content
stringlengths
5
1.05M
# from .test_api import * # from .test_data import *
# -*- coding: utf-8 -*- from __future__ import print_function, division, absolute_import, unicode_literals from fontTools.misc.py23 import * from fontTools.misc import sstruct from fontTools.misc.xmlWriter import XMLWriter from fontTools.misc.loggingTools import CapturingLogHandler import struct import unittest from fontTools.ttLib.tables._n_a_m_e import ( table__n_a_m_e, NameRecord, nameRecordFormat, nameRecordSize, makeName, log) class NameTableTest(unittest.TestCase): def test_getDebugName(self): table = table__n_a_m_e() table.names = [ makeName("Bold", 258, 1, 0, 0), # Mac, MacRoman, English makeName("Gras", 258, 1, 0, 1), # Mac, MacRoman, French makeName("Fett", 258, 1, 0, 2), # Mac, MacRoman, German makeName("Sem Fracções", 292, 1, 0, 8) # Mac, MacRoman, Portuguese ] self.assertEqual("Bold", table.getDebugName(258)) self.assertEqual("Sem Fracções", table.getDebugName(292)) self.assertEqual(None, table.getDebugName(999)) def test_setName(self): table = table__n_a_m_e() table.setName("Regular", 2, 1, 0, 0) table.setName("Version 1.000", 5, 3, 1, 0x409) table.setName("寬鬆", 276, 1, 2, 0x13) self.assertEqual("Regular", table.getName(2, 1, 0, 0).toUnicode()) self.assertEqual("Version 1.000", table.getName(5, 3, 1, 0x409).toUnicode()) self.assertEqual("寬鬆", table.getName(276, 1, 2, 0x13).toUnicode()) self.assertTrue(len(table.names) == 3) table.setName("緊縮", 276, 1, 2, 0x13) self.assertEqual("緊縮", table.getName(276, 1, 2, 0x13).toUnicode()) self.assertTrue(len(table.names) == 3) # passing bytes issues a warning with CapturingLogHandler(log, "WARNING") as captor: table.setName(b"abc", 0, 1, 0, 0) self.assertTrue( len([r for r in captor.records if "string is bytes" in r.msg]) == 1) # anything other than unicode or bytes raises an error with self.assertRaises(TypeError): table.setName(1.000, 5, 1, 0, 0) def test_addName(self): table = table__n_a_m_e() nameIDs = [] for string in ("Width", "Weight", "Custom"): nameIDs.append(table.addName(string)) self.assertEqual(nameIDs[0], 256) self.assertEqual(nameIDs[1], 257) self.assertEqual(nameIDs[2], 258) self.assertEqual(len(table.names), 6) self.assertEqual(table.names[0].string, "Width") self.assertEqual(table.names[1].string, "Width") self.assertEqual(table.names[2].string, "Weight") self.assertEqual(table.names[3].string, "Weight") self.assertEqual(table.names[4].string, "Custom") self.assertEqual(table.names[5].string, "Custom") with self.assertRaises(ValueError): table.addName('Invalid nameID', minNameID=32767) with self.assertRaises(TypeError): table.addName(b"abc") # must be unicode string def test_decompile_badOffset(self): # https://github.com/behdad/fonttools/issues/525 table = table__n_a_m_e() badRecord = { "platformID": 1, "platEncID": 3, "langID": 7, "nameID": 1, "length": 3, "offset": 8765 # out of range } data = bytesjoin([ struct.pack(">HHH", 1, 1, 6 + nameRecordSize), sstruct.pack(nameRecordFormat, badRecord)]) table.decompile(data, ttFont=None) self.assertEqual(table.names, []) class NameRecordTest(unittest.TestCase): def test_toUnicode_utf16be(self): name = makeName("Foo Bold", 111, 0, 2, 7) self.assertEqual("utf_16_be", name.getEncoding()) self.assertEqual("Foo Bold", name.toUnicode()) def test_toUnicode_macroman(self): name = makeName("Foo Italic", 222, 1, 0, 7) # MacRoman self.assertEqual("mac_roman", name.getEncoding()) self.assertEqual("Foo Italic", name.toUnicode()) def test_toUnicode_macromanian(self): name = makeName(b"Foo Italic\xfb", 222, 1, 0, 37) # Mac Romanian self.assertEqual("mac_romanian", name.getEncoding()) self.assertEqual("Foo Italic"+unichr(0x02DA), name.toUnicode()) def test_toUnicode_UnicodeDecodeError(self): name = makeName(b"\1", 111, 0, 2, 7) self.assertEqual("utf_16_be", name.getEncoding()) self.assertRaises(UnicodeDecodeError, name.toUnicode) def toXML(self, name): writer = XMLWriter(BytesIO()) name.toXML(writer, ttFont=None) xml = writer.file.getvalue().decode("utf_8").strip() return xml.split(writer.newlinestr.decode("utf_8"))[1:] def test_toXML_utf16be(self): name = makeName("Foo Bold", 111, 0, 2, 7) self.assertEqual([ '<namerecord nameID="111" platformID="0" platEncID="2" langID="0x7">', ' Foo Bold', '</namerecord>' ], self.toXML(name)) def test_toXML_utf16be_odd_length1(self): name = makeName(b"\0F\0o\0o\0", 111, 0, 2, 7) self.assertEqual([ '<namerecord nameID="111" platformID="0" platEncID="2" langID="0x7">', ' Foo', '</namerecord>' ], self.toXML(name)) def test_toXML_utf16be_odd_length2(self): name = makeName(b"\0Fooz", 111, 0, 2, 7) self.assertEqual([ '<namerecord nameID="111" platformID="0" platEncID="2" langID="0x7">', ' Fooz', '</namerecord>' ], self.toXML(name)) def test_toXML_utf16be_double_encoded(self): name = makeName(b"\0\0\0F\0\0\0o", 111, 0, 2, 7) self.assertEqual([ '<namerecord nameID="111" platformID="0" platEncID="2" langID="0x7">', ' Fo', '</namerecord>' ], self.toXML(name)) def test_toXML_macroman(self): name = makeName("Foo Italic", 222, 1, 0, 7) # MacRoman self.assertEqual([ '<namerecord nameID="222" platformID="1" platEncID="0" langID="0x7" unicode="True">', ' Foo Italic', '</namerecord>' ], self.toXML(name)) def test_toXML_macroman_actual_utf16be(self): name = makeName("\0F\0o\0o", 222, 1, 0, 7) self.assertEqual([ '<namerecord nameID="222" platformID="1" platEncID="0" langID="0x7" unicode="True">', ' Foo', '</namerecord>' ], self.toXML(name)) def test_toXML_unknownPlatEncID_nonASCII(self): name = makeName(b"B\x8arli", 333, 1, 9876, 7) # Unknown Mac encodingID self.assertEqual([ '<namerecord nameID="333" platformID="1" platEncID="9876" langID="0x7" unicode="False">', ' B&#138;rli', '</namerecord>' ], self.toXML(name)) def test_toXML_unknownPlatEncID_ASCII(self): name = makeName(b"Barli", 333, 1, 9876, 7) # Unknown Mac encodingID self.assertEqual([ '<namerecord nameID="333" platformID="1" platEncID="9876" langID="0x7" unicode="True">', ' Barli', '</namerecord>' ], self.toXML(name)) def test_encoding_macroman_misc(self): name = makeName('', 123, 1, 0, 17) # Mac Turkish self.assertEqual(name.getEncoding(), "mac_turkish") name.langID = 37 self.assertEqual(name.getEncoding(), "mac_romanian") name.langID = 45 # Other self.assertEqual(name.getEncoding(), "mac_roman") def test_extended_mac_encodings(self): name = makeName(b'\xfe', 123, 1, 1, 0) # Mac Japanese self.assertEqual(name.toUnicode(), unichr(0x2122)) def test_extended_unknown(self): name = makeName(b'\xfe', 123, 10, 11, 12) self.assertEqual(name.getEncoding(), "ascii") self.assertEqual(name.getEncoding(None), None) self.assertEqual(name.getEncoding(default=None), None) if __name__ == "__main__": import sys sys.exit(unittest.main())
import numpy as np import pandas as pd import multiprocessing from multiprocessing import Pool from datetime import date def construct_OD(process_name, from_ind, to_ind, bart_data, stop_table, bart_OD): print('Start process' + process_name) for i in bart_data.index[from_ind:to_ind]: # [from_ind, to_ind) d = bart_data.loc[i, 'Date'] doy = get_doy(d) # day of the year, starting from 1 doy -= 1 hod = bart_data.loc[i, 'Hour'] # hour of the day, starting from 0 hour_abs = doy * 24 + hod # hour index, the 3rd dim of bart_OD org = bart_data.loc[i, 'Origin'] org_ind = stop_table.loc[org, 'stop_index'] dest = bart_data.loc[i, 'Dest'] dest_ind = stop_table.loc[dest, 'stop_index'] pax_flow = bart_data.loc[i, 'Count'] bart_OD[org_ind, dest_ind, hour_abs] = pax_flow print('End process' + process_name) return bart_OD def get_doy(d): # input date, get day of the year return date.fromisoformat(d).timetuple().tm_yday if __name__ == '__main__': bart_path = '/Volumes/Google Drive/My Drive/Graduate/SP22 CE 299/data/BART/hour data/date-hour-soo-dest-2020.csv' bart_data = pd.read_csv(bart_path, header=None) bart_data.columns = ['Date', 'Hour', 'Origin', 'Dest', 'Count'] bart_data.head(2) stops = bart_data['Origin'].drop_duplicates() num_stops = stops.shape[0] # =50 # dims: (org, dest, time[hr]) bart_OD = np.zeros([num_stops, num_stops, 24*366]) # 366 or 365 days stop_table = pd.DataFrame( range(num_stops), index=stops.values, columns=['stop_index'] ) num_interval = multiprocessing.cpu_count() interval = len(bart_data)//num_interval * np.arange(num_interval) interval = np.append(interval, bart_data.shape[0]) interval n_cpu = num_interval pool = Pool(processes=n_cpu) params = [] for i in range(len(interval)-1): from_ = interval[i] to_ = interval[i+1] process_name = 'P' + str(i) params.append((process_name, from_, to_, bart_data, stop_table, bart_OD)) bart_OD_set = pool.starmap(func=construct_OD, iterable=params) # please set a breakpoint here, then store the data manually print('end')
from roblib import * def draw_crank(x): θ1=x[0,0] θ2=x[1,0] z=L1*array([[cos(θ1)],[sin(θ1)]]) y=z+L2*array([[cos(θ1+θ2)],[sin(θ1+θ2)]]) plot( [0,z[0,0],y[0,0]],[0,z[1,0],y[1,0]],'magenta', linewidth = 2) draw_disk(c,r,ax,"cyan") L1,L2 = 4,3 c = array([[1],[2]]) r=4 dt = 0.05 x = array([[-1],[1]]) def consigne(r,c,t): w = c + r*array([[cos(t)],[sin(t)]]) dw = array([[-r*sin(t)], [r*cos(t)]]) return w,dw def regulation(l1,l2,θ1,θ2,w,dw): # Observation z=l1*array([[cos(θ1)],[sin(θ1)]]) y=z+l2*array([[cos(θ1+θ2)],[sin(θ1+θ2)]]) # Regulation A = array([[1.,2.],[3.,4.]]) A[0][0] = -y[1,0] #-l1*sin(θ1) - l2*sin(θ1+θ2) A[0][1] = -l2*sin(θ1+θ2) A[1][0] = y[0,0] #l1*cos(θ1) + l2*cos(θ1+θ2) A[1][1] = l2*cos(θ1+θ2) Ainv = inv(A) v = w-y +dw u = dot(Ainv,v) return u def f(x,w,dw): θ1=x[0,0] θ2=x[1,0] u = regulation(L1,L2,θ1,θ2,w,dw) dθ1=u[0,0] dθ2=u[1,0] return(array([[dθ1],[dθ2]])) fig = figure(0) ax = fig.add_subplot(111, aspect='equal') for t in arange(0,10,dt) : pause(0.01) cla() ax.set_xlim(-4,8) ax.set_ylim(-4,8) draw_crank(x) w, dw = consigne(r,c,t) x = x + dt*f(x,w,dw) show()
#-------------------------------- # Name: et_numpy.py # Purpose: NumPy ET functions #-------------------------------- # import logging import math import numpy as np try: import et_common import et_image import et_numpy import python_common as dripy except ModuleNotFoundError: import sys sys.path.append('/home/dgketchum/PycharmProjects/pymetric/code') from support import et_common from support import et_image from support import et_numpy from support import python_common as dripy def cos_theta_spatial_func(time, doy, dr, lon, lat): """ Parameters ---------- time doy dr lon lat Returns ------- """ sc = et_common.seasonal_correction_func(doy) delta = et_common.delta_func(doy) omega = et_common.omega_func(et_common.solar_time_rad_func(time, lon, sc)) cos_theta = ((math.sin(delta) * np.sin(lat)) + (math.cos(delta) * np.cos(lat) * np.cos(omega))) return cos_theta def cos_theta_mountain_func(time, doy, dr, lon, lat, slope, aspect): """ Parameters ---------- time doy dr lon lat slope aspect Returns ------- ndarray """ sc = et_common.seasonal_correction_func(doy) delta = et_common.delta_func(doy) omega = et_common.omega_func(et_common.solar_time_rad_func(time, lon, sc)) sin_omega = np.sin(omega) cos_omega = np.cos(omega) del omega sin_slope = np.sin(slope) cos_slope = np.cos(slope) # Aspect is 0 as north, function is expecting 0 as south sin_aspect = np.sin(aspect - math.pi) cos_aspect = np.cos(aspect - math.pi) sin_lat = np.sin(lat) cos_lat = np.cos(lat) cos_theta_unadjust_array = ( (math.sin(delta) * sin_lat * cos_slope) - (math.sin(delta) * cos_lat * sin_slope * cos_aspect) + (math.cos(delta) * cos_lat * cos_slope * cos_omega) + (math.cos(delta) * sin_lat * sin_slope * cos_aspect * cos_omega) + (math.cos(delta) * sin_aspect * sin_slope * sin_omega)) del sin_lat, cos_lat, sin_slope del sin_aspect, cos_aspect, sin_omega, cos_omega cos_theta_array = np.maximum( (cos_theta_unadjust_array / cos_slope), 0.1) del cos_slope return cos_theta_array # DEADBEEF - Trying to reduce memory usage in calculation # def cos_theta_mountain_func(time, doy, dr, lon, lat, slope, aspect): # """ # # Parameters # ---------- # time # doy # dr # lon # lat # slope # aspect # # Returns # ------- # # """ # cos_theta_array = 0 # # Term 1 (sin(Delta)*sin(Latitude)*cos(Slope)) # temp_array = math.sin(delta) # temp_array *= np.sin(lat) # temp_array *= np.cos(slope) # temp_array *= np.cos(aspect) # temp_array *= np.cos(omega) # cos_theta_array += temp_array # del temp_array # # Term 2 (-sin(Delta)*cos(Latitude)*sin(Slope)*cos(Aspect)) # temp_array = math.sin(delta) # temp_array *= np.cos(lat) # temp_array *= np.sin(slope) # temp_array *= np.cos(aspect # cos_theta_array -= temp_array # del temp_array # # Term 3 (+cos(Delta)*cos(Latitude)*cos(Slope)*cos(Omega)) # temp_array = math.cos(delta) # temp_array *= np.cos(lat) # temp_array *= np.cos(slope) # temp_array *= np.cos(omega) # cos_theta_array += temp_array # del temp_array # # Term 4 (+cos(Delta)*sin(Latitude)*sin(Slope)*cos(Aspect)*cos(Omega)) # temp_array = math.cos(delta) # temp_array *= np.sin(lat) # temp_array *= np.sin(slope) # temp_array *= np.cos(aspect) # temp_array *= np.cos(omega) # cos_theta_array += temp_array # del temp_array # # Term 5 (+cos(Delta)*sin(Slope)*sin(Aspect)*sin(Omega)) # temp_array = math.cos(delta) # temp_array *= np.sin(slope) # temp_array *= np.sin(aspect) # temp_array *= np.sin(omega) # cos_theta_array += temp_array # del temp_array # # Adjust # cos_theta_array /= np.cos(slope) # cos_theta_array = np.maximum( # cos_theta_array, 0.1, dtype=np.float32) # # ((sin(Delta)*sin(Latitude)*cos(Slope)) # # -(sin(Delta)*cos(Latitude)*sin(Slope)*cos(Aspect)) # # +(cos(Delta)*cos(Latitude)*cos(Slope)*cos(Omega)) # # +(cos(Delta)*sin(Latitude)*sin(Slope)*cos(Aspect)*cos(Omega)) # # +(cos(Delta)*sin(Slope)*sin(Aspect)*sin(Omega))) # # cos_theta_array = ( # # (sin_delta * sin_lat * cos_slope) - # # (sin_delta * cos_lat * sin_slope * cos_aspect) + # # (cos_delta * cos_lat * cos_slope * cos_omega) + # # (cos_delta * sin_lat * sin_slope * cos_aspect * cos_omega) + # # (cos_delta * sin_slope * sin_aspect * sin_omega)) # # del sin_lat, cos_lat, sin_slope # # del sin_aspect, cos_aspect, sin_omega, cos_omega # # cos_theta_array /= cos_slope # # del cos_slope # # cos_theta_array = np.maximum( # # cos_theta_array, 0.1, dtype=np.float32) # return cos_theta_array def l457_refl_toa_func(dn, cos_theta, dr, esun, lmin, lmax, qcalmin, qcalmax, band_toa_sur_mask): """Calculate Landsat 4, 5, or 7 TOA reflectance for all bands Parameters ---------- dn : array_like Landsat raw digital number values cos_theta dr esun lmin lmax qcalmin qcalmax band_toa_sur_mask Returns ------- ndarray References ---------- .. [1] Chander, G., Markham, B., & Helder, D. (2009). Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sensing of Environment, 113(5) https://doi.org/10.1016/j.rse.2009.01.007 """ refl_toa = np.copy(dn).astype(np.float64) refl_toa -= qcalmin refl_toa *= ((lmax - lmin) / (qcalmax - qcalmin)) refl_toa += lmin refl_toa /= esun refl_toa[:, :, band_toa_sur_mask] /= cos_theta[ :, :, np.newaxis].repeat(band_toa_sur_mask.size, 2) refl_toa[:, :, band_toa_sur_mask] *= (math.pi / dr) # Don't clip thermal band since it is not scaled from 0-1 refl_toa[:, :, band_toa_sur_mask] = np.clip( refl_toa[:, :, band_toa_sur_mask], 0.0001, 1) return refl_toa.astype(np.float32) def l457_refl_toa_band_func(dn, cos_theta, dr, esun, lmin, lmax, qcalmin, qcalmax): """Landsat 4, 5, or 7 DN -> TOA reflectance (single band) Parameters ---------- dn : array_like Landsat raw digital number values cos_theta dr esun lmin lmax qcalmin qcalmax Returns ------- ndarray References ---------- .. [1] Chander, G., Markham, B., & Helder, D. (2009). Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sensing of Environment, 113(5) https://doi.org/10.1016/j.rse.2009.01.007 """ refl_toa = np.copy(dn).astype(np.float64) refl_toa -= qcalmin refl_toa *= ((lmax - lmin) / (qcalmax - qcalmin)) refl_toa += lmin refl_toa /= cos_theta refl_toa *= (math.pi / (dr * esun)) np.clip(refl_toa, 0.0001, 1, out=refl_toa) return refl_toa.astype(np.float32) def l457_ts_bt_band_func(dn, lmin, lmax, qcalmin, qcalmax, k1, k2): """Landsat 4, 5, or 7 DN -> brightness temperature (single band) Parameters ---------- dn : ndarray lmin : array_like lmax : array_like qcalmin : array_like qcalmax : array_like k1 : float k2 : float Returns ------- ndarray References ---------- .. [1] Chander, G., Markham, B., & Helder, D. (2009). Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sensing of Environment, 113(5) https://doi.org/10.1016/j.rse.2009.01.007 """ ts_bt = np.copy(dn).astype(np.float64) ts_bt -= qcalmin ts_bt *= ((lmax - lmin) / (qcalmax - qcalmin)) ts_bt += lmin return ts_bt_func(ts_bt, k1, k2).astype(np.float32) def l8_refl_toa_band_func(dn, cos_theta, refl_mult, refl_add): """Landsat 8 DN -> TOA reflectance (single band) Parameters ---------- dn : ndarray cos_theta : array_like refl_mult : array_like Reflectance multiplicative scaling factors refl_add : array_like Reflectance additive scaling factors Returns ------- ndarray References ---------- .. [1] Landsat 8 Data Users Handbook https://landsat.usgs.gov/landsat-8-l8-data-users-handbook """ refl_toa = np.copy(dn).astype(np.float64) refl_toa *= refl_mult refl_toa += refl_add refl_toa /= cos_theta np.clip(refl_toa, 0.0001, 1, out=refl_toa) return refl_toa def l8_ts_bt_band_func(dn, rad_mult, rad_add, k1, k2): """Landsat 8 -> brightness temperature (single band) Parameters ---------- dn rad_mult rad_add k1 k2 Returns ------- ndarray References ---------- .. [1] Landsat 8 Data Users Handbook https://landsat.usgs.gov/landsat-8-l8-data-users-handbook """ ts_bt = np.copy(dn).astype(np.float64) ts_bt *= rad_mult ts_bt += rad_add return ts_bt_func(ts_bt, k1, k2).astype(np.float32) def bqa_fmask_func(qa): """Construct Fmask array from Landsat Collection 1 TOA QA array Parameters ---------- qa : ndarray Returns ------- ndarray Notes ----- https://landsat.usgs.gov/collectionqualityband https://code.earthengine.google.com/356a3580096cca315785d0859459abbd Confidence values: 00 = "Not Determined" = Algorithm did not determine the status of this condition 01 = "No" = Algorithm has low to no confidence that this condition exists (0-33 percent confidence) 10 = "Maybe" = Algorithm has medium confidence that this condition exists (34-66 percent confidence) 11 = "Yes" = Algorithm has high confidence that this condition exists (67-100 percent confidence """ # Extracting cloud masks from BQA using np.right_shift() and np.bitwise_and() # Cloud (med & high confidence), then snow, then shadow, then fill # Low confidence clouds tend to be the FMask buffer fill_mask = np.bitwise_and(np.right_shift(qa, 0), 1) >= 1 cloud_mask = np.bitwise_and(np.right_shift(qa, 4), 1) >= 1 # cloud bit cloud_mask &= np.bitwise_and(np.right_shift(qa, 5), 3) >= 2 # cloud conf. cloud_mask |= np.bitwise_and(np.right_shift(qa, 11), 3) >= 3 # cirrus shadow_mask = np.bitwise_and(np.right_shift(qa, 7), 3) >= 3 snow_mask = np.bitwise_and(np.right_shift(qa, 9), 3) >= 3 fmask = (fill_mask != True).astype(np.uint8) fmask[shadow_mask] = 2 fmask[snow_mask] = 3 fmask[cloud_mask] = 4 return fmask def tau_broadband_func(pair, w, cos_theta, kt=1): """Broadband transmittance Parameters ---------- pair : array_like Air pressure [kPa]. w : array_like Precipitable water in the atmosphere [mm] cos_theta : array_like kt : float Returns ------- ndarray References ---------- """ tau_broadband = tau_direct_func(pair, w, cos_theta, kt) tau_broadband += tau_diffuse_func(tau_broadband) return tau_broadband.astype(np.float32) def tau_direct_func(pair, w, cos_theta, kt=1): """ Parameters ---------- pair : array_like w : array_like cos_theta : array_like kt : float Returns ------- ndarray Notes ----- 0.98 * np.exp((-0.00146 * pair / kt) - (0.075 * np.power(w, 0.4))) References ---------- .. [1] Tasumi, M., Allen, R., and Trezza, R. (2008). At-surface reflectance and albedo from satellite for operational calculation of land surface energy balance. Journal of Hydrologic Engineering 13(2):51-63. https://doi.org/10.1061/(ASCE)1084-0699(2008)13:2(51) """ t1 = np.copy(pair).astype(np.float64) t1 /= kt t1 *= -0.00146 t1 /= cos_theta t2 = np.copy(w).astype(np.float64) t2 /= cos_theta np.power(t2, 0.4, out=t2) t2 *= 0.075 t1 -= t2 del t2 np.exp(t1, out=t1) t1 *= 0.98 return t1 def tau_diffuse_func(tau_direct): """ Parameters ---------- tau_direct : array_like Returns ------- ndarray Notes ----- Model differs from formulas in METRIC manual. Eqn is not applied, per Rick Allen it is not needed. References ---------- .. [1] Tasumi, M., Allen, R., and Trezza, R. (2008). At-surface reflectance and albedo from satellite for operational calculation of land surface energy balance. Journal of Hydrologic Engineering 13(2):51-63. https://doi.org/10.1061/(ASCE)1084-0699(2008)13:2(51) """ tau = np.copy(tau_direct).astype(np.float64) tau *= -0.36 tau += 0.35 return tau # return np.where(tau_direct_array >= 0.15), # (0.35-0.36*tau_direct_array), # (0.18-0.82*tau_direct_array)) def tau_narrowband_func(pair, w, cos_theta, kt, c1, c2, c3, c4, c5): """Narrowband transmittance Parameters ---------- pair : array_like Air pressure [kPa]. w : array_like Precipitable water in the atmosphere [mm] cos_theta : array_like kt : float c1 : float c2 : float c3 : float c4 : float c5 : float Returns ------- ndarray Notes ----- IN: c1 * exp(((c2*pair) / (kt*cos_theta)) - ((c3*w+c4) / cos_theta)) + c5 OUT: c1 * exp(((c2*pair) / (kt*1.0)) - ((c3*w+c4) / 1.0)) + c5 References ---------- .. [1] Tasumi, M., Allen, R., and Trezza, R. (2008). At-surface reflectance and albedo from satellite for operational calculation of land surface energy balance. Journal of Hydrologic Engineering 13(2):51-63. https://doi.org/10.1061/(ASCE)1084-0699(2008)13:2(51) """ t1 = np.copy(pair).astype(np.float64) t1 /= kt t1 *= c2 t2 = np.copy(w) t2 *= c3 t2 += c4 t1 -= t2 del t2 t1 /= cos_theta np.exp(t1, out=t1) t1 *= c1 t1 += c5 return t1.astype(np.float32) def refl_sur_tasumi_func(refl_toa, pair, w, cos_theta, kt, c1, c2, c3, c4, c5, cb, band_cnt): """Tasumi at-surface reflectance Parameters ---------- refl_toa : ndarray Top-of-atmosphere reflectance. pair : array_like Air pressure [kPa]. w : array_like Precipitable water in the atmosphere [mm] cos_theta : array_like kt : float Clearness coefficient. c1 : float c2 : float c3 : float c4 : float c5 : float cb : float band_cnt : int Returns ------- ndarray Notes ----- refl_sur = (refl_toa - cb * (1 - tau_in)) / (tau_in * tau_out) References ---------- .. [1] Tasumi, M., Allen, R., and Trezza, R. (2008). At-surface reflectance and albedo from satellite for operational calculation of land surface energy balance. Journal of Hydrologic Engineering 13(2):51-63. https://doi.org/10.1061/(ASCE)1084-0699(2008)13:2(51) """ if np.all(np.isnan(refl_toa)): return refl_toa # Reshape arrays to match the surface reflectance arrays pair_mod = pair[:, :, np.newaxis].repeat(band_cnt, 2).astype(np.float64) w_mod = w[:, :, np.newaxis].repeat(band_cnt, 2).astype(np.float64) cos_theta_mod = cos_theta[:, :, np.newaxis].repeat(band_cnt, 2).astype(np.float64) tau_in = tau_narrowband_func( pair_mod, w_mod, cos_theta_mod, kt, c1, c2, c3, c4, c5) tau_out = tau_narrowband_func( pair_mod, w_mod, 1, kt, c1, c2, c3, c4, c5) del cos_theta_mod, pair_mod, w_mod refl_sur = np.copy(tau_in) refl_sur *= -1 refl_sur += 1 refl_sur *= -cb refl_sur += refl_toa refl_sur /= tau_in refl_sur /= tau_out np.clip(refl_sur, 0.0001, 1, out=refl_sur) return refl_sur.astype(np.float32) def albedo_sur_func(refl_sur, wb): """Tasumi at-surface albedo Parameters ---------- refl_sur : ndarray wb : Returns ------- ndarray References ---------- .. [1] Tasumi, M., Allen, R., and Trezza, R. (2008). At-surface reflectance and albedo from satellite for operational calculation of land surface energy balance. Journal of Hydrologic Engineering 13(2):51-63. https://doi.org/10.1061/(ASCE)1084-0699(2008)13:2(51) """ return np.sum(refl_sur * wb, axis=2) # Vegetation Indices def ndi_func(a, b, l=0.0): """Normalized difference index function Parameters ---------- a : array_like b : array_like l : Returns ------- array_like Notes ----- Function can be used to calculate SAVI ([1]_, [2]_) by setting l != 0. References ---------- .. [1] Huete, A. (1988). A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25(3). https://doi.org/10.1016/0034-4257(88)90106-X .. [2] Allen, R., Tasumi, M., & Trezza, R. (2007). Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)-Model. Journal of Irrigation and Drainage Engineering, 133(4). https://doi.org/10.1061/(ASCE)0733-9437(2007)133:4(380) """ ndi = ((1. + l) * (a - b) / (l + a + b)) # Manually set output value when a and b are zero # ndi[((l+a+b) != 0)] = 0 return ndi def savi_lai_func(savi): """Compute leaf area index (LAI) from SAVI Parameters ---------- savi : array_like Soil adjusted vegetation index. Returns ------- ndarray References ---------- .. [1] Allen, R., Tasumi, M., & Trezza, R. (2007). Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)-Model. Journal of Irrigation and Drainage Engineering, 133(4). https://doi.org/10.1061/(ASCE)0733-9437(2007)133:4(380) """ return np.clip((11. * np.power(savi, 3)), 0, 6) def ndvi_lai_func(ndvi): """Compute leaf area index (LAI) from NDVI Parameters ---------- ndvi : array_like Normalized difference vegetation index. Returns ------- ndarray References ---------- .. [1] Trezza and Allen 2014? """ return np.clip((7. * np.power(ndvi, 3)), 0, 6) def ratio_func(a, b): """Compute ratio of two values Parameters ---------- a : array_like b : array_like Returns ------- array_like """ return a / b def evi_func(blue, red, nir): """Compute enhanced vegetation index Parameters ---------- blue : array_like Blue band (band 1 on Landsat 5/7, band 2 on Landsat 8). red : Red band (band 3 on Landsat 5/7, band 4 on Landsat 8). nir : array_like Near infrared band (band 4 on Landsat 5/7, band 5 on Landsat 8). Returns ------- array_like References ---------- .. [1] Huete et al. (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83. https://doi.org/10.1016/S0034-4257(02)00096-2 """ return (2.5 * (nir - red)) / (nir + 6 * red - 7.5 * blue + 1) def tc_bright_func(reflectance, image_type='TOA'): """Tasseled cap brightness Parameters ---------- reflectance : array_like Reflectance. image_type : {'TOA' (default), 'SUR'}, optional Reflectance type. Returns ------- ndarray References ---------- DEADBEEF - Check these URLs and generate actual references and copy to all functions LT04/LT05 - http://www.gis.usu.edu/~doug/RS5750/assign/OLD/RSE(17)-301.pdf LE07 - http://landcover.usgs.gov/pdf/tasseled.pdf LC08 - http://www.tandfonline.com/doi/abs/10.1080/2150704X.2014.915434 https://www.researchgate.net/publication/262005316_Derivation_of_a_tasselled_cap_transformation_based_on_Landsat_8_at-_satellite_reflectance """ if image_type == 'SUR': tc_bright = np.array([0.2043, 0.4158, 0.5524, 0.5741, 0.3124, 0, 0.2303]) elif image_type == 'TOA': tc_bright = np.array([0.3561, 0.3972, 0.3904, 0.6966, 0.2286, 0, 0.1596]) return np.sum(reflectance * tc_bright, axis=2).astype(np.float32) def tc_green_func(reflectance, image_type='TOA'): """Tasseled cap greenness Parameters ---------- reflectance : array_like image_type : {'TOA' (default), 'SUR'}, optional Reflectance type. Returns ------- ndarray References ---------- """ if image_type == 'SUR': tc_green = np.array([-0.1063, -0.2819, -0.4934, 0.7940, -0.0002, 0, -0.1446]) elif image_type == 'TOA': tc_green = np.array([-0.3344, -0.3544, -0.4556, 0.6966, -0.0242, 0, -0.2630]) return np.sum(reflectance * tc_green, axis=2).astype(np.float32) def tc_wet_func(reflectance, image_type='TOA'): """Tasseled cap wetness Parameters ---------- reflectance : array_like image_type : {'TOA' (default), 'SUR'}, optional Reflectance type. Returns ------- ndarray References ---------- """ if image_type == 'SUR': tc_wet = np.array([ 0.0315, 0.2021, 0.3102, 0.1594, -0.6806, 0, -0.6109]) elif image_type == 'TOA': tc_wet = np.array([ 0.2626, 0.2141, 0.0926, 0.06564, -0.7629, 0, -0.5388]) return np.sum(reflectance * tc_wet, axis=2).astype(np.float32) def etstar_func(evi, etstar_type='mean'): """Compute ET* Parameters ---------- evi : array_like Enhanced vegetation index. etstar_type : {'mean', 'lpi', 'upi', 'lci', 'uci'}, optional Returns ------- ndarray References ---------- .. [1] Beamer, J., Huntington, J., Morton, C., & Pohll, G. (2011). Estimating annual groundwater evapotranspiration from phreatophytes in the Great Basin using Landsat and flux tower measurements. Journal of the American Water Resources Association, 49(3). https://doi.org/10.1111/jawr.12058 """ c_dict = dict() c_dict['mean'] = np.array([-0.1955, 2.9042, -1.5916]).astype(np.float32) c_dict['lpi'] = np.array([-0.2871, 2.9192, -1.6263]).astype(np.float32) c_dict['upi'] = np.array([-0.1039, 2.8893, -1.5569]).astype(np.float32) c_dict['lci'] = np.array([-0.2142, 2.9175, -1.6554]).astype(np.float32) c_dict['uci'] = np.array([-0.1768, 2.891, -1.5278]).astype(np.float32) try: c = c_dict[etstar_type] except KeyError: raise SystemExit() # ET* calculation etstar = np.copy(evi) etstar *= c[2] etstar += c[1] etstar *= evi etstar += c[0] np.maximum(etstar, 0., out=etstar) return etstar def etstar_etg_func(etstar, eto, ppt): """Computed ET* based groundwater evapotranspiration (ETg) Parameters ---------- etstar : array_like ET* eto : array_like Reference ET [mm]. ppt : array_like Precipitation [mm]. Returns ------- ndarray """ return np.copy(etstar) * (eto - ppt) def etstar_et_func(etstar, eto, ppt): """Compute ET* based evapotranspiration (ET) Parameters ---------- etstar : array_like ET* eto : array_like Reference ET [mm] ppt : array_like Precipitation [mm] Returns ------- ndarray """ return np.copy(etstar) * (eto - ppt) + ppt def em_nb_func(lai, water_index, water_threshold=0): """Narrowband emissivity Parameters ---------- lai : array_like Leaf area index water_index : array_like Normalized index used to identify water pixels (typically NDVI). water_threshold : float, optional Pixels with water_index values less than this value will have the water emissivity value applied. Returns ------- ndarray Notes ----- em_0 = (0.97 + (lai / 300.)) for LAI <= 3 em_0 = 0.98 for LAI > 3 em_0 = 0.985 for water DEADBEEF - Check 0.99 value in code for water References ---------- .. [1] Tasumi, M. (2003). Progress in operational estimation of regional evapotranspiration using satellite imagery. Ph.D. dissertation. .. [2] Allen, R., Tasumi, M., & Trezza, R. (2007). Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)-Model. Journal of Irrigation and Drainage Engineering, 133(4). https://doi.org/10.1061/(ASCE)0733-9437(2007)133:4(380) """ em_nb = np.copy(lai).astype(np.float32) em_nb /= 300. em_nb += 0.97 em_nb[(water_index > water_threshold) & (lai > 3)] = 0.98 em_nb[water_index < water_threshold] = 0.99 return em_nb def em_0_func(lai, water_index, water_threshold=0): """Broadband emissivity Parameters ---------- lai : array_like Leaf area index. water_index : array_like Normalized index used to identify water pixels (typically NDVI). water_threshold : float, optional Pixels with water_index values less than this value will have the water emissivity value applied. Returns ------- ndarray Notes ----- em_0 = (0.95 + (lai / 100.)) for LAI <= 3 em_0 = 0.98 for LAI > 3 em_0 = 0.985 for water References ---------- .. [1] Tasumi, M. (2003). Progress in operational estimation of regional evapotranspiration using satellite imagery. Ph.D. dissertation. .. [2] Allen, R., Tasumi, M., & Trezza, R. (2007). Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)-Model. Journal of Irrigation and Drainage Engineering, 133(4). https://doi.org/10.1061/(ASCE)0733-9437(2007)133:4(380) """ em_0 = np.copy(lai).astype(np.float32) em_0 /= 100. em_0 += 0.95 em_0[(water_index > water_threshold) & (lai > 3)] = 0.98 em_0[water_index <= water_threshold] = 0.985 return em_0 def rc_func(thermal_rad, em_nb, rp, tnb, rsky): """Corrected Radiance Parameters ---------- thermal_rad : array_like Thermal band spectral radiance [W m-2 sr-1 um-1]. em_nb : array_like Narrow band emissivity. rp : float Path radiance (in the thermal band) [W m-2 sr-1 um-1]. tnb : float Transmissivity of air (in the thermal band). rsky : float Clear sky downward thermal radiance [W m-2 sr-1 um-1]. Returns ------- ndarray Notes ----- rc = ((thermal_rad - rp) / tnb) - ((1.0 - em_nb) * rsky) References ---------- .. [1] Wukelic et al. (1989). .. [2] Allen, R., Tasumi, M., & Trezza, R. (2007). Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)-Model. Journal of Irrigation and Drainage Engineering, 133(4). https://doi.org/10.1061/(ASCE)0733-9437(2007)133:4(380) """ # DEADBEEF - Why is ndmin=1 being set here? rc = np.array(thermal_rad, copy=True, ndmin=1).astype(np.float64) # rc = np.copy(thermal_rad_toa).astype(np.float32) rc -= rp rc /= tnb rc -= rsky rc += (em_nb * rsky) return rc.astype(np.float32) def ts_func(em_nb, rc, k1, k2): """Surface Temperature Parameters ---------- em_nb : array_like Narrow band emissivity. rc : array_like Corrected thermal radiance [W m-2 sr-1 um-1]. k1 : float Calibration constant. k2 : float Calibration constant. Returns ------- ndarray Notes ----- ts = k2 / log(((em_nb * k1) / rc) + 1.0) References ---------- .. [1] Allen, R., Tasumi, M., & Trezza, R. (2007). Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)-Model. Journal of Irrigation and Drainage Engineering, 133(4). https://doi.org/10.1061/(ASCE)0733-9437(2007)133:4(380) .. [2] Markham and Barker (1986). """ ts = np.copy(em_nb).astype(np.float64) ts *= k1 ts /= rc ts += 1.0 np.log(ts, out=ts) np.reciprocal(ts, out=ts) ts *= k2 return ts.astype(np.float32) def ts_bt_func(thermal_rad, k1, k2): """Calculate brightness temperature from thermal radiance Parameters ---------- thermal_rad : array_like Thermal band spectral radiance [W m-2 sr-1 um-1]. k1 : float Calibration constant. k2 : float Calibration constant. Returns ------- ndarray Notes ----- ts_bt = k2 / log((k1 / L) + 1.0) References ---------- .. [1] Chander, G., Markham, B., & Helder, D. (2009). Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sensing of Environment, 113(5) https://doi.org/10.1016/j.rse.2009.01.007 """ ts_bt = np.copy(thermal_rad).astype(np.float64) ts_bt[ts_bt <= 0] = np.nan np.reciprocal(ts_bt, out=ts_bt) ts_bt *= k1 ts_bt += 1.0 np.log(ts_bt, out=ts_bt) np.reciprocal(ts_bt, out=ts_bt) ts_bt *= k2 return ts_bt.astype(np.float32) def thermal_rad_func(ts_bt, k1, k2): """Back calculate thermal radiance from brightness temperature Parameters ---------- ts_bt : array_like Brightness temperature [K]. k1 : float Calibration constant. k2 : float Calibration constant. Returns ------- ndarray Notes ----- thermal_rad = k1 / (exp(k2 / ts_bt) - 1.0) References ---------- .. [1] Chander, G., Markham, B., & Helder, D. (2009). Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sensing of Environment, 113(5) https://doi.org/10.1016/j.rse.2009.01.007 """ thermal_rad = np.copy(ts_bt).astype(np.float64) np.reciprocal(thermal_rad, out=thermal_rad) thermal_rad *= k2 np.exp(thermal_rad, out=thermal_rad) thermal_rad -= 1.0 np.reciprocal(thermal_rad, out=thermal_rad) thermal_rad *= k1 return thermal_rad.astype(np.float32) def ts_lapsed_func(ts, elevation, datum, lapse_rate=6.0): """Lapse surface temperature based on elevation Parameters ---------- ts : array_like Surface temperature [K]. elevation : array_like Elevation [m]. datum : float lapse_rate : float Returns ------- ndarray Notes ----- References ---------- """ ts_adjust = np.copy(elevation).astype(np.float64) ts_adjust -= datum ts_adjust *= (lapse_rate * -0.001) ts_adjust += ts return ts_adjust.astype(np.float32) def ts_delapsed_func(ts, elevation, datum, lapse_rate=6.0): """Delapse surface temperature based on elevation Parameters ---------- ts : array_like Surface temperature [K]. elevation : array_like Elevation [m]. datum : float lapse_rate : float Returns ------- ndarray Notes ----- References ---------- """ ts_adjust = np.copy(elevation).astype(np.float64) ts_adjust -= datum ts_adjust *= (lapse_rate * 0.001) ts_adjust += ts return ts_adjust.astype(np.float32) def rl_in_func(tau, ts, ea_coef1=0.85, ea_coef2=0.09): """Incoming Longwave Radiation Parameters ---------- tau : array_like Broadband atmospheric transmissivity. ts : array_like Surface temperature [K]. ea_coef1 : float, optional Empirical coefficient for computing ea (the default is 0.85 per [1]_). ea_coef2 : float, optional Empirical coefficient for computing ea (the default is 0.09 per [1]_). Returns ------- ndarray Notes ----- ea = 0.85 * (-log(tau) ** 0.09) rl_in = 5.67E-8 * ea * (ts ** 4) References ---------- .. [1] Allen, R., Tasumi, M., & Trezza, R. (2007). Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)-Model. Journal of Irrigation and Drainage Engineering, 133(4). https://doi.org/10.1061/(ASCE)0733-9437(2007)133:4(380) """ rl_in = np.copy(tau).astype(np.float64) np.log(rl_in, out=rl_in) np.negative(rl_in, out=rl_in) np.power(rl_in, ea_coef2, out=rl_in) rl_in *= (ea_coef1 * 5.67E-8) rl_in *= np.power(ts, 4) return rl_in.astype(np.float32) def rl_out_func(rl_in, ts, em_0): """Outgoing Longwave Radiation (Emitted + Reflected) Parameters ---------- rl_in : array_like Incoming longwave radiation [W m-2]. ts : array_like Surface temperature [K]. em_0 : array_like Broadband surface emissivity. Returns ------- ndarray Notes ----- rl_out = 5.67E-8 * em_0 * (ts ** 4) + rl_in * (1 - em_0) References ---------- .. [1] Allen, R., Tasumi, M., & Trezza, R. (2007). Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)-Model. Journal of Irrigation and Drainage Engineering, 133(4). https://doi.org/10.1061/(ASCE)0733-9437(2007)133:4(380) """ rl_out = np.copy(ts).astype(np.float64) np.power(rl_out, 4, out=rl_out) rl_out *= em_0 rl_out *= 5.67E-8 rl_out += rl_in rl_out -= em_0 * rl_in return rl_out.astype(np.float32) def rs_in_func(cos_theta, tau, dr, gsc=1367.0): """Incoming Shortwave Radiation Parameters ---------- cos_theta : array_like tau : array_like dr : float gsc : float, optional Solar constant [W m-2] (the default is 1367.0). Returns ------- ndarray Notes ----- rs_in = gsc * cos_theta * tau / dr References ---------- .. [1] Allen, R., Tasumi, M., & Trezza, R. (2007). Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)-Model. Journal of Irrigation and Drainage Engineering, 133(4). https://doi.org/10.1061/(ASCE)0733-9437(2007)133:4(380) """ rs_in = np.copy(cos_theta).astype(np.float64) rs_in *= tau rs_in *= (gsc * dr) return rs_in.astype(np.float32) def rs_out_func(rs_in, albedo_sur): """Outgoing Shortwave Radiation Parameters ---------- rs_in : array_like Incoming shortwave radiation [W m-2]. albedo_sur : array_like Surface albedo. Returns ------- ndarray Notes ----- rs_out = rs_in * albedo References ---------- .. [1] Allen, R., Tasumi, M., & Trezza, R. (2007). Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)-Model. Journal of Irrigation and Drainage Engineering, 133(4). https://doi.org/10.1061/(ASCE)0733-9437(2007)133:4(380) """ rs_out = np.copy(rs_in).astype(np.float64) rs_out *= albedo_sur return rs_out.astype(np.float32) def rn_func(rs_in, rs_out, rl_in, rl_out): """Net Radiation Parameters ---------- rs_in : array_like Incoming shortwave radiation [W m-2]. rs_out : array_like Outgoing shortwave radiation [W m-2]. rl_in : array_like Incoming longwave radiation [W m-2]. rl_out : array_like Outgoing longwave radiation [W m-2]. Returns ------- ndarray Notes ----- rn = rs_in - rs_out + rl_in - rl_out References ---------- .. [1] Allen, R., Tasumi, M., & Trezza, R. (2007). Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)-Model. Journal of Irrigation and Drainage Engineering, 133(4). https://doi.org/10.1061/(ASCE)0733-9437(2007)133:4(380) """ rn = np.copy(rs_in) rn -= rs_out rn += rl_in rn -= rl_out return rn def rn_24_func(albedo_sur, rs_in, lat, doy, cs=110): """Daily Net Radiation Parameters ---------- albedo_sur : array_like Surface albedo. rs_in : array_like Incoming shortwave radiation [W m-2] lat : array_like Latitude [rad]. doy : int Day of year. cs : float Slob calibration coefficient (the default is 110 W m-2 [1]_). Returns ------- ndarray Notes ----- This function is calling the et_common.ra_daily_func() but could be changed to use the refet.calcs._ra_daily() function instead. rnl_24 = cs * (rs_in / ra) rn_24 = (1 - albedo_sur) * rs_in - rnl_24 References ---------- .. [1] de Bruin, H.A.R. (1987). From Penman to Makkink. Proceedings and Information: TNO Committee on Hydrological Research No. 39, J. C. Hooghart, Ed., Netherlands Organization for Applied Scientific Research, 5-30. .. [2] de Bruin and Stricker (2000). .. [3] Bastiaanssen, W., Noordman, E., Pelgrum, H., Davids, G., Thoreson, B., Allen, R. (2005). SEBAL model with remotely sensed data to improve water-resources management under actual field conditions. Journal of Irrigation and Drainage Engineering, 131(1). https://doi.org/10.1061/(ASCE)0733-9437(2005)131:1(85) .. [4] de Bruin, H.A.R, Trigo, I.F., Bosveld, F.C., & Meirink, J.F. (2016). A thermodynamically based model for actual evapotranspiration of an extensive grass field close to FAO reference, suitable for remote sensing application. Journal of Hydrometeorology 17. https://doi.org/10.1175/JHM-D-15-0006.1 """ # Net longwave radiation at the cold and hot calibration points rnl_24 = et_common.ra_daily_func(lat=lat, doy=doy) np.reciprocal(rnl_24, out=rnl_24) rnl_24 *= rs_in rnl_24 *= cs rn_24 = 1 - albedo_sur rn_24 *= rs_in rn_24 -= rnl_24 return rn_24 def g_ag_func(lai, ts, rn, coef1=1.80, coef2=0.084): """Calculate ground heat flux for agriculture using METRIC approach Parameters ---------- lai : array_like Leaf area index. ts : array_like Surface temperature [K]. rn : array_like Net radiation [W m-2]. coef1 : float Coefficient (the default is 1.80). coef2 : float Coefficient (the default is 0.084). Returns ------- ndarray Notes ----- Coef1 and coef2 are exposed in order to apply a custom G function. g = np.where( lai_toa >= 0.5, (0.05 + (0.18 * exp(-0.521 * lai))) * rn, coef1 * (ts - 273.16) + (coef2 * rn)) References ---------- .. [1] Tasumi (2003) .. [2] Allen, R., Tasumi, M., & Trezza, R. (2007). Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)-Model. Journal of Irrigation and Drainage Engineering, 133(4). https://doi.org/10.1061/(ASCE)0733-9437(2007)133:4(380) """ a = np.copy(lai).astype(np.float64) a *= -0.521 np.exp(a, out=a) a *= 0.18 a += 0.05 a *= rn b = ts - 273.16 b *= coef1 b /= rn b += coef2 b *= rn return np.where(lai >= 0.5, a, b).astype(np.float32) def g_sebal_func(ts, albedo_sur, ndvi): """Calculate ground heat flux using SEBAL approach Parameters ---------- ts : array_like Surface temperature [K]. albedo_sur : array_like Surface albedo. ndvi : array_like Normalized difference vegetation index. Returns ------- ndarray Notes ----- In [1]_, ts is listed as "radiometric surface temperature". g = (ts - 273.15) * (0.0038 + 0.0074 * albedo) * (1 - 0.98 * ndvi ** 4) References ---------- .. [1] Bastiaanssen, W. (2000). SEBAL-based sensible and latent heat fluxes in the irrigated Gediz Basin, Turkey. Journal of Hydrology, 229(1-2). https://doi.org/10.1016/S0022-1694(99)00202-4 .. [2] Allen, R., Tasumi, M., & Trezza, R. (2007). Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)-Model. Journal of Irrigation and Drainage Engineering, 133(4). https://doi.org/10.1061/(ASCE)0733-9437(2007)133:4(380) """ g = np.copy(ndvi).astype(np.float64) np.power(g, 4, out=g) g *= -0.98 g += 1 g *= ts g *= (albedo_sur * 0.0074 + 0.0038) return g def zom_func(lai, landuse, zom_remap): """Generate Zom (roughness) values based on the landuse type Parameters ---------- lai : ndarray Leaf area index. landuse : ndarray Landuse. zom_remap : dict Mapping of landuse types to zom values in JSON format with key/value both string type (i.e. "11" : "0.005"). Returns ------- ndarray References ---------- .. [1] Allen, R., Tasumi, M., & Trezza, R. (2007). Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)-Model. Journal of Irrigation and Drainage Engineering, 133(4). https://doi.org/10.1061/(ASCE)0733-9437(2007)133:4(380) """ zom = np.full(lai.shape, 0.005, dtype=np.float32) for lu_code in np.unique(landuse): # What should be the default zom value? # Convert the landuse array values to strings for now. try: lu_value = zom_remap[str(lu_code)] except: lu_value = 'lai' if lu_value.lower() == 'perrier': zom[landuse == lu_code] = perrier_zom_func(lai[landuse == lu_code]) elif lu_value.lower() == 'lai': zom[landuse == lu_code] = np.maximum( lai[landuse == lu_code] * 0.018, 0.005) else: zom[landuse == lu_code] = float(lu_value) zom[np.isnan(lai)] = np.nan return zom def perrier_zom_func(lai): """Perrier Zom Parameters ---------- lai : ndarray Leaf area index. Returns ------- ndarray Notes ----- Minimum zom is 0.005 m equal to bare soil. Dec 28 09, JK The use of the function is applicable for tall vegetation (forests). The canopy distribution coefficient, a, is assumed to be a=0.6, i.e. slightly top heavy canopy. The vegetation height is estimated as h=2.5LAI (LAImax=6 -> 2.5*6=15 m), compared to h=0.15LAI for agriculture crops. References ---------- .. [1] Perrier, A. (1982). Land surface processes: Vegetation. In Land Surface Processes in Atmospheric General Circulation Models; Eagelson, P.S., Ed.; Cambridge University Press: Cambridge, UK; pp. 395-448. .. [2] Allen, R., Irmak, A., Trezza, R., Hendrickx, J., Bastiaanssen, W., & Kjaersgaard, J. (2011). Satellite-based ET estimation in agriculture using SEBAL and METRIC. Hydrologic Processes, 25, 4011-4027. https://doi.org/10.1002/hyp.8408 .. [3] Santos (2012) """ perrier = -1.2 * lai perrier /= 2. np.exp(perrier, out=perrier) perrier = ((1 - perrier) * perrier) * (2.5 * lai) return np.maximum(perrier, 0.005, dtype=np.float32) # The following equations are float specific, separate from equations below. # This is indicated by having "calibration" in the function name. def le_calibration_func(etr, kc, ts): """Latent heat flux at the calibration points Parameters ---------- etr : scalar or array_like kc : scalar or array_like ts : scalar or array_like Surface temperature [K]. Returns ------- scalar or array_like Notes ----- 1000000 / 3600 in [1] was simplified to 2500 / 9 References ---------- .. [1] Allen, R., Tasumi, M., & Trezza, R. (2007). Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)-Model. Journal of Irrigation and Drainage Engineering, 133(4). https://doi.org/10.1061/(ASCE)0733-9437(2007)133:4(380) """ return etr * kc * (2.501 - 2.361E-3 * (ts - 273)) * 2500 / 9 def dt_calibration_func(h, rah, density): """ Parameters ---------- h : scalar or array_like Sensible heat flux [W m-3]. rah : scalar or array_like Aerodynamic resistance to heat transport [s m-1]. density : scalar or array_like Air density [kg m-3]. Returns ------- scalar or array_like Notes ----- The 1004.0 term is the specific heat capacity of air [J kg-1 K-1]. References ---------- .. [1] Allen, R., Tasumi, M., & Trezza, R. (2007). Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)-Model. Journal of Irrigation and Drainage Engineering, 133(4). https://doi.org/10.1061/(ASCE)0733-9437(2007)133:4(380) """ return (h * rah) / (density * 1004.) def l_calibration_func(h, air_density, u_star, ts): """ Parameters ---------- h : scalar or array_like Sensible heat flux [W m-3]. air_density : scalar or array_like Air density [kg m-3]. u_star : scalar or array_like Friction velocity [m s-1]. ts : scalar or array_like Surface temperature [K]. Returns ------- scalar or array_like Notes ----- Return -1000 if h is zero to avoid dividing by zero. References ---------- .. [1] Allen, R., Tasumi, M., & Trezza, R. (2007). Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)-Model. Journal of Irrigation and Drainage Engineering, 133(4). https://doi.org/10.1061/(ASCE)0733-9437(2007)133:4(380) """ return np.where( h != 0, ((-1004. * air_density * (u_star ** 3.0) * ts) / (0.41 * 9.81 * h)), -1000) def h_func(air_density, dt, rah): """Sensible Heat Flux [W/m^2] Parameters ---------- air_density : array_like Air density [kg m-3]. dt : array_like Near surface temperature difference [K]. rah : array_like Aerodynamic resistance to heat transport [s m-1]. Returns ------- ndarray Notes ----- h = air_density * 1004 * dt / rah References ---------- .. [1] Allen, R., Tasumi, M., & Trezza, R. (2007). Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)-Model. Journal of Irrigation and Drainage Engineering, 133(4). https://doi.org/10.1061/(ASCE)0733-9437(2007)133:4(380) """ h = np.array(air_density, copy=True, ndmin=1) h *= 1004. h *= dt h /= rah return h def u_star_func(u3, z3, zom, psi_z3, wind_coef=1): """ Parameters ---------- u3 : array_like z3 : array_like zom : array_like psi_z3 : array_like wind_coef : float, optional (the default is 1). Returns ------- u_star : ndarray Friction velocity [m s-1]. Notes ----- u_star = (u3 * wind_coef * 0.41) / (log(z3 / zom) - psi_z3) References ---------- .. [1] Allen, R., Tasumi, M., & Trezza, R. (2007). Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)-Model. Journal of Irrigation and Drainage Engineering, 133(4). https://doi.org/10.1061/(ASCE)0733-9437(2007)133:4(380) """ u_star = np.array(zom, copy=True, ndmin=1) np.reciprocal(u_star, out=u_star) u_star *= z3 oldsettings = np.geterr() np.seterr(invalid='ignore') np.log(u_star, out=u_star) np.seterr(invalid=oldsettings['invalid']) u_star -= psi_z3 np.reciprocal(u_star, out=u_star) u_star *= (u3 * wind_coef * 0.41) return u_star def rah_func(z_flt_dict, psi_z2, psi_z1, u_star): """ Parameters ---------- z_flt_dict : dict psi_z2 : array_like psi_z1 : array_like u_star : array_like Friction velocity [m s-1]. Returns ------- rah : ndarray Aerodynamic resistance to heat transport [s m-1]. Notes ----- rah = ((log(z2 / z1) - psi_z2 + psi_z1) / (0.41 * u_star)) References ---------- .. [1] Allen, R., Tasumi, M., & Trezza, R. (2007). Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)-Model. Journal of Irrigation and Drainage Engineering, 133(4). https://doi.org/10.1061/(ASCE)0733-9437(2007)133:4(380) """ rah = np.array(psi_z1, copy=True, ndmin=1) rah -= psi_z2 rah += math.log(z_flt_dict[2] / z_flt_dict[1]) rah /= 0.41 rah /= u_star return rah def density_func(elev, ts, dt): """ Parameters ---------- elev : array_like Elevation [m]. ts : array_like Surface temperature [K]. dt : array_like Near surface temperature difference [K]. Returns ------- air_density : ndarray Air density [kg m-3]. Notes ----- den = (1000. * 101.3 * (((293.15 - 0.0065 * elev) / 293.15) ** 5.26) / (1.01 * (ts - dt) * 287)) References ---------- .. [1] Allen, R., Tasumi, M., & Trezza, R. (2007). Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)-Model. Journal of Irrigation and Drainage Engineering, 133(4). https://doi.org/10.1061/(ASCE)0733-9437(2007)133:4(380) """ air_density = np.array(elev, copy=True, ndmin=1).astype(np.float64) air_density *= -0.0065 air_density += 293.15 air_density /= 293.15 np.power(air_density, 5.26, out=air_density) air_density *= ((1000 * 101.3) / (1.01 * 287)) air_density /= (ts - dt) return air_density.astype(np.float32) def x_func(l, z): """ Parameters ---------- l : array_like z : array_like Returns ------- ndarray Notes ----- x = np.where(l < 0, power((1 - 16 * z / l), 0.25), 0) References ---------- .. [1] Allen, R., Tasumi, M., & Trezza, R. (2007). Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)-Model. Journal of Irrigation and Drainage Engineering, 133(4). https://doi.org/10.1061/(ASCE)0733-9437(2007)133:4(380) """ x = np.array(l, copy=True, ndmin=1) l_mask = (x > 0) np.reciprocal(x, out=x) x *= (-16 * z) x += 1 np.power(x, 0.25, out=x) x[l_mask] = 0 del l_mask return x def psi_func(l, z_index, z): """ Parameters ---------- l : array_like z_index : int z : array_like Returns ------- ndarray Notes ----- psi(3) = np.where( l > 0, (-5 * 2 / l), ((2 * log((1 + x) / 2)) + log((1 + (x ** 2)) / 2) - (2 * atan(x)) + (pi / 2))) psi = np.where(l > 0, (-5 * z / l), (2 * log((1 + (x ** 2)) / 2.))) References ---------- .. [1] Allen, R., Tasumi, M., & Trezza, R. (2007). Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)-Model. Journal of Irrigation and Drainage Engineering, 133(4). https://doi.org/10.1061/(ASCE)0733-9437(2007)133:4(380) """ # Begin calculation of Psi unstable x = x_func(l, z) psi = np.array(x, copy=True, ndmin=1) np.power(x, 2, out=psi) psi += 1 psi /= 2. oldsettings = np.geterr() np.seterr(invalid='ignore') np.log(psi, out=psi) np.seterr(invalid=oldsettings['invalid']) # Adjust Psi unstable calc based on height if z_index == 3: psi_temp = np.copy(x) psi_temp += 1 psi_temp /= 2. oldsettings = np.geterr() np.seterr(invalid='ignore') np.log(psi_temp, out=psi_temp) np.seterr(invalid=oldsettings['invalid']) psi_temp *= 2. psi += psi_temp del psi_temp psi_temp = np.copy(x) np.arctan(x, out=psi_temp) psi_temp *= 2. psi -= psi_temp del psi_temp psi += (0.5 * math.pi) else: psi *= 2. del x # Calculate Psi stable for all pixels psi_stable = np.array(l, copy=True, ndmin=1) np.reciprocal(psi_stable, out=psi_stable) if z_index == 3: psi_stable *= (-5 * 2) else: psi_stable *= (-5 * z) # Only keep Psi stable for pixels with l > 0 l_mask = np.array(l, copy=True, ndmin=1) > 0 psi[l_mask] = psi_stable[l_mask] return psi # return np.where((l > 0), psi_stable, psi_unstable) # The following equations are array specific and are separate from the # "calibration" functions above def dt_func(ts, a, b): """ Parameters ---------- ts : array_like Surface temperature [K]. As described in [1]_, this should be the delapsed surface temperature. a : float Calibration parameter. b : float Calibration parameter. Returns ------- ndarray Notes ----- dt = a * ts + b References ---------- .. [1] Allen, R., Tasumi, M., & Trezza, R. (2007). Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)-Model. Journal of Irrigation and Drainage Engineering, 133(4). https://doi.org/10.1061/(ASCE)0733-9437(2007)133:4(380) """ dt = np.copy(ts) dt *= a dt += b return dt def l_func(dt, u_star, ts, rah): """ Parameters ---------- dt : array_like Near surface temperature difference [K]. u_star : array_like Friction velocity [m s-1]. ts : array_like Surface temperature [K]. rah : array_like Aerodynamic resistance to heat transport [s m-1]. Returns ------- l : ndarray Notes ----- dt_mod = np.where((np.absolute(dt)==0.), -1000., dt) l = -((u_star ** 3) * ts * rah) / (0.41 * 9.81 * dt_mod) References ---------- .. [1] Allen, R., Tasumi, M., & Trezza, R. (2007). Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)-Model. Journal of Irrigation and Drainage Engineering, 133(4). https://doi.org/10.1061/(ASCE)0733-9437(2007)133:4(380) """ # Change zeros to -1000 to avoid divide by zero dt[dt == 0] = -1000 l = np.power(u_star, 3) l *= ts l *= rah l /= -(0.41 * 9.81) l /= dt return l def le_func(rn, g, h): """Latent Heat Flux [W/m^2] Parameters ---------- rn : array_like Net radiation [W m-2]. g : array_like Ground heat flux [W m-2]. h : array_like Sensible heat flux into the air [W m-2] Returns ------- ndarray Notes ----- le = rn - g - h References ---------- .. [1] Allen, R., Tasumi, M., & Trezza, R. (2007). Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)-Model. Journal of Irrigation and Drainage Engineering, 133(4). https://doi.org/10.1061/(ASCE)0733-9437(2007)133:4(380) """ le = np.copy(rn) le -= g le -= h return le def ef_func(le, rn, g): """Evaporative fraction Parameters ---------- le : array_like Latent heat flux [W m-2]. rn : array_like Net radiation [W m-2]. g : array_like Ground heat flux [W m-2]. Returns ------- ndarray Notes ----- ef = le / (rn - g) References ---------- .. [1] Bastiaanssen, W., Noordman, E., Pelgrum, H., Davids, G., Thoreson, B., Allen, R. (2005). SEBAL model with remotely sensed data to improve water-resources management under actual field conditions. Journal of Irrigation and Drainage Engineering, 131(1). https://doi.org/10.1061/(ASCE)0733-9437(2005)131:1(85) .. [2] Allen, R., Irmak, A., Trezza, R., Hendrickx, J., Bastiaanssen, W., & Kjaersgaard, J. (2011). Satellite-based ET estimation in agriculture using SEBAL and METRIC. Hydrologic Processes, 25, 4011-4027. https://doi.org/10.1002/hyp.8408 """ ef = np.copy(rn) ef -= g np.reciprocal(ef, out=ef) ef *= le return ef def heat_vaporization_func(ts): """Latent heat of vaporization [J kg-1] Parameters ---------- ts : array_like Surface temperature [K]. Returns ------- ndarray Notes ----- lambda = (2.501 - 0.00236 * (ts - 273.15)) * 1E6 References ---------- .. [1] Allen, R., Tasumi, M., & Trezza, R. (2007). Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)-Model. Journal of Irrigation and Drainage Engineering, 133(4). https://doi.org/10.1061/(ASCE)0733-9437(2007)133:4(380) """ heat_vaporization = np.copy(ts).astype(np.float64) heat_vaporization -= 273.15 heat_vaporization *= -0.00236 heat_vaporization += 2.501 heat_vaporization *= 1E6 return heat_vaporization.astype(np.float32) def et_inst_func(le, ts): """ET instantaneous [mm/hr] Parameters ---------- le : array_like Latent heat flux [W m-2]. ts : array_like Surface temperature [K]. Returns ------- ndarray Notes ----- et_inst = 3600 * le / heat_vaporization References ---------- .. [1] Allen, R., Tasumi, M., & Trezza, R. (2007). Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)-Model. Journal of Irrigation and Drainage Engineering, 133(4). https://doi.org/10.1061/(ASCE)0733-9437(2007)133:4(380) """ et_inst = np.copy(le).astype(np.float64) et_inst *= 3600 et_inst /= heat_vaporization_func(ts) return et_inst.astype(np.float32) def etrf_func(et_inst, etr): """ET Reference Fraction - ETrF Parameters ---------- et_inst : array_like ET at time of overpass [mm hr-1]. etr : array_like Reference ET at time of overpass [mm hr-1]. Returns ------- array_like References ---------- .. [1] Allen, R., Tasumi, M., & Trezza, R. (2007). Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)-Model. Journal of Irrigation and Drainage Engineering, 133(4). https://doi.org/10.1061/(ASCE)0733-9437(2007)133:4(380) """ return et_inst / etr def et_24_func(etr_24hr, etrf): """ET 24hr [mm/day] Parameters ---------- etr_24hr : array_like Daily reference ET [mm]. etrf : array_like Fraction of reference ET (ETrF). Returns ------- array_like References ---------- .. [1] Allen, R., Tasumi, M., & Trezza, R. (2007). Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)-Model. Journal of Irrigation and Drainage Engineering, 133(4). https://doi.org/10.1061/(ASCE)0733-9437(2007)133:4(380) """ return etr_24hr * etrf
from PyQt5 import QtCore, QtGui, QtWidgets class InstaLog(object): def setupUi(self, MainWindow): MainWindow.setObjectName("MainWindow") MainWindow.resize(960, 540) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Fixed, QtWidgets.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(MainWindow.sizePolicy().hasHeightForWidth()) MainWindow.setSizePolicy(sizePolicy) MainWindow.setMinimumSize(QtCore.QSize(960, 540)) MainWindow.setMaximumSize(QtCore.QSize(960, 540)) icon = QtGui.QIcon() icon.addPixmap(QtGui.QPixmap("script/gui/img/logo1.jpg"), QtGui.QIcon.Normal, QtGui.QIcon.Off) MainWindow.setWindowIcon(icon) MainWindow.setStyleSheet("background-color: rgb(245, 245, 245);") self.centralwidget = QtWidgets.QWidget(MainWindow) self.centralwidget.setObjectName("centralwidget") self.label_2 = QtWidgets.QLabel(self.centralwidget) self.label_2.setGeometry(QtCore.QRect(320, 80, 300, 120)) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Fixed, QtWidgets.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.label_2.sizePolicy().hasHeightForWidth()) self.label_2.setSizePolicy(sizePolicy) self.label_2.setMinimumSize(QtCore.QSize(200, 120)) self.label_2.setMaximumSize(QtCore.QSize(300, 300)) self.label_2.setStyleSheet("image:url(script/gui/img/instagram letter icon1.png);") self.label_2.setText("") self.label_2.setScaledContents(True) self.label_2.setAlignment(QtCore.Qt.AlignCenter) self.label_2.setObjectName("label_2") self.textEdit_3 = QtWidgets.QLineEdit(self.centralwidget) self.textEdit_3.setGeometry(QtCore.QRect(280, 205, 400, 40)) self.textEdit_3.setMinimumSize(QtCore.QSize(400, 40)) self.textEdit_3.setMaximumSize(QtCore.QSize(400, 40)) self.textEdit_3.setStyleSheet(" border-radius: 10px;\n" "\n" "background-color: rgb(234, 234, 234);") self.textEdit_3.setObjectName("textEdit_3") self.textEdit_4 = QtWidgets.QLineEdit(self.centralwidget) self.textEdit_4.setGeometry(QtCore.QRect(280, 270, 400, 40)) self.textEdit_4.setMinimumSize(QtCore.QSize(400, 40)) self.textEdit_4.setMaximumSize(QtCore.QSize(400, 40)) self.textEdit_4.setEchoMode(QtWidgets.QLineEdit.Password) self.textEdit_4.setStyleSheet("\n" "border-radius: 10px;\n" "background-color: rgb(234, 234, 234);") self.textEdit_4.setObjectName("textEdit_4") self.pushButton = QtWidgets.QPushButton(self.centralwidget) self.pushButton.setGeometry(QtCore.QRect(350, 330, 251, 41)) font = QtGui.QFont() font.setPointSize(9) font.setBold(True) font.setWeight(75) self.pushButton.setFont(font) self.pushButton.setStyleSheet("background-color: rgb(16, 140, 255);\n" "color: rgb(255, 255, 255);\n" "border-radius: 10px;") self.pushButton.setAutoDefault(False) self.pushButton.setDefault(False) self.pushButton.setFlat(False) self.pushButton.setObjectName("pushButton") MainWindow.setCentralWidget(self.centralwidget) self.retranslateUi(MainWindow) QtCore.QMetaObject.connectSlotsByName(MainWindow) def retranslateUi(self, MainWindow): _translate = QtCore.QCoreApplication.translate MainWindow.setWindowTitle(_translate("MainWindow", "Albie")) self.textEdit_3.setPlaceholderText(_translate("MainWindow", "Username")) self.textEdit_4.setPlaceholderText(_translate("MainWindow", "Password")) self.pushButton.setText(_translate("MainWindow", "Log in")) if __name__ == "__main__": import sys import os app = QtWidgets.QApplication(sys.argv) MainWindow = QtWidgets.QMainWindow() ui = InstaLog() ui.setupUi(MainWindow) MainWindow.show() sys.exit(app.exec_())
# -*- coding: utf-8 -*- # Generated by Django 1.9.7 on 2016-07-18 14:12 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('numbas_lti', '0015_attempt_deleted'), ] operations = [ migrations.AddField( model_name='resource', name='report_incomplete_marks', field=models.BooleanField(default=True, verbose_name='Count scores for incomplete attempts?'), ), migrations.AlterField( model_name='resource', name='include_incomplete_attempts', field=models.BooleanField(default=True, verbose_name='Include incomplete attempts in grading?'), ), migrations.AlterField( model_name='resource', name='show_incomplete_marks', field=models.BooleanField(default=True, verbose_name='Show score of in-progress attempts to students?'), ), ]
#!/usr/bin/env python import serial import signal import sys import time import re import config as cfg import os # Pretty print for debug messages from debug_message import DebugMessage dm = DebugMessage(enable_logging=True) is_running = True def signal_handler(*args): dm.print_warning("SIGINT detected, closing...") global is_running is_running = False sys.exit(0) signal.signal(signal.SIGINT, signal_handler) def make_data_folder(base_path): # Make a new dir to store data. base_path = os.path.expanduser(base_path) session_dir_name = time.strftime('%Y_%m_%d__%H_%M_%S_%p') session_full_path = os.path.join(base_path, session_dir_name) logging_path = session_full_path + "_imu.log" dm.init_logging(logging_path) if not os.path.exists(session_full_path): os.makedirs(session_full_path) return session_full_path # Helper for rate limiting def rate_limit(start, rate=0.5): end = time.time() delta = end - start sleep_for = rate - delta if sleep_for > delta: time.sleep(sleep_for) def setup_serial_ports(): port_in = serial.Serial(port=cfg.port_in, baudrate= cfg.port_in_baud, timeout=0.0) port_out = serial.Serial(port=cfg.port_out, baudrate= cfg.port_out_baud, timeout=0.0) imu_port = serial.Serial(port=cfg.imu_port, baudrate=cfg.imu_baud, timeout=0.0) port_in.flush() port_out.flush() imu_port.flush() dm.print_info("Serial port ready") return port_in, port_out, imu_port def send_vehicle_commands(old_steering, old_throttle, steering, throttle, port): """ Sends steering and throttle to the kart Steering: Full CC - CW (180 - 0) Throttle: Dead - Full - Brake (92 - 180 - <90) """ # dm.print_info("S: {} T: {}".format(steering, throttle)) # Steering if old_steering != steering: steering_out = ('S%d\n' % int(steering)).encode('ascii') port.write(steering_out) # Clamp throttle if old_throttle != throttle: if 88 <= throttle <= 92: throttle = 90 else: throttle = min(throttle, 110) throttle_out = ('D%d\n' % int(throttle)).encode('ascii') port.write(throttle_out) port.flush() buffer_in ='' buffer_out = '' button_arduino_in = 0 button_arduino_out = 0 odometer_ticks=0 # def process_input(port_in, port_out): # """Reads steering, throttle, aux1 and button data reported from the arduinos. # Returns: (steering, throttle, button_arduino_in, button_arduino_out) # Return values may be None if the data from the arduino isn't related to the # steering or throttle. # """ # # Input is buffered because sometimes partial lines are read # global button_arduino_in, button_arduino_out, buffer_in, buffer_out, odometer_ticks, milliseconds # try: # buffer_in += port_in.read(port_in.in_waiting).decode('ascii') # buffer_out += port_out.read(port_out.in_waiting).decode('ascii') # except UnicodeDecodeError: # # We can rarely get bad data over the serial port. The error looks like this: # # buffer_in += port_in.read(port_in.in_waiting).decode('ascii') # # UnicodeDecodeError: 'ascii' codec can't decode byte 0xf0 in position 0: ordinal not in range(128) # buffer_in = '' # buffer_out = '' # dm.print_warning("Mysterious serial port error. Let's pretend it didn't happen. :)") # # Init steering, throttle and aux1. # steering, throttle, aux1 = None, None, None # # Read lines from input Arduino # while '\n' in buffer_in: # line, buffer_in = buffer_in.split('\n', 1) # match = re.search(r'(\d+) (\d+) (\d+)', line) # if match: # steering = int(match.group(1)) # throttle = int(match.group(2)) # aux1 = int(match.group(3)) # if line[0:1] == 'S': # # This is just a toggle button # button_arduino_in = 1 - button_arduino_in # # Read lines from output Arduino # while '\n' in buffer_out: # line, buffer_out = buffer_out.split('\n', 1) # if line[0:3] == 'Mil': # sp = line.split('\t') # milliseconds = int(sp[1]) # odometer_ticks += 1 # if line[0:6] == 'Button': # sp = line.split('\t') # button_arduino_out = int(sp[1]) # return steering, throttle, aux1, button_arduino_in, button_arduino_out def process_input(port_in, port_out): """Reads steering, throttle, aux1 and button data reported from the arduinos. Returns: (steering, throttle, button_arduino_in, button_arduino_out) Return values may be None if the data from the arduino isn't related to the steering or throttle. """ # Input is buffered because sometimes partial lines are read global button_arduino_in, button_arduino_out, buffer_in, buffer_out, odometer_ticks, milliseconds try: buffer_in += port_in.read(port_in.in_waiting).decode('ascii') buffer_out += port_out.read(port_out.in_waiting).decode('ascii') except UnicodeDecodeError: # We can rarely get bad data over the serial port. The error looks like this: # buffer_in += port_in.read(port_in.in_waiting).decode('ascii') # UnicodeDecodeError: 'ascii' codec can't decode byte 0xf0 in position 0: ordinal not in range(128) buffer_in = '' buffer_out = '' print("Mysterious serial port error. Let's pretend it didn't happen. :)") # Init steering, throttle and aux1. steering, throttle, aux1 = None, None, None telemetry = None # Read lines from input Arduino while '\n' in buffer_in: line, buffer_in = buffer_in.split('\n', 1) match = re.search(r'(\d+) (\d+) (\d+)', line) if match: steering = int(match.group(1)) throttle = int(match.group(2)) aux1 = int(match.group(3)) if line[0:1] == 'S': # This is just a toggle button button_arduino_in = 1 - button_arduino_in print "ButtonAIn toggle" # Read lines from output Arduino while '\n' in buffer_out: line, buffer_out = buffer_out.split('\n', 1) if line[0:3] == 'Mil': sp = line.split('\t') milliseconds = int(sp[1]) odometer_ticks += 1 if line[0:6] == 'Button': sp = line.split('\t') button_arduino_out = int(sp[1]) return steering, throttle, aux1, button_arduino_in, button_arduino_out imu_stream = '' def process_imu(imu_port): global imu_stream try: imu_stream += imu_port.read(imu_port.in_waiting).decode('ascii') except UnicodeDecodeError: imu_stream = '' print("Imu stream read error") telemetry = None while '\n' in imu_stream: line, imu_stream = imu_stream.split('\n', 1) if line[0:3] == 'IMU': # quat.xyzw, gyro.xyz, acc.xyz # IMU -0.0233 -0.0109 -0.0178 0.9995 0.0000 0.0000 0.0000 0.0400 -0.0400 0.1900 sp = line.split(' ') try: quat = [float(sp[1]), float(sp[2]), float(sp[3]), float(sp[4])] except: quat = [0.0, 0.0, 0.0, 0.0] try: gyro = [float(sp[5]), float(sp[6]), float(sp[7])] except: gyro = [0.0, 0.0, 0.0] try: accel = [float(sp[8]), float(sp[9]), float(sp[10])] except: accel = [0.0, 0.0, 0.0] telemetry = quat + gyro + accel return telemetry def main(): make_data_folder("./data") dm.print_info("Starting carputer passthrough") dm.print_info("Setting up serial ports") port_in, port_out, imu_port = setup_serial_ports() # Init values steering = 0 steering_old = 0 throttle = 0 throttle_old = 0 aux = 0 aux_old = 1000 telemetry = ["0", "1", "2"] global is_running while is_running: start = time.time() # Get the commanded input from the arduino new_steering, new_throttle, new_aux, b1, b2 = process_input(port_in, port_out) telemetry = process_imu(imu_port) # Check for valid input if new_steering != None: steering = new_steering if new_throttle != None: throttle = new_throttle if new_aux != None: aux = new_aux if telemetry != None: frames = [str(122).zfill(5)] telemetry = frames + telemetry dm.log_data(telemetry) # dm.print_debug("S: {}, T: {}, aux: {}".format(steering, throttle, aux)) # Simple passthrough send_vehicle_commands(steering_old, throttle_old, steering, throttle, port_out) # Update the values aux_old = aux steering_old = steering throttle_old = throttle # Rate limit so we aren't destroying the CPU rate_limit(start, 0.001) if __name__ == "__main__": main()
