC.delay_lincal(verbose=False, kernel=(1, 3), medfilt=False, solve_offsets=True) nt.assert_equal(self.AC.ant_dly_phi[(24, 'jxx')].shape, (60, 1)) nt.assert_equal(self.AC.ant_dly_phi_gain[(24, 'jxx')].shape, (60, 64)) nt.assert_equal(self.AC.ant_dly_phi_arr.shape, (7, 60, 1, 1)) nt.assert_equal(self.AC.ant_dly_phi_gain_arr.shape, (7, 60, 64, 1)) nt.assert_equal(self.AC.ant_dly_arr.shape, (7, 60, 1, 1)) nt.assert_equal(self.AC.ant_dly_arr.dtype, np.float) nt.assert_equal(self.AC.ant_dly_gain_arr.shape, (7, 60, 64, 1)) nt.assert_equal(self.AC.ant_dly_gain_arr.dtype, np.complex) nt.assert_true(np.isclose(np.angle(self.AC.ant_dly_gain[(24, 'jxx')]), 0.0).all()) nt.assert_true(np.isclose(np.angle(self.AC.ant_dly_phi_gain[(24, 'jxx')]), 0.0).all()) # test exception AC = hc.abscal.AbsCal(self.AC.model, self.AC.data) nt.assert_raises(AttributeError, AC.delay_lincal) # test Nones AC = hc.abscal.AbsCal(self.AC.model, self.AC.data, freqs=self.freq_array) nt.assert_equal(AC.ant_dly, None) nt.assert_equal(AC.ant_dly_gain, None) nt.assert_equal(AC.ant_dly_arr, None) nt.assert_equal(AC.ant_dly_gain_arr, None) nt.assert_equal(AC.ant_dly_phi, None) nt.assert_equal(AC.ant_dly_phi_gain, None) nt.assert_equal(AC.ant_dly_phi_arr, None) nt.assert_equal(AC.ant_dly_phi_gain_arr, None) # test flags handling AC = hc.abscal.AbsCal(self.AC.model, self.AC.data, freqs=self.freqs) AC.wgts[(24, 25, 'XX')] *= 0 AC.delay_lincal(verbose=False) # test medfilt self.AC.delay_lincal(verbose=False, medfilt=False) self.AC.delay_lincal(verbose=False, time_avg=True) # test w/ no wgts AC.wgts = None AC.delay_lincal(verbose=False) def test_delay_slope_lincal(self): # test w/o offsets self.AC.delay_slope_lincal(verbose=False, kernel=(1, 3), medfilt=False) nt.assert_equal(self.AC.dly_slope[(24, 'jxx')].shape, (2, 60, 1)) nt.assert_equal(self.AC.dly_slope_gain[(24, 'jxx')].shape, (60, 64)) nt.assert_equal(self.AC.dly_slope_arr.shape, (7, 2, 60, 1, 1)) nt.assert_equal(self.AC.dly_slope_gain_arr.shape, (7, 60, 64, 1)) nt.assert_equal(self.AC.dly_slope_ant_dly_arr.shape, (7, 60, 1, 1)) nt.assert_true(np.isclose(np.angle(self.AC.dly_slope_gain[(24, 'jxx')]), 0.0).all()) g = self.AC.custom_dly_slope_gain(self.gk, self.ap) nt.assert_equal(g[(0, 'jxx')].shape, (60, 64)) # test exception AC = hc.abscal.AbsCal(self.AC.model, self.AC.data) nt.assert_raises(AttributeError, AC.delay_slope_lincal) # test Nones AC = hc.abscal.AbsCal(self.AC.model, self.AC.data, antpos=self.antpos, freqs=self.freq_array) nt.assert_equal(AC.dly_slope, None) nt.assert_equal(AC.dly_slope_gain, None) nt.assert_equal(AC.dly_slope_arr, None) nt.assert_equal(AC.dly_slope_gain_arr, None) nt.assert_equal(AC.dly_slope_ant_dly_arr, None) # test medfilt and time_avg self.AC.delay_slope_lincal(verbose=False, medfilt=False) self.AC.delay_slope_lincal(verbose=False, time_avg=True) # test four pol self.AC.delay_slope_lincal(verbose=False, four_pol=True) nt.assert_equal(self.AC.dly_slope[(24, 'jxx')].shape, (2, 60, 1)) nt.assert_equal(self.AC.dly_slope_gain[(24, 'jxx')].shape, (60, 64)) nt.assert_equal(self.AC.dly_slope_arr.shape, (7, 2, 60, 1, 1)) nt.assert_equal(self.AC.dly_slope_gain_arr.shape, (7, 60, 64, 1)) # test flags handling AC = hc.abscal.AbsCal(self.AC.model, self.AC.data, antpos=self.ap, freqs=self.freqs) AC.wgts[(24, 25, 'XX')] *= 0 AC.delay_slope_lincal(verbose=False) # test w/ no wgts AC.wgts = None AC.delay_slope_lincal(verbose=False) def test_global_phase_slope_logcal(self): # test w/o offsets self.AC.global_phase_slope_logcal(verbose=False, edge_cut=31) nt.assert_equal(self.AC.phs_slope[(24, 'jxx')].shape, (2, 60, 1)) nt.assert_equal(self.AC.phs_slope_gain[(24, 'jxx')].shape, (60, 64)) nt.assert_equal(self.AC.phs_slope_arr.shape, (7, 2, 60, 1, 1)) nt.assert_equal(self.AC.phs_slope_gain_arr.shape, (7, 60, 64, 1)) nt.assert_equal(self.AC.phs_slope_ant_phs_arr.shape, (7, 60, 1, 1)) nt.assert_true(np.isclose(np.angle(self.AC.phs_slope_gain[(24, 'jxx')]), 0.0).all()) g = self.AC.custom_phs_slope_gain(self.gk, self.ap) print g.keys() nt.assert_equal(g[(0, 'jxx')].shape, (60, 64)) # test Nones AC = hc.abscal.AbsCal(self.AC.model, self.AC.data, antpos=self.antpos, freqs=self.freq_array) nt.assert_equal(AC.phs_slope, None) nt.assert_equal(AC.phs_slope_gain, None) nt.assert_equal(AC.phs_slope_arr, None) nt.assert_equal(AC.phs_slope_gain_arr, None) nt.assert_equal(AC.phs_slope_ant_phs_arr, None) AC = hc.abscal.AbsCal(self.AC.model, self.AC.data, antpos=self.ap, freqs=self.freqs) AC.wgts[(24, 25, 'XX')] *= 0 AC.global_phase_slope_logcal(verbose=False) # test w/ no wgts AC.wgts = None AC.global_phase_slope_logcal(verbose=False) def test_merge_gains(self): self.AC.abs_amp_logcal(verbose=False) self.AC.TT_phs_logcal(verbose=False) self.AC.delay_lincal(verbose=False) self.AC.phs_logcal(verbose=False) self.AC.amp_logcal(verbose=False) gains = (self.AC.abs_eta_gain, self.AC.TT_Phi_gain, self.AC.abs_psi_gain, self.AC.ant_dly_gain, self.AC.ant_eta_gain, self.AC.ant_phi_gain) gains = hc.abscal.merge_gains(gains) k = (53, 'jxx') nt.assert_equal(gains[k].shape, (60, 64)) nt.assert_equal(gains[k].dtype, np.complex) nt.assert_almost_equal(np.abs(gains[k][0, 0]), np.abs(self.AC.abs_eta_gain[k] * self.AC.ant_eta_gain[k])[0, 0]) nt.assert_almost_equal(np.angle(gains[k][0, 0]), np.angle(self.AC.TT_Phi_gain[k] * self.AC.abs_psi_gain[k] * self.AC.ant_dly_gain[k] * self.AC.ant_phi_gain[k])[0, 0]) def test_apply_gains(self): # test basic execution self.AC.abs_amp_logcal(verbose=False) self.AC.TT_phs_logcal(verbose=False) self.AC.delay_lincal(verbose=False) self.AC.phs_logcal(verbose=False) self.AC.amp_logcal(verbose=False) gains = (self.AC.abs_eta_gain, self.AC.TT_Phi_gain, self.AC.abs_psi_gain, self.AC.ant_dly_gain, self.AC.ant_eta_gain, self.AC.ant_phi_gain) corr_data = hc.abscal.apply_gains(self.AC.data, gains, gain_convention='multiply') nt.assert_equal(corr_data[(24, 25, 'XX')].shape, (60, 64)) nt.assert_equal(corr_data[(24, 25, 'XX')].dtype, np.complex) nt.assert_almost_equal(corr_data[(24, 25, 'XX')][0, 0], (self.AC.data[(24, 25, 'XX')] * self.AC.abs_eta_gain[(24, 'jxx')] * self.AC.abs_eta_gain[(25, 'jxx')] * self.AC.ant_eta_gain[(24, 'jxx')] * self.AC.ant_eta_gain[(25, 'jxx')])[0, 0]) corr_data = hc.abscal.apply_gains(self.AC.data, gains, gain_convention='divide') nt.assert_equal(corr_data[(24, 25, 'XX')].shape, (60, 64)) nt.assert_equal(corr_data[(24, 25, 'XX')].dtype, np.complex) nt.assert_almost_equal(corr_data[(24, 25, 'XX')][0, 0], (self.AC.data[(24, 25, 'XX')] / self.AC.abs_eta_gain[(24, 'jxx')] / self.AC.abs_eta_gain[(25, 'jxx')] / self.AC.ant_eta_gain[(24, 'jxx')] / self.AC.ant_eta_gain[(25, 'jxx')])[0, 0]) # test for missing data gains = copy.deepcopy(self.AC.abs_eta_gain) del gains[(24, 'jxx')] corr_data = hc.abscal.apply_gains(self.AC.data, gains) nt.assert_true((24, 25, 'XX') not in corr_data) def test_fill_dict_nans(self): data = copy.deepcopy(self.AC.data) wgts = copy.deepcopy(self.AC.wgts) data[(25, 38, 'XX')][15, 20] *= np.nan data[(25, 38, 'XX')][20, 15] *= np.inf hc.abscal.fill_dict_nans(data, wgts=wgts, nan_fill=-1, inf_fill=-2) nt.assert_equal(data[(25, 38, 'XX')][15, 20].real, -1) nt.assert_equal(data[(25, 38, 'XX')][20, 15].real, -2) nt.assert_almost_equal(wgts[(25, 38, 'XX')][15, 20], 0) nt.assert_almost_equal(wgts[(25, 38, 'XX')][20, 15], 0) data = copy.deepcopy(self.AC.data) wgts = copy.deepcopy(self.AC.wgts) data[(25, 38, 'XX')][15, 20] *= np.nan data[(25, 38, 'XX')][20, 15] *= np.inf hc.abscal.fill_dict_nans(data[(25, 38, 'XX')], wgts=wgts[(25, 38, 'XX')], nan_fill=-1, inf_fill=-2, array=True) nt.assert_equal(data[(25, 38, 'XX')][15, 20].real, -1) nt.assert_equal(data[(25, 38, 'XX')][20, 15].real, -2) nt.assert_almost_equal(wgts[(25, 38, 'XX')][15, 20], 0) nt.assert_almost_equal(wgts[(25, 38, 'XX')][20, 15], 0) def test_fft_dly(self): # test basic execution k = (24, 25, 'XX') vis = self.AC.model[k] / self.AC.data[k] hc.abscal.fill_dict_nans(vis, nan_fill=0.0, inf_fill=0.0, array=True) df = np.median(np.diff(self.AC.freqs)) # basic execution dly, offset = hc.abscal.fft_dly(vis, df, medfilt=False, solve_phase=False) nt.assert_equal(dly.shape, (60, 1)) nt.assert_equal(offset, None) # median filtering dly, offset = hc.abscal.fft_dly(vis, df, medfilt=True, solve_phase=False) nt.assert_equal(dly.shape, (60, 1)) nt.assert_equal(offset, None) # solve phase dly, offset = hc.abscal.fft_dly(vis, df, medfilt=True, solve_phase=True) nt.assert_equal(dly.shape, (60, 1)) nt.assert_equal(offset.shape, (60, 1)) # test windows and edgecut dly, offset = hc.abscal.fft_dly(vis, df, medfilt=False, solve_phase=False, edge_cut=2, window='hann') dly, offset = hc.abscal.fft_dly(vis, df, medfilt=False, solve_phase=False, window='blackmanharris') nt.assert_raises(ValueError, hc.abscal.fft_dly, vis, df, window='foo') nt.assert_raises(AssertionError, hc.abscal.fft_dly, vis, df, edge_cut=1000) # test mock data tau = np.array([1.5e-8]).reshape(1, -1) # 15 nanoseconds f = np.linspace(0, 100e6, 1024) df = np.median(np.diff(f)) r = np.exp(1j * 2 * np.pi * f * tau) dly, offset = hc.abscal.fft_dly(r, df, medfilt=True, kernel=(1, 5), solve_phase=False) nt.assert_almost_equal(float(dly), 1.5e-8, delta=1e-9) def test_abscal_arg_parser(self): a = hc.abscal.abscal_arg_parser() def test_omni_abscal_arg_parser(self): a = hc.abscal.omni_abscal_arg_parser() def test_abscal_run(self): data_files = os.path.join(DATA_PATH, "zen.2458043.12552.xx.HH.uvORA") model_files = [os.path.join(DATA_PATH, "zen.2458042.12552.xx.HH.uvXA"), os.path.join(DATA_PATH, "zen.2458042.13298.xx.HH.uvXA")] # blank run gains, flags = hc.abscal.abscal_run(data_files, model_files, gen_amp_cal=True, write_calfits=False, return_gains=True, verbose=False) # assert shapes and types nt.assert_equal(gains[(24, 'jxx')].dtype, np.complex) nt.assert_equal(gains[(24, 'jxx')].shape, (60, 64)) # first freq bin should be flagged due to complete flagging in model and data nt.assert_true(flags[(24, 'jxx')][:, 0].all()) # solar flag run gains, flags = hc.abscal.abscal_run(data_files, model_files, solar_horizon=0.0, gen_amp_cal=True, write_calfits=False, return_gains=True, verbose=False) # all data should be flagged nt.assert_true(flags[(24, 'jxx')].all()) # write calfits outdir = "./" cf_name = "ex.calfits" if os.path.exists(os.path.join(outdir, cf_name)): os.remove(os.path.join(outdir, cf_name)) gains, flags = hc.abscal.abscal_run(data_files, model_files, gen_amp_cal=True, write_calfits=True, output_calfits_fname=cf_name, outdir=outdir, return_gains=True, verbose=False) nt.assert_true(os.path.exists(os.path.join(outdir, cf_name))) if os.path.exists(os.path.join(outdir, cf_name)): os.remove(os.path.join(outdir, cf_name)) # check match_red_bls and reweight hc.abscal.abscal_run(data_files, model_files, gen_amp_cal=True, write_calfits=False, verbose=False, match_red_bls=True, reweight=True) # check all calibration routines gains, flags = hc.abscal.abscal_run(data_files, model_files, write_calfits=False, verbose=False, return_gains=True, delay_slope_cal=True, phase_slope_cal=True, delay_cal=True, avg_phs_cal=True, abs_amp_cal=True, TT_phs_cal=True, gen_amp_cal=False, gen_phs_cal=False) nt.assert_equal(gains[(24, 'jxx')].dtype, np.complex) nt.assert_equal(gains[(24, 'jxx')].shape, (60, 64)) if os.path.exists('./ex.calfits'): os.remove('./ex.calfits') # check exceptions nt.assert_raises(ValueError, hc.abscal.abscal_run, data_files, model_files, all_antenna_gains=True, outdir='./', output_calfits_fname='ex.calfits', abs_amp_cal=False, TT_phs_cal=False, delay_cal=True, verbose=False) nt.assert_raises(ValueError, hc.abscal.abscal_run, data_files, model_files, all_antenna_gains=True, outdir='./', output_calfits_fname='ex.calfits', abs_amp_cal=False, TT_phs_cal=False, gen_phs_cal=True, verbose=False) nt.assert_raises(ValueError, hc.abscal.abscal_run, data_files, model_files, all_antenna_gains=True, outdir='./', output_calfits_fname='ex.calfits', abs_amp_cal=False, TT_phs_cal=False, gen_amp_cal=True, verbose=False) if os.path.exists('./ex.calfits'): os.remove('./ex.calfits') # check all antenna gains run hc.abscal.abscal_run(data_files, model_files, abs_amp_cal=True, all_antenna_gains=True, write_calfits=False) # test general bandpass solvers hc.abscal.abscal_run(data_files, model_files, TT_phs_cal=False, abs_amp_cal=False, gen_amp_cal=True, gen_phs_cal=True, write_calfits=False) # test exception nt.assert_raises(ValueError, hc.abscal.abscal_run, data_files, model_files, verbose=False, overwrite=True) # check blank & flagged calfits file written if no LST overlap bad_model_files = sorted(glob.glob(os.path.join(DATA_PATH, "zen.2458044.*.xx.HH.uvXRAA"))) hc.abscal.abscal_run(data_files, bad_model_files, write_calfits=True, overwrite=True, outdir='./', output_calfits_fname='ex.calfits', verbose=False) uvc = UVCal() uvc.read_calfits('./ex.calfits') nt.assert_true(uvc.flag_array.min()) nt.assert_almost_equal(uvc.gain_array.max(), 1.0) os.remove('./ex.calfits') # test w/ calfits files calfits_infile = os.path.join(DATA_PATH, 'zen.2458043.12552.HH.uvA.omni.calfits') hc.abscal.abscal_run(data_files, model_files, calfits_infile=calfits_infile, delay_slope_cal=True, phase_slope_cal=True, outdir='./', output_calfits_fname='ex.calfits', overwrite=True, verbose=False, refant=38) uvc = UVCal() uvc.read_calfits('./ex.calfits') nt.assert_true(uvc.total_quality_array is not None) nt.assert_almost_equal(uvc.quality_array[1, 0, 32, 0, 0], 6378.8367138680978, places=3) nt.assert_true(uvc.flag_array[0].min()) nt.assert_true(len(uvc.history) > 1000) # assert refant phase is zero nt.assert_true(np.isclose(np.angle(uvc.gain_array[uvc.ant_array.tolist().index(38)]), 0.0).all()) os.remove('./ex.calfits') def test_mock_data(self): # load into pyuvdata object data_file = os.path.join(DATA_PATH, "zen.2458043.12552.xx.HH.uvORA") data, flgs, ap, a, f, t, l, p = hc.io.load_vis(data_file, return_meta=True) wgts = odict() for k in flgs.keys(): wgts[k] = (~flgs[k]).astype(np.float) wgts = hc.datacontainer.DataContainer(wgts) # make mock data dly_slope = np.array([-1e-9, 2e-9, 0]) model = odict() for i, k in enumerate(data.keys()): bl = np.around(ap[k[0]] - ap[k[1]], 0) model[k] = data[k] * np.exp(2j * np.pi * f * np.dot(dly_slope, bl)) model = DataContainer(model) # setup AbsCal AC = hc.abscal.AbsCal(model, data, antpos=ap, wgts=wgts, freqs=f) # run delay_slope_cal AC.delay_slope_lincal(time_avg=True, verbose=False) # test recovery: accuracy only checked at 10% level nt.assert_almost_equal(AC.dly_slope_arr[0, 0, 0, 0, 0], 1e-9, delta=1e-10) nt.assert_almost_equal(AC.dly_slope_arr[0, 1, 0, 0, 0], -2e-9, delta=1e-10) # make mock data abs_gain = 0.02 TT_phi = np.array([1e-3, -1e-3, 0]) model = odict() for i, k in enumerate(data.keys()): bl = np.around(ap[k[0]] - ap[k[1]], 0) model[k] = data[k] * np.exp(abs_gain + 1j * np.dot(TT_phi, bl)) model = DataContainer(model) # setup AbsCal AC = hc.abscal.AbsCal(model, data, antpos=ap, wgts=wgts, freqs=f) # run abs_amp cal AC.abs_amp_logcal(verbose=False) # run TT_phs_logcal AC.TT_phs_logcal(verbose=False) nt.assert_almost_equal(np.median(AC.abs_eta_arr[0, :, :, 0][AC.wgts[(24, 25, 'XX')].astype(np.bool)]), -0.01, delta=1e-3) nt.assert_almost_equal(np.median(AC.TT_Phi_arr[0, 0, :, :, 0][AC.wgts[(24, 25, 'XX')].astype(np.bool)]), -1e-3, delta=1e-4) nt.assert_almost_equal(np.median(AC.TT_Phi_arr[0, 1, :, :, 0][AC.wgts[(24, 25, 'XX')].astype(np.bool)]), 1e-3, delta=1e-4)
from capstone.x86_const import * JMPS = [ X86_INS_JA, X86_INS_JAE, X86_INS_JB, X86_INS_JBE, X86_INS_JCXZ, X86_INS_JE, X86_INS_JECXZ, X86_INS_JG, X86_INS_JGE, X86_INS_JL, X86_INS_JLE, X86_INS_JMP, X86_INS_JNE, X86_INS_JNO, X86_INS_JNP, X86_INS_JNS, X86_INS_JO, X86_INS_JP, X86_INS_JRCXZ, X86_INS_JS, X86_INS_CALL, X86_INS_LOOP, X86_INS_LOOPE, X86_INS_LOOPNE, ] class Base(object): def __repr__(self): return '<%s %s>' % (self.__class__.__name__, repr(str(self))) class Op(Base): ins = None op = None @classmethod def fromop(cls, ins, op): i = cls() i.ins = ins i.op = op i.parse() return i def __ne__(self, other): return not(self == other) class LabelOp(Op): def __init__(self, name=None, any=False): self.name = name self.any = any def __eq__(self, other): return isinstance(other, LabelOp) and (other.name == self.name or self.any or other.any) def __str__(self): return self.name class Imm(Op): def __init__(self, val=0, any=False): self.val = val self.any = any def parse(self): self.val = self.op.imm def __eq__(self, other): if isinstance(other, (int, long)) and (self.val == other): return True return isinstance(other, Imm) and (other.val == self.val or self.any or other.any) def __cmp__(self, other): if not isinstance(other, Imm): raise TypeError return cmp(self.val, other.val) def __str__(self): if self.val >= 0: return '0x%x' % self.val else: return '-0x%x' % abs(self.val) class Reg(Op): def __init__(self, reg='', any=False): self.reg = reg self.any = any def parse(self): self.reg = self.ins.reg_name(self.op.reg) def __eq__(self, other): if isinstance(other, basestring) and self.reg == other: return True return isinstance(other, Reg) and (other.reg == self.reg or self.any or other.any) def __str__(self): return self.reg class Mem(Op): MEM_SIZE = { 1: 'byte ptr', 2: 'word ptr', 4: 'dword ptr', 8: 'qword ptr', 10: 'xword ptr', } def __init__(self, size=0, base=None, index=None, segment=None, scale=1, off=0, any=False): self.size = size self.base = base self.index = index self.segment = segment self.scale = scale self.off = off self.any = any def parse(self): ins = self.ins op = self.op.mem self.size = self.op.size # TODO: op.size = dword ptr? if op.base: self.base = ins.reg_name(op.base) if op.index: self.index = ins.reg_name(op.index) if op.segment: # segment looks like es:[%s] self.segment = ins.reg_name(op.segment) self.scale = op.scale self.off = op.disp def __eq__(self, other): return isinstance(other, Mem) and (( self.size, self.base, self.index, self.segment, self.scale, self.off, ) == (other.size, other.base, other.index, other.segment, other.scale, other.off) or self.any or other.any) def __str__(self): tmp = [] if self.base: tmp.append(self.base) if self.index: if tmp: tmp.append('+') tmp.append(self.index) if self.scale != 1: # you'd better have an index to multiply! assert(self.index) tmp += ['*', '%d' % self.scale] if self.off: if tmp: if self.off > 0: tmp.append('+') else: tmp.append('-') tmp.append('%d' % abs(self.off)) bracket = '[%s]' % (' '.join(tmp)) if self.segment: bracket = '%s:%s' % (self.segment, bracket) final = '%s %s' % (self.MEM_SIZE[self.size], bracket) return final OPS = { X86_OP_IMM: Imm, X86_OP_REG: Reg, X86_OP_MEM: Mem, } class Ins(Base): addr = None ins = None @classmethod def fromins(cls, ins): ops = [] for op in ins.operands: opcls = OPS.get(op.type) if opcls: ops.append(opcls.fromop(ins, op)) else: print 'UNSUPPORTED OP', op, ins.op_str assert(False) c = cls(ins.mnemonic, *ops) c.ins = ins c.addr = ins.address return c @property def dst(self): return self.ops[0] @property def src(self): return self.ops[1] def __init__(self, mne, *ops, **kwargs): self.mne = mne self.ops = ops self.label = None self.any = kwargs.get('any', False) def op_str(self): return ', '.join(map(str, self.ops)) def __eq__(self, other): if isinstance(other, basestring) and other == self.mne: return True return isinstance(other, Ins) and self.mne == other.mne and (tuple(other.ops) == tuple(self.ops) or self.any or other.any) def __str__(self): out = '%s %s' % (self.mne, self.op_str()) if self.label: out = '%s: %s' % self.label return out class Label(Base): mne = None ops = () def __init__(self, name): self.name = name def __str__(self): return '%s:' % self.name class IR(list): def asm(self): return '\n'.join(map(str, self)) def irdis(dis): if not dis: return IR([]) dis_addr = dis[0].address size = dis[-1].address + dis[-1].size - dis_addr tmp = [] next_label = 1 labels = {} for ins in dis: if ins.id in JMPS: dst = ins.operands[0] if dst.type == X86_OP_IMM: addr = dst.imm if addr >= dis_addr and addr < dis_addr + size: if addr not in labels: labels[addr] = Label('L%d' % next_label) next_label += 1 x = Ins(ins.mnemonic, LabelOp(labels[addr].name)) x.addr = ins.address x.ins = ins tmp.append(x) continue tmp.append(Ins.fromins(ins)) out = [] for i, ins in enumerate(tmp): label = labels.get(ins.addr) if label: out.append(label) out.append(ins) ir = IR(out) return ir
# # Torque log parser and UR generator # # Module for the SGAS Batch system Reporting Tool (BaRT). # # Author: Henrik Thostrup Jensen <htj@ndgf.org> # Author: Andreas Engelbredt Dalsgaard <andreas.dalsgaard@gmail.com> # Author: Magnus Jonsson <magnus@hpc2n.umu.se> # Copyright: Nordic Data Grid Facility (2009, 2010) import os import time import logging from bart import common from bart.usagerecord import usagerecord SECTION = 'torque' STATEFILE = 'statefile' DEFAULT_STATEFILE = SECTION + '.state' SPOOL_DIR = 'spooldir' DEFAULT_SPOOL_DIR = '/var/spool/torque' CONFIG = { STATEFILE: { 'required': False }, SPOOL_DIR: { 'required': False }, } TORQUE_DATE_FORMAT = '%Y%m%d' class TorqueLogParser: """ Parser for torque accounting log. """ def __init__(self, log_file): self.log_file = log_file self.file_ = None def openFile(self): self.file_ = open(self.log_file) def splitLineEntry(self, line): line_tokens = line.split(' ') fields = {} start_fields = line_tokens[1].split(';') fields['entrytype'] = start_fields[1] fields['jobid'] = start_fields[2] fields['user'] = start_fields[3].split('=')[1] for e in line_tokens: e = e.strip() r = e.split('=') if len(r) >= 2: fields[r[0]] = '='.join(r[1:len(r)]) return fields def getNextLogLine(self): if self.file_ is None: self.openFile() while True: line = self.file_.readline() if line == '': #last line return None if line[20] == 'E': return line def getNextLogEntry(self): line = self.getNextLogLine() if line is None: return None return self.splitLineEntry(line) def spoolToEntry(self, entry_id): while True: log_entry = self.getNextLogEntry() if log_entry is None or log_entry['jobid'] == entry_id: break class Torque: state = None cfg = None missing_user_mappings = None def __init__(self, cfg): self.cfg = cfg def getStateFile(self): """ Return the name of the statefile """ return self.cfg.getConfigValue(SECTION, STATEFILE, DEFAULT_STATEFILE) def getCoreCount(self,nodes): """ Find number of cores used by parsing the Resource_List.nodes value {<node_count> | <hostname>} [:ppn=<ppn>][:<property>[:<property>]...] [+ ...] http://www.clusterresources.com/torquedocs21/2.1jobsubmission.shtml#nodeExamples """ cores = 0 for node_req in nodes.split('+'): listTmp = node_req.split(':') if listTmp[0].isdigit(): first = int(listTmp[0]) else: first = 1 cores += first if len(listTmp) > 1: for e in listTmp: if len(e) > 3: if e[0:3] == 'ppn': cores -= first cores += first*int(e.split('=')[1]) break return cores def getSeconds(self,torque_timestamp): """ Convert time string in the form HH:MM:SS to seconds """ (hours, minutes, seconds) = torque_timestamp.split(':') return int(hours)*3600 + int(minutes)*60 + int(seconds) def createUsageRecord(self, log_entry, hostname, user_map, vo_map): """ Creates a Usage Record object given a Torque log entry. """ # extract data from the workload trace (log_entry) job_id = log_entry['jobid'] user_name = log_entry['user'] queue = log_entry['queue'] account = log_entry.get('account') submit_time = int(log_entry['ctime']) start_time = int(log_entry['start']) end_time = int(log_entry['end']) utilized_cpu = self.getSeconds(log_entry['resources_used.cput']) wall_time = self.getSeconds(log_entry['resources_used.walltime']) hosts = list(set([hc.split('/')[0] for hc in log_entry['exec_host'].split('+')])) # initial value node_count = len(hosts) if log_entry.has_key('Resource_List.ncpus'): core_count = int(log_entry['Resource_List.ncpus']) elif log_entry.has_key('Resource_List.nodes'): core_count = self.getCoreCount(log_entry['Resource_List.nodes']) # mppwidth is used on e.g. Cray machines instead of ncpus / nodes elif log_entry.has_key('Resource_List.mppwidth') or log_entry.has_key('Resource_List.size'): if log_entry.has_key('Resource_List.mppwidth'): core_count = int(log_entry['Resource_List.mppwidth']) # older versions on e.g. Cray machines use "size" as keyword for mppwidth or core_count elif log_entry.has_key('Resource_List.size'): core_count = int(log_entry['Resource_List.size']) # get node count, mppnodect exist only in newer versions if log_entry.has_key('Resource_List.mppnodect'): node_count = int(log_entry['Resource_List.mppnodect']) else: logging.warning('Missing mppnodect for entry: %s (will guess from "core count"/mppnppn)' % job_id) try: node_count = core_count / int(log_entry['Resource_List.mppnppn']) except: logging.warning('Unable to calculate node count for entry: %s (will guess from host list)' % job_id) # keep the default of len(hosts) given above else: logging.warning('Missing processor count for entry: %s (will guess from host list)' % job_id) # assume the number of exec hosts is the core count (possibly not right) core_count = len(hosts) # clean data and create various composite entries from the work load trace if job_id.isdigit() and hostname is not None: job_identifier = job_id + '.' + hostname else: job_identifier = job_id fqdn_job_id = hostname + ':' + job_identifier if not user_name in user_map.getMapping(): self.missing_user_mappings[user_name] = True vo_info = [] if account: mapped_vo = vo_map.get(account) else: mapped_vo = vo_map.get(user_name) if mapped_vo is not None: voi = usagerecord.VOInformation(name=mapped_vo, type_='bart-vomap') vo_info.append(voi) ## fill in usage record fields ur = usagerecord.UsageRecord() ur.record_id = fqdn_job_id ur.local_job_id = job_identifier ur.global_job_id = fqdn_job_id ur.local_user_id = user_name ur.global_user_name = user_map.get(user_name) ur.machine_name = hostname ur.queue = queue ur.project_name = account ur.processors = core_count ur.node_count = node_count ur.host = ','.join(hosts) ur.submit_time = usagerecord.epoch2isoTime(submit_time) ur.start_time = usagerecord.epoch2isoTime(start_time) ur.end_time = usagerecord.epoch2isoTime(end_time) ur.cpu_duration = utilized_cpu ur.wall_duration = wall_time ur.vo_info += vo_info ur.exit_code = log_entry['Exit_status'] return ur def generateUsageRecords(self,hostname, user_map, vo_map): """ Starts the UR generation process. """ torque_spool_dir = self.cfg.getConfigValue(SECTION, SPOOL_DIR, DEFAULT_SPOOL_DIR) torque_accounting_dir = os.path.join(torque_spool_dir, 'server_priv', 'accounting') torque_date_today = time.strftime(TORQUE_DATE_FORMAT, time.gmtime()) job_id = self.state_job_id torque_date = self.state_log_file self.missing_user_mappings = {} while True: log_file = os.path.join(torque_accounting_dir, torque_date) tlp = TorqueLogParser(log_file) if job_id is not None: try: tlp.spoolToEntry(job_id) except IOError, e: logging.error('Error spooling log file at %s for date %s to %s (%s)' % (log_file, torque_date, job_id, str(e)) ) job_id = None continue while True: try: log_entry = tlp.getNextLogEntry() except IOError, e: if torque_date == torque_date_today: # todays entry might not exist yet break logging.error('Error reading log file at %s for date %s (%s)' % (log_file, torque_date, str(e))) break if log_entry is None: break # no more log entries job_id = log_entry['jobid'] ur = self.createUsageRecord(log_entry, hostname, user_map, vo_map) common.writeUr(ur,self.cfg) self.state_job_id = job_id self.state_log_file = torque_date common.writeGeneratorState(self) job_id = None if torque_date == torque_date_today: break torque_date = common.getIncrementalDate(torque_date, TORQUE_DATE_FORMAT) job_id = None def parseGeneratorState(self,state): """ Get state of where to the UR generation has reached in the log. """ job_id = None log_file = None if state is None or len(state) == 0: # Empty state data happens sometimes, usually NFS is involved :-| # Start from yesterday (24 hours back), this should be fine assuming (at least) daily invokation. t_old = time.time() - (24 * 3600) log_file = time.strftime(TORQUE_DATE_FORMAT, time.gmtime(t_old)) else: job_id, log_file = state.split(' ', 2) if job_id == '-': job_id = None self.state_job_id = job_id self.state_log_file = log_file def createGeneratorState(self): """ Create the current state of where to the UR generation has reached. """ return '%s %s' % (self.state_job_id or '-', self.state_log_file)
# -*- coding: utf-8 -*- """ Tencent is pleased to support the open source community by making 蓝鲸智云PaaS平台社区版 (BlueKing PaaS Community Edition) available. Copyright (C) 2017-2018 THL A29 Limited, a Tencent company. All rights reserved. Licensed under the MIT License (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://opensource.org/licenses/MIT Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ # noqa import copy import json from common.errors import CommonAPIError from . import configs class CCClient(object): def __init__(self, component): self.http_client = component.outgoing.http_client self.bk_username = component.current_user.username self.bk_language = component.request.bk_language self.bk_supplier_account = component.request.kwargs.get('bk_supplier_account') or \ configs.DEFAULT_BK_SUPPLIER_ACCOUNT def request(self, method, host, path, params=None, data=None, headers={}, **kwargs): headers = copy.copy(headers) headers.update({ 'BK_USER': self.bk_username, 'HTTP_BLUEKING_LANGUAGE': self.bk_language, 'HTTP_BK_SUPPLIER_ACCOUNT': self.bk_supplier_account, 'HTTP_BLUEKING_SUPPLIER_ID': '0', }) return self.http_client.request( method, host, path, params=params, data=data, headers=headers, allow_non_200=True, response_encoding='utf-8', response_type='text', **kwargs) def get(self, host, path, params=None, headers={}, **kwargs): response = self.request('GET', host, path, params=params, headers=headers, **kwargs) return self.format_response(response) def post(self, host, path, data=None, headers={}, **kwargs): response = self.request('POST', host, path, data=data, headers=headers, **kwargs) return self.format_response(response) def put(self, host, path, data=None, headers={}, **kwargs): response = self.request('PUT', host, path, data=data, headers=headers, **kwargs) return self.format_response(response) def delete(self, host, path, data=None, headers={}, **kwargs): response = self.request('DELETE', host, path, data=data, headers=headers, **kwargs) return self.format_response(response) def format_response(self, response): try: response = json.loads(response) except Exception: return { 'result': False, 'code': 1306000, 'message': 'Request interface error, the response content is not a json string: %s' % response, } bk_error_code = response.get('bk_error_code', response.get('code')) if bk_error_code is None: raise CommonAPIError( 'An error occurred while requesting CC interface, ' 'the response content does not contain bk_error_code field.') elif bk_error_code == 0: return { 'result': True, 'code': 0, 'data': response.get('data'), 'message': response.get('bk_error_msg', response.get('message')) or '', } else: return { 'result': False, 'code': bk_error_code, 'data': response.get('data'), 'message': response.get('bk_error_msg', response.get('message')) or '', }
import sys from yachalk import chalk class Output: def __init__(self, lnd): self.lnd = lnd @staticmethod def print_line(message, end='\n'): sys.stdout.write(f"{message}{end}") @staticmethod def print_without_linebreak(message): sys.stdout.write(message) def print_route(self, route): route_str = "\n".join( self.get_channel_representation(h.chan_id, h.pub_key) + "\t" + self.get_fee_information(h, route) for h in route.hops ) self.print_line(route_str) def get_channel_representation(self, chan_id, pubkey_to, pubkey_from=None): channel_id_formatted = format_channel_id(chan_id) if pubkey_from: alias_to_formatted = format_alias(self.lnd.get_node_alias(pubkey_to)) alias_from = format_alias(self.lnd.get_node_alias(pubkey_from)) return f"{channel_id_formatted} ({alias_from} to {alias_to_formatted})" alias_to_formatted = format_alias(f"{self.lnd.get_node_alias(pubkey_to):32}") return f"{channel_id_formatted} to {alias_to_formatted}" def get_fee_information(self, next_hop, route): hops = list(route.hops) if hops[0] == next_hop: ppm = self.lnd.get_ppm_to(next_hop.chan_id) return f"(free, we usually charge {format_ppm(ppm)})" hop = hops[hops.index(next_hop) - 1] ppm = int(hop.fee_msat * 1_000_000 / hop.amt_to_forward_msat) fee_formatted = "fee " + chalk.cyan(f"{hop.fee_msat:8,} mSAT") ppm_formatted = format_ppm(ppm, 5) return f"({fee_formatted}, {ppm_formatted})" def format_alias(alias): if not sys.stdout.encoding.lower().startswith('utf'): alias = alias.encode('latin-1', 'ignore').decode() return chalk.bold(alias) def format_ppm(ppm, min_length=None): if min_length: return chalk.bold(f"{ppm:{min_length},}ppm") return chalk.bold(f"{ppm:,}ppm") def format_fee_msat(fee_msat, min_length=None): if min_length: return chalk.cyan(f"{fee_msat:{min_length},} mSAT") return chalk.cyan(f"{fee_msat:,} mSAT") def format_fee_msat_red(fee_msat, min_length=None): if min_length: return chalk.red(f"{fee_msat:{min_length},} mSAT") return chalk.red(f"{fee_msat:,} mSAT") def format_fee_sat(fee_sat): return chalk.cyan(f"{fee_sat:,} sats") def format_earning(msat, min_width=None): if min_width: return chalk.green(f"{msat:{min_width},} mSAT") return chalk.green(f"{msat:,} mSAT") def format_amount(amount, min_width=None): if min_width: return chalk.yellow(f"{amount:{min_width},}") return chalk.yellow(f"{amount:,}") def format_amount_green(amount, min_width=None): return chalk.green(f"{amount:{min_width},}") def format_boring_string(string): return chalk.bg_black(chalk.gray(string)) def format_channel_id(channel_id): return format_boring_string(channel_id) def format_warning(warning): return chalk.yellow(warning) def format_error(error): return chalk.red(error) def print_bar(width, length): result = chalk.bold("[") if sys.stdout.encoding.lower().startswith('utf'): for _ in range(0, length): result += chalk.bold(u"\u2588") for _ in range(length, width): result += u"\u2591" else: for _ in range(0, length): result += chalk.bold("X") for _ in range(length, width): result += u"." result += chalk.bold("]") return result
#!/usr/bin/python3 # Module for parsing arguments import argparse parser = argparse.ArgumentParser() # Add an argument and save it in a variable named "src_dir" # Also add description for -h (help) option parser.add_argument("src_dir", help = "Directory to backup") # Add an argument and save it in a variable named "dst_dir" # Also add description for -h (help) option parser.add_argument("dst_dir", help = "Location to store backup") # Collect all of the arguments supplied on the command line args = parser.parse_args() print("Source:", args.src_dir) print("Destination:", args.dst_dir)
# -*- coding: utf-8 -*- """ @Project: pytorch-train @File : utils @Author : TonyMao@AILab @Date : 2019/11/12 @Desc : None """ import torch import torchvision.transforms as transforms from PIL import Image def get_transform(opt): transform_list = [] if opt.resize_or_crop == 'resize_and_crop': osize = [opt.load_size, opt.load_size] transform_list.append(transforms.Resize(osize, Image.BICUBIC)) transform_list.append(transforms.RandomCrop(opt.fine_size)) elif opt.resize_or_crop == 'crop': transform_list.append(transforms.RandomCrop(opt.fine_size)) elif opt.resize_or_crop == 'scale_width': transform_list.append(transforms.Lambda( lambda img: __scale_width(img, opt.fine_size))) elif opt.resize_or_crop == 'scale_width_and_crop': transform_list.append(transforms.Lambda( lambda img: __scale_width(img, opt.load_size))) transform_list.append(transforms.RandomCrop(opt.fine_size)) # pass elif opt.resize_or_crop == 'scale_and_crop': transform_list.append(transforms.Lambda( lambda img: __scale(img, opt.load_size) )) transform_list.append(transforms.RandomCrop(opt.fine_size)) transform_list += [transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])] return transforms.Compose(transform_list) def denorm(tensor, device, to_board=False): std = torch.Tensor([0.229, 0.224, 0.225]).reshape(-1, 1, 1).to(device) mean = torch.Tensor([0.485, 0.456, 0.406]).reshape(-1, 1, 1).to(device) res = torch.clamp((tensor.to(device) * std + mean), 0, 1) if to_board: res = (res - 0.5) / 0.5 return res def __scale_width(img, target_width): ow, oh = img.size if ow == target_width: return img w = target_width h = int(target_width * oh / ow) return img.resize((w, h), Image.BICUBIC) def __scale_height(img, target_height): ow, oh = img.size if oh == target_height: return img w = int(target_height * ow / oh) h = target_height return img.resize((w, h), Image.BICUBIC) def __scale(img, target_side): ow, oh = img.size if ow < oh: return __scale_width(img, target_side) else: return __scale_height(img, target_side)
from django.shortcuts import render from django.shortcuts import HttpResponse import json from django.core import serializers from cloud.models import Data # Create your views here. def index(request): return render(request, 'cloud/index.html', context={ 'title': 'PRP-DGPS', 'content': 'Welcome PRP-DGPS Server :))' }) # http://Active_Server_IP:Active_Server_Port/upload/data_type/data/time/ def upload(request, param1, param2, param3): data = Data(data_type = param1, data = param2) data.save() return HttpResponse("Upload data_type = " + param1 + " data = " + param2 + " create = " + param3) def list(request): data_list = Data.objects.all() data_list2 = [] for data in data_list: data.create_time = data.create_time.strftime('%Y-%m-%d %H:%I:%S') data_list2.append(data) # print (data_list) return render(request, 'cloud/list.html', context={ 'title': 'PRP-DGPS Server', 'data_list': data_list2 }) def get(request): data_list = Data.objects.all() data_list_json = serializers.serialize("json", data_list) return HttpResponse(data_list_json)
#import libraries import picamera from time import sleep from PIL import Image #set up the camera camera = picamera.PiCamera() try: #capture at maximum resolution (~5MP) camera.resolution = (1280, 720) camera.framerate = 60 camera.vflip = True camera.hflip = True camera.start_preview() #allow camera to AWB sleep(1) camera.capture('1_unedited.jpg') #load the image back into python photo = Image.open('1_unedited.jpg') pixels = photo.load() #apply an edit to each pixel try: for i in range(photo.size[0]): for j in range(photo.size[1]): #seperate the current pixel pixel = pixels[i,j] #seperate the colours r = pixel[0] g = pixel[1] b = pixel[2] #Perform our edits r = j g = j b = j #update the pixel pixel = (r, g, b) #place the pixel back in the image pixels[i,j] = pixel finally: photo.save('2_vertical.jpg', quality=90) finally: camera.close()
