content
stringlengths
5
1.05M
#Pickling import pickle class Animal: def __init__(self, number_of_paws, color): self.number_of_paws = number_of_paws self.color = color class Sheep(Animal): def __init__(self, color): Animal.__init__(self, 4, color) mary = Sheep("white") print(str.format("My sheep mary is {0} and has {1} paws", mary.color, mary.number_of_paws)) my_pickled_mary = pickle.dumps(mary) print("Would you like to see her pickled? Here she is!") print(my_pickled_mary)
import math import urllib.request import os import glob import subprocess import shutil from tile_convert import bbox_to_xyz, tile_edges from osgeo import gdal from argparse import ArgumentParser from PIL import Image #---------- CONFIGURATION -----------# tile_server = "https://tiles-preview.firststreet.org/historic/3/{z}/{x}/{y}.png?access_token=pk.eyJ1IjoiZG9jazQyNDIiLCJhIjoiY2pjazE5eTM2NDl2aDJ3cDUyeDlsb292NiJ9.Jr__XbmAolbLyzPDj7-8kQ" #tile_server = "https://tiles-preview.firststreet.org/probability/depth/2050/100/{z}/{x}/{y}.png?access_token=pk.eyJ1IjoiZG9jazQyNDIiLCJhIjoiY2pjazE5eTM2NDl2aDJ3cDUyeDlsb292NiJ9.Jr__XbmAolbLyzPDj7-8kQ" parser = ArgumentParser() parser.add_argument("--latMin", nargs='?', default="check_string_for_empty") parser.add_argument("--latMax", nargs='?', default="check_string_for_empty") parser.add_argument("--lonMin", nargs='?', default="check_string_for_empty") parser.add_argument("--lonMax", nargs='?', default="check_string_for_empty") args = parser.parse_args() #python tiles_to_tiff.py --lonMin -82.612512 --lonMax -82.582203 --latMin 41.272755 --latMax 41.303938 temp_dir = 'temp' output_dir = 'output' zoom = 12 lon_min = float(args.lonMin) lon_max = float(args.lonMax) lat_min = float(args.latMin) lat_max = float(args.latMax) #-----------------------------------# shutil.rmtree(temp_dir) os.makedirs(temp_dir) def download_tile(x, y, z, tile_server): url = tile_server.replace( "{x}", str(x)).replace( "{y}", str(y)).replace( "{z}", str(z)) path = "temp/"+str(x)+"_"+str(y)+"_"+str(z)+".png" print(path, url) # path = '{temp_dir}/{x}_{y}_{z}.png' #path = f'{temp_dir}/{x}_{y}_{z}.png' urllib.request.urlretrieve(url, path) return(path) def merge_tiles(input_pattern, output_path): print(input_pattern,output_path) merge_command = ['gdal_merge.py', '-o', output_path] for name in glob.glob(input_pattern): merge_command.append(name) subprocess.call(merge_command) def georeference_raster_tile(x, y, z, path): bounds = tile_edges(x, y, z) filename, extension = os.path.splitext(path) gdal.Translate(filename + '.tif', path, outputSRS='EPSG:4326', outputBounds=bounds) # x_min, x_max, y_min, y_max = bbox_to_xyz( lon_min, lon_max, lat_min, lat_max, zoom) for x in range(x_min, x_max + 1): for y in range(y_min, y_max + 1): png_path = download_tile(x, y, zoom, tile_server) img = Image.open(png_path) if img.getbbox(): georeference_raster_tile(x, y, zoom, png_path) # print("Download complete") # print("Merging tiles") merge_tiles('temp/*.tif', output_dir + '/merged_3.tif') print("Merge complete") shutil.rmtree(temp_dir) os.makedirs(temp_dir)
# -*- coding: utf-8 -*- """ Created on Sat Jun 27 07:44:34 2020 @author: danie """ from itertools import combinations_with_replacement x = input().split() string = sorted(x[0]) size = int(x[1]) items = list(combinations_with_replacement(string,size)) for item in items: print(''.join(item))
from .pdf_element import PdfElement from ..exc import PdfError class PdfCatalog(PdfElement): """PDF Root catalog element.""" def __init__(self, obj, obj_key=None, document=None): if obj['Type'] != 'Catalog': raise PdfError('Type "Catalog" expected, got "{}"'.format(obj['Type'])) if 'Pages' not in obj: raise PdfError('Catalog dictionaries must contain Pages') super(PdfCatalog, self).__init__(obj, obj_key, document)
#!/usr/bin/env python ''' Author: Rich Wellum (richwellum@gmail.com) Adapted and enhanced (fwiw) for use with NX-OS by Hank Preston (hapresto@cisco.com) This is a tool to take an NX-OS Base Virtual Box image from CCO and create a new box that has been bootstrapped for use with Vagrant. - Initial configuration complete - Mgmt Configured for DHCP - vagrant account created with password vagrant and pub SSH Key Tested with nxosv-final.7.0.3.I7.1.box nxosv-final.7.0.3.I6.1.box * Note: nxosv-final.7.0.3.I7.3.box (and later) boxes posted to CCO do not need this script to complete the setup for Vagrant. Pre-installed requirements: python-pexpect vagrant virtualbox Within OSX, these tools can be installed by homebrew (but not limited to): /usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)" brew cask install virtualbox brew cask install vagrant brew cask install python pip install pexpect Full Description: Takes an NX-OS Source Box downloaded locally and completes the setup and base configuration and outputs an updated VirtualBox Vagrant box. Adds an embedded Vagrantfile, that will be included in box/include/Vagrantfile. This Vagrantfile configures: . Guest forwarding ports for 22, 80, 443 and 830 . SSH username and password and SSH (insecure) pub key . Serial console port for configuration (disconnected by default) This embedded Vagrantfile is compatible with additional non-embedded Vagrantfiles for more advanced multi-node topologies. . Backs up existing box files. . Creates and registers a new VirtualBox VM. . Adds appropriate memory, display and CPUs. . Sets one NIC for networking. . Sets up port forwarding for the guest SSH, NETCONF and RESTCONF. . Sets up storage - hdd and dvd(for ISO). . Starts the VM, then uses pexpect to configure NX-OS for basic networking, with user name vagrant/vagrant and SSH key . Enables NX-API . Closes the VM down, once configured. The resultant box image, will come up fully networked and ready for use with NX-API. Other programmability features of NX-OS can be enabled manually or through provisioning with Ansible. NOTE: If more than one interface in the resulting Vagrant box is required then those additional interfaces need to be added in the actual Vagrantfile. ''' from __future__ import print_function import sys import os import time import subprocess import getpass import argparse import re import logging from logging import StreamHandler import textwrap try: import pexpect except ImportError: sys.exit('The "pexpect" Python module is not installed. Please install it using pip or OS packaging.') # The background is set with 40 plus the number of the color, # and the foreground with 30. BLACK, RED, GREEN, YELLOW, BLUE, MAGENTA, CYAN, WHITE = range(8) # Telnet ports used to access IOS XE via socat CONSOLE_PORT = 65000 CONSOLE_SOCKET = "/tmp/test" logger = logging.getLogger(__name__) class ColorHandler(StreamHandler): """ Add colors to logging output partial credits to http://opensourcehacker.com/2013/03/14/ultima-python-logger-somewhere-over-the-rainbow/ """ def __init__(self, colored): super(ColorHandler, self).__init__() self.colored = colored COLORS = { 'WARNING': YELLOW, 'INFO': WHITE, 'DEBUG': BLUE, 'CRITICAL': YELLOW, 'ERROR': RED } RESET_SEQ = "\033[0m" COLOR_SEQ = "\033[1;%dm" BOLD_SEQ = "\033[1m" level_map = { logging.DEBUG: (None, CYAN, False), logging.INFO: (None, WHITE, False), logging.WARNING: (None, YELLOW, True), logging.ERROR: (None, RED, True), logging.CRITICAL: (RED, WHITE, True), } def addColor(self, text, bg, fg, bold): ctext = '' if bg is not None: ctext = self.COLOR_SEQ % (40 + bg) if bold: ctext = ctext + self.BOLD_SEQ ctext = ctext + self.COLOR_SEQ % (30 + fg) + text + self.RESET_SEQ return ctext def colorize(self, record): if record.levelno in self.level_map: bg, fg, bold = self.level_map[record.levelno] else: bg, fg, bold = None, WHITE, False # exception? if record.exc_info: formatter = logging.Formatter(format) record.exc_text = self.addColor( formatter.formatException(record.exc_info), bg, fg, bold) record.msg = self.addColor(str(record.msg), bg, fg, bold) return record def format(self, record): if self.colored: message = logging.StreamHandler.format(self, self.colorize(record)) else: message = logging.StreamHandler.format(self, record) return message def run(cmd, hide_error=False, cont_on_error=False): """ Run command to execute CLI and catch errors and display them whether in verbose mode or not. Allow the ability to hide errors and also to continue on errors. """ s_cmd = ' '.join(cmd) logger.info("'%s'", s_cmd) output = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE) tup_output = output.communicate() if output.returncode != 0: logger.error('Failed (%d):', output.returncode) else: logger.debug('Succeeded (%d):', output.returncode) logger.debug('Output [%s]' % tup_output[0]) if not hide_error and 0 != output.returncode: logger.error('Error [%s]' % tup_output[1]) if not cont_on_error: sys.exit('Quitting due to run command error') else: logger.debug( 'Continuing despite error cont_on_error=%d', cont_on_error) return tup_output[0] def pause_to_debug(): logger.critical("Pause before debug") logger.critical( "Use: 'socat unix-connect:/tmp/test stdin' to access the VM") raw_input("Press Enter to continue.") # To debug post box creation, add the following line to Vagrantfile # config.vm.provider "virtualbox" do |v| # v.customize ["modifyvm", :id, "--uart1", "0x3F8", 4, "--uartmode1", 'tcpserver', 65000] # end def cleanup_box(): """ Destroy Running Box. """ logger.debug("Destroying Box") run(["vagrant", "destroy", "-f"], cont_on_error=True) def configure_nx(verbose=False, wait=True): """ Bring up NX-OS and do some initial config. Using socat to do the connection as telnet has an odd double return on vbox """ logger.warn('Waiting for NX-OS to boot (may take 3 minutes or so)') localhost = 'localhost' PROMPT = r'[\w-]+(\([\w-]+\))?[#>]' # don't want to rely on specific hostname # PROMPT = r'(Router|csr1kv).*[#>]' CRLF = "\r\n" def send_line(line=CRLF): child.sendline(line) if line != CRLF: logger.info('NX-OS Config: %s' % line) child.expect(re.escape(line)) def send_cmd(cmd, expect_prompt=True): if not isinstance(cmd, list): cmd = list((cmd,)) for c in cmd: send_line(c) if expect_prompt: child.expect(PROMPT) try: #child = pexpect.spawn("socat TCP:%s:%s -,raw,echo=0,escape=0x1d" % (localhost, CONSOLE_PORT)) child = pexpect.spawn("socat unix-connect:%s stdin" % (CONSOLE_SOCKET)) if verbose: child.logfile = open("tmp.log", "w") # Long time for full configuration, waiting for ip address etc child.timeout = 600 # wait for indication that boot has gone through if (wait): child.expect(r'%POAP-2-POAP_DHCP_DISCOVER_START:', child.timeout) logger.warn( 'Logging into Vagrant Virtualbox and configuring NX-OS') # Abort POAP logger.warn("Aborting POAP") send_cmd("y", expect_prompt=False) time.sleep(1) # Disable Secure Password Enforcement logger.warn("Disable Secure Password") send_cmd("n", expect_prompt=False) time.sleep(1) # Set admin password logger.warn("Setting Admin Password") if (wait): child.expect(r'Enter the password for', child.timeout) send_cmd("admin", expect_prompt=False) time.sleep(2) if (wait): child.expect(r'Confirm the password', child.timeout) logger.warn("Confirming Admin Password") send_cmd("admin", expect_prompt=False) time.sleep(3) send_line() time.sleep(2) send_line() time.sleep(1) # wait for indication next step is ready if (wait): child.expect(r'Would you like to enter the basic configuration dialog', child.timeout) # Disable Basic System Configuration logger.warn("Disable Basic Sys Config") send_cmd("no", expect_prompt=False) # time.sleep(10) # wait for indication next step is ready if (wait): child.expect(r'User Access Verification', child.timeout) # Login as admin logger.warn("Logging in as admin") send_cmd("admin", expect_prompt=False) time.sleep(1) send_cmd("admin", expect_prompt=False) time.sleep(1) send_cmd("term width 300") # enable plus config mode logger.warn("Deploying Baseline configuration.") send_cmd("enable") send_cmd("conf t") # Perform basic Vagrant Configuration send_cmd("hostname n9kv1") send_cmd("interface mgmt 0") send_cmd("ip address dhcp ") send_cmd("no shut") send_cmd("exit") send_cmd("username vagrant password vagrant role network-admin") send_cmd("username vagrant sshkey ssh-rsa AAAAB3NzaC1yc2EAAAABIwAAAQEA6NF8iallvQVp22WDkTkyrtvp9eWW6A8YVr+kz4TjGYe7gHzIw+niNltGEFHzD8+v1I2YJ6oXevct1YeS0o9HZyN1Q9qgCgzUFtdOKLv6IedplqoPkcmF0aYet2PkEDo3MlTBckFXPITAMzF8dJSIFo9D8HfdOV0IAdx4O7PtixWKn5y2hMNG0zQPyUecp4pzC6kivAIhyfHilFR61RGL+GPXQ2MWZWFYbAGjyiYJnAmCP3NOTd0jMZEnDkbUvxhMmBYSdETk1rRgm+R4LOzFUGaHqHDLKLX+FIPKcF96hrucXzcWyLbIbEgE98OHlnVYCzRdK8jlqm8tehUc9c9WhQ== vagrant insecure public key") # Enable Features send_cmd("feature nxapi") # Enable Guest Shell - needed because running with 4G Ram and not auto-installed # Used to set boot variable correctly send_cmd("guestshell enable") time.sleep(1) # wait for indication that guestshell is ready if (wait): child.expect(r"%VMAN-2-ACTIVATION_STATE: Successfully activated virtual service 'guestshell", child.timeout) logger.info('Guest Shell Enabled') time.sleep(5) # Set Boot Variable logger.warn("Setting boot image") send_cmd("guestshell run ls /bootflash/nxos*") boot_image = child.before.split("/")[4].strip() send_cmd("boot nxos bootflash:/{}".format(boot_image)) # Disable Guest Shell to save resources in base box send_cmd("guestshell destroy", expect_prompt=False) time.sleep(1) send_cmd("y") time.sleep(1) # wait for indication that guestshell is destroyed if (wait): child.expect(r"%VMAN-2-INSTALL_STATE: Successfully destroyed virtual service 'guestshell", child.timeout) logger.info('Guest Shell Destroyed') # done and save logger.warn("Finishing Config and Saving to Startup-Config") send_cmd("end") send_cmd(["copy run start", CRLF]) # just to be sure logger.warn('Waiting 10 seconds...') time.sleep(10) except pexpect.TIMEOUT: raise pexpect.TIMEOUT('Timeout (%s) exceeded in read().' % str(child.timeout)) def create_Vagrantfile(boxname, vmmemory="4096"): """ Create a Basic Vagrantfile. """ template = """# -*- mode: ruby -*-\n# vi: set ft=ruby : Vagrant.configure("2") do |config| config.vm.box = "{boxname}" config.vm.synced_folder '.', '/vagrant', disabled: true config.ssh.insert_key = false config.vm.boot_timeout = 400 config.vm.guest = :other # turn off the check if the plugin is installed if Vagrant.has_plugin?("vagrant-vbguest") config.vbguest.auto_update = false end config.vm.provider "virtualbox" do |vb| vb.memory = "{vmmemory}" end end """ vagrantfile_contents = template.format(boxname=boxname, vmmemory=vmmemory) logger.info("Contents of Vagrantfile to be used") logger.info(vagrantfile_contents) logger.warn("Creating Vagrantfile") with open("Vagrantfile", "w") as f: f.write(vagrantfile_contents) def box_add(boxname, boxpath): """ Add Box to Vagrant Inventory. """ logger.debug("Adding box %s to Vagrant." % (boxname)) run(["vagrant", "box", "add", "-f", boxname, boxpath]) def box_remove(boxname): """ Remove Box from Vagrant Inventory. """ logger.debug("Removing box %s from Vagrant." % (boxname)) run(["vagrant", "box", "remove", "-f", boxname]) def vagrant_up(cont_on_error=False): """ Bring Up Vagrant """ logger.warn("Starting Vagrant Environment.") logger.warn(" Note: vagrant may generate an error, that is expected") logger.warn(" Note: this step may take 3-5 minutes to complete.") run(["vagrant", "up"], cont_on_error=cont_on_error) def main(argv): input_box = '' parser = argparse.ArgumentParser( formatter_class=argparse.RawDescriptionHelpFormatter, description=textwrap.dedent('''\ A tool to create an NX-OS Vagrant VirtualBox box from a base NX-OS Box. The Base Box will be installed, booted and configured. "vagrant ssh" provides access to the NX-oS management interface with internet access. It uses the insecure Vagrant SSH key. '''), epilog=textwrap.dedent('''\ E.g.: box build with local box: %(prog)s nxosv-final.7.0.3.I7.1.box ''')) parser.add_argument('BOX_FILE', help='local Base Box filename') # parser.add_argument('-o', '--create_ova', action='store_true', # help='additionally use VBoxManage to export an OVA') parser.add_argument('-d', '--debug', action='store_true', help='will pause with the VM in a running state. Use: socat unix-connect:/tmp/test stdin to access') parser.add_argument('-n', '--nocolor', action='store_true', help='don\'t use colors for logging') parser.add_argument('-v', '--verbose', action='store_const', const=logging.INFO, default=logging.WARN, help='turn on verbose messages') args = parser.parse_args() # setup logging root_logger = logging.getLogger() root_logger.setLevel(level=args.verbose) handler = ColorHandler(colored=(not args.nocolor)) formatter = logging.Formatter("==> %(message)s") handler.setFormatter(formatter) root_logger.addHandler(handler) logger = logging.getLogger("box-builder") # PRE-CHECK: is socat installed? logger.warn('Check whether "socat" is installed') try: run(['socat', '-V']) except OSError: sys.exit( 'The "socat" utility is not installed. Please install it prior to using this script.') # Get source Box name and determine key details for script input_box = args.BOX_FILE box_name = os.path.basename(input_box) vmname_base = os.path.basename(os.getcwd()) + "_default_" version = box_name[box_name.find(".")+1:len(box_name)-4] output_box = "nxos_{}".format(version) # if debug flag then set the logger to debug if args.debug: args.verbose = logging.DEBUG if not os.path.exists(input_box): sys.exit('%s does not exist' % input_box) # Set up paths base_dir = os.path.join(os.getcwd(), 'created_boxes') box_dir = os.path.join(base_dir, output_box) box_out = os.path.join(box_dir, output_box + '.box') pathname = os.path.abspath(os.path.dirname(sys.argv[0])) # vbox = os.path.join(box_dir, vmname + '.vbox') # vdi = os.path.join(box_dir, vmname + '.vdi') # ova_out = os.path.join(box_dir, vmname + '.ova') logger.debug('Input Box is %s', input_box) logger.debug('pathname: %s', pathname) logger.debug('VM Name Base: %s', vmname_base) logger.debug('base_dir: %s', base_dir) logger.debug('box_dir: %s', box_dir) logger.debug('Source Box Path: %s', box_name) logger.debug('Exported Box Path: %s', box_out) # logger.warn('vbox: %s', vbox) if not os.path.exists(base_dir): os.makedirs(base_dir) if not os.path.exists(box_dir): os.makedirs(box_dir) # Delete existing Box if os.path.exists(box_out): os.remove(box_out) logger.debug('Found and deleted previous %s', box_out) # Delete existing OVA # if os.path.exists(ova_out) and args.create_ova is True: # os.remove(ova_out) # logger.debug('Found and deleted previous %s', ova_out) # Destroy any existing vagrant environment cleanup_box() logger.warn(" Note: An error may occur if the Vagrant environment isn't initialized, not problem") # Create Vagrantfile create_Vagrantfile(box_name) # Add Box to Vagrant Inventory box_add(box_name, input_box) # Bring up Environment vagrant_up(cont_on_error=True) # Determine VM Name from Virtual Box vms_list_running = run(['VBoxManage', 'list', 'runningvms']).split("\n") possible_vms = [vm for vm in vms_list_running if vmname_base in vm] if len(possible_vms) == 1: # Extract just the VM Name from the output vmname = possible_vms[0].split()[0][1:len(possible_vms[0].split()[0])-2] logger.warn("Found VirtualBox VM: {}".format(vmname)) else: sys.exit("Could not determine the VM Name.") # Complete Startup # Configure NX-OS # do print steps for logging set to DEBUG and INFO # DEBUG also prints the I/O with the device on the console # default is WARN configure_nx(args.verbose < logging.WARN) # Good place to stop and take a look if --debug was entered if args.debug: pause_to_debug() # Export as new box logger.warn('Powering down and generating new Vagrant VirtualBox') logger.warn('Waiting for machine to shutdown') run(["vagrant", "halt", "-f"]) # Add the embedded Vagrantfile vagrantfile_pathname = os.path.join(pathname, 'include', 'embedded_vagrantfile_nx') logger.warn("Exporting new box file. (may take 3 minutes or so)") run(["vagrant", "package", "--vagrantfile", vagrantfile_pathname, "--output", box_out]) logger.warn('New Vagrant Box Created: %s', box_out) # Destroy original Source Box logger.warn("Cleaning up build resources.") cleanup_box() box_remove(box_name) # Delete Vagrantfile used to build box os.remove("Vagrantfile") logger.warn('Completed!') logger.warn(" ") logger.warn('Add box to system:') logger.warn(' vagrant box add --name nxos/{version} {boxout} --force'.format(version=version, boxout=box_out)) logger.warn(" ") logger.warn('Use your new box:') logger.warn("Make project directory: ") logger.warn(" mkdir my_project ") logger.warn(" cd my_project") logger.warn('Initialize Project Vagrant Environment:') logger.warn(' vagrant init nxos/{version}'.format(version=version)) logger.warn('Bring up box:') logger.warn(' vagrant up') logger.warn('') logger.warn("Note: Due to a shell error, 'vagrant up' will error the "\ "first time launching a box. Run 'vagrant up' to complete") logger.warn('Note:') logger.warn( ' Both the NX-OS SSH and NX-API username and password is vagrant/vagrant') if __name__ == '__main__': main(sys.argv[1:])
from django.contrib import admin from . models import Product # Register your models here. admin.site.register(Product)
#!/usr/bin/env python2 # Copyright (c) 2014 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. # # Test re-org scenarios with a mempool that contains transactions # that spend (directly or indirectly) coinbase transactions. # from test_framework import BitcoinTestFramework from util import * from pprint import pprint from time import sleep # Create one-input, one-output, no-fee transaction: class RawTransactionsTest(BitcoinTestFramework): def setup_chain(self): print("Initializing test directory "+self.options.tmpdir) initialize_chain_clean(self.options.tmpdir, 3) def setup_network(self, split=False): self.nodes = start_nodes(3, self.options.tmpdir) # connect to a local machine for debugging # url = "http://bitcoinrpc:DP6DvqZtqXarpeNWyN3LZTFchCCyCUuHwNF7E8pX99x1@%s:%d" % ('127.0.0.1', 18332) # proxy = AuthServiceProxy(url) # proxy.url = url # store URL on proxy for info # self.nodes.append(proxy) connect_nodes_bi(self.nodes,0,1) connect_nodes_bi(self.nodes,1,2) connect_nodes_bi(self.nodes,0,2) self.is_network_split=False self.sync_all() def run_test(self): self.nodes[2].setgenerate(True, 1) self.nodes[0].setgenerate(True, 121) self.sync_all() watchonly_address = self.nodes[0].getnewaddress() watchonly_amount = 200 self.nodes[1].importaddress(watchonly_address, "", True) self.nodes[0].sendtoaddress(watchonly_address, watchonly_amount) self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(),1.5); self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(),1.0); self.nodes[0].sendtoaddress(self.nodes[2].getnewaddress(),5.0); self.sync_all() self.nodes[0].setgenerate(True, 1) self.sync_all() ############### # simple test # ############### inputs = [ ] outputs = { self.nodes[0].getnewaddress() : 1.0 } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) totalOut = 0 for out in dec_tx['vout']: totalOut += out['value'] assert_equal(len(dec_tx['vin']), 1) #one vin coin assert_equal(fee*0.00000001+float(totalOut), 1.5) #the 1.5BTC coin must be taken ############################## # simple test with two coins # ############################## inputs = [ ] outputs = { self.nodes[0].getnewaddress() : 2.2 } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) totalOut = 0 for out in dec_tx['vout']: totalOut += out['value'] assert_equal(len(dec_tx['vin']), 2) #one vin coin assert_equal(fee*0.00000001+float(totalOut), 2.5) #the 1.5BTC+1.0BTC coins must have be taken ############################## # simple test with two coins # ############################## inputs = [ ] outputs = { self.nodes[0].getnewaddress() : 2.6 } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) totalOut = 0 for out in dec_tx['vout']: totalOut += out['value'] assert_equal(len(dec_tx['vin']), 1) #one vin coin assert_equal(fee*0.00000001+float(totalOut), 5.0) #the 5.0BTC coin must have be taken ################################ # simple test with two outputs # ################################ inputs = [ ] outputs = { self.nodes[0].getnewaddress() : 2.6, self.nodes[1].getnewaddress() : 2.5 } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) totalOut = 0 for out in dec_tx['vout']: totalOut += out['value'] assert_equal(len(dec_tx['vin']), 2) #one vin coin assert_equal(fee*0.00000001+float(totalOut), 6.0) #the 5.0BTC + 1.0BTC coins must have be taken ######################################################################### # test a fundrawtransaction with a VIN greater than the required amount # ######################################################################### utx = False listunspent = self.nodes[2].listunspent() for aUtx in listunspent: if aUtx['amount'] == 5.0: utx = aUtx break; assert_equal(utx!=False, True) inputs = [ {'txid' : utx['txid'], 'vout' : utx['vout']}] outputs = { self.nodes[0].getnewaddress() : 1.0 } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) assert_equal(utx['txid'], dec_tx['vin'][0]['txid']) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) totalOut = 0 for out in dec_tx['vout']: totalOut += out['value'] assert_equal(fee*0.00000001+float(totalOut), utx['amount']) #compare vin total and totalout+fee ######################################################################### # test a fundrawtransaction with a VIN smaller than the required amount # ######################################################################### utx = False listunspent = self.nodes[2].listunspent() for aUtx in listunspent: if aUtx['amount'] == 1.0: utx = aUtx break; assert_equal(utx!=False, True) inputs = [ {'txid' : utx['txid'], 'vout' : utx['vout']}] outputs = { self.nodes[0].getnewaddress() : 1.0 } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) assert_equal(utx['txid'], dec_tx['vin'][0]['txid']) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) totalOut = 0 matchingOuts = 0 for out in dec_tx['vout']: totalOut += out['value'] if outputs.has_key(out['scriptPubKey']['addresses'][0]): matchingOuts+=1 assert_equal(matchingOuts, 1) assert_equal(len(dec_tx['vout']), 2) assert_equal(fee*0.00000001+float(totalOut), 2.5) #this tx must use the 1.0BTC and the 1.5BTC coin ########################################### # test a fundrawtransaction with two VINs # ########################################### utx = False utx2 = False listunspent = self.nodes[2].listunspent() for aUtx in listunspent: if aUtx['amount'] == 1.0: utx = aUtx if aUtx['amount'] == 5.0: utx2 = aUtx assert_equal(utx!=False, True) inputs = [ {'txid' : utx['txid'], 'vout' : utx['vout']},{'txid' : utx2['txid'], 'vout' : utx2['vout']} ] outputs = { self.nodes[0].getnewaddress() : 6.0 } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) assert_equal(utx['txid'], dec_tx['vin'][0]['txid']) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) totalOut = 0 matchingOuts = 0 for out in dec_tx['vout']: totalOut += out['value'] if outputs.has_key(out['scriptPubKey']['addresses'][0]): matchingOuts+=1 assert_equal(matchingOuts, 1) assert_equal(len(dec_tx['vout']), 2) matchingIns = 0 for vinOut in dec_tx['vin']: for vinIn in inputs: if vinIn['txid'] == vinOut['txid']: matchingIns+=1 assert_equal(matchingIns, 2) #we now must see two vins identical to vins given as params assert_equal(fee*0.00000001+float(totalOut), 7.5) #this tx must use the 1.0BTC and the 1.5BTC coin ######################################################### # test a fundrawtransaction with two VINs and two vOUTs # ######################################################### utx = False utx2 = False listunspent = self.nodes[2].listunspent() for aUtx in listunspent: if aUtx['amount'] == 1.0: utx = aUtx if aUtx['amount'] == 5.0: utx2 = aUtx assert_equal(utx!=False, True) inputs = [ {'txid' : utx['txid'], 'vout' : utx['vout']},{'txid' : utx2['txid'], 'vout' : utx2['vout']} ] outputs = { self.nodes[0].getnewaddress() : 6.0, self.nodes[0].getnewaddress() : 1.0 } rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) assert_equal(utx['txid'], dec_tx['vin'][0]['txid']) rawtxfund = self.nodes[2].fundrawtransaction(rawtx) fee = rawtxfund['fee'] dec_tx = self.nodes[2].decoderawtransaction(rawtxfund['hex']) totalOut = 0 matchingOuts = 0 for out in dec_tx['vout']: totalOut += out['value'] if outputs.has_key(out['scriptPubKey']['addresses'][0]): matchingOuts+=1 assert_equal(matchingOuts, 2) assert_equal(len(dec_tx['vout']), 3) assert_equal(fee*0.00000001+float(totalOut), 7.5) #this tx must use the 1.0BTC and the 1.5BTC coin ############################################## # test a fundrawtransaction with invalid vin # ############################################## listunspent = self.nodes[2].listunspent() inputs = [ {'txid' : "1c7f966dab21119bac53213a2bc7532bff1fa844c124fd750a7d0b1332440bd1", 'vout' : 0} ] #invalid vin! outputs = { self.nodes[0].getnewaddress() : 1.0} rawtx = self.nodes[2].createrawtransaction(inputs, outputs) dec_tx = self.nodes[2].decoderawtransaction(rawtx) errorString = "" try: rawtxfund = self.nodes[2].fundrawtransaction(rawtx) except JSONRPCException,e: errorString = e.error['message'] assert_equal("Insufficient" in errorString, True); ################################################## # test a fundrawtransaction using only watchonly # ################################################## inputs = [] outputs = {self.nodes[2].getnewaddress() : watchonly_amount / 2.0} rawtx = self.nodes[0].createrawtransaction(inputs, outputs) result = self.nodes[1].fundrawtransaction(rawtx, True) assert_equal("hex" in result.keys(), True) assert_equal("fee" in result.keys(), True) ############################################################### # test fundrawtransaction using the entirety of watched funds # ############################################################### inputs = [] outputs = {self.nodes[2].getnewaddress() : watchonly_amount / 1.0} rawtx = self.nodes[0].createrawtransaction(inputs, outputs) result = self.nodes[1].fundrawtransaction(rawtx, True) assert_equal("hex" in result.keys(), True) assert_equal("fee" in result.keys(), True) if __name__ == '__main__': RawTransactionsTest().main()
import pymongo from datetime import datetime from pymongo import MongoClient client = MongoClient('mongodb://localhost:27017/') #db = client['primer'] #coll = db['dataset'] db = client['test'] coll = db['restaurants'] result = coll.insert_one( { "address": { "street": "2 Avenue", "zipcode": "10075", "building": "1480", "coord": [-73.9557413, 40.771903] }, "borough": "Manhattan", "cuisine": "Italian", "grades": [ { "date": datetime.strptime("2014-10-02", "%Y-%m-%d"), "grade": "A", "score": 11 }, { "date": datetime.strptime("2014-10-16", "%Y-%m-%d"), "grade": "B", "score": 17 } ], "name": "Vella", "restaurant_id": "41704620" } ) # find all #cursor = coll.find() # find cursor = coll.find({"borough": "Manhattan"}) for document in cursor: print document
#----------------------------------------------------------------------- #Copyright 2019 Centrum Wiskunde & Informatica, Amsterdam # #Author: Daniel M. Pelt #Contact: D.M.Pelt@cwi.nl #Website: http://dmpelt.github.io/foam_ct_phantom/ #License: MIT # #This file is part of foam_ct_phantom, a Python package for generating #foam-like phantoms for CT. #----------------------------------------------------------------------- from . import generate, infiltrate, project, verticalmovement, expand import abc import os.path import numpy as np class Phantom(object): __metaclass__ = abc.ABCMeta def __init__(self, filename): self.filename = filename if not os.path.exists(self.filename): raise ValueError("{} does not exist.".format(self.filename)) @abc.abstractmethod def generate_projections(self, outfile, geom): pass @abc.abstractmethod def generate_volume(self, outfile, geom, time=0): pass class FoamPhantom(Phantom): @staticmethod def generate(filename, seed, nspheres_per_unit=100000, ntrials_per_unit=1000000, maxsize=0.2, zrange=1.5): generate.genphantom(filename, seed, nspheres_per_unit=nspheres_per_unit, ntrials_per_unit=ntrials_per_unit, maxsize=maxsize, zrange=zrange) def generate_projections(self, outfile, geom): generate.gen_dataset(outfile,self.filename, geom) def generate_volume(self, outfile, geom): generate.genvol(outfile, self.filename,geom) def generate_3d(self, nx, ny, pixsize, angle, tilt1, tilt2, maxz=1.5, cutout=0, cutoff=-np.inf): return generate.gen3d(self.filename, nx, ny, pixsize, angle, tilt1, tilt2, maxz=maxz, cutout=cutout, cutoff=cutoff) class MovingFoamPhantom(Phantom): @staticmethod def generate(filename, phantom_file, seed, zmin, zmax, random_move=0.1, regularization=0.01, npoints=1024): verticalmovement.generate_verticalmovement(filename, phantom_file, seed, zmin, zmax, random_move=random_move, regularization=regularization, npoints=npoints) def generate_projections(self, outfile, geom): verticalmovement.gen_dataset_verticalmovement(outfile,self.filename, geom) def generate_volume(self, outfile, geom, time=0): verticalmovement.genvol_verticalmovement(time, outfile, self.filename, geom) def generate_3d(self, nx, ny, pixsize, angle, tilt1, tilt2, maxz=1.5, cutout=0, cutoff=-np.inf, time=0): return verticalmovement.gen3d_verticalmovement(time, self.filename, nx, ny, pixsize, angle, tilt1, tilt2, maxz=maxz, cutout=cutout, cutoff=cutoff) class ExpandingFoamPhantom(Phantom): @staticmethod def generate(filename, phantom_file, seed, start_size=0.25, random_move=0.1, regularization=0.01, static_after_fraction=0.1, npoints=1024): expand.generate_expand(filename, phantom_file, seed, start_size=start_size, random_move=random_move, regularization=regularization, static_after_fraction=0.1, npoints=npoints) def generate_projections(self, outfile, geom): expand.gen_dataset_expand(outfile,self.filename, geom) def generate_volume(self, outfile, geom, time=0): expand.genvol_expand(time, outfile, self.filename, geom) def generate_3d(self, nx, ny, pixsize, angle, tilt1, tilt2, maxz=1.5, cutout=0, cutoff=-np.inf, time=0): return expand.gen3d_expand(time, self.filename, nx, ny, pixsize, angle, tilt1, tilt2, maxz=maxz, cutout=cutout, cutoff=cutoff) class InfiltrationFoamPhantom(Phantom): @staticmethod def generate(filename, phantom_file, seed, fluid_value, startz=-1.5, rand_width=1, cutoff=1e-5): infiltrate.generate_inflitration(filename, phantom_file, seed, fluid_value, startz=startz, rand_width=rand_width, cutoff=cutoff) def generate_projections(self, outfile, geom): infiltrate.gen_dataset_infiltrate(outfile,self.filename,geom) def generate_volume(self, outfile, geom, time=0): infiltrate.genvol_infiltrate(time, outfile, self.filename,geom) def generate_3d(self, nx, ny, pixsize, angle, tilt1, tilt2, maxz=1.5, cutout=0, cutoff=-np.inf, time=0): return infiltrate.gen3d_infiltrate(time, self.filename, nx, ny, pixsize, angle, tilt1, tilt2, maxz=maxz, cutout=cutout, cutoff=cutoff)
import os import typing from pathlib import Path import cv2 import numpy as np from PyQt5 import Qt import inspect from PyQt5 import QtGui from PyQt5.QtGui import QIcon, QPixmap, QImage, qRgb from PyQt5.QtWidgets import QLayout, QGridLayout, QLayoutItem, QMessageBox, QApplication, QMainWindow, QVBoxLayout, \ QGroupBox, \ QFileDialog, QDialog, QAbstractItemView, QListView, QTreeView class GUIUtilities: @staticmethod def get_icon(img): app = QApplication.instance() curr_theme = "light" if app: curr_theme = app.property("theme") assets_path = Path(__file__).parent.parent.joinpath("assets").absolute() resource_path = assets_path.joinpath(f"icons/{curr_theme}/{img}") return QIcon(str(resource_path)) @staticmethod def get_image(img): app = QApplication.instance() curr_theme = "light" if app: curr_theme = app.property("theme") assets_path = Path(__file__).parent.parent.joinpath("assets").absolute() resource_path = assets_path.joinpath(f"icons/{curr_theme}/{img}") return QPixmap(str(resource_path)) @staticmethod def clear_layout(layout: QLayout): while layout.count(): child = layout.takeAt(0) if child.widget(): child.widget().deleteLater() @staticmethod def next_cell(grid_layout: QGridLayout) -> tuple: cols = grid_layout.columnCount() rows = grid_layout.rowCount() for r in range(rows): for c in range(cols): item: QLayoutItem = grid_layout.itemAtPosition(r, c) if item is None: return r, c @staticmethod def show_error_message(message: str, title="Error"): msg = QMessageBox() msg.setIcon(QMessageBox.Critical) msg.setText(message) msg.setWindowTitle(title) msg.exec_() @staticmethod def show_info_message(message: str, title: str = "Information"): msg = QMessageBox() msg.setIcon(QMessageBox.Information) msg.setText(message) msg.setWindowTitle(title) msg.exec_() @staticmethod def array_to_qimage(im: np.ndarray, copy=False): gray_color_table = [qRgb(i, i, i) for i in range(256)] if im is None: return QImage() if im.dtype == np.uint8: if len(im.shape) == 2: qim = QImage(im.data, im.shape[1], im.shape[0], im.strides[0], QImage.Format_Indexed8) qim.setColorTable(gray_color_table) return qim.copy() if copy else qim elif len(im.shape) == 3: if im.shape[2] == 3: qim = QImage(im.data, im.shape[1], im.shape[0], im.strides[0], QImage.Format_RGB888); return qim.copy() if copy else qim elif im.shape[2] == 4: qim = QImage(im.data, im.shape[1], im.shape[0], im.strides[0], QImage.Format_ARGB32); return qim.copy() if copy else qim @staticmethod def findMainWindow() -> typing.Union[QMainWindow, None]: # Global function to find the (open) QMainWindow in application app = QApplication.instance() for widget in app.topLevelWidgets(): if isinstance(widget, QMainWindow): return widget return None @staticmethod def wrap_with_groupbox(widget, widget_title): groupbox = QGroupBox() groupbox.setTitle(widget_title) vlayout = QVBoxLayout() vlayout.addWidget(widget) groupbox.setLayout(vlayout) return groupbox @staticmethod def select_folders(): file_dialog = QFileDialog() file_dialog.setFileMode(QFileDialog.DirectoryOnly) file_dialog.setOption(QFileDialog.DontUseNativeDialog, True) file_view = file_dialog.findChild(QListView, 'listView') if file_view: file_view.setSelectionMode(QAbstractItemView.MultiSelection) f_tree_view = file_dialog.findChild(QTreeView) if f_tree_view: f_tree_view.setSelectionMode(QAbstractItemView.MultiSelection) paths = [] if file_dialog.exec() == QDialog.Accepted: paths = file_dialog.selectedFiles() return paths @staticmethod def select_folder(parent=None, title="select the folder"): return str(QFileDialog.getExistingDirectory(None, title)) @staticmethod def select_file(ext, title="select the file", parent=None): options = QFileDialog.Options() options |= QFileDialog.DontUseNativeDialog ext = "{} Files (*{})".format(ext, ext) if isinstance(ext, str) else ";;".join( list(map(lambda e: "{} Files (*.{})".format(e, e), ext))) path, _ = QFileDialog.getOpenFileName(parent, title, os.path.join(os.path.expanduser('~')), ext, options=options) return path @staticmethod def select_files(ext, title="select the file", parent=None): options = QFileDialog.Options() options |= QFileDialog.DontUseNativeDialog ext = "{} Files (*{})".format(ext, ext) if isinstance(ext, str) else ";;".join( list(map(lambda e: "{} Files (*.{})".format(e, e), ext))) files, _ = QFileDialog.getOpenFileNames(parent, title, os.path.join(os.path.expanduser('~')), ext, options=options) return files @classmethod def color_icon2gray_icon(cls, icon: QIcon): # TODO: implement for RGB icons pixmap = icon.pixmap(icon.availableSizes()[0]) img_array = cls.Qpixmap2array(pixmap) *_, alpha = cv2.split(img_array) gray_layer = cv2.cvtColor(img_array, cv2.COLOR_BGR2GRAY) gray_img = cv2.merge((gray_layer, gray_layer, gray_layer, alpha)) height, width, channel = gray_img.shape bytesPerLine = 4 * width qImg = QImage(gray_img.data, width, height, bytesPerLine, QImage.Format_RGBA8888) pixmap = QtGui.QPixmap.fromImage(qImg) return QIcon(pixmap) @classmethod def Qpixmap2array(cls, pixmap: QPixmap) -> np.ndarray: image=pixmap.toImage() channels_count= 4 if image.hasAlphaChannel() else 3 width, height = image.width(), image.height() buffer=image.bits().asarray(width*height*channels_count) arr=np.frombuffer(buffer,dtype=np.uint8).reshape((height,width,channels_count)) return arr @staticmethod def qt_version(): vers = ['%s = %s' % (k, v) for k, v in vars(Qt).items() if k.lower().find('version') >= 0 and not inspect.isbuiltin(v)] print('\n'.join(sorted(vers)))
import abc import os import time import requests import six from . import sdk_exceptions from .clients import JobsClient, ModelsClient from .clients.base_client import BaseClient from .logger import MuteLogger class S3FilesDownloader(object): def __init__(self, logger=MuteLogger()): self.logger = logger self.file_download_retries = 8 def download_list(self, sources, destination_dir): """ :param tuple[tuple[str,str]] sources: tuple/list of (file_path, file_url) pairs :param str destination_dir: """ for source in sources: self.download_file(source, destination_dir, max_retries=self.file_download_retries) def download_file(self, source, destination_dir, max_retries=0): self._create_directory(destination_dir) file_path, file_url = source self.logger.log("Downloading: {}".format(file_path)) # Trying to download several times in case of connection error with S3. # The error seems to occur randomly but adding short sleep between retries helps a bit for _ in range(max_retries + 1): try: response = requests.get(file_url) break except requests.exceptions.ConnectionError: self.logger.debug("Downloading {} resulted in error. Trying again...".format(file_path)) time.sleep(0.1) else: # break statement not executed - ConnectionError `max_retries` times raise sdk_exceptions.ResourceFetchingError("Downloading {} resulted in error".format(file_path)) self._create_subdirectories(file_path, destination_dir) self._save_file(response, file_path, destination_dir) def _create_directory(self, destination_dir): if os.path.exists(destination_dir) and os.path.isdir(destination_dir): return os.makedirs(destination_dir) def _create_subdirectories(self, file_path, destination_dir): file_dirname = os.path.dirname(file_path) file_dir_path = os.path.join(destination_dir, file_dirname) self._create_directory(file_dir_path) def _save_file(self, response, file_path, destination_dir): destination_path = os.path.join(destination_dir, file_path) try: with open(destination_path, "wb") as h: h.write(response.content) except TypeError: # in py3 TypeError is raised when trying to write str in bytes mode so trying in txt mode with open(destination_path, "w") as h: h.write(response.content) @six.add_metaclass(abc.ABCMeta) class ResourceDownloader(object): CLIENT_CLASS = None def __init__(self, api_key, logger=MuteLogger(), ps_client_name=None): self.api_key = api_key self.logger = logger self.ps_client_name = ps_client_name self.client = self._build_client(self.CLIENT_CLASS, api_key, logger=logger) def download(self, job_id, destination): files = self._get_files_list(job_id) s3_downloader = S3FilesDownloader(logger=self.logger) s3_downloader.download_list(files, destination) @abc.abstractmethod def _get_files_list(self, job_id): """ :param str job_id: :returns: Tuple of (file path, url) pairs :rtype: tuple[tuple[str,str]] """ pass def _build_client(self, client_class, *args, **kwargs): """ :param type[BaseClient] client_class: """ client = client_class(*args, **kwargs) if self.ps_client_name is not None: client.ps_client_name = self.ps_client_name return client class JobArtifactsDownloader(ResourceDownloader): CLIENT_CLASS = JobsClient def _get_files_list(self, job_id): files = self.client.artifacts_list(job_id) files = tuple((f.file, f.url) for f in files) return files class ModelFilesDownloader(ResourceDownloader): CLIENT_CLASS = ModelsClient def _get_files_list(self, model_id): files = self.client.get_model_files(model_id=model_id, links=True) files = tuple((f.file, f.url) for f in files) return files
#!/usr/bin/env python3 from chewing import userphrase def main(): list = userphrase.find_all() ##print(list) for item in list: print() print('phrase:', item[0]) print('bopomofo:', item[1]) if __name__ == '__main__': main()
