content
stringlengths
5
1.05M
from math import floor class StepperError(Exception): pass class Stepper(): sMicrostep = (None, 1, 2, 2, 4, 8, 16, 32) # this might be wrong, confusing from uCtrl label sPulsePerRev = (None, 200, 400, 800, 1600, 3200, 6400) sCurrent = (0.5, 1.0, 1.5, 2.0, 2.5, 2.8, 3.0, 3.5) sPkCurrent = (0.7, 1.2, 1.7, 2.2, 2.7, 2.9, 3.2, 4.0) gearboxRatio = 77 numSwitches = 6 def __init__(self, io, pinDir, pinPul, pinEna = None, maxAngleDeg = 70): self.io = io self.pinDir = pinDir self.pinPul = pinPul self.pinEna = pinEna self.pulsePerRev = Stepper.sPulsePerRev[1] self.anglePos = 0 self.maxAngleDeg = maxAngleDeg def setupPin(self, pin): ''' uses rpi IO to set pin to output ''' self.io.setMode(pin) def setup(self): ''' intializes pul and dir pins and sets them low ''' self.setupPin(self.pinDir) self.setPin(self.pinDir, 0) self.setupPin(self.pinPul) self.setPin(self.pinPul, 0) def setPin(self, pin, state): ''' general way to set pin ''' self.io.write(pin, state) def setMaxAngleDeg(self, angle): self.maxAngleDeg = angle def getPin(self, pin): return self.io.read(pin) def toggleDir(self): self.io.toggle(self.pinDir) def setPulsePerRev(self, ppr): if ppr not in Stepper.sPulsePerRev: raise(StepperError("{} not a valid pulse per revolution".format(ppr))) else: self.pulsePerRev = ppr def calcPulses(self, degree): stepAngle = 360/(self.pulsePerRev*Stepper.gearboxRatio) pulses = degree/stepAngle return abs(floor(pulses)) def reset(self): ''' returns stepper to original position ''' self.rotate(self.anglePos*-1) def store(self): f = open("stepper.txt", 'w') f.write(str(self.anglePos)) f.close() def rotate(self, degree): ''' this considers the rotation angle to be relative and will rotate the stepper motor by the amount specified unless bounds are exceeded ''' # check bounds if abs(self.anglePos + degree) > abs(self.maxAngleDeg): print(f"Exceeds rotation bounds of {self.maxAngleDeg} degrees. No rotation") return # check direction # need to double check direction mapping if degree < 0: bDir = 1 else: bDir = 0 # get number of pulses to drive pulses = self.calcPulses(degree) # ok now set direction and pulse somehow print("pulses: ", pulses, " direction: ", bDir) self.setPin(self.pinDir, bDir) if pulses > 8000: ramp = self.io.calcRamp(pulses) print(ramp) self.io.generateRamp(self.pinPul, ramp) else: self.io.sendPulses(self.pinPul, pulses, 800) # store rotation self.anglePos += degree if __name__ == "__main__" and __package__ is None: # testing #from os import sys, path #sys.path.append(path.dirname(path.abspath(__file__))) import time try: from .rpi_interface import IO except Exception: from rpi_interface import IO # Set GPIO17/PIN11 for DIR control DIR = 17 # Set GPIO27/PIN13 for PUL control PUL = 27 gpio = IO() stepper = Stepper(gpio, pinDir=DIR, pinPul=PUL) stepper.setup() #stepper.gearboxRatio = 1 stepper.setPulsePerRev(200) wait = input() start = time.time() stepper.rotate(360) print("elapsed time: ",time.time()-start) wait = input() stepper.rotate(-36) wait = input() stepper.rotate(36)
# -*- coding: utf-8 -*- import time from concurrent.futures import as_completed from common.db import read_session_scope, write_session_scope from config.config_loader import logger, global_config from mall_spider.common.enums import RiskType, PickleFileType from mall_spider.dao.stream_risk_dao import get_stream_risk_dao from mall_spider.job.smorf import Smorf from mall_spider.model.cmm_sys_stream_risk import CmmSysStreamRisk from mall_spider.spiders.actions.action_service import ActionService from mall_spider.spiders.actions.cookie_service import get_cookie_service from mall_spider.spiders.actions.executor_service import ExecutorService from mall_spider.spiders.actions.proxy_service import get_proxy_service from mall_spider.spiders.spider_qt5 import spider_qt5_bootstrap class TaobaoListPageJob(ActionService, Smorf): def __init__(self, pool_size): super().__init__() self._counter = 0 self._executor = ExecutorService(pool_size) self._proxy_service = get_proxy_service() self._cookie_service = get_cookie_service() s_accounts = global_config.s_accounts self._account_counter = dict() for item in s_accounts: self._account_counter[item['username']] = 0 self._fail_account_counter = dict() for item in s_accounts: self._fail_account_counter[item['username']] = 0 def execute(self, num): cycle_login_num = 0 tasks = self.execute_taobao_integrate_list_actions() i = 0 future_tasks = {} with read_session_scope() as session: _stream_risk_dao = get_stream_risk_dao(session=session) rsts = _stream_risk_dao.base_query.all() risk_usernames = set(item.raw_data for item in rsts) s_accounts = global_config.s_accounts for task in tasks: account = s_accounts[self._counter % len(s_accounts)] proxy = self._proxy_service.get_static_proxy(account['username']) # raw_data = task.raw_data # account = raw_data['account'] self._counter += 1 i += 1 if account['username'] in risk_usernames: continue if i < num: future_tasks[ self._executor.submit(self._execute_taobao_integrate_list_actions, task, account, proxy)] = task for future in as_completed(future_tasks): try: account, flag, force = future.result() if flag: if force: with write_session_scope() as session: _stream_risk_dao = get_stream_risk_dao(session=session) self._risk(stream_risk_dao=_stream_risk_dao, account=account) # self._login(account=account, force=True if cycle_login_num == 0 else False) cycle_login_num += 1 else: self._fail_account_counter[account['username']] += 1 if self._fail_account_counter[account['username']] > 2: self._cookie_service.remove(account=account) with write_session_scope() as session: _stream_risk_dao = get_stream_risk_dao(session=session) self._risk(stream_risk_dao=_stream_risk_dao, account=account) # self._login(account=account, force=True if cycle_login_num == 0 else False) cycle_login_num += 1 else: url = 'https://s.m.taobao.com/h5?q=Flyco%2BFR5218&search=%E6%8F%90%E4%BA%A4&tab=all' # url = 'https://s.m.taobao.com/h5?q=Flyco%2BFR5218&search=%E6%8F%90%E4%BA%A4&tab=all' proxy = self._proxy_service.get_origin_static_proxy(account['username']) cookies = self._cookie_service.load(account=account, type_=PickleFileType.origin_cookie) time.sleep(5) cookies, origin_cookies = spider_qt5_bootstrap(url=url, account=account, risk=False, proxy=proxy, cookies=cookies) self._cookie_service.dump(cookies=cookies, account=account) self._cookie_service.dump(cookies=origin_cookies, account=account, type_=PickleFileType.origin_cookie) self._account_counter[account['username']] = 0 else: self._fail_account_counter[account['username']] = 0 self._account_counter[account['username']] += 1 if self._account_counter[account['username']] >= 2: url = 'https://s.m.taobao.com/h5?q=Flyco%2BFR5218&search=%E6%8F%90%E4%BA%A4&tab=all' # url = 'https://s.m.taobao.com/h5?q=Flyco%2BFR5218&search=%E6%8F%90%E4%BA%A4&tab=all' proxy = self._proxy_service.get_origin_static_proxy(account['username']) cookies = self._cookie_service.load(account=account, type_=PickleFileType.origin_cookie) time.sleep(5) cookies, origin_cookies = spider_qt5_bootstrap(url=url, account=account, risk=False, proxy=proxy, cookies=cookies) self._cookie_service.dump(cookies=cookies, account=account) self._cookie_service.dump(cookies=origin_cookies, account=account, type_=PickleFileType.origin_cookie) self._account_counter[account['username']] = 0 except Exception as e: logger.error(e) def _risk(self, stream_risk_dao, account): entity = stream_risk_dao.query_one(_filter=[CmmSysStreamRisk.type == int(RiskType.taobao_search), CmmSysStreamRisk.raw_data == account['username']]) if not entity: entity = CmmSysStreamRisk() entity.raw_data = account['username'] entity.type = int(RiskType.taobao_search) stream_risk_dao.insert_entity(entity=entity) def init(self): super().init() def init_argparse(self, parser): super().init_argparse(parser) def process(self): # return super().process() self.execute(2) time.sleep(10) if __name__ == "__main__": s = TaobaoListPageJob(10) logger.info("start to execute taobao_list_page job") s.run() # s.process() logger.error("exit taobao_list_page job")
import time import logging from instabot.api import api from instachatbot.nodes import Node, MenuNode from instachatbot.state import Conversation from instachatbot.storage import Storage class InstagramChatBot: def __init__(self, menu: MenuNode, storage: Storage = None, trigger=None): self.logger = logging.getLogger('InstagramChatBot') self._api = api.API() self.menu_node = menu self._last_message_timestamp = {} self.conversation = Conversation(menu, storage) self.user_id = None self.trigger = trigger def login(self, username, password, proxy=None): self._api.login(username, password, proxy=proxy) self.user_id = self._api.user_id def start(self, polling_interval=1): start_timestamp = time.time() * 1000000 while True: time.sleep(polling_interval) # approve pending threads self._api.get_pending_inbox() for thread in self._api.last_json['inbox']['threads']: self._api.approve_pending_thread(thread['thread_id']) # process messages self._api.get_inbox_v2() for message in self.parse_messages( self._api.last_json, start_timestamp): self.logger.debug('Got message from %s: %s', message['from'], message['text']) context = { 'bot': self } self.handle_message(message, context) def stop(self): self._api.logout() def parse_messages(self, body, start_timestamp): threads = body['inbox']['threads'] for thread in threads: if thread.get('is_group'): continue thread_id = thread['thread_id'] last_seen_timestamp = thread.get( 'last_seen_at', {}).get( str(self.user_id), {}).get('timestamp', 0) if last_seen_timestamp: last_seen_timestamp = int(last_seen_timestamp) last_seen_timestamp = max( last_seen_timestamp, self._last_message_timestamp.get(thread_id, 0)) items = thread.get('items') users = {user['pk']: user['username'] for user in thread['users']} users[body['viewer']['pk']] = body['viewer']['username'] for item in items: if start_timestamp > item['timestamp']: continue if last_seen_timestamp >= item['timestamp']: continue self._last_message_timestamp[thread_id] = item['timestamp'] yield { 'id': str(item['item_id']), 'date': item['timestamp'], 'type': item['item_type'], 'text': item.get('text'), 'from': { 'id': str(item['user_id']), 'username': users.get(item['user_id']) }, 'chat': { 'id': str(thread_id), 'title': thread['thread_title'], 'type': thread['thread_type'], } } def handle_message(self, message, context): chat_id = message['chat']['id'] state = self.conversation.get_state(chat_id) or {} node: Node = state.get('node') or self.menu_node if not state: # start menu only if trigger message is sent if self.trigger and message.get('text') != self.trigger: return jump = node.handle(message, state, context) self.conversation.save_state(chat_id, state) if jump: self.handle_message(message, context) # show root menu again only if trigger is not required if not state and not self.trigger: self.handle_message(message, context) def get_user_id_from_username(self, username): self._api.search_username(username) if "user" in self._api.last_json: return str(self._api.last_json["user"]["pk"]) else: return None def send_direct_message(self, user_id, text): logging.debug('Sending message to %s: %s', user_id, text) self._api.send_direct_item(item_type='text', users=[user_id], text=text) def send_direct_photo(self, user_id, image_path): logging.debug('Sending photo to %s: %s', user_id, image_path) self._api.send_direct_item(item_type='photo', users=[user_id], filepath=image_path)
import numpy as np def nextthing(): var = np.random.rand(1) if var<0.3: print('Attack human!') elif var<0.7: print('Be cute.') else: print('Make weird noises.')
import os from pathlib import Path from django.contrib import messages from django.contrib import admin from django.contrib.admin import display # was introduced in Django 3.2 from django.conf import settings from .models import Account from .models import Brand from .models import DataSource from .models import DataSourceDetail # Register your models here. class BrandInline(admin.TabularInline): model = Brand extra = 2 def save_model(self, request, obj, form, change): print('ddd') # https://show-me-the-money.tistory.com/entry/Django-Admin%EC%97%90%EC%84%9C-Form-%EC%A0%80%EC%9E%A5-%EC%BB%A4%EC%8A%A4%ED%84%B0%EB%A7%88%EC%9D%B4%EC%A7%95%ED%95%98%EA%B8%B0 class AccountAdmin(admin.ModelAdmin): fieldsets = [ # choose editable attr (None, {'fields': ['s_acct_title']}), # ('Date information', {'fields': ['date_reg'], 'classes': ['collapse']}), ] inlines = [BrandInline] list_display = ('s_acct_title', 'date_reg') list_filter = ['date_reg'] search_fields = ['s_acct_title'] def save_model(self, request, obj, form, change): # https://devnauts.tistory.com/197 obj.user = request.user # self.message_user(request, 'dsafasdf', level=messages.ERROR) # # You can also use warning, debug, info and success in place of error super().save_model(request, obj, form, change) # print(obj.pk) s_acct_root_abs_path = os.path.join(settings.SV_STORAGE_ROOT, str(obj.pk)) if not os.path.isdir(s_acct_root_abs_path): os.makedirs(s_acct_root_abs_path) def save_formset(self, request, form, formset, change): # https://jay-ji.tistory.com/32 formset.save() n_acct_pk = None n_brand_pk = None if formset.is_valid(): for form1 in formset: if 'sv_acct' in form1.cleaned_data.keys(): n_acct_pk = form1.cleaned_data['sv_acct'].pk if 's_brand_title' in form1.cleaned_data.keys(): if not form1.cleaned_data['DELETE']: try: o_brand_appended = Brand.objects.get(s_brand_title=form1.cleaned_data['s_brand_title']) except Brand.DoesNotExist: o_brand_appended = None n_brand_pk = o_brand_appended.pk if n_acct_pk and n_brand_pk: s_brand_root_abs_path = os.path.join(settings.SV_STORAGE_ROOT, str(n_acct_pk), str(n_brand_pk)) if not os.path.isdir(s_brand_root_abs_path): os.makedirs(s_brand_root_abs_path) def delete_model(self, request, obj): obj.user = request.user print('deleted') super().delete_model(request, obj) class DataSourceInline(admin.TabularInline): # https://stackoverflow.com/questions/63916655/how-can-i-access-attributes-of-a-model-in-admin-tabularinline-that-is-at-the-end model = DataSource extra = 2 readonly_fields = ['date_reg', ] class BrandAdmin(admin.ModelAdmin): # fieldsets = [ # choose editable attr # (None, {'fields': ['s_brand_title']}), # # ('Date information', {'fields': ['date_reg'], 'classes': ['collapse']}), # ] # readonly_fields = ['s_brand_title', ] inlines = [DataSourceInline] list_display = ('sv_acct', 's_brand_title', 'date_reg') list_filter = ['date_reg'] search_fields = ['sv_acct__s_acct_title', 's_brand_title'] def save_model(self, request, obj, form, change): obj.user = request.user # s_base_dir = Path(__file__).resolve().parent.parent # print(form.cleaned_data) super().save_model(request, obj, form, change) # print(obj.pk) s_acct_root_abs_path = os.path.join(settings.SV_STORAGE_ROOT, str(obj.pk)) if not os.path.isdir(s_acct_root_abs_path): os.makedirs(s_acct_root_abs_path) def save_formset(self, request, form, formset, change): # https://jay-ji.tistory.com/32 formset.save() if formset.is_valid(): n_acct_pk = None n_brand_pk = None n_data_source_pk = None # print(formset.cleaned_data) for form1 in formset: # print(form1.cleaned_data) if 'sv_brand' in form1.cleaned_data.keys(): n_acct_pk = form1.cleaned_data['sv_brand'].sv_acct_id n_brand_pk = form1.cleaned_data['sv_brand'].pk if not form1.cleaned_data['DELETE']: try: o_data_source_appended = DataSource.objects.get(sv_brand=n_brand_pk, n_data_source=form1.cleaned_data['n_data_source']) except Brand.DoesNotExist: o_data_source_appended = None n_data_source_pk = o_data_source_appended.pk if n_acct_pk and n_brand_pk and n_data_source_pk and n_data_source_pk != 0: s_data_source_root_abs_path = os.path.join(settings.SV_STORAGE_ROOT, str(n_acct_pk), str(n_brand_pk), str(o_data_source_appended)) if not os.path.isdir(s_data_source_root_abs_path): os.makedirs(s_data_source_root_abs_path) def delete_model(self, request, obj): obj.user = request.user print('deleted') super().delete_model(request, obj) # Register your models here. class DataSourceIdInline(admin.TabularInline): model = DataSourceDetail extra = 1 # readonly_fields = ['s_data_source_id', ] class DataSourceAdmin(admin.ModelAdmin): # fieldsets = [ # choose editable attr # (None, {'fields': ['s_brand_title']}), # # ('Date information', {'fields': ['date_reg'], 'classes': ['collapse']}), # ] readonly_fields = ['n_data_source', ] inlines = [DataSourceIdInline] list_display = ('get_account', 'sv_brand', 'n_data_source', 'date_reg') list_filter = ['date_reg'] search_fields = ['sv_brand__sv_acct__s_acct_title', 'sv_brand__s_brand_title', 'n_data_source'] # https://stackoverflow.com/questions/163823/can-list-display-in-a-django-modeladmin-display-attributes-of-foreignkey-field @display(ordering='sv_brand__sv_acct', description='구좌 명칭') def get_account(self, obj): return obj.sv_brand.sv_acct def save_model(self, request, obj, form, change): obj.user = request.user # print(request.POST) # print(obj) s_base_dir = Path(__file__).resolve().parent.parent # print(s_base_dir) super().save_model(request, obj, form, change) def save_formset(self, request, form, formset, change): # https://jay-ji.tistory.com/32 if formset.is_valid(): n_acct_id = None n_brand_pk = None n_data_source_id = None # print(formset.cleaned_data) for form1 in formset: # print(form1.cleaned_data) if 'sv_data_source' in form1.cleaned_data.keys(): # print(form1.cleaned_data['sv_data_source'].sv_brand_id) n_brand_pk = form1.cleaned_data['sv_data_source'].sv_brand_id # 48 # print(n_brand_pk) if not form1.cleaned_data['DELETE']: s_data_source_serial_id = form1.cleaned_data['s_data_source_serial'] # print(form1.cleaned_data['sv_data_source'].validate_source_id(s_data_source_serial_id)) if form1.cleaned_data['sv_data_source'].validate_source_id(s_data_source_serial_id): try: o_brand = Brand.objects.get(pk=n_brand_pk) except Brand.DoesNotExist: o_brand = None n_acct_id = o_brand.sv_acct_id n_data_source_id = form1.cleaned_data['sv_data_source'] if n_acct_id and n_brand_pk and n_data_source_id and n_data_source_id != 0 \ and len(s_data_source_serial_id): s_data_source_id_abs_path = os.path.join(settings.SV_STORAGE_ROOT, str(n_acct_id), str(n_brand_pk), str(n_data_source_id), s_data_source_serial_id) if not os.path.isdir(s_data_source_id_abs_path): os.makedirs(s_data_source_id_abs_path) else: self.message_user(request, '형식에 맞지 않는 데이터 소스 일련번호입니다. 삭제해 주세요.', level=messages.ERROR) formset.save() def delete_model(self, request, obj): obj.user = request.user print('deleted') super().delete_model(request, obj) class DataSourceDetailAdmin(admin.ModelAdmin): # fieldsets = [ # choose editable attr # (None, {'fields': ['s_brand_title']}), # # ('Date information', {'fields': ['date_reg'], 'classes': ['collapse']}), # ] readonly_fields = ['sv_data_source', ] list_display = ('get_account', 'get_brand', 'sv_data_source', 's_data_source_serial', ) list_filter = ['date_reg'] search_fields = ['sv_data_source__sv_brand__sv_acct__s_acct_title', 'sv_data_source__sv_brand__s_brand_title', 'sv_data_source__n_data_source', 's_data_source_serial'] # https://stackoverflow.com/questions/163823/can-list-display-in-a-django-modeladmin-display-attributes-of-foreignkey-field @display(ordering='sv_brand__sv_acct', description='구좌 명칭') def get_account(self, obj): return obj.sv_data_source.sv_brand.sv_acct @display(ordering='sv_data_source__sv_brand', description='브랜드 명칭') def get_brand(self, obj): return obj.sv_data_source.sv_brand admin.site.register(Account, AccountAdmin) admin.site.register(Brand, BrandAdmin) admin.site.register(DataSource, DataSourceAdmin) admin.site.register(DataSourceDetail, DataSourceDetailAdmin)
from userver.object.asserts import Assertions from userver.object.device import FieldDevice from utils.errors import PatchError from wtforms import Form, StringField, validators from wtforms.validators import StopValidation from userver.object.const import ClassType from binascii import unhexlify from .validators import eui_validator, appskey_validator, nwkskey_validator, addr_validator, appkey_validator, class_type_validator, fcnt_validator, bool_validator, addr_available class ABPDev(Form): name = StringField("Name", validators=[validators.Optional(strip_whitespace=True)]) dev_eui = StringField("DevEUI", validators=[validators.InputRequired('Dev EUI is Required'), eui_validator]) app_eui = StringField("AppEUI", validators=[validators.InputRequired('APP EUI is Required'), eui_validator]) addr = StringField("DevAddr", validators=[validators.Optional(strip_whitespace=True), addr_validator], filters=[lambda x: x or None]) nwkskey = StringField("NWKSKEY", validators=[validators.InputRequired('Nwkskey is Required'), nwkskey_validator, ]) appskey = StringField("AppSKey", validators=[validators.Optional(strip_whitespace=True), appskey_validator, ], filters=[lambda x: x or None]) class OTAADev(Form): name = StringField("Name", validators=[validators.Optional(strip_whitespace=True)]) dev_eui = StringField("DevEUI", validators=[validators.InputRequired('Dev EUI is Required'), eui_validator]) app_eui = StringField("AppEUI", validators=[validators.InputRequired('APP EUI is Required'), eui_validator]) appkey = StringField("AppKey", validators=[validators.Optional(strip_whitespace=True), appkey_validator, ], filters=[lambda x: x or None]) class Field: def __init__(self, name='', validators=(), nullable=False): self.name = name self.validators = validators self.nullable=nullable def validate(self): if self.nullable is True and self.data is None: return True else: for validator in iter(self.validators): validator(None, self) class PatchDeviceForm: name = Field(name='name') addr = Field(name='addr', validators=[addr_validator, addr_available]) nwkskey = Field(name='nwkskey', validators=[nwkskey_validator, ]) appskey = Field(name='appskey', validators=[appskey_validator, ]) dev_class = Field(name='dev_class', validators=[class_type_validator, ]) fcnt_up = Field(name='fcnt_up', validators=[fcnt_validator, ]) fcnt_down = Field(name='fcnt_down', validators=[fcnt_validator, ]) que_down = Field(name='que_down') check_fcnt = Field(name='check_fcnt', validators=[bool_validator, ]) adr = Field(name='adr', validators=[bool_validator, ]) appkey = Field(name='appkey', validators=[appkey_validator,], nullable=True) def __init__(self, kwargs): self.fields = [] for name, value in kwargs.items(): try: field = getattr(self, name) if isinstance(field, Field): field.data = value self.fields.append(field) else: raise PatchError('Application', name) except AttributeError: raise PatchError('Application', name) def validator(self): self.errors = {} for field in self.fields: try: field.validate() except StopValidation as error: field.errors = [str(error), ] self.errors[field.name] = field.errors if len(self.errors) == 0: return True else: return False # class PatchDevice: # __fields = (FieldDevice.name, FieldDevice.addr, FieldDevice.nwkskey, # FieldDevice.appskey, FieldDevice.dev_class, FieldDevice.fcnt_up, # FieldDevice.fcnt_down, 'que_down', FieldDevice.check_fcnt, FieldDevice.adr) # @classmethod # def patch(cls, device, kwargs): # for name, value in kwargs.items(): # if name == 'que_down': # device.que_down.clear() # elif name in cls.__fields: # if name == FieldDevice.dev_class: # value = ClassType(value) # elif name == FieldDevice.addr: # Assertions.s_addr(value) # value = unhexlify(value) # elif name == FieldDevice.appskey: # Assertions.s_appskey(value) # value = unhexlify(value) # elif name == FieldDevice.nwkskey: # Assertions.s_nwkskey(value) # value = unhexlify(value) # setattr(device, name, value) # elif name == 'appkey': # if value is None: # device.join_device = None # else: # device.join_device.appkey = unhexlify(value) # else: # raise PatchError('Application', name) # device.update()
import fnmatch import re from pathlib import Path from typing import Iterable, List class PathList: def __init__(self, root: Path, *paths): self.root = root.resolve() self.paths = [] self.events = [] if paths: self.extend(paths) def glob(self, pattern: str): self.paths.extend(self.root.glob(pattern)) def rglob(self, pattern: str): self.paths.extend(self.root.rglob(pattern)) def rfilter(self, pattern: str): pattern = fnmatch.translate(pattern) for path in self: if re.match(pattern, str(path)): self.paths.remove(path) def append(self, obj) -> None: if isinstance(obj, (str, Path)): if obj in self.paths: return self.paths.append(Path(obj)) elif hasattr(obj, 'event'): if obj in self.events: return self.events.append(obj) else: assert False def extend(self, paths: Iterable[Path]): if isinstance(paths, PathList): for p in paths: self.append(paths.root / p) else: for p in paths: self.append(p) def absolute(self) -> List[Path]: return [self.root / path.as_posix() for path in self] def __len__(self): return self.paths.__len__() def __getitem__(self, index) -> Path: return self.paths.__getitem__(index) def __setitem__(self, index, path: Path): self.paths.__setitem__(index, self.__adjust__(path)) def __delitem__(self, index): self.paths.__delitem__(index) def __iter__(self) -> Iterable[Path]: return self.paths.__iter__() def __reversed__(self) -> Iterable[Path]: return self.paths.__reversed__() def __contains__(self, index) -> bool: return self.paths.__contains__(index)
# coding=utf-8 #给你一个正整数列表 L, 如 L=[2,8,3,50], 判断列表内所有数字乘积的最后一个非零数字的奇偶性, #奇数输出1,偶数输出0. 如样例输出应为0 L = [2,8,3,50] res = 1 for item in L: res *= item while not res % 10: res /= 10 print 1 if res % 2 else 0
""" Util module This module contains miscellaneous classes and constants that are used by the game engine """ import pygame import math SERVER = 0 CLIENT = 1 COMBINED = 2 with open('config') as f: try: configuration = {line.strip().split('=')[0] : line.strip().split('=')[1] for line in f} DEFAULT_PORT = int(configuration.get('defaultport', 6658)) MAX_PLAYERS = int(configuration.get('maxplayers', 100)) FPS = int(configuration.get('maxfps', 60)) except IndexError: raise SyntaxError('[ERROR] Invalid config file. Configuration cannot be loaded.') except ValueError: raise ValueError('[ERROR] Invalid values for settings in config file.') #DEFAULT_PORT = 6658 #MAX_PLAYERS = 100 #FPS = 60 DISPLAY_FLAGS = pygame.DOUBLEBUF | pygame.HWSURFACE | pygame.RESIZABLE def calcChecksum(data): """ Calculate a checksum """ checksum = 0 for a in range(len(data)): checksum += data[a] return checksum.to_bytes(3, 'big') def calcDistance(ent1, ent2): """ Calculate the distance between two entities """ dimensionDelta = (ent1.dimension-ent2.dimension) * 1000 deltaPos = [ent1.pos[a]-ent2.pos[a] for a in (0, 1)] return (deltaPos[0]**2 + deltaPos[1]**2)**0.5 + dimensionDelta def calcDirection(pos1, pos2): """ Calculate a direction between two positions pos1 is current position pos2 is previous position """ theta = math.atan2(pos1[0]-pos2[0], pos1[1]-pos2[1])/math.pi return theta class ArgumentHandler: """ An object to store and handle the command line arguments passed into the game at runtime """ def __init__(self, arguments): self.results = {} self.args = arguments self.handleArgs() def handleArgs(self): """ Process the arguments passed in, and set the results dictionary accordingly """ # Iterate the arguments and handle them i = 0 while i < len(self.args): arg = self.args[i] # Handle the mod toggle argument if arg == '--disableMods': self.results['loadCustomMods'] = False # Handle the runtime type argument, defaulting to server if invalid elif arg == '--mode' and i != len(self.args)-1: self.results['runtimeType'] = {'SERVER' : SERVER, 'CLIENT' : CLIENT, 'COMBINED' : COMBINED }.get(self.args[i+1], SERVER) del self.args[i+1] # Handle the address and port arguments elif arg == '--address' and i != len(self.args)-1: self.results['address'] = self.args[i+1] del self.args[i+1] elif arg == "--seed" and i != len(self.args)-1: try: x = float(self.args[i+1]) except ValueError: x = 0 self.results['seed'] = (4*x)/(x**2+1) del self.args[i+1] # Handle the AI argument elif arg == '--enableSpecialAI': self.results['specialAI'] = True # Print a warning message if an unknown argument is given else: print('[WARNING] Unknown argument: {}'.format(arg)) del self.args[i] def getRuntimeType(self): """ Return the type of game being run, either client, server, or combined """ return self.results.get('runtimeType', COMBINED) def getRunSpecialAI(self): """ Return whether or not to run the neural network ai, as opposed to the normal ai """ return self.results.get('specialAI', False) def getShouldLoadCustomMods(self): """ Return whether to load custom mods, beyond the default game """ return self.results.get('loadCustomMods', True) def getSeed(self): """ Return the world generation seed """ return self.results.get('seed', 0) def getConnectingAddress(self): """ Return the address that this client is going to connect to """ return self.results.get('address', '')
""" This module contains the structures related to areas of interest. """ from typing import NamedTuple, Optional, Union class AreaOfInterest(NamedTuple): """ .. versionadded:: 2.3 This is the area of interest for: - Transformations - Querying for CRS data. """ #: The west bound in degrees of the area of interest. west_lon_degree: float #: The south bound in degrees of the area of interest. south_lat_degree: float #: The east bound in degrees of the area of interest. east_lon_degree: float #: The north bound in degrees of the area of interest. north_lat_degree: float class AreaOfUse(NamedTuple): """ .. versionadded:: 2.0 Area of Use for CRS, CoordinateOperation, or a Transformer. """ #: West bound of area of use. west: float #: South bound of area of use. south: float #: East bound of area of use. east: float #: North bound of area of use. north: float #: Name of area of use. name: Optional[str] = None @property def bounds(self): return self.west, self.south, self.east, self.north def __str__(self): return f"- name: {self.name}\n" f"- bounds: {self.bounds}" class BBox: """ Bounding box to check if data intersects/contains other bounding boxes. .. versionadded:: 3.0 """ def __init__(self, west: float, south: float, east: float, north: float): self.west = west self.south = south self.east = east self.north = north def intersects(self, other: Union["BBox", AreaOfUse]) -> bool: """ Parameters ---------- other: BBox The other BBox to use to check. Returns ------- bool: True if this BBox intersects the other bbox. """ return ( self.west < other.east and other.west < self.east and self.south < other.north and other.south < self.north ) def contains(self, other: Union["BBox", AreaOfUse]) -> bool: """ Parameters ---------- other: Union["BBox", AreaOfUse] The other BBox to use to check. Returns ------- bool: True if this BBox contains the other bbox. """ return ( other.west >= self.west and other.east <= self.east and other.south >= self.south and other.north <= self.north ) def __repr__(self) -> str: return ( f"BBox(west={self.west},south={self.south}," f"east={self.east},north={self.north})" )
"""LimitlessLED Version 6 Bridge """ import types import math import logging import time from mookfist_lled_controller.colors import color_from_rgb from mookfist_lled_controller.bridge import BaseBridge, BaseGroup, Command import six import binascii GROUPS = (0, 1, 2, 3, 4, 'all') def format_hex(i): if i < 16: i = hex(i).replace('0x', '0x0') else: i = hex(i) return i class CustomCommand(Command): """A ver6 Command class.""" def __init__(self, size): super(CustomCommand, self).__init__(size) self._set_preamble() def _set_preamble(self): self[0] = 0x80 self[1] = 0x00 self[2] = 0x00 self[3] = 0x00 self[4] = 0x11 self[7] = 0x00 self[8] = 0x02 self[9] = 0x00 def checksum(self): """Calculate the checksum value of command""" return sum(bytearray(self._cmd[10:21])) & 0xff class Bridge(BaseBridge): """Bridge API Valid groups are 1 through 4. You can provide a list of groups or use the word 'all' to send the command to all groups. >>> bridge = Bridge('192.168.1.100') >>> bridge.color(100, [1,2,4]) >>> bridge.brightness(50, 'all') >>> bright.off(3) Attributes: ip: Bridge IP or hostname port: Port number of the bridge pause: Number of milliseconds to wait before sending a command repeat: Number of times to resend a command timeout: Socket timeout group_class: Custom group class """ def __init__(self, ip, port=5987, *args, **kwargs): BaseBridge.__init__(self, ip, port, *args, **kwargs) self._group_cache = {} self._Group = kwargs.get('group_class', Group) self.logger = logging.getLogger('mlledctrl.bridge6') self._wb1 = None self._wb2 = None self._cmd_counter = 0x01 self._last_set_group = None def _init_group(self, group=1): g = self._get_group(group) return g def _get_session_ids(self): self.logger.debug('Getting session IDs') cmd = Command(27) cmd[0] = 0x20 cmd[1] = 0x00 cmd[2] = 0x00 cmd[3] = 0x00 cmd[4] = 0x16 cmd[5] = 0x02 cmd[6] = 0x62 cmd[7] = 0x3a cmd[8] = 0xd5 cmd[9] = 0xed cmd[10] = 0xa3 cmd[11] = 0x01 cmd[12] = 0xae cmd[13] = 0x08 cmd[14] = 0x2d cmd[15] = 0x46 cmd[16] = 0x61 cmd[17] = 0x41 cmd[18] = 0xa7 cmd[19] = 0xf6 cmd[20] = 0xdc cmd[21] = 0xaf cmd[22] = 0xf3 cmd[23] = 0xf7 cmd[24] = 0x00 cmd[25] = 0x00 cmd[26] = 0x1e db = self._send_raw(cmd) if db: self.logger.debug('Response: %s' % [binascii.hexlify(db[i:i+1]) for i in range(0, len(db), 1)]) self._wb1 = db[19] self._wb2 = db[20] self.logger.debug('Session ID: %s %s' % (format_hex(self._wb1), format_hex(self._wb2))) self._confirm_init() def _confirm_init(self): cmd = Command(23) cmd[0] = 0x80 cmd[1] = 0x00 cmd[2] = 0x00 cmd[3] = 0x00 cmd[4] = 0x11 cmd[5] = self._wb1 cmd[6] = self._wb2 cmd[7] = 0x00 cmd[8] = self._cmd_counter cmd[9] = 0x00 cmd[10] = 0x33 cmd[11] = 0x00 cmd[12] = 0x00 cmd[13] = 0x00 cmd[14] = 0x00 cmd[15] = 0x00 cmd[16] = 0x00 cmd[17] = 0x00 cmd[18] = 0x00 cmd[19] = 0x00 cmd[20] = 0x00 cmd[21] = 0x00 cmd[22] = 0x33 self.logger.debug('Confirming initialization') data = self._send_raw(cmd) def _get_group(self, group): if group not in self._group_cache: self._group_cache[group] = self._Group(group) return self._group_cache[group] def _send_raw(self, cmd): self.logger.debug('Sending command: %s' % cmd.message_str()) self._sock.sendto(cmd.message(), (self.ip, self.port)) data = bytearray(self._sock.recv(1024)) self.logger.debug('Response: %s' % [binascii.hexlify(data[i:i+1]) for i in range(0, len(data), 1)]) self._cmd_counter = (self._cmd_counter + 1) % 255 time.sleep(self.pause) return data def _send(self, cmd, group=1): if type(cmd) == CustomCommand: cmds = [cmd,] else: cmds = cmd for cmd in cmds: if self._wb1 == None or self._wb2 == None: self._get_session_ids() for x in range(0, self.repeat): cmd[5] = self._wb1 cmd[6] = self._wb2 cmd[7] = 0x00 cmd[8] = self._cmd_counter cmd[9] = 0x00 cmd[21] = cmd.checksum() self._send_raw(cmd) class Group(BaseGroup): """Represents a group of lights""" def __init__(self, group, bulbtype=0x07): if group == 'all': self.group = 0 else: self.group = int(group) self.bulbtype = bulbtype self._command_counter = 0 def _prepare_cmd(self): cmd = CustomCommand(22) cmd[10] = 0x31 cmd[11] = 0x00 cmd[12] = 0x00 cmd[13] = self.bulbtype cmd[16] = 0x00 cmd[17] = 0x00 cmd[18] = 0x00 cmd[19] = self.group cmd[20] = 0x00 return cmd def on(self): cmd = self._prepare_cmd() cmd[14] = 0x03 cmd[15] = 0x01 return cmd def off(self): cmd = self._prepare_cmd() cmd[14] = 0x03 cmd[15] = 0x02 return cmd def color_rgb(self, r, g, b): if r == 255 and b == 255 and g == 255: cmd = (self.white(), self.brightness(100)) elif r == 0 and b == 0 and g == 0: cmd = self.off() elif r == b and b == g and g == r: brightness = int(math.ceil((r / 255.0) * 100.0)) cmd = (self.white(), self.brightness(brightness)) else: color = color_from_rgb(r, b, g, 0.35/3.0) cmd = self.color(int(color)) return cmd def color(self, color): cmd = self._prepare_cmd() cmd[14] = 0x01 cmd[15] = color cmd[16] = color cmd[17] = color cmd[18] = color return cmd def white(self): cmd = self._prepare_cmd() cmd[14] = 0x03 cmd[15] = 0x05 return cmd def brightness(self, brightness): cmd = self._prepare_cmd() cmd[14] = 0x02 cmd[15] = brightness return cmd
""" source: https://stanford.edu/~shervine/blog/pytorch-how-to-generate-data-parallel """ import os import time import cv2 import numpy as np import shutil import sys from numpy.core.fromnumeric import argmax import torch import torch.optim as optim import torchvision from dataset.BDD100k import BDDDataset from model import SCNN from torch.utils.tensorboard import SummaryWriter from torch.utils.data import DataLoader from utils.lr_scheduler import PolyLR #from utils.transforms import * import matplotlib.pyplot as plt from tqdm import tqdm #progress bar #import pdb pdb.set_trace() for debugging # Directory settings working_dir = "C:/Users/ynfuc/Documents/Masterarbeit/.vscode/BDD100k_implements/SCNN_Pytorch" bdd100k_train_img_path = working_dir + "/dataset/images/train/" bdd100k_train_dl_path = working_dir + "/dataset/drivable_area/labels_dl/train/" bdd100k_val_img_path = working_dir + "/dataset/images/val/" bdd100k_val_dl_path = working_dir + "/dataset/drivable_area/labels_dl/val/" exp_dir = working_dir + "/experiments/exp2/drivable/" exp_name = "t001" # CUDA for PyTorch use_cuda = torch.cuda.is_available() device = torch.device("cuda" if use_cuda else "cpu") print("Use device: ", device) torch.backends.cudnn.benchmark = True #Data loader parameters params = {"batch_size": 20, "shuffle": True, "num_workers": 4, "pin_memory": True} max_epoch = 100 resize_shape = tuple([512, 288]) optim_set = {"lr": 0.01, "momentum": 0.9, "weight_decay": 1e-4, "nesterov": True} lr_set = {"warmup": 200, "max_iter": 15000, "min_lrs": 1e-05} # Define training dataset and data loader train_bdd100k = BDDDataset(image_path=bdd100k_train_img_path, drivable_path = bdd100k_train_dl_path) train_bdd100k_dataset_loader = DataLoader(dataset=train_bdd100k, **params) # Define validation dataset and data loader val_bdd100k = BDDDataset(image_path=bdd100k_val_img_path, drivable_path = bdd100k_val_dl_path) val_bdd100k_dataset_loader = DataLoader(dataset=val_bdd100k, **params) #Declare model & optimizers net = SCNN(resize_shape, pretrained=True) net = net.to(device) #torch.distributed.init_process_group("gloo", rank=rank, world_size=world_size) #torch.cuda.set_device() #net = torch.nn.parallel.DistributedDataParallel(net) #net = torch.nn.DataParallel(net) # #net.eval() tensorboard = SummaryWriter(exp_dir + "tb/") optimizer = optim.SGD(net.parameters(), **optim_set) lr_scheduler = PolyLR(optimizer, 0.9, **lr_set) best_val_loss = 1000 #@profile def train(epoch): print("Train Epoch: {}".format(epoch)) net.train() train_loss = 0 train_loss_seg = 0 ##train_loss_exist = 0 epoch_accuracy = 0 progressbar = tqdm(range(len(train_bdd100k_dataset_loader))) #Training loop for batch_idx, sample in enumerate(train_bdd100k_dataset_loader): # move to GPU img = sample['image'].to(device) segLabel = sample['label'].to(device) #null gradient, get model output optimizer.zero_grad() seg_pred, exist_pred, loss_seg, loss_exist = net(img, segLabel) # loss loss_seg = loss_seg.sum() loss_seg.requres_grad = True #loss_exist = loss_exist.sum() #loss = loss.sum() #loss.requres_grad = True #backprop, grad, learning rate update loss_seg.backward() optimizer.step() lr_scheduler.step() iter_idx = epoch * len(train_bdd100k_dataset_loader) + batch_idx #train_loss = loss.item() train_loss_seg = loss_seg.item() #train_loss_exist = loss_exist.item() #Calculate accuracy predicted = torch.argmax(seg_pred.data, dim=1) #returns sec arg of torch.max correct_train = predicted.eq(segLabel.data).sum().item() accuracy = 100 * correct_train / segLabel.numel() #Save epoch accuracy in tensorboard epoch_accuracy +=accuracy if batch_idx >= (len(train_bdd100k_dataset_loader)-1): tensorboard.add_scalar("accuracy", epoch_accuracy, iter_idx) progressbar.set_description("batch loss: {:.3f}".format(loss_seg.item())) progressbar.update(1) lr = optimizer.param_groups[0]['lr'] tensorboard.add_scalar("train_loss", train_loss, iter_idx) tensorboard.add_scalar("learning_rate", lr, iter_idx) """ print("img size: ", img.size(0), "label size: ", segLabel.size(0)) print("img size: ", type(img.size(0)), "label size: ", type(segLabel.size(0))) print("same: ", img.size(0)==segLabel.size(0), "diff: ", img.size(0)!=segLabel.size(0)) """ #tensorboard.add_graph(net, input_to_model=img, verbose=False) progressbar.close() tensorboard.flush() #Save model & settings in exp_name.pth if epoch % 1 == 0: save_dict = { "epoch": epoch, "net": net.module.state_dict() if isinstance(net, torch.nn.DataParallel) else net.state_dict(), "optim": optimizer.state_dict(), "lr_scheduler": lr_scheduler.state_dict(), "best_val_loss": best_val_loss } save_name = os.path.join(exp_dir, exp_name + '.pth') torch.save(save_dict, save_name) print("model is saved: {}".format(save_name)) print("------------------------\n") """ #average trainloss calc + print every 100 batches train_loss = train_loss + ((1 / (batch_idx + 1)) * (loss.data - train_loss)) if batch_idx % 100 == 0: print('Epoch %d, Batch %d loss: %.6f' %(epoch, batch_idx + 1, train_loss)) """ def val(epoch): global best_val_loss net.eval() print("Val Epoch: {}".format(epoch)) net.eval() val_loss = 0 val_loss_seg = 0 #val_loss_exist = 0 #CBE_loss not available for BDD100k progressbar = tqdm(range(len(val_bdd100k_dataset_loader))) #Validation with torch.set_grad_enabled(False): total_train = 0 correct_train = 0 epoch_accuracy = 0 for batch_idx, sample in enumerate(val_bdd100k_dataset_loader): #Transfer to GPU img = sample['image'].to(device) segLabel = sample['label'].to(device) #exist = sample['exist'].cuda() #local_batch, local_labels = local_batch.to(device), local_labels.to(device) seg_pred, exist_pred, loss_seg, loss_exist, loss = net(img, segLabel) loss_seg = loss_seg.sum() #loss_exist = loss_exist.sum() loss = loss.sum() predicted = torch.argmax(seg_pred.data, dim=1) #returns sec arg of torch.max #print(total_train, predicted.shape, segLabel.shape) correct_train = predicted.eq(segLabel.data).sum().item() accuracy = 100 * correct_train / segLabel.numel() predict = predicted.eq(segLabel) #True/False übereinstimmung np.set_printoptions(threshold=sys.maxsize) #print("Variante1: {:.3f}".format(accuracy)) epoch_accuracy +=accuracy if batch_idx >= (len(train_bdd100k_dataset_loader)-1): tensorboard.add_scalar("val_accuracy", epoch_accuracy, epoch) """ https://www.kaggle.com/devilsknight/malaria-detection-with-pytorch # convert output probabilities to predicted class pred = output.data.max(1, keepdim=True)[1] # compare predictions to true label correct += np.sum(np.squeeze(pred.eq(target.data.view_as(pred))).cpu().numpy()) total += data.size(0) """ """ #prediction plot #print("Label: ",segLabel[0,110:190,210:290].numpy()) #print("predic: ",predicted[0,110:190,210:290].numpy()) #print("Compare: ",predict[0,110:190,210:290].numpy()) print (seg_pred.shape) f = plt.figure() f.add_subplot(2,2,1) plt.imshow(img[0].permute(1,2,0)) f.add_subplot(2,2,2) plt.imshow(segLabel[0]) f.add_subplot(2,2,3) plt.imshow(predicted[0]) f.add_subplot(2,2,4) plt.imshow(predict[0].detach().cpu()) plt.show(block=True) #plt.pause(5) """ if batch_idx ==0: #val_images = [img[0].permute(1,2,0), segLabel[0], predicted[0], predict[0].detach().cpu()] tensorboard.add_image("Image: ", img[0], global_step=epoch, dataformats='CHW') """ tensorboard.add_image("Image_gt: ", segLabel[0], global_step=epoch, dataformats='HW') tensorboard.add_image("Image_predicted: ", predicted[0], global_step=epoch, dataformats='HW') tensorboard.add_image("Image_compare: ", predict[0].detach().cpu(), global_step=epoch, dataformats='HW') """ img_grid = torchvision.utils.make_grid([segLabel[0], predicted[0], predict[0].detach().cpu()]) tensorboard.add_image("Val_Images: ", img_grid, global_step=epoch, dataformats='CHW') # visualize validation every 5 frame, 50 frames in all #gap_num = 25 #if batch_idx%gap_num == 0 and batch_idx < 50 * gap_num: origin_imgs = [] #seg_pred = seg_pred.detach().cpu().numpy() if batch_idx ==0: #np.set_printoptions(threshold=sys.maxsize) #print(net) #print(segLabel[0,180:230,450:512].numpy()) #print(seg_pred[0,0,180:230,450:512].numpy()) #plt.imshow(predict[0].detach().cpu()) #plt.pause(5) """ #plt.subplot(1, 6, 1) plt.imshow(segLabel[0]) #plt.pause(5) for i in range (0, 3): plt.figure() print(seg_pred.shape) plt.imshow(torch.exp(seg_pred[0, i, :, :]).detach().numpy()) plt.pause(5) plt.close() """ #exist_pred = exist_pred.detach().cpu().numpy() val_loss += loss.item() val_loss_seg += loss_seg.item() #val_loss_exist += loss_exist.item() progressbar.set_description("batch loss: {:.3f}".format(loss.item())) progressbar.update(1) progressbar.close() iter_idx = (epoch + 1) * len(train_bdd100k_dataset_loader) # keep align with training process iter_idx tensorboard.add_scalar("val_loss", val_loss, iter_idx) tensorboard.add_scalar("val_loss_seg", val_loss_seg, iter_idx) #tensorboard.scalar_summary("val_loss_exist", val_loss_exist, iter_idx) tensorboard.flush() print("------------------------\n") if val_loss < best_val_loss: best_val_loss = val_loss save_name = os.path.join(exp_dir, exp_name + '.pth') copy_name = os.path.join(exp_dir, exp_name + '_best.pth') shutil.copyfile(save_name, copy_name) #Model computions def main(): global best_val_loss resume = False if resume: save_dict = torch.load(os.path.join(exp_dir, exp_name + '.pth')) if isinstance(net, torch.nn.DataParallel): net.module.load_state_dict(save_dict['net']) else: net.load_state_dict(save_dict['net']) optimizer.load_state_dict(save_dict['optim']) lr_scheduler.load_state_dict(save_dict['lr_scheduler']) start_epoch = save_dict['epoch'] + 1 best_val_loss = save_dict.get("best_val_loss", 1e6) else: start_epoch = 0 for epoch in range (start_epoch, max_epoch): train(epoch) #val(epoch) if epoch % 1 == 0: print("\nValidation For Experiment: ", exp_dir) print(time.strftime('%H:%M:%S', time.localtime())) val(epoch) if __name__ == "__main__": main() """ probs = torch.log_softmax(seg_pred, dim = 1) _, tags = torch.max(probs, dim = 1) corrects = torch.eq(tags,segLabel).int() acc = corrects.sum()/corrects.numel() acc = acc * 100 print("Variante2: ",float(acc)) """ #for images, labels in train_bdd100k_dataset_loader: #Feed the data to the model
