content
stringlengths
5
1.05M
# Copyright (C) 2015 Haruhiko Matsuo <halm.matsuo@gmail.com> # # Distributed under the MIT License. # See accompanying file LICENSE or copy at # http://opensource.org/licenses/MIT """Decorators""" from functools import wraps from itertools import product import numpy as np def tag_maker(counter_method): """This is a decorator function creating a key for the PA event dictionary. Parameters ---------- monitor_level : monitor level 'Application' (or 'A'), 'Process' ('P'), 'Thread' ('T') pid: process id (MPI rank) tid: thread id """ def _tag_expander(*tag_in): """If the monitor level is given by its acronym, it is expand to the long form before it is passed to the decorator.""" if tag_in[1][0] == 'T': monitor_level = 'Thread' pid = tag_in[2] tid = tag_in[3] tag = (tag_in[0], monitor_level, pid, tid) elif tag_in[1][0] == 'P': monitor_level = 'Process' pid = tag_in[2] tag = (tag_in[0], monitor_level, pid) elif tag_in[1][0] == 'A': monitor_level = 'Application' tag = (tag_in[0], monitor_level) else: print("error") return tag @wraps(counter_method) def _tag_maker(*args): """decorator""" tag = _tag_expander(*args) res = counter_method(*tag) return res return _tag_maker def element_wise(counter_method): """This is a decorator function allowing multi-process/thread input. Note that this decorator should always follow the decorator 'tag_maker'. """ def _make_iterator(*args): """Make a compound iterator from a process iterator and a thread one. Note that 'Application' case should not execute this function.""" monitor_level = args[1] arg_pid = args[2] if hasattr(arg_pid, '__iter__'): pid_itr = (i for i in xrange(arg_pid[0], arg_pid[1])) else: pid_itr = (arg_pid,) if monitor_level == 'Thread': arg_tid = args[3] if hasattr(arg_tid, '__iter__'): tid_itr = (i for i in xrange(arg_tid[0], arg_tid[1])) else: tid_itr = (arg_tid,) if monitor_level == 'Process': return_itr = pid_itr elif monitor_level == 'Thread': return_itr = (pid_itr, tid_itr) return return_itr @wraps(counter_method) def _element_wise(*args): """Distribute multi-process/thread input""" if args[1] == 'Thread': pid_itr, tid_itr = _make_iterator(*args) retval = [counter_method(args[0], args[1], pid, tid) for pid, tid in product(pid_itr, tid_itr)] return np.array(retval) elif args[1] == 'Process': pid_itr = _make_iterator(*args) retval = [counter_method(args[0], args[1], pid) for pid in pid_itr] return np.array(retval) elif args[1] == 'Application': return np.array(counter_method(*args)) else: print 'Unknown monitor level' return _element_wise def return_val_unit(counter_method): """Convert cycle counts to another unit. The unit can be 'sec' (default), 'rate', or 'cycle'. """ @wraps(counter_method) def _return_val_unit(*args, **kwargs): if kwargs == {}: ret_unit = 'sec' else: ret_unit = kwargs['unit'] if ret_unit == 'sec': cycle_counts = args[0].d.cycle_counts1(*args[1:]) # exclude 'self' cpu_cycle = args[0].e[0][2] * 1.0e6 # Convert MHz to Hz res = counter_method(*args) / cpu_cycle elif ret_unit == 'rate': cycle_counts = args[0].d.cycle_counts1(*args[1:]) # exclude 'self' if hasattr(cycle_counts, '__getitem__'): res = counter_method(*args) / cycle_counts.astype(float) else: res = counter_method(*args) / float(cycle_counts) elif ret_unit == 'cycle': res = counter_method(*args) return res return _return_val_unit def monitor_level_checker(counter_method): """This is a decorator function checking monitor level. """ def _check_monitor_level(*tag_in): d = tag_in[0].d # self.RawDat ml = tag_in[1][0] # monitor level bad_mon_lev = '[Invalid monitor level] ' if d.is_hybrid and ml != 'T': raise Exception(bad_mon_lev + 'Use monitor level: Thread.') elif d.is_thread and ml != 'T': raise Exception(bad_mon_lev + 'Use monitor level: Thread.') elif d.is_flatmpi and ml != 'P': raise Exception(bad_mon_lev + 'Use monitor level: Process.') elif d.is_single and ml != 'A': raise Exception(bad_mon_lev + 'Use monitor level: Application.') @wraps(counter_method) def _monitor_level_checker(*args, **kwargs): """decorator""" _check_monitor_level(*args) res = counter_method(*args, **kwargs) return res return _monitor_level_checker
from django.apps import AppConfig class HTMLBlockConfig(AppConfig): name = 'glitter.blocks.html' label = 'glitter_html'
"""Discover LG WebOS TV devices.""" from netdisco.util import urlparse from . import SSDPDiscoverable # pylint: disable=too-few-public-methods class Discoverable(SSDPDiscoverable): """Add support for discovering LG WebOS TV devices.""" def info_from_entry(self, entry): """Return the most important info from a uPnP entry.""" return urlparse(entry.values['location']).hostname def get_entries(self): """Get all the LG WebOS TV device uPnP entries.""" return self.find_by_device_description( { "deviceType": "urn:schemas-upnp-org:device:Basic:1", "modelName": "LG Smart TV" } )
from __future__ import annotations from abc import ABCMeta from collections.abc import Mapping, Set, AsyncGenerator from contextlib import closing, asynccontextmanager, AsyncExitStack from typing import Final from pymap.context import cluster_metadata, connection_exit from pymap.exceptions import InvalidAuth, ResponseError from pymap.interfaces.backend import BackendInterface from pymap.interfaces.login import IdentityInterface from pymap.interfaces.session import SessionInterface from pymap.plugin import Plugin from pymapadmin.grpc.admin_pb2 import Result, SUCCESS, FAILURE from ..errors import get_unimplemented_error from ..typing import Handler __all__ = ['handlers', 'BaseHandler', 'LoginHandler'] #: Registers new admin handler plugins. handlers: Plugin[type[BaseHandler]] = Plugin('pymap.admin.handlers') class BaseHandler(Handler, metaclass=ABCMeta): """Base class for implementing admin request handlers. Args: backend: The backend in use by the system. """ def __init__(self, backend: BackendInterface) -> None: super().__init__() self.config: Final = backend.config self.login: Final = backend.login def _get_admin_keys(self) -> Set[bytes]: admin_keys: set[bytes] = set() if self.config.admin_key is not None: admin_keys.add(self.config.admin_key) remote_keys = cluster_metadata.get().remote.get('admin') if remote_keys is not None: admin_keys.update(remote_keys.values()) return admin_keys @asynccontextmanager async def catch_errors(self, command: str) -> AsyncGenerator[Result, None]: """Context manager to catch :class:`~pymap.exceptions.ResponseError` exceptions and include them in the response. Args: command: The admin command name. """ response = b'. OK %b completed.' % command.encode('utf-8') result = Result(code=SUCCESS, response=response) async with AsyncExitStack() as stack: connection_exit.set(stack) try: yield result except NotImplementedError as exc: raise get_unimplemented_error() from exc except ResponseError as exc: result.code = FAILURE result.response = bytes(exc.get_response(b'.')) result.key = type(exc).__name__ @asynccontextmanager async def login_as(self, metadata: Mapping[str, str], user: str) \ -> AsyncGenerator[IdentityInterface, None]: """Context manager to login and get an identity object. Args: stream: The grpc request/response stream. user: The user to authorize as. Raises: :class:`~pymap.exceptions.InvalidAuth` """ admin_keys = self._get_admin_keys() try: creds = self.login.tokens.parse(user, metadata['auth-token'], admin_keys=admin_keys) except (KeyError, ValueError) as exc: raise InvalidAuth() from exc yield await self.login.authenticate(creds) @asynccontextmanager async def with_session(self, identity: IdentityInterface) \ -> AsyncGenerator[SessionInterface, None]: """Context manager to create a mail session for the identity. Args: identity: The authenticated user identity. Raises: :class:`~pymap.exceptions.InvalidAuth` """ stack = connection_exit.get() session = await stack.enter_async_context(identity.new_session()) stack.enter_context(closing(session)) yield session
# -*- coding: utf-8 -*- """ Created on Sun Aug 12 00:01:10 2018 @author: deanecke """ import pandas as pd import numpy as np import os from sklearn import tree, ensemble from sklearn.preprocessing import MinMaxScaler from sklearn.ensemble import BaggingClassifier, AdaBoostClassifier from sklearn.utils import shuffle from sklearn.externals import joblib from sklearn.metrics import roc_curve, roc_auc_score from sklearn.feature_selection import chi2, SelectKBest from sklearn.neighbors import KNeighborsClassifier from sklearn import metrics class ExperimentsManager: def __init__(self, dataset_csv): use_cols = pd.read_csv(os.path.abspath('data/use_cols.csv')) cols_to_drop = ['device_category'] y_col = 'device_category' test = pd.read_csv(os.path.abspath(dataset_csv), usecols=use_cols, low_memory=False) test = shuffle(test) self.test = self.clear_missing_data(test) self.x_test = self.perform_feature_scaling(self.test.drop(cols_to_drop, 1)) self.y_test = self.test[y_col] self.devices = self.y_test.unique() def experiment_random_forest(self): """ Running all the different random forest classifiers for all devices and prints their AUC value accordingly """ for device in self.devices: for criterion_name in ['gini','entropy']: for forest_size in [3,7,11,15,19,21,23]: clf = self.load_model_from_pkl(r"C:\Users\deanecke\Documents\Project_updated\IoT-device-type-identification-master\models\{0}\{0}_forest_{1}_{2}.pkl".format(device,criterion_name,forest_size)) y_test = np.array(pd.Series(self.get_is_dev_vec(device, self.y_test))) pred = np.array(clf.predict(self.x_test)) fpr, tpr, thresholds = metrics.roc_curve(y_test, pred) print("DEVICE:{0},CRITERION:{1},SIZE:{2}".format(device, criterion_name, forest_size)) print(metrics.auc(fpr, tpr)) def experiment_decision_trees(self): """ Running all the different decision trees classifiers for all devices and prints their AUC value accordingly """ for device in self.devices: for criterion_name in ['gini','entropy']: for samples_size in [50,100,200,400]: clf = self.load_model_from_pkl(r"C:\Users\deanecke\Documents\Project_updated\IoT-device-type-identification-master\models\{0}\{0}_cart_{1}_{2}_samples_leaf.pkl".format(device,criterion_name,samples_size)) y_test = np.array(pd.Series(self.get_is_dev_vec(device, self.y_test))) pred = np.array(clf.predict(self.x_test)) fpr, tpr, thresholds = metrics.roc_curve(y_test, pred) print("DEVICE:{0},CRITERION:{1},SIZE:{2}".format(device, criterion_name, samples_size)) print(metrics.auc(fpr, tpr)) def experiment_knn(self): """ Running the KNN (K Nearest Neighbours) classifier for each device """ for device in self.devices: clf = self.load_model_from_pkl(r"C:\Users\deanecke\Documents\Project_updated\IoT-device-type-identification-master\models\{0}\{0}_knn_5_uniform.pkl".format(device)) y_test = np.array(pd.Series(self.get_is_dev_vec(device, self.y_test))) pred = np.array(clf.predict(self.x_test)) fpr, tpr, thresholds = metrics.roc_curve(y_test, pred) print("DEVICE:{0}".format(device)) print(metrics.auc(fpr, tpr)) def experiment_sgd(self): """ Running the SGD (Stochastic Gradient Descent) classifier for each device """ for device in self.devices: clf = self.load_model_from_pkl(r"C:\Users\deanecke\Documents\Project_updated\IoT-device-type-identification-master\models\{0}\{0}_sgd.pkl".format(device)) y_test = np.array(pd.Series(self.get_is_dev_vec(device, self.y_test))) pred = np.array(clf.predict(self.x_test)) fpr, tpr, thresholds = metrics.roc_curve(y_test, pred) print("DEVICE:{0}".format(device)) print(metrics.auc(fpr, tpr)) def experiment_naive_bayes(self): """ Running the Gaussian Naive Bayes classifier for each device """ for device in self.devices: clf = self.load_model_from_pkl(r"C:\Users\deanecke\Documents\Project_updated\IoT-device-type-identification-master\models\{0}\{0}_naive_bayes.pkl".format(device)) y_test = np.array(pd.Series(self.get_is_dev_vec(device, self.y_test))) pred = np.array(clf.predict(self.x_test)) fpr, tpr, thresholds = metrics.roc_curve(y_test, pred) print("DEVICE:{0}".format(device)) print(metrics.auc(fpr, tpr)) def experiment_MLP(self): """ Running all the different MLP classifiers for all devices and prints their AUC value accordingly """ for device in self.devices: for first_layer_neurons in [1,2,3,4,5]: for second_layer_neurons in [1,2,3,4,5]: clf = self.load_model_from_pkl(r"C:\Users\deanecke\Documents\Project_updated\IoT-device-type-identification-master\models\{0}\{0}_MLP_{1}_{2}_sgd.pkl".format(device,first_layer_neurons,second_layer_neurons)) y_test = np.array(pd.Series(self.get_is_dev_vec(device, self.y_test))) pred = np.array(clf.predict(self.x_test)) fpr, tpr, thresholds = metrics.roc_curve(y_test, pred) print("DEVICE:{0},FIRST LAYER:{1},SECOND LAYER:{2}".format(device, first_layer_neurons, second_layer_neurons)) print(metrics.auc(fpr, tpr)) def load_model_from_pkl(self, pkl_file_full_path): return joblib.load(pkl_file_full_path) def is_dev(self, this_dev_name, dev_name): return 1 if this_dev_name == dev_name else 0 def clear_missing_data(self, df): df_with_nan = df.replace("?", np.NaN) return df_with_nan.dropna(0) def perform_feature_scaling(self, x_train): """ This method is used in order to perform feature scaling according to the min-max scaler. The scaler can be replaced with another one, like the standard scaler """ scaler = MinMaxScaler() scaler.fit(x_train) return pd.DataFrame(scaler.transform(x_train), columns=x_train.columns) def get_is_dev_vec(self, this_dev_name, dev_names): """ This method generates a list with entries 0 or 1 to indicate which of the entries in the dev_names list is the device we are currently training/testing a classifier for. """ return [self.is_dev(this_dev_name, dev_name) for dev_name in dev_names]
from .Derivative import * from .Series import * from .FunctionCall import * from .UnaryFormatting import * from .Arithmatic import *
import numpy as np import tensorflow as tf import matplotlib.pyplot as plt from datetime import datetime from vggface2_datagen import genid from model import build_rec_model np.set_printoptions(threshold=np.inf, linewidth=np.inf) img_dir_path = '../datasets/vggface2/train_refined_resized/' test_anno_file_path = 'anno/vggface2_test2_anno.txt' output_path = 'output' ishape = [112, 112, 3] resnet_settings = [[16, 16, 64], [2, [2, 2]], [2, [2, 2]], [2, [2, 2]]] dense_settings = [] total_identities = 100 total_same_identities = 20 model = build_rec_model( ishape=ishape, resnet_settings=resnet_settings, dense_settings=dense_settings) # model.summary() model.load_weights('{}/clz/weights1.h5'.format(output_path), by_name=True) batchx4d = genid( anno_file_path=test_anno_file_path, img_dir_path=img_dir_path, ishape=ishape, total_identities=total_identities, total_same_identities=total_same_identities) print('Start: {}'.format(datetime.now().time())) pred_batchy_2dtensor = model.predict_on_batch(batchx4d) # (total_identities*total_same_identities, embedding_dims) print('End: {}'.format(datetime.now().time())) pred_batchy_3dtensor = tf.reshape(tensor=pred_batchy_2dtensor, shape=[total_identities, total_same_identities, -1]) pred_batchy_2dtensor = tf.math.reduce_mean(input_tensor=pred_batchy_3dtensor, axis=1) # (total_identities, embedding_dims) Y = pred_batchy_2dtensor X = pred_batchy_2dtensor print('Start: {}'.format(datetime.now().time())) V = np.zeros((total_identities, total_identities), dtype='float32') for i in range(total_identities): y = Y[i] # (embedding_dims,) for j in range(total_identities): x = X[j] # (embedding_dims,) d = tf.norm(tensor=y-x, axis=-1) V[j, i] = d print('End: {}'.format(datetime.now().time())) plt.figure(figsize=(7.35, 7.35)) plt.imshow(V) plt.show()
#MenuTitle: Copy Download URL for Current App Version # -*- coding: utf-8 -*- from __future__ import division, print_function, unicode_literals __doc__=""" Puts the download URL of the current Glyphs app version into your clipboard for easy pasting. """ from AppKit import NSPasteboard, NSStringPboardType def setClipboard( myText ): """ Sets the contents of the clipboard to myText. Returns True if successful, False if unsuccessful. """ try: myClipboard = NSPasteboard.generalPasteboard() myClipboard.declareTypes_owner_( [NSStringPboardType], None ) myClipboard.setString_forType_( myText, NSStringPboardType ) return True except Exception as e: return False appURL = "https://updates.glyphsapp.com/Glyphs%s-%s.zip" % ( Glyphs.versionString, Glyphs.buildNumber, ) if not setClipboard(appURL): print("Warning: could not set clipboard to %s" % ( "clipboard text" )) Message(title="Clipboard Error", message="Could not set the clipboard for whatever reason, so here is the URL:\n%s"%appURL, OKButton=None) else: # Floating notification: Glyphs.showNotification( "Download link copied", "Ready for pasting: %s"%appURL, )
#!/usr/bin/env python3 # coding: utf-8 # PSMN: $Id: get_serial.py 2997 2020-09-23 13:14:12Z ltaulell $ # SPDX-License-Identifier: CECILL-B OR BSD-2-Clause """ POC: use execo to get chassis serial number from host(s) quick & dirty return a list of comma separated serial numbers """ import argparse import execo from ClusterShell.NodeSet import NodeSet def get_args(): """ read parser and return args (as args namespace) """ parser = argparse.ArgumentParser(description='Ask an host for Serial Number') parser.add_argument('-d', '--debug', action='store_true', help='Active le debug') parser.add_argument('-H', '--host', nargs=1, type=str, help='hostname(s), NodeSet syntax') return parser.parse_args() def get_data(host, debug=False): """ use execo as a better subprocess substitute """ cmd = "cat /sys/class/dmi/id/product_serial" process = execo.SshProcess(cmd, host, {'user': 'root'}, shell=False).run() if debug: print(process.stderr) return process.stdout if __name__ == '__main__': """ """ args = get_args() if args.debug: debug = True print(args) else: debug = False nodes = NodeSet(args.host[0]) liste = [] for node in nodes: raw = get_data(node, debug).split('\r') liste.append(raw[0]) print(','.join(liste))
#!/usr/bin/env python # -*- coding: UTF-8 -*- import warnings import threading import numpy import scipy.optimize import pyFAI FIT_PARAMETER = ['wavelength', 'distance', 'center_x', 'center_y', 'tilt', 'rotation'] LN_2 = numpy.log(2) x = [] y = [] def gauss(x_max, y_max, fwhm, x_array): return y_max * numpy.exp(-LN_2 * ((x_array - x_max) / fwhm * 2) ** 2) def lorentz(x_max, y_max, fwhm, x_array): return y_max * 1. / (1 + ((x_array - x_max) / fwhm * 2) ** 2) def pseudo_voigt(x_max, y_max, fwhm, eta, x_array): return eta * gauss(x_max, y_max, fwhm, x_array) + \ (1 - eta) * lorentz(x_max, y_max, fwhm, x_array) def fit_maxima(x_data, y_data): # print(x_data,y_data) # error function err = lambda p, x, y: y - (p[0] + p[1] * x + pseudo_voigt(p[2], p[3], p[4], p[5], x)) # approximate the fitting parameter y_min = y_data.min() y_max = y_data.max() - y_min x_max = x_data[y_data.argmax()] parameter = [y_min, 1E-6, x_max, y_max, 1, 1] args = (x_data, y_data) # fit PSV with linear background to data with warnings.catch_warnings(): warnings.simplefilter("ignore") parameter, info = scipy.optimize.leastsq(err, parameter, args) # return maximum position if valid solution, otherwise nan maxima = parameter[2] if info != 5 and maxima > x_data.min() and maxima < x_data.max(): return parameter[2] else: return numpy.nan def _error_function(parameter, arguments): ''' The error functions returns the distances using the current parameter. This is a helper function for the fitting process. ''' geometry, d_spacings, maxima, selected_parameter = arguments mask = [sel in selected_parameter for sel in FIT_PARAMETER] param = numpy.array(get_fit2d(geometry)) print 'update:',param param[numpy.array(mask)] = parameter[numpy.array(mask)] set_fit2d(geometry,*param) return peak_distance(geometry, d_spacings, maxima) def get_fit2d(geometry): gdict = geometry.getFit2D() return [geometry.get_wavelength()*1e-10,gdict['directDist'],gdict['centerX'],gdict['centerY'],gdict['tilt'],gdict['tiltPlanRotation']] def set_fit2d(geometry, wavelength, distance, center_x, center_y, tilt, rotation): geometry.set_wavelength(wavelength / 1e-10) geometry.setFit2D(distance, center_x, center_y, tilt, rotation) return geometry def fit_geometry(geometry, maxima, d_spacings, selected_parameter): args = [geometry, d_spacings, maxima[::-1], selected_parameter] mask = numpy.array([sel in selected_parameter for sel in FIT_PARAMETER]) start_parameter = numpy.array(get_fit2d(geometry)) if len(start_parameter) >= len(maxima[0]): raise Exception('More variables then fit points.') _, cov_x, info, _, _ = scipy.optimize.leastsq(_error_function, start_parameter, args, full_output=True) fit_parameter = start_parameter dof = len(maxima[0]) - len(start_parameter) chisq = (info['fvec'] ** 2).sum() info_out = {'calls': info['nfev'], 'dof': dof, 'sum_chi_square': chisq} info_out['variance_residuals'] = chisq / float(dof) for i, name in enumerate(selected_parameter): if cov_x is not None: ase = numpy.sqrt(cov_x[i, i]) * numpy.sqrt(chisq / float(dof)) else: ase = numpy.NAN info_out['ase_%s' % name] = ase percent_ase = round(ase / (abs(fit_parameter[i]) * 0.01), 3) info_out['percent_ase_%s' % name] = percent_ase info_out[name] = fit_parameter[i] return info_out def radial_array(beam_center, shape): ''' Returns array with shape where every point is the radial distance to the beam center in pixel. ''' pos_x, pos_y = numpy.meshgrid(numpy.arange(shape[1]), numpy.arange(shape[0])) return numpy.sqrt((pos_x - beam_center[0]) ** 2 + (pos_y - beam_center[1]) ** 2) def ring_maxima(geometry, d_spacing, image, radial_pos, step_size): ''' Returns x and y arrays of maximum positions [pixel] found on the ring defined by pyFAI geometry and d_spacing on the given image ''' # calculate circle positions along the ring with step_size tth = 2 * numpy.arcsin(geometry.get_wavelength() / (2e-10 * d_spacing)) radius = (geometry.get_dist() * numpy.tan(tth)) / geometry.get_pixel1() center = (geometry.getFit2D()['centerX'], geometry.getFit2D()['centerY']) alpha = numpy.arange(0, numpy.pi * 2, step_size / float(radius)) circle_x = numpy.round(center[1] + numpy.sin(alpha) * radius) circle_y = numpy.round(center[0] + numpy.cos(alpha) * radius) # calculate roi coordinates half_step = int(numpy.ceil(step_size / 2.)) x_0 = circle_x - half_step x_1 = circle_x + half_step y_0 = circle_y - half_step y_1 = circle_y + half_step # mask out rois which are not complete inside the image border mask = numpy.where((x_0 >= 0) & (y_0 >= 0) & (y_1 < image.shape[0]) & (x_1 < image.shape[1])) x_0 = x_0[mask] x_1 = x_1[mask] y_0 = y_0[mask] y_1 = y_1[mask] maxima_x = [] maxima_y = [] for i in range(len(x_0)): roi = image[int(y_0[i]):int(y_1[i]), int(x_0[i]):int(x_1[i])] pos = radial_pos[int(x_0[i]):int(x_1[i]), int(y_0[i]):int(y_1[i])] if roi.size < half_step ** 2: continue # calculate roi histogram try: x_hist, y_hist, _, _ = pyFAI.ext.histogram.histogram(pos, roi, step_size) except AssertionError: continue # fit the radial maximum of the histogram maximum = fit_maxima(x_hist, y_hist) if maximum is numpy.nan: continue # DEBUG # rect = pylab.Rectangle((x_0[i], y_0[i]), # abs(x_0[i]-x_1[i]), # abs(y_0[i]-y_1[i]), fc='none') #pylab.gca().add_patch(rect) # calculate the pixel position of the maximum scale = float(maximum / radius) maxima_x.append(center[1] + (x_0[i] + half_step - center[1]) * scale) maxima_y.append(center[0] + (y_0[i] + half_step - center[0]) * scale) # DEBUG #pylab.plot(center[0] + (x_0[i] + half_step - center[0]) * scale, # center[1] + (y_0[i] + half_step - center[1]) * scale, '*') return numpy.array(maxima_x), numpy.array(maxima_y), radial_pos def peak_distance(geometry, d_spacings, (x_peaks, y_peaks)): """ Returns the minimum distances in 2*theta between given peaks in pixel and a d_spacings in angstrom using the pyFAI geometry. """ wavelength = geometry.get_wavelength() tth_rings = 2 * numpy.arcsin(wavelength / (2.0e-10 * d_spacings)) distance = [numpy.abs(tth_rings - tth).min() \ for tth in geometry.tth(y_peaks, x_peaks)] return numpy.array(distance) def circle_center_distance(center, x_array, y_array): """ Returns the algebraic distances between the 2D points in x_array, y_array and the mean circle center. """ r_array = numpy.sqrt((x_array - center[0]) ** 2 + (y_array - center[1]) ** 2) return r_array - r_array.mean() def fit_circle(x_array, y_array): """ Returns the center (x, y) and the radius of the fitted circle defined by the points in x_array and y_array. """ # coordinates of the barycenter xc_m = numpy.mean(x_array) yc_m = numpy.mean(y_array) # fit circle center center, _ = scipy.optimize.leastsq(circle_center_distance, (xc_m, yc_m), (x_array, y_array)) # calculate radius radius = numpy.sqrt((x_array - center[0]) ** 2 + (y_array - center[1]) ** 2).mean() return center, radius def quick_calibration(wavelength, pixel_size, d_spacing, x_array, y_array): ''' Returns pyFAI geometry by fitting a circle to a d-spacing ring. ''' center, radius = fit_circle(x_array, y_array) tth = 2 * numpy.arcsin(wavelength / (2.0e-10 * d_spacing)) sdd = pixel_size[0] * radius * numpy.cos(tth) * 1. / numpy.sin(tth) return PyFAIGeometry(sdd, center[1] * pixel_size[1], center[0] * pixel_size[0], 1e-6, 1e-6, 1e-6, pixel_size[0], pixel_size[1], wavelength=wavelength) # /\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\ # added at LBL # def set_PyFAIGeometry(agb): wave = agb.wavelength_ * 1.0E-10 a = PyFAIGeometry( agb.sdd_, agb.center_[1] * agb.pixel_size_[1], agb.center_[0] * agb.pixel_size_[0], 1e-6, 1e-6, 1e-6, agb.pixel_size_[0], agb.pixel_size_[1], wavelength=wave) return a #/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\ class PyFAIGeometry(pyFAI.geometry.Geometry): def set_fit2d(self, wavelength, distance, center_x, center_y, tilt, rotation): self.set_wavelength(wavelength * 1e-10) self.setFit2D(distance, center_x, center_y, tilt, rotation) def get_fit2d(self): param_dict = self.getFit2D() return [self.get_wavelength() * 1e10, param_dict['directDist'], param_dict['centerX'], param_dict['centerY'], param_dict['tilt'], param_dict['tiltPlanRotation']] ################################################################################ class FitThread(threading.Thread): def __init__(self, geometry, d_spacings, image, selected_parameter, step_size): threading.Thread.__init__(self) self.geometry = geometry self.d_spacings = d_spacings self.image = image self.selected_paramter = selected_parameter self.step_size = step_size self.status = [0, len(d_spacings)] self.info = {} self.circle_patches = [] def run(self): # calculate maxima for every d_spacing center = (self.geometry.getFit2D()['centerX'], self.geometry.getFit2D()['centerY']) radial_pos = radial_array(center, self.image.shape) x_data, y_data, = [], [] # calculate maxima for every d_spacing for d_spacing in self.d_spacings: maxima_x, maxima_y, radial_pos = ring_maxima(self.geometry, d_spacing, self.image, radial_pos, self.step_size) x_data.extend(maxima_x) y_data.extend(maxima_y) # create circle patch for every found maxima # for i in range(len(maxima_x)): # c_p = pylab.Circle((maxima_x[i], maxima_y[i]), 10, ec='red', fc='none') # self.circle_patches.append(c_p) self.status[0] += 1 # start fit try: info = fit_geometry(self.geometry, (numpy.array(x_data), numpy.array(y_data)), self.d_spacings, self.selected_paramter) info.update({'error': False, 'error_msg': ''}) self.info = info except Exception as e: self.info = {'error': True, 'error_msg': e.message} def get_status(self): return tuple(self.status) def get_info(self): return self.info def get_circle_patches(self): return self.circle_patches #/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\ # added at LBL # def dpdak_saxs_calibration(img, geometry, d_spacings, fit_param, step_size): fit_thread = FitThread(geometry, d_spacings, img, fit_param, step_size) fit_thread.start() params = geometry.get_fit2d() return params[1] / 1000., [params[2], params[3]] def saxs_calibration(img, agb): max_iter = 10 tol = 10E-04 # d-spacing for Silver Behenate d_spacings = numpy.array([58.367, 29.1835, 19.45567, 14.59175, \ 11.6734, 9.72783, 8.33814, 7.29587]) # step size (same as in dpdak GUI) step_size = 49 # Set PyFAI Geometry geometry = set_PyFAIGeometry(agb) # selcte parameters to fit fit_param = ['distance', 'center_x', 'center_y', 'tilt'] # Run calibration for i in range(10): fit_thread = FitThread(geometry, d_spacings, img, fit_param, step_size) fit_thread.start() fit_thread.join() # plt.plot(x, y) # plt.show() # Update calibrated data params = geometry.get_fit2d() agb.setSDD(params[1] / 1000.) agb.setCenter(params[2:4]) return agb #/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\ #if __name__ == "__main__": # test_all()
class Tuner: def __init__(self, desc): self.description = desc self.frequency = 0 def on(self): print(f'{self.description} on.') def off(self): print(f'{self.description} off.') def set_frequency(self, frequency): print(f'{self.description} setting frequency to {frequency}.') self.frequency = frequency def set_am(self): print(f'{self.description} setting AM mode.') def set_fm(self): print(f'{self.description} setting FM mode.') def __str__(self): return self.description
from typing import List Vector = List[float] height_weight_age = [70, # inches, 170, # pounds, 40 ] # years grades = [95, # exam1 80, # exam2 75, # exam3 62 ] # exam4 def add(v: Vector, w: Vector) -> Vector: """Adds corresponding elements""" assert len(v) == len(w), "Vectors must be the same length" return [v_i + w_i for v_i, w_i in zip(v, w)] assert add([1, 2, 3], [4, 5, 6]) == [5, 7, 9] def subtract(v: Vector, w: Vector) -> Vector: """subtracts corresponding elements""" assert len(v) == len(w), "Vectors must be the same length" return [v_i - w_i for v_i, w_i in zip(v, w)] assert subtract([5,7,9], [4,5,6]) == [1,2,3] def vector_sum(vectors: List[Vector]) -> Vector: """Sums all corresponding elements""" # Check the list is not empty assert vectors, "No vectors provided!" # Check the vectors are the same size num_elements = len(vectors[0]) assert all(len(v) == num_elements for v in vectors), "different sizes!" # the i-th element of the result is the sum of every vector[i] return [sum(vector[i] for vector in vectors) for i in range(num_elements)] assert vector_sum([[1, 2], [3, 4], [5, 6], [7, 8]]) == [16, 20] # We'll also need to be able to multiply a vector by a scalar, which we do simply by multiplyinh each element of the # vector by that number def scalar_multiply(c: float, v: Vector) -> Vector: """Multiplies every element by c""" return [c * v_i for v_i in v] assert scalar_multiply(2, [1,2,3]) == [2,4,6] # This allows us to compute the componentwise means of a list of (same -sized) vectors: def vector_mean (vectors: List[Vector]) -> Vector: """Computes the element-wise average""" n = len(vectors) return scalar_multiply(1/n, vector_sum(vectors)) assert vector_mean([[1,2], [3,4], [5,6]]) == [3,4] # A less obvious tool is the DOT PRODUCT. The dot product of two vectors is the sum of their componentwise product def dot(v: Vector, w: Vector) -> float: """Computes v_1 * w_1 + ... + v_n * w_n""" assert len(v) == len(w), "Vectors must be the same length" return sum(v_i * w_i for v_i, w_i in zip(v, w)) assert dot([1,2,3], [4,5,6]) == 32 # 1*4 + 2*5 + 3*6 # If W has magnitude 1, the dot product measures how far the vector V extends in the W direction. # For example, if w = [1, 0], then dot [v, w] is just the first component of v. # Another way of saying this is that it's the length of the vector you'd get if you projected v onto w # Using this, it's easy to compute a vector's sum of squares: def sum_of_squares(v: Vector) -> float: """Returns v_1 * v_1 + ... + v_n * v_n""" return dot(v,v) assert sum_of_squares([1,2,3]) == 14 # 1*1 + 2*2 + 3*3 # Which we can use to compute its MAGNITIUDE (or length): import math def magnitude(v: Vector) -> float: """Returns the magnitude or length of v""" return math.sqrt(sum_of_squares(v)) # math.sqrt is square root fucntion assert magnitude([3,4]) == 5 # We now have all the pieces we need to compute the distance between two vectors. def squared_distance(v: Vector, w: Vector) -> float: """Computes (v_1 - w_1) ** 2 + ... + (v_n - w_n) ** 2""" return sum_of_squares(subtract(v,w)) def distance(v: Vector, w: Vector) -> float: """Computes the distance between v and w""" return math.sqrt(squared_distance(v, w)) # This is possibly clearer if we write it as (the equivalent): def distance(v: Vector, w: Vector) -> float: return magnitude(subtract(v, w)) #--------------------------------------------------------------------------------------------------------------------- # Matrices #---------------------------------------------------------------------------------------------------------------------- # A matrix is a two-dimensional collection of numbers. We will represent matrices as lists of lists, with each inner # list having the same size and representing a ROW of the matrix. If A is a matrix, then A[i][j] is the element in the # iTH row and the jTH column. Per mathemathical convention, we will frequently use capital letters to represent # matrices. For example: # Another type alias Matrix = List[List[float]] A = [[1,2,3], # A has 2 rows and 3 columns [4,5,6]] B = [[1,2], # B has 3 rows and 2 columns [3,4], [5,6]] # Given this list-of-lists representation, the matrix A has len(A) rows and len(A[0]) column, which we consider its # SHAPE from typing import Tuple def shape(A: Matrix) -> Tuple[int, int]: """Returns (# of rows A, # of columns of A)""" num_rows = len(A) num_cols = len(A[0]) if A else 0 # number of elements in first row return num_rows, num_cols assert shape([[1,2,3], [4,5,6]]) == (2,3) # 2 rows, 3 columns # If a matrix has n rows and k columns, we will refer to it as an n x k matrix. We can think of each row of an n x k # matrix as a vector of length k and each column as a vector of length n: def get_row(A: Matrix, i: int) -> Vector: """Returns the i-th row of A (as a vector)""" return A[i] # A[i] is already the ith row def get_column(A: Matrix, j: int) -> Vector: """Returns the j-th column of A (as a vector)""" return [A_i[j] # j-th element of row A_i for A_i in A] # for each row in A_i # We'll also want to be able to create a matrix given its shape and a fucntion for generalizing its elements. # We can do this using a nested list comprehension from typing import Callable def make_matrix(num_rows: int, num_cols: int, entry_fn: Callable[[int,int], float]) -> Matrix: """ Returns a num_rows x num_cols matrix whose (i, j) -th entry is entry_fn(i, j) """ return [[entry_fn(i,j) # given i, create a list for j in range(num_cols)] # [entry_fn(i, 0), ...] for i in range(num_rows)] # create one list for each i # Given this function, you could make a 5x5 identity matrix (with 1s on the diagonal and 0s elsewhere, like so: def identity_matrix(n: int) -> Matrix: """Returns the n x n identity matrix""" return make_matrix(n, n, lambda i, j: 1 if i == j else 0) print(identity_matrix(5)) # Matricies will be important for several reasons. First, we can use a matrix to represent a dataset consisting of # multiple vectors, simply by considering each vector as a row of the matrix. For example, if you had the # heights, weights and ages of 1,000 people, you could put them in a 1,000 x 3 matrix data = [[70, 170, 40], [65, 120, 26], [77, 250, 19], # .... ] # Second, as we'll see later, we can use an n x k matrix to represent a linear function that maps k-dimentional # vectors to n-dimentional vectors, Several of our techniques and concepts will involve such functions. # Third, matrices can be used to represent binary relationships. In chapter1, we represented the edgest of a network # as a colection of pairs (i, j). An alternative would be to create a matrix A such that A[i][j] is 1 if nodes i and j # are connected and 0 otherwise friendships = [(0, 1), (0, 2), (1, 2), (1, 3), (2, 3), (3, 4), (4, 5), (5, 6), (5, 7), (6, 8), (7, 8), (8, 9)] # also represented as: # user 0 1 2 3 4 5 6 7 8 9 # friend_matrix = [[0, 1, 1, 0, 0, 0, 0, 0, 0, 0], # user 0 [1, 0, 1, 1, 0, 0, 0, 0, 0, 0], # user 1 [1, 1, 0, 1, 0, 0, 0, 0, 0, 0], # user 2 [0, 1, 1, 0, 1, 0, 0, 0, 0, 0], # user 3 [0, 0, 0, 1, 0, 1, 0, 0, 0, 0], # user 4 [0, 0, 0, 0, 1, 0, 1, 1, 0, 0], # user 5 [0, 0, 0, 0, 0, 1, 0, 0, 1, 0], # user 6 [0, 0, 0, 0, 0, 1, 0, 0, 1, 0], # user 7 [0, 0, 0, 0, 0, 0, 1, 1, 0, 1], # user 8 [0, 0, 0, 0, 0, 0, 0, 0, 1, 0]] # user 9