import requests import json import base64 from urllib.parse import quote import os # 百度AI平台 文字识别API API_Key = '7ozPdYCKWpXQhGLZingB9Cm8' Secret_Key = '53GBqlVoF3PNdCNKT4h3G4YTnoAa0uhI' # 获取文字识别的access_token def getAipAccessToken(): # client_id 为官网获取的AK, client_secret 为官网获取的SK host = 'https://aip.baidubce.com/oauth/2.0/token' payload = { 'grant_type': 'client_credentials', 'client_id': API_Key, 'client_secret': Secret_Key} response = requests.post(url=host,data=payload,verify=False) if response.status_code == 200 : response_dict = json.loads(response.text) print(response_dict) AccessToken = response_dict['access_token'] return AccessToken return None # 读取银行回执单 def readReceipt(access_token,image_path): headers = { 'Content-Type': "application/x-www-form-urlencoded", 'charset': "utf-8" } # iocr识别api_url recognise_api_url = "https://aip.baidubce.com/rest/2.0/solution/v1/iocr/recognise/finance" access_token = access_token templateSign = 'bank_receipt' # 银行回执单标准模板 detectorId = 0 #classifierId = "your_classifier_id" # 测试数据路径 #image_path = './receipt/chinabank1.png' try: with open(image_path, 'rb') as f: image_data = f.read() image_b64 = base64.b64encode(image_data) # 请求模板的bodys recognise_bodys = 'access_token=' + access_token + '&templateSign=' + templateSign + \ '&image=' + quote(image_b64) # 请求分类器的bodys # classifier_bodys = "access_token=" + access_token + "&classifierId=" + classifierId + "&image=" + quote(image_b64.encode("utf8")) # 混贴票据识别的bodys # detector_bodys = "access_token=" + access_token + "&detectorId=" + str(detectorId) + "&image=" + quote(image_b64.encode("utf8")) # 请求模板识别 response = requests.post(recognise_api_url, data=recognise_bodys, headers=headers, verify=False) # 请求分类器识别 # response = requests.post(recognise_api_url, data=classifier_bodys, headers=headers) # 请求混贴票据识别 # response = requests.post(recognise_api_url, data=detector_bodys, headers=headers) if response.status_code == 200 : response_dict = json.loads(response.text) print(response_dict) return response_dict return None except Exception as e: print(e) return None # 遍历银行回执单图片文件夹 def getReceiptList(dirpath): receiptList = [] for root, dirs, files in os.walk(dirpath): print('根目录:{0},文件夹:{1},文件数:{2}'.format(root,dirs,len(files))) files.sort() for f in files: receiptList.append(f) return receiptList if __name__ == "__main__": dirpath = './receipt' receiptList = getReceiptList(dirpath) if len(receiptList) == 0: print('银行回执单图片列表为空!') exit() access_token = None access_token = getAipAccessToken() if access_token == None: print('access_token取得失败!') exit() print('access_token: %s' % (access_token)) for receipt in receiptList: image_path = dirpath + '/' + receiptList[0] receipt_date = readReceipt(access_token,image_path) if receipt_date == None: print('银行回执单数据读取失败!') exit()
# -*- encoding: utf-8 -*- """ License: MIT Copyright (c) 2019 - present AppSeed.us """ from django.contrib.auth.decorators import login_required from django.shortcuts import render, get_object_or_404, redirect from django.template import loader from django.http import HttpResponse from django.contrib import messages from app.models import * from app.models import idcard import pdfkit from qrcode import * @login_required(login_url="/login/") def index(request): return render(request, "index.html") @login_required(login_url="/login/") def pages(request): context = {} # All resource paths end in .html. # Pick out the html file name from the url. And load that template. try: load_template = request.path.split('/')[-1] if request.method == "POST": load_template(request) template = loader.get_template('pages/' + load_template) return HttpResponse(template.render(context, request)) except: template = loader.get_template( 'pages/error-404.html' ) return HttpResponse(template.render(context, request)) def idcard_form(request): if request.method == "POST": name = request.POST.get('name') employment_id = request.POST.get('employment_id') customer_account_number= request.POST.get('customer_account_number') circle= request.POST.get('circle') company_name= request.POST.get('company_name') department= request.POST.get('department') certificate_number= request.POST.get('certificate_number') date= request.POST.get('date') idcard1 = idcard(name=name,employment_id=employment_id,customer_account_no=customer_account_number,circle=circle,company_name=company_name,department=department,certificate_no=certificate_number,date=date) idcard1.save() messages.success(request,"Your data has been submiteed successfully!!") return render(request,'pages/idcard-form.html',context=None) else: return render(request,'pages/idcard-form.html',context=None) def idcard_data(request): report = Report.objects.all() return render(request,'pages/idcard_data.html',{'report':report}) def idcard_import(request): return render(request,'pages/idcard_import.html') def certificate_form(request): if request.method=="POST": name=request.POST.get('name') training_name=request.POST.get('training_name') certificate_validity=request.POST.get('certificate_validity') date=request.POST.get('date') place=request.POST.get('place') img=make(name) img.save("static/qr.png") certificate=Certificate(name=name,training_name=training_name,certificate_validity=certificate_validity,date=date,place=place) certificate.save() messages.success(request,"Your data has been submiteed successfully!!") return render(request,'pages/certificate_form.html',context=None) #return HttpResponse("Hello I am certificate") def certificate_verification(request): return render(request,'pages/certificate-verification.html') def printreport(request): report = Report.objects.all().order_by('-name') return render(request,'pages/printreport.html',{'report':report}) def reportform(request): if request.method=="POST": name=request.POST.get('name') gender=request.POST.get('gender') address=request.POST.get('address') dob=request.POST.get('dob') email=request.POST.get('email') q1=request.POST.get('q1') q2=request.POST.get('q2') q3=request.POST.get('q3') q4=request.POST.get('q4') q5=request.POST.get('q5') q6=request.POST.get('q6') q7=request.POST.get('q7') q8=request.POST.get('q8') q9=request.POST.get('q9') q10=request.POST.get('q10') q11=request.POST.get('q11') image=request.FILES['image'] comment=request.POST.get('comment') height=request.POST.get('height') weight=request.POST.get('weight') systolic=request.POST.get('systolic') diastolic=request.POST.get('diastolic') pulserate=request.POST.get('pulserate') heartsound=request.POST.get('heartsound') peripheralpulse=request.POST.get('peripheralpulse') chestlung=request.POST.get('chestlung') curvicalspine=request.POST.get('curvicalspine') backmovements=request.POST.get('backmovements') upperlimbs=request.POST.get('upperlimbs') jointmovements=request.POST.get('jointmovements') reflexes=request.POST.get('reflexes') rombergs=request.POST.get('rombergs') hearing=request.POST.get('hearing') vision=request.POST.get('vision') albumin=request.POST.get('albumin') sugar=request.POST.get('sugar') blood_group=request.POST.get('blood_group') rh_factor=request.POST.get('rh_factor') hb=request.POST.get('hb') tlc=request.POST.get('tlc') rbc=request.POST.get('rbc') plateletscount=request.POST.get('plateletscount') triglycerides=request.POST.get('triglycerides') hdl=request.POST.get('hdl') ldl=request.POST.get('ldl') result=request.POST.get('result') registration_no=request.POST.get('registration_no') date_of_examination=request.POST.get('date_of_examination') report=Report(name=name,gender=gender, address= address,dob=dob,email=email,q1=q1,q2=q2,q3=q3,q4=q4,q5=q5,q6=q6,q7=q7,q8=q8,q9=q9,q10=q10,q11=q11,image=image,comment=comment,height=height,weight=weight,systolic=systolic,diastolic=diastolic,pulserate=pulserate,heartsound=heartsound,peripheralpulse=peripheralpulse,chestlung=chestlung,curvicalspine=curvicalspine,backmovements=backmovements,upperlimbs=upperlimbs,jointmovements=jointmovements,reflexes=reflexes,rombergs=rombergs,hearing=hearing,vision=vision,albumin=albumin,sugar=sugar,blood_group=blood_group,rh_factor=rh_factor,hb=hb,tlc=tlc,rbc=rbc,plateletscount=plateletscount,triglycerides=triglycerides,hdl=hdl,ldl=ldl,result=result,registration_no=registration_no,date_of_examination=date_of_examination) report.save() messages.success(request,"Your data has been submiteed successfully!!") return render(request,'pages/reportform.html',context=None) def report(request,pk): report = Report.objects.get(id=pk) #report = Report.objects.all() qr=make(report.name) qr.save("media/report.png") return render(request,'pages/report.html',{'report':report,'qr':qr})
# Generated by Django 3.0.6 on 2020-05-22 12:10 from django.db import migrations, models def migrate_data(apps, schema_editor): RRset = apps.get_model('desecapi', 'RRset') RRset.objects.filter(touched__isnull=True).update(touched=models.F('created')) class Migration(migrations.Migration): dependencies = [ ('desecapi', '0014_rrset_touched'), ] operations = [ migrations.RunPython(migrate_data, migrations.RunPython.noop), migrations.AlterField( model_name='rrset', name='touched', field=models.DateTimeField(auto_now=True), ), ]
import numpy as np import scipy.misc from gym.spaces.box import Box from scipy.misc import imresize from cached_property import cached_property # TODO: move this to folder with different files class BaseTransformer(object): """ Base transformer interface, inherited objects should conform to this """ def transform(self, observation): """ observation to transform """ raise NotImplementedError def transformed_observation_space(self, prev_observation_space): """ prev_observation_space and how it is modified """ return prev_observation_space def reset(self): """ resets the transformer if there is an operation to be made """ return class AppendPrevTimeStepTransformer(BaseTransformer): """ Keeps track of and appends the previous observation timestep. """ def __init__(self): self.prev_timestep = None def transform(self, observation): if self.prev_timestep is None: self.prev_timestep = np.zeros(observation.shape) new_obs = np.concatenate([observation.reshape((1, -1)), self.prev_timestep.reshape((1, -1))], axis=1).reshape(-1) self.prev_timestep = observation return new_obs def transformed_observation_space(self, prev_observation_space): if type(prev_observation_space) is Box: #TODO: should use tile? copy = np.copy(prev_observation_space.low.reshape((1, -1))) low = np.concatenate([copy, copy], axis=1) copy = np.copy(prev_observation_space.high.reshape((1, -1))) high = np.concatenate([copy, copy], axis=1) return Box(low.reshape(-1), high.reshape(-1)) else: raise NotImplementedError("Currently only support Box observation spaces for ResizeImageTransformer") return prev_observation_space def reset(self): self.prev_timestep = None class SimpleNormalizePixelIntensitiesTransformer(BaseTransformer): """ Normalizes pixel intensities simply by dividing by 255. """ def transform(self, observation): return np.array(observation).astype(np.float32) / 255.0 def transformed_observation_space(self, wrapped_observation_space): return wrapped_observation_space class ResizeImageTransformer(BaseTransformer): """ Rescale a given image by a percentage """ def __init__(self, fraction_of_current_size): self.fraction_of_current_size = fraction_of_current_size def transform(self, observation): return scipy.misc.imresize(observation, self.fraction_of_current_size) def transformed_observation_space(self, wrapped_observation_space): if type(wrapped_observation_space) is Box: return Box(scipy.misc.imresize(wrapped_observation_space.low, self.fraction_of_current_size), scipy.misc.imresize(wrapped_observation_space.high, self.fraction_of_current_size)) else: raise NotImplementedError("Currently only support Box observation spaces for ResizeImageTransformer") class RandomSensorMaskTransformer(BaseTransformer): """ Randomly occlude a given percentage of sensors on every observation. Randomly occludes different ones every time """ def __init__(self, env, percent_of_sensors_to_occlude=.15): """ Knock out random sensors """ self.percent_of_sensors_to_occlude = percent_of_sensors_to_occlude self.obs_dims = env.observation_space.flat_dim def occlude(self, obs): sensor_idx = np.random.randint(0, self.obs_dims-1, size=int(self.obs_dims * self.percent_of_sensors_to_occlude)) obs[sensor_idx] = 0 return obs def transform(self, observation): return self.occlude(observation)
import torch import torch.nn as nn import torch.nn.functional as F from .layers import DownBlock, Conv, ResnetTransformer from .stn_losses import smoothness_loss sampling_align_corners = False sampling_mode = 'bilinear' # The number of filters in each block of the encoding part (down-sampling). ndf = {'A': [32, 64, 64, 64, 64, 64, 64], } # The number of filters in each block of the decoding part (up-sampling). # If len(ndf[cfg]) > len(nuf[cfg]) - then the deformation field is up-sampled to match the input size. nuf = {'A': [64, 64, 64, 64, 64, 64, 32], } # Indicate if res-blocks are used in the down-sampling path. use_down_resblocks = {'A': True, } # indicate the number of res-blocks applied on the encoded features. resnet_nblocks = {'A': 3, } # Indicate if the a final refinement layer is applied on the before deriving the deformation field refine_output = {'A': True, } # The activation used in the down-sampling path. down_activation = {'A': 'leaky_relu', } # The activation used in the up-sampling path. up_activation = {'A': 'leaky_relu', } class ResUnet(torch.nn.Module): """Predicts a dense deofmration field that aligns two given images. The networks is unet-based network with (possibly) residual blocks. The residual blocks may be used in the in the down-sampling path, on the encoded features and prior to the deformation field generation.""" def __init__(self, nc_a, nc_b, cfg, init_func, init_to_identity): super(ResUnet, self).__init__() act = down_activation[cfg] # ------------ Down-sampling path self.ndown_blocks = len(ndf[cfg]) self.nup_blocks = len(nuf[cfg]) assert self.ndown_blocks >= self.nup_blocks in_nf = nc_a + nc_b conv_num = 1 skip_nf = {} for out_nf in ndf[cfg]: setattr(self, 'down_{}'.format(conv_num), DownBlock(in_nf, out_nf, 3, 1, 1, activation=act, init_func=init_func, bias=True, use_resnet=use_down_resblocks[cfg], use_norm=False)) skip_nf['down_{}'.format(conv_num)] = out_nf in_nf = out_nf conv_num += 1 conv_num -= 1 if use_down_resblocks[cfg]: self.c1 = Conv(in_nf, 2 * in_nf, 1, 1, 0, activation=act, init_func=init_func, bias=True, use_resnet=False, use_norm=False) self.t = ((lambda x: x) if resnet_nblocks[cfg] == 0 else ResnetTransformer(2 * in_nf, resnet_nblocks[cfg], init_func)) self.c2 = Conv(2 * in_nf, in_nf, 1, 1, 0, activation=act, init_func=init_func, bias=True, use_resnet=False, use_norm=False) # ------------- Up-sampling path act = up_activation[cfg] for out_nf in nuf[cfg]: setattr(self, 'up_{}'.format(conv_num), Conv(in_nf + skip_nf['down_{}'.format(conv_num)], out_nf, 3, 1, 1, bias=True, activation=act, init_fun=init_func, use_norm=False, use_resnet=False)) in_nf = out_nf conv_num -= 1 if refine_output[cfg]: self.refine = nn.Sequential(ResnetTransformer(in_nf, 1, init_func), Conv(in_nf, in_nf, 1, 1, 0, use_resnet=False, init_func=init_func, activation=act, use_norm=False) ) else: self.refine = lambda x: x self.output = Conv(in_nf, 2, 3, 1, 1, use_resnet=False, bias=True, init_func=('zeros' if init_to_identity else init_func), activation=None, use_norm=False) def forward(self, img_a, img_b): x = torch.cat([img_a, img_b], 1) skip_vals = {} conv_num = 1 # Down while conv_num <= self.ndown_blocks: x, skip = getattr(self, 'down_{}'.format(conv_num))(x) skip_vals['down_{}'.format(conv_num)] = skip conv_num += 1 if hasattr(self, 't'): x = self.c1(x) x = self.t(x) x = self.c2(x) # Up conv_num -= 1 while conv_num > (self.ndown_blocks - self.nup_blocks): s = skip_vals['down_{}'.format(conv_num)] x = F.interpolate(x, (s.size(2), s.size(3)), mode='bilinear') x = torch.cat([x, s], 1) x = getattr(self, 'up_{}'.format(conv_num))(x) conv_num -= 1 x = self.refine(x) x = self.output(x) return x class UnetSTN(nn.Module): """This class is generates and applies the deformable transformation on the input images.""" def __init__(self, in_channels_a, in_channels_b, height, width, cfg, init_func, stn_bilateral_alpha, init_to_identity, multi_resolution_regularization): super(UnetSTN, self).__init__() self.oh, self.ow = height, width self.in_channels_a = in_channels_a self.in_channels_b = in_channels_b self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") self.offset_map = ResUnet(self.in_channels_a, self.in_channels_b, cfg, init_func, init_to_identity).to( self.device) self.identity_grid = self.get_identity_grid() self.alpha = stn_bilateral_alpha self.multi_resolution_regularization = multi_resolution_regularization def get_identity_grid(self): """Returns a sampling-grid that represents the identity transformation.""" x = torch.linspace(-1.0, 1.0, self.ow) y = torch.linspace(-1.0, 1.0, self.oh) xx, yy = torch.meshgrid([y, x]) xx = xx.unsqueeze(dim=0) yy = yy.unsqueeze(dim=0) identity = torch.cat((yy, xx), dim=0).unsqueeze(0) return identity def get_grid(self, img_a, img_b, return_offsets_only=False): """Return the predicted sampling grid that aligns img_a with img_b.""" if img_a.is_cuda and not self.identity_grid.is_cuda: self.identity_grid = self.identity_grid.to(img_a.device) # Get Deformation Field b_size = img_a.size(0) deformation = self.offset_map(img_a, img_b) deformation_upsampled = deformation if deformation.size(2) != self.oh and deformation.size(3) != self.ow: deformation_upsampled = F.interpolate(deformation, (self.oh, self.ow), mode=sampling_mode, align_corners=sampling_align_corners) if return_offsets_only: resampling_grid = deformation_upsampled.permute([0, 2, 3, 1]) else: resampling_grid = (self.identity_grid.repeat(b_size, 1, 1, 1) + deformation_upsampled).permute([0, 2, 3, 1]) return resampling_grid def forward(self, img_a, img_b, apply_on=None): """ Predicts the spatial alignment needed to align img_a with img_b. The spatial transformation will be applied on the tensors passed by apply_on (if apply_on is None then the transformation will be applied on img_a). :param img_a: the source image. :param img_b: the target image. :param apply_on: the geometric transformation can be applied on different tensors provided by this list. If not set, then the transformation will be applied on img_a. :return: a list of the warped images (matching the order they appeared in apply on), and the regularization term calculated for the predicted transformation.""" if img_a.is_cuda and not self.identity_grid.is_cuda: self.identity_grid = self.identity_grid.to(img_a.device) # Get Deformation Field b_size = img_a.size(0) deformation = self.offset_map(img_a, img_b) deformation_upsampled = deformation if deformation.size(2) != self.oh and deformation.size(3) != self.ow: deformation_upsampled = F.interpolate(deformation, (self.oh, self.ow), mode=sampling_mode) resampling_grid = (self.identity_grid.repeat(b_size, 1, 1, 1) + deformation_upsampled).permute([0, 2, 3, 1]) # Wrap image wrt to the defroamtion field if apply_on is None: apply_on = [img_a] warped_images = [] for img in apply_on: warped_images.append(F.grid_sample(img, resampling_grid, mode=sampling_mode, padding_mode='zeros', align_corners=sampling_align_corners)) # Calculate STN regulization term reg_term = self._calculate_regularization_term(deformation, warped_images[0]) return warped_images, reg_term def _calculate_regularization_term(self, deformation, img): """Calculate the regularization term of the predicted deformation. The regularization may-be applied to different resolution for larger images.""" dh, dw = deformation.size(2), deformation.size(3) img = None if img is None else img.detach() reg = 0.0 factor = 1.0 for i in range(self.multi_resolution_regularization): if i != 0: deformation_resized = F.interpolate(deformation, (dh // (2 ** i), dw // (2 ** i)), mode=sampling_mode, align_corners=sampling_align_corners) img_resized = F.interpolate(img, (dh // (2 ** i), dw // (2 ** i)), mode=sampling_mode, align_corners=sampling_align_corners) elif deformation.size()[2::] != img.size()[2::]: deformation_resized = deformation img_resized = F.interpolate(img, deformation.size()[2::], mode=sampling_mode, align_corners=sampling_align_corners) else: deformation_resized = deformation img_resized = img reg += factor * smoothness_loss(deformation_resized, img_resized, alpha=self.alpha) factor /= 2.0 return reg
#import json import discord from discord.ext import commands #resultsFile = open('polls.json') #resultsLoad = json.load(resultsFile) emojiList = [ '1️⃣', '2️⃣', '3️⃣', '4️⃣' ] class Polling(commands.Cog): def __init__(self, bot): self.bot = bot @commands.command() async def poll(self, ctx, *, args): """Adds a new poll to be voted on""" pollCat = 'uncategorised' pollOptions = list() maxOptions = 4 if args.find('+') != -1: pollCat = args[0:args.find(' ')] args = args[args.find(' '):len(args)] titleStart = args.find('{') + 1 titleEnd = args.find('}') pollTitle = args[titleStart:titleEnd] args = args[titleEnd:len(args)] while maxOptions > 0: optionStart = args.find('[') + 1 optionEnd = args.find(']') if args[optionStart:optionEnd] == '': break pollOptions.append(args[optionStart:optionEnd]) args = args[optionEnd + 1:len(args)] maxOptions = maxOptions - 1 pollBody = '' for x in range(len(pollOptions)): pollBody += str(x + 1) + '. ' + pollOptions[x] + '\n' pollInfo = f'New **{pollCat}** poll ready to vote on!' embed = discord.Embed(title=pollTitle, description=pollBody) pollPost = await ctx.send(embed=embed, content=pollInfo) for x in range(len(pollOptions)): await pollPost.add_reaction(emojiList[x]) def setup(bot): bot.add_cog(Polling(bot))
from .framework import ( managed_history, selenium_test, SeleniumTestCase ) class HistoryStructureTestCase(SeleniumTestCase): ensure_registered = True @selenium_test @managed_history def test_history_structure(self): def assert_details(expected_to_be_visible): error_message = "details are visible!" if expected_to_be_visible: error_message = "details are not visible!" assert expected_to_be_visible == self.components.history_structure.details.is_displayed, error_message self.perform_upload(self.get_filename("1.fasta")) self.wait_for_history() self.components.history_structure.header.assert_absent_or_hidden() self.components.history_structure.dataset.assert_absent_or_hidden() self.history_panel_show_structure() # assert details are not visible before expand self.components.history_structure.details.assert_absent_or_hidden() self.components.history_structure.dataset.wait_for_and_click() self.sleep_for(self.wait_types.UX_RENDER) assert_details(True) self.components.history_structure.header.wait_for_and_click() self.sleep_for(self.wait_types.UX_RENDER) assert_details(False) self.components.history_structure.dataset.assert_absent_or_hidden()
damage_data = {} #Don't touch the above line """ mystats module for BombSquad version 1.5.29 Provides functionality for dumping player stats to disk between rounds. """ ranks=[] top3Name=[] import threading,json,os,urllib.request,ba,_ba,setting from ba._activity import Activity from ba._music import setmusic, MusicType # False-positive from pylint due to our class-generics-filter. from ba._player import EmptyPlayer # pylint: disable=W0611 from ba._team import EmptyTeam # pylint: disable=W0611 from typing import Any, Dict, Optional from ba._lobby import JoinInfo from ba import _activitytypes as ba_actypes from ba._activitytypes import * import urllib.request import custom_hooks import datetime #variables our_settings = setting.get_settings_data() # where our stats file and pretty html output will go base_path = os.path.join(_ba.env()['python_directory_user'],"stats" + os.sep) statsfile = base_path + 'stats.json' htmlfile = base_path + 'stats_page.html' table_style = "{width:100%;border: 3px solid black;border-spacing: 5px;border-collapse:collapse;text-align:center;background-color:#fff}" heading_style = "{border: 3px solid black;text-align:center;}" html_start = f'''<!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title>Test Server</title> <style>table{table_style} th{heading_style}</style> </head> <body> <h3 style="text-align:center">Top 200 Players </h3> <table border=1> <tr> <th><b>Rank</b></th> <th style="text-align:center"><b>Name</b></th> <th><b>Score</b></th> <th><b>Kills</b></th> <th><b>Deaths</b></th> <th><b>Games Played</b></th> </tr> ''' statsDefault={ "pb-IF4VAk4a": { "rank": 65, "name": "pb-IF4VAk4a", "scores": 0, "total_damage": 0.0, "kills": 0, "deaths": 0, "games": 18, "kd": 0.0, "avg_score": 0.0, "aid": "pb-IF4VAk4a" } } # <th><b>Total Damage</b></th> #removed this line as it isn't crt data #useful functions seasonStartDate=None import shutil,os def get_all_stats(): global seasonStartDate if os.path.exists(statsfile): renameFile=False with open(statsfile, 'r',encoding='utf8') as f: jsonData=json.loads(f.read()) try: stats=jsonData["stats"] seasonStartDate=datetime.datetime.strptime(jsonData["startDate"],"%d-%m-%Y") if (datetime.datetime.now()-seasonStartDate).days >=our_settings["statsResetAfterDays"]: backupStatsFile() seasonStartDate=datetime.datetime.now() return statsDefault return stats except OSError as e: print(e) return jsonData else: return {} def backupStatsFile(): shutil.copy(statsfile,statsfile.replace(".json","")+str(seasonStartDate)+".json") def dump_stats(s: dict): global seasonStartDate if seasonStartDate ==None: seasonStartDate=datetime.datetime.now() s={"startDate":seasonStartDate.strftime("%d-%m-%Y") , "stats":s} if os.path.exists(statsfile): with open(statsfile, 'w',encoding='utf8') as f: f.write(json.dumps(s, indent=4,ensure_ascii=False)) f.close() else: print('Stats file not found!') def get_stats_by_id(ID: str): a = get_all_stats() if ID in a: return a[ID] else: return None def refreshStats(): # lastly, write a pretty html version. # our stats url could point at something like this... pStats = get_all_stats() # f=open(htmlfile, 'w') # f.write(html_start) entries = [(a['scores'], a['kills'], a['deaths'], a['games'], a['name'], a['aid']) for a in pStats.values()] # this gives us a list of kills/names sorted high-to-low entries.sort(reverse=True) rank = 0 toppers = {} toppersIDs=[] _ranks=[] for entry in entries: if True: rank += 1 scores = str(entry[0]) kills = str(entry[1]) deaths = str(entry[2]) games = str(entry[3]) name = str(entry[4]) aid = str(entry[5]) if rank < 6: toppersIDs.append(aid) #The below kd and avg_score will not be added to website's html document, it will be only added in stats.json try: kd = str(float(kills) / float(deaths)) kd_int = kd.split('.')[0] kd_dec = kd.split('.')[1] p_kd = kd_int + '.' + kd_dec[:3] except Exception: p_kd = "0" try: avg_score = str(float(scores) / float(games)) avg_score_int = avg_score.split('.')[0] avg_score_dec = avg_score.split('.')[1] p_avg_score = avg_score_int + '.' + avg_score_dec[:3] except Exception: p_avg_score = "0" if damage_data and aid in damage_data: dmg = damage_data[aid] dmg = str(str(dmg).split('.')[0] + '.' + str(dmg).split('.')[1][:3]) else: dmg = 0 _ranks.append(aid) pStats[str(aid)]["rank"] = int(rank) pStats[str(aid)]["scores"] = int(scores) pStats[str(aid)]["total_damage"] += float(dmg) #not working properly pStats[str(aid)]["games"] = int(games) pStats[str(aid)]["kills"] = int(kills) pStats[str(aid)]["deaths"] = int(deaths) pStats[str(aid)]["kd"] = float(p_kd) pStats[str(aid)]["avg_score"] = float(p_avg_score) # if rank < 201: # #<td>{str(dmg)}</td> #removed this line as it isn't crt data # f.write(f''' # <tr> # <td>{str(rank)}</td> # <td style="text-align:center">{str(name)}</td> # <td>{str(scores)}</td> # <td>{str(kills)}</td> # <td>{str(deaths)}</td> # <td>{str(games)}</td> # </tr>''') # f.write(''' # </table> # </body> # </html>''') # f.close() global ranks ranks=_ranks dump_stats(pStats) updateTop3Names(toppersIDs[0:3]) from playersData import pdata pdata.update_toppers(toppersIDs) def update(score_set): """ Given a Session's ScoreSet, tallies per-account kills and passes them to a background thread to process and store. """ # look at score-set entries to tally per-account kills for this round account_kills = {} account_deaths = {} account_scores = {} for p_entry in score_set.get_records().values(): account_id = p_entry.player.get_account_id() if account_id is not None: account_kills.setdefault(account_id, 0) # make sure exists account_kills[account_id] += p_entry.accum_kill_count account_deaths.setdefault(account_id, 0) # make sure exists account_deaths[account_id] += p_entry.accum_killed_count account_scores.setdefault(account_id, 0) # make sure exists account_scores[account_id] += p_entry.accumscore # Ok; now we've got a dict of account-ids and kills. # Now lets kick off a background thread to load existing scores # from disk, do display-string lookups for accounts that need them, # and write everything back to disk (along with a pretty html version) # We use a background thread so our server doesn't hitch while doing this. if account_scores: UpdateThread(account_kills, account_deaths, account_scores).start() class UpdateThread(threading.Thread): def __init__(self, account_kills, account_deaths, account_scores): threading.Thread.__init__(self) self._account_kills = account_kills self.account_deaths = account_deaths self.account_scores = account_scores def run(self): # pull our existing stats from disk import datetime try: stats=get_all_stats() except: stats={} # now add this batch of kills to our persistant stats for account_id, kill_count in self._account_kills.items(): # add a new entry for any accounts that dont have one if account_id not in stats: # also lets ask the master-server for their account-display-str. # (we only do this when first creating the entry to save time, # though it may be smart to refresh it periodically since # it may change) stats[account_id] = {'rank': 0, 'name': "deafult name", 'scores': 0, 'total_damage': 0, 'kills': 0, 'deaths': 0, 'games': 0, 'kd': 0, 'avg_score': 0, 'last_seen':str(datetime.datetime.now()), 'aid': str(account_id)} #Temporary codes to change 'name_html' to 'name' # if 'name_html' in stats[account_id]: # stats[account_id].pop('name_html') # stats[account_id]['name'] = 'default' url="http://bombsquadgame.com/bsAccountInfo?buildNumber=20258&accountID="+account_id data=urllib.request.urlopen(url) if data is not None: try: name=json.loads(data.read())["profileDisplayString"] except ValueError: stats[account_id]['name']= "???" else: stats[account_id]['name']= name # now increment their kills whether they were already there or not stats[account_id]['kills'] += kill_count stats[account_id]['deaths'] += self.account_deaths[account_id] stats[account_id]['scores'] += self.account_scores[account_id] stats[account_id]['last_seen'] = str(datetime.datetime.now()) # also incrementing the games played and adding the id stats[account_id]['games'] += 1 stats[account_id]['aid'] = str(account_id) # dump our stats back to disk tempppp = None from datetime import datetime dump_stats(stats) # aaand that's it! There IS no step 27! now = datetime.now() update_time = now.strftime("%S:%M:%H - %d %b %y") #print(f"Added {str(len(self._account_kills))} account's stats entries. || {str(update_time)}") refreshStats() def getRank(acc_id): global ranks if ranks==[]: refreshStats() if acc_id in ranks: return ranks.index(acc_id)+1 def updateTop3Names(ids): global top3Name names=[] for id in ids: url="http://bombsquadgame.com/bsAccountInfo?buildNumber=20258&accountID="+id data=urllib.request.urlopen(url) if data is not None: try: name=json.loads(data.read())["profileDisplayString"] except ValueError: names.append("???") else: names.append(name) top3Name=names
import os, re, string import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import bokeh.palettes as bp from loguru import logger from GEN_Utils import FileHandling from ProteomicsUtils import StatUtils logger.info('Import OK') input_folder = 'results/recombinant_denaturation/initial_cleanup/' output_folder = 'results/recombinant_denaturation/kinetic_fitting/' urea_conc = list(np.arange(0, 6.5, 0.5)) urea_conc.pop(-2) urea_pos = np.arange(1, len(urea_conc)+1, 1) colours = list(reversed(bp.magma(12))) if not os.path.exists(output_folder): os.mkdir(output_folder) ## Import and cleanup raw plate reader data for each sample file_list = [filename for filename in os.listdir(input_folder)] for filename in file_list: sample_name = filename.split('_')[0] cleaned_kinetic = pd.read_excel(f'{input_folder}{filename}', sheet_name=None) cleaned_kinetic.update({key: df.drop([col for col in df.columns.tolist() if 'Unnamed: ' in col], axis=1) for key, df in cleaned_kinetic.items()}) # Regenerate single df with replicate labels clean_data = pd.concat((cleaned_kinetic.values())) samples = ['TRP_1', 'TRP_2', 'TRP_3', 'TPE_1', 'TPE_2', 'TPE_3', 'TRP_control', 'TPE_control'] sample_pos = [x for x in string.ascii_uppercase[0:len(samples)]] sample_map = dict(zip(sample_pos, samples)) clean_data['replicate'] = clean_data['Well\nRow'].map(sample_map) clean_data.rename(columns={'Well\nCol':'sample_col', 'Well\nRow':'sample_row'}, inplace=True) # For TPE at each concentration of urea, collect first 9 minutes and fit with linear regression data_for_fit = {} time_range = np.arange(0, 9, 1) for replicate, df in clean_data.groupby('replicate'): ## Cleaning dataframe for plotting test_sample = df.copy().drop(['samples', 'urea', 'replicate'] , axis=1).set_index(['sample_row', 'sample_col']).T test_sample.index = [np.arange(0, 60, 1)] data_for_fit[replicate] = test_sample.loc[time_range] fit_param_dict = {} for sample in samples: fit_params = pd.DataFrame(index=['gradient', 'intercept', 'r_squared']) for x, col in enumerate(data_for_fit[sample].columns.tolist()): # Collecting data x_data = time_range.astype(float) y_data = data_for_fit[sample][col].astype(float).tolist() norm_y_data = [value - y_data[0] for value in y_data] # Calculating fit parameters x_fit, y_fit, x_data_fitted, y_data_fitted, popt, pcov = StatUtils.fit_calculator(x_data, norm_y_data, StatUtils.linear) residuals = norm_y_data - StatUtils.linear(x_data, *popt) ss_res = np.sum(residuals**2) ss_tot = np.sum((norm_y_data-np.mean(norm_y_data))**2) r_squared = 1 - (ss_res / ss_tot) fit_params[col] = list(popt) + [r_squared] fit_param_dict[sample] = fit_params sheetnames = [f'{x}' for x in list(fit_param_dict.keys())] dataframes = [df.reset_index() for df in list(fit_param_dict.values())] FileHandling.df_to_excel( f'{output_folder}{sample_name}_Norm_fit_params.xlsx', sheetnames=sheetnames, data_frames=dataframes) # ## Collecting gradients for each concentration at each sample gradients_dict = { sample: fit_param_dict[sample].loc['gradient'].reset_index(drop=True) for sample in samples } gradients = pd.DataFrame.from_dict(gradients_dict, orient='columns') gradients['urea'] = urea_conc tpe_cols = ['urea'] + [col for col in gradients.columns.tolist() if 'TPE' in col] trp_cols = ['urea'] + [col for col in gradients.columns.tolist() if 'TRP' in col] data_frames = [gradients[tpe_cols], gradients[trp_cols]] FileHandling.df_to_excel( output_path=f'{output_folder}{sample_name}_gradient_summary.xlsx', data_frames=data_frames, sheetnames=['TPE', 'TRP'])
import torch from torch import nn # Disentangle NCE loss in MoCo manner class DisNCELoss(nn.Module): def __init__(self, opt): super().__init__() self.opt = opt # feat_B for the background, feat_R for the rain # shape: (num_patches * batch_size, feature length) def forward(self, featB, featR): batch_size = self.opt.batch_size num_patches = featB.shape[0]/batch_size if featR.shape[0] != num_patches*batch_size: raise ValueError('num_patches of rain and background are not equal') # making labels labels = torch.cat([torch.ones(num_patches,1), torch.zeros(num_patches, 1)], dim=0) loss_dis_total = 0 # obtain each background and the rain layer to calculate the disentangle loss for i in range(0, batch_size): cur_featB = featB[i*num_patches:(i+1)*num_patches,:] cur_featR = featR[i*num_patches:(i+1)*num_patches,:] cur_disloss = self.cal_each_disloss(cur_featB, cur_featR, labels) loss_dis_total += cur_disloss # cur_featB: [num_patches, feature length] # labels: [num_patches*2, 1] def cal_each_disloss(cur_featB, cur_featR, labels): featFusion = torch.cat([cur_featB, cur_featR], dim=0) mask = torch.eq(labels, labels.t()).float() # contrast_count: number of all the rain and background patches contrast_feature = featFusion contrast_count = features.shape[1] anchor_feature = contrast_feature anchor_count = contrast_count # compute logits of all the elements # Denoting: zi: one sample, zl: all the other samples, zp: positives to zi, za: negatives to zi # anchor_dot_contrast = zi * zl anchor_dot_contrast = torch.div( torch.matmul(anchor_feature, contrast_feature.T), self.opt.nce_T) # for numerical stability logits_max, _ = torch.max(anchor_dot_contrast, dim=1, keepdim=True) logits = anchor_dot_contrast - logits_max.detach() # tile mask, repeat the masks to match the n_views of positives mask = mask.repeat(anchor_count, contrast_count) # mask-out self-contrast cases logits_mask = torch.ones_like(mask).scatter_(1, torch.arange(batch_size * anchor_count).view(-1, 1).to(device), 0) mask = mask * logits_mask # compute log_prob # exp_logits: exp(zi * zl) exp_logits = torch.exp(logits) * logits_mask # the meaning of sum(1): sum the cosine similarity of one sample and all the other samples # log_prob: (zi*zl) - log(sum(exp(zi,zl))) = log[exp(zi*zl) / sum(exp(zi * zl)) ] log_prob = logits - torch.log(exp_logits.sum(1, keepdim=True)) # compute mean of log-likelihood over positive # (mask * log_prob).sum(1): log [sum(exp(zi*zp)) / sum(exp(zi*zl)) ] # mask.sum(1): |P(i)| # mean_log_prob_pos: L^sup_out mean_log_prob_pos = (mask * log_prob).sum(1) / mask.sum(1) # loss loss = - (self.temperature / self.base_temperature) * mean_log_prob_pos loss = loss.view(anchor_count, batch_size).mean() return loss
