content
stringlengths
5
1.05M
# AUTOGENERATED! DO NOT EDIT! File to edit: notebooks/plots.ipynb (unless otherwise specified). __all__ = ['river_reliability_diagram', 'class_wise_river_reliability_diagram', 'confidence_reliability_diagram', 'class_wise_confidence_reliability_diagram'] # Cell from riverreliability import utils, metrics as rmetrics import matplotlib.pyplot as plt import matplotlib.axes from matplotlib import cm import numpy as np from scipy.stats import beta from scipy import interpolate from .beta import get_beta_parameters, beta_avg_pdf import sklearn.datasets import sklearn.model_selection import sklearn.svm from sklearn.metrics import confusion_matrix, accuracy_score, balanced_accuracy_score import sklearn.utils # Internal Cell def _decorate_ax(ax:matplotlib.axes.Axes): """Apply styling changes to a matplotlib axis. Arguments: ax -- matplotlib axis """ ax.set_xlim(0, 1) ax.set_ylim(0, 1) ax.spines["top"].set_visible(False) ax.spines["right"].set_visible(False) plt.setp(ax.spines.values(), color=cm.tab20c(18)) plt.setp([ax.get_xticklines(), ax.get_yticklines()], color=cm.tab20c(18)) def _get_beta_pdf(dist): """Get pdf and beta parameters from `dist`. `dist` is either: - a tuple which contains a and b, in which case the exact pdf is sampled - a vector containing samples from a beta pdf (with unknown a and b), in which case MLE is used to estimate a and b Returns: tuple containing a, b, pdf and linspace x over which the pdf was sampled """ if len(dist) == 2: # dist contains the parameters of the beta distribution a, b = dist # sample the beta x = np.linspace(0, 1, 500) pdf = beta.pdf(x, a, b) else: # dist contains samples of the beta pdf ## sample from the beta distribution using the pdf probabilities # make it impossible to sample 0 or 1 # in theory this should never happen, but approximations introduce errors prob = dist.copy() prob[0] = 0.0 prob[-1] = 0.0 x = np.linspace(0, 1, len(dist)) samples = np.random.choice(x, size=500, p=prob/prob.sum()) ## fit a beta distribution to the samples a, b, loc, scale = beta.fit(samples, floc=0, fscale=1) pdf = dist return a, b, pdf, x def _pre_plot_checks(y_probs, y_preds, y_true, ax, ci=None, required_axes=None): """Perform some pre-plotting checks on input data, create required axes if necessary and compute number of classes.""" num_classes = len(sklearn.utils.multiclass.unique_labels(y_preds, y_true)) if (required_axes == 1) and (ax is None): fig, ax = plt.subplots(subplot_kw={"aspect": 0.75}, dpi=100, tight_layout=True) else: required_axes = num_classes if required_axes is None else required_axes if ax is None: fig, ax = plt.subplots(1, required_axes, figsize=(3*required_axes, 3), subplot_kw={"aspect": 0.75}, constrained_layout=True, sharex=True, sharey=True, dpi=100) if (required_axes != 1) and (len(ax) != required_axes): raise ValueError(f"Wrong amount of axes provided: {required_axes} needed, but {len(ax)} provided.") sklearn.utils.check_consistent_length(y_probs, y_preds, y_true) if ci is not None: ci = ci if isinstance(ci, list) else [ci] for a in ci: if (a > 1) or (a < 0): raise ValueError(f"CI must be in [0, 1]") return num_classes, ax class clipped_cm: def __init__(self, n, base_cm=cm.Greys, clip_range=(0.5, 1.0)): self.n = n self.space = np.linspace(*clip_range, n+1) self.cm = [base_cm(p) for p in self.space] def __call__(self, x): return self.cm[int(x*self.n)] # Internal Cell def river_diagram(distributions:np.array, confidence_levels:np.array, ax:matplotlib.axes.Axes, ci:list): ci = sorted(ci)[::-1] _decorate_ax(ax) ax.set_ylim(0, 1) intervals = np.empty((len(confidence_levels), len(ci), 2), dtype=float) means = np.empty((len(confidence_levels),), dtype=float) for i, (cl, dist) in enumerate(zip(confidence_levels, distributions)): if cl is np.nan: continue a, b, pdf, _ = _get_beta_pdf(dist) for j, l in enumerate(ci): intervals[i, j] = beta.interval(l, a, b) means[i] = a/(a+b) x = np.linspace(min(confidence_levels), max(confidence_levels), 1000) for i, l in enumerate(ci): f0 = interpolate.PchipInterpolator(confidence_levels, intervals[:, i, 0]) f1 = interpolate.PchipInterpolator(confidence_levels, intervals[:, i, 1]) ax.fill_between(x, f0(x), f1(x), zorder=i, color=cm.Greys(0.2+i*0.1), label=f"{int(l*100):2d}% CI") fm = interpolate.PchipInterpolator(confidence_levels, means) ax.plot(x, fm(x), color="black", zorder=4, label="Mean") ax.scatter(confidence_levels, means, s=20, color="black", zorder=4) ax.plot([0,1], [0,1], color=cm.Greys(0.8), linestyle="--", zorder=5, label="Perfect calibration") # Cell def river_reliability_diagram(y_probs:np.array, y_preds:np.array, y_true:np.array, ax:matplotlib.axes.Axes=None, bins="fd", ci=[0.90, 0.95, 0.99], **bin_args): """Plot the posterior balanced accuracy-based reliability diagram. Arguments: y_probs -- Array containing prediction confidences y_preds -- Array containing predicted labels (shape (N,)) y_true -- Array containing true labels (shape (N,)) ax -- Axes on which the diagram will be plotted (will be decorated by `_decorate_ax`) bins -- Description of amount of bins in which to divide prediction confidences (see `numpy.histogram_bin_edges` for options) ci -- Confidence interval level to plot. When style is river provide a list, otherwise a float. Returns: Axes containing the plot """ num_classes, ax = _pre_plot_checks(y_probs, y_preds, y_true, ax, ci, required_axes=1) # bin the probabilities bin_indices, edges = utils.get_bin_indices(y_probs, bins, 0.0, 1.0, return_edges=True, **bin_args) unique_bin_indices = sorted(np.unique(bin_indices)) confidence_levels = np.empty((len(unique_bin_indices),), dtype=np.float32) # store mean confidence if len(np.unique(y_preds)) > 1: # the beta distribution will be the average of the per-class distribution n_samples = 10000 distributions = np.empty((len(unique_bin_indices), n_samples), dtype=np.float32) # store beta parameters x = np.linspace(0, 1, n_samples) else: # the beta distributions will be exact distributions = np.empty((len(unique_bin_indices), 2), dtype=np.int) # compute beta distribution per bin for i, bin_idx in enumerate(unique_bin_indices): # select instances in this bin selector = bin_indices == bin_idx # set the confidence level to the average confidence reported in the bin confidence_levels[i] = y_probs[selector].mean() if len(np.unique(y_preds)) > 1: # compute the average beta distribution conf = confusion_matrix(y_true[selector], y_preds[selector])#, labels=np.arange(0, num_classes)) parameters = get_beta_parameters(conf) distributions[i] = np.clip(beta_avg_pdf(x, parameters, fft=True), 0, None) else: # compute the exact beta distribution correct = (y_true[selector] == y_preds[selector]).sum() incorrect = len(y_true[selector]) - correct distributions[i] = correct + 1, incorrect + 1 # plot the actual diagram ax.set_xlabel("Confidence level") ax.set_ylabel("Posterior balanced accuracy") ci = [0.90, 0.95, 0.99] if ci is None else ci river_diagram(distributions, confidence_levels, ax, ci=ci) return ax # Cell def class_wise_river_reliability_diagram(y_probs:np.array, y_preds:np.array, y_true:np.array, axes:matplotlib.axes.Axes=None, bins="fd", metric=None, show_k_least_calibrated:int=None, ci=[0.90, 0.95, 0.99], **bin_args): """Plot the class-wise posterior balanced accuracy-based reliability diagram. Arguments: y_probs -- Array containing prediction confidences y_preds -- Array containing predicted labels (shape (N,)) y_true -- Array containing true labels (shape (N,)) axes -- Axes on which the diagram will be plotted (will be decorated by `_decorate_ax`) bins -- Description of amount of bins in which to divide prediction confidences (see `numpy.histogram_bin_edges` for options) ci -- Confidence interval level to plot. When style is river provide a list, otherwise a float. Returns: Axes containing the plot """ num_classes, axes = _pre_plot_checks(y_probs, y_preds, y_true, axes, ci, show_k_least_calibrated) if metric is None: a = np.arange(num_classes) else: metric_values = [] for c in np.arange(num_classes): selector = y_preds == c metric_values.append(metric(y_probs[selector, c], y_preds[selector], y_true[selector])) a = np.argsort(metric_values)[::-1][:show_k_least_calibrated] for ax, c in zip(axes, a): selector = y_preds == c if metric is None: ax.set_title(f"Class {c}") else: ax.set_title(f"Class {c} ({metric_values[c]:.3f})") river_reliability_diagram(y_probs[selector, c], y_preds[selector], y_true[selector], ax, bins, ci=ci) return axes # Internal Cell def bar_diagram(edges:np.array, bin_accuracies:np.array, bin_confidences:np.array, ax:matplotlib.axes.Axes, bin_sem:np.array=None): """Plot a bar plot confidence reliability diagram. Arguments: edges -- Edges of the probability bins bin_accuracies -- Accuracy per bin bin_confidences -- Average confidence of predictions in bin ax -- Axes on which the diagram will be plotted (will be decorated by `_decorate_ax`) """ _decorate_ax(ax) cmap = clipped_cm(len(bin_accuracies), clip_range=(0.2, 0.7)) ax.plot([0,1], [0,1], linestyle="--", color=cmap(1), alpha=0.9, linewidth=1) width = (edges - np.roll(edges, 1))[1:] for i, (xi, yi, bi) in enumerate(zip(edges, bin_accuracies, bin_confidences)): if np.isnan(bi): continue if yi < 0: continue if bin_sem is not None: sem = bin_sem[i] else: sem = 0. # plot bin value ax.bar(xi, yi, width=width[i], align="edge", color=cmap(1-bi), edgecolor="grey", yerr=sem, linewidth=1, zorder=0) # plot gap to ideal value ax.bar( xi+width[i]/2, np.abs(bi-yi), bottom=min(bi, yi), width=width[i], align="center", color=cmap(0), edgecolor="grey", linewidth=1, zorder=1 ) # Cell def confidence_reliability_diagram(y_probs:np.array, y_preds:np.array, y_true:np.array, ax:matplotlib.axes.Axes=None, bins="fd", balanced:bool=True, **bin_args): """Plot a confidence reliability diagram. Arguments: y_probs -- Array containing prediction confidences y_preds -- Array containing predicted labels (shape (N,)) y_true -- Array containing true labels (shape (N,)) ax -- Axes on which the diagram will be plotted (will be decorated by `_decorate_ax`) bins -- Description of amount of bins in which to divide prediction confidences (see `numpy.histogram_bin_edges` for options) balanced -- Flag for using balanced accuracy score """ num_classes, ax = _pre_plot_checks(y_probs, y_preds, y_true, ax, required_axes=1) bin_indices, edges = utils.get_bin_indices(y_probs, bins, 0.0, 1.0, return_edges=True, **bin_args) unique_bin_indices = sorted(np.unique(bin_indices)) mean_confidences = np.full((len(edges)-1,), dtype=np.float32, fill_value=np.nan) bin_metric = np.full((len(edges)-1,), dtype=np.float32, fill_value=np.nan) metric = balanced_accuracy_score if balanced else accuracy_score ax.set_xlabel("Confidence level") ax.set_ylabel("Balanced accuracy" if balanced else "Accuracy") for bin_idx in unique_bin_indices: selector = bin_indices == bin_idx mean_confidences[bin_idx-1] = np.mean(y_probs[selector]) bin_metric[bin_idx-1] = metric(y_true[selector], y_preds[selector]) bar_diagram(edges, bin_metric, mean_confidences, ax) # Cell def class_wise_confidence_reliability_diagram(y_probs:np.array, y_preds:np.array, y_true:np.array, axes:matplotlib.axes.Axes, bins="fd", **bin_args): """Plot a class-wise confidence reliability diagram. Arguments: y_probs -- Array containing prediction confidences y_preds -- Array containing predicted labels (shape (N,)) y_true -- Array containing true labels (shape (N,)) ax -- Axes on which the diagram will be plotted (will be decorated by `_decorate_ax`) bins -- Description of amount of bins in which to divide prediction confidences (see `numpy.histogram_bin_edges` for options) balanced -- Flag for using balanced accuracy score """ classes = np.unique(y_true) for ax, c in zip(axes, range(len(classes))): ax.set_title(f"Class {c}") selector = y_preds == c confidence_reliability_diagram(y_probs[selector, c], y_preds[selector], y_true[selector], ax, bins, balanced=False, **bin_args)
import json import os import shutil import subprocess from ..util.constants import LOG from .constants import LOCAL_REPO_DIR from .google_benchmark.gbench2junit import GBenchToJUnit class MicroBenchmarksRunner(object): """ A runner for microbenchmark tests. It will run the microbenchmarks based on a config object passed to it """ def __init__(self, config): self.config = config self.last_build = '000' return def run_benchmarks(self, enable_perf): """ Runs all the microbenchmarks. Parameters ---------- enable_perf : bool Whether perf should be enabled for all the benchmarks. Returns ------- ret_val : int the return value for the last failed benchmark. If no benchmarks fail then it will return 0. """ if not len(self.config.benchmarks): LOG.error('Invlid benchmarks were specified to execute. \ Try not specifying a benchmark and it will execute all.') return 0 ret_val = 0 benchmark_fail_count = 0 # iterate over all benchmarks and run them for benchmark_count, bench_name in enumerate(self.config.benchmarks): LOG.info(f"Running '{bench_name}' with {self.config.num_threads} threads [{benchmark_count}/{len(self.config.benchmarks)}]") benchmark_ret_val = self.run_single_benchmark(bench_name, enable_perf) if benchmark_ret_val: ret_val = benchmark_ret_val benchmark_fail_count += 1 LOG.info("{PASSED}/{TOTAL} benchmarks passed".format(PASSED=len(self.config.benchmarks) - benchmark_fail_count, TOTAL=len(self.config.benchmarks))) return ret_val def run_single_benchmark(self, bench_name, enable_perf): """ Execute a single benchmark. The results will be stored in a JSON file and an XML file. Parameters ---------- bench_name : str The name of the benchmark to run. enable_perf : bool Whether perf should be enabled for all the benchmarks. Returns ------- ret_val : int The return value from the benchmark process. 0 if successful. """ output_file = "{}.json".format(bench_name) cmd = self._build_benchmark_cmd(bench_name, output_file, enable_perf) # Environment Variables os.environ["TERRIER_BENCHMARK_THREADS"] = str(self.config.num_threads) # has to be a str os.environ["TERRIER_BENCHMARK_LOGFILE_PATH"] = self.config.logfile_path ret_val, err = self._execute_benchmark(cmd) if ret_val == 0: convert_result_xml(bench_name, output_file) else: LOG.error(f'Unexpected failure of {bench_name} [ret_val={ret_val}]') LOG.error(err) # return the process exit code return ret_val def _build_benchmark_cmd(self, bench_name, output_file, enable_perf): """ Construct the command necessary to execute the microbenchmark test. Parameters ---------- bench_name : str The name of the benchmark to run. output_file : str The path of the file where the benchmark result should be stored. enable_perf : bool Whether perf should be enabled for all the benchmarks. Returns ------- cmd : str The command to be executed in order to run the microbenchmark. """ benchmark_path = os.path.join(self.config.benchmark_path, bench_name) cmd = f'{benchmark_path} ' + \ f' --benchmark_min_time={self.config.min_time} ' + \ f' --benchmark_format=json' + \ f' --benchmark_out={output_file}' if enable_perf: if not is_package_installed('perf'): raise Exception('Missing perf binary. Please install package.') perf_cmd = generate_perf_command(bench_name) cmd = f'{perf_cmd} {cmd}' if self.config.is_local: pass elif not is_package_installed('numactl', '--show'): raise Exception('Missing numactl binary. Please install package') else: numa_cmd = generate_numa_command() cmd = f'{numa_cmd} {cmd}' return cmd def _execute_benchmark(self, cmd): """ Execute the microbenchmark command provided. Parameters ---------- cmd : str The command to be executed in order to run the microbenchmark. Returns ------- ret_code : int The return value from the benchmark process. 0 if successful. err : Error The error that occured. None if successful. """ LOG.debug(f'Executing command [num_threads={self.config.num_threads}]: {cmd}') try: output = subprocess.check_output(cmd, stderr=subprocess.STDOUT, shell=True) pretty_format_json = json.dumps(json.loads(output.decode('utf8').replace("'", '"')), indent=4) LOG.debug(f'OUTPUT: {pretty_format_json}') return 0, None except subprocess.CalledProcessError as err: print(err) return err.returncode, err except Exception as err: return 1, err def create_local_dirs(self): """ Create directories to be used as historical results for future local runs. This will create a directory for the build in the LOCAL_REPO_DIR. Each time the microbenchmark script is run it will create another dir by incrementing the last dir name created. If the script is run 3 times the LOCAL_REPO_DIR will have directories named 001 002 003 each containing the json Google benchmark result file. """ build_dirs = next(os.walk(LOCAL_REPO_DIR))[1] last_build = max(build_dirs) if build_dirs else '000' next_build = os.path.join(LOCAL_REPO_DIR, f'{(int(last_build) + 1):03}') LOG.info(f'Creating new result directory in local data repository {next_build}') os.mkdir(next_build) self.last_build = os.path.basename(next_build) for bench_name in self.config.benchmarks: copy_benchmark_result(bench_name, next_build) def is_package_installed(package_name, validation_command='--version'): """ Check to see if package is installed. Parameters ---------- package_name : str The name of the executable to check. validation_command : str, optional The command to execute to check if the package has been installed. (The default is '--version') Returns is_installed : bool Whether the package is installed. """ try: subprocess.check_output(f'{package_name} {validation_command}', shell=True) return True except: return False def generate_perf_command(bench_name): """ Create the command line string to execute perf. Parameters ---------- bench_name : str The name of the benchmark. Returns ------- perf_cmd : str The command to execute pref data collection. """ perf_output_file = f'{bench_name}.perf' LOG.debug(f'Enabling perf data collection [output={perf_output_file}]') return f'perf record --output={perf_output_file}' def generate_numa_command(): """ Create the command line string to execute numactl. Returns ------- numa_cmd : str The command to execute using NUMA. """ # use all the cpus from the highest numbered numa node nodes = subprocess.check_output("numactl --hardware | grep 'available: ' | cut -d' ' -f2", shell=True) if not nodes or int(nodes) == 1: return '' highest_cpu_node = int(nodes) - 1 if highest_cpu_node > 0: LOG.debug(f'Number of NUMA Nodes = {highest_cpu_node}') LOG.debug('Enabling NUMA support') return f'numactl --cpunodebind={highest_cpu_node} --preferred={highest_cpu_node}' def convert_result_xml(bench_name, bench_output_file): """ Convert the gbench results to xml file named after the bench_name. Parameters ---------- bench_name : str The name of the microbenchmark. bench_output_file : str The path to the benchmark results file. """ xml_output_file = f'{bench_name}.xml' GBenchToJUnit(bench_output_file).convert(xml_output_file) def copy_benchmark_result(bench_name, build_dir): """ Copy the benchmark result file. This is used when running in local mode. Parameters ---------- bench_name : str The name of the microbenchmark. build_dir : str The path to the build directory. """ result_file = f'{bench_name}.json' shutil.copy(result_file, build_dir) LOG.debug(f'Copything result file {result_file} into {build_dir}')
""" ******************************************************************************** all your parameters ******************************************************************************** """ import sys import os import numpy as np import tensorflow as tf # network structure in_dim = 3 out_dim = 3 width = 2 ** 8 # 2 ** 6 = 64, 2 ** 8 = 256 depth = 5 # training setting n_epch = int(1e2) n_btch = 0 c_tol = 1e-8 # dataset prep N_trn = int(1e4) N_val = int(5e3) N_inf = int(1e3) # optimization w_init = "Glorot" b_init = "zeros" act = "tanh" lr0 = 1e-2 gam = 1e-2 lrd_exp = tf.keras.optimizers.schedules.ExponentialDecay( initial_learning_rate = lr0, decay_steps = n_epch, decay_rate = gam, staircase = False ) lrd_cos = tf.keras.optimizers.schedules.CosineDecay( initial_learning_rate = lr0, decay_steps = n_epch, alpha = gam ) lr = 1e-3 # 1e-3 / lrd_exp / lrd_cos opt = "Adam" f_scl = "minmax" laaf = True inv = False # system param rho = 1. nu = .01 # weight w_nth = 1. w_sth = 1. w_est = 1. w_wst = 1. w_pde = 1. # rarely change f_mntr = 10 r_seed = 1234 def params(): print("python :", sys.version) print("tensorflow:", tf.__version__) print("rand seed :", r_seed) os.environ["PYTHONHASHSEED"] = str(r_seed) np.random.seed(r_seed) tf.random.set_seed(r_seed) return in_dim, out_dim, width, depth, \ w_init, b_init, act, \ lr, opt, \ f_scl, laaf, inv, \ rho, nu, \ w_nth, w_sth, w_est, w_wst, w_pde, \ f_mntr, r_seed, \ n_epch, n_btch, c_tol, \ N_trn, N_val, N_inf
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import print_function import os, shutil, logging, uuid import os.path as osp, numpy as np from array import array import hgcalhistory logger = logging.getLogger('hgcalhistory') import ROOT class Histogram2D(object): def __init__(self): super(Histogram2D, self).__init__() self.x_bin_boundaries = None self.y_bin_boundaries = None self.data = None def set_x_bin_boundaries(self, bounds): self.x_bin_boundaries = bounds self.x_bin_centers = (bounds[:-1] + bounds[1:]) / 2. def set_y_bin_boundaries(self, bounds): self.y_bin_boundaries = bounds self.y_bin_centers = (bounds[:-1] + bounds[1:]) / 2. @property def n_bins_x(self): return len(self.x_bin_boundaries) - 1 @property def n_bins_y(self): return len(self.y_bin_boundaries) - 1 @property def n_bounds_x(self): return len(self.x_bin_boundaries) @property def n_bounds_y(self): return len(self.y_bin_boundaries) def find_nearest_bin_x(self, x): return (np.abs(self.x_bin_centers - x)).argmin() def find_nearest_bin_y(self, y): return (np.abs(self.y_bin_centers - y)).argmin() def _prepare_data(self): if self.data is None: self.data = np.zeros((self.n_bins_x, self.n_bins_y)) def clear_data(self): self.data = None self._prepare_data() def to_TH2(self): TH2 = ROOT.TH2D( 'TH2_{0}'.format(uuid.uuid4()), '', self.n_bins_x, array('d', self.x_bin_boundaries), self.n_bins_y, array('d', self.y_bin_boundaries), ) ROOT.SetOwnership(TH2, False) for i_x in xrange(self.n_bins_x): for i_y in xrange(self.n_bins_y): TH2.SetBinContent(i_x+1, i_y+1, self.data[i_x][i_y]) return TH2 class Histogram2DFillable(Histogram2D): def fill(self, x, y, value): self._prepare_data() i_x = self.find_nearest_bin_x(x) i_y = self.find_nearest_bin_y(y) self.data[i_x][i_y] += value def get_value(self, x, y): self._prepare_data() i_x = self.find_nearest_bin_x(x) i_y = self.find_nearest_bin_y(y) return self.data[i_x][i_y] def set_value(self, x, y, value): self._prepare_data() i_x = self.find_nearest_bin_x(x) i_y = self.find_nearest_bin_y(y) self.data[i_x][i_y] = value
import asyncio import logging import threading import time from watchgod import watch WAIT_SEC = 2 class FileSystemWatcher: def __init__(self, path_to_watch, reload_configuration): self.active = True self.change_detected = False self.path_to_watch = path_to_watch self.reload_configuration = reload_configuration self.stop_event = asyncio.Event() self.watch_thread = threading.Thread(target=self.watch, name="config-watcher") self.watch_thread.start() self.fs_watch_thread = threading.Thread(target=self.fs_watch, name="fs-watcher") self.fs_watch_thread.start() logging.info(f"watching dir {path_to_watch} for custom playbooks changes") def fs_watch(self): for _ in watch(self.path_to_watch, stop_event=self.stop_event): self.mark_change() def watch(self): while self.active: time.sleep(WAIT_SEC) if self.change_detected: time.sleep( WAIT_SEC ) # once we detected a change, we wait a safety period to make sure all the changes under this 'bulk' are finished self.change_detected = False try: self.reload_configuration(self.path_to_watch) except Exception as e: # in case we have an error while trying to reload, we want the watch thread to stay alive logging.exception("failed to reload configuration") def stop_watcher(self): self.active = False self.stop_event.set() def mark_change(self): self.change_detected = True
#Tests proper handling of Verifications with Transactions which don't exist. #Types. from typing import Dict, IO, Any #SignedVerification class. from python_tests.Classes.Consensus.Verification import SignedVerification #Blockchain class. from python_tests.Classes.Merit.Blockchain import Blockchain #TestError Exception. from python_tests.Tests.Errors import TestError #Meros classes. from python_tests.Meros.Meros import MessageType from python_tests.Meros.RPC import RPC #JSON standard lib. import json def VUnknown( rpc: RPC ) -> None: file: IO[Any] = open("python_tests/Vectors/Consensus/Verification/Parsable.json", "r") vectors: Dict[str, Any] = json.loads(file.read()) #SignedVerification. sv: SignedVerification = SignedVerification.fromJSON(vectors["verification"]) #Blockchain. blockchain: Blockchain = Blockchain.fromJSON( b"MEROS_DEVELOPER_NETWORK", 60, int("FAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA", 16), vectors["blockchain"] ) file.close() #Handshake with the node. rpc.meros.connect( 254, 254, len(blockchain.blocks) ) sentLast: bool = False hash: bytes = bytes() while True: msg: bytes = rpc.meros.recv() if MessageType(msg[0]) == MessageType.Syncing: rpc.meros.acknowledgeSyncing() elif MessageType(msg[0]) == MessageType.GetBlockHash: height: int = int.from_bytes(msg[1 : 5], byteorder = "big") if height == 0: rpc.meros.blockHash(blockchain.last()) else: if height >= len(blockchain.blocks): raise TestError("Meros asked for a Block Hash we do not have.") rpc.meros.blockHash(blockchain.blocks[height].header.hash) elif MessageType(msg[0]) == MessageType.BlockHeaderRequest: hash = msg[1 : 49] for block in blockchain.blocks: if block.header.hash == hash: rpc.meros.blockHeader(block.header) break if block.header.hash == blockchain.last(): raise TestError("Meros asked for a Block Header we do not have.") elif MessageType(msg[0]) == MessageType.BlockBodyRequest: hash = msg[1 : 49] for block in blockchain.blocks: if block.header.hash == hash: rpc.meros.blockBody(block.body) break if block.header.hash == blockchain.last(): raise TestError("Meros asked for a Block Body we do not have.") elif MessageType(msg[0]) == MessageType.ElementRequest: rpc.meros.element(sv) elif MessageType(msg[0]) == MessageType.TransactionRequest: sentLast = True rpc.meros.dataMissing() elif MessageType(msg[0]) == MessageType.SyncingOver: if sentLast: break else: raise TestError("Unexpected message sent: " + msg.hex().upper()) #Verify the Verification and Block were not added. if rpc.call("consensus", "getHeight", [sv.holder.hex()]) != 0: raise TestError("Meros added an unknown Verification.") if rpc.call("merit", "getHeight") != 2: raise TestError("Meros added a block with an unknown Verification.")
# ADB File Explorer `tool` # Copyright (C) 2022 Azat Aldeshov azata1919@gmail.com # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <https://www.gnu.org/licenses/>. import datetime import logging import os import shlex from typing import List from usb1 import USBContext from core.configurations import Defaults from core.managers import PythonADBManager from data.models import Device, File, FileType from helpers.converters import __converter_to_permissions_default__ from services.adb import ShellCommand class FileRepository: @classmethod def file(cls, path: str) -> (File, str): if not PythonADBManager.device: return None, "No device selected!" if not PythonADBManager.device.available: return None, "Device not available!" try: path = PythonADBManager.clear_path(path) mode, size, mtime = PythonADBManager.device.stat(path) file = File( name=os.path.basename(os.path.normpath(path)), size=size, date_time=datetime.datetime.utcfromtimestamp(mtime), permissions=__converter_to_permissions_default__(list(oct(mode)[2:])) ) if file.type == FileType.LINK: args = ShellCommand.LS_LIST_DIRS + [path.replace(' ', r'\ ') + '/'] response = PythonADBManager.device.shell(shlex.join(args)) file.link_type = FileType.UNKNOWN if response and response.startswith('d'): file.link_type = FileType.DIRECTORY elif response and response.__contains__('Not a'): file.link_type = FileType.FILE file.path = path return file, None except BaseException as error: logging.error(f"Unexpected {error=}, {type(error)=}") return None, error @classmethod def files(cls) -> (List[File], str): if not PythonADBManager.device: return None, "No device selected!" if not PythonADBManager.device.available: return None, "Device not available!" files = [] try: path = PythonADBManager.path() response = PythonADBManager.device.list(path) args = ShellCommand.LS_ALL_DIRS + [path.replace(' ', r'\ ') + "*/"] dirs = PythonADBManager.device.shell(" ".join(args)).split() for file in response: if file.filename.decode() == '.' or file.filename.decode() == '..': continue permissions = __converter_to_permissions_default__(list(oct(file.mode)[2:])) link_type = None if permissions[0] == 'l': link_type = FileType.FILE if dirs.__contains__(f"{path}{file.filename.decode()}/"): link_type = FileType.DIRECTORY files.append( File( name=file.filename.decode(), size=file.size, path=f"{path}{file.filename.decode()}", link_type=link_type, date_time=datetime.datetime.utcfromtimestamp(file.mtime), permissions=permissions, ) ) return files, None except BaseException as error: logging.error(f"Unexpected {error=}, {type(error)=}") return files, error @classmethod def rename(cls, file: File, name: str) -> (str, str): if not PythonADBManager.device: return None, "No device selected!" if not PythonADBManager.device.available: return None, "Device not available!" if name.__contains__('/') or name.__contains__('\\'): return None, "Invalid name" try: args = [ShellCommand.MV, file.path, file.location + name] response = PythonADBManager.device.shell(shlex.join(args)) if response: return None, response return None, None except BaseException as error: logging.error(f"Unexpected {error=}, {type(error)=}") return None, error @classmethod def delete(cls, file: File) -> (str, str): if not PythonADBManager.device: return None, "No device selected!" if not PythonADBManager.device.available: return None, "Device not available!" try: args = [ShellCommand.RM, file.path] if file.isdir: args = ShellCommand.RM_DIR_FORCE + [file.path] response = PythonADBManager.device.shell(shlex.join(args)) if response: return None, response return f"{'Folder' if file.isdir else 'File'} '{file.path}' has been deleted", None except BaseException as error: logging.error(f"Unexpected {error=}, {type(error)=}") return None, error @classmethod def download(cls, progress_callback: callable, source: str) -> (str, str): destination = Defaults.device_downloads_path(PythonADBManager.get_device()) return cls.download_to(progress_callback, source, destination) class UpDownHelper: def __init__(self, callback: callable): self.callback = callback self.written = 0 self.total = 0 def call(self, path: str, written: int, total: int): if self.total != total: self.total = total self.written = 0 self.written += written self.callback(path, int(self.written / self.total * 100)) @classmethod def download_to(cls, progress_callback: callable, source: str, destination: str) -> (str, str): helper = cls.UpDownHelper(progress_callback) destination = os.path.join(destination, os.path.basename(os.path.normpath(source))) if PythonADBManager.device and PythonADBManager.device.available and source: try: PythonADBManager.device.pull( device_path=source, local_path=destination, progress_callback=helper.call ) return f"Download successful!\nDest: {destination}", None except BaseException as error: logging.error(f"Unexpected {error=}, {type(error)=}") return None, error return None, None @classmethod def new_folder(cls, name) -> (str, str): if not PythonADBManager.device: return None, "No device selected!" if not PythonADBManager.device.available: return None, "Device not available!" try: args = [ShellCommand.MKDIR, f'{PythonADBManager.path()}{name}'] response = PythonADBManager.device.shell(shlex.join(args)) return None, response except BaseException as error: logging.error(f"Unexpected {error=}, {type(error)=}") return None, error @classmethod def upload(cls, progress_callback: callable, source: str) -> (str, str): helper = cls.UpDownHelper(progress_callback) destination = PythonADBManager.path() + os.path.basename(os.path.normpath(source)) if PythonADBManager.device and PythonADBManager.device.available and PythonADBManager.path() and source: try: PythonADBManager.device.push( local_path=source, device_path=destination, progress_callback=helper.call ) return f"Upload successful!\nDest: {destination}", None except BaseException as error: logging.error(f"Unexpected {error=}, {type(error)=}") return None, error return None, None class DeviceRepository: @classmethod def devices(cls) -> (List[Device], str): if PythonADBManager.device: PythonADBManager.device.close() errors = [] devices = [] for device in USBContext().getDeviceList(skip_on_error=True): for setting in device.iterSettings(): if (setting.getClass(), setting.getSubClass(), setting.getProtocol()) == (0xFF, 0x42, 0x01): try: device_id = device.getSerialNumber() PythonADBManager.connect(device_id) device_name = " ".join( PythonADBManager.device.shell(" ".join(ShellCommand.GETPROP_PRODUCT_MODEL)).split() ) device_type = "device" if PythonADBManager.device.available else "unknown" devices.append(Device(id=device_id, name=device_name, type=device_type)) PythonADBManager.device.close() except BaseException as error: logging.error(f"Unexpected {error=}, {type(error)=}") errors.append(str(error)) return devices, str("\n".join(errors)) @classmethod def connect(cls, device_id: str) -> (str, str): try: if PythonADBManager.device: PythonADBManager.device.close() serial = PythonADBManager.connect(device_id) if PythonADBManager.device.available: device_name = " ".join( PythonADBManager.device.shell(" ".join(ShellCommand.GETPROP_PRODUCT_MODEL)).split() ) PythonADBManager.set_device(Device(id=serial, name=device_name, type="device")) return "Connection established", None return None, "Device not available" except BaseException as error: logging.error(f"Unexpected {error=}, {type(error)=}") return None, error @classmethod def disconnect(cls) -> (str, str): try: if PythonADBManager.device: PythonADBManager.device.close() return "Disconnected", None return None, None except BaseException as error: logging.error(f"Unexpected {error=}, {type(error)=}") return None, error
import os import gconf from xdg.DesktopEntry import DesktopEntry from fluxgui.exceptions import DirectoryCreationError ################################################################ # Color temperatures. # The color options available in the color preferences dropdown in the # "Preferences" GUI are defined in ./preferences.glade. Choosing a # preference in the GUI returns a number, with 0 for the first choice, # 1 for the second choice, etc. default_temperature = '3400' off_temperature = '6500' temperatures = [ '2000', # The minimum supported by flux; see https://github.com/xflux-gui/xflux-gui/issues/51 '2300', '2700', '3400', # The 'default_temperature' needs to be one of the options! '4200', '5000', # The "off temperature" is not one of the menu choices, but # the previous code included it, so @ntc2 is leaving it in # without understanding why ... # # TODO(ntc2): understand why this entry is in the list, and remove # it if possible. off_temperature ] def key_to_temperature(key): """The inverse of 'temperature_to_key'. """ # The old version of this code supported a special key "off". We # now map all unknown keys to "off", but I don't understand what # the "off" value is for. # # TODO(ntc2): figure out what the "off" value is for. try: return temperatures[key] except IndexError: return off_temperature def temperature_to_key(temperature): """Convert a temperature like "3400" to a Glade/GTK menu value like "1" or "off". """ for i, t in enumerate(temperatures): if t == temperature: return i # For invalid temperatures -- which should be impossible ? -- # return the number corresponding to the off temperature. Perhaps # we could also return "off" here? But I have no idea how this # code is even triggered. return len(temperatures) - 1 ################################################################ class Settings(object): def __init__(self): # You can use 'gconftool --dump /apps/fluxgui' to see current # settings on command line. self.client = GConfClient("/apps/fluxgui") self._color = self.client.get_client_string("colortemp", 3400) self._autostart = self.client.get_client_bool("autostart") self._latitude = self.client.get_client_string("latitude") self._longitude = self.client.get_client_string("longitude") self._zipcode = self.client.get_client_string("zipcode") self.has_set_prefs = True if not self._latitude and not self._zipcode: self.has_set_prefs = False self._zipcode = '90210' self.autostart=True # After an upgrade to fluxgui where the color options change, # the color setting may no longer be one of the menu # options. In this case, we reset to the default night time # temp. if self._color not in temperatures: self.color = default_temperature else: self.color = self._color def xflux_settings_dict(self): d = { 'color': self.color, 'latitude': self.latitude, 'longitude': self.longitude, 'zipcode': self.zipcode, 'pause_color': off_temperature } return d def _get_color(self): return str(self._color) def _set_color(self, value): self._color = value self.client.set_client_string("colortemp", value) def _get_latitude(self): return str(self._latitude) def _set_latitude(self, value): self._latitude = value self.client.set_client_string("latitude", value) def _get_longitude(self): return str(self._longitude) def _set_longitude(self, value): self._longitude = value self.client.set_client_string("longitude", value) def _get_zipcode(self): return str(self._zipcode) def _set_zipcode(self, value): self._zipcode = value self.client.set_client_string("zipcode", value) def _get_autostart(self): return bool(self._autostart) def _set_autostart(self, value): self._autostart = value self.client.set_client_bool("autostart", self._autostart) if self._autostart: self._create_autostarter() else: self._delete_autostarter() color=property(_get_color, _set_color) latitude=property(_get_latitude, _set_latitude) longitude=property(_get_longitude, _set_longitude) zipcode=property(_get_zipcode, _set_zipcode) autostart=property(_get_autostart, _set_autostart) #autostart code copied from AWN def _get_autostart_file_path(self): autostart_dir = os.path.join(os.environ['HOME'], '.config', 'autostart') return os.path.join(autostart_dir, 'fluxgui.desktop') def _create_autostarter(self): autostart_file = self._get_autostart_file_path() autostart_dir = os.path.dirname(autostart_file) if not os.path.isdir(autostart_dir): #create autostart dir try: os.mkdir(autostart_dir) except DirectoryCreationError, e: print "Creation of autostart dir failed, please make it yourself: %s" % autostart_dir raise e if not os.path.isfile(autostart_file): #create autostart entry starter_item = DesktopEntry(autostart_file) starter_item.set('Name', 'f.lux indicator applet') starter_item.set('Exec', 'fluxgui') starter_item.set('Icon', 'fluxgui') starter_item.set('X-GNOME-Autostart-enabled', 'true') starter_item.write() self.autostart = True def _delete_autostarter(self): autostart_file = self._get_autostart_file_path() if os.path.isfile(autostart_file): os.remove(autostart_file) self.autostart = False class GConfClient(object): """ Gets and sets gconf settings. """ def __init__(self, prefs_key): self.client = gconf.client_get_default() self.prefs_key = prefs_key self.client.add_dir(self.prefs_key, gconf.CLIENT_PRELOAD_NONE) def get_client_string(self, property_name, default=""): client_string = self.client.get_string(self.prefs_key+"/"+property_name) if client_string is None: client_string = default return client_string def set_client_string(self, property_name, value): self.client.set_string(self.prefs_key + "/" + property_name, str(value)) def get_client_bool(self, property_name, default=True): try: gconf_type = self.client.get(self.prefs_key + "/" + property_name).type except AttributeError: # key is not set self.set_client_bool(property_name, default) client_bool = default return client_bool client_bool = None if gconf_type != gconf.VALUE_BOOL: # previous release used strings for autostart, handle here client_string = self.get_client_string(property_name).lower() if client_string == '1': self.set_client_bool(property_name, True) client_bool = True elif client_string == '0': self.set_client_bool(property_name, False) client_bool = False else: client_bool = self.client.get_bool(self.prefs_key + "/"+property_name) return client_bool def set_client_bool(self, property_name, value): self.client.set_bool(self.prefs_key + "/" + property_name, bool(value))
from .load import *