import sys sys.path.append('.') from util.game import Game from util.func import Case from util.card import Card, CardList, CardSuit from util.player import Player from typing import List, Optional, Tuple import random class LevelUp(Game): ### Constants PLAYERNUM: int = 4 CARDPOOL: List[Card] = [Card(i) for i in range(54)] * 2 BASESCORE: int = 80 LEVELSCORE: int = 40 def __init__(self): self.players: List[Optional[Player]] = [None] * LevelUp.PLAYERNUM self.discard_buffer: Optional[CardList] = None self.curPlayerIndex: Optional[int] = None self.rankLevel: Tuple[int, int] = (1, 1) self.dealerIndex: Optional[int] = None self.rankMain: int = 1 # E.g. (Spade, 0, 1) means the main suit is spade (suited with a single spade by 0-th player) self.suitMain: Optional[Tuple(CardSuit, int, int)] = None self.score: int = 0 self.state: str = 'END' for i in range(len(self.players)): self.players[i] = Player() def inform(self, information): case = Case(self.state) if case('END'): case = Case(information) if case('START'): self.state = 'DISPATCH' return (True, self._dispatch(), { 'suit': self.suitMain, 'rank': self.rankMain, 'level': self.rankLevel } ) if case('DISPATCH'): case = Case(information) if case('FINISH'): self.state = 'DISCARD' if self.dealerIndex is None: self.dealerIndex = self.suitMain[1] self.curPlayerIndex = self.dealerIndex self.players[self.curPlayerIndex].cardInHand += self.discard_buffer self.discard_buffer = CardList() for player in self.players: player.cardFront = CardList() return (True, None, None) return (False, None, None) def _dispatch(self) -> List[int]: newCardPool: List[Card] = random.sample(LevelUp.CARDPOOL, len(LevelUp.CARDPOOL)) dispatch = [newCardPool[0:25], newCardPool[25:50], newCardPool[50:75], newCardPool[75:100], newCardPool[100:]] for id, player in enumerate(self.players): player.cardInHand = CardList(dispatch[id]) self.discard_buffer = CardList(dispatch[-1]) return [[card.ID for card in cards] for cards in dispatch] def isSuitable(self, cards: List[int], playerID: int, suit: Optional[CardSuit] = None): #suit: 0 NT, 1 Spade, 2 Heart, 3 Club, 4 Diamond if suit is None: return [self.isSuitable(cards, playerID, s) for s in [ CardSuit.Joker, CardSuit.Spade, CardSuit.Heart, CardSuit.Club, CardSuit.Diamond ]] cardnum = -1 case = Case(suit) if case(CardSuit.Spade): cardnum = 39 + self.rankMain elif case(CardSuit.Heart): cardnum = 26 + self.rankMain elif case(CardSuit.Club): cardnum = 13 + self.rankMain elif case(CardSuit.Diamond): cardnum = self.rankMain if self.suitMain is None: if suit == CardSuit.Joker: return cards.count(52) == 2 or cards.count(53) == 2 else: return cardnum in cards elif self.suitMain[1] == playerID: if self.suitMain[2] == 2: return False if suit != self.suitMain[0]: return False return cards.count(cardnum) == 2 else: if suit == CardSuit.Joker: if self.suitMain[0] == CardSuit.Joker: return cards.count(53) == 2 else: return cards.count(53) == 2 or cards.count(52) == 2 if self.suitMain[2] == 2: return False return cards.count(cardnum) == 2 def suitRequest(self, playerID: int, suit: CardSuit): cards = self.players[playerID].cardInHand.tolist() if not self.isSuitable(cards, playerID, suit): return False for player in self.players: player.cardFront = CardList() cardnum = -1 case = Case(suit) if case(CardSuit.Spade): cardnum = 39 + self.rankMain elif case(CardSuit.Heart): cardnum = 26 + self.rankMain elif case(CardSuit.Club): cardnum = 13 + self.rankMain elif case(CardSuit.Diamond): cardnum = self.rankMain if suit == CardSuit.Joker: if cards.count(52) == 2: self.suitMain = (CardSuit.Joker, playerID, 2) self.players[playerID].cardFront += CardList([Card(52), Card(52)]) else: self.suitMain = (CardSuit.Joker, playerID, 2) self.players[playerID].cardFront += CardList([Card(53), Card(53)]) else: if self.suitMain is None: self.suitMain = (suit, playerID, 1) self.players[playerID].cardFront += Card(cardnum) else: self.suitMain = (suit, playerID, 2) self.players[playerID].cardFront += CardList([Card(cardnum), Card(cardnum)]) front = [player.cardFront.tolist() for player in self.players] return [front, self.suitMain]
#!/usr/bin/env python """Tests for `musicdwh` package.""" import pytest import pandas as pd from pandas._testing import assert_frame_equal import sqlalchemy as sqla from musicdwh.musicdwh import import_hb, import_wwc, import_lov, ip_convert_country, import_game, upload_to_db HB_FILE_PATH_INS = './data/hb/2021/04/28/hb.csv' HB_FILE_PATH_UPD = './data/hb/2021/04/29/hb.csv' WWC_FILE_PATH_INS = './data/wwc/2021/04/28/wwc.json' WWC_FILE_PATH_UPD = './data/wwc/2021/04/29/wwc.json' DATE_INS = '2021-04-28' DATE_UPD = '2021-04-29' def test_import_hb_dataframe_type(): # tests, if returns type DataFrame df_import = import_hb(HB_FILE_PATH_INS) assert "pandas.core.frame.DataFrame" in str(type(df_import)) def test_import_hb_dataframe_data(): # tests, if returns correct data in DataFrame # intialise data of lists. data = {'id':[1, 2, 3, 4, 5], 'first_name':['Maria', 'Douglas', 'Barbara', 'Jacqueline', 'Janet'], 'last_name':['Russell', 'Cunningham', 'Rice', 'Cook', 'Jones'], 'email':['mrussell0@soup.io', 'dcunningham1@sogou.com', 'brice2@bizjournals.com', 'jcook3@amazon.co.jp', 'jjones4@surveymonkey.com'], 'gender':['Female', 'Male', 'Female', 'Female', 'Female'], 'ip_address':['141.48.134.32', '75.5.5.45', '87.137.224.0', '249.125.240.30', '190.235.91.244'], 'dob':['5/26/1976', '1/25/1980', '4/15/1979', '5/2/1963', '8/17/1968'] } # Create DataFrame df = pd.DataFrame(data) df_import = import_hb(HB_FILE_PATH_INS) assert_frame_equal(df_import, df) def test_ip_convert_country(): # tests lookup of country ID from IP_address # intialise data of lists. data = {'id':[1, 2, 3, 4, 5], 'first_name':['Maria', 'Douglas', 'Barbara', 'Jacqueline', 'Janet'], 'last_name':['Russell', 'Cunningham', 'Rice', 'Cook', 'Jones'], 'email':['mrussell0@soup.io', 'dcunningham1@sogou.com', 'brice2@bizjournals.com', 'jcook3@amazon.co.jp', 'jjones4@surveymonkey.com'], 'gender':['Female', 'Male', 'Female', 'Female', 'Female'], 'ip_address':['141.48.134.32', '75.5.5.45', '87.137.224.0', '249.125.240.30', '190.235.91.244'], 'dob':['5/26/1976', '1/25/1980', '4/15/1979', '5/2/1963', '8/17/1968'], 'country_code':['DE', 'US', 'DE', 'Undefined', 'PE'] } # Create DataFrame df = pd.DataFrame(data) df_import = import_hb(HB_FILE_PATH_INS) # get country codes from IP address ip_code_series = ip_convert_country(df_import['ip_address'], 30, 100) # append country code to hb dataframe df_import['country_code']=ip_code_series assert_frame_equal(df_import, df) def test_import_game_hb(): # test importing hb data into dataframe by calling parent function df_import = import_game ('hb', DATE_INS, './data') # intialise data of lists. data = {'id':[1, 2, 3, 4, 5], 'first_name':['Maria', 'Douglas', 'Barbara', 'Jacqueline', 'Janet'], 'last_name':['Russell', 'Cunningham', 'Rice', 'Cook', 'Jones'], 'email':['mrussell0@soup.io', 'dcunningham1@sogou.com', 'brice2@bizjournals.com', 'jcook3@amazon.co.jp', 'jjones4@surveymonkey.com'], 'gender':['Female', 'Male', 'Female', 'Female', 'Female'], 'ip_address':['141.48.134.32', '75.5.5.45', '87.137.224.0', '249.125.240.30', '190.235.91.244'], 'dob':['5/26/1976', '1/25/1980', '4/15/1979', '5/2/1963', '8/17/1968'] } # Create DataFrame df = pd.DataFrame(data) assert_frame_equal(df_import, df) def test_import_lov(): # test importing LOV data into dataframe df_import = import_lov('./data/LOVs/LOV_gender.csv') data = {'gender':['female', 'male', 'unspecified', 'other'] } # Create DataFrame df = pd.DataFrame(data) assert_frame_equal(df_import, df) # def test_import_hb_update(): # assert import_hb(HB_FILE_PATH_UPD) == [expected_output] # def test_import_wwc_new(): # assert import_wwc(WWC_FILE_PATH_INS) == [expected_output] # def test_import_wwc_update(): # assert import_wwc(WWC_FILE_PATH_UPD) == [expected_output] # def test_ip_convert_country(): # def test_import_game_wwc(): # def test_upload_to_db():
from qtrader.utils.preprocessor import rolling1d from qtrader.utils.preprocessor import rolling2d
import json import mimetypes import os from django.conf import settings from django.core.exceptions import ObjectDoesNotExist from django.apps import apps from django.core.servers.basehttp import FileWrapper from django.http import (HttpResponse, HttpResponseNotFound, HttpResponseBadRequest, StreamingHttpResponse) from django.utils.translation import ugettext as _ from django.views.decorators.http import require_http_methods from django_cas.decorators import login_required from .models import FileUpload from .utils import upload_files @login_required @require_http_methods(["POST"]) def upload_file(request, app_name, model_name, object_pk): """Upload a file""" try: m = apps.get_model(app_name, model_name) except LookupError: message = _('Model does not exist.') return HttpResponseBadRequest( json.dumps({'status': 'error', 'message': message})) # Then look up the object by pk try: obj = m.objects.get(pk=object_pk) except ObjectDoesNotExist: message = _('Object does not exist.') return HttpResponseNotFound( json.dumps({'status': 'error', 'message': message})) files = upload_files(request, obj) if files is not None: return HttpResponse( json.dumps({'status': 'success', 'files': files})) message = _('Invalid or no file received.') return HttpResponseBadRequest( json.dumps({'status': 'error', 'message': message})) @login_required @require_http_methods(["POST"]) def delete_file(request, file_id): """Delete a file given its object id. TODO:permissions to delete files """ try: res = FileUpload.objects.get(pk=file_id) except FileUpload.DoesNotExist: message = _('The requested file could not be found.') return HttpResponseNotFound( json.dumps({'status': 'error', 'message': message})) res.file.delete() res.delete() return HttpResponse(json.dumps({'status': 'success'})) @login_required def serve_file(request, path, document_root=None, show_indexes=False): """Serve static files """ try: _file = os.path.join(settings.MEDIA_ROOT, path) _file_type = mimetypes.guess_type(_file)[0] chunk_size = 8192 response = StreamingHttpResponse(FileWrapper(open(_file, 'rb'), chunk_size), content_type=_file_type) response['Content-Length'] = os.path.getsize(_file) except: return HttpResponseNotFound() return response
""" __init__ Establish this Flask app. """ from flask import Flask from flask_sqlalchemy import SQLAlchemy from flask_script import Manager from flask_migrate import Migrate, MigrateCommand from flask_httpauth import HTTPBasicAuth from flask_json import FlaskJSON import logging import os app = Flask(__name__) app.config.from_pyfile('../config.py') db = SQLAlchemy(app) migrate = Migrate(app, db) manager = Manager(app) manager.add_command('db', MigrateCommand) auth = HTTPBasicAuth() json = FlaskJSON(app) from presidency import views, models
# # Copyright (C) 2018 ETH Zurich, University of Bologna # and GreenWaves Technologies # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Authors: Germain Haugou, ETH (germain.haugou@iis.ee.ethz.ch) import os.path c_head_pattern = """ /* THIS FILE HAS BEEN GENERATED, DO NOT MODIFY IT. */ /* * Copyright (C) 2019 GreenWaves Technologies * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ """ def get_c_desc(name): return name.replace('\n', ' ').encode('ascii', 'ignore').decode('ascii') def get_c_name(name): return name.replace('/', '_').replace('.', '_').encode('ascii', 'ignore').decode('ascii') class Header(object): def __init__(self, name, path): try: os.makedirs(os.path.dirname(path)) except: pass self.file = open(path, 'w') self.name = name self.file.write(c_head_pattern) def_name = get_c_name(path).upper() self.file.write('#ifndef __%s__\n' % def_name) self.file.write('#define __%s__\n' % def_name) self.file.write('\n') self.file.write('#if !defined(LANGUAGE_ASSEMBLY) && !defined(__ASSEMBLER__)\n') self.file.write('\n') self.file.write('#include <stdint.h>\n') self.file.write('#include "archi/utils.h"\n') self.file.write('\n') self.file.write('#endif\n') self.file.write('\n') def close(self): self.file.write('\n') self.file.write('#endif\n') class Constant(object): def dump_to_header(self, header): header.file.write('#define %s_%s %s\n' % (get_c_name(header.name).upper(), get_c_name(self.name).upper(), self.value)) class Regfield(object): def dump_to_header(self, header, reg_name): field_name = '%s_%s' % (get_c_name(reg_name), get_c_name(self.name).upper()) access_str = '' if self.access is not None: access_str = ' (access: %s)' % self.access if self.desc != '' or access_str != '': header.file.write('// %s%s\n' % (get_c_desc(self.desc), access_str)) header.file.write('#define %-60s %d\n' % (field_name + '_BIT', self.bit)) header.file.write('#define %-60s %d\n' % (field_name + '_WIDTH', self.width)) header.file.write('#define %-60s 0x%x\n' % (field_name + '_MASK', ((1<<self.width)-1)<<self.bit)) reset = self.reset if reset is None and self.reg_reset is not None: reset = (self.reg_reset >> self.bit) & ((1<<self.width) - 1) if reset is not None: header.file.write('#define %-60s 0x%x\n' % (field_name + '_RESET', reset)) def dump_macros(self, header, reg_name=None): header.file.write('\n') field_name = '%s_%s' % (get_c_name(reg_name), get_c_name(self.name).upper()) header.file.write('#define %-50s (ARCHI_BEXTRACTU((value),%d,%d))\n' % (field_name + '_GET(value)', self.width, self.bit)) header.file.write('#define %-50s (ARCHI_BEXTRACT((value),%d,%d))\n' % (field_name + '_GETS(value)', self.width, self.bit)) header.file.write('#define %-50s (ARCHI_BINSERT((value),(field),%d,%d))\n' % (field_name + '_SET(value,field)', self.width, self.bit)) header.file.write('#define %-50s ((val) << %d)\n' % (field_name + '(val)', self.bit)) class Register(object): def dump_to_header(self, header, rst=False): if self.offset is not None: indent = '' if not rst else ' ' header.file.write('\n') if self.desc != '': header.file.write('%s// %s\n' % (indent, get_c_desc(self.desc))) header.file.write('%s#define %-40s 0x%x\n' % (indent, '%s_%s_OFFSET' % (get_c_name(header.name).upper(), get_c_name(self.name).upper()), self.offset)) def dump_fields_to_header(self, header): for name, field in self.fields.items(): header.file.write('\n') reg_name = '%s_%s' % (get_c_name(header.name).upper(), get_c_name(self.name).upper()) field.dump_to_header(reg_name=reg_name, header=header) def dump_struct(self, header): header.file.write('\n') header.file.write('typedef union {\n') header.file.write(' struct {\n') current_index = 0 current_pad = 0 for name, field in self.fields.items(): if current_index < field.bit: header.file.write(' unsigned int padding%d:%-2d;\n' % (current_pad, field.bit - current_index)) current_pad += 1 current_index = field.bit + field.width header.file.write(' unsigned int %-16s:%-2d; // %s\n' % (get_c_name(field.name).lower(), field.width, get_c_desc(field.desc))) header.file.write(' };\n') header.file.write(' unsigned int raw;\n') header.file.write('} __attribute__((packed)) %s_%s_t;\n' % (get_c_name(header.name).lower(), get_c_name(self.name).lower())) def dump_vp_class(self, header): if self.width in [1, 8, 16, 32, 64]: header.file.write('\n') header.file.write('class vp_%s_%s : public vp::reg_%d\n' % (get_c_name(header.name).lower(), get_c_name(self.name).lower(), self.width)) header.file.write('{\n') header.file.write('public:\n') reg_name = '%s_%s' % (get_c_name(header.name).upper(), get_c_name(self.name).upper()) for name, field in self.fields.items(): field_name = '%s_%s' % (get_c_name(reg_name), get_c_name(field.name).upper()) header.file.write(' inline void %s_set(uint%d_t value) { this->set_field(value, %s_BIT, %s_WIDTH); }\n' % (get_c_name(field.name).lower(), self.width, field_name, field_name)) header.file.write(' inline uint%d_t %s_get() { return this->get_field(%s_BIT, %s_WIDTH); }\n' % (self.width, get_c_name(field.name).lower(), field_name, field_name)) header.file.write('};\n') def dump_macros(self, header=None): reg_name = '%s_%s' % (get_c_name(header.name).upper(), get_c_name(self.name).upper()) for name, field in self.fields.items(): field.dump_macros(header, reg_name) def dump_access_functions(self, header=None): reg_name = '%s_%s' % (get_c_name(header.name), get_c_name(self.name)) if self.offset is not None: header.file.write("\n") header.file.write("static inline uint32_t %s_get(uint32_t base) { return ARCHI_READ(base, %s_OFFSET); }\n" % (reg_name.lower(), get_c_name(reg_name).upper())); header.file.write("static inline void %s_set(uint32_t base, uint32_t value) { ARCHI_WRITE(base, %s_OFFSET, value); }\n" % (reg_name.lower(), get_c_name(reg_name).upper())); class Regmap(object): def dump_regs_to_rst(self, rst): rst.file.write('\n') rst.file.write('.. toggle-header::\n') rst.file.write(' :header: *Register map C offsets*\n') rst.file.write('\n') rst.file.write(' .. code-block:: c\n') rst.file.write('\n') for name, register in self.registers.items(): register.dump_to_header(rst, rst=True) rst.file.write('\n') def dump_regs_to_header(self, header): header.file.write('\n') header.file.write('\n') header.file.write('\n') header.file.write('//\n') header.file.write('// REGISTERS\n') header.file.write('//\n') for name, register in self.registers.items(): register.dump_to_header(header) def dump_regfields_to_header(self, header): header.file.write('\n') header.file.write('\n') header.file.write('\n') header.file.write('//\n') header.file.write('// REGISTERS FIELDS\n') header.file.write('//\n') for name, register in self.registers.items(): register.dump_fields_to_header(header=header) def dump_structs_to_header(self, header): header.file.write('\n') header.file.write('\n') header.file.write('\n') header.file.write('//\n') header.file.write('// REGISTERS STRUCTS\n') header.file.write('//\n') header.file.write('\n') header.file.write('#if !defined(LANGUAGE_ASSEMBLY) && !defined(__ASSEMBLER__)\n') for name, register in self.registers.items(): register.dump_struct(header=header) header.file.write('\n') header.file.write('#endif\n') def dump_vp_structs_to_header(self, header): header.file.write('\n') header.file.write('\n') header.file.write('\n') header.file.write('//\n') header.file.write('// REGISTERS STRUCTS\n') header.file.write('//\n') header.file.write('\n') header.file.write('#ifdef __GVSOC__\n') for name, register in self.registers.items(): register.dump_vp_class(header=header) header.file.write('\n') header.file.write('#endif\n') def dump_regmap_to_header(self, header): header.file.write('\n') header.file.write('\n') header.file.write('\n') header.file.write('//\n') header.file.write('// REGISTERS GLOBAL STRUCT\n') header.file.write('//\n') header.file.write('\n') header.file.write('#if !defined(LANGUAGE_ASSEMBLY) && !defined(__ASSEMBLER__)\n') header.file.write('\n') header.file.write('typedef struct {\n') for name, register in self.registers.items(): desc = '' if register.desc != '': desc = ' // %s' % register.desc header.file.write(' unsigned int %-16s;%s\n' % (get_c_name(register.name).lower(), desc)) header.file.write('} __attribute__((packed)) %s_%s_t;\n' % (get_c_name(header.name), get_c_name(self.name))) header.file.write('\n') header.file.write('#endif\n') def dump_accessors_to_header(self, header): header.file.write('\n') header.file.write('\n') header.file.write('\n') header.file.write('//\n') header.file.write('// REGISTERS ACCESS FUNCTIONS\n') header.file.write('//\n') header.file.write('\n') header.file.write('#if !defined(LANGUAGE_ASSEMBLY) && !defined(__ASSEMBLER__)\n') for name, register in self.registers.items(): register.dump_access_functions(header=header) header.file.write('\n') header.file.write('#endif\n') def dump_macros_to_header(self, header): header.file.write('\n') header.file.write('\n') header.file.write('\n') header.file.write('//\n') header.file.write('// REGISTERS FIELDS MACROS\n') header.file.write('//\n') header.file.write('\n') header.file.write('#if !defined(LANGUAGE_ASSEMBLY) && !defined(__ASSEMBLER__)\n') for name, register in self.registers.items(): register.dump_macros(header=header) header.file.write('\n') header.file.write('#endif\n') def dump_groups_to_header(self, header): for name, group in self.regmaps.items(): header.file.write('\n') header.file.write('\n') header.file.write('\n') header.file.write('//\n') header.file.write('// GROUP %s\n' % name) header.file.write('//\n') if group.offset is not None: header.file.write('\n') header.file.write('#define %-40s 0x%x\n' % ('%s_%s_OFFSET' % (get_c_name(header).name.upper(), get_c_name(name).upper()), group.offset)) group.dump_to_header(header) def dump_constants_to_header(self, header): if len(self.constants) != 0: header.file.write('\n') header.file.write('\n') header.file.write('\n') header.file.write('//\n') header.file.write('// CUSTOM FIELDS\n') header.file.write('//\n') for name, constant in self.constants.items(): constant.dump_to_header(header=header) def dump_to_header(self, header, header_path): header.file.write('#include "%s_regs.h"\n' % (header_path)) header.file.write('#include "%s_regfields.h"\n' % (header_path)) header.file.write('#include "%s_structs.h"\n' % (header_path)) header.file.write('#include "%s_regmap.h"\n' % (header_path)) header.file.write('#include "%s_accessors.h"\n' % (header_path)) header.file.write('#include "%s_macros.h"\n' % (header_path)) header.file.write('#include "%s_groups.h"\n' % (header_path)) header.file.write('#include "%s_constants.h"\n' % (header_path)) def dump_to_header(regmap, name, header_path): header_file = Header(name, header_path + '.h') regmap.dump_to_header(header_file, os.path.basename(header_path)) header_file.close() header_file = Header(name, header_path + '_regs.h') regmap.dump_regs_to_header(header_file) header_file.close() header_file = Header(name, header_path + '_regfields.h') regmap.dump_regfields_to_header(header_file) header_file.close() header_file = Header(name, header_path + '_structs.h') regmap.dump_structs_to_header(header_file) header_file.close() header_file = Header(name, header_path + '_gvsoc.h') regmap.dump_vp_structs_to_header(header_file) header_file.close() header_file = Header(name, header_path + '_regmap.h') regmap.dump_regmap_to_header(header_file) header_file.close() header_file = Header(name, header_path + '_accessors.h') regmap.dump_accessors_to_header(header_file) header_file.close() header_file = Header(name, header_path + '_macros.h') regmap.dump_macros_to_header(header_file) header_file.close() header_file = Header(name, header_path + '_groups.h') regmap.dump_groups_to_header(header_file) header_file.close() header_file = Header(name, header_path + '_constants.h') regmap.dump_constants_to_header(header_file) header_file.close()
from bs4 import BeautifulSoup as bs import pandas as pd import requests import time # Returns the page def fetch_res(url): return requests.get(url) # Url structure: root_url + numpages root_url = "https://news.ycombinator.com/news?p=" numpages = 25 hds, links = [], [] # Generate links for us to fetch for i in range(1,numpages+1): links.append(root_url+str(i)) # Timing loop for just request fetching and parsing. start_time = time.time() # in every page, we fetch the headline, the score, and the site it originated from for link in links: page = fetch_res(link) parsed = bs(page.content, 'html.parser') headlines = parsed.find_all('a', class_='storylink') scores = parsed.find_all('span', class_='score') sitestr = parsed.find_all('span', class_='sitestr') for a,b,c in zip(headlines, scores, sitestr): hds.append([a.get_text(), int(b.get_text().split()[0]), c.get_text()]) print(time.time()-start_time,"seconds") df = pd.DataFrame(hds) df.columns = ['Title', 'Score', 'Site'] print(df.head(10))
# Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: Apache-2.0 ############################################################################## # Integration testing for the MIE workflow API # # PRECONDITIONS: # MIE base stack must be deployed in your AWS account # # Boto3 will raise a deprecation warning (known issue). It's safe to ignore. # # USAGE: # cd tests/ # pytest -s -W ignore::DeprecationWarning -p no:cacheprovider # ############################################################################### import pytest import boto3 import json import time import math import requests import urllib3 import logging from botocore.exceptions import ClientError import re import os from jsonschema import validate # local imports import validation def test_workflow_execution_api(api, api_schema, workflow_configs): api = api() urllib3.disable_warnings(urllib3.exceptions.InsecureRequestWarning) print("Running /workflow/execution API tests") for config in workflow_configs: print("----------------------------------------") print("\nTEST WORKFLOW EXECUTION CONFIGURATION: {}".format(config)) # Create the workflow # TODO: Add a check here to see if the workflow is in a deleting state (from a previous test run) and wait create_workflow_response = api.create_workflow_request(config) workflow = create_workflow_response.json() assert create_workflow_response.status_code == 200 #FIXME - validate create_workflow_response #validation.schema(workflow, api_schema["create_workflow_response"]) # Execute the workflow and wait for it to complete create_workflow_execution_response = api.create_workflow_execution_request(workflow, config) workflow_execution = create_workflow_execution_response.json() assert create_workflow_execution_response.status_code == 200 assert workflow_execution['Status'] == 'Queued' #FIXME - validate create_workflow_response #validation.schema(workflow_execution, api_schema["create_workflow_execution_response"]) workflow_execution = api.wait_for_workflow_execution(workflow_execution, 120) if config["Status"] == "OK": assert workflow_execution["Status"] == "Complete" # Check output media for expected types for outputType in config["Outputs"]: if outputType != "None": assert outputType in workflow_execution["Globals"]["Media"] else: assert workflow_execution["Status"] == "Error" # validation.stage_execution(workflow_execution, config, stack_resources, api_schema) # Delete the workflow delete_workflow_response = api.delete_stage_workflow_request(workflow) assert delete_workflow_response.status_code == 200 #Delete the workflow delete_stage_response = api.delete_stage_request(workflow) assert delete_stage_response.status_code == 200 #TODO: dynamoDB remove asset
#! /usr/bin/env python # -*- coding: UTF-8 -*- __version__ = '0.1.1' from wptranslate.translator import translate # Silent pyflakes translate
""" ================================= Compare (:mod:`macroeco.compare`) ================================= This module contains functions that compare the goodness of fit of a distribution/curve to data or the fit of two distributions/curves to each other. .. autosummary:: :toctree: generated/ nll lrt AIC AIC_compare sum_of_squares r_squared preston_bin """ from ._compare import (nll, lrt, AIC, AIC_compare, sum_of_squares, r_squared, preston_bin, pueyo_bins)
import argparse import copy import os import time from flax import linen as nn from flax import optim import jax import jax.numpy as jnp import numpy as np import ray from alpa import (parallelize, global_config, set_parallelize_options, testing, DeviceCluster, LocalPhysicalDeviceMesh) from alpa.model.bert_model import BertConfig, FlaxBertAttention, FlaxBertLayerCollection from alpa.util import (run_cmd, write_tsv, benchmark_func, list_gpu_info, count_communication_primitives) import timeit GB = 1024 ** 3 tic = time.time() def log_time_stamp(message): global tic if message: print(f" - {message}: {time.time() - tic:.2f} s") tic = time.time() def compute_data_parallel_cost(optimizer, logical_mesh, physical_mesh): """For debugging usage.""" shapes = jax.tree_util.tree_map(lambda x : np.prod(x.shape), optimizer.target) sizes = jax.tree_util.tree_leaves(shapes) cost = 0 print(logical_mesh.mesh_beta) for size in sizes: cost += logical_mesh.all_reduce_cost(size * 4, 0) #cost += physical_mesh.prof_result.estimate_all_reduce(((0,4), (1,5), (2,6), (3,7),), size / 4, "float32") #cost += physical_mesh.prof_result.estimate_all_reduce(((0,2,4,6,), (1,3,5,7)), size / 2, "float32") #cost += physical_mesh.prof_result.estimate_all_reduce(((0,1,2,3,4,5,6,7),), size, "float32") print(cost) def benchmark_transformer_one_case(benchmark_case, use_profiling): log_time_stamp(None) # Model configs batch_size, seq_len, hidden_size, num_layers, num_heads, mesh_dim0, mesh_dim1 =\ benchmark_case # Parallel configs if args.local: physical_mesh = LocalPhysicalDeviceMesh(jax.devices()) else: device_cluster = DeviceCluster() physical_mesh = device_cluster.get_physical_mesh() logical_mesh = physical_mesh.get_logical_mesh([mesh_dim0, mesh_dim1], mesh_topology="tree", inter_host_bandwidth=1, intra_host_bandwidth=30) set_parallelize_options(devices=logical_mesh) # Load profiling results if use_profiling: filename = physical_mesh.get_signature() + ".prof.pkl" if os.path.exists(filename): print(f"Load saved profiling results from {filename}") physical_mesh.load_profiling_result(filename) physical_mesh.prof_result.make_monotonic() physical_mesh.prof_result.multiply_scale(1e7) else: physical_mesh.profile_collective("all-reduce") print(f"Save profiling results to {filename}") physical_mesh.save_profiling_result(filename) log_time_stamp("Setup device mesh") @parallelize def train_step(optimizer, batch, rng_key, apply_fn): def loss_func(params): rngs = {"dropout": rng_key} out = apply_fn(params, batch["hidden_states"], batch["attention_mask"], deterministic=False, rngs=rngs)[0] return jnp.mean((out - batch["label"]) ** 2) grad = jax.grad(loss_func)(optimizer.target) new_optimizer = optimizer.apply_gradient(grad) return new_optimizer # Prepare input batch batch = { "hidden_states": jnp.ones((batch_size, seq_len, hidden_size), dtype=np.float32), "attention_mask": jnp.ones((batch_size, seq_len), dtype=np.int32), "label": jnp.ones((batch_size, seq_len, hidden_size), dtype=np.float32), } log_time_stamp("Prepare input") # Init model and optimizer model = FlaxBertLayerCollection(BertConfig( num_hidden_layers=num_layers, hidden_size=hidden_size, intermediate_size=hidden_size * 4, num_attention_heads=num_heads)) rngkey = jax.random.PRNGKey(0) params = model.init_dummy(rngkey, batch["hidden_states"], batch["attention_mask"]) optimizer = optim.Adam(1e-2).create(params) del params log_time_stamp("Init model and optimizer") # Compile executable executable = train_step.get_executable(optimizer, batch, rngkey, model.apply) log_time_stamp("Compile (driver)") physical_mesh.sync_workers() log_time_stamp("Compile (workers)") # Benchmark step time for i in range(args.niter): optimizer = train_step(optimizer, batch, rngkey, model.apply) costs = executable.get_execution_time_costs(warmup=2) log_time_stamp("Benchmark") # Check sharding strategy objective = testing.last_compiled_auto_sharding_objective or 0.0 real_mem = executable.get_total_allocation_size() hlo_text = executable.get_hlo_text() with open("last.hlo", "w") as fout: fout.write(hlo_text) n_total, n_all_reduce, n_all_gather, n_reduce_scatter, _ =\ count_communication_primitives(hlo_text) print(f"#total: {n_total}, #all-reduce: {n_all_reduce}, " f"#all-gather: {n_all_gather}, #reduce-scatter: {n_reduce_scatter}") # Log benchmark results heads = ["Type", "Model Config", "Parallel Config", "Peak Mem", "Objective", "Mean Time", "Std Time"] values = ["transformer-layer", str(benchmark_case[:-2]), str(benchmark_case[-2:]), f"{real_mem/GB:.3f}", f"{objective:.2f}", f"{np.mean(costs):.3f}", f"{np.std(costs):.3f}"] write_tsv(heads, values, "result_trans.tsv") physical_mesh.shutdown() # B = batch_size, S = seq_len, H = hidden_size, L = num_layers, # #head = num_heads, D0 = mesh_dimension_0, D1 = mesh_dimension_1 benchmark_suite_4_gpu = [ # B, S, H, L, #head, D0, D1 (32, 1024, 1536, 2, 1536//96, 4, 1), (32, 1024, 1536, 2, 1536//96, 2, 2), (32, 1024, 1536, 2, 1536//96, 1, 4), ] benchmark_suite_8_gpu = [ # B, S, H, L, #head, D0, D1 (32, 1024, 1536, 4, 1536//96, 8, 1), (32, 1024, 1536, 4, 1536//96, 4, 2), (32, 1024, 1536, 4, 1536//96, 2, 4), (32, 128, 5120, 3, 5120//128, 8, 1), (32, 128, 5120, 3, 5120//128, 4, 2), (32, 128, 5120, 3, 5120//128, 2, 4), ] def benchmark_all(use_profiling): if args.local: num_gpus = list_gpu_info().count("UUID") else: num_gpus = int(ray.cluster_resources()["GPU"]) benchmark_suites = { 4: benchmark_suite_4_gpu, 8: benchmark_suite_8_gpu, } for case in benchmark_suites[num_gpus]: # Backup global config old_global_config = copy.deepcopy(global_config.__dict__) benchmark_transformer_one_case(case, use_profiling) # Restore global config global_config.__dict__ = old_global_config if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--use-profiling", action="store_true") parser.add_argument("--niter", type=int, default=10) parser.add_argument("--local", action="store_true", help="Run on local GPUs. Do not use ray actors.") args = parser.parse_args() if not args.local: ray.init(address="auto") jax.config.update('jax_platform_name', 'cpu') global_config.use_dummy_value_for_benchmarking = True benchmark_all(args.use_profiling)
# Custom model builders from core.misc import MODELS @MODELS.register_func('UNet_model') def build_unet_model(C): from models.unet import UNet return UNet(6, 2) @MODELS.register_func('UNet_OSCD_model') def build_unet_oscd_model(C): from models.unet import UNet return UNet(26, 2) @MODELS.register_func('SiamUNet-diff_model') def build_siamunet_diff_model(C): from models.siamunet_diff import SiamUNet_diff return SiamUNet_diff(3, 2) @MODELS.register_func('SiamUNet-diff_OSCD_model') def build_siamunet_diff_oscd_model(C): from models.siamunet_diff import SiamUNet_diff return SiamUNet_diff(13, 2) @MODELS.register_func('SiamUNet-conc_model') def build_siamunet_conc_model(C): from models.siamunet_conc import SiamUNet_conc return SiamUNet_conc(3, 2) @MODELS.register_func('SiamUNet-conc_OSCD_model') def build_siamunet_conc_oscd_model(C): from models.siamunet_conc import SiamUNet_conc return SiamUNet_conc(13, 2) @MODELS.register_func('CDNet_model') def build_cdnet_model(C): from models.cdnet import CDNet return CDNet(6, 2) @MODELS.register_func('IFN_model') def build_ifn_model(C): from models.ifn import DSIFN return DSIFN() @MODELS.register_func('SNUNet_model') def build_snunet_model(C): from models.snunet import SNUNet return SNUNet(3, 2, 32) @MODELS.register_func('STANet_model') def build_stanet_model(C): from models.stanet import STANet return STANet(**C['stanet_model']) @MODELS.register_func('LUNet_model') def build_lunet_model(C): from models.lunet import LUNet return LUNet(3, 2) @MODELS.register_func('P2V_model') def build_p2v_model(C): from models.p2v import P2VNet return P2VNet(**C['p2v_model']) @MODELS.register_func('DSAMNet_model') def build_dsamnet_model(C): from models.dsamnet import DSAMNet return DSAMNet(**C['dsamnet_model']) @MODELS.register_func('BIT_model') def build_bit_model(C): from models.bit import BIT return BIT(**C['bit_model']) @MODELS.register_func('CDP_model') def build_cdp_model(C): try: import change_detection_pytorch as cdp except ModuleNotFoundError: raise ModuleNotFoundError("The change_detection.pytorch library is not available!") cdp_model_cfg = C['cdp_model'].copy() arch = cdp_model_cfg.pop('arch') encoder_name = cdp_model_cfg.pop('encoder_name') encoder_weights = cdp_model_cfg.pop('encoder_weights') in_channels = cdp_model_cfg.pop('in_channels') classes = cdp_model_cfg.pop('classes') model = cdp.create_model( arch=arch, encoder_name=encoder_name, encoder_weights=encoder_weights, in_channels=in_channels, classes=classes, **cdp_model_cfg ) return model
""" The configure.mccs module contains Python classes that represent the various aspects of MCCS configuration that may be specified in a SubArray.configure command. """ from typing import List __all__ = [ "MCCSConfiguration", "StnConfiguration", "SubarrayBeamConfiguration", "SubarrayBeamTarget" ] class SubarrayBeamTarget: """ Target encapsulates source coordinates and source metadata. The SubArrayNode ICD specifies that az and el must be provided """ # pylint: disable=too-many-arguments def __init__(self, az: float, el: float, target_name: str, reference_frame: str): """ Initialise the station configuration. :param az: Az specification with rates :param el: El specification with rates :param target_name: target name :param reference_frame: Target coordinate reference frame """ self.az = az self.el = el self.target_name = target_name self.reference_frame = reference_frame def __eq__(self, other): """ Check for equality between two SubarrayBeamTarget objects :param other: the object to check against this object :type other: SubarrayBeamTarget object :return: returns True if the objects are the same, else False :rtype: boolean """ if not isinstance(other, SubarrayBeamTarget): return False return (self.az == other.az and self.el == other.el and self.target_name == other.target_name and self.reference_frame == other.reference_frame) class StnConfiguration: """A class to hold station configuration configuration""" def __init__(self, station_id: int): """ Initialise the station configuration. :param station_id: stations id :type station_id: int """ self.station_id = station_id def __eq__(self, other): """ Check for equality between two station configuration objects :param other: the object to check against this object :type other: station configuration object :return: returns True if the objects are the same, else False :rtype: boolean """ if not isinstance(other, StnConfiguration): return False return self.station_id == other.station_id class SubarrayBeamConfiguration: """A class to hold subarray_beam configuration attributes""" def __init__( self, subarray_beam_id: int, station_ids: List[int], channels: List[List[int]], update_rate: float, target: SubarrayBeamTarget, antenna_weights: List[float], phase_centre: List[float] ): """ Initialise the station beam configuration. :param subarray_beam_id: stationbeam's id :type subarray_beam_id: int :param station_ids: station id's :type station_ids: List[int] :param channels: channels to form station beam :type channels: List[Tuple] :param update_rate: frequency of new Az/El during scan :type update_rate: float :param target: Az/El specification with target source :type target: SubarrayBeamTarget :param antenna_weights: antenna_weights :type antenna_weights: List[float] :param phase_centre: phase_centre :type phase_centre: List[float] """ self.subarray_beam_id = subarray_beam_id self.station_ids = station_ids self.channels = channels self.update_rate = update_rate self.target = target self.antenna_weights = antenna_weights self.phase_centre = phase_centre def __eq__(self, other): """ Check for equality between two station beam configuration objects :param other: the object to check against this object :type other: station beam configuration object :return: returns True if the objects are the same, else False :rtype: boolean """ if not isinstance(other, SubarrayBeamConfiguration): return False return ( self.subarray_beam_id == other.subarray_beam_id and self.station_ids == other.station_ids and self.channels == other.channels and self.update_rate == other.update_rate and self.target == other.target and self.antenna_weights == other.antenna_weights and self.phase_centre == other.phase_centre ) class MCCSConfiguration: """ Class to hold all subarray configuration. """ def __init__( self, *_, # force kwargs station_configs: List[StnConfiguration], subarray_beam_configs: List[SubarrayBeamConfiguration], ): """ Create a new MCCSConfiguration. :param station_configs: a list of station configurations :type station_configs: List[StnConfiguration] :param subarray_beam_configs: a list of subarray beam configurations :type subarray_beam_configs: List[SubarrayBeamConfiguration] """ self.station_configs = station_configs self.subarray_beam_configs = subarray_beam_configs def __eq__(self, other): """ Check for equality between two mccs configuration objects :param other: the object to check against this object :type other: mccs configuration object :return: returns True if the objects are the same, else False :rtype: boolean """ if not isinstance(other, MCCSConfiguration): return False return ( self.station_configs == other.station_configs and self.subarray_beam_configs == other.subarray_beam_configs )
#Faça um programa que abra e reproduza um arquivo de audio MP3 #pygame.init() #pygame.mixer.music.load() #pygame.mixer.music.play() #pygame.event.wait()