#!/usr/bin/env python import argparse from collections import OrderedDict import sys from glob import glob from os.path import join, splitext, basename XRDB2REM = [ ("# Head", "\n" "[ssh_colors]" ), ("background_color", "background = "), ("cursor_color", "cursor = "), ("foreground_color", "foreground = "), ("ansi_0_color", "color0 = "), ("ansi_1_color", "color1 = "), ("ansi_2_color", "color2 = "), ("ansi_3_color", "color3 = "), ("ansi_4_color", "color4 = "), ("ansi_5_color", "color5 = "), ("ansi_6_color", "color6 = "), ("ansi_7_color", "color7 = "), ("ansi_8_color", "color8 = "), ("ansi_9_color", "color9 = "), ("ansi_10_color", "color10 = "), ("ansi_11_color", "color11 = "), ("ansi_12_color", "color12 = "), ("ansi_13_color", "color13 = "), ("ansi_14_color", "color14 = "), ("ansi_15_color", "color15 = "), ("bold_color", "colorBD = "), ("italic_color", "colorIT = "), ("underline_color", "colorUL = "), ] class XrdbEntry(object): def __init__(self, define: str, key: str, value: str, *args: str): super().__init__() self.define = define self.key = key.lower() self.value = value def commented(self): return self.define.strip().startswith("!") def convert(xrdb_colors, remmina_out=sys.stdout): remmina = OrderedDict(XRDB2REM) for xrdb_key in remmina.keys(): if xrdb_key in xrdb_colors: remmina[xrdb_key] = remmina[xrdb_key] + xrdb_colors[xrdb_key] else: remmina[xrdb_key] = remmina[xrdb_key] try: f = remmina_out if not hasattr(f, 'close'): f = open(remmina_out, 'w') for value in remmina.values(): print(value.strip(), file=f) finally: if f != sys.stdout: f.close() def read_xrdb(itermcolors_input=sys.stdin): xrdb_colors = dict() try: f = itermcolors_input if not hasattr(f, 'close'): f = open(itermcolors_input, 'r') for line in f: xrdb_entry = XrdbEntry(*line.split()) if not xrdb_entry.commented(): xrdb_colors.setdefault(xrdb_entry.key, xrdb_entry.value) finally: f.close() return xrdb_colors def main(xrdb_path, output_path=None): for f in glob(join(xrdb_path, '*.xrdb')): xrdb_in = read_xrdb(f) base_name = splitext(basename(f))[0] remmina_out = output_path and join(output_path, base_name + '.colors') or sys.stdout convert(xrdb_in, remmina_out) if __name__ == '__main__': parser = argparse.ArgumentParser( description='Translate X color schemes to Remmina .colors format') parser.add_argument('xrdb_path', type=str, help='path to xrdb files') parser.add_argument('-d', '--out-directory', type=str, dest='output_path', help='path where Remmina .colors config files will be' + ' created, if not provided then will be printed') args = parser.parse_args() main(args.xrdb_path, args.output_path)
"""Store version constants.""" MAJOR_VERSION = 0 MINOR_VERSION = 17 PATCH_VERSION = '0' __version__ = '{}.{}.{}'.format(MAJOR_VERSION, MINOR_VERSION, PATCH_VERSION)
""" Support for reading and writing the `AXT`_ format used for pairwise alignments. .. _AXT: http://genome.ucsc.edu/goldenPath/help/axt.html """ from bx.align import * import itertools from bx import interval_index_file # Tools for dealing with pairwise alignments in AXT format class MultiIndexed( object ): """Similar to 'indexed' but wraps more than one axt_file""" def __init__( self, axt_filenames, keep_open=False ): self.indexes = [ Indexed( axt_file, axt_file + ".index" ) for axt_file in axt_filenames ] def get( self, src, start, end ): blocks = [] for index in self.indexes: blocks += index.get( src, start, end ) return blocks class Indexed( object ): """Indexed access to a axt using overlap queries, requires an index file""" def __init__( self, axt_filename, index_filename=None, keep_open=False, species1 = None, species2=None, species_to_lengths=None, support_ids=False ): if index_filename is None: index_filename = axt_filename + ".index" self.indexes = interval_index_file.Indexes( filename=index_filename ) self.axt_filename = axt_filename # nota bene: (self.species1 = species1 or "species1") is incorrect if species1="" self.species1 = species1 if (self.species1 == None): self.species1 = "species1" self.species2 = species2 if (self.species2 == None): self.species2 = "species2" self.species_to_lengths = species_to_lengths self.support_ids = support_ids # for extra text at end of axt header lines if keep_open: self.f = open( axt_filename ) else: self.f = None def get( self, src, start, end ): intersections = self.indexes.find( src, start, end ) return itertools.imap( self.get_axt_at_offset, [ val for start, end, val in intersections ] ) def get_axt_at_offset( self, offset ): if self.f: self.f.seek( offset ) return read_next_axt( self.f, self.species1, self.species2, self.species_to_lengths, self.support_ids ) else: f = open( self.axt_filename ) try: f.seek( offset ) return read_next_axt( f, self.species1, self.species2, self.species_to_lengths, self.support_ids ) finally: f.close() class Reader( object ): """Iterate over all axt blocks in a file in order""" def __init__( self, file, species1 = None, species2=None, species_to_lengths=None, support_ids=False ): self.file = file # nota bene: (self.species1 = species1 or "species1") is incorrect if species1="" self.species1 = species1 if (self.species1 == None): self.species1 = "species1" self.species2 = species2 if (self.species2 == None): self.species2 = "species2" self.species_to_lengths = species_to_lengths self.support_ids = support_ids # for extra text at end of axt header lines self.attributes = {} def next( self ): return read_next_axt( self.file, self.species1, self.species2, self.species_to_lengths, self.support_ids ) def __iter__( self ): return ReaderIter( self ) def close( self ): self.file.close() class ReaderIter( object ): def __init__( self, reader ): self.reader = reader def __iter__( self ): return self def next( self ): v = self.reader.next() if not v: raise StopIteration return v class Writer( object ): def __init__( self, file, attributes={} ): self.file = file self.block = 0 self.src_split = True if ("src_split" in attributes): self.src_split = attributes["src_split"] def write( self, alignment ): if (len(alignment.components) != 2): raise ValueError("%d-component alignment is not compatible with axt" % \ len(alignment.components)) c1 = alignment.components[0] c2 = alignment.components[1] if c1.strand != "+": c1 = c1.reverse_complement() c2 = c2.reverse_complement() if (self.src_split): spec1,chr1 = src_split( c1.src ) spec2,chr2 = src_split( c2.src ) else: chr1,chr2 = c1.src,c2.src self.file.write( "%d %s %d %d %s %d %d %s %s\n" % \ (self.block,chr1,c1.start+1,c1.start+c1.size, chr2,c2.start+1,c2.start+c2.size,c2.strand, alignment.score)) self.file.write( "%s\n" % c1.text ) self.file.write( "%s\n" % c2.text ) self.file.write( "\n" ) self.block += 1 def close( self ): self.file.close() # ---- Helper methods --------------------------------------------------------- # typical axt block: # 0 chr19 3001012 3001075 chr11 70568380 70568443 - 3500 [optional text] # TCAGCTCATAAATCACCTCCTGCCACAAGCCTGGCCTGGTCCCAGGAGAGTGTCCAGGCTCAGA # TCTGTTCATAAACCACCTGCCATGACAAGCCTGGCCTGTTCCCAAGACAATGTCCAGGCTCAGA # start and stop are origin-1, inclusive # first species is always on plus strand # when second species is on minus strand, start and stop are counted from sequence end def read_next_axt( file, species1, species2, species_to_lengths=None, support_ids=False ): line = readline( file, skip_blank=True ) if not line: return fields = line.split() if (len(fields) < 9) or ((not support_ids) and (len(fields) > 9)): raise ValueError("bad axt-block header: %s" % line) attributes = {} if (len(fields) > 9): attributes["id"] = "_".join(fields[9:]) seq1 = readline( file ) if not line or line.isspace(): raise ValueError("incomplete axt-block; header: %s" % line) seq2 = readline( file ) if not line or line.isspace(): raise ValueError("incomplete axt-block; header: %s" % line) # Build 2 component alignment alignment = Alignment(attributes=attributes,species_to_lengths=species_to_lengths) # Build component for species 1 component = Component() component.src = fields[1] if (species1 != ""): component.src = species1 + "." + component.src component.start = int( fields[2] ) - 1 # (axt intervals are origin-1 end = int( fields[3] ) # and inclusive on both ends) component.size = end - component.start component.strand = "+" component.text = seq1.strip() alignment.add_component( component ) # Build component for species 2 component = Component() component.src = fields[4] if (species2 != ""): component.src = species2 + "." + component.src component.start = int( fields[5] ) - 1 end = int( fields[6] ) component.size = end - component.start component.strand = fields[7] component.text = seq2.strip() alignment.add_component( component ) # add score try: alignment.score = int( fields[8] ) except: try: alignment.score = float( fields[8] ) except: alignment.score = fields[8] return alignment def readline( file, skip_blank=False ): """Read a line from provided file, skipping any blank or comment lines""" while 1: line = file.readline() if not line: return None if line[0] != '#' and not ( skip_blank and line.isspace() ): return line
import math import pickle import time from functools import wraps import cv2 import matplotlib.image as mpimg import matplotlib.pyplot as plt import numpy as np import scipy.ndimage ### define profilers (https://stackoverflow.com/questions/3620943/measuring-elapsed-time-with-the-time-module) PROF_DATA = {} def profile(fn): @wraps(fn) def with_profiling(*args, **kwargs): start_time = time.time() ret = fn(*args, **kwargs) elapsed_time = time.time() - start_time if fn.__name__ not in PROF_DATA: PROF_DATA[fn.__name__] = [0, []] PROF_DATA[fn.__name__][0] += 1 PROF_DATA[fn.__name__][1].append(elapsed_time) return ret return with_profiling def print_prof_data(): for fname, data in PROF_DATA.items(): max_time = max(data[1]) avg_time = sum(data[1]) / len(data[1]) print("Function %s called %d times. " % (fname, data[0])) print('Execution time max: %.3f, average: %.3f' % (max_time, avg_time)) def clear_prof_data(): global PROF_DATA PROF_DATA = {} ### end of profiler class Gradient(): def __init__(self, sobel_kernel=3, sx_thresh=(20,100), s_thresh=(170,255)): self.sobel_kernel = sobel_kernel self.sx_thresh = sx_thresh self.s_thresh = s_thresh def setSobelKernel(self, sobel_kernel): self.sobel_kernel = sobel_kernel def setSThresh(self, s_thresh): self.s_thresh = s_thresh def setSXThresh(self,sx_thresh): self.sx_thresh = sx_thresh def preprocess(self, img): pass class AbsGrad(Gradient): """Calculate directional gradient""" def preprocess(self, img): gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) # Apply x direction sobel = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=self.sobel_kernel) abs_sobel = np.absolute(sobel) scaled_sobel = np.uint8(255 * abs_sobel / np.max(abs_sobel)) sxbinary = np.zeros_like(scaled_sobel) sxbinary[(scaled_sobel >= self.sx_thresh[0]) & (scaled_sobel <= self.sx_thresh[1])] = 1 return sxbinary class MagGrad(Gradient): """Calculate gradient magnitude""" def preprocess(self, img): gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) # 2) Take the gradient in x and y separately sobelx = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=self.sobel_kernel) sobely = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=self.sobel_kernel) # 3) Calculate the magnitude mag = np.sqrt(np.square(sobelx) + np.square(sobely)) # 4) Scale to 8-bit (0 - 255) and convert to type = np.uint8 scaled_mag = np.uint8(255 * mag / np.max(mag)) # 5) Create a binary mask where mag thresholds are met sxbinary = np.zeros_like(scaled_mag) sxbinary[(scaled_mag >= self.sx_thresh[0]) & (scaled_mag <= self.sx_thresh[1])] = 1 return sxbinary class DirGrad(Gradient): """Calculate gradient direction""" def preprocess(self, img): # 1) Convert to grayscale gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) # 2) Take the gradient in x and y separately sobelx = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=self.sobel_kernel) sobely = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=self.sobel_kernel) # 3) Take the absolute value of the x and y gradients abs_sobelx = np.absolute(sobelx) abs_sobely = np.absolute(sobely) # 4) Use np.arctan2(abs_sobely, abs_sobelx) to calculate the direction of the gradient dir = np.arctan2(abs_sobely, abs_sobelx) # 5) Create a binary mask where direction thresholds are met sxbinary = np.zeros_like(dir) sxbinary[(dir >= self.sx_thresh[0]) & (dir <= self.sx_thresh[1])] = 1 # 6) Return this mask as your binary_output image return sxbinary class SXGrad(Gradient): """Calculate S-Channel and X directional sobel gradient""" def preprocess(self, img): # grayscale image gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) # sobel operation applied to x axis sobelx = cv2.Sobel(gray, cv2.CV_64F, 1, 0) # Get absolute values abs_sobelx = np.absolute(sobelx) # Scale to (0, 255) scaled_sobel = np.uint8(255 * abs_sobelx / np.max(abs_sobelx)) sxbinary = np.zeros_like(scaled_sobel) sxbinary[(scaled_sobel >= self.sx_thresh[0]) & (scaled_sobel <= self.sx_thresh[1])] = 1 # Get HLS color image hls = cv2.cvtColor(img, cv2.COLOR_RGB2HLS).astype(np.float) # Get s-channel s_channel = hls[:, :, 2] s_binary = np.zeros_like(s_channel) s_binary[(s_channel >= self.s_thresh[0]) & (s_channel <= self.s_thresh[1])] = 1 # Combine grayscale and color gradient combined_binary = np.zeros_like(sxbinary) combined_binary[(s_binary == 1) | (sxbinary == 1)] = 1 return combined_binary class SChannelGrad(Gradient): def preprocess(self, img): # Get HLS color image hls = cv2.cvtColor(img, cv2.COLOR_RGB2HLS).astype(np.float) # Get s-channel s_channel = hls[:, :, 2] s_binary = np.zeros_like(s_channel) s_binary[(s_channel >= self.s_thresh[0]) & (s_channel <= self.s_thresh[1])] = 1 return s_binary class LightAutoGrad(Gradient): def preprocess(self, img): # grayscale image gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) mean_gray = np.mean(gray) # sobel operation applied to x axis sobelx = cv2.Sobel(gray, cv2.CV_64F, 1, 0) # Get absolute values abs_sobelx = np.absolute(sobelx) # Scale to (0, 255) scaled_sobel = np.uint8(255 * abs_sobelx / np.max(abs_sobelx)) sxbinary = np.zeros_like(scaled_sobel) sxbinary[(scaled_sobel >= self.sx_thresh[0]) & (scaled_sobel <= self.sx_thresh[1])] = 1 # Get HLS color image hls = cv2.cvtColor(img, cv2.COLOR_RGB2HLS).astype(np.float) if mean_gray > 80: # Get s-channel s_channel = hls[:, :, 2] else:# Dark emvironment # Get l-channel s_channel = hls[:, :, 1] s_binary = np.zeros_like(s_channel) s_binary[(s_channel >= self.s_thresh[0]) & (s_channel <= self.s_thresh[1])] = 1 # Combine grayscale and color gradient combined_binary = np.zeros_like(sxbinary) combined_binary[(s_binary == 1) | (sxbinary == 1)] = 1 return combined_binary # Define a class to receive the characteristics of each line detection class Line(): def __init__(self): # was the line detected in the last iteration? self.detected = False # Save n fits self.N = 5 # Margin self.margin = 50 # x values of the last n fits of the line self.recent_xfitted = [] # average x values of the fitted line over the last n iterations self.bestx = None # polynomial coefficients of the last n iterations self.fits = [] # polynomial coefficients averaged over the last n iterations self.best_fit = None # save polynomial coeffs of last iteration self.last_fit = None # polynomial coefficients for the most recent fit self.current_fit = [np.array([False])] # radius of curvature of the line in some units self.radius_of_curvature = None # distance in meters of vehicle center from the line self.line_base_pos = None # difference in fit coefficients between last and new fits self.diffs = np.array([0,0,0], dtype='float') # x values for detected line pixels self.allx = None # y values for detected line pixels self.ally = None self.MaxFail = 5 self.fail_num = 0 def get_init_xy(self, base, binary_warped): """Get initial valid pixel coordinates""" out_img = np.dstack((binary_warped, binary_warped, binary_warped)) * 255 # Choose the number of sliding windows nwindows = 9 # Set height of windows window_height = np.int(binary_warped.shape[0] / nwindows) # Identify the x and y positions of all nonzero pixels in the image nonzero = binary_warped.nonzero() nonzeroy = np.array(nonzero[0]) nonzerox = np.array(nonzero[1]) # Current positions to be updated for each window x_current = base # Set the width of the windows +/- margin margin = self.margin # Set minimum number of pixels found to recenter window minpix = 50 # Create empty lists to receive left and right lane pixel indices lane_inds = [] # Step through the windows one by one for window in range(nwindows): # Identify window boundaries in x and y (and right and left) win_y_low = binary_warped.shape[0] - (window + 1) * window_height win_y_high = binary_warped.shape[0] - window * window_height win_x_low = x_current - margin win_x_high = x_current + margin # Draw the windows on the visualization image cv2.rectangle(out_img, (win_x_low, win_y_low), (win_x_high, win_y_high), (0, 255, 0), 2) # Identify the nonzero pixels in x and y within the window good_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) & (nonzerox >= win_x_low) & (nonzerox < win_x_high)).nonzero()[0] # Append these indices to the lists lane_inds.append(good_inds) # If you found > minpix pixels, recenter next window on their mean position if len(good_inds) > minpix: x_current = np.int(np.mean(nonzerox[good_inds])) # Concatenate the arrays of indices lane_inds = np.concatenate(lane_inds) # Extract left and right line pixel positions x = nonzerox[lane_inds] y = nonzeroy[lane_inds] self.allx = x self.ally = y def get_ctn_xy(self, binary_warped): """Get valid pixel coordinates from previous detection""" # Update last fit self.last_fit = self.current_fit # we know where the lines are in the previous frame nonzero = binary_warped.nonzero() nonzeroy = np.array(nonzero[0]) nonzerox = np.array(nonzero[1]) margin = self.margin fit = self.current_fit lane_inds = ((nonzerox > (fit[0] * (nonzeroy ** 2) + fit[1] * nonzeroy + fit[2] - margin)) & (nonzerox < (fit[0] * (nonzeroy ** 2) + fit[1] * nonzeroy + fit[ 2] + margin))) # Extract left and right line pixel positions x = nonzerox[lane_inds] y = nonzeroy[lane_inds] self.allx = x self.ally = y def setNum(self, n): self.N = n def test(self): print("Line prints here.") class KalmanFilter(): """Implement a simple Kalman filter""" def __init__(self, n_in, q=(1,1,1), R=(1,1,1)): self.P = np.array(q) # np.array([[q[0],0,0],[0,q[1],0],[0,0,q[2]]], np.float64) self.R = np.array(R) # np.array([[R[0],0,0],[0,R[1],0],[0,0,R[2]]], np.float64) self.K = None self.P_pr = None self.X = np.zeros((n_in, ), np.float64) self.Init = False def update(self, X_e): if not self.Init: self.Init = True self.X = X_e self.X_pr = self.X self.P_pr = self.P return self.X.flatten() for i in range(3): xe = X_e[i] self.X_pr[i] = self.X[i] K = self.P_pr[i]/(self.P_pr[i]+self.R[i]) self.X[i] = self.X_pr[i]+K*(X_e[i]-self.X_pr[i]) self.P[i] = (1-K)*self.P_pr[i] return self.X.flatten() X_e = X_e[:,None] # time update self.X_pr = self.X self.P_pr = self.P # time update self.K = self.P_pr * np.linalg.inv(self.P_pr + self.R) self.X = self.X_pr + np.matmul(self.K, (X_e-self.X_pr)) self.P = np.matmul((np.eye(3)-self.K), self.P_pr) return self.X.flatten() def updatebk(self, X_e): if ~self.Init: self.Init = True self.X = X_e[:, None] self.X_pr = self.X return self.X.flatten() X_e = X_e[:,None] # time update self.X_pr = self.X self.P_pr = self.P # time update self.K = np.matmul(self.P_pr, np.linalg.inv(self.P_pr + self.R)) self.X = self.X_pr + np.matmul(self.K, (X_e-self.X_pr)) self.P = np.matmul((np.eye(3)-self.K), self.P_pr) return self.X.flatten() def setPR(self,P,R): self.P = P self.R = R def printState(self): print('X=', self.X) class Detector(): def __init__(self, mtx, dist, M, Minv, sx_thresh=(20,100), s_thresh=(170,255)): """Initialization of lane line detector object""" # Set camera calibration and warp perspective self.CameraMatrix = mtx self.Distortion = dist self.WarpMatrix = M self.WarpMatrixInv = Minv self.Gradient = Gradient() self.setBinaryFun(3) self.LeftLine = Line() self.RightLine = Line() self.KFLeft = KalmanFilter(3, q=(4e-8, 1e-2, 100), R=(1e-4, 1, 10000)) self.KFRight = KalmanFilter(3, q=(4e-8, 1e-2, 100), R=(1e-4, 1, 10000)) self.UseKalmanFilter = True # Set lane line detection uninitialized self.InitializedLD = False # cache the states of last 5 iterations self.cacheNum = 5 self.ploty = None self.distTop = 0 self.dist_to_left = 0 self.dist_to_center = 0 self.distButtom = 0 self.img = None self.undist = None self.margin = 50 # Define conversions in x and y from pixels space to meters self.ym_per_pix = 30 / 720 # meters per pixel in y dimension self.xm_per_pix = 3.7 / 700 # meters per pixel in x dimension self.FitLeft = [] self.FitRight = [] self.debug = False self.CurvtRatio = 0 # self.pool = ThreadPool(processes=1) def setMargin(self,margin): self.margin = margin self.LeftLine.margin = margin self.RightLine.margin =margin def switchKF(self, status): self.UseKalmanFilter = status def setMaxFail(self, mf): self.LeftLine.MaxFail = mf self.RightLine.MaxFail = mf def setBinaryFun(self, flag=0): """Set the method to generate binary gradient output of a RGB image""" if flag==0: self.Gradient = AbsGrad() elif flag==1: self.Gradient = MagGrad() elif flag==2: self.Gradient = DirGrad() elif flag==3: self.Gradient = SXGrad() elif flag==4: self.Gradient = SChannelGrad() elif flag==5: self.Gradient = LightAutoGrad() else: raise 'Invalid flag:'+str(flag) @profile def performBinary(self, img): """Get the binary gradient output of a RGB image""" return self.Gradient.preprocess(img) @profile def get_xy_pvalue(self, binary_warped): """Get the xy pixel values for fitting""" if self.LeftLine.detected: self.LeftLine.get_ctn_xy(binary_warped) else: ploty = np.linspace(0, binary_warped.shape[0] - 1, binary_warped.shape[0]) self.ploty = ploty histogram = np.sum(binary_warped[binary_warped.shape[0] // 2:, :], axis=0) midpoint = np.int(histogram.shape[0] / 2) leftx_base = np.argmax(histogram[:midpoint]) self.LeftLine.get_init_xy(leftx_base, binary_warped) if self.RightLine.detected: self.RightLine.get_ctn_xy(binary_warped) else: histogram = np.sum(binary_warped[binary_warped.shape[0] // 2:, :], axis=0) midpoint = np.int(histogram.shape[0] / 2) rightx_base = np.argmax(histogram[midpoint:]) + midpoint self.RightLine.get_init_xy(rightx_base, binary_warped) @profile def detect(self, img): """Detect lane lines on an image""" self.img = img # preprocessing img self.undist = self._undistort(img) warped = self._warp(self.undist) if self.debug: db_gray = cv2.cvtColor(warped, cv2.COLOR_RGB2GRAY) print('Mean gray = ', np.mean(db_gray)) binary_warped = self.performBinary(warped) binary_warped = self._gaussian_blur(binary_warped) # Get valid pixel coordinates self.get_xy_pvalue(binary_warped) # Fit a second order polynomial to each left_fit = np.polyfit(self.LeftLine.ally, self.LeftLine.allx, 2) right_fit = np.polyfit(self.RightLine.ally, self.RightLine.allx, 2) if self.UseKalmanFilter: left_fit = self.KFLeft.update(left_fit) right_fit = self.KFRight.update(right_fit) self.sanityCheck(left_fit, right_fit) self.update() output = self.visualizeInput() binOut = self.visualizeDetection(binary_warped) # height = output.shape[0] width = output.shape[1] scaleDown = 0.4 height_s = math.floor(binOut.shape[0]*scaleDown) width_s = math.floor(binOut.shape[1]*scaleDown) binOut = cv2.resize(binOut, (width_s, height_s)) output[0:height_s, (width-width_s):width,:] = binOut return output @profile def visualizeDetection(self, img): """Plot the detection result on the warped binary image""" # Create an image to draw on and an image to show the selection window if len(img.shape) > 2: out_img = np.copy(img) else: out_img = np.dstack((img, img, img)) * 255 window_img = np.zeros_like(out_img) # Color in left and right line pixels #out_img[nonzeroy[left_lane_inds], nonzerox[left_lane_inds]] = [255, 0, 0] #out_img[nonzeroy[right_lane_inds], nonzerox[right_lane_inds]] = [0, 0, 255] left_fit = self.LeftLine.current_fit right_fit = self.RightLine.current_fit ploty = self.ploty left_fitx = self.LeftLine.recent_xfitted[-1] right_fitx = self.RightLine.recent_xfitted[-1] margin = self.margin # Generate a polygon to illustrate the search window area # And recast the x and y points into usable format for cv2.fillPoly() left_line_window1 = np.array([np.transpose(np.vstack([left_fitx - margin, ploty]))]) left_line_window2 = np.array([np.flipud(np.transpose(np.vstack([left_fitx + margin, ploty])))]) left_line_pts = np.hstack((left_line_window1, left_line_window2)) right_line_window1 = np.array([np.transpose(np.vstack([right_fitx - margin, ploty]))]) right_line_window2 = np.array([np.flipud(np.transpose(np.vstack([right_fitx + margin, ploty])))]) right_line_pts = np.hstack((right_line_window1, right_line_window2)) # Draw the lane onto the warped blank image cv2.fillPoly(window_img, np.int_([left_line_pts]), (0, 255, 0)) cv2.fillPoly(window_img, np.int_([right_line_pts]), (0, 255, 0)) result = cv2.addWeighted(out_img, 1, window_img, 0.3, 0) width = img.shape[1] result[ploty.astype(np.int32), left_fitx.astype(np.int32) % width] = [255, 0, 0] result[ploty.astype(np.int32), (left_fitx.astype(np.int32)-1) % width ] = [255, 0, 0] result[ploty.astype(np.int32), (left_fitx.astype(np.int32)+1) % width] = [255, 0, 0] result[ploty.astype(np.int32), right_fitx.astype(np.int32) % width] = [255, 0, 0] result[ploty.astype(np.int32), (right_fitx.astype(np.int32)-1) % width] = [255, 0, 0] result[ploty.astype(np.int32), (right_fitx.astype(np.int32)+1) % width] = [255, 0, 0] result[self.LeftLine.ally, self.LeftLine.allx] = [0, 0, 255] result[self.RightLine.ally, self.RightLine.allx] = [0, 0, 255] if self.debug: plt.imshow(result) plt.plot(left_fitx, ploty, color='yellow') plt.plot(right_fitx, ploty, color='yellow') plt.xlim(0, 1280) plt.ylim(720, 0) plt.show() return result @profile def visualizeInput(self): """Plot the result on the input RGB image""" # Create an image to draw the lines on color_warp = np.zeros_like(self.img).astype(np.uint8) #color_warp = np.dstack((warp_zero, warp_zero, warp_zero)) left_fitx = self.LeftLine.recent_xfitted[-1] right_fitx = self.RightLine.recent_xfitted[-1] ploty = self.ploty # Recast the x and y points into usable format for cv2.fillPoly() pts_left = np.array([np.transpose(np.vstack([left_fitx, ploty]))]) pts_right = np.array([np.flipud(np.transpose(np.vstack([right_fitx, ploty])))]) pts = np.hstack((pts_left, pts_right)) # Draw the lane onto the warped blank image cv2.fillPoly(color_warp, np.int_([pts]), (0, 255, 0)) # Warp the blank back to original image space using inverse perspective matrix (Minv) newwarp = self._invwarp(color_warp) # Combine the result with the original image result = cv2.addWeighted(self.undist, 1, newwarp, 0.3, 0) cv2.putText(result, "Radius of curvature = {:4d}m".format(math.floor(self.LeftLine.radius_of_curvature)), (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, 255, thickness=2) cv2.putText(result, "Distance to center = {:3.2f}m".format(self.dist_to_center), (10, 60), cv2.FONT_HERSHEY_SIMPLEX, 1, 255, thickness=2) cv2.putText(result, "CvtRatio = {:3.2f}".format(self.CurvtRatio), (10, 90), cv2.FONT_HERSHEY_SIMPLEX, 1, 255, thickness=2) cv2.putText(result, "Failed {:d} times".format(self.LeftLine.fail_num), (10, 120), cv2.FONT_HERSHEY_SIMPLEX, 1, 255, thickness=2) if not self.InitializedLD: cv2.putText(result, "Reset detection", (10, 150), cv2.FONT_HERSHEY_SIMPLEX, 1, 255, thickness=2) return result.astype(np.uint8) @profile def getCurvature(self, left_fit, right_fit): """Calculate curvature of two lines""" # Fit new polynomials to x,y in world space ploty = self.ploty ym_per_pix = self.ym_per_pix xm_per_pix = self.xm_per_pix leftx = left_fit[0] * ploty ** 2 + left_fit[1] * ploty + left_fit[2] rightx = right_fit[0] * ploty ** 2 + right_fit[1] * ploty + right_fit[2] y_eval = np.max(ploty) left_fit_cr = np.polyfit(ploty * ym_per_pix, leftx * xm_per_pix, 2) right_fit_cr = np.polyfit(ploty * ym_per_pix, rightx * xm_per_pix, 2) # Calculate the new radii of curvature left_curverad = ((1 + (2 * left_fit_cr[0] * y_eval * ym_per_pix + left_fit_cr[1]) ** 2) ** 1.5) / \ np.absolute(2 * left_fit_cr[0]) right_curverad = ((1 + (2 * right_fit_cr[0] * y_eval * ym_per_pix + right_fit_cr[1]) ** 2) ** 1.5) / \ np.absolute(2 * right_fit_cr[0]) return left_curverad, right_curverad def get_dist_to_left(self): xm_per_pix = self.xm_per_pix dist_to_left = xm_per_pix * (self.img.shape[1] / 2 - self.LeftLine.recent_xfitted[-1][-1]) return dist_to_left def get_dist_to_center(self): xm_per_pix = self.xm_per_pix dist_to_top = xm_per_pix * (self.img.shape[1] / 2 - (self.LeftLine.recent_xfitted[-1][-1] + self.RightLine.recent_xfitted[-1][-1])/2) return dist_to_top def distance(self): print("The distance of two lines is .") return 1.0 def sanityCheck(self, left_fit, right_fit): self.LeftLine.diffs = left_fit - self.LeftLine.current_fit self.RightLine.diffs = right_fit - self.RightLine.current_fit curvts = self.getCurvature(left_fit, right_fit) curvts = np.absolute(curvts) ratio = np.max(curvts)/np.min(curvts) self.CurvtRatio = ratio ploty = self.ploty left_fitx = left_fit[0] * ploty ** 2 + left_fit[1] * ploty + left_fit[2] right_fitx = right_fit[0] * ploty ** 2 + right_fit[1] * ploty + right_fit[2] dmax = np.max(np.absolute(left_fitx - right_fitx)) dmin = np.min(np.absolute(left_fitx - right_fitx)) self.LeftLine.current_fit = left_fit self.RightLine.current_fit = right_fit a1 = 0.1 a2 = 1 - a1 if ratio > 5 or (dmax > 900 or dmin < 400): # or (dmax-dmin)/dmin > 0.5 self.LeftLine.fail_num += 1 # Smooth the result N = self.LeftLine.N self.LeftLine.current_fit = a1 * self.LeftLine.current_fit + a2 * np.mean(np.array(self.LeftLine.fits), axis=0) self.RightLine.current_fit = a1 * self.RightLine.current_fit + a2 * np.mean(np.array(self.RightLine.fits), axis=0) else: self.InitializedLD = True self.LeftLine.detected = True self.RightLine.detected = True self.LeftLine.fail_num = 0 if len(self.LeftLine.recent_xfitted)>0: if np.max(np.absolute(left_fitx - self.LeftLine.recent_xfitted[-1]))>70: self.LeftLine.current_fit = a1 * self.LeftLine.current_fit + \ a2 * np.mean(np.array(self.LeftLine.fits), axis=0) else: self.LeftLine.current_fit = left_fit self.LeftLine.recent_xfitted.append(left_fitx) if len(self.RightLine.recent_xfitted)>0: if np.max(np.absolute(right_fitx - self.RightLine.recent_xfitted[-1]))>70: self.RightLine.current_fit = a1 * self.RightLine.current_fit + \ a2 * np.mean(np.array(self.RightLine.fits), axis=0) else: self.RightLine.current_fit = right_fit self.RightLine.recent_xfitted.append(right_fitx) # Pushback states if len(self.LeftLine.fits) < self.LeftLine.N: self.LeftLine.fits.append(self.LeftLine.current_fit) else: self.LeftLine.fits.pop(0) self.LeftLine.fits.append(self.LeftLine.current_fit) if len(self.RightLine.fits) < self.RightLine.N: self.RightLine.fits.append(self.RightLine.current_fit) else: self.RightLine.fits.pop(0) self.RightLine.fits.append(self.RightLine.current_fit) def update(self): self.FitLeft.append(self.LeftLine.current_fit) self.FitRight.append(self.RightLine.current_fit) curvts = self.getCurvature(self.LeftLine.current_fit, self.RightLine.current_fit) self.LeftLine.radius_of_curvature = curvts[0] self.RightLine.radius_of_curvature = curvts[1] left_fit = self.LeftLine.current_fit right_fit = self.RightLine.current_fit ploty = self.ploty left_fitx = left_fit[0] * ploty ** 2 + left_fit[1] * ploty + left_fit[2] right_fitx = right_fit[0] * ploty ** 2 + right_fit[1] * ploty + right_fit[2] if len(self.LeftLine.recent_xfitted) < self.LeftLine.N: self.LeftLine.recent_xfitted.append(left_fitx) else: self.LeftLine.recent_xfitted.pop(0) self.LeftLine.recent_xfitted.append(left_fitx) if len(self.RightLine.recent_xfitted) < self.RightLine.N: self.RightLine.recent_xfitted.append(right_fitx) else: self.RightLine.recent_xfitted.pop(0) self.RightLine.recent_xfitted.append(right_fitx) self.dist_to_left = self.get_dist_to_left() self.dist_to_center = self.get_dist_to_center() def setKF_PR(self,P,R): self.KFLeft.setPR(P, R) self.KFRight.setPR(P,R) def _gaussian_blur(self, img, kernel_size=5): """Applies a Gaussian Noise kernel""" return cv2.GaussianBlur(img, (kernel_size, kernel_size), 0) @profile def _undistort(self, img): """Apply image undistortion""" return cv2.undistort(img, self.CameraMatrix, self.Distortion, None, self.CameraMatrix) @profile def _warp(self, img): """Apply image warp transformation""" return cv2.warpPerspective(img, self.WarpMatrix, (img.shape[1], img.shape[0])) def _invwarp(self, img): """Apply image inverse warp transformation""" return cv2.warpPerspective(img, self.WarpMatrixInv, (img.shape[1], img.shape[0])) @profile def _zoomImg(self, img, scale): return scipy.ndimage.zoom(img, scale) def plotFit(self): self._plotFit(self.FitLeft) self._plotFit(self.FitRight) def _plotFit(self, fits): x = np.array(fits) L = x.shape[0] t = np.arange(0,L,1) plt.figure(1) plt.subplot(311) plt.plot(t, x[:, 0]) plt.title('fit[0]') plt.grid(True) plt.subplot(312) plt.plot(t, x[:, 1]) plt.title('fit[1]') plt.grid(True) plt.subplot(313) plt.plot(t, x[:, 2]) plt.title('fit[2]') plt.grid(True) plt.show() def initDetection(self, binary_warped): """Initialize the detection""" self.InitializedLD = True # Create an output image to draw on and visualize the result out_img = np.dstack((binary_warped, binary_warped, binary_warped)) * 255 # Find the peak of the left and right halves of the histogram # These will be the starting point for the left and right lines histogram = np.sum(binary_warped[binary_warped.shape[0] // 2:, :], axis=0) midpoint = np.int(histogram.shape[0] / 2) leftx_base = np.argmax(histogram[:midpoint]) rightx_base = np.argmax(histogram[midpoint:]) + midpoint # Choose the number of sliding windows nwindows = 9 # Set height of windows window_height = np.int(binary_warped.shape[0] / nwindows) # Identify the x and y positions of all nonzero pixels in the image nonzero = binary_warped.nonzero() nonzeroy = np.array(nonzero[0]) nonzerox = np.array(nonzero[1]) # Current positions to be updated for each window leftx_current = leftx_base rightx_current = rightx_base # Set the width of the windows +/- margin margin = self.margin # Set minimum number of pixels found to recenter window minpix = 50 # Create empty lists to receive left and right lane pixel indices left_lane_inds = [] right_lane_inds = [] # Step through the windows one by one for window in range(nwindows): # Identify window boundaries in x and y (and right and left) win_y_low = binary_warped.shape[0] - (window + 1) * window_height win_y_high = binary_warped.shape[0] - window * window_height win_xleft_low = leftx_current - margin win_xleft_high = leftx_current + margin win_xright_low = rightx_current - margin win_xright_high = rightx_current + margin # Draw the windows on the visualization image cv2.rectangle(out_img, (win_xleft_low, win_y_low), (win_xleft_high, win_y_high), (0, 255, 0), 2) cv2.rectangle(out_img, (win_xright_low, win_y_low), (win_xright_high, win_y_high), (0, 255, 0), 2) # Identify the nonzero pixels in x and y within the window good_left_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) & (nonzerox >= win_xleft_low) & (nonzerox < win_xleft_high)).nonzero()[0] good_right_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) & (nonzerox >= win_xright_low) & (nonzerox < win_xright_high)).nonzero()[0] # Append these indices to the lists left_lane_inds.append(good_left_inds) right_lane_inds.append(good_right_inds) # If you found > minpix pixels, recenter next window on their mean position if len(good_left_inds) > minpix: leftx_current = np.int(np.mean(nonzerox[good_left_inds])) if len(good_right_inds) > minpix: rightx_current = np.int(np.mean(nonzerox[good_right_inds])) # Concatenate the arrays of indices left_lane_inds = np.concatenate(left_lane_inds) right_lane_inds = np.concatenate(right_lane_inds) # Extract left and right line pixel positions leftx = nonzerox[left_lane_inds] lefty = nonzeroy[left_lane_inds] rightx = nonzerox[right_lane_inds] righty = nonzeroy[right_lane_inds] # Fit a second order polynomial to each left_fit = np.polyfit(lefty, leftx, 2) right_fit = np.polyfit(righty, rightx, 2) # Update states of left and right lines self.LeftLine.current_fit = left_fit self.LeftLine.line_base_pos = leftx_base self.LeftLine.allx = leftx self.LeftLine.ally = lefty self.RightLine.current_fit = right_fit self.RightLine.line_base_pos = rightx_base self.RightLine.allx = rightx self.RightLine.ally = righty ploty = np.linspace(0, binary_warped.shape[0] - 1, binary_warped.shape[0]) self.ploty = ploty # Generate x and y values for plotting ploty = np.linspace(0, binary_warped.shape[0] - 1, binary_warped.shape[0]) left_fitx = left_fit[0] * ploty ** 2 + left_fit[1] * ploty + left_fit[2] right_fitx = right_fit[0] * ploty ** 2 + right_fit[1] * ploty + right_fit[2] self.ploty = ploty self.LeftLine.recent_xfitted = left_fitx self.RightLine.recent_xfitted = right_fitx self.distTop = np.absolute(left_fitx[0] - right_fitx[0]) self.distButtom = np.absolute(left_fitx[-1] - right_fitx[0]) # Pushback states if len(self.LeftLine.fits) < self.LeftLine.N: self.LeftLine.fits.append(self.LeftLine.current_fit) else: self.LeftLine.fits.pop(0) self.LeftLine.fits.append(self.LeftLine.current_fit) if len(self.RightLine.fits) < self.RightLine.N: self.RightLine.fits.append(self.RightLine.current_fit) else: self.RightLine.fits.pop(0) self.RightLine.fits.append(self.RightLine.current_fit) return out_img @profile def detectCtn(self, binary_warped): """Continuous detection, based on previous detection""" # Update last fit self.LeftLine.last_fit = self.LeftLine.current_fit self.RightLine.last_fit = self.RightLine.current_fit # we know where the lines are in the previous frame nonzero = binary_warped.nonzero() nonzeroy = np.array(nonzero[0]) nonzerox = np.array(nonzero[1]) margin = self.margin left_fit = self.LeftLine.current_fit right_fit = self.RightLine.current_fit left_lane_inds = ((nonzerox > (left_fit[0] * (nonzeroy ** 2) + left_fit[1] * nonzeroy + left_fit[2] - margin)) & (nonzerox < (left_fit[0] * (nonzeroy ** 2) + left_fit[1] * nonzeroy + left_fit[ 2] + margin))) right_lane_inds = ((nonzerox > (right_fit[0] * (nonzeroy ** 2) + right_fit[1] * nonzeroy + right_fit[2] - margin)) & (nonzerox < (right_fit[0] * (nonzeroy ** 2) + right_fit[1] * nonzeroy + right_fit[ 2] + margin))) # Again, extract left and right line pixel positions leftx = nonzerox[left_lane_inds] lefty = nonzeroy[left_lane_inds] rightx = nonzerox[right_lane_inds] righty = nonzeroy[right_lane_inds] # Fit a second order polynomial to each left_fit = np.polyfit(lefty, leftx, 2) right_fit = np.polyfit(righty, rightx, 2) # Generate x and y values for plotting ploty = self.ploty left_fitx = left_fit[0] * ploty ** 2 + left_fit[1] * ploty + left_fit[2] right_fitx = right_fit[0] * ploty ** 2 + right_fit[1] * ploty + right_fit[2] dmax = np.max(np.absolute(left_fitx - right_fitx)) dmin = np.min(np.absolute(left_fitx - right_fitx)) if (dmax-dmin)/dmin > 0.4:# Not parallel # Reset detection if self.LeftLine.fail_num > 0: self.LeftLine.fail_num += 1 if self.LeftLine.fail_num == self.LeftLine.MaxFail: self.InitializedLD = False else: # reset failure number to zero self.LeftLine.fail_num = 0 if dmax > 900 or dmin < 500: self.LeftLine.current_fit = np.mean(np.array(self.LeftLine.fits), axis=0) self.RightLine.current_fit = np.mean(np.array(self.RightLine.fits), axis=0) else: # Detection is true and update states if np.max(np.absolute(left_fitx - self.LeftLine.recent_xfitted))>70: self.LeftLine.current_fit = np.mean(np.array(self.LeftLine.fits), axis=0) # self.LeftLine.last_fit else: self.LeftLine.current_fit = left_fit self.LeftLine.recent_xfitted = left_fitx if np.max(np.absolute(right_fitx - self.RightLine.recent_xfitted))>70: self.RightLine.current_fit = np.mean(np.array(self.RightLine.fits), axis=0) # self.RightLine.last_fit else: self.RightLine.current_fit = right_fit self.RightLine.recent_xfitted = right_fitx # Pushback states if len(self.LeftLine.fits) < self.LeftLine.N: self.LeftLine.fits.append(self.LeftLine.current_fit) else: self.LeftLine.fits.pop(0) self.LeftLine.fits.append(self.LeftLine.current_fit) if len(self.RightLine.fits) < self.RightLine.N: self.RightLine.fits.append(self.RightLine.current_fit) else: self.RightLine.fits.pop(0) self.RightLine.fits.append(self.RightLine.current_fit) # Smooth the result self.LeftLine.current_fit = np.mean(np.array(self.LeftLine.fits), axis=0)#self.LeftLine.last_fit self.RightLine.current_fit = np.mean(np.array(self.RightLine.fits), axis=0) # self.RightLine.last_fit self.LeftLine.diffs = left_fit - self.LeftLine.current_fit # self.LeftLine.current_fit = left_fit self.LeftLine.allx = leftx self.LeftLine.ally = lefty self.RightLine.diffs = right_fit - self.RightLine.current_fit # self.RightLine.current_fit = right_fit self.RightLine.allx = rightx self.RightLine.ally = righty def test(): # Read in the saved camera matrix and distortion coefficients dist_pickle = pickle.load( open( "camera_cal/wide_dist_pickle.p", "rb" ) ) mtx = dist_pickle["mtx"] dist = dist_pickle["dist"] M = dist_pickle["M"] Minv = dist_pickle["Minv"] a = Detector(mtx=mtx, dist=dist, M=M, Minv=Minv) a.setBinaryFun(flag=4) a.distance() a.LeftLine.test() a.debug = True img = mpimg.imread('test_images/straight_lines1.jpg') #img = mpimg.imread('./frames/1043.jpg') #img = mpimg.imread('./challenge_frames/0468.jpg') #img = img.astype(np.uint8) tmp = a.detect(img) plt.imshow(tmp) plt.show() img = mpimg.imread('./frames/0557.jpg') #img = mpimg.imread('test_images/straight_lines2.jpg') tmp = a.detect(img) plt.imshow(tmp) plt.show() print_prof_data() #a.plotFit() def test2(): kf = KalmanFilter(3) kf.printState() print('return ',kf.update(np.array([1.2,0.5,0.9]))) print('return ', kf.update(np.array([1.2, 0.5, 0.9])+0.1)) kf.printState() def test3(): print('rt ', np.eye(3)) def testKF(): import pickle dist_pickle = pickle.load(open("camera_cal/wide_dist_pickle.p", "rb")) mtx = dist_pickle["mtx"] dist = dist_pickle["dist"] M = dist_pickle["M"] Minv = dist_pickle["Minv"] detector = Detector(mtx=mtx, dist=dist, M=M, Minv=Minv, sx_thresh=(20, 100), s_thresh=(170, 255)) q = [4, 4, 4] R = [1, 1, 1] detector.setKF_PR(q, R) detector.setMargin(60) detector.setBinaryFun(flag=5) detector.switchKF(False) # Import everything needed to edit/save/watch video clips from moviepy.editor import VideoFileClip white_output = 'output_images/project_output_v2_kf_tmp.mp4' ## To speed up the testing process you may want to try your pipeline on a shorter subclip of the video ## To do so add .subclip(start_second,end_second) to the end of the line below ## Where start_second and end_second are integer values representing the start and end of the subclip ## You may also uncomment the following line for a subclip of the first 5 seconds ##clip1 = VideoFileClip("./project_video.mp4").subclip(20,45) # clip1 = VideoFileClip("./project_video.mp4").subclip(0,1) clip1 = VideoFileClip("./challenge_video.mp4") # .subclip(18,48) white_output = 'output_images/challenge_output_1.mp4' white_clip = clip1.fl_image(detector.detect) #NOTE: this function expects color images!! white_clip.write_videofile(white_output, audio=False) #test3() #test2() #test() #testKF()