import os import random import string from configparser import ConfigParser import netifaces from scale.logger import create_logger from scale.network.node import Node class VPNManager: def __init__(self, config): self.logger = create_logger('VPN') self.config = config self.nodes: list[Node] = [] self.iface = self.config.network['interface'] pass # Read the interfaces from the host def get_interfaces(self): return netifaces.interfaces() def bootstrap(self): # Check if the VPN is running if (len(self.config.network['passKey']) == 0): self.logger.info('No passkey found. Preparing one') self.config.network['passKey'] = self.generate_pass_key(32) self.config.save() if (len(self.config.network['publicKey']) < 1 or len(self.config.network['privateKey']) < 1): self.logger.info('No keys found. Generating...') self.generate_keys() self.generate_wg_config() self.logger.info('Bootstrapped VPN...') def check_if_wg_running(self): return self.get_interfaces().__contains__(self.iface) def generate_wg_config(self) -> None: config_path = os.path.join( '/etc/wireguard', '{}.conf'.format(self.iface)) self.logger.info('Generating WG config [{}]'.format(config_path)) with open(config_path, 'w') as f: iconfig = ConfigParser() iconfig.optionxform = str iconfig.add_section('Interface') iconfig.set('Interface', 'PrivateKey', self.config.network['privateKey']) iconfig.set('Interface', 'Address ', '10.0.1.1/24') iconfig.set('Interface', 'ListenPort ', str( self.config.network['discoveryPort'] - 1)) for node in self.nodes: iconfig.add_section('Interface') iconfig.set('Interface', 'PublicKey', node.public_key) # TODO: Add support for multiple interfaces~ for iface in node.interfaces: if iface.name == self.iface: iconfig.set('Interface', 'Address', iface.ip) iconfig.write(f) pass def generate_pass_key(self, length): return ''.join(random.choice(string.ascii_letters) for _ in range(length)) def generate_keys(self): privateKey = os.popen('wg genkey').read().replace('\n', '') publicKey = os.popen('echo {} | wg pubkey'.format( privateKey)).read().replace('\n', '') self.config.network['privateKey'] = privateKey self.config.network['publicKey'] = publicKey self.logger.info('Private key: {}'.format(privateKey)) self.logger.info('Public key: {}'.format(publicKey)) self.config.save() pass def connect(self): # Restart with the new config if self.check_if_wg_running(): self.stop() self.generate_wg_config() exit_code = os.system('wg-quick up {}'.format(self.iface)) if (exit_code == 0): self.logger.info('WireGuard started') else: self.logger.fatal('WireGuard failed to start') def stop(self): exit_code = os.system( 'wg-quick down {}'.format(self.iface)) if (exit_code == 0): self.logger.info('WireGuard stopped') else: self.logger.fatal('WireGuard failed to stop')
import re import htmlgenerator as hg from django import forms from django.contrib.auth.decorators import user_passes_test from django.utils.translation import gettext_lazy as _ from django_celery_results.models import TaskResult from bread import layout from bread.layout import admin from bread.layout.components.datatable import DataTableColumn from bread.utils.urls import aslayout from bread.views import BrowseView R = layout.grid.Row C = layout.grid.Col F = layout.forms.FormField TR = layout.datatable.DataTable.row TD = layout.datatable.DataTableColumn @user_passes_test(lambda user: user.is_superuser) @aslayout def maintenancesettings(request): # Add the view's header ret = layout.grid.Grid(R(C(hg.H3(_("Maintenance")))), gutter=False) # Add the Package Information modal ret.append( R( C( hg.H4(_("Packages")), admin.maintainance_package_layout(request), ), C( hg.H4(_("Optimize database")), admin.maintenance_database_optimization(request), hg.H4(_("Rebuild search index"), _style="margin-top: 3rem;"), admin.maintenance_search_reindex(request), ), ) ) return ret @aslayout def widgetpreview(request): class ConfigForm(forms.Form): with_label = forms.BooleanField(required=False) with_helptext = forms.BooleanField(required=False) with_errors = forms.BooleanField(required=False) disabled = forms.BooleanField(required=False) CHOICES = ( ("choice1", "Choice 1"), ("choice2", "Choice 2"), ("choice3", "Choice 3"), ("choice4", "Choice 4"), ) widgets = { forms.TextInput: (forms.CharField, {"widget": forms.TextInput}), forms.NumberInput: (forms.DecimalField, {"widget": forms.NumberInput}), forms.EmailInput: (forms.EmailField, {"widget": forms.EmailInput}), forms.URLInput: (forms.URLField, {"widget": forms.URLInput}), forms.PasswordInput: (forms.CharField, {"widget": forms.PasswordInput}), forms.HiddenInput: (forms.CharField, {"widget": forms.HiddenInput}), forms.DateInput: (forms.DateField, {"widget": forms.DateInput}), forms.DateTimeInput: (forms.DateTimeField, {"widget": forms.DateTimeInput}), forms.TimeInput: (forms.TimeField, {"widget": forms.TimeInput}), forms.Textarea: (forms.CharField, {"widget": forms.Textarea}), forms.CheckboxInput: (forms.BooleanField, {"widget": forms.CheckboxInput}), forms.Select: (forms.ChoiceField, {"widget": forms.Select, "choices": CHOICES}), forms.NullBooleanSelect: ( forms.NullBooleanField, {"widget": forms.NullBooleanSelect}, ), forms.SelectMultiple: ( forms.MultipleChoiceField, {"widget": forms.SelectMultiple, "choices": CHOICES}, ), forms.RadioSelect: ( forms.ChoiceField, {"widget": forms.RadioSelect, "choices": CHOICES}, ), forms.CheckboxSelectMultiple: ( forms.ChoiceField, {"widget": forms.CheckboxSelectMultiple, "choices": CHOICES}, ), forms.FileInput: (forms.FileField, {"widget": forms.FileInput}), forms.ClearableFileInput: ( forms.FileField, {"widget": forms.ClearableFileInput}, ), } HELPTEXT = "This is a piece of helptext, maximized for helpfulness" ERRORS = [ "This is an example of an error", "This is a second errors, but actually none of them are real errors, so do not worry", ] def nicefieldname(cls): return re.sub(r"(?<!^)(?=[A-Z])", "_", cls.__name__) configform = ConfigForm(request.GET) if not configform.is_valid() or not request.GET: config = configform.initial config = configform.cleaned_data Form = type( "Form", (forms.Form,), { nicefieldname(widget): field[0]( **field[1], **({"help_text": HELPTEXT} if config["with_helptext"] else {}), disabled=config["disabled"] ) for widget, field in widgets.items() }, ) return hg.BaseElement( hg.H3(_("Widget preview")), layout.grid.Grid( layout.grid.Row( layout.grid.Col( hg.H4(_("Widgets")), layout.forms.Form( Form(), *[ F( nicefieldname(w), no_label=not config["with_label"], errors=ERRORS if config["with_errors"] else None, ) for w in widgets.keys() ] ), ), layout.grid.Col( hg.H4(_("Configure preview")), layout.forms.Form( configform, F("with_label"), F("with_helptext"), F("with_errors"), F("disabled"), layout.forms.helpers.Submit(_("Apply")), method="GET", ), ), ) ), ) class TaskResultBrowseView(BrowseView): columns = [ DataTableColumn( layout.ObjectFieldLabel("task_id", TaskResult), hg.DIV( hg.C("row.task_id"), ), "task_id", ), DataTableColumn( layout.ObjectFieldLabel("task_name", TaskResult), hg.DIV( hg.C("row.task_name"), ), "task_name", ), DataTableColumn( _("Date Created"), hg.DIV( hg.C("row.date_created"), ), "date_created", ), DataTableColumn( _("Date Completed"), hg.DIV( hg.C("row.date_done"), ), "date_done", ), "status", "worker", "content_type", DataTableColumn( _("Metadata"), hg.DIV( hg.C("row.meta"), ), ), ] rowclickaction = BrowseView.gen_rowclickaction("read") title = "Background Jobs"
# IMPORTATION STANDARD from datetime import datetime # IMPORTATION THIRDPARTY import pytest # IMPORTATION INTERNAL from openbb_terminal.stocks.screener import yahoofinance_view @pytest.fixture(scope="module") def vcr_config(): return { "filter_headers": [("User-Agent", None)], "filter_query_parameters": [ ("period1", "1598220000"), ("period2", "1635980400"), ], } @pytest.mark.vcr @pytest.mark.record_stdout def test_historical(mocker): # FORCE SINGLE THREADING yf_download = yahoofinance_view.yf.download def mock_yf_download(*args, **kwargs): kwargs["threads"] = False return yf_download(*args, **kwargs) mocker.patch( "openbb_terminal.stocks.screener.yahoofinance_view.yf.download", side_effect=mock_yf_download, ) # MOCK VISUALIZE_OUTPUT mocker.patch(target="openbb_terminal.helper_classes.TerminalStyle.visualize_output") # MOCK EXPORT_DATA mocker.patch( target="openbb_terminal.stocks.screener.finviz_view.export_data", ) # MOCK PROGRESS_BAR mocker.patch( target="finvizfinance.screener.overview.progress_bar", ) # MOCK EXPORT_DATA mocker.patch( target="random.shuffle", ) yahoofinance_view.historical( preset_loaded="top_gainers", limit=2, start=datetime.strptime("2022-01-03", "%Y-%m-%d"), type_candle="a", normalize=True, export="", ) @pytest.mark.vcr @pytest.mark.record_stdout def test_historical_no_d_signals(mocker): # FORCE SINGLE THREADING yf_download = yahoofinance_view.yf.download def mock_yf_download(*args, **kwargs): kwargs["threads"] = False return yf_download(*args, **kwargs) mocker.patch( "openbb_terminal.stocks.screener.yahoofinance_view.yf.download", side_effect=mock_yf_download, ) # MOCK VISUALIZE_OUTPUT mocker.patch(target="openbb_terminal.helper_classes.TerminalStyle.visualize_output") # MOCK EXPORT_DATA mocker.patch( target="openbb_terminal.stocks.screener.finviz_view.export_data", ) # MOCK PROGRESS_BAR mocker.patch( target="finvizfinance.screener.overview.progress_bar", ) # MOCK EXPORT_DATA mocker.patch( target="random.shuffle", ) # MOCK D_SIGNALS mocker.patch.object( target=yahoofinance_view.finviz_model, attribute="d_signals", new=[], ) yahoofinance_view.historical( preset_loaded="oversold", limit=2, start=datetime.strptime("2022-01-03", "%Y-%m-%d"), type_candle="a", normalize=True, export="", )
#!/usr/bin/env python from setuptools import setup setup( entry_points=""" [nose.plugins] pylons = pylons.test:PylonsPlugin """ )
from ..utils import Object class AuthenticationCodeTypeSms(Object): """ An authentication code is delivered via an SMS message to the specified phone number Attributes: ID (:obj:`str`): ``AuthenticationCodeTypeSms`` Args: length (:obj:`int`): Length of the code Returns: AuthenticationCodeType Raises: :class:`telegram.Error` """ ID = "authenticationCodeTypeSms" def __init__(self, length, **kwargs): self.length = length # int @staticmethod def read(q: dict, *args) -> "AuthenticationCodeTypeSms": length = q.get('length') return AuthenticationCodeTypeSms(length)
class StoreRequest(object): def __init__(self): self.op = None self.records = None self.filename = None def getOp(self): return self.op def setOp(self, op): self.op = op def getRecords(self): return self.records def setRecords(self, records): self.records = records def getFilename(self): return self.filename def setFilename(self, filename): self.filename = filename
from .. import db import datetime class AttemptsModel(db.Model): """ [summary] Args: AttemptsMixin ([type]): [description] db ([type]): [description] """ __tablename__ = 'attempts' id = db.Column(db.Integer, primary_key=True) max_score = db.Column(db.Integer, nullable=False) created_at = db.Column(db.DateTime(timezone=True), nullable=False, default=datetime.datetime.now()) contest_id = db.Column(db.Integer, nullable=False) challenge_id = db.Column(db.Integer, nullable=True) user_id = db.Column(db.Integer, db.ForeignKey( 'users.id'), nullable=False) submission_id = db.Column(db.Integer, db.ForeignKey( 'submissions.id'), nullable=False)
#!/usr/bin/env python """ _SiblingSubscriptionsComplete_ MySQL implementation of Subscription.SiblingSubscriptionsComplete """ from WMCore.Database.DBFormatter import DBFormatter class SiblingSubscriptionsComplete(DBFormatter): """ For each file in the input fileset count the number of subscriptions (on the same input fileset) that have completed the file. If the number of subscriptions that have completed the file is the same as the number of subscriptions that processed the file (not counting this subscription) we can say that processing of the file is complete and we can perform some other action on it (usually deletion). """ sql = """SELECT wmbs_file_details.id, wmbs_file_details.events, wmbs_file_details.lfn, wmbs_pnns.pnn FROM ( SELECT wmbs_sub_files_available.fileid FROM wmbs_sub_files_available INNER JOIN wmbs_subscription ON wmbs_subscription.id = wmbs_sub_files_available.subscription LEFT OUTER JOIN wmbs_subscription sibling_subscription ON sibling_subscription.fileset = wmbs_subscription.fileset AND sibling_subscription.id != wmbs_subscription.id LEFT OUTER JOIN wmbs_sub_files_complete ON wmbs_sub_files_complete.fileid = wmbs_sub_files_available.fileid AND wmbs_sub_files_complete.subscription = sibling_subscription.id WHERE wmbs_sub_files_available.subscription = :subscription GROUP BY wmbs_sub_files_available.fileid HAVING COUNT(sibling_subscription.id) = COUNT(wmbs_sub_files_complete.fileid) ) available_files INNER JOIN wmbs_file_details ON wmbs_file_details.id = available_files.fileid INNER JOIN wmbs_file_location ON wmbs_file_location.fileid = available_files.fileid INNER JOIN wmbs_pnns ON wmbs_file_location.pnn = wmbs_pnns.id """ def execute(self, subscription, conn=None, transaction=False): results = self.dbi.processData(self.sql, {'subscription': subscription}, conn=conn, transaction=transaction) return self.formatDict(results)
import pytest from lstchain.io import EventSelector, DL3FixedCuts, DataBinning import numpy as np import pandas as pd from astropy.table import QTable import astropy.units as u def test_event_selection(): evt_fil = EventSelector() data_t = QTable( { "a": u.Quantity([1, 2, 3], unit=u.kg), "b": u.Quantity([np.nan, 2.2, 3.2], unit=u.m), "c": u.Quantity([1, 3, np.inf], unit=u.s), } ) evt_fil.filters = dict(a=[0, 2.5], b=[0, 3], c=[0, 4]) evt_fil.finite_params = ["b"] data_t = evt_fil.filter_cut(data_t) data_t_df = evt_fil.filter_cut(data_t.to_pandas()) np.testing.assert_array_equal( data_t_df, pd.DataFrame({"a": [2], "b": [2.2], "c": [3]}) ) np.testing.assert_array_equal( data_t, QTable( { "a": u.Quantity([2], unit=u.kg), "b": u.Quantity([2.2], unit=u.m), "c": u.Quantity([3], unit=u.s), } ), ) def test_dl3_fixed_cuts(): temp_cuts = DL3FixedCuts() temp_cuts.fixed_gh_cut = 0.7 temp_cuts.fixed_theta_cut = 0.2 temp_cuts.allowed_tels = [1, 2] temp_data = QTable({ "gh_score": u.Quantity(np.arange(0.1, 1.1, 0.1)), "theta": u.Quantity(np.arange(0., 1., 0.1), unit=u.deg), "tel_id": u.Quantity([1, 1, 2, 2, 1, 2, 1, 3, 4, 5]) }) assert len(temp_cuts.gh_cut(temp_data)) == 4 assert len(temp_cuts.theta_cut(temp_data)) == 2 assert len(temp_cuts.allowed_tels_filter(temp_data)) == 7 def test_data_binning(): tempbin = DataBinning() tempbin.true_energy_min = 0.01 tempbin.true_energy_max = 100 tempbin.true_energy_n_bins_per_decade = 5.5 tempbin.reco_energy_min = 0.01 tempbin.reco_energy_max = 100 tempbin.reco_energy_n_bins_per_decade = 5.5 tempbin.energy_migration_min = 0.2 tempbin.energy_migration_max = 5 tempbin.energy_migration_n_bins = 15 tempbin.fov_offset_min = 0.1 tempbin.fov_offset_max = 1.1 tempbin.fov_offset_n_edges = 9 tempbin.bkg_fov_offset_min = 0 tempbin.bkg_fov_offset_max = 10 tempbin.bkg_fov_offset_n_edges = 11 tempbin.source_offset_min = 0 tempbin.source_offset_max = 1.0001 tempbin.source_offset_n_edges = 1001 e_true = tempbin.true_energy_bins() e_reco = tempbin.reco_energy_bins() e_migra = tempbin.energy_migration_bins() fov_off = tempbin.fov_offset_bins() bkg_fov = tempbin.bkg_fov_offset_bins() src_off = tempbin.source_offset_bins() assert len(e_true) == 22 assert len(e_reco) == 22 assert len(e_migra) == 15 assert len(fov_off) == 9 assert len(bkg_fov) == 11 assert len(src_off) == 1001
import numpy as np from random import random from math import log, ceil from time import time, ctime class Hyperband: def __init__(self, data, get_params_function, try_params_function, max_iter=81): self.data = data self.get_params = get_params_function self.try_params = try_params_function self.max_iter = max_iter # maximum iterations per configuration self.eta = 3 # defines configuration downsampling rate (default = 3) self.logeta = lambda x: log(x) / log(self.eta) self.s_max = int(self.logeta(self.max_iter)) self.B = (self.s_max + 1) * self.max_iter self.results = [] # list of dicts self.counter = 0 self.best_loss = np.inf self.best_counter = -1 # can be called multiple times def run(self, skip_last=0, dry_run=False): for s in reversed(range(self.s_max + 1)): # initial number of configurations n = int(ceil(self.B / self.max_iter / (s + 1) * self.eta ** s)) # initial number of iterations per config r = self.max_iter * self.eta ** (-s) # n random configurations T = [self.get_params() for i in range(n)] for i in range((s + 1) - int(skip_last)): # changed from s + 1 # Run each of the n configs for <iterations> # and keep best (n_configs / eta) configurations n_configs = n * self.eta ** (-i) n_iterations = r * self.eta ** (i) print("\n*** {} configurations x {:.1f} iterations each".format( n_configs, n_iterations)) val_losses = [] early_stops = [] for t in T: self.counter += 1 print("\n{} | {} | lowest loss so far: {:.4f} (run {})\n".format( self.counter, ctime(), self.best_loss, self.best_counter)) start_time = time() if dry_run: result = {'loss': random(), 'log_loss': random(), 'auc': random()} else: result = self.try_params(self.data, n_iterations, t) # <--- assert (type(result) == dict) assert ('loss' in result) seconds = int(round(time() - start_time)) print("\n{} seconds.".format(seconds)) loss = result['loss'] val_losses.append(loss) early_stop = result.get('early_stop', False) early_stops.append(early_stop) # keeping track of the best result so far (for display only) # could do it be checking results each time, but hey if loss < self.best_loss: self.best_loss = loss self.best_counter = self.counter result['counter'] = self.counter result['seconds'] = seconds result['params'] = t result['iterations'] = n_iterations self.results.append(result) # select a number of best configurations for the next loop # filter out early stops, if any indices = np.argsort(val_losses) T = [T[i] for i in indices if not early_stops[i]] T = T[0:int(n_configs / self.eta)] return self.results
from contextlib import contextmanager from pathlib import Path from typing import IO, Any, Iterator, List, Optional, Tuple, Union, cast from .gettable import Gettable from .padded_text_file import SplittedPaddedTextFile class ColumnNotFoundError(Exception): pass class _PaddedCSVFile(Gettable): """Represent a padded CSV file, where lines are reachable with O(1) complexity. A padded CSV file is a CSV file where all lines have exactly the same length. In general, lines are right padded with white spaces. The last line MUST also contain a carriage return. Only line(s) you request will be load in memory. Usage: padded_csv_file = _PaddedCSVFile(<files_descriptor_and_size>, <file_zise>, <column_and_type_tuples> ) Example: With the following file represented by <files_descriptor_and_size>: a,b,c,d 1,2,3,4 5,6,7,8 9,10,11,12 13,14,15,16 17,18,19,20 padded_csv_file = _PaddedCSVFile(<files_descriptor_and_size>, <file_size>, [("d", int), ("b", int)] ) # Get the number of lines len(padded_csv_file) # = 5 # Get the third line of the file padded_csv_file[2] # = [12, 10] # Get the last line of the file padded_csv_file[-1] # = [20, 18] # Get an iterator on lines between the third line (included) and the last line # (excluded) padded_csv_file.get(start=2, stop=-1) # Get all lines between the third line (included) and the last line (excluded) # Warning: All lines in the selected range will be loaded into memory. # For example: padded_csv_file[:] will load all the file in memory. # If possible, use padded_csv_file.get(start=a, stop=b) instead of # padded_csv_file[a, b] padded_csv_file[2:-1] # = [[12, 10], [16, 14]] """ def __init__( self, files_descriptor_and_size: List[Tuple[IO, int]], columns_and_types: List[Tuple[str, type]], unwrap_if_one_column=False, ) -> None: """Constructor. files_descriptor_and_size: A liste of tuples like: - The file descriptor pointing to the padded CSV file - The size (in bytes) of th padded CSV file pointed by the file descriptor columns_and_types: A list of tuples where each tuple has: - The name of the column - The type of the column unwrap_if_one_column: Unwrap if only one column unwrap result. Exemple: Instead of returning [[4], [5], [2]] return [4, 5, 2] If at least one line of the file pointed by `file_descriptor` has not the same length than others, a `TextFileNotPaddedError` is raised. """ padded_text_file = SplittedPaddedTextFile(files_descriptor_and_size, offset=0) header_line = cast(str, padded_text_file[0]) headers = header_line.split(",") if columns_and_types == []: raise ValueError("`column_and_type` is an empty list") columns, _ = zip(*columns_and_types) if not set(columns) <= set(headers): raise ColumnNotFoundError( "At least one column specified in `column_to_type` in not present in " "the file" ) header_to_index = {header: index for index, header in enumerate(headers)} self.__column_indexes_type = [ (header_to_index[column], type) for column, type in columns_and_types ] self.__padded_text_file = SplittedPaddedTextFile( files_descriptor_and_size, offset=1 ) _, *others = columns_and_types self.__has_to_unwrap = unwrap_if_one_column and others == [] def __len__(self): """Return the number of lines of the file (excluding the header).""" return len(self.__padded_text_file) def __getitem__( self, line_number_or_slice: Union[int, slice] ) -> Union[Any, List, List[List]]: """Get given values or a given slice of values. line_number_or_slice: The line number or the slice where values will be retrieved """ def handle_line_number(line_number: int) -> Union[Any, List]: line = cast(str, self.__padded_text_file[line_number]) items = line.split(",") return self.__unwrap_if_needed_single( [type(items[index]) for index, type in self.__column_indexes_type] ) def handle_slice(slice: slice) -> List[Union[Any, List]]: return self.__unwrap_if_needed_multi( [ [ type(items.split(",")[index]) for index, type in self.__column_indexes_type ] for items in self.__padded_text_file[slice] ] ) if isinstance(line_number_or_slice, int): return handle_line_number(line_number_or_slice) elif isinstance(line_number_or_slice, slice): return handle_slice(line_number_or_slice) def __unwrap_if_needed_single(self, items: List) -> Union[List, Any]: if self.__has_to_unwrap: item, *trash = items assert trash == [] return item return items def __unwrap_if_needed_multi(self, items: List[List]) -> List: return ( [item for sublist in items for item in sublist] if self.__has_to_unwrap else items ) def get( self, start: Optional[int] = None, stop: Optional[int] = None ) -> Iterator[List]: """Return an iterator on a given slice of lines. start: The first line of slice (included) stop : The last line of slice (excluded) """ for line in self.__padded_text_file.get(start, stop): items = line.split(",") toto = [type(items[index]) for index, type in self.__column_indexes_type] yield self.__unwrap_if_needed_single(toto) @contextmanager def padded_csv_file( path: Path, columns_and_types: List[Tuple[str, type]] ) -> Iterator[_PaddedCSVFile]: """Represent a padded CSV file, where lines are reachable with O(1) complexity. A padded CSV file is a CSV file where all lines have exactly the same length. In general, lines are right padded with white spaces. The last line MUST also contain a carriage return. Only line(s) you request will be load in memory. Usage: with padded_csv_file(<file_path>, <columns_and_types>) as pcf: ... Example: With the following file represented by <file_descriptor>: a,b,c,d 1,2,3,4 5,6,7,8 9,10,11,12 13,14,15,16 17,18,19,20 with padded_csv_file(<file_path>, [("d", int), ("b", int)]) as pcf: # Get the number of lines len(pcf) # = 5 # Get the third line of the file pcf[2] # = [12, 10] # Get the last line of the file pcf[-1] # = [20, 18] # Get an iterator on lines between the third line (included) and the last line # (excluded) pcf.get(start=2, stop=-1) # Get all lines between the third line (included) and the last line (excluded) # Warning: All lines in the selected range will be loaded into memory. # For example: padded_csv_file[:] will load all the file in memory. # If possible, use pcf.get(start=a, stop=b) instead of # pcf[a, b] pcf[2:-1] # = [[12, 10], [16, 14]] """ with path.open() as file_descriptor: yield _PaddedCSVFile( [(file_descriptor, path.stat().st_size)], columns_and_types )
load("//bazel/rules/cpp:main.bzl", "cpp_main") load("@rules_pkg//:pkg.bzl", "pkg_deb", "pkg_tar") load("//bazel/rules/data:package_data.bzl", "package_data") def distributable_data(name, description, file_groups): EVERYTHING_EXTENSION = "-debian-all" MAINTAINER = "Trevor Hickey <TrevorJamesHickey@gmail.com>" DEFAULT_VERSION = "1.0" DEFAULT_HOMEPAGE = "none" DATA_TARGET = ":" + name + "-data" package_data( name = name, file_groups = file_groups, ) all_name = name + EVERYTHING_EXTENSION pkg_deb( name = all_name, data = DATA_TARGET, package = name, architecture = "all", maintainer = MAINTAINER, version = DEFAULT_VERSION, description = description, homepage = DEFAULT_HOMEPAGE, )
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved from pytext.exporters.exporter import ModelExporter __all__ = ["ModelExporter"]
from tzlocal import get_localzone def add_local_tz(date): ''' Add the local time zone to the given date and returns a new date. Parameters ---------- date : :obj:`datetime` Date to which to adjust with the local time zone. Returns ------- :obj:`datetime` Date adjusted with local timezone. ''' tz = get_localzone() return tz.fromutc(date.replace(tzinfo=tz)) def create_option_id_filter(option_type, underlying_id, expiry_date, min_strike_price, max_strike_price): ''' Simple utility to generate an OptionIdFilter structure. Parameters ---------- option_type : :obj:`str`, {'Call', 'Put'} Option type. underlying_id : :obj:`int` Underlying ID. expiry_date : :obj:`datetime` Expiry date. min_strike_price : :obj:`double` Min strike price. max_strike_price : :obj:`double` Max strike price. Note ---- More details on allowed `option_type` values can be found `here <https://www.questrade.com/api/documentation/rest-operations/enumerat \ ions/enumerations#option-type>`__. Returns ------- :obj:`dict` OptionIdFilter structure. ''' option_id_filter = { 'optionType': option_type, 'underlyingId': underlying_id, 'expiry_date': expiry_date, 'minStrikePrice': min_strike_price, 'maxStrikePrice': maxStrikePrice } return option_id_filter def create_strategy_variant_request(variant_id, strategy, legs): ''' Simple utility to generate a StrategyVariantRequest structure. Parameters ---------- variant_id : :obj:`int` Variant ID. strategy : :obj:`str`, {'CoveredCall', 'MarriedPuts', \ 'VerticalCallSpread', 'VerticalPutSpread', 'CalendarCallSpread', \ 'CalendarPutSpread', 'DiagonalCallSpread', 'DiagonalPutSpread', 'Collar', \ 'Straddle', 'Strangle', 'ButterflyCall', 'ButterflyPut', 'IronButterfly', \ 'CondorCall', 'Custom'} Strategy type. legs : :obj:`list` of :obj:`dict` List of StrategyVariantLeg structures. Note ---- More details on allowed `strategy` values can be found `here \ <https://www.questrade.com/api/documentation/rest-operations/enumerations/ \ enumerations#strategy-types>`__. Returns ------- :obj:`dict` StrategyVariantRequest structure. ''' strategy_variant_request = { 'variantId': variant_id, 'strategy': strategy, 'legs': legs } return strategy_variant_request def create_strategy_variant_leg(symbol_id, action, ratio): ''' Simple utility function to generate a StrategyVariantLeg structure. Parameters ---------- symbolId : :obj:`int` Internal symbol identifier. action : :obj:`str`, {'Buy', 'Sell'} Order side. ratio : :obj:`int` Numeric ration of the leg strategy. Note ---- More details on allowed `action` values can be found `here <https://www.questrade.com/api/documentation/rest-operations/enumerations/ \ enumerations#order-action>`__. Returns ------- :obj:`dict` StrategyVariantLeg structure. ''' strategy_variant_leg = { 'symbolId': symbol_id, 'acton': action, 'ratio': ratio } return strategy_variant_leg def create_bracket_order_component(quantity, action, limit_price, stop_price, order_type, time_in_force, order_class, order_id=0): ''' Simple utility to generate a BracketOrderComponent structure. Parameters ---------- quantity : :obj:`double` Order quantity. action : :obj:`str`, {'Buy', 'Sell'} Order side. limit_price : :obj:`double` Limit price. stop_price : :obj:`double` Stop price. order_type : :obj:`str`, {'Market', 'Limit', 'Stop', 'StopLimit', \ 'TrailStopInPercentage', 'TrailStopInDollar', \ 'TrailStopLimitInPercentage', 'TrailStopLimitInDollar', 'LimitOnOpen', \ 'LimitOnClose'} Order type. time_in_force : :obj:`str`, {'Day', 'GoodTillCanceled', \ 'GoodTillExtendedDay', 'GoodTillDate', 'ImmediateOrCancel', 'FillOrKill'} Order duration. order_class : :obj:`str`, {'Primary', 'Limit', 'StopLoss'} Type of component Note ---- More details on allowed `action`, `order_type`, `time_in_force` and `order_class` can be found `here <https://www.questrade.com/api/ \ documentation/rest-operations/enumerations/enumerations>`__ Returns ------- :obj:`dict` BracketOrderComponent structure. ''' bracket_order_component = { 'orderId': order_id, 'quantity': quantity, 'action': action, 'limitPrice': limit_price, 'stopPrice': stop_price, 'orderType': order_type, 'timeInForce': time_in_force, 'orderClass': order_class } return bracket_order_component def create_insert_order_leg_data(symbol_id, action, leg_quantity): ''' Simple utililty function to generate a InsertOrderLegData structure. Parameters ---------- symbol_id : :obj:`int` Internal symbol identifier. action : :obj:`str`, {'Buy', 'Sell'} Leg action. leg_quantity : :obj:`int` Leg quantity. Note ---- More details on allowed `action` values can be found `here <https://www.questrade.com/api/documentation/rest-operations/enumerations/ \ enumerations#order-action>`__. Returns ------- :obj:`dict` InsertOrderLegData structure. ''' insert_order_leg_data = { 'symbolId': symbol_id, 'action': action, 'legQuantity': leg_quantity } return insert_order_leg_data
