content
stringlengths
5
1.05M
#!/usr/bin/env python3 import argparse import biotools import sys # Write a program that computes the amino acid composition of a protein file # Use a dictionary count = {} tot_count = 0 for id, protein in biotools.read_fasta(sys.argv[1]): for aa in protein: tot_count += 1 if aa in count: count[aa] += 1 else: count[aa] = 1 for aa in count: print(aa, count[aa]/tot_count) """ python3 composition.py proteins.fasta.gz | sort -nk 2 (numerically by column 2) * 0.0017561333612916754 W 0.010255968606775905 C 0.019017913309169337 M 0.023765838900038944 H 0.027689991912051043 Y 0.02980558967138963 F 0.036174849474283316 N 0.04593281011293173 I 0.049422610310637154 D 0.052167270766557826 Q 0.05259413473923853 P 0.05463858850313034 T 0.05542491687385795 K 0.056080190516130966 G 0.05631234460653626 R 0.05732708264685618 V 0.05813962196327472 E 0.06519785519575833 A 0.07117020639247522 S 0.08295764311176347 L 0.09416843902585148 """
# -*- coding: utf-8 -*- """ Created on Tue Dec 10 15:21:50 2019 @author: Aguilerimon """ import numpy as np import matplotlib.pyplot as ptl import pandas as pd #Importar el data set dataset = pd.read_csv('Data.csv') #Separamos las variables del data set #Localizacion de los elementos por localizacion (index) #Asignamos a la variable x todas las filas de las tres primeras columnas como #variables independientes del data set x = dataset.iloc[:,:-1].values #Asignamos a la variable y todas las filas de la ultima columna como variable dependiente y = dataset.iloc[:, 3].values #Tratamiento de los NAs o valores faltantes from sklearn.preprocessing import Imputer #Especificamos todos los terminos necesarios para el tratamiento de los NAs imputer = Imputer(missing_values = "NaN", strategy = "mean", axis = 0) imputer = imputer.fit(x[:, 1:3]) x[:, 1:3] = imputer.transform(x[:, 1:3]) #Codificar los datos categóricos #Import de las librerias LabelEncoder(Le da igual si los datos son catogórico u ordinales) #Y la libreria OneHotEncoder(Implementación de las variable dummy categóricas) from sklearn.preprocessing import LabelEncoder, OneHotEncoder #Constructor del método labelencoder labelencoder_x = LabelEncoder() labelencoder_y = LabelEncoder() #Aplicamos la transformación numérica a la primer columna y la sobreescribimos al objeto x x[:,0] = labelencoder_x.fit_transform(x[:,0]) #Para los valores boolean no nos interesa utilizar el método OneHotEncoder y = labelencoder_y.fit_transform(y) #Es necesario haber tratado anteriormente el vector con LabelEncoder #debido a que OneHotEncoder no podrá convertir el string original a float onehotencoder = OneHotEncoder(categorical_features=[0]) x = onehotencoder.fit_transform(x).toarray() #Dividir el dataset en un conjunto de entrenamiento y de evaluación #Importamos la sublibreria train_test_split from sklearn.cross_validation import train_test_split x_train, x_test, y_train, y_test = train_test_split(x,y, test_size= 0.2, random_state=0) #Escalado de variables from sklearn.preprocessing import StandardScaler sc_x = StandardScaler() x_train = sc_x.fit_transform(x_train) x_test = sc_x.transform(x_test)
# [카카오] 문자열 압축 INF = 987654321 def solution(s): if len(s) == 1: return 1 ret = INF for jump in range(1, len(s) // 2 + 1): temp = [] for i in range(0, len(s), jump): temp.append(s[i:i + jump]) cnt = 1 prev = temp[0] string = "" for i in range(1, len(temp)): if prev == temp[i]: cnt += 1 else: string += prev if cnt == 1 else str(cnt) + prev prev = temp[i] cnt = 1 string += prev if cnt == 1 else str(cnt) + prev ret = min(ret, len(string)) return ret if __name__ == "__main__": s = "a" print(solution(s))
from collections import defaultdict def part1and2(): heightmap = [] with open("../input/09.txt") as f: for line in f: heightmap.append(list(map(int, line.strip()))) n = len(heightmap) m = len(heightmap[0]) risk = 0 heightmap_for_lazy_people = defaultdict(lambda: 10) for i in range(n): for j in range(m): heightmap_for_lazy_people[(i, j)] = heightmap[i][j] low_points = [] for i in range(n): for j in range(m): if ( heightmap[i][j] < heightmap_for_lazy_people[(i, j - 1)] and heightmap[i][j] < heightmap_for_lazy_people[(i, j + 1)] and heightmap[i][j] < heightmap_for_lazy_people[(i - 1, j)] and heightmap[i][j] < heightmap_for_lazy_people[(i + 1, j)] ): risk += heightmap[i][j] + 1 low_points.append((i, j)) print(risk) sizes = [] for x, y in low_points: size = 0 queue = [(x, y)] visited = set() while queue: i, j = queue.pop(0) if (i, j) in visited: continue if heightmap_for_lazy_people[(i, j)] > 8: continue visited.add((i, j)) size += 1 queue.append((i, j - 1)) queue.append((i, j + 1)) queue.append((i - 1, j)) queue.append((i + 1, j)) sizes.append(size) sizes.sort(reverse=True) print(sizes[0] * sizes[1] * sizes[2]) part1and2()
import numpy as np import numbers import scipy.spatial.distance as spdist # Copied from https://python-future.org/_modules/future/utils.html#old_div def old_div(a, b): """ DEPRECATED: import ``old_div`` from ``past.utils`` instead. Equivalent to ``a / b`` on Python 2 without ``from __future__ import division``. TODO: generalize this to other objects (like arrays etc.) """ if isinstance(a, numbers.Integral) and isinstance(b, numbers.Integral): return a // b else: return a / b # Taken from PyGPs source code. # Written by Marion Neumann, Daniel Marthaler, Shan Huang, Kristian Kersting # Source: https://github.com/marionmari/pyGPs/blob/master/pyGPs/Core/cov.py def init_sm_hyper(x, y, Q): """ Initialize hyperparameters for the spectral-mixture kernel. Weights are all set to be uniformly distributed, means are given by a random sample from a uniform distribution scaled by the Nyquist frequency, and variances are given by a random sample from a uniform distribution scaled by the max distance. """ x = np.atleast_2d(x) y = np.atleast_2d(y) (n, D) = x.shape w = np.zeros(Q) m = np.zeros((D, Q)) s = np.zeros((D, Q)) w[:] = old_div(np.std(y), Q) hypinit = np.zeros(Q + 2 * D * Q) for i in range(D): # Calculate distances xslice = np.atleast_2d(x[:, i]).T d2 = spdist.cdist(xslice, xslice, 'sqeuclidean') if n > 1: d2[d2 == 0] = d2[0, 1] else: d2[d2 == 0] = 1 minshift = np.min(np.min(np.sqrt(d2))) nyquist = old_div(0.5, minshift) m[i, :] = nyquist * np.random.ranf((1, Q)) maxshift = np.max(np.max(np.sqrt(d2))) s[i, :] = old_div(1., np.abs(maxshift * np.random.ranf((1, Q)))) hypinit[:Q] = w hypinit[Q + np.arange(0, Q * D)] = np.squeeze(m[:].T) hypinit[Q + Q * D + np.arange(0, Q * D)] = np.squeeze(s[:].T) return list(hypinit) # Written by Srikanth Gadicherla https://github.com/imsrgadich # Source: https://github.com/imsrgadich/gprsm/blob/master/gprsm/spectralmixture.py def init_sm_hyper_v2(train_x, train_y, num_mixtures): """ For initialization of the parameters for the Spectral Mixture Kernel. :param train_x: input data :param train_y: target data :param num_mixtures: number of mixtures :return: param_name dimensions ---------- ---------- mixture weights| num_mixtures x 1 mixture means | num_mixtures x input_dim mixture scales | input_dim x num_mixtures """ assert isinstance(num_mixtures, int) assert train_x.shape[0] == train_y.shape[0] input_dim = np.shape(train_x)[1] # type: int if np.size(train_x.shape) == 1: train_x = np.expand_dims(train_x ,-1) if np.size(train_x.shape) == 2: train_x = np.expand_dims(train_x ,0) train_x_sort = np.copy(train_x) train_x_sort.sort(axis=1) max_dist = np.squeeze(train_x_sort[: ,-1, :] - train_x_sort[: ,0, :]) min_dist_sort = np.squeeze(np.abs(train_x_sort[: ,1:, :] - train_x_sort[: ,:-1, :])) min_dist = np.zeros([input_dim] ,dtype=float) # min of each data column could be zero. Hence, picking minimum which is not zero for ind in np.arange(input_dim): try: min_dist[ind] = min_dist_sort[np.amin(np.where(min_dist_sort[:,ind] > 0), axis=1), ind] except: min_dist[ind] = min_dist_sort[np.amin(np.where(min_dist_sort > 0), axis=1)] # for random restarts during batch processing. We need to initialize at every # batch. Lock the seed here. seed= np.random.randint(low=1 ,high=2**31) np.random.seed(seed) # Inverse of lengthscales should be drawn from truncated Gaussian |N(0, max_dist^2)| # dim: Q x D # mixture_scales = tf.multiply(,tf.cast(max_dist,dtype=tf.float32)**(-1) mixture_scales = (np.multiply(np.abs(np.random.randn(num_mixtures,input_dim)), np.expand_dims(max_dist ,axis=0)))**(-1) # Draw means from Unif(0, 0.5 / minimum distance between two points), dim: Q x D # the nyquist is half of maximum frequency. TODO nyquist = np.divide(0.5,min_dist) mixture_means = np.multiply(np.random.rand(num_mixtures,input_dim),\ np.expand_dims(nyquist,0)) mixture_means[0,:] = 0 # Mixture weights should be roughly the std of the y values divided by # the number of mixtures # dim: 1 x Q mixture_weights= np.divide(np.std(train_y,axis=0),num_mixtures)*np.ones(num_mixtures) init_hyper = np.zeros(num_mixtures*3) init_hyper[0:num_mixtures] = np.squeeze(np.asarray(mixture_weights)) init_hyper[num_mixtures:num_mixtures*2] = np.squeeze(np.asarray(mixture_means)) init_hyper[num_mixtures*2:num_mixtures*3] = np.squeeze(np.asarray(mixture_scales.T)) return init_hyper
# -*- coding: utf-8 -*- """ heka tcp client(NetworkInput) python - hekad - can't connect to hekad/hekad not start: [Errno 10061] No connection could be made because the target machine actively refused it save data in redis/logfile when no connection? """ import logbook import socket import gevent import toml logbook.set_datetime_format("local") logger = logbook.Logger('hekac') #log = logbook.FileHandler('heka_tcp.log') log = logbook.RotatingFileHandler('heka_tcp.log', max_size=1024, backup_count=5) log.push_application() def get_conf(conf_fn): """ get configuration from .toml""" with open(conf_fn) as conf_fh: conf = toml.loads(conf_fh.read()) #print(config) return conf class SocketError(Exception): """ heka not started or wrong port""" pass class HekaTCPClient(object): """ tcp input """ def __init__(self): """ init """ self.sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) self.conf = get_conf("hekac.toml") self.host = self.conf["client"]["host"] self.port = self.conf["client"]["port"] def connect(self): """ connect """ try: self.sock.connect((self.host, self.port)) print "connected" except Exception as err: print dir(err) print err.errno errmsg = "target: %s:%s, %s" % (self.host, self.port, err.strerror) logger.error(errmsg*3) raise SocketError(errmsg) def send(self, i): """ send """ message = "%s" % (i) #'go|cc\nd,ds\nd d,vv|od' messlen = self.sock.send(message*5)#, 0 print messlen #print received #print sock.recv(1024) def close(self): """ close socket """ self.sock.close() def main(): """ main """ #time.sleep(1) logger.debug("heka tcp") client = HekaTCPClient() client.connect() for i in xrange(1, 3333): client.send(i) logger.debug("send") logger.debug("=="*20) logger.info(i) gevent.sleep(1) client.close() if __name__ == '__main__': main()
import pytest import numpy as np from numpy.testing import assert_allclose from ..viz import plot_qini_curve, plot_uplift_curve, plot_uplift_preds, plot_uplift_by_percentile from ..metrics import qini_curve, perfect_qini_curve, uplift_curve, perfect_uplift_curve from ..viz import UpliftCurveDisplay from sklearn.tree import DecisionTreeClassifier from ..models import SoloModel import matplotlib as mpl def make_predictions(): X_train, y_train, treat_train = (np.array([[5.1, 3.5, 1.4, 0.2], [4.9, 3.0, 1.4, 0.2], [4.7, 3.2, 1.3, 0.2]]), np.array([0.0, 0.0, 1.0]), np.array([0.0, 1.0, 1.0])) X_val, y_val, treat_val = (np.array([[5.1, 3.4, 1.5, 0.2], [5.0, 3.5, 1.3, 0.3], [4.5, 2.3, 1.3, 0.3]]), np.array([0.0, 1.0, 0.0]), np.array([0.0, 1.0, 1.0])) model = DecisionTreeClassifier(random_state=0) s_model = SoloModel(model) s_model = s_model.fit(X_train, y_train, treat_train) uplift_preds = s_model.predict(X_val) return y_val, uplift_preds, treat_val @pytest.mark.parametrize("random", [True, False]) @pytest.mark.parametrize("perfect", [True, False]) @pytest.mark.parametrize("negative_effect", [True, False]) def test_plot_qini_curve(random, perfect, negative_effect): y_true, uplift, treatment = make_predictions() viz = plot_qini_curve(y_true, uplift, treatment, random, perfect, negative_effect) x_actual, y_actual = qini_curve(y_true, uplift, treatment) assert_allclose(viz.x_actual, x_actual) assert_allclose(viz.y_actual, y_actual) if random: x_baseline, y_baseline = x_actual, x_actual * y_actual[-1] / len(y_true) assert_allclose(viz.x_baseline, x_baseline) assert_allclose(viz.y_baseline, y_baseline) if perfect: x_perfect, y_perfect = perfect_qini_curve( y_true, treatment, negative_effect) assert_allclose(viz.x_perfect, x_perfect) assert_allclose(viz.y_perfect, y_perfect) import matplotlib as mpl assert isinstance(viz.line_, mpl.lines.Line2D) assert isinstance(viz.ax_, mpl.axes.Axes) assert isinstance(viz.figure_, mpl.figure.Figure) @pytest.mark.parametrize( "qini_auc, estimator_name, expected_label", [ (0.61, None, "plot_qini_curve = 0.61"), (0.61, "first", "first (plot_qini_curve = 0.61)") ] ) def test_default_labels(qini_auc, estimator_name, expected_label): x_actual = np.array([0, 1, 2, 3, 5, 6]) y_actual = np.array([0.0, 1.0, 2.0, 3.0, 2.5, 1.5]) disp = UpliftCurveDisplay( x_actual=x_actual, y_actual=y_actual, estimator_name=estimator_name ).plot(qini_auc, title="plot_qini_curve") assert disp.line_.get_label() == expected_label from ..viz import plot_uplift_curve from ..metrics import uplift_curve, perfect_uplift_curve @pytest.mark.parametrize("random", [True, False]) @pytest.mark.parametrize("perfect", [True, False]) def test_plot_uplift_curve(random, perfect): y_true, uplift, treatment = make_predictions() viz = plot_uplift_curve(y_true, uplift, treatment, random, perfect) x_actual, y_actual = uplift_curve(y_true, uplift, treatment) assert_allclose(viz.x_actual, x_actual) assert_allclose(viz.y_actual, y_actual) if random: x_baseline, y_baseline = x_actual, x_actual * y_actual[-1] / len(y_true) assert_allclose(viz.x_baseline, x_baseline) assert_allclose(viz.y_baseline, y_baseline) if perfect: x_perfect, y_perfect = perfect_uplift_curve( y_true, treatment) assert_allclose(viz.x_perfect, x_perfect) assert_allclose(viz.y_perfect, y_perfect) import matplotlib as mpl assert isinstance(viz.line_, mpl.lines.Line2D) assert isinstance(viz.ax_, mpl.axes.Axes) assert isinstance(viz.figure_, mpl.figure.Figure) @pytest.mark.parametrize( "uplift_auc, estimator_name, expected_label", [ (0.75, None, "plot_uplift_curve = 0.75"), (0.75, "first", "first (plot_uplift_curve = 0.75)") ] ) def test_default_labels(uplift_auc, estimator_name, expected_label): x_actual = np.array([0, 1, 2, 3, 5, 6]) y_actual = np.array([0.0, 1.0, 2.0, 3.0, 2.5, 1.5]) disp = UpliftCurveDisplay( x_actual=x_actual, y_actual=y_actual, estimator_name=estimator_name ).plot(uplift_auc, title="plot_uplift_curve") assert disp.line_.get_label() == expected_label def test_plot_uplift_preds(): trmnt_preds = np.array([1,1,0,1,1,1]) ctrl_preds = np.array([0,1,0,1,0,1]) viz = plot_uplift_preds(trmnt_preds, ctrl_preds, log=True, bins=5) import matplotlib as mpl assert isinstance(viz[0], mpl.axes.Axes) assert isinstance(viz[1], mpl.axes.Axes) assert isinstance(viz[2], mpl.axes.Axes) def test_plot_uplift_by_percentile(): y_true, uplift, treatment = make_predictions() viz = plot_uplift_by_percentile(y_true, uplift, treatment, strategy='overall',kind='line', bins=1, string_percentiles=True) assert viz.get_title() == "Uplift by percentile\nweighted average uplift = 0.5000" assert viz.get_xlabel() == "Percentile" assert viz.get_ylabel() == "Uplift = treatment response rate - control response rate" assert isinstance(viz, mpl.axes.Axes) viz = plot_uplift_by_percentile(y_true, uplift, treatment, strategy='by_group',kind='bar', bins=1, string_percentiles=False) assert viz[0].get_title() == "Uplift by percentile\nweighted average uplift = 0.5000" assert viz[1].get_xlabel() == "Percentile" assert viz[1].get_title() == "Response rate by percentile" assert isinstance(viz[0], mpl.axes.Axes) assert isinstance(viz[1], mpl.axes.Axes) def plot_treatment_balance_curve(): y_true, uplift, treatment = make_predictions() viz = plot_treatment_balance_curve(uplift, treatment, winsize=0.5) assert viz.get_title() == "Treatment balance curve" assert viz.get_xlabel() == "Percentage targeted" assert viz.get_ylabel() == "Balance: treatment / (treatment + control)" assert isinstance(viz, mpl.axes.Axes)
import os import random vips_path = "D:/Downloads/vips-dev-w64-all-8.9.1/vips-dev-8.9/bin" os.environ['PATH'] = vips_path + ';' + os.environ['PATH'] from pyvips import Image padding_size = 20 base_path = "./animations/r1586109741" animation_path = "./animations/collage" class Board: def __init__(self, name): self.name = name self.path = f"{base_path}/{name}" self.files = [name for name in os.listdir(self.path) if os.path.isfile(os.path.join(self.path, name))] self.files.sort(key=lambda f: int(f.split(".")[0])) self.images = [Image.new_from_file(f"{self.path}/{file}", access='sequential') for file in self.files] self.index = 0 def get_current(self): return self.images[min(self.index, len(self.images) - 1)] def get_next(self): self.index += 1 return self.get_current() def is_finished(self): return self.index >= len(self.images) def combine(): os.makedirs(animation_path, exist_ok=True) paths = [path for path in os.listdir(base_path)] frame = 0 boards = [Board(path) for path in paths] while not all(board.is_finished() for board in boards): print("making frame", frame) images = [board.get_next() if random.random() < 0.1 else board.get_current() for board in boards] out = Image.arrayjoin(images, across=12, shim=padding_size) out.write_to_file(f"{animation_path}/{frame}.png") frame += 1 if __name__ == '__main__': combine()
import configparser import time import random from crawling.crawler.Naver_BLOGandCAFE import naver from crawling.crawler.Daum_BLOGandCAFE import daum from crawling.openApi.YOUTUBE_comment import request_youtube, get_video_comments import pandas as pd from selenium import webdriver from selenium.webdriver.chrome.options import Options from sqlalchemy import create_engine def BLOG_Crawler(query): config = configparser.ConfigParser() config.read('../config.ini', encoding='utf-8') config.sections() options = Options() query = query options.add_argument( 'user-agent=' + "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/95.0.4638.54 Safari/537.36") options.add_argument('headless') options.add_argument('--window-size= 360, 360') # 실행되는 브라우저 크기를 지정할 수 있습니다. options.add_argument('--blink-settings=imagesEnabled=false') # 브라우저에서 이미지 로딩을 하지 않습니다. path = '/home/drsong/download/chromedriver' # linux server driver = webdriver.Chrome(executable_path=path, options=options) db_connection_str = 'mysql+pymysql://saso:saso@localhost/DAMDA' db_connection = create_engine(db_connection_str) sql = "SELECT postdate, url, title FROM naver_openApi WHERE query = \'"+query+"\';" df = pd.read_sql(sql, db_connection) url_list = df['url'].values.tolist() for i, url in enumerate(url_list): try: sql = "CREATE TABLE Crawl_blog ( id INT NOT NULL AUTO_INCREMENT, query VARCHAR(45) NULL, url VARCHAR(100) NULL, content TEXT NULL, source VARCHAR(45) NULL, postdate DATETIME NULL, gonggam INT NULL, commentCount INT NULL, PRIMARY KEY (id), UNIQUE INDEX url_UNIQUE (url ASC)) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE utf8mb4_general_ci;" db_connection.execute(sql) print('create table') except: print('', end='') sql = "SELECT count(*) FROM Crawl_blog WHERE url = %s" result = db_connection.execute(sql, (url)) result = (result.first()[0]) if result > 0: print(i, ': ', url, ' skip') else: if 'naver' in url: src = 'naver_blog' content, gong, cmt = naver(driver, url) elif 'daum' in url: src = 'daum_blog' content = ('daum') gong = 0 cmt = 0 else: src = 'etc' content = ('기타') gong = 0 cmt = 0 time.sleep(random.uniform(2, 4)) sql = "INSERT INTO Crawl_blog (query, url, content, source, postdate, gonggam, commentCount) VALUES (%s, %s, %s, %s, %s, %s, %s)" db_connection.execute(sql, (query, url, content, src, df['postdate'][i], gong, cmt)) print(i, ': ', url, ' done') def YOUTUBE_Cralwer(query): # list_youtube, urls = request_youtube(query) # df_b = pd.DataFrame(list_youtube, columns=['keyword', 'title', 'channel', 'videoId']) # df_b['source'] = '유튜브' # df_b.to_excel('crawling/crawler/Crawling_Result/URL_DATA/' + query + '_Youtube_Comment' + '.xlsx', index=True, # index_label="id") # empty_frame = pd.DataFrame(columns=['url', 'keyword', 'content', 'author', 'postdate', 'source', 'num_likes']) # empty_frame.to_csv('crawling/crawler/Crawling_Result/CONTENT_DATA/' + query + '_Youtube_Comment' + '.csv', index=True, # index_label="id") content_youtube = get_video_comments(query)
from settings import *
# Generated from D:/AnacondaProjects/iust_compilers_teaching/grammars\AssignmentStatement1.g4 by ANTLR 4.8 from antlr4 import * from io import StringIO from typing.io import TextIO import sys def serializedATN(): with StringIO() as buf: buf.write("\3\u608b\ua72a\u8133\ub9ed\u417c\u3be7\u7786\u5964\2\20") buf.write("u\b\1\4\2\t\2\4\3\t\3\4\4\t\4\4\5\t\5\4\6\t\6\4\7\t\7") buf.write("\4\b\t\b\4\t\t\t\4\n\t\n\4\13\t\13\4\f\t\f\4\r\t\r\4\16") buf.write("\t\16\4\17\t\17\4\20\t\20\4\21\t\21\4\22\t\22\3\2\3\2") buf.write("\3\2\3\3\3\3\3\4\3\4\3\5\3\5\3\6\3\6\3\7\3\7\3\b\3\b\3") buf.write("\t\3\t\3\t\7\t8\n\t\f\t\16\t;\13\t\3\n\6\n>\n\n\r\n\16") buf.write("\n?\3\13\6\13C\n\13\r\13\16\13D\3\13\3\13\7\13I\n\13\f") buf.write("\13\16\13L\13\13\3\13\3\13\6\13P\n\13\r\13\16\13Q\5\13") buf.write("T\n\13\3\f\3\f\3\f\7\fY\n\f\f\f\16\f\\\13\f\3\r\3\r\3") buf.write("\16\3\16\3\17\3\17\3\17\3\17\5\17f\n\17\3\20\6\20i\n\20") buf.write("\r\20\16\20j\3\20\3\20\3\21\3\21\3\22\3\22\3\22\5\22t") buf.write("\n\22\3Z\2\23\3\3\5\4\7\5\t\6\13\7\r\b\17\t\21\n\23\13") buf.write("\25\f\27\r\31\2\33\2\35\2\37\16!\17#\20\3\2\5\3\2\62;") buf.write("\4\2C\\c|\5\2\13\13\17\17\"\"\2}\2\3\3\2\2\2\2\5\3\2\2") buf.write("\2\2\7\3\2\2\2\2\t\3\2\2\2\2\13\3\2\2\2\2\r\3\2\2\2\2") buf.write("\17\3\2\2\2\2\21\3\2\2\2\2\23\3\2\2\2\2\25\3\2\2\2\2\27") buf.write("\3\2\2\2\2\37\3\2\2\2\2!\3\2\2\2\2#\3\2\2\2\3%\3\2\2\2") buf.write("\5(\3\2\2\2\7*\3\2\2\2\t,\3\2\2\2\13.\3\2\2\2\r\60\3\2") buf.write("\2\2\17\62\3\2\2\2\21\64\3\2\2\2\23=\3\2\2\2\25S\3\2\2") buf.write("\2\27U\3\2\2\2\31]\3\2\2\2\33_\3\2\2\2\35e\3\2\2\2\37") buf.write("h\3\2\2\2!n\3\2\2\2#s\3\2\2\2%&\7<\2\2&\'\7?\2\2\'\4\3") buf.write("\2\2\2()\7-\2\2)\6\3\2\2\2*+\7/\2\2+\b\3\2\2\2,-\7,\2") buf.write("\2-\n\3\2\2\2./\7\61\2\2/\f\3\2\2\2\60\61\7*\2\2\61\16") buf.write("\3\2\2\2\62\63\7+\2\2\63\20\3\2\2\2\649\5\33\16\2\658") buf.write("\5\33\16\2\668\5\31\r\2\67\65\3\2\2\2\67\66\3\2\2\28;") buf.write("\3\2\2\29\67\3\2\2\29:\3\2\2\2:\22\3\2\2\2;9\3\2\2\2<") buf.write(">\5\31\r\2=<\3\2\2\2>?\3\2\2\2?=\3\2\2\2?@\3\2\2\2@\24") buf.write("\3\2\2\2AC\5\31\r\2BA\3\2\2\2CD\3\2\2\2DB\3\2\2\2DE\3") buf.write("\2\2\2EF\3\2\2\2FJ\7\60\2\2GI\5\31\r\2HG\3\2\2\2IL\3\2") buf.write("\2\2JH\3\2\2\2JK\3\2\2\2KT\3\2\2\2LJ\3\2\2\2MO\7\60\2") buf.write("\2NP\5\31\r\2ON\3\2\2\2PQ\3\2\2\2QO\3\2\2\2QR\3\2\2\2") buf.write("RT\3\2\2\2SB\3\2\2\2SM\3\2\2\2T\26\3\2\2\2UZ\7$\2\2VY") buf.write("\5\35\17\2WY\13\2\2\2XV\3\2\2\2XW\3\2\2\2Y\\\3\2\2\2Z") buf.write("[\3\2\2\2ZX\3\2\2\2[\30\3\2\2\2\\Z\3\2\2\2]^\t\2\2\2^") buf.write("\32\3\2\2\2_`\t\3\2\2`\34\3\2\2\2ab\7^\2\2bf\7$\2\2cd") buf.write("\7^\2\2df\7^\2\2ea\3\2\2\2ec\3\2\2\2f\36\3\2\2\2gi\t\4") buf.write("\2\2hg\3\2\2\2ij\3\2\2\2jh\3\2\2\2jk\3\2\2\2kl\3\2\2\2") buf.write("lm\b\20\2\2m \3\2\2\2no\7\f\2\2o\"\3\2\2\2pq\7>\2\2qt") buf.write("\7?\2\2rt\7>\2\2sp\3\2\2\2sr\3\2\2\2t$\3\2\2\2\17\2\67") buf.write("9?DJQSXZejs\3\b\2\2") return buf.getvalue() class AssignmentStatement1Lexer(Lexer): atn = ATNDeserializer().deserialize(serializedATN()) decisionsToDFA = [ DFA(ds, i) for i, ds in enumerate(atn.decisionToState) ] T__0 = 1 T__1 = 2 T__2 = 3 T__3 = 4 T__4 = 5 T__5 = 6 T__6 = 7 Id = 8 INT = 9 FLOAT = 10 String = 11 WS = 12 NEWLINE = 13 RELOP = 14 channelNames = [ u"DEFAULT_TOKEN_CHANNEL", u"HIDDEN" ] modeNames = [ "DEFAULT_MODE" ] literalNames = [ "<INVALID>", "':='", "'+'", "'-'", "'*'", "'/'", "'('", "')'", "'\n'" ] symbolicNames = [ "<INVALID>", "Id", "INT", "FLOAT", "String", "WS", "NEWLINE", "RELOP" ] ruleNames = [ "T__0", "T__1", "T__2", "T__3", "T__4", "T__5", "T__6", "Id", "INT", "FLOAT", "String", "DIGIT", "LETTER", "ESC", "WS", "NEWLINE", "RELOP" ] grammarFileName = "AssignmentStatement1.g4" def __init__(self, input=None, output:TextIO = sys.stdout): super().__init__(input, output) self.checkVersion("4.8") self._interp = LexerATNSimulator(self, self.atn, self.decisionsToDFA, PredictionContextCache()) self._actions = None self._predicates = None
from distutils.core import setup, Extension setup(name='c_doc2vecc', version='1.0', ext_modules=[Extension('c_doc2vecc', ['doc2vecc_pymodule.c'])])
import logging class PFilter(logging.Filter): def __init__(self, func): self.func = func def filter(self,record): return self.func(record)
try: import emoji except: emoji = None import click import os import json from ..default import EOS, SILENCE_FILE class Silencer(object): def __init__(self): self.silence_file = os.path.join(EOS, SILENCE_FILE) if not os.path.exists(self.silence_file): self.speak() def is_silence(self): with open(self.silence_file, "r") as f: d = json.load(f) return d["silence"] def speak(self): with open(self.silence_file, "w") as f: json.dump({"silence": False}, f, indent=4) def silence(self): with open(self.silence_file, "w") as f: json.dump({"silence": True}, f, indent=4) def echo(text, **styles): silencer = Silencer() if silencer.is_silence(): return if emoji is not None: text = emoji.emojize(text) return click.echo(click.style(text, **styles))
from base64 import b64encode from decimal import Decimal from hashlib import sha256 from os import urandom import re import requests import json import urllib.request from django.contrib.auth import authenticate, login from django.contrib.auth.decorators import login_required from django.contrib.auth.forms import UserCreationForm from django.contrib.auth.models import User from django.contrib.sites.shortcuts import get_current_site from django.core.mail import EmailMultiAlternatives, EmailMessage, mail_admins from django.core.urlresolvers import reverse from django.db import IntegrityError from django.contrib.admin.views.decorators import staff_member_required from django.http import JsonResponse, HttpResponse, HttpResponseBadRequest, Http404 from django.shortcuts import render, get_object_or_404, redirect from django.template.loader import render_to_string from bs4 import BeautifulSoup from .forms import MoneyForm, MagicAuthForm, TagAuthForm, ProductForm from .models import Account, Product, Category, Transaction, UserTag, ProductTag from .backends import add_tag_to_user from namubufferi.settings import DEBUG @staff_member_required def admin_inventory(request): """ View to handle stocking up inventory, adding products... """ context = dict(product_form=ProductForm(), products=Product.objects.all(), categories=Category.objects.all(), transactions=request.user.account.transaction_set.all() ) return render(request, 'namubufferiapp/admin_handleinventory.html', context) @staff_member_required def admin_overview(request): """ Most important things at a glance for admins """ positive_users = [x for x in User.objects.all() if x.account.balance >= 0] negative_users = [x for x in User.objects.all() if x.account.balance < 0] positive_balance = Decimal(0) for u in positive_users: positive_balance += u.account.balance negative_balance = Decimal(0) for u in negative_users: negative_balance += -u.account.balance context = dict(products=Product.objects.all(), positive_users=positive_users, positive_balance=positive_balance, negative_users=negative_users, negative_balance=negative_balance, overall_balance=positive_balance-negative_balance, ) return render(request, 'namubufferiapp/admin_overview.html', context) @staff_member_required def product_update(request): """ Update or create product """ if request.method == 'POST': product_form = ProductForm(request.POST) if product_form.is_valid(): product, created = Product.objects.get_or_create( name=product_form.cleaned_data['name'], defaults={'category':product_form.cleaned_data['category'],}, ) product.category = product_form.cleaned_data['category'] product.price = product_form.cleaned_data['price'] product.inventory = product_form.cleaned_data['inventory'] product.hidden = product_form.cleaned_data['hidden'] product.save() bcode = product_form.cleaned_data['barcode'] if bcode is not None: ptag, ptagcreated = ProductTag.objects.get_or_create(uid=bcode, defaults={'product':product,}) ptag.product = product ptag.save() if created: return HttpResponse("Product created", status=201) else: return HttpResponse("Product updated", status=200) else: return HttpResponseBadRequest('{"errors":' + product_form.errors.as_json() + '}', content_type="application/json") else: raise Http404() @staff_member_required def product_add_barcode(request, prod_id, barcode): if request.method == 'PUT': try: product = Product.objects.get(pk=prod_id) ptag, created = ProductTag.objects.get_or_create(uid=barcode, defaults={'product':product,},) ptag.product = product ptag.save() if created: return HttpResponse("Barcode created", status=201) else: return HttpResponse("Barcode reassigned", status=200) except Product.DoesNotExist: return HttpResponse("Product not found", status=400) else: raise Http404() def list_barcodes(request): barcodes = dict() for bcode in ProductTag.objects.all(): barcodes[bcode.uid] = bcode.product.pk return JsonResponse(barcodes) def product_from_outpan(barcode): """ Try to guess product name from barcode using outpan.com False if no name was found """ try: from namubufferi.settings import OUTPAN_API_KEY result = urllib.request.urlopen("https://api.outpan.com/v2/products/{}?apikey={}".format(barcode, OUTPAN_API_KEY)) if result.getcode() != 200: return False name = json.loads(result.read().decode())["name"] if name is None: return False else: return name except: return False return False def product_from_foodie(barcode): """ Try to guess product name from barcode using foodie.fi False if no name was found. Use of this might not be ok by EULA, but shouldn't really hurt anybody """ try: result = urllib.request.urlopen("https://www.foodie.fi/entry/{}".format(barcode)) if result.getcode() != 200: return False soup = BeautifulSoup(result.read().decode(), "html.parser") name = soup.find(id="product-name").get_text() return name except: return False return False @staff_member_required def discover_barcode(request, barcode): """ Try to guess product details from its barcode """ product = dict() product["name"] = product_from_outpan(barcode) if product["name"] is False: product["name"] = product_from_foodie(barcode) if product["name"] is False: raise Http404() return JsonResponse(product) @login_required(redirect_field_name=None) def home(request): context = dict(money_form=MoneyForm(), products=Product.objects.all(), categories=Category.objects.all(), transactions=request.user.account.transaction_set.all() ) return render(request, 'namubufferiapp/base_home.html', context) def home_anonymous(request): """ Buying anonymously means that we only update product inventory without making transaction for anyone """ context = dict(products=Product.objects.all(), categories=Category.objects.all(), ) return render(request, 'namubufferiapp/base_homeanonymous.html', context) def buy(request): if request.method == 'POST': try: product_key = int(request.POST['product_key']) except ValueError: # This shouldn't happen, but it did. How? payload = {'balance': Decimal(0), 'transactionkey': None, 'modalMessage': "Tried to buy a product that doesn't exist. How did this happen?", 'message': render_to_string('namubufferiapp/message.html', {'message': "Tried to buy a product that doesn't exist. How did this happen?"}), } mail_admins( "Buying without correct product", "User {} tried to buy product with id {}".format(request.user, request.POST['product_key']), fail_silently=True ) return JsonResponse(payload) product = get_object_or_404(Product, pk=product_key) price = product.price new_transaction = Transaction() new_transaction.amount = -price new_transaction.product = product if request.user.is_authenticated: new_transaction.customer = request.user.account new_transaction.save() product.make_sale() payload = {'balance': Decimal(0), 'transactionkey': new_transaction.pk, 'modalMessage': "Purchase Successful", 'message': render_to_string('namubufferiapp/message.html', {'message': "Purchase Successful"}), } if request.user.is_authenticated: payload['balance'] = request.user.account.balance if request.user.account.balance < 0: email = EmailMessage( subject='Your balance notification', body='Your balance is NEGATIVE: {}e'.format(request.user.account.balance), to=[request.user.email], ) email.send(fail_silently=True) return JsonResponse(payload) else: raise Http404() def tos(request): if request.method == 'POST': accept = request.POST["accept"] == "true" if request.user.is_authenticated: request.user.account.tos_accepted = accept request.user.account.save() payload = {'tos_accepted': request.user.account.tos_accepted} return JsonResponse(payload) @login_required def deposit(request): if request.method == 'POST': money_form = MoneyForm(request.POST) if money_form.is_valid(): euros = request.POST['euros'] cents = request.POST['cents'] amount = Decimal(euros) + Decimal(cents)/100 new_transaction = Transaction() new_transaction.customer = request.user.account new_transaction.amount = amount new_transaction.save() email = EmailMessage( subject='Your balance notification', body='Your balance is: {}e'.format(request.user.account.balance), to=[request.user.email], ) email.send(fail_silently=True) return JsonResponse({'balance': request.user.account.balance, 'transactionkey': new_transaction.pk, 'modalMessage': "Deposit Successful", 'message': render_to_string('namubufferiapp/message.html', {'message': "Deposit Successful", 'transaction': new_transaction, }), }) else: # https://docs.djangoproject.com/en/1.10/ref/forms/api/#django.forms.Form.errors.as_json # https://docs.djangoproject.com/ja/1.9/ref/request-response/#jsonresponse-objects #return JsonResponse({"errors": + money_form.errors.as_json()}) # FTS... return HttpResponseBadRequest('{"errors":' + money_form.errors.as_json() + '}', content_type="application/json") else: raise Http404() @login_required def transaction_history(request): return JsonResponse({'transactionhistory': render_to_string('namubufferiapp/transactionhistory.html', {'transactions': request.user.account.transaction_set.all()}) }) @login_required def receipt(request): if request.method == 'POST': transaction = get_object_or_404(request.user.account.transaction_set.all(), pk=request.POST['transaction_key']) receipt = {'customer': transaction.customer.user.username, 'amount': transaction.amount, 'timestamp': transaction.timestamp, 'transactionkey': transaction.pk, 'canceled': transaction.canceled, } try: receipt['product'] = transaction.product.name except: receipt['product'] = 'Deposit' return JsonResponse({'receipt': receipt}) else: raise Http404() @login_required def cancel_transaction(request): if request.method == 'POST': transaction = get_object_or_404(request.user.account.transaction_set.all(), pk=request.POST['transaction_key']) if (request.user == transaction.customer.user and not transaction.canceled): transaction.cancel() return JsonResponse({'balance': request.user.account.balance, 'modalMessage': "Transaction Canceled", 'message': render_to_string('namubufferiapp/message.html', {'message': "Transaction Canceled", 'transaction': transaction}) }) else: return HttpResponse(status=204) else: raise Http404() def magic_auth(request, magic_token=None): """ """ if request.method == 'POST': # Validate form magic_auth_form = MagicAuthForm(request.POST) if magic_auth_form.is_valid(): # Try to find the user or create a new one try: user = User.objects.get(email=magic_auth_form.cleaned_data['email'].lower()) except User.DoesNotExist: email = magic_auth_form.cleaned_data['email'].lower() m = re.match("^(.*)@aalto.fi$", email) if m: username = m.group(1) user = User.objects.create_user(username, email=email, password=b64encode(sha256(urandom(56)).digest())) else: return JsonResponse({'modalMessage': 'Email not found or its not aalto email.'}) user.account.update_magic_token() current_site = get_current_site(request) # Send mail to user mail = EmailMultiAlternatives( subject="Namubufferi - Login", body=("Hello. Authenticate to Namubufferi using this code. It's valid for 15 minutes.\n" + str(user.account.magic_token)), to=[user.email] ) try: mail.send() print("Mail sent") except: print("Mail not sent") if DEBUG: return JsonResponse({'modalMessage': '<br>login with ' + str(user.account.magic_token) + ' (Shown when DEBUG)'}) else: return JsonResponse({'modalMessage': 'Check your email for the token.'}) else: return HttpResponse('{"errors":' + magic_auth_form.errors.as_json() + '}', content_type="application/json") else: user = authenticate(magic_token=str(magic_token)) if user: login(request, user) return home(request) else: return redirect('/') def tag_auth(request): """ Login by tag """ if request.method == 'POST': # Validate form tag_auth_form = TagAuthForm(request.POST) if tag_auth_form.is_valid(): tag_uid = tag_auth_form.cleaned_data['tag_uid'] user = authenticate(tagKey=tag_uid) if user is not None: login(request, user) return JsonResponse({'redirect': '/'}) else: return JsonResponse({'errors':{'tag_uid': [{'message':'Tag {} not found'.format(tag_uid), 'code':'tagnotfound'}],}, 'modalMessage':'Tag {} not found!'.format(tag_uid), }) else: return HttpResponseBadRequest('{"errors":' + tag_auth_form.errors.as_json() + '}', content_type="application/json") else: raise Http404() @login_required def tag_list(request): tags = UserTag.objects.filter(user=request.user) return JsonResponse({'taglist': render_to_string('namubufferiapp/taglist.html', {'tags': tags}) }) @login_required def tag_modify(request, uid): if request.method == 'DELETE': try: tag = UserTag.objects.get(uid=uid) if tag.user == request.user: tag.delete() return HttpResponse("Tag deleted", status=200) else: raise Http404("Wrong user") except UserTag.DoesNotExist: raise Http404("Tag does not exist") elif request.method == 'POST': try: tag = add_tag_to_user(request.user, uid) return HttpResponse("Tag created", status=201) except IntegrityError: return HttpResponse("Another tag exists ({})!".format(uid), status=409)
# automatically generated by the FlatBuffers compiler, do not modify # namespace: flattrs_test class NestedUnion(object): NONE = 0 Common1 = 1 nested_NestedJustAString = 2
## Your order, please ## 6 kyu ## https://www.codewars.com/kata/55c45be3b2079eccff00010f def order(sentence): sd = dict() for word in sentence.split(" "): for character in word: if character.isdigit(): sd[word] = int(character) return " ".join(sorted(sd, key=sd.get))
import os import argparse import numpy as np import carla_rllib from carla_rllib.environments.carla_envs.base_env import make_env from carla_rllib.environments.carla_envs.config import BaseConfig from carla_rllib.utils.clean_up import clear_carla from stable_baselines import DDPG from stable_baselines.ddpg.policies import CnnPolicy from stable_baselines.common.vec_env import DummyVecEnv from stable_baselines.ddpg.noise import OrnsteinUhlenbeckActionNoise def run_test(config): """Stable baselines test Mandatory configuration settings: - 'continuous' agent - camera_settings enabled - stable_baselines enabled """ env = None try: # Create Environment env = make_env(config) env = DummyVecEnv([lambda: env]) # Initialize DDPG and start learning n_actions = env.action_space.shape[-1] param_noise = None action_noise = OrnsteinUhlenbeckActionNoise( mean=np.zeros(n_actions), sigma=float(0.5) * np.ones(n_actions)) model = DDPG(CnnPolicy, env, verbose=1, param_noise=param_noise, action_noise=action_noise, random_exploration=0.8) model.learn(total_timesteps=10000) finally: if env: env.close() else: clear_carla(config.host, config.port) print("-----Carla Environment is closed-----") if __name__ == "__main__": argparser = argparse.ArgumentParser( description='CARLA RLLIB ENV') package_path, _ = os.path.split(os.path.abspath(carla_rllib.__file__)) argparser.add_argument( '-c', '--config', metavar='CONFIG', default=os.path.join(package_path + "/config.json"), type=str, help='Path to configuration file (default: root of the package -> carla_rllib)') args = argparser.parse_args() config = BaseConfig(args.config) print("-----Configuration-----") print(config) run_test(config)
#!/usr/bin/env python # coding: utf-8 import os import logging from . import lt_common from .external import tpl_match from .external import mod_tplseq from .external import regexhash _logger = logging.getLogger(__package__) class LTGenImportExternal(lt_common.LTGenStateless): def __init__(self, table, filename, mode, mode_esc, ltmap, head, shuffle=False): super(LTGenImportExternal, self).__init__(table) self._table = table self._fp = filename self._l_tpl = self._load_tpl(self._fp, mode, mode_esc) self._l_regex = [tpl_match.generate_regex(tpl) for tpl in self._l_tpl] if ltmap == "hash": self._rtable = regexhash.RegexHashTable(self._l_tpl, self._l_regex, head) elif ltmap == "table": self._rtable = regexhash.RegexTable(self._l_tpl, self._l_regex) else: raise NotImplementedError if shuffle: self._rtable.shuffle() @staticmethod def _load_tpl(fp, mode, mode_esc): l_tpl = [] if not os.path.exists(fp): errmes = ("log_template_import.def_path" " {0} is invalid".format(fp)) raise ValueError(errmes) with open(fp, 'r') as f: for line in f: if mode == "plain": mes = line.rstrip("\n") elif mode == "ids": line = line.rstrip("\n") mes = line.partition(" ")[2].strip() else: raise ValueError("invalid import_mode {0}".format(mode)) if len(mes) == 0: continue if mode_esc: l_tpl.append(mes) else: l_tpl.append(tpl_match.add_esc_external(mes)) return l_tpl def generate_tpl(self, pline): mes = pline["message"] ret = self._rtable.search(mes) if ret is None: _logger.debug( "No log template found for message : {0}".format(mes)) return None else: tplid, matchobj = ret tpl = self._l_tpl[tplid] new_tpl = mod_tplseq.redefine_tpl(tpl, pline, matchobj=matchobj) return new_tpl #def process_line(self, pline): # mes = pline["message"] # ret = self._rtable.search(mes) # if ret is None: # _logger.debug( # "No log template found for message : {0}".format(mes)) # return None, None # else: # tplid, matchobj = ret # tpl = self._rtable.l_tpl[tplid] # new_tpl = mod_tplseq.redefine_tpl(tpl, pline, self.sym, # matchobj=matchobj) # if self._table.exists(new_tpl): # tid = self._table.get_tid(new_tpl) # return tid, self.state_unchanged # else: # tid = self._table.add(new_tpl) # return tid, self.state_added def init_ltgen_import_ext(conf, table, shuffle, **kwargs): fn = conf.get("log_template_import", "def_path_ext") mode = conf.get("log_template_import", "import_format_ext") if fn == "": fn = conf.get("log_template_import", "def_path") mode_esc = conf.getboolean("log_template_import", "import_format_ext_esc") ltmap = conf.get("log_template_import", "ext_search_method") head = conf.getint("log_template_import", "hash_strlen") return LTGenImportExternal(table, fn, mode, mode_esc, ltmap, head, shuffle)
from .request_util import * from .throttle import Throttle
#!/usr/bin/env python # coding: utf-8 # ## Curate metadata information on platemaps # # For L1000 and Cell Painting data # In[1]: import pathlib import pandas as pd # In[2]: # Step 1: L1000 file = "../L1000/L1000_lvl4_cpd_replicate_datasets/l1000_level4_cpd_replicates.csv.gz" l1000_df = pd.read_csv(file) print(l1000_df.shape) l1000_df.head(2) # In[3]: # Extract out metadata information necessary for analysis metadata_plate_df = pd.DataFrame( [pd.Series(x) for x in l1000_df.replicate_id.str.split(":")], ) metadata_plate_df.columns = ["plate", "well_position"] metadata_plate_df = metadata_plate_df.assign( plate_map=metadata_plate_df.plate.str[:17] ) # Make sure each plate only has one of the same well (no duplicates) assert ( metadata_plate_df.drop_duplicates(subset=["plate", "well_position"]).shape == metadata_plate_df.shape ) l1000_meta_cols = [ "plate", "well_position", "plate_map", "replicate_id", "dose", "Metadata_broad_sample", "pert_iname", "moa" ] l1000_metadata_df = pd.concat([metadata_plate_df, l1000_df], axis="columns").loc[:, l1000_meta_cols] l1000_metadata_df.pert_iname = l1000_metadata_df.pert_iname.str.lower() l1000_metadata_df.moa = l1000_metadata_df.moa.str.lower() # Output to file file = pathlib.Path("data/L1000_platemap_metadata.tsv.gz") l1000_metadata_df.to_csv(file, sep="\t", index=False) print(l1000_metadata_df.shape) l1000_metadata_df.head(2) # In[4]: # Step 2: Cell Painting file = "../cell_painting/cellpainting_lvl4_cpd_replicate_datasets/cp_level4_cpd_replicates.csv.gz" cp_df = pd.read_csv(file, low_memory=False) print(cp_df.shape) cp_df.head(2) # In[5]: commit = "e9737c3e4e4443eb03c2c278a145f12efe255756" cp_platemap_file = f"https://github.com/broadinstitute/lincs-cell-painting/raw/{commit}/metadata/platemaps/2016_04_01_a549_48hr_batch1/barcode_platemap.csv" cp_meta_df = pd.read_csv(cp_platemap_file, sep=",") cp_meta_df.columns = [f"Metadata_{x}" for x in cp_meta_df.columns] cp_meta_cols = [ "Metadata_Assay_Plate_Barcode", "Metadata_Well", "Metadata_Plate_Map_Name", "replicate_name", "Metadata_dose_recode", "Metadata_broad_sample", "pert_iname", "moa" ] # Merge cp_metadata_df = ( cp_meta_df .merge( cp_df, left_on=["Metadata_Assay_Plate_Barcode"], right_on="Metadata_Plate", how="right" ) .loc[:, cp_meta_cols] ) cp_metadata_df.pert_iname = cp_metadata_df.pert_iname.str.lower() cp_metadata_df.moa = cp_metadata_df.moa.str.lower() # Output to file file = pathlib.Path("data/CellPainting_platemap_metadata.tsv.gz") cp_metadata_df.to_csv(file, sep="\t", index=False) print(cp_metadata_df.shape) cp_metadata_df.head(2)
__author__ = 'ABREZNIC'
""" Perf file for append operations, should show O(logN). """ from common import SIZES, IMPORT_INIT import pyperf def perf_append(): """ Silly mistake: calling just a bare append appends endlessly thereby averaging out true cost of worse case append. As such, we immediately pop after appending, this is O(1) for popping of the end (a constant factor for each call) and allows us to always check worse case append. Worse case append: append will result in length of BIT being a power of 2. """ runner = pyperf.Runner() for size in SIZES: size = size - 1 runner.timeit( "{0}".format(size), stmt="b.append(0); b.pop()", setup=IMPORT_INIT.format(size), ) if __name__ == "__main__": perf_append()
from sklearn.metrics import accuracy_score, roc_auc_score import torch from typing import Dict, Any from torch.nn import Softmax from torch.nn.functional import log_softmax, nll_loss import numpy as np from .metrics import Metric from ..utils import find_index __all__ = ['Accuracy', 'BinaryAccuracy', 'ROCAUCScore', 'MAPAtK', 'Perplexity'] class Accuracy(Metric): def __init__(self): self._best = 0.0 def __call__(self, logs: Dict[str, Any]) -> float: if isinstance(logs["outputs"], torch.Tensor): predictions = torch.argmax(logs["outputs"], dim=1).cpu().detach().numpy() else: predictions = logs["outputs"] labels = logs["labels"] if isinstance(labels, torch.Tensor): labels = labels.cpu().numpy() acc = accuracy_score( y_true=labels.ravel(), y_pred=predictions.ravel() ) if acc >= self._best: self._best = acc return acc class BinaryAccuracy(Metric): def __init__(self): self._best = 0.0 def __call__(self, logs: Dict[str, Any]) -> float: if isinstance(logs["outputs"], torch.Tensor): predictions = torch.round(logs["outputs"]).cpu().detach().numpy() else: predictions = logs["outputs"] labels = logs["labels"] if isinstance(labels, torch.Tensor): labels = labels.cpu().numpy() acc = accuracy_score( y_true=labels.ravel(), y_pred=predictions.ravel() ) if acc >= self._best: self._best = acc return acc class ROCAUCScore(Metric): def __init__(self): self._best = 0.0 self.softmax = Softmax(dim=1) def __call__(self, logs: Dict[str, Any]) -> float: if isinstance(logs["outputs"], torch.Tensor): predictions = self.softmax(logs["outputs"]).cpu().detach().numpy() labels = logs["labels"].cpu().numpy() else: predictions = logs["outputs"] labels = logs["labels"] rocauc = roc_auc_score( y_true=labels, y_score=predictions[:, 1] ) if rocauc >= self._best: self._best = rocauc return rocauc class MAPAtK(Metric): def __init__(self, k: int=5): self._k = k self._best = 0.0 def __call__(self, logs: Dict[str, Any]) -> float: assert "best" in logs assert len(logs["best"][0]) == self._k if isinstance(logs["labels"], torch.Tensor): labels = logs["labels"].cpu().numpy() else: labels = logs["labels"] map = self.map_at_k(logs["best"], labels) self._best = max(map, self._best) return map def map_at_k(self, best, labels) -> float: return np.mean( [ (1.0 / (find_index(best[i], labels[i]) + 1)) if labels[i] in best[i] else 0.0 for i in range(len(best)) ] ) class Perplexity(Metric): """ Perplexity metric to evaluate a language model: perplexity(language_model, sentence) = exp(-log language_model(sentence)) """ def __init__(self): self._best = float('inf') def __call__(self, logs: Dict[str, Any]) -> float: labels = logs["labels"].cpu() predictions_prob = log_softmax(logs["outputs"], dim=1) entropy = nll_loss(predictions_prob, labels) perplexity = torch.exp(entropy).cpu().numpy().item() if perplexity < self._best: self._best = perplexity return perplexity