import base64 import json import pytest from unittest import mock from actions import user_actions def test_protect_resources(): """Verify exception when acting on protected resources.""" with pytest.raises(SystemExit): user_actions.protect_resources("admin") with pytest.raises(SystemExit): user_actions.protect_resources("kubelet-X") def test_user_list(): """Verify user data is parsed correctly from our secrets.""" user = secret_id = "admin" test_data = { "items": [ { "metadata": { "name": secret_id, }, "data": { "username": base64.b64encode(user.encode("utf-8")).decode("utf-8"), }, } ] } secrets = json.dumps(test_data).encode("utf-8") # we expect a {username: secret_id} dict with mock.patch( "actions.user_actions.layer.kubernetes_common.kubectl", return_value=secrets ): secret_data = user_actions.user_list() assert user in secret_data.keys() assert secret_id in secret_data.values() @mock.patch("actions.user_actions.os.chmod") @mock.patch("actions.user_actions.layer.kubernetes_common") @mock.patch("actions.user_actions.layer.kubernetes_master") @mock.patch("actions.user_actions.action_get") def test_user_create(mock_get, mock_master, mock_common, mock_chmod): """Verify expected calls are made when creating a user.""" user = secret_id = "testuser" test_data = {user: secret_id} # Ensure failure when user exists mock_get.return_value = user with mock.patch("actions.user_actions.user_list", return_value=test_data): user_actions.user_create() assert user_actions.action_fail.called # Ensure failure when user name is invalid mock_get.return_value = "FunnyBu;sness" with mock.patch("actions.user_actions.user_list", return_value=test_data): user_actions.user_create() assert user_actions.action_fail.called # Ensure calls/args when we have a new user user = "newuser" password = "password" token = "{}::{}".format(user, password) mock_get.return_value = user mock_master.token_generator.return_value = password mock_master.get_api_endpoint.return_value = [1, 1] with mock.patch("actions.user_actions.user_list", return_value=test_data): user_actions.user_create() args, kwargs = mock_master.create_secret.call_args assert token in args args, kwargs = mock_common.create_kubeconfig.call_args assert token in kwargs["token"] @mock.patch("actions.user_actions.layer.kubernetes_master") @mock.patch("actions.user_actions.action_get") def test_user_delete(mock_get, mock_master): """Verify expected calls are made when deleting a user.""" user = secret_id = "testuser" test_data = {user: secret_id} # Ensure failure when user does not exist mock_get.return_value = "missinguser" with mock.patch("actions.user_actions.user_list", return_value=test_data): user_actions.user_delete() assert user_actions.action_fail.called # Ensure calls/args when we have a valid user mock_get.return_value = user with mock.patch("actions.user_actions.user_list", return_value=test_data): user_actions.user_delete() args, kwargs = mock_master.delete_secret.call_args assert secret_id in args
# Copyright (c) 2017 NEC Corp. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import os import signal import fixtures import mock from neutron.common import utils from oslo_db import exception from oslo_log import log as logging from oslo_service.tests import test_service from oslo_utils import uuidutils from networking_odl.common import client from networking_odl.common import constants as odl_const from networking_odl.db import db from networking_odl.db import models from networking_odl.journal import cleanup from networking_odl.journal import dependency_validations from networking_odl.journal import full_sync from networking_odl.journal import journal from networking_odl.journal import periodic_task from networking_odl.journal import recovery from networking_odl.journal import worker from networking_odl.tests import base from networking_odl.tests.unit import base_v2 from networking_odl.tests.unit.db import test_db PROCESS_RUNNING_STATUSES = ('S', 'R', 'D') class JournalPeriodicProcessorTest(base_v2.OpenDaylightConfigBase, test_service.ServiceTestBase): def setUp(self): super(JournalPeriodicProcessorTest, self).setUp() self.periodic_task_fixture = self.useFixture( base.OpenDaylightPeriodicTaskFixture()) self.cfg.config(sync_timeout=0.1, group='ml2_odl') def _create_periodic_processor(self): periodic_processor = worker.JournalPeriodicProcessor() self.addCleanup(periodic_processor.stop) return periodic_processor def _get_pid_status(self, pid): """Allows to query a system process based on the PID It will use `ps` to query the pid, it's state and the command. :param pid: An integer with the Process ID number :returns: A tuple of strings with the command and the running status in a single char as defined in the manpage PS(1) under PROCESS STATE CODES. """ with os.popen('ps ax -o pid,state,cmd') as f: # Skip ps header f.readline() processes = (l.strip().split()[:3] for l in f) return next(((c, s) for p, s, c in processes if int(p) == pid), (None, None)) def _kill_process(self, pid): if self._get_pid_status(pid)[1] in PROCESS_RUNNING_STATUSES: os.kill(pid, signal.SIGKILL) def mock_object_with_ipc(self, target, attribute, pre_hook=None): patcher = mock.patch.object(target, attribute, autospec=True) c2p_read = self.create_ipc_for_mock(patcher, pre_hook) return c2p_read def create_ipc_for_mock(self, patcher, pre_hook=None): # NOTE(mpeterson): The following pipe is being used because this is # testing something inter processeses and we need to have a value on # the side of the test processes to know it succeeded with the # operation. A pipe provide a way for two processes to communicate. # The was_called method will be called by the worker process while # the test process will read the result on c2p_read. c2p_read, c2p_write = os.pipe() def close_pipe_end(fd): try: os.close(fd) except OSError: print('failed closing: %s' % fd) # First we want to close the write, to unlock any running read() self.addCleanup(close_pipe_end, c2p_read) self.addCleanup(close_pipe_end, c2p_write) mock_ = patcher.start() self.addCleanup(patcher.stop) def was_called(*args, **kwargs): # OSError is caught because start is called twice on the worker # and the second time the pipe is already closed. try: os.close(c2p_read) try: if pre_hook: pre_hook(*args, **kwargs) os.write(c2p_write, b'1') except Exception: # This is done so any read on the pipe is unblocked. os.write(c2p_write, b'0') finally: os.close(c2p_write) except OSError: pass mock_.side_effect = was_called return c2p_read def assert_ipc_mock_called(self, c2p_read): # If it timeouts on the read then it means the function was # not called. called = int(os.read(c2p_read, 1)) self.assertEqual(called, 1, 'The IPC mock was called but during the ' 'execution an exception was raised') @mock.patch.object(journal.OpenDaylightJournalThread, 'set_sync_event') def test_processing(self, mock_journal): periodic_processor = self._create_periodic_processor() periodic_processor.start() utils.wait_until_true(lambda: mock_journal.call_count > 1, 5, 0.1) @mock.patch.object(journal.OpenDaylightJournalThread, 'start') @mock.patch.object(journal.OpenDaylightJournalThread, 'stop') def test_stops_journal_sync_thread(self, mock_stop, mock_start): periodic_processor = self._create_periodic_processor() periodic_processor.start() periodic_processor.stop() mock_stop.assert_called_once() mock_start.assert_called_once() def test_allow_multiple_starts_gracefully(self): periodic_processor = self._create_periodic_processor() periodic_processor.start() periodic_processor.stop() try: periodic_processor.start() except RuntimeError: self.fail('Calling a start() after a stop() should be allowed') def test_multiple_starts_without_stop_throws_exception(self): periodic_processor = self._create_periodic_processor() periodic_processor.start() self.assertRaises(RuntimeError, periodic_processor.start) def test_call_stop_without_calling_start(self): periodic_processor = self._create_periodic_processor() try: periodic_processor.stop() except AttributeError: self.fail('start() was not called before calling stop()') def assert_process_running(self, pid): cmd, state = self._get_pid_status(pid) self.assertIn(state, PROCESS_RUNNING_STATUSES) return cmd def _create_periodic_processor_ipc_fork(self, target, pre_hook=None): self._setup_mocks_for_periodic_task() real_start = worker.JournalPeriodicProcessor.start pipe_start = self.mock_object_with_ipc(worker.JournalPeriodicProcessor, 'start', real_start) c2p_read = self.mock_object_with_ipc(worker.JournalPeriodicProcessor, target, pre_hook) pid = self._spawn_service( service_maker=lambda: worker.JournalPeriodicProcessor()) self.addCleanup(self._kill_process, pid) # Allow the process to spawn and signal handling to be registered self.assert_ipc_mock_called(pipe_start) return pid, c2p_read @mock.patch.object(periodic_task.PeriodicTask, 'execute_ops', new=mock.Mock()) @mock.patch.object(journal.OpenDaylightJournalThread, 'sync_pending_entries', new=mock.Mock()) def test_handle_sighup_gracefully(self): real_reset = worker.JournalPeriodicProcessor.reset pid, c2p_read = self._create_periodic_processor_ipc_fork('reset', real_reset) cmd = self.assert_process_running(pid) os.kill(pid, signal.SIGHUP) self.assert_ipc_mock_called(c2p_read) new_cmd = self.assert_process_running(pid) self.assertEqual(cmd, new_cmd) def _setup_mocks_for_periodic_task(self, executed_recently=False): mock_db_module = mock.MagicMock(spec=db) mock_db_module.was_periodic_task_executed_recently.return_value = \ executed_recently mock_db = mock.patch('networking_odl.journal.periodic_task.db', mock_db_module) mock_db.start() self.addCleanup(mock_db.stop) @mock.patch.object(cleanup, 'delete_completed_rows') @mock.patch.object(cleanup, 'cleanup_processing_rows') @mock.patch.object(full_sync, 'full_sync') @mock.patch.object(recovery, 'journal_recovery') # ^^ The above mocks represent the required calling order starting from # top. Use decorators *only* to specify the stack order. def test_maintenance_task_correctly_registered(self, *stack_order): calls = [] for item in reversed(stack_order): calls.append(mock.call(item)) with mock.patch.object( periodic_task.PeriodicTask, 'register_operation') as register_operation_mock: periodic_processor = self._create_periodic_processor() periodic_processor._start_maintenance_task() register_operation_mock.assert_has_calls(calls) def test_maintenance_task_started(self): self.periodic_task_fixture.task_start_mock.stop() mock_start = self.periodic_task_fixture.task_start_mock.start() periodic_processor = self._create_periodic_processor() periodic_processor.start() periodic_processor._maintenance_task = mock.MagicMock() mock_start.assert_called_once() @mock.patch.object(periodic_task.PeriodicTask, 'execute_ops', new=mock.Mock()) def test_reset_called_on_sighup(self): pid, c2p_read = self._create_periodic_processor_ipc_fork('reset') self.assert_process_running(pid) os.kill(pid, signal.SIGHUP) self.assert_ipc_mock_called(c2p_read) @mock.patch.object(periodic_task.PeriodicTask, 'execute_ops') def test_reset_fires_maintenance_task(self, execute_mock): periodic_processor = self._create_periodic_processor() periodic_processor._start_maintenance_task() execute_mock.reset_mock() periodic_processor.reset() execute_mock.assert_has_calls([mock.call(forced=True)]) def test_reset_succeeeds_when_maintenance_task_not_setup(self): periodic_processor = self._create_periodic_processor() # NOTE(mpeterson): This tests that if calling reset without setting up # the maintenance task then it would not raise an exception and just # proceed as usual. periodic_processor.reset() @mock.patch.object(periodic_task.PeriodicTask, 'execute_ops') def test_start_fires_maintenance_task(self, execute_mock): periodic_processor = self._create_periodic_processor() periodic_processor.start() execute_mock.called_once_with([mock.call(forced=True)]) def test_creates_pidfile(self): periodic_processor = self._create_periodic_processor() periodic_processor._create_pidfile() pidfile = str(periodic_processor.pidfile) self.assertTrue(os.path.isfile(pidfile)) with open(pidfile) as f: pid = int(f.readline()) self.assertEqual(pid, os.getpid()) # NOTE(mpeterson): to avoid showing an expected exception while # running the next assert with mock.patch('neutron.agent.linux.daemon.LOG', autospec=True): self.assertRaises( SystemExit, worker.JournalPeriodicProcessor()._create_pidfile ) @mock.patch.object(worker.JournalPeriodicProcessor, '_create_pidfile') @mock.patch.object(worker.JournalPeriodicProcessor, '_delete_pidfile') def test_pidfile_handling_on_start_stop(self, mock_create, mock_delete): periodic_processor = self._create_periodic_processor() periodic_processor.start() periodic_processor.stop() mock_create.assert_called_once() mock_delete.assert_called_once() def test_deletes_pidfile(self): atexit_mock = self.journal_thread_fixture.remock_atexit() periodic_processor = self._create_periodic_processor() periodic_processor.start() pidfile = str(periodic_processor.pidfile) self.assertTrue(os.path.isfile(pidfile)) periodic_processor._delete_pidfile() self.assertFalse(os.path.isfile(pidfile)) atexit_mock.assert_called_once_with(periodic_processor._delete_pidfile) def test_atexit_delete_pidfile_registered_only_once(self): atexit_mock = self.journal_thread_fixture.remock_atexit() periodic_processor = self._create_periodic_processor() for _ in range(0, 2): periodic_processor.start() periodic_processor.stop() atexit_mock.assert_called_once() class OpenDaylightJournalThreadTest(base_v2.OpenDaylightTestCase): def setUp(self): super(OpenDaylightJournalThreadTest, self).setUp() self.journal = journal.OpenDaylightJournalThread() self.addCleanup(self.cleanup) @staticmethod def cleanup(): journal.MAKE_URL.clear() def test_json_data(self): object_type = 'testobject' data = 'testdata' row = models.OpenDaylightJournal(object_type=object_type, object_uuid=uuidutils.generate_uuid(), operation=odl_const.ODL_CREATE, data=data) self.assertEqual("%ss" % object_type, self.journal._json_data(row)[1]) def test_json_data_customized_url(self): object_type = 'randomtestobject' data = 'testdata' journal.register_url_builder(object_type, lambda row: row.object_type) row = models.OpenDaylightJournal(object_type=object_type, object_uuid=uuidutils.generate_uuid(), operation=odl_const.ODL_CREATE, data=data) url_param = self.journal._json_data(row) self.assertEqual(object_type, url_param[1]) def test_entry_reset_retries_exceptions(self): with mock.patch.object(db, 'update_db_row_state') as m: self._test_retry_exceptions(journal.entry_reset, m) @test_db.in_session @mock.patch.object(client.OpenDaylightRestClient, 'sendjson', mock.Mock(side_effect=Exception)) def test__sync_entry_update_state_by_retry_count_on_exception(self): entry = db.create_pending_row(self.db_context, *self.UPDATE_ROW) self.journal._max_retry_count = 1 self.assertEqual(entry.retry_count, 0) self.journal._sync_entry(self.db_context, entry) self.assertEqual(entry.retry_count, 1) self.assertEqual(entry.state, odl_const.PENDING) self.journal._sync_entry(self.db_context, entry) self.assertEqual(entry.retry_count, 1) self.assertEqual(entry.state, odl_const.FAILED) def _test__sync_entry_logs(self, log_type): entry = db.create_pending_row(self.db_context, *self.UPDATE_ROW) logger = self.useFixture(fixtures.FakeLogger()) self.journal._sync_entry(self.db_context, entry) self.assertIn(log_type, logger.output) def test__sync_entry_logs_processing(self): self._test__sync_entry_logs(journal.LOG_PROCESSING) def test__sync_entry_logs_completed(self): self._test__sync_entry_logs(journal.LOG_COMPLETED) @mock.patch.object(client.OpenDaylightRestClient, 'sendjson', mock.Mock(side_effect=Exception)) def test__sync_entry_logs_failed(self): self._test__sync_entry_logs(journal.LOG_ERROR_PROCESSING) @mock.patch.object(journal.OpenDaylightJournalThread, 'sync_pending_entries') def test_terminate_journal_thread_correctly(self, mock_journal): self.journal_thread_fixture.journal_thread_mock.stop() self.addCleanup(self.journal_thread_fixture.journal_thread_mock.start) journal_thread = journal.OpenDaylightJournalThread(start_thread=True) journal_thread.stop(5) self.assertTrue(not journal_thread._odl_sync_thread.is_alive()) mock_journal.assert_called_once() @mock.patch.object(journal.OpenDaylightJournalThread, 'sync_pending_entries') def test_allow_multiple_starts_gracefully(self, mock_journal): self.journal_thread_fixture.journal_thread_mock.stop() self.addCleanup(self.journal_thread_fixture.journal_thread_mock.start) journal_thread = journal.OpenDaylightJournalThread(start_thread=False) self.addCleanup(journal_thread.stop) journal_thread.start() try: journal_thread.start() except RuntimeError: self.fail('OpenDaylightJournalThread started twice') def _raise_DBReferenceError(*args, **kwargs): args = [mock.Mock(unsafe=True)] * 4 e = exception.DBReferenceError(*args) raise e class JournalTest(base_v2.OpenDaylightTestCase): @mock.patch.object(dependency_validations, 'calculate') @mock.patch.object(journal.db, 'create_pending_row', side_effect=_raise_DBReferenceError) def test_record_triggers_retry_on_reference_error(self, mock_create_row, mock_calculate): args = [mock.Mock(unsafe=True)] * 5 self.assertRaises(exception.RetryRequest, journal.record, *args) def test_entry_complete_retries_exceptions(self): with mock.patch.object(db, 'update_db_row_state') as m: self._test_retry_exceptions(journal.entry_complete, m) @test_db.in_session def _test_entry_complete(self, retention, expected_length): self.cfg.config(completed_rows_retention=retention, group='ml2_odl') db.create_pending_row(self.db_context, *test_db.DbTestCase.UPDATE_ROW) entry = db.get_all_db_rows(self.db_context)[-1] journal.entry_complete(self.db_context, entry) rows = db.get_all_db_rows(self.db_context) self.assertEqual(expected_length, len(rows)) self.assertTrue( all(row.state == odl_const.COMPLETED for row in rows)) def test_entry_complete_no_retention(self): self._test_entry_complete(0, 0) def test_entry_complete_with_retention(self): self._test_entry_complete(1, 1) def test_entry_complete_with_indefinite_retention(self): self._test_entry_complete(-1, 1) @test_db.in_session def test_entry_complete_with_retention_deletes_dependencies(self): self.cfg.config(completed_rows_retention=1, group='ml2_odl') db.create_pending_row(self.db_context, *test_db.DbTestCase.UPDATE_ROW) entry = db.get_all_db_rows(self.db_context)[-1] db.create_pending_row(self.db_context, *test_db.DbTestCase.UPDATE_ROW, depending_on=[entry]) dependant = db.get_all_db_rows(self.db_context)[-1] journal.entry_complete(self.db_context, entry) rows = db.get_all_db_rows(self.db_context) self.assertIn(entry, rows) self.assertEqual([], entry.dependencies) self.assertEqual([], dependant.depending_on) def test_entry_reset_retries_exceptions(self): with mock.patch.object(db, 'update_db_row_state') as m: self._test_retry_exceptions(journal.entry_reset, m) @test_db.in_session def test_entry_reset(self): db.create_pending_row(self.db_context, *test_db.DbTestCase.UPDATE_ROW) db.create_pending_row(self.db_context, *test_db.DbTestCase.UPDATE_ROW) entry = db.get_all_db_rows(self.db_context)[-1] entry.state = odl_const.PROCESSING self.db_context.session.merge(entry) self.db_context.session.flush() entry = db.get_all_db_rows(self.db_context)[-1] self.assertEqual(entry.state, odl_const.PROCESSING) journal.entry_reset(self.db_context, entry) rows = db.get_all_db_rows(self.db_context) self.assertEqual(2, len(rows)) self.assertTrue(all(row.state == odl_const.PENDING for row in rows)) def test_entry_set_retry_count_retries_exceptions(self): with mock.patch.object(db, 'update_pending_db_row_retry') as m: self._test_retry_exceptions( journal.entry_update_state_by_retry_count, m) @test_db.in_session def test_entry_set_retry_count(self): db.create_pending_row(self.db_context, *test_db.DbTestCase.UPDATE_ROW) entry_baseline = db.get_all_db_rows(self.db_context)[-1] db.create_pending_row(self.db_context, *test_db.DbTestCase.UPDATE_ROW) entry_target = db.get_all_db_rows(self.db_context)[-1] self.assertEqual(entry_target.retry_count, 0) self.assertEqual(entry_target.retry_count, entry_baseline.retry_count) self.assertEqual(entry_target.state, entry_baseline.state) journal.entry_update_state_by_retry_count( self.db_context, entry_target, 1) self.assertEqual(entry_target.retry_count, 1) self.assertEqual(entry_target.state, odl_const.PENDING) journal.entry_update_state_by_retry_count( self.db_context, entry_target, 1) self.assertEqual(entry_target.retry_count, 1) self.assertEqual(entry_target.state, odl_const.FAILED) self.assertNotEqual(entry_target.state, entry_baseline.state) self.assertNotEqual(entry_target.retry_count, entry_baseline.retry_count) def test_record_logs_recording(self): logger = self.useFixture(fixtures.FakeLogger()) journal.record(self.db_context, *self.UPDATE_ROW) for arg in self.UPDATE_ROW[0:3]: self.assertIn(arg, logger.output) def test_record_logs_dependencies(self): entry = db.create_pending_row(self.db_context, *self.UPDATE_ROW) logger = self.useFixture(fixtures.FakeLogger(level=logging.DEBUG)) journal.record(self.db_context, *self.UPDATE_ROW) self.assertIn(str(entry.seqnum), logger.output)
# -*- coding: utf-8 -*- from PyQt5 import QtCore, QtGui, QtWidgets from PyQt5.QtCore import Qt from pycoin.key.BIP32Node import BIP32Node from pycoin.cmds.ku import get_entropy from pycoin.networks.default import get_current_netcode from first_page import Ui_first from ..encoding.encoding import get_chain_secret_pair import sys from second_page import Ui_second from PyQt5.QtWidgets import QTreeWidgetItem from pycoin.key.BIP32Node import BIP32Node from .keychain import KeyChain from .widgets import PubKeyTreeWidgetItem, PrivKeyTreeWidgetItem class App(object): def __init__(self): self.app = QtWidgets.QApplication(sys.argv) self.first = QtWidgets.QDialog() self.second = QtWidgets.QDialog() self.ui = Ui_first() self.ui.setupUi(self.first) self.ui.gen_key_button.clicked.connect(self.gen_seed) self.ui.secret_exponent.textChanged.connect(self.detect_text) self.ui.next_button.clicked.connect(self.next) self.first.show() self.netcode = get_current_netcode() self.privkeychain = KeyChain() self.pubkeychain = KeyChain() def run(self): sys.exit(self.app.exec_()) def retranslateUi(self, first): _translate = QtCore.QCoreApplication.translate self.first.setWindowTitle(_translate("first", "Welcome")) self.gen_seed_button.setText(_translate("first", "Generate Seed ")) self.next_button.setText(_translate("first", "Next")) def next(self): self.first.done(0) self.start_second() def start_second(self): self.ui = Ui_second() self.ui.setupUi(self.second) master_node = BIP32Node(self.netcode, self.chain_code, secret_exponent=int(self.secret_exponent,16)) master_pub_node = master_node.public_copy() privkey_tree_item = PrivKeyTreeWidgetItem(key_type='Private Key', level='m', key=master_node) pubkey_tree_item = PubKeyTreeWidgetItem(key_type='Public Key', level='M', key=master_pub_node) self.privkeychain.append(privkey_tree_item) self.pubkeychain.append(pubkey_tree_item) self.ui.treeWidget.setContextMenuPolicy(Qt.CustomContextMenu) self.ui.treeWidget.customContextMenuRequested.connect(self.show_context_menu) self.ui.treeWidget.addTopLevelItems([privkey_tree_item, pubkey_tree_item]) self.second.show() def show_context_menu(self, pos): menu = QtWidgets.QMenu() menu.addAction("Rename", self.rename_key) if self.pubkeychain.isSelected(): menu.addAction("Create PubKey", self.derive_pub_from_pub) elif self.privkeychain.isSelected(): menu.addAction("Create PubKey", self.derive_pub_from_priv) menu.addAction("Create PrivKey", self.derive_priv) action = menu.exec_(self.ui.treeWidget.mapToGlobal(pos)) def rename_key(self): item = self.privkeychain.get_selected_key() item.setText(0,'Hi') def derive_pub_from_priv(self, index=1): parent_level = self.privkeychain.get_selected_level() parent_key = self.privkeychain.get_selected_key().key self._derive_pub(parent_key, parent_level, self.privkeychain) def derive_pub_from_pub(self, index=1): parent_level = self.pubkeychain.get_selected_level() parent_key = self.pubkeychain.get_selected_key().key self._derive_pub(parent_key, parent_level, self.pubkeychain) def _derive_pub(self, parent_key, parent_level, keychain, index=2): child_key_type = 'Public Key' child_key = parent_key.subkey(as_private=False) if parent_level[0] not in ['N', 'M']: child_key_label = 'N({})'.format(parent_level) + '/{}'.format(index) else: child_key_label = parent_level + '/{}'.format(index) child_tree_item = PubKeyTreeWidgetItem(child_key_type, child_key_label, child_key) self.pubkeychain.append(child_tree_item) keychain.get_selected_key().addChild(child_tree_item) def derive_priv(self, index=2): parent_level = self.privkeychain.get_selected_level() parent_key = self.privkeychain.get_selected_key().key child_key_type = 'Private Key' child_key_label = parent_level + '/{}'.format(index) child_key = parent_key.subkey(as_private=True) child_tree_item = PrivKeyTreeWidgetItem(child_key_type, child_key_label, child_key) self.privkeychain.append(child_tree_item) self.privkeychain.get_selected_key().addChild(child_tree_item) def gen_seed(self): self.chain_code, self.secret_exponent = get_chain_secret_pair() self.ui.secret_exponent.setText(self.secret_exponent) self.ui.chain_code.setText(self.chain_code) def detect_text(self, text): if len(text) > 0: self.ui.next_button.setEnabled(True) else: self.ui.next_button.setEnabled(False) app = App() app.run()
""" .dat export base handler Overview =============================================================================== +----------+------------------------------------------------------------------+ | Path | PyPoE/cli/exporter/dat/handler.py | +----------+------------------------------------------------------------------+ | Version | 1.0.0a0 | +----------+------------------------------------------------------------------+ | Revision | $Id: e174a100d8076d0d726202a95b85507e5dbf6c58 $ | +----------+------------------------------------------------------------------+ | Author | Omega_K2 | +----------+------------------------------------------------------------------+ Description =============================================================================== .dat export base handler Agreement =============================================================================== See PyPoE/LICENSE """ # ============================================================================= # Imports # ============================================================================= # Python # 3rd-party from tqdm import tqdm # self from PyPoE.poe.constants import VERSION from PyPoE.poe.file import dat from PyPoE.cli.core import console, Msg from PyPoE.cli.exporter import config from PyPoE.cli.exporter.util import get_content_ggpk, get_content_ggpk_path # ============================================================================= # Globals # ============================================================================= __all__ = [] # ============================================================================= # Classes # ============================================================================= class DatExportHandler(object): def add_default_arguments(self, parser): """ :param parser: :type parser: argparse.ArgumentParser :return: """ parser.set_defaults(func=self.handle) parser.add_argument( '--files', '--file', help='.dat files to export', nargs='*', ) def handle(self, args): ver = config.get_option('version') if ver != VERSION.STABLE: console('Loading specification for %s' % ver) dat.reload_default_spec(version=ver) spec = dat._default_spec if args.files is None: args.files = list(spec) else: files = set() for file_name in args.files: if file_name in spec: files.add(file_name) elif not file_name.endswith('.dat'): file_name += '.dat' if file_name not in spec: console('.dat file "%s" is not in specification. Removing.' % file_name, msg=Msg.error) else: files.add(file_name) files = list(files) files.sort() args.files = files def _read_dat_files(self, args, prefix=''): path = get_content_ggpk_path() console(prefix + 'Reading "%s"...' % path) ggpk = get_content_ggpk(path) console(prefix + 'Reading .dat files') dat_files = {} ggpk_data = ggpk['Data'] remove = [] for name in tqdm(args.files): try: node = ggpk_data[name] except FileNotFoundError: console('Skipping "%s" (missing)' % name, msg=Msg.warning) remove.append(name) continue df = dat.DatFile(name) df.read(file_path_or_raw=node.record.extract(), use_dat_value=False) dat_files[name] = df for file_name in remove: args.files.remove(file_name) return dat_files # ============================================================================= # Functions # =============================================================================
''' Calculates the 12C(p,gamma) cross section and compares it to the Vogl data. "Free" parameters: * ANC (1/2-) * level energy (1/2+) * partial width (1/2+, elastic) * partial width (1/2+, capture) ''' import os import sys from multiprocessing import Pool import emcee import numpy as np from scipy import stats import model ######################################## # We'll set up the sampler and get it started. nd = model.azr.config.nd nw = 2*nd # number of walkers = 2 * number of sampled parameters # Pick a point (theta) in parameter space around which we'll start each walker. theta0 = [2.1, 2.37, 33600, -0.6325, 1, 1] # theta0 = np.array(model.azr.config.get_input_values()) # theta0 = np.array([[pi.rvs() for pi in model.priors] for _ in range(nw)]) # Each walkers needs its own starting position. We'll take normally distributed # random values centered at theta0. p0 = np.zeros((nw, nd)) mask = np.array([0.01, 0.0001, 0.01, 0.01, 0.01, 0.01]) for i in range(nw): mu = theta0 sig = np.abs(theta0) * mask # 1% width p0[i, :] = stats.norm(mu, sig).rvs() # We'll store the chain in test_mcmc.h5. (See emcee Backends documentation.) backend = emcee.backends.HDFBackend('chain.h5') backend.reset(nw, nd) nsteps = 10 # How many steps should each walker take? nthin = 1 # How often should the walker save a step? nprocs = 4 # How many Python processes do you want to allocate? # AZURE2 and emcee are both parallelized. We'll restrict AZURE2 to 1 thread to # simplify things. os.environ['OMP_NUM_THREADS'] = '1' # emcee allows the user to specify the way the ensemble generates proposals. moves = [(emcee.moves.DESnookerMove(), 0.8), (emcee.moves.DEMove(), 0.2)] with Pool(processes=nprocs) as pool: sampler = emcee.EnsembleSampler(nw, nd, model.lnP, moves=moves, pool=pool, backend=backend) state = sampler.run_mcmc(p0, nsteps, thin_by=nthin, progress=True, tune=True)
from fnmatch import fnmatch def test_fixture(regression_file_path): assert fnmatch(str(regression_file_path.relative), "[01].xmf") assert fnmatch( str(regression_file_path.absolute), "*/test_regression_file_path_fixture0/references/case/[01].xmf", )
import numpy as np from HungarianAlgorithm.model import hungarian from HungarianAlgorithm.matrix_generator import gen_matrix_given_permutation, gen_matrix if __name__ == '__main__': """ Some test ready to go, to see utilities and limitations. """ p = [0, 2, 3, 5, 1, 4] a = gen_matrix_given_permutation(10, 6, p) resp = hungarian(a) print('Cost matrix:') print(a) print('Solution:') print(resp) a = np.array([[0, 9, 7, 8, 1, 9], [5, 8, 0, 4, 2, 6], [5, 9, 5, 0, 3, 7], [7, 6, 8, 2, 2, 0], [9, 0, 7, 4, 2, 8], [2, 1, 4, 6, 0, 7]]) resp = hungarian(a, max_num_percolation=50) print('Cost matrix:') print(a) print('Solution:') print(resp) a = np.array([[1, 1, 0, 1, 0], [0, 0, 0, 1, 0], [0, 1, 0, 1, 0], [0, 1, 0, 1, 1], [0, 0, 0, 0, 0]]) resp = hungarian(a, max_num_percolation=500) print('Cost matrix:') print(a) print('Solution:') print(resp) a = gen_matrix(60, 15) resp = hungarian(a, max_num_percolation=5000) print('Cost matrix:') print(a) print('Solution:') print(resp) # counterexample: matrix with too many zeros: # Bugs must be fixed for sparse matrices - code may fail here. a = gen_matrix(6, 15) print('\n\n --- Particular case where the algorithm fails --- ') print('\n For this matrix we expect the algorithm to raise an issue ' '(too sparse respect to the max num percolation):') print('\nCost matrix:') print(a) resp = hungarian(a, max_num_percolation=10000) print('Solution:') print(resp)
from tests.graph_case import GraphTestCase class TestPlanner(GraphTestCase): @classmethod def setUpClass(cls): super(TestPlanner, cls).setUpClass() @classmethod def tearDownClass(cls): pass def test2_list_my_plans(self): my_plans = self.client.me.planner.plans.get().execute_query() self.assertIsNotNone(my_plans.resource_path)
""" ゼロから学ぶスパイキングニューラルネットワーク - Spiking Neural Networks from Scratch Copyright (c) 2020 HiroshiARAKI. All Rights Reserved. """ import numpy as np import matplotlib.pyplot as plt class HodgkinHuxley: def __init__(self, time, dt, rest=-65., Cm=1.0, gNa=120., gK=36., gl=0.3, ENa=50., EK=-77., El=-54.387): """ Initialize Neuron parameters :param time: experimental time :param dt: time step :param rest: resting potential :param Cm: membrane capacity :param gNa: Na+ channel conductance :param gK: K+ channel conductance :param gl: other (Cl) channel conductance :param ENa: Na+ equilibrium potential :param EK: K+ equilibrium potential :param El: other (Cl) equilibrium potentials """ self.time = time self.dt = dt self.rest = rest self.Cm = Cm self.gNa = gNa self.gK = gK self.gl = gl self.ENa = ENa self.EK = EK self.El = El def calc(self, i): """ compute membrane potential """ # initialize parameters v = self.rest n = 0.32 m = 0.05 h = 0.6 v_monitor = [] n_monitor = [] m_monitor = [] h_monitor = [] time = int(self.time / self.dt) # update time for t in range(time): # calc channel gating kinetics n += self.dn(v, n) m += self.dm(v, m) h += self.dh(v, h) # calc tiny membrane potential dv = (i[t] - self.gK * n**4 * (v - self.EK) - # K+ current self.gNa * m**3 * h * (v - self.ENa) - # Na+ current self.gl * (v - self.El)) / self.Cm # other current # calc new membrane potential v += dv * self.dt # record v_monitor.append(v) n_monitor.append(n) m_monitor.append(m) h_monitor.append(h) return v_monitor, n_monitor, m_monitor, h_monitor def dn(self, v, n): return (self.alpha_n(v) * (1 - n) - self.beta_n(v) * n) * self.dt def dm(self, v, m): return (self.alpha_m(v) * (1 - m) - self.beta_m(v) * m) * self.dt def dh(self, v, h): return (self.alpha_h(v) * (1 - h) - self.beta_h(v) * h) * self.dt def alpha_n(self, v): return 0.01 * (10 - (v - self.rest)) / (np.exp((10 - (v - self.rest))/10) - 1) def alpha_m(self, v): return 0.1 * (25 - (v - self.rest)) / (np.exp((25 - (v - self.rest))/10) - 1) def alpha_h(self, v): return 0.07 * np.exp(-(v - self.rest) / 20) def beta_n(self, v): return 0.125 * np.exp(-(v - self.rest) / 80) def beta_m(self, v): return 4 * np.exp(-(v - self.rest) / 18) def beta_h(self, v): return 1 / (np.exp((30 - (v - self.rest))/10) + 1) if __name__ == '__main__': # init experimental time and time-step time = 300 # 実験時間 (観測時間) dt = 2**-4 # 時間分解能 (HHモデルは結構小さめでないと上手く計算できない) # Hodgkin-Huxley Neuron neuron = HodgkinHuxley(time, dt) # 入力データ (面倒臭いので適当な矩形波とノイズを合成して作った) input_data = np.sin(0.5 * np.arange(0, time, dt)) input_data = np.where(input_data > 0, 20, 0) + 10 * np.random.rand(int(time/dt)) input_data_2 = np.cos(0.4 * np.arange(0, time, dt) + 0.5) input_data_2 = np.where(input_data_2 > 0, 10, 0) input_data += input_data_2 # 膜電位などを計算 v, m, n, h = neuron.calc(input_data) # plot plt.figure(figsize=(12, 6)) x = np.arange(0, time, dt) plt.subplot(3, 1, 1) plt.plot(x, input_data) plt.ylabel('I [μA/cm2]') plt.subplot(3, 1, 2) plt.plot(x, v) plt.ylabel('V [mV]') plt.subplot(3, 1, 3) plt.plot(x, n, label='n') plt.plot(x, m, label='m') plt.plot(x, h, label='h') plt.xlabel('time [ms]') plt.ylabel('Conductance param') plt.legend() plt.show()
""" All visualization performed my mdsea is contained in this directory. Different visualization platforms are developed in different files. """
"""Extract signatures from an image.""" import cv2 import matplotlib.pyplot as plt from skimage import measure, morphology from skimage.measure import regionprops def extractor(img): img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) img = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY)[1] # ensure binary # connected component analysis by scikit-learn framework blobs = img > img.mean() blobs_labels = measure.label(blobs, background=1) the_biggest_component = 0 total_area = 0 counter = 0 average = 0.0 for region in regionprops(blobs_labels): if region.area > 10: total_area = total_area + region.area counter = counter + 1 # print region.area # (for debugging) # take regions with large enough areas if region.area >= 250: if region.area > the_biggest_component: the_biggest_component = region.area average = (total_area/counter) # a4_constant is used as a threshold value to remove connected pixels # are smaller than a4_constant for A4 size scanned documents a4_constant = ((average / 84.0) * 250.0) + 100 # remove the connected pixels are smaller than del_constant b = morphology.remove_small_objects(blobs_labels, a4_constant) # save the the pre-version which is the image is labelled with colors # as considering connected components plt.imsave('pre_version.png', b) # read the pre-version img = cv2.imread('pre_version.png', 0) # ensure binary result = cv2.threshold(img, 30, 255, cv2.THRESH_BINARY_INV)[1] return result
users = {} messages = [] queues = []
import requests from bs4 import BeautifulSoup import time #BTC_URL = 'https://ru.investing.com/crypto/bitcoin/btc-usd' #convert = soup.findAll("span", {"class": "arial_26 inlineblock pid-1058142-last"}) #ETH_URL = 'https://ru.investing.com/crypto/ethereum/eth-usd' #convert = soup.findAll("span", {"class": "arial_26 inlineblock pid-945629-last"}) class Currency: def __init__(self): self.current_converted_price = float(self.get_currency_price().replace(",", ".")) XRP_URL = 'https://ru.investing.com/crypto/xrp/xrp-usd' HEADER = { 'User-Agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/87.0.4280.88 Safari/537.36' } current_converted_price = 0 difference = 0.00001 def get_currency_price(self): full_page = requests.get(self.XRP_URL, headers=self.HEADER) soup = BeautifulSoup(full_page.content, 'html.parser') convert = soup.findAll("span", {"class": "arial_26 inlineblock pid-1118146-last"}) return convert[0].text def get_result(self): return True def check_currency(self): currency = float(self.get_currency_price().replace(",", ".")) if currency >= self.current_converted_price + self.difference: self.total = "Курс вырос на 10 центов: " + str(currency) print(self.total) self.get_result() elif currency <= self.current_converted_price - self.difference: self.total = "Курс упал на 10 центов: " + str(currency) print(self.total) self.get_result() print(currency) time.sleep(10) def get_answer(self): return self.total
from functools import reduce import wx from vistas.core.observers.camera import CameraObservable from vistas.core.preferences import Preferences from vistas.ui.controllers.project import ProjectChangedEvent from vistas.ui.controls.viewer_panel import ViewerPanel from vistas.ui.events import EVT_CAMERA_MODE_CHANGED, EVT_CAMERA_SYNC, CameraSyncEvent class ViewerContainerPanel(wx.Panel): """ A container panel that provides access to all active viewer panels and handles adding, removing and resizing window rows and columns. Also provides access for synchronizing ViewerPanels when mouse events occur. """ class Row: def __init__(self): self.viewers = [] self.num_viewers = 0 self.prev_row = None def __init__(self, parent, id): super().__init__(parent, id) self.num_viewers = 0 self.wireframe = False self.selection_view = False self.rows = [] self.num_columns = Preferences.app().get('viewer_itemsperrow', 2) self.AddViewer() # Events self.Bind(wx.EVT_SIZE, self.OnSize) self.Bind(EVT_CAMERA_MODE_CHANGED, self.OnCameraModeChanged) self.Bind(EVT_CAMERA_SYNC, self.OnCameraSyncEvent) self.Bind(wx.EVT_WINDOW_DESTROY, self.OnDestroy) def OnDestroy(self, event): self.Unbind(EVT_CAMERA_MODE_CHANGED) def AddViewer(self, new_viewer=None): # Add new row if necessary if self.num_viewers % self.num_columns == 0: self.AddRow() last_row = self.rows[-1] # Create new viewer if new_viewer is None: new_viewer = ViewerPanel(self, wx.ID_ANY) new_viewer.HideResizeAreas() new_viewer.ResetNeighbors() index = last_row.num_viewers last_row.viewers[index] = new_viewer last_row.num_viewers += 1 self.num_viewers += 1 # Size proportions for the new viewer new_viewer.width = 1 / last_row.num_viewers new_viewer.height = 1 / len(self.rows) for viewer in last_row.viewers[:index]: viewer.width *= index * (1 / last_row.num_viewers) # Set neighbors if last_row.num_viewers > 1: new_viewer.SetNeighbor(last_row.viewers[index - 1], ViewerPanel.WEST) last_row.viewers[index - 1].SetNeighbor(new_viewer, ViewerPanel.EAST) if last_row.prev_row is not None and last_row.prev_row.num_viewers >= last_row.num_viewers: for viewer in last_row.prev_row.viewers: new_viewer.SetNeighbor(viewer, ViewerPanel.NORTH) viewer.SetNeighbor(new_viewer, ViewerPanel.SOUTH) self.UpdateViewerSizes() observable = CameraObservable.get() if observable.is_sync: self.SyncAllCameras(False, False) self.SyncAllCameras(True, True) new_viewer.ResetCameraInteractor() def RemoveViewer(self, viewer=None): # Can't remove the last viewer if self.num_viewers < 2: return if viewer is None: row = self.rows[-1] viewer = row.viewers[row.num_viewers - 1] for row in self.rows: if viewer in row.viewers: index = row.viewers.index(viewer) viewer = row.viewers[index] row.viewers[index] = None viewer.legend_window.Destroy() viewer.Destroy() self.num_viewers -= 1 self.Rebuild() return def RefreshAllViewers(self): for row in self.rows: for viewer in row.viewers[:row.num_viewers]: viewer.gl_canvas.Refresh() def UpdateViewerSizes(self): for row in self.rows: for viewer in row.viewers[:row.num_viewers]: x = 0 y = 0 neighbor = viewer.GetNeighbor(ViewerPanel.WEST) if neighbor: x = neighbor.GetPosition().x + neighbor.GetSize().GetWidth() neighbor = viewer.GetNeighbor(ViewerPanel.NORTH) if neighbor: y = neighbor.GetPosition().y + neighbor.GetSize().GetHeight() viewer.SetSize( x, y, self.GetSize().GetWidth() * viewer.width, self.GetSize().GetHeight() * viewer.height ) viewer.gl_canvas.camera_controls.reposition() def OnSize(self, event): self.UpdateViewerSizes() def Rebuild(self): rows = self.rows self.rows = [] self.num_viewers = 0 for row in rows: for viewer in (x for x in row.viewers if x is not None): self.AddViewer(viewer) def AddRow(self): new_row = self.Row() new_row.viewers = list(None for _ in range(self.num_columns)) if self.rows: new_row.prev_row = self.rows[-1] for row in self.rows: for viewer in row.viewers[:row.num_viewers]: viewer.height *= len(self.rows) * (1 / (len(self.rows) + 1)) self.rows.append(new_row) def ProjectChanged(self, event): if event.change == ProjectChangedEvent.PROJECT_RESET: while self.num_viewers > 1: self.RemoveViewer() self.GetMainViewerPanel().RefreshScenes() self.GetMainViewerPanel().UpdateLegend() self.GetMainViewerPanel().UpdateOverlay() else: for row in self.rows: for i in range(row.num_viewers): row.viewers[i].ProjectChanged(event) def GetMainViewerPanel(self): return self.rows[0].viewers[0] def GetAllViewerPanels(self): return reduce(lambda x, y: x + y, (row.viewers[:row.num_viewers] for row in self.rows)) def ToggleWireframe(self): self.wireframe = not self.wireframe for viewer in self.GetAllViewerPanels(): viewer.camera.wireframe = self.wireframe viewer.camera.scene.render_bounding_boxes = self.wireframe viewer.Refresh() def ToggleSelectionView(self): self.selection_view = not self.selection_view for viewer in self.GetAllViewerPanels(): viewer.camera.selection_view = self.selection_view viewer.Refresh() def OnCameraModeChanged(self, event): if CameraObservable.get().is_sync: self.SyncAllCameras(True, False) def OnCameraSyncEvent(self, event: CameraSyncEvent): if CameraObservable.get().is_sync: canvas = event.GetEventObject() for panel in self.GetAllViewerPanels(): if canvas is not panel.gl_canvas: interactor = panel.gl_canvas.camera_interactor interactor.sync(event.interactor) def SyncAllCameras(self, do_sync, save_state): observable = CameraObservable.get() if do_sync: interactor = self.GetMainViewerPanel().gl_canvas.camera_interactor observable.sync_camera(interactor, save_state) for panel in self.GetAllViewerPanels(): if panel is not self.GetMainViewerPanel(): panel.gl_canvas.camera_controls.hide() else: main_panel_interactor = observable.global_interactor observable.unsync_camera() if main_panel_interactor is not None: self.GetMainViewerPanel().gl_canvas.camera_interactor = main_panel_interactor for panel in self.GetAllViewerPanels(): if panel is not None and panel is not self.GetMainViewerPanel(): panel.gl_canvas.camera_controls.show()
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models # Create your models here. class RedHat(models.Model): PROTOCOL_CHOICES = ( #(0,''), ('rest', 'REST API'), ('soap', 'SOAP'), ('telnet', 'Telnet'), ('ssh', 'SSH'), ) hostname = models.CharField(max_length=127) ip = models.GenericIPAddressField() protocol = models.CharField(max_length=15, choices=PROTOCOL_CHOICES) timestamp = models.DateTimeField(auto_now_add=True) class Junos(models.Model): PROTOCOL_CHOICES = ( #(0,''), ('netconf', 'Netconf'), ('telnet', 'Telnet'), ('ssh', 'SSH'), ) hostname = models.CharField(max_length=127) ip = models.GenericIPAddressField(max_length=15) protocol = models.CharField(max_length=15, choices=PROTOCOL_CHOICES) timestamp = models.DateTimeField(auto_now_add=True) class Junose(models.Model): PROTOCOL_CHOICES = ( #(0,''), ('netconf', 'Netconf'), ('telnet', 'Telnet'), ('ssh', 'SSH'), ) hostname = models.CharField(max_length=127) ip = models.GenericIPAddressField(max_length=15) protocol = models.CharField(max_length=15, choices=PROTOCOL_CHOICES) timestamp = models.DateTimeField(auto_now_add=True) """ PROTOCOL_CHOICES = ( (0,''), (1,'REST API'), (2,'SOAP'), (3,'Telnet'), (4,'TL1'), (5,'SSH'), ) SYSTEM_CHOICES = ( (0,''), (1,'Nokia AMS5520'), (2,'Arris AXSVision'), (3,'Calix CMS'), (4,'Junos'), (5,'Junose'), (6,'RedHat'), (7,'Tellabs Panorama'), ) class Cmds(models.Model): cmdprotocol = models.CharField(max_length=25, choices=CMDPROTOCOL_CHOICES, default=0) cmdsystem = models.CharField(max_length=25, choices=CMDSYSTEM_CHOICES, default=0) cmdset = models.CharField(max_length=25, default='') cmdline = models.CharField(max_length=255, default='') timestamp = models.DateTimeField(auto_now_add=True) """
