content
stringlengths
5
1.05M
# -*- coding: utf-8 -*- """ A simple example, have fun! """ __title__ = 'pgrsearch' __author__ = 'Ex_treme' __license__ = 'MIT' __copyright__ = 'Copyright 2018, Ex_treme' from TEDT import TEDT urls = [ 'http://www.cankaoxiaoxi.com/china/20170630/2158196.shtml', # 参考消息 'http://news.ifeng.com/a/20180121/55332303_0.shtml', # 凤凰资讯 'http://china.huanqiu.com/article/2018-01/11541273.html', # 环球网 'http://news.china.com/socialgd/10000169/20180122/31990621.html', # 中华网 'http://www.thepaper.cn/newsDetail_forward_1962275', # 澎湃新闻 # 'http://news.szu.edu.cn/info/1003/4989.htm', # 深圳大学新闻网 'http://www16.zzu.edu.cn/msgs/vmsgisapi.dll/onemsg?msgid=1712291126498126051', # 郑州大学新闻网 'http://news.ruc.edu.cn/archives/194824', # 人民大学新闻网 'http://xinwen.ouc.edu.cn/Article/Class3/xwlb/2018/01/22/82384.html', # 中国海洋大学新闻网 'http://news.sjtu.edu.cn/info/1002/1645201.htm', # 上海交通大学新闻网 ] for url in urls: t = TEDT(url, LOG_LEVEL='INFO',) t.ie()
try: from mushroom_rl.environments.dm_control_env import DMControl import numpy as np def test_dm_control(): np.random.seed(1) mdp = DMControl('hopper', 'hop', 1000, .99, task_kwargs={'random': 1}) mdp.reset() for i in range(10): ns, r, ab, _ = mdp.step( np.random.rand(mdp.info.action_space.shape[0])) ns_test = np.array([-0.26244546, -2.33917271, 0.50130095, -0.50937527, 0.55561752, -0.21111919, -0.55516933, -2.03929087, -18.22893801, 5.89523326, 22.07483625, -2.21756007, 3.95695223, 0., 0.]) assert np.allclose(ns, ns_test) except ImportError: pass
# All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import copy import mock from rally.plugins.openstack.context.designate import zones from tests.unit import test CTX = "rally.plugins.openstack.context" SCN = "rally.plugins.openstack.scenarios" class ZoneGeneratorTestCase(test.ScenarioTestCase): def _gen_tenants(self, count): tenants = {} for id_ in range(count): tenants[str(id_)] = {"name": str(id_)} return tenants def test_init(self): self.context.update({ "config": { "zones": { "zones_per_tenant": 5, } } }) inst = zones.ZoneGenerator(self.context) self.assertEqual(inst.config, self.context["config"]["zones"]) @mock.patch("%s.designate.utils.DesignateScenario._create_zone" % SCN, return_value={"id": "uuid"}) def test_setup(self, mock_designate_scenario__create_zone): tenants_count = 2 users_per_tenant = 5 zones_per_tenant = 5 tenants = self._gen_tenants(tenants_count) users = [] for id_ in tenants.keys(): for i in range(users_per_tenant): users.append({"id": i, "tenant_id": id_, "credential": mock.MagicMock()}) self.context.update({ "config": { "users": { "tenants": 2, "users_per_tenant": 5, "concurrent": 10, }, "zones": { "zones_per_tenant": zones_per_tenant, } }, "admin": { "credential": mock.MagicMock() }, "users": users, "tenants": tenants }) new_context = copy.deepcopy(self.context) for id_ in tenants.keys(): new_context["tenants"][id_].setdefault("zones", []) for i in range(zones_per_tenant): new_context["tenants"][id_]["zones"].append({"id": "uuid"}) zones_ctx = zones.ZoneGenerator(self.context) zones_ctx.setup() self.assertEqual(new_context, self.context) @mock.patch("%s.designate.zones.resource_manager.cleanup" % CTX) def test_cleanup(self, mock_cleanup): tenants_count = 2 users_per_tenant = 5 zones_per_tenant = 5 tenants = self._gen_tenants(tenants_count) users = [] for id_ in tenants.keys(): for i in range(users_per_tenant): users.append({"id": i, "tenant_id": id_, "endpoint": "endpoint"}) tenants[id_].setdefault("zones", []) for j in range(zones_per_tenant): tenants[id_]["zones"].append({"id": "uuid"}) self.context.update({ "config": { "users": { "tenants": 2, "users_per_tenant": 5, "concurrent": 10, }, "zones": { "zones_per_tenant": 5, } }, "admin": { "endpoint": mock.MagicMock() }, "users": users, "tenants": tenants }) zones_ctx = zones.ZoneGenerator(self.context) zones_ctx.cleanup() mock_cleanup.assert_called_once_with(names=["designate.zones"], users=self.context["users"])
from django.db import models from home.info_holder import get_release_type_id from home.models import WhatTorrent RELEASE_PRIORITIES = [ (get_release_type_id('Album'), 1000), (get_release_type_id('EP'), 990), (get_release_type_id('Soundtrack'), 986), # (get_release_type_id('Single'), 985), (get_release_type_id('Live album'), 980), ] def get_priority(release_type): for priority in RELEASE_PRIORITIES: if priority[0] == int(release_type): return priority[1] return None def filter_group(artist_name, group): if get_priority(group['releaseType']) is None: return False if not group['artists']: return False if not any(a['name'] == artist_name for a in group['artists']): return False return True def filter_torrent(group, torrent): if torrent['format'].lower() != 'flac': return False if torrent['media'].lower() not in ['cd', 'web']: return False return get_priority(group['releaseType']) def is_existing(what_id): try: QueueItem.objects.get(what_id=what_id) return True except QueueItem.DoesNotExist: return WhatTorrent.is_downloaded(None, what_id=what_id) class QueueItem(models.Model): class Meta: permissions = ( ('view_queueitem', 'Can view the queue.'), ) datetime_added = models.DateTimeField(auto_now_add=True) what_id = models.IntegerField() priority = models.IntegerField() artist = models.TextField() title = models.TextField() release_type = models.IntegerField() format = models.TextField() encoding = models.TextField() torrent_size = models.BigIntegerField() @classmethod def get_front(cls): items = QueueItem.objects.order_by('-priority', 'datetime_added')[:1] if len(items): return items[0] return None
from .Bible import Book, Verse from .Bible_Parser_Base import BibleParserBase import xml.etree.ElementTree as ET import os.path class BibleParserXML(BibleParserBase): name = "XML" fileEndings = ["xml"] def __init__(self, file_name): BibleParserBase.__init__(self, file_name) def loadInfo(self): self.bible.translationAbbreviation = os.path.basename(self.file_name) self.bible.translationName = os.path.basename(self.file_name) def loadAll(self): tree = ET.ElementTree(file=self.file_name) books = tree.getroot() for book in books: b_number = int(book.attrib["bnumber"]) self.bible.append(Book(book.attrib["bname"], b_number)) for chapter in book: ch_number = int(chapter.attrib["cnumber"]) for verse in chapter: v_number = int(verse.attrib["vnumber"]) self.bible.addVerse( Verse(b_number, ch_number, v_number, verse.text))
num=float(input("Enter a number:")) if num<0: print("\nNumber entered is negative.") elif num>0: print("\nNumber entered is positive.") else: print("\nNumber entered is zero.")
# Copyright (c) 2012 - 2015 Lars Hupfeldt Nielsen, Hupfeldt IT # All rights reserved. This work is under a BSD license, see LICENSE.TXT. import os, random from jenkinsflow import jobload from .framework import api_select here = os.path.abspath(os.path.dirname(__file__)) _context = dict( exec_time=1, params=(), script=None, securitytoken='abc', print_env=False, create_job=None, num_builds_to_keep=4, final_result_use_cli=False, set_build_descriptions=() ) def _random_job_name(api, short_name=None): # If short_name is not specified, use a random name to make sure the job doesn't exist short_name = short_name or str(random.random()).replace('.', '') return api.job_name_prefix + short_name, short_name def _assert_job(api, job_name, cleanup=False): job = api.get_job(job_name) assert job is not None assert job.name == job_name assert job.public_uri is not None and job_name in job.public_uri if cleanup: api.delete_job(job_name) return None return job def test_job_load_new_no_pre_delete(api_type): api = api_select.api(__file__, api_type, login=True) full_name, short_name = _random_job_name(api) api.job(short_name, 1, 1, 1, exec_time=1, non_existing=True) jobload.update_job_from_template(api, full_name, api.job_xml_template, pre_delete=False, context=_context) _assert_job(api, full_name, cleanup=True) def test_job_load_new_pre_delete(api_type): api = api_select.api(__file__, api_type, login=True) full_name, short_name = _random_job_name(api) api.job(short_name, 1, 1, 1, exec_time=1, non_existing=True) jobload.update_job_from_template(api, full_name, api.job_xml_template, pre_delete=True, context=_context) _assert_job(api, full_name, cleanup=True) def test_job_load_existing_pre_delete(api_type): api = api_select.api(__file__, api_type, login=True) full_name, short_name = _random_job_name(api) api.job(short_name, 1, 1, 1, exec_time=1) jobload.update_job_from_template(api, full_name, api.job_xml_template, pre_delete=True, context=_context) _assert_job(api, full_name, cleanup=False) jobload.update_job_from_template(api, full_name, api.job_xml_template, pre_delete=True, context=_context) _assert_job(api, full_name, cleanup=True) def test_job_load__existing_update(api_type): api = api_select.api(__file__, api_type, login=True) full_name, short_name = _random_job_name(api) api.job(short_name, 1, 1, 1, exec_time=1) jobload.update_job_from_template(api, full_name, api.job_xml_template, pre_delete=True, context=_context) _assert_job(api, full_name, cleanup=False) jobload.update_job_from_template(api, full_name, api.job_xml_template, pre_delete=False, context=_context) _assert_job(api, full_name, cleanup=True) def test_job_load_non_existing_pre_delete(api_type): api = api_select.api(__file__, api_type, login=True) full_name, short_name = _random_job_name(api) api.job(short_name, 1, 1, 1, exec_time=1, non_existing=True) jobload.update_job_from_template(api, full_name, api.job_xml_template, pre_delete=True, context=_context)
from datetime import datetime from app import database as db class ChatroomMessages(db.Model): id = db.Column(db.Integer, primary_key=True, autoincrement=True) chatroomID = db.Column(db.Integer) message = db.Column(db.String(10050), nullable = False) sentUserID = db.Column(db.Integer, nullable=False) timestamp = db.Column(db.DateTime, nullable=False) def addChatroomMessage(cchatroomID, cmessage, csentUserID, ctimestamp): cr_message = ChatroomMessages(chatroomID = cchatroomID, message = cmessage, sentUserID = csentUserID, timestamp = ctimestamp) db.session.add(cr_message) db.session.commit() return True def getChatroomMessages(cid): return ChatroomMessages.query.filter_by(chatroomID=cid) db.create_all() #Call this before doing any database stuff
from pathlib import Path import nibabel as nib from skimage.transform import resize from PIL import ImageOps import tensorflow as tf import numpy as np from scipy import ndimage class TensorflowDatasetLoader: def __init__(self, idxs, config): depth = config['depth'] height = config['height'] width = config['width'] batch_size = config['batch_size'] lowest = config['lowest'] last = config['last'] use_label = config['use_atlas'] self.label_classes = config['label_classes'] self.use_affine = config['use_affine'] self.use_def = config['use_def'] self.idxs = idxs self.crop_img = False self.input_dim = (depth,height,width) output_shape = [] output_types = [] for i in range(1, lowest - last + 2): l = lowest + 1 - i x_dim = depth // (2**l) y_dim = height // (2**l) z_dim = width // (2**l) if self.use_affine: output_shape.append((x_dim, y_dim, z_dim,3)) # affine output_types.append(tf.float32) if self.use_def: output_shape.append((x_dim, y_dim, z_dim,3)) # deformable output_types.append(tf.float32) output_shape.append((x_dim, y_dim, z_dim,2)) # image sim placeholder output_types.append(tf.float32) if self.use_affine: output_shape.append((*self.input_dim,3)) # affine output_types.append(tf.float32) if self.use_def: output_shape.append((*self.input_dim,3)) # deformable output_types.append(tf.float32) output_shape.append((*self.input_dim,1)) # image sim output_types.append(tf.float32) input_types = [tf.float32, tf.float32] input_shape = [(*self.input_dim,1),(*self.input_dim,1)] if use_label: output_shape.append((*self.input_dim, self.label_classes)) # seg output_types.append(tf.float32) input_types.append(tf.float32) input_shape.append((*self.input_dim, self.label_classes)) input_data = tf.data.Dataset.from_generator( self.generator(self.input_dim, lowest, last, idxs, True), tuple(input_types), tuple(input_shape)) output_data = tf.data.Dataset.from_generator( self.generator(self.input_dim, lowest, last, idxs, False), tuple(output_types), output_shapes = tuple(output_shape)) dataset = tf.data.Dataset.zip((input_data, output_data)) dataset = dataset.batch(batch_size) dataset = dataset.shuffle(buffer_size=50, reshuffle_each_iteration=True) dataset = dataset.repeat() dataset = dataset.prefetch(buffer_size=tf.data.experimental.AUTOTUNE) self.dataset = dataset def _get_org_data(self, idx): f_f, fl_f, f_r, f_r_ax, m_f, ml_f, m_r, m_r_ax, flip_axes, crop_img, task = TensorflowDatasetLoader.parse_idx(idx) fixed = nib.load(f_f).get_fdata() moving = nib.load(m_f).get_fdata() if fl_f is not None and ml_f is not None: fixed_label = nib.load(fl_f).get_fdata().astype('int') #fixed_label = tf.one_hot(fixed_label, np.max(fixed_label)) moving_label = nib.load(ml_f).get_fdata().astype('int') #moving_label = tf.one_hot(moving_label, np.max(moving_label)) else: fixed_label, moving_label = None, None return [fixed, moving], [fixed_label, moving_label] def _get_train_samples(self, idx): use_atlas = True f_f, fl_f, f_r, f_r_ax, m_f, ml_f, m_r, m_r_ax, flip_axes, crop_img, task = TensorflowDatasetLoader.parse_idx(idx) fixed = nib.load(f_f).get_fdata() moving = nib.load(m_f).get_fdata() if crop_img is not None: fixed = TensorflowDatasetLoader.crop(fixed, crop_img) moving = TensorflowDatasetLoader.crop(moving, crop_img) fixed = TensorflowDatasetLoader.img_augmentation(fixed, f_r, f_r_ax, flip_axes) moving = TensorflowDatasetLoader.img_augmentation(moving, m_r, m_r_ax, flip_axes) if task in [2,3]: fixed, moving = TensorflowDatasetLoader.normalize(fixed, moving) else: fixed = TensorflowDatasetLoader.normalize(fixed) moving = TensorflowDatasetLoader.normalize(moving) fixed = resize(fixed, self.input_dim, preserve_range=True, mode='constant')[...,None].astype('float32') moving = resize(moving, self.input_dim, preserve_range=True, mode='constant')[...,None].astype('float32') assert not np.any(np.isnan(fixed)), f_f assert not np.any(np.isnan(moving)), m_f if fl_f is not None and ml_f is not None: fixed_label = self._get_label(fl_f, crop_img, f_r, f_r_ax, flip_axes) moving_label = self._get_label(ml_f, crop_img, m_r, m_r_ax, flip_axes) else: use_atlas = False fixed_label, moving_label = None, None images = [fixed, moving] if use_atlas: labels = [fixed_label, moving_label] out = images, labels else: out = images, None return out def get_one_hot(targets, nb_classes): res = np.eye(nb_classes)[np.array(targets).reshape(-1)] return res.reshape(list(targets.shape)+[nb_classes]) def _get_label(self, file, crop_img, rot_angle, rot_ax, flip_axes): label = nib.load(file).get_fdata().astype('int') if crop_img is not None: label = TensorflowDatasetLoader.crop(label, crop_img) label = TensorflowDatasetLoader.img_augmentation(label, rot_angle, rot_ax, flip_axes) assert not np.any(np.isnan(label)), file label = TensorflowDatasetLoader.get_one_hot(label, self.label_classes) label = np.round(resize(label, self.input_dim, preserve_range=True, mode='constant')).astype('float32') return label def _get_input_samples(self, idx): use_atlas = True f_f, _, f_r, f_r_ax, m_f, ml_f, m_r, m_r_ax, flip_axes, crop_img, task = TensorflowDatasetLoader.parse_idx(idx) fixed = nib.load(f_f).get_fdata() moving = nib.load(m_f).get_fdata() if crop_img is not None: fixed = TensorflowDatasetLoader.crop(fixed, crop_img) moving = TensorflowDatasetLoader.crop(moving, crop_img) fixed = TensorflowDatasetLoader.img_augmentation(fixed, f_r, f_r_ax, flip_axes) moving = TensorflowDatasetLoader.img_augmentation(moving, m_r, m_r_ax, flip_axes) if task in [2,3]: fixed, moving = TensorflowDatasetLoader.normalize(fixed, moving) else: fixed = TensorflowDatasetLoader.normalize(fixed) moving = TensorflowDatasetLoader.normalize(moving) fixed = resize(fixed, self.input_dim, preserve_range=True, mode='constant')[...,None].astype('float32') moving = resize(moving, self.input_dim, preserve_range=True, mode='constant')[...,None].astype('float32') assert not np.any(np.isnan(fixed)), f_f assert not np.any(np.isnan(moving)), m_f if ml_f is not None: moving_label = self._get_label(ml_f, crop_img, m_r, m_r_ax, flip_axes) else: use_atlas = False moving_label = None images = [fixed, moving] if use_atlas: out = images, moving_label else: out = images, None return out def _get_output_samples(self, idx): use_atlas = True f_f, fl_f, f_r, f_r_ax, _, _, _, _, flip_axes, crop_img, task = TensorflowDatasetLoader.parse_idx(idx) fixed = nib.load(f_f).get_fdata() if crop_img is not None: fixed = TensorflowDatasetLoader.crop(fixed, crop_img) fixed = TensorflowDatasetLoader.img_augmentation(fixed, f_r, f_r_ax, flip_axes) fixed = TensorflowDatasetLoader.normalize(fixed) fixed = resize(fixed, self.input_dim, preserve_range=True, mode='constant')[...,None].astype('float32') assert not np.any(np.isnan(fixed)), f_f if fl_f is not None: fixed_label = self._get_label(fl_f, crop_img, f_r, f_r_ax, flip_axes) else: use_atlas = False fixed_label = None if use_atlas: out = fixed, fixed_label else: out = fixed, None return out def generator(self, input_dim, lowest, last, idxs, use_input = True): def gen(): for i in range(len(idxs)): if use_input: images, moving_label = self._get_input_samples(idxs[i]) inputs = [images[0], images[1]] if moving_label is not None: inputs.append(moving_label) yield tuple(inputs) else: fixed, fixed_label = self._get_output_samples(idxs[i]) out = [] zeros = np.zeros((*input_dim, 3), dtype='float32') l = 0 for i in range(1, lowest - last + 2): l = lowest + 1 - i out_flow = resize(zeros[...,0], tuple([x//(2**l) for x in input_dim]), mode='constant')[...,None] out_flow1 = np.repeat(out_flow, 3, axis=-1) out_flow2 = np.repeat(out_flow, 2, axis=-1) if self.use_affine: out.append(out_flow1) # Affine if self.use_def: out.append(out_flow1) # Deformable #DUMMY out.append(out_flow2) # Placeholder for images sim if self.use_affine: out.append(zeros) # Affine if self.use_def: out.append(zeros) # Deformable out.append(fixed) # Image sim if fixed_label is not None: out.append(fixed_label) # Seg yield tuple(out) return gen def parse_idx(idx): fixed = idx[0][0] fixed_label = idx[0][1] fixed_rot = idx[0][2][0] fixed_rot_ax = idx[0][2][1] moving = idx[1][0] moving_label = idx[1][1] moving_rot = idx[1][2][0] moving_rot_ax = idx[1][2][1] flip_axes = idx[2] crop_img = idx[3] task = idx[4] return fixed, fixed_label, fixed_rot, fixed_rot_ax, moving, moving_label, moving_rot, moving_rot_ax, flip_axes, crop_img, task def img_augmentation(img, rot_angle, rot_ax, flip_axes): if flip_axes > -1: img = np.flip(img, flip_axes) if rot_angle != 0: img = ndimage.rotate(img, rot_angle, axes=(rot_ax[0], rot_ax[1]), mode='nearest', reshape=False) return img def normalize(img1, img2 = None): img1_max = np.max(img1) img1_min = np.min(img1) out_1 = (img1-img1_min)/(img1_max-img1_min) if img2 is not None: out_2 = (img2-img1_min)/(img1_max-img1_min) return out_1, out_2 return out_1 def crop(img, c): img = img[img.shape[0]//c:(c-1)*img.shape[0]//c, img.shape[1]//c:(c-1)*img.shape[1]//c, img.shape[2]//c:(c-1)*img.shape[2]//c] return img
# Copyright 2020 Xilinx Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Module for testing the relay pyxir frontend""" import unittest import numpy as np # ! To import tvm import pyxir try: import tvm from tvm import relay from tvm.relay import testing skip = False except Exception as e: # Skip TVM tests skip = True if not skip: from pyxir.frontend.tvm import relay as xf_relay class TestRelayFrontend(unittest.TestCase): @unittest.skipIf(skip, "Could not import TVM and/or TVM frontend") def test_simple_network(self): data = relay.var("data", relay.TensorType((1, 3, 224, 224), "float32")) weight = relay.var("weight") bn_gamma = relay.var("bn_gamma") bn_beta = relay.var("bn_beta") bn_mmean = relay.var("bn_mean") bn_mvar = relay.var("bn_var") simple_net = relay.nn.pad(data, ((0, 0), (0, 0), (1, 1), (1, 1))) simple_net = relay.nn.conv2d( data=simple_net, weight=weight, kernel_size=(3, 3), channels=16, padding=(0, 0), ) simple_net = relay.nn.batch_norm( simple_net, bn_gamma, bn_beta, bn_mmean, bn_mvar )[0] simple_net = relay.nn.relu(simple_net) simple_net = relay.op.reduce.mean(simple_net, axis=(2, 3)) simple_net = relay.op.transform.reshape(simple_net, newshape=(1, 16)) dense_weight = relay.var("dense_weight") dense_bias = relay.var("dense_bias") simple_net = relay.nn.dense(simple_net, weight=dense_weight, units=10) simple_net = relay.nn.bias_add(simple_net, dense_bias, axis=1) simple_net = relay.nn.softmax(simple_net, axis=1) simple_net = relay.op.transform.reshape(simple_net, newshape=(1, 10)) func = relay.Function(relay.analysis.free_vars(simple_net), simple_net) mod, params = testing.create_workload(simple_net) xgraph = xf_relay.from_relay(mod, params) layers = xgraph.get_layers() assert layers[0].type[0] == "Input" assert layers[1].type[0] == "Pad" assert layers[2].type[0] == "Convolution" assert layers[3].type[0] == "BatchNorm" assert layers[4].type[0] == "ReLU" assert layers[5].type[0] == "Mean" assert layers[6].type[0] == "Reshape" assert layers[7].type[0] == "Dense" assert layers[8].type[0] == "BiasAdd" assert layers[9].type[0] == "Softmax" assert layers[10].type[0] == "Reshape" @unittest.skipIf(skip, "Could not import TVM and/or TVM frontend") def test_simple_network_cvx(self): data = relay.var("data", relay.TensorType((1, 3, 224, 224), "float32")) weight = relay.var("weight") bn_gamma = relay.var("bn_gamma") bn_beta = relay.var("bn_beta") bn_mmean = relay.var("bn_mean") bn_mvar = relay.var("bn_var") simple_net = relay.nn.pad(data, ((0, 0), (0, 0), (1, 1), (1, 1))) simple_net = relay.nn.conv2d( data=simple_net, weight=weight, kernel_size=(3, 3), channels=16, padding=(0, 0), ) simple_net = relay.nn.relu(simple_net) simple_net = relay.Function(relay.analysis.free_vars(simple_net), simple_net) mod, params = testing.create_workload(simple_net) xgraph = xf_relay.from_relay( mod, params, cvx_preprocessing={"data": "scale-0.5__transpose-2,0,1"} ) assert len(xgraph.get_input_names()) == 1 layers = xgraph.get_layers() # assert layers[0].type[0] == "Constant" assert layers[0].type[0] == "StrInput" assert layers[0].shapes == [-1] assert layers[1].type[0] == "Cvx" assert layers[1].shapes == [-1, 3, 224, 224] assert layers[2].type[0] == "Pad" assert layers[3].type[0] == "Convolution" assert layers[4].type[0] == "ReLU" assert layers[0].tops == ["data_cvx"] assert layers[1].bottoms == ["data"] assert layers[1].tops[0][:7] == "nn.pad-" @unittest.skipIf(skip, "Could not import TVM and/or TVM frontend") def test_conv2d_transpose(self): data = relay.var("data", relay.TensorType((-1, 1, 3, 3), "float32")) weight = relay.var("weight") simple_net = relay.nn.conv2d_transpose( data=data, weight=weight, kernel_size=(2, 2), channels=1, padding=(0, 0), strides=(2, 2), data_layout="NCHW", kernel_layout="IOHW", ) simple_net = relay.Function(relay.analysis.free_vars(simple_net), simple_net) mod, params = testing.create_workload(simple_net) xgraph = xf_relay.from_relay(mod, params) layers = xgraph.get_layers() assert layers[0].type[0] == "Input" assert layers[0].shapes == [-1, 1, 3, 3] assert layers[1].type[0] == "Conv2DTranspose" assert layers[1].shapes == [-1, 1, 6, 6] assert layers[1].sizes == [36] assert layers[1].attrs["padding"] == [[0, 0], [0, 0], [0, 0], [0, 0]] assert layers[1].attrs["strides"] == [2, 2] assert layers[1].attrs["dilation"] == [1, 1] @unittest.skipIf(skip, "Could not import TVM and/or TVM frontend") def test_resnet_block(self): data = relay.var("data", relay.TensorType((-1, 3, 224, 224), "float32")) weight = relay.var("weight") bn_gamma = relay.var("bn_gamma") bn_beta = relay.var("bn_beta") bn_mmean = relay.var("bn_mean") bn_mvar = relay.var("bn_var") conv2d0_expr = relay.nn.conv2d( data=data, weight=weight, kernel_size=(3, 3), channels=16, padding=(1, 1) ) bn0_expr = relay.nn.batch_norm( conv2d0_expr, bn_gamma, bn_beta, bn_mmean, bn_mvar )[0] relu0_expr = relay.nn.relu(bn0_expr) max_pool0_expr = relay.nn.max_pool2d( relu0_expr, pool_size=(2, 2), strides=(2, 2) ) conv2d1_weight = relay.var("conv2d1_weight") conv2d1_bias = relay.var("conv2d1_bias") conv2d1_expr = relay.nn.conv2d( data=max_pool0_expr, weight=conv2d1_weight, kernel_size=(3, 3), channels=16, padding=(1, 1), ) bias_add0_expr = relay.nn.bias_add(conv2d1_expr, conv2d1_bias, axis=1) relu1_expr = relay.nn.relu(bias_add0_expr) add0_expr = relay.op.tensor.add(max_pool0_expr, relu1_expr) avg_pool0_expr = relay.nn.avg_pool2d( add0_expr, pool_size=(2, 2), strides=(2, 2) ) global_avg_pool0_expr = relay.op.nn.global_avg_pool2d(avg_pool0_expr) bf_expr = relay.nn.batch_flatten(global_avg_pool0_expr) net = avg_pool0_expr net = relay.Function(relay.analysis.free_vars(net), net) mod, params = testing.create_workload(net) xgraph = xf_relay.from_relay(mod, params) layers = xgraph.get_layers() assert layers[0].type[0] == "Input" assert layers[1].type[0] == "Convolution" assert layers[2].type[0] == "BatchNorm" assert layers[3].type[0] == "ReLU" assert layers[4].type[0] == "Pooling" assert layers[5].type[0] == "Convolution" assert layers[6].type[0] == "BiasAdd" assert layers[7].type[0] == "ReLU" assert layers[8].type[0] == "Eltwise" assert layers[9].type[0] == "Pooling" assert layers[9].shapes == [-1, 16, 56, 56] @unittest.skipIf(skip, "Could not import TVM and/or TVM frontend") def test_inception_block(self): data = relay.var("data", relay.TensorType((-1, 3, 224, 224), "float32")) weight = relay.var("weight") bn_gamma = relay.var("bn_gamma") bn_beta = relay.var("bn_beta") bn_mmean = relay.var("bn_mean") bn_mvar = relay.var("bn_var") conv2d0_expr = relay.nn.conv2d( data=data, weight=weight, kernel_size=(3, 3), channels=16, padding=(1, 1) ) bn0_expr = relay.nn.batch_norm( conv2d0_expr, bn_gamma, bn_beta, bn_mmean, bn_mvar )[0] relu0_expr = relay.nn.relu(bn0_expr) max_pool0_expr = relay.nn.max_pool2d( relu0_expr, pool_size=(2, 2), strides=(2, 2) ) conv2d1_weight = relay.var("conv2d1_weight") conv2d1_bias = relay.var("conv2d1_bias") conv2d1_expr = relay.nn.conv2d( data=max_pool0_expr, weight=conv2d1_weight, kernel_size=(3, 3), channels=16, padding=(1, 1), strides=(2, 2), ) bias_add1_expr = relay.nn.bias_add(conv2d1_expr, conv2d1_bias, axis=1) relu1_expr = relay.nn.relu(bias_add1_expr) conv2d2_weight = relay.var("conv2d2_weight") conv2d2_bias = relay.var("conv2d2_bias") conv2d2_expr = relay.nn.conv2d( data=max_pool0_expr, weight=conv2d2_weight, kernel_size=(3, 3), channels=16, padding=(1, 1), strides=(2, 2), ) bias_add2_expr = relay.nn.bias_add(conv2d2_expr, conv2d2_bias, axis=1) relu2_expr = relay.nn.relu(bias_add2_expr) concat0_expr = relay.op.tensor.concatenate([relu1_expr, relu2_expr], axis=1) global_max_pool0_expr = relay.op.nn.global_max_pool2d(concat0_expr) net = global_max_pool0_expr net = relay.Function(relay.analysis.free_vars(net), net) mod, params = testing.create_workload(net) xgraph = xf_relay.from_relay(mod, params) layers = xgraph.get_layers() assert layers[0].type[0] == "Input" assert layers[1].type[0] == "Convolution" assert layers[2].type[0] == "BatchNorm" assert layers[3].type[0] == "ReLU" assert layers[4].type[0] == "Pooling" assert layers[5].type[0] == "Convolution" assert layers[6].type[0] == "BiasAdd" assert layers[7].type[0] == "ReLU" assert layers[8].type[0] == "Convolution" assert layers[9].type[0] == "BiasAdd" assert layers[10].type[0] == "ReLU" assert layers[11].type[0] == "Concat" assert layers[12].type[0] == "Pooling" assert layers[12].shapes == [-1, 32, 1, 1]
from tartiflette import Directive from tartiflette.types.exceptions.tartiflette import SkipExecution class Skip: async def on_field_execution( self, directive_args, next_resolver, parent_result, args, ctx, info ): if directive_args["if"]: raise SkipExecution() return await next_resolver(parent_result, args, ctx, info) def bake(schema_name, _config): sdl = "directive @skip(if: Boolean!) on FIELD | FRAGMENT_SPREAD | INLINE_FRAGMENT" Directive(name="skip", schema_name=schema_name)(Skip()) return sdl
""" Expect error directives """ from __future__ import ( absolute_import, unicode_literals, ) from pyparsing import ( Literal, Optional, Word, alphanums, restOfLine, ) import six from pysoa.common.types import Error from pysoa.test.plan.grammar.assertions import ( assert_actual_list_not_subset, assert_expected_list_subset_of_actual, assert_lists_match_any_order, ) from pysoa.test.plan.grammar.data_types import AnyValue from pysoa.test.plan.grammar.directive import ( ActionDirective, register_directive, ) from pysoa.test.plan.grammar.tools import ( path_get, path_put, ) __test_plan_prune_traceback = True # ensure code in this file is not included in failure stack traces class ActionExpectsNoErrorsDirective(ActionDirective): """ Expect that no errors are reported back in the service call response. Any error in either the job response or the action response will cause this expectation to fail. """ @classmethod def name(cls): return 'expect_no_errors' @classmethod def get_full_grammar(cls): return ( super(ActionExpectsNoErrorsDirective, cls).get_full_grammar() + Literal('expect') + ':' + Literal('no errors') ) def ingest_from_parsed_test_fixture(self, action_case, test_case, parse_results, file_name, line_number): action_case['expects_no_errors'] = True def assert_test_case_action_results( self, action_name, action_case, test_case, test_fixture, action_response, job_response, msg=None, **kwargs ): if not action_case.get('expects_no_errors', False): return if job_response.errors: raise AssertionError('{}: Expected no job errors, but got: {}'.format(msg or '', job_response.errors)) if action_response.errors: raise AssertionError('{}: Expected no action errors, but got: {}'.format(msg or '', action_response.errors)) class ActionExpectsErrorsDirective(ActionDirective): """ Set expectations that specific errors will (or will not) be in the service response. Any error that that matches this code, whether or not it has a field or message, will fulfill this expectation. If ``not`` is used, the absence of the error will be asserted (it negates the expectation exactly). As long as no error has this code, this expectation will pass. If ``exact`` is used, then all of the errors you define must match all of the errors in your response, and your response cannot have any non-matching extra errors. ``exact`` and non-``exact`` are mutually-exclusive expectations: an action case that has a mixture of ``exact`` and non-``exact`` error expectations will fail. For each error case, you must use one or the other. If ``job`` is used, then the job response will be examined for the error instead of the action response. """ @classmethod def name(cls): return 'expect_error' @classmethod def get_full_grammar(cls): return ( super(ActionExpectsErrorsDirective, cls).get_full_grammar() + Literal('expect') + ':' + Optional('not').setResultsName('not') + Optional('exact')('exact') + Optional('job')('job') + Literal('error') + ':' + Literal('code') + '=' + Word(alphanums + '-_')('error_code') ) def ingest_from_parsed_test_fixture(self, action_case, test_case, parse_results, file_name, line_number): path = 'expects_{not_q}{job_q}{exact_q}error'.format( not_q='not_' if getattr(parse_results, 'not', None) else '', job_q='job_' if parse_results.job else '', exact_q='exact_' if parse_results.exact else '', ) try: errors = path_get(action_case, path) except (KeyError, IndexError): errors = [] path_put(action_case, path, errors) errors.append(Error( code=parse_results.error_code, message=getattr(parse_results, 'error_message', None) or AnyValue('str'), field=getattr(parse_results, 'field_name', None) or AnyValue('str', permit_none=True), traceback=AnyValue('str', permit_none=True), variables=AnyValue('list', permit_none=True), )) def assert_test_case_action_results( self, action_name, action_case, test_case, test_fixture, action_response, job_response, msg=None, **kwargs ): for instruction, expected in six.iteritems(action_case): if instruction.startswith('expects_') and instruction.endswith('_error'): target = action_response if '_job_' in instruction: target = job_response errors = target.errors if target else [] try: if '_not_' in instruction: assert_actual_list_not_subset(expected, errors, 'NOT EXPECTED ERRORS: {}'.format(msg or '')) elif '_exact_' in instruction: assert_lists_match_any_order(expected, errors, 'EXPECTED EXACT ERRORS: {}'.format(msg or '')) else: assert_expected_list_subset_of_actual(expected, errors, 'EXPECTED ERRORS: {}'.format(msg or '')) except AssertionError as e: for error in errors: if error.code == 'SERVER_ERROR': raise type(e)( '{message}\n\nSERVER_ERROR: {detail}'.format( message=e.args[0], detail=error.message, ), ) raise class ActionExpectsFieldErrorsDirective(ActionExpectsErrorsDirective): """ Set expectations that specific errors will (or will not) be in the service response. Any error that that matches this code *and* field, whether or not it has a message value, will fulfill this expectation. If ``not`` is used, the absence of the error will be asserted (it negates the expectation exactly). As long as no error has this code *and* field (even if some errors have this code and other errors have this field), this expectation will pass. If ``exact`` is used, then all of the errors you define must match all of the errors in your response, and your response cannot have any non-matching extra errors. ``exact`` and non-``exact`` are mutually-exclusive expectations: an action case that has a mixture of ``exact`` and non-``exact`` error expectations will fail. For each error case, you must use one or the other. If ``job`` is used, then the job response will be examined for the error instead of the action response. """ @classmethod def name(cls): return 'expect_error_field' @classmethod def get_full_grammar(cls): return ( super(ActionExpectsFieldErrorsDirective, cls).get_full_grammar() + ',' + Literal('field') + '=' + Word(alphanums + '-_.{}[]')('field_name') ) class ActionExpectsMessageErrorsDirective(ActionExpectsErrorsDirective): """ Set expectations that specific errors will (or will not) be in the service response. Any error that that matches this code *and* message, whether or not it has a field value, will fulfill this expectation. If ``not`` is used, the absence of the error will be asserted (it negates the expectation exactly). As long as no error has this code *and* message (even if some errors have this code and other errors have this message), this expectation will pass. If ``exact`` is used, then all of the errors you define must match all of the errors in your response, and your response cannot have any non-matching extra errors. ``exact`` and non-``exact`` are mutually-exclusive expectations: an action case that has a mixture of ``exact`` and non-``exact`` error expectations will fail. For each error case, you must use one or the other. If ``job`` is used, then the job response will be examined for the error instead of the action response. """ @classmethod def name(cls): return 'expect_error_message' @classmethod def get_full_grammar(cls): return ( super(ActionExpectsMessageErrorsDirective, cls).get_full_grammar() + ',' + Literal('message') + '=' + restOfLine('error_message').setParseAction(lambda s, l, t: t[0].strip(' \t')) ) class ActionExpectsFieldMessageErrorsDirective(ActionExpectsFieldErrorsDirective): """ Set expectations that specific errors will (or will not) be in the service response. Any error that that matches this code, field, *and* message will fulfill this expectation. If ``not`` is used, the absence of the error will be asserted (it negates the expectation exactly). As long as no error has this code, field, *and* message, this expectation will pass. If ``exact`` is used, then all of the errors you define must match all of the errors in your response, and your response cannot have any non-matching extra errors. ``exact`` and non-``exact`` are mutually-exclusive expectations: an action case that has a mixture of ``exact`` and non-``exact`` error expectations will fail. For each error case, you must use one or the other. If ``job`` is used, then the job response will be examined for the error instead of the action response. """ @classmethod def name(cls): return 'expect_error_field_message' @classmethod def get_full_grammar(cls): return ( super(ActionExpectsFieldMessageErrorsDirective, cls).get_full_grammar() + ',' + Literal('message') + '=' + restOfLine('error_message').setParseAction(lambda s, l, t: t[0].strip(' \t')) ) # This order is very important; do not disturb register_directive(ActionExpectsFieldMessageErrorsDirective) register_directive(ActionExpectsMessageErrorsDirective) register_directive(ActionExpectsFieldErrorsDirective) register_directive(ActionExpectsErrorsDirective) register_directive(ActionExpectsNoErrorsDirective)
# DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER # Copyright (c) 2018 Juniper Networks, Inc. # All rights reserved. # Use is subject to license terms. # # Author: cklewar import argparse from lib.processor import TaskProcessor from lib.processor import ServiceProcessor from lib.pluginfactory import EmitterPlgFact from lib.pluginfactory import SpacePluginFactory import lib.constants as c from lib.tools import Tools class YaptSvc(object): if __name__ == '__main__': Tools.create_config_view(c.CONFIG_TYPE_MAIN) EmitterPlgFact() parser = argparse.ArgumentParser() parser.add_argument("amqpIp", help="provide amqp bus ip") args = parser.parse_args() c.conf.AMQP.Host = args.amqpIp if c.conf.JUNOSSPACE.Enabled: spf = SpacePluginFactory(c.conf.JUNOSSPACE.Version) c.SRC = spf.init_plugin() for item in range(c.conf.YAPT.WorkerThreads): taskprocessor = TaskProcessor(target=TaskProcessor, name=c.AMQP_PROCESSOR_TASK + str(item), args=(c.conf.AMQP.Exchange, c.conf.AMQP.Type, c.AMQP_PROCESSOR_TASK, c.AMQP_PROCESSOR_TASK,)) taskprocessor.start() serviceprocessor = ServiceProcessor(target=ServiceProcessor, name=c.AMQP_PROCESSOR_SVC, args=(c.conf.AMQP.Exchange, c.conf.AMQP.Type, c.AMQP_PROCESSOR_SVC, c.AMQP_PROCESSOR_SVC,)) serviceprocessor.start()
# Smallest Multiple -- Solved # Solution = 232792560 import math from Timer import Timer Stopwatch = Timer() def LCM(n,p): return (n*p) // math.gcd(n,p) Solution = 1 for i in range(2, 21): Solution = LCM(Solution, i) print('The least common multiple of all of the numbers from 1 to 20 is: ', Solution) Stopwatch.stop()
import imghdr import string import random from flask import abort import os from werkzeug.utils import secure_filename from app.config import Config def validate_image(stream): header = stream.read(512) stream.seek(0) format = imghdr.what(None, header) if not format: return None return '.' + (format if format != 'jpeg' else 'jpg') def generate_filename(ext): return ''.join(random.choices(string.ascii_uppercase + string.digits, k=20)) + ext def save_image(photo): filename = secure_filename(photo.filename) photo_filename = '' if filename != '': file_ext = os.path.splitext(filename)[1].lower() photo_filename = generate_filename(file_ext) if file_ext not in Config.UPLOAD_IMAGE_EXTENSIONS or \ file_ext != validate_image(photo.stream): return False if not os.path.exists(Config.UPLOAD_IMAGE_PATH): os.mkdir(os.path.join(Config.UPLOAD_IMAGE_DIR, 'uploads')) photo.save(os.path.join(Config.UPLOAD_IMAGE_PATH, photo_filename)) return photo_filename def delete_image(filename): os.remove(os.path.join(Config.UPLOAD_IMAGE_PATH, filename)) def save_doc(doc): filename = secure_filename(doc.filename) doc_filename = '' if filename != '': file_ext = os.path.splitext(filename)[1].lower() doc_filename = generate_filename(file_ext) if file_ext not in Config.UPLOAD_DOC_EXTENSIONS: return False if not os.path.exists(Config.UPLOAD_DOC_PATH): os.mkdir(os.path.join(Config.UPLOAD_DOC_DIR, 'uploads')) doc.save(os.path.join(Config.UPLOAD_DOC_PATH, doc_filename)) return doc_filename def delete_doc(filename): os.remove(os.path.join(Config.UPLOAD_DOC_PATH, filename))