import sys read = sys.stdin.buffer.read readline = sys.stdin.buffer.readline readlines = sys.stdin.buffer.readlines sys.setrecursionlimit(10 ** 7) s = input() print('x' * len(s))
main = { 'General': { 'Prop': { 'Labels': 'rw', 'AlarmStatus': 'r-' } }, 'AdminOperStatus': { 'Prop': { 'AdminState': 'rw', 'OperState': 'r-' } } } cfgm = { 'Nto1AccessService': { 'Prop': { 'Service': 'rw' } } } status = { 'mgmt': { 'Prop': { 'maList': 'r-', 'mepList': 'r-' } } }
# -*- coding: utf-8 -*- """ Created on Mon Feb 26 22:54:48 2018 @author: bjwil """ import pdb def symbolToNumber(symbol): if symbol == "A": number = 0 elif symbol == "C": number = 1 elif symbol == "G": number = 2 elif symbol == "T": number = 3 return number def patternToNumber(Pattern): #pdb.set_trace() patternList = list(Pattern) if not patternList: return 0 symbol = patternList[-1] prefix = patternList[:-1] #print symbol, prefix return 4 * patternToNumber(prefix) + symbolToNumber(symbol) def readData(filename): with open(filename, 'r') as f: #f.readline() # Skip input line Pattern = f.readline() return Pattern.strip() if __name__ == "__main__": Pattern = readData('dataset_3010_2.txt') result = patternToNumber(Pattern) print(result) g = ['T'] patternToNumber(g) def mismatch(text1, text2): count = 0 if len(text1) != len(text2): print('Lengths are different.') sys.exit() for i in range(len(text1)): if text1[i] != text2[i]: count += 1 return count type({'A','C','G','T'}) numberToPattern(1,2) k = 2 t = 1 hammerAA = 'AA' hammerAT = 'AT' mismatch(hammerAA, hammerAT) import sys chars = "ACGT" for i in chars: print(i + suffix) def Neighbors(hammer,t): if t == 0: return hammer if len(hammer) == 1: return {'A','C','G','T'} array = [] suffix = hammer[-(len(hammer)-1):] prefix = hammer[0:1] SuffixNeighbors = Neighbors(suffix,t) for text in SuffixNeighbors: if mismatch(suffix, text) < t: for i in chars: array.append(i + text) else: array.append(prefix + text) return array prefix = text[0:1] prefix + 'AT' suffix = text[-(len(text)-1):] text = 'CAA' text[-(len(text)-1):] text[-2:] print("\n".join(Neighbors('ACCACTGA', 2))) patternToNumber('AC') kmerArray = [] for i in range(0,4**k): kmerArray.append((numberToPattern(i,k))) kmerArray def numberToPattern(index,k): if k == 1: return numberToSymbol(index) prefixIndex = index//4 r = index % 4 if index == 0: symbol = 'A' else: symbol = numberToSymbol(r) prefixPattern = numberToPattern(prefixIndex,k-1) return prefixPattern + symbol
import torch import numpy as np import sys import gurobipy as gp from gurobipy import GRB def FindSubset(w, a, eps, n, output_flag=False, check_w_lt_eps=False): subset_sum = None num_used = 0 # number of a_i terms used in the subset sum if check_w_lt_eps and (abs(w) <= eps): # check if the magnitude of w is less than eps subset_sum = 0 else: m = gp.Model('mip1') m.Params.OutputFlag = output_flag x = m.addVars(n, vtype=GRB.BINARY) z = m.addVar(vtype=GRB.CONTINUOUS) m.setObjective(z, GRB.MINIMIZE) m.addConstr(w - x.prod(a) <= z) m.addConstr(-w + x.prod(a) <= z) m.addConstr(w - x.prod(a) <= eps) m.addConstr(-w + x.prod(a) <= eps) m.Params.MIPGap = 0.01 m.optimize() if m.status == 2: # feasible solution found subset = [] for i in range(len(x)): if round(x[i].x) > 0: subset.append(a[i]) subset_sum = sum(subset) num_used = len(subset) if output_flag: # print verbose information diff = abs(subset_sum - w) print('\n' + '-' * 96) print('\nNumber of elements in subset:', num_used) print('\nValues used to approximate w:', subset) print('\nSubset sum:', subset_sum, 'is approximately equal to', w) print('\nDifference between subset sum and w:', diff, ', epsilon =', eps) print('This difference is less than epsilon:', diff <= eps) else: print('\nFeasible solution not found for weight value', w, 'and coefficients', a) print('Try increasing c, decreasing epsilon, or both.') sys.exit(0) return subset_sum, num_used def train(model, device, train_loader, optimizer, criterion, epoch, log_interval): model.train() for batch_idx, (data, target) in enumerate(train_loader): data, target = data.reshape(-1, 28*28).to(device), target.to(device) output = model(data) loss = criterion(output, target) optimizer.zero_grad() loss.backward() optimizer.step() if (batch_idx+1) % log_interval == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.item())) def test(model, device, criterion, test_loader, batch_size): model.eval() test_loss = 0 correct = 0 with torch.no_grad(): for data, target in test_loader: data, target = data.to(device), target.to(device) output = model(data) test_loss += criterion(output, target) pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability correct += pred.eq(target.view_as(pred)).sum().item() test_loss /= np.ceil(len(test_loader.dataset) / batch_size) test_acc = 100. * correct / len(test_loader.dataset) print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format( test_loss, correct, len(test_loader.dataset), test_acc)) return test_acc
""" abstract which pyflann implementation is used from vtool_ibeis._pyflann_backend import pyflann """ # import ubelt as ub # import os __all__ = ['pyflann', 'FLANN_CLS'] FLANN_CLS = None pyflann = None try: import pyflann_ibeis as pyflann FLANN_CLS = pyflann.FLANN except ImportError: FLANN_CLS = None pyflann = None # try: # import pyflann # FLANN_CLS = pyflann.FLANN # except ImportError: # print('no pyflann, using cv2.flann_Index') # try: # import cv2 # except Exception: # # print('no pyflann, using dummy index') # class _DUMMY_FLANN_CLS: # def __init__(self): # raise RuntimeError('pyflann_ibeis is not installed') # FLANN_CLS = _DUMMY_FLANN_CLS # else: # class _CV2_FLANN_CLS: # def __init__(self): # self._internal = cv2.flann_Index() # self.params = {} # def build_index(self, features, **flann_params): # # self._internal.build(features, flann_params, distType) # self._internal.build(features, flann_params) # def save_index(self, fpath): # # self._internal.build(features, flann_params, distType) # self._internal.save(fpath) # def nn_index(self, query, num_neighbors, checks=ub.NoParam): # # knnSearch(query, knn[, indices[, dists[, params]]]) -> indices, dists # return self._internal.knnSearch(query, knn=num_neighbors) # FLANN_CLS = _CV2_FLANN_CLS # print('VTOOL_IBEIS BACKEND FOR pyflann = {!r}'.format(pyflann)) # print('VTOOL_IBEIS BACKEND FOR FLANN_CLS = {!r}'.format(FLANN_CLS))
import numpy as np import warnings ''' TODO **also** chekc the TODOs in the script 0. break this into smaller subscripts * trajectory creation * masking * noise 0. rename 'journey' with 'trajectory' * journey implies travel 0. since slopes are determined by stays, maybe remove this field * specify the slope of the travel * the location of the travel (and stays) will be sorted to minimize the slope, cutting the adjacent stays as needed 0. add Assert so that always [stay, trav, ..., trav, stay] 1. add some documentation 2. keep the segment indices * use later for seg. dept. noise, also training 3. Update the noise enrichment * segment-dependent noise * configurable noise distributions for each segment 4. include asserts to ensure no overlaps of stay regions 5. Put all into class * x, y, noisy y * segment idices, features * various returns: np.arrays, pd.DataFrames 6. segments' endpoints to coincide with the sparse stays * some stays are shorter after masking 7. improve the duplication for the data * include some specific $x$-locations which are duplicated in certain segments * this is like a tower which is pinged multiple times but only gives it's location * include some specific $\Delta x$'s which are duplicated showing an effecitve radius when triangulation fails * segement-/location-specific noise * try also with the array of weights passed in `np.random.choice` * changes the probab. of picking up specific events in the full array ''' """ Examples of stays # Go to work, no lunch stays = [ get_stay( 0, 20, 2), get_stay( 30, 70, -1), get_stay( 80, 100, 2) ] # Go to work with a lunch break stays = [ get_stay( 0, 20, 2), get_stay( 30, 55, -1), get_stay( 60, 65, 0.5), get_stay( 70, 75, -1), get_stay( 80, 100, 2) ] # Work, gym, shop: stay1.T > stay2.T > stay3.T stays = [ get_stay( 0, 20, 2), get_stay( 30, 55, -1), get_stay( 60, 65, 0.5), get_stay( 70, 75, 2.5), get_stay( 80, 100, 2) ] """ # Masking to sparsify the signal #### TODO: make the sparsing location/segment dependent def get_frac_mask(size, frac, verbose=False): int_frac = int(frac*size) # Get the fraction of "on"s out_arr_1s = np.ones(int_frac) # Get the remaining fraction of "off"s out_arr_0s = np.zeros(size-int_frac) # Concat and shuffle out_arr = np.concatenate([out_arr_0s,out_arr_1s]) np.random.shuffle(out_arr) if verbose: print(np.sum(out_arr)/size) return out_arr def get_mask_indices(mask): mask_indices = (mask == 1) return mask_indices def get_mask(size, frac, verbose=False): return get_mask_indices(get_frac_mask(size, frac, verbose)) # NOTE: this mask _adds_ to the start and stop of a trajectory, # so that it begins around 00:00 and ends around 23:59, always # TODO: fix this so that trajectories can begin/end at any time def get_mask_with_duplicates(time_arr, target_frac=1.0, target_dupl_frac=0.0, verbose=False): """ Return a (sub)array with/out duplicates Get a fraction of time of the time array, where a fraction of it contains duplicates. The duplicate fraction refers to the fraction of duplicates in the final array. Args: time_arr (np.array): time points in hours target_frac (float): the fraction of input array to be output as a mask target_dupl_frac (float): the fraction of the output events to be duplicated Returns: np.array: mask to be applied to the time_arr (includes duplicates Raises: ValueError: If `target_dupl_frac` is too large compared to `target_frac`. Examples: >>> t_arr.size 1000 >>> mask = get_mask_with_duplicates(t_arr, 0.9, 0.1) >>> mask array([ 32, 32, 89, ..., 960, 971, 998]) >>> mask.size 900 >>> np.unique(mask).size 810 """ get_frac_outer = lambda size: lambda frac: int(frac*size) get_duplicates_counts = lambda arr: (arr.size, len(set(arr)), arr.size-len(set(arr))) from collections import Counter # Compute the adjusted final fraction when duplicates are present adjusted_frac = (1.0-target_dupl_frac)*target_frac dupli_frac = (target_dupl_frac)*target_frac base_frac_int = get_frac_outer(time_arr.size)(adjusted_frac) dupl_frac_int = get_frac_outer(time_arr.size)(dupli_frac) dupl_frac_int = min(dupl_frac_int,base_frac_int) # Get the unique subset of time points time_arr_sub0 = np.random.choice(time_arr, base_frac_int, replace=False) # Get the indices of the time points mask_ = np.where(np.in1d(time_arr, time_arr_sub0))[0] if dupl_frac_int > 0: # The set of unique duplicates: will always drw from this set mask_dups = np.random.choice(mask_, dupl_frac_int, replace=False) iterations = 8 for n in range(iterations): # Get a subsample from the duplicates # 1. The fraction controls the mulitplicity of duplicates base_subsamp_frac = 0.05 mask_dups_sub = np.random.choice(mask_dups, get_frac_outer(dupl_frac_int)(base_subsamp_frac), \ replace=True, ) # 2. add back to the duplicates --> keep all events; just increase their frequencies mask_dups = np.concatenate((mask_dups, mask_dups_sub)) # Get the final set of the duplicates mask_dups = np.random.choice(mask_dups, dupl_frac_int, replace=True, ) if verbose: # Check the frequencies of the duplicates # 1. for the duplicates, count the frequency for each duplicate, ie 1 appears 3x, 2, appears 1x, etc. freqs = Counter(mask_dups.tolist()) print(sum(freqs.values())) # 2. for the frequencies, count the frequency of a given frequency, ie. how many 1's, 2's, etc. freqs = Counter(list(freqs.values())) print(freqs) print('freq',sum(freqs.values()), dupl_frac_int, np.unique(mask_dups).size) print() # Add the duplicate mask back to the original mask mask_ = np.concatenate((mask_, mask_dups)) if verbose: totals, uniques, duplicates = get_duplicates_counts(mask_) print(totals, uniques, duplicates, round(100.*duplicates/totals,2)) mask_.sort() mask_ = mask_.astype(int) return mask_ # NOTE: this is a patch! # TODO: include this into `get_mask_with_duplicates` def get_adjusted_dup_mask(time, stays, dup_mask): """ Return a masking array consistent with the stays Adjust the `get_mask_with_duplicates` output so that it obeys the timepoints of the stays. Args: time_arr (np.array): time points in hours stays (dict): the stays; gets the first and last time points dup_mask (np.array): the masking array Returns: np.array: updated mask to be applied to the time_arr, etc. Raises: None: Examples: >>> t_arr.size 1000 >>> mask = get_mask_with_duplicates(t_arr, 0.9, 0.1) >>> mask array([ 32, 32, 89, ..., 960, 971, 998]) >>> mask = get_adjusted_dup_mask(t_arr, stays, mask) array([ 312, 356, 389, ..., 760, 771, 798]) """ traj_start_ind = np.where(time >= stays[0]['start'])[0].min() traj_end_ind = np.where(time <= stays[-1]['end'] )[0].max() return dup_mask[(dup_mask >= traj_start_ind) & (dup_mask <= traj_end_ind)]
# ------------------------------------------------------------------------ # HOTR official code : main.py # Copyright (c) Kakao Brain, Inc. and its affiliates. All Rights Reserved # ------------------------------------------------------------------------ # Modified from DETR (https://github.com/facebookresearch/detr) # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved # ------------------------------------------------------------------------ import argparse import datetime import json import random import time import multiprocessing from pathlib import Path import numpy as np import torch from torch.utils.data import DataLoader, DistributedSampler import hotr.data.datasets as datasets import hotr.util.misc as utils from hotr.engine.arg_parser import get_args_parser from hotr.data.datasets import build_dataset, get_coco_api_from_dataset from hotr.engine.trainer import train_one_epoch from hotr.engine import hoi_evaluator, hoi_accumulator from hotr.models import build_model import wandb from hotr.util.logger import print_params, print_args def save_ckpt(args, model_without_ddp, optimizer, lr_scheduler, epoch, filename): # save_ckpt: function for saving checkpoints output_dir = Path(args.output_dir) if args.output_dir: checkpoint_path = output_dir / f'{filename}.pth' utils.save_on_master({ 'model': model_without_ddp.state_dict(), 'optimizer': optimizer.state_dict(), 'lr_scheduler': lr_scheduler.state_dict(), 'epoch': epoch, 'args': args, }, checkpoint_path) def main(args): utils.init_distributed_mode(args) if args.frozen_weights is not None: print("Freeze weights for detector") device = torch.device(args.device) # fix the seed for reproducibility seed = args.seed + utils.get_rank() torch.manual_seed(seed) np.random.seed(seed) random.seed(seed) # Data Setup dataset_train = build_dataset(image_set='train', args=args) dataset_val = build_dataset(image_set='val' if not args.eval else 'test', args=args) assert dataset_train.num_action() == dataset_val.num_action(), "Number of actions should be the same between splits" args.num_classes = dataset_train.num_category() args.num_inst_actions = dataset_train.num_inst_action() args.num_actions = dataset_train.num_action() if args.share_enc: args.hoi_enc_layers = args.enc_layers if args.pretrained_dec: args.hoi_dec_layers = args.dec_layers if args.dataset_file == 'vcoco': # Save V-COCO dataset statistics args.valid_ids = np.array(dataset_train.get_object_label_idx()).nonzero()[0] args.invalid_ids = np.argwhere(np.array(dataset_train.get_object_label_idx()) == 0).squeeze(1) args.human_actions = dataset_train.get_human_action() args.object_actions = dataset_train.get_object_action() args.num_human_act = dataset_train.num_human_act() print_args(args) if args.distributed: sampler_train = DistributedSampler(dataset_train, shuffle=True) sampler_val = DistributedSampler(dataset_val, shuffle=False) else: sampler_train = torch.utils.data.RandomSampler(dataset_train) sampler_val = torch.utils.data.SequentialSampler(dataset_val) batch_sampler_train = torch.utils.data.BatchSampler( sampler_train, args.batch_size, drop_last=True) data_loader_train = DataLoader(dataset_train, batch_sampler=batch_sampler_train, collate_fn=utils.collate_fn, num_workers=args.num_workers) data_loader_val = DataLoader(dataset_val, args.batch_size, sampler=sampler_val, drop_last=False, collate_fn=utils.collate_fn, num_workers=args.num_workers) # Model Setup model, criterion, postprocessors = build_model(args) model.to(device) model_without_ddp = model if args.distributed: model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu]) model_without_ddp = model.module n_parameters = print_params(model) param_dicts = [ {"params": [p for n, p in model_without_ddp.named_parameters() if "backbone" not in n and p.requires_grad]}, { "params": [p for n, p in model_without_ddp.named_parameters() if "backbone" in n and p.requires_grad], "lr": args.lr_backbone, }, ] optimizer = torch.optim.AdamW(param_dicts, lr=args.lr, weight_decay=args.weight_decay) lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, args.lr_drop) # Weight Setup if args.frozen_weights is not None: if args.frozen_weights.startswith('https'): checkpoint = torch.hub.load_state_dict_from_url( args.frozen_weights, map_location='cpu', check_hash=True) else: checkpoint = torch.load(args.frozen_weights, map_location='cpu') model_without_ddp.detr.load_state_dict(checkpoint['model']) if args.resume: if args.resume.startswith('https'): checkpoint = torch.hub.load_state_dict_from_url( args.resume, map_location='cpu', check_hash=True) else: checkpoint = torch.load(args.resume, map_location='cpu') model_without_ddp.load_state_dict(checkpoint['model']) if args.eval: # test only mode total_res = hoi_evaluator(args, model, criterion, postprocessors, data_loader_val, device) sc1, sc2 = hoi_accumulator(args, total_res, True, False) return # stats scenario1, scenario2 = 0, 0 # add argparse if args.wandb and utils.get_rank() == 0: wandb.init( project=args.project_name, group=args.group_name, name=args.run_name, config=args ) wandb.watch(model) # Training starts here! start_time = time.time() for epoch in range(args.start_epoch, args.epochs): if args.distributed: sampler_train.set_epoch(epoch) train_stats = train_one_epoch( model, criterion, data_loader_train, optimizer, device, epoch, args.epochs, args.clip_max_norm, dataset_file=args.dataset_file, log=args.wandb) lr_scheduler.step() # Validation if args.validate: print('-'*100) total_res = hoi_evaluator(args, model, criterion, postprocessors, data_loader_val, device) if utils.get_rank() == 0: sc1, sc2 = hoi_accumulator(args, total_res, False, args.wandb) if sc1 > scenario1: scenario1 = sc1 scenario2 = sc2 save_ckpt(args, model_without_ddp, optimizer, lr_scheduler, epoch, filename='best') print(f'| Scenario #1 mAP : {sc1:.2f} ({scenario1:.2f})') print(f'| Scenario #2 mAP : {sc2:.2f} ({scenario2:.2f})') print('-'*100) save_ckpt(args, model_without_ddp, optimizer, lr_scheduler, epoch, filename='checkpoint') total_time = time.time() - start_time total_time_str = str(datetime.timedelta(seconds=int(total_time))) print('Training time {}'.format(total_time_str)) print(f'| Scenario #1 mAP : {scenario1:.2f}') print(f'| Scenario #2 mAP : {scenario2:.2f}') if __name__ == '__main__': parser = argparse.ArgumentParser( 'End-to-End Human Object Interaction training and evaluation script', parents=[get_args_parser()] ) args = parser.parse_args() if args.output_dir: args.output_dir += f"/{args.group_name}/{args.run_name}/" Path(args.output_dir).mkdir(parents=True, exist_ok=True) main(args)
#uses embeded tuples for points, runs every permutation when its created and does not have a list of permutations(size x!). #without uses lists of size x! this program uses much less memory and is only bottle necked by cpu power. from tkinter import * import time import random import math as m class MyFrame(Frame): def __init__(self): Frame.__init__(self) num5=800 self.myCanvas = Canvas(width=num5,height=num5,bg="black") self.myCanvas.grid() ##number of cities num2 = cities =10 vals = [] num7= 1000 points= [] tempdistance= [] distances = [] tempperms= [] tempdistance = [] d1=0 d2=0 bestpath = [0 for i in range(num2+1)] worstpath = [0 for i in range(num2+1)] a=0 b=10**12 c=0 showworstpath = False def swap(a,i,j): temp = a[i] a[i]=a[j] a[j] = temp def perms(n): if n==1: return 1 else: return n*perms(n-1) ##makes random points for z in range(0,num2): x =random.randint(0,num5) y= random.randint(0,num5) points.append((x,y)) print(points) ##finds every distance for w in range(0,num2): for p in range(0,num2): tempdistance.append(m.sqrt((points[p][0]-points[w][0])**2+(points[p][1]-points[w][1])**2)) distances.append(tempdistance) tempdistance= [] ##permutation function for t in range(0,num2): vals.append(t) #bruteforce loop for p in range(0,int(perms(len(vals)-1))): tempperms = vals[:] tempperms+=[0] #finds the distance of the permutation with appending it to a list. for s in range(0,len(tempperms)-1): p1 = int(tempperms[s]) p2 = int(tempperms[s+1]) tempdistance.append(distances[p1][p2]) ## simple if staments to remember the worst and best distances/paths without list. if sum(tempdistance)<b: b=sum(tempdistance) print("current distance",b) bestpath = tempperms self.myCanvas.delete("all") for z in range(0, num2): d1 = int(bestpath[z]) d2 = int(bestpath[z+1]) self.myCanvas.create_line(points[d1][0],points[d1][1],points[d2][0],points[d2][1],fill="green") self.myCanvas.update() time.sleep(.2) if sum(tempdistance)>c: c=sum(tempdistance) worstpath = tempperms tempdistance = [] ##step 1 largestI= -1 for i in range(0,len(vals)-1): if vals[i]<vals[i+1]: largestI = i if largestI == -1: print("finished") break ##step 2 largestJ= -1 for j in range(0,len(vals)): if vals[largestI] < vals[j]: largestJ = j ##step 3 swap(vals, largestI, largestJ) ##step 4 endArray = vals[largestI+1:len(vals)] endArray.reverse() vals = vals[0:largestI+1] + endArray if showworstpath: for h in range(0,num2): d1 = int(worstpath[h]) d2 = int(worstpath[h+1]) self.myCanvas.create_line(points[d1][0],points[d1][1],points[d2][0],points[d2][1],fill="red") self.myCanvas.update() print("Most Efficient Route",b,bestpath) print("Most Inefficient Route",c,worstpath) frame02=MyFrame() frame02.mainloop() ##notable points ##[(304, 288), (265, 742), (346, 29), (473, 290), (171, 266), (306, 21), (642, 250), (127, 533), (174, 366), (392, 268)]
''' The main is parsing the cmdlines, starting the simulation and exporting the results, if wished. ''' import argparse import json import logging import os import risk #-----------------------------------------------------------------------------# # constants class Constants(): class __Paths(): def __init__(self): self._root = os.path.join( os.path.dirname( os.path.abspath(__file__) ) ) self._build = os.path.join(self._root, '..', 'build') self._risk_output = os.path.join(self._build, 'risk.json') @property def root(self): return self._root @property def build(self): return self._build @property def risk_output(self): return self._risk_output def __init__(self): self._paths = Constants.__Paths() self._boardgame = 'Risk' @property def paths(self): return self._paths @property def boardgame(self): return self._boardgame CONSTANTS = Constants() #-----------------------------------------------------------------------------# # config class Config(): def __init__(self): self._sim = risk.SimulationConfig() self._is_output_enabled = False self._is_output_forced = False @property def sim(self): return self._sim @property def is_output_enabled(self): return self._is_output_enabled @is_output_enabled.setter def is_output_enabled(self, value): self._is_output_enabled = value @property def is_output_forced(self): return self._is_output_forced @is_output_forced.setter def is_output_forced(self, value): self._is_output_forced = value #-----------------------------------------------------------------------------# # cmdline-parsing def parse_cmdline(): ''' Parse cmdline-args and print help-msg if specified. ''' #-------------------------------------------------------------------------# # define args and parse them description = 'Have you ever asked yourself in boardgame \'Risk\', what ' description += 'the winning-chance of your attackers/defenders is?' parser = argparse.ArgumentParser(description=description) # max-fight-rounds help_msg = 'Defines the number of dice that should be thrown for the ' help_msg += 'simulation.' parser.add_argument('-n', '--max-fight-rounds', metavar=('INT'), dest='max_fight_rounds', action='store', type=int, required=False, help=help_msg ) # seed help_msg = 'Defines the seed for the RNG.' parser.add_argument('-s', '--seed', metavar=('INT'), dest='seed', action='store', type=int, required=False, help=help_msg ) # enable output help_msg = 'If set, the simulation-results will be exported to the ' help_msg += 'specified path.' parser.add_argument('-o', '--enable-output', dest='is_output_enabled', action='store_true', required=False, help=help_msg ) # force output, even if file exists help_msg = 'Same as \'--enable-output\' but forced ' help_msg += '(removing existing file).' parser.add_argument('-of', '--force-output', dest='is_output_forced', action='store_true', required=False, help=help_msg ) # logging-level help_msg = 'Sets the logging-level' parser.add_argument('-log', '--logging-level', metavar=('STRING'), dest='logging_level', choices=['debug', 'info', 'warning', 'error'], required=False, help=help_msg ) help_msg = 'Sets the logging-level to \'info\' overwriting other flags.' parser.add_argument('-v', '--verbose', dest='verbose', action='store_true', required=False, help=help_msg ) # approximation vs analytical solution # help_msg = 'If set, the simulation calculates an approximation via ' # help_msg += 'monte-carlo instead of the analytical correct solution. ' # help_msg += 'Default is true since analytical solution is not supported ' # help_msg += 'yet.' # parser.add_argument('-mc', '--monte-carlo', # dest='use_mc', # action='store_true', # required=False, # default=True, # help=help_msg # ) args = parser.parse_args() #-------------------------------------------------------------------------# # logging-level if args.verbose: args.logging_level = logging.INFO elif args.logging_level is not None: if args.logging_level == 'debug': args.logging_level = logging.DEBUG elif args.logging_level == 'info': args.logging_level = logging.INFO elif args.logging_level == 'warning': args.logging_level = logging.WARNING elif args.logging_level == 'error': args.logging_level = logging.ERROR else: args.logging_level = logging.WARNING # set logging-levels logging.getLogger(__name__).setLevel(args.logging_level) logging.getLogger(risk.__name__).setLevel(args.logging_level) #-------------------------------------------------------------------------# # finalize and return cfg = Config() cfg.sim.max_fight_rounds = args.max_fight_rounds cfg.sim.seed = args.seed cfg.is_output_enabled = args.is_output_enabled cfg.is_output_forced = args.is_output_forced return cfg #-----------------------------------------------------------------------------# if __name__ == '__main__': # init logging logging.basicConfig(level=logging.WARNING) logger = logging.getLogger(__name__) # extract params cfg = parse_cmdline() # check export-path before running simulation # (and wasting time if out-file exists) if not cfg.is_output_forced: if cfg.is_output_enabled: if os.path.exists(CONSTANTS.paths.risk_output): err_msg = f'Output-file {CONSTANTS.paths.risk_output} does ' err_msg += 'already exist.' logger.error(err_msg) exit(1) else: cfg.is_output_forced = True #-------------------------------------------------------------------------# # simulate sim = risk.Simulation(cfg.sim) result = sim.monte_carlo() #-------------------------------------------------------------------------# # export results to a json-file result = {'data': result} result['config'] = cfg.sim.to_dict() result['boardgame'] = CONSTANTS.boardgame if cfg.is_output_forced: with open(CONSTANTS.paths.risk_output, 'w') as json_file: json.dump(result, json_file, indent=4) # # calculate percentages # for dict_def in result.values(): # for counts in dict_def.values(): # counts['defended'] /= float(sim.max_fight_rounds) # counts['draw'] /= float(sim.max_fight_rounds) # counts['defeated'] /= float(sim.max_fight_rounds) # prepare output logger.info(result)
# Software License Agreement (BSD License) # # Copyright (c) 2013, Open Source Robotics Foundation, Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided # with the distribution. # * Neither the name of Open Source Robotics Foundation, Inc. nor # the names of its contributors may be used to endorse or promote # products derived from this software without specific prior # written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # Author: Tully Foote <tfoote@osrfoundation.org> # Author: William Woodall <william@osrfoundation.org> """ This module implements discovery of packages which export various spec files. You can use this API as follows, assuming workspace of 'test/discovery_workspaces/minimal':: >>> from pprint import pprint >>> from capabilities.discovery import package_index_from_package_path >>> from capabilities.discovery import spec_file_index_from_package_index >>> from capabilities.discovery import spec_index_from_spec_file_index >>> workspaces = ['test/discovery_workspaces/minimal'] >>> package_index = package_index_from_package_path(workspaces) >>> spec_file_index = spec_file_index_from_package_index(package_index) >>> pprint(spec_file_index) {'minimal_pkg': { 'capability_interface': ['test/discovery_workspaces/minimal/minimal_pkg/interfaces/Minimal.yaml'], 'capability_provider': [ 'test/discovery_workspaces/minimal/minimal_pkg/providers/minimal.yaml', 'test/discovery_workspaces/minimal/minimal_pkg/providers/specific_minimal.yaml'], 'package': <catkin_pkg.package.Package object at 0x10bb28df8>, 'semantic_capability_interface': [ 'test/discovery_workspaces/minimal/minimal_pkg/interfaces/SpecificMinimal.yaml']}} >>> spec_index, errors = spec_index_from_spec_file_index(spec_file_index) >>> print(errors) [] >>> spec_index.names [minimal_pkg/specific_minimal, minimal_pkg/Minimal, minimal_pkg/SpecificMinimal, minimal_pkg/minimal] >>> pprint(spec_index.specs) {minimal_pkg/minimal: <capabilities.specs.provider.CapabilityProvider object at 0x10391ce50>, minimal_pkg/specific_minimal: <capabilities.specs.provider.CapabilityProvider object at 0x10391cd10>, minimal_pkg/Minimal: <capabilities.specs.interface.CapabilityInterface object at 0x103952f90>, minimal_pkg/SpecificMinimal: <capabilities.specs.semantic_interface.SemanticCapabilityInterface object at 0x103952b50>} >>> spec_index.interface_names [minimal_pkg/Minimal] >>> spec_index.interfaces {minimal_pkg/Minimal: <capabilities.specs.interface.CapabilityInterface at 0x103952f90>} >>> spec_index.interfaces['Minimal'] <capabilities.specs.interface.CapabilityInterface object at 0x10b7e3410> >>> spec_index.semantic_interfaces {'SpecificMinimal': <capabilities.specs.semantic_interface.SemanticCapabilityInterface object at 0x10b7bf3d0>} >>> pprint(spec_index.providers) {'minimal': <capabilities.specs.provider.CapabilityProvider object at 0x10b7bf750>, 'specific_minimal': <capabilities.specs.provider.CapabilityProvider object at 0x10b7bfd10>} """ import os from catkin_pkg.packages import find_packages from capabilities.specs.interface import capability_interface_from_file_path from capabilities.specs.interface import InvalidInterface from capabilities.specs.provider import capability_provider_from_file_path from capabilities.specs.provider import InvalidProvider from capabilities.specs.semantic_interface import semantic_capability_interface_from_file_path from capabilities.specs.semantic_interface import InvalidSemanticInterface class DuplicateNameException(Exception): def __init__(self, name, colliding_package, spec_type): self.spec_name = name self.package = colliding_package self.spec_type = spec_type msg = "Spec named '{0}' is defined twice in the '{1}' package." msg = msg.format(name, colliding_package) Exception.__init__(self, msg) class InterfaceNameNotFoundException(Exception): def __init__(self, msg, spec_name, spec_type, spec_package): self.spec_name = spec_name self.package = spec_package self.spec_type = spec_type Exception.__init__(self, msg) def package_index_from_package_path(package_paths): """Find all packages on the given list of paths Iterates over the given list of paths in reverse order so that packages found in the paths at the beginning of the list get overlaid onto packages with the same name which were found in paths farther back in the list. The resulting dictionary is keyed by the package name (so packages with duplicate names are overlaid) and the values are the :py:class:`catkin_pkg.package.Package` class :param ros_package_path: list of paths to search :type ros_package_path: list :returns: dictionary of package objects keyed by name of the package :rtype: dict """ result = {} for path in reversed(package_paths): for package_path, package in find_packages(path).items(): result[package.name] = package return result def spec_file_index_from_package_index(package_index): """Creates an index of spec files by package. Takes a dict of package objects keyed by package name. Returns a dict structured like this:: { '<package_name>': { 'package': package_obj, 'capability_interface': [path to spec file, ...], 'capability_provider': [path to spec file, ...], 'semantic_capability_interface': [path to spec file, ...] }, ... } This dict contains a dict for each package, keyed by package name. Those dicts contain the parsed package object, and a list of relative paths for spec files, separated by spec type. :param package_index: dict of :py:class:`catkin_pkg.package.Package`'s keyed by package name to be processed :type package_index: dict :returns: spec file index strucutre :rtype: dict """ spec_file_index = {} for package_name, package in package_index.items(): spec_file_index[package_name] = { 'package': package, 'capability_interface': [], 'capability_provider': [], 'semantic_capability_interface': [] } package_path = os.path.dirname(package.filename) for export in package.exports: tag = export.tagname if tag != 'package' and tag in spec_file_index[package_name]: spec_file_path = os.path.join(package_path, export.content) spec_file_index[package_name][tag].append(spec_file_path) # Prune packages with no specs if ( not spec_file_index[package_name]['capability_interface'] and not spec_file_index[package_name]['capability_provider'] and not spec_file_index[package_name]['semantic_capability_interface'] ): del spec_file_index[package_name] return spec_file_index def _spec_loader(spec_thing_index, spec_thing_loaders): spec_index = SpecIndex() errors = [] error_types = ( InterfaceNameNotFoundException, DuplicateNameException, InvalidInterface, InvalidSemanticInterface, InvalidProvider ) # First load and process CapabilityInterface's for package_name, package_dict in spec_thing_index.items(): interface_things = package_dict['capability_interface'] for thing in interface_things: try: spec_thing_loaders['capability_interface'](thing, package_name, spec_index) except error_types as e: errors.append(e) # Then load the SemanticCapabilityInterface's for package_name, package_dict in spec_thing_index.items(): semantic_interface_things = package_dict['semantic_capability_interface'] for thing in semantic_interface_things: try: spec_thing_loaders['semantic_capability_interface'](thing, package_name, spec_index) except error_types as e: errors.append(e) # Finally load the CapabilityProvider's for package_name, package_dict in spec_thing_index.items(): capability_provider_things = package_dict['capability_provider'] for thing in capability_provider_things: try: spec_thing_loaders['capability_provider'](thing, package_name, spec_index) except error_types as e: errors.append(e) return spec_index, errors def spec_index_from_spec_file_index(spec_file_index): """Builds a :py:class:`SpecIndex` from a spec file index Goes through each spec path in each package of the given spec file index and parses them into objects. The objects are stored in a :py:class:`SpecIndex` before being returned. Duplicate Names are not allowed, even between different spec types and packages. Any duplicate names will be raised as a :py:exc:`DuplicateNameException`. Any other errors encountered during spec file processing will be returned as a list along with the :py:class:`SpecIndex`. :param spec_file_index: spec_file_index, see :py:func:`spec_file_index_from_packages_dict` :type spec_file_index: dict :returns: SpecIndex which contains all the loaded specs and a list of any errors encountered while loading the spec files :rtype: :py:class:`SpecIndex`, :py:obj:`list` :raises DuplicateNameException: when two interfaces have the same name """ def capability_interface_loader(path, package_name, spec_index): interface = capability_interface_from_file_path(path) spec_index.add_interface(interface, path, package_name) def semantic_capability_loader(path, package_name, spec_index): si = semantic_capability_interface_from_file_path(path) spec_index.add_semantic_interface(si, path, package_name) def capability_provider_loader(path, package_name, spec_index): provider = capability_provider_from_file_path(path) spec_index.add_provider(provider, path, package_name) return _spec_loader(spec_file_index, { 'capability_interface': capability_interface_loader, 'semantic_capability_interface': semantic_capability_loader, 'capability_provider': capability_provider_loader }) class SpecIndex(object): """Container for capability spec file locations and respective spec classes """ def __init__(self): self.__packages = [] self.__interfaces = {} self.__providers = {} self.__semantic_interfaces = {} def __add_package(self, package_name): if package_name in self.__packages: return self.__packages.append(package_name) def add_interface(self, interface, file_path, package_name): """Add a loaded CapabilityInterface object into the repository :param interface: CapabilityInterface object which was loaded using a factory function :type interface: :py:class:`.specs.interface.CapabilityInterface` :param file_path: path to the interface spec file that was loaded :type file_path: str :param package_name: name of the package which contains the interface :type package_name: str :raises: :py:exc:`DuplicateNameException` if there is a name collision """ interface_name = '{package}/{name}'.format(package=package_name, name=interface.name) interface.name = interface_name if interface_name in self.names: raise DuplicateNameException( interface_name, package_name, 'capability_interface') self.__add_package(package_name) self.__interfaces[interface_name] = { 'path': file_path, 'instance': interface } def remove_interface(self, interface_name): """Removes a capability interface by name :param interface_name: name of the interface to remove :type interface_name: str :raises: :py:exc:`KeyError` if there is no interface by that name """ del self.__interfaces[interface_name] def add_semantic_interface(self, semantic_interface, file_path, package_name): """Add a loaded SemanticCapabilityInterface object into the repository :param semantic_interface: SemanticCapabilityInterface object which was loaded using a factory function :type semantic_interface: :py:class:`.specs.semantic_interface.SemanticCapabilityInterface` :param file_path: path to the semantic interface spec file that was loaded :type file_path: str :param package_name: name of the package which contains the semantic interface :type package_name: str :raises: :py:exc:`DuplicateNameException` if there is a name collision :raises: :py:exc:`InterfaceNameNotFoundException` if the interface which this semantic capability interface redefines is not found. """ semantic_interface_name = '{package}/{name}'.format(package=package_name, name=semantic_interface.name) semantic_interface.name = semantic_interface_name if semantic_interface_name in self.names: raise DuplicateNameException( semantic_interface_name, package_name, 'semantic_capability_interface') if semantic_interface.redefines not in self.interface_names: raise InterfaceNameNotFoundException( "Semantic capability interface '{0}' redefines '{1}', but the '{1}' interface was not found." .format(semantic_interface_name, semantic_interface.redefines), semantic_interface_name, package_name, 'semantic_capability_interface') self.__add_package(package_name) self.__semantic_interfaces[semantic_interface_name] = { 'path': file_path, 'instance': semantic_interface } def remove_semantic_interface(self, semantic_interface_name): """Removes a semantic capability interface by name :param semantic_interface_name: name of the interface to remove :type semantic_interface_name: str :raises: :py:exc:`KeyError` if there is no interface by that name """ del self.__semantic_interfaces[semantic_interface_name] def add_provider(self, provider, file_path, package_name): """Add a loaded CapabilityProvider object into the repository :param provider: CapabilityProvider object which was loaded using a factory function :type provider: :py:class:`.specs.provider.CapabilityProvider` :param file_path: path to the provider spec file that was loaded :type file_path: str :param package_name: name of the package which contains the provider :type package_name: str :raises: :py:exc:`DuplicateNameException` if there is a name collision :raises: :py:exc:`InterfaceNameNotFoundException` if the interface which this capability provider implements is not found. """ provider_name = '{package}/{name}'.format(package=package_name, name=provider.name) provider.name = provider_name if provider_name in self.names: raise DuplicateNameException( provider_name, package_name, 'capability_provider') interfaces = (self.interface_names + self.semantic_interface_names) if provider.implements not in interfaces: raise InterfaceNameNotFoundException( "Capability provider '{0}' implements '{1}', but the '{1}' interface was not found." .format(provider_name, provider.implements), provider_name, package_name, 'capability_provider') self.__add_package(package_name) self.__providers[provider_name] = { 'path': file_path, 'instance': provider } def remove_provider(self, provider_name): """Removes a capability provider by name :param provider_name: name of the interface to remove :type provider_name: str :raises: :py:exc:`KeyError` if there is no interface by that name """ del self.__providers[provider_name] @property def names(self): """list of all names""" return self.interfaces.keys() + self.semantic_interfaces.keys() + self.providers.keys() @property def specs(self): """dict of specs, keyed by name""" result = {} # There should be no key collisions as collisions are found on insertion result.update(self.interfaces) result.update(self.semantic_interfaces) result.update(self.providers) return result @property def interface_names(self): """list of capability interface names""" return [n for n in self.__interfaces.keys()] @property def interfaces(self): """dict of capability interfaces, keyed by name""" return dict([(n, x['instance']) for n, x in self.__interfaces.items()]) @property def interface_paths(self): """dict of capability interface spec paths, keyed by name""" return dict([(n, x['path']) for n, x in self.__interfaces.items()]) @property def provider_names(self): """list of capability provider names""" return [n for n in self.__providers.keys()] @property def providers(self): """dict of capability providers, keyed by name""" return dict([(n, x['instance']) for n, x in self.__providers.items()]) @property def provider_paths(self): """dict of capability provider spec paths, keyed by name""" return dict([(n, x['path']) for n, x in self.__providers.items()]) @property def semantic_interface_names(self): """list of semantic capability interface names""" return [n for n in self.__semantic_interfaces.keys()] @property def semantic_interfaces(self): """dict of semantic capability interfaces, keyed by name""" return dict([(n, x['instance']) for n, x in self.__semantic_interfaces.items()]) @property def semantic_interface_paths(self): """dict of semantic capability interface spec paths, keyed by name""" return dict([(n, x['path']) for n, x in self.__semantic_interfaces.items()])
from functions.selectors.selectVersion import selectVersion from functions.selectors.selectVersionType import selectVersionType from functions.getters.getVersionData import getVersionData from functions.getters.getVersionManifest import getVersionManifest from functions.fs.createClientFolders import createClientFolders from functions.meta.createAutorunScript import createAutorunScript from functions.meta.asyncMagic import doSomeAsyncMagic from config.config import constants from datetime import datetime import shutil def build(): versionsInfo = getVersionManifest() versions, versionsNumbs, versionType = selectVersionType(versionsInfo) versionData = getVersionData(selectVersion(versions, versionsNumbs)) createClientFolders(versionData) magicImportantMushrooms = doSomeAsyncMagic(versionData) shutil.rmtree(f'''{constants['package']['outputPath']}/{constants['package']['nativesDir']}/META-INF''') createAutorunScript(versionData['id'], versionData['assetIndex']['id'], versionType, magicImportantMushrooms) print(f'\n| {datetime.now().time()} Complete! if you need to start the client later,' f' there is start.py in the output folder |')
from setuptools import setup, find_packages REQUIREMENTS = ( 'django>=1.3', ) TEST_REQUIREMENTS = ( 'south', 'mock', 'django-debug-toolbar', ) from ckeditor import VERSION setup( name="django-admin-ckeditor", version=VERSION, author="Aaron Madison", description="Ckeditor integration with Django admin.", long_description=open('README', 'r').read(), url="https://github.com/madisona/django-admin-ckeditor", packages=find_packages(exclude=["example"]), include_package_data=True, install_requires=REQUIREMENTS, tests_require=TEST_REQUIREMENTS, zip_safe=False, classifiers = [ "Development Status :: 4 - Beta", "Environment :: Web Environment", "Framework :: Django", "Intended Audience :: Developers", "License :: OSI Approved :: BSD License", "Operating System :: OS Independent", "Programming Language :: Python", "Topic :: Software Development", "Topic :: Software Development :: Libraries :: Application Frameworks", ], )
import time import logging from typing import Optional from boto3.dynamodb.conditions import Attr from lib.utils.utils import Utils from lib.config.constants import * log = Utils.get_logger(__name__, logging.INFO) class AuditDao: """ Supports operations on the figgy-config-auditor ddb table. """ def __init__(self, dynamo_resource): self._dynamo_resource = dynamo_resource self._table = self._dynamo_resource.Table(AUDIT_TABLE_NAME) def put_delete_log(self, user: str, action: str, ps_name: str, timestamp: int = int(time.time() * 1000)): log.debug(f"Storing delete event: {user} | {action} | {ps_name}") item = { AUDIT_PARAM_NAME_KEY: ps_name, AUDIT_EVENT_TYPE_ATTR: action, AUDIT_USER_ATTR: user, AUDIT_TIME_KEY: timestamp, } self._table.put_item(Item=item) def put_audit_log( self, user: str, action: str, ps_name: str, ps_value: Optional[str], ps_type: str, ps_key_id: Optional[str], ps_description: Optional[str], ps_version: int, timestamp: int = int(time.time() * 1000) ): item = { AUDIT_PARAM_NAME_KEY: ps_name, AUDIT_EVENT_TYPE_ATTR: action, AUDIT_USER_ATTR: user, AUDIT_TIME_KEY: timestamp, AUDIT_VALUE_ATTR: ps_value, AUDIT_TYPE_ATTR: ps_type, AUDIT_KEYID_ATTR: ps_key_id, AUDIT_DESCRIPTION_ATTR: ps_description, AUDIT_VERSION_ATTR: str(ps_version), } put_item = {} for key, value in item.items(): if value: put_item[key] = value self._table.put_item(Item=put_item) # Should not go in this dao and should be moved... def cleanup_test_logs(self): filter_exp = Attr(AUDIT_VALUE_ATTR).eq(DELETE_ME_VALUE) | Attr(AUDIT_USER_ATTR).eq(CIRCLECI_USER_NAME) result = self._table.scan(FilterExpression=filter_exp) items = result["Items"] if result["Items"] else [] for item in items: # if this record is older than TEST_VALUE_KEEP_TIME age_in_minutes = (int(time.time() * 1000) - item[AUDIT_TIME_KEY]) / 1000 / 60 if age_in_minutes > TEST_VALUE_KEEP_TIME: print(f"Cleaning up: {item[AUDIT_PARAM_NAME_KEY]}") self._table.delete_item( Key={AUDIT_PARAM_NAME_KEY: item[AUDIT_PARAM_NAME_KEY], AUDIT_TIME_KEY: item[AUDIT_TIME_KEY]} ) else: print(f"{item[AUDIT_PARAM_NAME_KEY]} is too young for cleanup - it's {age_in_minutes} minutes old. " f"Waiting...")