#!/usr/bin/env python # Copyright 2014 Google Inc. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """ Test variable expansion of '<!()' syntax commands where they are evaluated more than once from different directories. """ import TestGyp test = TestGyp.TestGyp() # This tests GYP's cache of commands, ensuring that the directory a command is # run from is part of its cache key. Parallelism may lead to multiple cache # lookups failing, resulting in the command being run multiple times by # chance, not by GYP's logic. Turn off parallelism to ensure that the logic is # being tested. test.run_gyp('repeated_multidir/main.gyp', '--no-parallel') test.pass_test()
#!/usr/bin/env python3 import time import datetime import dateutil.parser from difflib import SequenceMatcher import os import requests from selenium import webdriver from selenium.webdriver.firefox.firefox_binary import FirefoxBinary from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support import expected_conditions as exp_c from selenium.webdriver.common.by import By from selenium.common.exceptions import * from selenium.webdriver.remote.webelement import WebElement import pymongo from pymongo import MongoClient from pymongo.collection import Collection from pymongo.errors import WriteError from session_manager import SessionManager from domain.whatsapp_message import WhatsAppMessage from alert_manager import AlertManager import whatsapp.selenium_methods as selenium_methods SELENIUM_TIMEOUT = 60 MESSAGE_LIMIT = 10 binary = FirefoxBinary('/usr/bin/firefox-developer-edition') webdriver.DesiredCapabilities.FIREFOX["unexpectedAlertBehaviour"] = "accept" class WhatsAppProcess: def __init__(self) -> None: super().__init__() self._initialize_database() self.alert_manager = AlertManager() self.session = SessionManager self.driver = self.session.get_existing_driver_session() # self.driver = webdriver.Firefox(firefox_binary=binary) # self.driver.get('https://web.whatsapp.com/') self.wait = WebDriverWait(self.driver, SELENIUM_TIMEOUT) self.processed_conversation_ids = [] self.previous_conversation_content = None self.processed_contacts = [] def _initialize_database(self): self.client = MongoClient('mongodb', 27017) self.db = self.client.whatsapp_cli # MongoDB scales horizontally, so: single messages collection containing all messages from all conversations self.messages_collection: Collection = self.db.messages self.messages_collection.create_index([("uid", pymongo.DESCENDING), ("timestamp", pymongo.DESCENDING), ("content", pymongo.DESCENDING)], unique=True) def process_new_users(self): # Generate processed_contacts list self._for_each_conversation(self._process_contact) # Send processed_contacts to API and get list of new users new_user_contacts = self._get_new_user_contacts(self.processed_contacts) # self.processed_contacts = list(filter(None.__ne__, self.processed_contacts)) print('Checking for new users') if not new_user_contacts: return for number in new_user_contacts: if selenium_methods.try_search_for_contact(self.driver, number): # Wait until messages panel is visible messages_panel = self.wait.until(lambda _: self.driver.find_element_by_xpath("//div[@class='_9tCEa']")) # Dynamically load the number of messages defined by MESSAGE_LIMIT messages_panel = self._load_messages_panel(messages_panel) # Extract username from message launch sequence username = self._process_new_user(number, messages_panel) if username: print('New user %s ~ %s' % (username, number)) # If in a test environment, don't create new user if os.environ.get('ENABLE_DEBUG', True) is True: new_uid = "UID_DEBUG" else: new_uid = self._create_new_user(contact_number=number, username=username) if new_uid: print('Successfully created user: %s' % new_uid) else: print('Failed to create user: %s' % number) continue else: print('No valid launch sequence for %s' % number) continue # Once contact has been successfully processed, remove from list new_user_contacts.remove(number) else: print('Couldn\'t find contact') # Notify, via Slack, of any new users who couldn't be processed self.alert_manager.slack_alert('Unable to add new users: %s' % new_user_contacts) def _get_new_user_contacts(self, all_contacts): new_and_existing = self._check_for_new_users(all_contacts) new_user_contacts = list(filter(lambda x: True if not new_and_existing.get(x, False) else False, all_contacts)) for number in new_user_contacts: print('New user: %s' % number) return new_user_contacts def _check_for_new_users(self, contact_numbers): data = list(filter(lambda x: x is not None, map(lambda y: selenium_methods.clean_contact_number(y), contact_numbers))) headers = { 'Content-Type': 'application/json', 'Authorization': 'REMOVED', 'Origin': 'https://myREMOVED.com' } req = requests.post("REMOVED:3000/user_recon", json=data, headers=headers) if req.status_code == 200: return req.json() else: print(req.status_code, req.reason) return None def _get_uid_from_number(self, contact_number): data = { 'fullMobileNum': contact_number } headers = { 'Content-Type': 'application/json', 'Authorization': 'REMOVED', 'Origin': 'https://myREMOVED.com' } endpoint = "REMOVED:3000/user_uid_from_full_mobile_num" req = requests.post(endpoint, json=data, headers=headers) if req.status_code == 200: return req.json()['userUID'] else: print(req.status_code, req.reason) return None def _create_new_user(self, contact_number, username=None): contact_number = selenium_methods.clean_contact_number(contact_number) data = { 'fullMobileNum': contact_number, 'username': username } headers = { 'Content-Type': 'application/json', 'Authorization': 'REMOVED', 'Origin': 'REMOVED' } endpoint = "REMOVED/users/create_user_full_num" req = requests.post(endpoint, json=data, headers=headers) if req.status_code == 200: return req.json()['userUID'] else: print(req.status_code, req.reason) return None def process_messages(self): self._for_each_conversation(self._process_conversation) def _for_each_conversation(self, func): print('Ensuring connection okay') # self.session.wait_until_connection_okay() print('Fetching conversations panel') conversations_panel: WebElement = self._get_conversations_panel() print('Fetching conversations') def conversations(): return conversations_panel.find_elements_by_class_name('_2wP_Y') print('Processing conversations') self._side_pane_scroll_to(0) while True: def sorted_conversations(): return sorted(conversations(), key=lambda el: self._get_element_y_position(el)) conversations_copy = sorted_conversations().copy() # print(list(map(lambda conv: '%s ~ %s' % (conv.id, conv.text), conversations_copy))) for index in range(len(conversations_copy)): func(conversations_copy[index]) scroll_progress = self._side_pane_scroll_top() scroll_max = self._side_pane_scroll_top_max() if scroll_progress == scroll_max: break last_processed_conversation = conversations_copy[-1] self._scroll_into_view(last_processed_conversation, True) time.sleep(0.1) progress = round((scroll_progress/scroll_max)*100) print('Progress: %s' % progress) def _process_contact(self, conversation: WebElement): # Fetch contact name/number element - if contact saved, would appear as name contact_name_number = self.wait.until(lambda _: conversation.find_element_by_xpath( ".//span[@class='_1wjpf']")).get_attribute('title') if contact_name_number not in self.processed_contacts: cleaned = selenium_methods.clean_contact_number(contact_name_number) if cleaned: self.processed_contacts.append(cleaned) return contact_name_number def _process_conversation(self, conversation: WebElement): print('\nProcessing conversation...') uid = None try: # Assuming the user is not saved as a contact, 'contact_id' will return the number contact_id = self.wait.until(lambda _: conversation.find_element_by_xpath(".//span[@class='_1wjpf']")) \ .get_attribute('title') contact_id = selenium_methods.clean_contact_number(contact_id) if not contact_id: print('Invalid contact ID') return False # Try get uid from local database, otherwise perform network call, # if this fails then user needs to be created first uid = self.get_uid_from_number_db(contact_id) if not uid: uid = self._get_uid_from_number(contact_id) if not uid: print('User needs to be created') last_message_content = self.wait.until(lambda _: conversation.find_element_by_xpath(".//span[@class='_2_LEW']")) \ .get_attribute('title') last_message = WhatsAppMessage(uid=uid, timestamp=None, sender_name=None, sender_number=contact_id, content=last_message_content) del last_message.timestamp del last_message.sender_name if self.messages_in_sync(last_message): print('Messages in sync') return True print('Processing conversation %s: ID - %s' % (conversation.id, contact_id)) except NoSuchElementException: print('No such element') return False messages_panel = self.load_conversation_messages_panel(conversation) self.previous_conversation_content = messages_panel if uid: # messages = self._extract_and_save_messages(messages_panel) # print('Saving messages to database') # for message in messages: # message.uid = uid # self.save_message(message) # print('Message: %s' % message.__dict__) return True else: username = self._process_new_user(contact_id, messages_panel) if username: print('New user %s ~ %s' % (username, contact_id)) new_uid = self._create_new_user(contact_number=contact_id, username=username) if new_uid: print('Successfully created user: %s' % new_uid) else: print('Failed to create user: %s' % contact_id) else: print('No valid launch sequence for %s' % contact_id) return False def load_conversation_messages_panel(self, conversation): self.wait.until(lambda _: conversation and conversation.is_displayed() and conversation.is_enabled()) while True: try: conversation.click() break except ElementClickInterceptedException: time.sleep(0.1) continue # If moving from active conversation, wait for content to refresh after click # while True: # self.wait.until(lambda _: conversation and conversation.is_displayed() and conversation.is_enabled()) # conversation.click() # try: # conversation.click() # break # except ElementClickInterceptedException: # self._scroll_into_view(conversation, False) # continue if self.previous_conversation_content: self.wait.until(exp_c.staleness_of(self.previous_conversation_content)) messages_panel = self.wait.until(lambda _: conversation.find_element_by_xpath("//div[@class='_9tCEa']")) # self.wait.until( # lambda _: 'loading' not in messages_panel.find_element_by_class_name('_3dGYA').get_attribute('title')) # Scroll through all messages until MESSAGE_LIMIT messages are scraped, or we reach the top return self._load_messages_panel(messages_panel) def _load_messages_panel(self, messages_panel): # Scroll through all messages until MESSAGE_LIMIT messages are scraped, or we reach the top try: while len(messages_panel.find_elements_by_class_name('vW7d1')) < MESSAGE_LIMIT: try: load_spinner = WebDriverWait(self.driver, 2) \ .until(lambda _: self.driver.find_element_by_xpath("//div[@class='_3dGYA']")) self._scroll_into_view(load_spinner, True) except (TimeoutException, StaleElementReferenceException): break self.wait.until(lambda _: not self._messages_are_loading()) except NoSuchElementException: pass return messages_panel def _scroll_into_view(self, web_element, align_top: bool): return self.driver.execute_script('return arguments[0].scrollIntoView(%s);' % 'true' if align_top else 'false', web_element) def _get_element_y_position(self, web_element): return self.driver.execute_script('return arguments[0].getBoundingClientRect().top;', web_element) def _scroll_top(self, web_element): return self.driver.execute_script('return arguments[0].scrollTop;', web_element) def _scroll_top_max(self, web_element): return self.driver.execute_script('return arguments[0].scrollTopMax;', web_element) def _side_pane_scroll_top(self): side_pane = self.driver.find_element_by_id('pane-side') return self._scroll_top(side_pane) def _side_pane_scroll_top_max(self): side_pane = self.driver.find_element_by_id('pane-side') return self._scroll_top_max(side_pane) def _side_pane_scroll_by(self, pixels): side_pane = self.driver.find_element_by_id('pane-side') return self.driver.execute_script('return arguments[0].scrollBy(0, %d);' % pixels, side_pane) def _side_pane_scroll_to(self, pixels): side_pane = self.driver.find_element_by_id('pane-side') return self.driver.execute_script('return arguments[0].scrollTo(0, %d);' % pixels, side_pane) def _messages_are_loading(self): try: def load_spinner(): self.driver.find_element_by_xpath("//div[@class='_3dGYA']") if load_spinner(): return 'loading' in load_spinner().get_attribute('title') else: return False except NoSuchElementException: return False def _get_conversations_panel(self): conversations_panel = None try: conversations_panel = self.wait.until( exp_c.visibility_of_element_located((By.XPATH, "//div[@class='RLfQR']"))) except TimeoutException: pass return conversations_panel def _find_conversation_by_id(self, contact_id): conversations_panel: WebElement = self._get_conversations_panel() try: selector = ".//span[@class='_1wjpf'][@title='%s']/ancestor::div[@class='_2wP_Y']" % contact_id return conversations_panel.find_element_by_xpath(selector) except NoSuchElementException: return None def _extract_and_save_messages(self, messages_panel): messages: [WhatsAppMessage] = [] def append_message(message): messages.append(message) self._for_each_message(messages_panel, append_message) return messages def _process_new_user(self, contact_id, messages_panel): # Initialize variables messages: [WhatsAppMessage] = [] username = None # Iterate through user's messages and append to list def append_message(msg): messages.append(msg) self._for_each_message(messages_panel, append_message) # Remove any messages not from sender i.e. from Wattie itself messages = list(filter(lambda x: selenium_methods.clean_contact_number(x.sender_number) == selenium_methods.clean_contact_number(contact_id), messages)) # For each message, try find launch phrase and process for message in messages: # Split message content into words word_list = message.content.split() # Strip whitespace word_list = [word.strip() for word in word_list] # Find launch words launch_words = list(filter(lambda word: self.similar('launch', word.lower(), 0.75) or self.similar('start', word.lower(), 0.75), word_list)) if not launch_words or not message.content.strip().startswith(launch_words[0]): continue # Remove launch words word_list = [word for word in word_list if word not in launch_words] # Remaining words should be name and surname if not word_list: continue name, *surname = word_list username = " ".join(word_list) # Remove non-alpha characters username = "".join([c for c in username if c.isalpha() or c.isspace()]) if username: return username return username def similar(self, a, b, threshold): return SequenceMatcher(None, a, b).ratio() >= threshold def _for_each_message(self, messages_panel, func): message_elements: [WebElement] = lambda: messages_panel \ .find_elements_by_xpath(".//div[@class='vW7d1'][position() <= %d]" % MESSAGE_LIMIT) number_elements = len(message_elements()) for index in range(number_elements): try: details_el: WebElement = message_elements()[index] \ .find_element_by_xpath(".//div[@class='Tkt2p']/div[1]") except NoSuchElementException: try: details_el: WebElement = message_elements()[index] \ .find_element_by_xpath(".//div[@class='Tkt2p']/div[2]") except NoSuchElementException: continue details = details_el.get_attribute('data-pre-plain-text') if details: time_string: str = details[details.find('[')+1:details.find(']')] sender_id: str = details.replace('[%s]' % time_string, '', 1).strip().replace(':', '', 1) else: continue # content: str = self.wait.until(lambda x: message_elements()[index].find_element_by_xpath( # ".//span[@class='selectable-text invisible-space copyable-text']")).text try: content: str = message_elements()[index].find_element_by_xpath( ".//span[@class='selectable-text invisible-space copyable-text']").text except NoSuchElementException: continue message = self.create_message('', time_string=time_string, sender_name=None, sender_number=sender_id, content=content) func(message) def create_message(self, uid, time_string, sender_name, sender_number, content): # Time string format: [18:44, 7/8/2018] # See http://strftime.org/ # Timestamp can change, so using dateutil instead # timestamp = datetime.datetime.strptime(time_string, "%H:%M, %m/%d/%Y").replace(tzinfo=datetime.timezone.utc) timestamp = dateutil.parser.parse(time_string).replace(tzinfo=datetime.timezone.utc) msg = WhatsAppMessage(uid, timestamp, sender_name, sender_number, content) return msg def save_message(self, msg: WhatsAppMessage): # message_json = json.dumps(msg.__dict__, indent=4, sort_keys=True, default=str) # message_json = dumps(msg.__dict__) # Insert object into messages_collection and log database id try: schedule_id = self.messages_collection.insert_one(msg.__dict__).inserted_id print('Message inserted in database with ID ' + str(schedule_id)) return schedule_id except WriteError: print('Duplicate message exists in database') return None def delete_message(self, msg_id): print('Deleting message from database') self.messages_collection.delete_many({"_id": msg_id}) def purge_all_messages(self): print('Deleting all messages from database') self.messages_collection.delete_many({}) def get_uid_from_number_db(self, contact_number): message = self.messages_collection.find_one({'sender_number': contact_number}) if message: return message['uid'] else: return None def messages_in_sync(self, last_message: WhatsAppMessage): last_message_dict = last_message.__dict__ if self.messages_collection.find_one(last_message_dict): return True else: return False
import numpy as np from pyhlm.model import WeakLimitHDPHLM, WeakLimitHDPHLMPython from pyhlm.internals.hlm_states import WeakLimitHDPHLMStates from pyhlm.word_model import LetterHSMM, LetterHSMMPython import pyhsmm from tqdm import trange import warnings warnings.filterwarnings('ignore') import time from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter from util.config_parser import ConfigParser_with_eval from pathlib import Path #%% parse arguments hypparams_model = "hypparams/model.config" hypparams_letter_duration = "hypparams/letter_duration.config" hypparams_letter_hsmm = "hypparams/letter_hsmm.config" hypparams_letter_observation = "hypparams/letter_observation.config" hypparams_pyhlm = "hypparams/pyhlm.config" hypparams_word_length = "hypparams/word_length.config" hypparams_superstate = "hypparams/superstate.config" parser = ArgumentParser(formatter_class=ArgumentDefaultsHelpFormatter) parser.add_argument("--model", default=hypparams_model, help="hyper parameters of model") parser.add_argument("--letter_duration", default=hypparams_letter_duration, help="hyper parameters of letter duration") parser.add_argument("--letter_hsmm", default=hypparams_letter_hsmm, help="hyper parameters of letter HSMM") parser.add_argument("--letter_observation", default=hypparams_letter_observation, help="hyper parameters of letter observation") parser.add_argument("--pyhlm", default=hypparams_pyhlm, help="hyper parameters of pyhlm") parser.add_argument("--word_length", default=hypparams_word_length, help="hyper parameters of word length") parser.add_argument("--superstate", default=hypparams_superstate, help="hyper parameters of superstate") args = parser.parse_args() hypparams_model = args.model hypparams_letter_duration = args.letter_duration hypparams_letter_hsmm = args.letter_hsmm hypparams_letter_observation = args.letter_observation hypparams_pyhlm = args.pyhlm hypparams_word_length = args.word_length hypparams_superstate = args.superstate #%% def load_config(filename): cp = ConfigParser_with_eval() cp.read(filename) return cp #%% def load_datas(): data = [] names = np.loadtxt("files.txt", dtype=str) files = names for name in names: data.append(np.loadtxt("DATA/" + name + ".txt")) return data def unpack_durations(dur): unpacked = np.zeros(dur.sum()) d = np.cumsum(dur) unpacked[d-1] = 1.0 return unpacked def save_stateseq(model): # Save sampled states sequences. names = np.loadtxt("files.txt", dtype=str) for i, s in enumerate(model.states_list): with open("results/" + names[i] + "_s.txt", "a") as f: np.savetxt(f, s.stateseq, fmt="%d") with open("results/" + names[i] + "_l.txt", "a") as f: np.savetxt(f, s.letter_stateseq, fmt="%d") with open("results/" + names[i] + "_d.txt", "a") as f: np.savetxt(f, unpack_durations(s.durations_censored), fmt="%d") def save_params_as_text(itr_idx, model): with open("parameters/ITR_{0:04d}.txt".format(itr_idx), "w") as f: f.write(str(model.params)) def save_params_as_file(iter_idx, model): params = model.params root_dir = Path("parameters/ITR_{0:04d}".format(iter_idx)) root_dir.mkdir(exist_ok=True) save_json(root_dir, params) def save_json(root_dir, json_obj): for keyname, subjson in json_obj.items(): type_of_subjson = type(subjson) if type_of_subjson == dict: dir = root_dir / keyname dir.mkdir(exist_ok=True) save_json(dir, json_obj[keyname]) else: savefile = root_dir / f"{keyname}.txt" if type_of_subjson == np.ndarray: if subjson.dtype in [np.int8, np.int16, np.int32, np.int64, np.uint8, np.uint16, np.uint32, np.uint64]: np.savetxt(savefile, subjson, fmt="%d") else: np.savetxt(savefile, subjson) else: savefile.write_text(str(subjson)) def save_params_as_npz(iter_idx, model): params = model.params flatten_params = flatten_json(params) # flatten_params = copy_flatten_json(flatten_params) np.savez(f"parameters/ITR_{iter_idx:04d}.npz", **flatten_params) def flatten_json(json_obj, keyname_prefix=None, dict_obj=None): if dict_obj is None: dict_obj = {} if keyname_prefix is None: keyname_prefix = "" for keyname, subjson in json_obj.items(): if type(subjson) == dict: prefix = f"{keyname_prefix}{keyname}/" flatten_json(subjson, keyname_prefix=prefix, dict_obj=dict_obj) else: dict_obj[f"{keyname_prefix}{keyname}"] = subjson return dict_obj def unflatten_json(flatten_json_obj): dict_obj = {} for keyname, value in flatten_json_obj.items(): current_dict = dict_obj splitted_keyname = keyname.split("/") for key in splitted_keyname[:-1]: if key not in current_dict: current_dict[key] = {} current_dict = current_dict[key] current_dict[splitted_keyname[-1]] = value return dict_obj def copy_flatten_json(json_obj): new_json = {} for keyname, subjson in json_obj.items(): type_of_subjson = type(subjson) if type_of_subjson in [int, float, complex, bool]: new_json[keyname] = subjson elif type_of_subjson in [list, tuple]: new_json[keyname] = subjson[:] elif type_of_subjson == np.ndarray: new_json[keyname] = subjson.copy() else: raise NotImplementedError(f"type :{type_of_subjson} can not copy. Plz implement here!") return new_json def save_loglikelihood(model): with open("summary_files/log_likelihood.txt", "a") as f: f.write(str(model.log_likelihood()) + "\n") def save_resample_times(resample_time): with open("summary_files/resample_times.txt", "a") as f: f.write(str(resample_time) + "\n") #%% Path("results").mkdir(exist_ok=True) Path("parameters").mkdir(exist_ok=True) Path("summary_files").mkdir(exist_ok=True) #%% config parse config_parser = load_config(hypparams_model) section = config_parser["model"] thread_num = section["thread_num"] pretrain_iter = section["pretrain_iter"] train_iter = section["train_iter"] word_num = section["word_num"] letter_num = section["letter_num"] observation_dim = section["observation_dim"] hlm_hypparams = load_config(hypparams_pyhlm)["pyhlm"] config_parser = load_config(hypparams_letter_observation) obs_hypparams = [config_parser[f"{i+1}_th"] for i in range(letter_num)] config_parser = load_config(hypparams_letter_duration) dur_hypparams = [config_parser[f"{i+1}_th"] for i in range(letter_num)] len_hypparams = load_config(hypparams_word_length)["word_length"] letter_hsmm_hypparams = load_config(hypparams_letter_hsmm)["letter_hsmm"] superstate_config = load_config(hypparams_superstate) #%% make instance of distributions and model letter_obs_distns = [pyhsmm.distributions.Gaussian(**hypparam) for hypparam in obs_hypparams] letter_dur_distns = [pyhsmm.distributions.PoissonDuration(**hypparam) for hypparam in dur_hypparams] dur_distns = [pyhsmm.distributions.PoissonDuration(lmbda=20) for _ in range(word_num)] length_distn = pyhsmm.distributions.PoissonDuration(**len_hypparams) letter_hsmm = LetterHSMM(**letter_hsmm_hypparams, obs_distns=letter_obs_distns, dur_distns=letter_dur_distns) model = WeakLimitHDPHLM(**hlm_hypparams, letter_hsmm=letter_hsmm, dur_distns=dur_distns, length_distn=length_distn) #%% files = np.loadtxt("files.txt", dtype=str) datas = load_datas() #%% Pre training. for data in datas: letter_hsmm.add_data(data, **superstate_config["DEFAULT"]) for t in trange(pretrain_iter): letter_hsmm.resample_model(num_procs=thread_num) letter_hsmm.states_list = [] #%% print("Add datas...") for name, data in zip(files, datas): model.add_data(data, **superstate_config[name], generate=False) model.resample_states(num_procs=thread_num) # # or # for name, data in zip(files, datas): # model.add_data(data, **superstate_config[name], initialize_from_prior=False) print("Done!") #%% Save init params # save_params_as_text(0, model) # save_params_as_file(0, model) save_params_as_npz(0, model) save_loglikelihood(model) #%% for t in trange(train_iter): st = time.time() model.resample_model(num_procs=thread_num) resample_model_time = time.time() - st save_stateseq(model) save_loglikelihood(model) # save_params_as_text(t+1, model) # save_params_as_file(t+1, model) save_params_as_npz(t+1, model) save_resample_times(resample_model_time) print(model.word_list) print(model.word_counts()) print(f"log_likelihood:{model.log_likelihood()}") print(f"resample_model:{resample_model_time}")
""" 2 3 2 3 ok 2 3 ok 3 1 3 1 errados 3 1 errados 5 5 5 5 ok 5 5 ok 5 4 5 4 errados 5 4 ok 5 4 5 4 errados 5 4 ok 9 9 9 9 ok 9 9 ok 0 0 0 0 errados 0 0 ok 0 1 0 1 ok 0 1 ok 1 0 1 0 errados 1 0 ok 89 25 89 25 errados 89 25 errados 4 5 4 5 ok 4 5 ok 10 12 10 12 errados 10 12 errados 10 11 10 11 ok 10 11 ok 11 10 11 10 errados 11 10 ok """ x, y = input().split() x, y = [int(x), int(y)] if y == 0: print("{} {} errados".format(x, y)) elif x == y or abs(y-x) <= 1 and x < y and y != 0: print("{} {} ok".format(x, y)) else: print("{} {} errados".format(x, y))
from django import template from ..apps.basket import my_middleware register = template.Library() @register.simple_tag def request_made(): my_middleware.my_list.append("end of request") return my_middleware.my_list[0:-1] @register.simple_tag def request_made_len(): return len(my_middleware.my_list[0:-1])
# Copyright Indra Soluciones Tecnologías de la Información, S.L.U. # 2013-2019 SPAIN # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys import logging if os.path.abspath(os.path.dirname(__file__)) not in sys.path: sys.path.insert(0, os.path.abspath(os.path.dirname(__file__))) from microservice.controller import ModelController if __name__ == '__main__': ModelController.run(debug=True, host="0.0.0.0", port=5000)
import datetime import dgl import errno import numpy as np import os import pickle import random import torch import nni from dgl.data.utils import download, get_download_dir, _get_dgl_url from pprint import pprint from scipy import sparse from scipy import io as sio def set_random_seed(seed=0): """Set random seed. Parameters ---------- seed : int Random seed to use """ random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) if torch.cuda.is_available(): torch.cuda.manual_seed(seed) def mkdir_p(path, log=True): """Create a directory for the specified path. Parameters ---------- path : str Path name log : bool Whether to print result for directory creation """ try: os.makedirs(path) if log: print('Created directory {}'.format(path)) except OSError as exc: if exc.errno == errno.EEXIST and os.path.isdir(path) and log: print('Directory {} already exists.'.format(path)) else: raise def get_date_postfix(): """Get a date based postfix for directory name. Returns ------- post_fix : str """ dt = datetime.datetime.now() post_fix = '{}_{:02d}-{:02d}-{:02d}'.format( dt.date(), dt.hour, dt.minute, dt.second) return post_fix def setup_log_dir(args, sampling=False): """Name and create directory for logging. Parameters ---------- args : dict Configuration Returns ------- log_dir : str Path for logging directory sampling : bool Whether we are using sampling based training """ date_postfix = get_date_postfix() log_dir = os.path.join( args['log_dir'], '{}_{}'.format(args['dataset'], date_postfix)) if sampling: log_dir = log_dir + '_sampling' mkdir_p(log_dir) return log_dir # The configuration below is from the paper. # RECEIVED_PARAMS = nni.get_next_parameter() # lr = RECEIVED_PARAMS['learning_rate'] # dr = RECEIVED_PARAMS['dropout_rate'] lr = 0.003 dr = 0.6 default_configure = { 'lr': lr, # Learning rate 'num_heads': [2], # Number of attention heads for node-level attention 'hidden_units': 32, 'dropout': dr, 'weight_decay': 0.001, 'num_epochs': 10, 'patience': 20 } sampling_configure = { 'batch_size': 20 } def setup(args): args.update(default_configure) set_random_seed(args['seed']) args['dataset'] = 'dblp' args['device'] = 'cuda:0' if torch.cuda.is_available() else 'cpu' args['log_dir'] = setup_log_dir(args) return args def setup_for_sampling(args): args.update(default_configure) args.update(sampling_configure) set_random_seed() args['device'] = 'cuda:0' if torch.cuda.is_available() else 'cpu' args['log_dir'] = setup_log_dir(args, sampling=True) return args def get_binary_mask(total_size, indices): mask = torch.zeros(total_size) mask[indices] = 1 return mask.byte() def load_dblp(remove_self_loop): NODE_FEATURE = 'Dataprocessing/dblp.v12/data/node_feature.pkl' EDGES = 'Dataprocessing/dblp.v12/data/edges.pkl' with open(NODE_FEATURE,'rb') as f: node_features = pickle.load(f) with open(EDGES,'rb') as f: edges = pickle.load(f) # A_ap,A_pa,A_ao,A_oa a_vs_p = edges[0] p_vs_a = edges[1] a_vs_o = edges[2] o_vs_a = edges[3] hg = dgl.heterograph({ ('author', 'ap', 'paper'): a_vs_p.nonzero(), ('paper', 'pa', 'author'): p_vs_a.nonzero(), ('author', 'ao', 'org'): a_vs_o.nonzero(), ('org', 'oa', 'author'): o_vs_a.nonzero() }) features = torch.tensor(node_features, dtype=torch.float32) num_classes = 64 return hg, features, num_classes def load_data(dataset, remove_self_loop=False): if dataset == 'dblp': return load_dblp(remove_self_loop) else: return NotImplementedError('Unsupported dataset {}'.format(dataset)) class EarlyStopping(object): def __init__(self, patience=10): dt = datetime.datetime.now() self.filename = 'early_stop_{}_{:02d}-{:02d}-{:02d}.pth'.format( dt.date(), dt.hour, dt.minute, dt.second) self.patience = patience self.counter = 0 self.best_acc = None self.best_loss = None self.early_stop = False def step(self, loss, acc, model): if self.best_loss is None: self.best_acc = acc self.best_loss = loss self.save_checkpoint(model) elif (loss > self.best_loss) and (acc < self.best_acc): self.counter += 1 print(f'EarlyStopping counter: {self.counter} out of {self.patience}') if self.counter >= self.patience: self.early_stop = True else: if (loss <= self.best_loss) and (acc >= self.best_acc): self.save_checkpoint(model) self.best_loss = np.min((loss, self.best_loss)) self.best_acc = np.max((acc, self.best_acc)) self.counter = 0 return self.early_stop def save_checkpoint(self, model): """Saves model when validation loss decreases.""" torch.save(model.state_dict(), self.filename) def load_checkpoint(self, model): """Load the latest checkpoint.""" model.load_state_dict(torch.load(self.filename))
import environ import socket ROOT_DIR = environ.Path(__file__) - 3 # (safe_relay_service/config/settings/base.py - 3 = safe-relay-service/) APPS_DIR = ROOT_DIR.path('safe_relay_service') env = environ.Env() READ_DOT_ENV_FILE = env.bool('DJANGO_READ_DOT_ENV_FILE', default=False) DOT_ENV_FILE = env('DJANGO_DOT_ENV_FILE', default=None) if READ_DOT_ENV_FILE or DOT_ENV_FILE: DOT_ENV_FILE = DOT_ENV_FILE or '.env' # OS environment variables take precedence over variables from .env env.read_env(str(ROOT_DIR.path(DOT_ENV_FILE))) # GENERAL DEBUG = env.bool('DJANGO_DEBUG', False) TIME_ZONE = 'UTC' LANGUAGE_CODE = 'en-us' SITE_ID = 1 USE_I18N = True USE_L10N = True USE_TZ = True # DATABASES psql_url = 'psql://' + env('POSTGRES_USER') + ':' + env('POSTGRES_PASSWORD') + '@' + env('POSTGRES_HOST') + ':' + env('POSTGRES_PORT') + '/' + env('POSTGRES_DATABASE_RELAYER') DATABASES = { 'default': env.db('RELAYER_DATABASE', default=psql_url), } DATABASES['default']['ATOMIC_REQUESTS'] = True # URLS ROOT_URLCONF = 'config.urls' WSGI_APPLICATION = 'config.wsgi.application' # APPS DJANGO_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.messages', 'django.contrib.sessions', 'django.contrib.sites', 'django.contrib.staticfiles', 'corsheaders', ] THIRD_PARTY_APPS = [ 'rest_framework', 'rest_framework.authtoken', 'drf_yasg', ] LOCAL_APPS = [ 'safe_relay_service.relay.apps.RelayConfig', 'safe_relay_service.tokens.apps.TokensConfig', 'safe_relay_service.gas_station.apps.GasStationConfig', ] INSTALLED_APPS = DJANGO_APPS + THIRD_PARTY_APPS + LOCAL_APPS # MIDDLEWARE MIDDLEWARE = [ 'corsheaders.middleware.CorsMiddleware', 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] # STATIC STATIC_ROOT = '/usr/share/nginx/html/relayer' STATIC_URL = '/static/' STATICFILES_DIRS = [ str(APPS_DIR.path('static')), ] STATICFILES_FINDERS = [ 'django.contrib.staticfiles.finders.FileSystemFinder', 'django.contrib.staticfiles.finders.AppDirectoriesFinder', ] # MEDIA MEDIA_ROOT = str(APPS_DIR('media')) MEDIA_URL = '/media/' # TEMPLATES TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [ str(APPS_DIR.path('templates')), ], 'OPTIONS': { 'debug': DEBUG, 'loaders': [ 'django.template.loaders.filesystem.Loader', 'django.template.loaders.app_directories.Loader', ], 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.template.context_processors.i18n', 'django.template.context_processors.media', 'django.template.context_processors.static', 'django.template.context_processors.tz', 'django.contrib.messages.context_processors.messages', ], }, }, ] # FIXTURES FIXTURE_DIRS = ( str(APPS_DIR.path('fixtures')), ) # EMAIL EMAIL_BACKEND = 'django.core.mail.backends.dummy.EmailBackend' # ADMIN ADMIN_URL = r'^admin/' ADMINS = [ ("""Circles""", 'webmaster@joincircles.net'), ] MANAGERS = ADMINS # Celery INSTALLED_APPS += [ 'safe_relay_service.taskapp.celery.CeleryConfig', 'django_celery_beat', ] CELERY_BROKER_URL = env('CELERY_BROKER_URL', default='django://') CELERY_RESULT_BACKEND = CELERY_BROKER_URL CELERY_ACCEPT_CONTENT = ['json'] CELERY_RESULT_SERIALIZER = 'json' CELERY_TASK_SERIALIZER = 'json' # Django REST Framework REST_FRAMEWORK = { 'PAGE_SIZE': 10, 'DEFAULT_PAGINATION_CLASS': 'rest_framework.pagination.LimitOffsetPagination', 'DEFAULT_PERMISSION_CLASSES': ('rest_framework.permissions.AllowAny',), 'DEFAULT_RENDERER_CLASSES': ( 'djangorestframework_camel_case.render.CamelCaseJSONRenderer', ), 'DEFAULT_PARSER_CLASSES': ( 'djangorestframework_camel_case.parser.CamelCaseJSONParser', ), 'DEFAULT_VERSIONING_CLASS': 'rest_framework.versioning.NamespaceVersioning', 'EXCEPTION_HANDLER': 'safe_relay_service.relay.views.custom_exception_handler', } # LOGGING LOGGING = { 'version': 1, 'disable_existing_loggers': False, 'filters': { 'require_debug_false': { '()': 'django.utils.log.RequireDebugFalse' }, 'ignore_check_url': { '()': 'safe_relay_service.relay.utils.IgnoreCheckUrl' } }, 'formatters': { 'verbose': { 'format': '%(asctime)s [%(levelname)s] [%(processName)s] %(message)s', }, }, 'handlers': { 'mail_admins': { 'level': 'ERROR', 'filters': ['require_debug_false'], 'class': 'django.utils.log.AdminEmailHandler' }, 'console': { 'level': 'DEBUG', 'class': 'logging.StreamHandler', 'formatter': 'verbose', }, }, 'loggers': { '': { 'handlers': ['console'], 'level': 'DEBUG' if DEBUG else 'INFO', }, 'celery.worker.strategy': { 'handlers': ['console'], 'level': 'DEBUG' if DEBUG else 'INFO', }, 'django.request': { 'handlers': ['console'], 'level': 'ERROR', 'propagate': True }, 'django.security.DisallowedHost': { 'level': 'ERROR', 'handlers': ['console'], 'propagate': True }, 'django.server': { # Gunicorn uses `gunicorn.access` 'level': 'INFO', 'handlers': ['console'], 'propagate': True, 'filters': ['ignore_check_url'], }, } } REDIS_URL = env('RELAYER_REDIS_URL', default='redis://redis:6379/0') # ETHEREUM ETH_HASH_PREFIX = env('ETH_HASH_PREFIX', default='ETH') ETHEREUM_NODE_URL = env('ETHEREUM_NODE_ENDPOINT', default=None) ETHEREUM_TRACING_NODE_URL = env('ETHEREUM_TRACING_NODE_URL', default=ETHEREUM_NODE_URL) GAS_STATION_NUMBER_BLOCKS = env('GAS_STATION_NUMBER_BLOCKS', default=300) # SAFE SAFE_FUNDER_PRIVATE_KEY = env('SAFE_FUNDER_PRIVATE_KEY', default=None) # Maximum ether (no wei) for a single transaction (security limit) SAFE_FUNDER_MAX_ETH = env.int('SAFE_FUNDER_MAX_ETH', default=0.1) SAFE_FUNDING_CONFIRMATIONS = env.int('SAFE_FUNDING_CONFIRMATIONS', default=3) # Set to at least 3 # Master Copy Address of Safe Contract SAFE_CONTRACT_ADDRESS = env('SAFE_ADDRESS', default='0x' + '0' * 39 + '1') SAFE_V1_0_0_CONTRACT_ADDRESS = env('SAFE_ADDRESS', default='0x' + '0' * 39 + '1') SAFE_V0_0_1_CONTRACT_ADDRESS = env('SAFE_ADDRESS', default='0x' + '0' * 39 + '1') SAFE_VALID_CONTRACT_ADDRESSES = set(env.list('SAFE_VALID_CONTRACT_ADDRESSES', default=['0x' + '0' * 39 + '1']) ) | {SAFE_CONTRACT_ADDRESS, SAFE_V1_0_0_CONTRACT_ADDRESS, SAFE_V0_0_1_CONTRACT_ADDRESS} SAFE_PROXY_FACTORY_ADDRESS = env('PROXY_FACTORY_ADDRESS', default='0x' + '0' * 39 + '2') SAFE_PROXY_FACTORY_V1_0_0_ADDRESS = env('PROXY_FACTORY_ADDRESS', default='0x' + '0' * 39 + '2') SAFE_DEFAULT_CALLBACK_HANDLER = env('SAFE_DEFAULT_CALLBACK_HANDLER', default='0x' + '0' * 39 + '3') # If FIXED_GAS_PRICE is None, GasStation will be used FIXED_GAS_PRICE = env.int('FIXED_GAS_PRICE', default=None) SAFE_TX_SENDER_PRIVATE_KEY = env('SAFE_TX_SENDER_PRIVATE_KEY', default=None) SAFE_CHECK_DEPLOYER_FUNDED_DELAY = env.int('SAFE_CHECK_DEPLOYER_FUNDED_DELAY', default=1 * 30) SAFE_CHECK_DEPLOYER_FUNDED_RETRIES = env.int('SAFE_CHECK_DEPLOYER_FUNDED_RETRIES', default=10) SAFE_FIXED_CREATION_COST = env.int('SAFE_FIXED_CREATION_COST', default=None) SAFE_ACCOUNTS_BALANCE_WARNING = env.int('SAFE_ACCOUNTS_BALANCE_WARNING', default=200000000000000000) # 0.2 Eth SAFE_TX_NOT_MINED_ALERT_MINUTES = env('SAFE_TX_NOT_MINED_ALERT_MINUTES', default=10) NOTIFICATION_SERVICE_URI = env('NOTIFICATION_SERVICE_URI', default=None) NOTIFICATION_SERVICE_PASS = env('NOTIFICATION_SERVICE_PASS', default=None) TOKEN_LOGO_BASE_URI = env('TOKEN_LOGO_BASE_URI', default='') TOKEN_LOGO_EXTENSION = env('TOKEN_LOGO_EXTENSION', default='.png') # CACHES CACHES = { 'default': { 'BACKEND': 'django_redis.cache.RedisCache', 'LOCATION': env('RELAYER_REDIS_URL'), 'OPTIONS': { 'CLIENT_CLASS': 'django_redis.client.DefaultClient', 'IGNORE_EXCEPTIONS': True, } } } # CIRCLES CIRCLES_HUB_ADDRESS = env('HUB_ADDRESS', default='0x' + '0' * 39 + '2') GRAPH_NODE_ENDPOINT = env('GRAPH_NODE_ENDPOINT', default='') MIN_TRUST_CONNECTIONS = env('MIN_TRUST_CONNECTIONS', default=3) SUBGRAPH_NAME = env('SUBGRAPH_NAME', default='') # DOCKER hostname, _, ips = socket.gethostbyname_ex(socket.gethostname()) INTERNAL_IPS = ['127.0.0.1', '10.0.2.2'] INTERNAL_IPS += [ip[:-1] + '1' for ip in ips]
__version__ = '1.5.4.0'
# Generated by Django 2.1.4 on 2018-12-11 04:42 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Customer', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=50, unique=True)), ], ), migrations.CreateModel( name='Job', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('job_number', models.IntegerField()), ('description', models.TextField()), ('list_order', models.IntegerField()), ('machine', models.CharField(choices=[('SMSV', 'Small Starvision'), ('PIN1', 'Pinnacle 1'), ('PIN2', 'Pinnacle 2'), ('MBSV', 'Mid Bay Big Starvision')], default='PIN1', max_length=4)), ('customer', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='list.Customer')), ], ), ]
#!/usr/bin/env python # -*- coding: UTF-8 -*- # ------------------------------------------------------------------------------ # Copyright 2020. NAVER Corp. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ------------------------------------------------------------------------------ # Created by eeliu at 11/6/19 class SpanFactory(object): def __init__(self,agent): self.sequenceid = 0 self.agent = agent def createSpan(self, stackMap): raise NotImplemented def createSpanEvent(self, stackMap): raise NotImplemented def attachSpanEvent(self, span, span_event): raise NotImplemented def makeSpan(self, stackMap): self.sequenceid = 0 span = self.createSpan(stackMap) if 'calls' in stackMap: for called in stackMap['calls']: self.makeSpanEv(span, called) return span def makeSpanEv(self, span, stackMap, depth=1): span_ev = self.createSpanEvent(stackMap) self.setSequenceid(span_ev, self.sequenceid) self.sequenceid += 1 self.setDepth(span_ev, depth) self.attachSpanEvent(span, span_ev) if 'calls' in stackMap: for called in stackMap['calls']: self.makeSpanEv(span, called, depth + 1) def setSequenceid(self, span_ev, id): raise NotImplemented def setDepth(self, span_ev, depth): raise NotImplemented
import json from bs4 import BeautifulSoup import pandas as pd import sys # Argparsing argument_index = 1 template = sys.argv[argument_index] argument_index +=1 recall_json = sys.argv[argument_index] argument_index +=1 recall_plot = sys.argv[argument_index] argument_index +=1 precision_jsons_list = [sys.argv[i] for i in range(argument_index, len(sys.argv))] precision_rows_list = [] # convert jsons back to dicts for html conversion for json_path in precision_jsons_list: with open(json_path, 'r') as json_file: data = json.load(json_file) precision_rows_list.append(data) precision_df = pd.DataFrame(precision_rows_list) precision_df = precision_df.sort_values(by='Round #') precision_html_table = precision_df.to_html(index=False) # Same for recall json recall_rows_list = [] with open(recall_json, 'r') as json_file: data=json.load(json_file) recall_rows_list.append(data) recall_df = pd.DataFrame(recall_rows_list) recall_html_table = recall_df.to_html(index=False) # Create html with open(template, 'r') as template_file: contents = template_file.read() template_soup = BeautifulSoup(contents, features="html.parser") p_list = template_soup.find_all('p') p_index = 0 # Read recall table tag recall_soup = BeautifulSoup(recall_html_table, features="html.parser") table_tag = recall_soup.find('table') p_list[p_index].insert_after(table_tag) p_index+=1 image_tag = template_soup.new_tag('img') image_tag['src']= f"./recall/{recall_plot}" image_tag['width']= 700 image_tag['height']= 500 p_list[p_index].insert_after(image_tag) p_index+=1 precision_soup = BeautifulSoup(precision_html_table, features="html.parser") table_tag = precision_soup.find('table') p_list[p_index].insert_after(table_tag) p_index+=1 with open('spot_detection_qc_report.html', 'w') as result_file: result_file.write(str( template_soup ))
#!/usr/bin/env python """test-imu-plot.py: Ask multiwii for raw IMU and plot it using pyqtgraph.""" __author__ = "Aldo Vargas" __copyright__ = "Copyright 2016 Altax.net" __license__ = "GPL" __version__ = "1" __maintainer__ = "Aldo Vargas" __email__ = "alduxvm@gmail.com" __status__ = "Development" from pymultiwii import MultiWii import pyqtgraph as pg from pyqtgraph.Qt import QtCore, QtGui #board = MultiWii("/dev/tty.usbserial-A801WZA1") board = MultiWii("/dev/tty.SLAB_USBtoUART") win = pg.GraphicsWindow() win.setWindowTitle('MultiWii IMU plotting') p1 = win.addPlot() win.nextRow() p2 = win.addPlot() data1 = [0] * 300 data2 = [0] * 300 data3 = [0] * 300 data4 = [0] * 300 data5 = [0] * 300 data6 = [0] * 300 curve1 = p1.plot(data1, name="ax", pen=(255,0,0)) curve2 = p1.plot(data2, name="ay", pen=(0,255,0)) curve3 = p1.plot(data3, name="az", pen=(0,0,255)) curve4 = p2.plot(data1, name="gx", pen=(255,0,0)) curve5 = p2.plot(data2, name="gy", pen=(0,255,0)) curve6 = p2.plot(data3, name="gz", pen=(0,0,255)) def update1(): global data1, curve1, board board.getData(MultiWii.RAW_IMU) t = float(board.rawIMU['timestamp']) ax = board.rawIMU['ax'] ay = board.rawIMU['ay'] az = board.rawIMU['az'] gx = board.rawIMU['gx'] gy = board.rawIMU['gy'] gz = board.rawIMU['gz'] data1[:-1] = data1[1:] data1[-1] = ax data2[:-1] = data2[1:] data2[-1] = ay data3[:-1] = data3[1:] data3[-1] = az data4[:-1] = data4[1:] data4[-1] = gx data5[:-1] = data5[1:] data5[-1] = gy data6[:-1] = data6[1:] data6[-1] = gz curve1.setData(data1) curve2.setData(data2) curve3.setData(data3) curve4.setData(data4) curve5.setData(data5) curve6.setData(data6) def update(): update1() timer = pg.QtCore.QTimer() timer.timeout.connect(update) timer.start(10) if __name__ == '__main__': import sys if (sys.flags.interactive != 1) or not hasattr(QtCore, 'PYQT_VERSION'): QtGui.QApplication.instance().exec_()
# -*- coding: UTF-8 -*- import requests import json def get_api(api_url, api_name, token, record_id=None): if not record_id: return requests.get('{}/{}/?token={}'.format(api_url, api_name, token)) return requests.get('{}/{}/{}?token={}'.format(api_url, api_name, record_id, token)) def post_api(api_url, api_name, token, data, _json=True): if _json: data = json.dumps(data) headers = {'Content-Type': 'application/json;charset=UTF-8'} return requests.post("{}{}?token={}".format(api_url, api_name, token), data=data, headers=headers)
# to be defined once OK pass
''' # Criar variável para nome (str), idade (int), # altura (float) e peso (float) de uma pessoa # Criar variavel com ano atual (int) # Obter o ano de nascimento da pessoa (baseada na idade e no ano atual) # Obter o imc da pessoa com 2 casas decimais (peso e na altura da pesso) # Exibir um texto com todos os valores na tela usando F-String (com as chaves) ''' nome = 'Higor' idade = 26 altura = 1.79 peso = 68.4 ano_atual = 2021 ano_nascimento = ano_atual - idade imc = peso / (altura**2) print(f'{nome} tem {idade} anos, {altura} de altura e peso {peso}Kg.') print(f'O IMC de {nome} é {imc:.2f}.') print(f'{nome} nasceu em {ano_nascimento}.')