from lib.action import BitBucketAction class UpdateServiceAction(BitBucketAction): def run(self, repo, id, url): """ Update a service/hook """ bb = self._get_client(repo=repo) success, result = bb.service.update( service_id=id, URL=url ) return result
#!/usr/bin/env python # -*- encoding: utf-8 -*- import torch import os import sys import numpy as np import argparse from copy import deepcopy from torchvision import transforms from models.vae import ConditionalVAE, ConditionalVAE_conv from utils import * import time def main_LGLvKR_Fine(args): os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu print(75 * '=' + '\n' + '|| \t model dir:\t%s\t ||\n' % args.modeldir + 75 * '=') permutation = np.array(list(range(10))) target_transform = transforms.Lambda(lambda y, p=permutation: int(p[y])) train_data = get_dataset(args.dataset, type="train", dir=args.data_dir, target_transform=target_transform, verbose=False) test_data = get_dataset(args.dataset, type="test", dir=args.data_dir, target_transform=target_transform, verbose=False) classes_per_task = int(np.floor(10 / args.tasks)) labels_per_task = [list(np.array(range(classes_per_task)) + classes_per_task * task_id) for task_id in range(args.tasks)] labels_per_task_test = [list(np.array(range(classes_per_task + classes_per_task * task_id))) for task_id in range(args.tasks)] sys.stdout = Logger(os.path.join(args.modeldir, '{}_log_{}.txt'.format(args.name,args.op))) # training time_cost = 0 for task_i in range(args.tasks): print(40 * '=' + ' Task %1d ' % (task_i+1) + 40 * '=') if not os.path.exists(os.path.join(args.modeldir, args.name + '_%1d.pth' % task_i)): train_loader = get_data_loader( SubDataset(train_data, labels_per_task[task_i], target_transform=None), args.batch_size, cuda=True, drop_last=True) print("training(n=%5d)..." % len(train_loader.dataset)) if task_i == 0: if args.dataset == 'mnist' or args.dataset == 'fashion': cvae = ConditionalVAE(args) elif args.dataset == 'svhn' or args.dataset == 'cifar10': cvae = ConditionalVAE_conv(args) print("there are {} params with {} elems in the cvae".format( len(list(cvae.parameters())), sum(p.numel() for p in cvae.parameters() if p.requires_grad)) ) else: cvae = torch.load(os.path.join(args.modeldir, args.name + '_%1d.pth' % (task_i - 1))) print("there are {} params with {} elems in the cvae".format( len(list(cvae.parameters())), sum(p.numel() for p in cvae.parameters() if p.requires_grad)) ) cvae = cvae.cuda() optimizer_CVAE = torch.optim.Adam(cvae.parameters(), lr=args.lr, betas=(0.9, 0.999)) start = time.time() for epoch in range(args.epochs): loss_log = {'V/loss': 0.0, 'V/loss_rec': 0.0, 'V/loss_var': 0.0} for x, y in train_loader: if args.dataset == 'mnist' or args.dataset == 'fashion': x = x.cuda().view(x.size(0), -1) elif args.dataset == 'svhn' or args.dataset == 'cifar10': x = x.cuda() y = torch.eye(args.class_dim)[y].cuda() x_rec, mu, logvar = cvae(x, y) loss_rec = torch.nn.MSELoss(reduction='sum')(x, x_rec) / x.size(0) loss_var = (-0.5 * torch.sum(1 + logvar - mu ** 2 - logvar.exp())) / x.size(0) loss_cvae = loss_rec + args.alpha_var * loss_var optimizer_CVAE.zero_grad() loss_cvae.backward() optimizer_CVAE.step() loss_log['V/loss'] += loss_cvae.item() loss_log['V/loss_rec'] += loss_rec.item() loss_log['V/loss_var'] += loss_var.item() * args.alpha_var print('[VAE Epoch%2d]\t V/loss: %.3f\t V/loss_rec: %.3f\t V/loss_var: %.3f' % (epoch + 1, loss_log['V/loss'], loss_log['V/loss_rec'], loss_log['V/loss_var'])) time_cost += time.time() - start torch.save(cvae, os.path.join(args.modeldir, args.name + '_%1d.pth' % task_i)) else: print(40 * '=' + ' Task %1d ' % (task_i+1) + 40 * '=') cvae = torch.load(os.path.join(args.modeldir, args.name + '_%1d.pth' % task_i)) cvae.eval() ##################### Test with LPIPS ######################################################################### if args.LPIPS: caculate_LPIPS(args,task_i,test_data,labels_per_task_test[task_i],cvae.decode) ##################### Test with FID ######################################################################### if args.fid: caculate_fid(args,task_i,test_data,labels_per_task_test[task_i],cvae.decode) ####################### Test with Acc and rAcc #################################### if args.ACC: caculate_ACC(args,task_i,train_data,test_data,labels_per_task_test[task_i],cvae.decode) # ####################### Test as generated pictures #################################### if args.generate: generat_img(args,task_i,labels_per_task[task_i],cvae.decode) print(100 * '-') print('Total training time is: %.3f seconds'%time_cost) def main_LGLvKR_joint(args): os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu print(75 * '=' + '\n' + '|| \t model dir:\t%s\t ||\n' % args.modeldir + 75 * '=') permutation = np.array(list(range(10))) target_transform = transforms.Lambda(lambda y, p=permutation: int(p[y])) train_data = get_dataset(args.dataset, type="train", dir=args.data_dir, target_transform=target_transform, verbose=False) test_data = get_dataset(args.dataset, type="test", dir=args.data_dir, target_transform=target_transform, verbose=False) classes_per_task = int(np.floor(10 / args.tasks)) labels_per_task = [list(np.array(range(classes_per_task+ classes_per_task * task_id))) for task_id in range(args.tasks)] labels_per_task_test = [list(np.array(range(classes_per_task + classes_per_task * task_id))) for task_id in range(args.tasks)] sys.stdout = Logger(os.path.join(args.modeldir, '{}_log_{}.txt'.format(args.name,args.op))) # training time_cost = 0 for task_i in range(args.tasks): print(40 * '=' + ' Task %1d ' % (task_i+1) + 40 * '=') if not os.path.exists(os.path.join(args.modeldir, args.name + '_%1d.pth' % task_i)): train_loader = get_data_loader( SubDataset(train_data, labels_per_task[task_i], target_transform=None), args.batch_size, cuda=True, drop_last=True) print("training(n=%5d)..." % len(train_loader.dataset)) if args.dataset == 'mnist' or args.dataset == 'fashion': cvae = ConditionalVAE(args) elif args.dataset == 'svhn' or args.dataset == 'cifar10': cvae = ConditionalVAE_conv(args) print("there are {} params with {} elems in the cvae".format( len(list(cvae.parameters())), sum(p.numel() for p in cvae.parameters() if p.requires_grad)) ) cvae = cvae.cuda() optimizer_CVAE = torch.optim.Adam(cvae.parameters(), lr=args.lr, betas=(0.9, 0.999)) start = time.time() for epoch in range(args.epochs): loss_log = {'V/loss': 0.0, 'V/loss_rec': 0.0, 'V/loss_var': 0.0} for x, y in train_loader: if args.dataset == 'mnist' or args.dataset == 'fashion': x = x.cuda().view(x.size(0), -1) elif args.dataset == 'svhn' or args.dataset == 'cifar10': x = x.cuda() y = torch.eye(args.class_dim)[y].cuda() x_rec, mu, logvar = cvae(x, y) loss_rec = torch.nn.MSELoss(reduction='sum')(x, x_rec) / x.size(0) loss_var = (-0.5 * torch.sum(1 + logvar - mu ** 2 - logvar.exp())) / x.size(0) loss_cvae = loss_rec + args.alpha_var * loss_var optimizer_CVAE.zero_grad() loss_cvae.backward() optimizer_CVAE.step() loss_log['V/loss'] += loss_cvae.item() loss_log['V/loss_rec'] += loss_rec.item() loss_log['V/loss_var'] += loss_var.item() * args.alpha_var print('[VAE Epoch%2d]\t V/loss: %.3f\t V/loss_rec: %.3f\t V/loss_var: %.3f' % (epoch + 1, loss_log['V/loss'], loss_log['V/loss_rec'], loss_log['V/loss_var'])) time_cost += time.time() - start torch.save(cvae, os.path.join(args.modeldir, args.name + '_%1d.pth' % task_i)) else: cvae = torch.load(os.path.join(args.modeldir, args.name + '_%1d.pth' % task_i)) cvae.eval() ##################### Test with LPIPS ######################################################################### if args.LPIPS: caculate_LPIPS(args,task_i,test_data,labels_per_task_test[task_i],cvae.decode) ##################### Test with FID ######################################################################### if args.fid: caculate_fid(args,task_i,test_data,labels_per_task_test[task_i],cvae.decode) ####################### Test with Acc and rAcc #################################### if args.ACC: caculate_ACC(args,task_i,train_data,test_data,labels_per_task_test[task_i],cvae.decode) # ####################### Test as generated pictures #################################### if args.generate: generat_img(args,task_i,labels_per_task[task_i],cvae.decode) print(100 * '-') print('Total training time is: %.3f seconds'%time_cost) def main_LGLvKR(args): os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu print(75 * '=' + '\n' + '|| \t model dir:\t%s\t ||\n' % args.modeldir + 75 * '=') permutation = np.array(list(range(10))) target_transform = transforms.Lambda(lambda y, p=permutation: int(p[y])) train_data = get_dataset(args.dataset, type="train", dir=args.data_dir, target_transform=target_transform, verbose=False) test_data = get_dataset(args.dataset, type="test", dir=args.data_dir, target_transform=target_transform, verbose=False) classes_per_task = int(np.floor(10 / args.tasks)) labels_per_task = [list(np.array(range(classes_per_task)) + classes_per_task * task_id) for task_id in range(args.tasks)] labels_per_task_test = [list(np.array(range(classes_per_task + classes_per_task * task_id))) for task_id in range(args.tasks)] sys.stdout = Logger(os.path.join(args.modeldir, 'log_{}_{}.txt'.format(args.name,args.op))) # training time_cost = 0 for task_i in range(args.tasks): print(40 * '=' + ' Task %1d ' % (task_i + 1) + 40 * '=') if not os.path.exists(os.path.join(args.modeldir, args.name + '_%1d.pth' % task_i)): train_loader = get_data_loader( SubDataset(train_data, labels_per_task[task_i], target_transform=None), args.batch_size, cuda=True, drop_last=True) print("training(n=%5d)..." % len(train_loader.dataset)) if task_i == 0: if args.dataset == 'mnist' or args.dataset == 'fashion': cvae = ConditionalVAE(args) elif args.dataset == 'svhn' or args.dataset == 'cifar10': cvae = ConditionalVAE_conv(args) print("there are {} params with {} elems in the cvae".format( len(list(cvae.parameters())), sum(p.numel() for p in cvae.parameters() if p.requires_grad)) ) else: cvae = torch.load(os.path.join(args.modeldir, args.name + '_%1d.pth' % (task_i - 1))) cvae_old = deepcopy(cvae) cvae_old.eval() cvae_old = freeze_model(cvae_old) print("there are {} params with {} elems in the cvae, {} params with {} elems in the cvae_old".format( len(list(cvae.parameters())), sum(p.numel() for p in cvae.parameters() if p.requires_grad), len(list(cvae_old.parameters())), sum(p.numel() for p in cvae_old.parameters() if p.requires_grad)) ) cvae = cvae.cuda() optimizer_CVAE = torch.optim.Adam(cvae.parameters(), lr=args.lr, betas=(0.9, 0.999)) start = time.time() for epoch in range(args.epochs): loss_log = {'V/loss': 0.0, 'V/loss_rec': 0.0, 'V/loss_var': 0.0, 'V/loss_var_hat': 0.0, 'V/loss_aug': 0.0} for x, y in train_loader: if args.dataset == 'mnist' or args.dataset == 'fashion': x = x.cuda().view(x.size(0), -1) elif args.dataset == 'svhn' or args.dataset == 'cifar10': x = x.cuda() y = torch.eye(args.class_dim)[y].cuda() if task_i == 0: x_rec, mu, logvar = cvae(x, y) mu_hat, logvar_hat = cvae.encode(x_rec, y) loss_rec = torch.nn.MSELoss(reduction='sum')(x, x_rec) / x.size(0) loss_var = (-0.5 * torch.sum(1 + logvar - mu ** 2 - logvar.exp())) / x.size(0) loss_var_hat = (-0.5 * torch.sum(1 + logvar_hat - mu_hat ** 2 - logvar_hat.exp())) / x_rec.size(0) loss_cvae = loss_rec + args.alpha_var * loss_var + args.alpha_var_hat * loss_var_hat else: mu, logvar = cvae.encode(x, y) z = cvae.reparameterize(mu, logvar) y_pre = torch.randint(0, labels_per_task[task_i][0], (args.batch_size,)) y_pre = torch.eye(args.class_dim)[y_pre].cuda() z_pre = torch.empty((args.batch_size, args.latent_dim)).normal_(mean=0, std=1).cuda() xPre_old = cvae_old.decode(z_pre, y_pre) z_merged = torch.cat((z_pre, z)) y_merged = torch.cat((y_pre, y)) xRec_merged = cvae.decode(z_merged, y_merged) mu_hat, logvar_hat = cvae.encode(xRec_merged[:args.batch_size], y) loss_rec = torch.nn.MSELoss(reduction='sum')(x, xRec_merged[args.batch_size:]) / x.size(0) loss_var = (-0.5 * torch.sum(1 + logvar - mu ** 2 - logvar.exp())) / x.size(0) loss_var_hat = (-0.5 * torch.sum(1 + logvar_hat - mu_hat ** 2 - logvar_hat.exp())) / x.size(0) loss_aug = torch.dist(xRec_merged[:args.batch_size], xPre_old, 2) / xPre_old.size(0) loss_aug = loss_aug * task_i loss_cvae = loss_rec + args.alpha_var * loss_var + args.alpha_var_hat * loss_var_hat + args.alpha_aug * loss_aug optimizer_CVAE.zero_grad() loss_cvae.backward() optimizer_CVAE.step() loss_log['V/loss'] += loss_cvae.item() loss_log['V/loss_rec'] += loss_rec.item() loss_log['V/loss_var'] += loss_var.item() * args.alpha_var loss_log['V/loss_var_hat'] += loss_var_hat.item() * args.alpha_var_hat loss_log['V/loss_aug'] += loss_aug.item() * args.alpha_aug if task_i != 0 else 0 print('[VAE Epoch%2d]\t V/loss: %.3f\t V/loss_rec: %.3f\t V/loss_var: %.3f\t V/loss_var_hat: %.3f\t V/loss_aug: %.3f' % (epoch + 1, loss_log['V/loss'], loss_log['V/loss_rec'], loss_log['V/loss_var'], loss_log['V/loss_var_hat'], loss_log['V/loss_aug'])) time_cost += time.time() - start torch.save(cvae, os.path.join(args.modeldir, args.name + '_%1d.pth' % task_i)) else: cvae = torch.load(os.path.join(args.modeldir, args.name + '_%1d.pth' % task_i)) cvae.eval() ##################### Test with LPIPS ######################################################################### if args.LPIPS: caculate_LPIPS(args,task_i,test_data,labels_per_task_test[task_i],cvae.decode) ##################### Test with FID ######################################################################### if args.fid: caculate_fid(args,task_i,test_data,labels_per_task_test[task_i],cvae.decode) ####################### Test with Acc and rAcc #################################### if args.ACC: caculate_ACC(args,task_i,train_data,test_data,labels_per_task_test[task_i],cvae.decode) # ####################### Test as generated pictures #################################### if args.generate: generat_img(args,task_i,labels_per_task[task_i],cvae.decode) print(100 * '-') print('Total training time is: %.3f seconds'%time_cost) if __name__ == '__main__': parser = argparse.ArgumentParser(description='') common = parser.add_argument_group("common parameters group") network = parser.add_argument_group("network parameters group") train = parser.add_argument_group("training parameters group") common.add_argument('-modeldir', default='./checkpoints', help='check point directory') common.add_argument('-dataset',type=str, default='mnist', help='dataset name & uses dataset mnist/svhn/fasion') common.add_argument('-data_dir', type=str, default='./dataset/mnist', help='data directory') common.add_argument('-tasks', type=int, default=10, help='number of tasks') common.add_argument('-batch_size', type=int, default=128, help='batch size') common.add_argument('-op',type=str, default='tarin', choices=['train','eval_']) common.add_argument('-LPIPS', default=False, action='store_true', help='Whether LPIPS needs to be calculated') common.add_argument('-fid', default=False, action='store_true', help='Whether fid needs to be calculated') common.add_argument('-ACC', default=False, action='store_true', help='Whether ACC needs to be calculated') common.add_argument('-generate', default=False, action='store_true', help='Whether imgs need to be generated') network.add_argument('-feat_dim', type=int, default=32 * 32, help='input features dimension') network.add_argument('-latent_dim', type=int, default=2, help='latent variable dimension') network.add_argument('-class_dim', type=int, default=10, help='class or one-hot label dimension') network.add_argument('-hidden_dim', type=int, default=256, help='hidden dimension') train.add_argument('-lr', type=float, default=0.0002, help='learning rate') train.add_argument('-alpha_var', type=float, default=1., help='alpha parameter for variational loss') train.add_argument('-alpha_var_hat', type=float, default=1., help="alpha parameter for variational loss of reconstructed data") train.add_argument('-alpha_aug', type=float, default=1., help="alpha parameter for the augmented loss") train.add_argument('-epochs', default=10, type=int, metavar='N', help='number of epochs') train.add_argument("-gpu", type=str, default='0', help='which gpu to use') train.add_argument("-name", type=str, default='10tasks', help='the name of the temporary saved model') train.add_argument('-method',type=str,default='LGLvKR',choices=['LGLvKR_Fine','LGLvKR_joint','LGLvKR','LGLvKR_noFC','LGLvKR_noKR']) args = parser.parse_args() if args.dataset == 'mnist' or args.dataset =='mnist28': args.feat_dim = 32*32*1 args.model_dir = args.model_dir + '/SplitMNIST/' elif args.dataset == 'fashion': args.feat_dim = 32*32*1 args.model_dir = args.model_dir + '/fashion/' elif args.dataset == 'svhn': args.feat_dim = 32*32*3 args.data_dir = './dataset/svhn' args.model_dir = args.model_dir + '/svhn/' if args.method == 'LGLvKR_fine': args.modeldir = args.model_dir + 'LGLvKR_finetuning/' + '{}epoch'.format(args.epochs) main_LGLvKR_Fine(args) elif args.method == 'LGLvKR_joint': args.modeldir = args.model_dir + 'LGLvKR_jointTraining/' + '{}epoch'.format(args.epochs) main_LGLvKR_joint(args) elif args.method == 'LGLvKR': args.modeldir = args.model_dir + 'LGLvKR/' + '{}epoch'.format(args.epochs) main_LGLvKR(args) elif args.method == 'LGLvKR_noFC': args.modeldir = args.model_dir + 'LGLvKR_noFC/' + '{}epoch'.format(args.epochs) args.alpha_var_hat = 0. main_LGLvKR(args) elif args.method == 'LGLvKR_noKR': args.modeldir = args.model_dir + 'LGLvKR_noKR/' + '{}epoch'.format(args.epochs) args.alpha_aug = 0. main_LGLvKR(args)
#!/usr/bin/python3 from brownie.test import given, strategy # Does the RewardAdded event fire? @given(_amt=strategy("uint256", max_value=(10 ** 18), exclude=0)) def test_reward_added_fires(multi, reward_token, alice, _amt): multi.stake(10 ** 18, {"from": alice}) reward_token.approve(multi, _amt, {"from": alice}) multi.setRewardsDistributor(reward_token, alice, {"from": alice}) tx = multi.notifyRewardAmount(reward_token, _amt, {"from": alice}) assert tx.events["RewardAdded"].values() == [_amt] # Does the Staked event fire? @given(_amt=strategy("uint256", max_value=(10 ** 18), exclude=0)) def test_staked_fires(multi, alice, _amt): tx = multi.stake(_amt, {"from": alice}) assert tx.events["Staked"].values()[0] == alice assert tx.events["Staked"].values()[1] == _amt # Does the Withdrawn event fire? @given(amount=strategy("uint256", max_value=(10 ** 18), min_value=(10 ** 1), exclude=0)) def test_withdrawn_event_fires(multi, alice, amount): multi.stake(amount, {"from": alice}) tx = multi.withdraw(amount // 2, {"from": alice}) assert tx.events["Withdrawn"].values()[0] == alice assert tx.events["Withdrawn"].values()[1] == amount // 2 # Does the RewardPaid event fire? @given(amount=strategy("uint256", max_value=(10 ** 18), min_value=(10 ** 2))) def test_reward_paid_event_fires( multi, accounts, base_token, reward_token, chain, alice, bob, amount ): tx = multi.getReward() reward_token.approve(multi, amount, {"from": bob}) multi.setRewardsDistributor(reward_token, bob, {"from": alice}) multi.notifyRewardAmount(reward_token, amount, {"from": bob}) base_token.approve(multi, amount, {"from": bob}) multi.stake(amount, {"from": bob}) chain.mine(timedelta=60) value_earned = multi.earned(bob, reward_token) tx = multi.getReward({"from": bob}) assert tx.events["Transfer"].values()[0] == multi assert tx.events["Transfer"].values()[1] == bob assert tx.events["RewardPaid"].values()[0] == bob assert tx.events["RewardPaid"].values()[1] == reward_token assert tx.events["RewardPaid"].values()[2] == value_earned # Does the RewardsDurationUpdated event fire? @given(duration=strategy("uint256", max_value=(10 ** 5), exclude=0)) def test_rewards_duration_fires(multi, alice, reward_token, duration): multi.setRewardsDistributor(reward_token, alice, {"from": alice}) tx = multi.setRewardsDuration(reward_token, duration, {"from": alice}) assert tx.events["RewardsDurationUpdated"].values()[0] == reward_token assert tx.events["RewardsDurationUpdated"].values()[1] == duration # Does the Recovered event fire? @given(amount=strategy("uint256", max_value=(10 ** 10), exclude=0)) def test_recovered_fires(multi, alice, err_token, amount): tx = multi.recoverERC20(err_token, amount, {"from": alice}) assert tx.events["Recovered"].values()[0] == err_token assert tx.events["Recovered"].values()[1] == amount
import json import statistics import time import urllib.request from multiprocessing import Pool with open("payload_performance.json", "r") as json_file: json_list = list(json_file) data_points = [] for json_str in json_list: result = json.loads(json_str) if not result: continue body = {"data": [result["text"]]} data_points.append(body) data_points = data_points[:200] myurl = ( "http://localhost:8080/invocations" ) # https://pbgvppvv48.execute-api.us-east-1.amazonaws.com/test/alchemy def send_request(body): req = urllib.request.Request(myurl) req.add_header("Content-Type", "application/json") jsondata = json.dumps(body) jsondataasbytes = jsondata.encode("utf-8") # needs to be bytes req.add_header("Content-Length", len(jsondataasbytes)) print(jsondataasbytes) try: start = time.time() response = urllib.request.urlopen(req, jsondataasbytes) end = time.time() return end - start except urllib.error.HTTPError as e: return 0 p = Pool(processes=2) intervals = p.map(send_request, data_points) p.close() # for i, body in enumerate(data_points): # req = urllib.request.Request(myurl) # req.add_header('Content-Type', 'application/json') # jsondata = json.dumps(body) # jsondataasbytes = jsondata.encode('utf-8') # needs to be bytes # req.add_header('Content-Length', len(jsondataasbytes)) # print (jsondataasbytes) # try: # start = time.time() # response = urllib.request.urlopen(req, jsondataasbytes) # end = time.time() # intervals.append(end - start) # print(response) # except urllib.error.HTTPError as e: # print(e) avg_time = statistics.mean(intervals) print("Avg time: " + str(avg_time)) median_time = statistics.median(intervals) print("median time: " + str(median_time)) print("Min time: " + str(min(intervals))) print("Max time: " + str(max(intervals)))
from __future__ import absolute_import, unicode_literals import pytest from six import string_types from c8.fabric import TransactionFabric from c8.exceptions import ( TransactionStateError, TransactionExecuteError, TransactionJobResultError ) from c8.job import TransactionJob from tests.helpers import clean_doc, extract, generate_string # noinspection PyUnresolvedReferences def test_transaction_wrapper_attributes(db, col, username): txn_db = db.begin_transaction(timeout=100, sync=True) assert txn_db._executor._sync is True assert txn_db._executor._timeout == 100 assert isinstance(txn_db, TransactionFabric) assert txn_db.username == username assert txn_db.context == 'transaction' assert txn_db.db_name == db.name assert txn_db.name == db.name assert repr(txn_db) == '<TransactionFabric {}>'.format(db.name) txn_col = txn_db.collection(col.name) assert txn_col.username == username assert txn_col.context == 'transaction' assert txn_col.db_name == db.name assert txn_col.name == col.name txn_c8ql = txn_db.c8ql assert txn_c8ql.username == username assert txn_c8ql.context == 'transaction' assert txn_c8ql.db_name == db.name job = txn_col.get(generate_string()) assert isinstance(job, TransactionJob) assert isinstance(job.id, string_types) assert repr(job) == '<TransactionJob {}>'.format(job.id) def test_transaction_execute_without_result(db, col, docs): with db.begin_transaction(return_result=False) as txn_db: txn_col = txn_db.collection(col.name) # Ensure that no jobs are returned assert txn_col.insert(docs[0]) is None assert txn_col.delete(docs[0]) is None assert txn_col.insert(docs[1]) is None assert txn_col.delete(docs[1]) is None assert txn_col.insert(docs[2]) is None assert txn_col.get(docs[2]) is None assert txn_db.queued_jobs() is None # Ensure that the operations went through assert txn_db.queued_jobs() is None assert extract('_key', col.all()) == [docs[2]['_key']] def test_transaction_execute_with_result(db, col, docs): with db.begin_transaction(return_result=True) as txn_db: txn_col = txn_db.collection(col.name) job1 = txn_col.insert(docs[0]) job2 = txn_col.insert(docs[1]) job3 = txn_col.get(docs[1]) jobs = txn_db.queued_jobs() assert jobs == [job1, job2, job3] assert all(job.status() == 'pending' for job in jobs) assert txn_db.queued_jobs() == [job1, job2, job3] assert all(job.status() == 'done' for job in txn_db.queued_jobs()) assert extract('_key', col.all()) == extract('_key', docs[:2]) # Test successful results assert job1.result()['_key'] == docs[0]['_key'] assert job2.result()['_key'] == docs[1]['_key'] assert job3.result()['_key'] == docs[1]['_key'] def test_transaction_execute_error_in_result(db, col, docs): txn_db = db.begin_transaction(timeout=100, sync=True) txn_col = txn_db.collection(col.name) job1 = txn_col.insert(docs[0]) job2 = txn_col.insert(docs[1]) job3 = txn_col.insert(docs[1]) # duplicate with pytest.raises(TransactionExecuteError) as err: txn_db.commit() assert err.value.error_code == 1210 jobs = [job1, job2, job3] assert txn_db.queued_jobs() == jobs assert all(job.status() == 'pending' for job in jobs) def test_transaction_empty_commit(db): txn_db = db.begin_transaction(return_result=True) assert list(txn_db.commit()) == [] txn_db = db.begin_transaction(return_result=False) assert txn_db.commit() is None def test_transaction_double_commit(db, col, docs): txn_db = db.begin_transaction() job = txn_db.collection(col.name).insert(docs[0]) # Test first commit assert txn_db.commit() == [job] assert job.status() == 'done' assert len(col) == 1 assert clean_doc(col.random()) == docs[0] # Test second commit which should fail with pytest.raises(TransactionStateError) as err: txn_db.commit() assert 'already committed' in str(err.value) assert job.status() == 'done' assert len(col) == 1 assert clean_doc(col.random()) == docs[0] def test_transaction_action_after_commit(db, col): with db.begin_transaction() as txn_db: txn_db.collection(col.name).insert({}) # Test insert after the transaction has been committed with pytest.raises(TransactionStateError) as err: txn_db.collection(col.name).insert({}) assert 'already committed' in str(err.value) assert len(col) == 1 def test_transaction_method_not_allowed(db): with pytest.raises(TransactionStateError) as err: txn_db = db.begin_transaction() txn_db.c8ql.functions() assert str(err.value) == 'action not allowed in transaction' with pytest.raises(TransactionStateError) as err: with db.begin_transaction() as txn_db: txn_db.c8ql.functions() assert str(err.value) == 'action not allowed in transaction' def test_transaction_execute_error(bad_db, col, docs): txn_db = bad_db.begin_transaction(return_result=True) job = txn_db.collection(col.name).insert_many(docs) # Test transaction execute with bad fabric with pytest.raises(TransactionExecuteError): txn_db.commit() assert len(col) == 0 assert job.status() == 'pending' def test_transaction_job_result_not_ready(db, col, docs): txn_db = db.begin_transaction(return_result=True) job = txn_db.collection(col.name).insert_many(docs) # Test get job result before commit with pytest.raises(TransactionJobResultError) as err: job.result() assert str(err.value) == 'result not available yet' # Test commit to make sure it still works after the errors assert list(txn_db.commit()) == [job] assert len(job.result()) == len(docs) assert extract('_key', col.all()) == extract('_key', docs) def test_transaction_execute_raw(db, col, docs): # Test execute raw transaction doc = docs[0] key = doc['_key'] result = db.execute_transaction( command=''' function (params) {{ var db = require('internal').db; db.{col}.save({{'_key': params.key, 'val': 1}}); return true; }} '''.format(col=col.name), params={'key': key}, write=[col.name], read=[col.name], sync=False, timeout=1000, max_size=100000, allow_implicit=True, intermediate_commit_count=10, intermediate_commit_size=10000 ) assert result is True assert doc in col and col[key]['val'] == 1 # Test execute invalid transaction with pytest.raises(TransactionExecuteError) as err: db.execute_transaction(command='INVALID COMMAND') assert err.value.error_code == 10
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** from enum import Enum __all__ = [ 'AdministratorType', 'CatalogCollationType', 'IdentityType', 'InstancePoolLicenseType', 'ManagedDatabaseCreateMode', 'ManagedInstanceLicenseType', 'ManagedInstanceProxyOverride', 'ManagedServerCreateMode', 'SecurityAlertPolicyState', 'SensitivityLabelRank', ] class AdministratorType(str, Enum): """ Type of the sever administrator. """ ACTIVE_DIRECTORY = "ActiveDirectory" class CatalogCollationType(str, Enum): """ Collation of the metadata catalog. """ DATABAS_E_DEFAULT = "DATABASE_DEFAULT" SQ_L_LATIN1_GENERAL_CP1_C_I_AS = "SQL_Latin1_General_CP1_CI_AS" class IdentityType(str, Enum): """ The identity type. Set this to 'SystemAssigned' in order to automatically create and assign an Azure Active Directory principal for the resource. """ NONE = "None" SYSTEM_ASSIGNED = "SystemAssigned" USER_ASSIGNED = "UserAssigned" class InstancePoolLicenseType(str, Enum): """ The license type. Possible values are 'LicenseIncluded' (price for SQL license is included) and 'BasePrice' (without SQL license price). """ LICENSE_INCLUDED = "LicenseIncluded" BASE_PRICE = "BasePrice" class ManagedDatabaseCreateMode(str, Enum): """ Managed database create mode. PointInTimeRestore: Create a database by restoring a point in time backup of an existing database. SourceDatabaseName, SourceManagedInstanceName and PointInTime must be specified. RestoreExternalBackup: Create a database by restoring from external backup files. Collation, StorageContainerUri and StorageContainerSasToken must be specified. Recovery: Creates a database by restoring a geo-replicated backup. RecoverableDatabaseId must be specified as the recoverable database resource ID to restore. """ DEFAULT = "Default" RESTORE_EXTERNAL_BACKUP = "RestoreExternalBackup" POINT_IN_TIME_RESTORE = "PointInTimeRestore" RECOVERY = "Recovery" RESTORE_LONG_TERM_RETENTION_BACKUP = "RestoreLongTermRetentionBackup" class ManagedInstanceLicenseType(str, Enum): """ The license type. Possible values are 'LicenseIncluded' (regular price inclusive of a new SQL license) and 'BasePrice' (discounted AHB price for bringing your own SQL licenses). """ LICENSE_INCLUDED = "LicenseIncluded" BASE_PRICE = "BasePrice" class ManagedInstanceProxyOverride(str, Enum): """ Connection type used for connecting to the instance. """ PROXY = "Proxy" REDIRECT = "Redirect" DEFAULT = "Default" class ManagedServerCreateMode(str, Enum): """ Specifies the mode of database creation. Default: Regular instance creation. Restore: Creates an instance by restoring a set of backups to specific point in time. RestorePointInTime and SourceManagedInstanceId must be specified. """ DEFAULT = "Default" POINT_IN_TIME_RESTORE = "PointInTimeRestore" class SecurityAlertPolicyState(str, Enum): """ Specifies the state of the policy, whether it is enabled or disabled or a policy has not been applied yet on the specific database. """ NEW = "New" ENABLED = "Enabled" DISABLED = "Disabled" class SensitivityLabelRank(str, Enum): NONE = "None" LOW = "Low" MEDIUM = "Medium" HIGH = "High" CRITICAL = "Critical"
import os base_path = "/workspace/soft-Q-learning-for-text-generation/data/yelp-gpt2" max_source_length = 512 max_decoding_length = 5 source_vocab_file = os.path.join(base_path, "vocab.source") target_vocab_file = os.path.join(base_path, "vocab.target") train = { "batch_size": 12, "allow_smaller_final_batch": False, "source_dataset": { "files": os.path.join(base_path, "train.source.all_sentences"), "vocab_file": source_vocab_file, }, "target_dataset": { "files": os.path.join(base_path, "train.target.all_sentences"), "vocab_file": target_vocab_file, } } # No Validation and Test val = { "batch_size": 7, "shuffle": False, "source_dataset": { "files": os.path.join(base_path, "validation.source.balanced_10_samples"), "vocab_file": source_vocab_file, }, "target_dataset": { "files": os.path.join(base_path, "validation.target.balanced_10_samples"), "vocab_file": target_vocab_file, } } # No Validation and Test test = { "batch_size": 7, "shuffle": False, "source_dataset": { "files": os.path.join(base_path, "validation.source.balanced_10_samples"), "vocab_file": source_vocab_file, }, "target_dataset": { "files": os.path.join(base_path, "validation.target.balanced_10_samples"), "vocab_file": target_vocab_file, } }
import argparse import os import time import logging from logging import getLogger import urllib import torch import torch.nn as nn import torch.nn.parallel import torch.backends.cudnn as cudnn import torch.optim import torch.utils.data as data import torchvision.transforms as transforms import torchvision.datasets as datasets import torchvision.models as models from utils.options import parse_semisup_args from utils.utils import ( initialize_exp, restart_from_checkpoint, fix_random_seeds, AverageMeter, init_distributed_mode, accuracy, ) logger = getLogger() def main(): global args, best_acc args = parse_semisup_args() init_distributed_mode(args) fix_random_seeds(args.seed) if args.rank==0: if not os.path.exists(args.exp_dir): os.makedirs(args.exp_dir) logger, training_stats = initialize_exp( args, "epoch", "loss", "prec1", "prec5", "loss_val", "prec1_val", "prec5_val" ) # build data train_data_path = os.path.join(args.data_path, "train") train_dataset = datasets.ImageFolder(train_data_path) # take either 1% or 10% of images subset_file = "{}percent.txt".format(args.labels_perc) with open(subset_file, "r") as f: list_imgs = f.readlines() list_imgs = [x.split("\n")[0] for x in list_imgs] train_dataset.samples = [( os.path.join(train_data_path, li.split('_')[0], li), train_dataset.class_to_idx[li.split('_')[0]] ) for li in list_imgs] val_dataset = datasets.ImageFolder(os.path.join(args.data_path, "val")) tr_normalize = transforms.Normalize( mean=[0.485, 0.456, 0.406], std=[0.228, 0.224, 0.225] ) train_dataset.transform = transforms.Compose([ transforms.RandomResizedCrop(224), transforms.RandomHorizontalFlip(), transforms.ToTensor(), tr_normalize, ]) val_dataset.transform = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), tr_normalize, ]) sampler = torch.utils.data.distributed.DistributedSampler(train_dataset) train_loader = torch.utils.data.DataLoader( train_dataset, sampler=sampler, batch_size=args.batch_size, num_workers=args.workers, pin_memory=True, ) val_loader = torch.utils.data.DataLoader( val_dataset, batch_size=args.batch_size, num_workers=args.workers, pin_memory=True, ) logger.info("Building data done with {} images loaded.".format(len(train_dataset))) # build model model = models.__dict__[args.arch](num_classes=1000) # convert batch norm layers model = nn.SyncBatchNorm.convert_sync_batchnorm(model) # load weights if os.path.isfile(args.pretrained): state_dict = torch.load(args.pretrained, map_location="cuda:" + str(args.gpu)) if "state_dict" in state_dict: state_dict = state_dict["state_dict"] # remove prefixe "module." state_dict = {k.replace("module.", ""): v for k, v in state_dict.items()} state_dict = {k.replace("encoder_q.", ""): v for k, v in state_dict.items()} for k, v in model.state_dict().items(): if k not in list(state_dict): logger.info('key "{}" could not be found in provided state dict'.format(k)) elif state_dict[k].shape != v.shape: logger.info('key "{}" is of different shape in model and provided state dict'.format(k)) state_dict[k] = v msg = model.load_state_dict(state_dict, strict=False) logger.info("Load pretrained model with msg: {}".format(msg)) else: logger.info("No pretrained weights found => training from random weights") # model to gpu model = model.cuda() model = nn.parallel.DistributedDataParallel( model, device_ids=[args.gpu], find_unused_parameters=True, ) # set optimizer trunk_parameters = [] head_parameters = [] for name, param in model.named_parameters(): if 'fc' in name: head_parameters.append(param) else: trunk_parameters.append(param) optimizer = torch.optim.SGD( [{'params': trunk_parameters}, {'params': head_parameters, 'lr': args.lr_last_layer}], lr=args.lr, momentum=0.9, weight_decay=0, ) # set scheduler scheduler = torch.optim.lr_scheduler.MultiStepLR( optimizer, args.decay_epochs, gamma=args.gamma ) # Optionally resume from a checkpoint to_restore = {"epoch": 0, "best_acc": (0., 0.)} restart_from_checkpoint( os.path.join(args.exp_dir, "checkpoint.pth.tar"), run_variables=to_restore, state_dict=model, optimizer=optimizer, scheduler=scheduler, ) start_epoch = to_restore["epoch"] best_acc = to_restore["best_acc"] cudnn.benchmark = True for epoch in range(start_epoch, args.epochs): # train the network for one epoch logger.info("============ Starting epoch %i ... ============" % epoch) # set samplers train_loader.sampler.set_epoch(epoch) scores = train(model, optimizer, train_loader, epoch) scores_val = validate_network(val_loader, model) training_stats.update(scores + scores_val) scheduler.step() # save checkpoint if args.rank == 0: save_dict = { "epoch": epoch + 1, "state_dict": model.state_dict(), "optimizer": optimizer.state_dict(), "scheduler": scheduler.state_dict(), "best_acc": best_acc, } torch.save(save_dict, os.path.join(args.exp_dir, "checkpoint.pth.tar")) logger.info("Fine-tuning with {}% of labels completed.\n" "Test accuracies: top-1 {acc1:.1f}, top-5 {acc5:.1f}".format( args.labels_perc, acc1=best_acc[0], acc5=best_acc[1])) def train(model, optimizer, loader, epoch): """ Train the models on the dataset. """ # running statistics batch_time = AverageMeter("time", ":.2f") data_time = AverageMeter("data time", ":.2f") # training statistics top1 = AverageMeter("top1", ":.3f") top5 = AverageMeter("top5", ":.3f") losses = AverageMeter("loss", ":.3e") end = time.perf_counter() model.train() criterion = nn.CrossEntropyLoss().cuda() for iter_epoch, (inp, target) in enumerate(loader): # measure data loading time data_time.update(time.perf_counter() - end) # move to gpu inp = inp.cuda(non_blocking=True) target = target.cuda(non_blocking=True) # forward output = model(inp) # compute cross entropy loss loss = criterion(output, target) # compute the gradients optimizer.zero_grad() loss.backward() # step optimizer.step() # update stats acc1, acc5 = accuracy(output, target, topk=(1, 5)) losses.update(loss.item(), inp.size(0)) top1.update(acc1[0], inp.size(0)) top5.update(acc5[0], inp.size(0)) batch_time.update(time.perf_counter() - end) end = time.perf_counter() # verbose if args.rank == 0 and iter_epoch % 50 == 0: logger.info( "Epoch[{0}] - Iter: [{1}/{2}]\t" "Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t" "Data {data_time.val:.3f} ({data_time.avg:.3f})\t" "Loss {loss.val:.4f} ({loss.avg:.4f})\t" "Prec {top1.val:.3f} ({top1.avg:.3f})\t" "LR trunk {lr}\t" "LR head {lr_W}".format( epoch, iter_epoch, len(loader), batch_time=batch_time, data_time=data_time, loss=losses, top1=top1, lr=optimizer.param_groups[0]["lr"], lr_W=optimizer.param_groups[1]["lr"], ) ) return epoch, losses.avg, top1.avg.item(), top5.avg.item() def validate_network(val_loader, model): batch_time = AverageMeter("time", ":.2f") losses = AverageMeter("loss", ":.3e") top1 = AverageMeter("top1", ":.2f") top5 = AverageMeter("top5", ":.2f") global best_acc # switch to evaluate mode model.eval() criterion = nn.CrossEntropyLoss().cuda() with torch.no_grad(): end = time.perf_counter() for i, (inp, target) in enumerate(val_loader): # move to gpu inp = inp.cuda(non_blocking=True) target = target.cuda(non_blocking=True) # compute output output = model(inp) loss = criterion(output, target) acc1, acc5 = accuracy(output, target, topk=(1, 5)) losses.update(loss.item(), inp.size(0)) top1.update(acc1[0], inp.size(0)) top5.update(acc5[0], inp.size(0)) # measure elapsed time batch_time.update(time.perf_counter() - end) end = time.perf_counter() if top1.avg.item() > best_acc[0]: best_acc = (top1.avg.item(), top5.avg.item()) if args.rank == 0: logger.info( "Test:\t" "Time {batch_time.avg:.3f}\t" "Loss {loss.avg:.4f}\t" "Acc@1 {top1.avg:.3f}\t" "Best Acc@1 so far {acc:.1f}".format( batch_time=batch_time, loss=losses, top1=top1, acc=best_acc[0])) return losses.avg, top1.avg.item(), top5.avg.item() if __name__ == "__main__": main()