import sys __all__ = ['__version__', 'version_info'] import pkgutil __version__ = pkgutil.get_data(__package__, 'VERSION').decode('ascii').strip() version_info = tuple(int(v) if v.isdigit() else v for v in __version__.split('.')) del pkgutil if sys.version_info < (2, 7): print("os-tornado %s requires Python 2.7" % __version__) sys.exit(1) del sys
from datetime import timedelta from django.conf import settings from django_statsd.clients import statsd from google.cloud import bigquery from olympia.constants.applications import ANDROID, FIREFOX # This is the mapping between the AMO usage stats `sources` and the BigQuery # columns. AMO_TO_BQ_DAU_COLUMN_MAPPING = { 'apps': 'dau_by_app_version, dau_by_fenix_build', 'countries': 'dau_by_country', 'locales': 'dau_by_locale', 'os': 'dau_by_app_os', 'versions': 'dau_by_addon_version', } # This is the mapping between the AMO download stats `sources` and the BigQuery # columns. AMO_TO_BQ_DOWNLOAD_COLUMN_MAPPING = { 'campaigns': 'downloads_per_campaign', 'contents': 'downloads_per_content', 'mediums': 'downloads_per_medium', 'sources': 'downloads_per_source', } AMO_STATS_DAU_VIEW = 'amo_stats_dau' AMO_STATS_DOWNLOAD_VIEW = 'amo_stats_installs' def make_fully_qualified_view_name(view): return '.'.join([settings.BIGQUERY_PROJECT, settings.BIGQUERY_AMO_DATASET, view]) def get_amo_stats_dau_view_name(): return make_fully_qualified_view_name(AMO_STATS_DAU_VIEW) def get_amo_stats_download_view_name(): return make_fully_qualified_view_name(AMO_STATS_DOWNLOAD_VIEW) def create_client(): return bigquery.Client.from_service_account_json( settings.GOOGLE_APPLICATION_CREDENTIALS ) def rows_to_series(rows, count_column, filter_by=None): """Transforms BigQuery rows into series items suitable for the rest of the AMO stats logic.""" for row in rows: item = { 'count': row[count_column], 'date': row['submission_date'], 'end': row['submission_date'], } if filter_by: # This filter is special because we have two columns instead of # one. # See: https://github.com/mozilla/addons-server/issues/14411 # See: https://github.com/mozilla/addons-server/issues/14832 if filter_by == AMO_TO_BQ_DAU_COLUMN_MAPPING['apps']: item['data'] = { ANDROID.guid: { d['key']: d['value'] for d in row.get('dau_by_fenix_build', []) }, FIREFOX.guid: { d['key']: d['value'] for d in row.get('dau_by_app_version', []) }, } else: item['data'] = {d['key']: d['value'] for d in row.get(filter_by, [])} yield item def get_updates_series(addon, start_date, end_date, source=None): client = create_client() select_clause = 'SELECT submission_date, dau' filter_by = AMO_TO_BQ_DAU_COLUMN_MAPPING.get(source) if filter_by: select_clause = f'{select_clause}, {filter_by}' query = f""" {select_clause} FROM `{get_amo_stats_dau_view_name()}` WHERE addon_id = @addon_id AND submission_date BETWEEN @submission_date_start AND @submission_date_end ORDER BY submission_date DESC LIMIT 365""" statsd_timer = f'stats.get_updates_series.bigquery.{source or "no_source"}' with statsd.timer(statsd_timer): rows = client.query( query, job_config=bigquery.QueryJobConfig( query_parameters=[ bigquery.ScalarQueryParameter('addon_id', 'STRING', addon.guid), bigquery.ScalarQueryParameter( 'submission_date_start', 'DATE', start_date ), bigquery.ScalarQueryParameter( 'submission_date_end', 'DATE', end_date ), ] ), ).result() return rows_to_series(rows, count_column='dau', filter_by=filter_by) def get_download_series(addon, start_date, end_date, source=None): client = create_client() select_clause = 'SELECT submission_date, total_downloads' filter_by = AMO_TO_BQ_DOWNLOAD_COLUMN_MAPPING.get(source) if filter_by: select_clause = f'{select_clause}, {filter_by}' query = f""" {select_clause} FROM `{get_amo_stats_download_view_name()}` WHERE hashed_addon_id = @hashed_addon_id AND submission_date BETWEEN @submission_date_start AND @submission_date_end ORDER BY submission_date DESC LIMIT 365""" statsd_timer = f'stats.get_download_series.bigquery.{source or "no_source"}' with statsd.timer(statsd_timer): rows = client.query( query, job_config=bigquery.QueryJobConfig( query_parameters=[ bigquery.ScalarQueryParameter( 'hashed_addon_id', 'STRING', addon.addonguid.hashed_guid, ), bigquery.ScalarQueryParameter( 'submission_date_start', 'DATE', start_date ), bigquery.ScalarQueryParameter( 'submission_date_end', 'DATE', end_date ), ] ), ).result() return rows_to_series(rows, count_column='total_downloads', filter_by=filter_by) def get_addons_and_average_daily_users_from_bigquery(): """This function is used to compute the 'average_daily_users' value of each add-on (see `update_addon_average_daily_users()` cron task).""" client = create_client() query = f""" SELECT addon_id, AVG(dau) AS count FROM `{get_amo_stats_dau_view_name()}` WHERE submission_date > DATE_SUB(CURRENT_DATE(), INTERVAL 13 DAY) GROUP BY addon_id""" rows = client.query(query).result() return [ (row['addon_id'], row['count']) for row in rows if row['addon_id'] and row['count'] ] def get_averages_by_addon_from_bigquery(today, exclude=None): """This function is used to compute the 'hotness' score of each add-on (see also `update_addon_hotness()` cron task). It returns a dict with top-level keys being add-on GUIDs and values being dicts containing average values.""" client = create_client() one_week_date = today - timedelta(days=7) four_weeks_date = today - timedelta(days=28) query = f""" WITH this_week AS ( SELECT addon_id, AVG(dau) AS avg_this_week FROM `{get_amo_stats_dau_view_name()}` WHERE submission_date >= @one_week_date GROUP BY addon_id), three_weeks_before_this_week AS ( SELECT addon_id, AVG(dau) AS avg_three_weeks_before FROM `{get_amo_stats_dau_view_name()}` WHERE submission_date BETWEEN @four_weeks_date AND @one_week_date GROUP BY addon_id) SELECT * FROM this_week JOIN three_weeks_before_this_week USING (addon_id) """ query_parameters = [ bigquery.ScalarQueryParameter('one_week_date', 'DATE', one_week_date), bigquery.ScalarQueryParameter('four_weeks_date', 'DATE', four_weeks_date), ] if exclude and len(exclude) > 0: query = f'{query} WHERE addon_id NOT IN UNNEST(@excluded_addon_ids)' query_parameters.append( bigquery.ArrayQueryParameter('excluded_addon_ids', 'STRING', exclude) ) rows = client.query( query, job_config=bigquery.QueryJobConfig(query_parameters=query_parameters), ).result() return { row['addon_id']: { 'avg_this_week': row['avg_this_week'], 'avg_three_weeks_before': row['avg_three_weeks_before'], } for row in rows if row['addon_id'] } def get_addons_and_weekly_downloads_from_bigquery(): """This function is used to compute the 'weekly_downloads' value of each add-on (see `update_addon_weekly_downloads()` cron task).""" client = create_client() query = f""" SELECT hashed_addon_id, SUM(total_downloads) AS count FROM `{get_amo_stats_download_view_name()}` WHERE submission_date >= DATE_SUB(CURRENT_DATE(), INTERVAL 7 DAY) GROUP BY hashed_addon_id""" rows = client.query(query).result() return [ (row['hashed_addon_id'], row['count']) for row in rows if row['hashed_addon_id'] and row['count'] ]
import codecs from typing import Optional, Tuple, Iterable from unicodedata import normalize from dedoc.data_structures.paragraph_metadata import ParagraphMetadata from dedoc.data_structures.unstructured_document import UnstructuredDocument from dedoc.readers.base_reader import BaseReader from dedoc.readers.utils.hierarch_level_extractor import HierarchyLevelExtractor from dedoc.data_structures.line_with_meta import LineWithMeta class RawTextReader(BaseReader): def __init__(self): self.hierarchy_level_extractor = HierarchyLevelExtractor() def _get_lines(self, path: str) -> Iterable[Tuple[int, str]]: with codecs.open(path, errors="ignore", encoding="utf-8-sig") as file: for line_id, line in enumerate(file): line = normalize('NFC', line).replace("й", "й") # й replace matter yield line_id, line def read(self, path: str, document_type: Optional[str] = None, parameters: Optional[dict] = None) -> Tuple[UnstructuredDocument, bool]: lines = [] for line_id, line in self._get_lines(path): metadata = ParagraphMetadata(page_id=0, line_id=line_id, predicted_classes=None, paragraph_type="raw_text") line_with_meta = LineWithMeta(line=line, hierarchy_level=None, metadata=metadata, annotations=[]) lines.append(line_with_meta) lines = self.hierarchy_level_extractor.get_hierarchy_level(lines) return UnstructuredDocument(lines=lines, tables=[]), False def can_read(self, path: str, mime: str, extension: str, document_type: Optional[str]) -> bool: return extension.endswith(".txt") and not document_type
class Solution(object): def convert(self, s: str, numRows: int) -> str: """ The string "PAYPALISHIRING" is written in a zigzag pattern on a given number of rows like this: (you may want to display this pattern in a fixed font for better legibility) P A H N A P L S I I G Y I R And then read line by line: "PAHNAPLSIIGYIR" Write the code that will take a string and make this conversion given a number of rows: >>> Solution().convert("PAYPALISHIRING", 3) "PAHNAPLSIIGYIR" >>> Solution().convert("PAYPALISHIRING", 4) "PINALSIGYAHRPI" :type s: str :type numRows: int :rtype: str """ if numRows == 1: return s rows = [''] * numRows num = (numRows - 1) * 2 for i, item in enumerate(s): if i % num >= numRows: rows[(num - i % num) % numRows] += item else: rows[i % num] += item return ''.join(rows) def main(): print(Solution().convert("PAYPALISHIRING", 4)) if __name__ == '__main__': main()
import requests import json import pandas as pd # URL of the authentication endpoint auth_url = "https://api.hatebase.org/4-4/authenticate" # initialize authentication payload & headers # use x-www-form-urlencoded as content-type # replace this dummy key with your own auth_payload = "api_key=[API KEY GOES HERE]" headers = { 'Content-Type': "application/x-www-form-urlencoded", 'cache-control': "no-cache" } # authenticate against the API auth_resp = requests.request("POST", auth_url, data=auth_payload, headers=headers) print (auth_resp.json()) #store the token from response token = auth_resp.json()["result"]["token"] #Set vocab url and params vocab_url = 'https://api.hatebase.org/4-4/get_vocabulary' lang = 'eng' resp_format = 'json' # assemble the payload for our query vocab_payload = "token=" + token + "&format=" + resp_format + "&language=" + lang voc_resp = requests.request("POST", vocab_url, data=vocab_payload, headers=headers) voc_json = voc_resp.json() pages = voc_json['number_of_pages'] results = voc_json['number_of_results'] # create the vocabulary dataframe from the first resultset df_voc = pd.DataFrame(voc_json["result"]) #create empty term list english_term_list = [] # now get results of all the remaining pages # append those results to our dataframe "df_voc" for page in range(1,pages+1): vocab_payload = "token=" + token + "&format=json&language=" + lang + "&page=" + str(page) voc_resp = requests.request("POST", vocab_url, data=vocab_payload, headers=headers) voc_json = voc_resp.json() df_voc = df_voc.append(voc_json["result"]) english_term_list # reset the df_voc index so that all entries are nicely numbered in an ascending way df_voc.reset_index(drop=True, inplace=True) #Full Term List term_list = df_voc['term'].tolist() #Filter frame to rows where terms are marked unambiguous unambiguous_df = df_voc[df_voc['is_unambiguous'] == True] unambiguous_term_list = unambiguous_df['term'].tolist() print (unambiguous_term_list) # save the vocabulary in the df_voc dataframe as a csv df_voc.to_csv("c:/users/nh48/desktop/audit_test/hatebase_vocab.csv") unambiguous_df.to_csv("c:/users/nh48/desktop/audit_test/hatebase_vocab_unambiguous.csv")
import yaml import numpy as np class setup: def __init__(self, setup): with open(setup,'r') as obj: input=yaml.safe_load(obj) print('loaded calculation setups:') print(input) self.structure_file=input['structure_file'] self.dyn_file=input['dyn_file'] self.style=input['style'] self.temperature=input['temperature'] self.broadening_factor=input['broadening_factor'] self.using_mean_spacing=input['using_mean_spacing'] self.omega_threshould=input['omega_threshould'] self.broadening_threshould=input['broadening_threshould'] self.two_dim=input['two_dim'] self.symmetrize_fc=input['symmetrize_fc'] if self.two_dim: self.vdw_thickness=input['vdw_thickness'] def thermal_conductivity(setup_file): calc_setup=setup(setup_file) from pyAF.thermal_conductivity_AF import get_thermal_conductivity results=get_thermal_conductivity(calc_setup) return results def resolved_thermal_conductivity(setup_file): calc_setup=setup(setup_file) from pyAF.thermal_conductivity_AF import get_resolved_thermal_conductivity results=get_resolved_thermal_conductivity(calc_setup) return results
""" 校内打卡相关函数 @create:2021/03/10 @filename:campus_check.py @author:ReaJason @email_addr:reajason@163.com @blog_website:https://reajason.top @last_modify:2021/03/15 """ import time import json import requests from setting import log def get_id_list_v2(token, custom_type_id): """ 通过校内模板id获取校内打卡具体的每个时间段id :param token: 用户令牌 :param custom_type_id: 校内打卡模板id :return: 返回校内打卡id列表 """ post_data = { "customerAppTypeId": custom_type_id, "longitude": "", "latitude": "", "token": token, } try: res = requests.post( "https://reportedh5.17wanxiao.com/api/clock/school/rules", data=post_data ) return res.json()["customerAppTypeDto"]["ruleList"] except: return None def get_id_list_v1(token): """ 通过校内模板id获取校内打卡具体的每个时间段id(初版,暂留) :param token: 用户令牌 :return: 返回校内打卡id列表 """ post_data = {"appClassify": "DK", "token": token} try: res = requests.post( "https://reportedh5.17wanxiao.com/api/clock/school/childApps", data=post_data, ).json() if res.json()["appList"]: app_list = res["appList"][-1]["customerAppTypeRuleList"] \ if res["appList"][-1]["customerAppTypeRuleList"] \ else res["appList"][0]["customerAppTypeRuleList"] id_list = sorted( app_list, key=lambda x: x["id"], ) res_dict = [ {"customerAppTypeId": j["id"], "templateid": f"clockSign{i + 1}"} for i, j in enumerate(id_list) ] return res_dict return None except: return None def get_customer_type_id(token): """ 通过校内模板id获取校内打卡具体的每个时间段id(初版,暂留) :param token: 用户令牌 :return: 返回校内打卡id列表 """ post_data = {"appClassify": "DK", "token": token} try: res = requests.post( "https://reportedh5.17wanxiao.com/api/clock/school/childApps", data=post_data, ).json() for app in res["appList"]: if '校内' in app['name']: return app['id'] except: return None def get_campus_check_post(template_id, custom_rule_id, stu_num, token): """ 获取打卡数据 :param template_id: :param custom_rule_id: :param stu_num: :param token: :return: """ campus_check_post_json = { "businessType": "epmpics", "jsonData": { "templateid": template_id, "customerAppTypeRuleId": custom_rule_id, "stuNo": stu_num, "token": token }, "method": "userComeAppSchool", "token": token } for _ in range(3): try: res = requests.post( url="https://reportedh5.17wanxiao.com/sass/api/epmpics", json=campus_check_post_json, timeout=10, ).json() except: log.warning("完美校园校内打卡post参数获取失败,正在重试...") time.sleep(1) continue if res["code"] != "10000": """ {'msg': '业务异常', 'code': '10007', 'data': '无法找到该机构的投票模板数据!'} """ log.warning(res['data']) return None data = json.loads(res["data"]) post_dict = { "areaStr": data['areaStr'], "deptStr": data['deptStr'], "deptid": data['deptStr']['deptid'] if data['deptStr'] else None, "customerid": data['customerid'], "userid": data['userid'], "username": data['username'], "stuNo": data['stuNo'], "phonenum": data["phonenum"], "templateid": data["templateid"], "updatainfo": [ {"propertyname": i["propertyname"], "value": i["value"]} for i in data["cusTemplateRelations"] ], "updatainfo_detail": [ { "propertyname": i["propertyname"], "checkValues": i["checkValues"], "description": i["decription"], "value": i["value"], } for i in data["cusTemplateRelations"] ], "checkbox": [ {"description": i["decription"], "value": i["value"], "propertyname": i["propertyname"]} for i in data["cusTemplateRelations"] ], } log.info("完美校园校内打卡post参数获取成功") return post_dict return None def campus_check_in(phone, token, post_dict, custom_rule_id): """ 校内打卡 :param phone: 电话号 :param token: 用户令牌 :param post_dict: 校内打卡数据 :param custom_rule_id: 校内打卡id :return: """ check_json = { "businessType": "epmpics", "method": "submitUpInfoSchool", "jsonData": { "deptStr": post_dict["deptStr"], "areaStr": post_dict["areaStr"], "reportdate": round(time.time() * 1000), "customerid": post_dict["customerid"], "deptid": post_dict["deptid"], "source": "app", "templateid": post_dict["templateid"], "stuNo": post_dict["stuNo"], "username": post_dict["username"], "phonenum": phone, "userid": post_dict["userid"], "updatainfo": post_dict["updatainfo"], "customerAppTypeRuleId": custom_rule_id, "clockState": 0, "token": token, }, "token": token, } try: res = requests.post( "https://reportedh5.17wanxiao.com/sass/api/epmpics", json=check_json ).json() """ {'msg': '业务异常', 'code': '10007', 'data': '请在正确的打卡时间打卡'} """ if res["code"] == "10000": log.info(res) elif res['data'] == "areaStr can not be null": log.warning("当前用户无法获取校内打卡地址信息,请前往配置文件,campus_checkin 下的 areaStr 设置地址信息") elif res['data'] == "请在正确的打卡时间打卡": log.warning( f'当前已不在该打卡时间范围内,{res["data"]}') else: log.warning(res) return { 'status': 1, 'res': res, 'post_dict': post_dict, 'check_json': check_json, 'type': post_dict["templateid"] } except: errmsg = f"```校内打卡请求出错```" log.warning("校内打卡请求出错") return {'status': 0, 'errmsg': errmsg}
#MIT License # #Copyright (c) 2021 Nick Hurt # #Permission is hereby granted, free of charge, to any person obtaining a copy #of this software and associated documentation files (the "Software"), to deal #in the Software without restriction, including without limitation the rights #to use, copy, modify, merge, publish, distribute, sublicense, and/or sell #copies of the Software, and to permit persons to whom the Software is #furnished to do so, subject to the following conditions: # #The above copyright notice and this permission notice shall be included in all #copies or substantial portions of the Software. # #THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR #IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, #FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE #AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER #LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, #OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE #SOFTWARE. import os import datetime import logging import urllib import pyodbc import sys import azure.functions as func import json from time import perf_counter import requests,uuid from requests.auth import HTTPBasicAuth import asyncio from azure.core.exceptions import AzureError from azure.storage.filedatalake.aio import ( DataLakeServiceClient, ) from azure.identity.aio import ClientSecretCredential #DefaultAzureCredential async def main(msg: func.QueueMessage): logging.info('Python queue trigger function processed a queue item.') #eventloop = asyncio.get_event_loop() result = json.dumps({ 'id': msg.id, 'body': msg.get_body().decode('utf-8'), 'expiration_time': (msg.expiration_time.isoformat() if msg.expiration_time else None), 'insertion_time': (msg.insertion_time.isoformat() if msg.insertion_time else None), 'time_next_visible': (msg.time_next_visible.isoformat() if msg.time_next_visible else None), 'pop_receipt': msg.pop_receipt, 'dequeue_count': msg.dequeue_count }) result = json.loads(msg.get_body().decode('utf-8')) logging.info("..............Dequeued: "+ json.dumps(result)) tenantid=os.environ["tenantID"] spnid= os.environ["SPNID"] spnsecret= os.environ["SPNSecret"] connxstr=os.environ["DatabaseConnxStr"] dbname = os.environ["dbname"] dbschema = os.environ["dbschema"] cnxn = pyodbc.connect(connxstr) cursor = cnxn.cursor() now = datetime.datetime.utcnow() acls_changed = 0 vContinuationToken = '' vContinuationMsg = '' captureTime = now.strftime('%Y-%m-%d %H:%M:%S') queue_itm = "select trans_status, continuation_token from " + dbschema + ".policy_transactions where id = "+str(result["id"]) cursor.execute(queue_itm) transrow = cursor.fetchone() if transrow: logging.info('De-queued transaction ID '+ str(result["id"]) + ' with transaction status ' + transrow[0] + '. Checking for continuation token... ' + transrow[1] ) if transrow[1] != '': vContinuationToken = transrow[1] vContinuationMsg = 'Recovering with continuation token' + vContinuationToken else: logging.error('Could not find transaction record with ID ' + str(result["id"]) + '. Please contact support') if transrow[0] not in ('Abort','Aborted'): queue_upd = "update " + dbschema + ".policy_transactions set trans_status = 'De-queued', trans_reason = concat(trans_reason, '" + vContinuationMsg + "'), last_updated = '"+ captureTime + "' where trans_status <> 'Aborted' and trans_status <> 'Abort' and id = "+str(result["id"]) logging.info(queue_upd) cursor.execute(queue_upd) cnxn.commit() #if len(recsupdated)>0: try: u1_start = perf_counter() #storagetoken = getBearerToken(tenantid,"storage.azure.com",spnid,spnsecret) #acls_changed += setADLSBulkPermissions(storagetoken, str(result["storage_url"]), str(result["acentry"]),str(result["trans_action"]),str(result["trans_mode"])) default_credential = ClientSecretCredential( tenantid, spnid, spnsecret, ) #default_credential = DefaultAzureCredential() urlparts = str(result["storage_url"]).split('/',4) service_client = DataLakeServiceClient("https://{}".format(urlparts[2]), credential=default_credential) logging.info("Obtained service client") async with service_client: filesystem_client = service_client.get_file_system_client(file_system=urlparts[3]) logging.info('Setting ACLs recursively ' + str(result['acentry'])) acls_changed = await set_recursive_access_control(filesystem_client,urlparts[4], str(result["acentry"]),result["id"],u1_start, str(result["trans_mode"]), vContinuationToken) #logging.info("No ACL changes = "+ str(acls_changed)) await filesystem_client.close() await service_client.close() now = datetime.datetime.utcnow() captureTime = now.strftime('%Y-%m-%d %H:%M:%S') u1_stop = perf_counter() if not acls_changed or acls_changed <0: # there were either no files in the folder or some error or aborted due to user error if not acls_changed or acls_changed == 0: acls_changed=0 queue_comp = "update " + dbschema + ".policy_transactions set trans_status = 'Warning', acl_count = "+str(acls_changed) + ", last_updated = '"+ captureTime + "', trans_reason = concat(trans_reason,'Completed but did not set any ACLS. This may be due to an empty folder. Finished in " + str(format(u1_stop-u1_start,'.3f')) + " seconds. ') where id = "+str(result["id"]) elif acls_changed == -4: queue_comp = "update " + dbschema + ".policy_transactions set trans_status = 'Aborted', acl_count = "+str(acls_changed) + ", last_updated = '"+ captureTime + "', trans_reason = concat(trans_reason,'Aborted due to user error correction in " + str(format(u1_stop-u1_start,'.3f')) + " seconds. ') where id = "+str(result["id"]) else: queue_comp = "update " + dbschema + ".policy_transactions set trans_status = 'Error', acl_count = "+str(acls_changed) + ", last_updated = '"+ captureTime + "', trans_reason = concat(trans_reason,'Aborted in " + str(format(u1_stop-u1_start,'.3f')) + " seconds. ') where id = "+str(result["id"]) else: queue_comp = "update " + dbschema + ".policy_transactions set trans_status = 'Done', acl_count = "+str(acls_changed) + ", last_updated = '"+ captureTime + "', trans_reason = concat(trans_reason,'Completed in " + str(format(u1_stop-u1_start,'.3f')) + " seconds. ') where id = "+str(result["id"]) logging.info("!!!!! Queue update SQL: "+queue_comp) cursor.execute(queue_comp) cnxn.commit() logging.info("!!!!! Queue update completed: "+queue_comp) except pyodbc.DatabaseError as err: cnxn.commit() sqlstate = err.args[1] sqlstate = sqlstate.split(".") logging.error('Error message: '.join(sqlstate)) except Exception as e: logging.error('Error in line ' + str(sys.exc_info()[-1].tb_lineno) + ' occured when trying to process ACL work items:' + str(e)) queue_upd = "update " + dbschema + ".policy_transactions set trans_status = 'Queued', trans_reason = concat(trans_reason,'Requeuing due to error: " + str(e) + "') where id = "+str(result["id"]) cursor.execute(queue_upd) cnxn.commit() #potentially try to add the item back on the queue here else: cnxn.commit() #print('Done') finally: cnxn.autocommit = True else: logging.error('Transaction ' + str(result["id"]) + ' in Abort state. Ignoring...') def getBearerToken(tenantid,resourcetype,spnid,spnsecret): endpoint = 'https://login.microsoftonline.com/' + tenantid + '/oauth2/token' headers = {'Content-Type': 'application/x-www-form-urlencoded'} payload = 'grant_type=client_credentials&client_id='+spnid+'&client_secret='+ spnsecret + '&resource=https%3A%2F%2F'+resourcetype+'%2F' #payload = 'resource=https%3A%2F%2F'+resourcetype+'%2F' #print(endpoint) #print(payload) r = requests.post(endpoint, headers=headers, data=payload) response = r.json() print("Obtaining AAD bearer token for resource "+ resourcetype + "...") try: bearertoken = response["access_token"] except KeyError: print("Error obtaining bearer token: "+ response) #print(bearertoken) print("Bearer token obtained.\n") return bearertoken # a variation of the function above which access a dictionary object of users and groups so that we can set the ACLs in bulk with a comma seprated list of ACEs (access control entries) def setADLSBulkPermissions(aadtoken, adlpath, acentry, trans_action, trans_mode,lcursor, lcnxn): # Read documentation here -> https://docs.microsoft.com/en-us/rest/api/storageservices/datalakestoragegen2/path/update if aadtoken and acentry and adlpath and trans_action and trans_mode: puuid = str(uuid.uuid4()) headers = {'x-ms-version': '2019-12-12','Authorization': 'Bearer %s' % aadtoken, 'x-ms-acl':acentry,'x-ms-client-request-id': '%s' % puuid} request_path = adlpath+"?action="+ trans_action + "&mode=" + trans_mode print("Setting ACLs " + acentry + " on " +adlpath + "...") t1_start = perf_counter() if devstage == 'live': r = requests.patch(request_path, headers=headers) response = r.json() t1_stop = perf_counter() #print(r.text) if r.status_code == 200: logging.info("Response Code: " + str(r.status_code) + "\nDirectories successful:" + str(response["directoriesSuccessful"]) + "\nFiles successful: "+ str(response["filesSuccessful"]) + "\nFailed entries: " + str(response["failedEntries"]) + "\nFailure Count: "+ str(response["failureCount"]) + f"\nCompleted in {t1_stop-t1_start:.3f} seconds\n") return(int(response["filesSuccessful"]) + int(response["directoriesSuccessful"])) else: logging.error("Error: " + str(r.text)) raise Exception("Error while trying to set ACLs " + str(r.text)) return(0) else: logging.info("Environment setting was set to non-prod therefore no ACLs have been set. "+ devstage) return(-2) else: logging.warning("Warning: Could not set ACLs as no users/groups were supplied in the ACE entry. This can happen when all users are either in the exclusion list or their IDs could not be found in AAD.") return(-1) #aces = spntype+':'+spn+spnaccsuffix + ':'+permissions+',default:'+spntype+':'+spn+spnaccsuffix + ':'+permissions,'x-ms-client-request-id': '%s' % puuid async def set_recursive_access_control(filesystem_client,dir_name, acl,transid,proc_start,trans_mode, pContinuationToken): # the progress callback is invoked each time a batch is completed l1_start = perf_counter() user_error_abort = False async def progress_callback(acl_changes): global user_error_abort user_error_abort = False dbname = "policystore" #os.environ["dbname"] dbschema = "dbo" #os.environ["dbschema"] logging.info(("Transaction " + str(transid) + " in progress. In this batch: {} directories and {} files were processed successfully, {} failures were counted. " + "In total, {} directories and {} files were processed successfully, {} failures were counted.") .format(acl_changes.batch_counters.directories_successful, acl_changes.batch_counters.files_successful, acl_changes.batch_counters.failure_count, acl_changes.aggregate_counters.directories_successful, acl_changes.aggregate_counters.files_successful, acl_changes.aggregate_counters.failure_count)) connxstr= connxstr=os.environ["DatabaseConnxStr"] dbname = os.environ["dbname"] dbschema = os.environ["dbschema"] lcnxn = pyodbc.connect(connxstr) lcursor = lcnxn.cursor() now = datetime.datetime.utcnow() captureTime = now.strftime('%Y-%m-%d %H:%M:%S') l1_stop = perf_counter() trans_status_check = "select trans_status from policy_transactions where trans_status = 'Abort' and id = "+str(transid) lcursor.execute(trans_status_check) aborttrans = lcursor.fetchall() if len(aborttrans) > 0: logging.error("!!! Aborting transaction in progress. ID = "+ str(transid)) user_error_abort = True raise Exception("Abort in progress transaction due to user correction") else: # if not in abort status then update with continuation token queue_comp = "update " + dbschema + ".policy_transactions set trans_status = 'InProgress', continuation_token = '" + str(acl_changes.continuation) + "',acl_count = "+str(acl_changes.aggregate_counters.files_successful) + ", last_updated = '"+ captureTime + "', trans_reason = 'Running for " + str(format(l1_stop-proc_start,'.3f')) + " seconds. ' where id = "+str(transid) logging.info("!!!!! Queue update un progress SQL: "+queue_comp) lcursor.execute(queue_comp) lcnxn.commit() # keep track of failed entries if there are any failed_entries.append(acl_changes.batch_failures) # illustrate the operation by using a small batch_size #acl_change_result = "" try: #acls = 'user::rwx,group::r-x,other::rwx' #acls = 'default:user:1ad1af70-791f-4d61-8bf1-27ccade3342a:rw-,default:user:9e501fc2-c687-4ba5-bfb9-b8afa948cb83:rw-,default:user:02b60873-3213-46aa-8889-8866e693d559:rw-' failed_entries = [] #dir_name = "sample" #logging.info("Raw directory named '{}'.".format(dir_name)) #logging.info("Clean directory named '{}'.".format(urllib.parse.unquote(dir_name))) #directory_client = await filesystem_client.create_directory(dir_name) #dir_name = 'base1/nyctaxidata/green' directory_client = filesystem_client.get_directory_client(dir_name) if trans_mode == 'modify': if pContinuationToken != '': acl_change_result = await directory_client.update_access_control_recursive(acl=acl, continuation_token = pContinuationToken, progress_hook=progress_callback, batch_size=2000) else: acl_change_result = await directory_client.update_access_control_recursive(acl=acl, progress_hook=progress_callback, batch_size=2000) elif trans_mode == 'remove': if pContinuationToken != '': acl_change_result = await directory_client.remove_access_control_recursive(acl=acl, continuation_token = pContinuationToken, progress_hook=progress_callback, batch_size=2000) else: acl_change_result = await directory_client.remove_access_control_recursive(acl=acl, progress_hook=progress_callback, batch_size=2000) else: logging.error('Error during setting ACLs recursively for transaction '+str(transid) + ' due to unknown transaction mode ' + trans_mode) return -2 await directory_client.close() logging.info("Summary: {} directories and {} files were updated successfully, {} failures were counted." .format(acl_change_result.counters.directories_successful, acl_change_result.counters.files_successful, acl_change_result.counters.failure_count)) #if an error was encountered, a continuation token would be returned if the operation can be resumed if acl_change_result.continuation is not None: logging.info("The operation can be resumed by passing the continuation token {} again into the access control method." .format(acl_change_result.continuation)) return acl_change_result.counters.files_successful except AzureError as error: logging.ERROR("aclWorkers: SDK Error whilst setting ACLs recursively: " + error.message + " at line no " + str(sys.exc_info()[-1].tb_lineno)) # if the error has continuation_token, you can restart the operation using that continuation_token if error.continuation_token: if trans_mode == 'modify': acl_change_result = \ await directory_client.update_access_control_recursive(acl=acl, continuation_token=error.continuation_token, progress_hook=progress_callback, batch_size=2000) elif trans_mode == 'remove': await directory_client.remove_access_control_recursive(acl=acl, continuation_token=error.continuation_token, progress_hook=progress_callback, batch_size=2000) else: None await directory_client.close() except Exception as e: logging.error('Error during setting ACLs recursively for transaction '+str(transid) + ' due to ' + str(e) + ' at line no ' + str(sys.exc_info()[-1].tb_lineno) ) if user_error_abort: return -4 else: return -2 # get and display the permissions of the parent directory again #await directory_client.close() #acl_props = await directory_client.get_access_control() #logging.info("New permissions of directory '{}' and its children are {}.".format(dir_name, acl_props['permissions'])) devstage = 'live'
import pytest from app.tools.utils import get_domain_name class TestGetDomainName: @pytest.fixture def item_source_domain_pairs(self, scraped_item_source_data): return [ (itm['url'], src['domain']) for itm, src in scraped_item_source_data ] def test_domain_getter_util(self, item_source_domain_pairs): for url, domain_name in item_source_domain_pairs: result = get_domain_name(url) assert result == domain_name @pytest.mark.parametrize('url', [ 'www.google.com/incomplete.html', 'blog.stackoverflow.com', 'not-a-url', ]) def test_invalid_urls_return_empty_str(self, url): assert get_domain_name(url) == '' def test_exceptions_cause_domain_getter_to_return_none(self, monkeypatch): def mocked_urlparse(): raise ValueError monkeypatch.setattr('app.tools.utils.urlparse', mocked_urlparse) result = get_domain_name('https://www.google.com') assert result is None
import threading from orchestrator.Task import Task class Orchestrator: def __init__(self): self._tasks = [] self._semaphore = threading.Semaphore(2) def run_task(self, task: Task) -> None: self._tasks += [task] task.append_on_finish_event(lambda: self._when_task_is_terminated(task)) task.append_on_error_event(lambda: self._when_task_is_onerror(task)) task.append_on_start_event(lambda: self._when_task_is_started(task)) task.start() def _when_task_is_started(self, task): self._semaphore.acquire() def _when_task_is_terminated(self, task): ## self._tasks.remove(task) self._semaphore.release() def _when_task_is_onerror(self, task): self._semaphore.release() def remove_task(self, task_id): tasks = [] for task in self._tasks: if task["id"] != task_id: tasks += [task] else: task.canceled = True self._tasks = tasks def tasks(self): tasks = [] for task in self._tasks: tasks += [{ "id": task.id(), "description": task.description(), "argument": task.argument(), "type": task.type(), "status": task.status, "message": task.get_message(), "running": task.running, "progress": task.get_progress(), "start_date": task.start_date, "last_update_date": task.last_update_date, "end_date": task.end_date }] return tasks default_orchestrator = Orchestrator()
from django.conf import settings from django.utils.six import string_types from django.utils.translation import ugettext_lazy as _ _DEFAULT_KINDS = { "other": 0, "audit": 1, "edit": 2, "deletion": 3, "note": 4, "email": 5, "warning": 6, "error": 7 } _DEFAULT_KIND_LABELS = { "other": _("other"), "audit": _("audit"), "edit": _("edit"), "deletion": _("deletion"), "note": _("note"), "email": _("email"), "warning": _("warning"), "error": _("error") } def _get_kind_labels(kinds): kind_labels = _DEFAULT_KIND_LABELS.copy() kind_labels.update(getattr(settings, "ANALOG_KIND_LABELS", {})) kind_labels = dict( (KINDS.get(mnemonic, mnemonic), label) for (mnemonic, label) in kind_labels.items() ) for key in list(kind_labels): if isinstance(kind_labels[key], string_types): kind_labels[key] = _(kind_labels[key]) return kind_labels #: A mapping from kind mnemonic (string) to kind ID (integer) KINDS = _DEFAULT_KINDS.copy() KINDS.update(getattr(settings, "ANALOG_KINDS", {})) #: A mapping from kind ID (integer) to label KIND_LABELS = _get_kind_labels(KINDS) KIND_IDS = set(KINDS.values())