#! 圆斑/重叠圆斑计数工具 import os import otsu import pylab import numpy as np import mahotas as mh from PIL import Image from PIL import ImageFilter from PIL import ImageEnhance FileName = input("输入测试图片名称(默认为edu.tif):") or "edu.tif" CurrentDir = os.getcwd() global new_img, r_criterion, g_criterion, b_criterion, gaussian def rgb_filter(r, g, b, image): image_data = image.load() new_image = Image.new("RGB", (image.size[0], image.size[1]), (0, 0, 0)) criterion = [r, g, b] luminance = [0, 0, 0] filtered_luminance = [0, 0, 0] for w in range(img.size[0]): for h in range(img.size[1]): luminance += image_data[w, h] if image_data[w, h][0] > criterion[0]: filtered_luminance[0] += image_data[w, h][0] new_image.putpixel((w, h), (image_data[w, h][0], 0, 0)) if image_data[w, h][1] > criterion[1]: filtered_luminance[1] += image_data[w, h][0] new_image.putpixel((w, h), (0, image_data[w, h][1], 0)) if image_data[w, h][2] > criterion[2]: filtered_luminance[2] += image_data[w, h][0] new_image.putpixel((w, h), (0, 0, image_data[w, h][2])) return new_image, luminance, filtered_luminance def image_processing(image, gaussian_blur): new_image = Image.new("RGB", (image.size[0], image.size[1]), (0, 0, 0)) contrast = ImageEnhance.Contrast(image) # 图片预处理,参数可调整 new_image = contrast.enhance(5.0) new_image = new_image.filter(ImageFilter.GaussianBlur(3)) # 大津二值化 new_image = new_image.convert('L') new_image = otsu.otsu(new_image) new_image = new_image.filter(ImageFilter.SMOOTH) # new_image.show() new_image.save("TEMP.PNG", "PNG") # 开始调用mahotas方法 mahotas_image = mh.imread("TEMP.PNG") mahotas_image = mh.gaussian_filter(mahotas_image, gaussian_blur) # pylab.imshow(mhimgf) # pylab.show() mahotas_image = mahotas_image.astype(np.uint8) T = mh.thresholding.otsu(mahotas_image) labeled, number_of_spots = mh.label(mahotas_image > T) seeds_image = mh.regmax(mahotas_image) # pylab.imshow(mh.overlay(mahotas_image, seeds_image)) # pylab.show() seeds, number_of_separated_spots = mh.label(seeds_image) return number_of_spots, number_of_separated_spots # 设置经验参数 # 1. 设置RGB参数,过滤颜色较暗的斑点 while True: r_criterion = input("输入R通道参数(默认为0):") or 0 g_criterion = input("输入G通道参数(默认为0):") or 0 b_criterion = input("输入B通道参数(默认为0):") or 0 r_criterion = int(r_criterion) g_criterion = int(g_criterion) b_criterion = int(b_criterion) img = Image.open(CurrentDir + "/Test/" + FileName) new_img, lumi, flumi = rgb_filter(r_criterion, g_criterion, b_criterion, img) print("原图总亮度:R: %i G: %i B: %i" % (lumi[0], lumi[1], lumi[2])) print("修正总亮度:R: %i G: %i B: %i" % (flumi[0], flumi[1], flumi[2])) print("*****************************************") img.show() new_img.show() switch = input("中意吗QwQ?(y/n) ") if switch == "y": break # 2.设置gaussian参数,用来设定对重叠细胞的分辨能力,数值越大分辨能力越低;一般设置为5-15之间 while True: gaussian = input("输入Gaussian参数(默认为6):") or 6 gaussian = int(gaussian) real_num = input("输入手动计数结果(默认为0):") or 0 real_num = int(real_num) n_objects, n_nuclei = image_processing(new_img, gaussian) print("拆分前斑点数:", n_objects) print("拆分后斑点数:", n_nuclei) print("误差:", real_num - n_nuclei) switch = input("中意吗QwQ?(y/n) ") if switch == "y": break # 测试用 # dist = mh.distance(mhimgf > T) # dist = dist.max() - dist # dist -= dist.min() # dist = dist/float(dist.ptp()) * 255 # dist = dist.astype(np.uint8) # pylab.imshow(dist) # pylab.show() # nuclei = mh.cwatershed(dist, seeds) # pylab.imshow(nuclei) # pylab.show() print("***参数调试完毕,进入主程序***") img_dir = input("输入文件存储目录(默认为Image):") or "Image" data = open("NUCLEI_DATA", "w") print("注意,请及时备份NUCLEI_DATA文件,每次运行程序将覆盖之") queue = os.listdir(CurrentDir + "/" + img_dir) for item in queue: headers = item.strip(".tif").split("_") for header in headers: data.write(header + " ") img = Image.open(CurrentDir + "/" + img_dir + "/" + item) new_img, lumi, flumi = rgb_filter(r_criterion, g_criterion, b_criterion, img) n_objects, n_nuclei = image_processing(new_img, gaussian) data.write(str(n_objects) + " " + str(n_nuclei) + "\n")
""" No Prefix Set https://www.hackerrank.com/challenges/no-prefix-set/problem?h_r=next-challenge&h_v=zen Given strings. Each string contains only lowercase letters from (both inclusive). The set of strings is said to be GOOD SET if no string is prefix of another string else, it is BAD SET. (If two strings are identical, they are considered prefixes of each other.) For example, aab, abcde, aabcd is BAD SET because aab is prefix of aabcd. Print GOOD SET if it satisfies the problem requirement. Else, print BAD SET and the first string for which the condition fails. Input Format First line contains , the number of strings in the set. Then next lines follow, where line contains string. Constraints Length of the string Output Format Output GOOD SET if the set is valid. Else, output BAD SET followed by the first string for which the condition fails. Sample Input00 7 aab defgab abcde aabcde cedaaa bbbbbbbbbb jabjjjad Sample Output00 BAD SET aabcde Sample Input01 4 aab aac aacghgh aabghgh Sample Output01 BAD SET aacghgh Explanation aab is prefix of aabcde. So set is BAD SET and it fails at string aabcde. """ class Node: def __init__(self): self.children = [None] * 10 # from a to j self.isLeaf = False def letterIndex(letter): return ord(letter) - ord('a') def add(root, name): node = root existingTree = True for i in range(len(name)): index = letterIndex(name[i]) if node.isLeaf: return True if not node.children[index]: node.children[index] = Node() existingTree = False node = node.children[index] if existingTree: return True node.isLeaf = True return False def solution(A): root = Node() for word in A: if add(root, word): print("BAD SET") print(word) return print("GOOD SET") # n = int(input()) # A = [] # for i in range(n): # A.append(input()) # solution(A) A = ["aab","defgab","abcde","aabcde","cedaaa","bbbbbbbbbb","jabjjjad"] # BAD SET aabcde solution(A) A = ["aab","aac","aacghgh","aabghgh"] # BAD Set aacghgh solution(A) A = ["hgiiccfchbeadgebc","biiga","edchgb","ccfdbeajaeid","ijgbeecjbj","bcfbbacfbfcfbhcbfjafibfhffac","ebechbfhfcijcjbcehbgbdgbh","ijbfifdbfifaidje","acgffegiihcddcdfjhhgadfjb","ggbdfdhaffhghbdh","dcjaichjejgheiaie","d"] # BAD Set d solution(A) stop = True
import requests import sys import httplib import json from . import betfairng from datetime import datetime class BFGlobalService(object): def __init__(self, app_key, debuglevel=0, cert=None): self.cert = cert self.betting_api = betfairng.BettingApi(app_key=app_key, debuglevel=debuglevel) def login(self, username, password): r = betfairng.authenticate(self.cert, username, password) if r['loginStatus'] == 'SUCCESS': return LoginResp(APIResponseHeader(r['sessionToken'])) else: return LoginResp(APIResponseHeader('', r['loginStatus'])) def getActiveEventTypes(self, session_token): r = self.betting_api.list_event_types(session_token=session_token) eventTypes = [EventType(i['eventType']['id'], i['eventType']['name']) for i in r] return GetEventTypesResp(APIResponseHeader(session_token), eventTypes) def getEvents(self, session_token, event_parent_id): "this doesn't really work with api-ng!" market_filter = dict(eventIds=[event_parent_id]) r = self.betting_api.list_events(session_token=session_token, filter=market_filter) print r class BFExchangeService(object): def __init__(self, app_key, debuglevel=0): self.betting_api = betfairng.BettingApi(app_key=app_key, debuglevel=debuglevel) self.accounts_api = betfairng.AccountsApi(app_key=app_key, debuglevel=debuglevel) def getAccountFunds(self, session_token): r1 = self.accounts_api.get_account_funds(session_token=session_token) r2 = self.accounts_api.get_account_details(session_token=session_token) r1.update(r2) return GetAccountFundsResp(APIResponseHeader(session_token), r1) class APIResponseHeader(object): def __init__(self, session_token, error_code='OK'): self.sessionToken = session_token self.errorCode = error_code self.timestamp = datetime.utcnow() def __str__(self): return '(%s, %s, %s)' % (self.errorCode, self.sessionToken, self.timestamp.isoformat()) class LoginResp(object): def __init__(self, header): self.header = header self.currency = None self.validUntil = datetime.max self.errorCode = header.errorCode def __str__(self): return '''LoginResp header: %s currency %s errorCode %s validUntil %s ''' % (str(self.header), self.currency, self.errorCode, self.validUntil.isoformat()) class GetEventTypesResp(object): def __init__(self, header, event_type_items): self.header = header self.eventTypeItems = event_type_items self.minorErrorCode = None self.errorCode = header.errorCode def __str__(self): return '''GetEventTypesResp header: %s eventTypeItems: %s errorCode: %s ''' % (str(self.header), [ str(item) for item in self.eventTypeItems ], self.errorCode) class GetAccountFundsResp(object): def __init__(self, header, obj): self.header = header self.availBalance = obj['availableToBetBalance'] self.commissionRetain = obj['retainedCommission'] self.creditLimit = None self.currentBetfairPoints = obj['pointsBalance'] self.expoLimit = obj['exposureLimit'] self.exposure = obj['exposure'] self.holidaysAvailable = None self.minorErrorCode = None self.nextDiscount = obj['discountRate'] self.withdrawBalance = self.availBalance # not necessarily the same # calculate old balance value self.balance = self.availBalance + self.exposure + self.commissionRetain def __str__(self): return '''GetAccountFundsResp header: %s availBalance %.2f, exposure %.2f ''' % (str(self.header), self.availBalance, self.exposure) class EventType(object): def __init__(self, id, name): self.id = id self.name = name def __str__(self): return '(%s: %s)' % (self.id, self.name) if __name__ == "__main__": import argparse from getpass import getpass parser = argparse.ArgumentParser(description='Python client for Betfair API v6') parser.add_argument('username', help='Betfair username') parser.add_argument('cert_file', help='Your API certificate file') parser.add_argument('key_file', help='Your API private key file') parser.add_argument('app_key', help='Your API application key') args = parser.parse_args() password = getpass('Enter password: ') g = BFGlobalService(cert=(args.cert_file, args.key_file), app_key=args.app_key) r = g.login(args.username, password) r = g.getActiveEventTypes(r.header.sessionToken) print str(r) r = g.getEvents(r.header.sessionToken, 27280202) e = BFExchangeService(args.app_key) # r = e.getAccountFunds(r.header.sessionToken) print str(r)
from time import time as timeout_timer from .compat import XRANGE try: from __pypy__.time import clock_gettime from __pypy__.time import CLOCK_MONOTONIC def monotonic(): return clock_gettime(CLOCK_MONOTONIC) except ImportError: from timeit import default_timer else: default_timer = monotonic def compute_timer_precision(timer): precision = None points = 0 timeout = timeout_timer() + 1.0 previous = timer() while timeout_timer() < timeout or points < 5: for _ in XRANGE(10): t1 = timer() t2 = timer() dt = t2 - t1 if 0 < dt: break else: dt = t2 - previous if dt <= 0.0: continue if precision is not None: precision = min(precision, dt) else: precision = dt points += 1 previous = timer() return precision
import random import torch.optim.lr_scheduler as Sch class RandomSelect(object): def __init__(self, opt_list, stride=5): super().__init__() self.opt_list = opt_list self.stride = stride self.current = random.choice(self.opt_list) self.sch = [] self.count = 0 def select(self): self.count += 1 if len(self.sch) > 0: self.sch[self.opt_list.index(self.current)].step() if len(self.opt_list) > 1 and self.count % self.stride == 0: for opt in self.opt_list: opt.param_groups[0]['lr'] = self.current.param_groups[0]['lr'] self.current = random.choice(self.opt_list[1::]) else: for opt in self.opt_list: opt.param_groups[0]['lr'] = self.current.param_groups[0]['lr'] self.current = self.opt_list[0] return self.current def add_scheduler(self, type='StepLR', **kwds): for opt in self.opt_list: self.sch.append(Sch.StepLR(opt, step_size=10, gamma=0.999))
"""Platform Models.""" from marshmallow import fields, Schema from marshmallow.validate import OneOf from ..enums import * from ..models.BaseSchema import BaseSchema from .App import App from .AppInventory import AppInventory from .AppDomain import AppDomain class CreateApplicationRequest(BaseSchema): # Configuration swagger.json app = fields.Nested(App, required=False) configuration = fields.Nested(AppInventory, required=False) domain = fields.Nested(AppDomain, required=False)
import pytest from server import create_app @pytest.fixture(scope='module') def test_client(): flask_app = create_app() testing_client = flask_app.test_client() ctx = flask_app.app_context() ctx.push() yield testing_client # this is where the testing happens! ctx.pop() def test_fetch_transactions(test_client): assert(1==1)
"""Main window class for TSL applications.""" from __future__ import annotations import json import logging from dataclasses import dataclass from typing import Optional from PyQt5.QtCore import QSettings, pyqtSlot from PyQt5.QtGui import QCloseEvent from PyQt5.QtWidgets import QMainWindow, QMessageBox, QWidget import qute_style.resources_rc # pylint: disable=unused-import # noqa: F401 from qute_style.whats_new_window import WhatsNewWindow LOG_NAME = ".".join(["tsl", __name__]) log = logging.getLogger(LOG_NAME) # pylint: disable=invalid-name @dataclass class AppData: """Provide required data to startup threads.""" app_name: str = "" app_version: str = "" app_icon: str = "" app_splash_icon: str = "" help_text: str = "" debug_text: str = "" class TSLMainWindow(QMainWindow): """Main window class for TSL applications.""" WHATS_NEW = True def __init__( self, app_data: AppData, force_whats_new: bool = False, registry_reset: bool = False, parent: QWidget | None = None, ) -> None: """Create a new QuteStyleMainWindow.""" super().__init__(parent) self._app_data = app_data self._force_whats_new: bool = force_whats_new self._whats_new_window: Optional[WhatsNewWindow] = None if registry_reset: log.debug("Resetting QSettings in Registry.") QSettings().clear() def show(self) -> None: """Override show to start update just before.""" self._load_settings() super().show() self._handle_last_run() def _handle_last_run(self) -> None: """Check if the What's new window needs to be shown.""" last_run = QSettings().value("last_run", (0, 0, 0)) log.debug("Last run showed details for version %s", last_run) current_ver = tuple( int(num) for num in self._app_data.app_version.split(".") ) if last_run < current_ver or self._force_whats_new and self.WHATS_NEW: log.debug( "Current version newer than last run %s", self._app_data.app_version, ) # if we force whats new display, we show the error message, even if # nothing is visible. self._display_whats_new(not self._force_whats_new) QSettings().setValue("last_run", current_ver) @pyqtSlot(name="on_whats_new") def on_whats_new(self) -> None: """Display the WhatsNewWindow.""" # Slot shall not be called when WhatsNew is disabled. assert self.WHATS_NEW self._display_whats_new(False) def _display_whats_new(self, silent: bool = True) -> None: """Display the Window with the changes for the current version.""" filename = ( f"changes/{self._app_data.app_version}/" f"{self._app_data.app_version}.json" ) try: with open( filename, encoding="utf-8", ) as fhdl: entries = json.loads(fhdl.read()) except FileNotFoundError: log.warning("Changes file not found %s", filename) return if not entries: if not silent: log.warning("There are no relevant entries for the user.") title = self.tr("Keine Neuerungen") text = self.tr( "Die aktuelle Version enthält keine Neuerungen," " die für den aktuellen Nutzer verfügbar sind." ) QMessageBox.information(self, title, text) return self._whats_new_window = WhatsNewWindow( entries, self._app_data.app_version ) self._whats_new_window.show() @pyqtSlot(QCloseEvent, name="closeEvent") def closeEvent( # pylint: disable=invalid-name self, close_event: QCloseEvent ) -> None: """Handle a close event.""" if self._whats_new_window: log.debug("WhatsNewWindow is still open, closing.") self._whats_new_window.close() self._save_settings() super().closeEvent(close_event) def _save_settings(self) -> None: """Save the paint data and state/geometry settings.""" log.debug("Saving settings to registry.") settings = QSettings() settings.setValue("state", self.saveState()) settings.setValue("geometry", self.saveGeometry()) log.debug("Finished writing settings to registry") def _load_settings(self) -> None: """Load geometry and state settings of the ui.""" log.debug("Loading settings from registry") settings = QSettings() try: self.restoreGeometry(settings.value("geometry")) except TypeError: log.warning( "Could not restore geometry from: %s", settings.value("geometry"), ) try: self.restoreState(settings.value("state")) except TypeError: log.warning( "Could not restore state from: %s", settings.value("state") ) @pyqtSlot(name="on_about") def on_about(self) -> None: """Show a message box about the used app version.""" log.debug( "User pressed button to show dialog about %s", self._app_data.app_name, ) title = self.tr("Über {}").format(self._app_data.app_name) QMessageBox.about(self, title, self._app_data.help_text)
"""Use pretained resnet50 from tensorflow slim""" import tensorflow as tf import numpy as np import os from slim_dir.nets import resnet_v1, resnet_utils slim = tf.contrib.slim def resnet_v1_50(inputs, num_classes=None, is_training=True, global_pool=False, output_stride=None, reuse=None, scope='resnet_v1_50'): """ResNet-50 model of [1]. See resnet_v1() for arg and return description.""" blocks = [ resnet_utils.Block( 'block1', resnet_v1.bottleneck, [(256, 64, 1)] * 2 + [(256, 64, 2)]), resnet_utils.Block( 'block2', resnet_v1.bottleneck, [(512, 128, 1)] * 3 + [(512, 128, 2)]), resnet_utils.Block( 'block3', resnet_v1.bottleneck, [(1024, 256, 1)] * 5 + [(1024, 256, 2)]), resnet_utils.Block( 'block4', resnet_v1.bottleneck, [(2048, 512, 1)] * 3) ] return resnet_v1.resnet_v1(inputs, blocks, num_classes, is_training, global_pool=global_pool, output_stride=output_stride, include_root_block=True, spatial_squeeze=global_pool, reuse=reuse, scope=scope)
from base import BaseInstanceStep from dbaas_credentials.models import CredentialType from util import get_credentials_for from util import build_context_script from util import exec_remote_command_host import logging from system.models import Configuration LOG = logging.getLogger(__name__) class MetricsCollector(BaseInstanceStep): def __init__(self, instance): super(MetricsCollector, self).__init__(instance) self.credential = get_credentials_for( self.environment, CredentialType.TELEGRAF) self.collector_allowed = self.credential.get_parameter_by_name( 'collector_allowed') self.kafka_topic = self.credential.get_parameter_by_name( 'kafka_topic') @property def is_valid(self): return str(self.collector_allowed).lower() == 'true' @property def script_variables(self): user = self.driver.get_metric_collector_user(self.credential.user) password = self.driver.get_metric_collector_password( self.credential.password) create_telegraf_config = True if self.instance.instance_type == self.instance.REDIS_SENTINEL: if len(self.host.instances.all()) > 1: create_telegraf_config = False create_default_file = self.instance.instance_type in ( self.instance.MYSQL, self.instance.MONGODB, self.instance.REDIS, self.instance.MYSQL_PERCONA) master_ssl_ca = None if self.infra.ssl_configured: from workflow.steps.util.ssl import InfraSSLBaseName infra_ssl = InfraSSLBaseName(self.instance) master_ssl_ca = infra_ssl.master_ssl_ca variables = { 'HOSTNAME': self.host.hostname.split('.')[0], 'HOSTADDRESS': self.host.address, 'PORT': self.instance.port, 'USER': user, 'PASSWORD': password, 'MYSQL': self.instance.is_mysql, 'MONGODB': self.instance.instance_type == self.instance.MONGODB, 'REDIS': self.instance.instance_type == self.instance.REDIS, 'CREATE_TELEGRAF_CONFIG': create_telegraf_config, 'CREATE_DEFAULT_FILE': create_default_file, 'KAFKA_ENDPOINT': self.credential.endpoint, 'KAFKA_TOPIC': self.kafka_topic, 'SSL_CONFIGURED': self.infra.ssl_configured, 'MASTER_SSL_CA':master_ssl_ca } return variables def do(self): raise NotImplementedError def undo(self): pass def exec_script(self, script): output = {} return_code = exec_remote_command_host(self.host, script, output) if return_code != 0: raise EnvironmentError(str(output)) LOG.info("output: {}".format(output)) return output class ConfigureTelegraf(MetricsCollector): def __unicode__(self): return "Configuring Telegraf..." def do(self): if not self.is_valid: return template_script = self.plan.script.metric_collector_template script = build_context_script(self.script_variables, template_script) return self.exec_script(script) class InstallTelegraf(MetricsCollector): def __unicode__(self): return "Installing Telegraf..." def do(self): if not self.is_valid: return script = "yum install telegraf -y" self.exec_script(script) class RestartTelegraf(MetricsCollector): def __unicode__(self): return "Restarting Telegraf..." def do(self): if not self.is_valid: return script = "/etc/init.d/telegraf restart" self.exec_script(script) class StopTelegraf(MetricsCollector): def __unicode__(self): return "Stopping Telegraf..." def do(self): if not self.is_valid: return script = "/etc/init.d/telegraf stop" self.exec_script(script) class CreateMetricCollectorDatabaseUser(MetricsCollector): def __unicode__(self): return "Creating metric collector database user..." def do(self): if not self.is_valid: return if self.driver.check_instance_is_master(self.instance): self.driver.create_metric_collector_user( username=self.credential.user, password=self.credential.password) def undo(self): if not self.is_valid: return if self.driver.check_instance_is_master(self.instance): self.driver.remove_metric_collector_user( username=self.credential.user)
# uncompyle6 version 2.9.10 # Python bytecode 2.7 (62211) # Decompiled from: Python 3.6.0b2 (default, Oct 11 2016, 05:27:10) # [GCC 6.2.0 20161005] # Embedded file name: Mcl_Cmd_Firewall_Tasking.py CMD_ACTION_STATUS = 1 CMD_ACTION_ENABLE = 2 CMD_ACTION_DELETE = 3 CMD_PROTOCOL_TCP = 0 CMD_PROTOCOL_UDP = 1 CMD_DIRECTION_IN = 0 CMD_DIRECTION_OUT = 1 def TaskingMain(namespace): import mcl.imports import mcl.target import mcl.tasking import mcl.tasking.technique from mcl.object.Message import MarshalMessage mcl.imports.ImportWithNamespace(namespace, 'mca.network.cmd.firewall', globals()) mcl.imports.ImportWithNamespace(namespace, 'mca.network.cmd.firewall.tasking', globals()) lpParams = mcl.tasking.GetParameters() tgtParams = mca.network.cmd.firewall.Params() tgtParams.provider = mcl.tasking.technique.Lookup('FIREWALL', mcl.tasking.technique.TECHNIQUE_MCL_NTNATIVEAPI, lpParams['method']) if lpParams['action'] == CMD_ACTION_STATUS: rpc = mca.network.cmd.firewall.tasking.RPC_INFO_QUERY elif lpParams['action'] == CMD_ACTION_ENABLE: if lpParams['portNum'] == 0: mcl.tasking.OutputError('Invalid port number') return False tgtParams.cleanup = not lpParams['permanent'] tgtParams.portNum = lpParams['portNum'] if lpParams['protocol'] == CMD_PROTOCOL_TCP: tgtParams.protocol = mca.network.cmd.firewall.FIREWALL_PROTOCOL_TCP elif lpParams['protocol'] == CMD_PROTOCOL_UDP: tgtParams.protocol = mca.network.cmd.firewall.FIREWALL_PROTOCOL_UDP else: mcl.tasking.OutputError('Invalid protocol') return False if lpParams['direction'] == CMD_DIRECTION_IN: tgtParams.direction = mca.network.cmd.firewall.PARAMS_DIRECTION_IN elif lpParams['direction'] == CMD_DIRECTION_OUT: tgtParams.direction = mca.network.cmd.firewall.PARAMS_DIRECTION_OUT else: mcl.tasking.OutputError('Invalid direction') return False if lpParams['name'] != None: tgtParams.name = lpParams['name'] if lpParams['group'] != None: tgtParams.group = lpParams['group'] rpc = mca.network.cmd.firewall.tasking.RPC_INFO_ENABLE elif lpParams['action'] == CMD_ACTION_DELETE: if lpParams['portNum'] == 0: mcl.tasking.OutputError('Invalid port number') return False tgtParams.portNum = lpParams['portNum'] if lpParams['protocol'] == CMD_PROTOCOL_TCP: tgtParams.protocol = mca.network.cmd.firewall.FIREWALL_PROTOCOL_TCP elif lpParams['protocol'] == CMD_PROTOCOL_UDP: tgtParams.protocol = mca.network.cmd.firewall.FIREWALL_PROTOCOL_UDP else: mcl.tasking.OutputError('Invalid protocol') return False if lpParams['name'] != None: tgtParams.name = lpParams['name'] rpc = mca.network.cmd.firewall.tasking.RPC_INFO_DELETE else: mcl.tasking.OutputError('Invalid action') return False taskXml = mcl.tasking.Tasking() taskXml.AddProvider(mcl.tasking.technique.TECHNIQUE_MCL_NTNATIVEAPI, tgtParams.provider) mcl.tasking.OutputXml(taskXml.GetXmlObject()) msg = MarshalMessage() tgtParams.Marshal(msg) rpc.SetData(msg.Serialize()) rpc.SetMessagingType('message') res = mcl.tasking.RpcPerformCall(rpc) if res != mcl.target.CALL_SUCCEEDED: mcl.tasking.RecordModuleError(res, 0, mca.network.cmd.firewall.errorStrings) return False else: return True if __name__ == '__main__': import sys if TaskingMain(sys.argv[1]) != True: sys.exit(-1)
import torch import torchvision.transforms as transforms import torch.nn.functional as F import numpy as np import math import clip from PIL import Image from ZSSGAN.utils.text_templates import imagenet_templates, part_templates, imagenet_templates_small class DirectionLoss(torch.nn.Module): def __init__(self, loss_type='mse'): super(DirectionLoss, self).__init__() self.loss_type = loss_type self.loss_func = { 'mse': torch.nn.MSELoss, 'cosine': torch.nn.CosineSimilarity, 'mae': torch.nn.L1Loss }[loss_type]() def forward(self, x, y): if self.loss_type == "cosine": return 1. - self.loss_func(x, y) return self.loss_func(x, y) class CLIPLoss(torch.nn.Module): def __init__(self, device, lambda_direction=1., lambda_patch=0., lambda_global=0., lambda_manifold=0., lambda_texture=0., patch_loss_type='mae', direction_loss_type='cosine', clip_model='ViT-B/32'): super(CLIPLoss, self).__init__() self.device = device self.model, clip_preprocess = clip.load(clip_model, device=self.device) self.clip_preprocess = clip_preprocess self.preprocess = transforms.Compose([transforms.Normalize(mean=[-1.0, -1.0, -1.0], std=[2.0, 2.0, 2.0])] + # Un-normalize from [-1.0, 1.0] (GAN output) to [0, 1]. clip_preprocess.transforms[:2] + # to match CLIP input scale assumptions clip_preprocess.transforms[4:]) # + skip convert PIL to tensor self.target_direction = None self.patch_text_directions = None self.patch_loss = DirectionLoss(patch_loss_type) self.direction_loss = DirectionLoss(direction_loss_type) self.patch_direction_loss = torch.nn.CosineSimilarity(dim=2) self.lambda_global = lambda_global self.lambda_patch = lambda_patch self.lambda_direction = lambda_direction self.lambda_manifold = lambda_manifold self.lambda_texture = lambda_texture self.src_text_features = None self.target_text_features = None self.angle_loss = torch.nn.L1Loss() self.model_cnn, preprocess_cnn = clip.load("RN50", device=self.device) self.preprocess_cnn = transforms.Compose([transforms.Normalize(mean=[-1.0, -1.0, -1.0], std=[2.0, 2.0, 2.0])] + # Un-normalize from [-1.0, 1.0] (GAN output) to [0, 1]. preprocess_cnn.transforms[:2] + # to match CLIP input scale assumptions preprocess_cnn.transforms[4:]) # + skip convert PIL to tensor self.texture_loss = torch.nn.MSELoss() def tokenize(self, strings: list): return clip.tokenize(strings).to(self.device) def encode_text(self, tokens: list) -> torch.Tensor: return self.model.encode_text(tokens) def encode_images(self, images: torch.Tensor) -> torch.Tensor: images = self.preprocess(images).to(self.device) return self.model.encode_image(images) def encode_images_with_cnn(self, images: torch.Tensor) -> torch.Tensor: images = self.preprocess_cnn(images).to(self.device) return self.model_cnn.encode_image(images) def distance_with_templates(self, img: torch.Tensor, class_str: str, templates=imagenet_templates) -> torch.Tensor: text_features = self.get_text_features(class_str, templates) image_features = self.get_image_features(img) similarity = image_features @ text_features.T return 1. - similarity def get_text_features(self, class_str: str, templates=imagenet_templates, norm: bool = True) -> torch.Tensor: template_text = self.compose_text_with_templates(class_str, templates) tokens = clip.tokenize(template_text).to(self.device) text_features = self.encode_text(tokens).detach() if norm: text_features /= text_features.norm(dim=-1, keepdim=True) return text_features def get_image_features(self, img: torch.Tensor, norm: bool = True) -> torch.Tensor: image_features = self.encode_images(img) if norm: image_features /= image_features.clone().norm(dim=-1, keepdim=True) return image_features def compute_text_direction(self, source_class: str, target_class: str) -> torch.Tensor: source_features = self.get_text_features(source_class) target_features = self.get_text_features(target_class) text_direction = (target_features - source_features).mean(axis=0, keepdim=True) text_direction /= text_direction.norm(dim=-1, keepdim=True) return text_direction def compute_gen2img_direction(self, source_images: torch.Tensor, target_images: list) -> torch.Tensor: with torch.no_grad(): src_encoding = self.get_image_features(source_images) src_encoding = src_encoding.mean(dim=0, keepdim=True) target_encodings = [] for target_img in target_images: preprocessed = self.clip_preprocess(Image.open(target_img)).unsqueeze(0).to(self.device) encoding = self.model.encode_image(preprocessed) encoding /= encoding.norm(dim=-1, keepdim=True) target_encodings.append(encoding) target_encoding = torch.cat(target_encodings, axis=0) target_encoding = target_encoding.mean(dim=0, keepdim=True) direction = target_encoding - src_encoding direction /= direction.norm(dim=-1, keepdim=True) return direction def compute_img2img_direction(self, source_images: list, target_images: list) -> torch.Tensor: with torch.no_grad(): source_encodings = [] for source_img in source_images: preprocessed = self.clip_preprocess(Image.open(source_img)).unsqueeze(0).to(self.device) encoding = self.model.encode_image(preprocessed) encoding /= encoding.norm(dim=-1, keepdim=True) source_encodings.append(encoding) src_encoding = torch.cat(source_encodings, axis=0) src_encoding = src_encoding.mean(dim=0, keepdim=True) target_encodings = [] for target_img in target_images: preprocessed = self.clip_preprocess(Image.open(target_img)).unsqueeze(0).to(self.device) encoding = self.model.encode_image(preprocessed) encoding /= encoding.norm(dim=-1, keepdim=True) target_encodings.append(encoding) target_encoding = torch.cat(target_encodings, axis=0) target_encoding = target_encoding.mean(dim=0, keepdim=True) direction = target_encoding - src_encoding direction /= direction.norm(dim=-1, keepdim=True) return direction def set_text_features(self, source_class: str, target_class: str) -> None: source_features = self.get_text_features(source_class).mean(axis=0, keepdim=True) self.src_text_features = source_features / source_features.norm(dim=-1, keepdim=True) target_features = self.get_text_features(target_class).mean(axis=0, keepdim=True) self.target_text_features = target_features / target_features.norm(dim=-1, keepdim=True) def clip_angle_loss(self, src_img: torch.Tensor, source_class: str, target_img: torch.Tensor, target_class: str) -> torch.Tensor: if self.src_text_features is None: self.set_text_features(source_class, target_class) cos_text_angle = self.target_text_features @ self.src_text_features.T text_angle = torch.acos(cos_text_angle) src_img_features = self.get_image_features(src_img).unsqueeze(2) target_img_features = self.get_image_features(target_img).unsqueeze(1) cos_img_angle = torch.clamp(target_img_features @ src_img_features, min=-1.0, max=1.0) img_angle = torch.acos(cos_img_angle) text_angle = text_angle.unsqueeze(0).repeat(img_angle.size()[0], 1, 1) cos_text_angle = cos_text_angle.unsqueeze(0).repeat(img_angle.size()[0], 1, 1) return self.angle_loss(cos_img_angle, cos_text_angle) def compose_text_with_templates(self, text: str, templates=imagenet_templates) -> list: return [template.format(text) for template in templates] def clip_directional_loss(self, src_img: torch.Tensor, source_class: str, target_img: torch.Tensor, target_class: str) -> torch.Tensor: if self.target_direction is None: self.target_direction = self.compute_text_direction(source_class, target_class) src_encoding = self.get_image_features(src_img) target_encoding = self.get_image_features(target_img) edit_direction = (target_encoding - src_encoding) edit_direction /= edit_direction.clone().norm(dim=-1, keepdim=True) return self.direction_loss(edit_direction, self.target_direction).mean() def global_clip_loss(self, img: torch.Tensor, text) -> torch.Tensor: if not isinstance(text, list): text = [text] tokens = clip.tokenize(text).to(self.device) image = self.preprocess(img) logits_per_image, _ = self.model(image, tokens) return (1. - logits_per_image / 100).mean() def random_patch_centers(self, img_shape, num_patches, size): batch_size, channels, height, width = img_shape half_size = size // 2 patch_centers = np.concatenate([np.random.randint(half_size, width - half_size, size=(batch_size * num_patches, 1)), np.random.randint(half_size, height - half_size, size=(batch_size * num_patches, 1))], axis=1) return patch_centers def generate_patches(self, img: torch.Tensor, patch_centers, size): batch_size = img.shape[0] num_patches = len(patch_centers) // batch_size half_size = size // 2 patches = [] for batch_idx in range(batch_size): for patch_idx in range(num_patches): center_x = patch_centers[batch_idx * num_patches + patch_idx][0] center_y = patch_centers[batch_idx * num_patches + patch_idx][1] patch = img[batch_idx:batch_idx+1, :, center_y - half_size:center_y + half_size, center_x - half_size:center_x + half_size] patches.append(patch) patches = torch.cat(patches, axis=0) return patches def patch_scores(self, img: torch.Tensor, class_str: str, patch_centers, patch_size: int) -> torch.Tensor: parts = self.compose_text_with_templates(class_str, part_templates) tokens = clip.tokenize(parts).to(self.device) text_features = self.encode_text(tokens).detach() patches = self.generate_patches(img, patch_centers, patch_size) image_features = self.get_image_features(patches) similarity = image_features @ text_features.T return similarity def clip_patch_similarity(self, src_img: torch.Tensor, source_class: str, target_img: torch.Tensor, target_class: str) -> torch.Tensor: patch_size = 196 #TODO remove magic number patch_centers = self.random_patch_centers(src_img.shape, 4, patch_size) #TODO remove magic number src_scores = self.patch_scores(src_img, source_class, patch_centers, patch_size) target_scores = self.patch_scores(target_img, target_class, patch_centers, patch_size) return self.patch_loss(src_scores, target_scores) def patch_directional_loss(self, src_img: torch.Tensor, source_class: str, target_img: torch.Tensor, target_class: str) -> torch.Tensor: if self.patch_text_directions is None: src_part_classes = self.compose_text_with_templates(source_class, part_templates) target_part_classes = self.compose_text_with_templates(target_class, part_templates) parts_classes = list(zip(src_part_classes, target_part_classes)) self.patch_text_directions = torch.cat([self.compute_text_direction(pair[0], pair[1]) for pair in parts_classes], dim=0) patch_size = 510 # TODO remove magic numbers patch_centers = self.random_patch_centers(src_img.shape, 1, patch_size) patches = self.generate_patches(src_img, patch_centers, patch_size) src_features = self.get_image_features(patches) patches = self.generate_patches(target_img, patch_centers, patch_size) target_features = self.get_image_features(patches) edit_direction = (target_features - src_features) edit_direction /= edit_direction.clone().norm(dim=-1, keepdim=True) cosine_dists = 1. - self.patch_direction_loss(edit_direction.unsqueeze(1), self.patch_text_directions.unsqueeze(0)) patch_class_scores = cosine_dists * (edit_direction @ self.patch_text_directions.T).softmax(dim=-1) return patch_class_scores.mean() def cnn_feature_loss(self, src_img: torch.Tensor, target_img: torch.Tensor) -> torch.Tensor: src_features = self.encode_images_with_cnn(src_img) target_features = self.encode_images_with_cnn(target_img) return self.texture_loss(src_features, target_features) def forward(self, src_img: torch.Tensor, source_class: str, target_img: torch.Tensor, target_class: str, texture_image: torch.Tensor = None): clip_loss = 0.0 if self.lambda_global: clip_loss += self.lambda_global * self.global_clip_loss(target_img, [f"a {target_class}"]) if self.lambda_patch: clip_loss += self.lambda_patch * self.patch_directional_loss(src_img, source_class, target_img, target_class) if self.lambda_direction: clip_loss += self.lambda_direction * self.clip_directional_loss(src_img, source_class, target_img, target_class) if self.lambda_manifold: clip_loss += self.lambda_manifold * self.clip_angle_loss(src_img, source_class, target_img, target_class) if self.lambda_texture and (texture_image is not None): clip_loss += self.lambda_texture * self.cnn_feature_loss(texture_image, target_img) return clip_loss
""" Primeira Classe - criada """ # Classe pep 8 - Função letra minuscula e Classe letra maiuscula # Colocar o estado de todos arquivos, tirando uma foto, fazendo o Push para enviar no repositorio no GitHub; direito na pasta -> Git - > Commit Directory # Subir no GitHub depois da Print, CTRl+SHIFT+K OU direito na pasta -> Git - > PUSH # Atribuir Metode (Função que pertence a uma classe, sempre conectado a um objeto class Pessoa: # Objeto tipo pessoa, dentro de uma lista que é atributo que é instancia da própria classe pessoa. olhos = 2 # Criano atributo Default ou atributo de Classe def __init__(self, *filhos, nome = None, idade=35): self.idade = idade self.nome = nome # Criando método especial -- self.nome ( O nome é o nome do objeto self) self.filhos = list(filhos) # Criando a lista filhos, objeto complexo # Atributos de instância e de objetos são criados atreves do metódo __init__ def cumprimentar(self): # Metodo: cumprimentar / Objeto indice:self return f'Olá, meu nome é: {self.nome}' # f string! @staticmethod # Criar metodo estatico da classe, independe do objeto. Decoraitor começa com @ def metodo_estatico(): # Não precisa informar o parametro, devido o metodo ser da classe return 42 @classmethod # Criar metodo estatico da classe, independe do objeto. Decoraitor começa com @. Tera acesso a classe que esta executando. def nome_e_atributos_de_classe(cls): # cls é preenchido automatico, cls = 'class' return f'{cls} - olhos {cls.olhos}' # Acessar o atribuo olhos da classe Pessoa class testando_metodo_super(Pessoa): pass # Herença, reutilizar o código de uma classe ja pré-existente class Homem(testando_metodo_super): def cumprimentar(self): #cumprimentar_da_classe = Pessoa.cumprimentar(self) # Não é usual, porque se for pegar da classe Mutante, teria problema. cumprimentar_da_classe = super().cumprimentar() # Utilizar o método especial super, acessa os elementos da classe pai, seja ela quem for, não precisa estar descrita no (). return f'{cumprimentar_da_classe}. Aperto de mão' class Mutante(Pessoa): olhos = 3 if __name__ == '__main__': guilherme = Mutante(nome='Guilherme') # Alterando o nome ja na construção e Utilizando a classe herdada Homem. sabina = Homem(guilherme,nome='Sabina') # Guilherme entra como filho da Sabina. print(Pessoa.cumprimentar(sabina)) # Não é usual executar o método desta maneira print(id(sabina)) print(sabina.cumprimentar()) # p: objeto, objeto.método, maneira mais usual!!! - ATRIBUTO DA CLASSE print(sabina.nome) # Acessar o atributo atraves do objeto # p.nome = 'Guilherme' # Alterar o valor do atributo! # print(p.nome) print(sabina.idade) for filho in sabina.filhos: print('Filhos:', filho.nome) # Lista com todos os filhos guilherme.sobrenome = 'Neto' # Adicinando atributo para objeto especifico de maneira DINÂMICA del sabina.filhos # Deleta os atributos do objeto sabina, remover de forms DINÂMICA, não é boa prática! print('Mostra o __dict__ de Guilherme: ', guilherme.__dict__) # Atributo especial __dict__, acessa atributos de instância do objeto guilherme, todos os atributos complexos e dinâmicos print('Mostra o __dict__ de Sabina: ', sabina.__dict__) print('---' * 30) print('Mostrando o atributo da classe (olhos):', Pessoa.olhos) print('Atributo da classe, acessado pelo ojeto guilherme:', guilherme.olhos) print("Mostrando que o id é igual para todos os acesso:", id(Pessoa.olhos), "-", id(guilherme.olhos), '-', id(sabina.olhos)) print('---' * 30) print('Mostrando o metodo estático da classe:', Pessoa.metodo_estatico(),'\nMetodo estático da classe acessado pelo objeto guilherme:', guilherme.metodo_estatico()) print('---'*30) print('Mostrando o metodo da classe:', Pessoa.nome_e_atributos_de_classe(),'\nMetodo da classe acessado pelo objeto guilherme:', guilherme.nome_e_atributos_de_classe()) print('---'*30) # Se o objeto pessoa é do tipo Pessoa. pessoa = Pessoa('Anonimo') print('Se o objeto pessoa é do tipo Pessoa.') print(isinstance(pessoa, Pessoa)) print('Se o objeto pessoa é do tipo Homem.') print(isinstance(pessoa, Homem)) print('Se a instância de homem pessoa é do tipo Pessoa.') print(isinstance(guilherme, Pessoa)) print('Se a instância de homem pessoa é do tipo Homem.') print(isinstance(guilherme, Homem)) print('---' * 30) # Sobrescria de Atributos print('Mostra quantos olhos o Guilherme tem: ', guilherme.olhos) print('---' * 30) # Sobrescria de Metodo print('', guilherme.cumprimentar()) print('', sabina.cumprimentar())
import os import subprocess import sys import tarfile import tempfile from dataclasses import asdict import numpy as np import onnxruntime as ort import torch import torchvision import yaml from arachne.data import Model, ModelFormat, ModelSpec, TensorSpec from arachne.tools.torch2onnx import Torch2ONNX, Torch2ONNXConfig def check_torch2onnx_output(torch_model, input_shape, onnx_model_path): input_data = np.array(np.random.random_sample(input_shape), dtype=np.float32) # type: ignore torch_model.eval() torch_input = torch.from_numpy(input_data).clone() dout = torch_model(torch_input).to("cpu").detach().numpy().copy() sess = ort.InferenceSession(onnx_model_path, providers=["CPUExecutionProvider"]) input_name = sess.get_inputs()[0].name aout = sess.run(output_names=None, input_feed={input_name: input_data})[0] np.testing.assert_allclose(aout, dout, atol=1e-5, rtol=1e-5) # type: ignore def test_torch2onnx(): with tempfile.TemporaryDirectory() as tmp_dir: os.chdir(tmp_dir) resnet18 = torchvision.models.resnet18(pretrained=True) torch.save(resnet18, f="resnet18.pt") spec = ModelSpec( inputs=[TensorSpec(name="input0", shape=[1, 3, 224, 224], dtype="float32")], outputs=[TensorSpec(name="output0", shape=[1, 1000], dtype="float32")], ) input_model = Model(path="resnet18.pt", format=ModelFormat.PYTORCH, spec=spec) cfg = Torch2ONNXConfig() output = Torch2ONNX.run(input_model, cfg) check_torch2onnx_output(resnet18, [1, 3, 224, 224], output.path) def test_cli(): # Due to the test time, we only test one case with tempfile.TemporaryDirectory() as tmp_dir: os.chdir(tmp_dir) resnet18 = torchvision.models.resnet18(pretrained=True) model_path = "resnet18.pt" torch.save(resnet18, f=model_path) spec = ModelSpec( inputs=[TensorSpec(name="input0", shape=[1, 3, 224, 224], dtype="float32")], outputs=[TensorSpec(name="output0", shape=[1, 1000], dtype="float32")], ) with open("spec.yaml", "w") as file: yaml.dump(asdict(spec), file) ret = subprocess.run( [ sys.executable, "-m", "arachne.driver.cli", "+tools=torch2onnx", f"model_file={model_path}", "model_spec_file=spec.yaml", "output_path=output.tar", ] ) assert ret.returncode == 0 model_file = None with tarfile.open("output.tar", "r:gz") as tar: for m in tar.getmembers(): if m.name.endswith(".onnx"): model_file = m.name tar.extractall(".") assert model_file is not None check_torch2onnx_output(resnet18, [1, 3, 224, 224], model_file)