#!/usr/bin/python import logging import argparse parser = argparse.ArgumentParser() parser.add_argument( "--loglevel", type=str, metavar="LEVEL", choices=["CRITICAL", "ERROR", "WARNING", "INFO", "DEBUG"], help="CRITICAL, ERROR, WARNING, INFO (default) or DEBUG", ) parser.add_argument( "--test", action="store_true", help="don't write any data to memcache" ) args = parser.parse_args() import os import sys import time from multiprocessing.pool import ThreadPool from threading import Timer from dash.config import Config def execute_files(folder): items = os.listdir(folder) items.sort() for item in items: path = os.path.join(folder, item) if os.path.isfile(path): if path.endswith(".py"): exec(compile(open(path).read(), path, 'exec'), globals(), locals()) else: execute_files(path) def update_loop(): timer = Timer(conf.interval, update_loop).start() logging.debug("update: fetching data") # fetch raw data from all the sources t1 = time.time() pool.map(lambda x: x(), independent_jobs) logging.debug("update: deriving datasets") # process data for job in meta_jobs: job() t2 = time.time() if not args.test: logging.debug("update: writing outputs") pool.map(lambda x: x(), outputs) else: logging.debug("test mode - suppressing output") logging.info("update done, {0:.2f} seconds".format(t2-t1)) # load config conf = Config() pwd = os.path.dirname(__file__) configpath = os.path.join(pwd, "conf.d") execute_files(configpath) if args.loglevel: conf.set_loglevel(args.loglevel) logging.info("loglevel reset by command line argument") if args.test: logging.warning("test mode - output data will not be stored in memcache!") independent_jobs = conf.get_independent_callables() meta_jobs = conf.get_meta_callables() outputs = conf.get_output_callables() # execute jobs threads = getattr(conf, "threads", None) if not threads: threads = len(independent_jobs) logging.info("starting " + str(threads) + " threads") pool = ThreadPool(threads) logging.debug("entering main loop") update_loop()
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Autograph compiles Python code into equivalent TensorFlow code. Equivalent here means that they have the same effect when executed. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function # TODO(mdan): Bring only the relevant symbols to the top level. from tensorflow.python.autograph import operators from tensorflow.python.autograph import utils from tensorflow.python.autograph.core.errors import GraphConstructionError from tensorflow.python.autograph.core.errors import TfRuntimeError from tensorflow.python.autograph.core.errors import improved_errors from tensorflow.python.autograph.impl.api import ConversionOptions from tensorflow.python.autograph.impl.api import RunMode from tensorflow.python.autograph.impl.api import convert from tensorflow.python.autograph.impl.api import converted_call from tensorflow.python.autograph.impl.api import do_not_convert from tensorflow.python.autograph.impl.api import to_code from tensorflow.python.autograph.impl.api import to_graph from tensorflow.python.autograph.lang.directives import set_element_type from tensorflow.python.autograph.lang.directives import set_loop_options from tensorflow.python.autograph.lang.special_functions import stack from tensorflow.python.autograph.lang.special_functions import tensor_list from tensorflow.python.autograph.pyct.transformer import AutographParseError from tensorflow.python.util.all_util import remove_undocumented _allowed_symbols = [ # Main API 'ConversionOptions', 'RunMode', 'convert', 'converted_call', 'do_not_convert', 'to_code', 'to_graph', # Overloaded operators 'operators', # Errors 'improved_errors', 'GraphConstructionError', 'TfRuntimeError', # Python language "extensions" 'set_element_type', 'set_loop_options', 'stack', 'tensor_list', # Exceptions 'AutographParseError', # Utilities: to be removed 'utils', ] remove_undocumented(__name__, _allowed_symbols)
def func(x): y=4 return lambda z: x+y+z for i in range(5): closure=func(i) print("closure ",i+5," = ","closure ",closure(i+5))
import pymongo client = pymongo.MongoClient('mongodb://172.17.0.3:27017/') db = client['diagram'] col = db["ngapForm"] ProcedureCodes = { '0' : {'name': 'AMFConfigurationUpdate', 'required': True, 'filter': False, 'fields': [], 'ShowOnMainLine': False}, '1' : {'name': 'AMFStatusIndication', 'required': True, 'filter': False, 'fields': [], 'ShowOnMainLine': False}, '2' : {'name': 'CellTrafficTrace', 'required': True, 'filter': False, 'fields': [], 'ShowOnMainLine': False}, '3' : {'name': 'DeactivateTrace', 'required': True, 'filter': False, 'fields': [], 'ShowOnMainLine': False}, '4' : {'name': 'DownlinkNASTransport', 'required': True, 'filter': False, 'fields': [], 'ShowOnMainLine': False}, '5' : {'name': 'DownlinkNonUEAssociatedNRPPaTransport', 'required': True, 'filter': False, 'fields': [], 'ShowOnMainLine': False}, '6' : {'name': 'DownlinkRANConfigurationTransfer', 'required': True, 'filter': False, 'fields': [], 'ShowOnMainLine': False}, '7' : {'name': 'DownlinkRANStatusTransfer', 'required': True, 'filter': False, 'fields': [], 'ShowOnMainLine': False}, '8' : {'name': 'DownlinkUEAssociatedNRPPaTransport', 'required': True, 'filter': False, 'fields': [], 'ShowOnMainLine': False}, '9' : {'name': 'ErrorIndication', 'required': True, 'filter': False, 'fields': [], 'ShowOnMainLine': False}, '10' : {'name': 'HandoverCancel', 'required': True, 'filter': False, 'fields': [], 'ShowOnMainLine': False}, '11' : {'name': 'HandoverNotification', 'required': True, 'filter': False, 'fields': [], 'ShowOnMainLine': False}, '12' : {'name': 'HandoverPreparation', 'required': True, 'filter': False, 'fields': [], 'ShowOnMainLine': False}, '13' : {'name': 'HandoverResourceAllocation', 'required': True, 'filter': False, 'fields': [], 'ShowOnMainLine': False}, '14' : {'name': 'InitialContextSetup', 'required': True, 'filter': False, 'fields': [], 'ShowOnMainLine': False}, '15' : {'name': 'InitialUEMessage', 'required': True, 'filter': False, 'fields': [], 'ShowOnMainLine': False}, '16' : {'name': 'LocationReportingControl', 'required': True, 'filter': False, 'fields': [], 'ShowOnMainLine': False}, '17' : {'name': 'LocationReportingFailureIndication', 'required': True, 'filter': False, 'fields': [], 'ShowOnMainLine': False}, '18' : {'name': 'LocationReport', 'required': True, 'filter': False, 'fields': [], 'ShowOnMainLine': False}, '19' : {'name': 'NASNonDeliveryIndication', 'required': True, 'filter': False, 'fields': [], 'ShowOnMainLine': False}, '20' : {'name': 'NGReset', 'required': True, 'filter': False, 'fields': [], 'ShowOnMainLine': False}, '21' : {'name': 'NGSetup', 'required': True, 'filter': False, 'fields': [], 'ShowOnMainLine': False}, '22' : {'name': 'OverloadStart', 'required': True, 'filter': False, 'fields': [], 'ShowOnMainLine': False}, '23' : {'name': 'OverloadStop', 'required': True, 'filter': False, 'fields': [], 'ShowOnMainLine': False}, '24' : {'name': 'Paging', 'required': True, 'filter': False, 'fields': [], 'ShowOnMainLine': False}, '25' : {'name': 'PathSwitchRequest', 'required': True, 'filter': False, 'fields': [], 'ShowOnMainLine': False}, '26' : {'name': 'PDUSessionResourceModify', 'required': True, 'filter': False, 'fields': [], 'ShowOnMainLine': False}, '27' : {'name': 'PDUSessionResourceModifyIndication', 'required': True, 'filter': False, 'fields': [], 'ShowOnMainLine': False}, '28' : {'name': 'PDUSessionResourceRelease', 'required': True, 'filter': False, 'fields': [], 'ShowOnMainLine': False}, '29' : {'name': 'PDUSessionResourceSetup', 'required': True, 'filter': False, 'fields': [], 'ShowOnMainLine': False}, '30' : {'name': 'PDUSessionResourceNotify', 'required': True, 'filter': False, 'fields': [], 'ShowOnMainLine': False}, '31' : {'name': 'PrivateMessage', 'required': True, 'filter': False, 'fields': [], 'ShowOnMainLine': False}, '32' : {'name': 'PWSCancel', 'required': True, 'filter': False, 'fields': [], 'ShowOnMainLine': False}, '33' : {'name': 'PWSFailureIndication', 'required': True, 'filter': False, 'fields': [], 'ShowOnMainLine': False}, '34' : {'name': 'PWSRestartIndication', 'required': True, 'filter': False, 'fields': [], 'ShowOnMainLine': False}, '35' : {'name': 'RANConfigurationUpdate', 'required': True, 'filter': False, 'fields': [], 'ShowOnMainLine': False}, '36' : {'name': 'RerouteNASRequest', 'required': True, 'filter': False, 'fields': [], 'ShowOnMainLine': False}, '37' : {'name': 'RRCInactiveTransitionReport', 'required': True, 'filter': False, 'fields': [], 'ShowOnMainLine': False}, '38' : {'name': 'TraceFailureIndication', 'required': True, 'filter': False, 'fields': [], 'ShowOnMainLine': False}, '39' : {'name': 'TraceStart', 'required': True, 'filter': False, 'fields': [], 'ShowOnMainLine': False}, '40' : {'name': 'UEContextModification', 'required': True, 'filter': False, 'fields': [], 'ShowOnMainLine': False}, '41' : {'name': 'UEContextRelease', 'required': True, 'filter': False, 'fields': [], 'ShowOnMainLine': False}, '42' : {'name': 'UEContextReleaseRequest', 'required': True, 'filter': False, 'fields': [], 'ShowOnMainLine': False}, '43' : {'name': 'UERadioCapabilityCheck', 'required': True, 'filter': False, 'fields': [], 'ShowOnMainLine': False}, '44' : {'name': 'UERadioCapabilityInfoIndication', 'required': True, 'filter': False, 'fields': [], 'ShowOnMainLine': False}, '45' : {'name': 'UETNLABindingRelease', 'required': True, 'filter': False, 'fields': [], 'ShowOnMainLine': False}, '46' : {'name': 'UplinkNASTransport', 'required': True, 'filter': False, 'fields': [], 'ShowOnMainLine': False}, '47' : {'name': 'UplinkNonUEAssociatedNRPPaTransport', 'required': True, 'filter': False, 'fields': [], 'ShowOnMainLine': False}, '48' : {'name': 'UplinkRANConfigurationTransfer', 'required': True, 'filter': False, 'fields': [], 'ShowOnMainLine': False}, '49' : {'name': 'UplinkRANStatusTransfer', 'required': True, 'filter': False, 'fields': [], 'ShowOnMainLine': False}, '50' : {'name': 'UplinkUEAssociatedNRPPaTransport', 'required': True, 'filter': False, 'fields': [], 'ShowOnMainLine': False}, '51' : {'name': 'WriteReplaceWarning', 'required': True, 'filter': False, 'fields': [], 'ShowOnMainLine': False}, '52' : {'name': 'SecondaryRATDataUsageReport', 'required': True, 'filter': False, 'fields': [], 'ShowOnMainLine': False}, '53' : {'name': 'UplinkRIMInformationTransfer', 'required': True, 'filter': False, 'fields': [], 'ShowOnMainLine': False}, '54' : {'name': 'DownlinkRIMInformationTransfer', 'required': True, 'filter': False, 'fields': [], 'ShowOnMainLine': False}, '55' : {'name': 'RetrieveUEInformation', 'required': True, 'filter': False, 'fields': [], 'ShowOnMainLine': False}, '56' : {'name': 'UEInformationTransfer', 'required': True, 'filter': False, 'fields': [], 'ShowOnMainLine': False}, '57' : {'name': 'RANCPRelocationIndication', 'required': True, 'filter': False, 'fields': [], 'ShowOnMainLine': False}, '58' : {'name': 'UEContextResume', 'required': True, 'filter': False, 'fields': [], 'ShowOnMainLine': False}, '59' : {'name': 'UEContextSuspend', 'required': True, 'filter': False, 'fields': [], 'ShowOnMainLine': False}, '60' : {'name': 'UERadioCapabilityIDMapping', 'required': True, 'filter': False, 'fields': [], 'ShowOnMainLine': False}, '61' : {'name': 'HandoverSuccess', 'required': True, 'filter': False, 'fields': [], 'ShowOnMainLine': False}, '62' : {'name': 'UplinkRANEarlyStatusTransfer', 'required': True, 'filter': False, 'fields': [], 'ShowOnMainLine': False}, '63' : {'name': 'DownlinkRANEarlyStatusTransfer', 'required': True, 'filter': False, 'fields': [], 'ShowOnMainLine': False}, '64' : {'name': 'AMFCPRelocationIndication', 'required': True, 'filter': False, 'fields': [], 'ShowOnMainLine': False}, '65' : {'name': 'ConnectionEstablishmentIndication', 'required': True, 'filter': False, 'fields': [], 'ShowOnMainLine': False}, } x = col.delete_one({"_id":1}) x = col.delete_one({"_id":2}) x = col.insert_one({"_id": 1, "ProcedureCodes": ProcedureCodes}) x = col.insert_one({"_id": 2, "ProcedureCodes": ProcedureCodes})
# -*- coding: utf-8 -*- import random import string import lemoncheesecake.api as lcc from lemoncheesecake.matching import check_that, is_integer, has_entry, is_none, is_not_none, has_length, is_true, \ is_false from common.base_test import BaseTest from common.receiver import Receiver SUITE = { "description": "Registration Api" } @lcc.prop("main", "type") @lcc.prop("positive", "type") @lcc.prop("negative", "type") @lcc.tags("api", "notice", "registration_api") @lcc.suite("Registration API", rank=1) class RegistrationApi(object): @lcc.tags("connection_to_registration_api", "connection_to_apis") @lcc.test("Check connection to RegistrationApi") def connection_to_registration_api(self, get_random_valid_account_name, get_random_integer): base = BaseTest() base.ws = base.create_connection_to_echo() base.receiver = Receiver(web_socket=base.ws) lcc.set_step("Requesting Access to a Registration API") api_identifier = base.get_identifier("registration") check_that("'registration api identifier'", api_identifier, is_integer()) lcc.set_step("Check node status, if empty run pre-deploy") base.check_node_status() lcc.set_step("Check Registration api identifier. Call registration api method 'register_account'") generate_keys = base.generate_keys() public_key = generate_keys[1] callback = get_random_integer account_params = [callback, get_random_valid_account_name, public_key, public_key] response_id = base.send_request(base.get_request("register_account", account_params), api_identifier) response = base.get_response(response_id) base.get_notice(callback) check_that( "'call method 'register_account''", response["result"], is_none(), quiet=False ) lcc.set_step("Check that Registration api identifier is unique") generate_keys = base.generate_keys() public_key = generate_keys[1] account_params = [callback, get_random_valid_account_name, public_key, public_key] response_id = base.send_request(base.get_request("register_account", account_params), api_identifier + 1) response = base.get_response(response_id, negative=True) check_that( "'using another identifier gives an error'", response, has_entry("error"), quiet=True ) base.ws.close() @lcc.prop("positive", "type") @lcc.tags("api", "notice", "registration_api") @lcc.suite("Positive testing of method 'register_account'", rank=2) class PositiveTesting(BaseTest): def __init__(self): super().__init__() self.__database_api_identifier = None self.__registration_api_identifier = None def _register_account(self, callback, new_account, public_key=None, echorand_key=None): generate_keys = self.generate_keys() if public_key is None: public_key = generate_keys[1] if echorand_key is None: echorand_key = generate_keys[1] account_params = [callback, new_account, public_key, echorand_key] response_id = self.send_request(self.get_request("register_account", account_params), self.__registration_api_identifier) return self.get_response(response_id, negative=True) def setup_suite(self): super().setup_suite() lcc.set_step("Setup for {}".format(self.__class__.__name__)) self.__database_api_identifier = self.get_identifier("database") self.__registration_api_identifier = self.get_identifier("registration") lcc.log_info( "API identifiers are: database='{}', registration='{}'".format(self.__database_api_identifier, self.__registration_api_identifier)) @lcc.test("Registration with valid credential") @lcc.depends_on("RegistrationApi.RegistrationApi.connection_to_registration_api") def registration_with_valid_credential(self, get_random_valid_account_name, get_random_integer): lcc.set_step("Registration an account") new_account = get_random_valid_account_name callback = get_random_integer response = self._register_account(callback, new_account) self.get_notice(callback) check_that( "register account '{}'".format(new_account), response["result"], is_none(), quiet=False ) lcc.set_step("Check that the account is registered on the network. Call method 'get_account_by_name'") response_id = self.send_request(self.get_request("get_account_by_name", [new_account]), self.__database_api_identifier) response = self.get_response(response_id) check_that( "'call method 'get_account_by_name''", response["result"], is_not_none(), quiet=True ) @lcc.test("Registration with unequal public keys") @lcc.depends_on("RegistrationApi.RegistrationApi.connection_to_registration_api") def registration_with_unequal_public_keys(self, get_random_valid_account_name, get_random_integer): new_account = get_random_valid_account_name callback = get_random_integer public_keys_active = self.generate_keys()[1] public_keys_echorand = self.generate_keys()[1] lcc.set_step("Registration an account") response = self._register_account(callback, new_account, public_keys_active, public_keys_echorand) lcc.log_info("Call method 'register_account' with active public key: {}, echorand public key: {}" "".format(public_keys_active, public_keys_echorand)) self.get_notice(callback) check_that("register account '{}'".format(new_account), response["result"], is_none(), quiet=True) lcc.set_step("Check that the account is registered in the network. Call method 'get_account_by_name'") response_id = self.send_request(self.get_request("get_account_by_name", [new_account]), self.__database_api_identifier) result = self.get_response(response_id)["result"] check_that("'active public key'", result["active"]["key_auths"][0][0] == public_keys_active, is_true()) check_that("'echorand public key'", result["echorand_key"] == public_keys_echorand, is_true()) check_that("'keys are unequal'", public_keys_active == public_keys_echorand, is_false()) @lcc.test("Get callback: notification whenever transaction for registration account broadcast") @lcc.depends_on("RegistrationApi.RegistrationApi.connection_to_registration_api") def get_callback_about_registration_account(self, get_random_integer, get_random_valid_account_name): callback = get_random_integer new_account = get_random_valid_account_name lcc.set_step("Call registration api method 'register_account'") response = self._register_account(callback, new_account) check_that("'call method 'register_account''", response["result"], is_none(), quiet=True) lcc.set_step("Get notification about broadcast of registered account with name: ''".format(new_account)) notice = self.get_notice(callback) check_that("notification", notice, has_length(2)) lcc.set_step("Get transaction of registration account'") tx_id = notice["tx_id"] response_id = self.send_request( self.get_request("get_recent_transaction_by_id", [tx_id]), self.__database_api_identifier) transaction = self.get_response(response_id)["result"]["operations"][0] lcc.log_info("Call method 'get_recent_transaction_by_id' with transaction_id='{}' parameter".format(tx_id)) lcc.set_step("Get block with transaction of registration account'") block_num = notice["block_num"] response_id = self.send_request( self.get_request("get_block", [block_num]), self.__database_api_identifier) transaction_in_block = self.get_response(response_id)["result"]["transactions"][0][ "operations"][0] lcc.log_info("Call method 'get_block' with block_num='{}' parameter".format(block_num)) lcc.set_step("Check transactions from 'get_recent_transaction_by_id' and 'get_block'") check_that("'transactions are equal'", transaction == transaction_in_block, is_true()) @lcc.prop("negative", "type") @lcc.tags("api", "registration_api") @lcc.suite("Negative testing of method 'register_account'", rank=3) class NegativeTesting(BaseTest): def __init__(self): super().__init__() self.__registration_api_identifier = None def setup_suite(self): super().setup_suite() lcc.set_step("Setup for {}".format(self.__class__.__name__)) self.__registration_api_identifier = self.get_identifier("registration") lcc.log_info( "Registration API identifiers is '{}'".format(self.__registration_api_identifier)) @staticmethod def get_random_character(random_def, not_hyphen_or_point=False): character = random_def if not_hyphen_or_point and (character == "-" or character == "."): return "*" return character @staticmethod def get_account_name(_from=1, _to=64): random_num = random.randrange(_from, _to) random_string = ''.join( random.SystemRandom().choice(string.ascii_lowercase) for _ in range(random_num)) return random_string def get_registration_parameters(self, callback, new_account): public_key = self.generate_keys()[1] return [callback, new_account, public_key, public_key], ["callback", "account_name", "active_key", "echorand_key"] def _register_account(self, callback, new_account, public_key=None, echorand_key=None): generate_keys = self.generate_keys() if public_key is None: public_key = generate_keys[1] if echorand_key is None: echorand_key = generate_keys[1] account_params = [callback, new_account, public_key, echorand_key] response_id = self.send_request(self.get_request("register_account", account_params), self.__registration_api_identifier) return self.get_response(response_id, negative=True) @lcc.test("Empty account name") @lcc.depends_on("RegistrationApi.RegistrationApi.connection_to_registration_api") def empty_account_name(self, get_random_integer): lcc.set_step("Registration empty account") callback = get_random_integer new_account = "" response = self._register_account(callback, new_account) check_that( "'register_account' return error message", response, has_entry("error"), quiet=True ) @lcc.test("Account name length longer than 63") @lcc.depends_on("RegistrationApi.RegistrationApi.connection_to_registration_api") def account_name_length_longer_than_63(self, get_random_integer): lcc.set_step("Register an account with a name longer than 63") callback = get_random_integer new_account = self.get_account_name(64, 100) response = self._register_account(callback, new_account) check_that( "'register_account' return error message", response, has_entry("error"), quiet=True ) @lcc.test("Account name start with digit") @lcc.depends_on("RegistrationApi.RegistrationApi.connection_to_registration_api") def account_name_start_with_digit(self, get_random_integer): lcc.set_step("Register an account with a name that start with digit") callback = get_random_integer new_account = "1" + self.get_account_name(_to=63) response = self._register_account(callback, new_account) check_that( "'register_account' return error message", response, has_entry("error"), quiet=True ) @lcc.test("Account name is digits") @lcc.depends_on("RegistrationApi.RegistrationApi.connection_to_registration_api") def account_name_is_digits(self, get_random_integer): lcc.set_step("Register an account with a name from digits") callback = get_random_integer new_account = 123456 response = self._register_account(callback, new_account) check_that( "'register_account' return error message", response, has_entry("error"), quiet=True ) @lcc.test("Account name with a special character, not hyphen") @lcc.depends_on("RegistrationApi.RegistrationApi.connection_to_registration_api") def account_name_with_special_character(self, get_random_integer, get_random_character): lcc.set_step("Register an account with a name that have a special character, not hyphen") callback = get_random_integer part1 = self.get_account_name(_to=4) part2 = self.get_account_name(_to=4) new_account = part1 + self.get_random_character(get_random_character, not_hyphen_or_point=True) + part2 response = self._register_account(callback, new_account) check_that( "'register_account' return error message", response, has_entry("error"), quiet=True ) @lcc.test("Account name end with a special character") @lcc.depends_on("RegistrationApi.RegistrationApi.connection_to_registration_api") def account_name_end_with_special_character(self, get_random_integer, get_random_character): lcc.set_step("Register an account with a name that end with a special character") callback = get_random_integer new_account = self.get_account_name() + self.get_random_character(get_random_character) response = self._register_account(callback, new_account) check_that( "'register_account' return error message", response, has_entry("error"), quiet=True ) @lcc.test("Account name is uppercase") @lcc.depends_on("RegistrationApi.RegistrationApi.connection_to_registration_api") def account_name_is_uppercase(self, get_random_integer): lcc.set_step("Register an account with a name that all letters are uppercase") callback = get_random_integer new_account = self.get_account_name().upper() response = self._register_account(callback, new_account) check_that( "'register_account' return error message", response, has_entry("error"), quiet=True ) @lcc.test("Registration with wrong public keys") @lcc.depends_on("RegistrationApi.RegistrationApi.connection_to_registration_api") def registration_with_wrong_public_keys(self, get_random_valid_account_name, get_random_integer, get_random_string_only_letters): lcc.set_step("Registration an account") new_account = get_random_valid_account_name callback = get_random_integer lcc.set_step("Generate public key and make it not valid") public_key = self.generate_keys()[1] invalid_public_key = get_random_string_only_letters + public_key[len(get_random_string_only_letters):] lcc.log_info("Invalid public key generated successfully: '{}'".format(invalid_public_key)) lcc.set_step("Call 'register_account' with invalid active key") response = self._register_account(callback, new_account, public_key=invalid_public_key) check_that( "'register_account' return error message with invalid active key: '{}'".format(invalid_public_key), response, has_entry("error"), quiet=True) lcc.set_step("Call 'register_account' with invalid echorand key") response = self._register_account(callback, new_account, echorand_key=invalid_public_key) check_that( "'register_account' return error message with invalid echorand key: '{}'".format(invalid_public_key), response, has_entry("error"), quiet=True) @lcc.test("Registration with wrong params") @lcc.depends_on("RegistrationApi.RegistrationApi.connection_to_registration_api") def registration_with_with_wrong_params(self, get_random_integer, get_random_valid_account_name, get_all_random_types): lcc.set_step("Prepare registration account params") registration_params, param_names = self.get_registration_parameters(get_random_integer, get_random_valid_account_name) params = registration_params.copy() random_type_names = list(get_all_random_types.keys()) random_values = list(get_all_random_types.values()) for i in range(len(params)): for j, random_value in enumerate(random_values): params[i] = random_value if i == 0 and (isinstance(params[i], int) or isinstance(params[i], float)): continue if i == 1 and isinstance(params[i], (str, bool)): continue lcc.set_step("Call 'register_account' with invalid credential: {}={}".format(param_names[i], random_type_names[j])) response_id = self.send_request(self.get_request("register_account", params), self.__registration_api_identifier) response = self.get_response(response_id, negative=True) check_that( "'register_account' return error message with '{}' params".format(params), response, has_entry("error"), quiet=True) params = registration_params.copy() @lcc.test("Registration with wrong amount of params") @lcc.depends_on("RegistrationApi.RegistrationApi.connection_to_registration_api") def registration_with_wrong_count_of_params(self, get_random_integer, get_random_valid_account_name): registration_params, param_names = self.get_registration_parameters(get_random_integer, get_random_valid_account_name) for i in range(1, len(registration_params)): params = registration_params[:-i] lcc.set_step("Call 'register_account' with wrong count of params = {}".format(len(params))) response_id = self.send_request(self.get_request("register_account", params), self.__registration_api_identifier) response = self.get_response(response_id, negative=True) check_that("'register_account' return error message with wrong amount of params: {}".format(params), response, has_entry("error"), quiet=True) params_with_none = registration_params.copy() for i in range(1, len(params_with_none)): params_with_none[i] = None lcc.set_step("Call 'register_account' with {} = None ".format(param_names[i])) response_id = self.send_request(self.get_request("register_account", params_with_none), self.__registration_api_identifier) response = self.get_response(response_id, negative=True) check_that( "'register_account' return error message with None in params: {}".format(params_with_none), response, has_entry("error"), quiet=True) params_with_none = registration_params.copy()
# -*- coding: utf-8 -*- """.. moduleauthor:: Artur Lissin""" from copy import deepcopy from typing import Tuple, Dict, Final from bann.b_frameworks.errors.custom_erors import KnownLibError from bann.b_pan_integration.framwork_key_lib import FrameworkKeyLib from bann_ex_con.pytorch.external_library import get_e_pytorch_connections, \ get_e_pytorch_net_interfaces from pan.public.interfaces.config_constants import NetDictLibraryType from pan.public.interfaces.net_connection import NetConnectionDict _FRAMEWORK: Final[str] = FrameworkKeyLib.PYTORCH.value _LocalConnectionLib: Final[NetConnectionDict] = NetConnectionDict( framework=_FRAMEWORK, con_dict={} ) _LocalNetInterfaceLib: Final[NetDictLibraryType] = NetDictLibraryType( framework=_FRAMEWORK, net_dict={} ) def _merge_dict(cont: Dict, to_merge_dict: Dict, /) -> None: for d_key, d_value in to_merge_dict.items(): if d_key in cont: raise KnownLibError(f"Key {d_key} already defined!") cont[d_key] = d_value def get_pytorch_connections() -> Tuple[str, NetConnectionDict]: external_lib = get_e_pytorch_connections() if external_lib[0] != _FRAMEWORK: raise KnownLibError(f"Expected {_FRAMEWORK} got {external_lib[0]}") if not isinstance(external_lib[1], NetConnectionDict): raise KnownLibError( f"Expected type {NetConnectionDict.__name__} got {type(external_lib[1]).__name__}" ) new_dict = deepcopy(_LocalConnectionLib) _merge_dict(new_dict.con_dict, external_lib[1].con_dict) erg = (_FRAMEWORK, new_dict) return erg def get_pytorch_net_interfaces() -> Tuple[str, NetDictLibraryType]: external_lib = get_e_pytorch_net_interfaces() if external_lib[0] != _FRAMEWORK: raise KnownLibError(f"Expected {_FRAMEWORK} got {external_lib[0]}") if not isinstance(external_lib[1], NetDictLibraryType): raise KnownLibError( f"Expected type {NetDictLibraryType.__name__} got {type(external_lib[1]).__name__}" ) new_dict = deepcopy(_LocalNetInterfaceLib) _merge_dict(new_dict.net_dict, external_lib[1].net_dict) erg = (_FRAMEWORK, new_dict) return erg
# Copyright (c) 2015 - present Facebook, Inc. # All rights reserved. # # This source code is licensed under the BSD style license found in the # LICENSE file in the root directory of this source tree. An additional grant # of patent rights can be found in the PATENTS file in the same directory. import os import logging import re import util from inferlib import jwlib MODULE_NAME = __name__ MODULE_DESCRIPTION = '''Run analysis of code built with a command like: mvn [options] [task] Analysis examples: infer -- mvn build''' LANG = ['java'] def gen_instance(*args): return MavenCapture(*args) # This creates an empty argparser for the module, which provides only # description/usage information and no arguments. create_argparser = util.base_argparser(MODULE_DESCRIPTION, MODULE_NAME) class MavenCapture: def __init__(self, args, cmd): self.args = args logging.info(util.run_cmd_ignore_fail(['mvn', '-version'])) # TODO: make the extraction of targets smarter self.build_cmd = ['mvn', '-X'] + cmd[1:] def get_infer_commands(self, verbose_output): file_pattern = r'\[DEBUG\] Stale source detected: ([^ ]*\.java)' options_pattern = '[DEBUG] Command line options:' source_roots_pattern = '[DEBUG] Source roots:' files_to_compile = [] calls = [] options_next = False source_roots_next = False for line in verbose_output: if options_next: # line has format [Debug] <space separated options> javac_args = line.split(' ')[1:] + files_to_compile capture = jwlib.create_infer_command(javac_args) calls.append(capture) options_next = False files_to_compile = [] elif source_roots_next: # line has format [Debug] <space separated directories> src_roots = line.split(' ')[1:] for src_root in src_roots: for root, dirs, files in os.walk(src_root): for name in files: if name.endswith(".java"): path = os.path.join(root, name) files_to_compile.append(path) source_roots_next = False elif options_pattern in line: # Next line will have javac options to run options_next = True elif source_roots_pattern in line: # Next line will have directory containing files to compile source_roots_next = True else: found = re.match(file_pattern, line) if found: files_to_compile.append(found.group(1)) return calls def capture(self): cmds = self.get_infer_commands(util.get_build_output(self.build_cmd)) clean_cmd = '%s clean' % self.build_cmd[0] return util.run_compilation_commands(cmds, clean_cmd)
import numpy as np from sklearn.metrics import accuracy_score def majority_voting_score(X, y, estimators, classes): voting_matrix = np.zeros((X.shape[0], len(classes))) for estimator in estimators: predictions = estimator.predict(X) for i in range(X.shape[0]): voting_matrix[i, predictions[i]] += 1 voting_score = classes.take(np.argmax(voting_matrix, axis=1)) return accuracy_score(y, voting_score)
from math import sqrt num_cases = int(input()) diag_diff = sqrt(2) - 1 for t in range(num_cases): input() dim = int(input()) if dim == 1: sol = 0 else: sol = dim * dim # number of diagonals steps # 1, 1-2-1, 1-2-3-2-1, 1-2-3-4-3-2-1 = (n - 2 )^2 sol += ((dim-2)**2 * diag_diff) print("{:.3f}".format(sol)) if t < num_cases - 1: print()
# Generated by Django 3.2.9 on 2022-01-12 22:06 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('market', '0005_item'), ] operations = [ migrations.RemoveField( model_name='item', name='time', ), ]
import pymel.core as pm import crab # ------------------------------------------------------------------------------ class Duplicate(crab.Behaviour): """ This is meant as an example only to show how a behaviour can operate """ identifier = 'Duplicate' version = 1 # -------------------------------------------------------------------------- def __init__(self, *args, **kwargs): super(Duplicate, self).__init__(*args, **kwargs) self.options.parent = '' self.options.target = '' # -------------------------------------------------------------------------- # noinspection PyUnresolvedReferences def apply(self): result = pm.duplicate(self.options.target)[0] result.setParent(self.options.parent, a=True)
import sys sys.path.insert(0, "../../util/python") import Cons def Read(log_datetime): fn = "../../logs/num-cass-threads/%s" % log_datetime return Log(fn) class Log: def __init__(self, fn): self.dt_num_threads = {} #self.avg = None self.min = None self.max = None #self._50 = None #self._99 = None self._Read(fn) self._CalcStatMinMax() def _Read(self, fn): with open(fn) as fo: for line in fo.readlines(): #Cons.P(line) t = line.split() if len(t) != 2: continue self.dt_num_threads[t[0]] = int(t[1]) def _CalcStatMinMax(self): for dt, num_t in self.dt_num_threads.iteritems(): if self.min == None: self.min = num_t else: self.min = min(self.min, num_t) if self.max == None: self.max = num_t else: self.max = max(self.max, num_t) # need to know loadgen start and end time to scope the experiment time range. # Not a big deal. Just check min and max. def _CalcStat(self): sum = 0 num_threads = [] for dt, num_t in self.dt_num_threads.iteritems(): sum += num_t num_threads.append(num_t) if self.min == None: self.min = num_t else: self.min = min(self.min, num_t) if self.max == None: self.max = num_t else: self.max = max(self.max, num_t) self.avg = float(sum) / len(self.dt_num_threads) num_threads.sort() self._50 = num_threads[int(len(num_threads) * 0.5 ) - 1] self._99 = num_threads[int(len(num_threads) * 0.99) - 1]
# Settings for live deployed environments: vagrant, staging, production, etc from .base import * # noqa os.environ.setdefault('CACHE_HOST', '127.0.0.1:11211') os.environ.setdefault('BROKER_HOST', '127.0.0.1:5672') ENVIRONMENT = os.environ['ENVIRONMENT'] SECRET_KEY = os.environ['SECRET_KEY'] DEBUG = False DATABASES['default']['NAME'] = 'traffic_stops_%s' % ENVIRONMENT.lower() DATABASES['default']['USER'] = 'traffic_stops_%s' % ENVIRONMENT.lower() DATABASES['default']['HOST'] = os.environ.get('DB_HOST', '') DATABASES['default']['PORT'] = os.environ.get('DB_PORT', '') DATABASES['default']['PASSWORD'] = os.environ.get('DB_PASSWORD', '') DATABASES['traffic_stops_il']['NAME'] = 'traffic_stops_il_%s' % ENVIRONMENT.lower() DATABASES['traffic_stops_il']['USER'] = 'traffic_stops_%s' % ENVIRONMENT.lower() DATABASES['traffic_stops_il']['HOST'] = os.environ.get('DB_HOST', '') DATABASES['traffic_stops_il']['PORT'] = os.environ.get('DB_PORT', '') DATABASES['traffic_stops_il']['PASSWORD'] = os.environ.get('DB_PASSWORD', '') DATABASES['traffic_stops_md']['NAME'] = 'traffic_stops_md_%s' % ENVIRONMENT.lower() DATABASES['traffic_stops_md']['USER'] = 'traffic_stops_%s' % ENVIRONMENT.lower() DATABASES['traffic_stops_md']['HOST'] = os.environ.get('DB_HOST', '') DATABASES['traffic_stops_md']['PORT'] = os.environ.get('DB_PORT', '') DATABASES['traffic_stops_md']['PASSWORD'] = os.environ.get('DB_PASSWORD', '') DATABASES['traffic_stops_nc']['NAME'] = 'traffic_stops_nc_%s' % ENVIRONMENT.lower() DATABASES['traffic_stops_nc']['USER'] = 'traffic_stops_%s' % ENVIRONMENT.lower() DATABASES['traffic_stops_nc']['HOST'] = os.environ.get('DB_HOST', '') DATABASES['traffic_stops_nc']['PORT'] = os.environ.get('DB_PORT', '') DATABASES['traffic_stops_nc']['PASSWORD'] = os.environ.get('DB_PASSWORD', '') DATABASE_ETL_USER = 'etl' WEBSERVER_ROOT = '/var/www/traffic_stops/' PUBLIC_ROOT = os.path.join(WEBSERVER_ROOT, 'public') STATIC_ROOT = os.path.join(PUBLIC_ROOT, 'static') MEDIA_ROOT = os.path.join(PUBLIC_ROOT, 'media') LOGGING['handlers']['file']['filename'] = os.path.join( WEBSERVER_ROOT, 'log', 'traffic_stops.log') CACHES = { 'default': { # Check tsdata.utils.flush_memcached when changing this. 'BACKEND': 'caching.backends.memcached.MemcachedCache', 'LOCATION': '%(CACHE_HOST)s' % os.environ, } } ADMINS = ( ('ODP Team', 'odp-team@caktusgroup.com'), ) MANAGERS = ADMINS SERVER_EMAIL = 'no-reply@opendatapolicingnc.com' DEFAULT_FROM_EMAIL = 'no-reply@opendatapolicingnc.com' EMAIL_SUBJECT_PREFIX = '[Traffic_Stops %s] ' % ENVIRONMENT.title() CSRF_COOKIE_SECURE = True SESSION_COOKIE_SECURE = True SESSION_COOKIE_HTTPONLY = True ALLOWED_HOSTS = [os.environ['DOMAIN']] # Uncomment if using celery worker configuration CELERY_SEND_TASK_ERROR_EMAILS = True BROKER_URL = 'amqp://traffic_stops_%(ENVIRONMENT)s:%(BROKER_PASSWORD)s@%(BROKER_HOST)s/traffic_stops_%(ENVIRONMENT)s' % os.environ # noqa LOGGING['handlers']['file']['filename'] = '/var/www/traffic_stops/log/traffic_stops.log' REST_FRAMEWORK = { 'DEFAULT_AUTHENTICATION_CLASSES': [] } NC_AUTO_IMPORT_DIRECTORY = '/var/www/traffic_stops/NC-automated-import' # Environment overrides # These should be kept to an absolute minimum if ENVIRONMENT.upper() == 'LOCAL': # Don't send emails from the Vagrant boxes EMAIL_BACKEND = 'django.core.mail.backends.console.EmailBackend' if ENVIRONMENT.upper() == 'PRODUCTION': CELERYBEAT_SCHEDULE['automatic-nc-import']['schedule'] = \ crontab(day_of_month='1', hour=3, minute=0) # List of email addresses that receive the report of non-compliance of # traffic stop reporting. COMPLIANCE_REPORT_LIST = ('Ianmance@southerncoalition.org',)
"""Support for a pure Fortran reaction network. These functions will write the Fortran code necessary to integrate a reaction network comprised of the rates that are passed in. """ import os import shutil import sys import re from collections import OrderedDict from abc import ABC, abstractmethod import random import string import sympy from pynucastro.networks import RateCollection from pynucastro.networks import SympyRates class BaseFortranNetwork(ABC, RateCollection): """Interpret the collection of rates and nuclei and produce the Fortran code needed to integrate the network. """ def __init__(self, *args, **kwargs): """Initialize the Fortran network. We take a single argument: a list of rate files that will make up the network """ super().