from flask import Flask from flask_cors import CORS import os app = Flask(__name__) CORS(app) @app.route('/') @app.route('/api') @app.route('/api/get') async def invalid_request(): return 'Invalid request', 400 @app.route('/api/get/plugins', methods=['GET']) async def plugins_list(): pluginsListDir = os.walk("../../../plugins") pluginsListDirResp = [x[0] for x in os.walk(pluginsListDir)] print(pluginsListDirResp) @app.route('/api/dragoncord/update', methods=['GET']) async def updater_update(): os.system('git reset --hard') os.system('cd .. & cd .. & cd .. & git reset --hard') return "Updated", 200 app.run(debug = True, port = 8723)
import sklearn, re, nltk, base64, json, urllib2, os import numpy as np import cPickle as pickle from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.feature_extraction.text import CountVectorizer import os MIN_RESULTS = 30 # Minimum number of results needed for valid user input BASE_SEARCH_URL = 'https://api.twitter.com/1.1/search/tweets.json?' class TweetMining(object): def __init__(self, method = 'tf_idf_old'): nltk.data.path.append('nltk_data/') self.method = method self.setup() # Sets up Twitter API connection def setup(self): if os.path.isfile("config.py"): config = {} execfile("config.py", config) consumer_key = config["consumer_key"] consumer_secret = config["consumer_secret"] elif os.path.isfile("project_template/config.py"): config = {} execfile("project_template/config.py", config) consumer_key = config["consumer_key"] consumer_secret = config["consumer_secret"] else: consumer_key = os.getenv('CONSUMER_KEY') consumer_secret = os.getenv('CONSUMER_SECRET') bearer_token = '%s:%s' % (consumer_key, consumer_secret) bearer_token_64 = base64.b64encode(bearer_token) token_request = urllib2.Request('https://api.twitter.com/oauth2/token') token_request.add_header('Content-Type', 'application/x-www-form-urlencoded;charset=UTF-8') token_request.add_header('Authorization', 'Basic %s' % bearer_token_64) token_request.data = 'grant_type=client_credentials' token_response = urllib2.urlopen(token_request) token_contents = token_response.read() token_data = json.loads(token_contents) self.access_token = token_data['access_token'] if os.path.isfile("smaller_pho_dict.p"): with open('smaller_pho_dict.p', 'rb') as handle: self.dict = pickle.load(handle) else: with open('project_template/smaller_pho_dict.p', 'rb') as handle: self.dict = pickle.load(handle) if self.method == 'tf_idf_new': if os.path.isfile("idf.pickle"): with open('idf.pickle', 'rb') as handle: self.idf = pickle.load(handle) else: with open('project_template/idf.pickle', 'rb') as handle: self.idf = pickle.load(handle) # Returns list of at most num_words topical words for the given hashtag_set def get_topical_words(self, hashtag_set, num_words = 30): hashtag_set = self.cleanup_tags(hashtag_set) if self.method == 'tf_idf_old': statuses = [t['text'] for t in self.get_tweets(hashtag_set, 100)] if len(statuses) < MIN_RESULTS: return [] self.process_tweets(statuses) vect = TfidfVectorizer(min_df = 2, stop_words = 'english', strip_accents = 'ascii') matrix = vect.fit_transform(statuses) top_indices = np.argsort(vect.idf_)[::-1] features = vect.get_feature_names() return [features[i] for i in top_indices[:num_words]] elif self.method == 'tf_idf_new': statuses = [t['text'] for t in self.get_tweets(hashtag_set, 200 * len(hashtag_set))] if len(statuses) < MIN_RESULTS: return [], [] self.process_tweets(statuses, nouns_only = False) getIDF = lambda word : self.idf[word] if word in self.idf else 0 vect = CountVectorizer(stop_words = 'english', strip_accents = 'ascii') tf = vect.fit_transform([' '.join(statuses)]).toarray() features = vect.get_feature_names() idf_vals = np.array([np.log(1600000.0 / (1 + getIDF(word))) for word in features]) tfidf = np.multiply(tf, idf_vals) top_indices = np.argsort(tfidf[0])[::-1] max_tfidf = tfidf[0][top_indices[0]] frequencies = [(features[i], 80 * (tfidf[0][i] / max_tfidf)) for i in top_indices[:40]] top_words = [(word, max_tfidf * 1.01) for word in hashtag_set if word.upper() in self.dict and word not in features] for i in top_indices: word = features[i] if not any(word in pair for pair in top_words) and word.upper() in self.dict: top_words.append((word, tfidf[0][i])) if len(top_words) == num_words: break return top_words, frequencies else: raise Exception('Error: Invalid method specified') # Helper function for get_topical_words # Cleans up hashtag list input by stripping hashtags if they exist def cleanup_tags(self, hashtags): return [h.strip(',').strip('#').strip() for h in hashtags] # Helper function for get_topical_words # Returns list of dicts; access "text" key to get status text # hashtag_set is a list of hashtags to search for (don't include #) def get_tweets(self, hashtag_set, num_tweets = 500): num_queries = num_tweets / 100 extra_tweets = num_tweets % 100 base_query = BASE_SEARCH_URL + 'q=' for i in range(len(hashtag_set)): base_query += '%23' + hashtag_set[i] if i < len(hashtag_set) - 1: base_query += '%20OR%20' base_query += '&lang=en&result_type=recent&count=100' def callAPI(query_url): request = urllib2.Request(query_url) request.add_header('Authorization', 'Bearer %s' % self.access_token) response = urllib2.urlopen(request) contents = response.read() return json.loads(contents) result = [] query = base_query for q in range(num_queries): statuses = callAPI(query)['statuses'] if statuses == []: return [] result.extend(statuses) minID = min([status['id'] for status in statuses]) query = base_query + '&max_id=' + str(minID) if extra_tweets > 0 and not out_of_tweets: query = re.sub(r'&count=\d+', '', query) + '&count=' + str(extra_tweets) result.extend(callAPI(query)['statuses']) return result # Helper method for get_topical_words # Processes statuses in-place by removing irrelevant components def process_tweets(self, statuses, nouns_only = True): for i in range(len(statuses)): statuses[i] = re.sub(r'\S*/\S*', '', statuses[i]) # Links statuses[i] = re.sub(r'htt\S*', '', statuses[i]) # Hanging https statuses[i] = re.sub(r'#\S*', '', statuses[i]) # Hashtag symbols statuses[i] = re.sub(r'(RT)*( )?@\S*', '', statuses[i]) # RT, @user statuses[i] = re.sub(r'(RT |rt[^a-z])', '', statuses[i]) # RT/rt statuses[i] = re.sub(r'\S*\d+\S*', '', statuses[i]) # Numerical statuses[i] = re.sub(r"\w+'[^s ]+", '', statuses[i]) # Contractions statuses[i] = re.sub(r'&\S+;', '', statuses[i]) # HTML entities if nouns_only: pos_info = nltk.pos_tag(nltk.word_tokenize(statuses[i])) statuses[i] = ' '.join([word[0] for word in pos_info if 'NN' in word[1]])
import tweepy import sys import jsonpickle import os # Don't buffer stdout, so we can tail the log output redirected to a file sys.stdout = os.fdopen(sys.stdout.fileno(), 'w', 0) # API and ACCESS KEYS API_KEY = sys.argv[1] API_SECRET = sys.argv[2] userIdfName = sys.argv[3] outfName = sys.argv[4] auth = tweepy.AppAuthHandler(API_KEY, API_SECRET) api = tweepy.API(auth, wait_on_rate_limit=True, wait_on_rate_limit_notify=True) if (not api): print ("Can't Authenticate Bye!") sys.exit(-1) with open(userIdfName, 'r') as inp: userIds = [line.rstrip('\n') for line in inp] numUsers = len(userIds) print("Going to query {0} users".format(numUsers)) usersQueried = 0 with open(outfName, 'w') as out: while (usersQueried < numUsers): batch = userIds[usersQueried:min(usersQueried+100, numUsers)] usersQueried += 100 print("Going to Query {0} users".format(len(batch))) users = api.lookup_users(user_ids=batch) print("Got Back {0} users".format(len(users))) for user in users: out.write(jsonpickle.encode(user, unpicklable=False)+'\n')
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # # http://www.apache.org/licenses/LICENSE-2.0 # # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from aliyunsdkcore.request import RpcRequest from aliyunsdkecs.endpoint import endpoint_data class CreateSnapshotGroupRequest(RpcRequest): def __init__(self): RpcRequest.__init__(self, 'Ecs', '2014-05-26', 'CreateSnapshotGroup','ecs') self.set_method('POST') if hasattr(self, "endpoint_map"): setattr(self, "endpoint_map", endpoint_data.getEndpointMap()) if hasattr(self, "endpoint_regional"): setattr(self, "endpoint_regional", endpoint_data.getEndpointRegional()) def get_ResourceOwnerId(self): # Long return self.get_query_params().get('ResourceOwnerId') def set_ResourceOwnerId(self, ResourceOwnerId): # Long self.add_query_param('ResourceOwnerId', ResourceOwnerId) def get_InstantAccess(self): # Boolean return self.get_query_params().get('InstantAccess') def set_InstantAccess(self, InstantAccess): # Boolean self.add_query_param('InstantAccess', InstantAccess) def get_ExcludeDiskIds(self): # RepeatList return self.get_query_params().get('ExcludeDiskId') def set_ExcludeDiskIds(self, ExcludeDiskId): # RepeatList for depth1 in range(len(ExcludeDiskId)): self.add_query_param('ExcludeDiskId.' + str(depth1 + 1), ExcludeDiskId[depth1]) def get_Description(self): # String return self.get_query_params().get('Description') def set_Description(self, Description): # String self.add_query_param('Description', Description) def get_ResourceGroupId(self): # String return self.get_query_params().get('ResourceGroupId') def set_ResourceGroupId(self, ResourceGroupId): # String self.add_query_param('ResourceGroupId', ResourceGroupId) def get_InstantAccessRetentionDays(self): # Integer return self.get_query_params().get('InstantAccessRetentionDays') def set_InstantAccessRetentionDays(self, InstantAccessRetentionDays): # Integer self.add_query_param('InstantAccessRetentionDays', InstantAccessRetentionDays) def get_DiskIds(self): # RepeatList return self.get_query_params().get('DiskId') def set_DiskIds(self, DiskId): # RepeatList for depth1 in range(len(DiskId)): self.add_query_param('DiskId.' + str(depth1 + 1), DiskId[depth1]) def get_Tags(self): # RepeatList return self.get_query_params().get('Tag') def set_Tags(self, Tag): # RepeatList for depth1 in range(len(Tag)): if Tag[depth1].get('Key') is not None: self.add_query_param('Tag.' + str(depth1 + 1) + '.Key', Tag[depth1].get('Key')) if Tag[depth1].get('Value') is not None: self.add_query_param('Tag.' + str(depth1 + 1) + '.Value', Tag[depth1].get('Value')) def get_ResourceOwnerAccount(self): # String return self.get_query_params().get('ResourceOwnerAccount') def set_ResourceOwnerAccount(self, ResourceOwnerAccount): # String self.add_query_param('ResourceOwnerAccount', ResourceOwnerAccount) def get_OwnerAccount(self): # String return self.get_query_params().get('OwnerAccount') def set_OwnerAccount(self, OwnerAccount): # String self.add_query_param('OwnerAccount', OwnerAccount) def get_OwnerId(self): # Long return self.get_query_params().get('OwnerId') def set_OwnerId(self, OwnerId): # Long self.add_query_param('OwnerId', OwnerId) def get_InstanceId(self): # String return self.get_query_params().get('InstanceId') def set_InstanceId(self, InstanceId): # String self.add_query_param('InstanceId', InstanceId) def get_Name(self): # String return self.get_query_params().get('Name') def set_Name(self, Name): # String self.add_query_param('Name', Name)
from conans import ConanFile, CMake, tools class NlohmannjsonConan(ConanFile): name = "nlohmann_json" version = "3.1.2" license = "MIT" url = "https://github.com/elshize/conan-nlohmann_json" code_url = "https://github.com/nlohmann/json" description = "JSON for Modern C++" build_policy = "always" def source(self): self.run("git clone %s --depth=1" % self.code_url) def package(self): self.copy("*.hpp", dst="include", src="json/include")
""" Command line utility to remove files through glob patterns. """ import argparse import glob from os import path, remove from sys import exit from denverapi.colored_text import print def main(): parser = argparse.ArgumentParser("rmr") parser.add_argument( "file", help="the file to remove (can be a glob pattern)", nargs="*", default=[] ) args = parser.parse_args() if not isinstance(args.file, list): args.file = [args.file] for file in args.file: for x in glob.iglob(file, recursive=False): try: if path.isfile(x): remove(x) else: print(f"Directory: {x} is a directory", fore="red") except PermissionError: print(f"Permission Denied: {x}", fore="red") exit(1) if __name__ == "__main__": main()
d = {'x':1,'y':2,'z':3} def a(x,y,z): return x,y,z print "\nFunction" print a(1,2,3) print a(z=3,x=1,y=2), a(z=3,y=2,x=1), a(y=2,z=3,x=1), a(y=2,x=1,z=3) def b(x=0,y=0,z=0): return x,y,z print "\nFunction with defaults" print b() print b(1,2,3) print b(1), b(2), b(3) print b(x=1), b(y=2), b(z=3) print b(x=1,z=3), b(z=3,x=1) print b(x=1,y=2), b(y=2,x=1) print b(z=3,y=2), b(y=2,z=3) print b(z=3,x=1,y=2), b(z=3,y=2,x=1), b(y=2,z=3,x=1), b(y=2,x=1,z=3) class A(): def __init__(self,x,y,z): self.x = x self.y = y self.z = z def __str__(self): return str((self.x,self.y,self.z)) print "\nClass" print A(1,2,3) class B(): def __init__(self,x=0,y=0,z=0): self.x = x self.y = y self.z = z def __str__(self): return str((self.x,self.y,self.z)) print "\nClass with defaults" print B() print B(1,2,3) print B(1), B(2), B(3)
from . import callbacks, metrics, nlp_utils
import multiprocessing import os import time from multiprocessing import freeze_support from watchdog.observers import Observer from watchdog.events import FileSystemEventHandler from datetime import datetime, timedelta import runpy def run_py(): runpy.run_path(path_name='main.py') def rerun_script(): global p p.terminate() p = multiprocessing.Process(target=run_py) p.start() class MyHandler(FileSystemEventHandler): def __init__(self): self.last_modified = datetime.now() def on_modified(self, event): if datetime.now() - self.last_modified < timedelta(seconds=1): return else: self.last_modified = datetime.now() path: str = event.src_path.replace("~", "") if path.endswith(".py"): os.system('cls') rerun_script() if __name__ == "__main__": freeze_support() p = multiprocessing.Process(target=run_py) p.start() event_handler = MyHandler() observer = Observer() observer.schedule(event_handler, path='.', recursive=True) observer.start() try: while True: time.sleep(1) except KeyboardInterrupt: observer.stop() observer.join()
# coding=utf-8 # Copyright 2020 The TensorFlow Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for the Split API.""" from tensorflow_datasets import testing from tensorflow_datasets.core import proto from tensorflow_datasets.core import splits from tensorflow_datasets.core.utils import shard_utils import tensorflow_datasets.public_api as tfds RANGE_TRAIN = list(range(0, 2000)) RANGE_TEST = list(range(3000, 3200)) RANGE_VAL = list(range(6000, 6010)) class SplitDictTest(testing.TestCase): def test_num_shards(self): si = tfds.core.SplitInfo(name="train", shard_lengths=[1, 2, 3], num_bytes=0) sd = splits.SplitDict([si], dataset_name="ds_name") self.assertEqual(sd["train"].num_shards, 3) class SplitsDictTest(testing.TestCase): @property def split_dict(self): si = [ tfds.core.SplitInfo(name="train", shard_lengths=[10, 10], num_bytes=0), tfds.core.SplitInfo(name="test", shard_lengths=[1], num_bytes=0), ] sd = splits.SplitDict(si, dataset_name="ds_name") return sd def test_get(self): s = self.split_dict["train"] self.assertEqual("train", s.name) self.assertEqual(2, s.num_shards) def test_from_proto(self): sd = splits.SplitDict.from_proto( "ds_name", [ proto.SplitInfo(name="validation", shard_lengths=[5], num_bytes=0) ]) self.assertIn("validation", sd) self.assertNotIn("train", sd) self.assertNotIn("test", sd) def test_to_proto(self): sd = self.split_dict sdp = sd.to_proto() # Split order is preserved self.assertEqual("train", sdp[0].name) self.assertEqual([10, 10], sdp[0].shard_lengths) self.assertEqual("test", sdp[1].name) self.assertEqual([1], sdp[1].shard_lengths) def test_bool(self): sd = splits.SplitDict([], dataset_name="ds_name") self.assertFalse(sd) # Empty split is False si = [tfds.core.SplitInfo(name="train", shard_lengths=[5], num_bytes=0)] sd = splits.SplitDict(si, dataset_name="ds_name") self.assertTrue(sd) # Non-empty split is True class SplitsTest(testing.TestCase): @classmethod def setUpClass(cls): super(SplitsTest, cls).setUpClass() cls._builder = testing.DummyDatasetSharedGenerator( data_dir=testing.make_tmp_dir()) cls._builder.download_and_prepare() def test_sub_split_num_examples(self): s = self._builder.info.splits self.assertEqual(s["train[75%:]"].num_examples, 5) self.assertEqual(s["train[:75%]"].num_examples, 15) self.assertEqual( s["train"].num_examples, s["train[75%:]"].num_examples + s["train[:75%]"].num_examples, ) self.assertEqual(s["test[75%:]"].num_examples, 2) self.assertEqual(s["test[:75%]"].num_examples, 8) self.assertEqual( s["test"].num_examples, s["test[75%:]"].num_examples + s["test[:75%]"].num_examples, ) def test_sub_split_file_instructions(self): fi = self._builder.info.splits["train[75%:]"].file_instructions self.assertEqual(fi, [shard_utils.FileInstruction( filename="dummy_dataset_shared_generator-train.tfrecord-00000-of-00001", skip=15, take=-1, num_examples=5, )]) def test_split_file_instructions(self): fi = self._builder.info.splits["train"].file_instructions self.assertEqual(fi, [shard_utils.FileInstruction( filename="dummy_dataset_shared_generator-train.tfrecord-00000-of-00001", skip=0, take=-1, num_examples=20, )]) def test_sub_split_filenames(self): self.assertEqual(self._builder.info.splits["train"].filenames, [ "dummy_dataset_shared_generator-train.tfrecord-00000-of-00001", ]) self.assertEqual(self._builder.info.splits["train[75%:]"].filenames, [ "dummy_dataset_shared_generator-train.tfrecord-00000-of-00001", ]) def test_sub_split_wrong_key(self): with self.assertRaisesWithPredicateMatch( ValueError, "Unknown split \"unknown\""): _ = self._builder.info.splits["unknown"] def test_split_enum(self): self.assertEqual(repr(splits.Split.TRAIN), "Split('train')") self.assertIsInstance(splits.Split.TRAIN, splits.Split) def test_even_splits(self): self.assertEqual( ["train[0%:33%]", "train[33%:67%]", "train[67%:100%]"], splits.even_splits("train", n=3), ) self.assertEqual([ "train[0%:25%]", "train[25%:50%]", "train[50%:75%]", "train[75%:100%]" ], splits.even_splits("train", 4)) with self.assertRaises(ValueError): splits.even_splits("train", 0) with self.assertRaises(ValueError): splits.even_splits("train", 101) if __name__ == "__main__": testing.test_main()
# Copyright 2012 Ning Ke # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import struct import cPickle import sys import pstructstor import oid import ptrie # Use PDSCache for internal Ptrie. Comment out the import line below if not # using pdscache. import pdscache ## # TODO # Pstructstor's garbage collector does not look at oidfs for reference to # OIDs. This means that if you a PStructStor.keepOids() you must follow with # a OidFS.save() call. Otherwise any previously stored oids will be stale, # because those OIDs moved as a result of the garbage collection. # class OidFS(object): ''' Stores saved Oids within a file system. Oids are saved using a Trie data structure (Ptrie) ''' rootoid_filename = "root-oid" oidtable_pstor_dir = "pds-storage" def _getPStor(self, pstorpath): ''' Creates a PStructStor to store Oids ''' if not os.path.isdir(pstorpath): os.mkdir(pstorpath) return pstructstor.PStructStor.mkpstor(pstorpath) def _writeRootoid(self): ''' writes the root OID to file ''' rootoid = self._rootoid # If PDSCache in use then write through the coid first if isinstance(rootoid, pdscache._CachedOid): rootoid = pdscache.write_coid(rootoid) rootoidPath = os.path.join(self._storpath, OidFS.rootoid_filename) fobj = open(rootoidPath, "w") cPickle.dump(rootoid, fobj, 2) fobj.close() def _readRootoid(self): ''' Reads and return oid root from file ''' # unpickle rootoidPath = os.path.join(self._storpath, OidFS.rootoid_filename) fobj = open(rootoidPath, "r") rootoid = cPickle.load(fobj) fobj.close() # If PDSCache in use then convert to coid if rootoid is not oid.OID.Nulloid: rootoid = pdscache.read_oid(rootoid) return rootoid def __init__(self, storpath): if not os.path.isabs(storpath): raise ValueError("storpath for OidFS must be absolute") if not os.path.isdir(storpath): os.mkdir(storpath) self._storpath = storpath # Get a PStructStor to store our OID Ptrie pstorPath = os.path.join(storpath, OidFS.oidtable_pstor_dir) self._oidPstor = self._getPStor(pstorPath) # Use a Ptrie as our oid table self._ptrieObj = ptrie.Ptrie(self._oidPstor) # Create or find the root of OID trie: The root OID is saved in a file rootoidPath = os.path.join(storpath, OidFS.rootoid_filename) if not os.path.exists(rootoidPath): # Create OID root, use OID.Nulloid as the root of an empty OID table self._rootoid = ptrie.Nulltrie self._writeRootoid() else: # load rootoid from file self._rootoid = self._readRootoid() def close(self): #self.gc() self._oidPstor.close() def _store(self, o, oname): ''' Store an OID as oidname in database but don't write rootoid yet. ''' #print "Saving %s into %s" % (o, self._rootoid) # If using pdscache then o is actually a coid. if isinstance(o, pdscache._CachedOid): o = pdscache.write_coid(o) self._rootoid = self._ptrieObj.insert(self._rootoid, oname, o) def store(self, o, oname): ''' Store an OID as oname in our database ''' self._store(o, oname) self._writeRootoid() def load(self, oidname): ''' Load the OID with ''oidname'' (that was used to save the OID originally) from our database. ''' oidnode = self._ptrieObj.find(self._rootoid, oidname) if not oidnode: return oidnode fields = self._ptrieObj.getfields(oidnode) coid = fields['value'] return coid def delete(self, oidname): self._rootoid = self._ptrieObj.delete(self._rootoid, oidname) self._writeRootoid() def _collect_pstor(self): ''' Run GC on OID's pstructstor. OIDs stored in OidFS will be moved as a result. Note this function assumes that stored oids can belong to different PStors, which is currently allowed. In the future, PStor should probably take possession of OidFS so that there is only one PStor in a single OidFS. ''' # Since PStor's GC function moves OIDs, we have to make a new OID # ptrie with the same oidname and new OID references. pstordict = {} for orec in self.oriter(): oname, o = orec if isinstance(o, pdscache._CachedOid): # o is type 'coid' and o.pstor is a PStructStor object pstor = o.pstor else: # o is type 'OID' and o.pstor is a string pstor = pstructstor.PStructStor.mkpstor(o.pstor) if pstor not in pstordict: # pstor dictionary's value is a (onames, ovalues) pair pstordict[pstor] = [[], []] onames, ovalues = pstordict[pstor] onames.append(oname) if isinstance(o, pdscache._CachedOid): # Must convert back to real Oid o = pdscache.write_coid(o) ovalues.append(o) if not len(pstordict): return # Now send to pstructstor for GC and essentially re-create our # internal oid ptrie with new oid values for pstor in pstordict: onames, ovalues = pstordict[pstor] pstordict[pstor][1] = ovalues = pstor.keepOids(ovalues) for oname, o in zip(onames, ovalues): self._store(o, oname) self._writeRootoid() def gc(self): ''' Garbage collects OidFS's internal Ptrie PStor. Saving only self._rootoid. ''' # Run GC on OID's pstor first. self._collect_pstor() # Save oidfs's _rootoid o = self._rootoid if isinstance(self._rootoid, pdscache._CachedOid): o = pdscache.write_coid(self._rootoid) o, = self._oidPstor.keepOids([o]) o = pdscache.read_oid(o) self._rootoid = o self._writeRootoid() def oriter(self): ''' Oid record 'orec' iterator - traverses OidFS In depth-first (alphabetical) order. An Oid record is an (oidname, oid) tuple.''' for node in self._ptrieObj.dfiter(self._rootoid): f = self._ptrieObj.getfields(node) if f['final']: yield (f['prefix'], f['value'],)
# -*- coding: utf-8 -*- from __future__ import division, absolute_import, print_function from .. import __author__, __version__ import win32com.client as x32 import pythoncom
# Copyright (c) 2017-2021 Neogeo-Technologies. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import requests import uuid from django.apps import apps from django.contrib.auth.models import User from django.contrib.gis.db import models from django.contrib.postgres.fields import JSONField from django.db.models.signals import pre_init from django.dispatch import receiver from django.utils import timezone from idgo_admin.models.mail import send_extraction_failure_mail from idgo_admin.models.mail import send_extraction_successfully_mail class ExtractorSupportedFormat(models.Model): class Meta(object): verbose_name = "Format du service d'extraction" verbose_name_plural = "Formats du service d'extraction" name = models.SlugField( verbose_name="Nom", editable=False, primary_key=True, ) description = models.TextField( verbose_name="Description", unique=True, ) details = JSONField( verbose_name="Détails", ) TYPE_CHOICES = ( ('raster', 'raster'), ('vector', 'vector'), ) type = models.CharField( verbose_name="Type", max_length=6, null=True, blank=True, choices=TYPE_CHOICES, ) def __str__(self): return self.description class AsyncExtractorTask(models.Model): class Meta(object): verbose_name = "Tâche de l'extracteur" verbose_name_plural = "Tâches de l'extracteur" uuid = models.UUIDField( editable=False, primary_key=True, default=uuid.uuid4, ) user = models.ForeignKey( to=User, ) foreign_value = models.CharField( max_length=100, null=True, blank=True, ) foreign_field = models.CharField( max_length=100, null=True, blank=True, ) app_label = models.CharField( max_length=100, null=True, blank=True, default='idgo_admin' ) model = models.CharField( max_length=100, null=True, blank=True, ) success = models.NullBooleanField( ) submission_datetime = models.DateTimeField( null=True, blank=True, ) start_datetime = models.DateTimeField( null=True, blank=True, ) stop_datetime = models.DateTimeField( null=True, blank=True, ) query = JSONField( null=True, blank=True, ) details = JSONField( null=True, blank=True, ) def __str__(self): return self.target_object.__str__() @property def status(self): if self.success is True: return 'Succès' elif self.success is False: return 'Échec' elif self.success is None and not self.start_datetime: return 'En attente' elif self.success is None and self.start_datetime: return 'En cours' else: return 'Inconnu' @property def elapsed_time(self): if self.stop_datetime and self.success in (True, False): return self.stop_datetime - self.submission_datetime else: return timezone.now() - self.submission_datetime @property def target_object(self): Model = apps.get_model(app_label=self.app_label, model_name=self.model) return Model.objects.get(**{self.foreign_field: self.foreign_value}) @receiver(pre_init, sender=AsyncExtractorTask) def synchronize_extractor_task(sender, *args, **kwargs): pre_init.disconnect(synchronize_extractor_task, sender=sender) doc = sender.__dict__.get('__doc__') if doc.startswith(sender.__name__): keys = doc[len(sender.__name__) + 1:-1].split(', ') values = kwargs.get('args') if len(keys) == len(values): kvp = dict((k, values[i]) for i, k in enumerate(keys)) try: instance = AsyncExtractorTask.objects.get(uuid=kvp['uuid']) except AsyncExtractorTask.DoesNotExist: pass else: if instance.success is None: url = instance.details['possible_requests']['status']['url'] r = requests.get(url) if r.status_code == 200: details = instance.details details.update(r.json()) instance.success = { 'SUCCESS': True, 'FAILURE': False, }.get(details['status'], None) instance.details = details if instance.success is False: instance.stop_datetime = timezone.now() else: instance.stop_datetime = details.get('end_datetime') instance.start_datetime = \ details.get('start_datetime') or instance.stop_datetime instance.save() if instance.success is True: send_extraction_successfully_mail(instance.user, instance) elif instance.success is False: send_extraction_failure_mail(instance.user, instance) pre_init.connect(synchronize_extractor_task, sender=sender)
#!/home/pi/Python-3.8.5 """ For modifications and text not covered by other licences: Original software Copyright (C) 2020 Ward Hills This program is free software: you can redistribute it and/or modify it under the terms of the GNU Affero General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero General Public License for more details. You should have received a copy of the GNU Affero General Public License along with this program. If not, see <https://www.gnu.org/licenses/>. """ import asyncio import configparser # import ard_ser import pico_svr # TODO set this to run when the pi boots # # Read config file config = configparser.ConfigParser() config.read('config.ini') async def handle_echo(reader, writer): # n = int(config['DATA']['characters']) n = 1000 data = await reader.read(n) # logging.debug('reader read {}'.format(message) ) # sensor = ard_ser.read(output_format='json') sensor = pico_svr.read(output_format='json') data = sensor # print('Received', message, 'from',addr) # print('Send: ' , message) writer.write(data) await writer.drain() # print("Close the connection") writer.close() async def main(): # server = await asyncio.start_server( # handle_echo, '169.254.162.167', 8888) server = await asyncio.start_server( handle_echo, 'triscopepi.local', 8888) # TODO change the IP address to host name # hostname = socket.gethostname() # print(hostname) # ipaddr = socket.gethostbyname(hostname+'.local') # ipaddr = socket.gethostbyname(hostname) # print(ipaddr) # server = await asyncio.start_server( # handle_echo, ipaddr, 8888) addr = server.sockets[0].getsockname() print('Serving on ', addr) async with server: await server.serve_forever() asyncio.run(main())