# Generated by Django 2.2.8 on 2020-01-08 13:33 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('minke', '0005_auto_20190810_1412'), ] operations = [ migrations.AlterField( model_name='hostgroup', name='name', field=models.CharField(help_text='Unique group-name.', max_length=128, unique=True, verbose_name='Group-Name'), ), ]
from torch import nn class VentilatorNet(nn.Module): def __init__(self, input_dim: int = 4, lstm_dim: int = 256, dense_dim: int = 256, logit_dim: int = 256, n_classes: int = 1, ) -> None: """ Model class. Args: cfg: main config """ super().__init__() self.mlp = nn.Sequential( nn.Linear(input_dim, dense_dim // 2), nn.ReLU(), nn.Linear(dense_dim // 2, dense_dim), nn.ReLU(), ) self.lstm = nn.LSTM(dense_dim, lstm_dim, batch_first=True, bidirectional=True) self.logits = nn.Sequential( nn.Linear(lstm_dim * 2, logit_dim), nn.ReLU(), nn.Linear(logit_dim, n_classes), ) def forward(self, x): features = self.mlp(x['input']) features, _ = self.lstm(features) pred = self.logits(features) return pred
""" Reserve slots for teams. This module reserve slots for teams that have several competitors in the same brackets. In order to keep track of already existing team pairings it uses a dictionary: team_pairing_count. Is a dictionary of ordered tuples (min, max), with the count of times that those two teams are matched (min, can not be 0, as it is an empty slot). """ from collections import defaultdict, Counter from bracketool.domain import Competitor, Clash from bracketool.brackets import generate_first_round_clashes from bracketool.brackets import brackets_max_depth_distance from bracketool.brackets import brackets_depth_distance import math import random def assign_team_to_clash(clashes, reservations, clash_idx, team, team_pairing_count=None): """ Assigns a slot to a team and updates the team pairing counts. The clash must not be fully reserved or it will raise an IndexError exception. """ reserv = reservations[clash_idx] if len(reserv) == 2: raise IndexError('No empty space in clash idx %d' % clash_idx) elif len(reserv) == 1 and team_pairing_count is not None: other_team = reserv[0] pt = (min(other_team, team), max(other_team, team)) cnt = team_pairing_count.setdefault(pt, 0) + 1 team_pairing_count[pt] = cnt elif clashes[clash_idx].is_bye: bye_cnt = team_pairing_count.setdefault((None, team), 0) + 1 team_pairing_count[(None, team)] = bye_cnt reserv.append(team) def shuffle_teams_sorted_by_slots(teams_with_required_slots, rnd): """Sort the teams by number of slots required, and inside the list of those with the same required slots, randomizes the order using rnd. :param dict teams_with_required_slots: mapping of team ids to number of competitors :returns list: the teams sorted by number of competitors """ d = defaultdict(list) # group teams by count: for team, count in teams_with_required_slots.items(): d[count].append(team) res = [] for key in sorted(d.keys(), reverse=True): rnd.shuffle(d[key]) res.extend(d[key]) return res def rate_clash_for_team(reservations, clashes, clash_idx, team, team_pairing_count): """ Gives a rating number for that spot. A smaller number for better spots, and bigger number for worse ones. Best spot -> not pairing Depending on the number of already paired Bye is better than pairing again with the same team Worse spot -> pairing with same team complexity: O(n) """ clash = clashes[clash_idx] reserv = reservations[clash_idx] if len(reserv) == 2 or (len(reserv) == 1 and clash.is_bye): # there is no place in this clash, already reserved return None same_team_factor = len(clashes) * len(clashes) * 4 rating = 0 if team in reserv: # special penalization to face a member of the same team: rating = pow(same_team_factor, 127) if clash.is_bye: rating += team_pairing_count.get((None, team), 0) # this converts this function in quadratic complexity but gives # more precise ratings mdd = brackets_max_depth_distance(clashes) for other_idx, other_reserv in enumerate(reservations): d = brackets_depth_distance(clashes, other_idx, clash_idx) for other_team in other_reserv: pt = (min(other_team, team), max(other_team, team)) penalty = team_pairing_count.get(pt, 0) if other_team == team: penalty = penalty + same_team_factor rating = rating + (mdd + 1 - d) * penalty return rating def reserve_slots_for_team(reservations, clashes, team, required_slots, team_pairing_count, rnd): """ Assign the slots for the members of a team. """ ratings = [] for _ in range(required_slots): ratings = [(rate_clash_for_team(reservations, clashes, idx, team, team_pairing_count), idx) for idx in range(len(clashes))] ratings = [(rate, idx) for rate, idx in ratings if rate is not None] ratings.sort() assign_team_to_clash(clashes, reservations, ratings[0][1], team, team_pairing_count) def reserve_team_slots(clashes, competitors, team_pairing_count, rnd=None, assign_single_competitor_teams=True): """ :param clashes: the list of first round clashes :param competitors: the list of competitors :param team_pairing_count: a dict, counting the number of times that one team has already been paired with each other team. :param rnd: a random object to select how teams with same number of slots are ordered. :param assign_single_competitor_teams: if set to true, it takes into account the team_pairing_count_param to reduce the number of same team pairings. If not, those empty spots can later be assigned using the competitor rating. :returns: list of team reservations for each clash: [[team_a, team_b], [team_c,], [], [team_b,]] """ # we need to put first the teams with more people first, but # also some sort of randomness among the ones that have the same # number of people reservations = [list() for _ in clashes] if rnd is None: rnd = random.Random() rnd.seed() teams_with_required_slots = Counter([comp.team for comp in competitors if comp.team is not None]) sorted_teams = shuffle_teams_sorted_by_slots(teams_with_required_slots, rnd) for team in sorted_teams: cnt = teams_with_required_slots[team] if cnt == 1 and not assign_single_competitor_teams: return reservations reserve_slots_for_team(reservations=reservations, clashes=clashes, team=team, required_slots=cnt, team_pairing_count=team_pairing_count, rnd=rnd) return reservations def create_reserved_teams_bracket_clashes(competitors, team_pairing_count=None, rnd=None, assign_single_competitor_teams=True): """ Initialize the brackets with the number of participants in the tournament. Creates the empty brackets with byes filled. It reserves slots for teams, but does not assign the slots to individuals. Filling of the team slots with team members must be accomplished with other class, that can take into account: ranking, previous matches with the same competitor, etc ... :param competitors: A list of competitors `bracketool.domain.Competitor` :param team_pairing_count: a map that counts the number of times that two teams have already faced each other. Can be used to add more variability, if we have other brackets where the same teams participate. Can be None, if we don't care about other brackets. :param rnd: The random.Random object use to shuffle teams that have the same number of competitors :param assign_single_competitor_teams: To reserve spots for teams that only have one competitor (Setting it to False, would allow more flexibility to assign competitor by other properties like the rank). :returns: a list of clashes with non assigned competitors, and the list of team reservations. """ clashes = generate_first_round_clashes(len(competitors)) # create a temporary track of how team pairing would be distributed, # but real team_pairing_count is updated when competitors are # assigned if team_pairing_count is None: pairing_count = {} else: pairing_count = dict(team_pairing_count) team_reservations = reserve_team_slots( clashes, competitors, pairing_count, rnd, assign_single_competitor_teams) return clashes, team_reservations def clashes_team_count(team_reservations): return Counter([team for reserv in team_reservations for team in reserv])
# encoding: utf-8 # module Tessellation.Adapters calls itself Adapters # from Tessellation, Version=1.2.1.3083, Culture=neutral, PublicKeyToken=null # by generator 1.145 """ NamespaceTracker represent a CLS namespace. """ # no imports # no functions # classes class Cell2(TriangulationCell[Vertex2, Cell2]): """ Cell2() """ Centroid = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: Centroid(self: Cell2) -> Point """ Circumcenter = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: Circumcenter(self: Cell2) -> Point """ class Vertex2(object, IVertex, IGraphicItem): """ Vertex2(x: float, y: float) """ def AsPoint(self): """ AsPoint(self: Vertex2) -> Point """ pass def AsVector(self): """ AsVector(self: Vertex2) -> Vector """ pass @staticmethod def FromUV(uv): """ FromUV(uv: UV) -> Vertex2 """ pass def Tessellate(self, package, parameters): """ Tessellate(self: Vertex2, package: IRenderPackage, parameters: TessellationParameters) """ pass def __init__(self, *args): #cannot find CLR method """ x.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signature """ pass @staticmethod # known case of __new__ def __new__(self, x, y): """ __new__(cls: type, x: float, y: float) """ pass def __repr__(self, *args): #cannot find CLR method """ __repr__(self: object) -> str """ pass Position = property(lambda self: object(), lambda self, v: None, lambda self: None) # default """Get: Position(self: Vertex2) -> Array[float] Set: Position(self: Vertex2) = value """
# Generated by Django 3.0.6 on 2020-05-22 04:49 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ("teams", "0006_join_code_requires_less_states"), ("mediahub", "0006_require_fk_relationship"), ("events", "0005_make_fk_and_uuid_required"), ] operations = [migrations.RenameModel(old_name="TeamEvent", new_name="Event")]
# -*- coding: utf-8 -*- import struct from src.crypt import gf28, sha256, crypt_modes from src.crypt.utils import rol_int_bytes, ror_int_bytes, get_byte_from_int, set_byte_in_int, add_padding_to_block, \ remove_padding_from_block __author__ = "zebraxxl" __sBox = [ 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76, 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15, 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8, 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73, 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08, 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 ] __invSBox = [ 0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb, 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb, 0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e, 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25, 0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92, 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84, 0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06, 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b, 0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73, 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e, 0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b, 0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4, 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f, 0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef, 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61, 0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d ] __rCon = [ 0x00000000, 0x01000000, 0x02000000, 0x04000000, 0x08000000, 0x10000000, 0x20000000, 0x40000000, 0x80000000, 0x1b000000, 0x36000000, ] def __block2state(block): result = [] for r in range(4): row = [] for c in range(4): row.append(block[c * 4 + r]) result.append(struct.unpack(">I", bytes(row))[0]) return result def __state2block(state): result = [] for c in range(4): for r in range(4): result.append(get_byte_from_int(state[r], 3 - c)) return bytes(result) def __sub_bytes(state): for i, v in enumerate(state): state[i] = __sBox[(v & 0xff000000) >> 24] << 24 | \ __sBox[(v & 0x00ff0000) >> 16] << 16 | \ __sBox[(v & 0x0000ff00) >> 8] << 8 | \ __sBox[(v & 0x000000ff)] def __inv_sub_bytes(state): for i, v in enumerate(state): state[i] = __invSBox[(v & 0xff000000) >> 24] << 24 | \ __invSBox[(v & 0x00ff0000) >> 16] << 16 | \ __invSBox[(v & 0x0000ff00) >> 8] << 8 | \ __invSBox[(v & 0x000000ff)] def __shift_rows(state): for i, v in enumerate(state): state[i] = rol_int_bytes(v, i) def __inv_shift_rows(state): for i, v in enumerate(state): state[i] = ror_int_bytes(v, i) def __mix_columns(state): for c in range(4): col = (get_byte_from_int(state[0], c), get_byte_from_int(state[1], c), get_byte_from_int(state[2], c), get_byte_from_int(state[3], c)) state[0] = set_byte_in_int( state[0], c, gf28.mul_by_2[col[0]] ^ col[3] ^ col[2] ^ gf28.mul_by_3[col[1]]) state[1] = set_byte_in_int( state[1], c, gf28.mul_by_2[col[1]] ^ col[0] ^ col[3] ^ gf28.mul_by_3[col[2]]) state[2] = set_byte_in_int( state[2], c, gf28.mul_by_2[col[2]] ^ col[1] ^ col[0] ^ gf28.mul_by_3[col[3]]) state[3] = set_byte_in_int( state[3], c, gf28.mul_by_2[col[3]] ^ col[2] ^ col[1] ^ gf28.mul_by_3[col[0]]) def __inv_mix_columns(state): for c in range(4): col = (get_byte_from_int(state[0], c), get_byte_from_int(state[1], c), get_byte_from_int(state[2], c), get_byte_from_int(state[3], c)) state[0] = set_byte_in_int( state[0], c, gf28.mul_by_e[col[0]] ^ gf28.mul_by_9[col[3]] ^ gf28.mul_by_d[col[2]] ^ gf28.mul_by_b[col[1]]) state[1] = set_byte_in_int( state[1], c, gf28.mul_by_e[col[1]] ^ gf28.mul_by_9[col[0]] ^ gf28.mul_by_d[col[3]] ^ gf28.mul_by_b[col[2]]) state[2] = set_byte_in_int( state[2], c, gf28.mul_by_e[col[2]] ^ gf28.mul_by_9[col[1]] ^ gf28.mul_by_d[col[0]] ^ gf28.mul_by_b[col[3]]) state[3] = set_byte_in_int( state[3], c, gf28.mul_by_e[col[3]] ^ gf28.mul_by_9[col[2]] ^ gf28.mul_by_d[col[1]] ^ gf28.mul_by_b[col[0]]) def __add_round_key(state, key_schedule): for r, _ in enumerate(state): state[r] ^= get_byte_from_int(key_schedule[0], 3 - r) << 24 | \ get_byte_from_int(key_schedule[1], 3 - r) << 16 | \ get_byte_from_int(key_schedule[2], 3 - r) << 8 | \ get_byte_from_int(key_schedule[3], 3 - r) def __sub_word(a): return __sBox[get_byte_from_int(a, 3)] << 24 | \ __sBox[get_byte_from_int(a, 2)] << 16 | \ __sBox[get_byte_from_int(a, 1)] << 8 | \ __sBox[get_byte_from_int(a, 0)] def __cipher_block(block, key_schedule, nr): state = __block2state(block) __add_round_key(state, key_schedule[0:4]) for r in range(1, nr): __sub_bytes(state) __shift_rows(state) __mix_columns(state) __add_round_key(state, key_schedule[r * 4:r * 4 + 4]) __sub_bytes(state) __shift_rows(state) __add_round_key(state, key_schedule[nr * 4:nr * 4 + 4]) return __state2block(state) def __inv_cipher_block(block, key_schedule, nr): state = __block2state(block) __add_round_key(state, key_schedule[nr * 4:nr * 4 + 4]) for r in range(nr - 1, 0, -1): __inv_shift_rows(state) __inv_sub_bytes(state) __add_round_key(state, key_schedule[r * 4:r * 4 + 4]) __inv_mix_columns(state) __inv_shift_rows(state) __inv_sub_bytes(state) __add_round_key(state, key_schedule[0:4]) return __state2block(state) def __key_expansion(key, nk, nr): key_schedule = [] words_nk = nk // 4 for i in range(0, words_nk): key_schedule.append(struct.unpack(">I", key[i * 4:i * 4 + 4])[0]) for i in range(words_nk, 4 * (nr + 1)): temp = key_schedule[i - 1] if (i % words_nk) == 0: temp = __sub_word(rol_int_bytes(temp, 1)) ^ __rCon[i // words_nk] elif (words_nk > 6) and ((i % words_nk) == 4): temp = __sub_word(temp) key_schedule.append(key_schedule[i - words_nk] ^ temp) return key_schedule def encode(message, key, mode="CBC", iv=None): key_length = len(key) if (key_length != 16) and (key_length != 24) and (key_length != 32): key = sha256.sha256_hash(key) message = add_padding_to_block(message, 16) nk = len(key) nr = 10 if nk == 16 else (12 if nk == 24 else 14) key_schedule = __key_expansion(key, nk, nr) return crypt_modes.encode(mode, message, 16, key_schedule, lambda b, k: __cipher_block(b, k, nr), iv) def decode(message, key, mode="CBC", iv=None): key_length = len(key) if (key_length != 16) and (key_length != 24) and (key_length != 32): key = sha256.sha256_hash(key) nk = len(key) nr = 10 if nk == 16 else (12 if nk == 24 else 14) key_schedule = __key_expansion(key, nk, nr) return remove_padding_from_block( crypt_modes.decode(mode, message, 16, key_schedule, lambda b, k: __inv_cipher_block(b, k, nr), iv) )
''' Pandas Module for external dataframes Inherit and extend for particular patterns. It is a bit of a misnomer to use the term "dataframe", since there are very few expected attributes and they are by no means unique to pandas. ''' __author__ = 'Elisha Yadgaran' import pandas as pd from itertools import chain from typing import List, Union, Optional from simpleml.datasets.abstract_mixin import AbstractDatasetMixin from simpleml.utils.errors import DatasetError from simpleml.pipelines.validation_split_mixins import Split DATAFRAME_SPLIT_COLUMN: str = 'DATASET_SPLIT' class BasePandasDatasetMixin(AbstractDatasetMixin): ''' Pandas mixin class with control mechanism for `self.dataframe` of type `dataframe`. Mostly assumes pandas syntax, not types, so may be compatible with pandas drop-in replacements. Recommended to implement a parallel mixin for other frameworks though In particular: A - type of pd.DataFrame: - query() - columns - drop() - squeeze() WARNING: Needs to be used as a base class for datasets because it overwrites the standard dataset dataframe property ''' @property def X(self) -> pd.DataFrame: ''' Return the subset that isn't in the target labels (across all potential splits) ''' return self.get(column='X', split=None) @property def y(self) -> pd.DataFrame: ''' Return the target label columns ''' return self.get(column='y', split=None) @property def _dataframe(self) -> pd.DataFrame: ''' Overwrite base behavior to return a copy of the data in case consumers attempt to mutate the data structure Only copies the pandas container - underlying cell objects can still propagate inplace mutations (eg lists, dicts, objects) ''' # return a copy so mutations can happen inplace with memory efficient objects return self._external_file.copy() @_dataframe.setter def _dataframe(self, df: pd.DataFrame) -> None: ''' Setter method for self._external_file Allows mixins/subclasses to validate input ''' self._external_file = df def _validate_dtype(self, df: pd.DataFrame) -> None: ''' Validating setter method for self._external_file Checks input is of type pd.DataFrame ''' if not isinstance(df, pd.DataFrame): raise DatasetError('Pandas Datasets must be of type `pd.DataFrame`') def get(self, column: Optional[str], split: Optional[str]) -> pd.DataFrame: ''' Explicitly split validation splits Uses self.label_columns to separate x and y columns inside the returned dataframe returns empty dataframe for missing combinations of column & split ''' registered_sections = self.config.get('split_section_map') if column is not None and column != 'X' and column not in registered_sections: raise ValueError(f'Only support registered sections: {registered_sections}, X, or None') dataframe = self.dataframe # copy # choose the columns to slice from the dataframe if column is None: # All except internal columns return_columns = [col for col in dataframe.columns if col != DATAFRAME_SPLIT_COLUMN] elif column != 'X': # other passthrough columns return_columns = registered_sections[column] else: # X all_other_columns = list(chain(*registered_sections.values())) return_columns = [ col for col in dataframe.columns if col != DATAFRAME_SPLIT_COLUMN and col not in all_other_columns ] return self._get(dataframe=dataframe, columns=return_columns, split=split) @staticmethod def _get(dataframe: pd.DataFrame, columns: List[str], split: str) -> pd.DataFrame: ''' Internal method to extract data subsets from a dataframe :param dataframe: the dataframe to subset from :param columns: List of columns to slice from the dataframe :param split: row identifiers to slice rows (in internal column mapped to `DATAFRAME_SPLIT_COLUMN`) ''' if split is not None: # Return the full dataset (all splits) - already a copy # query automatically returns a copy wisth a weakref if DATAFRAME_SPLIT_COLUMN not in dataframe.columns: raise DatasetError('Cannot retrieve dataset split `{split}` from dataframe without `{DATAFRAME_SPLIT_COLUMN}` column') dataframe = dataframe.query("{}=='{}'".format(DATAFRAME_SPLIT_COLUMN, split)) # inplace drop extra columns drop_columns = [col for col in dataframe.columns if col not in columns] if drop_columns: dataframe.drop(drop_columns, axis=1, inplace=True) # Last check in case any of the operations created a view or weakref copy if (hasattr(dataframe, '_is_view') and dataframe._is_view) or \ (hasattr(dataframe, '_is_copy') and dataframe._is_copy is not None): dataframe = dataframe.copy() return dataframe def get_split(self, split: Optional[str]) -> Split: ''' Wrapper accessor to return a split object (for internal use) ''' registered_sections = self.config.get('split_section_map') return Split( # explicitly get X as the "other" columns X=self.get(column='X', split=split), # should include y and any others if they exist **{section: self.get(split=split, column=section) for section in registered_sections} ).squeeze() def get_split_names(self) -> List[str]: ''' Helper to expose the splits contained in the dataset ''' df = self.dataframe if DATAFRAME_SPLIT_COLUMN in df.columns: return df[DATAFRAME_SPLIT_COLUMN].unique().tolist() else: return [] @staticmethod def concatenate_dataframes(dataframes: List[pd.DataFrame], split_names: List[str]) -> pd.DataFrame: ''' Helper method to merge dataframes into a single one with the split specified under `DATAFRAME_SPLIT_COLUMN` ''' for df, name in zip(dataframes, split_names): df[DATAFRAME_SPLIT_COLUMN] = name # Join row wise - drop index in case duplicates exist return pd.concat(dataframes, axis=0, ignore_index=True) @staticmethod def merge_split(split: Split) -> pd.DataFrame: ''' Helper method to merge all dataframes in a split object into a single df does a column-wise join ex: `df1 = [A, B, C](4 rows)` + `df2 = [D, E, F](4 rows)` returns: `[A, B, C, D, E, F](4 rows)` ''' return pd.concat(list(split.values()), axis=1) def get_feature_names(self) -> List[str]: ''' Should return a list of the features in the dataset ''' return self.X.columns.tolist() @staticmethod def load_csv(filename: str, **kwargs) -> pd.DataFrame: '''Helper method to read in a csv file''' return pd.read_csv(filename, **kwargs) @staticmethod def squeeze_dataframe(df: pd.DataFrame) -> pd.Series: ''' Helper method to run dataframe squeeze and return a series ''' return df.squeeze(axis=1) class MultiLabelPandasDatasetMixin(BasePandasDatasetMixin): ''' Multilabel implementation of pandas dataset - same as base for now ''' pass class SingleLabelPandasDatasetMixin(BasePandasDatasetMixin): ''' Customized label logic for single label (y dimension = 1) datasets ''' def _validate_schema(self, df: pd.DataFrame): ''' Extend validation to check df has only a single column for the y section ''' # validate single label status labels = self.label_columns if len(labels) != 1: raise DatasetError(f'SingleLabelPandasDataset requires exactly one label column, {len(labels)} found') @property def label_column(self): labels = self.label_columns # validate single label status if len(labels) != 1: raise DatasetError(f'SingleLabelPandasDataset requires exactly one label column, {len(labels)} found') return labels[0] def get(self, column: str, split: str) -> Union[pd.Series, pd.DataFrame]: ''' Extends PandasDatasetMixin.get with logic to squeeze labels to a series (1D frame) ''' data = super().get(column=column, split=split) if column == 'X': return data # Custom logic for other split sections # 1D dataframe can squeeze to a series return self.squeeze_dataframe(data)
"""The settings file migration base class.""" from typing import Dict from ...content_defs import ContentView from ...content_defs import SerializationFormat from ..ansi import COLOR from ..ansi import changed from ..ansi import info from ..serialize import Loader from ..serialize import serialize_write_file from ..serialize import yaml from .definitions import Migration class SettingsFile(Migration): """The settings file migration base class.""" name = "Settings file migration base class" def __init__(self): """Initialize the settings file migration.""" super().__init__() self.content: Dict = {} self._backup_suffix = ".v0" def run(self, *args, **kwargs) -> None: """Perform the settings file migration. :param args: Positional arguments :param kwargs: Keyword arguments """ if not self.content: with self.settings_file_path.open("r", encoding="utf-8") as f: try: self.content = yaml.load(f, Loader=Loader) except (yaml.scanner.ScannerError, yaml.parser.ParserError): return if not self.content: return # Check if any of the migrations are needed if self.check: self.run_steps() self.was_needed = self.needed_now return # Not check and wasn't needed if not self.was_needed: return self.run_steps() # Something may have gone wrong if self.needed_now: return # Back up the current backup = self.settings_file_path.rename( self.settings_file_path.with_suffix(self._backup_suffix), ) info(color=COLOR, message=f"Backup: {backup}") # Write the new file if self.settings_file_path.suffix in (".yml", ".yaml"): serialization_format = SerializationFormat.YAML elif self.settings_file_path.suffix == ".json": serialization_format = SerializationFormat.JSON serialize_write_file( content=self.content, content_view=ContentView.NORMAL, file_mode="w", file=self.settings_file_path, serialization_format=serialization_format, ) changed(color=COLOR, message=f"Updated: {self.settings_file_path}") return
# syft relative from ..ast.globals import Globals from ..lib.python import create_python_ast from ..lib.torch import create_torch_ast from ..lib.torchvision import create_torchvision_ast from .misc import create_union_ast # now we need to load the relevant frameworks onto the node def create_lib_ast() -> Globals: python_ast = create_python_ast() torch_ast = create_torch_ast() torchvision_ast = create_torchvision_ast() # numpy_ast = create_numpy_ast() lib_ast = Globals() lib_ast.add_attr(attr_name="syft", attr=python_ast.attrs["syft"]) lib_ast.add_attr(attr_name="torch", attr=torch_ast.attrs["torch"]) lib_ast.add_attr(attr_name="torchvision", attr=torchvision_ast.attrs["torchvision"]) # let the misc creation be always the last, as it needs the full ast solved # to properly generated unions misc_ast = getattr(getattr(create_union_ast(lib_ast), "syft"), "lib") misc_root = getattr(getattr(lib_ast, "syft"), "lib") misc_root.add_attr(attr_name="misc", attr=misc_ast.attrs["misc"]) # lib_ast.add_attr(attr_name="numpy", attr=numpy_ast.attrs["numpy"]) return lib_ast # constructor: copyType = create_lib_ast lib_ast = create_lib_ast() lib_ast._copy = create_lib_ast
from abc import abstractmethod from dataclasses import dataclass from typing import Optional import pytest import sqlalchemy as sa from injector import ClassProvider from injector import inject from sqlalchemy import Column from sqlalchemy import Integer from sqlalchemy import MetaData from sqlalchemy import String from sqlalchemy import Table from sqlalchemy.engine import Engine from sqlalchemy.orm import mapper from winter.core import get_injector from winter.data import CRUDRepository from winter.data.exceptions import NotFoundException from winter_ddd import AggregateRoot from winter_ddd import DomainEvent from winter_ddd import domain_event_handler from winter_sqlalchemy import sqla_crud @dataclass class MarkedAsDoneDomainEvent(DomainEvent): entity: 'MyEntity' class MyEntity(AggregateRoot): def __init__(self, id_: int, name: Optional[str], lastname: Optional[str]): super().__init__() self.id = id_ self.name = name self.lastname = lastname def mark_as_done(self): self.name = 'done' self.domain_events.register(MarkedAsDoneDomainEvent(self)) metadata = MetaData() my_entity_table = Table( 'my_entities', metadata, Column('id', Integer, primary_key=True), Column('name', String), Column('lastname', String), ) mapper(MyEntity, my_entity_table) class MyRepository(CRUDRepository[MyEntity, int]): @abstractmethod def find_one_by_name_and_lastname(self, name: str, lastname: str) -> Optional[MyEntity]: pass class MyRepositoryImpl(MyRepository): @inject def __init__(self, engine: Engine): self._engine = engine def find_one_by_name_and_lastname(self, name: str, lastname: str) -> Optional[MyEntity]: query = sa.select([ my_entity_table.c.id, ]).where( sa.and_(my_entity_table.c.name == name, my_entity_table.c.lastname == lastname), ) with self._engine.connect() as connection: rows = connection.execute(query) rows = list(rows) assert len(rows) <= 1 if not rows: return None entity_id = rows[0][0] return self.get_by_id(entity_id) class DomainEventHandlers: @inject def __init__(self, repository: MyRepository): self._repository = repository @domain_event_handler def on_marked_as_done(self, event: MarkedAsDoneDomainEvent): entity = event.entity new_entity = MyEntity( id_=entity.id * 100, name='handled', lastname='', ) self._repository.save(new_entity) @pytest.fixture() def fixture(): return get_injector().get(Fixture) class Fixture: @inject def __init__(self, engine: Engine): injector = get_injector() injector.binder.bind(MyRepository, to=ClassProvider(sqla_crud(MyRepository))) self._engine = engine self.repository = injector.get(MyRepository) metadata.drop_all(bind=self._engine) metadata.create_all(bind=self._engine) def execute(self, sql): return self._engine.execute(sql) def test_count(fixture): fixture.execute('INSERT INTO my_entities (id) VALUES (1), (2), (3);') # Act count = fixture.repository.count() assert count == 3 def test_delete(fixture): fixture.execute('INSERT INTO my_entities (id) VALUES (1), (2);') entity = fixture.repository.find_by_id(1) # Act fixture.repository.delete(entity) result = fixture.execute('SELECT id FROM my_entities;') assert list(result) == [(2,)] assert fixture.repository.find_by_id(1) is None def test_delete_many(fixture): fixture.execute('INSERT INTO my_entities (id) VALUES (1), (2), (3);') entity_1 = fixture.repository.find_by_id(1) entity_3 = fixture.repository.find_by_id(3) # Act fixture.repository.delete_many([entity_1, entity_3]) result = fixture.execute('SELECT id FROM my_entities;') assert list(result) == [(2,)] assert fixture.repository.find_by_id(1) is None assert fixture.repository.find_by_id(3) is None def test_delete_all(fixture): fixture.execute('INSERT INTO my_entities (id) VALUES (1), (2), (3);') # Act fixture.repository.delete_all() count = fixture.execute('SELECT COUNT(*) FROM my_entities;').scalar() assert count == 0 def test_delete_by_id(fixture): fixture.execute('INSERT INTO my_entities (id) VALUES (1), (2);') # Act fixture.repository.delete_by_id(1) result = fixture.execute('SELECT id FROM my_entities;') assert list(result) == [(2,)] def test_exists_by_id(fixture): fixture.execute('INSERT INTO my_entities (id) VALUES (1), (2);') # Act exists = fixture.repository.exists_by_id(2) assert exists is True def test_not_exists_by_id(fixture): fixture.execute('INSERT INTO my_entities (id) VALUES (1), (2);') # Act exists = fixture.repository.exists_by_id(3) assert exists is False def test_find_all(fixture): fixture.execute('INSERT INTO my_entities (id) VALUES (1), (2), (3);') # Act entities = fixture.repository.find_all() ids = [entity.id for entity in entities] assert len(ids) == 3 assert set(ids) == {1, 2, 3} def test_find_all_by_id(fixture): fixture.execute('INSERT INTO my_entities (id) VALUES (1), (2), (3);') # Act entities = fixture.repository.find_all_by_id([1, 4, 3]) ids = [entity.id for entity in entities] assert len(ids) == 2 assert set(ids) == {1, 3} def test_find_by_id(fixture): fixture.execute('INSERT INTO my_entities (id) VALUES (1), (2), (3);') # Act entity = fixture.repository.find_by_id(2) assert entity.id == 2 def test_get_by_id(fixture): with pytest.raises(NotFoundException, match='MyEntity with ID=2 not found'): # Act fixture.repository.get_by_id(2) def test_save_new(fixture): entity = MyEntity(id_=1, name='name', lastname='lastname') # Act fixture.repository.save(entity) entities = list(fixture.repository.find_all()) assert len(entities) == 1 assert entities[0].id == 1 assert entities[0].name == 'name' assert entities[0].lastname == 'lastname' def test_save(fixture): fixture.execute("INSERT INTO my_entities (id, name) VALUES (1, 'started'), (2, 'started'), (3, 'started');") entity = fixture.repository.find_by_id(2) entity.mark_as_done() # Act entity = fixture.repository.save(entity) assert entity.name == 'done' entities = fixture.execute('SELECT id, name FROM my_entities;').fetchall() entities = [(id_, name) for id_, name in entities] assert len(entities) == 4 assert set(entities) == {(1, 'started'), (2, 'done'), (3, 'started'), (200, 'handled')} def test_save_many(fixture): fixture.execute("INSERT INTO my_entities (id, name) VALUES (1, 'started'), (2, 'started'), (3, 'started');") entities = fixture.repository.find_all_by_id([1, 3]) for entity in entities: entity.mark_as_done() # Act entities = fixture.repository.save_many(entities) entities = list(entities) assert len(entities) == 2 assert all(entity.name == 'done' for entity in entities) entities = fixture.execute('SELECT id, name FROM my_entities;').fetchall() entities = [(id_, name) for id_, name in entities] assert len(entities) == 5 assert set(entities) == {(1, 'done'), (2, 'started'), (3, 'done'), (100, 'handled'), (300, 'handled')} @pytest.mark.parametrize( 'name, lastname, entity_id', [ ('name', 'something', None), ('name', 'lastname', 2), ], ) def test_find_one_by_name_and_lastname(fixture, name, lastname, entity_id): fixture.execute("INSERT INTO my_entities (id, name, lastname) VALUES (1, 'name', NULL), (2, 'name', 'lastname');") # Act entity = fixture.repository.find_one_by_name_and_lastname(name, lastname) if entity_id is None: assert entity is None else: assert entity.id == entity_id
from logger import logging, writelog import re def doc_preprocess(file_name): with open(file_name, 'r+') as file: text = file.read() # Remove comments (handled elsewhere but better safe than sorry) text = re.sub(r'(^.*?)(?=%.*$)', r'\0', text, flags=re.MULTILINE) # Remove \left and \right text = re.sub(r'\\left|\\right', '', text) # Replace \def with \newcommand def def_to_newcommand(match): out = r'\newcommand{' + match.group('name') + r'}' if match.group('args'): max_arg = 1 for c in match.group('args'): try: arg = int(c) if arg > max_arg: max_arg = arg except ValueError: pass out += r'[{}]'.format(max_arg) out += match.group('repl') return out text = re.sub( r'\\def[\s]*(?P<name>\\[a-zA-Z]+)[\s]*(?P<args>(\[?#[0-9]\]?)*)[\s]*(?P<repl>\{.*\})', def_to_newcommand, text ) # Account for white space between arguments text = re.sub(r'(?<=\}|\])[\s]+(?=\{|\[)', '', text) # Remove double backslash text = re.sub(r'\\\\', '', text) # Remove backslash canceled whitespace text = re.sub(r'\\(?=[\s])', '', text) # Replace file contents file.truncate(0) file.write(text)
from django.core.paginator import Paginator, PageNotAnInteger, EmptyPage def paginate(request, items, paginate_by=100): paginated_items = Paginator(items, paginate_by) page = request.GET.get('page', 1) try: page_items = paginated_items.get_page(page) except PageNotAnInteger: page_items = paginated_items.get_page(1) except EmptyPage: page_items = paginated_items.get_page(paginated_items.num_pages) return page_items
import random import math async def message_to_xp(bot, discord, message, botconfig, platform, os, datetime, one_result, guild_result, localization, unix_time_millis, embed_color, connection, cursor, prefix): if len(message.content) > 10: #за каждое сообщение длиной > 10 символов... expi=one_result[8]+random.randint(5, 40) #к опыту добавляется случайное число cursor.executemany('UPDATE users SET scores=? where userid=?', [(expi, message.author.id)]) try: lvch=expi/(one_result[9] * (50 + (one_result[9] * 10))) except ZeroDivisionError as zerodivide_err: lvch=1 connection.commit() lv=math.floor(lvch) print(((one_result[9]) * (50 + ((one_result[9]) * 10))) * (one_result[9] + 1)) if one_result[9] < lv: if message.content.startswith(botconfig['prefix']) is False and message.content.startswith(guild_result[6]) is False and one_result[9] > 0: new_level_msg = discord.Embed(title=localization[1][18][0], description=str(localization[1][18][1]).format('<@' + str(message.author.id) + '>', lv), color=embed_color) await message.channel.send(embed=new_level_msg) cursor.executemany('UPDATE users SET level=? where userid=?', [(lv, message.author.id)]) connection.commit()
from qfunction import * from qfunction.quantum import * from qfunction.quantum.quantum_circuit import q_phi from numpy import sin,cos def q_vector_bloch(gamma,theta:float=False,q=1,israd=True): gamma,theta = radian(gamma) if(not israd) else gamma, radian(theta) if(not israd) else theta q = (q+1)/2 if(not(type(theta)==bool)): n_xq = sin(q_phi(gamma,q))*cos(q_phi(theta,q)) n_yq = sin(q_phi(gamma,q))*cos(q_phi(theta,q)) n_zq = cos(q_phi(gamma,q)) all = [n_xq,n_yq,n_zq] return {'all':all,'x':n_xq,'y':n_yq,'z':n_zq} else: n_zq = cos(q_phi(gamma,q)) return {'z':n_zq} def q_vector_x(gamma:float,theta:float,q:float=1,israd:bool=True)-> list: return q_vector_bloch(gamma=gamma,theta=theta,q=q,israd=israd)['x'] def q_vector_y(gamma:float,theta:float,q:float=1,israd:bool=True)-> list: return q_vector_bloch(gamma=gamma,theta=theta,q=q,israd=israd)['y'] def q_vector_z(gamma:float,theta=False,q:float=1,israd:bool=True)-> list: return q_vector_bloch(gamma=gamma,theta=theta,q=q,israd=israd)['z'] def density_matrix(theta:float,gamma:float,q:float=1): 1/2*np.array([[1+q_vector_z(theta=theta,gamma=gamma,q=q), q_vector_x(theta=theta,gamma=gamma,q=q)+1j*q_vector_y(theta=theta,gamma=gamma,q=q)], [q_vector_x(theta=theta,gamma=gamma,q=q)-1j-q_vector_y(theta=theta,gamma=gamma,q=q),], 1-q_vector_z(theta=theta,gamma=gamma,q=q)])
def textQueries(sentences, queries): sentences = [set(s.split(" ") for s in sentences)] queries = [q.split(" ") for q in queries] res = [] for q in queries: matches = [] for i in range(len(sentences)): isMatch = True for w in q: if w not in sentences[i]: isMatch = False break if isMatch: matches.append(i) res.append(matches) return res
''' Thi is doc yes ''' a = 10
# Generated by Django 2.1.2 on 2018-11-11 17:28 import core.validators from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('accounts', '0009_user_user_type'), ] operations = [ migrations.AlterField( model_name='user', name='profile_photo', field=models.ImageField(blank=True, upload_to='profiles/%Y/%m/%d', validators=[core.validators.FileValidator(allowed_extensions=['.jpg', '.png', '.gif'], allowed_mimes=['image/jpeg', 'image/png', 'image/gif'], max_size=150, min_size=25)]), ), ]
class Solution: # @param tokens, a list of string # @return an integer def evalRPN(self, tokens): stack = [] for token in tokens: if token == '+': stack.append(stack.pop() + stack.pop()) elif token == '-': stack.append(-stack.pop() + stack.pop()) elif token == '*': stack.append(stack.pop() * stack.pop()) elif token == '/': stack.append(int(float(stack.pop(-2)) / float(stack.pop()))) else: stack.append(int(token)) return stack.pop()
#main_test.py import unittest import main from unittest.mock import MagicMock, Mock class TestSolver(unittest.TestCase): """[summary] Args: unittest ([type]): [description] """ def etl_integration(self): main.load_naptan_data() pass def con_check_integration(self): pass def geo_check_integration(self): pass def report_integration(self): pass def visualiser_integration(self): pass if __name__ == "__main__": unittest.main()