# Generated by Django 3.2.13 on 2022-05-10 15:20 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('ask_cfpb', '0039_2022_squash'), ] operations = [ migrations.RemoveField( model_name='answerpage', name='user_feedback', ), ]
## # File: MultiProcUtilTests.py # Author: jdw # Date: 17-Nov-2018 # # Updates: # ## """ """ __docformat__ = "restructuredtext en" __author__ = "John Westbrook" __email__ = "jwest@rcsb.rutgers.edu" __license__ = "Apache 2.0" import logging import random import re import unittest from rcsb.utils.multiproc.MultiProcUtil import MultiProcUtil logging.basicConfig(level=logging.INFO, format="%(asctime)s [%(levelname)s]-%(module)s.%(funcName)s: %(message)s") logger = logging.getLogger() logger.setLevel(logging.INFO) class StringTests(object): """A skeleton class that implements the interface expected by the multiprocessing utility module -- """ def __init__(self, **kwargs): pass def reverser(self, dataList, procName, optionsD, workingDir): """Lexically reverse the characters in the input strings. Flag strings with numerals as errors. Read input list and perform require operation and return list of inputs with successful outcomes. """ _ = optionsD _ = workingDir successList = [] retList1 = [] retList2 = [] diagList = [] skipped = 0 for tS in dataList: if re.search("[8-9]", tS): # logger.info("skipped %r", tS) skipped += 1 continue rS1 = tS[::-1] rS2 = rS1 + tS sumC = 0 for s1 in tS: sumC += ord(s1) - ord(s1) diag = len(rS2) successList.append(tS) retList1.append(rS1) retList2.append(rS2) diagList.append(diag) logger.debug("%s skipped %d dataList length %d successList length %d", procName, skipped, len(dataList), len(successList)) # return successList, retList1, retList2, diagList class MultiProcUtilTests(unittest.TestCase): def setUp(self): self.__verbose = True def tearDown(self): pass def testMultiProcString(self): """""" try: sCount = 10000 dataList = [] for _ in range(sCount): sLength = random.randint(100, 30000) dataList.append("".join(["9"] * sLength)) dataList.append("".join(["b"] * sLength)) # logger.info("Length starting list is %d", len(dataList)) sTest = StringTests() mpu = MultiProcUtil(verbose=True) mpu.set(workerObj=sTest, workerMethod="reverser") # sCount = 300 000 # 334s 4-proc # 281s 8-proc ok, failList, resultList, _ = mpu.runMulti(dataList=dataList, numProc=4, numResults=2, chunkSize=10) # logger.info("Multi-proc %r failures %r result length %r %r", ok, len(failList), len(resultList[0]), len(resultList[1])) self.assertGreaterEqual(len(failList), 1) # self.assertEqual(sCount, len(resultList[0])) self.assertEqual(sCount, len(resultList[1])) self.assertFalse(ok) except Exception as e: logger.exception("Failing with %s", str(e)) self.fail() def suiteMultiProc(): suiteSelect = unittest.TestSuite() suiteSelect.addTest(MultiProcUtilTests("testMultiProcString")) return suiteSelect if __name__ == "__main__": mySuite1 = suiteMultiProc() unittest.TextTestRunner(verbosity=2).run(mySuite1)
"""Logic for comparing DICOM data sets and data sources""" from copy import deepcopy from hashlib import sha256 from typing import Optional, List from pydicom import Dataset, DataElement from pydicom.tag import BaseTag def _shorten_bytes(val: bytes) -> bytes: if len(val) > 16: return b"*%d bytes, hash = %s*" % (len(val), sha256(val).hexdigest().encode()) return val class DataDiff(object): default_elem_fmt = "{elem.tag} {elem.name: <35} {elem.VR}: {value}" def __init__( self, tag: BaseTag, l_elem: Optional[DataElement], r_elem: Optional[DataElement], elem_fmt: str = default_elem_fmt, ): self.tag = tag self.l_elem = deepcopy(l_elem) self.r_elem = deepcopy(r_elem) self.elem_fmt = elem_fmt def _format_elem(self, elem: DataElement) -> str: value = elem.value if isinstance(value, bytes): value = _shorten_bytes(value) return self.elem_fmt.format(elem=elem, value=value) def __str__(self) -> str: res = [] if self.l_elem is not None: res.append("< %s" % self._format_elem(self.l_elem)) if self.r_elem is not None: res.append("> %s" % self._format_elem(self.r_elem)) return "\n".join(res) def diff_data_sets(left: Dataset, right: Dataset) -> List[DataDiff]: """Get list of all differences between `left` and `right` data sets""" l_elems = iter(left) r_elems = iter(right) l_elem = r_elem = None l_done = r_done = False diffs = [] while True: if l_elem is None and not l_done: try: l_elem = next(l_elems) except StopIteration: l_done = True l_elem = None if r_elem is None and not r_done: try: r_elem = next(r_elems) except StopIteration: r_done = True r_elem = None if l_elem is None and r_elem is None: break if l_elem is None: assert r_elem is not None diffs.append(DataDiff(r_elem.tag, l_elem, r_elem)) r_elem = None elif r_elem is None: assert l_elem is not None diffs.append(DataDiff(l_elem.tag, l_elem, r_elem)) l_elem = None elif l_elem.tag < r_elem.tag: diffs.append(DataDiff(l_elem.tag, l_elem, None)) l_elem = None elif r_elem.tag < l_elem.tag: diffs.append(DataDiff(r_elem.tag, None, r_elem)) r_elem = None else: if l_elem.value != r_elem.value or l_elem.VR != r_elem.VR: diffs.append(DataDiff(l_elem.tag, l_elem, r_elem)) l_elem = r_elem = None return diffs
# -*- coding: utf-8 -*- # @Time : DATE:2021/10/7 # @Author : yan # @Email : 1792659158@qq.com # @File : 07_supervoxel_clustering.py import pclpy from pclpy import pcl import numpy as np import sys if __name__ == '__main__': if len(sys.argv) < 2: print("Syntax is: %s <pcd-file> \n" % sys.argv[0], "--NT Dsables the single cloud transform \n" "-v <voxel resolution>\n-s <seed resolution>\n" "-c <color weight> \n-z <spatial weight> \n" "-n <normal_weight>\n") exit() cloud = pcl.PointCloud.PointXYZRGBA() print('Loading point cloud...') if pcl.io.loadPCDFile(sys.argv[1], cloud) == -1: print('"Error loading cloud file!') exit(-1) disable_transform = '--NT' in sys.argv voxel_resolution = 0.008 voxel_res_specified = '-v' in sys.argv if voxel_res_specified: index = sys.argv.index('-v') + 1 voxel_resolution = float(sys.argv[index]) seed_resolution = 0.1 seed_res_specified = '-s' in sys.argv if seed_res_specified: index = sys.argv.index('-s') + 1 seed_resolution = float(sys.argv[index]) color_importance = 0.2 if '-c' in sys.argv: index = sys.argv.index('-c') + 1 color_importance = float(sys.argv[index]) spatial_importance = 0.4 if '-z' in sys.argv: index = sys.argv.index('-z') + 1 spatial_importance = float(sys.argv[index]) normal_importance = 1.0 if '-n' in sys.argv: index = sys.argv.index('-n') + 1 spatial_importance = float(sys.argv[index]) # 使用supervoxels sv = pcl.segmentation.SupervoxelClustering.PointXYZRGBA(voxel_resolution, seed_resolution) if disable_transform: sv.setUseSingleCameraTransform(False) sv.setInputCloud(cloud) sv.setColorImportance(color_importance) sv.setSpatialImportance(spatial_importance) sv.setNormalImportance(normal_importance) supervoxel_clusters = pcl.vectors.map_uint32t_PointXYZRGBA() print('Extracting supervoxels!') sv.extract(supervoxel_clusters) print("Found %d supervoxels" % len(supervoxel_clusters)) viewer = pcl.visualization.PCLVisualizer('3D Viewer') viewer.setBackgroundColor(0, 0, 0) voxel_centroid_cloud = sv.getVoxelCentroidCloud() viewer.addPointCloud(voxel_centroid_cloud, 'voxel centroids') viewer.setPointCloudRenderingProperties(0, 2.0, 'voxel centroids') viewer.setPointCloudRenderingProperties(1, 0.95, 'voxel centroids') labeled_voxel_cloud = sv.getLabeledVoxelCloud() viewer.addPointCloud(labeled_voxel_cloud, 'labeled voxels') viewer.setPointCloudRenderingProperties(1, 0.5, 'labeled voxels') sv_normal_cloud = sv.makeSupervoxelNormalCloud(supervoxel_clusters) # 我们注释了法线可视化,这样图形很容易看到,取消注释可以看到超体素法线 # 事实上,pclpy可视化法线存在bug,我们先注释掉它。 # viewer.addPointCloudNormals(sv_normal_cloud, 1, 0.05, "supervoxel_normals") print('Getting supervoxel adjacency') # supervoxel_adjacency = 0 # std::multimap<std::uint32_t, std::uint32_t>未绑定 # sv.getSupervoxelAdjacency(supervoxel_adjacency) # 为了绘制超体素邻接图,我们需要遍历超体素邻接multimap while not viewer.wasStopped(): viewer.spinOnce(10)
import pybullet as p from time import sleep import pybullet_data physicsClient = p.connect(p.GUI) p.setAdditionalSearchPath(pybullet_data.getDataPath()) p.resetSimulation(p.RESET_USE_REDUCED_DEFORMABLE_WORLD) p.resetDebugVisualizerCamera(4,-40,-30,[0, 0, 0]) p.setGravity(0, 0, -10) tex = p.loadTexture("uvmap.png") planeId = p.loadURDF("plane.urdf", [0,0,-2]) boxId = p.loadURDF("cube.urdf", [1,1,3],useMaximalCoordinates = True) # p.startStateLogging(p.STATE_LOGGING_VIDEO_MP4, "reduced_torus.mp4") cube = p.loadURDF("reduced_torus/reduced_torus.urdf", [1,1,1]) p.changeVisualShape(cube, -1, rgbaColor=[1,1,1,1], textureUniqueId=tex, flags=0) p.setPhysicsEngineParameter(sparseSdfVoxelSize=0.25) p.setRealTimeSimulation(0) while p.isConnected(): p.stepSimulation() p.getCameraImage(320,200) p.setGravity(0,0,-10)
from nltk import word_tokenize, sent_tokenize import networkx as nx import enchant import numpy as np from scipy import stats as st import matplotlib.pyplot as plt from itertools import * from tqdm import tqdm_notebook import re import RAKE from ripser import ripser import spacy from nltk.corpus import brown nlp = spacy.load('en', disable=['parser', 'ner']) """ Load the list of non-mathematical words from the Brown corpus; if not saved, generate this list. """ try: bwords = str(np.load('bwords.npy')) except: cats = brown.categories() cats.remove('learned') nlp.max_length = 10000000 brn = ' '.join(brown.words(categories=cats)) doc = nlp(brn) bwords = ' '.join([w.lemma_.lower() for w in doc]) np.save('bwords.npy', bwords) d = enchant.Dict("en_US") # For spell-checking # List of stop words stop_words = [x for x in RAKE.RanksNLLongStopList() if len(x) > 1 or x == 'a'] stop_words.remove('value') vowels = {'a', 'e', 'i', 'o', 'u', 'y'} def freq_wholelabel(ind_lst, txt): """ Counts frequencies of the words contained in ``ind_lst`` in the text ``txt`` """ freqs = [] for ind in ind_lst: freqs.append(txt.count(ind)) return {k: f for k, f in zip(ind_lst, freqs)} class Concept_Network: """ Class wrapping semantic networks: enables the construction of semantic networks from text. """ def __init__(self): self.index = None self.text = None # text should not change self.windows = None # windows is sliding windows based on text self.dist_mat = None self.cooc_mat = None self.graph = None self.index_labels = None self.timeline = None self.cutoff = None self.bars = [] self.cooc_mat = None self.weight_dist = None def clean(self, textname, n_chapt): """ Cleans a text by the name of ``textname``, which has ``n_chapt`` chapters. Assumes that texts are stored in a Textbooks directory, and each text has an associated folder containing each separate text chapter as a .txt file. """ alltext = [] for i in range(1, n_chapt+1): # Read text with open('Textbooks/{0}/chapter_{1}.txt'.format(textname, i)) as chapter: text = chapter.read() import unicodedata # Text normalization/cleaning text = unicodedata.normalize('NFKD', text).encode('ascii', 'ignore') text = b' '.join(text.split()).decode() text = text.replace('-', ' ') text = nlp(text) # Lemmatization text = ' '.join(w.lemma_ for w in text) sents = sent_tokenize(text) sents = [word_tokenize(s) for s in sents] # replace all strings with numbers with # sents = [[w if not re.search(r"\d+", w) else '#' for w in s] for s in sents] # remove non-alphanumeric sents = [[w for w in s if re.search('[^a-zA-Z-#]+', w) is None] for s in sents] sents = [[w.lower() for w in s] for s in sents] text = sents def quick_check(word): """ Helper function to screen out non-words to cast as variables. Ensures word contains a vowel, spell checks, etc. """ if word == '#': return True elif not vowels.intersection(word): return False elif len(word) <= 2 and word not in stop_words: return False elif 2 < len(word) <= 4 and not d.check(word): return False else: return True # replace all potential variables with VAR text = [[w if quick_check(w) else 'VAR' for w in s] for s in text] alltext += text self.text = list(filter(lambda x: len(x) > 0, alltext)) self.windows = self.text return self.text def capital_lemma(self, spacy_word): """ Helper function that returns the lemmatized version of a word via spacy, but maintains the same capitalization as the original. """ out_word = "" if spacy_word.shape_[0] == "X": out_word += spacy_word.lemma_[0].upper() else: out_word += spacy_word.lemma_[0] out_word += spacy_word.lemma_[1:] return out_word def clean_notlower(self, textname, n_chapt): """ Auxiliary text cleaning function (similar to ``self.clean``) that does not uniformly make words lower-cased; maintains same capitalization as original text. """ alltext = [] for i in range(1, n_chapt+1): with open('Textbooks/{0}/chapter_{1}.txt'.format(textname, i)) as chapter: text = chapter.read() import unicodedata text = unicodedata.normalize('NFKD', text).encode('ascii', 'ignore') text = b' '.join(text.split()).decode() text = text.replace('-', ' ') text = nlp(text) text = ' '.join(self.capital_lemma(w) for w in text) sents = sent_tokenize(text) sents = [word_tokenize(s) for s in sents] # replace all things with numbers with # sents = [[w if not re.search(r"\d+", w) else '#' for w in s] for s in sents] # remove non-alphanumeric sents = [[w for w in s if re.search('[^a-zA-Z-#]+', w) is None] for s in sents] text = sents def quick_check(word): """ Helper function to screen out non-words to cast as variables. Ensures word contains a vowel, spell checks, etc. """ if word == '#': return True elif not vowels.intersection(word): return False elif len(word) <= 2 and word not in stop_words: return False elif 2 < len(word) <= 4 and not d.check(word): return False else: return True # replace all potential variables with VAR text = [[w if quick_check(w) else 'VAR' for w in s] for s in text] alltext += text self.text = list(filter(lambda x: len(x) > 0, alltext)) self.windows = self.text return self.text def RAKE_keywords(self): """ Extracts the RAKE keywords from the text """ # Additional, non-mathematically-contentful stop-words to consider # in the RAKE run extra_sl = ['example', 'counterexample', 'text', 'texts', 'undergraduate', 'chapter', 'definition', 'notation', 'proof', 'exercise', 'result'] sl = nlp(' '.join(stop_words + extra_sl)) sl = [w.lemma_ for w in sl] rake = RAKE.Rake(sl + ['VAR', '#', '-pron-', '-pron']) text = '. '.join([' '.join(x) for x in self.text]) # Run RAKE kws = rake.run(text, minCharacters=3, maxWords=4, minFrequency=5) keyphrases = [' '.join([j for j in k[0].split(' ') if j not in {'var', '#', '-pron-', '-pron'}]) for k in kws] keyphrases = set([k for k in keyphrases if len(k) > 0]) index = list(map(lambda x: x.split(), keyphrases)) self.index = index return index # determines order of first occurrence of index terms. # prunes out the index elements which do not occur within the text # (i.e., within a single sentence), and orders them w.r.t. first occurrence # very very important to run before doing anything else def occurrence(self, debug=False, n_allowed=None): """ Does two things: (1) Ensures that all the extracted index terms actually appear within the text (so we don't have any extracted nodes with no data) (2) Goes through the text to determine the order of introduction of concepts, so that the resulting co-occurence matrices have indices ordered by introduction. """ sentences = self.text index = list(map(set, self.index)) index_labels = np.array(list(map(lambda i: ' '.join(i), self.index))) first_occs = [] # sentence number of first term occurrence counts = [] conn_text = '. '.join([' '.join(s) for s in sentences]) for ind in index_labels: for sent, n in zip(sentences, range(1, len(sentences)+1)): if ind in ' '.join(sent): first_occs.append(n) break else: first_occs.append(0) # count how many times index term appears in the text counts.append(conn_text.count(ind)) counts = sorted(list(zip(index_labels, counts)), key=lambda x: x[1], reverse=True) ordered = [c[0] for c in counts] first_occs = np.array(first_occs) nonzeros = np.nonzero(first_occs)[0] zeros = np.where(first_occs == 0)[0] # Yield of how many extracted concepts were actually found print("Yield percent:", len(nonzeros)/len(first_occs)) if debug: print(index_labels[zeros]) # Remove terms which do not occur index = np.array(index)[nonzeros] index_labels = index_labels[nonzeros] # Sort remaining into order of introduction sort = np.argsort(first_occs[nonzeros]) index = index[sort] index_labels = index_labels[sort] index_labels = np.array([x for x in index_labels if x in ordered[:n_allowed]]) index = np.array(list(map(lambda i: set(i.split()), index_labels))) self.first_occs = np.sort(first_occs[nonzeros]) self.index_labels = index_labels self.index = index def sliding_window(self, lst, size): """ Generates a list of text sliding windows of size ``size`` from a sentence, represented as a list of words ``lst``. Unused in analysis, but could be useful if you are interested in co-occurence on a smaller scale than sentence-level. """ windows = [] for i in range(0, max(1, len(lst)-size+1)): b, e = i, min(i+size, len(lst)) windows.append(lst[b:e]) return windows def sliding_window_constr(self, size): """ Gets all sliding windows of size ``size`` from the text. """ windows = [] if self.text is not None: for sent in self.text: windows += self.sliding_window(sent, size) self.windows = windows def cooc_2d(self): """ Calculates the number of co-occurrences of the index phrases in the text (output as the matrix ``cooc_mat``), as well as records the first time a co-occurrence occurred in the text (``dist_mat``). """ dim = len(self.index_labels) cooc_mat = np.zeros((dim, dim)) first_cooc = np.zeros((dim, dim)) sentences = self.windows timeline = {} for sent, num in tqdm_notebook(list(zip(sentences, range(1, len(sentences)+1)))): joined_sent = ' '.join(sent) for i in range(dim): if self.index_labels[i] in joined_sent: cooc_mat[i, i] += 1 if first_cooc[i, i] == 0: first_cooc[i, i] = num for j in range(i+1, dim): if self.index_labels[j] in joined_sent: cooc_mat[(np.array([i, j]), np.array([j, i]))] += 1 if first_cooc[i, j] == 0: first_cooc[(np.array([i, j]), np.array([j, i]))] = num timeline[tuple(self.index_labels[np.array([i, j])])] = num first_cooc[first_cooc == 0] = np.inf self.cutoff = len(sentences) self.dist_mat = first_cooc self.cooc_mat = cooc_mat self.timeline = timeline # make graph G = nx.from_numpy_array(cooc_mat) G.remove_edges_from(nx.selfloop_edges(G)) name_mapping = {i: label for i, label in enumerate(self.index_labels)} nx.relabel_nodes(G, name_mapping, copy=False) self.graph = G return cooc_mat, first_cooc, timeline def cooc_for_text(self, text_name, nchapts, n_allowed=None, groups=None): """ Wrapper function that effectively does everything - clean text, extract the RAKE keyphrases, calculate occurrence within the texts, rank the keyphrases based off the RAKE score and inverse Brown frequency, and calculate co-occurrence throughout the text. """ # Clean the text self.clean(text_name, nchapts) # Extract RAKE keyphrases self.RAKE_keywords() # Calculate occurrence of the keyphrases self.occurrence() brown_whole = freq_wholelabel(self.index_labels, bwords) # Do augmented rake-IDF scoring # first re-run rake, just for convenience extra_sl = ['example', 'counterexample', 'text', 'texts', 'undergraduate', 'chapter', 'definition', 'notation', 'proof', 'exercise', 'result'] sl = nlp(' '.join(stop_words + extra_sl)) sl = [w.lemma_ for w in sl] rake = RAKE.Rake(sl + ['VAR', '#', '-pron-']) text = '. '.join([' '.join(x) for x in self.text]) kws = rake.run(text, minCharacters=3, maxWords=4, minFrequency=5) keyphrases = [(' '.join([j for j in k[0].split(' ') if j not in {'var', '#', '-pron-', '-pron'}]), k[1]) for k in kws] keyphrases = [k for k in keyphrases if len(k[0]) > 0] rake_dict = {} # give each the maximal associated score for k, v in keyphrases: if k not in rake_dict.keys() or rake_dict[k] < v: rake_dict[k] = v # now calculate scores scores = [] for ind in self.index_labels: score = rake_dict[ind] # Add one to prevent divide by zero errors brownscore = brown_whole[ind] + 1 score /= brownscore scores.append((ind, score)) # take the top half of all scored keyphrases phrases = sorted(scores, key=lambda x: x[1], reverse=True) phrases = phrases[:int(len(phrases)/2)] index = list(map(lambda x: x[0].split(), phrases)) self.index = index self.occurrence() # then calculate cooccurence t = self.cooc_2d() return t def cooc_for_text_notlower(self, text_name, nchapts, n_allowed=None, groups=None): """ Same thing as ``self.cooc_for_text``, but without forcing lower case. """ self.clean_notlower(text_name, nchapts) self.RAKE_keywords() self.occurrence() brown_whole = freq_wholelabel(self.index_labels, bwords) # Do augmented rake-IDF scoring # first re-run rake, just for convenience extra_sl = ['example', 'counterexample', 'text', 'texts', 'undergraduate', 'chapter', 'definition', 'notation', 'proof', 'exercise', 'result'] sl = nlp(' '.join(stop_words + extra_sl)) sl = [w.lemma_ for w in sl] rake = RAKE.Rake(sl + ['VAR', '#', '-pron-']) text = '. '.join([' '.join(x) for x in self.text]) kws = rake.run(text, minCharacters=3, maxWords=4, minFrequency=5) keyphrases = [(' '.join([j for j in k[0].split(' ') if j not in {'var', '#', '-pron-', '-pron'}]), k[1]) for k in kws] keyphrases = [k for k in keyphrases if len(k[0]) > 0] rake_dict = {} # give each the maximal associated score for k, v in keyphrases: if k not in rake_dict.keys() or rake_dict[k] < v: rake_dict[k] = v # now calculate scores scores = [] for ind in self.index_labels: score = rake_dict[ind] brownscore = brown_whole[ind] + 1 score /= brownscore scores.append((ind, score)) # take the top half phrases = sorted(scores, key=lambda x: x[1], reverse=True) phrases = phrases[:int(len(phrases)/2)] index = list(map(lambda x: x[0].split(), phrases)) self.index = index self.occurrence() # then calculate cooccurence t = self.cooc_2d() return t def cont_config_graph(self): """ Generates a continuous configuration null graph with same degree distribution/strength distribution as the extracted semantic network. See paper for more details. Can only be run after runnin ``self.cooc_for_text``. """ nodes = list(self.graph.nodes) degs = dict(self.graph.degree()) dT = sum(degs.values()) strengths = {n: sum([x[2]['weight'] for x in self.graph.edges(n, data=True)]) for n in nodes} sT = sum(strengths.values()) # see if we've already computed the best-fit of the normed weights if self.weight_dist is not None: dist = self.weight_dist else: # calculate normed weights to determine distribution parameters normedweights = [] for x in self.graph.edges(data=True): s0, s1 = strengths[x[0]], strengths[x[1]] d0, d1 = degs[x[0]], degs[x[1]] s_uv = s0*s1/sT d_uv = d0*d1/dT normedweights.append(x[2]['weight']*d_uv/s_uv) # Candidate distributions DISTRIBUTIONS = [st.pareto, st.lognorm, st.levy, st.dweibull, st.burr, st.fisk, st.loggamma, st.loglaplace, st.powerlaw] results = [] normedweights = np.array(normedweights) # find the best fit for dist in DISTRIBUTIONS: try: # attempt fit pars = dist.fit(normedweights) mle = dist.nnlf(pars, normedweights) results.append((mle, dist.name, pars)) except: pass best_fit = sorted(results, key=lambda d: d[0]) print(best_fit[0]) dist = getattr(st, best_fit[0][1])(*best_fit[0][2]) self.weight_dist = dist # construct the null graph null_graph = np.zeros((len(nodes), len(nodes))) for i in range(0, len(nodes)): for j in range(i+1, len(nodes)): d_uv = degs[nodes[i]]*degs[nodes[j]]/dT if np.random.rand() < d_uv: s_uv = strengths[nodes[i]]*strengths[nodes[j]]/sT xi = self.weight_dist.rvs() null_graph[i, j] = xi*s_uv/d_uv null_graph[j, i] = xi*s_uv/d_uv return null_graph def random_index_null(self, return_index=False, return_otherstuff=False): """ Generates a random index null filtration for the text with a set of randomly-selected words from the body of the text. See paper for more details. """ tmp_index = self.index.copy() tmp_index_labels = self.index_labels.copy() tmp_cutoff = self.cutoff tmp_first_cooc = self.dist_mat.copy() tmp_cooc_tensor = self.cooc_mat.copy() tmp_timeline = self.timeline.copy() tmp_G = self.graph.copy() tmp_first_occs = self.first_occs.copy() extra_sl = ['example', 'counterexample', 'text', 'texts', 'undergraduate', 'chapter', 'definition', 'notation', 'proof', 'exercise', 'result'] sl = nlp(' '.join(stop_words + extra_sl)) sl = [w.lemma_ for w in sl] textwds = set(sum(self.text, [])) textwds.difference_update(sl + ['VAR', '#', '-pron-', '-pron']) # random_index = np.random.choice(list(textwds), size=len(tmp_index), replace=False) self.index_labels = random_index.copy() self.index = list(map(lambda x: x.split(), self.index_labels)) self.occurrence() self.windows = self.text t = self.cooc_2d() new_first_occs = self.first_occs.copy() new_cutoff = self.cutoff self.index = tmp_index self.index_labels = tmp_index_labels self.first_occs = tmp_first_occs self.graph = tmp_G self.cutoff = tmp_cutoff self.dist_mat = tmp_first_cooc self.cooc_mat = tmp_cooc_tensor self.timeline = tmp_timeline if return_index: return t, random_index if return_otherstuff: return t, new_first_occs, new_cutoff, random_index else: return t def rnd_sent_ord_null(self): """ Generates a null filtration matrix for the text with the same index, but with sentences randomly shuffled. See paper for more details. """ tmp_index = self.index.copy() tmp_index_labels = self.index_labels.copy() tmp_first_cooc = self.dist_mat.copy() tmp_cooc_tensor = self.cooc_mat.copy() tmp_timeline = self.timeline.copy() tmp_G = self.graph.copy() tmp_first_occs = self.first_occs.copy() tmp_text = self.text.copy() # shuffle the text np.random.shuffle(self.text) self.windows = self.text t = self.cooc_2d() new_cutoff = self.cutoff self.index = tmp_index self.index_labels = tmp_index_labels self.first_occs = tmp_first_occs self.graph = tmp_G self.dist_mat = tmp_first_cooc self.cooc_mat = tmp_cooc_tensor self.timeline = tmp_timeline self.text = tmp_text return t, new_cutoff def oaat_filtration(self, dist_mat): """ Takes as input a filtratino matrix ``dist_mat`` which does not necessarily introduce edges one at a time (i.e., with sentence-level granularity, so their may be some redundancy of values in the matrix) and returns a filtration which does so. Useful for "unfurling" a filtration. See paper for more details. """ oaat_mat = np.full_like(dist_mat, np.inf) maxval = np.max(dist_mat[np.isfinite(dist_mat)]) # max value count = 1 rel_timeline = {} # iterate sentence by sentence for v in range(1, int(maxval) + 1): indices = list(zip(*np.where(dist_mat == v))) # ensure we change (i, j) and (j, i) spots simultaneously indices = list(set(tuple(sorted(i)) for i in indices)) nodes = [x for x in indices if x[0] == x[1]] edges = [x for x in indices if x[0] != x[1]] # randomly shuffle order of introduction for oaat np.random.shuffle(nodes) np.random.shuffle(edges) # introduce all nodes first, in random order for node in nodes: oaat_mat[node] = count rel_timeline[count] = self.index_labels[node[0]] count += 1 # then introduce edges for edge in edges: for ind in [edge, tuple(reversed(edge))]: oaat_mat[ind] = count rel_timeline[count] = (self.index_labels[ind[0]], self.index_labels[ind[1]]) count += 1 return oaat_mat, count, rel_timeline def node_ordered_filtration(self): """ Creates a node-ordered filtration, where nodes and all their edges to previously-introduced nodes are added in order of node introduction, and for any given node, edges are added in random order. See paper for more details. """ nd_dist_mat = np.full_like(self.dist_mat, np.inf) fos = sorted(set(self.first_occs)) # unique values so we can randomize addition count = 1 introduced_inds = [] # loop through values in first occurrences for v in fos: inds = np.where(self.first_occs == v)[0] # randomly shuffle if there are multiple - if introduced in the same sentence, # we want a random order np.random.shuffle(inds) for i in inds: introduced_inds.append(i) nd_dist_mat[i, i] = count count += 1 # go through all the previously-introduced indices/concepts allowed_prev = np.array(introduced_inds[:-1]) np.random.shuffle(allowed_prev) # and introduce connections with those previous ones in a random order for j in allowed_prev: if self.dist_mat[i, j] != np.inf: nd_dist_mat[i, j] = count nd_dist_mat[j, i] = count count += 1 return nd_dist_mat, count def rnd_edge_filtration(self): """ Creates a random edge filtration, in which edges from the final network are added in a random order. See paper for more details. """ G = self.graph nodes = list(G.nodes) edges = list(G.edges) np.random.shuffle(edges) A = np.full((len(nodes), len(nodes)), np.inf) rel_timeline = {} count = 1 for edge in edges: i, j = nodes.index(edge[0]), nodes.index(edge[1]) # make sure corresponding nodes are introduced prior to introducing edge for ind in [i, j]: if A[ind, ind] == np.inf: A[ind, ind] = count count += 1 A[i, j] = count A[j, i] = count rel_timeline[count] = edge count += 1 return A, count, rel_timeline def get_barcode(self, filt_mat, maxdim=2): """ Calculates the persistent homology for a given filtration matrix ``filt_mat``, default dimensions 0 through 2. Wraps ripser. """ b = ripser(filt_mat, distance_matrix=True, maxdim=maxdim)['dgms'] return list(zip(range(maxdim+1), b)) """ Old unused code regarding pointwise mutual information as a potential alternative for judging relatedness of keyphrases/index phrases/concepts # def PPMI(self): # if self.cooc_mat is None: # raise ValueError('No cooccurrence matrix') # pmi = np.zeros((len(self.cooc_mat), len(self.cooc_mat))) # for i in range(len(pmi)): # for j in range(i, len(pmi)): # num_i, num_j = self.cooc_mat[i, i], self.cooc_mat[j, j] # num_cooc = self.cooc_mat[i, j] # N = len(self.windows) # number of sentences # npmi_val = np.log(num_cooc*N/(num_i*num_j))/(-np.log(num_cooc/N)) # pmi[i, j] = npmi_val # pmi[j, i] = npmi_val # pmi[np.isnan(pmi)] = 0 # pmi[pmi <= 0] = 0 # return pmi # def PPMI_graph(self): # m = self.PPMI() # graph = nx.from_numpy_array(m) # mapping = {i: label for i, label in enumerate(self.index_labels)} # nx.relabel_nodes(graph, mapping, copy=False) # graph.remove_edges_from(nx.selfloop_edges(graph)) # return graph # def PPMI_filtration(self): # m = self.PPMI() # pmi_dis_mat = self.dist_mat.copy() # pmi_dist_mat[m <= 0] = np.inf # return pmi_dist_mat """ """ Old unused code for a topological distance filtration null model # topological distance filtration; adds nodes in by distance from first-introduced # concept, where edge distance = 1/weight, since weight denotes strength. # at each step, adds each node's edges to already-added nodes *only* in order of decreasing # weight - from strongest to weakest connections # some element of stochasticity due to ordering for equidistant/equal-weight nodes/edges def topo_dist_filtration(self): filt_mat = np.full((len(self.index_labels), len(self.index_labels)), np.inf) # eventual filtration # edge pool edges = set(self.graph.edges) all_nodes = list(self.graph.nodes) # nodes that have been added already added_nodes = {self.index_labels[0]} # get shortest path distances: dists = nx.single_source_dijkstra_path_length(self.graph, source=self.index_labels[0], weight=lambda u, v, d: 1/d['weight'] if d['weight'] != 0 else None) # all possible distance values - necessary for randomization in case of equality vals = sorted(set(dists.values()))[1:] n = 1 for val in vals: # get nodes with the given distance value, randomly shuffle them nodes = [n for n in dists.keys() if dists[n] == val] np.random.shuffle(nodes) for node in nodes: # add node, get the edges associated with the added nodes added_nodes.add(node) # add node birth to filtration matrix filt_mat[all_nodes.index(node), all_nodes.index(node)] = n n += 1 # now look at the allowed edges allowed_edges = [e for e in edges if e[0] in added_nodes and e[1] in added_nodes] edges.difference_update(allowed_edges) # get unique weight values - again important for randomization weight_vals = sorted(set([self.graph.edges[ae]['weight'] for ae in allowed_edges]), reverse=True) for wv in weight_vals: wv_edges = [e for e in allowed_edges if self.graph.edges[e]['weight'] == wv] np.random.shuffle(wv_edges) for edge in wv_edges: i, j = all_nodes.index(edge[0]), all_nodes.index(edge[1]) filt_mat[i, j] = n filt_mat[j, i] = n n += 1 return filt_mat, n """ """ Old unused code for a connected filtration (where edges contributed to a single connected component). May be incorrect. # creates a filtration matrix where, starting from a random node, edges are added # that only contribute to the single connected component (until the end, when the # stragglers are added in) # old and not used # def connected_filtration(self): # G = self.graph # nodes = list(G.nodes) # edges = list(G.edges) # first_node = np.random.choice(nodes) # allowed_nodes = {first_node} # A = np.full((len(nodes), len(nodes)), np.inf) # n = 1 # value we set the edge to; increment after each one # while edges != []: # allowed_edges = list(filter(lambda e: not set(e).isdisjoint(allowed_nodes), edges)) # if allowed_edges == []: # allowed_edges = edges # edge = random.choice(allowed_edges) # edges.remove(edge) # allowed_nodes.update(set(edge)) # i, j = nodes.index(edge[0]), nodes.index(edge[1]) # A[i, j] = n # A[j, i] = n # n += 1 # for i in range(len(nodes)): # A[i, i] = 0 # print("Number of edges: " + str(n) + " (for filtration cutoff)") # return A, n """ """ Old unused code for a degree filtration, where nodes are added in order of degree and their edges are added in order of decreasing degree (so "strongest"/"most important" connections and topics are added earlier) # creates a filtration matrix based on degree of nodes # adds nodes in order of decreasing degree, and edges in order of decreasing weight def degree_filtration(self): G = self.graph nodes = list(G.nodes) edges = set(G.edges(data='weight')) degs = sorted(list(dict(nx.degree(G)).items()), key=lambda x: x[1], reverse=True) A = np.full((len(nodes),len(nodes)), np.inf) n = 1 #print(degs) while len(edges) > 0: node = degs.pop(0)[0] allowed_edges = list(filter(lambda e: node in e, edges)) edges = edges.difference(set(allowed_edges)) # random ordering allowed_edges = sorted(allowed_edges, key=lambda x: x[2], reverse=True) #print(allowed_edges) for edge in allowed_edges: i, j = nodes.index(edge[0]), nodes.index(edge[1]) A[i, j] = n A[j, i] = n n += 1 for i in range(len(nodes)): A[i, i] = 0 return A, n """ """ Old unused code for plotting barcodes, and annotating with the words/edges representing the born and dead cycles. def plot_barcode(self, bars, dims=[1,2], length=None, k=None, labels=None): plt.figure(figsize=(12/2.54, 4), dpi=300) colors = ['b', 'c', 'g'] count = 1 if length is not None: cutoff = length elif labels is not None: cutoff = max(labels.keys()) + 1 else: cutoff = self.cutoff bars = dict(bars) has_inf = False # notes whether there are infinitely-persisting cycles for d in dims: try: bn = bars[d] except KeyError: print('Dimension not in barcode!') color = colors.pop(0) #better not have any more than 3 dimensions bn = sorted(bn, key=lambda x:x[0]) for b, i in zip(bn, range(len(bn))): if b[1] == np.inf: has_inf = True b = (b[0], 1.5*cutoff) # arbitrary, so it overhangs if i == 0: plt.plot(b, [count, count], color=color, label='Dimension {}'.format(d)) else: plt.plot(b, [count, count], color=color, label=None) if labels == 'edge': if b[1] - b[0] > cutoff/10 or b[1] == 1.5*cutoff: f = lambda e: e[0] + '->' + e[1] edge_1 = self.rel_timeline[b[0]] plt.annotate(f(edge_1), (b[0]-1, count-0.4), horizontalalignment='right',fontsize=8) if b[1] != 1.5*cutoff: edge_2 = self.rel_timeline[b[1]] plt.annotate(f(edge_2), (b[1]+1, count-0.4), horizontalalignment='left',fontsize=8) elif labels != None: # requires a dict of edges if b[1] - b[0] > cutoff/10 or b[1] == 1.5*cutoff: f = lambda e: e[0] + '->' + e[1] edge_1 = labels[b[0]] plt.annotate(f(edge_1), (b[0]-1, count-0.4), horizontalalignment='right',fontsize=8) if b[1] != 1.5*cutoff: edge_2 = labels[b[1]] plt.annotate(f(edge_2), (b[1]+1, count-0.4), horizontalalignment='left',fontsize=8) count += 1 if has_inf: plt.xlim(0, 1.1*cutoff) #plt.axvline(x=cutoff, color='r', linestyle='--', label='End of Filtration') if k is not None: plt.axvline(x=k, color='m', linestyle='--', label='End of Connected Component') plt.legend(loc='lower right', fontsize=8) plt.show() """ """ Old, unused code wrapping barcode generation and plot for the expositional network # Plots the barcode for the expositional ordering network def plot_expos_barcode(self, dims=[1,2], labels='edge'): # if self.ph_dict exists, it'll use that; otherwise, it'll make it bars, _ = self.get_barcode(dims=dims) self.plot_barcode(bars, dims=dims, labels=labels) """