import json import pytest from gidgetlab import RedirectionException from gidgetlab import abc as gl_abc class MockGitLabAPI(gl_abc.GitLabAPI): DEFAULT_HEADERS = { "ratelimit-limit": "2", "ratelimit-remaining": "1", "ratelimit-reset": "0", "content-type": "application/json", } def __init__( self, status_code=200, headers=DEFAULT_HEADERS, body=b"", *, url="https://gitlab.com", api_version="v4", cache=None, ): self.response_code = status_code self.response_headers = headers self.response_body = body super().__init__( "test_abc", access_token="access token", url=url, api_version=api_version, cache=cache, ) async def _request(self, method, url, headers, body=b""): """Make an HTTP request.""" self.method = method self.url = url self.headers = headers self.body = body response_headers = self.response_headers.copy() try: # Don't loop forever. del self.response_headers["link"] except KeyError: pass return self.response_code, response_headers, self.response_body async def sleep(self, seconds): # pragma: no cover """Sleep for the specified number of seconds.""" self.slept = seconds @pytest.mark.asyncio async def test_url_formatted(): """The URL is appropriately formatted.""" gl = MockGitLabAPI() await gl._make_request("GET", "/groups/gitlab-org/projects", {}, "") assert gl.url == "https://gitlab.com/api/v4/groups/gitlab-org/projects" @pytest.mark.asyncio async def test_headers(): """Appropriate headers are created.""" gl = MockGitLabAPI() await gl._make_request("GET", "/version", {}, "") assert gl.headers["user-agent"] == "test_abc" assert gl.headers["accept"] == "application/json" assert gl.headers["private-token"] == "access token" @pytest.mark.asyncio async def test_rate_limit_set(): """The rate limit is updated after receiving a response.""" rate_headers = { "ratelimit-limit": "42", "ratelimit-remaining": "1", "ratelimit-reset": "0", } gl = MockGitLabAPI(headers=rate_headers) await gl._make_request("GET", "/rate_limit", {}, "") assert gl.rate_limit.limit == 42 @pytest.mark.asyncio async def test_decoding(): """Test that appropriate decoding occurs.""" original_data = {"hello": "world"} headers = MockGitLabAPI.DEFAULT_HEADERS.copy() headers["content-type"] = "application/json; charset=utf-8" gl = MockGitLabAPI(headers=headers, body=json.dumps(original_data).encode("utf8")) data, _ = await gl._make_request("GET", "/rate_limit", {}, "") assert data == original_data @pytest.mark.asyncio async def test_more(): """The 'next' link is returned appropriately.""" headers = MockGitLabAPI.DEFAULT_HEADERS.copy() headers["link"] = "<https://gitlab.com/api/v4/fake?page=2>; " 'rel="next"' gl = MockGitLabAPI(headers=headers) _, more = await gl._make_request("GET", "/fake", {}, "") assert more == "https://gitlab.com/api/v4/fake?page=2" @pytest.mark.asyncio async def test_getitem(): original_data = {"hello": "world"} headers = MockGitLabAPI.DEFAULT_HEADERS.copy() headers["content-type"] = "application/json; charset=UTF-8" gl = MockGitLabAPI(headers=headers, body=json.dumps(original_data).encode("utf8")) data = await gl.getitem("/fake") assert gl.method == "GET" assert data == original_data @pytest.mark.asyncio async def test_getiter(): """Test that getiter() returns an async iterable as well as query string params.""" original_data = [1, 2] next_url = "https://gitlab.com/api/v4/fake?page=2" headers = MockGitLabAPI.DEFAULT_HEADERS.copy() headers["content-type"] = "application/json; charset=UTF-8" headers["link"] = f'<{next_url}>; rel="next"' gl = MockGitLabAPI(headers=headers, body=json.dumps(original_data).encode("utf8")) data = [] async for item in gl.getiter("/fake", {"foo": "stuff"}): data.append(item) assert gl.method == "GET" assert gl.url == "https://gitlab.com/api/v4/fake?page=2&foo=stuff" assert len(data) == 4 assert data[0] == 1 assert data[1] == 2 assert data[2] == 1 assert data[3] == 2 @pytest.mark.asyncio async def test_post(): send = [1, 2, 3] send_json = json.dumps(send).encode("utf-8") receive = {"hello": "world"} headers = MockGitLabAPI.DEFAULT_HEADERS.copy() headers["content-type"] = "application/json; charset=utf-8" gl = MockGitLabAPI(headers=headers, body=json.dumps(receive).encode("utf-8")) await gl.post("/fake", data=send) assert gl.method == "POST" assert gl.headers["content-type"] == "application/json; charset=utf-8" assert gl.body == send_json assert gl.headers["content-length"] == str(len(send_json)) @pytest.mark.asyncio async def test_patch(): send = [1, 2, 3] send_json = json.dumps(send).encode("utf-8") receive = {"hello": "world"} headers = MockGitLabAPI.DEFAULT_HEADERS.copy() headers["content-type"] = "application/json; charset=utf-8" gl = MockGitLabAPI(headers=headers, body=json.dumps(receive).encode("utf-8")) await gl.patch("/fake", data=send) assert gl.method == "PATCH" assert gl.headers["content-type"] == "application/json; charset=utf-8" assert gl.body == send_json assert gl.headers["content-length"] == str(len(send_json)) @pytest.mark.asyncio async def test_put(): send = [1, 2, 3] send_json = json.dumps(send).encode("utf-8") receive = {"hello": "world"} headers = MockGitLabAPI.DEFAULT_HEADERS.copy() headers["content-type"] = "application/json; charset=utf-8" gl = MockGitLabAPI(headers=headers, body=json.dumps(receive).encode("utf-8")) await gl.put("/fake", data=send) assert gl.method == "PUT" assert gl.headers["content-type"] == "application/json; charset=utf-8" assert gl.body == send_json assert gl.headers["content-length"] == str(len(send_json)) @pytest.mark.asyncio async def test_delete(): send = [1, 2, 3] send_json = json.dumps(send).encode("utf-8") receive = {"hello": "world"} headers = MockGitLabAPI.DEFAULT_HEADERS.copy() headers["content-type"] = "application/json; charset=utf-8" gl = MockGitLabAPI(headers=headers, body=json.dumps(receive).encode("utf-8")) await gl.delete("/fake", data=send) assert gl.method == "DELETE" assert gl.headers["content-type"] == "application/json; charset=utf-8" assert gl.body == send_json assert gl.headers["content-length"] == str(len(send_json)) class TestCache: @pytest.mark.asyncio async def test_if_none_match_sent(self): etag = "12345" cache = {"https://gitlab.com/api/v4/fake": (etag, None, "hi", None)} gl = MockGitLabAPI(cache=cache) await gl.getitem("/fake") assert "if-none-match" in gl.headers assert gl.headers["if-none-match"] == etag @pytest.mark.asyncio async def test_etag_received(self): cache = {} etag = "12345" headers = MockGitLabAPI.DEFAULT_HEADERS.copy() headers["etag"] = etag gl = MockGitLabAPI(200, headers, b"42", cache=cache) data = await gl.getitem("/fake") url = "https://gitlab.com/api/v4/fake" assert url in cache assert cache[url] == (etag, None, 42, None) assert data == cache[url][2] @pytest.mark.asyncio async def test_if_modified_since_sent(self): last_modified = "12345" cache = {"https://gitlab.com/api/v4/fake": (None, last_modified, "hi", None)} gl = MockGitLabAPI(cache=cache) await gl.getitem("/fake") assert "if-modified-since" in gl.headers assert gl.headers["if-modified-since"] == last_modified @pytest.mark.asyncio async def test_last_modified_received(self): cache = {} last_modified = "12345" headers = MockGitLabAPI.DEFAULT_HEADERS.copy() headers["last-modified"] = last_modified gl = MockGitLabAPI(200, headers, b"42", cache=cache) data = await gl.getitem("/fake") url = "https://gitlab.com/api/v4/fake" assert url in cache assert cache[url] == (None, last_modified, 42, None) assert data == cache[url][2] @pytest.mark.asyncio async def test_hit(self): url = "https://gitlab.com/api/v4/fake" cache = {url: ("12345", "67890", 42, None)} gl = MockGitLabAPI(304, cache=cache) data = await gl.getitem(url) assert data == 42 @pytest.mark.asyncio async def test_miss(self): url = "https://gitlab.com/api/v4/fake" cache = {url: ("12345", "67890", 42, None)} headers = MockGitLabAPI.DEFAULT_HEADERS.copy() headers["etag"] = "09876" headers["last-modified"] = "54321" gl = MockGitLabAPI(200, headers, body=b"-13", cache=cache) data = await gl.getitem(url) assert data == -13 assert cache[url] == ("09876", "54321", -13, None) @pytest.mark.asyncio async def test_ineligible(self): cache = {} gl = MockGitLabAPI(cache=cache) url = "https://gitlab.com/api/v4/fake" # Only way to force a GET request with a body. await gl._make_request("GET", url, {}, 42) assert url not in cache await gl.post(url, data=42) assert url not in cache @pytest.mark.asyncio async def test_redirect_without_cache(self): cache = {} gl = MockGitLabAPI(304, cache=cache) with pytest.raises(RedirectionException): await gl.getitem("/fake") @pytest.mark.asyncio async def test_no_cache(self): headers = MockGitLabAPI.DEFAULT_HEADERS.copy() headers["etag"] = "09876" headers["last-modified"] = "54321" gl = MockGitLabAPI(headers=headers) await gl.getitem("/fake") # No exceptions raised. class TestFormatUrl: def test_absolute_url(self): gl = MockGitLabAPI() original_url = "https://gitlab.example.com/api/v4/projects" url = gl.format_url(original_url, {}) assert url == original_url def test_relative_url(self): gl = MockGitLabAPI() url = gl.format_url("/projects", {}) assert url == "https://gitlab.com/api/v4/projects" def test_relative_url_non_default_url(self): gl = MockGitLabAPI(url="https://my.gitlab.example.org") url = gl.format_url("/projects", {}) assert url == "https://my.gitlab.example.org/api/v4/projects" def test_relative_url_non_default_api_version(self): gl = MockGitLabAPI(api_version="v3") url = gl.format_url("/projects", {}) assert url == "https://gitlab.com/api/v3/projects" def test_params(self): gl = MockGitLabAPI() url = "https://gitlab.com/api/v4/projects/9/trigger/pipeline" params = {"token": "TOKEN", "ref": "master"} # Pass params on an absolute URL. url = gl.format_url(url, params) assert ( url == "https://gitlab.com/api/v4/projects/9/trigger/pipeline?token=TOKEN&ref=master" ) # No parmas on an absolute URL. url = gl.format_url(url, {}) assert url == url # Pass params on a relative URL. url = gl.format_url("/projects/9/trigger/pipeline", params) assert ( url == "https://gitlab.com/api/v4/projects/9/trigger/pipeline?token=TOKEN&ref=master" ) def test_params_quoting(self): gl = MockGitLabAPI() url = "https://gitlab.com/api/v4/projects/9/trigger/pipeline" params = {"token": "TOKEN", "ref": "my branch"} url = gl.format_url(url, params) assert ( url == "https://gitlab.com/api/v4/projects/9/trigger/pipeline?token=TOKEN&ref=my+branch" ) def test_params_update_existing_query_string(self): gl = MockGitLabAPI() url = "https://gitlab.com/api/v4/fake?page=1" params = {"key1": "value1", "key2": "value2"} url = gl.format_url(url, params) assert url == "https://gitlab.com/api/v4/fake?page=1&key1=value1&key2=value2" def test_params_list_of_items(self): gl = MockGitLabAPI() url = "https://gitlab.com/api/v4/fake" params = {"key1": "value1", "key2": ["value2", "value3"]} url = gl.format_url(url, params) assert ( url == "https://gitlab.com/api/v4/fake?key1=value1&key2=value2&key2=value3" )
import pandas as pd import numpy as np from keras.models import Sequential from keras.layers import Dense,Activation from keras.wrappers.scikit_learn import KerasClassifier from keras.utils import np_utils from sklearn.model_selection import cross_val_score,train_test_split from sklearn.model_selection import KFold from sklearn.preprocessing import LabelEncoder from sklearn.pipeline import Pipeline from sklearn.impute import SimpleImputer import os import keras import pickle as pkl import dataset_creator as DC os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' def train(X,Y): encoder = LabelEncoder() encoded_y = encoder.fit_transform(Y) dummy_y = np_utils.to_categorical(encoded_y,29) (trainData,testData,trainLabels,testLabels) = train_test_split(X,Y,test_size=0.01,random_state=42) ''' model = Sequential() model.add(Dense(50,input_dim = 17,activation='relu')) model.add(Dense(40,activation='relu')) model.add(Dense(29)) model.add(Activation('softmax')) model.compile(loss='sparse_categorical_crossentropy',optimizer='adam',metrics=['accuracy']) ''' model = keras.models.load_model('model_50_40.h5') model.fit(trainData,trainLabels,epochs=10,verbose=1) (loss,accuracy) = model.evaluate(testData,testLabels,verbose=1) print("Loss: {}, accuracy: {}".format(loss,accuracy)) model.save('model_50_40.h5') def model_prediction(X): D = DC.returnToArabicDictionary() model = keras.models.load_model('model_50_40.h5') pred = model.predict_classes(X) return [D[k] for k in pred] ''' chunk = pd.read_csv('image_label_pair.csv') chunk = chunk.values X = chunk[:,:17].astype(float) Y = chunk[:,17] train(X,Y) '''
#!/usr/bin/env python # -*- coding: utf-8 -*- import simplejson as json from alipay.aop.api.constant.ParamConstants import * class BizOrderQueryResponse(object): def __init__(self): self._action = None self._action_mode = None self._apply_id = None self._biz_context_info = None self._biz_id = None self._biz_type = None self._create_time = None self._op_id = None self._request_id = None self._result_code = None self._result_desc = None self._status = None self._sub_status = None self._update_time = None @property def action(self): return self._action @action.setter def action(self, value): self._action = value @property def action_mode(self): return self._action_mode @action_mode.setter def action_mode(self, value): self._action_mode = value @property def apply_id(self): return self._apply_id @apply_id.setter def apply_id(self, value): self._apply_id = value @property def biz_context_info(self): return self._biz_context_info @biz_context_info.setter def biz_context_info(self, value): self._biz_context_info = value @property def biz_id(self): return self._biz_id @biz_id.setter def biz_id(self, value): self._biz_id = value @property def biz_type(self): return self._biz_type @biz_type.setter def biz_type(self, value): self._biz_type = value @property def create_time(self): return self._create_time @create_time.setter def create_time(self, value): self._create_time = value @property def op_id(self): return self._op_id @op_id.setter def op_id(self, value): self._op_id = value @property def request_id(self): return self._request_id @request_id.setter def request_id(self, value): self._request_id = value @property def result_code(self): return self._result_code @result_code.setter def result_code(self, value): self._result_code = value @property def result_desc(self): return self._result_desc @result_desc.setter def result_desc(self, value): self._result_desc = value @property def status(self): return self._status @status.setter def status(self, value): self._status = value @property def sub_status(self): return self._sub_status @sub_status.setter def sub_status(self, value): self._sub_status = value @property def update_time(self): return self._update_time @update_time.setter def update_time(self, value): self._update_time = value def to_alipay_dict(self): params = dict() if self.action: if hasattr(self.action, 'to_alipay_dict'): params['action'] = self.action.to_alipay_dict() else: params['action'] = self.action if self.action_mode: if hasattr(self.action_mode, 'to_alipay_dict'): params['action_mode'] = self.action_mode.to_alipay_dict() else: params['action_mode'] = self.action_mode if self.apply_id: if hasattr(self.apply_id, 'to_alipay_dict'): params['apply_id'] = self.apply_id.to_alipay_dict() else: params['apply_id'] = self.apply_id if self.biz_context_info: if hasattr(self.biz_context_info, 'to_alipay_dict'): params['biz_context_info'] = self.biz_context_info.to_alipay_dict() else: params['biz_context_info'] = self.biz_context_info if self.biz_id: if hasattr(self.biz_id, 'to_alipay_dict'): params['biz_id'] = self.biz_id.to_alipay_dict() else: params['biz_id'] = self.biz_id if self.biz_type: if hasattr(self.biz_type, 'to_alipay_dict'): params['biz_type'] = self.biz_type.to_alipay_dict() else: params['biz_type'] = self.biz_type if self.create_time: if hasattr(self.create_time, 'to_alipay_dict'): params['create_time'] = self.create_time.to_alipay_dict() else: params['create_time'] = self.create_time if self.op_id: if hasattr(self.op_id, 'to_alipay_dict'): params['op_id'] = self.op_id.to_alipay_dict() else: params['op_id'] = self.op_id if self.request_id: if hasattr(self.request_id, 'to_alipay_dict'): params['request_id'] = self.request_id.to_alipay_dict() else: params['request_id'] = self.request_id if self.result_code: if hasattr(self.result_code, 'to_alipay_dict'): params['result_code'] = self.result_code.to_alipay_dict() else: params['result_code'] = self.result_code if self.result_desc: if hasattr(self.result_desc, 'to_alipay_dict'): params['result_desc'] = self.result_desc.to_alipay_dict() else: params['result_desc'] = self.result_desc if self.status: if hasattr(self.status, 'to_alipay_dict'): params['status'] = self.status.to_alipay_dict() else: params['status'] = self.status if self.sub_status: if hasattr(self.sub_status, 'to_alipay_dict'): params['sub_status'] = self.sub_status.to_alipay_dict() else: params['sub_status'] = self.sub_status if self.update_time: if hasattr(self.update_time, 'to_alipay_dict'): params['update_time'] = self.update_time.to_alipay_dict() else: params['update_time'] = self.update_time return params @staticmethod def from_alipay_dict(d): if not d: return None o = BizOrderQueryResponse() if 'action' in d: o.action = d['action'] if 'action_mode' in d: o.action_mode = d['action_mode'] if 'apply_id' in d: o.apply_id = d['apply_id'] if 'biz_context_info' in d: o.biz_context_info = d['biz_context_info'] if 'biz_id' in d: o.biz_id = d['biz_id'] if 'biz_type' in d: o.biz_type = d['biz_type'] if 'create_time' in d: o.create_time = d['create_time'] if 'op_id' in d: o.op_id = d['op_id'] if 'request_id' in d: o.request_id = d['request_id'] if 'result_code' in d: o.result_code = d['result_code'] if 'result_desc' in d: o.result_desc = d['result_desc'] if 'status' in d: o.status = d['status'] if 'sub_status' in d: o.sub_status = d['sub_status'] if 'update_time' in d: o.update_time = d['update_time'] return o
"""Gravatar Username Data Digger - Digger Downloaded Data for Usefull Information.""" import re import logging import urllib import urllib.parse from configparser import ConfigParser from typing import Dict, List, Optional from bs4 import BeautifulSoup, ResultSet, Tag from OSIx.core.base_username_data_digger import SimpleUsernameDataDigger from OSIx.core.bs4_helper import BS4Helper from OSIx.core.decorator import bs4_error_hander logger = logging.getLogger() class GravatarUsernameDataDigger(SimpleUsernameDataDigger): """Gravatar Username Data Digger.""" def run(self, config: ConfigParser, args: Dict, data: Dict) -> None: """Execute Module.""" # Check the Activation and Get The Social Network Data can_activate, username = self._can_activate(data=data) if not can_activate or username is None: return # Check Gravatar Section if 'gravatar' not in data: data['gravatar'] = {} logger.info('\t\tRunning...') h_result: Dict = self.__get_gravatar_data( username=username, config=config ) # Add to Data data['gravatar'][username] = h_result # Check if Found Anything if h_result['username'] is None: logger.info('\t\tUsername Not Found.') return def __get_gravatar_data(self, username: str, config: ConfigParser) -> Dict: """Get the Gravatar Data.""" # Download the Gravatar Profile Main Page Data base_url = config['MODULE_GravatarUsernameDataDigger']['profile_url'].replace('{0}', username) gravatar_data_profile: str = self._download_text(url=base_url, module='gravatar') # Check if Found if 'sorry, we couldn\'t find that' in gravatar_data_profile: return { 'gravatar_id': None, 'image': None, 'username': None, 'fullname': None, 'location': None, 'links': [], 'gravatar_url': None } # Load HTML bs4_helper_profile: BS4Helper = BS4Helper(soup=BeautifulSoup(gravatar_data_profile, 'html.parser')) return { 'gravatar_id': self.__get_capture_group(regex=config['MODULE_GravatarUsernameDataDigger']['gravatar_id_regex'], target=gravatar_data_profile, index=0), 'image': self.__get_capture_group(regex=config['MODULE_GravatarUsernameDataDigger']['gravatar_image_regex'], target=gravatar_data_profile, index=0), 'username': username, 'fullname': self.__get_profile_fullname(bs4_helper_profile), 'location': self.__get_location(bs4_helper_profile), 'links': self.__get_links(bs4_helper_profile, config), 'gravatar_url': base_url } @bs4_error_hander() def __get_capture_group(self, regex: str, target: str, index: int = 0) -> Optional[str]: """Safe Get the Capture Group Value.""" mt: Optional[re.Match[str]] = re.compile(regex).search(target) if mt is None: return None return str(mt.groups()[index]) @bs4_error_hander(on_error_return_value='') def __get_links(self, bs4_helper_profile: BS4Helper, config: ConfigParser) -> List: """Return the Username.""" h_result: List = [] list_details: ResultSet = [item for item in bs4_helper_profile.soup.find_all('ul', attrs={'class': 'list-details'}) if isinstance(item, Tag)] # Iterate over "Find Me Online" & "Contact Me" Lists for list_node in list_details: # Iterate over List Items (Contacts, Links, etc) for node in [item for item in list_node if isinstance(item, Tag)]: # Parse Single Info children: List = [item for item in node.children if isinstance(item, Tag)] if len(children) < 2: continue is_target_js: bool = (children[1].find('a') is None) entry: Dict = { 'name': children[0].text, 'full_target': self.__resolve_gravatar_info(children[1]) if not is_target_js else self.__resolve_gravatar_info_obfuscation(str(children[1].find('script').next), config) } entry['target'] = self.__sanitize(entry['full_target']) h_result.append(entry) return h_result def __resolve_gravatar_info(self, target: ResultSet) -> str: """Resolve Gravatar Information.""" href: str = target.find('a').attrs['href'] if href == '#': return str(target.find('a').text) return str(urllib.parse.unquote(target.find('a').attrs['href'])) def __resolve_gravatar_info_obfuscation(self, info: str, config: ConfigParser) -> str: """Resolve Gravatar Information Obfuscation using JS.""" if 'grav_email' in info: regex_a: str = config['MODULE_GravatarUsernameDataDigger']['gravatar_email_deobfuscation_regex'] # Capture This: ' grav_email( 'qualitybargain', 'mail.com' ); ' return f'{self.__get_capture_group(regex_a, info, 0)}@{self.__get_capture_group(regex_a, info, 1)}' if 'xmpp' in info: regex_b: str = config['MODULE_GravatarUsernameDataDigger']['gravatar_email_xmpp_regex'] # Capture This: ' grav_email( 'qualitybargain', 'mail.com' ); ' return f'{self.__get_capture_group(regex_b, info, 0)}' return info @bs4_error_hander(on_error_return_value='') def __get_profile_fullname(self, bs4_helper_profile: BS4Helper) -> str: """Return the Username.""" return str(bs4_helper_profile.soup.find_all('div', attrs={'class', 'profile-description'})[0].find('h2').find('a').text) @bs4_error_hander(on_error_return_value='') def __get_location(self, bs4_helper_profile: BS4Helper) -> str: """Return the Profile Picture.""" return str(bs4_helper_profile.soup.find_all('div', attrs={'class', 'profile-description'})[0].find('p').text) def __sanitize(self, content: str) -> str: """Sanitize String.""" return content\ .replace('aim:goim?screenname=', '')\ .replace('ymsgr:sendim?', '')\ .replace('skype:', '') class GravatarDataPrinter(SimpleUsernameDataDigger): """Print Gravatar Data into Sysout.""" def run(self, config: ConfigParser, args: Dict, data: Dict) -> None: """Execute Module.""" # Check the Activation and Get The Social Network Data can_activate, username = self._can_activate(data=data) if not can_activate or username is None: return # Check if Found Anything if data['gravatar'][username]['username'] is None: logger.info('\t\tUsername Not Present.') return # Dump the Output File if args['username_print_result']: logger.info(f'\t\tGravatar ID......: {data["gravatar"][username]["gravatar_id"]}') logger.info(f'\t\tUsername.........: {data["gravatar"][username]["username"]}') logger.info(f'\t\tFull Name........: {data["gravatar"][username]["fullname"]}') logger.info(f'\t\tProfile Picture..: {data["gravatar"][username]["image"]}') logger.info(f'\t\tLocation.........: {data["gravatar"][username]["location"]}') logger.info(f'\t\tLinks............: {len(data["gravatar"][username]["links"])}') for paste in data["gravatar"][username]["links"]: logger.info(f'\t\t\t{paste["name"]} ({paste["full_target"]}) > {paste["target"]}')
if __name__ == "__main__": import sys sys.path.append("/Users/mike.barrameda/Projects/mfadvisor/mfadvisor-api") from db import local_engine from db.base import Base from models import Account, Category, Transaction, TransactionType from scripts.seed_categories import seed_categories from scripts.seed_transaction_types import seed_transaction_types from scripts.seed_accounts import seed_accounts from scripts.seed_chase_checking import seed_chase_checking engine = local_engine() engine.execute("DROP TABLE IF EXISTS transactions;") engine.execute("DROP TABLE IF EXISTS categories;") engine.execute("DROP TABLE IF EXISTS transaction_types;") engine.execute("DROP TABLE IF EXISTS accounts;") Base.metadata.create_all(engine) seed_categories(engine) seed_transaction_types(engine) seed_accounts(engine) seed_chase_checking(engine)
# ============================================================================= # Copyright 2020 NVIDIA. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================= import argparse import json import os import nemo.collections.nlp as nemo_nlp import nemo.collections.nlp.data.datasets.datasets_utils.data_preprocessing import nemo.collections.nlp.utils.data_utils from nemo import logging from nemo.backends.pytorch.common.losses import CrossEntropyLossNM from nemo.collections.nlp.callbacks.token_classification_callback import eval_epochs_done_callback, eval_iter_callback from nemo.collections.nlp.data import NemoBertTokenizer, SentencePieceTokenizer from nemo.collections.nlp.nm.data_layers import BertTokenClassificationDataLayer from nemo.collections.nlp.nm.trainables import TokenClassifier from nemo.utils.lr_policies import get_lr_policy # Parsing arguments parser = argparse.ArgumentParser(description="Token classification with pretrained BERT") parser.add_argument("--local_rank", default=None, type=int) parser.add_argument("--batch_size", default=8, type=int) parser.add_argument("--max_seq_length", default=128, type=int) parser.add_argument("--num_gpus", default=1, type=int) parser.add_argument("--num_epochs", default=5, type=int) parser.add_argument("--lr_warmup_proportion", default=0.1, type=float) parser.add_argument("--lr", default=5e-5, type=float) parser.add_argument("--lr_policy", default="WarmupAnnealing", type=str) parser.add_argument("--weight_decay", default=0, type=float) parser.add_argument("--optimizer_kind", default="adam", type=str) parser.add_argument("--amp_opt_level", default="O0", type=str, choices=["O0", "O1", "O2"]) parser.add_argument("--data_dir", default="/data", type=str) parser.add_argument("--fc_dropout", default=0.5, type=float) parser.add_argument("--num_fc_layers", default=2, type=int) parser.add_argument("--ignore_start_end", action='store_false') parser.add_argument("--ignore_extra_tokens", action='store_false') parser.add_argument("--none_label", default='O', type=str) parser.add_argument("--no_shuffle_data", action='store_false', dest="shuffle_data") parser.add_argument("--pretrained_bert_model", default="bert-base-cased", type=str) parser.add_argument("--bert_checkpoint", default=None, type=str) parser.add_argument("--bert_config", default=None, type=str, help="Path to bert config file in json format") parser.add_argument( "--tokenizer_model", default="tokenizer.model", type=str, help="Path to pretrained tokenizer model, only used if --tokenizer is sentencepiece", ) parser.add_argument( "--tokenizer", default="nemobert", type=str, choices=["nemobert", "sentencepiece"], help="tokenizer to use, only relevant when using custom pretrained checkpoint.", ) parser.add_argument( "--work_dir", default='output', type=str, help="The output directory where the model prediction and checkpoints will be written.", ) parser.add_argument("--use_cache", action='store_true', help="Whether to cache preprocessed data") parser.add_argument( "--save_epoch_freq", default=1, type=int, help="Frequency of saving checkpoint '-1' - step checkpoint won't be saved", ) parser.add_argument( "--save_step_freq", default=-1, type=int, help="Frequency of saving checkpoint '-1' - step checkpoint won't be saved", ) parser.add_argument("--loss_step_freq", default=250, type=int, help="Frequency of printing loss") parser.add_argument("--use_weighted_loss", action='store_true', help="Flag to indicate whether to use weighted loss") args = parser.parse_args() if not os.path.exists(args.data_dir): raise FileNotFoundError( "Dataset not found. For NER, CoNLL-2003 dataset" "can be obtained at" "https://github.com/kyzhouhzau/BERT" "-NER/tree/master/data." ) nf = nemo.core.NeuralModuleFactory( backend=nemo.core.Backend.PyTorch, local_rank=args.local_rank, optimization_level=args.amp_opt_level, log_dir=args.work_dir, create_tb_writer=True, files_to_copy=[__file__], add_time_to_log_dir=True, ) logging.info(args) output_file = f'{nf.work_dir}/output.txt' if args.bert_checkpoint is None: """ Use this if you're using a standard BERT model. To see the list of pretrained models, call: nemo_nlp.nm.trainables.huggingface.BERT.list_pretrained_models() """ tokenizer = NemoBertTokenizer(args.pretrained_bert_model) model = nemo_nlp.nm.trainables.huggingface.BERT(pretrained_model_name=args.pretrained_bert_model) else: """ Use this if you're using a BERT model that you pre-trained yourself. """ if args.tokenizer == "sentencepiece": special_tokens = nemo_nlp.utils.MODEL_SPECIAL_TOKENS['bert'] tokenizer = SentencePieceTokenizer(model_path=args.tokenizer_model) elif args.tokenizer == "nemobert": tokenizer = NemoBertTokenizer(args.pretrained_bert_model) else: raise ValueError(f"received unexpected tokenizer '{args.tokenizer}'") if args.bert_config is not None: with open(args.bert_config) as json_file: config = json.load(json_file) model = nemo_nlp.nm.trainables.huggingface.BERT(**config) else: model = nemo_nlp.nm.trainables.huggingface.BERT(pretrained_model_name=args.pretrained_bert_model) model.restore_from(args.bert_checkpoint) logging.info(f"Model restored from {args.bert_checkpoint}") hidden_size = model.hidden_size def create_pipeline( pad_label=args.none_label, max_seq_length=args.max_seq_length, batch_size=args.batch_size, num_gpus=args.num_gpus, mode='train', label_ids=None, ignore_extra_tokens=args.ignore_extra_tokens, ignore_start_end=args.ignore_start_end, use_cache=args.use_cache, dropout=args.fc_dropout, num_layers=args.num_fc_layers, classifier=TokenClassifier, ): logging.info(f"Loading {mode} data...") shuffle = args.shuffle_data if mode == 'train' else False text_file = f'{args.data_dir}/text_{mode}.txt' label_file = f'{args.data_dir}/labels_{mode}.txt' if not (os.path.exists(text_file) or (os.path.exists(label_file))): raise FileNotFoundError( f'{text_file} or {label_file} not found. \ The data should be splitted into 2 files: text.txt and labels.txt. \ Each line of the text.txt file contains text sequences, where words\ are separated with spaces. The labels.txt file contains \ corresponding labels for each word in text.txt, the labels are \ separated with spaces. Each line of the files should follow the \ format: \ [WORD] [SPACE] [WORD] [SPACE] [WORD] (for text.txt) and \ [LABEL] [SPACE] [LABEL] [SPACE] [LABEL] (for labels.txt).' ) data_layer = BertTokenClassificationDataLayer( tokenizer=tokenizer, text_file=text_file, label_file=label_file, pad_label=pad_label, label_ids=label_ids, max_seq_length=max_seq_length, batch_size=batch_size, shuffle=shuffle, ignore_extra_tokens=ignore_extra_tokens, ignore_start_end=ignore_start_end, use_cache=use_cache, ) (input_ids, input_type_ids, input_mask, loss_mask, subtokens_mask, labels) = data_layer() if mode == 'train': label_ids = data_layer.dataset.label_ids class_weights = None if args.use_weighted_loss: logging.info(f"Using weighted loss") label_freqs = data_layer.dataset.label_frequencies class_weights = nemo.collections.nlp.data.datasets.datasets_utils.data_preprocessing.calc_class_weights( label_freqs ) logging.info(f"class_weights: {class_weights}") classifier = classifier( hidden_size=hidden_size, num_classes=len(label_ids), dropout=dropout, num_layers=num_layers ) task_loss = CrossEntropyLossNM(logits_dim=3, weight=class_weights) hidden_states = model(input_ids=input_ids, token_type_ids=input_type_ids, attention_mask=input_mask) logits = classifier(hidden_states=hidden_states) if mode == 'train': loss = task_loss(logits=logits, labels=labels, loss_mask=loss_mask) steps_per_epoch = len(data_layer) // (batch_size * num_gpus) tensors_to_evaluate = [loss, logits] return tensors_to_evaluate, loss, steps_per_epoch, label_ids, classifier else: tensors_to_evaluate = [logits, labels, subtokens_mask] return tensors_to_evaluate, data_layer train_tensors, train_loss, steps_per_epoch, label_ids, classifier = create_pipeline() eval_tensors, data_layer = create_pipeline(mode='dev', label_ids=label_ids, classifier=classifier) logging.info(f"steps_per_epoch = {steps_per_epoch}") # Create trainer and execute training action train_callback = nemo.core.SimpleLossLoggerCallback( tensors=train_tensors, print_func=lambda x: logging.info("Loss: {:.3f}".format(x[0].item())), get_tb_values=lambda x: [["loss", x[0]]], tb_writer=nf.tb_writer, ) eval_callback = nemo.core.EvaluatorCallback( eval_tensors=eval_tensors, user_iter_callback=lambda x, y: eval_iter_callback(x, y), user_epochs_done_callback=lambda x: eval_epochs_done_callback(x, label_ids, f'{nf.work_dir}/graphs'), tb_writer=nf.tb_writer, eval_step=steps_per_epoch, ) ckpt_callback = nemo.core.CheckpointCallback( folder=nf.checkpoint_dir, epoch_freq=args.save_epoch_freq, step_freq=args.save_step_freq ) lr_policy_fn = get_lr_policy( args.lr_policy, total_steps=args.num_epochs * steps_per_epoch, warmup_ratio=args.lr_warmup_proportion ) nf.train( tensors_to_optimize=[train_loss], callbacks=[train_callback, eval_callback, ckpt_callback], lr_policy=lr_policy_fn, optimizer=args.optimizer_kind, optimization_params={"num_epochs": args.num_epochs, "lr": args.lr}, )
"""Helper functions.""" class Board: def __init__(self, text): self.has_won = False self.number_rows = [ (int(rows_text[0:2]), int(rows_text[3:5]), int(rows_text[6:8]), int(rows_text[9:11]), int(rows_text[12:14])) for rows_text in text.split('\n')] self.unmarked_set = set() for row in self.number_rows: for n in row: self.unmarked_set.add(n) self.marked_coords = set() # row,col pairs self.number_coords = dict() for r in range(len(self.number_rows)): for c in range(len(self.number_rows[0])): n = self.number_rows[r][c] self.number_coords[n] = (r, c) def mark(self, number): if number in self.unmarked_set: self.unmarked_set.remove(number) (r, c) = self.number_coords[number] self.marked_coords.add( (r, c) ) w = True for r2 in range(len(self.number_rows)): if not (r2, c) in self.marked_coords: w = False if w: self.has_won = True w = True for c2 in range(len(self.number_rows[0])): if not (r, c2) in self.marked_coords: w = False if w: self.has_won = True def won(self): return self.has_won def unmarked_sum(self): return sum(self.unmarked_set) def read_input(input_path): numbers = [] boards = [] with open(input_path) as f: numbers = [ int(s) for s in f.readline().rstrip().split(',')] while len(f.readline()) > 0: t = ( f.readline() + f.readline() + f.readline() + f.readline() + f.readline()).rstrip() boards.append(Board(t)) return (numbers, boards)
from ..engine.agent import Agent from ..engine.decision import * import numpy as np from typing import Union PlayDecision = Union[ActionPhaseDecision, TreasurePhaseDecision] def find_card_in_decision(decision, card_name): if isinstance(decision, PlayDecision.__args__): for idx, move in enumerate(decision.moves): if hasattr(move, 'card') and move.card.name == card_name: return [idx] elif isinstance(decision, BuyPhaseDecision): for idx, move in enumerate(decision.moves): if hasattr(move, 'card_name') and move.card_name == card_name: return [idx] return [0] def get_minimum_coin_card(decision): card_coins = [c.coins for c in decision.moves.card] return [np.argmin(card_coins)] class PriorityAgent(Agent): """ Doesn't currently work right now... """ def __init__(self, card_priorities): self.card_priorities = card_priorities def policy(self, decision, state_view): if not decision.optional and len(decision.moves) == 1: return [0] if decision.optional and len(decision.moves) == 0: return [] if decision.prompt == 'Select a card to trash from enemy Bandit.' or \ decision.prompt == 'Discard down to 3 cards.': return get_minimum_coin_card(decision) if state_view.player.phase == TurnPhase.TREASURE_PHASE: return [1] if state_view.player.phase == TurnPhase.BUY_PHASE: all_cards_money = [c.coins for c in state_view.player.previous_deck] \ or [0] hand_money_ev = np.mean(all_cards_money) * 5 if state_view.player.coins >= 8 and hand_money_ev > 8: return find_card_in_decision(decision, 'Province') elif state_view.player.coins >= 6: return find_card_in_decision(decision, 'Gold') elif state_view.player.coins >= 3: return find_card_in_decision(decision, 'Silver') return [0]
from requests import post, get """ Related methods for submitting requests to the HTB V4 API """ def api_get(url: str, endpoint: str, headers: dict) -> list: """ api_get: Make a get request to HTB API :param url: Target url to send request :param endpoint: API path to a specific resource :param headers: Headers http :return: Response result """ return get(f"{url}{endpoint}", headers=headers, allow_redirects=False).json() def api_post(url: str, endpoint: str, headers: dict, data: dict) -> list: """ api_post: Send data through http POST to HTB API :param url: Target url to send request :param endpoint: API target path :param headers: Headers http :param data: Data to send :return: Response result """ return post(f"{url}{endpoint}", headers=headers, data=data)
class rotate: def __init__(self, image=[[0.0]], angle=0): from scipy import ndimage self.rot_img = ndimage.rotate(image, angle) def rotate_img(self: 'array_float'): return self.rot_img
# -*- coding: utf-8 -*- # Generated by Django 1.10.5 on 2018-03-18 11:50 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [("camps", "0024_populate_camp_shortslugs")] operations = [ migrations.AlterField( model_name="camp", name="shortslug", field=models.SlugField( help_text="Abbreviated version of the slug. Used in IRC channel names and other places with restricted name length.", verbose_name="Short Slug", ), ) ]
# # Simson's Sharepoint implementation # This is how you can read from sharepoint with Windows Domain authentication. import win32com.client url = 'https://....' h = win32com.client.Dispatch('WinHTTP.WinHTTPRequest.5.1') h.SetAutoLogonPolicy(0) h.Open('GET', url, False) h.Send() result = h.responseText result
from storages.backends.s3boto3 import S3Boto3Storage from furl import furl from django.utils.module_loading import import_string from django.conf import settings import os class BaseS3Storage(S3Boto3Storage): def url(self, name): url = super(BaseS3Storage, self).url(name) if not self.querystring_auth: f = furl(url) if 'x-amz-security-token' in f.args: del f.args['x-amz-security-token'] url = f.url if os.environ.get('CDN_NAME'): f = furl(url) f.set(host=os.environ.get('CDN_NAME')) url = f.url return url class StaticS3Storage(BaseS3Storage): location = 'static' default_acl = 'public-read' def url(self, name): url = super(StaticS3Storage, self).url(name) if name.endswith('/') and not url.endswith('/'): url += '/' return url class PublicReadS3Storage(BaseS3Storage): querystring_auth = False default_acl = 'public-read' class S3Storage(BaseS3Storage): pass def get_public_read_storage_class(): return import_string(getattr(settings, 'PUBLIC_READ_FILE_STORAGE', settings.DEFAULT_FILE_STORAGE)) public_read_storage = get_public_read_storage_class()()
from re import fullmatch pattern1 = r"\s*\w{12,}\s*" pattern2 = r"[^ieaou]+" pattern3 = r"^[^ieaou]\w+[^ieaou]$" pattern4 = r"^[ieaou]\w+[ieaou]$" pattern5 = r"^\w{3}$" for i in range(5, 21, 2): pattern = r"^\w{" + str(i) + "}$" pattern5 = pattern5 + "|" + pattern print(pattern5) with open("dictionary-tur.txt", mode="r") as myfile: for word in myfile.readlines(): word = word.strip() if fullmatch(pattern5, word): print(word)
from typing import Optional from botocore.client import BaseClient from typing import Dict from typing import Union from botocore.paginate import Paginator from datetime import datetime from botocore.waiter import Waiter from typing import List class Client(BaseClient): def can_paginate(self, operation_name: str = None): pass def create_backup_plan(self, BackupPlan: Dict, BackupPlanTags: Dict = None, CreatorRequestId: str = None) -> Dict: pass def create_backup_selection(self, BackupPlanId: str, BackupSelection: Dict, CreatorRequestId: str = None) -> Dict: pass def create_backup_vault(self, BackupVaultName: str, BackupVaultTags: Dict = None, EncryptionKeyArn: str = None, CreatorRequestId: str = None) -> Dict: pass def delete_backup_plan(self, BackupPlanId: str) -> Dict: pass def delete_backup_selection(self, BackupPlanId: str, SelectionId: str): pass def delete_backup_vault(self, BackupVaultName: str): pass def delete_backup_vault_access_policy(self, BackupVaultName: str): pass def delete_backup_vault_notifications(self, BackupVaultName: str): pass def delete_recovery_point(self, BackupVaultName: str, RecoveryPointArn: str): pass def describe_backup_job(self, BackupJobId: str) -> Dict: pass def describe_backup_vault(self, BackupVaultName: str) -> Dict: pass def describe_protected_resource(self, ResourceArn: str) -> Dict: pass def describe_recovery_point(self, BackupVaultName: str, RecoveryPointArn: str) -> Dict: pass def describe_restore_job(self, RestoreJobId: str) -> Dict: pass def export_backup_plan_template(self, BackupPlanId: str) -> Dict: pass def generate_presigned_url(self, ClientMethod: str = None, Params: Dict = None, ExpiresIn: int = None, HttpMethod: str = None): pass def get_backup_plan(self, BackupPlanId: str, VersionId: str = None) -> Dict: pass def get_backup_plan_from_json(self, BackupPlanTemplateJson: str) -> Dict: pass def get_backup_plan_from_template(self, BackupPlanTemplateId: str) -> Dict: pass def get_backup_selection(self, BackupPlanId: str, SelectionId: str) -> Dict: pass def get_backup_vault_access_policy(self, BackupVaultName: str) -> Dict: pass def get_backup_vault_notifications(self, BackupVaultName: str) -> Dict: pass def get_paginator(self, operation_name: str = None) -> Paginator: pass def get_recovery_point_restore_metadata(self, BackupVaultName: str, RecoveryPointArn: str) -> Dict: pass def get_supported_resource_types(self) -> Dict: pass def get_waiter(self, waiter_name: str = None) -> Waiter: pass def list_backup_jobs(self, NextToken: str = None, MaxResults: int = None, ByResourceArn: str = None, ByState: str = None, ByBackupVaultName: str = None, ByCreatedBefore: datetime = None, ByCreatedAfter: datetime = None, ByResourceType: str = None) -> Dict: pass def list_backup_plan_templates(self, NextToken: str = None, MaxResults: int = None) -> Dict: pass def list_backup_plan_versions(self, BackupPlanId: str, NextToken: str = None, MaxResults: int = None) -> Dict: pass def list_backup_plans(self, NextToken: str = None, MaxResults: int = None, IncludeDeleted: bool = None) -> Dict: pass def list_backup_selections(self, BackupPlanId: str, NextToken: str = None, MaxResults: int = None) -> Dict: pass def list_backup_vaults(self, NextToken: str = None, MaxResults: int = None) -> Dict: pass def list_protected_resources(self, NextToken: str = None, MaxResults: int = None) -> Dict: pass def list_recovery_points_by_backup_vault(self, BackupVaultName: str, NextToken: str = None, MaxResults: int = None, ByResourceArn: str = None, ByResourceType: str = None, ByBackupPlanId: str = None, ByCreatedBefore: datetime = None, ByCreatedAfter: datetime = None) -> Dict: pass def list_recovery_points_by_resource(self, ResourceArn: str, NextToken: str = None, MaxResults: int = None) -> Dict: pass def list_restore_jobs(self, NextToken: str = None, MaxResults: int = None) -> Dict: pass def list_tags(self, ResourceArn: str, NextToken: str = None, MaxResults: int = None) -> Dict: pass def put_backup_vault_access_policy(self, BackupVaultName: str, Policy: str = None): pass def put_backup_vault_notifications(self, BackupVaultName: str, SNSTopicArn: str, BackupVaultEvents: List): pass def start_backup_job(self, BackupVaultName: str, ResourceArn: str, IamRoleArn: str, IdempotencyToken: str = None, StartWindowMinutes: int = None, CompleteWindowMinutes: int = None, Lifecycle: Dict = None, RecoveryPointTags: Dict = None) -> Dict: pass def start_restore_job(self, RecoveryPointArn: str, Metadata: Dict, IamRoleArn: str, IdempotencyToken: str = None, ResourceType: str = None) -> Dict: pass def stop_backup_job(self, BackupJobId: str): pass def tag_resource(self, ResourceArn: str, Tags: Dict): pass def untag_resource(self, ResourceArn: str, TagKeyList: List): pass def update_backup_plan(self, BackupPlanId: str, BackupPlan: Dict) -> Dict: pass def update_recovery_point_lifecycle(self, BackupVaultName: str, RecoveryPointArn: str, Lifecycle: Dict = None) -> Dict: pass