import unittest as u import os from lose import LOSE import lose import numpy as np import tables as t v = [int(i) for i in lose.__version__.split('.')] class Tests(u.TestCase): def setUp(self): if os.path.isfile('./temp.h5'): os.unlink('./temp.h5') self.l = LOSE('./temp.h5') def test_mk_group_valid(self): if os.path.isfile(self.l.fname): os.unlink(self.l.fname) self.l.newGroup(fmode='w', x=(15, 5), y=(2,)) def test_mk_group_valid2(self): if os.path.isfile(self.l.fname): os.unlink(self.l.fname) self.l.newGroup(fmode='a', y=(2,)) self.l.newGroup(fmode='a', x=(15, 5)) def test_mk_group_invalid(self): if os.path.isfile(self.l.fname): os.unlink(self.l.fname) with self.assertRaises(ValueError): self.l.newGroup(fmode='t', y=(2,)) def test_save_valid(self): if os.path.isfile(self.l.fname): os.unlink(self.l.fname) check = True E = None self.l.newGroup(fmode='w', x=(25, 4), y=(2,)) self.l.save(x=np.zeros((10, 25, 4)), y=np.zeros((2, 2))) self.l.save(x=np.zeros((15, 25, 4)), y=np.zeros((5, 2))) self.l.save(x=np.zeros((50, 25, 4)), y=np.zeros((8, 2))) def test_save_invalid(self): if os.path.isfile(self.l.fname): os.unlink(self.l.fname) self.l.newGroup(fmode='w', x=(25, 4), y=(2,)) with self.assertRaises(ValueError): self.l.save(x=np.zeros((25, 4)), y=np.zeros((2, 2))) def test_save_invalid2(self): if os.path.isfile(self.l.fname): os.unlink(self.l.fname) self.l.newGroup(fmode='w', x=(25, 4), y=(2,)) with self.assertRaises(ValueError): self.l.save(x=np.zeros((10, 25, 4)), y=np.zeros((2, 5))) def test_save_invalid3(self): if os.path.isfile(self.l.fname): os.unlink(self.l.fname) self.l.newGroup(fmode='w', x=(25, 4), y=(2,)) with self.assertRaises(TypeError): self.l.save(x='lul') def test_load_valid(self): if os.path.isfile(self.l.fname): os.unlink(self.l.fname) X = np.zeros((10, 5, 10)) Y = np.zeros((10, 5)) self.l.newGroup(fmode='w', x=X.shape[1:], y=Y.shape[1:]) self.l.save(x=X, y=Y) a, b = self.l.load('x', 'y') self.assertEqual(np.all(a==X), np.all(b==Y), 'should be equal') @u.skipIf(v < [0, 6, 0], 'unsupported version') def test_load_valid2(self): if os.path.isfile(self.l.fname): os.unlink(self.l.fname) X = np.zeros((10, 5, 10)) Y = np.zeros((10, 5)) self.l.newGroup(fmode='w', x=X.shape[1:], y=Y.shape[1:]) self.l.save(x=X, y=Y) a, b = self.l.load('x', 'y', batch_obj=':5') self.assertEqual(np.all(a==X[:5]), np.all(b==Y[:5]), 'should be equal') @u.skipIf(v > [0, 5, 0], 'version 0.5.0 and below only') def test_load_valid2_old(self): if os.path.isfile(self.l.fname): os.unlink(self.l.fname) X = np.zeros((10, 5, 10)) Y = np.zeros((10, 5)) self.l.newGroup(fmode='w', x=X.shape[1:], y=Y.shape[1:]) self.l.save(x=X, y=Y) a, b = self.l.load('x', 'y', batch_obj='[:5]') self.assertEqual(np.all(a==X[:5]), np.all(b==Y[:5]), 'should be equal') def test_load_invalid(self): if os.path.isfile(self.l.fname): os.unlink(self.l.fname) X = np.zeros((10, 5, 10)) Y = np.zeros((10, 5)) self.l.newGroup(fmode='w', x=X.shape[1:], y=Y.shape[1:]) self.l.save(x=X, y=Y) with self.assertRaises(TypeError): a, b = self.l.load('x', 'y', batch_obj=None) def test_load_invalid2(self): if os.path.isfile(self.l.fname): os.unlink(self.l.fname) X = np.zeros((10, 5, 10)) Y = np.zeros((10, 5)) self.l.newGroup(fmode='w', x=X.shape[1:], y=Y.shape[1:]) self.l.save(x=X, y=Y) with self.assertRaises(t.exceptions.NoSuchNodeError): a, b = self.l.load('z', 'g', batch_obj=None) @u.skipIf(v < [0, 5, 0], 'version 0.5 and up only') def test_rename_group_valid(self): if os.path.isfile(self.l.fname): os.unlink(self.l.fname) X = np.zeros((10, 5, 10)) Y = np.zeros((10, 5)) self.l.newGroup(fmode='w', x=X.shape[1:], y=Y.shape[1:]) self.l.save(x=X, y=Y) self.l.renameGroup(x='z', y='g') a, b = self.l.load('z', 'g') self.assertEqual(np.all(X == a), np.all(Y == b), 'should be equal') @u.skipIf(v < [0, 5, 0], 'version 0.5 and up only') def test_rename_group_invalid(self): if os.path.isfile(self.l.fname): os.unlink(self.l.fname) X = np.zeros((10, 5, 10)) Y = np.zeros((10, 5)) self.l.newGroup(fmode='w', x=X.shape[1:], y=Y.shape[1:]) self.l.save(x=X, y=Y) with self.assertRaises(t.exceptions.NoSuchNodeError): self.l.renameGroup(g='x') @u.skipIf(v < [0, 4, 5], 'version 0.4.5 and up only') def test_rm_group_valid(self): if os.path.isfile(self.l.fname): os.unlink(self.l.fname) X = np.zeros((10, 5, 10)) Y = np.zeros((10, 5)) self.l.newGroup(fmode='w', x=X.shape[1:], y=Y.shape[1:]) self.l.save(x=X, y=Y) self.l.removeGroup('x', 'y') with self.assertRaises(t.exceptions.NoSuchNodeError): a, b = self.l.load('x', 'y') @u.skipIf(v < [0, 4, 5], 'version 0.4.5 and up only') def test_rm_group_invalid(self): if os.path.isfile(self.l.fname): os.unlink(self.l.fname) with self.assertRaises(t.exceptions.NoSuchNodeError): self.l.removeGroup('x', 'y') @u.skipIf(v < [0, 6, 0], 'version 0.6 and up only') def test_getShapes_valid(self): if os.path.isfile(self.l.fname): os.unlink(self.l.fname) X = np.zeros((10, 5, 10)) Y = np.zeros((10, 5)) self.l.newGroup(fmode='w', x=X.shape[1:], y=Y.shape[1:]) self.l.save(x=X, y=Y) a, b = self.l.getShapes('x', 'y') self.assertEqual(a, X.shape, 'should be equal') self.assertEqual(b, Y.shape, 'should be equal') @u.skipIf(v > [0, 4, 5], 'version 0.4.5 and below only') def test_getShapes_valid_old(self): if os.path.isfile(self.l.fname): os.unlink(self.l.fname) X = np.zeros((10, 5, 10)) Y = np.zeros((10, 5)) self.l.newGroup(fmode='w', x=(0, X.shape[1:]), y=(0, Y.shape[1:])) self.l.save(x=X, y=Y) a = self.l.get_hape('x') b = self.l.get_hape('y') self.assertEqual(a, X.shape, 'should be equal') self.assertEqual(b, Y.shape, 'should be equal') @u.skipIf(v < [0, 4, 5], 'version 0.4.5 and up only') def test_getShapes_invalid(self): if os.path.isfile(self.l.fname): os.unlink(self.l.fname) X = np.zeros((10, 5, 10)) Y = np.zeros((10, 5)) self.l.newGroup(fmode='w', x=X.shape[1:], y=Y.shape[1:]) self.l.save(x=X, y=Y) with self.assertRaises(t.exceptions.NoSuchNodeError): a = self.l.getShape('g') # def test_generator_valid(self): # if os.path.isfile(self.l.fname): # os.unlink(self.l.fname) def tearDown(self): if os.path.isfile(self.l.fname): os.unlink(self.l.fname)
# flake8: noqa """ # 追加/更新股票基础信息 """ import os import sys import json from typing import Any from collections import OrderedDict import pandas as pd vnpy_root = os.path.abspath(os.path.join(os.path.dirname(__file__), '..', '..', '..')) if vnpy_root not in sys.path: sys.path.append(vnpy_root) os.environ["VNPY_TESTING"] = "1" import baostock as bs from vnpy.trader.constant import Exchange from vnpy.trader.utility import load_json, load_data_from_pkb2, save_data_to_pkb2 from vnpy.data.tdx.tdx_common import get_stock_type import baostock as bs stock_type_map = { "1": '股票', "2": "指数", "3": "其他" } STOCK_BASE_FILE = 'stock_base.pkb2' # get_stock_base 返回数据格式 # vt_symbol: { # 'exchange': 交易所代码 # 'code': 股票代码 # 'name': 中文名 # 'ipo_date': 上市日期 # 'out_date': 退市日期 # '类型': 股票,指数,其他 # 'type': stock_cn, index_cn,etf_cn,bond_cn,cb_cn # 'status': '上市' '退市' # } def get_stock_base(): """ 获取股票基础信息""" base_file_name = os.path.abspath(os.path.join(os.path.dirname(__file__), STOCK_BASE_FILE)) base_data = load_data_from_pkb2(base_file_name) if base_data is None: return update_stock_base() else: return base_data def update_stock_base(): """ 更新股票基础信息 :return: """ base_file_name = os.path.abspath(os.path.join(os.path.dirname(__file__), STOCK_BASE_FILE)) base_data = load_data_from_pkb2(base_file_name) if base_data is None: base_data = dict() login_msg = bs.login() if login_msg.error_code != '0': print(f'证券宝登录错误代码:{login_msg.error_code}, 错误信息:{login_msg.error_msg}') return base_data rs = bs.query_stock_basic() if rs.error_code != '0': print(f'证券宝获取沪深A股历史K线数据错误代码:{rs.error_code}, 错误信息:{rs.error_msg}') return # [dict] => dataframe print(f'返回字段:{rs.fields}') while (rs.error_code == '0') and rs.next(): row = rs.get_row_data() exchange_code, stock_code = row[0].split('.') exchange = Exchange.SSE if exchange_code == 'sh' else Exchange.SZSE d = { 'exchange': exchange.value, 'code': stock_code, 'name': row[1], 'ipo_date': row[2], 'out_date': row[3], '类型': stock_type_map.get(row[4], '其他'), 'type': get_stock_type(stock_code), 'status': '上市' if row[5] == '1' else '退市' } base_data.update({f'{stock_code}.{exchange.value}': d}) # print(f'{d}') save_data_to_pkb2(base_data, base_file_name) print(f'更新完毕') return base_data if __name__ == '__main__': update_stock_base()
# def too(*args, **kwargs) # host, port, user, user name and password to connect with data base # def connect_to_db(host, port, user, username, password, **kwargs) - splat operator # * is not a pointer like C # reference is copy by value .i.e you are passing a referernce who is having copy of value def swap(number1, number2): number2, number1 = number1, number2 def update(l,index,number): l[index] = number l = [1,2,3] update(l,0,6) def empty_list(l): while(len(l)): # l[:] = [] l.pop() # del l[-1] l = [1,2,3] empty_list(l) print l
from tests.test_base import app, client, login _SCRIPT_ID_HELLO = "pyscriptdemo.helloworld.HelloWorld" _SCRIPT_ID_HELLO_WITH_PARAMS = "pyscriptdemo.helloworld.HelloWorldWithParams" def test_hello(app, client): login(client) response = client.post("/api/scripts/" + _SCRIPT_ID_HELLO + "/_run") assert response.json["success"] assert response.json["message"] == "Hello World !" test_output = "Hello Mister, Hello Mister, Hello Mister, Hello Mister, Hello Mister, Hello Mister, Hello Mister" assert response.json["dataOutput"] == test_output def test_hello_with_params(app, client): login(client) response = client.post("/api/scripts/" + _SCRIPT_ID_HELLO_WITH_PARAMS + "/_run") assert response.json["success"] assert response.json["dataOutput"]["values"] is None params = {"a":"default value", "b":10, "c":True, "d":"My text \n in textarea", "e":"1", "f":"b"} response = client.post("/api/scripts/" + _SCRIPT_ID_HELLO_WITH_PARAMS + "/_run", json=params) assert response.json["success"] assert response.json["dataOutput"]["values"] == params assert response.json["dataOutput"]["params"] == [ { "id": "a", "type": "text", "label": "Type text", "default": "default value" }, { "id": "b", "type": "number", "label": "Type number", "default": 10 }, { "id": "c", "type": "checkbox", "label": "Type checkbox", "default": True }, { "id": "d", "type": "textarea", "label": "Type textarea", "placeholder": "Placeholder", "default": "My text \n in textarea" }, { "id": "e", "type": "radio", "label": "Type radio", "values": [ {"value": "1", "label": "Radio 1"}, {"value": "2", "label": "Radio 2"} ], "default": "1" }, { "id": "f", "type": "select", "multiple": False, "label": "Type select", "values": [ {"value": "a", "label": "Option a"}, {"value": "b", "label": "Option b"}, {"value": "c", "label": "Option c"} ], "default": "b" }]
""" Support for Selve cover - shutters etc. """ import logging import voluptuous as vol from homeassistant.components.cover import ( CoverEntity, ATTR_POSITION, SUPPORT_OPEN, SUPPORT_CLOSE, SUPPORT_STOP, SUPPORT_OPEN_TILT, SUPPORT_CLOSE_TILT, SUPPORT_STOP_TILT, SUPPORT_SET_POSITION, SUPPORT_SET_TILT_POSITION, DEVICE_CLASS_WINDOW, DEVICE_CLASS_BLIND, DEVICE_CLASS_AWNING, DEVICE_CLASS_SHUTTER) from custom_components.selve import ( DOMAIN as SELVE_DOMAIN, SelveDevice) from homeassistant.const import ATTR_ENTITY_ID import homeassistant.helpers.config_validation as cv DEPENDENCIES = ['selve'] _LOGGER = logging.getLogger(__name__) SERVICE_SET_POS1 = 'selve_set_pos1' SERVICE_SET_POS2 = 'selve_set_pos2' SELVE_SERVICE_SCHEMA = vol.Schema({ vol.Optional(ATTR_ENTITY_ID): cv.entity_ids, }) SELVE_CLASSTYPES = { 0:None, 1:DEVICE_CLASS_SHUTTER, 2:DEVICE_CLASS_BLIND, 3:DEVICE_CLASS_SHUTTER, 4:'cover', 5:'cover', 6:'cover', 7:'cover', 8:'cover', 9:'cover', 10:'cover', 11:'cover', } def setup_platform(hass, config, add_devices, discovery_info=None): """Set up Selve covers.""" controller = hass.data[SELVE_DOMAIN]['controller'] devices = [ SelveCover(device, controller) for device in hass.data[SELVE_DOMAIN]['devices']['cover']] add_devices(devices, True) class SelveCover(SelveDevice, CoverEntity): """Representation a Selve Cover.""" def update(self): """Update method.""" self.selve_device.discover_properties() @property def supported_features(self): """Flag supported features.""" return SUPPORT_OPEN | SUPPORT_CLOSE | SUPPORT_STOP | SUPPORT_SET_POSITION | SUPPORT_OPEN_TILT | SUPPORT_CLOSE_TILT | SUPPORT_SET_TILT_POSITION @property def current_cover_position(self): """ Return current position of cover. 0 is closed, 100 is fully open. """ return 50 @property def current_cover_tilt_position(self): """ Return current position of cover. 0 is closed, 100 is fully open. """ return 50 @property def is_closed(self): """Return if the cover is closed.""" # if self.current_cover_position is not None: # return self.current_cover_position == 0 return None @property def device_class(self): """Return the class of the device.""" return SELVE_CLASSTYPES.get(self.selve_device.device_type.value) def open_cover(self, **kwargs): """Open the cover.""" self.selve_device.moveUp() def open_cover_tilt(self, **kwargs): """Open the cover.""" self.selve_device.moveIntermediatePosition1() def close_cover(self, **kwargs): """Close the cover.""" self.selve_device.moveDown() def close_cover_tilt(self, **kwargs): """Open the cover.""" self.selve_device.moveIntermediatePosition2() def stop_cover(self, **kwargs): """Stop the cover.""" self.selve_device.stop() def stop_cover_tilt(self, **kwargs): """Stop the cover.""" self.selve_device.stop()
from .tg_conv import TGConvModel from .tg_policy import TGPolicyModel from .tg_rec import TGRecModel
from templates.codepipeline.pipeline import NewPipeline from templates.pipeline_template import NewTemplate from troposphere import Template from tools.validates import change_yml_to_json import pytest import time import json import os import sys import shutil class TestCodePipeline: @pytest.fixture def params(self): actions = { 'source': { 'name': 'source', 'runorder': 1, 'configuration': {'BranchName': 'release', 'RepositoryName': 'sharedlibrary'}, 'type': 'Source', 'role': 'arn:aws:iam::033921349789:role/RoleCodepipelineRole' }, 'action': { 'name': 'compilar', 'runorder': 1, 'configuration': {'ProjectName': 'proj', 'PrimarySource': 'App', 'InputArtifacts': 'App', 'runorder': '1'}, 'type': 'Build', 'role': 'arn:aws:iam::033921349789:role/RoleCodepipelineRole' }, 'stage': { 'name': 'Compilador' }, 'pipeline': { 'name': 'PipelineEcs', 'role': 'arn:aws:iam::033921349789:role/RoleCodepipelineRole' }, 'templates': ['app-ecs'] } return actions @pytest.fixture def imageCustom(self): imgcustom = { "Aqua": { "all": "imagem_Aqua" }, "Build": { "all": "image_Build", "python37": "image_custom" }, "TestUnit": { "all": "imagem_TestUnit" }, "Fortify": { "all": "imagem_sast" }, "Sonar": { "all": "imagem_sonar" } } return imgcustom @pytest.fixture def payloads(self): payload = [ 'payload_1.yml', 'payload_2.yml', 'payload_3.yml', 'payload_4.yml', 'payload_5.yml', 'payload_6.yml' ] return payload def gerando_cloudformation(self, resource): cf = Template() if isinstance(resource, dict): for res in resource.values(): cf.add_resource(res) elif isinstance(resource, list): for res in resource: cf.add_resource(res) resource_json = json.loads(cf.to_json()) return resource_json def load_template(self, name_template, env=False): template_json = open('tests/payload-ecs/templates.json') json_template = template_json.read() template_json.close() template = json.loads(json_template) if template['name'] == name_template: return template['details']['pipeline'] elif name_template == 'structure': return template['details']['structure'] elif name_template == 'depends': return template['details']['depends'] def load_yml(self, filename): filename = f"tests/payload-ecs/{filename}" f_template = open(filename) yml_template = f_template.read() f_template.close() json_template = change_yml_to_json(yml_template) return json_template def test_deve_retornar_parametros_da_pipeline(self, params): for template in params['templates']: app_ecs = NewTemplate('codepipeline_role', 'codebuild_role', 'DevSecOps_Role') cf_pipeline = app_ecs.pipeline_parameter() cf = self.gerando_cloudformation(cf_pipeline) print(cf) assert len(cf['Resources']) == 10 assert cf['Resources']['PrivateSubnetOne']['Default'] == '/Networking/PrivateSubnetOne' assert cf['Resources']['PrivateSubnetTwo']['Default'] == '/Networking/PrivateSubnetTwo' assert cf['Resources']['VPCID']['Default'] == '/Networking/VPCID' assert cf['Resources']['DevAccount']['Default'] == '/Accounts/Dev' assert cf['Resources']['HomologAccount']['Default'] == '/Accounts/Homolog' assert cf['Resources']['ProdAccount']['Default'] == '/Accounts/Prod' assert cf['Resources']['KMSKeyArn']['Default'] == '/Shared/KMSKeyArn' assert cf['Resources']['TokenAqua']['Default'] == '/Shared/TokenAqua' assert cf['Resources']['DevSecOpsAccount']['Default'] == '/Accounts/DevSecOps' assert cf['Resources']['DevToolsAccount']['Default'] == '/Accounts/DevTools' def gettemplate(self, payload, env): make = self.load_yml(payload) stages = make['pipeline'][env] runtime = make['runtime'] params = {} for param in make['Parameter']: params.update(param) dados = { 'stages': stages, 'runtime': runtime, 'params': params } return dados def test_deve_retornar_codebuild_do_template_app_ecs_sem_buildCustomizado(self, params, imageCustom): for name_template in params['templates']: env = 'develop' template_pipeline = self.load_template(name_template, env) dados = self.gettemplate('payload_1.yml', env) app = NewTemplate('codepipeline_role', 'codebuild_role', 'DevSecOps_Role') cf_pipeline = app.generate_codebuild( dados['runtime'], template_pipeline, dados['stages'], dados['params'], env, imageCustom) cf = self.gerando_cloudformation(cf_pipeline) print(cf['Resources'].keys()) assert len(cf['Resources']) == 10 assert 'Aqua' in cf['Resources'] assert 'Build' in cf['Resources'] assert 'Deployecsdev' in cf['Resources'] assert 'Fortify' in cf['Resources'] assert 'Publishecrdev' in cf['Resources'] assert 'Sonar' in cf['Resources'] assert 'Testunit' in cf['Resources'] assert '../01/python/3.7/build/buildspec.yml' in cf['Resources']['Build']['Properties']['Source']['BuildSpec'] assert '../01/python/3.7/testunit/buildspec.yml' in cf[ 'Resources']['Testunit']['Properties']['Source']['BuildSpec'] def test_deve_retornar_estrutura_pipeline(self, params, imageCustom): for name_template in params['templates']: estrutura = self.load_template('structure', 'develop') app = NewTemplate('codepipeline_role', 'codebuild_role', 'DevSecOps_Role') stage = 'Deploydev' cf = app.check_stage_not_env(estrutura, stage, 'develop') assert cf == True stage = 'DeployHomol' cf = app.check_stage_not_env(estrutura, stage, 'master') assert cf == True def test_deve_retornar_codebuild_do_template_app_ecs_com_buildCustomizado(self, params, imageCustom): for pipe in params['templates']: env = 'develop' name_template = pipe template_pipeline = self.load_template(name_template, env) dados = self.gettemplate('payload_1.yml', env) dados['params']['BuildCustom'] = 'True' app = NewTemplate('codepipeline_role', 'codebuild_role', 'DevSecOps_Role') cf_pipeline = app.generate_codebuild( dados['runtime'], template_pipeline, dados['stages'], dados['params'], env, imageCustom) cf = self.gerando_cloudformation(cf_pipeline) print(cf['Resources'].keys()) assert len(cf['Resources']) == 10 assert 'Aqua' in cf['Resources'] assert 'Build' in cf['Resources'] assert 'Deployecsdev' in cf['Resources'] assert 'Fortify' in cf['Resources'] assert 'Publishecrdev' in cf['Resources'] assert 'Sonar' in cf['Resources'] assert 'Testunit' in cf['Resources'] assert 'pipeline/buildspec_build.yml' in cf['Resources']['Build']['Properties']['Source']['BuildSpec'] assert 'pipeline/buildspec_testunit.yml' in cf['Resources']['Testunit']['Properties']['Source']['BuildSpec'] def test_deve_retornar_codebuild_do_template_app_ecs_com_action_customizado(self, params, imageCustom): for pipe in params['templates']: env = 'develop' name_template = pipe template_pipeline = self.load_template(name_template, env) dados = self.gettemplate('payload_5.yml', env) app = NewTemplate('codepipeline_role', 'codebuild_role', 'DevSecOps_Role') cf_pipeline = app.generate_codebuild( dados['runtime'], template_pipeline, dados['stages'], dados['params'], env, imageCustom) templ_pipeline = 0 cf = self.gerando_cloudformation(cf_pipeline) print(cf['Resources'].keys()) assert len(cf['Resources']) == 11 assert 'Aqua' in cf['Resources'] assert 'Build' in cf['Resources'] assert 'Deployecsdev' in cf['Resources'] assert 'Fortify' in cf['Resources'] assert 'Publishecrdev' in cf['Resources'] assert 'Sonar' in cf['Resources'] assert 'Testunit' in cf['Resources'] assert '../01/python/3.7/build/buildspec.yml' in cf['Resources']['Build']['Properties']['Source']['BuildSpec'] assert '../01/python/3.7/testunit/buildspec.yml' in cf[ 'Resources']['Testunit']['Properties']['Source']['BuildSpec'] assert 'testmultant' in cf['Resources'] def test_deve_retornar_codebuild_do_template_app_ecs_com_stage_customizado(self, params, imageCustom): for pipe in params['templates']: env = 'develop' name_template = pipe template_pipeline = self.load_template(name_template, env) dados = self.gettemplate('payload_6.yml', env) app = NewTemplate('codepipeline_role', 'codebuild_role', 'DevSecOps_Role') cf_pipeline = app.generate_codebuild( dados['runtime'], template_pipeline, dados['stages'], dados['params'], env, imageCustom) cf = self.gerando_cloudformation(cf_pipeline) resources = list(cf['Resources'].keys()) print(cf['Resources'].keys()) assert len(cf['Resources']) == 13 assert 'Aqua' in resources assert 'Build' in resources assert 'Deployecsdev' in resources assert 'Fortify' in resources assert 'Publishecrdev' in resources assert 'Sonar' in resources assert 'Testunit' in cf['Resources'] assert '../01/python/3.7/build/buildspec.yml' in cf['Resources']['Build']['Properties']['Source']['BuildSpec'] assert '../01/python/3.7/testunit/buildspec.yml' in cf[ 'Resources']['Testunit']['Properties']['Source']['BuildSpec'] assert 'seguranca2' in resources assert 'seguranca1' in resources assert 'seguranca2' in resources assert 'seguranca2' in cf['Resources']['seguranca2']['Properties']['Name'] assert 'seguranca1' in cf['Resources']['seguranca1']['Properties']['Name'] assert 'seguranca2' in cf['Resources']['seguranca2']['Properties']['Name'] def test_deve_retornar_source_do_template_app_ecs_sem_source_customizado(self, params): for pipe in params['templates']: env = 'develop' name_template = pipe template_pipeline = self.load_template(name_template, env) template_yml = self.load_yml('payload_1.yml') stages = template_yml['pipeline'][env] reponame = template_yml['Parameter'][0]['Projeto'] app = NewTemplate('codepipeline_role', 'codebuild_role', 'DevSecOps_Role') cf_pipeline = app.generate_sources( stages, env, reponame, 'codebuild_role', 'release-1.19') cf = self.gerando_cloudformation(cf_pipeline) print(cf['Resources']) assert len(cf['Resources']) == 2 assert 'SharedLibrary' in cf['Resources'] assert 'release-1.19' == cf['Resources']['SharedLibrary']['Configuration']['BranchName'] assert 'false' == cf['Resources']['SharedLibrary']['Configuration']['PollForSourceChanges'] assert 'pipelineaws-sharedlibrary' == cf['Resources']['SharedLibrary']['Configuration']['RepositoryName'] assert 'PipelinePython' in cf['Resources'] assert 'develop' == cf['Resources']['PipelinePython']['Configuration']['BranchName'] assert 'Pipeline-Python' == cf['Resources']['PipelinePython']['Configuration']['RepositoryName'] def test_deve_retornar_source_do_template_app_ecs_com_source_customizado_sem_branch(self, params): for pipe in params['templates']: env = 'develop' name_template = pipe template_yml = self.load_yml('payload_3.yml') stages = template_yml['pipeline'][env] reponame = template_yml['Parameter'][0]['Projeto'] app = NewTemplate('codepipeline_role', 'codebuild_role', 'DevSecOps_Role') cf_pipeline = app.generate_sources( stages, env, reponame, 'codebuild_role', 'release-1.19') cf = self.gerando_cloudformation(cf_pipeline) print(cf['Resources']) assert len(cf['Resources']) == 3 assert 'SharedLibrary' in cf['Resources'] assert 'release-1.19' == cf['Resources']['SharedLibrary']['Configuration']['BranchName'] assert 'false' == cf['Resources']['SharedLibrary']['Configuration']['PollForSourceChanges'] assert 'pipelineaws-sharedlibrary' == cf['Resources']['SharedLibrary']['Configuration']['RepositoryName'] assert 'PipelinePython' in cf['Resources'] assert 'develop' == cf['Resources']['PipelinePython']['Configuration']['BranchName'] assert 'Pipeline-Python' == cf['Resources']['PipelinePython']['Configuration']['RepositoryName'] assert 'Tools' in cf['Resources'] assert 'develop' == cf['Resources']['Tools']['Configuration']['BranchName'] assert 'Tools' == cf['Resources']['Tools']['Configuration']['RepositoryName'] def test_deve_retornar_source_do_template_app_ecs_com_source_customizado_com_branch(self, params): for pipe in params['templates']: env = 'develop' name_template = pipe template_pipeline = self.load_template(name_template, env) template_yml = self.load_yml('payload_4.yml') stages = template_yml['pipeline'][env] reponame = template_yml['Parameter'][0]['Projeto'] app = NewTemplate('codepipeline_role', 'codebuild_role', 'DevSecOps_Role') cf_pipeline = app.generate_sources( stages, 'develop', reponame, 'codebuild_role', 'release-1.19') cf = self.gerando_cloudformation(cf_pipeline) print(cf['Resources']['Tools']) assert len(cf['Resources']) == 3 assert 'SharedLibrary' in cf['Resources'] assert 'release-1.19' == cf['Resources']['SharedLibrary']['Configuration']['BranchName'] assert 'false' == cf['Resources']['SharedLibrary']['Configuration']['PollForSourceChanges'] assert 'pipelineaws-sharedlibrary' == cf['Resources']['SharedLibrary']['Configuration']['RepositoryName'] assert 'SharedLibrary' in cf['Resources'] assert 'develop' == cf['Resources']['PipelinePython']['Configuration']['BranchName'] assert 'Pipeline-Python' == cf['Resources']['PipelinePython']['Configuration']['RepositoryName'] assert 'Tools' in cf['Resources'] assert 'master' == cf['Resources']['Tools']['Configuration']['BranchName'] assert 'Tools' == cf['Resources']['Tools']['Configuration']['RepositoryName'] def generate_action(self, name_template, env, payload, imageCustom): template_pipeline = self.load_template(name_template, env) dados = self.gettemplate(payload, env) reponame = dados['params']['Projeto'] app = NewTemplate('codepipeline_role', 'codebuild_role', 'DevSecOps_Role') cf_codebuild = app.generate_codebuild( dados['runtime'], template_pipeline, dados['stages'], dados['params'], env, imageCustom) cf_pipeline = app.generate_action( dados['stages'], template_pipeline, cf_codebuild, env) return cf_pipeline def test_deve_retornar_uma_lista_de_resources_que_pipeline_depende(self, params): env = 'develop' dep = self.load_template('depends') app = NewTemplate('codepipeline_role', 'codebuild_role', 'DevSecOps_Role') deps = app.create_depends('pipelineTeste', env, dep) cf = self.gerando_cloudformation(deps) assert 'SG' in cf['Resources'].keys() assert 'ECRpipelineTesteECRDevelop' in cf['Resources'].keys() def test_deve_retornar_action_do_template_app_ecs_validando_payloads(self, params, imageCustom, payloads): for pipe in params['templates']: for payload in payloads: cf_pipeline = self.generate_action( pipe, 'develop', payload, imageCustom) cf = self.gerando_cloudformation(cf_pipeline) print(cf['Resources'].keys()) print(payload) if payload == 'payload_5.yml' or payload == 'payload_8.yml': assert len(cf['Resources']) == 11 elif payload == 'payload_6.yml': assert len(cf['Resources']) == 13 else: assert len(cf['Resources']) == 10 def generate_pipeline(self, name_template, env, payload, imageCustom): template_pipeline = self.load_template(name_template, env) estrutura = self.load_template('structure', env) dados = self.gettemplate(payload, env) reponame = dados['params']['Projeto'] app = NewTemplate('codepipeline_role', 'codebuild_role', 'DevSecOps_Role') resources = {} cf_codebuild = app.generate_codebuild( dados['runtime'], template_pipeline, dados['stages'], dados['params'], env, imageCustom) cf_source = app.generate_sources( dados['stages'], env, reponame, 'codebuild_role', 'release-1.19') cf_action = app.generate_action( dados['stages'], template_pipeline, cf_codebuild, env) resources.update(cf_source) resources.update(cf_action) cf_pipeline = app.generate_stage( template_pipeline, resources, env, estrutura) return cf_pipeline def test_deve_retornar_stage_do_template_app_ecs_payloads(self, params, imageCustom, payloads): for pipe in params['templates']: for payload in payloads: cf_pipeline = self.generate_pipeline( pipe, 'develop', payload, imageCustom) cf = self.gerando_cloudformation(cf_pipeline) print(payload) print(cf['Resources'].keys()) if payload == 'payload_6.yml': assert len(cf['Resources']) == 5 else: assert len(cf['Resources']) == 3 def test_deve_retornar_pipeline_verificando_stages_e_action(self, params, imageCustom, payloads): for name_template in params['templates']: for payload in payloads: env = 'develop' template_pipeline = self.load_template(name_template, env) estrutura = self.load_template('structure', env) dados = self.gettemplate(payload, env) reponame = dados['params']['Projeto'] app = NewTemplate('codepipeline_role', 'codebuild_role', 'DevSecOps_Role') resources = {} cf_codebuild = app.generate_codebuild( dados['runtime'], template_pipeline, dados['stages'], dados['params'], env, imageCustom) cf_source = app.generate_sources( dados['stages'], 'develop', reponame, 'codebuild_role', 'release-1.19') cf_action = app.generate_action( dados['stages'], template_pipeline, cf_codebuild, env) resources.update(cf_source) resources.update(cf_action) cf_stages = app.generate_stage( template_pipeline, resources, 'develop', estrutura) cf_pipeline = app.generate_pipeline( cf_stages, f'{reponame}-develop') cf = self.gerando_cloudformation(cf_pipeline) if payload == 'payload_6.yml': assert len(cf['Resources']['PipelinePythonDevelop'] ['Properties']['Stages']) == 5 else: assert len(cf['Resources']['PipelinePythonDevelop'] ['Properties']['Stages']) == 3 def test_deve_salvar_pipeline_na_pasta_swap(self, params, imageCustom): for pipe in params['templates']: env = 'develop' name_template = pipe template_pipeline = self.load_template(name_template, env) estrutura = self.load_template('structure', env) dados = self.gettemplate('payload_6.yml', env) reponame = dados['params']['Projeto'] app = NewTemplate('codepipeline_role', 'codebuild_role', 'DevSecOps_Role') resources = {} cf_codebuild = app.generate_codebuild( dados['runtime'], template_pipeline, dados['stages'], dados['params'], env, imageCustom) cf_source = app.generate_sources( dados['stages'], env, reponame, 'codebuild_role', 'release-1.19') cf_action = app.generate_action( dados['stages'], template_pipeline, cf_codebuild, env) resources.update(cf_source) resources.update(cf_action) cf_stages = app.generate_stage( template_pipeline, resources, env, estrutura) cf_pipeline = app.generate_pipeline(cf_stages, f"{reponame}-{env}") cf = self.gerando_cloudformation(cf_pipeline) template = json.dumps(cf) app.save_swap(reponame, template, env, '00000') assert os.path.isdir('swap') == True assert os.path.isfile( 'swap/Pipeline-Python-develop-00000.json') == True os.remove('swap/Pipeline-Python-develop-00000.json') def test_deve_criar_pasta_swap(self, params, imageCustom): for pipe in params['templates']: env = 'develop' name_template = pipe template_pipeline = self.load_template(name_template, env) estrutura = self.load_template('structure', env) dados = self.gettemplate('payload_6.yml', env) reponame = dados['params']['Projeto'] app = NewTemplate('codepipeline_role', 'codebuild_role', 'DevSecOps_Role') resources = {} cf_codebuild = app.generate_codebuild( dados['runtime'], template_pipeline, dados['stages'], dados['params'], env, imageCustom) cf_source = app.generate_sources( dados['stages'], env, reponame, 'codebuild_role', 'release-1.19') cf_action = app.generate_action( dados['stages'], template_pipeline, cf_codebuild, env) resources.update(cf_source) resources.update(cf_action) cf_stages = app.generate_stage( template_pipeline, resources, env, estrutura) cf_pipeline = app.generate_pipeline(cf_stages, f"{reponame}-{env}") cf = self.gerando_cloudformation(cf_pipeline) template = json.dumps(cf) shutil.rmtree('swap') app.save_swap(reponame, template, env, '00000') assert os.path.isdir('swap') == True assert os.path.isfile( 'swap/Pipeline-Python-develop-00000.json') == True os.remove('swap/Pipeline-Python-develop-00000.json') os.rmdir('swap') def test_deve_retornar_url_da_pipeline(self, params, imageCustom): for pipe in params['templates']: env = 'develop' name_template = pipe template_pipeline = self.load_template(name_template, 'develop') estrutura = self.load_template('structure', env) depends = self.load_template('depends', env) dados = self.gettemplate('payload_6.yml', env) app = NewTemplate('codepipeline_role', 'codebuild_role', 'DevSecOps_Role') template_params = { 'env': env, 'runtime': dados['runtime'], 'stages': dados['stages'], 'account': '000000', 'pipeline_stages': template_pipeline, 'params': dados['params'], 'release': 'release-10', 'imageCustom': imageCustom, 'structure': estrutura, 'depends': depends } file_template = app.generate(tp=template_params) print(file_template) assert os.path.isdir('swap') == True assert os.path.isfile( 'swap/Pipeline-Python-develop-000000.json') == True os.remove('swap/Pipeline-Python-develop-000000.json') def test_deve_verificar_a_estrutura_da_pipeline(self, params, imageCustom, payloads): for name_template in params['templates']: for payload in payloads: env = 'develop' template_pipeline = self.load_template(name_template, env) estrutura = self.load_template('structure', env) depends = self.load_template('depends', env) dados = self.gettemplate(payload, env) codepipeline_role = "arn:aws:iam::033921349789:role/RoleCodepipelineRole" codebuild_role = "arn:aws:iam::033921349789:role/RoleCodeBuildRole" DevSecOps_Role = "arn:aws:iam::033921349789:role/RoleCodeBuildRole" app = NewTemplate(codepipeline_role, codebuild_role, DevSecOps_Role) template_params = { 'env': env, 'runtime': dados['runtime'], 'stages': dados['stages'], 'account': '000000', 'pipeline_stages': template_pipeline, 'params': dados['params'], 'release': 'release-10', 'imageCustom': imageCustom, 'structure': estrutura, 'depends': depends } file_template = app.generate(tp=template_params) # Abrindo a pipeline criada ft = open(file_template) ftemplate = json.loads(ft.read()) ft.close() resources = ftemplate['Resources'].keys() codebuilds = [] sg = [] for resource in resources: if ftemplate['Resources'][resource]['Type'] == 'AWS::CodeBuild::Project': name = ftemplate['Resources'][resource]['Properties']['Name'] codebuilds.append(name) elif ftemplate['Resources'][resource]['Type'] == 'AWS::EC2::SecurityGroup': sg.append(ftemplate['Resources'][resource]) for resource in resources: if ftemplate['Resources'][resource]['Type'] == 'AWS::CodePipeline::Pipeline': for stages in (ftemplate['Resources'][resource]['Properties']['Stages']): for action in stages['Actions']: if action['ActionTypeId']['Category'] == 'Build': assert action['Configuration']['ProjectName'] in codebuilds assert sg print(payload) if payload == 'payload_6.yml': assert len( ftemplate['Resources']['PipelinePythonDevelop']['Properties']['Stages']) == 5 else: assert len( ftemplate['Resources']['PipelinePythonDevelop']['Properties']['Stages']) == 3 actions = ftemplate['Resources']['PipelinePythonDevelop']['Properties']['Stages'] if payload == 'payload_1.yml': print(len(actions[2]['Actions'])) assert len(actions) == 3 assert len(actions[0]['Actions']) == 2 assert len(actions[1]['Actions']) == 8 assert len(actions[2]['Actions']) == 2 elif payload == 'payload_2.yml': print(len(actions[2]['Actions'])) assert len(actions) == 3 assert len(actions[0]['Actions']) == 2 assert len(actions[1]['Actions']) == 8 assert len(actions[2]['Actions']) == 2 elif payload == 'payload_3.yml': print(len(actions[2]['Actions'])) assert len(actions) == 3 assert len(actions[0]['Actions']) == 3 assert len(actions[1]['Actions']) == 8 assert len(actions[2]['Actions']) == 2 elif payload == 'payload_4.yml': print(len(actions[2]['Actions'])) assert len(actions) == 3 assert len(actions[0]['Actions']) == 3 assert len(actions[1]['Actions']) == 8 assert len(actions[2]['Actions']) == 2 elif payload == 'payload_5.yml': print(len(actions[2]['Actions'])) assert len(actions) == 3 assert len(actions[0]['Actions']) == 3 assert len(actions[1]['Actions']) == 9 assert len(actions[2]['Actions']) == 2 elif payload == 'payload_6.yml': print(actions[4]) assert len(actions) == 5 assert len(actions[0]['Actions']) == 2 assert len(actions[1]['Actions']) == 8 assert len(actions[2]['Actions']) == 2 assert len(actions[4]['Actions']) == 2 os.remove('swap/Pipeline-Python-develop-000000.json') def test_deve_retornar_pipeline_com_action_obrigatorio_com_source_personalizado(self, params, payloads, imageCustom): """ Este teste deve validar a alteracao de um codebuild obrigatorio como o build, mas com o source personalizado """ for name_template in params['templates']: env = 'develop' template_pipeline = self.load_template(name_template, env) estrutura = self.load_template('structure', env) depends = self.load_template('depends', env) dados = self.gettemplate('payload_8.yml', env) codepipeline_role = "arn:aws:iam::033921349789:role/RoleCodepipelineRole" codebuild_role = "arn:aws:iam::033921349789:role/RoleCodeBuildRole" DevSecOps_Role = "arn:aws:iam::033921349789:role/RoleCodeBuildRole" app = NewTemplate(codepipeline_role, codebuild_role, DevSecOps_Role) template_params = { 'env': env, 'runtime': dados['runtime'], 'stages': dados['stages'], 'account': '000000', 'pipeline_stages': template_pipeline, 'params': dados['params'], 'release': 'release-10', 'imageCustom': imageCustom, 'structure': estrutura, 'depends': depends } file_template = app.generate(tp=template_params) # Abrindo a pipeline criada ft = open(file_template) ftemplate = json.loads(ft.read()) ft.close() resources = ftemplate['Resources'].keys() l_actions = ftemplate['Resources']['PipelinePythonDevelop']['Properties']['Stages'] for actions in l_actions: for action in actions['Actions']: if action['ActionTypeId']['Category'] != 'Source': print(action) if action['Name'] == 'Build': assert [{'Name': 'Normalizacao'}] == [ item for item in action['InputArtifacts'] if item['Name'] == 'Normalizacao'] assert 'Normalizacao' == action['Configuration']['PrimarySource'] if action['Name'] == 'Testunit': assert [{'Name': 'Normalizacao'}] == [ item for item in action['InputArtifacts'] if item['Name'] == 'Normalizacao'] assert 'Normalizacao' == action['Configuration']['PrimarySource'] if action['Name'] == 'Sonar': assert [{'Name': 'Normalizacao'}] == [ item for item in action['InputArtifacts'] if item['Name'] == 'Normalizacao'] assert 'Normalizacao' == action['Configuration']['PrimarySource'] def test_deve_retornar_pipeline_com_action_customizado_com_multiplos_sources(self, params, payloads, imageCustom): """ Este teste deve validar a alteracao de um codebuild obrigatorio como o build, mas com o source personalizado """ for name_template in params['templates']: env = 'develop' template_pipeline = self.load_template(name_template, env) estrutura = self.load_template('structure', env) depends = self.load_template('depends', env) dados = self.gettemplate('payload_8.yml', env) codepipeline_role = "arn:aws:iam::033921349789:role/RoleCodepipelineRole" codebuild_role = "arn:aws:iam::033921349789:role/RoleCodeBuildRole" DevSecOps_Role = "arn:aws:iam::033921349789:role/RoleCodeBuildRole" app = NewTemplate(codepipeline_role, codebuild_role, DevSecOps_Role) template_params = { 'env': env, 'runtime': dados['runtime'], 'stages': dados['stages'], 'account': '000000', 'pipeline_stages': template_pipeline, 'params': dados['params'], 'release': 'release-10', 'imageCustom': imageCustom, 'structure': estrutura, 'depends': depends } file_template = app.generate(tp=template_params) # Abrindo a pipeline criada ft = open(file_template) ftemplate = json.loads(ft.read()) ft.close() resources = ftemplate['Resources'].keys() l_actions = ftemplate['Resources']['PipelinePythonDevelop']['Properties']['Stages'] for actions in l_actions: for action in actions['Actions']: if action['ActionTypeId']['Category'] != 'Source': if action['Name'] == 'Normalizacao': print(action) assert [{'Name': 'App'}, {'Name': 'App2'}, { 'Name': 'App3'}] == action['InputArtifacts'] assert 'App' == action['Configuration']['PrimarySource'] if action['Name'] == 'Testmultant': print(action) assert [{'Name': 'Build'} ] == action['InputArtifacts'] assert 'Build' == action['Configuration']['PrimarySource'] def test_deve_retornar_pipeline_com_stages_ordenados(self, params, payloads, imageCustom): """ Este teste deve validar a alteracao de um codebuild obrigatorio como o build, mas com o source personalizado """ for name_template in params['templates']: env = 'develop' template_pipeline = self.load_template(name_template, env) estrutura = self.load_template('structure', env) depends = self.load_template('depends', env) dados = self.gettemplate('payload_9.yml', env) codepipeline_role = "arn:aws:iam::033921349789:role/RoleCodepipelineRole" codebuild_role = "arn:aws:iam::033921349789:role/RoleCodeBuildRole" DevSecOps_Role = "arn:aws:iam::033921349789:role/RoleCodeBuildRole" app = NewTemplate(codepipeline_role, codebuild_role, DevSecOps_Role) template_params = { 'env': env, 'runtime': dados['runtime'], 'stages': dados['stages'], 'account': '000000', 'pipeline_stages': template_pipeline, 'params': dados['params'], 'release': 'release-10', 'imageCustom': imageCustom, 'structure': estrutura, 'depends': depends } file_template = app.generate(tp=template_params) # Abrindo a pipeline criada ft = open(file_template) ftemplate = json.loads(ft.read()) ft.close() resources = ftemplate['Resources'].keys() l_actions = ftemplate['Resources']['PipelinePythonDevelop']['Properties']['Stages'] list_stages = [stage['Name'] for stage in l_actions] print(list_stages) assert ['Source', 'Continuous_Integration', 'Seguranca', 'Seguranca3', 'DeployDev'] == list_stages def test_deve_retornar_codebuild_eh_madatorio(self, params): for name_template in params['templates']: buildName = ['Build', 'Customizado'] env = 'develop' template_pipeline = self.load_template(name_template, env) pipeline = NewTemplate('codepipeline_role', 'codebuild_role', 'DevSecOps_Role') mandatorio = pipeline.codebuild_mandatory( buildName[0], template_pipeline) customizado = pipeline.codebuild_mandatory( buildName[1], template_pipeline) assert mandatorio == True assert customizado == False def test_deve_retornar_codebuild_com_source_personalizado(self, params): for name_template in params['templates']: env = 'develop' template_pipeline = self.load_template(name_template, env) pipeline = NewTemplate('codepipeline_role', 'codebuild_role', 'DevSecOps_Role') source1 = pipeline.check_is_not_codebuild( 'Source', template_pipeline) source2 = pipeline.check_is_not_codebuild( 'Build', template_pipeline) source3 = pipeline.check_is_not_codebuild( 'Agendamento1', template_pipeline) source4 = pipeline.check_is_not_codebuild( 'AprovacaoPO', template_pipeline) assert source1 == True assert source2 == False assert source3 == True assert source4 == True def test_deve_retornar_pipeline_master(self, params, imageCustom, payloads): for pipe in params['templates']: cf_pipeline = self.generate_pipeline( pipe, 'master', 'payload_1.yml', imageCustom) cf = self.gerando_cloudformation(cf_pipeline) print(cf['Resources'].keys()) assert len(cf['Resources']) == 7 def create_pipeline(self, name_template, env, imageCustom, payload): template_pipeline = self.load_template(name_template, env) estrutura = self.load_template('structure', env) depends = self.load_template('depends', env) dados = self.gettemplate(payload, env) codepipeline_role = "arn:aws:iam::033921349789:role/RoleCodepipelineRole" codebuild_role = "arn:aws:iam::033921349789:role/RoleCodeBuildRole" DevSecOps_Role = "arn:aws:iam::033921349789:role/RoleCodeBuildRole" app = NewTemplate(codepipeline_role, codebuild_role, DevSecOps_Role) template_params = { 'env': env, 'runtime': dados['runtime'], 'stages': dados['stages'], 'account': '000000', 'pipeline_stages': template_pipeline, 'params': dados['params'], 'release': 'release-10', 'imageCustom': imageCustom, 'structure': estrutura, 'depends': depends } file_template = app.generate(tp=template_params) # Abrindo a pipeline criada ft = open(file_template) ftemplate = json.loads(ft.read()) ft.close() return ftemplate def test_deve_retornar_pipeline_com_action_de_aprovacao(self, params, payloads, imageCustom): """ Este teste deve validar a alteracao de um codebuild obrigatorio como o build, mas com o source personalizado """ for name_template in params['templates']: env = 'master' ftemplate = self.create_pipeline( name_template, env, imageCustom, 'payload_11.yml') env_ = env.capitalize() pipe_name = f'PipelinePython{env_}' l_actions = ftemplate['Resources']['PipelinePythonMaster']['Properties']['Stages'] cont = 0 for actions in l_actions: for action in actions['Actions']: if action['ActionTypeId']['Category'] == 'Approval': cont += 1 assert cont == 2 def test_deve_verificar_se_action_nao_estao_vazios(self, params, payloads, imageCustom): """ Este teste deve validar a alteracao de um codebuild obrigatorio como o build, mas com o source personalizado """ for name_template in params['templates']: for env in ['develop', 'master']: ftemplate = self.create_pipeline( name_template, env, imageCustom, 'payload_11.yml') env_ = env.capitalize() pipe_name = f'PipelinePython{env_}' l_actions = ftemplate['Resources'][pipe_name]['Properties']['Stages'] cont = 0 for actions in l_actions: assert len(actions['Actions']) != 0 def test_deve_verificar_se_foi_removido_o_campo_type(self, params, payloads, imageCustom): """ Esse teste tem que validar se o campo type inserido no template foi removido. type é utilizado para informar o tipo do action """ for name_template in params['templates']: for env in ['develop', 'master']: ftemplate = self.create_pipeline( name_template, env, imageCustom, 'payload_11.yml') env_ = env.capitalize() pipe_name = f'PipelinePython{env_}' l_actions = ftemplate['Resources'][pipe_name]['Properties']['Stages'] cont = 0 type_codebuild = False for actions in l_actions: for confs in actions['Actions']: assert 'type' not in confs['Configuration'] def test_deve_verificar_se_foi_removido_o_campo_runorder_do_config(self, params, payloads, imageCustom): """ Esse teste tem que validar se o campo runorder inserido no template foi removido. """ for name_template in params['templates']: for env in ['develop', 'master']: ftemplate = self.create_pipeline( name_template, env, imageCustom, 'payload_11.yml') env_ = env.capitalize() pipe_name = f'PipelinePython{env_}' l_actions = ftemplate['Resources'][pipe_name]['Properties']['Stages'] cont = 0 runorder = False for actions in l_actions: for confs in actions['Actions']: assert 'runorder' not in confs['Configuration'] def test_deve_validar_os_stages_customizados_action_InvokeLambda_Custom_Approval(self, params, payloads, imageCustom): """ Esse teste tem que validar se o campo runorder inserido no template foi removido. """ for name_template in params['templates']: for env in ['develop']: ftemplate = self.create_pipeline( name_template, env, imageCustom, 'payload_11.yml') env_ = env.capitalize() pipe_name = f'PipelinePython{env_}' l_stages = ftemplate['Resources'][pipe_name]['Properties'] for stages in l_stages['Stages']: print(stages['Name']) if 'source' == stages['Name'].lower(): assert len(stages['Actions']) == 2 assert 'sharedlibrary' == stages['Actions'][0]['Name'].lower( ) assert 'pipeline-python' == stages['Actions'][1]['Name'].lower() elif 'continuous_integration' == stages['Name'].lower(): assert len(stages['Actions']) == 11 assert 'controlversion' == stages['Actions'][0]['Name'].lower( ) assert 'sonar' == stages['Actions'][2]['Name'].lower() assert 'testunit' == stages['Actions'][3]['Name'].lower( ) assert 'build' == stages['Actions'][4]['Name'].lower() assert 'aqua' == stages['Actions'][5]['Name'].lower( ) assert 'auditapp' == stages['Actions'][6]['Name'].lower( ) assert 'parametersapp' == stages['Actions'][7]['Name'].lower( ) assert 'normalizacao' == stages['Actions'][8]['Name'].lower( ) assert 'rodalambda' == stages['Actions'][9]['Name'].lower( ) assert 'gonogo' == stages['Actions'][10]['Name'].lower( ) elif 'deploydev' == stages['Name'].lower(): assert len(stages['Actions']) == 2 assert 'publishecrdev' == stages['Actions'][0]['Name'].lower( ) assert 'deployecsdev' == stages['Actions'][1]['Name'].lower( ) def test_deve_validar_customizacao_da_branch_do_projeto(self, params, payloads, imageCustom): """ Esse teste tem que validar se o campo runorder inserido no template foi removido. """ for name_template in params['templates']: for env in ['develop', 'master']: ftemplate = self.create_pipeline( name_template, env, imageCustom, 'payload_12.yml') env_ = env.capitalize() pipe_name = f'PipelinePython{env_}' l_actions = ftemplate['Resources'][pipe_name]['Properties']['Stages'] cont = 0 runorder = False for actions in l_actions: for confs in actions['Actions']: if confs['ActionTypeId']['Category'].lower() == 'source': print(confs) if 'SharedLibrary' != confs['Name']: if env == 'develop': assert confs['Configuration']['BranchName'] == 'feature-teste' else: assert confs['Configuration']['BranchName'] == 'master'