""" Contains the views and routes used by the Flask-webserver. """ from flask import (render_template, send_from_directory, Response, session, redirect, request, url_for, flash) from .app import app import os import functools from playhouse.flask_utils import object_list, get_object_or_404 from .models import Entry from .logic import get_static_graph_data, get_global_data_config # pylint: disable=unused-argument @app.errorhandler(404) def not_found(exc): """ Called when a resource could not be found - a 404 has been raised. """ return Response("<h3>Not found</h3>"), 404 # pylint: enable=unused-argument def login_required(fn): """ A decorator to be used on routes that require the user to be logged in. """ @functools.wraps(fn) def inner(*args, **kwargs): """ The inner function of the decorator. """ if session.get("logged_in"): return fn(*args, **kwargs) return redirect(url_for("login", next=request.path)) return inner @app.context_processor def dropdown_processor(): """ Context processor that makes the get_dropdown_data function available to all templates. """ def get_dropdown_data(): """ Returns dropdown data. """ return get_global_data_config() return dict(get_dropdown_data=get_dropdown_data) @app.route("/favicon.ico") def favicon(): """ Route in charge of finding the favicon.ico. """ return send_from_directory(os.path.join(app.root_path, "static", "img"), "favicon.ico", mimetype="image/vnd.microsoft.icon") @app.route("/login", methods=["GET", "POST"]) def login(): """ Route for logging in. """ next_url = request.args.get("next") or request.form.get("next") if request.method == "POST" and request.form.get("password"): password = request.form.get("password") if password == app.config["ADMIN_PASSWORD"]: session["logged_in"] = True session.permanent = True flash("You are now logged in.", "success") return redirect(next_url or url_for("index")) else: flash("Incorrect password.", "danger") return render_template("login.html", next_url=next_url) @app.route("/logout", methods=["GET", "POST"]) def logout(): """ Route for logging out. """ if request.method == "POST": session.clear() return redirect(url_for("login")) return render_template("logout.html", page_title="Log out") @app.route("/about") def about(): """ Renders the about page. """ return render_template("about.html", page_title="About") @app.route("/") @app.route("/index") def index(): """ Renders the index page. """ return render_template("index.html") @app.route("/live") def live(): """ Renders the live page. """ return render_template("live.html", replay_available=False, page_title="Live") @app.route("/map") def map(): """ Renders a live map page. """ return render_template("map.html", page_title="Map") @app.route("/graph/<data_id>") def graph(data_id): """ Renders the graph page using a ``data_id``. """ json_data = get_static_graph_data(data_id, force=True) return render_template("graph.html", graph_data=json_data, data_id=data_id, replay_available=True, page_title="Graph") @app.route("/replay/<data_id>") def replay(data_id): """ Renders the replay page using a ``data_id``. """ return render_template("replay.html", data_id=data_id, page_title="Replay") @app.route("/blog/") @app.route("/blog/index") def blog_index(): """ Renders the index of the blog. """ query = Entry.public().order_by(Entry.timestamp.desc()) return object_list("blog_index.html", query, check_bounds=False, page_title="Blog") @app.route("/blog/create", methods=["GET", "POST"]) @login_required def blog_create(): """ Renders the 'create an entry' page for the blog. """ if request.method == "POST": if request.form.get("title") and request.form.get("content"): # pylint: disable=no-member entry = Entry.create( title=request.form["title"], content=request.form["content"], published=request.form.get("published") or False) # pylint: enable=no-member flash("Entry created successfully.", "success") if entry.published: return redirect(url_for("blog_detail", slug=entry.slug)) else: return redirect(url_for("blog_edit", slug=entry.slug)) else: flash("Title and Content are required.", "danger") return render_template("blog_create.html", page_title="Create blog entry") @app.route("/blog/drafts") @login_required def blog_drafts(): """ Renders a page with entry drafts. """ query = Entry.draft().order_by(Entry.timestamp.desc()) return object_list("blog_index.html", query, check_bounds=False, page_title="Drafts") @app.route("/blog/detail/<slug>") @app.route("/blog/<slug>") def blog_detail(slug): """ Renders a blog entry. """ if session.get("logged_in"): # pylint: disable=no-member query = Entry.select() # pylint: enable=no-member else: query = Entry.public() entry = get_object_or_404(query, Entry.slug == slug) return render_template("blog_detail.html", entry=entry, page_title=entry.title) @app.route("/blog/<slug>/edit", methods=["GET", "POST"]) @login_required def blog_edit(slug): """ Renders the edit page of a blog entry. """ entry = get_object_or_404(Entry, Entry.slug == slug) if request.method == "POST": if request.form.get("title") and request.form.get("content"): entry.title = request.form["title"] entry.content = request.form["content"] entry.published = request.form.get("published") or False entry.save() flash("Entry saved successfully.", "success") if entry.published: return redirect(url_for("blog_detail", slug=entry.slug)) else: return redirect(url_for("blog_edit", slug=entry.slug)) else: flash("Title and Content are required.", "danger") return render_template("blog_edit.html", entry=entry, page_title="Edit entry")
#!/usr/bin/env python # coding: utf-8 import os import sys import multiprocessing as mp import threading import time import pandas as pd import numpy as np import scipy.stats as st from tqdm import tqdm #sys.path.append('./../dgonza26/infinity-mirror') sys.path.append('./../..') from src.graph_comparison import GraphPairCompare from src.graph_stats import GraphStats from src.utils import load_pickle, ColorPrint def compute_graph_stats(root): graph_stats = [GraphStats(graph=node.graph, run_id=1) for node in [root] + list(root.descendants)] return graph_stats def absolute(graph_stats): for gs in graph_stats[1:]: comparator = GraphPairCompare(graph_stats[0], gs) dist = comparator.js_distance() yield dist def sequential(graph_stats): prev = graph_stats[0] for curr in graph_stats[1:]: comparator = GraphPairCompare(prev, curr) prev = curr dist = comparator.js_distance() yield dist def absolute_js(graph_stats): abs_js = [x for x in absolute(graph_stats)] return abs_js def sequential_js(graph_stats): seq_js = [x for x in sequential(graph_stats)] return seq_js def length_chain(root): return len(root.descendants) def flatten(L): return [item for sublist in L for item in sublist] def mkdir_output(path): if not os.path.isdir(path): try: os.mkdir(path) except OSError: print('ERROR: could not make directory {path} for some reason') return def compute_stats(js): padding = max(len(l) for l in js) for idx, l in enumerate(js): while len(js[idx]) < padding: js[idx] += [np.NaN] mean = np.nanmean(js, axis=0) ci = [] for row in np.asarray(js).T: ci.append(st.t.interval(0.95, len(row)-1, loc=np.mean(row), scale=st.sem(row))) return np.asarray(mean), np.asarray(ci) def construct_table(abs_js, seq_js, model): if abs_js != []: abs_mean, abs_ci = compute_stats(abs_js) abs_lower = abs_ci[:, 0] abs_upper = abs_ci[:, 1] else: abs_mean = [] abs_lower = [] abs_upper = [] if seq_js != []: seq_mean, seq_ci = compute_stats(seq_js) seq_lower = seq_ci[:, 0] seq_upper = seq_ci[:, 1] else: seq_mean = [] seq_lower = [] seq_upper = [] gen = [x + 1 for x in range(len(abs_mean))] rows = {'model': model, 'gen': gen, 'abs_mean': abs_mean, 'abs-95%': abs_lower, 'abs+95%': abs_upper, 'seq_mean': seq_mean, 'seq-95%': seq_lower, 'seq+95%': seq_upper} df = pd.DataFrame(rows) return df def get_filenames(base_path, dataset, models): filenames = [] print(f'loading {dataset} {models[0]}') for model in models: path = os.path.join(base_path, dataset, model) for subdir, dirs, files in os.walk(path): for filename in files: if 'seq' in filename and 'rob' not in filename: #print(f'loading {filename}') filenames.append(os.path.join(subdir, filename)) # yield load_pickle(os.path.join(subdir, filename)) ColorPrint.print_bold(f"Found {len(filenames)} graph files to be loaded.") return filenames def load_graph(filename): # todo: ask about the slice root = load_pickle(filename) return root def parallel_thing(root): graph_stats = compute_graph_stats(root) local_abs_js = absolute_js(graph_stats) local_seq_js = sequential_js(graph_stats) return [local_abs_js, local_seq_js] def driver(): pass if __name__ == '__main__': base_path = '/data/infinity-mirror' dataset = 'eucore' models_list = ['BTER'] num = 10 for model in models_list: models = [model] output_path = os.path.join(base_path, dataset, models[0], 'jensen-shannon') mkdir_output(output_path) filenames = get_filenames(base_path, dataset, models) graphs_list = [] results_lock = threading.Lock() # pandas dict variables abs_js = [] seq_js = [] read_pbar = tqdm(len(filenames), desc="Reading Files", position=0, leave=False) work_pbar = tqdm(len(filenames), desc="Processing Files", position=1, leave=True) active_reads_Lock = threading.Lock() active_reads = 0 pending_work_Lock = threading.Lock() pending_work = 0 active_work_Lock = threading.Lock() active_work = 0 def read_update(result): global active_reads global pending_work global graphs_list with active_reads_Lock: active_reads -= 1 with pending_work_Lock: pending_work += 1 graphs_list.append(result) read_pbar.update() def work_update(result): # store results in global lists with results_lock: global abs_js global seq_js #global M abs_js.append(result[0]) seq_js.append(result[1]) # update work status variables global active_work with active_work_Lock: active_work -= 1 work_pbar.update() work_pool = mp.Pool(num) with mp.Pool(num) as read_pool: while filenames or graphs_list: if active_reads + pending_work + active_work <= num: if filenames: filename = filenames.pop(0) # take the first item active_reads += 1 read_pool.apply_async(load_graph, [filename], callback=read_update) # graphs_list.append(read_update(load_graph(filename))) for idx, graph in enumerate(graphs_list): active_work += 1 work_pool.apply_async(parallel_thing, [graph], callback=work_update) graphs_list.pop(idx) pending_work -= 1 else: for idx, graph in enumerate(graphs_list): active_work += 1 work_pool.apply_async(parallel_thing, [graph], callback=work_update) graphs_list.pop(idx) pending_work -= 1 #ColorPrint.print_blue(f'Sleeping {active_reads}, {pending_work}, {active_work}') time.sleep(10) # wait until everything is off of the queue while active_work > 0: time.sleep(num) work_pool.close() df = construct_table(abs_js, seq_js, models[0]) df.to_csv(f'{output_path}/{dataset}_{models[0]}_js.csv', float_format='%.7f', sep='\t', index=False)
# Time: O(n) # Space: O(1) # 995 # In an array A containing only 0s and 1s, a K-bit flip consists of choosing a (contiguous) subarray # of length K and simultaneously changing every 0 in the subarray to 1, and every 1 in the subarray to 0. # # Return the minimum number of K-bit flips required so that there is no 0 in the array. If it is not possible, # return -1. class Solution(object): # When we flip a subarray like A[i], A[i+1], ..., A[i+K-1] # we can instead flip our target. This is critical to avoid O(n*K) time complexity, # (swap K items for every eligible i). # And at position i+K, flip back our target. def minKBitFlips(self, A, K): # USE THIS """ :type A: List[int] :type K: int :rtype: int """ n = len(A) flip, ans = [False]*n, 0 # flip array stores whether this elem will flip target = 0 # when target is encoutered, we must flip for i in xrange(n): if i>=K and flip[i-K]: target = 1 - target # compensate and change target back if A[i] == target: # or A[i] ^ target == 0 if i > n-K: return -1 flip[i] = True ans += 1 target = 1 - target # for next K-1 elems, will flip 1 to 0, # so next 1 is bad and needs flip return ans def minKBitFlips_kamyu(self, A, K): # not understand result, curr = 0, 0 for i in xrange(len(A)): if i >= K: curr -= A[i-K]//2 if curr & 1 ^ A[i] == 0: # bit and > bit xor > bit or if i+K > len(A): return -1 A[i] += 2 curr, result = curr+1, result+1 return result print(Solution().minKBitFlips([0,0,0,1,0,1,1,0], 3)) # 3 print(Solution().minKBitFlips([0, 1, 0], 1)) # 2 print(Solution().minKBitFlips([1, 1, 0], 2)) # -1
from PIL import Image def cat(im1: Image, im2: Image, dim: tuple, append_on: tuple): ''' Concatenates two images together im1 : PIL.Image of the first image im2 : PIL.Image of the second image dim : Dimensions of the output image append_on : Dimensions on where to paste the second image to the first image ''' dst = Image.new('RGB', dim) dst.paste(im1, (0, 0)) dst.paste(im2, append_on) return dst def merge(imagefp1, imagefp2, outputfp, attach='h'): ''' Merges two images together imagefp1: File path to the first image imagefp2: File path to the second image outputfp: File path to the output image attach: Attach images horizontally (landscape) or vertically (portrait) mode ''' im1 = Image.open(imagefp1) im2 = Image.open(imagefp2) dim = (0,0) append_on = (0,0) match attach: case 'h': dim = (im1.width + im2.width, im1.height) append_on = (im1.width, 0) case 'v': dim = (im1.width, im1.height + im2.height) append_on = (0, im1.height) cat(im1, im2, dim, append_on)
# -*- coding: utf-8 -*- """ Copyright 2022 Mitchell Isaac Parker Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from matplotlib_venn import venn2 from .color import change_hex_alpha, get_lst_colors, gray_hex, black_hex from .path import append_file_path from .table import ( format_val, make_dict, lst_col, build_label_dict, mask_equal, get_ncols, ) from .col import pdb_id_col grid_hex = change_hex_alpha(gray_hex, 0.25) def prep_plot_col( df, col, color_palette=None, rename_vals=None, order_lst=None, label_count=False, count_chain=True, count_pdb=False, count_cf=False, return_palette=True, ): df[col] = df[col].map(str) for index in list(df.index.values): df.at[index, col] = str(df.at[index, col]).split(" (N=")[0] if rename_vals is not None: if type(rename_vals) == dict: rename_dict = rename_vals elif type(rename_vals) == list: val_lst = lst_col(df, col, unique=True, return_str=True) rename_lst = format_val(rename_vals, return_str=True) rename_dict = make_dict(val_lst, rename_lst) df[col] = df[col].map(rename_dict) if order_lst is not None: order_lst = format_val(order_lst, return_str=True) df = mask_equal(df, col, order_lst) return_lst = order_lst.copy() else: return_lst = lst_col(df, col, unique=True, return_str=True) if label_count: col_dict = build_label_dict( df, col, return_str=True, count_chain=count_chain, count_pdb=count_pdb, count_cf=count_cf, ) df[col] = df[col].map(col_dict) for i, row in enumerate(return_lst): return_lst[i] = col_dict[row] if type(color_palette) == dict: return_dict = dict() for val in return_lst: return_dict[val] = color_palette[val.split(" (")[0]] else: return_dict = color_palette if return_palette: return df, return_lst, return_dict else: return ( df, return_lst, ) def make_legend_plot( plot_path, legend_dict, plot_width=2, plot_height=2, font_size=7, marker_shape="s", marker_size=3, legend_cols=None, legend_title=None, color_text=False, ): fig, ax = plt.subplots() fig.set_size_inches(plot_width, plot_height) handles = [ plt.plot( [], [], marker=marker_shape, ls="", markersize=marker_size, markeredgewidth=0, markerfacecolor=color, label=label, color=color, )[0] for label, color in legend_dict.items() ] if legend_cols is None: legend_cols = get_ncols(list(legend_dict.keys())) label_color = None if color_text: label_color = "linecolor" legend = ax.legend( handles=handles, fontsize=font_size, ncol=legend_cols, frameon=False, loc="center", bbox_to_anchor=(0.5, 0.5), title=legend_title, labelcolor=label_color, ) if legend_title is not None: plt.setp(legend.get_title(), fontsize=font_size) bbox_extra_artists = (legend,) plt.axis("off") append_file_path(plot_path) plt.savefig( plot_path, format="pdf", bbox_extra_artists=bbox_extra_artists, bbox_inches="tight", pad_inches=0.0, dpi=600, ) plt.close() def make_venn_plot( lst_1, lst_2, plot_path=None, label_1=None, label_2=None, color_1=None, color_2=None, color_inter=None, count_color="black", plot_title=None, plot_height=2, plot_width=2, font_size=7, alpha=0.75, ): if color_1 is None: color_1 = gray_hex if color_2 is None: color_2 = gray_hex if color_inter is None: color_inter = black_hex fig, ax = plt.subplots() fig.set_size_inches(plot_width, plot_height) total = len(set(lst_1 + lst_2)) v = venn2( [set(lst_1), set(lst_2)], set_labels=(label_1, label_2), set_colors=(color_1, color_2), alpha=alpha, subset_label_formatter=lambda x: f"{x}\n({(x/total):1.0%})", ax=ax, ) bbox_extra_artists = tuple() for text in v.set_labels: text.set_fontsize(font_size) bbox_extra_artists += (text,) for text in v.subset_labels: if text is not None: if text.get_text() == "0\n(0%)": text.set_text("") else: text.set_fontsize(font_size * 0.75) text.set_color(count_color) bbox_extra_artists += (text,) if plot_title is not None: title = fig.suptitle(plot_title, fontsize=font_size) bbox_extra_artists += (title,) if plot_path is None: return fig else: append_file_path(plot_path) plt.savefig( plot_path, format="pdf", bbox_extra_artists=bbox_extra_artists, bbox_inches="tight", pad_inches=0.0, dpi=600, ) plt.close() def make_stacked_barplot( plot_df, col_col, hue_col, plot_path, col_order=None, rename_col=None, col_count=False, hue_order=None, rename_hue=None, hue_count=False, hue_palette=None, x_str=None, y_str=None, font_size=7, plot_height=2, plot_width=2, line_width=0.5, show_legend=True, legend_pad=10, legend_cols=None, bar_width=0.5, bar_alpha=1, count_chain=True, count_pdb=False, count_cf=False, id_col=None, show_barh=False, ): df = plot_df.copy(deep=True) if id_col is None: id_column = pdb_id_col df, col_lst = prep_plot_col( df, col_col, rename_vals=rename_col, order_lst=col_order, label_count=col_count, count_chain=count_chain, count_pdb=count_pdb, count_cf=count_cf, return_palette=False, ) df, hue_lst, hue_palette = prep_plot_col( df, hue_col, color_palette=hue_palette, rename_vals=rename_hue, order_lst=hue_order, label_count=hue_count, count_chain=count_chain, count_pdb=count_pdb, count_cf=count_cf, ) hue_color_dict = get_lst_colors(hue_lst, palette=hue_palette, return_dict=True) sns.set_context("paper") sns.set_style("whitegrid") sns.set_palette(list(hue_color_dict.values())) df = pd.pivot_table( df, index=col_col, columns=hue_col, values=id_column, aggfunc="nunique", ).fillna(0) df = df.reindex(index=col_lst) df = df.reindex(columns=hue_lst) if show_barh: plot_kind = "barh" grid_axis = "y" if x_str is None: x_str = "% Structures" if y_str is None: y_str = col_col else: plot_kind = "bar" grid_axis = "x" if x_str is None: x_str = col_col if y_str is None: y_str = "% Structures" df.apply(lambda x: x / sum(x) * 100, axis=1).plot( kind=plot_kind, stacked=True, linewidth=0, width=bar_width, alpha=bar_alpha, figsize=(plot_width, plot_height), legend=show_legend, ) if show_barh: plt.xticks(fontsize=font_size * 0.75) else: plt.xticks(fontsize=font_size * 0.75, rotation=45, ha="right") plt.yticks(fontsize=font_size * 0.75) plt.grid(axis=grid_axis, color=grid_hex, linewidth=line_width) x_label = plt.xlabel(x_str, fontsize=font_size) y_label = plt.ylabel(y_str, fontsize=font_size) bbox_extra_artists = (x_label, y_label) if show_legend or type(show_legend) == dict: if legend_cols is None: legend_cols = get_ncols(hue_lst) if type(show_legend) == dict: handles = [ plt.plot( [], [], marker="o", ls="", markeredgewidth=0, markersize=3, markerfacecolor=show_legend[hue], label=hue, color=hue, )[0] for hue in list(show_legend.keys()) ] else: handles = [ plt.plot( [], [], marker="o", ls="", markeredgewidth=0, markersize=3, markerfacecolor=hue_color_dict[hue], label=hue, )[0] for hue in hue_lst ] legend = plt.legend( handles=handles, fontsize=font_size * 0.75, ncol=legend_cols, loc="upper center", frameon=False, bbox_to_anchor=(0.5, 0), borderaxespad=legend_pad, ) bbox_extra_artists += (legend,) sns.despine(left=True) plt.savefig( plot_path, format="pdf", bbox_inches="tight", bbox_extra_artists=bbox_extra_artists, dpi=600, ) plt.close()
import pytest from dask.distributed import Client from dask_kubernetes.experimental import KubeCluster @pytest.fixture def cluster(kopf_runner, docker_image): with kopf_runner: with KubeCluster(name="foo", image=docker_image) as cluster: yield cluster def test_kubecluster(cluster): with Client(cluster) as client: client.scheduler_info() cluster.scale(1) assert client.submit(lambda x: x + 1, 10).result() == 11 def test_multiple_clusters(kopf_runner, docker_image): with kopf_runner: with KubeCluster(name="bar", image=docker_image) as cluster1: with Client(cluster1) as client1: assert client1.submit(lambda x: x + 1, 10).result() == 11 with KubeCluster(name="baz", image=docker_image) as cluster2: with Client(cluster2) as client2: assert client2.submit(lambda x: x + 1, 10).result() == 11 def test_multiple_clusters_simultaneously(kopf_runner, docker_image): with kopf_runner: with KubeCluster(name="fizz", image=docker_image) as cluster1, KubeCluster( name="buzz", image=docker_image ) as cluster2: with Client(cluster1) as client1, Client(cluster2) as client2: assert client1.submit(lambda x: x + 1, 10).result() == 11 assert client2.submit(lambda x: x + 1, 10).result() == 11 def test_multiple_clusters_simultaneously_same_loop(kopf_runner, docker_image): with kopf_runner: with KubeCluster(name="fizz", image=docker_image) as cluster1, KubeCluster( name="buzz", image=docker_image, loop=cluster1.loop ) as cluster2: with Client(cluster1) as client1, Client(cluster2) as client2: assert cluster1.loop is cluster2.loop is client1.loop is client2.loop assert client1.submit(lambda x: x + 1, 10).result() == 11 assert client2.submit(lambda x: x + 1, 10).result() == 11 def test_cluster_from_name(kopf_runner, docker_image): with kopf_runner: with KubeCluster(name="abc", image=docker_image) as firstcluster: with KubeCluster.from_name("abc") as secondcluster: assert firstcluster == secondcluster def test_additional_worker_groups(kopf_runner, docker_image): with kopf_runner: with KubeCluster( name="additionalgroups", n_workers=1, image=docker_image ) as cluster: cluster.add_worker_group(name="more", n_workers=1) with Client(cluster) as client: client.wait_for_workers(2) assert client.submit(lambda x: x + 1, 10).result() == 11 cluster.delete_worker_group(name="more")
# Top k (soft criteria) k = 10 # Max top (hard criteria) maxtop = 3 # Number of examples per image g = 8 # Run through the adjacency matrix softcorrect = 0 hardcorrect = 0 totalnum = 0 for j, i in enumerate(F): if ((j-1) % g) == 0: continue topk = i.argsort()[-k:] # Soft criteria if j/g in topk/g: softcorrect += 1 totalnum +=1 # Hard criteria hardcriteria = sum([1 for jj in (j/g == topk[-maxtop:]/g) if jj]) if hardcriteria == maxtop: hardcorrect+=1 # Print out results print "Not considering disguised handwriting" print "Top %d (soft criteria) = %f" %( k, (softcorrect+0.0) / totalnum ) print "Top %d (hard criteria) = %f" %( k, (hardcorrect+0.0) / totalnum / maxtop )
# -*- coding: utf-8 -*- import os.path import shutil from django.db.models import Q from django.urls import reverse_lazy from django.http import HttpResponseRedirect from django.views.generic import CreateView, ListView, DeleteView from django.core.paginator import Paginator from tool.forms.xray_from import XrayTaskForm from ..models import CheckTask from util.loggers import logger from util.loginmixin import LoginMixin class XrayTaskListView(ListView): """ 扫描信息信息列表 视图 """ model = CheckTask context_object_name = 'check' template_name = "tool/xray_injection/xray_list.html" search_value = "" order_field = "-createtime" created_by = '' pagenum = 5 # 每页分页数据条数 def get_queryset(self): search = self.request.GET.get("search") order_by = self.request.GET.get("orderby") filter_state = self.request.GET.get("created_by") if order_by: # check_pro = CheckTask.objects.all().order_by(order_by) check_pro = CheckTask.objects.exclude(scan_type='check').order_by(order_by) self.order_field = order_by else: # check_pro = CheckTask.objects.all().order_by(self.order_field) check_pro = CheckTask.objects.exclude(scan_type='check').order_by(self.order_field) if filter_state: if filter_state == '有注入': # 查询不等于 空并且 task_report 不为 NO check_pro = CheckTask.objects.exclude(scan_type='check', ).filter( ~Q(task_report='') & ~Q(task_report='NO')) else: check_pro = CheckTask.objects.exclude(scan_type='check', ).filter( Q(task_report='NO') | Q(task_report='')) self.created_by = filter_state check_pro = check_pro if search: # 任务名称 、创建人、 check_pro = check_pro.filter( Q(check_name__icontains=search) | Q(creator__icontains=search)) self.search_value = search self.count_total = check_pro.count() paginator = Paginator(check_pro, self.pagenum) page = self.request.GET.get('page') project_dev = paginator.get_page(page) return project_dev def get_context_data(self, *args, **kwargs): context = super(XrayTaskListView, self).get_context_data(*args, **kwargs) context['count_total'] = self.count_total context['search'] = self.search_value context['orderby'] = self.order_field context['objects'] = self.get_queryset() context['created_by'] = self.created_by return context class XrayTaskCreateView(LoginMixin, CreateView): """ 添加扫描任务 视图 """ model = CheckTask form_class = XrayTaskForm template_name = "tool/xray_injection/xray_add.html" def get_form_kwargs(self): # Ensure the current `request` is provided to ProjectCreateForm. kwargs = super(XrayTaskCreateView, self).get_form_kwargs() kwargs.update({'request': self.request}) return kwargs class XrayTaskDeleteView(LoginMixin, DeleteView): """ 删除扫描任务 """ # template_name_suffix='_delete' template_name = "tool/xray_injection/xray_delete.html" model = CheckTask success_url = reverse_lazy('xraylist') def delete(self, request, *args, **kwargs): """ Call the delete() method on the fetched object and then redirect to the success URL. """ self.object = self.get_object() success_url = self.get_success_url() flie_dir = self.object.task_report self.object.delete() # 删除目录文件 try: if os.path.exists(flie_dir): logger.info(f'{flie_dir} 删除目录文件成功!!') # shutil.rmtree(flie_dir) # 删除目录下的文件 os.remove(flie_dir) except Exception as e: logger.error(e) return HttpResponseRedirect(success_url) return HttpResponseRedirect(success_url)
from django.conf.urls import url from django.conf import settings from django.conf.urls.static import static from . import views from django.conf.urls import include from django.contrib import admin from django.contrib.auth import views as auth_views urlpatterns = [ url(r'^$', views.recipe_list, name='recipe_list'), url(r'^recipe/(?P<pk>\d+)/$', views.recipe_detail, name='recipe_detail'), url(r'^recipe/new/$', views.recipe_new, name='recipe_new'), url(r'^recipe/(?P<pk>\d+)/edit/$', views.recipe_edit, name='recipe_edit'), url(r'^login/$', auth_views.login, name='login_user'), url(r'^recipe/search/$', views.search, name='search'), url(r'^logout/$', views.logout_view, name='logout_user') ] + static(settings.MEDIA_URL, document_root=settings.MEDIA_ROOT)
import argparse import os import sys from comet_ml import Experiment, ExistingExperiment import torch from torch.utils.data import DataLoader from data.dataloader import DatasetFactory from runner import ImprovedVideoGAN def get_parser(): global parser parser = argparse.ArgumentParser(description='VideoGAN') run_args = parser.add_argument_group('Run', "Run options") run_args.add_argument('-e', '--evaluate', dest='evaluate', action='store_true', help='evaluate model on test set') run_args.add_argument('--root-dir', default='/', type=str, metavar='PATH', help='directory containing videos and index file (default: /)') run_args.add_argument('--index-file', default='mjpeg-index.txt', type=str, metavar='FILENAME', help='index file referencing all videos relative to root_dir (default: mjpeg-index.txt)') run_args.add_argument('--save-dir', default='extra/', type=str, metavar='PATH', help='path to directory for saved outputs (default: extra/)') run_args.add_argument('--resume', default='', type=str, metavar='PATH', help='path to latest checkpoint (default: none)') run_args.add_argument('--epochs', default=40, type=int, metavar='N', help='number of total epochs to run') learner_args = parser.add_argument_group("Learner") learner_args.add_argument('--spec-norm', default=False, action='store_true', help='set to True to use spectral normalization') learner_args.add_argument('--no-gp', default=False, action='store_true', help='set to True to stop using Gradient Penalty') learner_args.add_argument('--drift-penalty', default=False, action='store_true', help='set to True to use small drift penalty (prevents discriminator loss drifting)') learner_args.add_argument('--zero-centered', default=False, action='store_true', help='set to True to use zero-centered GP') learner_args.add_argument('--one-sided', default=False, action='store_true', help='set to True to use one-sided GP') compute_args = parser.add_argument_group("Compute") compute_args.add_argument('-j', '--workers', default=0, type=int, metavar='N', help='number of data loading workers (default: 0)') compute_args.add_argument('--num-gpu', default=1, type=int, help='number of GPUs to use') compute_args.add_argument('--cache-dataset', default=False, action='store_true', help='Keep all data in memory (default: False if switch is absent)') model_args = parser.add_argument_group("Model") model_args.add_argument('--arch', metavar='ARCH', default='basic_fcn', type=str, help='model architecture: ' + ' (default: basic_fcn)') model_args.add_argument('--pretrained', dest='pretrained', action='store_true', help='use pre-trained model') model_args.add_argument('--num-frozen', default=0, type=int, metavar='N', help='# frozen cnv2 layers') model_args.add_argument('--zdim', default=100, type=int, help='Dimensionality of hidden features (default: 100)') optimizer_args = parser.add_argument_group("Optimizer") optimizer_args.add_argument('-b', '--batch-size', default=64, type=int, metavar='N', help='mini-batch size (default: 64)') optimizer_args.add_argument('--lr', '--learning-rate', default=0.0001, type=float, metavar='LR', help='initial learning rate (default: 1e-4') optimizer_args.add_argument('--momentum', default=0.9, type=float, metavar='M', help='momentum') optimizer_args.add_argument('--weight-decay', '--wd', default=0.0, type=float, metavar='W', help='weight decay (default: 0.0)') optimizer_args.add_argument('--lr_step', default='40,60', help='decreasing strategy') optimizer_args.add_argument('--beta1', default=0.5, type=float, help='Beta parameter for ADAM (default: 0.5)') pre_process_args = parser.add_argument_group("Pre-process") pre_process_args.add_argument('--color-sat', default=0.0, type=float, help='factor for saturation jitter transform (default: 0.0)') pre_process_args.add_argument('--color-hue', default=0.0, type=float, help='factor for hue jitter transform (default: 0.0)') log_args = parser.add_argument_group("Log") log_args.add_argument('--print-freq', '-p', default=100, type=int, metavar='N', help='print frequency (default: 10)') log_args.add_argument('--exp-name', default='dev', type=str, nargs='+', help='The experiment name (default: deb)') log_args.add_argument('--exp-key', default='', type=str, help='The key to an existing experiment to be continued (default: None)') log_args.add_argument('--exp-disable', default=False, action='store_true', help='Disable CometML (default: False if switch is absent)') return parser def get_experiment(args): if args.resume and args.exp_key: experiment = ExistingExperiment( disabled=args.exp_disable, previous_experiment=args.exp_key, log_code=True, log_env_gpu=True, log_env_cpu=True, log_env_details=True, log_env_host=True, log_git_metadata=True, log_git_patch=True, ) else: experiment = Experiment(disabled=args.exp_disable) if isinstance(args.exp_name, list): for tag in args.exp_name: experiment.add_tag(tag) else: experiment.add_tag(args.exp_name) experiment.log_text(' '.join(sys.argv)) return experiment def main(args): experiment = get_experiment(args) assert os.path.exists(args.save_dir), f'save-dir {args.save_dir} does not exist' assert torch.cuda.device_count() >= args.num_gpu, f'You have requested more gpus than are available' if isinstance(args.exp_name, list): exp_name = '_'.join(args.exp_name) else: exp_name = args.exp_name out_dir = os.path.join(args.save_dir, exp_name) if not os.path.isdir(args.save_dir): os.makedirs(args.save_dir) if not os.path.isdir(out_dir): os.makedirs(out_dir) experiment.log_text(f"{sys.executable} {' '.join(sys.argv)} --resume {os.path.join(out_dir, 'checkpoint.model')} " f"--exp-key {experiment.id}") if args.cache_dataset and args.workers > 0: ResourceWarning("You are using multiple workers and keeping data in memory, this will multiply memory usage" "by the number of workers.") dataset = DatasetFactory.get_dataset(os.path.join(args.root_dir, args.index_file), cache_dataset=args.cache_dataset) dataloader = DataLoader( dataset, batch_size=args.batch_size, shuffle=True, num_workers=args.workers, drop_last=True, ) GAN = ImprovedVideoGAN( dataloader=dataloader, experiment=experiment, device=DEVICE, num_gpu=args.num_gpu, n_epochs=args.epochs, batch_size=args.batch_size, learning_rate=args.lr, weight_decay=args.weight_decay, z_dim=args.zdim, beta1=args.beta1, critic_iterations=5, out_dir=out_dir, spec_norm=args.spec_norm, no_gp=args.no_gp, drift_penalty=args.drift_penalty, zero_centered=args.zero_centered, one_sided=args.one_sided, ) if args.resume != '': GAN.load(args.resume) if not args.evaluate: train(GAN, exp_name, experiment) else: evaluate(GAN) def evaluate(GAN: ImprovedVideoGAN): fvd = [] for _ in range(100): fvd.append(GAN.evaluate()) print(f"avg FVD: {sum(fvd) / len(fvd)}") def train(GAN, exp_name, experiment): try: GAN.train() except BaseException as e: GAN.save() raise e finally: experiment.send_notification(f"Experiment {exp_name} is complete") if __name__ == '__main__': DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu") # sets device for model and PyTorch tensors parser = get_parser() main(parser.parse_args())
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sat Apr 10 12:52:42 2021 @author: jasperhajonides """ from sklearn.model_selection import train_test_split from tools.sliding_window import sliding_window from custom_classifier import sample_data from custom_classifier.custom_classification import CustomEstimator # define parameters of simulated data + window size for decoding n_classes = 10 n_trials = 100 num_samples = 100 window_size = 10 # simulate X, y = sample_data.sample_data_time(n_classes = n_classes, n_trials = n_trials, num_samples = num_samples) # Compute sliding window. Every time point includes the data from the past # n time points, where n is the window_size. X_time = sliding_window(X,size_window = window_size,demean=False) # Simple split in train and test set X_train, X_test, y_train, y_test = train_test_split(X_time, y, test_size = 0.2, random_state = 42) #%% Run LDA # initiate arrays for classifier output out_cos = np.zeros((int((n_trials*n_classes)*0.2),n_classes,num_samples)) out_cos_conv = np.zeros((int((n_trials*n_classes)*0.2),num_samples)) out_predict = np.zeros((num_samples)) # r for tp in range(window_size,num_samples): # clf = CustomEstimator(est_class=LinearDiscriminantAnalysis).fit(X_train[:,:,tp],y_train) # out = clf.predict_proba(X_test[:,:,10]) out_cos[:,:,tp] = clf.predict_conv_proba(X_test[:,:,tp],y_test) out_cos_conv[:,tp] = clf.predict_conv(X_test[:,:,tp],y_test) out_predict[tp] = clf.score(X_test[:,:,tp],y_test) fig = plt.figure(figsize=(8,8)) ax = plt.subplot(3,1,1) # plot data ax.plot(X[0::n_trials,0,:].T) ax.set_title('Data') # plot class predictions, centered around correct class ax = plt.subplot(3,1,2) ax.imshow(out_cos.mean(0),aspect='auto') ax.set_title('Predictions') ax.set_yticks([np.floor(n_classes/2)]) ax.set_yticklabels(['Correct class']) # ax = plt.subplot(3,1,3) ax.plot(out_cos_conv.mean(0),label='cosine convolved') ax.plot(out_predict,label='class prediction acc (%)') ax.set_title('Accuracy predictions') ax.legend() plt.tight_layout()