import sys import glob import os from functools import partial import numpy as np import pandas as pd from PyQt5.QtCore import (Qt, QObject, QProcess, QSettings, QThread, QTimer, pyqtSignal, pyqtSlot) from PyQt5.QtMultimedia import QAudioFormat, QAudioOutput, QMediaPlayer from PyQt5.QtWidgets import QMainWindow from PyQt5 import QtGui as gui from PyQt5 import QtCore from PyQt5 import QtWidgets as widgets from fbs_runtime.application_context.PyQt5 import ApplicationContext from interfaces.audio import ( LazyMultiWavInterface, LazySignalInterface, LazyWavInterface, ConcatenatedMultiChannelInterface, ConcatenatedWavInterface, ) from app.state import AppState, ViewState from app.views import MainView from app.settings import fonts, read_default from app.style import qss class Events(widgets.QWidget): createSource = pyqtSignal(object) sourcesChanged = pyqtSignal() rangeChanged = pyqtSignal() dataLoaded = pyqtSignal() rangeSelected = pyqtSignal(object, object) rangeHighlighted = pyqtSignal(object, object) setPosition = pyqtSignal([object], [object, object]) zoomEvent = pyqtSignal([int], [int, float], [str]) triggerShortcut = pyqtSignal(str) playAudio = pyqtSignal(int) class App(widgets.QMainWindow): """Main App instance with logic for file read/write """ shortcut_codes = [ "A", "Shift+A", "D", "Shift+D", "E", "F", "M", "Q", "S", "Shift+S", "W", "Shift+W", "X", "Z", "Ctrl+W", "Space", "Escape" ] def __init__(self): super().__init__() self.title = "SoundSep" self.settings = QSettings("Theunissen Lab", "Sound Separation") #self.sources = SourceManager(None) self.state = AppState() self.view_state = ViewState() self.events = Events() self.init_ui() self.init_actions() self.init_menus() self.update_open_recent_actions() self.display_main() if self.settings.value("OPEN_RECENT", []): self.load_dir(self.settings.value("OPEN_RECENT")[-1]) self.autosave_timer = QTimer(self) self.autosave_timer.timeout.connect(self.autosave) self.autosave_timer.start(read_default.AUTOSAVE_SECONDS * 1000) def init_actions(self): self.open_directory_action = widgets.QAction("Open Directory", self) self.open_directory_action.triggered.connect(self.run_directory_loader) self.open_recent_actions = [] for i in range(read_default.MAX_RECENT_FILES): action = widgets.QAction("", self) action.setVisible(False) action.triggered.connect(partial(self.open_recent, i)) self.open_recent_actions.append(action) self.load_sources_action = widgets.QAction("Load Sources", self) self.load_sources_action.triggered.connect(self.load_sources) self.save_action = widgets.QAction("Save", self) self.save_action.triggered.connect(self.save) self.save_as_action = widgets.QAction("Save As", self) self.save_as_action.triggered.connect(partial(self.save, save_as=True)) self.quit_action = widgets.QAction("Close", self) self.quit_action.triggered.connect(self.close) self.export_action = widgets.QAction("Export Pickle", self) self.export_action.triggered.connect(partial(self.export, "pkl")) self.export_csv_action = widgets.QAction("Export CSV", self) self.export_csv_action.triggered.connect(partial(self.export, "csv")) self.save_shortcut = widgets.QShortcut(gui.QKeySequence.Save, self) self.save_shortcut.activated.connect(self.save) self.close_shortcut = widgets.QShortcut(gui.QKeySequence.Close, self) self.close_shortcut.activated.connect(self.close) self.help_action = widgets.QAction("Help", self) self.help_action.triggered.connect(self.help) for code in self.shortcut_codes: shortcut = widgets.QShortcut(gui.QKeySequence(code), self) shortcut.activated.connect(partial(self.pass_shortcut, code)) # self.show_pref_action = widgets.QAction("Amplitude Envelope Parameters", self) # self.show_pref_action.triggered.connect(self.amp_env_pref_window.show) def pass_shortcut(self, shortcut): """ For some reason I can't get shortcuts defined in the child widgets to work. So I have to define the shortcuts in this app and then pass them through an event. """ self.events.triggerShortcut.emit(shortcut) def init_ui(self): self.setWindowTitle(self.title) def init_menus(self): mainMenu = self.menuBar() fileMenu = mainMenu.addMenu("&File") fileMenu.addAction(self.open_directory_action) self.openRecentMenu = fileMenu.addMenu("&Open Recent") for i in range(read_default.MAX_RECENT_FILES): self.openRecentMenu.addAction(self.open_recent_actions[i]) fileMenu.addSeparator() fileMenu.addAction(self.load_sources_action) fileMenu.addSeparator() fileMenu.addAction(self.export_action) fileMenu.addAction(self.export_csv_action) fileMenu.addAction(self.save_action) fileMenu.addAction(self.save_as_action) fileMenu.addSeparator() fileMenu.addAction(self.quit_action) settingsMenu = mainMenu.addMenu("&Settings") helpMenu = mainMenu.addMenu("&Help") helpMenu.addAction(self.help_action) # settingsMenu.addAction(self.show_pref_action) def help(self): url = QtCore.QUrl(read_default.GITHUB_LINK) gui.QDesktopServices.openUrl(url) def display_main(self): self.main_view = MainView(self) self.setCentralWidget(self.main_view) self.resize(1024, 768) self.show() def update_open_recent_actions(self): recently_opened = self.settings.value("OPEN_RECENT", []) for i in range(read_default.MAX_RECENT_FILES): if i < len(recently_opened): self.open_recent_actions[i].setText(recently_opened[-i]) self.open_recent_actions[i].setData(recently_opened[-i]) self.open_recent_actions[i].setVisible(True) else: self.open_recent_actions[i].setText(None) self.open_recent_actions[i].setData(None) self.open_recent_actions[i].setVisible(False) if not len(recently_opened): self.openRecentMenu.setDisabled(True) else: self.openRecentMenu.setDisabled(False) def run_directory_loader(self): """Dialog to read in a directory of wav files and intervals At some point we may have the gui generate the intervals file if it doesn't exist yet, but for now it must be precomputed. The directory should contain the following files (one wav per channel): - ch0.wav - ch1.wav - ch2.wav ... - intervals.npy - spectrograms.npy """ options = widgets.QFileDialog.Options() selected_file = widgets.QFileDialog.getExistingDirectory( self, "Load directory", self.settings.value("OPEN_RECENT", ["."])[-1], options=options ) if selected_file: self.load_dir(selected_file) def load_dir(self, dir): if not os.path.isdir(dir): widgets.QMessageBox.warning( self, "Error", "{} is not a directory".format(dir), ) return # Update the open recent menu item open_recent = self.settings.value("OPEN_RECENT", []) try: idx = open_recent.index(dir) except ValueError: open_recent.append(dir) else: open_recent.pop(idx) open_recent.append(dir) max_recent = read_default.MAX_RECENT_FILES open_recent = open_recent[-max_recent:] self.settings.setValue("OPEN_RECENT", open_recent) self.update_open_recent_actions() self.state.reset() self._load_dir(dir) def _load_dir(self, dir): # This function can load from many different directory formats # 1. toplevel/ch0/*.wav, toplevel/ch1/*.wav, ... (each wav has 1 channel, many wavs per channel) # 2. toplevel/ch0.wav, toplevel/ch1.wav, ... (each wav has 1 channel, 1 wav per channel) # 3. toplevel/wavs/*.wav (each wav has multiple channels, many wavs) # 4. toplevel/lazy.npy (lazy loading from songephys project) data_directory = os.path.join(dir, "outputs") wav_files = glob.glob(os.path.join(dir, "ch[0-9]*.wav")) wav_dir_files = glob.glob(os.path.join(dir, "ch[0-9]", "*.wav")) multi_channel_wavs = glob.glob(os.path.join(dir, "wavs", "*.wav")) lazy_file = os.path.join(dir, "lazy.npy") if not os.path.exists(data_directory): os.makedirs(data_directory) self.save_file = os.path.join(data_directory, "save.npy") if not len(wav_files) and not os.path.exists(lazy_file) and not wav_dir_files and not multi_channel_wavs: widgets.QMessageBox.warning( self, "Error", "No wav files found.", ) return elif not len(wav_files) and len(wav_dir_files): sound_object = ConcatenatedMultiChannelInterface.create_from_directory( dir, force_equal_length=True ) elif not len(wav_files) and not len(wav_dir_files) and len(multi_channel_wavs): sound_object = ConcatenatedWavInterface( multi_channel_wavs, ) elif os.path.exists(lazy_file): sound_object = LazySignalInterface(lazy_file) # The absolute path of the file when loaded remotely may not exist if not sound_object.validate_paths(): # First try the most likely path. # This should work usually for songephys data... suggested = lazy_file.split("bird")[0] sound_object.set_data_path(suggested) if not sound_object.validate_paths(): # Ask the user to point to the remote drive "bird" directory widgets.QMessageBox.about( self, "Data directory not found", "Path to audio data was not found for {}. If using a remote mounted drive. " "select the data directory containing the folder \"birds\"".format(lazy_file) ) options = widgets.QFileDialog.Options() data_path = widgets.QFileDialog.getExistingDirectory( self, "Choose the data directory containing the folder \"birds\"", suggested, options=options ) if not data_path: return sound_object.set_data_path(data_path) elif len(wav_files) > 1: sound_object = LazyMultiWavInterface.create_from_directory(dir, force_equal_length=True) elif len(wav_files) == 1: sound_object = LazyWavInterface(wav_files[0]) self.state.set("sources", []) if os.path.exists(self.save_file): loaded_data = np.load(self.save_file, allow_pickle=True)[()] if "sources" in loaded_data: self.state.set("sources", loaded_data["sources"]) if "autodetect" in loaded_data: self.state.set("autodetected_periods", loaded_data["autodetect"]) # if "_VIEW_STATE" in loaded_data: # self.view_state.update(loaded_data["_VIEW_STATE"]) self.state.set("sound_object", sound_object) self.state.set("sound_file", dir) self.events.dataLoaded.emit() def load_sources(self): options = widgets.QFileDialog.Options() file_name, _ = widgets.QFileDialog.getOpenFileName( self, "Load sources", self.save_file, "*", options=options) if file_name: loaded_data = np.load(file_name, allow_pickle=True)[()] if "sources" in loaded_data: self.state.set("sources", loaded_data["sources"]) self.events.sourcesChanged.emit() def open_recent(self, i): self.load_dir(self.settings.value("OPEN_RECENT")[-i]) def save(self, save_as=False): if not save_as: msg = ("Are you sure you want to save?\n" "Saving will overwrite any previously saved data.") reply = widgets.QMessageBox.question( self, 'Save Confirmation', msg, widgets.QMessageBox.Yes, widgets.QMessageBox.No) if reply == widgets.QMessageBox.No: return save_data = {} if self.state.has("sources"): save_data["sources"] = self.state.get("sources") # save_data["_VIEW_STATE"] = dict(self.view_state.__dict__) if save_as: options = widgets.QFileDialog.Options() save_file, _ = widgets.QFileDialog.getSaveFileName( self, "Save intervals as", self.save_file, "*", options=options) else: save_file = self.save_file np.save(self.save_file, save_data) widgets.QMessageBox.about( self, "Saved", "Saved successfully.", ) def autosave(self): save_data = {} if self.state.has("sources"): save_data["sources"] = self.state.get("sources") try: np.save(self.save_file + ".autosave", save_data) print("Autosaved to {}".format(self.save_file + ".autosave")) except: print("Warning: autosave failed!") def export(self, fmt="csv"): # Save the sources to a pandas dataframe if not self.state.has("sources"): widgets.QMessageBox.about(self, "!", "No sources to export") rows = [] for source in self.state.get("sources"): if isinstance(source.get("intervals"), pd.DataFrame): df = source.get("intervals") for i in np.arange(len(df)): t0, t1 = df.iloc[i][["t_start", "t_stop"]] rows.append([source["name"], source["channel"], t0, t1]) df = pd.DataFrame(rows, columns=["source_name", "source_channel", "t_start", "t_stop"]) options = widgets.QFileDialog.Options() file_name, _ = widgets.QFileDialog.getSaveFileName( self, "Export data", os.path.join(self.state.get("sound_file"), "intervals.{}".format(fmt)), "*", options=options) if not file_name: return else: if fmt == "pkl": df.to_pickle(file_name) elif fmt == "csv": df.to_csv(file_name) widgets.QMessageBox.about( self, "Exported", "Exported successfully.", ) if __name__ == '__main__': from app.context import context window = App() window.setFont(fonts.default) window.setStyle(widgets.QStyleFactory.create("Fusion")) window.setStyleSheet(qss) window.show() exit_code = context.app.exec_() # 2. Invoke appctxt.app.exec_() sys.exit(exit_code)
# # PySNMP MIB module DT1-MIB (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/DT1-MIB # Produced by pysmi-0.3.4 at Mon Apr 29 18:39:59 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # OctetString, Integer, ObjectIdentifier = mibBuilder.importSymbols("ASN1", "OctetString", "Integer", "ObjectIdentifier") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") ValueSizeConstraint, ConstraintsIntersection, ConstraintsUnion, SingleValueConstraint, ValueRangeConstraint = mibBuilder.importSymbols("ASN1-REFINEMENT", "ValueSizeConstraint", "ConstraintsIntersection", "ConstraintsUnion", "SingleValueConstraint", "ValueRangeConstraint") ModuleCompliance, NotificationGroup = mibBuilder.importSymbols("SNMPv2-CONF", "ModuleCompliance", "NotificationGroup") Bits, NotificationType, IpAddress, Counter32, iso, experimental, enterprises, Counter64, MibScalar, MibTable, MibTableRow, MibTableColumn, TimeTicks, ObjectIdentity, Unsigned32, ModuleIdentity, MibIdentifier, Gauge32, Integer32 = mibBuilder.importSymbols("SNMPv2-SMI", "Bits", "NotificationType", "IpAddress", "Counter32", "iso", "experimental", "enterprises", "Counter64", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "TimeTicks", "ObjectIdentity", "Unsigned32", "ModuleIdentity", "MibIdentifier", "Gauge32", "Integer32") TextualConvention, DisplayString = mibBuilder.importSymbols("SNMPv2-TC", "TextualConvention", "DisplayString") usr = MibIdentifier((1, 3, 6, 1, 4, 1, 429)) nas = MibIdentifier((1, 3, 6, 1, 4, 1, 429, 1)) dt1 = MibIdentifier((1, 3, 6, 1, 4, 1, 429, 1, 3)) dt1Id = MibIdentifier((1, 3, 6, 1, 4, 1, 429, 1, 3, 1)) dt1IdTable = MibTable((1, 3, 6, 1, 4, 1, 429, 1, 3, 1, 1), ) if mibBuilder.loadTexts: dt1IdTable.setStatus('mandatory') dt1IdEntry = MibTableRow((1, 3, 6, 1, 4, 1, 429, 1, 3, 1, 1, 1), ).setIndexNames((0, "DT1-MIB", "dt1IdIndex")) if mibBuilder.loadTexts: dt1IdEntry.setStatus('mandatory') dt1IdIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 429, 1, 3, 1, 1, 1, 1), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dt1IdIndex.setStatus('mandatory') dt1IdHardwareSerNum = MibTableColumn((1, 3, 6, 1, 4, 1, 429, 1, 3, 1, 1, 1, 2), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(0, 24))).setMaxAccess("readonly") if mibBuilder.loadTexts: dt1IdHardwareSerNum.setStatus('mandatory') dt1IdHardwareRev = MibTableColumn((1, 3, 6, 1, 4, 1, 429, 1, 3, 1, 1, 1, 3), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(0, 24))).setMaxAccess("readonly") if mibBuilder.loadTexts: dt1IdHardwareRev.setStatus('mandatory') dt1IdSoftwareRev = MibTableColumn((1, 3, 6, 1, 4, 1, 429, 1, 3, 1, 1, 1, 4), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(0, 24))).setMaxAccess("readonly") if mibBuilder.loadTexts: dt1IdSoftwareRev.setStatus('mandatory') dt1Cfg = MibIdentifier((1, 3, 6, 1, 4, 1, 429, 1, 3, 2)) dt1CfgTable = MibTable((1, 3, 6, 1, 4, 1, 429, 1, 3, 2, 1), ) if mibBuilder.loadTexts: dt1CfgTable.setStatus('mandatory') dt1CfgEntry = MibTableRow((1, 3, 6, 1, 4, 1, 429, 1, 3, 2, 1, 1), ).setIndexNames((0, "DT1-MIB", "dt1CfgIndex")) if mibBuilder.loadTexts: dt1CfgEntry.setStatus('mandatory') dt1CfgIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 429, 1, 3, 2, 1, 1, 1), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dt1CfgIndex.setStatus('mandatory') dt1CfgSpanATmgSrcPrio = MibTableColumn((1, 3, 6, 1, 4, 1, 429, 1, 3, 2, 1, 1, 2), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4, 5))).clone(namedValues=NamedValues(("notAllowed", 1), ("high", 2), ("mediumHigh", 3), ("medium", 4), ("low", 5)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: dt1CfgSpanATmgSrcPrio.setStatus('mandatory') dt1CfgSpanBTmgSrcPrio = MibTableColumn((1, 3, 6, 1, 4, 1, 429, 1, 3, 2, 1, 1, 3), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4, 5))).clone(namedValues=NamedValues(("notAllowed", 1), ("high", 2), ("mediumHigh", 3), ("medium", 4), ("low", 5)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: dt1CfgSpanBTmgSrcPrio.setStatus('mandatory') dt1CfgInternTmgSrcPrio = MibTableColumn((1, 3, 6, 1, 4, 1, 429, 1, 3, 2, 1, 1, 4), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4, 5))).clone(namedValues=NamedValues(("notAllowed", 1), ("high", 2), ("mediumHigh", 3), ("medium", 4), ("low", 5)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: dt1CfgInternTmgSrcPrio.setStatus('mandatory') dt1CfgTdmBusTmgSrcPrio = MibTableColumn((1, 3, 6, 1, 4, 1, 429, 1, 3, 2, 1, 1, 5), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4, 5))).clone(namedValues=NamedValues(("notAllowed", 1), ("high", 2), ("mediumHigh", 3), ("medium", 4), ("low", 5)))).setMaxAccess("readonly") if mibBuilder.loadTexts: dt1CfgTdmBusTmgSrcPrio.setStatus('deprecated') dt1CfgIdleDiscPatt = MibTableColumn((1, 3, 6, 1, 4, 1, 429, 1, 3, 2, 1, 1, 6), Integer32().subtype(subtypeSpec=ValueRangeConstraint(0, 255))).setMaxAccess("readwrite") if mibBuilder.loadTexts: dt1CfgIdleDiscPatt.setStatus('mandatory') dt1CfgNumT1TypeNacs = MibTableColumn((1, 3, 6, 1, 4, 1, 429, 1, 3, 2, 1, 1, 7), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3))).clone(namedValues=NamedValues(("notSupported", 1), ("single", 2), ("multiple", 3)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: dt1CfgNumT1TypeNacs.setStatus('mandatory') dt1CfgCallEventFilter = MibTableColumn((1, 3, 6, 1, 4, 1, 429, 1, 3, 2, 1, 1, 8), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4, 5))).clone(namedValues=NamedValues(("notSupported", 1), ("filterOutNone", 2), ("filterOutBoth", 3), ("filterOutSuccess", 4), ("filterOutFailure", 5)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: dt1CfgCallEventFilter.setStatus('mandatory') dt1CfgSetDs0OutofService = MibTableColumn((1, 3, 6, 1, 4, 1, 429, 1, 3, 2, 1, 1, 9), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("enable", 1), ("disable", 2)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: dt1CfgSetDs0OutofService.setStatus('mandatory') dt1CfgWirelessMode = MibTableColumn((1, 3, 6, 1, 4, 1, 429, 1, 3, 2, 1, 1, 10), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("normal", 1), ("wireless", 2)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: dt1CfgWirelessMode.setStatus('mandatory') dt1Stat = MibIdentifier((1, 3, 6, 1, 4, 1, 429, 1, 3, 3)) dt1StatTable = MibTable((1, 3, 6, 1, 4, 1, 429, 1, 3, 3, 1), ) if mibBuilder.loadTexts: dt1StatTable.setStatus('mandatory') dt1StatEntry = MibTableRow((1, 3, 6, 1, 4, 1, 429, 1, 3, 3, 1, 1), ).setIndexNames((0, "DT1-MIB", "dt1StatIndex")) if mibBuilder.loadTexts: dt1StatEntry.setStatus('mandatory') dt1StatIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 429, 1, 3, 3, 1, 1, 1), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dt1StatIndex.setStatus('mandatory') dt1StatCurrentTmgSrc = MibTableColumn((1, 3, 6, 1, 4, 1, 429, 1, 3, 3, 1, 1, 2), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4))).clone(namedValues=NamedValues(("spanLineA", 1), ("spanLineB", 2), ("internalClock", 3), ("tdmBusClock", 4)))).setMaxAccess("readonly") if mibBuilder.loadTexts: dt1StatCurrentTmgSrc.setStatus('mandatory') dt1StatSelfTest = MibTableColumn((1, 3, 6, 1, 4, 1, 429, 1, 3, 3, 1, 1, 3), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dt1StatSelfTest.setStatus('mandatory') dt1StatUpTime = MibTableColumn((1, 3, 6, 1, 4, 1, 429, 1, 3, 3, 1, 1, 4), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dt1StatUpTime.setStatus('mandatory') dt1StatCallEventCode = MibTableColumn((1, 3, 6, 1, 4, 1, 429, 1, 3, 3, 1, 1, 5), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32))).clone(namedValues=NamedValues(("notSupported", 1), ("setup", 2), ("usrSetup", 3), ("telcoDisconnect", 4), ("usrDisconnect", 5), ("noFreeModem", 6), ("modemsNotAllowed", 7), ("modemsRejectCall", 8), ("modemSetupTimeout", 9), ("noFreeIGW", 10), ("igwRejectCall", 11), ("igwSetupTimeout", 12), ("noFreeTdmts", 13), ("bcReject", 14), ("ieReject", 15), ("chidReject", 16), ("progReject", 17), ("callingPartyReject", 18), ("calledPartyReject", 19), ("blocked", 20), ("analogBlocked", 21), ("digitalBlocked", 22), ("outOfService", 23), ("busy", 24), ("congestion", 25), ("protocolError", 26), ("noFreeBchannel", 27), ("inOutCallCollision", 28), ("inCallArrival", 29), ("outCallArrival", 30), ("inCallConnect", 31), ("outCallConnect", 32)))).setMaxAccess("readonly") if mibBuilder.loadTexts: dt1StatCallEventCode.setStatus('mandatory') dt1StatCallEventQ931Value = MibTableColumn((1, 3, 6, 1, 4, 1, 429, 1, 3, 3, 1, 1, 6), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dt1StatCallEventQ931Value.setStatus('mandatory') dt1Cmd = MibIdentifier((1, 3, 6, 1, 4, 1, 429, 1, 3, 4)) dt1CmdTable = MibTable((1, 3, 6, 1, 4, 1, 429, 1, 3, 4, 1), ) if mibBuilder.loadTexts: dt1CmdTable.setStatus('mandatory') dt1CmdEntry = MibTableRow((1, 3, 6, 1, 4, 1, 429, 1, 3, 4, 1, 1), ).setIndexNames((0, "DT1-MIB", "dt1CmdIndex")) if mibBuilder.loadTexts: dt1CmdEntry.setStatus('mandatory') dt1CmdIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 429, 1, 3, 4, 1, 1, 1), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dt1CmdIndex.setStatus('mandatory') dt1CmdMgtStationId = MibTableColumn((1, 3, 6, 1, 4, 1, 429, 1, 3, 4, 1, 1, 2), OctetString().subtype(subtypeSpec=ValueSizeConstraint(0, 8))).setMaxAccess("readwrite") if mibBuilder.loadTexts: dt1CmdMgtStationId.setStatus('mandatory') dt1CmdReqId = MibTableColumn((1, 3, 6, 1, 4, 1, 429, 1, 3, 4, 1, 1, 3), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dt1CmdReqId.setStatus('mandatory') dt1CmdFunction = MibTableColumn((1, 3, 6, 1, 4, 1, 429, 1, 3, 4, 1, 1, 4), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12))).clone(namedValues=NamedValues(("noCommand", 1), ("saveToNVRAM", 2), ("restoreFromNVRAM", 3), ("restoreFromDefault", 4), ("nonDisruptSelfTest", 5), ("disruptSelfTest", 6), ("softwareReset", 7), ("resetToHiPrioTimingSrc", 8), ("forceTdmBusMastership", 9), ("enterSpanToSpanLoopback", 10), ("exitSpanToSpanLoopback", 11), ("restoreDefaultUIPassword", 12)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: dt1CmdFunction.setStatus('mandatory') dt1CmdForce = MibTableColumn((1, 3, 6, 1, 4, 1, 429, 1, 3, 4, 1, 1, 5), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("force", 1), ("noForce", 2)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: dt1CmdForce.setStatus('mandatory') dt1CmdParam = MibTableColumn((1, 3, 6, 1, 4, 1, 429, 1, 3, 4, 1, 1, 6), OctetString().subtype(subtypeSpec=ValueSizeConstraint(0, 24))).setMaxAccess("readwrite") if mibBuilder.loadTexts: dt1CmdParam.setStatus('mandatory') dt1CmdResult = MibTableColumn((1, 3, 6, 1, 4, 1, 429, 1, 3, 4, 1, 1, 7), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4, 5, 6, 7))).clone(namedValues=NamedValues(("none", 1), ("success", 2), ("inProgress", 3), ("notSupported", 4), ("unAbleToRun", 5), ("aborted", 6), ("failed", 7)))).setMaxAccess("readonly") if mibBuilder.loadTexts: dt1CmdResult.setStatus('mandatory') dt1CmdCode = MibTableColumn((1, 3, 6, 1, 4, 1, 429, 1, 3, 4, 1, 1, 8), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 6, 8, 12, 20, 22, 25, 58, 73))).clone(namedValues=NamedValues(("noError", 1), ("unable", 2), ("unrecognizedCommand", 6), ("slotEmpty", 8), ("noResponse", 12), ("unsupportedCommand", 20), ("deviceDisabled", 22), ("testFailed", 25), ("userInterfaceActive", 58), ("pendingSoftwareDownload", 73)))).setMaxAccess("readonly") if mibBuilder.loadTexts: dt1CmdCode.setStatus('mandatory') dt1TrapEnaTable = MibTable((1, 3, 6, 1, 4, 1, 429, 1, 3, 5), ) if mibBuilder.loadTexts: dt1TrapEnaTable.setStatus('mandatory') dt1TrapEnaEntry = MibTableRow((1, 3, 6, 1, 4, 1, 429, 1, 3, 5, 1), ).setIndexNames((0, "DT1-MIB", "dt1TrapEnaIndex")) if mibBuilder.loadTexts: dt1TrapEnaEntry.setStatus('mandatory') dt1TrapEnaIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 429, 1, 3, 5, 1, 1), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dt1TrapEnaIndex.setStatus('mandatory') dt1TrapEnaTxTmgSrcSwitch = MibTableColumn((1, 3, 6, 1, 4, 1, 429, 1, 3, 5, 1, 2), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4))).clone(namedValues=NamedValues(("enableTrap", 1), ("disableAll", 2), ("enableLog", 3), ("enableAll", 4)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: dt1TrapEnaTxTmgSrcSwitch.setStatus('mandatory') dt1TrapEnaCallEvent = MibTableColumn((1, 3, 6, 1, 4, 1, 429, 1, 3, 5, 1, 3), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4))).clone(namedValues=NamedValues(("enableTrap", 1), ("disableAll", 2), ("enableLog", 3), ("enableAll", 4)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: dt1TrapEnaCallEvent.setStatus('mandatory') dt1TrapEnaCallArriveEvent = MibTableColumn((1, 3, 6, 1, 4, 1, 429, 1, 3, 5, 1, 4), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4))).clone(namedValues=NamedValues(("enableTrap", 1), ("disableAll", 2), ("enableLog", 3), ("enableAll", 4)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: dt1TrapEnaCallArriveEvent.setStatus('mandatory') dt1TrapEnaCallConnEvent = MibTableColumn((1, 3, 6, 1, 4, 1, 429, 1, 3, 5, 1, 5), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4))).clone(namedValues=NamedValues(("enableTrap", 1), ("disableAll", 2), ("enableLog", 3), ("enableAll", 4)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: dt1TrapEnaCallConnEvent.setStatus('mandatory') dt1TrapEnaCallTermEvent = MibTableColumn((1, 3, 6, 1, 4, 1, 429, 1, 3, 5, 1, 6), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4))).clone(namedValues=NamedValues(("enableTrap", 1), ("disableAll", 2), ("enableLog", 3), ("enableAll", 4)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: dt1TrapEnaCallTermEvent.setStatus('mandatory') dt1TrapEnaCallFailEvent = MibTableColumn((1, 3, 6, 1, 4, 1, 429, 1, 3, 5, 1, 7), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3, 4))).clone(namedValues=NamedValues(("enableTrap", 1), ("disableAll", 2), ("enableLog", 3), ("enableAll", 4)))).setMaxAccess("readwrite") if mibBuilder.loadTexts: dt1TrapEnaCallFailEvent.setStatus('mandatory') mibBuilder.exportSymbols("DT1-MIB", dt1IdIndex=dt1IdIndex, dt1TrapEnaCallEvent=dt1TrapEnaCallEvent, dt1StatCallEventQ931Value=dt1StatCallEventQ931Value, dt1StatTable=dt1StatTable, dt1TrapEnaTxTmgSrcSwitch=dt1TrapEnaTxTmgSrcSwitch, dt1StatUpTime=dt1StatUpTime, usr=usr, dt1CmdParam=dt1CmdParam, nas=nas, dt1CmdTable=dt1CmdTable, dt1TrapEnaTable=dt1TrapEnaTable, dt1CfgSpanATmgSrcPrio=dt1CfgSpanATmgSrcPrio, dt1StatSelfTest=dt1StatSelfTest, dt1TrapEnaCallArriveEvent=dt1TrapEnaCallArriveEvent, dt1StatIndex=dt1StatIndex, dt1CmdEntry=dt1CmdEntry, dt1StatCallEventCode=dt1StatCallEventCode, dt1TrapEnaCallTermEvent=dt1TrapEnaCallTermEvent, dt1IdSoftwareRev=dt1IdSoftwareRev, dt1CfgTdmBusTmgSrcPrio=dt1CfgTdmBusTmgSrcPrio, dt1CmdReqId=dt1CmdReqId, dt1CmdCode=dt1CmdCode, dt1CfgSpanBTmgSrcPrio=dt1CfgSpanBTmgSrcPrio, dt1TrapEnaIndex=dt1TrapEnaIndex, dt1IdEntry=dt1IdEntry, dt1CfgCallEventFilter=dt1CfgCallEventFilter, dt1StatEntry=dt1StatEntry, dt1=dt1, dt1CfgWirelessMode=dt1CfgWirelessMode, dt1Cmd=dt1Cmd, dt1CfgIndex=dt1CfgIndex, dt1CfgEntry=dt1CfgEntry, dt1TrapEnaCallFailEvent=dt1TrapEnaCallFailEvent, dt1IdHardwareSerNum=dt1IdHardwareSerNum, dt1CfgIdleDiscPatt=dt1CfgIdleDiscPatt, dt1IdTable=dt1IdTable, dt1Id=dt1Id, dt1TrapEnaEntry=dt1TrapEnaEntry, dt1CmdForce=dt1CmdForce, dt1CfgSetDs0OutofService=dt1CfgSetDs0OutofService, dt1StatCurrentTmgSrc=dt1StatCurrentTmgSrc, dt1CmdIndex=dt1CmdIndex, dt1Cfg=dt1Cfg, dt1CmdMgtStationId=dt1CmdMgtStationId, dt1CfgTable=dt1CfgTable, dt1Stat=dt1Stat, dt1CfgInternTmgSrcPrio=dt1CfgInternTmgSrcPrio, dt1IdHardwareRev=dt1IdHardwareRev, dt1TrapEnaCallConnEvent=dt1TrapEnaCallConnEvent, dt1CfgNumT1TypeNacs=dt1CfgNumT1TypeNacs, dt1CmdResult=dt1CmdResult, dt1CmdFunction=dt1CmdFunction)
''' run.py Run file for photo service. Author: Nicolas Inden eMail: nico@smashnet.de GPG-Key-ID: B2F8AA17 GPG-Fingerprint: A757 5741 FD1E 63E8 357D  48E2 3C68 AE70 B2F8 AA17 License: MIT License ''' import os, os.path import sys import cherrypy import redis import sqlite3 import common import config from service_routing import PhotoServiceRouting from delete_files_task_processor import DeleteFilesTaskProcessor def init_service(): ## Init local data storage ## Create directories if not existing yet if not os.path.exists(config.PHOTO_DIR): os.makedirs(config.PHOTO_DIR) ## Init redis communication common.myRedis = redis.Redis(host='redis', port=6379, db=0) ## Listen on redis channel _delete-files_ for new tasks common.deleteFilesTaskThread = DeleteFilesTaskProcessor() common.deleteFilesTaskThread.daemon = True common.deleteFilesTaskThread.start() ## Init DB and create tables if not yet existing with sqlite3.connect(config.DB_STRING) as con: con.execute("CREATE TABLE IF NOT EXISTS general (key, value)") con.execute("CREATE TABLE IF NOT EXISTS files (fileid, filename, extension, content_type, md5, uploader, timestamp_date_time_original timestamp, timestamp_uploaded timestamp)") ## Check DB version with sqlite3.connect(config.DB_STRING) as con: r = con.execute("SELECT value FROM general WHERE key='version' LIMIT 1") res = r.fetchall() if len(res) == 0: con.execute("INSERT INTO general VALUES (?, ?)", ["version", config.VERSION]) elif config.VERSION == res[0][0]: # Program and DB run same version, everything OK! pass else: # Different versions! Please migrate! # TODO print("Running ? v? with DB v?! Exiting...", (config.NAME, config.VERSION, res[0][0])) sys.exit(100) def cleanup(): common.deleteFilesTaskThread.join(timeout=1.0) return if __name__ == '__main__': service_routing = PhotoServiceRouting() conf = { '/': { 'tools.sessions.on': False, 'request.dispatch': service_routing.getRoutesDispatcher() } } cherrypy.server.socket_host = '0.0.0.0' cherrypy.server.socket_port = 8080 cherrypy.engine.subscribe('start', init_service) cherrypy.engine.subscribe('stop', cleanup) cherrypy.quickstart(None, '/photo-service', conf)
n = float(input("digite um valor: ")) v = [] i = 0 v.append(n) print("N["+str(i)+"] = "+str(v[i])) while i < 9: n *= 2 v.append(n) i += 1 print("N["+str(i)+"] = "+str(v[i]))
from .stopword_modification import StopwordModification from .repeat_modification import RepeatModification from .input_column_modification import InputColumnModification from .max_word_index_modification import MaxWordIndexModification from .min_word_length import MinWordLength
import numpy as np from skimage.measure import shannon_entropy from tqdm import tqdm def read_label_string(): label_path = "./cifar100_text.txt" f = open(label_path, "r") labels = f.read() labels = labels.split(",") labels = [i.rstrip().lstrip() for i in labels] # labels = [i.split(' ')[0] for i in labels] return labels def get_vec_from_names(names): label_arr = [] label_path = "./glove.6B.50d.txt" f = open(label_path, "r") labels = f.read() labels = labels.split("\n") # Now construct a dictionary word_dict = {} for i, row in enumerate(tqdm(labels)): row = row.split(' ') word_dict[row[0]] = np.asarray(row[1:]).astype(np.float32) # Now retrieve vectors from names for name in names: name = name.split(' ')[0].split('-')[0] label_arr.append(word_dict[name]) return np.asarray(label_arr) cifar100_names = read_label_string() cifar100_labels = get_vec_from_names(cifar100_names) np.save('./cifar100_glove.npy', cifar100_labels.astype(np.float32)) entropy_dict = {} entropy_arr = [] for i in range(10): value = shannon_entropy(cifar100_labels[i]) entropy_dict[cifar100_names[i]] = value entropy_arr.append(value) entropy_arr = np.asarray(entropy_arr) print('mean entropy: ', np.mean(entropy_arr)) print('std entropy: ', np.std(entropy_arr))
from tonks.vision.models.multi_task_resnet import ResnetForMultiTaskClassification
import json,os import boto3 from datetime import * import json, logging import pprint,re from elasticsearch import Elasticsearch, helpers from opensearchpy import OpenSearch,helpers, RequestsHttpConnection import requests from requests_aws4auth import AWS4Auth import urllib.parse from botocore.exceptions import ClientError from datetime import * import shlex,subprocess from urllib.parse import unquote_plus import elasticsearch # import PyPDF2 from io import BytesIO import io from pptx import Presentation import fitz from requests.auth import HTTPBasicAuth from docx import Document import pandas as pd logging.getLogger().setLevel(logging.INFO) logging.info(f'date={date}') cfn = boto3.resource('cloudformation') def lambda_handler(event, context): logging.info('lambda_handler starts...') print("Lambda function ARN:", context.invoked_function_arn) runtime_region = os.environ['AWS_REGION'] context_arn=context.invoked_function_arn u_id=context_arn.split('-')[-1] print('u_id',u_id) print('***********************************************') s3 = boto3.client('s3') data={} doc_list=[] check=0 secret_data_internal = get_secret( 'nasuni-labs-internal-'+u_id, runtime_region) secret_nct_nce_admin = get_secret('nasuni-labs-os-admin',runtime_region) role = secret_data_internal['discovery_lambda_role_arn'] username=secret_nct_nce_admin['nac_es_admin_user'] role_data = '{"backend_roles":["' +role + '"],"hosts": [],"users": ["'+username+'"]}' print('role_data',role_data) with open("/tmp/"+"/data.json", "w") as write_file: write_file.write(role_data) link=secret_nct_nce_admin['nac_kibana_url'] link=link[:link.index('_')] password=secret_nct_nce_admin['nac_es_admin_password'] data_file_obj = '/tmp/data.json' merge_link = '\"https://'+link+'_opendistro/_security/api/rolesmapping/all_access\"' url = 'https://' + link + '_opendistro/_security/api/rolesmapping/all_access/' headers = {'content-type': 'application/json'} response = requests.put(url, auth=HTTPBasicAuth(username, password), headers=headers, data=role_data) print(response.text) #Deletion of folder from s3 for record in event['Records']: print(record) data['dest_bucket'] = record['s3']['bucket']['name'] data['object_key'] = unquote_plus(record['s3']['object']['key']) data['size'] = str(record['s3']['object'].get('size', -1)) file_name=os.path.basename(data['object_key']) data['event_name'] = record['eventName'] data['event_time'] = record['eventTime'] data['awsRegion'] = record['awsRegion'] data['extension'] = file_name[file_name.index('.')+1:] data['volume_name'] = secret_data_internal['volume_name'] #data['root_handle'] = secret_data_internal['root_handle'].replace('.','_').lower() data['root_handle'] = re.sub('[!@#$%^&*()+?=,<>/.]', '-', secret_data_internal['root_handle']).lower() data['source_bucket'] = secret_data_internal['discovery_source_bucket'] print("data['object_key']",data['object_key']) print("data['dest_bucket']",data['dest_bucket']) obj1 = s3.get_object(Bucket=data['dest_bucket'], Key=data['object_key']) if data['extension'] in ['csv','txt']: data['content'] = obj1['Body'].read().decode('utf-8') elif data['extension'] == 'pdf': file_content = obj1['Body'].read() text = "" with fitz.open(stream=file_content, filetype="pdf") as doc: # iterating through pdf file pages for page in doc: # fetching & appending text to text variable of each page text += page.getText() print('pdf data priting',text) data['content'] = text elif data['extension'] in ['docx','doc']: fs = obj1['Body'].read() sentence = str(parseDocx(fs)) print('docx data priting',sentence) data['content'] = sentence elif data['extension'] in ['xlsx','xls']: file_content = obj1['Body'].read() read_excel_data = io.BytesIO(file_content) df = pd.read_excel(read_excel_data) df = df.to_string() print('xlsx data priting',df) data['content'] = df elif data['extension'] == 'pptx': print('data[extension] elif',data['extension']) pptx_content = obj1['Body'].read() ppt = Presentation(io.BytesIO(pptx_content)) pptx_data='' for slide in ppt.slides: for shape in slide.shapes: if not shape.has_text_frame: continue for paragraph in shape.text_frame.paragraphs: for run in paragraph.runs: pptx_data+=run.text print(pptx_data) data['content'] = pptx_data if secret_data_internal['web_access_appliance_address']!='not_found': data['access_url']='https://'+secret_data_internal['web_access_appliance_address']+'/fs/view/'+data['volume_name']+'/'+file_name else: data['access_url']=secret_data_internal['web_access_appliance_address'] print('data',data) print('secret_data_internal',secret_data_internal) es_obj = launch_es(secret_nct_nce_admin['nac_es_url'],data['awsRegion']) check=connect_es(es_obj,data['root_handle'], data) #Deletion of folder from s3 if check == 0: print('Insertion into ES success.Hence deleting s3 bucket folder') del_s3_folder(data['object_key'],data['dest_bucket']) else: print('Not deleting the s3 bucket folder all data not got loaded into ES.') logging.info('lambda_handler ends...') def parseDocx(data): data = io.BytesIO(data) document = Document(docx = data) content = '' for para in document.paragraphs: data = para.text content+= data return content def del_s3_folder(full_path,dest_bucket): print("Full Path:-",full_path) path=os.path.dirname(full_path) print("Folder Path:-",path) s3 = boto3.resource('s3') bucket = s3.Bucket(dest_bucket) bucket.objects.filter(Prefix=path).delete() def launch_es(es_url,region): service = 'es' credentials = boto3.Session().get_credentials() awsauth = AWS4Auth(credentials.access_key, credentials.secret_key, region, service, session_token=credentials.token) # es = Elasticsearch(hosts=[{'host': es_url, 'port': 443}], http_auth=awsauth, use_ssl=True, verify_certs=True) # es = Elasticsearch(hosts=[{'host': es_url, 'port': 443}], http_auth=awsauth, verify_certs=True) es = OpenSearch(hosts=[{'host': es_url, 'port': 443}], http_auth=awsauth, use_ssl=True, verify_certs=True,connection_class = RequestsHttpConnection) return es def connect_es(es,index, data): #CTPROJECT-125 try: flag = 0 for elem in es.cat.indices(format="json"): query = {"query": {"match_all": {}}} resp = es.search(index=elem['index'], body=query) for i in resp['hits']['hits']: idx_content = i['_source'].get('content', 0) idx_object_key = i['_source'].get('object_key', 0) if idx_content == data['content'] and idx_object_key == data['object_key']: flag = 1 print("Indexing is doing when the idx_content and idx_object_key has matched", resp) es.index(index=i['_index'], doc_type="_doc", id=i['_id'], body=data) break if flag == 0: doc_list = [] doc_list += [data] logging.info("\nAttempting to index the list of docs using helpers.bulk()") # use the helpers library's Bulk API to index list of Elasticsearch docs resp = helpers.bulk(es, doc_list, index=data['root_handle'], doc_type="_doc") # print the response returned by Elasticsearch print("helpers.bulk() RESPONSE:", resp) print("helpers.bulk() RESPONSE:", json.dumps(resp, indent=4)) return 0 except Exception as e: logging.error('ERROR: {0}'.format(str(e))) logging.error('ERROR: Unable to index line:"{0}"'.format(str(data['object_key']))) print(e) return 1 def get_secret(secret_name,region_name): secret = '' session = boto3.session.Session() client = session.client( service_name='secretsmanager', region_name=region_name, ) try: get_secret_value_response = client.get_secret_value( SecretId=secret_name ) except ClientError as e: if e.response['Error']['Code'] == 'ResourceNotFoundException': print("The requested secret " + secret_name + " was not found") elif e.response['Error']['Code'] == 'InvalidRequestException': print("The request was invalid due to:", e) elif e.response['Error']['Code'] == 'InvalidParameterException': print("The request had invalid params:", e) elif e.response['Error']['Code'] == 'DecryptionFailure': print("The requested secret can't be decrypted using the provided KMS key:", e) elif e.response['Error']['Code'] == 'InternalServiceError': print("An error occurred on service side:", e) else: # Secrets Manager decrypts the secret value using the associated KMS CMK # Depending on whether the secret was a string or binary, only one of these fields will be populated if 'SecretString' in get_secret_value_response: secret = get_secret_value_response['SecretString'] else: secret = base64.b64decode(get_secret_value_response['SecretBinary']) return json.loads(secret)
#!/usr/bin/env python # -*- coding: utf-8 -*- """ @author: zparteka """ def read_data(infile): masks = {} with open(infile, 'r') as f: data = f.readlines() for i in range(len(data)): if data[i].strip().startswith("mask"): mask = data[i].strip()[7:] counter = i + 1 masks[mask] = [] while data[counter].startswith("mem"): line = data[counter].strip().split(' = ') masks[mask].append((int(line[0][4:-1]), int(line[1]))) if counter == len(data) - 1: return masks else: counter += 1 def masking(masks): numbers = {} for i in masks.keys(): for j in masks[i]: mask = format(j[1], "036b") for n in range(len(mask)): if i[n] != "X" and mask[n] != i[n]: mask = mask[:n] + i[n] + mask[n + 1:] numbers[j[0]] = int(mask, 2) return sum(list(numbers.values())) def part2(masks): numbers = {} number_counter = 0 for i in masks.keys(): print(i) for j in masks[i]: print(j[0]) mask = format(j[0], "036b") counter = 0 for n in range(len(mask)): if i[n] == '0': continue elif i[n] == '1': mask = mask[:n] + '1' + mask[n + 1:] if i[n] == 'X': counter += 1 mask = mask[:n] + 'X' + mask[n + 1:] arr = [None] * counter ready = [] generate_binary(counter, arr, 0, ready) for variation in ready: print(variation) counter = 0 fmask = mask for k in range(len(fmask)): if fmask[k] == "X": fmask = fmask[:k] + str(variation[counter]) + fmask[k + 1:] counter += 1 numbers[int(fmask, 2)] = j[1] number_counter += 1 print(number_counter) print(len(numbers.keys())) return sum(list(numbers.values())) def generate_binary(n, arr, i, ready): barr = arr[:] if i == n: ready.append(barr) return barr[i] = 0 generate_binary(n, barr, i + 1, ready) barr[i] = 1 generate_binary(n, barr, i + 1, ready) def main(): masks = read_data("input_day14") print(part2(masks)) if __name__ == '__main__': main()
class ProcessingHelper(): def __init__(self, df): self.dframe = df
from django.shortcuts import render from django.views.generic import TemplateView, View, ListView, DetailView from league.models import Schedule, Standings, Season, Player, Team, STANDINGS_ORDER from django.db.models import Q from django.utils.translation import ugettext_lazy as _ class StandingsFull(ListView): template_name = 'standings.html' model = Standings context_object_name = 'standings' def get_context_data(self, **kwargs): context = super(StandingsFull, self).get_context_data(**kwargs) season_name = '' if self.kwargs.get('season'): season = Season.objects.get(slug=self.kwargs['season']) season_pk = season.pk season_name = ": {} {}".format(season.league, season.name) context['table_name'] = season_name context['slug'] = self.kwargs.get('season') return context def get_queryset(self, *args, **kwargs): qs = self.model.objects.all() if self.kwargs.get('season'): season = Season.objects.get(slug=self.kwargs['season']) season_pk = season.pk season_name = season.name order = STANDINGS_ORDER[season.standings_order][1] qs = self.model.objects.filter(season=season_pk).order_by(*order) return qs class TeamDetails(DetailView): template_name = 'team.html' model = Team context_object_name = 'team' slug_url_kwarg = 'team' def get_context_data(self, **kwargs): context = super(TeamDetails, self).get_context_data(**kwargs) if self.kwargs.get('season') and self.kwargs.get('team'): season_pk = Season.objects.get(slug=self.kwargs['season']).pk team_pk = self.model.objects.get(slug=self.kwargs.get('team')).pk team = Standings.objects.get(season=season_pk, team=team_pk) roster = Player.objects.filter(season=season_pk, team=team_pk) schedule = Schedule.objects.filter(Q(home_team=team_pk) | Q(away_team=team_pk), season = season_pk ).order_by('date') context['team_more'] = team context['team_roster'] = roster context['team_schedule'] = schedule return context class ScheduleFull(ListView): template_name = 'schedule.html' model = Schedule context_object_name = 'schedule' def get_context_data(self, **kwargs): context = super(ScheduleFull, self).get_context_data(**kwargs) season_name = '' if self.kwargs.get('season'): season = Season.objects.get(slug=self.kwargs['season']) season_pk = season.pk season_name = ": {} {}".format(season.league, season.name) context['page_name'] = _('Schedule') context['season'] = season context['slug'] = self.kwargs.get('season') return context def get_queryset(self, *args, **kwargs): qs = self.model.objects.all() if self.kwargs.get('season'): season = Season.objects.get(slug=self.kwargs['season']) season_pk = season.pk season_name = season.name qs = self.model.objects.filter(season=season_pk).order_by('date') return qs class TeamSchedule(ListView): template_name = 'schedule.html' model = Schedule context_object_name = 'schedule' def get_context_data(self, **kwargs): context = super(TeamSchedule, self).get_context_data(**kwargs) context['page_name'] = _('Archiwum') if self.kwargs.get('team'): team = Team.objects.get(slug=self.kwargs['team']) context['team'] = team if self.kwargs.get('season'): season = Season.objects.get(slug=self.kwargs['season']) context['season'] = season context['page_name'] = _('Schedule') return context def get_queryset(self, *args, **kwargs): qs = self.model.objects.all().order_by('date') if self.kwargs.get('team'): team_pk = Team.objects.get(slug=self.kwargs.get('team')).pk qs = self.model.objects.filter(Q(home_team=team_pk) | Q(away_team=team_pk)).order_by('date') if self.kwargs.get('season') and self.kwargs.get('team'): season = Season.objects.get(slug=self.kwargs['season']) season_pk = season.pk season_name = season.name team_pk = Team.objects.get(slug=self.kwargs.get('team')).pk qs = self.model.objects.filter(Q(home_team=team_pk) | Q(away_team=team_pk), season = season_pk ).order_by('date') return qs class TeamRoster(ListView): template_name = 'roster.html' model = Player context_object_name = 'roster' def get_context_data(self, **kwargs): context = super(TeamRoster, self).get_context_data(**kwargs) context['page_name'] = _('Roster') if self.kwargs.get('team'): team = Team.objects.get(slug=self.kwargs['team']) context['team'] = team if self.kwargs.get('season'): team = Team.objects.get(slug=self.kwargs['team']) season = Season.objects.get(slug=self.kwargs['season']) context['roster_image'] = Standings.objects.get(team = team.pk, season = season.pk).roster_image context['season'] = season return context def get_queryset(self, *args, **kwargs): qs = self.model.objects.all().order_by('jersey') if self.kwargs.get('season') and self.kwargs.get('team'): season = Season.objects.get(slug=self.kwargs['season']) season_pk = season.pk season_name = season.name team_pk = Team.objects.get(slug=self.kwargs.get('team')).pk qs = self.model.objects.filter(team = team_pk, season = season_pk ).order_by('jersey') return qs # Create your views here.
import os import tkMessageBox def default(): if (not tkMessageBox.askyesno("Default Settings", "Do you really want to force Default Settings?")): return os.popen('iptables -F',"r") os.popen('iptables -A INPUT -p tcp -s 0/0 --dport 1:1024 -j DROP',"r") os.popen('iptables -A INPUT -p udp -s 0/0 --dport 1:1024 -j DROP',"r") os.popen(' iptables -A INPUT -p ICMP -s 0/0 -j DROP',"r") tkMessageBox.showinfo("Default Settings","Default Settings has been applied.")