# # Copyright (c) 2019-2020, NVIDIA CORPORATION. # Copyright (c) 2019-2020, BlazingSQL, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import sys from xbb_tools.cluster_startup import attach_to_cluster from xbb_tools.utils import ( benchmark, tpcxbb_argparser, run_query, train_clustering_model ) from dask import delayed # -------- Q25 ----------- # -- store_sales and web_sales date q25_date = "2002-01-02" N_CLUSTERS = 8 CLUSTER_ITERATIONS = 20 N_ITER = 5 def get_clusters(client, ml_input_df): import dask_cudf ml_tasks = [ delayed(train_clustering_model)(df, N_CLUSTERS, CLUSTER_ITERATIONS, N_ITER) for df in ml_input_df.to_delayed() ] results_dict = client.compute(*ml_tasks, sync=True) output = ml_input_df.index.to_frame().reset_index(drop=True) labels_final = dask_cudf.from_cudf( results_dict["cid_labels"], npartitions=output.npartitions ) output["label"] = labels_final.reset_index()[0] # Based on CDH6.1 q25-result formatting results_dict["cid_labels"] = output return results_dict def read_tables(data_dir, bc): bc.create_table("web_sales", data_dir + "web_sales/*.parquet") bc.create_table("store_sales", data_dir + "store_sales/*.parquet") bc.create_table("date_dim", data_dir + "date_dim/*.parquet") def main(data_dir, client, bc, config): benchmark(read_tables, data_dir, bc, dask_profile=config["dask_profile"]) query = f""" WITH concat_table AS ( ( SELECT ss_customer_sk AS cid, count(distinct ss_ticket_number) AS frequency, max(ss_sold_date_sk) AS most_recent_date, CAST( SUM(ss_net_paid) AS DOUBLE) AS amount FROM store_sales ss JOIN date_dim d ON ss.ss_sold_date_sk = d.d_date_sk WHERE CAST(d.d_date AS DATE) > DATE '{q25_date}' AND ss_customer_sk IS NOT NULL GROUP BY ss_customer_sk ) union all ( SELECT ws_bill_customer_sk AS cid, count(distinct ws_order_number) AS frequency, max(ws_sold_date_sk) AS most_recent_date, CAST( SUM(ws_net_paid) AS DOUBLE) AS amount FROM web_sales ws JOIN date_dim d ON ws.ws_sold_date_sk = d.d_date_sk WHERE CAST(d.d_date AS DATE) > DATE '{q25_date}' AND ws_bill_customer_sk IS NOT NULL GROUP BY ws_bill_customer_sk ) ) SELECT cid AS cid, CASE WHEN 37621 - max(most_recent_date) < 60 THEN 1.0 ELSE 0.0 END AS recency, -- 37621 == 2003-01-02 CAST( SUM(frequency) AS BIGINT) AS frequency, --total frequency CAST( SUM(amount) AS DOUBLE) AS amount --total amount FROM concat_table GROUP BY cid ORDER BY cid """ cluster_input_ddf = bc.sql(query) # Prepare df for KMeans clustering cluster_input_ddf["recency"] = cluster_input_ddf["recency"].astype("int64") cluster_input_ddf = cluster_input_ddf.repartition(npartitions=1) cluster_input_ddf = cluster_input_ddf.persist() cluster_input_ddf = cluster_input_ddf.set_index('cid') results_dict = get_clusters(client=client, ml_input_df=cluster_input_ddf) return results_dict if __name__ == "__main__": config = tpcxbb_argparser() client, bc = attach_to_cluster(config, create_blazing_context=True) run_query(config=config, client=client, query_func=main, blazing_context=bc)
def format_date(date): """format the date of blog to correct format""" date = date.strftime('%H:%M:%S %m/%d/%Y') return date
import pandas as pd from datetime import datetime, timedelta class JHUData(object): url_pattern = ( "https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/" "csse_covid_19_data/csse_covid_19_time_series/time_series_19-covid-{}.csv" ) def __init__(self, refresh_rate=30): self.refresh_rate = timedelta(minutes=refresh_rate) self.data_sources = { r: self.url_pattern.format(r) for r in ["Confirmed", "Deaths", "Recovered"] } self.auto_refresh(force=True) def load_data(self): df_list = [ pd.read_csv(data).assign(Record=record) for record, data in self.data_sources.items() ] df = pd.concat(df_list, ignore_index=True) return df def preprocess(self, df): df.drop(columns=["Province/State", "Lat", "Long"], inplace=True) df.rename( columns=lambda c: pd.to_datetime(c) if c not in ["Country/Region", "Record"] else c, inplace=True, ) df_country = df.groupby(["Country/Region", "Record"]).sum() df_country.reset_index(level=1, drop=False, inplace=True) # calculate active cases data_cols = df_country.columns.drop("Record") df_confirmed = df_country[df_country["Record"] == "Confirmed"][data_cols] df_recovered = df_country[df_country["Record"] == "Recovered"][data_cols] df_dead = df_country[df_country["Record"] == "Deaths"][data_cols] df_active = df_confirmed - df_recovered - df_dead df_active["Record"] = "Active" return pd.concat([df_country, df_active]) def auto_refresh(self, force=False): if force or (datetime.utcnow() - self._ts > self.refresh_rate): df = self.load_data() self._df = self.preprocess(df) self._ts = datetime.utcnow() self.data_cols = self._df.columns.drop("Record").to_list() def get_df(self): self.auto_refresh() return self._df def get_country_data(self, country="Germany"): df = self.get_df() df_country = df.loc[country].reset_index(drop=True).set_index("Record") return df_country.loc[:, (df_country != 0).any(axis=0)] def get_country_total(self, record="Active"): df = self.get_df() df_record = df[df["Record"] == record] return df_record.iloc[:, -1].sort_values(ascending=False) def get_country_ranking(self): country_total = self.get_country_total(record="Active") return country_total.index.to_list()
# -*- coding: utf-8 -*- # Copyright (C) 2010-2015 Mag. Christian Tanzer All rights reserved # Glasauergasse 32, A--1130 Wien, Austria. tanzer@swing.co.at # **************************************************************************** # This module is part of the package GTW.__test__. # # This module is licensed under the terms of the BSD 3-Clause License # <http://www.c-tanzer.at/license/bsd_3c.html>. # **************************************************************************** # #++ # Name # migration # # Purpose # Test scope migrations # # Revision Dates # 19-May-2010 (CT) Creation # 1-Jul-2010 (CT) `race_results` as example of composite-collection added # 13-Jul-2010 (CT) Changed to use `DB_Man` for migration # (instead of `Scope.copy`) # 2-Aug-2010 (MG) `Account_Anonymous` added to test an border case for # the migration # 16-Aug-2010 (MG) Test for a change with children added # 17-Aug-2010 (CT) Use `unicode` instead of `str` # 6-Sep-2010 (CT) Adapted to change of `Race_Result` from Composite-List # to `Link1` # 14-Jun-2011 (MG) `MYST` added to `Backend_Parameters` # 19-Mar-2012 (CT) Adapt to `Boat_Class.name.ignore_case` now being `True` # 19-Mar-2012 (CT) Adapt to reification of `SRM.Handicap` # 1-Aug-2012 (MG) Add test type name change queries # 24-Jan-2013 (CT) Change `nation` from `Austria` to `AUT` # ««revision-date»»··· #-- from _GTW.__test__.model import * class _Migration_Scaffold_ (Scaffold.__class__) : Backend_Parameters = dict \ ( Scaffold.Backend_Parameters , HPS = "'hps:///test.hps'" , SQL = "'sqlite:///test.sql'" , sq = "'sqlite:///test.sql'" ) # end class _Migration_Scaffold_ Scaffold = _Migration_Scaffold_ () _test_code = r""" >>> scope = Scaffold.scope (%(p1)s, %(n1)s) # doctest:+ELLIPSIS Creating new scope MOMT__... >>> apt_s, url_s = scope.app_type, scope.db_url >>> PAP = scope.PAP >>> SRM = scope.SRM >>> Auth = scope.Auth >>> x = SRM.Boat_Class (u"29er", max_crew = 2) >>> x = SRM.Boat_Class (u"420er", max_crew = 2) >>> x = SRM.Boat_Class (u"470er", max_crew = 2) >>> x = SRM.Boat_Class (u"49er", max_crew = 2) >>> x = SRM.Boat_Class (u"Aquila Kiel", max_crew = 3) >>> sw= x.copy (u"Aquila Schwert", max_crew = 3) >>> x = SRM.Boat_Class (u"Fam", max_crew = 3) >>> x = SRM.Boat_Class (u"Finn-Dinghy", max_crew = 1) >>> x = SRM.Boat_Class (u"Korsar", max_crew = 2) >>> x = SRM.Boat_Class (u"Laser", max_crew = 1) >>> x = SRM.Boat_Class (u"Laser 4.7", max_crew = 1) >>> x = SRM.Boat_Class (u"Laser Master", max_crew = 1) >>> x = SRM.Boat_Class (u"Laser Radial", max_crew = 1) >>> x = SRM.Boat_Class (u"O-Jolle", max_crew = 1) >>> x = SRM.Boat_Class (u"Optimist", max_crew = 1) >>> x = SRM.Boat_Class (u"Pirat Regatta", max_crew = 2) >>> x = SRM.Boat_Class (u"Pirat Klassik", max_crew = 2) >>> x = SRM.Boat_Class (u"Pirat Schulboot", max_crew = 2) >>> x = SRM.Boat_Class (u"Pirat", max_crew = 2) >>> x = SRM.Boat_Class (u"Robby Jolle", max_crew = 2) >>> x = SRM.Boat_Class (u"Seascape 18", max_crew = 4) >>> x = SRM.Boat_Class (u"Zoom8", max_crew = 1) >>> sw.last_cid 7 >>> for c in scope.uncommitted_changes : ... print (c) <Create SRM.Boat_Class ('29er', 'SRM.Boat_Class'), new-values = {'last_cid' : '1', 'max_crew' : '2'}> <Create SRM.Boat_Class ('420er', 'SRM.Boat_Class'), new-values = {'last_cid' : '2', 'max_crew' : '2'}> <Create SRM.Boat_Class ('470er', 'SRM.Boat_Class'), new-values = {'last_cid' : '3', 'max_crew' : '2'}> <Create SRM.Boat_Class ('49er', 'SRM.Boat_Class'), new-values = {'last_cid' : '4', 'max_crew' : '2'}> <Create SRM.Boat_Class ('Aquila Kiel', 'SRM.Boat_Class'), new-values = {'last_cid' : '5', 'max_crew' : '3'}> <Copy SRM.Boat_Class ('Aquila Schwert', 'SRM.Boat_Class'), new-values = {'last_cid' : '7'}> <Create SRM.Boat_Class ('Aquila Schwert', 'SRM.Boat_Class'), new-values = {'last_cid' : '6', 'max_crew' : '3'}> <Create SRM.Boat_Class ('Fam', 'SRM.Boat_Class'), new-values = {'last_cid' : '8', 'max_crew' : '3'}> <Create SRM.Boat_Class ('Finn-Dinghy', 'SRM.Boat_Class'), new-values = {'last_cid' : '9', 'max_crew' : '1'}> <Create SRM.Boat_Class ('Korsar', 'SRM.Boat_Class'), new-values = {'last_cid' : '10', 'max_crew' : '2'}> <Create SRM.Boat_Class ('Laser', 'SRM.Boat_Class'), new-values = {'last_cid' : '11', 'max_crew' : '1'}> <Create SRM.Boat_Class ('Laser 4.7', 'SRM.Boat_Class'), new-values = {'last_cid' : '12', 'max_crew' : '1'}> <Create SRM.Boat_Class ('Laser Master', 'SRM.Boat_Class'), new-values = {'last_cid' : '13', 'max_crew' : '1'}> <Create SRM.Boat_Class ('Laser Radial', 'SRM.Boat_Class'), new-values = {'last_cid' : '14', 'max_crew' : '1'}> <Create SRM.Boat_Class ('O-Jolle', 'SRM.Boat_Class'), new-values = {'last_cid' : '15', 'max_crew' : '1'}> <Create SRM.Boat_Class ('Optimist', 'SRM.Boat_Class'), new-values = {'last_cid' : '16', 'max_crew' : '1'}> <Create SRM.Boat_Class ('Pirat Regatta', 'SRM.Boat_Class'), new-values = {'last_cid' : '17', 'max_crew' : '2'}> <Create SRM.Boat_Class ('Pirat Klassik', 'SRM.Boat_Class'), new-values = {'last_cid' : '18', 'max_crew' : '2'}> <Create SRM.Boat_Class ('Pirat Schulboot', 'SRM.Boat_Class'), new-values = {'last_cid' : '19', 'max_crew' : '2'}> <Create SRM.Boat_Class ('Pirat', 'SRM.Boat_Class'), new-values = {'last_cid' : '20', 'max_crew' : '2'}> <Create SRM.Boat_Class ('Robby Jolle', 'SRM.Boat_Class'), new-values = {'last_cid' : '21', 'max_crew' : '2'}> <Create SRM.Boat_Class ('Seascape 18', 'SRM.Boat_Class'), new-values = {'last_cid' : '22'}> <Create SRM.Boat_Class ('Zoom8', 'SRM.Boat_Class'), new-values = {'last_cid' : '23', 'max_crew' : '1'}> >>> scope.commit () >>> x = SRM.Boat (('Optimist',), 1, u"AUT") >>> x = SRM.Boat (('Optimist',), 2, u"AUT") >>> x = SRM.Boat (('Laser',), 3, u"AUT") >>> x = SRM.Boat (('Seascape 18',), 14, u"AUT") >>> scope.commit () >>> bc = SRM.Boat_Class.instance (u"Optimist") >>> ys = SRM.Handicap ("Yardstick") >>> b = SRM.Boat.instance_or_new ('Optimist', u"1107", u"AUT", raw = True) >>> p = PAP.Person.instance_or_new (u"Tanzer", u"Christian") >>> s = SRM.Sailor.instance_or_new (p.epk_raw, nation = u"AUT", mna_number = u"29676", raw = True) ### 1 >>> rev = SRM.Regatta_Event (u"Himmelfahrt", dict (start = u"20080501", raw = True), raw = True) >>> reg = SRM.Regatta_C (rev, bc) >>> reh = SRM.Regatta_H (rev, ys) >>> bir = SRM.Boat_in_Regatta (b, reg, skipper = s) >>> rr1 = SRM.Race_Result (bir, 1, points = 8) >>> rr2 = SRM.Race_Result (bir, 2, points = 4) >>> scope.commit () >>> sw.last_cid 7 >>> scope.MOM.Id_Entity.count 36 >>> int (scope.query_changes (parent = None).count ()) 36 >>> int (scope.query_changes ().count ()) 37 >>> int (scope.ems.max_cid) 37 >>> bc.set (loa = 2.43) 1 >>> SRM.Boat_Class.instance (u"Laser").set (sail_area = 7.06, loa = 4.064, beam = 1.422) 3 >>> SRM.Boat_Class.instance (u"Seascape 18").set (loa = 5.45, beam = 2.45, sail_area = 23) 3 >>> scope.commit () >>> MOM.B = True >>> print (sw.last_cid) ### X 7 >>> scope.MOM.Id_Entity.count 36 >>> print (sw.last_cid) ### Y 7 >>> MOM.B = False >>> int (scope.query_changes ().count ()) 40 >>> int (scope.ems.max_cid) 40 >>> len (scope.SRM.Regatta_Event.query ().first ().regattas) 2 >>> b = SRM.Boat_Class.query (Q.RAW.name == u"Aquila Schwert").one () >>> print (b.last_cid, sw.last_cid, b is sw) 7 7 True >>> c = scope.query_changes (cid = b.last_cid).one () >>> print (c) ### change in source scope <Copy SRM.Boat_Class ('Aquila Schwert', 'SRM.Boat_Class'), new-values = {'last_cid' : '7'}> <Create SRM.Boat_Class ('Aquila Schwert', 'SRM.Boat_Class'), new-values = {'last_cid' : '6', 'max_crew' : '3'}> >>> len (c.children) 1 >>> int (c.cid), int (c.children [0].cid) (7, 6) >>> [s for s in scope if not s.last_cid] ### before expunge [] >>> sum ((not s.last_cid) for s in scope), sum (bool (s.last_cid) for s in scope) ### before expunge (0, 36) >>> if hasattr (scope.ems.session, "expunge") : scope.ems.session.expunge () >>> [s for s in scope if not s.last_cid] ### after expunge [] >>> sum ((not s.last_cid) for s in scope), sum (bool (s.last_cid) for s in scope) ### after expunge (0, 36) >>> scope.query_changes (type_name = "SRM.Boat_Class").count () 26 >>> b = scope.SRM.Boat_Class.query (Q.RAW.name == u"Aquila Schwert").one () >>> print (b.last_cid) ### before migration 7 Save contents of scope to database and destroy scope: >>> scope.ems.compact () >>> scope.destroy () Now, we migrate all objects and the change history to a new backend. All entities, changes, cids, and pids should be identical afterwards: >>> db_url = "hps:////tmp/gtw_test_migration.gtw" >>> apt_t, url_t = Scaffold.app_type_and_url (db_url) >>> apt_t.delete_database (url_t) # 1 >>> db_man_s = Scaffold.DB_Man.connect (apt_s, url_s) >>> db_man_t = Scaffold.DB_Man.create (apt_t, url_t, db_man_s) >>> db_man_s.destroy () >>> db_man_t.destroy () >>> scope_s = Scaffold.scope (url_s, create = False) # doctest:+ELLIPSIS Loading scope MOMT__... >>> scope_t = Scaffold.scope (url_t, create = False) # doctest:+ELLIPSIS Loading scope MOMT__... >>> tuple (s.MOM.Id_Entity.count for s in (scope_s, scope_t)) (36, 36) >>> all (s.as_pickle_cargo () == t.as_pickle_cargo () for (s, t) in zip (scope_s, scope_t)) True >>> int (scope_t.ems.max_cid) 40 >>> len (scope_t.SRM.Regatta_Event.query ().first ().regattas) 2 >>> [s for (s, t) in zip (scope_s, scope_t) if s.last_cid != t.last_cid or not s.last_cid] [] >>> [s.query_changes (type_name = "SRM.Boat_Class").count () for s in (scope_t, scope_s)] [26, 26] >>> bs = scope_s.SRM.Boat_Class.query (Q.RAW.name == u"Aquila Schwert").one () >>> bt = scope_t.SRM.Boat_Class.query (Q.RAW.name == u"Aquila Schwert").one () >>> print (bs.last_cid, bt.last_cid) ### migrated to HPS 7 7 Now we delete the original database and then migrate back into the original app-type/backend. Again, all entities, changes, cids, and pids should still be identical: >>> scope_s.destroy () >>> scope_t.destroy () >>> apt_s.delete_database (url_s) # 2 >>> db_man_t = Scaffold.DB_Man.connect (apt_t, url_t) >>> db_man_u = Scaffold.DB_Man.create (apt_s, url_s, db_man_t) >>> db_man_t.destroy () >>> db_man_u.destroy () >>> scope_t = Scaffold.scope (url_t, create = False) # doctest:+ELLIPSIS Loading scope MOMT__... >>> scope_u = Scaffold.scope (url_s, create = False) # doctest:+ELLIPSIS Loading scope MOMT__... >>> tuple (s.MOM.Id_Entity.count for s in (scope_t, scope_u)) (36, 36) >>> all (s.as_pickle_cargo () == t.as_pickle_cargo () for (s, t) in zip (scope_t, scope_u)) True >>> int (scope_u.ems.max_cid) 40 >>> len (scope_u.SRM.Regatta_Event.query ().first ().regattas) 2 >>> [s for (s, t) in zip (scope_t, scope_u) if s.last_cid != t.last_cid or not s.last_cid] [] >>> b = scope_u.SRM.Boat_Class.query (Q.RAW.name == u"Aquila Schwert").one () >>> print (b.last_cid) ### after migration 7 >>> c = scope_u.query_changes (cid = b.last_cid).one () ### mig scope >>> print (c) <Copy SRM.Boat_Class ('Aquila Schwert', 'SRM.Boat_Class'), new-values = {'last_cid' : '7'}> <Create SRM.Boat_Class ('Aquila Schwert', 'SRM.Boat_Class'), new-values = {'last_cid' : '6', 'max_crew' : '3'}> >>> len (c.children) 1 >>> int (c.cid), int (c.children [0].cid) (7, 6) >>> scope_u.query_changes (type_name = "SRM.Boat_Class").count () 26 Lets clean up:: >>> scope_t.destroy () >>> scope_u.destroy () >>> apt_t.delete_database (url_t) # 3 >>> apt_s.delete_database (url_s) # 4 """ __test__ = Scaffold.create_test_dict \ ( dict ( test_code = _test_code ) , ignore = ("HPS", ) ) ### __END__ migration
from typing import List import json from time import sleep from datetime import date from os import path from api import BilibiliApi from writer import write_md, write_raw_data BASE_PATH = './archive' NAP_TIME = .5 def generate_md(raw_data: BilibiliApi.RAW_DATA_T) -> str: res = [] for video in raw_data: line = '1. ' url = f'https://www.bilibili.com/video/{video["bvid"]}' line += f'[{video["title"]}]({url})' res.append(line) return '\n'.join(res) def generate_md_table_row(row: List[Any]) -> str: return f'| {" | ".join(r for r in row)} |\n' def summarize_tags(api: BilibiliApi, loc: str, name: str, aids: List[str]) -> BilibiliApi.RAW_DATA_T: all_tags = {} for aid in aids: sleep(NAP_TIME) tag_list = api.get_tag(aid) for tag in tag_list: if tag['tag_id'] in all_tags: all_tags[tag['tag_id']]['day_count'] += 1 else: all_tags[tag['tag_id']] = {'data': tag, 'day_count': 1} write_raw_data(all_tags, path.join(loc, 'Tags', 'README.md')) summary = [] for _, tag in all_tags.items(): name = tag['data']['tag_name'] count = tag['day_count'] summary.append((name, count)) sort(summary, key=lambda x: x[1], acending=False) summary_header = ['Tag', 'Count'] summary_md = '# Tag Distribution\n' summary_md += generate_md_table_row(summary_header) summary_md += generate_md_table_row(['---'] * len(summary_header)) for row in summary: summary_md += generate_md_table_row(row) write_md(summary_md, path.join(loc, 'Tags', name)) def summarize_highest_ranked(api: BilibiliApi, loc: str) -> BilibiliApi.RAW_DATA_T: highest_ranked = api.get_highest_ranked() write_raw_data(highest_ranked, path.join(loc, 'Raw', 'highest_ranked.json')) aids = [video['aid'] for video in highest_ranked] summarize_tags(api, loc, 'highest_ranked.json', aids) return highest_ranked def summarize_most_popular(api: BilibiliApi, loc: str) -> BilibiliApi.RAW_DATA_T: most_popular = api.get_most_popular() write_raw_data(most_popular, path.join(loc, 'Raw', 'most_popular.json')) aids = (video['aid'] for video in most_popular) summarize_tags(api, loc, 'most_popular.json', aids) return most_popular def summarize_today(): date_str = date.today().isoformat() loc = path.join(BASE_PATH, 'Bilibili', date_str) api = BilibiliApi() highest_ranked = summarize_highest_ranked(api, loc) most_popular = summarize_most_popular(api, loc) md_str = '# Highest Ranked Videos\n' md_str += generate_md(highest_ranked) md_str += '\n\n' md_str += '# Most Popular Videos\n' md_str += generate_md(most_popular) write_md(md_str, path.join(loc, 'README.md')) if __name__ == '__main__': summarize_today()
class Source: def __init__ (self,category,id,name,description,url): self.category = category self.id = id self.name = name self.description = description self.url = url
from gpbasics import global_parameters as global_param global_param.ensure_init() import tensorflow as tf from enum import Enum class SimilarityType(Enum): LINEAR = 0 SQRT_LINEAR = 1 LOG_LINEAR = 2 RECIPROCAL = 3 def get_similarity_based_distance(distance, similarity_type: SimilarityType): if similarity_type is SimilarityType.LINEAR: return get_linear_similarity(distance) elif similarity_type is SimilarityType.SQRT_LINEAR: return get_sqrt_linear_similarity(distance) elif similarity_type is SimilarityType.LOG_LINEAR: return get_log_linear_similarity(distance) elif similarity_type is SimilarityType.RECIPROCAL: return get_reciprocal_similarity(distance) else: raise Exception("SimilarityBased Distance type invalid: %s" % str(similarity_type)) def get_linear_similarity(distance): return 1 - distance def get_sqrt_linear_similarity(distance): return tf.sqrt(get_linear_similarity(distance)) def get_log_linear_similarity(distance): return tf.math.log(get_linear_similarity(distance)) def get_reciprocal_similarity(distance): return tf.divide(1, distance) - 1
import sys,shutil,os,glob,re use_comma_separated_values = False def summarizeLoRaD(model): lc_model = model.lower() # set default values in case there are no results yet for this analysis rnseed = 0 cov1 = 0.0 logL1 = 0.0 cov2 = 0.0 logL2 = 0.0 cov3 = 0.0 logL3 = 0.0 # read output files outfilenames = glob.glob('%s/frt-%s.out' % (model,lc_model)) errfilenames = glob.glob('%s/frt-%s.err' % (model,lc_model)) if len(outfilenames) == 1 and len(errfilenames) == 1: print('%s...' % lc_model) outfn = outfilenames[0] errfn = errfilenames[0] # read output and error files outstuff = open(outfn, 'r').read() errstuff = open(errfn, 'r').read() stuff = outstuff + errstuff # get seed m = re.search('Pseudorandom number seed: (\d+)', stuff, re.M | re.S) if m is not None: rnseed = int(m.group(1)) # grab times #m = re.search('user-seconds\s+([.0-9]+)', stuff, re.M | re.S) #if m is not None: # secs = float(m.group(1)) # grab marginal likelihood estimate for each of the three coverage values results = re.findall(' Determining working parameter space for coverage = ([.0-9]+?)[.][.][.].+?log Pr\(data\)\s+=\s+([-.0-9]+)', stuff, re.M | re.S) nresults = len(results) if nresults == 3: cov1 = float(results[0][0]) cov2 = float(results[1][0]) cov3 = float(results[2][0]) logL1 = float(results[0][1]) logL2 = float(results[1][1]) logL3 = float(results[2][1]) else: print(' nresults was %d (expecting 3) so did not process' % nresults) else: print('%s: Did not process because there were %d outfilenames and %d errfilenames' % (lc_model,len(outfilenames),len(errfilenames))) return { 'rnseed':rnseed, 'cov1':cov1, 'logL1':logL1, 'cov2':cov2, 'logL2':logL2, 'cov3':cov3, 'logL3':logL3 } models = ['JC', 'JCI', 'JCG', 'JCIG', 'GTR', 'GTRI', 'GTRG', 'GTRIG', '3JC', '3JCI', '3JCG', '3JCIG', '3GTR', '3GTRI', '3GTRG', '3GTRIG'] lorad = {} for m in models: lorad[m] = summarizeLoRaD(m) gss = {} gss['JC'] = -2776.52 gss['JCI'] = -2744.59 gss['JCG'] = -2747.44 gss['JCIG'] = -2743.56 gss['GTR'] = -2714.20 gss['GTRI'] = -2681.00 gss['GTRG'] = -2682.73 gss['GTRIG'] = -2680.29 gss['3JC'] = -2681.79 gss['3JCI'] = -2668.38 gss['3JCG'] = -2668.99 gss['3JCIG'] = -2667.19 gss['3GTR'] = -2551.10 gss['3GTRI'] = -2535.57 gss['3GTRG'] = -2536.75 gss['3GTRIG'] = -2534.66 outf = open('output-summary.txt','w') if use_comma_separated_values: outf.write('model,seed,gss,cov1,lorad1,diff1,cov2,lorad2,diff2,cov3,lorad3,diff3\n') for m in models: outf.write('%s,%d,%.2f,%.3f,%.5f,%.5f,%.3f,%.5f,%.5f,%.3f,%.5f,%.5f\n' % ( m, lorad[m]['rnseed'], gss[m], lorad[m]['cov1'], lorad[m]['logL1'], lorad[m]['logL1'] - gss[m], lorad[m]['cov2'], lorad[m]['logL2'], lorad[m]['logL2'] - gss[m], lorad[m]['cov3'], lorad[m]['logL3'], lorad[m]['logL3'] - gss[m] )) else: outf.write('model\tseed\tgss\tcov1\tlorad1\tdiff1\tcov2\tlorad2\tdiff2\tcov3\tlorad3\tdiff3\n') for m in models: outf.write('%s\t%d\t%.2f\t%.3f\t%.5f\t%.5f\t%.3f\t%.5f\t%.5f\t%.3f\t%.5f\t%.5f\n' % ( m, lorad[m]['rnseed'], gss[m], lorad[m]['cov1'], lorad[m]['logL1'], lorad[m]['logL1'] - gss[m], lorad[m]['cov2'], lorad[m]['logL2'], lorad[m]['logL2'] - gss[m], lorad[m]['cov3'], lorad[m]['logL3'], lorad[m]['logL3'] - gss[m] )) outf.close()
import copy from django import forms from django.contrib.admin.options import BaseModelAdmin from django.contrib.admin.widgets import AutocompleteSelect, AutocompleteSelectMultiple from django.db import models from django.utils.translation import gettext as _ from paper_admin.admin import widgets from paper_admin.monkey_patch import MonkeyPatchMeta FORMFIELD_FOR_DBFIELD_DEFAULTS = { models.DateTimeField: { "form_class": forms.SplitDateTimeField, "widget": forms.SplitDateTimeWidget, }, models.TextField: {"widget": widgets.AdminTextarea}, models.GenericIPAddressField: {"widget": widgets.AdminIPInput}, models.UUIDField: {"widget": widgets.AdminUUIDInput}, models.BooleanField: {"widget": widgets.AdminCheckboxInput}, models.NullBooleanField: {"widget": forms.NullBooleanSelect}, models.FileField: {"widget": forms.ClearableFileInput}, models.ImageField: {"widget": forms.ClearableFileInput}, } # Метакласс MonkeyPatch для класса BaseModelAdmin. ModelAdminMonkeyPatchMeta = type("ModelAdminMonkeyPatchMeta", (MonkeyPatchMeta, forms.MediaDefiningClass), {}) class PatchBaseModelAdmin(BaseModelAdmin, metaclass=ModelAdminMonkeyPatchMeta): def __init__(self): # Merge FORMFIELD_FOR_DBFIELD_DEFAULTS with the formfield_overrides # rather than simply overwriting. overrides = copy.deepcopy(FORMFIELD_FOR_DBFIELD_DEFAULTS) for k, v in self.formfield_overrides.items(): overrides.setdefault(k, {}).update(v) self.formfield_overrides = overrides def formfield_for_choice_field(self, db_field, request, **kwargs): if db_field.name in self.radio_fields: if "widget" not in kwargs: kwargs["widget"] = widgets.AdminRadioSelect() if "choices" not in kwargs: kwargs["choices"] = db_field.get_choices( include_blank=db_field.blank, blank_choice=[("", _("None"))] ) return db_field.formfield(**kwargs) def formfield_for_foreignkey(self, db_field, request, **kwargs): db = kwargs.get('using') if db_field.name in self.get_autocomplete_fields(request): kwargs["widget"] = AutocompleteSelect( db_field.remote_field, self.admin_site, using=db ) elif db_field.name in self.raw_id_fields: kwargs["widget"] = widgets.AdminForeignKeyRawIdWidget( db_field.remote_field, self.admin_site, using=db ) elif db_field.name in self.radio_fields: kwargs["widget"] = widgets.AdminRadioSelect() kwargs["empty_label"] = _("None") if db_field.blank else None if "queryset" not in kwargs: queryset = self.get_field_queryset(db, db_field, request) if queryset is not None: kwargs["queryset"] = queryset return db_field.formfield(**kwargs) def formfield_for_manytomany(self, db_field, request, **kwargs): if not db_field.remote_field.through._meta.auto_created: return None db = kwargs.get("using") autocomplete_fields = self.get_autocomplete_fields(request) if db_field.name in autocomplete_fields: kwargs['widget'] = AutocompleteSelectMultiple( db_field.remote_field, self.admin_site, using=db ) elif db_field.name in self.raw_id_fields: kwargs["widget"] = widgets.AdminManyToManyRawIdWidget( db_field.remote_field, self.admin_site, using=db ) elif db_field.name in list(self.filter_vertical) + list(self.filter_horizontal): kwargs["widget"] = widgets.FilteredSelectMultiple() else: kwargs.setdefault("widget", forms.SelectMultiple) if "queryset" not in kwargs: queryset = self.get_field_queryset(db, db_field, request) if queryset is not None: kwargs["queryset"] = queryset return db_field.formfield(**kwargs)
#!/usr/bin/python with open("/dev/axis_fifo_0x0000000080002000", "r+b") as character: writewords = [] #SPI config register writewords.append("\x84\x0A\x03\x00") #GEN config writewords.append("\x80\x01\x04\x00") #power down control writewords.append("\x00\x00\x09\x00") #DACRANGE writewords.append("\xAA\xAA\x0A\x00") #DACRANGE writewords.append("\xAA\xAA\x0B\x00") #DACRANGE writewords.append("\xAA\xAA\x0C\x00") #DACRANGE writewords.append("\xAA\xAA\x0D\x00") #broadcast register writewords.append("\x00\x80\x0F\x00") for word in writewords: character.write(word) print('Reading...') reading = character.read(4) print('Read {} bytes: {} {} {} {}'.format(len(reading), hex(ord(reading[0])), hex(ord(reading[1])), hex(ord(reading[2])), hex(ord(reading[3]))))
# Access to KEGG API from bioservices.kegg import KEGG import ora_msc import matplotlib.pyplot as plt # Define the path of metabolomics data DATA_PATH = './data/' # Stating the annotation files & modzscore files pos_annot = DATA_PATH + 'annotation_pos.txt' pos_mod = DATA_PATH + 'modzscore_pos_annotated.tsv' neg_annot = DATA_PATH + 'annotation_neg.txt' neg_mod = DATA_PATH + 'modzscore_neg_annotated.tsv' # Initialise KEGG instance kegg_instance = KEGG() kegg_instance.organism = "eco" # Initialise both backgrounds test_compounds = ora_msc.get_all_compounds('eco') zamboni_bg = ora_msc.loadTsv(DATA_PATH + 'annotation_all.txt') # Remove metabolites detected in Zamboni but not in any E.coli pathway zamboni_bg = zamboni_bg & test_compounds # build {pathway: compounds} dictionary for E.coli ecoli_pathways = kegg_instance.pathwayIds pathway_2_compounds = dict() for pathway in ecoli_pathways: parsed_output = kegg_instance.parse(kegg_instance.get(pathway)) # parsed_ouput has lots of information about the pathway try: compounds = set(parsed_output['COMPOUND'].keys()) pathway_2_compounds[pathway] = compounds except KeyError: # Some pathways do not have defined compounds pass # Translate KO number to gene name sample_id_all = DATA_PATH + 'sample_id_modzscore.tsv' all_knockouts = []# End product fh_sample_id_all = open(sample_id_all, 'r') for knockout in fh_sample_id_all: all_knockouts.append(knockout.rstrip()) fh_sample_id_all.close() size_dist = [] for pathway in pathway_2_compounds: #if len(pathway_2_compounds[pathway]) == 1: # print(pathway) size_dist.append(len(pathway_2_compounds[pathway])) zamboni_size_dist = [] for pathway in pathway_2_compounds: compounds = pathway_2_compounds[pathway] cmpd_count = 0 for compound in compounds: if compound in zamboni_bg: cmpd_count += 1 zamboni_size_dist.append(cmpd_count) plt.subplot(211) plt.hist(zamboni_size_dist, bins=range(0, 145, 5)) plt.ylim(0, 40) plt.xlabel('Pathway size') plt.ylabel('Number of pathways') plt.title('Pathway size distribution (Zamboni background)') plt.subplot(212) plt.hist(size_dist, bins=range(0, 145, 5)) plt.ylim(0, 40) plt.xlabel('Pathway size') plt.ylabel('Number of pathways') plt.title('Pathway size distribution (all compounds)') plt.tight_layout() plt.show()
from abc import ABC, abstractmethod from datetime import datetime import os from typing import Tuple from omegaconf import DictConfig import torch from rlcycle.common.models.base import BaseModel class LearnerBase(ABC): """Abstract base class for Learner""" @abstractmethod def update_model( self, experience: Tuple[torch.Tensor, ...] ) -> Tuple[torch.Tensor, ...]: pass @abstractmethod def get_policy(self, to_cuda: bool) -> BaseModel: pass class Learner(LearnerBase): """Abstract class for all learners Attributes: experiment_info (DictConfig): experiment info hyper_params (DictConfig): algorithm hyperparameters model_cfg (DictConfig): model configurations use_cuda (bool): true if using gpu """ def __init__( self, experiment_info: DictConfig, hyper_params: DictConfig, model_cfg: DictConfig, ): self.experiment_info = experiment_info self.hyper_params = hyper_params self.model_cfg = model_cfg self.use_cuda = self.experiment_info.device == "cuda" time_info = datetime.now() timestamp = f"{time_info.year}-{time_info.month}-{time_info.day}" self.ckpt_path = ( f"../../../../checkpoints/{self.experiment_info.env.name}" f"/{self.experiment_info.experiment_name}/{timestamp}/" ) os.makedirs(self.ckpt_path, exist_ok=True) @abstractmethod def _initialize(self): pass @abstractmethod def update_model( self, experience: Tuple[torch.Tensor, ...] ) -> Tuple[torch.Tensor, ...]: pass @abstractmethod def get_policy(self, to_cuda: bool) -> BaseModel: pass class LearnerWrapper(LearnerBase): """Abstract base class for Learner Wrappers Attributes: learner (Learner): learner to be wrapped """ def __init__(self, learner: Learner): self.learner = learner def update_model( self, experience: Tuple[torch.Tensor, ...] ) -> Tuple[torch.Tensor, ...]: """Call wrapped learner update_model()""" return self.learner.update_model(experience) def get_policy(self, to_cuda: bool) -> BaseModel: """Call wrapped learner get_policy()""" return self.learner.get_policy(to_cuda)
import os config = { 'CURRENT_DIR': os.getcwd(), 'IGNORED_DIRS': 'venv', }
import os true_strings = ['true', 'True', 't', '1'] # S3 AWS_ACCESS_KEY_ID = os.getenv('AWS_ACCESS_KEY_ID') AWS_SECRET_ACCESS_KEY = os.getenv('AWS_SECRET_ACCESS_KEY') AWS_DEFAULT_REGION = os.getenv('AWS_DEFAULT_REGION') # Datastores KAFKA_HOSTS = os.getenv('KAFKA_HOSTS', 'kafka:9092') ZOOKEEPER_HOST = os.getenv('ZOOKEEPER_HOST', 'zookeeper:2181') REDIS_HOST = os.getenv('REDIS_HOST', 'redis') # Thumbnail size TARGET_RESOLUTION = (640, 640) # Number of tasks to schedule (but not necessarily execute) simultaneously. # Each pending resize task takes ~3kb of memory, so scheduling 1MM events means # consuming 3gb of memory in pending tasks alone. SCHEDULE_SIZE = int(os.getenv('SCHEDULE_SIZE', '3000')) # Number of resize tasks to run concurrently. # Each task requires a connection to Redis, so be mindful of the max connection # limit. Also be mindful that running too many coroutines simultaneously can # be detrimental to performance. MAX_TASKS = 3000 PROFILE_MEMORY = os.getenv('PROFILE_MEMORY', 'False') in true_strings
from showml.deep_learning.layers import Activation import numpy as np class Sigmoid(Activation): """A layer which applies the Sigmoid operation to an input. """ def forward(self, X: np.ndarray) -> np.ndarray: return 1 / (1 + np.exp(-X)) def backward(self, X: np.ndarray) -> np.ndarray: return self.forward(X) * (1 - self.forward(X)) class Relu(Activation): """A layer which applies the ReLU operation to an input. """ def forward(self, X: np.ndarray) -> np.ndarray: return abs(X) * (X > 0) def backward(self, X: np.ndarray) -> np.ndarray: return 1.0 * (X > 0) class Softmax(Activation): """A layer which applies the Softmax operation to an input. """ def forward(self, X: np.ndarray) -> np.ndarray: e_x = np.exp(X - np.max(X, axis=-1, keepdims=True)) return e_x / np.sum(e_x, axis=-1, keepdims=True) def backward(self, X: np.ndarray) -> np.ndarray: return self.forward(X) * (1 - self.forward(X))
class IFormattable: """ Provides functionality to format the value of an object into a string representation. """ def ToString(self,format,formatProvider): """ ToString(self: IFormattable,format: str,formatProvider: IFormatProvider) -> str Formats the value of the current instance using the specified format. format: The format to use.-or- A null reference (Nothing in Visual Basic) to use the default format defined for the type of the System.IFormattable implementation. formatProvider: The provider to use to format the value.-or- A null reference (Nothing in Visual Basic) to obtain the numeric format information from the current locale setting of the operating system. Returns: The value of the current instance in the specified format. """ pass def __format__(self,*args): """ __format__(formattable: IFormattable,format: str) -> str """ pass def __init__(self,*args): """ x.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signature """ pass