# coding: utf-8 """A SRU client. :copyright: Copyright 2020 Andreas Lüschow """ import inspect import logging import time import requests from srupy.iterator import BaseSRUIterator, SRUResponseIterator from srupy.response import SRUResponse from .models import Explain logger = logging.getLogger(__name__) class SRUpy(object): """Client for sending SRU requests. Use it like this:: >>> py_sru = SRUpy('http://elis.da.ulcc.ac.uk/cgi/oai2') >>> records = py_sru.get_records() >>> records.next() :param endpoint: The endpoint of the SRU server. :type endpoint: str :param http_method: Method used for requests (GET or POST, default: GET). :type http_method: str :param protocol_version: The SRU protocol version. :type protocol_version: str :param iterator: The type of the returned iterator (default: :class:`srupy.iterator.SRUResponseIterator`) :param max_retries: Number of retry attempts if an HTTP request fails (default: 0 = request only once). SRUpy will use the value from the retry-after header (if present) and will wait the specified number of seconds between retries. :type max_retries: int :param retry_status_codes: HTTP status codes to retry (default will only retry on 503) :type retry_status_codes: iterable :param default_retry_after: default number of seconds to wait between retries in case no retry-after header is found on the response (defaults to 60 seconds) :type default_retry_after: int :param encoding: Can be used to override the encoding used when decoding the server response. If not specified, `requests` will use the encoding returned by the server in the `content-type` header. However, if the `charset` information is missing, `requests` will fallback to `'ISO-8859-1'`. :type encoding: str :param default_namespace: default namespace of the responded xml :type default_namespace: str :param request_args: Arguments to be passed to requests when issuing HTTP requests. See the `documentation of requests <http://docs.python-requests.org/en/master/api/#main-interface>`_ for all available parameters. """ def __init__(self, endpoint, http_method='GET', protocol_version='2.0', iterator=SRUResponseIterator, max_retries=0, retry_status_codes=None, default_retry_after=60, encoding=None, default_namespace='{http://docs.oasis-open.org/ns/search-ws/sruResponse}', **request_args): """Docstring.""" self.endpoint = endpoint if http_method not in ['GET', 'POST']: raise ValueError("Invalid HTTP method: %s! Must be GET or POST.") if protocol_version not in ['2.0', '1.2', '1.1']: raise ValueError( "Invalid protocol version: %s! Must be 2.0, 1.2 or 1.1") self.http_method = http_method self.protocol_version = protocol_version if inspect.isclass(iterator) and issubclass(iterator, BaseSRUIterator): self.iterator = iterator else: raise TypeError( "Argument 'iterator' must be subclass of %s" % BaseSRUIterator.__name__) self.max_retries = max_retries self.retry_status_codes = retry_status_codes or [503] self.default_retry_after = default_retry_after self.sru_namespace = default_namespace self.encoding = encoding self.request_args = request_args def harvest(self, **kwargs): """Make HTTP requests to the SRU server. :param kwargs: SRU HTTP parameters. :rtype: :class:`srupy.SRUResponse` """ http_response = self._request(kwargs) for _ in range(self.max_retries): if self._is_error_code(http_response.status_code) \ and http_response.status_code in self.retry_status_codes: retry_after = self.get_retry_after(http_response) logger.warning( "HTTP %d! Retrying after %d seconds..." % (http_response.status_code, retry_after)) time.sleep(retry_after) http_response = self._request(kwargs) http_response.raise_for_status() if self.encoding: http_response.encoding = self.encoding return SRUResponse(http_response, params=kwargs) def _request(self, kwargs): """Docstring.""" if self.http_method == 'GET': return requests.get(self.endpoint, params=kwargs, **self.request_args) return requests.post(self.endpoint, data=kwargs, **self.request_args) def get_records(self, **kwargs): """Issue a SRU request to fetch records. :rtype: :class:`srupy.iterator.BaseSRUIterator` """ # TODO: Default Parameter hier eintragen # Default Wert für z. B. recordSchema wird vom # jeweiligen Server festgelegt; # also vorher ExplainFile anschauen! params = { # 'query': 'dog and cat and mouse', # 'queryType': 'cql', # default value is 1 'startRecord': 1, # default value is determined by the server # 'maximumRecords': 10, # 'recordSchema': 'mods', # 'record_XML_escaping' = True # resultSetTTL = True # Stylesheet = True # extension_parameters # sortKeys = True # facet_parameters # renderedBy = True # httpAccept = True # responseType = True # recordPacking = True } params.update(kwargs) if 'query' not in params.keys(): raise KeyError("Request parameter 'query' must be set") return self.iterator(self, params) def explain(self): """Issue an Explain request to a SRU server. :rtype: :class:`srupy.models.Explain` """ return Explain(self.harvest()) def get_retry_after(self, http_response): """Docstring.""" if http_response.status_code == 503: try: return int(http_response.headers.get('retry-after')) except TypeError: return self.default_retry_after return self.default_retry_after @staticmethod def _is_error_code(status_code): """Docstring.""" return status_code >= 400
from django.shortcuts import render from .models import * from .tables import * from .tables import Rank_awpTable, Rank_retakeTable from .filters import Rank_awpFilter, Rank_retakeFilter from django.views.generic import TemplateView from django_filters.views import FilterView from django_tables2.views import SingleTableMixin class Rank_awpListView(SingleTableMixin, FilterView): model = Rank_awp table_class = Rank_awpTable template_name = 'gamestatistics/stats-awp.html' filterset_class = Rank_awpFilter class Rank_retakeListView(SingleTableMixin, FilterView): model = Rank_retake table_class = Rank_retakeTable template_name = 'gamestatistics/stats-retake.html' filterset_class = Rank_retakeFilter class SurfStatsView(TemplateView): template_name = 'gamestatistics/stats_surf.html' def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) times = [] myresult = CkPlayertimes.objects.raw( """ SELECT t.mapname, t.runtimepro, t.name, t.steamid FROM ( SELECT mapname, MIN(runtimepro) as minruntimepro FROM `ck_playertimes` GROUP BY mapname) AS x INNER JOIN ck_playertimes AS t ON t.mapname=x.mapname AND t.runtimepro=x.minruntimepro """ ) for result in myresult: time = result.runtimepro minute = time//60 second = int(time-minute*60) ms = int((time-minute*60-second)*1000) time = "{}:{}:{}".format(minute, second, ms) times.append( { "mapname": result.mapname, "time": time, "name": result.name, "steamid": result.steamid } ) context["times"] = times return context def AwpStatsView(request, steamid): user = Rank_awp.objects.get(steam=steamid) playtime = user.time() if user.deaths == 0: KD = str(round(user.kills, 2)) else: KD = str(round(user.kills/user.deaths, 2)) if user.rounds_ct + user.rounds_tr == 0: ADR = str(round(user.damage, 2)) else: ADR = str(round(user.damage/(user.rounds_ct + user.rounds_tr), 2)) if user.kills == 0: HS = str(round(0, 2)*100)+" %" else: HS = str(round(user.headshots/user.kills, 2)*100)+" %" stats = { "name": user.name, "score": user.score, "kills": user.kills, "deaths": user.deaths, "KD": KD, "ADR": ADR, "HS": HS, "hits": user.hits, "shots": user.shots, "head": user.headshots, "chest": user.chest, "stomach": user.stomach, "left_arm": user.left_arm, "right_arm": user.right_arm, "left_leg": user.left_leg, "right_leg": user.right_leg, "playtime": playtime } return render(request, 'gamestatistics/stats-awp-player.html', stats) def RetakesStatsView(request, steamid): user = Rank_retake.objects.get(steam=steamid) playtime = user.time() if user.deaths == 0: KD = str(round(user.kills, 2)) else: KD = str(round(user.kills/user.deaths, 2)) if user.rounds_ct + user.rounds_tr == 0: ADR = str(round(user.damage, 2)) else: ADR = str(round(user.damage/(user.rounds_ct + user.rounds_tr), 2)) if user.kills == 0: HS = "{} %".format(round(0, 2)*100) else: HS = "{} %".format(round(user.headshots/user.kills, 2)*100) stats = { "name": user.name, "score": user.score, "kills": user.kills, "deaths": user.deaths, "KD": KD, "ADR": ADR, "HS": HS, "hits": user.hits, "shots": user.shots, "head": user.headshots, "chest": user.chest, "stomach": user.stomach, "left_arm": user.left_arm, "right_arm": user.right_arm, "left_leg": user.left_leg, "right_leg": user.right_leg, "knife": user.knife, "glock": user.glock, "hkp2000": user.hkp2000, "usp_silencer": user.usp_silencer, "p250": user.p250, "deagle": user.deagle, "elite": user.elite, "fiveseven": user.fiveseven, "tec9": user.tec9, "cz75a": user.cz75a, "revolver": user.revolver, "nova": user.nova, "xm1014": user.xm1014, "mag7": user.mag7, "sawedoff": user.sawedoff, "bizon": user.bizon, "mac10": user.mac10, "mp9": user.mp9, "mp7": user.mp7, "ump45": user.ump45, "p90": user.p90, "galilar": user.galilar, "ak47": user.ak47, "scar20": user.scar20, "famas": user.famas, "m4a1": user.m4a1, "m4a1_silencer": user.m4a1_silencer, "aug": user.aug, "ssg08": user.ssg08, "sg556": user.sg556, "awp": user.awp, "g3sg1": user.g3sg1, "m249": user.m249, "negev": user.negev, "hegrenade": user.hegrenade, "inferno": user.inferno, "playtime": playtime } return render(request, 'gamestatistics/stats-retake-player.html', stats)
BBS_V1 = { "@context": { "@version": 1.1, "id": "@id", "type": "@type", "BbsBlsSignature2020": { "@id": "https://w3id.org/security#BbsBlsSignature2020", "@context": { "@version": 1.1, "@protected": True, "id": "@id", "type": "@type", "challenge": "https://w3id.org/security#challenge", "created": { "@id": "http://purl.org/dc/terms/created", "@type": "http://www.w3.org/2001/XMLSchema#dateTime", }, "domain": "https://w3id.org/security#domain", "proofValue": "https://w3id.org/security#proofValue", "nonce": "https://w3id.org/security#nonce", "proofPurpose": { "@id": "https://w3id.org/security#proofPurpose", "@type": "@vocab", "@context": { "@version": 1.1, "@protected": True, "id": "@id", "type": "@type", "assertionMethod": { "@id": "https://w3id.org/security#assertionMethod", "@type": "@id", "@container": "@set", }, "authentication": { "@id": "https://w3id.org/security#authenticationMethod", "@type": "@id", "@container": "@set", }, }, }, "verificationMethod": { "@id": "https://w3id.org/security#verificationMethod", "@type": "@id", }, }, }, "BbsBlsSignatureProof2020": { "@id": "https://w3id.org/security#BbsBlsSignatureProof2020", "@context": { "@version": 1.1, "@protected": True, "id": "@id", "type": "@type", "challenge": "https://w3id.org/security#challenge", "created": { "@id": "http://purl.org/dc/terms/created", "@type": "http://www.w3.org/2001/XMLSchema#dateTime", }, "domain": "https://w3id.org/security#domain", "nonce": "https://w3id.org/security#nonce", "proofPurpose": { "@id": "https://w3id.org/security#proofPurpose", "@type": "@vocab", "@context": { "@version": 1.1, "@protected": True, "id": "@id", "type": "@type", "sec": "https://w3id.org/security#", "assertionMethod": { "@id": "https://w3id.org/security#assertionMethod", "@type": "@id", "@container": "@set", }, "authentication": { "@id": "https://w3id.org/security#authenticationMethod", "@type": "@id", "@container": "@set", }, }, }, "proofValue": "https://w3id.org/security#proofValue", "verificationMethod": { "@id": "https://w3id.org/security#verificationMethod", "@type": "@id", }, }, }, "Bls12381G1Key2020": "https://w3id.org/security#Bls12381G1Key2020", "Bls12381G2Key2020": "https://w3id.org/security#Bls12381G2Key2020", } }
#!/usr/bin/env python3 import gemmi import copy import numpy as np from scipy.spatial import distance import string from rdkit import Chem from rdkit.Geometry import Point3D import warnings from . import xyz2mol import argparse def parse_arguments(): """ Parse command line arguments. """ parser = argparse.ArgumentParser( description="Python script for building supercell that can be used with PBC in MD simulation." ) parser.add_argument( '--input', "-i", type=str, help="Input cif file", required=True ) parser.add_argument( '--prefix', "-pre", type=str, help="Prefix for pdb and csv file.", required=True ) parser.add_argument( '--a_min_max', "-a", type=float, help="If this is two arguments: Minimum and maximum unit cell replicates along direction `a`. \ If this is a single argument: Minimum length of axis `a` in the supercell. Units [nm]", required=False, default=[-1,1], nargs='+', ) parser.add_argument( '--b_min_max', "-b", type=float, help="If this is two arguments: Minimum and maximum unit cell replicates along direction `b`. \ If this is a single argument: Minimum length of axis `b` in the supercell. Units [nm]", required=False, default=[-1,1], nargs='+', ) parser.add_argument( '--c_min_max', "-c", type=float, help="If this is two arguments: Minimum and maximum unit cell replicates along direction `c`. \ If this is a single argument: Minimum length of axis `c` in the supercell. Units [nm]", required=False, default=[-1,1], nargs='+', ) parser.add_argument( '--addhs', "-ah", action='store_true', help="Remove any existing hydrogen and add protonate molecule. Requires OpenEye Toolkits.", required=False, default=False, ) parser.add_argument( '--addwater', "-aw", type=int, help="Number of water molecules to add", required=False, default=0, ) parser.add_argument( '--use_symmetry_operations', "-op", action='store_true', help="Use symmetry operations in cif file instead of space group.", required=False, default=False, ) parser.add_argument( '--n_protonation_attempts', "-np", type=int, help="Number of attempts to compute protonatation states in unit cell.", required=False, default=0, ) parser.add_argument( '--use_openeye', "-oe", action='store_true', help="Use openeye-toolkit for topology building. Otherwise use xyz2mol.", required=False, default=False, ) return parser.parse_args() def combine_mols(mol_list): mol_list = copy.deepcopy(mol_list) N_mol_per_unitcell = len(mol_list) mol_combo = Chem.Mol() for mol in mol_list: mol_combo = Chem.CombineMols(mol_combo, mol) return mol_combo class FfWrapper(object): def __init__(self, mol, only_hydrogen=True): from rdkit.Chem import AllChem as Chem self._mol = copy.deepcopy(mol) mp = Chem.MMFFGetMoleculeProperties(mol) self._ffm = Chem.MMFFGetMoleculeForceField(mol, mp) self._H_atom_list = list() self._all_atom_list = list() for atom in mol.GetAtoms(): if atom.GetAtomicNum() == 1: self._H_atom_list.append(atom.GetIdx()) self._all_atom_list.append(atom.GetIdx()) self._H_atom_list = np.array(self._H_atom_list) self._H_idxs = np.arange(mol.GetNumAtoms()*3, dtype=int) self._H_idxs = self._H_idxs.reshape((mol.GetNumAtoms(), 3)) self._H_idxs = self._H_idxs[self._H_atom_list] self._H_idxs_flat = self._H_idxs.flatten() self._all_atom_list = np.array(self._all_atom_list) self._all_idxs = np.arange(mol.GetNumAtoms()*3, dtype=int) self._all_idxs = self._all_idxs.reshape((mol.GetNumAtoms(), 3)) self._all_idxs_flat = self._H_idxs.flatten() self._num_all_atoms = len(self._all_atom_list) self._num_H_atoms = len(self._H_atom_list) self.only_hydrogen = only_hydrogen @property def num_all_atoms(self): return self._num_all_atoms @property def num_H_atoms(self): return self._num_H_atoms @property def H_atom_list(self): return self._H_atom_list @property def H_idxs(self): return self._H_idxs @property def H_idxs_flat(self): return self._H_idxs_flat @property def all_atom_list(self): return self._all_atom_list @property def all_idxs(self): return self._all_idxs @property def all_idxs_flat(self): return self._all_idxs_flat @property def ffm(self): return self._ffm @property def mol(self): return self._mol @property def pos(self): pos = np.array(self.ffm.Positions()) if self.only_hydrogen: pos = pos[self.H_idxs_flat].tolist() return pos @pos.setter def pos(self, pos): from rdkit.Chem import AllChem as Chem conformer = self._mol.GetConformer() if self.only_hydrogen: pos_stack = np.array(pos).reshape((self.num_H_atoms, 3)) for H_atm_idx, atm_idx in enumerate(self.H_atom_list): conformer.SetAtomPosition( int(atm_idx), Point3D( *pos_stack[H_atm_idx] ) ) else: pos_stack = np.array(pos).reshape((self.num_all_atoms, 3)) for atm_idx in range(self._mol.GetNumAtoms()): conformer.SetAtomPosition( int(atm_idx), Point3D( *pos_stack[atm_idx] ) ) mp = Chem.MMFFGetMoleculeProperties(self._mol) self._ffm = Chem.MMFFGetMoleculeForceField(self._mol, mp) def ene(self,x): pos = self.ffm.Positions() pos = np.array(pos) if self.only_hydrogen: pos[self.H_idxs_flat] = x else: pos[:] = x pos = pos.tolist() return self.ffm.CalcEnergy(pos) def grad(self,x): pos = self.ffm.Positions() pos = np.array(pos) if self.only_hydrogen: pos[self.H_idxs_flat] = x else: pos[:] = x pos = pos.tolist() grad_vals = self.ffm.CalcGrad(pos) grad_vals = np.array(grad_vals)[self.H_idxs_flat] grad_vals = grad_vals.tolist() return grad_vals def apply_delta_hydrogen( mol_list, delta_hydrogen_dict ): import numpy as np from rdkit.Chem import AllChem as Chem import copy mol_combo = combine_mols(mol_list) emol = Chem.EditableMol(mol_combo) offset_list = np.zeros(mol_combo.GetNumAtoms(), dtype=int) for atomidx, switch in delta_hydrogen_dict.items(): atom = mol_combo.GetAtomWithIdx(atomidx) charge = atom.GetFormalCharge() if switch == 1: Hatom = Chem.Atom(1) idx1 = emol.AddAtom(Hatom) Patom = Chem.AtomFromSmarts(atom.GetSmarts()) Patom.SetFormalCharge(charge+1) emol.ReplaceAtom( atomidx+int(offset_list[atomidx]), Patom ) emol.AddBond( idx1, atomidx+int(offset_list[atomidx]), Chem.BondType.SINGLE ) elif switch == -1: for n_atom in atom.GetNeighbors(): if n_atom.GetAtomicNum() == 1: idx1 = n_atom.GetIdx() Patom = Chem.AtomFromSmarts(atom.GetSmarts()) Patom.SetFormalCharge(charge-1) emol.ReplaceAtom( atomidx+int(offset_list[atomidx]), Patom ) emol.RemoveAtom( idx1+int(offset_list[idx1]) ) offset_list[idx1:] -= 1 break else: ### Nix. pass mol_combo_prot = emol.GetMol() Chem.SanitizeMol(mol_combo_prot) return Chem.GetMolFrags(mol_combo_prot, asMols=True) def minimize_H( mol_list, ): import numpy as np from rdkit.Chem import AllChem as Chem from scipy import optimize import copy mol_combo = combine_mols(mol_list) ff = FfWrapper(mol_combo, only_hydrogen=True) x0 = ff.pos result = optimize.minimize( fun=ff.ene, x0=x0, jac=ff.grad, method="L-BFGS-B" ) ff.pos = result.x energy = ff.ene(result.x) return energy, Chem.GetMolFrags(ff.mol, asMols=True) def assign_protonation_states( cell, mol_list, N_iterations=10): """ Find the energetically best protonation state of the unitcell. """ import numpy as np from rdkit.Chem import AllChem as Chem import copy mol_combo = combine_mols(mol_list) polar_heavy_atom = Chem.MolFromSmarts("[#7,#8,#16]") matches = mol_combo.GetSubstructMatches( polar_heavy_atom, uniquify=False ) N_matches = len(matches) delta_hydrogen_dict_best = dict() for atm_idx in matches: atm_idx = int(atm_idx[0]) delta_hydrogen_dict_best[atm_idx] = 0 energy_best = 999999999999999999999. mol_list_best = copy.deepcopy(mol_list) N_mol_per_unitcell = len(mol_list) charge0 = Chem.GetFormalCharge(mol_combo) #with open(f"./best_init.pdb", "w") as fopen: # fopen.write( # Chem.MolToPDBBlock( # combine_mols( # mol_list_best # ) # ) # ) #count = 0 for _ in range(N_iterations): delta_hydrogen_dict = copy.deepcopy( delta_hydrogen_dict_best ) for i in range(N_matches): atm_idx_i = int(matches[i][0]) delta0_i = delta_hydrogen_dict[atm_idx_i] for j in range(i+1, N_matches): atm_idx_j = int(matches[j][0]) delta0_j = delta_hydrogen_dict[atm_idx_j] for dij in [[-1,1],[1,-1]]: ### 0: Do nothing ### +1: Add hydrogen ### -1: Remove hydrogen delta_hydrogen_dict[atm_idx_i] = dij[0] delta_hydrogen_dict[atm_idx_j] = dij[1] mol_list_prot = apply_delta_hydrogen( copy.deepcopy(mol_list), delta_hydrogen_dict ) charge = Chem.GetFormalCharge( combine_mols(mol_list_prot) ) if charge == charge0: mol_list_prot, _, _ = make_supercell( cell, mol_list_prot, 0, 2, 0, 2, 0, 2) energy, mol_list_prot = minimize_H(mol_list_prot) if energy < energy_best: energy_best = energy delta_hydrogen_dict_best = copy.deepcopy( delta_hydrogen_dict ) mol_list_best = copy.deepcopy( mol_list_prot[:N_mol_per_unitcell] ) delta_hydrogen_dict[atm_idx_j] = delta0_j delta_hydrogen_dict[atm_idx_i] = delta0_i #print(f"Best energy {energy_best:4.2f}") #with open(f"./best_{count}.pdb", "w") as fopen: # fopen.write( # Chem.MolToPDBBlock( # combine_mols( # mol_list_best # ) # ) # ) #count += 1 return mol_list_best def get_nonoverlapping_atoms(atom_crds_ortho, filter_overlapping=False): """ Retrieve indices of rows in `atom_crds_ortho` (N,3) list that correspond to non-overlapping atoms. If `filter_overlapping==True`, then one of the overlapping (not clear which one though) atoms will be retained. """ from scipy.spatial import distance atom_crds_ortho_cp = np.copy(atom_crds_ortho) dists = distance.cdist(atom_crds_ortho_cp, atom_crds_ortho_cp) np.fill_diagonal(dists, np.inf) if filter_overlapping: tril_idxs = np.tril_indices(atom_crds_ortho.shape[0]) dists[tril_idxs] = np.inf invalids = np.where(dists < 0.01)[0] invalids = np.unique(invalids) valids = np.arange(atom_crds_ortho_cp.shape[0], dtype=int) valids = np.delete(valids, invalids) return valids def random_fill( cell, mol_list, N_per_unitcell, radius=1.4, smiles="[H]O[H]"): """ Randomly fill unit cell with molecules. """ from rdkit.Chem import AllChem as Chem from rdkit.Geometry import Point3D import numpy as np from scipy.spatial import distance import gemmi import copy vdw_dict = { 1 : 1.09, #H 6 : 1.7, #C 7 : 1.55, #N 8 : 1.52, #O 9 : 1.47, #F 15 : 1.8, #P 16 : 1.8, #S 17 : 1.75 #Cl } mol = Chem.MolFromSmiles(smiles) mol = Chem.AddHs(mol) Chem.EmbedMolecule(mol) Chem.UFFOptimizeMolecule(mol) conformer = mol.GetConformer() atom_crds_mol = conformer.GetPositions() atom_crds_mol = np.array(atom_crds_mol) replicated_mol_list, _, _ = make_supercell( cell, mol_list, -1, 1, -1, 1, -1, 1) atom_crds_xtal = list() atom_radii_xtal = list() for mol_r in replicated_mol_list: conf = mol_r.GetConformer(0) conf_pos = conf.GetPositions() for atom in mol_r.GetAtoms(): if atom.GetAtomicNum() == 1: continue atom_radii_xtal.append( vdw_dict[atom.GetAtomicNum()] ) atom_crds_xtal.append( conf_pos[atom.GetIdx()] ) atom_crds_xtal = np.array(atom_crds_xtal) atom_radii_xtal = np.array(atom_radii_xtal) atom_radii_xtal += radius grid = list() for a in np.linspace(0., 1., 50, True): for b in np.linspace(0., 1., 50, True): for c in np.linspace(0., 1., 50, True): frac = np.array([a,b,c], dtype=float) ortho = cell.orthogonalize( gemmi.Fractional(*frac) ).tolist() dists = distance.cdist(atom_crds_xtal, [ortho]) is_outside = np.all(dists[:,0] > atom_radii_xtal) if is_outside: grid.append(ortho) overlap = True grid = np.array(grid) print(f"Found {grid.shape[0]} / {50**3} valid grid points.") print("Scanning overlap...") while overlap: mask = np.arange(grid.shape[0], dtype=int) mask_selection = np.random.choice( mask, size=N_per_unitcell, replace=False ) grid_selection = grid[mask_selection] grid_selection_query = np.copy(grid_selection).tolist() for crd in grid_selection: frac = cell.fractionalize( gemmi.Position( *crd ) ).tolist() frac = np.array(frac) for a in [-1.,0.,1.]: for b in [-1.,0.,1.]: for c in [-1.,0.,1.]: if (a==0) & (b==0) & (c==0): continue frac += [a,b,c] ortho = cell.orthogonalize( gemmi.Fractional(*frac) ).tolist() grid_selection_query.append(ortho) frac -= [a,b,c] grid_selection_query = np.array(grid_selection_query) dists = distance.cdist(grid_selection_query, grid_selection_query) np.fill_diagonal(dists, np.inf) min_dist = np.min(dists) if min_dist > 2.*radius: overlap = False import copy mol_list_new = copy.deepcopy(mol_list) for crds in grid_selection: mol_cp = copy.deepcopy(mol) conformer = mol_cp.GetConformer() atom_crds_mol = conformer.GetPositions() trans = crds - np.mean(atom_crds_mol, axis=0) atom_crds_mol += trans for atm_idx in range(mol_cp.GetNumAtoms()): conformer.SetAtomPosition( atm_idx, Point3D(*atom_crds_mol[atm_idx]) ) mol_list_new.append(mol_cp) return mol_list_new def make_P1( cell, atom_crds_ortho, atom_num, addhs=False, use_openeye=False): """ Generate the P1 cell. Return tuple with atomic coordinates (in Ang) and atomic numbers of all atoms in P1 cell. """ import networkx as nx from rdkit.Chem import AllChem as Chem from rdkit.Geometry import Point3D import copy _atom_crds_ortho = list() _atom_num = list() N_atoms = len(atom_num) for i in range(N_atoms): if addhs: if atom_num[i] != 1: _atom_crds_ortho.append(copy.copy(atom_crds_ortho[i])) _atom_num.append(copy.copy(atom_num[i])) else: _atom_crds_ortho.append(copy.copy(atom_crds_ortho[i])) _atom_num.append(copy.copy(atom_num[i])) atom_crds_ortho = _atom_crds_ortho atom_num = _atom_num atom_crds_ortho = np.array(atom_crds_ortho, dtype=float) atom_num = np.array(atom_num, dtype=int) nonoverlapping_idxs = get_nonoverlapping_atoms(atom_crds_ortho, filter_overlapping=True) atom_crds_ortho = atom_crds_ortho[nonoverlapping_idxs].tolist() atom_num = atom_num[nonoverlapping_idxs].tolist() N_atoms = len(atom_num) found_bond = True ### Terminate if we haven't found any bonds. while found_bond: ### Update the frac coordinates atom_crds_frac = list() for atm_idx in range(N_atoms): frac = cell.fractionalize( gemmi.Position( *atom_crds_ortho[atm_idx] ) ) atom_crds_frac.append(frac.tolist()) ### Get the "pre-molecules" (adjacency matrix with not much chemistry) acmatrix_new, _ = xyz2mol.xyz2AC( atom_num, atom_crds_ortho, 0, ) acmatrix_best = acmatrix_new ### Find the disconnected graphs from the adjacency matrix G = nx.convert_matrix.from_numpy_matrix(acmatrix_new) G_node_list = list(nx.connected_components(G)) ### Translate molecules to neighboring unit cells in + direction ### and check if we can form new bonds. If yes, update `atom_crds_ortho` found_bond = False for g in G_node_list: for a in [0,-1]: for b in [0,-1]: for c in [0,-1]: atom_crds_ortho_cp = copy.deepcopy(atom_crds_ortho) for atm_idx in g: frac = copy.deepcopy(atom_crds_frac[atm_idx]) frac[0] += a frac[1] += b frac[2] += c ortho = cell.orthogonalize( gemmi.Fractional(*frac) ).tolist() if not ortho in atom_crds_ortho_cp: atom_crds_ortho_cp[atm_idx] = ortho acmatrix_new, _ = xyz2mol.xyz2AC( atom_num, atom_crds_ortho, 0, ) if not np.all(acmatrix_new == acmatrix_best) and np.sum(acmatrix_new) >= np.sum(acmatrix_best): nonoverlapping_idxs = get_nonoverlapping_atoms(atom_crds_ortho_cp) if nonoverlapping_idxs.size == N_atoms: atom_crds_ortho = copy.deepcopy(atom_crds_ortho_cp) acmatrix_best = acmatrix_new found_bond = True acmatrix, _ = xyz2mol.xyz2AC( atom_num, atom_crds_ortho, 0, ) G = nx.convert_matrix.from_numpy_matrix(acmatrix) G_node_list = list(nx.connected_components(G)) atom_num = np.array(atom_num, dtype=int) atom_crds_ortho = np.array(atom_crds_ortho) mol_list = list() for g in G_node_list: g = list(g) _, mol = xyz2mol.xyz2AC( atom_num[g].tolist(), atom_crds_ortho[g].tolist(), 0) mol_list.append(mol) N_mol = len(mol_list) atom_crds_ortho = list() atom_num = list() mol_list_new = list() for mol_idx in range(N_mol): mol = mol_list[mol_idx] conf = mol.GetConformer() conf_pos = conf.GetPositions() frac_crds = list() for pos in conf_pos: frac_crds.append( cell.fractionalize( gemmi.Position( *pos ) ).tolist() ) frac_crds = np.array(frac_crds) valid_atoms = np.where( (frac_crds[:,0] > 0.) * (frac_crds[:,0] < 1.) *\ (frac_crds[:,1] > 0.) * (frac_crds[:,1] < 1.) *\ (frac_crds[:,2] > 0.) * (frac_crds[:,2] < 1.) )[0] ### If no atom is in uc, bring the molecule into unit cell if valid_atoms.size == 0: is_inside = False for a in [0,-1,1]: for b in [0,-1,1]: for c in [0,-1,1]: frac_crds += [a,b,c] valid_atoms = np.where( (frac_crds[:,0] > 0.) * (frac_crds[:,0] < 1.) *\ (frac_crds[:,1] > 0.) * (frac_crds[:,1] < 1.) *\ (frac_crds[:,2] > 0.) * (frac_crds[:,2] < 1.) )[0] if valid_atoms.size != 0: is_inside = True else: frac_crds -= [a,b,c] if is_inside: break if is_inside: break if is_inside: break if not is_inside: continue frac_crds_query = np.copy(frac_crds[valid_atoms[0]]) ### Check for overlap overlap = False for a in [0,-1,1]: for b in [0,-1,1]: for c in [0,-1,1]: frac_crds_query += [a,b,c] ortho = cell.orthogonalize( gemmi.Fractional(*frac_crds_query) ).tolist() if len(atom_crds_ortho) > 0: dists = distance.cdist([ortho], atom_crds_ortho) valids = np.where(dists < 0.01)[0] if valids.size > 0: overlap = True frac_crds_query -= [a,b,c] if not overlap: for atm_idx, frac in enumerate(frac_crds): ortho = cell.orthogonalize( gemmi.Fractional(*frac) ).tolist() atom_crds_ortho.append(ortho) rd_atom = mol.GetAtomWithIdx(atm_idx) atom_num.append(rd_atom.GetAtomicNum()) conf.SetAtomPosition( atm_idx, Point3D(*ortho) ) mol_list_new.append(mol) mol_list = list() if addhs: if use_openeye: import warnings warnings.warn("With addhs=True, we automatically set use_openeye=True.") from openeye import oechem from openeye import oequacpac from xtalmdscripts.supercellbuilding.oe_utils import rdmol_from_oemol from xtalmdscripts.supercellbuilding.oe_utils import oemol_from_rdmol count = 0 for mol in mol_list_new: oemol = oechem.OEMol() oemol.SetDimension(3) conf_pos = mol.GetConformer(0).GetPositions() crds = list() for atm_idx in range(mol.GetNumAtoms()): atom = mol.GetAtomWithIdx(atm_idx) oemol.NewAtom(int(atom.GetAtomicNum())) crds.extend(conf_pos[atm_idx]) oemol.SetCoords(crds) oechem.OEAssignAromaticFlags(oemol) oechem.OEDetermineConnectivity(oemol) oechem.OEFindRingAtomsAndBonds(oemol) oechem.OEPerceiveBondOrders(oemol) oechem.OE3DToInternalStereo(oemol) oechem.OEPerceiveChiral(oemol) oechem.OEAssignImplicitHydrogens(oemol) oechem.OEAssignFormalCharges(oemol) oequacpac.OERemoveFormalCharge(oemol) oechem.OEAddExplicitHydrogens(oemol) oechem.OEAssignAromaticFlags(oemol) mol = rdmol_from_oemol(oemol) Chem.AssignStereochemistryFrom3D(mol) mol_list.append(mol) #with open(f"./test_{count}.pdb", "w") as fopen: # fopen.write(Chem.MolToPDBBlock(mol)) count += 1 else: if use_openeye: from openeye import oechem from openeye import oequacpac from xtalmdscripts.supercellbuilding.oe_utils import rdmol_from_oemol from xtalmdscripts.supercellbuilding.oe_utils import oemol_from_rdmol count = 0 for mol in mol_list_new: oemol = oechem.OEMol() oemol.SetDimension(3) conf_pos = mol.GetConformer(0).GetPositions() crds = list() for atm_idx in range(mol.GetNumAtoms()): atom = mol.GetAtomWithIdx(atm_idx) oemol.NewAtom(int(atom.GetAtomicNum())) crds.extend(conf_pos[atm_idx]) oemol.SetCoords(crds) oechem.OEDetermineConnectivity(oemol) oechem.OEFindRingAtomsAndBonds(oemol) oechem.OEPerceiveBondOrders(oemol) oechem.OE3DToInternalStereo(oemol) oechem.OEPerceiveChiral(oemol) oechem.OEAssignFormalCharges(oemol) oechem.OEAssignAromaticFlags(oemol) mol = rdmol_from_oemol(oemol) Chem.AssignStereochemistryFrom3D(mol) mol_list.append(mol) #with open(f"./test_{count}.pdb", "w") as fopen: # fopen.write(Chem.MolToPDBBlock(mol)) count += 1 else: acmatrix, _ = xyz2mol.xyz2AC( atom_num, atom_crds_ortho, 0, ) G = nx.convert_matrix.from_numpy_matrix(acmatrix) G_node_list = list(nx.connected_components(G)) atom_num = np.array(atom_num, dtype=int) atom_crds_ortho = np.array(atom_crds_ortho) for g in G_node_list: g = list(g) mol = Chem.GetMolFrags( xyz2mol.xyz2mol( atom_num[g].tolist(), atom_crds_ortho[g].tolist(), charge=0)[0], asMols=True )[0] mol_list.append(mol) #strc_write = gemmi.Structure() #strc_write.spacegroup_hm = "P1" #strc_write.cell = cell #with open("./make_p1_test.pdb", "w") as fopen: # fopen.write(get_pdb_block(mol_list, strc_write)) return mol_list def make_supercell( cell, mol_list, a_min, a_max, b_min, b_max, c_min, c_max): """ Generate supercell based specified parameters. Assuming that `atom_crds_ortho` and `atom_num` are for P1 cell. See method `make_P1`. Returns list of rdkit mol objects with all molecules in supercell, list containing an int that is unique among the molecules in a unit cell, list containing the frac coordinates of the unit cell origins in the basis of the supercell. """ a_replicate = np.arange(a_min,a_max+1, dtype=int) b_replicate = np.arange(b_min,b_max+1, dtype=int) c_replicate = np.arange(c_min,c_max+1, dtype=int) N_mol = len(mol_list) replicated_mol_list = list() mol_identifies = list() unitcell_in_supercell_fracs = list() for a in a_replicate: for b in b_replicate: for c in c_replicate: for mol_idx in range(N_mol): mol = copy.deepcopy(mol_list[mol_idx]) conf = mol.GetConformer(0) conf_pos = conf.GetPositions() N_atoms = mol.GetNumAtoms() for atom_idx in range(N_atoms): pos = conf_pos[atom_idx] frac_pos = cell.fractionalize( gemmi.Position(*pos) ) frac_pos.x += a frac_pos.y += b frac_pos.z += c conf_pos_abc = cell.orthogonalize(frac_pos).tolist() conf.SetAtomPosition( atom_idx, Point3D(*conf_pos_abc) ) replicated_mol_list.append(mol) conf = mol.GetConformer(0) mol_identifies.append(mol_idx) unitcell_in_supercell_fracs.append([a,b,c]) return replicated_mol_list, mol_identifies, unitcell_in_supercell_fracs def clean_names(mol_list): """ Uniquify atom and residue names. Equalize residue names for chemically equal residues. """ import copy mol_list_new = list() N_mol = len(mol_list) for mol_idx in range(N_mol): mol = copy.deepcopy(mol_list[mol_idx]) atom_counts_dict = dict() for atom in mol.GetAtoms(): mi = Chem.AtomPDBResidueInfo() mi.SetIsHeteroAtom(True) mi.SetResidueName(f'M{mol_idx}'.ljust(3)) mi.SetResidueNumber(mol_idx + 1) mi.SetOccupancy(1.0) mi.SetTempFactor(0.0) atomic_num = atom.GetAtomicNum() atomic_ele = atom.GetSymbol() if not atomic_num in atom_counts_dict: atom_counts_dict[atomic_num] = 1 else: atom_counts_dict[atomic_num] += 1 mi.SetName( f"{atomic_ele}{atom_counts_dict[atomic_num]}".ljust(4) ) atom.SetMonomerInfo(mi) mol_list_new.append(mol) return mol_list_new def get_unique_mapping( mol_list, stereochemistry=True ): """ Get unique mapping dict and list of unique rdkit mol objects in list of rdkit mol objects. if `stereochemistry=True`, the mapping will honor stereochemistry. """ N_mol = len(mol_list) smiles_list = [Chem.MolToSmiles(mol, isomericSmiles=stereochemistry) for mol in mol_list] smiles_list_unique = set(smiles_list) smiles_list_unique = list(smiles_list_unique) rdmol_list_unique = list() unique_mapping = dict() for smiles_unique_idx, smiles_unique in enumerate(smiles_list_unique): found_unique = False for mol_idx in range(N_mol): mol = mol_list[mol_idx] smiles = smiles_list[mol_idx] if smiles == smiles_unique: if not found_unique: rdmol_list_unique.append(mol) found_unique = True unique_mapping[mol_idx] = smiles_unique_idx else: unique_mapping[mol_idx] = smiles_unique_idx assert len(unique_mapping) == N_mol return unique_mapping, rdmol_list_unique def equalize_rdmols( mol_list, stereochemistry=True ): """ Get list of rdkit mol objects in which all chemically idential mol objects have identical topology and pdb monomer info. Only difference are coordinates. If `stereochemistry=True` it will honor stereochemistry. """ import copy unique_mapping, rdmol_list_unique = get_unique_mapping(mol_list, stereochemistry) mol_list_new = copy.deepcopy(mol_list) for mol_idx in unique_mapping: if mol_idx == unique_mapping[mol_idx]: mol_info = copy.deepcopy(rdmol_list_unique[unique_mapping[mol_idx]]) for mol_info_atm_idx in range(mol_info.GetNumAtoms()): mi = mol_info.GetAtomWithIdx(mol_info_atm_idx).GetMonomerInfo() mi.SetResidueName(f'M{unique_mapping[mol_idx]}'.ljust(3)) mi.SetResidueNumber(mol_idx + 1) mol_info.GetAtomWithIdx(mol_info_atm_idx).SetMonomerInfo(mi) else: ### This is the molecule that holds the correct coordinates ### and pdb monomer info. mol_crds = copy.deepcopy(mol_list[mol_idx]) ### This is the molecule that holds the correct names, ordering, etc... mol_info = copy.deepcopy(rdmol_list_unique[unique_mapping[mol_idx]]) match = mol_crds.GetSubstructMatch(mol_info, useChirality=stereochemistry) conf_pos_crds = mol_crds.GetConformer(0).GetPositions() conf_info = mol_info.GetConformer(0) for mol_info_atm_idx, mol_crds_atm_idx in enumerate(match): pos = conf_pos_crds[mol_crds_atm_idx] conf_info.SetAtomPosition( mol_info_atm_idx, Point3D(*pos) ) ### Note, we cannot `copy.copy(mi_original)` ### or `copy.copy(mol_target.GetAtomWithIdx(atm_idx))` mi = mol_info.GetAtomWithIdx(mol_info_atm_idx).GetMonomerInfo() mi.SetResidueName(f'M{unique_mapping[mol_idx]}'.ljust(3)) mi.SetResidueNumber(mol_idx + 1) mol_info.GetAtomWithIdx(mol_info_atm_idx).SetMonomerInfo(mi) mol_list_new[mol_idx] = mol_info return mol_list_new def generate_replicated_mol_list( cell, atom_crds_ortho, atom_num, a_min_max, b_min_max, c_min_max, addhs=False, protonate_unitcell=True, addwater=0, N_iterations_protonation=0, use_openeye=False, ): """ Generate rdkit mol object list for molecules in supercell. supercell is generated according input parameters. """ mol_list = make_P1(cell, atom_crds_ortho, atom_num, addhs, use_openeye) if N_iterations_protonation > 0: mol_list = assign_protonation_states( cell=cell, mol_list=mol_list, N_iterations=N_iterations_protonation ) if addwater > 0: mol_list = random_fill( cell, mol_list, N_per_unitcell=addwater, radius=0.5, smiles="O" ) mol_list = clean_names(mol_list) replicated_mol_list, mol_identifies, unitcell_in_supercell_fracs = make_supercell( cell, mol_list, a_min_max[0], a_min_max[1], b_min_max[0], b_min_max[1], c_min_max[0], c_min_max[1], ) replicated_mol_list = equalize_rdmols(replicated_mol_list) return replicated_mol_list, mol_identifies, unitcell_in_supercell_fracs def get_pdb_block( replicated_mol_list, strc_write): """ Get pdb block as str. strc_write is gemmi structure object and must reflect the dimensions of the supercell. """ ### Combine all rdmols in a single big rdmol N_mol = len(replicated_mol_list) mol_new = Chem.Mol() for mol_idx in range(N_mol): mol = copy.deepcopy(replicated_mol_list[mol_idx]) mol_new = Chem.CombineMols(mol_new, mol) header = strc_write.make_pdb_headers() ### With the flavor options, one can control what is written ### to the pdb block. ### ### flavor: (optional) ### flavor & 1 : Write MODEL/ENDMDL lines around each record ### flavor & 2 : Don’t write any CONECT records ### flavor & 4 : Write CONECT records in both directions ### flavor & 8 : Don’t use multiple CONECTs to encode bond order ### flavor & 16 : Write MASTER record ### flavor & 32 : Write TER record crds_block = Chem.MolToPDBBlock(mol_new, flavor=8|32) pdb_block = header + crds_block return pdb_block def get_pdb_str( replicated_mol_list, strc, a_min_max, b_min_max, c_min_max): """ Get full pdb file as str. """ import gemmi ### Write pdb file ### ============== a_len = np.max(a_min_max) - np.min(a_min_max) + 1. b_len = np.max(b_min_max) - np.min(b_min_max) + 1. c_len = np.max(c_min_max) - np.min(c_min_max) + 1. strc_write = gemmi.Structure() strc_write.spacegroup_hm = strc.spacegroup_hm strc_write.cell = gemmi.UnitCell( strc.cell.a * a_len, strc.cell.b * b_len, strc.cell.c * c_len, strc.cell.alpha, strc.cell.beta, strc.cell.gamma ) pdb_block = get_pdb_block(replicated_mol_list, strc_write) return pdb_block def parse_cif( cif_path, use_symmetry_operations=False ): """ Parse cif file as gemmis structure object. """ import gemmi doc = gemmi.cif.read(cif_path)[0] strc = gemmi.make_small_structure_from_block(doc) ### finding it by number is much better ### Sometimes the HM name cannot be found by gemmi. table_number = -1 for item in doc: if item.pair == None: continue key, value = item.pair if "_symmetry_Int_Tables_number".lower() == key.lower(): table_number=int(value) break if table_number > -1: strc.spacegroup_hm = gemmi.find_spacegroup_by_number(table_number).hm atom_crds_ortho = list() atom_num = list() if use_symmetry_operations: op_list = doc.find_values('_symmetry_equiv_pos_as_xyz') gops = gemmi.GroupOps([gemmi.Op(o) for o in op_list]) for site in strc.sites: for op in gops: pos_frac = op.apply_to_xyz(site.fract.tolist()) pos = strc.cell.orthogonalize( gemmi.Fractional( *pos_frac ) ).tolist() atom_crds_ortho.append(pos) atom_num.append(site.element.atomic_number) else: for site in strc.get_all_unit_cell_sites(): pos = strc.cell.orthogonalize(site.fract) atom_crds_ortho.append([pos.x, pos.y, pos.z]) atom_num.append(site.element.atomic_number) return strc, atom_crds_ortho, atom_num def get_supercell_info_str( mol_identifies, unitcell_in_supercell_fracs ): """ Takes list of in unitcell molecule identifiers and unitcell in supercell frac coordinates. See output generated by method `generate_replicated_mol_list`. Returns csv formatted info string. """ info_str = "#Mol_idx," info_str += "mol_in_unitcell," info_str += "unitcell_in_supercell_a," info_str += "unitcell_in_supercell_b," info_str += "unitcell_in_supercell_c\n" N_mols = len(mol_identifies) for mol_idx in range(N_mols): info_str += f"{mol_idx:d}," info_str += f"{mol_identifies[mol_idx]:d}," info_str += f"{unitcell_in_supercell_fracs[mol_idx][0]:d}," info_str += f"{unitcell_in_supercell_fracs[mol_idx][1]:d}," info_str += f"{unitcell_in_supercell_fracs[mol_idx][2]:d}\n" return info_str def get_replicated_mol_list_json(replicated_mol_list): """ Returns rdkit json string of collapsed replicated mol_list. """ from rdkit import Chem mol_combo = Chem.Mol() for mol in replicated_mol_list: mol_combo = Chem.CombineMols(mol_combo, mol) return Chem.MolToJSON(mol_combo) def main(): """ Run the workflow. """ import gemmi args = parse_arguments() strc, atom_crds_ortho, atom_num = parse_cif(args.input, args.use_symmetry_operations) if len(args.a_min_max) == 2: a_min_max = [int(args.a_min_max[0]), int(args.a_min_max[1])] elif len(args.a_min_max) == 1: uc_length_a = strc.cell.a * 0.1 a_min_max = [0, np.ceil(args.a_min_max[0] / uc_length_a)] else: raise ValueError( "Argument a_min_max must be either pair (x,y) or single value (z)" ) if len(args.b_min_max) == 2: b_min_max = [int(args.b_min_max[0]), int(args.b_min_max[1])] elif len(args.b_min_max) == 1: uc_length_b = strc.cell.b * 0.1 b_min_max = [0, np.ceil(args.b_min_max[0] / uc_length_b)] else: raise ValueError( "Argument b_min_max must be either pair (x,y) or single value (z)" ) if len(args.c_min_max) == 2: c_min_max = [int(args.c_min_max[0]), int(args.c_min_max[1])] elif len(args.c_min_max) == 1: uc_length_c = strc.cell.c * 0.1 c_min_max = [0, np.ceil(args.c_min_max[0] / uc_length_c)] else: raise ValueError( "Argument c_min_max must be either pair (x,y) or single value (z)" ) ### Build the supercell as a set of rdkit molecule objects ### ====================================================== replicated_mol_list, mol_identifies, unitcell_in_supercell_fracs = generate_replicated_mol_list( cell=strc.cell, atom_crds_ortho=atom_crds_ortho, atom_num=atom_num, a_min_max=a_min_max, b_min_max=b_min_max, c_min_max=c_min_max, addhs=args.addhs, addwater=args.addwater, N_iterations_protonation=args.n_protonation_attempts, use_openeye=args.use_openeye ) ### Write pdb file ### ============== strc_write = gemmi.Structure() strc_write.spacegroup_hm = "P1" strc_write.cell = strc.cell pdb_str = get_pdb_str( replicated_mol_list, strc_write, a_min_max, b_min_max, c_min_max ) with open(f"{args.prefix}.pdb", "w") as fopen: fopen.write(pdb_str) with open(f"{args.prefix}.csv", "w") as fopen: info_str = get_supercell_info_str( mol_identifies, unitcell_in_supercell_fracs ) fopen.write(info_str) with open(f"{args.prefix}.json", "w") as fopen: json_str = get_replicated_mol_list_json(replicated_mol_list) fopen.write(json_str) ### Generate list of unique smiles for unique ### molecules in UC ### ========================================= mol_list = make_P1(strc.cell, atom_crds_ortho, atom_num, args.addhs, args.use_openeye) if args.addwater > 0: random_fill( strc.cell, mol_list, N_per_unitcell=args.addwater, radius=0.5, smiles="O" ) unitcell_mol_list, _, _ = make_supercell( strc.cell, mol_list, 0,0, 0,0, 0,0, ) from rdkit.Chem import Descriptors unitcell_weight = 0. smiles_list = list() for mol in unitcell_mol_list: unitcell_weight += Descriptors.MolWt(mol) smiles_list.append(Chem.MolToSmiles(mol, isomericSmiles=True)) smiles_list = set(smiles_list) smiles_list = list(smiles_list) ### Output final summary ### ==================== a_len = np.max(a_min_max) - np.min(a_min_max) + 1. b_len = np.max(b_min_max) - np.min(b_min_max) + 1. c_len = np.max(c_min_max) - np.min(c_min_max) + 1. import gemmi doc = gemmi.cif.read(args.input)[0] cif_info_dict = { "temperature" : "Not found", "cell_setting" : "Not found", "space_group" : "Not found", "density" : "Not found" } for item in doc: if item.pair == None: continue key, value = item.pair if "_diffrn_ambient_temperature".lower() == key.lower(): cif_info_dict["temperature"] = value elif "_symmetry_cell_setting".lower() == key.lower(): cif_info_dict["cell_setting"] = value elif "_symmetry_space_group_name_H-M".lower() == key.lower(): cif_info_dict["space_group"] = value elif "_exptl_crystal_density_diffrn".lower() == key.lower(): cif_info_dict["density"] = value print(f""" Summary: ======== Expt: ----- Temperature [K] : {cif_info_dict['temperature']}, Cell Setting : {cif_info_dict['cell_setting']}, Space Group H-M : {cif_info_dict['space_group']}, Density [g/cm3] : {cif_info_dict['density']}, Supercell: ---------- Total number of molecules : {len(replicated_mol_list)}, Total Length edge a [Ang] : {strc.cell.a * a_len:4.2f}, Total Length edge b [Ang] : {strc.cell.b * b_len:4.2f}, Total Length edge c [Ang] : {strc.cell.c * c_len:4.2f}, Cell angle alpha [deg] : {strc.cell.alpha:4.2f}, Cell angle beta [deg] : {strc.cell.beta:4.2f}, Cell angle gamma [deg] : {strc.cell.gamma:4.2f}, Total Volume supercell [Ang3] : {strc.cell.volume * a_len * b_len * c_len:4.2f} Density [g/cm3] : {unitcell_weight / strc.cell.volume * 1.6605:4.2f} SMILES for molecules in UC : {" ".join(smiles_list)} """ ### 1.6605 conversion g/mol/Ang^3 to g/cm^3 ) try: diff = (unitcell_weight / strc.cell.volume * 1.6605) - float(cif_info_dict["density"]) if abs(diff) > 0.1: warnings.warn(f"Density difference {diff}. Check structure.") except: pass def entry_point(): main() if __name__ == "__main__": entry_point()
from django.shortcuts import render from rest_framework import serializers, viewsets from .serializers import AttributeSerializer from .models import * from PIL.Image import new from django.shortcuts import render from django.views.decorators.csrf import csrf_exempt from django.views.generic import View, FormView, TemplateView, DetailView, ListView from django.contrib.auth.forms import UserCreationForm, UserChangeForm, PasswordChangeForm, AdminPasswordChangeForm from django.views.generic.edit import CreateView, UpdateView from django.contrib.auth import authenticate, login, logout from django.shortcuts import render, redirect from django.http import HttpResponse, HttpResponseRedirect, JsonResponse from django.views.generic.edit import FormMixin from django.template.loader import render_to_string from django.urls import reverse_lazy from django.core.files import File from django.core.files.temp import NamedTemporaryFile from django.conf import settings from django.core.files import File import datetime import base64 import json import random import base64 from io import BytesIO from .openai_api import * import base64 from .build_image import * from .save_to_png import * from django.core.files import File import boto3 import urllib.request import requests from django.core.files.base import ContentFile from os.path import basename from .tasks import * from requests_oauthlib import OAuth1 from urllib.parse import urlencode from rest_framework.views import APIView from django.http.response import HttpResponseRedirect from requests_oauthlib import OAuth1 from requests_oauthlib import OAuth1Session from requests_oauthlib import requests from .utils import is_twitter_authenticated, update_or_create_user_token, get_user_tokens from web3 import Web3 from .gemsContract import * from .forms import * w3 = Web3(Web3.HTTPProvider('https://eth-mainnet.alchemyapi.io/v2/nFzmfPoiMWnPgTBNZWU9JGmkWSAeoVIt')) # Create your views here. #Homepage Landing Page def Homepage(request): first_gem = None example_gems = [] example_tweeters = ["JoshuaOgundu", "chriscantino", "ArlanWasHere", "0xOddrey", "OneBandwagonFan", "CPGclub"] for person in example_tweeters: p_index = example_tweeters.index(person) if p_index == 0: ci = random.randint(0, 4) final = getTopic(person) base_code, svg_code = get_image(final, ci) first_gem = str("@" + person), base_code else: ci = random.randint(0, 4) final = getTopic(person) base_code, svg_code = get_image(final, ci) result = str("@" + person), base_code example_gems.append(result) return render(request, "homepage.html", {"example_gems": example_gems, 'first_gem': first_gem}) def Mint(request): current_gas = w3.eth.gas_price gem_contract = get_gem_contract() current_count = gem_contract.functions.totalSupply().call() return render(request, "mint.html", {"current_count": int(current_count), "current_gas":current_gas}) def finalMint(request, twitterId): return render(request, "mint.html", {}) def MyGems(request, wallet, twitterId, twitterRef): gems = [] new_twitter_connection = [] assigned = True if "none" not in twitterId: new_twitter_connection = twitterConnection.objects.filter(id=twitterId, twitter_ref=twitterRef).first() if new_twitter_connection: if new_twitter_connection.meta_data: pass else: assigned = False if "none" not in wallet: gem_contract = get_gem_contract() addy = Web3.toChecksumAddress(wallet) ownership = gem_contract.functions.tokensOfOwner(addy).call() for tokenId in ownership: meta_match, created = gemsMeta.objects.get_or_create(metaID=tokenId) if created: meta_match.name = "Gem #%s" % (tokenId) meta_match.description = "A unique gem based on your tweets" meta_match.background = random.randint(0, 4) meta_match.save() twitter_connection = twitterConnection.objects.filter(meta_data=meta_match).first() if twitter_connection: final = getTopic(twitter_connection.twitter) base_code, _ = get_image(final, int(meta_match.background)) else: if new_twitter_connection and assigned == False: new_twitter_connection.meta_data = meta_match new_twitter_connection.save() meta_match.name = "@%s Gem" % (new_twitter_connection.twitter) meta_match.is_anon = False twitter_connection = new_twitter_connection final = getTopic(new_twitter_connection.twitter) base_code, _ = get_image(final, int(meta_match.background)) assigned = True else: final = getTopic('_none_') base_code, _ = get_image(final, int(meta_match.background)) meta_match.image = base_code meta_match.save() result = meta_match, twitter_connection gems.append(result) return render(request, "mygems.html", {"gems": gems, "twitterRef": twitterRef, "wallet_addy": wallet, 'new_twitter_connection': new_twitter_connection, 'twitterId': twitterId}) def MakeAnon(request, reveal, tokenId, wallet, twitterId, twitterRef): reveal = int(reveal) if reveal == 1: meta_match = gemsMeta.objects.filter(metaID=tokenId).first() meta_match.name = "Gem #%s" % (tokenId) meta_match.is_anon = True meta_match.save() else: meta_match = gemsMeta.objects.filter(metaID=tokenId).first() twitt_conn = twitterConnection.objects.filter(meta_data=meta_match).first() meta_match.name = "@%s Gem" % (twitt_conn.twitter) meta_match.is_anon = False meta_match.save() return redirect('my_gems', wallet=wallet, twitterId=twitterId, twitterRef=twitterRef) def GemReset(request, tokenId, wallet, twitterId, twitterRef): meta_match = gemsMeta.objects.filter(metaID=tokenId).first() twitt_conn = twitterConnection.objects.filter(meta_data=meta_match).first() twitt_conn.delete() meta_match.name = "Gem #%s" % (tokenId) meta_match.is_anon = True meta_match.save() return redirect('my_gems', wallet=wallet, twitterId='none', twitterRef='none') def LearnMore(request): return render(request, "learn-more.html", {}) def GemSearch(request): if request.method == "POST": # get the form data form = gemSearchForm(request.POST) q = 1 # save the data and after fetch the object in instance if form.is_valid(): # serialize in new friend object in json q = form.cleaned_data.get('tokenId') return redirect('gem_preview', tokenId=int(q)) else: return redirect('gem_preview', tokenId=1) def GemPreview(request, tokenId): meta_match = gemsMeta.objects.filter(metaID=tokenId).first() if meta_match: twitter_connection = twitterConnection.objects.filter(meta_data=meta_match).first() if twitter_connection: final, tn, subject, polar = getFullTopic(twitter_connection.twitter) base_code, svg_code = get_image(final, int(meta_match.background)) results = save_to_png(svg_code, twitter_connection.twitter) f = open(results, 'rb') meta_match.image_file = File(f) meta_match.save() else: final, tn, subject, polar = getFullTopic('_none_') base_code, _ = get_image(final, int(meta_match.background)) try: meta_match.image = base_code meta_match.save() url = "https://api.opensea.io/api/v1/asset/0x0B5DdEFf4D54C1B1eE635657C17cF54135e5DB30/%s/?force_update=true" % (meta_match.metaID) headers = { "Accept": "application/json", "X-API-KEY": "Connection: keep-alive" } response = requests.request("GET", url, headers=headers) except: pass return render(request, "gem-preview.html", {"tokenId": tokenId, "meta_match": meta_match, "final": final, "tn": tn, "subject": int(subject), "polar": int(polar)}) else: return render(request, "404.html") def AboutUs(request): example_gems = [] example_tweeters = ["0xoddrey", "AnnaShimuni", "Vii__Tat", "zahna_montana"] jobs = ["Developer", "Product Design", "Art Director", "Community Manager"] for person in example_tweeters: index = example_tweeters.index(person) final = getTopic(person) ci = random.randint(0, 4) base_code, svg_code = get_image(final, ci) result = str("@" + person), jobs[index], base_code example_gems.append(result) return render(request, "about-us.html", {'example_gems': example_gems}) def MetaDataApi(request, tokenId): if request.method == "GET": meta_match = gemsMeta.objects.filter(metaID=tokenId).first() if meta_match is None: meta_match, created = gemsMeta.objects.get_or_create(metaID=tokenId) if created: meta_match.name = "Gem #%s" % (tokenId) meta_match.description = "A unique gem based on your tweets" meta_match.background = random.randint(0, 4) final = getTopic('_none_') base_code, _ = get_image(final, int(meta_match.background)) meta_match.image = base_code meta_match.save() twitter_connection = twitterConnection.objects.filter(meta_data=meta_match).first() try: if twitter_connection: final = getTopic(twitter_connection.twitter) base_code, _ = get_image(final, int(meta_match.background)) else: final = getTopic('_none_') base_code, _ = get_image(final, int(meta_match.background)) meta_match.image = base_code meta_match.save() except: pass return JsonResponse(AttributeSerializer(meta_match).data) class TwitterAuthRedirectEndpoint(APIView): def get(self, request, *args, **kwargs): try: oauth = OAuth1( client_key= config('consumer_key2'), client_secret= config('consumer_secret2'), ) #Step one: obtaining request token request_token_url = "https://api.twitter.com/oauth/request_token" data = urlencode({ "oauth_callback": config('REDIRECT_URI') }) response = requests.post(request_token_url, auth=oauth, data=data) response.raise_for_status() response_split = response.text.split("&") oauth_token = response_split[0].split("=")[1] oauth_token_secret = response_split[1].split("=")[1] #Step two: redirecting user to Twitter twitter_redirect_url = ( f"https://api.twitter.com/oauth/authenticate?oauth_token={oauth_token}" ) return HttpResponseRedirect(twitter_redirect_url) except ConnectionError: html = "<html><body>You have no internet connection</body></html>" return HttpResponse(html, status=403) except Exception as ex: html="<html><body>Something went wrong. Try Again</body></html>" print(ex) return HttpResponse(html, status=403) class TwitterCallbackEndpoint(APIView): def get(self, request, *args, **kwargs): try: oauth_token = request.query_params.get("oauth_token") oauth_verifier = request.query_params.get("oauth_verifier") oauth = OAuth1( client_key= config('consumer_key2'), client_secret = config('consumer_secret2'), resource_owner_key=oauth_token, verifier=oauth_verifier, ) res = requests.post( f"https://api.twitter.com/oauth/access_token", auth=oauth ) res_split = res.text.split("&") oauth_token=res_split[0].split("=")[1] oauth_secret=res_split[1].split("=")[1] user_id = res_split[2].split("=")[1] if len(res_split) > 2 else None user_name = res_split[3].split("=")[1] if len(res_split) > 3 else None if not request.session.exists(request.session.session_key): request.session.create() update_or_create_user_token(request.session.session_key, oauth_token, oauth_secret, user_id, user_name) twitter_match, _ = twitterConnection.objects.get_or_create(user_id=user_id, twitter=user_name) ## twitt_ref = twitter_match.twitter_ref redirect_url="https://www.gemsnft.co/my-gems/none/%s/%s/" % (twitter_match.id, twitt_ref) return HttpResponseRedirect(redirect_url) except ConnectionError: return HttpResponse( "<html><body>You have no internet connection</body></html>", status=403 ) except Exception as ex: print(ex) return HttpResponse( "<html><body>Something went wrong.Try again.</body></html>", status=403 ) class IsAuthenticated(APIView): def get(self, request, *args, **kwargs): is_authenticated = is_twitter_authenticated( self.request.session.session_key) return Response({'status': is_authenticated}, status=status.HTTP_200_OK)
# coding: utf-8 from __future__ import absolute_import import unittest from flask import json from six import BytesIO from openapi_server.models.feedback import Feedback # noqa: E501 from openapi_server.models.feedback_response import FeedbackResponse # noqa: E501 from openapi_server.models.result import Result # noqa: E501 from openapi_server.models.result_feedback import ResultFeedback # noqa: E501 from openapi_server.test import BaseTestCase class TestResultController(BaseTestCase): """ResultController integration test stubs""" def test_get_result(self): """Test case for get_result Request stored result """ headers = { 'Accept': 'application/json', } response = self.client.open( '/api/rtx/v1/result/{result_id}'.format(result_id=56), method='GET', headers=headers) self.assert200(response, 'Response body is : ' + response.data.decode('utf-8')) def test_get_result_feedback(self): """Test case for get_result_feedback Request stored feedback for this result """ headers = { 'Accept': 'application/json', } response = self.client.open( '/api/rtx/v1/result/{result_id}/feedback'.format(result_id=56), method='GET', headers=headers) self.assert200(response, 'Response body is : ' + response.data.decode('utf-8')) def test_post_result_feedback(self): """Test case for post_result_feedback Store feedback for a particular result """ feedback = { "commenter_id" : 1, "datetime" : "2018-05-08 12:00", "rating_id" : 1, "result_id" : "https://rtx.ncats.io/api/rtx/v1/result/234", "expertise_level_id" : 1, "comment" : "This is a great result because...", "id" : "https://rtx.ncats.io/api/rtx/v1/result/234/feedback/56", "commenter_full_name" : "John Smith" } headers = { 'Accept': 'application/json', 'Content-Type': 'application/json', } response = self.client.open( '/api/rtx/v1/result/{result_id}/feedback'.format(result_id=56), method='POST', headers=headers, data=json.dumps(feedback), content_type='application/json') self.assert200(response, 'Response body is : ' + response.data.decode('utf-8')) if __name__ == '__main__': unittest.main()
""" ******************************************************************************** main file to execute your program ******************************************************************************** """ import time import numpy as np import tensorflow as tf from pinn import PINN from config_gpu import config_gpu from prp_dat import func_u0, func_ub, prp_grd, prp_dataset from params import params from make_fig import plot_sol0, plot_sol1 from plot_hist import * def main(): config_gpu(gpu_flg = 1) tmin, tmax = 0., 1. xmin, xmax = -1., 1. in_dim, out_dim, width, depth, \ w_init, b_init, act, \ lr, opt, \ f_scl, laaf, \ rho, nu, \ w_dat, w_pde, \ f_mntr, r_seed, \ n_epch, n_btch, c_tol, \ N_0, N_b, N_r = params() t_0, x_0, t_b, x_b, t_r, x_r = prp_dataset(tmin, tmax, xmin, xmax, N_0, N_b, N_r) u_0 = func_u0(x_0) u_b = func_ub(x_b) pinn = PINN(t_0, x_0, u_0, t_b, x_b, u_b, t_r, x_r, Rm = in_dim, Rn = out_dim, Rl = width, depth = depth, activ = "tanh", BN = False, w_init = "glorot_normal", b_init = "zeros", lr = lr, opt = opt, w_0 = 1., w_b = 1., w_r = 1., f_mntr = 10, r_seed = 1234) with tf.device("/device:GPU:0"): pinn.train(n_epch, n_btch, c_tol) plt.figure(figsize=(8,4)) plt.plot(pinn.ep_log, pinn.loss_log, alpha=.7) plt.grid(alpha=.5) plt.show() # PINN inference nt = int(1e3) + 1 nx = int(1e2) + 1 t, x, TX = prp_grd( tmin, tmax, nt, xmin, xmax, nx ) t0 = time.time() u_hat, gv_hat = pinn.predict(t, x) t1 = time.time() elps = t1 - t0 print("elapsed time for PINN inference (sec):", elps) print("elapsed time for PINN inference (min):", elps / 60.) plot_sol1(TX, u_hat .numpy(), -1, 1, .25) plot_sol1(TX, gv_hat.numpy(), -1, 1, .25) # FDM approximation factor = 20 nt = int(factor * (nt - 1)) + 1 nx = int(factor * (nx - 1)) + 1 t, x, TX = prp_grd( tmin, tmax, nt, xmin, xmax, nx ) t, x = np.linspace(tmin, tmax, nt), np.linspace(xmin, xmax, nx) dt, dx = t[1] - t[0], x[1] - x[0] nu = pinn.nu.numpy() u = np.zeros([nx, nt]) # impose IC for i in range(nx): u[:,0] = - np.sin(np.pi * x) # explicit time integration t0 = time.time() for n in range(nt - 1): for i in range(1, nx - 1): u[i, n + 1] = u[i, n] \ - dt / dx * u[i, n] * (u[i, n] - u[i - 1, n]) \ + nu * dt / dx ** 2 * (u[i + 1, n] - 2 * u[i, n] + u[i - 1, n]) t1 = time.time() elps = t1 - t0 print("elapsed time for FDM simulation (sec):", elps) print("elapsed time for FDM simulation (sec):", elps / 60.) plot_sol1(TX, u.reshape(-1, 1), -1, 1, .25) if __name__ == "__main__": main()
from functools import partial from wai.annotations.core.component import ProcessorComponent from wai.annotations.core.stream import ThenFunction, DoneFunction from wai.annotations.core.stream.util import RequiresNoFinalisation from wai.annotations.domain.image.object_detection import ImageObjectDetectionInstance from wai.annotations.domain.image.object_detection.util import set_object_label from wai.common.adams.imaging.locateobjects import LocatedObjects, LocatedObject from wai.common.geometry import Polygon, Point from .._format import OPEXODFormat, OPEXObject class FromOPEXOD( RequiresNoFinalisation, ProcessorComponent[OPEXODFormat, ImageObjectDetectionInstance] ): """ Converter from OPEX annotations to internal format. """ def process_element( self, element: OPEXODFormat, then: ThenFunction[ImageObjectDetectionInstance], done: DoneFunction ): # Unpack the external format image_info, opex_objects = element # Convert OPEX objects to located objects located_objects = None if len(opex_objects) > 0: to_located_object = partial(self.to_located_object) located_objects = LocatedObjects(map(to_located_object, opex_objects)) then( ImageObjectDetectionInstance( image_info, located_objects ) ) def to_located_object(self, object: OPEXObject) -> LocatedObject: """ Converts the OPEX object to a located object. :param object: The OPEX object. :return: The located object. """ # Get the object label (just uses the class index if no mapping is provided) label: str = object.label bbox = object.prediction.bbox poly = object.prediction.polygon points = [] for x, y in poly.points: points.append(Point(x=x, y=y)) # Create the located object located_object = LocatedObject(bbox.left, bbox.top, bbox.right - bbox.left + 1, bbox.bottom - bbox.top + 1) located_object.set_polygon(Polygon(*points)) set_object_label(located_object, label) return located_object
import re # Utility class with useful functions that do not belong to a specific component of the Enigma Machine. class Util: alphabet = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' alphabetPos = [] for i in range(0, len(alphabet)): alphabetPos.append(alphabet[i]) # Converts a letter of the alphabet to its numerical equivalent, i.e. A=1 ... Z=26. # @param char The character to convert. @staticmethod def alphabetToNum(char): return Util.alphabetPos.index(char) + 1 # Converts a number to its alphabet equivalent. # @param num The number (in [1, 26]) to convert. @staticmethod def numToAlphabet(num): return Util.alphabetPos[num - 1] # Converts decrypted text (typically in 5-letter segments with various annotations) into legible form. # @param text The text to parse. # @return Legible text, with converted annotations. @staticmethod def parseText(text): insideBracket = False # Inner method to switch between brackets. # @param matchObj Unused parameter for re.sub(..) # @return The bracket to be used. def bracketChooser(matchObj): nonlocal insideBracket if (not insideBracket): insideBracket = True return '(' insideBracket = False return ')' # Annotations here are based on the historical standards used by Germany in WW2 # See http://users.telenet.be/d.rijmenants/Enigma%20Sim%20Manual.pdf for more details. # Merge 5-letter blocks, separate words by X text = text.replace(' ', '') text = re.sub(r'(?<!X)X(?!X)', ' ', text) # Conversion of numbers text = text.replace('NULL', '0') text = text.replace('CENTA', '00') text = text.replace('MILLE', '000') text = text.replace('MYRIA', '0000') text = text.replace('EINZ', '1') text = text.replace('EINS', '1') text = text.replace('ZWO', '2') text = text.replace('DREI', '3') text = text.replace('VIER', '4') text = text.replace('FUNF', '5') text = text.replace('SEQS', '6') text = text.replace('SIEBEN', '7') text = text.replace('AQT', '8') text = text.replace('NEUN', '9') # Conversion of abbreviations/code text = text.replace('Q', 'CH') text = text.replace('UD', '?') text = text.replace('XX', ':') text = text.replace('YY', '-') text = text.replace('J', '*') text = re.sub(r'KK', bracketChooser, text) # Convert KK...KK into (...) text = re.sub(r'\bK\b|\bK^(\d|\D|\W|\w)', '.', text) # Convert single K into a fullstop. text = re.sub(r'\s[.]|\s[.]', '.', text) # Remove incorrect spaces before full stops text = re.sub(r'\b(\D+)\1\b', r'\1', text) # Remove duplicate words return text # Convert numbers into German enigma format. # @param num The number to convert. Can either be in number format, or string format. # @return A string containing the number, formatted for transmission by Enigma. @staticmethod def formatNum(num): if (not isinstance(num, str)): num = str(num) # We're largely using regex to convert it. num = num.replace('0000', 'MYRIA') num = num.replace('000', 'MILLE') num = num.replace('00', 'CENTA') num = num.replace('0', 'NULL') num = num.replace('9', 'NEUN') num = num.replace('8', 'AQT') num = num.replace('7', 'SIEBEN') num = num.replace('6', 'SEQS') num = num.replace('5', 'FUNF') num = num.replace('4', 'VIER') num = num.replace('3', 'DREI') num = num.replace('2', 'ZWO') num = num.replace('1', 'EINS') # Convert separators num = num.replace(':', 'XX') return num # Formats a string into 5-letter segments. # @param string The string to format. # @return A formatted string, in 5 letter segments. If the last segment is less than 5 letters, it will be padded with spaces. @staticmethod def formatStr(string): if (not isinstance(string, str)): string = str(string) string = re.sub(r'\s', '', string) string = re.sub(r'(.{5})', r'\1 ', string) if (not (len(string) % 6 == 0)): string += ' ' * (5 - (len(string) % 6)) return string # Formats a string by converting special characters to their German Enigma annotation equivalent. # @param text The string to encode. # @return An encoded string. @staticmethod def convertSpecialChar(text): if (not isinstance(text, str)): text = str(text) return text text = text.replace('CH', 'Q') text = text.replace('?', 'UD') text = text.replace(':', 'XX') text = text.replace('-', 'YY') text = text.replace('*', 'J') text = text.replace('.', 'K') text = text.replace(' ', 'X') return text
import sys ifunc, g = lambda: [*map(int, sys.stdin.readline().rstrip().split())], range n = ifunc() iList = ifunc() iList = sorted(iList) ret = [-1, -1, -1] minMinDiff = 10**10 for idx in g(len(iList)-2): tar = -iList[idx] le = idx+1 ri = len(iList)-1 tarLe, tarRi = -1, -1 minDiff = 10**10 while le < ri: aSum = iList[le] + iList[ri] if abs(aSum-tar) < minDiff: minDiff = abs(aSum-tar) tarLe, tarRi = le, ri if aSum < tar: le += 1 elif tar < aSum: ri -= 1 else: break if minDiff == 0: ret = [iList[idx], iList[tarLe], iList[tarRi]] break if minDiff < minMinDiff: ret = [iList[idx], iList[tarLe], iList[tarRi]] minMinDiff = minDiff ret = sorted(ret) print(*ret)
# -*- coding: utf-8 -*- # Copyright (c) 2012-2015, Anima Istanbul # # This module is part of anima-tools and is released under the BSD 2 # License: http://www.opensource.org/licenses/BSD-2-Clause import sys import maya.OpenMaya as OpenMaya import maya.OpenMayaMPx as OpenMayaMPx kPluginNodeTypeName = "spClosestPointOnCurve" cpocPluginId = OpenMaya.MTypeId(0x00349) # Node definition class closestPointOnCurve(OpenMayaMPx.MPxNode): # the plugs aInCurve = OpenMaya.MObject() aInPosition = OpenMaya.MObject() aOutPosition = OpenMaya.MObject() aOutPositionX = OpenMaya.MObject() aOutPositionY = OpenMaya.MObject() aOutPositionZ = OpenMaya.MObject() aOutNormal = OpenMaya.MObject() aOutNormalX = OpenMaya.MObject() aOutNormalY = OpenMaya.MObject() aOutNormalZ = OpenMaya.MObject() aOutParam = OpenMaya.MObject() def __init__(self): OpenMayaMPx.MPxNode.__init__(self) def compute(self, plug, dataBlock): if plug == closestPointOnCurve.aOutPosition or plug == closestPointOnCurve.aOutParam: dataHandle = dataBlock.inputValue(closestPointOnCurve.aInCurve) inputAsCurve = dataHandle.asNurbsCurve() #if not inputAsCurve.hasFn(OpenMaya.MFn.kNurbsCurve): # return OpenMaya.kUnknownParameter dataHandle = dataBlock.inputValue(closestPointOnCurve.aInPosition) inPositionAsFloat3 = dataHandle.asFloat3() inPosition = OpenMaya.MPoint( inPositionAsFloat3[0], inPositionAsFloat3[1], inPositionAsFloat3[2] ) # connect the MFnNurbsCurve # and ask the closest point nurbsCurveFn = OpenMaya.MFnNurbsCurve(inputAsCurve) # get and set outPosition outParam = OpenMaya.MScriptUtil() outParam.createFromDouble(0) outParamPtr = outParam.asDoublePtr() # get position and paramater outPosition = nurbsCurveFn.closestPoint( inPosition, True, outParamPtr, 0.001, OpenMaya.MSpace.kWorld ) outputHandle = dataBlock.outputValue( closestPointOnCurve.aOutPosition ) outputHandle.set3Float(outPosition.x, outPosition.y, outPosition.z) # get and set outNormal #outNormal = nurbsCurveFn.normal(parameter, OpenMaya.MSpace.kWorld) #outputHandle = dataBlock.outputValue(closestPointOnCurve.aOutNormal) #outputHandle.set3Float(outNormal.x, outNormal.y, outNormal.z) #outputHandle.set3Float(0, 1, 0 ) # get and set the uvs outputHandle = dataBlock.outputValue(closestPointOnCurve.aOutParam) #outputHandle.setFloat(OpenMaya.MScriptUtil(outParamPtr).asDouble()) outputHandle.setFloat(OpenMaya.MScriptUtil.getDouble(outParamPtr)) dataBlock.setClean(plug) else: return OpenMaya.kUnknownParameter # creator def nodeCreator(): return OpenMayaMPx.asMPxPtr(closestPointOnCurve()) # initializer def nodeInitializer(): tAttr = OpenMaya.MFnTypedAttribute() nAttr = OpenMaya.MFnNumericAttribute() # input curve closestPointOnCurve.aInCurve = tAttr.create( "inCurve", "ic", OpenMaya.MFnData.kNurbsCurve ) tAttr.setStorable(0) closestPointOnCurve.addAttribute(closestPointOnCurve.aInCurve) # input position closestPointOnCurve.aInPositionX = nAttr.create( "inPositionX", "ipx", OpenMaya.MFnNumericData.kFloat, 0.0 ) nAttr.setStorable(1) nAttr.setWritable(1) closestPointOnCurve.addAttribute(closestPointOnCurve.aInPositionX) closestPointOnCurve.aInPositionY = nAttr.create( "inPositionY", "ipy", OpenMaya.MFnNumericData.kFloat, 0.0 ) nAttr.setStorable(1) nAttr.setWritable(1) closestPointOnCurve.addAttribute(closestPointOnCurve.aInPositionY) closestPointOnCurve.aInPositionZ = nAttr.create( "inPositionZ", "ipz", OpenMaya.MFnNumericData.kFloat, 0.0 ) nAttr.setStorable(1) nAttr.setWritable(1) closestPointOnCurve.addAttribute(closestPointOnCurve.aInPositionZ) closestPointOnCurve.aInPosition = nAttr.create( "inPosition", "ip", closestPointOnCurve.aInPositionX, closestPointOnCurve.aInPositionY, closestPointOnCurve.aInPositionZ ) nAttr.setStorable(1) nAttr.setKeyable(1) nAttr.setWritable(1) closestPointOnCurve.addAttribute(closestPointOnCurve.aInPosition) # output position closestPointOnCurve.aOutPositionX = nAttr.create( "outPositionX", "opx", OpenMaya.MFnNumericData.kFloat, 0.0 ) nAttr.setStorable(0) nAttr.setWritable(0) closestPointOnCurve.addAttribute(closestPointOnCurve.aOutPositionX) closestPointOnCurve.aOutPositionY = nAttr.create( "outPositionY", "opy", OpenMaya.MFnNumericData.kFloat, 0.0 ) nAttr.setStorable(0) nAttr.setWritable(0) closestPointOnCurve.addAttribute(closestPointOnCurve.aOutPositionY) closestPointOnCurve.aOutPositionZ = nAttr.create( "outPositionZ", "opz", OpenMaya.MFnNumericData.kFloat, 0.0 ) nAttr.setStorable(0) nAttr.setWritable(0) closestPointOnCurve.addAttribute(closestPointOnCurve.aOutPositionZ) closestPointOnCurve.aOutPosition = nAttr.create( "outPosition", "op", closestPointOnCurve.aOutPositionX, closestPointOnCurve.aOutPositionY, closestPointOnCurve.aOutPositionZ ) nAttr.setStorable(0) nAttr.setKeyable(0) nAttr.setWritable(1) closestPointOnCurve.addAttribute(closestPointOnCurve.aOutPosition) # output normal closestPointOnCurve.aOutNormalX = nAttr.create( "outNormalX", "onx", OpenMaya.MFnNumericData.kFloat, 0.0 ) nAttr.setStorable(0) nAttr.setWritable(0) closestPointOnCurve.addAttribute(closestPointOnCurve.aOutNormalX) closestPointOnCurve.aOutNormalY = nAttr.create( "outNormalY", "ony", OpenMaya.MFnNumericData.kFloat, 0.0 ) nAttr.setStorable(0) nAttr.setWritable(0) closestPointOnCurve.addAttribute(closestPointOnCurve.aOutNormalY) closestPointOnCurve.aOutNormalZ = nAttr.create( "outNormalZ", "onz", OpenMaya.MFnNumericData.kFloat, 0.0 ) nAttr.setStorable(0) nAttr.setWritable(0) closestPointOnCurve.addAttribute(closestPointOnCurve.aOutNormalZ) closestPointOnCurve.aOutNormal = nAttr.create( "outNormal", "on", closestPointOnCurve.aOutNormalX, closestPointOnCurve.aOutNormalY, closestPointOnCurve.aOutNormalZ ) nAttr.setStorable(0) nAttr.setKeyable(0) nAttr.setWritable(1) closestPointOnCurve.addAttribute(closestPointOnCurve.aOutNormal) closestPointOnCurve.aOutParam = nAttr.create( "outParam", "opa", OpenMaya.MFnNumericData.kFloat, 0.0 ) nAttr.setStorable(0) nAttr.setKeyable(0) nAttr.setWritable(1) closestPointOnCurve.addAttribute(closestPointOnCurve.aOutParam) closestPointOnCurve.attributeAffects( closestPointOnCurve.aInCurve, closestPointOnCurve.aOutPosition ) closestPointOnCurve.attributeAffects( closestPointOnCurve.aInPosition, closestPointOnCurve.aOutPosition ) closestPointOnCurve.attributeAffects( closestPointOnCurve.aInCurve, closestPointOnCurve.aOutParam ) closestPointOnCurve.attributeAffects( closestPointOnCurve.aInPosition, closestPointOnCurve.aOutParam ) closestPointOnCurve.attributeAffects( closestPointOnCurve.aInCurve, closestPointOnCurve.aOutNormal ) closestPointOnCurve.attributeAffects( closestPointOnCurve.aInPosition, closestPointOnCurve.aOutNormal ) closestPointOnCurve.attributeAffects( closestPointOnCurve.aOutParam, closestPointOnCurve.aOutPosition ) # initialize the script plug-in def initializePlugin(mobject): mplugin = OpenMayaMPx.MFnPlugin(mobject, "Erkan Ozgur Yilmaz","1.0.2") try: mplugin.registerNode( kPluginNodeTypeName, cpocPluginId, nodeCreator, nodeInitializer ) except: sys.stderr.write("Failed to register node: %s" % kPluginNodeTypeName) raise # uninitialize the script plug-in def uninitializePlugin(mobject): mplugin = OpenMayaMPx.MFnPlugin(mobject) try: mplugin.deregisterNode(cpocPluginId) except: sys.stderr.write("Failed to deregister node: %s" % kPluginNodeTypeName) raise
import sys sys.path.append(r"C:\Program Files\Python 3.5\lib\site-packages") import matplotlib.pyplot as plt print(sys.path) plt.plot([1, 2, 3, 7, 9, 23, 32, 12], [2, 1, 3, 32, 11, 5, 65, 43]) plt.show()