#SERVER Configuration KoboENV = "production" KoboConfig = { 'local': { 'USERNAME': '', 'PASSWORD': '', 'PROTOCOL': 'http', 'SCHEME': 'kobo', 'IP': '127.0.0.1', 'HOST': '', 'PORT': '', 'VERSION':'v1', 'TIMEOUT': 7200, 'FORM': '' }, 'development': { 'USERNAME': 'admin', 'PASSWORD': 'admin', 'PROTOCOL': 'https', 'SCHEME': 'kobo', 'IP': '', 'HOST': 'kc.aqm.space', 'PORT': '', 'VERSION':'v1', 'TIMEOUT': 7200, 'FORM': '12' }, 'uat': { 'USERNAME': '', 'PASSWORD': '', 'PROTOCOL': 'http', 'SCHEME': 'kobo', 'IP': '', 'HOST': '', 'PORT': '', 'VERSION':'v1', 'TIMEOUT': 7200, 'FORM': '' }, 'production': { 'USERNAME': 'admin', 'PASSWORD': 'adm(1)n@AWH', 'PROTOCOL': 'https', 'SCHEME': 'kobo', 'IP': '', 'HOST': 'kc.aqm.space', 'PORT': '', 'VERSION':'v1', 'TIMEOUT': 7200, 'FORM': '13' } } # FORM: 33 for testing 2 set # FORM: 12 for actual testing # FROM: 13 for production
#author : eric mourgya # import commands from flask import jsonify from flask import Flask, Response, request, redirect,session, url_for from flask.ext.login import LoginManager, UserMixin,login_required, login_user, logout_user #@app.after_request #def treat_as_plain_text(response): # response.headers["content-type"] = "text/plain; charset=utf-8" # return response app = Flask(__name__) app.secret_key="gloubiboulga" login_manager = LoginManager() login_manager.setup_app(app) login_manager.login_view = "login" class User(UserMixin): def __init__(self, id): self.id = id self.name = "user" + str(id) self.password = self.name + "_secret" def __repr__(self): return "%d/%s/%s" % (self.id, self.name, self.password) @app.route('/', methods = ['GET']) @login_required def help(): """Welcome page and help page.""" func_list = {} for rule in app.url_map.iter_rules(): if rule.endpoint != 'static': func_list[rule.rule] = app.view_functions[rule.endpoint].__doc__ return jsonify(func_list) def cmdline(cmd): # make and exec of cmd command on system status, output = commands.getstatusoutput(cmd) if status != 0: error_str= cmd + ": command failed! : " +status+" "+output print error_str return error_str else: print cmd + "done" return output @app.route('/show/discovery') @login_required def showdiscovery(): """------------------------Show discovery portals.""" cmdshow="iscsiadm -m discovery -P1" res=cmdline(cmdshow) return Response(response=res,status=200,mimetype="text/plain") @app.route('/show/nodes') @login_required def shownodes(): """Show nodes.""" cmdshow="iscsiadm -m node -P1" res=cmdline(cmdshow) return Response(response=res,status=200,mimetype="text/plain") @app.route('/show/disks') @login_required def showdisk(): """Show discovery disk.""" cmdshow="iscsiadm -m session -P3" res=cmdline(cmdshow) return Response(response=res,status=200,mimetype="text/plain") @app.route('/show/lsblk') @login_required def showlsblk(): """Show discovery sessions and disks.""" cmdshow="lsblk" res=cmdline(cmdshow) return Response(response=res,status=200,mimetype="text/plain") @app.route('/show/sessiondetail') @login_required def showsessiondetail(): """Show session in detail without disk.""" cmdshow="iscsiadm -m session -P1" res=cmdline(cmdshow) return Response(response=res,status=200,mimetype="text/plain") @app.route('/show/session') @login_required def showsession(): """Show session ids""" cmdshow="iscsiadm -m session" res=cmdline(cmdshow) return Response(response=res,status=200,mimetype="text/plain") @app.route('/show/specifiquesession',methods=["GET", "POST"]) @login_required def showspecifiquesession(): """show specifique session""" if request.method == 'POST': session=request.form['session'] cmdres="iscsiadm -m session -r"+session +" -P3" res=cmdline(cmdres) return Response(response=res,status=200,mimetype="text/plain") else: return Response(''' <form action="" method="post"> <p><input placeholder="session id" type=text name=session> <p><input type=submit value=submit> </form> ''') @app.route('/rescan/session',methods=["GET", "POST"]) @login_required def rescansession(): """rescan a specifique session""" if request.method == 'POST': ip=request.form['session'] cmdres="iscsiadm -m session -r"+session +" -R" res=cmdline(cmdres) return redirect(url_for('showspecifiquesession'),code=302) else: return Response(''' <form action="" method="post"> <p><input placeholder="session id" type=text name=session> <p><input type=submit value=submit> </form> ''') @app.route('/make/discovery',methods=["GET", "POST"]) @login_required def makediscovery(): """make a discovery """ if request.method == 'POST': ipaddr=request.form['ip'] print ipaddr cmdres="iscsiadm -m discovery -t sendtargets -p "+ipaddr+":3260 -P 1" res=cmdline(cmdres) return Response(response=res,status=200,mimetype="text/plain") else: return Response(''' <form action="" method="post"> <p><input placeholder="portal ip" type=text name=ip> <p><input type=submit value=submit> </form> ''') @app.route('/make/nodelogin',methods=["GET", "POST"]) @login_required def makenodelogin(): """make a node login """ if request.method == 'POST': ipaddr=request.form['ip'] iqn=request.form['iqn'] cmdres="iscsiadm -m node "+ iqn + "-p " +ipaddr + "-o update -n node.startup -v automatic" res=cmdline(cmdres) return Response(response=res,status=200,mimetype="text/plain") else: return Response(''' <form action="" method="post"> <p><input placeholder="portal ip" type=text name=ip> <p><input placeholder="portal iqn" type=text name=iqn> <p><input type=submit value=submit> </form> ''') @app.route('/make/sessionlogin',methods=["GET", "POST"]) @login_required def makesessionlogin(): """make a session login """ if request.method == 'POST': ipaddr=request.form['ip'] iqn=request.form['iqn'] cmdres="iscsiadm -m node "+ iqn + "-p " +ipaddr + "-l" res=cmdline(cmdres) return Response(response=res,status=200,mimetype="text/plain") else: return Response(''' <form action="" method="post"> <p><input placeholder="portal ip" type=text name=ip> <p><input placeholder="portal iqn" type=text name=iqn> <p><input type=submit value=submit> </form> ''') @app.route("/login", methods=["GET", "POST"]) def login(): """login page""" if request.method == 'POST': username = request.form['username'] password = request.form['password'] if password == username + "_secret": id = username.split('user')[0] user = User(id) login_user(user) return redirect(url_for('help')) else: return abort(401) else: return Response(''' <form action="" method="post"> <p><input placeholder="Username" type=text name=username> <p><input placeholder="Password" type=password name=password> <p><input type=submit value=Login> </form> ''') @app.route("/logout") @login_required def logout(): """logout page """ logout_user() return Response('<p>Logged out</p>') @app.errorhandler(401) def page_not_found(e): return Response('<p>Login failed</p>') @login_manager.user_loader def load_user(userid): return User(userid) app.run(debug=True,port=5001)
from django.test import TestCase from oscar.core import compat class TestCustomUserModel(TestCase): def test_can_be_created_without_error(self): klass = compat.get_user_model() try: klass.objects.create_user('_', 'a@a.com', 'pa55w0rd') except Exception, e: self.fail("Unable to create user model: %s" % e)
class NoConfigException(Exception): pass class ConfigFormatException(Exception): pass class FeedNotFoundException(Exception): pass
""" ================================ Make an MNE-Report with a Slider ================================ In this example, MEG evoked data are plotted in an html slider. """ # Authors: Teon Brooks <teon.brooks@gmail.com> # Eric Larson <larson.eric.d@gmail.com> # # License: BSD (3-clause) from mne.report import Report from mne.datasets import sample from mne import read_evokeds from matplotlib import pyplot as plt data_path = sample.data_path() meg_path = data_path + '/MEG/sample' subjects_dir = data_path + '/subjects' evoked_fname = meg_path + '/sample_audvis-ave.fif' ############################################################################### # Do standard folder parsing (this can take a couple of minutes): report = Report(image_format='png', subjects_dir=subjects_dir, info_fname=evoked_fname, subject='sample', raw_psd=False) # use False for speed here report.parse_folder(meg_path, on_error='ignore', mri_decim=10) ############################################################################### # Add a custom section with an evoked slider: # Load the evoked data evoked = read_evokeds(evoked_fname, condition='Left Auditory', baseline=(None, 0), verbose=False) evoked.crop(0, .2) times = evoked.times[::4] # Create a list of figs for the slider figs = list() for t in times: figs.append(evoked.plot_topomap(t, vmin=-300, vmax=300, res=100, show=False)) plt.close(figs[-1]) report.add_slider_to_section(figs, times, 'Evoked Response', image_format='png') # can also use 'svg' # to save report report.save('my_report.html', overwrite=True)
"""Module containing graphQL client.""" import aiohttp import requests class GraphqlClient: """Class which represents the interface to make graphQL requests through.""" def __init__(self, endpoint: str, headers: dict = None): """Insantiate the client.""" self.endpoint = endpoint self.headers = headers or {} def __request_body( self, query: str, variables: dict = None, operation_name: str = None ) -> dict: json = {"query": query} if variables: json["variables"] = variables if operation_name: json["operationName"] = operation_name return json def __request_headers(self, headers: dict = None) -> dict: return {**self.headers, **headers} if headers else self.headers def execute( self, query: str, variables: dict = None, operation_name: str = None, headers: dict = None, ): """Make synchronous request to graphQL server.""" request_body = self.__request_body( query=query, variables=variables, operation_name=operation_name ) result = requests.post( self.endpoint, json=request_body, headers=self.__request_headers(headers), ) result.raise_for_status() return result.json() async def execute_async( self, query: str, variables: dict = None, operation_name: str = None, headers: dict = None, ): """Make asynchronous request to graphQL server.""" request_body = self.__request_body( query=query, variables=variables, operation_name=operation_name ) async with aiohttp.ClientSession() as session: async with session.post( self.endpoint, json=request_body, headers=self.__request_headers(headers), ) as response: return await response.json()
import uncompyle2 with open("sql_quality_check.py", "wb") as fileobj: uncompyle2.uncompyle_file("/Users/Minat_Verma/Desktop/sql_quality_check.pyc", fileobj)
# -*- coding: utf-8 -*- import glm import material from random import random from math import pi class Triangle(object): """ Triangle ( vertex1 (vec3), vertex2 (vec3), vertex3 (vec3) ) Creates triangles on the scene. """ def __init__(self, *args, **kwargs): if kwargs: self.vertex1 = kwargs.get('vertex1', glm.vec3(.0, .0, .0)) self.vertex2 = kwargs.get('vertex2', glm.vec3(.0, .0, .0)) self.vertex3 = kwargs.get('vertex3', glm.vec3(.0, .0, .0)) self.material = kwargs.get('material', material.Material()) elif args: self.vertex1, self.vertex2, self.vertex3, self.material = args else: self.vertex1 = glm.vec3(.0, .0, .0) self.vertex2 = glm.vec3(.0, .0, .0) self.vertex3 = glm.vec3(.0, .0, .0) self.material = material.Material() def intersect(self, my_ray, inter_rec): a = self.vertex1.x - self.vertex2.x b = self.vertex1.y - self.vertex2.y c = self.vertex1.z - self.vertex2.z d = self.vertex1.x - self.vertex3.x e = self.vertex1.y - self.vertex3.y f = self.vertex1.z - self.vertex3.z g = my_ray.direction.x h = my_ray.direction.y i = my_ray.direction.z j = self.vertex1.x - my_ray.origin.x k = self.vertex1.y - my_ray.origin.y l = self.vertex1.z - my_ray.origin.z ei_minus_hf = float(e * i - h * f) gf_minus_di = float(g * f - d * i) dh_minus_eg = float(d * h - e * g) ak_minus_jb = float(a * k - j * b) jc_minus_al = float(j * c - a * l) bl_minus_kc = float(b * l - k * c) M = a * (ei_minus_hf) + b * (gf_minus_di) + c * (dh_minus_eg) t = -(f * (ak_minus_jb) + e * (jc_minus_al) + d * (bl_minus_kc)) / M if t < 0.0: return False gamma = (i * (ak_minus_jb) + h * (jc_minus_al) + g * (bl_minus_kc)) / M if gamma < 0.0 or gamma > 1.0: return False beta = (j * (ei_minus_hf) + k * (gf_minus_di) + l * (dh_minus_eg)) / M if beta < 0.0 or beta > 1.0 - gamma: return False inter_rec.t = t inter_rec.position = my_ray.origin + inter_rec.t * my_ray.direction inter_rec.normal = glm.normalize(glm.cross(self.vertex2 - self.vertex1, self.vertex3 - self.vertex1)) if glm.dot(inter_rec.normal, my_ray.direction) > 0: inter_rec.normal = -inter_rec.normal inter_rec.material = self.material return True
import torch import math from time import time import torch.distributions as tdis import matplotlib.pyplot as plt from torch import nn from torch import optim from torch.utils.data import TensorDataset, RandomSampler, BatchSampler, DataLoader def get_model(in_size): return nn.Sequential( nn.Linear(in_size, 36), #nn.Dropout(p=0.4), nn.ReLU(), nn.Linear(36, 18), #nn.Dropout(p=0.25), nn.ReLU(), nn.Linear(18, 1), nn.ReLU() ) def InfoNES(X, Y, q=2.4, q1=0.6, batch_size=512, num_epochs=300, dev=torch.device("cpu"), model=None,lrate=0.01): A = torch.tensor([0.0001] * batch_size).to(dev) B = torch.tensor([0.0001] * (batch_size * batch_size)).to(dev) if not model: model = get_model(X.shape[1]+Y.shape[1]) # Move data to device X = X.to(dev) Y = Y.to(dev) Y += torch.randn_like(Y) * 1e-4 model = model.to(dev) opt = optim.Adam(model.parameters(), lr=lrate) td = TensorDataset(X, Y) result = [] epoch = 0 ref_time = time() while epoch < num_epochs: if epoch == 50 and result[-1] < 0.001: # Start from the beginning model = get_model(X.shape[1]+Y.shape[1]).to(dev) opt = optim.Adam(model.parameters(), lr=lrate) epoch = 0 print("Did not converge in 50 epochs") if epoch % 200 == 0 and epoch > 0: print("MI at", epoch, "-", result[-1], "elapsed", time() - ref_time, "seconds") ref_time = time() for x, y in DataLoader(td, batch_size, shuffle=True, drop_last=True): opt.zero_grad() fxy = model(torch.cat([x, y], 1)).flatten() topin = torch.max(A,(1 + (1-q) * fxy)) top = torch.pow(topin, (1 / (1-q))) xiyj = torch.cat([x.repeat_interleave(batch_size,dim=0),y.repeat(batch_size,1)], 1) bottomin = torch.max(B,(1 + (1-q) * model(xiyj)).flatten()) bottom = torch.pow(bottomin, (1 / (1-q))).reshape(batch_size,batch_size).mean(dim=1) tb = top/bottom loss = -((torch.pow(tb, (1-q1)) - 1) / (1-q1)).mean() if math.isnan(loss.item()): break result.append(-loss.item()) loss.backward(retain_graph=True) opt.step() epoch += 1 r = torch.tensor(result[-50:]).mean() plt.plot(result,label="q-exp=2.4,q-log=0.6") plt.title('Qabe') plt.xlabel('Number of Epochs') plt.ylabel('Mutual Infomation') plt.legend(loc='lower right') print(r) return r
import argparse import json import os import string import time import uuid import boto3 greengrass_client = boto3.client("greengrassv2") s3_client = boto3.client("s3") sts_client = boto3.client("sts") class ParseKwargs(argparse.Action): def __call__(self, parser, namespace, values, option_string=None): setattr(namespace, self.dest, dict()) for value in values: key, value = value.split("=") getattr(namespace, self.dest)[key] = value parser = argparse.ArgumentParser() parser.add_argument("-d", "--components-directory", type=str, required=True) parser.add_argument("-m", "--model-uri", type=str, required=True) parser.add_argument("-r", "--role-arn", type=str, required=True) parser.add_argument("-g", "--use-gpu", type=str, required=True) parser.add_argument("-b", "--bucket", type=str, required=True) parser.add_argument("-c", "--components", nargs="+", required=True) parser.add_argument("-v", "--variables", nargs="*", action=ParseKwargs) def compile_and_package_model(next_version, role_arn, bucket_name, model_uri, use_gpu): client = boto3.client("sagemaker") compilation_job_name = str(uuid.uuid4()) packaging_job_name = str(uuid.uuid4()) output_config = { "S3OutputLocation": "s3://{}/compiled/".format(bucket_name), "TargetPlatform": {"Os": "LINUX", "Arch": "X86_64"}, } model_name = "gluoncv-model" if int(use_gpu): model_name = "gluoncv-gpu-model" output_config = { "S3OutputLocation": "s3://{}/compiled/".format(bucket_name), "TargetPlatform": { "Os": "LINUX", "Arch": "X86_64", "Accelerator": "NVIDIA", }, "CompilerOptions": json.dumps( {"cuda-ver": "10.2", "trt-ver": "7.2.1", "gpu-code": "sm_61"} ), } response = client.create_compilation_job( CompilationJobName=compilation_job_name, RoleArn=role_arn, InputConfig={ "S3Uri": model_uri, "DataInputConfig": json.dumps({"data": [1, 3, 512, 512]}), "Framework": "MXNET", }, OutputConfig=output_config, StoppingCondition={"MaxRuntimeInSeconds": 900, "MaxWaitTimeInSeconds": 900}, ) finished = False while not finished: response = client.describe_compilation_job( CompilationJobName=compilation_job_name ) finished = response["CompilationJobStatus"] in [ "COMPLETED", "FAILED", "STOPPED", ] if finished: break time.sleep(10) client.create_edge_packaging_job( EdgePackagingJobName=packaging_job_name, CompilationJobName=compilation_job_name, ModelName=model_name, ModelVersion=next_version, RoleArn=role_arn, OutputConfig={"S3OutputLocation": "s3://{}/packaged/".format(bucket_name)}, ) finished = False while not finished: response = client.describe_edge_packaging_job( EdgePackagingJobName=packaging_job_name ) finished = response["EdgePackagingJobStatus"] in [ "COMPLETED", "FAILED", "STOPPED", ] if finished: return "{}{}-{}.tar.gz".format( response["OutputConfig"]["S3OutputLocation"], response["ModelName"], response["ModelVersion"], ) break time.sleep(10) def generate_recipe(component_name, version, model_uri): component_variables = args.variables.copy() component_variables["component_version_number"] = version component_variables["component_name"] = component_name component_variables["packaged_model_uri"] = model_uri component_variables["packaged_model_filename"] = model_uri.split("/")[-1] # substitute variables, and generate new recipe file with open( "{}/recipe-template.yml".format(args.components_directory), "r" ) as input_recipe: src = string.Template(input_recipe.read()) result = src.substitute(component_variables) with open( "{}/{}.yml".format(args.components_directory, component_name), "w" ) as output_recipe: output_recipe.write(result) def create_component_version(component_name): with open( "{}/{}.yml".format(args.components_directory, component_name), "r" ) as recipe_file: recipe = recipe_file.read().encode() greengrass_client.create_component_version(inlineRecipe=recipe) def get_next_component_version(component_name): versions = greengrass_client.list_component_versions( arn="arn:aws:greengrass:{}:{}:components:{}".format( os.environ["AWS_REGION"], sts_client.get_caller_identity()["Account"], component_name, ) )["componentVersions"] print(versions) if len(versions) > 0: current_version = versions[0]["componentVersion"] else: return "1.0.0" current_versions = current_version.split(".") major = int(current_versions[0]) minor = int(current_versions[1]) micro = int(current_versions[2]) return "{}.{}.{}".format(major, minor, micro + 1) if __name__ == "__main__": args = parser.parse_args() print(args) for component in args.components: next_component_version = get_next_component_version(component) packaged_model_uri = compile_and_package_model( next_component_version, args.role_arn, args.bucket, args.model_uri, args.use_gpu, ) generate_recipe(component, next_component_version, packaged_model_uri) create_component_version(component)
import time from behave import given, when, then from selenium.webdriver.chrome.webdriver import WebDriver @given(u'I navigate to the Manager Home Page') def step_impl(context): context.driver.get('http://127.0.0.1:5000/home') @when(u'I Login In') def step_impl(context): context.employee_home_page.login().click() time.sleep(2) @then(u'I should be on Manager Login Page') def step_impl(context): text = context.driver.title print(text) assert text == 'Login' @when(u'I submit email') def step_impl(context): context.login_home_page.email().send_keys('admin@gmail.com') time.sleep(2) @when(u'I submit password') def step_impl(context): context.login_home_page.password().send_keys('password') time.sleep(2) @when(u'I click on enter') def step_impl(context): context.login_home_page.submit().click() time.sleep(5) @when(u'I submit email1') def step_impl(context): context.login_home_page.email().send_keys('admin@gmail1.com') time.sleep(2) @when('I click on Statistics') def step_impl(context): context.manager_home_page.statistics().click() time.sleep(5) @then(u'I should be on Statistics Page') def step_impl(context): text = context.driver.title print(text) assert text == 'Statistics' @when(u'I click on Display') def step_impl(context): context.manager_home_page.display().click() time.sleep(5) @then(u'I should be on Reimbursements Page') def step_impl(context): text = context.driver.title print(text) assert text == 'Reimbursements'
from abc import abstractmethod import numpy as np from scipy.optimize import minimize from ..opt_control_defaults import lbfgsb_control_defaults from ..output import ( add_g_to_retlist, add_llik_to_retlist, add_posterior_to_retlist, df_ret_str, g_in_output, g_ret_str, llik_in_output, llik_ret_str, posterior_in_output, ) from ..workhorse_parametric import check_g_init, handle_optmethod_parameter from .base import BaseEBNM class ParametricEBNM(BaseEBNM): @property def _pointmass(self) -> bool: return True @property @abstractmethod def _class_name(self) -> str: pass @property def _scale_name(self) -> str: return "scale" @property def _mode_name(self) -> str: return "mean" def _fit(self, x, s, output, control): self._checkg(self.g_init, self.fix_g, self.mode, self.scale, self._pointmass) par_init = self._initpar(self.g_init, self.mode, self.scale, self._pointmass, x, s) if self.fix_g: fix_par = np.array([True, True, True]) else: fix_par = np.array( [not self._pointmass, self.scale != "estimate", self.mode != "estimate"] ) optmethod = handle_optmethod_parameter(self.optmethod, fix_par) x_optset = x s_optset = s if np.any(np.isinf(s)): x_optset = x[np.isfinite(s)] s_optset = s[np.isfinite(s)] optres = self._mle_parametric( x_optset, s_optset, par_init, fix_par, optmethod=optmethod["fn"], use_grad=optmethod["use_grad"], use_hess=optmethod["use_hess"], control=control, ) retlist = dict() if posterior_in_output(output): posterior = self._summres(x, s, optres["par"], output) retlist = add_posterior_to_retlist(retlist, posterior, output) if g_in_output(output): fitted_g = self._partog(par=optres["par"]) retlist = add_g_to_retlist(retlist, fitted_g) if llik_in_output(output): loglik = optres["val"] retlist = add_llik_to_retlist(retlist, loglik) if self.include_posterior_sampler: def post_sampler(nsamp): return self._postsamp(x, s, optres["par"], nsamp) self.posterior_sampler_ = post_sampler if g_ret_str() in retlist: self.fitted_g_ = retlist[g_ret_str()] if df_ret_str() in retlist: self.posterior_ = retlist[df_ret_str()] if llik_ret_str() in retlist: self.log_likelihood_ = retlist[llik_ret_str()] def _mle_parametric(self, x, s, par_init, fix_par, optmethod, use_grad, use_hess, control): scale_factor = 1 / np.median(s[s > 0]) x = x * scale_factor s = s * scale_factor par_init = self._scalepar(par_init, scale_factor) precomp = self._precomp(x, s, par_init, fix_par) fn_params = dict(precomp, x=x, s=s, par_init=par_init, fix_par=fix_par) p = np.array(list(par_init.values()))[~np.array(fix_par)] if (not fix_par[1]) and np.isinf(p[0]): p[0] = np.sign(p[0]) * np.log(len(x)) if all(fix_par): optpar = par_init optval = self._nllik(par=None, calc_grad=False, calc_hess=False, **fn_params) elif optmethod == "lbfgsb": control = dict(lbfgsb_control_defaults(), **control) def fn(par, kwargs): return self._nllik(par, calc_grad=False, calc_hess=False, **kwargs) if use_grad: def gr(par, kwargs): return self._nllik(par, calc_grad=True, calc_hess=False, **kwargs) else: gr = None optres = minimize( fun=fn, x0=p, jac=gr, args=(fn_params,), options=control, method="L-BFGS-B", ) optpar = optres.x optval = optres.fun else: raise NotImplementedError retpar = par_init retpar_values = np.array(list(retpar.values())) if isinstance(optpar, dict): retpar_values[~fix_par] = np.array(list(optpar.values()))[~fix_par] else: retpar_values[~fix_par] = optpar retpar = dict(zip(list(retpar), retpar_values)) retpar = self._scalepar(par=retpar, scale_factor=1 / scale_factor) optval = optval - sum(np.isfinite(x) * np.log(scale_factor)) retlist = self._postcomp( optpar=retpar, optval=optval, x=x, s=s, par_init=par_init, fix_par=fix_par, scale_factor=scale_factor, **precomp, ) return retlist def _checkg(self, g_init, fix_g, mode, scale, pointmass): return check_g_init( g_init=g_init, fix_g=fix_g, mode=mode, scale=scale, pointmass=pointmass, class_name=self._class_name, scale_name=self._scale_name, mode_name=self._mode_name, ) @abstractmethod def _initpar(self, g_init, mode, scale, pointmass, x, s): pass @abstractmethod def _scalepar(self, par, scale_factor): pass @abstractmethod def _precomp(self, x, s, par_init, fix_par): pass @abstractmethod def _nllik(self, par, x, s, par_init, fix_par, calc_grad, calc_hess, **kwargs): pass @abstractmethod def _postcomp(self, optpar, optval, x, s, par_init, fix_par, scale_factor, **kwargs): pass @abstractmethod def _summres(self, x, s, optpar, output): pass @abstractmethod def _partog(self, par): pass @abstractmethod def _postsamp(self, x, s, optpar, nsamp): pass
#!/usr/bin/env python # -*- coding: utf-8 -*- # Written as part of https://www.scrapehero.com/how-to-scrape-amazon-product-reviews-using-python/ import json import requests import urllib import re import shutil def getInfo(url): file = open("list.txt", "w") while True: print(url) file.write(url+'\n') requests.packages.urllib3.disable_warnings(category=requests.packages.urllib3.exceptions.InsecureRequestWarning) page = requests.get(url, verify=False) page_response = page.text regex = r"\(scan: ([^\)]*)\)\n[^\n]*\n <a href=\"([^\"]*)\">Download</a>" matches = re.findall(regex, page_response, re.MULTILINE) #print(matches) #download_file(matches[0][1], matches[0][0]) regex = r"<a class=\"float-right\" href=\"([^\"]*)\"> Next" matches = re.findall(regex, page_response, re.MULTILINE) #print(matches) if len(matches) == 0: break else: url = 'https://szukajwarchiwach.pl' + matches[0] file.close() def download_file(url, local_filename): url = 'https://szukajwarchiwach.pl' + url #local_filename = url.split('/')[-1] requests.packages.urllib3.disable_warnings(category=requests.packages.urllib3.exceptions.InsecureRequestWarning) r = requests.get(url, stream=True, verify=False) with open(local_filename, 'wb') as f: shutil.copyfileobj(r.raw, f) return local_filename getInfo('https://szukajwarchiwach.pl/53/1318/0/-/24/skan/full/4tU7herNt3Ia-i1Xoweoug')
from fastapi import FastAPI # from pydantic import BaseModel # from typing import Optional import random import mechanize from bs4 import BeautifulSoup import html5lib import requests import json rockauto_api = FastAPI() @rockauto_api.get("/") async def root(): return {"message": "Hello World"} @rockauto_api.get("/makes") async def get_makes(): makes_list = [] browser = mechanize.Browser() page_content = browser.open('https://www.rockauto.com/en/catalog/').read() browser.close() soup = BeautifulSoup(page_content, features='html5lib').find_all('div', attrs={'class', 'ranavnode'}) soup_filter = [] # Find US Market Only for x in soup: if 'US' in next(x.children)['value']: soup_filter.append( x.find('a', attrs={'class', 'navlabellink'}) ) # Get [Make, Year, Model, Link] for x in soup_filter: makes_list.append( {'make': x.get_text(), 'link': 'https://www.rockauto.com' + str( x.get('href') ) }) return makes_list @rockauto_api.get("/years/{search_vehicle}") async def get_years( search_make: str, search_link: str ): years_list = [] browser = mechanize.Browser() page_content = browser.open( search_link ).read() browser.close() soup = BeautifulSoup(page_content, features='html5lib').find_all('div', attrs={'class', 'ranavnode'})[1:] soup_filter = [] # Find US Market Only for x in soup: if 'US' in next(x.children)['value']: soup_filter.append( x.find('a', attrs={'class', 'navlabellink'}) ) # Get [Make, Year, Model, Link] for x in soup_filter: years_list.append( {'make': search_make, 'year': x.get_text(), 'link': 'https://www.rockauto.com' + str( x.get('href') ) }) return years_list @rockauto_api.get("/years/{search_vehicle}") async def get_models( search_make: str, search_year: str, search_link: str ): models_list = [] browser = mechanize.Browser() page_content = browser.open( search_link ).read() browser.close() soup = BeautifulSoup(page_content, features='html5lib').find_all('div', attrs={'class', 'ranavnode'})[2:] soup_filter = [] # Find US Market Only for x in soup: if 'US' in next(x.children)['value']: soup_filter.append( x.find('a', attrs={'class', 'navlabellink'}) ) # Get [Make, Year, Model, Link] for x in soup_filter: models_list.append( {'make': search_make, 'year': search_year, 'model': x.get_text(), 'link': 'https://www.rockauto.com' + str( x.get('href') ) }) return models_list @rockauto_api.get("/engines/{search_vehicle}") async def get_engines( search_make: str, search_year: str, search_model: str, search_link: str ): engines_list = [] browser = mechanize.Browser() page_content = browser.open( search_link ).read() browser.close() soup = BeautifulSoup(page_content, features='html5lib').find_all('div', attrs={'class', 'ranavnode'})[3:] soup_filter = [] # Find US Market Only for x in soup: if 'US' in next(x.children)['value']: soup_filter.append( x.find('a', attrs={'class', 'navlabellink'}) ) # Get [Make, Year, Model, Link] for x in soup_filter: engines_list.append( {'make': search_make, 'year': search_year, 'model': search_model, 'engine': x.get_text(), 'link': 'https://www.rockauto.com' + str( x.get('href') ) }) return engines_list @rockauto_api.get("/categories/{search_vehicle}") async def get_categories( search_make: str, search_year: str, search_model: str, search_engine: str, search_link: str ): browser = mechanize.Browser() page_content = browser.open( search_link ).read() browser.close() soup = BeautifulSoup(page_content, features='html5lib').find_all('a', attrs={'class', 'navlabellink'})[4:] return [ { 'make': search_make, 'year': search_year, 'model': search_model, 'engine': search_engine, 'category': x.get_text(), 'link': 'https://www.rockauto.com' + str(x.get('href')), } for x in soup ] @rockauto_api.get("/sub_categories/{search_vehicle}") async def get_sub_categories( search_make: str, search_year: str, search_model: str, search_engine: str, search_category: str, search_link: str ): browser = mechanize.Browser() page_content = browser.open( search_link ).read() browser.close() soup = BeautifulSoup(page_content, features='html5lib').find_all('a', attrs={'class', 'navlabellink'})[5:] return [ { 'make': search_make, 'year': search_year, 'model': search_model, 'engine': search_engine, 'category': search_category, 'sub_category': x.get_text(), 'link': 'https://www.rockauto.com' + str(x.get('href')), } for x in soup ]
""" app.recipe_users.utils ---------------------- Utils file to handle recipe users utilities functions """ from django.contrib.auth.models import BaseUserManager class UserManager(BaseUserManager): """ Manager class to perform users functions """ def create_user( self, email: str, password: str = None, **more_args ): """ Manager function to create a user :param email: Email of the user :param password: Password of the user can be none as well :param more_args: Another arguments in case we modify the user creation functionality :return: created user """ if email is None: exception_message = "An email must be pass" raise ValueError(exception_message) new_user_creation_dict = { 'email': self.normalize_email(email), **more_args } new_user = self.model(**new_user_creation_dict) new_user.set_password(password) new_user.save(using=self._db) return new_user def create_superuser( self, email: str, password: str = None, **more_args ): """ Create a new super user for the app :param email: Email of the user :param password: Password of the user can be none as well :param more_args: Another arguments in case we modify the user creation functionality :return: New super user instance """ new_superuser = self.create_user(email, password, **more_args) new_superuser.is_staff = True new_superuser.is_superuser = True new_superuser.save(using=self._db) return new_superuser
import tkinter import tkinter.messagebox class MyGUI: def __init__(self) -> None: # Create the main window self.window = tkinter.Tk() self.button = tkinter.Button(self.window, text="Click Me", command=self.do_something) self.quit_button = tkinter.Button(self.window, text="Quit", command=self.window.destroy) self.button.pack() self.quit_button.pack() tkinter.mainloop() def do_something(self): tkinter.messagebox.showinfo("Response", "Thanks for the click.") gui = MyGUI()
# Copyright Contributors to the Pyro project. # SPDX-License-Identifier: Apache-2.0 from pyro_models.load import load from pyro_models.utils import data __all__ = [ 'load', 'data' ]
from inspect import getsourcefile from os.path import abspath print(abspath(getsourcefile(lambda:0)))
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import json import warnings import pulumi import pulumi.runtime from typing import Union from . import utilities, tables class Provider(pulumi.ProviderResource): def __init__(__self__, resource_name, opts=None, azure_auth=None, basic_auth=None, config_file=None, host=None, profile=None, token=None, __props__=None, __name__=None, __opts__=None): """ The provider type for the databricks package. By default, resources use package-wide configuration settings, however an explicit `Provider` instance may be created and passed during resource construction to achieve fine-grained programmatic control over provider settings. See the [documentation](https://www.pulumi.com/docs/reference/programming-model/#providers) for more information. :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] config_file: Location of the Databricks CLI credentials file, that is created by `databricks configure --token` command. By default, it is located in ~/.databrickscfg. Check https://docs.databricks.com/dev-tools/cli/index.html#set-up-authentication for docs. Config file credetials will only be used when host/token are not provided. :param pulumi.Input[str] profile: Connection profile specified within ~/.databrickscfg. Please check https://docs.databricks.com/dev-tools/cli/index.html#connection-profiles for documentation. The **azure_auth** object supports the following: * `azureRegion` (`pulumi.Input[str]`) * `client_id` (`pulumi.Input[str]`) * `clientSecret` (`pulumi.Input[str]`) * `managedResourceGroup` (`pulumi.Input[str]`) * `resourceGroup` (`pulumi.Input[str]`) * `subscriptionId` (`pulumi.Input[str]`) * `tenant_id` (`pulumi.Input[str]`) * `workspace_name` (`pulumi.Input[str]`) The **basic_auth** object supports the following: * `password` (`pulumi.Input[str]`) * `username` (`pulumi.Input[str]`) """ if __name__ is not None: warnings.warn("explicit use of __name__ is deprecated", DeprecationWarning) resource_name = __name__ if __opts__ is not None: warnings.warn("explicit use of __opts__ is deprecated, use 'opts' instead", DeprecationWarning) opts = __opts__ if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = dict() __props__['azure_auth'] = pulumi.Output.from_input(azure_auth).apply(json.dumps) if azure_auth is not None else None __props__['basic_auth'] = pulumi.Output.from_input(basic_auth).apply(json.dumps) if basic_auth is not None else None __props__['config_file'] = config_file if host is None: host = utilities.get_env('DATABRICKS_HOST') __props__['host'] = host __props__['profile'] = profile if token is None: token = utilities.get_env('DATABRICKS_TOKEN') __props__['token'] = token super(Provider, __self__).__init__( 'databricks', resource_name, __props__, opts) def translate_output_property(self, prop): return tables._CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop def translate_input_property(self, prop): return tables._SNAKE_TO_CAMEL_CASE_TABLE.get(prop) or prop
from unittest import TestCase from pybridair.auth import * from pybridair.data import * auth = BridAuth('10.101.30.42') class TestGetStatus(TestCase): """ Test pybrid.data.get_status function against live Brid device """ def test_get_current_air(self): """ Tests pybrid.data.get_status function against live Brid device """ current_status = get_status(auth) data_points = ['Time', 'Sensors', 'Settings', 'Filters'] for data_point in current_status.keys(): self.assertIn(data_point, data_points) class TestGetHistory(TestCase): """ Test pybrid.data.get_status function against live Brid device """ def test_get_history(self): """ Tests pybrid.data.get_history function against live Brid device """ history = get_history(auth) data_points = ['t', 'V', 'T', 'H', 'C'] for data_point in history[0].keys(): self.assertIn(data_point, data_points)
import struct import pyb CONFIG_MODE = 0x00 ACCONLY_MODE = 0x01 MAGONLY_MODE = 0x02 GYRONLY_MODE = 0x03 ACCMAG_MODE = 0x04 ACCGYRO_MODE = 0x05 MAGGYRO_MODE = 0x06 AMG_MODE = 0x07 IMUPLUS_MODE = 0x08 COMPASS_MODE = 0x09 M4G_MODE = 0x0a NDOF_FMC_OFF_MODE = 0x0b NDOF_MODE = 0x0c AXIS_P0 = bytes([0x21, 0x04]) AXIS_P1 = bytes([0x24, 0x00]) AXIS_P2 = bytes([0x24, 0x06]) AXIS_P3 = bytes([0x21, 0x02]) AXIS_P4 = bytes([0x24, 0x03]) AXIS_P5 = bytes([0x21, 0x01]) AXIS_P6 = bytes([0x21, 0x07]) AXIS_P7 = bytes([0x24, 0x05]) _MODE_REGISTER = 0x3d _POWER_REGISTER = 0x3e _AXIS_MAP_CONFIG = 0x41 class BNO055: def __init__(self, i2c, address=0x28, mode = NDOF_MODE, axis = AXIS_P4): self.i2c = i2c self.address = address if self.read_id() != bytes([0xA0, 0xFB, 0x32, 0x0F]): raise RuntimeError('Failed to find expected ID register values. Check wiring!') self.operation_mode(CONFIG_MODE) self.system_trigger(0x20)# reset pyb.delay(700) self.power_mode(0x00)#POWER_NORMAL self.axis(axis) self.page(0) pyb.delay(10) self.operation_mode(mode) self.system_trigger(0x80) # external oscillator pyb.delay(200) def read_registers(self, register, size=1): return(self.i2c.readfrom_mem(self.address, register, size)) def write_registers(self, register, data): self.i2c.writeto_mem(self.address, register, data) def operation_mode(self, mode=None): if mode: self.write_registers(_MODE_REGISTER, bytes([mode])) else: return(self.read_registers(_MODE_REGISTER, 1)[0]) def system_trigger(self, data): self.write_registers(0x3f, bytes([data])) def power_mode(self, mode=None): if mode: self.write_registers(_POWER_REGISTER, bytes([mode])) else: return(self.read_registers(_POWER_REGISTER, 1)) def page(self, num=None): if num: self.write_registers(0x3f, bytes([num])) else: self.read_registers(0x3f) def temperature(self): return(self.read_registers(0x34, 1)[0]) def read_id(self): return(self.read_registers(0x00, 4)) def axis(self, placement=None): if placement: self.write_registers(_AXIS_MAP_CONFIG, placement) else: return(self.read_registers(_AXIS_MAP_CONFIG, 2)) def quaternion(self): data = struct.unpack("<hhhh", self.read_registers(0x20, 8)) return [d/(1<<14) for d in data] #[w, x, y, z] def euler(self): data = struct.unpack("<hhh", self.read_registers(0x1A, 6)) return [d/16 for d in data] # [yaw, roll, pitch] def accelerometer(self): data = struct.unpack("<hhh", self.read_registers(0x08, 6)) return [d/100 for d in data] #[x, y, z] def magnetometer(self): data = struct.unpack("<hhh", self.read_registers(0x0E, 6)) return [d/16 for d in data] # [x, y, z] def gyroscope(self): data = struct.unpack("<hhh", self.read_registers(0x14, 6)) return [d/900 for d in data] #[x, y, z] def linear_acceleration(self): data = struct.unpack("<hhh", self.read_registers(0x28, 6)) return [d/100 for d in data] #[x, y, z] def gravity(self): data = struct.unpack("<hhh", self.read_registers(0x2e, 6)) return [d/100 for d in data] #[x, y, z]
import math import torch import torch.nn as nn import torch.nn.functional as F from .SwitchNorm import SwitchNorm2d def make_layers( cfg, block, in_chns=None, norm=True, skip=False, downsampling="maxpooling", upsampling="transconv" ): layers = [] cur_chns = in_chns for ii, v in enumerate(cfg): if v == "M": if downsampling == "maxpooling": layers += [nn.MaxPool2d(kernel_size=3, stride=2, padding=1)] elif downsampling == "strideconv": layers += [nn.Conv2d(cur_chns, cfg[ii + 1], kernel_size=3, stride=2, padding=1)] cur_chns = cfg[ii + 1] else: raise ValueError(f"unsupported down-sampling method") elif v == "U": if upsampling == "transconv": layers += [nn.ConvTranspose2d(cur_chns, cfg[ii + 1], kernel_size=4, stride=2, padding=1)] cur_chns = cfg[ii + 1] elif upsampling == "bilinear": layers += [nn.Upsample(scale_factor=2, mode="bilinear")] else: raise ValueError(f"unsupported up-sampling method") elif v == "D": layers += [nn.Dropout2d(p=0.3)] else: if ii == 0: layers += [DoubleConv(cur_chns, v, norm=norm)] else: in_v = 2 * v if skip else cur_chns layers += [block(in_v, v, norm=norm)] cur_chns = v return nn.Sequential(*layers) class Encoder(nn.Module): def __init__(self, cfg, block, in_chns, norm=True, downsampling="maxpooling"): super(Encoder, self).__init__() self.cfg = cfg self.layers = make_layers(self.cfg, block, in_chns, norm=norm, downsampling=downsampling) def forward(self, xt, ht, cell_list, delta_t, split=False): kk = 0 out = [] if split: xt_out = [] for v, module in zip(self.cfg, self.layers.children()): xt = module(xt) if isinstance(v, int): if split: xt_out.append(xt) xt = cell_list[kk](xt, ht[kk], delta_t) kk += 1 out.append(xt) if split: return out, xt_out else: return out class Decoder(nn.Module): def __init__(self, cfg, in_chns, skip=True, norm=True, upsampling="transconv"): super(Decoder, self).__init__() self.cfg = ["U" if v == "M" else v for v in cfg[::-1]] self.cfg = self.cfg[1:] self.skip = skip self.layers = make_layers(self.cfg, SingleConv, in_chns, norm=norm, skip=skip, upsampling=upsampling) def forward(self, x): out = [] kk = -1 for ii, (v, module) in enumerate(zip(self.cfg, self.layers.children())): if ii == 0: y = module(x[kk]) kk -= 1 elif isinstance(v, int): if self.skip: y = torch.cat((y, x[kk]), dim=1) kk -= 1 y = module(y) out.append(y) else: y = module(y) return out class DoubleConv(nn.Module): def __init__(self, in_chns, out_chns, norm=True): super(DoubleConv, self).__init__() self.layers = nn.Sequential( SingleConv(in_chns, out_chns, norm=norm), SingleConv(out_chns, out_chns, norm=norm) ) def forward(self, x): return self.layers(x) class DoublePreActConv(nn.Module): def __init__(self, in_chns, out_chns, norm=True): super(DoublePreActConv, self).__init__() self.layers = nn.Sequential( SinglePreActConv(in_chns, out_chns, norm=norm), SinglePreActConv(out_chns, out_chns, norm=norm) ) def forward(self, x): return self.layers(x) class ResDoubleConv(nn.Module): def __init__(self, in_chns, out_chns, norm=True): super(ResDoubleConv, self).__init__() self.block = DoublePreActConv(in_chns, out_chns, norm=norm) def forward(self, x): y = self.block(x) delta_c = y.size(1) - x.size(1) x_skip = F.pad(x, (0, 0, 0, 0, 0, delta_c)) if delta_c > 0 else x return y + x_skip class SingleConv(nn.Module): def __init__(self, in_chns, out_chns, kernel_size=3, stride=1, padding=1, norm=True, act=True): super(SingleConv, self).__init__() layers = [ nn.Conv2d( in_chns, out_chns, kernel_size=kernel_size, stride=stride, padding=padding, bias=not norm ), ] if norm: layers.append(SwitchNorm2d(out_chns)) if act: layers.append(nn.ReLU(inplace=True)) self.layers = nn.Sequential(*layers) def forward(self, x): return self.layers(x) class SingleDeconv(nn.Module): def __init__(self, in_chns, out_chns, kernel_size=4, stride=2, padding=1, norm=True, act=True): super(SingleDeconv, self).__init__() layers = [ nn.ConvTranspose2d( in_chns, out_chns, kernel_size=kernel_size, stride=stride, padding=padding, bias=not norm ), ] if norm: layers.append(SwitchNorm2d(out_chns)) if act: layers.append(nn.ReLU(inplace=True)) self.layers = nn.Sequential(*layers) def forward(self, x): return self.layers(x) class SinglePreActConv(nn.Module): def __init__(self, in_chns, out_chns, norm=True): super(SinglePreActConv, self).__init__() if norm: layers = [SwitchNorm2d(in_chns), nn.ReLU(inplace=True)] else: layers = [nn.ReLU(inplace=True)] layers.append(nn.Conv2d(in_chns, out_chns, kernel_size=3, padding=1, bias=not norm)) self.layers = nn.Sequential(*layers) def forward(self, x): return self.layers(x) class DSVBlock(nn.Module): def __init__(self, in_chns, out_chns, scale_factor): super(DSVBlock, self).__init__() layers = [ nn.Conv2d(in_chns, out_chns, kernel_size=1, stride=1, padding=0), ] if scale_factor > 1: layers += [nn.Upsample(scale_factor=scale_factor, mode="bilinear", align_corners=True)] self.block = nn.Sequential(*layers) def forward(self, x): return self.block(x) class DSVLayer(nn.Module): def __init__(self, nb_filter, out_chns, num_layers=1): super(DSVLayer, self).__init__() self.num_layers = num_layers layers = [] for ii in range(self.num_layers): layers.append(DSVBlock(nb_filter[ii], out_chns, scale_factor=2 ** ii)) self.block = nn.ModuleList(layers) def forward(self, x): out = [] for ii in range(1, self.num_layers + 1): out.append(self.block[ii - 1](x[-ii])) y = out[0] for ii in range(1, self.num_layers): y += out[ii] return y def init_weights(net, init_type="normal"): if init_type == "normal": net.apply(weights_init_normal) elif init_type == "xavier": net.apply(weights_init_xavier) elif init_type == "kaiming": net.apply(weights_init_kaiming) elif init_type == "orthogonal": net.apply(weights_init_orthogonal) else: raise NotImplementedError("initialization method [%s] is not implemented" % init_type) def weights_init_normal(m): classname = m.__class__.__name__ # print(classname) if classname.find("Conv") != -1: nn.init.normal_(m.weight.data, 0.0, 0.02) elif classname.find("Linear") != -1: nn.init.normal_(m.weight.data, 0.0, 0.02) elif classname.find("BatchNorm") != -1: nn.init.normal_(m.weight.data, 1.0, 0.02) nn.init.constant_(m.bias.data, 0.0) def weights_init_xavier(m): classname = m.__class__.__name__ # print(classname) if classname.find("Conv") != -1: nn.init.xavier_normal_(m.weight.data, gain=1) elif classname.find("Linear") != -1: nn.init.xavier_normal_(m.weight.data, gain=1) elif classname.find("BatchNorm") != -1: nn.init.normal_(m.weight.data, 1.0, 0.02) nn.init.constant_(m.bias.data, 0.0) def weights_init_kaiming(m): classname = m.__class__.__name__ # print(classname) if classname.find("Conv") != -1: nn.init.kaiming_normal_(m.weight.data, a=0, mode="fan_in") elif classname.find("Linear") != -1: nn.init.kaiming_normal_(m.weight.data, a=0, mode="fan_in") elif classname.find("BatchNorm") != -1: nn.init.normal_(m.weight.data, 1.0, 0.02) nn.init.constant_(m.bias.data, 0.0) def weights_init_orthogonal(m): classname = m.__class__.__name__ # print(classname) if classname.find("Conv") != -1: nn.init.orthogonal_(m.weight.data, gain=1) elif classname.find("Linear") != -1: nn.init.orthogonal_(m.weight.data, gain=1) elif classname.find("BatchNorm") != -1: nn.init.normal_(m.weight.data, 1.0, 0.02) nn.init.constant_(m.bias.data, 0.0)