import pandas as pd import re from yahooquery.utils import ( _convert_to_list, _convert_to_timestamp, _history_dataframe, _flatten_list) from yahooquery.base import _YahooFinance class Ticker(_YahooFinance): """ Base class for interacting with Yahoo Finance API Attributes ---------- symbols: str or list Symbol or list collection of symbols Keyword Arguments ----------------- formatted: bool, default False, optional Quantitative values are given as dictionaries with at least two keys: 'raw' and 'fmt'. The 'raw' key expresses value numerically and the 'fmt' key expresses the value as a string. See Notes for more detail asynchronous: bool, default False, optional Defines whether the requests are made synchronously or asynchronously. max_workers: int, default 8, optional Defines the number of workers used to make asynchronous requests. This only matters when asynchronous=True proxies: dict, default None, optional Allows for the session to use a proxy when making requests Notes ----- When formatted is set to True, all quote_summary modules will return as dictionaries. There are two reasons for this: 1. Quantitative values are expressed as dictionaries. For example: "totalPay": { "raw": 115554666, "fmt": "11.56M", "longFmt": "11,555,466" } When formatted is set to False, the _format_data method will return the value in the "raw" key. 2. Dates are either expressed as timestamps: "governanceEpochDate": 1570147200 Or as dictionaries: "exDividendDate": { "raw": 1573084800, "fmt": "2019-11-07" } When formatted is set to False, the _format_data method will return the date expressed in the format YYYY-MM-DD by either converting from the timestamp or retrieving the "fmt" key. """ def __init__(self, symbols, **kwargs): self._symbols = _convert_to_list(symbols) super(Ticker, self).__init__(**kwargs) def _quote_summary(self, modules): kwargs = {} params = {'modules': ','.join(modules)} if len(modules) == 1: kwargs.update({'addl_key': modules[0]}) data = self._get_data(key='quoteSummary', params=params, **kwargs) dates = _flatten_list( [self._MODULES_DICT[module]['convert_dates'] for module in modules]) return data if self.formatted else self._format_data(data, dates) def _quote_summary_dataframe(self, module, **kwargs): data = self._quote_summary([module]) if not kwargs.get('data_filter'): data_filter = self._MODULES_DICT[module]['filter'] kwargs.update({'data_filter': data_filter}) return self._to_dataframe(data, **kwargs) @property def symbols(self): return self._symbols @symbols.setter def symbols(self, symbols): self._symbols = _convert_to_list(symbols) def _to_dataframe(self, data, **kwargs): if not self.formatted: dataframes = [] try: for symbol in self.symbols: final_data = data[symbol][kwargs.get('data_filter')] if \ kwargs.get('data_filter') else data[symbol] if kwargs.get('from_dict', False): df = pd.DataFrame( [(k, v) for d in final_data for k, v in d.items()]) df.set_index(0, inplace=True) df.columns = [symbol] else: df = pd.DataFrame(final_data) dataframes.append(df) if kwargs.get('from_dict', False): df = pd.concat(dataframes, axis=1) else: df = pd.concat( dataframes, keys=self.symbols, names=['symbol', 'row'], sort=False) return df except TypeError: return data else: return data @property def all_modules(self): """ Returns all quoteSummary modules, indexed by module title for each symbol Notes ----- Only returns JSON """ return self._quote_summary( self._CONFIG['quoteSummary']['query']['modules']['options']) def get_modules(self, modules): """ Obtain specific quoteSummary modules for given symbol(s) Parameters ---------- modules: list or str Desired modules for retrieval Notes ----- Only returns JSON Raises ------ ValueError If invalid module is specified """ all_modules = \ self._CONFIG['quoteSummary']['query']['modules']['options'] if not isinstance(modules, list): modules = re.findall(r"[a-zA-Z]+", modules) if any(elem not in all_modules for elem in modules): raise ValueError(""" One of {} is not a valid value. Valid values are {}. """.format( ', '.join(modules), ', '.join(all_modules) )) return self._quote_summary(modules) @property def asset_profile(self): """Asset Profile Geographical and business summary data for given symbol(s). Returns ------- dict assetProfile module data """ return self._quote_summary(['assetProfile']) @property def calendar_events(self): """Calendar Events Earnings and Revenue expectations for upcoming earnings date for given symbol(s) Returns ------- dict calendarEvents module data """ return self._quote_summary(['calendarEvents']) @property def earnings(self): """Earnings Historical earnings data for given symbol(s) Returns ------- dict earnings module data """ return self._quote_summary(['earnings']) @property def earnings_trend(self): """Earnings Trend Historical trend data for earnings and revenue estimations for given symbol(s) Returns ------- dict earningsTrend module data """ return self._quote_summary(['earningsTrend']) @property def esg_scores(self): """ESG Scores Data related to a given symbol(s) environmental, social, and governance metrics Returns ------- dict esgScores module data """ return self._quote_summary(['esgScores']) @property def financial_data(self): """Financial Data Financial KPIs for given symbol(s) Returns ------- dict financialData module data """ return self._quote_summary(['financialData']) @property def news(self): """News articles related to given symbol(s) Obtain news articles related to a given symbol(s). Data includes the title of the article, summary, url, author_name, publisher Notes ----- It's recommended to use only one symbol for this property as the data returned does not distinguish between what symbol the news stories belong to Returns ------- dict """ return self._get_data( 'news', {}, **{'list_result': True}) @property def index_trend(self): """Index Trend Trend data related given symbol(s) index, specificially PE and PEG ratios Returns ------- dict indexTrend module data """ return self._quote_summary(['indexTrend']) @property def industry_trend(self): """Industry Trend Seems to be deprecated Returns ------- dict industryTrend module data """ return self._quote_summary(['industryTrend']) @property def key_stats(self): """Key Statistics KPIs for given symbol(s) (PE, enterprise value, EPS, EBITA, and more) Returns ------- dict defaultKeyStatistics module data """ return self._quote_summary(['defaultKeyStatistics']) @property def major_holders(self): """Major Holders Data showing breakdown of owners of given symbol(s), insiders, institutions, etc. Returns ------- dict majorHoldersBreakdown module data """ return self._quote_summary(['majorHoldersBreakdown']) @property def page_views(self): """Page Views Short, Mid, and Long-term trend data regarding a symbol(s) page views Returns ------- dict pageViews module data """ return self._quote_summary(['pageViews']) @property def price(self): """Price Detailed pricing data for given symbol(s), exchange, quote type, currency, market cap, pre / post market data, etc. Returns ------- dict price module data """ return self._quote_summary(['price']) @property def quote_type(self): """Quote Type Stock exchange specific data for given symbol(s) Returns ------- dict quoteType module data """ return self._quote_summary(['quoteType']) @property def recommendations(self): """Recommendations Retrieve the top 5 symbols that are similar to a given symbol Returns ------- dict """ return self._get_data('recommendations') @property def share_purchase_activity(self): """Share Purchase Activity High-level buy / sell data for given symbol(s) insiders Returns ------- dict netSharePurchaseActivity module data """ return self._quote_summary(['netSharePurchaseActivity']) @property def summary_detail(self): """Summary Detail Contains similar data to price endpoint Returns ------- dict summaryDetail module data """ return self._quote_summary(['summaryDetail']) @property def summary_profile(self): """Summary Profile Data related to given symbol(s) location and business summary Returns ------- dict summaryProfile module data """ return self._quote_summary(['summaryProfile']) @property def technical_insights(self): """Technical Insights Technical trading information as well as company metrics related to innovativeness, sustainability, and hiring. Metrics can also be compared against the company's sector Returns ------- dict """ return self._get_data('insights') @property def validation(self): """Symbol Validation Validate existence of given symbol(s) Returns ------- dict """ return self._get_data('validation') def _financials(self, financials_type, frequency, premium=False): try: time_dict = self.FUNDAMENTALS_TIME_ARGS[frequency[:1].lower()] prefix = time_dict['prefix'] period_type = time_dict['period_type'] except KeyError as e: raise(e) key = 'fundamentals_premium' if premium else 'fundamentals' types = self._CONFIG[key]['query']['type']['options'][financials_type] prefixed_types = ['{}{}'.format(prefix, t) for t in types] + \ ['trailing{}'.format(t) for t in types] data = self._get_data(key, {'type': ','.join(prefixed_types)}, **{ 'list_result': True}) dataframes = [] try: for k in data.keys(): if isinstance(data[k], str) or data[k][0].get('description'): return data dataframes.extend([ self._financials_dataframes(data[k][i], period_type) for i in range(len(data[k]))]) except AttributeError: return data try: df = pd.concat(dataframes) for p in [prefix, 'trailing']: df['dataType'] = df['dataType'].apply( lambda x: str(x).lstrip(p)) df['asOfDate'] = pd.to_datetime(df['asOfDate'], format='%Y-%m-%d') df = df.pivot_table( index=['symbol', 'asOfDate', 'periodType'], columns='dataType', values='reportedValue') return pd.DataFrame(df.to_records()).set_index('symbol') except ValueError: return '{} data unavailable for {}'.format( financials_type.replace('_', ' ').title(), ', '.join(self._symbols)) def _financials_dataframes(self, data, period_type): data_type = data['meta']['type'][0] symbol = data['meta']['symbol'][0] try: df = pd.DataFrame.from_records(data[data_type]) df['reportedValue'] = \ df['reportedValue'].apply(lambda x: x.get('raw')) df['dataType'] = data_type df['symbol'] = symbol df['periodType'] = data[data_type][-1].get('periodType', period_type) return df except KeyError: # No data is available for that type pass @property def valuation_measures(self): """Valuation Measures Retrieves valuation measures for most recent four quarters as well as the most recent date Notes ----- Only quarterly data is available for non-premium subscribers """ return self._financials('valuation', 'q') def balance_sheet(self, frequency='a'): """Balance Sheet Retrieves balance sheet data for most recent four quarters or most recent four years as well as trailing 12 months. Parameters ---------- frequency: str, default 'A', optional Specify either annual or quarterly balance sheet. Value should be 'a' or 'q'. Returns ------- pandas.DataFrame """ return self._financials('balance_sheet', frequency) def cash_flow(self, frequency='a'): """Cash Flow Retrieves cash flow data for most recent four quarters or most recent four years as well as the trailing 12 months Parameters ---------- frequency: str, default 'a', optional Specify either annual or quarterly cash flow statement. Value should be 'a' or 'q'. Returns ------- pandas.DataFrame """ return self._financials('cash_flow', frequency) @property def company_officers(self): """Company Officers Retrieves top executives for given symbol(s) and their total pay package. Uses the assetProfile module to retrieve data Returns ------- pandas.DataFrame assetProfile module data """ data = self._quote_summary(["assetProfile"]) return self._to_dataframe(data, data_filter="companyOfficers") @property def earning_history(self): """Earning History Data related to historical earnings (actual vs. estimate) for given symbol(s) Returns ------- pandas.DataFrame earningsHistory module data """ return self._quote_summary_dataframe('earningsHistory') @property def fund_ownership(self): """Fund Ownership Data related to top 10 owners of a given symbol(s) Returns ------- pandas.DataFrame fundOwnership module data """ return self._quote_summary_dataframe('fundOwnership') @property def grading_history(self): """Grading History Data related to upgrades / downgrades by companies for a given symbol(s) Returns ------- pandas.DataFrame upgradeDowngradeHistory module data """ return self._quote_summary_dataframe('upgradeDowngradeHistory') def income_statement(self, frequency='a'): """Income Statement Retrieves income statement data for most recent four quarters or most recent four years as well as trailing 12 months. Parameters ---------- frequency: str, default 'A', optional Specify either annual or quarterly income statement. Value should be 'a' or 'q'. Returns ------- pandas.DataFrame """ return self._financials('income_statement', frequency) @property def insider_holders(self): """Insider Holders Data related to stock holdings of a given symbol(s) insiders Returns ------- pandas.DataFrame insiderHolders module data """ return self._quote_summary_dataframe('insiderHolders') @property def insider_transactions(self): """Insider Transactions Data related to transactions by insiders for a given symbol(s) Returns ------- pandas.DataFrame insiderTransactions module data """ return self._quote_summary_dataframe('insiderTransactions') @property def institution_ownership(self): """Institution Ownership Top 10 owners of a given symbol(s) Returns ------- pandas.DataFrame institutionOwnership module data """ return self._quote_summary_dataframe('institutionOwnership') @property def recommendation_trend(self): """Recommendation Trend Data related to historical recommendations (buy, hold, sell) for a given symbol(s) Returns ------- pandas.DataFrame recommendationTrend module data """ return self._quote_summary_dataframe('recommendationTrend') @property def sec_filings(self): """SEC Filings Historical SEC filings for a given symbol(s) Returns ------- pandas.DataFrame secFilings endpoint data """ return self._quote_summary_dataframe('secFilings') # FUND SPECIFIC def _fund_holdings(self, holding_type): data = self.fund_holding_info for symbol in self.symbols: try: data[symbol] = data[symbol][holding_type] except TypeError: pass return data @property def fund_bond_holdings(self): """Fund Bond Holdings Retrieves aggregated maturity and duration information for a given symbol(s) .. warning:: This endpoint will only return data for specific securities (funds and etfs) Returns ------- dict topHoldings module data subset """ return self._fund_holdings("bondHoldings") @property def fund_category_holdings(self): """Fund Category Holdings High-level holding breakdown (cash, bonds, equity, etc.) for a given symbol(s) .. warning:: This endpoint will only return data for specific securities (funds and etfs) Returns ------- pandas.DataFrame topHoldings module data subset """ data_dict = self._quote_summary(["topHoldings"]) for symbol in self.symbols: for key in self._FUND_DETAILS: try: del data_dict[symbol][key] except TypeError: return data_dict return pd.DataFrame( [pd.Series(data_dict[symbol]) for symbol in self.symbols], index=self.symbols) @property def fund_equity_holdings(self): """Fund Equity Holdings Retrieves aggregated priceTo____ data for a given symbol(s) .. warning:: This endpoint will only return data for specific securities (funds and etfs) Returns ------- dict topHoldings module data subset """ return self._fund_holdings("equityHoldings") @property def fund_performance(self): """Fund Performance Historical return data for a given symbol(s) and symbol(s) specific category .. warning:: This endpoint will only return data for specific securities (funds and etfs) Returns ------- pandas.DataFrame fundPerformance module data """ return self._quote_summary(["fundPerformance"]) @property def fund_profile(self): """Fund Profile Summary level information for a given symbol(s) .. warning:: This endpoint will only return data for specific securities (funds and etfs) Returns ------- pandas.DataFrame fundProfile endpoint data """ return self._quote_summary(["fundProfile"]) @property def fund_holding_info(self): """Fund Holding Information Contains information for a funds top holdings, bond ratings, bond holdings, equity holdings, sector weightings, and category breakdown .. warning:: This endpoint will only return data for specific securities (funds and etfs) Returns ------- dict topHoldings module data """ return self._quote_summary(["topHoldings"]) @property def fund_top_holdings(self): """Fund Top Holdings Retrieves Top 10 holdings for a given symbol(s) .. warning:: This endpoint will only return data for specific securities (funds and etfs) Returns ------- pandas.DataFrame topHoldings module data subset """ return self._quote_summary_dataframe( 'topHoldings', data_filter='holdings') @property def fund_bond_ratings(self): """Fund Bond Ratings Retrieves aggregated bond rating data for a given symbol(s) .. warning:: This endpoint will only return data for specific securities (funds and etfs) Returns ------- pandas.DataFrame topHoldings module data subset """ return self._quote_summary_dataframe( 'topHoldings', data_filter='bondRatings', from_dict=True) @property def fund_sector_weightings(self): """Fund Sector Weightings Retrieves aggregated sector weightings for a given symbol(s) .. warning:: This endpoint will only return data for specific securities (funds and etfs) Returns ------- pandas.DataFrame topHoldings module data subset """ return self._quote_summary_dataframe( 'topHoldings', data_filter='sectorWeightings', from_dict=True) # PREMIUM def p_balance_sheet(self, frequency='a'): """Balance Sheet Retrieves balance sheet data for most recent four quarters or most recent four years as well as trailing 12 months. Parameters ---------- frequency: str, default 'A', optional Specify either annual or quarterly balance sheet. Value should be 'a' or 'q'. Notes ----- You must be subscribed to Yahoo Finance Premium and be logged in for this method to return any data Returns ------- pandas.DataFrame """ return self._financials('balance_sheet', frequency, premium=True) def p_cash_flow(self, frequency='a'): """Cash Flow Retrieves cash flow data for most recent four quarters or most recent four years as well as the trailing 12 months Parameters ---------- frequency: str, default 'a', optional Specify either annual or quarterly cash flow statement. Value should be 'a' or 'q'. Notes ----- You must be subscribed to Yahoo Finance Premium and be logged in for this method to return any data Returns ------- pandas.DataFrame """ return self._financials('cash_flow', frequency, premium=True) def p_income_statement(self, frequency='a'): """Income Statement Retrieves income statement data for most recent four quarters or most recent four years as well as trailing 12 months. Parameters ---------- frequency: str, default 'A', optional Specify either annual or quarterly income statement. Value should be 'a' or 'q'. Notes ----- You must be subscribed to Yahoo Finance Premium and be logged in for this method to return any data Returns ------- pandas.DataFrame """ return self._financials('income_statement', frequency, premium=True) @property def p_company_360(self): return self._get_data('company360') @property def p_technical_insights(self): return self._get_data('premium_insights') @property def p_portal(self): return self._get_data('premium_portal') def p_reports(self, report_id): return self._get_data('reports', {'reportId': report_id}) def p_ideas(self, idea_id): return self._get_data('trade_ideas', {'ideaId': idea_id}) @property def p_technical_events(self): return self._get_data('technical_events') def p_valuation_measures(self, frequency='q'): """Valuation Measures Retrieves valuation measures for all available dates for given symbol(s) """ return self._financials('valuation', frequency, premium=True) @property def p_value_analyzer(self): return self._get_data('value_analyzer') @property def p_value_analyzer_drilldown(self): return self._get_data('value_analyzer_drilldown') # HISTORICAL PRICE DATA def history(self, period='ytd', interval='1d', start=None, end=None): """ Historical pricing data Pulls historical pricing data for a given symbol(s) Parameters ---------- period: str, default ytd, optional Length of time interval: str, default 1d, optional Time between data points start: str or datetime.datetime, default None, optional Specify a starting point to pull data from. Can be expressed as a string with the format YYYY-MM-DD or as a datetime object end: str of datetime.datetime, default None, optional Specify a ending point to pull data from. Can be expressed as a string with the format YYYY-MM-DD or as a datetime object. Returns ------- pandas.DataFrame historical pricing data """ config = self._CONFIG['chart'] periods = config['query']['range']['options'] intervals = config['query']['interval']['options'] if start or period is None or period.lower() == 'max': start = _convert_to_timestamp(start) end = _convert_to_timestamp(end, start=False) params = {'period1': start, 'period2': end} else: period = period.lower() if period not in periods: raise ValueError("Period values must be one of {}".format( ', '.join(periods))) params = {'range': period} if interval not in intervals: raise ValueError("Interval values must be one of {}".format( ', '.join(intervals))) params['interval'] = interval.lower() data = self._get_data('chart', params) df = self._historical_data_to_dataframe(data) return df def _historical_data_to_dataframe(self, data): d = {} for symbol in self._symbols: if 'timestamp' in data[symbol]: d[symbol] = _history_dataframe(data, symbol) else: d[symbol] = data[symbol] if all(isinstance(d[key], pd.DataFrame) for key in d): if len(d) == 1: df = d[self._symbols[0]] else: df = pd.concat(list(d.values()), keys=list(d.keys()), names=['symbol', 'date'], sort=False) columns = list(df.columns) if 'dividends' in columns: df[['dividends']] = df[['dividends']].fillna(value=0) columns.remove('dividends') if 'splits' in columns: df[['splits']] = df[['splits']].fillna(value=0) columns.remove('splits') try: df[columns] = df.groupby(['symbol'])[columns].ffill() except (KeyError, ValueError): df.fillna(method='ffill', inplace=True) return df return d @property def option_chain(self): data = self._get_data('options', {'getAllData': True}) dataframes = [] for symbol in self._symbols: try: if data[symbol]['options']: dataframes.append( self._option_dataframe(data[symbol]['options'], symbol) ) except TypeError: pass if dataframes: df = pd.concat(dataframes, sort=False) df.set_index( ['symbol', 'expiration', 'optionType'], inplace=True) df.rename_axis( ['symbol', 'expiration', 'optionType'], inplace=True) df.fillna(0, inplace=True) return df return 'No option chain data found' def _option_dataframe(self, data, symbol): dataframes = [] for optionType in ['calls', 'puts']: df = pd.concat( [pd.DataFrame(data[i][optionType]) for i in range(len(data))]) df['optionType'] = optionType dataframes.append(df) df = pd.concat(dataframes, sort=False) df['symbol'] = symbol try: df['expiration'] = pd.to_datetime(df['expiration'], unit='s') df['lastTradeDate'] = pd.to_datetime(df['lastTradeDate'], unit='s') except ValueError: df['expiration'] = [d.get('fmt') for d in df['expiration']] except KeyError: pass return df
# -*- coding: utf-8 -*- # @Time : 2019/1/27 下午4:09 # @Author : shiwei-Du # @Email : dusw0214@126.com # @File : __init__.py # @Software: PyCharm
# -*- coding: utf-8 -*- from reversion import revisions as reversion from django.db.models import Count from optparse import make_option from django.core.management.base import BaseCommand from website.apps.core.models import Language def condense_classification(classif): condensers = { 'Austronesian': "An", "Malayo-Polynesian": "MP", "Central-Eastern": "CE", "Eastern": "E", "South Halmahera-West New Guinea": "SHWNG", "Western Oceanic": "WOc", "Oceanic": "Oc", "West New Guinea": "WNG", } for old, new in condensers.items(): classif = classif.replace(old, new) return classif class Command(BaseCommand): args = 'tally' help = 'Tallys the counts of language data' output_transaction = True def handle(self, *args, **options): tally = {} families = {} languages = Language.objects.annotate(count=Count('lexicon')).all() #languages = languages.filter(count__gt=0) languages = languages.order_by("classification") prev_classif = None total = 0 for count, lang in enumerate(languages, 1): if lang.classification != prev_classif: print(condense_classification(lang.classification)) if lang.count < 50: strength = ' ' elif lang.count < 100: strength = '* ' elif lang.count < 200: strength = '** ' else: strength = '***' print(" ".join([ "\t", '%3d' % count, "%3s" % lang.isocode, lang.ljust(50), '%5d' % lang.count, strength ])) tally[strength] = tally.get(strength, 0) + 1 for family in lang.family.all(): families[family] = families.get(family, 0) + 1 prev_classif = lang.classification total += lang.count print('-' * 76) print('%d languages' % count) print('%d lexical items' % total) print('-' * 76) families = sorted(families.items(), key=lambda x: x[1], reverse=True) for f, n in families: print(' %20s = %3d' % (f, n)) print('-' * 76) print(' 0-50 = %3d' % tally[' ']) print(' 50-100 = %3d' % tally['* ']) print('100-200 = %3d' % tally['** ']) print('200-+ = %3d' % tally['***']) print('-' * 76)
# Copyright (c) 2013, TeamPRO and contributors # For license information, please see license.txt from __future__ import unicode_literals import frappe,json from frappe import msgprint, _ def execute(filters=None): columns, data = [], [] row = [] columns = get_columns() data = get_data(filters) return columns, data def get_data(filters): row = [] data = [] resource = '' if filters.status == 'All': tasks = frappe.get_all('Task',{'service':'IT-SW'},['*']) else: tasks = frappe.get_all('Task',{'service':'IT-SW','status':filters.status},['*']) for task in tasks: awh = 0 project_status = frappe.get_value('Project',task.project,'status') query = """select sum(hours) as hours from `tabTimesheet Detail` where task= '{task}' """.format(task=task.name) ts_dates = frappe.db.sql("""select min(date(from_time)) as tsd,max(date(to_time)) as ted from `tabTimesheet Detail` where task= '{task}' and date(from_time) between {from_date} and {to_date}""".format(task=task.name,from_date=filters.from_date,to_date=filters.to_date),as_dict=1)[0] tsd = ts_dates.tsd ted = ts_dates.ted timesheet_hours = frappe.db.sql(query,as_dict=1)[0] if timesheet_hours.hours: awh = round(timesheet_hours.hours,2) if task._assign: assigned_to = json.loads(task._assign) if assigned_to: resource = frappe.get_value('Employee',{'user_id':assigned_to[0]},['short_code']) row = [task.name,task.subject,task.status,task.project,project_status,task.exp_start_date,task.exp_end_date,task.expected_time,awh,resource,tsd,ted] data.append(row) return data def get_columns(): return [ { "label": _("Task ID"), "fieldname": "task", "fieldtype": "Link", "options": "Task", "width": 120 }, { "label": _("Subject"), "fieldname": "subject", "fieldtype": "Data", "width": 300 }, { "label": _("Task Status"), "fieldname": "task_status", "fieldtype": "Data", "width": 120 }, { "label": _("Project"), "fieldname": "project", "fieldtype": "Link", "options": "Project", "width": 120 }, { "label": _("Project Status"), "fieldname": "project_status", "fieldtype": "Data", "width": 120 }, { "label": _("ESD"), "fieldname": "esd", "fieldtype": "Date", "width": 100 }, { "label": _("EED"), "fieldname": "eed", "fieldtype": "Date", "width": 100 }, { "label": _("EWH"), "fieldname": "ewh", "fieldtype": "float", "width": 80 }, { "label": _("AWH"), "fieldname": "awh", "fieldtype": "float", "width": 80 }, { "label": _("Resource"), "fieldname": "resource", "fieldtype": "Data", "width": 120 }, { "label": _("TSD"), "fieldname": "tsd", "fieldtype": "Date", "width": 100 }, { "label": _("TED"), "fieldname": "ted", "fieldtype": "Date", "width": 100 } ] return columns
''' @author: Nia Catlin Various config file handling routines ''' import ConfigParser, os, time import _winreg CONFIG_FILE = None config = None def writeConfig(): try: with open(CONFIG_FILE, 'w') as configfile: config.write(configfile)#,space_around_delimiters=False) except: print('Failed to write config file') def isActive(trigger): if trigger in config.get('TRIGGERS','alwaystriggers').split(','): return (True,'Always') elif trigger in config.get('TRIGGERS','lockedtriggers').split(','): return (True,'Locked') else: return (False,False) def loadConfig(): global CONFIG_FILE try: key = _winreg.OpenKey(_winreg.HKEY_LOCAL_MACHINE,"SOFTWARE\Lockwatcher") CONFIG_FILE = str(_winreg.QueryValueEx(key,'ConfigPath')[0]) except: key = _winreg.OpenKey(_winreg.HKEY_LOCAL_MACHINE,"SOFTWARE\Wow6432Node\Lockwatcher") CONFIG_FILE = str(_winreg.QueryValueEx(key,'ConfigPath')[0]) configDir = os.path.split(CONFIG_FILE)[0] time.sleep(0.1) if not os.path.exists(CONFIG_FILE) or os.path.getsize(CONFIG_FILE)<20: global config print('writing new config') config = ConfigParser.ConfigParser() config.add_section('TRIGGERS') config.set('TRIGGERS','bluetooth_device_id','') config.set('TRIGGERS','kbd_kill_combo_1','') config.set('TRIGGERS','kbd_kill_combo_2','') config.set('TRIGGERS','low_temp','21') config.set('TRIGGERS','lockedtriggers','E_DEVICE,E_CHASSIS_MOTION,E_ROOM_MOTION,E_NET_CABLE_IN,E_NET_CABLE_OUT,E_KILL_SWITCH_2') config.set('TRIGGERS','alwaystriggers','E_KILL_SWITCH_1') config.set('TRIGGERS','dismount_tc','False') config.set('TRIGGERS','exec_shellscript','False') config.set('TRIGGERS','script_timeout','0') config.set('TRIGGERS','adapterconguids','') config.set('TRIGGERS','adapterdisconguids','') config.set('TRIGGERS','ballistix_log_file','') config.set('TRIGGERS','tc_path','') config.set('TRIGGERS','ispy_path','') config.set('TRIGGERS','room_cam_id','') defaultLogPath = os.path.join(configDir,'lw-log.txt') config.set('TRIGGERS','logfile',defaultLogPath) config.set('TRIGGERS','debuglog','False') config.set('TRIGGERS','test_mode','False') config.add_section('EMAIL') config.set('EMAIL','email_alert','False') config.set('EMAIL','email_imap_host','imap.changeme.domain') config.set('EMAIL','email_smtp_host','smtp.changeme.domain') config.set('EMAIL','email_username','changeme') config.set('EMAIL','email_password','changeme') config.set('EMAIL','email_secret','changeme') config.set('EMAIL','bad_command_limit','3') config.set('EMAIL','enable_remote','False') config.set('EMAIL','email_motion_picture','False') config.set('EMAIL','alert_email_address','yourphone@mail.domain') config.set('EMAIL','command_email_address','yourphone@mail.domain') config.set('EMAIL','sender_email_address','yourpc@mail.domain') writeConfig() else: config = ConfigParser.ConfigParser() config.read(CONFIG_FILE) return config config = loadConfig() def reloadConfig(): global config config = loadConfig()
import os import cv2 import argparse import numpy as np from tqdm import tqdm from PIL import Image # argparse parser = argparse.ArgumentParser() parser.add_argument('--load_path', help='load_path', type=str) parser.add_argument('--save_path', help='save_path', type=str) args = parser.parse_args() def get_path(): load_path = args.load_path save_path = args.save_path return load_path, save_path def get_video_list(load_path): video_list = os.listdir(load_path) return video_list def make_dir(save_path): save_path = os.path.abspath(save_path) if not os.path.isdir(save_path): os.mkdir(save_path) def get_video_frame(video, load_path, save_path): save_path = os.path.abspath(save_path) video_save_path = os.path.join(save_path, video[:-4]) video_save_path = os.path.abspath(video_save_path) if not os.path.isdir(video_save_path): os.mkdir(video_save_path) cap = cv2.VideoCapture(os.path.join(load_path, video)) fgbg = cv2.bgsegm.createBackgroundSubtractorMOG() frame_len = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) for i in range(frame_len): ret, frame = cap.read() frame = cv2.resize(frame, dsize=(256, 256), interpolation=cv2.INTER_LINEAR) gray= cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) fgmask = fgbg.apply(frame) os.chdir(video_save_path) cv2.imwrite('{}.png'.format(i), gray) cv2.imwrite('{}_fgbg.png'.format(i), fgmask) cap.release() def main(): load_path, save_path = get_path() video_list = get_video_list(load_path) make_dir(save_path) for i in tqdm(range(len(video_list)), mininterval=1): video = video_list[i] get_video_frame(video, load_path, save_path) print('전체 완료') if __name__ == '__main__': main()
# for item in "Python": # print(item) # for item in ["Mosh", "John", "Sarah"]: # print(item) # for item in [1, 2, 3, 4]: # print(item) # for item in range(10): # print(item) # for item in range(5, 10, 2): # print(item) """ write a program to calculate all shopping item in shopping cart """ prices = [10, 20, 30] for price in prices: print(f"Total: {sum(prices)}") break prices = [10, 20, 30] total = 0 for price in prices: total += price print(f"Total: {total}")
# Generated by Django 2.0.8 on 2019-06-17 08:16 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('wagtailimages', '0001_squashed_0021'), ('app_challenges_sections_units', '0010_auto_20190617_0808'), ] operations = [ migrations.AddField( model_name='challengesectionunit', name='thumbnail', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='+', to='wagtailimages.Image'), ), ]
import pytest # Pytest library for Python unit testing from ukpostcodes.postcode import Postcode # List of all correct and valid UK post codes formatting_positive_value = [ "EC1A 1BB", # already formatted "EC1A1BB", # uppercase but no space "ec1a1bb", # lower case with no spaces # Other combinations with varied length string "w1a0ax", "m11ae", "b338th", "cr26xh", "dn551pt", "BL01AA" ] # List of invalid postcodes with wrong length formatting_negative_value_length = [ "EC1A1BBasasas", # more than 8 characters "EC", # less than 5 characters ] # List of invalid postcodes with special characters formatting_negative_value_special_char = [ "ec1#bb", # special symbols # "m1$1ae" # special symbols $ ] # List of all invalid UK post codes validate_negative_values = [ 'QC1A 1BB', # Invalid: The letters QVX are not used in the first position 'VC1A 1BB', # Invalid: The letters QVX are not used in the first position 'XC1A 1BB', # Invalid: The letters QVX are not used in the first position 'AI1A 1BB', # Invalid: The letters IJZ are not used in the second position 'AJ1A 1BB', # Invalid: The letters IJZ are not used in the second position 'A9X 0AX', # Invalid: only letters to appear in the third position are ABCDEFGHJKPSTUW 'AA9C 0AX', # Invalid: only letters to appear in the fourth position are ABEHMNPRVWXY 'AA9A 9CZ', # Invalid: inward code do not use CIKMOV 'BBB 1AA', # Invalid: all letters in outward code '1111 1AA', # Invalid: all digits in Outward code '99AA 1AA', # Invalid: all Digits post code area 'AA1 AA', # Invalid: all letters in inward code, 'AB1 1AA', # Special Case 'BR11 1AA', # Special case 'BL1 1AA' ] @pytest.fixture(params=formatting_positive_value) def formatting_positive_value(request): return request.param @pytest.fixture(params=formatting_negative_value_length) def formatting_negative_value_length(request): return request.param @pytest.fixture(params=formatting_negative_value_special_char) def formatting_negative_value_special_char(request): return request.param def test_positive_format_postcode1(formatting_positive_value): """Function to test format_postcode method for positive cases arguments: formatting_positive_value -- list of valid uk post codes """ postcode = Postcode() print(postcode.format_postcode(formatting_positive_value)) # Message is "Formatted" if formatting of post code is successful assert postcode.message == "Formatted" def test_positive_format_postcode2(): """Function to test format_postcode method for positive cases arguments: formatting_positive_value -- list of valid uk post codes """ postcode = Postcode() print(postcode.format_postcode("w1a0ax")) assert postcode.message == "Formatted" and postcode.formatted_postcode == "W1A 0AX" def test_negative_format_postcode1(formatting_negative_value_length): """Function to test format_postcode method for negative cases(invalid length) arguments: formatting_positive_value -- list of post codes with invalid length """ postcode = Postcode() print(postcode.format_postcode(formatting_negative_value_length)) assert postcode.valid == False and postcode.message == "ERROR: 5 to 8 characters only" def test_negative_format_postcode2(formatting_negative_value_special_char): """Function to test format_postcode method for negative cases(Special chars) arguments: formatting_positive_value -- list of post codes with special char """ postcode = Postcode() print(postcode.format_postcode(formatting_negative_value_special_char)) assert postcode.valid == False and postcode.message == "ERROR: No special Characters allowed" @pytest.fixture(params=validate_negative_values) def validate_negative_values(request): return request.param def test_positive_validate_postcode1(formatting_positive_value): """Function to test validate_postcode method for positive cases arguments: formatting_positive_value -- list of valid uk post codes """ postcode = Postcode() postcode.validate_postcode(formatting_positive_value) assert postcode.valid == True and postcode.message == "VALID: the post code is valid" def test_negative_validate_postcode1(validate_negative_values): """Function to test validate_postcode method for negative cases arguments: validate_negative_values -- invalid uk post codes """ postcode = Postcode() postcode.split_validate_postcode(validate_negative_values) assert postcode.valid == False and postcode.message == "INVALID: the post code is invalid" def test_positive_split_postcode1(): """Function to test split_validate_postcode method for positive cases; negative cases are handled by the methods this function call """ postcode = Postcode() postcode.split_validate_postcode("SW1W 0NY") # Valid is equal to true for valid uk post codes and they splitted into respective components assert postcode.valid == True and postcode.postcode_area == "SW" and postcode.postcode_district == "1W" and\ postcode.postcode_sector == "0" and postcode.postcode_unit == "NY" def test_positive_split_postcode2(): """Function to test split_validate_postcode method for positive cases; negative cases are handled by the methods this function call """ postcode = Postcode() postcode.split_validate_postcode("M1 1AE") # Valid is equal to true for valid uk post codes and they splitted into respective components assert postcode.valid == True and postcode.postcode_area == "M" and postcode.postcode_district == "1" and\ postcode.postcode_sector == "1" and postcode.postcode_unit == "AE"
import os import time """ NOTE: @ time of crawling, The domain link should be like http://cse.nitk.ac.in and not like http://cse.nitk.ac.in/ TO DO: remove repeated lines in levels array """ fp = open("sitemap_links.txt", "r") site_links = [] n = 10 levels = [[] for x in range(n)] link = fp.readline() # creating array of links by reading sitemap_links.txt file while link: site_links.append(link[:-1]) link = fp.readline() # print(site_links) cur_link = site_links[0] # print(levels) # for 1st iteration for i in range(len(site_links)): part_of_site = site_links[i][:len(cur_link)] if part_of_site == cur_link: site_links[i] = site_links[i][len(cur_link) + 1:] levels[0].append(cur_link) print(site_links) """ for i in range(len(site_links)): if site_links[i] == '': pass else: print(site_links[i]) """ set_new_cur_link = 1 k = 1 this_level_arr = [] relation = [[[] for y in range(len(site_links))] for x in range(n)] # remaining iterations # k = level while k < n: # creating this level headers array this_level_arr = [] for j in range(len(site_links)): if site_links[j] == '': pass elif '/' in site_links[j]: slash_ind = site_links[j].index('/') link = site_links[j][:slash_ind] this_level_arr.append(link) else: this_level_arr.append(site_links[j]) # print(this_level_arr) # copy this_level_arr into the correct level for j in range(len(this_level_arr)): levels[k].append(this_level_arr[j]) for i in range(len(site_links)): for j in range(len(this_level_arr)): if set_new_cur_link: cur_link = this_level_arr[j] set_new_cur_link = 0 if '/' not in site_links[i]: pass else: # remove current headers from the site_links and add relation from this headers to next level children # e.g. for level 1 parent relation 1 contains its children (obv which lies in level 2) part_of_site = site_links[i][:len(cur_link)] if part_of_site == cur_link: site_links[i] = site_links[i][len(cur_link) + 1:] if '/' in site_links[i]: slash_ind = site_links[i].index('/') link = site_links[i][:slash_ind] relation[k][j].append(link) else: relation[k][j].append(site_links[i]) set_new_cur_link = 1 # print(site_links) k += 1 print(site_links) print("-"*30 + "Levels" + "-"*30) for i in range(len(levels)): print(i, levels[i]) print() print("-"*30 + "Relations" + "-"*30) for i in range(len(relation)): print(i, relation[i])
import asyncio import dataclasses from datetime import datetime, timedelta import json import logging import re from typing import Any, Dict, Tuple, List, Iterable, Optional import aiohttp import pandas as pd import elasticsearch from bs4 import BeautifulSoup from newspaper import Article from omegaconf import DictConfig from fake_useragent import UserAgent from lxml import etree from .base import BaseScraper, BasePageScraper from ..store import es, model log = logging.getLogger(__name__) logging.getLogger("urllib3").setLevel(logging.WARNING) class CnyesApiScraper(BaseScraper): def scraper_cfg_to_kwargs(self) -> Dict[str, Any]: return { "start": datetime.fromisoformat(self.scraper_cfg.start), "until": datetime.now() if self.scraper_cfg.until == None else datetime.fromisoformat(self.scraper_cfg.until), } def startpoints(self, start: datetime, until: datetime) -> List[str]: urls = [] while start < until: _until = start + timedelta(days=30) if _until > until: _until = until urls.append( "https://news.cnyes.com/api/v3/news/category/headline" + f"?startAt={int(start.timestamp())}" + f"&endAt={int(_until.timestamp())}" + "&limit=100" ) start = _until return urls def parse( self, resp: aiohttp.ClientResponse, jdata: dict ) -> Tuple[List[es.Page], List[str]]: # TODO currently not use BaseScraper parse method <- use self.worker() instead BaseScraper.worker() => confusing pages, new_urls = [], [] if jdata["items"]["next_page_url"] is not None: new_urls.append(f'https://news.cnyes.com{jdata["items"]["next_page_url"]}') for e in jdata["items"]["data"]: url = f"https://news.cnyes.com/news/id/{e['newsId']}" try: es.Page.get(id=url) except elasticsearch.NotFoundError: p = es.Page( from_url=url, entry_title=e["title"], entry_summary=e["summary"], entry_published_at=datetime.fromtimestamp(e["publishAt"]), entry_tickers=[x for x in map(lambda x: x["symbol"], e["market"])], entry_meta=json.dumps(e), ) pages.append(p) return pages, new_urls async def worker(self, queue: asyncio.Queue): ua = UserAgent(verify_ssl=False, use_cache_server=False).random async with aiohttp.ClientSession( raise_for_status=True, headers=[("User-Agent", ua)] ) as sess: while True: url = await queue.get() try: async with sess.get(url) as resp: pages, new_urls = self.parse(resp, await resp.json()) for p in pages: p.save() for u in new_urls: queue.put_nowait(u) log.info(f"scraped: {url}") await asyncio.sleep(30) except aiohttp.ClientError as e: log.error(e) self.error_urls.append(url) except Exception as e: log.error(f"Error on: {url}") log.error(e) finally: queue.task_done() def _parse_tickers(node: etree.Element) -> Optional[List[model.TickerText]]: if node is None: return tickers = [] # find all <a> and de-duplicate their parents for p in set([e.getparent() for e in node.cssselect("a")]): text = ( etree.tostring(p, method="text", encoding="utf-8").decode("utf-8").strip() ) tt = model.TickerText(text) for a in p.cssselect("a"): href = a.get("href") if "invest.cnyes.com" in href: tt.labels.append(("", a.text)) if len(tt.labels) > 0: tickers.append(tt) return tickers def _parse_keywords(html: str) -> List[str]: soup = BeautifulSoup(html, "html.parser") e = soup.select_one('meta[itemprop="keywords"]') if e is not None: return e["content"].split(",") else: return [] class CnyesPageScraper(BasePageScraper): domain = "cnyes.com" kw_regex = re.compile(r"^\/tag\/(\w+)") @classmethod def parse( cls, from_url: str, resolved_url: str, http_status: int, html: str ) -> List[model.Page]: article = Article(resolved_url) article.set_html(html) article.parse() parsed = model.Parsed( keywords=_parse_keywords(html), tickers=_parse_tickers(article.clean_top_node), ) return [ model.Page( from_url=from_url, resolved_url=resolved_url, http_status=http_status, article_metadata=dict(article.meta_data), article_published_at=article.publish_date, article_title=article.title, article_text=article.text, # article_html=etree.tostring( # article.clean_top_node, encoding='utf-8').decode('utf-8'), parsed=parsed, fetched_at=datetime.now(), ) ]
import os import sys # Windows only # Check that git is installed if os.path.isfile("C:\Program Files\Git\git-cmd.exe") == False: print("Git not installed. Install to continue, or simply change\npath in code to point to proper exe.") sys.exit(0) # Check proper message arguments, define commit message. try: msg = "git commit -m " + "\"" + sys.argv[1] + "\"" except IndexError: print("Run as: git-push.py \"commit message\"\nFor Windows only.") sys.exit(0) # prewrite git commands def gitwork(): os.system("git add .") os.system(msg) os.system("git push") # review changes path = os.getcwd() print("Push changes in: " + path) print("with message: " + sys.argv[1]) check = input("[y,n]: ") # Ask user to continue. if check == "y": gitwork() elif check == "n": print("Cancelled.") sys.exit(0) else: print("Unknown response, aborted.") # Exit print("Done.") sys.exit(0)
""" Create a mesh from a KnitNetwork by finding the cycles (faces) of the network. --- [NOTE] This algorithm relies on finding cycles (quads and triangles) for the supplied network. This is not a trivial task in 3d space - at least to my knowledge. Assigning a geometrybase to the KnitNetwork on initialization and choosing cyclesmode 1 or 2 greatly improves reliability! None the less, success is very dependent on the curvature of the original surface or mesh used. --- [IMPLEMENTATION DETAIL] N-Gons are deliberately deactivated but can be activated when editing the function call inside the scripting component and increasing the max_valence value. Inputs: Toggle: Set to True to activate the component. {item, boolean} KnitNetwork: The KnitNetwork to create the mesh from. {item, KnitNetwork} CyclesMode: Determines how the neighbors of each node are sorted when finding the cycles of the network. [-1] equals to using the World XY plane [0] equals to using a plane normal to the origin nodes closest point on the geometrybase [1] equals to using a plane normal to the average of the origin and neighbor nodes' closest points on the geometrybase [2] equals to using an average plane between a plane fit to the origin and its neighbor nodes and a plane normal to the origin nodes closest point on the geometrybase. Defaults to -1. {item, int} Outputs: Mesh: The Rhino mesh. {item, mesh} Remarks: Author: Max Eschenbach License: MIT License Version: 200705 """ # PYTHON STANDARD LIBRARY IMPORTS from __future__ import division # GHPYTHON SDK IMPORTS from ghpythonlib.componentbase import executingcomponent as component import Grasshopper, GhPython import System import Rhino import rhinoscriptsyntax as rs # GHENV COMPONENT SETTINGS ghenv.Component.Name = "CreateMeshFromKnitNetwork" ghenv.Component.NickName ="CMFKN" ghenv.Component.Category = "Cockatoo" ghenv.Component.SubCategory = "06 KnitNetwork" # LOCAL MODULE IMPORTS try: from cockatoo import KnitNetwork from cockatoo import KnitDiNetwork except ImportError: errMsg = "The Cockatoo python module seems to be not correctly " + \ "installed! Please make sure the module is in you search " + \ "path, see README for instructions!." raise ImportError(errMsg) class CreateMeshFromKnitNetwork(component): def RunScript(self, Toggle, KN, CyclesMode): # sanitize inputs if CyclesMode == None: CyclesMode = -1 elif CyclesMode < 0: CyclesMode = -1 elif CyclesMode > 2: CyclesMode = 2 # initialize Mesh Mesh = Grasshopper.DataTree[Rhino.Geometry.Mesh]() if Toggle and KN: if CyclesMode != -1 and not KN.graph["reference_geometry"]: errMsg = "KnitNetwork has no reference geometry " + \ "attached! Will fall back to World XY plane." rml = self.RuntimeMessageLevel.Warning self.AddRuntimeMessage(rml, errMsg) # create mesh from knitnetwork if isinstance(KN, KnitNetwork): Mesh = KN.create_mesh(mode=CyclesMode, max_valence=4) elif isinstance(KN, KnitDiNetwork): if KN.verify_dual_form(): Mesh = KnitNetwork(KN).create_mesh(mode=CyclesMode, max_valence=4) elif Toggle and not KN: rml = self.RuntimeMessageLevel.Warning rMsg = "No KnitNetwork input!" self.AddRuntimeMessage(rml, rMsg) return Mesh
#!/usr/bin/python """ Plot functions of redshift for RSDs. """ import numpy as np import pylab as P from rfwrapper import rf import matplotlib.patches import matplotlib.cm import os cosmo = rf.experiments.cosmo fname = 'spherex-fsig8-scaledep.pdf' names = [ 'gSPHEREx1_mgscaledep', 'gSPHEREx2_mgscaledep', 'EuclidRef_mg' ] #labels = [ 'SPHEREx 0.003', 'SPHEREx 0.008', 'Euclid spectro-z', 'DESI spectro-z'] labels = [ '$\sigma(z)/(1+z) < 0.003$', '$\sigma(z)/(1+z) < 0.008$', r'${\rm Euclid}$ ${\rm spectro-z}$', 'DESI spectro-z'] #colours = [ '#80B6D6', '#93C993', '#757575', '#a8a8a8'] # '#c8c8c8', colours = [ '#F82E1E', '#1F7CC0', '#333333', '#a8a8a8'] # Dashes for different k bins dashes = [[], [6,4], [4,2], [4,2,4,4]] lws = [2.8, 2.8, 1.5, 1.] alphas = [1., 1., 0.5, 0.2] # Fiducial value and plotting P.subplot(111) for k in range(len(names)): root = "output/" + names[k] # Load cosmo fns. dat = np.atleast_2d( np.genfromtxt(root+"-cosmofns-zc.dat") ).T zc, Hc, dAc, Dc, fc = dat z, H, dA, D, f = np.genfromtxt(root+"-cosmofns-smooth.dat").T kc = np.genfromtxt(root+"-fisher-kc.dat").T # Load Fisher matrices as fn. of z Nbins = zc.size F_list = [np.genfromtxt(root+"-fisher-full-%d.dat" % i) for i in range(Nbins)] # EOS FISHER MATRIX # Actually, (aperp, apar) are (D_A, H) pnames = rf.load_param_names(root+"-fisher-full-0.dat") print pnames #zfns = ['A', 'b_HI', 'f', 'H', 'DA', 'aperp', 'apar'] zfns = ['H', 'DA', 'aperp', 'apar'] for j in range(4): zfns += ['k%dbs8' % j, 'k%dfs8' % j] excl = ['A', 'Tb', 'n_s', 'sigma8', 'omegak', 'omegaDE', 'w0', 'wa', 'h', 'gamma', 'N_eff', 'pk*', 'f', 'b_HI', 'gamma0', 'gamma1', 'eta0', 'eta1', 'A_xi', 'logkmg', 'fs8*', 'bs8*', 'sigma8tot', 'sigma_8',] # Combine Fisher matrices F, lbls = rf.combined_fisher_matrix( F_list, expand=zfns, names=pnames, exclude=excl ) print lbls # Look for unconstrained bins and remove them excl = [] for j in range(4): for n in range(zc.size): pbs8 = 'k%dbs8%d' % (j, n) pfs8 = 'k%dfs8%d' % (j, n) Fbs8 = np.abs(np.diag(F)[lbls.index(pbs8)]) Ffs8 = np.abs(np.diag(F)[lbls.index(pfs8)]) if (Fbs8 < 1e-8) or (Ffs8 < 1e-8): excl += [pbs8, pfs8] F, lbls = rf.combined_fisher_matrix( [F,], expand=[], names=lbls, exclude=excl ) cov = np.linalg.inv(F) errs = np.sqrt(np.diag(cov)) # Identify scale-dependent functions for j in range(2): l = labels[k] if j == 1 else None try: pfs8 = rf.indices_for_param_names(lbls, 'k%dfs8*' % j) pbs8 = rf.indices_for_param_names(lbls, 'k%dbs8*' % j) # Plot errors as fn. of redshift err = errs[pfs8] / (cosmo['sigma_8']*fc*Dc) if 'Euclid' in labels[k]: idxs = np.where(np.logical_and(zc >= 1.1, zc <= 1.9)) zc = zc[idxs] err = err[idxs] P.plot( zc, err, color=colours[j], lw=lws[j], alpha=alphas[j], dashes=dashes[k] ) # Dummy, for legend P.plot( zc, -err, color='k', label=l, lw=lws[j], alpha=alphas[j], dashes=dashes[k] ) # marker=marker[k], markersize=ms[k], markeredgecolor=colours[k], except: pass P.tick_params(axis='both', which='major', labelsize=20, width=1.5, size=8., pad=10) P.tick_params(axis='both', which='minor', labelsize=20, width=1.5, size=5.) # Set axis limits P.xlim((-0.001, 2.4)) P.ylim((8e-3, 5.)) #P.xscale('log') # fontdict={'size':'x-large'}) #, bbox=dict(ec='k', fc='none', lw=1.2)) P.xlabel('$z$', labelpad=10., fontdict={'fontsize':'xx-large'}) P.ylabel('$\sigma(f \sigma_8) / (f \sigma_8)$', labelpad=15., fontdict={'fontsize':'xx-large'}) # Set tick locations #P.gca().yaxis.set_major_locator(matplotlib.ticker.MultipleLocator(0.02)) #P.gca().yaxis.set_minor_locator(matplotlib.ticker.MultipleLocator(0.01)) P.gca().xaxis.set_minor_locator(matplotlib.ticker.MultipleLocator(0.5)) P.yscale('log') leg = P.legend(prop={'size':17}, loc='upper left', frameon=False, ncol=2) #leg.get_frame().set_edgecolor('w') #leg.get_frame().set_alpha(0.5) # Scale-dependence labels P.figtext(0.25, 0.26, "0.01 < k < 0.1 Mpc$^{-1}$", fontsize=16, backgroundcolor='w', color=colours[1]) P.figtext(0.38, 0.705, "0 < k < 0.01 Mpc$^{-1}$", fontsize=16, backgroundcolor='w', color=colours[0]) # Set size P.tight_layout() #P.gcf().set_size_inches(8.4, 7.8) #P.gcf().set_size_inches(9.5, 6.8) P.savefig(fname, transparent=True) P.show()