# Copyright 2019 Nokia # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from crl.interactivesessions.shells.sudoshell import BashShell from .clusterverifier import CorruptedVerifier from .cluster import Cluster from . import cluster def test_get_host(clusterverifier): clusterverifier.verify_get_host() def test_master_external_ip(clusterverifier): clusterverifier.verify_master_external_ip() def test_get_hosts_with_profile(clusterverifier): clusterverifier.verify_get_hosts_with_profiles() def test_get_hosts_containing(clusterverifier): clusterverifier.verify_hosts_containing() def test_cluster_caching(clusterverifier): clusterverifier.verify_cluster_config_caching() def test_cluster_singleton(): assert Cluster() == Cluster() def test_cluster_mgmt_shelldicts(clusterverifier): clusterverifier.verify_mgmt_shelldicts() def test_get_host_raises(clustermocks): c = CorruptedVerifier(clustermocks) c.verify_corrupted_raises() def test_create_remotesession(clusterverifier): clusterverifier.verify_create_remotesession() def test_initialize_remotesession(clusterverifier): clusterverifier.verify_initialize_remotesession() def test_create_hostcli(clusterverifier): clusterverifier.verify_create_hostcli() def test_initialize_hostcli(clusterverifier): clusterverifier.verify_initialize_hostcli() def test_create_user_with_roles(clusterverifier): clusterverifier.verify_create_user_with_roles() def test_delete_users(clusterverifier): clusterverifier.verify_delete_users() def test_envcreator_usage(clusterverifier): clusterverifier.verify_envcreator() def test_sudoshell_in_cluster(): assert cluster.BashShell == BashShell def test_is_dpdk(clusterverifier): clusterverifier.verify_is_dpdk() def test_get_hosts_with_dpdk(clusterverifier): clusterverifier.verify_get_hosts_with_dpdk()
"""Maintains a persistent connection to the USRP. Example usage: >>> from scos_usrp.hardware import radio >>> radio.is_available True >>> rx = radio >>> rx.sample_rate = 10e6 >>> rx.frequency = 700e6 >>> rx.gain = 40 >>> samples = rx.acquire_time_domain_samples(1000) """ import logging from datetime import datetime import numpy as np from scos_actions import utils from scos_actions.hardware.radio_iface import RadioInterface from scos_usrp import settings from scos_usrp.hardware import calibration from scos_usrp.hardware.mocks.usrp_block import MockUsrp from scos_usrp.hardware.tests.resources.utils import create_dummy_calibration logger = logging.getLogger(__name__) logger.debug(f"USRP_CONNECTION_ARGS = {settings.USRP_CONNECTION_ARGS}") # Testing determined these gain values provide a good mix of sensitivity and # dynamic range performance VALID_GAINS = (0, 20, 40, 60) # Define the default calibration dicts DEFAULT_SIGAN_CALIBRATION = { "gain_sigan": None, # Defaults to gain setting "enbw_sigan": None, # Defaults to sample rate "noise_figure_sigan": 0, "1db_compression_sigan": 100, } DEFAULT_SENSOR_CALIBRATION = { "gain_sensor": None, # Defaults to sigan gain "enbw_sensor": None, # Defaults to sigan enbw "noise_figure_sensor": None, # Defaults to sigan noise figure "1db_compression_sensor": None, # Defaults to sigan compression + preselector gain "gain_preselector": 0, "noise_figure_preselector": 0, "1db_compression_preselector": 100, } class USRPRadio(RadioInterface): @property def last_calibration_time(self): """ Returns the last calibration time from calibration data. """ if self.sensor_calibration: return utils.convert_string_to_millisecond_iso_format( self.sensor_calibration.calibration_datetime ) return None @property def overload(self): """ Returns True if overload occurred, otherwise returns False. """ return self._sigan_overload or self._sensor_overload # Define thresholds for determining ADC overload for the sigan ADC_FULL_RANGE_THRESHOLD = 0.98 # ADC scale -1<sample<1, magnitude threshold = 0.98 ADC_OVERLOAD_THRESHOLD = ( 0.01 # Ratio of samples above the ADC full range to trigger overload ) def __init__( self, sensor_cal_file=settings.SENSOR_CALIBRATION_FILE, sigan_cal_file=settings.SIGAN_CALIBRATION_FILE, ): self.uhd = None self.usrp = None self._is_available = False self.sensor_calibration_data = None self.sigan_calibration_data = None self.sensor_calibration = None self.sigan_calibration = None self.lo_freq = None self.dsp_freq = None self._sigan_overload = False self._sensor_overload = False self._capture_time = None self.connect() self.get_calibration(sensor_cal_file, sigan_cal_file) def connect(self): if self._is_available: return True if settings.RUNNING_TESTS or settings.MOCK_RADIO: logger.warning("Using mock USRP.") random = settings.MOCK_RADIO_RANDOM self.usrp = MockUsrp(randomize_values=random) self._is_available = True else: try: import uhd self.uhd = uhd except ImportError: logger.warning("uhd not available - disabling radio") return False usrp_args = ( f"type=b200,{settings.USRP_CONNECTION_ARGS}" # find any b-series device ) logger.debug(f"usrp_args = {usrp_args}") try: self.usrp = self.uhd.usrp.MultiUSRP(usrp_args) except RuntimeError: err = "No device found matching search parameters {!r}\n" err = err.format(usrp_args) raise RuntimeError(err) logger.debug("Using the following USRP:") logger.debug(self.usrp.get_pp_string()) try: self._is_available = True return True except Exception as err: logger.exception(err) return False @property def is_available(self): """ Returns True if initialized and ready to make measurements, otherwise returns False. """ return self._is_available def get_calibration(self, sensor_cal_file, sigan_cal_file): """ Get calibration data from sensor_cal_file and sigan_cal_file. """ # Set the default calibration values self.sensor_calibration_data = DEFAULT_SENSOR_CALIBRATION.copy() self.sigan_calibration_data = DEFAULT_SIGAN_CALIBRATION.copy() # Try and load sensor/sigan calibration data if not settings.RUNNING_TESTS and not settings.MOCK_RADIO: try: self.sensor_calibration = calibration.load_from_json(sensor_cal_file) except Exception as err: logger.error( "Unable to load sensor calibration data, reverting to none" ) logger.exception(err) self.sensor_calibration = None try: self.sigan_calibration = calibration.load_from_json(sigan_cal_file) except Exception as err: logger.error("Unable to load sigan calibration data, reverting to none") logger.exception(err) self.sigan_calibration = None else: # If in testing, create our own test files dummy_calibration = create_dummy_calibration() self.sensor_calibration = dummy_calibration self.sigan_calibration = dummy_calibration @property def sample_rate(self): """ Returns the currently configured sample rate in samples per second. """ return self.usrp.get_rx_rate() @sample_rate.setter def sample_rate(self, rate): """Sets the sample_rate and the clock_rate based on the sample_rate :type sample_rate: float :param sample_rate: Sample rate in samples per second """ self.usrp.set_rx_rate(rate) fs_MSps = self.sample_rate / 1e6 logger.debug("set USRP sample rate: {:.2f} MSps".format(fs_MSps)) # Set the clock rate based on calibration if self.sigan_calibration is not None: clock_rate = self.sigan_calibration.get_clock_rate(rate) else: clock_rate = self.sample_rate # Maximize clock rate while keeping it under 40e6 while clock_rate <= 40e6: clock_rate *= 2 clock_rate /= 2 self.clock_rate = clock_rate @property def clock_rate(self): """ Returns the currently configured clock rate in hertz. """ return self.usrp.get_master_clock_rate() @clock_rate.setter def clock_rate(self, rate): """ Sets the signal analyzer clock rate. :type rate: float :param rate: Clock rate in hertz """ self.usrp.set_master_clock_rate(rate) clk_MHz = self.clock_rate / 1e6 logger.debug("set USRP clock rate: {:.2f} MHz".format(clk_MHz)) @property def frequency(self): """ Returns the currently configured center frequency in hertz. """ return self.usrp.get_rx_freq() @frequency.setter def frequency(self, freq): """ Sets the signal analyzer frequency. :type freq: float :param freq: Frequency in hertz """ self.tune_frequency(freq) def tune_frequency(self, rf_freq, dsp_freq=0): """ Tunes the signal analyzer as close as possible to the desired frequency. :type rf_freq: float :param rf_freq: Desired frequency in hertz :type dsp_freq: float :param dsp_freq: LO offset frequency in hertz """ if isinstance(self.usrp, MockUsrp): tune_result = self.usrp.set_rx_freq(rf_freq, dsp_freq) logger.debug(tune_result) else: tune_request = self.uhd.types.TuneRequest(rf_freq, dsp_freq) tune_result = self.usrp.set_rx_freq(tune_request) msg = "rf_freq: {}, dsp_freq: {}" logger.debug(msg.format(rf_freq, dsp_freq)) self.lo_freq = rf_freq self.dsp_freq = dsp_freq @property def gain(self): """ Returns the currently configured gain setting in dB. """ return self.usrp.get_rx_gain() @gain.setter def gain(self, gain): """ Sets the signal analyzer gain setting. :type gain: float :param gain: Gain in dB """ if gain not in VALID_GAINS: err = "Requested invalid gain {}. ".format(gain) err += "Choose one of {!r}.".format(VALID_GAINS) logger.error(err) return self.usrp.set_rx_gain(gain) msg = "set USRP gain: {:.1f} dB" logger.debug(msg.format(self.usrp.get_rx_gain())) def recompute_calibration_data(self): """Set the calibration data based on the currently tuning""" # Try and get the sensor calibration data self.sensor_calibration_data = DEFAULT_SENSOR_CALIBRATION.copy() if self.sensor_calibration is not None: self.sensor_calibration_data.update( self.sensor_calibration.get_calibration_dict( sample_rate=self.sample_rate, lo_frequency=self.frequency, gain=self.gain, ) ) # Try and get the sigan calibration data self.sigan_calibration_data = DEFAULT_SIGAN_CALIBRATION.copy() if self.sigan_calibration is not None: self.sigan_calibration_data.update( self.sigan_calibration.get_calibration_dict( sample_rate=self.sample_rate, lo_frequency=self.frequency, gain=self.gain, ) ) # Catch any defaulting calibration values for the sigan if self.sigan_calibration_data["gain_sigan"] is None: self.sigan_calibration_data["gain_sigan"] = self.gain if self.sigan_calibration_data["enbw_sigan"] is None: self.sigan_calibration_data["enbw_sigan"] = self.sample_rate # Catch any defaulting calibration values for the sensor if self.sensor_calibration_data["gain_sensor"] is None: self.sensor_calibration_data["gain_sensor"] = self.sigan_calibration_data[ "gain_sigan" ] if self.sensor_calibration_data["enbw_sensor"] is None: self.sensor_calibration_data["enbw_sensor"] = self.sigan_calibration_data[ "enbw_sigan" ] if self.sensor_calibration_data["noise_figure_sensor"] is None: self.sensor_calibration_data[ "noise_figure_sensor" ] = self.sigan_calibration_data["noise_figure_sigan"] if self.sensor_calibration_data["1db_compression_sensor"] is None: self.sensor_calibration_data["1db_compression_sensor"] = ( self.sensor_calibration_data["gain_preselector"] + self.sigan_calibration_data["1db_compression_sigan"] ) def create_calibration_annotation(self): """ Creates the SigMF calibration annotation. """ annotation_md = { "ntia-core:annotation_type": "CalibrationAnnotation", "ntia-sensor:gain_sigan": self.sigan_calibration_data["gain_sigan"], "ntia-sensor:noise_figure_sigan": self.sigan_calibration_data[ "noise_figure_sigan" ], "ntia-sensor:1db_compression_point_sigan": self.sigan_calibration_data[ "1db_compression_sigan" ], "ntia-sensor:enbw_sigan": self.sigan_calibration_data["enbw_sigan"], "ntia-sensor:gain_preselector": self.sensor_calibration_data[ "gain_preselector" ], "ntia-sensor:noise_figure_sensor": self.sensor_calibration_data[ "noise_figure_sensor" ], "ntia-sensor:1db_compression_point_sensor": self.sensor_calibration_data[ "1db_compression_sensor" ], "ntia-sensor:enbw_sensor": self.sensor_calibration_data["enbw_sensor"], } return annotation_md def check_sensor_overload(self, data): """ Check for sensor overload in the measurement data. """ measured_data = data.astype(np.complex64) time_domain_avg_power = 10 * np.log10(np.mean(np.abs(measured_data) ** 2)) time_domain_avg_power += ( 10 * np.log10(1 / (2 * 50)) + 30 ) # Convert log(V^2) to dBm self._sensor_overload = False # explicitly check is not None since 1db compression could be 0 if self.sensor_calibration_data["1db_compression_sensor"] is not None: self._sensor_overload = ( time_domain_avg_power > self.sensor_calibration_data["1db_compression_sensor"] ) def acquire_time_domain_samples(self, num_samples, num_samples_skip=0, retries=5): """Acquire num_samples_skip+num_samples samples and return the last num_samples :type num_samples: int :param num_samples: Number of samples to acquire :type num_samples_skip: int :param num_samples_skip: Skip samples to allow signal analyzer DC offset and IQ imbalance algorithms to take effect :type retries: int :param retries: The number of retries to attempt when failing to acquire samples :rtype: dictionary containing the following: data - (list) measurement data overload - (boolean) True if overload occurred, otherwise False frequency - (float) Measurement center frequency in hertz gain - (float) Measurement signal analyzer gain setting in dB sample_rate - (float) Measurement sample rate in samples per second capture_time - (string) Measurement capture time calibration_annotation - (dict) SigMF calibration annotation """ self._sigan_overload = False self._capture_time = None # Get the calibration data for the acquisition self.recompute_calibration_data() nsamps = int(num_samples) nskip = int(num_samples_skip) # Compute the linear gain db_gain = self.sensor_calibration_data["gain_sensor"] linear_gain = 10 ** (db_gain / 20.0) # Try to acquire the samples max_retries = retries while True: # No need to skip initial samples when simulating the radio if not settings.RUNNING_TESTS and not settings.MOCK_RADIO: nsamps += nskip self._capture_time = utils.get_datetime_str_now() samples = self.usrp.recv_num_samps( nsamps, # number of samples self.frequency, # center frequency in Hz self.sample_rate, # sample rate in samples per second [0], # channel list self.gain, # gain in dB ) # usrp.recv_num_samps returns a numpy array of shape # (n_channels, n_samples) and dtype complex64 assert samples.dtype == np.complex64 assert len(samples.shape) == 2 and samples.shape[0] == 1 data = samples[0] # isolate data for channel 0 data_len = len(data) if not settings.RUNNING_TESTS and not settings.MOCK_RADIO: data = data[nskip:] if not len(data) == num_samples: if retries > 0: msg = "USRP error: requested {} samples, but got {}." logger.warning(msg.format(num_samples + num_samples_skip, data_len)) logger.warning("Retrying {} more times.".format(retries)) retries = retries - 1 else: err = "Failed to acquire correct number of samples " err += "{} times in a row.".format(max_retries) raise RuntimeError(err) else: logger.debug("Successfully acquired {} samples.".format(num_samples)) # Check IQ values versus ADC max for sigan compression self._sigan_overload = False i_samples = np.abs(np.real(data)) q_samples = np.abs(np.imag(data)) i_over_threshold = np.sum(i_samples > self.ADC_FULL_RANGE_THRESHOLD) q_over_threshold = np.sum(q_samples > self.ADC_FULL_RANGE_THRESHOLD) total_over_threshold = i_over_threshold + q_over_threshold ratio_over_threshold = float(total_over_threshold) / num_samples if ratio_over_threshold > self.ADC_OVERLOAD_THRESHOLD: self._sigan_overload = True # Scale the data back to RF power and return it data /= linear_gain self.check_sensor_overload(data) measurement_result = { "data": data, "overload": self.overload, "frequency": self.frequency, "gain": self.gain, "sample_rate": self.sample_rate, "capture_time": self._capture_time, "calibration_annotation": self.create_calibration_annotation(), } return measurement_result @property def healthy(self): """ Check for ability to acquire samples from the signal analyzer. """ logger.debug("Performing USRP health check") if not self.is_available: return False # arbitrary number of samples to acquire to check health of usrp # keep above ~70k to catch previous errors seen at ~70k requested_samples = 100000 try: measurement_result = self.acquire_time_domain_samples(requested_samples) data = measurement_result["data"] except Exception as e: logger.error("Unable to acquire samples from the USRP") logger.error(e) return False if not len(data) == requested_samples: logger.error("USRP data doesn't match request") return False return True
from kratos import * from lake.modules.aggregator import Aggregator from lake.attributes.config_reg_attr import ConfigRegAttr from lake.passes.passes import lift_config_reg import kratos as kts class StorageConfigSeq(Generator): ''' Sequence the reads and writes to the storage unit - if dealing with a storage unit that has multiple r/w, should only use one of the ports If the storage unit is wider than the data, this sequencer expects all X writes/reads in order will come from the same word ''' def __init__(self, data_width, config_addr_width, addr_width, fetch_width, total_sets, sets_per_macro): super().__init__("storage_config_seq") self.data_width = data_width self.config_addr_width = config_addr_width self.addr_width = addr_width self.fetch_width = fetch_width self.fw_int = int(self.fetch_width / self.data_width) self.total_sets = total_sets self.sets_per_macro = sets_per_macro self.banks = int(self.total_sets / self.sets_per_macro) self.set_addr_width = clog2(total_sets) # self.storage_addr_width = self. # Clock and Reset self._clk = self.clock("clk") self._rst_n = self.reset("rst_n") # Inputs # phases = [] TODO # Take in the valid and data and attach an address + direct to a port self._config_data_in = self.input("config_data_in", self.data_width) self._config_addr_in = self.input("config_addr_in", self.config_addr_width) self._config_wr = self.input("config_wr", 1) self._config_rd = self.input("config_rd", 1) self._config_en = self.input("config_en", self.total_sets) self._clk_en = self.input("clk_en", 1) self._rd_data_stg = self.input("rd_data_stg", self.data_width, size=(self.banks, self.fw_int), explicit_array=True, packed=True) self._wr_data = self.output("wr_data", self.data_width, size=self.fw_int, explicit_array=True, packed=True) self._rd_data_out = self.output("rd_data_out", self.data_width, size=self.total_sets, explicit_array=True, packed=True) self._addr_out = self.output("addr_out", self.addr_width) # One set per macro means we directly send the config address through if self.sets_per_macro == 1: width = self.addr_width - self.config_addr_width if width > 0: self.wire(self._addr_out, kts.concat(kts.const(0, width), self._config_addr_in)) else: self.wire(self._addr_out, self._config_addr_in[self.addr_width - 1, 0]) else: width = self.addr_width - self.config_addr_width - clog2(self.sets_per_macro) self._set_to_addr = self.var("set_to_addr", clog2(self.sets_per_macro)) self._reduce_en = self.var("reduce_en", self.sets_per_macro) for i in range(self.sets_per_macro): reduce_var = self._config_en[i] for j in range(self.banks - 1): reduce_var = kts.concat(reduce_var, self._config_en[i + (self.sets_per_macro * (j + 1))]) self.wire(self._reduce_en[i], reduce_var.r_or()) self.add_code(self.demux_set_addr) if width > 0: self.wire(self._addr_out, kts.concat(kts.const(0, width), self._set_to_addr, self._config_addr_in)) else: self.wire(self._addr_out, kts.concat(self._set_to_addr, self._config_addr_in)) self._wen_out = self.output("wen_out", self.banks) self._ren_out = self.output("ren_out", self.banks) # Handle data passing if self.fw_int == 1: # If word width is same as data width, just pass everything through self.wire(self._wr_data[0], self._config_data_in) # self.wire(self._rd_data_out, self._rd_data_stg[0]) num = 0 for i in range(self.banks): for j in range(self.sets_per_macro): self.wire(self._rd_data_out[num], self._rd_data_stg[i]) num = num + 1 else: self._data_wr_reg = self.var("data_wr_reg", self.data_width, size=self.fw_int - 1, packed=True, explicit_array=True) # self._data_rd_reg = self.var("data_rd_reg", # self.data_width, # size=self.fw_int - 1, # packed=True, # explicit_array=True) # Have word counter for repeated reads/writes self._cnt = self.var("cnt", clog2(self.fw_int)) self._rd_cnt = self.var("rd_cnt", clog2(self.fw_int)) self.add_code(self.update_cnt) self.add_code(self.update_rd_cnt) # Gate wen if not about to finish the word num = 0 for i in range(self.banks): for j in range(self.sets_per_macro): self.wire(self._rd_data_out[num], self._rd_data_stg[i][self._rd_cnt]) num = num + 1 # Deal with writing to the data buffer self.add_code(self.write_buffer) # Wire the reg + such to this guy for i in range(self.fw_int - 1): self.wire(self._wr_data[i], self._data_wr_reg[i]) self.wire(self._wr_data[self.fw_int - 1], self._config_data_in) # If we have one bank, we can just always rd/wr from that one if self.banks == 1: if self.fw_int == 1: self.wire(self._wen_out, self._config_wr) else: self.wire(self._wen_out, self._config_wr & (self._cnt == (self.fw_int - 1))) self.wire(self._ren_out, self._config_rd) # Otherwise we need to extract the bank from the set else: if self.fw_int == 1: for i in range(self.banks): width = self.sets_per_macro self.wire(self._wen_out[i], self._config_wr & self._config_en[(i + 1) * width - 1, i * width].r_or()) else: for i in range(self.banks): width = self.sets_per_macro self.wire(self._wen_out[i], self._config_wr & self._config_en[(i + 1) * width - 1, i * width].r_or() & (self._cnt == (self.fw_int - 1))) for i in range(self.banks): width = self.sets_per_macro self.wire(self._ren_out[i], self._config_rd & self._config_en[(i + 1) * width - 1, i * width].r_or()) @always_comb def demux_set_addr(self): self._set_to_addr = 0 for i in range(self.sets_per_macro): if self._reduce_en[i]: self._set_to_addr = i @always_ff((posedge, "clk"), (negedge, "rst_n")) def update_cnt(self): if ~self._rst_n: self._cnt = 0 # Increment when reading/writing - making sure # that the sequencing is correct from app level! elif (self._config_wr | self._config_rd) & self._config_en.r_or(): self._cnt = self._cnt + 1 @always_ff((posedge, "clk"), (negedge, "rst_n")) def update_rd_cnt(self): if ~self._rst_n: self._rd_cnt = 0 # Increment when reading/writing - making sure # that the sequencing is correct from app level! else: self._rd_cnt = self._cnt @always_ff((posedge, "clk"), (negedge, "rst_n")) def write_buffer(self): if ~self._rst_n: self._data_wr_reg = 0 # Increment when reading/writing - making sure # that the sequencing is correct from app level! elif self._config_wr & (self._cnt < self.fw_int - 1): self._data_wr_reg[self._cnt] = self._config_data_in if __name__ == "__main__": db_dut = StorageConfigSeq(data_width=16, config_addr_width=8, addr_width=16, fetch_width=64, total_sets=2, sets_per_macro=2) verilog(db_dut, filename="storage_config_seq.sv", additional_passes={"lift config regs": lift_config_reg})
from dis_snek import InteractionContext, slash_command from ElevatorBot.commands.base import BaseScale from ElevatorBot.core.destiny.dayOneRace import DayOneRace from Shared.functions.readSettingsFile import get_setting # ============= # Descend Only! # ============= class DayOneRaceCommand(BaseScale): # todo perms @slash_command( name="day_one_raid_race", description="Starts the Day One raid completion announcer", scopes=get_setting("COMMAND_GUILD_SCOPE"), ) async def day_one_raid_race(self, ctx: InteractionContext): if ctx.author.id != 238388130581839872: await ctx.send( "This is blocked for now, since it it waiting for a vital unreleased discord feature", ephemeral=True ) return racer = DayOneRace(ctx=ctx) await racer.start() def setup(client): DayOneRaceCommand(client)
import os from unittest import TestCase from symbol.symbol_maker.reader import Reader from django.conf import settings class TestElement(TestCase): @classmethod def setUpClass(cls): pass @classmethod def tearDownClass(cls): pass def read_by_name(self, name): path = os.path.join(settings.TEST_MML_HTML_DIR, name + ".html") path = path.replace('\\', '/') reader = Reader() reader.read(path) return reader @staticmethod def filter_by_type(elements, typename): return [e for e in elements if e.type() == typename]
#!/usr/bin/env python3 import pygame import sys import time import os from pygame.locals import * from .button import Button from .globals import (screen_width, screen_height, FPS, fps_clock, fontPath, assetsPath) from .tool import blit_on, game_quit, remove_plant, show_plant, show_obstacle, set_water class MenuFetch: """Menu for the fetch part representation. Contains the information related to menu when fetching information from the robot. Attributes: surface: Surface on which the menu is blitted. plant_im: Zone where the picture of the plant picture is printed. title: Title of the Menu. text_input: Text input object in which the user can write coordinates. buttons: List of buttons object. time_passed: Time passed between two update function call. """ # surface should be a surface of the size of 350x950 def __init__(self, surface_e, screen): """Initialiaze the menu with a surface and the main screen pygame object""" # get a surface self.surface = surface_e self.surface.fill((255, 255, 255)) self.plant_im = None self.title = "Fetch" self.text_input = None self.buttons = [] #self.init_buttons() self.init_menu(screen) self.time_passed = 0 self.is_color_chosing = False def draw_on(self, screen): """Draw the menu on the screen""" # Render background if self.plant_im != None: self.surface.blit(self.plant_im, (5,50)) screen.blit(self.surface, (950, 0)) # Render buttons if self.plant_im != None: for b in self.buttons: b.draw(screen) else: for i in range(0, len(self.buttons) - 3): self.buttons[i].draw(screen) if self.text_input != None: screen.blit(self.text_input.get_surface(), self.text_input.init_pos) def init_menu(self, screen): """Set menu graphics at initialization.""" # Render texture background brickTexture = os.path.join(assetsPath, 'textures/brick.jpg') blit_on(self.surface, brickTexture) # Render title myFontPath = os.path.join(fontPath, 'Capture_it.ttf') myfont = pygame.font.Font(myFontPath, 20) title_surface = myfont.render(self.title, False, (255, 255, 255)) self.surface.blit(title_surface, (8, 0)) # Render instructions # msg_surface = myfont.render("min: 0 | max: 899 | unit: cm/px", # False, (0, 255, 55)) # self.surface.blit(msg_surface, (8, 48)) # msg_surface = myfont.render("Color: red, blue, green, yellow, purple", # False, (255, 155, 255)) # self.surface.blit(msg_surface, (8, 65)) # msg_surface = myfont.render(" orange, white", # False, (255, 155, 255)) # self.surface.blit(msg_surface, (8, 79)) # msg_surface = myfont.render("coordinate:", # False, (255, 255, 255)) # self.surface.blit(msg_surface, (55, 110)) # msg_surface = myfont.render("color:", # False, (255, 255, 255)) # self.surface.blit(msg_surface, (210, 110)) # Render buttons #for b in self.buttons: # b.draw(screen) def update(self, screen, game_engine, game_map, events): """Update core of the menu. Args: self: The current menu object. game_engine: game Object that contains everything related to the core application. game_map: Map object that represents the map part of the application. events: List of externals events """ # update text if self.text_input != None: self.text_input.update(events) self.time_passed += fps_clock.tick(FPS) # update buttons if self.time_passed >= 150: if self.plant_im != None: for b in self.buttons: b.update(screen, self, game_engine, game_map) else: for i in range(0, len(self.buttons) - 3): self.buttons[i].update(screen, self, game_engine, game_map) fps_clock.tick(30) def init_buttons(self, game_engine): """Initialize the list of the buttons with the game engine.""" for p in game_engine.plants: buttonPlantA = os.path.join(assetsPath, 'misc/plant_a.png') buttonPlant = os.path.join(assetsPath, 'misc/plant.png') button_plant = Button(p.pos_x, p.pos_y, p.width, p.height, buttonPlantA, buttonPlant, show_plant, p) self.buttons.append(button_plant) for p in game_engine.obstacles: buttonObA = os.path.join(assetsPath, 'misc/box_a.png') buttonOb = os.path.join(assetsPath, 'misc/box.png') button_ob = Button(p.pos_x, p.pos_y, p.width, p.height, buttonObA, buttonOb, show_obstacle, p) self.buttons.append(button_ob) buttonQuitA = os.path.join(assetsPath, 'buttons/button_quit_a.png') buttonQuit = os.path.join(assetsPath, 'buttons/button_quit.png') button_quit = Button(1000, 800, 232, 93, buttonQuitA, buttonQuit, game_quit) buttonFinishA = os.path.join(assetsPath, 'buttons/button_finish_a.png') buttonFinish = os.path.join(assetsPath, 'buttons/button_finish.png') button_finish = Button(1000, 700, 232, 93, buttonFinishA, buttonFinish, game_quit) text_input_button = Button(969, 323, 95, 30, None, None, None) buttonSetA = os.path.join(assetsPath, 'buttons/button_set_a.png') buttonSet = os.path.join(assetsPath, 'buttons/button_set.png') button_set = Button(1000, 400, 232, 93, buttonSetA, buttonSet, set_water) buttonRemoveA = os.path.join(assetsPath, 'buttons/button_remove_a.png') buttonRemove = os.path.join(assetsPath, 'buttons/button_remove.png') button_remove = Button(1000, 500, 232, 93, buttonRemoveA, buttonRemove, remove_plant) self.buttons.append(button_quit) self.buttons.append(button_finish) self.buttons.append(text_input_button) self.buttons.append(button_set) self.buttons.append(button_remove)
needs_sphinx = '1.1' extensions = ['sphinx.ext.autodoc', 'sphinx.ext.imgmath', 'numpydoc', 'sphinx.ext.intersphinx', 'sphinx.ext.coverage', 'sphinx.ext.autosummary', 'matplotlib.sphinxext.plot_directive'] templates_path = ['_templates'] source_suffix = '.rst' master_doc = 'index' project = u'scipy-sphinx-theme' copyright = u'2013, Surya Kasturi and Pauli Virtanen' version = '0.1' release = '0.1' exclude_patterns = ['_build'] pygments_style = 'sphinx' # -- Options for HTML output --------------------------------------------------- html_theme = 'scipy' html_theme_path = ['_theme'] #html_logo = '_static/scipyshiny_small.png' html_static_path = ['_static'] html_theme_options = { "edit_link": "true", "sidebar": "right", "scipy_org_logo": "true", "rootlinks": [("http://scipy.org/", "Scipy.org"), ("http://docs.scipy.org/", "Docs")] } #------------------------------------------------------------------------------ # Plot style #------------------------------------------------------------------------------ plot_pre_code = """ import numpy as np import scipy as sp np.random.seed(123) """ plot_include_source = True plot_formats = [('png', 96), 'pdf'] plot_html_show_formats = False import math phi = (math.sqrt(5) + 1)/2 font_size = 13*72/96.0 # 13 px plot_rcparams = { 'font.size': font_size, 'axes.titlesize': font_size, 'axes.labelsize': font_size, 'xtick.labelsize': font_size, 'ytick.labelsize': font_size, 'legend.fontsize': font_size, 'figure.figsize': (3*phi, 3), 'figure.subplot.bottom': 0.2, 'figure.subplot.left': 0.2, 'figure.subplot.right': 0.9, 'figure.subplot.top': 0.85, 'figure.subplot.wspace': 0.4, 'text.usetex': False, }
import matplotlib.pyplot as plt import csv import numpy as np import os import re def getJobHatch(job): if job == "Foraging" : return '/'; elif job == "FeedLarvae": return '\\'; else: return ''; larvaTask = "LarvaTask"; nurseTask = "FeedLarvae"; foragerTask = "Foraging"; giveFoodTask = "GiveFood"; askFoodTask = "AskingFood"; otherTask = "Other"; folderName = "expe/bees"; path = '../' + folderName + '/'; files = [] for r, d, f in os.walk(path): for file in f: if '.csv' in file: files.append(os.path.join(r, file)) fileIndex = 1 bees = {} for f in files: print(f + " " + str(fileIndex) + "/" + str(len(files))); beeName = f.split("/bees")[1].split(".")[0].split("_")[7]; bees[beeName] = {} bees[beeName]["EO"] = [] bees[beeName]["HJ"] = [] bees[beeName]["Tasks"] = [] fileIndex += 1 with open(f) as csv_file: csv_reader = csv.reader(csv_file, delimiter=',') line_count = 0; lastTask = ""; for row in csv_reader: if(len(row)>2 and row[2] != ""): beeTask = row[0] beeHJ = float(row[1]) beeEO = float(row[2]) bees[beeName]["EO"].append(beeEO); bees[beeName]["HJ"].append(beeHJ); if(lastTask == beeTask): bees[beeName]["Tasks"][-1][1] += 1 else: #print(bees[beeName]["Tasks"]) bees[beeName]["Tasks"].append([beeTask,1]) lastTask = beeTask #print(bees[beeName]["Tasks"]) #print(bees) plt.figure(0, figsize=(25,15)) index = 1 for beeName in bees: # row, col ax = plt.subplot(3,8, index, title=beeName); incr = 0; for tuple in bees[beeName]["Tasks"]: #plt.bar(theValue + tt,-25, width=-theValue,align='edge', color='white',hatch = getJobHatch(theKey), label=theKey); plt.bar(tuple[1] + incr, 1, width=-tuple[1], align='edge', color='white',hatch = getJobHatch(tuple[0]), label=tuple[0]); incr += tuple[1] size = len(bees[beeName]["EO"]) plt.plot(range(size), bees[beeName]["EO"], label="EO") plt.plot(range(size), bees[beeName]["HJ"], label="HJ") newHandles = []; newLabels = []; handles, labels = ax.get_legend_handles_labels(); for li in range(len(labels)): l = labels[li]; if l not in newLabels: newLabels.append(l); newHandles.append(handles[li]); plt.legend(handles=newHandles, labels=newLabels); index+=1 plt.savefig("beeLives.png")