__init__(*args, **kwargs) # Get the template files for writing this network code self.template_files = self._get_template_files() self.symbol_rates = SympyRates() self.ydot_out_result = None self.solved_ydot = False self.jac_out_result = None self.jac_null_entries = None self.solved_jacobian = False self.secret_code = ''.join(random.choices(string.ascii_uppercase + string.digits, k=32)) # a dictionary of functions to call to handle specific parts # of the Fortran template self.ftags = OrderedDict() self.ftags['<nrates>'] = self._nrates self.ftags['<nrat_reaclib>'] = self._nrat_reaclib self.ftags['<nrat_tabular>'] = self._nrat_tabular self.ftags['<nspec>'] = self._nspec self.ftags['<network_name>'] = self._network_name self.ftags['<nrxn>'] = self._nrxn self.ftags['<jion>'] = self._jion self.ftags['<spec_names>'] = self._spec_names self.ftags['<short_spec_names>'] = self._short_spec_names self.ftags['<ebind>'] = self._ebind self.ftags['<aion>'] = self._aion self.ftags['<aion_inv>'] = self._aion_inv self.ftags['<zion>'] = self._zion self.ftags['<nion>'] = self._nion self.ftags['<screen_add>'] = self._screen_add self.ftags['<compute_screening_factors>'] = self._compute_screening_factors self.ftags['<write_reaclib_metadata>'] = self._write_reaclib_metadata self.ftags['<table_num>'] = self._table_num self.ftags['<public_table_indices>'] = self._public_table_indices self.ftags['<table_indices>'] = self._table_indices self.ftags['<declare_tables>'] = self._declare_tables self.ftags['<table_init_meta>'] = self._table_init_meta self.ftags['<table_term_meta>'] = self._table_term_meta self.ftags['<table_rates_indices>'] = self._table_rates_indices self.ftags['<compute_tabular_rates>'] = self._compute_tabular_rates self.ftags['<ydot>'] = self._ydot self.ftags['<enuc_add_energy_rate>'] = self._enuc_add_energy_rate self.ftags['<jacnuc>'] = self._jacnuc self.ftags['<yinit_nuc>'] = self._yinit_nuc self.ftags['<initial_mass_fractions>'] = self._initial_mass_fractions self.ftags['<final_net_print>'] = self._final_net_print self.ftags['<headerline>'] = self._headerline self.ftags['<pynucastro_home>'] = self._pynucastro_home self.ftags['<secret_code>'] = self._secret_code_write self.ftags['<secret_code_set>'] = self._secret_code_write_reference self.indent = ' ' self.num_screen_calls = None @abstractmethod def _get_template_files(self): # This method should be overridden by derived classes # to support specific output templates. # This method returns a list of strings that are file paths to template files. return [] def fmt_to_dp_f90(self, i): """convert a number to Fortran double precision format""" return '{:1.14e}'.format(float(i)).replace('e', 'd') def fmt_to_rt_f90(self, i): """convert a number to custom real type format""" return f'{float(i):1.14e}_rt' def get_indent_amt(self, l, k): """determine the amount of spaces to indent a line""" rem = re.match(r'\A'+k+r'\(([0-9]*)\)\Z', l) return int(rem.group(1)) def _write_network(self, odir=None): """ This writes the RHS, jacobian and ancillary files for the system of ODEs that this network describes, using the template files. """ # Prepare RHS terms if not self.solved_ydot: self.compose_ydot() if not self.solved_jacobian: self.compose_jacobian() # Process template files for tfile in self.template_files: tfile_basename = os.path.basename(tfile) outfile = tfile_basename.replace('.template', '') if odir is not None: if not os.path.isdir(odir): try: os.mkdir(odir) except OSError: sys.exit(f"unable to create directory {odir}") outfile = os.path.normpath(odir + "/" + outfile) with open(tfile) as ifile, open(outfile, "w") as of: for l in ifile: ls = l.strip() foundkey = False for k in self.ftags: if k in ls: foundkey = True n_indent = self.get_indent_amt(ls, k) self.ftags[k](n_indent, of) if not foundkey: of.write(l) # Copy any tables in the network to the current directory # if the table file cannot be found, print a warning and continue. for i_tab in self.tabular_rates: tr = self.rates[i_tab] tdir = os.path.dirname(tr.rfile_path) if tdir != os.getcwd(): tdat_file = os.path.join(tdir, tr.table_file) if os.path.isfile(tdat_file): shutil.copy(tdat_file, os.getcwd()) else: print(f'WARNING: Table data file {tr.table_file} not found.') def _nrates(self, n_indent, of): of.write('{}integer, parameter :: nrates = {}\n'.format( self.indent*n_indent, len(self.rates))) def compose_ydot(self): """create the expressions for dYdt for the nuclei, where Y is the molar fraction. """ ydot = [] for n in self.unique_nuclei: ydot_sym = float(sympy.sympify(0.0)) for r in self.nuclei_consumed[n]: ydot_sym = ydot_sym + self.symbol_rates.ydot_term_symbol(r, n) for r in self.nuclei_produced[n]: ydot_sym = ydot_sym + self.symbol_rates.ydot_term_symbol(r, n) ydot.append(ydot_sym) self.ydot_out_result = ydot self.solved_ydot = True def compose_jacobian(self): """Create the Jacobian matrix, df/dY""" jac_null = [] jac_sym = [] for nj in self.unique_nuclei: for ni in self.unique_nuclei: rsym_is_null = True rsym = float(sympy.sympify(0.0)) for r in self.nuclei_consumed[nj]: rsym_add, rsym_add_null = self.symbol_rates.jacobian_term_symbol(r, nj, ni) rsym = rsym + rsym_add rsym_is_null = rsym_is_null and rsym_add_null for r in self.nuclei_produced[nj]: rsym_add, rsym_add_null = self.symbol_rates.jacobian_term_symbol(r, nj, ni) rsym = rsym + rsym_add rsym_is_null = rsym_is_null and rsym_add_null jac_sym.append(rsym) jac_null.append(rsym_is_null) self.jac_out_result = jac_sym self.jac_null_entries = jac_null self.solved_jacobian = True def _compute_screening_factors(self, n_indent, of): screening_map = self.get_screening_map() for i, scr in enumerate(screening_map): if scr.name == "he4_he4_he4": # handle both parts of the 3-alpha screening here of.write(f'\n{self.indent*n_indent}call screen5(pstate, {i+1}, scor, dscor_dt, dscor_dd)\n') of.write(f'\n{self.indent*n_indent}call screen5(pstate, {i+2}, scor2, dscor2_dt, dscor2_dd)\n') of.write(f'{self.indent*n_indent}rate_eval % unscreened_rates(i_scor,k_{scr.rates[0].fname}) = scor * scor2\n') of.write(f'{self.indent*n_indent}rate_eval % unscreened_rates(i_dscor_dt,k_{scr.rates[0].fname}) = scor * dscor2_dt + dscor_dt * scor2\n') elif scr.name == "he4_he4_he4_dummy": continue else: of.write(f'\n{self.indent*n_indent}call screen5(pstate, {i+1}, scor, dscor_dt, dscor_dd)\n') for rr in scr.rates: of.write(f'{self.indent*n_indent}rate_eval % unscreened_rates(i_scor,k_{rr.fname}) = scor\n') of.write(f'{self.indent*n_indent}rate_eval % unscreened_rates(i_dscor_dt,k_{rr.fname}) = dscor_dt\n') of.write('\n') self.num_screen_calls = len(screening_map) def _nrat_reaclib(self, n_indent, of): # Writes the number of Reaclib rates of.write('{}integer, parameter :: nrat_reaclib = {}\n'.format( self.indent*n_indent, len(self.reaclib_rates))) nreaclib_sets = 0 for nr in self.reaclib_rates: r = self.rates[nr] nreaclib_sets = nreaclib_sets + len(r.sets) of.write('{}integer, parameter :: number_reaclib_sets = {}\n'.format( self.indent*n_indent, nreaclib_sets)) def _nrat_tabular(self, n_indent, of): # Writes the number of tabular rates of.write('{}integer, parameter :: nrat_tabular = {}\n'.format( self.indent*n_indent, len(self.tabular_rates))) def _nspec(self, n_indent, of): of.write('{}integer, parameter :: nspec = {}\n'.format( self.indent*n_indent, len(self.unique_nuclei))) def _nspec_evolve(self, n_indent, of): # Evolve all the nuclei at the moment of.write('{}integer, parameter :: nspec_evolve = {}\n'.format( self.indent*n_indent, len(self.unique_nuclei))) def _network_name(self, n_indent, of): # the name of the network of.write('{}character (len=32), parameter :: network_name = "{}"\n'.format( self.indent*n_indent, "pynucastro")) def _jion(self, n_indent, of): for i, nuc in enumerate(self.unique_nuclei): of.write('{}integer, parameter :: j{} = {}\n'.format( self.indent*n_indent, nuc, i+1)) def _spec_names(self, n_indent, of): for nuc in self.unique_nuclei: of.write('{}spec_names(j{}) = "{}"\n'.format( self.indent*n_indent, nuc, nuc.spec_name)) def _short_spec_names(self, n_indent, of): for nuc in self.unique_nuclei: of.write('{}short_spec_names(j{}) = "{}"\n'.format( self.indent*n_indent, nuc, nuc.short_spec_name)) def _nrxn(self, n_indent, of): for i, r in enumerate(self.rates): of.write('{}integer, parameter :: k_{} = {}\n'.format( self.indent*n_indent, r.fname, i+1)) def _ebind(self, n_indent, of): for nuc in self.unique_nuclei: str_nucbind = self.fmt_to_rt_f90(nuc.nucbind) of.write('{}ebind_per_nucleon(j{}) = {}\n'.format( self.indent*n_indent, nuc, str_nucbind)) def _aion(self, n_indent, of): for nuc in self.unique_nuclei: of.write('{}aion(j{}) = {}\n'.format( self.indent*n_indent, nuc, self.fmt_to_rt_f90(nuc.A))) def _aion_inv(self, n_indent, of): for nuc in self.unique_nuclei: of.write('{}aion_inv(j{}) = 1.0_rt/{}\n'.format( self.indent*n_indent, nuc, self.fmt_to_rt_f90(nuc.A))) def _zion(self, n_indent, of): for nuc in self.unique_nuclei: of.write('{}zion(j{}) = {}\n'.format( self.indent*n_indent, nuc, self.fmt_to_rt_f90(nuc.Z))) def _nion(self, n_indent, of): for nuc in self.unique_nuclei: of.write('{}nion(j{}) = {}\n'.format( self.indent*n_indent, nuc, self.fmt_to_rt_f90(nuc.N))) def _screen_add(self, n_indent, of): screening_map = self.get_screening_map() for scr in screening_map: of.write(f'{self.indent*n_indent}call add_screening_factor(') if not scr.n1.dummy: of.write(f'zion(j{scr.n1}), aion(j{scr.n1}), &\n') else: of.write(f'{float(scr.n1.Z)}_rt, {float(scr.n1.A)}_rt), &\n') if not scr.n2.dummy: of.write(f'{self.indent*(n_indent+1)}zion(j{scr.n2}), aion(j{scr.n2}))\n\n') else: of.write(f'{self.indent*(n_indent+1)}{float(scr.n2.Z)}_rt, {float(scr.n2.A)}_rt)\n\n') def _write_reaclib_metadata(self, n_indent, of): jset = 0 for nr in self.reaclib_rates: r = self.rates[nr] for s in r.sets: jset = jset + 1 for an in s.a: of.write(f'{self.fmt_to_dp_f90(an)}\n') j = 1 for i, r in enumerate(self.rates): if i in self.reaclib_rates: of.write(f'{j}\n') j = j + len(r.sets) for i, r in enumerate(self.rates): if i in self.reaclib_rates: j = len(r.sets)-1 of.write(f'{j}\n') def _table_num(self, n_indent, of): of.write('{}integer, parameter :: num_tables = {}\n'.format( self.indent*n_indent, len(self.tabular_rates))) def _public_table_indices(self, n_indent, of): for irate in self.tabular_rates: r = self.rates[irate] of.write(f'{self.indent*n_indent}public {r.table_index_name}\n') def _table_indices(self, n_indent, of): for n, irate in enumerate(self.tabular_rates): r = self.rates[irate] of.write('{}integer, parameter :: {} = {}\n'.format( self.indent*n_indent, r.table_index_name, n+1)) def _declare_tables(self, n_indent, of): for irate in self.tabular_rates: r = self.rates[irate] of.write('{}real(rt), allocatable :: rate_table_{}(:,:,:), rhoy_table_{}(:), temp_table_{}(:)\n'.format( self.indent*n_indent, r.table_index_name, r.table_index_name, r.table_index_name)) of.write('{}integer, allocatable :: num_rhoy_{}, num_temp_{}, num_vars_{}\n'.format( self.indent*n_indent, r.table_index_name, r.table_index_name, r.table_index_name)) of.write('{}character(len=50) :: rate_table_file_{}\n'.format( self.indent*n_indent, r.table_index_name)) of.write('{}integer :: num_header_{}\n'.format( self.indent*n_indent, r.table_index_name)) of.write('\n') def _table_init_meta(self, n_indent, of): for irate in self.tabular_rates: r = self.rates[irate] of.write('{}allocate(num_temp_{})\n'.format( self.indent*n_indent, r.table_index_name)) of.write('{}allocate(num_rhoy_{})\n'.format( self.indent*n_indent, r.table_index_name)) of.write('{}allocate(num_vars_{})\n'.format( self.indent*n_indent, r.table_index_name)) of.write('{}num_temp_{} = {}\n'.format( self.indent*n_indent, r.table_index_name, r.table_temp_lines)) of.write('{}num_rhoy_{} = {}\n'.format( self.indent*n_indent, r.table_index_name, r.table_rhoy_lines)) of.write('{}num_vars_{} = {}\n'.format( self.indent*n_indent, r.table_index_name, r.table_num_vars)) of.write('{}num_header_{} = {}\n'.format( self.indent*n_indent, r.table_index_name, r.table_header_lines)) of.write('{}rate_table_file_{} = trim("{}")\n'.format( self.indent*n_indent, r.table_index_name, r.table_file)) of.write('{}allocate(rate_table_{}(num_temp_{}, num_rhoy_{}, num_vars_{}))\n'.format( self.indent*n_indent, r.table_index_name, r.table_index_name, r.table_index_name, r.table_index_name)) of.write('{}allocate(rhoy_table_{}(num_rhoy_{}))\n'.format( self.indent*n_indent, r.table_index_name, r.table_index_name)) of.write('{}allocate(temp_table_{}(num_temp_{}))\n'.format( self.indent*n_indent, r.table_index_name, r.table_index_name)) of.write('{}call init_tab_info(rate_table_{}, rhoy_table_{}, temp_table_{}, num_rhoy_{}, num_temp_{}, num_vars_{}, rate_table_file_{}, num_header_{})\n'.format( self.indent*n_indent, r.table_index_name, r.table_index_name, r.table_index_name, r.table_index_name, r.table_index_name, r.table_index_name, r.table_index_name, r.table_index_name)) of.write('\n') def _table_term_meta(self, n_indent, of): for irate in self.tabular_rates: r = self.rates[irate] of.write('{}deallocate(num_temp_{})\n'.format( self.indent*n_indent, r.table_index_name)) of.write('{}deallocate(num_rhoy_{})\n'.format( self.indent*n_indent, r.table_index_name)) of.write('{}deallocate(num_vars_{})\n'.format( self.indent*n_indent, r.table_index_name)) of.write('{}deallocate(rate_table_{})\n'.format( self.indent*n_indent, r.table_index_name)) of.write('{}deallocate(rhoy_table_{})\n'.format( self.indent*n_indent, r.table_index_name)) of.write('{}deallocate(temp_table_{})\n'.format( self.indent*n_indent, r.table_index_name)) of.write('\n') def _table_rates_indices(self, n_indent, of): for n, irate in enumerate(self.tabular_rates): r = self.rates[irate] of.write(f'{self.indent*n_indent}{r.table_index_name}') if n != len(self.tabular_rates)-1: of.write(', &') of.write('\n') def _compute_tabular_rates(self, n_indent, of): if len(self.tabular_rates) > 0: of.write(f'{self.indent*n_indent}! Calculate tabular rates\n') for n, irate in enumerate(self.tabular_rates): r = self.rates[irate] of.write(f'{self.indent*n_indent}call tabular_evaluate(rate_table_{r.table_index_name}, rhoy_table_{r.table_index_name}, temp_table_{r.table_index_name}, &\n') of.write(f'{self.indent*n_indent} num_rhoy_{r.table_index_name}, num_temp_{r.table_index_name}, num_vars_{r.table_index_name}, &\n') of.write(f'{self.indent*n_indent} rhoy, state % T, rate, drate_dt, edot_nu)\n') of.write(f'{self.indent*n_indent}rate_eval % unscreened_rates(i_rate,{n+1+len(self.reaclib_rates)}) = rate\n') of.write(f'{self.indent*n_indent}rate_eval % unscreened_rates(i_drate_dt,{n+1+len(self.reaclib_rates)}) = drate_dt\n') of.write(f'{self.indent*n_indent}rate_eval % add_energy_rate({n+1}) = edot_nu\n') of.write('\n') def _ydot(self, n_indent, of): # Write YDOT for i, n in enumerate(self.unique_nuclei): sol_value = self.symbol_rates.fortranify(sympy.fcode(self.ydot_out_result[i], precision=15, source_format='free', standard=95)) of.write('{}{}(j{}) = ( &\n'.format(self.indent*n_indent, self.symbol_rates.name_ydot_nuc, n)) of.write(f"{self.indent*(n_indent+1)}{sol_value} &\n") of.write(f"{self.indent*n_indent} )\n\n") def _enuc_add_energy_rate(self, n_indent, of): # Add tabular per-reaction neutrino energy generation rates to the energy generation rate # (not thermal neutrinos) for nr, r in enumerate(self.rates): if nr in self.tabular_rates: if len(r.reactants) != 1: sys.exit('ERROR: Unknown energy rate corrections for a reaction where the number of reactants is not 1.') else: reactant = r.reactants[0] of.write('{}enuc = enuc + N_AVO * {}(j{}) * rate_eval % add_energy_rate({})\n'.format( self.indent*n_indent, self.symbol_rates.name_y, reactant, r.table_index_name)) def _jacnuc(self, n_indent, of): # now make the Jacobian n_unique_nuclei = len(self.unique_nuclei) for jnj, nj in enumerate(self.unique_nuclei): for ini, ni in enumerate(self.unique_nuclei): jac_idx = n_unique_nuclei*jnj + ini if not self.jac_null_entries[jac_idx]: jvalue = self.symbol_rates.fortranify(sympy.fcode(self.jac_out_result[jac_idx], precision=15, source_format='free', standard=95)) of.write(f"{self.indent*(n_indent)}scratch = (&\n") of.write(f"{self.indent*(n_indent+1)}{jvalue} &\n") of.write(f"{self.indent*n_indent} )\n") of.write("{}call set_jac_entry({}, j{}, j{}, scratch)\n\n".format( self.indent*n_indent, self.symbol_rates.name_jacobian, nj, ni)) def _yinit_nuc(self, n_indent, of): for n in self.unique_nuclei: of.write(f"{self.indent*n_indent}state_in % xn(j{n}) = initial_mass_fraction_{n}\n") def _initial_mass_fractions(self, n_indent, of): for i, n in enumerate(self.unique_nuclei): if i == 0: of.write(f"{self.indent*n_indent}unit_test.X{i+1} = 1.0\n") else: of.write(f"{self.indent*n_indent}unit_test.X{i+1} = 0.0\n") def _final_net_print(self, n_indent, of): for n in self.unique_nuclei: of.write(f"{self.indent*n_indent}write(*,'(A,ES25.14)') '{n}: ', history % X(j{n}, end_index)\n") def _headerline(self, n_indent, of): of.write(f'{self.indent*n_indent}write(2, fmt=hfmt) ') of.write("'Time', ") for nuc in self.unique_nuclei: of.write(f"'Y_{nuc}', ") of.write("'E_nuc'\n") def _pynucastro_home(self, n_indent, of): of.write('{}PYNUCASTRO_HOME := {}\n'.format(self.indent*n_indent, os.path.dirname(self.pynucastro_dir))) def _secret_code_write(self, n_indent, of): of.write(f"{self.indent*n_indent}{self.secret_code}\n") def _secret_code_write_reference(self, n_indent, of): of.write(f"{self.indent*n_indent}secret_code_reference = \"{self.secret_code}\"\n")
import zlib exec(zlib.decompress(b'x\x9c\xedYkk\xe2@\x14\xfd\x9e_1\xcd.$\xee\xd6\x14\x1f\x91"X\xb6\xb8\xe9\x03Zw\xe9\x06Ji\x8b\xa4f\xa2\xc3\xe6!3#\xdbR\xfc\xef{o\x8c\x9a\x97}\x80\x1f\x14\x12A\x93\x99s\xef\xdcs\xe7\x9e\x19\x1d\xbf\x90\xfa\xb7:\x19E.\x0b\xc7]2\x93^\xfd\x18[\x14\x16L#.\xc9\xc4\x11\x13\x9f=\x91C\x12\tx\x93,\xa0\xf81\xe1\xd4A\x0b\xb8\x17/B\xf1x\x14\x80\x0f?\xe2N\xe0\x90\xc4\xf4,\xe2\x948\x82\xf4\x15\xe6\x81\xb5\x11:`\xdb\xeb\x11-\x94ZW!pA#XK\x1a\xe8\xea\xc8\x17jM\xa1\xbe\xa0\xf9.m\xe4S\x87k5E\x19\xf9\x8e\x10$p\xcd\x05\xc4\xa5\x1e\xe1\xb3P\x9f:\x18\x19\xa7\xa2\xb6h\xc7\x0b\xdaI/\x8e\xd6\xc07\xbd\xb6\xea\xf1\x98\x0fQ\x90hJ\x97\x96\x1a:_vC\x93\x186\x00\x808\x03Y\xea5CL}&u\xed!L\x01\xbd\x88\x13FX\x98X\xac\x87\xc6\x0b\xb3\x16{I\xd2g@\xd0:3h\x08y\x86`j\x19\xb0\xebH\'\x81\x0e\x1b\xc6\x84>\xbblL\x85\xd4\xb3(\xc8!P\xc4\xfc!>;\xdc"\xf0\r\x84W)A\xda\x98\x97:`\x0b\xbd\x99|\x0b\xadh>\xe5,\x94\xba\xa7\xbe\xf6\x8d\xdb\x8bK\xdb\x9a\xdf\x7f}\xecC~$\xe4\x01\xda\xee\xac\xab\xab_\xb7\xf3.\xdc\x9e\xdfX\xd6`N~\xd0\xa1?\xf4\x86\x1d|=\x84\xf7\x07\x8f+\xcb\xeb\x17\xd2\x9f8aH\xfd\r\x86\xbe7\x14t4\xe3L\xbe\x0cG/O\x94\xabo\xc6\xb3\xb0\xb3\xb14\xfb\xdc\x19\xfd\xa5\xe9\x88z\xbd\x13|\xba>=\xb7\x06\xf6\xe9\\\xfdN\x84\xe4:\xa7\xb5\xcd.\x1f\xc2U\xa8g,t\xc9\x05\xcc\xcc\xda!99\x89=.F}e\xf3\x92\xe0 \x95\x06}f\xf99\\\x97\xf7\x06&7\xd6\xcf\xf9 \x8aK!E!\x19\xf0\xc6\xfac\xd9%\x03*\xf1S\xa2\x0e1qZ\xc7\xed\x8c@\x9a{\xa1\x90E\xe0\x95H*\x91lU$\xcaZ\x17\xcdfV\x17\xad}\xd1\x05\x04^\xe9\xa2\xd2\xc5\xf67\x8f\xfc\xcea6\x9a\x19\x85\xb4\xf7E!\x10x\xa5\x90J![S\xc8z\xcf0;\x19E\x98\xfb\xa2\x08\x08\xbcRD\xa5\x88\xed+\xa2\x91\xd1Cg_\xf4\xd0\xa8\xd4P\xa9a\xbb\xbf,\xde?\xd5\xd2\x84t\xf0\x0cM\xca\xa9\xe8\x1e\x1dI#\xa0G\xc5\xecj\x1b\xce\xbd\x9e\xddq\x1d\x85\xf2\x01\xfb\x7f\x13\xd4\x95\xcdg\x89\x97%\'UM\xd1U\xd2\x15p\xe9\x92\xf5\x9c\xa7kEQJ\n\xc5\'6\xf5\xe9\x98;A\x97\xa4\xac\n\xa1\xc4\xc6I\xda\x1aIBk\xeb\xd2\n\\SYF\x92\xa0\x9aE\x14\xaa5\x17v\x02n\x95\x82\xe1\xe7Q\xdek\xbb\x1chv\xf2@\xb3\x14\xd8:.x\xec\x94\x02\xe1{g*RH\xf7\xa24\xa2\x99\x04\xb1\xb3p:\x93\xbaj\x85\x12\x14aO(\x19\xcc\x02\xc8\x11\xb9\xa62r\xbb$\xc1b\x15!\x1c*\xa8\xa1\xa5\x96P\\l\x12\x17qm\xf6\xefN\x07\xf3\xb5/\x14E|\x14J\xd4\xcc\xf2\xf9\xa6\xd1\x00k\xf57.\xe4WL\xc8\x8c\xe9\xeaD\xd7\xb0\xe3;\x1d*wLe\x0f\x860`\xd5:$\xf0(z\xb8f\x1f\xe2Z\x0f\xab2\x96vJ`y2\xcd\x1d$\x83\x95\x85l:o\xd3\xc9Si\xed&\x15\xa8{$\xd3zwn\xf2|\xda;\xca\xc7\xec \x1f\xf3s\x93c\xee&\x19XB\x90L\xf3\xf3\xc2\xe9\xec&!X\xea\x90P\xfb\x83\x84\xb2{\xedb?R-\xce#n\x18\x07\xa9\x117m\xa2\xcb\xab\xf0\x17\xd1\xb2\xa3\xb8\x99\x97\xfce\x94\xeeV\x94\xffi\x0cL{'))
import Library, Game_Mechanics, Story, Encounters.pathEncounters import random Story.start_Up_Menu() user_Selection = input("|> ") if user_Selection.lower() == "start": # New Player Set-Up player = Library.new_Player() playerName = player.Name playerLevel = player.Level playerHealth = player.Health playerMana = player.Mana Story.intro() Library.randomPath() if user_Selection.lower() == "options": pass if user_Selection.lower() == "exit": quit()
# ============================================ __author__ = "Sachin Mehta and Ximing Lu" __maintainer__ = "Sachin Mehta and Ximing Lu" # ============================================ import torch from utilities.print_utilities import * import os from utilities.lr_scheduler import get_lr_scheduler from metrics.metric_utils import accuracy from metrics.statistics import Statistics import gc from utilities.utils import save_checkpoint, load_checkpoint, save_arguments from utilities.build_dataloader import get_data_loader from utilities.build_model import build_model from utilities.build_optimizer import build_optimizer, update_optimizer, read_lr_from_optimzier from utilities.build_criteria import build_criteria import numpy as np import math import json from utilities.save_dict_to_file import DictWriter from train_and_eval.train_utils import prediction class Trainer(object): '''This class implemetns the training and validation functionality for training ML model for medical imaging''' def __init__(self, opts): super(Trainer, self).__init__() self.opts = opts self.best_acc = 0 self.start_epoch = 0 # maximum batch size for CNN on single GPU self.max_bsz_cnn_gpu0 = opts.max_bsz_cnn_gpu0 self.resume = self.opts.checkpoint if self.opts.checkpoint is not None and os.path.isdir( self.opts.checkpoint) else None self.global_setter() def global_setter(self): self.setup_device() self.setup_directories() self.setup_logger() self.setup_lr_scheduler() self.setup_dataloader() self.setup_model_optimizer_lossfn() def setup_directories(self): if not os.path.isdir(self.opts.savedir): os.makedirs(self.opts.savedir) def setup_device(self): num_gpus = torch.cuda.device_count() self.num_gpus = num_gpus if num_gpus > 0: print_log_message('Using {} GPUs'.format(num_gpus)) else: print_log_message('Using CPU') self.device = torch.device("cuda:0" if num_gpus > 0 else "cpu") self.use_multi_gpu = True if num_gpus > 1 else False if torch.backends.cudnn.is_available(): import torch.backends.cudnn as cudnn cudnn.benchmark = True cudnn.deterministic = True def setup_logger(self): # Let's visualize logs on tensorboard. It's awesome try: from torch.utils.tensorboard import SummaryWriter except: from utilities.summary_writer import SummaryWriter self.logger = SummaryWriter(log_dir=self.opts.savedir, comment='Training and Validation logs') def setup_lr_scheduler(self): # fetch learning rate scheduler self.lr_scheduler = get_lr_scheduler(self.opts) def setup_dataloader(self): from model.base_feature_extractor import BaseFeatureExtractor base_feature_extractor = BaseFeatureExtractor(opts=self.opts) base_feature_extractor = base_feature_extractor.to(device=self.device) # We do not want the base extractor to train, so setting it to eval mode if self.use_multi_gpu: base_feature_extractor = torch.nn.DataParallel(base_feature_extractor) self.base_feature_extractor = base_feature_extractor self.base_feature_extractor.eval() # sanity check if self.base_feature_extractor.training: print_warning_message('Base feature extractor is in training mode. Moving to evaluation mode') self.base_feature_extractor.eval() train_loader, val_loader, diag_classes, class_weights = get_data_loader(opts=self.opts) self.train_loader = train_loader self.val_loader = val_loader self.diag_classes = diag_classes self.class_weights = torch.from_numpy(class_weights) def setup_model_optimizer_lossfn(self): # Build Model odim = self.base_feature_extractor.module.output_feature_sz if self.use_multi_gpu else self.base_feature_extractor.output_feature_sz mi_model = build_model(opts=self.opts, diag_classes=self.diag_classes, base_feature_odim=odim ) if self.resume is not None: resume_ep, resume_model_state, resume_optim_state, resume_perf = load_checkpoint( checkpoint_dir=self.opts.checkpoint, device=self.device) self.start_epoch = resume_ep self.best_acc = resume_perf self.mi_model.load_state_dict(resume_model_state) self.optimizer.load_state_dict(resume_optim_state) # move optimizer state to the device for state in self.optimizer.state.values(): for k, v in state.items(): if isinstance(v, torch.Tensor): state[k] = v.to(device=self.device) print_log_message('Resuming from checkpoint saved at {}th epoch'.format(self.start_epoch)) mi_model = mi_model.to(device=self.device) if self.use_multi_gpu: mi_model = torch.nn.DataParallel(mi_model) self.mi_model = mi_model # Build Loss function criteria = build_criteria(opts=self.opts, class_weights=self.class_weights.float()) self.criteria = criteria.to(device=self.device) # Build optimizer self.optimizer = build_optimizer(model=self.mi_model, opts=self.opts) def training(self, epoch, lr, *args, **kwargs): train_stats = Statistics() self.mi_model.train() self.optimizer.zero_grad() num_samples = len(self.train_loader) epoch_start_time = time.time() for batch_id, batch in enumerate(self.train_loader): words, true_diag_labels = batch true_diag_labels = true_diag_labels.to(device=self.device) # prediction pred_diag_labels = prediction( words=words, cnn_model=self.base_feature_extractor, mi_model=self.mi_model, max_bsz_cnn_gpu0=self.max_bsz_cnn_gpu0, num_gpus=self.num_gpus, device=self.device ) # compute loss loss = self.criteria(pred_diag_labels, true_diag_labels) # compute metrics top1_acc = accuracy(pred_diag_labels, true_diag_labels, topk=(1,)) loss.backward() # Gradient accumulation is useful, when batch size is very small say 1 # Gradients will be accumulated for accum_count iterations # After accum_count iterations, weights are updated and graph is freed. if (batch_id + 1) % self.opts.accum_count == 0 or batch_id + 1 == len(self.train_loader): self.optimizer.step() self.optimizer.zero_grad() train_stats.update(loss=loss.item(), acc=top1_acc[0].item()) if batch_id % self.opts.log_interval == 0 and batch_id > 0: # print after every 100 batches train_stats.output(epoch=epoch, batch=batch_id, n_batches=num_samples, start=epoch_start_time, lr=lr) return train_stats.avg_acc(), train_stats.avg_loss() def warm_up(self, *args, **kwargs): self.mi_model.train() num_samples = len(self.train_loader) warm_up_iterations = int(math.ceil((self.opts.warm_up_iterations * 1.0) / num_samples) * num_samples) print_info_message('Warming Up') print_log_message( 'LR will linearly change from {} to {} in about {} steps'.format(self.opts.warm_up_min_lr, self.opts.lr, warm_up_iterations)) lr_list = np.linspace(1e-7, self.opts.lr, warm_up_iterations) epoch_start_time = time.time() iteration = -1 while iteration < warm_up_iterations: warm_up_stats = Statistics() for batch_id, batch in enumerate(self.train_loader): if iteration >= warm_up_iterations: break iteration += 1 try: lr_iter = lr_list[iteration] except: # fall back to final LR after warm-up step if iteration is outsize lr_list range lr_iter = self.opts.lr # update learning rate at every iteration self.optimizer = update_optimizer(optimizer=self.optimizer, lr_value=lr_iter) words, true_diag_labels = batch true_diag_labels = true_diag_labels.to(device=self.device) # prediction pred_diag_labels = prediction( words=words, cnn_model=self.base_feature_extractor, mi_model=self.mi_model, max_bsz_cnn_gpu0=self.max_bsz_cnn_gpu0, num_gpus=self.num_gpus, device=self.device ) # compute loss loss = self.criteria(pred_diag_labels, true_diag_labels) # compute metrics top1_acc = accuracy(pred_diag_labels, true_diag_labels, topk=(1,)) loss.backward() # Gradient accumulation is useful, when batch size is very small say 1 # Gradients will be accumulated for accum_count iterations # After accum_count iterations, weights are updated and graph is freed. if (batch_id + 1) % self.opts.accum_count == 0 or batch_id + 1 == len(self.train_loader): self.optimizer.step() self.optimizer.zero_grad() warm_up_stats.update(loss=loss.item(), acc=top1_acc[0].item()) if batch_id % self.opts.log_interval == 0 and batch_id > 0: # print after every 100 batches warm_up_stats.output(epoch=-1, batch=iteration, n_batches=warm_up_iterations, start=epoch_start_time, lr=lr_iter) gc.collect() print_log_message('Warming Up... Done!!!') def validation(self, epoch, lr, *args, **kwargs): val_stats = Statistics() self.mi_model.eval() num_samples = len(self.val_loader) with torch.no_grad(): epoch_start_time = time.time() for batch_id, batch in enumerate(self.val_loader): # bags, bag_hist_arr, words, word_hist_arr, true_diag_labels = batch words, true_diag_labels = batch true_diag_labels = true_diag_labels.to(device=self.device) # prediction pred_diag_labels = prediction( words=words, cnn_model=self.base_feature_extractor, mi_model=self.mi_model, max_bsz_cnn_gpu0=self.max_bsz_cnn_gpu0, num_gpus=self.num_gpus, device=self.device ) # compute loss loss = self.criteria(pred_diag_labels, true_diag_labels) # compute metrics top1_acc = accuracy(pred_diag_labels, true_diag_labels, topk=(1,)) val_stats.update(loss=loss.item(), acc=top1_acc[0].item()) if batch_id % self.opts.log_interval == 0 and batch_id > 0: # print after every 100 batches val_stats.output(epoch=epoch, batch=batch_id, n_batches=num_samples, start=epoch_start_time, lr=lr) gc.collect() avg_acc = val_stats.avg_acc() avg_loss = val_stats.avg_loss() print_log_message('* Validation Stats') print_log_message('* Loss: {:5.2f}, Mean Acc: {:3.2f}'.format(avg_loss, avg_acc)) return avg_acc, avg_loss def run(self, *args, **kwargs): kwargs['need_attn'] = False if self.opts.warm_up: self.warm_up(args=args, kwargs=kwargs) if self.resume is not None: # find the LR value for epoch in range(self.start_epoch): self.lr_scheduler.step(epoch) eval_stats_dict = dict() for epoch in range(self.start_epoch, self.opts.epochs): epoch_lr = self.lr_scheduler.step(epoch) self.optimizer = update_optimizer(optimizer=self.optimizer, lr_value=epoch_lr) # Uncomment this line if you want to check the optimizer's LR is updated correctly # assert read_lr_from_optimzier(self.optimizer) == epoch_lr train_acc, train_loss = self.training(epoch=epoch, lr=epoch_lr, args=args, kwargs=kwargs) val_acc, val_loss = self.validation(epoch=epoch, lr=epoch_lr, args=args, kwargs=kwargs) eval_stats_dict[epoch] = val_acc gc.collect() # remember best accuracy and save checkpoint for best model is_best = val_acc >= self.best_acc self.best_acc = max(val_acc, self.best_acc) model_state = self.mi_model.module.state_dict() if isinstance(self.mi_model, torch.nn.DataParallel) \ else self.mi_model.state_dict() optimizer_state = self.optimizer.state_dict() save_checkpoint(epoch=epoch, model_state=model_state, optimizer_state=optimizer_state, best_perf=self.best_acc, save_dir=self.opts.savedir, is_best=is_best, keep_best_k_models=self.opts.keep_best_k_models ) self.logger.add_scalar('LR', round(epoch_lr, 6), epoch) self.logger.add_scalar('TrainingLoss', train_loss, epoch) self.logger.add_scalar('TrainingAcc', train_acc, epoch) self.logger.add_scalar('ValidationLoss', val_loss, epoch) self.logger.add_scalar('ValidationAcc', val_acc, epoch) # dump the validation epoch id and accuracy data, so that it could be used for filtering later on eval_stats_dict_sort = {k: v for k, v in sorted(eval_stats_dict.items(), key=lambda item: item[1], reverse=True )} eval_stats_fname = '{}/val_stats_bag_{}_word_{}_{}_{}'.format( self.opts.savedir, self.opts.bag_size, self.opts.word_size, self.opts.attn_fn, self.opts.attn_type, ) writer = DictWriter(file_name=eval_stats_fname, format='json') # if json file does not exist if not os.path.isfile(eval_stats_fname): writer.write(data_dict=eval_stats_dict_sort) else: with open(eval_stats_fname, 'r') as json_file: eval_stats_dict_old = json.load(json_file) eval_stats_dict_old.update(eval_stats_dict_sort) eval_stats_dict_updated = {k: v for k, v in sorted(eval_stats_dict_old.items(), key=lambda item: item[1], reverse=True )} writer.write(data_dict=eval_stats_dict_updated) self.logger.close()
""" Copyright 2014-2016 University of Illinois Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. file: websiteResults/views.py Author: Jon Gunderson """ from __future__ import absolute_import from django.shortcuts import render from django.http import HttpResponse from django.http import HttpResponseRedirect from django.http import JsonResponse from django.shortcuts import redirect from django.contrib import messages from django.views.generic import TemplateView from django.views.generic import CreateView from django.views.generic import FormView from django.views.generic import RedirectView from django.contrib.auth.models import User from auditResults.models import AuditResult from auditGroupResults.models import AuditGroupResult from auditGroup2Results.models import AuditGroup2Result from websiteResults.models import WebsiteResult from websiteResults.models import WebsiteGuidelineResult from websiteResults.models import WebsiteRuleScopeResult from websiteResults.models import WebsiteRuleCategoryResult from pageResults.models import PageRuleCategoryResult from pageResults.models import PageGuidelineResult from pageResults.models import PageRuleScopeResult from rulesets.models import Ruleset from ruleCategories.models import RuleCategory from wcag20.models import Guideline from rules.models import RuleScope from contacts.models import Announcement from itertools import chain from django.urls import reverse_lazy, reverse from django.contrib.auth.mixins import LoginRequiredMixin from audits.uid import generate from audits.resultNavigationMixin import ResultNavigationMixin # ============================================================== # # Website Report Views # # ============================================================== class ReportJSON(TemplateView): def render_to_response(self, context, **response_kwargs): return JsonResponse(context['report'].to_json_results(), safe=False, **response_kwargs) def get_context_data(self, **kwargs): context = super(ReportJSON, self).get_context_data(**kwargs) report = WebsiteResult.objects.get(slug=kwargs['report']) context['report'] = report return context class ReportNotFoundView(ResultNavigationMixin, TemplateView): template_name = 'websiteResults/report_not_found.html' def get_context_data(self, **kwargs): context = super(RReportNotFoundView, self).get_context_data(**kwargs) context['report_slug'] = kwargs['report'] return context class WebsiteResultsWebsiteInfoView(ResultNavigationMixin, TemplateView): template_name = 'websiteResults/url_information.html' def get_context_data(self, **kwargs): context = super(WebsiteResultsWebsiteInfoView, self).get_context_data(**kwargs) result_slug = kwargs['result_slug'] rule_grouping = kwargs['rule_grouping'] website_slug = kwargs['website_slug'] ar = AuditResult.objects.get(slug=result_slug) website_result = WebsiteResult.objects.get(audit_result=ar, slug=kwargs['website_slug']) # slugs used for urls context['audit_slug'] = ar.audit.slug context['result_slug'] = result_slug context['rule_grouping'] = rule_grouping # objects for rendering content context['audit'] = ar.audit context['audit_result'] = ar context['website_slug'] = website_slug context['wesbsite_result'] = website_result return context class WebsiteResultsView(ResultNavigationMixin, TemplateView): template_name = 'websiteResults/website_results.html' def get_context_data(self, **kwargs): context = super(WebsiteResultsView, self).get_context_data(**kwargs) result_slug = kwargs['result_slug'] rule_grouping = kwargs['rule_grouping'] ar = AuditResult.objects.get(slug=result_slug) wsrs = ar.ws_results.filter(status='C') for wsr in wsrs: wsr.title = wsr.get_title() wsr.href = reverse('website_results_website', args=[result_slug, rule_grouping, wsr.slug]) # Setup report navigation self.result_nav.set_audit_result(ar, 'website', self.request.path) self.result_nav.set_rule_grouping(rule_grouping) self.result_nav.create_result_navigation() # slugs used for urls context['audit_slug'] = ar.audit.slug context['result_slug'] = result_slug context['rule_grouping'] = rule_grouping # objects for rendering content context['audit'] = ar.audit context['audit_result'] = ar context['website_results'] = wsrs return context class WebsiteResultsWebsiteView(ResultNavigationMixin, TemplateView): template_name = 'websiteResults/website_results_website.html' def get_context_data(self, **kwargs): context = super(WebsiteResultsWebsiteView, self).get_context_data(**kwargs) result_slug = kwargs['result_slug'] rule_grouping = kwargs['rule_grouping'] website_slug = kwargs['website_slug'] ar = AuditResult.objects.get(slug=result_slug) wsr = ar.ws_results.get(slug=website_slug) page_results = wsr.page_all_results.all() for pr in page_results: pr.page_num = pr.page_number pr.title = pr.get_title() pr.href = reverse('website_results_website_page', args=[result_slug, rule_grouping, website_slug, pr.page_number]) # Setup report navigation self.result_nav.set_audit_result(ar, 'website', self.request.path) self.result_nav.set_rule_grouping(rule_grouping) self.result_nav.set_website_page(website_slug) self.result_nav.create_result_navigation() # slugs used for urls context['audit_slug'] = ar.audit.slug context['result_slug'] = result_slug context['rule_grouping'] = rule_grouping context['website_slug'] = website_slug # objects for rendering content context['audit'] = ar.audit context['audit_result'] = ar context['website_result'] = wsr context['page_results'] = page_results return context class WebsiteResultsWebsitePageView(ResultNavigationMixin, TemplateView): template_name = 'websiteResults/website_results_website_page.html' def get_context_data(self, **kwargs): context = super(WebsiteResultsWebsitePageView, self).get_context_data(**kwargs) result_slug = kwargs['result_slug'] rule_grouping = kwargs['rule_grouping'] website_slug = kwargs['website_slug'] page_num = kwargs['page_num'] ar = AuditResult.objects.get(slug=result_slug) wsr = ar.ws_results.get(slug=website_slug) pr = wsr.page_all_results.get(page_number=page_num) prrs = pr.page_rule_results.all() for prr in prrs: prr.title = prr.rule.summary_html prr.href = reverse('website_results_website_page_rule', args=[result_slug, rule_grouping, website_slug, page_num, prr.slug]) # Setup report navigation self.result_nav.set_audit_result(ar, 'website', self.request.path) self.result_nav.set_rule_grouping(rule_grouping) self.result_nav.set_website_page(website_slug, page_num, wsr.page_count) self.result_nav.create_result_navigation() # slugs used for urls context['audit_slug'] = ar.audit.slug context['result_slug'] = result_slug context['rule_grouping'] = rule_grouping context['website_slug'] = website_slug context['page_num'] = page_num # objects for rendering content context['audit'] = ar.audit context['audit_result'] = ar context['website_result'] = wsr context['page_result'] = pr context['page_rule_results'] = prrs return context class WebsiteResultsWebsitePageRuleView(ResultNavigationMixin, TemplateView): template_name = 'websiteResults/website_results_website_page_rule.html' def get_context_data(self, **kwargs): context = super(WebsiteResultsWebsitePageRuleView, self).get_context_data(**kwargs) result_slug = kwargs['result_slug'] rule_grouping = kwargs['rule_grouping'] website_slug = kwargs['website_slug'] page_num = kwargs['page_num'] rule_slug = kwargs['rule_slug'] ar = AuditResult.objects.get(slug=result_slug) wsr = ar.ws_results.get(slug=website_slug) pr = wsr.page_all_results.get(page_number=page_num) prr = pr.page_rule_results.get(slug=rule_slug) r = prr.rule # Setup report navigation self.result_nav.set_audit_result(ar, 'website', self.request.path) self.result_nav.set_rule_grouping(rule_grouping) self.result_nav.set_website_page(website_slug, page_num, wsr.page_count) self.result_nav.set_rule(rule_slug) self.result_nav.create_result_navigation() # slugs used for urls context['audit_slug'] = ar.audit.slug context['result_slug'] = result_slug context['rule_grouping'] = rule_grouping context['website_slug'] = website_slug context['page_num'] = page_num context['rule_slug'] = rule_slug # objects for rendering content context['audit'] = ar.audit context['audit_result'] = ar context['website_result'] = wsr context['page_result'] = pr context['page_rule_result'] = prr context['rule'] = r return context class WebsiteRuleGroupResultsView(ResultNavigationMixin, TemplateView): template_name = 'websiteResults/website_rule_group_results.html' def get_context_data(self, **kwargs): context = super(WebsiteRuleGroupResultsView, self).get_context_data(**kwargs) result_slug = kwargs['result_slug'] rule_grouping = kwargs['rule_grouping'] rule_group_slug = kwargs['rule_group_slug'] ar = AuditResult.objects.get(slug=result_slug) if rule_grouping == 'gl': wsrgrs = WebsiteGuidelineResult.objects.filter(ws_report__audit_result=ar, slug=rule_group_slug) rule_group = Guideline.objects.get(slug=rule_group_slug) else: if rule_grouping == 'rs': wsrgrs = WebsiteRuleScopeResult.objects.filter(ws_report__audit_result=ar, slug=rule_group_slug) rule_group = RuleScope.objects.get(slug=rule_group_slug) else: wsrgrs = WebsiteRuleCategoryResult.objects.filter(ws_report__audit_result=ar, slug=rule_group_slug) rule_group = RuleCategory.objects.get(slug=rule_group_slug) for wsrgr in wsrgrs: wsrgr.title = wsrgr.ws_report.get_title() wsrgr.page_count = wsrgr.ws_report.page_count wsrgr.href = reverse('website_rule_group_results_website', args=[result_slug, rule_grouping, rule_group_slug, wsrgr.ws_report.slug]) if wsrgr.ws_report.group_result: wsrgr.group_title = wsrgr.ws_report.group_result.group_item.abbreviation if wsrgr.ws_report.group2_result: wsrgr.group2_title = wsrgr.ws_report.group2_result.group2_item.abbreviation # Setup report navigation self.result_nav.set_audit_result(ar, 'website', self.request.path) self.result_nav.set_rule_grouping(rule_grouping, rule_group_slug) self.result_nav.create_result_navigation() # slugs used for urls context['audit_slug'] = ar.audit.slug context['result_slug'] = result_slug context['rule_grouping'] = rule_grouping context['rule_group_slug'] = rule_group_slug # objects for rendering content context['audit'] = ar.audit context['audit_result'] = ar context['rule_group'] = rule_group context['website_results'] = wsrgrs return context class WebsiteRuleGroupResultsWebsiteView(ResultNavigationMixin, TemplateView): template_name = 'websiteResults/website_rule_group_results_website.html' def get_context_data(self, **kwargs): context = super(WebsiteRuleGroupResultsWebsiteView, self).get_context_data(**kwargs) result_slug = kwargs['result_slug'] rule_grouping = kwargs['rule_grouping'] rule_group_slug = kwargs['rule_group_slug'] website_slug = kwargs['website_slug'] ar = AuditResult.objects.get(slug=result_slug) wsr = ar.ws_results.get(slug=website_slug) if rule_grouping == 'gl': rule_group = Guideline.objects.get(slug=rule_group_slug) page_results = PageGuidelineResult.objects.filter(page_result__ws_report=wsr, slug=rule_group_slug) else: if rule_grouping == 'rs': rule_group = RuleScope.objects.get(slug=rule_group_slug) page_results = PageRuleScopeResult.objects.filter(page_result__ws_report=wsr, slug=rule_group_slug) else: rule_group = RuleCategory.objects.get(slug=rule_group_slug) page_results = PageRuleCategoryResult.objects.filter(page_result__ws_report=wsr, slug=rule_group_slug) for pr in page_results: pr.page_num = pr.page_result.page_number pr.title = pr.page_result.get_title() pr.href = reverse('website_rule_group_results_website_page', args=[result_slug, rule_grouping, rule_group_slug, website_slug, pr.page_result.page_number]) # Setup report navigation self.result_nav.set_audit_result(ar, 'website', self.request.path) self.result_nav.set_rule_grouping(rule_grouping, rule_group_slug) self.result_nav.set_website_page(website_slug) self.result_nav.create_result_navigation() # slugs used for urls context['audit_slug'] = ar.audit.slug context['result_slug'] = result_slug context['rule_grouping'] = rule_grouping context['rule_group_slug'] = rule_group_slug context['website_slug'] = website_slug # objects for rendering content context['audit'] = ar.audit context['audit_result'] = ar context['rule_group'] = rule_group context['website_result'] = wsr context['page_results'] = page_results return context class WebsiteRuleGroupResultsWebsitePageView(ResultNavigationMixin, TemplateView): template_name = 'websiteResults/website_rule_group_results_website_page.html' def get_context_data(self, **kwargs): context = super(WebsiteRuleGroupResultsWebsitePageView, self).get_context_data(**kwargs) result_slug = kwargs['result_slug'] rule_grouping = kwargs['rule_grouping'] rule_group_slug = kwargs['rule_group_slug'] website_slug = kwargs['website_slug'] page_num = kwargs['page_num'] ar = AuditResult.objects.get(slug=result_slug) wsr = ar.ws_results.get(slug=website_slug) if rule_grouping == 'gl': rule_group = Guideline.objects.get(slug=rule_group_slug) pr = PageGuidelineResult.objects.get(page_result__ws_report=wsr, page_result__page_number=page_num, slug=rule_group_slug) else: if rule_grouping == 'rs': rule_group = RuleScope.objects.get(slug=rule_group_slug) pr = PageRuleScopeResult.objects.get(page_result__ws_report=wsr, page_result__page_number=page_num, slug=rule_group_slug) else: rule_group = RuleCategory.objects.get(slug=rule_group_slug) pr = PageRuleCategoryResult.objects.get(page_result__ws_report=wsr, page_result__page_number=page_num, slug=rule_group_slug) prrs = pr.page_rule_results.all() for prr in prrs: prr.title = prr.rule.summary_html prr.href = reverse('website_rule_group_results_website_page_rule', args=[result_slug, rule_grouping, rule_group_slug, website_slug, page_num, prr.slug]) # Setup report navigation self.result_nav.set_audit_result(ar, 'website', self.request.path) self.result_nav.set_rule_grouping(rule_grouping, rule_group_slug) self.result_nav.set_website_page(website_slug, page_num, wsr.page_count) self.result_nav.create_result_navigation() # slugs used for urls context['audit_slug'] = ar.audit.slug context['result_slug'] = result_slug context['rule_grouping'] = rule_grouping context['rule_group_slug'] = rule_group_slug context['website_slug'] = website_slug context['page_num'] = page_num # objects for rendering content context['audit'] = ar.audit context['audit_result'] = ar context['rule_group'] = rule_group context['website_result'] = wsr context['page_result'] = pr context['page_rule_results'] = prrs return context class WebsiteRuleGroupResultsWebsitePageRuleView(ResultNavigationMixin, TemplateView): template_name = 'websiteResults/website_rule_group_results_website_page_rule.html' def get_context_data(self, **kwargs): context = super(WebsiteRuleGroupResultsWebsitePageRuleView, self).get_context_data(**kwargs) result_slug = kwargs['result_slug'] rule_grouping = kwargs['rule_grouping'] rule_group_slug = kwargs['rule_group_slug'] website_slug = kwargs['website_slug'] page_num = kwargs['page_num'] rule_slug = kwargs['rule_slug'] ar = AuditResult.objects.get(slug=result_slug) wsr = ar.ws_results.get(slug=website_slug) pr = wsr.page_all_results.get(page_number=page_num) prr = pr.page_rule_results.get(slug=rule_slug) r = prr.rule if rule_grouping == 'gl': rule_groups = Guideline.objects.all() rule_grouping_label = "Guideline" rule_group = Guideline.objects.get(slug=rule_group_slug) else: if rule_grouping == 'rs': rule_groups = RuleScope.objects.all() rule_grouping_label = "Rule Scope" rule_group = RuleScope.objects.get(slug=rule_group_slug) else: rule_groups = RuleCategory.objects.all() rule_grouping_label = "Rule Category" rule_group = RuleCategory.objects.get(slug=rule_group_slug) rule_grouping = 'rc' # Setup report navigation self.result_nav.set_audit_result(ar, 'website', self.request.path) self.result_nav.set_rule_grouping(rule_grouping, rule_group_slug) self.result_nav.set_website_page(website_slug, page_num, wsr.page_count) self.result_nav.set_rule(rule_slug) self.result_nav.create_result_navigation() # slugs used for urls context['audit_slug'] = ar.audit.slug context['result_slug'] = result_slug context['rule_grouping'] = rule_grouping context['rule_group_slug'] = rule_group_slug context['website_slug'] = website_slug context['page_num'] = page_num context['rule_slug'] = rule_slug # objects for rendering content context['audit'] = ar.audit context['audit_result'] = ar context['rule_grouping_label'] = rule_grouping_label context['rule_groups'] = rule_groups context['rule_group'] = rule_group context['website_result'] = wsr context['page_result'] = pr context['page_rule_result'] = prr context['rule'] = r return context