from config import Config from ..datastore import db from ..user import HasUser from datetime import datetime from sqlalchemy_utils import EncryptedType class Vendor(db.Model, HasUser): id = db.Column(db.Integer(), primary_key=True) slug = db.Column(db.Unicode(), index=True, unique=True) created_at = db.Column(db.DateTime(), default=datetime.utcnow) updated_at = db.Column(db.DateTime(), default=datetime.utcnow, onupdate=datetime.utcnow) company_name = db.Column(db.Unicode(255)) stripe_sk = db.Column(EncryptedType(db.String, Config.SECRET_KEY)) stripe_pk = db.Column(EncryptedType(db.String, Config.SECRET_KEY)) redirect_url = db.Column(db.Unicode()) def render_stripe_sk(self): return '****{}'.format(self.stripe_sk[-4:]) def render_stripe_pk(self): return '****{}'.format(self.stripe_pk[-4:])
# -*- coding: utf-8 -*- # Generated by Django 1.11.10 on 2018-02-06 12:38 from __future__ import unicode_literals import autoslug.fields from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('multimedia', '0001_initial'), ] operations = [ migrations.CreateModel( name='Multimedia', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('multimedia_link', models.FileField(upload_to='media/')), ('title', models.CharField(max_length=500)), ('slug', autoslug.fields.AutoSlugField(editable=False, populate_from='title')), ('categorie', models.CharField(choices=[('F', 'File'), ('V', 'Video'), ('A', 'Audio')], default='V', max_length=1)), ('status', models.CharField(choices=[('D', 'Draft'), ('P', 'Published')], default='D', max_length=1)), ('create_date', models.DateTimeField(auto_now_add=True)), ('update_date', models.DateTimeField(auto_now=True)), ('create_user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ('update_user', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='+', to=settings.AUTH_USER_MODEL)), ], options={ 'ordering': ('title',), 'verbose_name': 'Multimedia', 'verbose_name_plural': 'Multimedias', }, ), migrations.RemoveField( model_name='videolink', name='create_user', ), migrations.RemoveField( model_name='videolink', name='update_user', ), migrations.DeleteModel( name='VideoLink', ), ]
import SimpleITK import sys if len ( sys.argv ) < 4: print "Usage: MathematicalMorphology <input> <operation> <output>"; print "operation: 0=binary erode, 1=binary dilate, 2=grayscale erode, 3=grayscale dilate"; sys.exit ( 1 ) reader = SimpleITK.ImageFileReader() reader.SetFileName ( sys.argv[1] ) image = reader.Execute(); print image.ToString() morphoMath = SimpleITK.MathematicalMorphologyImageFilter() morphoMath.SetOperation ( int ( sys.argv[2] ) ) image = morphoMath.Execute ( image ); print image.ToString() writer = SimpleITK.ImageFileWriter() writer.SetFileName ( sys.argv[3] ) writer.Execute ( image );
"""Data analytics functions for processing neuroimaging data Functions: parse_volumes -> dataframe find_largest_volume -> tuple load_scan(path) -> array get_pixels_hu -> array show_scan extract_pixels -> array flatten -> array flat_wrapper -> array show_dist show_cluster_dist cluster -> dataframe cluster_wrapper -> dataframe cluster_modes -> dataframe find_middle_cluster -> integer filter_by_cluster -> dataframe get_HUrange -> tuple compare_scans mask -> array mask_wrapper -> array binary_mask -> array remove_islands -> array render_volume -> figure """ import os from dotenv import dotenv_values import pydicom from math import * import numpy as np import pandas as pd import pickle import copy import matplotlib.pyplot as plt from itertools import chain import plotly.graph_objects as go from plotly.subplots import make_subplots import plotly.express as px from sklearn.cluster import KMeans import cv2 def parse_volumes(dicom_path=None, debug=True): """Extract all volumes from the selected DICOM directory and return the file paths Keyword arguments: path -- the directory where *ALL* the DICOM (.dcm) images are located Returns: Dataframe of metadata about the volumes """ if (dicom_path==None): config = dotenv_values(".env") dicom_path = config['DICOM_SAVE'] volumes = {} for path, subdirs, files in os.walk(dicom_path): for name in files: file_path = os.path.join(path,name) splitfile = os.path.splitext(name) vol = ('/').join(file_path.split('/')[:-1]) if splitfile[1]=='.dcm': if vol not in volumes: volumes[vol]=[] else: volumes[vol].append(name) df = pd.DataFrame() df['path']=list(volumes.keys()) df['files']=list(volumes.values()) df.index = [(path.split('/'))[-1] for path in df['path']] df['count']=[len(files) for files in df['files']] if debug: print(df.drop(columns=['files'])) print(f'\nThe volume with the highest slice count can be found at: \n {df[df["count"] == df["count"].max()]["path"][0]}') return df def find_largest_volume(dicom_path=None, debug=True): """Find the volume with the greatest number of slices (for demonstration) Keyword arguments: path -- the directory where *ALL* the DICOM (.dcm) images are located Returns: Tuple of (path, name) of first largest volume in the dicom path """ volumes = parse_volumes(dicom_path=dicom_path, debug=debug) path = volumes[volumes["count"] == volumes["count"].max()]["path"][0] name = list(volumes[volumes["count"] == volumes["count"].max()].index)[0] return path, name def load_scan(path): """Load DICOM data from a local directory. Keyword arguments: path -- the directory where the target volume's DICOM (.dcm) images are located Returns: 3D pixel array of DICOM slices """ slices = [pydicom.dcmread(os.path.join(path,s)) for s in os.listdir(path)] slices = [s for s in slices if 'SliceLocation' in s] slices.sort(key = lambda x: int(x.InstanceNumber)) return slices def get_pixels_hu(slices): """Extract an array of Hounsfield Unit values from a stack of scans Source: https://hengloose.medium.com/a-comprehensive-starter-guide-to-visualizing-and-analyzing-dicom-images-in-python-7a8430fcb7ed Author: Franklin Heng Keyword arguments: slices -- an array of images Returns: 3D numpy array of HU values """ image = np.stack([s.pixel_array for s in slices]) image = image.astype(np.int16) image[image == -2000] = 0 # Set outside-of-scan pixels to 0 intercept = slices[0].RescaleIntercept if 'RescaleIntercept' in slices[0] else -1024 # Convert to Hounsfield units (HU) slope = slices[0].RescaleSlope if 'RescaleSlope' in slices[0] else 1 if slope != 1: image = slope * image.astype(np.float64) image = image.astype(np.int16) image += np.int16(intercept) return np.array(image, dtype=np.int16) def show_scan(pixels, viewer='plotly', output=False): """Render an image of the scan by slicing through the middle of the 3D array Keyword arguments: pixels -- a 3D numpy array of pixels for each slice of the DICOM image output -- (optional) default: None; path of a location to save the image Returns: Nothing; shows image """ midbrain = int(np.floor(len(pixels)/2)) fig = go.Figure( data=go.Heatmap(z=pixels[midbrain], colorscale = 'gray'), ) if output: head, tail = os.path.split(output) htmlsavepath = os.path.join(head, tail+'.html') fig.write_html(htmlsavepath) pngsavepath = os.path.join(head, tail+'.png') plt.imsave(pngsavepath, pixels[midbrain], cmap=plt.cm.binary) if viewer.lower() =='plotly': fig.show() plt.ioff() plt.close() else: plt.imshow(pixels[midbrain], cmap=plt.cm.binary) plt.show() def extract_pixels(path, debug=True): """Extract an array of pixels from a DICOM directory Keyword arguments: path -- the directory where the target volume's DICOM (.dcm) images are located Returns: 3D numpy array of HU values """ dicom = load_scan(path) pixels = get_pixels_hu(dicom) if debug==True: # If debugging, show the image show_scan(pixels, output=path) return pixels def flatten(pixels, output=False, min_filter=-1024): """Flattens a 3D numpy array of pixels for each slice of the DICOM image into a single 1D array, excluding any values below the min_filter, and optionally saves the array as a pickle file Keyword arguments: pixels -- a 3D numpy array of pixels for each slice of the DICOM image output -- (optional) default: None; path of a location to save the pickle Returns: flattened 1D array of HU values greater than the min_filter value """ flatten_list = list(chain.from_iterable(chain.from_iterable(pixels))) result = [x for x in flatten_list if x > min_filter] if output: try: os.makedirs(output) except: pass with open(os.path.join(output, f'flattened.pkl'), 'wb') as f: pickle.dump(result, f) return result def flat_wrapper(pixels, output=False): """Wraps the flatten() function so as to check if the data has already been flattened and not repeat the process if it is not necessary. Keyword arguments: pixels -- a 3D numpy array of pixels for each slice of the DICOM image output -- (optional) default: None; the possible pre-existing save location to check Returns: flattened 1D array of HU values """ if output: try: flat = pd.read_pickle(os.path.join(output, f'flattened.pkl')) return flat except: pass flat = flatten(pixels, output=output) return flat def show_dist(flat, viewer='plotly', output=False): """Display the distribution of values in a 1D array Keyword arguments: flat -- flattened 1D array of values viewer -- 'plotly' (case-insensitive) for interactive ; anything else (default: 'mpl') returns a static matplotlib histogram output -- (optional) default: None; (optionally, path and) filename *without extension* where to save the histogram Returns: Nothing; shows image """ fig = go.Figure(data=[go.Histogram(x=flat)]) plt.clf() plt.hist(flat, 100, facecolor='blue', alpha=0.5) if output: try: os.makedirs(output) except: pass fig.write_html(os.path.join(output,'pixel_distribution.html')) plt.savefig(os.path.join(output,'pixel_distribution.png')) if viewer.lower() =='plotly': fig.show() plt.ioff() plt.close() else: plt.show() def show_cluster_dist(df, viewer='plotly', output=False): """Display the distribution of values by cluster Keyword arguments: df -- the pandas dataframe that stores the values, where (df.x is value) and (df.y is cluster_id) viewer -- 'plotly' (case-insensitive) for interactive ; anything else returns a static matplotlib histogram output -- (optional) default: None; (optionally, path and) filename *without extension* where to save the histogram Returns: Nothing; shows image """ fig = px.histogram(df, x="x", color="y") dfArr = [] for l in list(set(df['y'])): dfArr.append(df[df['y']==l]) colors = ['red', 'green', 'blue','orange','purple','yellow','brown','gray'] i = 0 plt.clf() for c in dfArr: plt.hist(c['x'], 100, facecolor=colors[i], alpha=0.5, label=i) i+=1 if output: try: os.makedirs(output) except: pass fig.write_html(os.path.join(output,'cluster_distribution.html')) plt.savefig(os.path.join(output,'cluster_distribution.png')) if viewer.lower()=='plotly': fig.show() plt.ioff() plt.close() else: plt.show() def cluster(flat, k=3, output=None): """Run k-means pixel clustering on a 1D array and (optionally) save as CSV Keyword arguments: flat -- 1D array of values k -- number of clusters (default: 3) output -- (optional) default: None; location to save the CSV Returns: Dataframe of metadata about the cluster index for each pixel """ km = KMeans(n_clusters=k) npArr = np.array(flat).reshape(-1,1) km.fit(npArr) label = km.fit_predict(npArr) df = pd.DataFrame(data={'x':flat, 'y':label}) if output: try: os.makedirs(output) except: pass df.to_csv(os.path.join(output,f'cluster_k{k}.csv'), index=False) show_cluster_dist(df, output=output) return df def cluster_wrapper(pixels=False, flat=None, k=3, output=False): """Wraps the flatten() and cluster() functions Keyword arguments: pixels -- (optional) a 3D numpy array of pixels for each slice of the DICOM image flat -- (optional; required if 'pixels' not provided) 1D array of values k -- number of clusters (default: 3) output -- (optional) default: None; location to save the CSV Returns: Dataframe of metadata about the cluster index for each pixel """ if flat is None: try: flat = flatten(pixels) except: print('Error! If no flattened array is provided, you must supply a pixels 3D array to flatten') if output: try: clustered = pd.read_csv(os.path.join(output,f'cluster_k{k}.csv')) return clustered except: pass clustered = cluster(flat, k=k, output=output) return clustered def cluster_modes(df): """Find the most common value in each cluster Keyword arguments: df -- the dataframe generated by cluster(), where (df.x is value) and (df.y is cluster_id) Returns: Dataframe of metadata about the modes for each cluster """ clusters = list(set(df['y'])) modes = [] for k in clusters: modes.append(df[df['y']==k]['x'].mode()[0]) mdf = pd.DataFrame(data={'cluster':clusters, 'mode':modes}) return mdf def find_middle_cluster(df): """Select the cluster with the median mode (use the higher median instead of averaging when the number of clusters is even) Keyword arguments: df -- the dataframe generated by cluster(), where (df.x is value) and (df.y is cluster_id) Returns: Index of the cluster with the modal value that is the median out of all the cluster modes """ mdf = cluster_modes(df) median = mdf['mode'].median() k = int(mdf[mdf['mode']==median]['cluster']) return k def filter_by_cluster(df, cluster=None): """Filter the dataframe to only include a single cluster; if cluster is not specified, use the middle cluster determined by find_middle_cluster() Keyword arguments: df -- the dataframe generated by cluster(), where (df.x is value) and (df.y is cluster_id) cluster -- (optional) the specific cluster for which to filter Returns: Filtered dataframe of pixel values and their cluster index """ if cluster is None: cluster = find_middle_cluster(df) filtered = df[df['y']==cluster]['x'] return filtered def get_HUrange(df, cluster=None): """Extract the Hounsfield Unit (HU) range of the cluster; if cluster is not specified, use the middle cluster determined by find_middle_cluster() Keyword arguments: df -- the dataframe generated by cluster(), where (df.x is value) and (df.y is cluster_id) cluster -- (optional) the specific cluster for which to filter Returns: Tuple of (minHU, maxHU) """ if cluster is None: cluster = find_middle_cluster(df) minHU = df[df['y']==cluster]['x'].min() maxHU = df[df['y']==cluster]['x'].max() return (minHU, maxHU) def compare_scans(baseline, compare, viewer="plotly", output=False): """Show a slice through the middle of two brain scans (3D numpy arrays) side-by-side and (optionally) save the comparison image Keyword arguments: original -- the first 3D numpy array to compare mask -- the second 3D numpy array to compare viewer -- 'plotly' for interactive; anything else returns a static matplotlib histogram output -- (optional) default: None; (optionally, path and) filename *without extension* where to save the scan comparison image Returns: Nothing; shows image """ midbrain = int(np.floor(len(baseline)/2)) print(f'Midbrain: {midbrain}') fig = make_subplots(1, 2, subplot_titles=("Baseline",'Compare')) fig.add_trace(go.Heatmap(z=baseline[midbrain],colorscale = 'gray'), 1, 1) fig.add_trace(go.Heatmap(z=compare[midbrain],colorscale = 'gray'), 1, 2) fig.update_layout(height=400, width=800) plt.figure() f, axarr = plt.subplots(1,2) axarr[0].imshow(baseline[midbrain], cmap=plt.cm.binary) axarr[1].imshow(compare[midbrain], cmap=plt.cm.binary) if output: try: os.makedirs(output) except: pass fig.write_html(os.path.join(output, 'compare_scans.html')) plt.savefig(os.path.join(output, 'compare_scans.png')) if viewer=="plotly": fig.show() plt.ioff() plt.close() else: plt.show() def mask(pixels, HUrange, output=False, debug=True): """Mask a 3D numpy array by a specified range by pushing pixels outside of the range 1000HU below the minimum of the range Keyword arguments: pixels -- 3D numpy array HUrange -- a tuple of (min, max) HUrange output -- (optional) default: None; location + filename where to save the masked data Returns: 3D numpy array of masked pixel values """ mask = copy.deepcopy(pixels) i=0 for img in mask: j=0 for row in img: mask[i][j] = [HUrange[0]-1000 if ((x < HUrange[0]) or (x > HUrange[1])) else x for x in row] j+=1 i+=1 if output: try: os.makedirs(output) except: pass with open(os.path.join(output, f'mask_{HUrange[0]}-{HUrange[1]}.pkl'), 'wb') as f: pickle.dump(mask, f) if debug: show_scan(mask, output=output) return mask def mask_wrapper(pixels, output=None, HUrange=None, df=True, debug=True): """Wrapper for the mask() function which extracts an HUrange from the dataframe if there is no range specified and optionally checks to see if the mask data has already been pre-computed and saved in a specified location Keyword arguments: pixels -- 3D numpy array of values from the DICOM image stack output -- (optional) default: None; location + filename where to check for (or save) the masked data HUrange -- (optional) a custom Hounsfield Units range for masking df -- (optional, required if HUrange is 'None') dataframe from which to extract HUrange Returns: 3D numpy array of masked pixel values """ if HUrange is None: if df is not None: HUrange = get_HUrange(df) else: print('Error! Must supply HUrange OR df') try: masked = pd.read_pickle(os.path.join(output, f'mask_{HUrange[0]}-{HUrange[1]}.pkl')) except: masked = mask(pixels, HUrange, output=output, debug=debug) return masked def binary_mask(pixels, maskRange, output=False, debug=True): """Generate a binary mask from a 3D numpy array according to a specified range Keyword arguments: pixels -- 3D numpy array maskRange -- tuple of (min, max) Hounsfield unit range Returns: 3D numpy array (binary) of masked pixel values """ binary = copy.deepcopy(pixels) i=0 for img in pixels: j=0 for row in img: binary[i][j] = [1 if (maskRange[0] < x < maskRange[1]) else 0 for x in row] j+=1 i+=1 if output: try: os.makedirs(output) except: pass with open(os.path.join(output, f'binary-mask_{maskRange[0]}-{maskRange[1]}.pkl'), 'wb') as f: pickle.dump(mask,f) if debug: compare_scans(pixels, binary, viewer='plotly') return binary def remove_islands(pixels, output=False, k=3): """Generate a new 3D numpy array which removes islands using OpenCV's 'opening' function Keyword arguments: pixels -- 3D numpy array k -- square kernel size in pixels for opening; default: 3, which returns a kernel of size 3x3 output -- (optional) where to save the pickle of the generated array Returns: 3D numpy array (binary) of masked pixel values """ kernel = np.ones((k, k), np.float32) opening = cv2.morphologyEx(pixels, cv2.MORPH_OPEN, kernel) compare_scans(pixels, opening, viewer='plotly') if output: try: os.makedirs(output) except: pass with open(os.path.join(output, f'remove_islands_k{k}.pkl'), 'wb') as f: pickle.dump(opening, f) return opening
from conftest import add_permissions, check_json_response from core import cache, db from forums.models import ( Forum, ForumSubscription, ForumThread, ForumThreadSubscription, ) from forums.permissions import ForumPermissions def test_subscribe_to_forum(app, authed_client): add_permissions(app, 'forums_subscriptions_modify') response = authed_client.post('/subscriptions/forums/5') check_json_response(response, 'Successfully subscribed to forum 5.') assert ForumSubscription.from_attrs(user_id=1, forum_id=5) def test_subscribe_to_forum_already_subscribed(app, authed_client): add_permissions(app, 'forums_subscriptions_modify') response = authed_client.post('/subscriptions/forums/2') check_json_response(response, 'You are already subscribed to forum 2.') def test_unsubscribe_from_forum(app, authed_client): add_permissions(app, 'forums_subscriptions_modify') response = authed_client.delete('/subscriptions/forums/2') check_json_response(response, 'Successfully unsubscribed from forum 2.') assert not ForumSubscription.from_attrs(user_id=1, forum_id=2) def test_unsubscribe_from_forum_not_subscribed(app, authed_client): add_permissions(app, 'forums_subscriptions_modify') response = authed_client.delete('/subscriptions/forums/5') check_json_response(response, 'You are not subscribed to forum 5.') def test_subscribe_to_thread(app, authed_client): add_permissions(app, 'forums_subscriptions_modify') response = authed_client.post('/subscriptions/threads/5') check_json_response(response, 'Successfully subscribed to thread 5.') assert ForumThreadSubscription.from_attrs(user_id=1, thread_id=5) def test_subscribe_to_thread_already_subscribed(app, authed_client): add_permissions(app, 'forums_subscriptions_modify') response = authed_client.post('/subscriptions/threads/3') check_json_response(response, 'You are already subscribed to thread 3.') def test_unsubscribe_from_thread(app, authed_client): add_permissions(app, 'forums_subscriptions_modify') response = authed_client.delete('/subscriptions/threads/3') check_json_response(response, 'Successfully unsubscribed from thread 3.') assert not ForumThreadSubscription.from_attrs(user_id=1, thread_id=3) def test_unsubscribe_from_thread_not_subscribed(app, authed_client): add_permissions(app, 'forums_subscriptions_modify') response = authed_client.delete('/subscriptions/threads/5') check_json_response(response, 'You are not subscribed to thread 5.') def test_view_my_subscriptions(app, authed_client): add_permissions(app, 'forums_view_subscriptions') response = authed_client.get('/subscriptions/forums').get_json()[ 'response' ] assert {1, 2, 4} == {s['id'] for s in response} def test_view_thread_subscriptions(app, authed_client): add_permissions(app, 'forums_view_subscriptions') response = authed_client.get('/subscriptions/threads').get_json()[ 'response' ] assert {1, 3, 4} == {s['id'] for s in response} def test_view_forum_subscriptions_empty(app, authed_client): db.engine.execute("DELETE FROM forums_forums_subscriptions") add_permissions(app, 'forums_view_subscriptions') response = authed_client.get('/subscriptions/forums').get_json()[ 'response' ] assert response == [] def test_view_thread_subscriptions_empty(app, authed_client): db.engine.execute("DELETE FROM users_permissions") add_permissions(app, 'forums_view_subscriptions') response = authed_client.get('/subscriptions/threads').get_json()[ 'response' ] assert response == [] def test_view_forum_subscriptions_no_forum_perms(app, authed_client): db.engine.execute("DELETE FROM users_permissions") add_permissions(app, 'forums_view_subscriptions') response = authed_client.get('/subscriptions/forums').get_json()[ 'response' ] assert response == [] def test_view_thread_subscriptions_no_forum_perms(app, authed_client): db.engine.execute( "DELETE FROM users_permissions WHERE permission LIKE 'forumaccess%%'" ) add_permissions(app, 'forums_view_subscriptions') response = authed_client.get('/subscriptions/threads').get_json()[ 'response' ] assert response == [] def test_subscribe_thread_deletes_cache_keys(app, authed_client): add_permissions(app, ForumPermissions.MODIFY_SUBSCRIPTIONS) ForumThread.from_subscribed_user(1) ForumThreadSubscription.user_ids_from_thread(5) response = authed_client.post('/subscriptions/threads/5') assert response.status_code == 200 assert not cache.get( ForumThreadSubscription.__cache_key_users__.format(thread_id=5) ) assert not cache.get( ForumThreadSubscription.__cache_key_of_user__.format(user_id=1) ) assert ForumThreadSubscription.user_ids_from_thread(5) == [1] def test_unsubscribe_thread_deletes_cache_keys(app, authed_client): add_permissions(app, ForumPermissions.MODIFY_SUBSCRIPTIONS) ForumThread.from_subscribed_user(1) ForumThreadSubscription.user_ids_from_thread(4) assert cache.get( ForumThreadSubscription.__cache_key_users__.format(thread_id=4) ) assert cache.get( ForumThreadSubscription.__cache_key_of_user__.format(user_id=1) ) response = authed_client.delete('/subscriptions/threads/4') assert response.status_code == 200 assert not cache.get( ForumThreadSubscription.__cache_key_users__.format(thread_id=4) ) assert not cache.get( ForumThreadSubscription.__cache_key_of_user__.format(user_id=1) ) assert ForumThreadSubscription.user_ids_from_thread(4) == [2] def test_subscribe_forum_deletes_cache_keys(app, authed_client): add_permissions(app, ForumPermissions.MODIFY_SUBSCRIPTIONS) Forum.from_subscribed_user(1) ForumSubscription.user_ids_from_forum(5) response = authed_client.post('/subscriptions/forums/5') assert response.status_code == 200 assert not cache.get( ForumSubscription.__cache_key_users__.format(forum_id=5) ) assert not cache.get( ForumSubscription.__cache_key_of_user__.format(user_id=1) ) assert ForumSubscription.user_ids_from_forum(5) == [3, 4, 1] def test_unsubscribe_forum_deletes_cache_keys(app, authed_client): add_permissions(app, ForumPermissions.MODIFY_SUBSCRIPTIONS) Forum.from_subscribed_user(1) ForumSubscription.user_ids_from_forum(4) assert cache.get(ForumSubscription.__cache_key_users__.format(forum_id=4)) assert cache.get(ForumSubscription.__cache_key_of_user__.format(user_id=1)) response = authed_client.delete('/subscriptions/forums/4') assert response.status_code == 200 assert not cache.get( ForumSubscription.__cache_key_users__.format(forum_id=4) ) assert not cache.get( ForumSubscription.__cache_key_of_user__.format(user_id=1) ) assert ForumSubscription.user_ids_from_forum(4) == [2]
import numpy as np import xml.etree.ElementTree as ET import sys import glob import os import matplotlib.pyplot as plt tableau_colors = ( (114/255., 158/255., 206/255.), (255/255., 158/255., 74/255.), (103/255., 191/255., 92/255.), (237/255., 102/255., 93/255.), (173/255., 139/255., 201/255.), (168/255., 120/255., 110/255.), (237/255., 151/255., 202/255.), (162/255., 162/255., 162/255.), (205/255., 204/255., 93/255.), (109/255., 204/255., 218/255.), (144/255., 169/255., 202/255.), (225/255., 157/255., 90/255.), (122/255., 193/255., 108/255.), (225/255., 122/255., 120/255.), (197/255., 176/255., 213/255.), (196/255., 156/255., 148/255.), (247/255., 182/255., 210/255.), (199/255., 199/255., 199/255.), (219/255., 219/255., 141/255.), (158/255., 218/255., 229/255.), (227/255., 119/255., 194/255.), (219/255., 219/255., 141/255.), (174/255., 199/255., 232/255.), (109/255., 204/255., 218/255.), (114/255., 158/255., 206/255.), (199/255., 199/255., 199/255.), (188/255., 189/255., 34/255.), (255/255., 127/255., 14/255.), (255/255., 125/255., 150/255.), (196/255., 156/255., 148/255.), (177/255., 3/255., 24/255.), (0/255., 107/255., 164/255), (198/255., 118/255., 255/255.), #dsm added, not Tableau (58/255., 208/255., 129/255.), ) def getAverage(l): if len(l)==0: return 0.0 else: return float(sum(l)) / float(len(l)) TOTAL_COLOR_NUM=33 colors = [2, 3, 5, 1, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] #app_string="lobsters amahiPlatform fulcrum linuxfr onebody rucksack sugar boxroom jobsworth kandan publify railscollab rucksack sharetribe tracks brevidy communityengine" app_string="forem lobsters linuxfr sugar kandan onebody communityengine diaspora calagator rucksack railscollab jobsworth gitlab kanban fulcrum tracks boxroom brevidy wallgig shoppe amahiPlatform sharetribe enki publify" #app_string="sharetribe enki publify" applications = app_string.split(" ") result_path = "../../applications/general_stats/" width = 0.2 applications_on_figure = [] i=1 for a in applications: temp_str = a[0:3].upper() applications_on_figure.append(temp_str) i += 1 roots = {} def plot_alignedbar_plot(plt, ary_list, legends, stat_name, Ylabel, stack_array): fig = plt.figure(figsize=(7,3)) ax = fig.add_subplot(111) N = len(applications) ind = np.arange(N) rects = [] j=0 data_acc = {} for i in stack_array: data_acc[i] = [] for j in ary_list[0]: data_acc[i].append(0) j = 0 for ary in ary_list: rects.append(ax.bar(ind+width*stack_array[j], ary, width, bottom=data_acc[stack_array[j]], color=tableau_colors[colors[j]])) k = 0 for d in ary: data_acc[stack_array[j]][k] += d k += 1 j+=1 legend = ax.legend(rects, legends, loc='upper right', prop={'size':'10'}) plt.ylabel(Ylabel, fontsize=10) plt.xticks(ind,applications_on_figure,rotation='vertical') plt.tick_params(labelsize=10) plt.tight_layout() #plt.show() fig.savefig("%s/general_%s.pdf"%(result_path, stat_name)) def plot_stack_plot(plt, ary_list, legends, stat_name, Ylabel): #print stat_name #i=0 #for ary in ary_list: # print legends[i] # print ary # i += 1 fig = plt.figure(figsize=(7,3)) ax = fig.add_subplot(111) N = len(applications) ind = np.arange(N) bottom_data = [] rects = [] i = 0 for ary in ary_list: print "%s\t"%legends[i], for k in ary: print "%f, "%k, print "" i += 1 for i in range(N): bottom_data.append(0) j = 0 for ary in ary_list: print "%s: avg = %f"%(legends[j], getAverage(ary)) #data of all apps in a single category rects.append(ax.bar(ind, ary, width, bottom=bottom_data, color=tableau_colors[colors[j]])) j += 1 for i in range(N): bottom_data[i] += ary[i] if len(legends) > 15: ax.legend(rects, legends, loc='upper right', prop={'size':'4'}) else: legend = ax.legend(rects, legends, prop={'size':'10'}, bbox_to_anchor=(0., 1.02, 1., .102), loc=3, ncol=2, mode="expand", borderaxespad=0.) plt.ylabel(Ylabel, fontsize=10) plt.xticks(ind,applications_on_figure,rotation='vertical') plt.tick_params(labelsize=10) plt.tight_layout() #plt.show() fig.savefig("%s/general_%s.pdf"%(result_path, stat_name)) def general_plot(stat_name, Ylabel, alignedBar=False, alignedArray={}): ary_list = [] legends = [] name_map = {} for app in applications: for node in roots[app]: if node.tag == stat_name: for c in node: if c.tag not in legends: name_map[c.tag] = len(ary_list) ary_list.append([]) legends.append(c.tag) for app in applications: for node in roots[app]: if node.tag == stat_name: included = [] for child in node: included.append(child.tag) ary_list[name_map[child.tag]].append(float(child.text)) for l in legends: if l not in included: ary_list[name_map[l]].append(0) #ary_list[i].append(float(child.text)) #if len(legends) > i: # for j in range(len(legends)-i): # ary_list[i].append(0) # i += 1 if stat_name == "queryGeneral": temp_ary = {} for app in applications: temp_ary[app] = 0 i = 0 for app in applications: for ary in ary_list: temp_ary[app] += ary[i] i = i + 1 print "TOTAL QUERY:" for app in applications: temp_ary[app] = temp_ary[app] * len(roots[app]) print "%s: %d"%(app, temp_ary[app]) if alignedBar: stack_array = [] k = 0 for l in legends: if l in alignedArray: stack_array.append(alignedArray[l]) else: stack_array.append(k) k += 1 plot_alignedbar_plot(plt, ary_list, legends, stat_name, Ylabel, stack_array) else: plot_stack_plot(plt, ary_list, legends, stat_name, Ylabel) def plot_field_stat(stat_name): x_data = [] y_data = [] types = [] max_x = 0 max_y = 0 i = 0 type_map = {} for app in applications: for node in roots[app]: if node.tag == stat_name: for c in node: if c.text != "MAX" and float(c.text) > max_y: max_y = float(c.text) if float(c.attrib["numUse"]) > max_x: max_x = float(c.attrib["numUse"]) if c.attrib["type"] not in types: types.append(c.attrib["type"]) for t in types: x_data.append([]) y_data.append([]) type_map[t] = i i += 1 i = 0 for app in applications: for node in roots[app]: if node.tag == stat_name: for c in node: ind = type_map[c.attrib["type"]] x_data[ind].append(float(c.attrib["numUse"])) if c.text == "MAX": y_data[ind].append(max_y*1.5) else: y_data[ind].append(float(c.text)) i += 1 fig = plt.figure(figsize=(7,3)) ax = fig.add_subplot(111) i = 0 legend_scat = [] #for app in applications: for t in types: l = ax.scatter(x_data[i], y_data[i], color=tableau_colors[i%TOTAL_COLOR_NUM], label=app) legend_scat.append(l) i += 1 #ax.legend(legend_scat, applications, bbox_to_anchor=(1.05, 1.05), prop={'size':'10'}) ax.legend(legend_scat, types, bbox_to_anchor=(1.05, 1.05), prop={'size':'10'}) ax.set_ylim(0, max_y*1.6) ax.set_xlim(0, max_x*1.1) plt.ylabel("avg path distance to source", fontsize=10) plt.xlabel("avg #use per controller action", fontsize=10) plt.tight_layout() fig.savefig("%s/general_%s.pdf"%(result_path, stat_name)) def plot_table_stat(stat_name): x_data = [] y_data = [] i = 0 x_max = 0 y_max = 0 for app in applications: x_data.append([]) y_data.append([]) for node in roots[app]: if node.tag == stat_name: for c in node: x_data[i].append(float(c.text)) if float(c.text) > x_max: x_max = float(c.text) y_data[i].append(float(c.attrib["write"])) if float(c.attrib["write"]) > y_max: y_max = float(c.attrib["write"]) i += 1 fig = plt.figure(figsize=(7,3)) ax = fig.add_subplot(111) i = 0 legend_scat = [] for app in applications: l = ax.scatter(x_data[i], y_data[i], color=tableau_colors[i%TOTAL_COLOR_NUM], label=app) legend_scat.append(l) i += 1 ax.legend(legend_scat, applications, bbox_to_anchor=(1.05, 1.05), prop={'size':'10'}) plt.ylabel("avg #write queries on a table", fontsize=10) plt.xlabel("avg #read queries on a table", fontsize=10) ax.set_ylim(0, y_max*1.1) ax.set_xlim(0, x_max*1.6) plt.tight_layout() fig.savefig("%s/general_%s.pdf"%(result_path, stat_name)) def plot_index_stat(stat_name): fig = plt.figure(figsize=(6,6)) ax = fig.add_subplot(211) N = len(applications) ind = np.arange(N) x_index_data = [] y_index_data = [] y_index_max = 0 x_noindex_data = [] y_noindex_data = [] y_noindex_max = 0 i = 0 for app in applications: x_index_data.append([]) y_index_data.append([]) x_noindex_data.append([]) y_noindex_data.append([]) for node in roots[app]: if node.tag == stat_name: for c1 in node: if c1.tag == "fieldHasIndex": for c in c1: y_index_data[i].append(float(c.text)) x_index_data[i].append(i) elif c1.tag == "fieldHasNoIndex": for c in c1: y_noindex_data[i].append(float(c.text)) x_noindex_data[i].append(i) i += 1 i = 0 print y_index_data for app in applications: l = ax.scatter(x_index_data[i], y_index_data[i], color=tableau_colors[i%TOTAL_COLOR_NUM], label=app) i += 1 plt.tick_params(labelsize=6) plt.xticks(ind,applications_on_figure,rotation='vertical') plt.ylabel("Avg use in select condition", fontsize=10) plt.xlabel("Field with index", fontsize=10) plt.tight_layout() ax = fig.add_subplot(212) i = 0 for app in applications: l = ax.scatter(x_noindex_data[i], y_noindex_data[i], color=tableau_colors[i%TOTAL_COLOR_NUM], label=app) i += 1 plt.tick_params(labelsize=6) plt.xticks(ind,applications_on_figure,rotation='vertical') plt.ylabel("Avg use in select condition", fontsize=10) plt.xlabel("Field without index", fontsize=10) plt.tight_layout() fig.savefig("%s/general_%s.pdf"%(result_path, stat_name)) if os.path.isdir(result_path) == False: os.system("mkdir %s"%result_path) for app in applications: print "python stats.py %s %s/%s_stat.xml"%(app, result_path, app) os.system("python stats.py %s %s/%s_stat.xml"%(app, result_path, app)) #print "python collect_nextaction.py %s "%(app) #os.system("python collect_nextaction.py %s %s/nextaction_%s_stat.xml"%(app, result_path, app)) #print "python collect_funcdeps.py %s %s/%s_funcdeps.log"%(app, result_path, app) #os.system("python collect_funcdeps.py %s %s/%s_funcdeps.log"%(app, result_path, app)) fname = "%s/%s_stat.xml"%(result_path, app) print fname tree = ET.parse(fname) roots[app] = tree.getroot() print "" #plot_index_stat("indexStat") stats=["queryGeneral","redundantField", "queryCard", "queryOnlyToQuery", "fieldOnlyConst", "fieldNoInput", "queryPartial"] #stats = ["queryGeneral","branch","branchInView","queryInView","usedInView","usedSQLString","onlyFromUser","inClosure","readSink","readSource","writeSource","TableInView","assocQuery","transaction","transactionNested", "queryString", "affectedInControlflow", "queryFunction","viewClosure","loopWhile","constStat","inputReaches","loopNestedDepth","inputAffectPath","inputAffectQuery","queryCardinality","redundantData","tableFieldFuncdep","closureCarryDep","queryDependency"] YaxisLabel = {} YaxisLabel["queryOnlyToQuery"] = "Avg #queries in an action" YaxisLabel["queryPartial"] = "Avg #queries in an action" YaxisLabel["queryGeneral"] = "Avg #queries in an action" YaxisLabel["fieldOnlyConst"] = "#fields" YaxisLabel["fieldNoInput"] = "#fields" YaxisLabel["branch"] = "Avg #branch in an action" YaxisLabel["branchInView"] = "Avg #branch in an action" YaxisLabel["queryInView"] = "Avg #Q in an action" YaxisLabel["usedInView"] = "Average #readQ in an action" YaxisLabel["usedSQLString"] = "Average #readQ in an action" YaxisLabel["materialized"] = "Average #readQ returning full record in an action" YaxisLabel["onlyFromUser"] = "Average #Q in an action" YaxisLabel["inClosure"] = "Avg #Q in an action" YaxisLabel["readSink"] = "Avg #sink nodes for each query" YaxisLabel["readSource"] = "Avg #source nodes for each query" YaxisLabel["writeSource"] = "Avg #source nodes for each query" YaxisLabel["TableInView"] = "#tables" YaxisLabel["FieldInView"] = "#fields from all tables" YaxisLabel["transaction"] = "#queries in a transaction" YaxisLabel["transactionNested"] = "#transactions added from all actions" YaxisLabel["queryString"] = "Average used frequency in each read query" YaxisLabel["queryFunction"] = "Average used frequency in each query" YaxisLabel["constStat"] = "Average used frequency in each read query" YaxisLabel["inputReaches"] = "Breakdown of input affecting % of queries" YaxisLabel["tableStat"] = "Breakdown of #Q by tables in an action" YaxisLabel["path"] = "Number of instructions" YaxisLabel["loopNestedDepth"] = "Avg #loop in an action" YaxisLabel["queryCard"] = "Avg #query in an action" YaxisLabel["inputAffectPath"] = "#nodes" YaxisLabel["inputAffectQuery"] = "#queries" YaxisLabel["tableFieldFuncdep"] = "#fields" YaxisLabel["selectCondition"] = "#tables" YaxisLabel["redundantField"] = "field size by byte" YaxisLabel["longestQueryPath"] = "#queries" YaxisLabel["orderFunction"] = "percentage of order/non_order queries in an action" YaxisLabel["orderField"] = "#tables" YaxisLabel["loopWhile"] = "Avg #loops in an action" YaxisLabel["closureCarryDep"] = "Avg #queries in loop in an action" YaxisLabel["assocQuery"] = "Avg #queries in an action" YaxisLabel["affectedInControlflow"] = "Avg #queries in an action" YaxisLabel["viewClosure"] = "Avg #view rendering in an action" YaxisLabel["queryDependency"] = "Avg #queries in an action" for s in stats: print "" print "==============" print "printing %s..."%s general_plot(s, YaxisLabel[s]) exit(0) plot_field_stat("tableFieldStat") plot_field_stat("nonFieldStat") plot_table_stat("tableStat") QP_stack = {} QP_stack["longestQueryPathLoopCarry"] = 0 QP_stack["longestQueryPathLoopNoCarry"] = 0 QP_stack["longestQueryPathNotInLoop"] = 0 QP_stack["totalQueryNumber"] = 1 general_plot("longestQueryPath", YaxisLabel["longestQueryPath"], True, QP_stack) general_plot("path", YaxisLabel["path"], True, {}) #NA stands for NextAction roots = {} #amahiPlatform communityengine jobsworth linuxfr piggybak rucksack wallgig #boxroom communityengine_with_log jobsworth_with_log lobsters publify sharetribe #boxroom_with_log diaspora jobsworth_with_logs lobsters.txt publify_with_log shoppe #Brevidy enki kanban lobsters_with_log railscollab sugar #calagator fulcrum kandan onebody railscollab_with_log tracks #app_string="fulcrum rucksack boxroom publify brevidy tracks lobsters communityengine linuxfr railscollab shoppe amahiPlatform enki wallgig" app_string = "boxroom lobsters wallgig linuxfr kandan brevidy onebody communityengine calagator kanban fulcrum rucksack railscollab jobsworth tracks shoppe amahiPlatform sharetribe publify enki" applications = app_string.split(" ") applications_on_figure = [] i=1 for a in applications: temp_str = a[0:3].upper() applications_on_figure.append(temp_str) i += 1 for app in applications: fname = "%s/nextaction_%s_stat.xml"%(result_path, app) print fname tree = ET.parse(fname) roots[app] = tree.getroot() general_plot("nextAction", "Average #Q in next action")