# Please keep this file so we can directly use this repo as a package.
# Copyright 2018 Contributors to Hyperledger Sawtooth # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ----------------------------------------------------------------------------- # pylint: disable=too-many-public-methods,cyclic-import """Base class for all message classes, abstracting out common functionality and facilitating differences via property and method overrides""" import logging from rbac.common import protobuf from rbac.common.crypto.keys import Key from rbac.common.crypto.keys import PUBLIC_KEY_PATTERN from rbac.common.sawtooth import batcher from rbac.common.sawtooth import client from rbac.common.sawtooth import state_client from rbac.common.base import base_processor as processor from rbac.common.base.base_address import AddressBase LOGGER = logging.getLogger(__name__) class BaseMessage(AddressBase): """Base class for all message classes, abstracting out common functionality and facilitating differences via property and method overrides""" def __init__(self): AddressBase.__init__(self) self._message_type_name = batcher.get_message_type_name(self.message_type) if self.register_message: processor.register_message_handler(self) else: processor.unregister_message_handler(self) @property def message_action_type(self): """The action type performed by this message""" return None # raise NotImplementedError("Class must implement this property") @property def message_subaction_type(self): """The subsequent action performed or proposed by this message""" return None @property def message_object_type(self): """The object type this message acts upon""" return self.object_type @property def message_related_type(self): """The related object type this message acts upon""" return self.related_type @property def message_relationship_type(self): """The relationship type this message acts upon""" return self.relationship_type @property def message_type_name(self): """The name of the message type, derives from the message properties Example: ObjectType.USER MessageActionType.CREATE -> CREATE_USER -or- ActionType.PROPOSE, SubActionType.ADD, MessageObjectType.USER, RelationshipType.MANAGER -> PROPOSE_ADD_USER_MANAGER Override where behavior differs""" if ( self.message_action_type and self.message_subaction_type and self.message_relationship_type ): return ( self.message_action_type.name + "_" + self.message_subaction_type.name + "_" + self.message_object_type.name + "_" + self.message_relationship_type.name ) if self.message_action_type.name: return self.message_action_type.name + "_" + self.message_object_type.name return self._message_type_name @property def message_type(self): """The message type of this message, an atrribute enum of RBACPayload Defaults to protobuf.rbac_payload_pb2.{message_type_name} (see message_type_name) Override message_type_name where behavior differs""" if not self.message_action_type: raise NotImplementedError("Class must implement this property") return getattr(protobuf.rbac_payload_pb2.RBACPayload, self.message_type_name) @property def message_proto(self): """The protobuf used to serialize this message type Derives name form the object type and message action type names. Example: ObjectType.USER MessageActionType.CREATE -> protobuf.user_transaction_pb2.CreateUser (see message_type_name) Override where behavior differs""" if not self.message_action_type: raise NotImplementedError("Class must implement this property") return getattr( getattr( protobuf, self.message_object_type.name.lower() + "_transaction_pb2" ), self._camel_case(self.message_type_name), ) @property def message_fields_not_in_state(self): """Fields that are on the message but not stored on its state object""" return [] @property def register_message(self): """Whether to register this message handler with the transaction processor""" return False # TODO: default will flip to True after TP refactor def make(self, **kwargs): """Makes the message (protobuf) from the named arguments passed to make""" # pylint: disable=not-callable message = self.message_proto() batcher.make_message(message, self.message_type, **kwargs) if hasattr(message, self._name_id) and getattr(message, self._name_id) == "": # sets the unique identifier field of the message to a unique_id if no identifier is provided setattr(message, self._name_id, self.unique_id()) self.validate(message=message) return message def make_addresses(self, message, signer_keypair): """Make addresses returns the inputs (read) and output (write) addresses that may be required in order to validate the message and store the resulting data of a successful or failed execution""" raise NotImplementedError("Class must implement this method") def validate(self, message, signer=None): """Commmon validation for all messages""" if not isinstance(message, self.message_proto): raise TypeError("Expected message to be {}".format(self.message_proto)) if ( signer is not None and not isinstance(signer, Key) and not (isinstance(signer, str) and PUBLIC_KEY_PATTERN.match(signer)) ): raise TypeError("Expected signer to be a keypair or a public key") if isinstance(signer, Key): signer = signer.public_key return signer def validate_state(self, state, message, signer): """Common state validation for all messages""" if signer is None: raise ValueError("Signer is required") if message is None: raise ValueError("Message is required") if not isinstance(signer, str) and PUBLIC_KEY_PATTERN.match(signer): raise TypeError("Expected signer to be a public key") if state is None: raise ValueError("State is required") def make_payload(self, message, signer_keypair=None): """Make a payload for the given message type""" self.validate(message=message, signer=signer_keypair) message_type = self.message_type inputs, outputs = self.make_addresses( message=message, signer_keypair=signer_keypair ) return batcher.make_payload( message=message, message_type=message_type, inputs=inputs, outputs=outputs ) def create(self, signer_keypair, message, object_id=None, target_id=None): """Send a message to the blockchain""" self.validate(message=message, signer=signer_keypair) return self.send( signer_keypair=signer_keypair, payload=self.make_payload(message=message, signer_keypair=signer_keypair), object_id=object_id, target_id=target_id, ) def send(self, signer_keypair, payload, object_id=None, target_id=None): """Sends a payload to the validator API""" if not isinstance(signer_keypair, Key): raise TypeError("Expected signer_keypair to be a Key") if not isinstance(payload, protobuf.rbac_payload_pb2.RBACPayload): raise TypeError("Expected payload to be an RBACPayload") _, _, batch_list, _ = batcher.make( payload=payload, signer_keypair=signer_keypair ) got = None status = client.send_batches_get_status(batch_list=batch_list) if object_id is not None: got = self.get(object_id=object_id, target_id=target_id) return got, status def get(self, object_id, target_id=None): """Gets an address from the blockchain from the validator API""" address = self.address(object_id=object_id, target_id=target_id) # pylint: disable=not-callable container = self._state_container() container.ParseFromString(client.get_address(address=address)) return self._find_in_state_container( container=container, address=address, object_id=object_id, target_id=target_id, ) def message_to_storage(self, message): """Transforms the message into the state (storage) object""" # pylint: disable=not-callable return batcher.message_to_message( self._state_object(), self._name_camel, message ) def set_state(self, state, message, object_id, target_id=None): """Creates a new address in the blockchain state""" store = self.message_to_storage(message=message) # pylint: disable=no-member,not-callable container = self._state_container() container.users.extend([store]) address = self.address(object_id=object_id, target_id=target_id) state_client.set_address(state=state, address=address, container=container) def apply(self, header, payload, state): """Handles a message in the transaction processor""" # pylint: disable=not-callable message = self.message_proto() message.ParseFromString(payload.content) signer = header.signer_public_key self.validate(message=message, signer=signer) self.validate_state(state=state, message=message, signer=signer) self.set_state(state=state, message=message, object_id=message.user_id)
class Solution: def maximizeSweetness(self, sweetness: List[int], k: int) -> int: left = 1 right = sum(sweetness) + 2 maximum = 0 while left < right: mid = left + (right - left)// 2 if self.verify(sweetness, mid, k): maximum = mid left = mid + 1 else: right = mid return maximum def verify(self, sweetness, candidateMin, k): curChunk = 0 totalChunks = 0 for sweet in sweetness: curChunk += sweet if curChunk >= candidateMin: curChunk = 0 totalChunks += 1 return totalChunks > k
import threading import collections import zephyr class EventStream: def __init__(self): self.events = [] self.events_cleaned_up = 0 self.lock = threading.RLock() def __iter__(self): with self.lock: return iter(self.events[:]) def __len__(self): with self.lock: corrected_length = len(self.events) + self.events_cleaned_up return corrected_length def __getitem__(self, index): with self.lock: assert 0 <= index < len(self) assert index >= self.events_cleaned_up corrected_index = index - self.events_cleaned_up return self.events[corrected_index] def append(self, value): with self.lock: self.events.append(value) def clean_up_events_before(self, timestamp_lower_bound): with self.lock: cutoff_index = 0 for event_timestamp, event_value in self.events: #@UnusedVariable if event_timestamp < timestamp_lower_bound: cutoff_index += 1 else: break if cutoff_index: self.events = self.events[cutoff_index:] self.events_cleaned_up += cutoff_index def iterate_samples(self, from_sample_index, to_end_timestamp): sample_index = from_sample_index while True: with self.lock: if self.events_cleaned_up > sample_index: break last_item = self[sample_index] if len(self) > sample_index else None if last_item is not None: event_timestamp, event_value = last_item if event_timestamp <= to_end_timestamp: yield event_value sample_index += 1 continue break class SignalStream: def __init__(self, signal_packet): self.samplerate = signal_packet.samplerate self.samples = [] self.lock = threading.RLock() self.end_timestamp = None self.append_signal_packet(signal_packet) def append_signal_packet(self, signal_packet): with self.lock: assert signal_packet.samplerate == self.samplerate self.samples.extend(signal_packet.samples) self.end_timestamp = signal_packet.timestamp + len(signal_packet.samples) / float(signal_packet.samplerate) def remove_samples_before(self, timestamp_lower_bound): with self.lock: samples_to_remove = max(0, int((timestamp_lower_bound - self.start_timestamp) * self.samplerate)) if samples_to_remove: self.samples = self.samples[samples_to_remove:] return samples_to_remove @property def start_timestamp(self): return self.end_timestamp - len(self.samples) / float(self.samplerate) def iterate_timed_samples(self, skip_samples=0): with self.lock: start_timestamp = self.start_timestamp sample_period = 1.0 / self.samplerate for sample_i, sample in enumerate(self.samples[skip_samples:], start=skip_samples): sample_timestamp = start_timestamp + sample_i * sample_period yield sample_timestamp, sample class SignalStreamHistory: def __init__(self): self._signal_streams = [] self.samples_cleaned_up = 0 def append_signal_packet(self, signal_packet, starts_new_stream): if starts_new_stream or not len(self._signal_streams): signal_stream = SignalStream(signal_packet) self._signal_streams.append(signal_stream) else: signal_stream = self._signal_streams[-1] signal_stream.append_signal_packet(signal_packet) def get_signal_streams(self): return self._signal_streams def _cleanup_signal_stream(self, signal_stream, timestamp_bound): if timestamp_bound >= signal_stream.end_timestamp: self._signal_streams.remove(signal_stream) samples_removed = len(signal_stream.samples) else: samples_removed = signal_stream.remove_samples_before(timestamp_bound) self.samples_cleaned_up += samples_removed def clean_up_samples_before(self, history_limit): for signal_stream in self._signal_streams[:]: first_timestamp = signal_stream.start_timestamp if first_timestamp >= history_limit: break self._cleanup_signal_stream(signal_stream, history_limit) def iterate_samples(self, from_sample_index, to_end_timestamp): from_sample_index = from_sample_index - self.samples_cleaned_up signal_stream_start_index = 0 for signal_stream in self._signal_streams: sample_count = len(signal_stream.samples) next_signal_stream_start_index = signal_stream_start_index + sample_count if from_sample_index < next_signal_stream_start_index: samples_to_skip = max(0, from_sample_index - signal_stream_start_index) for sample_timestamp, sample in signal_stream.iterate_timed_samples(samples_to_skip): if sample_timestamp > to_end_timestamp: break yield sample signal_stream_start_index = next_signal_stream_start_index class MeasurementCollector: def __init__(self, history_length_seconds=20.0): self._signal_stream_histories = collections.defaultdict(SignalStreamHistory) self._event_streams = collections.defaultdict(EventStream) self.history_length_seconds = history_length_seconds self.last_cleanup_time = 0.0 def get_signal_stream_history(self, stream_type): return self._signal_stream_histories[stream_type] def get_event_stream(self, stream_type): return self._event_streams[stream_type] def iterate_signal_stream_histories(self): return self._signal_stream_histories.items() def iterate_event_streams(self): return self._event_streams.items() def handle_signal(self, signal_packet, starts_new_stream): signal_stream_history = self._signal_stream_histories[signal_packet.type] signal_stream_history.append_signal_packet(signal_packet, starts_new_stream) self.cleanup_if_needed() def handle_event(self, stream_name, value): self._event_streams[stream_name].append(value) self.cleanup_if_needed() def cleanup_if_needed(self): now = zephyr.time() if self.last_cleanup_time < now - 5.0: history_limit = now - self.history_length_seconds for signal_stream_history in self._signal_stream_histories.values(): signal_stream_history.clean_up_samples_before(history_limit) for event_stream in self._event_streams.values(): event_stream.clean_up_events_before(history_limit) self.last_cleanup_time = now
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from conversationinsights.channels.console import ConsoleInputChannel def test_console_input(): import conversationinsights.channels.console # Overwrites the input() function and when someone else tries to read something from the command line # this function gets called. But instead of waiting input for the user, this simulates the input of # "2", therefore it looks like the user is always typing "2" if someone requests a cmd input. conversationinsights.channels.console.input = lambda _=None: "Test Input" # simulates cmdline input recorded = [] def on_message(message): recorded.append(message) channel = ConsoleInputChannel() channel._record_messages(on_message, max_message_limit=3) assert [r.text for r in recorded] == ["Test Input", "Test Input", "Test Input"]
import math import numpy as np import time from enum import Enum PYGAME_DISPLAY = None class Rotation(object): """Used to represent the rotation of an actor or obstacle. Rotations are applied in the order: Roll (X), Pitch (Y), Yaw (Z). A 90-degree "Roll" maps the positive Z-axis to the positive Y-axis. A 90-degree "Pitch" maps the positive X-axis to the positive Z-axis. A 90-degree "Yaw" maps the positive X-axis to the positive Y-axis. Args: pitch: Rotation about Y-axis. yaw: Rotation about Z-axis. roll: Rotation about X-axis. Attributes: pitch: Rotation about Y-axis. yaw: Rotation about Z-axis. roll: Rotation about X-axis. """ def __init__(self, pitch=0, yaw=0, roll=0): self.pitch = pitch self.yaw = yaw self.roll = roll @classmethod def from_carla_rotation(cls, rotation): """Creates a pylot Rotation from a CARLA rotation. Args: rotation (carla.Rotation): An instance of a CARLA rotation. Returns: :py:class:`.Rotation`: A pylot rotation. """ import carla if not isinstance(rotation, carla.Rotation): raise ValueError('rotation should be of type carla.Rotation') return cls(rotation.pitch, rotation.yaw, rotation.roll) def as_carla_rotation(self): """ Retrieves the rotation as an instance of a CARLA rotation. Returns: carla.Rotation: Instance representing the rotation. """ import carla return carla.Rotation(self.pitch, self.yaw, self.roll) def __repr__(self): return self.__str__() def __str__(self): return 'Rotation(pitch={}, yaw={}, roll={})'.format( self.pitch, self.yaw, self.roll) class Vector3D(object): """Represents a 3D vector and provides useful helper functions. Args: x: The value of the first axis. y: The value of the second axis. z: The value of the third axis. Attributes: x: The value of the first axis. y: The value of the second axis. z: The value of the third axis. """ def __init__(self, x=0, y=0, z=0): self.x, self.y, self.z = float(x), float(y), float(z) @classmethod def from_carla_vector(cls, vector): """Creates a pylot Vector3D from a CARLA 3D vector. Args: vector (carla.Vector3D): An instance of a CARLA 3D vector. Returns: :py:class:`.Vector3D`: A pylot 3D vector. """ import carla if not isinstance(vector, carla.Vector3D): raise ValueError('The vector must be a carla.Vector3D') return cls(vector.x, vector.y, vector.z) def __add__(self, other): """Adds the two vectors together and returns the result.""" return type(self)(x=self.x + other.x, y=self.y + other.y, z=self.z + other.z) def __sub__(self, other): """Subtracts the other vector from self and returns the result.""" return type(self)(x=self.x - other.x, y=self.y - other.y, z=self.z - other.z) def as_numpy_array(self): """Retrieves the 3D vector as a numpy array.""" return np.array([self.x, self.y, self.z]) def as_carla_vector(self): """Retrieves the 3D vector as an instance of CARLA 3D vector. Returns: carla.Vector3D: Instance representing the 3D vector. """ import carla return carla.Vector3D(self.x, self.y, self.z) def magnitude(self): """Returns the magnitude of the 3D vector.""" return np.linalg.norm(self.as_numpy_array()) def to_camera_view(self, extrinsic_matrix, intrinsic_matrix): """Converts the given 3D vector to the view of the camera using the extrinsic and the intrinsic matrix. Args: extrinsic_matrix: The extrinsic matrix of the camera. intrinsic_matrix: The intrinsic matrix of the camera. Returns: An instance with the coordinates converted to the camera view. """ position_vector = np.array([[self.x], [self.y], [self.z], [1.0]]) # Transform the points to the camera in 3D. transformed_3D_pos = np.dot(np.linalg.inv(extrinsic_matrix), position_vector) # Transform the points to 2D. position_2D = np.dot(intrinsic_matrix, transformed_3D_pos[:3]) # Normalize the 2D points. location_2D = type(self)(float(position_2D[0] / position_2D[2]), float(position_2D[1] / position_2D[2]), float(position_2D[2])) return location_2D def rotate(self, angle): """ Rotate the vector by a given angle. Args: angle (float): The angle to rotate the Vector by. (in degrees) Returns: An instance with the coordinates of the rotated vector. """ x_ = math.cos(math.radians(angle)) * self.x - math.sin( math.radians(angle)) * self.y y_ = math.sin(math.radians(angle)) * self.x - math.cos( math.radians(angle)) * self.y return type(self)(x_, y_, self.z) def __repr__(self): return self.__str__() def __str__(self): return 'Vector3D(x={}, y={}, z={})'.format(self.x, self.y, self.z) class Vector2D(object): """Represents a 2D vector and provides helper functions.""" def __init__(self, x, y): self.x = x self.y = y def get_angle(self, other): """Computes the angle between the vector and another vector.""" angle = math.atan2(self.y, self.x) - math.atan2(other.y, other.x) if angle > math.pi: angle -= 2 * math.pi elif angle < -math.pi: angle += 2 * math.pi return angle def get_vector_and_magnitude(self, other): """Calculates vector and magnitude between two vectors. Args: other (:py:class:`.Vector2D`): The other vector to be used to calculate. Returns: :py:class:`.Vector2D`, :obj:`float`: A tuple comprising of a 2D vector and its magnitude. """ vec = np.array([self.x - other.x, self.y - other.y]) magnitude = np.linalg.norm(vec) if magnitude > 0.00001: vec = vec / magnitude return Vector2D(vec[0], vec[1]), magnitude def l1_distance(self, other): """Calculates the L1 distance between the given point and the other point. Args: other (:py:class:`~.Vector2D`): The other vector used to calculate the L1 distance to. Returns: :obj:`float`: The L1 distance between the two points. """ return abs(self.x - other.x) + abs(self.y - other.y) def l2_distance(self, other): vec = np.array([self.x - other.x, self.y - other.y]) return np.linalg.norm(vec) def __add__(self, other): """Adds the two vectors together and returns the result. """ return type(self)(x=self.x + other.x, y=self.y + other.y) def __sub__(self, other): """Subtracts the other vector from self and returns the result. """ return type(self)(x=self.x - other.x, y=self.y - other.y) def __repr__(self): return self.__str__() def __str__(self): return 'Vector2D(x={}, y={})'.format(self.x, self.y) class Location(Vector3D): """Stores a 3D location, and provides useful helper methods. Args: x: The value of the x-axis. y: The value of the y-axis. z: The value of the z-axis. Attributes: x: The value of the x-axis. y: The value of the y-axis. z: The value of the z-axis. """ def __init__(self, x=0, y=0, z=0): super(Location, self).__init__(x, y, z) @classmethod def from_carla_location(cls, location): """Creates a pylot location from a CARLA location. Args: location (carla.Location): An instance of a CARLA location. Returns: :py:class:`.Location`: A pylot location. """ import carla if not isinstance(location, carla.Location): raise ValueError('The location must be a carla.Location') return cls(location.x, location.y, location.z) def distance(self, other): """Calculates the Euclidean distance between the given point and the other point. Args: other (:py:class:`~.Location`): The other location used to calculate the Euclidean distance to. Returns: :obj:`float`: The Euclidean distance between the two points. """ return (self - other).magnitude() def l1_distance(self, other): """Calculates the L1 distance between the given point and the other point. Args: other (:py:class:`~.Location`): The other location used to calculate the L1 distance to. Returns: :obj:`float`: The L1 distance between the two points. """ return abs(self.x - other.x) + abs(self.y - other.y) + abs(self.z - other.z) def get_vector_and_magnitude(self, other): """Calculates vector and magnitude between two locations. Args: other (:py:class:`~.Location`): The other location to used to calculate. Returns: :py:class:`.Vector2D`, :obj:`float`: A tuple comprising of a 2D vector and its magnitude. """ vec = Vector2D(self.x, self.y) other_vec = Vector2D(other.x, other.y) return vec.get_vector_and_magnitude(other_vec) def as_carla_location(self): """Retrieves the location as a carla location instance. Returns: carla.Location: Instance representing the location. """ import carla return carla.Location(self.x, self.y, self.z) def __repr__(self): return self.__str__() def __str__(self): return 'Location(x={}, y={}, z={})'.format(self.x, self.y, self.z) class Transform(object): """A class that stores the location and rotation of an obstacle. It can be created from a carla.Transform, defines helper functions needed in Pylot, and makes the carla.Transform serializable. A transform object is instantiated with either a location and a rotation, or using a matrix. Args: location (:py:class:`.Location`, optional): The location of the object represented by the transform. rotation (:py:class:`.Rotation`, optional): The rotation (in degreers) of the object represented by the transform. matrix: The transformation matrix used to convert points in the 3D coordinate space with respect to the location and rotation of the given object. Attributes: location (:py:class:`.Location`): The location of the object represented by the transform. rotation (:py:class:`.Rotation`): The rotation (in degreers) of the object represented by the transform. forward_vector (:py:class:`.Vector3D`): The forward vector of the object represented by the transform. matrix: The transformation matrix used to convert points in the 3D coordinate space with respect to the location and rotation of the given object. """ def __init__(self, location=None, rotation=None, matrix=None): if matrix is not None: self.matrix = matrix self.location = Location(matrix[0, 3], matrix[1, 3], matrix[2, 3]) # Forward vector is retrieved from the matrix. self.forward_vector = Vector3D(self.matrix[0, 0], self.matrix[1, 0], self.matrix[2, 0]) pitch_r = math.asin(self.forward_vector.z) yaw_r = math.acos( np.clip(self.forward_vector.x / math.cos(pitch_r), -1, 1)) roll_r = math.asin(matrix[2, 1] / (-1 * math.cos(pitch_r))) self.rotation = Rotation(math.degrees(pitch_r), math.degrees(yaw_r), math.degrees(roll_r)) else: self.location, self.rotation = location, rotation self.matrix = Transform._create_matrix(self.location, self.rotation) # Forward vector is retrieved from the matrix. self.forward_vector = Vector3D(self.matrix[0, 0], self.matrix[1, 0], self.matrix[2, 0]) @classmethod def from_carla_transform(cls, transform): """Creates a pylot transform from a carla transform. Args: transform (carla.Transform): Carla transform. Returns: :py:class:`.Transform`: An instance of a pylot transform. """ import carla if not isinstance(transform, carla.Transform): raise ValueError('transform should be of type carla.Transform') return cls(Location.from_carla_location(transform.location), Rotation.from_carla_rotation(transform.rotation)) @staticmethod def _create_matrix(location, rotation): """Creates a transformation matrix to convert points in the 3D world coordinate space with respect to the object. Use the transform_points function to transpose a given set of points with respect to the object. Args: location (:py:class:`.Location`): The location of the object represented by the transform. rotation (:py:class:`.Rotation`): The rotation of the object represented by the transform. Returns: A 4x4 numpy matrix which represents the transformation matrix. """ matrix = np.identity(4) cy = math.cos(np.radians(rotation.yaw)) sy = math.sin(np.radians(rotation.yaw)) cr = math.cos(np.radians(rotation.roll)) sr = math.sin(np.radians(rotation.roll)) cp = math.cos(np.radians(rotation.pitch)) sp = math.sin(np.radians(rotation.pitch)) matrix[0, 3] = location.x matrix[1, 3] = location.y matrix[2, 3] = location.z matrix[0, 0] = (cp * cy) matrix[0, 1] = (cy * sp * sr - sy * cr) matrix[0, 2] = -1 * (cy * sp * cr + sy * sr) matrix[1, 0] = (sy * cp) matrix[1, 1] = (sy * sp * sr + cy * cr) matrix[1, 2] = (cy * sr - sy * sp * cr) matrix[2, 0] = (sp) matrix[2, 1] = -1 * (cp * sr) matrix[2, 2] = (cp * cr) return matrix def __transform(self, points, matrix): """Internal function to transform the points according to the given matrix. This function either converts the points from coordinate space relative to the transform to the world coordinate space (using self.matrix), or from world coordinate space to the space relative to the transform (using inv(self.matrix)) Args: points: An n by 3 numpy array, where each row is the (x, y, z) coordinates of a point. matrix: The matrix of the transformation to apply. Returns: An n by 3 numpy array of transformed points. """ # Needed format: [[X0,..Xn],[Y0,..Yn],[Z0,..Zn]]. # So let's transpose the point matrix. points = points.transpose() # Add 1s row: [[X0..,Xn],[Y0..,Yn],[Z0..,Zn],[1,..1]] points = np.append(points, np.ones((1, points.shape[1])), axis=0) # Point transformation (depends on the given matrix) points = np.dot(matrix, points) # Get all but the last row in array form. points = np.asarray(points[0:3].transpose()) return points def transform_points(self, points): """Transforms the given set of points (specified in the coordinate space of the current transform) to be in the world coordinate space. For example, if the transform is at location (3, 0, 0) and the location passed to the argument is (10, 0, 0), this function will return (13, 0, 0) i.e. the location of the argument in the world coordinate space. Args: points: A (number of points) by 3 numpy array, where each row is the (x, y, z) coordinates of a point. Returns: An n by 3 numpy array of transformed points. """ return self.__transform(points, self.matrix) def inverse_transform_points(self, points): """Transforms the given set of points (specified in world coordinate space) to be relative to the given transform. For example, if the transform is at location (3, 0, 0) and the location passed to the argument is (10, 0, 0), this function will return (7, 0, 0) i.e. the location of the argument relative to the given transform. Args: points: A (number of points) by 3 numpy array, where each row is the (x, y, z) coordinates of a point. Returns: An n by 3 numpy array of transformed points. """ return self.__transform(points, np.linalg.inv(self.matrix)) def transform_locations(self, locations): """Transforms the given set of locations (specified in the coordinate space of the current transform) to be in the world coordinate space. This method has the same functionality as transform_points, and is provided for convenience; when dealing with a large number of points, it is advised to use transform_points to avoid the slow conversion between a numpy array and list of locations. Args: points (list(:py:class:`.Location`)): List of locations. Returns: list(:py:class:`.Location`): List of transformed points. """ points = np.array([loc.as_numpy_array() for loc in locations]) transformed_points = self.__transform(points, self.matrix) return [Location(x, y, z) for x, y, z in transformed_points] def inverse_transform_locations(self, locations): """Transforms the given set of locations (specified in world coordinate space) to be relative to the given transform. This method has the same functionality as inverse_transform_points, and is provided for convenience; when dealing with a large number of points, it is advised to use inverse_transform_points to avoid the slow conversion between a numpy array and list of locations. Args: points (list(:py:class:`.Location`)): List of locations. Returns: list(:py:class:`.Location`): List of transformed points. """ points = np.array([loc.as_numpy_array() for loc in locations]) transformed_points = self.__transform(points, np.linalg.inv(self.matrix)) return [Location(x, y, z) for x, y, z in transformed_points] def as_carla_transform(self): """Converts the transform to a carla transform. Returns: carla.Transform: Instance representing the current Transform. """ import carla return carla.Transform( carla.Location(self.location.x, self.location.y, self.location.z), carla.Rotation(pitch=self.rotation.pitch, yaw=self.rotation.yaw, roll=self.rotation.roll)) def get_vector_magnitude_angle(self, target_loc): """Computes distance and relative angle between the transform and a target location. Args: target_loc (:py:class:`.Location`): Location of the target. Returns: Tuple of distance to the target and the angle """ target_vec, magnitude = target_loc.get_vector_and_magnitude( self.location) if magnitude > 0: forward_vector = Vector2D( math.cos(math.radians(self.rotation.yaw)), math.sin(math.radians(self.rotation.yaw))) angle = target_vec.get_angle(forward_vector) else: angle = 0 return (target_vec, magnitude, angle) def is_within_distance_ahead(self, dst_loc, max_distance): """Checks if a location is within a distance. Args: dst_loc (:py:class:`.Location`): Location to compute distance to. max_distance (:obj:`float`): Maximum allowed distance. Returns: bool: True if other location is within max_distance. """ _, norm_dst, d_angle = self.get_vector_magnitude_angle(dst_loc) # Return if the vector is too small. if norm_dst < 0.001: return True # Return if the vector is greater than the distance. if norm_dst > max_distance: return False return d_angle < 90.0 def __mul__(self, other): new_matrix = np.dot(self.matrix, other.matrix) return Transform(matrix=new_matrix) def __repr__(self): return self.__str__() def __str__(self): if self.location: return "Transform(location: {}, rotation: {})".format( self.location, self.rotation) else: return "Transform({})".format(str(self.matrix)) class Pose(object): """Class used to wrap ego-vehicle information. Args: transform (:py:class:`~pylot.utils.Transform`): Transform of the ego vehicle. forward_speed (:obj:`int`): Forward speed in m/s. velocity_vector (:py:class:`~pylot.utils.Vector3D`): Velocity vector in world frame Attributes: transform (:py:class:`~pylot.utils.Transform`): Transform of the ego vehicle. forward_speed (:obj:`int`): Forward speed in m/s. velocity_vector (:py:class:`~pylot.utils.Vector3D`): Velocity vector in world frame """ def __init__(self, transform, forward_speed, velocity_vector=None): if not isinstance(transform, Transform): raise ValueError( 'transform should be of type pylot.utils.Transform') self.transform = transform # Forward speed in m/s. self.forward_speed = forward_speed self.velocity_vector = velocity_vector def __repr__(self): return self.__str__() def __str__(self): return "Pose(transform: {}, forward speed: {}, velocity vector: {})"\ .format(self.transform, self.forward_speed, self.velocity_vector) class LaneMarkingColor(Enum): """ Enum that defines the lane marking colors according to OpenDrive 1.4. The goal of this enum is to make sure that lane colors are correctly propogated from Carla to Pylot. """ WHITE = 0 BLUE = 1 GREEN = 2 RED = 3 YELLOW = 4 OTHER = 5 class LaneMarkingType(Enum): """ Enum that defines the lane marking types according to OpenDrive 1.4. The goal of this enum is to make sure that lane markings are correctly propogated from Carla to Pylot. """ OTHER = 0 BROKEN = 1 SOLID = 2 SOLIDSOLID = 3 SOLIDBROKEN = 4 BROKENSOLID = 5 BROKENBROKEN = 6 BOTTSDOTS = 7 GRASS = 8 CURB = 9 NONE = 10 class LaneChange(Enum): """ Enum that defines the permission to turn either left, right, both or none for a given lane. The goal of this enum is to make sure that the lane change types are correctly propogated from Carla to Pylot. """ NONE = 0 RIGHT = 1 LEFT = 2 BOTH = 3 class LaneType(Enum): """ Enum that defines the type of the lane according to OpenDrive 1.4. The goal of this enum is to make sure that the lane change types are correctly propogated from Carla to Pylot. """ NONE = 1 DRIVING = 2 STOP = 4 SHOULDER = 8 BIKING = 16 SIDEWALK = 32 BORDER = 64 RESTRICTED = 128 PARKING = 256 BIDIRECTIONAL = 512 MEDIAN = 1024 SPECIAL1 = 2048 SPECIAL2 = 4096 SPECIAL3 = 8192 ROADWORKS = 16384 TRAM = 32768 RAIL = 65536 ENTRY = 131072 EXIT = 262144 OFFRAMP = 524288 ONRAMP = 1048576 ANY = 4294967294 class LaneMarking(object): """ Used to represent a lane marking. Args: marking_color (:py:class:`carla.LaneMarkingColor`): The color of the lane marking. marking_type (:py:class:`carla.LaneMarkingType`): The type of the lane marking. lane_change (:py:class:`carla.LaneChange`): The type that defines the permission to either turn left, right, both or none. Attributes: marking_color (:py:class:`.LaneMarkingColor`): The color of the lane marking marking_type (:py:class:`.LaneMarkingType`): The type of the lane marking. lane_change (:py:class:`.LaneChange`): The type that defines the permission to either turn left, right, both or none. """ def __init__(self, marking_color, marking_type, lane_change): self.marking_color = LaneMarkingColor(marking_color) self.marking_type = LaneMarkingType(marking_type) self.lane_change = LaneChange(lane_change) @classmethod def from_carla_lane_marking(cls, lane_marking): """Creates a pylot LaneMarking from a CARLA lane marking. Args: lane_marking (:py:class:`carla.LaneMarking`): An instance of a CARLA lane marking. Returns: :py:class:`.LaneMarking`: A pylot lane-marking. """ return cls(lane_marking.color, lane_marking.type, lane_marking.lane_change) def __repr__(self): return self.__str__() def __str__(self): return "LaneMarking(color: {}, type: {}, change: {})".format( self.marking_color, self.marking_type, self.lane_change) def add_timestamp(image_np, timestamp): """Adds a timestamp text to an image np array. Args: image_np: A numpy array of the image. timestamp (:obj:`int`): The timestamp of the image. """ import cv2 txt_font = cv2.FONT_HERSHEY_SIMPLEX timestamp_txt = '{}'.format(timestamp) # Put timestamp text. cv2.putText(image_np, timestamp_txt, (5, 15), txt_font, 0.5, (0, 0, 0), thickness=1, lineType=cv2.LINE_AA) def get_top_down_transform(transform, top_down_lateral_view): # Height calculation relies on the fact that the camera's FOV is 90. top_down_location = (transform.location + Location(0, 0, top_down_lateral_view)) return Transform(top_down_location, Rotation(-90, 0, 0)) def time_epoch_ms(): """Get current time in milliseconds.""" return int(time.time() * 1000) def set_tf_loglevel(level): """To be used to suppress TensorFlow logging.""" import logging import os if level >= logging.FATAL: os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' if level >= logging.ERROR: os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' if level >= logging.WARNING: os.environ['TF_CPP_MIN_LOG_LEVEL'] = '1' else: os.environ['TF_CPP_MIN_LOG_LEVEL'] = '0' logging.getLogger('tensorflow').setLevel(level) def create_pygame_display(width, height): global PYGAME_DISPLAY import pygame PYGAME_DISPLAY = pygame.display.set_mode((width, height))