# -*- coding: utf8 -*- # Copyright (C) 2013 Daniel Lombraña González # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. import pbclient from mock import patch from base import TestPyBossaClient from nose.tools import assert_raises class TestPybossaClientCategory(TestPyBossaClient): @patch('pbclient.requests.get') def test_get_category_not_found(self, Mock): """Test get category not found works""" # App does not exist should return 404 error object not_found = self.create_error_output(action='GET', status_code=404, target='category', exception_cls='NotFound') Mock.return_value = self.create_fake_request(not_found) err = self.client.get_category(1) self.check_error_output(err, not_found) @patch('pbclient.requests.get') def test_get_category_found(self, Mock): """Test get category found works""" Mock.return_value = self.create_fake_request(self.category, 200) category = self.client.get_category(1) assert category.id == self.category['id'], category assert category.short_name == self.category['short_name'], category @patch('pbclient.requests.get') def test_get_category_errors(self, Mock): """Test get category errors works""" targets = ['category'] errors = {'Unauthorized': 401, 'NotFound': 404, 'Forbidden': 401, 'TypeError': 415} for target in targets: for error in errors.keys(): err_output = self.create_error_output(action='GET', status_code=errors[error], target=target, exception_cls=error) Mock.return_value = self.create_fake_request(err_output, errors[error]) err = self.client.get_category(1) self.check_error_output(err_output, err) @patch('pbclient.requests.get') def test_get_categories(self, Mock): """Test get_categories works""" Mock.return_value = self.create_fake_request([self.category], 200) categories = self.client.get_categories() assert len(categories) == 1, categories category = categories[0] assert category.id == self.category['id'], category assert category.short_name == self.category['short_name'], category # Without categories Mock.return_value = self.create_fake_request([], 200) categories = self.client.get_categories() assert len(categories) == 0, categories @patch('pbclient.requests.get') def test_get_categories_with_keyset_pagination(self, Mock): """Test get_categories uses keyset pagination if a last_id argument is provided""" Mock.return_value = self.create_fake_request([], 200) self.client.get_categories(last_id=1, limit=3) Mock.assert_called_once_with('http://localhost:5000/api/category', params={'limit': 3, 'last_id': 1, 'api_key': 'tester'}) @patch('pbclient.requests.get') def test_get_categories_error(self, Mock): """Test get_categories error works""" Mock.return_value = self.create_fake_request(self.category, 200) assert_raises(TypeError, self.client.get_categories) @patch('pbclient.requests.get') def test_find_category(self, Mock): """Test find_category works""" Mock.return_value = self.create_fake_request([self.category], 200) categories = self.client.find_category(short_name=self.category['short_name']) # Only one category is found assert len(categories) == 1, categories category = categories[0] assert category.id == self.category['id'], category assert category.short_name == self.category['short_name'], category @patch('pbclient.requests.get') def test_find_category_errors(self, Mock): """Test find category errors works""" targets = ['category'] errors = {'Unauthorized': 401, 'NotFound': 404, 'Forbidden': 401, 'TypeError': 415} for target in targets: for error in errors.keys(): err_output = self.create_error_output(action='GET', status_code=errors[error], target=target, exception_cls=error) Mock.return_value = self.create_fake_request(err_output, errors[error]) err = self.client.find_category(short_name=self.category['short_name']) self.check_error_output(err_output, err) @patch('pbclient.requests.get') def test_find_category_not_found(self, Mock): """Test find_category not found works""" Mock.return_value = self.create_fake_request([], 200) categories = self.client.find_category(short_name="foobar") assert len(categories) == 0, categories @patch('pbclient.requests.post') def test_create_category(self, Mock): """Test create_category works""" Mock.return_value = self.create_fake_request(self.category, 200) category = self.client.create_category( name=self.category['name'], description=self.category['description']) assert category.id == self.category['id'] assert category.short_name == self.category['short_name'] @patch('pbclient.requests.post') def test_create_category_exists(self, Mock): """Test create_category duplicate entry works""" already_exists = self.create_error_output(action='POST', status_code=415, target='category', exception_cls='IntegrityError') Mock.return_value = self.create_fake_request(already_exists, 415) category = self.client.create_category( name=self.category['name'], description=self.category['description']) self.check_error_output(category, already_exists) @patch('pbclient.requests.post') def test_create_category_not_allowed(self, Mock): """Test create_category not authorized works""" not_authorized = self.create_error_output(action='POST', status_code=401, target='category', exception_cls='Unauthorized') Mock.return_value = self.create_fake_request(not_authorized, 401) category = self.client.create_category( name=self.category['name'], description=self.category['description']) self.check_error_output(category, not_authorized) @patch('pbclient.requests.post') def test_create_category_forbidden(self, Mock): """Test create_category not forbidden works""" forbidden = self.create_error_output(action='POST', status_code=403, target='category', exception_cls='Forbidden') Mock.return_value = self.create_fake_request(forbidden, 403) category = self.client.create_category( name=self.category['name'], description=self.category['description']) self.check_error_output(category, forbidden) @patch('pbclient.requests.put') def test_update_category(self, Mock): """Test update_category works""" Mock.return_value = self.create_fake_request(self.category, 200) category = self.client.update_category(pbclient.Project(self.category)) assert category.id == self.category['id'], category assert category.short_name == self.category['short_name'], category @patch('pbclient.requests.put') def test_update_category_not_found(self, Mock): """Test update_category not found works""" not_found = self.create_error_output(action='PUT', status_code=404, target='category', exception_cls='NotFound') Mock.return_value = self.create_fake_request(not_found, 404) err = self.client.update_category(pbclient.Project(self.category)) self.check_error_output(not_found, err) @patch('pbclient.requests.put') def test_update_category_forbidden(self, Mock): """Test update_category forbidden works""" forbidden = self.create_error_output(action='PUT', status_code=403, target='category', exception_cls='Forbidden') Mock.return_value = self.create_fake_request(forbidden, 403) err = self.client.update_category(pbclient.Project(self.category)) self.check_error_output(forbidden, err) @patch('pbclient.requests.put') def test_update_category_unauthorized(self, Mock): """Test update_category unauthorized works""" unauthorized = self.create_error_output(action='PUT', status_code=401, target='category', exception_cls='Unauthorized') Mock.return_value = self.create_fake_request(unauthorized, 401) err = self.client.update_category(pbclient.Project(self.category)) self.check_error_output(unauthorized, err) @patch('pbclient.requests.delete') def test_delete_category(self, Mock): """Test delete_category works""" Mock.return_value = self.create_fake_request('', 204, 'text/html') res = self.client.delete_category(1) assert res is True, res @patch('pbclient.requests.delete') def test_delete_category(self, Mock): """Test delete_category error works""" Mock.return_value = self.create_fake_request('404', 404, 'text/html') res = self.client.delete_category(1) assert res == '404', res
#!/usr/bin/env python3 import autopipe if __name__ == "__main__": exit(autopipe.main())
from django.contrib.sitemaps import Sitemap from django.core.urlresolvers import reverse from .models import Product, Category class HomeSitemap(Sitemap): changefreq = "weekly" priority = 0.7 def items(self): return ['product:home'] def location(self, obj): return reverse(obj) class CategorySitemap(Sitemap): changefreq = "weekly" priority = 0.6 def items(self): return Category.objects.all() def lastmod(self, obj): return obj.modified_at class ProductSitemap(Sitemap): changefreq = "weekly" priority = 0.5 def items(self): return Product.objects.all() def lastmod(self, obj): return obj.modified_at
# Generated by Django 3.2.5 on 2021-08-12 07:51 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('school', '0007_alter_studentlist_child'), ] operations = [ migrations.AlterField( model_name='studentlist', name='school_class', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='student_list_class', to='school.class', verbose_name='Sınıf'), ), ]
from opendc.models.model import Model from opendc.models.user import User from opendc.util.exceptions import ClientError from opendc.util.rest import Response class Prefab(Model): """Model representing a Project.""" collection_name = 'prefabs' def check_user_access(self, google_id): """Raises an error if the user with given [google_id] has insufficient access to view this prefab. :param google_id: The Google ID of the user. """ user = User.from_google_id(google_id) # TODO(Jacob) add special handling for OpenDC-provided prefabs #try: print(self.obj) if self.obj['authorId'] != user.get_id() and self.obj['visibility'] == "private": raise ClientError(Response(403, "Forbidden from retrieving prefab.")) #except KeyError: # OpenDC-authored objects don't necessarily have an authorId # return
import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import time import argparse import numpy as np from scipy.sparse import csr_matrix import pandas as pd import logging from sklearn.decomposition import TruncatedSVD from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error import scanpy as sc import anndata as ad import matplotlib.pyplot as plt from tqdm import tqdm from copy import deepcopy from utils import * from model import Generator, Discriminator parser = argparse.ArgumentParser() parser.add_argument('--num_classes', type=int, default=1 , help='Number of classes for discriminator.') parser.add_argument('--lr_gen', type=float, default=0.0001 , help='Learning rate for generator.') parser.add_argument('--lr_dis', type=float, default=0.0001 , help='Learning rate for discriminator.') parser.add_argument('--weight_decay', type=float, default=1e-3 , help='Weight decay.') parser.add_argument('--gener_batch_size', type=int, default=64 , help='Batch size for generator.') parser.add_argument('--dis_batch_size', type=int, default=32 , help='Batch size for discriminator.') parser.add_argument('--epoch', type=int, default=200 , help='Number of epoch.') parser.add_argument('--optim', type=str, default="Adam" , help='Choose your optimizer') parser.add_argument('--loss', type=str, default="wgangp_eps" , help='Loss function') parser.add_argument('--phi', type=int, default="1" , help='phi') parser.add_argument('--beta1', type=int, default="0" , help='beta1') parser.add_argument('--n_critic', type=int, default=5 , help='n_critic.') parser.add_argument('--max_iter', type=int, default=500000 , help='max_iter.') parser.add_argument('--beta2', type=float, default="0.99" , help='beta2') parser.add_argument('--lr_decay', type=str, default=True , help='lr_decay') parser.add_argument('--g_in_feat', type=int, default=15496 , help='in_feat.') parser.add_argument('--g_hid_feat', type=int, default=5456 , help='hid_feat.') parser.add_argument('--g_out_feat', type=int, default=50 , help='out_feat.') parser.add_argument('--d_in_feat', type=int, default=15496 , help='in_feat.') parser.add_argument('--d_hid_feat', type=int, default=7748 , help='hid_feat.') parser.add_argument('--d_out_feat', type=int, default=50 , help='out_feat.') parser.add_argument('--dropout', type=float, default=0.5 , help='dropout.') parser.add_argument('--pca', type=str, default=True , help='PCA') if torch.cuda.is_available(): dev = "cuda:0" else: dev = "cpu" device = torch.device(dev) print("Device:",device) args = parser.parse_args() adata_gex = ad.read_h5ad("/home/ubuntu/Documents/ahmetr/single-cell/data/explore/multiome/multiome_gex_processed_training.h5ad") adata_atac = ad.read_h5ad("/home/ubuntu/Documents/ahmetr/single-cell/data/explore/multiome/multiome_atac_processed_training.h5ad") """ The GEX data has 20952 observations and 15037 features. The ATAC data has 20952 observations and 119014 features. """ #print(f"The GEX data has {adata_gex.n_obs} observations and {adata_gex.n_vars} features.") #print(f"The ATAC data has {adata_atac.n_obs} observations and {adata_atac.n_vars} features.") """ adata_gex.var 15037 rows × 15 columns adata_atac.var 119014 rows × 7 columns adata_gex.obs 20952 rows × 9 columns adata_atac.obs 20952 rows × 8 columns """ """Visualizing Gene Expression""" #sc.pl.umap(adata_gex, color='cell_type') #sc.pl.umap(adata_gex, color='batch') """Visualizing ATAC""" #sc.pl.umap(adata_atac, color='cell_type') #sc.pl.umap(adata_atac, color='batch') train_cells = adata_gex.obs_names[adata_gex.obs["batch"] != "s2d4"] test_cells = adata_gex.obs_names[adata_gex.obs["batch"] == "s2d4"] # This will get passed to the method input_train_mod1 = adata_atac[train_cells] input_train_mod2 = adata_gex[train_cells] input_test_mod1 = adata_atac[test_cells] # This will get passed to the metric true_test_mod2 = adata_gex[test_cells] input_mod1 = ad.concat( {"train": input_train_mod1, "test": input_test_mod1}, axis=0, join="outer", label="group", fill_value=0, index_unique="-", ) # Binarize ATAC if input_train_mod1.var["feature_types"][0] == "ATAC": input_mod1.X[input_mod1.X > 1] = 1 elif input_train_mod2.var["feature_types"][0] == "ATAC": input_train_mod2.X[input_mod1.X > 1] = 1 """ if args.pca == "True": # Do PCA on the input data logging.info('Performing dimensionality reduction on modality 1 values...') embedder_mod1 = TruncatedSVD(n_components=50) print("input_mod1.X:",input_mod1.X.shape) mod1_pca = embedder_mod1.fit_transform(input_mod1.X) logging.info('Performing dimensionality reduction on modality 2 values...') embedder_mod2 = TruncatedSVD(n_components=50) mod2_pca = embedder_mod2.fit_transform(input_train_mod2.layers["log_norm"]) # split dimred mod 1 back up for training X_train = mod1_pca[input_mod1.obs['group'] == 'train'] X_train = torch.from_numpy(X_train) X_test = mod1_pca[input_mod1.obs['group'] == 'test'] X_test = torch.from_numpy(X_test) y_train = mod2_pca y_train = torch.from_numpy(y_train) else: #X_train = input_mod1.obs['group'] == 'train' X_train = csr_matrix(input_mod1.X).toarray() X_train = torch.from_numpy(X_train) #X_test = input_mod1.obs['group'] == 'test' X_test = csr_matrix(input_test_mod1.obs).toarray() X_test = torch.from_numpy(X_test) #y_train = input_train_mod2.layers["log_norm"] y_train = input_train_mod2.layers["log_norm"] y_train = csr_matrix(input_train_mod2.layers["log_norm"]).toarray() y_train = torch.from_numpy(y_train) """ # Do PCA on the input data logging.info('Performing dimensionality reduction on modality 1 values...') embedder_mod1 = TruncatedSVD(n_components=50) mod1_pca = embedder_mod1.fit_transform(input_mod1.X) logging.info('Performing dimensionality reduction on modality 2 values...') embedder_mod2 = TruncatedSVD(n_components=50) mod2_pca = embedder_mod2.fit_transform(input_train_mod2.layers["log_norm"]) # split dimred mod 1 back up for training X_train = mod1_pca[input_mod1.obs['group'] == 'train'] X_train = torch.from_numpy(X_train) X_test = mod1_pca[input_mod1.obs['group'] == 'test'] X_test = torch.from_numpy(X_test) y_train = mod2_pca y_train = torch.from_numpy(y_train) assert len(X_train) + len(X_test) == len(mod1_pca) logging.info('Running CellGAN...') #reg = LinearRegression() # Train the model on the PCA reduced modality 1 and 2 data #reg.fit(X_train, y_train) ### for train #y_pred = reg.predict(X_test) ## for validation # Project the predictions back to the modality 2 feature space generator= Generator(in_feat=args.g_in_feat, hid_feat=args.g_hid_feat, out_feat=args.g_out_feat, dropout=args.dropout)#,device = device) generator.to(device) discriminator = Discriminator(in_feat=args.d_in_feat, hid_feat=args.d_hid_feat, out_feat=args.d_out_feat, num_classes=1, dropout=args.dropout) discriminator.to(device) generator.apply(inits_weight) discriminator.apply(inits_weight) if args.optim == 'Adam': optim_gen = optim.Adam(filter(lambda p: p.requires_grad, generator.parameters()), lr=args.lr_gen, betas=(args.beta1, args.beta2)) optim_dis = optim.Adam(filter(lambda p: p.requires_grad, discriminator.parameters()),lr=args.lr_dis, betas=(args.beta1, args.beta2)) elif args.optim == 'SGD': optim_gen = optim.SGD(filter(lambda p: p.requires_grad, generator.parameters()), lr=args.lr_gen, momentum=0.9) optim_dis = optim.SGD(filter(lambda p: p.requires_grad, discriminator.parameters()), lr=args.lr_dis, momentum=0.9) elif args.optim == 'RMSprop': optim_gen = optim.RMSprop(filter(lambda p: p.requires_grad, discriminator.parameters()), lr=args.lr_dis, eps=1e-08, weight_decay=args.weight_decay, momentum=0, centered=False) optim_dis = optim.RMSprop(filter(lambda p: p.requires_grad, discriminator.parameters()), lr=args.lr_dis, eps=1e-08, weight_decay=args.weight_decay, momentum=0, centered=False) gen_scheduler = LinearLrDecay(optim_gen, args.lr_gen, 0.0, 0, args.max_iter * args.n_critic) dis_scheduler = LinearLrDecay(optim_dis, args.lr_dis, 0.0, 0, args.max_iter * args.n_critic) def compute_gradient_penalty(D, real_samples, fake_samples, phi): """Calculates the gradient penalty loss for WGAN GP""" # Random weight term for interpolation between real and fake samples alpha = torch.Tensor(np.random.random((real_samples.size(0), 1, 1, 1))).to(real_samples.get_device()) # Get random interpolation between real and fake samples interpolates = (alpha * real_samples + ((1 - alpha) * fake_samples)).requires_grad_(True) d_interpolates = D(interpolates) fake = torch.ones([real_samples.shape[0], 1], requires_grad=False).to(real_samples.get_device()) # Get gradient w.r.t. interpolates gradients = torch.autograd.grad( outputs=d_interpolates, inputs=interpolates, grad_outputs=fake, create_graph=True, retain_graph=True, only_inputs=True, )[0] gradients = gradients.contiguous().view(gradients.size(0), -1) gradient_penalty = ((gradients.norm(2, dim=1) - phi) ** 2).mean() return gradient_penalty def train(generator, discriminator, optim_gen, optim_dis, epoch, schedulers, n_critic = args.n_critic, device="cuda:0"): gen_step = 0 generator = generator.train() discriminator = discriminator.train() #train_loader= ##training dataset global_steps = 0 real_data = y_train.type(torch.cuda.FloatTensor) print("real_data.shape:", real_data.shape) optim_dis.zero_grad() real_valid = discriminator(real_data) fake_data = generator(X_train).detach() fake_valid = discriminator(fake_data) if args.loss == 'hinge': loss_dis = torch.mean(nn.ReLU(inplace=True)(1.0 - real_valid)).to(device) + torch.mean(nn.ReLU(inplace=True)(1 + fake_valid)).to(device) elif args.loss == 'wgangp': gradient_penalty = compute_gradient_penalty(discriminator, real_data, fake_data.detach(), args.phi) loss_dis = -torch.mean(real_valid) + torch.mean(fake_valid) + gradient_penalty * 10 / (args.phi ** 2) elif args.loss == 'wgangp_eps': gradient_penalty = compute_gradient_penalty(discriminator, real_data, fake_data.detach(), args.phi) loss_dis = -torch.mean(real_valid) + torch.mean(fake_valid) + gradient_penalty * 10 / (args.phi ** 2) loss_dis += (torch.mean(real_valid) ** 2) * 1e-3 loss_dis.backward() optim_dis.step() if global_steps % n_critic == 0: optim_gen.zero_grad() if schedulers: gen_scheduler, dis_scheduler = schedulers g_lr = gen_scheduler.step(global_steps) d_lr = dis_scheduler.step(global_steps) generated_samples= generator(X_train) fake_valid = discriminator(generated_samples) gener_loss = -torch.mean(fake_valid).to(device) gener_loss.backward() optim_gen.step() gen_step += 1 """ for index, (data, _) in enumerate(y_train): #### X_train ????? real_data = data.type(torch.cuda.FloatTensor) optim_dis.zero_gard() real_valid = discriminator(real_data) fake_data = generator(X_train).detach() fake_valid = discriminator(fake_data) if args.loss == 'hinge': loss_dis = torch.mean(nn.ReLU(inplace=True)(1.0 - real_valid)).to(device) + torch.mean(nn.ReLU(inplace=True)(1 + fake_valid)).to(device) elif args.loss == 'wgangp': gradient_penalty = compute_gradient_penalty(discriminator, real_data, fake_data.detach(), args.phi) loss_dis = -torch.mean(real_valid) + torch.mean(fake_valid) + gradient_penalty * 10 / (args.phi ** 2) elif args.loss == 'wgangp_eps': gradient_penalty = compute_gradient_penalty(discriminator, real_data, fake_data.detach(), args.phi) loss_dis = -torch.mean(real_valid) + torch.mean(fake_valid) + gradient_penalty * 10 / (args.phi ** 2) loss_dis += (torch.mean(real_valid) ** 2) * 1e-3 loss_dis.backward() optim_dis.step() if global_steps % n_critic == 0: optim_gen.zero_grad() if schedulers: gen_scheduler, dis_scheduler = schedulers g_lr = gen_scheduler.step(global_steps) d_lr = dis_scheduler.step(global_steps) generated_samples= generator(X_train) fake_valid = discriminator(generated_samples) gener_loss = -torch.mean(fake_valid).to(device) gener_loss.backward() optim_gen.step() gen_step += 1 """ def validate(generator, calculate_rmse): #writer_dict, #writer = writer_dict['writer'] #global_steps = writer_dict['valid_global_steps'] generator = generator.eval(X_test) y_pred = generator y_pred = y_pred @ embedder_mod2.components_ pred_test_mod2 = generator pred_test_mod2 = ad.AnnData(X = y_pred, obs = input_test_mod1.obs, var = input_train_mod2.var) rmse = calculate_rmse(true_test_mod2, pred_test_mod2) #fid_score = get_fid(fid_stat, epoch, generator, num_img=5000, val_batch_size=60*2, latent_dim=1024, writer_dict=None, cls_idx=None) print("RMSE score:", rmse) #print(f"FID score: {fid_score}") #writer.add_scalar('FID_score', fid_score, global_steps) #writer_dict['valid_global_steps'] = global_steps + 1 return rmse for epoch in range(args.epoch): lr_schedulers = (gen_scheduler, dis_scheduler) if args.lr_decay else None train(generator, discriminator, optim_gen, optim_dis, epoch, lr_schedulers, n_critic = args.n_critic, device="cuda:0") score = validate(generator, calculate_rmse) t = time.time() print('Epoch: {:04d}'.format(epoch+1), 'RMSE: {:.4f}'.format(score), 'time: {:.4f}s'.format(time.time() - t)) score = validate(generator, calculate_rmse)
# Allow slice-creator to change their slice even after other users voted for it # Slices are un-modifiable # If user changes their slice, create new slice record # Deduplicate slice-records by content # Remove the slice-record if votes=0 and fromEditPage=false # Also allows user to vote for slice that was changed after display # Also enables search-indexing without changing slice-content # # Uses title-only records to help retrieve top titles for budget-results # Risks transaction failure because title-records are somewhat contended # Title-record also stores slice-size distribution for slice-votes with that title, to get median size for title # Import external modules from collections import Counter, namedtuple import datetime from google.appengine.ext import ndb from google.appengine.api import search import hashlib import logging import re import time; # Import app modules from configBudget import const as conf import autocomplete.stats as stats import text # Constants conf.MAX_RETRY = 3 conf.MAX_VOTE_RETRY = 3 conf.CHAR_LENGTH_UNIT = 100 conf.MAX_SLICE_SUGGESTIONS = 3 conf.NUM_FREQ_SLICE_SUGGESTIONS = min( 1, conf.MAX_SLICE_SUGGESTIONS - 1 ) # Should be less than MAX_SLICE_SUGGESTIONS def standardizeContent( content ): content = text.formTextToStored( content ) if content else None content = content.strip(' \n\r\x0b\x0c') if content else None # For now keep TAB to delimit slice from reason return content if content else None def voteCountToScore( voteCount, title, reason ): contentLen = ( len(title) if title else 0 ) + ( len(reason) if reason else 0 ) # score = votes per CHAR_LENGTH_UNITs used unitsUsed = ( float(contentLen) / float(conf.CHAR_LENGTH_UNIT) ) if contentLen >= conf.CHAR_LENGTH_UNIT else 1.0 return float(voteCount) / float(unitsUsed) # Persistent-record for unique slice-title & reason class Slice( ndb.Model ): budgetId = ndb.StringProperty() # To verify slice belongs to budget, and indexed to retrieve popular slices title = ndb.StringProperty() # Indexed to retrieve popular reasons per title reason = ndb.StringProperty() creator = ndb.StringProperty() # Indexed to check slice sum is valid fromEditPage = ndb.BooleanProperty() # To keep slices from budget-creator only from edit-page voteCount = ndb.IntegerProperty( default=0 ) sizeToCount = ndb.JsonProperty( default={} ) # map[ size -> vote-count ] score = ndb.FloatProperty( default=0 ) # For matching input-words to make suggestions words = ndb.StringProperty( repeated=True ) # Key slices by budgetId+hash(content), to prevent duplicates # Prevents problem of voting for slice by ID that was deleted (down-voted) between display & vote @staticmethod def toKeyId( budgetId, title, reason ): hasher = hashlib.md5() if title is None: title = '' if reason is None: reason = '' hasher.update( text.utf8(title + '\t' + reason) ) return '{}-{}'.format( budgetId, hasher.hexdigest() ) @staticmethod def create( budgetId, title, reason, creator=None, fromEditPage=False ): slice = Slice( id=Slice.toKeyId(budgetId, title, reason), budgetId=budgetId, title=title, reason=reason, creator=creator, fromEditPage=fromEditPage ) # Index content words content = ' '.join( [ w for w in [title, reason] if w ] ) words = text.uniqueInOrder( text.removeStopWords( text.tokenize(content) ) ) words = words[ 0 : conf.MAX_WORDS_INDEXED ] # Limit number of words indexed slice.words = text.tuples( words, maxSize=2 ) return slice @staticmethod def get( budgetId, title, reason ): return Slice.get_by_id( Slice.toKeyId( budgetId, title, reason ) ) def hasTitle( self ): return self.title and self.title.strip() def hasTitleAndReason( self ): return self.title and self.title.strip() and self.reason and self.reason.strip() def incrementSizeCount( self, size, increment ): size = str( size ) # JSON-field stores keys as strings countOld = self.sizeToCount.get( size, 0 ) self.sizeToCount[ size ] = max( 0, countOld + increment ) # Do not allow negative counts self.sizeToCount = { s:c for s,c in self.sizeToCount.iteritems() if 0 < c } # Filter zeros def medianSize( self ): return stats.medianKey( self.sizeToCount ) def sumScoreBelowSize( self, size ): return voteCountToScore( self.countVotesBelowSize(size), self.title, self.reason ) def sumScoreAboveSize( self, size ): return voteCountToScore( self.countVotesAboveSize(size), self.title, self.reason ) def countVotesBelowSize( self, size ): resultSum = sum( [ c for s, c in self.sizeToCount.iteritems() if int(s) < size ] ) logging.debug( 'countVotesBelowSize() resultSum=' + str(resultSum) + ' size=' + str(size) + ' sizeToCount=' + str(self.sizeToCount) ) return resultSum def countVotesAboveSize( self, size ): resultSum = sum( [ c for s, c in self.sizeToCount.iteritems() if size < int(s) ] ) logging.debug( 'countVotesAboveSize() resultSum=' + str(resultSum) + ' size=' + str(size) + ' sizeToCount=' + str(self.sizeToCount) ) return resultSum # Persistent-record for unique slice-title class SliceTitle( ndb.Model ): budgetId = ndb.StringProperty() # To verify title belongs to budget, and indexed to retrieve popular titles title = ndb.StringProperty() # Indexed to retrieve popular reasons per title voteCount = ndb.IntegerProperty( default=0 ) # Equal to sum of sizeToCount, indexed to retrieve top titles sizeToCount = ndb.JsonProperty( default={} ) # map[ size -> vote-count ] # Key slices by budgetId+hash(title) @staticmethod def toKeyId( budgetId, title ): hasher = hashlib.md5() hasher.update( text.utf8(title) ) return '{}:{}'.format( budgetId, hasher.hexdigest() ) @staticmethod def create( budgetId, title ): return SliceTitle( id=SliceTitle.toKeyId(budgetId, title), budgetId=budgetId, title=title ) @staticmethod def get( budgetId, title ): return SliceTitle.get_by_id( SliceTitle.toKeyId( budgetId, title ) ) def incrementSizeCount( self, size, increment ): logging.debug( 'SliceTitle.incrementSizeCount() size=' + str(size) + ' increment=' + str(increment) ) size = str( size ) # JSON-field stores keys as strings countOld = self.sizeToCount.get( size, 0 ) self.sizeToCount[ size ] = max( 0, countOld + increment ) # Do not allow negative counts self.sizeToCount = { s:c for s,c in self.sizeToCount.iteritems() if 0 < c } # Filter zeros logging.debug( 'SliceTitle.incrementSizeCount() sizeToCount=' + str(self.sizeToCount) ) def medianSize( self ): return stats.medianKey( self.sizeToCount ) def toDisplay( self, userId ): return { 'id': str(self.key.id()) , 'title': self.title , 'votes': self.voteCount , 'medianSize': self.medianSize() , } # Record-class for storing budget x user -> all slice-votes for this user class SliceVotes( ndb.Model ): # Indexed fields for querying userId = ndb.StringProperty() budgetId = ndb.StringProperty() slices = ndb.JsonProperty( default={} ) # map[ sliceId -> size ] def slicesTotalSize( self ): return sum( [size for sliceId, size in self.slices.iteritems()] ) @staticmethod def toKeyId( budgetId, userId ): return '{}-{}'.format( budgetId, userId ) @staticmethod def create( budgetId, userId ): voteId = SliceVotes.toKeyId( budgetId, userId ) return SliceVotes( id=voteId, userId=userId, budgetId=budgetId ) @staticmethod def get( budgetId, userId ): voteId = SliceVotes.toKeyId( budgetId, userId ) return SliceVotes.get_by_id( voteId ) # Returns series[ SliceTitle ] def retrieveTopSliceTitlesByVotes( budgetId ): logging.debug( 'retrieveTopSliceTitlesByVotes() budgetId=' + str(budgetId) ) # Retrieve top title-records by vote-count sliceBatchSize = 20 titleRecords = SliceTitle.query( Slice.budgetId==budgetId ).order( -Slice.voteCount ).fetch( sliceBatchSize ) # Limit titles to amount summing to size=100% titleRecordsCapped = [ ] sumSizes = 0 for t in titleRecords: if t is None: continue sumSizes += t.medianSize() if sumSizes > 100: break titleRecordsCapped.append( t ) return sorted( titleRecordsCapped , key=lambda t:-t.voteCount ) # Returns series[ slice-record ] with top vote-counts def retrieveTopSliceReasonsByVotes( budgetId, title, maxSlices=10 ): logging.debug( 'retrieveTopSliceReasonsByVotes() budgetId=' + str(budgetId) ) sliceRecords = Slice.query( Slice.budgetId==budgetId, Slice.title==title ).order( -Slice.voteCount ).fetch( maxSlices ) return sorted( sliceRecords , key=lambda s:-s.voteCount ) # Returns series[ slice-record ] with top scores def retrieveTopSliceReasonsByScore( budgetId, title, maxSlices=10 ): logging.debug( 'retrieveTopSlicesByScore() budgetId=' + str(budgetId) + ' maxSlices=' + str(maxSlices) ) sliceRecords = Slice.query( Slice.budgetId==budgetId, Slice.title==title ).order( -Slice.score ).fetch( maxSlices ) return sorted( sliceRecords , key=lambda s:-s.score ) # Returns series[ slice-record ] def retrieveTopSlicesByScoreForStart( budgetId, sliceStart, hideReasons=False ): logging.debug(('retrieveTopSlicesByScoreForStart()', 'sliceStart=', sliceStart)) # We always have sliceStart, since we're not pre-populating slice-suggestions, there must always be slice input sliceRecords = [] inputWords = text.uniqueInOrder( text.removeStopWords( text.tokenize(sliceStart) ) ) logging.debug( 'retrieveTopSlices() inputWords=' + str(inputWords) ) if inputWords and (0 < len(inputWords)): # Retrieve top-voted slice-records matching last input-word. Results will be collected and match-scored in client. # Only one inequality filter per query is supported, so cannot require both title and reason are non-null sliceRecords = Slice.query( Slice.budgetId==budgetId, Slice.words==inputWords[-1] ).order( -Slice.score ).fetch( 1 ) # Retrieve for last input-word-pair if ( 2 <= len(inputWords) ): tuple = ' '.join( inputWords[-2:-1] ) sliceRecords += Slice.query( Slice.budgetId==budgetId, Slice.words==tuple ).order( -Slice.score ).fetch( 1 ) logging.debug( 'retrieveTopSlices() sliceRecords=' + str(sliceRecords) ) # Filter out empty title/reason # There should be no records missing title & reason, since these should not be saveable, and should not word-match if hideReasons: sliceRecords = filter( lambda s: s.hasTitle() , sliceRecords ) else: sliceRecords = filter( lambda s: s.hasTitleAndReason() , sliceRecords ) return sliceRecords # sliceContent may be null # Returns Slice, SliceVote # If any slice vote increment fails... then undo sliceVote._setVote() and all slice vote increments via transaction @ndb.transactional(xg=True, retries=conf.MAX_VOTE_RETRY) # Cross-table