import os import numpy as np class DeepDIVADatasetAdapter(object): """ Creates a directory & file based training environment that natively works with DeepDIVA CNN implementation. Symlinks are used to reference files in self.root directory. """ def __init__(self, input_dir): self.root = input_dir # return [[path, label], # [path2], label] def read_folder_dataset(self, subfolder="train"): """ :param subfolder: string. subfolder to scan for files/images :return: 2D ndarray. [[file_path, label]...] """ dataset_root = os.path.join(self.root, subfolder) dataset = [] for label in os.listdir(dataset_root): label_path = os.path.join(dataset_root, label) files = os.listdir(label_path) for picture in files: dataset.append(os.path.join(label_path, picture)) dataset.append(label) return np.array(dataset).reshape(len(dataset) // 2, 2) def create_symlink_dataset(self, dataset, output_dir, subfolder='train'): """ :param dataset: 2D ndarray. [[file_path, label]...] :param output_dir: string, root path for symlinks :param subfolder: string: train, val, test """ for picture_path, label in dataset: label_dir = os.path.join(output_dir, subfolder, label) filename = os.path.basename(picture_path) os.makedirs(label_dir, exist_ok=True) os.symlink(picture_path, os.path.join(label_dir, filename)) def copy_symlink(self, output_dir, subfolder='train'): ds = self.read_folder_dataset(subfolder) self.create_symlink_dataset(ds, output_dir, subfolder)
#py_socket_client_pig.py import socket from py_socket_connector_info import\ ip_address, port, protocol_family_name, socket_type #create a socket: with socket.socket(protocol_family_name, socket_type) as soc: soc.connect( (ip_address, port) ) print("Yea! We're talking to {}\n".format(ip_address)) while True: msg=input("Pig Latin translator (or 'stop'): ") soc.send(bytes(msg, 'utf=8')) print(soc.recv(64)) if 'stop' in msg: break
from django.shortcuts import render import os from mimetypes import guess_type from django.conf import settings from django.utils.encoding import force_bytes from wsgiref.util import FileWrapper from django.http import Http404, HttpResponse from django.core.urlresolvers import reverse from django.db.models import Q from django.shortcuts import render, get_object_or_404 from .models import RegHeaderImage, RegCategory, RegForm def reg_list(request): header = RegHeaderImage.objects.all() cat = RegCategory.objects.all() template = 'registry/regforms_list.html' context = { 'header': header, 'cat': cat } return render(request, template, context) def reg_detail(request, slug=None): header = RegHeaderImage.objects.all() try: cat_q = get_object_or_404(RegCategory, slug=slug) except RegCategory.MultipleObjectsReturned: cat_q = RegCategory.objects.filter(slug=slug).order_by('title').first() reg_f = cat_q.regform_set.all() # reg1 = RegForm.objects.filter(section__title='section1') # reg2 = RegForm.objects.filter(section__title='section2') template = 'registry/regforms_detail.html' context = { 'header': header, 'cat_q': cat_q, 'reg_f': reg_f } return render(request, template, context) def reg_download(request): pass
#!/usr/bin/python # -*- coding: utf-8 -*- ''' @AUTHOR:Joselyn Zhao @CONTACT:zhaojing17@foxmail.com @HOME_PAGE:joselynzhao.top @SOFTWERE:PyCharm @FILE:20052901.py @TIME:2020/5/29 19:24 @DES:3. 无重复字符的最长子串 ''' class Solution: def __init__(self,word): self.lengthOfLongestSubstring(word) def lengthOfLongestSubstring(self, s): max_len = 1 for i in range(len(s)): # print(s[i]) exsit_list = [s[i]] current_len = 1 for j in range(i+1,len(s)): # print(s[j]) if s[j] not in exsit_list: exsit_list.append(s[j]) current_len +=1 else: break if current_len>max_len: max_len = current_len print(max_len) def lenthOfLongestSubstring02(self,s): if len(s)==0: return 0 max_len = 1 point_1 = 0 point_2 = 1 box = [s[point_1]] current = point_1+1 while(point_1!=len(s)): if s[current] not in box: box.append(s[current]) point_2 += 1 else: index = box.index(s[current]) s = Solution('abcabcbb')
#!/usr/bin/env python from time import sleep from sys import exit try: from pyfiglet import figlet_format except ImportError: exit("This script requires the pyfiglet module\nInstall with: sudo pip install pyfiglet") import unicornhat as unicorn print("""Figlet You should see scrolling text that is defined in the TXT variable. If the text moves in the wrong direction, change the rotation from 0 to 180. Text output is kind of limited on a pHAT of course because most letters don't fit on the small display of 4x8. """) unicorn.set_layout(unicorn.AUTO) unicorn.rotation(0) unicorn.brightness(0.5) width,height=unicorn.get_shape() TXT = "HELLO" figletText = figlet_format(TXT+' ', "banner", width=1000) # banner font generates text with heigth 7 textMatrix = figletText.split("\n")[:width] # width should be 8 on both HAT and pHAT! textWidth = len(textMatrix[0]) # the total length of the result from figlet i = -1 def step(): global i i = 0 if i>=100*textWidth else i+1 # avoid overflow for h in range(height): for w in range(width): hPos = (i+h) % textWidth chr = textMatrix[w][hPos] if chr == ' ': unicorn.set_pixel(width-w-1, h, 0, 0, 0) else: unicorn.set_pixel(width-w-1, h, 255, 0, 0) unicorn.show() while True: step() sleep(0.2)
#!/usr/bin/env python from wsgiref.simple_server import make_server if False: from serve_wsgi_basic import application else: from serve_wsgi_map import application httpd = make_server('162.242.218.22', 8081, application) httpd.serve_forever()
# Definition for a binary tree node. # class TreeNode: # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right class Solution0437: def pathSum(self, root, target): # define global result and path self.result = 0 cache = {0:1} # recursive to get result self.dfs(root, target, 0, cache) # return result return self.result def dfs(self, root, target, currPathSum, cache): # exit condition if root is None: return # calculate currPathSum and required oldPathSum currPathSum += root.val oldPathSum = currPathSum - target # update result and cache self.result += cache.get(oldPathSum, 0) cache[currPathSum] = cache.get(currPathSum, 0) + 1 # dfs breakdown self.dfs(root.left, target, currPathSum, cache) self.dfs(root.right, target, currPathSum, cache) # when move to a different branch, the currPathSum is no longer available, hence remove one. cache[currPathSum] -= 1
from __future__ import absolute_import # Interface to the Salesforce BULK API import os from collections import namedtuple from httplib2 import Http import requests import urllib2 import urlparse import requests import xml.etree.ElementTree as ET from tempfile import TemporaryFile, NamedTemporaryFile import StringIO import re import time import csv from . import bulk_states from . import csv_adapter UploadResult = namedtuple('UploadResult', 'id success created error') class BulkApiError(Exception): def __init__(self, message, status_code=None): super(BulkApiError, self).__init__(message) self.status_code = status_code class BulkJobAborted(BulkApiError): def __init__(self, job_id): self.job_id = job_id message = 'Job {0} aborted'.format(job_id) super(BulkJobAborted, self).__init__(message) class BulkBatchFailed(BulkApiError): def __init__(self, job_id, batch_id, state_message): self.job_id = job_id self.batch_id = batch_id self.state_message = state_message message = 'Batch {0} of job {1} failed: {2}'.format(batch_id, job_id, state_message) super(BulkBatchFailed, self).__init__(message) class SalesforceBulk(object): def __init__(self, sessionId=None, host=None, username=None, password=None, exception_class=BulkApiError): if not sessionId and not username: raise RuntimeError( "Must supply either sessionId/instance_url or username/password") if not sessionId: sessionId, endpoint = SalesforceBulk.login_to_salesforce( username, password) host = urlparse.urlparse(endpoint) host = host.hostname.replace("-api", "") if host[0:4] == 'http': self.endpoint = host else: self.endpoint = "https://" + host self.sessionId = sessionId self.jobNS = 'http://www.force.com/2009/06/asyncapi/dataload' self.jobs = {} # dict of job_id => job_id self.batches = {} # dict of batch_id => job_id self.batch_statuses = {} self.exception_class = exception_class @staticmethod def login_to_salesforce(username, password): env_vars = ( 'SALESFORCE_CLIENT_ID', 'SALESFORCE_CLIENT_SECRET', 'SALESFORCE_REDIRECT_URI', ) missing_env_vars = [e for e in env_vars if e not in os.environ] if missing_env_vars: raise RuntimeError( "You must set {0} to use username/pass login".format( ', '.join(missing_env_vars))) try: import salesforce_oauth_request except ImportError: raise ImportError( "You must install salesforce-oauth-request to use username/password") packet = salesforce_oauth_request.login( username=username, password=password) return packet['access_token'], packet['instance_url'] def headers(self, values={}): default = {"X-SFDC-Session": self.sessionId, "Content-Type": "application/xml; charset=UTF-8"} for k, val in values.iteritems(): default[k] = val return default # Register a new Bulk API job - returns the job id def create_query_job(self, object_name, **kwargs): return self.create_job(object_name, "query", **kwargs) def create_insert_job(self, object_name, **kwargs): return self.create_job(object_name, "insert", **kwargs) def create_update_job(self, object_name, **kwargs): return self.create_job(object_name, "update", **kwargs) def create_upsert_job(self, object_name, external_id, **kwargs): return self.create_job( object_name, "upsert", external_id=external_id, **kwargs) def create_delete_job(self, object_name, **kwargs): return self.create_job(object_name, "delete", **kwargs) def create_job(self, object_name=None, operation=None, contentType='CSV', concurrency=None, external_id=None): assert(object_name is not None) assert(operation is not None) assert(operation) doc = self.create_job_doc(object_name=object_name, operation=operation, contentType=contentType, concurrency=concurrency, external_id=external_id) http = Http() resp, content = http.request(self.endpoint + "/services/async/29.0/job", "POST", headers=self.headers(), body=doc) self.check_status(resp, content) tree = ET.fromstring(content) job_id = tree.findtext("{%s}id" % self.jobNS) self.jobs[job_id] = job_id return job_id def check_status(self, resp, content): if resp.status >= 400: msg = "Bulk API HTTP Error result: {0}".format(content) self.raise_error(msg, resp.status) def close_job(self, job_id): doc = self.create_close_job_doc() http = Http() url = self.endpoint + "/services/async/29.0/job/%s" % job_id resp, content = http.request(url, "POST", headers=self.headers(), body=doc) self.check_status(resp, content) def create_job_doc(self, object_name=None, operation=None, contentType='CSV', concurrency=None, external_id=None): root = ET.Element("jobInfo") root.set("xmlns", self.jobNS) op = ET.SubElement(root, "operation") op.text = operation obj = ET.SubElement(root, "object") obj.text = object_name if external_id is not None: ext_id = ET.SubElement(root, "externalIdFieldName") ext_id.text = external_id if concurrency: con = ET.SubElement(root, "concurrencyMode") con.text = concurrency ct = ET.SubElement(root, "contentType") ct.text = contentType buf = StringIO.StringIO() tree = ET.ElementTree(root) tree.write(buf, encoding="UTF-8") return buf.getvalue() def create_close_job_doc(self, object_name=None, operation=None, contentType='CSV'): root = ET.Element("jobInfo") root.set("xmlns", self.jobNS) state = ET.SubElement(root, "state") state.text = "Closed" buf = StringIO.StringIO() tree = ET.ElementTree(root) tree.write(buf, encoding="UTF-8") return buf.getvalue() # Add a BulkQuery to the job - returns the batch id def query(self, job_id, soql): if job_id is None: job_id = self.create_job( re.search(re.compile("from (\w+)", re.I), soql).group(1), "query") http = Http() uri = self.endpoint + "/services/async/29.0/job/%s/batch" % job_id headers = self.headers({"Content-Type": "text/csv"}) resp, content = http.request(uri, method="POST", body=soql, headers=headers) self.check_status(resp, content) tree = ET.fromstring(content) batch_id = tree.findtext("{%s}id" % self.jobNS) self.batches[batch_id] = job_id return batch_id def split_csv(self, csv, batch_size): csv_io = StringIO.StringIO(csv) batches = [] for i, line in enumerate(csv_io): if not i: headers = line batch = headers continue if not i % batch_size: batches.append(batch) batch = headers batch += line batches.append(batch) return batches # Add a BulkUpload to the job - returns the batch id def bulk_csv_upload(self, job_id, csv, batch_size=2500): # Split a large CSV into manageable batches batches = self.split_csv(csv, batch_size) batch_ids = [] uri = self.endpoint + "/services/async/29.0/job/%s/batch" % job_id headers = self.headers({"Content-Type": "text/csv"}) for batch in batches: resp = requests.post(uri, data=batch, headers=headers) content = resp.content if resp.status_code >= 400: self.raise_error(content, resp.status) tree = ET.fromstring(content) batch_id = tree.findtext("{%s}id" % self.jobNS) self.batches[batch_id] = job_id batch_ids.append(batch_id) return batch_ids def raise_error(self, message, status_code=None): if status_code: message = "[{0}] {1}".format(status_code, message) if self.exception_class == BulkApiError: raise self.exception_class(message, status_code=status_code) else: raise self.exception_class(message) def post_bulk_batch(self, job_id, csv_generator): uri = self.endpoint + "/services/async/29.0/job/%s/batch" % job_id headers = self.headers({"Content-Type": "text/csv"}) resp = requests.post(uri, data=csv_generator, headers=headers) content = resp.content if resp.status_code >= 400: self.raise_error(content, resp.status_code) tree = ET.fromstring(content) batch_id = tree.findtext("{%s}id" % self.jobNS) return batch_id # Add a BulkDelete to the job - returns the batch id def bulk_delete(self, job_id, object_type, where, batch_size=2500, limit=1000): from time import sleep query_job_id = self.create_query_job(object_type) soql = "Select Id from %s where %s Limit %d" % (object_type, where, limit) query_batch_id = self.query(query_job_id, soql) while not self.is_batch_done(query_job_id, query_batch_id): sleep(10) self.close_job(query_job_id) res = self.get_batch_result_ids(query_batch_id, query_job_id) q = self.get_batch_results(query_batch_id, res[0], query_job_id) q.next() results = [] for row in q: results.append({'Id': unicode(row.strip('"'))}) if not len(results): if job_id: self.close_job(job_id) return (None, None,) if job_id is None: job_id = self.create_job(object_type, "delete") batch = self.post_bulk_batch( job_id, csv_adapter.CsvDictsAdapter(iter(results))) return (job_id, batch) def lookup_job_id(self, batch_id): try: return self.batches[batch_id] except KeyError: raise Exception( "Batch id '%s' is uknown, can't retrieve job_id" % batch_id) def job_status(self, job_id=None): job_id = job_id or self.lookup_job_id(batch_id) uri = urlparse.urljoin(self.endpoint, '/services/async/29.0/job/{0}'.format(job_id)) response = requests.get(uri, headers=self.headers()) if response.status_code != 200: self.raise_error(response.content, response.status_code) tree = ET.fromstring(response.content) result = {} for child in tree: result[re.sub("{.*?}", "", child.tag)] = child.text return result def job_state(self, job_id): status = self.job_status(job_id) if 'state' in status: return status['state'] else: return None def batch_status(self, job_id=None, batch_id=None, reload=False): if not reload and batch_id in self.batch_statuses: return self.batch_statuses[batch_id] job_id = job_id or self.lookup_job_id(batch_id) http = Http() uri = self.endpoint + \ "/services/async/29.0/job/%s/batch/%s" % (job_id, batch_id) resp, content = http.request(uri, headers=self.headers()) self.check_status(resp, content) tree = ET.fromstring(content) result = {} for child in tree: result[re.sub("{.*?}", "", child.tag)] = child.text self.batch_statuses[batch_id] = result return result def batch_state(self, job_id, batch_id, reload=False): status = self.batch_status(job_id, batch_id, reload=reload) if 'state' in status: return status['state'] else: return None def is_batch_done(self, job_id, batch_id): batch_state = self.batch_state(job_id, batch_id, reload=True) if batch_state in bulk_states.ERROR_STATES: status = self.batch_status(job_id, batch_id) raise BulkBatchFailed(job_id, batch_id, status['stateMessage']) return batch_state == bulk_states.COMPLETED # Wait for the given batch to complete, waiting at most timeout seconds # (defaults to 10 minutes). def wait_for_batch(self, job_id, batch_id, timeout=60 * 10, sleep_interval=10): waited = 0 while not self.is_batch_done(job_id, batch_id) and waited < timeout: time.sleep(sleep_interval) waited += sleep_interval def get_batch_result_ids(self, batch_id, job_id=None): job_id = job_id or self.lookup_job_id(batch_id) if not self.is_batch_done(job_id, batch_id): return False uri = urlparse.urljoin( self.endpoint, "services/async/29.0/job/{0}/batch/{1}/result".format( job_id, batch_id), ) resp = requests.get(uri, headers=self.headers()) if resp.status_code != 200: return False tree = ET.fromstring(resp.content) return [str(r.text) for r in tree.iterfind("{{{0}}}result".format(self.jobNS))] def get_batch_results(self, batch_id, result_id, job_id=None, parse_csv=False, logger=None): job_id = job_id or self.lookup_job_id(batch_id) logger = logger or (lambda message: None) uri = urlparse.urljoin( self.endpoint, "services/async/29.0/job/{0}/batch/{1}/result/{2}".format( job_id, batch_id, result_id), ) logger('Downloading bulk result file id=#{0}'.format(result_id)) resp = requests.get(uri, headers=self.headers(), stream=True) if not parse_csv: iterator = resp.iter_lines() else: iterator = csv.reader(resp.iter_lines(), delimiter=',', quotechar='"') BATCH_SIZE = 5000 for i, line in enumerate(iterator): if i % BATCH_SIZE == 0: logger('Loading bulk result #{0}'.format(i)) yield line def get_batch_result_iter(self, job_id, batch_id, parse_csv=False, logger=None): """ Return a line interator over the contents of a batch result document. If csv=True then parses the first line as the csv header and the iterator returns dicts. """ status = self.batch_status(job_id, batch_id) if status['state'] != 'Completed': return None elif logger: if 'numberRecordsProcessed' in status: logger("Bulk batch %d processed %s records" % (batch_id, status['numberRecordsProcessed'])) if 'numberRecordsFailed' in status: failed = int(status['numberRecordsFailed']) if failed > 0: logger("Bulk batch %d had %d failed records" % (batch_id, failed)) uri = self.endpoint + \ "/services/async/29.0/job/%s/batch/%s/result" % (job_id, batch_id) r = requests.get(uri, headers=self.headers(), stream=True) if parse_csv: return csv.DictReader(r.iter_lines(chunk_size=2048), delimiter=",", quotechar='"') else: return r.iter_lines(chunk_size=2048) def get_upload_results(self, job_id, batch_id, callback=(lambda *args, **kwargs: None), batch_size=0, logger=None): job_id = job_id or self.lookup_job_id(batch_id) if not self.is_batch_done(job_id, batch_id): return False http = Http() uri = self.endpoint + \ "/services/async/29.0/job/%s/batch/%s/result" % (job_id, batch_id) resp, content = http.request(uri, method="GET", headers=self.headers()) tf = TemporaryFile() tf.write(content) total_remaining = self.count_file_lines(tf) if logger: logger("Total records: %d" % total_remaining) tf.seek(0) records = [] line_number = 0 col_names = [] reader = csv.reader(tf, delimiter=",", quotechar='"') for row in reader: line_number += 1 records.append(UploadResult(*row)) if len(records) == 1: col_names = records[0] if batch_size > 0 and len(records) >= (batch_size + 1): callback(records, total_remaining, line_number) total_remaining -= (len(records) - 1) records = [col_names] callback(records, total_remaining, line_number) tf.close() return True def parse_csv(self, tf, callback, batch_size, total_remaining): records = [] line_number = 0 col_names = [] reader = csv.reader(tf, delimiter=",", quotechar='"') for row in reader: line_number += 1 records.append(row) if len(records) == 1: col_names = records[0] if batch_size > 0 and len(records) >= (batch_size + 1): callback(records, total_remaining, line_number) total_remaining -= (len(records) - 1) records = [col_names] return records, total_remaining def count_file_lines(self, tf): tf.seek(0) buffer = bytearray(2048) lines = 0 quotes = 0 while tf.readinto(buffer) > 0: quoteChar = ord('"') newline = ord('\n') for c in buffer: if c == quoteChar: quotes += 1 elif c == newline: if (quotes % 2) == 0: lines += 1 quotes = 0 return lines
# Copyright (c) 2020 Graphcore Ltd. All rights reserved. """ This module exposes dynamic sparse layers through simple classes with a consistent API. There are also dense layers wrapped in the same interface in order to make it easier to build models where the layers can be switched from sparse to dense easily. The sparse layers store a host side representation of the sparsity pattern and utilities for manipulating and syncing this representation to and from TensorFlow variables (on the device). It is the users responsibilty to manage the syncronisation of the host and TensorFlow (device side) representation. This is achieved by calling the appropriate methods in this sparse layer classes and arranging for the TensorFlow ops constructed by the layer to be called at the right time in the TF compute graph. Careful orchestration of these can be used to implement dynamic sparse optimisers such as RigL: https://github.com/graphcore/examples/tree/master/applications/tensorflow/dynamic_sparsity/mnist_rigl """ import time import os import numpy as np import tensorflow.compat.v1 as tf from ipu_sparse_ops import sparse from logging import getLogger from typing import ( Callable, List, Mapping, NamedTuple, Union ) logger = getLogger(os.path.basename(__file__)) class SparseMatrix: """ Utility class to manage a sparse weight matrix in triplet (COO) format. :param spec: The parameters that specify the multiplication of inputs with this weight matrix. :param triplets: The sparse weight matrix specified in triplet/COO format. E.g. as returned from 'ipu_sparse_ops.sparse.triplets_from_dense'. :param matmul_options: Poplib's matmul options specific for these weights. See popsparse docs in Poplibs. :param triplets: Triplets to initialise the sparse martix. """ def __init__(self, spec: sparse.MatmulSpec, matmul_options: Mapping[str, str], triplets: sparse.Triplets, name: str = ""): self.spec = spec self.name = name self.matmul_options = matmul_options.copy() if 'partialsType' in matmul_options: if matmul_options['partialsType'] == "half" and spec.block_size == 1: raise ValueError("Half partials are not supported for 1x1 blocks.") self.dense_grad_matmul_options = self.matmul_options.pop('dense_grad', {}) # Initialised by update_from_triplets/update_from_values self.representation: sparse.SparseRepresentation = None self.triplets: sparse.Triplets = None self.update_from_triplets(triplets=triplets) def update_from_triplets(self, triplets: sparse.Triplets): self.triplets = triplets self.representation = sparse.representation_from_triplets( self.spec, *self.triplets, self.matmul_options, debug_name=self.name) def update_from_values(self, values: List[float], metainfo: List[float] = None): np.copyto(self.representation.nz_values, values) if metainfo is not None: # Reinterpret cast the metainfo as uint16 rather than float16. metainfo_as_uint16 = np.frombuffer(metainfo.tobytes(), dtype=np.uint16) np.copyto(self.representation.metainfo_state, metainfo_as_uint16) self.triplets = sparse.triplets_from_representation( self.spec, self.representation, self.matmul_options, debug_name=self.name) def extract_dense(self) -> np.ndarray: return sparse.dense_from_triplets(self.spec, *self.triplets) def extract_mask(self) -> np.ndarray: return sparse.mask_from_triplets(self.spec, *self.triplets) def get_metainfo(self) -> List[np.uint16]: return self.representation.metainfo_state def get_triplets(self) -> sparse.Triplets: return self.triplets def get_values(self) -> np.ndarray: return self.representation.nz_values def get_matmul_shape(self) -> List[int]: return (self.spec.input_size, self.spec.output_size) def get_data_type(self): return self.spec.data_type class SparseSlot(NamedTuple): np_variable: np.ndarray tf_variable: tf.Variable placeholder: tf.Tensor = None class SparseFcLayer: def __init__( self, weights: SparseMatrix, name: str, use_bias: bool = False, relu: bool = False, disable_updating: bool = False, pooling_type: str = "NONE"): """ Construct a new 'SparseFcLayer' object. It is recommended to create these layers using the factory functions e.g.: 'from_random_generator' or 'from_triplets'. This layer is for fully connected layers that are sparse and can have the sparsity pattern updated during training. :param weights: A SparseMatrix object describing the sparse weight matrix for this layer. :param name: Name string for the layer (used as a variable scope). :use_bias: Flag to say whether a bias should be added to the layer. :relu: Flag to say whether a relu activation be added to the layer. :disable_updating: A flag to disable updates of the sparsity pattern for this layer. Non-zero values can still change. """ self.weights = weights self.name = name # Each layer needs slot values that share the same sparse representation # as the non-zero value data (initialise slots to zero): self.sparse_slots: Mapping[str, SparseSlot] = {} # Initialised by repeated calls to record_slot_var logger.debug(f"Created sparse values with shape {self.weights.get_values().shape}") logger.debug(f"Created sparse metainfo with shape {self.weights.get_metainfo().shape}") self.use_bias = use_bias self.relu = relu self.bias_init = tf.zeros_initializer() self.disable_updating = disable_updating self.pooling_type = pooling_type # Initialised by build self.built = False self.dense_dummy_var: tf.Variable = None self.metainfo_var: tf.Variable = None self.values_var: tf.Variable = None @classmethod def from_random_generator( cls, hidden_size: int, input_shape: List[int], density: float, block_size: int, values_initialiser_gen: Callable[..., np.ndarray], indices_initialiser_gen: Callable, matmul_options: Mapping[str, str], name: str, dtype: tf.DType = tf.float32, use_bias: bool = False, relu: bool = False, disable_updating: bool = False, pooling_type: str = 'NONE'): """ Utility factory function to build a 'SparseFcLayer' from a random sparsity pattern and random non zero values. """ spec = sparse.matmul_spec_from_density(hidden_size, input_shape, density, block_size, dtype, pooling_type) ns = tf.get_default_graph().get_name_scope() qualified_name = ns + "/" + name if ns else name logger.debug(f"Creating random sparse FC {qualified_name} with spec: {spec}") t0 = time.perf_counter() triplets = sparse.random_triplets(spec, indices_initialiser_gen, values_initialiser_gen) t1 = time.perf_counter() logger.debug(f"Generated triplets in {t1-t0:0.03f} seconds") weights = SparseMatrix(spec, matmul_options, triplets, name=qualified_name) logger.debug(f"Triplet stats for {qualified_name}: {sparse.triplet_stats(*triplets)}") return cls(weights, name, use_bias, relu, disable_updating, pooling_type=pooling_type) @classmethod def from_triplets(cls, hidden_size: int, input_shape: List[int], row_indices: List[int], col_indices: List[int], values: List[float], matmul_options: Mapping[str, str], name: str, dtype: tf.DType = tf.float32, use_bias: bool = False, relu: bool = False, disable_updating: bool = False, pooling_type: str = 'NONE'): """ Utility factory function to build a 'SparseFcLayer' from a set of triplets (COO format). E.g. as returned from 'ipu_sparse_ops.sparse.triplets_from_dense' """ block_size = sparse.block_size_from_list(values) spec = sparse.matmul_spec_from_max(hidden_size, input_shape, len(values), block_size, dtype, pooling_type) ns = tf.get_default_graph().get_name_scope() qualified_name = ns + "/" + name if ns else name logger.debug(f"Creating random sparse FC {qualified_name} with spec: {spec}") triplets = sparse.Triplets(row_indices, col_indices, values) weights = SparseMatrix(spec, matmul_options, triplets, name=qualified_name) return cls(weights, name, use_bias, relu, disable_updating, pooling_type=pooling_type) def get_nonzero_blocks_shape(self) -> List[int]: return (self.weights.spec.block_size, self.weights.spec.block_size) def get_shape(self) -> List[int]: return self.weights.get_matmul_shape() def get_data_type(self): return self.weights.get_data_type() def create_placeholders(self): self.metainfo_ph, self.nz_ph = self.weights.representation.makePlaceHolders(self.weights.spec.data_type) def feed_dict(self) -> Mapping[tf.Tensor, np.ndarray]: """ Return a feed that can be used to initialise and update the sparsity pattern, values, and sparse slots. """ if self.disable_updating: return {} feeds = { self.metainfo_ph: self.weights.representation.metaInfoFeed(), self.nz_ph: self.weights.representation.valuesFeed() } feeds.update({ slot.placeholder: slot.np_variable for slot in self.sparse_slots.values() }) return feeds def is_sparse(self) -> bool: """ Used to distinguish sparse and dense layer objects within this module. """ return True def update_sparsity_op(self) -> tf.Operation: """ Return a TensorFlow op that can be used to update the sparsity pattern and values from a feed. This op must be fed from the result of calling this layer's feed_dict() method. If self.disable_updating is set then this will return a no-op. """ if self.disable_updating: return tf.no_op() elif not self.built: raise AttributeError( f"This sparse layer '{self.name}' is being asked to create an " "update op to change the underlying sparsity pattern but has " "not yet been built. Either call the layer before using this " "method or build it explicitly by calling build().") else: return sparse.update_metainfo_op_with_vars( self.metainfo_ph, self.nz_ph, self.metainfo_var, self.values_var) def update_slots_op(self) -> tf.Operation: """ Return a TensorFlow op that can be used to update the sparse slot (values only not pattern) from a feed. This op must be fed from the result of calling this layer's feed_dict() method. If you have not built the training op then this variable will not exist and an exception will be raised. """ if not self.sparse_slots: logger.warning("update_slots_op called with no slots registered.") return tf.no_op() update_ops = [ slot.tf_variable.assign(slot.placeholder) for slot in self.sparse_slots.values() ] return tf.group(update_ops) def get_values_var(self) -> tf.Variable: """ Return the TensorFlow variable that is holding the non zero values for this layer. """ if self.values_var is None: raise AttributeError( f"This sparse layer '{self.name}' is being asked to return the nonzero sparse " "values variable but has not yet been built. Call this layer or explicitly build it.") return self.values_var def get_metainfo_var(self) -> tf.Variable: """ Return the TensorFlow variable that is holding the sparse metainfo values for this layer. """ if self.metainfo_var is None: raise AttributeError( f"This sparse layer '{self.name}' is being asked to return the sparse " "metainfo variable but has not yet been built. Call this layer or explicitly build it.") return self.metainfo_var def get_dense_dummy_var(self) -> tf.Variable: """ Return the TensorFlow dummy variable that is used to reference the dense gradient for this layer. """ if self.dense_dummy_var is None: raise AttributeError( f"This sparse layer '{self.name}' is being asked to return the dense dummy " "variable but has not yet been built. Call this layer or explicitly build it.") return self.dense_dummy_var def get_dense_grad_w(self, loss: tf.Tensor) -> tf.Tensor: """ Access the TensorFlow variable that is holding the dense gradient for this layer. The dense gradient is conditionally computed so may be stale. """ dummy_var = self.get_dense_dummy_var() logger.debug(f"Layer '{self.name}' grad dummy var: '{dummy_var}'") dense_grad = tf.gradients(loss, dummy_var)[0] if dense_grad is None: raise ValueError( f"This sparse layer '{self.name}' is being asked to return a dense gradient " "but the loss op does not depend on it. Make sure the loss op is dependent " "on the output of this layer.") return dense_grad def get_max_non_zeros(self) -> int: """ The maximum number of non-zeros allowed in this layer. """ return self.weights.spec.max_non_zero_blocks def record_slot_var(self, slot_name: str, optimizer: tf.train.Optimizer): """ Used by the optimiser to record a slot with this layer. Returns the Tensorflow slot_variable that was recorded. """ if self.values_var is None: raise AttributeError( f"This sparse layer '{self.name}' is being asked to record a " "slot variable but it has not yet been called! " "Make sure you call this layer upstream of the loss op or " "remove it from the sparse_layers list.") slot_var = optimizer.get_slot(self.values_var, slot_name) internal_name = slot_var.name logger.debug(f"Recording slot variable {slot_var.name} as {internal_name}") if slot_var is None: raise ValueError( f"This sparse layer '{self.name}' is being asked to record " f"a slot variable for '{self.values_var.name}' but no such " "slot exists! Make sure the loss op is actually dependent " "on this layer or remove it from the sparse_layers list.") if slot_var.shape != self.weights.get_values().shape: raise ValueError( f"Shape mismatch between variable {slot_var.shape} " f"and slot {self.weights.get_values().shape}") with tf.init_scope(): # escapes XLA, so placeholders can be created with tf.device("cpu"): placeholder = tf.placeholder(dtype=slot_var.dtype, shape=slot_var.shape) self.sparse_slots[internal_name] = SparseSlot( placeholder=placeholder, tf_variable=slot_var, np_variable=np.zeros_like(self.weights.get_values()) ) return slot_var def update_triplets(self, new_triplets: sparse.Triplets): """ Update the host side representation of the sparsity pattern with a new set of triplets. The on device representation will not be updated until you run the op returned from the layer's 'update_sparsity_op()' method. """ self.weights.update_from_triplets(new_triplets) def extract_dense(self) -> np.ndarray: """ Return a dense version of this layer's sparse weight matrix. """ return self.weights.extract_dense() def extract_mask(self) -> np.ndarray: """ Return a dense mask representation of this layer's weight matrix, """ return self.weights.extract_mask() def get_triplets(self) -> sparse.Triplets: """ Return a triplet version of this layer's sparse weight matrix. """ return self.weights.get_triplets() def get_slot_var_dict(self): """ Return the dict holding the slots. """ return self.sparse_slots def extract_slot_triplets(self) -> Mapping[str, sparse.Triplets]: slot_representations = { name: sparse.SparseRepresentation(self.weights.get_metainfo(), slot.np_variable) for name, slot in self.get_slot_var_dict().items() } return { name: sparse.triplets_from_representation( self.weights.spec, representation, self.weights.matmul_options, debug_name=name + "(slot)") for name, representation in slot_representations.items() } def update_slots_from_triplets(self, slot_triplets: Mapping[str, sparse.Triplets]): """ Update the host side representation of the sparse slot with a new set of triplets. The row and column indices must be identical to those for the sparse weights. The on device representation will not be updated until you run the op returned from the layer's 'update_sparsity_op()' method. """ slot_representations = { name: sparse.representation_from_triplets( self.weights.spec, *triplet, self.weights.matmul_options, debug_name=name + "(slot)") for name, triplet in slot_triplets.items() } for name, representation in slot_representations.items(): current_slot = self.sparse_slots[name] if current_slot.np_variable.shape != representation.nz_values.shape: raise RuntimeError( "New slot shape is not compatible. " f"Slot {name}: New: {representation.nz_values.shape} != old: {current_slot.shape}") self.sparse_slots[name] = SparseSlot( np_variable=representation.nz_values, tf_variable=current_slot.tf_variable, placeholder=current_slot.placeholder) def sync_internal_representation(self, values: List[Mapping[str, List[float]]], slots: Mapping[str, List[float]], metainfo: List[Mapping[str, List[int]]] = None): """ Used to store the values and slots returned from the device into the internal SparseRepresentation object (self.weights.representation). This will typically be called after each training step that you run on the device. """ values = [value for value in values.values()] if len(values) > 1: raise Exception("sync_internal_representation expects a single array of non-zero values") values = values[0] if metainfo is not None: metainfo = [metainf for metainf in metainfo.values()] if len(metainfo) > 1: raise Exception("sync_internal_representation expects a single set of metainfo or None") metainfo = metainfo[0] self.weights.update_from_values(values=values, metainfo=metainfo) if not self.disable_updating: for name, values in slots.items(): np.copyto(self.sparse_slots[name].np_variable, values) def build(self): """Generates the underlying variables once.""" if self.built: return self.values_var, self.metainfo_var, self.dense_dummy_var = \ sparse.get_or_create_matmul_vars( self.weights.spec, self.weights.representation, self.weights.matmul_options, constant_metainfo=self.disable_updating) if self.use_bias: self.bias = tf.get_variable( "bias", shape=[self.weights.spec.output_size], initializer=self.bias_init, dtype=tf.dtypes.as_dtype(self.weights.get_values().dtype) ) self.built = True return def __call__( self, inputs: tf.Tensor, compute_dense_grad_w: Union[bool, tf.Tensor] = False) -> tf.Tensor: """ Build and return the op to execute the layer. It will compute the matrix multiplication of input with the soarse weight matrix, then add bias and activation ops if these are enabled for this layer. """ with tf.variable_scope(self.name, reuse=tf.AUTO_REUSE, use_resource=True): self.build() z = sparse.matmul_with_vars( self.weights.spec, inputs, compute_dense_grad_w, self.weights.matmul_options, self.values_var, self.metainfo_var, self.dense_dummy_var, self.weights.dense_grad_matmul_options) logger.debug(f"Layer '{self.name}' non-zeros var: '{self.values_var.name}'") if self.use_bias: z = z + self.bias # Reshape z to remove group size of 1 (no other group sizes are supported # at the moment): z = tf.reshape(z, [self.weights.spec.batch_size, self.weights.spec.output_size]) if self.relu: return tf.nn.relu(z) else: return z class DenseFcLayer: """ This is a dense FC layer with the same call, placeholder and feed interface as SparseFcLayer. """ def __init__(self, hidden_size, name, dtype=tf.float32, use_bias=False, relu=False): """ :param hidden_size: Output size for the hidden layer. :param name: Name string for the layer. This is not optional as it sets the variable namespace used to access internal variables. :use_bias: Flag to say whether a bias should be added to the layer. :relu: Flag to say whether a relu activation be added to the layer. """ self.hidden_size = hidden_size self.name = name self.weight_init = tf.glorot_uniform_initializer() self.bias_init = tf.zeros_initializer() self.relu = relu self.use_bias = use_bias self.dtype = dtype def __call__(self, input, ignored=None): with tf.variable_scope(self.name, reuse=tf.AUTO_REUSE, use_resource=True): self.w = tf.get_variable("weight", shape=[input.shape[-1], self.hidden_size], dtype=self.dtype, initializer=self.weight_init) if self.use_bias: self.bias = tf.get_variable("bias", shape=[self.hidden_size], dtype=self.dtype, initializer=self.bias_init) if self.use_bias and self.relu: return tf.nn.relu_layer(input, self.w, self.bias) else: z = tf.matmul(input, self.w) if self.use_bias: z = z + self.bias if self.relu: return tf.nn.relu(z) else: return z def feed_dict(self): return {} def create_placeholders(self): None def is_sparse(self): return False def get_data_type(self): return self.dtype
"""add config table Revision ID: 088598e662be Revises: 6a55d8748a29 Create Date: 2017-07-17 18:21:14.762529 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = '088598e662be' down_revision = '6a55d8748a29' branch_labels = None depends_on = None configs = sa.table('configs', sa.Column('id', sa.Integer, primary_key=True), sa.Column('round', sa.Integer(), server_default='0'), sa.Column('submitions_over', sa.Boolean(), server_default='false'), ) def upgrade(): op.create_table('configs', sa.Column('id', sa.Integer, primary_key=True), sa.Column('round', sa.Integer(), server_default='0'), sa.Column('submitions_over', sa.Boolean(), server_default='false'), ) op.bulk_insert(configs, [ {'id': '0', 'round': '0', 'submitions_over': 'false'} ] ) def downgrade(): op.drop_table('configs')
#!/usr/bin/env python3 from SPARQLWrapper import SPARQLWrapper, JSON import validators import requests import json ############# # Constants __author__ = "Sylvain Boissel <sylvain@ashtree.eu>" SPARQL_TIMEFORMAT = "%Y-%m-%dT%H:%M:%SZ" WD_ROOT_URL = 'https://www.wikidata.org' WD_BASE_URL = WD_ROOT_URL + '/wiki/' WD_API_URL = WD_ROOT_URL + '/w/api.php' ########### # Classes class Item: """ A Wikidata item """ def __init__(self, identifier=""): if is_item_uri(identifier): self.entiry_uri = identifier self.qid = self.uri_to_qid() self.base_uri = self.get_base_uri() elif is_qid(identifier): self.qid = identifier.upper() self.entiry_uri = self.get_entity_uri() self.base_uri = self.get_base_uri() else: self.qid = "" self.entiry_uri = "" self.base_uri = "" def __str__(self): return self.qid def __repr__(self): return "wikidata.item({})".format(self.qid) def uri_to_qid(self): return self.uri.split('/')[-1].upper() def get_base_uri(self): return "{}{}".format(WD_BASE_URL, self.qid) def get_entity_uri(self): return "http://www.wikidata.org/entity/{}".format(self.qid) def getWikidataContent(self): """ Retrieves the item content from Wikidata """ ################## # API calls # def getentities(qids, props='labels|aliases|descriptions|claims'): payload = { 'action': 'wbgetentities', 'format': 'json', 'ids': '|'.join(qids), 'props': props } response = requests.get(WD_API_URL, params=payload) return response ################## # SPARQL Queries # def query_raw(query): """ Queries WDQS and returns the result as a dictionary """ endpoint = "https://query.wikidata.org/bigdata/namespace/wdq/sparql" sparql = SPARQLWrapper(endpoint) sparql.setQuery(query) sparql.setReturnFormat(JSON) results = sparql.query().convert() return results def query_items(query, main_key="item"): """ Makes a WDQS query and sorts the results. The "main_key" variable is expected to be a Wikidata item. """ results = query_raw(query) all_items = [] keys = results["head"]["vars"] if main_key not in keys: print("Error: Unkown key") else: keys.remove(main_key) for r in results["results"]["bindings"]: item = Item(r[main_key]['value']) item.query_results = [] print(keys) for k in keys: if k in r: value = r[k]['value'] if is_item_uri(value): value = Item(value).uri_to_qid() out = (k, value) elif 'xml:lang' in r[k]: out = (k, value, r[k]['xml:lang']) else: out = (k, value) item.query_results.append(out) all_items.append(item) print(r[main_key]['value']) print("item: {}".format(str(item))) print("item: {}".format(item.query_results)) pprint(r) print("==========") return all_items ################## # Custom validators # @validators.validator def is_qid(value): if not (isinstance(value, str) or isinstance(value, unicode)): print(type(value)) return False elif value[0].lower() != 'q': return False else: return value[1:].isdigit() @validators.validator def is_item_uri(value): if validators.url(value): parts = value.split('/') if parts[2] == "www.wikidata.org" and is_qid(parts[-1]): return True return False """"""""""""""""" from pprint import pprint myquery = #Cats #Cats SELECT DISTINCT ?item ?item_label ?birthDate ?birthPlace ?image ?coords WHERE { ?item wdt:P31 wd:Q146 . ?item wdt:P569 ?birthDate . ?item wdt:P19 ?birthPlace . OPTIONAL { ?item rdfs:label ?item_label . FILTER(LANG(?item_label) IN ("fr", "en")) . } OPTIONAL { ?item wdt:P18 ?image . } OPTIONAL { ?birthPlace wdt:P625 ?coords . } } results = query_raw(myquery) pprint(results) results = query_items(myquery) pprint(results) """
from django.test import TestCase from models import Image, Comment, Profile import datetime as dt from django.contrib.auth.models.import User # Create your tests here.