import datetime from django.db import models from django.utils import timezone from django.utils.translation import ugettext_lazy as _ from django.contrib.auth.models import User class Question(models.Model): question_text = models.CharField(max_length=500) pub_date = models.DateTimeField('date published') def __str__(self): return self.question_text class Choice(models.Model): question = models.ForeignKey(Question, on_delete=models.CASCADE) choice_text = models.CharField(max_length=200) def __str__(self): return self.choice_text class Answer(models.Model): class Importance(models.IntegerChoices): NOT_IMPORTANT = 0, _('doesn\'t matter at all') SLIGHTLY = 1, _('a little') MEDIUM = 50, _('average') VERY_IMPORTANT = 250, _('very important') MANDATORY = 300, _('mandatory') user = models.ForeignKey(User, on_delete=models.CASCADE) question = models.ForeignKey(Question, on_delete=models.CASCADE) answer_self = models.ForeignKey(Choice, on_delete=models.CASCADE, null=True) answer_other = models.ManyToManyField(Choice, related_name='answer_other') importance = models.IntegerField(choices=Importance.choices, default=50) public_self = models.BooleanField(default=False) public_other = models.BooleanField(default=False) answer_date = models.DateTimeField('date answered', default=timezone.now) def __str__(self): return f'{self.user.username}: {self.question.question_text}' class Matching(models.Model): user = models.ForeignKey(User, on_delete=models.CASCADE) other_user = models.ForeignKey(User, on_delete=models.CASCADE, related_name='other_user') forward_score = models.DecimalField(default=0, decimal_places=1, max_digits=5) backward_score = models.DecimalField(default=0, decimal_places=1, max_digits=5) combined_score = models.DecimalField(default=0, decimal_places=1, max_digits=5)
class RevStr(str): def __iter__(self): return ItRevStr(self) class ItRevStr: def __init__(self, chaine_a_parcourir): self.chaine_a_parcourir=chaine_a_parcourir self.position=len(self.chaine_a_parcourir) def __next__(self): if self.position==0: raise StopIteration self.position-=1 return self.chaine_a_parcourir[self.position]
import json from gzip import ( compress, decompress ) import numpy as np from slovnet.record import Record from slovnet.tar import Tar, DumpTar from slovnet.vocab import Vocab PROTOCOL = 1 META = 'meta.json' MODEL = 'model.json' class Meta(Record): __attributes__ = ['id', 'protocol'] def __init__(self, id, protocol=PROTOCOL): self.id = id self.protocol = protocol def check_protocol(self): if self.protocol != PROTOCOL: raise ValueError('Expected protocol=%r, got %r' % (PROTOCOL, self.protocol)) ####### # # ARRAY # ####### def array_name(id): return 'arrays/%d.bin' % id def array_bytes(array): return array.tobytes() def bytes_array(bytes, shape, dtype): return np.frombuffer(bytes, dtype).reshape(shape) ###### # # VOCAB # ####### def vocab_name(id): return 'vocabs/%s.gz' % id def vocab_bytes(vocab): content = '\n'.join(vocab.items) bytes = content.encode('utf8') return compress(bytes) def bytes_vocab(bytes): content = decompress(bytes).decode('utf8') items = content.splitlines() return Vocab(items) ###### # # PACK # ######## def json_bytes(data): content = json.dumps(data, ensure_ascii=False, indent=2) return content.encode('utf8') def bytes_json(bytes): return json.loads(bytes.decode('utf8')) class Pack(Tar): def load_record(self, name, Record): bytes = self.read(name) data = bytes_json(bytes) return Record.from_json(data) def load_meta(self): return self.load_record(META, Meta) def load_model(self, Model): return self.load_record(MODEL, Model) def load_arrays(self, weights): for weight in weights: if not weight.is_id: continue shape, dtype, id = weight name = array_name(id) bytes = self.read(name) yield id, bytes_array(bytes, shape, dtype) def load_vocab(self, id): name = vocab_name(id) bytes = self.read(name) return bytes_vocab(bytes) class DumpPack(DumpTar): def dump_record(self, record, name): bytes = json_bytes(record.as_json) self.write(bytes, name) def dump_meta(self, meta): self.dump_record(meta, META) def dump_model(self, model): self.dump_record(model, MODEL) def dump_arrays(self, arrays): for id, array in arrays.items(): name = array_name(id) bytes = array_bytes(array) self.write(bytes, name) def dump_vocab(self, vocab, id): name = vocab_name(id) bytes = vocab_bytes(vocab) self.write(bytes, name)
import os from datetime import datetime, timedelta def create_folder_if_needed(path): if not os.path.exists(path): os.makedirs(path) def format_time(hour: int, minute: int) -> str: """Turns hours and minutes to a string with the format 'HH:MM'. Assumes 24h clock""" return f"{str(hour).rjust(2, '0')}:{str(minute).rjust(2, '0')}" def time_now_with_tz(tz): """Timezone aware clock""" assert tz is not None now = datetime.utcnow() + timedelta(hours=tz) return format_time(now.hour, now.minute) def offset_format(utc_offset): """Display + or - in front of UTC offset number""" return str(utc_offset) if utc_offset < 0 else f"+{str(utc_offset)}"
from codecs import open from setuptools import setup, find_packages with open('README.rst', encoding='utf-8') as f: long_description = f.read() setup( name='blog.kottenator.com', version='0.5.0.dev1', description='Super simple blog engine', long_description=long_description, url='https://github.com/kottenator/blog.kottenator.com', author='Rostyslav Bryzgunov', author_email='kottenator@gmail.com', license='MIT', packages=find_packages('src'), package_dir={'': 'src'}, scripts=['bin/manage.py'], install_requires=[ 'Django~=1.10.0', 'Pillow~=3.4', 'settings-overrider~=0.5', 'django-compressor~=2.0', 'django-compressor-toolkit~=0.5' ], extras_require={ 'dev': ['check-manifest'], 'docs': ['Sphinx'], 'test': [ 'pytest~=3.0', 'pytest-django~=3.0', 'pytest-cov~=2.4' ] }, classifiers=[ 'Framework :: Django', 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Operating System :: OS Independent', 'Programming Language :: Python :: 3' ] )
# Imports from 3rd party libraries import dash import dash_bootstrap_components as dbc import dash_core_components as dcc import dash_html_components as html from dash.dependencies import Input, Output import plotly.express as px # Imports from this application from app import app # 2 column layout. 1st column width = 4/12 # https://dash-bootstrap-components.opensource.faculty.ai/l/components/layout column1 = dbc.Col( [ dcc.Markdown( """ ## 🤑 How much could you make? Imagine you work as a delivery driver for Domino's Pizza. (I know -- the best job ever!) You are paid a direct wage, but most of your earnings are received in tips. Does your income depend solely on your excellent service and the generosity of your customers? Or can we optimize your earnings by planning out your work schedule? You can use this interactive app to predict your daily take home tips. Then once you're done, you'll be ready to join the team! """ ), dcc.Link(dbc.Button("Let's try!", color='primary'), href='/predictions', className='mb-2'), dcc.Markdown("&nbsp; "), dcc.Markdown( """ >> Ready to apply? &raquo; [jobs.Dominos](https://jobs.dominos.com/dominos-careers/) """ ) ], md=6, ) gapminder = px.data.gapminder() fig = px.scatter(gapminder.query("year==2007"), x="gdpPercap", y="lifeExp", size="pop", color="continent", hover_name="country", log_x=True, size_max=60) column2 = dbc.Col( [ #dcc.Graph(figure=fig), html.Img(src='assets/domino.jpg', className='img-fluid', height="500", width="300"), ] ) layout = dbc.Row([column1, column2])
PRM_Header = [ 'Mass [m/z]', # MS1 m/z 'Formula [M]', 'Formula type', 'Species', 'CS [z]', # Integer 'Polarity', # "Positive" 'Start [min]', 'End [min]', '(N)CE', '(N)CE type', 'MSX ID', 'Comment', ]
import utils utils.prepare_test_resources()
def format(number, total=7, decimal=4): return "{{: {0}.{1}f}}".format(total, decimal).format(number) def formatInt(number, spaces=4): return '{{:{0}d}}'.format(spaces).format(number) import math s = 1/8 tot = 0 steps = [] while tot <=1: steps.append(tot) tot += s size = 10 for step in steps: x = size * math.cos(step * 2 * math.pi) y = 2 z = -size * math.sin(step * 2 * math.pi) print(f"{{x: {format(x)}, y: {format(y)}, z: {format(z)}}},")
__all__ = ["network_common", "network_tests" ]
import numpy as np import pandas as pd from sklearn.model_selection import train_test_split from tensorflow.keras.utils import to_categorical from tensorflow.keras import Sequential from tensorflow.keras.layers import Dense, Activation, Dropout from sklearn.metrics import confusion_matrix, classification_report import os cwd = os.path.dirname(os.path.realpath(__file__)) finalAudioPath = os.path.join(cwd + '\\finalAudio', 'audio.csv') def trainData(modelPath=os.path.join(cwd + '\\savedModel', 'model.h5')): """ This function will make a model of the data that has been preprocessed. """ df = pd.read_pickle(finalAudioPath) x = df["feature"].values x = np.concatenate(x, axis=0).reshape(len(x), 40) y = np.array(df["classLabel"].tolist()) y = to_categorical(y) xTrain, xTest, yTrain, yTest = train_test_split(x, y, test_size=0.2, random_state=42) model = Sequential([ Dense(256, input_shape=xTrain[0].shape), Activation('relu'), Dropout(0.5), Dense(256), Activation('relu'), Dropout(0.5), Dense(2, activation='softmax') ]) print(model.summary()) model.compile( loss="categorical_crossentropy", optimizer='adam', metrics=['accuracy'] ) print("Model Score: \n") model.fit(xTrain, yTrain, epochs=1000) model.save(modelPath) score = model.evaluate(xTest, yTest) print(score) print("Model Classification Report: \n") yPred = np.argmax(model.predict(xTest), axis=1) print(confusion_matrix(np.argmax(yTest, axis=1), yPred)) print(classification_report(np.argmax(yTest, axis=1), yPred))
from webbot import Browser from baixar import baixar import time # Ativo o navegador e entro no site do detran web = Browser() web.go_to('https://acesso.detran.mg.gov.br/veiculos/leiloes/editais') configuracao = input("Configurou? S/n: ") i = 0 parar = False # Variavel de Parada do while texto_array = [] print("\n---------- Sistema de Downloads de Tabela de veiculos -------------\n") print("Processando quantidade de leiloes.....") bd_principal = web.find_elements( tag='div', classname='pd-subcategory') # Carregar divs print("..... Procesamento Finalizado com Sucesso\n") contador = len(bd_principal) print('O numero de leiloes: {}\n'.format(contador)) contador_aux = contador - 1 for y in range(contador_aux): texto = bd_principal[y].text # INICIO - Tirada do texto de small x = texto.split() x.pop() texto = ' '.join(x) # FIM - Tirada do texto de small texto_array.append(texto) print('----------------------- Iniciando Sistema ---------------------------\n') while(parar == False): web.click(texto_array[i], tag='a') baixar(web) web.click('Editais de Leilões', tag='a') ################## Condição de parada ############################ if texto_array[i].find('/2014') == -1: i += 1 print(i) else: # Fechar Guia # web.close_current_tab() parar = True # Parar while
from .mobilenet_pretrained import mobilenet_v2 from .resnet_pretrained import resnet18, resnet34, resnet50, resnet101, resnet152, resnext50_32x4d, resnext101_32x8d from .squeezenet_pretrained import squeezenet1_0, squeezenet1_1
""" Semi-Quantum Conference Key Agreement (SQCKA) Author: - Ruben Andre Barreiro (r.barreiro@campus.fct.unl.pt) Supervisors: - Andre Nuno Souto (ansouto@fc.ul.pt) - Antonio Maria Ravara (aravara@fct.unl.pt) Acknowledgments: - Paulo Alexandre Mateus (pmat@math.ist.utl.pt) """ # Class of Utilities class Utilities: # Compute the Hamming Weight of a given Binary String @staticmethod def compute_hamming_weight(binary_string): # Initialise the Hamming Weight hamming_weight = 0 # For each bit (binary digit) for current_bit in range(len(binary_string)): # If the current bit (binary digit) is set to 1 if binary_string[current_bit] == "1": # Increase the Hamming Weight hamming_weight += 1 # Return the computed Hamming Weight return hamming_weight
from astropy.table import QTable, join from collections import defaultdict from DRE.misc.read_catalog import cat_to_table import os class Summary: def __init__(self, name): self.name = name self.parameters = defaultdict(list) self.row_idx = 0 def append(self, params): self.parameters['ROW'].append(self.row_idx) self.row_idx += 1 for key, value in params.items(): self.parameters[key].append(value) def save(self, save_dir='Summary', catalogs_dir='Sextracted'): os.makedirs(save_dir, exist_ok=True) table = QTable(self.parameters) if table: if os.path.isdir(os.path.join(catalogs_dir)): if os.path.isdir(os.path.join(catalogs_dir, self.name)): cat_file = os.path.join(catalogs_dir, self.name, f"{self.name}_cat.fits") else: cat_file = os.path.join(catalogs_dir, f"{self.name}_cat.fits") table = join(table, cat_to_table(cat_file), join_type='inner') if 'VIGNET' in table.colnames: table.remove_column('VIGNET') else: print(f"Warning: Can't find catalogs in {catalogs_dir}") table.write(os.path.join(save_dir, f"{self.name}_dre.fits"), overwrite=True)
from future.utils import python_2_unicode_compatible @python_2_unicode_compatible class LazyStr: def __init__(self, fn): self.fn = fn def __str__(self): return self.fn() def parse_list(s, sep=','): s = s.strip() if not s: return [] return [item.strip() for item in s.split(sep)]
"""This module contains `docker image rm` class""" from docker.errors import APIError from .command import Command class Rm(Command): """This class implements `docker image rm` command""" name = "image rm" require = [] def __init__(self): Command.__init__(self) self.settings[self.name] = None def eval_command(self, args): try: Images = [] images = args['images'] del args['images'] for Image in images: Images.append(Image) args['image'] = Image self.client.remove_image(**args) del args['image'] self.settings[self.name] = '\n'.join(Images) except APIError as e: raise e def final(self): return self.settings[self.name]
from datetime import datetime from django.core.management.base import BaseCommand from plugins.polio.models import Campaign, Preparedness from plugins.polio.preparedness.calculator import get_preparedness_score from plugins.polio.preparedness.parser import ( get_national_level_preparedness, get_regional_level_preparedness, open_sheet_by_url, ) from logging import getLogger logger = getLogger(__name__) class Command(BaseCommand): help = "" def handle(self, *args, **options): started_at = datetime.now() campaigns_with_spreadsheet = Campaign.objects.only("id", "preperadness_spreadsheet_url").filter( preperadness_spreadsheet_url__isnull=False ) campaigns_with_spreadsheet.update(preperadness_sync_status="QUEUED") logger.info(campaigns_with_spreadsheet) for campaign in campaigns_with_spreadsheet: campaign.preperadness_sync_status = "ONGOING" campaign.save() print(f"Campaign {campaign.pk} refresh started") try: sheet = open_sheet_by_url(campaign.preperadness_spreadsheet_url) preparedness_data = { "national": get_national_level_preparedness(sheet), **get_regional_level_preparedness(sheet), } preparedness_data["totals"] = get_preparedness_score(preparedness_data) preparedness = Preparedness.objects.create( campaign=campaign, spreadsheet_url=campaign.preperadness_spreadsheet_url, national_score=preparedness_data["totals"]["national_score"], district_score=preparedness_data["totals"]["district_score"], regional_score=preparedness_data["totals"]["regional_score"], payload=preparedness_data, ) print(f"Campaign {campaign.pk} refreshed") print(preparedness) campaign.preperadness_sync_status = "FINISHED" campaign.save() except Exception as e: logger.error(f"Campaign {campaign.pk} refresh failed") logger.exception(e) campaign.preperadness_sync_status = "FAILURE" campaign.save() finished_at = datetime.now() print( f""" Started at: {started_at} Finished at: {finished_at} Duration in seconds: {(finished_at - started_at).total_seconds()} """ )
# -*- coding: utf-8 -*- """ biothings_explorer.dispatcher ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ This module contains code that biothings_explorer use to communicate to and receive from APIs. It serves as a glue between "apicall" module and "api_output_parser" module. """ from .json_transformer import Transformer class OutputParser(): def __init__(self, res, mapping, batch_mode=False, api=None): self.api = api self.response = res self.mapping = mapping self.batch_mode = batch_mode self.BIOTHINGS = ['mygene.info', 'myvariant.info', 'mychem.info', 'mydisease.info', 'semmeddisease', 'semmedanatomy', 'semmedbp', 'semmedchemical', 'semmedgene', 'semmedphenotype', 'bp', 'cc', 'mf', 'pathway', 'umlschem'] def parse_biothings_get_res(self): """Parse the API response from biothings API using GET method""" if self.response['total'] == 0: return None else: new_res = {} for _res in self.response['hits']: transformed_json = Transformer(_res, self.mapping).transform() if type(transformed_json) == dict: for k, v in transformed_json.items(): if k in ["@context", "@type"]: new_res[k] = v else: if k not in new_res: new_res[k] = [] if type(v) == list: new_res[k] += v else: new_res[k].append(v) else: continue return new_res def parse_biothings_post_res(self): """Parse the API response from biothings API using POST method""" new_res = {} for _res in self.response: if type(_res) != dict: continue # handle case where the queried item is not found elif _res.get('notfound'): # check if the item is already in final res if _res['query'] in new_res: continue else: new_res[_res['query']] = {} else: transformed_json = Transformer(_res, self.mapping).transform() if _res['query'] not in new_res: new_res[_res['query']] = transformed_json else: if type(transformed_json) == dict: for k, v in transformed_json.items(): if k in ["@context", "@type"]: new_res[_res['query']][k] = v else: if k not in new_res[_res['query']]: new_res[_res['query']][k] = [] if type(v) == list: new_res[_res['query']][k] += v else: new_res[_res['query']][k].append(v) return dict(new_res) def parse(self): if not self.response: return None # parse the results from BioThings APIs if self.api in self.BIOTHINGS: if self.batch_mode: return self.parse_biothings_post_res() else: return self.parse_biothings_get_res() # parse the results from non-BioThings APIs else: return Transformer(self.response, self.mapping).transform()
import logging from rest_framework import serializers from helium.feed.models import ExternalCalendar from helium.feed.services import icalexternalcalendarservice from helium.feed.services.icalexternalcalendarservice import HeliumICalError __author__ = "Alex Laird" __copyright__ = "Copyright 2021, Helium Edu" __version__ = "1.4.46" logger = logging.getLogger(__name__) class ExternalCalendarSerializer(serializers.ModelSerializer): class Meta: model = ExternalCalendar fields = ('id', 'title', 'url', 'color', 'shown_on_calendar', 'user',) read_only_fields = ('user',) def validate(self, attrs): """ Ensure a valid ICAL URL is given. If not, disable the calendar. :param attrs: the data to be saved :return: the validated data """ url = attrs.get('url', None) if not url and self.instance: url = self.instance.url if url and (not self.instance or (self.instance and url != self.instance.url)): try: icalexternalcalendarservice.validate_url(url) except HeliumICalError: logger.info(f"Unable to validate external ICAL URL {url}, so disabling the calendar.") if self.instance: self.instance.shown_on_calendar = False self.instance.save() attrs['shown_on_calendar'] = False return attrs
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ @author: Pranay S. Yadav """ from hypno import read_raw_hypnogram, load_hypnogram, resample_hypnogram from cycle_detection import detect_cycles, update_hypnogram_cycles from visualize import plot_hypnogram, save_hypnogram_plot
import datetime import random import uuid import requests # basically everything in this file was generated by CoPilot ! def main(): print('Hello World') dt = get_datetime() print(f'The time and date is {dt}') print('The random number is {rn}'.format(rn=get_random_number())) print('The string "Hello World" in all caps is {uc}'.format(uc=to_upper('Hello World'))) print('The uuid is {uuid}'.format(uuid=generate_uuid())) print('A joke: {joke}'.format(joke=get_joke())) print('The temperature in Bristol is {temp}'.format(temp=get_bbc_temperature())) print('A headline: {headline}'.format(headline=get_bbc_headline())) print('The sorted numbers are {numbers}'.format(numbers=sort_numbers())) print('The name of my new puppy is {name}'.format(name=get_puppy_name())) print('The TV show Succession info is {info}'.format(info=get_tv_show_info())) print('The xml is {xml}'.format(xml=generate_xml())) # a function that returns the current datetime def get_datetime(): return datetime.datetime.now() # a function that returns a random number between 1 and 500 def get_random_number(): return random.randint(1, 500) # a function that turns a string to all caps def to_upper(string): return string.upper() # generate a uuid def generate_uuid(): return str(uuid.uuid4()) # get a random joke from the web using a web service def get_joke(): url = 'https://sv443.net/jokeapi/v2/joke/Any' response = requests.get(url) # if response json has joke property, return it if 'joke' in response.json(): return response.json()['joke'] # if response has setup and delivery properties, return them elif 'setup' in response.json() and 'delivery' in response.json(): return response.json()['setup'] + ' ' + response.json()['delivery'] # else return empty string else: return '' # get the current temperature in Bristol, UK def get_temperature(): url = 'http://api.openweathermap.org/data/2.5/weather?q=Bristol,uk&appid=b6907d289e10d714a6e88b30761fae22' response = requests.get(url) return response.json()['main']['temp'] # scrape the bbc website for the current temperature in Bristol UK def get_bbc_temperature(): url = 'https://www.bbc.co.uk/weather/2654675' response = requests.get(url) return response.text.split('<span class="wr-value--temperature">')[1].split('</span>')[0] # scrape the bbc news website for a random headline def get_bbc_headline(): url = 'https://www.bbc.co.uk/news' response = requests.get(url) return response.text.split('<h3 class="gs-c-promo-heading__title gel-pica-bold nw-o-link-split__text">')[1].split('</h3>')[0] # implement a quick sort of a list of numbers def quick_sort(numbers): if len(numbers) <= 1: return numbers else: pivot = numbers[0] less = [i for i in numbers[1:] if i <= pivot] greater = [i for i in numbers[1:] if i > pivot] return quick_sort(less) + [pivot] + quick_sort(greater) # generate a list of 100 random numbers and sort it using quick sort def sort_numbers(): numbers = [random.randint(1, 500) for i in range(100)] return quick_sort(numbers) # return a good name for my new puppy def get_puppy_name(): return 'Fido' # get information for the TV show Succession from wikipedia def get_tv_show_info(): url = 'https://en.wikipedia.org/wiki/Succession_(TV_series)' response = requests.get(url) return response.text.split('<p>')[1].split('</p>')[0] # generate some json, and then turn it into xml def generate_xml(): json = { 'name': 'John Doe', 'age': '42', 'address': { 'street': '123 Main St', 'city': 'Bristol', 'state': 'CT' }, 'phone_numbers': [ '555-123-4567', '555-987-6543' ] } xml = '<person>\n' for key, value in json.items(): if isinstance(value, dict): xml += '<{0}>\n'.format(key) for subkey, subvalue in value.items(): xml += '<{0}>{1}</{0}>\n'.format(subkey, subvalue) xml += '</{0}>\n'.format(key) else: xml += '<{0}>{1}</{0}>\n'.format(key, value) xml += '</person>' return xml if __name__ == "__main__": main()
"""Adiabatic evolution for the Ising Hamiltonian using linear scaling.""" import os import argparse import json import time import qibo from qibo import callbacks, hamiltonians, models parser = argparse.ArgumentParser() parser.add_argument("--nqubits", default=4, type=int) parser.add_argument("--dt", default=1e-2, type=float) parser.add_argument("--solver", default="exp", type=str) parser.add_argument("--dense", action="store_true") parser.add_argument("--accelerators", default=None, type=str) parser.add_argument("--backend", default="qibotf", type=str) parser.add_argument("--filename", default=None, type=str) def parse_accelerators(accelerators): """Transforms string that specifies accelerators to dictionary. The string that is parsed has the following format: n1device1,n2device2,n3device3,... and is transformed to the dictionary: {'device1': n1, 'device2': n2, 'device3': n3, ...} Example: 2/GPU:0,2/GPU:1 --> {'/GPU:0': 2, '/GPU:1': 2} """ if accelerators is None: return None def read_digit(x): i = 0 while x[i].isdigit(): i += 1 return x[i:], int(x[:i]) acc_dict = {} for entry in accelerators.split(","): device, n = read_digit(entry) if device in acc_dict: acc_dict[device] += n else: acc_dict[device] = n return acc_dict def main(nqubits, dt, solver, backend, trotter=False, accelerators=None, filename=None): """Performs adiabatic evolution with critical TFIM as the "hard" Hamiltonian.""" qibo.set_backend(backend) if accelerators is not None: dense = False solver = "exp" if filename is not None: if os.path.isfile(filename): with open(filename, "r") as file: logs = json.load(file) print("Extending existing logs from {}.".format(filename)) else: print("Creating new logs in {}.".format(filename)) logs = [] else: logs = [] logs.append({ "nqubits": nqubits, "dt": dt, "solver": solver, "trotter": trotter, "backend": qibo.get_backend(), "precision": qibo.get_precision(), "device": qibo.get_device(), "threads": qibo.get_threads(), "accelerators": accelerators }) print(f"Using {solver} solver and dt = {dt}.") print(f"Accelerators: {accelerators}") print("Backend:", logs[-1]["backend"]) start_time = time.time() h0 = hamiltonians.X(nqubits, trotter=trotter) h1 = hamiltonians.TFIM(nqubits, h=1.0, trotter=trotter) logs[-1]["hamiltonian_creation_time"] = time.time() - start_time print(f"\nnqubits = {nqubits}, solver = {solver}") print(f"trotter = {trotter}, accelerators = {accelerators}") print("Hamiltonians created in:", logs[-1]["hamiltonian_creation_time"]) start_time = time.time() evolution = models.AdiabaticEvolution(h0, h1, lambda t: t, dt=dt, solver=solver, accelerators=accelerators) logs[-1]["creation_time"] = time.time() - start_time print("Evolution model created in:", logs[-1]["creation_time"]) start_time = time.time() final_psi = evolution(final_time=1.0) logs[-1]["simulation_time"] = time.time() - start_time print("Simulation time:", logs[-1]["simulation_time"]) if filename is not None: with open(filename, "w") as file: json.dump(logs, file) if __name__ == "__main__": args = vars(parser.parse_args()) args["accelerators"] = parse_accelerators(args.pop("accelerators")) main(**args)
import param import panel as pn PAGES = { "About": pn.pane.Markdown("about " * 2500, sizing_mode="stretch_width", name="About"), "Holoviews": pn.pane.Markdown( "holoviews " * 2500, sizing_mode="stretch_width", name="Holoviews" ), "Plotly": pn.pane.Markdown("plotly " * 2500, sizing_mode="stretch_width", name="Plotly"), } CSS = """\ body { margin: 0px; width: 100vh-500px; } """ def main() -> pn.Pane: pn.config.raw_css.append(CSS) navigator = pn.widgets.RadioBoxGroup(name="RadioBoxGroup", options=list(PAGES)) sidebar = pn.Column(navigator, pn.layout.VSpacer(), width=300, background="lightgray") tabs = pn.layout.Tabs(name="Tabs") content = pn.Column(PAGES["About"], sizing_mode="stretch_both") def page(event): print("---------") print(event) print(PAGES[event.new]) content.clear() content.append(PAGES[event.new]) navigator.param.watch(page, "value") app = pn.Row(sidebar, content, sizing_mode="stretch_both") return app if __name__.startswith("bk_script"): main().servable()
from tkinter import * PROGRAM_NAME = "Footprint Editor" root = Tk() root.geometry('350x350') root.title(PROGRAM_NAME) menu_bar = Menu(root) # menu begins file_menu = Menu(menu_bar, tearoff=0) # all file menu-items will be added here next menu_bar.add_cascade(label='File', menu=file_menu) edit_menu = Menu(menu_bar, tearoff=0) menu_bar.add_cascade(label='Edit', menu=edit_menu) view_menu = Menu(menu_bar, tearoff=0) menu_bar.add_cascade(label='View', menu=view_menu) about_menu = Menu(menu_bar, tearoff=0) menu_bar.add_cascade(label='About', menu=about_menu) root.config(menu=menu_bar) # menu ends root.mainloop()
"""rla_export: Export data from ColoradoRLA to allow public verification of the audit ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Examples -------- With no options, the command will run queries using all the standard .sql files provided in the package, and put the resulting exported data in files in the current directory. ``rla_export`` The optional -p argument specifies connection information via a database properties file, which should be the same file used for the ``java jar`` command line. The output can also optionally be put in a different output directory using the -e argument. ``rla_export [-p properties_file] [-e export_directory]`` Export a query in json and csv format for selected sql files: ``rla_export file.sql ...`` Full command line usage synopsis: ``rla_export -h`` See README.rst for documentation. """ from __main__ import main
from ...core.enum.ea_mode import EAMode from ...core.models.assembly_parameter import AssemblyParameter from ...core.enum import ea_mode_bin from ...core.enum.ea_mode_bin import parse_ea_from_binary from ...simulator.m68k import M68K from ...core.util.split_bits import split_bits from ...core.opcodes.opcode import Opcode from ...core.util import opcode_util from ...core.enum.op_size import OpSize from ..util.parsing import parse_assembly_parameter from ..enum.condition_status_code import ConditionStatusCode from ..models.memory_value import MemoryValue class Ori(Opcode): # Forward declaration pass class Ori(Opcode): """ ORI: Inclusive-OR Operation: Immediate Data V Destination → Destination Syntax: ORI # < data > , < ea > Attributes: Size = (Byte, Word, Long) Description: Performs an inclusive-OR operation on the immediate data and the destination operand and stores the result in the destination location. The size of the operation is specified as byte, word, or long. The size of the immediate data matches the operation size. Condition Codes: X — Not affected. N — Set if the most significant bit of the result is set; cleared otherwise. Z — Set if the result is zero; cleared otherwise. V — Always cleared. C — Always cleared. Size field—Specifies the size of the operation. 00— Byte operation 01— Word operation 10— Long operation Immediate field: —Data immediately following the instruction. If size = 00, the data is the low-order byte of the immediate word. If size = 01, the data is the entire immediate word. If size = 10, the data is the next two immediate words. """ valid_sizes = [OpSize.BYTE, OpSize.WORD, OpSize.LONG] def __init__(self, params: list, size: OpSize=OpSize.WORD): assert len(params) == 2 assert isinstance(params[0], AssemblyParameter) assert isinstance(params[1], AssemblyParameter) # check src param is valid assert params[0].mode == EAMode.IMM self.src = params[0] # check the dest param is valid assert params[1].mode != EAMode.ARD or params[1].mode != EAMode.IMM self.dest = params[1] assert size in Ori.valid_sizes self.size = size def assemble(self) -> bytearray: """ Assembles this opcode into hex to be inserted into memory :return: The hex version of this opcode """ # The first 8 bits are always 0 ret_opcode = 0 if self.size == OpSize.BYTE: ret_opcode |= 0b00 << 6 elif self.size == OpSize.WORD: ret_opcode |= 0b01 << 6 elif self.size == OpSize.LONG: ret_opcode |= 0b10 << 6 ret_opcode |= ea_mode_bin.parse_from_ea_mode_modefirst(self.dest) << 0 ret_bytes = bytearray(ret_opcode.to_bytes(OpSize.WORD.value, byteorder='big', signed=False)) ret_bytes.extend(opcode_util.ea_to_binary_post_op(self.src, self.size).get_value_bytearray()) if self.dest.mode == EAMode.AWA or self.dest.mode == EAMode.ALA: ret_bytes.extend(opcode_util.ea_to_binary_post_op(self.dest, self.size).get_value_bytearray()) return ret_bytes def execute(self, simulator: M68K): """ Executes this command in a simulator :param simulator: The simulator to execute the command on :return: Nothing """ # get the length val_length = self.size.get_number_of_bytes() # get the value of src from the simulator src_val = self.src.get_value(simulator, val_length) # get the value of dest from the simulator dest_val = self.dest.get_value(simulator, val_length) # increment the program counter by the length of the instruction (1 word) to_increment = OpSize.WORD.value # add the length of the size of the operation, in words if self.size is OpSize.BYTE: to_increment += OpSize.WORD.value else: to_increment += self.size.value # repeat for the dest if self.dest.mode in [EAMode.AbsoluteLongAddress]: to_increment += OpSize.LONG.value if self.dest.mode in [EAMode.AbsoluteWordAddress]: to_increment += OpSize.WORD.value result_unsigned = src_val.get_value_unsigned() | dest_val.get_value_unsigned() msb_bit = 0 if self.size is OpSize.BYTE: msb_bit = 0x80 elif self.size is OpSize.WORD: msb_bit = 0x8000 elif self.size is OpSize.LONG: msb_bit = 0x80000000 # set hte FONCKin CCR simulator.set_ccr_reg(None, (msb_bit & result_unsigned != 0), (result_unsigned == 0), False, False) # and set the value self.dest.set_value(simulator, MemoryValue(OpSize.LONG, unsigned_int=result_unsigned)) # set the program counter value simulator.increment_program_counter(to_increment) def __str__(self): return 'Ori command: size {}, src {}, dest {}'.format(self.size, self.src, self.dest) @classmethod def command_matches(cls, command: str) -> bool: """ Checks whether a command string is an instance of this command type :param command: The command string to check (e.g. 'MOVE.B', 'LEA', etc.) :return: Whether the string is an instance of this command type """ return opcode_util.command_matches(command, 'ORI') @classmethod def get_word_length(cls, command: str, parameters: str) -> int: """ >>> Ori.get_word_length('ORI.B', '#$08, D1') 2 >>> Ori.get_word_length('ORI.B', '#$F1, D3') 2 >>> Ori.get_word_length('ORI.W', '#$ABCDE, D0') 2 >>> Ori.get_word_length('ORI.W', '#$000A, ($7000).W') 3 >>> Ori.get_word_length('ORI.L', '#$FFFF7000, ($1234).W') 4 >>> Ori.get_word_length('ORI.L', '#$FFFFFFFF, ($FFFF).L') 5 Gets what the end length of this command will be in memory :param command: The text of the command itself (e.g. "LEA", "MOVE.B", etc.) :param parameters: The parameters after the command :return: The length of the bytes in memory in words, as well as a list of warnings or errors encountered """ parts = command.split('.') # Split the command by period to get the size of the command if len(parts) == 1: # Use the default size size = OpSize.WORD else: size = OpSize.parse(parts[1]) # Split the parameters into EA modes params = parameters.split(',') dest = parse_assembly_parameter(params[1].strip()) length = 1 # Always 1 word not counting additions to end if size == OpSize.LONG: length += 2 # Longs are 2 words long else: length += 1 # This is a word or byte, so only 1 word if dest.mode == EAMode.AWA: # Appends a word length += 1 if dest.mode == EAMode.ALA: # Appends a long, so 2 words length += 2 return length @classmethod def is_valid(cls, command: str, parameters: str) -> (bool, list): """ Tests whether the given command is valid >>> Ori.is_valid('ORI.B', '#$1, D1')[0] True >>> Ori.is_valid('ORI.W', 'A3, D7')[0] False >>> Ori.is_valid('ORI.L', '#$ABCD, D3')[0] True >>> Ori.is_valid('ORI.L', '#$A0008000, D5')[0] True >>> Ori.is_valid('ORR.W', '#AB, D3')[0] False >>> Ori.is_valid('OR.G', 'D0, D7')[0] False :param command: The command itself (e.g. 'MOVE.B', 'LEA', etc.) :param parameters: The parameters after the command (such as the source and destination of a move) :return: Whether the given command is valid and a list of issues/warnings encountered """ return opcode_util.n_param_is_valid(command, parameters, "ORI", 2, param_invalid_modes=[ [EAMode.DRD, EAMode.ARD, EAMode.ARI, EAMode.ARIPI, EAMode.ARIPD, EAMode.AWA, EAMode.ALA] ,[EAMode.ARD, EAMode.IMM]])[:2] @classmethod def disassemble_instruction(cls, data: bytearray) -> Opcode: """ This has a non-ORI opcode >>> Ori.disassemble_instruction(bytearray.fromhex('D280')) ORI.B #0, D1 >>> op = Ori.disassemble_instruction(bytearray.fromhex('00010000')) >>> str(op.src) 'EA Mode: EAMode.IMM, Data: 0' >>> str(op.dest) 'EA Mode: EAMode.DRD, Data: 1' ORI.W #$A000, D0 >>> op = Ori.disassemble_instruction(bytearray.fromhex('0040A000')) >>> str(op.src) 'EA Mode: EAMode.IMM, Data: 40960' >>> str(op.dest) 'EA Mode: EAMode.DRD, Data: 0' ORI.L #$FFFF0000, D7 >>> op = Ori.disassemble_instruction(bytearray.fromhex('0087FFFF0000')) >>> str(op.src) 'EA Mode: EAMode.IMM, Data: 4294901760' >>> str(op.dest) 'EA Mode: EAMode.DRD, Data: 7' ORI.W #$FFFF, ($1234).W >>> op = Ori.disassemble_instruction(bytearray.fromhex('0078FFFF1234')) >>> str(op.src) 'EA Mode: EAMode.IMM, Data: 65535' >>> str(op.dest) 'EA Mode: EAMode.AWA, Data: 4660' Parses some raw data into an instance of the opcode class :param data: The data used to convert into an opcode instance :return: The constructed instance or none if there was an error and the amount of data in words that was used (e.g. extra for immediate data) or 0 for not a match """ assert len(data) >= 2, 'Opcode size is at least one word' first_word = int.from_bytes(data[0:2], 'big') [opcode_bin, size_bin, ea_mode_bin, ea_reg_bin] = split_bits(first_word, [8, 2, 3, 3]) if opcode_bin != 0b00000000: return None # determine the size if size_bin == 0b00: size = OpSize.BYTE elif size_bin == 0b01: size = OpSize.WORD elif size_bin == 0b10: size = OpSize.LONG else: return None # set the source src = parse_ea_from_binary(0b111, 0b100, size, True, data[2:])[0] # set the destination dest = parse_ea_from_binary(ea_mode_bin, ea_reg_bin, size, False, data[4:])[0] return cls([src, dest], size) @classmethod def from_str(cls, command: str, parameters: str): """ Parses a ORI command from text. >>> str(Ori.from_str('ORI.B', '#$2, D1')) 'Ori command: size OpSize.BYTE, src EA Mode: EAMode.IMM, Data: 2, dest EA Mode: EAMode.DRD, Data: 1' >>> str(Ori.from_str('ORI.L', '#$FFFF8000, (A0)')) 'Ori command: size OpSize.LONG, src EA Mode: EAMode.IMM, Data: 4294934528, dest EA Mode: EAMode.ARI, Data: 0' :param command: The command itself (e.g. 'MOVE.B', 'LEA', etc.) :param parameters: The parameters after the command (such as the source and destination of a move) :return: The parsed command """ return opcode_util.n_param_from_str(command, parameters, Ori, 2, OpSize.WORD)