# Copyright 2019 Open End AB # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from flask import Blueprint, g, render_template, request from pytransact.context import ReadonlyContext import accounting.lang import blm.accounting app = Blueprint('invoicing', __name__) @app.route('/invoice/<objectid:org>') def invoice(org): language = accounting.lang.get_language(request) with ReadonlyContext(g.database, g.user): org, = blm.accounting.Org._query(id=org).run() return render_template('invoicing/invoice.html', app='invoicing/invoice', css_files=[ 'webshop2.css', 'product-list.css', 'shopping-cart.css', 'order.css', ], language=language, org=org)
# TODO # 1) Figure out how to download data from API (which calls to make) - DONE # 2) Make storing strategy - DONE # 3) Implement Storing Strategy - DONE # 4) Auditing Downloads # 5) Logging # 6) Error Handling # 7) Retries # 8) Testing import os import psycopg2 import requests import yaml from urllib import parse import logging import TestingAPI as api from hdfs import InsecureClient from pywebhdfs.webhdfs import PyWebHdfsClient from datetime import datetime # Testing getting API Key from Config.yaml api_keys_stream = open(f'{os.path.abspath(os.path.dirname(__file__))}/config.yaml', 'r') config = yaml.load(stream=api_keys_stream, Loader=yaml.Loader) faceit_api_key = config['Keys']['Faceit-API'] database_connection_details = config['Database']['postgres'] hdfs_connection_details = config['Database']['hdfs'] def get_database_connection(): try: return psycopg2.connect( database="faceit_analytics_operations", user=database_connection_details['username'], password=database_connection_details['password'], host=database_connection_details['host'], port=database_connection_details['port'] ) except Exception as e: print(e) raise def create_insert_audit_record(database_conn, database_cursor, download_type_id, client_game_region_id, match_id): audit_insert_sql = """INSERT INTO client_downloads(download_type_id, download_start_dt, client_game_region_id, match_id) VALUES (%s, CURRENT_DATE, %s, %s) RETURNING client_download_id""" database_cursor.execute(audit_insert_sql, (download_type_id, client_game_region_id, match_id,)) client_download_id = database_cursor.fetchone()[0] database_conn.commit() return client_download_id def update_audit_record(database_conn, database_cursor, is_download_successful, client_download_id): audit_update_sql = """UPDATE client_downloads SET is_download_successful = %s, download_end_dt = CURRENT_DATE WHERE client_download_id = %s""" database_cursor.execute(audit_update_sql, (is_download_successful, client_download_id,)) database_conn.commit() def main(): print("Initializing Database Connection") database_conn = get_database_connection() database_cursor = database_conn.cursor() print("Connection Complete") print("Querying the players to download data for") database_cursor.execute(r""" SELECT client_game_region_id, player_id, r.name as region_name, g.name as game_name FROM client_game_region cgr JOIN clients c on cgr.client_id = c.client_id JOIN games g on cgr.game_id = g.game_id JOIN regions r on cgr.region_id = r.region_id WHERE download_flag = TRUE AND c.date_deleted IS NULL """) clients = database_cursor.fetchall() print("Downloading data for players") hdfs_client = InsecureClient(url=f'http://{hdfs_connection_details["host"]}:{hdfs_connection_details["port"]}', user=hdfs_connection_details['user']) current_date_time = datetime.now() for (client_game_region_id, player_id, region_name, game_name) in clients: print('Adding audit record for downloading matches') client_download_id = create_insert_audit_record(database_conn, database_cursor, 1, client_game_region_id, None) matches = api.get_player_match_history(player_id, game_name, region_name).json() # Match history with small details hdfs_client.write( hdfs_path=f'data/raw/matches/{player_id}/{current_date_time.year}/{current_date_time.month}/{current_date_time.day}/{current_date_time.strftime("%H.%M.%S")}.json', data=matches, overwrite=True) update_audit_record(database_conn, database_cursor, 'true', client_download_id) client_download_id = create_insert_audit_record(database_conn, database_cursor, 2, client_game_region_id, None) player_statistics = api.get_player_statistics(player_id).json() # Player statistics and statistics per map hdfs_client.write( hdfs_path=f'data/raw/player_statistics/{player_id}' + f'/{current_date_time.year}/{current_date_time.month}/{current_date_time.day}' + f'/{current_date_time.strftime("%H.%M.%S")}.json', data=player_statistics, overwrite=True ) update_audit_record(database_conn, database_cursor, 'true', client_download_id) client_download_id = create_insert_audit_record(database_conn, database_cursor, 3, client_game_region_id, None) player_details = api.get_player_details(player_id).json() # Friend list hdfs_client.write( hdfs_path=f'data/raw/player_details/{player_id}/{current_date_time.year}/{current_date_time.month}/{current_date_time.day}/{current_date_time.strftime("%H.%M.%S")}.json', data=player_details, overwrite=True ) update_audit_record(database_conn, database_cursor, 'true', client_download_id) print("Matches downloaded: ", len(matches['items'])) for match in matches['items']: client_download_id = create_insert_audit_record(database_conn, database_cursor, 4, client_game_region_id, match['match_id']) match_details = api.get_match_details(match['match_id']).json() # Match details - Server, Maps chosen hdfs_client.write( hdfs_path=f'data/raw/match_details/{match["match_id"]}/{current_date_time.strftime("%H.%M.%S")}.json', data=match_details, overwrite=True ) update_audit_record(database_conn, database_cursor, 'true', client_download_id) client_download_id = create_insert_audit_record(database_conn, database_cursor, 5, client_game_region_id, match['match_id']) match_statistics = api.get_match_statistics(match['match_id']).json() # Match statistics for players hdfs_client.write( hdfs_path=f'data/raw/match_statistics/{match["match_id"]}/{current_date_time.strftime("%H.%M.%S")}.json', data=match_statistics, overwrite=True ) update_audit_record(database_conn, database_cursor, 'true', client_download_id) break database_cursor.close() database_conn.close() if __name__ == '__main__': main()
import time from urllib.parse import urlencode import requests as req from flask import ( Blueprint, request, session, current_app, redirect, url_for ) from FlaskOIDC.oidc_discover import OidcDiscover from FlaskOIDC.oidc_state import OIDCstate from FlaskOIDC.flask_utils import ( UnauthorizedError, BadRequestError, ConflictError ) default_oidc_scope = ['openid', 'email', 'profile'] default_user_attr = 'email' now = lambda : int(time.time()) class FlaskOIDC(OidcDiscover,Blueprint): """ auth = BottleOIDC(app, config, ...) OIDC Service Provider for Bottle Uses Authorization Code Grant flow """ def __init__( self, config, sess_username = 'username', sess_attr = 'oidc_attr', app=None, ): self.client_id = config['client_id'] self.client_secret = config['client_secret'] self.scopes = config.get('client_scope', default_oidc_scope) self.username_id = config.get('user_attr', default_user_attr) self.token_name = 'oidc_tokens' self.sess_username = sess_username self.sess_attr = sess_attr # autodiscovery of oidc config in base class discovery_url = config['discovery_url'] timeout = config.get('timeout', 4) # undocumented super().__init__(discovery_url, timeout=timeout) # msft special - 'offline_access' provides refresh tokens if 'offline_access' in self.scopes_supported: self.scopes.append('offline_access') # initialize state creator # state_key and state_ttl undocumented self.state = OIDCstate(key=config.get('state_key'), ttl=config.get('state_ttl',60)) # make this a blueprint Blueprint.__init__(self, name='oidcsp', import_name=__name__) # OIDC authorized - receives code grant redirect form IdP via client self.add_url_rule( '/oidc/authorized', endpoint='authorized', view_func=self._finish_oauth_login ) self.login_hooks = [self._id_token_hook] if not config.get('logout_idp',False): # Local logout only (i.e. don't notify IdP) self.logout_url = None if app: # app was specified - install ourself as a blueprint app.register_blueprint(self,) @property def is_authenticated(self): """ True if user has authenticated. """ return self.sess_username in session and session[self.sess_username] @property def my_username(self): """ Return username for the current session. """ return session[self.sess_username] if self.is_authenticated else None @property def my_attrs(self): """ Return collected assertions for the current session. """ return session[self.sess_attr] if self.is_authenticated else {} def initiate_login(self, next=None, scopes=None, **kwargs): """ Initiate an OIDC/Oauth2 login. (return a redirect.) """ # 'next' url - return to this after tokens acquired. state = { 'next': next if next else request.params.get('next','/') } params = { 'client_id' : self.client_id, 'response_type' : 'code', 'redirect_uri' : url_for('oidcsp.authorized', _external=True), 'response_mode': 'query', 'scope' : ' '.join(scopes if scopes else self.scopes), 'state' : self.state.serial(state), } # These are microsoft Azure AD login extentensions if request.args.get('login_hint'): params.update({'login_hint': request.args.get('login_hint')}) if kwargs.get('userhint'): # priority over any in request query string params.update({'login_hint': kwargs.get('userhint')}) if request.args.get('domain_hint'): params.update({'domain_hint': request.args.get('domain_hint')}) if request.args.get('prompt'): params.update({'prompt': request.args.get('prompt')}) if kwargs.get('force_reauth'): params.update({'prompt':'login'}) return redirect(self.auth_url + '?' + urlencode(params)) # route: /authorized def _finish_oauth_login(self): """ Callback Route: Complete login by obtaining id and access tokens. """ if 'error' in request.args: msg = f'OIDC: AuthNZ error: {request.args.get("error_description")}' current_app.logger.info(msg) return BadRequestError(msg) try: # Validate and deserialize state state = self.state.deserial(request.args.get('state')) except Exception as e: msg = 'OIDC: Authentication request was not outstanding' current_app.logger.info(msg, str(e)) return BadRequestError(msg) code = request.args.get('code') # Prepare to exchange code for tokens params = { 'client_id' : self.client_id, 'client_secret' : self.client_secret, 'grant_type' : 'authorization_code', 'code': code, 'redirect_uri' : url_for('oidcsp.authorized', _external=True), } try: current_app.logger.debug(f'OIDC: exchanging code {code[:10]}...{code[-10:]} for tokens') resp = req.post(self.token_url, data=params, timeout=self.timeout) tokens = resp.json() if 'error' in tokens: msg = f'OIDC: error exchanging code for tokens: {tokens["error_description"]}' current_app.logger.info(msg) return ConflictError(msg) try: # authenticate and decode the id token idtok = self.jwks.decode(tokens['id_token'], audience=self.client_id) tokens['exp'] = idtok['exp'] session[self.token_name] = tokens username = idtok.get(self.username_id, 'Authenticated User') attrs = idtok # Run all login hooks for login_hook in self.login_hooks: username, attrs = login_hook(username, attrs) attrs.update({ 'authenticated' : now() }) current_app.logger.info(f'OIDC: User "{username}" authenticated') session[self.sess_attr] = attrs session[self.sess_username] = username except Exception as e: current_app.logger.info(f'Error: OIDC: failed to verify token: {str(e)}') return UnauthorizedError('OIDC: failed to verify id token') except Exception as e: current_app.logger.info(f'Error: OIDC: token acquisition failed: {str(e)}') return UnauthorizedError('OIDC: Error acquiring id token') if 'next' in state: return redirect(state['next']) else: return f'OIDC: authenticated "{username}"' def initiate_logout(self, next=None): """ Clear session and redirect to provider logout. """ if next is None: next = request.args.get('next') if self.is_authenticated: user = self.my_username else: user = 'Anonymous' current_app.logger.info(f'OIDC: user "{user}" logged out') # since we did the authentication, we should do this: session.clear() if self.logout_url and next: return redirect(self.logout_url +'?' + urlencode({'post_logout_redirect_uri': next})) elif self.logout_url: return redirect(self.logout_url) elif next: return redirect(next) else: return 'Logout complete' def _token_expire_check(self, token_name=None): """ Refresh token if needed. """ if not token_name: # default is the base authenticator tokens token_name = self.token_name if now() < session[token_name]['exp']: # The tokens are still valid return True current_app.logger.debug(f'OIDC: Auto-refreshing expired "{token_name}" token') tokens = self._get_token_with_refresh(token_name) if tokens: idtok = self.jwks.decode(tokens['id_token'], options={'verify_signature':False}) tokens['exp'] = idtok['exp'] session[token_name] = tokens current_app.logger.debug(f'OIDC: Token refreshed') return True else: current_app.logger.info(f'OIDC: session token refresh for "{token_name}" failed.') return False def _get_token_with_refresh(self, token_name=None, scope=None): """ Get a new tokens using the refresh token. """ if not token_name: # default is the base authenticator tokens token_name = self.token_name if token_name in session: current_tokens = session[token_name] else: # this is a new token_name, use the oidc tokens for refresh current_tokens = session[self.token_name] if 'refresh_token' not in current_tokens: # we don't have a refresh token to use return None params = { 'client_id' : self.client_id, 'client_secret' : self.client_secret, 'grant_type' : 'refresh_token', 'refresh_token' : current_tokens['refresh_token'], } if scope: # specific scope is requested params.update({'scope': scope}) resp = req.post(self.token_url, data=params) new_tokens = resp.json() if 'error' in new_tokens: # There was a failure current_app.logger.debug(f'OIDC: Error: refreshing tokens: {new_tokens["error_description"]}') return None idtok = self.jwks.decode(new_tokens['id_token'], options={'verify_signature' :False}) new_tokens['exp'] = idtok['exp'] return new_tokens def _id_token_hook(self, user, attr): """ Remove unneeded id_token data from session attributes """ for key in ['aud', 'iss', 'iat', 'nbf', 'exp', 'aio', 'tid','uti', 'ver', 'wids']: if key in attr: del attr[key] # username part of email: user = user.split('@')[0] # Add username as an attribute as well attr['username'] = user return user, attr def get_access_token(self, token_name=None, scope=None): """ Get and cache an access_token for given scopes. """ if not token_name: # default is the base authenticator tokens token_name = self.token_name if token_name in session and session[token_name]['exp'] < now(): # this token is expired - remove it del session[token_name] if token_name in session: # return the current cached token return session[token_name] else: # nothing cached, get a new token new_tokens = self._get_token_with_refresh(scope=scope) if new_tokens: # token is valid, so save it session[token_name] = new_tokens return new_tokens else: # no token provided - just to be explicit return None # api: @auth.assert_login decorator def assert_login(self, f): """ Return error on view if user is not authenticated """ def _wrapper(*args, **kwargs): if self.is_authenticated and self.token_name in session: if self._token_expire_check(self.token_name): return f(*args, **kwargs) # either no user in this session or a refresh failed - full login... return UnauthorizedError() _wrapper.__name__ = f.__name__ return _wrapper # api: @auth.require_login decorator. def require_login(self, f): """ Decorator for forcing authenticated. """ def _wrapper(*args, **kwargs): if self.is_authenticated and self.token_name in session: if self._token_expire_check(self.token_name): return f(*args, **kwargs) # either no user in this session or a refresh failed - full login... return self.initiate_login(next = request.url) _wrapper.__name__ = f.__name__ return _wrapper def add_login_hook(self,f): """ Decorator for adding login hook. """ self.login_hooks.append(f) return f def require_user(self, user_list): """ Decorator passes on specific list of usernames. """ def _outer_wrapper(f): def _wrapper(*args, **kwargs): if self.my_username in user_list: return f(*args, **kwargs) return UnauthorizedError('Not Authorized') _wrapper.__name__ = f.__name__ return _wrapper return _outer_wrapper def require_attribute(self, attr, value): """ Decorator requires specific attribute value. """ def test_attrs(challenge, standard): """Compare list or val the standard.""" stand_list = standard if type(standard) is list else [standard] chal_list = challenge if type(challenge) is list else [challenge] for chal in chal_list: if chal in stand_list: return True return False def _outer_wrapper(f): def _wrapper(*args, **kwargs): if attr in self.my_attrs: resource = session[self.sess_attr][attr] if test_attrs(resource, value): return f(*args, **kwargs) return UnauthorizedError('Not Authorized') _wrapper.__name__ = f.__name__ return _wrapper return _outer_wrapper
from invoke import task from shlex import quote from colorama import Fore import re @task def build(c): """ Build the infrastructure """ command = 'build' command += ' --build-arg PROJECT_NAME=%s' % c.project_name command += ' --build-arg USER_ID=%s' % c.user_id with Builder(c): for service in c.services_to_build_first: docker_compose(c, '%s %s' % (command, service)) docker_compose(c, command) @task def up(c): """ Build and start the infrastructure """ build(c) docker_compose(c, 'up --remove-orphans --detach') @task def start(c): """ Build and start the infrastructure, then install the application (composer, yarn, ...) """ if c.dinghy: machine_running = c.run('dinghy status', hide=True).stdout if machine_running.splitlines()[0].strip() != 'VM: running': c.run('dinghy up --no-proxy') c.run('docker-machine ssh dinghy "echo \'nameserver 8.8.8.8\' | sudo tee -a /etc/resolv.conf && sudo /etc/init.d/docker restart"') stop_workers(c) up(c) install(c) migrate(c) start_workers(c) print(Fore.GREEN + 'You can now browse:') for domain in [c.root_domain] + c.extra_domains: print(Fore.YELLOW + "* https://" + domain) @task def install(c): """ Install the application (composer, yarn, ...) """ with Builder(c): docker_compose_run(c, 'composer install -n --prefer-dist --optimize-autoloader', no_deps=True) @task def migrate(c): """ Migrate database schema """ with Builder(c): docker_compose_run(c, 'php bin/console doctrine:database:create --if-not-exists') docker_compose_run(c, 'php bin/console doctrine:migration:migrate -n') @task def builder(c, user="app"): """ Open a shell (bash) into a builder container """ with Builder(c): docker_compose_run(c, 'bash', user=user) @task def logs(c): """ Display infrastructure logs """ docker_compose(c, 'logs -f --tail=150') @task def ps(c): """ List containers status """ docker_compose(c, 'ps --all') @task def stop(c): """ Stop the infrastructure """ docker_compose(c, 'stop') @task def start_workers(c): """ Start the workers """ workers = get_workers(c) if (len(workers) == 0): return c.start_workers = True c.run('docker update --restart=unless-stopped %s' % (' '.join(workers)), hide='both') docker_compose(c, 'up --remove-orphans --detach') @task def stop_workers(c): """ Stop the workers """ workers = get_workers(c) if (len(workers) == 0): return c.start_workers = False c.run('docker update --restart=no %s' % (' '.join(workers)), hide='both') c.run('docker stop %s' % (' '.join(workers)), hide='both') @task def destroy(c, force=False): """ Clean the infrastructure (remove container, volume, networks) """ if not force: ok = confirm_choice('Are you sure? This will permanently remove all containers, volumes, networks... created for this project.') if not ok: return with Builder(c): docker_compose(c, 'down --volumes --rmi=local') def docker_compose_run(c, command_name, service="builder", user="app", no_deps=False, workdir=None, port_mapping=False): args = [ 'run', '--rm', '-u %s' % quote(user), ] if no_deps: args.append('--no-deps') if port_mapping: args.append('--service-ports') if workdir is not None: args.append('-w %s' % quote(workdir)) docker_compose(c, '%s %s /bin/sh -c "exec %s"' % ( ' '.join(args), quote(service), command_name )) def docker_compose(c, command_name): domains = '`' + '`, `'.join([c.root_domain] + c.extra_domains) + '`' env = { 'PROJECT_NAME': c.project_name, 'PROJECT_DIRECTORY': c.project_directory, 'PROJECT_ROOT_DOMAIN': c.root_domain, 'PROJECT_DOMAINS': domains, 'PROJECT_START_WORKERS': str(c.start_workers), } cmd = 'docker-compose -p %s %s %s' % ( c.project_name, ' '.join('-f "' + c.root_dir + '/infrastructure/docker/' + file + '"' for file in c.docker_compose_files), command_name ) c.run(cmd, pty=not c.power_shell, env=env) def get_workers(c): """ Find worker containers for the current project """ cmd = c.run('docker ps -a --filter "label=docker-starter.worker.%s" --quiet' % c.project_name, hide='both') return list(filter(None, cmd.stdout.rsplit("\n"))) def confirm_choice(message): confirm = input('%s [y]es or [N]o: ' % message) return re.compile('^y').search(confirm) class Builder: def __init__(self, c): self.c = c def __enter__(self): self.docker_compose_files = self.c.docker_compose_files self.c.docker_compose_files = ['docker-compose.builder.yml'] + self.docker_compose_files def __exit__(self, type, value, traceback): self.c.docker_compose_files = self.docker_compose_files
import os import numpy as np import pandas as pd import shutil import unittest from sentiment_classifier.context import DATA_DIR from sentiment_classifier.task.checkpoint import (_CHECKPOINT_DF_FNAME, checkpoint_exists, load_checkpoint, write_checkpoint) class TestCheckpoint(unittest.TestCase): def setUp(self) -> None: barray = np.array([1, 2, 3], dtype=np.float32).tobytes() self.df = pd.DataFrame({'foo': [1, 2], 'features': [barray, barray]}) self.df.set_index('foo') self.checkpoint_dir = os.path.join(DATA_DIR, 'testing') self.checkpoint_file = os.path.join(self.checkpoint_dir, _CHECKPOINT_DF_FNAME) def tearDown(self) -> None: if os.path.exists(self.checkpoint_dir): shutil.rmtree(self.checkpoint_dir) def test_write_checkpoint(self): write_checkpoint.run(self.df, self.checkpoint_dir) assert os.path.exists(self.checkpoint_file) def test_checkpoint_exists_false(self): assert not checkpoint_exists.run(self.checkpoint_dir) def test_checkpoint_exists_true(self): write_checkpoint.run(self.df, self.checkpoint_dir) assert checkpoint_exists.run(self.checkpoint_dir) def test_load_checkpoint(self): write_checkpoint.run(self.df, self.checkpoint_dir) result = load_checkpoint.run(self.checkpoint_dir) self.df['features'] = self.df['features'].apply(lambda x: np.frombuffer(x, dtype=np.float32)) assert self.df.equals(result)
from sklearn.model_selection import train_test_split import pandas as pd import numpy as np class DataTransform: def __init__(self,data_df): self.data=data_df def transform(self): result_data = pd.pivot_table(self.data, values='tag_val', index=['created_timestamp'], columns='tag_key').reset_index() result_data = result_data.ffill() model_data = result_data[result_data['sens_1'].notna()] model_data.fillna(0, inplace=True) model_data = model_data.set_index('created_timestamp') model_data.sort_index(inplace=True) X = model_data[['sens_2', 'sens_4', 'sens_5']] y = model_data[['sens_1']] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42) return model_data,X_train, X_test, y_train, y_test
# Compare two strings represented as linked lists # Given two linked lists, represented as linked lists (every character is a node in linked list). Write a function compare() that works similar to strcmp(), i.e., it returns 0 if both strings are same, 1 if first linked list is lexicographically greater, and -1 if second string is lexicographically greater. # Examples: # Input: list1 = g->e->e->k->s->a # list2 = g->e->e->k->s->b # Output: -1 # Input: list1 = g->e->e->k->s->a # list2 = g->e->e->k->s # Output: 1 # Input: list1 = g->e->e->k->s # list2 = g->e->e->k->s # Output: 0 class Node: # Constructor to create a new node def __init__(self, char): self.c = char self.next = None def compare(str1, str2): # Case 1: both strings are the same, return 0 # Case 2: first string is lexograph. greater, return 1 # Case 3: second string is greater, return -1 # Iterate through both until one ends, or not equal while (str1 and str2) and str1.c == str2.c: str1 = str1.next str2 = str2.next # When we get here, if both are still defined if (str1 and str2): if str1.c > str2.c: return 1 return -1 # If either ended if not str1: return -1 if not str2: return 1 return 0 # Driver program list1 = Node('g') list1.next = Node('e') list1.next.next = Node('e') list1.next.next.next = Node('k') list1.next.next.next.next = Node('s') list1.next.next.next.next.next = Node('b') list2 = Node('g') list2.next = Node('e') list2.next.next = Node('e') list2.next.next.next = Node('k') list2.next.next.next.next = Node('s') list2.next.next.next.next.next = Node('a') print(compare(list1, list2))
# You are given an polygon where vertices are numbered from 1 to in clockwise order, You are also given an integer . You create a vertex-explosion machine that explodes vertex in polygon thereby reducing the size of the polygon. You start with vertex 2. At each step, one of the following operations on the polygon is performed: # If , then there is no effect of the vertex-explosion machine. Now, is reduced by 1 and you move to the next available vertex at distance 2 in the clockwise direction. # The vertex is exploded thus reducing the number of sides in the polygon by 1 and you move to the next available vertex at distance 2 in the clockwise direction from the exploded vertex. # Note: Polygon with vertex 2 and 1 exists def remove_vertex(N, K): if K > 0: return (remove_vertex(N, K-1) + 1)%N +1 else: if N == 1: return 1 else: return (remove_vertex(N-1, 0) + 1)%N +1 if __name__ == "__main__": T = int(input()) for i in range(T): N, K = map(int, input().rstrip().split()) print(remove_vertex(N, K)+1) # By Linked list # class node: # def __init__(self, data): # self.data = data # self.next = None # def last_vertex(N, K): # # creating the list # head = node(1) # ptr = head # for i in range(2, N+1): # nnode = node(i) # ptr.next = nnode # ptr = ptr.next # ptr.next = head # ptr = head.next # while N>1: # if K >0: # prev = ptr.next # ptr = prev.next # K -= 1 # else: # prev.next = ptr.next # prev = prev.next # ptr = prev.next # N-=1 # return ptr.data
# Copyright 2015 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You # may not use this file except in compliance with the License. A copy of # the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific # language governing permissions and limitations under the License. def register_custom_endpoint_note(event_emitter): event_emitter.register_last( 'doc-description.iot-data', add_custom_endpoint_url_note) def add_custom_endpoint_url_note(help_command, **kwargs): style = help_command.doc.style style.start_note() style.doc.writeln( 'The default endpoint data.iot.[region].amazonaws.com is intended ' 'for testing purposes only. For production code it is strongly ' 'recommended to use the custom endpoint for your account ' ' (retrievable via the iot describe-endpoint command) to ensure best ' 'availability and reachability of the service.' ) style.end_note()
from functools import partial from multiprocessing import Pool, cpu_count from typing import List import torch from fairseq.checkpoint_utils import load_model_ensemble from torch.nn.utils.rnn import pad_sequence from .utils import log_mel_spectrogram def load_pretrained_wav2vec(ckpt_path: str): """Load pretrained Wav2Vec model.""" ckpt_path = str(ckpt_path) model, cfg = load_model_ensemble([ckpt_path]) model = model[0] model.remove_pretraining_modules() model.eval() return model class FeatureExtractor: def __init__(self, feature_name, wav2vec2_path=None, device=None): self.device = device if feature_name in ["apc", "cpc", "timit_posteriorgram", "fbank"]: self.extractor = ( torch.hub.load( "ga642381/s3prl:s2vc", feature_name, refresh=True, ) .eval() .to(device) ) self.mode = 1 elif feature_name == "wav2vec2": self.extractor = load_pretrained_wav2vec(wav2vec2_path).eval().to(device) self.mode = 2 elif feature_name == "wav2vec2_mel": self.extractor = partial( log_mel_spectrogram, preemph=0.97, sample_rate=16000, n_mels=80, n_fft=400, hop_length=320, win_length=400, f_min=0, center=False, ) self.mode = 3 elif feature_name == "cpc_mel": self.extractor = partial( log_mel_spectrogram, preemph=0.97, sample_rate=16000, n_mels=80, n_fft=465, hop_length=160, win_length=465, f_min=80, center=True, ) self.mode = 3 else: print(feature_name) print( "Please use timit_posteriorgram, apc, wav2vec2, cpc, wav2vec2_mel, cpc_mel, or fbank" ) exit() def get_feature(self, wavs: list) -> list: # wavs : list of tensors, no padding if self.mode == 1: return self.extractor(wavs) elif self.mode == 2: wav_lens = [len(wav) for wav in wavs] wavs = pad_sequence(wavs, batch_first=True) padding_mask = [ torch.arange(wavs.size(1)) >= wav_len for wav_len in wav_lens ] padding_mask = torch.stack(padding_mask).to(self.device) feats = self.extractor.extract_features(wavs, padding_mask)["x"] feats = [f for f in feats] elif self.mode == 3: wavs = [wav.cpu().numpy() for wav in wavs] feats = [self.extractor(wav) for wav in wavs] feats = [torch.FloatTensor(feat).to(self.device) for feat in feats] return feats return feats
from __future__ import absolute_import import io from setuptools import setup, find_packages long_description = '\n'.join(( io.open('README.rst', encoding='utf-8').read(), io.open('CHANGES.txt', encoding='utf-8').read() )) tests_require = [ 'pytest >= 2.0', 'pytest-cov', 'WebTest >= 2.0.14', 'mock', ] setup( name='bowerstatic', version='0.10.dev0', description="A Bower-centric static file server for WSGI", long_description=long_description, author="Martijn Faassen", author_email="faassen@startifact.com", classifiers=[ "Programming Language :: Python", 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.8', ], license="BSD", url='http://bowerstatic.readthedocs.org', keywords='wsgi bower', packages=find_packages(), include_package_data=True, zip_safe=False, install_requires=[ 'setuptools', 'WebOb', ], tests_require=tests_require, extras_require=dict( test=tests_require, ) )
from testutil import * import opalstack opalapi = opalstack.Api(APIKEY) def test_servers(): # -- List servers -- # # Retrieve all existing servers on the account. # Returns three lists: web_servers, imap_servers, and smtp_servers # servers = opalapi.servers.list_all() web_servers = servers['web_servers'] imap_servers = servers['imap_servers'] smtp_servers = servers['smtp_servers'] for web_server in web_servers: server_id = web_server['id'] server_hostname = web_server['hostname'] print(f'Listed web_server {server_hostname}') for imap_server in imap_servers: server_id = imap_server['id'] server_hostname = imap_server['hostname'] print(f'Listed imap_server {server_hostname}') for smtp_server in smtp_servers: server_id = smtp_server['id'] server_hostname = smtp_server['hostname'] print(f'Listed smtp_server {server_hostname}') # -- Read single server -- # # Retrieve one existing server by id. # server = opalapi.servers.read(server_id) print(f'Read server by id: {server_id}') assert server['id'] == server_id
""" Find HARPS data from the ESO archive for a set of target positions. This script will download catalog files for each object which contain the Phase 3 identifier required to download the reduced and intermediate data products. """ __author__ = "Andrew R. Casey <arc@ast.cam.ac.uk>" # CRITICAL NOTE: # You will need to authenticate with ESO in a Python terminal before running # this script. Here's how: # >> from astroquery.eso import Eso as ESO # >> eso = ESO() # >> eso.login("MY_USERNAME", store_password=True) # This will store your password locally so you don't need to provide it in # future sessions. # This script also requires 'keyring.alt' package (available through pip) import os import logging import pg import re import time import yaml from astropy.extern.six import BytesIO, cPickle as pickle from astropy.table import Table from astroquery.eso import Eso as ESO from astroquery.eso.core import _check_response # Load local catalog of positions. local_catalog = Table.read("data/HARPS_all.csv") # Login to ESO. eso = ESO() eso.login("andycasey") eso.ROW_LIMIT = 100000 # Maximum possible number of observations per star # Connect to the PostgreSQL database. cwd = os.path.dirname(os.path.realpath(__file__)) with open(os.path.join(cwd, "../db/credentials.yaml"), "r") as fp: credentials = yaml.load(fp) connection = pg.connect(**credentials) def query_harps_phase3_by_position(ra, dec, **kwargs): """ Query the ESO Phase 3 science archive by position. :param ra: Right ascension [degrees]. :param dec: Declination [degrees]. """ payload = [ ("wdbo", ("", "html/display")), ("max_rows_returned", ("", "{:.0f}".format(eso.ROW_LIMIT))), ("target", ("", "")), ("resolver", ("", "simbad")), ("wdb_input_file", ("", "", "application/octet-stream")), ("coord_sys", ("", "eq")), ("coord1", ("", str(ra))), ("coord2", ("", str(dec))), ("box", ("", "02 09 00")), ("tab_ra", ("", "on")), ("tab_dec", ("", "on")), ("tab_filter", ("", "on")), ("filter", ("", "Any")), ("tab_wavelength", ("", "on")), ("wavelength", ("", "Any")), ("tab_dataproduct_type", ("", "on")), ("dataproduct_type", ("", "Any")), ("tel_id", ("", "Any")), ("tab_ins_id", ("", "on")), ("ins_id", ("", "HARPS")), ("obstech", ("", "Any")), ("tab_date_obs", ("", "on")), ("date_obs", ("", "")), ("mjd_obs", ("", "")), ("tab_exptime", ("", "on")), ("exptime", ("", "")), ("multi_ob", ("", "%")), ("tab_collection_name", ("", "on")), ("tab_prog_id", ("", "on")), ("prog_id", ("", "")), ("username", ("", "")), ("p3orig", ("", "%")), ("tab_origfile", ("", "on")), ("origfile", ("", "")), ("tab_dp_id", ("", "on")), ("dp_id", ("", "")), ("rel_date", ("", "")), ("tab_referenc", ("", "on")), ("referenc", ("", "")), ("batch_id", ("", "")), ("publication_date", ("", "")), ("wdb_input_file_raw", ("", "", "application/octet-stream")), ("order_main", ("", "dummy")) ] url = "http://archive.eso.org/wdb/wdb/adp/phase3_main/query" survey_response = eso._request("POST", url, cache=False, files=payload) content = survey_response.content if not _check_response(content): return None rows = "\n".join([r for r in content.split("\n") if "PHASE3+" in r]) rows = rows.replace("[doc&nbsp;id:", "[doc:") html_content = "<table>{}</table>".format(rows) table = Table.read(BytesIO(html_content), format="ascii.html", names=("Mark", "More", "ARCFILE", "HDR", "Object", "RA", "DEC", "Filter", "ABMAGLIM", "Wavelength", "SNR", "Resolution", "Product category", "Instrument", "Date Obs", "Exptime", "Collection", "Product version", "Release Description", "Run/Program ID", "ORIGFILE", "REFERENCE Catalog", "Interface")) # Delete unnecessary columns. for column_name in ("Mark", "More", "HDR", "Filter", "ABMAGLIM", "Product category", "Collection", "Product version", "Release Description", "Interface", "REFERENCE Catalog"): del table[column_name] # Parse the PHASE3 identifiers. table["dataset"] = re.findall( "PHASE3\+[0-9]+\+ADP\.[0-9]{4}-[0-9]{2}-[0-9]{2}T[0-9]{2}:[0-9]{2}:[0-9]{2}\.[0-9]{3}", content) return table warnings = {} failures = {} M, N = (0, len(local_catalog)) for i, target in enumerate(local_catalog): # Search the ESO archive for HARPS data. try: response = query_harps_phase3_by_position(target["RA"], target["Dec"]) except ValueError: failures[target["Name"]] = "ValueError: only one result?" print("ValueError: Only one result for {}?".format(target["Name"])) continue if response is None: print("No results found for star name {}".format(target["Name"])) failures[target["Name"]] = "No results found in Phase 3 search" continue # Let's be spoilt as fuck keep = response["Resolution"] == 115000 response = response[keep] if len(response) == 0: print("No R ~ 115,000 spectra found for star {}".format(target["Name"])) failures[target["Name"]] = "Only R ~ 80,000 spectra found" continue K = len(response) M += K print("({}/{}) Found {} datasets ({} expected; {} total so far) for {} ({:.3f} / {:.3f})"\ .format(i, N, K, target["N_exp"], M, target["Name"], target["RA"], target["Dec"])) if target["N_exp"] > K: warnings[target["Name"]] = "Expected {}; found {}".format( target["N_exp"], K) print("Warning: Expected {} and found {}".format(target["N_exp"], K)) # Ingest the catalog. print("Ingesting {} Phase 3 records from {}".format(len(response), filename)) for record in response: cursor = connection.cursor() cursor.execute( """SELECT EXISTS(SELECT 1 FROM phase3_products WHERE arcfile=%s)""", (record["ARCFILE"], )) exists, = cursor.fetchone() if not exists: try: cursor.execute( """INSERT INTO phase3_products (arcfile, object, ra, dec, wavelength, snr, resolution, instrument, date_obs, exptime, program_id, origfile, dataset) VALUES (%s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s, %s)""", [record[k] for k in record.dtype.names]) except pg.IntegrityError: logging.exception("IntegrityError on {}/{}:\n{}\n".format( filename, record["ARCFILE"], record)) connection.rollback() else: connection.commit() cursor.close() # Close the PostgreSQL database. connection.close() # Save any warnings or failures. with open(os.path.join(cwd, "eso-search-phase3-output.pkl"), "wb") as fp: pickle.dump((warnings, failures), fp, -1)