import datetime as dt import json import logging import os import boto3 logger = logging.getLogger() logger.setLevel(logging.INFO) logging.basicConfig(format="%(asctime)s - %(message)s", level=logging.INFO) # Retrieve region where Lambda is being executed region_name = os.environ["AWS_REGION"] # "ap-southeast-1" # Create a client for the AWS Analytical service to use client = boto3.client("glue") sagemaker = boto3.client("sagemaker") def datetimeconverter(o): if isinstance(o, dt.datetime): return o.__str__() def check_job_status(job_details): # This function checks the status of the currently running job job_response = client.get_job_run( JobName=job_details["jobName"], RunId=job_details["jobRunId"] ) json_data = json.loads(json.dumps(job_response, default=datetimeconverter)) # IMPORTANT update the status of the job based on the job_response (e.g RUNNING, SUCCEEDED, FAILED) job_details["jobStatus"] = json_data.get("JobRun").get("JobRunState") response = {"jobDetails": job_details} return response def send_pipeline_execution_success(token): try: sagemaker.send_pipeline_execution_step_success( CallbackToken=token, OutputParameters=[ { "Name": "final_status", "Value": "Glue Job finished.", } ], ) except: logger.info( ( "An error occurred: Step GluePrepCallbackStep is already" " in a terminal status, but Step function shouldbe" ) ) def lambda_handler(event, context): """Calls custom job waiter developed by user Arguments: event {dict} -- Dictionary with details on previous processing step context {dict} -- Dictionary with details on Lambda context Returns: {dict} -- Dictionary with Processed Bucket, Key(s) and Job Details """ try: logger.info("Lambda event is [{}]".format(event)) job_details = event["body"]["job"]["Payload"]["jobDetails"] logger.info("Checking Job Status with user custom code") # transform_handler = TransformHandler().stage_transform(team, dataset, stage) response = check_job_status(job_details) # custom user code called if response["jobDetails"]["jobStatus"] == "SUCCEEDED": send_pipeline_execution_success(job_details["token"]) elif response["jobDetails"]["jobStatus"] == "FAILED": sagemaker.send_pipeline_execution_step_failure( CallbackToken=job_details["token"], FailureReason="unknown reason" ) logger.info("Response is [{}]".format(response)) except Exception as e: logger.error("Fatal error", exc_info=True) sagemaker.send_pipeline_execution_step_failure( CallbackToken=job_details["token"], FailureReason=str(e) ) raise e return response
#!/usr/bin/python3 #sudo pm2 start led_manager.py --name led_manager --interpreter python3 import signal import time import sys import paho.mqtt.client as mqtt import json import random import subprocess import re import threading mqttClient = None canPublish = False connected_to_wifi = False charging_battery = False charging_event = threading.Event() # The callback for when the client receives a CONNACK response from the server. def on_connect(client, userdata, flags, rc): global canPublish print("Connected with result code "+str(rc)) canPublish = True client.subscribe("pibot/power/state") client.subscribe("pibot/wifi/state") # The callback for when a PUBLISH message is received from the server. def on_message(client, userdata, msg): global charging_event global charging_battery global connected_to_wifi #print(msg.topic+" "+str(msg.payload)) try: if msg.topic == "pibot/wifi/state": json_data = json.loads(msg.payload) connected_to_wifi = bool(json_data["connected"]) if msg.topic == "pibot/power/state": json_data = json.loads(msg.payload) charging_battery = bool(json_data["charging"]) charging_event.set() except Exception as e: print(f"error : {e}") def wifi_led(): global connected_to_wifi global mqttClient global canPublish while True: try: if canPublish: if connected_to_wifi: mqttClient.publish("pibot/leds/cmd", json.dumps({"2" : "0000FF"})) else: mqttClient.publish("pibot/leds/cmd", json.dumps({"2" : "000000"})) time.sleep(1) mqttClient.publish("pibot/leds/cmd", json.dumps({"2" : "0000FF"})) time.sleep(1) except Exception as e: print(f"error : {e}") def charging_led(): global charging_battery global charging_event global mqttClient global canPublish while True: try: print(f"charg : {charging_battery}") if canPublish: if charging_battery: mqttClient.publish("pibot/leds/cmd", json.dumps({"3" : "FF0000"})) else: mqttClient.publish("pibot/leds/cmd", json.dumps({"3" : "000000"})) charging_event.wait(2) charging_event.clear() except Exception as e: print(f"error : {e}") def main(): global mqttClient global canPublish global connected_to_wifi #application initialization mqttClient = mqtt.Client() mqttClient.on_connect = on_connect mqttClient.on_message = on_message #mqttClient.username_pw_set("login", "password") mqttClient.connect("127.0.0.1", 1883, 60) mqttClient.loop_start() threading.Thread(name='wifi_led', target=wifi_led).start() threading.Thread(name='charging_led', target=charging_led).start() while True: time.sleep(1) def exit_gracefully(signum, frame): global mqttClient # restore the original signal handler as otherwise evil things will happen # in input when CTRL+C is pressed, and our signal handler is not re-entrant signal.signal(signal.SIGINT, original_sigint) try: if mqttClient is not None: mqttClient.disconnect() sys.exit(1) except KeyboardInterrupt: sys.exit(1) # restore the exit gracefully handler here signal.signal(signal.SIGINT, exit_gracefully) if __name__ == '__main__': # store the original SIGINT handler original_sigint = signal.getsignal(signal.SIGINT) signal.signal(signal.SIGINT, exit_gracefully) main()
#!/usr/bin/env python3 """ NAME: lf_cleanup.py PURPOSE: clean up stations, cross connects and endpoints EXAMPLE: ./lf_cleanup.py --mgr <lanforge ip> Copyright 2021 Candela Technologies Inc License: Free to distribute and modify. LANforge systems must be licensed. """ import sys import os import importlib import argparse import time if sys.version_info[0] != 3: print("This script requires Python 3") exit(1) sys.path.append(os.path.join(os.path.abspath(__file__ + "../../../"))) LFUtils = importlib.import_module("py-json.LANforge.LFUtils") realm = importlib.import_module("py-json.realm") Realm = realm.Realm class lf_clean(Realm): def __init__(self, host="localhost", port=8080, resource=1, clean_cxs=None, clean_endp=None, clean_sta=None): super().__init__(lfclient_host=host, lfclient_port=port), self.host = host self.port = port self.resource = resource self.clean_cxs = clean_cxs self.clean_endp = clean_endp self.clean_sta = clean_sta self.cxs_done = False self.endp_done = False self.sta_done = False self.br_done = False self.misc_done = False def cxs_clean(self): still_looking_cxs = True iterations_cxs = 1 while still_looking_cxs and iterations_cxs <= 10: iterations_cxs += 1 print("cxs_clean: iterations_cxs: {iterations_cxs}".format(iterations_cxs=iterations_cxs)) cx_json = super().json_get("cx") if cx_json is not None: print("Removing old cross connects") for name in list(cx_json): if name != 'handler' and name != 'uri' and name != 'empty': print(name) req_url = "cli-json/rm_cx" data = { "test_mgr": "default_tm", "cx_name": name } super().json_post(req_url, data) time.sleep(.5) time.sleep(1) else: print("No cross connects found to cleanup") still_looking_cxs = False print("clean_cxs still_looking_cxs {cxs_looking}".format(cxs_looking=still_looking_cxs)) if not still_looking_cxs: self.cxs_done = True return still_looking_cxs def endp_clean(self): still_looking_endp = True iterations_endp = 0 while still_looking_endp and iterations_endp <= 10: iterations_endp += 1 print("endp_clean: iterations_endp: {iterations_endp}".format(iterations_endp=iterations_endp)) # get and remove current endps endp_json = super().json_get("endp") if endp_json is not None: print("Removing old endpoints") for name in list(endp_json['endpoint']): print(list(name)[0]) if name[list(name)[0]]["name"] == '': continue req_url = "cli-json/rm_endp" data = { "endp_name": list(name)[0] } print(data) super().json_post(req_url, data) time.sleep(.5) time.sleep(1) else: print("No endpoints found to cleanup") still_looking_endp = False print("clean_endp still_looking_endp {ednp_looking}".format(ednp_looking=still_looking_endp)) if not still_looking_endp: self.endp_done = True return still_looking_endp def sta_clean(self): still_looking_sta = True iterations_sta = 0 while still_looking_sta and iterations_sta <= 10: iterations_sta += 1 print("sta_clean: iterations_sta: {iterations_sta}".format(iterations_sta=iterations_sta)) try: sta_json = super().json_get( "port/1/{resource}/list?field=alias".format(resource=self.resource))['interfaces'] except TypeError: sta_json = None print("sta_json set to None") # get and remove current stations if sta_json is not None: # print(sta_json) print("Removing old stations ") for name in list(sta_json): for alias in list(name): # print("alias {alias}".format(alias=alias)) if 'sta' in alias: info = self.name_to_eid(alias) req_url = "cli-json/rm_vlan" data = { "shelf": info[0], "resource": info[1], "port": info[2] } # print(data) super().json_post(req_url, data) time.sleep(.5) if 'wlan' in alias: info = self.name_to_eid(alias) req_url = "cli-json/rm_vlan" data = { "shelf": info[0], "resource": info[1], "port": info[2] } # print(data) super().json_post(req_url, data) time.sleep(.5) if 'moni' in alias: info = self.name_to_eid(alias) req_url = "cli-json/rm_vlan" data = { "shelf": info[0], "resource": info[1], "port": info[2] } # print(data) super().json_post(req_url, data) time.sleep(.5) if 'Unknown' in alias: info = self.name_to_eid(alias) req_url = "cli-json/rm_vlan" data = { "shelf": info[0], "resource": info[1], "port": info[2] } # print(data) super().json_post(req_url, data) time.sleep(.5) time.sleep(1) else: print("No stations found to cleanup") still_looking_sta = False print("clean_sta still_looking_sta {sta_looking}".format(sta_looking=still_looking_sta)) if not still_looking_sta: self.sta_done = True return still_looking_sta def bridge_clean(self): still_looking_br = True iterations_br = 0 while still_looking_br and iterations_br <= 10: iterations_br += 1 print("bridge_clean: iterations_br: {iterations_br}".format(iterations_br=iterations_br)) try: br_json = super().json_get( "port/1/1/list?field=alias")['interfaces'] except TypeError: br_json = None # get and remove current stations if br_json is not None: # print(br_json) print("Removing old bridges ") for name in list(br_json): for alias in list(name): if 'br' in alias: print(alias) info = self.name_to_eid(alias) req_url = "cli-json/rm_vlan" data = { "shelf": info[0], "resource": info[1], "port": info[2] } # print(data) super().json_post(req_url, data) time.sleep(.5) time.sleep(1) else: print("No bridges found to cleanup") still_looking_br = False print("clean_bridge still_looking_br {br_looking}".format(br_looking=still_looking_br)) if not still_looking_br: self.br_done = True return still_looking_br # Some test have various station names or a station named 1.1.eth2 def misc_clean(self): still_looking_misc = True iterations_misc = 0 while still_looking_misc and iterations_misc <= 10: iterations_misc += 1 print("misc_clean: iterations_misc: {iterations_misc}".format(iterations_misc=iterations_misc)) try: misc_json = super().json_get( "port/1/1/list?field=alias")['interfaces'] except TypeError: misc_json = None # get and remove current stations if misc_json is not None: print(misc_json) print("Removing misc station names phy, 1.1.eth (malformed station name) ") for name in list(misc_json): for alias in list(name): if 'phy' in alias and 'wiphy' not in alias: print(alias) info = self.name_to_eid(alias) req_url = "cli-json/rm_vlan" data = { "shelf": info[0], "resource": info[1], "port": info[2] } # print(data) super().json_post(req_url, data) time.sleep(.5) if '1.1.1.1.eth' in alias: print('alias 1.1.1.1.eth {alias}'.format(alias=alias)) # need to hand construct for delete. info = alias.split('.') print('info {info}'.format(info=info)) req_url = "cli-json/rm_vlan" info_2 = "{info2}.{info3}.{info4}".format(info2=info[2], info3=info[3], info4=info[4]) data = { "shelf": info[0], "resource": info[1], "port": info_2 } print(data) super().json_post(req_url, data) time.sleep(.5) time.sleep(1) else: print("No misc found to cleanup") still_looking_misc = False print("clean_misc still_looking_misc {misc_looking}".format(misc_looking=still_looking_misc)) if not still_looking_misc: self.misc_done = True return still_looking_misc ''' 1: delete cx 2: delete endp 3: delete sta when deleting sta first, you will end up with phantom CX ''' def cleanup(self): if self.clean_cxs: # also clean the endp when cleaning cxs still_looking_cxs = self.cxs_clean() still_looking_endp = self.endp_clean() print("clean_cxs: still_looking_cxs {looking_cxs} still_looking_endp {looking_endp}".format( looking_cxs=still_looking_cxs, looking_endp=still_looking_endp)) if self.clean_endp and not self.clean_cxs: still_looking_endp = self.endp_clean() print("clean_endp: still_looking_endp {looking_endp}".format(looking_endp=still_looking_endp)) if self.clean_sta: still_looking_sta = self.sta_clean() print("clean_sta: still_looking_sta {looking_sta}".format(looking_sta=still_looking_sta)) if self.clean_br: still_looking_br = self.bridge_clean() print("clean_br: still_looking_br {looking_br}".format(looking_br=still_looking_br)) if self.clean_misc: still_looking_misc = self.misc_clean() print("clean_misc: still_looking_misc {looking_misc}".format(looking_misc=still_looking_misc)) def main(): parser = argparse.ArgumentParser( prog='lf_cleanup.py', formatter_class=argparse.RawTextHelpFormatter, epilog='''\ Clean up cxs and endpoints ''', description='''\ lf_cleanup.py: -------------------- Generic command layout: python3 ./lf_clean.py --mgr MGR default port is 8080 clean up stations, cxs and enspoints. NOTE: will only cleanup what is present in the GUI So will need to iterate multiple times with script ''') parser.add_argument( '--mgr', '--lfmgr', help='--mgr <hostname for where LANforge GUI is running>', default='localhost') parser.add_argument( '--resource', '--res', help='--resource <realm resource>', default='1') parser.add_argument( '--cxs', help="--cxs, this will clear all the endps and cxs", action='store_true') parser.add_argument( '--endp', help="--endp, this will clear all the endps", action='store_true') parser.add_argument( '--sta', help="--sta, this will clear all the stations", action='store_true') parser.add_argument( '--br', help="--br, this will clear all the bridges", action='store_true') parser.add_argument( '--misc', help="--misc, this will clear sta with names phy (not wiphy) and 1.1.eth stations", action='store_true') args = parser.parse_args() if args.cxs or args.endp or args.sta or args.br or args.misc: clean = lf_clean(host=args.mgr, resource=int(args.resource), clean_cxs=args.cxs, clean_endp=args.endp, clean_sta=args.sta) print("cleaning cxs: {cxs} endpoints: {endp} stations: {sta} start".format(cxs=args.cxs, endp=args.endp, sta=args.sta)) if args.cxs: print("cleaning cxs will also clean endp") clean.cxs_clean() clean.endp_clean() if args.endp and not args.cxs: clean.endp_clean() if args.sta: clean.sta_clean() if args.br: clean.bridge_clean() if args.misc: clean.misc_clean() print("Clean done") # print("Clean cxs_done {cxs_done} endp_done {endp_done} sta_done {sta_done}" # .format(cxs_done=clean.cxs_done,endp_done=clean.endp_done,sta_done=clean.sta_done)) else: print("please add option of --cxs ,--endp, --sta , --br, --misc to clean") if __name__ == "__main__": main()
# Copyright 2020 Dylan Baker # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Implementation of an immutable Mapping.""" from __future__ import annotations try: from typing import Protocol except ImportError: from typing_extensions import Protocol # type: ignore import typing __all__ = [ 'ConstMapping', 'ConstDict', ] KT = typing.TypeVar('KT') VT = typing.TypeVar('VT') class ConstMapping(Protocol[KT, VT]): """A Protocol for an immutable Mapping. Provides no methods for mutating the mapping, although the fact is that is a mapping and can be mutated, even if mypy says that's an error. This is different than the Mapping in typing in that it's a Protocol, so any object that implements this Protocol will work correctly. """ def __contains__(self, key: KT) -> bool: ... def __eq__(self, other: object) -> bool: ... def __ne__(self, other: object) -> bool: ... def __iter__(self) -> typing.Iterator[KT]: ... def __len__(self) -> int: ... def __reversed__(self) -> typing.Iterable[KT]: ... # TODO: do we need a MutableMappingProtocol? def copy(self) -> typing.MutableMapping[KT, VT]: ... def get(self, key: KT, default: typing.Optional[VT]) -> typing.Optional[VT]: ... def items(self) -> typing.ItemsView[KT, VT]: ... def keys(self) -> typing.KeysView[KT]: ... def values(self) -> typing.ValuesView[VT]: ... class ConstDict(Protocol[KT, VT]): """A Protocol for an immutable Mapping. Provides no methods for mutating the mapping, although the fact is that is a mapping and can be mutated, even if mypy says that's an error. This is different than the Mapping in typing in that it's a Protocol, so any object that implements this Protocol will work correctly. """ def __contains__(self, key: KT) -> bool: ... def __eq__(self, other: object) -> bool: ... def __ne__(self, other: object) -> bool: ... def __iter__(self) -> typing.Iterator[KT]: ... def __len__(self) -> int: ... def __reversed__(self) -> typing.Iterable[KT]: ... def copy(self) -> typing.Dict[KT, VT]: ... def get(self, key: KT, default: typing.Optional[VT]) -> typing.Optional[VT]: ... def items(self) -> typing.ItemsView[KT, VT]: ... def keys(self) -> typing.KeysView[KT]: ... def values(self) -> typing.ValuesView[VT]: ...
"""Main library entrypoint.""" import copy import json import io import os import sys import random import numpy as np import tensorflow as tf from tensorflow.python.estimator.util import fn_args from google.protobuf import text_format from opennmt.utils import hooks, checkpoint, misc from opennmt.utils.evaluator import external_evaluation_fn from opennmt.utils.misc import format_translation_output, OrderRestorer # These options require a value but we can fallback to a default one. _CONFIG_FALLBACK = { "params": {}, "train": { "batch_type": "examples", "bucket_width": 1, "sample_buffer_size": 500000, }, "eval": { "batch_size": 32, "eval_delay": 18000, "exporters": "last" }, "infer": { "bucket_width": None, "batch_size": 16 }, "score": { "batch_size": 64 } } class Runner(object): """Class for managing training, inference, and export. It is mostly a wrapper around ``tf.estimator.Estimator``. """ def __init__(self, model, config, seed=None, num_devices=1, gpu_allow_growth=False, session_config=None, auto_config=False): """Initializes the runner parameters. Args: model: A :class:`opennmt.models.model.Model` instance to run. config: The run configuration. seed: The random seed to set. num_devices: The number of devices (GPUs) to use for training. gpu_allow_growth: Allow GPU memory to grow dynamically. session_config: ``tf.ConfigProto`` overrides. auto_config: If ``True``, use automatic configuration values defined by :obj:`model`. Raises: NotImplementedError: If :obj:`auto_config` is ``True`` but :obj:`model` does not define any automatic configuration values. """ self._model = model self._num_devices = num_devices # Configuration priority: user config > auto config > default config. self._config = copy.deepcopy(_CONFIG_FALLBACK) if auto_config: model_config = self._model.auto_config(num_devices=num_devices) if not model_config: raise NotImplementedError("This model does not define any automatic configuration values") misc.merge_dict(self._config, model_config) misc.merge_dict(self._config, config) tf.logging.info( "Using parameters: %s", json.dumps(self._config, indent=2, sort_keys=True)) session_config_base = tf.ConfigProto( allow_soft_placement=True, log_device_placement=False, gpu_options=tf.GPUOptions( allow_growth=gpu_allow_growth)) # Disable layout optimizer for better conv1d performance, see: # https://github.com/tensorflow/tensorflow/issues/20309 # This field does not exist in TensorFlow 1.4, so guard against the # exception. try: rewrite_options = text_format.Parse(""" graph_options { rewrite_options { layout_optimizer: OFF } } """, tf.ConfigProto()) session_config_base.MergeFrom(rewrite_options) except text_format.ParseError: pass if session_config is not None: session_config_base.MergeFrom(session_config) session_config = session_config_base run_config = tf.estimator.RunConfig( model_dir=self._config["model_dir"], session_config=session_config, tf_random_seed=seed) # Create a first session to enforce GPU options. # See https://github.com/OpenNMT/OpenNMT-tf/issues/80. _ = tf.Session(config=session_config) np.random.seed(seed) random.seed(seed) if "train" in self._config: if "save_summary_steps" in self._config["train"]: run_config = run_config.replace( save_summary_steps=self._config["train"]["save_summary_steps"], log_step_count_steps=self._config["train"]["save_summary_steps"]) if "save_checkpoints_steps" in self._config["train"]: run_config = run_config.replace( save_checkpoints_secs=None, save_checkpoints_steps=self._config["train"]["save_checkpoints_steps"]) if "keep_checkpoint_max" in self._config["train"]: run_config = run_config.replace( keep_checkpoint_max=self._config["train"]["keep_checkpoint_max"]) self._estimator = tf.estimator.Estimator( self._model.model_fn( num_devices=self._num_devices, eval_prediction_hooks_fn=self._make_eval_prediction_hooks_fn()), config=run_config, params=self._config["params"]) def _make_eval_prediction_hooks_fn(self): if "eval" not in self._config: self._config["eval"] = {} if (not self._config["eval"].get("save_eval_predictions", False) and self._config["eval"].get("external_evaluators") is None): return None save_path = os.path.join(self._config["model_dir"], "eval") if not tf.gfile.Exists(save_path): tf.gfile.MakeDirs(save_path) return lambda predictions: [ hooks.SaveEvaluationPredictionHook( self._model, os.path.join(save_path, "predictions.txt"), post_evaluation_fn=external_evaluation_fn( self._config["eval"].get("external_evaluators"), self._config["data"]["eval_labels_file"], output_dir=save_path), predictions=predictions)] def _build_train_spec(self, checkpoint_path): train_hooks = [ hooks.LogParametersCountHook()] if checkpoint_path is not None: train_hooks.append(hooks.LoadWeightsFromCheckpointHook(checkpoint_path)) train_spec = tf.estimator.TrainSpec( input_fn=self._model.input_fn( tf.estimator.ModeKeys.TRAIN, self._config["train"]["batch_size"], self._config["data"], self._config["data"]["train_features_file"], labels_file=self._config["data"]["train_labels_file"], batch_type=self._config["train"]["batch_type"], batch_multiplier=self._num_devices, bucket_width=self._config["train"]["bucket_width"], single_pass=self._config["train"].get("single_pass", False), num_threads=self._config["train"].get("num_threads"), sample_buffer_size=self._config["train"]["sample_buffer_size"], prefetch_buffer_size=self._config["train"].get("prefetch_buffer_size"), maximum_features_length=self._config["train"].get("maximum_features_length"), maximum_labels_length=self._config["train"].get("maximum_labels_length")), max_steps=self._config["train"].get("train_steps"), hooks=train_hooks) return train_spec def _build_eval_spec(self): if "eval" not in self._config: self._config["eval"] = {} eval_spec = tf.estimator.EvalSpec( input_fn=self._model.input_fn( tf.estimator.ModeKeys.EVAL, self._config["eval"]["batch_size"], self._config["data"], self._config["data"]["eval_features_file"], num_threads=self._config["eval"].get("num_threads"), prefetch_buffer_size=self._config["eval"].get("prefetch_buffer_size"), labels_file=self._config["data"]["eval_labels_file"]), steps=None, exporters=_make_exporters( self._config["eval"]["exporters"], self._model.serving_input_fn(self._config["data"]), assets_extra=self._get_model_assets()), throttle_secs=self._config["eval"]["eval_delay"]) return eval_spec def _get_model_assets(self): generated_assets_path = os.path.join(self._estimator.model_dir, "assets") if not tf.gfile.Exists(generated_assets_path): tf.gfile.MakeDirs(generated_assets_path) return self._model.get_assets(self._config["data"], asset_dir=generated_assets_path) def train_and_evaluate(self, checkpoint_path=None): """Runs the training and evaluation loop. Args: checkpoint_path: The checkpoint path to load the model weights from it. """ if checkpoint_path is not None and tf.gfile.IsDirectory(checkpoint_path): checkpoint_path = tf.train.latest_checkpoint(checkpoint_path) train_spec = self._build_train_spec(checkpoint_path) eval_spec = self._build_eval_spec() tf.estimator.train_and_evaluate(self._estimator, train_spec, eval_spec) self._maybe_average_checkpoints() def train(self, checkpoint_path=None): """Runs the training loop. Args: checkpoint_path: The checkpoint path to load the model weights from it. """ if checkpoint_path is not None and tf.gfile.IsDirectory(checkpoint_path): checkpoint_path = tf.train.latest_checkpoint(checkpoint_path) train_spec = self._build_train_spec(checkpoint_path) self._estimator.train( train_spec.input_fn, hooks=train_spec.hooks, max_steps=train_spec.max_steps) self._maybe_average_checkpoints() def evaluate(self, checkpoint_path=None): """Runs evaluation.""" if checkpoint_path is not None and tf.gfile.IsDirectory(checkpoint_path): checkpoint_path = tf.train.latest_checkpoint(checkpoint_path) eval_spec = self._build_eval_spec() self._estimator.evaluate( eval_spec.input_fn, hooks=eval_spec.hooks, checkpoint_path=checkpoint_path) def _maybe_average_checkpoints(self, avg_subdirectory="avg"): """Averages checkpoints if enabled in the training configuration and if the current training instance is the chief. Args: avg_subdirectory: The directory within the model directory that will contain the averaged checkpoint. Returns: The path to the directory containing the averaged checkpoint or ``None`` if no checkpoints were averaged. """ average_last_checkpoints = self._config["train"].get("average_last_checkpoints", 0) if average_last_checkpoints > 0 and self._estimator.config.is_chief: return self.average_checkpoints( os.path.join(self._estimator.model_dir, avg_subdirectory), max_count=average_last_checkpoints) return None def average_checkpoints(self, output_dir, max_count=8): """Averages checkpoints. Args: output_dir: The directory that will contain the averaged checkpoint. max_count: The maximum number of checkpoints to average. Returns: The path to the directory containing the averaged checkpoint. """ return checkpoint.average_checkpoints( self._estimator.model_dir, output_dir, max_count=max_count, session_config=self._estimator.config.session_config) def infer(self, features_file, predictions_file=None, checkpoint_path=None, log_time=False): """Runs inference. Args: features_file: The file(s) to infer from. predictions_file: If set, predictions are saved in this file. checkpoint_path: Path of a specific checkpoint to predict. If ``None``, the latest is used. log_time: If ``True``, several time metrics will be printed in the logs at the end of the inference loop. """ if "infer" not in self._config: self._config["infer"] = {} if checkpoint_path is not None and tf.gfile.IsDirectory(checkpoint_path): checkpoint_path = tf.train.latest_checkpoint(checkpoint_path) input_fn = self._model.input_fn( tf.estimator.ModeKeys.PREDICT, self._config["infer"]["batch_size"], self._config["data"], features_file, bucket_width=self._config["infer"]["bucket_width"], num_threads=self._config["infer"].get("num_threads"), prefetch_buffer_size=self._config["infer"].get("prefetch_buffer_size")) if predictions_file: stream = io.open(predictions_file, encoding="utf-8", mode="w") else: stream = sys.stdout infer_hooks = [] if log_time: infer_hooks.append(hooks.LogPredictionTimeHook()) ordered_writer = None write_fn = lambda prediction: ( self._model.print_prediction(prediction, params=self._config["infer"], stream=stream)) for prediction in self._estimator.predict( input_fn=input_fn, checkpoint_path=checkpoint_path, hooks=infer_hooks): # If the index is part of the prediction, they may be out of order. if "index" in prediction: if ordered_writer is None: ordered_writer = OrderRestorer( index_fn=lambda prediction: prediction["index"], callback_fn=write_fn) ordered_writer.push(prediction) else: write_fn(prediction) if predictions_file: stream.close() def export(self, checkpoint_path=None, export_dir_base=None): """Exports a model. Args: checkpoint_path: The checkpoint path to export. If ``None``, the latest is used. export_dir_base: The base directory in which a timestamped subdirectory containing the exported model will be created. Defaults to ``$MODEL_DIR/export/manual``. Returns: The string path to the exported directory. """ if checkpoint_path is not None and tf.gfile.IsDirectory(checkpoint_path): checkpoint_path = tf.train.latest_checkpoint(checkpoint_path) if export_dir_base is None: export_dir_base = os.path.join(self._estimator.model_dir, "export", "manual") kwargs = {} if hasattr(self._estimator, "export_saved_model"): export_fn = self._estimator.export_saved_model else: export_fn = self._estimator.export_savedmodel if "strip_default_attrs" in fn_args(self._estimator.export_savedmodel): # Set strip_default_attrs to True for TensorFlow 1.6+ to stay consistent # with the behavior of tf.estimator.Exporter. kwargs["strip_default_attrs"] = True return export_fn( export_dir_base, self._model.serving_input_fn(self._config["data"]), assets_extra=self._get_model_assets(), checkpoint_path=checkpoint_path, **kwargs) def score(self, features_file, predictions_file, checkpoint_path=None): """Scores existing predictions. Args: features_file: The input file. predictions_file: The predictions file to score. checkpoint_path: Path of a specific checkpoint to use. If ``None``, the latest is used. Raises: ValueError: if no checkpoint are found or if the model is not a sequence to sequence model. """ if not hasattr(self._model, "target_inputter"): raise ValueError("scoring only works for sequence to sequence models") if checkpoint_path is None: checkpoint_path = tf.train.latest_checkpoint(self._estimator.model_dir) elif tf.gfile.IsDirectory(checkpoint_path): checkpoint_path = tf.train.latest_checkpoint(checkpoint_path) if checkpoint_path is None: raise ValueError("could not find a trained model in %s" % self._estimator.model_dir) if "score" not in self._config: self._config["score"] = {} input_fn = self._model.input_fn( tf.estimator.ModeKeys.EVAL, self._config["score"]["batch_size"], self._config["data"], features_file, labels_file=predictions_file, num_threads=self._config["score"].get("num_threads"), prefetch_buffer_size=self._config["score"].get("prefetch_buffer_size")) with tf.Graph().as_default() as g: tf.train.create_global_step(g) features, labels = input_fn() labels["alignment"] = None # Add alignment key to force the model to return attention. with tf.variable_scope(self._model.name): outputs, _ = self._model( features, labels, self._estimator.params, tf.estimator.ModeKeys.EVAL) cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits( logits=outputs["logits"], labels=labels["ids_out"]) weights = tf.sequence_mask(labels["length"], dtype=cross_entropy.dtype) masked_cross_entropy = cross_entropy * weights scores = tf.reduce_sum(masked_cross_entropy, axis=1) results = { "attention": outputs["attention"], "cross_entropy": cross_entropy, "score": scores, "tokens": labels["tokens"], "length": labels["length"] - 1 # For -1, see sequence_to_sequence.shift_target_sequence. } with tf.train.MonitoredSession( session_creator=tf.train.ChiefSessionCreator( checkpoint_filename_with_path=checkpoint_path, config=self._estimator.config.session_config)) as sess: while not sess.should_stop(): for batch in misc.extract_batches(sess.run(results)): tokens = batch["tokens"][:batch["length"]] sentence = self._model.target_inputter.tokenizer.detokenize(tokens) token_level_scores = None if self._config["score"].get("with_token_level"): token_level_scores = batch["cross_entropy"][:batch["length"]] alignment_type = self._config["score"].get("with_alignments") sentence = format_translation_output( sentence, score=batch["score"], token_level_scores=token_level_scores, attention=batch["attention"][:batch["length"]], alignment_type=alignment_type) misc.print_bytes(tf.compat.as_bytes(sentence)) def _make_exporters(exporters_type, serving_input_fn, assets_extra=None): if exporters_type is None: return None if not isinstance(exporters_type, list): exporters_type = [exporters_type] exporters = [] for exporter_type in exporters_type: exporter_type = exporter_type.lower() if exporter_type == "last": exporters.append(tf.estimator.LatestExporter( "latest", serving_input_fn, assets_extra=assets_extra)) elif exporter_type == "final": exporters.append(tf.estimator.FinalExporter( "final", serving_input_fn, assets_extra=assets_extra)) elif exporter_type == "best": if not hasattr(tf.estimator, "BestExporter"): raise ValueError("BestExporter is only available starting from TensorFlow 1.9") exporters.append(tf.estimator.BestExporter( name="best", serving_input_receiver_fn=serving_input_fn, assets_extra=assets_extra)) else: raise ValueError("invalid exporter type: %s" % exporter_type) if len(exporters) == 1: return exporters[0] return exporters
from setuptools import setup, find_packages from setuptools.extension import Extension try: from Cython.Distutils import build_ext USE_CYTHON = True except ImportError: USE_CYTHON = False import os packages = ['lely_io'] package_data = {} package_dir = {} for pkg in packages: package_data[pkg] = ['*.pxd'] package_dir[pkg] = os.path.join(*pkg.split('.')) ext = '.pyx' if USE_CYTHON else '.c' ext_modules = [] for pkg in packages: ext_modules.append(Extension( pkg + '.*', [os.path.join(*[os.path.dirname(__file__), package_dir[pkg], '*' + ext])], language='c', libraries=['lely-io'] )) if USE_CYTHON: from Cython.Build import cythonize ext_modules = cythonize(ext_modules, include_path=['../can']) setup( name='lely_io', version='3.0.2', description='Python bindings for the Lely I/O library.', url='https://gitlab.com/lely_industries/lely-core', author='J. S. Seldenthuis', author_email='jseldenthuis@lely.com', license='Apache-2.0', packages=find_packages(), package_data=package_data, package_dir=package_dir, ext_modules=ext_modules )
''' Notes: https://stackoverflow.com/questions/12193013/flask-python-trying-to-return-list-or-dict-to-ajax-call ''' from flask import Flask, render_template from flask import jsonify import os from flask import request import time app = Flask(__name__) #app.register_blueprint() import base64 import sys import codecs import MySQLdb def get_db(): db = MySQLdb.connect(host="localhost", # your host, usually localhost user="test", # your username passwd="test", # your password db="test") # name of the data base return db def get_db_cursor(): db = MySQLdb.connect(host="localhost", # your host, usually localhost user="test", # your username passwd="test", # your password db="test") # name of the data base # you must create a Cursor object. It will let # you execute all the queries you need return db.cursor() ''' Add Github ''' def add_github(db, github_link, admin_notes=None): # you must create a Cursor object. It will let # you execute all the queries you need cur = db.cursor() time_now = time.strftime('%Y-%m-%d %H:%M:%S') # sql = "INSERT INTO TP_GITHUB_ANALYZER (GITHUB_LINK, ADMIN_NOTES, ADDED_DATE) VALUES (%s, %s, %s)" values = (github_link, admin_notes, time_now) # Use all the SQL you like cur.execute(sql, values) db.commit() print('Done : '+str(cur.rowcount)+" inserted") ''' Read Github ''' def read_github(db): cur = db.cursor() # Use all the SQL you like cur.execute("SELECT * FROM TP_GITHUB_ANALYZER") # print all the first cell of all the rows counter = 0; github_list = [] for row in cur.fetchall(): try: counter = counter + 1 github_dict = {} github_dict['gid'] = str(row[0]) github_dict['github_link'] = str(row[1]) github_dict['added_date'] = str(row[2]) github_dict['updated_date'] = str(row[3]) github_dict['admin_notes'] = str(row[4]) github_list.append(github_dict) print(github_dict) except ValueError as error: print('Error', format(error)) return github_list @app.route("/") def hello(): return render_template('index.html') ''' Get Cities possible urls: http://localhost:5000/get/cities ''' @app.route("/get/cities") def get_cities(): db = get_db() c_list = read_city(db) return jsonify(c_list) #return "Hello World 2" ''' Add Github possible urls: http://localhost:5000/add/github ''' @app.route("/add/github") def add_github_rest(): db = get_db() g_link = request.form.get('link') add_github(db, g_link, None) return "added" ''' Add Github View possible urls: http://localhost:5000/add/github/view ''' @app.route("/add/github/view", methods=['POST']) def add_github_view(): db = get_db() g_link = request.form.get('link') add_github(db, g_link, None) result = { 'apiresult' : 0, 'apimessage': 'ok' } return render_template('add-result.html', result=result) ''' Get Github links possible urls: http://localhost:5000/get/github/links ''' @app.route("/get/github/links") def get_github_links(): db = get_db() github_list = read_github(db) return jsonify(github_list) ''' Get Github links view possible urls: http://localhost:5000/get/github/links/view ''' @app.route("/get/github/links/view") def get_github_links_view(): db = get_db() github_list = read_github(db) g_list_json = (github_list) result = { 'apiresult' : 0, 'apimessage': 'ok', 'apivalue' : g_list_json } return render_template('view-links.html', result=result) if __name__ == "__main__": app.config['city'] = 'Toronto' host = os.environ.get('IP', '127.0.0.1') port = int(os.environ.get('PORT', 5000)) app.run(host= host, port = port, use_reloader = False)
def default_config_path(agent_name, env_name): return 'configs/{}_{}.json'.format(agent_name, env_name) def default_save_folder(agent_name, env_name): return '{}_{}_save_point'.format(agent_name, env_name) __all__ = ['default_config_path', 'default_save_folder']
#!/usr/bin/env python # -*- encoding: utf-8 -*- import os from functools import partial from pathlib import Path import pytest import torch.cuda import torch.distributed as dist import torch.multiprocessing as mp from torch.utils.data import DataLoader import colossalai from colossalai.builder import build_dataset, build_data_sampler from colossalai.context.parallel_mode import ParallelMode from colossalai.core import global_context as gpc CONFIG = dict( train_data=dict( dataset=dict( type='CIFAR10Dataset', root=Path(os.environ['DATA']), train=True, download=True, transform_pipeline=[ dict(type='ToTensor'), dict(type='Normalize', mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)) ] ), dataloader=dict( num_workers=2, batch_size=8, sampler=dict( type='DataParallelSampler', ) ) ), parallel=dict( pipeline=dict(size=1), tensor=dict(size=1, mode=None), ), seed=1024, ) def run_data_sampler(local_rank, world_size): dist_args = dict( config=CONFIG, local_rank=local_rank, world_size=world_size, backend='gloo', port='29503', host='localhost' ) colossalai.init_dist(**dist_args) print('finished initialization') dataset = build_dataset(gpc.config.train_data.dataset) sampler_cfg = gpc.config.train_data.dataloader.pop('sampler') sampler = build_data_sampler(sampler_cfg, dataset) dataloader = DataLoader(dataset=dataset, sampler=sampler, **gpc.config.train_data.dataloader) data_iter = iter(dataloader) img, label = data_iter.next() img = img[0] if gpc.get_local_rank(ParallelMode.DATA) != 0: img_to_compare = img.clone() else: img_to_compare = img dist.broadcast(img_to_compare, src=0, group=gpc.get_group(ParallelMode.DATA)) if gpc.get_local_rank(ParallelMode.DATA) != 0: assert not torch.equal(img, img_to_compare), 'Same image was distributed across ranks but expected it to be different' @pytest.mark.cpu def test_data_sampler(): world_size = 4 test_func = partial(run_data_sampler, world_size=world_size) mp.spawn(test_func, nprocs=world_size) if __name__ == '__main__': test_data_sampler()
from __future__ import absolute_import, division, print_function, unicode_literals import torch from tests import utils class SimpleAbsModule(torch.nn.Module): def __init__(self): super(SimpleAbsModule, self).__init__() def forward(self, a): return torch.abs(a + a) class TestAbs(utils.TorchGlowTestCase): def test_abs_basic(self): """Basic test of the PyTorch Abs Node on Glow.""" x = torch.randn(10) utils.compare_tracing_methods( SimpleAbsModule(), x, fusible_ops={"aten::abs"}, ) def test_abs_3d(self): """Test multidimensional tensor for the PyTorch Abs Node on Glow.""" x = torch.randn(2, 3, 5) utils.compare_tracing_methods( SimpleAbsModule(), x, fusible_ops={"aten::abs"}, )
# create a simple dictionary myDict = {"key1":1, "key2":2, "key3":3} print myDict print myDict["key1"] print " " # add a key:pair -- notice that the values can be any data type myDict["newkey"] = "new" print myDict # and so can the keys myDict[5] = 5 print myDict print " " # loop over the elements for k, v in myDict.iteritems(): print "key = %s, value = %s" % (`k`, `v`) print " " # just get the keys keys = myDict.keys() print keys print " " # check whether a key exists print "key1" in keys print "dummykey" not in keys