from checkov.terraform.context_parsers.base_parser import BaseContextParser class DataContextParser(BaseContextParser): def __init__(self): definition_type = "data" super().__init__(definition_type=definition_type) def get_entity_context_path(self, entity_block): entity_type = next(iter(entity_block.keys())) entity_name = next(iter(entity_block[entity_type])) return [entity_type, entity_name] parser = DataContextParser()
# -*- Mode: Python; coding: utf-8; indent-tabs-mode: nil; tab-width: 4 -*- # # Ubuntu System Tests # Copyright (C) 2014-2016 Canonical # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # import configparser import logging import os from telegram.common import options logger = logging.getLogger(__name__) config_stack = None DEFAULT_CONF = 'ubuntu-system-tests.conf' KEY_DEFAULT = 'default' CONFIG_OPTIONS = [ options.Option( 'device_serial', help_string='Device serial'), options.Option( 'device_password', help_string='Device password', mandatory=True), options.Option( 'output_dir', mandatory=True, help_string='Directory to store the tests results and artifacts.\n' 'WARNING: This directory will have all existing content ' 'deleted!'), options.Option( 'sim_0_pin', mandatory=True, help_string='SIM pin for the card in the first slot'), options.Option( 'sim_1_pin', help_string='SIM pin for the card in the second slot'), options.Option( 'wifi_ssid', mandatory=True, help_string='Wi-Fi SSID used to connect during setup wizard'), options.Option( 'wifi_password', mandatory=True, help_string='Wi-Fi password used to connect during setup wizard'), options.Option( 'device_security', default='Passcode', help_string='The security method to select during setup wizard'), options.Option( 'bluetooth_device_name', help_string='Name of a nearby bluetooth pairing device'), options.Option( 'device_phone_number', help_string="The phone number of the SIM card inserted in the first " "SIM slot. This must be formatted exactly as you would " "dial it."), options.Option( 'device_phone_number2', help_string="The phone number of the SIM card inserted in the second " "SIM slot. If the device has only one SIM slot, you can " "leave this blank. This must be formatted exactly as you " "would dial it."), options.Option( 'telephony_service_number1', help_string="The phone number to call and message from " "in the telephony service. In Twilio go to " "https://www.twilio.com/user/account/" "phone-numbers/incoming and click on the number " "you want to use, then copy the 'Phone Number' " "field exactly."), options.Option( 'telephony_service_number2', help_string="The second phone number to call and message from " "in the telephony service. In Twilio go to " "https://www.twilio.com/user/account/" "phone-numbers/incoming and click on the number " "you want to use, then copy the 'Phone Number' " "field exactly."), options.Option( # this is a private key, that will not be exported to # autopilot directly '_twilio_account_sid', mandatory=True, help_string='Account SID for Twilio. Please log into ' 'https://www.twilio.com/login ' 'and select \'Dashboard -> Show API Credentials\'.' 'Then copy and paste the Account SID value here.'), options.Option( # this is a private key, that will not be exported to # autopilot directly '_twilio_auth_token', mandatory=True, help_string='Auth token for Twilio account. Please log into ' 'https://www.twilio.com/login ' 'and select \'Dashboard -> Show API Credentials\'.' 'Then copy and paste the Auth token value here.'), options.Option( # this is a private key, that will not be exported to # autopilot directly 'max_unity8_retry_delay', default=30000, help_string='The boundary for how long we should be retrying until ' 'unity8 is started'), options.Option( 'app_startup_cold_runs', default=0, help_string='How many iterations to run for the cold start app ' 'performance tests?'), options.Option( 'app_startup_hot_runs', default=0, help_string='How many iterations to run for the hot start app ' 'performance tests?'), options.Option( 'email_outlook', default='platform_qa_test@outlook.com', help_string='@outlook.com email address to use for email tests'), options.Option( 'password_outlook', mandatory=True, help_string='@outlook.com password to use for email tests'), options.Option( 'email_yahoo', default='platform_qa_test_account@yahoo.com', help_string='@yahoo.com email address to use for email tests'), options.Option( 'password_yahoo', mandatory=True, help_string='@yahoo.com password to use for email tests'), options.Option( 'username_imap', default='platform-qa-test-account', help_string='IMAP username to use for email tests'), options.Option( 'password_imap', mandatory=True, help_string='IMAP password to use for email tests'), options.Option( 'pictures_scalability_runs', help_string='The different loads used for scalability pictures tests ' 'separated by comma'), options.Option( '_practitest_project_id', help_string='Practitest project ID to use for retrieving test lists.'), options.Option( '_practitest_api_token', help_string='Practitest api token used for authentication.'), options.Option( 'country_sim', default='United States', help_string='The name of the country of the SIM card to use for ' 'telegram login'), ] def get_user_config_dir(): """Return the path to the user configuration directory.""" conf_dir = os.environ.get( 'XDG_CONFIG_HOME', os.path.expanduser('~/.config')) return conf_dir def get_device_config_file_path(): """Return the path of the config file copied to the device.""" return '/tmp/ubuntu-system-tests.conf' def get_device_config_section(): """Return the name of config section to use.""" return os.environ.get('CONFIG_SECTION') def get_config_stack_from_file(file_path, config_section=None): """Return config stack from specified file path.""" config = UbuntuSystemTestsConfig(file_path, section=config_section) config.get_config_from_file() return config def get_device_config_stack(): """Return the config stack variable""" global config_stack if not config_stack: config_stack = get_config_stack_from_file( get_device_config_file_path(), get_device_config_section()) return config_stack def get_test_config_values(config_stack): """ Return a string containing the comma separated key=value options. The list includes the config values and the temporal ones as well """ return config_stack.get_autopilot_config_string() class UbuntuSystemTestsConfig(): """Class to get and save test configuration data.""" def __init__(self, file_name=None, section=None, options=None): """ Construct the config and parser object. :param file_name: Name of config file to load. Default file is used if value is not specified. :param section: Name of section to use in config file. Default section is used if not specified. :param options: List of options that should be specified in config. Default list of options is used if not specified. """ user_config_dir = get_user_config_dir() if not os.path.exists(user_config_dir): os.mkdir(user_config_dir) self.file_path = os.path.join( user_config_dir, file_name or DEFAULT_CONF) self.section = section or KEY_DEFAULT self.parser = configparser.ConfigParser( allow_no_value=True, empty_lines_in_values=False, default_section=KEY_DEFAULT) self.config = {} self.options = options or CONFIG_OPTIONS def set(self, option_name, value): """Set a config value. :param option_name: Name of config option. :param value: Value to set. """ self.config[option_name] = value self.save() def get(self, option_name, default=''): """Get a config value. :param option_name: Name of config option to get. :param default: Value to return as default if item doesn't exist. :return: Config option value if it exists. If the config option itself doesn't exist, return None. Otherwise if the option exists but no value is defined return the default value.""" return self.config.get(option_name, default) def save(self): """Save the config to file.""" mode = 'r+' if os.path.exists(self.file_path) else 'w' with open(self.file_path, mode) as f: self.parser.write(f) def get_config_from_string(self, string): """Load config from a string. This is used for selftests only. :param string: Config string to load from. """ self.parser.read_string(string) self._save_config_for_section() def get_config_from_file(self): """Load config from file.""" self.parser.read(self.file_path) self._save_config_for_section() def _save_config_for_section(self): """Save the current config for the specified section only.""" self.config = self.parser[self.section] def get_missing_options(self, silent=False): """Check through each required option and get a value for each one that is not present. :param silent: Whether to query stdin for an input value or take a default value where it exists. """ save_required = False for option in self.options: if option.name in self.config: # name exists, check if its mandatory and if a value exists if option.mandatory and not self.config.get(option.name): # mandatory and no value exists, so get one self._get_option_value(option, silent) save_required = True else: # option name not in config, get a value self._get_option_value(option, silent) save_required = True self._save_if_required(save_required) def _save_if_required(self, save_required): """Save config if it is required. :param save_required: Whether to save or not. """ if save_required: self.save() def _get_option_value(self, option, silent): """Request a value for specified option. :param option: Required option. :param silent: Whether to query stdin or take default value. """ if silent: default = option.default if default: self.config[option.name] = option.default logger.warning( 'In silent mode no value specified for option: "{o}". ' 'Using default value "{v}".'.format( o=option.name, v=default)) else: logger.warning( 'In silent mode no default value specified for option: ' '"{o}". Continuing with value unset.'.format( o=option.name)) else: self._get_option_value_from_stdin(option) def _get_option_value_from_stdin(self, option): """Request option value from stdin. :param option: Required option. """ help_msg = self._get_option_help_text(option) print(help_msg, end='') value = self._get_value_from_user_or_default(option) self.config[option.name] = value def _get_option_help_text(self, option): """Return help message for specified option. :param option: Required option. """ help_msg = option.help_string default = option.default if default: help_msg += ' (leave blank to use default value: {})'.format( default) elif not option.mandatory: help_msg += ' (leave blank if not required)' help_msg += ': ' return help_msg def _get_value_from_user_or_default(self, option): """Return value from stdin or default value if no stdin value.""" return input() or option.default def get_autopilot_config_string(self): """Return the configuration in a string usable by Autopilot. That is, a list of key=value pairs serparated by comma. Any keys starting with _ will be ignored. """ config = '' for key, value in self.config.items(): if not key.startswith('_'): config += '{k}={v},'.format(k=key, v=value) # remove trailing ',' if it exists if config.endswith(','): config = config[:-1] return config
__author__ = 'alanseciwa' ''' This code removes b' characters from utf-8 formatted tweets. This allows tweets to have hex values of emojis used in tweets. After stripping away the unwanted characters, it is outputted to a new cvs file. ''' import sys import csv def clean(t): # set csv file to variable csv_file = open('/Users/alanseciwa/Desktop/cleaned.csv', 'w') writer = csv.writer(csv_file, quotechar='', quoting=csv.QUOTE_NONE) # Open csv file with open(t, 'r') as tweet: for i in tweet: # Use .replace func to filter out all b' chars j = i.replace("b'", "").strip() # need strip() func at end to escape char correctly # write j to csv writer writer.writerow([j]) print(j) csv_file.close() def main(): # Tweet location tweets = "/Users/alanseciwa/Desktop/clean_data-TWEETONLY-2.csv" clean(tweets) if __name__ == '__main__': main() sys.exit()
# Reverse the order of words def rev_words(sentence): words = sentence.split() return ' '.join(words[::-1]) sentence = 'perfect makes practice'; res = rev_words(sentence) print(len(res)) for c in sentence: print(f"'{c}', ", end='')
import pytest class TestDocTrackingPandasDataframe: @pytest.mark.skip() def test_doc(self): # Python 3.6.8 from dbnd import log_metric, log_dataframe import pandas as pd transactions_df = pd.read_csv("data/example.csv") # log dataframe log_dataframe( "Full table", transactions_df, with_histograms=False, with_preview=False ) # log_metrics minimum_amount = 5000 num_large_transactions = transactions_df[ transactions_df["transaction_amt"] >= minimum_amount ].shape[0] avg_large_transaction = transactions_df[ transactions_df["transaction_amt"] >= minimum_amount ].mean()["transaction_amt"] large_transactions_df = transactions_df[ transactions_df["transaction_amt"] >= minimum_amount ] log_metric("Number of large transactions(>= 5000)", num_large_transactions) log_metric("mean large transactions", avg_large_transaction) log_dataframe( "Large transactions (>= 5000)", large_transactions_df, with_preview=False )
from django.shortcuts import render from .datatables import BookDataTables from sspdatatables.utils.decorator import ensure_ajax, dt_json_response from collections import OrderedDict def overview(request): book_datatables = BookDataTables() context = book_datatables.get_table_frame() context.update({ "title": "Books", }) return render(request, 'overview.html', context) @ensure_ajax(['POST']) def get_book_api(request): pre_search_condition = OrderedDict([('select_related', 'author')]) book_datatables = BookDataTables() result = book_datatables.process(pre_search_condition=pre_search_condition, **request.POST) return dt_json_response(result)
import pandas as pd from time import sleep from airbnb_pricer.utils.async_run import async_run from airbnb_pricer.airbnb.skipped_columns import skipped_columns def load_airbnb_links(cur_links_table): cur_urls = cur_links_table.url.tolist() cur_tables = async_run(_load_airbnb_link, cur_urls) cur_links_table["table"] = cur_tables return cur_links_table def _load_airbnb_link(cur_url): tmp_data = pd.read_csv(cur_url, low_memory=False) tmp_data = tmp_data.drop( columns=[ tmp_column for tmp_column in tmp_data.columns if tmp_column in skipped_columns ] ) sleep(1/3) return tmp_data
""" Summary: Contains classes for the database. Classes: BaseModel with subclasses Program """ from peewee import * import json with open("config.json", "r") as f: config = json.load(f) print config db = SqliteDatabase(config["dbname"]) class BaseModel(Model): class Meta: database = db class User(BaseModel): id = PrimaryKeyField() username = TextField(unique=True) class Program(BaseModel): id = PrimaryKeyField() length = IntegerField(default=0) date = DateField(default="2011-05-11") class Set(BaseModel): id = PrimaryKeyField() class Leg(BaseModel): id = PrimaryKeyField() if __name__ == "__main__": try: db.create_tables([Program, Set, Leg]) except: print("There already exists a database with this name!")
import numpy as np import pandas as pd from sklearn.metrics import mean_absolute_error from estimate_start_times.config import DEFAULT_CSV_IDS, EventLogIDs logs = [ "insurance", "BPI_Challenge_2012_W_Two_TS", "BPI_Challenge_2017_W_Two_TS", "Application_to_Approval_Government_Agency", "callcentre", "ConsultaDataMining201618", "poc_processmining", "Production", "confidential", "Loan_Application", "cvs_pharmacy", "Procure_to_Pay", ] raw_path = "../event_logs/{}.csv.gz" def read_and_preprocess_log(event_log_path: str, log_ids: EventLogIDs) -> pd.DataFrame: # Read from CSV event_log = pd.read_csv(event_log_path) # Transform to Timestamp bot start and end columns event_log[log_ids.start_time] = pd.to_datetime(event_log[log_ids.start_time], utc=True) event_log[log_ids.end_time] = pd.to_datetime(event_log[log_ids.end_time], utc=True) if log_ids.enabled_time in event_log: event_log[log_ids.enabled_time] = pd.to_datetime(event_log[log_ids.enabled_time], utc=True) if log_ids.available_time in event_log: event_log[log_ids.available_time] = pd.to_datetime(event_log[log_ids.available_time], utc=True) # Sort by end timestamp, then by start timestamp, and then by activity name event_log = event_log.sort_values( [log_ids.end_time, log_ids.activity, log_ids.case, log_ids.resource] ) # Reset the index event_log.reset_index(drop=True, inplace=True) return event_log def measure_estimation(): techniques = ["heur_median", "heur_median_2", "heur_median_5", "heur_mode", "heur_mode_2", "heur_mode_5", "df_median", "df_median_2", "df_median_5", "df_mode", "df_mode_2", "df_mode_5", "only_resource_median", "only_resource_median_2", "only_resource_median_5", "only_resource_mode", "only_resource_mode_2", "only_resource_mode_5"] print("log_technique," "smape_proc_times," "mape_proc_times," "mae_proc_times (s)," "total_activity_instances," "num_selected_enabled_time," "num_selected_available_time," "num_re_estimated," "num_estimated_after_real," "num_estimated_before_real," "num_exact_estimation") for log_name in logs: raw_event_log = read_and_preprocess_log(raw_path.format(log_name), DEFAULT_CSV_IDS) for technique in techniques: calculate_estimation_stats(log_name, technique, raw_event_log, DEFAULT_CSV_IDS) def calculate_estimation_stats(log_name: str, method: str, raw_event_log: pd.DataFrame, log_ids: EventLogIDs): # Measure stats for estimated log estimated_event_log = read_and_preprocess_log(raw_path.format(method + "/" + log_name + "_estimated"), log_ids) # Check sorting similarity if not raw_event_log[log_ids.end_time].equals(estimated_event_log[log_ids.end_time]): print("Different 'end_timestamp' order!!") if not raw_event_log[log_ids.activity].equals(estimated_event_log[log_ids.activity]): print("Different 'activity' order!!") if not raw_event_log[log_ids.case].equals(estimated_event_log[log_ids.case]): print("Different 'case' order!!") # Print stats raw_processing_times = ( raw_event_log[log_ids.end_time] - raw_event_log[log_ids.start_time] ).astype(np.int64) / 1000000000 estimated_processing_times = ( estimated_event_log[log_ids.end_time] - estimated_event_log[log_ids.start_time] ).astype(np.int64) / 1000000000 raw_minus_estimated = raw_processing_times - estimated_processing_times print("{}_{},{},{},{},{},{},{},{},{},{},{}".format( log_name, method, symmetric_mean_absolute_percentage_error(raw_processing_times, estimated_processing_times), mean_absolute_percentage_error(raw_processing_times, estimated_processing_times), mean_absolute_error(raw_processing_times, estimated_processing_times), len(estimated_event_log), ((estimated_event_log[log_ids.start_time] == estimated_event_log[log_ids.enabled_time]) & (estimated_event_log[log_ids.start_time] != estimated_event_log[log_ids.available_time])).sum(), ((estimated_event_log[log_ids.start_time] == estimated_event_log[log_ids.available_time]) & (estimated_event_log[log_ids.start_time] != estimated_event_log[log_ids.enabled_time])).sum(), ((estimated_event_log[log_ids.start_time] != estimated_event_log[log_ids.available_time]) & (estimated_event_log[log_ids.start_time] != estimated_event_log[log_ids.enabled_time])).sum(), (raw_minus_estimated > 0).sum(), (raw_minus_estimated < 0).sum(), (raw_minus_estimated == 0).sum() )) def symmetric_mean_absolute_percentage_error(actual, forecast) -> float: return np.sum(2 * np.abs(forecast - actual) / (np.abs(actual) + np.abs(forecast))) / len(actual) def mean_absolute_percentage_error(actual, forecast) -> float: return np.sum(np.abs(forecast - actual) / np.abs(actual)) / len(actual) if __name__ == '__main__': measure_estimation()
# Definition for singly-linked list. class ListNode: def __init__(self, val=0, next=None): self.val = val self.next = next class Solution: def addTwoNumbers(self, l1: ListNode, l2: ListNode) -> ListNode: carry = 0 start, prev = l1, None # both lists haven't been exhausted while l1 and l2: carry, digit = divmod(l1.val + l2.val + carry, 10) l1.val = digit prev = l1 l1, l2 = l1.next, l2.next # continue with the rest, keep reference to previous valid # node in order to add carry if it exists. final = None if l1: while l1: carry, digit = divmod(l1.val + carry, 10) l1.val = digit final = l1 l1 = l1.next if carry: final.next = ListNode(1) elif l2: prev.next = l2 while l2: carry, digit = divmod(l2.val + carry, 10) l2.val = digit final = l2 l2 = l2.next if carry: final.next = ListNode(1) else: if carry: prev.next = ListNode(1) return start
# -*- coding: utf-8 -*- """ Created on Thu Jun 11 09:33:07 2020 @author: HI """ import xlwings as xw import math from scipy.stats import norm @xw.func def GBlackScholesNGreeek(S,X,T,r,q,sigam,corp): data=[S,X,T,r,q,sigam,corp] d1=(math.log(data[0]/data[1])+(data[4]+data[5]**2/2)*data[2]/365)/((data[5])*math.sqrt(data[2]/365)) d2=d1-data[5]*math.sqrt(data[2]/365) c=data[0]*math.exp((data[4]-data[3])*data[2]/365)*norm.cdf(d1)-data[1]*math.exp(-data[3]*data[2]/365)*norm.cdf(d2) p=data[1]*math.exp(-data[3]*data[2]/365)*norm.cdf(-d2)-data[0]*math.exp((data[4]-data[3])*data[2]/365)*norm.cdf(-d1) if data[6]=='c': return c else: return p
from .migration_target import MigrationTarget from .mount_point import MountPoint from .workload import Workload from .serializable import Serializable from enum import Enum from time import sleep X = 5 class MigrationState(Enum): NOT_STARTED = 1 RUNNING = 2 ERROR = 3 SUCCESS = 4 class Migration(Serializable): def __init__(self, mount_points: [MountPoint], source: Workload, migration_target: MigrationTarget): self.mount_points = mount_points self.source = source self.migration_target = migration_target self.migration_state = MigrationState.NOT_STARTED def run(self): self.migration_state = MigrationState.RUNNING selected_mount_points_names = [str(mp.mount_point_name) for mp in self.mount_points] if "C:\\" not in selected_mount_points_names: raise Exception("Migration is now allowed when C:\\ is not selected") source_mount_point_names = [str(mp.mount_point_name) for mp in self.source.storage] storage = [] for mount_point in self.mount_points: if mount_point.mount_point_name in source_mount_point_names: storage.append(mount_point) if len(storage) == 0: raise Exception("There are no selected mount points in source storage list") ip = self.source.ip credentials = self.source.credentials self.migration_target.target_vm = Workload(ip, credentials, storage) sleep(X * 60) self.migration_state = MigrationState.SUCCESS def repr_json(self): return dict(mount_points=self.mount_points, source=self.source, migration_target=self.migration_target, migration_state=self.migration_state.name)
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('vendors', '0020_auto_20140930_1435'), ] operations = [ migrations.RunSQL( """ALTER TABLE "vendors_vendor" ALTER COLUMN "annual_revenue" DROP DEFAULT; """ ), migrations.RunSQL("""ALTER TABLE "vendors_vendor" ALTER COLUMN "annual_revenue" TYPE BIGINT USING annual_revenue::bigint; """ ) ]
#!/usr/bin/env python3 import isce import numpy as np import shelve import os import logging import argparse from isceobj.Constants import SPEED_OF_LIGHT import datetime from isceobj.Util.Poly2D import Poly2D def cmdLineParse(): ''' Command line parser. ''' parser = argparse.ArgumentParser(description='Plot corner reflectors in SLC') parser.add_argument('-i', '--input', dest='indir', type=str, required=True, help='Input SLC directory') parser.add_argument('-c', '--crs', dest='posfile', type=str, required=True, help='Input text file with CR positions') parser.add_argument('-p', '--plot', dest='plot', action='store_true', default=False, help='Plot') return parser.parse_args() def makePlot(filename, pos): ''' Make plots. ''' import matplotlib.pyplot as plt from imageMath import IML win = 8 mm = IML.mmapFromISCE(filename, logging) data = mm.bands[0] plt.figure('CR analysis') for index, (num, line, pixel) in enumerate(pos): print(line, pixel) xx = np.int(pixel) yy = np.int(line) box = 10 * np.log10(np.abs(data[yy-win:yy+win, yy-win:yy+win])) plt.subplot(7,3,index+1) plt.imshow(box, cmap=plt.cm.gray) plt.colorbar() plt.scatter(pixel-xx+win, line-yy+win, marker='+', c='b') plt.show() def makeOnePlot(filename, pos): ''' Make plots. ''' import matplotlib.pyplot as plt from imageMath import IML win = 100 mm = IML.mmapFromISCE(filename, logging) data = mm.bands[0] nl, npix = data.shape pos = np.array(pos) miny = np.clip(np.min(pos[:,1])-win, 0 , nl-1) maxy = np.clip(np.max(pos[:,1])+win, 0 , nl-1) minx = np.clip(np.min(pos[:,2])-win, 0, npix-1) maxx = np.clip(np.max(pos[:,2])+win, 0, npix-1) box = np.power(np.abs(data[int(miny):int(maxy), int(minx):int(maxx)]), 0.4) plt.figure('CR analysis') plt.imshow(box, cmap=plt.cm.gray) plt.colorbar() # plt.scatter(pos[:,2]-minx, pos[:,1]-miny, marker='+', c='b', s=200) plt.scatter(pos[:,2]-minx, pos[:,1]-miny, marker='o', facecolors='none', edgecolors='b', s=100) plt.title(os.path.basename(os.path.dirname(filename))) plt.show() def getAzRg(frame,llh): ''' Return line pixel position. ''' nl = frame.getImage().getLength() - 1 np = frame.getImage().getWidth() - 1 coeffs = frame._dopplerVsPixel if coeffs is None: coeffs = [0.] pol = Poly2D() pol._meanRange = frame.startingRange pol._normRange = frame.instrument.rangePixelSize pol.initPoly(azimuthOrder=0, rangeOrder=len(coeffs)-1, coeffs=[coeffs]) taz, rgm = frame.orbit.geo2rdr(list(llh)[1:], side=frame.instrument.platform.pointingDirection, doppler=pol, wvl=frame.instrument.getRadarWavelength()) line = (taz - frame.sensingStart).total_seconds() * frame.PRF pixel = (rgm - frame.startingRange) / frame.getInstrument().getRangePixelSize() if (line < 0) or (line > nl): return None if (pixel < 0) or (pixel > np): return None return (line, pixel) if __name__ == '__main__': ''' Main driver. ''' #Command line parse inps = cmdLineParse() #Load shelve with shelve.open(os.path.join(inps.indir, 'data'), 'r') as db: frame = db['frame'] ####Adjust azimuth for bias bias = 0.5 * (frame.getStartingRange() + frame.getFarRange()) / SPEED_OF_LIGHT print('One way bias: ', bias) delta = datetime.timedelta(seconds = bias) #-0.009) frame.sensingStart = frame.sensingStart - delta ####Adjust range for bias # frame.startingRange = frame.startingRange + 100.0 ###Load CRS positions llhs = np.loadtxt(inps.posfile, delimiter=',') crs = [] for ind, llh in enumerate(llhs): pos = getAzRg(frame, llh) if pos is not None: crs.append([ind, pos[0], pos[1]]) print('Number of CRS in the scene: {0}'.format(len(crs))) if inps.plot and len(crs) > 0: makeOnePlot(frame.image.filename, crs) if False: ''' Work on the grid file. ''' import matplotlib.pyplot as plt fname = '154283811/154283811_RH_L1_SlantRange_grid.txt' grid = np.loadtxt(fname) ht = np.linspace(600.0, 900.0, num=150) lonref = grid[0][1] latref = grid[0][0] rngref = grid[0][2] r0 = frame.startingRange t0 = frame.sensingStart orb = frame.orbit tdiff = [] rdiff = [] for h in ht: tt,rr = orb.geo2rdr([latref, lonref, h]) tdiff.append( (tt-t0).total_seconds()) rdiff.append( rr - r0) plt.figure() plt.subplot(2,1,1) plt.plot(ht, tdiff) plt.ylabel('Az diff') plt.subplot(2,1,2) plt.plot(ht, rdiff) plt.xlabel('Rg diff') plt.show()
#! python3 # messenger.py - Weather API that sends me text messages from twilio.rest import Client import requests, bs4 # rest API from twilio # Your Account SID from twilio.com/console account_sid = "AC7226356ef66d2de53d535237cba9e2dc" # Your Auth Token from twilio.com/console auth_token = "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx" myNumber = '+1469XXXXXXX' client = Client(account_sid, auth_token) # create a message to myself def textmyself(): res = requests.get('https://weather.com/weather/today/l/c1535f42ba5fc52449e416514aca69b3b2a16aae4b89abd6c92e662f7a89c02f').text soup = bs4.BeautifulSoup(res, features='html.parser') state = soup.find('header', class_='loc-container').text fullforcast = soup.find('div', class_='today_nowcard-section today_nowcard-condition').text message = client.messages.create( to="+1469XXXXXXX", from_="+17033489722", body= fullforcast) return message.sid
import os os.fsformat('/flash')
from malcolm.core import Part, method_takes, REQUIRED from malcolm.modules.builtin.vmetas import StringMeta @method_takes( "name", StringMeta("Name of the Part within the controller"), REQUIRED) class DummyPart(Part): """Defines a dummy part""" def __init__(self, params): super(DummyPart, self).__init__(params.name)
"""3D mesh manipulation utilities.""" from builtins import str from collections import OrderedDict import numpy as np from transforms3d import quaternions from transforms3d.quaternions import axangle2quat, mat2quat import os.path as osp import pyassimp import pprint import hashlib import mmcv cur_dir = osp.dirname(osp.abspath(__file__)) from lib.utils import logger from lib.pysixd import inout def get_vertices_extent(vertices): xmin, xmax = np.amin(vertices[:, 0]), np.amax(vertices[:, 0]) ymin, ymax = np.amin(vertices[:, 1]), np.amax(vertices[:, 1]) zmin, zmax = np.amin(vertices[:, 2]), np.amax(vertices[:, 2]) xsize = xmax - xmin ysize = ymax - ymin zsize = zmax - zmin return xsize, ysize, zsize def frustum(left, right, bottom, top, znear, zfar): """Create view frustum matrix.""" assert right != left assert bottom != top assert znear != zfar M = np.zeros((4, 4), dtype=np.float32) M[0, 0] = +2.0 * znear / (right - left) M[2, 0] = (right + left) / (right - left) M[1, 1] = +2.0 * znear / (top - bottom) M[3, 1] = (top + bottom) / (top - bottom) M[2, 2] = -(zfar + znear) / (zfar - znear) M[3, 2] = -2.0 * znear * zfar / (zfar - znear) M[2, 3] = -1.0 return M def perspective(fovy, aspect, znear, zfar): """Create perspective projection matrix. fovy: deg """ assert znear != zfar fovy_rad = fovy / 180.0 * np.pi h = np.tan(fovy_rad / 2.0) * znear w = h * aspect return frustum(-w, w, -h, h, znear, zfar) def anorm(x, axis=None, keepdims=False): """Compute L2 norms alogn specified axes.""" return np.sqrt((x * x).sum(axis=axis, keepdims=keepdims)) def normalize(v, axis=None, eps=1e-10): """L2 Normalize along specified axes.""" return v / max(anorm(v, axis=axis, keepdims=True), eps) def lookat(eye, target=[0, 0, 0], up=[0, 1, 0]): """Generate LookAt modelview matrix.""" eye = np.float32(eye) forward = normalize(target - eye) side = normalize(np.cross(forward, up)) up = np.cross(side, forward) M = np.eye(4, dtype=np.float32) R = M[:3, :3] R[:] = [side, up, -forward] M[:3, 3] = -(R.dot(eye)) return M def sample_view(min_dist, max_dist=None): """Sample random camera position. Sample origin directed camera position in given distance range from the origin. ModelView matrix is returned. """ if max_dist is None: max_dist = min_dist dist = np.random.uniform(min_dist, max_dist) eye = np.random.normal(size=3) eye = normalize(eye) * dist return lookat(eye) def homotrans(M, p): p = np.asarray(p) if p.shape[-1] == M.shape[1] - 1: p = np.append(p, np.ones_like(p[..., :1]), -1) p = np.dot(p, M.T) return p[..., :-1] / p[..., -1:] def _parse_vertex_tuple(s): """Parse vertex indices in '/' separated form (like 'i/j/k', 'i//k'. ...). """ vt = [0, 0, 0] for i, c in enumerate(s.split("/")): if c: vt[i] = int(c) return tuple(vt) def _unify_rows(a): """Unify lengths of each row of a.""" lens = np.fromiter(map(len, a), np.int32) if not (lens[0] == lens).all(): out = np.zeros((len(a), lens.max()), np.float32) for i, row in enumerate(a): out[i, : lens[i]] = row else: out = np.float32(a) return out def loadTexture(path): from PIL import Image import OpenGL.GL as GL img = Image.open(path).transpose(Image.FLIP_TOP_BOTTOM) if img.mode != "RGB": # print('convert {} to RGB'.format(img.mode)) img = img.convert("RGB") img_data = np.fromstring(img.tobytes(), np.uint8) # print(img_data.shape) width, height = img.size # glTexImage2D expects the first element of the image data to be the # bottom-left corner of the image. Subsequent elements go left to right, # with subsequent lines going from bottom to top. # However, the image data was created with PIL Image tostring and numpy's # fromstring, which means we have to do a bit of reorganization. The first # element in the data output by tostring() will be the top-left corner of # the image, with following values going left-to-right and lines going # top-to-bottom. So, we need to flip the vertical coordinate (y). texture_id = GL.glGenTextures(1) GL.glPixelStorei(GL.GL_UNPACK_ALIGNMENT, 1) GL.glBindTexture(GL.GL_TEXTURE_2D, texture_id) # bind texture GL.glTexParameterf(GL.GL_TEXTURE_2D, GL.GL_TEXTURE_MAG_FILTER, GL.GL_LINEAR) GL.glTexParameterf(GL.GL_TEXTURE_2D, GL.GL_TEXTURE_MIN_FILTER, GL.GL_LINEAR_MIPMAP_LINEAR) GL.glTexParameterf(GL.GL_TEXTURE_2D, GL.GL_TEXTURE_WRAP_S, GL.GL_CLAMP_TO_EDGE) GL.glTexParameterf(GL.GL_TEXTURE_2D, GL.GL_TEXTURE_WRAP_T, GL.GL_CLAMP_TO_EDGE) GL.glTexImage2D( GL.GL_TEXTURE_2D, 0, GL.GL_RGB, width, height, 0, GL.GL_RGB, GL.GL_UNSIGNED_BYTE, img_data, ) GL.glGenerateMipmap(GL.GL_TEXTURE_2D) return texture_id def im2Texture(im, flip_v=False): from PIL import Image import OpenGL.GL as GL im_pil = Image.fromarray(im) if flip_v: im_pil = im_pil.transpose(Image.FLIP_TOP_BOTTOM) if im_pil.mode != "RGB": print("convert {} to RGB".format(im_pil.mode)) im_pil = im_pil.convert("RGB") img_data = np.fromstring(im_pil.tobytes(), np.uint8) # print(img_data.shape) width, height = im_pil.size # glTexImage2D expects the first element of the image data to be the # bottom-left corner of the image. Subsequent elements go left to right, # with subsequent lines going from bottom to top. # However, the image data was created with PIL Image tostring and numpy's # fromstring, which means we have to do a bit of reorganization. The first # element in the data output by tostring() will be the top-left corner of # the image, with following values going left-to-right and lines going # top-to-bottom. So, we need to flip the vertical coordinate (y). texture_id = GL.glGenTextures(1) GL.glPixelStorei(GL.GL_UNPACK_ALIGNMENT, 1) GL.glBindTexture(GL.GL_TEXTURE_2D, texture_id) # bind texture GL.glTexParameterf(GL.GL_TEXTURE_2D, GL.GL_TEXTURE_MAG_FILTER, GL.GL_LINEAR) GL.glTexParameterf(GL.GL_TEXTURE_2D, GL.GL_TEXTURE_MIN_FILTER, GL.GL_LINEAR_MIPMAP_LINEAR) GL.glTexParameterf(GL.GL_TEXTURE_2D, GL.GL_TEXTURE_WRAP_S, GL.GL_CLAMP_TO_EDGE) GL.glTexParameterf(GL.GL_TEXTURE_2D, GL.GL_TEXTURE_WRAP_T, GL.GL_CLAMP_TO_EDGE) GL.glTexImage2D( GL.GL_TEXTURE_2D, 0, GL.GL_RGB, width, height, 0, GL.GL_RGB, GL.GL_UNSIGNED_BYTE, img_data, ) GL.glGenerateMipmap(GL.GL_TEXTURE_2D) return texture_id def shader_from_path(shader_filename): shader_path = osp.join(cur_dir, "../shader", shader_filename) assert osp.exists(shader_path) with open(shader_path, "r") as f: return f.read() def calc_normals(vertices): normals = np.empty_like(vertices) N = vertices.shape[0] for i in range(0, N - 1, 3): v1 = vertices[i] v2 = vertices[i + 1] v3 = vertices[i + 2] normal = np.cross(v2 - v1, v3 - v1) norm = np.linalg.norm(normal) normal = np.zeros(3) if norm == 0 else normal / norm normals[i] = normal normals[i + 1] = normal normals[i + 2] = normal return normals def load_mesh_pyassimp( model_path, recalculate_normals=False, vertex_scale=1.0, is_textured=False, cad_model_color=None, use_cache=True, cache_dir=".cache", verbose=True, ): hashed_file_name = ( hashlib.md5( ( "{}_{}_{}_{}_{}_{}".format( model_path, "load_meshe_pyassimp", recalculate_normals, vertex_scale, is_textured, cad_model_color, ) ).encode("utf-8") ).hexdigest() + "_load_mesh_pyassimp.pkl" ) mmcv.mkdir_or_exist(cache_dir) cache_file = osp.join(cache_dir, hashed_file_name) if use_cache and osp.exists(cache_file): logger.info("{} loaded cache file: {}".format(model_path, cache_file)) return mmcv.load(cache_file) scene = pyassimp.load( model_path ) # ,processing=pyassimp.postprocess.aiProcess_GenUVCoords | pyassimp.postprocess.aiProcess_Triangulate) # load collada mesh = scene.meshes[0] # pprint(vars(mesh)) print(mesh.__dict__.keys()) # check materials mat = mesh.material # pprint(vars(mat)) print(mat.__dict__.keys()) # default values in pyassimp, ambient:0.05, diffuse: 0.6, specular: 0.6 if "diffuse" in mat.properties.keys() and mat.properties["diffuse"] != 0: uMatDiffuse = np.array(mat.properties["diffuse"])[:3] else: uMatDiffuse = [0.8, 0.8, 0.8] if "specular" in mat.properties.keys() and mat.properties["specular"] != 0: uMatSpecular = np.array(mat.properties["specular"])[:3] else: uMatSpecular = [0.5, 0.5, 0.5] if "ambient" in mat.properties.keys() and mat.properties["ambient"] != 0: uMatAmbient = np.array(mat.properties["ambient"])[:3] # phong shader else: uMatAmbient = [0, 0, 0] if "shininess" in mat.properties.keys() and mat.properties["shininess"] != 0: uMatShininess = max(mat.properties["shininess"], 1) # avoid the 0 shininess else: uMatShininess = 1 vertices = mesh.vertices * vertex_scale if recalculate_normals: normals = calc_normals(vertices) else: normals = mesh.normals if sum(normals.shape) == 0: normals = calc_normals(vertices) # import pdb; pdb.set_trace(); result = dict( vertices=vertices, normals=normals, faces=mesh.faces, uMatDiffuse=uMatDiffuse, uMatSpecular=uMatSpecular, uMatAmbient=uMatAmbient, uMatShininess=uMatShininess, ) if is_textured: result["colors"] = np.zeros((vertices.shape[0], 3), np.float32) if sum(mesh.texturecoords.shape) > 0: result["texturecoords"] = mesh.texturecoords[0, :, :2] else: logger.warn("can not load texturecoords with pyassimp") # pyassimp does not load ply texture_uv else: result["texturecoords"] = np.zeros((vertices.shape[0], 2), np.float32) if sum(mesh.colors.shape) > 0: result["colors"] = mesh.colors[0, :, :3] else: if verbose: logger.warn("can not load colors with pyassimp. (ignore this if the model is textured)") if not is_textured and "colors" not in result: # no vert color and texture is_cad = True colors = np.zeros((vertices.shape[0], 3), np.float32) # dummy colors if cad_model_color is None: colors[:, 0] = 223.0 / 255 colors[:, 1] = 214.0 / 255 colors[:, 2] = 205.0 / 255 else: colors[:, 0] = cad_model_color[0] / 255 colors[:, 1] = cad_model_color[1] / 255 colors[:, 2] = cad_model_color[2] / 255 result["colors"] = colors else: is_cad = False result["is_cad"] = is_cad pyassimp.release(scene) # if model_path.endswith('.obj'): # ply_path = model_path.replace('.obj', '.ply') # if osp.exists(ply_path): # for key in ['uMatDiffuse', 'uMatSpecular', 'uMatAmbient', 'uMatShininess']: # print('before: ', key, result[key]) # logger.info('assign light properties by loading {}'.format(ply_path)) # _res = load_mesh_pyassimp(ply_path) # for key in ['uMatDiffuse', 'uMatSpecular', 'uMatAmbient', 'uMatShininess']: # result[key] = _res[key] # for key in ['uMatDiffuse', 'uMatSpecular', 'uMatAmbient', 'uMatShininess']: # print('after: ', key, result[key]) mmcv.dump(result, cache_file) return result def load_mesh_sixd( model_path, recalculate_normals=False, vertex_scale=1.0, is_textured=False, render_uv=False, render_normalized_coords=False, render_nocs=False, model_info=None, cad_model_color=None, use_cache=True, cache_dir=".cache", ): mmcv.mkdir_or_exist(cache_dir) if model_path.endswith(".obj"): logger.warn(".obj file, load with pyassimp") return load_mesh_pyassimp( model_path, recalculate_normals=recalculate_normals, vertex_scale=vertex_scale, is_textured=is_textured, use_cache=use_cache, cache_dir=cache_dir, ) ##################################### hashed_file_name = ( hashlib.md5( ( "{}_{}_{}_{}_{}".format( model_path, "load_mesh_pysixd", recalculate_normals, vertex_scale, is_textured, ) ).encode("utf-8") ).hexdigest() + "_load_mesh_pysixd.pkl" ) cache_file = osp.join(cache_dir, hashed_file_name) if use_cache and osp.exists(cache_file): logger.info("{} loaded cache file: {}".format(model_path, cache_file)) return mmcv.load(cache_file) attributes = {} logger.info("loading {}".format(model_path)) model = inout.load_ply(model_path) vertices = np.array(model["pts"]).astype(np.float32) * vertex_scale # import pdb; pdb.set_trace(); num_pts = vertices.shape[0] if recalculate_normals or "normals" not in model: normals = calc_normals(vertices) else: normals = np.array(model["normals"]).astype(np.float32) assert ( int(render_uv + render_normalized_coords + render_nocs) <= 1 ), "render_uv, render_normalized_coords, render_nocs can not be True the same time" if render_uv: logger.info("render uv") model["colors"] = np.zeros((num_pts, 3), np.float32) model["colors"][:, 1:] = model["texture_uv"] if render_normalized_coords: # each axis normalized within [0, 1] logger.info("render normalized coords") # assert model_info is not None normalizedCoords = np.copy(vertices) if model_info is None: xmin, xmax = vertices[:, 0].min(), vertices[:, 0].max() ymin, ymax = vertices[:, 1].min(), vertices[:, 1].max() zmin, zmax = vertices[:, 2].min(), vertices[:, 2].max() else: xmin, xmax = model_info["xmin"], model_info["xmax"] ymin, ymax = model_info["ymin"], model_info["ymax"] zmin, zmax = model_info["zmin"], model_info["zmax"] # normalize every axis to [0, 1] normalizedCoords[:, 0] = (normalizedCoords[:, 0] - xmin) / (xmax - xmin) normalizedCoords[:, 1] = (normalizedCoords[:, 1] - ymin) / (ymax - ymin) normalizedCoords[:, 2] = (normalizedCoords[:, 2] - zmin) / (zmax - zmin) model["colors"] = normalizedCoords if render_nocs: # diagnal normalized to 1, and min corner moved to (0,0,0) logger.info("render nocs") # Centering and scaling to fit the unit box nocs = np.copy(vertices) if model_info is None: xmin, xmax = nocs[:, 0].min(), nocs[:, 0].max() ymin, ymax = nocs[:, 1].min(), nocs[:, 1].max() zmin, zmax = nocs[:, 2].min(), nocs[:, 2].max() diagonal = np.sqrt((xmax - xmin) ** 2 + (ymax - ymin) ** 2 + (zmax - zmin) ** 2) else: xmin, xmax = model_info["xmin"], model_info["xmax"] ymin, ymax = model_info["ymin"], model_info["ymax"] zmin, zmax = model_info["zmin"], model_info["zmax"] diagonal = model_info["diagonal"] # # move (xmin, ymin, zmin) to origin, model centered at the 3b bbox center nocs[:, 0] -= xmin nocs[:, 1] -= ymin nocs[:, 2] -= zmin # scale = max(max(xmax - xmin, ymax - ymin), zmax - zmin) # unit diagonal nocs /= diagonal model["colors"] = nocs faces = np.array(model["faces"]).astype(np.uint32) if "colors" in model: # NOTE: hack logger.info("colors max: {}".format(model["colors"].max())) if model["colors"].max() > 1.1: logger.info("make colors in [0, 1]") colors = np.array(model["colors"]).astype(np.float32) / 255.0 else: # in range [0, 1] colors = np.array(model["colors"]).astype(np.float32) attributes.update(vertices=vertices, normals=normals, colors=colors, faces=faces) else: attributes.update(vertices=vertices, normals=normals, faces=faces) if "texture_uv" in model and is_textured: attributes["texturecoords"] = model["texture_uv"] attributes["colors"] = np.zeros((vertices.shape[0], 3), np.float32) else: attributes["texturecoords"] = np.zeros((vertices.shape[0], 2), np.float32) if not is_textured and "colors" not in model: # no vert color and texture is_cad = True colors = np.zeros((vertices.shape[0], 3), np.float32) # dummy colors if cad_model_color is None: colors[:, 0] = 223.0 / 255 colors[:, 1] = 214.0 / 255 colors[:, 2] = 205.0 / 255 else: colors[:, 0] = cad_model_color[0] / 255 colors[:, 1] = cad_model_color[1] / 255 colors[:, 2] = cad_model_color[2] / 255 attributes["colors"] = colors else: is_cad = False attributes["is_cad"] = is_cad result = load_mesh_pyassimp( model_path, recalculate_normals=recalculate_normals, vertex_scale=vertex_scale, is_textured=False, use_cache=False, verbose=False, ) attributes.update( uMatDiffuse=result["uMatDiffuse"], uMatSpecular=result["uMatSpecular"], uMatAmbient=result["uMatAmbient"], uMatShininess=result["uMatShininess"], ) mmcv.dump(attributes, cache_file) return attributes def load_obj(fn): """Load 3d mesh form .obj' file. Args: fn: Input file name or file-like object. Returns: dictionary with the following keys (some of which may be missing): position: np.float32, (n, 3) array, vertex positions uv: np.float32, (n, 2) array, vertex uv coordinates normal: np.float32, (n, 3) array, vertex uv normals face: np.int32, (k*3,) traingular face indices """ position = [np.zeros(3, dtype=np.float32)] normal = [np.zeros(3, dtype=np.float32)] uv = [np.zeros(2, dtype=np.float32)] tuple2idx = OrderedDict() trinagle_indices = [] input_file = open(fn) if isinstance(fn, str) else fn for line in input_file: line = line.strip() if not line or line[0] == "#": continue line = line.split(" ", 1) tag = line[0] if len(line) > 1: line = line[1] else: line = "" if tag == "v": position.append(np.fromstring(line, sep=" ")) elif tag == "vt": uv.append(np.fromstring(line, sep=" ")) elif tag == "vn": normal.append(np.fromstring(line, sep=" ")) elif tag == "f": output_face_indices = [] for chunk in line.split(): # tuple order: pos_idx, uv_idx, normal_idx vt = _parse_vertex_tuple(chunk) if vt not in tuple2idx: # create a new output vertex? tuple2idx[vt] = len(tuple2idx) output_face_indices.append(tuple2idx[vt]) # generate face triangles for i in range(1, len(output_face_indices) - 1): for vi in [0, i, i + 1]: trinagle_indices.append(output_face_indices[vi]) outputs = {} outputs["face"] = np.int32(trinagle_indices) pos_idx, uv_idx, normal_idx = np.int32(list(tuple2idx)).T if np.any(pos_idx): outputs["position"] = _unify_rows(position)[pos_idx] if np.any(uv_idx): outputs["uv"] = _unify_rows(uv)[uv_idx] if np.any(normal_idx): outputs["normal"] = _unify_rows(normal)[normal_idx] return outputs def normalize_mesh(mesh): """Scale mesh to fit into -1..1 cube.""" mesh = dict(mesh) pos = mesh["position"][:, :3].copy() pos -= (pos.max(0) + pos.min(0)) / 2.0 pos /= np.abs(pos).max() mesh["position"] = pos return mesh def quat2rotmat(quat): quat_mat = np.eye(4) quat_mat[:3, :3] = quaternions.quat2mat(quat) return quat_mat def mat2rotmat(mat): quat_mat = np.eye(4) quat_mat[:3, :3] = mat return quat_mat def xyz2mat(xyz): trans_mat = np.eye(4) trans_mat[-1, :3] = xyz return trans_mat def mat2xyz(mat): xyz = mat[-1, :3] xyz[np.isnan(xyz)] = 0 return xyz def safemat2quat(mat): quat = np.array([1, 0, 0, 0]) try: quat = mat2quat(mat) except: pass quat[np.isnan(quat)] = 0 return quat