# minimal potential length of requirement test_text = 'При первом открытии а п.1.23приложения "Х" должен появляться новый экран. ' \ '1.1 Если экран успешно открылся, то начнет загружаться новая страница. ' \ '1.2 Если появилась ошибка, то стоит отобразить юзеру модальное окно с текстом ошибки.' \ 'Цвет модального окна: #232832.' \ '1.2.1 В модальном окне при нажатии на "Отмена" выполнение перейдет к п. 1.1. ' # todo for future functionality: add notification if requirement # is more than X symbols, offer to divide into 2 reqs [i.e. if more than 90 symbols] # todo implement main algo for dividing input name to N sentences # todo divided sentences should have id , because of further sequential or parallel processing # [labeling -> semantics handling -> structure handling, etc. class ReqSeparator: """Separates input name to N sentences for further cleaning and improving each requirement.""" sentences = [] def __init__(self, text): print('\n===============') self.text = text.strip() def get_text(self): return self.text def divide_reqs(self): l_chr_index = 0 r_chr_index = 90 max_req_len = 90 for x in self.text.split(): print(len(x)) while r_chr_index != (len(self.text) - 1): # print(r_chr_index) # print(len(self.name[l_chr_index:r_chr_index])) if len(self.text[l_chr_index:r_chr_index]) >= max_req_len: # print(self.name[l_chr_index:r_chr_index].split()) self.sentences.append(self.text[l_chr_index:r_chr_index]) r_chr_index += r_chr_index l_chr_index += r_chr_index print(r_chr_index) print(self.sentences) ReqSeparator(test_text).divide_reqs()
import numpy as np import tensorflow as tf from gym.spaces import Box, Discrete EPS = 1e-8 def placeholder(dim=None): return tf.placeholder(dtype=tf.float32, shape=(None,dim) if dim else (None,)) def placeholders(*args): return [placeholder(dim) for dim in args] def placeholder_from_space(space): if space is None: return tf.placeholder(dtype=tf.float32,shape=(None,)) if isinstance(space, Box): return tf.placeholder(dtype=tf.float32, shape=(None,space.shape[0])) elif isinstance(space, Discrete): return tf.placeholder(dtype=tf.int32, shape=(None,1)) raise NotImplementedError def placeholders_from_space(*args): return [placeholder_from_space(dim) for dim in args] def mlp(x, hidden_sizes=(32,), activation=tf.tanh, output_activation=None): for h in hidden_sizes[:-1]: x = tf.layers.dense(x, units=h, activation=activation) return tf.layers.dense(x, units=hidden_sizes[-1], activation=output_activation) def get_vars(scope): return [x for x in tf.global_variables() if scope in x.name] def count_vars(scope): v = get_vars(scope) return sum([np.prod(var.shape.as_list()) for var in v]) # ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def mlp_ensemble_with_prior(x, hidden_sizes=(32,), ensemble_size=10, prior_scale=1.0, activation=None, output_activation=None): # An ensemble of Prior nets. priors = [] for _ in range(ensemble_size): x_proxy = x for h in hidden_sizes[:-1]: x_proxy = tf.layers.dense(x_proxy, units=h, activation=activation, kernel_initializer=tf.variance_scaling_initializer(2.0)) priors.append(tf.stop_gradient(tf.layers.dense(x_proxy, units=hidden_sizes[-1], activation=output_activation, kernel_initializer=tf.variance_scaling_initializer(2.0)))) # outputs: 10 x shape(?, 4) prior_nets = priors # 10 x shape(?, 4) # An ensemble of Q nets. qs = [] for _ in range(ensemble_size): x_proxy = x for h in hidden_sizes[:-1]: x_proxy = tf.layers.dense(x_proxy, units=h, activation=activation, kernel_initializer=tf.variance_scaling_initializer(2.0)) qs.append(tf.layers.dense(x_proxy, units=hidden_sizes[-1], activation=output_activation, kernel_initializer=tf.variance_scaling_initializer(2.0))) q_nets = qs # An ensemble of Q models. q_models = [q_nets[i] + prior_scale * prior_nets[i] for i in range(ensemble_size)] return q_models """ Policies """ def softmax_policy(alpha, v_x, act_dim): pi_log = tf.nn.log_softmax(v_x/alpha, axis=1) mu = tf.argmax(pi_log, axis=1) # tf.random.multinomial( logits, num_samples, seed=None, name=None, output_dtype=None ) # logits: 2-D Tensor with shape [batch_size, num_classes]. Each slice [i, :] represents the unnormalized log-probabilities for all classes. # num_samples: 0-D. Number of independent samples to draw for each row slice. pi = tf.squeeze(tf.random.multinomial(pi_log, num_samples=1), axis=1) # logp_pi = tf.reduce_sum(tf.one_hot(mu, depth=act_dim) * pi_log, axis=1) # use max Q(s,a) logp_pi = tf.reduce_sum(tf.one_hot(pi, depth=act_dim) * pi_log, axis=1) # logp_pi = tf.reduce_sum(tf.exp(pi_log)*pi_log, axis=1) # exact entropy return mu, pi, logp_pi """ Actor-Critics """ def mlp_actor_critic(x, a, alpha, hidden_sizes=(400,300), ensemble_size=10, activation=tf.nn.relu, output_activation=None, policy=softmax_policy, action_space=None): if x.shape[1] == 128: # for Breakout-ram-v4 x = (x - 128.0) / 128.0 # x: shape(?,128) act_dim = action_space.n a_one_hot = tf.squeeze(tf.one_hot(a, depth=act_dim), axis=1) # shape(?,4) #vfs # vf_mlp = lambda x: mlp(x, list(hidden_sizes) + [act_dim], activation, None) # return: shape(?,4) vf_mlp = lambda x: mlp_ensemble_with_prior(x, list(hidden_sizes) + [act_dim], ensemble_size=ensemble_size, activation=activation, output_activation=output_activation) with tf.variable_scope('q1'): vx1_a = vf_mlp(x) q1 = [tf.reduce_sum(vx1_a[i]*a_one_hot, axis=1) for i in range(ensemble_size)] with tf.variable_scope('q1', reuse=True): vx1_b= vf_mlp(x) # policy mu, pi, logp_pi = [], [], [] for i in range(ensemble_size): mu_pi_logpi = policy(alpha, vx1_b[i], act_dim) mu.append(mu_pi_logpi[0]) pi.append(mu_pi_logpi[1]) logp_pi.append(mu_pi_logpi[2]) # mu_one_hot = tf.one_hot(mu, depth=act_dim) pi_one_hot = [tf.one_hot(pi[i], depth=act_dim) for i in range(ensemble_size)] # q1_pi = tf.reduce_sum(v_x*mu_one_hot, axis=1) # use max Q(s,a) q1_pi = [tf.reduce_sum(vx1_b[i] * pi_one_hot[i], axis=1) for i in range(ensemble_size)] with tf.variable_scope('q2'): vx2_a = vf_mlp(x) q2 = [tf.reduce_sum(vx2_a[i]*a_one_hot, axis=1) for i in range(ensemble_size)] with tf.variable_scope('q2', reuse=True): vx2_b = vf_mlp(x) # q2_pi = tf.reduce_sum(vf_mlp(x)*mu_one_hot, axis=1) # use max Q(s,a) q2_pi = [tf.reduce_sum(vx2_b[i] * pi_one_hot[i], axis=1) for i in range(ensemble_size)] # 10 x shape(?,) return mu, pi, logp_pi, q1, q1_pi, q2, q2_pi
from predict_flask import classify body = "Al-Sisi has denied Israeli reports stating that he offered to extend the Gaza Strip." head = "Apple installing safes in-store to protect gold Watch Edition" print (classify([head, body]))
from django.urls import path, re_path from apps.user import views urlpatterns = [ path('register/', views.RegisterView.as_view(), name='register'), # 用户注册页面 path('login/', views.LoginView.as_view(), name='login'), # 用户注册页面 re_path('active/(?P<token>.*)$', views.ActiveView.as_view(), name='active'), # 用户账号激活路由 path('logout/', views.LogoutView.as_view(), name='logout'), # 用户注销登录路由 re_path(r'^$', views.UserInfoView.as_view(), name='users'), # 用户中心-信息页 re_path(r'^order/(?P<page>\d+)$', views.UserOrderView.as_view(), name='order'), # 用户中心-订单页 path(r'address/', views.AddressView.as_view(), name='address'), # 用户中心-地址页 path(r'get_valid_img/', views.get_valid_img), ]
#!/usr/bin/env python import json import sys release_type="patch" if len(sys.argv) > 1: release_type = sys.argv[1] default_version_data = \ """ { "version": { "major": 0, "minor": 0, "patch": 0 } } """ # supported types types = ['major', 'minor', 'patch'] def get_version(release_type_): if release_type_ not in types: print("Invalid release type: {}!".format(release_type_)) exit(1) try: with open("version.json", "r") as fh: version = json.load(fh) except FileNotFoundError: version = json.loads(default_version_data) #print("Version file not found, starting from {}!".format(as_string(version))) #print(version) except IOError: print("IO error, don't know how to deal with this!") exit(1) if release_type.lower() == "patch": version['version']['patch'] = version['version']['patch'] + 1 elif release_type.lower() == "minor": version['version']['minor'] = version['version']['minor'] + 1 # Patch version MUST be reset to 0 when minor version is incremented. version['version']['patch'] = 0 elif release_type.lower() == "major": version['version']['major'] = version['version']['major'] + 1 # Minor and patch version MUST be reset to 0 when major version is incremented. version['version']['minor'] = 0 version['version']['patch'] = 0 # write the version file try: with open("version.json", "w") as fh: json.dump(version, fh) except IOError: print("IO error, don't know how to deal with this!") exit(1) return version def as_string(version_): return "{0}.{1}.{2}".format( version_['version']['major'], version_['version']['minor'], version_['version']['patch'] ) v = get_version(release_type_=release_type) print(as_string(version_=v))
from flee import flee from flee.datamanager import handle_refugee_data from flee.datamanager import DataTable # DataTable.subtract_dates() from flee import InputGeography import numpy as np import flee.postprocessing.analysis as a import sys import argparse import time def date_to_sim_days(date): return DataTable.subtract_dates(date, "2010-01-01") def test_par_seq(end_time=10, last_physical_day=10, parallel_mode="advanced", latency_mode="high_latency", inputdir="test_data/test_input_csv", initialagents=100000, newagentsperstep=1000): t_exec_start = time.time() e = flee.Ecosystem() e.parallel_mode = parallel_mode e.latency_mode = latency_mode ig = InputGeography.InputGeography() ig.ReadLocationsFromCSV("%s/locations.csv" % inputdir) ig.ReadLinksFromCSV("%s/routes.csv" % inputdir) ig.ReadClosuresFromCSV("%s/closures.csv" % inputdir) e, lm = ig.StoreInputGeographyInEcosystem(e) #print("Network data loaded") #d = handle_refugee_data.RefugeeTable(csvformat="generic", data_directory="test_data/test_input_csv/refugee_data", start_date="2010-01-01", data_layout="data_layout.csv") output_header_string = "Day," camp_locations = e.get_camp_names() ig.AddNewConflictZones(e, 0) # All initial refugees start in location A. e.add_agents_to_conflict_zones(initialagents) for l in camp_locations: output_header_string += "%s sim,%s data,%s error," % ( lm[l].name, lm[l].name, lm[l].name) output_header_string += "Total error,refugees in camps (UNHCR),total refugees (simulation),raw UNHCR refugee count,refugees in camps (simulation),refugee_debt" if e.getRankN(0): print(output_header_string) # Set up a mechanism to incorporate temporary decreases in refugees # raw (interpolated) data from TOTAL UNHCR refugee count only. refugees_raw = 0 t_exec_init = time.time() if e.getRankN(0): my_file = open('perf.log', 'w', encoding='utf-8') print("Init time,{}".format(t_exec_init - t_exec_start), file=my_file) for t in range(0, end_time): if t > 0: ig.AddNewConflictZones(e, t) # Determine number of new refugees to insert into the system. new_refs = newagentsperstep refugees_raw += new_refs # Insert refugee agents e.add_agents_to_conflict_zones(new_refs) e.refresh_conflict_weights() t_data = t e.enact_border_closures(t) e.evolve() # Calculation of error terms errors = [] abs_errors = [] camps = [] for i in camp_locations: camps += [lm[i]] # calculate retrofitted time. refugees_in_camps_sim = 0 for c in camps: refugees_in_camps_sim += c.numAgents output = "%s" % t for i in range(0, len(camp_locations)): output += ",%s" % (lm[camp_locations[i]].numAgents) if refugees_raw > 0: output += ",%s,%s" % (e.numAgents(), refugees_in_camps_sim) else: output += ",0,0" if e.getRankN(t): print(output) t_exec_end = time.time() if e.getRankN(0): my_file = open('perf.log', 'a', encoding='utf-8') print("Time in main loop,{}".format( t_exec_end - t_exec_init), file=my_file) if __name__ == "__main__": end_time = 10 last_physical_day = 10 parser = argparse.ArgumentParser( description='Run a parallel Flee benchmark.') parser.add_argument("-p", "--parallelmode", type=str, default="advanced", help="Parallelization mode (advanced, classic, cl-hilat OR adv-lowlat)") parser.add_argument("-N", "--initialagents", type=int, default=100000, help="Number of agents at the start of the simulation.") parser.add_argument("-d", "--newagentsperstep", type=int, default=1000, help="Number of agents added per time step.") parser.add_argument("-t", "--simulationperiod", type=int, default=10, help="Duration of the simulation in days.") parser.add_argument("-i", "--inputdir", type=str, default="test_data/test_input_csv", help="Directory with parallel test input. Must have locations named 'A','D','E' and 'F'.") args = parser.parse_args() end_time = args.simulationperiod last_physical_day = args.simulationperiod inputdir = args.inputdir initialagents = args.initialagents newagentsperstep = args.newagentsperstep if args.parallelmode in ["advanced", "adv-lowlat"]: parallel_mode = "loc-par" else: parallel_mode = "classic" if args.parallelmode in ["advanced", "cl-hilat"]: latency_mode = "high_latency" else: latency_mode = "low_latency" print("MODE: ", args, file=sys.stderr) test_par_seq(end_time, last_physical_day, parallel_mode, latency_mode, inputdir, initialagents, newagentsperstep)
#!/usr/bin/env python # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # NASA Jet Propulsion Laboratory # California Institute of Technology # (C) 2008 All Rights Reserved # # <LicenseText> # # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ from __future__ import unicode_literals from __future__ import print_function from __future__ import division from __future__ import absolute_import from future import standard_library standard_library.install_aliases() from builtins import object import json from kombu.common import maybe_declare from kombu.utils.debug import setup_logging from kombu import Connection, Exchange, Queue from datetime import datetime import logging logger = logging.getLogger() class KombuMessenger(object): """ Sends messages via Kombu. """ def __init__(self, queueHost, queueName, id, hostname, pid, type): """ Initializer. """ self._queueHost = queueHost self._queueName = queueName self._id = id self._hostname = hostname self._pid = pid self._type = type self._connection = Connection( 'pyamqp://guest:guest@%s:5672//' % self._queueHost) self._connection.ensure_connection() self._exchange = Exchange(self._queueName, type='direct') self._queue = Queue(self._queueName, self._exchange, routing_key=self._queueName) self._producer = self._connection.Producer() self._publish = self._connection.ensure( self._producer, self._producer.publish, max_retries=3) # end def def __del__(self): """ Finalizer. """ self._connection.close() # end def def __str__(self): """ Gets the string representation of this object. @return: the string representation of this object. @rtype: str """ return 'connection: "%s", id: "%s", queueName: "%s", hostname: "%s", pid: "%s", type: "%s"' % (self._connection, self._id, self._queueName, self._hostname, self._pid, self._type) # end def def send(self, chunk): """ Send stream chunk with JSON descriptor. """ context = { 'id': self._id, 'datetime': datetime.isoformat(datetime.now()), 'hostname': self._hostname, 'pid': self._pid, 'type': self._type, 'chunk': chunk } #contextStr = json.dumps(context) self._publish(context, routing_key=self._queueName, declare=[self._queue]) # with self._connection.Producer() as producer: # publish = self._connection.ensure(producer, producer.publish, max_retries=3) # publish(context, routing_key=self._queueName, declare=[self._queue]) # print 'channel.basic_publish(): %s' % contextStr # end def # end class
from __future__ import absolute_import, division, print_function import stripe import pytest pytestmark = pytest.mark.asyncio TEST_RESOURCE_ID = "or_123" class TestOrder(object): async def test_is_listable(self, request_mock): resources = await stripe.Order.list() request_mock.assert_requested("get", "/v1/orders") assert isinstance(resources.data, list) assert isinstance(resources.data[0], stripe.Order) async def test_is_retrievable(self, request_mock): resource = await stripe.Order.retrieve(TEST_RESOURCE_ID) request_mock.assert_requested( "get", "/v1/orders/%s" % TEST_RESOURCE_ID ) assert isinstance(resource, stripe.Order) async def test_is_creatable(self, request_mock): resource = await stripe.Order.create(currency="usd") request_mock.assert_requested("post", "/v1/orders") assert isinstance(resource, stripe.Order) async def test_is_saveable(self, request_mock): resource = await stripe.Order.retrieve(TEST_RESOURCE_ID) resource.metadata["key"] = "value" await resource.save() request_mock.assert_requested( "post", "/v1/orders/%s" % TEST_RESOURCE_ID ) async def test_is_modifiable(self, request_mock): resource = await stripe.Order.modify( TEST_RESOURCE_ID, metadata={"key": "value"} ) request_mock.assert_requested( "post", "/v1/orders/%s" % TEST_RESOURCE_ID ) assert isinstance(resource, stripe.Order) async def test_can_pay(self, request_mock): order = await stripe.Order.retrieve(TEST_RESOURCE_ID) resource = await order.pay(source="src_123") request_mock.assert_requested( "post", "/v1/orders/%s/pay" % TEST_RESOURCE_ID, {"source": "src_123"}, ) assert isinstance(resource, stripe.Order) assert resource is order async def test_can_pay_classmethod(self, request_mock): resource = await stripe.Order.pay(TEST_RESOURCE_ID, source="src_123") request_mock.assert_requested( "post", "/v1/orders/%s/pay" % TEST_RESOURCE_ID, {"source": "src_123"}, ) assert isinstance(resource, stripe.Order) async def test_can_return(self, request_mock): order = await stripe.Order.retrieve(TEST_RESOURCE_ID) resource = await order.return_order() request_mock.assert_requested( "post", "/v1/orders/%s/returns" % TEST_RESOURCE_ID ) assert isinstance(resource, stripe.OrderReturn) async def test_can_return_classmethod(self, request_mock): resource = await stripe.Order.return_order(TEST_RESOURCE_ID) request_mock.assert_requested( "post", "/v1/orders/%s/returns" % TEST_RESOURCE_ID ) assert isinstance(resource, stripe.OrderReturn)
# Copyright (c) 2009 by Yaco S.L. # # This file is part of PyCha. # # PyCha is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # PyCha is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with PyCha. If not, see <http://www.gnu.org/licenses/>. import sys import cairo import pycha.stackedbar def stackedBarChart(output, chartFactory): surface = cairo.ImageSurface(cairo.FORMAT_ARGB32, 400, 200) dataSet = ( ('internal', [(0, 8), (1, 10), (2, 5), (3, 6)]), ('external', [(0, 5), (1, 2), (2, 4), (3, 8)]), ) options = { 'background': { 'chartColor': '#ffeeff', 'baseColor': '#ffffff', 'lineColor': '#444444', }, 'colorScheme': { 'name': 'gradient', 'args': { 'initialColor': 'red', }, }, 'legend': { 'hide': True, }, 'padding': { 'left': 75, 'bottom': 55, }, 'title': 'Sample Chart' } chart = chartFactory(surface, options) chart.addDataset(dataSet) chart.render() surface.write_to_png(output) if __name__ == '__main__': if len(sys.argv) > 1: output = sys.argv[1] else: output = 'stackedbarchart.png' stackedBarChart('v' + output, pycha.stackedbar.StackedVerticalBarChart) stackedBarChart('h' + output, pycha.stackedbar.StackedHorizontalBarChart)
from datetime import datetime from time import mktime import feedparser import requests from analyzer.tasks import parse_html_entry from celery import shared_task from celery.utils.log import get_task_logger from django.db.models import Q from django.utils.timezone import make_aware from crawler.models import RSSEntry, RSSFeed logger = get_task_logger(__name__) def request_article(rss_entry, session=requests.Session(), timeout=8.0): """Perform the GET request and persist the HTML and meta in the database.""" resp = None try: resp = session.get(rss_entry.link, timeout=timeout) except requests.exceptions.Timeout: # connection to server timed out or server did not send data in time logger.warn(f"Request timeout for `{rss_entry}`") except requests.exceptions.RequestException as e: # arbitrary requests related exception logger.warn(f"Could not GET `{rss_entry}`: `{e}`") if resp is None: # request response not instantiated return # response can be an http error, so we want to track all the meta content_type = resp.headers.get("Content-Type", "") raw_html = None if "text" in content_type: raw_html = resp.text else: logger.warn(f"Unsupported Content-Type `{content_type}` from `{rss_entry}`") raw_html = "" rss_entry, _ = RSSEntry.objects.update_or_create( pk=rss_entry.pk, defaults={ "raw_html": raw_html, "resolved_url": resp.url, "status_code": resp.status_code, "requested_at": make_aware(datetime.now()), "headers": dict(resp.headers), }, ) return rss_entry @shared_task def retrieve_feed_entries(rss_feed_id): """Given an RSSFeed, iterate through all RSSEntries and download the HTML.""" try: rss_feed = RSSFeed.objects.get(pk=rss_feed_id) data = feedparser.parse(rss_feed.url) except Exception as e: logger.warn(f"Failed to parse feed `{rss_feed}`: `{e}`") data = {} session = requests.Session() # Parse all of the RSS entries and create model instances for entry in data.get("entries", []): if any(req_key not in entry for req_key in ["link", "title"]): logger.warn(f"Entry missing 'link' or 'title' `{entry}` from `{rss_feed}`") continue pub_date = None # may not always exist if "published_parsed" in entry: # https://stackoverflow.com/a/1697907/1942263 pub_date = datetime.utcfromtimestamp(mktime(entry["published_parsed"])) pub_date = make_aware(pub_date) description = entry.get("description", "") if not description and "summary" in entry: description = entry["summary"] rss_entry, _created = RSSEntry.objects.update_or_create( link=entry["link"], defaults={ "feed": rss_feed, "title": entry["title"], "description": description, "pub_date": pub_date, }, ) if not rss_entry.raw_html: rss_entry = request_article(rss_entry, session=session) if not hasattr(rss_entry, "article"): if "html" in rss_entry.headers.get("Content-Type"): parse_html_entry.delay(rss_entry.pk) @shared_task def dispatch_crawl_entries(): """Iterate through valid RSSEntries that don't have html and retry query""" missed_entries = RSSEntry.objects.filter( Q(raw_html__isnull=True) # raw_html is null AND & ( # Content-Type header is null OR Q(**{"headers__Content-Type__isnull": True}) | # Content-Type header is textual Q(**{"headers__Content-Type__icontains": "text/html"}) ) ) session = requests.Session() for rss_entry in missed_entries.iterator(): request_article(rss_entry, session=session) @shared_task def dispatch_crawl_feeds(): """Iterate through all of the RSSFeeds and dispatch a task for each one.""" for rss_feed in RSSFeed.objects.all().iterator(): retrieve_feed_entries.delay(rss_feed.pk)
expected_output = { "segment_routing": {"sid": {"12345": {"state": "S", "state_info": "Shared"}}} }
# from core.Backup import Backup # from core.Jobs import Jobs # jobs = Jobs() # for job in range(len(jobs)): # try: # job = jobs.next() # bu = Backup(job) # print(bu.command()) # except Exception as err: # print(err) # from core.Notifier import Notifier # email = Notifier() # email.from_address("mdognini@eurokemical.it") \ # .to_address("mdognini@eurokemical.it") \ # .subject("pyuthon") \ # .body("il messaggio inviazio") \ # .send() from decouple import config from configs.conf import ERROR_LOG import os from configs.conf import INCLUDE print(INCLUDE)
from __future__ import unicode_literals import os import sys import urllib import datetime import logging import subprocess import eeUtil import urllib.request import requests from bs4 import BeautifulSoup import copy import numpy as np import ee import time from string import ascii_uppercase import json # url for historical air quality data SOURCE_URL_HISTORICAL = 'https://portal.nccs.nasa.gov/datashare/gmao/geos-cf/v1/das/Y{year}/M{month}/D{day}/GEOS-CF.v01.rpl.chm_tavg_1hr_g1440x721_v1.{year}{month}{day}_{time}z.nc4' # url for forecast air quality data SOURCE_URL_FORECAST = 'https://portal.nccs.nasa.gov/datashare/gmao/geos-cf/v1/forecast/Y{start_year}/M{start_month}/D{start_day}/H12/GEOS-CF.v01.fcst.chm_tavg_1hr_g1440x721_v1.{start_year}{start_month}{start_day}_12z+{year}{month}{day}_{time}z.nc4' # subdataset to be converted to tif # should be of the format 'NETCDF:"filename.nc":variable' SDS_NAME = 'NETCDF:"{fname}":{var}' # list variables (as named in netcdf) that we want to pull VARS = ['NO2', 'O3', 'PM25_RH35_GCC'] # define unit conversion factors for each compound CONVERSION_FACTORS = { 'NO2': 1e9, # mol/mol to ppb 'O3': 1e9, # mol/mol to ppb 'PM25_RH35_GCC': 1, # keep original units } # define metrics to calculate for each compound # each metric is the name of a function defined in this script # available metrics: daily_avg, daily_max METRIC_BY_COMPOUND = { 'NO2': 'daily_avg', 'O3': 'daily_max', 'PM25_RH35_GCC': 'daily_avg', } # nodata value for netcdf NODATA_VALUE = 9.9999999E14 # name of data directory in Docker container DATA_DIR = 'data' # name of collection in GEE where we will upload the final data COLLECTION = '/projects/resource-watch-gee/cit_002_gmao_air_quality' # generate name for dataset's parent folder on GEE which will be used to store # several collections - one collection per variable PARENT_FOLDER = COLLECTION + '_{period}_{metric}' # generate generic string that can be formatted to name each variable's GEE collection EE_COLLECTION_GEN = PARENT_FOLDER + '/{var}' # generate generic string that can be formatted to name each variable's asset name FILENAME = PARENT_FOLDER.split('/')[-1] + '_{var}_{date}' # specify Google Cloud Storage folder name GS_FOLDER = COLLECTION[1:] # do you want to delete everything currently in the GEE collection when you run this script? CLEAR_COLLECTION_FIRST = False # how many assets can be stored in the GEE collection before the oldest ones are deleted? MAX_ASSETS = 100 # date format to use in GEE DATE_FORMAT = '%Y-%m-%d' # Resource Watch dataset API IDs # Important! Before testing this script: # Please change these IDs OR comment out the getLayerIDs(DATASET_ID) function in the script below # Failing to do so will overwrite the last update date on different datasets on Resource Watch DATASET_IDS = { 'NO2':'ecce902d-a322-4d13-a3d6-e1a36fc5573e', 'O3':'ebc079a1-51d8-4622-ba25-d8f3b4fcf8b3', 'PM25_RH35_GCC':'645fe192-28db-4949-95b9-79d898f4226b', } ''' FUNCTIONS FOR ALL DATASETS The functions below must go in every near real-time script. Their format should not need to be changed. ''' def lastUpdateDate(dataset, date): ''' Given a Resource Watch dataset's API ID and a datetime, this function will update the dataset's 'last update date' on the API with the given datetime INPUT dataset: Resource Watch API dataset ID (string) date: date to set as the 'last update date' for the input dataset (datetime) ''' # generate the API url for this dataset apiUrl = 'http://api.resourcewatch.org/v1/dataset/{0}'.format(dataset) # create headers to send with the request to update the 'last update date' headers = { 'Content-Type': 'application/json', 'Authorization': os.getenv('apiToken') } # create the json data to send in the request body = { "dataLastUpdated": date.isoformat() # date should be a string in the format 'YYYY-MM-DDTHH:MM:SS' } # send the request try: r = requests.patch(url = apiUrl, json = body, headers = headers) logging.info('[lastUpdated]: SUCCESS, '+ date.isoformat() +' status code '+str(r.status_code)) return 0 except Exception as e: logging.error('[lastUpdated]: '+str(e)) ''' FUNCTIONS FOR RASTER DATASETS The functions below must go in every near real-time script for a RASTER dataset. Their format should not need to be changed. ''' def getLastUpdate(dataset): ''' Given a Resource Watch dataset's API ID, this function will get the current 'last update date' from the API and return it as a datetime INPUT dataset: Resource Watch API dataset ID (string) RETURN lastUpdateDT: current 'last update date' for the input dataset (datetime) ''' # generate the API url for this dataset apiUrl = 'http://api.resourcewatch.org/v1/dataset/{}'.format(dataset) # pull the dataset from the API r = requests.get(apiUrl) # find the 'last update date' lastUpdateString=r.json()['data']['attributes']['dataLastUpdated'] # split this date into two pieces at the seconds decimal so that the datetime module can read it: # ex: '2020-03-11T00:00:00.000Z' will become '2020-03-11T00:00:00' (nofrag) and '000Z' (frag) nofrag, frag = lastUpdateString.split('.') # generate a datetime object nofrag_dt = datetime.datetime.strptime(nofrag, "%Y-%m-%dT%H:%M:%S") # add back the microseconds to the datetime lastUpdateDT = nofrag_dt.replace(microsecond=int(frag[:-1])*1000) return lastUpdateDT def getLayerIDs(dataset): ''' Given a Resource Watch dataset's API ID, this function will return a list of all the layer IDs associated with it INPUT dataset: Resource Watch API dataset ID (string) RETURN layerIDs: Resource Watch API layer IDs for the input dataset (list of strings) ''' # generate the API url for this dataset - this must include the layers apiUrl = 'http://api.resourcewatch.org/v1/dataset/{}?includes=layer'.format(dataset) # pull the dataset from the API r = requests.get(apiUrl) #get a list of all the layers layers = r.json()['data']['attributes']['layer'] # create an empty list to store the layer IDs layerIDs =[] # go through each layer and add its ID to the list for layer in layers: # only add layers that have Resource Watch listed as its application if layer['attributes']['application']==['rw']: layerIDs.append(layer['id']) return layerIDs def flushTileCache(layer_id): """ Given the API ID for a GEE layer on Resource Watch, this function will clear the layer cache. If the cache is not cleared, when you view the dataset on Resource Watch, old and new tiles will be mixed together. INPUT layer_id: Resource Watch API layer ID (string) """ # generate the API url for this layer's cache apiUrl = 'http://api.resourcewatch.org/v1/layer/{}/expire-cache'.format(layer_id) # create headers to send with the request to clear the cache headers = { 'Content-Type': 'application/json', 'Authorization': os.getenv('apiToken') } # clear the cache for the layer # sometimetimes this fails, so we will try multiple times, if it does # specify that we are on the first try try_num=1 tries = 4 while try_num<tries: try: # try to delete the cache r = requests.delete(url = apiUrl, headers = headers, timeout=1000) # if we get a 200, the cache has been deleted # if we get a 504 (gateway timeout) - the tiles are still being deleted, but it worked if r.ok or r.status_code==504: logging.info('[Cache tiles deleted] for {}: status code {}'.format(layer_id, r.status_code)) return r.status_code # if we don't get a 200 or 504: else: # if we are not on our last try, wait 60 seconds and try to clear the cache again if try_num < (tries-1): logging.info('Cache failed to flush: status code {}'.format(r.status_code)) time.sleep(60) logging.info('Trying again.') # if we are on our last try, log that the cache flush failed else: logging.error('Cache failed to flush: status code {}'.format(r.status_code)) logging.error('Aborting.') try_num += 1 except Exception as e: logging.error('Failed: {}'.format(e)) ''' FUNCTIONS FOR THIS DATASET The functions below have been tailored to this specific dataset. They should all be checked because their format likely will need to be changed. ''' def getCollectionName(period, var): ''' get GEE collection name INPUT period: period to be used in asset name, historical or forecast (string) var: variable to be used in asset name (string) RETURN GEE collection name for input date (string) ''' return EE_COLLECTION_GEN.format(period=period, metric=METRIC_BY_COMPOUND[var], var=var) def getAssetName(date, period, var): ''' get asset name INPUT date: date in the format of the DATE_FORMAT variable (string) period: period to be used in asset name, historical or forecast (string) var: variable to be used in asset name (string) RETURN GEE asset name for input date (string) ''' collection = getCollectionName(period, var) return os.path.join(collection, FILENAME.format(period=period, metric=METRIC_BY_COMPOUND[var], var=var, date=date)) def getTiffName(file, period, var): ''' generate names for tif files that we are going to create from netcdf INPUT file: netcdf filename (string) period: period to be used in tif name, historical or forecast(string) var: variable to be used in tif name (string) RETURN name: file name to save tif file created from netcdf (string) ''' # get year, month, day, and time from netcdf filename year = file.split('/')[1][-18:-14] month = file.split('/')[1][-14:-12] day = file.split('/')[1][-12:-10] time = file.split('/')[1][-9:-5] # generate date string to be used in tif file name date = year+'-'+month+'-'+day +'_'+time # generate name for tif file name = os.path.join(DATA_DIR, FILENAME.format(period=period, metric=METRIC_BY_COMPOUND[var], var=var, date=date))+'.tif' return name def getDateTimeString(filename): ''' get date from filename (last 10 characters of filename after removing extension) INPUT filename: file name that ends in a date of the format YYYY-MM-DD (string) RETURN date in the format YYYY-MM-DD (string) ''' return os.path.splitext(os.path.basename(filename))[0][-10:] def getDate_GEE(filename): ''' get date from Google Earth Engine asset name (last 10 characters of filename after removing extension) INPUT filename: asset name that ends in a date of the format YYYY-MM-DD (string) RETURN date in the format YYYY-MM-DD (string) ''' return os.path.splitext(os.path.basename(filename))[0][-10:] def list_available_files(url, file_start=''): ''' get the files available for a given day using a source url formatted with date INPUT url: source url for the given day's data folder (string) file_start: a string that is present in the begining of every source netcdf filename for this data (string) RETURN list of files available for the given url (list of strings) ''' # open and read the url page = requests.get(url).text # use BeautifulSoup to read the content as a nested data structure soup = BeautifulSoup(page, 'html.parser') # Extract all the <a> tags within the html content to find the files available for download marked with these tags. # Get only the files that starts with a certain word present in the begining of every source netcdf filename return [node.get('href') for node in soup.find_all('a') if type(node.get('href'))==str and node.get('href').startswith(file_start)] def getNewDatesHistorical(existing_dates): ''' Get new dates we want to try to fetch historical data for INPUT existing_dates: list of dates that we already have in GEE, in the format of the DATE_FORMAT variable (list of strings) RETURN new_dates: list of new dates we want to try to get, in the format of the DATE_FORMAT variable (list of strings) ''' # create empty list to store dates we should process new_dates = [] # start with today's date and time date = datetime.datetime.utcnow() # generate date string in same format used in GEE collection date_str = datetime.datetime.strftime(date, DATE_FORMAT) # find date beyond which we don't want to go back since that will exceed the maximum allowable assets in GEE last_date = date - datetime.timedelta(days=MAX_ASSETS) # if the date string is not in our list of existing dates and don't go beyond max allowable dates: while (date_str not in existing_dates) and (date!=last_date): # general source url for the given dates data folder url = SOURCE_URL_HISTORICAL.split('/GEOS')[0].format(year=date.year, month='{:02d}'.format(date.month), day='{:02d}'.format(date.day)) # get the list of files available for the given date files = list_available_files(url, file_start='GEOS-CF.v01.rpl.chm_tavg') # if the first 12 hourly files are available for a day, we can process this data - add it to the list # note: we are centering the averages about midnight each day, so we just need 12 hours from the most recent day and 12 hours from the previous day if len(files) >= 12: new_dates.append(date_str) # go back one more day date = date - datetime.timedelta(days=1) # generate new string in same format used in GEE collection date_str = datetime.datetime.strftime(date, DATE_FORMAT) #repeat until we reach something in our existing dates #reverse order so we pull oldest date first new_dates.reverse() return new_dates def getNewDatesForecast(existing_dates): ''' Get new dates we want to try to fetch forecasted data for INPUT existing_dates: list of dates that we already have in GEE, in the format of the DATE_FORMAT variable (list of strings) RETURN new_dates: list of new dates we want to try to get, in the format of the DATE_FORMAT variable (list of strings) ''' if existing_dates: # get start date of last forecast first_date_str = existing_dates[0] # convert date string to datetime object existing_start_date = datetime.datetime.strptime(first_date_str, DATE_FORMAT) else: # if we don't have existing data, just choose an old date so that we keep checking back until that date # let's assume we will probably have a forecast in the last 30 days, so we will check back that far for # forecasts until we find one existing_start_date = datetime.datetime.utcnow() - datetime.timedelta(days=30) #create empty list to store dates we should process new_dates = [] # start with today's date and time date = datetime.datetime.utcnow() # while the date is newer than the most recent forecast that we pulled: while date > existing_start_date: # general source url for this day's forecast data folder url = SOURCE_URL_FORECAST.split('/GEOS')[0].format(start_year=date.year, start_month='{:02d}'.format(date.month), start_day='{:02d}'.format(date.day)) # check the files available for this day: files = list_available_files(url, file_start='GEOS-CF.v01.fcst.chm_tavg') # if all 120 files are available (5 days x 24 hours/day), we can process this data if len(files) == 120: #add the next five days forecast to the new dates for i in range(5): date = date + datetime.timedelta(days=1) # generate a string from the date date_str = datetime.datetime.strftime(date, DATE_FORMAT) new_dates.append(date_str) # once we have found the most recent forecast we can break from the while loop because we only want to process the most recent forecast break # if there was no forecast for this day, go back one more day date = date - datetime.timedelta(days=1) # repeat until we reach the forecast we already have return new_dates def convert(files, var, period): ''' Convert netcdf files to tifs INPUT files: list of file names for netcdfs that have already been downloaded (list of strings) var: variable which we are converting files for (string) period: period we are converting data for, historical or forecast (string) RETURN tifs: list of file names for tifs that have been generated (list of strings) ''' # make an empty list to store the names of tif files that we create tifs = [] for f in files: logging.info('Converting {} to tiff'.format(f)) # generate the subdatset name for current netcdf file for a particular variable sds_path = SDS_NAME.format(fname=f, var=var) # only one band available in each file, so we will pull band 1 band = 1 # generate a name to save the tif file we will translate the netcdf file into tif = getTiffName(file=f, period=period, var=var) # translate the netcdf into a tif cmd = ['gdal_translate', '-b', str(band), '-q', '-a_nodata', str(NODATA_VALUE), '-a_srs', 'EPSG:4326', sds_path, tif] subprocess.call(cmd) # add the new tif files to the list of tifs tifs.append(tif) return tifs def fetch(new_dates, unformatted_source_url, period): ''' Fetch files by datestamp INPUT new_dates: list of dates we want to try to fetch, in the format YYYY-MM-DD (list of strings) unformatted_source_url: url for air quality data (string) period: period for which we want to get the data, historical or forecast (string) RETURN files: list of file names for netcdfs that have been downloaded (list of strings) files_by_date: dictionary of file names along with the date for which they were downloaded (dictionary of strings) ''' # make an empty list to store names of the files we downloaded files = [] # create a list of hours to pull (24 hours per day, on the half-hour) # starts after noon on previous day through noon of current day hours = ['1230', '1330', '1430', '1530', '1630', '1730', '1830', '1930', '2030', '2130', '2230', '2330', '0030', '0130', '0230', '0330', '0430', '0530', '0630', '0730', '0830', '0930', '1030', '1130'] # create an empty dictionary to store downloaded file names as value and corresponding dates as key files_by_date = {} # Loop over all hours of the new dates, check if there is data available, and download netcdfs for date in new_dates: # make an empty list to store names of the files we downloaded # this list will be used to insert values to the "files_by_date" dictionary files_for_current_date = [] # convert date string to datetime object and go back one day first_date = datetime.datetime.strptime(new_dates[0], DATE_FORMAT) - datetime.timedelta(days=1) # generate a string from the datetime object first_date = datetime.datetime.strftime(first_date, DATE_FORMAT) # loop through each hours we want to pull data for for hour in hours: # for the first half of the hours, get data from previous day if hours.index(hour) < 12: # convert date string to datetime object and go back one day prev_date = datetime.datetime.strptime(date, DATE_FORMAT) - datetime.timedelta(days=1) # generate a string from the datetime object fetching_date = datetime.datetime.strftime(prev_date, DATE_FORMAT) # for the second half, use the current day else: fetching_date = date # Set up the url of the filename to download historical data if period=='historical': url = unformatted_source_url.format(year=int(fetching_date[:4]), month='{:02d}'.format(int(fetching_date[5:7])), day='{:02d}'.format(int(fetching_date[8:])), time=hour) # Set up the url of the filename to download forecast data elif period=='forecast': url = unformatted_source_url.format(start_year=int(first_date[:4]), start_month='{:02d}'.format(int(first_date[5:7])), start_day='{:02d}'.format(int(first_date[8:])),year=int(fetching_date[:4]), month='{:02d}'.format(int(fetching_date[5:7])), day='{:02d}'.format(int(fetching_date[8:])), time=hour) # Create a file name to store the netcdf in after download f = DATA_DIR+'/'+url.split('/')[-1] # try to download the data tries = 0 while tries <3: try: logging.info('Retrieving {}'.format(f)) # download files from url and put in specified file location (f) urllib.request.urlretrieve(url, f) # if successful, add the file to the list of files we have downloaded files.append(f) files_for_current_date.append(f) break # if unsuccessful, log that the file was not downloaded except Exception as e: logging.info('Unable to retrieve data from {}'.format(url)) logging.info(e) tries+=1 logging.info('try {}'.format(tries)) if tries==3: logging.error('Unable to retrieve data from {}'.format(url)) exit() # populate dictionary of file names along with the date for which they were downloaded files_by_date[date]=files_for_current_date return files, files_by_date def daily_avg(date, var, period, tifs_for_date): ''' Calculate a daily average tif file from all the hourly tif files INPUT date: list of dates we want to try to fetch, in the format YYYY-MM-DD (list of strings) var: variable for which we are taking daily averages (string) period: period for which we are calculating metric, historical or forecast (string) tifs_for_date: list of file names for tifs that were created from downloaded netcdfs (list of strings) RETURN result_tif: file name for tif file created after averaging all the input tifs (string) ''' # create a list to store the tifs and variable names to be used in gdal_calc gdal_tif_list=[] # set up calc input for gdal_calc calc = '--calc="(' # go through each hour in the day to be averaged for i in range(len(tifs_for_date)): # generate a letter variable for that tif to use in gdal_calc (A, B, C...) letter = ascii_uppercase[i] # add each letter to the list to be used in gdal_calc gdal_tif_list.append('-'+letter) # pull the tif name tif = tifs_for_date[i] # add each tif name to the list to be used in gdal_calc gdal_tif_list.append('"'+tif+'"') # add the variable to the calc input for gdal_calc if i==0: # for first tif, it will be like: --calc="(A calc= calc +letter else: # for second tif and onwards, keep adding each letter like: --calc="(A+B calc = calc+'+'+letter # calculate the number of tifs we are averaging num_tifs = len(tifs_for_date) # finish creating calc input # since we are trying to find average, the algorithm is: (sum all tifs/number of tifs)*(conversion factor for corresponding variable) calc= calc + ')*{}/{}"'.format(CONVERSION_FACTORS[var], num_tifs) # generate a file name for the daily average tif result_tif = DATA_DIR+'/'+FILENAME.format(period=period, metric=METRIC_BY_COMPOUND[var], var=var, date=date)+'.tif' # create the gdal command to calculate the average by putting it all together cmd = ('gdal_calc.py {} --outfile="{}" {}').format(' '.join(gdal_tif_list), result_tif, calc) # using gdal from command line from inside python subprocess.check_output(cmd, shell=True) return result_tif def daily_max(date, var, period, tifs_for_date): ''' Calculate a daily maximum tif file from all the hourly tif files INPUT date: list of dates we want to try to fetch, in the format YYYY-MM-DD (list of strings) var: variable for which we are taking daily averages (string) period: period for which we are calculating metric, historical or forecast (string) tifs_for_date: list of file names for tifs that were created from downloaded netcdfs (list of strings) RETURN result_tif: file name for tif file created after finding the max from all the input tifs (string) ''' # create a list to store the tifs and variable names to be used in gdal_calc gdal_tif_list=[] # go through each hour in the day to find the maximum for i in range(len(tifs_for_date)): # generate a letter variable for that tif to use in gdal_calc letter = ascii_uppercase[i] # add each letter to the list of tifs to be used in gdal_calc gdal_tif_list.append('-'+letter) # pull the tif name tif = tifs_for_date[i] # add each tif name to the list to be used in gdal_calc gdal_tif_list.append('"'+tif+'"') #add the variable to the calc input for gdal_calc if i==0: calc= letter else: # set up calc input for gdal_calc to find the maximum from all tifs calc = 'maximum('+calc+','+letter+')' # finish creating calc input calc= '--calc="'+calc + '*{}"'.format(CONVERSION_FACTORS[var]) #generate a file name for the daily maximum tif result_tif = DATA_DIR+'/'+FILENAME.format(period=period, metric=METRIC_BY_COMPOUND[var], var=var, date=date)+'.tif' # create the gdal command to calculate the maximum by putting it all together cmd = ('gdal_calc.py {} --outfile="{}" {}').format(' '.join(gdal_tif_list), result_tif, calc) # using gdal from command line from inside python subprocess.check_output(cmd, shell=True) return result_tif def processNewData(var, all_files, files_by_date, period, assets_to_delete): ''' Process and upload clean new data INPUT var: variable that we are processing data for (string) all_files: list of file names for netcdfs that have been downloaded (list of strings) files_by_date: dictionary of netcdf file names along with the date for which they were downloaded (dictionary of strings) period: period for which we want to process the data, historical or forecast (string) assets_to_delete: list of old assets to delete (list of strings) RETURN assets: list of file names for netcdfs that have been downloaded (list of strings) ''' # if files is empty list do nothing, otherwise, process data if all_files: # create an empty list to store the names of the tifs we generate tifs = [] # create an empty list to store the names we want to use for the GEE assets assets=[] # create an empty list to store the list of dates from the averaged or maximum tifs dates = [] # create an empty list to store the list of datetime objects from the averaged or maximum tifs datestamps = [] # loop over each downloaded netcdf file for date, files in files_by_date.items(): logging.info('Converting files') # Convert new files from netcdf to tif files hourly_tifs = convert(files, var, period) # take relevant metric (daily average or maximum) of hourly tif files for days we have pulled metric = METRIC_BY_COMPOUND[var] tif = globals()[metric](date, var, period, hourly_tifs) # add the averaged or maximum tif file to the list of files to upload to GEE tifs.append(tif) # Get a list of the names we want to use for the assets once we upload the files to GEE assets.append(getAssetName(date, period, var)) # get new list of date strings (in case order is different) from the processed tifs dates.append(getDateTimeString(tif)) # generate datetime objects for each tif date datestamps.append(datetime.datetime.strptime(date, DATE_FORMAT)) # delete old assets (none for historical) for asset in assets_to_delete: ee.data.deleteAsset(asset) logging.info(f'Deleteing {asset}') logging.info('Uploading files:') for asset in assets: logging.info(os.path.split(asset)[1]) # Upload new files (tifs) to GEE eeUtil.uploadAssets(tifs, assets, GS_FOLDER, datestamps, timeout=3000) return assets #if no new assets, return empty list else: return [] def checkCreateCollection(VARS, period): ''' List assets in collection if it exists, else create new collection INPUT VARS: list variables (as