# -*- coding: utf-8 -*- """ /dms/usermanagementorg/help_form.py .. enthaelt die kompletten Kontext-Hilfetexte fuer die User-Verwaltung der Institutionen Django content Management System Hans Rauch hans.rauch@gmx.net Die Programme des dms-Systems koennen frei genutzt und den spezifischen Beduerfnissen entsprechend angepasst werden. 0.01 06.02.2007 Beginn der Arbeit 0.02 21.06.2007 Wiederaufnahme det Arbeit """ from django.utils.translation import ugettext as _ from dms.help_form_base import get_help_form help_form = get_help_form() # ---------------------------------------------------------------- help_form['name'] = { 'title' : _(u'Kurzname/ID'), 'help' : _(u"""<p> Tragen Sie hier den Kurznamen ein. Dieser Kurzname wird beim Aufrufen der Web-Adresse verwendet. Der Kurzname sollte den Inhalt möglichst präzise beschreiben und gleichzeitig möglichst kurz sein. </p> <p> Beim Aufrufen der Seiten wird zwischen Groß- und Kleinschreibung unterschieden. Bitte verwenden Sie beim Kurznamen ausschließlich Kleinbuchstaben. Leerzeichen werden durch einen Unterstrich, Umlaute durch "ae", "oe" usw. ersetzt. </p>""") } # ---------------------------------------------------------------- help_form['title'] = { 'title' : _(u'Überschrift'), 'help' : _(u"""<p> Tragen Sie hier die Überschrift der Community-Verwaltung ein. Unter dieser Überschrift wird die Community-Verwaltung angezeigt. Dieser Titel erscheint ebenfalls im übergeordneten Ordner. </p> <p> Hinweis: Kurze Überschriften fördern die Lesbarkeit und verhindern störende Zeilenumbrüche. </p>""") } # ---------------------------------------------------------------- help_form['sub_title'] = { 'title' : _(u'Unterüberschrift'), 'help' : _(u"""<p> Falls erforderlich tragen Sie hier die Unterüberschrift Ihrer Community-Verwaltung ein. Dieser Text wird direkt unterhalb der Überschrift angezeigt. </p>""") } # ---------------------------------------------------------------- help_form['text'] = { 'title' : _(u'Intro'), 'help' : _(u"""<p> Mit diesem Eingabefeld legen Sie den Text fest, der unterhalb des Überschrift im Sinne einer Einführung angezeigt wird. Sie sollten dieses Feld beispielsweise aber auch dann nutzen, wenn Sie auf wichtiges Ereignis, eine gravierende Änderung o.ä. hinweisen möchten. </p> <p> In der Regel werden Sie dieses Feld aber leer lassen. </p>""") } # ---------------------------------------------------------------- help_form['text_more'] = { 'title' : _(u'Intro - "Mehr ..."'), 'help' : _(u"""<p> Mit diesem Eingabefeld können Sie einen ausführlicheren Introtext anbieten, der automatisch mit "Mehr ..." auf der erreichbar ist. </p>""") } # ---------------------------------------------------------------- help_form['image_url'] = { 'title' : _(u'Bild zum Intro'), 'help' : _(u"""<p> Bei Bedarf können Sie links neben Ihrem Intro-Text ein Bild anzeigen lassen. Da Sie hier die Web-Adresse (http://..) des Bildes angeben, muss sich diesen Bild bereits auf dem Server befinden. </p>""") } # ---------------------------------------------------------------- help_form['image_url_url'] = { 'title' : _(u'URL zum Bild des Intros'), 'help' : _(u"""<p> Falls Sie ein Bild zum Intro angegeben haben, können Sie das Bild mit einer Web-Adresse (http://..) verknüpfen. </p>""") } # ---------------------------------------------------------------- help_form['image_extern'] = { 'title' : _(u'Verweis im eigenen Fenster'), 'help' : _(u"""<p> Falls die mit dem Bild verknüpfte Seite in einem eigenen Fenster angezeigt werden soll, müssen Sie dieses Feld aktivieren. </p>""") } # ---------------------------------------------------------------- help_form['is_wide'] = { 'title' : _(u'Intro mit voller Breite'), 'help' : _(u"""<p> Mit diesem Feld werden die Intro-Information in voller Breite angezeigt. </p>""") } # ---------------------------------------------------------------- help_form['is_important'] = { 'title' : _(u'Intro mit Hervorhebung'), 'help' : _(u"""<p> Dieses Feld hinterlegt die Intro-Information mit einem farbigen Block. </p>""") } # ---------------------------------------------------------------- help_form['info_slot_right'] = { 'title' : _(u'Seiteninfo'), 'help' : _(u"""<p> In der rechten Spalte können Sie zusätziche Informationen anzeigen. Diese werden in Blöcken organisiert, wobei ein Block aus einer Überschrift sowie dem eigentlichen Text besteht. Für Zwischenüberschriften verwenden Sie bitte das Format "Überschrift 4", da dieses automatisch umgewandelt wird. </p> <ul> <li> Falls Sie Bilder einbinden wollen, sollten dies nicht breiter als 120 Pixel sein. </li> <li> Wegen der geringen Spaltenbreite sollten Ihre Texte möglichst knapp gehalten werden. Bei sehr langen Worten stößt das System an technische Grenzen. </li> </ul>""") } # ---------------------------------------------------------------- help_form['section'] = { 'title' : _(u'Zuordnung beim <i>übergeordneten</i> Ordner'), 'help' : _(u"""<p> Hier legen Sie fest, beim welchem Zwischentitel Ihre Community-Verwaltung im <b>übergeordneten</b> Ordner angezeigt wird. Bei Bedarf können Sie später mit der Aktion "umordnen" Ihre Community-Verwaltung weiter nach oben oder nach unten verschieben. </p>""") } # ---------------------------------------------------------------- help_form['username'] = { 'title' : _(u'Zugangsname'), 'help' : _(u"""<p> Geben Sie hier bitte den exakten Zugangsnamen ein. </p>""") } # ---------------------------------------------------------------- help_form['org_name'] = { 'title' : _(u'Name der Einrichtung'), 'auto_complete': True, 'help' : _(u"""<p> Geben Sie hier den Namen der neuen Einrichtung ein.. </p>""") } # ---------------------------------------------------------------- help_form['email'] = { 'title' : _(u'E-Mail-Adresse'), 'help' : _(u"""<p> Geben Sie hier bitte die exakte E-Mail-Adresse ein. </p>""") } # ---------------------------------------------------------------- help_form['groupname'] = { 'title' : _(u'Gruppenname'), 'help' : _(u"""<p> Tragen Sie hier bitte den neuen Gruppennamen. </p>""") } # ---------------------------------------------------------------- help_form['group_names'] = { 'title' : _(u'Vorhandene Gruppen'), 'help' : _(u"""<p> Wählen Sie bitte die gewünschte Gruppe aus. </p>""") } # ---------------------------------------------------------------- help_form['group_names_target'] = { 'title' : _(u'Zielgruppen'), 'help' : _(u"""<p> Wählen Sie bitte die Gruppen aus, denen Sie Mitglieder der betreffenden Basisgruppe zuordnen möchten. </p>""") } # ---------------------------------------------------------------- help_form['group_names_primary'] = { 'title' : _(u'Basisgruppen'), 'help' : _(u"""<p> Hier sehen die nicht-veränderbaren Basisgruppen Ihrer Organisation. </p>""") } # ---------------------------------------------------------------- help_form['group_names_del'] = { 'title' : _(u'Vorhandene Gruppen'), 'help' : _(u"""<p> Aus dieser Liste können Sie eine oder mehrere Gruppen entfernen. </p>""") } # ---------------------------------------------------------------- help_form['fname'] = { 'title' : _(u'CSV-Datei'), 'help' : _(u"""<p> Wählen Sie bitte auf Ihrer Festplatte Ihre CSV-Datei aus. Die entsprechende CSV-Datei, die Sie mit Excel erzeugen können, muss folgenden Aufbau haben: </p> <ul> <li>Jeweils eine Zeile pro Person.</li> <li>Die einzelnen Angaben zur Person werden mit einem Semikolon getrennt.</li> <li>Die Spalten haben folgenden Aufbau:<br /> <br /> <tt>Anrede;Nachname;Vorname;E-Mail</tt><br /> oder<br /> <tt>Anrede;Titel;Nachname;Vorname ; E-Mail</tt> <br />oder<br /> <tt>Nr.;Anrede;Titel;Nachname;Vorname;E-Mail</tt><br /> </li> </ul> <p>Beachten Sie bitte, dass E-Mail-Adressen innerhalb der Community nur einmal auftreten dürfen.</p> """) } # ---------------------------------------------------------------- help_form['sex'] = { 'title' : _(u'Anrede'), 'help' : _(u"""<p> Tragen Sie hier bitte die Anrede ein. </p>""") } # ---------------------------------------------------------------- help_form['first_name'] = { 'title' : _(u'Vorname'), 'help' : _(u"""<p> Tragen Sie hier bitte den Vornamen sein. Sollte der Vorname Akzente oder Buchstaben eines anderen Alphabets enthalten, wandeln Sie diese bitte in den zugehörigen deutschen Buchstaben um. Umlaute werden automatisch gewandelt. </p>""") } # ---------------------------------------------------------------- help_form['last_name'] = { 'title' : _(u'Nachname'), 'help' : _(u"""<p> Tragen Sie hier bitte den Nachnamen sein. Sollte der Nachname Akzente oder Buchstaben eines anderen Alphabets enthalten, wandeln Sie diese bitte in den zugehörigen deutschen Buchstaben um. Umlaute werden automatisch gewandelt. </p>""") } # ---------------------------------------------------------------- help_form['title_name'] = { 'title' : _(u'Titel'), 'help' : _(u"""<p> Falls vorhanden tragen Sie hier bitte den Titel ein. In der Regel wird dieses Feld aber leer bleiben. </p>""") } # ---------------------------------------------------------------- help_form['email'] = { 'title' : _(u'E-Mail-Adresse'), 'help' : _(u"""<p> Tragen Sie hier bitte die E-Mail-Adresse ein. Wichtig: Diese E-Mail-Adresse muss wirklich existieren, da Community-Mitglieder mit falschen E-Mail-Adressen periodisch gelöscht werden. </p>""") } # ---------------------------------------------------------------- help_form['tab_base'] = { 'title' : _(u'Basisdaten'), 'info' : _(u"""<p> Mit diesem Formular legen Sie die wichtigsten Eigenschaften der Community-Verwaltung einer Institution fest. </p>""") } help_form['tab_intro'] = { 'title' : _(u'Intro'), 'info' : _(u"""<p> Sofern vorhanden, werden die Intro-Information zwischen der Überschrift und dem eigentlichen Inhalt der Community-Verwaltung angezeigt.</p> <p> Falls Sie bei "Intro mehr ..." Informationen eingeben, wird beim Intro-Text automatisch ein "Mehr"-Verweis angefügt. </p>""") } help_form['tab_navigation'] = { 'title' : _(u'Navigation'), 'info' : _(u"""<p> Tragen Sie hier bitte die Menüpunkte des linken Navigationsbereichs jeweils in einer eigenen Zeile ein. </p> <p> <tt>Verweis | Beschreibung | Erläterung | "ausgewählt" = 0 oder 1 | "optisches Merkmal" = 0 oder 1</tt> </p> """) } help_form['tab_frame'] = { 'title' : _(u'Seiteninfo'), 'info' : _(u"""<p> Im rechten Seitenbereich können Sie auf aktuelle Ereignisse, neue Angebote usw. hinweisen. </p>""") } help_form['tab_visibility'] = { 'title' : _(u'Sichtbarkeit'), 'info' : _(u"""<p> Sie können die Sichtbarkeit der Community-Verwaltung auf unterschiedliche Weisen steuern. </p>""") } help_form['tab_more'] = { 'title' : _(u'Weiteres'), 'info' : _(u"""<p> Hier finden Sie Optionen, die eher selten gebraucht werden. </p>""") } help_form['tab_username'] = { 'title' : _(u'Zugangsname'), 'info' : _(u"""<p> Geben Sie hier bitte den Zugangsname des entsprechenden Community-Mitglieds ein. </p>""") } help_form['tab_email'] = { 'title' : _(u'E-Mail'), 'info' : _(u"""<p> Geben Sie hier bitte die E-Mail-Adresse des Community-Mitglieds ein. </p>""") } help_form['tab_group_name_add'] = { 'title' : _(u'Grupppenname'), 'info' : _(u"""<p> Mit diesem Formular können Sie Gruppennamen Ihrer Institution wie z.B. "Lerngruppe xy" ergänzen. </p>""") } help_form['tab_group_name_delete'] = { 'title' : _(u'Grupppennamen'), 'info' : _(u"""<p> Mit diesem Formular können Sie Gruppennamen Ihrer Institution löschen. </p>""") } help_form['tab_group_user_change'] = { 'title' : _(u'Basisgrupppe'), 'info' : _(u"""<p> Mit diesem Formular wählen Sie Basisgruppe, aus deren Mitglieder Sie anderen Gruppen zurodnen möchten. </p>""") } help_form['tab_member_user_insert'] = { 'title' : _(u'Mitglied aufnehmen'), 'info' : _(u"""<p> Mit diesem Formular können Sie ein neues Community-Mitglied in Ihrer Institution aufnehmen. """) } help_form['tab_group_user_insert'] = { 'title' : _(u'Mitglieder aufnehmen'), 'info' : _(u"""<p> Mit diesem Formular können Sie neue Community-Mitglieder in Ihrer Institution aufnehmen. """) } help_form['tab_group_user_change'] = { 'title' : _(u'Grupppen'), 'info' : _(u"""<p> Hiermit ändern Sie die Gruppenzugehörigkeit Ihrer Community-Mitglieder. Legen Sie dazu bitte die Basisgrupppe sowie die gewünschten Zielgruppen aus. </p>""") } help_form['tab_primary_group_user_change'] = { 'title' : _(u'Grupppen'), 'info' : _(u"""<p> Hiermit ändern Sie die Primärgruppenzugehörigkeit von Community-Mitgliedern. </p>""") } help_form['tab_group_user_delete'] = { 'title' : _(u'Grupppe'), 'info' : _(u"""<p> Mit diesem Formular wählen Sie Gruppe, aus der Sie Mitglieder entfernen möchten. </p>""") }
class Solution: def minmaxGasDist(self, stations: List[int], K: int) -> float: dists = self.getDists(stations) left, right = min(dists) / K, max(dists) while left + 10e-6 < right: print(left, right) count = 0 mid = (left + right) / 2 for i in range(len(stations) - 1): d = abs(stations[i + 1] - stations[i]) count += math.ceil(d / mid) - 1 if count > K : left = mid else: right = mid count = 0 for i in range(len(stations) - 1): d = abs(stations[i + 1] - stations[i]) count += math.ceil(d / left) if count <= K: return left return right def getDists(self, stations): dists = [] for i in range(len(stations) - 1): dists.append(abs(stations[i + 1] - stations[i])) return dists
""" author: "Md. Sabuj Sarker" copyright: "Copyright 2017-2018, The Synamic Project" credits: ["Md. Sabuj Sarker"] license: "MIT" maintainer: "Md. Sabuj Sarker" email: "md.sabuj.sarker@gmail.com" status: "Development" """ import unittest from synamic.core.standalones.functions import parse_front_matter class TestFrontMatterParser(unittest.TestCase): def setUp(self): self.invalid_frontmatter1 = """--- u:ttt hhhs----- """ self.empty_frontmatter = """ the content is here, no front matter around here. """ self.valid_frontmatter = """---- name: My name curl: somehow/curl ---- """ self.empty_text = "" def test_invalid(self): res = parse_front_matter(self.invalid_frontmatter1) self.assertTupleEqual(res, (None, None, None), "This should not be considered as a valid frontmattered text") def test_valid(self): res = parse_front_matter(self.valid_frontmatter) self.assertEqual(res[0], True) self.assertEqual(res[1], """name: My name curl: somehow/curl""") self.assertEqual(res[2], """ """) def test_empty_frontmatter(self): res = parse_front_matter(self.empty_frontmatter) self.assertEqual(res[0], False, "No frontmatter must return False") self.assertEqual(res[2], self.empty_frontmatter) def test_empty_text(self): res = parse_front_matter(self.empty_text) self.assertTupleEqual(res[:2], (False, None), "the frontmatter is empty") self.assertEqual(res[2], "", "Body must be empty as the text is")
import glob import os import random import re import shutil import sys from typing import List, Tuple import numpy as np import torch from torch.nn.utils.rnn import pad_sequence from torch.utils.data import RandomSampler, DistributedSampler, DataLoader from torch.utils.tensorboard import SummaryWriter from tqdm import trange, tqdm from transformers import PreTrainedModel, PreTrainedTokenizer, AdamW, get_linear_schedule_with_warmup, logger from training.pick_model import evaluate def train(args, train_dataset, model: PreTrainedModel, tokenizer: PreTrainedTokenizer) -> Tuple[int, float]: """ Train the model """ if args.local_rank in [-1, 0]: tb_writer = SummaryWriter() # tb_writer = SummaryWriter(log_dir=os.path.join(args.output_dir, "log", "train")) args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu) def collate(examples): inputs = [x[0] for x in examples] labels = [x[1] for x in examples] metadata = [x[2] for x in examples] def collate_individual(samples): length_of_first = samples[0].size(0) are_tensors_same_length = all(x.size(0) == length_of_first for x in samples) if are_tensors_same_length: return torch.stack(samples, dim=0) else: if tokenizer.pad_token is None: raise ValueError( "You are attempting to pad samples but the tokenizer you are using" f" ({tokenizer.__class__.__name__}) does not have one." ) return pad_sequence(samples, batch_first=True, padding_value=tokenizer.pad_token_id) inputs = collate_individual(inputs) labels = collate_individual(labels) metadata = collate_individual(metadata) return inputs, labels, metadata train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset) train_dataloader = DataLoader( train_dataset, sampler=train_sampler, batch_size=args.train_batch_size, collate_fn=collate ) if args.max_steps > 0: t_total = args.max_steps args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1 else: t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs # Prepare optimizer and schedule (linear warmup and decay) no_decay = ["bias", "LayerNorm.weight"] optimizer_grouped_parameters = [ { "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], "weight_decay": args.weight_decay, }, {"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], "weight_decay": 0.0}, ] optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon) scheduler = get_linear_schedule_with_warmup( optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=t_total ) # Check if saved optimizer or scheduler states exist if ( args.model_name_or_path and os.path.isfile(os.path.join(args.model_name_or_path, "optimizer.pt")) and os.path.isfile(os.path.join(args.model_name_or_path, "scheduler.pt")) ): # Load in optimizer and scheduler states optimizer.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "optimizer.pt"))) scheduler.load_state_dict(torch.load(os.path.join(args.model_name_or_path, "scheduler.pt"))) if args.fp16: try: from apex import amp except ImportError: raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.") model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level) # multi-gpu training (should be after apex fp16 initialization) if args.n_gpu > 1: model = torch.nn.DataParallel(model) # Distributed training (should be after apex fp16 initialization) if args.local_rank != -1: model = torch.nn.parallel.DistributedDataParallel( model, device_ids=[args.local_rank], output_device=args.local_rank, find_unused_parameters=True ) # Train! logger.info("***** Running training *****") logger.info(" Num examples = %d", len(train_dataset)) logger.info(" Num Epochs = %d", args.num_train_epochs) logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size) logger.info( " Total train batch size (w. parallel, distributed & accumulation) = %d", args.train_batch_size * args.gradient_accumulation_steps * (torch.distributed.get_world_size() if args.local_rank != -1 else 1), ) logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps) logger.info(" Total optimization steps = %d", t_total) global_step = 0 epochs_trained = 0 steps_trained_in_current_epoch = 0 # Check if continuing training from a checkpoint if args.model_name_or_path and os.path.exists(args.model_name_or_path): try: # set global_step to gobal_step of last saved checkpoint from model path checkpoint_suffix = args.model_name_or_path.split("-")[-1].split("/")[0] global_step = int(checkpoint_suffix) epochs_trained = global_step // (len(train_dataloader) // args.gradient_accumulation_steps) steps_trained_in_current_epoch = global_step % (len(train_dataloader) // args.gradient_accumulation_steps) logger.info(" Continuing training from checkpoint, will skip to saved global_step") logger.info(" Continuing training from epoch %d", epochs_trained) logger.info(" Continuing training from global step %d", global_step) logger.info(" Will skip the first %d steps in the first epoch", steps_trained_in_current_epoch) except ValueError: logger.info(" Starting fine-tuning.") tr_loss, logging_loss = 0.0, 0.0 model_to_resize = model.module if hasattr(model, "module") else model # Take care of distributed/parallel training model_to_resize.resize_token_embeddings(len(tokenizer)) model.zero_grad() train_iterator = trange( epochs_trained, int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0] ) set_seed(args) # Added here for reproducibility for _ in train_iterator: epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0], file=sys.stdout, mininterval=10) for step, batch in enumerate(epoch_iterator): # Skip past any already trained steps if resuming training if steps_trained_in_current_epoch > 0: steps_trained_in_current_epoch -= 1 continue inputs, labels, _ = batch # torch.set_printoptions(profile="full") # print(f"Inputs : {tokenizer.convert_ids_to_tokens(inputs.tolist())}") # print(f"Labels : {tokenizer.convert_ids_to_tokens(labels.tolist())}") # exit(0) inputs = inputs.to(args.device) labels = labels.to(args.device) model.train() outputs = model(inputs, labels=labels) loss = outputs[0] # model outputs are always tuple in transformers (see doc) if args.n_gpu > 1: loss = loss.mean() # mean() to average on multi-gpu parallel training if args.gradient_accumulation_steps > 1: loss = loss / args.gradient_accumulation_steps if args.fp16: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() tr_loss += loss.item() if (step + 1) % args.gradient_accumulation_steps == 0: if args.fp16: torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm) else: torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm) optimizer.step() scheduler.step() # Update learning rate schedule model.zero_grad() global_step += 1 if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0: # Log metrics if ( args.local_rank == -1 and args.evaluate_during_training ): # Only evaluate when single GPU otherwise metrics may not average well results = evaluate(args, model, tokenizer) for key, value in results.items(): tb_writer.add_scalar("eval_{}".format(key), value, global_step) tb_writer.add_scalar("lr", scheduler.get_lr()[0], global_step) tb_writer.add_scalar("loss", (tr_loss - logging_loss) / args.logging_steps, global_step) logging_loss = tr_loss if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0: checkpoint_prefix = "checkpoint" # Save model checkpoint output_dir = os.path.join(args.output_dir, "{}-{}".format(checkpoint_prefix, global_step)) os.makedirs(output_dir, exist_ok=True) model_to_save = ( model.module if hasattr(model, "module") else model ) # Take care of distributed/parallel training model_to_save.save_pretrained(output_dir) tokenizer.save_pretrained(output_dir) torch.save(args, os.path.join(output_dir, "training_args.bin")) logger.info("Saving model checkpoint to %s", output_dir) _rotate_checkpoints(args, checkpoint_prefix) torch.save(optimizer.state_dict(), os.path.join(output_dir, "optimizer.pt")) torch.save(scheduler.state_dict(), os.path.join(output_dir, "scheduler.pt")) logger.info("Saving optimizer and scheduler states to %s", output_dir) if args.max_steps > 0 and global_step > args.max_steps: epoch_iterator.close() break if args.max_steps > 0 and global_step > args.max_steps: train_iterator.close() break if args.local_rank in [-1, 0]: tb_writer.close() return global_step, tr_loss / global_step def set_seed(args): random.seed(args.seed) np.random.seed(args.seed) torch.manual_seed(args.seed) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed) def _sorted_checkpoints(args, checkpoint_prefix="checkpoint", use_mtime=False) -> List[str]: ordering_and_checkpoint_path = [] glob_checkpoints = glob.glob(os.path.join(args.continue_from_dir, "{}-*".format(checkpoint_prefix))) for path in glob_checkpoints: if use_mtime: ordering_and_checkpoint_path.append((os.path.getmtime(path), path)) else: regex_match = re.match(".*{}-([0-9]+)".format(checkpoint_prefix), path) if regex_match and regex_match.groups(): ordering_and_checkpoint_path.append((int(regex_match.groups()[0]), path)) checkpoints_sorted = sorted(ordering_and_checkpoint_path) checkpoints_sorted = [checkpoint[1] for checkpoint in checkpoints_sorted] return checkpoints_sorted def _rotate_checkpoints(args, checkpoint_prefix="checkpoint", use_mtime=False) -> None: if not args.save_total_limit: return if args.save_total_limit <= 0: return # Check if we should delete older checkpoint(s) checkpoints_sorted = _sorted_checkpoints(args, checkpoint_prefix, use_mtime) if len(checkpoints_sorted) <= args.save_total_limit: return number_of_checkpoints_to_delete = max(0, len(checkpoints_sorted) - args.save_total_limit) checkpoints_to_be_deleted = checkpoints_sorted[:number_of_checkpoints_to_delete] for checkpoint in checkpoints_to_be_deleted: logger.info("Deleting older checkpoint [{}] due to args.save_total_limit".format(checkpoint)) shutil.rmtree(checkpoint)
''' Remove_json.py Remove all json files in sub-directories. Useful when you are cloning directories that have already been featurized to get new feature embeddings with nlx-model repo. ''' import os def removejson(listdir): for i in range(len(listdir)): if listdir[i][-5:]=='.json': os.remove(listdir[i]) listdir=os.listdir() hostdir=os.getcwd() for i in range(len(listdir)): try: os.chdir(hostdir+'/'+listdir[i]) listdir2=os.listdir() removejson(listdir2) except: pass
import model import torch import torchvision import torchvision.transforms as transforms import os # 默认参数声明 # batch_size = 64 # epochs = 60 # WORKERS = 4 # dataloder线程数 # ROOT = './dataset/' # 数据集保存路径 # pth_dir = './model_pth/' # 模型保存路径 classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck') img_size = 32 # 输入网络的图片大小 def create_dir_not_exist(path): if not os.path.exists(path): os.mkdir(path) def train_loader(ROOT, batch_size, WORKERS): transform_train = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.Resize([img_size, img_size]), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), ]) train_dataset = torchvision.datasets.CIFAR10(root=ROOT, train=True, download=False, transform=transform_train) trainloader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=WORKERS) return trainloader def test_loader(ROOT, batch_size, WORKERS): transform_test = transforms.Compose([ transforms.Resize([img_size, img_size]), transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), ]) testset = torchvision.datasets.CIFAR10(root=ROOT, train=False, download=False, transform=transform_test) testloader = torch.utils.data.DataLoader(testset, batch_size=batch_size, shuffle=False, num_workers=WORKERS) return testloader
from djangobench.base_settings import * # NOQA INSTALLED_APPS = ['model_save_new']
# bug 2 # Print the squares of the numbers 0 to 9: for num in range(10): x = num**2 print(x) print("Done")
from .exceptions import (LookupNotFoundException, NetworkFailureException, # noqa APIKeyException) # noqa from .options import ScriptOptions # noqa
import pandas as pd def add_column_length(table_name, table_data): indicies = [('w', 'wld_id'), ('p', 'hs_id'), ('b', 'bra_id')] for index, column in indicies: if index in table_name: table_data[column + "_len"] = pd.Series( map(lambda x: len(str(x)), table_data.index.get_level_values(column)), index = table_data.index) cols = table_data.columns.tolist() cols = [column + "_len"] + cols[:-1] table_data = table_data[cols] return table_data
def main(): import webbrowser recherche = 0 while True: if recherche >= 2: print("Vous avez fait " + str(recherche) + " recherches.") recherche += 1 adresse = input("Quel adresse veut-tu ouvrir") webbrowser.open(adresse) if __name__ == "__main__": main()
from datetime import timedelta from pathlib import Path from environs import Env BASE_DIR = Path(__file__).resolve().parent.parent env = Env() env.read_env() # Django environment SECRET_KEY = env.str('SECRET_KEY') DEBUG = env.bool("DEBUG", False) ALLOWED_HOSTS = env.list('ALLOWED_HOSTS') DATABASES = { 'default': { 'ENGINE': env.str('POSTGRES_DRIVER'), 'NAME': env.str('POSTGRES_DB'), 'USER': env.str('POSTGRES_USER'), 'PASSWORD': env.str('POSTGRES_PASSWORD'), 'HOST': env.str('POSTGRES_HOST'), 'PORT': env.str('POSTGRES_PORT'), } } INSTALLED_APPS = [ 'corsheaders', 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'rest_framework', 'drf_yasg', 'rest_framework_simplejwt', 'rest_framework_simplejwt.token_blacklist', 'src.image_uploader', ] MIDDLEWARE = [ # IMPORTANT: CORS policies has to go before other entries 'corsheaders.middleware.CorsMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'config.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'config.wsgi.application' AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] LANGUAGE_CODE = 'ru' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True STATIC_URL = '/static/' STATIC_ROOT = BASE_DIR / "staticfiles" if DEBUG: STATIC_DIR = BASE_DIR / 'static' STATICFILES_DIRS = [STATIC_DIR, ] else: STATIC_ROOT = BASE_DIR / "staticfiles" DEFAULT_AUTO_FIELwD = 'django.db.models.BigAutoField' MEDIA_URL = '/media/' MEDIA_ROOT = BASE_DIR / 'media' ALGORITHM = 'HS256' ACCESS_TOKEN_EXPIRE_MINUTES = 60 * 24 SWAGGER_SETTINGS = { 'SECURITY_DEFINITIONS': { 'Bearer': { 'type': 'apiKey', 'name': 'Authorization', 'in': 'header', } } } REST_FRAMEWORK = { 'DEFAULT_AUTHENTICATION_CLASSES': ( 'rest_framework_simplejwt.authentication.JWTAuthentication', ), } REST_USE_JWT = True SIMPLE_JWT = { 'ACCESS_TOKEN_LIFETIME': timedelta(minutes=50), 'REFRESH_TOKEN_LIFETIME': timedelta(days=1), 'ROTATE_REFRESH_TOKENS': False, 'BLACKLIST_AFTER_ROTATION': False, 'ALGORITHM': 'HS256', 'SIGNING_KEY': SECRET_KEY, 'VERIFYING_KEY': None, 'AUDIENCE': None, 'ISSUER': None, 'AUTH_HEADER_TYPES': ('Bearer', 'JWT',), 'USER_ID_FIELD': 'id', 'USER_ID_CLAIM': 'user_id', 'AUTH_TOKEN_CLASSES': ( 'rest_framework_simplejwt.tokens.AccessToken', ), 'TOKEN_TYPE_CLAIM': 'token_type', 'JTI_CLAIM': 'jti', 'SLIDING_TOKEN_REFRESH_EXP_CLAIM': 'refresh_exp', 'SLIDING_TOKEN_LIFETIME': timedelta(minutes=15), 'SLIDING_TOKEN_REFRESH_LIFETIME': timedelta(days=1), } AUTHENTICATION_BACKENDS = ( 'django.contrib.auth.backends.ModelBackend', ) DJOSER = { "LOGIN_FIELD": "username", } SITE_ID = 1 DEFAULT_AUTO_FIELD = 'django.db.models.BigAutoField' CORS_ORIGIN_ALLOW_ALL = True CORS_ALLOW_ALL_ORIGINS = True
#! /usr/bin/env python """ Create files for ht unit test """ import nmrglue.fileio.pipe as pipe import nmrglue.process.pipe_proc as p d, a = pipe.read("1D_time_real.fid") d, a = p.ht(d, a) pipe.write("ht1.glue", d, a, overwrite=True) d, a = pipe.read("1D_time_real.fid") d, a = p.ht(d, a, td=True) pipe.write("ht2.glue", d, a, overwrite=True) d, a = pipe.read("1D_time_real.fid") d, a = p.ht(d, a, mode="ps0-0") pipe.write("ht3.glue", d, a, overwrite=True) d, a = pipe.read("1D_time_real.fid") d, a = p.ht(d, a, zf=True) pipe.write("ht5.glue", d, a, overwrite=True) d, a = pipe.read("1D_time_real.fid") d, a = p.ht(d, a, auto=True) pipe.write("ht6.glue", d, a, overwrite=True) d, a = pipe.read("freq_real.ft2") d, a = p.ht(d, a) pipe.write("ht7.glue", d, a, overwrite=True) d, a = pipe.read("freq_real.ft2") d, a = p.ht(d, a, zf=True, td=True) pipe.write("ht8.glue", d, a, overwrite=True)
# Copyright 2016 Jake Dube # # ##### BEGIN GPL LICENSE BLOCK ###### # This file is part of MeshTools. # # MeshTools is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # MeshTools is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with MeshTools. If not, see <http://www.gnu.org/licenses/>. # ##### END GPL LICENSE BLOCK ##### import bpy from bpy.types import Panel, Operator, PropertyGroup, Scene from bpy.utils import register_class, unregister_class from bpy.props import FloatProperty, PointerProperty bl_info = { "name": "Mesh Tools - Bforartists version", "author": "Jake Dube", "version": (1, 1), "blender": (2, 80, 0), "location": "View3D > Mesh > Transform > Set Dimensions", "description": "Sets dimensions for selected vertices.", "category": "Mesh"} def calc_bounds(): """Calculates the bounding box for selected vertices. Requires applied scale to work correctly. """ # for some reason we must change into object mode for the calculations mode = bpy.context.object.mode bpy.ops.object.mode_set(mode='OBJECT') mesh = bpy.context.object.data verts = [v for v in mesh.vertices if v.select] # [+x, -x, +y, -y, +z, -z] v = verts[0].co bounds = [v.x, v.x, v.y, v.y, v.z, v.z] for v in verts: if bounds[0] < v.co.x: bounds[0] = v.co.x if bounds[1] > v.co.x: bounds[1] = v.co.x if bounds[2] < v.co.y: bounds[2] = v.co.y if bounds[3] > v.co.y: bounds[3] = v.co.y if bounds[4] < v.co.z: bounds[4] = v.co.z if bounds[5] > v.co.z: bounds[5] = v.co.z bpy.ops.object.mode_set(mode=mode) return bounds def safe_divide(a, b): if b != 0: return a / b return 1 class ED_OT_SetDimensions(Operator): bl_label = "Set Dimensions" bl_idname = "mesh_tools_addon.set_dimensions" bl_description = "Sets dimensions of selected vertices" bl_options = {'REGISTER', 'UNDO'} bl_context = "editmode" new_x : FloatProperty(name="X", min=0, default=1, unit='LENGTH') new_y : FloatProperty(name="Y", min=0, default=1, unit='LENGTH') new_z : FloatProperty(name="Z", min=0, default=1, unit='LENGTH') def invoke(self, context, event): bounds = calc_bounds() self.new_x = bounds[0] - bounds[1] self.new_y = bounds[2] - bounds[3] self.new_z = bounds[4] - bounds[5] return {'FINISHED'} def execute(self, context): bounds = calc_bounds() bpy.ops.object.mode_set(mode='EDIT') x = safe_divide(self.new_x, (bounds[0] - bounds[1])) y = safe_divide(self.new_y, (bounds[2] - bounds[3])) z = safe_divide(self.new_z, (bounds[4] - bounds[5])) bpy.ops.transform.resize(value=(x, y, z)) return {'FINISHED'} def draw(self, context): layout = self.layout box = layout.box() box.label(text = "New dimensions:") box.prop(self, "new_x") box.prop(self, "new_y") box.prop(self, "new_z") def add_button(self, context): self.layout.operator(ED_OT_SetDimensions.bl_idname, icon="PLUGIN") classes = ( ED_OT_SetDimensions, ) def register(): from bpy.utils import register_class for cls in classes: register_class(cls) bpy.types.VIEW3D_MT_transform.append(add_button) #bpy.types.VIEW3D_PT_transform.append(add_button) def unregister(): from bpy.utils import unregister_class for cls in classes: unregister_class(cls) bpy.types.VIEW3D_MT_transform.remove(add_button) #bpy.types.VIEW3D_PT_transform.remove(add_button) if __name__ == "__main__": register()
import pybullet_envs from stable_baselines3 import TD3_PER model = TD3_PER('MlpPolicy', 'MinitaurBulletEnv-v0', verbose=1, tensorboard_log="results/long_TD3_PER_MinitaurBullet/") model.learn(total_timesteps=3000000)