""" Client creation action. ~~~~~~~~~~~~~~~~~~~~~~~ """ from .action import Action from .action import ActionExecutionException from .action import InvalidActionConfigurationException from .utils import get_user_roles from .utils import InvalidUserResponse from .utils import process_user_roles import requests import urllib class CreateClientAction(Action): @staticmethod def valid_deploy_env(deploy_env): """ Returns True if the provided deployment environment is valid for this action, False otherwise :param deploy_env: The target deployment environment. :return: True always, as this action is valid for all environments. """ return True def __init__(self, name, config_file_dir, action_config_json, *args, **kwargs): """ Constructor. :param name: The action name. :param config_file_dir: The directory containing the configuration file :param action_config_json: The JSON configuration for this action """ super(CreateClientAction, self).__init__(name, *args, **kwargs) self.action_config_json = action_config_json if 'realmName' not in action_config_json: raise InvalidActionConfigurationException('Configuration "{0}" missing property "realmName"'.format(name)) self.realm_name = action_config_json['realmName'] if 'client' not in action_config_json: raise InvalidActionConfigurationException('Configuration "{0}" missing property "client"'.format(name)) self.client_data = action_config_json['client'] self.client_id = self.client_data.get('clientId', None) if not self.client_id: raise InvalidActionConfigurationException('Client configuration for "{0}" missing property "clientId"'.format(name)) def execute(self, keycloak_client): """ Execute this action. In this case, attempt to create a client. :param keycloak_client: The client to use when interacting with Keycloak """ # Process the client data. print('==== Creating client "{0}" in realm "{1}"...'.format(self.client_id, self.realm_name)) existing_client_data = self.get_client_by_client_id(self.realm_name, self.client_id, keycloak_client) if not existing_client_data: print('==== Client "{0}" does not exist, creating...'.format(self.client_id)) client_creation_path = '/admin/realms/{0}/clients'.format(urllib.parse.quote(self.realm_name)) create_response = keycloak_client.post(client_creation_path, json=self.client_data) if create_response.status_code == requests.codes.created: print('==== Client "{0}" created.'.format(self.client_id)) existing_client_data = self.get_client_by_client_id(self.realm_name, self.client_id, keycloak_client) client_uuid = existing_client_data['id'] else: raise ActionExecutionException('Unexpected response for client creation request ({0})'.format(create_response.status_code)) else: print('==== Client "{0}" exists, updating...'.format(self.client_id)) client_uuid = existing_client_data['id'] client_update_path = '/admin/realms/{0}/clients/{1}'.format( urllib.parse.quote(self.realm_name), urllib.parse.quote(client_uuid) ) update_response = keycloak_client.put(client_update_path, json=self.client_data) if update_response.status_code == requests.codes.no_content: print('==== Client "{0}" updated.'.format(self.client_id)) else: raise ActionExecutionException('Unexpected response for client update request ({0})'.format(update_response.status_code)) # Now update the secret. if 'secret' in self.client_data: print('==== NOT updating client "{0}" secret, as it is currently broken...'.format(self.client_id)) # NOTE: the following code is disabled because it requires a custom keycloak extension, which is not currently working if False and 'secret' in self.client_data: print('==== Updating client "{0}" secret...'.format(self.client_id)) client_secret_update_path = '/realms/{0}/clients-custom/{1}/client-secret'.format( urllib.parse.quote(self.realm_name), urllib.parse.quote(client_uuid) ) client_secret_update_response = keycloak_client.put( client_secret_update_path, json={'secret': self.client_data['secret']} ) if client_secret_update_response.status_code == requests.codes.no_content: print('==== Client "{0}" secret updated.'.format(self.client_id)) else: raise ActionExecutionException('Unexpected response for client secret update request ({0})'.format( client_secret_update_response.status_code )) # We always need to process mappers, as Keycloak adds default mappers on client creation calls. self.update_protocol_mappers(existing_client_data, keycloak_client) # Process the service account roles. self.process_service_account_roles(client_uuid, self.action_config_json.get('roles', []), keycloak_client) def update_protocol_mappers(self, existing_client_data, keycloak_client): """ Update the protocol mappers for the client. :param existing_client_data: The existing client data :param keycloak_client: The client to use when interacting with Keycloak """ print('==== Processing client "{0}" protocol mappers...'.format(self.client_id)) client_uuid = existing_client_data['id'] existing_mappers = existing_client_data['protocolMappers'] new_mappers = self.client_data['protocolMappers'] # Mapper names are unique, so we can use that field to see what needs to be updated, created, or deleted. existing_mappers_by_name = self.mapper_list_to_map_by_name(existing_mappers) new_mappers_by_name = self.mapper_list_to_map_by_name(new_mappers) # See what needs to be created or updated. for name, config in new_mappers_by_name.items(): if name in existing_mappers_by_name: self.update_protocol_mapper(client_uuid, existing_mappers_by_name[name]['id'], config, keycloak_client) else: self.create_protocol_mapper(client_uuid, config, keycloak_client) # See what needs to be deleted. for name, config in existing_mappers_by_name.items(): if name not in new_mappers_by_name: self.delete_protocol_mapper(client_uuid, existing_mappers_by_name[name]['id'], name, keycloak_client) print('==== Processed client "{0}" protocol mappers.'.format(self.client_id)) @staticmethod def mapper_list_to_map_by_name(mapper_list): """ Convert a list of protocol mappers to a map of mappers by keyed by name. :param mapper_list: The list to convert :return: The resulting map """ by_name = {} for mapper in mapper_list: by_name[mapper['name']] = mapper return by_name def update_protocol_mapper(self, client_uuid, mapper_id, mapper_config, keycloak_client): """ Update a protocol mapper. :param client_uuid: The UUID of the client :param mapper_id: the UUID of the mapper :param mapper_config: The mapper config to use in the update request :param keycloak_client: The client to use when interacting with Keycloak """ print('==== Updating client "{0}" protocol mapper "{1}".'.format(self.client_id, mapper_config['name'])) path = '/admin/realms/{0}/clients/{1}/protocol-mappers/models/{2}'.format( urllib.parse.quote(self.realm_name), urllib.parse.quote(client_uuid), urllib.parse.quote(mapper_id) ) mapper_config['id'] = mapper_id update_response = keycloak_client.put(path, json=mapper_config) if update_response.status_code != requests.codes.no_content: raise ActionExecutionException('Unexpected response for client protocol mapper update request ({0})'.format(update_response.status_code)) def create_protocol_mapper(self, client_uuid, mapper_config, keycloak_client): """ Create a protocol mapper. :param client_uuid: The UUID of the client :param mapper_config: The mapper config to use in the create request :param keycloak_client: The client to use when interacting with Keycloak. :return: """ print('==== Creating client "{0}" protocol mapper "{1}".'.format(self.client_id, mapper_config['name'])) path = '/admin/realms/{0}/clients/{1}/protocol-mappers/models'.format( urllib.parse.quote(self.realm_name), urllib.parse.quote(client_uuid) ) create_response = keycloak_client.post(path, json=mapper_config) if create_response.status_code != requests.codes.created: raise ActionExecutionException('Unexpected response for client protocol mapper create request ({0})'.format(create_response.status_code)) def delete_protocol_mapper(self, client_uuid, mapper_id, mapper_name, keycloak_client): """ Delete a protocol mapper. :param client_uuid: The UUID of the client :param mapper_id: the UUID of the mapper :param mapper_name: The name of the mapper :param keycloak_client: The client to use when interacting with Keycloak """ print('==== Deleting client "{0}" protocol mapper "{1}".'.format(self.client_id, mapper_name)) path = '/admin/realms/{0}/clients/{1}/protocol-mappers/models/{2}'.format( urllib.parse.quote(self.realm_name), urllib.parse.quote(client_uuid), urllib.parse.quote(mapper_id) ) delete_response = keycloak_client.delete(path) if delete_response.status_code != requests.codes.no_content: raise ActionExecutionException('Unexpected response for client protocol mapper delete request ({0})'.format(delete_response.status_code)) def get_service_account_user(self, client_uuid, keycloak_client): """ Get the service account user for the client. :param client_uuid: The client UUID :param keycloak_client: The client to use when interacting with Keycloak :return: The service account user configuration """ path = '/admin/realms/{0}/clients/{1}/service-account-user'.format(self.realm_name, client_uuid) get_response = keycloak_client.get(path) if get_response.status_code == requests.codes.ok: return get_response.json() if get_response.status_code == requests.codes.not_found: return None raise InvalidUserResponse('Unexpected user get response ({0})'.format(get_response.status_code)) def process_service_account_roles(self, client_uuid, service_account_roles, keycloak_client): """ Process the service account roles for the client. :param client_uuid: The client UUID :param service_account_roles: The roles to assign to the service account :param keycloak_client: The client to use when interacting with Keycloak """ print('==== Processing client "{0}" service account roles...'.format(self.client_id)) user_config = self.get_service_account_user(client_uuid, keycloak_client) if not user_config and len(service_account_roles) > 0: raise ActionExecutionException('No service account user found for client "{0}"'.format(self.client_id)) user_id = user_config['id'] existing_roles = get_user_roles(self.realm_name, user_id, keycloak_client) process_user_roles(self.realm_name, user_id, existing_roles, service_account_roles, keycloak_client) print('==== Processed client "{0}" service account roles.'.format(self.client_id))
# coding=utf-8 """ """ from typing import List, Optional from modelscript.megamodels.dependencies.metamodels import ( MetamodelDependency ) from modelscript.megamodels.metamodels import Metamodel from modelscript.base.metrics import Metrics # --------------------------------------------------------------- # Abstract syntax # --------------------------------------------------------------- from modelscript.metamodels.permissions.gpermissions import ( Permission, PermissionSet, PermissionModel, PermissionRule ) from modelscript.metamodels.permissions.sar import ( Action, SAR ) from modelscript.metamodels.permissions.sar import ( Subject, Resource, Action, ) from modelscript.metamodels.usecases import ( UsecaseModel ) __all__=( # Concrete actions 'CreateAction', 'ReadAction', 'UpdateAction', 'DeleteAction', 'ExecuteAction', # Concrete models and rule 'UCPermissionModel', 'FactorizedPermissionRule' ) ClassModel='ClassModel' #------------------------------------------------------------------------------ # Usecases/Classes specific #------------------------------------------------------------------------------ CreateAction = Action('create', None) ReadAction = Action('read', None) UpdateAction = Action('update', None) DeleteAction = Action('delete', None) ExecuteAction = Action('execute', None) class FactorizedPermissionRule(PermissionRule): def __init__(self, model, subjects, actions, resources, astNode=None, lineNo=None): #type: (UCPermissionModel, List[Subject], List[Action], List[Resource], Optional['ASTNode'], Optional[int])->None """ A concrete rule representing at the same time various permissions thanks to the factorisation of subjects, actors and resources. For instance the rule ((S1,S2), (A1,A2,A3), (R1)) represents 6 permissions. """ super(FactorizedPermissionRule, self).__init__( model=model, lineNo=lineNo, astNode=astNode) self.subjects=subjects #type: List[Subject] self.actions=actions #type: List[Action] self.resources=resources #type: List[Resource] def __str__(self): return '%s %s %s' % ( ','.join([s.subjectLabel for s in self.subjects]), ','.join([s.actionLabel for s in self.actions]), ','.join([s.resourceLabel for s in self.resources]), ) class UCPermissionModel(PermissionModel): """ A usecase-class permission model """ def __init__(self): super(UCPermissionModel, self).__init__() self.usecaseModel=None #type: Optional[UsecaseModel] #set later self.classModel=None #type: Optional[ClassModel] self.rules=[] #type: List[FactorizedPermissionRule] # The list of rules in the model. Actually the order # in this list is not important. # Note that "rules" is already defined in the superclass # but defining it again here allow to have better typing self._permissionSet=None #type: Optional[PermissionSet] # The permission set, computed on demand. # see permissionSet property. # The permission set is just the expansion of the rule # component in many different permissions. @property def metamodel(self): #type: () -> Metamodel return METAMODEL @property def permissionSet(self): #type: ()->PermissionSet if self._permissionSet is None: self._interpret() # noinspection PyTypeChecker return self._permissionSet @property def metrics(self): #type: () -> Metrics ms=super(UCPermissionModel, self).metrics ms.addList(( ('rule', len(self.rules)), ('permission', len(self.permissionSet.permissions) ), )) return ms def _interpret(self): #type: ()->None self._permissionSet= PermissionSet() for rule in self.rules: for s in rule.subjects: for r in rule.resources: for a in rule.actions: p= Permission(s, a, r, rule) self._permissionSet.permissions.add(p) rule.permissions.append(p) def __str__(self): return '\n'.join([str(r) for r in self.rules]) METAMODEL=Metamodel( id='pe', # other model could be registered label='permission', extension='.pes', modelClass=UCPermissionModel ) MetamodelDependency( sourceId='pe', targetId='gl', optional=True, multiple=True, ) MetamodelDependency( sourceId='pe', targetId='us', optional=False, multiple=False, ) MetamodelDependency( sourceId='pe', targetId='cl', optional=False, multiple=False, )
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import csv import decimal import json import os import re import subprocess import sys import urllib.error import urllib.parse import urllib.request import webbrowser import http.server import socketserver from datetime import datetime # from pprint import pprint import requests from math import log10, ceil import numpy as np import numpy.ma as ma from fpdf import FPDF from currency_converter import CurrencyConverter from json2html import * from K2PKConfig import * from mysql.connector import Error, MySQLConnection # NOTE: Set precision to cope with nano, pico & giga multipliers. ctx = decimal.Context() ctx.prec = 12 # Set colourscheme (this could go into preferences.ini) # Colour seems to be most effective when used against a white background adequate = 'rgb(253,246,227)' # adequate = 'rgba(0, 60, 0, 0.15)' lowstock = '#f6f6f6' # lowstock = 'rgba(255, 255, 255, 0)' nopkstock = '#c5c5c5' # nopkstock = 'rgba(0, 60, 60, 0.3)' multistock = '#e5e5e5' # multistock = 'rgba(255, 255, 255, 0)' minPriceCol = 'rgb(133,153,0)' try: currencyConfig = read_currency_config() baseCurrency = (currencyConfig['currency']) except KeyError: print("No currency configured in config.ini") assert sys.version_info >= (3, 4) file_name = sys.argv[1] projectName, ext = file_name.split(".") print(projectName) numBoards = 0 try: while numBoards < 1: qty = input("How many boards? (Enter 1 or more) > ") numBoards = int(qty) print("Calculations for ", numBoards, " board(s)") except ValueError: print("Integer values only, >= 1. Quitting now") raise SystemExit # Make baseline barcodes and web directories try: os.makedirs('./assets/barcodes') except OSError: pass try: os.makedirs('./assets/web') except OSError: pass invalidate_BOM_Cost = False try: distribConfig = read_distributors_config() preferred = (distribConfig['preferred']) except KeyError: print('No preferred distributors in config.ini') pass # Initialise empty cost and coverage matrix prefCount = preferred.count(",") + 1 costMatrix = [0] * prefCount coverageMatrix = [0] * prefCount countMatrix = [0] * prefCount voidMatrix = [0] * prefCount def float_to_str(f): d1 = ctx.create_decimal(repr(f)) return format(d1, 'f') def convert_units(num): ''' Converts metric multipliers values into a decimal float. Takes one input eg 12.5m and returns the decimal (0.0125) as a string. Also supports using the multiplier as the decimal marker e.g. 4k7 ''' factors = ["G", "M", "K", "k", "R", "", ".", "m", "u", "n", "p"] conversion = { 'G': '1000000000', 'M': '1000000', 'K': '1000', 'k': '1000', 'R': '1', '.': '1', '': '1', 'm': '0.001', "u": '0.000001', 'n': '0.000000001', 'p': '0.000000000001' } val = "" mult = "" for i in range(len(num)): if num[i] == ".": mult = num[i] if num[i] in factors: mult = num[i] val = val + "." else: if num[i].isdigit(): val = val + (num[i]) else: print("Invalid multiplier") return "0" if val.endswith("."): val = val[:-1] m = float(conversion[mult]) v = float(val) r = float_to_str(m * v) r = r.rstrip("0") r = r.rstrip(".") return r def limit(num, minimum=10, maximum=11): ''' Limits input 'num' between minimum and maximum values. Default minimum value is 10 and maximum value is 11. ''' return max(min(num, maximum), minimum) def partStatus(partID, parameter): dbconfig = read_db_config() try: conn = MySQLConnection(**dbconfig) cursor = conn.cursor() sql = "SELECT DISTINCT R.stringValue FROM PartParameter R WHERE (R.name = '{}') AND (R.part_id = {})".format( parameter, partID) cursor.execute(sql) partStatus = cursor.fetchall() if partStatus == []: part = "Unknown" else: part = str(partStatus[0])[2:-3] return part except UnicodeEncodeError as err: print(err) finally: cursor.close() conn.close() def getDistrib(partID): dbconfig = read_db_config() try: conn = MySQLConnection(**dbconfig) cursor = conn.cursor() sql = """SELECT D.name, PD.sku, D.skuurl FROM Distributor D LEFT JOIN PartDistributor PD on D.id = PD.distributor_id WHERE PD.part_id = {}""".format(partID) cursor.execute(sql) distrbs = cursor.fetchall() unique = [] d = [] distributor = [] for distributor in distrbs: if distributor[0] not in unique and distributor[0] in preferred: unique.append(distributor[0]) d.append(distributor) return d except UnicodeEncodeError as err: print(err) finally: cursor.close() conn.close() def labelsetup(): pdf = FPDF(orientation='P', unit='mm', format='A4') rows = 4 cols = 3 margin = 4 # In mm labelWidth = (210 - 2 * margin) / cols labelHeight = (297 - 2 * margin) / rows pdf.add_page() return (labelWidth, labelHeight, pdf) def picksetup(BOMname, dateBOM, timeBOM): pdf2 = FPDF(orientation='L', unit='mm', format='A4') margin = 10 # In mm pdf2.add_page() pdf2.set_auto_page_break(1, 4.0) pdf2.set_font('Courier', 'B', 9) pdf2.multi_cell(80, 10, BOMname, align="L", border=0) pdf2.set_auto_page_break(1, 4.0) pdf2.set_font('Courier', 'B', 9) pdf2.set_xy(90, 10) pdf2.multi_cell(30, 10, dateBOM, align="L", border=0) pdf2.set_xy(120, 10) pdf2.multi_cell(30, 10, timeBOM, align="L", border=0) pdf2.set_font('Courier', 'B', 7) pdf2.set_xy(5, 20) pdf2.multi_cell(10, 10, "Line", border=1) pdf2.set_xy(15, 20) pdf2.multi_cell(40, 10, "Ref", border=1) pdf2.set_xy(55, 20) pdf2.multi_cell(95, 10, "Part", border=1) pdf2.set_xy(150, 20) pdf2.multi_cell(10, 10, "Stock", border=1) pdf2.set_xy(160, 20) pdf2.multi_cell(50, 10, "P/N", border=1) pdf2.set_xy(210, 20) pdf2.multi_cell(50, 10, "Location", border=1) pdf2.set_xy(260, 20) pdf2.multi_cell(10, 10, "Qty", border=1) pdf2.set_xy(270, 20) pdf2.multi_cell(10, 10, "Pick", border=1) return (pdf2) def makepick(line, pdf2, pos): index = ((pos - 1) % 16) + 1 pdf2.set_font('Courier', 'B', 6) pdf2.set_xy(5, 20 + 10 * index) # Line Number pdf2.multi_cell(10, 10, str(pos), align="C", border=1) pdf2.set_xy(15, 20 + 10 * index) # Blank RefDes box pdf2.multi_cell(40, 10, "", align="L", border=1) pdf2.set_xy(15, 20 + 10 * index) # RefDes pdf2.multi_cell(40, 5, line[6], align="L", border=0) pdf2.set_xy(55, 20 + 10 * index) # Blank Part box pdf2.multi_cell(95, 10, '', align="L", border=1) pdf2.set_font('Courier', 'B', 8) pdf2.set_xy(55, 20 + 10 * index) # Part name pdf2.multi_cell(95, 5, line[1], align="L", border=0) pdf2.set_font('Courier', '', 6) pdf2.set_xy(55, 24 + 10 * index) # Part Description pdf2.multi_cell(95, 5, line[0][:73], align="L", border=0) pdf2.set_xy(150, 20 + 10 * index) pdf2.multi_cell(10, 10, str(line[5]), align="C", border=1) # Stock pdf2.set_xy(160, 20 + 10 * index) pdf2.multi_cell(50, 10, '', align="C", border=1) # Blank cell pdf2.set_xy(160, 23.5 + 10 * index) pdf2.multi_cell(50, 10, line[2], align="C", border=0) # PartNum pdf2.set_xy(172, 21 + 10 * index) if line[2] != "": pdf2.image('assets/barcodes/' + line[2] + '.png', h=6) # PartNum BC pdf2.set_xy(210, 20 + 10 * index) pdf2.multi_cell(50, 10, '', align="C", border=1) # Blank cell pdf2.set_xy(210, 23.5 + 10 * index) pdf2.multi_cell(50, 10, line[3], align="C", border=0) # Location pdf2.set_xy(223, 21 + 10 * index) if line[3] != "": pdf2.image( 'assets/barcodes/' + line[3][1:] + '.png', h=6) # Location BC pdf2.set_font('Courier', 'B', 8) pdf2.set_xy(260, 20 + 10 * index) pdf2.multi_cell(10, 10, line[4], align="C", border=1) # Qty pdf2.set_xy(270, 20 + 10 * index) pdf2.multi_cell(10, 10, "", align="L", border=1) pdf2.set_xy(273, 23 + 10 * index) if line[3] != "": pdf2.multi_cell(4, 4, "", align="L", border=1) if index % 16 == 0: pdf2.add_page() def makelabel(label, labelCol, labelRow, lblwidth, lblheight, pdf): ''' Take label info and make a label at position defined by row & column ''' lineHeight = 3 intMargin = 7 labelx = int((lblwidth * (labelCol % 3)) + intMargin) labely = int((lblheight * (labelRow % 4)) + intMargin) pdf.set_auto_page_break(1, 4.0) pdf.set_font('Courier', 'B', 9) pdf.set_xy(labelx, labely) pdf.multi_cell( lblwidth - intMargin, lineHeight, label[0], align="L", border=0) pdf.set_font('Courier', '', 8) pdf.set_xy(labelx, labely + 10) pdf.cell(lblwidth, lineHeight, label[1], align="L", border=0) pdf.image('assets/barcodes/' + label[1] + '.png', labelx, labely + 13, 62, 10) pdf.set_xy(labelx, labely + 25) pdf.cell(lblwidth, lineHeight, 'Part no: ' + label[2], align="L", border=0) pdf.set_xy(labelx + 32, labely + 25) pdf.cell( lblwidth, lineHeight, 'Location: ' + label[3], align="L", border=0) pdf.image('assets/barcodes/' + label[2] + '.png', labelx, labely + 28, 28, 10) pdf.image('assets/barcodes/' + label[3][1:] + '.png', labelx + 30, labely + 28, 32, 10) pdf.set_xy(labelx, labely + 40) pdf.cell( lblwidth, lineHeight, 'Quantity: ' + label[4], align="L", border=0) pdf.image('assets/barcodes/' + label[4] + '.png', labelx, labely + 43, 20, 10) pdf.set_font('Courier', 'B', 8) pdf.set_xy(labelx + 25, labely + 46) pdf.multi_cell(35, lineHeight, label[9], align="L", border=0) pdf.set_xy(labelx, labely + 56) pdf.multi_cell( lblwidth - intMargin, lineHeight, label[6], align="L", border=0) if (labelCol == 2) & ((labelRow + 1) % 4 == 0): pdf.add_page() def getTable(partID, q, bcolour, row): ''' There are 8 columns of manuf data /availability and pricing starts at col 9 Pricing in quanties of 1, 10, 100 - so use log function background colour already set so ignored. ''' index = int(log10(q)) + 9 tbl = "" minPrice = 999999 classtype = '' pricingExists = False fn = "./assets/web/" + str(partID) + ".csv" # If file is empty st_size should = 0 BUT file always contains exactly 1 byte ... if os.stat(fn).st_size == 1: # File (almost) empty ... tbl = "<td colspan = " + str( len(preferred) ) + " class ='lineno' '><b>No data found from preferred providers</b></td>" return tbl, voidMatrix, voidMatrix, voidMatrix try: minData = np.genfromtxt(fn, delimiter=",") if np.ndim(minData) == 1: # If only one line, nanmin fails minPrice = minData[index] else: minPrice = np.nanmin(minData[:, index]) except (UserWarning, ValueError, IndexError) as error: print( "ATTENTION ", error ) # Just fails when empty file or any other error, returning no data tbl = "<td colspan = " + str( len(preferred) ) + " class ='lineno'><b>No data found from preferred providers</b></td>" return tbl, voidMatrix, voidMatrix, voidMatrix csvFiles = open(fn, "r") compPrefPrices = list(csv.reader(csvFiles)) line = "" line2 = "" n = len(preferred) _costRow = [0] * n _coverageRow = [0] * n _countRow = [0] * n # line += "<form>" for d, dist in enumerate(preferred): line += "<td" terminated = False low = 0 magnitude = 0 i = 0 for _comp in compPrefPrices: price = "" priceLine = "" try: if _comp[0] in dist: try: price = str("{0:2.2f}".format(float(_comp[index]))) dispPrice = price except: ValueError price = "-" # DEBUG "-" try: priceLine = str("{0:2.2f}".format( q * float(_comp[index]))) calcPL = priceLine except: ValueError priceLine = "-" # DEBUG "-" calcPL = "0.0" if i == 0: # 1st row only being considered try: _costRow[d] = q * float(_comp[index]) except: ValueError _costRow[d] = 0.0 _coverageRow[d] = 1 _countRow[d] = q try: _moq = int(_comp[3]) except: ValueError _moq = 999999 if bcolour == 'rgb(238, 232, 213)': classtype = 'ambig' else: classtype = 'mid' if _comp[index].strip() == str(minPrice): pricingExists = True classtype = 'min' line += " class = '" + classtype + "'>" line += " <input id = '" + str(d) + "-"+str(row)+"' type='radio' name='" + str(row) + "' value='" + \ calcPL + "' checked >" else: pricingExists = True line += " class = '" + classtype + "'>" line += " <input id='" + str(d) + "-"+str(row)+"' type='radio' name='" + str(row) + "' value='" + \ calcPL + "'>" line += "<label for=" + str(d) + "></label>" line += "&nbsp; <b><a href = '" + _comp[4] + "'>" + _comp[1] + "</a></b><br>" if price == "-": line += "<p class ='null' style= 'padding:5px;'> Ea:" line += "<span style='float: right; text-align: right;'>" line += "<b >" + price + "</b> " line += _comp[8] price = "0" else: line += "<p style= 'padding:5px;'> Ea:" line += "<span style='float: right; text-align: right;'>" line += "<b>" + price + "</b> " line += _comp[8] line += "</span>" if priceLine == "-": line += "<p class ='null' style= 'padding:5px;'> Line:" line += "<span style='float: right; text-align: right;'>" line += "<b >" + priceLine + "</b> " line += _comp[8] priceline = "0" else: line += "<p style= 'padding:5px;'> Line:" line += "<span style='float: right; text-align: right;'>" line += "<b>" + priceLine + "</b> " line += _comp[8] line += "</span>" line += "<p style= 'padding:5px;'> MOQ: " line += "<span style='float: right; text-align: right;'><b>" + _comp[3] + "</b>" if int(q) >= _moq: # MOQ satisfied line += " &nbsp; <span class = 'icon'>🔹&nbsp; </span></span><p>" else: line += " &nbsp; <span class = 'icon'>🔺&nbsp; </span></span><p>" line += "<p style= 'padding:5px;'> Stock:" line += "<span style='float: right; text-align: right;'><b>" line += _comp[2] + "</b>" if int(q) <= int(_comp[2]): # Stock satisfied line += " &nbsp; <span class = 'icon'>🔹&nbsp; </span></span><p>" else: line += " &nbsp; <span class = 'icon'>🔸&nbsp; </span></span><p>" P1 = "" P2 = "" magnitude = 10**(index - 9) if _moq == 999999: low = q next = 10 * magnitude column = int(log10(low) + 9) elif _moq > magnitude: low = _moq next = 10**(ceil(log10(low))) column = int(log10(low) + 10) else: low = magnitude next = 10 * magnitude column = int(log10(low) + 9) try: if float(_comp[column]) > 1: P1 = str("{0:2.2f}".format( float(_comp[column]))) else: P1 = str("{0:3.3f}".format( float(_comp[column]))) except: ValueError P1 = "-" line += "<p style='text-align: left; padding:5px;'>" + str( low) + " +" line += "<span style='float: right; text-align: right;'><b>" + P1 + "</b>&nbsp; " + _comp[8] + "</span>" if column <= 12: try: if float(_comp[column]) > 1: P2 = str("{0:2.2f}".format( float(_comp[column + 1]))) else: P2 = str("{0:3.3f}".format( float(_comp[column + 1]))) except: ValueError P2 = "-" line += "<p style='text-align: left; padding:5px;'>" + str( next) + " +" line += "<span style='float: right; text-align: right;'><b>" + P2 + "</b>&nbsp; " + _comp[8] + "</span>" else: # Nasty kludge - relly need to iterate through these to get best deal if i == 1: line += "<br><br><br><p style= 'padding:5px;'><b> Alternatives</b><br>" try: if _comp[index].strip() == str(minPrice): if classtype != 'min': line += "<div class = 'min'>" price = str("{0:2.2f}".format(float(_comp[index]))) priceLine = str("{0:2.2f}".format( q * float(_comp[index]))) line += "<p style= 'padding:5px;'><b><a href = '" + _comp[4] + "' > " + _comp[1] + " </b></a><br>" line += "<p style= 'padding:5px;'> Ea: <b>" line += price + "</b> " + _comp[8] except: ValueError line += "<p style= 'padding:5px;'><b><a href = '" + _comp[4] + "' > " + _comp[1] + " </b></a><br>" line += " Pricing N/A" i += 1 # FIXME This needs to count number of instances if i <= 3: terminated = True else: terminated = False except IndexError: pass if not terminated: line += ">" _costRow[d] = 0 _countRow[d] = 0 _coverageRow[d] = 0 if pricingExists: line += "<p style='padding:5px;'>" pricingExists = False line += "</td>" # line += "</form>" tbl += line return tbl, _costRow, _coverageRow, _countRow def octopartLookup(partIn, bean): try: octoConfig = read_octopart_config() apikey = (octoConfig['apikey']) except: KeyError print('No Octopart API key in config.ini') return (2) try: currencyConfig = read_currency_config() locale = (currencyConfig['currency']) except: KeyError print("No currency configured in config.ini") return (4) # Get currency rates from European Central Bank # Fall back on cached cached rates try: c = CurrencyConverter( 'http://www.ecb.europa.eu/stats/eurofxref/eurofxref.zip') except: URLError c = CurrencyConverter() return (8) # Remove invalid characters partIn = partIn.replace("/", "-") path = partIn.replace(" ", "") web = str("./assets/web/" + path + ".html") Part = partIn webpage = open(web, "w") combo = False if " " in partIn: # Possible Manufacturer/Partnumber combo. The Octopart mpn search does not include manufacturer # Split on space and assume that left part is Manufacturer and right is partnumber. # Mark as comboPart. combo = True comboManf, comboPart = partIn.split(" ") aside = open("./assets/web/tmp.html", "w") htmlHeader = """ <!DOCTYPE html> <html lang = 'en'> <meta charset="utf-8"> <head> <html lang="en"> <meta charset="utf-8"> <meta http-equiv="X-UA-Compatible" content="IE=edge"> <title>Octopart Lookup</title> <meta name="viewport" content="width=device-width, initial-scale=1"> <meta name="Description" lang="en" content="Kicad2PartKeepr"> <meta name="author" content="jpateman@gmail.com"> <meta name="robots" content="index, follow"> <!-- icons --> <link rel="apple-touch-icon" href="assets/img/apple-touch-icon.png"> <link rel="shortcut icon" href="favicon.ico"> <link rel="stylesheet" href="../css/octopart.css"> </head> <body> <div class="header"> <h1 class="header-heading">Kicad2PartKeepr</h1> </div> <div class="nav-bar"> <div class="container"> <ul class="nav"> </ul> </div> </div> """ webpage.write(htmlHeader) ################## bean = False ################## if bean: # url = "https://octopart.com/api/v4/rest/parts/search" url += '?apikey=' + apikey url += '&q="' + Part + '"' url += '&include[]=descriptions' url += '&include[]=imagesets' # url += '&include[]=specs' # url += '&include[]=datasheets' url += '&country=GB' elif combo: # url = "https://octopart.com/api/v4/rest/parts/match" url += '?apikey=' + apikey url += '&queries=[{"brand":"' + comboManf + \ '","mpn":"' + comboPart + '"}]' url += '&include[]=descriptions' url += '&include[]=imagesets' url += '&include[]=specs' url += '&include[]=datasheets' url += '&country=GB' else: url = "https://octopart.com/api/v4/rest/parts/match" url += '?apikey=' + apikey url += '&queries=[{"mpn":"' + Part + '"}]' url += '&include[]=descriptions' url += '&include[]=imagesets' url += '&include[]=specs' url += '&include[]=datasheets' url += '&country=GB' data = urllib.request.urlopen(url).read() response = json.loads(data.decode('utf8')) loop = False for result in response['results']: for item in result['items']: if loop: break loop = True partNum = item['mpn'] try: description = str(item['descriptions'][0].get('value', None)) except: IndexError description = "" try: brand = str(item['brand']['name']) except: IndexError brand = "" # Get image (if present). Also need to get attribution for Octopart licensing try: # image = str(item['imagesets'][0]['medium_image'].get('url', None)) image = item['imagesets'][0]['large_image']['url'] except: IndexError image = "" try: credit = item['imagesets'][0]['credit_string'] crediturl = item['imagesets'][0]['credit_url'] except: IndexError credit = "" crediturl = "" webpage.write( "<div class='content' id = 'thumbnail'><table class = 'table2'><tr><td style = 'width:100px;'><img src='" + image + "' alt='thumbnail'></td><td><h2>" + brand + " " + partNum + "</h2><h4>" + description + "</h4></td></tr><tr><td style = 'color:#aaa;'>Image: " + credit +"</td><td></td></tr></table></div>") specfile = open("./assets/web/" + path, 'w') specfile.write(image) aside.write( "<div class = 'aside'><table class='table table-striped'><thead>") aside.write("<th>Characteristic</th><th>Value</th></thead><tbody>") for spec in item['specs']: parm = item['specs'][spec]['metadata']['name'] try: val = str(item['specs'][spec]['value'][0]) except: IndexError val = "Not Listed by Manufacturer" parameter = (("{:34} ").format(parm)) value = (("{:40}").format(val)) print(("| {:30} : {:120} |").format(parameter, value)) aside.write("<tr><td>" + parameter + "</td><td>" + value + "</td></tr>") print(('{:_<162}').format("")) aside.write("</tbody></table><table class='table table-striped'>") aside.write( "<thead><th>Datasheets</th><th>Date</th><th>Pages</th></thead><tbody>" ) for d, datasheet in enumerate(item['datasheets']): if d == 1: specfile.write(',' + datasheet['url']) try: if (datasheet['metadata']['date_created']): dateUpdated = ( datasheet['metadata']['date_created'])[:10] else: dateUpdated = "Unknown" except: IndexError dateUpdated = "Unknown" if datasheet['attribution']['sources'] is None: source = "Unknown" else: source = datasheet['attribution']['sources'][0]['name'] try: numPages = str(datasheet['metadata']['num_pages']) except: TypeError numPages = "-" documents = (( "| {:30.30} {:11} {:12} {:7} {:7} {:1} {:84.84} |").format( source, " Updated: ", dateUpdated, "Pages: ", numPages, "", datasheet['url'])) print(documents) aside.write("<tr><td><a href='" + datasheet['url'] + "'> " + source + " </a></td><td>" + dateUpdated + "</td><td>" + numPages + "</td></tr>") # if loop: # webpage.write("<table class='table table-striped'>") # else: # webpage.write("<p> No Octopart results found </>") # Header row here webpage.write( "<div class ='main'><table><thead><th>Seller</th><th>SKU</th><th>Stock</th><th>MOQ</th><th>Package</th><th>Currency</th><th>1</th><th>10</th><th>100</th><th>1000</th><th>10000</th></thead><tbody>" ) count = 0 for result in response['results']: stockfile = open("./assets/web/" + path + '.csv', 'w') for item in result['items']: if count == 0: print(('{:_<162}').format("")) print( ("| {:24} | {:19} | {:>9} | {:>7} | {:11} | {:5} ").format( "Seller", "SKU", "Stock", "MOQ", "Package", "Currency"), end="") print( ("| {:>10}| {:>10}| {:>10}| {:>10}| {:>10}|").format( "1", "10", "100", "1000", "10000")) print(('{:-<162}').format(""), end="") count += 1 # Breaks at 1, 10, 100, 1000, 10000 for offer in item['offers']: loop = 0 _seller = offer['seller']['name'] _sku = (offer['sku'])[:19] _stock = offer['in_stock_quantity'] _moq = str(offer['moq']) _productURL = str(offer['product_url']) _onOrderQuant = offer['on_order_quantity'] # _onOrderETA = offer['on_order_eta'] _factoryLead = offer['factory_lead_days'] _package = str(offer['packaging']) _currency = str(offer['prices']) if _moq == "None": _moq = '-' if _package == "None": _package = "-" # if not _factoryLead or _factoryLead == "None": # _factoryLead = "-" # else: # _factoryLead = int(int(_factoryLead) / 7) if _seller in preferred: data = str(_seller) + ", " + str(_sku) + ", " + \ str(_stock) + ", " + str(_moq) + ", " + str(_productURL) + ", " +\ str(_factoryLead) + ", " + str("_onOrderETA") + ", " + str(_onOrderQuant) +\ ", " + str(locale) stockfile.write(data) print() print( ("| {:24.24} | {:19} | {:>9} | {:>7} | {:11} |").format( _seller, _sku, _stock, _moq, _package), end="") line = "<tr><td>" + _seller + "</td><td><a target='_blank' href=" + str( offer['product_url']) + ">" + str( offer['sku']) + "</a></td><td>" + str( _stock) + "</td><td>" + str( _moq) + "</td><td>" + _package + "</td>" webpage.write(line) valid = False points = ['-', '-', '-', '-', '-'] for currency in offer['prices']: # Some Sellers don't have currency so use this to fill the line valid = True if currency == locale: # Base currency is local loop += 1 if loop == 1: print((" {:3} |").format(currency), end="") webpage.write("<td>" + currency + "</td>") else: # Only try and convert first currency loop += 1 if loop == 1: print((" {:3}* |").format(locale), end="") webpage.write("<td>" + locale + "*</td>") if loop == 1: for breaks in offer['prices'][currency]: _moqv = offer['moq'] if _moqv is None: _moqv = 1 _moqv = int(_moqv) i = 0 # Break 0 - 9 if breaks[0] < 10: points[0] = round( c.convert(breaks[1], currency, locale), 2) for i in range(0, 4): points[i + 1] = points[i] # Break 10 to 99 if breaks[0] >= 10 and breaks[0] < 100: points[1] = round( c.convert(breaks[1], currency, locale), 3) # if _moqv >= breaks[0]: for i in range(1, 4): points[i + 1] = points[i] # Break 100 to 999 if breaks[0] >= 100 and breaks[0] < 1000: points[2] = round( c.convert(breaks[1], currency, locale), 4) # if _moqv >= breaks[0]: for i in range(2, 4): points[i + 1] = points[i] # Break 1000 to 9999 if breaks[0] >= 1000 and breaks[0] < 10000: points[3] = round( c.convert(breaks[1], currency, locale), 5) # if _moqv >= breaks[0]: points[4] = points[3] # Break 10000+ if breaks[0] >= 10000: points[4] = round( c.convert(breaks[1], currency, locale), 6) else: points[4] = points[3] for i in range(0, 5): print((" {:>10.5}|").format(points[i]), end="") if points[i] == '-': webpage.write("<td>-</td>") elif float(points[i]) >= 1: pp = str("{0:.2f}".format(points[i])) webpage.write("<td>" + pp + "</td>") else: webpage.write("<td>" + str(points[i]) + "</td>") if _seller in preferred: stockfile.write(", " + str(points[i])) webpage.write("</tr>") if _seller in preferred: stockfile.write("\n") if not valid: print(" |", end="") webpage.write("<td></td>") for i in range(0, 5): print((" {:>10.5}|").format(points[i]), end="") webpage.write("<td>" + str(points[i]) + "</td>") if _seller in preferred: stockfile.write(", " + str(points[i])) webpage.write("</tr>") stockfile.write("\n") valid = False try: if _seller in preferred: stockfile.write("\n") except: UnboundLocalError stockfile.write("\n") webpage.write("</tbody></table></div>") print() print(('{:=<162}').format("")) aside.close() side = open("./assets/web/tmp.html", "r") aside = side.read() webpage.write(aside + "</tbody></table>") webpage.write("</div></body></html>") return ################################################################################ # Further setup or web configuration here # # ################################################################################ compliance = { 'Compliant': 'assets/img/rohs-logo.png', 'Non-Compliant': 'assets/img/ROHS_RED.png', 'Unknown': 'assets/img/ROHS_BLACK.png' } manufacturing = { 'Obsolete': 'assets/img/FACTORY_RED.png', 'Not Recommended for New Designs': 'assets/img/FACTORY_YELLOW.png', 'Unknown': 'assets/img/FACTORY_BLUE.png', 'Active': 'assets/img/FACTORY_GREEN.png', 'Not Listed by Manufacturer': 'assets/img/FACTORY_PURPLE.png' } dateBOM = datetime.now().strftime('%Y-%m-%d') timeBOM = datetime.now().strftime('%H:%M:%S') lblwidth, lblheight, pdf = labelsetup() pdf2 = picksetup(projectName, dateBOM, timeBOM) labelRow = 0 labelCol = 0 run = 0 web = open("assets/web/temp.html", "w") accounting = open("assets/web/accounting.html", "w") missing = open("assets/web/missing.csv", "w") under = open("assets/web/under.csv", "w") under.write('Name,Description,Quantity,Stock,Min Stock\n') htmlHeader = """ <!DOCTYPE html> <meta charset="utf-8"> <html lang = 'en'> <head> <link rel="stylesheet" href="assets/css/web.css"> <title>Kicad 2 PartKeepr</title> <script src="https://code.jquery.com/jquery-3.3.1.min.js" integrity="sha256-FgpCb/KJQlLNfOu91ta32o/NMZxltwRo8QtmkMRdAu8=" crossorigin="anonymous"></script> <script src="https://cdnjs.cloudflare.com/ajax/libs/Chart.js/2.4.0/Chart.min.js"></script> </head> <body> <div class="header"> <h1 class="header-heading">Kicad2PartKeepr</h1> </div> <div class="nav-bar"> <ul class="nav"> <li><a href='labels.pdf' download='labels.pdf'>Labels</a></li> <li><a href='picklist.pdf' download='picklist.pdf'>Pick List</a></li> <li><a href='assets/web/missing.csv' download='missing.csv'>Missing parts list</a></li> <li><a href='assets/web/under.csv' download='under.csv'>Understock list</a></li> <li><a href='assets/web/""" + projectName + """_PK.csv'> PartKeepr import </a></li> </ul> </div> <h2>Project name: """ + projectName + \ "</h2><h3>Date:&nbsp; " + dateBOM + \ "</h3><h3>Time:&nbsp; " + timeBOM + "</h3>" htmlBodyHeader = ''' <table class='main' id='main'> ''' labelCol = 0 htmlAccountingHeader = ''' <table class = 'accounting'> ''' resistors = ["R_1206", "R_0805", "R_0603", "R_0402"] capacitors = ["C_1206", "C_0805", "C_0603", "C_0402"] def punctuate(value): if "." in value: multiplier = (value.strip()[-1]) new_string = "_" + (re.sub("\.", multiplier, value))[:-1] else: new_string = "_" + value return (new_string) def get_choice(possible): print( "More than one component in the PartKeepr database meets the criteria:" ) i = 1 for name, description, stockLevel, minStockLevel, averagePrice, partNum, storage_locn, PKid, Manufacturer