def ackermann(m, n): if m == 0: return n+1 elif m > 0: if n == 0: return ackermann(m-1, 1) elif n > 0: return ackermann(m-1, ackermann(m, n-1)) print 'invalid input' if __name__ == '__main__': print ackermann(3, 4) print ackermann(-1, 2)
import time import numpy as np import tensorflow as tf def average_completion(exp): completion_time = 0 number_task = 0 for job in exp.simulation.cluster.jobs: for task in job.tasks: number_task += 1 # completion_time += (task.finished_timestamp - task.started_timestamp) # 这里有问题吧,计算的应该是job的提交时间 completion_time += (task.finished_timestamp - task.task_config.submit_time) return completion_time / number_task def average_slowdown(exp): slowdown = 0 number_task = 0 for job in exp.simulation.cluster.jobs: for task in job.tasks: number_task += 1 # slowdown += (task.finished_timestamp - task.started_timestamp) / task.task_config.duration slowdown += (task.finished_timestamp - task.task_config.submit_time) return slowdown / number_task def multiprocessing_run(episode, trajectories, makespans, average_completions, average_slowdowns): np.random.seed(int(time.time())) tf.random.set_random_seed(time.time()) episode.run() trajectories.append(episode.simulation.scheduler.algorithm.current_trajectory) makespans.append(episode.simulation.env.now) # print(episode.simulation.env.now) average_completions.append(average_completion(episode)) average_slowdowns.append(average_slowdown(episode)) def debugPrinter(file, lineno, data=None): """ 输出带有文件名和行号的调试信息 :param file: 对应__file__变量 :param lineno: 对应sys._getframe().f变量 :param data: 需要输出的信息 :return: """ fileName = file.split('/')[-1] lineno = lineno.f_lineno print(f'[{fileName} {lineno}] {data}')
# coding: utf-8 import sublime st_version = int(sublime.version()) if st_version > 3000: from JoomlaPack.lib.file import File from JoomlaPack.lib.folder import Folder from JoomlaPack.lib.helper import Helper from JoomlaPack.lib.json import Json from JoomlaPack.lib.manifest import Manifest from JoomlaPack.lib.project import Project else: from lib.file import File from lib.folder import Folder from lib.helper import Helper from lib.json import Json from lib.manifest import Manifest from lib.project import Project __all__ = [ 'File', 'Folder', 'Helper', 'Json', 'Manifest', 'Project' ]
import pytest import socket # import main.client # from main.client import prompt # import main.server from main.util import Hall, Room, User, create_socket from main.banner import Ascii_Banner, Text def test_can_successfully_create_to_a_hall(): hall = Hall() assert hall def test_Ascii_Banner(): msg = 'msg' banner = Ascii_Banner(msg) assert banner def test_colored_banner(): msg = 'hello' banner= Ascii_Banner.colored_banner(msg, 'red') assert banner def test_can_successfully_print_text(): msg = "In a good progress" text = Text(msg) assert text def test_colored_text(): msg = 'hello' text = Text.colored_text(msg, 'blue') assert text def test_can_successfully_connected_to_a_chat_room_server(): name = "test room" room = Room(name) assert room.room == "test room" def test_create_socket(): address = ('127.0.0.1', 22222) s = create_socket(address) assert s def test_create_user(): user = 'new' name = User(user) assert name.name == 'new' # def test_welcome_new(fix_user): # user = fix_user # out = Hall() # assert out.welcome_new(user) == "Error" # @pytest.fixture # def fix_user(): # user = 'new' # name = User(user) # return name
import threading import taco.constants import logging import os import uuid import Queue settings_lock = threading.Lock() settings = {} chat_log = [] chat_log_lock = threading.Lock() chat_uuid = uuid.uuid4().hex chat_uuid_lock = threading.Lock() stop = threading.Event() public_keys_lock = threading.Lock() public_keys = {} share_listings_i_care_about = {} share_listings_i_care_about_lock = threading.Lock() share_listing_requests_lock = threading.Lock() share_listing_requests = {} share_listings = {} share_listings_lock = threading.Lock() download_q = {} download_q_lock = threading.Lock() completed_q = [] completed_q_lock = threading.Lock() upload_q = {} upload_q_lock = threading.Lock() upload_limiter_lock = threading.Lock() download_limiter_lock = threading.Lock() high_priority_output_queue_lock = threading.Lock() medium_priority_output_queue_lock = threading.Lock() low_priority_output_queue_lock = threading.Lock() file_request_output_queue_lock = threading.Lock() high_priority_output_queue = {} medium_priority_output_queue = {} low_priority_output_queue = {} file_request_output_queue = {} def Add_To_Output_Queue(peer_uuid,msg,priority=3): logging.debug("Add to "+ peer_uuid+" output q @ " + str(priority)) if priority==1: with high_priority_output_queue_lock: if peer_uuid in high_priority_output_queue: high_priority_output_queue[peer_uuid].put(msg) taco.globals.clients.sleep.set() return 1 elif priority==2: with medium_priority_output_queue_lock: if peer_uuid in medium_priority_output_queue: medium_priority_output_queue[peer_uuid].put(msg) taco.globals.clients.sleep.set() return 1 elif priority==3: with low_priority_output_queue_lock: if peer_uuid in low_priority_output_queue: low_priority_output_queue[peer_uuid].put(msg) taco.globals.clients.sleep.set() return 1 else: with file_request_output_queue_lock: if peer_uuid in file_request_output_queue: file_request_output_queue[peer_uuid].put(msg) taco.globals.clients.sleep.set() return 1 return 0 def Add_To_All_Output_Queues(msg,priority=3): logging.debug("Add to ALL output q @ " + str(priority)) if priority==1: with high_priority_output_queue_lock: for keyname in high_priority_output_queue: high_priority_output_queue[keyname].put(msg) taco.globals.clients.sleep.set() return 1 elif priority==2: with medium_priority_output_queue_lock: for keyname in medium_priority_output_queue: medium_priority_output_queue[keyname].put(msg) taco.globals.clients.sleep.set() return 1 elif priority==3: with low_priority_output_queue_lock: for keyname in low_priority_output_queue: low_priority_output_queue[keyname].put(msg) taco.globals.clients.sleep.set() return 1 else: with file_request_output_queue_lock: for keyname in file_request_output_queue: file_request_output_queue[keyname].put(msg) taco.globals.clients.sleep.set() return 1 return 0 def properexit(signum, frame): logging.warning("SIGINT Detected, stopping " + taco.constants.APP_NAME) stop.set() logging.info("Stopping Server") server.stop.set() logging.info("Stopping Clients") clients.stop.set() clients.sleep.set() logging.info("Stopping Filesystem Workers") filesys.stop.set() filesys.sleep.set() server.join() clients.join() filesys.join() logging.info("Dispatcher Stopped Successfully") logging.info("Clean Exit") os._exit(3)
# # Copyright (c) 2017 nexB Inc. and others. All rights reserved. # http://nexb.com and https://github.com/nexB/scancode-toolkit/ # The ScanCode software is licensed under the Apache License version 2.0. # Data generated with ScanCode require an acknowledgment. # ScanCode is a trademark of nexB Inc. # # You may not use this software except in compliance with the License. # You may obtain a copy of the License at: http://apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software distributed # under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR # CONDITIONS OF ANY KIND, either express or implied. See the License for the # specific language governing permissions and limitations under the License. # # When you publish or redistribute any data created with ScanCode or any ScanCode # derivative work, you must accompany this data with the following acknowledgment: # # Generated with ScanCode and provided on an "AS IS" BASIS, WITHOUT WARRANTIES # OR CONDITIONS OF ANY KIND, either express or implied. No content created from # ScanCode should be considered or used as legal advice. Consult an Attorney # for any legal advice. # ScanCode is a free software code scanning tool from nexB Inc. and others. # Visit https://github.com/nexB/scancode-toolkit/ for support and download. from __future__ import absolute_import from __future__ import print_function from unittest import TestCase from packagedcode.utils import parse_repo_url class TestPackageUtils(TestCase): def test_parse_repo_url_0(self): test = 'npm/npm' expected = 'https://github.com/npm/npm' assert expected == parse_repo_url(test) def test_parse_repo_url_1(self): test = 'gist:11081aaa281' expected = 'https://gist.github.com/11081aaa281' assert expected == parse_repo_url(test) def test_parse_repo_url_2(self): test = 'bitbucket:example/repo' expected = 'https://bitbucket.org/example/repo' assert expected == parse_repo_url(test) def test_parse_repo_url_3(self): test = 'gitlab:another/repo' expected = 'https://gitlab.com/another/repo' assert expected == parse_repo_url(test) def test_parse_repo_url_4(self): test = 'expressjs/serve-static' expected = 'https://github.com/expressjs/serve-static' assert expected == parse_repo_url(test) def test_parse_repo_url_5(self): test = 'git://github.com/angular/di.js.git' expected = 'git://github.com/angular/di.js.git' assert expected == parse_repo_url(test) def test_parse_repo_url_6(self): test = 'git://github.com/hapijs/boom' expected = 'git://github.com/hapijs/boom' assert expected == parse_repo_url(test) def test_parse_repo_url_7(self): test = 'git@github.com:balderdashy/waterline-criteria.git' expected = 'https://github.com/balderdashy/waterline-criteria.git' assert expected == parse_repo_url(test) def test_parse_repo_url_8(self): test = 'http://github.com/ariya/esprima.git' expected = 'http://github.com/ariya/esprima.git' assert expected == parse_repo_url(test) def test_parse_repo_url_9(self): test = 'http://github.com/isaacs/nopt' expected = 'http://github.com/isaacs/nopt' assert expected == parse_repo_url(test) def test_parse_repo_url_10(self): test = 'https://github.com/chaijs/chai' expected = 'https://github.com/chaijs/chai' assert expected == parse_repo_url(test) def test_parse_repo_url_11(self): test = 'https://github.com/christkv/kerberos.git' expected = 'https://github.com/christkv/kerberos.git' assert expected == parse_repo_url(test) def test_parse_repo_url_12(self): test = 'https://gitlab.com/foo/private.git' expected = 'https://gitlab.com/foo/private.git' assert expected == parse_repo_url(test) def test_parse_repo_url_13(self): test = 'git@gitlab.com:foo/private.git' expected = 'https://gitlab.com/foo/private.git' assert expected == parse_repo_url(test) def test_parse_git_repo_url_without_slash_slash(self): test = 'git@github.com/Filirom1/npm2aur.git' expected = 'https://github.com/Filirom1/npm2aur.git' assert expected == parse_repo_url(test) def test_parse_repo_url_does_not_fail_on_empty(self): assert None == parse_repo_url(None) assert None == parse_repo_url('') assert None == parse_repo_url(' ')
# -*- Mode: Python; tab-width: 2; indent-tabs-mode:nil; -*- # vim: set ts=2 et sw=2 tw=80: # # Copyright (c) 2013 The MathJax Consortium # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # This table must be sorted. # # fontUtil::computeNormalSizeSplitting assumes the table to be sorted. If it # does not found a character, it will assume it is "NONUNICODE". # COPYRIGHT = "Copyright (c) 2013 The MathJax Consortium" FONTSPLITTING = [ ["Main", (0x0000, 0x007F), # Basic Latin # MathJax_Main, Latin-1 Supplement 0x00A0, 0x00A3, # pound sign 0x00A5, # MathJax_AMS 0x00A7, # section symbol 0x00A8, 0x00AC, 0x00AE, # MathJax_AMS (0x00AF,0x00B1), 0x00B4, 0x00B5, # mu 0x00B7, # middle dot 0x00D7, 0x00F0, # MathJax_AMS 0x00F7, # MathJax_Main, Latin Extended-A 0x0127, # MathJax_AMS 0x0131, # MathJax_Main, Latin Extended-B 0x0237, # MathJax_Main, Spacing Modifier Letters, (0x02C6,0x02C7), (0x02C9,0x02CB), (0x02D8,0x02DA), 0x02DC, # MathJax_Main, Combining Diacritical Marks (0x0300,0x0304), (0x0306,0x0308), (0x030A,0x030C), 0x0338, (0x0370, 0x037D), # Greek and Coptic (0x037F, 0x0383), # Greek and Coptic (0x0391, 0x03A9), # Greek and Coptic (0x03B1, 0x03C9), # Greek and Coptic (0x03CF, 0x03FF), # Greek and Coptic # MathJax_Main, General Punctuation (0x2002,0x2006), (0x2009,0x200A), (0x2013,0x2014), 0x2016, (0x2018,0x2019), (0x201C,0x201D), (0x2020,0x2021), 0x2026, 0x2032, 0x2033, # double prime 0x2034, # triple prime 0x2035, # MathJax_AMS 0x203E, # overline 0x2044, 0x2057, # quadruple prime # MathJax_Main, Combining Diacritical Marks for Symbols 0x20D7, # MathJax_Main, Letterlike Symbols 0x210F, 0x2111, 0x2113, 0x2118, 0x211C, 0x2127, # MathJax_AMS 0x2132, # MathJax_AMS 0x2135, (0x2136,0x2138), # MathJax_AMS 0x2141, # MathJax_AMS # MathJax_Main, Arrows (0x2190,0x2199), (0x219A,0x219B), # MathJax_AMS 0x219E, # MathJax_AMS 0x21A0, # MathJax_AMS (0x21A2,0x21A3), # MathJax_AMS 0x21A6, (0x21A9,0x21AA), (0x21AB,0x21AE), # MathJax_AMS (0x21B0,0x21B1), # MathJax_AMS (0x21B6,0x21B7), # MathJax_AMS (0x21BA,0x21BB), # MathJax_AMS (0x21BC,0x21BD), (0x21BE,0x21BF), # MathJax_AMS (0x21C0,0x21C1), (0x21C2,0x21C4), # MathJax_AMS (0x21C6,0x21CF), # MathJax_AMS (0x21D0,0x21D5), (0x21DA,0x21DB), # MathJax_AMS 0x21DD, # MathJax_AMS 0x21E0, # MathJax_AMS 0x21E2, # MathJax_AMS # MathJax_Main, Mathematical Operators 0x2200, 0x2201, # MathJax_Main (0x2202,0x2203), (0x2204,0x2205), # MathJax_Main (0x2207,0x2209), 0x220B, 0x220D, # MathJax_AMS (0x2212,0x2213), 0x2214, # MathJax_AMS (0x2215,0x221A), (0x221D,0x221E), (0x2220,0x2226), # MathJax_AMS ; MathJax_Main: 0x2220, 0x2223, 0x2225, (0x2227,0x222B), (0x2234,0x2235), # MathJax_AMS (0x223C,0x223D), # MathJax_AMS ; MathJax_Main: 0x223C 0x2240, (0x2241,0x2242), # MathJax_AMS 0x2243, 0x2245, 0x2246, # MathJax_AMS 0x2248, 0x224A, # MathJax_AMS 0x224D, (0x224E,0x224F), # MathJax_AMS 0x2250, (0x2251,0x2253), # MathJax_AMS (0x2256,0x2257), # MathJax_AMS 0x225C, # MathJax_AMS (0x2260,0x2261), (0x2264,0x2265), (0x2266,0x2269), # MathJax_AMS (0x226A,0x226B), 0x226C, # MathJax_AMS (0x226E,0x2273), # MathJax_AMS (0x2276,0x2277), # MathJax_AMS (0x227A,0x227B), (0x227C,0x2281), # MathJax_AMS (0x2282,0x2283), (0x2286,0x2287), (0x2288,0x228B), # MathJax_AMS 0x228E, (0x228F,0x2290), # MathJax_AMS (0x2291,0x2299), (0x229A,0x229B), # MathJax_AMS (0x229D,0x22A1), # MathJax_AMS (0x22A2,0x22A5), (0x22A8,0x22AA), # MathJax_AMS ; MathJax_Main: 0x22A8 (0x22AC,0x22AF), # MathJax_AMS (0x22B2,0x22B5), # MathJax_AMS 0x22B8, # MathJax_AMS (0x22BA,0x22BC), # MathJax_AMS (0x22C4,0x22C6), 0x22C8, (0x22C9,0x22D4), # MathJax_AMS (0x22D6,0x22DB), # MathJax_AMS (0x22DE,0x22E1), # MathJax_AMS (0x22E6,0x22ED), # MathJax_AMS (0x22EE,0x22EF), 0x22F1, # MathJax_Main, Miscellaneous Technical (0x2308,0x230B), (0x2322,0x2323), (0x23B0,0x23B1), 0x23B4, 0x23B5, 0x23D0, (0x23DC, 0x23E1), # MathJax_AMS, Enclosed Alphanumerics 0x24C8, # MathJax_AMS, Box Drawing 0x250C, 0x2510, 0x2514, 0x2518, (0x2571,0x2572), # MathJax_Main, Geometric Shapes (0x25A0,0x25A1), # MathJax_AMS 0x25B2, # MathJax_AMS 0x25B3, 0x25B6, # MathJax_AMS 0x25B8, 0x25B9, 0x25BC, # MathJax_AMS 0x25BD, 0x25C0, # MathJax_AMS 0x25C2, 0x25C3, 0x25CA, # MathJax_AMS 0x25EF, # MathJax_Main, Miscellaneous Symbols (0x2660,0x2663), (0x266D,0x266F), # MathJax_AMS, Dingbats 0x2713, 0x2720, # MathJax_Main, Miscellaneous Mathematical (0x27E8,0x27E9), (0x27EE,0x27EF), # MathJax_Main, Supplemental Arrows (0x27F5,0x27FA), 0x27FC, # Miscellaneous Mathematical Symbols-B 0x2997, 0x2998, 0x29EB, 0x29F5, 0x29F8, 0x29F9, # MathJax_Main, Supplemental Mathematical 0x2A3F, 0x2A5E, (0x2A7D,0x2A7E), (0x2A85,0x2A8C), (0x2A95,0x2A96), (0x2AAF,0x2AB0), (0x2AB5,0x2ABA), (0x2AC5,0x2AC6), (0x2ACB,0x2ACC), 0xFFFD # Specials ], ["Normal", 0x210E, # Planck Constant (0x1D400, 0x1D433), # Bold (0x1D434, 0x1D467), # Italic (0x1D468, 0x1D49B), # Bold Italic (0x1D6A4, 0x1D6A5), # dotless i j (0x1D6A8, 0x1D6E1), # Greek Bold (0x1D6E2, 0x1D71B), # Greek Italic (0x1D71C, 0x1D755), # Greek BoldItalic (0x1D7CE, 0x1D7D7) # Bold digits ], ["Script", 0x210A, # Script g 0x210B, # Script H 0x2110, # Script I 0x2112, # Script L 0x211B, # Script R 0x212C, # Script B 0x212F, # Script e 0x2130, # Script E 0x2131, # Script F 0x2133, # Script M 0x2134, # Script o (0x1D49C, 0x1D4CF), # Script (0x1D4D0, 0x1D503) # Bold Script ], ["Fraktur", 0x210C, # Script H 0x2111, # Script I 0x211C, # Script R 0x2128, # Script z 0x212D, # Script C (0x1D504, 0x1D537), # Fraktur (0x1D56C, 0x1D59F) # Bold Fraktur ], ["DoubleStruck", 0x2102, # DoubleStruck C 0x210D, # DoubleStruck H 0x2115, # DoubleStruck N 0x2119, # DoubleStruck P 0x211A, # DoubleStruck Q 0x211D, # DoubleStruck R 0x2124, # DoubleStruck Z (0x213C, 0x2140), # DoubleStruck pi, gamma, Gamma, Sigma (0x2145, 0x2149), # DoubleStruck Italic D, d, e, i, j (0x1D538, 0x1D56B), # DoubleStruck (0x1D7D8, 0x1D7E1) # DoubleStruck digits ], ["SansSerif", (0x1D5A0, 0x1D5D3), # Sans-Serif (0x1D5D4, 0x1D607), # Sans-Serif Bold (0x1D608, 0x1D63B), # Sans-Serif Italic (0x1D63C, 0x1D66F), # Sans-Serif BoldItalic (0x1D756, 0x1D7CB), # Greek Sans-Serif Bold (0x1D7E2, 0x1D7EB), # Sans-Serif digits (0x1D7EC, 0x1D7F5) # Sans-Serif Bold digits ], ["Monospace", (0x1D670,0x1D6A3), # Monospace (0x1D7F6,0x1D7FF), # Monospace digits ], ["Latin", (0x0080, 0x00FF), # Latin-1 Supplement (0x0100, 0x017F), # Latin Extended-A (0x0180, 0x024F), # Latin Extended-B (0x1E00, 0x1EFF), # Latin Extended Additional (0xA720, 0xA7FF), # Latin Extended-D (0xFB00, 0xFB4F) # Alphabetic Presentation Forms ], ["Alphabets", (0x0384, 0x0390), # Greek and Coptic (0x03AA, 0x03B0), # Greek and Coptic (0x03CA, 0x03CE), # Greek and Coptic (0x0400, 0x04FF), # Cyrillic 0x0E3F, # thai currency symbol baht (0x13A0, 0x13FF), # Cherokee (0x2100, 0x214F), # Letterlike Symbols (0x3040, 0x309F), # Hiragana (0xFE70, 0xFFEF), # Arabic Presentation Forms-B (0x10140, 0x1018F) # Ancient Greek Numbers ], ["Marks", (0x02B0, 0x02FF), # Spacing Modifier Letters (0x0300, 0x036F), # Combining Diacritical Marks (0x2000, 0x206F), # General Punctuation (0x20D0, 0x20FF), # Combining Diacritical Marks for Symbols (0x2E00, 0x2E7F), # Supplemental Punctuation (0x3000, 0x303F) # CJK Symbols and Punctuation ], ["Arrows", (0x2190, 0x21FF), # Arrows (0x27F0, 0x27FF), # Supplemental Arrows-A (0x2900, 0x297F) # Supplemental Arrows-B ], ["Operators", (0x2200, 0x22FF), # Mathematical Operators (0x2A00, 0x2AFF) # Supplemental Mathematical Operators ], ["Symbols", (0x2300, 0x23FF), # Miscellaneous Technical (0x27C0, 0x27EF), # Miscellaneous Mathematical Symbols-A (0x2980, 0x29FF) # Miscellaneous Mathematical Symbols-B ], ["Shapes", (0x2400, 0x243F), # Control Pictures (0x2500, 0x257F), # Box Drawing (0x2580, 0x259F), # Block Elements (0x25A0, 0x25FF), # Geometric Shapes (0x2600, 0x26FF), # Miscellaneous Symbols (0x2B00, 0x2BFF) # Miscellaneous Symbols and Arrows ], ["Misc", (0x0250, 0x02AF), # IPA Extensions (0x1D00, 0x1D7F), # Phonetic Extensions (0x1D80, 0x1DBF), # Phonetic Extensions Supplement (0x2070, 0x209F), # Superscripts and Subscripts (0x20A0, 0x20CF), # Currency Symbols (0x2150, 0x218F), # Number Forms (0x2460, 0x24FF), # Enclosed Alphanumerics (0x2700, 0x27BF) # Dingbats ], ["Variants"], # Used for oldstyle numbers, caligraphic and glyph variants ["NonUnicode"] # Font for remaining non-Unicode glyphs ]
""" Suppose Andy and Doris want to choose a restaurant for dinner, and they both have a list of favorite restaurants represented by strings. You need to help them find out their common interest with the least list index sum. If there is a choice tie between answers, output all of them with no order requirement. You could assume there always exists an answer.   Example 1: Input: list1 = ["Shogun","Tapioca Express","Burger King","KFC"], list2 = ["Piatti","The Grill at Torrey Pines","Hungry Hunter Steakhouse","Shogun"] Output: ["Shogun"] Explanation: The only restaurant they both like is "Shogun". Example 2: Input: list1 = ["Shogun","Tapioca Express","Burger King","KFC"], list2 = ["KFC","Shogun","Burger King"] Output: ["Shogun"] Explanation: The restaurant they both like and have the least index sum is "Shogun" with index sum 1 (0+1). Example 3: Input: list1 = ["Shogun","Tapioca Express","Burger King","KFC"], list2 = ["KFC","Burger King","Tapioca Express","Shogun"] Output: ["KFC","Burger King","Tapioca Express","Shogun"] Example 4: Input: list1 = ["Shogun","Tapioca Express","Burger King","KFC"], list2 = ["KNN","KFC","Burger King","Tapioca Express","Shogun"] Output: ["KFC","Burger King","Tapioca Express","Shogun"] Example 5: Input: list1 = ["KFC"], list2 = ["KFC"] Output: ["KFC"]   Constraints: 1 <= list1.length, list2.length <= 1000 1 <= list1[i].length, list2[i].length <= 30 list1[i] and list2[i] consist of spaces ' ' and English letters. All the stings of list1 are unique. All the stings of list2 are unique. """ class Solution(object): def findRestaurant(self, list1, list2): """ :type list1: List[str] :type list2: List[str] :rtype: List[str] """ tr = {} for i, w in enumerate(list1): tr[w] = [i] for i, w in enumerate(list2): if w not in tr: continue tr[w].append(i) m = len(list1) + len(list2) for w, ns in tr.iteritems(): if len(ns) < 2: continue m = min(m, ns[0] + ns[1]) ret = [] for w, ns in tr.iteritems(): if len(ns) < 2: continue if ns[0] + ns[1] == m: ret.append(w) return ret
import os import re import socket import sys from enum import Enum import click import hjson as json import inotify.adapters import inotify.constants from prometheus_client import Gauge class Module(Enum): DHCP4 = 1 DHCP6 = 2 class KeaExporter: subnet_pattern = re.compile( r"subnet\[(?P<subnet_idx>[\d]+)\]\.(?P<metric>[\w-]+)") msg_statistics_all = bytes( json.dumpsJSON({'command': 'statistic-get-all'}), 'utf-8') def __init__(self, config_path): # kea control socket self.sock_dhcp6 = None self.sock_dhcp6_path = None self.sock_dhcp4 = None self.sock_dhcp4_path = None # prometheus self.prefix = 'kea' self.prefix_dhcp4 = '{0}_dhcp4'.format(self.prefix) self.prefix_dhcp6 = '{0}_dhcp6'.format(self.prefix) self.metrics_dhcp4 = None self.metrics_dhcp4_map = None self.metrics_dhcp4_ignore = None self.setup_dhcp4_metrics() self.metrics_dhcp6 = None self.metrics_dhcp6_map = None self.metrics_dhcp6_ignore = None self.setup_dhcp6_metrics() # kea config self.config_path = config_path self.config = None self.inotify = inotify.adapters.Inotify() self.inotify.add_watch( config_path, mask=inotify.constants.IN_MODIFY ) self.load_config() def load_config(self): with open(self.config_path, 'r') as handle: self.config = json.load(handle) try: sock_path = self.config['Dhcp4']['control-socket']['socket-name'] if not os.access(sock_path, os.F_OK): raise FileNotFoundError() if not os.access(sock_path, os.R_OK | os.W_OK): raise PermissionError() self.sock_dhcp4_path = sock_path except KeyError: click.echo('Dhcp4.control-socket.socket-name not configured, ' 'will not be exporting Dhcp4 metrics', file=sys.stderr) except FileNotFoundError: click.echo('Dhcp4 control-socket configured, but it does not ' 'exist. Is Kea running?', file=sys.stderr) sys.exit(1) except PermissionError: click.echo('Dhcp4 control-socket is not read-/writeable.', file=sys.stderr) sys.exit(1) try: sock_path = self.config['Dhcp6']['control-socket']['socket-name'] if not os.access(sock_path, os.F_OK): raise FileNotFoundError() if not os.access(sock_path, os.R_OK | os.W_OK): raise PermissionError() self.sock_dhcp6_path = sock_path except KeyError: click.echo('Dhcp6.control-socket.socket-name not configured, ' 'will not be exporting Dhcp6 metrics', file=sys.stderr) except FileNotFoundError: click.echo('Dhcp6 control-socket configured, but it does not ' 'exist. Is Kea running?', file=sys.stderr) sys.exit(1) except PermissionError: click.echo('Dhcp6 control-socket is not read-/writeable.', file=sys.stderr) sys.exit(1) def setup_dhcp4_metrics(self): self.metrics_dhcp4 = { # Packets 'sent_packets': Gauge( '{0}_packets_sent_total'.format(self.prefix_dhcp4), 'Packets sent', ['operation']), 'received_packets': Gauge( '{0}_packets_received_total'.format(self.prefix_dhcp4), 'Packets received', ['operation']), # per Subnet 'addresses_assigned_total': Gauge( '{0}_addresses_assigned_total'.format(self.prefix_dhcp4), 'Assigned addresses', ['subnet']), 'addresses_declined_total': Gauge( '{0}_addresses_declined_total'.format(self.prefix_dhcp4), 'Declined counts', ['subnet']), 'addresses_declined_reclaimed_total': Gauge( '{0}_addresses_declined_reclaimed_total'.format( self.prefix_dhcp4), 'Declined addresses that were reclaimed', ['subnet']), 'addresses_reclaimed_total': Gauge( '{0}_addresses_reclaimed_total'.format(self.prefix_dhcp4), 'Expired addresses that were reclaimed', ['subnet']), 'addresses_total': Gauge( '{0}_addresses_total'.format(self.prefix_dhcp4), 'Size of subnet address pool', ['subnet'] ) } self.metrics_dhcp4_map = { # sent_packets 'pkt4-ack-sent': { 'metric': 'sent_packets', 'labels': { 'operation': 'ack' }, }, 'pkt4-nak-sent': { 'metric': 'sent_packets', 'labels': { 'operation': 'nak' }, }, 'pkt4-offer-sent': { 'metric': 'sent_packets', 'labels': { 'operation': 'offer' }, }, # received_packets 'pkt4-discover-received': { 'metric': 'received_packets', 'labels': { 'operation': 'discover' } }, 'pkt4-offer-received': { 'metric': 'received_packets', 'labels': { 'operation': 'offer' } }, 'pkt4-request-received': { 'metric': 'received_packets', 'labels': { 'operation': 'request' } }, 'pkt4-ack-received': { 'metric': 'received_packets', 'labels': { 'operation': 'ack' } }, 'pkt4-nak-received': { 'metric': 'received_packets', 'labels': { 'operation': 'nak' } }, 'pkt4-release-received': { 'metric': 'received_packets', 'labels': { 'operation': 'release' } }, 'pkt4-decline-received': { 'metric': 'received_packets', 'labels': { 'operation': 'decline' } }, 'pkt4-inform-received': { 'metric': 'received_packets', 'labels': { 'operation': 'inform' } }, 'pkt4-unknown-received': { 'metric': 'received_packets', 'labels': { 'operation': 'unknown' } }, 'pkt4-parse-failed': { 'metric': 'received_packets', 'labels': { 'operation': 'parse-failed' } }, 'pkt4-receive-drop': { 'metric': 'received_packets', 'labels': { 'operation': 'drop' } }, # per Subnet 'assigned-addresses': { 'metric': 'addresses_assigned_total', }, 'declined-addresses': { 'metric': 'addresses_declined_total', }, 'declined-reclaimed-addresses': { 'metric': 'addresses_declined_reclaimed_total', }, 'reclaimed-declined-addresses': { 'metric': 'addresses_declined_reclaimed_total', }, 'reclaimed-leases': { 'metric': 'addresses_reclaimed_total', }, 'total-addresses': { 'metric': 'addresses_total', } } self.metrics_dhcp4_ignore = [ # sums of different packet types 'pkt4-sent', 'pkt4-received', # sums of subnet values 'declined-addresses', 'declined-reclaimed-addresses', 'reclaimed-declined-addresses', 'reclaimed-leases' ] def setup_dhcp6_metrics(self): self.metrics_dhcp6 = { # Packets sent/received 'sent_packets': Gauge( '{0}_packets_sent_total'.format(self.prefix_dhcp6), 'Packets sent', ['operation']), 'received_packets': Gauge( '{0}_packets_received_total'.format(self.prefix_dhcp6), 'Packets received', ['operation']), # DHCPv4-over-DHCPv6 'sent_dhcp4_packets': Gauge( '{0}_packets_sent_dhcp4_total'.format(self.prefix_dhcp6), 'DHCPv4-over-DHCPv6 Packets received', ['operation'] ), 'received_dhcp4_packets': Gauge( '{0}_packets_received_dhcp4_total'.format(self.prefix_dhcp6), 'DHCPv4-over-DHCPv6 Packets received', ['operation'] ), # per Subnet 'addresses_declined_total': Gauge( '{0}_addresses_declined_total'.format(self.prefix_dhcp6), 'Declined addresses', ['subnet']), 'addresses_declined_reclaimed_total': Gauge( '{0}_addresses_declined_reclaimed_total'.format( self.prefix_dhcp6), 'Declined addresses that were reclaimed', ['subnet']), 'addresses_reclaimed_total': Gauge( '{0}_addresses_reclaimed_total'.format(self.prefix_dhcp6), 'Expired addresses that were reclaimed', ['subnet']), # IA_NA 'na_assigned_total': Gauge( '{0}_na_assigned_total'.format(self.prefix_dhcp6), 'Assigned non-temporary addresses (IA_NA)', ['subnet']), 'na_total': Gauge( '{0}_na_total'.format(self.prefix_dhcp6), 'Size of non-temporary address pool', ['subnet'] ), # IA_PD 'pd_assigned_total': Gauge( '{0}_pd_assigned_total'.format(self.prefix_dhcp6), 'Assigned prefix delegations (IA_PD)', ['subnet']), 'pd_total': Gauge( '{0}_pd_total'.format(self.prefix_dhcp6), 'Size of prefix delegation pool', ['subnet'] ), } self.metrics_dhcp6_map = { # sent_packets 'pkt6-advertise-sent': { 'metric': 'sent_packets', 'labels': { 'operation': 'advertise' }, }, 'pkt6-reply-sent': { 'metric': 'sent_packets', 'labels': { 'operation': 'reply' }, }, # received_packets 'pkt6-receive-drop': { 'metric': 'received_packets', 'labels': { 'operation': 'drop' }, }, 'pkt6-parse-failed': { 'metric': 'receoved_packets', 'labels': { 'operation': 'parse-failed' }, }, 'pkt6-solicit-received': { 'metric': 'received_packets', 'labels': { 'operation': 'solicit' }, }, 'pkt6-advertise-received': { 'metric': 'received_packets', 'labels': { 'operation': 'advertise' } }, 'pkt6-request-received': { 'metric': 'received_packets', 'labels': { 'operation': 'request' } }, 'pkt6-reply-received': { 'metric': 'received_packets', 'labels': { 'operation': 'reply' } }, 'pkt6-renew-received': { 'metric': 'received_packets', 'labels': { 'operation': 'renew' } }, 'pkt6-rebind-received': { 'metric': 'received_packets', 'labels': { 'operation': 'rebind' } }, 'pkt6-release-received': { 'metric': 'received_packets', 'labels': { 'operation': 'release' } }, 'pkt6-decline-received': { 'metric': 'received_packets', 'labels': { 'operation': 'decline' } }, 'pkt6-infrequest-received': { 'metric': 'received_packets', 'labels': { 'operation': 'infrequest' } }, 'pkt6-unknown-received': { 'metric': 'received_packets', 'labels': { 'operation': 'unknown' } }, # DHCPv4-over-DHCPv6 'pkt6-dhcpv4-response-sent': { 'metric': 'sent_dhcp4_packets', 'labels': { 'operation': 'response' } }, 'pkt6-dhcpv4-query-received': { 'metric': 'received_dhcp4_packets', 'labels': { 'operation': 'query' } }, 'pkt6-dhcpv4-response-received': { 'metric': 'received_dhcp4_packets', 'labels': { 'operation': 'response' } }, # per Subnet 'assigned-nas': { 'metric': 'na_assigned_total', }, 'assigned-pds': { 'metric': 'pd_assigned_total', }, 'declined-addresses': { 'metric': 'addresses_declined_total', }, 'declined-reclaimed-addresses': { 'metric': 'addresses_declined_reclaimed_total', }, 'reclaimed-declined-addresses': { 'metric': 'addresses_declined_reclaimed_total', }, 'reclaimed-leases': { 'metric': 'addresses_reclaimed_total', }, 'total-nas': { 'metric': 'na_total', }, 'total-pds': { 'metric': 'pd_total', } } self.metrics_dhcp6_ignore = [ # sums of different packet types 'pkt6-sent', 'pkt6-received', # sums of subnet values 'declined-addresses', 'declined-reclaimed-addresses', 'reclaimed-declined-addresses', 'reclaimed-leases' ] def update(self): reload_config = False for event in self.inotify.event_gen(): if not event: break reload_config = True if reload_config: click.echo('Config was modified, reloading...', file=sys.stderr) self.load_config() for sock_path, module in [(self.sock_dhcp4_path, Module.DHCP4), (self.sock_dhcp6_path, Module.DHCP6)]: if sock_path is None: continue with socket.socket(socket.AF_UNIX, socket.SOCK_STREAM) as sock: sock.connect(sock_path) sock.send(KeaExporter.msg_statistics_all) response = sock.recv(8192).decode() self.parse_metrics(json.loads(response), module) def parse_metrics(self, response, module): for key, data in response['arguments'].items(): if module is Module.DHCP4: if key in self.metrics_dhcp4_ignore: continue else: if key in self.metrics_dhcp6_ignore: continue value, timestamp = data[0] labels = {} # lookup subnet if key.startswith('subnet['): match = self.subnet_pattern.match(key) if match: subnet_idx = int(match.group('subnet_idx')) - 1 key = match.group('metric') if module is Module.DHCP4: subnet = self.config['Dhcp4']['subnet4'][subnet_idx] else: subnet = self.config['Dhcp6']['subnet6'][subnet_idx] labels['subnet'] = subnet['subnet'] else: click.echo('subnet pattern failed for metric: {0}'.format( key), file=sys.stderr) if module is Module.DHCP4: metric_info = self.metrics_dhcp4_map[key] metric = self.metrics_dhcp4[metric_info['metric']] else: metric_info = self.metrics_dhcp6_map[key] metric = self.metrics_dhcp6[metric_info['metric']] # merge static and dynamic labels labels.update(metric_info.get('labels', {})) # export labels and value metric.labels(**labels).set(value)
import FWCore.ParameterSet.Config as cms from Calibration.TkAlCaRecoProducers.ALCARECOSiStripCalCosmics_cff import ALCARECOSiStripCalCosmics from CalibTracker.SiStripCommon.prescaleEvent_cfi import prescaleEvent from HLTrigger.HLTfilters.triggerResultsFilter_cfi import triggerResultsFilter ALCARECOSiStripCalCosmicsNanoPrescale = prescaleEvent.clone(prescale=1) ALCARECOSiStripCalCosmicsNanoHLT = triggerResultsFilter.clone( triggerConditions=cms.vstring("HLT_L1SingleMuCosmics_v*"), hltResults=cms.InputTag("TriggerResults", "", "HLT"), l1tResults=cms.InputTag(""), throw=cms.bool(False) ) # Select only events where tracker had HV on (according to DCS bit information) # AND respective partition is in the run (according to FED information) import CalibTracker.SiStripCommon.SiStripDCSFilter_cfi DCSStatusForSiStripCalCosmicsNano = CalibTracker.SiStripCommon.SiStripDCSFilter_cfi.siStripDCSFilter.clone( DetectorType = cms.vstring('TIBTID','TOB','TECp','TECm'), ApplyFilter = cms.bool(True), AndOr = cms.bool(True), DebugOn = cms.untracked.bool(False) ) from CalibTracker.Configuration.Filter_Refit_cff import CalibrationTracks, CalibrationTracksRefit, MeasurementTrackerEvent, offlineBeamSpot ALCARECOSiStripCalCosmicsNanoCalibTracks = CalibrationTracks.clone(src=cms.InputTag("ALCARECOSiStripCalCosmics")) ALCARECOSiStripCalCosmicsNanoCalibTracksRefit = CalibrationTracksRefit.clone( src=cms.InputTag("ALCARECOSiStripCalCosmicsNanoCalibTracks") ) ALCARECOSiStripCalCosmicsNanoTkCalSeq = cms.Sequence( ALCARECOSiStripCalCosmicsNanoPrescale* ALCARECOSiStripCalCosmicsNanoHLT* DCSStatusForSiStripCalCosmicsNano* ALCARECOSiStripCalCosmicsNanoCalibTracks, cms.Task(MeasurementTrackerEvent), cms.Task(offlineBeamSpot), cms.Task(ALCARECOSiStripCalCosmicsNanoCalibTracksRefit) ) from PhysicsTools.NanoAOD.common_cff import * from PhysicsTools.NanoAOD.nano_cff import nanoMetadata from CalibTracker.SiStripCommon.siStripPositionCorrectionsTable_cfi import siStripPositionCorrectionsTable from CalibTracker.SiStripCommon.siStripLorentzAngleRunInfoTable_cfi import siStripLorentzAngleRunInfoTable ALCARECOSiStripCalCosmicsNanoTracksTable = cms.EDProducer("SimpleTrackFlatTableProducer", src=cms.InputTag("ALCARECOSiStripCalCosmicsNanoCalibTracksRefit"), cut=cms.string(""), name=cms.string("track"), doc=cms.string("SiStripCalCosmics ALCARECO tracks"), singleton=cms.bool(False), extension=cms.bool(False), variables=cms.PSet( chi2ndof=Var("chi2()/ndof", float), pt=Var("pt()", float), hitsvalid=Var("numberOfValidHits()", int), ## unsigned? phi=Var("phi()", float), eta=Var("eta()", float), ) ) ALCARECOSiStripCalCosmicsNanoMeasTable = siStripPositionCorrectionsTable.clone( Tracks=cms.InputTag("ALCARECOSiStripCalCosmicsNanoCalibTracksRefit")) ALCARECOSiStripCalCosmicsNanoTables = cms.Task( nanoMetadata, ALCARECOSiStripCalCosmicsNanoTracksTable, ALCARECOSiStripCalCosmicsNanoMeasTable, siStripLorentzAngleRunInfoTable ) seqALCARECOSiStripCalCosmicsNano = cms.Sequence(ALCARECOSiStripCalCosmicsNanoTkCalSeq, ALCARECOSiStripCalCosmicsNanoTables)