# pylint: disable=redefined-outer-name # pylint: disable=unused-argument # pylint: disable=unused-variable from datetime import datetime import pytest from fastapi import FastAPI from fastapi.params import Query from fastapi.routing import APIRouter from pydantic.types import PositiveFloat @pytest.fixture def app() -> FastAPI: api_router = APIRouter() @api_router.get("/") def _get_root(): return {"name": __name__, "timestamp": datetime.utcnow().isoformat()} @api_router.get("/data") def _get_data(x: PositiveFloat, y: int = Query(..., gt=3, lt=4)): pass _app = FastAPI() _app.include_router(api_router) return _app
# coding: utf-8 from __future__ import unicode_literals from uuid import uuid4 import json from .common import InfoExtractor from ..utils import ( int_or_none, url_or_none, ExtractorError, ) class IplaIE(InfoExtractor): _VALID_URL = r'https?://(?:www\.)?ipla\.tv/.+/(?P<id>[0-9a-fA-F]+)' _TESTS = [{ 'url': 'https://www.ipla.tv/wideo/serial/Swiat-wedlug-Kiepskich/759/Sezon-1/760/Swiat-wedlug-Kiepskich-Odcinek-88/4121?seasonId=760', 'info_dict': { 'id': '4121', 'ext': 'mp4', 'title': 'Świat według Kiepskich - Odcinek 88', # I love when my code works so well 'age_limit': 12, }, }] user_agent_data = { 'deviceType': 'mobile', 'application': 'native', 'os': 'android', 'build': 41002, 'widevine': False, 'portal': 'ipla', 'player': 'flexi', } device_id = { 'type': 'other', 'value': str(uuid4()), } def _real_extract(self, url): video_id = self._match_id(url) media = self.get_info(video_id) formats = [] for ptrciscute in media['playback']['mediaSources']: formats.append({ "url": url_or_none(self.get_url(video_id, ptrciscute['id'])), "height": int_or_none(ptrciscute["quality"][:-1]) }) self._sort_formats(formats) return { 'id': video_id, 'title': media["displayInfo"]["title"], 'formats': formats, 'age_limit': int_or_none(media["displayInfo"]["ageGroup"]) } def rpc(self, method, params): params['userAgentData'] = self.user_agent_data params['deviceId'] = self.device_id params['clientId'] = params['deviceId']['value'] params['cpid'] = 1 return bytes(json.dumps({ 'method': method, 'id': '2137', 'jsonrpc': '2.0', 'params': params, }), encoding='utf-8') def get_info(self, media_id): req = self.rpc('prePlayData', { 'mediaId': media_id }) headers = { 'Content-type': 'application/json' } res = self._download_json('https://b2c-mobile.redefine.pl/rpc/navigation/', media_id, data=req, headers=headers) if not res.get('result'): if res['error']['code'] == 13404: raise ExtractorError('Video requires DRM protection', expected=True) raise ExtractorError(f"Ipla said: {res['error']['message']} - {res['error']['data']['userMessage']}") return res['result']['mediaItem'] def get_url(self, media_id, source_id): req = self.rpc('getPseudoLicense', { 'mediaId': media_id, 'sourceId': source_id }) headers = { 'Content-type': 'application/json' } res = self._download_json('https://b2c-mobile.redefine.pl/rpc/drm/', media_id, data=req, headers=headers) if not res.get('result'): raise ExtractorError(f"Ipla said: {res['error']['message']} - {res['error']['data']['userMessage']}") return res['result']['url']
from phase_diagram.phase_diagram import PhaseDiagram from src.point_in_curve import point_in_function import numpy as np from functools import partial water = PhaseDiagram('H2O') ureg = water.ureg Q_ = ureg.Quantity water_clapeyron_sv = partial(water._clapeyron_sv_lv, curve='sv') water_clapeyron_lv = partial(water._clapeyron_sv_lv, curve='lv') @ureg.wraps(ureg.m, (ureg.m, ureg.m, None, ureg.m, ureg.m), strict=False) def straight_line_y(x0, range_=0, points=1, a=1, b=0): """A function created to test point_in_function""" x = np.linspace(x0, x0 + range_, points) y = a * x + b return y def test_point_in_straight_line_function(): assert point_in_function((Q_('3 m'), Q_('3 m')), straight_line_y) def test_point_not_in_straight_line_function(): assert not point_in_function((Q_('3 m'), Q_('4 m')), straight_line_y) def test_point_in_straight_line_function_tolerance(): assert point_in_function((Q_('3 m'), Q_('3.001 m')), straight_line_y) def test_point_not_in_straight_line_function_tolerance(): assert not point_in_function((Q_('3 m'), Q_('3.002 m')), straight_line_y) def test_point_water_01(): assert point_in_function((Q_('400 K'),Q_('246493.814 Pa') ), water._antoine_lv) def test_point_water_02(): assert not point_in_function((Q_('400 K'),Q_('246493.813 Pa') ), water._antoine_lv) def test_point_water_03(): assert point_in_function((Q_('100 K'),Q_('1.64e-12 Pa')), water_clapeyron_sv) def test_point_water_04(): assert not point_in_function((Q_('100 K'),Q_('1.64e-3 Pa')), water_clapeyron_sv) def test_point_water_05(): assert point_in_function((Q_('200 K'),Q_('0.875 Pa')), water_clapeyron_lv) def test_point_water_06(): assert not point_in_function((Q_('200 K'),Q_('0.877 Pa')), water_clapeyron_lv) def test_point_water_07(): assert point_in_function((Q_('270 K'),Q_('44150144.527 Pa')), water._clapeyron_sl) def test_point_water_08(): assert not point_in_function((Q_('270 K'),Q_('44150144.529 Pa')), water._clapeyron_sl)
import ast import datetime import json import requests # from django.conf import settings from django.conf import settings TASKS_PATH = 'api/tasks' TASKS_INFO_PATH = 'api/task/info/' TASKS_EXEC_PATH = 'api/task/send-task/' TASKS_ABORT_PATH = 'api/task/abort/' class Task: args = None children = None client = None clock = None eta = None exception = None exchange = None expires = None failed = None kwargs = None name = None parent = None parent_id = None received = None rejected = None result = None retried = None retries = None revoked = None root = None root_id = None routing_key = None runtime = None sent = None started = None state = None succeeded = None timestamp = None traceback = None uuid = None worker = None def __init__(self, **entries): self.__dict__.update(entries) def to_dict(self): return self.__dict__ def get_args(self): return ast.literal_eval("[" + self.args[1:-1] + "]") def get_started_date(self): return datetime.datetime.utcfromtimestamp(float(self.started)) def get_received_date(self): return datetime.datetime.utcfromtimestamp(float(self.received)) def get_succeeded_date(self): return datetime.datetime.utcfromtimestamp(float(self.succeeded)) class FlowerView: server_uri = '' def __init__(self): # =settings.FLOWER_URL self.server_uri = settings.FLOWER_URL def get_tasks(self, page=0, num_items=20): offset = num_items * page resp = requests.get(settings.FLOWER_URL + TASKS_PATH + "?offset=" + str(offset) + "&limit=" + str(num_items)) if 200 <= resp.status_code < 400: return [Task(**v) for k, v in json.loads(resp.content).items()] else: return {'error': 'Unable to retrieve tasks'} def get_task_info(self, uuid): resp = requests.get(self.server_uri + TASKS_INFO_PATH + uuid) if 200 <= resp.status_code < 400: return Task(**json.loads(resp.content)) else: return {'error': 'Unable to retrieve task'} def restart_task(self, uuid): task = self.get_task_info(uuid) resp = requests.post(self.server_uri + TASKS_EXEC_PATH + task.name, json={"args": task.get_args() or [] if len(task.get_args()) == 0 else task.get_args()}) return 200 <= resp.status_code < 400
from typing import Dict from domain.exceptions.models_exception import PathNotFound from domain.models.models_info import ModelsInfo from domain.models.paths import Paths from domain.models.pretrained_models import PretrainedModels from domain.services.contracts.abstract_path_service import AbstractPathService from domain.services.contracts.abstract_models_architecture_service import AbstractModelsArchitectureService from shared.helpers.json_helper import parse_json class ModelsArchitectureService(AbstractModelsArchitectureService): def __init__(self, path_service: AbstractPathService): self.paths: Paths = path_service.get_paths() def get_architectures(self) -> ModelsInfo: try: networks_dict: Dict = parse_json(self.paths.networks_path) return ModelsInfo.parse_obj(networks_dict) except Exception as e: raise PathNotFound(additional_message=e.__str__(), path=self.paths.networks_path) def get_pretrained_models(self) -> PretrainedModels: try: networks_dict: Dict = parse_json(self.paths.networks_path) return PretrainedModels.parse_obj(networks_dict) except Exception as e: raise PathNotFound(additional_message=e.__str__(), path=self.paths.networks_path)
"""test_dependency_algorithm.py - tests :) """ from dependency_algorithm import Dependencies import pytest ################################################################################ # Data structures to use in these tests ################################################################################ # Two mistakes: (1) Y doesn't exist, and (2) circular dependency between E and A items_2_mistakes = { 'A': ['B', 'C', 'D'], # -- A is dependent on B, C, D, 'B': [], # -- B is dependent on nothing, etc. 'C': ['D'], 'D': ['B', 'E'], 'E': ['A'], 'F': [], 'Z': ['A', 'B', 'C', 'D', 'Y'] } # One mistakes: circular dependency between E and A items_1_mistakes = { 'A': ['B', 'C', 'D'], # -- A is dependent on B, C, D, 'B': [], # -- B is dependent on nothing, etc. 'C': ['D'], 'D': ['B', 'E'], 'E': ['A'], 'F': [], 'Z': ['A', 'B', 'C', 'D'] } # No mistakes items_0_mistakes = { 'A': ['B', 'C', 'D'], # -- A is dependent on B, C, D, 'B': [], # -- B is dependent on nothing, etc. 'C': ['D'], 'D': ['B', 'E'], 'E': ['F'], 'F': [], 'Z': ['A', 'B', 'C', 'D'] } # Correct version of items_0_mistakes where all dependencies are complete items_0_mistakes_complete = { 'B': [], 'F': [], 'E': ['F'], 'D': ['E', 'F', 'B'], 'C': ['E', 'F', 'B', 'D'], 'A': ['C', 'B', 'D', 'F', 'E'], 'Z': ['A', 'C', 'D', 'B', 'F', 'E'] } # All possible correct orderings of the items in items_0_mistakes such that all # dependencies resolve correctly items_0_mistakes_all_possible_correct = [ ['F', 'E', 'B', 'D', 'C', 'A', 'Z'], ['F', 'B', 'E', 'D', 'C', 'A', 'Z'], ['B', 'F', 'E', 'D', 'C', 'A', 'Z'] ] ################################################################################ # Test the items_ data structures above ################################################################################ def test_existing_dependencies(): """Does the existing dependency check work? """ deps = Dependencies(items_2_mistakes) assert not deps.dependencies_exist(verbose=False) deps = Dependencies(items_1_mistakes) assert deps.dependencies_exist(verbose=False) deps = Dependencies(items_0_mistakes) assert deps.dependencies_exist(verbose=False) def test_circular_dependencies(): """Ensure that the circular dependency checker works """ deps = Dependencies(items_1_mistakes) assert not deps.no_circular_dependencies() deps = Dependencies(items_0_mistakes) assert deps.no_circular_dependencies() def test_complete_dependencies_check(): """Check that the complete_dependencies and complete_dependencies_dict methods are working successfully """ deps = Dependencies(items_0_mistakes) test_passed = True # Does deps.complete_dependencies work? for item, in items_0_mistakes_complete.keys(): if set(deps.complete_dependencies(item)) != \ set(items_0_mistakes_complete[item]): test_passed = False assert test_passed # Does deps.complete_dependencies_dict work? items_0_mistakes_complete_set_dict = \ {k: set(v) for k, v in items_0_mistakes_complete.items()} class_set_dict = \ {k: set(v) for k, v in deps.complete_dependencies_dict().items()} assert items_0_mistakes_complete_set_dict == class_set_dict def test_dependency_resolution(): """Dependencies are ordered correctly such that they successfully resolve? """ deps = Dependencies(items_0_mistakes) dependency_order = deps.resolve_dependencies() assert dependency_order in items_0_mistakes_all_possible_correct def test_all_possible_correct_orderings(): """Check to see if we can successfully produce all possbile orderings of the dependencies that resolve them """ deps = Dependencies(items_0_mistakes) all_possible_correct_orderings = deps.all_possible_resolution_orders() assert set(all_possible_correct_orderings) == \ set([tuple(x) for x in items_0_mistakes_all_possible_correct])
import tensorflow as tf from keras.layers import Dense, Flatten, Dropout, Lambda, Activation, MaxPooling2D from keras.layers.convolutional import Convolution2D from keras.models import Sequential from keras.optimizers import Adam from keras.callbacks import ModelCheckpoint import helper # parameters to adjust IMAGE_HEIGHT, IMAGE_WIDTH, IMAGE_CHANNELS = 66, 200, 3 INPUT_SHAPE = (IMAGE_HEIGHT, IMAGE_WIDTH, IMAGE_CHANNELS) NUMBER_OF_EPOCHS = 8 NUMBER_OF_SAMPLES_PER_EPOCH = 20224 NUMBER_OF_VALIDATION_SAMPLES = 6400 LEARNING_RATE = 1e-4 # the input is directly 66,200,3 . Not using resize to 64X64 # Our model is based on NVIDIA's "End to End Learning for Self-Driving Cars" paper # Source: https://images.nvidia.com/content/tegra/automotive/images/2016/solutions/pdf/end-to-end-dl-using-px.pdf def build_model(): model = Sequential() model.add(Lambda(lambda x: x / 127.5 - 1.0, input_shape=INPUT_SHAPE)) # starts with five convolutional and maxpooling layers model.add(Convolution2D(24, 5, 5, border_mode='same', subsample=(2, 2))) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2), strides=(1, 1))) model.add(Convolution2D(36, 5, 5, border_mode='same', subsample=(2, 2))) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2), strides=(1, 1))) model.add(Convolution2D(48, 5, 5, border_mode='same', subsample=(2, 2))) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2), strides=(1, 1))) model.add(Convolution2D(64, 3, 3, border_mode='same', subsample=(1, 1))) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2), strides=(1, 1))) model.add(Convolution2D(64, 3, 3, border_mode='same', subsample=(1, 1))) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2), strides=(1, 1))) model.add(Dropout(0.5)) model.add(Flatten()) # Next, five fully connected layers model.add(Dense(1164)) model.add(Activation('relu')) model.add(Dense(100)) model.add(Activation('relu')) model.add(Dense(50)) model.add(Activation('relu')) model.add(Dense(10)) model.add(Activation('relu')) model.add(Dense(1)) model.summary() return model def train_model(model): checkpoint = ModelCheckpoint('model-{epoch:03d}.h5', monitor='val_loss', verbose=0, save_best_only=True, mode='auto') model.compile(optimizer=Adam(LEARNING_RATE), loss="mse", ) # create generators for training and validation train_generator = helper.generator_training() validation_generator = helper.generator_validation() history = model.fit_generator(train_generator, samples_per_epoch=NUMBER_OF_SAMPLES_PER_EPOCH, nb_epoch=NUMBER_OF_EPOCHS, validation_data=validation_generator, nb_val_samples=NUMBER_OF_VALIDATION_SAMPLES, callbacks=[checkpoint], verbose=1) def main(): model = build_model() train_model(model) helper.save_model(model) if __name__ == '__main__': main()
import torch import torch.nn as nn import torch.nn.functional as F if __name__ == '__main__': pad_layer = nn.ZeroPad2d(padding=(-1, 0, 0, 0)) input = torch.randn(1, 1, 3, 3) print(pad_layer(input).shape) class TVLoss(nn.Module): def __init__(self): super(TVLoss, self).__init__() self.crop_l = nn.ZeroPad2d(padding=(-1, 0, 0, 0)) self.crop_r = nn.ZeroPad2d(padding=(0, -1, 0, 0)) self.crop_t = nn.ZeroPad2d(padding=(0, 0, -1, 0)) self.crop_b = nn.ZeroPad2d(padding=(0, 0, 0, -1)) def forward(self, inputs): diff_lr = F.mse_loss(self.crop_l(inputs), self.crop_r(inputs)) diff_tb = F.mse_loss(self.crop_t(inputs), self.crop_b(inputs)) return diff_lr.mean() + diff_tb.mean()
import itertools from collections import OrderedDict from pytest import raises from triad.utils.iter import ( EmptyAwareIterable, Slicer, make_empty_aware, slice_iterable, to_kv_iterable, ) def test_empty_aware_iterable(): i = _get_iterable("1,2,3") e = make_empty_aware(i) assert not e.empty assert "1,2,3" == ",".join(e) assert e.empty i = _get_iterable("1") e = EmptyAwareIterable(i) assert not e.empty assert not e.empty assert "1" == ",".join(e) assert e.empty e = EmptyAwareIterable([]) assert e.empty assert "" == ",".join(e) assert e.empty raises(StopIteration, lambda: e.peek()) i = _get_iterable("1,2,3") e = EmptyAwareIterable(i) assert not e.empty assert "1,2" == ",".join(itertools.islice(e, 2)) assert not e.empty assert "3" == ",".join(itertools.islice(e, 2)) assert e.empty i = _get_iterable("1,2,3") e = EmptyAwareIterable(iter(i)) assert not e.empty assert "1" == e.peek() assert "1,2" == ",".join(itertools.islice(e, 2)) assert not e.empty assert "3" == e.peek() assert "3" == ",".join(itertools.islice(e, 2)) assert e.empty def test_empty_aware_iterable_recursive(): i = _get_iterable("1,2,3") e = make_empty_aware(i) ee = make_empty_aware(_wrap_iterable(e, True)) assert "1,2,3" == ",".join(ee) i = _get_iterable("1,2,3") e = make_empty_aware(i) ee = make_empty_aware(_wrap_iterable(e, False)) assert "1t,2t,3t" == ",".join(ee) def test_to_kv_iterable(): data1 = [(1, 1), (2, 2)] data2 = OrderedDict(data1) data3 = [[1, 1], (2, 2)] data4 = [[1, 1, 3], (2, 2)] data5 = [1, (2, 2)] data6 = [(1, 1), (2, 2, 3)] assert [] == list(to_kv_iterable(None, none_as_empty=True)) assert [] == list(to_kv_iterable(None)) assert [] == list(to_kv_iterable([])) raises(ValueError, lambda: list(to_kv_iterable(None, none_as_empty=False))) assert data1 == list(to_kv_iterable(data1)) assert data1 == list(to_kv_iterable(data2)) assert data1 == list(to_kv_iterable(data3)) raises(TypeError, lambda: list(to_kv_iterable(data4))) raises(TypeError, lambda: list(to_kv_iterable(data5))) raises(TypeError, lambda: list(to_kv_iterable(123))) raises(ValueError, lambda: list(to_kv_iterable(data6))) def test_slice_iterable(): # make sure empty iterable will yield no slice ll = list(slice_iterable([], lambda n, c, l: n % 2 == 0)) assert 0 == len(ll) assert_slice("", [], lambda n, c, l: n % 2 == 0, lambda x: x) assert_slice("1,2-3,4-5", range(1, 6), lambda n, c, l: n % 2 == 0, lambda x: x) assert_slice("1,2,3,4,5", range(1, 6), lambda n, c, l: c < l, lambda x: x) assert_slice("1-2-3-4-5", range(1, 6), lambda n, c, l: c > l, lambda x: x) # for each slice, only iterate some of them assert_slice( "1-3-5", range(1, 6), lambda n, c, l: n % 2 == 0, lambda x: itertools.islice(x, 1), ) assert_slice( "1,2-3,4-5", range(1, 6), lambda n, c, l: n % 2 == 0, lambda x: itertools.islice(x, 100), ) assert_slice( "--", range(1, 6), lambda n, c, l: n % 2 == 0, lambda x: itertools.islice(x, 0) ) n = -1 def sl(it): nonlocal n n += 1 return itertools.islice(it, n) assert_slice("-3-5", range(1, 6), lambda n, c, l: n % 2 == 0, sl) def test_slicer(): assert_slicer("", [], 1, 0, lambda x: 1) assert_slicer("", [], 0, 0, lambda x: 1) assert_slicer("", [], 0, 1, lambda x: 1) assert_slicer("", [], 1, 1, lambda x: 1) assert_slicer(".000", [1, 1, 1], 0, 0, None) assert_slicer(".000", [1, 1, 1], None, None, None) assert_slicer(".0.1.2", [1, 1, 1], 1, 0, None) assert_slicer(".00.1", [1, 1, 1], 2, 0, None) assert_slicer(".0.1.2", [1, 1, 1], 0, 1, lambda x: 1) assert_slicer(".0.1.2", [1, 1, 1], 0, 1, lambda x: 10) assert_slicer(".00.1", [1, 1, 1], 0, 2, lambda x: 1) assert_slicer(".0.1.2", [1, 1, 1], 1, 2, lambda x: 1) assert_slicer(".00.1", [1, 1, 1], 10, 2, lambda x: 1) assert_slicer(".000", [1, 1, 1], 10, 20, lambda x: 1) assert_slicer(".0.1.2", [1, 1, 1], 1, "2k", lambda x: 1) assert_slicer(".00.1", [1, 1, 1], None, "2k", lambda x: 1024) class C(object): def __init__(self): self.arr = [] def c(self, no, current, last): self.arr.append([current, last]) return current > last c = C() assert_slicer("", [], 1, 0, lambda x: 1, c.c) assert_slicer("", [], 0, 0, lambda x: 1, c.c) assert_slicer("", [], 0, 1, lambda x: 1, c.c) assert_slicer("", [], 1, 1, lambda x: 1, c.c) assert 0 == len(c.arr) assert_slicer(".000", [1, 1, 1], 0, 0, None, c.c) c = C() assert_slicer(".0.1.2", [1, 2, 3], 0, 0, None, c.c) assert [[2, 1], [3, 2]] == c.arr c = C() assert_slicer(".0.1.2", [1, 0, -1], 1, 0, None, c.c) assert [[0, 1], [-1, 0]] == c.arr # is_boundary must be called anyway c = C() assert_slicer(".00.1", [1, 0, -1], 2, 0, None, c.c) assert [[0, 1], [-1, 0]] == c.arr # is_boundary must be called anyway c = C() # size and row counters should reset after slicer taking effect assert_slicer(".0.11", [1, 2, 1], 2, 0, None, c.c) assert [[2, 1], [1, 2]] == c.arr c = C() assert_slicer(".00.1", [1, 0, -1], 0, 2, lambda x: 1, c.c) assert [[0, 1], [-1, 0]] == c.arr c = C() assert_slicer(".0.1.2", [1, 1, 1], 1, 2, lambda x: 1, c.c) assert [[1, 1], [1, 1]] == c.arr c = C() # size and row counters should reset after slicer taking effect assert_slicer(".0.11", [1, 2, 1], 10, 2, lambda x: 1, c.c) assert [[2, 1], [1, 2]] == c.arr assert_slicer(".000", [1, 1, 1], 10, 20, lambda x: 1) assert_slicer(".0.1.2", [1, 1, 1], 1, "2k", lambda x: 1) assert_slicer(".00.1", [1, 1, 1], None, "2k", lambda x: 1024) def assert_slice(expected, iterable, slicer, slice_proc): ll = [] for x in slice_iterable(iterable, slicer): assert not x.empty assert isinstance(x, EmptyAwareIterable) ll.append(",".join(map(str, slice_proc(x)))) s = "-".join(ll) assert expected == s def assert_slicer(expected, arr, max_row, max_size, sizer, slicer=None): r = [] n = 0 c = Slicer(sizer, max_row, max_size, slicer=slicer) for chunk in c.slice(arr): assert isinstance(chunk, EmptyAwareIterable) r.append(".") for x in chunk: r.append(str(n)) n += 1 assert expected == "".join(r) def _get_iterable(s): for ss in s.split(","): yield ss def _make_iterable(n): while n > 0: yield n n -= 1 def _wrap_iterable(it, p): if p: for x in it: yield x else: for x in it: yield str(x) + "t"
import copy import tarfile import os import os.path import itertools import math import numpy as np import scipy.signal as signal from pysit.util.image_processing import blur_image from pysit.gallery.gallery_base import GeneratedGalleryModel from pysit import * #PML, Domain from pysit.core.domain import PML from pysit.util.io import write_data from pysit.util.io import * __all__ = ['LayeredMediumModel', 'layered_medium', 'Layer', 'three_layered_medium','four_layered_medium', 'set_model_from_file',] class Layer(object): def __init__(self, velocity, thickness, label=None, fixed=False): self.velocity = velocity self.thickness = thickness self.label = label self.fixed = fixed _air = Layer(300.0, 30, 'air', fixed=True) _water = Layer(1500.0, 120, 'water', fixed=True) _rock = Layer(3200.0, 1800, 'rock') water_rock = [_water, _rock] _rock_velocitys = [-288.0, -150.0, -36.0, -18.0, -90.0, 360.0, -60.0, -450.0, 0.0, 78.0] water_layered_rock = [_water] + [Layer(s+3300, 180, 'rock {0}'.format(i)) for s,i in zip(_rock_velocitys, itertools.count())] class LayeredMediumModel(GeneratedGalleryModel): """ Gallery model for a generic, flat, layered medium. """ model_name = "Layered" valid_dimensions = (1,2,3) @property #read only def dimension(self): return self.domain.dim supported_physics = ('acoustic',) @property def z_length(self): return round(float(sum([L.thickness for L in self.layers])),5) def __init__(self, layers, z_delta=None, min_ppw_at_freq=(6,10.0), # 6ppw at 10hz x_length=None, x_delta=None, y_length=None, y_delta=None, initial_model_style='smooth', initial_config={'sigma':100.0, 'filtersize':100}, **kwargs): """ Constructor for a constant background model with horizontal reflectors. Parameters ---------- layers : list List of Layer objects z_delta : float, optional Minimum mesh spacing in depth direction, see Notes. min_ppw_at_freq : tuple (int, float) Tuple with structure (min_ppw, peak_freq) to set the minimum points-per-wavelength at the given peak frequency. x_length : float Physical size in x direction x_delta : float Grid spacing in x direction y_length : float Physical size in y direction y_delta : float Grid spacing in y direction initial_model_style : {'smooth', 'constant', 'gradient'} Setup for the initial model. initial_config : dict Configuration parameters for initial models. Notes ----- * If z_delta is not set, min_ppw_at_freq is used. z_delta overrides use of min_ppw_at_freq. * Domain will be covered exactly, so z_delta is the maximum delta, it might actually end up being smaller, as the delta is determined by the mesh class. """ GeneratedGalleryModel.__init__(self) self.layers = layers self.min_z_delta = z_delta self.min_ppw_at_freq = min_ppw_at_freq self.x_length = x_length self.x_delta = x_delta self.y_length = y_length self.y_delta = y_delta self.initial_model_style = initial_model_style self.initial_config = initial_config # Set _domain and _mesh self.build_domain_and_mesh(**kwargs) # Set _initial_model and _true_model self.rebuild_models() def build_domain_and_mesh(self, **kwargs): """ Constructs a mesh and domain for layered media. """ # Compute the total depth z_length = self.z_length x_length = self.x_length x_delta = self.x_delta y_length = self.y_length y_delta = self.y_delta # If the minimum z delta is not specified. if self.min_z_delta is None: #use min_ppw & peak_frequency min_ppw, peak_freq = self.min_ppw_at_freq min_velocity = min([L.velocity for L in self.layers]) wavelength = min_velocity / peak_freq z_delta = wavelength / min_ppw else: z_delta = self.min_z_delta z_points = math.ceil((z_length+0.0000001)/z_delta) # Set defualt z boundary conditions z_lbc = kwargs['z_lbc'] if ('z_lbc' in list(kwargs.keys())) else PML(0.1*z_length, 100.0) z_rbc = kwargs['z_rbc'] if ('z_rbc' in list(kwargs.keys())) else PML(0.1*z_length, 100.0) domain_configs = list() mesh_args = list() # If a size of the x direction is specified, determine those parameters if x_length is not None: if x_delta is None: x_delta = z_delta x_points = math.ceil(float(x_length+0.00000001)/x_delta) # Set defualt x boundary conditions x_lbc = kwargs['x_lbc'] if ('x_lbc' in list(kwargs.keys())) else PML(0.1*x_length, 100.0) x_rbc = kwargs['x_rbc'] if ('x_rbc' in list(kwargs.keys())) else PML(0.1*x_length, 100.0) domain_configs.append((0, x_length, x_lbc, x_rbc)) mesh_args.append(x_points) # the y dimension only exists for 3D proble, so only if x is defined if y_length is not None: if y_delta is None: y_delta = z_delta y_points = math.ceil(float(y_length)/y_delta) # Set defualt y boundary conditions y_lbc = kwargs['y_lbc'] if ('y_lbc' in list(kwargs.keys())) else PML(0.1*y_length, 100.0) y_rbc = kwargs['y_rbc'] if ('y_rbc' in list(kwargs.keys())) else PML(0.1*y_length, 100.0) domain_configs.append((0, y_length, y_lbc, y_rbc)) mesh_args.append(y_points) domain_configs.append((0, z_length, z_lbc, z_rbc)) mesh_args.append(z_points) self._domain = RectangularDomain(*domain_configs) # Build mesh mesh_args = [self._domain] + mesh_args self._mesh = CartesianMesh(*mesh_args) def rebuild_models(self): """ Rebuild the true and initial models based on the current configuration.""" sh = self._mesh.shape(as_grid=True) _shape_tuple = tuple([1]*(len(sh)-1) + [sh[-1]]) # ones in each dimension except for Z _pad_tuple = [(0,n-1) for n in sh] _pad_tuple[-1] = (0,0) _pad_tuple = tuple(_pad_tuple) # Construct true velocity profile vp = np.zeros(_shape_tuple) grid = self._mesh.mesh_coords(sparse=True) ZZ = grid[-1].reshape(_shape_tuple) total_filled = 0 for L in self.layers[::-1]: cutoff_depth = self.z_length - total_filled vp[ZZ <= cutoff_depth] = L.velocity total_filled += L.thickness # Construct initial velocity profile: if self.initial_model_style == 'constant': # initial_config = {'velocity': 3000.0} vp0 = np.ones(_shape_tuple)*self.initial_config['velocity'] elif self.initial_model_style == 'true': # initial_config = {}, set the initial model as the true model vp0 = vp.reshape(-1, ) vp0.shape = vp.shape elif self.initial_model_style == 'smooth': #initial_config = {'sigma':50.0, 'filtersize':8} vp0 = blur_image(vp.reshape(-1,), self.initial_config['filtersize'], self.initial_config['sigma'], mesh_deltas=(self._mesh.z.delta,)) vp0.shape = vp.shape elif self.initial_model_style == 'gradient': # initial_config = {'gradient_slope': 1.0} gs = self.initial_config['gradient_slope'] # collect the non-fixed layers for choosing the gradient bounds velocities = [L.velocity for L in self.layers if not L.fixed] cutoff_depth = 0 # find the first non-fixed layer to start the gradient at. for L in self.layers: if L.fixed: cutoff_depth += L.thickness else: break vp0 = vp.copy() loc = np.where(ZZ > cutoff_depth) vp0[loc] = np.linspace(min(velocities), gs*np.max(velocities), loc[0].size) elif self.initial_model_style == 'layer': vels_init = self.initial_config['initial_velocity'] thick_init = self.initial_config['initial_thickness'] layer_init = [Layer(s, t, 'Layer_init_ {0}'.format(i)) for s,t,i in zip(vels_init, thick_init, itertools.count())] vp0 = np.zeros(_shape_tuple) grid = self._mesh.mesh_coords(sparse=True) ZZ = grid[-1].reshape(_shape_tuple) total_filled = 0 for L in layer_init[::-1]: cutoff_depth = self.z_length - total_filled vp0[ZZ <= cutoff_depth] = L.velocity total_filled += L.thickness # Fix the fixed layers old_depth = 0 for L in self.layers: depth = old_depth + L.thickness if L.fixed: vp0[(ZZ >= old_depth) & (ZZ < depth)] = L.velocity old_depth = depth # Construct final padded velocity profiles C = np.pad(vp, _pad_tuple, 'edge').reshape(self._mesh.shape()) C0 = np.pad(vp0, _pad_tuple, 'edge').reshape(self._mesh.shape()) self._true_model = C self._initial_model = C0 def layered_medium(layers=water_layered_rock, **kwargs): """ Friendly wrapper for instantiating the layered medium model. """ # Setup the defaults model_config = dict(z_delta=None, min_ppw_at_freq=(6,10.0), # 6ppw at 10hz x_length=None, x_delta=None, y_length=None, y_delta=None, initial_model_style='smooth', initial_config={'sigma':100.0, 'filtersize':100}) # Make any changes model_config.update(kwargs) return LayeredMediumModel(layers, **model_config).get_setup() def three_layered_medium(vels=(1.5, 2.5, 3.5), dx=0.02, dz=0.02, nx=181, nz=61, nbx=10, nbz=10, pml_width=[0.5,0.5], water_layer_depth = 0.05, # water_layer_depth = 0.0, # initial_model_style = 'smooth', # initial_config={'sigma': 1.0, 'filtersize': 8}, initial_model_style = 'gradient', initial_config={'gradient_slope': 1.0}, TrueModelFileName=None, InitialModelFileName=None, **kwargs): n_layer1 = nz // 3 n_layer2 = nz // 3 n_layer3 = nz - n_layer1 - n_layer2 n_layer1 = n_layer1 # + nbz n_layer3 = n_layer3 # + nbz nxt = nx # + 2*nbx nzt = nz # + 2*nbz Layer1 = Layer(vels[0], n_layer1*dz, 'Layer1', fixed=False) Layer2 = Layer(vels[1], n_layer2*dz, 'Layer2', fixed=False) Layer3 = Layer(vels[2], (n_layer3-1)*dz, 'Layer3', fixed=False) Layerall = [Layer1] + [Layer2] + [Layer3] x_lbc = kwargs['x_lbc'] if ('x_lbc' in kwargs) else PML(0.1, 100) x_rbc = kwargs['x_rbc'] if ('x_rbc' in kwargs) else PML(0.1, 100) z_lbc = kwargs['z_lbc'] if ('z_lbc' in kwargs) else PML(0.1, 100) z_rbc = kwargs['z_rbc'] if ('z_rbc' in kwargs) else PML(0.1, 100) kwargs['x_lbc'] = PML(pml_width[0], 100) kwargs['x_rbc'] = PML(pml_width[0], 100) kwargs['z_lbc'] = PML(pml_width[1], 100) kwargs['z_rbc'] = PML(pml_width[1], 100) model_config = dict(z_delta=dz, x_length=dx*(nxt-1), x_delta=dx, initial_model_style=initial_model_style, initial_config=initial_config, **kwargs) C, C0, m, d = LayeredMediumModel(Layerall, **model_config).get_setup() if initial_model_style == 'gradient': nz_water = int(water_layer_depth/dz) + 1 C1 = np.ones(m._shapes[(False,True)])*vels[0] c_z = np.linspace(vels[0], vels[-1], nz-nz_water) for i in range(nx): C1[i, nz_water:nz] = c_z C0 = np.reshape(C1, C0.shape) if TrueModelFileName is not None: ot = (0.0,0.0) dt = (dz, dx) nt = m._shapes[(False, True)] B = C.reshape(nt).transpose() nt = (nt[1], nt[0]) write_data(TrueModelFileName, B, ot, dt, nt) if InitialModelFileName is not None: ot = (0.0,0.0) dt = (dz, dx) nt = m._shapes[(False, True)] B = C0.reshape(nt).transpose() nt = (nt[1], nt[0]) write_data(InitialModelFileName, B, ot, dt, nt) return C, C0, m, d def four_layered_medium(model_param=None, initial_model_style=None, initial_config=None, dx = 0.01, dz = 0.01, water_layer_depth = 0.05, TrueModelFileName=None, InitialModelFileName=None, **kwargs): x_length = model_param['x_length'] z_depth = model_param['z_depth'] layer_thickness = model_param['layer_thickness'] vels = model_param['velocity'] nbx = 10 nbz = 10 pml_width = [0.5,0.5] nx = int(x_length/dx) + 1 nz = int(z_depth/dz) + 1 nl = np.shape(layer_thickness)[0] n_layer = np.zeros(nl) for i in range(nl): n_layer[i] = int(layer_thickness[i]/dz) n_layer[0] = n_layer[0] # + nbz n_layer[nl-1]= n_layer[nl-1] # + 1 # + nbz nxt = nx # + 2*nbx nzt = nz # + 2*nbz Layerall = list() for i in range(nl): Layers = Layer(vels[i], n_layer[i]*dz, fixed=False) Layerall += [Layers] x_lbc = kwargs['x_lbc'] if ('x_lbc' in kwargs) else PML(0.1, 100) x_rbc = kwargs['x_rbc'] if ('x_rbc' in kwargs) else PML(0.1, 100) z_lbc = kwargs['z_lbc'] if ('z_lbc' in kwargs) else PML(0.1, 100) z_rbc = kwargs['z_rbc'] if ('z_rbc' in kwargs) else PML(0.1, 100) kwargs['x_lbc'] = PML(pml_width[0], 100) kwargs['x_rbc'] = PML(pml_width[0], 100) kwargs['z_lbc'] = PML(pml_width[1], 100) kwargs['z_rbc'] = PML(pml_width[1], 100) model_config = dict(z_delta=dz, x_length=dx*(nxt-1), x_delta=dx, initial_model_style=initial_model_style, initial_config=initial_config, **kwargs) C, C0, m, d = LayeredMediumModel(Layerall, **model_config).get_setup() if TrueModelFileName is not None: ot = (0.0,0.0) dt = (dz, dx) nt = m._shapes[(False, True)] B = C.reshape(nt).transpose() nt = (nt[1], nt[0]) write_data(TrueModelFileName, B, ot, dt, nt) if InitialModelFileName is not None: ot = (0.0,0.0) dt = (dz, dx) nt = m._shapes[(False, True)] B = C0.reshape(nt).transpose() nt = (nt[1], nt[0]) write_data(InitialModelFileName, B, ot, dt, nt) return C, C0, m, d def set_model_from_file(Modelfile, initial_config={'sigma': 1.0, 'filtersize': 8}, initial_model_style='smooth', **kwargs): """ function to set up the model from the Modelfile Input: Modelfile: The name of the model file. The file should following struction A.data - the data of the model A.o - the origions of each dimension A.d - the delta of each dimension A.n - the size of each dimension Optional Input: If you want to create a smooth model from the given velocity model, you can use the following inputs: initial_config: 'sigma' and 'filtersize' define the level of the smoothness initial_model_style: default is 'smooth', you can also select 'gradient' then you will get a linear velocity model Key word arguments: You can define the PML as follows: kwargs['x_lbc'] = PML(0.1, 100) kwargs['x_rbc'] = PML(0.1, 100) kwargs['z_lbc'] = PML(0.1, 100) kwargs['z_rbc'] = PML(0.1, 100) """ [vels, ot, dt, nt] = read_data(Modelfile) C, C0, m, d = three_layered_medium(dx=dt[1], dz=dt[0], nx=nt[1], nz=nt[0], initial_model_style=initial_model_style, initial_config=initial_config, TrueModelFileName=None, InitialModelFileName=None, **kwargs) C = vels.transpose().reshape(C.shape) # C0 = copy.deepcopy(C) return C, m, d if __name__ == '__main__': import matplotlib.pyplot as plt # ASD = LayeredMediumModel(water_layered_rock) # ASD = LayeredMediumModel(water_layered_rock, initial_model_style='smooth', initial_config={'sigma':100, 'filtersize':150}) # ASD = LayeredMediumModel(water_layered_rock, initial_model_style='gradient') # ASD = LayeredMediumModel(water_layered_rock, initial_model_style='constant', initial_config={'velocity':3000}) # SD = LayeredMediumModel(water_layered_rock, x_length=2000.0, y_length=1000.0) C, C0, m, d = layered_medium(x_length=2000) fig = plt.figure() fig.add_subplot(2,1,1) vis.plot(C, m) fig.add_subplot(2,1,2) vis.plot(C0, m) plt.show() C, C0, m, d = three_layered_medium(TrueModelFileName='testtrue.mat',InitialModelFileName='testInitial.mat', initial_model_style='smooth', initial_config={'sigma': 2.0, 'filtersize': 16}) C, m, d = set_model_from_file('testtrue.mat') C0, m, d = set_model_from_file('testInitial.mat') fig = plt.figure() fig.add_subplot(2, 1, 1) vis.plot(C, m) fig.add_subplot(2, 1, 2) vis.plot(C0, m) plt.show() # print(np.max(C-C0))
from . import gui, model
from teleapi import TelegramApi api = TelegramApi(token='TOKEN') api_proxy = TelegramApi(token='TOKEN', proxy='https://USERNAME:PASSWORD@IP:PORT') message = api.send_message(-100, 'Hello') print(message.text) message = api.forward_message(-100, -100, 1) # 1 - id message print(message.text) photo = api.send_photo(-100, '/PATH/TO/FILE/SOME_FILE') print(photo.text) photo = api.send_photo(-100, 'https://exapmle.com/test.jpg') print(photo.text)
import sys import unittest import pynsive class WhenCreatingThePluginManager(unittest.TestCase): def setUp(self): self.manager = pynsive.PluginManager() def tearDown(self): self.manager.destroy() def test_correct_meta_path_insertion(self): finder_index = sys.meta_path.index(self.manager.finder) if sys.version_info >= (3, 1, 0): self.assertEqual(0, finder_index) else: self.assertEqual(len(sys.meta_path) - 1, finder_index)
from .AccountAdapter import AccountAdapter from .LocalFileSystemAccountAdapter import LocalFileSystemAccountAdapter