named in netcdf) that we want to check collections for (list of strings) period: period we are checking assets for, historical or forecast (string) RETURN existing_dates_all_vars: list of dates, in the format of the DATE_FORMAT variable, that exist for all variable collections in GEE (list of strings) existing_dates_by_var: list of dates, in the format of the DATE_FORMAT variable, that exist for each individual variable collection in GEE (list containing list of strings for each variable) ''' # create a master list (not variable-specific) to store the dates for which all variables already have data for existing_dates = [] # create an empty list to store the dates that we currently have for each AQ variable # will be used in case the previous script run crashed before completing the data upload for every variable. existing_dates_by_var = [] # loop through each variables that we want to pull for var in VARS: # For one of the variables, get the date of the most recent dataset # All variables come from the same file # If we have one for a particular data, we should have them all collection = getCollectionName(period, var) # Check if folder to store GEE collections exists. If not, create it. # we will make one collection per variable, all stored in the parent folder for the dataset parent_folder = PARENT_FOLDER.format(metric=METRIC_BY_COMPOUND[var], period=period) if not eeUtil.exists(parent_folder): logging.info('{} does not exist, creating'.format(parent_folder)) eeUtil.createFolder(parent_folder) # If the GEE collection for a particular variable exists, get a list of existing assets if eeUtil.exists(collection): existing_assets = eeUtil.ls(collection) # get a list of the dates from these existing assets dates = [getDate_GEE(a) for a in existing_assets] # append this list of dates to our list of dates by variable existing_dates_by_var.append(dates) # for each of the dates that we have for this variable, append the date to the master list # list of which dates we already have data for (if it isn't already in the list) for date in dates: if date not in existing_dates: existing_dates.append(date) #If the GEE collection does not exist, append an empty list to our list of dates by variable else: existing_dates_by_var.append([]) # create a collection for this variable logging.info('{} does not exist, creating'.format(collection)) eeUtil.createFolder(collection, True) ''' We want make sure all variables correctly uploaded the data on the last run. To do this, we will check that we have the correct number of appearances of the data in our GEE collection. If we do not, we will want to re-upload this date's data. ''' # Create a copy of the master list of dates that will store the dates that were properly uploaded for all variables. existing_dates_all_vars = copy.copy(existing_dates) for date in existing_dates: #check how many times each date appears in our list of dates by variable date_count = sum(x.count(date) for x in existing_dates_by_var) # If this count is less than the number of variables we have, one of the variables did not finish # upload for this date, and we need to re-upload this file. if date_count < len(VARS): #remove this from the list of existing dates for all variables existing_dates_all_vars.remove(date) return existing_dates_all_vars, existing_dates_by_var def deleteExcessAssets(collection, all_assets, max_assets): ''' Delete oldest assets, if more than specified in max_assets variable INPUT collection: GEE collection in which the asset is located (string) all_assets: list of all the assets currently in the GEE collection (list of strings) max_assets: maximum number of assets allowed in the collection (int) ''' # if we have more assets than allowed, if len(all_assets) > max_assets: # sort the list of dates so that the oldest is first all_assets.sort() logging.info('Deleting excess assets.') # go through each assets, starting with the oldest, and delete until we only have the max number of assets left for asset in all_assets[:-max_assets]: eeUtil.removeAsset(collection +'/'+ asset) def get_most_recent_date(all_assets): ''' Get most recent data we have assets for INPUT all_assets: list of all the assets currently in the GEE collection (list of strings) RETURN most_recent_date: most recent date in GEE collection (datetime) ''' # sort these dates oldest to newest all_assets.sort() # get the most recent date (last in the list) and turn it into a datetime most_recent_date = datetime.datetime.strptime(all_assets[-1][-10:], DATE_FORMAT) return most_recent_date def clearCollectionMultiVar(period): ''' Clear the GEE collection for all variables INPUT period: period we are clearing collection for, historical or forecast (string) ''' logging.info('Clearing collections.') for var_num in range(len(VARS)): # get name of variable we are clearing GEE collections for var = VARS[var_num] # get name of GEE collection for variable collection = getCollectionName(period, var) # if the collection exists, if eeUtil.exists(collection): # remove the / from the beginning of the collection name to be used in ee module if collection[0] == '/': collection = collection[1:] # pull the image collection a = ee.ImageCollection(collection) # check how many assets are in the collection collection_size = a.size().getInfo() # if there are assets in the collection if collection_size > 0: # create a list of assets in the collection list = a.toList(collection_size) # delete each asset for item in list.getInfo(): ee.data.deleteAsset(item['id']) def listAllCollections(var, period): ''' Get list of all assets in a collection INPUT var: variable we are checking collection for (string) period: period we are checking collection for, historical or forecast (string) RETURN all_assets: list of old assets to delete (list of strings) ''' all_assets = [] collection = getCollectionName(period, var) if eeUtil.exists(collection): if collection[0] == '/': collection = collection[1:] a = ee.ImageCollection(collection) collection_size = a.size().getInfo() if collection_size > 0: list = a.toList(collection_size) for item in list.getInfo(): all_assets.append(item['id']) return all_assets def initialize_ee(): ''' Initialize eeUtil and ee modules ''' # get GEE credentials from env file GEE_JSON = os.environ.get("GEE_JSON") _CREDENTIAL_FILE = 'credentials.json' GEE_SERVICE_ACCOUNT = os.environ.get("GEE_SERVICE_ACCOUNT") with open(_CREDENTIAL_FILE, 'w') as f: f.write(GEE_JSON) auth = ee.ServiceAccountCredentials(GEE_SERVICE_ACCOUNT, _CREDENTIAL_FILE) ee.Initialize(auth) def create_headers(): ''' Create headers to perform authorized actions on API ''' return { 'Content-Type': "application/json", 'Authorization': "{}".format(os.getenv('apiToken')), } def pull_layers_from_API(dataset_id): ''' Pull dictionary of current layers from API INPUT dataset_id: Resource Watch API dataset ID (string) RETURN layer_dict: dictionary of layers (dictionary of strings) ''' # generate url to access layer configs for this dataset in back office rw_api_url = 'https://api.resourcewatch.org/v1/dataset/{}/layer'.format(dataset_id) # request data r = requests.get(rw_api_url) # convert response into json and make dictionary of layers layer_dict = json.loads(r.content.decode('utf-8'))['data'] return layer_dict def update_layer(var, period, layer, new_date): ''' Update layers in Resource Watch back office. INPUT var: variable for which we are updating layers (string) period: period we are updating layers for, historical or forecast (string) layer: layer that will be updated (string) new_date: date of asset to be shown in this layer, in the format of the DATE_FORMAT variable (string) ''' # get name of asset - drop first / in string or asset won't be pulled into RW asset = getAssetName(new_date, period, var)[1:] # get previous date being used from old_date = getDate_GEE(layer['attributes']['layerConfig']['assetId']) # convert to datetime old_date_dt = datetime.datetime.strptime(old_date, DATE_FORMAT) # change to layer name text of date old_date_text = old_date_dt.strftime("%B %-d, %Y") # get text for new date new_date_dt = datetime.datetime.strptime(new_date, DATE_FORMAT) new_date_text = new_date_dt.strftime("%B %-d, %Y") # replace date in layer's title with new date layer['attributes']['name'] = layer['attributes']['name'].replace(old_date_text, new_date_text) # replace the asset id in the layer def with new asset id layer['attributes']['layerConfig']['assetId'] = asset # replace the asset id in the interaction config with new asset id old_asset = getAssetName(old_date, period, var)[1:] layer['attributes']['interactionConfig']['config']['url'] = layer['attributes']['interactionConfig']['config']['url'].replace(old_asset,asset) # send patch to API to replace layers # generate url to patch layer rw_api_url_layer = "https://api.resourcewatch.org/v1/dataset/{dataset_id}/layer/{layer_id}".format( dataset_id=layer['attributes']['dataset'], layer_id=layer['id']) # create payload with new title and layer configuration payload = { 'application': ['rw'], 'layerConfig': layer['attributes']['layerConfig'], 'name': layer['attributes']['name'], 'interactionConfig': layer['attributes']['interactionConfig'] } # patch API with updates r = requests.request('PATCH', rw_api_url_layer, data=json.dumps(payload), headers=create_headers()) # check response if r.ok: logging.info('Layer replaced: {}'.format(layer['id'])) else: logging.error('Error replacing layer: {} ({})'.format(layer['id'], r.status_code)) def updateResourceWatch(new_dates_historical, new_dates_forecast): ''' This function should update Resource Watch to reflect the new data. This may include updating the 'last update date', flushing the tile cache, and updating any dates on layers INPUT new_dates_historical: list of dates for historical assets added to GEE, in the format of the DATE_FORMAT variable (list of strings) new_dates_forecast: list of dates for forecast assets added to GEE, in the format of the DATE_FORMAT variable (list of strings) ''' # Update the dates on layer legends if new_dates_historical and new_dates_forecast: logging.info('Updating Resource Watch Layers') for var, ds_id in DATASET_IDS.items(): logging.info('Updating {}'.format(var)) # pull dictionary of current layers from API layer_dict = pull_layers_from_API(ds_id) # go through each layer, pull the definition and update for layer in layer_dict: # check which point on the timeline this is order = layer['attributes']['layerConfig']['order'] # if this is the first point on the timeline, we want to replace it the most recent historical data if order==0: # get date of most recent asset added date = new_dates_historical[-1] # replace layer asset and title date with new update_layer(var, 'historical', layer, date) # otherwise, we want to replace it with the appropriate forecast data else: # forecast layers start at order 1, and we will want this point on the timeline to be the first forecast asset # order 4 will be the second asset, and so on # get date of appropriate asset date = new_dates_forecast[order-1] # replace layer asset and title date with new update_layer(var, 'forecast', layer, date) elif not new_dates_historical and not new_dates_forecast: logging.info('Layers do not need to be updated.') else: if not new_dates_historical: logging.error('Historical data was not updated, but forecast was.') if not new_dates_forecast: logging.error('Forecast data was not updated, but historical was.') # Update Last Update Date and flush tile cache on RW for var_num in range(len(VARS)): var = VARS[var_num] # specify GEE collection name collection = getCollectionName('historical', var) # get a list of assets in the collection existing_assets = eeUtil.ls(collection) try: # Get the most recent date from the data in the GEE collection most_recent_date = get_most_recent_date(existing_assets) # Get the current 'last update date' from the dataset on Resource Watch current_date = getLastUpdate(DATASET_IDS[var]) # If the most recent date from the GEE collection does not match the 'last update date' on the RW API, update it if current_date != most_recent_date: #comment for testing logging.info('Updating last update date and flushing cache.') # Update dataset's last update date on Resource Watch lastUpdateDate(DATASET_IDS[var], most_recent_date) # get layer ids and flush tile cache for each layer_ids = getLayerIDs(DATASET_IDS[var]) for layer_id in layer_ids: flushTileCache(layer_id) except KeyError: continue def delete_local(ext=None): ''' This function will delete local files in the Docker container with a specific extension, if specified. If no extension is specified, all local files will be deleted. INPUT ext: optional, file extension for files you want to delete, ex: '.tif' (string) ''' try: if ext: [file for file in os.listdir(DATA_DIR) if file.endswith(ext)] else: files = os.listdir(DATA_DIR) for f in files: logging.info('Removing {}'.format(f)) os.remove(DATA_DIR+'/'+f) except NameError: logging.info('No local files to clean.') def main(): logging.basicConfig(stream=sys.stderr, level=logging.INFO) logging.info('STARTING') # Initialize eeUtil and ee modules eeUtil.initJson() initialize_ee() ''' Process Historical Data ''' logging.info('Starting Historical Data Processing') period = 'historical' # Clear collection in GEE if desired if CLEAR_COLLECTION_FIRST: clearCollectionMultiVar(period) # Check if collection exists. If not, create it. # Return a list of dates that exist for all variables collections in GEE (existing_dates), # as well as a list of which dates exist for each individual variable (existing_dates_by_var). # The latter will be used to determine if the previous script run crashed before completing the data upload for every variable. logging.info('Getting existing dates.') existing_dates, existing_dates_by_var = checkCreateCollection(VARS, period) # Get a list of the dates that are available, minus the ones we have already uploaded correctly for all variables. logging.info('Getting new dates to pull.') new_dates_historical = getNewDatesHistorical(existing_dates) # Fetch new files logging.info('Fetching files for {}'.format(new_dates_historical)) files, files_by_date = fetch(new_dates_historical, SOURCE_URL_HISTORICAL, period='historical') # Process historical data, one variable at a time for var_num in range(len(VARS)): logging.info('Processing {}'.format(VARS[var_num])) # get variable name var = VARS[var_num] # Process new data files, don't delete any historical assets new_assets_historical = processNewData(var, files, files_by_date, period='historical', assets_to_delete=[]) logging.info('Previous assets for {}: {}, new: {}, max: {}'.format(var, len(existing_dates_by_var[var_num]), len(new_dates_historical), MAX_ASSETS)) # Delete extra assets, past our maximum number allowed that we have set # get list of existing assets in current variable's GEE collection existing_assets = eeUtil.ls(getCollectionName(period, var)) # make list of all assets by combining existing assets with new assets all_assets_historical = np.sort(np.unique(existing_assets + [os.path.split(asset)[1] for asset in new_assets_historical])) # delete the excess assets deleteExcessAssets(getCollectionName(period, var), all_assets_historical, MAX_ASSETS) logging.info('SUCCESS for {}'.format(var)) # Delete local tif files because we will run out of space delete_local(ext='.tif') # Delete local netcdf files delete_local() ''' Process Forecast Data ''' logging.info('Starting Forecast Data Processing') period = 'forecast' # Clear collection in GEE if desired if CLEAR_COLLECTION_FIRST: clearCollectionMultiVar(period) # Check if collection exists. If not, create it. # Return a list of dates that exist for all variables collections in GEE (existing_dates), # as well as a list of which dates exist for each individual variable (existing_dates_by_var). # The latter will be used to determine if the previous script run crashed before completing the data upload for every variable. logging.info('Getting existing dates.') existing_dates, existing_dates_by_var = checkCreateCollection(VARS, period) # Get a list of the dates that are available, minus the ones we have already uploaded correctly for all variables. logging.info('Getting new dates to pull.') new_dates_forecast = getNewDatesForecast(existing_dates) # Fetch new files logging.info('Fetching files for {}'.format(new_dates_forecast)) files, files_by_date = fetch(new_dates_forecast, SOURCE_URL_FORECAST, period='forecast') # Process forecast data, one variable at a time for var_num in range(len(VARS)): logging.info('Processing {}'.format(VARS[var_num])) # get variable name var = VARS[var_num] # Process new data files, delete all forecast assets currently in collection new_assets_forecast = processNewData(var, files, files_by_date, period='forecast', assets_to_delete=listAllCollections(var, period)) logging.info('New assets for {}: {}, max: {}'.format(var, len(new_dates_forecast), MAX_ASSETS)) logging.info('SUCCESS for {}'.format(var)) # Delete local tif files because we will run out of space delete_local(ext='.tif') # Delete local netcdf files delete_local() # Update Resource Watch updateResourceWatch(new_dates_historical, new_dates_forecast) logging.info('SUCCESS')
#!/usr/bin/env python3 import logging import time from acceptance.common.log import LogExec, initLog from acceptance.common import test test.TEST_NAME = "leader_failure" logger = logging.getLogger(__name__) class Test(test.Base): """ Test that we can kill the patroni leader node and the cluster will fail over to the second node. """ @Test.subcommand("run") class TestRun(test.Base): util = test.Util(None) @LogExec(logger, "run") def main(self): self.util = test.Util(self.dc) initial_leader, initial_replica = self.util.initial_check() self.test_switch_leader(initial_leader, 2) time.sleep(10) # let the cluster stabilize again. self.test_switch_leader(initial_replica, 3) def test_switch_leader(self, current_leader: str, expected_val): modify_idx, _ = self.util.leader_info() old_leader = current_leader logger.info("Killing %s", old_leader) self.dc('kill', old_leader) new_leader = self.util.wait_for_leader(modify_idx) self.util.test_write_to(new_leader, expected_val) logger.info("Restart %s", old_leader) self.dc('up', '-d', old_leader) self.util.test_read_from(self.util.wait_for_replica(), str(expected_val)) if __name__ == "__main__": initLog() Test()
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import print_function, division from pprint import pprint as print import os import re import datetime import struct from math import ceil from ctypes import * from functools import wraps, partial from itertools import chain, islice from bisect import bisect try: import numpy as np except ImportError: class np: nan = float("nan") from savReaderWriter import * from error import * from helpers import * from py3k import * # TODO: # pytables integration # numba.jit # function to easily read mmapped array back in class SavReaderNp(SavReader): """ Read SPSS .sav file data into a numpy array (either in-memory or mmap) Parameters ---------- savFileName : str The file name of the spss data file recodeSysmisTo : value Indicates to which value missing values should be recoded rawMode : bool Set to ``True`` to get faster processing speeds. ``rawMode=False`` indicates: * that trailing blanks will stripped off of string values * that datetime variables (if present) will be converted into ``datetime.datetime`` objects, * that SPSS `$sysmis` values will be converted into `recodeSysmisTo` (default ``np.nan``, except for datetimes). ioUtf8 : bool Indicates the mode in which text communicated to or from the I/O Module will be. Valid values are True (UTF-8 mode aka Unicode mode) and False (Codepage mode). Cf. `SET UNICODE=ON/OFF` ioLocale : locale str indicates the locale of the I/O module. Cf. `SET LOCALE`. (default = None, which corresponds to `locale.setlocale(locale.LC_ALL, "")`. For example, `en_US.UTF-8`. Examples -------- Typical use:: # memmapped array, omit filename to use in-memory array reader_np = SavReaderNp("Employee data.sav") array = reader_np.to_structured_array("/tmp/test.dat") reader_np.close() Note. The sav-to-array conversion is MUCH faster when uncompressed .sav files are used. These are created with the SPSS command:: SAVE OUTFILE = 'some_file.sav' /UNCOMPRESSED. This is NOT the default in SPSS. See also -------- savReaderWriter.SavWriter : use `_uncompressed.sav` savFileName suffix to write uncompressed files""" def __init__(self, savFileName, recodeSysmisTo=np.nan, rawMode=False, ioUtf8=False, ioLocale=None): super(SavReaderNp, self).__init__(savFileName, ioUtf8=ioUtf8, ioLocale=ioLocale) self.savFileName = savFileName self.recodeSysmisTo = recodeSysmisTo self.rawMode = rawMode self.ioUtf8 = ioUtf8 self.ioLocale = ioLocale self.caseBuffer = self.getCaseBuffer() self.unpack = self.getStruct(self.varTypes, self.varNames).unpack_from self._init_funcs() self.gregorianEpoch = datetime.datetime(1582, 10, 14, 0, 0, 0) self.do_convert_datetimes = True self.nrows, self.ncols = self.shape if self._is_uncompressed: self.sav = open(self.savFileName, "rb") self.__iter__ = self._uncompressed_iter self.to_ndarray = self._uncompressed_to_ndarray self.to_structured_array = self._uncompressed_to_structured_array def _items(self, start, stop, step): """Helper function for __getitem__""" for case in xrange(start, stop, step): self.seekNextCase(self.fh, case) self.wholeCaseIn(self.fh, byref(self.caseBuffer)) record = np.fromstring(self.caseBuffer, self.struct_dtype) yield record def convert_datetimes(func): """Decorator to convert all the SPSS datetimes into datetime.datetime values. Missing datetimes are converted into the value `datetime.datetime(1, 1, 1, 0, 0, 0)`""" @wraps(func) def _convert_datetimes(self, *args): #print("@convert_datetimes called by: %s" % func.__name__) array = func(self, *args) if (self.rawMode or not self.datetimevars or not \ self.do_convert_datetimes): return array # calculate count so fromiter can pre-allocate count = self.nrows if not args else -1 if len(args) == 1 and isinstance(args[0], slice): start, stop, step = args[0].indices(self.nrows) count = (stop - start) // step # now fill the array with datetimes dt_array = array.astype(self.datetime_dtype) for varName in self.uvarNames: if not varName in self.datetimevars: continue datetimes = (self.spss2datetimeDate(dt) for dt in array[varName]) dt_array[varName] = np.fromiter(datetimes, "datetime64[us]", count) return dt_array return _convert_datetimes def convert_missings(func): """Decorator to recode numerical missing values into `recodeSysmisTo` (default: `np.nan`), unless they are datetimes""" @wraps(func) def _convert_missings(self, *args): array = func(self, *args) cutoff = -sys.float_info.max sysmis = self.recodeSysmisTo is_to_structured_array = func.__name__.endswith('to_structured_array') if self.rawMode: return array elif self.is_homogeneous and not is_to_structured_array: array[:] = np.where(array <= cutoff, sysmis, array) else: for v in self.uvarNames: if v in self.datetimevars or self.uvarTypes[v]: continue array[v] = np.where(array[v] <= cutoff, sysmis, array[v]) if hasattr(array, "flush"): # memmapped array.flush() return array return _convert_missings @convert_datetimes def __getitem__(self, key): """x.__getitem__(y) <==> x[y], where y may be int or slice Parameters ---------- key : int, slice Returns ------- record : numpy.ndarray Raises ------- IndexError, TypeError """ is_slice = isinstance(key, slice) is_index = isinstance(key, int) if is_slice: start, stop, step = key.indices(self.nrows) records = (item for item in self._items(start, stop, step)) count = (stop - start) // step record = np.fromiter(iter(records), self.struct_dtype, count) elif is_index: if abs(key) > self.nrows - 1: raise IndexError("index out of bounds") key = self.nrows + key if key < 0 else key self.seekNextCase(self.fh, key) self.wholeCaseIn(self.fh, self.caseBuffer) record = np.fromstring(self.caseBuffer, self.struct_dtype) else: raise TypeError("slice or int required") # rewind for possible subsequent call to __iter__ self.seekNextCase(self.fh, 0) return record def __iter__(self): """x.__iter__() <==> iter(x). Yields records as a tuple. If `rawMode=True`, trailing spaces of strings are not removed and SPSS dates are not converted into `datetime` dates Returns ------- record : tuple Raises ------- SPSSIOError """ varNames = self.uvarNames varTypes = self.uvarTypes datetimevars = self.datetimevars shortcut = self.rawMode or not self.do_convert_datetimes or \ not datetimevars for row in xrange(self.nrows): self.wholeCaseIn(self.fh, self.caseBuffer) record = self.unpack(self.caseBuffer) if shortcut: yield record continue yield tuple([self.spss2datetimeDate(value) if v in datetimevars else value.rstrip() if varTypes[v] else value for value, v in izip(record, varNames)]) def _init_funcs(self): """Helper to initialize C functions of the SPSS I/O module: set their argtypes and _errcheck attributes""" self.seekNextCase = self.spssio.spssSeekNextCase self.seekNextCase.argtypes = [c_int, c_long] self.seekNextCase._errcheck = self._errcheck self.record_size = sizeof(self.caseBuffer) self.wholeCaseIn = self.spssio.spssWholeCaseIn self.wholeCaseIn.argtypes = [c_int, POINTER(c_char * self.record_size)] self.wholeCaseIn._errcheck = self._errcheck def _errcheck(self, retcode, func, arguments): """Checks for return codes > 0 when calling C functions of the SPSS I/O module""" if retcode > 0: error = retcodes.get(retcode, retcode) msg = "function %r with arguments %r throws error: %s" msg = msg % (func.__name__, arguments, error) raise SPSSIOError(msg, retcode) @memoized_property def uvarNames(self): """Returns a list of variable names, as unicode strings""" if self.ioUtf8: return self.varNames return [v.decode(self.encoding) for v in self.varNames] @memoized_property def uvarTypes(self): """Returns a dictionary of variable names, as unicode strings (keys) and variable types (values, int). Variable type == 0 indicates numerical values, other values indicate the string length in bytes""" if self.ioUtf8: return self.varTypes return {v.decode(self.encoding): t for v, t in self.varTypes.items()} @memoized_property def uformats(self): """Returns a dictionary of variable names (keys) and SPSS formats (values), both as unicode strings""" if self.ioUtf8: return self.formats encoding = self.encoding return {v.decode(encoding): fmt.decode(encoding) for v, fmt in self.formats.items()} @memoized_property def datetimevars(self): """Returns a list of the datetime variable nanes (as unicode strings) in the dataset, if any""" return [varName for varName in self.uvarNames if re.search("date|time", self.uformats[varName], re.I)] @memoized_property def _titles(self): """Helper function that uses varLabels to get the titles for a dtype. If no varLabels are available, varNames are used instead""" titles = [self.varLabels[v] if self.varLabels[v] else bytez("col_%03d" % col) for col, v in enumerate(self.varNames)] return [title.decode(self.encoding) if not isinstance(title, unicode) else title for title in titles] @memoized_property def is_homogeneous(self): """Returns boolean that indicates whether the dataset contains only numerical variables (datetimes excluded). If `rawMode=True`, datetimes are also considered numeric. A dataset with string variables of equal length is not considered to be homogeneous""" is_all_numeric = bool( not max(list(self.varTypes.values())) ) if self.rawMode: return is_all_numeric return is_all_numeric and not self.datetimevars @memoized_property def struct_dtype(self): """Get the dtype that is used to unpack the binary record Returns ------- struct dtype : numpy.dtype (complex dtype if heterogeneous data, simple dtype otherwise). A complex dtype uses `varNames` as names and `varLabels` (if any) as titles (fields).""" if self.is_homogeneous: byteorder = u"<" if self.byteorder == u"little" else u">" return np.dtype(byteorder + u"d") fmt8 = lambda varType: int(ceil(varType / 8.) * 8) varTypes = [self.varTypes[varName] for varName in self.varNames] byteorder = u"<" if self.byteorder == "little" else u">" formats = [u"a%d" % fmt8(t) if t else u"%sd" % byteorder for t in varTypes] obj = dict(names=self.uvarNames, formats=formats, titles=self._titles) return np.dtype(obj) @memoized_property def trunc_dtype(self): """Returns the numpy dtype using the SPSS display formats The following spss-format to numpy-dtype conversions are made: +------------+------------------+ | spss | numpy | +============+==================+ | <= `F2` | `float16` (`f2`) | +------------+------------------+ | `F3`-`F5` | `float32` (`f4`) | +------------+------------------+ | >= `F5` | `float64` (`f8`) | +------------+------------------+ | (datetime) | `float64` (`f8`)*| +------------+------------------+ | A1 >= | `S1` >= (`a1`) | +------------+------------------+ *) Subsequently converted to `datetime.datetime` unless `rawMode=True`. Examples of SPSS datetime display formats are `SDATE`, `EDATE`, `ADATE`, `JDATE` and `TIME`. Note that all numerical values are stored in SPSS files as double precision floats. The SPSS display formats are used to create a more compact dtype. Datetime formats are never shrunk to a more compact format. In the table above, only F and A formats are displayed, but other numerical (e.g. `DOLLAR`) or string (`AHEX`) are treated the same way, e.g. `DOLLAR5.2` will become `float64`. Returns ------- truncated dtype : numpy.dtype (complex dtype) See also -------- :ref:`formats` : overview of SPSS display formats :ref:`dateformats` : overview of SPSS datetime formats """ #if self.is_homogeneous: # return self.struct_dtype dst_fmts = [u"f2", u"f4", u"f8", u"f8"] get_dtype = lambda src_fmt: dst_fmts[bisect([2, 5, 8], src_fmt)] widths = [int(re.search(u"\d+", self.uformats[v]).group(0)) for v in self.uvarNames] formats = [u'a%s' % widths[i] if self.uvarTypes[v] else u"f8" if v in self.datetimevars else get_dtype(widths[i]) for i, v in enumerate(self.uvarNames)] obj = dict(names=self.uvarNames, formats=formats, titles=self._titles) return np.dtype(obj) @memoized_property def datetime_dtype(self): """Return the modified dtype in order to accomodate `datetime.datetime` values that were originally datetimes, stored as floats, in the SPSS file Returns ------- datetime dtype : numpy.dtype (complex dtype) """ if not self.datetimevars: return self.trunc_dtype formats = ["datetime64[us]" if name in self.datetimevars else fmt for (title, name), fmt in self.trunc_dtype.descr] obj = dict(names=self.uvarNames, formats=formats, titles=self._titles) return np.dtype(obj) @memoize def spss2datetimeDate(self, spssDateValue): """Convert an SPSS datetime into a ``datetime.datetime`` object Parameters ---------- spssDateValue : float, int Returns ------- datetime : datetime.datetime; errors and missings are returned as ``datetime.datetime(datetime.MINYEAR, 1, 1, 0, 0, 0)`` See also -------- savReaderWriter.SavReader.spss2strDate : convert SPSS datetime into a datetime string :ref:`dateformats` : overview of SPSS datetime formats """ try: theDate = self.gregorianEpoch + \ datetime.timedelta(seconds=spssDateValue) #theDate = np.datetime64(theDate) return theDate except (OverflowError, TypeError, ValueError): return datetime.datetime(datetime.MINYEAR, 1, 1, 0, 0, 0) # ---- functions that deal with uncompressed .sav files ---- @memoized_property def _is_uncompressed(self): """Returns True if the .sav file was not compressed at all, False otherwise (i.e., neither standard, nor zlib compression was used).""" return self.fileCompression == b"uncompressed" def _uncompressed_iter(self): """Faster version of __iter__ that can only be used with uncompressed .sav files""" self.sav.seek(self._offset) for case in xrange(self.nrows): yield self.unpack(self.sav.read(self.record_size)) @property def _offset(self): """Returns the position of the type 999 record, which indicates the end of the metadata and the start of the case data""" unpack_int = lambda value: struct.unpack("i", value) i = 0 while True: self.sav.seek(i) try: code = unpack_int(self.sav.read(4)) except struct.error: pass i += 1 end_of_metadata = code == (999,) if end_of_metadata: self.sav.read(4) return self.sav.tell() @convert_datetimes @convert_missings def _uncompressed_to_structured_array(self, filename=None): """Read an uncompressed .sav file and return as a structured array""" if not self._is_uncompressed: raise ValueError("Only uncompressed files can be used") self.sav.seek(self._offset) if filename: array = np.memmap(filename, self.trunc_dtype, 'w+', shape=self.nrows) array[:] = np.fromfile(self.sav, self.trunc_dtype, self.nrows) else: array = np.fromfile(self.sav, self.trunc_dtype, self.nrows) return array @convert_missings def _uncompressed_to_ndarray(self, filename=None): """Read an uncompressed .sav file and return as an ndarray""" if not self._is_uncompressed: raise ValueError("Only uncompressed files can be used") if not self.is_homogeneous: raise ValueError("Need only floats and no datetimes in dataset") self.sav.seek(self._offset) count = np.prod(self.shape) if filename: array = np.memmap(filename, float, 'w+', shape=count) array[:] = np.fromfile(self.sav, float, count) else: array = np.fromfile(self.sav, float, count) return array.reshape(self.shape) # ------------------------------------------------------------------------ @convert_datetimes @convert_missings def to_structured_array(self, filename=None): """Return the data in <savFileName> as a structured array, optionally using <filename> as a memmapped file. Parameters ---------- filename : str, optional The filename for the memory mapped array. If omitted, the array will be in-memory Returns ------- array : numpy.ndarray (if `filename=None`) or numpy.core.memmap.memmap The array has a complex dtype, i.e. is a structured array. If defined, `varLabels` may also be used to retrieve columns Examples -------- For example:: reader_np = SavReaderNp("./test_data/Employee data.sav") array = reader_np.to_structured_array() mean_salary = array["salary"].mean().round(2) mean_salary == array["Current Salary"].mean().round(2) # True first_record = array[0] reader_np.close() See also -------- savReaderWriter.SavReaderNp.to_ndarray """ self.do_convert_datetimes = False # no date conversion in __iter__ if filename: array = np.memmap(filename, self.trunc_dtype, 'w+', shape=self.nrows) for row, record in enumerate(self): array[row] = record #array.flush() else: if self._is_uncompressed: array = self._uncompressed_to_array(as_ndarray=False) else: array = np.fromiter(self, self.trunc_dtype, self.nrows) self.do_convert_datetimes = True return array def all(self, asRecarray=True, filename=None): """This convenience function returns all the records. Wrapper for to_structured_array; overrides the SavReader version Parameters ---------- asRecarray : bool, default True whether the array should be a recarray, using varNames as the fieldnames. filename : str or None, default None The filename for the memory mapped array. If omitted, the array will be in-memory Returns ------- records : numpy.core.records.recarray (if `asRecarray==True`) or , numpy.ndarraydata (structured array, if `asRecarray==False`) See also -------- savReaderWriter.SavReaderNp.to_structured_array""" structured_array = self.to_structured_array(filename) if asRecarray: return structured_array.view(np.recarray) return structured_array @convert_missings def to_ndarray(self, filename=None): """Converts a homogeneous, all-numeric SPSS dataset into an ndarray, unless the numerical variables are actually datetimes Parameters ---------- filename : str, optional The filename for the memory mapped array. If omitted, the array will be in-memory Raises ------ ValueError : if the data are not homogeneous. If `rawMode=False` (default) SPSS datetimes are not considered to be numerical, even though they are stored as such in the .sav file Returns ------- array : numpy.ndarray (if `filename=None`) or numpy.core.memmap.memmap The array has a simple dtype, i.e. is a regular ndarray Examples -------- For example:: import numpy.ma reader_np = SavReaderNp("./test_data/all_numeric.sav") array = reader_np.to_ndarray() average = numpy.ma.masked_invalid(array).mean() reader_np.close() See also -------- savReaderWriter.SavReaderNp.is_homogeneous : determines whether a dataset is considered to be all-numeric savReaderWriter.SavReaderNp.to_structured_array """ if not self.is_homogeneous: raise ValueError("Need only floats and no datetimes in dataset") elif filename: array = np.memmap(filename, float, 'w+', shape=self.shape) for row, record in enumerate(self): array[row,:] = record else: values = chain.from_iterable(self) count = np.prod(self.shape) array = np.fromiter(values, float, count).reshape(self.shape) return array def to_array(self, filename=None): """Wrapper for to_ndarray and to_structured_array. Returns an ndarray if the dataset is all-numeric homogeneous (and no datetimes), a structured array otherwise See also -------- savReaderWriter.SavReaderNp.to_ndarray savReaderWriter.SavReaderNp.to_structured_array""" if self.is_homogeneous: return self.to_ndarray(filename) else: return self.to_structured_array(filename) if __name__ == "__main__": import time from contextlib import closing savFileName = "./test_data/all_numeric_datetime_uncompressed.sav" kwargs = dict( \ savFileName = savFileName, varNames = ["v1", "v2"], varTypes = {"v1": 0, "v2": 0}, formats = {"v1": "DOLLAR15.2", "v2": "EDATE40"} ) if not os.path.exists(savFileName): with SavWriter(**kwargs) as writer: for i in xrange(10 ** 2): value = None if not i else 11654150400. writer.writerow([i, value]) klass = globals()[sys.argv[1]] start = time.time() filename = "./test_data/Employee data.sav" #filename = "./test_data/greetings.sav" filename = "./test_data/all_numeric.sav" #filename = "/home/albertjan/nfs/Public/somefile_uncompressed.sav" #filename = '/home/antonia/Desktop/big.sav' #filename = '/home/albertjan/nfs/Public/bigger.sav' with closing(klass(filename, rawMode=False, ioUtf8=False)) as sav: #print(sav.struct_dtype.descr) array = sav.to_ndarray() #"/tmp/test.dat") #array = sav.to_structured_array() #print(sav.formats) #array = sav.all() #"/tmp/test.dat") #for record in sav: #print(record) #pass print("%s version: %5.3f" % (sys.argv[1], (time.time() - start)))
# File: gitn_branch.py # Author: kmnk <kmnknmk at gmail.com> # License: MIT license from gitn.util.gitn import Gitn from denite.process import Process import copy import os import re from .gitn import Source as Base HIGHLIGHT = { 'container': { 'name': 'gitn_branch_line', 'pattern': '\\v([* ]) (.+)', }, 'containees': [ { 'name': 'gitn_branch_current', 'pattern': '*', 'color': 'Todo', }, { 'name': 'gitn_branch_default', 'pattern': ' [^ ]\+', 'color': 'Statement', }, { 'name': 'gitn_branch_remotes', 'pattern': ' remotes\/origin\/[^ ]\+', 'color': 'Special', }, { 'name': 'gitn_branch_origin', 'pattern': ' origin\/[^ ]\+', 'color': 'Statement', }, { 'name': 'gitn_branch_link', 'pattern': ' \->', 'color': 'Comment', }, ] } class Source(Base): def __init__(self, vim): super().__init__(vim) self.name = 'gitn_branch' self.kind = 'gitn_branch' self.vars = { 'command': ['git'], 'action': ['branch'], 'default_opts': ['--list'], 'separator': ['--'], } def on_init(self, context): self.__proc = None def on_close(self, context): if self.__proc: self.__proc.kill() self.__proc = None def highlight(self): Gitn.highlight(self.vim, HIGHLIGHT) def define_syntax(self): self.vim.command( 'syntax region ' + self.syntax_name + ' start=// end=/$/ ' 'contains=gitn_branch_line,deniteMatched contained') def gather_candidates(self, context): if self.__proc: return self.__async_gather_candidates(context, 0.5) opts = copy.copy(self.vars['default_opts']) if len(context['args']) > 0: args = context['args'] if 'all' in args: opts += ['--all'] commands = [] commands += self.vars['command'] commands += self.vars['action'] commands += opts commands += self.vars['separator'] self.__proc = Process(commands, context, self.vim.call('expand', context['path'])) return self.__async_gather_candidates(context, 2.0) def __async_gather_candidates(self, context, timeout): outs, errs = self.__proc.communicate(timeout=timeout) context['is_async'] = not self.__proc.eof() if self.__proc.eof(): self.__proc = None candidates = [] for line in outs: result = self.__parse_branch(line, context) if result: [name, ref_name, is_current, is_remote, is_tracked] = result candidates.append({ 'word': '{0} {1}{2}'.format( '*' if is_current else ' ', ref_name + ' -> ' if ref_name != '' else '', name), 'action__name': name, }) return candidates def __parse_branch(self, line, context): name = '' ref_name = '' current = '' is_current = False is_remote = False is_tracked = True m = False if not m: m = re.search(r'^([* ]) ([^ ]+)$', line) if m: [current, name] = m.groups() if not m: m = re.search(r'^([* ]) ([^ ]+) -> ([^ ]+)$', line) if m: [current, ref_name, name] = m.groups() if not m: m = re.search(r'^([* ]) ([(][^)]+[)])$', line) if m: [current, name] = m.groups() is_tracked = False is_current = current == '*' #is_remote = return [name, ref_name, is_current, is_remote, is_tracked]
"""Multiple functions used in the pipeline""" import os import json import numpy as np import torch import torch.nn as nn from PIL import Image from rssnet.loaders.dataloaders import Rescale, Flip from rssnet.utils import RSSNET_HOME def get_class_weights(path_to_weights, signal_type): """Load class weights for custom loss PARAMETERS ---------- path_to_weights: str signal_type: str Supported: 'range_doppler', 'range_angle' RETURNS ------- weights: torch tensor Weights by class to use in the CE loss """ if signal_type in ('range_angle', 'rdra2ra', 'rad2ra'): file_name = 'ra_weights.json' elif signal_type in ('range_doppler', 'rdra2rd', 'rad2rd'): file_name = 'rd_weights.json' else: raise ValueError('Signal type {} is not supported.'.format(signal_type)) with open(os.path.join(path_to_weights, file_name), 'r') as fp: weights = json.load(fp) weights = np.array([weights['background'], weights['pedestrian'], weights['cyclist'], weights['car']]) weights = torch.from_numpy(weights) return weights def transform_masks_viz(masks, nb_classes): masks = masks.unsqueeze(1) masks = (masks.float()/nb_classes) return masks def get_metrics(metrics, loss): """Structure metrics and results in a dict""" metrics_values = dict() metrics_values['loss'] = loss.item() prec, prec_by_class = metrics.get_pixel_prec_class() # harmonic_mean=True) recall, recall_by_class = metrics.get_pixel_recall_class() # harmonic_mean=True) miou, miou_by_class = metrics.get_miou_class() # harmonic_mean=True) dice, dice_by_class = metrics.get_dice_class() metrics_values['prec'] = prec metrics_values['prec_by_class'] = prec_by_class.tolist() metrics_values['recall'] = recall metrics_values['recall_by_class'] = recall_by_class.tolist() metrics_values['miou'] = miou metrics_values['miou_by_class'] = miou_by_class.tolist() metrics_values['dice'] = dice metrics_values['dice_by_class'] = dice_by_class.tolist() return metrics_values def normalize(data, signal_type, carrada_path, norm_type='local'): """Function to normalize the input data. Note that the 'train' and 'tvt' norm methods requires specific files containing statistics on the dataset. PARAMETERS ---------- data: torch tensor Matrix to normalize signal_type: str carrada_path: str Path to the files contraining statistics on the dataset norm_type: str Supported: 'local', 'train', 'tvt' RETURNS ------- norm_data: torch tensor """ if signal_type in ('range_doppler', 'range_angle', 'rad2rd', 'rad2ra') and \ norm_type in ('local'): min_value = torch.min(data) max_value = torch.max(data) norm_data = torch.div(torch.sub(data, min_value), torch.sub(max_value, min_value)) return norm_data if signal_type in ('rdra2rd', 'rdra2ra'): if norm_type == 'train': with open(os.path.join(carrada_path, 'rd_stats.json'), 'r') as fp: rd_stats = json.load(fp) with open(os.path.join(carrada_path, 'ra_stats.json'), 'r') as fp: ra_stats = json.load(fp) elif norm_type == 'tvt': with open(os.path.join(carrada_path, 'rd_stats_all.json'), 'r') as fp: rd_stats = json.load(fp) with open(os.path.join(carrada_path, 'ra_stats_all.json'), 'r') as fp: ra_stats = json.load(fp) # Normalize representation independently if norm_type in ('train', 'tvt'): for i in range(data.shape[1]): if i%2 == 0: # range-Doppler min_value = torch.tensor(rd_stats['min_val']) max_value = torch.tensor(rd_stats['max_val']) else: # range-angle min_value = torch.tensor(ra_stats['min_val']) max_value = torch.tensor(ra_stats['max_val']) data[:, i, :, :] = torch.div(torch.sub(data[:, i, :, :], min_value), torch.sub(max_value, min_value)) elif norm_type in ('local'): for i in range(data.shape[1]): min_value = torch.min(data[:, i, :, :]) max_value = torch.max(data[:, i, :, :]) data[:, i, :, :] = torch.div(torch.sub(data[:, i, :, :], min_value), torch.sub(max_value, min_value)) else: raise TypeError('Global type {} is not supported'.format(norm_type)) return data elif signal_type == 'range_doppler': if norm_type == 'train': with open(os.path.join(carrada_path, 'rd_stats.json'), 'r') as fp: rd_stats = json.load(fp) elif norm_type == 'tvt': with open(os.path.join(carrada_path, 'rd_stats_all.json'), 'r') as fp: rd_stats = json.load(fp) else: raise TypeError('Global type {} is not supported'.format(norm_type)) min_value = torch.tensor(rd_stats['min_val']) max_value = torch.tensor(rd_stats['max_val']) norm_data = torch.div(torch.sub(data, min_value), torch.sub(max_value, min_value)) return norm_data elif signal_type == 'range_angle': if norm_type == 'train': with open(os.path.join(carrada_path, 'ra_stats.json'), 'r') as fp: ra_stats = json.load(fp) elif norm_type == 'tvt': with open(os.path.join(carrada_path, 'ra_stats_all.json'), 'r') as fp: ra_stats = json.load(fp) else: raise TypeError('Global type {} is not supported'.format(norm_type)) min_value = torch.tensor(ra_stats['min_val']) max_value = torch.tensor(ra_stats['max_val']) norm_data = torch.div(torch.sub(data, min_value), torch.sub(max_value, min_value)) return norm_data elif signal_type in ('rad2rd', 'rad2ra'): if norm_type == 'train': with open(os.path.join(carrada_path, 'rad_stats.json'), 'r') as fp: rad_stats = json.load(fp) elif norm_type == 'tvt': with open(os.path.join(carrada_path, 'rad_stats_all.json'), 'r') as fp: rad_stats = json.load(fp) else: raise TypeError('Global type {} is not supported'.format(norm_type)) min_value = torch.tensor(rad_stats['min_val']) max_value = torch.tensor(rad_stats['max_val']) norm_data = torch.div(torch.sub(data, min_value), torch.sub(max_value, min_value)) return norm_data else: raise TypeError('Signal {} is not supported.'.format(signal_type)) def define_loss(signal_type, custom_loss, device): """Define loss for training pipeline PARAMETERS ---------- signal_type: str custom_loss: str Name of the custom loss to use. Default: use Cross Entropy device: str Supported: 'cuda', 'cpu' RETURNS ------- loss: torch function """ if custom_loss == 'wce': path_to_weights = os.path.join(RSSNET_HOME, 'model_configs') weights = get_class_weights(path_to_weights, signal_type) loss = nn.CrossEntropyLoss(weight=weights.to(device).float()) else: loss = nn.CrossEntropyLoss() return loss def get_transformations(transform_names, split='train', sizes=None): """Get transformation functions to apply to the input data PARAMETERS ---------- transform_names: str List of the transformation separated by comma split: str Split currently processed. Default: 'train' sizes: tuple of ints or int Sizes fore Rescale transformation RETURNS ------- transformations: list of functions """ transformations = list() if 'rescale' in transform_names: transformations.append(Rescale(sizes)) if 'flip' in transform_names and split == 'train': transformations.append(Flip(0.5)) return transformations def mask_to_img(mask): mask_img = np.zeros((mask.shape[0], mask.shape[1], 3), dtype=np.uint8) mask_img[mask == 1] = [255, 0, 0] mask_img[mask == 2] = [0, 255, 0] mask_img[mask == 3] = [0, 0, 255] mask_img = Image.fromarray(mask_img) return mask_img def get_qualitatives(outputs, masks, paths, seq_name, quali_iter): """Method to get qualitative results PARAMETERS ---------- outputs: torch tensor Predicted masks masks: torch tensor Ground truth masks seq_name: str quali_iter: int Current iteration on the dataset RETURNS ------- quali_iter: str """ folder_path = os.path.join(paths['logs'], seq_name[0]) os.makedirs(folder_path, exist_ok=True) outputs = torch.argmax(outputs, axis=1).cpu().numpy() masks = torch.argmax(masks, axis=1).cpu().numpy() for i in range(outputs.shape[0]): mask_img = mask_to_img(masks[i]) mask_img.save(os.path.join(folder_path, 'mask_{}.png'.format(quali_iter))) output_img = mask_to_img(outputs[i]) output_img.save(os.path.join(folder_path, 'output_{}.png'.format(quali_iter))) quali_iter += 1 return quali_iter