from __future__ import print_function import os import numpy as np import pickle as pk from glob import glob as glob from .imdb import IMDB from common.utility.utils import calc_total_skeleton_length, calc_kpt_bound_pad, \ compute_similarity_transform, calc_total_skeleton_length_bone from common.utility.visualization import debug_vis s_hm36_subject_num = 7 HM_subject_idx = [ 1, 5, 6, 7, 8, 9, 11 ] HM_subject_idx_inv = [ -1, 0, -1, -1, -1, 1, 2, 3, 4, 5, -1, 6 ] s_hm36_act_num = 15 HM_act_idx = [ 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 ] HM_act_idx_inv = [ -1, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 ] s_hm36_subact_num = 2 HM_subact_idx = [ 1, 2 ] HM_subact_idx_inv = [ -1, 0, 1 ] s_hm36_camera_num = 4 HM_camera_idx = [ 1, 2, 3, 4 ] HM_camera_idx_inv = [ -1, 0, 1, 2, 3 ] # 17 joints of Human3.6M: # 'root', 'Rleg0', 'Rleg1', 'Rleg2', 'Lleg0', 'Lleg1', 'Lleg2', 'torso', 'neck', 'nose', 'head', 'Larm0', 'Larm1', 'Larm2', 'Rarm0', 'Rarm1', 'Rarm2' # 'root', 'RHip', 'RKnee', 'RAnkle', 'LHip', 'LKnee', 'LAnkle', 'torso', 'neck', 'nose', 'head', 'LShoulder', 'LElbow', 'LWrist', 'RShoulder', 'RElbow', 'RWrist' # 18 joints with Thorax: # 'root', 'Rleg0', 'Rleg1', 'Rleg2', 'Lleg0', 'Lleg1', 'Lleg2', 'torso', 'neck', 'nose', 'head', 'Larm0', 'Larm1', 'Larm2', 'Rarm0', 'Rarm1', 'Rarm2', 'Thorax' # 'root', 'RHip', 'RKnee', 'RAnkle', 'LHip', 'LKnee', 'LAnkle', 'torso', 'neck', 'nose', 'head', 'LShoulder', 'LElbow', 'LWrist', 'RShoulder', 'RElbow', 'RWrist, 'Thorax'' # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 # [ 0, 0, 1, 2, 0, 4, 5, 0, 17, 17, 8, 17, 11, 12, 17, 14, 15, 0] # 16 joints of MPII # 0-R_Ankle, 1-R_Knee, 2-R_Hip, 3-L_Hip, 4-L_Knee, 5-L_Ankle, 6-Pelvis, 7-Thorax, # 8-Neck, 9-Head, 10-R_Wrist, 11-R_Elbow, 12-R_Shoulder, 13-L_Shoulder, 14-L_Elbow, 15-L_Wrist s_org_36_jt_num = 32 s_36_root_jt_idx = 0 s_36_lsh_jt_idx = 11 s_36_rsh_jt_idx = 14 s_36_jt_num = 18 s_36_flip_pairs = np.array([[1, 4], [2, 5], [3, 6], [14, 11], [15, 12], [16, 13]], dtype=np.int) s_36_parent_ids = np.array([0, 0, 1, 2, 0, 4, 5, 0, 17, 17, 8, 17, 11, 12, 17, 14, 15, 0], dtype=np.int) s_36_bone_jts = np.array([[0, 7], [7, 8], [8, 9], [9, 10], [8, 11], [11, 12], [12, 13], [8, 14], [14, 15], [15, 16], [0, 1], [1, 2], [2, 3], [0, 4], [4, 5], [5, 6]]) s_mpii_2_hm36_jt = [6, 2, 1, 0, 3, 4, 5, -1, 8, -1, 9, 13, 14, 15, 12, 11, 10, 7] s_hm36_2_mpii_jt = [3, 2, 1, 4, 5, 6, 0, 17, 8, 10, 16, 15, 14, 11, 12, 13] s_coco_2_hm36_jt = [-1, 12, 14, 16, 11, 13, 15, -1, -1, 0, -1, 5, 7, 9, 6, 8, 10, -1] s_posetrack_2_hm36_jt = [-1, 2, 1, 0, 3, 4, 5, -1, 12, 13, 14, 9, 10, 11, 8, 7, 6, -1] def from_coco_to_hm36_single(pose, pose_vis): res_jts = np.zeros((s_36_jt_num, 3), dtype=np.float) res_vis = np.zeros((s_36_jt_num, 3), dtype=np.float) for i in range(0, s_36_jt_num): id1 = i id2 = s_coco_2_hm36_jt[i] if id2 >= 0: res_jts[id1] = pose[id2].copy() res_vis[id1] = pose_vis[id2].copy() return res_jts.copy(), res_vis.copy() def from_coco_to_hm36(db): for n_sample in range(0, len(db)): res_jts, res_vis = from_coco_to_hm36_single(db[n_sample]['joints_3d'], db[n_sample]['joints_3d_vis']) db[n_sample]['joints_3d'] = res_jts db[n_sample]['joints_3d_vis'] = res_vis def from_mpii_to_hm36_single(pose, pose_vis): res_jts = np.zeros((s_36_jt_num, 3), dtype=np.float) res_vis = np.zeros((s_36_jt_num, 3), dtype=np.float) for i in range(0, s_36_jt_num): id1 = i id2 = s_mpii_2_hm36_jt[i] if id2 >= 0: res_jts[id1] = pose[id2].copy() res_vis[id1] = pose_vis[id2].copy() return res_jts.copy(), res_vis.copy() def from_mpii_to_hm36(db): for n_sample in range(0, len(db)): res_jts, res_vis = from_mpii_to_hm36_single(db[n_sample]['joints_3d'], db[n_sample]['joints_3d_vis']) db[n_sample]['joints_3d'] = res_jts db[n_sample]['joints_3d_vis'] = res_vis def from_posetrack_to_hm36(db): for n_sample in range(0, len(db)): res_jts = np.zeros((s_36_jt_num, 3), dtype=np.float) res_vis = np.zeros((s_36_jt_num, 3), dtype=np.float) res_jts_nxt = np.zeros((s_36_jt_num, 3), dtype=np.float) res_vis_nxt = np.zeros((s_36_jt_num, 3), dtype=np.float) for i in range(0, s_36_jt_num): id1 = i id2 = s_posetrack_2_hm36_jt[i] if id2 >= 0: res_jts[id1] = db[n_sample]['joints_3d'][id2].copy() res_vis[id1] = db[n_sample]['joints_3d_vis'][id2].copy() res_jts_nxt[id1] = db[n_sample]['joints_3d_next'][id2].copy() res_vis_nxt[id1] = db[n_sample]['joints_3d_vis_next'][id2].copy() res_jts[0] = (res_jts[1] + res_jts[4]) * 0.5 res_vis[0] = res_vis[1] * res_vis[4] res_jts[17] = (res_jts[11] + res_jts[14]) * 0.5 res_vis[17] = res_vis[11] * res_vis[14] res_jts[7] = (res_jts[0] + res_jts[8]) * 0.5 res_vis[7] = res_vis[0] * res_vis[8] db[n_sample]['joints_3d'] = res_jts.copy() db[n_sample]['joints_3d_vis'] = res_vis.copy() res_jts_nxt[0] = (res_jts_nxt[1] + res_jts_nxt[4]) * 0.5 res_vis_nxt[0] = res_vis_nxt[1] * res_vis_nxt[4] res_jts_nxt[17] = (res_jts_nxt[11] + res_jts_nxt[14]) * 0.5 res_vis_nxt[17] = res_vis_nxt[11] * res_vis_nxt[14] res_jts_nxt[7] = (res_jts_nxt[0] + res_jts_nxt[8]) * 0.5 res_vis_nxt[7] = res_vis_nxt[0] * res_vis_nxt[8] db[n_sample]['joints_3d_next'] = res_jts_nxt.copy() db[n_sample]['joints_3d_vis_next'] = res_vis_nxt.copy() def parsing_hm36_gt_file(gt_file): keypoints = [] with open(gt_file, 'r') as f: content = f.read() content = content.split('\n') image_num = int(float(content[0])) img_width = content[1].split(' ')[1] img_height = content[1].split(' ')[2] rot = content[2].split(' ')[1:10] trans = content[3].split(' ')[1:4] fl = content[4].split(' ')[1:3] c_p = content[5].split(' ')[1:3] k_p = content[6].split(' ')[1:4] p_p = content[7].split(' ')[1:3] jt_list = content[8].split(' ')[1:18] for i in range(0, image_num): keypoints.append(content[9 + i].split(' ')[1:97]) keypoints = np.asarray([[float(y) for y in x] for x in keypoints]) keypoints = keypoints.reshape(keypoints.shape[0], keypoints.shape[1] // 3, 3) trans = np.asarray([float(y) for y in trans]) jt_list = np.asarray([int(y) for y in jt_list]) keypoints = keypoints[:, jt_list - 1, :] # add thorax thorax = (keypoints[:, s_36_lsh_jt_idx, :] + keypoints[:, s_36_rsh_jt_idx, :]) * 0.5 thorax = thorax.reshape((thorax.shape[0], 1, thorax.shape[1])) keypoints = np.concatenate((keypoints, thorax), axis=1) rot = np.asarray([float(y) for y in rot]).reshape((3,3)) rot = np.transpose(rot) fl = np.asarray([float(y) for y in fl]) c_p = np.asarray([float(y) for y in c_p]) img_width = np.asarray(float(img_width)) img_height = np.asarray(float(img_height)) return keypoints, trans, jt_list, rot, fl, c_p, img_width, img_height def CamProj(x, y, z, fx, fy, u, v): cam_x = x / z * fx cam_x = cam_x + u cam_y = y / z * fy cam_y = cam_y + v return cam_x, cam_y def CamBackProj(cam_x, cam_y, depth, fx, fy, u, v): x = (cam_x - u) / fx * depth y = (cam_y - v) / fy * depth z = depth return x, y, z def joint_to_bone_mat(parent_ids): joint_num = len(parent_ids) mat = np.zeros((joint_num, joint_num), dtype=int) for i in range(0, joint_num): p_i = parent_ids[i] if p_i != i: mat[i][p_i] = -1 mat[i][i] = 1 else: mat[i][i] = 1 return np.transpose(mat) def joint_to_full_pair_mat(joint_num): mat = np.zeros((joint_num * (joint_num - 1) / 2, joint_num), dtype=int) idx = 0 for i in range(0, joint_num): for j in range(0, joint_num): if j > i: mat[idx][i] = 1 mat[idx][j] = -1 idx = idx + 1 return np.transpose(mat) def convert_joint(jts, vis, mat): cvt_jts = np.zeros((mat.shape[1]) * 3, dtype = float) cvt_jts[0::3] = np.dot(jts[0::3], mat) cvt_jts[1::3] = np.dot(jts[1::3], mat) cvt_jts[2::3] = np.dot(jts[2::3], mat) vis_mat = mat.copy() vis_mat[vis_mat!=0] = 1 cvt_vis = np.zeros((mat.shape[1]) * 3, dtype = float) s = np.sum(vis_mat, axis=0) cvt_vis[0::3] = np.dot(vis[0::3], vis_mat) == s cvt_vis[1::3] = np.dot(vis[1::3], vis_mat) == s cvt_vis[2::3] = np.dot(vis[2::3], vis_mat) == s return cvt_jts, cvt_vis def rigid_transform_3D(A, B): centroid_A = np.mean(A, axis = 0) centroid_B = np.mean(B, axis = 0) H = np.dot(np.transpose(A - centroid_A), B - centroid_B) U, s, V = np.linalg.svd(H) R = np.dot(np.transpose(V), np.transpose(U)) if np.linalg.det(R) < 0: V[2] = -V[2] R = np.dot(np.transpose(V), np.transpose(U)) t = -np.dot(R, np.transpose(centroid_A)) + np.transpose(centroid_B) return R, t def rigid_align(A, B): R, t = rigid_transform_3D(A, B) A2 = np.transpose(np.dot(R, np.transpose(A))) + t return A2 def from_worldjt_to_imagejt(n_img, joint_num, rot, keypoints, trans, fl, c_p, rect_3d_width, rect_3d_height): # project to image space pt_3d = np.zeros((joint_num, 3), dtype=np.float) pt_2d = np.zeros((joint_num, 3), dtype=np.float) for n_jt in range(0, joint_num): pt_3d[n_jt] = np.dot(rot, keypoints[n_img, n_jt] - trans) pt_2d[n_jt, 0], pt_2d[n_jt, 1] = CamProj(pt_3d[n_jt, 0], pt_3d[n_jt, 1], pt_3d[n_jt, 2], fl[0], fl[1], c_p[0], c_p[1]) pt_2d[n_jt, 2] = pt_3d[n_jt, 2] pelvis3d = pt_3d[s_36_root_jt_idx] # build 3D bounding box centered on pelvis, size 2000^2 rect3d_lt = pelvis3d - [rect_3d_width / 2, rect_3d_height / 2, 0] rect3d_rb = pelvis3d + [rect_3d_width / 2, rect_3d_height / 2, 0] # back-project 3D BBox to 2D image rect2d_l, rect2d_t = CamProj(rect3d_lt[0], rect3d_lt[1], rect3d_lt[2], fl[0], fl[1], c_p[0], c_p[1]) rect2d_r, rect2d_b = CamProj(rect3d_rb[0], rect3d_rb[1], rect3d_rb[2], fl[0], fl[1], c_p[0], c_p[1]) # Subtract pelvis depth pt_2d[:, 2] = pt_2d[:, 2] - pelvis3d[2] pt_2d = pt_2d.reshape((joint_num, 3)) vis = np.ones((joint_num, 3), dtype=np.float) return rect2d_l, rect2d_r, rect2d_t, rect2d_b, pt_2d, pt_3d, vis, pelvis3d class hm36(IMDB): def __init__(self, image_set_name, dataset_path, patch_width, patch_height, rect_3d_width, rect_3d_height): super(hm36, self).__init__('HM36', image_set_name, dataset_path, patch_width, patch_height) self.joint_num = s_36_jt_num self.flip_pairs = s_36_flip_pairs self.parent_ids = s_36_parent_ids self.idx2name = ['root', 'R-hip', 'R-knee', 'R-ankle', 'L-hip', 'L-knee', 'L-ankle', 'torso', 'neck', 'nose', 'head', 'L-shoulder', 'L-elbow', 'L-wrist', 'R-shoulder', 'R-elbow', 'R-wrist', 'thorax'] self.rect_3d_width = rect_3d_width self.rect_3d_height = rect_3d_height self.aspect_ratio = 1.0 * patch_width / patch_height self.mean_bone_length = 0 def _H36FolderName(self, subject_id, act_id, subact_id, camera_id): return "s_%02d_act_%02d_subact_%02d_ca_%02d" % \ (HM_subject_idx[subject_id], HM_act_idx[act_id], HM_subact_idx[subact_id], HM_camera_idx[camera_id]) def _H36ImageName(self, folder_name, frame_id): return "%s_%06d.jpg" % (folder_name, frame_id + 1) def _AllHuman36Folders(self, subject_list_): subject_list = subject_list_[:] if len(subject_list) == 0: for i in range(0, s_hm36_subject_num): subject_list.append(i) folders = [] for i in range(0, len(subject_list)): for j in range(0, s_hm36_act_num): for m in range(0, s_hm36_subact_num): # for each check that the number of images are equal # /home/abhijat/gitstuff/integral-human-pose/data/hm36/images/temp_folder temp_folder = os.path.join('../../data/hm36/images/'+ self._H36FolderName(subject_list[i], j, m, 1)) temp_txtfile = os.path.join('../../data/hm36/annot/'+ self._H36FolderName(subject_list[i], j, m, 1)\ + '/matlab_meta.txt') fp = open(temp_txtfile) # Open file on read mode lines = fp.read().split("\n") # Create a list containing all lines num_expected = int(lines[0]) fp.close() # Close file if len(glob(temp_folder+'/*.jpg')) != num_expected: # print(temp_folder) continue for n in range(0, s_hm36_camera_num): folders.append(self._H36FolderName(subject_list[i], j, m, n)) return folders def _sample_dataset(self, image_set_name): if image_set_name == 'train': sample_num = 200 step = -1 folder_start = 0 folder_end = 600 folders = self._AllHuman36Folders([0, 1, 2, 3, 4]) elif image_set_name == 'trainfull': sample_num = -1 step = 1 folder_start = 0 folder_end = 600 folders = self._AllHuman36Folders([0, 1, 2, 3, 4]) elif image_set_name == 'trainsample2': sample_num = -1 step = 2 folder_start = 0 folder_end = 600 folders = self._AllHuman36Folders([0, 1, 2, 3, 4]) elif image_set_name == 'trainsample10': sample_num = -1 step = 10 folder_start = 0 folder_end = 600 folders = self._AllHuman36Folders([0, 1, 2, 3, 4]) elif image_set_name == 'valid': sample_num = 40 step = -1 folder_start = 0 folder_end = 240 folders = self._AllHuman36Folders([5, 6]) elif image_set_name == 'validmin': sample_num = 10 step = -1 folder_start = 0 folder_end = 224#240 folders = self._AllHuman36Folders([5, 6]) elif image_set_name == 'validfull': sample_num = -1 step = 1 folder_start = 0 folder_end = 240 folders = self._AllHuman36Folders([5, 6]) elif image_set_name == 'validsample2': sample_num = -1 step = 2 folder_start = 0 folder_end = 240 folders = self._AllHuman36Folders([5, 6]) elif image_set_name == 'validsample10': sample_num = -1 step = 10 folder_start = 0 folder_end = 240 folders = self._AllHuman36Folders([5, 6]) elif 'act' in image_set_name: act_id = int(image_set_name[-2:]) sample_num = 40 step = -1 folder_start = 0 folders = [] s_list = [5, 6] for i in range(0, len(s_list)): for m in range(0, s_hm36_subact_num): for n in range(0, s_hm36_camera_num): folders.append(self._H36FolderName(s_list[i], act_id, m, n)) folder_end = len(folders) else: print("Error!!!!!!!!! Unknown hm36 sub set!") assert 0 return folders, sample_num, step, folder_start, folder_end def gt_db(self): folders, sample_num, step, folder_start, folder_end = self._sample_dataset(self.image_set_name) # print(folders) # import ipdb; ipdb.set_trace(); db = None cache_file = os.path.join(self.cache_path, self.name + '_keypoint_db_sample' + str(sample_num) + '.pkl') if os.path.exists(cache_file): with open(cache_file, 'rb') as fid: db = pk.load(fid) print('{} gt db loaded from {}, {} samples are loaded'.format(self.name, cache_file, len(db))) if db != None: self.num_sample_single = len(db) return db gt_db = [] for n_folder in range(folder_start, folder_end): print('Loading folder ', n_folder, ' in ', len(folders)) # load ground truth keypoints, trans, jt_list, rot, fl, c_p, img_width, img_height = parsing_hm36_gt_file( os.path.join(self.dataset_path, "annot", folders[n_folder], 'matlab_meta.txt')) # random sample redundant video sequence if sample_num > 0: img_index = np.random.choice(keypoints.shape[0], sample_num, replace=False) else: img_index = np.arange(keypoints.shape[0]) img_index = img_index[0:keypoints.shape[0]:step] for n_img_ in range(0, img_index.shape[0]): n_img = img_index[n_img_] image_name = os.path.join(folders[n_folder], self._H36ImageName(folders[n_folder], n_img)) assert keypoints.shape[1] == self.joint_num rect2d_l, rect2d_r, rect2d_t, rect2d_b, pt_2d, pt_3d, vis, pelvis3d = \ from_worldjt_to_imagejt(n_img, self.joint_num, rot, keypoints, trans, fl, c_p, self.rect_3d_width, self.rect_3d_height) skeleton_length = calc_total_skeleton_length_bone(pt_3d, s_36_bone_jts) gt_db.append({ 'image': os.path.join(self.dataset_path, '', 'images', image_name), 'center_x': (rect2d_l + rect2d_r) * 0.5, 'center_y': (rect2d_t + rect2d_b) * 0.5, 'width': (rect2d_r - rect2d_l), 'height': (rect2d_b - rect2d_t), 'flip_pairs': self.flip_pairs, 'parent_ids': self.parent_ids, 'joints_3d': pt_2d, # [org_img_x, org_img_y, depth - root_depth] 'joints_3d_vis': vis, 'joints_3d_cam': pt_3d, # [X, Y, Z] in camera coordinate 'pelvis': pelvis3d, 'fl': fl, 'c_p': c_p, 'bone_len': skeleton_length }) with open(cache_file, 'wb') as fid: pk.dump(gt_db, fid, pk.HIGHEST_PROTOCOL) print('{} samples ared wrote {}'.format(len(gt_db), cache_file)) self.num_sample_single = len(gt_db) return gt_db def dt_db(self, det_bbox_src): print("Using Detector:", det_bbox_src) self.detector = det_bbox_src folders, sample_num, step, folder_start, folder_end = self._sample_dataset(self.image_set_name) dt_cache_file = os.path.join(self.cache_path, self.name + '_keypoint_dt_db_sample' + str(sample_num) + '.pkl') if os.path.exists(dt_cache_file): with open(dt_cache_file, 'rb') as fid: dt_db = pk.load(fid) print('{} gt db loaded from {}, {} samples are loaded'.format(self.name, dt_cache_file, len(dt_db))) return dt_db gt_cache_file = os.path.join(self.cache_path, self.name + '_keypoint_db_sample' + str(sample_num) + '.pkl') if os.path.exists(gt_cache_file): with open(gt_cache_file, 'rb') as fid: gt_db = pk.load(fid) print('{} gt db loaded from {}, {} samples are loaded'.format(self.name, gt_cache_file, len(gt_db))) else: assert 0, gt_cache_file + ' not exist...' self.num_sample_single = len(gt_db) self.mean_bone_length = np.asarray([item['bone_len'] for item in gt_db]).mean() # update bbox using detection result print("Updating BBox from detector") bbox_file = os.path.join(self.cache_path, 'detection', det_bbox_src, 'kpts_bbox.pkl') with open(bbox_file, 'rb') as fid: bbox_list = pk.load(fid) assert len(bbox_list) == len(gt_db) for idx in range(len(gt_db)): box = bbox_list[idx] center_x = (box[0] + box[2]) * 0.5 center_y = (box[1] + box[3]) * 0.5 width = box[2] - box[0] height = box[3] - box[1] if width > self.aspect_ratio * height: height = width * 1.0 / self.aspect_ratio elif width < self.aspect_ratio * height: width = height * self.aspect_ratio width = width * 1.25 height = height * 1.25 gt_db[idx]['center_x'] = center_x gt_db[idx]['center_y'] = center_y gt_db[idx]['width'] = width gt_db[idx]['height'] = height DEBUG = False if DEBUG: box = [center_x, center_y, width, height] pose = [] debug_vis(os.path.join(gt_db[idx]['image']), box, pose) self.num_sample_single = len(gt_db) return gt_db def jnt_bbox_db(self): db = None folders, sample_num, step, folder_start, folder_end = self._sample_dataset(self.image_set_name) cache_file = os.path.join(self.cache_path, self.name + '_keypoint_jntBBox_db_sample' + str(sample_num) + '.pkl') if os.path.exists(cache_file): with open(cache_file, 'rb') as fid: db = pk.load(fid) print('{} gt db loaded from {}, {} samples are loaded'.format(self.name, cache_file, len(db))) if db != None: self.num_sample_single = len(db) self.mean_bone_length = np.asarray([item['bone_len'] for item in db]).mean() return db jnt_bbox_db = [] for n_folder in range(folder_start, folder_end): print('Loading folder ', n_folder, ' in ', len(folders)) # load ground truth keypoints, trans, jt_list, rot, fl, c_p, img_width, img_height = parsing_hm36_gt_file( os.path.join(self.dataset_path, "annot", folders[n_folder], 'matlab_meta.txt')) # random sample redundant video sequence if sample_num > 0: img_index = np.random.choice(keypoints.shape[0], sample_num, replace=False) else: img_index = np.arange(keypoints.shape[0]) img_index = img_index[0:keypoints.shape[0]:step] for n_img_ in range(0, img_index.shape[0]): n_img = img_index[n_img_] image_name = os.path.join(folders[n_folder], self._H36ImageName(folders[n_folder], n_img)) assert keypoints.shape[1] == self.joint_num _, _, _, _, pt_2d, pt_3d, vis, pelvis3d = \ from_worldjt_to_imagejt(n_img, self.joint_num, rot, keypoints, trans, fl, c_p, self.rect_3d_width, self.rect_3d_height) c_x, c_y, w, h = calc_kpt_bound_pad(pt_2d, vis, self.aspect_ratio) pt_3d_relative = pt_3d - pt_3d[0] skeleton_length = calc_total_skeleton_length(pt_3d_relative, s_36_parent_ids) jnt_bbox_db.append({ 'image': os.path.join(self.dataset_path, '', 'images', image_name), 'center_x': c_x, 'center_y': c_y, 'width': w, 'height': h, 'flip_pairs': self.flip_pairs, 'parent_ids': self.parent_ids, 'joints_3d': pt_2d, # [org_img_x, org_img_y, depth - root_depth] 'joints_3d_vis': vis, 'joints_3d_cam': pt_3d, # [X, Y, Z] in camera coordinate 'pelvis': pelvis3d, 'fl': fl, 'c_p': c_p, 'joints_3d_relative': pt_3d_relative, # [X-root, Y-root, Z-root] in camera coordinate 'bone_len': skeleton_length }) self.mean_bone_length = np.asarray([item['bone_len'] for item in jnt_bbox_db]).mean() with open(cache_file, 'wb') as fid: pk.dump(jnt_bbox_db, fid, pk.HIGHEST_PROTOCOL) print('{} samples ared wrote {}'.format(len(jnt_bbox_db), cache_file)) self.num_sample_single = len(jnt_bbox_db) return jnt_bbox_db def get_mean_bone_length(self): return self.mean_bone_length def evaluate(self, preds, save_path): preds = preds[:, :, 0:3] gts = self.gt_db() sample_num = preds.shape[0] joint_num = self.joint_num # flip_pair = self.flip_pairs parent_ids = self.parent_ids # 18 joints: # 'root', 'Rleg0', 'Rleg1', 'Rleg2', 'Lleg0', 'Lleg1', 'Lleg2', 'torso', 'neck', 'nose', 'head', 'Larm0', 'Larm1', 'Larm2', 'Rarm0', 'Rarm1', 'Rarm2', 'Thorax' # 'root', 'RHip', 'RKnee', 'RAnkle', 'LHip', 'LKnee', 'LAnkle', 'torso', 'neck', 'nose', 'head', 'LShoulder', 'LElbow', 'LWrist', 'RShoulder', 'RElbow', 'RWrist, 'Thorax'' # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 # joint_names = ['root', 'Hip', 'Knee', 'Ankle', 'Torso', 'Neck', 'Nose', 'Head', 'Shoulder', 'Elbow', 'Wrist', '17j', '16j', '14j', '13j'] eval_jt = [[0], [1, 4], [2, 5], [3, 6], [7], [8], [9], [10], [11, 14], [12, 15], [13, 16], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16], [0, 1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 13, 14, 15, 16, 17], [1, 2, 3, 4, 5, 6, 8, 10, 11, 12, 13, 14, 15, 16], [1, 2, 3, 4, 5, 6, 10, 11, 12, 13, 14, 15, 16]] metrics_num = 3 t_start = 5 t_step = 100 t_end = 205 coord_num = int(4 + (t_end - t_start) / t_step) # 4 for all, x, y, z avg_errors = [] # [metrics_num, len(eval_jt), coord_num] for n_m in range(0, metrics_num): avg_errors.append(np.zeros((len(eval_jt), coord_num), dtype=np.float)) pred_to_save = [] for n_sample in range(0, sample_num): gt = gts[n_sample] # Org image info fl = gt['fl'][0:2] c_p = gt['c_p'][0:2] gt_3d_root = np.reshape(gt['pelvis'], (1, 3)) gt_2d_kpt = gt['joints_3d'].copy() gt_vis = gt['joints_3d_vis'].copy() # get camera depth from root joint pre_2d_kpt = preds[n_sample].copy() pre_2d_kpt[:, 2] = pre_2d_kpt[:, 2] + gt_3d_root[0, 2] gt_2d_kpt[:, 2] = gt_2d_kpt[:, 2] + gt_3d_root[0, 2] # back project pre_3d_kpt = np.zeros((joint_num, 3), dtype=np.float) gt_3d_kpt = np.zeros((joint_num, 3), dtype=np.float) for n_jt in range(0, joint_num): pre_3d_kpt[n_jt, 0], pre_3d_kpt[n_jt, 1], pre_3d_kpt[n_jt, 2] = \ CamBackProj(pre_2d_kpt[n_jt, 0], pre_2d_kpt[n_jt, 1], pre_2d_kpt[n_jt, 2], fl[0], fl[1], c_p[0], c_p[1]) gt_3d_kpt[n_jt, 0], gt_3d_kpt[n_jt, 1], gt_3d_kpt[n_jt, 2] = \ CamBackProj(gt_2d_kpt[n_jt, 0], gt_2d_kpt[n_jt, 1], gt_2d_kpt[n_jt, 2], fl[0], fl[1], c_p[0], c_p[1]) # bone j2b_mat = joint_to_bone_mat(parent_ids) pre_3d_bone, bone_vis = convert_joint(np.reshape(pre_3d_kpt, joint_num * 3), np.reshape(gt_vis, joint_num * 3), j2b_mat) gt_3d_bone, bone_vis = convert_joint(np.reshape(gt_3d_kpt, joint_num * 3), np.reshape(gt_vis, joint_num * 3), j2b_mat) pre_3d_bone = np.reshape(pre_3d_bone, (joint_num, 3)) gt_3d_bone = np.reshape(gt_3d_bone, (joint_num, 3)) # align pre_3d_kpt_align = rigid_align(pre_3d_kpt, gt_3d_kpt) diffs = [] # [metrics_num, joint_num * 3] # should align root, required by protocol #1 pre_3d_kpt = pre_3d_kpt - pre_3d_kpt [0] gt_3d_kpt = gt_3d_kpt - gt_3d_kpt [0] pre_3d_kpt_align = pre_3d_kpt_align - pre_3d_kpt_align [0] diffs.append((pre_3d_kpt - gt_3d_kpt)) # Avg joint error diffs.append((pre_3d_bone - gt_3d_bone)) diffs.append((pre_3d_kpt_align - gt_3d_kpt)) pred_to_save.append({'pred': pre_3d_kpt, 'align_pred': pre_3d_kpt_align, 'gt': gt_3d_kpt}) for n_m in range(0, metrics_num): e_jt = [] e_jt_x = [] e_jt_y = [] e_jt_z = [] e_jt_pck = [[] for i in range(t_start, t_end, t_step)] for n_jt in range(0, joint_num): t_dis = np.linalg.norm(diffs[n_m][n_jt]) e_jt.append(t_dis) e_jt_x.append(abs(diffs[n_m][n_jt][0])) e_jt_y.append(abs(diffs[n_m][n_jt][1])) e_jt_z.append(abs(diffs[n_m][n_jt][2])) for i in range(t_start, t_end, t_step): e_jt_pck[int((i - t_start) / t_step)].append(int(t_dis < i)) for n_eval_jt in range(0, len(eval_jt)): e = 0 e_x = 0 e_y = 0 e_z = 0 e_pck = [0 for i in range(t_start, t_end, t_step)] for n_jt in range(0, len(eval_jt[n_eval_jt])): e = e + e_jt[eval_jt[n_eval_jt][n_jt]] e_x = e_x + e_jt_x[eval_jt[n_eval_jt][n_jt]] e_y = e_y + e_jt_y[eval_jt[n_eval_jt][n_jt]] e_z = e_z + e_jt_z[eval_jt[n_eval_jt][n_jt]] for i in range(t_start, t_end, t_step): e_pck[int((i - t_start) / t_step)] = \ e_pck[int((i - t_start) / t_step)] + \ e_jt_pck[int((i - t_start) / t_step)][eval_jt[n_eval_jt][n_jt]] avg_errors[n_m][n_eval_jt][0] = avg_errors[n_m][n_eval_jt][0] + e / float(len(eval_jt[n_eval_jt])) avg_errors[n_m][n_eval_jt][1] = avg_errors[n_m][n_eval_jt][1] + e_x / float(len(eval_jt[n_eval_jt])) avg_errors[n_m][n_eval_jt][2] = avg_errors[n_m][n_eval_jt][2] + e_y / float(len(eval_jt[n_eval_jt])) avg_errors[n_m][n_eval_jt][3] = avg_errors[n_m][n_eval_jt][3] + e_z / float(len(eval_jt[n_eval_jt])) for i in range(t_start, t_end, t_step): avg_errors[n_m][n_eval_jt][4 + int((i - t_start) / t_step)] = \ avg_errors[n_m][n_eval_jt][4 + int((i - t_start) / t_step)] + \ e_pck[int((i - t_start) / t_step)] / float(len(eval_jt[n_eval_jt])) for n_m in range(0, metrics_num): avg_errors[n_m] = avg_errors[n_m] / sample_num name_value = [ ('hm36_root :', avg_errors[0][0][0]), ('hm36_Hip :', avg_errors[0][1][0]), ('hm36_Knee :', avg_errors[0][2][0]), ('hm36_Ankle :', avg_errors[0][3][0]), ('hm36_Torso :', avg_errors[0][4][0]), ('hm36_Neck :', avg_errors[0][5][0]), ('hm36_Nose :', avg_errors[0][6][0]), ('hm36_Head :', avg_errors[0][7][0]), ('hm36_Shoulder :', avg_errors[0][8][0]), ('hm36_Elbow :', avg_errors[0][9][0]), ('hm36_Wrist :', avg_errors[0][10][0]), ('hm36_17j :', avg_errors[0][11][0]), ('hm36_17j_align:', avg_errors[2][11][0]), ('hm36_17j_x :', avg_errors[0][11][1]), ('hm36_17j_y :', avg_errors[0][11][2]), ('hm36_17j_z :', avg_errors[0][11][3]), ] return name_value
#!/usr/bin/env python # -*- coding: utf-8 -*- """Tests for the RC4 decrypter object.""" import unittest from cryptography.hazmat.primitives.ciphers import algorithms from dfvfs.encryption import decrypter from dfvfs.lib import definitions from tests.encryption import test_lib class DecrypterTestCase(test_lib.DecrypterTestCase): """Tests for the decrypter interface.""" def testInitialize(self): """Tests the __init__ method.""" test_decrypter = decrypter.Decrypter() self.assertIsNotNone(test_decrypter) with self.assertRaises(ValueError): decrypter.Decrypter(key=b'test1') class CryptographyBlockCipherDecrypterTest(test_lib.DecrypterTestCase): """Tests for the block cipher decrypter using Cryptography.""" _DES3_INITIALIZATION_VECTOR = b'This IV!' _DES3_KEY = b'This is a key123' def testInitialize(self): """Tests the __init__ method.""" algorithm = algorithms.TripleDES(self._DES3_KEY) test_decrypter = decrypter.CryptographyBlockCipherDecrypter( algorithm=algorithm, cipher_mode=definitions.ENCRYPTION_MODE_CBC, initialization_vector=self._DES3_INITIALIZATION_VECTOR) self.assertIsNotNone(test_decrypter) test_decrypter = decrypter.CryptographyBlockCipherDecrypter( algorithm=algorithm, cipher_mode=definitions.ENCRYPTION_MODE_CFB, initialization_vector=self._DES3_INITIALIZATION_VECTOR) self.assertIsNotNone(test_decrypter) test_decrypter = decrypter.CryptographyBlockCipherDecrypter( algorithm=algorithm, cipher_mode=definitions.ENCRYPTION_MODE_ECB) self.assertIsNotNone(test_decrypter) test_decrypter = decrypter.CryptographyBlockCipherDecrypter( algorithm=algorithm, cipher_mode=definitions.ENCRYPTION_MODE_OFB, initialization_vector=self._DES3_INITIALIZATION_VECTOR) self.assertIsNotNone(test_decrypter) with self.assertRaises(ValueError): decrypter.CryptographyBlockCipherDecrypter( algorithm=algorithm, cipher_mode=definitions.ENCRYPTION_MODE_CBC) if __name__ == '__main__': unittest.main()
__version__ = '0.1.0' default_app_config = 'telegrambot.apps.TelegrambotConfig'
import os here = os.path.dirname(__file__) DEBUG = True TEMPLATE_DEBUG = DEBUG USE_SAML2 = False ADMINS = ( ('Gijs Molenaar', 'gijs@pythonic.nl'), ) MANAGERS = ADMINS DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(here, '../../database/sqlite3.db'), } } TIME_ZONE = 'Europe/Amsterdam' LANGUAGE_CODE = 'en-us' SITE_ID = 1 USE_I18N = True USE_L10N = True MEDIA_ROOT = os.path.join(here, '../../static/') MEDIA_URL = '/media/' ADMIN_MEDIA_PREFIX = '/admin-media/' SECRET_KEY = '&bhy2&*zy4wr%!yk7qv(yzb6*5s$h!mgs_nos!+@3^y0li31sb' TEMPLATE_LOADERS = ( 'django.template.loaders.filesystem.Loader', 'django.template.loaders.app_directories.Loader', # 'django.template.loaders.eggs.Loader', ) MIDDLEWARE_CLASSES = ( 'django.middleware.common.CommonMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', #'debug_toolbar.middleware.DebugToolbarMiddleware', ) ROOT_URLCONF = 'filebender.urls' TEMPLATE_DIRS = ( os.path.join(here, '../../templates') ) INSTALLED_APPS = ( 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.sites', 'django.contrib.messages', 'django.contrib.admin', 'bigfiles', #'debug_toolbar', ) if USE_SAML2: INSTALLED_APPS.append('djangosaml2') LOGIN_URL = '/saml2/login/' AUTHENTICATION_BACKENDS = ( 'djangosaml2.backends.Saml2Backend', 'django.contrib.auth.backends.ModelBackend', ) TEMPLATE_CONTEXT_PROCESSORS = ( "django.contrib.auth.context_processors.auth", "django.core.context_processors.debug", "django.core.context_processors.i18n", "django.core.context_processors.media", "django.contrib.messages.context_processors.messages", 'bigfiles.context_processors.auth_urls', 'bigfiles.context_processors.storage', ) SAML_CONFIG = { 'xmlsec_binary' : '/opt/local/bin/xmlsec1', "sp": { "name" : "Gijs SP", "url" : "http://www.example.com:8087/", "idp": { "urn:mace:localhost:saml:gijs:idp": { "single_signon_service": "http://localhost:8000/idp/"}, }, }, "entityid" : "urn:mace:localhost:saml:gijs:sp", "service": { "sp":{ "name" : "Gijs SP", "url" : "http://localhost:8002/simplesaml", "idp": { "urn:mace:localhost:saml:gijs:idp": { "single_signon_service": "http://localhost:8000/sp/"}, }, "endpoints": "", } }, "key_file" : os.path.join(here, '../../keys/private-key.pem'), "cert_file" : os.path.join(here, '../../keys/certificate.pem'), "attribute_map_dir": "./attributemaps", "organization": { "display_name":["Rolands identities"] }, "contact_person": [{ "givenname": "Roland", "surname": "Hedberg", "phone": "+46 90510", "mail": "roland@example.com", "type": "technical", }] } SAML_USERNAME_ATTRIBUTE = 'uid' INTERNAL_IPS = ('127.0.0.1',) # where to store large upload FILE_UPLOAD_TEMP_DIR='/tmp' # length of file secret. Don't change this after database creation FILE_SECRET_LENGTH=50 # Where to store the large files STORAGE_ROOT = os.path.join(here, '../../storage/') # How are the files accessed from outside STORAGE_URL = '/storage/' LOGGING = { 'version': 1, 'disable_existing_loggers': False, 'handlers': { 'mail_admins': { 'level': 'ERROR', 'class': 'django.utils.log.AdminEmailHandler' } }, 'loggers': { 'django.request': { 'handlers': ['mail_admins'], 'level': 'ERROR', 'propagate': True, }, } }
# -*- coding: utf-8 -*- """ @file @brief Abstract class to connect to a SQL server using various way. It will be used to implement magic functions """ import re import sqlite3 class InterfaceSQLException(BaseException): """ a specific exception """ def __init__(self, message): """ @param message exception message """ self.message = message def __str__(self): """ usual """ return self.message class AutoCompletionSQLObject: """ a simple class which allows auto completion for tables, columns... """ def __init__(self, name): """ creates an instance with a given name """ self._true_name = name self._filt_name = AutoCompletionSQLObject._filter_name(name) @staticmethod def _filter_name(name): """ removes unavailable characters """ return name.replace(".", "_").replace(" ", "_") @property def _(self): """ returns the true name of the object """ return self._true_name @property def _f(self): """ returns the filtered name """ return self._filt_name def _add(self, name): """ add a subname to the class @param name string @return an AutoCompletionSQLObject the filtered name (``_f``) of the new object will be added to ``self.__dict__``, if an object already exists with the same name, it will raise an exception """ au = AutoCompletionSQLObject(name) af = au._f if af in self.__dict__: raise KeyError( "the object %s was already added to %s" % (af, self._f)) self.__dict__[af] = au return au class InterfaceSQL: """ Abstract class to connect to a SQL server using various way. It will be used to implement magic functions """ @staticmethod def create(obj): """ @param obj a filename, a connection string, ... ``obj`` can be a: * file --> the class :class:`Database <pyensae.sql.database_main.Database>` will be used, we assume this file is sqlite database, the file does not have to exist, in that case, it will created * sqlite3.Connection --> the object will be wrapped into a :class:`Database <pyensae.sql.database_main.Database>` * InterfaceSQL --> returns the object itself .. versionchanged:: 1.1 Parameter *dbfile* can be of type `sqlite3.Connection <https://docs.python.org/3/library/sqlite3.html#sqlite3.Connection>`_. """ if isinstance(obj, str): from .sql_interface_database import InterfaceSQLDatabase return InterfaceSQLDatabase(obj) elif isinstance(obj, sqlite3.Connection): from .sql_interface_database import InterfaceSQLDatabase return InterfaceSQLDatabase(obj) elif isinstance(obj, InterfaceSQL): return obj else: raise NotImplementedError( "nothing is implemented for type: %s" % str( type(obj))) def populate_completion(self): """ the method create an object which contains a class the user could use to speed the typing SQL queries, functions in a notebook This object will added with the name ``CC``, it is returned by the function. @return @see cl AutoCompletionSQLObject The method should be called when the method @see me connect is called. """ self.CC = AutoCompletionSQLObject("TBL") tbls = self.get_table_list() for tb in tbls: compl = self.CC._add(tb) cols = self.get_table_columns(tb) for k, v in cols.items(): compl._add(v[0]) return self.CC def __init__(self, obj): """ Initializes the object. @param obj anything, see below ``obj`` can be a: * file --> the class :class:`Database <pyensae.sql.database_main.Database>` will be used, we assume this file is sqlite database, the file does not have to exist, in that case, it will created """ raise NotImplementedError() def connect(self): """ connection to the database """ raise NotImplementedError() def close(self): """ close the connection to the database """ raise NotImplementedError() def get_table_list(self): """ returns the list of tables in the database @return list of strings """ raise NotImplementedError() def get_table_columns(self, table_name, as_dict=True): """ returns the list of columns in a table @param table_name table name @param as_dict True, as dictionary, as a list otherwise @return dictionary { "column": (position, type) } or a list """ raise NotImplementedError() def execute(self, sql_query): """ execute a SQL query @param sql_query query to execute @return pandas DataFrame The function takes care of the unexpected syntax introduction by the autocompletion object: it just replaces ``DB.CC.<name>`` by the ``true_name``. """ sql_query = self.process_query(sql_query) return self.execute_clean_query(sql_query) def execute_clean_query(self, sql_query): """ The function does the same thing as @see me execute but it does not replace autocompletion object. It is this function which should be overloaded by classes inheriting from this one. @param sql_query query to execute @return pandas DataFrame """ raise NotImplementedError() _exp = re.compile("(DB[.]CC[.][a-zA-Z0-9_]+([.][a-zA-Z0-9_]+)*)") def process_query(self, sql_query): """ replaces autocompletion object by their real names @param sql_query SQL query @return clean sql_query """ # i don't remember the syntax but it should be replaced using regular expression, not # string replace fi = InterfaceSQL._exp.findall(sql_query) if len(fi) > 0: only = [_[0] for _ in fi] only.sort(reverse=True) for o in only: co = "self." + o[3:] ev = eval(co) sql_query = sql_query.replace(o, ev._) return sql_query def import_flat_file(self, filename, table_name): """ import a flat file as a table, we assume the columns separator is ``\\t`` and the file name contains a header @param filename filename @param table table name @return the number of added rows """ raise NotImplementedError() def drop_table(self, table_name): """ drops a table @param table table name """ raise NotImplementedError() def refresh_completion(self): """ refresh the auto completion @return completion object """ return self.populate_completion() def add_function(self, code_function): """ add a function to the database which can be called in a SELECT statement @param code_function pointer to the function """ raise NotImplementedError() def import_dataframe(self, tablename, df): """ import a dataframe into the database @param tablename name of the table @param df dataframe @return the number of added rows """ raise NotImplementedError()
from . import backend from . import datasets from . import losses from . import metrics from . import model from .optim import * from .utils import * from .testing import *
# -*- coding: utf-8 -*- import os from flask import Blueprint, render_template, send_from_directory, abort, redirect, url_for, flash from flask import current_app as APP from flask.ext.login import login_user, login_required, current_user from fbone.extensions import db, login_manager from fbone.core.oauth import OAuthSignIn from .models import User, UsersSocialAccount user = Blueprint('user', __name__, url_prefix='/user') @login_manager.user_loader def load_user(id): return User.query.get(int(id)) @user.route('/') @login_required def index(offset=0): if not current_user.is_authenticated(): abort(403) return render_template('user/index.html', user=current_user) @user.route('/authorize/<provider>') def oauth_authorize(provider): if not current_user.is_anonymous(): return redirect(url_for('user.index')) oauth = OAuthSignIn.get_provider(provider) return oauth.authorize() @user.route('/callback/<provider>') def oauth_callback(provider, user=None): if not current_user.is_anonymous(): return redirect(url_for('index')) oauth = OAuthSignIn.get_provider(provider) social_id, username, email = oauth.callback() if social_id is None: flash('Authentication failed.') return redirect(url_for('frontend.index')) # update to foreign key later # user = User.query.filter_by(social_id=social_id).first() if not user: user = User().create(nickname=username, email=email) social_id = UsersSocialAccount().create(social_id=social_id, provider=provider) user.social_ids.append(social_id) db.session.commit() login_user(user, True) return redirect(url_for('user.index')) @user.route('/<int:user_id>/profile') @login_required def profile(_id): user = User.get_by_id(_id) return render_template('user/profile.html', user=user, current_user=current_user, followed=current_user.is_following(user)) @user.route('/<int:user_id>/avatar/<path:filename>') @login_required def avatar(user_id, filename): dir_path = os.path.join(APP.config['UPLOAD_FOLDER'], 'user_%s' % user_id) return send_from_directory(dir_path, filename, as_attachment=True) @user.route('/follow_user/<int:user_id>') @login_required def follow_user(user_id): user = User.get_by_id(user_id) current_user.follow(user) flash("You are now following" + " %s" % user.name, 'success') return render_template('user/profile.html', user=user, current_user=current_user, followed=current_user.is_following(user)) @user.route('/unfollow_user/<int:user_id>') @login_required def unfollow_user(user_id): user = User.get_by_id(user_id) current_user.unfollow(user) flash("You are now not following" + " %s" % user.name, 'success') return render_template('user/profile.html', user=user, current_user=current_user, followed=current_user.is_following(user))
import argparse import json import yaml import os from os.path import join, basename, splitext def pp_json(json_thing, sort=True, indents=4): if isinstance(json_thing, str): print(json.dumps(json.loads(json_thing), sort_keys=sort, indent=indents)) else: print(json.dumps(json_thing, sort_keys=sort, indent=indents)) def load_json(file_name): with open(file_name, "r") as file_stream: return json.load(file_stream) def load_yaml(file_name): with open(file_name, "r") as file_stream: return yaml.load(file_stream, Loader=yaml.FullLoader) def get_params(): parser = argparse.ArgumentParser(description="Parameters") parser.add_argument("meta_model") parser.add_argument("--config", default='./up-zonk.yaml', required=False) args = parser.parse_args() config = load_yaml(args.config) # meta model load, can be without .yaml ext -- filename_w_ext = os.path.basename(args.meta_model) filename, file_extension = os.path.splitext(filename_w_ext) meta_model_file_name = args.model if file_extension == "yaml" else filename + ".yaml" meta_model_path = os.path.join(config["up"], meta_model_file_name) meta_model = load_yaml(meta_model_path) return config, meta_model
#!/usr/bin/env python # -*- coding: utf-8; py-indent-offset:4 -*- ############################################################################### # # Copyright (C) 2015, 2016 Daniel Rodriguez # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ############################################################################### from __future__ import (absolute_import, division, print_function, unicode_literals) import math import backtrader as bt class MTradeObserver(bt.observer.Observer): lines = ('Id_0', 'Id_1', 'Id_2') plotinfo = dict(plot=True, subplot=True, plotlinelabels=True) plotlines = dict( Id_0=dict(marker='*', markersize=8.0, color='lime', fillstyle='full'), Id_1=dict(marker='o', markersize=8.0, color='red', fillstyle='full'), Id_2=dict(marker='s', markersize=8.0, color='blue', fillstyle='full') ) def next(self): for trade in self._owner._tradespending: if trade.data is not self.data: continue if not trade.isclosed: continue self.lines[trade.tradeid][0] = trade.pnlcomm