from django.shortcuts import render,redirect from django.contrib.auth import authenticate, login,logout from django.contrib.auth.forms import AuthenticationForm def login_request(request): if request.method=='POST': username=request.POST['username'] password=request.POST['password'] print(username,password) user=authenticate(request,username=username,password=password) if user: login(request, user) print(user) return redirect('courses') else: print('no user') form=AuthenticationForm() return render(request=request,template_name='login.html',context={'form':form}) def logout_request(request): logout(request) return redirect("login")
from topology import topology from json import load,dump def convert(geojson,topojson,object_name=False, *args, **kwargs): if isinstance(geojson,dict): input_dict = geojson elif isinstance(geojson,str) or isinstance(geojson,unicode): inFile = open(geojson) input_dict = load(inFile) if not object_name and 'type' in input_dict and hasattr(inFile,'name') and inFile.name.lower().endswith('.geojson'): input_dict = {inFile.name[:-8].split('/')[-1]:input_dict} elif isinstance(geojson,file): input_dict=load(geojson) if 'type' in input_dict: if object_name: input_dict = {object_name:input_dict} else: input_dict = {'name':input_dict} output_dict = topology(input_dict, *args, **kwargs) if isinstance(topojson,str) or isinstance(topojson,unicode): with open(topojson,'w') as f: dump(output_dict,f) elif isinstance(topojson,file): dump(output_dict,topojson) else: return output_dict
# -*- coding: utf-8 -*- import re import lxml import lxml.etree from lxml.html.clean import Cleaner import parsel _clean_html = Cleaner( scripts=True, javascript=False, # onclick attributes are fine comments=True, style=True, links=True, meta=True, page_structure=False, # <title> may be nice to have processing_instructions=True, embedded=True, frames=True, forms=False, # keep forms annoying_tags=False, remove_unknown_tags=False, safe_attrs_only=False, ).clean_html def _cleaned_html_tree(html): if isinstance(html, lxml.html.HtmlElement): tree = html else: parser = lxml.html.HTMLParser(encoding='utf8') tree = lxml.html.fromstring(html.encode('utf8'), parser=parser) return _clean_html(tree) def parse_html(html): """ Create an lxml.html.HtmlElement from a string with html. """ parser = lxml.html.HTMLParser(encoding='utf8') return lxml.html.fromstring(html.encode('utf8'), parser=parser) _whitespace = re.compile(r'\s+') _has_trailing_whitespace = re.compile(r'\s$').search _has_punct_after = re.compile(r'^[,:;.!?"\)]').search _has_punct_before = re.compile(r'\($').search def selector_to_text(sel, guess_punct_space=True): """ Convert a cleaned selector to text. See html_text.extract_text docstring for description of the approach and options. """ if guess_punct_space: def fragments(): prev = None for text in sel.xpath('.//text()').extract(): if prev is not None and (_has_trailing_whitespace(prev) or (not _has_punct_after(text) and not _has_punct_before(prev))): yield ' ' yield text prev = text return _whitespace.sub(' ', ''.join(fragments()).strip()) else: fragments = (x.strip() for x in sel.xpath('.//text()').extract()) return _whitespace.sub(' ', ' '.join(x for x in fragments if x)) def cleaned_selector(html): """ Clean selector. """ try: tree = _cleaned_html_tree(html) sel = parsel.Selector(root=tree, type='html') except (lxml.etree.XMLSyntaxError, lxml.etree.ParseError, lxml.etree.ParserError, UnicodeEncodeError): # likely plain text sel = parsel.Selector(html) return sel def extract_text(html, guess_punct_space=True): """ Convert html to text, cleaning invisible content such as styles. Almost the same as normalize-space xpath, but this also adds spaces between inline elements (like <span>) which are often used as block elements in html markup. When guess_punct_space is True (default), no extra whitespace is added for punctuation. This has a slight (around 10%) performance overhead and is just a heuristic. html should be a unicode string or an already parsed lxml.html element. """ sel = cleaned_selector(html) return selector_to_text(sel, guess_punct_space=guess_punct_space)
class Endpoint: index = 0 latency = 0 caches = {} requests = {} def __init__(self, index, latency): self.index = index self.latency = latency self.caches = {} self.requests = {} def add_cache(self, index, latency): self.caches[index] = latency def add_request(self, video_id, number_of_request): if video_id in self.requests: self.requests[video_id] += number_of_request else: self.requests[video_id] = number_of_request # Video Ids def get_rank_requests(self): keys = self.requests.keys() keys.sort(lambda x, y: cmp(self.requests[x], self.requests[y]), reverse=True) return keys # Cache Ids def get_rank_caches(self): keys = self.caches.keys() keys.sort(lambda x, y: cmp(self.caches[x], self.caches[y])) return keys
from collections import Sequence from tornado.web import RequestHandler from hybrid.util import imports from hybrid.metaclass import CatchExceptionMeta class CastException(Exception): pass class BaseHandler(RequestHandler): __metaclass__ = CatchExceptionMeta def getviewfunc(self, view, module): if not view and not module: from ..views import json_view return json_view elif not view: raise RuntimeError("missing view function name") if not module: from .. import views m = views else: m = imports(module) if not m or not hasattr(m, view): raise RuntimeError('can\'t find %s:%s' % (module, view)) return getattr(m, view) def render_func(self, data, view=None, module=None, *a, **kw): self.write(self.getviewfunc(view, module)(data, *a, **kw)) self.finish() def cast(self, v, t): try: return t(v) except: return CastException() def param_check(self, args, howto=None): howto = howto or (lambda a: self.get_argument(a, None)) for arg in args: arg = list(arg) if len(arg) == 1: arg += [(type, )] if len(arg) == 2: arg += [lambda *a, **kw: True] if not isinstance(arg[1], Sequence): arg[1] = (arg[1], ) else: arg[1] = tuple(arg[1]) value = howto(arg[0]) if value is None and None in arg[1]: continue elif value is None and None not in arg[1]: return False def __check(t): value2 = self.cast(value, t) if not isinstance(value2, CastException) and \ isinstance(value2, arg[1]) and \ arg[2](value2): return True if not any([__check(t) for t in arg[1]]): return False return True
from app.automata_learning.black_box.pac_learning.smart_teacher.equivalence import equivalence def model_compare(hypothesis_pre, hypothesis_now, upper_guard, system): # Do not compare for the first time if hypothesis_pre is None: return True, [] eq_flag, ctx = equivalence(hypothesis_now, hypothesis_pre, upper_guard) # ctx is DTWs if eq_flag: raise Exception('eq_flag must be false!') flag = True DRTWs_real, value_real = system.test_DTWs(ctx) # 这个测试可以认为是mq上,不记录在test数量上 system.test_num -= 1 system.mq_num += 1 DRTWs_now, value_now = hypothesis_now.test_DTWs(ctx) if value_real != value_now: flag = False return flag, ctx
from .user_config import load_data, save_data
import pandas as pd import numpy as np import random import plotly.express as px import pickle class ShapeEstimator: def __init__(self, connections_file_name, duplicate_data=False, point_details_file_name=None, color_definitions_file=None, optimized_points_file=None): self.data = self.load_data(connections_file_name) self.duplicate_data = duplicate_data if self.duplicate_data: self.data = self.data_duplicator() self.point_details_data = None self.color_dictionary = {} self.color_definition_column = None if point_details_file_name is not None: self.point_details_data = self.load_data(point_details_file_name) if color_definitions_file is not None: self.color_definitions_data = self.load_data(color_definitions_file) self.color_definition_column = self.color_definitions_data.columns[0] self.color_dictionary = self.create_color_dictionary() if optimized_points_file is not None: self.load_data_from_optimization_file(optimized_points_file) self.unique_points = self.get_all_unique_points_codes() self.connections_count = self.points_connections_counter() self.best_point_hub_name = self.connections_count.head(1)['point_name'].item() if optimized_points_file is None: self.points_dictionary = self.create_points_dictionary() self.optimize() self.values, self.labels = self.split_points_dictionary() self.normalize_values() self.data_frame = self.create_dataframe_from_points_dictionary() self.calculate_average_points_distance_from_the_center() def load_data_from_optimization_file(self, optimized_points_file): pickle_in = open(optimized_points_file, 'rb') self.points_dictionary, cumulative_errors, max_errors, self.duplicate_data = pickle.load(pickle_in) if self.duplicate_data: self.data = self.data_duplicator() self.show_optimization_stats(cumulative_errors, max_errors) def data_duplicator(self): return self.data.append(self.data, ignore_index=True) @staticmethod def load_data(file_name): return pd.read_csv(file_name, sep=',') def get_all_unique_points_codes(self): return pd.unique(np.array(self.data[['departure_point', 'arrival_point']]).flatten()) def create_points_dictionary(self): points_dictionary = {} for point_name in self.unique_points: points_dictionary[point_name] = [(random.random() - 0.5) * 2, (random.random() - 0.5) * 2, (random.random() - 0.5) * 2] return points_dictionary def create_color_dictionary(self): def get_values_from_columns(index): return [self.color_definitions_data.iloc[i, index] for i in range(len(self.color_definitions_data.iloc[:, index]))] keys = get_values_from_columns(0) values = get_values_from_columns(1) return dict(zip(keys, values)) def calculate_errors(self): cumulative_error = 0 max_error = 0 for index, row in self.data.iterrows(): error = abs(self.calculate_euclidean_distance_between_two_points(self.points_dictionary[row['departure_point']], self.points_dictionary[row['arrival_point']]) - row['measurement_value']) cumulative_error += error if max_error < error: max_error = error return cumulative_error, max_error def points_connections_counter(self): connections_dictionary = dict(zip(self.unique_points, [0] * len(self.unique_points))) for index, row in self.data.iterrows(): points = [row['departure_point'], row['arrival_point']] for point in points: connections_dictionary[point] += 1 connections_count = pd.DataFrame(columns=['point_name', 'count']) for point_name in connections_dictionary.keys(): row = pd.DataFrame({'point_name': [point_name], 'count': [connections_dictionary[point_name]]}) connections_count = connections_count.append(row, ignore_index=True) return connections_count.sort_values('count', ascending=False) def get_point_connections_count(self, point_name): return self.connections_count.loc[self.connections_count['point_name'] == point_name]['count'].item() def optimize(self, mod=0.5, iterations=250, tol=0.001, optimized_points_file_name='optimized_points.pickle'): cumulative_errors, max_errors = [], [] cumulative_error, max_error = self.calculate_errors() cumulative_errors.append(cumulative_error) max_errors.append(max_error) for i in range(iterations): data = self.data.sample(frac=1) previous_points_dictionary = dict(self.points_dictionary.copy()) for index, row in data.iterrows(): distance = self.calculate_euclidean_distance_between_two_points(self.points_dictionary[row['departure_point']], self.points_dictionary[row['arrival_point']]) vector = self.calculate_vector_between_two_points(self.points_dictionary[row['departure_point']], self.points_dictionary[row['arrival_point']]) if row['departure_point'] != self.best_point_hub_name and row['arrival_point'] != self.best_point_hub_name: point_to_move = random.choice([0, 1]) elif row['departure_point'] == self.best_point_hub_name: point_to_move = 1 else: point_to_move = 0 if distance > row['measurement_value']: if point_to_move == 0: for j in range(3): self.points_dictionary[row['departure_point']][j] += mod * vector[j] else: for j in range(3): self.points_dictionary[row['arrival_point']][j] -= mod * vector[j] elif distance < row['measurement_value']: if point_to_move == 0: for j in range(3): self.points_dictionary[row['departure_point']][j] -= mod * vector[j] else: for j in range(3): self.points_dictionary[row['arrival_point']][j] += mod * vector[j] cumulative_error, max_error = self.calculate_errors() if cumulative_error > cumulative_errors[-1]: self.points_dictionary = previous_points_dictionary mod /= 1.05 if mod < tol: break else: cumulative_errors.append(cumulative_error) max_errors.append(max_error) with open(optimized_points_file_name, 'wb') as f: pickle.dump((self.points_dictionary, cumulative_errors, max_errors, self.duplicate_data), f) self.show_optimization_stats(cumulative_errors, max_errors) def show_optimization_stats(self, cumulative_errors, max_errors): print(f'Cumulative error: {cumulative_errors[-1]}') print(f'Average error: {cumulative_errors[-1] / len(self.data)}') print(f'Max error: {max_errors[-1]}') print(f'Data duplicated: {self.duplicate_data}') def split_points_dictionary(self): values, labels = [], [] for point_name in self.points_dictionary: values.append(self.points_dictionary[point_name]) labels.append(point_name) return np.array(values), labels def create_dataframe_from_points_dictionary(self): data = pd.DataFrame(columns=['point', 'x', 'y', 'z']) for i in range(len(self.labels)): point_coords = self.values[i] row = pd.DataFrame({'point': [self.labels[i]], 'x': [point_coords[0]], 'y': [point_coords[1]], 'z': [point_coords[2]]}) data = data.append(row, ignore_index=True) return data @staticmethod def calculate_euclidean_distance_between_two_points(point1, point2): value = 0 for i in range(len(point1)): value += (point1[i] - point2[i]) ** 2 return value ** (1 / 2) @staticmethod def calculate_vector_between_two_points(point1, point2): vector = [] for i in range(len(point1)): vector.append(point2[i] - point1[i]) return vector def normalize_values(self): # <-1; 1> for i in range(3): a = min(self.values[:, i]) b = max(self.values[:, i]) for j in range(len(self.values)): self.values[j, i] = ((2 * (self.values[j, i] - a)) / (b - a)) - 1 def calculate_average_points_distance_from_the_center(self): sum_distances = 0 for point in self.values: sum_distances += sum([point[i] ** 2 for i in range(len(point))]) print(f'Average points distance from the center: {sum_distances / len(self.values)}') def draw_plot(self): def merge_data(): if self.point_details_data is not None: data = self.data_frame.join(self.point_details_data.set_index('point'), on='point') else: data = self.data_frame return data def get_basic_hover_data_dict(): return {'x': False, 'y': False, 'z': False, 'point': True} def extend_hover_dict(basic_dict): for column in self.point_details_data.columns: if column != 'point': basic_dict[column] = True return basic_dict plot_data = merge_data() hover_data_dict = get_basic_hover_data_dict() if self.point_details_data is not None: fig = px.scatter_3d(plot_data, x='x', y='y', z='z', color=self.color_definition_column, hover_data=extend_hover_dict(hover_data_dict), color_discrete_map=self.color_dictionary) else: fig = px.scatter_3d(plot_data, x='x', y='y', z='z', color=self.color_definition_column, hover_data=hover_data_dict, color_discrete_map=self.color_dictionary) fig.update_layout( scene=dict( xaxis={'showgrid': False, 'zeroline': False, 'showline': False, 'showticklabels': False, 'backgroundcolor': 'rgba(255, 255, 255, 0)', 'visible': False}, yaxis={'showgrid': False, 'zeroline': False, 'showline': False, 'showticklabels': False, 'backgroundcolor': 'rgba(255, 255, 255, 0)', 'visible': False}, zaxis={'showgrid': False, 'zeroline': False, 'showline': False, 'showticklabels': False, 'backgroundcolor': 'rgba(255, 255, 255, 0)', 'visible': False} ) ) fig.show()
# -*- coding: utf-8 -*- """ Editor: Zhao Xinlu School: BUPT Date: 2018-02-13 Function: 1~n整数中1出现的次数 """ def numOf1Between1AndN(n): """ 计数,累计1在1~n的总次数,时间效率较低 :param n: :return: """ if n == 0: return 0 if n < 0: return None count = 0 for i in range(1, n+1): count += numOf1(i) return count def numOf1(num): """ 每个整数含有1的个数 :param num: :return: """ times = 0 while num: if num % 10 == 1: times += 1 num /= 10 return times ########################################## """ 剑指Offer新思路 """ ########################################## def get_digits(n): """ 获取一整数的位数,23456为5位的整数 :param n: :return: """ ret = 0 while n: ret += 1 n /= 10 return ret def getNumOf1EachDigit(digit): """ 1位数,1-9中,1一共出现了1次; 2位数,10-99中,10-19的十位上一共出现了10*1=10次,对于每个十位开头的数字10-19、20-29,每个数个位上出现的是1-9中1出现的次数,共有9个区间9*1=9次; 3位数,100-999,100-199百位上出现了10**2=100次,对于每个百位数开头,例如100-199,200-299,低位上其实就是0-99这个区间上1出现的次数,一共9个区间 9*19=171次; 由此推测,对于1-9,10-99,100-999,每个n位数中包含1的个数公式为: f(1) = 1 f(2) = 9 * f(1) + 10 ** 1 f(3) = 9 * f(2) + 10 ** 2 f(n) = 9 * f(n-1) + 10 ** (n-1) :param digit: :return: """ if digit <= 0: return 0 if digit == 1: return 1 number = 9 * getNumOf1EachDigit(digit-1) + 10 ** (digit-1) return number + getNumOf1EachDigit(digit-1) def numOf1Between1AndN_2(n): """ 时间效率很高 :param n: :return: """ if n <= 0: return 0 if n >= 1 and n < 10: return 1 digit = get_digits(n) low_nums = getNumOf1EachDigit(digit-1) high = int(str(n)[0]) low = n - high * 10 ** (digit-1) if high == 1: high_nums = low + 1 all_nums = high_nums else: high_nums = 10 ** (digit-1) all_nums = high_nums + low_nums * (high - 1) return low_nums + all_nums + numOf1Between1AndN_2(low) if __name__ == '__main__': # print numOf1Between1AndN(9923446) # print get_digits(23456) # print getNumOf1EachDigit(5) print numOf1Between1AndN_2(9923446)
# # Marco Panato # PyMusicServer # import logging import globals from time import sleep from database.sqlite3.dbManager import DbManager from database.DataManager import DataManager from music.manager import PyMusicManager from settings.settingsprovider import SettingsProvider from utils.threadingutils import runinanotherthread from frontend.httpfrontend.httphandler import createHTTPServer from frontend.httpsfrontend.httpshandler import createHTTPSServer from parameters.parameterparser import parse_arguments from music.download.youtubedlupdater import YoutubeDlUpdater def main(): parse_arguments() logging.info('PyMusicServer3 %s Marco Panato - %s' % (globals.REVISION, globals.DATE)) logging.info('[MAIN] Loading settings') SettingsProvider.get_instance() logging.info('[MAIN] Initializing DbManager') DbManager.get_instance() logging.info('[MAIN] Initializing DataManager') DataManager.get_instance() logging.info('[MAIN] Initializing MusicManager') PyMusicManager.get_instance() logging.info('[MAIN] Initializing youtube-dl updater') ydlupdater = YoutubeDlUpdater() ydlupdater.start() logging.info('[MAIN] Creating HTTP frontend') httpfrontend = createHTTPServer() logging.info('[MAIN] Creating HTTPS frontend') httpsfrontend = createHTTPSServer() logging.info('[MAIN] Waiting for clients on port %s and %s...' % ( SettingsProvider.get_instance().readsetting('listenporthttp'), SettingsProvider.get_instance().readsetting('listenporthttps'))) threadhttp = runinanotherthread(httpfrontend.serve_forever) threadhttps = runinanotherthread(httpsfrontend.serve_forever) try: while True: sleep(500) except KeyboardInterrupt: logging.info("[MAIN] CTRL-C catched! Closing...") finally: logging.info("[MAIN] Closing server") httpfrontend.shutdown() httpsfrontend.shutdown() threadhttp.join(2) threadhttps.join(2) del httpfrontend del httpsfrontend logging.info('[MAIN] Closing youtube-dl updater') ydlupdater.stop() logging.info("[MAIN] Closing settings manager") SettingsProvider.del_instance() logging.info("[MAIN] Closing MusicManager") PyMusicManager.del_instance() logging.info("[MAIN] Closing DataManager") DataManager.del_instance() logging.info("[MAIN] Closing DbManager") DbManager.del_instance() logging.info("[MAIN] Bye") if __name__ == "__main__": main()
import logging from aiogram import Bot, Dispatcher, executor from aiogram.contrib.fsm_storage.memory import MemoryStorage from aiogram.utils.executor import start_webhook from app import handlers from app.commands import set_commands from app.settings import (WEBHOOK_IS_ACTIVE, WEBHOOK_URL, WEBHOOK_PATH, WEBAPP_HOST, WEBAPP_PORT, TOKEN) async def on_startup(dp: Dispatcher): logging.warning('Setting handlers...') await handlers.setup_all(dp) logging.warning('Setting commands...') await set_commands(dp) if WEBHOOK_IS_ACTIVE: logging.warning('Setting webhook...') await bot.set_webhook(WEBHOOK_URL) async def on_shutdown(dp: Dispatcher): logging.warning('Shutting down..') await dp.storage.close() await dp.storage.wait_closed() await bot.delete_webhook() logging.warning('Webhook down') if __name__ == '__main__': bot = Bot(token=TOKEN, parse_mode='HTML') dp = Dispatcher(bot, storage=MemoryStorage()) try: if WEBHOOK_IS_ACTIVE: start_webhook( dispatcher=dp, webhook_path=WEBHOOK_PATH, on_startup=on_startup, on_shutdown=on_shutdown, skip_updates=True, host=WEBAPP_HOST, port=WEBAPP_PORT ) else: executor.start_polling(dp, on_startup=on_startup, skip_updates=True) except Exception as E: logging.error(f'An error occurred while launching the bot - {E}')
#!/usr/bin/env python # Copyright (c) 2014 Miguel Sarabia # Imperial College London # # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # # import rospy import time, subprocess from speech.msg import SpcCmd # ros function, import 'Speech_String' type from speech.msg import SpcNLP from naoqi import ALModule, ALProxy # microphone and speaker import alsaaudio # signal processing, a python module #from speech.msg import NLPRes #from real_time import real_time_recog ''' def reg(mic, IP, wordlist): #global mic mic.start() asr = ALProxy('ALSpeechRecognition', IP, 9559) mem = ALProxy('ALMemory', IP, 9559) asr.setLanguage('English') asr.setVocabulary(wordlist, True) asr.subscribe('hello') mem.subscribeToEvent('e','WordRecognized', 'WordRecognized') time.sleep(10) rospy.loginfo(mem.getData('WordRecognized')) pub = rospy.Publisher('/NLP_2_CNC', NLPRes, queue_size=1000) rospy.sleep(1) pub.publish(str(mem.getData('WordRecognized')[0]), 0) rospy.loginfo('finished---------------') #rospy.loginfo('-------\n'+str(type(['mem.WordRecognized']))+'\n\n') # rospy.loginfo(['h', 'e']) #rospy.loginfo(mem['WordRecognized']) #njm.sayString(mem.WordRecognized) mem.removeData('WordRecognized') mem.unsubscribeToEvent('e', 'WordRecognized') asr.unsubscribe('hello') mic.stop() ''' def runProcess(cmd): rospy.logwarn('.....Start waiting........') process = subprocess.Popen(cmd, stdout=subprocess.PIPE, stdin=subprocess.PIPE, stderr=subprocess.STDOUT) process.wait() rospy.logwarn('.....Finished waiting........') s = process.stdout.read() a = s.split('\n') rospy.loginfo(a) out = '' for i in a:# rospy.loginfo(i) if i.find('::::')>=0: out = i.split('::::')[1] if i.find('????')>=0: out = 'Google refused to recognise this speech or Google cannot understand what you said.' if i.find(';;;;')>=0: out = 'Could not request results from Google Speech Recognition service' return out def reg(): pub = rospy.Publisher('/SPC_2_NLP', SpcNLP, queue_size=1000) # rospy.sleep(1) #s = runProcess('') #s = runProcess('sudo python /home/human/catkin_ws/src/speech/src/nao_speech_lib/real_time.py') s = runProcess(['sudo', 'python', '/home/human/catkin_ws/src/speech/src/nao_speech_lib/real_time.py']) pub.publish(str(s)) class NaoMic(ALModule): ''' This is the module that connects remotely to the NAO microphones ''' def __init__(self, name, ip, port): #Init parent super(NaoMic, self).__init__(name) self.__ip = ip self.__port = port self.__pcm = alsaaudio.pcm = alsaaudio.PCM( alsaaudio.PCM_PLAYBACK, alsaaudio.PCM_NONBLOCK) self.__pcm.setrate( 16000 ) self.__pcm.setchannels( 1 ) self.__pcm.setformat( alsaaudio.PCM_FORMAT_S16_LE ) self.__pcm.setperiodsize(1365) def __del__(self): self.stop() def __get_proxy(self): return ALProxy("ALAudioDevice", self.__ip, self.__port) def start(self): proxy = self.__get_proxy() proxy.setClientPreferences( self.getName() , 16000, 3, 0 ) #This will call processRemote with new data from NAO proxy.subscribe(self.getName()) def stop(self): #Unsubscribe from microphone proxy = self.__get_proxy() proxy.unsubscribe( self.getName() ) def processRemote(self, channels, samples_by_channel, timestamp, raw_data ): self.__pcm.write(raw_data) class NaoSpeech: def __init__(self, ip, port, mic, wordlist): rospy.loginfo('test: hello') self.__proxy = ALProxy("ALAnimatedSpeech", ip, port) self.__subs = rospy.Subscriber("/CNC_2_SPC", SpcCmd, self.say) self.ip = ip #self.wordlist = wordlist #self.mic = mic try: self.ledproxy = ALProxy("ALLeds", ip, port) except Exception,e: print "Could not create proxy to ALLeds" print "Error was: ",e sys.exit(1) def say(self, msg): rospy.loginfo(msg.question+ '0') # set the local configuration sayconfig = {"bodyLanguageMode":"contextual"} ledname = 'EarLeds' self.ledproxy.off(ledname) self.__proxy.say( msg.question, sayconfig) #reg(self.mic,self.ip, self.wordlist) self.ledproxy.on(ledname) if msg.spc_state != 100: reg() def sayString(self, msg): rospy.loginfo(msg+ ' start') self.__proxy.say( msg) rospy.loginfo(msg+ ' end')
from deco.sources import Dataset import numpy as np def squeeze_rec(item): if isinstance(item, list): new_list = [] for subitem in item: new_list.append(squeeze_rec(subitem)) if len(new_list) == 1: new_list = new_list[0] return new_list else: return item class Squeeze(Dataset): def __init__(self, parent): self.parent = parent def __iter__(self): for item in self.parent: yield squeeze_rec(item) #yield np.squeeze(item) def squeeze(self): return Squeeze(self) Dataset.squeeze = squeeze
""" Index - all bib files for use with `glottolog refsearch` - all languoid info files for use with `glottolog langsearch` This will take about - about 15 minutes to create an index of about 450 MB for references and - a couple of minutes and create an index of about 60 MB for languoids. """ from pyglottolog import fts def run(args): fts.build_index(args.repos, args.log) fts.build_langs_index(args.repos, args.log)
#!/usr/bin/env python # -*- coding:utf-8 -*- """================================================================= @Project : Algorithm_YuweiYin/LeetCode-All-Solution/Python3 @File : LC-0094-Binary-Tree-Inorder-Traversal.py @Author : [YuweiYin](https://github.com/YuweiYin) @Date : 2022-03-06 ==================================================================""" import sys import time from typing import List, Optional # import collections """ LeetCode - 0094 - (Easy) - Binary Tree Inorder Traversal https://leetcode.com/problems/binary-tree-inorder-traversal/ Description & Requirement: Given the root of a binary tree, return the inorder traversal of its nodes' values. Example 1: Input: root = [1,null,2,null,null,3] Output: [1,3,2] Example 2: Input: root = [] Output: [] Example 3: Input: root = [1] Output: [1] Constraints: The number of nodes in the tree is in the range [0, 100]. -100 <= Node.val <= 100 """ # Definition for a binary tree node. class TreeNode: def __init__(self, val=0, left=None, right=None): self.val = val self.left = left self.right = right # the left and right of leaf_node are both None @staticmethod def build_binary_tree_layer(val_list: List[int]): if not isinstance(val_list, list) or len(val_list) <= 0: return None node_list = [] for v in val_list: if v is None: node_list.append(None) else: node_list.append(TreeNode(val=v)) len_node_list = len(node_list) for idx, cur_node in enumerate(node_list): if cur_node is not None: cur_node_right_index = (idx + 1) << 1 cur_node_left_index = cur_node_right_index - 1 if cur_node_left_index < len_node_list: cur_node.left = node_list[cur_node_left_index] if cur_node_right_index < len_node_list: cur_node.right = node_list[cur_node_right_index] return node_list[0] # return root_node @staticmethod def show_binary_tree_pre_order(root_node) -> List[int]: val_list = [] def __dfs(cur_node): if isinstance(cur_node, TreeNode): val_list.append(cur_node.val) __dfs(cur_node.left) __dfs(cur_node.right) __dfs(root_node) return val_list @staticmethod def show_binary_tree_mid_order(root_node) -> List[int]: val_list = [] def __dfs(cur_node): if isinstance(cur_node, TreeNode): __dfs(cur_node.left) val_list.append(cur_node.val) __dfs(cur_node.right) __dfs(root_node) return val_list @staticmethod def show_binary_tree_post_order(root_node) -> List[int]: val_list = [] def __dfs(cur_node): if isinstance(cur_node, TreeNode): __dfs(cur_node.left) __dfs(cur_node.right) val_list.append(cur_node.val) __dfs(root_node) return val_list class Solution: def inorderTraversal(self, root: Optional[TreeNode]) -> List[int]: # exception case if not isinstance(root, TreeNode): return [] # no tree, just null # main method: (DFS inorder Traversal) return self._inorderTraversal(root) def _inorderTraversal(self, root: Optional[TreeNode]) -> List[int]: assert isinstance(root, TreeNode) res = [] def __dfs(cur_node): if isinstance(cur_node, TreeNode): __dfs(cur_node.left) res.append(cur_node.val) __dfs(cur_node.right) __dfs(root) return res def main(): # Example 1: Output: [1,2,3] root = [1, None, 2, None, None, 3] # Example 2: Output: [] # root = [] # Example 3: Output: [1] # root = [1] root_node = TreeNode.build_binary_tree_layer(root) # init instance solution = Solution() # run & time start = time.process_time() ans = solution.inorderTraversal(root_node) end = time.process_time() # show answer print('\nAnswer:') print(ans) # print(TreeNode.show_binary_tree_mid_order(ans)) # show time consumption print('Running Time: %.5f ms' % ((end - start) * 1000)) if __name__ == "__main__": sys.exit(main())
# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """An example DAG demonstrating Kubernetes Pod Operator.""" # [START composer_kubernetespodoperator] import datetime from airflow import models # [END composer_kubernetespodoperator] from airflow.contrib.kubernetes import pod from airflow.contrib.kubernetes import secret # [START composer_kubernetespodoperator] from airflow.contrib.operators import kubernetes_pod_operator # [END composer_kubernetespodoperator] # A Secret is an object that contains a small amount of sensitive data such as # a password, a token, or a key. Such information might otherwise be put in a # Pod specification or in an image; putting it in a Secret object allows for # more control over how it is used, and reduces the risk of accidental # exposure. secret_file = secret.Secret( # Mounts the secret as a file in RAM-backed tmpfs. deploy_type='volume', # File path of where to deploy the target, since deploy_type is 'volume' # rather than 'env'. deploy_target='/etc/sql_conn', # Name of secret in Kubernetes, if the secret is not already defined in # Kubernetes using kubectl the Pod will fail to find the secret, and in # turn, fail to launch. secret='airflow-secrets', # Key of the secret within Kubernetes. key='sql_alchemy_conn') secret_env = secret.Secret( # Expose the secret as environment variable. deploy_type='env', # The name of the environment variable, since deploy_type is `env` rather # than `volume`. deploy_target='SQL_CONN', secret='airflow-secrets', key='sql_alchemy_conn') # [START composer_kubernetespodoperator] YESTERDAY = datetime.datetime.now() - datetime.timedelta(days=1) # If a Pod fails to launch, or has an error occur in the container, Airflow # will show the task as failed, as well as contain all of the task logs # required to debug. with models.DAG( dag_id='composer_sample_kubernetes_pod', schedule_interval=datetime.timedelta(days=1), start_date=YESTERDAY) as dag: # Only name, namespace, image, and task_id are required to create a # KubernetesPodOperator. In Cloud Composer, currently the operator defaults # to using the config file found at `/home/airflow/composer_kube_config if # no `config_file` parameter is specified. By default it will contain the # credentials for Cloud Composer's Google Kubernetes Engine cluster that is # created upon environment creation. kubernetes_min_pod = kubernetes_pod_operator.KubernetesPodOperator( # The ID specified for the task. task_id='pod-ex-minimum', # Name of task you want to run, used to generate Pod ID. name='pod-ex-minimum', # Entrypoint of the container, if not specified the Docker container's # entrypoint is used. The cmds parameter is templated. cmds=['echo'], # The namespace to run within Kubernetes, default namespace is # `default`. There is the potential for the resource starvation of # Airflow workers and scheduler within the Cloud Composer environment, # the recommended solution is to increase the amount of nodes in order # to satisfy the computing requirements. Alternatively, launching pods # into a custom namespace will stop fighting over resources. namespace='default', # Docker image specified. Defaults to hub.docker.com, but any fully # qualified URLs will point to a custom repository. Supports private # gcr.io images if the Composer Environment is under the same # project-id as the gcr.io images. image='gcr.io/gcp-runtimes/ubuntu_16_0_4') # [END composer_kubernetespodoperator] kubenetes_template_ex = kubernetes_pod_operator.KubernetesPodOperator( task_id='ex-kube-templates', name='ex-kube-templates', namespace='default', image='bash', # All parameters below are able to be templated with jinja -- cmds, # arguments, env_vars, and config_file. For more information visit: # https://airflow.apache.org/code.html#default-variables # Entrypoint of the container, if not specified the Docker container's # entrypoint is used. The cmds parameter is templated. cmds=['echo'], # DS in jinja is the execution date as YYYY-MM-DD, this docker image # will echo the execution date. Arguments to the entrypoint. The docker # image's CMD is used if this is not provided. The arguments parameter # is templated. arguments=['{{ ds }}'], # The var template variable allows you to access variables defined in # Airflow UI. In this case we are getting the value of my_value and # setting the environment variable `MY_VALUE`. The pod will fail if # `my_value` is not set in the Airflow UI. env_vars={'MY_VALUE': '{{ var.value.my_value }}'}, # Sets the config file to the specified airflow.cfg airflow home. If # the configuration file does not exist or does not provide valid # credentials the pod will fail to launch. config_file="{{ conf.get('core', 'airflow_home') }}/config") kubernetes_secret_vars_ex = kubernetes_pod_operator.KubernetesPodOperator( task_id='ex-kube-secrets', name='ex-kube-secrets', namespace='default', image='ubuntu', # The secrets to pass to Pod, the Pod will fail to create if the # secrets you specify in a Secret object do not exist in Kubernetes. secrets=[secret_env, secret_file], # env_vars allows you to specify environment variables for your # container to use. env_vars is templated. env_vars={'EXAMPLE_VAR': '/example/value'}) # [START composer_kubernetespodaffinity] kubernetes_affinity_ex = kubernetes_pod_operator.KubernetesPodOperator( task_id='ex-pod-affinity', name='ex-pod-affinity', namespace='default', image='perl', cmds=['perl'], arguments=['-Mbignum=bpi', '-wle', 'print bpi(2000)'], # affinity allows you to constrain which nodes your pod is eligible to # be scheduled on, based on labels on the node. In this case, if the # label 'cloud.google.com/gke-nodepool' with value # 'nodepool-label-value' or 'nodepool-label-value2' is not found on any # nodes, it will fail to schedule. affinity={ 'nodeAffinity': { # requiredDuringSchedulingIgnoredDuringExecution means in order # for a pod to be scheduled on a node, the node must have the # specified labels. However, if labels on a node change at # runtime such that the affinity rules on a pod are no longer # met, the pod will still continue to run on the node. 'requiredDuringSchedulingIgnoredDuringExecution': { 'nodeSelectorTerms': [{ 'matchExpressions': [{ # When nodepools are created in Google Kubernetes # Engine, the nodes inside of that nodepool are # automatically assigned the label # 'cloud.google.com/gke-nodepool' with the value of # the nodepool's name. 'key': 'cloud.google.com/gke-nodepool', 'operator': 'In', # The label key's value that pods can be scheduled # on. 'values': [ 'node-pool-name-1', 'node-pool-name-2', ] }] }] } } }) # [END composer_kubernetespodaffinity] kubernetes_full_pod = kubernetes_pod_operator.KubernetesPodOperator( task_id='ex-all-configs', name='pi', namespace='default', image='perl', # Entrypoint of the container, if not specified the Docker container's # entrypoint is used. The cmds parameter is templated. cmds=['perl'], # Arguments to the entrypoint. The docker image's CMD is used if this # is not provided. The arguments parameter is templated. arguments=['-Mbignum=bpi', '-wle', 'print bpi(2000)'], # The secrets to pass to Pod, the Pod will fail to create if the # secrets you specify in a Secret object do not exist in Kubernetes. secrets=[], # Labels to apply to the Pod. labels={'pod-label': 'label-name'}, # Timeout to start up the Pod, default is 120. startup_timeout_seconds=120, # The environment variables to be initialized in the container # env_vars are templated. env_vars={'EXAMPLE_VAR': '/example/value'}, # If true, logs stdout output of container. Defaults to True. get_logs=True, # Determines when to pull a fresh image, if 'IfNotPresent' will cause # the Kubelet to skip pulling an image if it already exists. If you # want to always pull a new image, set it to 'Always'. image_pull_policy='Always', # Annotations are non-identifying metadata you can attach to the Pod. # Can be a large range of data, and can include characters that are not # permitted by labels. annotations={'key1': 'value1'}, # Resource specifications for Pod, this will allow you to set both cpu # and memory limits and requirements. resources=pod.Resources(), # Specifies path to kubernetes config. If no config is specified will # default to '~/.kube/config'. The config_file is templated. config_file='/home/airflow/composer_kube_config', # If true, the content of /airflow/xcom/return.json from container will # also be pushed to an XCom when the container ends. xcom_push=False, # List of Volume objects to pass to the Pod. volumes=[], # List of VolumeMount objects to pass to the Pod. volume_mounts=[], # Affinity determines which nodes the Pod can run on based on the # config. For more information see: # https://kubernetes.io/docs/concepts/configuration/assign-pod-node/ affinity={})