# -*- coding: UTF-8 -*- from assopy import models from conference import models as cmodels from django.db.models import Q from collections import defaultdict from decimal import Decimal def _orders(**kw): qs = models.Order.objects.filter(_complete=True) if 'year' in kw: qs = qs.filter(created__year=kw['year']) if 'from' in kw: qs = qs.filter(created__gte=kw['from']) if 'to' in kw: qs = qs.filter(created__lt=kw['to']) return qs def movimento_cassa(**kw): """ Elenca i movimenti di cassa in/out nel periodo specificato. Tramite **kw si può specificare - year - from (data inizio) - to (data fine) Il dizionario in output ha tre chiavi: - in - out sono i movimenti in ingresso/uscita, nella forma: codice biglietto|discount -> quantità, totale - error sono gli ordini con righe d'ordine incongruenti, senza un biglietto ma con importo maggiore di zero. """ items = models.OrderItem.objects\ .filter(order__in=_orders(**kw))\ .values('code', 'ticket', 'price', 'order__code') fares = dict(cmodels.Fare.objects\ .values_list('code', 'description')) output = { 'in': defaultdict(lambda: [0, 0]), 'out': defaultdict(lambda: [0, 0]), 'errors': defaultdict(lambda: [0, 0]), } for row in items: if row['price'] < 0: if row['code'].startswith('_'): k = output['out'][(row['code'], fares.get(row['code']))] else: k = output['out'][('OTHER', '')] elif not row['ticket']: k = output['errors'][(row['order__code'], '')] else: k = output['in'][(row['code'], fares.get(row['code']))] k[0] += 1 k[1] += row['price'] totals = { 'in': 0, 'out': 0, 'errors': 0, } for k, v in output.items(): data = sorted(v.items()) output[k] = data totals[k] = sum([x[1][1] for x in data]) output['totals'] = totals return output movimento_cassa.description = "Elenco dei movimenti di cassa" movimento_cassa.template = ''' <table> <tr> <th>Code</th> <th>Qty</th> <th style="width: 70px;">Price</th> </tr> {% for code, row in data.in %} <tr> <td title="{{ code.1 }}">{{ code.0 }}</td> <td>{{ row.0 }}</td> <td style="text-align: right;">€ {{ row.1|floatformat:"2" }}</td> </tr> {% endfor %} <tr> <th colspan="2">Total</th> <td style="text-align: right;">€ {{ data.totals.in }}</td> </tr> {% for code, row in data.out %} <tr> <td title="{{ code.1 }}">{{ code.0 }}</td> <td>{{ row.0 }}</td> <td style="text-align: right; color: red;">€ {{ row.1|floatformat:"2" }}</td> </tr> {% endfor %} <tr> <th colspan="2">Total</th> <td style="text-align: right;">€ {{ data.totals.out }}</td> </tr> </table> {% if data.errors %} <h3>Errors</h3> <table> <tr> <td>Order</th> <th style="width: 70px;">Price</th> </tr> {% for code, row in data.errors %} <tr> <td>{{ code.0 }}</th> <td style="text-align: right;">€ {{ row.1|floatformat:"2" }}</th> </tr> {% endfor %} <tr> <th>Total</th> <td style="text-align: right;">€ {{ data.totals.errors }}</td> </tr> </table> {% endif %} ''' def prezzo_biglietti_ricalcolato(**kw): """ Ricalcola il ricavo dei biglietti eliminando quelli gratuiti e ridistribuendo il prezzo sui rimanenti. """ # mi interessano solo gli ordini che riguardano acquisti di biglietti # "conferenza" orders = models.Order.objects\ .filter(id__in=_orders(**kw), orderitem__ticket__fare__ticket_type='conference')\ .values('id')\ .distinct() qs = models.OrderItem.objects\ .filter(order__in=orders)\ .values_list('ticket__fare__code', 'ticket__fare__name', 'price', 'order') fares = set(cmodels.Fare.objects\ .filter(ticket_type='conference')\ .values_list('code', flat=True)) def _calc_prices(order_id, items): """ Elimina gli item degli sconti e riduce in maniera proporzionale il valore dei restanti. """ prices = set() discount = Decimal('0') total = Decimal('0') for item in items: if item['price'] > 0: prices.add(item['price']) total += item['price'] else: discount += item['price'] * -1 for ix, item in reversed(list(enumerate(items))): if item['price'] > 0: item['price'] = item['price'] * (total - discount) / total else: del items[ix] grouped = defaultdict(list) for fcode, fname, price, oid in qs: if fcode in fares or price < 0: grouped[oid].append({ 'code': fcode, 'name': fname, 'price': price, }) for oid, items in grouped.items(): _calc_prices(oid, items) # dopo l'utilizzo di _calc_prices ottengo dei prezzi che non trovo # più tra le tariffe ordinarie, raggruppo gli OrderItem risultanti # per codice tariffa e nuovo prezzo tcp = {} for rows in grouped.values(): for item in rows: code = item['code'] if code not in tcp: tcp[code] = { 'code': code, 'name': item['name'], 'prices': {} } price = item['price'] if price not in tcp[code]['prices']: tcp[code]['prices'][price] = { 'price': price, 'count': 0 } tcp[code]['prices'][price]['count'] += 1 # Replace prices dicts with sorted lists for code in tcp.keys(): prices_list = [entry for price, entry in sorted(tcp[code]['prices'].items(), reverse=True)] tcp[code]['prices'] = prices_list # Create list sorted by fare code ticket_sales = [entry for code, entry in sorted(tcp.items())] return ticket_sales prezzo_biglietti_ricalcolato.template = ''' <table> <tr> <th>Code</th> <th>Qty</th> <th style="width: 70px;">Price</th> </tr> {% for ticket in data %} {% for p in ticket.prices %} <tr> {% if forloop.counter == 1 %} <td title="{{ ticket.name }}" rowspan="{{ ticket.prices|length }}">{{ ticket.code }}</td> {% endif %} <td>{{ p.count }}</td> <td>€ {{ p.price|floatformat:"2" }}</td> </tr> {% endfor %} {% endfor %} </table> '''
import tweepy as tw import json with open("key.json", "r") as f: key = json.load(f) auth = tw.OAuthHandler(key['API_KEY'], key['API_SECRET_KEY']) auth.set_access_token(key['ACCESS_TOKEN'], key['ACCESS_TOKEN_SECRET']) api = tw.API(auth, wait_on_rate_limit=True) #api.update_status("Hello World!") search_words = "Canada" date_since = '2019-01-01' tweets = tw.Cursor(api.search, q=search_words, lang='en', since=date_since).items(5) for tweet in tweets: print(tweet.text)
""" LLDB AppKit formatters part of The LLVM Compiler Infrastructure This file is distributed under the University of Illinois Open Source License. See LICENSE.TXT for details. """ # summary provider for NS(Mutable)IndexSet import lldb import ctypes import lldb.runtime.objc.objc_runtime import lldb.formatters.metrics import lldb.formatters.Logger statistics = lldb.formatters.metrics.Metrics() statistics.add_metric('invalid_isa') statistics.add_metric('invalid_pointer') statistics.add_metric('unknown_class') statistics.add_metric('code_notrun') # despite the similary to synthetic children providers, these classes are not # trying to provide anything but the count of values for an NSIndexSet, so they need not # obey the interface specification for synthetic children providers class NSIndexSetClass_SummaryProvider: def adjust_for_architecture(self): pass def __init__(self, valobj, params): logger = lldb.formatters.Logger.Logger() self.valobj = valobj; self.sys_params = params if not(self.sys_params.types_cache.NSUInteger): if self.sys_params.is_64_bit: self.sys_params.types_cache.NSUInteger = self.valobj.GetType().GetBasicType(lldb.eBasicTypeUnsignedLong) else: self.sys_params.types_cache.NSUInteger = self.valobj.GetType().GetBasicType(lldb.eBasicTypeUnsignedInt) self.update(); def update(self): logger = lldb.formatters.Logger.Logger() self.adjust_for_architecture(); # NS(Mutable)IndexSet works in one of two modes: when having a compact block of data (e.g. a Range) # the count is stored in the set itself, 3 pointers into it # otherwise, it will store a pointer to an additional data structure (2 pointers into itself) and this # additional structure will contain the count two pointers deep # to distinguish the two modes, one reads two pointers deep into the object data: if only the MSB # is set, then we are in mode 1, using that area to store flags, otherwise, the read pointer is the # location to go look for count in mode 2 def count(self): logger = lldb.formatters.Logger.Logger() mode_chooser_vo = self.valobj.CreateChildAtOffset("mode_chooser", 2*self.sys_params.pointer_size, self.sys_params.types_cache.NSUInteger) mode_chooser = mode_chooser_vo.GetValueAsUnsigned(0) if self.sys_params.is_64_bit: mode_chooser = mode_chooser & 0xFFFFFFFFFFFFFF00 else: mode_chooser = mode_chooser & 0xFFFFFF00 if mode_chooser == 0: mode = 1 else: mode = 2 if mode == 1: count_vo = self.valobj.CreateChildAtOffset("count", 3*self.sys_params.pointer_size, self.sys_params.types_cache.NSUInteger) else: count_ptr = mode_chooser_vo.GetValueAsUnsigned(0) count_vo = self.valobj.CreateValueFromAddress("count", count_ptr+2*self.sys_params.pointer_size, self.sys_params.types_cache.NSUInteger) return count_vo.GetValueAsUnsigned(0) class NSIndexSetUnknown_SummaryProvider: def adjust_for_architecture(self): pass def __init__(self, valobj, params): logger = lldb.formatters.Logger.Logger() self.valobj = valobj; self.sys_params = params self.update(); def update(self): logger = lldb.formatters.Logger.Logger() self.adjust_for_architecture(); def count(self): logger = lldb.formatters.Logger.Logger() stream = lldb.SBStream() self.valobj.GetExpressionPath(stream) expr = "(int)[" + stream.GetData() + " count]" num_children_vo = self.valobj.CreateValueFromExpression("count",expr) if num_children_vo.IsValid(): return num_children_vo.GetValueAsUnsigned(0) return '<variable is not NSIndexSet>' def GetSummary_Impl(valobj): logger = lldb.formatters.Logger.Logger() global statistics class_data,wrapper =lldb.runtime.objc.objc_runtime.Utilities.prepare_class_detection(valobj,statistics) if wrapper: return wrapper name_string = class_data.class_name() logger >> "class name is: " + str(name_string) if name_string == 'NSIndexSet' or name_string == 'NSMutableIndexSet': wrapper = NSIndexSetClass_SummaryProvider(valobj, class_data.sys_params) statistics.metric_hit('code_notrun',valobj) else: wrapper = NSIndexSetUnknown_SummaryProvider(valobj, class_data.sys_params) statistics.metric_hit('unknown_class',valobj.GetName() + " seen as " + name_string) return wrapper; def NSIndexSet_SummaryProvider (valobj,dict): logger = lldb.formatters.Logger.Logger() provider = GetSummary_Impl(valobj); if provider != None: if isinstance(provider,lldb.runtime.objc.objc_runtime.SpecialSituation_Description): return provider.message() try: summary = provider.count(); except: summary = None logger >> "got summary " + str(summary) if summary == None: summary = '<variable is not NSIndexSet>' if isinstance(summary, basestring): return summary else: summary = str(summary) + (' objects' if summary != 1 else ' object') return summary return 'Summary Unavailable' def __lldb_init_module(debugger,dict): debugger.HandleCommand("type summary add -F NSIndexSet.NSIndexSet_SummaryProvider NSIndexSet NSMutableIndexSet")
import numpy as np from gym.envs.mujoco import HalfCheetahEnv import inspect def get_all_function_arguments(function, locals): kwargs_dict = {} for arg in inspect.getfullargspec(function).kwonlyargs: if arg not in ["args", "kwargs"]: kwargs_dict[arg] = locals[arg] args = [locals[arg] for arg in inspect.getfullargspec(function).args] if "args" in locals: args += locals["args"] if "kwargs" in locals: kwargs_dict.update(locals["kwargs"]) return args, kwargs_dict class HalfCheetahWrapper(HalfCheetahEnv): """HalfCheetah Wrapper that wraps Mujoco Halfcheetah-v2 env with an additional defined reward function for model-based RL. This is currently used for MBMPO. """ def __init__(self, *args, **kwargs): HalfCheetahEnv.__init__(self, *args, **kwargs) def reward(self, obs, action, obs_next): if obs.ndim == 2 and action.ndim == 2: assert obs.shape == obs_next.shape forward_vel = obs_next[:, 8] ctrl_cost = 0.1 * np.sum(np.square(action), axis=1) reward = forward_vel - ctrl_cost return np.minimum(np.maximum(-1000.0, reward), 1000.0) else: forward_vel = obs_next[8] ctrl_cost = 0.1 * np.square(action).sum() reward = forward_vel - ctrl_cost return np.minimum(np.maximum(-1000.0, reward), 1000.0) if __name__ == "__main__": env = HalfCheetahWrapper() env.reset() for _ in range(1000): env.step(env.action_space.sample())
import xlwt from django.http import HttpResponse from users.models import Usuario from mrp.models import Report, ReportItem, ReportPeriod from decimal import Decimal from .functions import dollarFormat def export_report_xls(request, report_id): report = Report.objects.get(pk=report_id) items = ReportItem.objects.filter(report=report_id) response = HttpResponse(content_type='application/ms-excel') response['Content-Disposition'] = f'attachment; filename="{report.title}.xls"' wb = xlwt.Workbook(encoding='utf-8') ws = wb.add_sheet('Report') COLS_WIDTH = 256 * 20 ws.col(2).width = COLS_WIDTH ws.col(3).width = COLS_WIDTH ws.col(4).width = COLS_WIDTH ws.col(5).width = COLS_WIDTH ws.col(6).width = COLS_WIDTH for count in range(0, 62): ws.row(count).height_mismatch = True ws.row(count).height = 320 # Create Custom color for cells xlwt.add_palette_colour("custom_colour", 0x21) wb.set_colour_RGB(0x21, 211, 247, 253) th_style = xlwt.easyxf('pattern: pattern solid, fore_color custom_colour; border: top thin, right thin, bottom thin, left thin; font: bold 1; align: vert centre, horiz center;') td_style = xlwt.easyxf('border: top thin, right thin, bottom thin, left thin; font: bold 1; align: vert centre, horiz center') current_table = 2 total_carrying_cost = 0 total_order_cost = 0 for item in items: ws.write(current_table + 0, 2, 'Item Number', th_style) ws.write(current_table + 0, 3, item.part_number, td_style) ws.write(current_table + 0, 5, 'Yield (%)', th_style) ws.write(current_table + 0, 6, item.yield_percent, td_style) ws.write(current_table + 2, 2, 'Lead Time', th_style) ws.write(current_table + 2, 3, item.lead_time, td_style) ws.write(current_table + 2, 5, 'Order Cost', th_style) ws.write(current_table + 2, 6, item.order_cost, td_style) ws.write(current_table + 4, 2, 'Parent', th_style) ws.write(current_table + 4, 3, item.parent, td_style) ws.write(current_table + 4, 5, 'Carrying Cost', th_style) ws.write(current_table + 4, 6, item.carrying_cost, td_style) ws.write(current_table + 6, 2, 'Quantity', th_style) ws.write(current_table + 6, 3, item.qty, td_style) ws.write(current_table + 6, 5, 'Lot Size', th_style) ws.write(current_table + 6, 6, item.lot_size, td_style) ws.write(current_table + 7, 5, 'Factor', th_style) ws.write(current_table + 7, 4, '') ws.write(current_table + 8, 2, 'Safety Stock', th_style) ws.write(current_table + 8, 3, item.safe_stock, td_style) ws.write(current_table + 9, 5, 'On Hand', th_style) ws.write(current_table + 10, 2, 'Period', th_style) ws.write(current_table + 10, 3, 'Gross Requirement', th_style) ws.write(current_table + 10, 4, 'Receipts', th_style) ws.write(current_table + 10, 5, item.on_hand, td_style) ws.write(current_table + 10, 6, 'Net Requirement', th_style) periods = ReportPeriod.objects.filter(item=item.id) total_inventory = 0 net_req_count = 0 for period in periods: row = period.period - 1 ws.write(current_table + row + 11, 2, period.period, td_style) ws.write(current_table + row + 11, 3, period.gross_requirement, td_style) ws.write(current_table + row + 11, 4, period.receipt, td_style) ws.write(current_table + row + 11, 5, period.on_hand, td_style) ws.write(current_table + row + 11, 6, period.net_requirement, td_style) if period.on_hand > 0: total_inventory += period.on_hand if period.net_requirement > 0: net_req_count += 1 average_inventory = total_inventory / len(periods) carrying_cost = Decimal(average_inventory) * item.carrying_cost order_cost = net_req_count * item.order_cost total_cost = carrying_cost + order_cost ws.write(current_table + row + 12, 2, "Total Inventory", th_style) ws.write(current_table + row + 12, 3, "Average Inventory", th_style) ws.write(current_table + row + 12, 4, "Carrying Cost", th_style) ws.write(current_table + row + 12, 5, "Order Cost", th_style) ws.write(current_table + row + 12, 6, "Total Cost", th_style) ws.write(current_table + row + 13, 2, total_inventory, td_style) ws.write(current_table + row + 13, 3, average_inventory, td_style) ws.write(current_table + row + 13, 4, dollarFormat(carrying_cost), td_style) ws.write(current_table + row + 13, 5, dollarFormat(order_cost), td_style) ws.write(current_table + row + 13, 6, dollarFormat(total_cost), td_style) total_carrying_cost += carrying_cost total_order_cost += order_cost current_table += 25 final_total_cost = total_carrying_cost + total_order_cost ws.write(current_table + row - 9, 4, "Total Carrying Cost", th_style) ws.write(current_table + row - 9, 5, "Total Order Cost", th_style) ws.write(current_table + row - 9, 6, "Total Cost", th_style) ws.write(current_table + row - 8, 4, dollarFormat(total_carrying_cost), td_style) ws.write(current_table + row - 8, 5, dollarFormat(total_order_cost), td_style) ws.write(current_table + row - 8, 6, dollarFormat(final_total_cost), td_style) wb.save(response) return response def export_users_xls(request): response = HttpResponse(content_type='application/ms-excel') response['Content-Disposition'] = 'attachment; filename="users.xls"' wb = xlwt.Workbook(encoding='utf-8') ws = wb.add_sheet('Users') # Sheet header, first row row_num = 0 font_style = xlwt.XFStyle() font_style.font.bold = True columns = ['First name', 'Last name', 'Email address', ] for col_num in range(len(columns)): ws.write(row_num, col_num, columns[col_num], font_style) # Sheet body, remaining rows font_style = xlwt.XFStyle() rows = Usuario.objects.all().values_list('first_name', 'last_name', 'email') for row in rows: row_num += 1 for col_num in range(len(row)): ws.write(row_num, col_num, row[col_num], font_style) wb.save(response) return response def export_styling_xls(request): response = HttpResponse(content_type='application/ms-excel') response['Content-Disposition'] = 'attachment; filename="users.xls"' wb = xlwt.Workbook(encoding='utf-8') ws = wb.add_sheet('Styling Data') # this will make a sheet named Users Data - First Sheet xlwt.add_palette_colour("custom_colour", 0x21) wb.set_colour_RGB(0x21, 211, 247, 253) styles = dict( bold = 'font: bold 1', italic = 'font: italic 1', # Wrap text in the cell wrap_bold = 'font: bold 1; align: wrap 1;', # White text on a blue background reversed = 'pattern: pattern solid, fore_color blue; font: color white;', # Light orange checkered background light_orange_bg = 'pattern: pattern fine_dots, fore_color white, back_color orange;', # Heavy borders bordered = 'border: top thin, right thin, bottom thin, left thin;', # 16 pt red text big_red = 'font: height 320, color red;', custom_color = 'pattern: pattern solid, fore_color custom_colour;', ) for idx, k in enumerate(sorted(styles)): style = xlwt.easyxf(styles[k]) ws.write(idx, 0, k) ws.write(idx, 1, styles[k], style) wb.save(response) return response
# Copyright 2015 Mirantis, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import logging import sys from cliff import command import url_access_checker.api as api import url_access_checker.errors as errors from url_access_checker.network import manage_network LOG = logging.getLogger(__name__) class CheckUrls(command.Command): """Check if it is possible to retrieve urls.""" def get_parser(self, prog_name): parser = super(CheckUrls, self).get_parser(prog_name) parser.add_argument('urls', type=str, nargs='+', help='List of urls to check') return parser def take_action(self, parsed_args): LOG.info('Starting url access check for {0}'.format(parsed_args.urls)) try: api.check_urls(parsed_args.urls) except errors.UrlNotAvailable as e: sys.stdout.write(str(e)) raise e class CheckUrlsWithSetup(CheckUrls): def get_parser(self, prog_name): parser = super(CheckUrlsWithSetup, self).get_parser( prog_name) parser.add_argument('-i', type=str, help='Interface', required=True) parser.add_argument('-a', type=str, help='Addr/Mask pair', required=True) parser.add_argument('-g', type=str, required=True, help='Gateway to be used as default') parser.add_argument('--vlan', type=int, help='Vlan tag') return parser def take_action(self, pa): with manage_network(pa.i, pa.a, pa.g, pa.vlan): return super( CheckUrlsWithSetup, self).take_action(pa)
""" Cisco_IOS_XR_platform_pifib_oper This module contains a collection of YANG definitions for Cisco IOS\-XR platform\-pifib package operational data. This YANG module augments the Cisco\-IOS\-XR\-lpts\-pre\-ifib\-oper module with state data. Copyright (c) 2013\-2016 by Cisco Systems, Inc. All rights reserved. """ import re import collections from enum import Enum from ydk.types import Empty, YList, YLeafList, DELETE, Decimal64, FixedBitsDict from ydk.errors import YPYError, YPYModelError class UsageAddressFamilyEnum(Enum): """ UsageAddressFamilyEnum Usage address family .. data:: ipv4 = 0 Ipv4 af .. data:: ipv6 = 1 Ipv6 af """ ipv4 = 0 ipv6 = 1 @staticmethod def _meta_info(): from ydk.models.cisco_ios_xr._meta import _Cisco_IOS_XR_platform_pifib_oper as meta return meta._meta_table['UsageAddressFamilyEnum']
__name__ = ["phonology"] __version__ = "1.5.4" ################################################################## # # # Phonology - Consonants def gen_nasal_stops_(): return [ "m", "n", "ŋ" ] nasal_stop = gen_nasal_stops_() def gen_non_nasal_stops_(): return [ "b", "d", "ɡ" , "p", "t", "k", "q" ] non_nasal_stop = gen_non_nasal_stops_() def gen_glottal_stop_(): return [ "ʔ" ] glottal_stop = gen_glottal_stop_() def gen_stops_(): stop_ = list() stop_.extend(nasal_stop) stop_.extend(non_nasal_stop) return stop_ stop = gen_stops_() def gen_all_stops_(): all_stops_ = list() all_stops_.extend(stop) all_stops_.extend(glottal_stop) return all_stops_ all_stops = gen_all_stops_() def gen_affricates_(): return [ "d͡z", "d͡ʒ" , "t͡s", "t͡ʃ" ] affricate = gen_affricates_() def sibilant_fricatives_(): return [ "z", "ʒ" , "s", "ʃ" , "ɬ" , "ɮ" ] sibilant_fricative = sibilant_fricatives_() def non_sibilant_fricatives_(): return [ "f", "v", "θ", "ð", "x", "χ", "ħ", "ʕ", "h" ] non_sibilant_fricative = non_sibilant_fricatives_() def gen_rhotic_fricatives_(): return [ "ɣ", "ʁ", "ɹ̠" ] rhotic_fricative = gen_rhotic_fricatives_() def gen_fric_(): """ 18 consonants """ fric_ = list() fric_.extend(sibilant_fricative) fric_.extend(non_sibilant_fricative) fric_.extend(rhotic_fricative) return fric_ fricative = gen_fric_() def gen_semi_vowel_(): return [ "w", "ʋ", "ð̞", "j" ] semi_vowel = gen_semi_vowel_() rhotic_approximant = [ "ɰ", "ɹ̠" ] onset_approximant_ext = [ "l" , "ʍ" , "ʕ̞" ] def gen_onset_appr_(): on_appr_ = list() on_appr_.extend(semi_vowel) on_appr_.extend(rhotic_approximant) on_appr_.extend(onset_approximant_ext) return on_appr_ onset_approximant = gen_onset_appr_() coda_approximant_ext = [ "ɫ" ] def gen_coda_appr_(): co_appr_ = list() co_appr_.extend(semi_vowel) co_appr_.extend(coda_approximant_ext) return co_appr_ coda_approximant = gen_coda_appr_() def gen_trill_(): return [ "r", "ʀ" ] trill = gen_trill_() def gen_ejectives_(): return [ "pʼ" , "ť" , "kʼ" , "qʼ" , "tsʼ" , "t͡ʃʼ" , "fʼ" , "θʼ" , "sʼ" , "ʃʼ" , "x’" , "χ’" ] ejective = gen_ejectives_() def gen_pharyngeal_approximant_(): return [ "ʕ̞" ] pharyngeal_approximant = gen_pharyngeal_approximant_() # Affricate - Fricative matching dictionaries # Remember Affricates are made up of # a Stop followed by a Fricative. def gen_affr_fric_match_(): return { "d͡z": "z", "d͡ʒ": "ʒ", "t͡s": "s", "t͡ʃ": "ʃ" } affr_fric_match = gen_affr_fric_match_() def gen_stop_affr_match_(): return { "d͡z": "d", "d͡ʒ": "d", "t͡s": "t", "t͡ʃ": "t" } stop_affr_match = gen_stop_affr_match_()
import re from typing import Any from core import Program from core.commons import log_objects from core.interfaces.singleton import Singleton from cryptography.fernet import Fernet class Hasher(metaclass=Singleton): __metaclass__ = Singleton WRAP_REGEX: str = '<HASHED_DATA_SDBA>{(.+?)}</HASHED_DATA_SDBA>' def __init__(self) -> None: self.__crypto_key = Program.get_crypto_key() def _unhash(self, estr: str) -> str: """ _unhash Args: estr (str): Returns: _unhash """ f = Fernet(self.__crypto_key) decrypted = f.decrypt(estr.encode(Program.ENCODING)) return decrypted.decode(Program.ENCODING) def _hash(self, estr: str) -> str: """ _hash Args: estr (str): Returns: str """ message = str(estr).encode() f = Fernet(self.__crypto_key) encrypted_str: str = f.encrypt(message).decode(Program.ENCODING) return self.WRAP_REGEX.replace("{(.+?)}", "{}").format(encrypted_str) def decode_data(self, strdata: Any) -> Any: """ decode_data Args: strdata (Any): Returns: Any """ hasher_tag: str = self.WRAP_REGEX.split('{')[0] def decode(estr: str) -> str: try: if hasher_tag not in str(estr): return estr else: patters: str = self.WRAP_REGEX.replace("{", "").replace("}", "") m = re.search(patters, estr) if m: found = m.group(1) return self._unhash(found) elif estr == self.WRAP_REGEX.replace("{(.+?)}", ""): return "" else: return estr return estr except Exception as ex: log_objects(ex) try: if isinstance(strdata, dict): ndct = {} for k, v in strdata.items(): if isinstance(v, dict): ndct[k] = v else: ndct[k] = decode(v) return ndct else: return decode(strdata) except Exception as e: log_objects(e) def encode_data(self, strdata: Any) -> str: """ encode_data Args: strdata (Any): Returns: str """ hasher_tag: str = self.WRAP_REGEX.split('{')[0] def encode(estr: str) -> str: if hasher_tag in str(estr): return estr else: return self._hash(estr) if isinstance(strdata, dict): ndct = {} for k, v in strdata.items(): if isinstance(v, dict): ndct[k] = v else: ndct[k] = encode(v) return ndct else: return encode(strdata)
#!/usr/bin/env python3 """ Video output writer for faceswap.py converter """ import os from collections import OrderedDict from math import ceil import imageio import imageio_ffmpeg as im_ffm from ffmpy import FFmpeg, FFRuntimeError from ._base import Output, logger class Writer(Output): """ Video output writer using imageio """ def __init__(self, output_folder, total_count, frame_ranges, source_video, **kwargs): super().__init__(output_folder, **kwargs) logger.debug("total_count: %s, frame_ranges: %s, source_video: '%s'", total_count, frame_ranges, source_video) self.source_video = source_video self.frame_ranges = frame_ranges self.frame_order = self.set_frame_order(total_count) self.output_dimensions = None # Fix dims of 1st frame in case of different sized images self.writer = None # Need to know dimensions of first frame, so set writer then @property def video_file(self): """ Return full path to video output """ filename = os.path.basename(self.source_video) filename = os.path.splitext(filename)[0] filename = "{}_converted.{}".format(filename, self.config["container"]) retval = os.path.join(self.output_folder, filename) logger.debug(retval) return retval @property def video_tmp_file(self): """ Temporary video file, prior to muxing final audio """ path, filename = os.path.split(self.video_file) retval = os.path.join(path, "__tmp_{}".format(filename)) logger.debug(retval) return retval @property def valid_tune(self): """ Return whether selected tune is valid for selected codec """ return {"libx264": ["film", "animation", "grain", "stillimage", "fastdecode", "zerolatency"], "libx265": ["grain", "fastdecode", "zerolatency"]} @property def video_fps(self): """ Return the fps of source video """ reader = imageio.get_reader(self.source_video, "ffmpeg") retval = reader.get_meta_data()["fps"] reader.close() logger.debug(retval) return retval @property def output_params(self): """ FFMPEG Output parameters """ codec = self.config["codec"] tune = self.config["tune"] # Force all frames to the same size output_args = ["-vf", "scale={}".format(self.output_dimensions)] output_args.extend(["-c:v", codec]) output_args.extend(["-crf", str(self.config["crf"])]) output_args.extend(["-preset", self.config["preset"]]) if tune is not None and tune in self.valid_tune[codec]: output_args.extend(["-tune", tune]) if codec == "libx264" and self.config["profile"] != "auto": output_args.extend(["-profile:v", self.config["profile"]]) if codec == "libx264" and self.config["level"] != "auto": output_args.extend(["-level", self.config["level"]]) logger.debug(output_args) return output_args def set_frame_order(self, total_count): """ Return the full list of frames to be converted in order """ if self.frame_ranges is None: retval = list(range(1, total_count + 1)) else: retval = list() for rng in self.frame_ranges: retval.extend(list(range(rng[0], rng[1] + 1))) logger.debug("frame_order: %s", retval) return retval def get_writer(self): """ Add the requested encoding options and return the writer """ logger.debug("writer config: %s", self.config) return imageio.get_writer(self.video_tmp_file, fps=self.video_fps, ffmpeg_log_level="error", quality=None, macro_block_size=8, output_params=self.output_params) def write(self, filename, image): """ Frames come from the pool in arbitrary order, so cache frames for writing out in correct order """ logger.trace("Received frame: (filename: '%s', shape: %s", filename, image.shape) if not self.output_dimensions: logger.info("Outputting to: '%s'", self.video_file) self.set_dimensions(image.shape[:2]) self.writer = self.get_writer() self.cache_frame(filename, image) self.save_from_cache() def set_dimensions(self, frame_dims): """ Set the dimensions based on a given frame frame. This protects against different sized images coming in and ensure all images go out at the same size for writers that require it and mapped to a macro block size 16""" logger.debug("input dimensions: %s", frame_dims) self.output_dimensions = "{}:{}".format( int(ceil(frame_dims[1] / 16) * 16), int(ceil(frame_dims[0] / 16) * 16)) logger.debug("Set dimensions: %s", self.output_dimensions) def save_from_cache(self): """ Save all the frames that are ready to be output from cache """ while self.frame_order: if self.frame_order[0] not in self.cache: logger.trace("Next frame not ready. Continuing") break save_no = self.frame_order.pop(0) save_image = self.cache.pop(save_no) logger.trace("Rendering from cache. Frame no: %s", save_no) self.writer.append_data(save_image[:, :, ::-1]) logger.trace("Current cache size: %s", len(self.cache)) def close(self): """ Close the ffmpeg writer and mux the audio """ self.writer.close() self.mux_audio() def mux_audio(self): """ Mux audio ImageIO is a useful lib for frames > video as it also packages the ffmpeg binary however muxing audio is non-trivial, so this is done afterwards with ffmpy. A future fix could be implemented to mux audio with the frames """ if self.config["skip_mux"]: logger.info("Skipping audio muxing due to configuration settings.") self._rename_tmp_file() return logger.info("Muxing Audio...") if self.frame_ranges is not None: logger.warning("Muxing audio is not currently supported for limited frame ranges." "The output video has been created but you will need to mux audio " "yourself") self._rename_tmp_file() return exe = im_ffm.get_ffmpeg_exe() inputs = OrderedDict([(self.video_tmp_file, None), (self.source_video, None)]) outputs = {self.video_file: "-map 0:v:0 -map 1:a:0 -c: copy"} ffm = FFmpeg(executable=exe, global_options="-hide_banner -nostats -v 0 -y", inputs=inputs, outputs=outputs) logger.debug("Executing: %s", ffm.cmd) # Sometimes ffmpy exits for no discernible reason, but then works on a later attempt, # so take 5 shots at this attempts = 5 for attempt in range(attempts): logger.debug("Muxing attempt: %s", attempt + 1) try: ffm.run() except FFRuntimeError as err: logger.debug("ffmpy runtime error: %s", str(err)) if attempt != attempts - 1: continue logger.error("There was a problem muxing audio. The output video has been " "created but you will need to mux audio yourself either with the " "EFFMpeg tool or an external application.") os.rename(self.video_tmp_file, self.video_file) break logger.debug("Removing temp file") if os.path.isfile(self.video_tmp_file): os.remove(self.video_tmp_file) def _rename_tmp_file(self): """ Rename the temporary video file if not muxing audio. """ os.rename(self.video_tmp_file, self.video_file) logger.debug("Removing temp file") if os.path.isfile(self.video_tmp_file): os.remove(self.video_tmp_file)
def lsb(p): res = 0 for byte in p[::-1]: res = res << 8 res += byte return res def signed2lsb(v, n=2): v = int(v) res = list(v.to_bytes(length=n, byteorder='little', signed=True)) # print(f'V: {v} to', res) return res def lsb2signed(p): return int.from_bytes(bytes(p), 'little', signed=True) def parse_voltage(b): return lsb(b) * 3.3 / 4095 charger_state = { 0: "DISCHARGING", 2: "DOCKING_CHARGED", 6: "DOCKING_CHARGING", 18: "ADAPTER_CHARGED", 22: "ADAPTER_CHARGING", } ir_bit_state = { 0x01: "NEAR_LEFT", 0x02: "NEAR_CENTER", 0x04: "NEAR_RIGHT", 0x08: "FAR_CENTER", 0x10: "FAR_LEFT", 0x20: "FAR_RIGHT", }
"""Giza URL Configuration""" from django.conf.urls import url from . import views urlpatterns = [ url( r'^$', views.show_giza, name="show giza" ), url( r'^all/$', views.show_all_giza, name="show all giza" ), url( r'^new/$', views.new_giza, name='new giza' ), url( r'^new/(?P<email>.*)/$', views.new_giza, name='new giza with email' ), url( r'^(?P<id>\d+)/edit/$', views.edit_giza, name='edit giza' ), url( r'^(?P<id>\d+)/delete/$', views.delete_giza, name='delete giza' ), url( r'^search/(?P<search_type>.*)/(?P<search_word>.*)/$', views.search_giza, name='search giza' ) ]
# -*- coding: utf-8 -*- """HAR_Opportunity.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1qfhns0ykD6eLkoWICPu6WbdD4r7V-6Uf # Introduction This notebook presents the several machine learning models using CNN and LSTM for HAR. To obtain a detailed description of the architecture, please refer to the dissertation, **"RECOGNISING HUMAN ACTIVITIES AUTONOMOUSLY THROUGH FUSION OF SENSOR DATA"**. ## Dataset As a dataset, the [OPPORTUNITY Activity Recognition Data Set](http://archive.ics.uci.edu/ml/datasets/OPPORTUNITY+Activity+Recognition) is used. To prepare this dataset for the program, the following code is uncommented and executed. """ # Download dataset zip file and place data files in training and test set directries zipfile_dataset_opportunity = "OpportunityUCIDataset.zip" url_dataset_opportunity = "https://archive.ics.uci.edu/ml/machine-learning-databases/00226/OpportunityUCIDataset.zip" #!wget $url_dataset_opportunity #!unzip $zipfile_dataset_opportunity #!ls OpportunityUCIDataset/dataset/ # Deploy dataset files into training and test directories #!mkdir -p ../data/test #!mkdir ../data/train #%cd OpportunityUCIDataset/dataset/ #!cp S[1-3]-Drill.dat S1-ADL[1-5].dat S2-ADL[1-3].dat S3-ADL[1-3].dat ../../../data/train/ #!cp S[23]-ADL[23].dat ../../../data/test/ #%cd ../../ #!ls ../data/train/ #!ls ../data/test/ """# 1.Parameters Adjustable flags and parameters are listed. Hyperparameters for each ML model are in "[F] ML models" section. |Name|Type|Explanation| |-|-|-| |flag_delete_null|Flag|Whether delete the Null class or not| |flag_label|Flag|Activity type (gesture or locomotion)| |flag_(ML model name)|Flag|Whether execute the model or not| |flag_experiment|Flag|Whether run repeated evaluation for summary statistics or not| |flag_model_load|Flag|Whether load the model from the file or not| |flag_model_save|Flag|Whether save the model to the file after training or not| |flag_EarlyStopping|Flag|Enable Early stopping| |flag_es_monitor|Flag|Monitor type for Early stopping| |ratio_train|Parameter|The ratio between training and validation sets| |seed|Parameter|Fix the seed for reproducibility| |flag_scale|Flag|Scaling technique| |window_size|Parameter|The length of the sliding window| |window_step|Parameter|The step of the sliding window| |flag_sw_label|Flag|Class label of the sliding window| |flag_balance_*|Flag|Enable data balancing| |flag_data_dist|Flag|Display dataset distribution| |flag_interpolate|Flag|Enable interpolation| |flag_plot_model|Flag|Whether plot model graphs or not| |flag_save_fig|Flag|Whether save graphs or not| |flag_summary|Flag|Show summary of the dataset| |flag_cm_norm|Flag|Whether normalise confusion matrix or not| |flag_TensorBoard|Flag|Whether save the Tensorboard data or not| """ ### [Note] # # Hyperparameters for each ML model are in "[F] ML models" section # ### ---------- ---------- ---------- ---------- ---------- ### Flags flag_delete_null = False # Label flag_label = "ML_Both_Arms" #flag_label = "Locomotion" # ML flag_CNN_1d = True flag_LSTM_Mto1 = True flag_CNN1D_LSTM = True flag_ConvLSTM = True flag_Ensemble = True flag_experiment = True flag_model_load = False flag_model_save = True flag_EarlyStopping = True flag_es_monitor = "val_loss" #flag_es_monitor = "val_accuracy" ### ---------- ---------- ---------- ---------- ---------- ### Pre-processing # Ratio of training dataset to be split ratio_train = 0.85 # Randam seed for reproducibility seed = 7 # scaling flag_scaling = "Std" # for Gaussian #flag_scaling = "Norm" # (0 - 1) # Sliding window window_size = 15 window_step = 8 flag_sw_label = "last" #flag_sw_label = "mode" # Data balancing flag_balance_under1 = False flag_balance_under2 = False flag_balance_under3 = False flag_balance_over1 = False flag_balance_over2 = False flag_balance_over3 = False ### ---------- ---------- ---------- ---------- ---------- ### Evaluation flag_data_dist = False flag_interpolate = True flag_plot_model = True flag_savefig = True flag_summary = True flag_cm_norm = True flag_TensorBoard = False ### ---------- ---------- ---------- ---------- ---------- ### Directories dir_log = 'log' dir_model = 'model' ### ---------- ---------- ---------- ---------- ---------- ### Names # models modelname_cnn_1d = 'CNN_1D' modelname_lstm_Mto1 = 'LSTM_Mto1' modelname_cnn1d_lstm = 'CNN1D_LSTM' modelname_convlstm = 'ConvLSTM' modelname_ensemble = 'Ensemble' modelname_lstm_Mto1_null = 'LSTM_Mto1_null' # Label list labels_Loco = ['(Null)', 'Stand', 'Walk', 'Sit', 'Lie'] labels_ML = ['(Null)', 'Open Door 1', 'Open Door 2', 'Close Door 1', 'Close Door 2', 'Open Fridge', 'Close Fridge', 'Open Dishwasher', 'Close Dishwasher', 'Open Drawer 1', 'Close Drawer 1', 'Open Drawer 2', 'Close Drawer 2', 'Open Drawer 3', 'Close Drawer 3', 'Clean Table', 'Drink from Cup', 'Toggle Switch'] ### ---------- ---------- ---------- ---------- ---------- """# 2.Setup ## Import libraries """ # Pre-process import os import glob import numpy as np import random as rn import pandas as pd from numpy.lib.stride_tricks import as_strided from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler, MinMaxScaler from tensorflow.keras.utils import to_categorical import collections # Evaluation from sklearn.metrics import f1_score, classification_report, confusion_matrix import matplotlib.pyplot as plt import time from datetime import datetime from numpy import mean, std from matplotlib import pyplot import seaborn as sns sns.set() # NNs from tensorflow.keras.models import load_model from tensorflow.keras.utils import plot_model from tensorflow.keras.callbacks import EarlyStopping, TensorBoard # CNN import tensorflow as tf from tensorflow import keras from tensorflow.keras.models import Sequential, Model from tensorflow.keras.layers import Conv1D, MaxPool1D from tensorflow.keras.layers import Activation, Dropout, Flatten, Dense from tensorflow.keras.layers import Input, BatchNormalization from tensorflow.keras.optimizers import Adam # LSTM from tensorflow.keras.layers import LSTM, TimeDistributed from tensorflow.keras import regularizers # ConvLSTM from tensorflow.keras.layers import ConvLSTM2D # Ensemble from tensorflow.keras.models import Model from tensorflow.keras.layers import Input, Concatenate # Set random seed (for reproducibility) # Hash seed os.environ["PYTHONHASHSEED"] = str(seed) # Built-in random rn.seed(seed) # Numpy.random np.random.seed(seed) # Tensorflow tf.random.set_seed(seed) """## [F] Pre-processing""" def read_files(files): for i, file in enumerate(files): print(f'[{i+1}] Reading file: {file}') d = pd.read_csv(file, header=None, sep=' ') # Truncate last residual records for sliding window mod = (len(d) - window_size) % window_step d = d[:len(d)-mod] # Count records with NaN d_nan = d.isnull().sum() # Convert NaN # Linear interpolation if flag_interpolate: d.interpolate(inplace=True) # Convert remaining NaNs into 0 if flag_interpolate: d.replace(np.nan, 0, inplace=True) if i == 0: dataset = d dataset_nan = d_nan else: dataset = pd.concat([dataset, d]) dataset_nan = dataset_nan + d_nan return dataset, dataset_nan # Adjust label values (0 to num_classes) def adjust_idx_labels(data_y): if flag_label == 'Locomotion': data_y[data_y == 4] = 3 data_y[data_y == 5] = 4 elif flag_label == 'ML_Both_Arms': data_y[data_y == 406516] = 1 data_y[data_y == 406517] = 2 data_y[data_y == 404516] = 3 data_y[data_y == 404517] = 4 data_y[data_y == 406520] = 5 data_y[data_y == 404520] = 6 data_y[data_y == 406505] = 7 data_y[data_y == 404505] = 8 data_y[data_y == 406519] = 9 data_y[data_y == 404519] = 10 data_y[data_y == 406511] = 11 data_y[data_y == 404511] = 12 data_y[data_y == 406508] = 13 data_y[data_y == 404508] = 14 data_y[data_y == 408512] = 15 data_y[data_y == 407521] = 16 data_y[data_y == 405506] = 17 return data_y def sliding_window(data, w_size, w_step): shape = np.array(data.shape) # Compute new shape & strides based on window size & step newshape = ((shape - w_size) // w_step) + 1 newshape = np.append(newshape, [w_size[0], data.shape[1]]) # Original strides * window step newstrides = np.array(data.strides) * w_step # For window size & features, set original strides newstrides = np.append(newstrides, data.strides) # Create a view for new shape & stride data_strided = as_strided(data, shape=newshape, strides=newstrides) # Flatten strided shape newshape_flatten = [i for i in newshape if i != 1] return data_strided.reshape(newshape_flatten) def opp_sliding_window(X, Y): X = sliding_window(X, (window_size, X.shape[1]), (window_step, 1)) Y = sliding_window(Y, (window_size, Y.shape[1]), (window_step, 1)) return X, Y """## [F] ML models""" # Train epochs = 100 batch_size = 100 repeats = 10 # EarlyStopping es_patience = 5 """### CNN""" # Layer cnn_padding ='same' cnn_activation = 'relu' cnn_units = 128 cnn_dropout = 0.5 cnn_pool_size = 2 ## 1D Conv cnn_1d_filters = 64 cnn_1d_kernel_size = 5 def build_model_cnn_1d(): model = Sequential(name=modelname_cnn_1d) # Conv layer 1 model.add(Conv1D( input_shape = cnn_1d_input_shape, filters = cnn_1d_filters, kernel_size = cnn_1d_kernel_size, padding = cnn_padding, activation = cnn_activation)) # Conv layer 2 model.add(Conv1D( filters = cnn_1d_filters, kernel_size = cnn_1d_kernel_size, padding = cnn_padding, activation = cnn_activation)) # Conv layer 3 model.add(Conv1D( filters = cnn_1d_filters, kernel_size = cnn_1d_kernel_size, padding = cnn_padding, activation = cnn_activation)) # Conv layer 4 model.add(Conv1D( filters = cnn_1d_filters, kernel_size = cnn_1d_kernel_size, padding = cnn_padding, activation = cnn_activation)) # Maxpool layer # model.add(MaxPool1D( # pool_size = cnn_pool_size)) model.add(Flatten()) # Dense layer 1 model.add(Dense( units = cnn_units, activation = 'relu')) # Dropout model.add(Dropout(cnn_dropout)) # Dense layer 2 model.add(Dense( units = cnn_units, activation = 'relu')) # Dropout model.add(Dropout(cnn_dropout)) # Output layer model.add(Dense( units = num_classes, activation = 'softmax')) model.compile( loss = 'categorical_crossentropy', optimizer = 'adam', metrics = ['accuracy']) return model """### LSTM""" # Layer lstm_units = 128 lstm_dropout = 0.5 lstm_weight_decay = 1e-4 # LSTM (Many-to-One, stateless) def build_model_lstm_Mto1(): model = Sequential(name=modelname_lstm_Mto1) # LSTM layer model.add(LSTM( input_shape = lstm_input_shape, units = lstm_units, # kernel_regularizer = regularizers.l2(lstm_weight_decay), return_sequences = False)) # final layer of LSTM (only final output) # Dropout model.add(Dropout(lstm_dropout)) # Dense layer model.add(Dense( units = lstm_units, activation = 'relu')) # Dropout model.add(Dropout(lstm_dropout)) # Output layer model.add(Dense( units = num_classes, activation = 'softmax')) model.compile( loss = 'categorical_crossentropy', optimizer = 'adam', metrics = ['accuracy']) return model """### CNN-LSTM""" # Data cnn_lstm_steps = 3 cnn_lstm_length = int(window_size / cnn_lstm_steps) # Layer cnn_lstm_padding = 'same' cnn_lstm_activation = 'relu' cnn_lstm_dropout = 0.5 cnn_lstm_pool_size = 2 ## CNN cnn_lstm_filters = 64 cnn1d_lstm_kernel_size = 3 # LSTM cnn_lstm_units = 128 def build_model_cnn1d_lstm(): model = Sequential(name=modelname_cnn1d_lstm) ## CNN (with TimeDistributed) # Conv layer 1 model.add(TimeDistributed(Conv1D( filters = cnn_lstm_filters, kernel_size = cnn1d_lstm_kernel_size, padding = cnn_lstm_padding, activation = cnn_lstm_activation), input_shape = cnn1d_lstm_input_shape)) # Conv layer 2 model.add(TimeDistributed(Conv1D( filters = cnn_lstm_filters, kernel_size = cnn1d_lstm_kernel_size, padding = cnn_lstm_padding, activation = cnn_lstm_activation))) # Conv layer 3 model.add(TimeDistributed(Conv1D( filters = cnn_lstm_filters, kernel_size = cnn1d_lstm_kernel_size, padding = cnn_lstm_padding, activation = cnn_lstm_activation))) # Conv layer 4 model.add(TimeDistributed(Conv1D( filters = cnn_lstm_filters, kernel_size = cnn1d_lstm_kernel_size, padding = cnn_lstm_padding, activation = cnn_lstm_activation))) # Dropout model.add(TimeDistributed(Dropout(cnn_lstm_dropout))) # Maxpool layer model.add(TimeDistributed(MaxPool1D( pool_size = cnn_lstm_pool_size))) model.add(TimeDistributed(Flatten())) ## LSTM # LSTM layer 1 model.add(LSTM( units = cnn_lstm_units, return_sequences = True)) # Dropout model.add(Dropout(cnn_lstm_dropout)) # LSTM layer 2 model.add(LSTM( units = cnn_lstm_units, return_sequences = False)) # Dropout model.add(Dropout(cnn_lstm_dropout)) # Output layer model.add(Dense( units = num_classes, activation = 'softmax')) model.compile( loss = 'categorical_crossentropy', optimizer = 'adam', metrics = ['accuracy']) return model """### ConvLSTM""" # Data convlstm_steps = 3 convlstm_length = int(window_size / convlstm_steps) # Layer convlstm_padding = 'same' convlstm_activation = 'relu' convlstm_dropout = 0.5 convlstm_pool_size = 2 ## CNN convlstm_filters = 64 convlstm_kernel_size = (1, 3) convlstm_units = 128 def build_model_convlstm(): model = Sequential(name=modelname_convlstm) # Conv LSTM layer 1 model.add(ConvLSTM2D( filters = convlstm_filters, kernel_size = convlstm_kernel_size, padding = convlstm_padding, activation = convlstm_activation, input_shape = convlstm_input_shape, return_sequences = True)) # return_sequences = False)) # final layer of LSTM (only final output) # Conv LSTM layer 2 model.add(ConvLSTM2D( filters = convlstm_filters, kernel_size = convlstm_kernel_size, padding = convlstm_padding, activation = convlstm_activation, return_sequences = True)) # Conv LSTM layer 3 model.add(ConvLSTM2D( filters = convlstm_filters, kernel_size = convlstm_kernel_size, padding = convlstm_padding, activation = convlstm_activation, return_sequences = True)) # Conv LSTM layer 4 model.add(ConvLSTM2D( filters = convlstm_filters, kernel_size = convlstm_kernel_size, padding = convlstm_padding, activation = convlstm_activation, return_sequences = False)) # Dropout model.add(Dropout(convlstm_dropout)) model.add(Flatten()) # Dense layer model.add(Dense( units = convlstm_units, activation = convlstm_activation)) # Output layer model.add(Dense( units = num_classes, activation = 'softmax')) model.compile( loss = 'categorical_crossentropy', optimizer = 'adam', metrics = ['accuracy']) return model """### Ensemble""" # Layer ensemble_units = 10 ensemble_activation = 'relu' def build_model_ensemble(inputs, outputs): ensemble_merge = Concatenate(axis=1)(outputs) # Dense layer ensemble_hidden = Dense( units = ensemble_units, activation = ensemble_activation)(ensemble_merge) # Output