in possible: # print(i, " : ", name, " : ", description, # " [Location] ", storage_locn, " [Part Number] ", partNum, " [Stock] ", stockLevel) # print(("{:3} {:25} {:50.50} Location {:10} Manf {:12} HPN {:5} Stock {:5} Price(av) {:3s} {:6}").format(i, name, description, storage_locn, Manufacturer, partNum, stockLevel, baseCurrency, averagePrice)) print(i, name, description ) # subprocess.call(['/usr/local/bin/pyparts', 'specs', name]) i = i + 1 print("Choose which component to add to BOM (or 0 to defer)") while True: choice = int(input('> ')) if choice == 0: return (possible) if choice < 0 or choice > len(possible): continue break i = 1 for name, description, stockLevel, minStockLevel, averagePrice, partNum, storage_locn, PKid, Manufacturer in possible: possible = (name, description, stockLevel, minStockLevel, averagePrice, partNum, storage_locn, PKid, Manufacturer) if i == choice: possible = (name, description, stockLevel, minStockLevel, averagePrice, partNum, storage_locn, PKid, Manufacturer) print("Selected :") print(possible[0], " : ", possible[1]) return [possible] i = i + 1 def find_part(part_num): dbconfig = read_db_config() try: conn = MySQLConnection(**dbconfig) cursor = conn.cursor() bean = False if (part_num[:6]) in resistors: quality = "Resistance" variant = "Resistance Tolerance" bean = True if (part_num[:6]) in capacitors: quality = "Capacitance" variant = "Dielectric Characteristic" bean = True if (bean): component = part_num.split('_') if (len(component)) <= 2: print( "Insufficient parameters (Needs 3 or 4) e.g. R_0805_100K(_±5%)" ) return ("0") c_case = component[1] c_value = convert_units(component[2]) if (len(component)) == 4: c_characteristics = component[3] # A fully specified 'bean' sql = """SELECT DISTINCT P.name, P.description, P.stockLevel, P.minStockLevel, P.averagePrice, P.internalPartNumber, S.name, P.id, M.name FROM Part P JOIN PartParameter R ON R.part_id = P.id JOIN StorageLocation S ON S.id = P.storageLocation_id LEFT JOIN PartManufacturer PM on PM.part_id = P.id LEFT JOIN Manufacturer M on M.id = PM.manufacturer_id WHERE (R.name = 'Case/Package' AND R.stringValue='{}') OR (R.name = '{}' AND R.normalizedValue = '{}') OR (R.name = '{}' AND R.stringValue = '%{}') GROUP BY P.id, M.id, S.id HAVING COUNT(DISTINCT R.name)=3""".format( c_case, quality, c_value, variant, c_characteristics) else: # A partially specified 'bean' sql = """SELECT DISTINCT P.name, P.description, P.stockLevel, P.minStockLevel, P.averagePrice, P.internalPartNumber, S.name, P.id, M.name FROM Part P JOIN PartParameter R ON R.part_id = P.id JOIN StorageLocation S ON S.id = P.storageLocation_id LEFT JOIN PartManufacturer PM on PM.part_id = P.id LEFT JOIN Manufacturer M on M.id = PM.manufacturer_id WHERE (R.name = 'Case/Package' AND R.stringValue='{}') OR (R.name = '{}' AND R.normalizedValue = '{}') GROUP BY P.id, M.id, S.id HAVING COUNT(DISTINCT R.name)=2""".format( c_case, quality, c_value) else: sql = """SELECT DISTINCT P.name, P.description, P.stockLevel, P.minStockLevel, P.averagePrice, P.internalPartNumber, S.name, P.id, M.name FROM Part P JOIN StorageLocation S ON S.id = P.storageLocation_id LEFT JOIN PartManufacturer PM on PM.part_id = P.id LEFT JOIN Manufacturer M on M.id = PM.manufacturer_id WHERE P.name LIKE '%{}%' GROUP BY P.id, M.id, S.id""".format(part_num) cursor.execute(sql) components = cursor.fetchall() return (components, bean) except UnicodeEncodeError as err: print(err) finally: cursor.close() conn.close() ############################################################################### # # Main part of program follows # # ############################################################################### with open(file_name, newline='', encoding='utf-8') as csvfile: reader = csv.DictReader(csvfile, delimiter=',') headers = reader.fieldnames filename, file_extension = os.path.splitext(file_name) outfile = open( "./assets/web/" + filename + '_PK.csv', 'w', newline='', encoding='utf-8') writeCSV = csv.writer(outfile, delimiter=',', lineterminator='\n') labelpdf = labelsetup() # Initialise accounting values countParts = 0 count_BOMLine = 0 count_NPKP = 0 count_PKP = 0 count_LowStockLines = 0 count_PWP = 0 bomCost = 0 for row in reader: if not row: break new_string = "" part = row['Part#'] value = row['Value'] footprint = row['Footprint'] datasheet = row['Datasheet'] characteristics = row['Characteristics'] references = row['References'] quantity = row['Quantity Per PCB'] # Need sufficient info to process. Some .csv reprocessing adds in lines # of NULL placeholders where there was a blank line. if part == "" and value == "" and footprint == "": break count_BOMLine = count_BOMLine + 1 if footprint in resistors: if value.endswith("Ω"): # Remove trailing 'Ω' (Ohms) value = (value[:-1]) new_string = punctuate(value) if footprint in capacitors: if value.endswith("F"): # Remove trailing 'F' (Farads) value = (value[:-1]) new_string = punctuate(value) if characteristics is None: if characteristics != "-": new_string = new_string + "_" + str(characteristics) if part == "-": part = (str(footprint) + new_string) if references is None: break component_info, species = find_part(part) n_components = len(component_info) quantity = int(quantity) # Print to screen print(('{:=<162}').format("")) print(("| BOM Line number : {:3} {:136} |").format(count_BOMLine, "")) print(('{:_<162}').format("")) print(("| {:100} | {:13.13} | | Req = {:5}|" ).format(references, part, quantity)) print(('{:_<162}').format("")) uniqueNames = [] if n_components == 0: print(("| {:100} | {:21} | {:16} | {:12} |").format( "No matching parts in database", "", "", "")) print(('{:_<162}').format("")) octopartLookup(part, species) print('\n\n') else: for (name, description, stockLevel, minStockLevel, averagePrice, partNum, storage_locn, PKid, Manufacturer) in component_info: ROHS = partStatus(PKid, 'RoHS') Lifecycle = partStatus(PKid, 'Lifecycle Status') # Can get rid of loop as never reset now print(( "| {:100} | Location = {:10} | Part no = {:6} | Stock = {:5}|" ).format(description, storage_locn, partNum, stockLevel)) print(('{:_<162}').format("")) print(("| Manufacturing status: {} {:<136}|").format( "", Lifecycle)) print(("| RoHS: {}{:<153}|").format("", ROHS)) print(("| Name: {}{:<153}|").format("", name)) getDistrib(PKid) print(('{:_<162}').format("")) octopartLookup(name, species) print('\n\n') # More than one matching component exists - prompt user to choose if len(component_info) >= 2: component_info = get_choice(component_info) for (name, description, stockLevel, minStockLevel, averagePrice, partNum, storage_locn, PKid, Manufacturer) in component_info: ROHS = partStatus(PKid, 'RoHS') Lifecycle = partStatus(PKid, 'Lifecycle Status') if n_components != 0 and (quantity > stockLevel): count_LowStockLines = count_LowStockLines + 1 background = lowstock # Insufficient stock : pinkish under.write(name + ',' + description + ',' + str(quantity) + ',' + str(stockLevel) + ',' + str(minStockLevel) + '\n') else: background = adequate # Adequate stock : greenish countParts = countParts + quantity quantity = str(quantity) if run == 0: preferred = preferred.split(",") web.write("<th class = 'thmain' colspan = '6'> Component details</th>") web.write("<th class = 'thmain' colspan ='" + str(len(preferred) + 2) + "'> Supplier details</th>") web.write( "<th class = 'stock' colspan ='5'> PartKeepr Stock</th></tr>") web.write(""" <tr> <th class = 'thmain' style = 'width: 2%;'>No</th> <th class = 'thmain' style = 'width: 5%;'>Part</th> <th class = 'thmain' style = 'width : 13%;'>Description</th> <th class = 'thmain' style = 'width : 5%;'>References</th> <th class = 'thmain' style = 'width : 4%;'>RoHS</th> <th class = 'thmain' style = 'width : 4%;'>Lifecycle</th> """) i = 0 while i < len(preferred): web.write("<th class = 'thmain' style = 'width : 10%;'>" + preferred[i] + "</th>") i += 1 web.write("""<th class = 'thmain' style = 'width : 3%;'>Exclude</th> <th class = 'thmain' style = 'width : 3%;'>Qty</th> <th class = 'stock' style = 'width : 3%;'>Each</th> <th class = 'stock' style = 'width : 3%;'>Line</th> <th class = 'stock' style = 'width : 3%;'>Stock</th> <th class = 'stock' style = 'width : 3%;'>PAR</th> <th class = 'stock' style = 'width : 3%;'>Net</th> </tr></th>""") run = 1 # No PK components fit search criteria. Deal with here and drop before loop. # Not ideal but simpler. if n_components == 0: count_NPKP = count_NPKP + 1 averagePrice = 0 background = nopkstock nopk = [ '*** NON-PARTKEEPR PART ***', part, "", "", "", "", references, "", "", "" ] web.write("<tr style = 'background-color : " + background + ";'>") web.write("<td class = 'lineno'>" + str(count_BOMLine) + " </td>") web.write( "<td style = 'background-color : #fff; vertical-align:middle;'><img src = 'assets/img/noimg.png' alt='none'></td>" ) web.write("<td class = 'partname' ><b>" + part + "</b>") web.write("<p class = 'descr'>Non PartKeepr component</td>") web.write("<td class = 'refdes'" + references + "</td>") web.write("<td class = 'ROHS'>NA</td>") web.write("<td class = 'ROHS'>NA</td>") for i, d in enumerate(preferred): web.write("<td></td>") web.write("<td class = 'stck'>-</td>") web.write("<td class = 'stck'> " + quantity + "</td>") web.write("<td class = 'stck'>-</td>") web.write("<td class = 'stck'>-</td>") web.write("<td class = 'stck'>-</td>") web.write("<td class = 'stck'>-</td>") web.write("<td class = 'stck'>-</td></tr>") makepick(nopk, pdf2, count_BOMLine) missing.write(part + ',' + quantity + ',' + references + '\n') name = "-" if n_components > 1: # Multiple component fit search criteria - set brown background - # TODO Make colors configurable in ini background = multistock columns = str(len(preferred) + 13) if len(component_info) == 1: # More than one line exists but has been disambiguated at runtime web.write( "<tr><td colspan='" + columns + "' style = 'font-weight : bold; background-color : " + background + ";'><nbsp><nbsp><nbsp><nbsp><nbsp>" + str(n_components) + " components meet the selection criteria but the following line was selected at runtime</td></tr>" ) else: web.write( "<tr style = 'background-color : " + background + ";'><td colspan='" + columns + "' style = 'font-weight : bold;'> <nbsp><nbsp><nbsp><nbsp><nbsp>The following " + str(n_components) + " components meet the selection criteria *** Use only ONE line *** </td></tr>" ) i = 0 for (name, description, stockLevel, minStockLevel, averagePrice, partNum, storage_locn, PKid, Manufacturer) in component_info: if n_components > 1: web.write("<tr style = 'background-color : " + background + ";'>") else: web.write("<tr>") web.write("<td class = 'lineno'>" + str(count_BOMLine) + " </td>") if i == 0: # 1st line where multiple components fit search showing RefDes name_safe = name.replace("/", "-") name_safe = name.replace(" ", "") try: f = open("./assets/web/" + name_safe, 'r') imageref = f.read() except: FileNotFoundError try: imageref, datasheet = imageref.split(',') except ValueError: datasheet = '' web.write("<td class = 'center'>") if imageref: web.write("<img src = '" + imageref + "' alt='thumbnail' >") else: web.write( "<img src = 'assets/img/noimg.png' alt='none'>") imageref = "" web.write("</td>") web.write("<td class = 'partname'><a href = 'assets/web/" + name_safe + ".html'>" + name + "</a>") if Manufacturer: web.write("<p class='manf'>" + Manufacturer + "</p>") i = i + 1 count_PKP = count_PKP + 1 else: # 2nd and subsequent lines where multiple components fit search showing RefDes web.write("<td>") name_safe = name.replace("/", "-") f = open("./assets/web/" + name_safe, 'r') imageref = f.read() if imageref: web.write("<img src = '" + imageref + "' alt='thumbnail'>") web.write("<td><a href = 'assets/web/" + name_safe + ".html'>" + name + "</a>") if Manufacturer: web.write("<p class = 'manf'" + Manufacturer + "</>") invalidate_BOM_Cost = True lineCost = float(averagePrice) * int(quantity) if lineCost == 0: count_PWP += 1 web.write("<p class = 'descr'>" + description + "</p>") if datasheet: web.write("<a href='" + datasheet + "'><img class = 'partname' src = 'assets/img/pdf.png' alt='datasheet' ></a>") web.write("</td>") web.write("<td class = 'refdes'>" + references + "</td>") # TODO Probably could be more elegant if ROHS == "Compliant": ROHSClass = 'compliant' _cIndicator = "C_cp" elif ROHS == "Non-Compliant": ROHSClass = 'uncompliant' _cIndicator = "C_nc" else: ROHS = "Unknown" ROHSClass = 'unknown' _cIndicator = "C_nk" web.write("<td id ='" + _cIndicator + str(count_BOMLine) + "' class = '" + ROHSClass + "'>" + ROHS) if ROHS == "Compliant": web.write("<br><br><img src = 'assets/img/rohs-logo.png' alt='compliant'>") web.write("</td>") if Lifecycle == "Active": LifeClass = 'active' _pIndicator = "P_ac" elif Lifecycle == "EOL": LifeClass = 'eol' _pIndicator = "P_el" elif Lifecycle == "NA": Lifecycle = "Unknown" LifeClass = 'unknown' _pIndicator = "P_nk" else: LifeClass = 'unknown' _pIndicator = "P_nk" web.write("<td id = '" + _pIndicator + str(count_BOMLine) + "' class = '" + LifeClass + "'>" + Lifecycle + "</td>") # Part number exists, therefore generate bar code # Requires Zint >1.4 - doesn't seem to like to write to another directory. # Ugly hack - write to current directory and move into place. if partNum: part_no = partNum # part_no = (partNum[1:]) subprocess.call([ '/usr/local/bin/zint', '--filetype=png', '--notext', '-w', '10', '--height', '20', '-o', part_no, '-d', partNum ]) os.rename(part_no + '.png', 'assets/barcodes/' + part_no + '.png') # Storage location exists, therefore generate bar code. Ugly hack - my location codes start with # a '$' which causes problems. Name the file without the leading character. if storage_locn != "": locn_trim = "" locn_trim = (storage_locn[1:]) subprocess.call([ '/usr/local/bin/zint', '--filetype=png', '--notext', '-w', '10', '--height', '20', '-o', locn_trim, '-d', storage_locn ]) os.rename(locn_trim + '.png', 'assets/barcodes/' + locn_trim + '.png') table, priceRow, coverage, items = getTable( name_safe, int(quantity), background, count_BOMLine) web.write(str(table)) costMatrix = [sum(x) for x in zip(priceRow, costMatrix)] coverageMatrix = [ sum(x) for x in zip(coverage, coverageMatrix) ] countMatrix = [sum(x) for x in zip(items, countMatrix)] # NOTE Do I need to think about building matrix by APPENDING lines. avPriceFMT = str(('{:3s} {:0,.2f}').format( baseCurrency, averagePrice)) linePriceFMT = str(('{:3s} {:0,.2f}').format( baseCurrency, lineCost)) bomCost = bomCost + lineCost averagePrice = str('{:0,.2f}').format(averagePrice) lineCost = str('{:0,.2f}').format(lineCost) web.write("<td class = 'lineno'><input type='checkbox' name='ln"+str(count_BOMLine)+"' value='"+str(count_BOMLine)+"'></td>") web.write("<td class = 'stck'> " + quantity + "</td>") web.write("<td class = 'stck'><b>" + averagePrice + "</b> " + baseCurrency + "</td>") web.write("<td class = 'stck'><b>" + lineCost + "</b> " + baseCurrency + "</td>") if int(quantity) >= stockLevel: qtyCol = '#dc322f' else: qtyCol = "#859900" if (int(stockLevel) - int(quantity)) <= int(minStockLevel): minLevelCol = '#dc322f' elif (int(stockLevel) - int(quantity)) <= int(minStockLevel) * 1.2: minLevelCol = "#cb4b16" else: minLevelCol = "#859900" web.write( "<td class = 'stck' style = 'font-weight : bold; text-align: right;'>" + str(stockLevel) + "</td>") web.write( "<td class = 'stck' style = 'font-weight : bold; text-align: right;'>" + str(minStockLevel) + "</td>") web.write( "<td class = 'stck' style = 'font-weight : bold; text-align: right; color:" + minLevelCol + "'>" + str(int(stockLevel) - int(quantity)) + "</td>") else: # No storage location web.write("<td class = 'stck'>NA</td>") web.write('</tr>\n') # Make labels for packets (need extra barcodes here) name = name.replace("/", "-") # Deal with / in part names subprocess.call([ '/usr/local/bin/zint', '--filetype=png', '--notext', '-w', '10', '--height', '20', '-o', name, '-d', name ]) os.rename(name + '.png', 'assets/barcodes/' + name + '.png') subprocess.call([ '/usr/local/bin/zint', '--filetype=png', '--notext', '-w', '10', '--height', '20', '-o', quantity, '-d', quantity ]) os.rename(quantity + '.png', 'assets/barcodes/' + quantity + '.png') # Write out label pdf lb2 = [] lb2.append(description[:86].upper()) lb2.append(name) lb2.append(part_no) lb2.append(storage_locn) lb2.append(quantity) lb2.append(stockLevel) lb2.append(references) lb2.append(dateBOM) lb2.append(timeBOM) lb2.append(filename) makelabel(lb2, labelCol, labelRow, lblwidth, lblheight, pdf) makepick(lb2, pdf2, count_BOMLine) labelCol = labelCol + 1 if labelCol == 3: labelRow += 1 labelCol = 0 # Prevent variables from being recycled storage_locn = "" partNum = "" part_no = "" qty = str(int(quantity) / numBoards) writeCSV.writerow([references, name, qty]) references = "" name = "" quantity = "" # Write out footer for webpage web.write("<tr id = 'supplierTotal'>") web.write("<td style = 'border: none;'></td>" * 4) web.write("<td colspan ='2'>Total for Supplier</td>") for p, d in enumerate(preferred): web.write("<td style='text-align: right;'><b><span id='t" + str(p) + "'></span></b><span style='text-align: right;'> " + baseCurrency + "</span></td>") web.write("<td style = 'border: none;'></td>" * 7) web.write("</tr>") web.write("<tr id = 'linesCoverage'>") web.write("<td style = 'border: none;'></td>" * 4) web.write("<td colspan ='2'>Coverage by Lines</td>") for p, d in enumerate(preferred): coveragePC = str(int(round((coverageMatrix[p] / count_BOMLine) * 100))) web.write("<td style='text-align: right;'><span class ='value'>" + coveragePC + "</span>%</td>") web.write("<td style = 'border: none;'></td>" * 7) web.write("</tr>") web.write("<tr id = 'itemsCoverage'>") web.write("<td style = 'border: none;'></td>" * 4) web.write("<td colspan ='2'>Coverage by Items</td>") for p, d in enumerate(preferred): countPC = str(int(round((countMatrix[p] / countParts) * 100))) web.write("<td style='text-align: right;'>" + countPC + "%</td>") web.write("<td style = 'border: none;'></td>" * 7) web.write("</tr>") web.write("<tr id = 'linesSelected'>") web.write("<td style = 'border: none;'></td>" * 4) web.write("<td colspan ='2'>Lines selected</td>") for p, d in enumerate(preferred): web.write("<td style='text-align: right;'><span id ='cz" + str(p) + "'></span></td>") web.write("<td style = 'border: none;'></td>" * 7) web.write("</tr>") web.write("<tr id = 'linesPercent'>") web.write("<td style = 'border: none;'></td>" * 4) web.write("<td colspan ='2'>Percent selected (by lines)</td>") for p, d in enumerate(preferred): web.write("<td style='text-align: right;'><span id ='cc" + str(p) + "'></span>%</td>") web.write("<td style = 'border: none;'></td>" * 7) web.write("</tr>") web.write("<tr id = 'pricingSelected'>") web.write("<td style = 'border: none;'></td>" * 4) web.write("<td colspan ='2'>Total for Selected</td>") for p, d in enumerate(preferred): web.write("<td style='text-align: right;'><b><span id='c" + str(p) + "'></span></b><span style='text-align: right;'> " + baseCurrency + "</span></td>") web.write("<td style = 'border: none;'></td>" * 7) web.write("</tr>") # I am really struggling with using js arrays ..... script = ''' <script> $(document).ready(function() { bomlines = $('#BOMLines').text(); bomlines = Number(bomlines); numboards = $('#numboards').text(); numboards = Number(numboards); excluded = $(':checkbox:checked').length; excluded = Number(excluded); bomlines = bomlines - excluded; providers = Number($("#providers th").length) - 15; var compliance_cp = $("[id*=C_cp]").length; var compliance_nc = $("[id*=C_nc]").length; var compliance_nk = $("[id*=C_nk]").length; var production_ip = $("[id*=P_ac]").length; var production_el = $("[id*=P_el]").length; var production_nk = $("[id*=P_nk]").length; line0 = $('#linesCoverage').find("td:eq(5)").find('span.value').text(); line1 = $('#linesCoverage').find("td:eq(6)").find('span.value').text(); line2 = $('#linesCoverage').find("td:eq(7)").find('span.value').text(); line3 = $('#linesCoverage').find("td:eq(8)").find('span.value').text(); line4 = $('#linesCoverage').find("td:eq(9)").find('span.value').text(); var total = 0; var totalDisp = 0; var totalPerBoard = 0; var t0 = 0; var t1 = 0; var t2 = 0; var t3 = 0; var t4 = 0; var c0 = 0; var c1 = 0; var c2 = 0; var c3 = 0; var c4 = 0; var cz0 = $("[id*=0-]:radio:checked:not(:hidden)").length; var cz1 = $("[id*=1-]:radio:checked:not(:hidden)").length; var cz2 = $("[id*=2-]:radio:checked:not(:hidden)").length; var cz3 = $("[id*=3-]:radio:checked:not(:hidden)").length; var cz4 = $("[id*=4-]:radio:checked:not(:hidden)").length; var cc0 = Math.round(Number(cz0) / bomlines * 100); var cc1 = Math.round(Number(cz1) / bomlines * 100); var cc2 = Math.round(Number(cz2) / bomlines * 100); var cc2 = Math.round(Number(cz2) / bomlines * 100); var cc3 = Math.round(Number(cz3) / bomlines * 100); var cc4 = Math.round(Number(cz4) / bomlines * 100); $(":radio:checked").each(function() { total += Number(this.value); total = Math.round(total * 100) / 100; totalDisp = total.toFixed(2); totalPerBoard = (total/numboards).toFixed(2); }); $("[id*=0-]:radio:checked").each(function() { c0 += Number(this.value); c0 = Math.round(c0 * 100) / 100; }); $("[id*=0-]:radio").each(function() { t0 += Number(this.value); t0 = Math.round(t0 * 100) / 100; }); $("[id*=1-]:radio:checked").each(function() { c1 += Number(this.value); c1 = Math.round(c1 * 100) / 100; }); $("[id*=1-]:radio").each(function() { t1 += Number(this.value); t1 = Math.round(t1 * 100) / 100; }); $("[id*=2-]:radio:checked").each(function() { c2 += Number(this.value); c2 = Math.round(c2 * 100) / 100; }); $("[id*=2-]:radio").each(function() { t2 += Number(this.value); t2 = Math.round(t2 * 100) / 100; }); $("[id*=3-]:radio:checked").each(function() { c3 += Number(this.value); c3 = Math.round(c3 * 100) / 100; }); $("[id*=3-]:radio:checked").each(function() { t3 += Number(this.value); t3 = Math.round(t3 * 100) / 100; }); $("[id*=4-]:radio:checked").each(function() { c4 += Number(this.value); c4 = Math.round(c4 * 100) / 100; }); $("[id*=4-]:radio:checked").each(function() { t4 += Number(this.value); t4 = Math.round(t4 * 100) / 100; }); var t0Disp = t0.toFixed(2); var t1Disp = t1.toFixed(2); var t2Disp = t2.toFixed(2); var t3Disp = t3.toFixed(2); var t4Disp = t4.toFixed(2); var c0Disp = c0.toFixed(2); var c1Disp = c1.toFixed(2); var c2Disp = c2.toFixed(2); var c3Disp = c3.toFixed(2); var c4Disp = c4.toFixed(2); $("#total").text(totalDisp); $("#totalPerBoard").text(totalPerBoard); $("#c0").text(c0Disp); $("#c1").text(c1Disp); $("#c2").text(c2Disp); $("#c3").text(c3Disp); $("#c4").text(c4Disp); $("#cz0").text(cz0); $("#cz1").text(cz1); $("#cz2").text(cz2); $("#cz3").text(cz3); $("#cz4").text(cz4); $("#cc0").text(cc0); $("#cc1").text(cc1); $("#cc2").text(cc2); $("#cc3").text(cc3); $("#cc4").text(cc4); $("#t0").text(t0Disp); $("#t1").text(t1Disp); $("#t2").text(t2Disp); $("#t3").text(t3Disp); $("#t4").text(t4Disp); var options = { responsive: false, maintainAspectRatio: false, scales: { yAxes: [{ ticks: { beginAtZero:true } }] } }; var ctx = document.getElementById('pricing').getContext('2d'); var datapoints = [t0, t1, t2, t3, t4]; var chart = new Chart(ctx, { // The type of chart we want to create type: 'bar', // The data for our dataset data: { labels: ["Newark", "Farnell", "DigiKey", "RS Components", "Mouser"], datasets: [{ label: "Pricing", backgroundColor: [ 'rgb(133, 153, 0)', 'rgb(42, 161, 152)', 'rgb(38, 139, 210)', 'rgb(108, 113, 196)', 'rgb(211, 54, 130)', 'rgb(220, 50, 47)' ], borderColor: 'rgb(88, 110, 117)', data: datapoints, }] }, options: { legend: { display: false }, title: { display: true, text: 'Cost of BOM by provider' } } }); var ctx2 = document.getElementById('coverage').getContext('2d'); var coverage = [line0, line1, line2, line3, line4]; var chart = new Chart(ctx2, { type: 'bar', data: { labels: ["Newark", "Farnell", "DigiKey", "RS Components", "Mouser"], datasets: [{ label: "Coverage", backgroundColor: [ 'rgb(133, 153, 0)', 'rgb(42, 161, 152)', 'rgb(38, 139, 210)', 'rgb(108, 113, 196)', 'rgb(211, 54, 130)', 'rgb(220, 50, 47)' ], borderColor: 'rgb(88, 110, 117)', data: coverage, }] }, options: { legend: { display: false }, title: { display: true, text: 'Coverage of BOM by Lines (%)' } } }); var ctx3 = document.getElementById('compliance').getContext('2d'); var compliant = [compliance_cp, compliance_nc, compliance_nk] var data1 = { datasets: [{ backgroundColor: [ '#2aa198', '#586e75', '#073642'], data: compliant, }], labels: [ 'Compliant', 'Non-Compliant', 'Unknown' ] }; var compliance = new Chart(ctx3, { type: 'doughnut', data: data1, options: { title: { display: true, text: 'ROHS Compliance' } } }); var ctx4 = document.getElementById('lifecycle').getContext('2d'); var life = [production_ip, production_el, production_nk] var data2 = { datasets: [{ backgroundColor: [ '#2aa198', '#d33682', '#073642'], data: life }], labels: [ 'Active', 'EOL', 'Unknown' ] }; var lifecycle = new Chart(ctx4, { type: 'doughnut', data: data2, options: { title: { display: true, text: 'Production Status' } } }); }); $(":radio, :checkbox").on("change", function() { var t0 = 0; var t1 = 0; var t2 = 0; var t3 = 0; var t4 = 0; var c0 = 0; var c1 = 0; var c2 = 0; var c3 = 0; var c4 = 0; $('#main tr').filter(':has(:checkbox)').find('radio,.td,.min,.mid,.radbut,.min a,.min p,.mid a,.mid p, .ambig, .ambig a, .ambig p, .null p').removeClass("deselected"); $('#main tr').filter(':has(:checkbox)').find('.icon').show(); $('#main tr').filter(':has(:checkbox)').find(':radio').show(); $('#main tr').filter(':has(:checkbox:checked)').find('radio,.td,.min,.mid,.radbut,.min a,.min p,.mid a,.mid p,.ambig,.ambig a,.ambig p,.null p').addClass("deselected"); $('#main tr').filter(':has(:checkbox:checked)').find('.icon').hide(); $('#main tr').filter(':has(:checkbox:checked)').find(':radio').hide(); var compliance_cp = $("[id*=C_cp]").length; var compliance_nc = $("[id*=C_nc]").length; var compliance_nk = $("[id*=C_nk]").length; var production_ip = $("[id*=P_ac]").length; var production_el = $("[id*=P_el]").length; var production_nk = $("[id*=P_nk]").length; line0 = $('#linesCoverage').find("td:eq(5)").find('span.value').text(); line1 = $('#linesCoverage').find("td:eq(6)").find('span.value').text(); line2 = $('#linesCoverage').find("td:eq(7)").find('span.value').text(); line3 = $('#linesCoverage').find("td:eq(8)").find('span.value').text(); line4 = $('#linesCoverage').find("td:eq(9)").find('span.value').text(); bomlines = $('#BOMLines').text(); bomlines = Number(bomlines); numboards = $('#numboards').text(); numboards = Number(numboards); excluded = $(':checkbox:checked').length; excluded = Number(excluded); bomlines = bomlines - excluded; var total = 0; var totalDisp = 0; var totalPerBoard = 0; var cz0 = $("[id*=0-]:radio:checked:not(:hidden)").length; var cz1 = $("[id*=1-]:radio:checked:not(:hidden)").length; var cz2 = $("[id*=2-]:radio:checked:not(:hidden)").length; var cz3 = $("[id*=3-]:radio:checked:not(:hidden)").length; var cz4 = $("[id*=4-]:radio:checked:not(:hidden)").length; var cc0 = Math.round(Number(cz0) / bomlines * 100); var cc1 = Math.round(Number(cz1) / bomlines * 100); var cc2 = Math.round(Number(cz2) / bomlines * 100); var cc2 = Math.round(Number(cz2) / bomlines * 100); var cc3 = Math.round(Number(cz3) / bomlines * 100); var cc4 = Math.round(Number(cz4) / bomlines * 100); $(":radio:checked:not(:hidden)").each(function() { total += Number(this.value); total = Math.round(total * 100) / 100; totalDisp = total.toFixed(2); totalPerBoard = (total/numboards).toFixed(2); }); $("[id*=0-]:radio:checked:not(:hidden)").each(function() { c0 += Number(this.value); c0 = Math.round(c0 * 100) / 100; }); $("[id*=0-]:radio:not(:hidden)").each(function() { t0 += Number(this.value); t0 = Math.round(t0 * 100) / 100; }); $("[id*=1-]:radio:checked:not(:hidden)").each(function() { c1 += Number(this.value); c1 = Math.round(c1 * 100) / 100; }); $("[id*=1-]:radio:not(:hidden)").each(function() { t1 += Number(this.value); t1 = Math.round(t1 * 100) / 100; }); $("[id*=2-]:radio:checked:not(:hidden)").each(function() { c2 += Number(this.value); c2 = Math.round(c2 * 100) / 100; }); $("[id*=2-]:radio:not(:hidden)").each(function() { t2 += Number(this.value); t2 = Math.round(t2 * 100) / 100; }); $("[id*=3-]:radio:checked:not(:hidden)").each(function() { c3 += Number(this.value); c3 = Math.round(c3 * 100) / 100; }); $("[id*=3-]:radio:checked:not(:hidden)").each(function() { t3 += Number(this.value); t3 = Math.round(t3 * 100) / 100; }); $("[id*=4-]:radio:checked:not(:hidden)").each(function() { c4 += Number(this.value); c4 = Math.round(c4 * 100) / 100; }); $("[id*=4-]:radio:checked:not(:hidden)").each(function() { t4 += Number(this.value); t4 = Math.round(t4 * 100) / 100; }); var t0Disp = t0.toFixed(2); var t1Disp = t1.toFixed(2); var t2Disp = t2.toFixed(2); var t3Disp = t3.toFixed(2); var t4Disp = t4.toFixed(2); var c0Disp = c0.toFixed(2); var c1Disp = c1.toFixed(2); var c2Disp = c2.toFixed(2); var c3Disp = c3.toFixed(2); var c4Disp = c4.toFixed(2); $("#total").text(totalDisp); $("#totalPerBoard").text(totalPerBoard); $("#c0").text(c0Disp); $("#c1").text(c1Disp); $("#c2").text(c2Disp); $("#c3").text(c3Disp); $("#c4").text(c4Disp); $("#cz0").text(cz0); $("#cz1").text(cz1); $("#cz2").text(cz2); $("#cz3").text(cz3); $("#cz4").text(cz4); $("#cc0").text(cc0); $("#cc1").text(cc1); $("#cc2").text(cc2); $("#cc3").text(cc3); $("#cc4").text(cc4); $("#t0").text(t0Disp); $("#t1").text(t1Disp); $("#t2").text(t2Disp); $("#t3").text(t3Disp); $("#t4").text(t4Disp); var options = {}; var ctx = document.getElementById('pricing').getContext('2d'); var datapoints = [t0, t1, t2, t3, t4]; var chart = new Chart(ctx, { // The type of chart we want to create type: 'bar', // The data for our dataset data: { labels: ["Newark", "Farnell", "DigiKey", "RS Components", "Mouser"], datasets: [{ label: "Pricing", backgroundColor: [ 'rgb(133, 153, 0)', 'rgb(42, 161, 152)', 'rgb(38, 139, 210)', 'rgb(108, 113, 196)', 'rgb(211, 54, 130)', 'rgb(220, 50, 47)' ], borderColor: 'rgb(88, 110, 117)', data: datapoints, }] }, options: { legend: { display: false }, title: { display: true, text: 'Cost of BOM by provider' } } }); var ctx2 = document.getElementById('coverage').getContext('2d'); var coverage = [line0, line1, line2, line3, line4]; var chart = new Chart(ctx2, { type: 'bar', data: { labels: ["Newark", "Farnell", "DigiKey", "RS Components", "Mouser"], datasets: [{ label: "Coverage", backgroundColor: [ 'rgb(133, 153, 0)', 'rgb(42, 161, 152)', 'rgb(38, 139, 210)', 'rgb(108, 113, 196)', 'rgb(211, 54, 130)', 'rgb(220, 50, 47)' ], borderColor: 'rgb(88, 110, 117)', data: coverage, }] }, options: { legend: { display: false }, title: { display: true, text: 'Coverage of BOM by Lines (%)' } } }); }); </script>''' footer = ''' <br><p> <a href="http://jigsaw.w3.org/css-validator/check/referer"> <img style="border:0;width:88px;height:31px" src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!" /> </a> </p>''' web.write("</table></body>" + script + "</html>") # Now script has run, construct table with part counts & costs etc. bomCostDisp = str(('{:3s} {:0,.2f}').format(baseCurrency, bomCost)) bomCostBoardDisp = str(('{:3s} {:0,.2f}').format(baseCurrency, bomCost/numBoards)) currency = str(('{:3s}').format(baseCurrency)) accounting.write("<tr class = 'accounting'>") accounting.write("<td colspan = 2> Total number of boards </td>") accounting.write("<td style='text-align:right;' id = 'numboards'>" + str(numBoards) + "</td>") accounting.write("</tr> <tr class = 'accounting'>") accounting.write("<td colspan = 2> Total parts </td>") accounting.write("<td style='text-align:right;'>" + str(countParts) + "</td>") accounting.write("</tr> <tr class = 'accounting'>") accounting.write("<td colspan = 2>BOM Lines </td>") accounting.write("<td style='text-align:right;'><span id='BOMLines'>" + str(count_BOMLine) + "</span></td>") accounting.write("</tr> <tr class = 'accounting'>") accounting.write("<td colspan = 2> Non-PartKeepr Parts </td>") accounting.write("<td style='text-align:right;' id='npkParts'>" + str(count_NPKP) + "</td>") accounting.write("</tr> <tr class = 'accounting'>") accounting.write("<td colspan = 2> PartKeepr Parts</td>") accounting.write("<td style='text-align:right;' id='pkParts'>" + str(count_PKP) + "</td>") accounting.write("</tr> <tr class = 'accounting'>") accounting.write("<td colspan = 2> Parts without pricing info </td>") accounting.write("<td style='text-align:right;'>" + str(count_PWP) + "</td>") accounting.write("</tr> <tr class = 'accounting'>") accounting.write("<td colspan = 2> Low Stock </td>") accounting.write("<td style='text-align:right;'>" + str(count_LowStockLines) + "</td></tr>") accounting.write("<tr class = 'accounting'><td></td><td></td><td></td></tr>") accounting.write("<tr class = 'accounting'><td></td>") accounting.write("<td style='text-align:right; font-weight: bold;'> Total </td>") accounting.write("<td style='text-align:right; font-weight: bold;'> Per board</td>") accounting.write("</tr> <tr class = 'accounting'>") accounting.write("<td> Inventory prices </td>") if not invalidate_BOM_Cost: accounting.write("<td style='text-align:right'>" + bomCostDisp + " </td>") accounting.write("<td style='text-align:right' >" + bomCostBoardDisp + "</td>") else: accounting.write("<td class = 'accounting'>BOM price not calculated </td> ") accounting.write("</tr> <tr class = 'accounting'>") accounting.write("<td>Price from selected </td><td style='text-align:right'>" + currency + " <span id='total'></span></td>") accounting.write("<td style='text-align:right'>" + currency + " <span id='totalPerBoard'></span></td></table>") accounting.write( "<div class = 'canvas'><canvas id='pricing'></canvas></div>") accounting.write( "<div class = 'canvas'><canvas id='coverage'></canvas></div>") accounting.write( "<div class = 'canvas2'><canvas id='compliance'></canvas></div>") accounting.write( "<div class = 'canvas2'><canvas id='lifecycle'></canvas></div>") # Assemble webpage pdf.output('labels.pdf', 'F') pdf2.output('picklist.pdf', 'F') web = open("assets/web/temp.html", "r") web_out = open("webpage.html", "w") accounting = open("assets/web/accounting.html", "r") accounting = accounting.read() htmlBody = web.read() web_out.write(htmlHeader) web_out.write(htmlAccountingHeader + accounting) web_out.write(htmlBodyHeader + htmlBody) print('Starting server...') PORT = 8109 Handler = http.server.SimpleHTTPRequestHandler httpd = socketserver.TCPServer(("", PORT), Handler, bind_and_activate=False) httpd.allow_reuse_address = True httpd.server_bind() httpd.server_activate() print('Running server...') print('Type Ctr + C to halt') try: webbrowser.open('http://localhost:'+str(PORT)+'/webpage.html') httpd.serve_forever() except KeyboardInterrupt: httpd.socket.close() httpd.shutdown() httpd.server_close()
def fact(n): return 1 if n == 0 else n*fact(n-1) def p(k, l): e = 2.71828 return (l**k)*(e**-l) / fact(k) l = float(input()) k = int(input()) print(round(p(k, l), 3))
#!/usr/bin/env python3 import logging try: import discord from discord.ext import commands except ImportError: print("Discord.py is required. See the README for instructions on installing it.") exit(1) from cogs import get_extensions from constants import colors, info from utils import l, LOG_SEP import utils LOG_LEVEL_API = logging.WARNING LOG_LEVEL_BOT = logging.INFO LOG_FMT = "[%(asctime)s] [%(name)s] [%(levelname)s] %(message)s" if info.DAEMON: logging.basicConfig(format=LOG_FMT, filename='bot.log') else: logging.basicConfig(format=LOG_FMT) logging.getLogger('discord').setLevel(LOG_LEVEL_API) l.setLevel(LOG_LEVEL_BOT) class Bot(commands.Bot): def __init__(self, **kwargs): super().__init__( command_prefix=info.COMMAND_PREFIX, case_insensitive=True, description=kwargs.pop('description'), status=discord.Status.dnd ) self.app_info = None self.cogs_loaded = set() async def ready_status(self): await self.change_presence(status=discord.Status.online) async def on_connect(self): l.info(f"Connected as {self.user}") await self.change_presence(status=discord.Status.idle) async def on_ready(self): self.app_info = await self.application_info() l.info(LOG_SEP) l.info(f"Logged in as: {self.user.name}") l.info(f"discord.py: {discord.__version__}") l.info(f"Owner: {self.app_info.owner}") l.info(LOG_SEP) await self.load_all_extensions() await self.ready_status() async def on_resumed(self): l.info("Resumed session.") await self.ready_status() async def load_all_extensions(self, reload=False): """Attempt to load all .py files in cogs/ as cog extensions. Return a dictionary which maps cog names to a boolean value (True = successfully loaded; False = not successfully loaded). """ succeeded = {} disabled_extensions = set() if not info.DEV: disabled_extensions.add('tests') for extension in get_extensions(disabled=disabled_extensions): try: if reload or extension not in self.cogs_loaded: self.load_extension(f'cogs.{extension}') l.info(f"Loaded extension '{extension}'") self.cogs_loaded.add(extension) succeeded[extension] = True except Exception as exc: l.error(f"Failed to load extension {extension!r} due to {type(exc).__name__}: {exc}") if hasattr(exc, 'original'): l.error(f"More details: {type(exc.original).__name__}: {exc.original}") succeeded[extension] = False if succeeded: l.info(LOG_SEP) return succeeded async def on_guild_join(self, guild): """This event triggers when the bot joins a guild.""" l.info(f"Joined {guild.name} with {guild.member_count} users!") async def on_message(self, message): """This event triggers on every message received by the bot, including ones that it sent itself. """ if message.author.bot: return # Ignore all bots. if message.content.startswith(self.user.mention): prefix = info.COMMAND_PREFIX description = f"Hi! I'm {self.user.mention}, {info.DESCRIPTION[0].lower()}{info.DESCRIPTION[1:]}." description += f" Type `{prefix}help` to get general bot help, `{prefix}help <command>` to get help for a specific command, and `!about` for general info about me." await message.channel.send(embed=discord.Embed( color=colors.INFO, description=description, )) else: await self.process_commands(message) async def on_command_error(self, exc, *args, **kwargs): await utils.error_handling.on_command_error(exc, *args, **kwargs) if __name__ == '__main__': bot = Bot(description=info.DESCRIPTION) try: bot.run(info.TOKEN) except discord.errors.LoginFailure: print(f"Please specify a proper bot token in {info.CONFIG.filepath}.") exit(1)