#!/usr/bin/env python """ Run the Matplotlib test suite, using the mplcairo backend to patch out Matplotlib's agg backend. .. PYTEST_DONT_REWRITE """ from argparse import ArgumentParser import os from pathlib import Path import sys import warnings os.environ["MPLBACKEND"] = "agg" # Avoid irrelevant framework issues on OSX. import mplcairo.base # Need to come before matplotlib import on OSX. import matplotlib as mpl import matplotlib.backends.backend_agg import matplotlib.testing.decorators import pytest _IGNORED_FAILURES = {} def main(argv=None): parser = ArgumentParser( description="""\ Run the Matplotlib test suite, using the mplcairo backend to patch out Matplotlib's agg backend. To specify a single test module, use ``--pyargs matplotlib.tests.test_foo``. """, epilog="Other arguments are forwarded to pytest.") parser.add_argument("--tolerance", type=float, help="Set image comparison tolerance.") args, rest = parser.parse_known_args(argv) if "--pyargs" not in rest: rest.extend(["--pyargs", "matplotlib"]) if args.tolerance is not None: def _raise_on_image_difference(expected, actual, tol): cmp = mpl.testing.compare.compare_images( expected, actual, tol, in_decorator=True) if cmp: if cmp["rms"] < args.tolerance: expected = Path(expected) expected = expected.relative_to(expected.parent.parent) _IGNORED_FAILURES[expected] = cmp["rms"] else: __orig_raise_on_image_tolerance(expected, actual, tol) __orig_raise_on_image_tolerance = \ mpl.testing.decorators._raise_on_image_difference mpl.testing.decorators._raise_on_image_difference = \ _raise_on_image_difference mplcairo.base.get_hinting_flag = mpl.backends.backend_agg.get_hinting_flag mplcairo.base.FigureCanvasAgg = \ mplcairo.base.FigureCanvasCairo mplcairo.base.RendererAgg = \ mplcairo.base.GraphicsContextRendererCairo mpl.backends.backend_agg = \ sys.modules["matplotlib.backends.backend_agg"] = mplcairo.base mpl.use("agg", warn=False, force=True) from matplotlib import pyplot as plt __orig_switch_backend = plt.switch_backend def switch_backend(backend): __orig_switch_backend({ "gtk3agg": "module://mplcairo.gtk", "qt5agg": "module://mplcairo.qt", "tkagg": "module://mplcairo.tk", "wxagg": "module://mplcairo.wx", }.get(backend.lower(), backend)) plt.switch_backend = switch_backend plt.switch_backend("agg") return pytest.main( ["--rootdir", str(Path(mpl.__file__).parents[1]), "-p", "__main__"] + rest) # Py3.4 compat. def pytest_collection_modifyitems(session, config, items): if len(items) == 0: pytest.exit("No tests found; Matplotlib was likely installed without " "test data.") knownfail_message = "Test known to fail with mplcairo." irrelevant_message = "Test irrelevant for mplcairo." textfail_message = ("Test failure with large diff due to different text " "rendering by mplcairo.") xfail_modules = { "matplotlib.tests.test_compare_images": irrelevant_message, "matplotlib.tests.test_mathtext": textfail_message, "matplotlib.tests.test_constrainedlayout": textfail_message, "matplotlib.tests.test_tightlayout": textfail_message, } xfail_nodeids = { "matplotlib/tests/" + nodeid: message for message, nodeids in [ (knownfail_message, [ "test_image.py::test_jpeg_alpha", "test_image.py::test_figimage0[pdf]", "test_image.py::test_figimage1[pdf]", ]), (irrelevant_message, [ "test_agg.py::test_repeated_save_with_alpha", "test_artist.py::test_cull_markers", "test_axes.py::test_log_scales[png]", "test_backend_bases.py::test_non_gui_warning", "test_backend_pdf.py::test_composite_image", "test_backend_pdf.py::test_multipage_keep_empty", "test_backend_pdf.py::test_multipage_pagecount", "test_backend_pdf.py::test_multipage_properfinalize", "test_backend_ps.py::test_savefig_to_stringio[eps afm]", "test_backend_ps.py::test_savefig_to_stringio[eps with usetex]", "test_backend_ps.py::test_savefig_to_stringio[eps]", "test_backend_ps.py::test_savefig_to_stringio[ps with distiller]", "test_backend_ps.py::test_savefig_to_stringio[ps with usetex]", "test_backend_ps.py::test_savefig_to_stringio[ps]", "test_backend_ps.py::test_source_date_epoch", "test_backend_svg.py::test_text_urls", "test_bbox_tight.py::test_bbox_inches_tight_suptile_legend[pdf]", "test_bbox_tight.py::test_bbox_inches_tight_suptile_legend[png]", "test_bbox_tight.py::test_bbox_inches_tight_suptile_legend[svg]", "test_image.py::test_composite[True-1-ps- colorimage]", "test_image.py::test_composite[False-2-ps- colorimage]", "test_scale.py::test_logscale_mask[png]", "test_simplification.py::test_throw_rendering_complexity_exceeded", ]), (textfail_message, [ "test_figure.py::test_align_labels[pdf]", "test_figure.py::test_align_labels[png]", "test_figure.py::test_align_labels[svg]", "test_figure.py::test_tightbbox", ]) ] for nodeid in nodeids } xfails = [] for item in items: reason = (xfail_modules.get(item.module.__name__) or xfail_nodeids.get(item.nodeid)) if reason: xfails.append(item) item.add_marker(pytest.mark.xfail(reason=reason)) invalid_xfails = ( # Py3.4 compat. (set(xfail_modules) - {item.module.__name__ for item in xfails}) | (set(xfail_nodeids) - {item.nodeid for item in xfails})) if invalid_xfails: warnings.warn("Unused xfails:\n {}" .format("\n ".join(sorted(invalid_xfails)))) def pytest_terminal_summary(terminalreporter, exitstatus): write = terminalreporter.write if _IGNORED_FAILURES: write("\n" "Ignored the following image comparison failures:\n" "RMS\texpected\n") for rms, expected in sorted( ((v, k) for k, v in _IGNORED_FAILURES.items()), reverse=True): write("{:#.2f}\t{}\n".format(rms, expected)) if __name__ == "__main__": sys.exit(main())
import os import numpy as np import pandas as pd data=pd.read_csv("C:/Users/Dell/OneDrive/Desktop/spotify_dataset.csv") print(data.Index) data=pd.read_csv("C:/Users/Dell/OneDrive/Desktop/spotify_dataset.csv", index_col=0) data.head() data.shape data.info() data.isnull() data.isnull().sum() # We don't have any null values data.index data.columns data.size # 156x22=34232 data.memory_usage() data.ndim data.head(7) data.tail(3) data.at[12,'Song Name'] # when we are sure aboout column name data.at[11,'Song Name'] data.iat[0,3] #When we are sure about row and column index data.iat[4,3] data.iat[0,2] data.loc[0:15,'Song Name'] #To access a group of rows and columns data.loc[0:10,['Song Name','Artist']] data.dtypes #data.get_dtype_counts() data.select_dtypes(include= [object], exclude=None) #numpy.unique(Array) tells the unique elements of a column print(np.unique(data['Chord'])) # To consider '??' '???',etc as data=pd.read_csv("C:/Users/Dell/OneDrive/Desktop/spotify_dataset.csv", index_col=0,na_values=['?','??']) data['Number of Times Charted']=data['Number of Times Charted'].astype('object') data.info() # Data type changed print(max(data['Duration (ms)'])/60000)
# AGC028a def main(): n, m = map(int, input().split()) s = input() t = input() from fractions import gcd def lcm_base(a, b): return a * b // gcd(a, b) l = lcm_base(len(s), len(t)) for i in range(l, l*2, l): x = [-1]*i if __name__ == '__main__': main()
#!/usr/bin/env python # coding: utf-8 # In[ ]: #written by Joshua Shaffer (jfshaffe@ucsc.edu) # See PyCharm help at https://www.jetbrains.com/help/pycharm/ import math def main(): data0 = input("experimental group technical replicate 1 experimental gene Cq/Ct value: ") data1 = input("experimental group technical replicate 2 experimental gene Cq/Ct value: ") data2 = input("experimental group technical replicate 3 experimental gene Cq/Ct value: ") data3 = input("experimental group technical replicate 1 housekeeping gene Cq/Ct value: ") data4 = input("experimental group technical replicate 2 housekeeping gene Cq/Ct value: ") data5 = input("experimental group technical replicate 3 housekeeping gene Cq/Ct value: ") data6 = input("control group technical replicate 1 experimental gene Cq/Ct value: ") data7 = input("control group technical replicate 2 experimental gene Cq/Ct value: ") data8 = input("control group technical replicate 3 experimental gene Cq/Ct value: ") data9 = input("control group technical replicate 1 housekeeping gene Cq/Ct value: ") data10 = input("control group technical replicate 2 housekeeping gene Cq/Ct value: ") data11 = input("control group technical replicate 3 housekeeping gene Cq/Ct value: ") dataA = float(data0) dataB = float(data1) dataC = float(data2) dataD = float(data3) dataE = float(data4) dataF = float(data5) dataG = float(data6) dataH = float(data7) dataI = float(data8) dataJ = float(data9) dataK = float(data10) dataL = float(data11) te = ((dataA+dataB+dataC))/3 he = ((dataD+dataE+dataF))/3 tc = ((dataG+dataH+dataI))/3 hc = ((dataJ+dataK+dataL))/3 deltaCtE = te - he deltaCtC = tc - hc deltadeltaCt = deltaCtE - deltaCtC fc = 2**(-deltadeltaCt) log2fc = math.log(fc,2) print("fold change = ", fc) print("log2 fold change = ", log2fc) main() # In[ ]:
#/usr/bin/env python """Parsers for the Sprinzl tRNA databases. """ from cogent.util.misc import InverseDict from string import strip, maketrans from cogent.core.sequence import RnaSequence from cogent.core.info import Info as InfoClass __author__ = "Rob Knight" __copyright__ = "Copyright 2007-2012, The Cogent Project" __credits__ = ["Rob Knight", "Jeremy Widmann", "Sandra Smit"] __license__ = "GPL" __version__ = "1.5.3" __maintainer__ = "Rob Knight" __email__ = "rob@spot.colorado.edu" __status__ = "Development" def Rna(x, Info=None): if isinstance(x, list): x = ''.join(x) if Info is None: Info = {} return RnaSequence(x.upper().replace('T','U'), Info=InfoClass(Info)) SprinzlFields =['Accession', 'AA', 'Anticodon', 'Species', 'Strain'] def OneLineSprinzlParser(infile): """Returns successive records from the tRNA database. First line labels. This was the first attempt at the parser, and requires quite a lot of preprocessing. Use SprinzlParser for something more general. Works on a file obtained by the following method: 1. Do the default search. 2. Show all the columns and autofit them. 3. Delete the first column of numbers and all blank columns. 4. Name the first 5 columns "Accession, AA, Anticodon, Species, Strain". 5. Save the worksheet as plain text. """ first = True for l in infile: line = l.strip() if not line: continue fields = line.split('\t') if first: #label line label_fields = fields[5:] labels = InverseDict(enumerate(label_fields)) first = False else: info = dict(zip(SprinzlFields, map(strip, fields[0:5]))) info['Labels'] = labels yield Rna(map(strip, fields[5:]), Info=info) GenomicFields = ['', 'Accession', 'AA', '', 'Anticodon', '', 'Species', \ '', '', '', '', '', '', '', '', '', 'Strain', '', '', '', 'Taxonomy'] def _fix_structure(fields, seq): """Returns a string with correct # chars from db struct line. fields should be the result of line.split('\t') Implementation notes: Pairing line uses strange format: = is pair, * is GU pair, and nothing is unpaired. Cells are not padded out to the start or end of the sequence length, presumably to infuriate the unwary. I don't _think_ it's possible to convert these into ViennaStructures since we don't know where each helix starts and ends, and the lengths of each piece can vary. I'd be happy to be proven wrong on this... For some reason, _sometimes_ spaces are inserted, and _sometimes_ the cells are left entirely blank. Also, when there's a noncanonical pair in the helix, the helix is broken into two pieces, so counting pieces isn't going to work for figuring out the ViennaStructure. Expects as input the sequence and the raw structure line. """ num_blanks = 4 pieces = fields[num_blanks:] result = ['.'] * len(seq) for i, p in enumerate(pieces): if p and (p != ' '): result[i] = p return ''.join(result) def _fix_sequence(seq): """Returns string where terminal gaps are replaced with terminal CCA. Some of the sequence in the Genomic tRNA Database have gaps where the acceptor stem (terminal CCA) should be. This function checks the number of terminal gaps and replaces with appropriate part of terminal CCA. """ if seq.endswith('---'): seq = seq[:-3]+'CCA' elif seq.endswith('--'): seq = seq[:-2]+'CA' elif seq.endswith('-'): seq = seq[:-1]+'A' return seq def GenomicSprinzlParser(infile,fix_sequence=False): """Parser for the Genomic tRNA Database. Assumes the file has been prepared by the following method: 1. Set all search fields to empty. 2. Check all the results fields. 3. Perform the search (this takes a while). 4. Save the results worksheet as tab-delimited text. Note that the alignment length is supposed to be 99 bases, but not all the sequences have been padded out with the correct number of hyphens. """ num_blanks = 4 first = True for l in infile: #skip blank lines line = l.rstrip() if not line: continue fields = line.split('\t') if first: #label line #for unknown reasons, some of the field headers have '.' instead #of '0', e.g. '7.' instead of '70'. line = line.replace('.', '0') fields = line.split('\t') labels = InverseDict(enumerate(fields[num_blanks:])) first = False offset = 0 else: #expect 3 record lines at a time if offset == 0: #label line info = dict(zip(GenomicFields, map(strip, fields))) #add in the labels info['Labels'] = labels #convert the taxonomy from a string to a list info['Taxonomy'] = map(strip, info['Taxonomy'].split(';')) #convert the anticodon into RNA info['Anticodon'] = Rna(info['Anticodon']) #get rid of the empty fields del info[''] elif offset == 1: #sequence line raw_seq = ''.join(map(strip, fields)) #for some reason, there are underscores in some sequences raw_seq = raw_seq.replace('_', '-') if fix_sequence: raw_seq = _fix_sequence(raw_seq) seq = Rna(raw_seq, Info=info) elif offset == 2: #structure line seq.Pairing = _fix_structure(fields, seq) yield seq #figure out which type of line we're expecting next offset += 1 if offset > 2: offset = 0 def get_pieces(struct, splits): """Breaks up the structure at fixed positions, returns the pieces. struct: structure string in sprinzl format splits: list or tuple of positions to split on This is a helper function for the sprinzl_to_vienna function. struct = '...===...===.' splits = [0,3,7,-1,13] pieces -> ['...','===.','..===','.'] """ pieces = [] for x in range(len(splits)-1): pieces.append(struct[splits[x]:splits[x+1]]) return pieces def get_counts(struct_piece): """Returns a list of the lengths or the paired regions in the structure. struct_pieces: string, piece of structure in sprinzl format This is a helper function for the sprinzl_to_vienna function struct_piece = '.===.=..' returns [3,1] """ return map(len, filter(None, [i.strip('.') for i in \ struct_piece.split('.')])) def sprinzl_to_vienna(sprinzl_struct): """Constructs vienna structure from sprinzl sec. structure format sprinzl_struct: structure string in sprinzl format Many things are hardcoded in here, so if the format or the alignment changes, these values have to be adjusted!!! The correctness of the splits has been tested on the GenomicDB database from Jan 2006, containing 8163 sequences. """ assert len(sprinzl_struct) == 99 gu='*' wc='=' splits = [0,8,19,29,38,55,79,-11,len(sprinzl_struct)] direction = ['(','(',')','(',')','(',')',')'] #get structural pieces s = sprinzl_struct.replace(gu,wc) pieces = get_pieces(s, splits) assert len(pieces) == len(splits)-1 #get counts of structured regions in each piece, check validity counts = map(get_counts,pieces) pairs = [(0,-1),(1,2),(3,4),(5,6)] for i,j in pairs: assert sum(counts[i]) == sum(counts[j]) #check counts matches directions assert len(counts) == len(direction) #construct string string of brackets brackets = [] for lengths, br in zip(counts,direction): for l in lengths: brackets.append(l*br) brackets = ''.join(brackets) #build vienna structure vienna = [] x=0 for sym in s: if sym == '.': vienna.append(sym) else: vienna.append(brackets[x]) x += 1 return ''.join(vienna)
import os from pathlib import Path DEFAULT_ROOT_PATH = Path(os.path.expanduser(os.getenv("CHIA_ROOT", "~/.chia/testnet4"))).resolve()
from __future__ import absolute_import from .accuracy import accuracy from .classification import evaluate_classification, show_confusion_matrix from .distance import compute_distance_matrix from .lfw import evaluate_lfw from .rank import evaluate_rank
# # PySNMP MIB module JUNIPER-V1-TRAPS-MPLS (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/JUNIPER-V1-TRAPS-MPLS # Produced by pysmi-0.3.4 at Wed May 1 14:01:25 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # Integer, OctetString, ObjectIdentifier = mibBuilder.importSymbols("ASN1", "Integer", "OctetString", "ObjectIdentifier") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") SingleValueConstraint, ConstraintsUnion, ValueSizeConstraint, ConstraintsIntersection, ValueRangeConstraint = mibBuilder.importSymbols("ASN1-REFINEMENT", "SingleValueConstraint", "ConstraintsUnion", "ValueSizeConstraint", "ConstraintsIntersection", "ValueRangeConstraint") ModuleCompliance, NotificationGroup = mibBuilder.importSymbols("SNMPv2-CONF", "ModuleCompliance", "NotificationGroup") Counter64, enterprises, MibScalar, MibTable, MibTableRow, MibTableColumn, MibIdentifier, iso, IpAddress, Bits, ModuleIdentity, Counter32, NotificationType, Gauge32, ObjectIdentity, NotificationType, Unsigned32, Integer32, TimeTicks = mibBuilder.importSymbols("SNMPv2-SMI", "Counter64", "enterprises", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "MibIdentifier", "iso", "IpAddress", "Bits", "ModuleIdentity", "Counter32", "NotificationType", "Gauge32", "ObjectIdentity", "NotificationType", "Unsigned32", "Integer32", "TimeTicks") DisplayString, TextualConvention = mibBuilder.importSymbols("SNMPv2-TC", "DisplayString", "TextualConvention") juniperMIB = MibIdentifier((1, 3, 6, 1, 4, 1, 2636)) jnxMibs = MibIdentifier((1, 3, 6, 1, 4, 1, 2636, 3)) mpls = MibIdentifier((1, 3, 6, 1, 4, 1, 2636, 3, 2)) mplsLspList = MibIdentifier((1, 3, 6, 1, 4, 1, 2636, 3, 2, 3)) mplsLspEntry = MibIdentifier((1, 3, 6, 1, 4, 1, 2636, 3, 2, 3, 1)) mplsLspName = MibIdentifier((1, 3, 6, 1, 4, 1, 2636, 3, 2, 3, 1, 1)) mplsPathName = MibIdentifier((1, 3, 6, 1, 4, 1, 2636, 3, 2, 3, 1, 17)) mplsLspUpV1 = NotificationType((1, 3, 6, 1, 4, 1, 2636) + (0,1)).setObjects(("JUNIPER-V1-TRAPS-MPLS", "mplsLspName"), ("JUNIPER-V1-TRAPS-MPLS", "mplsPathName")) if mibBuilder.loadTexts: mplsLspUpV1.setDescription('An mplsLspUp trap signifies that the specified LSP is up. The current active path for the LSP is mplsPathName.') mplsLspDownV1 = NotificationType((1, 3, 6, 1, 4, 1, 2636) + (0,2)).setObjects(("JUNIPER-V1-TRAPS-MPLS", "mplsLspName"), ("JUNIPER-V1-TRAPS-MPLS", "mplsPathName")) if mibBuilder.loadTexts: mplsLspDownV1.setDescription('An mplsLspDown trap signifies that the specified LSP is down, because the current active path mplsPathName went down.') mplsLspChangeV1 = NotificationType((1, 3, 6, 1, 4, 1, 2636) + (0,3)).setObjects(("JUNIPER-V1-TRAPS-MPLS", "mplsLspName"), ("JUNIPER-V1-TRAPS-MPLS", "mplsPathName")) if mibBuilder.loadTexts: mplsLspChangeV1.setDescription("An mplsLspChange trap signifies that the the specified LSP has switched traffic to the new active path 'toLspPath'. The LSP maintains up state before and after the switch over") mibBuilder.exportSymbols("JUNIPER-V1-TRAPS-MPLS", mpls=mpls, mplsLspChangeV1=mplsLspChangeV1, mplsLspName=mplsLspName, mplsPathName=mplsPathName, mplsLspUpV1=mplsLspUpV1, mplsLspEntry=mplsLspEntry, jnxMibs=jnxMibs, mplsLspDownV1=mplsLspDownV1, juniperMIB=juniperMIB, mplsLspList=mplsLspList)
import json import ssl import asyncio import logging import websockets log = logging.getLogger('mattermostdriver.websocket') log.setLevel(logging.INFO) class Websocket: def __init__(self, options, token): self.options = options if options['debug']: log.setLevel(logging.DEBUG) self._token = token async def connect(self, event_handler): """ Connect to the websocket and authenticate it. When the authentication has finished, start the loop listening for messages, sending a ping to the server to keep the connection alive. :param event_handler: Every websocket event will be passed there. Takes one argument. :type event_handler: Function(message) :return: """ context = ssl.create_default_context(purpose=ssl.Purpose.CLIENT_AUTH) if not self.options['verify']: context.verify_mode = ssl.CERT_NONE scheme = 'wss://' if self.options['scheme'] != 'https': scheme = 'ws://' context = None url = '{scheme:s}{url:s}{basepath:s}/websocket'.format( scheme=scheme, url=self.options['url'], basepath=self.options['basepath'] ) websocket = await websockets.connect( url, ssl=context, ) await self._authenticate_websocket(websocket, event_handler) await self._start_loop(websocket, event_handler) async def _start_loop(self, websocket, event_handler): """ We will listen for websockets events, sending a heartbeat/pong everytime we react a TimeoutError. If we don't the webserver would close the idle connection, forcing us to reconnect. """ log.debug('Starting websocket loop') while True: try: await asyncio.wait_for( self._wait_for_message(websocket, event_handler), timeout=self.options['timeout'] ) except asyncio.TimeoutError: await websocket.pong() log.debug("Sending heartbeat...") continue async def _authenticate_websocket(self, websocket, event_handler): """ Sends a authentication challenge over a websocket. This is not needed when we just send the cookie we got on login when connecting to the websocket. """ log.debug('Authenticating websocket') json_data = json.dumps({ "seq": 1, "action": "authentication_challenge", "data": { "token": self._token } }).encode('utf8') await websocket.send(json_data) while True: message = await websocket.recv() status = json.loads(message) log.debug(status) # We want to pass the events to the event_handler already # because the hello event could arrive before the authentication ok response await event_handler(message) if ('event' in status and status['event'] == 'hello') and \ ('seq' in status and status['seq'] == 0): log.info('Websocket authentification OK') return True log.error('Websocket authentification failed') async def _wait_for_message(self, websocket, event_handler): log.debug('Waiting for messages on websocket') while True: message = await websocket.recv() await event_handler(message)
USE_MMDET = True _base_ = [ '../_base_/models/faster_rcnn_r50_fpn.py', '../_base_/datasets/mot_challenge_det.py', '../_base_/default_runtime.py' ] model = dict( detector=dict( rpn_head=dict(bbox_coder=dict(clip_border=False)), roi_head=dict( bbox_head=dict(bbox_coder=dict(clip_border=False), num_classes=1)), init_cfg=dict( type='Pretrained', checkpoint= # noqa: E251 'http://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_2x_coco/faster_rcnn_r50_fpn_2x_coco_bbox_mAP-0.384_20200504_210434-a5d8aa15.pth' # noqa: E501 ))) # learning policy lr_config = dict( policy='step', warmup='linear', warmup_iters=100, warmup_ratio=1.0 / 100, step=[3]) # runtime settings total_epochs = 4
class ContainerModuleNotFound(Exception): pass # Raised when Container module is not found
import pytest from ..bootstrap import check_dependencies def test_check_dependencies(): check_dependencies([]) check_dependencies(["which", "cd"]) with pytest.raises(AssertionError, match="this-does-not-exist is not installed"): check_dependencies(["this-does-not-exist"])
class Solution: # @param {string} s # @param {string} p # @return {boolean} def isMatch(self, s, p): dp=[[False for i in range(len(p)+1)] for j in range(len(s)+1)] dp[0][0]=True for i in range(1,len(p)+1): if p[i-1]=='*': if i>=2: dp[0][i]=dp[0][i-2] for i in range(1,len(s)+1): for j in range(1,len(p)+1): if p[j-1]=='.': dp[i][j]=dp[i-1][j-1] elif p[j-1]=='*': dp[i][j]=dp[i][j-1] or dp[i][j-2] or (dp[i-1][j] and (s[i-1]==p[j-2] or p[j-2]=='.')) else: dp[i][j]=dp[i-1][j-1] and s[i-1]==p[j-1] return dp[len(s)][len(p)]
uci_moves = [] letters = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h'] for n1 in range(1, 9): for l1 in letters: for n2 in range(1, 9): for l2 in letters: uci = l1 + str(n1) + l2 + str(n2) uci_moves.append(uci) promotions_white = ['a7a8', 'b7b8', 'c7c8', 'd7d8', 'e7e8', 'f7f8', 'g7g8', 'h7h8', 'a7b8', 'b7a8', 'b7c8', 'c7b8', 'c7d8', 'd7c8', 'd7e8', 'e7d8', 'e7f8', 'f7e8', 'f7g8', 'g7f8', 'g7h8', 'h7g8'] promotions_black = ['a2a1', 'b2b1', 'c2c1', 'd2d1', 'e2e1', 'f2f1', 'g2g1', 'h2h1', 'a2b1', 'b2a1', 'b2c1', 'c2b1', 'c2d1', 'd2c1', 'd2e1', 'e2d1', 'e2f1', 'f2e1', 'f2g1', 'g2f1', 'g2h1', 'h2g1'] promotions = promotions_white + promotions_black for piece in ['r', 'n', 'b', 'q']: for promotion in promotions: uci_moves.append(promotion + piece) uci_to_index = {} for i, uci in enumerate(uci_moves): uci_to_index[uci] = i
import os import json import logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger("FMT") src_path = "data/en/manifest_{}_en_cmon_clean.json" tgt_path = "data/en/spk_{}/manifest_{}_en_cmon_clean.json" tgt_txt_path = "data/en/spk_{}/manifest_{}_en_cmon_clean.txt" for env in ["valid", "train"]: with open(src_path.format(env), encoding="utf-8") as src_json: for jn in src_json: try: jd = json.loads(jn) audio_filepath = jd["audio_filepath"] text = jd["text"] duration = jd["duration"] speaker = jd["speaker"] text = str(text).strip("\n").strip() text = text.replace("£", " euro ") text = text.replace("€", " euro ") text = text.replace(" ", " ") manifest = {"audio_filepath": audio_filepath, "text": text, "duration": float(duration), "speaker": int(speaker)} os.makedirs("data/en/spk_{}".format(speaker), exist_ok=True) with open(tgt_path.format(speaker, env), encoding="utf-8", mode="a") as tgt_json: json.dump(manifest, tgt_json) tgt_json.write("\n") with open(tgt_txt_path.format(speaker, env), encoding="utf-8", mode="a") as tgt_txt: tgt_txt.write("{}|{}|{}\n".format(audio_filepath, text, int(speaker))) except Exception as e: logger.exception(e)
########################################################################## # Author: Samuca # # brief: plays a mp3 song # # this is a list exercise available on youtube: # https://www.youtube.com/playlist?list=PLHz_AreHm4dm6wYOIW20Nyg12TAjmMGT- ########################################################################## #pygame modulo has a lot of tools to work with games, such as: # load images # play songs import pygame #initializate the module pygame.init() #load the song pygame.mixer.music.load("ex021.mp3") #play the song pygame.mixer.music.play() #wait the song ends pygame.event.wait()
#!/usr/bin/env python # -*- coding: utf-8 -*- """Tests for the SYSTEMTIME structure implementation.""" from __future__ import unicode_literals import decimal import unittest from dfdatetime import systemtime class SystemtimeTest(unittest.TestCase): """Tests for the SYSTEMTIME structure.""" # pylint: disable=protected-access def testInitialize(self): """Tests the initialization function.""" systemtime_object = systemtime.Systemtime() self.assertIsNotNone(systemtime_object) systemtime_object = systemtime.Systemtime( system_time_tuple=(2010, 8, 4, 12, 20, 6, 31, 142)) self.assertIsNotNone(systemtime_object) self.assertEqual(systemtime_object.year, 2010) self.assertEqual(systemtime_object.month, 8) self.assertEqual(systemtime_object.day_of_month, 12) self.assertEqual(systemtime_object.hours, 20) self.assertEqual(systemtime_object.minutes, 6) self.assertEqual(systemtime_object.seconds, 31) self.assertEqual(systemtime_object.milliseconds, 142) with self.assertRaises(ValueError): systemtime.Systemtime( system_time_tuple=(2010, 8, 4, 12, 20, 6, 31)) with self.assertRaises(ValueError): systemtime.Systemtime( system_time_tuple=(1500, 8, 4, 12, 20, 6, 31, 142)) with self.assertRaises(ValueError): systemtime.Systemtime( system_time_tuple=(2010, 13, 4, 12, 20, 6, 31, 142)) with self.assertRaises(ValueError): systemtime.Systemtime( system_time_tuple=(2010, 8, 7, 12, 20, 6, 31, 142)) with self.assertRaises(ValueError): systemtime.Systemtime( system_time_tuple=(2010, 8, 4, 32, 20, 6, 31, 142)) with self.assertRaises(ValueError): systemtime.Systemtime( system_time_tuple=(2010, 8, 4, 12, 24, 6, 31, 142)) with self.assertRaises(ValueError): systemtime.Systemtime( system_time_tuple=(2010, 8, 4, 12, 20, 61, 31, 142)) with self.assertRaises(ValueError): systemtime.Systemtime( system_time_tuple=(2010, 8, 4, 12, 20, 6, 61, 142)) with self.assertRaises(ValueError): systemtime.Systemtime( system_time_tuple=(2010, 8, 4, 12, 20, 6, 31, 1001)) def testGetNormalizedTimestamp(self): """Tests the _GetNormalizedTimestamp function.""" systemtime_object = systemtime.Systemtime( system_time_tuple=(2010, 8, 4, 12, 20, 6, 31, 142)) normalized_timestamp = systemtime_object._GetNormalizedTimestamp() self.assertEqual(normalized_timestamp, decimal.Decimal('1281643591.142')) systemtime_object = systemtime.Systemtime() normalized_timestamp = systemtime_object._GetNormalizedTimestamp() self.assertIsNone(normalized_timestamp) def testCopyFromDateTimeString(self): """Tests the CopyFromDateTimeString function.""" systemtime_object = systemtime.Systemtime() expected_number_of_seconds = 1281571200 systemtime_object.CopyFromDateTimeString('2010-08-12') self.assertEqual( systemtime_object._number_of_seconds, expected_number_of_seconds) self.assertEqual(systemtime_object.year, 2010) self.assertEqual(systemtime_object.month, 8) self.assertEqual(systemtime_object.day_of_month, 12) self.assertEqual(systemtime_object.hours, 0) self.assertEqual(systemtime_object.minutes, 0) self.assertEqual(systemtime_object.seconds, 0) self.assertEqual(systemtime_object.milliseconds, 0) expected_number_of_seconds = 1281647191 systemtime_object.CopyFromDateTimeString('2010-08-12 21:06:31') self.assertEqual( systemtime_object._number_of_seconds, expected_number_of_seconds) self.assertEqual(systemtime_object.year, 2010) self.assertEqual(systemtime_object.month, 8) self.assertEqual(systemtime_object.day_of_month, 12) self.assertEqual(systemtime_object.hours, 21) self.assertEqual(systemtime_object.minutes, 6) self.assertEqual(systemtime_object.seconds, 31) self.assertEqual(systemtime_object.milliseconds, 0) expected_number_of_seconds = 1281647191 systemtime_object.CopyFromDateTimeString('2010-08-12 21:06:31.546875') self.assertEqual( systemtime_object._number_of_seconds, expected_number_of_seconds) self.assertEqual(systemtime_object.year, 2010) self.assertEqual(systemtime_object.month, 8) self.assertEqual(systemtime_object.day_of_month, 12) self.assertEqual(systemtime_object.hours, 21) self.assertEqual(systemtime_object.minutes, 6) self.assertEqual(systemtime_object.seconds, 31) self.assertEqual(systemtime_object.milliseconds, 546) expected_number_of_seconds = 1281650791 systemtime_object.CopyFromDateTimeString('2010-08-12 21:06:31.546875-01:00') self.assertEqual( systemtime_object._number_of_seconds, expected_number_of_seconds) self.assertEqual(systemtime_object.year, 2010) self.assertEqual(systemtime_object.month, 8) self.assertEqual(systemtime_object.day_of_month, 12) self.assertEqual(systemtime_object.hours, 22) self.assertEqual(systemtime_object.minutes, 6) self.assertEqual(systemtime_object.seconds, 31) self.assertEqual(systemtime_object.milliseconds, 546) expected_number_of_seconds = 1281643591 systemtime_object.CopyFromDateTimeString('2010-08-12 21:06:31.546875+01:00') self.assertEqual( systemtime_object._number_of_seconds, expected_number_of_seconds) self.assertEqual(systemtime_object.year, 2010) self.assertEqual(systemtime_object.month, 8) self.assertEqual(systemtime_object.day_of_month, 12) self.assertEqual(systemtime_object.hours, 20) self.assertEqual(systemtime_object.minutes, 6) self.assertEqual(systemtime_object.seconds, 31) self.assertEqual(systemtime_object.milliseconds, 546) expected_number_of_seconds = -11644387200 systemtime_object.CopyFromDateTimeString('1601-01-02 00:00:00') self.assertEqual( systemtime_object._number_of_seconds, expected_number_of_seconds) self.assertEqual(systemtime_object.year, 1601) self.assertEqual(systemtime_object.month, 1) self.assertEqual(systemtime_object.day_of_month, 2) self.assertEqual(systemtime_object.hours, 0) self.assertEqual(systemtime_object.minutes, 0) self.assertEqual(systemtime_object.seconds, 0) self.assertEqual(systemtime_object.milliseconds, 0) with self.assertRaises(ValueError): systemtime_object.CopyFromDateTimeString('1600-01-02 00:00:00') def testCopyToDateTimeString(self): """Tests the CopyToDateTimeString function.""" systemtime_object = systemtime.Systemtime( system_time_tuple=(2010, 8, 4, 12, 20, 6, 31, 142)) date_time_string = systemtime_object.CopyToDateTimeString() self.assertEqual(date_time_string, '2010-08-12 20:06:31.142') systemtime_object = systemtime.Systemtime() date_time_string = systemtime_object.CopyToDateTimeString() self.assertIsNone(date_time_string) def testGetDate(self): """Tests the GetDate function.""" systemtime_object = systemtime.Systemtime( system_time_tuple=(2010, 8, 4, 12, 20, 6, 31, 142)) date_tuple = systemtime_object.GetDate() self.assertEqual(date_tuple, (2010, 8, 12)) systemtime_object = systemtime.Systemtime() date_tuple = systemtime_object.GetDate() self.assertEqual(date_tuple, (None, None, None)) if __name__ == '__main__': unittest.main()
""" REST APIs that are only used in v1 (the legacy API). """
import sqlite3 connection = sqlite3.connect('categories.db') with open('categories.sql') as f: connection.executescript(f.read()) cur = connection.cursor() cur.execute("INSERT INTO categories (name) VALUES (?)", ('Food',) ) connection.commit() connection.close()
import unittest import os from web3 import Web3 from solcx import install_solc # install_solc(version='latest') install_solc(version='0.7.0') from solcx import compile_source EXTRA_GAS = int(os.environ.get("EXTRA_GAS", "0")) proxy_url = os.environ.get('PROXY_URL', 'http://localhost:9090/solana') proxy = Web3(Web3.HTTPProvider(proxy_url)) eth_account = proxy.eth.account.create('https://github.com/neonlabsorg/proxy-model.py/issues/147') proxy.eth.default_account = eth_account.address SUBSTRING_LOG_ERR_147 = 'Invalid Ethereum transaction nonce:' STORAGE_SOLIDITY_SOURCE_147 = ''' pragma solidity >=0.7.0 <0.9.0; /** * @title Storage * @dev Store & retrieve value in a variable */ contract Storage { uint256 number; /** * @dev Store value in variable * @param num value to store */ function store(uint256 num) public { number = num; } /** * @dev Return value * @return value of 'number' */ function retrieve() public view returns (uint256){ return number; } } ''' SOLIDITY_SOURCE_185 = ''' pragma solidity >=0.7.0 <0.9.0; contract test_185 { bytes public emprty_string = ""; function getKeccakOfEmptyString() public view returns (bytes32 variant) { variant = keccak256(emprty_string); } bytes32 constant neonlabsHash = keccak256("neonlabs"); function endlessCycle() public view returns (bytes32 variant) { variant = keccak256(emprty_string); for(;neonlabsHash != variant;) { variant = keccak256(abi.encodePacked(variant)); } return variant; } bytes32 public value = ""; function initValue(string memory s) public { value = keccak256(bytes(s)); } function calculateKeccakAndStore(uint256 times) public { for(;times > 0; --times) { value = keccak256(abi.encodePacked(value)); } } function getValue() public view returns (bytes32) { return value; } } ''' class Test_eth_sendRawTransaction(unittest.TestCase): @classmethod def setUpClass(cls): print("\n\nhttps://github.com/neonlabsorg/proxy-model.py/issues/147") print('eth_account.address:', eth_account.address) print('eth_account.key:', eth_account.key.hex()) cls.deploy_storage_147_solidity_contract(cls) cls.deploy_test_185_solidity_contract(cls) def deploy_storage_147_solidity_contract(self): compiled_sol = compile_source(STORAGE_SOLIDITY_SOURCE_147) contract_id, contract_interface = compiled_sol.popitem() storage = proxy.eth.contract(abi=contract_interface['abi'], bytecode=contract_interface['bin']) trx_deploy = proxy.eth.account.sign_transaction(dict( nonce=proxy.eth.get_transaction_count(proxy.eth.default_account), chainId=proxy.eth.chain_id, gas=987654321, gasPrice=0, to='', value=0, data=storage.bytecode), eth_account.key ) print('trx_deploy:', trx_deploy) trx_deploy_hash = proxy.eth.send_raw_transaction(trx_deploy.rawTransaction) print('trx_deploy_hash:', trx_deploy_hash.hex()) trx_deploy_receipt = proxy.eth.wait_for_transaction_receipt(trx_deploy_hash) print('trx_deploy_receipt:', trx_deploy_receipt) self.deploy_block_hash = trx_deploy_receipt['blockHash'] self.deploy_block_num = trx_deploy_receipt['blockNumber'] print('deploy_block_hash:', self.deploy_block_hash) print('deploy_block_num:', self.deploy_block_num) self.storage_contract = proxy.eth.contract( address=trx_deploy_receipt.contractAddress, abi=storage.abi ) def deploy_test_185_solidity_contract(self): compiled_sol = compile_source(SOLIDITY_SOURCE_185) contract_id, contract_interface = compiled_sol.popitem() test_185_solidity_contract = proxy.eth.contract(abi=contract_interface['abi'], bytecode=contract_interface['bin']) trx_deploy = proxy.eth.account.sign_transaction(dict( nonce=proxy.eth.get_transaction_count(proxy.eth.default_account), chainId=proxy.eth.chain_id, gas=987654321, gasPrice=0, to='', value=0, data=test_185_solidity_contract.bytecode), eth_account.key ) print('trx_deploy:', trx_deploy) trx_deploy_hash = proxy.eth.send_raw_transaction(trx_deploy.rawTransaction) print('trx_deploy_hash:', trx_deploy_hash.hex()) trx_deploy_receipt = proxy.eth.wait_for_transaction_receipt(trx_deploy_hash) print('trx_deploy_receipt:', trx_deploy_receipt) self.test_185_solidity_contract = proxy.eth.contract( address=trx_deploy_receipt.contractAddress, abi=test_185_solidity_contract.abi ) # @unittest.skip("a.i.") def test_check_get_block_by_hash(self): print("\ntest_check_get_block_by_hash") block = proxy.eth.get_block(self.deploy_block_hash, full_transactions=True) print('block:', block) self.assertEqual(len(block['transactions']), 1) self.assertEqual(block['transactions'][0]['blockHash'], self.deploy_block_hash) # @unittest.skip("a.i.") def test_check_get_block_by_number(self): print("\ntest_check_get_block_by_number") block = proxy.eth.get_block(int(self.deploy_block_num)) print('block:', block) self.assertEqual(len(block['transactions']), 1) # @unittest.skip("a.i.") def test_01_call_retrieve_right_after_deploy(self): print("\ntest_01_call_retrieve_right_after_deploy") number = self.storage_contract.functions.retrieve().call() print('number:', number) self.assertEqual(number, 0) # @unittest.skip("a.i.") def test_02_execute_with_right_nonce(self): print("\ntest_02_execute_with_right_nonce") right_nonce = proxy.eth.get_transaction_count(proxy.eth.default_account) trx_store = self.storage_contract.functions.store(147).buildTransaction({'nonce': right_nonce}) print('trx_store:', trx_store) trx_store_signed = proxy.eth.account.sign_transaction(trx_store, eth_account.key) print('trx_store_signed:', trx_store_signed) trx_store_hash = proxy.eth.send_raw_transaction(trx_store_signed.rawTransaction) print('trx_store_hash:', trx_store_hash.hex()) trx_store_receipt = proxy.eth.wait_for_transaction_receipt(trx_store_hash) print('trx_store_receipt:', trx_store_receipt) number = self.storage_contract.functions.retrieve().call() print('number:', number) self.assertEqual(number, 147) # @unittest.skip("a.i.") def test_03_execute_with_low_gas(self): print("\ntest_03_execute_with_low_gas") right_nonce = proxy.eth.get_transaction_count(proxy.eth.default_account) trx_store = self.storage_contract.functions.store(148).buildTransaction({'nonce': right_nonce, 'gasPrice': 1}) print('trx_store:', trx_store) trx_store['gas'] = trx_store['gas'] - 2 - EXTRA_GAS # less than estimated print('trx_store:', trx_store) trx_store_signed = proxy.eth.account.sign_transaction(trx_store, eth_account.key) print('trx_store_signed:', trx_store_signed) trx_store_hash = proxy.eth.send_raw_transaction(trx_store_signed.rawTransaction) print('trx_store_hash:', trx_store_hash.hex()) trx_store_receipt = proxy.eth.wait_for_transaction_receipt(trx_store_hash) print('trx_store_receipt:', trx_store_receipt) self.assertEqual(trx_store_receipt['status'], 0) # false Transaction mined but execution failed # @unittest.skip("a.i.") def test_04_execute_with_bad_nonce(self): test_nonce_map = { 'grade_up_one': 1, 'grade_down_one': -1, } for name, offset in test_nonce_map.items(): with self.subTest(name=name): print("\ntest_04_execute_with_bad_nonce {} offsets".format(offset)) bad_nonce = offset + proxy.eth.get_transaction_count(proxy.eth.default_account) trx_store = self.storage_contract.functions.store(147).buildTransaction({'nonce': bad_nonce}) print('trx_store:', trx_store) trx_store_signed = proxy.eth.account.sign_transaction(trx_store, eth_account.key) print('trx_store_signed:', trx_store_signed) try: trx_store_hash = proxy.eth.send_raw_transaction(trx_store_signed.rawTransaction) print('trx_store_hash:', trx_store_hash) self.assertTrue(False) except Exception as e: print('type(e):', type(e)) print('e:', e) import json response = json.loads(str(e).replace('\'', '\"').replace('None', 'null')) print('response:', response) print('code:', response['code']) self.assertEqual(response['code'], -32002) print('substring_err_147:', SUBSTRING_LOG_ERR_147) logs = response['data']['logs'] print('logs:', logs) log = [s for s in logs if SUBSTRING_LOG_ERR_147 in s][0] print(log) self.assertGreater(len(log), len(SUBSTRING_LOG_ERR_147)) file_name = 'src/entrypoint.rs' self.assertTrue(file_name in log) # @unittest.skip("a.i.") def test_05_transfer_one_gwei(self): print("\ntest_05_transfer_one_gwei") one_gwei = 1_000_000_000 eth_account_alice = proxy.eth.account.create('alice') eth_account_bob = proxy.eth.account.create('bob') print('eth_account_alice.address:', eth_account_alice.address) print('eth_account_bob.address:', eth_account_bob.address) if True: print("add funds to alice and bob") print("alice") trx_transfer = proxy.eth.account.sign_transaction(dict( nonce=proxy.eth.get_transaction_count(proxy.eth.default_account), chainId=proxy.eth.chain_id, gas=987654321, gasPrice=0, to=eth_account_alice.address, value=one_gwei), eth_account.key ) print('trx_transfer:', trx_transfer) trx_transfer_hash = proxy.eth.send_raw_transaction(trx_transfer.rawTransaction) print('trx_transfer_hash:', trx_transfer_hash.hex()) trx_transfer_receipt = proxy.eth.wait_for_transaction_receipt(trx_transfer_hash) print('trx_transfer_receipt:', trx_transfer_receipt) print("bob") trx_transfer = proxy.eth.account.sign_transaction(dict( nonce=proxy.eth.get_transaction_count(proxy.eth.default_account), chainId=proxy.eth.chain_id, gas=987654321, gasPrice=0, to=eth_account_bob.address, value=one_gwei), eth_account.key ) print('trx_transfer:', trx_transfer) trx_transfer_hash = proxy.eth.send_raw_transaction(trx_transfer.rawTransaction) print('trx_transfer_hash:', trx_transfer_hash.hex()) trx_transfer_receipt = proxy.eth.wait_for_transaction_receipt(trx_transfer_hash) print('trx_transfer_receipt:', trx_transfer_receipt) alice_balance_before_transfer = proxy.eth.get_balance(eth_account_alice.address) bob_balance_before_transfer = proxy.eth.get_balance(eth_account_bob.address) print('alice_balance_before_transfer:', alice_balance_before_transfer) print('bob_balance_before_transfer:', bob_balance_before_transfer) print('one_gwei:', one_gwei) trx_transfer = proxy.eth.account.sign_transaction(dict( nonce=proxy.eth.get_transaction_count(eth_account_alice.address), chainId=proxy.eth.chain_id, gas=987654321, gasPrice=0, to=eth_account_bob.address, value=one_gwei), eth_account_alice.key ) print('trx_transfer:', trx_transfer) trx_transfer_hash = proxy.eth.send_raw_transaction(trx_transfer.rawTransaction) print('trx_transfer_hash:', trx_transfer_hash.hex()) trx_transfer_receipt = proxy.eth.wait_for_transaction_receipt(trx_transfer_hash) print('trx_transfer_receipt:', trx_transfer_receipt) alice_balance_after_transfer = proxy.eth.get_balance(eth_account_alice.address) bob_balance_after_transfer = proxy.eth.get_balance(eth_account_bob.address) print('alice_balance_after_transfer:', alice_balance_after_transfer) print('bob_balance_after_transfer:', bob_balance_after_transfer) self.assertEqual(alice_balance_after_transfer, alice_balance_before_transfer - one_gwei) self.assertEqual(bob_balance_after_transfer, bob_balance_before_transfer + one_gwei) # @unittest.skip("a.i.") def test_06_transfer_one_and_a_half_gweis(self): print("\ntest_06_transfer_one_and_a_half_gweis") eth_account_alice = proxy.eth.account.create('alice') eth_account_bob = proxy.eth.account.create('bob') print('eth_account_alice.address:', eth_account_alice.address) print('eth_account_bob.address:', eth_account_bob.address) one_gwei = 1_000_000_000 if True: print("add funds to alice and bob") print("alice") trx_transfer = proxy.eth.account.sign_transaction(dict( nonce=proxy.eth.get_transaction_count(proxy.eth.default_account), chainId=proxy.eth.chain_id, gas=987654321, gasPrice=0, to=eth_account_alice.address, value=one_gwei), eth_account.key ) print('trx_transfer:', trx_transfer) trx_transfer_hash = proxy.eth.send_raw_transaction(trx_transfer.rawTransaction) print('trx_transfer_hash:', trx_transfer_hash.hex()) trx_transfer_receipt = proxy.eth.wait_for_transaction_receipt(trx_transfer_hash) print('trx_transfer_receipt:', trx_transfer_receipt) print("bob") trx_transfer = proxy.eth.account.sign_transaction(dict( nonce=proxy.eth.get_transaction_count(proxy.eth.default_account), chainId=proxy.eth.chain_id, gas=987654321, gasPrice=0, to=eth_account_bob.address, value=one_gwei), eth_account.key ) print('trx_transfer:', trx_transfer) trx_transfer_hash = proxy.eth.send_raw_transaction(trx_transfer.rawTransaction) print('trx_transfer_hash:', trx_transfer_hash.hex()) trx_transfer_receipt = proxy.eth.wait_for_transaction_receipt(trx_transfer_hash) print('trx_transfer_receipt:', trx_transfer_receipt) alice_balance_before_transfer = proxy.eth.get_balance(eth_account_alice.address) bob_balance_before_transfer = proxy.eth.get_balance(eth_account_bob.address) print('alice_balance_before_transfer:', alice_balance_before_transfer) print('bob_balance_before_transfer:', bob_balance_before_transfer) one_and_a_half_gweis = 1_500_000_000 print('one_and_a_half_gweis:', one_and_a_half_gweis) trx_transfer = proxy.eth.account.sign_transaction(dict( nonce=proxy.eth.get_transaction_count(eth_account_alice.address), chainId=proxy.eth.chain_id, gas=987654321, gasPrice=0, to=eth_account_bob.address, value=one_and_a_half_gweis), eth_account_alice.key ) print('trx_transfer:', trx_transfer) trx_transfer_hash = proxy.eth.send_raw_transaction(trx_transfer.rawTransaction) print('trx_transfer_hash:', trx_transfer_hash.hex()) trx_transfer_receipt = proxy.eth.wait_for_transaction_receipt(trx_transfer_hash) print('trx_transfer_receipt:', trx_transfer_receipt) alice_balance_after_transfer = proxy.eth.get_balance(eth_account_alice.address) bob_balance_after_transfer = proxy.eth.get_balance(eth_account_bob.address) print('alice_balance_after_transfer:', alice_balance_after_transfer) print('bob_balance_after_transfer:', bob_balance_after_transfer) print('check https://github.com/neonlabsorg/neon-evm/issues/210') one_gwei = 1_000_000_000 print('one_gwei:', one_gwei) self.assertEqual(alice_balance_after_transfer, alice_balance_before_transfer - one_gwei) self.assertEqual(bob_balance_after_transfer, bob_balance_before_transfer + one_gwei) @unittest.skip("a.i.") def test_07_execute_long_transaction(self): print("\ntest_07_execute_long_transaction") trx_initValue = self.test_185_solidity_contract.functions.initValue('185 init value').buildTransaction({'nonce': proxy.eth.get_transaction_count(proxy.eth.default_account)}) print('trx_initValue:', trx_initValue) trx_initValue_signed = proxy.eth.account.sign_transaction(trx_initValue, eth_account.key) print('trx_initValue_signed:', trx_initValue_signed) trx_initValue_hash = proxy.eth.send_raw_transaction(trx_initValue_signed.rawTransaction) print('trx_initValue_hash:', trx_initValue_hash.hex()) trx_initValue_receipt = proxy.eth.wait_for_transaction_receipt(trx_initValue_hash) print('trx_initValue_hash_receipt:', trx_initValue_receipt) value = self.test_185_solidity_contract.functions.getValue().call() print('value:', value.hex()) self.assertEqual(value.hex(), '36fb9ea61aba18555110881836366c8d7701685174abe4926673754580ee26c5') from datetime import datetime start = datetime.now() times_to_calculate = 10 trx_calculate = self.test_185_solidity_contract.functions.calculateKeccakAndStore(times_to_calculate).buildTransaction({'nonce': proxy.eth.get_transaction_count(proxy.eth.default_account)}) print('trx_calculate:', trx_calculate) trx_calculate_signed = proxy.eth.account.sign_transaction(trx_calculate, eth_account.key) print('trx_calculate_signed:', trx_calculate_signed) trx_calculate_hash = proxy.eth.send_raw_transaction(trx_calculate_signed.rawTransaction) print('trx_calculate_hash:', trx_calculate_hash.hex()) trx_calculate_receipt = proxy.eth.wait_for_transaction_receipt(trx_calculate_hash) print('trx_calculate_hash_receipt:', trx_calculate_receipt) time_duration = datetime.now() - start value = self.test_185_solidity_contract.functions.getValue().call() print('value:', value.hex()) self.assertEqual(value.hex(), 'e6d201b1e3aab3b3cc100ea7a0b76fcbb3c2fef88fc4e540f9866d8d2e6e2131') print('times_to_calculate:', times_to_calculate) print('time_duration:', time_duration) if __name__ == '__main__': unittest.main()
import sys, os, time, serial, logging, threading DEFAULT_TTY = '/dev/ttyUSB0' DEFAULT_BAUD = 9600 TIMEOUT = 3.0 log = logging.getLogger(__name__) class ArduinoSerial(object): def __init__(self,tty=DEFAULT_TTY,baud=DEFAULT_BAUD): self._exit = threading.Event() self.tty = tty self.baud = baud self.serial = None # created @ beginning of `run` self.callbacks = [] self._thread = None def start(self): ''' Calls `self.run()` in a daemon thread. ''' if self._thread is not None: raise Exception('ArduinoSerial is already started!') self._exit.clear() self._thread = threading.Thread( target=self.run, name='ArduinoSerial @ %s' % self.tty) self._thread.daemon = True self._thread.start() def stop(self): ''' Tell the thread to exit, and wait a moment to give the thread a chance to terminate ''' self._exit.set() if self._thread: self._thread.join(3) self._exit.clear() self._thread = None def run(self): ''' Listen on the serial channel and pass any valid data to the callbacks ''' while not self._exit.is_set(): line = None try: if self.serial is None: # allows the code to recover/ initialize if the USB device # is unplugged after this code is running: if not os.path.exists( self.tty ): log.debug('TTY %s does not exist; Arduino is probably not plugged in...', self.tty) self._exit.wait(10) # wait before retry continue self.serial = serial.Serial( port=self.tty, baudrate=self.baud, timeout=TIMEOUT ) log.info("Opened serial port at %s", self.tty) line = self.serial.readline() if line: logging.debug("Arduino >> %s", line) message = _parse( line ) if not message: continue log.debug( "Parsed message to %s",message ) for cb in self.callbacks: try: cb( message ) except: log.exception( "Callback threw exception for message: %s", message ) except serial.SerialException as ex: log.exception("Serial error: %s",ex) if self.serial is not None: # allow the serial to re-initialize try: self.serial.close() except: pass self.serial = None self._exit.wait(10) # sleep to avoid tight loop except Exception, msg: log.exception("Unexpected read error: %s for line: %s",msg,line) self._exit.wait(1) def add_callback(self,cb): ''' Add a callback which will be fired for each valid message received from the serial channel ''' self.callbacks.append(cb) def send(self,cmd): ''' Send a command to the Arduino ''' logging.debug("Arduino << %s", cmd) if not self.serial: logging.warn("Serial not open! Dropped message %r", cmd) return self.serial.write(cmd+ "\n") def _parse(line): ''' Parse the command into its parts ''' if not line: return return line.split() if __name__ == '__main__': # This is just test code to verify we can read data from the USB device. logging.basicConfig(level=logging.DEBUG) from optparse import OptionParser opts = OptionParser() opts.add_option("-t", "--tty", dest="tty", help="TTY port", metavar="TTY") (options, args) = opts.parse_args() log.info("Starting serial on: %s", options.tty) channel = ArduinoSerial(options.tty) def callback(msg): print "Got message: %s" % (msg,) channel.add_callback(callback) channel.start() while 1: time.sleep(1) channel.stop()
from pathlib import Path import torch from models.models import TfIdfModel from data.data_preprocessing import TfIdfPreprocessor def main(): preprocessor = TfIdfPreprocessor.load_from_checkpoint( list(Path("test_checkpoints").glob("*.pkl"))[0] ) model_checkpoint = torch.load(list(Path("test_checkpoints").glob("*.pth"))[0]) model = TfIdfModel(input_dim=5000, device="cpu") model.load_state_dict(model_checkpoint) model.eval() while True: review = input(">> ") vectorized = preprocessor.transform([review]) print( f"The review is {torch.sigmoid(model(vectorized)).item() * 100}% positive." ) if __name__ == "__main__": main()
from dataclasses import dataclass from typing import Any import torch @dataclass class EpochData: epoch_id: int duration_train: int duration_test: int loss_train: float accuracy: float loss: float class_precision: Any class_recall: Any client_id: str = None def to_csv_line(self): delimeter = ',' values = self.__dict__.values() values = [str(x) for x in values] return delimeter.join(values) @dataclass class GANEpochData: epoch_id: int duration_train: int duration_test: int disc: Any client_id: str = None def to_csv_line(self): delimeter = ',' values = self.__dict__.values() values = [str(x) for x in values if str(x) != 'disc'] return delimeter.join(values) @dataclass class FeGANEpochData: epoch_id: int duration_train: int duration_test: int net: Any client_id: str = None def to_csv_line(self): delimeter = ',' values = self.__dict__.values() values = [str(x) for x in values if str(x) != 'net'] return delimeter.join(values)
def twoNumberSum(array, targetSum): # Write your code here. for i in range (len(array)-1): firstNum = array[i] for j in range (i+1,len(array)): secondNum =array[j] if firstNum +secondNum ==targetSum: return [firstNum,secondNum] return []
""" paper: Memory Fusion Network for Multi-View Sequential Learning From: https://github.com/pliang279/MFN """ import torch import torch.nn as nn import torch.nn.functional as F __all__ = ['MFN'] class MFN(nn.Module): def __init__(self, args): super(MFN, self).__init__() self.d_l,self.d_a,self.d_v = args.feature_dims self.dh_l,self.dh_a,self.dh_v = args.hidden_dims total_h_dim = self.dh_l+self.dh_a+self.dh_v self.mem_dim = args.memsize window_dim = args.windowsize output_dim = args.num_classes if args.train_mode == "classification" else 1 attInShape = total_h_dim*window_dim gammaInShape = attInShape+self.mem_dim final_out = total_h_dim+self.mem_dim h_att1 = args.NN1Config["shapes"] h_att2 = args.NN2Config["shapes"] h_gamma1 = args.gamma1Config["shapes"] h_gamma2 = args.gamma2Config["shapes"] h_out = args.outConfig["shapes"] att1_dropout = args.NN1Config["drop"] att2_dropout = args.NN2Config["drop"] gamma1_dropout = args.gamma1Config["drop"] gamma2_dropout = args.gamma2Config["drop"] out_dropout = args.outConfig["drop"] self.lstm_l = nn.LSTMCell(self.d_l, self.dh_l) self.lstm_a = nn.LSTMCell(self.d_a, self.dh_a) self.lstm_v = nn.LSTMCell(self.d_v, self.dh_v) self.att1_fc1 = nn.Linear(attInShape, h_att1) self.att1_fc2 = nn.Linear(h_att1, attInShape) self.att1_dropout = nn.Dropout(att1_dropout) self.att2_fc1 = nn.Linear(attInShape, h_att2) self.att2_fc2 = nn.Linear(h_att2, self.mem_dim) self.att2_dropout = nn.Dropout(att2_dropout) self.gamma1_fc1 = nn.Linear(gammaInShape, h_gamma1) self.gamma1_fc2 = nn.Linear(h_gamma1, self.mem_dim) self.gamma1_dropout = nn.Dropout(gamma1_dropout) self.gamma2_fc1 = nn.Linear(gammaInShape, h_gamma2) self.gamma2_fc2 = nn.Linear(h_gamma2, self.mem_dim) self.gamma2_dropout = nn.Dropout(gamma2_dropout) self.out_fc1 = nn.Linear(final_out, h_out) self.out_fc2 = nn.Linear(h_out, output_dim) self.out_dropout = nn.Dropout(out_dropout) def forward(self, text_x, audio_x, video_x): ''' Args: audio_x: tensor of shape (batch_size, sequence_len, audio_in) video_x: tensor of shape (batch_size, sequence_len, video_in) text_x: tensor of shape (batch_size, sequence_len, text_in) ''' text_x = text_x.permute(1,0,2) audio_x = audio_x.permute(1,0,2) video_x = video_x.permute(1,0,2) # x is t x n x d n = text_x.size()[1] t = text_x.size()[0] self.h_l = torch.zeros(n, self.dh_l).to(text_x.device) self.h_a = torch.zeros(n, self.dh_a).to(text_x.device) self.h_v = torch.zeros(n, self.dh_v).to(text_x.device) self.c_l = torch.zeros(n, self.dh_l).to(text_x.device) self.c_a = torch.zeros(n, self.dh_a).to(text_x.device) self.c_v = torch.zeros(n, self.dh_v).to(text_x.device) self.mem = torch.zeros(n, self.mem_dim).to(text_x.device) all_h_ls = [] all_h_as = [] all_h_vs = [] all_c_ls = [] all_c_as = [] all_c_vs = [] all_mems = [] for i in range(t): # prev time step prev_c_l = self.c_l prev_c_a = self.c_a prev_c_v = self.c_v # curr time step new_h_l, new_c_l = self.lstm_l(text_x[i], (self.h_l, self.c_l)) new_h_a, new_c_a = self.lstm_a(audio_x[i], (self.h_a, self.c_a)) new_h_v, new_c_v = self.lstm_v(video_x[i], (self.h_v, self.c_v)) # concatenate prev_cs = torch.cat([prev_c_l,prev_c_a,prev_c_v], dim=1) new_cs = torch.cat([new_c_l,new_c_a,new_c_v], dim=1) cStar = torch.cat([prev_cs,new_cs], dim=1) attention = F.softmax(self.att1_fc2(self.att1_dropout(F.relu(self.att1_fc1(cStar)))),dim=1) attended = attention*cStar cHat = torch.tanh(self.att2_fc2(self.att2_dropout(F.relu(self.att2_fc1(attended))))) both = torch.cat([attended,self.mem], dim=1) gamma1 = torch.sigmoid(self.gamma1_fc2(self.gamma1_dropout(F.relu(self.gamma1_fc1(both))))) gamma2 = torch.sigmoid(self.gamma2_fc2(self.gamma2_dropout(F.relu(self.gamma2_fc1(both))))) self.mem = gamma1*self.mem + gamma2*cHat all_mems.append(self.mem) # update self.h_l, self.c_l = new_h_l, new_c_l self.h_a, self.c_a = new_h_a, new_c_a self.h_v, self.c_v = new_h_v, new_c_v all_h_ls.append(self.h_l) all_h_as.append(self.h_a) all_h_vs.append(self.h_v) all_c_ls.append(self.c_l) all_c_as.append(self.c_a) all_c_vs.append(self.c_v) # last hidden layer last_hs is n x h last_h_l = all_h_ls[-1] last_h_a = all_h_as[-1] last_h_v = all_h_vs[-1] last_mem = all_mems[-1] last_hs = torch.cat([last_h_l,last_h_a,last_h_v,last_mem], dim=1) output = self.out_fc2(self.out_dropout(F.relu(self.out_fc1(last_hs)))) res = { 'M': output, 'L': last_hs } return res
""" Handles incoming motion commands and translates them to actions. Copyright (c) 2013 Sean Watson Licensed under the MIT license """ import threading import logging import time class MotionHandler(threading.Thread): """Translates motion commands to actions. When a new motion command is received over the wireless connection it is consumed by the MotionHandler. The MotionHandler then scans through the motions it has been set up to detect trying to match the command to the motions. If a match is found and that motion is completed the corresponding action is executed. Attributes: motion_queue: A Queue for incoming motion commands. motions: The motions that should be detected kill: A boolean flag for stopping the thread timeout: The amount of time in seconds a composite motion is allowed to take """ def __init__(self, motion_queue): """Initializes a new MotionHandler. Args: motion_queue: A queue where the incoming commands will be placed """ threading.Thread.__init__(self) self.motion_queue = motion_queue self.motions = [] self.kill = False self.timeout = 1 logging.debug("Created MotionHandler %s . Reader %s", self, self.motion_queue) def run(self): """The main thread process. Waits for commands to be received, processes them and calls the appropriate actions when necessary. """ logging.debug("Starting MotionHandler thread") start = time.time() while not self.kill: code = int(self.motion_queue.get(True)) # Blocking get call logging.debug("Got code: %s", code) # Reset all motions if stationary for too long if(time.time() - start > self.timeout): for mot in self.motions: mot.position = 0 # Check the code against the handled motions for mot in self.motions: # Check if it matches the next code in the motion if code == mot.motions[mot.position].code: # If the motion is done, preform the movement if mot.position == len(mot.motions) - 1: mot.position = 0 mot.move() logging.debug("Motion %s fully matched", mot) # Otherwise start looking for the next motion else: mot.position += 1 logging.debug("Motion %s partially matched", mot) # Reset the position for a wrong motion else: mot.position = 0 self.motion_queue.task_done() start = time.time() logging.info("MotionHandler thread stopped") def stop(self): """Stops the thread.""" self.kill = True self.motion_queue.put(0) # Needed to get out of blocking call logging.debug("Stopping MotionHandler") def add_motion(self, mot): """Adds a motion to detect. Once added the handler will try to detect this motion. Duplicate motions are allowed, but it will cause the action to get executed multiple times for each detection. Args: The new motion to be detected. """ self.motions.append(mot) logging.debug("Added Motion %s to MotionHandler %s", mot, self)
import numpy as np """ scan_options ={ "l" : length, 'x' : exclude, 'c' : column, 'b' : partitions, 'D' : corrlength, 'V' : verbosity, 'o' : file_out } """ def cond_entropy(bins, t, partitions): """ :param bins: The discrete version fo the times series :type bins: array of ints :param t: the time delay :type t: int :param partitions: The number of bins used for discretization :type partitions: int :return: conditional entropy (mutual) :rtype: float """ count = 0 cond_ent = 0.0 h1 = np.zeros(partitions) h11 = h1.copy() h2 = np.zeros((partitions, partitions)) for i in range(t, len(bins)): hii = bins[i] hi = bins[i - t] h1[hi] += 1 h11[hii] += 1 h2[hi][hii] += 1 count += 1 norm = 1.0 / count cond_ent = 0.0 for i in range(partitions): hpi = h1[i] * norm if (hpi > 0.0): for j in range(partitions): hpj = h11[j] * norm if (hpj > 0.0): pij = h2[i][j] * norm if (pij > 0.0): cond_ent += pij * np.log(pij / hpj / hpi) return cond_ent def mutual(series, corrlength, partitions): """ :param series: array of the time series for times : 0,delta, 2 delta.... :type series: numpy array :param corrlength: maximal time delay :type corrlength: int :param partitions: number of bins to discretize the data for MI :type partitions: int :return: array size corrlength +1 ( 0 : shanon entropy) :rtype: numpy array of floats """ length = series.shape[0] # Rescaling Data mn = series.min() interval = series.max() - mn if interval == 0: raise "Constant data" series = (series - mn) / interval bins = np.zeros(length) bins = np.clip((series * partitions).astype(int), 0, partitions - 1) if (corrlength >= length): corrlength = length - 1 ent = [] for tau in range(corrlength + 1): ent.append(cond_entropy(bins, tau, partitions)) return np.array(ent)
""" This module contains implementation of REST API views for materials app. """ import json import logging from django.conf import settings from django.core import serializers from django.core.exceptions import ObjectDoesNotExist, MultipleObjectsReturned from django.db.models import Count, F, Q, QuerySet from django.shortcuts import get_object_or_404, render, Http404 from rest_framework.decorators import action from rest_framework.exceptions import AuthenticationFailed, MethodNotAllowed from rest_framework.response import Response from rest_framework.views import APIView from rest_framework.generics import CreateAPIView, ListAPIView, RetrieveAPIView from rest_framework.viewsets import ( ModelViewSet ) from rest_framework.permissions import AllowAny from surf.apps.communities.models import Team, Community from surf.apps.filters.models import MpttFilterItem from surf.apps.filters.serializers import MpttFilterItemSerializer from surf.apps.materials.filters import ( CollectionFilter ) from surf.apps.materials.models import ( Collection, Material, CollectionMaterial, SharedResourceCounter, RESOURCE_TYPE_MATERIAL, RESOURCE_TYPE_COLLECTION ) from surf.apps.materials.serializers import ( SearchSerializer, KeywordsRequestSerializer, SimilaritySerializer, AuthorSuggestionSerializer, MaterialsRequestSerializer, CollectionSerializer, CollectionMaterialsRequestSerializer, MaterialShortSerializer, CollectionMaterialPositionSerializer, SharedResourceCounterSerializer ) from surf.apps.materials.utils import ( add_extra_parameters_to_materials, get_material_details_by_id, add_material_themes, add_material_disciplines, add_search_query_to_elastic_index ) from surf.apps.locale.models import Locale from surf.apps.core.schema import SearchSchema from surf.vendor.elasticsearch.api import ElasticSearchApiClient logger = logging.getLogger(__name__) def portal_material(request, *args, **kwargs): material = _get_material_by_external_id(request, kwargs["external_id"]) if not material: raise Http404(f"Material not found: {kwargs['external_id']}") return render(request, "portal/index.html", { 'meta_title': f"{material[0]['title']} | Edusources", 'meta_description': material[0]["description"], 'matomo_id': settings.MATOMO_ID }) def portal_single_page_application(request, *args): site_description_translation = Locale.objects.filter(asset="meta-site-description").last() site_description = getattr(site_description_translation, request.LANGUAGE_CODE, "Edusources") return render(request, "portal/index.html", { 'meta_title': "Edusources", 'meta_description': site_description, 'matomo_id': settings.MATOMO_ID }) def portal_page_not_found(request, exception, template_name=None): site_description_translation = Locale.objects.filter(asset="meta-site-description").last() site_description = getattr(site_description_translation, request.LANGUAGE_CODE, "Edusources") return render( request, "portal/index.html", context={ 'meta_title': "Edusources", 'meta_description': site_description, 'matomo_id': settings.MATOMO_ID }, status=404 ) class MaterialSearchAPIView(CreateAPIView): """ The main search endpoint. Specify the search query in the ``search_text`` property of the body to do a simple search. All other properties are optional and are described below ## Request body Apart from search_text you can specify the following properties in the body of the request: **page_size**: Number of results to return per page. **page**: A page number within the paginated result set. **ordering**: The external_id of a filter category to order results by (for instance: "publisher_date"). This will ignore relevance of results and order by the specified property. By default ordering is ascending. If you specify the minus sign (for instance: "-publisher_date") the ordering will be descending. **filters**: Filters consist of objects that specify a external_id and an items property. The external_id should be the external_id of a root filter category (for instance: "technical_type"). See the filter categories endpoint described below for more details on filter categories. Next to the external_id you should specify an array under the items property. Elements in this array should only consist of external_id values. These external_ids are also filter category external_ids (for instance: "video"), but the referenced filter categories should be a descendant of the root filter category specified earlier ("technical_type" in our example). Filters under the same root filter category will function as an OR filter. While multiple filter category items across root filter categories function as AND filters. ## Response body **results**: An array containing the search results. **filter_categories**: An array with all filter categories. The count values of the filter categories will indicate how many results match the filter category. **records_total**: Count of all available results **page_size**: Number of results to return per page. **page**: The current page number. """ serializer_class = SearchSerializer permission_classes = (AllowAny,) schema = SearchSchema() def post(self, request, *args, **kwargs): # validate request parameters serializer = SearchSerializer(data=request.data) serializer.is_valid(raise_exception=True) data = serializer.validated_data data["drilldown_names"] = [ mptt_filter.external_id for mptt_filter in MpttFilterItem.objects.filter(parent=None) ] elastic = ElasticSearchApiClient() res = elastic.search(**data) records = res["records"] if settings.PROJECT == "edusources": records = add_extra_parameters_to_materials(request.user, records) drill_down_dict = {item['external_id']: item for item in res["drilldowns"]} drill_down_flat = {} for external_id, drilldown in drill_down_dict.items(): if drilldown.get('count', None): drill_down_flat.update({external_id: drilldown}) if drilldown['items']: for el in drilldown['items']: drill_down_flat.update({el['external_id']: el}) filter_category_tree = MpttFilterItem.objects.select_related("title_translations").get_cached_trees() filter_categories = MpttFilterItemSerializer( filter_category_tree, many=True, context={'search_counts': drill_down_flat} ) if data['page'] == 1 and data["search_text"]: add_search_query_to_elastic_index(res["recordcount"], data["search_text"], data["filters"]) rv = dict(records=records, records_total=res["recordcount"], filter_categories=filter_categories.data, page=data["page"], page_size=data["page_size"], did_you_mean=res["did_you_mean"]) return Response(rv) class KeywordsAPIView(ListAPIView): """ This endpoint returns suggestions about what a user may be typing. Call this endpoint when a user is typing a search and display the results (for instance below the search bar). This endpoint only completes queries that are at least 4 characters. """ serializer_class = KeywordsRequestSerializer permission_classes = (AllowAny,) schema = SearchSchema() queryset = QuerySet() pagination_class = None filter_backends = [] def get(self, request, *args, **kwargs): # validate request parameters serializer = KeywordsRequestSerializer(data=request.GET) serializer.is_valid(raise_exception=True) data = serializer.validated_data elastic = ElasticSearchApiClient() res = elastic.autocomplete(**data) return Response(res) class SimilarityAPIView(RetrieveAPIView): """ This endpoint returns similar documents as the input document. These similar documents can be offered as suggestions to look at for the user. """ serializer_class = SimilaritySerializer permission_classes = (AllowAny,) schema = SearchSchema() pagination_class = None filter_backends = [] def get_object(self): serializer = self.get_serializer(data=self.request.GET) serializer.is_valid(raise_exception=True) external_id = serializer.validated_data["external_id"] language = serializer.validated_data["language"] elastic = ElasticSearchApiClient() result = elastic.more_like_this(external_id, language) if settings.PROJECT == "edusources": result["results"] = add_extra_parameters_to_materials(self.request.user, result["results"]) return result class AuthorSuggestionsAPIView(RetrieveAPIView): """ This endpoint returns documents where the name of the author appears in the text or metadata, but is not set as author in the authors field. These documents can be offered to authors as suggestions for more content from their hand. """ serializer_class = AuthorSuggestionSerializer permission_classes = (AllowAny,) schema = SearchSchema() pagination_class = None filter_backends = [] def get_object(self): serializer = self.get_serializer(data=self.request.GET) serializer.is_valid(raise_exception=True) author_name = serializer.validated_data["author_name"] elastic = ElasticSearchApiClient() result = elastic.author_suggestions(author_name) if settings.PROJECT == "edusources": result["results"] = add_extra_parameters_to_materials(self.request.user, result["results"]) return result _MATERIALS_COUNT_IN_OVERVIEW = 4 class MaterialAPIView(APIView): """ View class that provides retrieving Material by its edurep id (external_id) or retrieving overview of materials. If external_id is exist in request data then `get()` method returns material by external_id, otherwise it returns overview of materials. """ permission_classes = [] def get(self, request, *args, **kwargs): # validate request parameters serializer = MaterialsRequestSerializer(data=request.GET) serializer.is_valid(raise_exception=True) data = serializer.validated_data # default is false in the serializer count_view = data["count_view"] if "external_id" in kwargs: return self.get_material(request, kwargs["external_id"], count_view=count_view, shared=data.get("shared")) if "external_id" in data: res = _get_material_by_external_id(request, data["external_id"], shared=data.get("shared")) else: # return overview of newest Materials elastic = ElasticSearchApiClient() res = elastic.search('', # sort by newest items first ordering="-lom.lifecycle.contribute.publisherdate", filters=[{ "external_id": "harvest_source", "items": ["anatomy_tool"] }], page_size=_MATERIALS_COUNT_IN_OVERVIEW) res = add_extra_parameters_to_materials(request.user, res["records"]) return Response(res) @staticmethod def get_material(request, external_id, count_view, shared=None): """ Returns the list of materials by external id :param request: request instance :param external_id: external id of material :param shared: share type of material :param count_view: should the view be counted in the statistics? :return: """ res = _get_material_by_external_id(request, external_id, shared=shared, count_view=count_view) if not res: raise Http404() return Response(res[0]) def _get_material_by_external_id(request, external_id, shared=None, count_view=False): """ Get Materials by edured id and register unique view of materials :param request: :param external_id: edured id of material :param shared: share type of material :return: list of materials """ material, created = Material.objects.get_or_create(external_id=external_id) if created: material.sync_info() # increase unique view counter if count_view: material.view_count = F('view_count') + 1 material.save() if shared: # increase share counter counter_key = SharedResourceCounter.create_counter_key( RESOURCE_TYPE_MATERIAL, external_id, share_type=shared) SharedResourceCounter.increase_counter(counter_key, extra=shared) rv = get_material_details_by_id(external_id) rv = add_extra_parameters_to_materials(request.user, rv) rv = add_share_counters_to_materials(rv) return rv class MaterialRatingAPIView(APIView): def post(self, request, *args, **kwargs): params = request.data.get('params') external_id = params['external_id'] star_rating = params['star_rating'] material_object = Material.objects.get(external_id=external_id, deleted_at=None) if star_rating == 1: material_object.star_1 = F('star_1') + 1 if star_rating == 2: material_object.star_2 = F('star_2') + 1 if star_rating == 3: material_object.star_3 = F('star_3') + 1 if star_rating == 4: material_object.star_4 = F('star_4') + 1 if star_rating == 5: material_object.star_5 = F('star_5') + 1 material_object.save() material_object.refresh_from_db() return Response(material_object.get_avg_star_rating()) class MaterialApplaudAPIView(APIView): def post(self, request, *args, **kwargs): params = request.data.get('params') external_id = params['external_id'] material_object = Material.objects.get(external_id=external_id, deleted_at=None) material_object.applaud_count = F('applaud_count') + 1 material_object.save() material_object.refresh_from_db() return Response(material_object.applaud_count) class CollectionMaterialPromotionAPIView(APIView): def post(self, request, *args, **kwargs): # only active and authorized users can promote materials in the collection collection_instance = Collection.objects.get(id=kwargs['collection_id']) # check whether the material is actually in the collection external_id = kwargs['external_id'] collection_materials = CollectionMaterial.objects.filter( collection=collection_instance, material__external_id=external_id) if not collection_materials: raise Http404() # The material should only be in the collection once assert len(collection_materials) == 1, f"Material with id {external_id} is in collection " \ f"{collection_instance} multiple times." collection_material = collection_materials[0] # promote or demote the material collection_material.featured = not collection_material.featured collection_material.save() return Response(serializers.serialize('json', [collection_material])) class CollectionViewSet(ModelViewSet): """ View class that provides CRUD methods for Collection and `get`, `add` and `delete` methods for its materials. """ queryset = Collection.objects \ .filter(deleted_at=None) \ .annotate(community_cnt=Count('communities', filter=Q(deleted_at=None))) serializer_class = CollectionSerializer filter_class = CollectionFilter permission_classes = [] def retrieve(self, request, *args, **kwargs): instance = self.get_object() shared = request.GET.get("shared") if shared: # increase sharing counter counter_key = SharedResourceCounter.create_counter_key( RESOURCE_TYPE_COLLECTION, str(instance.id), share_type=shared) SharedResourceCounter.increase_counter(counter_key, extra=shared) serializer = self.get_serializer(instance) return Response(serializer.data) def get_object(self): obj = get_object_or_404(self.get_queryset(), pk=self.kwargs["pk"]) self.check_object_permissions(self.request, obj) if self.request.method != 'GET': check_access_to_collection(self.request.user, obj) return obj @action(methods=['get', 'post', 'delete'], detail=True) def materials(self, request, pk=None, **kwargs): instance = self.get_object() if request.method == "GET": # validate request parameters serializer = CollectionMaterialsRequestSerializer(data=request.GET) serializer.is_valid(raise_exception=True) data = serializer.validated_data ids = [m.external_id for m in instance.materials.order_by("id").filter()] rv = dict(records=[], records_total=0, filters=[], page=data["page"], page_size=data["page_size"]) if ids: elastic = ElasticSearchApiClient() res = elastic.get_materials_by_id(ids, 1, len(ids)) records = res.get("records", []) records = add_extra_parameters_to_materials(request.user, records) collection_materials = CollectionMaterial.objects.filter( collection=instance, material__external_id__in=[r['external_id'] for r in records] ) for collection_material in collection_materials: record = next(r for r in records if r['external_id'] == collection_material.material.external_id) record['featured'] = collection_material.featured record['position'] = collection_material.position rv["records"] = records rv["records_total"] = res["recordcount"] return Response(rv) data = [] for d in request.data: # validate request parameters if request.method == "POST": serializer = CollectionMaterialPositionSerializer(data=d) elif request.method == "DELETE": serializer = MaterialShortSerializer(data=d) else: raise MethodNotAllowed(request.method, detail="Method not supported") serializer.is_valid(raise_exception=True) data.append(serializer.validated_data) if request.method == "POST": self._add_materials(instance, data) elif request.method == "DELETE": self._delete_materials(instance, data) res = MaterialShortSerializer(many=True).to_representation( instance.materials.filter(deleted_at=None) ) return Response(res) @staticmethod def _add_materials(instance, materials): """ Add materials to collection :param instance: collection instance :param materials: added materials :return: """ for material in materials: m_external_id = material["external_id"] m_position = material["position"] details = get_material_details_by_id(m_external_id) if not details: continue keywords = details[0].get("keywords") if keywords: keywords = json.dumps(keywords) m, _ = Material.objects.update_or_create(external_id=m_external_id) add_material_themes(m, details[0].get("themes", [])) add_material_disciplines(m, details[0].get("disciplines", [])) CollectionMaterial.objects.create(collection=instance, material=m, position=m_position) @staticmethod def _delete_materials(instance, materials): """ Delete materials from collection :param instance: collection instance :param materials: materials that should be removed from collection :return: """ materials = [m["external_id"] for m in materials] materials = Material.objects.filter(external_id__in=materials).all() instance.materials.remove(*materials) def check_access_to_collection(user, instance=None): """ Check if user is active and owner of collection (if collection is not None) :param user: user :param instance: collection instance :return: """ if not user or not user.is_authenticated: raise AuthenticationFailed() try: community = Community.objects.get(collections__in=[instance]) Team.objects.get(community=community, user=user) except ObjectDoesNotExist as exc: raise AuthenticationFailed(f"User {user} is not a member of a community that has collection {instance}. " f"Error: \"{exc}\"") except MultipleObjectsReturned as exc: logger.warning(f"The collection {instance} is in multiple communities. Error:\"{exc}\"") communities = Community.objects.filter(collections__in=[instance]) teams = Team.objects.filter(community__in=communities, user=user) if len(teams) > 0: logger.debug("At least one team satisfies the requirement of be able to delete this collection.") else: raise AuthenticationFailed(f"User {user} is not a member of any community with collection {instance}. " f"Error: \"{exc}\"") def add_share_counters_to_materials(materials): """ Add share counter values for materials. :param materials: array of materials :return: updated array of materials """ for m in materials: key = SharedResourceCounter.create_counter_key(RESOURCE_TYPE_MATERIAL, m["external_id"]) qs = SharedResourceCounter.objects.filter(counter_key__contains=key) m["sharing_counters"] = SharedResourceCounterSerializer(many=True).to_representation(qs.all()) return materials class MaterialSetAPIView(APIView): def get(self, request, *args, **kwargs): serializer = MaterialShortSerializer(data=request.GET) serializer.is_valid(raise_exception=True) data = serializer.validated_data results = _get_material_by_external_id(request, data['external_id']) parts = results[0]['has_parts'] api_client = ElasticSearchApiClient() api_response = api_client.get_materials_by_id(parts, page_size=100) return Response(api_response)