layer ensemble_output = Dense( units = num_classes, activation = 'softmax')(ensemble_hidden) model = Model( inputs = inputs, outputs = ensemble_output, name = modelname_ensemble) model.compile( loss = 'categorical_crossentropy', optimizer = 'adam', metrics = ['accuracy']) return model """## [F] Evaluation""" # Train and evaluate a model (once) def evaluate_model(model_name, X_train, y_train, X_val, y_val, X_test, y_test): # Build model if model_name == modelname_cnn_1d: model = build_model_cnn_1d() elif model_name == modelname_lstm_Mto1: model = build_model_lstm_Mto1() elif model_name == modelname_cnn1d_lstm: model = build_model_cnn1d_lstm() elif model_name == modelname_convlstm: model = build_model_convlstm() else: print("Error: specify correct model name") return -1 # Train history = model.fit( x = X_train, y = y_train, batch_size = batch_size, epochs = epochs, verbose = 0, callbacks = [cb], validation_data = (X_val, y_val) ) num_epochs = len(history.history['loss']) ## Evaluate # Accuracy _, accuracy = model.evaluate(X_test, y_test, batch_size=batch_size, verbose=0) # F1 y_pred = model.predict(X_test) f1 = f1_score(y_test.argmax(axis=-1), y_pred.argmax(axis=-1), average='weighted') return accuracy, f1, num_epochs # Repeat experiment def run_experiment(model_name, X_train, X_val, X_test, y_train, y_val, y_test, repeats=10): print(f'Model: {model_name}') scores_acc = [] scores_f1 = [] scores_epoch = [] for r in range(repeats): acc, f1, epoch = evaluate_model(model_name, X_train, y_train, X_val, y_val, X_test, y_test) print(f'[#{r+1:>2d}] Accuracy: {acc:.3f}, F1 score(weighted): {f1:.3f}, epoch: {epoch}') scores_acc.append(acc) scores_f1.append(f1) scores_epoch.append(epoch) # Summarise mean and standard deviation print(f'Accuracy: {mean(scores_acc):.3f} (+/- {std(scores_acc):.3f})') print(f'F1 score(weighted): {mean(scores_f1):.3f} (+/- {std(scores_f1):.3f})') print(f'epoch: {mean(scores_epoch):.1f} (+/- {std(scores_epoch):.3f})') # Boxplot of scores metrics_list = ['Accuracy', 'F1 score'] all_scores = [] all_scores.append(scores_acc) all_scores.append(scores_f1) plt.boxplot(all_scores, labels=metrics_list) if flag_savefig: plt.savefig("boxplot_" + model_name + ".png") plt.show() # Plot a histogram of each variable in the dataset def plot_variable_distributions(X, start=0, end=None, xlim=None): if end is None: end = X.shape[1]-1 print(X.shape) num_features = end - start +1 print(f'# of plots: {num_features} ({start} - {end})') plt.figure(figsize=(10, 2*num_features), tight_layout=True) xaxis = None for i, f in enumerate(range(start, end+1)): print(i) if xlim is None: ax = plt.subplot(num_features, 1, i+1, title='Feature: ' + str(f)) else: ax = plt.subplot(num_features, 1, i+1, sharex=xaxis, title='Feature: ' + str(f)) ax.set_xlim(xlim) if i == 0: xaxis = ax plt.hist(X[:, f], bins=100) plt.show() # Plot graphs for loss and accuracy def plot_acc_graph(history): # Set figure size fig = plt.figure(figsize=(15, 6)) plt.subplots_adjust(wspace=0.2) # Loss plt.subplot(1,2,1) plt.plot(history.history['loss'], label='Train', color='black') plt.plot(history.history['val_loss'], label='Val', color='red') #plt.ylim(0, 1) plt.legend() plt.grid(True) plt.xlabel('Epoch') plt.ylabel('Loss') # Accuracy plt.subplot(1,2,2) plt.plot(history.history['accuracy'], label='Train', color='black') plt.plot(history.history['val_accuracy'], label='Val', color='red') plt.ylim(0, 1) plt.legend() plt.grid(True) plt.xlabel('Epoch') plt.ylabel('Accuracy') if flag_savefig: plt.savefig("acc_graph_" + history.model.name + ".png") plt.show() # Print execution time def print_execution_time(time_start): time_elapsed = time.perf_counter() - time_start min, sec = divmod(time_elapsed, 60) hour, min = divmod(min, 60) print(f"Execution time: {hour:.0f} hour {min:.0f} min {sec:.0f} sec") """# 3.Pre-processing""" # For CSF3 (UoM) setting import platform system_name = platform.system() print('system_name: ' + system_name) if system_name == "Linux": flag_summary = False flag_cm_norm = False flag_plot_model = False """## Read files""" # dataset files (train & test) files_train = glob.glob('../data/train/*.dat') files_test = glob.glob('../data/test/*.dat') # Read datafiles (if not yet) if not 'R_dataset_train' in locals(): R_dataset_train, nan_train = read_files(files_train) R_dataset_test, nan_test = read_files(files_test) # Discard null action records if flag_delete_null: if flag_label == 'Locomotion': dataset_train = R_dataset_train[R_dataset_train.iloc[:, 243] != 0] dataset_test = R_dataset_test[R_dataset_test.iloc[:, 243] != 0] elif flag_label == 'ML_Both_Arms': dataset_train = R_dataset_train[R_dataset_train.iloc[:, 249] != 0] dataset_test = R_dataset_test[R_dataset_test.iloc[:, 249] != 0] else: dataset_train = R_dataset_train dataset_test = R_dataset_test # Balancing data 1 (After reading files) if flag_balance_under1: if flag_label == 'Locomotion': idx_label = 243 elif flag_label == 'ML_Both_Arms': idx_label = 249 min_train = dataset_train.iloc[:, idx_label].value_counts().min() dataset_train_np = dataset_train.to_numpy() for i in dataset_train.iloc[:, idx_label].unique(): dataset_train_np = np.delete(dataset_train_np, np.where(dataset_train_np[:, idx_label] == i)[0][min_train:], axis=0) dataset_train = pd.DataFrame(dataset_train_np) """## Divide X / Y (features and labels) """ ## Features (X) # Strip unnecessay columns # (following opportunity challenge specification) X_train = pd.concat([ dataset_train.iloc[:, 1:46], # (included:excluded) dataset_train.iloc[:, 50:59], dataset_train.iloc[:, 63:72], dataset_train.iloc[:, 76:85], dataset_train.iloc[:, 89:98], dataset_train.iloc[:, 102:134]], axis=1) X_test = pd.concat([ dataset_test.iloc[:, 1:46], dataset_test.iloc[:, 50:59], dataset_test.iloc[:, 63:72], dataset_test.iloc[:, 76:85], dataset_test.iloc[:, 89:98], dataset_test.iloc[:, 102:134]], axis=1) ## Labels (Y) # from last 7 columns if flag_label == 'Locomotion': y_train = dataset_train.iloc[:,243] y_test = dataset_test.iloc[:,243] elif flag_label == 'ML_Both_Arms': y_train = dataset_train.iloc[:,249] y_test = dataset_test.iloc[:,249] y_train = y_train.rename('Label') y_test = y_test.rename('Label') num_features = len(X_train.columns) # Input shape of NNs cnn_1d_input_shape = (window_size, num_features) lstm_input_shape = (window_size, num_features) cnn1d_lstm_input_shape = (None, cnn_lstm_length, num_features) convlstm_input_shape = (convlstm_steps, 1, convlstm_length, num_features) """## (Distributions)""" if flag_data_dist: plot_variable_distributions(X_train.to_numpy(), start=0, end=29) plot_variable_distributions(X_train.to_numpy(), start=30, end=59) plot_variable_distributions(X_train.to_numpy(), start=60, end=89) plot_variable_distributions(X_train.to_numpy(), start=90, end=112) """## Encode labels""" ## Encode label (one-hot) # Adjust label values for to_categorical() y_train = adjust_idx_labels(y_train) y_test = adjust_idx_labels(y_test) # Convert class vector (int) to one-hot vector y_train = to_categorical(y_train) y_test = to_categorical(y_test) y_train = pd.DataFrame(y_train) y_test = pd.DataFrame(y_test) """## Split train / val""" # Split into train and val (No shuffle) X_train, X_val, y_train, y_val = \ train_test_split(X_train, y_train, train_size=ratio_train, random_state=seed, shuffle=False) # Balancing data 2 (After splitting train, val, and test) if flag_balance_under2: min_train = y_train.value_counts().min() X_train = X_train.to_numpy() y_train = y_train.to_numpy() y_train_n = y_train.argmax(axis=-1) for i in range(len(np.unique(y_train_n))): X_train = np.delete(X_train, np.where(y_train_n == i)[0][min_train:], axis=0) y_train_n = np.delete(y_train_n, np.where(y_train_n == i)[0][min_train:], axis=0) y_train = to_categorical(y_train_n) X_train = pd.DataFrame(X_train) y_train = pd.DataFrame(y_train) # The number of classes num_classes = len(y_train.columns) # label list (for classification_report, confusion_matrix) if flag_label == 'Locomotion': labels_cr = labels_Loco labels_cm = labels_Loco elif flag_label == 'ML_Both_Arms': labels_cr = labels_ML labels_cm = labels_ML if flag_delete_null: labels_cr = np.delete(labels_cr, 0) # labels_cm = np.delete(labels_cm, 0) # confusion_matrix labels = np.arange(0, num_classes) """## Scaling """ if flag_scaling == "Norm": scaler = MinMaxScaler() elif flag_scaling == "Std": scaler = StandardScaler() # Fit the scaler on the training data (to avoid data leakage) scaler.fit(X_train) # Scale (to numpy) X_train = scaler.transform(X_train) X_val = scaler.transform(X_val) X_test = scaler.transform(X_test) # Convert to numpy y_train = y_train.to_numpy() y_val = y_val.to_numpy() y_test = y_test.to_numpy() """## (Distributions)""" if flag_data_dist: plot_variable_distributions(X_train, start=0, end=29) plot_variable_distributions(X_train, start=30, end=59) plot_variable_distributions(X_train, start=60, end=89) plot_variable_distributions(X_train, start=90, end=112) """## Sliding window""" X_train_sw, y_train_sw = opp_sliding_window(X_train, y_train) X_val_sw, y_val_sw = opp_sliding_window(X_val, y_val) X_test_sw, y_test_sw = opp_sliding_window(X_test, y_test) if flag_sw_label == "last": # last class of each sliding window y_train_sw_label = np.asarray([[i[-1]] for i in y_train_sw]).reshape(-1, y_train_sw.shape[-1]) y_val_sw_label = np.asarray([[i[-1]] for i in y_val_sw]).reshape(-1, y_val_sw.shape[-1]) y_test_sw_label = np.asarray([[i[-1]] for i in y_test_sw]).reshape(-1, y_test_sw.shape[-1]) elif flag_sw_label == "mode": # mode in each sliding window y_train_sw_mode = np.asarray([collections.Counter(i.argmax(axis=-1)).most_common()[0][0] for i in y_train_sw]) y_train_sw_label = to_categorical(y_train_sw_mode) y_val_sw_mode = np.asarray([collections.Counter(i.argmax(axis=-1)).most_common()[0][0] for i in y_val_sw]) y_val_sw_label = to_categorical(y_val_sw_mode) y_test_sw_mode = np.asarray([collections.Counter(i.argmax(axis=-1)).most_common()[0][0] for i in y_test_sw]) y_test_sw_label = to_categorical(y_test_sw_mode) # For evaluation y_test_classes_sw_label = y_test_sw_label.argmax(axis=-1) # Blancing data 3 (After sliding window) if flag_balance_under3: y_train_sw_n = y_train_sw_label.argmax(axis=-1) min_train = pd.DataFrame(y_train_sw_label).value_counts().min() for i in range(num_classes): X_train_sw = np.delete(X_train_sw, np.where(y_train_sw_n == i)[0][min_train:], axis=0) y_train_sw_n = np.delete(y_train_sw_n, np.where(y_train_sw_n == i)[0][min_train:], axis=0) y_train_sw_label = to_categorical(y_train_sw_n) elif flag_balance_over3: y_train_sw_n = y_train_sw_label.argmax(axis=-1) max_train = pd.DataFrame(y_train_sw_n)[0].value_counts().max() num_labels = np.unique(y_train_sw_n).size X_train_sw_balanced = np.empty((num_labels * max_train, X_train_sw.shape[1], X_train_sw.shape[2])) y_train_sw_balanced = np.empty((num_labels * max_train, y_train_sw.shape[1], y_train_sw.shape[2])) y_train_sw_label_balanced = np.empty((num_labels * max_train, y_train_sw_label.shape[1])) X_train_sw_balanced[:X_train_sw.shape[0]] = X_train_sw y_train_sw_balanced[:y_train_sw.shape[0]] = y_train_sw y_train_sw_label_balanced[:y_train_sw_label.shape[0]] = y_train_sw_label l = X_train_sw.shape[0] for c in np.unique(y_train_sw_n): num = np.count_nonzero(y_train_sw_n == c) if max_train > num: num_diff = max_train - num idx_c = np.where(y_train_sw_n == c)[0] idx_add = np.random.choice(idx_c, num_diff, replace=True) for i in idx_add: X_train_sw_balanced[l] = X_train_sw[i] y_train_sw_balanced[l] = y_train_sw[i] y_train_sw_label_balanced[l] = y_train_sw_label[i] l += 1 X_train_sw = X_train_sw_balanced y_train_sw = y_train_sw_balanced y_train_sw_label = y_train_sw_label_balanced """## [Summary]""" if flag_summary: # The number of samples (train, val, test) num_samples = len(X_train) + len(X_val) + len(X_test) num_train = X_train.shape[0] num_val = X_val.shape[0] num_test = X_test.shape[0] num_classes_train = y_train.shape[-1] num_classes_val = y_val.shape[-1] num_classes_test = y_test.shape[-1] y_counts = pd.concat([np.flip(pd.DataFrame(y_train).value_counts(sort=False)), np.flip(pd.DataFrame(y_val).value_counts(sort=False)), np.flip(pd.DataFrame(y_test).value_counts(sort=False))], axis=1) y_counts = y_counts.style.hide_index().highlight_null('red').set_precision(0) y_counts_sw = pd.concat([np.flip(pd.DataFrame(y_train_sw_label).value_counts(sort=False)), np.flip(pd.DataFrame(y_val_sw_label).value_counts(sort=False)), np.flip(pd.DataFrame(y_test_sw_label).value_counts(sort=False))], axis=1) y_counts_sw = y_counts_sw.style.hide_index().highlight_null('red').set_precision(0) print('[# of samples]') print(f'Total: {num_samples:>7,}') print(f'Train: {num_train:>7,}') print(f'Val: {num_val:>7,}') print(f'Test: {num_test:>7,}') print() print('[After sliding window]') print(f'Train: {X_train_sw.shape[0]:>7,}') print(f'Val: {X_val_sw.shape[0]:>7,}') print(f'Test: {X_test_sw.shape[0]:>7,}') print() print('[# of features]') print(f'{num_features}') print() print('[# of classes]') print(f'Total: {num_classes}') print(f'Train: {num_classes_train}') print(f'Val: {num_classes_val}') print(f'Test: {num_classes_test}') print() print('[Original data]') print('Train Val Test') display(y_counts) print() print('[After sliding window]') print('Train Val Test') display(y_counts_sw) """# 4.Train & Test """ ## callbacks cb = [] # EarlyStopping if flag_EarlyStopping: es = EarlyStopping(monitor=flag_es_monitor, patience=es_patience) cb.append(es) # TensorBoard if flag_TensorBoard: log_dir = dir_log + '/tb/' + datetime.utcnow().strftime('%Y%m%d-%H%M%S') tb = TensorBoard(log_dir=log_dir, histogram_freq=1) cb.append(tb) # Train, val, test sets X_train = X_train_sw X_val = X_val_sw X_test = X_test_sw y_train = y_train_sw_label y_val = y_val_sw_label y_test = y_test_sw_label y_test_classes = y_test_classes_sw_label """## CNN """ if flag_CNN_1d: if flag_model_load: model_cnn_1d = load_model(dir_model + "/" + modelname_cnn_1d + ".h5") else: model_cnn_1d = build_model_cnn_1d() model_cnn_1d.summary() if flag_plot_model: plot_model(model_cnn_1d, show_shapes=True, to_file='model_' + model_cnn_1d.name + '.png') if flag_CNN_1d: if not flag_model_load: time_start = time.perf_counter() history_cnn_1d = model_cnn_1d.fit( x = X_train, y = y_train, batch_size = batch_size, epochs = epochs, verbose = 1, callbacks = [cb], validation_data = (X_val, y_val) ) print_execution_time(time_start) if flag_CNN_1d: if not flag_model_load: plot_acc_graph(history_cnn_1d) if flag_CNN_1d: if flag_model_save: time_current = datetime.utcnow().strftime('%Y%m%d-%H%M%S') model_cnn_1d.save(dir_model + '/' + model_cnn_1d.name + '_' + time_current + ".h5", overwrite=False) if flag_CNN_1d: y_pred_classes = model_cnn_1d.predict(X_test).argmax(axis=-1) f1 = f1_score(y_test_classes, y_pred_classes, average='weighted') print(f'F1 score(weighted) {f1:.3f}\n') print(classification_report(y_test_classes, y_pred_classes, target_names=labels_cr)) if flag_cm_norm: cm = confusion_matrix(y_test_classes, y_pred_classes, labels=labels, normalize='true') cm = cm * 100 else: cm = confusion_matrix(y_test_classes, y_pred_classes, labels=labels) df_cm = pd.DataFrame(cm, index=labels_cm, columns=labels_cm) plt.figure(figsize=(10,10)) sns.heatmap(df_cm, square=True, annot=True, cbar=False, fmt='.0f', cmap='Greens') plt.xlabel('Predicted') plt.ylabel('True') if flag_savefig: plt.savefig("confusion_matrix_" + model_cnn_1d.name + ".png") plt.plot() """## LSTM""" if flag_LSTM_Mto1: if flag_model_load: model_lstm_Mto1 = load_model(dir_model + "/" + modelname_lstm_Mto1 + ".h5") else: model_lstm_Mto1 = build_model_lstm_Mto1() model_lstm_Mto1.summary() if flag_plot_model: plot_model(model_lstm_Mto1, show_shapes=True, to_file='model_' + model_lstm_Mto1.name + '.png') if flag_LSTM_Mto1: if not flag_model_load: time_start = time.perf_counter() history_lstm_Mto1 = model_lstm_Mto1.fit( X_train, y_train, batch_size = batch_size, epochs = epochs, verbose = 1, callbacks = [cb], validation_data = (X_val, y_val) ) print_execution_time(time_start) if flag_LSTM_Mto1: if not flag_model_load: plot_acc_graph(history_lstm_Mto1) if flag_LSTM_Mto1: if flag_model_save: time_current = datetime.utcnow().strftime('%Y%m%d-%H%M%S') model_lstm_Mto1.save(dir_model + '/' + model_lstm_Mto1.name + '_' + time_current + ".h5", overwrite=False) if flag_LSTM_Mto1: y_pred_classes = model_lstm_Mto1.predict(X_test).argmax(axis=-1) f1 = f1_score(y_test_classes, y_pred_classes, average='weighted') print(f'F1 score(weighted) {f1:.3f}\n') print(classification_report(y_test_classes, y_pred_classes, target_names=labels_cr)) if flag_cm_norm: cm = confusion_matrix(y_test_classes, y_pred_classes, labels=labels, normalize='true') cm = cm * 100 else: cm = confusion_matrix(y_test_classes, y_pred_classes, labels=labels) df_cm = pd.DataFrame(cm, index=labels_cm, columns=labels_cm) plt.figure(figsize=(10,10)) sns.heatmap(df_cm, square=True, annot=True, cbar=False, fmt='.0f', cmap='Greens') plt.xlabel('Predicted') plt.ylabel('True') if flag_savefig: plt.savefig("confusion_matrix_" + model_lstm_Mto1.name + ".png") plt.plot() """## CNN-LSTM""" # Reshape data into 4D for CNN1D-LSTM X_train_cnn1d_lstm = X_train.reshape((X_train.shape[0], cnn_lstm_steps, cnn_lstm_length, X_train.shape[-1])) X_val_cnn1d_lstm = X_val.reshape((X_val.shape[0], cnn_lstm_steps, cnn_lstm_length, X_val.shape[-1])) X_test_cnn1d_lstm = X_test.reshape((X_test.shape[0], cnn_lstm_steps, cnn_lstm_length, X_test.shape[-1])) if flag_CNN1D_LSTM: if flag_model_load: model_cnn1d_lstm = load_model(dir_model + "/" + modelname_cnn1d_lstm + ".h5") else: model_cnn1d_lstm = build_model_cnn1d_lstm() model_cnn1d_lstm.summary() if flag_plot_model: plot_model(model_cnn1d_lstm, show_shapes=True, to_file='model_' + model_cnn1d_lstm.name + '.png') if flag_CNN1D_LSTM: if not flag_model_load: time_start = time.perf_counter() history_cnn1d_lstm = model_cnn1d_lstm.fit( X_train_cnn1d_lstm, y_train, batch_size = batch_size, epochs = epochs, verbose = 1, callbacks = [cb], validation_data = (X_val_cnn1d_lstm, y_val) ) print_execution_time(time_start) if flag_CNN1D_LSTM: if not flag_model_load: plot_acc_graph(history_cnn1d_lstm) if flag_CNN1D_LSTM: if flag_model_save: time_current = datetime.utcnow().strftime('%Y%m%d-%H%M%S') model_cnn1d_lstm.save(dir_model + '/' + model_cnn1d_lstm.name + '_' + time_current + ".h5", overwrite=False) if flag_CNN1D_LSTM: y_pred_classes = model_cnn1d_lstm.predict(X_test_cnn1d_lstm).argmax(axis=-1) f1 = f1_score(y_test_classes, y_pred_classes, average='weighted') print(f'F1 score(weighted) {f1:.3f}\n') print(classification_report(y_test_classes, y_pred_classes, target_names=labels_cr)) if flag_cm_norm: cm = confusion_matrix(y_test_classes, y_pred_classes, labels=labels, normalize='true') cm = cm * 100 else: cm = confusion_matrix(y_test_classes, y_pred_classes, labels=labels) df_cm = pd.DataFrame(cm, index=labels_cm, columns=labels_cm) plt.figure(figsize=(10,10)) sns.heatmap(df_cm, square=True, annot=True, cbar=False, fmt='.0f', cmap='Greens') plt.xlabel('Predicted') plt.ylabel('True') if flag_savefig: plt.savefig("confusion_matrix_" + model_cnn1d_lstm.name + ".png") plt.plot() """## ConvLSTM""" # Reshape data into 5D for ConvLSTM X_train_convlstm = X_train.reshape((X_train.shape[0], convlstm_steps, 1, convlstm_length, X_train.shape[-1])) X_val_convlstm = X_val.reshape((X_val.shape[0], convlstm_steps, 1, convlstm_length, X_val.shape[-1])) X_test_convlstm = X_test.reshape((X_test.shape[0], convlstm_steps, 1, convlstm_length, X_test.shape[-1])) if flag_ConvLSTM: if flag_model_load: model_convlstm = load_model(dir_model + "/" + modelname_convlstm + ".h5") else: model_convlstm = build_model_convlstm() model_convlstm.summary() if flag_plot_model: plot_model(model_convlstm, show_shapes=True, to_file='model_' + model_convlstm.name + '.png') if flag_ConvLSTM: if not flag_model_load: time_start = time.perf_counter() history_convlstm = model_convlstm.fit( X_train_convlstm, y_train, batch_size = batch_size, epochs = epochs, verbose = 1, callbacks = [cb], validation_data = (X_val_convlstm, y_val) ) print_execution_time(time_start) if flag_ConvLSTM: if not flag_model_load: plot_acc_graph(history_convlstm) if flag_ConvLSTM: if flag_model_save: time_current = datetime.utcnow().strftime('%Y%m%d-%H%M%S') model_convlstm.save(dir_model + '/' + model_convlstm.name + '_' + time_current + ".h5", overwrite=False) if flag_ConvLSTM: y_pred_classes = model_convlstm.predict(X_test_convlstm).argmax(axis=-1) f1 = f1_score(y_test_classes, y_pred_classes, average='weighted') print(f'F1 score(weighted) {f1:.3f}\n') print(classification_report(y_test_classes, y_pred_classes, target_names=labels_cr)) if flag_cm_norm: cm = confusion_matrix(y_test_classes, y_pred_classes, labels=labels, normalize='true') cm = cm * 100 else: cm = confusion_matrix(y_test_classes, y_pred_classes, labels=labels) df_cm = pd.DataFrame(cm, index=labels_cm, columns=labels_cm) plt.figure(figsize=(10,10)) sns.heatmap(df_cm, square=True, annot=True, cbar=False, fmt='.0f', cmap='Greens') plt.xlabel('Predicted') plt.ylabel('True') if flag_savefig: plt.savefig("confusion_matrix_" + model_convlstm.name + ".png") plt.plot() """## Ensemble""" if flag_Ensemble: # build sub-models sub_models = list() X_train_ensemble = list() X_val_ensemble = list() X_test_ensemble = list() if flag_CNN_1d: sub_models.append(model_cnn_1d) X_train_ensemble.append(X_train) X_val_ensemble.append(X_val) X_test_ensemble.append(X_test) if flag_LSTM_Mto1: sub_models.append(model_lstm_Mto1) X_train_ensemble.append(X_train) X_val_ensemble.append(X_val) X_test_ensemble.append(X_test) if flag_CNN1D_LSTM: sub_models.append(model_cnn1d_lstm) X_train_ensemble.append(X_train_cnn1d_lstm) X_val_ensemble.append(X_val_cnn1d_lstm) X_test_ensemble.append(X_test_cnn1d_lstm) if flag_ConvLSTM: sub_models.append(model_convlstm) X_train_ensemble.append(X_train_convlstm) X_val_ensemble.append(X_val_convlstm) X_test_ensemble.append(X_test_convlstm) # freeze parameters for sub-models for i in range(len(sub_models)): for layer in sub_models[i].layers: layer.trainable = False layer._name = 'ensemble_' + sub_models[i].name + '_' + layer.name inputs = [model.input for model in sub_models] outputs = [model.output for model in sub_models] model_ensemble = build_model_ensemble(inputs, outputs) model_ensemble.summary() if flag_plot_model: plot_model(model_ensemble, show_shapes=True, to_file='model_' + model_ensemble.name + '.png') if flag_Ensemble: history_ensemble = model_ensemble.fit( x = X_train_ensemble, y = y_train, batch_size = batch_size, epochs = epochs, verbose = 1, callbacks = [cb], validation_data = (X_val_ensemble, y_val) ) if flag_Ensemble: plot_acc_graph(history_ensemble) if flag_Ensemble: y_pred_classes = model_ensemble.predict(X_test_ensemble).argmax(axis=-1) f1 = f1_score(y_test_classes, y_pred_classes, average='weighted') print(f'F1 score(weighted) {f1:.3f}\n') print(classification_report(y_test_classes, y_pred_classes, target_names=labels_cr)) if flag_cm_norm: cm = confusion_matrix(y_test_classes, y_pred_classes, labels=labels, normalize='true') cm = cm * 100 else: cm = confusion_matrix(y_test_classes, y_pred_classes, labels=labels) df_cm = pd.DataFrame(cm, index=labels_cm, columns=labels_cm) plt.figure(figsize=(10,10)) sns.heatmap(df_cm, square=True, annot=True, cbar=False, fmt='.0f', cmap='Greens') plt.xlabel('Predicted') plt.ylabel('True') if flag_savefig: plt.savefig("confusion_matrix_" + model_ensemble.name + ".png") plt.plot() """# 5.Experiment""" if flag_experiment: time_start = time.perf_counter() print(f'repeats: {repeats}, epochs: {epochs}, batch_size: {batch_size}') if flag_EarlyStopping: print(f' EarlyStopping is set (patience: {es_patience})\n') else: print(f' no EarlyStopping\n') ## CNN 1D run_experiment(modelname_cnn_1d, X_train, X_val, X_test, y_train, y_val, y_test, repeats=repeats) ## LSTM Mto1 run_experiment(modelname_lstm_Mto1, X_train, X_val, X_test, y_train, y_val, y_test, repeats=repeats) ## CNN1D-LSTM run_experiment(modelname_cnn1d_lstm, X_train_cnn1d_lstm, X_val_cnn1d_lstm, X_test_cnn1d_lstm, y_train, y_val, y_test, repeats=repeats) ## ConvLSTM run_experiment(modelname_convlstm, X_train_convlstm, X_val_convlstm, X_test_convlstm, y_train, y_val, y_test, repeats=repeats) print_execution_time(time_start)
import shutil from collections import defaultdict import numpy as np import pandas as pd import torch import torch.nn.functional as F from sklearn.model_selection import train_test_split from torch import nn from torch.utils.data import Dataset, DataLoader from transformers import ( BertModel, BertTokenizer, AdamW ) import argparse import os from tqdm import tqdm import requests from torchtext.utils import download_from_url, extract_archive from torchtext.datasets.text_classification import URLS import sys import argparse import logging def run_pipeline(input_options): """ This method downloads the dataset and extract it along with the vocab file :param input_options: Input arg parameters """ dataset_tar = download_from_url( URLS["AG_NEWS"], root=input_options["output"]) extracted_files = extract_archive(dataset_tar) if not os.path.isfile(input_options["VOCAB_FILE"]): filePointer = requests.get( input_options["VOCAB_FILE_URL"], allow_redirects=True) if filePointer.ok: with open(input_options["VOCAB_FILE"], "wb") as f: f.write(filePointer.content) else: raise RuntimeError("Error in fetching the vocab file") def PrintOptions(options): """ Logging for debugging """ for a in options.items(): print(a) def run_pipeline_component(options): """ Method called from entry point to execute the pipeline """ print("Running data prep job from container") logging.getLogger().setLevel(logging.INFO) PrintOptions(options) run_pipeline( options ) # if __name__ == "__main__": # run_pipeline_component({ # "output": "./", # "VOCAB_FILE": "bert_base_uncased_vocab.txt", # "VOCAB_FILE_URL": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-vocab.txt" # })
""" A Product specifies a persistent object in disk such as a file in the local filesystem or an table in a database. Each Product is uniquely identified, for example a file can be specified using a absolute path, a table can be fully specified by specifying a database, a schema and a name. Names are lazy evaluated, they can be built from templates """ import abc import logging from ploomber.products.metadata import Metadata from ploomber.products._resources import process_resources def _prepare_metadata(metadata): return metadata class Product(abc.ABC): """ Abstract class for all Products Attributes ---------- prepare_metadata : callable A hook to execute before saving metadata, should include a "metadata" parameter and might include "product". "metadata" will be a dictionary with the metadata to save, it is not recommended to change any of the existing keys but additional key-value pairs might be included """ # TODO: previously, File didn't have a client parameter but it does now, # it's best to include it here to simplify the constructors in the concrete # classes def __init__(self, identifier): self._identifier = self._init_identifier(identifier) if self._identifier is None: raise TypeError('_init_identifier must return a value, returned ' 'None') self.task = None self.logger = logging.getLogger('{}.{}'.format(__name__, type(self).__name__)) self._outdated_data_dependencies_status = None self._outdated_code_dependency_status = None self._is_outdated_status = None # not all products have clients, but they should still have a client # property to keep the API consistent self._client = None self.metadata = Metadata(self) self.prepare_metadata = _prepare_metadata @property def task(self): if self._task is None: raise ValueError('This product has not been assigned to any Task') return self._task @property def client(self): return self._client @task.setter def task(self, value): self._task = value def render(self, params, **kwargs): """ Render Product - this will render contents of Templates used as identifier for this Product, if a regular string was passed, this method has no effect """ self._identifier.render(params, **kwargs) def _is_outdated(self, outdated_by_code=True): """ Given current conditions, determine if the Task that holds this Product should be executed Returns ------- bool True if the Task should execute """ if self._is_outdated_status is None: self._is_outdated_status = self._check_is_outdated( outdated_by_code) return self._is_outdated_status def _is_remote_outdated(self, outdated_by_code): """ Check if the remote version of this Product is outdated. Note that this is only valid for File products (which have their own) implementation. For non-File products (e.g., SQL products), there isn't a notion of "remote version", since they're already remote hence we simply use the existing implementation """ return self._is_outdated(outdated_by_code=outdated_by_code) def _check_is_outdated(self, outdated_by_code): # check product... p_exists = self.exists() # check dependencies only if the product exists if p_exists: oudated_data = self._outdated_data_dependencies() outdated_code = (outdated_by_code and self._outdated_code_dependency()) run = oudated_data or outdated_code if run: self.logger.info( 'Task "%s" is outdated, it will be executed...', self.task.name) else: self.logger.info( 'Task "%s" is up-to-date, it will be skipped...', self.task.name) return run else: self.logger.info( 'Product of task "%s" does not exist, it will be executed...', self.task.name) return True def _outdated_data_dependencies(self): """ Determine if the product is outdated by checking upstream timestamps """ if self._outdated_data_dependencies_status is not None: self.logger.debug(('Returning cached data dependencies status. ' 'Outdated? %s'), self._outdated_data_dependencies_status) return self._outdated_data_dependencies_status outdated = any([ self._is_outdated_due_to_upstream(up.product) for up in self.task.upstream.values() ]) self._outdated_data_dependencies_status = outdated self.logger.debug(('Finished checking data dependencies status. ' 'Outdated? %s'), self._outdated_data_dependencies_status) return self._outdated_data_dependencies_status def _is_outdated_due_to_upstream(self, up_prod): """ A task becomes data outdated if an upstream product has a higher timestamp or if an upstream product is outdated """ if (self.metadata.timestamp is None or up_prod.metadata.timestamp is None): return True else: return ( (up_prod.metadata.timestamp > self.metadata.timestamp) # this second condition propagates outdated status # from indirect upstream dependencies. e.g., a -> b -> c # user runs in order but then it only runs a. Since a is # outdated, so should c or up_prod._is_outdated()) def _outdated_code_dependency(self): """ Determine if the product is outdated by checking the source code that it generated it """ if self._outdated_code_dependency_status is not None: self.logger.debug(('Returning cached code dependencies status. ' 'Outdated? %s'), self._outdated_code_dependency_status) return self._outdated_code_dependency_status outdated, diff = self.task.dag.differ.is_different( a=self.metadata.stored_source_code, b=str(self.task.source), a_params=self.metadata.params, # process resource params to compare the file hash instead of # the path to the file b_params=process_resources( self.task.params.to_json_serializable(params_only=True)), extension=self.task.source.extension) self._outdated_code_dependency_status = outdated self.logger.debug(('Finished checking code status for task "%s" ' 'Outdated? %s'), self.task.name, self._outdated_code_dependency_status) if outdated: self.logger.info('Task "%s" has outdated code. Diff:\n%s', self.task.name, diff) return self._outdated_code_dependency_status def _reset_cached_outdated_status(self): self._outdated_data_dependencies_status = None self._outdated_code_dependency_status = None self._is_outdated_status = None def __str__(self): return str(self._identifier) def __repr__(self): # NOTE: this assumes ._identifier has a best_repr property, # should we refactor it? return '{}({})'.format( type(self).__name__, self._identifier.best_repr(shorten=True)) def __getstate__(self): state = self.__dict__.copy() # logger is not pickable, so we remove them and build # them again in __setstate__ del state['logger'] return state def __setstate__(self, state): self.__dict__.update(state) self.logger = logging.getLogger('{}.{}'.format(__name__, type(self).__name__)) def to_json_serializable(self): """Returns a JSON serializable version of this product """ # NOTE: this is used in tasks where only JSON serializable parameters # are supported such as NotebookRunner that depends on papermill return str(self) def __len__(self): # MetaProduct return the number of products, this is a single Product # hence the 1 return 1 # Subclasses must implement the following methods @abc.abstractmethod def _init_identifier(self, identifier): pass # pragma: no cover @abc.abstractmethod def fetch_metadata(self): pass # pragma: no cover @abc.abstractmethod def save_metadata(self, metadata): pass # pragma: no cover @abc.abstractmethod def exists(self): """ This method returns True if the product exists, it is not part of the metadata, so there is no cached status """ pass # pragma: no cover @abc.abstractmethod def delete(self, force=False): """Deletes the product """ pass # pragma: no cover # NOTE: currently optional but there is a conflict with this. metadata # defines a delete public method which calls product._delete_metadata # but not all products implement this def _delete_metadata(self): raise NotImplementedError( '_delete_metadata not implemented in {}'.format( type(self).__name__)) # download and upload are only relevant for File but we add them to keep # the API consistent def download(self): pass # pragma: no cover def upload(self): pass # pragma: no cover
from leer.core.storage.merkle_storage import MMR from secp256k1_zkp import PedersenCommitment, PublicKey from leer.core.storage.default_paths import txo_storage_path from leer.core.lubbadubdub.ioput import IOput import os import hashlib def _hash(data): #TODO move to utils m=hashlib.sha256() m.update(bytes(data)) return m.digest() class CommitmentMMR(MMR): def sum(self, x1,x2): # each index is 33 bytes for commitments and 32 for hash comm1, hash1 = x1[:33], x1[33:65] comm2, hash2 = x2[:33], x2[33:65] comm1, comm2 = PedersenCommitment(commitment=comm1, raw=True), PedersenCommitment(commitment=comm2, raw=True) #XXX we definetely need sum of pedersen commitments on libsecp256 level. pk= PublicKey() pk.combine([comm1.to_public_key().public_key, comm2.to_public_key().public_key]) sm = pk.to_pedersen_commitment() first_part = sm.serialize() second_part = _hash(hash1+hash2) return first_part+second_part class TXOMMR(MMR): def sum(self, x1,x2): return _hash(x1+x2) class ConfirmedTXOStorage: ''' Storage for all TXOs which are already in blocks. It is double MMR tree: first for commitments only, second for full txout Commitment tree: Each commitment leaf obj is `b""` and commitment leaf index is `bytes(serialized_apc)+bytes(hash(serialized_apc))`. Summ of two nodes in commitment tree = bytes(serialized_apc1+serialized_apc1)+hash(hash(serialized_apc)+hash(serialized_apc)), where commitments are summed as points on curve and summ of hashes is concantenation. Txout tree: Each txout leaf obj is serialized ioput, leaf index is hash(ioput_index). Summ of two nodes is hash of concantenation ''' def __init__(self, path=txo_storage_path): self.commitments = CommitmentMMR("commitments", os.path.join(path, "confirmed"), clear_only=False) self.txos = TXOMMR("txos", os.path.join(path, "confirmed"), discard_only=True) def __getitem__(self, hash_and_pc): res = self.txos.get_by_hash(_hash(hash_and_pc)) if not res: raise KeyError(hash_and_pc) utxo=IOput() utxo.deserialize(res) return utxo def __setitem__(self, hash_and_pc, utxo): #TODO __setitem__ interface should be substituted with append-like interface #XXX problem here: commitments indexes should be apc+hash(apc), not hash_and_pc #here we should save self.txos.append(_hash(hash_and_pc),utxo.serialize()) self.commitments.append(utxo.commitment_index,b"") def append(self, utxo): self.txos.append(_hash(utxo.serialized_index), utxo.serialize()) self.commitments.append(utxo.commitment_index,b"") def spend(self, utxo, return_revert_obj=False): txos = self.txos.discard(_hash(utxo.serialized_index)) commitment = self.commitments.clear(utxo.commitment_index) if return_revert_obj: return (txos, commitment) def find(self, hash_and_pc): ''' In contrast with __getitem__ find will try to find even spent outputs for other (syncing) nodes. ''' res = self.txos.find_by_hash(_hash(hash_and_pc)) if not res: raise KeyError(hash_and_pc) utxo=IOput() utxo.deserialize(res) return utxo def unspend(self, revert_obj): (txos, commitment) = revert_obj self.txos.revert_discarding(txos) self.commitments.revert_clearing(commitment) def __contains__(self, serialized_index): return bool(self.txos.get_by_hash(_hash(serialized_index))) def remove(self,n): self.commitments.remove(n) ser_removed_outputs = self.txos.remove(n) removed_outputs=[] for _ser in ser_removed_outputs: utxo=IOput() utxo.deserialize(_ser) removed_outputs.append(utxo) return removed_outputs def get_commitment_root(self): return self.commitments.get_root() def get_txo_root(self): return self.txos.get_root() def get_state(self): return self.commitments.get_state() def set_state(self, state): self.txos.set_state(state) self.commitments.set_state(state) def find_wo_deser(self, hash_and_pc): res = self.txos.find_by_hash(_hash(hash_and_pc)) if not res: raise KeyError(hash_and_pc) return res class TXOsStorage: class Interface: def __init__(self): self.storage = {} def __getitem__(self, hash_and_pc): if not hash_and_pc in self.storage: raise KeyError(hash_and_pc) return self.storage[hash_and_pc] def __setitem__(self, hash_and_pc, utxo): #TODO __setitem__ interface should be substituted with append-like interface #here we should save self.storage[hash_and_pc]=utxo def remove(self, utxo): self.remove_by_index(utxo.serialized_index) def remove_by_index(self, _index): self.storage.pop(_index) def __contains__(self, utxo): return utxo in self.storage def flush(self): self.storage = {} __shared_states = {} def __init__(self, storage_space, path): if not path in self.__shared_states: self.__shared_states[path]={} self.__dict__ = self.__shared_states[path] self.path = path self.confirmed = ConfirmedTXOStorage(self.path) self.mempool = self.Interface() self.storage_space = storage_space self.storage_space.register_txos_storage(self) def known(self, output_index): return (output_index in self.confirmed) or (output_index in self.mempool) def confirm(self, output_index): utxo = self.mempool.storage.pop(output_index) self.confirmed.append(utxo) def apply_tx_get_merkles_and_rollback(self, tx): rollback_inputs = [] for _i in tx.inputs: rollback_inputs.append(self.confirmed.spend(_i, return_revert_obj=True)) for _o in tx.outputs: self.confirmed.append(_o) roots=[self.confirmed.get_commitment_root(), self.confirmed.get_txo_root()] for r_i in rollback_inputs: self.confirmed.unspend(r_i) self.confirmed.remove(len(tx.outputs)) return roots #TODO bad naming. It should be apply block, or block_transaction def apply_tx(self, tx, new_state): rollback_inputs = [] for _i in tx.inputs: if self.storage_space.utxo_index: self.storage_space.utxo_index.remove_utxo(_i) rollback_inputs.append(self.confirmed.spend(_i, return_revert_obj=True)) for _o in tx.outputs: if self.storage_space.utxo_index: self.storage_space.utxo_index.add_utxo(_o) self.confirmed.append(_o) self.mempool.remove(_o) self.confirmed.set_state(new_state) return (rollback_inputs, len(tx.outputs)) def rollback(self, pruned_inputs, num_of_added_outputs, prev_state): for r_i in pruned_inputs: if self.storage_space.utxo_index: #r_i[0][2] is serialized txo (0 is txo, 2 is serialized object) utxo=IOput() utxo.deserialize(r_i[0][2]) self.storage_space.utxo_index.add_utxo(utxo) self.confirmed.unspend(r_i) outputs_for_mempool = self.confirmed.remove(num_of_added_outputs) for _o in outputs_for_mempool: self.mempool[_o.serialized_index]=_o self.storage_space.utxo_index.remove_utxo(_o) self.confirmed.set_state(prev_state) def find_serialized(self, output_index): if output_index in self.mempool: return self.mempool[output_index].serialize() else: return self.confirmed.find_wo_deser(output_index)
import os #: Location of the wordle API WORDLE_API_URL = os.environ.get("INPUT_WORDLEAPIURL", "") #: Puzzle size to solve PUZZLE_SIZE = int(os.environ.get("INPUT_PUZZLESIZE", "5"))
import bpy from bpy.types import (Panel, Menu, Operator, PropertyGroup, ) import blvcw.crystal_well_global_state as GlobalState from blvcw.crystal_well_components import CrystalWellLoader, CrystalWellSettings from blvcw.crystal_well_simulation import CrystalWellSimulator class WM_OT_VIRTUAL_CRYSTAL_WELL(Operator): """ VCW operator that is called when pressing the "Render" button in the UI panel. It makes sure that a crystal_well_loader was created and that the crystal_well_settings dict is filled before the main simulation object is created. Will not execute if either an import error exists or no output_directory was chosen for rendering output. """ bl_label = "Render" bl_idname = "wm.vcw_execute" def execute(self, context): scene = context.scene vcw = scene.virtual_crystal_well crystal_well_loader = GlobalState.crystal_well_loader if crystal_well_loader is None: if vcw.crystal_object == "CUSTOM": # Import error return {"CANCELLED"} else: crystal_well_loader = CrystalWellLoader(crystal_object=vcw.crystal_object) crystal_well_loader.set_number_crystal_variants_per_render(number_crystal_variants=vcw.number_variants) if GlobalState.output_directory_error and vcw.number_images != 0: print("No existing output directory chosen!") return {"CANCELLED"} if GlobalState.output_directory_warning: print("WARNING: Saving to non-empty directory") scaling_crystals_average = (vcw.scaling_crystals_average[0], # Necessary because bpy object is not serializable vcw.scaling_crystals_average[1], vcw.scaling_crystals_average[2]) rotation_crystals_average = (vcw.rotation_crystals_average[0], vcw.rotation_crystals_average[1], vcw.rotation_crystals_average[2]) crystal_well_settings = CrystalWellSettings(number_crystals=vcw.number_crystals, number_crystals_std_dev=vcw.number_crystals_std_dev, crystal_object=vcw.crystal_object, distributor=vcw.crystal_distributor, total_crystal_area_min=vcw.total_crystal_area_min, total_crystal_area_max=vcw.total_crystal_area_max, crystal_area_min=vcw.crystal_area_min**2, crystal_area_max=vcw.crystal_area_max**2, crystal_edge_min=vcw.crystal_edge_min, crystal_edge_max=vcw.crystal_edge_max, crystal_aspect_ratio_max=vcw.crystal_aspect_ratio_max/0.7, smooth_shading_distributor=vcw.smooth_shading_distributor, scaling_crystals_average=scaling_crystals_average, scaling_crystals_std_dev=vcw.scaling_crystals_std_dev, rotation_crystals_average=rotation_crystals_average, rotation_crystals_std_dev=vcw.rotation_crystals_std_dev, crystal_material_name=vcw.crystal_material, crystal_material_min_ior=vcw.crystal_material_min_ior, crystal_material_max_ior=vcw.crystal_material_max_ior, crystal_material_min_brightness=vcw.crystal_material_min_brightness, crystal_material_max_brightness=vcw.crystal_material_max_brightness, light_type=vcw.light_type, light_angle_min=vcw.light_angle_min, light_angle_max=vcw.light_angle_max, use_bottom_light=vcw.use_bottom_light, res_x=vcw.resolution_x, res_y=vcw.resolution_y, crystal_import_path=vcw.import_path, output_path=vcw.output_path, number_variants=vcw.number_variants, number_images=vcw.number_images) if vcw.save_settings and not GlobalState.output_directory_error: crystal_well_settings.write_json() crystal_well_settings.print_settings() GlobalState.has_rendered = True crystal_well_simulator = CrystalWellSimulator(crystal_well_settings=crystal_well_settings, crystal_well_loader=crystal_well_loader) for ui_update in crystal_well_simulator.generate_image(): if vcw.update_ui and ui_update: # Update VCW in blender after each image is rendered bpy.ops.wm.redraw_timer(type='DRAW_WIN_SWAP', iterations=1) return {"FINISHED"}
# Copyright (c) MONAI Consortium # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import tempfile import unittest import numpy as np from parameterized import parameterized from monai.apps import check_hash TEST_CASE_1 = ["b94716452086a054208395e8c9d1ae2a", "md5", True] TEST_CASE_2 = ["abcdefg", "md5", False] TEST_CASE_3 = [None, "md5", True] TEST_CASE_4 = [None, "sha1", True] TEST_CASE_5 = ["b4dc3c246b298eae37cefdfdd2a50b091ffd5e69", "sha1", True] class TestCheckMD5(unittest.TestCase): @parameterized.expand([TEST_CASE_1, TEST_CASE_2, TEST_CASE_3, TEST_CASE_4, TEST_CASE_5]) def test_result(self, md5_value, t, expected_result): test_image = np.ones((5, 5, 3)) with tempfile.TemporaryDirectory() as tempdir: filename = os.path.join(tempdir, "test_file.png") test_image.tofile(filename) result = check_hash(filename, md5_value, hash_type=t) self.assertTrue(result == expected_result) def test_hash_type_error(self): with self.assertRaises(ValueError): with tempfile.TemporaryDirectory() as tempdir: check_hash(tempdir, "test_hash", "test_type") if __name__ == "__main__": unittest.main()
import redis redisClient = redis.Redis(host='redis')
def factorial(n): answer = 1 for i in range(1, n+1): answer *= i return(answer) def Leibniz(goto): pi = 0 sign = 1 for i in range(1, 1+goto): pi += 1/((2*i-1)*sign) sign = -sign pi = pi*4 return(pi) def AbrahamSharp(goto): pi = 0 for i in range(goto+1): a = 2*(-1**i) b = (1/2)-i c = 3**b d = (2*i)-1 n = a*c/d pi += n return(pi) def Euler(goto): pi = 0 for i in range(goto+1): pi += factorial(i)/factorial(factorial(2*i+1)) return(pi) def Bellard(goto): pi = 0 for i in range(goto+1): a = (-1**i) b = 2**(10*i) pi += a/b return(pi/(2**6)) print('Happy Pi Day, World!') print('Pi:') print('Leibniz`s formula:', Leibniz(1000)) print('Abraham`s Sharp formula:', AbrahamSharp(1000)) print('Eulet`s formula:', Leibniz(3)) print('Bellard`s formula:', Leibniz(1000))
import os import tempfile import unittest import logging from pyidf import ValidationLevel import pyidf from pyidf.idf import IDF from pyidf.electric_load_center import GeneratorFuelCellAuxiliaryHeater log = logging.getLogger(__name__) class TestGeneratorFuelCellAuxiliaryHeater(unittest.TestCase): def setUp(self): self.fd, self.path = tempfile.mkstemp() def tearDown(self): os.remove(self.path) def test_create_generatorfuelcellauxiliaryheater(self): pyidf.validation_level = ValidationLevel.error obj = GeneratorFuelCellAuxiliaryHeater() # alpha var_name = "Name" obj.name = var_name # real var_excess_air_ratio = 2.2 obj.excess_air_ratio = var_excess_air_ratio # real var_ancillary_power_constant_term = 3.3 obj.ancillary_power_constant_term = var_ancillary_power_constant_term # real var_ancillary_power_linear_term = 4.4 obj.ancillary_power_linear_term = var_ancillary_power_linear_term # real var_skin_loss_ufactor_times_area_value = 5.5 obj.skin_loss_ufactor_times_area_value = var_skin_loss_ufactor_times_area_value # alpha var_skin_loss_destination = "SurroundingZone" obj.skin_loss_destination = var_skin_loss_destination # object-list var_zone_name_to_receive_skin_losses = "object-list|Zone Name to Receive Skin Losses" obj.zone_name_to_receive_skin_losses = var_zone_name_to_receive_skin_losses # alpha var_heating_capacity_units = "Watts" obj.heating_capacity_units = var_heating_capacity_units # real var_maximum_heating_capacity_in_watts = 9.9 obj.maximum_heating_capacity_in_watts = var_maximum_heating_capacity_in_watts # real var_minimum_heating_capacity_in_watts = 10.1 obj.minimum_heating_capacity_in_watts = var_minimum_heating_capacity_in_watts # real var_maximum_heating_capacity_in_kmol_per_second = 11.11 obj.maximum_heating_capacity_in_kmol_per_second = var_maximum_heating_capacity_in_kmol_per_second # real var_minimum_heating_capacity_in_kmol_per_second = 12.12 obj.minimum_heating_capacity_in_kmol_per_second = var_minimum_heating_capacity_in_kmol_per_second idf = IDF() idf.add(obj) idf.save(self.path, check=False) with open(self.path, mode='r') as f: for line in f: log.debug(line.strip()) idf2 = IDF(self.path) self.assertEqual(idf2.generatorfuelcellauxiliaryheaters[0].name, var_name) self.assertAlmostEqual(idf2.generatorfuelcellauxiliaryheaters[0].excess_air_ratio, var_excess_air_ratio) self.assertAlmostEqual(idf2.generatorfuelcellauxiliaryheaters[0].ancillary_power_constant_term, var_ancillary_power_constant_term) self.assertAlmostEqual(idf2.generatorfuelcellauxiliaryheaters[0].ancillary_power_linear_term, var_ancillary_power_linear_term) self.assertAlmostEqual(idf2.generatorfuelcellauxiliaryheaters[0].skin_loss_ufactor_times_area_value, var_skin_loss_ufactor_times_area_value) self.assertEqual(idf2.generatorfuelcellauxiliaryheaters[0].skin_loss_destination, var_skin_loss_destination) self.assertEqual(idf2.generatorfuelcellauxiliaryheaters[0].zone_name_to_receive_skin_losses, var_zone_name_to_receive_skin_losses) self.assertEqual(idf2.generatorfuelcellauxiliaryheaters[0].heating_capacity_units, var_heating_capacity_units) self.assertAlmostEqual(idf2.generatorfuelcellauxiliaryheaters[0].maximum_heating_capacity_in_watts, var_maximum_heating_capacity_in_watts) self.assertAlmostEqual(idf2.generatorfuelcellauxiliaryheaters[0].minimum_heating_capacity_in_watts, var_minimum_heating_capacity_in_watts) self.assertAlmostEqual(idf2.generatorfuelcellauxiliaryheaters[0].maximum_heating_capacity_in_kmol_per_second, var_maximum_heating_capacity_in_kmol_per_second) self.assertAlmostEqual(idf2.generatorfuelcellauxiliaryheaters[0].minimum_heating_capacity_in_kmol_per_second, var_minimum_heating_capacity_in_kmol_per_second)