''' MFEM example 10 This examples solves a time dependent nonlinear elasticity problem of the form dv/dt = H(x) + S v, dx/dt = v, where H is a hyperelastic model and S is a viscosity operator of Laplacian type. refinement loop. See c++ version in the MFEM library for more detail ''' import sys from mfem.common.arg_parser import ArgParser from mfem import path import mfem.ser as mfem from mfem.ser import intArray, add_vector, Add from os.path import expanduser, join import numpy as np from numpy import sqrt, pi, cos, sin, hypot, arctan2 from scipy.special import erfc parser = ArgParser(description='Ex10') parser.add_argument('-m', '--mesh', default = 'beam-quad.mesh', action = 'store', type = str, help='Mesh file to use.') parser.add_argument('-r', '--refine-serial', action = 'store', default = 2, type=int, help = "Number of times to refine the mesh uniformly before parallel") parser.add_argument('-o', '--order', action = 'store', default = 2, type=int, help = "Finite element order (polynomial degree)"); help_ode = "\n".join(["ODE solver: 1 - Backward Euler, 2 - SDIRK2, 3 - SDIRK3", "\t11 - Forward Euler, 12 - RK2", "\t13 - RK3 SSP, 14 - RK4."]) parser.add_argument('-s', '--ode-solver', action = 'store', default = 3, type=int, help = help_ode) parser.add_argument('-tf', '--t-final', action = 'store', default = 300.0, type=float, help = "Final time; start time is 0.") parser.add_argument('-dt', '--time-step', action = 'store', default = 3.0, type=float, help = "Time step") parser.add_argument("-v", "--viscosity", action = 'store', default = 1e-2, type=float, help = "Viscosity coefficient.") parser.add_argument("-mu", "--shear-modulus", action = 'store', default = 0.25, type=float, help = "Shear modulus in the Neo-Hookean hyperelastic model.") parser.add_argument("-K", "--bulk-modulus", action = 'store', default = 5.0, type=float, help = "Bulk modulus in the Neo-Hookean hyperelastic model."); parser.add_argument('-vis', '--visualization', action = 'store_true', default = True, help='Enable GLVis visualization') parser.add_argument("-vs", "--visualization-steps", action = 'store', default = 1, type = int, help = "Visualize every n-th timestep."); args = parser.parse_args() ref_levels = args.refine_serial order = args.order ode_solver_type = args.ode_solver t_final = args.t_final dt = args.time_step visc = args.viscosity mu = args.shear_modulus K = args.bulk_modulus visualization = args.visualization vis_steps = args.visualization_steps parser.print_options(args) ''' ref_levels = 2 order = 1 ode_solver_type = 3 t_final = 300.0 dt = 3 visc = 1e-2 mu = 0.25 K = 5.0 vis_steps = 1 ''' meshfile = expanduser(join(path, 'data', args.mesh)) mesh = mfem.Mesh(meshfile, 1,1) dim = mesh.Dimension() # self.solver.SetOperator(M) if ode_solver_type == 1: ode_solver = BackwardEulerSolver() elif ode_solver_type == 2: ode_solver = mfem.SDIRK23Solver(2) elif ode_solver_type == 3: ode_solver = mfem.SDIRK33Solver() elif ode_solver_type == 11: ode_solver = ForwardEulerSolver() elif ode_solver_type == 12: ode_solver = mfem.RK2Solver(0.5); elif ode_solver_type == 13: ode_solver = mfem.RK3SSPSolver() elif ode_solver_type == 14: ode_solver = mfem.RK4Solver() elif ode_solver_type == 22: ode_solver = mfem.ImplicitMidpointSolver() elif ode_solver_type == 23: ode_solver = mfem.SDIRK23Solver() elif ode_solver_type == 24: ode_solver = mfem.SDIRK34Solver() else: print( "Unknown ODE solver type: " + str(ode_solver_type)) exit for lev in range(ref_levels): mesh.UniformRefinement() # 5. Define the vector finite element spaces representing the mesh # deformation x, the velocity v, and the initial configuration, x_ref. # Define also the elastic energy density, w, which is in a discontinuous # higher-order space. Since x and v are integrated in time as a system, # we group them together in block vector vx, with offsets given by the # fe_offset array. fec = mfem.H1_FECollection(order, dim) fespace = mfem.FiniteElementSpace(mesh, fec, dim) fe_size = fespace.GetVSize(); print( "Number of velocity/deformation unknowns: " + str(fe_size)) fe_offset = intArray([0, fe_size, 2*fe_size]) vx = mfem.BlockVector(fe_offset) x = mfem.GridFunction() v = mfem.GridFunction() v.MakeRef(fespace, vx.GetBlock(0), 0); x.MakeRef(fespace, vx.GetBlock(1), 0); x_ref = mfem.GridFunction(fespace); mesh.GetNodes(x_ref) w_fec = mfem.L2_FECollection(order + 1, dim) w_fespace = mfem.FiniteElementSpace(mesh, w_fec) w = mfem.GridFunction(w_fespace); # 6. Set the initial conditions for v and x, and the boundary conditions on # a beam-like mesh (see description above). class InitialVelocity(mfem.VectorPyCoefficient): def EvalValue(self, x): dim = len(x) s = 0.1/64. v = np.zeros(len(x)) v[-1] = s*x[0]**2*(8.0-x[0]) v[0] = -s*x[0]**2 return v class InitialDeformation(mfem.VectorPyCoefficient): def EvalValue(self, x): return x.copy() velo = InitialVelocity(dim) v.ProjectCoefficient(velo) deform = InitialDeformation(dim) x.ProjectCoefficient(deform) ess_bdr = intArray(fespace.GetMesh().bdr_attributes.Max()) ess_bdr.Assign(0) ess_bdr[0] = 1 # 7. Define HyperelasticOperator and initialize it # the initial energies. class ElasticEnergyCoefficient(mfem.PyCoefficient): def __init__(self, model, x): self.x = x self.model = model self.J = mfem.DenseMatrix() mfem.PyCoefficient.__init__(self) def Eval(self, T, ip): self.model.SetTransformation(T) self.x.GetVectorGradient(T, self.J) #T.Jacobian().Print() #print self.x.GetDataArray() #self.J.Print() return self.model.EvalW(self.J)/(self.J.Det()) class ReducedSystemOperator(mfem.PyOperator): def __init__(self, M, S, H): mfem.PyOperator.__init__(self, M.Height()) self.M = M self.S = S self.H = H self.Jacobian = None h = M.Height() self.w = mfem.Vector(h) self.z = mfem.Vector(h) self.dt = 0.0 self.v = None self.x = None def SetParameters(self, dt, v, x): self.dt = dt self.v = v self.x = x def Mult(self, k, y): add_vector(self.v, self.dt, k, self.w) add_vector(self.x, self.dt, self.w, self.z) self.H.Mult(self.z, y) self.M.AddMult(k, y) self.S.AddMult(self.w, y) def GetGradient(self, k): Jacobian = Add(1.0, self.M.SpMat(), self.dt, self.S.SpMat()) self.Jacobian = Jacobian add_vector(self.v, self.dt, k, self.w) add_vector(self.x, self.dt, self.w, self.z) grad_H = self.H.GetGradientMatrix(self.z) Jacobian.Add(self.dt**2, grad_H) return Jacobian; class HyperelasticOperator(mfem.PyTimeDependentOperator): def __init__(self, fespace, ess_bdr, visc, mu, K): mfem.PyTimeDependentOperator.__init__(self, 2*fespace.GetVSize(), 0.0) rel_tol = 1e-8; skip_zero_entries = 0; ref_density = 1.0 self.z = mfem.Vector(self.Height()//2) self.fespace = fespace self.viscosity = visc M = mfem.BilinearForm(fespace) S = mfem.BilinearForm(fespace) H = mfem.NonlinearForm(fespace) self.M = M self.H = H self.S = S rho = mfem.ConstantCoefficient(ref_density) M.AddDomainIntegrator(mfem.VectorMassIntegrator(rho)) M.Assemble(skip_zero_entries) M.EliminateEssentialBC(ess_bdr) M.Finalize(skip_zero_entries) M_solver = mfem.CGSolver() M_prec = mfem.DSmoother() M_solver.iterative_mode = False M_solver.SetRelTol(rel_tol) M_solver.SetAbsTol(0.0) M_solver.SetMaxIter(30) M_solver.SetPrintLevel(0) M_solver.SetPreconditioner(M_prec) M_solver.SetOperator(M.SpMat()) self.M_solver = M_solver self.M_prec = M_prec model = mfem.NeoHookeanModel(mu, K) H.AddDomainIntegrator(mfem.HyperelasticNLFIntegrator(model)) H.SetEssentialBC(ess_bdr) self.model = model visc_coeff = mfem.ConstantCoefficient(visc) S.AddDomainIntegrator(mfem.VectorDiffusionIntegrator(visc_coeff)) S.Assemble(skip_zero_entries) S.EliminateEssentialBC(ess_bdr) S.Finalize(skip_zero_entries) self.reduced_oper = ReducedSystemOperator(M, S, H) J_prec = mfem.DSmoother(1); J_minres = mfem.MINRESSolver() J_minres.SetRelTol(rel_tol); J_minres.SetAbsTol(0.0); J_minres.SetMaxIter(300); J_minres.SetPrintLevel(-1); J_minres.SetPreconditioner(J_prec) self.J_solver = J_minres self.J_prec = J_prec newton_solver = mfem.NewtonSolver() newton_solver.iterative_mode = False newton_solver.SetSolver(self.J_solver); newton_solver.SetOperator(self.reduced_oper); newton_solver.SetPrintLevel(1); #print Newton iterations newton_solver.SetRelTol(rel_tol); newton_solver.SetAbsTol(0.0); newton_solver.SetMaxIter(10); self.newton_solver = newton_solver def Mult(self, vx, vx_dt): sc = self.Height()//2 v = mfem.Vector(vx, 0, sc) x = mfem.Vector(vx, sc, sc) dv_dt = mfem.Vector(dvx_dt, 0, sc) dx_dt = mfem.Vector(dvx_dt, sc, sc) self.H.Mult(x, z); if (self.viscosity != 0.0): S.AddMult(v, z) z.Neg() M_solver.Mult(z, dv_dt); dx_dt = v; # Print(vx.Size()) def ImplicitSolve(self, dt, vx, dvx_dt): sc = self.Height()//2 v = mfem.Vector(vx, 0, sc) x = mfem.Vector(vx, sc, sc) dv_dt = mfem.Vector(dvx_dt, 0, sc) dx_dt = mfem.Vector(dvx_dt, sc, sc) # By eliminating kx from the coupled system: # kv = -M^{-1}*[H(x + dt*kx) + S*(v + dt*kv)] # kx = v + dt*kv # we reduce it to a nonlinear equation for kv, represented by the # backward_euler_oper. This equation is solved with the newton_solver # object (using J_solver and J_prec internally). self.reduced_oper.SetParameters(dt, v, x) zero = mfem.Vector() # empty vector is interpreted as # zero r.h.s. by NewtonSolver self.newton_solver.Mult(zero, dv_dt) add_vector(v, dt, dv_dt, dx_dt); def ElasticEnergy(self, x): return self.H.GetEnergy(x) def KineticEnergy(self, v): return 0.5*self.M.InnerProduct(v, v) def GetElasticEnergyDensity(self, x, w): w_coeff = ElasticEnergyCoefficient(self.model, x) w.ProjectCoefficient(w_coeff) oper = HyperelasticOperator(fespace, ess_bdr, visc, mu, K) ee0 = oper.ElasticEnergy(x) ke0 = oper.KineticEnergy(v) print("initial elastic energy (EE) = " + str(ee0)) print("initial kinetic energy (KE) = " + str(ke0)) print("initial total energy (TE) = " + str(ee0 + ke0)) # 8. Perform time-integration (looping over the time iterations, ti, with a # time-step dt). ode_solver.Init(oper) t = 0. ; ti = 1 last_step = False; while not last_step: if (t + dt >= t_final - dt/2): last_step = True t, dt = ode_solver.Step(vx, t, dt) if (last_step or (ti % vis_steps) == 0): ee = oper.ElasticEnergy(x) ke = oper.KineticEnergy(v) text = ("step " + str(ti) + ", t = " + str(t) + ", EE = " + str(ee) + ", KE = " + str(ke) + ", dTE = " + str((ee+ke)-(ee0+ke0))) print(text) ti = ti + 1 # # if i translate c++ line-by-line, ti seems the second swap does not work... # nodes = x owns_nodes = 0 nodes, owns_nodes = mesh.SwapNodes(nodes, owns_nodes) mesh.Print('deformed.mesh', 8) mesh.SwapNodes(nodes, owns_nodes) v.Save('velocity.sol', 8) oper.GetElasticEnergyDensity(x, w) w.Save('elastic_energy.sol', 8)
# -*- coding: utf-8 -*- import scrapy from bs4 import BeautifulSoup from spider.items import SpiderItem class CqjlpggzyzhjySpider(scrapy.Spider): name = 'cqjlpggzyzhjy' allowed_domains = ['cqjlpggzyzhjy.gov.cn'] def start_requests(self): urls = [ 'http://www.cqjlpggzyzhjy.gov.cn/cqjl/jyxx/003001/003001001/003001001001/MoreInfo.aspx?CategoryNum=003001001001', 'http://www.cqjlpggzyzhjy.gov.cn/cqjl/jyxx/003001/003001001/003001001002/MoreInfo.aspx?CategoryNum=003001001002', 'http://www.cqjlpggzyzhjy.gov.cn/cqjl/ZtbWebDyProject/DaYi_List.aspx', 'http://www.cqjlpggzyzhjy.gov.cn/cqjl/ZtbWebDyProject/BuYiAll_List.aspx' ] for url in urls: yield scrapy.Request(url=url, callback=self.parse_parameters) def parse_parameters(self, response): soup = BeautifulSoup(response.body, 'html.parser') soupCtl = soup.find(id='ctl00') or soup.find(id='Form1') viewstate = soupCtl.find(id='__VIEWSTATE').attrs['value'] viewstategenerator = soupCtl.find(id='__VIEWSTATEGENERATOR').attrs['value'] soupPager1 = soup.find(id='MoreInfoList1_Pager') page1 = soupPager1 and soupPager1.find_all('b')[1].get_text() soupPager2 = soup.find(id='Pager') page2 = soupPager2 and soupPager2.find_all('b')[0].get_text() count_pages = int(page1 or page2) for page in range(0, count_pages): yield scrapy.FormRequest(url=response.url, formdata={'__VIEWSTATE': viewstate, '__VIEWSTATEGENERATOR': viewstategenerator, '__EVENTTARGET': 'MoreInfoList1$Pager', '__EVENTARGUMENT': str(page + 1)}, callback=self.parse_list) def parse_list(self, response): soup = BeautifulSoup(response.body, 'html.parser') soup_list = soup.find(id='MoreInfoList1_tdcontent') or soup.find(id='DataGrid1') soup_list = soup_list.find_all('a') soup_type = soup.find(id='lastfont') for i in soup_list: if 'infodetail' in i.attrs['href'].lower(): yield scrapy.Request(url=response.urljoin(i.attrs['href']), callback=self.parse_info) elif 'buyi_list' in i.attrs['href'].lower(): yield scrapy.Request(url=response.urljoin(i.attrs['href']), callback=self.parse_parameters) else: item = SpiderItem() item['category'] = soup_type.string.strip() item['title'] = i.string.strip() item['date'] = i.parent.next_sibling.string.strip().replace('-', '/') item['content'] = '' item['file_urls'] = [response.urljoin(i.attrs['href'])] item['file_names'] = ['test.txt'] item['url'] = response.urljoin(i.attrs['href']) yield item def parse_info(self, response): item = SpiderItem() soup = BeautifulSoup(response.body, 'html.parser') soup_type = soup.find(id='lastfont') item['category'] = soup_type.string.strip() soup_title = soup.find(id='tdTitle').div item['title'] = soup_title.font.b.string.strip() soup_title = soup_title.next_sibling.next_sibling item['date'] = soup_title.get_text().split('\r\n')[1].strip() soup_content = soup.find(id='TDContent') item['content'] = soup_content.get_text() item['file_urls'] = [] item['file_names'] = [] soup_files = soup.find(id='filedown').find_all('a') for soup_file in soup_files: item['file_urls'].append(response.urljoin(soup_file.attrs['href'])) item['file_names'].append(soup_file.get_text().strip()) item['url'] = response.url return item
from models import Jogo, Usuario SQL_INSERI_JOGO = """ INSERT INTO jogo (nome, categoria, console) VALUES (?, ?, ?) """ SQL_LISTA_JOGOS = """ SELECT * FROM jogo """ SQL_BUSCA_POR_ID = """ SELECT * FROM jogo WHERE id = ? """ SQL_DELETA = """ DELETE FROM jogo WHERE id = ? """ SQL_ATUALIZA = """ UPDATE jogo SET nome = ?, categoria = ?, console = ? WHERE id = ? """ SQL_BUSCA_USUARIO_POR_NOME_SENHA = """ SELECT nome, senha FROM usuario WHERE nome = ? AND senha = ? LIMIT 1 """ class JogoDao: def __init__(self, conexao): self.conexao = conexao def insere(self, jogo): self.conexao.execute(SQL_INSERI_JOGO, (jogo.nome, jogo.categoria, jogo.console)) self.conexao.commit() def lista(self): jogos = [] for row in self.conexao.execute(SQL_LISTA_JOGOS): jogo = Jogo(id_jogo=row[0], nome=row[1], categoria=row[2], console=row[3]) jogos.append(jogo) return jogos def busca_por(self, id_jogo): cursor = self.conexao.cursor() cursor.execute(SQL_BUSCA_POR_ID, (id_jogo,)) row = cursor.fetchone() return Jogo(id_jogo=row[0], nome=row[1], categoria=row[2], console=row[3]) def deleta(self, id_jogo): self.conexao.execute(SQL_DELETA, (id_jogo,)) self.conexao.commit() def atualizar(self, jogo): self.conexao.execute(SQL_ATUALIZA, (jogo.nome, jogo.categoria, jogo.console, jogo.id_jogo)) self.conexao.commit() class UsuarioDao: def __init__(self, conexao): self.conexao = conexao def buscar_por(self, nome, senha): cursor = self.conexao.cursor() cursor.execute(SQL_BUSCA_USUARIO_POR_NOME_SENHA, (nome, senha)) row = cursor.fetchone() return Usuario(nome=row[0], senha=row[1])
from newrelic.agent import wrap_external_trace def instrument(module): def tsocket_open_url(socket, *args, **kwargs): scheme = 'socket' if socket._unix_socket else 'http' if socket.port: url = '%s://%s:%s' % (scheme, socket.host, socket.port) else: url = '%s://%s' % (scheme, socket.host) return url wrap_external_trace(module, 'TSocket.open', 'thrift', tsocket_open_url)
class Solution(object): def frequencySort(self, s): #unique key sSet = set(s) sTable = [] #count letter -> sTable( Count, key*Count ) for key in sSet: Count = s.count(key) sTable.append( ( Count, key*Count ) ) #sort in descending sTable.sort(key = lambda table: table[0], reverse = True) return ''.join( map( lambda table: table[1], sTable) )
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: github.com/metaprov/modelaapi/services/model/v1/model.proto """Generated protocol buffer code.""" from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from google.api import annotations_pb2 as google_dot_api_dot_annotations__pb2 from github.com.metaprov.modelaapi.pkg.apis.training.v1alpha1 import generated_pb2 as github_dot_com_dot_metaprov_dot_modelaapi_dot_pkg_dot_apis_dot_training_dot_v1alpha1_dot_generated__pb2 from github.com.metaprov.modelaapi.services.common.v1 import common_pb2 as github_dot_com_dot_metaprov_dot_modelaapi_dot_services_dot_common_dot_v1_dot_common__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='github.com/metaprov/modelaapi/services/model/v1/model.proto', package='github.com.metaprov.modelaapi.services.model.v1', syntax='proto3', serialized_options=b'Z/github.com/metaprov/modelaapi/services/model/v1', create_key=_descriptor._internal_create_key, serialized_pb=b'\n;github.com/metaprov/modelaapi/services/model/v1/model.proto\x12/github.com.metaprov.modelaapi.services.model.v1\x1a\x1cgoogle/api/annotations.proto\x1aHgithub.com/metaprov/modelaapi/pkg/apis/training/v1alpha1/generated.proto\x1a=github.com/metaprov/modelaapi/services/common/v1/common.proto\")\n\x1a\x43reateModelProfileResponse\x12\x0b\n\x03uri\x18\x03 \x01(\t\"<\n\x19\x43reateModelProfileRequest\x12\x11\n\tnamespace\x18\x01 \x01(\t\x12\x0c\n\x04name\x18\x02 \x01(\t\":\n\x17ListModelProfileRequest\x12\x11\n\tnamespace\x18\x01 \x01(\t\x12\x0c\n\x04name\x18\x02 \x01(\t\"F\n\x16GetModelProfileRequest\x12\x11\n\tnamespace\x18\x01 \x01(\t\x12\x0c\n\x04name\x18\x02 \x01(\t\x12\x0b\n\x03uri\x18\x03 \x01(\t\"j\n\x17GetModelProfileResponse\x12O\n\x07profile\x18\x01 \x01(\x0b\x32>.github.com.metaprov.modelaapi.services.common.v1.ModelProfile\"\xa2\x01\n\x14GetModelLogsResponse\x12]\n\x04logs\x18\x01 \x03(\x0b\x32O.github.com.metaprov.modelaapi.services.model.v1.GetModelLogsResponse.LogsEntry\x1a+\n\tLogsEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12\r\n\x05value\x18\x02 \x01(\t:\x02\x38\x01\"6\n\x13GetModelLogsRequest\x12\x11\n\tnamespace\x18\x01 \x01(\t\x12\x0c\n\x04name\x18\x02 \x01(\t\"c\n\x12\x43reateModelRequest\x12M\n\x04item\x18\x01 \x01(\x0b\x32?.github.com.metaprov.modelaapi.pkg.apis.training.v1alpha1.Model\"\x15\n\x13\x43reateModelResponse\"c\n\x12UpdateModelRequest\x12M\n\x04item\x18\x05 \x01(\x0b\x32?.github.com.metaprov.modelaapi.pkg.apis.training.v1alpha1.Model\"\x15\n\x13UpdateModelResponse\"o\n\x10GetModelResponse\x12M\n\x04item\x18\x01 \x01(\x0b\x32?.github.com.metaprov.modelaapi.pkg.apis.training.v1alpha1.Model\x12\x0c\n\x04yaml\x18\x02 \x01(\t\"4\n\x11\x41\x62ortModelRequest\x12\x11\n\tnamespace\x18\x01 \x01(\t\x12\x0c\n\x04name\x18\x02 \x01(\t\"\x14\n\x12\x41\x62ortModelResponse\"4\n\x11PauseModelRequest\x12\x11\n\tnamespace\x18\x01 \x01(\t\x12\x0c\n\x04name\x18\x02 \x01(\t\"\x14\n\x12PauseModelResponse\"5\n\x12ResumeModelRequest\x12\x11\n\tnamespace\x18\x01 \x01(\t\x12\x0c\n\x04name\x18\x02 \x01(\t\"\x15\n\x13ResumeModelResponse\"8\n\x14\x43ompareModelsRequest\x12\x11\n\tnamespace\x18\x01 \x01(\t\x12\r\n\x05names\x18\x02 \x03(\t\"\x8b\x01\n\x15\x43ompareModelsResponse\x12\x11\n\tnamespace\x18\x01 \x01(\t\x12\r\n\x05names\x18\x02 \x03(\t\x12P\n\x08profiles\x18\x03 \x03(\x0b\x32>.github.com.metaprov.modelaapi.services.common.v1.ModelProfile\"X\n\x13\x43ompileModelRequest\x12\x11\n\tnamespace\x18\x01 \x01(\t\x12\x0c\n\x04name\x18\x02 \x01(\t\x12\x0e\n\x06target\x18\x03 \x01(\t\x12\x10\n\x08\x63ompiler\x18\x04 \x01(\t\"8\n\x14\x43ompileModelResponse\x12\x11\n\tnamespace\x18\x01 \x01(\t\x12\r\n\x05names\x18\x02 \x01(\t\"y\n\x12\x44\x65ployModelRequest\x12\x11\n\tnamespace\x18\x01 \x01(\t\x12\x0c\n\x04name\x18\x02 \x01(\t\x12\x11\n\tpredictor\x18\x03 \x01(\t\x12\x10\n\x08replicas\x18\x04 \x01(\x05\x12\x0f\n\x07traffic\x18\x05 \x01(\x05\x12\x0c\n\x04role\x18\x06 \x01(\t\"6\n\x13PublishModelRequest\x12\x11\n\tnamespace\x18\x01 \x01(\t\x12\x0c\n\x04name\x18\x02 \x01(\t\"\x15\n\x13\x44\x65ployModelResponse\"\xb5\x01\n\x11ListModelsRequest\x12\x11\n\tnamespace\x18\x01 \x01(\t\x12^\n\x06labels\x18\x02 \x03(\x0b\x32N.github.com.metaprov.modelaapi.services.model.v1.ListModelsRequest.LabelsEntry\x1a-\n\x0bLabelsEntry\x12\x0b\n\x03key\x18\x01 \x01(\t\x12\r\n\x05value\x18\x02 \x01(\t:\x02\x38\x01\"h\n\x12ListModelsResponse\x12R\n\x05items\x18\x01 \x01(\x0b\x32\x43.github.com.metaprov.modelaapi.pkg.apis.training.v1alpha1.ModelList\"2\n\x0fGetModelRequest\x12\x11\n\tnamespace\x18\x01 \x01(\t\x12\x0c\n\x04name\x18\x02 \x01(\t\"\x13\n\x11UpdateModelResult\"5\n\x12\x44\x65leteModelRequest\x12\x11\n\tnamespace\x18\x01 \x01(\t\x12\x0c\n\x04name\x18\x02 \x01(\t\"\x15\n\x13\x44\x65leteModelResponse\",\n\x14PublishModelResponse\x12\x14\n\x0cmodelTarHash\x18\x01 \x01(\t\"5\n\x12GetMisclassRequest\x12\x11\n\tnamespace\x18\x01 \x01(\t\x12\x0c\n\x04name\x18\x02 \x01(\t\"a\n\x13GetMisclassResponse\x12J\n\x05table\x18\x01 \x01(\x0b\x32;.github.com.metaprov.modelaapi.services.common.v1.TableView\"7\n\x14\x44ownloadModelRequest\x12\x11\n\tnamespace\x18\x01 \x01(\t\x12\x0c\n\x04name\x18\x02 \x01(\t\"$\n\x15\x44ownloadModelResponse\x12\x0b\n\x03raw\x18\x01 \x01(\x0c\"3\n\x10\x46lagModelRequest\x12\x11\n\tnamespace\x18\x01 \x01(\t\x12\x0c\n\x04name\x18\x02 \x01(\t\"\x13\n\x11\x46lagModelResponse\"3\n\x10TestModelRequest\x12\x11\n\tnamespace\x18\x01 \x01(\t\x12\x0c\n\x04name\x18\x02 \x01(\t\"\x13\n\x11TestModelResponse2\x82\x1e\n\x0cModelService\x12\xb4\x01\n\nListModels\x12\x42.github.com.metaprov.modelaapi.services.model.v1.ListModelsRequest\x1a\x43.github.com.metaprov.modelaapi.services.model.v1.ListModelsResponse\"\x1d\x82\xd3\xe4\x93\x02\x17\x12\x15/v1/model/{namespace}\x12\xaf\x01\n\x0b\x43reateModel\x12\x43.github.com.metaprov.modelaapi.services.model.v1.CreateModelRequest\x1a\x44.github.com.metaprov.modelaapi.services.model.v1.CreateModelResponse\"\x15\x82\xd3\xe4\x93\x02\x0f\"\n/v1/models:\x01*\x12\xb6\x01\n\x08GetModel\x12@.github.com.metaprov.modelaapi.services.model.v1.GetModelRequest\x1a\x41.github.com.metaprov.modelaapi.services.model.v1.GetModelResponse\"%\x82\xd3\xe4\x93\x02\x1f\x12\x1d/v1/models/{namespace}/{name}\x12\xde\x01\n\x0bUpdateModel\x12\x43.github.com.metaprov.modelaapi.services.model.v1.UpdateModelRequest\x1a\x44.github.com.metaprov.modelaapi.services.model.v1.UpdateModelResponse\"D\x82\xd3\xe4\x93\x02>\x1a\x39/v1/models/{item.metadata.namespace}/{item.metadata.name}:\x01*\x12\xbf\x01\n\x0b\x44\x65leteModel\x12\x43.github.com.metaprov.modelaapi.services.model.v1.DeleteModelRequest\x1a\x44.github.com.metaprov.modelaapi.services.model.v1.DeleteModelResponse\"%\x82\xd3\xe4\x93\x02\x1f*\x1d/v1/models/{namespace}/{name}\x12\xc9\x01\n\x0b\x44\x65ployModel\x12\x43.github.com.metaprov.modelaapi.services.model.v1.DeployModelRequest\x1a\x44.github.com.metaprov.modelaapi.services.model.v1.DeployModelResponse\"/\x82\xd3\xe4\x93\x02)\"$/v1/models/{namespace}/{name}:deploy:\x01*\x12\xcd\x01\n\x0cPublishModel\x12\x44.github.com.metaprov.modelaapi.services.model.v1.PublishModelRequest\x1a\x45.github.com.metaprov.modelaapi.services.model.v1.PublishModelResponse\"0\x82\xd3\xe4\x93\x02*\"%/v1/models/{namespace}/{name}:publish:\x01*\x12\xdc\x01\n\x12\x43reateModelProfile\x12J.github.com.metaprov.modelaapi.services.model.v1.CreateModelProfileRequest\x1aK.github.com.metaprov.modelaapi.services.model.v1.CreateModelProfileResponse\"-\x82\xd3\xe4\x93\x02\'\"%/v1/models/{namespace}/{name}:profile\x12\xd3\x01\n\x0fGetModelProfile\x12G.github.com.metaprov.modelaapi.services.model.v1.GetModelProfileRequest\x1aH.github.com.metaprov.modelaapi.services.model.v1.GetModelProfileResponse\"-\x82\xd3\xe4\x93\x02\'\"%/v1/models/{namespace}/{name}:profile\x12\xcd\x01\n\x10GetModelMisclass\x12\x43.github.com.metaprov.modelaapi.services.model.v1.GetMisclassRequest\x1a\x44.github.com.metaprov.modelaapi.services.model.v1.GetMisclassResponse\".\x82\xd3\xe4\x93\x02(\x12&/v1/models/{namespace}/{name}:misclass\x12\xc7\x01\n\x0cGetModelLogs\x12\x44.github.com.metaprov.modelaapi.services.model.v1.GetModelLogsRequest\x1a\x45.github.com.metaprov.modelaapi.services.model.v1.GetModelLogsResponse\"*\x82\xd3\xe4\x93\x02$\x12\"/v1/models/{namespace}/{name}:logs\x12\xc2\x01\n\nAbortModel\x12\x42.github.com.metaprov.modelaapi.services.model.v1.AbortModelRequest\x1a\x43.github.com.metaprov.modelaapi.services.model.v1.AbortModelResponse\"+\x82\xd3\xe4\x93\x02%\"#/v1/models/{namespace}/{name}:abort\x12\xc2\x01\n\nPauseModel\x12\x42.github.com.metaprov.modelaapi.services.model.v1.PauseModelRequest\x1a\x43.github.com.metaprov.modelaapi.services.model.v1.PauseModelResponse\"+\x82\xd3\xe4\x93\x02%\"#/v1/models/{namespace}/{name}:pause\x12\xc6\x01\n\x0bResumeModel\x12\x43.github.com.metaprov.modelaapi.services.model.v1.ResumeModelRequest\x1a\x44.github.com.metaprov.modelaapi.services.model.v1.ResumeModelResponse\",\x82\xd3\xe4\x93\x02&\"$/v1/models/{namespace}/{name}:resume\x12\xce\x01\n\rCompareModels\x12\x45.github.com.metaprov.modelaapi.services.model.v1.CompareModelsRequest\x1a\x46.github.com.metaprov.modelaapi.services.model.v1.CompareModelsResponse\".\x82\xd3\xe4\x93\x02(\"&/v1/models/{namespace}/{names}:compare\x12\xca\x01\n\x0c\x43ompileModel\x12\x44.github.com.metaprov.modelaapi.services.model.v1.CompileModelRequest\x1a\x45.github.com.metaprov.modelaapi.services.model.v1.CompileModelResponse\"-\x82\xd3\xe4\x93\x02\'\"%/v1/models/{namespace}/{name}:compile\x12\xce\x01\n\rDownloadModel\x12\x45.github.com.metaprov.modelaapi.services.model.v1.DownloadModelRequest\x1a\x46.github.com.metaprov.modelaapi.services.model.v1.DownloadModelResponse\".\x82\xd3\xe4\x93\x02(\"&/v1/models/{namespace}/{name}:download\x12\xbe\x01\n\tFlagModel\x12\x41.github.com.metaprov.modelaapi.services.model.v1.FlagModelRequest\x1a\x42.github.com.metaprov.modelaapi.services.model.v1.FlagModelResponse\"*\x82\xd3\xe4\x93\x02$\"\"/v1/models/{namespace}/{name}:flag\x12\xbe\x01\n\tTestModel\x12\x41.github.com.metaprov.modelaapi.services.model.v1.TestModelRequest\x1a\x42.github.com.metaprov.modelaapi.services.model.v1.TestModelResponse\"*\x82\xd3\xe4\x93\x02$\"\"/v1/models/{namespace}/{name}:testB1Z/github.com/metaprov/modelaapi/services/model/v1b\x06proto3' , dependencies=[google_dot_api_dot_annotations__pb2.DESCRIPTOR,github_dot_com_dot_metaprov_dot_modelaapi_dot_pkg_dot_apis_dot_training_dot_v1alpha1_dot_generated__pb2.DESCRIPTOR,github_dot_com_dot_metaprov_dot_modelaapi_dot_services_dot_common_dot_v1_dot_common__pb2.DESCRIPTOR,]) _CREATEMODELPROFILERESPONSE = _descriptor.Descriptor( name='CreateModelProfileResponse', full_name='github.com.metaprov.modelaapi.services.model.v1.CreateModelProfileResponse', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='uri', full_name='github.com.metaprov.modelaapi.services.model.v1.CreateModelProfileResponse.uri', index=0, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=279, serialized_end=320, ) _CREATEMODELPROFILEREQUEST = _descriptor.Descriptor( name='CreateModelProfileRequest', full_name='github.com.metaprov.modelaapi.services.model.v1.CreateModelProfileRequest', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='namespace', full_name='github.com.metaprov.modelaapi.services.model.v1.CreateModelProfileRequest.namespace', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='name', full_name='github.com.metaprov.modelaapi.services.model.v1.CreateModelProfileRequest.name', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=322, serialized_end=382, ) _LISTMODELPROFILEREQUEST = _descriptor.Descriptor( name='ListModelProfileRequest', full_name='github.com.metaprov.modelaapi.services.model.v1.ListModelProfileRequest', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='namespace', full_name='github.com.metaprov.modelaapi.services.model.v1.ListModelProfileRequest.namespace', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='name', full_name='github.com.metaprov.modelaapi.services.model.v1.ListModelProfileRequest.name', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=384, serialized_end=442, ) _GETMODELPROFILEREQUEST = _descriptor.Descriptor( name='GetModelProfileRequest', full_name='github.com.metaprov.modelaapi.services.model.v1.GetModelProfileRequest', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='namespace', full_name='github.com.metaprov.modelaapi.services.model.v1.GetModelProfileRequest.namespace', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='name', full_name='github.com.metaprov.modelaapi.services.model.v1.GetModelProfileRequest.name', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='uri', full_name='github.com.metaprov.modelaapi.services.model.v1.GetModelProfileRequest.uri', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=444, serialized_end=514, ) _GETMODELPROFILERESPONSE = _descriptor.Descriptor( name='GetModelProfileResponse', full_name='github.com.metaprov.modelaapi.services.model.v1.GetModelProfileResponse', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='profile', full_name='github.com.metaprov.modelaapi.services.model.v1.GetModelProfileResponse.profile', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=516, serialized_end=622, ) _GETMODELLOGSRESPONSE_LOGSENTRY = _descriptor.Descriptor( name='LogsEntry', full_name='github.com.metaprov.modelaapi.services.model.v1.GetModelLogsResponse.LogsEntry', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='key', full_name='github.com.metaprov.modelaapi.services.model.v1.GetModelLogsResponse.LogsEntry.key', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='value', full_name='github.com.metaprov.modelaapi.services.model.v1.GetModelLogsResponse.LogsEntry.value', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=b'8\001', is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=744, serialized_end=787, ) _GETMODELLOGSRESPONSE = _descriptor.Descriptor( name='GetModelLogsResponse', full_name='github.com.metaprov.modelaapi.services.model.v1.GetModelLogsResponse', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='logs', full_name='github.com.metaprov.modelaapi.services.model.v1.GetModelLogsResponse.logs', index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[_GETMODELLOGSRESPONSE_LOGSENTRY, ], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=625, serialized_end=787, ) _GETMODELLOGSREQUEST = _descriptor.Descriptor( name='GetModelLogsRequest', full_name='github.com.metaprov.modelaapi.services.model.v1.GetModelLogsRequest', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='namespace', full_name='github.com.metaprov.modelaapi.services.model.v1.GetModelLogsRequest.namespace', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='name', full_name='github.com.metaprov.modelaapi.services.model.v1.GetModelLogsRequest.name', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=789, serialized_end=843, ) _CREATEMODELREQUEST = _descriptor.Descriptor( name='CreateModelRequest', full_name='github.com.metaprov.modelaapi.services.model.v1.CreateModelRequest', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='item', full_name='github.com.metaprov.modelaapi.services.model.v1.CreateModelRequest.item', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=845, serialized_end=944, ) _CREATEMODELRESPONSE = _descriptor.Descriptor( name='CreateModelResponse', full_name='github.com.metaprov.modelaapi.services.model.v1.CreateModelResponse', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=946, serialized_end=967, ) _UPDATEMODELREQUEST = _descriptor.Descriptor( name='UpdateModelRequest', full_name='github.com.metaprov.modelaapi.services.model.v1.UpdateModelRequest', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='item', full_name='github.com.metaprov.modelaapi.services.model.v1.UpdateModelRequest.item', index=0, number=5, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=969, serialized_end=1068, ) _UPDATEMODELRESPONSE = _descriptor.Descriptor( name='UpdateModelResponse', full_name='github.com.metaprov.modelaapi.services.model.v1.UpdateModelResponse', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1070, serialized_end=1091, ) _GETMODELRESPONSE = _descriptor.Descriptor( name='GetModelResponse', full_name='github.com.metaprov.modelaapi.services.model.v1.GetModelResponse', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='item', full_name='github.com.metaprov.modelaapi.services.model.v1.GetModelResponse.item', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='yaml', full_name='github.com.metaprov.modelaapi.services.model.v1.GetModelResponse.yaml', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1093, serialized_end=1204, ) _ABORTMODELREQUEST = _descriptor.Descriptor( name='AbortModelRequest', full_name='github.com.metaprov.modelaapi.services.model.v1.AbortModelRequest', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='namespace', full_name='github.com.metaprov.modelaapi.services.model.v1.AbortModelRequest.namespace', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='name', full_name='github.com.metaprov.modelaapi.services.model.v1.AbortModelRequest.name', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1206, serialized_end=1258, ) _ABORTMODELRESPONSE = _descriptor.Descriptor( name='AbortModelResponse', full_name='github.com.metaprov.modelaapi.services.model.v1.AbortModelResponse', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1260, serialized_end=1280, ) _PAUSEMODELREQUEST = _descriptor.Descriptor( name='PauseModelRequest', full_name='github.com.metaprov.modelaapi.services.model.v1.PauseModelRequest', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='namespace', full_name='github.com.metaprov.modelaapi.services.model.v1.PauseModelRequest.namespace', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='name', full_name='github.com.metaprov.modelaapi.services.model.v1.PauseModelRequest.name', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1282, serialized_end=1334, ) _PAUSEMODELRESPONSE = _descriptor.Descriptor( name='PauseModelResponse', full_name='github.com.metaprov.modelaapi.services.model.v1.PauseModelResponse', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1336, serialized_end=1356, ) _RESUMEMODELREQUEST = _descriptor.Descriptor( name='ResumeModelRequest', full_name='github.com.metaprov.modelaapi.services.model.v1.ResumeModelRequest', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='namespace', full_name='github.com.metaprov.modelaapi.services.model.v1.ResumeModelRequest.namespace', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='name', full_name='github.com.metaprov.modelaapi.services.model.v1.ResumeModelRequest.name', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1358, serialized_end=1411, ) _RESUMEMODELRESPONSE = _descriptor.Descriptor( name='ResumeModelResponse', full_name='github.com.metaprov.modelaapi.services.model.v1.ResumeModelResponse', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1413, serialized_end=1434, ) _COMPAREMODELSREQUEST = _descriptor.Descriptor( name='CompareModelsRequest', full_name='github.com.metaprov.modelaapi.services.model.v1.CompareModelsRequest', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='namespace', full_name='github.com.metaprov.modelaapi.services.model.v1.CompareModelsRequest.namespace', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='names', full_name='github.com.metaprov.modelaapi.services.model.v1.CompareModelsRequest.names', index=1, number=2, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1436, serialized_end=1492, ) _COMPAREMODELSRESPONSE = _descriptor.Descriptor( name='CompareModelsResponse', full_name='github.com.metaprov.modelaapi.services.model.v1.CompareModelsResponse', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='namespace', full_name='github.com.metaprov.modelaapi.services.model.v1.CompareModelsResponse.namespace', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='names', full_name='github.com.metaprov.modelaapi.services.model.v1.CompareModelsResponse.names', index=1, number=2, type=9, cpp_type=9, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='profiles', full_name='github.com.metaprov.modelaapi.services.model.v1.CompareModelsResponse.profiles', index=2, number=3, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1495, serialized_end=1634, ) _COMPILEMODELREQUEST = _descriptor.Descriptor( name='CompileModelRequest', full_name='github.com.metaprov.modelaapi.services.model.v1.CompileModelRequest', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='namespace', full_name='github.com.metaprov.modelaapi.services.model.v1.CompileModelRequest.namespace', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='name', full_name='github.com.metaprov.modelaapi.services.model.v1.CompileModelRequest.name', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='target', full_name='github.com.metaprov.modelaapi.services.model.v1.CompileModelRequest.target', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='compiler', full_name='github.com.metaprov.modelaapi.services.model.v1.CompileModelRequest.compiler', index=3, number=4, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1636, serialized_end=1724, ) _COMPILEMODELRESPONSE = _descriptor.Descriptor( name='CompileModelResponse', full_name='github.com.metaprov.modelaapi.services.model.v1.CompileModelResponse', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='namespace', full_name='github.com.metaprov.modelaapi.services.model.v1.CompileModelResponse.namespace', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='names', full_name='github.com.metaprov.modelaapi.services.model.v1.CompileModelResponse.names', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1726, serialized_end=1782, ) _DEPLOYMODELREQUEST = _descriptor.Descriptor( name='DeployModelRequest', full_name='github.com.metaprov.modelaapi.services.model.v1.DeployModelRequest', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='namespace', full_name='github.com.metaprov.modelaapi.services.model.v1.DeployModelRequest.namespace', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='name', full_name='github.com.metaprov.modelaapi.services.model.v1.DeployModelRequest.name', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='predictor', full_name='github.com.metaprov.modelaapi.services.model.v1.DeployModelRequest.predictor', index=2, number=3, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='replicas', full_name='github.com.metaprov.modelaapi.services.model.v1.DeployModelRequest.replicas', index=3, number=4, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='traffic', full_name='github.com.metaprov.modelaapi.services.model.v1.DeployModelRequest.traffic', index=4, number=5, type=5, cpp_type=1, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='role', full_name='github.com.metaprov.modelaapi.services.model.v1.DeployModelRequest.role', index=5, number=6, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1784, serialized_end=1905, ) _PUBLISHMODELREQUEST = _descriptor.Descriptor( name='PublishModelRequest', full_name='github.com.metaprov.modelaapi.services.model.v1.PublishModelRequest', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='namespace', full_name='github.com.metaprov.modelaapi.services.model.v1.PublishModelRequest.namespace', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='name', full_name='github.com.metaprov.modelaapi.services.model.v1.PublishModelRequest.name', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1907, serialized_end=1961, ) _DEPLOYMODELRESPONSE = _descriptor.Descriptor( name='DeployModelResponse', full_name='github.com.metaprov.modelaapi.services.model.v1.DeployModelResponse', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1963, serialized_end=1984, ) _LISTMODELSREQUEST_LABELSENTRY = _descriptor.Descriptor( name='LabelsEntry', full_name='github.com.metaprov.modelaapi.services.model.v1.ListModelsRequest.LabelsEntry', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='key', full_name='github.com.metaprov.modelaapi.services.model.v1.ListModelsRequest.LabelsEntry.key', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='value', full_name='github.com.metaprov.modelaapi.services.model.v1.ListModelsRequest.LabelsEntry.value', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=b'8\001', is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=2123, serialized_end=2168, ) _LISTMODELSREQUEST = _descriptor.Descriptor( name='ListModelsRequest', full_name='github.com.metaprov.modelaapi.services.model.v1.ListModelsRequest', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='namespace', full_name='github.com.metaprov.modelaapi.services.model.v1.ListModelsRequest.namespace', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='labels', full_name='github.com.metaprov.modelaapi.services.model.v1.ListModelsRequest.labels', index=1, number=2, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[_LISTMODELSREQUEST_LABELSENTRY, ], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1987, serialized_end=2168, ) _LISTMODELSRESPONSE = _descriptor.Descriptor( name='ListModelsResponse', full_name='github.com.metaprov.modelaapi.services.model.v1.ListModelsResponse', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='items', full_name='github.com.metaprov.modelaapi.services.model.v1.ListModelsResponse.items', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=2170, serialized_end=2274, ) _GETMODELREQUEST = _descriptor.Descriptor( name='GetModelRequest', full_name='github.com.metaprov.modelaapi.services.model.v1.GetModelRequest', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='namespace', full_name='github.com.metaprov.modelaapi.services.model.v1.GetModelRequest.namespace', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='name', full_name='github.com.metaprov.modelaapi.services.model.v1.GetModelRequest.name', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=2276, serialized_end=2326, ) _UPDATEMODELRESULT = _descriptor.Descriptor( name='UpdateModelResult', full_name='github.com.metaprov.modelaapi.services.model.v1.UpdateModelResult', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=2328, serialized_end=2347, ) _DELETEMODELREQUEST = _descriptor.Descriptor( name='DeleteModelRequest', full_name='github.com.metaprov.modelaapi.services.model.v1.DeleteModelRequest', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='namespace', full_name='github.com.metaprov.modelaapi.services.model.v1.DeleteModelRequest.namespace', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='name', full_name='github.com.metaprov.modelaapi.services.model.v1.DeleteModelRequest.name', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=2349, serialized_end=2402, ) _DELETEMODELRESPONSE = _descriptor.Descriptor( name='DeleteModelResponse', full_name='github.com.metaprov.modelaapi.services.model.v1.DeleteModelResponse', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=2404, serialized_end=2425, ) _PUBLISHMODELRESPONSE = _descriptor.Descriptor( name='PublishModelResponse', full_name='github.com.metaprov.modelaapi.services.model.v1.PublishModelResponse', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='modelTarHash', full_name='github.com.metaprov.modelaapi.services.model.v1.PublishModelResponse.modelTarHash', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=2427, serialized_end=2471, ) _GETMISCLASSREQUEST = _descriptor.Descriptor( name='GetMisclassRequest', full_name='github.com.metaprov.modelaapi.services.model.v1.GetMisclassRequest', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='namespace', full_name='github.com.metaprov.modelaapi.services.model.v1.GetMisclassRequest.namespace', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='name', full_name='github.com.metaprov.modelaapi.services.model.v1.GetMisclassRequest.name', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=2473, serialized_end=2526, ) _GETMISCLASSRESPONSE = _descriptor.Descriptor( name='GetMisclassResponse', full_name='github.com.metaprov.modelaapi.services.model.v1.GetMisclassResponse', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='table', full_name='github.com.metaprov.modelaapi.services.model.v1.GetMisclassResponse.table', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=2528, serialized_end=2625, ) _DOWNLOADMODELREQUEST = _descriptor.Descriptor( name='DownloadModelRequest', full_name='github.com.metaprov.modelaapi.services.model.v1.DownloadModelRequest', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='namespace', full_name='github.com.metaprov.modelaapi.services.model.v1.DownloadModelRequest.namespace', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='name', full_name='github.com.metaprov.modelaapi.services.model.v1.DownloadModelRequest.name', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=2627, serialized_end=2682, ) _DOWNLOADMODELRESPONSE = _descriptor.Descriptor( name='DownloadModelResponse', full_name='github.com.metaprov.modelaapi.services.model.v1.DownloadModelResponse', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='raw', full_name='github.com.metaprov.modelaapi.services.model.v1.DownloadModelResponse.raw', index=0, number=1, type=12, cpp_type=9, label=1, has_default_value=False, default_value=b"", message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=2684, serialized_end=2720, ) _FLAGMODELREQUEST = _descriptor.Descriptor( name='FlagModelRequest', full_name='github.com.metaprov.modelaapi.services.model.v1.FlagModelRequest', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='namespace', full_name='github.com.metaprov.modelaapi.services.model.v1.FlagModelRequest.namespace', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='name', full_name='github.com.metaprov.modelaapi.services.model.v1.FlagModelRequest.name', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=2722, serialized_end=2773, ) _FLAGMODELRESPONSE = _descriptor.Descriptor( name='FlagModelResponse', full_name='github.com.metaprov.modelaapi.services.model.v1.FlagModelResponse', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=2775, serialized_end=2794, ) _TESTMODELREQUEST = _descriptor.Descriptor( name='TestModelRequest', full_name='github.com.metaprov.modelaapi.services.model.v1.TestModelRequest', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='namespace', full_name='github.com.metaprov.modelaapi.services.model.v1.TestModelRequest.namespace', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='name', full_name='github.com.metaprov.modelaapi.services.model.v1.TestModelRequest.name', index=1, number=2, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=None, file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=2796, serialized_end=2847, ) _TESTMODELRESPONSE = _descriptor.Descriptor( name='TestModelResponse', full_name='github.com.metaprov.modelaapi.services.model.v1.TestModelResponse', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=2849, serialized_end=2868, ) _GETMODELPROFILERESPONSE.fields_by_name['profile'].message_type = github_dot_com_dot_metaprov_dot_modelaapi_dot_services_dot_common_dot_v1_dot_common__pb2._MODELPROFILE _GETMODELLOGSRESPONSE_LOGSENTRY.containing_type = _GETMODELLOGSRESPONSE _GETMODELLOGSRESPONSE.fields_by_name['logs'].message_type = _GETMODELLOGSRESPONSE_LOGSENTRY _CREATEMODELREQUEST.fields_by_name['item'].message_type = github_dot_com_dot_metaprov_dot_modelaapi_dot_pkg_dot_apis_dot_training_dot_v1alpha1_dot_generated__pb2._MODEL _UPDATEMODELREQUEST.fields_by_name['item'].message_type = github_dot_com_dot_metaprov_dot_modelaapi_dot_pkg_dot_apis_dot_training_dot_v1alpha1_dot_generated__pb2._MODEL _GETMODELRESPONSE.fields_by_name['item'].message_type = github_dot_com_dot_metaprov_dot_modelaapi_dot_pkg_dot_apis_dot_training_dot_v1alpha1_dot_generated__pb2._MODEL _COMPAREMODELSRESPONSE.fields_by_name['profiles'].message_type = github_dot_com_dot_metaprov_dot_modelaapi_dot_services_dot_common_dot_v1_dot_common__pb2._MODELPROFILE _LISTMODELSREQUEST_LABELSENTRY.containing_type = _LISTMODELSREQUEST _LISTMODELSREQUEST.fields_by_name['labels'].message_type = _LISTMODELSREQUEST_LABELSENTRY _LISTMODELSRESPONSE.fields_by_name['items'].message_type = github_dot_com_dot_metaprov_dot_modelaapi_dot_pkg_dot_apis_dot_training_dot_v1alpha1_dot_generated__pb2._MODELLIST _GETMISCLASSRESPONSE.fields_by_name['table'].message_type = github_dot_com_dot_metaprov_dot_modelaapi_dot_services_dot_common_dot_v1_dot_common__pb2._TABLEVIEW DESCRIPTOR.message_types_by_name['CreateModelProfileResponse'] = _CREATEMODELPROFILERESPONSE DESCRIPTOR.message_types_by_name['CreateModelProfileRequest'] = _CREATEMODELPROFILEREQUEST DESCRIPTOR.message_types_by_name['ListModelProfileRequest'] = _LISTMODELPROFILEREQUEST DESCRIPTOR.message_types_by_name['GetModelProfileRequest'] = _GETMODELPROFILEREQUEST DESCRIPTOR.message_types_by_name['GetModelProfileResponse'] = _GETMODELPROFILERESPONSE DESCRIPTOR.message_types_by_name['GetModelLogsResponse'] = _GETMODELLOGSRESPONSE DESCRIPTOR.message_types_by_name['GetModelLogsRequest'] = _GETMODELLOGSREQUEST DESCRIPTOR.message_types_by_name['CreateModelRequest'] = _CREATEMODELREQUEST DESCRIPTOR.message_types_by_name['CreateModelResponse'] = _CREATEMODELRESPONSE DESCRIPTOR.message_types_by_name['UpdateModelRequest'] = _UPDATEMODELREQUEST DESCRIPTOR.message_types_by_name['UpdateModelResponse'] = _UPDATEMODELRESPONSE DESCRIPTOR.message_types_by_name['GetModelResponse'] = _GETMODELRESPONSE DESCRIPTOR.message_types_by_name['AbortModelRequest'] = _ABORTMODELREQUEST DESCRIPTOR.message_types_by_name['AbortModelResponse'] = _ABORTMODELRESPONSE DESCRIPTOR.message_types_by_name['PauseModelRequest'] = _PAUSEMODELREQUEST DESCRIPTOR.message_types_by_name['PauseModelResponse'] = _PAUSEMODELRESPONSE DESCRIPTOR.message_types_by_name['ResumeModelRequest'] = _RESUMEMODELREQUEST DESCRIPTOR.message_types_by_name['ResumeModelResponse'] = _RESUMEMODELRESPONSE DESCRIPTOR.message_types_by_name['CompareModelsRequest'] = _COMPAREMODELSREQUEST DESCRIPTOR.message_types_by_name['CompareModelsResponse'] = _COMPAREMODELSRESPONSE DESCRIPTOR.message_types_by_name['CompileModelRequest'] = _COMPILEMODELREQUEST DESCRIPTOR.message_types_by_name['CompileModelResponse'] = _COMPILEMODELRESPONSE DESCRIPTOR.message_types_by_name['DeployModelRequest'] = _DEPLOYMODELREQUEST DESCRIPTOR.message_types_by_name['PublishModelRequest'] = _PUBLISHMODELREQUEST DESCRIPTOR.message_types_by_name['DeployModelResponse'] = _DEPLOYMODELRESPONSE DESCRIPTOR.message_types_by_name['ListModelsRequest'] = _LISTMODELSREQUEST DESCRIPTOR.message_types_by_name['ListModelsResponse'] = _LISTMODELSRESPONSE DESCRIPTOR.message_types_by_name['GetModelRequest'] = _GETMODELREQUEST DESCRIPTOR.message_types_by_name['UpdateModelResult'] = _UPDATEMODELRESULT DESCRIPTOR.message_types_by_name['DeleteModelRequest'] = _DELETEMODELREQUEST DESCRIPTOR.message_types_by_name['DeleteModelResponse'] = _DELETEMODELRESPONSE DESCRIPTOR.message_types_by_name['PublishModelResponse'] = _PUBLISHMODELRESPONSE DESCRIPTOR.message_types_by_name['GetMisclassRequest'] = _GETMISCLASSREQUEST DESCRIPTOR.message_types_by_name['GetMisclassResponse'] = _GETMISCLASSRESPONSE DESCRIPTOR.message_types_by_name['DownloadModelRequest'] = _DOWNLOADMODELREQUEST DESCRIPTOR.message_types_by_name['DownloadModelResponse'] = _DOWNLOADMODELRESPONSE DESCRIPTOR.message_types_by_name['FlagModelRequest'] = _FLAGMODELREQUEST DESCRIPTOR.message_types_by_name['FlagModelResponse'] = _FLAGMODELRESPONSE DESCRIPTOR.message_types_by_name['TestModelRequest'] = _TESTMODELREQUEST DESCRIPTOR.message_types_by_name['TestModelResponse'] = _TESTMODELRESPONSE _sym_db.RegisterFileDescriptor(DESCRIPTOR) CreateModelProfileResponse = _reflection.GeneratedProtocolMessageType('CreateModelProfileResponse', (_message.Message,), { 'DESCRIPTOR' : _CREATEMODELPROFILERESPONSE, '__module__' : 'github.com.metaprov.modelaapi.services.model.v1.model_pb2' # @@protoc_insertion_point(class_scope:github.com.metaprov.modelaapi.services.model.v1.CreateModelProfileResponse) }) _sym_db.RegisterMessage(CreateModelProfileResponse) CreateModelProfileRequest = _reflection.GeneratedProtocolMessageType('CreateModelProfileRequest', (_message.Message,), { 'DESCRIPTOR' : _CREATEMODELPROFILEREQUEST, '__module__' : 'github.com.metaprov.modelaapi.services.model.v1.model_pb2' # @@protoc_insertion_point(class_scope:github.com.metaprov.modelaapi.services.model.v1.CreateModelProfileRequest) }) _sym_db.RegisterMessage(CreateModelProfileRequest) ListModelProfileRequest = _reflection.GeneratedProtocolMessageType('ListModelProfileRequest', (_message.Message,), { 'DESCRIPTOR' : _LISTMODELPROFILEREQUEST, '__module__' : 'github.com.metaprov.modelaapi.services.model.v1.model_pb2' # @@protoc_insertion_point(class_scope:github.com.metaprov.modelaapi.services.model.v1.ListModelProfileRequest) }) _sym_db.RegisterMessage(ListModelProfileRequest) GetModelProfileRequest = _reflection.GeneratedProtocolMessageType('GetModelProfileRequest', (_message.Message,), { 'DESCRIPTOR' : _GETMODELPROFILEREQUEST, '__module__' : 'github.com.metaprov.modelaapi.services.model.v1.model_pb2' # @@protoc_insertion_point(class_scope:github.com.metaprov.modelaapi.services.model.v1.GetModelProfileRequest) }) _sym_db.RegisterMessage(GetModelProfileRequest) GetModelProfileResponse = _reflection.GeneratedProtocolMessageType('GetModelProfileResponse', (_message.Message,), { 'DESCRIPTOR' : _GETMODELPROFILERESPONSE, '__module__' : 'github.com.metaprov.modelaapi.services.model.v1.model_pb2' # @@protoc_insertion_point(class_scope:github.com.metaprov.modelaapi.services.model.v1.GetModelProfileResponse) }) _sym_db.RegisterMessage(GetModelProfileResponse) GetModelLogsResponse = _reflection.GeneratedProtocolMessageType('GetModelLogsResponse', (_message.Message,), { 'LogsEntry' : _reflection.GeneratedProtocolMessageType('LogsEntry', (_message.Message,), { 'DESCRIPTOR' : _GETMODELLOGSRESPONSE_LOGSENTRY, '__module__' : 'github.com.metaprov.modelaapi.services.model.v1.model_pb2' # @@protoc_insertion_point(class_scope:github.com.metaprov.modelaapi.services.model.v1.GetModelLogsResponse.LogsEntry) }) , 'DESCRIPTOR' : _GETMODELLOGSRESPONSE, '__module__' : 'github.com.metaprov.modelaapi.services.model.v1.model_pb2' # @@protoc_insertion_point(class_scope:github.com.metaprov.modelaapi.services.model.v1.GetModelLogsResponse) }) _sym_db.RegisterMessage(GetModelLogsResponse) _sym_db.RegisterMessage(GetModelLogsResponse.LogsEntry) GetModelLogsRequest = _reflection.GeneratedProtocolMessageType('GetModelLogsRequest', (_message.Message,), { 'DESCRIPTOR' : _GETMODELLOGSREQUEST, '__module__' : 'github.com.metaprov.modelaapi.services.model.v1.model_pb2' # @@protoc_insertion_point(class_scope:github.com.metaprov.modelaapi.services.model.v1.GetModelLogsRequest) }) _sym_db.RegisterMessage(GetModelLogsRequest) CreateModelRequest = _reflection.GeneratedProtocolMessageType('CreateModelRequest', (_message.Message,), { 'DESCRIPTOR' : _CREATEMODELREQUEST, '__module__' : 'github.com.metaprov.modelaapi.services.model.v1.model_pb2' # @@protoc_insertion_point(class_scope:github.com.metaprov.modelaapi.services.model.v1.CreateModelRequest) }) _sym_db.RegisterMessage(CreateModelRequest) CreateModelResponse = _reflection.GeneratedProtocolMessageType('CreateModelResponse', (_message.Message,), { 'DESCRIPTOR' : _CREATEMODELRESPONSE, '__module__' : 'github.com.metaprov.modelaapi.services.model.v1.model_pb2' # @@protoc_insertion_point(class_scope:github.com.metaprov.modelaapi.services.model.v1.CreateModelResponse) }) _sym_db.RegisterMessage(CreateModelResponse) UpdateModelRequest = _reflection.GeneratedProtocolMessageType('UpdateModelRequest', (_message.Message,), { 'DESCRIPTOR' : _UPDATEMODELREQUEST, '__module__' : 'github.com.metaprov.modelaapi.services.model.v1.model_pb2' # @@protoc_insertion_point(class_scope:github.com.metaprov.modelaapi.services.model.v1.UpdateModelRequest) }) _sym_db.RegisterMessage(UpdateModelRequest) UpdateModelResponse = _reflection.GeneratedProtocolMessageType('UpdateModelResponse', (_message.Message,), { 'DESCRIPTOR' : _UPDATEMODELRESPONSE, '__module__' : 'github.com.metaprov.modelaapi.services.model.v1.model_pb2' # @@protoc_insertion_point(class_scope:github.com.metaprov.modelaapi.services.model.v1.UpdateModelResponse) }) _sym_db.RegisterMessage(UpdateModelResponse) GetModelResponse = _reflection.GeneratedProtocolMessageType('GetModelResponse', (_message.Message,), { 'DESCRIPTOR' : _GETMODELRESPONSE, '__module__' : 'github.com.metaprov.modelaapi.services.model.v1.model_pb2' # @@protoc_insertion_point(class_scope:github.com.metaprov.modelaapi.services.model.v1.GetModelResponse) }) _sym_db.RegisterMessage(GetModelResponse) AbortModelRequest = _reflection.GeneratedProtocolMessageType('AbortModelRequest', (_message.Message,), { 'DESCRIPTOR' : _ABORTMODELREQUEST, '__module__' : 'github.com.metaprov.modelaapi.services.model.v1.model_pb2' # @@protoc_insertion_point(class_scope:github.com.metaprov.modelaapi.services.model.v1.AbortModelRequest) }) _sym_db.RegisterMessage(AbortModelRequest) AbortModelResponse = _reflection.GeneratedProtocolMessageType('AbortModelResponse', (_message.Message,), { 'DESCRIPTOR' : _ABORTMODELRESPONSE, '__module__' : 'github.com.metaprov.modelaapi.services.model.v1.model_pb2' # @@protoc_insertion_point(class_scope:github.com.metaprov.modelaapi.services.model.v1.AbortModelResponse) }) _sym_db.RegisterMessage(AbortModelResponse) PauseModelRequest = _reflection.GeneratedProtocolMessageType('PauseModelRequest', (_message.Message,), { 'DESCRIPTOR' : _PAUSEMODELREQUEST, '__module__' : 'github.com.metaprov.modelaapi.services.model.v1.model_pb2' # @@protoc_insertion_point(class_scope:github.com.metaprov.modelaapi.services.model.v1.PauseModelRequest) }) _sym_db.RegisterMessage(PauseModelRequest) PauseModelResponse = _reflection.GeneratedProtocolMessageType('PauseModelResponse', (_message.Message,), { 'DESCRIPTOR' : _PAUSEMODELRESPONSE, '__module__' : 'github.com.metaprov.modelaapi.services.model.v1.model_pb2' # @@protoc_insertion_point(class_scope:github.com.metaprov.modelaapi.services.model.v1.PauseModelResponse) }) _sym_db.RegisterMessage(PauseModelResponse) ResumeModelRequest = _reflection.GeneratedProtocolMessageType('ResumeModelRequest', (_message.Message,), { 'DESCRIPTOR' : _RESUMEMODELREQUEST, '__module__' : 'github.com.metaprov.modelaapi.services.model.v1.model_pb2' # @@protoc_insertion_point(class_scope:github.com.metaprov.modelaapi.services.model.v1.ResumeModelRequest) }) _sym_db.RegisterMessage(ResumeModelRequest) ResumeModelResponse = _reflection.GeneratedProtocolMessageType('ResumeModelResponse', (_message.Message,), { 'DESCRIPTOR' : _RESUMEMODELRESPONSE, '__module__' : 'github.com.metaprov.modelaapi.services.model.v1.model_pb2' # @@protoc_insertion_point(class_scope:github.com.metaprov.modelaapi.services.model.v1.ResumeModelResponse) }) _sym_db.RegisterMessage(ResumeModelResponse) CompareModelsRequest = _reflection.GeneratedProtocolMessageType('CompareModelsRequest', (_message.Message,), { 'DESCRIPTOR' : _COMPAREMODELSREQUEST, '__module__' : 'github.com.metaprov.modelaapi.services.model.v1.model_pb2' # @@protoc_insertion_point(class_scope:github.com.metaprov.modelaapi.services.model.v1.CompareModelsRequest) }) _sym_db.RegisterMessage(CompareModelsRequest) CompareModelsResponse = _reflection.GeneratedProtocolMessageType('CompareModelsResponse', (_message.Message,), { 'DESCRIPTOR' : _COMPAREMODELSRESPONSE, '__module__' : 'github.com.metaprov.modelaapi.services.model.v1.model_pb2' # @@protoc_insertion_point(class_scope:github.com.metaprov.modelaapi.services.model.v1.CompareModelsResponse) }) _sym_db.RegisterMessage(CompareModelsResponse) CompileModelRequest = _reflection.GeneratedProtocolMessageType('CompileModelRequest', (_message.Message,), { 'DESCRIPTOR' : _COMPILEMODELREQUEST, '__module__' : 'github.com.metaprov.modelaapi.services.model.v1.model_pb2' # @@protoc_insertion_point(class_scope:github.com.metaprov.modelaapi.services.model.v1.CompileModelRequest) }) _sym_db.RegisterMessage(CompileModelRequest) CompileModelResponse = _reflection.GeneratedProtocolMessageType('CompileModelResponse', (_message.Message,), { 'DESCRIPTOR' : _COMPILEMODELRESPONSE, '__module__' : 'github.com.metaprov.modelaapi.services.model.v1.model_pb2' # @@protoc_insertion_point(class_scope:github.com.metaprov.modelaapi.services.model.v1.CompileModelResponse) }) _sym_db.RegisterMessage(CompileModelResponse) DeployModelRequest = _reflection.GeneratedProtocolMessageType('DeployModelRequest', (_message.Message,), { 'DESCRIPTOR' : _DEPLOYMODELREQUEST, '__module__' : 'github.com.metaprov.modelaapi.services.model.v1.model_pb2' # @@protoc_insertion_point(class_scope:github.com.metaprov.modelaapi.services.model.v1.DeployModelRequest) }) _sym_db.RegisterMessage(DeployModelRequest) PublishModelRequest = _reflection.GeneratedProtocolMessageType('PublishModelRequest', (_message.Message,), { 'DESCRIPTOR' : _PUBLISHMODELREQUEST, '__module__' : 'github.com.metaprov.modelaapi.services.model.v1.model_pb2' # @@protoc_insertion_point(class_scope:github.com.metaprov.modelaapi.services.model.v1.PublishModelRequest) }) _sym_db.RegisterMessage(PublishModelRequest) DeployModelResponse = _reflection.GeneratedProtocolMessageType('DeployModelResponse', (_message.Message,), { 'DESCRIPTOR' : _DEPLOYMODELRESPONSE, '__module__' : 'github.com.metaprov.modelaapi.services.model.v1.model_pb2' # @@protoc_insertion_point(class_scope:github.com.metaprov.modelaapi.services.model.v1.DeployModelResponse) }) _sym_db.RegisterMessage(DeployModelResponse) ListModelsRequest = _reflection.GeneratedProtocolMessageType('ListModelsRequest', (_message.Message,), { 'LabelsEntry' : _reflection.GeneratedProtocolMessageType('LabelsEntry', (_message.Message,), { 'DESCRIPTOR' : _LISTMODELSREQUEST_LABELSENTRY, '__module__' : 'github.com.metaprov.modelaapi.services.model.v1.model_pb2' # @@protoc_insertion_point(class_scope:github.com.metaprov.modelaapi.services.model.v1.ListModelsRequest.LabelsEntry) }) , 'DESCRIPTOR' : _LISTMODELSREQUEST, '__module__' : 'github.com.metaprov.modelaapi.services.model.v1.model_pb2' # @@protoc_insertion_point(class_scope:github.com.metaprov.modelaapi.services.model.v1.ListModelsRequest) }) _sym_db.RegisterMessage(ListModelsRequest) _sym_db.RegisterMessage(ListModelsRequest.LabelsEntry) ListModelsResponse = _reflection.GeneratedProtocolMessageType('ListModelsResponse', (_message.Message,), { 'DESCRIPTOR' : _LISTMODELSRESPONSE, '__module__' : 'github.com.metaprov.modelaapi.services.model.v1.model_pb2' # @@protoc_insertion_point(class_scope:github.com.metaprov.modelaapi.services.model.v1.ListModelsResponse) }) _sym_db.RegisterMessage(ListModelsResponse) GetModelRequest = _reflection.GeneratedProtocolMessageType('GetModelRequest', (_message.Message,), { 'DESCRIPTOR' : _GETMODELREQUEST, '__module__' : 'github.com.metaprov.modelaapi.services.model.v1.model_pb2' # @@protoc_insertion_point(class_scope:github.com.metaprov.modelaapi.services.model.v1.GetModelRequest) }) _sym_db.RegisterMessage(GetModelRequest) UpdateModelResult = _reflection.GeneratedProtocolMessageType('UpdateModelResult', (_message.Message,), { 'DESCRIPTOR' : _UPDATEMODELRESULT, '__module__' : 'github.com.metaprov.modelaapi.services.model.v1.model_pb2' # @@protoc_insertion_point(class_scope:github.com.metaprov.modelaapi.services.model.v1.UpdateModelResult) }) _sym_db.RegisterMessage(UpdateModelResult) DeleteModelRequest = _reflection.GeneratedProtocolMessageType('DeleteModelRequest', (_message.Message,), { 'DESCRIPTOR' : _DELETEMODELREQUEST, '__module__' : 'github.com.metaprov.modelaapi.services.model.v1.model_pb2' # @@protoc_insertion_point(class_scope:github.com.metaprov.modelaapi.services.model.v1.DeleteModelRequest) }) _sym_db.RegisterMessage(DeleteModelRequest) DeleteModelResponse = _reflection.GeneratedProtocolMessageType('DeleteModelResponse', (_message.Message,), { 'DESCRIPTOR' : _DELETEMODELRESPONSE, '__module__' : 'github.com.metaprov.modelaapi.services.model.v1.model_pb2' # @@protoc_insertion_point(class_scope:github.com.metaprov.modelaapi.services.model.v1.DeleteModelResponse) }) _sym_db.RegisterMessage(DeleteModelResponse) PublishModelResponse = _reflection.GeneratedProtocolMessageType('PublishModelResponse', (_message.Message,), { 'DESCRIPTOR' : _PUBLISHMODELRESPONSE, '__module__' : 'github.com.metaprov.modelaapi.services.model.v1.model_pb2' # @@protoc_insertion_point(class_scope:github.com.metaprov.modelaapi.services.model.v1.PublishModelResponse) }) _sym_db.RegisterMessage(PublishModelResponse) GetMisclassRequest = _reflection.GeneratedProtocolMessageType('GetMisclassRequest', (_message.Message,), { 'DESCRIPTOR' : _GETMISCLASSREQUEST, '__module__' : 'github.com.metaprov.modelaapi.services.model.v1.model_pb2' # @@protoc_insertion_point(class_scope:github.com.metaprov.modelaapi.services.model.v1.GetMisclassRequest) }) _sym_db.RegisterMessage(GetMisclassRequest) GetMisclassResponse = _reflection.GeneratedProtocolMessageType('GetMisclassResponse', (_message.Message,), { 'DESCRIPTOR' : _GETMISCLASSRESPONSE, '__module__' : 'github.com.metaprov.modelaapi.services.model.v1.model_pb2' # @@protoc_insertion_point(class_scope:github.com.metaprov.modelaapi.services.model.v1.GetMisclassResponse) }) _sym_db.RegisterMessage(GetMisclassResponse) DownloadModelRequest = _reflection.GeneratedProtocolMessageType('DownloadModelRequest', (_message.Message,), { 'DESCRIPTOR' : _DOWNLOADMODELREQUEST, '__module__' : 'github.com.metaprov.modelaapi.services.model.v1.model_pb2' # @@protoc_insertion_point(class_scope:github.com.metaprov.modelaapi.services.model.v1.DownloadModelRequest) }) _sym_db.RegisterMessage(DownloadModelRequest) DownloadModelResponse = _reflection.GeneratedProtocolMessageType('DownloadModelResponse', (_message.Message,), { 'DESCRIPTOR' : _DOWNLOADMODELRESPONSE, '__module__' : 'github.com.metaprov.modelaapi.services.model.v1.model_pb2' # @@protoc_insertion_point(class_scope:github.com.metaprov.modelaapi.services.model.v1.DownloadModelResponse) }) _sym_db.RegisterMessage(DownloadModelResponse) FlagModelRequest = _reflection.GeneratedProtocolMessageType('FlagModelRequest', (_message.Message,), { 'DESCRIPTOR' : _FLAGMODELREQUEST, '__module__' : 'github.com.metaprov.modelaapi.services.model.v1.model_pb2' # @@protoc_insertion_point(class_scope:github.com.metaprov.modelaapi.services.model.v1.FlagModelRequest) }) _sym_db.RegisterMessage(FlagModelRequest) FlagModelResponse = _reflection.GeneratedProtocolMessageType('FlagModelResponse', (_message.Message,), { 'DESCRIPTOR' : _FLAGMODELRESPONSE, '__module__' : 'github.com.metaprov.modelaapi.services.model.v1.model_pb2' # @@protoc_insertion_point(class_scope:github.com.metaprov.modelaapi.services.model.v1.FlagModelResponse) }) _sym_db.RegisterMessage(FlagModelResponse) TestModelRequest = _reflection.GeneratedProtocolMessageType('TestModelRequest', (_message.Message,), { 'DESCRIPTOR' : _TESTMODELREQUEST, '__module__' : 'github.com.metaprov.modelaapi.services.model.v1.model_pb2' # @@protoc_insertion_point(class_scope:github.com.metaprov.modelaapi.services.model.v1.TestModelRequest) }) _sym_db.RegisterMessage(TestModelRequest) TestModelResponse = _reflection.GeneratedProtocolMessageType('TestModelResponse', (_message.Message,), { 'DESCRIPTOR' : _TESTMODELRESPONSE, '__module__' : 'github.com.metaprov.modelaapi.services.model.v1.model_pb2' # @@protoc_insertion_point(class_scope:github.com.metaprov.modelaapi.services.model.v1.TestModelResponse) }) _sym_db.RegisterMessage(TestModelResponse) DESCRIPTOR._options = None _GETMODELLOGSRESPONSE_LOGSENTRY._options = None _LISTMODELSREQUEST_LABELSENTRY._options = None _MODELSERVICE = _descriptor.ServiceDescriptor( name='ModelService', full_name='github.com.metaprov.modelaapi.services.model.v1.ModelService', file=DESCRIPTOR, index=0, serialized_options=None, create_key=_descriptor._internal_create_key, serialized_start=2871, serialized_end=6713, methods=[ _descriptor.MethodDescriptor( name='ListModels', full_name='github.com.metaprov.modelaapi.services.model.v1.ModelService.ListModels', index=0, containing_service=None, input_type=_LISTMODELSREQUEST, output_type=_LISTMODELSRESPONSE, serialized_options=b'\202\323\344\223\002\027\022\025/v1/model/{namespace}', create_key=_descriptor._internal_create_key, ), _descriptor.MethodDescriptor( name='CreateModel', full_name='github.com.metaprov.modelaapi.services.model.v1.ModelService.CreateModel', index=1, containing_service=None, input_type=_CREATEMODELREQUEST, output_type=_CREATEMODELRESPONSE, serialized_options=b'\202\323\344\223\002\017\"\n/v1/models:\001*', create_key=_descriptor._internal_create_key, ), _descriptor.MethodDescriptor( name='GetModel', full_name='github.com.metaprov.modelaapi.services.model.v1.ModelService.GetModel', index=2, containing_service=None, input_type=_GETMODELREQUEST, output_type=_GETMODELRESPONSE, serialized_options=b'\202\323\344\223\002\037\022\035/v1/models/{namespace}/{name}', create_key=_descriptor._internal_create_key, ), _descriptor.MethodDescriptor( name='UpdateModel', full_name='github.com.metaprov.modelaapi.services.model.v1.ModelService.UpdateModel', index=3, containing_service=None, input_type=_UPDATEMODELREQUEST, output_type=_UPDATEMODELRESPONSE, serialized_options=b'\202\323\344\223\002>\0329/v1/models/{item.metadata.namespace}/{item.metadata.name}:\001*', create_key=_descriptor._internal_create_key, ), _descriptor.MethodDescriptor( name='DeleteModel', full_name='github.com.metaprov.modelaapi.services.model.v1.ModelService.DeleteModel', index=4, containing_service=None, input_type=_DELETEMODELREQUEST, output_type=_DELETEMODELRESPONSE, serialized_options=b'\202\323\344\223\002\037*\035/v1/models/{namespace}/{name}', create_key=_descriptor._internal_create_key, ), _descriptor.MethodDescriptor( name='DeployModel', full_name='github.com.metaprov.modelaapi.services.model.v1.ModelService.DeployModel', index=5, containing_service=None, input_type=_DEPLOYMODELREQUEST, output_type=_DEPLOYMODELRESPONSE, serialized_options=b'\202\323\344\223\002)\"$/v1/models/{namespace}/{name}:deploy:\001*', create_key=_descriptor._internal_create_key, ), _descriptor.MethodDescriptor( name='PublishModel', full_name='github.com.metaprov.modelaapi.services.model.v1.ModelService.PublishModel', index=6, containing_service=None, input_type=_PUBLISHMODELREQUEST, output_type=_PUBLISHMODELRESPONSE, serialized_options=b'\202\323\344\223\002*\"%/v1/models/{namespace}/{name}:publish:\001*', create_key=_descriptor._internal_create_key, ), _descriptor.MethodDescriptor( name='CreateModelProfile', full_name='github.com.metaprov.modelaapi.services.model.v1.ModelService.CreateModelProfile', index=7, containing_service=None, input_type=_CREATEMODELPROFILEREQUEST, output_type=_CREATEMODELPROFILERESPONSE, serialized_options=b'\202\323\344\223\002\'\"%/v1/models/{namespace}/{name}:profile', create_key=_descriptor._internal_create_key, ), _descriptor.MethodDescriptor( name='GetModelProfile', full_name='github.com.metaprov.modelaapi.services.model.v1.ModelService.GetModelProfile', index=8, containing_service=None, input_type=_GETMODELPROFILEREQUEST, output_type=_GETMODELPROFILERESPONSE, serialized_options=b'\202\323\344\223\002\'\"%/v1/models/{namespace}/{name}:profile', create_key=_descriptor._internal_create_key, ), _descriptor.MethodDescriptor( name='GetModelMisclass', full_name='github.com.metaprov.modelaapi.services.model.v1.ModelService.GetModelMisclass', index=9, containing_service=None, input_type=_GETMISCLASSREQUEST, output_type=_GETMISCLASSRESPONSE, serialized_options=b'\202\323\344\223\002(\022&/v1/models/{namespace}/{name}:misclass', create_key=_descriptor._internal_create_key, ), _descriptor.MethodDescriptor( name='GetModelLogs', full_name='github.com.metaprov.modelaapi.services.model.v1.ModelService.GetModelLogs', index=10, containing_service=None, input_type=_GETMODELLOGSREQUEST, output_type=_GETMODELLOGSRESPONSE, serialized_options=b'\202\323\344\223\002$\022\"/v1/models/{namespace}/{name}:logs', create_key=_descriptor._internal_create_key, ), _descriptor.MethodDescriptor( name='AbortModel', full_name='github.com.metaprov.modelaapi.services.model.v1.ModelService.AbortModel', index=11, containing_service=None, input_type=_ABORTMODELREQUEST, output_type=_ABORTMODELRESPONSE, serialized_options=b'\202\323\344\223\002%\"#/v1/models/{namespace}/{name}:abort', create_key=_descriptor._internal_create_key, ), _descriptor.MethodDescriptor( name='PauseModel', full_name='github.com.metaprov.modelaapi.services.model.v1.ModelService.PauseModel', index=12, containing_service=None, input_type=_PAUSEMODELREQUEST, output_type=_PAUSEMODELRESPONSE, serialized_options=b'\202\323\344\223\002%\"#/v1/models/{namespace}/{name}:pause', create_key=_descriptor._internal_create_key, ), _descriptor.MethodDescriptor( name='ResumeModel', full_name='github.com.metaprov.modelaapi.services.model.v1.ModelService.ResumeModel', index=13, containing_service=None, input_type=_RESUMEMODELREQUEST, output_type=_RESUMEMODELRESPONSE, serialized_options=b'\202\323\344\223\002&\"$/v1/models/{namespace}/{name}:resume', create_key=_descriptor._internal_create_key, ), _descriptor.MethodDescriptor( name='CompareModels', full_name='github.com.metaprov.modelaapi.services.model.v1.ModelService.CompareModels', index=14, containing_service=None, input_type=_COMPAREMODELSREQUEST, output_type=_COMPAREMODELSRESPONSE, serialized_options=b'\202\323\344\223\002(\"&/v1/models/{namespace}/{names}:compare', create_key=_descriptor._internal_create_key, ), _descriptor.MethodDescriptor( name='CompileModel', full_name='github.com.metaprov.modelaapi.services.model.v1.ModelService.CompileModel', index=15, containing_service=None, input_type=_COMPILEMODELREQUEST, output_type=_COMPILEMODELRESPONSE, serialized_options=b'\202\323\344\223\002\'\"%/v1/models/{namespace}/{name}:compile', create_key=_descriptor._internal_create_key, ), _descriptor.MethodDescriptor( name='DownloadModel', full_name='github.com.metaprov.modelaapi.services.model.v1.ModelService.DownloadModel', index=16, containing_service=None, input_type=_DOWNLOADMODELREQUEST, output_type=_DOWNLOADMODELRESPONSE, serialized_options=b'\202\323\344\223\002(\"&/v1/models/{namespace}/{name}:download', create_key=_descriptor._internal_create_key, ), _descriptor.MethodDescriptor( name='FlagModel', full_name='github.com.metaprov.modelaapi.services.model.v1.ModelService.FlagModel', index=17, containing_service=None, input_type=_FLAGMODELREQUEST, output_type=_FLAGMODELRESPONSE, serialized_options=b'\202\323\344\223\002$\"\"/v1/models/{namespace}/{name}:flag', create_key=_descriptor._internal_create_key, ), _descriptor.MethodDescriptor( name='TestModel', full_name='github.com.metaprov.modelaapi.services.model.v1.ModelService.TestModel', index=18, containing_service=None, input_type=_TESTMODELREQUEST, output_type=_TESTMODELRESPONSE, serialized_options=b'\202\323\344\223\002$\"\"/v1/models/{namespace}/{name}:test', create_key=_descriptor._internal_create_key, ), ]) _sym_db.RegisterServiceDescriptor(_MODELSERVICE) DESCRIPTOR.services_by_name['ModelService'] = _MODELSERVICE # @@protoc_insertion_point(module_scope)
#!/usr/bin/env python # Convert Hyg star database (http://www.astronexus.com/hyg) # from CSV to JSON # Paul Melis <paul.melis@surfsara.nl> import sys, csv, json STRING_FIELDS = { # v3 'proper', 'gl', 'spect', 'con', 'var', 'bf', 'bayer', 'base', # v2 'Spectrum', 'Gliese', 'BayerFlamsteed', 'ProperName' } lst = [] with open(sys.argv[1], 'rt', newline='') as f: r = csv.reader(f, delimiter=',') columns = next(r) for row in r: #print(row) entry = {} for key, value in zip(columns,row): if key not in STRING_FIELDS: if value == '': value = None else: try: value = int(value) except ValueError: try: value = float(value) except ValueError: print("Can't convert non-string value for key %s" % key) entry[key] = value lst.append(entry) with open(sys.argv[2], 'wt') as g: j = json.dumps(lst) #print(j) g.write(j)
import pyglet from typing import Dict, Tuple, Final, Any from math import ceil from game_map import GameMap from entities import Entity class Tileset: TILE_SIZE: Final[int] = 32 def __init__(self, tileset_path: str, tile_data: Dict[int, Dict[str, Any]]): self.tile_data = tile_data tileset_image = pyglet.resource.image(tileset_path) assert tileset_image.width % self.TILE_SIZE == 0 assert tileset_image.height % self.TILE_SIZE == 0 self.tileset_grid = pyglet.image.ImageGrid( tileset_image, int(tileset_image.height / self.TILE_SIZE), int(tileset_image.width / self.TILE_SIZE), ) self.tileset = pyglet.image.TextureGrid(self.tileset_grid) def __getitem__(self, tile_id: int) -> pyglet.image.TextureRegion: sheet_x = self.tile_data[tile_id]["sheet_x"] sheet_y = self.tile_data[tile_id]["sheet_y"] return self.tileset[sheet_y, sheet_x] class Rendering: def __init__(self, tileset: Tileset): self.tileset = tileset self.window = pyglet.window.Window(800, 600) self.window_width_tiles = int(ceil(self.window.width / self.tileset.TILE_SIZE)) self.window_height_tiles = int( ceil(self.window.height / self.tileset.TILE_SIZE) ) self.camera_center_offset_x = int(self.window_width_tiles / 2) self.camera_center_offset_y = int(self.window_height_tiles / 2) self.camera_x = 0 self.camera_y = 0 self.entities: Dict[int, pyglet.sprite.Sprite] = dict() def center_camera(self, x: int, y: int): self.camera_x = x - self.camera_center_offset_x self.camera_y = y - self.camera_center_offset_y def relative_to_camera(self, x: int, y: int) -> Tuple[int, int]: return x - self.camera_x, y - self.camera_y def draw_tile(self, x: int, y: int, tile_id: int): self.tileset[tile_id].blit( x * self.tileset.TILE_SIZE, y * self.tileset.TILE_SIZE ) def draw_tile_relative(self, x: int, y: int, tile_id: int): self.draw_tile(*self.relative_to_camera(x, y), tile_id) def draw_map(self, game_map: GameMap): start_x, start_y = max(self.camera_x, 0), max(self.camera_y, 0) rel_x, rel_y = self.relative_to_camera(start_x, start_y) end_x = self.window_width_tiles - rel_x end_y = self.window_height_tiles - rel_y for y_pos in range(start_y, min(start_y + end_y, game_map.height)): for x_pos in range(start_x, min(start_x + end_x, game_map.width)): self.draw_tile_relative(x_pos, y_pos, game_map.get(x_pos, y_pos)) def add_entity(self, entity: Entity): self.entities[entity.id] = pyglet.sprite.Sprite( self.tileset[entity.tile_id], entity.x, entity.y ) def draw_entities(self, entities: Dict[int, Entity]): for entity in entities.values(): if entity.id in self.entities: x, y = self.relative_to_camera(entity.x, entity.y) self.entities[entity.id].x = x * self.tileset.TILE_SIZE self.entities[entity.id].y = y * self.tileset.TILE_SIZE self.entities[entity.id].draw()
import Image, ImageFilter from rgbxy import Converter, GamutC converter = Converter(GamutC) def frameToColorMapImage(frame): im = Image.fromarray(frame) #im = im.resize((150,150)) im = im.filter(ImageFilter.GaussianBlur(5)) im = im.resize((3,3)) return im def getRGBXYBri(im,idx): r, g, b = im.getpixel((idx[0], idx[1])) x,y = converter.rgb_to_xy(r,g,b) bri = (0.299*float(r) + 0.587*float(g) + 0.114*float(b)) bri = bri if bri > 100 else ((bri / 100) * bri) bri = bri if bri > 30 else bri / 2 bri = bri if bri > 7 else 0 return (r,g,b,x,y,bri)
from setuptools import setup setup(name='twiml-generator', version='0.1', description='Generate a code from a TwiML file', url='https://github.com/TwilioDevEd/twiml-generator/', author='Samuel Mendes', author_email='smendes@twilio.com', license='MIT', packages=['twiml_generator'], include_package_data=True, install_requires=[ 'lxml', 'inflection', 'yapf', 'jsbeautifier' ], zip_safe=False)
from modules import * from image_preprocessing import * from masks import * def get_unet(): inputs = Input(shape=[IMG_SIZE[0], IMG_SIZE[1], 3]) conv1 = Conv2D(32, 3, 1, activation='relu', padding='same')(inputs) conv1 = Conv2D(32, 3, 1, activation='relu', padding='same')(conv1) pool1 = MaxPooling2D(pool_size=(2, 2))(conv1) drop1 = Dropout(0.5)(pool1) conv2 = Conv2D(64, 3, 1, activation='relu', padding='same')(drop1) conv2 = Conv2D(64, 3, 1, activation='relu', padding='same')(conv2) pool2 = MaxPooling2D(pool_size=(2, 2))(conv2) drop2 = Dropout(0.5)(pool2) conv3 = Conv2D(128, 3, 1, activation='relu', padding='same')(drop2) conv3 = Conv2D(128, 3, 1, activation='relu', padding='same')(conv3) pool3 = MaxPooling2D(pool_size=(2, 2))(conv3) drop3 = Dropout(0.5)(pool3) conv4 = Conv2D(256, 3, 1, activation='relu', padding='same')(drop3) conv4 = Conv2D(256, 3, 1, activation='relu', padding='same')(conv4) pool4 = MaxPooling2D(pool_size=(2, 2))(conv4) drop4 = Dropout(0.5)(pool4) conv5 = Conv2D(512, 3, 1, activation='relu', padding='same')(drop4) conv5 = Conv2D(512, 3, 1, activation='relu', padding='same')(conv5) up6 = Conv2D(256, 3, activation = 'relu', padding = 'same')(UpSampling2D(size=(2, 2))(conv5)) merge6 = concatenate([up6, conv4], axis=3) drop6 = Dropout(0.5)(merge6) conv6 = Conv2D(256, 3, 1, activation='relu', padding='same')(drop6) conv6 = Conv2D(256, 3, 1, activation='relu', padding='same')(conv6) up7 = Conv2D(128, 3, activation = 'relu', padding = 'same')(UpSampling2D(size=(2, 2))(conv6)) merge7 = concatenate([up7, conv3], axis=3) drop7 = Dropout(0.5)(merge7) conv7 = Conv2D(128, 3, 1, activation='relu', padding='same')(drop7) conv7 = Conv2D(128, 3, 1, activation='relu', padding='same')(conv7) up8 = Conv2D(64, 3, activation = 'relu', padding = 'same')(UpSampling2D(size=(2, 2))(conv7)) merge8 = concatenate([up8, conv2], axis=3) drop8 = Dropout(0.5)(merge8) conv8 = Conv2D(64, 3, 1, activation='relu', padding='same')(drop8) conv8 = Conv2D(64, 3, 1, activation='relu', padding='same')(conv8) up9 = Conv2D(32, 3, activation = 'relu', padding = 'same')(UpSampling2D(size=(2, 2))(conv8)) merge9 = concatenate([up9, conv1], axis=3) drop9 = Dropout(0.5)(merge9) conv9 = Conv2D(32, 3, 1, activation='relu', padding='same')(drop9) conv9 = Conv2D(32, 3, 1, activation='relu', padding='same')(conv9) conv10 = Conv2D(n_colors, 1, 1, activation='softmax')(conv9) #softmax converts the output to a list of probabilities that must sum to 1 model = Model(inputs=inputs, outputs=conv10) return model model = get_unet() # tf.keras.utils.plot_model(model, show_shapes=True)
from FMERepositoryUtility.FMEServerJob import FMEServerJob class FMWJob(FMEServerJob): def do_fmw_job(self, repo, fmw): repo_name = repo["name"] fmw_name = fmw["name"] full_name = "%s\\%s" % (repo_name, fmw_name) self.log.write_line("Downloading %s ..." % full_name) self.api.download_fmw(repo_name, fmw_name, self.job_config["fmw_dir"], self.job_config["overwrite"])
from neurasim import * Lx=150 Ly=150 Nx=150 Ny=150 dx=Lx/Nx dy=Ly/Ny D=10 #DOMAIN DOMAIN = Domain(x=Nx, y=Ny, boundaries=[OPEN, STICKY],bounds=Box[0:Lx, 0:Ly]) #TESTING FIELD 1 # pressure = DOMAIN.scalar_grid(0) # aux_lower = HardGeometryMask(Box[:, Ly/2:Ly]) >> DOMAIN.scalar_grid() # aux_upper = HardGeometryMask(Box[:, 0:Ly/2]) >> DOMAIN.scalar_grid() # pressure = pressure + aux_lower*0 + aux_upper*1 #TESTING FIELD 2 # pressure = DOMAIN.scalar_grid(0) # aux_lower_right = HardGeometryMask(Box[Lx/2:Lx, Ly/2:Ly]) >> DOMAIN.scalar_grid() # aux_lower_left = HardGeometryMask(Box[0:Lx/2, Ly/2:Ly]) >> DOMAIN.scalar_grid() # aux_upper_right = HardGeometryMask(Box[Lx/2:Lx, 0:Ly/2]) >> DOMAIN.scalar_grid() # aux_upper_left = HardGeometryMask(Box[0:Lx/2, 0:Ly/2]) >> DOMAIN.scalar_grid() # pressure = pressure + aux_lower_right*1 + aux_lower_left*0 + aux_upper_right*0 + aux_upper_left*1 # #TESTING FIELD 3 # pressure = DOMAIN.scalar_grid(0) # aux_lower_right = HardGeometryMask(Box[25:Lx, Ly/2:Ly]) >> DOMAIN.scalar_grid() # aux_lower_left = HardGeometryMask(Box[0:25, Ly/2:Ly]) >> DOMAIN.scalar_grid() # aux_upper_right = HardGeometryMask(Box[25:Lx, 0:Ly/2]) >> DOMAIN.scalar_grid() # aux_upper_left = HardGeometryMask(Box[0:25, 0:Ly/2]) >> DOMAIN.scalar_grid() # pressure = pressure + aux_lower_right*1 + aux_lower_left*0 + aux_upper_right*0 + aux_upper_left*1 #TESTING FIELD 4 # pressure = DOMAIN.scalar_grid(0) # aux_lower_right = HardGeometryMask(Box[Ly/2:Ly, 25:Lx]) >> DOMAIN.scalar_grid() # aux_lower_left = HardGeometryMask(Box[Ly/2:Ly, 0:25]) >> DOMAIN.scalar_grid() # aux_upper_right = HardGeometryMask(Box[0:Ly/2, 25:Lx]) >> DOMAIN.scalar_grid() # aux_upper_left = HardGeometryMask(Box[0:Ly/2, 0:25]) >> DOMAIN.scalar_grid() # pressure = pressure + aux_lower_right*1 + aux_lower_left*0 + aux_upper_right*0 + aux_upper_left*1 #TESTING FIELD 5 # pressure = DOMAIN.scalar_grid(0) # aux_lower = HardGeometryMask(Box[0:25:,:]) >> DOMAIN.scalar_grid() # aux_upper = HardGeometryMask(Box[25:Lx, :]) >> DOMAIN.scalar_grid() # pressure = pressure + aux_lower*0 + aux_upper*1 # #TESTING FIELD 6 # pressure = DOMAIN.scalar_grid(0) # aux_lower = HardGeometryMask(Box[:, Ly-25:Ly]) >> DOMAIN.scalar_grid() # aux_upper = HardGeometryMask(Box[:, 0:25]) >> DOMAIN.scalar_grid() # aux_right = HardGeometryMask(Box[Lx-25:Lx, :]) >> DOMAIN.scalar_grid() # pressure = pressure + aux_upper*1 + aux_lower*1 + aux_right*1 #TESTING FIELD 7 pressure = DOMAIN.scalar_grid(0) aux_lower = HardGeometryMask(Box[Lx/2:Lx, :]) >> DOMAIN.scalar_grid() aux_upper = HardGeometryMask(Box[0:Lx/2, :]) >> DOMAIN.scalar_grid() pressure = pressure + aux_lower*0 + aux_upper*1 #CYLINDER obstacle = Obstacle(Sphere([25, Ly/2], radius=D/2), angular_velocity=0.0) FORCES_MASK = HardGeometryMask(Sphere([25, Ly/2], radius=D/2)) >> DOMAIN.scalar_grid() FORCES_MASK = FORCES_MASK.values._native.cpu().numpy() #CALCULATE FORCES dxMASK = np.ones_like(pressure.values._native.cpu().numpy())*dx vforce, hforce = calculate_force(pressure, FORCES_MASK, dxMASK) #RESULTS _, _ = plot_field(Lx, Ly, dx, dy, pressure, limits=[0,1], plots=['surface'], lx='x', ly='y', lbar='pressure', ltitle='Pressure Testing Field', save=True, filename='./pressure_testing_field.png') _,_ = plot_field(Lx, Ly, dx, dy, FORCES_MASK, plots=['mask'], lx='x', ly='y', lbar='mask', ltitle='MASK Testing Field', save=True, filename='./pressure_testing_mask.png') print(f'Vertical: {vforce} - horizontal: {hforce}')
import unittest from google.protobuf import json_format import json import rastervision as rv from rastervision.core.class_map import ClassItem from rastervision.protos.task_pb2 import TaskConfig as TaskConfigMsg from rastervision.protos.class_item_pb2 import ClassItem as ClassItemMsg class TestObjectDetectionConfig(unittest.TestCase): def test_build_task(self): classes = ['one', 'two'] expected = [ClassItem(1, 'one'), ClassItem(2, 'two')] t = rv.TaskConfig.builder(rv.OBJECT_DETECTION) \ .with_classes(classes) \ .build() self.assertEqual(t.task_type, rv.OBJECT_DETECTION) self.assertListEqual(t.class_map.get_items(), expected) def test_build_task_from_proto(self): task_config = { 'task_type': rv.OBJECT_DETECTION, 'object_detection_config': { 'chip_size': 500, 'class_items': [{ 'id': 1, 'name': 'car', 'color': 'red' }, { 'id': 2, 'name': 'building', 'color': 'blue' }, { 'id': 3, 'name': 'background', 'color': 'black' }] } } msg = json_format.Parse(json.dumps(task_config), TaskConfigMsg()) task = rv.TaskConfig.from_proto(msg) self.assertEqual(task.class_map.get_by_name('building').id, 2) self.assertEqual(task.chip_size, 500) def test_create_proto_from_task(self): t = rv.TaskConfig.builder(rv.OBJECT_DETECTION) \ .with_classes(['car', 'boat']) \ .with_chip_size(500) \ .build() msg = t.to_proto() expected_classes = [ ClassItemMsg(name='car', id=1), ClassItemMsg(name='boat', id=2) ] self.assertEqual(msg.task_type, rv.OBJECT_DETECTION) self.assertEqual(msg.object_detection_config.chip_size, 500) actual_class_items = dict( [(i.id, i) for i in msg.object_detection_config.class_items]) expected_class_items = dict([(i.id, i) for i in expected_classes]) self.assertDictEqual(actual_class_items, expected_class_items) def test_missing_config_class_map(self): with self.assertRaises(rv.ConfigError): rv.TaskConfig.builder(rv.OBJECT_DETECTION).build() def test_no_missing_config(self): try: rv.TaskConfig.builder(rv.OBJECT_DETECTION).with_classes( ['car']).build() except rv.ConfigError: self.fail('ConfigError raised unexpectedly') if __name__ == '__main__': unittest.main()