from conans import ConanFile class TestConan(ConanFile): name = "Test" version = "0.1" settings = "os", "compiler", "build_type", "arch" description = "Package for Test" url = "None" license = "None" def package(self): self.copy("*", dst="lib", src="obj/libs") self.copy("*.h", dst="include", src="code", keep_path=False) def package_info(self): self.cpp_info.libs = ["ModuleA", "ModuleB"] # This would be the right names
import os import shutil import logging import feedcache import jinja2 import shelve import staticrss.feed def _update_feeds(feed_urls, storage): """Read urls from *feed_urls* and update the *storage*""" cache_storage = shelve.open('.cache') cache = feedcache.Cache(cache_storage) for url in feed_urls: logging.info("Fetching {0}".format(url)) feed = cache.fetch(url) items = [staticrss.feed.Item(item, feed) for item in feed.entries] storage.update(url, items) storage.update_age() cache_storage.close() def _get_sorted_feed_entries(storage): entries = [item for item in storage.items()] return sorted(entries, key=lambda item: item.age) def _fwalk(root, predicate): for path, dirnames, filenames in os.walk(root): dirnames[:] = [d for d in dirnames if predicate(d)] yield path, dirnames, filenames def _process_files(config, storage, env): entries = _get_sorted_feed_entries(storage) dest = config['destination'] predicate = lambda d: not d.startswith('_') for path, dirs, files in _fwalk(config['source'], predicate): dest_dir = os.path.join(dest, path) if not os.path.exists(dest_dir): os.makedirs(dest_dir) for filename in files: if not filename.startswith(('.', '_')): src = os.path.join(path, filename) dst = os.path.join(dest_dir, filename) if filename.endswith('.html'): template = env.get_template(src) with open(dst, 'w') as f: html = template.render(entries=entries) f.write(html.encode('utf-8')) else: src = os.path.join(path, filename) dst = os.path.join(dest_dir, filename) shutil.copy(src, dst) def build(config): loader = jinja2.FileSystemLoader([config['layouts'], '.']) env = jinja2.Environment(loader=loader) storage_backend = shelve.open('.storage') storage = staticrss.feed.Storage(storage_backend) _update_feeds(config['feeds'], storage) _process_files(config, storage, env) storage_backend.close()
import matplotlib.pyplot as plt import numpy as np def qm(x0, n): x = np.empty(n+1) x[0] = x0 for t in range(n): x[t+1] = 4 * x[t] * (1 - x[t]) return x x = qm(0.1, 250) fig, ax = plt.subplots(figsize=(10, 6.5)) ax.plot(x, 'b-', lw=2, alpha=0.8) ax.set_xlabel('time', fontsize=16) plt.show()
from .version import __version__ from .bconfig import BConfig, Identity from .binarize import *
from lan_lex import * from lan_parser import * from lan_ast import *
# fabfile # Fabric command definitions for running lock tests. # # Author: Benjamin Bengfort <benjamin@bengfort.com> # Created: Tue Jun 13 12:47:15 2017 -0400 # # Copyright (C) 2017 Bengfort.com # For license information, see LICENSE.txt # # ID: fabfile.py [] benjamin@bengfort.com $ """ Fabric command definitions for running lock tests. """ ########################################################################## ## Imports ########################################################################## import os import random from fabric.api import env, run, cd, parallel, get from fabric.api import roles, task, execute, settings class KeyGen(object): def __init__(self, n=3): self.n = n self.conson = "BCDFGHJKLMNPQRSTVWXZ" self.vowels = "AEIOUY" self.keys = set([]) def generate(self): word = "" for idx in range(self.n): if idx % 2 == 0: word += random.choice(self.conson) else: word += random.choice(self.vowels) if word in self.keys: return self.generate() self.keys.add(word) return word def __call__(self): return self.generate() def strpbool(arg): if arg is False: return False if arg is True: return True arg = arg.lower().strip() if arg in {'y', 'yes', 't', 'true', 'on', '1'}: return True elif arg in {'n', 'no', 'f', 'false', 'off', '0'}: return False else: raise ValueError("invalid boolean value {!r:}".format(arg)) ########################################################################## ## Environment ########################################################################## # Names NEVIS = "nevis.cs.umd.edu" HYPERION = "hyperion.cs.umd.edu" LAGOON = "lagoon.cs.umd.edu" # Paths workspace = "/data/honu" # Fabric Env env.colorize_errors = True env.hosts = [NEVIS, HYPERION, LAGOON] env.roledefs = { "client": {HYPERION, LAGOON}, "server": {NEVIS}, } env.user = "benjamin" env.client_keys = KeyGen() def multiexecute(task, n, host, *args, **kwargs): """ Execute the task n times on the specified host. If the task is parallel then this will be parallel as well. All other args are passed to execute. """ # Do nothing if n is zero or less if n < 1: return # Return one execution of the task with the given host if n == 1: return execute(task, host=host, *args, **kwargs) # Otherwise create a lists of hosts, don't dedupe them, and execute hosts = [host]*n with settings(dedupe_hosts=False): execute(task, hosts=hosts, *args, **kwargs) ########################################################################## ## Honu Commands ########################################################################## def _serve(relax=False, uptime="45s"): relax = strpbool(relax) with cd(workspace): cmd = "honu serve -s -u {} -w server.jsonl".format(uptime) if relax: cmd += " -r" run(cmd) @parallel @roles('server') def serve(relax=False, uptime="45s"): _serve(relax, uptime) def _workload(multikey=False, duration="30s", server=NEVIS): multikey = strpbool(multikey) # Add the default port to the server if ":" not in server: server = server + ":3264" with cd(workspace): ckey = env.client_keys() if multikey else "FOO" cmd = "honu run -A -a {} -d {} -k {} -w client.jsonl".format( server, duration, ckey ) run(cmd) @parallel @roles('client') def workload(multikey=False, duration="30s", server=NEVIS): _workload(multikey, duration, server) @parallel def experiment(relax=False,multikey=False,procs=2): procs = int(procs) cprocs = procs / 2 if procs % 2 == 1 and env.host == LAGOON: cprocs += 1 if env.host in env.roledefs['client']: multiexecute(_workload, cprocs, env.host, multikey=multikey) elif env.host in env.roledefs['server']: execute(_serve, host=env.host, relax=relax) @parallel def getmerge(localpath="."): local = os.path.join(localpath, "%(host)s", "%(path)s") remote = "client.jsonl" if env.host in env.roledefs['client'] else "server.jsonl" remote = os.path.join("/data/honu", remote) get(remote, local)
from output.models.sun_data.combined.xsd005.xsd005_xsd.xsd005 import ( Base, Ext, Root, Rst, ) __all__ = [ "Base", "Ext", "Root", "Rst", ]
import numpy as np from sklearn.tree import DecisionTreeClassifier as Tree from sklearn.linear_model import LogisticRegression as LR from sklearn.isotonic import IsotonicRegression as Iso from sklearn.base import BaseEstimator, ClassifierMixin from sklearn.utils.validation import check_X_y, check_array, check_is_fitted class CaliForest(ClassifierMixin, BaseEstimator): def __init__(self, n_estimators=300, criterion="gini", max_depth=5, min_samples_split=2, min_samples_leaf=1, ctype="isotonic", alpha0=100, beta0=25): self.n_estimators = n_estimators self.criterion = criterion self.max_depth = max_depth self.min_samples_split = min_samples_split self.min_samples_leaf = min_samples_leaf self.ctype = ctype self.alpha0 = alpha0 self.beta0 = beta0 def fit(self, X, y): X, y = check_X_y(X, y, accept_sparse=False) self.estimators = [] self.calibrator = None for i in range(self.n_estimators): self.estimators.append(Tree(criterion=self.criterion, max_depth=self.max_depth, min_samples_split=self.min_samples_split, min_samples_leaf=self.min_samples_leaf, max_features="auto")) if self.ctype=="logistic": self.calibrator = LR(penalty="none", solver="saga", max_iter=5000) elif self.ctype=="isotonic": self.calibrator = Iso(y_min=0, y_max=1, out_of_bounds="clip") n, m = X.shape Y_oob = np.full((n, self.n_estimators), np.nan) n_oob = np.zeros(n) IB = np.zeros((n, self.n_estimators), dtype=int) OOB = np.full((n, self.n_estimators), True) for eid in range(self.n_estimators): IB[:,eid] = np.random.choice(n, n) OOB[IB[:,eid],eid] = False for eid, est in enumerate(self.estimators): ib_idx = IB[:,eid] oob_idx = OOB[:,eid] est.fit(X[ib_idx,:], y[ib_idx]) Y_oob[oob_idx,eid] = est.predict_proba(X[oob_idx,:])[:,1] n_oob[oob_idx] += 1 oob_idx = n_oob > 1 Y_oob_ = Y_oob[oob_idx,:] n_oob_ = n_oob[oob_idx] z_hat = np.nanmean(Y_oob_, axis=1) z_true = y[oob_idx] beta = self.beta0 + np.nanvar(Y_oob_, axis=1) * n_oob_ / 2 alpha = self.alpha0 + n_oob_/2 z_weight = alpha / beta if self.ctype=="logistic": self.calibrator.fit(z_hat[:,np.newaxis], z_true, z_weight) elif self.ctype=="isotonic": self.calibrator.fit(z_hat, z_true, z_weight) self.is_fitted_ = True return self def predict_proba(self, X): X = check_array(X) check_is_fitted(self, 'is_fitted_') n, m = X.shape n_est = len(self.estimators) z = np.zeros(n) y_mat = np.zeros((n,2)) for eid, est in enumerate(self.estimators): z += est.predict_proba(X)[:,1] z /= n_est if self.ctype=="logistic": y_mat[:,1] = self.calibrator.predict_proba(z[:,np.newaxis])[:,1] elif self.ctype=="isotonic": y_mat[:,1] = self.calibrator.predict(z) y_mat[:,0] = 1 - y_mat[:,1] return y_mat def predict(self, X): proba = self.predict_proba(X) return np.argmax(proba, axis=1)
from .file_transfer_direction import FileTransferDirection from .transfer_properties import TransferProperties from .file_transfer_status import FileTransferStatus from .transfer_statistics import TransferStatistics from .file_transfer_exception import FileTransferException from .file_transfer_status import FileTransferStatus from .file_transfer_event_args import FileTransferEventArgs from .file_transfer_error_event_args import FileTransferErrorEventArgs from .client_error_event_args import ClientErrorEventArgs from .batch_transfer_event_args import BatchTransferEventArgs from .file_transfer_progress_event_args import FileTransferProgressEventArgs __all__ = [ "FileTransferDirection", "TransferProperties", "FileTransferStatus", "TransferStatistics", "FileTransferException", "FileTransferStatus", "FileTransferEventArgs", "FileTransferErrorEventArgs", "ClientErrorEventArgs", "BatchTransferEventArgs", "FileTransferProgressEventArgs", ]
# Copyright (c) 2013, Web Notes Technologies Pvt. Ltd. and Contributors # MIT License. See license.txt # For license information, please see license.txt from __future__ import unicode_literals import webnotes from install_erpnext import exec_in_shell from webnotes.model.doc import addchild from webnotes.model.bean import getlist import os class DocType: def __init__(self, d, dl): self.doc, self.doclist = d, dl def show_sites(self): self.doclist=self.doc.clear_table(self.doclist,'site_status_details') for filename in os.listdir(self.doc.sites_path): sites = addchild(self.doc, 'site_status_details', 'Site Status Details', self.doclist) sites.site_name = filename if filename[-1] != '1': sites.status = '1' def make_enable_dissable(self): for site in getlist(self.doclist, 'site_status_details'): #make dissable if site.status not in [1, '1'] and site.site_name[-1] != '1': exec_in_shell("mv %(path)s/%(site_name)s/ %(path)s/%(site_name)s1"%{'path':self.doc.sites_path,'site_name':site.site_name}) self.update_site_details(site.site_name[-1], 0) #make enable if site.status == 1 and site.site_name[-1] == '1': new_site_name = site.site_name[:-1] exec_in_shell("mv %(path)s/%(site_name)s/ %(path)s/%(new_site_name)s"%{'path':self.doc.sites_path,'site_name':site.site_name, 'new_site_name':new_site_name}) self.update_site_details(site.site_name[-1], 1) self.show_sites() self.doc.save() def update_site_details(self, site_name, status): webnotes.conn.sql("update `tabSite Details` set is_active = '%s' where name = '%s'"%(status, site_name)) db_details = webnotes.conn.sql("select database_name, database_password from `tabSite Details` where name = '%s'"%(site_name),as_list=1) self.test_db(db_details[0][0], db_details[0][1], status) webnotes.conn.sql("commit") def test_db(self): import MySQLdb myDB = MySQLdb.connect(user="%s"%user,passwd="%s"%pwd,db="%s"%user) cHandler = myDB.cursor() cHandler.execute("update `tabSingles` set is_active = '%s' where doctype='Global Defaults'"%(status)) cHandler.execute("commit")
from numpy import array import utils.readers as rd from pyrr import matrix44 as mat4 # classe um objeto generico class Object3d: # construtor def __init__(self, name, color, nVet, vao, vbo): self.name = name # nome self.color = color # cor self.model = mat4.create_identity() # matrix model self.nVet = nVet # num de vertices self.vao = vao self.vbo = vbo # translaçao def translate(self, position): translate = mat4.create_from_translation(position,dtype='f') self.model = mat4.multiply(self.model, translate) # escala def scale(self, scale): scale = mat4.create_from_scale(scale,dtype='f') self.model = mat4.multiply(self.model, scale) # rotacao def rotate(self, ang, vect): rotate = mat4.create_from_axis_rotation(vect, ang) self.model = mat4.multiply(self.model, rotate) # imprime as informações do objeto def printInfo(self): print('Name:', self.name) print('Nº vert:\n', self.nVet) print('color:', self.color) print('Model:\n', self.model) print('VAO:\n', self.vao) print('VBO:\n', self.vbo) print('%%%%%%%%%%%%%%%%%%%%%%%%') # cubo class Cube(Object3d): def __init__(self, name, vao, vbo, color=[1.0,1.0,1.0]): super().__init__(name, color, 42, vao, vbo) # torus class Torus(Object3d): def __init__(self, name, vao, vbo, color=[1.0,1.0,1.0]): super().__init__(name, color, 3462, vao, vbo) # cone class Cone(Object3d): def __init__(self, name, vao, vbo, color=[1.0,1.0,1.0]): super().__init__(name, color, 276, vao, vbo) # ico class Ico(Object3d): def __init__(self, name, vao, vbo, color=[1.0,1.0,1.0]): super().__init__(name, color, 15363, vao, vbo) class Light: def __init__(self, name, position): self.name = name self.position = position
import os import logging from flask import Flask from flask_mail import Mail from flask_login import LoginManager from flask_sqlalchemy import SQLAlchemy __version__ = '0.1.dev' app = Flask('databoard') # Load default main config app_stage = os.getenv('DATABOARD_STAGE', 'DEVELOPMENT').upper() if app_stage in ['PROD', 'PRODUCTION']: app.config.from_object('databoard.default_config.ProductionConfig') elif app_stage in ['TEST', 'TESTING']: app.config.from_object('databoard.default_config.TestingConfig') elif app_stage in ['DEV', 'DEVELOP', 'DEVELOPMENT']: app.config.from_object('databoard.default_config.DevelopmentConfig') else: msg = ( "Unknown databoard stage: {}" "Please set the environment variable `DATABOARD_STAGE` to one of the " "available stages : 'TESTING', 'DEVELOPMENT' or 'PRODUCTION'" ) raise AttributeError(msg.format(app_stage)) # Load default database config app.config.from_object('databoard.default_config.DBConfig') # Load default internal config app.config.from_object('databoard.default_config.RampConfig') # Load user config user_config = os.getenv('DATABOARD_CONFIG') if user_config is not None: app.config.from_json(user_config) db = SQLAlchemy(app) mail = Mail(app) login_manager = LoginManager() login_manager.init_app(app) login_manager.login_view = 'login' login_manager.login_message = 'Please log in or sign up to access this page.' logging.basicConfig( level=logging.DEBUG, format='%(levelname)s: %(message)s', filename=app.config['LOG_FILENAME']) # get rid of annoying skimage debug messages logging.getLogger('PIL.PngImagePlugin').disabled = True #################################################################### ramp_config = app.config.get_namespace('RAMP_') deployment_path = app.config.get('DEPLOYMENT_PATH') ramp_kits_path = os.path.join(deployment_path, ramp_config['kits_dir']) ramp_data_path = os.path.join(deployment_path, ramp_config['data_dir']) from . import views # noqa from . import model # noqa from . import db_tools # noqa
# Load an example mesh. # import pyvista from pyvista import examples mesh = pyvista.read(examples.antfile) mesh.plot(cpos='xz') # # Load a vtk file. # mesh = pyvista.read('my_mesh.vtk') # doctest:+SKIP # # Load a meshio file. # mesh = pyvista.read("mesh.obj") # doctest:+SKIP
import numpy as np import cv2 import math class Image: def __init__(self, name, image): self.original = image self.name = name self.ysize = image.shape[0] self.xsize = image.shape[1] # Convert image to Grayscale def toGrayscale(self, image): return cv2.cvtColor(image, cv2.COLOR_RGB2GRAY) # Convert image to Gaussian Blur def toGaussianBlur(self, image, params): return cv2.GaussianBlur(image, (params.gaussianKernel, params.gaussianKernel), 0) # Convert image to Canny Transform def toCanny(self, image, params): return cv2.Canny(image, params.cannyLowThreshold, params.cannyHighThreshold) # Convert image to image of Region of Interest def toRegion(self, image, params): # Convert Percentage to Pixels pixX1 = int(params.x1 * self.xsize / 100) pixX2 = int(params.x2 * self.xsize / 100) pixX3 = int(params.x3 * self.xsize / 100) pixX4 = int(params.x4 * self.xsize / 100) pixY1 = int(params.y1 * self.ysize / 100) pixY2 = int(params.y2 * self.ysize / 100) pixY3 = int(params.y3 * self.ysize / 100) pixY4 = int(params.y4 * self.ysize / 100) vertices = np.array([[(pixX1, pixY1), (pixX2, pixY2), (pixX3, pixY3), (pixX4, pixY4)]], dtype=np.int32) mask = np.zeros_like(image) # defining a 3 channel or 1 channel color to fill the mask with depending on the input image if len(image.shape) > 2: channel_count = image.shape[2] # i.e. 3 or 4 depending on your image ignore_mask_color = (255,) * channel_count else: ignore_mask_color = 255 # filling pixels inside the polygon defined by "vertices" with the fill color cv2.fillPoly(mask, vertices, ignore_mask_color) # returning the image only where mask pixels are nonzero return cv2.bitwise_and(image, mask) # Convert image to Hough Transform def toHough(self, image, params): # Convert Deg to Rad theta = np.pi/params.houghTheta lines = cv2.HoughLinesP(image, params.houghRho, theta, params.houghThreshold, np.array([]), minLineLength=params.houghMinLineLen, maxLineGap=params.houghMaxLineGap) outputImage = np.zeros((image.shape[0], image.shape[1], 3), dtype=np.uint8) if (lines is not None): # Draw Lines for x1, y1, x2, y2 in lines[:,0]: # Calculate Line Angle angle = math.atan2(y2 - y1, x2 - x1) * 180.0 / np.pi # Ignore Horizontal Angles if not (-params.houghAngleIgnore < angle < params.houghAngleIgnore): cv2.line(outputImage, (x1, y1), (x2, y2), [255, 0, 0], 2) return outputImage # Convert image to Hough Transform Lines Array def toHoughLines(self, image, params): # Convert Deg to Rad theta = np.pi/params.houghTheta lines = cv2.HoughLinesP(image, params.houghRho, theta, params.houghThreshold, np.array([]), minLineLength=params.houghMinLineLen, maxLineGap=params.houghMaxLineGap) filteredLines = [] if (lines is not None): for x1, y1, x2, y2 in lines[:,0]: # Calculate Line Angle angle = math.atan2(y2 - y1, x2 - x1) * 180.0 / np.pi # Ignore Horizontal Angles if not (-params.houghAngleIgnore < angle < params.houghAngleIgnore): filteredLines.append([x1,y1,x2,y2]) return filteredLines # Join Two Images def toWeighted(self, initialImage, image): return cv2.addWeighted(initialImage, 0.8, image, 1., 0.) # Process Hough Lines to Find Lane Lines def toLaneLines(self, lines, params): linesLeft = [] linesRight = [] for l in lines: x1,y1,x2,y2 = l # Calculate Slope if x2 - x1 == 0.: slope = 999. else: slope = (y2 - y1) / (x2 - x1) # Separate Lines into Left and Right Lines if slope > 0: linesRight.append([x1,y1,x2,y2,slope]) elif slope < 0: linesLeft.append([x1,y1,x2,y2,slope]) # Slope slopeSumLeft = 0 slopeSumRight = 0 # Line MidPoint xSumLeft = 0 ySumLeft = 0 xSumRight = 0 ySumRight = 0 # Verify found Lines foundLeftLine = False foundRightLine = False if len(linesLeft) : foundLeftLine = True if len(linesRight) : foundRightLine = True # Avarege Lines for l in linesLeft: xSumLeft += (l[2]+l[0])/2 ySumLeft += (l[3]+l[1])/2 slopeSumLeft += l[4] for l in linesRight: xSumRight += (l[2]+l[0])/2 ySumRight += (l[3]+l[1])/2 slopeSumRight += l[4] outputLines = [] if(foundLeftLine): slopeAvgLeft = slopeSumLeft / len(linesLeft) xAvgLeft = xSumLeft / len(linesLeft) yAvgLeft = ySumLeft / len(linesLeft) # Calculate b in y = m*x + b bLeft = yAvgLeft - (slopeAvgLeft*xAvgLeft) # Calculate x1,y1,x2,y2 Coordinates y1Left = self.ysize x1Left = (self.ysize -bLeft)/slopeAvgLeft # Define Upper Limit for Lines yLimit = max(params.y1,params.y4)*self.ysize/100 y2Left = yLimit x2Left = (y2Left -bLeft)/slopeAvgLeft outputLines.append([x1Left, y1Left, x2Left, y2Left]) if(foundRightLine): slopeAvgRight = slopeSumRight / len(linesRight) xAvgRight = xSumRight / len(linesRight) yAvgRight = ySumRight / len(linesRight) # Calculate b in y = m*x + b bRight = yAvgRight - (slopeAvgRight*xAvgRight) # Calculate x1,y1,x2,y2 Coordinates y1Right = self.ysize x1Right = (self.ysize -bRight)/slopeAvgRight # Define Upper Limit for Lines yLimit = max(params.y1,params.y4)*self.ysize/100 y2Right = yLimit x2Right = (y2Right -bRight)/slopeAvgRight outputLines.append([x1Right, y1Right, x2Right, y2Right]) return outputLines # Save Image to File def save(self, outputPath, params): cv2.imwrite(outputPath, self.getLaneLines(params)) print("Image " + self.name + " Saved!") # Methods for Image Tuner GUI # Step 1 # Return Original Image def getOriginal(self): return self.original # Step 2 # Return Grayscale Image def getGrayscale(self): return self.toGrayscale(self.getOriginal()) # Step 3 # Return Canny Transform Image def getCanny(self, params): return self.toCanny(self.toGaussianBlur(self.getGrayscale(),params), params) # Step 4 # Return Region of Interest Image def getRegion(self, params): return self.toRegion(self.getOriginal(), params) # Step 5 # Return Hough Transform Image def getHough(self, params): return self.toHough(self.toRegion(self.getCanny(params), params),params) # Step 6 # Return Final Image def getDone(self, params): return self.toWeighted(self.getOriginal(), self.getHough(params)) # Step 7 # Return Original Image with Lane Lines Finded def getLaneLines(self, params): houghLines = self.toHoughLines(self.toRegion(self.getCanny(params), params), params) lines = self.toLaneLines(houghLines,params) linesImage = np.zeros((self.ysize, self.xsize, 3), dtype=np.uint8) for l in lines: x1, y1, x2, y2 = l cv2.line(linesImage, (int(x1), int(y1)), (int(x2), int(y2)), [255, 0, 0], 20) return self.toWeighted(self.getOriginal(),linesImage)
import pyfmodex, time, yaml import numpy as np import os import random import ctypes from pyfmodex.constants import * import logging, copy from smooth import SmoothVal from sound_global_state import new_channel, from_dB, VelocityFilter import sound_global_state from auto_sounds import AutomationGroup system = None # get DSP clock (pyfmodex is incorrect) def DSP_clock(): hi = ctypes.c_uint() lo = ctypes.c_uint() result = pyfmodex.fmodobject._dll.FMOD_System_GetDSPClock(system._ptr, ctypes.byref(hi), ctypes.byref(lo)) return (int(hi.value)<<32) | int(lo.value) def set_channel_delay_start(channel, dsp_time): pyfmodex.fmodobject._dll.FMOD_Channel_SetDelay(channel._ptr, FMOD_DELAYTYPE_DSPCLOCK_START, (dsp_time>>32), (dsp_time&0xffffffff)) def set_channel_delay_pause(channel, dsp_time): pyfmodex.fmodobject._dll.FMOD_Channel_SetDelay(channel._ptr, FMOD_DELAYTYPE_DSPCLOCK_PAUSE, (dsp_time>>32), (dsp_time&0xffffffff)) class Sound(object): """Representation of a sound object. Each sound_descriptor is a single Sound object. Transient sounds have a prototype Sound object which is configured on start up. New sounds can be generated by calling spawn(), which copies the object and assigns a channel from the channel group for that transient sound Every transient sound must have a channel group. update() must be called regularly to update the sound's position, gain and filtering. """ def __init__(self, sound_descriptor, channel_groups, base_path, dsp_jitter=0): global system system = sound_global_state.system # make sure FMOD object is initialised self.name = sound_descriptor['name'] logging.debug("Creating sound %s, descriptor:\n%s" % (self.name, yaml.dump(sound_descriptor, indent=4))) self.dsp_jitter = dsp_jitter # create the sound self.filename = sound_descriptor['file'] self.sound = system.create_sound(os.path.join(base_path, self.filename)) self.base_frequency = self.sound.default_frequency logging.debug("Base frequency is %d Hz" % (self.base_frequency)) self.automation_blocks = sound_descriptor.get('automation', []) logging.debug("Sound file %s loaded succesfully" % self.filename) self.sound.min_distance = sound_descriptor.get('min_distance', 10.0) self.position = SmoothVal(np.array(sound_descriptor.get('position', [0,0,0])), 0.01) self.doppler = sound_descriptor.get('doppler', 0.0) self.spread = sound_descriptor.get("stereo_spread", 0.0) self.sound.position = self.position.state self.velocity = VelocityFilter() self.clear_velocity() self.loop_points = sound_descriptor.get('loop_points', None) self.looping = sound_descriptor.get('loop', False) self.loop_count = sound_descriptor.get('loop_count', -1) self.filter = sound_descriptor.get('filter', None) self.gain = SmoothVal(sound_descriptor.get('gain', 0.0),0.05, linear=True) self.frequency = SmoothVal(sound_descriptor.get('frequency', 1.0), 0.05) self.filter_val = SmoothVal(0,0) self.finished = False self.filter = False # add low pass filtering if needed if 'filter' in sound_descriptor: self.filter = True self.filter_val = SmoothVal(sound_descriptor['filter'], 0.01) self.channel_group = None # set the channel group, if there is one if 'channel_group' in sound_descriptor: ch_group = channel_groups.get(sound_descriptor['channel_group'], None) if ch_group is not None: self.channel_group = ch_group self.channel_group.register_sound(self) else: logging.debug("Tried to assign sound %s to non-existent channel group %s" % (self.name, ch_group)) self.channel_id = None self.transient = sound_descriptor.get('transient', False) if not self.transient: # spawn immediately if layer self.assign_channel(new_channel()) self.automations = AutomationGroup() def set_doppler(self, doppler): """Set the doppler factor""" self.doppler = doppler channel = self.get_channel() if channel: self.channel.doppler_level = self.doppler def clear_velocity(self): self.velocity.clear() def set_loop(self, loop, loop_points): """Set the looping state for this sound.""" channel = self.get_channel() self.looping = loop self.loop_points = loop_points if self.looping: channel.mode = FMOD_LOOP_NORMAL self.sound.loop_count = self.loop_count else: channel.mode = FMOD_LOOP_OFF if self.loop_points is not None: channel.loop_points = (int(self.loop_points[0]*self.base_frequency), FMOD_TIMEUNIT_PCM), (int(self.loop_points[1]*self.base_frequency), FMOD_TIMEUNIT_PCM) def assign_channel(self, channel_id): """Assign a channel to this sound, and configure the channel properties. Channels start in the paused state (i.e. are silent). Call start() to start playback """ # create the channel for this layer system.play_sound(self.sound, channelid=channel_id, paused=True) channel = system.get_channel(channel_id) logging.debug("Assigning channel to sound %s" % self.name) channel.volume = from_dB(self.gain.state) channel.paused = True channel.doppler_level = self.doppler channel.threed_spread = self.spread # adjust delay to avoid machine gunning dsp_time = DSP_clock() dsp_time = dsp_time+random.randint(0, self.dsp_jitter) # work around pyfmodex bug pyfmodex.fmodobject._dll.FMOD_Channel_SetDelay(channel._ptr, FMOD_DELAYTYPE_DSPCLOCK_START, (dsp_time>>32), (dsp_time&0xffffffff)) channel.channel_group = self.channel_group.group if self.filter: lp_filter = system.create_dsp_by_type(FMOD_DSP_TYPE_LOWPASS) lp_filter.set_param(0, self.filter_val.state) channel.add_dsp(lp_filter) self.lp_filter = lp_filter self.channel_id = channel_id self.set_loop(self.looping, self.loop_points) system.update() def test_channel(self, channel): pl = ctypes.c_bool() result = pyfmodex.fmodobject._dll.FMOD_Channel_IsPlaying(channel._ptr, ctypes.byref(pl)) return result==FMOD_OK def get_channel(self): if self.channel_id is None: return None channel = system.get_channel(self.channel_id) if not self.test_channel(channel): self.channel_id = None self.finished = True return None return channel def spawn(self): """Find a free channel in this sound's channel group, and then play the sound on that channel. Returns a reference to a new Sound object which has the active channel. If no free channels are found, a random channel is overwritten. """ # find a channel in the assigned group, and play on that if not self.channel_group: logging.debug("Sound %s tried to spawn without a channel group" % self.name) return logging.debug("Sound %s spawning" % self.name) chans = self.channel_group.sub_channels potentials = [] for chan in chans: channel = system.get_channel(chan) if self.test_channel(channel): if not channel.is_playing: potentials.append(chan) else: potentials.append(chan) # no free channels, choose a random one if len(potentials)==0: chan = random.choice(self.channel_group.sub_channels) channel = system.get_channel(chan) channel.stop() system.update() potentials.append(chan) logging.debug("No free channel was available; randomly stopping one") else: logging.debug("Free channel found.") channel = random.choice(potentials) # now copy this sound and allocate it a channel new_sound = copy.deepcopy(self) new_sound.sound = self.sound # make sure reference is correct new_sound.assign_channel(channel) return new_sound def mute(self): if self.channel_id: self.get_channel().mute = True def unmute(self): if self.channel_id: self.get_channel().mute = False def set_volume(self, gain, time=0.01): self.gain.set_with_time(gain, time) def set_filter(self, filter, time=0.01): self.filter_val.set_with_time(filter, time) def set_position(self, position, time=0.01): self.position.set_with_time(position, time) def start(self): if self.channel_id: self.update() self.get_channel().paused = False logging.debug("Sound %s started" % self.name) def stop(self): if self.channel: self.get_channel().paused = True logging.debug("Sound %s stopped" % self.name) def update(self, dt): # update the position, gain and filtering of this channel # must have an active channel to update the state channel = self.get_channel() self.automations.update(dt) if not channel: return self.frequency.update(dt) self.position.update(dt) channel.frequency = self.frequency.state * self.base_frequency position = self.position.state + self.automations.get('position') channel.position = position self.velocity.new_sample(position) channel.velocity = list(self.velocity.velocity) self.gain.update(dt) channel.volume = from_dB(self.gain.state + self.automations.get('gain')) if self.filter: self.filter_val.update(dt) cutoff = self.filter_val.state + self.automations.get('filter') if cutoff>20000: self.lp_filter.bypass = True else: self.lp_filter.bypass = False self.lp_filter.set_param(0, cutoff)
import numpy as np import math import scipy.stats import estimator class GaussEstimator(estimator.Estimator): def __init__(self,k): super().__init__(k) self.mu = 0 self.std = 1 def solve(self): self.mu = self.moments[1] self.std = math.sqrt(self.moments[2] - self.mu*self.mu) # xs = np.linspace(0,1,1000) # values = scipy.stats.norm.pdf( # xs, loc=self.mu, scale=self.std # ) # return values def estimate(self, p: float): xloc = scipy.stats.norm.ppf( p, loc=self.mu, scale=self.std ) return xloc*(self.a_max-self.a_min) + self.a_min