#!/usr/bin/env python3 import requests import json import sys #get the secrets from your Google Cloud project, use the Oauth2 Playground for your refresh token client_id=sys.argv[1] client_secret=sys.argv[2] refresh_token=sys.argv[3] credentials=sys.argv[4] def get_list_from_file(filename): try: # open and read the file into list with open(filename) as f: string_list = f.read().splitlines() f.close() print(string_list) return string_list except: print("\033[1m"+"Issue Occured with obtaining list from file"+"\033[0m") sys.exit(1) def generate_vault_access_token(client_id,client_secret,refresh_token): try: url = "https://www.googleapis.com/oauth2/v4/token" body = json.dumps({ "client_id": client_id, "client_secret": client_secret, "refresh_token": refresh_token, "grant_type": "refresh_token" }) headers = { "Accept" : "application/json", "Content-Type" : "application/json", } response = requests.request( "POST", url, headers=headers, data=body ) jsonContent = json.loads(response.text) vaultAccessToken = jsonContent["access_token"] return vaultAccessToken except: print("\033[1m"+"Issue Occured with generating Google Vault Access Token"+"\033[0m") sys.exit(1) def generate_matter(leaver_user,vaultAccessToken): try: matterList = [] for user in leaver_user: url = "https://vault.googleapis.com/v1/matters/" headers = { "Accept" : "application/json", "Content-Type" : "application/json", "Authorization": "Bearer " + vaultAccessToken } body = json.dumps ({ "state": "OPEN", "description": "Generated by Python", "name": user + "'s archive" }) response = requests.request( "POST", url, headers=headers, data=body ) jsonContent = json.loads(response.text) matterID=jsonContent["matterId"] #print("Matter ID for " + user + " is " + matterID) print(jsonContent) matterList.append({ "matterInstance": { "user": user, "userInfo": { "matterID": matterID, "savedQueryID": "", "matterExportID": "" } } }) return matterList except: print("\033[1m"+"Issue Occured with generating Google Vault Matter"+"\033[0m") sys.exit(1) def generate_search_query(matterList,vaultAccessToken): try: for matter in matterList: matterList = [] for key, value in matter.items(): user=(matter['matterInstance']['user']) matterID=(matter['matterInstance']['userInfo']['matterID']) url = "https://vault.googleapis.com/v1/matters/"+matterID+"/savedQueries" headers = { "Accept" : "application/json", "Content-Type" : "application/json", "Authorization": "Bearer " + vaultAccessToken } body=json.dumps({ "displayName": user + "'s email search query", "query": { "corpus": "MAIL", "dataScope": "ALL_DATA", "searchMethod": "ACCOUNT", "accountInfo": { "emails": [user]}, "mailOptions": {"excludeDrafts" : "false"}, "timeZone": "Atlantic/Canary", "method": "ACCOUNT" }} ) response = requests.request( "POST", url, headers=headers, data=body ) jsonContent = json.loads(response.text) print(jsonContent) savedQueryID=jsonContent["savedQueryId"] #print("savedQueryId for " + user + " is " + savedQueryID + " matterID is " + matterID) matterList.append({ "matterInstance": { "user": user, "userInfo": { "matterID": matterID, "savedQueryID": savedQueryID, "matterExportID": "" } } } ) return matterList except: print("\033[1m"+"Issue Occured with generating Google Vault Matter Search Query"+"\033[0m") sys.exit(1) def generate_export(savedQueryID,matterList,vaultAccessToken): try: for matter in matterList: matterList = [] for key, value in matter.items(): user=(matter['matterInstance']['user']) matterID=(matter['matterInstance']['userInfo']['matterID']) savedQueryID=(matter['matterInstance']['userInfo']['savedQueryID']) print(user,matterID,savedQueryID) url = "https://vault.googleapis.com/v1/matters/",matterID,"/exports" url=''.join(url) print(url) headers = { "Accept" : "application/json", "Content-Type" : "application/json", "Authorization": "Bearer " + vaultAccessToken } body = json.dumps( { "name": user + "'s Export", "query": { "corpus": "MAIL", "dataScope": "ALL_DATA", "searchMethod": "ACCOUNT", "accountInfo": { "emails": [user]}, "mailOptions": {"excludeDrafts" : "false"}, "timeZone": "Atlantic/Canary", "method": "Account", }, "exportOptions": { "mailOptions": { "exportFormat": "MBOX", "showConfidentialModeContent": "true" }, "region": "any" } } ) response = requests.request( "POST", url, headers=headers, data=body ) jsonContent = json.loads(response.text) matterExportID=jsonContent["id"] print(jsonContent) #print("matterExportID for " + user + " is " + matterExportID + " searchQueryID is " + savedQueryID + " matterID is " + matterID) matterList.append({ "matterInstance": { "user": user, "userInfo": { "matterID": matterID, "savedQueryID": savedQueryID, "matterExportID": matterExportID } } } ) return matterList except: print("\033[1m"+"Issue Occured with generating Google Vault Matter Export"+"\033[0m") sys.exit(1) def set_matter_permissions(adminAccountIDs,matterList,vaultAccessToken): try: for matter in matterList: matterList = [] for key, value in matter.items(): for each in adminAccountIDs: print(each) print(matterList) matterID=(matter['matterInstance']['userInfo']['matterID']) url = "https://vault.googleapis.com/v1/matters/",matterID,":addPermissions" print(url) url=''.join(url) print(url) headers = { "Accept" : "application/json", "Content-Type" : "application/json", "Authorization": "Bearer " + vaultAccessToken } body = json.dumps( { "matterPermission": { "role": "COLLABORATOR", "accountId": each }, "sendEmails": "false", "ccMe": "false" } ) response = requests.request( "POST", url, headers=headers, data=body ) jsonContent = (response.text) print(jsonContent) return each except: print("\033[1m"+"Issue Occured with setting Google Vault Matter permissions"+"\033[0m") sys.exit(1) def generate_links_notify(matterList,credentials): try: for matter in matterList: matterList = [] user=(matter['matterInstance']['user']) matterID=(matter['matterInstance']['userInfo']['matterID']) savedQueryID=(matter['matterInstance']['userInfo']['savedQueryID']) exportID=(matter['matterInstance']['userInfo']['matterExportID']) print("************************************************************************************************************************************************************************************************************************************************************") print("Export Link for " + user + " https://vault.google.com/matter/"+ matterID + "/exports") print("Matter Link for " + user + " https://vault.google.com/matter/"+ matterID) print("Search Query Link for " + user + " https://vault.google.com/matter/"+ matterID + "/search") print("************************************************************************************************************************************************************************************************************************************************************") url=credentials body=json.dumps( { 'text': "Export Link for " + user + " https://vault.google.com/matter/"+ matterID + "/exports" } ) headers={ 'Content-type': 'application/json' } response = requests.request( "POST", url, data=body, ) except: print("\033[1m"+"Issue Occured with generating links for notifications"+"\033[0m") sys.exit(1) vaultAccessToken=generate_vault_access_token(client_id,client_secret,refresh_token) input_filename='.txt' leaver_user=get_list_from_file(input_filename) adminAccountIDs='.txt' admin_users=get_list_from_file(adminAccountIDs) matter=generate_matter(leaver_user,vaultAccessToken) savedQueryID=generate_search_query(matter,vaultAccessToken) matterExportID=generate_export(savedQueryID,matter,vaultAccessToken) last_admin=set_matter_permissions(admin_users,matter,vaultAccessToken) generate_links_notify(matter,credentials)
import os.path as osp import torch import torch.utils.data as data import numpy as np __all__ = ['CNNDataLayer'] def c3d_loader(path, number): data = [] for index in range(number - 2, number + 3): index = min(max(index, 1), 3332) data.append(np.load(osp.join(path, str(index).zfill(5)+'.npy'))) data = np.array(data, dtype=np.float32) data = (data - 0.5) / 0.5 data = data[np.newaxis, ...] return data # TODO: Add c2d loader _DATA_LOADERS = { 'C3D': c3d_loader, } class CNNDataLayer(data.Dataset): def __init__(self, args, phase='train'): self.data_root = args.data_root self.phase = phase if self.phase == 'extract': self.sessions = args.train_session_set + args.test_session_set else: self.sessions = getattr(args, phase+'_session_set') self.loader = _DATA_LOADERS[args.model] self.inputs = [] for session_name in self.sessions: session_path = osp.join(self.data_root, 'target', session_name+'.txt') session_data = open(session_path, 'r').read().splitlines() self.inputs.extend(session_data) def __getitem__(self, index): data_path, number, air_target, bed_target = self.inputs[index].split() data = self.loader(osp.join(self.data_root, 'slices_npy_64x64', data_path), int(number)) data = torch.from_numpy(data) air_target = np.array(air_target.split(','), dtype=np.float32) air_target = torch.from_numpy(air_target) bed_target = np.array(bed_target.split(','), dtype=np.float32) bed_target = torch.from_numpy(bed_target) if self.phase == 'extract': save_path = osp.join(self.data_root, 'c3d_features', data_path, number.zfill(5)+'.npy') return data, air_target, bed_target, save_path else: return data, air_target, bed_target def __len__(self): return len(self.inputs)
#!/usr/bin/env python # coding=utf-8 import pickle import os import sys, locale import time import get_pickle import numpy as np import tensorflow as tf from configparser import ConfigParser #cfg = ConfigParser() #cfg.read(u'conf/ner_conf.ini') path = os.path.split(os.path.realpath(__file__))[0] sys.path.append(path + r'/../') from predict import ModelLoader from predict import show_result class Pipeline(object): def __init__(self): print("Starting new Tensorflow session...") self.session = tf.Session() print("Loading pipeline modules...") self.cws_model = ModelLoader(r'../ckpt/cws/bi-lstm.ckpt-6', 'cws') self.pos_model = ModelLoader(r'../ckpt/pos/bi-lstm.ckpt-6', 'pos') self.ner_model = ModelLoader(r'../ckpt/ner/bi-lstm.ckpt-6', 'ner') def analyze(self, sentence, word2id, id2tag, zy, word2id_p, id2tag_p, word2id_n, id2tag_n): ''' Return a list of three string output:cws, pos, ner ''' #cws cws_tag = self.cws_model.predict(sentence ,word2id , id2tag) cws_str = merge_cws(cws_tag) #pos pos_tagging = self.pos_model.predict(cws_str, word2id_p, id2tag_p) #ner ner_tagging = self.ner_model.predict(cws_str, word2id_n, id2tag_n) return cws_str, pos_tagging, ner_tagging def merge_cws(cws_tag): words = [] tmp = [] rss = '' for (w, t) in cws_tag: for i in range(len(t)): if t[i] in ['s', 'n']: words.append(w[i]) else: tmp.extend(w[i]) if t[i] == 'e': words.append(tmp) tmp = [] for each in words: if isinstance(each, list): each = "".join(each) rss += each + ' ' return rss def main(): word2id_c, id2tag_c, word2id_p, id2tag_p, word2id_n, id2tag_n, zy = get_pickle.get_pickle() pipe = Pipeline() sentence = u'我爱吃北京烤鸭。我爱中华人民共和国。' # sentence = raw_input("请您输入一句话:").strip().decode(sys.stdin.encoding or locale.getpreferredencoding(True)) cws, pos, ner = pipe.analyze(sentence, word2id_c, id2tag_c, zy, word2id_p, id2tag_p, word2id_n, id2tag_n) pos_sen = show_result(pos) ner_sen = show_result(ner) print "您输入的句子为:", sentence print "分词结果为:", cws print "词性标注结果为:", pos_sen print "命名实体识别结果为:", ner_sen if __name__ == "__main__": main()
#faça um algoritmo que leia o preço de um produto e mostre seu novo preço com 5% de desconto #minha resposta print('\033[1;36m+=\033[m'*15, '\033[1;7;36mPRODUTO COM DESCONTO\033[m', '\033[1;36m+=\033[m'*15) produto = float(input ('\033[31mQual o preço do produto? R$\033[m')) calculo = produto * 0.05 #5% do valor desconto = produto - calculo print ('\033[33mO produto que custava \033[1;7;33mR${:.2f}\033[m, \033[33mna promoção com desconto de \033[m\033[1;7;33m5%\033[m \033[33mvai custar \033[1;7;33mR${:.2f}\033[m'.format(produto, desconto)) #resposta do Gustavo #preco = float(input('Qual o preço do produto? R$')) #novo = preco - (preco * 5 / 100) #print ('O produto que custava R${:.2f}, na promoção com desconto de 5% vai custar R${:.2f}'.format(preco, novo))
"""Contains the Goon Character class""" import json from botc import Character, Outsider from ._utils import BadMoonRising, BMRRole with open('botc/gamemodes/badmoonrising/character_text.json') as json_file: character_text = json.load(json_file)[BMRRole.goon.value.lower()] class Goon(Outsider, BadMoonRising, Character): """Goon: Each night, the 1st player to choose you with their ability is drunk until dusk. You become their alignment. """ def __init__(self): Character.__init__(self) BadMoonRising.__init__(self) Outsider.__init__(self) self._desc_string = character_text["description"] self._examp_string = character_text["examples"] self._instr_string = character_text["instruction"] self._lore_string = character_text["lore"] self._brief_string = character_text["brief"] self._action = character_text["action"] self._art_link = "https://bloodontheclocktower.com/wiki/images/a/a4/Goon_Token.png" self._art_link_cropped = "https://imgur.com/NaRvjH3.png" self._wiki_link = "https://bloodontheclocktower.com/wiki/Goon" self._role_enum = BMRRole.goon self._emoji = "<:bmrgoon:781151556330192966>"
# -*- coding: utf-8 -*- import sys import subprocess from functools import wraps import matplotlib as mpl import seaborn as sns import pandas as pd def customize(func): @wraps(func) def call_w_context(*args, **kwargs): if not PlotConfig.FONT_SETTED: _use_chinese(True) set_context = kwargs.pop('set_context', True) if set_context: with plotting_context(), axes_style(): sns.despine(left=True) return func(*args, **kwargs) else: return func(*args, **kwargs) return call_w_context def plotting_context(context='notebook', font_scale=1.5, rc=None): if rc is None: rc = {} rc_default = {'lines.linewidth': 1.5} for name, val in rc_default.items(): rc.setdefault(name, val) return sns.plotting_context(context=context, font_scale=font_scale, rc=rc) def axes_style(style='darkgrid', rc=None): if rc is None: rc = {} rc_default = {} for name, val in rc_default.items(): rc.setdefault(name, val) return sns.axes_style(style=style, rc=rc) def print_table(table, name=None, fmt=None): from IPython.display import display if isinstance(table, pd.Series): table = pd.DataFrame(table) if isinstance(table, pd.DataFrame): table.columns.name = name prev_option = pd.get_option('display.float_format') if fmt is not None: pd.set_option('display.float_format', lambda x: fmt.format(x)) display(table) if fmt is not None: pd.set_option('display.float_format', prev_option) class PlotConfig(object): FONT_SETTED = False USE_CHINESE_LABEL = False MPL_FONT_FAMILY = mpl.rcParams["font.family"] MPL_FONT = mpl.rcParams["font.sans-serif"] MPL_UNICODE_MINUS = mpl.rcParams["axes.unicode_minus"] def get_chinese_font(): if sys.platform.startswith('linux'): cmd = 'fc-list :lang=zh -f "%{family}\n"' output = subprocess.check_output(cmd, shell=True) if isinstance(output, bytes): output = output.decode("utf-8") zh_fonts = [ f.split(',', 1)[0] for f in output.split('\n') if f.split(',', 1)[0] ] return zh_fonts return [] def _use_chinese(use=None): if use is None: return PlotConfig.USE_CHINESE_LABEL elif use: PlotConfig.USE_CHINESE_LABEL = use PlotConfig.FONT_SETTED = True _set_chinese_fonts() else: PlotConfig.USE_CHINESE_LABEL = use PlotConfig.FONT_SETTED = True _set_default_fonts() def _set_chinese_fonts(): default_chinese_font = ['SimHei', 'FangSong', 'STXihei', 'Hiragino Sans GB', 'Heiti SC', 'WenQuanYi Micro Hei'] chinese_font = default_chinese_font + get_chinese_font() # 设置中文字体 mpl.rc( "font", **{ # seaborn 需要设置 sans-serif "sans-serif": chinese_font, "family": ','.join(chinese_font) + ',sans-serif' } ) # 防止负号乱码 mpl.rcParams["axes.unicode_minus"] = False def _set_default_fonts(): mpl.rc( "font", **{ "sans-serif": PlotConfig.MPL_FONT, "family": PlotConfig.MPL_FONT_FAMILY } ) mpl.rcParams["axes.unicode_minus"] = PlotConfig.MPL_UNICODE_MINUS class _PlotLabels(object): def get(self, v): if _use_chinese(): return getattr(self, v + "_CN") else: return getattr(self, v + "_EN") class ICTS(_PlotLabels): TITLE_CN = "{} IC" TITLE_EN = "{} Period Forward Return Information Coefficient (IC)" LEGEND_CN = ["IC", "1个月移动平均"] LEGEND_EN = ["IC", "1 month moving avg"] TEXT_CN = "均值 {:.3f} \n方差 {:.3f}" TEXT_EN = "Mean {:.3f} \nStd. {:.3f}" ICTS = ICTS() class ICHIST(_PlotLabels): TITLE_CN = "%s IC 分布直方图" TITLE_EN = "%s Period IC" LEGEND_CN = "均值 {:.3f} \n方差 {:.3f}" LEGEND_EN = "Mean {:.3f} \nStd. {:.3f}" ICHIST = ICHIST() class ICQQ(_PlotLabels): NORM_CN = "正态" NORM_EN = "Normal" T_CN = "T" T_EN = "T" CUSTOM_CN = "自定义" CUSTOM_EN = "Theoretical" TITLE_CN = "{} IC {}分布 Q-Q 图" TITLE_EN = "{} Period IC {} Dist. Q-Q" XLABEL_CN = "{} 分布分位数" XLABEL_EN = "{} Distribution Quantile" YLABEL_CN = "Observed Quantile" YLABEL_EN = "Observed Quantile" ICQQ = ICQQ() class QRETURNBAR(_PlotLabels): COLUMN_CN = "{} 天" COLUMN_EN = "{} Day" TITLE_CN = "各分位数平均收益" TITLE_EN = "Mean Period Wise Return By Factor Quantile" YLABEL_CN = "平均收益 (bps)" YLABEL_EN = "Mean Return (bps)" QRETURNBAR = QRETURNBAR() class QRETURNVIOLIN(_PlotLabels): LEGENDNAME_CN = "滞后天数" LEGENDNAME_EN = "forward_periods" TITLE_CN = "各分位数收益分布图" TITLE_EN = "Period Wise Return By Factor Quantile" YLABEL_CN = "收益 (bps)" YLABEL_EN = "Return (bps)" QRETURNVIOLIN = QRETURNVIOLIN() class QRETURNTS(_PlotLabels): TITLE_CN = "最大分位收益减最小分位收益 ({} 天)" TITLE_EN = "Top Minus Bottom Quantile Mean Return ({} Period Forward Return)" LEGEND0_CN = "当日收益 (加减 {:.2f} 倍当日标准差)" LEGEND0_EN = "mean returns spread (+/- {:.2f} std)" LEGEND1_CN = "1 个月移动平均" LEGEND1_EN = "1 month moving avg" YLABEL_CN = "分位数平均收益差 (bps)" YLABEL_EN = "Difference In Quantile Mean Return (bps)" QRETURNTS = QRETURNTS() class ICGROUP(_PlotLabels): TITLE_CN = "分组 IC" TITLE_EN = "Information Coefficient By Group" ICGROUP = ICGROUP() class AUTOCORR(_PlotLabels): TITLE_CN = "因子自相关性 (滞后 {} 天)" TITLE_EN = "{} Period Factor Autocorrelation" YLABEL_CN = "自相关性" YLABEL_EN = "Autocorrelation Coefficient" TEXT_CN = "均值 {:.3f}" TEXT_EN = "Mean {:.3f}" AUTOCORR = AUTOCORR() class TBTURNOVER(_PlotLabels): TURNOVER_CN = "{:d} 分位换手率" TURNOVER_EN = "quantile {:d} turnover" TITLE_CN = "{} 天换手率" TITLE_EN = "{} Period Top and Bottom Quantile Turnover" YLABEL_CN = "分位数换手率" YLABEL_EN = "Proportion Of Names New To Quantile" TBTURNOVER = TBTURNOVER() class ICHEATMAP(_PlotLabels): TITLE_CN = "{} 天 IC 月度均值" TITLE_EN = "Monthly Mean {} Period IC" ICHEATMAP = ICHEATMAP() class CUMRET(_PlotLabels): YLABEL_CN = "累积收益" YLABEL_EN = "Cumulative Returns" TITLE_CN = "因子值加权多空组合累积收益 ({} 天平均)" TITLE_EN = """Factor Weighted Long/Short Portfolio Cumulative Return ({} Fwd Period)""" CUMRET = CUMRET() class TDCUMRET(_PlotLabels): YLABEL_CN = "累积收益" YLABEL_EN = "Cumulative Returns" TITLE_CN = "做多最大分位做空最小分位组合累积收益 ({} 天平均)" TITLE_EN = """Long Top/Short Bottom Factor Portfolio Cumulative Return ({} Fwd Period)""" TDCUMRET = TDCUMRET() class CUMRETQ(_PlotLabels): YLABEL_CN = "累积收益(对数轴)" YLABEL_EN = "Log Cumulative Returns" TITLE_CN = "分位数 {} 天 Forward Return 累积收益 (对数轴)" TITLE_EN = """Cumulative Return by Quantile ({} Period Forward Return)""" CUMRETQ = CUMRETQ() class AVGCUMRET(_PlotLabels): TITLE_CN = "因子预测能力 (前 {} 天, 后 {} 天)" TITLE_EN = "Average Cumulative Returns by Quantile ({} days backword, {} days forward)" COLUMN_CN = "{} 分位" COLUMN_EN = "Quantile {}" XLABEL_CN = "天数" XLABEL_EN = "Periods" YLABEL_CN = "平均累积收益 (bps)" YLABEL_EN = "Mean Return (bps)" AVGCUMRET = AVGCUMRET() class EVENTSDIST(_PlotLabels): TITLE_CN = "因子数量随时间分布" TITLE_EN = "Distribution of events in time" XLABEL_CN = "日期" XLABEL_EN = "Date" YLABEL_CN = "因子数量" YLABEL_EN = "Number of events" EVENTSDIST = EVENTSDIST() class MISSIINGEVENTSDIST(_PlotLabels): TITLE_CN = "因子数量随时间分布" TITLE_EN = "Distribution of missing events in time" XLABEL_CN = "日期" XLABEL_EN = "Date" YLABEL_CN = "因子缺失率" YLABEL_EN = "Rate of missing events" MISSIINGEVENTSDIST = MISSIINGEVENTSDIST()
#!/bin/python # Read a list of score files from the Gobnilp's scorer and learn the BN structure using Gobnilp. import sys import os from subprocess import call def LearnWithGobnilp(pathToGobnilp, pathToScore): print "Learning the network structures from file", pathToScore, "using Gobnilp." baseName = os.path.splitext(pathToScore)[0]; resultFilename = baseName + ".gobnilp.result"; timeFilename = baseName + ".gobnilp.time"; matrixFilename = baseName + ".gobnilp.matrix"; with open("gobnilp.set", "w") as gobnilpSettings: gobnilpSettings.write("gobnilp/outputfile/solution = \"" + resultFilename + "\"\n"); gobnilpSettings.write("gobnilp/outputfile/scoreandtime = \"" + timeFilename + "\"\n"); gobnilpSettings.write("gobnilp/outputfile/adjacencymatrix = \"" + matrixFilename + "\"\n"); gobnilpCommand = [pathToGobnilp, "-f=jkl", pathToScore]; call(gobnilpCommand, shell = False, stdout=open(os.devnull, "w")); call(["rm", "-f", "gobnilp.set"], shell=False); print "Finished learning." return matrixFilename, resultFilename, timeFilename; def Error(): print "Usage:", sys.argv[0], "data_filenames"; exit(0); def LearnGobnilp(fileList): pathToGobnilp = "/opt/bnet/learning/gobnilp-1.4.1-cplex/bin/gobnilp"; results = [LearnWithGobnilp(pathToGobnilp, datasetFile) for datasetFile in fileList if os.path.isfile(datasetFile)]; matrixFiles, resultFiles, timeFiles = [[row[i] for row in results] for i in range(len(results[0]))]; return matrixFiles, resultFiles, timeFiles; if __name__ == "__main__": try: LearnGobnilp(sys.argv[1:]); except: Error();
input_value=int(input()) print("{:,}".format(input_value))
from datetime import datetime, timedelta import jwt from fastapi import Depends, HTTPException from jwt import PyJWTError from passlib.context import CryptContext from pydantic import EmailStr from starlette import status from config import apisecrets, oauth2_scheme from models import User from v1.services.user import UserService user_service = UserService() PWD_CONTEXT = CryptContext(schemes=["bcrypt"], deprecated="auto") SECRET_KEY = apisecrets.SECRET_KEY ACCESS_TOKEN_ALGORITHM = 'HS256' CREDENTIALS_EXCEPTION = HTTPException(status_code=status.HTTP_401_UNAUTHORIZED, detail="Invalid credentials.", headers={"WWW-Authenticate": "Bearer"}) class AuthService: def valid_password(self, plain_pass: str, hashed_pass: str) -> bool: return PWD_CONTEXT.verify(plain_pass, hashed_pass) def authenticate_user(self, email: EmailStr, password: str) -> User: user = user_service.get_user_by_email(email) if not user: return if not self.valid_password(password, user.password): return return user def create_access_token(self, data: dict, expires_delta: timedelta) -> bytes: to_encode = data.copy() expire = datetime.utcnow() + expires_delta to_encode.update({"exp": expire}) encoded_jwt = jwt.encode(to_encode, SECRET_KEY, algorithm=ACCESS_TOKEN_ALGORITHM) return encoded_jwt def current_user(self, token: str = Depends(oauth2_scheme)) -> User: try: payload = jwt.decode(token, SECRET_KEY, algorithms=[ACCESS_TOKEN_ALGORITHM]) id = payload.get("id") except PyJWTError: raise CREDENTIALS_EXCEPTION return user_service.get_user(id)
"""Test pipe subpackage""" import typing from src.oolongt.pipe import noop, pipe from tests.params.pipe import param_noop, param_pipe @param_noop() def test_noop(expected: typing.Any): """Test `noop` Arguments: expected {typing.Any} -- expected value (same as input) """ received = noop(expected) assert received == expected @param_pipe() def test_pipe( init: typing.Any, pipeline: typing.Iterable, expected: typing.Any): """Test `pipe` Arguments: init {typing.Any} -- input value pipeline {typing.Any} -- (iterable of) callables expected {typing.Any} -- expected result """ received = pipe(init, *pipeline) assert received == expected
from dfs.datasheets.parsers.treatments.parser_2014 import TreatmentDatasheetParser2014 import dfs.datasheets.datatabs as datatabs import dfs.datasheets.datasheet as datasheet class TreatmentDatasheetParser2017(TreatmentDatasheetParser2014): def format_output_filename(self, input_filename): return input_filename.replace('2017', '2017_Converted') def parse_witness_tree_tab(self, workbook, sheet): worksheet = workbook[datasheet.TAB_NAME_WITNESS_TREES] tab = datatabs.witnesstree.WitnessTreeTab() for rownumber in range(3, 33): tree = datatabs.witnesstree.WitnessTreeTabTree() tree.micro_plot_id = self.parse_int(worksheet[f'B{rownumber}'].value) if None == tree.micro_plot_id: continue tree.tree_number = self.parse_int(worksheet[f'A{rownumber}'].value) tree.species_known = worksheet[f'C{rownumber}'].value tree.species_guess = worksheet[f'D{rownumber}'].value tree.dbh = self.parse_float(worksheet[f'E{rownumber}'].value) live_or_dead = self.parse_int(worksheet[f'F{rownumber}'].value) if None != live_or_dead: tree.live_or_dead = 'L' if 1 == live_or_dead else 'D' else: tree.live_or_dead = 'L' tree.azimuth = self.parse_int(worksheet[f'G{rownumber}'].value) tree.distance = self.parse_float(worksheet[f'H{rownumber}'].value) tab.witness_trees.append(tree) return tab def parse_tree_table_tab(self, workbook, sheet): worksheet = workbook[datasheet.TAB_NAME_TREE_TABLE] tab = datatabs.tree.TreeTableTab() row_valid = True i = 3 subplot_tree_numbers = {} while (row_valid): if not worksheet[f'A{i}'].value: row_valid = False continue species = datatabs.tree.TreeTableSpecies() species.micro_plot_id = worksheet[f'A{i}'].value if species.micro_plot_id not in subplot_tree_numbers: subplot_tree_numbers[species.micro_plot_id] = 1 else: subplot_tree_numbers[species.micro_plot_id] += 1 species.tree_number = subplot_tree_numbers[species.micro_plot_id] species.species_known = worksheet[f'C{i}'].value species.species_guess = worksheet[f'D{i}'].value species.diameter_breast_height = self.parse_float(worksheet[f'E{i}'].value) live_or_dead = self.parse_int(worksheet[f'F{i}'].value) if None != live_or_dead: species.live_or_dead = 'L' if 1 == live_or_dead else 'D' species.comments = worksheet[f'G{i}'].value tab.tree_species.append(species) i += 1 return tab def parse_sapling_tab(self, workbook, sheet): worksheet = workbook[datasheet.TAB_NAME_SAPLING] tab = datatabs.sapling.SaplingTab() row_valid = True i = 3 subplot_sapling_numbers = {} while (row_valid): if not worksheet[f'A{i}'].value: row_valid = False continue species = datatabs.sapling.SaplingSpecies() species.micro_plot_id = self.parse_int(worksheet[f'A{i}'].value) if species.micro_plot_id not in subplot_sapling_numbers: subplot_sapling_numbers[species.micro_plot_id] = 1 else: subplot_sapling_numbers[species.micro_plot_id] += 1 species.sapling_number = subplot_sapling_numbers[species.micro_plot_id] species.quarter = self.parse_int(worksheet[f'B{i}'].value) species.scale = self.parse_int(worksheet[f'C{i}'].value) species.species_known = worksheet[f'D{i}'].value species.species_guess = worksheet[f'E{i}'].value species.diameter_breast_height = self.parse_float(worksheet[f'F{i}'].value) tab.sapling_species.append(species) i += 1 return tab
# Copyright 2020 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). from dataclasses import dataclass from pathlib import PurePath from typing import Dict, Optional, Set from pants.backend.python.target_types import PythonRequirementsField, PythonSources from pants.base.specs import AddressSpecs, DescendantAddresses from pants.core.util_rules.strip_source_roots import ( SourceRootStrippedSources, StripSourcesFieldRequest, ) from pants.engine.addresses import Address from pants.engine.rules import rule from pants.engine.selectors import Get, MultiGet from pants.engine.target import Targets from pants.util.frozendict import FrozenDict @dataclass(frozen=True) class PythonModule: module: str @classmethod def create_from_stripped_path(cls, path: PurePath) -> "PythonModule": module_name_with_slashes = ( path.parent if path.name == "__init__.py" else path.with_suffix("") ) return cls(module_name_with_slashes.as_posix().replace("/", ".")) @dataclass(frozen=True) class FirstPartyModuleToAddressMapping: mapping: FrozenDict[str, Address] def address_for_module(self, module: str) -> Optional[Address]: target = self.mapping.get(module) if target is not None: return target # If the module is not found, try the parent, if any. This is to accommodate `from` # imports, where we don't care about the specific symbol, but only the module. For example, # with `from typing import List`, we only care about `typing`. # Unlike with third party modules, we do not look past the direct parent. if "." not in module: return None parent_module = module.rsplit(".", maxsplit=1)[0] return self.mapping.get(parent_module) @rule async def map_first_party_modules_to_addresses() -> FirstPartyModuleToAddressMapping: all_targets = await Get[Targets](AddressSpecs([DescendantAddresses("")])) candidate_targets = tuple(tgt for tgt in all_targets if tgt.has_field(PythonSources)) sources_per_target = await MultiGet( Get[SourceRootStrippedSources](StripSourcesFieldRequest(tgt[PythonSources])) for tgt in candidate_targets ) modules_to_addresses: Dict[str, Address] = {} modules_with_multiple_owners: Set[str] = set() for tgt, sources in zip(candidate_targets, sources_per_target): for f in sources.snapshot.files: module = PythonModule.create_from_stripped_path(PurePath(f)).module if module in modules_to_addresses: modules_with_multiple_owners.add(module) else: modules_to_addresses[module] = tgt.address # Remove modules with ambiguous owners. for module in modules_with_multiple_owners: modules_to_addresses.pop(module) return FirstPartyModuleToAddressMapping(FrozenDict(sorted(modules_to_addresses.items()))) @dataclass(frozen=True) class ThirdPartyModuleToAddressMapping: mapping: FrozenDict[str, Address] def address_for_module(self, module: str) -> Optional[Address]: target = self.mapping.get(module) if target is not None: return target # If the module is not found, try the parent module, if any. For example, # pants.task.task.Task -> pants.task.task -> pants.task -> pants if "." not in module: return None parent_module = module.rsplit(".", maxsplit=1)[0] return self.address_for_module(parent_module) @rule async def map_third_party_modules_to_addresses() -> ThirdPartyModuleToAddressMapping: all_targets = await Get[Targets](AddressSpecs([DescendantAddresses("")])) modules_to_addresses: Dict[str, Address] = {} modules_with_multiple_owners: Set[str] = set() for tgt in all_targets: if not tgt.has_field(PythonRequirementsField): continue for python_req in tgt[PythonRequirementsField].value: for module in python_req.modules: if module in modules_to_addresses: modules_with_multiple_owners.add(module) else: modules_to_addresses[module] = tgt.address # Remove modules with ambiguous owners. for module in modules_with_multiple_owners: modules_to_addresses.pop(module) return ThirdPartyModuleToAddressMapping(FrozenDict(sorted(modules_to_addresses.items()))) @dataclass(frozen=True) class PythonModuleOwner: """The target that owns a Python module. If >1 target own the same module, the `address` field should be set to `None` to avoid ambiguity. """ address: Optional[Address] @rule async def map_module_to_address( module: PythonModule, first_party_mapping: FirstPartyModuleToAddressMapping, third_party_mapping: ThirdPartyModuleToAddressMapping, ) -> PythonModuleOwner: third_party_address = third_party_mapping.address_for_module(module.module) if third_party_address: return PythonModuleOwner(third_party_address) first_party_address = first_party_mapping.address_for_module(module.module) if first_party_address: return PythonModuleOwner(first_party_address) return PythonModuleOwner(address=None) def rules(): return [ map_first_party_modules_to_addresses, map_third_party_modules_to_addresses, map_module_to_address, ]
AL = 'AL' NL = 'NL' MLB = 'MLB' LEAGUES = [AL, NL, MLB] def mlb_teams(year): """ For given year return teams active in the majors. Caveat, list is not complete; those included are only those with a current team still active. """ year = int(year) return sorted(al_teams(year) + nl_teams(year)) def al_teams(year): """ For given year return teams existing in AL. Caveat, list is not complete; those included are only those with a current team still active. """ teams = [] year = int(year) if year >= 1901: teams.append('BOS') teams.append('CLE') teams.append('CHW') teams.append('DET') else: return [] if year >= 1903: teams.append('NYY') if year >= 1969: teams.append('KCR') if year >= 1977: teams.append('SEA') teams.append('TOR') league = AL angels(year, teams) astros(year, teams, league) athletics(year, teams) brewers(year, teams, league) orioles(year, teams) rangers(year, teams) rays(year, teams) twins(year, teams) return sorted(teams) def nl_teams(year): """ For given year return teams existing in NL. Caveat, list is not complete; those included are only those with a current team still active. """ teams = [] year = int(year) if year >= 1876: teams.append('CHC') else: return [] if year >= 1883: teams.append('PHI') if year >= 1887: teams.append('PIT') if year >= 1890: teams.append('CIN') if year >= 1892: teams.append('STL') if year >= 1962: teams.append('NYM') if year >= 1969: teams.append('SDP') if year >= 1993: teams.append('COL') if year >= 1996: teams.append('ARI') league = NL astros(year, teams, league) braves(year, teams) brewers(year, teams, league) dodgers(year, teams) giants(year, teams) marlins(year, teams) nationals(year, teams) return sorted(teams) TEAMS = {AL : al_teams, NL : nl_teams, MLB : mlb_teams} def angels(year, teams): """ Append appropriate Angels abbreviation for year if applicable. """ if year >= 2005: teams.append('LAA') elif year >= 1997: teams.append('ANA') elif year >= 1965: teams.append('CAL') elif year >= 1961: teams.append('LAA') def astros(year, teams, league): """ Append appropriate Astros abbreviation for year if applicable. """ if year >= 2013 and league == AL: teams.append('HOU') elif year >= 1962 and year < 2013 and league == NL: teams.append('HOU') def athletics(year, teams): """ Append appropriate Athletics abbreviation for year if applicable. """ if year >= 1968: teams.append('OAK') elif year >= 1955: teams.append('KCA') elif year >= 1901: teams.append('PHA') def braves(year, teams): """ Append appropriate Braves abbreviation for year if applicable. """ if year >= 1966: teams.append('ATL') elif year >= 1953: teams.append('MLN') elif year >= 1876: teams.append('BSN') def brewers(year, teams, league): """ Append appropriate Brewers abbreviation for year if applicable. """ if year >= 1970: if year >= 1993 and league == NL: teams.append('MIL') elif year < 1993 and league == AL: teams.append('MIL') elif year == 1969 and league == AL: teams.append('SEP') def dodgers(year, teams): """ Append appropriate Dodgers abbreviation for year if applicable. """ if year >= 1958: teams.append('LAD') elif year >= 1884: teams.append('BRO') def giants(year, teams): """ Append appropriate Giants abbreviation for year if applicable. """ if year >= 1958: teams.append('SFG') elif year >= 1883: teams.append('NYG') def marlins(year, teams): """ Append appropriate Marlins abbreviation for year if applicable. """ if year >= 2012: teams.append('MIA') elif year >= 1993: teams.append('FLA') def nationals(year, teams): """ Append appropriate Nationals abbreviation for year if applicable. """ if year >= 2005: teams.append('WSN') elif year >= 1969: teams.append('MON') def orioles(year, teams): """ Append appropriate Orioles abbreviation for year if applicable. """ if year >= 1954: teams.append('BAL') elif year >= 1902: teams.append('SLB') elif year == 1901: teams.append('MLA') def rangers(year, teams): """ Append appropriate Rangers abbreviation for year if applicable. """ if year >= 1972: teams.append('TEX') elif year >= 1961: teams.append('WSA') def rays(year, teams): """ Append appropriate Rays abbreviation for year if applicable. """ if year >= 2008: teams.append('TBR') elif year >= 1998: teams.append('TBD') def twins(year, teams): """ Append appropriate Twins abbreviation for year if applicable. """ if year >= 1961: teams.append('MIN') elif year >= 1901: teams.append('WSH') def valid_teams_subset(year, teams): """ Ensure teams list is valid. """ all_teams = mlb_teams(int(year)) for team in teams: if team not in all_teams: return False return True
import socket, sys from threading import Thread sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.connect(('127.0.0.1', 53331)) print("Connected to chat") def messenger(): while True: message = input() if message == "exit": sock.send(message.encode()) sock.close() sys.exit() else: sock.send(message.encode()) def receiver(): while True: data = sock.recv(4096) if data: print(data.decode()) message_thread = Thread(target=messenger) get_thread = Thread(target=receiver) message_thread.start() get_thread.start()
input_num = int(input()) count = 0 # 1と0以外が混ざっている場合は終了する for i in str(input_num): # 1がある値をカウントアップ if int(i) == 1: count += 1 print(count)
# Raspberry Pi Cat Laser Server # Flask-based web appplication that allows control and calibration of the cat # laser toy. This shouldn't be exposed out to other users! Rather this is meant # for internal use and calibration (like getting a calibration.json file to use # with the laser driver script). # Author: Tony DiCola from flask import * import json, sys import model # Flask app configuration DEBUG = True # Cat laser toy configuration SERVO_I2C_ADDRESS = 0x40 # I2C address of the PCA9685-based servo controller SERVO_XAXIS_CHANNEL = 1 # Channel for the x axis rotation which controls laser up/down SERVO_YAXIS_CHANNEL = 0 # Channel for the y axis rotation which controls laser left/right SERVO_PWM_FREQ = 50 # PWM frequency for the servos in HZ (should be 50) SERVO_MIN = 150 # Minimum rotation value for the servo, should be -90 degrees of rotation. SERVO_MAX = 600 # Maximum rotation value for the servo, should be 90 degrees of rotation. SERVO_CENTER = 200 # Center value for the servo, should be 0 degrees of rotation. # Initialize flask app app = Flask(__name__) app.config.from_object(__name__) # Setup the servo and laser model servos = None if len(sys.argv) > 1 and sys.argv[1] == "test": # Setup test servo for running outside a Raspberry Pi import modeltests servos = modeltests.TestServos() else: # Setup the real servo when running on a Raspberry Pi import servos servos = servos.Servos(SERVO_I2C_ADDRESS, SERVO_XAXIS_CHANNEL, SERVO_YAXIS_CHANNEL, SERVO_PWM_FREQ) model = model.LaserModel(servos, SERVO_MIN, SERVO_MAX, SERVO_CENTER) # Main view for rendering the web page @app.route('/') def main(): return render_template('main.html', model=model) # Error handler for API call failures @app.errorhandler(ValueError) def valueErrorHandler(error): return jsonify({'result': error.message}), 500 def successNoResponse(): return jsonify({'result': 'success'}), 204 # API calls used by the web app @app.route('/set/servo/xaxis/<xaxis>', methods=['PUT']) def setServoXAxis(xaxis): model.setXAxis(xaxis) return successNoResponse() @app.route('/set/servo/yaxis/<yaxis>', methods=['PUT']) def setServoYAaxis(yaxis): model.setYAxis(yaxis) return successNoResponse() @app.route('/set/servos/<xaxis>/<yaxis>', methods=['PUT']) def setServos(xaxis, yaxis): model.setXAxis(xaxis) model.setYAxis(yaxis) return successNoResponse() @app.route('/get/servos', methods=['GET']) def getServos(): return jsonify({'xaxis': model.getXAxis(), 'yaxis': model.getYAxis() }), 200 @app.route('/get/calibration', methods=['GET']) def getCalibration(): return jsonify({'target': model.targetCalibration, 'servo': model.servoCalibration}), 200 @app.route('/set/calibration', methods=['POST']) def setCalibration(): model.setCalibration(json.loads(request.form['targetCalibration']), json.loads(request.form['servoCalibration'])) return successNoResponse() @app.route('/target/<int:x>/<int:y>', methods=['PUT']) def target(x, y): model.target(x, y) return successNoResponse() # Start running the flask app if __name__ == '__main__': app.run(host='0.0.0.0')
#!/usr/bin/env python3 # Copyright 2021 Canonical Ltd. # See LICENSE file for licensing details. """Charmed Machine Operator for the PostgreSQL database.""" import logging import secrets import string import subprocess from typing import List from charms.operator_libs_linux.v0 import apt from ops.charm import ActionEvent, CharmBase from ops.main import main from ops.model import ( ActiveStatus, BlockedStatus, MaintenanceStatus, ModelError, Relation, WaitingStatus, ) from cluster import Patroni logger = logging.getLogger(__name__) PEER = "postgresql-replicas" class PostgresqlOperatorCharm(CharmBase): """Charmed Operator for the PostgreSQL database.""" def __init__(self, *args): super().__init__(*args) self._postgresql_service = "postgresql" self.framework.observe(self.on.install, self._on_install) self.framework.observe(self.on.leader_elected, self._on_leader_elected) self.framework.observe(self.on.start, self._on_start) self.framework.observe(self.on.get_initial_password_action, self._on_get_initial_password) self._cluster = Patroni(self._unit_ip) @property def _unit_ip(self) -> str: """Current unit ip.""" return self.model.get_binding(PEER).network.bind_address def _on_install(self, event) -> None: """Install prerequisites for the application.""" self.unit.status = MaintenanceStatus("installing PostgreSQL") # Prevent the default cluster creation. self._cluster.inhibit_default_cluster_creation() # Install the PostgreSQL and Patroni requirements packages. try: self._install_apt_packages(event, ["postgresql", "python3-pip", "python3-psycopg2"]) except (subprocess.CalledProcessError, apt.PackageNotFoundError): self.unit.status = BlockedStatus("failed to install apt packages") return try: resource_path = self.model.resources.fetch("patroni") except ModelError as e: logger.error(f"missing patroni resource {str(e)}") self.unit.status = BlockedStatus("Missing 'patroni' resource") return # Build Patroni package path with raft dependency and install it. try: patroni_package_path = f"{str(resource_path)}[raft]" self._install_pip_packages([patroni_package_path]) except subprocess.SubprocessError: self.unit.status = BlockedStatus("failed to install Patroni python package") return self.unit.status = WaitingStatus("waiting to start PostgreSQL") def _on_leader_elected(self, _) -> None: """Handle the leader-elected event.""" data = self._peers.data[self.app] # The leader sets the needed password on peer relation databag if they weren't set before. data.setdefault("postgres-password", self._new_password()) data.setdefault("replication-password", self._new_password()) def _on_start(self, event) -> None: """Handle the start event.""" # Doesn't try to bootstrap the cluster if it's in a blocked state # caused, for example, because a failed installation of packages. if self._has_blocked_status: return postgres_password = self._get_postgres_password() replication_password = self._get_postgres_password() # If the leader was not elected (and the needed passwords were not generated yet), # the cluster cannot be bootstrapped yet. if not postgres_password or not replication_password: logger.info("leader not elected and/or passwords not yet generated") self.unit.status = WaitingStatus("awaiting passwords generation") event.defer() return # Set some information needed by Patroni to bootstrap the cluster. cluster_name = self.app.name member_name = self.unit.name.replace("/", "-") success = self._cluster.bootstrap_cluster( cluster_name, member_name, postgres_password, replication_password ) if success: # The cluster is up and running. self.unit.status = ActiveStatus() else: self.unit.status = BlockedStatus("failed to start Patroni") def _on_get_initial_password(self, event: ActionEvent) -> None: """Returns the password for the postgres user as an action response.""" event.set_results({"postgres-password": self._get_postgres_password()}) @property def _has_blocked_status(self) -> bool: """Returns whether the unit is in a blocked state.""" return isinstance(self.unit.status, BlockedStatus) def _get_postgres_password(self) -> str: """Get postgres user password. Returns: The password from the peer relation or None if the password has not yet been set by the leader. """ data = self._peers.data[self.app] return data.get("postgres-password") @property def _replication_password(self) -> str: """Get replication user password. Returns: The password from the peer relation or None if the password has not yet been set by the leader. """ data = self._peers.data[self.app] return data.get("replication-password") def _install_apt_packages(self, _, packages: List[str]) -> None: """Simple wrapper around 'apt-get install -y. Raises: CalledProcessError if it fails to update the apt cache. PackageNotFoundError if the package is not in the cache. PackageError if the packages could not be installed. """ try: logger.debug("updating apt cache") apt.update() except subprocess.CalledProcessError as e: logger.exception("failed to update apt cache, CalledProcessError", exc_info=e) raise for package in packages: try: apt.add_package(package) logger.debug(f"installed package: {package}") except apt.PackageNotFoundError: logger.error(f"package not found: {package}") raise except apt.PackageError: logger.error(f"package error: {package}") raise def _install_pip_packages(self, packages: List[str]) -> None: """Simple wrapper around pip install. Raises: SubprocessError if the packages could not be installed. """ try: command = [ "pip3", "install", " ".join(packages), ] logger.debug(f"installing python packages: {', '.join(packages)}") subprocess.check_call(command) except subprocess.SubprocessError: logger.error("could not install pip packages") raise def _new_password(self) -> str: """Generate a random password string. Returns: A random password string. """ choices = string.ascii_letters + string.digits password = "".join([secrets.choice(choices) for i in range(16)]) return password @property def _peers(self) -> Relation: """Fetch the peer relation. Returns: A:class:`ops.model.Relation` object representing the peer relation. """ return self.model.get_relation(PEER) if __name__ == "__main__": main(PostgresqlOperatorCharm)
from PIL import Image as Img from nbtschematic import SchematicFile from getbrightnessval import get_bright def get_image_pixels(path, dark, light): try: im = Img.open(path) except: print("unable to get image file") size = im.size sizex = size[0] sizey = size[1] pix = im.load() sf = SchematicFile(shape=(1, sizey, sizex)) for i in range(sizex): for j in range(sizey): pin = pix[i, j] if get_bright(pin[0], pin[1], pin[2]) < (256 / 2): sf.blocks[0, j, i] = dark print("set block " + str(i) + " 1 " + str(j) + " to dark block") else: if not True: sf.blocks[0, j, i] = light print("set block " + str(i) + " 1 " + str(j) + " to light block") return sf