for i in range(1,100): print(i)
"""Patching modules and objects""" import contextlib import sys def begin_patch(module, member, new_value): if isinstance(module, str): if module not in sys.modules: return None module = sys.modules[module] if not hasattr(module, member): old_member = None else: old_member = getattr(module, member) setattr(module, member, new_value) return module, member, old_member def end_patch(token): if token is None: return module, member, old_member = token if old_member is None: delattr(module, member) else: setattr(module, member, old_member) @contextlib.contextmanager def patch(*args): """Manager a patch in a contextmanager""" tokens = [] for idx in range(0, len(args), 3): module, member, new_value = args[idx : idx + 3] tokens.append(begin_patch(module, member, new_value)) try: yield finally: for token in tokens[::-1]: end_patch(token)
# -*- coding: utf-8 -*- from south.utils import datetime_utils as datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Adding model 'Score' db.create_table(u'ratings_score', ( (u'id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('content_type', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['contenttypes.ContentType'])), ('object_id', self.gf('django.db.models.fields.PositiveIntegerField')()), ('key', self.gf('django.db.models.fields.CharField')(max_length=16)), ('average', self.gf('django.db.models.fields.FloatField')(default=0)), ('total', self.gf('django.db.models.fields.IntegerField')(default=0)), ('num_votes', self.gf('django.db.models.fields.PositiveIntegerField')(default=0)), )) db.send_create_signal(u'ratings', ['Score']) # Adding unique constraint on 'Score', fields ['content_type', 'object_id', 'key'] db.create_unique(u'ratings_score', ['content_type_id', 'object_id', 'key']) # Adding model 'Vote' db.create_table(u'ratings_vote', ( (u'id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('content_type', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['contenttypes.ContentType'])), ('object_id', self.gf('django.db.models.fields.PositiveIntegerField')()), ('key', self.gf('django.db.models.fields.CharField')(max_length=16)), ('score', self.gf('django.db.models.fields.FloatField')()), ('user', self.gf('django.db.models.fields.related.ForeignKey')(blank=True, related_name='votes', null=True, to=orm['auth.User'])), ('ip_address', self.gf('django.db.models.fields.IPAddressField')(max_length=15, null=True)), ('cookie', self.gf('django.db.models.fields.CharField')(max_length=64, null=True, blank=True)), ('created_at', self.gf('django.db.models.fields.DateTimeField')(auto_now_add=True, blank=True)), ('modified_at', self.gf('django.db.models.fields.DateTimeField')(auto_now=True, blank=True)), )) db.send_create_signal(u'ratings', ['Vote']) # Adding unique constraint on 'Vote', fields ['content_type', 'object_id', 'key', 'user'] db.create_unique(u'ratings_vote', ['content_type_id', 'object_id', 'key', 'user_id']) # Adding unique constraint on 'Vote', fields ['content_type', 'object_id', 'key', 'ip_address', 'cookie'] db.create_unique(u'ratings_vote', ['content_type_id', 'object_id', 'key', 'ip_address', 'cookie']) # Adding model 'Comment' db.create_table(u'ratings_comment', ( (u'id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('content_type', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['contenttypes.ContentType'])), ('object_id', self.gf('django.db.models.fields.PositiveIntegerField')()), ('key', self.gf('django.db.models.fields.CharField')(max_length=16)), ('comment', self.gf('django.db.models.fields.TextField')(max_length=3000)), ('user', self.gf('django.db.models.fields.related.ForeignKey')(blank=True, related_name='comments', null=True, to=orm['auth.User'])), ('user_name', self.gf('django.db.models.fields.CharField')(max_length=50, blank=True)), ('ip_address', self.gf('django.db.models.fields.IPAddressField')(max_length=15, null=True)), ('cookie', self.gf('django.db.models.fields.CharField')(max_length=64, null=True, blank=True)), ('created_at', self.gf('django.db.models.fields.DateTimeField')(auto_now_add=True, blank=True)), ('modified_at', self.gf('django.db.models.fields.DateTimeField')(auto_now=True, blank=True)), )) db.send_create_signal(u'ratings', ['Comment']) def backwards(self, orm): # Removing unique constraint on 'Vote', fields ['content_type', 'object_id', 'key', 'ip_address', 'cookie'] db.delete_unique(u'ratings_vote', ['content_type_id', 'object_id', 'key', 'ip_address', 'cookie']) # Removing unique constraint on 'Vote', fields ['content_type', 'object_id', 'key', 'user'] db.delete_unique(u'ratings_vote', ['content_type_id', 'object_id', 'key', 'user_id']) # Removing unique constraint on 'Score', fields ['content_type', 'object_id', 'key'] db.delete_unique(u'ratings_score', ['content_type_id', 'object_id', 'key']) # Deleting model 'Score' db.delete_table(u'ratings_score') # Deleting model 'Vote' db.delete_table(u'ratings_vote') # Deleting model 'Comment' db.delete_table(u'ratings_comment') models = { u'auth.group': { 'Meta': {'object_name': 'Group'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '80'}), 'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}) }, u'auth.permission': { 'Meta': {'ordering': "(u'content_type__app_label', u'content_type__model', u'codename')", 'unique_together': "((u'content_type', u'codename'),)", 'object_name': 'Permission'}, 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['contenttypes.ContentType']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, u'auth.user': { 'Meta': {'object_name': 'User'}, 'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['auth.Group']", 'symmetrical': 'False', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'password': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'user_permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}), 'username': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '30'}) }, u'contenttypes.contenttype': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, u'ratings.comment': { 'Meta': {'object_name': 'Comment'}, 'comment': ('django.db.models.fields.TextField', [], {'max_length': '3000'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['contenttypes.ContentType']"}), 'cookie': ('django.db.models.fields.CharField', [], {'max_length': '64', 'null': 'True', 'blank': 'True'}), 'created_at': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'ip_address': ('django.db.models.fields.IPAddressField', [], {'max_length': '15', 'null': 'True'}), 'key': ('django.db.models.fields.CharField', [], {'max_length': '16'}), 'modified_at': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}), 'object_id': ('django.db.models.fields.PositiveIntegerField', [], {}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'comments'", 'null': 'True', 'to': u"orm['auth.User']"}), 'user_name': ('django.db.models.fields.CharField', [], {'max_length': '50', 'blank': 'True'}) }, u'ratings.score': { 'Meta': {'unique_together': "(('content_type', 'object_id', 'key'),)", 'object_name': 'Score'}, 'average': ('django.db.models.fields.FloatField', [], {'default': '0'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['contenttypes.ContentType']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'key': ('django.db.models.fields.CharField', [], {'max_length': '16'}), 'num_votes': ('django.db.models.fields.PositiveIntegerField', [], {'default': '0'}), 'object_id': ('django.db.models.fields.PositiveIntegerField', [], {}), 'total': ('django.db.models.fields.IntegerField', [], {'default': '0'}) }, u'ratings.vote': { 'Meta': {'unique_together': "(('content_type', 'object_id', 'key', 'user'), ('content_type', 'object_id', 'key', 'ip_address', 'cookie'))", 'object_name': 'Vote'}, 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['contenttypes.ContentType']"}), 'cookie': ('django.db.models.fields.CharField', [], {'max_length': '64', 'null': 'True', 'blank': 'True'}), 'created_at': ('django.db.models.fields.DateTimeField', [], {'auto_now_add': 'True', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'ip_address': ('django.db.models.fields.IPAddressField', [], {'max_length': '15', 'null': 'True'}), 'key': ('django.db.models.fields.CharField', [], {'max_length': '16'}), 'modified_at': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}), 'object_id': ('django.db.models.fields.PositiveIntegerField', [], {}), 'score': ('django.db.models.fields.FloatField', [], {}), 'user': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'votes'", 'null': 'True', 'to': u"orm['auth.User']"}) } } complete_apps = ['ratings']
""" Sample definitions. """ from pymontecarlo.options.sample.base import * from pymontecarlo.options.sample.substrate import * from pymontecarlo.options.sample.inclusion import * from pymontecarlo.options.sample.horizontallayers import * from pymontecarlo.options.sample.verticallayers import * from pymontecarlo.options.sample.sphere import *
from gym_kuka_mujoco.utils.insertion import hole_insertion_samples import os import mujoco_py # Get the model path model_filename = 'full_peg_insertion_experiment.xml' model_path = os.path.join('..','..', 'gym_kuka_mujoco', 'envs', 'assets', model_filename) # Construct the model and simulation objects. model = mujoco_py.load_model_from_path(model_path) sim = mujoco_py.MjSim(model) viewer = mujoco_py.MjViewer(sim) q_sol = hole_insertion_samples(sim, nsamples=20) while True: # Iterate through all of the solutions for q in q_sol: sim.data.qpos[:] = q sim.forward() viewer.render() for q in q_sol[::-1]: sim.data.qpos[:] = q sim.forward() viewer.render()
# Generated by Django 3.0.10 on 2020-11-29 18:26 from django.db import migrations import kaffepause.accounts.models class Migration(migrations.Migration): dependencies = [ ('accounts', '0001_initial'), ] operations = [ migrations.AlterModelManagers( name='account', managers=[ ('objects', kaffepause.accounts.models.AccountManager()), ], ), ]
#!/usr/bin/env python # coding: utf-8 # Copyright (c) - Damian Avila # pylint: disable = C0103 """ Packaging """ # inspired from # http://jupyter-notebook.readthedocs.io/en/stable/examples/Notebook/Distributing%20Jupyter%20Extensions%20as%20Python%20Packages.html#Example---Server-extension-and-nbextension import os from setuptools import setup, find_packages NAME = "rise" INSTALL_REQUIRES = [ 'notebook>=5.5.0', ] with open('README.md') as readme: README = readme.read() # Enable the nbextension (like jupyter nbextension enable --sys-prefix) DATA_FILES = [ ("etc/jupyter/nbconfig/notebook.d", [ "jupyter-config/nbconfig/notebook.d/rise.json" ]), ] # Install the nbextension (like jupyter nbextension install --sys-prefix). # More precisely, everything in the rise/static directory and its # subdirectories should be installed nbext = ["share", "jupyter", "nbextensions", NAME] for (path, dirs, files) in os.walk(os.path.join("rise", "static")): # Files to install srcfiles = [os.path.join(path, f) for f in files] # Installation path components, removing rise/static from "path" dst = nbext + path.split(os.sep)[2:] DATA_FILES.append((os.path.join(*dst), srcfiles)) # version string is extracted from toplevel package.json import json with open('package.json') as package_json: content = package_json.read() version = json.loads(content)['version'] # from npm server into python semver if "-dev." in version: version = version.replace("-dev.", ".dev") setup_args = dict( name=NAME, version=version, packages=find_packages(), data_files=DATA_FILES, include_package_data=True, install_requires=INSTALL_REQUIRES, python_requires='>=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, <4', description="Reveal.js - Jupyter/IPython Slideshow Extension", long_description=README, author="Damián Avila", author_email="damianavila82@yahoo.com.ar", project_urls={ 'source': "http://github.com/damianavila/RISE", 'documentation': "http://rise.readthedocs.io", 'gitter': "https://gitter.im/damianavila/RISE", }, license="BSD-3-Clause", platforms="Linux, Mac OS X, Windows", keywords=["jupyter", "ipython", "presentation", "slides", "revealjs"], classifiers=[ 'Intended Audience :: Developers', 'Intended Audience :: System Administrators', 'Intended Audience :: Science/Research', 'License :: OSI Approved :: BSD License', 'Programming Language :: Python', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', ], zip_safe=False, ) if __name__ == '__main__': setup(**setup_args)
""" DIA-PreResNet for CIFAR/SVHN, implemented in Gluon. Original papers: 'DIANet: Dense-and-Implicit Attention Network,' https://arxiv.org/abs/1905.10671. """ __all__ = ['CIFARDIAPreResNet', 'diapreresnet20_cifar10', 'diapreresnet20_cifar100', 'diapreresnet20_svhn', 'diapreresnet56_cifar10', 'diapreresnet56_cifar100', 'diapreresnet56_svhn', 'diapreresnet110_cifar10', 'diapreresnet110_cifar100', 'diapreresnet110_svhn', 'diapreresnet164bn_cifar10', 'diapreresnet164bn_cifar100', 'diapreresnet164bn_svhn', 'diapreresnet1001_cifar10', 'diapreresnet1001_cifar100', 'diapreresnet1001_svhn', 'diapreresnet1202_cifar10', 'diapreresnet1202_cifar100', 'diapreresnet1202_svhn'] import os from mxnet import cpu from mxnet.gluon import nn, HybridBlock from .common import conv3x3, DualPathSequential from .preresnet import PreResActivation from .diaresnet import DIAAttention from .diapreresnet import DIAPreResUnit class CIFARDIAPreResNet(HybridBlock): """ DIA-PreResNet model for CIFAR from 'DIANet: Dense-and-Implicit Attention Network,' https://arxiv.org/abs/1905.10671. Parameters: ---------- channels : list of list of int Number of output channels for each unit. init_block_channels : int Number of output channels for the initial unit. bottleneck : bool Whether to use a bottleneck or simple block in units. bn_use_global_stats : bool, default False Whether global moving statistics is used instead of local batch-norm for BatchNorm layers. Useful for fine-tuning. in_channels : int, default 3 Number of input channels. in_size : tuple of two ints, default (32, 32) Spatial size of the expected input image. classes : int, default 10 Number of classification classes. """ def __init__(self, channels, init_block_channels, bottleneck, bn_use_global_stats=False, in_channels=3, in_size=(32, 32), classes=10, **kwargs): super(CIFARDIAPreResNet, self).__init__(**kwargs) self.in_size = in_size self.classes = classes with self.name_scope(): self.features = nn.HybridSequential(prefix="") self.features.add(conv3x3( in_channels=in_channels, out_channels=init_block_channels)) in_channels = init_block_channels for i, channels_per_stage in enumerate(channels): stage = DualPathSequential( return_two=False, prefix="stage{}_".format(i + 1)) attention = DIAAttention( in_x_features=channels_per_stage[0], in_h_features=channels_per_stage[0]) with stage.name_scope(): for j, out_channels in enumerate(channels_per_stage): strides = 2 if (j == 0) and (i != 0) else 1 stage.add(DIAPreResUnit( in_channels=in_channels, out_channels=out_channels, strides=strides, bn_use_global_stats=bn_use_global_stats, bottleneck=bottleneck, conv1_stride=False, attention=attention)) in_channels = out_channels self.features.add(stage) self.features.add(PreResActivation( in_channels=in_channels, bn_use_global_stats=bn_use_global_stats)) self.features.add(nn.AvgPool2D( pool_size=8, strides=1)) self.output = nn.HybridSequential(prefix="") self.output.add(nn.Flatten()) self.output.add(nn.Dense( units=classes, in_units=in_channels)) def hybrid_forward(self, F, x): x = self.features(x) x = self.output(x) return x def get_diapreresnet_cifar(classes, blocks, bottleneck, model_name=None, pretrained=False, ctx=cpu(), root=os.path.join("~", ".mxnet", "models"), **kwargs): """ Create DIA-PreResNet model for CIFAR with specific parameters. Parameters: ---------- classes : int Number of classification classes. blocks : int Number of blocks. bottleneck : bool Whether to use a bottleneck or simple block in units. model_name : str or None, default None Model name for loading pretrained model. pretrained : bool, default False Whether to load the pretrained weights for model. ctx : Context, default CPU The context in which to load the pretrained weights. root : str, default '~/.mxnet/models' Location for keeping the model parameters. """ assert (classes in [10, 100]) if bottleneck: assert ((blocks - 2) % 9 == 0) layers = [(blocks - 2) // 9] * 3 else: assert ((blocks - 2) % 6 == 0) layers = [(blocks - 2) // 6] * 3 channels_per_layers = [16, 32, 64] init_block_channels = 16 channels = [[ci] * li for (ci, li) in zip(channels_per_layers, layers)] if bottleneck: channels = [[cij * 4 for cij in ci] for ci in channels] net = CIFARDIAPreResNet( channels=channels, init_block_channels=init_block_channels, bottleneck=bottleneck, classes=classes, **kwargs) if pretrained: if (model_name is None) or (not model_name): raise ValueError("Parameter `model_name` should be properly initialized for loading pretrained model.") from .model_store import get_model_file net.load_parameters( filename=get_model_file( model_name=model_name, local_model_store_dir_path=root), ctx=ctx) return net def diapreresnet20_cifar10(classes=10, **kwargs): """ DIA-PreResNet-20 model for CIFAR-10 from 'DIANet: Dense-and-Implicit Attention Network,' https://arxiv.org/abs/1905.10671. Parameters: ---------- classes : int, default 10 Number of classification classes. pretrained : bool, default False Whether to load the pretrained weights for model. ctx : Context, default CPU The context in which to load the pretrained weights. root : str, default '~/.mxnet/models' Location for keeping the model parameters. """ return get_diapreresnet_cifar(classes=classes, blocks=20, bottleneck=False, model_name="diapreresnet20_cifar10", **kwargs) def diapreresnet20_cifar100(classes=100, **kwargs): """ DIA-PreResNet-20 model for CIFAR-100 from 'DIANet: Dense-and-Implicit Attention Network,' https://arxiv.org/abs/1905.10671. Parameters: ---------- classes : int, default 100 Number of classification classes. pretrained : bool, default False Whether to load the pretrained weights for model. ctx : Context, default CPU The context in which to load the pretrained weights. root : str, default '~/.mxnet/models' Location for keeping the model parameters. """ return get_diapreresnet_cifar(classes=classes, blocks=20, bottleneck=False, model_name="diapreresnet20_cifar100", **kwargs) def diapreresnet20_svhn(classes=10, **kwargs): """ DIA-PreResNet-20 model for SVHN from 'DIANet: Dense-and-Implicit Attention Network,' https://arxiv.org/abs/1905.10671. Parameters: ---------- classes : int, default 10 Number of classification classes. pretrained : bool, default False Whether to load the pretrained weights for model. ctx : Context, default CPU The context in which to load the pretrained weights. root : str, default '~/.mxnet/models' Location for keeping the model parameters. """ return get_diapreresnet_cifar(classes=classes, blocks=20, bottleneck=False, model_name="diapreresnet20_svhn", **kwargs) def diapreresnet56_cifar10(classes=10, **kwargs): """ DIA-PreResNet-56 model for CIFAR-10 from 'DIANet: Dense-and-Implicit Attention Network,' https://arxiv.org/abs/1905.10671. Parameters: ---------- classes : int, default 10 Number of classification classes. pretrained : bool, default False Whether to load the pretrained weights for model. ctx : Context, default CPU The context in which to load the pretrained weights. root : str, default '~/.mxnet/models' Location for keeping the model parameters. """ return get_diapreresnet_cifar(classes=classes, blocks=56, bottleneck=False, model_name="diapreresnet56_cifar10", **kwargs) def diapreresnet56_cifar100(classes=100, **kwargs): """ DIA-PreResNet-56 model for CIFAR-100 from 'DIANet: Dense-and-Implicit Attention Network,' https://arxiv.org/abs/1905.10671. Parameters: ---------- classes : int, default 100 Number of classification classes. pretrained : bool, default False Whether to load the pretrained weights for model. ctx : Context, default CPU The context in which to load the pretrained weights. root : str, default '~/.mxnet/models' Location for keeping the model parameters. """ return get_diapreresnet_cifar(classes=classes, blocks=56, bottleneck=False, model_name="diapreresnet56_cifar100", **kwargs) def diapreresnet56_svhn(classes=10, **kwargs): """ DIA-PreResNet-56 model for SVHN from 'DIANet: Dense-and-Implicit Attention Network,' https://arxiv.org/abs/1905.10671. Parameters: ---------- classes : int, default 10 Number of classification classes. pretrained : bool, default False Whether to load the pretrained weights for model. ctx : Context, default CPU The context in which to load the pretrained weights. root : str, default '~/.mxnet/models' Location for keeping the model parameters. """ return get_diapreresnet_cifar(classes=classes, blocks=56, bottleneck=False, model_name="diapreresnet56_svhn", **kwargs) def diapreresnet110_cifar10(classes=10, **kwargs): """ DIA-PreResNet-110 model for CIFAR-10 from 'DIANet: Dense-and-Implicit Attention Network,' https://arxiv.org/abs/1905.10671. Parameters: ---------- classes : int, default 10 Number of classification classes. pretrained : bool, default False Whether to load the pretrained weights for model. ctx : Context, default CPU The context in which to load the pretrained weights. root : str, default '~/.mxnet/models' Location for keeping the model parameters. """ return get_diapreresnet_cifar(classes=classes, blocks=110, bottleneck=False, model_name="diapreresnet110_cifar10", **kwargs) def diapreresnet110_cifar100(classes=100, **kwargs): """ DIA-PreResNet-110 model for CIFAR-100 from 'DIANet: Dense-and-Implicit Attention Network,' https://arxiv.org/abs/1905.10671. Parameters: ---------- classes : int, default 100 Number of classification classes. pretrained : bool, default False Whether to load the pretrained weights for model. ctx : Context, default CPU The context in which to load the pretrained weights. root : str, default '~/.mxnet/models' Location for keeping the model parameters. """ return get_diapreresnet_cifar(classes=classes, blocks=110, bottleneck=False, model_name="diapreresnet110_cifar100", **kwargs) def diapreresnet110_svhn(classes=10, **kwargs): """ DIA-PreResNet-110 model for SVHN from 'DIANet: Dense-and-Implicit Attention Network,' https://arxiv.org/abs/1905.10671. Parameters: ---------- classes : int, default 10 Number of classification classes. pretrained : bool, default False Whether to load the pretrained weights for model. ctx : Context, default CPU The context in which to load the pretrained weights. root : str, default '~/.mxnet/models' Location for keeping the model parameters. """ return get_diapreresnet_cifar(classes=classes, blocks=110, bottleneck=False, model_name="diapreresnet110_svhn", **kwargs) def diapreresnet164bn_cifar10(classes=10, **kwargs): """ DIA-PreResNet-164(BN) model for CIFAR-10 from 'DIANet: Dense-and-Implicit Attention Network,' https://arxiv.org/abs/1905.10671. Parameters: ---------- classes : int, default 10 Number of classification classes. pretrained : bool, default False Whether to load the pretrained weights for model. ctx : Context, default CPU The context in which to load the pretrained weights. root : str, default '~/.mxnet/models' Location for keeping the model parameters. """ return get_diapreresnet_cifar(classes=classes, blocks=164, bottleneck=True, model_name="diapreresnet164bn_cifar10", **kwargs) def diapreresnet164bn_cifar100(classes=100, **kwargs): """ DIA-PreResNet-164(BN) model for CIFAR-100 from 'DIANet: Dense-and-Implicit Attention Network,' https://arxiv.org/abs/1905.10671. Parameters: ---------- classes : int, default 100 Number of classification classes. pretrained : bool, default False Whether to load the pretrained weights for model. ctx : Context, default CPU The context in which to load the pretrained weights. root : str, default '~/.mxnet/models' Location for keeping the model parameters. """ return get_diapreresnet_cifar(classes=classes, blocks=164, bottleneck=True, model_name="diapreresnet164bn_cifar100", **kwargs) def diapreresnet164bn_svhn(classes=10, **kwargs): """ DIA-PreResNet-164(BN) model for SVHN from 'DIANet: Dense-and-Implicit Attention Network,' https://arxiv.org/abs/1905.10671. Parameters: ---------- classes : int, default 10 Number of classification classes. pretrained : bool, default False Whether to load the pretrained weights for model. ctx : Context, default CPU The context in which to load the pretrained weights. root : str, default '~/.mxnet/models' Location for keeping the model parameters. """ return get_diapreresnet_cifar(classes=classes, blocks=164, bottleneck=True, model_name="diapreresnet164bn_svhn", **kwargs) def diapreresnet1001_cifar10(classes=10, **kwargs): """ DIA-PreResNet-1001 model for CIFAR-10 from 'DIANet: Dense-and-Implicit Attention Network,' https://arxiv.org/abs/1905.10671. Parameters: ---------- classes : int, default 10 Number of classification classes. pretrained : bool, default False Whether to load the pretrained weights for model. ctx : Context, default CPU The context in which to load the pretrained weights. root : str, default '~/.mxnet/models' Location for keeping the model parameters. """ return get_diapreresnet_cifar(classes=classes, blocks=1001, bottleneck=True, model_name="diapreresnet1001_cifar10", **kwargs) def diapreresnet1001_cifar100(classes=100, **kwargs): """ DIA-PreResNet-1001 model for CIFAR-100 from 'DIANet: Dense-and-Implicit Attention Network,' https://arxiv.org/abs/1905.10671. Parameters: ---------- classes : int, default 100 Number of classification classes. pretrained : bool, default False Whether to load the pretrained weights for model. ctx : Context, default CPU The context in which to load the pretrained weights. root : str, default '~/.mxnet/models' Location for keeping the model parameters. """ return get_diapreresnet_cifar(classes=classes, blocks=1001, bottleneck=True, model_name="diapreresnet1001_cifar100", **kwargs) def diapreresnet1001_svhn(classes=10, **kwargs): """ DIA-PreResNet-1001 model for SVHN from 'DIANet: Dense-and-Implicit Attention Network,' https://arxiv.org/abs/1905.10671. Parameters: ---------- classes : int, default 10 Number of classification classes. pretrained : bool, default False Whether to load the pretrained weights for model. ctx : Context, default CPU The context in which to load the pretrained weights. root : str, default '~/.mxnet/models' Location for keeping the model parameters. """ return get_diapreresnet_cifar(classes=classes, blocks=1001, bottleneck=True, model_name="diapreresnet1001_svhn", **kwargs) def diapreresnet1202_cifar10(classes=10, **kwargs): """ DIA-PreResNet-1202 model for CIFAR-10 from 'DIANet: Dense-and-Implicit Attention Network,' https://arxiv.org/abs/1905.10671. Parameters: ---------- classes : int, default 10 Number of classification classes. pretrained : bool, default False Whether to load the pretrained weights for model. ctx : Context, default CPU The context in which to load the pretrained weights. root : str, default '~/.mxnet/models' Location for keeping the model parameters. """ return get_diapreresnet_cifar(classes=classes, blocks=1202, bottleneck=False, model_name="diapreresnet1202_cifar10", **kwargs) def diapreresnet1202_cifar100(classes=100, **kwargs): """ DIA-PreResNet-1202 model for CIFAR-100 from 'DIANet: Dense-and-Implicit Attention Network,' https://arxiv.org/abs/1905.10671. Parameters: ---------- classes : int, default 100 Number of classification classes. pretrained : bool, default False Whether to load the pretrained weights for model. ctx : Context, default CPU The context in which to load the pretrained weights. root : str, default '~/.mxnet/models' Location for keeping the model parameters. """ return get_diapreresnet_cifar(classes=classes, blocks=1202, bottleneck=False, model_name="diapreresnet1202_cifar100", **kwargs) def diapreresnet1202_svhn(classes=10, **kwargs): """ DIA-PreResNet-1202 model for SVHN from 'DIANet: Dense-and-Implicit Attention Network,' https://arxiv.org/abs/1905.10671. Parameters: ---------- classes : int, default 10 Number of classification classes. pretrained : bool, default False Whether to load the pretrained weights for model. ctx : Context, default CPU The context in which to load the pretrained weights. root : str, default '~/.mxnet/models' Location for keeping the model parameters. """ return get_diapreresnet_cifar(classes=classes, blocks=1202, bottleneck=False, model_name="diapreresnet1202_svhn", **kwargs) def _test(): import numpy as np import mxnet as mx pretrained = False models = [ (diapreresnet20_cifar10, 10), (diapreresnet20_cifar100, 100), (diapreresnet20_svhn, 10), (diapreresnet56_cifar10, 10), (diapreresnet56_cifar100, 100), (diapreresnet56_svhn, 10), (diapreresnet110_cifar10, 10), (diapreresnet110_cifar100, 100), (diapreresnet110_svhn, 10), (diapreresnet164bn_cifar10, 10), (diapreresnet164bn_cifar100, 100), (diapreresnet164bn_svhn, 10), (diapreresnet1001_cifar10, 10), (diapreresnet1001_cifar100, 100), (diapreresnet1001_svhn, 10), (diapreresnet1202_cifar10, 10), (diapreresnet1202_cifar100, 100), (diapreresnet1202_svhn, 10), ] for model, classes in models: net = model(pretrained=pretrained) ctx = mx.cpu() if not pretrained: net.initialize(ctx=ctx) # net.hybridize() net_params = net.collect_params() weight_count = 0 for param in net_params.values(): if (param.shape is None) or (not param._differentiable): continue weight_count += np.prod(param.shape) print("m={}, {}".format(model.__name__, weight_count)) assert (model != diapreresnet20_cifar10 or weight_count == 286674) assert (model != diapreresnet20_cifar100 or weight_count == 292524) assert (model != diapreresnet20_svhn or weight_count == 286674) assert (model != diapreresnet56_cifar10 or weight_count == 869970) assert (model != diapreresnet56_cifar100 or weight_count == 875820) assert (model != diapreresnet56_svhn or weight_count == 869970) assert (model != diapreresnet110_cifar10 or weight_count == 1744914) assert (model != diapreresnet110_cifar100 or weight_count == 1750764) assert (model != diapreresnet110_svhn or weight_count == 1744914) assert (model != diapreresnet164bn_cifar10 or weight_count == 1922106) assert (model != diapreresnet164bn_cifar100 or weight_count == 1945236) assert (model != diapreresnet164bn_svhn or weight_count == 1922106) assert (model != diapreresnet1001_cifar10 or weight_count == 10546554) assert (model != diapreresnet1001_cifar100 or weight_count == 10569684) assert (model != diapreresnet1001_svhn or weight_count == 10546554) assert (model != diapreresnet1202_cifar10 or weight_count == 19438226) assert (model != diapreresnet1202_cifar100 or weight_count == 19444076) assert (model != diapreresnet1202_svhn or weight_count == 19438226) x = mx.nd.zeros((1, 3, 32, 32), ctx=ctx) y = net(x) assert (y.shape == (1, classes)) if __name__ == "__main__": _test()
from MOOSEplot import geoplot as gp from MOOSEplot import plotCommon as pc from datetime import datetime from matplotlib import pyplot as plt ## First define a StandardPlot object from GeoPlot. Gplot=gp.StandardPlot() ## Load and Parse the namelist. ## Note, you will likely need to change the wrf_path in the namelist ## Such that it works with this namelist. Gplot.parse_namelist(namelist_file='namelist_ex1.txt') ## Optional, uncomment the below line to print out all of the namelist values. #Gplot.print_namelist() ## Define the map projection based on current namelist values. Gplot.define_projection() #Define Figure and subplot figure=plt.figure(figsize=(12,9)) #Note that the Cartopy framework is already imported as part of GeoPlot, and the projection is already defined as a cartopy projection ax=figure.add_subplot(1,1,1,projection=Gplot.projection) # Plot the model data on the defined subplot. Gplot.makePlot(ax) ## Add the metars to the data ## Note that numerous arguments are required to match the plotting conventions defined in the StandardPlot ## METAR .csv files are located in the local SW_METARS directory. Observed Temperature (in C) is defined under the "TMP" title ## Min,Max, and color map are manually set to match the values in the namelist. ## Time is set to the namelist time-step and format, and the surface station lat/lon is saved under the latitude, and longitude headers in the csv file. ## Vectors is set equal to false, so wind barbs are NOT plotted. pc.add_metars(ax,path='SW_METARS/',vari='TMP',vmin=10.,vmax=45.,cmap='jet',edgecolor='k',marker='o',time=Gplot.namelist_dictionary['time_step'], tfmt=Gplot.namelist_dictionary['time_format'],lon='longitude',lat='latitude',zorder=8,vectors=False) ## Finally, define a time-string using the datetime function and print out a title. timestr=datetime.strptime(Gplot.namelist_dictionary['time_step'],Gplot.namelist_dictionary['time_format']).strftime('%Y%m%d %H UTC') plt.title(timestr,loc='right') Gplot.show() ## Show the figure onto the screen
#!/usr/bin/env python # -*- coding: utf-8 -*- # look this: http://picamera.readthedocs.io/en/release-1.2/recipes1.html import io import os import sys import time import struct import socket import picamera from PIL import Image import cv2 import numpy as np def photographToFile(): # Explicitly open a new file called my_image.jpg my_file = open('photo.jpg', 'wb') with picamera.PiCamera() as camera: camera.start_preview() time.sleep(2) camera.capture(my_file) # Note that at this point the data is in the file cache, but may # not actually have been written to disk yet my_file.close() # Now the file has been closed, other processes should be able to #read the image successfully return True def photographToBytesIO(): #write stream to BytesIO(Python’s in-memory stream class) stream = io.BytesIO() with picamera.PiCamera() as camera: camera.start_preview() time.sleep(2) camera.capture(stream, format='jpeg') # "Rewind" the stream to the beginning so we can read its content stream.seek(0) image = Image.open(stream) img = image.copy() return img def photographToCV(): # Create the in-memory stream stream = io.BytesIO() with picamera.PiCamera() as camera: camera.start_preview() time.sleep(2) camera.capture(stream, format='jpeg') # Construct a numpy array from the stream data = np.fromstring(stream.getvalue(), dtype=np.uint8) # "Decode" the image from the array, preserving colour image = cv2.imdecode(data, 1) # OpenCV returns an array with data in BGR order. If you want RGB instead # use the following... image = image[:, :, ::-1] return image def photographSeq(): with picamera.PiCamera() as camera: camera.start_preview() time.sleep(2) for filename in camera.capture_continuous('img{counter:03d}.jpg'): print('Captured %s' % filename) time.sleep(300) # wait 5 minutes def photographToServerSocket(): # NOTICE: # The server script should be run first (don't run in pi) # to ensure there’s a listening socket ready to accept a connection from the client script # Start a socket listening for connections on 0.0.0.0:8000 (0.0.0.0 means # all interfaces) server_socket = socket.socket() server_socket.bind(('0.0.0.0', 8000)) server_socket.listen(0) # Accept a single connection and make a file-like object out of it # @TODO: use select/poll or use epoll for more connections 10k> connection = server_socket.accept()[0].makefile('rb') try: while True: # Read the length of the image as a 32-bit unsigned int. If the # length is zero, quit the loop image_len = struct.unpack('<L', connection.read(4))[0] if not image_len: break # Construct a stream to hold the image data and read the image # data from the connection image_stream = io.BytesIO() image_stream.write(connection.read(image_len)) # Rewind the stream, open it as an image with PIL and do some # processing on it image_stream.seek(0) image = Image.open(image_stream) print('Image is %dx%d' % image.size) image.verify() print('Image is verified') finally: connection.close() server_socket.close() def photographToClientSocket(): # Connect a client socket to my_server:8000 (change my_server to the # hostname of your server) client_socket = socket.socket() #client_socket.connect(('my_server', 8000)) client_socket.connect(('192.168.1.102', 8000)) # Make a file-like object out of the connection connection = client_socket.makefile('wb') try: with picamera.PiCamera() as camera: camera.resolution = (640, 480) # Start a preview and let the camera warm up for 2 seconds camera.start_preview() time.sleep(2) # Note the start time and construct a stream to hold image data # temporarily (we could write it directly to connection but in this # case we want to find out the size of each capture first to keep # our protocol simple) start = time.time() stream = io.BytesIO() for foo in camera.capture_continuous(stream, 'jpeg'): # Write the length of the capture to the stream and flush to # ensure it actually gets sent connection.write(struct.pack('<L', stream.tell())) connection.flush() # Rewind the stream and send the image data over the wire stream.seek(0) connection.write(stream.read()) # If we've been capturing for more than 30 seconds, quit if time.time() - start > 30: break # Reset the stream for the next capture stream.seek(0) stream.truncate() # Write a length of zero to the stream to signal we're done connection.write(struct.pack('<L', 0)) finally: connection.close() client_socket.close() if __name__ == '__main__': photographToFile() image = photographToBytesIO() print(image) time.sleep(3) image = photographToCV() print(image) time.sleep(3) photographSeq() photographToClientSocket()
import os,random from threading import Thread from time import sleep import playsound from termcolor import colored from config import * import numpy as np from PIL import Image def get_ansi_color_code(r, g, b): if r == g and g == b: if r < 8: return 16 if r > 248: return 231 return round(((r - 8) / 247) * 24) + 232 return 16 + (36 * round(r / 255 * 5)) + (6 * round(g / 255 * 5)) + round(b / 255 * 5) def get_color(r, g, b): return "\x1b[48;5;{}m \x1b[0m".format(int(get_ansi_color_code(r,g,b))) def show_image(img_path): try: img = Image.open(img_path) except FileNotFoundError: exit('Image not found.') h = 50 w = 120 img = img.resize((w,h), Image.ANTIALIAS) img_arr = np.asarray(img) h,w,c = img_arr.shape for x in range(h): print(" "*12,end='') for y in range(w): pix = img_arr[x][y] print(get_color(pix[0], pix[1], pix[2]), sep='', end='') print() sleep(0.15) # Importing module specified in the config file art = __import__(f'arts.{artFile}', globals(), locals(), ['*']) def replaceMultiple(mainString, toBeReplace, newString): # Iterate over the list to be replaced for elem in toBeReplace : # Check if the element is in the main string if elem in mainString : # Replace the string mainString = mainString.replace(elem, newString) return mainString def resource_path(relative_path): """ Get absolute path to resource, works for dev and for PyInstaller """ try: # PyInstaller creates a temp folder and stores path in _MEIPASS base_path = sys._MEIPASS except Exception: base_path = os.path.abspath(".") return os.path.join(base_path, relative_path) def pprint(art,time): color_used = [random.choice(color)] colorAttribute = [] for i in range(len(art)): if art[i] in colorCodes: # Color attr set to blink if 9 if art[i] == '⑨': colorAttribute = [colorCodes[art[i]]] # color attr none if 10 elif art[i] == '⑩': colorAttribute = [] # Random color if R elif art[i] == '®': color_used = color else: color_used = [colorCodes[art[i]]] print(colored(replaceMultiple(art[i],colorCodes,''),random.choice(color_used),attrs=colorAttribute),sep='', end='',flush= True);sleep(time) show_image('./pic/km.jpg') def pAudio(): if playAudio: playsound.playsound(resource_path(audio), True) # Code reader with open(resource_path(__file__)) as f_in: code = f_in.read() def pcode(): # Print the code before wishing if codePrint: for i in range(len(code)): print(colored(code[i], codeColor),sep='', end='',flush= True);sleep(codingSpeed) input('\n\n'+colored('python3','blue')+colored(' PyBirthdayWish.py','yellow')) os.system('cls' if os.name == 'nt' else 'clear') else: input(colored('press F11 and hit {Enter}...','blue')) os.system('cls' if os.name == 'nt' else 'clear') # Clearing terminal os.system('cls' if os.name == 'nt' else 'clear') try: pcode() Thread(target = pAudio).start() Thread(target = pprint, args=(art.mainArt,speed)).start() input() except KeyboardInterrupt: print(colored('\n[-] Thanks!!','red')) os._exit(0)