# -*- coding: utf-8 -*- # Copyright (c) 2013 Spotify AB import re def deserialize(d, **kw): names = re.sub("(?:(?:#|//).*?[\r\n])|/[*](?:.|\n)*?[*]/", " ", d).split() if names[:1] != ['Start']: names.insert(0, 'Start') return ( [('v%d' % i, v_name) for i, v_name in enumerate(names)], [('e%d' % i, None, 'v%d' % i, 'v%d' % (i + 1)) for i in range(len(names) - 1)])
from netapp.netapp_object import NetAppObject class Nfsv4ClientStatsInfo(NetAppObject): """ structure containing statistics for NFSv4 operations """ _rename_ops = None @property def rename_ops(self): """ total 'rename' NFSv4 operations Range : [0..2^64-1]. """ return self._rename_ops @rename_ops.setter def rename_ops(self, val): if val != None: self.validate('rename_ops', val) self._rename_ops = val _setattr_ops = None @property def setattr_ops(self): """ total 'setattr' NFSv4 operations Range : [0..2^64-1]. """ return self._setattr_ops @setattr_ops.setter def setattr_ops(self, val): if val != None: self.validate('setattr_ops', val) self._setattr_ops = val _no_delegation_total = None @property def no_delegation_total(self): """ total calls where a delegation could not be granted Range : [0..2^32-1]. """ return self._no_delegation_total @no_delegation_total.setter def no_delegation_total(self, val): if val != None: self.validate('no_delegation_total', val) self._no_delegation_total = val _lookup_ops = None @property def lookup_ops(self): """ total 'lookup' NFSv4 operations Range : [0..2^64-1]. """ return self._lookup_ops @lookup_ops.setter def lookup_ops(self, val): if val != None: self.validate('lookup_ops', val) self._lookup_ops = val _lookupp_ops = None @property def lookupp_ops(self): """ total 'lookupp' NFSv4 operations Range : [0..2^64-1]. """ return self._lookupp_ops @lookupp_ops.setter def lookupp_ops(self, val): if val != None: self.validate('lookupp_ops', val) self._lookupp_ops = val _readlink_ops = None @property def readlink_ops(self): """ total 'readlink' NFSv4 operations Range : [0..2^64-1]. """ return self._readlink_ops @readlink_ops.setter def readlink_ops(self, val): if val != None: self.validate('readlink_ops', val) self._readlink_ops = val _open_downgrade_ops = None @property def open_downgrade_ops(self): """ total 'open_downgrade' NFSv4 operations Range : [0..2^64-1]. """ return self._open_downgrade_ops @open_downgrade_ops.setter def open_downgrade_ops(self, val): if val != None: self.validate('open_downgrade_ops', val) self._open_downgrade_ops = val _compound_ops = None @property def compound_ops(self): """ total 'compound' NFSv4 operations Range : [0..2^64-1]. """ return self._compound_ops @compound_ops.setter def compound_ops(self, val): if val != None: self.validate('compound_ops', val) self._compound_ops = val _access_ops = None @property def access_ops(self): """ total 'access' NFSv4 operations Range : [0..2^64-1]. """ return self._access_ops @access_ops.setter def access_ops(self, val): if val != None: self.validate('access_ops', val) self._access_ops = val _putrootfh_ops = None @property def putrootfh_ops(self): """ total 'putrootfh' NFSv4 operations Range : [0..2^64-1]. """ return self._putrootfh_ops @putrootfh_ops.setter def putrootfh_ops(self, val): if val != None: self.validate('putrootfh_ops', val) self._putrootfh_ops = val _lockt_ops = None @property def lockt_ops(self): """ total 'lockt' NFSv4 operations Range : [0..2^64-1]. """ return self._lockt_ops @lockt_ops.setter def lockt_ops(self, val): if val != None: self.validate('lockt_ops', val) self._lockt_ops = val _badproc2_ops = None @property def badproc2_ops(self): """ total 'badproc2' NFSv4 operations Range : [0..2^64-1]. """ return self._badproc2_ops @badproc2_ops.setter def badproc2_ops(self, val): if val != None: self.validate('badproc2_ops', val) self._badproc2_ops = val _open_ops = None @property def open_ops(self): """ total 'open' NFSv4 operations Range : [0..2^64-1]. """ return self._open_ops @open_ops.setter def open_ops(self, val): if val != None: self.validate('open_ops', val) self._open_ops = val _verify_ops = None @property def verify_ops(self): """ total 'verify' NFSv4 operations Range : [0..2^64-1]. """ return self._verify_ops @verify_ops.setter def verify_ops(self, val): if val != None: self.validate('verify_ops', val) self._verify_ops = val _restorefh_ops = None @property def restorefh_ops(self): """ total 'restorefh' NFSv4 operations Range : [0..2^64-1]. """ return self._restorefh_ops @restorefh_ops.setter def restorefh_ops(self, val): if val != None: self.validate('restorefh_ops', val) self._restorefh_ops = val _write_delegation_total = None @property def write_delegation_total(self): """ total calls where a write delegation was granted Range : [0..2^32-1]. """ return self._write_delegation_total @write_delegation_total.setter def write_delegation_total(self, val): if val != None: self.validate('write_delegation_total', val) self._write_delegation_total = val _delegpurge = None @property def delegpurge(self): """ total 'delegpurge' NFSv4 operations Range : [0..2^64-1]. """ return self._delegpurge @delegpurge.setter def delegpurge(self, val): if val != None: self.validate('delegpurge', val) self._delegpurge = val _read_delegation_total = None @property def read_delegation_total(self): """ total calls where a read delegation was granted Range : [0..2^32-1]. """ return self._read_delegation_total @read_delegation_total.setter def read_delegation_total(self, val): if val != None: self.validate('read_delegation_total', val) self._read_delegation_total = val _open_confirm_ops = None @property def open_confirm_ops(self): """ total 'open_confirm' NFSv4 operations Range : [0..2^64-1]. """ return self._open_confirm_ops @open_confirm_ops.setter def open_confirm_ops(self, val): if val != None: self.validate('open_confirm_ops', val) self._open_confirm_ops = val _remove_ops = None @property def remove_ops(self): """ total 'remove' NFSv4 operations Range : [0..2^64-1]. """ return self._remove_ops @remove_ops.setter def remove_ops(self, val): if val != None: self.validate('remove_ops', val) self._remove_ops = val _commit_ops = None @property def commit_ops(self): """ total 'commit' NFSv4 operations Range : [0..2^64-1]. """ return self._commit_ops @commit_ops.setter def commit_ops(self, val): if val != None: self.validate('commit_ops', val) self._commit_ops = val _acls_set_total = None @property def acls_set_total(self): """ number of ACLs set on files Range : [0..2^32-1]. """ return self._acls_set_total @acls_set_total.setter def acls_set_total(self, val): if val != None: self.validate('acls_set_total', val) self._acls_set_total = val _renew_ops = None @property def renew_ops(self): """ total 'renew' NFSv4 operations Range : [0..2^64-1]. """ return self._renew_ops @renew_ops.setter def renew_ops(self, val): if val != None: self.validate('renew_ops', val) self._renew_ops = val _setclntid_ops = None @property def setclntid_ops(self): """ total 'setclntid' NFSv4 operations Range : [0..2^64-1]. """ return self._setclntid_ops @setclntid_ops.setter def setclntid_ops(self, val): if val != None: self.validate('setclntid_ops', val) self._setclntid_ops = val _close_ops = None @property def close_ops(self): """ total 'close' NFSv4 operations Range : [0..2^64-1]. """ return self._close_ops @close_ops.setter def close_ops(self, val): if val != None: self.validate('close_ops', val) self._close_ops = val _lock_ops = None @property def lock_ops(self): """ total 'lock' NFSv4 operations Range : [0..2^64-1]. """ return self._lock_ops @lock_ops.setter def lock_ops(self, val): if val != None: self.validate('lock_ops', val) self._lock_ops = val _putfh_ops = None @property def putfh_ops(self): """ total 'putfh' NFSv4 operations Range : [0..2^64-1]. """ return self._putfh_ops @putfh_ops.setter def putfh_ops(self, val): if val != None: self.validate('putfh_ops', val) self._putfh_ops = val _nverify_ops = None @property def nverify_ops(self): """ total 'nverify' NFSv4 operations Range : [0..2^64-1]. """ return self._nverify_ops @nverify_ops.setter def nverify_ops(self, val): if val != None: self.validate('nverify_ops', val) self._nverify_ops = val _setclntid_cfm_ops = None @property def setclntid_cfm_ops(self): """ total 'setclntid_cfm' NFSv4 operations Range : [0..2^64-1]. """ return self._setclntid_cfm_ops @setclntid_cfm_ops.setter def setclntid_cfm_ops(self, val): if val != None: self.validate('setclntid_cfm_ops', val) self._setclntid_cfm_ops = val _null_ops = None @property def null_ops(self): """ total 'null' NFSv4 operations Range : [0..2^64-1]. """ return self._null_ops @null_ops.setter def null_ops(self, val): if val != None: self.validate('null_ops', val) self._null_ops = val _create_ops = None @property def create_ops(self): """ total 'create' NFSv4 operations Range : [0..2^64-1]. """ return self._create_ops @create_ops.setter def create_ops(self, val): if val != None: self.validate('create_ops', val) self._create_ops = val _delegret_ops = None @property def delegret_ops(self): """ total 'delegret' NFSv4 operations Range : [0..2^64-1]. """ return self._delegret_ops @delegret_ops.setter def delegret_ops(self, val): if val != None: self.validate('delegret_ops', val) self._delegret_ops = val _locku_ops = None @property def locku_ops(self): """ total 'locku' NFSv4 operations Range : [0..2^64-1]. """ return self._locku_ops @locku_ops.setter def locku_ops(self, val): if val != None: self.validate('locku_ops', val) self._locku_ops = val _getattr_ops = None @property def getattr_ops(self): """ total 'getattr' NFSv4 operations Range : [0..2^64-1]. """ return self._getattr_ops @getattr_ops.setter def getattr_ops(self, val): if val != None: self.validate('getattr_ops', val) self._getattr_ops = val _write_ops = None @property def write_ops(self): """ total 'write' NFSv4 operations Range : [0..2^64-1]. """ return self._write_ops @write_ops.setter def write_ops(self, val): if val != None: self.validate('write_ops', val) self._write_ops = val _savefh_ops = None @property def savefh_ops(self): """ total 'savefh' NFSv4 operations Range : [0..2^64-1]. """ return self._savefh_ops @savefh_ops.setter def savefh_ops(self, val): if val != None: self.validate('savefh_ops', val) self._savefh_ops = val _rlsowner_ops = None @property def rlsowner_ops(self): """ total 'rlsowner' NFSv4 operations Range : [0..2^64-1]. """ return self._rlsowner_ops @rlsowner_ops.setter def rlsowner_ops(self, val): if val != None: self.validate('rlsowner_ops', val) self._rlsowner_ops = val _readdir_ops = None @property def readdir_ops(self): """ total 'readdir' NFSv4 operations Range : [0..2^64-1]. """ return self._readdir_ops @readdir_ops.setter def readdir_ops(self, val): if val != None: self.validate('readdir_ops', val) self._readdir_ops = val _link_ops = None @property def link_ops(self): """ total 'link' NFSv4 operations Range : [0..2^64-1]. """ return self._link_ops @link_ops.setter def link_ops(self, val): if val != None: self.validate('link_ops', val) self._link_ops = val _secinfo_ops = None @property def secinfo_ops(self): """ total 'secinfo' NFSv4 operations Range : [0..2^64-1]. """ return self._secinfo_ops @secinfo_ops.setter def secinfo_ops(self, val): if val != None: self.validate('secinfo_ops', val) self._secinfo_ops = val _getfh_ops = None @property def getfh_ops(self): """ total 'getfh' NFSv4 operations Range : [0..2^64-1]. """ return self._getfh_ops @getfh_ops.setter def getfh_ops(self, val): if val != None: self.validate('getfh_ops', val) self._getfh_ops = val _putpubfh_ops = None @property def putpubfh_ops(self): """ total 'putpubfh' NFSv4 operations Range : [0..2^64-1]. """ return self._putpubfh_ops @putpubfh_ops.setter def putpubfh_ops(self, val): if val != None: self.validate('putpubfh_ops', val) self._putpubfh_ops = val _openattr_ops = None @property def openattr_ops(self): """ total 'openattr' NFSv4 operations Range : [0..2^64-1]. """ return self._openattr_ops @openattr_ops.setter def openattr_ops(self, val): if val != None: self.validate('openattr_ops', val) self._openattr_ops = val _read_ops = None @property def read_ops(self): """ total 'read' NFSv4 operations Range : [0..2^64-1]. """ return self._read_ops @read_ops.setter def read_ops(self, val): if val != None: self.validate('read_ops', val) self._read_ops = val @staticmethod def get_api_name(): return "nfsv4-client-stats-info" @staticmethod def get_desired_attrs(): return [ 'rename-ops', 'setattr-ops', 'no-delegation-total', 'lookup-ops', 'lookupp-ops', 'readlink-ops', 'open-downgrade-ops', 'compound-ops', 'access-ops', 'putrootfh-ops', 'lockt-ops', 'badproc2-ops', 'open-ops', 'verify-ops', 'restorefh-ops', 'write-delegation-total', 'delegpurge', 'read-delegation-total', 'open-confirm-ops', 'remove-ops', 'commit-ops', 'acls-set-total', 'renew-ops', 'setclntid-ops', 'close-ops', 'lock-ops', 'putfh-ops', 'nverify-ops', 'setclntid-cfm-ops', 'null-ops', 'create-ops', 'delegret-ops', 'locku-ops', 'getattr-ops', 'write-ops', 'savefh-ops', 'rlsowner-ops', 'readdir-ops', 'link-ops', 'secinfo-ops', 'getfh-ops', 'putpubfh-ops', 'openattr-ops', 'read-ops', ] def describe_properties(self): return { 'rename_ops': { 'class': int, 'is_list': False, 'required': 'optional' }, 'setattr_ops': { 'class': int, 'is_list': False, 'required': 'optional' }, 'no_delegation_total': { 'class': int, 'is_list': False, 'required': 'optional' }, 'lookup_ops': { 'class': int, 'is_list': False, 'required': 'optional' }, 'lookupp_ops': { 'class': int, 'is_list': False, 'required': 'optional' }, 'readlink_ops': { 'class': int, 'is_list': False, 'required': 'optional' }, 'open_downgrade_ops': { 'class': int, 'is_list': False, 'required': 'optional' }, 'compound_ops': { 'class': int, 'is_list': False, 'required': 'optional' }, 'access_ops': { 'class': int, 'is_list': False, 'required': 'optional' }, 'putrootfh_ops': { 'class': int, 'is_list': False, 'required': 'optional' }, 'lockt_ops': { 'class': int, 'is_list': False, 'required': 'optional' }, 'badproc2_ops': { 'class': int, 'is_list': False, 'required': 'optional' }, 'open_ops': { 'class': int, 'is_list': False, 'required': 'optional' }, 'verify_ops': { 'class': int, 'is_list': False, 'required': 'optional' }, 'restorefh_ops': { 'class': int, 'is_list': False, 'required': 'optional' }, 'write_delegation_total': { 'class': int, 'is_list': False, 'required': 'optional' }, 'delegpurge': { 'class': int, 'is_list': False, 'required': 'optional' }, 'read_delegation_total': { 'class': int, 'is_list': False, 'required': 'optional' }, 'open_confirm_ops': { 'class': int, 'is_list': False, 'required': 'optional' }, 'remove_ops': { 'class': int, 'is_list': False, 'required': 'optional' }, 'commit_ops': { 'class': int, 'is_list': False, 'required': 'optional' }, 'acls_set_total': { 'class': int, 'is_list': False, 'required': 'optional' }, 'renew_ops': { 'class': int, 'is_list': False, 'required': 'optional' }, 'setclntid_ops': { 'class': int, 'is_list': False, 'required': 'optional' }, 'close_ops': { 'class': int, 'is_list': False, 'required': 'optional' }, 'lock_ops': { 'class': int, 'is_list': False, 'required': 'optional' }, 'putfh_ops': { 'class': int, 'is_list': False, 'required': 'optional' }, 'nverify_ops': { 'class': int, 'is_list': False, 'required': 'optional' }, 'setclntid_cfm_ops': { 'class': int, 'is_list': False, 'required': 'optional' }, 'null_ops': { 'class': int, 'is_list': False, 'required': 'optional' }, 'create_ops': { 'class': int, 'is_list': False, 'required': 'optional' }, 'delegret_ops': { 'class': int, 'is_list': False, 'required': 'optional' }, 'locku_ops': { 'class': int, 'is_list': False, 'required': 'optional' }, 'getattr_ops': { 'class': int, 'is_list': False, 'required': 'optional' }, 'write_ops': { 'class': int, 'is_list': False, 'required': 'optional' }, 'savefh_ops': { 'class': int, 'is_list': False, 'required': 'optional' }, 'rlsowner_ops': { 'class': int, 'is_list': False, 'required': 'optional' }, 'readdir_ops': { 'class': int, 'is_list': False, 'required': 'optional' }, 'link_ops': { 'class': int, 'is_list': False, 'required': 'optional' }, 'secinfo_ops': { 'class': int, 'is_list': False, 'required': 'optional' }, 'getfh_ops': { 'class': int, 'is_list': False, 'required': 'optional' }, 'putpubfh_ops': { 'class': int, 'is_list': False, 'required': 'optional' }, 'openattr_ops': { 'class': int, 'is_list': False, 'required': 'optional' }, 'read_ops': { 'class': int, 'is_list': False, 'required': 'optional' }, }
import numpy as np chislo = input('Загадай число от 0 до 99: ') char_num = input('При делении // на 10 получается число отличное от 0?(да/нет): ') if char_num == 'да': odd_or_not = input('Число, полученное при делении // на 10 делится на 2 без остатка?(да/нет): ') if odd_or_not == 'да': char_num = input('Первая цифра числа больше 5?(да/нет): ') if char_num == 'да': cratnost_3 = input('Первая цифра числа кратна 3?(да/нет): ') if cratnost_3 == 'да': num1 = 6 else: num1 = 8 else: cratnost_4 = input('Первая цифра числа кратна 4?(да/нет): ') if cratnost_4 == 'да': num1 = 4 else: num1 = 2 else: char_num = input('Первая цифра числа больше 5?(да/нет): ') if char_num == 'да': cratnost_3 = input('Первая цифра числа кратна 3?(да/нет): ') if cratnost_3 == 'да': num1 = 9 else: num1 = 7 else: cratnost_3_ = input('Первая цифра числа кратна 4?(да/нет): ') if cratnost_3_ == 'да': num1 = 3 else: num1 = 1 else: num1 = 0 char2_ne_zero = input('При делении % на 10 получается число отличное от 0?(да/нет): ') if char2_ne_zero =='да': odd_or_not2 = input('Число, полученное при делении % на 10 делится на 2 без остатка?(да/нет): ') if odd_or_not2 =='да': char_num2 = input('Первая цифра числа больше 5?(да/нет): ') if char_num2 == 'да': cratnost_3_2 = input('Первая цифра числа кратна 3?(да/нет): ') if cratnost_3_2 == 'да': num2 = 6 else: num2 = 8 else: cratnost_4_2 = input('Первая цифра числа кратна 4?(да/нет): ') if cratnost_4_2 == 'да': num2 = 4 else: num2 = 2 else: char_num2 = input('Вторая цифра числа больше 5?(да/нет): ') if char_num2 == 'да': cratnost_3_2 = input('Вторая цифра числа кратна 3?(да/нет): ') if cratnost_3_2 == 'да': num2 = 9 else: num2 = 7 else: cratnost_3_2_ = input('Вторая цифра числа кратна 4?(да/нет): ') if cratnost_3_2_ == 'да': num2 = 3 else: num2 = 1 else: num2 = 0 if num1 != 0: result = int(str(num1) + str(num2)) else: result = int(num2) print(result)
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Term based tool to view *colored*, *incremental* diff in a *Git/Mercurial/Svn* workspace or from stdin, with *side by side* and *auto pager* support. Requires python (>= 2.5.0) and ``less``. """ import sys import os import re import signal import subprocess import select import difflib META_INFO = { 'version' : '0.9.8', 'license' : 'BSD-3', 'author' : 'Matthew Wang', 'email' : 'mattwyl(@)gmail(.)com', 'url' : 'https://github.com/ymattw/cdiff', 'keywords' : 'colored incremental side-by-side diff', 'description' : ('View colored, incremental diff in a workspace or from ' 'stdin, with side by side and auto pager support') } if sys.hexversion < 0x02050000: raise SystemExit("*** Requires python >= 2.5.0") # pragma: no cover # Python < 2.6 does not have next() try: next except NameError: def next(obj): return obj.next() try: unicode except NameError: unicode = str COLORS = { 'reset' : '\x1b[0m', 'underline' : '\x1b[4m', 'reverse' : '\x1b[7m', 'red' : '\x1b[31m', 'green' : '\x1b[32m', 'yellow' : '\x1b[33m', 'blue' : '\x1b[34m', 'magenta' : '\x1b[35m', 'cyan' : '\x1b[36m', 'lightred' : '\x1b[1;31m', 'lightgreen' : '\x1b[1;32m', 'lightyellow' : '\x1b[1;33m', 'lightblue' : '\x1b[1;34m', 'lightmagenta' : '\x1b[1;35m', 'lightcyan' : '\x1b[1;36m', } # Keys for revision control probe, diff and log with diff VCS_INFO = { 'Git': { 'probe': ['git', 'rev-parse'], 'diff': ['git', 'diff', '--no-ext-diff'], 'log': ['git', 'log', '--patch'], }, 'Mercurial': { 'probe': ['hg', 'summary'], 'diff': ['hg', 'diff'], 'log': ['hg', 'log', '--patch'], }, 'Svn': { 'probe': ['svn', 'info'], 'diff': ['svn', 'diff'], 'log': ['svn', 'log', '--diff', '--use-merge-history'], }, } def colorize(text, start_color, end_color='reset'): return COLORS[start_color] + text + COLORS[end_color] class Hunk(object): def __init__(self, hunk_headers, hunk_meta, old_addr, new_addr): self._hunk_headers = hunk_headers self._hunk_meta = hunk_meta self._old_addr = old_addr # tuple (start, offset) self._new_addr = new_addr # tuple (start, offset) self._hunk_list = [] # list of tuple (attr, line) def append(self, hunk_line): """hunk_line is a 2-element tuple: (attr, text), where attr is: '-': old, '+': new, ' ': common """ self._hunk_list.append(hunk_line) def mdiff(self): r"""The difflib._mdiff() function returns an interator which returns a tuple: (from line tuple, to line tuple, boolean flag) from/to line tuple -- (line num, line text) line num -- integer or None (to indicate a context separation) line text -- original line text with following markers inserted: '\0+' -- marks start of added text '\0-' -- marks start of deleted text '\0^' -- marks start of changed text '\1' -- marks end of added/deleted/changed text boolean flag -- None indicates context separation, True indicates either "from" or "to" line contains a change, otherwise False. """ return difflib._mdiff(self._get_old_text(), self._get_new_text()) def _get_old_text(self): out = [] for (attr, line) in self._hunk_list: if attr != '+': out.append(line) return out def _get_new_text(self): out = [] for (attr, line) in self._hunk_list: if attr != '-': out.append(line) return out def is_completed(self): old_completed = self._old_addr[1] == len(self._get_old_text()) new_completed = self._new_addr[1] == len(self._get_new_text()) return old_completed and new_completed class UnifiedDiff(object): def __init__(self, headers, old_path, new_path, hunks): self._headers = headers self._old_path = old_path self._new_path = new_path self._hunks = hunks def is_old_path(self, line): return line.startswith('--- ') def is_new_path(self, line): return line.startswith('+++ ') def is_hunk_meta(self, line): """Minimal valid hunk meta is like '@@ -1 +1 @@', note extra chars might occur after the ending @@, e.g. in git log. '## ' usually indicates svn property changes in output from `svn log --diff` """ return (line.startswith('@@ -') and line.find(' @@') >= 8) or \ (line.startswith('## -') and line.find(' ##') >= 8) def parse_hunk_meta(self, hunk_meta): # @@ -3,7 +3,6 @@ a = hunk_meta.split()[1].split(',') # -3 7 if len(a) > 1: old_addr = (int(a[0][1:]), int(a[1])) else: # @@ -1 +1,2 @@ old_addr = (int(a[0][1:]), 1) b = hunk_meta.split()[2].split(',') # +3 6 if len(b) > 1: new_addr = (int(b[0][1:]), int(b[1])) else: # @@ -0,0 +1 @@ new_addr = (int(b[0][1:]), 1) return (old_addr, new_addr) def parse_hunk_line(self, line): return (line[0], line[1:]) def is_old(self, line): """Exclude old path and header line from svn log --diff output, allow '----' likely to see in diff from yaml file """ return line.startswith('-') and not self.is_old_path(line) and \ not re.match(r'^-{72}$', line.rstrip()) def is_new(self, line): return line.startswith('+') and not self.is_new_path(line) def is_common(self, line): return line.startswith(' ') def is_eof(self, line): # \ No newline at end of file # \ No newline at end of property return line.startswith(r'\ No newline at end of') def is_only_in_dir(self, line): return line.startswith('Only in ') def is_binary_differ(self, line): return re.match('^Binary files .* differ$', line.rstrip()) class PatchStream(object): def __init__(self, diff_hdl): self._diff_hdl = diff_hdl self._stream_header_size = 0 self._stream_header = [] # Test whether stream is empty by read 1 line line = self._diff_hdl.readline() if not line: self._is_empty = True else: self._stream_header.append(line) self._stream_header_size += 1 self._is_empty = False def is_empty(self): return self._is_empty def read_stream_header(self, stream_header_size): """Returns a small chunk for patch type detect, suppose to call once""" for i in range(1, stream_header_size): line = self._diff_hdl.readline() if not line: break self._stream_header.append(line) self._stream_header_size += 1 return self._stream_header def __iter__(self): for line in self._stream_header: yield line for line in self._diff_hdl: yield line class PatchStreamForwarder(object): """A blocking stream forwarder use `select` and line buffered mode. Feed input stream to a diff format translator and read output stream from it. Note input stream is non-seekable, and upstream has eaten some lines. """ def __init__(self, istream, translator): assert isinstance(istream, PatchStream) assert isinstance(translator, subprocess.Popen) self._istream = iter(istream) self._in = translator.stdin self._out = translator.stdout def _can_read(self, timeout=0): return select.select([self._out.fileno()], [], [], timeout)[0] def _forward_line(self): try: line = next(self._istream) self._in.write(line) except StopIteration: self._in.close() def __iter__(self): while True: if self._can_read(): line = self._out.readline() if line: yield line else: return elif not self._in.closed: self._forward_line() class DiffParser(object): def __init__(self, stream): header = [decode(line) for line in stream.read_stream_header(100)] size = len(header) if size >= 4 and (header[0].startswith('*** ') and header[1].startswith('--- ') and header[2].rstrip() == '***************' and header[3].startswith('*** ') and header[3].rstrip().endswith(' ****')): # For context diff, try use `filterdiff` to translate it to unified # format and provide a new stream # self._type = 'context' try: # Use line buffered mode so that to readline() in block mode self._translator = subprocess.Popen( ['filterdiff', '--format=unified'], stdin=subprocess.PIPE, stdout=subprocess.PIPE, bufsize=1) except OSError: raise SystemExit('*** Context diff support depends on ' 'filterdiff') self._stream = PatchStreamForwarder(stream, self._translator) return for n in range(size): if (header[n].startswith('--- ') and (n < size - 1) and header[n + 1].startswith('+++ ')): self._type = 'unified' self._stream = stream break else: # `filterdiff` translates unknown diff to nothing, fall through to # unified diff give cdiff a chance to show everything as headers # sys.stderr.write("*** unknown format, fall through to 'unified'\n") self._type = 'unified' self._stream = stream def get_diff_generator(self): """parse all diff lines, construct a list of UnifiedDiff objects""" diff = UnifiedDiff([], None, None, []) headers = [] for line in self._stream: line = decode(line) if diff.is_old_path(line): # This is a new diff when current hunk is not yet genreated or # is completed. We yield previous diff if exists and construct # a new one for this case. Otherwise it's acutally an 'old' # line starts with '--- '. # if (not diff._hunks or diff._hunks[-1].is_completed()): if diff._old_path and diff._new_path and diff._hunks: yield diff diff = UnifiedDiff(headers, line, None, []) headers = [] else: diff._hunks[-1].append(diff.parse_hunk_line(line)) elif diff.is_new_path(line) and diff._old_path: if not diff._new_path: diff._new_path = line else: diff._hunks[-1].append(diff.parse_hunk_line(line)) elif diff.is_hunk_meta(line): hunk_meta = line try: old_addr, new_addr = diff.parse_hunk_meta(hunk_meta) except (IndexError, ValueError): raise RuntimeError('invalid hunk meta: %s' % hunk_meta) hunk = Hunk(headers, hunk_meta, old_addr, new_addr) headers = [] diff._hunks.append(hunk) elif diff._hunks and not headers and (diff.is_old(line) or diff.is_new(line) or diff.is_common(line)): diff._hunks[-1].append(diff.parse_hunk_line(line)) elif diff.is_eof(line): # ignore pass elif diff.is_only_in_dir(line) or \ diff.is_binary_differ(line): # 'Only in foo:' and 'Binary files ... differ' are considered # as separate diffs, so yield current diff, then this line # if diff._old_path and diff._new_path and diff._hunks: # Current diff is comppletely constructed yield diff headers.append(line) yield UnifiedDiff(headers, '', '', []) headers = [] diff = UnifiedDiff([], None, None, []) else: # All other non-recognized lines are considered as headers or # hunk headers respectively # headers.append(line) # Validate and yield the last patch set if it is not yielded yet if diff._old_path: assert diff._new_path is not None if diff._hunks: assert len(diff._hunks[-1]._hunk_meta) > 0 assert len(diff._hunks[-1]._hunk_list) > 0 yield diff if headers: # Tolerate dangling headers, just yield a UnifiedDiff object with # only header lines # yield UnifiedDiff(headers, '', '', []) class DiffMarker(object): def markup(self, diffs, side_by_side=False, width=0): """Returns a generator""" if side_by_side: for diff in diffs: for line in self._markup_side_by_side(diff, width): yield line else: for diff in diffs: for line in self._markup_traditional(diff): yield line def _markup_traditional(self, diff): """Returns a generator""" for line in diff._headers: yield self._markup_header(line) yield self._markup_old_path(diff._old_path) yield self._markup_new_path(diff._new_path) for hunk in diff._hunks: for hunk_header in hunk._hunk_headers: yield self._markup_hunk_header(hunk_header) yield self._markup_hunk_meta(hunk._hunk_meta) for old, new, changed in hunk.mdiff(): if changed: if not old[0]: # The '+' char after \x00 is kept # DEBUG: yield 'NEW: %s %s\n' % (old, new) line = new[1].strip('\x00\x01') yield self._markup_new(line) elif not new[0]: # The '-' char after \x00 is kept # DEBUG: yield 'OLD: %s %s\n' % (old, new) line = old[1].strip('\x00\x01') yield self._markup_old(line) else: # DEBUG: yield 'CHG: %s %s\n' % (old, new) yield self._markup_old('-') + \ self._markup_mix(old[1], 'red') yield self._markup_new('+') + \ self._markup_mix(new[1], 'green') else: yield self._markup_common(' ' + old[1]) def _markup_side_by_side(self, diff, width): """Returns a generator""" wrap_char = colorize('>', 'lightmagenta') def _normalize(line): return line.replace( '\t', ' ' * 8).replace('\n', '').replace('\r', '') def _fit_with_marker(text, markup_fn, width, pad=False): """Wrap or pad input pure text, then markup""" if len(text) > width: return markup_fn(text[:(width - 1)]) + wrap_char elif pad: pad_len = width - len(text) return '%s%*s' % (markup_fn(text), pad_len, '') else: return markup_fn(text) def _fit_with_marker_mix(text, base_color, width, pad=False): """Wrap or pad input text which contains mdiff tags, markup at the meantime, note only left side need to set `pad` """ out = [COLORS[base_color]] count = 0 tag_re = re.compile(r'\x00[+^-]|\x01') while text and count < width: if text.startswith('\x00-'): # del out.append(COLORS['reverse'] + COLORS[base_color]) text = text[2:] elif text.startswith('\x00+'): # add out.append(COLORS['reverse'] + COLORS[base_color]) text = text[2:] elif text.startswith('\x00^'): # change out.append(COLORS['underline'] + COLORS[base_color]) text = text[2:] elif text.startswith('\x01'): # reset out.append(COLORS['reset'] + COLORS[base_color]) text = text[1:] else: # FIXME: utf-8 wchar might break the rule here, e.g. # u'\u554a' takes double width of a single letter, also # this depends on your terminal font. I guess audience of # this tool never put that kind of symbol in their code :-) # out.append(text[0]) count += 1 text = text[1:] if count == width and tag_re.sub('', text): # Was stripped: output fulfil and still has normal char in text out[-1] = COLORS['reset'] + wrap_char elif count < width and pad: pad_len = width - count out.append('%s%*s' % (COLORS['reset'], pad_len, '')) else: out.append(COLORS['reset']) return ''.join(out) # Set up number width, note last hunk might be empty try: (start, offset) = diff._hunks[-1]._old_addr max1 = start + offset - 1 (start, offset) = diff._hunks[-1]._new_addr max2 = start + offset - 1 except IndexError: max1 = max2 = 0 num_width = max(len(str(max1)), len(str(max2))) # Set up line width if width <= 0: # Autodetection of text width according to terminal size try: # Each line is like "nnn TEXT nnn TEXT\n", so width is half of # [terminal size minus the line number columns and 3 separating # spaces # width = (terminal_size()[0] - num_width * 2 - 3) // 2 except Exception: # If terminal detection failed, set back to default width = 80 # Setup lineno and line format left_num_fmt = colorize('%%(left_num)%ds' % num_width, 'yellow') right_num_fmt = colorize('%%(right_num)%ds' % num_width, 'yellow') line_fmt = left_num_fmt + ' %(left)s ' + COLORS['reset'] + \ right_num_fmt + ' %(right)s\n' # yield header, old path and new path for line in diff._headers: yield self._markup_header(line) yield self._markup_old_path(diff._old_path) yield self._markup_new_path(diff._new_path) # yield hunks for hunk in diff._hunks: for hunk_header in hunk._hunk_headers: yield self._markup_hunk_header(hunk_header) yield self._markup_hunk_meta(hunk._hunk_meta) for old, new, changed in hunk.mdiff(): if old[0]: left_num = str(hunk._old_addr[0] + int(old[0]) - 1) else: left_num = ' ' if new[0]: right_num = str(hunk._new_addr[0] + int(new[0]) - 1) else: right_num = ' ' left = _normalize(old[1]) right = _normalize(new[1]) if changed: if not old[0]: left = '%*s' % (width, ' ') right = right.rstrip('\x01') if right.startswith('\x00+'): right = right[2:] right = _fit_with_marker( right, self._markup_new, width) elif not new[0]: left = left.rstrip('\x01') if left.startswith('\x00-'): left = left[2:] left = _fit_with_marker(left, self._markup_old, width) right = '' else: left = _fit_with_marker_mix(left, 'red', width, 1) right = _fit_with_marker_mix(right, 'green', width) else: left = _fit_with_marker( left, self._markup_common, width, 1) right = _fit_with_marker(right, self._markup_common, width) yield line_fmt % { 'left_num': left_num, 'left': left, 'right_num': right_num, 'right': right } def _markup_header(self, line): return colorize(line, 'cyan') def _markup_old_path(self, line): return colorize(line, 'yellow') def _markup_new_path(self, line): return colorize(line, 'yellow') def _markup_hunk_header(self, line): return colorize(line, 'lightcyan') def _markup_hunk_meta(self, line): return colorize(line, 'lightblue') def _markup_common(self, line): return colorize(line, 'reset') def _markup_old(self, line): return colorize(line, 'lightred') def _markup_new(self, line): return colorize(line, 'green') def _markup_mix(self, line, base_color): del_code = COLORS['reverse'] + COLORS[base_color] add_code = COLORS['reverse'] + COLORS[base_color] chg_code = COLORS['underline'] + COLORS[base_color] rst_code = COLORS['reset'] + COLORS[base_color] line = line.replace('\x00-', del_code) line = line.replace('\x00+', add_code) line = line.replace('\x00^', chg_code) line = line.replace('\x01', rst_code) return colorize(line, base_color) def markup_to_pager(stream, opts): """Pipe unified diff stream to pager (less). Note: have to create pager Popen object before the translator Popen object in PatchStreamForwarder, otherwise the `stdin=subprocess.PIPE` would cause trouble to the translator pipe (select() never see EOF after input stream ended), most likely python bug 12607 (http://bugs.python.org/issue12607) which was fixed in python 2.7.3. See issue #30 (https://github.com/ymattw/cdiff/issues/30) for more information. """ pager_cmd = ['less'] if not os.getenv('LESS'): # Args stolen from git source: github.com/git/git/blob/master/pager.c pager_cmd.extend(['-FRSX', '--shift 1']) pager = subprocess.Popen( pager_cmd, stdin=subprocess.PIPE, stdout=sys.stdout) diffs = DiffParser(stream).get_diff_generator() marker = DiffMarker() color_diff = marker.markup(diffs, side_by_side=opts.side_by_side, width=opts.width) for line in color_diff: pager.stdin.write(line.encode('utf-8')) pager.stdin.close() pager.wait() def check_command_status(arguments): """Return True if command returns 0.""" try: return subprocess.call( arguments, stdout=subprocess.PIPE, stderr=subprocess.PIPE) == 0 except OSError: return False def revision_control_diff(args): """Return diff from revision control system.""" for _, ops in VCS_INFO.items(): if check_command_status(ops['probe']): return subprocess.Popen( ops['diff'] + args, stdout=subprocess.PIPE).stdout def revision_control_log(args): """Return log from revision control system.""" for _, ops in VCS_INFO.items(): if check_command_status(ops['probe']): return subprocess.Popen( ops['log'] + args, stdout=subprocess.PIPE).stdout def decode(line): """Decode UTF-8 if necessary.""" if isinstance(line, unicode): return line for encoding in ['utf-8', 'latin1']: try: return line.decode(encoding) except UnicodeDecodeError: pass return '*** cdiff: undecodable bytes ***\n' def terminal_size(): """Returns terminal size. Taken from https://gist.github.com/marsam/7268750 but removed win32 support which depends on 3rd party extension. """ width, height = None, None try: import struct import fcntl import termios s = struct.pack('HHHH', 0, 0, 0, 0) x = fcntl.ioctl(1, termios.TIOCGWINSZ, s) height, width = struct.unpack('HHHH', x)[0:2] except (IOError, AttributeError): pass return width, height def main(): signal.signal(signal.SIGPIPE, signal.SIG_DFL) signal.signal(signal.SIGINT, signal.SIG_DFL) from optparse import (OptionParser, BadOptionError, AmbiguousOptionError, OptionGroup) class PassThroughOptionParser(OptionParser): """Stop parsing on first unknown option (e.g. --cached, -U10) and pass them down. Note the `opt_str` in exception object does not give us chance to take the full option back, e.g. for '-U10' it will only contain '-U' and the '10' part will be lost. Ref: http://goo.gl/IqY4A (on stackoverflow). My hack is to try parse and insert a '--' in place and parse again. Let me know if someone has better solution. """ def _process_args(self, largs, rargs, values): left = largs[:] right = rargs[:] try: OptionParser._process_args(self, left, right, values) except (BadOptionError, AmbiguousOptionError): parsed_num = len(rargs) - len(right) - 1 rargs.insert(parsed_num, '--') OptionParser._process_args(self, largs, rargs, values) supported_vcs = sorted(VCS_INFO.keys()) usage = """%prog [options] [file|dir ...]""" parser = PassThroughOptionParser( usage=usage, description=META_INFO['description'], version='%%prog %s' % META_INFO['version']) parser.add_option( '-s', '--side-by-side', action='store_true', help='enable side-by-side mode') parser.add_option( '-w', '--width', type='int', default=80, metavar='N', help='set text width for side-by-side mode, 0 for auto detection, ' 'default is 80') parser.add_option( '-l', '--log', action='store_true', help='show log with changes from revision control') parser.add_option( '-c', '--color', default='auto', metavar='M', help="""colorize mode 'auto' (default), 'always', or 'never'""") # Hack: use OptionGroup text for extra help message after option list option_group = OptionGroup( parser, "Note", ("Option parser will stop on first unknown option " "and pass them down to underneath revision control")) parser.add_option_group(option_group) opts, args = parser.parse_args() if opts.log: diff_hdl = revision_control_log(args) if not diff_hdl: sys.stderr.write(('*** Not in a supported workspace, supported ' 'are: %s\n') % ', '.join(supported_vcs)) return 1 elif sys.stdin.isatty(): diff_hdl = revision_control_diff(args) if not diff_hdl: sys.stderr.write(('*** Not in a supported workspace, supported ' 'are: %s\n\n') % ', '.join(supported_vcs)) parser.print_help() return 1 else: diff_hdl = (sys.stdin.buffer if hasattr(sys.stdin, 'buffer') else sys.stdin) stream = PatchStream(diff_hdl) # Don't let empty diff pass thru if stream.is_empty(): return 0 if opts.color == 'always' or \ (opts.color == 'auto' and sys.stdout.isatty()): markup_to_pager(stream, opts) else: # pipe out stream untouched to make sure it is still a patch byte_output = (sys.stdout.buffer if hasattr(sys.stdout, 'buffer') else sys.stdout) for line in stream: byte_output.write(line) if diff_hdl is not sys.stdin: diff_hdl.close() return 0 if __name__ == '__main__': sys.exit(main()) # vim:set et sts=4 sw=4 tw=79:
# test_ptypes.py # Copyright (c) 2013-2016 Pablo Acosta-Serafini # See LICENSE for details # pylint: disable=C0103,C0111,W0108 # Standard library imports import sys import numpy # Putil imports import putil.ptypes from putil.test import AE, AI ### # Global variables ### emsg = lambda msg: ( '[START CONTRACT MSG: {0}]Argument `*[argument_name]*` ' 'is not valid[STOP CONTRACT MSG]'.format(msg) ) ### # Helper functions ### def check_contract(obj, name, value): AE(obj, ValueError, emsg(name), obj=value) ### # Test functions ### def test_color_space_option_contract(): """ Tests for LineStyleOption pseudo-type """ obj = putil.ptypes.color_space_option check_contract(obj, 'color_space_option', 5) exmsg = ( "[START CONTRACT MSG: color_space_option]Argument " "`*[argument_name]*` is not one of 'binary', 'Blues', 'BuGn', " "'BuPu', 'GnBu', 'Greens', 'Greys', 'Oranges', 'OrRd', 'PuBu', " "'PuBuGn', 'PuRd', 'Purples', 'RdPu', 'Reds', 'YlGn', 'YlGnBu', " "'YlOrBr' or 'YlOrRd' (case insensitive)[STOP CONTRACT MSG]" ) AE(obj, ValueError, exmsg, obj='x') for item in [ 'binary', 'Blues', 'BuGn', 'BuPu', 'GnBu', 'Greens', 'Greys', 'Oranges', 'OrRd', 'PuBu', 'PuBuGn', 'PuRd', 'Purples', 'RdPu', 'Reds', 'YlGn', 'YlGnBu', 'YlOrBr', 'YlOrRd']: putil.ptypes.color_space_option(item) def test_csv_col_filter_contract(): """ Test CsvColFilter pseudo-type """ items = [True, 1.0, [], [1, True, 3], ['a', 'b', True]] for item in items: check_contract(putil.ptypes.csv_col_filter, 'csv_col_filter', item) items = [None, 1, 'a', [1, 2], ['a']] for item in items: putil.ptypes.csv_col_filter(item) def test_csv_col_sort_contract(): """ Test CsvColSort pseudo-type """ items = [ True, None, ['a', None], {(1, 2):'A'}, {'a':True}, {0:'hello'}, [] ] for item in items: check_contract(putil.ptypes.csv_col_sort, 'csv_col_sort', item) items = [ 1, 'a', {'a':'D'}, {0:'d'}, {1:'a'}, [1, 'a'], [1, 'a', {'b':'d'}, {0:'A'}] ] for item in items: putil.ptypes.csv_col_sort(item) def test_csv_data_filter_contract(): """ Test CsvDataFilter pseudo-type """ items = [ True, (1, 2, 3), (True, 'A'), (True, ), (None, True), ('A', 'A'), ({'B':1}, {'C':5}), {2.0:5}, ({2.0:5}, 'A'), (['A', True], {'A':1}), ('A', {}), ([], {'A':1}), ({}, []), {'dfilter':{'a':{'xx':2}}}, {'dfilter':{'a':[3, {'xx':2}]}} ] for item in items: check_contract(putil.ptypes.csv_data_filter, 'csv_data_filter', item) items = [ None, (None, ), (None, None), 1, 'A', ['B', 1], {'A':1}, {'A':1, 'B':2} ] for item in items: putil.ptypes.csv_data_filter(item) def test_csv_filtered_contract(): """ Test CsvFiltered pseudo-type """ for item in [5, 'BC']: check_contract(putil.ptypes.csv_filtered, 'csv_filtered', item) for item in [True, False, 'B', 'b', 'C', 'c', 'R', 'r', 'N', 'n']: putil.ptypes.csv_filtered(item) def test_csv_row_filter_contract(): """ Test CsvRowFilter pseudo-type """ items = [ 'a', {5.0:10}, {'a':{'xx':2}}, {'a':[3, {'xx':2}]}, {'b':True} ] for item in items: check_contract(putil.ptypes.csv_row_filter, 'csv_row_filter', item) exmsg = ( '[START CONTRACT MSG: csv_row_filter]Argument ' '`*[argument_name]*` is empty[STOP CONTRACT MSG]' ) AE(putil.ptypes.csv_row_filter, ValueError, exmsg, obj={}) items = [None, {'x':5}] for item in items: putil.ptypes.csv_row_filter(item) def test_engineering_notation_number(): """ Test EngineeringNotationNumber pseudo-type """ obj = putil.ptypes.engineering_notation_number items = ['3.12b', 'f', 'a1b', ' + 123.45f '] for item in items: check_contract(obj, 'engineering_notation_number', item) items = [' +123.45f ', ' -0 '] for item in items: obj(item) def test_engineering_notation_suffix(): """ Test EngineeringNotationSuffix pseudo-type """ obj = putil.ptypes.engineering_notation_suffix check_contract(obj, 'engineering_notation_suffix', 'b') obj('u') def test_file_name_contract(): """ Test for file_name custom contract """ @putil.pcontracts.contract(sfn='file_name') def func(sfn): """ Sample function to test file_name custom contract """ return sfn items = [3, 'test\0'] for item in items: AI(func, 'sfn', sfn=item) func('some_file.txt') # Test with Python executable (should be portable across systems), file # should be valid although not having permissions to write it func(sys.executable) def test_file_name_exists_contract(): """ Test for file_name_exists custom contract """ @putil.pcontracts.contract(sfn='file_name_exists') def func(sfn): """ Sample function to test file_name_exists custom contract """ return sfn items = [3, 'test\0'] for item in items: AI(func, 'sfn', sfn=item) exmsg = 'File _file_does_not_exist could not be found' AE(func, OSError, exmsg, sfn='_file_does_not_exist') # Test with Python executable (should be portable across systems) func(sys.executable) def test_function_contract(): """ Tests for Function pseudo-type """ def func1(): pass check_contract(putil.ptypes.function, 'function', 'a') items = (func1, None) for item in items: putil.ptypes.function(item) def test_increasing_real_numpy_vector_contract(): """ Tests for IncreasingRealNumpyVector pseudo-type """ obj = putil.ptypes.increasing_real_numpy_vector items = [ 'a', [1, 2, 3], numpy.array([]), numpy.array([[1, 2, 3], [4, 5, 6]]), numpy.array(['a', 'b']), numpy.array([1, 0, -3]), numpy.array([10.0, 8.0, 2.0]) ] for item in items: check_contract(obj, 'increasing_real_numpy_vector', item) items = [ numpy.array([1, 2, 3]), numpy.array([10.0, 12.1, 12.5]), numpy.array([10.0]) ] for item in items: obj(item) def test_interpolation_option_contract(): """ Tests for InterpolationOption pseudo-type """ obj = putil.ptypes.interpolation_option check_contract(obj, 'interpolation_option', 5) exmsg = ( "[START CONTRACT MSG: interpolation_option]Argument " "`*[argument_name]*` is not one of ['STRAIGHT', 'STEP', 'CUBIC', " "'LINREG'] (case insensitive)[STOP CONTRACT MSG]" ) AE(obj, ValueError, exmsg, obj='x') obj(None) for item in ['STRAIGHT', 'STEP', 'CUBIC', 'LINREG']: obj(item) obj(item.lower()) def test_line_style_option_contract(): """ Tests for LineStyleOption pseudo-type """ check_contract(putil.ptypes.line_style_option, 'line_style_option', 5) exmsg = ( "[START CONTRACT MSG: line_style_option]Argument " "`*[argument_name]*` is not one of ['-', '--', '-.', " "':'][STOP CONTRACT MSG]" ) AE(putil.ptypes.line_style_option, ValueError, exmsg, obj='x') putil.ptypes.line_style_option(None) for item in ['-', '--', '-.', ':']: putil.ptypes.line_style_option(item) def test_non_negative_integer(): """ Test PosInteger pseudo-type """ obj = putil.ptypes.non_negative_integer items = ['b', True, -3, 5.2] for item in items: check_contract(obj, 'non_negative_integer', item) items = [0, 2] for item in items: obj(item) def test_offset_range_contract(): """ Tests for PositiveRealNumber pseudo-type """ items = ['a', [1, 2, 3], False, -0.1, -1.1] for item in items: check_contract(putil.ptypes.offset_range, 'offset_range', item) items = [0, 0.5, 1] for item in items: putil.ptypes.offset_range(item) def test_positive_real_num_contract(): """ Tests for PositiveRealNumber pseudo-type """ obj = putil.ptypes.positive_real_num items = ['a', [1, 2, 3], False, -0.1, -2.0] for item in items: check_contract(obj, 'positive_real_num', item) items = [1, 2.0] for item in items: obj(item) def test_real_num_contract(): """ Tests for RealNumber pseudo-type """ items = ['a', [1, 2, 3], False] for item in items: check_contract(putil.ptypes.real_num, 'real_num', item) items = [1, 2.0] for item in items: putil.ptypes.real_num(item) def test_real_numpy_vector_contract(): """ Tests for RealNumpyVector pseudo-type """ obj = putil.ptypes.real_numpy_vector items = [ 'a', [1, 2, 3], numpy.array([]), numpy.array([[1, 2, 3], [4, 5, 6]]), numpy.array(['a', 'b']), ] for item in items: check_contract(obj, 'real_numpy_vector', item) items = [ numpy.array([1, 2, 3]), numpy.array([10.0, 8.0, 2.0]), numpy.array([10.0]) ] for item in items: obj(item)
#!/usr/bin/python # parseacunetix.py # # By Adrien de Beaupre adriendb@gmail.com | adrien@intru-shun.ca # Copyright 2011 Intru-Shun.ca Inc. # v0.09 # 16 October 2011 # # The current version of these scripts are at: http://dshield.handers.org/adebeaupre/ossams-parser.tgz # # Parses acunetix XML output # http://www.acunetix.com # # This file is part of the ossams-parser. # # The ossams-parser is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # The ossams-parser is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with the ossams-parser. If not, see <http://www.gnu.org/licenses/>. # # parseacunetix function def parseacunetix(time, os, root, filetoread, db, dbconnection, projectname, projectid, separator): # Check to see if the document root is 'ScanGroup', exit if it is not if root.tag != "ScanGroup": print filetoread, "is not a acunetix XML report file" return # Take the root attributes and assign it to a dictionary if root.attrib: rootattribs = root.attrib acunetixfile = filetoread.split(separator) file = acunetixfile[-1] filetime = time.ctime(os.path.getmtime(filetoread)) timenow = time.ctime() db.execute(""" INSERT INTO tooloutput (toolname, filename, OSSAMSVersion, filedate, tooldate, inputtimestamp, projectname, projectid) VALUES ('acunetix', '%s', 0.09, '%s', '%s', '%s', '%s', '%s') """ % (file, filetime, rootattribs['ExportedOn'], timenow, projectname, projectid) ) tooloutputnumber = int(db.lastrowid) print "Processed acunetix report number:", tooloutputnumber elements = ["Name", "ModuleName", "Details", "Affects", "IsFalsePositive", "Severity", "Type", "Impact", "Description", "Recommendation", "DetailedInformation"] scans = root.findall('Scan') for scan in scans: starturl = scan.find('StartURL') if starturl.text: starturlval = starturl.text noslashes = starturlval.replace('/','') stripped = noslashes.split(':') hostname = stripped[1] port = stripped[-1] else: hostname = " " port = "0" banner = scan.find('Banner') if banner is not None: if banner.text: bannerval = banner.text else: bannerval = " " responsive = scan.find('Responsive') if responsive is not None: if responsive.text: responsetext = responsive.text if responsetext == "True": recon = 1 portstate = 'open' else: recon = 0 portstate = 'closed' else: responsetext = " " osguess = scan.find('Os') if osguess is not None: if osguess.text: osvalue = osguess.text else: osvalue = osguess.text db.execute(""" INSERT INTO hosts (tooloutputnumber, hostname, recon, hostcriticality, hostos) VALUES (%s, '%s', '%s', 0, '%s') """ % (tooloutputnumber, hostname, recon, osvalue) ) hostnumber = int(db.lastrowid) print "Processed host:", hostnumber, "Name: ", hostname db.execute(""" INSERT INTO ports (tooloutputnumber, hostnumber, protocol, portnumber, portstate, portbanner) VALUES ('%s', '%s', 'TCP', '%s', '%s', '%s') """ % (tooloutputnumber, hostnumber, port, portstate, dbconnection.escape_string(bannerval)) ) portnumber = int(db.lastrowid) reportitems = scan.findall('ReportItems/ReportItem') for reportitem in reportitems: items = {} for element in elements: elementitem = reportitem.find(element) if elementitem is not None: if elementitem.text: items[element] = elementitem.text if items['IsFalsePositive'] == 'True': falsepositive = 1 else: falsepositive = 0 request = reportitem.find('TechnicalDetails/Request') if request is not None: if request.text: httprequest = request.text else: httprequest = " " response = reportitem.find('TechnicalDetails/Response') if response is not None: if response.text: httpresponse = response.text else: httpresponse = " " db.execute(""" INSERT INTO vulnerabilities (tooloutputnumber, hostnumber, vulnerabilityname, vulnerabilityrisk, vulnerabilitydescription, vulnerabilitysolution, vulnerabilityextra, vulnerabilityvalidation, vulnerabilityuri, portsnumber, falsepositive, httprequest, httpresponse) VALUES ('%s', '%s', '%s', '%s', '%s', '%s', '%s', 0, '%s', '%s', '%s', '%s', '%s') """ % (tooloutputnumber, hostnumber, items['Name'], items['Severity'], dbconnection.escape_string(items['Description']), dbconnection.escape_string(items['Recommendation']), dbconnection.escape_string(items['Impact']), items['Affects'], portnumber, falsepositive, dbconnection.escape_string(httprequest), dbconnection.escape_string(httpresponse)) ) vulnnumber = int(db.lastrowid) references = reportitem.findall('References/Reference') for reference in references: database = reference.find('Database') if database is not None: if database.text: referencetype = database.text url = reference.find('URL') if url is not None: if url.text: referencevalue= url.text db.execute(""" INSERT INTO refs (tooloutputnumber, hostnumber, vulnerabilitynumber, referencetype, referencevalue ) VALUES ('%s', '%s', '%s', '%s', '%s') """ % (tooloutputnumber, hostnumber, vulnnumber, referencetype, referencevalue) ) return
import typing from mcpython import shared from mcpython.common.network.package.AbstractPackage import ( AbstractPackage, DefaultPackage, ) async def set_client_var(side, state): shared.is_client = state class NetworkManager: PACKAGE_TYPES: typing.Dict[bytes, typing.Type[AbstractPackage]] = {} def __init__(self): self.side_manager = None self.is_client = None self.package_handlers: typing.Dict[bytes, typing.Callable] = {} # An access point to the internal world or a wrapper of it self.side_world = None def spawn_client_network_instance(self): import mcpython.common.network.NetworkBuilder self.side_manager = ( mcpython.common.network.NetworkBuilder.RemoteNetworkConnector() ) self.is_client = True shared.async_side_instance.call_regular = self.handle_client shared.async_side_instance.run_later.append( shared.async_side_instance.sided_task_manager.invokeOnAll( set_client_var, True ) ) def spawn_server_network_instance(self): import mcpython.common.network.NetworkBuilder self.side_manager = mcpython.common.network.NetworkBuilder.NetworkBuilder() self.is_client = False shared.async_side_instance.call_regular = self.handle_server shared.async_side_instance.run_later.append( shared.async_side_instance.sided_task_manager.invokeOnAll( set_client_var, False ) ) def disconnect(self): if self.side_manager is not None: self.side_manager.disconnect() self.is_client = None shared.async_side_instance.call_regular = None shared.async_side_instance.run_later.append( shared.async_side_instance.sided_task_manager.invokeOnAll( set_client_var, None ) ) def send(self, package: AbstractPackage, target: int = -1): if self.is_client is True: self.side_manager.send_queue.append(package.serialize()) elif self.is_client is False: self.side_manager.connected_clients[target].send(package.serialize()) else: raise RuntimeError("network not set up correctly!") async def handle_client(self): self.side_manager.handle() for head, size, body in self.side_manager.receive_queue: package_type = self.PACKAGE_TYPES[head] package = package_type.deserialize(body) if head in self.package_handlers: await self.package_handlers[head](package) async def handle_server(self): for client in self.side_manager.connected_clients: while len(client.receive_queue): head, size, body = client.receive_queue.pop() package_type = self.PACKAGE_TYPES[head] package = package_type.deserialize(body) if head in self.package_handlers: await self.package_handlers[head](client, package) async def setup(side): from mcpython.common.network.NetworkManager import NetworkManager shared.network_manager = NetworkManager()
import os from lib.fmd.workflow import FileManagementWorkflow from lib.fmd.decorators import GetStage, ListStage from lib.file.tmpfile import TemporaryFile class GetAction(object): def execute(self, context): fadm = FileManagementWorkflow() if context.fid == "all": context.log.status('Gathering list of files to download') record_list = fadm.execute(context, ListStage) context.fidlist = [record['fid'] for record in record_list['records']] context.log.status('Found %d entries to download' % len(context.fidlist)) counter = 0 for fid in context.fidlist: context.fid = fid counter += 1 context.log.status('Processing fid [%s]' % os.path.basename(fid), counter , len(context.fidlist)) fadm.execute(context, GetStage) TemporaryFile.instance().cleanup() else: context.fidlist = [context.fid] output = fadm.execute(context, GetStage) context.log.status(context.filename)
from tests.utils import W3CTestCase class TestRtlIb(W3CTestCase): vars().update(W3CTestCase.find_tests(__file__, 'rtl-ib'))
import json from datetime import datetime from jnius import autoclass PythonActivity = autoclass('org.kivy.android.PythonActivity') PythonService = autoclass('org.kivy.android.PythonService') TaskScheduler = autoclass('org.atq.atq.TaskScheduler') def _to_millis(time: datetime): return int(time.timestamp() * 1000) def schedule_task(task_time: datetime): context = PythonActivity.mActivity or PythonService.mService task_time = _to_millis(task_time) task_scheduler = TaskScheduler(context) task_scheduler.scheduleTask(task_time)
from typing import Dict, List, Tuple, Union, Any import torch import numpy as np import os import logging from torch.nn.modules.rnn import LSTMCell from torch.nn.modules.linear import Linear import torch.nn.functional as F from allennlp.data import Vocabulary from allennlp.models.model import Model from allennlp.nn.util import get_text_field_mask from allennlp.nn import InitializerApplicator from allennlp.training.metrics import Perplexity from allennlp.modules.token_embedders import Embedding from allennlp.nn import util from allennlp_series.common.constants import * from allennlp_series.training.metrics import CocovalsMeasures from allennlp_series.training.metrics.diversity_evals import DiversityEvals from allennlp_series.training.metrics.program_activation_analysis import ( ProgramActivationEvals, ) import allennlp_series.model.utils as utils os.environ["KMP_DUPLICATE_LIB_OK"] = "True" logger = logging.getLogger(__name__) # # class _SoftmaxLoss(torch.nn.Module): # """ # Given some embeddings and some targets, applies a linear layer # to create logits over possible words and then returns the # negative log likelihood. # """ # # def __init__(self, num_words: int, embedding_dim: int) -> None: # super().__init__() # # self.tie_embeddings = False # # self.softmax_w = torch.nn.Parameter( # torch.randn(embedding_dim, num_words) / np.sqrt(embedding_dim) # ) # self.softmax_b = torch.nn.Parameter(torch.zeros(num_words)) # # def forward(self, embeddings: torch.Tensor, targets: torch.Tensor) -> torch.Tensor: # # # embeddings is size (n, embedding_dim) # # targets is (batch_size, ) with the correct class id # # Does not do any count normalization / divide by batch size # probs = torch.nn.functional.log_softmax( # torch.matmul(embeddings, self.softmax_w) + self.softmax_b, dim=-1 # ) # # return torch.nn.functional.nll_loss(probs, targets.long(), reduction="sum") @Model.register("cond_language_model") class ConditionalLanguageModel(Model): """ The `LanguageModel` applies a "contextualizing" `Seq2SeqEncoder` to uncontextualized embeddings, using a `SoftmaxLoss` module (defined above) to compute the language modeling loss. If bidirectional is True, the language model is trained to predict the next and previous tokens for each token in the input. In this case, the contextualizer must be bidirectional. If bidirectional is False, the language model is trained to only predict the next token for each token in the input; the contextualizer should also be unidirectional. If your language model is bidirectional, it is IMPORTANT that your bidirectional `Seq2SeqEncoder` contextualizer does not do any "peeking ahead". That is, for its forward direction it should only consider embeddings at previous timesteps, and for its backward direction only embeddings at subsequent timesteps. Similarly, if your language model is unidirectional, the unidirectional contextualizer should only consider embeddings at previous timesteps. If this condition is not met, your language model is cheating. # Parameters vocab : `Vocabulary` text_field_embedder : `TextFieldEmbedder` Used to embed the indexed tokens we get in `forward`. contextualizer : `Seq2SeqEncoder` Used to "contextualize" the embeddings. As described above, this encoder must not cheat by peeking ahead. dropout : `float`, optional (default: None) If specified, dropout is applied to the contextualized embeddings before computation of the softmax. The contextualized embeddings themselves are returned without dropout. num_samples : `int`, optional (default: None) If provided, the model will use `SampledSoftmaxLoss` with the specified number of samples. Otherwise, it will use the full `_SoftmaxLoss` defined above. sparse_embeddings : `bool`, optional (default: False) Passed on to `SampledSoftmaxLoss` if True. bidirectional : `bool`, optional (default: False) Train a bidirectional language model, where the contextualizer is used to predict the next and previous token for each input token. This must match the bidirectionality of the contextualizer. """ def __init__( self, vocab: Vocabulary, program_emb_size: int = 5, hidden_dim: int = 5, embedding_dim: int = 5, dropout: float = None, target_namespace: str = "tokens", initializer: InitializerApplicator = None, eval_sanity_check_mode: bool = False, use_activation_evals: bool = False, model_programs=None, max_decoding_steps_generate: int = 10, model_name: str = None, use_bertscore_evals: bool = False, use_bow_decoder: bool = False, decoding_method: str = "greedy", sampling_top_p: float = 0.9, sampling_top_k: int = None, add_prog_emb_to_inp: bool = False, **kwargs, ) -> None: super().__init__(vocab, **kwargs) self.eval_sanity_check_mode = eval_sanity_check_mode self._target_namespace = target_namespace self._program_emb_size = program_emb_size self._target_embedding_dim = embedding_dim # program_emb_size #5 self._decoder_output_dim = hidden_dim # program_emb_size #5 # self._softmax_loss = _SoftmaxLoss( # num_words=vocab.get_vocab_size(), embedding_dim=self._target_embedding_dim # ) # not used ** self.decoding_method = decoding_method self.sampling_top_p = sampling_top_p # This buffer is now unused and exists only for backwards compatibility reasons. self.register_buffer("_last_average_loss", torch.zeros(1)) self._perplexity = Perplexity() self._ngram_overlap_eval = CocovalsMeasures( sanity_check_mode=eval_sanity_check_mode, compute_bert_score=use_bertscore_evals, ) self._diversity_eval = DiversityEvals(model_name=model_name) self.use_activation_evals = use_activation_evals if use_activation_evals: self._program_activation_evals = ProgramActivationEvals( programs=model_programs ) if dropout: self._dropout = torch.nn.Dropout(dropout) else: self._dropout = lambda x: x self._start_index = self.vocab.get_token_index( START_SYMBOL, self._target_namespace ) self._end_index = self.vocab.get_token_index(END_SYMBOL, self._target_namespace) num_classes = self.vocab.get_vocab_size(self._target_namespace) self._target_embedder = Embedding(num_classes, self._target_embedding_dim) self._add_prog_emb_to_inp = add_prog_emb_to_inp self._decoder_input_dim = self._target_embedding_dim self._decoder_cell = LSTMCell(self._decoder_input_dim, self._decoder_output_dim) # self._output_projection_layer = Linear(self._decoder_output_dim, num_classes) # self._output_projection_layer = Linear(self._decoder_output_dim+program_emb_size, num_classes) self._output_projection_layer = Linear(self._decoder_output_dim * 2, num_classes) # self._output_projection_layer = self._target_embedder.weight # self._output_projection_layer_bias = torch.nn.Parameter(torch.zeros(num_classes)) self._program_to_hidden_projection = Linear( program_emb_size, self._decoder_output_dim ) if self._add_prog_emb_to_inp: self._program_to_inp_projection = Linear( program_emb_size, self._target_embedding_dim ) # self._program_to_output_projection = Linear(program_emb_size, num_classes) self._max_decoding_steps = max_decoding_steps_generate self.use_bow_decoder = use_bow_decoder if use_bow_decoder: self.bow_decoder_matrix = Linear(program_emb_size, num_classes) ## model_parameters = filter(lambda p: p.requires_grad, self.parameters()) num_params = sum([np.prod(p.size()) for p in model_parameters]) print("[COND-LM] num params language model = ", num_params) ## if initializer is not None: initializer(self) def process_batch( self, program_embedding=None, num_decoding_steps=None, targets=None, generate_or_ppl="ppl", decoding_method: str = "greedy", sampling_top_p: float = 0.9, sampling_top_k: int = None, ): use_gold_targets = False # print("num_decoding_steps = ", num_decoding_steps) if self.training: assert generate_or_ppl == "ppl" use_gold_targets = True else: if generate_or_ppl == "ppl": use_gold_targets = True else: use_gold_targets = False last_predictions = None if False: # True: batch_size = program_embedding.size()[0] decoder_hidden = self._program_to_hidden_projection( program_embedding ) # bs, h else: # lesser params to train batch_size = targets.size()[0] decoder_hidden = torch.zeros(batch_size, self._decoder_output_dim) decoder_context = torch.zeros(batch_size, self._decoder_output_dim) if torch.cuda.is_available(): decoder_hidden = decoder_hidden.cuda() decoder_context = decoder_context.cuda() step_logits = [] step_probabilities = [] step_predictions = [] for timestep in range(num_decoding_steps): if use_gold_targets: input_choices = targets[:, timestep] else: if timestep == 0: input_choices = targets[:, timestep] # init with start symbols else: input_choices = last_predictions decoder_input = self._prepare_decode_step_input( input_choices, decoder_hidden, program_embedding ) decoder_hidden, decoder_context = self._decoder_cell( decoder_input, (decoder_hidden, decoder_context) ) # (batch_size, num_classes) if len(program_embedding.size()) == 1: program_embedding = program_embedding.view(1, -1) program_embedding_proj = self._program_to_hidden_projection( program_embedding ) output_projections = self._output_projection_layer( torch.cat([decoder_hidden, program_embedding_proj], dim=1) ) # output_projections = F.linear(input=decoder_hidden, # weight=self._output_projection_layer, # bias=self._output_projection_layer_bias) # program_proj = self._program_to_output_projection(program_embedding) # output_projections = output_projections + program_proj if self.use_bow_decoder: output_projections = self.bow_decoder_matrix(program_embedding) step_logits.append(output_projections.unsqueeze(1)) # bs,1,vocab class_probabilities = F.softmax(output_projections, dim=-1) step_probabilities.append(class_probabilities.unsqueeze(1)) if self.use_bow_decoder: _, predicted_classes = torch.kthvalue( -class_probabilities, k=timestep + 1, dim=1 ) ## generation through argmax # does assume that number of steps is smaller than the vocab # print("predicted_classes = ", predicted_classes) else: if decoding_method == "greedy": _, predicted_classes = torch.max( class_probabilities, 1 ) ## generation through argmax elif decoding_method == "sample": # _, predicted_classes = torch.max(class_probabilities, 1) # print(" *** predicted_classes : ", predicted_classes.size()) temperature = 1.0 if sampling_top_k is None: top_k = 0 else: top_k = sampling_top_k top_p = sampling_top_p # 0.9 bs = output_projections.size()[0] assert bs == 1, "found bs = " + str(bs) + " , but wanted bs = 1" # print("output_projections : ", output_projections.size()) logits = output_projections.view(-1) / temperature filtered_logits = utils.top_k_top_p_filtering( logits, top_k=top_k, top_p=top_p ) probabilities = F.softmax(filtered_logits, dim=-1) predicted_classes = torch.multinomial(probabilities, 1) # print("predicted_classes : ", predicted_classes.size()) else: raise NotImplementedError last_predictions = predicted_classes # (batch_size, 1) step_predictions.append(last_predictions.unsqueeze(1)) # for self.use_bow_decoder mode, # for now picking the topk words # note that due to output_projections = self.bow_decoder_matrix(program_embedding) # projections are same at every step return { "step_logits": step_logits, "step_probabilities": step_probabilities, "step_predictions": step_predictions, } def forward( # type: ignore self, program_embedding: torch.FloatTensor, target_tokens: [str, torch.LongTensor], metadata: List[Dict[str, Any]] = None, mode="ppl", selected_program_id: List[int] = None, ) -> Dict[str, torch.Tensor]: # print("[CondLM] program_embedding = ", program_embedding) targets = None if len(program_embedding.size()) == 1: program_embedding = program_embedding.view(1, -1) batch_size = program_embedding.size()[0] # print("[CondLM] : target_tokens = ", target_tokens) assert mode in ["ppl", "generate"] if target_tokens: targets = target_tokens["tokens"] target_sequence_length = targets.size()[1] # The last input from the target is either padding or the end symbol. Either way, we # don't have to process it. num_decoding_steps = ( target_sequence_length - 1 ) # --> start will suupply here explicitly # targets: bs, timesteps # shape (batch_size, timesteps, embedding_size) # embeddings = self._target_embedder.forward(targets) else: num_decoding_steps = self._max_decoding_steps # print("program_embedding: ", program_embedding) # print("targets: ", type(targets)) vals_loss = self.process_batch( program_embedding, num_decoding_steps, targets, generate_or_ppl=mode ) step_logits, step_probabilities, step_predictions = ( vals_loss["step_logits"], vals_loss["step_probabilities"], vals_loss["step_predictions"], ) # step_logits is a list containing tensors of shape (batch_size, 1, num_classes) # This is (batch_size, num_decoding_steps, num_classes) logits = torch.cat(step_logits, 1) class_probabilities = torch.cat(step_probabilities, 1) all_predictions = torch.cat(step_predictions, 1) output_dict = { "logits": logits, "class_probabilities": class_probabilities, "predictions": all_predictions, } if target_tokens: target_mask = get_text_field_mask(target_tokens) # loss = self._get_loss(logits, targets, target_mask) loss = self._get_loss(logits, targets, target_mask, average=None) output_dict["logprob_ylabel_given_z"] = -loss average_loss = torch.mean(loss) # loss #.data.cpu().numpy() # if self.unconditional_lm: # output_dict["loss"] = average_loss # torch.mean(loss) if not self.training: if mode == "generate": all_generated = [] all_target = [] i2v = self.vocab.get_index_to_token_vocabulary("tokens") num_decoding_steps = self._max_decoding_steps # ** new vals_sample = self.process_batch( program_embedding, num_decoding_steps, targets, generate_or_ppl="generate", decoding_method=self.decoding_method, sampling_top_p=self.sampling_top_p, ) step_predictions = vals_sample["step_predictions"] # step_predictions: time_steps,batch_size,1 for b in range(batch_size): # print("batch_size = ", batch_size) step_predictions_b = [ pred_i[b].data.item() for pred_i in step_predictions ] step_predictions_b = [p for p in step_predictions_b if p != 0] if self.use_bow_decoder: pass else: end_idx = ( step_predictions_b.index(self._end_index) if self._end_index in step_predictions_b else len(step_predictions_b) ) if end_idx != -1: step_predictions_b = step_predictions_b[:end_idx] predicted_str = " ".join([i2v[pi] for pi in step_predictions_b]) targets_b = [pred_i.data.item() for pred_i in targets[b]] targets_b = [p for p in targets_b if p != 0] targets_b = targets_b[1:-1] # ** removing start and end index target_str = " ".join([i2v[pi] for pi in targets_b]) # logger.debug(f" ************** [generate] target_str = {target_str}") # logger.debug(f" ************** [generate] predicted_str = {predicted_str}") print(" ************** [generate] target_str =", target_str) print(" ************** [generate] predicted_str = ", predicted_str) all_generated.append(predicted_str) all_target.append(target_str) id = metadata[b]["idx"] self._ngram_overlap_eval(predicted_str, target_str, id) self._diversity_eval(predicted_str, typ="generated") self._diversity_eval(target_str, typ="gt") if self.use_activation_evals: self._program_activation_evals( predicted_str, typ="generated", program_id=selected_program_id[b], ) self._program_activation_evals( target_str, typ="gt", program_id=selected_program_id[b] ) output_dict.update( { "generate_all_generated": all_generated, "generate_all_target": all_target, } ) else: if mode == "generate": raise NotImplementedError( "generate mode not implemented for training mode" ) return output_dict def log_ppl(self, avg_loss): self._perplexity(avg_loss) def get_metrics(self, reset: bool = False): ret = {"perplexity": self._perplexity.get_metric(reset=reset)} if (not self.training) and reset: # and (not self.unconditional_lm): ret.update(self._ngram_overlap_eval.get_metric(reset)) ret.update(self._diversity_eval.get_metric(reset)) if self.use_activation_evals: ret.update(self._program_activation_evals.get_metric(reset)) return ret def _prepare_decode_step_input( self, input_indices: torch.LongTensor, decoder_hidden_state: torch.LongTensor = None, program_embedding: torch.FloatTensor = None, ) -> torch.Tensor: embedded_input = self._target_embedder.forward(input_indices) # if not self.unconditional_lm: if self._add_prog_emb_to_inp: # program_emb_extended = program_embedding program_emb_extended = self._program_to_inp_projection( program_embedding ) embedded_input = torch.cat([embedded_input, program_emb_extended], -1) # print("embedded_input : ", embedded_input.size()) # (batch_size, encoder_output_dim + target_embedding_dim) return embedded_input @staticmethod def _get_loss( logits: torch.FloatTensor, targets: torch.LongTensor, target_mask: torch.LongTensor, average: str = "batch", ) -> torch.FloatTensor: """ Takes logits (unnormalized outputs from the decoder) of size (batch_size, num_decoding_steps, num_classes), target indices of size (batch_size, num_decoding_steps+1) and corresponding masks of size (batch_size, num_decoding_steps+1) steps and computes cross entropy loss while taking the mask into account. The length of ``targets`` is expected to be greater than that of ``logits`` because the decoder does not need to compute the output corresponding to the last timestep of ``targets``. This method aligns the inputs appropriately to compute the loss. During training, we want the logit corresponding to timestep i to be similar to the target token from timestep i + 1. That is, the targets should be shifted by one timestep for appropriate comparison. Consider a single example where the target has 3 words, and padding is to 7 tokens. The complete sequence would correspond to <S> w1 w2 w3 <E> <P> <P> and the mask would be 1 1 1 1 1 0 0 and let the logits be l1 l2 l3 l4 l5 l6 We actually need to compare: the sequence w1 w2 w3 <E> <P> <P> with masks 1 1 1 1 0 0 against l1 l2 l3 l4 l5 l6 (where the input was) <S> w1 w2 w3 <E> <P> """ # relevant_targets = targets.contiguous() # (batch_size, num_decoding_steps) # relevant_mask = target_mask.contiguous() # (batch_size, num_decoding_steps) relevant_targets = targets[ :, 1: ].contiguous() # (batch_size, num_decoding_steps) relevant_mask = target_mask[ :, 1: ].contiguous() # (batch_size, num_decoding_steps) loss = util.sequence_cross_entropy_with_logits( logits, relevant_targets, relevant_mask, average=average ) # print('_get loss : ', loss) return loss
from rich import box from ...helper import deprecate_by class PlotMixin: """Provide helper functions for :class:`Document` to plot and visualize itself.""" def _ipython_display_(self): """Displays the object in IPython as a side effect""" self.summary() def __rich_console__(self, console, options): yield f":page_facing_up: [b]Document[/b]: [cyan]{self.id}[cyan]" from rich.table import Table my_table = Table('Attribute', 'Value', width=80, box=box.ROUNDED) for f in self.non_empty_fields: if f in ('embedding', 'tensor'): from .rich_embedding import ColorBoxEmbedding my_table.add_row(f, ColorBoxEmbedding(getattr(self, f))) elif f not in ('id', 'chunks', 'matches'): my_table.add_row(f, str(getattr(self, f))) if my_table.rows: yield my_table def summary(self) -> None: """Print non-empty fields and nested structure of this Document object.""" from rich import print print(self._plot_recursion()) def _plot_recursion(self, tree=None): if tree is None: from rich.tree import Tree tree = Tree(self) else: tree = tree.add(self) for a in ('matches', 'chunks'): if getattr(self, a): if a == 'chunks': _icon = ':diamond_with_a_dot:' else: _icon = ':large_orange_diamond:' _match_tree = tree.add(f'{_icon} [b]{a.capitalize()}[/b]') for d in getattr(self, a): d._plot_recursion(_match_tree) return tree def display(self): """Plot image data from :attr:`.tensor` or :attr:`.uri`.""" from IPython.display import Image, display if self.uri: if self.mime_type.startswith('audio') or self.uri.startswith('data:audio/'): uri = _convert_display_uri(self.uri, self.mime_type) _html5_audio_player(uri) elif self.mime_type.startswith('video') or self.uri.startswith( 'data:video/' ): uri = _convert_display_uri(self.uri, self.mime_type) _html5_video_player(uri) elif self.uri.startswith('data:image/'): _html5_image(self.uri) else: display(Image(self.uri)) elif self.tensor is not None: try: import PIL.Image p = PIL.Image.fromarray(self.tensor) if p.mode != 'RGB': raise display(p) except: import matplotlib.pyplot as plt plt.matshow(self.tensor) else: self.summary() plot = deprecate_by(display, removed_at='0.5') def _convert_display_uri(uri, mime_type): import urllib from .helper import _to_datauri, _uri_to_blob scheme = urllib.parse.urlparse(uri).scheme if scheme not in ['data', 'http', 'https']: blob = _uri_to_blob(uri) return _to_datauri(mime_type, blob) return uri def _html5_image(uri): from IPython.display import display from IPython.core.display import HTML # noqa src = f''' <body> <image src="{uri}" height="200px"> </body> ''' display(HTML(src)) # noqa def _html5_video_player(uri): from IPython.display import display from IPython.core.display import HTML # noqa src = f''' <body> <video width="320" height="240" autoplay muted controls> <source src="{uri}"> Your browser does not support the video tag. </video> </body> ''' display(HTML(src)) # noqa def _html5_audio_player(uri): from IPython.display import display from IPython.core.display import HTML # noqa src = f''' <body> <audio controls="controls" style="width:320px" > <source src="{uri}"/> Your browser does not support the audio element. </audio> </body> ''' display(HTML(src)) # noqa
import h5py from whacc import utils import matplotlib.pyplot as plt import numpy as np H5_list = utils.get_h5s('/Users/phil/Dropbox/Autocurator/testing_data/MP4s/') H5_FILE = H5_list[0] with h5py.File(H5_FILE, 'r') as hf: for k in hf.keys(): print(k) print(hf['trial_nums_and_frame_nums'][:]) # with h5py.File(H5_FILE, 'r') as hf: # plt.plot(hf['in_range'][:]) # print(hf['in_range'][:]) with h5py.File(H5_FILE, 'r') as hf: # for k in hf['trial_nums_and_frame_nums'][1, :]: cumsum_frames = np.concatenate((np.asarray([0]), np.cumsum(hf['trial_nums_and_frame_nums'][1, :]))) tot_frames = np.sum(hf['trial_nums_and_frame_nums'][1, :]) start_pole = 2000 stop_pole = 3000 b = np.vstack((start_pole+cumsum_frames[:-1], cumsum_frames[1:]-1)).astype('int') b = np.min(b, axis = 0) a = np.vstack((stop_pole+cumsum_frames[:-1], cumsum_frames[1:])).astype('int') a = np.min(a, axis = 0) keep_mask = np.zeros(tot_frames.astype('int')) for k1, k2 in zip(b, a): keep_mask[k1:k2] = 1 plt.plot(keep_mask)
# Natural Language Toolkit: Parser Utility Functions # # Author: Ewan Klein <ewan@inf.ed.ac.uk> # # URL: <http://nltk.sf.net> # For license information, see LICENSE.TXT """ Utility functions for parsers. """ ###################################################################### #{ Test Suites ###################################################################### from featurechart import load_earley class TestGrammar(object): """ Unit tests for CFG. """ def __init__(self, grammar, suite, accept=None, reject=None): self.test_grammar = grammar self.cp = load_earley(grammar, trace=0) self.suite = suite self._accept = accept self._reject = reject def run(self, show_trees=False): """ Sentences in the test suite are divided into two classes: - grammatical (C{accept}) and - ungrammatical (C{reject}). If a sentence should parse accordng to the grammar, the value of C{trees} will be a non-empty list. If a sentence should be rejected according to the grammar, then the value of C{trees} will be C{None}. """ for test in self.suite: print test['doc'] + ":", for key in ['accept', 'reject']: for sent in test[key]: tokens = sent.split() trees = self.cp.parse(tokens) if show_trees and trees: print print sent for tree in trees: print tree if key=='accept': if trees == []: raise ValueError, "Sentence '%s' failed to parse'" % sent else: accepted = True else: if trees: raise ValueError, "Sentence '%s' received a parse'" % sent else: rejected = True if accepted and rejected: print "All tests passed!"
""" Labels display text to users """ from kivy.uix.label import Label from kivy.properties import StringProperty, NumericProperty, BooleanProperty, ColorProperty __all__ = [ 'CupertinoLabel' ] class CupertinoLabel(Label): """ iOS style Label .. image:: ../_static/label/demo.png """ text = StringProperty(' ') """ A :class:`~kivy.properties.StringProperty` defining the text of :class:`CupertinoLabel` .. image:: ../_static/label/text.png **Python** .. code-block:: python CupertinoLabel(text='Hello World') **KV** .. code-block:: CupertinoLabel: text: 'Hello World' """ font_name = StringProperty('San Francisco') """ Font of :class:`CupertinoLabel`. To comply with iOS standard, use `San Francisco` or `New York` .. image:: ../_static/label/font_name.png **Python** .. code-block:: python CupertinoLabel(font_name='New York') **KV** .. code-block:: CupertinoLabel: font_name: 'New York' """ font_size = NumericProperty(15) """ Size of the font of :class:`CupertinoLabel` .. image:: ../_static/label/font_size.png **Python** .. code-block:: python CupertinoLabel(font_size=20) **KV** .. code-block:: CupertinoLabel: font_size: 20 """ bold = BooleanProperty(False) """ If :attr:`text` :class:`CupertinoLabel` is bold .. image:: ../_static/label/bold.png **Python** .. code-block:: python CupertinoLabel(bold=True) **KV** .. code-block:: CupertinoLabel: bold: True """ italic = BooleanProperty(False) """ If :attr:`text` of :class:`CupertinoLabel` is italic .. image:: ../_static/label/italic.png **Python** .. code-block:: python CupertinoLabel(italic=True) **KV** .. code-block:: CupertinoLabel: italic: True """ color = ColorProperty([0, 0, 0, 1]) """ Color of :attr:`text` :class:`CupertinoLabel` .. image:: ../_static/label/color.png **Python** .. code-block:: python CupertinoLabel(color=(1, 0, 0, 1)) **KV** .. code-block:: CupertinoLabel: color: 1, 0, 0, 1 """
# Assemble release folder import os import sys import shutil import glob import pathlib target = "ogm_release" binext = "" libext = ".so" _from = "." if len(sys.argv) >= 2: _from = sys.argv[1] if os.name == 'nt': binext = ".exe" libext = ".dll" dlibext = "d" + libext if os.path.exists(target): print ("removing existing " + target) shutil.rmtree(target) os.mkdir(target) def copytree(src, dst): print("copytree " + src + " -> " + dst) return shutil.copytree(src, dst) def copy(src, dst): print("copy " + src + " -> " + dst) return shutil.copy(src, dst) # etc/ os.mkdir(target + "/etc") endings = ["*.png", "*.gif", "*.ico"] for ending in endings: for file in glob.glob('etc/' + ending): copy(file, target + "/etc") # demo/ copytree("demo", target + "/demo") # binaries copy(os.path.join(_from, "ogm" + binext), target) os.chmod(target + "/ogm" + binext, 777) copy(os.path.join(_from, "ogm-test" + binext), target) os.chmod(target + "/ogm-test" + binext, 777) for file in pathlib.Path(_from).rglob('*' + libext): file = str(file) if os.path.dirname(file) == target: continue print("found " + file) copy(file, target) # licenses copy("LICENSE", target + "/LICENSE_opengml") copy("external/xbr/xbrjs.license", target + "/LICENSE_xbrjs") copy("external/pugixml/LICENCE.md", target + "/LICENSE_pugixml") copy("external/include/nlohmann/LICENCE.MIT", target + "/LICENSE_nlohmann") copy("external/include/rectpack2D/LICENSE.md", target + "/LICENSE_rectpack2d") copy("external/include/simpleini/LICENCE.txt", target + "/LICENSE_simpleini") copy("external/include/ThreadPool_zlib_license.txt", target + "/LICENCE_ThreadPool") copy("external/include/rapidcsv.license", target + "/LICENSE_rapidcsv") copy("external/include/base64.license", target + "/LICENSE_base64") copy("external/soloud/LICENSE", target + "/LICENSE_soloud")
''' Renames cTAKES XMI output files (named like doc%d.xmi) to use the original document name. E.g. Plaintext abc.txt -> cTAKES doc0.xmi -> renamed abc.xmi ''' import os from ctakes.format import XMI if __name__ == '__main__': def _cli(): import optparse parser = optparse.OptionParser(usage='Usage: %prog XMIDIR') (options, args) = parser.parse_args() if len(args) != 1: parser.print_help() exit() (xmidir,) = args return xmidir xmidir = _cli() print("Renaming files in %s..." % xmidir) for f in os.listdir(xmidir): if os.path.splitext(f)[1] == '.xmi': path = os.path.join(xmidir, f) docID = XMI.getDocumentID(path) new_path = os.path.join(xmidir, '%s.xmi' % os.path.splitext(docID)[0]) if not os.path.isfile(new_path): os.rename(path, new_path) print(" >> Renamed %s to %s" % (path, new_path)) elif path != new_path: print("[NAME COLLISION] File %s already exists (skipping %s)" % (new_path, path))