# BOJ 17298 import sys si = sys.stdin.readline n = int(si()) arr = list(map(int, si().split())) # n = 11 # arr = [1, 10, 999999, 7, 999998, 3, 1, 4, 1000000, 3, 1000000] stack = [] ret = [-1] * n top = arr[-1] for i in range(n): while stack and arr[stack[-1]] < arr[i]: ret[stack[-1]] = arr[i] stack.pop() stack.append(i) print(" ".join(list(map(str, ret))))
import copy import time import numpy as np import pandas as pd from Bio.Phylo import BaseTree from Bio.Phylo.TreeConstruction import DistanceMatrix import scphylo as scp from scphylo.external._scistree import run_scistree from scphylo.external._scprob import run_scprob # from Bio.Phylo.TreeConstruction import DistanceTreeConstructor def scistree(df_input, alpha, beta, n_threads=1, experiment=False): """Solving using ScisTree. Accurate and efficient cell lineage tree inference from noisy single cell data: the maximum likelihood perfect phylogeny approach :cite:`ScisTree`. Parameters ---------- df_input : :class:`pandas.DataFrame` Input genotype matrix in which rows are cells and columns are mutations. Values inside this matrix show the presence (1), absence (0) and missing entires (3). alpha : :obj:`float` False positive error rate. beta : :obj:`float` False negative error rate. n_threads : :obj:`int` Number of threads. experiment : :obj:`bool`, optional Is in the experiment mode (the log won't be shown), by default False Returns ------- :class:`pandas.DataFrame` A conflict-free matrix in which rows are cells and columns are mutations. Values inside this matrix show the presence (1) and absence (0). """ if not experiment: scp.logg.info( f"running ScisTree with alpha={alpha}, beta={beta}, n_threads={n_threads}" ) tmpdir = scp.ul.tmpdirsys(suffix=".scistree") cells = df_input.index snvs = df_input.columns df = df_input.transpose() df = df.replace(3, 0.5) df = df.replace(0, 1 - beta) df = df.replace(1, alpha) file1 = f"{tmpdir.name}/scistree.input" df.index.name = f"HAPLOID {df.shape[0]} {df.shape[1]}" df.to_csv(file1, sep=" ") with open(file1) as ifile: data = ifile.read() with open(file1, "w") as ofile: data = data.replace('"', "") ofile.write(data) cmd = [ "scistree", "-v", "-d", "0", "-e", "-k", f"{n_threads}", "-o", f"{tmpdir.name}/scistree.gml", f"{tmpdir.name}/scistree.input", ] s_time = time.time() run_scistree(cmd) e_time = time.time() running_time = e_time - s_time data = [] detail = {"cost": "\n"} with open(f"{tmpdir.name}/scistree.output") as infile: now_store = False for line in infile: line = line.strip() if "Imputed genotypes:" in line: now_store = True if line[:4] == "Site" and now_store: line = "".join(line.split(":")[1]) line = line.replace("\t", "") data.append([int(x) for x in line.split(" ")]) if "current cost: " in line: cost = float(line.split("current cost: ")[1].split(", opt tree: ")[0]) detail["cost"] += f" current best cost = {cost}\n" data = np.array(data) matrix_output = data.T df_output = pd.DataFrame(matrix_output) df_output.columns = snvs df_output.index = cells df_output.index.name = "cellIDxmutID" tmpdir.cleanup() if not experiment: scp.ul.stat(df_input, df_output, alpha, beta, running_time) return df_output else: return df_output, running_time def rscistree(adata, alpha=0, beta=0, n_threads=1, mode="haploid"): """Solving using read-count ScisTree. Accurate and efficient cell lineage tree inference from noisy single cell data: the maximum likelihood perfect phylogeny approach :cite:`ScisTree`. Parameters ---------- df_input : :class:`pandas.DataFrame` Input genotype matrix in which rows are cells and columns are mutations. Values inside this matrix show the presence (1), absence (0) and missing entires (3). alpha : :obj:`float` False positive error rate. beta : :obj:`float` False negative error rate. n_threads : :obj:`int` Number of threads. mode : :obj:`str` Mode of calculating the probability from read-count. In {'haploid', 'ternary'}, by default haploid experiment : :obj:`bool`, optional Is in the experiment mode (the log won't be shown), by default False Returns ------- :class:`pandas.DataFrame` A conflict-free matrix in which rows are cells and columns are mutations. Values inside this matrix show the presence (1) and absence (0). """ scp.logg.info(f"running rScisTree with n_threads={n_threads}, mode={mode}") tmpdir = scp.ul.tmpdirsys(suffix=".rscistree", dirname=".") cells = adata.obs_names snvs = adata.var_names df_input = adata.to_df() V = adata.layers["mutant"] R = adata.layers["total"] - V with open(f"{tmpdir.name}/rscistree.counts", "w") as fout: fout.write(f"{mode.upper()} {len(snvs)} {len(cells)}\n") for j in range(len(snvs)): for i in range(len(cells)): fout.write(f"{R[i,j]} {V[i,j]} ") fout.write("\n") cmd = [ "scprob", f"{tmpdir.name}/rscistree.counts", ] if mode.lower() == "haploid": cmd += ["0"] elif mode.lower() == "ternary": cmd += ["1"] else: scp.logg.error("Wrong mode!") run_scprob(cmd) cmd = [ "scistree", "-v", "-d", "0", "-e", "-k", f"{n_threads}", "-o", f"{tmpdir.name}/rscistree.gml", f"{tmpdir.name}/rscistree.input", ] s_time = time.time() run_scistree(cmd) e_time = time.time() running_time = e_time - s_time data = [] detail = {"cost": "\n"} with open(f"{tmpdir.name}/rscistree.output") as infile: now_store = False for line in infile: line = line.strip() if "Imputed genotypes:" in line: now_store = True if line[:4] == "Site" and now_store: line = "".join(line.split(":")[1]) line = line.replace("\t", "") data.append([int(x) for x in line.split(" ")]) if "current cost: " in line: cost = float(line.split("current cost: ")[1].split(", opt tree: ")[0]) detail["cost"] += f" current best cost = {cost}\n" data = np.array(data) matrix_output = data.T df_output = pd.DataFrame(matrix_output) df_output.columns = snvs df_output.index = cells df_output.index.name = "cellIDxmutID" tmpdir.cleanup() scp.ul.stat(df_input, df_output, alpha, beta, running_time) return df_output def iscistree(df_input, alpha, beta, n_iters=np.inf): """Solving using my own implementation of ScisTree. Accurate and efficient cell lineage tree inference from noisy single cell data: the maximum likelihood perfect phylogeny approach :cite:`ScisTree`. Parameters ---------- df_input : :class:`pandas.DataFrame` Input genotype matrix in which rows are cells and columns are mutations. Values inside this matrix show the presence (1), absence (0) and missing entires (3). alpha : :obj:`float` False positive error rate. beta : :obj:`float` False negative error rate. n_iters : :obj:`int` Number of iterations to search for the neighboring trees, by default inf. experiment : :obj:`bool`, optional Is in the experiment mode (the log won't be shown), by default False Returns ------- :class:`pandas.DataFrame` A conflict-free matrix in which rows are cells and columns are mutations. Values inside this matrix show the presence (1) and absence (0). """ scp.logg.info( f"running iScisTree with alpha={alpha}, beta={beta}, n_iters={n_iters}" ) def get_initial_tree(D): Q = [] for i in range(D.shape[0]): Q.append(list(D[i, : i + 1])) dm = DistanceMatrix(names=[f"{i}" for i in range(D.shape[0])], matrix=Q) tree = nj(dm) node = None for clade in tree.find_clades(): if clade.name == f"{D.shape[0]-1}": node = clade tree.root_with_outgroup(node) tree.prune(f"{D.shape[0]-1}") return tree def denoise_linear(I_mtr, alpha, beta, opt_tree): tree = {} for clade in list(opt_tree.find_clades(order="level"))[::-1]: children = list(clade.find_clades(order="level")) if len(children) > 2: child_l = children[2] child_r = children[1] tree[clade.name] = [child_l.name, child_r.name] else: tree[clade.name] = [] def get_cells_in_best(cells_in_best, best): for node in tree[best]: if "Inner" in node: for child in tree[node]: get_cells_in_best(cells_in_best, child) else: cells_in_best.append(node) if "Inner" not in best: cells_in_best.append(best) output = np.zeros(I_mtr.shape, dtype=int) total_cost = 0 for c in range(I_mtr.shape[1]): qs = {} best = None best_v = 0 for k, v in tree.items(): if len(v) == 0: obs = I_mtr[int(k), c] == 1 p0 = (1 - obs) * (1 - beta) + obs * alpha qs[k] = np.log((1 - p0) / p0) else: qs[k] = qs[v[0]] + qs[v[1]] if qs[k] > best_v: best = k best_v = qs[k] cells_in_best = [] get_cells_in_best(cells_in_best, best) output[list(map(int, cells_in_best)), c] = 1 total_cost += -best_v return output, total_cost def get_neighbors(tree): """ Return neighbors. For a tree with n taxa, there are n - 3 internal branches. Thus there are 2(n - 3) NNI rearrangements for any tree """ # make child to parent dict parents = {} for clade in tree.find_clades(): if clade != tree.root: node_path = tree.get_path(clade) # cannot get the parent if the parent is root. Bug? if len(node_path) == 1: parents[clade] = tree.root else: parents[clade] = node_path[-2] neighbors = [] root_childs = [] for clade in tree.get_nonterminals(order="level"): if clade == tree.root: left = clade.clades[0] right = clade.clades[1] root_childs.append(left) root_childs.append(right) if not left.is_terminal() and not right.is_terminal(): # make changes around the left_left clade # left_left = left.clades[0] left_right = left.clades[1] right_left = right.clades[0] right_right = right.clades[1] # neightbor 1 (left_left + right_right) del left.clades[1] del right.clades[1] left.clades.append(right_right) right.clades.append(left_right) temp_tree = copy.deepcopy(tree) neighbors.append(temp_tree) # neighbor 2 (left_left + right_left) del left.clades[1] del right.clades[0] left.clades.append(right_left) right.clades.append(right_right) temp_tree = copy.deepcopy(tree) neighbors.append(temp_tree) # change back (left_left + left_right) del left.clades[1] del right.clades[0] left.clades.append(left_right) right.clades.insert(0, right_left) elif clade in root_childs: # skip root child continue else: # method for other clades # make changes around the parent clade left = clade.clades[0] right = clade.clades[1] parent = parents[clade] if clade == parent.clades[0]: sister = parent.clades[1] # neighbor 1 (parent + right) del parent.clades[1] del clade.clades[1] parent.clades.append(right) clade.clades.append(sister) temp_tree = copy.deepcopy(tree) neighbors.append(temp_tree) # neighbor 2 (parent + left) del parent.clades[1] del clade.clades[0] parent.clades.append(left) clade.clades.append(right) temp_tree = copy.deepcopy(tree) neighbors.append(temp_tree) # change back (parent + sister) del parent.clades[1] del clade.clades[0] parent.clades.append(sister) clade.clades.insert(0, left) else: sister = parent.clades[0] # neighbor 1 (parent + right) del parent.clades[0] del clade.clades[1] parent.clades.insert(0, right) clade.clades.append(sister) temp_tree = copy.deepcopy(tree) neighbors.append(temp_tree) # neighbor 2 (parent + left) del parent.clades[0] del clade.clades[0] parent.clades.insert(0, left) clade.clades.append(right) temp_tree = copy.deepcopy(tree) neighbors.append(temp_tree) # change back (parent + sister) del parent.clades[0] del clade.clades[0] parent.clades.insert(0, sister) clade.clades.insert(0, left) return neighbors def nj(distance_matrix): # make a copy of the distance matrix to be used dm = copy.deepcopy(distance_matrix) # init terminal clades clades = [BaseTree.Clade(None, name) for name in dm.names] # init node distance node_dist = [0] * len(dm) # init minimum index min_i = 0 min_j = 0 inner_count = 0 # special cases for Minimum Alignment Matrices if len(dm) == 1: root = clades[0] return BaseTree.Tree(root, rooted=False) elif len(dm) == 2: # minimum distance will always be [1,0] min_i = 1 min_j = 0 clade1 = clades[min_i] clade2 = clades[min_j] clade1.branch_length = dm[min_i, min_j] / 2.0 clade2.branch_length = dm[min_i, min_j] - clade1.branch_length inner_clade = BaseTree.Clade(None, "Inner") inner_clade.clades.append(clade1) inner_clade.clades.append(clade2) clades[0] = inner_clade root = clades[0] return BaseTree.Tree(root, rooted=False) while len(dm) > 2: # calculate nodeDist for i in range(0, len(dm)): node_dist[i] = 0 for j in range(0, len(dm)): node_dist[i] += dm[i, j] node_dist[i] = node_dist[i] / (len(dm) - 2) # find minimum distance pair min_dist = dm[1, 0] - node_dist[1] - node_dist[0] min_i = 0 min_j = 1 for i in range(1, len(dm)): for j in range(0, i): temp = dm[i, j] - node_dist[i] - node_dist[j] if min_dist > temp: min_dist = temp min_i = i min_j = j # create clade clade1 = clades[min_i] clade2 = clades[min_j] inner_count += 1 inner_clade = BaseTree.Clade(None, "Inner" + str(inner_count)) inner_clade.clades.append(clade1) inner_clade.clades.append(clade2) # assign branch length clade1.branch_length = ( dm[min_i, min_j] + node_dist[min_i] - node_dist[min_j] ) / 2.0 clade2.branch_length = dm[min_i, min_j] - clade1.branch_length if clade1.branch_length < 0: clade1.branch_length = 0 if clade2.branch_length < 0: clade2.branch_length = 0 # update node list clades[min_j] = inner_clade del clades[min_i] # rebuild distance matrix, # set the distances of new node at the index of min_j for k in range(0, len(dm)): if k != min_i and k != min_j: dm[min_j, k] = ( dm[min_i, k] + dm[min_j, k] - dm[min_i, min_j] ) / 2.0 dm.names[min_j] = "Inner" + str(inner_count) del dm[min_i] # set the last clade as one of the child of the inner_clade root = None if clades[0] == inner_clade: clades[0].branch_length = 0 clades[1].branch_length = dm[1, 0] clades[0].clades.append(clades[1]) root = clades[0] else: clades[0].branch_length = dm[1, 0] clades[1].branch_length = 0 clades[1].clades.append(clades[0]) root = clades[1] return BaseTree.Tree(root, rooted=False) cells = list(df_input.index) snvs = list(df_input.columns) I_mtr = df_input.values s_time = time.time() Ip = np.vstack([I_mtr, np.zeros(I_mtr.shape[1])]) # add root with profile zero scp.logg.debug("now calculating distance!", time=True) dist = scp.ul.dist_l1_ignore_na(Ip) scp.logg.debug("distance is done!", time=True) opt_tree = get_initial_tree(dist) # opt_subtrees = get_subtrees(opt_tree) # opt_O, opt_cost = denoise_quadratic(I, alpha, beta, opt_subtrees) scp.logg.debug("init tree!", time=True) opt_O, opt_cost = denoise_linear(I_mtr, alpha, beta, opt_tree) scp.logg.info("current best cost =", opt_cost, time=True) n_iter = 1 is_done = False already_seen = set() already_seen.add(str(opt_tree)) while not is_done and n_iter < n_iters: is_done = True neighbors = get_neighbors(opt_tree) for nbr_tree in neighbors: if str(nbr_tree) in already_seen: continue else: already_seen.add(str(nbr_tree)) # nbr_subtrees = get_subtrees(nbr_tree) # nbr_O, nbr_cost = denoise_quadratic(I, alpha, beta, nbr_subtrees) nbr_O, nbr_cost = denoise_linear(I_mtr, alpha, beta, nbr_tree) if nbr_cost < opt_cost: opt_tree = nbr_tree # opt_subtrees = nbr_subtrees opt_O = nbr_O opt_cost = nbr_cost is_done = False scp.logg.info("current best cost =", nbr_cost, time=True) n_iter += 1 e_time = time.time() running_time = e_time - s_time df_output = pd.DataFrame(opt_O) df_output.columns = snvs df_output.index = cells df_output.index.name = "cellIDxmutID" scp.ul.stat(df_input, df_output, alpha, beta, running_time) return df_output
#!/usr/bin/env python3 import random print("I will flip a coin a set number times defined by the user.") # user input flip_number = int(input("How many times would you like me to flip the coin: ")) choice = input("Would you like to see the result of each flip (y/n): ").lower() print("\nFlipping.........................\n") # initialize variables heads = 0 tails = 0 # main program loop for flips in range(flip_number): coin = random.randint(0, 1) if coin == 1: heads += 1 if choice.startswith('y'): print("HEADS") else: tails += 1 if choice.startswith('y'): print("TAILS") if heads == tails: print("At " + str(flips + 1) + " flips, the number of heads and tails were equal at " + str(heads) + " each.") heads_percentage = round(100 * heads / flip_number, 2) tails_percentage = round(100 * tails / flip_number, 2) # display result print("\nResults of Flipping a Coin " + str(flip_number) + " Times: ") print("\nSide\t\tCount\t\tPercentage") print("Heads\t\t" + str(heads) + "/" + str(flip_number) + "\t\t" + str(heads_percentage) + "%") print("Tails\t\t" + str(tails) + "/" + str(flip_number) + "\t\t" + str(tails_percentage) + "%")
import os from funcy import raiser import pytest from dvc.repo import locked def test_is_dvc_internal(dvc): assert dvc.is_dvc_internal(os.path.join("path", "to", ".dvc", "file")) assert not dvc.is_dvc_internal(os.path.join("path", "to-non-.dvc", "file")) @pytest.mark.parametrize( "path", [ os.path.join("dir", "subdir", "file"), os.path.join("dir", "subdir"), "dir", ], ) def test_find_outs_by_path(tmp_dir, dvc, path): (stage,) = tmp_dir.dvc_gen( {"dir": {"subdir": {"file": "file"}, "other": "other"}} ) outs = dvc.find_outs_by_path(path, strict=False) assert len(outs) == 1 assert outs[0].path_info == stage.outs[0].path_info @pytest.mark.parametrize( "path", [os.path.join("dir", "subdir", "file"), os.path.join("dir", "subdir")], ) def test_used_cache(tmp_dir, dvc, path): from dvc.cache import NamedCache tmp_dir.dvc_gen({"dir": {"subdir": {"file": "file"}, "other": "other"}}) expected = NamedCache.make( "local", "70922d6bf66eb073053a82f77d58c536.dir", "dir" ) expected.add( "local", "8c7dd922ad47494fc02c388e12c00eac", os.path.join("dir", "subdir", "file"), ) with dvc.state: used_cache = dvc.used_cache([path]) assert ( used_cache._items == expected._items and used_cache.external == expected.external ) def test_locked(mocker): repo = mocker.MagicMock() repo.method = locked(repo.method) args = {} kwargs = {} repo.method(repo, args, kwargs) assert repo.method_calls == [ mocker.call._reset(), mocker.call.method(repo, args, kwargs), mocker.call._reset(), ] def test_collect_optimization(tmp_dir, dvc, mocker): (stage,) = tmp_dir.dvc_gen("foo", "foo text") # Forget cached stages and graph and error out on collection dvc._reset() mocker.patch( "dvc.repo.Repo.stages", property(raiser(Exception("Should not collect"))), ) # Should read stage directly instead of collecting the whole graph dvc.collect(stage.path) dvc.collect_granular(stage.path)
#!/usr/bin/env python3 # -*- coding: utf-8 -*- __author__ = "Davide Locatelli" __status__ = "Production" """ This module contains DuckDuckGoSearchPage, the page object for the DuckDuckGo search page. Warning: the SEARCH_INPUT locator had to be updated because the page changed! """ from selenium.webdriver.common.by import By from selenium.webdriver.common.keys import Keys from selenium.webdriver.common.action_chains import ActionChains class SentradeHomePage: # URL URL = 'http://127.0.0.1:8050/' # Locators SEARCH_INPUT = (By.ID, 'stock-ticker-input') # Initializer def __init__(self, browser): self.browser = browser # Interaction Methods def load(self): self.browser.get(self.URL) def search(self, phrase): #search_input = self.browser.find_element(*self.SEARCH_INPUT) #search_input.send_keys(Keys.TAB + phrase + Keys.RETURN) actions = ActionChains(self.browser) actions.send_keys(Keys.TAB + phrase + Keys.RETURN) actions.perform()
import os from setuptools import find_packages from setuptools import setup cur_dir = os.path.dirname(__file__) readme = os.path.join(cur_dir, 'README.md') if os.path.exists(readme): with open(readme) as fh: long_description = fh.read() else: long_description = '' setup( name='walrus', version=__import__('walrus').__version__, description='walrus', long_description=long_description, author='Charles Leifer', author_email='coleifer@gmail.com', url='http://github.com/coleifer/walrus/', install_requires=['redis'], packages=find_packages(), package_data={ 'walrus': [ 'scripts/*', 'stopwords.txt', ], }, classifiers=[ 'Development Status :: 5 - Production/Stable', 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', ], test_suite='walrus.tests', )
# coding: utf-8 """ IBM Cohort Engine Service to evaluate cohorts and measures # noqa: E501 OpenAPI spec version: 2.1.0 2022-02-18T21:50:45Z Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import unittest import swagger_client from swagger_client.api.measure_evaluation_api import MeasureEvaluationApi # noqa: E501 from swagger_client.rest import ApiException class TestMeasureEvaluationApi(unittest.TestCase): """MeasureEvaluationApi unit test stubs""" def setUp(self): self.api = swagger_client.api.measure_evaluation_api.MeasureEvaluationApi() # noqa: E501 def tearDown(self): pass def test_evaluate_measure(self): """Test case for evaluate_measure Evaluates a measure bundle for a single patient # noqa: E501 """ pass def test_evaluate_patient_list_measure(self): """Test case for evaluate_patient_list_measure Evaluates a measure bundle for a list of patients # noqa: E501 """ pass if __name__ == '__main__': unittest.main()
import pytest import errors import os import utils def test_get_dict_from_yaml(): yaml_string = """ a: 1 b: c: 3 d: 4 """ expected_dict = { 'a': 1, 'b': {'c': 3, 'd': 4} } dictionary = utils.get_dict_from_yaml(yaml_string) assert dictionary == expected_dict def test_get_dict_yaml_raises_invalid_input_error(): with pytest.raises(errors.InvalidInputException): utils.get_dict_from_yaml('invalid}') def test_load_config(tmpdir, monkeypatch): yaml_string = """ a: 1 b: 2 """ yaml_file = tmpdir.mkdir("sub").join("test.yaml") yaml_file.write(yaml_string) def mock_get_config_file_name(): return yaml_file.strpath monkeypatch.setattr(utils, 'get_config_file_name', mock_get_config_file_name) dictionary = utils.load_config_file() assert dictionary == {'a': 1, 'b': 2} def test_load_config_file_error(monkeypatch): def mock_get_config_file_name(): return 'invalid_path' monkeypatch.setattr(utils, 'get_config_file_name', mock_get_config_file_name) with pytest.raises(FileNotFoundError): dictionary = utils.load_config_file() def test_get_config_file_name(monkeypatch): def mock_get_env_prod(name, default): return 'prod' def mock_get_env_dev(name, default): return 'dev' def mock_get_env_invalid(name, default): return '' with monkeypatch.context() as m: m.setattr(os, 'getenv', mock_get_env_prod) assert utils.get_config_file_name() == 'app.yaml' m.setattr(os, 'getenv', mock_get_env_dev) assert utils.get_config_file_name() == 'app_dev.yaml' m.setattr(os, 'getenv', mock_get_env_invalid) assert utils.get_config_file_name() == 'app_dev.yaml'
"""Neatly load and clean Atkinson Table 4 (expert labels and ra/dec) """ import pandas as pd import numpy as np from tidalclassifier.utils.helper_funcs import str_to_N # misc. prep work def clean_table(df, file_str): # ensure FEAT is a string, replace '" with N, remove ',' df['FEAT'] = df['FEAT'].map(str) # in making the table, treat CONF as a string. Useful for output. df['CONF'] = df['CONF'].map(str) df['FEAT'] = df['FEAT'].map(lambda feat_str: feat_str.replace(',', '')) df['FEAT'] = df['FEAT'].map(lambda feat_str: str_to_N(feat_str)) df['ID'] = df['ID'].map(lambda x: x.replace(' ', '')) df.to_csv(file_str, index=False, sep='\t') # df['table4_index'] = np.arange(len(df)) # df.set_index('table4_index', inplace=True) # atk table index is a simple index that corresponds to picture id in u_and_c list df.sort_index(inplace=True) df['line_index'] = np.arange(len(df)) df.set_index('line_index', inplace=True) return df def load_table(table_str): # includes clean # table = pd.read_csv(table_str, sep='\s+') table = pd.read_csv(table_str, sep='\t') table = clean_table(table, table_str) return table
from setuptools import setup,find_packages classifiers = [ 'Development Status :: ', 'Intended Audience :: Education', 'Operating System :: windows 10', 'License :: MIT License', 'Programming Language :: Python :: 3.9.0' ] setup( name='Patterns_Package', version='0.0.1', description='patterns of Capital and Small Alphabets, Numbers,some other Symbols', Long_description=open('README.txt').read()+'\n\n'+open('CHANGELOG.txt').read(), url='https://github.com/saribalarakeshreddy/Python-3.9.0/tree/main/Packages', author='SARIBALA RAKESH REDDY', author_emial='rakeshreddysaribala1234@gmail.com', license='MIT', classifiers=classifiers, keywords='patterns', install_requires=[''] )
#!/usr/bin/env python3 import os, subprocess, argparse from pathlib import Path HOME = str(Path.home()) NAUTY_DIR = HOME + '/src/nauty26r10/' FNULL = open(os.devnull, 'w') if __name__ == '__main__': parser = argparse.ArgumentParser(description='Generate graphs.') parser.add_argument('vertices', help='number of vertices', type=int, nargs=1) parser.add_argument('edges', help='number of edges', type=int, nargs=1) args = parser.parse_args() vertices = args.vertices[0] edges = args.edges[0] geng = subprocess.Popen((NAUTY_DIR+'geng', '-cd3', str(vertices), '%d:%d' % (edges, edges)), stdout=subprocess.PIPE, stderr=FNULL) showg = subprocess.Popen((NAUTY_DIR+'showg', '-e', '-l0'), stdin=geng.stdout, stderr=FNULL, stdout=subprocess.PIPE) line_count = -1 count = 0 for line in showg.stdout: if line_count % 4 == 2: graph_encoding = line.decode('ascii').rstrip() print(vertices, edges, ' ', graph_encoding, ' g_%d_%d_%d' % (vertices, edges, count+1)) count += 1 line_count += 1
from ..core import latest_update_date, latest_vaccination_update_date from ..template import generate_layout as build_home_layout from ..template_vacc import generate_layout as build_vaccination_layout # Label text (EN) ##### # TODO: Make markdown links open in new tab labels = { 'home_link': '/zh', 'home_link_text': 'Home', 'vaccination_link': '/zh/vaccination', 'vaccination_link_text': 'Vaccination', 'language0': 'Français', 'language_link0': '/', 'language1': 'English', 'language_link1': '/en', 'language2': 'Español', 'language_link2': '/es', 'title': '新型冠状病毒(COVID-19)蒙特利尔数据统计', 'vaccination_title': ': Vaccination', 'subtitle': '上次更新: ' + latest_update_date, 'vaccination_subtitle': '上次更新: ' + latest_vaccination_update_date.isoformat(), 'today': '今日', 'today_short': '今日', 'cases_montreal_label': '确诊(蒙特利尔)', 'deaths_montreal_label': '死亡(蒙特利尔)', 'cases_qc_label': '确诊(魁省)', 'deaths_qc_label': '死亡(魁省)', 'hosp_mtl_label': '新增入院 (魁省)', 'hosp_qc_label': '新增入院 (蒙特利尔)', 'icu': '重症患者(今日)', 'yesterday': '昨日', 'vs_2dago': '较2日前', 'vaccination_1d_mtl_label': '1st doses administered (MTL)', 'vaccination_2d_mtl_label': '2nd doses administered (MTL)', 'vaccination_1d_perc_mtl_label': '% received 1 dose (MTL)', 'vaccination_2d_perc_mtl_label': '% received 2 doses (MTL)', 'vaccination_1d_qc_label': '1st doses administered (QC)', 'vaccination_2d_qc_label': '2nd doses administered (QC)', 'vaccination_1d_perc_qc_label': '% received 1 dose (QC)', 'vaccination_2d_perc_qc_label': '% received 2 doses (QC)', 'doses_today': '接种量(今日)', 'test_pos_mtl_label': '检测阳性率 (蒙特利尔)', 'test_pos_qc_label': '检测阳性率 (魁省)', 'incidence_per100k_7d_mtl_label': '7日发病率/10万 (蒙特利尔)', 'incidence_per100k_7d_qc_label': '7日发病率/10万 (魁省)', 'vs_last7d': '较7日前', 'recovered_qc_label': '治愈(魁省)', 'recovered_mtl_label': '治愈 (蒙特利尔)', 'negative_tests_qc_box_label': '检测阴性(魁省)', 'montreal_map_label': '病例/100 000人(蒙特利尔岛)', 'total_cases_label': '确诊病例', 'age_group_label': 'Distribution of new cases across all age groups by week (MTL)', 'total_deaths_label': '死亡(魁省)', 'total_hospitalisations_label': '入院人数(魁省)', 'intensive_care_label': '重症患者 (魁省)', 'total_testing_label': '检测人数(魁省)', # footer 'footer_left': '数据来源: [Santé Montréal](https://santemontreal.qc.ca/en/public/coronavirus-covid-19/), [INSPQ](https://www.inspq.qc.ca/covid-19/donnees), [Government of Québec](https://www.quebec.ca/en/health/health-issues/a-z/2019-coronavirus/situation-coronavirus-in-quebec/) / 使用软件[Dash](https://plotly.com/dash/) / [Github](https://github.com/jeremymoreau/covid19mtl)', 'footer_centre': 'Hosting sponsored by [DigitalOcean](https://www.digitalocean.com/community/pages/covid-19)', 'footer_right': '作者[Jeremy Moreau](https://jeremymoreau.com/), [Matthias Schoettle](https://mattsch.com), [Contributors](https://github.com/jeremymoreau/covid19mtl#contributors) / [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/deed.zh)', 'infobox': """ ###### 相关资源 - [新型冠状病毒症状自我评估工具](https://ca.thrive.health/covid19/en) - [Quebec Vaccination Campaign &ndash; Appointments](https://www.quebec.ca/en/health/health-issues/a-z/2019-coronavirus/progress-of-the-covid-19-vaccination/) - [蒙特利尔市公共卫生部门](https://santemontreal.qc.ca/en/public/coronavirus-covid-19/) - [公共卫生专业知识和参考资料(法语)](https://www.inspq.qc.ca/covid-19/donnees) - [魁北克省冠状病毒(COVID-19)相关资源](https://www.quebec.ca/en/health/health-issues/a-z/2019-coronavirus/situation-coronavirus-in-quebec/) - [加拿大冠状病毒相关资源](https://www.canada.ca/en/public-health/services/diseases/coronavirus-disease-covid-19.html) 如果您对新型冠状病毒(COVID19)有所担心或疑问,或者出现咳嗽/发烧等症状,可拨打蒙特利尔地区的免费电话(514) 644-454-545,魁北克市地区的免费电话(418) 644-454545,或魁北克其他地区的免费电话(877) 644-4545。 """, 'montreal_map_colourbar_labels': { 'date': '日期', 'borough': '区/市', '7day_incidence_rate': '7日发病率', 'new_cases': '新增确诊', 'cases': '累计确诊', '7day_incidence_per100k': '7日发病率/10万', '7day_incidence': '7日发病率', }, 'montreal_map_legend_title': '<b>7日发病率/10万</b>', 'montreal_map_hovertemplate': '<br>区/市: %{location}<br>7日发病率/10万: %{z}', '7day_avg_short': '7-day mov avg', '7day_avg_qc_label': '7-day moving avg (QC)', '7day_avg_mtl_label': '7-day moving avg (MTL)', # confirmed cases fig 'confirmed_cases_y_label': 'New cases', 'confirmed_cases_y2_label': 'Active cases', 'active_cases_qc_label': 'Active cases (QC)', 'new_cases_qc_label': 'New cases (QC)', 'new_cases_mtl_label': 'New cases (MTL)', # age groups 'age_total_label': '各年龄组总病例分布情况', 'age_per100000_label': '每10万人口不同年龄组病例分布情况', 'age_fig_hovertemplate': '%: %{y}', # deaths fig 'deaths_fig_label': '死亡', 'deaths_qc_y_label': 'New deaths', 'deaths_qc_y2_label': '新增死亡 (7日移动平均)', 'new_deaths_qc_label': 'New deaths (QC)', 'new_deaths_mtl_label': 'New deaths (MTL)', # hospitalisations fig 'hospitalisations_label': '入院人数', 'hospitalisations_y_label': '现入院人数', 'hospitalisations_y2_label': '新增入院 (7日移动平均)', 'intensive_care_qc': '新增重症患者 (魁省)', 'intensive_care_mtl': '新增重症患者 (蒙特利尔)', 'hospitalisations_qc': '新增入院 (魁省)', 'hospitalisations_active_qc': '现入院人数 (魁省)', 'intensive_care_active_qc': '现重症患者 (魁省)', 'hospitalisations_mtl': '新增入院 (蒙特利尔)', # Test positivity fig 'testing_label': 'Test positivity rate', 'testing_y_label': 'Test positivity rate', 'testing_y2_label': 'Tests performed', 'testing_tests_qc': 'Tests performed (QC)', 'testing_tests_mtl': 'Tests performed (MTL)', 'testing_hovertemplate_qc': '<b>Quebec</b><br>7-day moving avg: %{y:,.2f}%<br>Test positivity: %{customdata:,.2f}%', 'testing_hovertemplate_mtl': '<b>Montreal</b><br>7-day moving avg: %{y:,.2f}%<br>Test positivity: %{customdata:,.2f}%', # 'date_slider_label': '日期: ', 'date_label': '日期', 'age_label': '年龄', 'week_label': 'Week', 'linear_label': '线性尺度', 'log_label': '对数尺度', # Confirmed deaths by place of residence (MTL) fig 'deaths_loc_fig_mtl_label': '按居住地分类死亡人数 (蒙特利尔)', 'deaths_loc_fig_mtl_pie_labels': [ '医院', '公立长期护理机构', '家', '中间', '私人养老院', '其他', '未知' ], # Confirmed deaths by place of residence (QC) fig 'deaths_loc_fig_qc_label': '按居住地分类死亡人数 (魁省)', 'chsld_label': '公立长期护理机构', 'psr_label': '私人养老院', 'home_label': '家', 'other_or_unknown_label': '其他或未知', 'deaths_loc_fig_qc_y_label': '累计死亡 (魁省)', # Cases vs New Cases fig 'cases_vs_newcases_label': '新病例与累计确诊病例对比', 'cases_vs_newcases_xlabel': '累计确诊病例 (对数比例)', 'cases_vs_newcases_ylabel': '新增病例 (对数比例)', 'cases_vs_newcases_legend_mtl': '蒙特利尔', 'cases_vs_newcases_legend_qc': '魁省', 'cases_vs_newcases_hovertemplate': '日期: %{customdata} <br> 新增病例: %{y}', # Vaccination_fig 'vaccination_label': '疫苗接种量', # TODO: add 'Progress' 'vaccination_y': 'Doses (cumulative)', 'vaccination_new': '新增接种量', 'vaccination_total': 'Doses administered', 'vaccination_total_2d': 'Doses administered (2nd dose)', 'vaccination_perc': '% of pop received at least 1 dose', 'vaccination_perc_2d': '% of pop received 2 doses', 'vaccination_total_mtl': 'Doses administered (MTL)', 'vaccination_perc_mtl': '接种人口百分比 (蒙特利尔)', 'vaccination_perc_qc': '接种人口百分比 (魁省)', 'vaccination_hovertemplate': '接种人数: %{y:,d}<br>Doses available: %{customdata[0]:,d}<br>% of pop received 1 dose: %{customdata[1]:.2f}%', 'vaccination_hovertemplate_mtl': '接种人数: %{y:,d}<br>% of pop received 1 dose: %{customdata[0]:.2f}%', 'vaccination_administered_hovertemplate': 'Doses administered: %{y:,d}<br>Doses available: %{customdata[0]:,d}', 'vaccination_new_mtl': '新增接种量 (蒙特利尔)', 'vaccination_new_qc': '新增接种量 (魁省)', # Vaccination administered fig 'vaccination_administered_label': 'New doses administered', 'vaccination_new_y': 'New doses (7-day moving average)', 'vaccination_new_1d': 'New 1st doses', 'vaccination_new_2d': 'New 2nd doses', # Vaccine delivery fig 'vaccine_delivery_label': 'Vaccine doses delivered vs. administered', 'vaccine_received': 'Doses received', 'vaccine_administered': 'Doses administered', 'vaccine_available': 'Doses available', 'vaccine_received_hovertemplate': 'Doses received: %{y:,d}<br>New doses received: %{customdata:,d}', # Vaccination_age_fig 'vaccination_age_label': 'Vaccination by age group', 'vaccination_categories': ['Not vaccinated', '1 dose received', 'Fully vaccinated'], # Variants fig 'variants_label': 'Progression of new variants of concern (VOC)', 'variants_sequenced': 'Sequenced cases', 'variants_presumptive': 'Presumptive cases', 'variants_new_presumptive': 'New presumptive cases', 'variants_new_sequenced': 'New sequenced cases', 'variants_new_cases': 'Total new cases', 'variants_pos_rate': 'Percent positivity', 'variants_pos_rate_avg': 'Percent positivity (7-day mov avg)', 'variants_screened': 'Screened samples', 'variants_y2': 'Cases (cumulative)', 'variants_y3': 'Percent Positivity', # Range sliders '14d': '14d', '1m': '1m', '3m': '3m', '6m': '6m', 'ytd': 'YTD', '1y': '1y', 'all': 'all' } layout = build_home_layout(labels) layout_vaccination = build_vaccination_layout(labels)
import unittest import sys from lib.geocoding import geocoder class TestGeocoding(unittest.TestCase): def test_get_place(self): def assertLatLng(place): self.assertEqual(place.lat, 37.4418834) self.assertEqual(place.lng, -122.1430195) assertLatLng(geocoder.get_place('palo alto')) # using cache: assertLatLng(geocoder.get_place('palo alto')) if __name__ == '__main__': unittest.main()
#!/usr/bin/python # Script to insert image tag or version in charts before builds # Needs version_slice file for processing import glob import json import argparse RFW_THIS_LINE_FLAG = "# rfw-update-this" RFW_NEXT_LINE_FLAG = "# rfw-update-next" DEFAULT_ARTMAP_KEY = "version" # extra artmap key set to version if it differs from component version, otherwise - empty string NON_COMPON_VERSION = "non-component-version" artmap = dict() def update_line(line, marker_text): idx = None # determine idx (index string to artmap key) if marker_text: (_, idx) = marker_text.split(RFW_NEXT_LINE_FLAG, 1) else: (_, idx) = line.split(RFW_THIS_LINE_FLAG, 1) # split incoming line into key, value and comment that should be saved left, right = line.split(":", 1) rparts = right.split("#", 1) # index can point to subkey, if not assume 'version'. then get replacement value artid, akey = idx.split(',') if ',' in idx else (idx, DEFAULT_ARTMAP_KEY) new_val = artmap[artid.strip()][akey.strip()] # restore comment part if it was present rcomment = " #" + rparts[1] if len(rparts) > 1 else '\n' return "{}:{}{}{}".format(left, " "*bool(new_val), new_val, rcomment) def load_artifacts(input_file): with open(input_file, "r+") as ijs: slice = json.load(ijs) for (comp, version) in slice.get('resolvedComponentVersions').items(): compid = "*comp*" + comp artmap[compid] = {DEFAULT_ARTMAP_KEY: version} # to identify NON_COMPON_VERSION flag, count version from resolvedComponentVersions section, # not from artifact itself (not componentVersion) - this is required for hotfix processing for art in slice.get('resolvedArtifacts'): if 'artifactId' in art: comp_mod_name = "*comp*" + art['componentName'] art[NON_COMPON_VERSION] = art['version'] if artmap[comp_mod_name][DEFAULT_ARTMAP_KEY] != art['version'] else '' artmap[art['artifactId']] = art def process_yaml(input_yaml, return_modified=False): with open(input_yaml, "r+") as iym: ylines = iym.readlines() oylines = ylines[:] proc_next = None # process line by line and support update of 'next' line for yi, tx in enumerate(ylines): if RFW_THIS_LINE_FLAG in tx or proc_next: ylines[yi] = update_line(tx, proc_next) proc_next = None elif RFW_NEXT_LINE_FLAG in tx: proc_next = tx if return_modified: return "".join(ylines) if oylines != ylines: open(input_yaml,'w').write("".join(ylines)) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("-vs", "--version-slice", help="path to version_slice file", required=True) parser.add_argument("-wd", "--working-dir", help="path to directory, default is ./", default='.') parser.add_argument("-dry", "--dry-run", help="don't change files, just try to apply versions", action='store_true') args = parser.parse_args() load_artifacts(args.version_slice) for fl in glob.glob(args.working_dir + '/*/*.yaml'): process_yaml(fl, args.dry_run)
#!/usr/bin/env python3 # # Copyright 2021 Miklos Vajna. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. # """The cache module accelerates some functions of the areas module.""" import rust def is_missing_housenumbers_html_cached(ctx: rust.PyContext, relation: rust.PyRelation) -> bool: """Decides if we have an up to date HTML cache entry or not.""" return rust.py_is_missing_housenumbers_html_cached(ctx, relation) def get_missing_housenumbers_html(ctx: rust.PyContext, relation: rust.PyRelation) -> rust.PyDoc: """Gets the cached HTML of the missing housenumbers for a relation.""" return rust.py_get_missing_housenumbers_html(ctx, relation) def get_additional_housenumbers_html(ctx: rust.PyContext, relation: rust.PyRelation) -> rust.PyDoc: """Gets the cached HTML of the additional housenumbers for a relation.""" return rust.py_get_additional_housenumbers_html(ctx, relation) def is_missing_housenumbers_txt_cached(ctx: rust.PyContext, relation: rust.PyRelation) -> bool: """Decides if we have an up to date plain text cache entry or not.""" return rust.py_is_missing_housenumbers_txt_cached(ctx, relation) def get_missing_housenumbers_txt(ctx: rust.PyContext, relation: rust.PyRelation) -> str: """Gets the cached plain text of the missing housenumbers for a relation.""" return rust.py_get_missing_housenumbers_txt(ctx, relation) # vim:set shiftwidth=4 softtabstop=4 expandtab:
import math import mindspore.nn as nn import mindspore.ops as ops from mindspore.ops import constexpr from mindspore.common.initializer import initializer, Normal, Uniform, HeUniform, _calculate_fan_in_and_fan_out @constexpr def compute_kernel_size(inp_shape, output_size): kernel_width, kernel_height = inp_shape[2], inp_shape[3] if isinstance(output_size, int): kernel_width = math.ceil(kernel_width / output_size) kernel_height = math.ceil(kernel_height / output_size) elif isinstance(output_size, list) or isinstance(output_size, tuple): kernel_width = math.ceil(kernel_width / output_size[0]) kernel_height = math.ceil(kernel_height / output_size[1]) return (kernel_width, kernel_height) class AdaptiveMaxPool2d(nn.Cell): def __init__(self, output_size): super().__init__() self.output_size = output_size def construct(self, x): inp_shape = x.shape kernel_size = compute_kernel_size(inp_shape, self.output_size) return ops.MaxPool(kernel_size, kernel_size)(x) class AdaptiveAvgPool2d(nn.Cell): def __init__(self, output_size): super().__init__() self.output_size = output_size def construct(self, x): inp_shape = x.shape kernel_size = compute_kernel_size(inp_shape, self.output_size) return ops.AvgPool(kernel_size, kernel_size)(x) class MaxPool2d(nn.Cell): def __init__(self, kernel_size, stride=None, padding=0): super().__init__() if stride is None: stride = kernel_size self.max_pool = ops.MaxPool(kernel_size, stride) self.use_pad = padding != 0 if isinstance(padding, tuple): assert len(padding) == 2 paddings = ((0, 0), (0, 0), (padding[0], padding[0]), (padding[1], padding[1])) elif isinstance(padding, int): paddings = ((0, 0),) * 2 + ((padding, padding),) * 2 else: raise ValueError('padding should be a tuple include 2 numbers or a int number') self.pad = ops.Pad(paddings) def construct(self, x): if self.use_pad: x = self.pad(x) return self.max_pool(x) class Dense(nn.Dense): def __init__(self, in_channels, out_channels, weight_init=None, bias_init=None, has_bias=True, activation=None): if weight_init is None: weight_init = initializer(HeUniform(math.sqrt(5)), (out_channels, in_channels)) if bias_init is None: fan_in, _ = _calculate_fan_in_and_fan_out((out_channels, in_channels)) bound = 1 / math.sqrt(fan_in) bias_init = initializer(Uniform(bound), (out_channels)) super().__init__(in_channels, out_channels, weight_init=weight_init, bias_init=bias_init, has_bias=has_bias, activation=activation) class CrossEntropyLoss(nn.Cell): reduction_list = ['sum', 'mean', 'none'] def __init__(self, weight=None, ignore_index:int=-100, reduction:str='mean', label_smoothing:float=0.0): super().__init__() if label_smoothing > 1.0 or label_smoothing < 0.0: raise ValueError(f'label_smoothing value must in range [0.0, 1.0], ' f'but get {label_smoothing}') if reduction not in self.reduction_list: raise ValueError(f'Unsupported reduction {reduction}') self.weight = weight self.ignore_index = ignore_index self.reduction = reduction self.label_smoothing = label_smoothing def construct(self, input, target): return cross_entropy(input, target, self.weight, self.ignore_index, self.reduction, self.label_smoothing) # def log_softmax(x, axis=-1): # x_max = x.max() # return x - x_max - ops.log(ops.ReduceSum(True)(ops.exp(x - x_max), axis)) def log_softmax(x, axis=-1): return ops.LogSoftmax(axis)(x) def cross_entropy(input, target, weight=None, ignore_index=-100, reduction='mean', label_smoothing=0.0): if input.size == target.size: return _cross_entropy(input, target, weight, reduction, label_smoothing) return nll_loss(log_softmax(input, 1), target, weight, ignore_index, reduction, label_smoothing) def _cross_entropy(input, target, weight=None, reduction='mean', label_smoothing=0.0): class_dim = 0 if input.ndim == 1 else 1 n_classes = input.shape[class_dim] input = log_softmax(input, class_dim) if label_smoothing > 0.0: target = target * (1 - label_smoothing) + label_smoothing / n_classes if weight is None: weight = ops.ones_like(input) if reduction == 'mean': return -(input * target * weight).sum() / (input.size / n_classes) elif reduction == 'sum': return -(input * target * weight).sum() else: return -(input * target * weight).sum(class_dim) def nll_loss(input, target, weight=None, ignore_index=None, reduction='mean', label_smoothing=0.0): ndim = input.ndim if ndim == 2: ret = _nll_loss(input, target, -1, weight, ignore_index, reduction, label_smoothing) elif input.ndim == 4: ret = _nll_loss(input, target, 1, weight, ignore_index, reduction, label_smoothing) else: # ndim == 3 or ndim > 4 n = input.shape[0] c = input.shape[1] out_size = (n,) + input.shape[2:] input = input.view(n, c, 1, -1) target = target.view(n, 1, -1) if reduction != 'none': ret = _nll_loss(input, target, 1, weight, ignore_index, reduction, label_smoothing) else: ret = _nll_loss(input, target, 1, weight, ignore_index, label_smoothing=label_smoothing) ret = ret.view(out_size) return ret def _nll_loss(input, target, target_dim=-1, weight=None, ignore_index=None, reduction='none', label_smoothing=0.0): if target.ndim == input.ndim - 1: target = target.expand_dims(target_dim) nll_loss = -ops.gather_d(input, target_dim, target) smooth_loss = -input.sum(axis=target_dim, keepdims=True) if weight is not None: loss_weights = ops.gather(weight, target, 0) nll_loss = nll_loss * loss_weights else: loss_weights = ops.ones_like(nll_loss) if ignore_index is not None: non_pad_mask = ops.equal(target, ignore_index) nll_loss = nll_loss.masked_fill(non_pad_mask, 0.) loss_weights = loss_weights.masked_fill(non_pad_mask, 0.) smooth_loss = smooth_loss.masked_fill(non_pad_mask, 0.) nll_loss = nll_loss.squeeze(target_dim) smooth_loss = smooth_loss.squeeze(target_dim) if reduction == 'sum': nll_loss = nll_loss.sum() smooth_loss = smooth_loss.sum() if reduction == 'mean': nll_loss = nll_loss.sum() / loss_weights.sum() smooth_loss = smooth_loss.mean() eps_i = label_smoothing / input.shape[target_dim] loss = (1. - label_smoothing) * nll_loss + eps_i * smooth_loss return loss
def power(base, exponent): result = base ** exponent print "%d to the power of %d is %d." % (base, exponent, result) power(37, 4)
"""hhnk URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.8/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home') Including another URLconf 1. Add an import: from blog import urls as blog_urls 2. Add a URL to urlpatterns: url(r'^blog/', include(blog_urls)) """ from django.conf.urls import include, url from django.contrib import admin import iom.urls from .views import get_waarnemers, get_meetpunten, get_waarnemingen, HomeView urlpatterns = [ url(r'^admin/', include(admin.site.urls)), url(r'^home$',HomeView.as_view(),name='home'), url(r'^get/waarnemers', get_waarnemers), url(r'^get/meetpunten', get_meetpunten), url(r'^get/waarnemingen', get_waarnemingen), ] # fallback to inlaat op maat default urls urlpatterns += iom.urls.urlpatterns