transaction is ok because vote record (user x slice) is not contended, and slice vote-count record is locking anyway def vote( budgetId, title, reason, sizeNew, userId ): logging.debug(('vote()', 'sizeNew=', sizeNew, 'title=', title, 'reason=', reason)) # Store vote for slice sliceId = Slice.toKeyId( budgetId, title, reason ) logging.debug(('vote()', 'sliceId=', sliceId)) voteRecord = SliceVotes.get( budgetId, userId ) existingVote = (voteRecord is not None) and (voteRecord.slices is not None) and (sliceId in voteRecord.slices) sizeOld = voteRecord.slices.get(sliceId, 0) if (voteRecord is not None) and (voteRecord.slices is not None) else 0 logging.debug(('vote()', 'sizeOld=', sizeOld, 'existingVote=', existingVote)) logging.debug(('vote()', 'voteRecord=', voteRecord)) if (0 < sizeNew): if voteRecord is None: voteRecord = SliceVotes.create( budgetId, userId ) voteRecord.slices[ sliceId ] = sizeNew if ( conf.SLICE_SIZE_SUM_MAX < voteRecord.slicesTotalSize() ): logging.debug(('vote()', 'voteRecord.slicesTotalSize()=', voteRecord.slicesTotalSize())) return None, None, False voteRecord.put() elif existingVote: # and sizeNew <= 0... del voteRecord.slices[ sliceId ] voteRecord.put() logging.debug(('vote()', 'voteRecord=', voteRecord)) # Increment and store vote aggregates in slice & title-records, during the same transaction sliceRecord = __incrementSliceVoteCount( sizeOld, sizeNew, budgetId, title, reason ) __incrementTitleVoteCount( sizeOld, sizeNew, budgetId, title ) logging.debug(('vote()', 'sliceRecord=', sliceRecord)) return sliceRecord, voteRecord, True # Increment vote count, inside another transaction # Updates or deletes title-record # Returns updated SliceTitle record, or throws transaction-conflict exception # Title-record update is more contended than reason-record update def __incrementTitleVoteCount( sizeOld, sizeNew, budgetId, title ): logging.debug(('__incrementTitleVoteCount()', 'sizeOld=', sizeOld, 'sizeNew=', sizeNew, 'budgetId=', budgetId, 'title=', title)) voteIncrement = 0 if ( sizeOld == sizeNew ): return elif ( sizeOld <= 0 ) and ( 0 < sizeNew ): voteIncrement = 1 elif ( 0 < sizeOld ) and ( sizeNew <= 0 ): voteIncrement = -1 logging.debug(('__incrementTitleVoteCount()', 'voteIncrement=', voteIncrement)) # If title-record does not exist... titleRecord = SliceTitle.get( budgetId, title ) if titleRecord is None: # Decrement is redundant if ( sizeNew <= 0 ): return # Create record to increment else: titleRecord = SliceTitle.create( budgetId, title ) if budgetId != titleRecord.budgetId: raise ValueError('budgetId != titleRecord.budgetId') # Update title-record voteCount field titleRecord.voteCount = max( 0, titleRecord.voteCount + voteIncrement ) logging.debug(('__incrementTitleVoteCount()', 'titleRecord=', titleRecord)) # If title has votes... update title-record if (0 < titleRecord.voteCount): # Update title-record fields titleRecord.incrementSizeCount( sizeOld, -1 ) titleRecord.incrementSizeCount( sizeNew, 1 ) logging.debug(('__incrementTitleVoteCount()', 'overwriting titleRecord=', titleRecord)) # Store title-record titleRecord.put() # If title has no votes... delete title-record else: logging.debug(('__incrementTitleVoteCount()', 'deleting titleRecord=', titleRecord)) titleRecord.key.delete() # Increment vote count, inside another transaction # Updates or deletes slice-record # Returns updated Slice record, or throws transaction Conflict exception def __incrementSliceVoteCount( sizeOld, sizeNew, budgetId, title, reason ): logging.debug(('__incrementSliceVoteCount()', 'sizeOld=', sizeOld, 'sizeNew=', sizeNew, 'budgetId=', budgetId, 'title=', title, 'reason=', reason)) voteIncrement = 0 if ( sizeOld == sizeNew ): sliceRecord = Slice.get( budgetId, title, reason ) logging.debug(('__incrementSliceVoteCount()', 'sizeOld=sizeNew sliceRecord=', sliceRecord)) elif ( sizeOld <= 0 ) and ( 0 < sizeNew ): voteIncrement = 1 elif ( 0 < sizeOld ) and ( sizeNew <= 0 ): voteIncrement = -1 logging.debug(('__incrementSliceVoteCount()', 'voteIncrement=', voteIncrement)) # If slice-record does not exist... sliceRecord = Slice.get( budgetId, title, reason ) if sliceRecord is None: # Decrement is redundant if ( sizeNew <= 0 ): return None # Create record to increment else: sliceRecord = Slice.create( budgetId, title, reason ) if budgetId != sliceRecord.budgetId: raise ValueError('budgetId != sliceRecord.budgetId') # Update slice-record vote-count field sliceRecord.voteCount = max( 0, sliceRecord.voteCount + voteIncrement ) logging.debug(('__incrementSliceVoteCount()', 'sliceRecord=', sliceRecord)) # If slice has votes or comes from survey-creator... keep slice record if (0 < sliceRecord.voteCount) or sliceRecord.fromEditPage: sliceRecord.incrementSizeCount( sizeOld, -1 ) sliceRecord.incrementSizeCount( sizeNew, 1 ) # Update score field sliceRecord.score = voteCountToScore( sliceRecord.voteCount, sliceRecord.title, sliceRecord.reason ) logging.debug(('__incrementSliceVoteCount()', 'overwriting sliceRecord=', sliceRecord)) # Store slice-record sliceRecord.put() return sliceRecord # If slice has no votes and not from survey-creator... delete slice-record else: logging.debug(('__incrementSliceVoteCount()', 'deleting sliceRecord=', sliceRecord)) sliceRecord.key.delete() return None
# -*- coding: utf-8 -*- import os from datetime import date, datetime, timedelta from django.conf import settings from django.core.files.storage import default_storage as storage from django.core.management import call_command from django.core.management.base import CommandError import mock from nose.tools import eq_ import amo import amo.tests from addons.models import Addon from lib.es.management.commands.reindex import flag_database, unflag_database from users.models import UserProfile import mkt from mkt.site.fixtures import fixture from mkt.webapps.cron import (clean_old_signed, update_app_trending, update_weekly_downloads) from mkt.webapps.tasks import _get_trending from mkt.webapps.models import Installed, Webapp class TestWeeklyDownloads(amo.tests.TestCase): fixtures = ['base/users'] def setUp(self): self.addon = Webapp.objects.create(type=amo.ADDON_WEBAPP) self.user = UserProfile.objects.get(pk=999) def get_webapp(self): return Webapp.objects.get(pk=self.addon.pk) def add_install(self, addon=None, user=None, created=None): install = Installed.objects.create(addon=addon or self.addon, user=user or self.user) if created: install.update(created=created) return install def test_weekly_downloads(self): eq_(self.get_webapp().weekly_downloads, 0) self.add_install() self.add_install(user=UserProfile.objects.get(pk=10482), created=datetime.today() - timedelta(days=2)) update_weekly_downloads() eq_(self.get_webapp().weekly_downloads, 2) def test_weekly_downloads_flagged(self): eq_(self.get_webapp().weekly_downloads, 0) self.add_install() self.add_install(user=UserProfile.objects.get(pk=10482), created=datetime.today() - timedelta(days=2)) flag_database('new', 'old', 'alias') try: # Should fail. self.assertRaises(CommandError, update_weekly_downloads) eq_(self.get_webapp().weekly_downloads, 0) # Should work with the environ flag. os.environ['FORCE_INDEXING'] = '1' update_weekly_downloads() finally: unflag_database() del os.environ['FORCE_INDEXING'] eq_(self.get_webapp().weekly_downloads, 2) def test_recently(self): self.add_install(created=datetime.today() - timedelta(days=6)) update_weekly_downloads() eq_(self.get_webapp().weekly_downloads, 1) def test_long_ago(self): self.add_install(created=datetime.today() - timedelta(days=8)) update_weekly_downloads() eq_(self.get_webapp().weekly_downloads, 0) def test_addon(self): self.addon.update(type=amo.ADDON_EXTENSION) self.add_install() update_weekly_downloads() eq_(Addon.objects.get(pk=self.addon.pk).weekly_downloads, 0) class TestCleanup(amo.tests.TestCase): def setUp(self): self.file = os.path.join(settings.SIGNED_APPS_REVIEWER_PATH, '1', 'x.z') def test_not_cleaned(self): storage.open(self.file, 'w') clean_old_signed() assert storage.exists(self.file) def test_cleaned(self): storage.open(self.file, 'w') clean_old_signed(-60) assert not storage.exists(self.file) @mock.patch('lib.crypto.packaged.sign_app') class TestSignApps(amo.tests.TestCase): fixtures = fixture('webapp_337141') def setUp(self): self.app = Addon.objects.get(id=337141) self.app.update(is_packaged=True) self.app2 = amo.tests.app_factory( name='Mozillaball ょ', app_slug='test', is_packaged=True, version_kw={'version': '1.0', 'created': None}) self.app3 = amo.tests.app_factory( name='Test app 3', app_slug='test3', status=amo.STATUS_REJECTED, is_packaged=True, version_kw={'version': '1.0', 'created': None}) def test_by_webapp(self, sign_mock): v1 = self.app.get_version() call_command('sign_apps', webapps=str(v1.pk)) file1 = v1.all_files[0] assert sign_mock.called_with(((file1.file_path, file1.signed_file_path),)) def test_all(self, sign_mock): v1 = self.app.get_version() v2 = self.app2.get_version() call_command('sign_apps') file1 = v1.all_files[0] file2 = v2.all_files[0] eq_(len(sign_mock.mock_calls), 2) eq_(sign_mock.mock_calls[0][1][:2], (file1.file_path, file1.signed_file_path)) eq_(sign_mock.mock_calls[1][1][:2], (file2.file_path, file2.signed_file_path)) class TestUpdateTrending(amo.tests.TestCase): def setUp(self): self.app = Webapp.objects.create(type=amo.ADDON_WEBAPP) @mock.patch('mkt.webapps.tasks._get_trending') def test_trending_saved(self, _mock): _mock.return_value = 12.0 update_app_trending() eq_(self.app.get_trending(), 12.0) for region in mkt.regions.REGIONS_DICT.values(): eq_(self.app.get_trending(region=region), 12.0) # Test running again updates the values as we'd expect. _mock.return_value = 2.0 update_app_trending() eq_(self.app.get_trending(), 2.0) for region in mkt.regions.REGIONS_DICT.values(): eq_(self.app.get_trending(region=region), 2.0) @mock.patch('mkt.webapps.tasks.get_monolith_client') def test_get_trending(self, _mock): client = mock.Mock() client.return_value = [ {'count': 133.0, 'date': date(2013, 8, 26)}, {'count': 122.0, 'date': date(2013, 9, 2)}, ] _mock.return_value = client # 1st week count: 133 + 122 = 255 # Prior 3 weeks get averaged: (133 + 122) / 3 = 85 # (255 - 85) / 85 = 2.0 eq_(_get_trending(self.app.id), 2.0) @mock.patch('mkt.webapps.tasks.get_monolith_client') def test_get_trending_threshold(self, _mock): client = mock.Mock() client.return_value = [ {'count': 49.0, 'date': date(2013, 8, 26)}, {'count': 50.0, 'date': date(2013, 9, 2)}, ] _mock.return_value = client # 1st week count: 49 + 50 = 99 # 99 is less than 100 so we return 0.0. eq_(_get_trending(self.app.id), 0.0) @mock.patch('mkt.webapps.tasks.get_monolith_client') def test_get_trending_monolith_error(self, _mock): client = mock.Mock() client.side_effect = ValueError _mock.return_value = client eq_(_get_trending(self.app.id), 0.0)
# Copyright 2020 Maintainers of OarphPy # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from contextlib import contextmanager from oarphpy.util.misc import GPUS_UNRESTRICTED def tf_create_session_config(restrict_gpus=GPUS_UNRESTRICTED, extra_opts=None): extra_opts = extra_opts or {} import tensorflow as tf config = tf.compat.v1.ConfigProto() tf_session_config_restrict_gpus(config, restrict_gpus=restrict_gpus) config.log_device_placement = False # # Enable CPU XLA! # config.graph_options.optimizer_options.global_jit_level = \ # tf.OptimizerOptions.ON_1 for k, v in extra_opts.items(): setattr(config, k, v) return config def tf_session_config_restrict_gpus(config, restrict_gpus=GPUS_UNRESTRICTED): if restrict_gpus is GPUS_UNRESTRICTED: config.allow_soft_placement = True else: config.device_count['GPU'] = len(restrict_gpus) config.gpu_options.visible_device_list = ( ','.join(str(g) for g in restrict_gpus)) config.gpu_options.allow_growth = True def tf_create_session(config=None): config = config or tf_create_session_config() import tensorflow as tf sess = tf.compat.v1.Session(config=config) return sess def tf_cpu_session_config(): return tf_create_session_config(restrict_gpus=[]) def tf_cpu_session(config=None): if not config: config = tf_cpu_session_config() else: tf_session_config_restrict_gpus(config, restrict_gpus=[]) return tf_create_session(config=config) @contextmanager def tf_data_session(dataset, sess=None, config=None): import tensorflow as tf # Must declare these before the graph gets finalized below iterator = tf.compat.v1.data.make_one_shot_iterator(dataset) next_element = iterator.get_next() # Silly way to iterate over a tf.Dataset # https://stackoverflow.com/a/47917849 sess = sess or tf_cpu_session() with sess as sess: def iter_dataset(): # see MonitoredTrainingSession.StepContext while True: try: # with loop_until_data_exausted(): yield sess.run(next_element) except (tf.errors.OutOfRangeError, StopIteration): break yield sess, iter_dataset # TPUS don't support strings :P but they do support lists of integers def to_padded_codepoint_list(s, max_len=5000): s_enc = s.encode('utf-8') return list(s_enc[:max_len]) + ([0] * (max_len - len(s_enc))) def from_padded_codepoint_list(l, null_value=0): return ''.join( chr(el) for el in l # May only work in python3? if (null_value is None or el != null_value)) def give_me_frozen_graph( checkpoint, nodes=None, blacklist=None, base_graph=None, sess=None, saver=None): """ Tensorflow has several ways to load checkpoints / graph artifacts. It's impossible to know if some API is stable or if tomorrow somebody will invent something new and break everything becaus PyTorch is shiny (e.g. TF Eager). Sam Abrahams wrote a book on Tensorflow ( https://www.amazon.com/TensorFlow-Machine-Intelligence-hands--introduction-ebook/dp/B01IZ43JV4/ ) and one time couldn't tell me definitively which API to use. What's more is that freeze_graph.py is an optional script instead of a library module in Tensorflow. Chaos!! So, based upon spark-dl's `strip_and_freeze_until()` ( https://github.com/databricks/spark-deep-learning/blob/4daa1179f498df4627310afea291133539ce7001/python/sparkdl/graph/utils.py#L199 ), here's a utility for getting a frozen, serializable, pyspark-friendly graph from a checkpoint artifact metagraph thingy I have no idea. """ def op_name(v): name = v if hasattr(v, 'name'): name = v.name if ':' not in name: return name toks = name.split(':') assert len(toks) <= 2, (toks, v, name) return toks[0] import tensorflow as tf graph = base_graph or tf.Graph() if nodes: ops = [graph.get_operation_by_name(op_name(n)) for n in nodes] else: ops = graph.get_operations() # if blacklist: # for n in blacklist: # ops.remove(graph.get_operation_by_name(op_name(n))) with graph.as_default(): with (sess or tf_cpu_session()) as sess: saver = saver or tf.train.Saver() log.info("Reading from checkpoint %s ..." % checkpoint) saver.restore(sess, checkpoint) log.info("... done.") gdef_frozen = tf.graph_util.convert_variables_to_constants( sess, graph.as_graph_def(add_shapes=True), [op.name for op in ops]) # variable_names_blacklist=blacklist) return gdef_frozen def tf_variable_summaries(var, prefix=''): """Create Tensorboard summaries showing basic stats of the variable `var`.""" import tensorflow as tf if prefix: prefix = prefix + '/' else: def var_name(v): """Magic: get the name of the variable that the caller passed to `tf_variable_summaries()`""" import inspect lcls = inspect.stack()[2][0].f_locals for name in lcls: if id(v) == id(lcls[name]): return name return None prefix = var_name(var) if not prefix: prefix = str(var.name) idx = prefix.find('/') if idx >= 0: prefix = prefix[:prefix.find('/')] # Exclude slashes in var name idx = prefix.find(':') if idx >= 0: prefix = prefix[:prefix.find(':')] # Exclude : too with tf.variable_scope(prefix): mean = tf.reduce_mean(var) tf.summary.scalar('mean', mean) with tf.name_scope('stddev'): stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean))) tf.summary.scalar('stddev', stddev) tf.summary.scalar('max', tf.reduce_max(var)) tf.summary.scalar('min', tf.reduce_min(var)) tf.summary.histogram('histogram', var) class TFSummaryRow(object): __slots__ = ( 'path', 'split', 'step', 'wall_time', 'tag', 'simple_value', 'image', 'tensor', ) def __init__(self): self.path = '' self.split = '' self.step = -1 self.wall_time = 0 self.tag = '' self.simple_value = float('nan') self.image = None self.tensor = None @staticmethod def fill_simple_value(row, summary): if summary.HasField('simple_value'): row.simple_value = summary.simple_value @staticmethod def fill_image(row, summary): if summary.HasField('image'): import imageio row.image = imageio.imread(summary.image.encoded_image_string) @staticmethod def fill_tensor(row, summary): if summary.HasField('tensor'): import tensorflow as tf row.tensor = tf.make_ndarray(summary.tensor) def as_dict(self): return dict((k, getattr(self, k)) for k in self.__slots__) def as_row(self, extra=None): from pyspark.sql import Row from au.spark import NumpyArray d = self.as_dict() d['image'] = NumpyArray(d['image']) d['tensor'] = NumpyArray(d['tensor']) d.update(**(extra or {})) return Row(**d) class TFSummaryReader(object): # Subclass and use this attribute to elide / ignore some summary messages FILLERS = ( TFSummaryRow.fill_simple_value, TFSummaryRow.fill_image, TFSummaryRow.fill_tensor, ) def __init__(self, paths=None, glob_events_from_dir=None): self._paths = paths or [] if glob_events_from_dir and os.path.exists(glob_events_from_dir): self._paths.extend( pathlib.Path(glob_events_from_dir).rglob('**/events.out*')) def __iter__(self): import tensorflow as tf for path in self._paths: path = str(path) log.info("Reading summaries from path %s ..." % path) split = '' # TF estimators puts eval summaries in the 'eval' subdir eval_str = os.pathsep + 'eval' + os.pathsep if eval_str in path: split = 'eval' def iter_events_verbose(path): # When there's an error in the file, e.g. truncated record, Tensorflow # doesn't print the path :( try: for tf_event in tf.train.summary_iterator(path): yield tf_event except Exception as e: raise Exception(("Error reading file %s" % path, e)) for tf_event in iter_events_verbose(path): for tf_summary in tf_event.summary.value: row = TFSummaryRow() row.path = path row.split = split row.wall_time = tf_event.wall_time row.step = tf_event.step row.tag = tf_summary.tag for filler in self.FILLERS: filler(row, tf_summary) yield row class TFRecordsFileAsListOfStrings(object): """ Friends Don't Let Friends Use TFRecords. This utility provides a Tensorflow-free, minimal-dependency solution for reading TFRecords from a *file stream* (e.g. a buffered reader) and exposes random access over the stream's records. Based upon: * https://github.com/apache/beam/blob/master/sdks/python/apache_beam/io/tfrecordio.py#L67 * https://www.tensorflow.org/versions/r1.11/api_guides/python/python_io#TFRecords_Format_Details * https://github.com/gdlg/simple-waymo-open-dataset-reader/blob/master/simple_waymo_open_dataset_reader/__init__.py#L19 * https://gist.github.com/ed-alertedh/9f49bfc6216585f520c7c7723d20d951 """ ## Public API def __init__(self, fileobj): self.fileobj = fileobj self._offset_length = None def __len__(self): self._maybe_build_index() return len(self._offset_length) def __getitem__(self, idx): if idx >= len(self): raise IndexError else: start, length = self._offset_length[idx] return self._get_data(start, length) def __iter__(self): self.fileobj.seek(0) for offset, length in self._iter_offset_length(): yield self._get_data(offset, length) ## Utils @classmethod def _masked_crc32c(cls, value): """Compute a masked crc32c checksum for a value. FMI see https://www.tensorflow.org/versions/r1.11/api_guides/python/python_io#TFRecords_Format_Details """ if not hasattr(cls, '_crc32c_fn'): import crcmod cls._crc32c_fn = crcmod.predefined.mkPredefinedCrcFun('crc-32c') crc = cls._crc32c_fn(value) return (((crc >> 15) | (crc << 17)) + 0xa282ead8) & 0xffffffff @classmethod def _check_crc(cls, value, expected_crc): crc_actual = cls._masked_crc32c(value) if crc_actual != expected_crc: import codecs raise ValueError( 'Invalid TFRecord, mistmatch: %s %s %s' % ( codecs.encode(value[:10], 'hex'), crc_actual, expected_crc)) def _iter_offset_length(self): self.fileobj.seek(0) while True: header = self.fileobj.read(12) if header == b'': break assert len(header) == 12 import struct length, lengthcrc = struct.unpack("<QI", header) self._check_crc(header[:8], lengthcrc) base = self.fileobj.tell() yield (base, length) # Skip over payload and payload CRC self.fileobj.seek(base + length + 4) def _maybe_build_index(self): if self._offset_length is None: self._offset_length = list(self._iter_offset_length()) self.fileobj.seek(0) def _get_data(self, start, length): self.fileobj.seek(start) payload = self.fileobj.read(length + 4) assert len(payload) == (length + 4) import struct data, datacrc = struct.unpack("<%dsI" % length, payload) self._check_crc(data, datacrc) return data
""" The intention of this script is to provide a demonstration of how ConFlowGen is supposed to be used as a library. It is, by design, a stateful library that persists all input in an SQL database format to enable reproducibility. The intention of this demo is further explained in the logs it generated. """ import datetime import sys try: import conflowgen print(f"Importing ConFlowGen version {conflowgen.__version__}") except ImportError: print("Please first install conflowgen as a library") sys.exit() # Start logging logger = conflowgen.setup_logger() logger.info(""" #### ## Demo Proof of Concept #### This demo is based on some example data and is meant to show the basic functionality. For a slightly more realistic example, please check out `demo_DEHAM_CTA.py`. However, computing those numbers also takes longer than quickly running this small example. """) # Pick database database_chooser = conflowgen.DatabaseChooser() demo_file_name = "demo_poc.sqlite" if demo_file_name in database_chooser.list_all_sqlite_databases(): database_chooser.load_existing_sqlite_database(demo_file_name) else: database_chooser.create_new_sqlite_database(demo_file_name) # Set settings container_flow_generation_manager = conflowgen.ContainerFlowGenerationManager() container_flow_generation_manager.set_properties( name="Demo file", start_date=datetime.datetime.now().date(), end_date=datetime.datetime.now().date() + datetime.timedelta(days=21) ) # Add vehicles that frequently visit the terminal. port_call_manager = conflowgen.PortCallManager() feeder_service_name = "LX050" if not port_call_manager.has_schedule(feeder_service_name, vehicle_type=conflowgen.ModeOfTransport.feeder): logger.info(f"Add feeder service '{feeder_service_name}' to database") port_call_manager.add_large_scheduled_vehicle( vehicle_type=conflowgen.ModeOfTransport.feeder, service_name=feeder_service_name, vehicle_arrives_at=datetime.date(2021, 7, 9), vehicle_arrives_at_time=datetime.time(11), average_vehicle_capacity=800, average_moved_capacity=100, next_destinations=[ ("DEBRV", 0.4), # 50% of the containers (in boxes) go here... ("RULED", 0.6) # and the other 50% of the containers (in boxes) go here. ] ) else: logger.info(f"Feeder service '{feeder_service_name}' already exists") train_service_name = "JR03A" if not port_call_manager.has_schedule(train_service_name, vehicle_type=conflowgen.ModeOfTransport.train): logger.info(f"Add train service '{train_service_name}' to database") port_call_manager.add_large_scheduled_vehicle( vehicle_type=conflowgen.ModeOfTransport.train, service_name=train_service_name, vehicle_arrives_at=datetime.date(2021, 7, 12), vehicle_arrives_at_time=datetime.time(17), average_vehicle_capacity=90, average_moved_capacity=90, next_destinations=None # Here we don't have containers that need to be grouped by destination ) else: logger.info(f"Train service '{train_service_name}' already exists") deep_sea_service_name = "LX050" if not port_call_manager.has_schedule(deep_sea_service_name, vehicle_type=conflowgen.ModeOfTransport.deep_sea_vessel): logger.info(f"Add deep sea vessel service '{deep_sea_service_name}' to database") port_call_manager.add_large_scheduled_vehicle( vehicle_type=conflowgen.ModeOfTransport.deep_sea_vessel, service_name=deep_sea_service_name, vehicle_arrives_at=datetime.date(2021, 7, 10), vehicle_arrives_at_time=datetime.time(19), average_vehicle_capacity=16000, average_moved_capacity=150, # for faster demo next_destinations=[ ("ZADUR", 0.3), # 30% of the containers (in boxes) go here... ("CNSHG", 0.7) # and the other 70% of the containers (in boxes) go here. ] ) else: logger.info(f"Deep sea service '{deep_sea_service_name}' already exists") ### # Now, all schedules and input distributions are set up - no further inputs are required ### logger.info("Preview the results with some light-weight approaches.") conflowgen.run_all_previews() logger.info("Generate all fleets with all vehicles. This is the core of the whole project.") container_flow_generation_manager.generate() logger.info("The container flow data have been generated, run post-hoc analyses on them") conflowgen.run_all_analyses() logger.info("For a better understanding of the data, it is advised to study the logs and compare the preview with the " "post-hoc analysis results") logger.info("Start data export...") # Export important entries from SQL to CSV so that it can be further processed, e.g. by a simulation software export_container_flow_manager = conflowgen.ExportContainerFlowManager() export_folder_name = "demo-poc--" + str(datetime.datetime.now()).replace(":", "-").replace(" ", "--").split(".")[0] export_container_flow_manager.export( folder_name=export_folder_name + "-csv", file_format=conflowgen.ExportFileFormat.csv ) export_container_flow_manager.export( folder_name=export_folder_name + "-xlsx", file_format=conflowgen.ExportFileFormat.xlsx ) # Gracefully close everything database_chooser.close_current_connection() logger.info("Demo 'demo_poc' finished successfully.")
import pickle import numpy as np import pandas as pd import ssms import argparse def none_or_str(value): print('none_or_str') print(value) print(type(value)) if value == 'None': return None return value def none_or_int(value): print('none_or_int') print(value) print(type(value)) #print('printing type of value supplied to non_or_int ', type(int(value))) if value == 'None': return None return int(value) if __name__ == "__main__": # Interface ---- CLI = argparse.ArgumentParser() CLI.add_argument("--my_list", type = list, default = None) # CLI.add_argument('--config_dict_key', # type = none_or_int, # default = None) args = CLI.parse_args() print(args) print(args.my_list)
from . import base class Error(base.Event): pass class ConnectNotAvailable(Error): def __str__(self): return "connect not available." class VPNClientStateNotConnected(Error): def __str__(self): return "vpn client state is not connected" class ConnectAlreadyInProgress(Error): def __str__(self): return "connect already in progress"
""" This problem was asked by Amazon. Implement a stack that has the following methods: push(val), which pushes an element onto the stack pop(), which pops off and returns the topmost element of the stack. If there are no elements in the stack, then it should throw an error or return null. max(), which returns the maximum value in the stack currently. If there are no elements in the stack, then it should throw an error or return null. Each method should run in constant time. """ class Stack: def __init__(self): self._top = -1 self._max = [] self._vals = [] def max(self): if self._top == -1: return None return self._max[self._top] def push(self, val): self._vals.append(val) if self.max() is None or val > self.max(): self._max.append(val) else: self._max.append(self.max()) self._top += 1 def pop(self): if self._top == -1: return None del self._max[self._top] ret = self._vals[self._top] del self._vals[self._top] self._top -= 1 return ret
from flask import Flask from flask_bootstrap import Bootstrap from flask_login import LoginManager from .config import Config from .auth import auth from .models import UserModel login_manager = LoginManager() login_manager.login_view = 'auth.login' # Para cuadno flask_login quiera cargar un usuario @login_manager.user_loader def load_user(username): return UserModel.query(username) def create_app(): app = Flask(__name__) # Cargar la app en la clase Flask bootstrap = Bootstrap(app) # Inicialziar bootstrap app.config.from_object(Config) login_manager.init_app(app) app.register_blueprint(auth) return app
""" Wrapper for `git diff` command. """ from textwrap import dedent from diff_cover.command_runner import CommandError, execute class GitDiffError(Exception): """ `git diff` command produced an error. """ class GitDiffTool: """ Thin wrapper for a subset of the `git diff` command. """ def __init__(self, range_notation, ignore_whitespace): """ :param str range_notation: which range notation to use when producing the diff for committed files against another branch. Traditionally in git-cover the symmetric difference (three-dot, "A...M") notation has been used: it includes commits reachable from A and M from their merge-base, but not both, taking history in account. This includes cherry-picks between A and M, which are harmless and do not produce changes, but might give inaccurate coverage false-negatives. Two-dot range notation ("A..M") compares the tips of both trees and produces a diff. This more accurately describes the actual patch that will be applied by merging A into M, even if commits have been cherry-picked between branches. This will produce a more accurate diff for coverage comparison when complex merges and cherry-picks are involved. :param bool ignore_whitespace: Perform a diff but ignore any and all whitespace. """ self._range_notation = range_notation self._default_git_args = [ "git", "-c", "diff.mnemonicprefix=no", "-c", "diff.noprefix=no", ] self._default_diff_args = ["diff", "--no-color", "--no-ext-diff", "-U0"] if ignore_whitespace: self._default_diff_args.append("--ignore-all-space") self._default_diff_args.append("--ignore-blank-lines") def diff_committed(self, compare_branch="origin/main"): """ Returns the output of `git diff` for committed changes not yet in origin/main. Raises a `GitDiffError` if `git diff` outputs anything to stderr. """ diff_range = "{branch}{notation}HEAD".format( branch=compare_branch, notation=self._range_notation ) try: return execute( self._default_git_args + self._default_diff_args + [diff_range] )[0] except CommandError as e: if "unknown revision" in str(e): raise ValueError( dedent( f""" Could not find the branch to compare to. Does '{compare_branch}' exist? the `--compare-branch` argument allows you to set a different branch. """ ) ) raise def diff_unstaged(self): """ Returns the output of `git diff` with no arguments, which is the diff for unstaged changes. Raises a `GitDiffError` if `git diff` outputs anything to stderr. """ return execute(self._default_git_args + self._default_diff_args)[0] def diff_staged(self): """ Returns the output of `git diff --cached`, which is the diff for staged changes. Raises a `GitDiffError` if `git diff` outputs anything to stderr. """ return execute(self._default_git_args + self._default_diff_args + ["--cached"])[ 0 ] def untracked(self): """Return the untracked files.""" output = execute(["git", "ls-files", "--exclude-standard", "--others"])[0] output = output.strip() return output.split("\n") if output else []
from pathlib import Path import pytest @pytest.fixture(scope="session") def tests_dir(): return Path(__file__).parent.resolve()
########################################################################## # # Copyright (c) 2015, Image Engine Design Inc. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above # copyright notice, this list of conditions and the following # disclaimer. # # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided with # the distribution. # # * Neither the name of John Haddon nor the names of # any other contributors to this software may be used to endorse or # promote products derived from this software without specific prior # written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS # IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ########################################################################## import os import unittest import imath import IECore import Gaffer import GafferTest import GafferImage import GafferImageTest class OffsetTest( GafferImageTest.ImageTestCase ) : def testPassThrough( self ) : c = GafferImage.ImageReader() c["fileName"].setValue( os.path.dirname( __file__ ) + "/images/checker2x2.exr" ) o = GafferImage.Offset() o["in"].setInput( c["out"] ) self.assertEqual( o["offset"].getValue(), imath.V2i( 0 ) ) self.assertImageHashesEqual( o["out"], c["out"] ) self.assertImagesEqual( o["out"], c["out"] ) def testDataWindow( self ) : c = GafferImage.ImageReader() c["fileName"].setValue( os.path.dirname( __file__ ) + "/images/checker2x2.exr" ) self.assertEqual( c["out"]["dataWindow"].getValue(), imath.Box2i( imath.V2i( 0 ), imath.V2i( 2 ) ) ) o = GafferImage.Offset() o["in"].setInput( c["out"] ) o["offset"].setValue( imath.V2i( 1 ) ) self.assertEqual( o["out"]["dataWindow"].getValue(), imath.Box2i( imath.V2i( 1 ), imath.V2i( 3 ) ) ) def testChannelData( self ) : c = GafferImage.ImageReader() c["fileName"].setValue( os.path.dirname( __file__ ) + "/images/checker2x2.exr" ) o = GafferImage.Offset() o["in"].setInput( c["out"] ) o["offset"].setValue( imath.V2i( 1 ) ) def sample( image, channelName, pos ) : sampler = GafferImage.Sampler( image, channelName, image["dataWindow"].getValue() ) return sampler.sample( pos.x, pos.y ) for yOffset in range( -10, 10 ) : for xOffset in range( -10, 10 ) : o["offset"].setValue( imath.V2i( xOffset, yOffset ) ) for y in range( 0, 2 ) : for x in range( 0, 2 ) : for channelName in ( "R", "G", "B", "A" ) : self.assertEqual( sample( o["out"], channelName, imath.V2i( x + xOffset, y + yOffset ) ), sample( c["out"], channelName, imath.V2i( x, y ) ), ) def testMultipleOfTileSize( self ) : c = GafferImage.ImageReader() c["fileName"].setValue( os.path.dirname( __file__ ) + "/images/checker.exr" ) o = GafferImage.Offset() o["in"].setInput( c["out"] ) for offset in [ imath.V2i( 0, 1 ), imath.V2i( 1, 0 ), imath.V2i( 2, 0 ), imath.V2i( 2, 1 ), imath.V2i( 2, -3 ), imath.V2i( -2, 3 ), imath.V2i( -1, -1 ), ] : offset *= GafferImage.ImagePlug.tileSize() o["offset"].setValue( offset ) self.assertEqual( o["out"].channelDataHash( "R", offset ), c["out"].channelDataHash( "R", imath.V2i( 0 ) ), ) self.assertEqual( o["out"].channelData( "R", offset ), c["out"].channelData( "R", imath.V2i( 0 ) ), ) def testOffsetBack( self ) : c = GafferImage.ImageReader() c["fileName"].setValue( os.path.dirname( __file__ ) + "/images/checker.exr" ) o1 = GafferImage.Offset() o1["in"].setInput( c["out"] ) o1["offset"].setValue( imath.V2i( 101, -45 ) ) o2 = GafferImage.Offset() o2["in"].setInput( o1["out"] ) o2["offset"].setValue( imath.V2i( -101, 45 ) ) self.assertImagesEqual( c["out"], o2["out"] ) def testChannelDataDirtyPropagation( self ) : c = GafferImage.Constant() o = GafferImage.Offset() o["in"].setInput( c["out"] ) cs = GafferTest.CapturingSlot( o.plugDirtiedSignal() ) c["color"]["r"].setValue( 0.5 ) self.assertTrue( o["out"]["channelData"] in { x[0] for x in cs } ) def testDataWindowDirtyPropagation( self ) : c = GafferImage.Constant() o = GafferImage.Offset() o["in"].setInput( c["out"] ) cs = GafferTest.CapturingSlot( o.plugDirtiedSignal() ) c["format"].setValue( GafferImage.Format( 100, 100 ) ) self.assertTrue( o["out"]["dataWindow"] in { x[0] for x in cs } ) def testOffsetEmpty( self ) : c = GafferImage.Text() c["text"].setValue( "" ) self.assertTrue( c["out"]["dataWindow"].getValue().isEmpty() ) o = GafferImage.Offset() o["in"].setInput( c["out"] ) o["offset"].setValue( imath.V2i( 100, 100 ) ) self.assertTrue( o["out"]["dataWindow"].getValue().isEmpty() ) o["offset"].setValue( imath.V2i( -100, -100 ) ) self.assertTrue( o["out"]["dataWindow"].getValue().isEmpty() ) if __name__ == "__main__": unittest.main()
from typing import Optional from anyio import to_thread from github import Github from github.Label import Label from github.Repository import Repository from Shared.functions.readSettingsFile import get_setting _REPO: Optional[Repository] = None _LABELS: Optional[list[Label]] = None async def get_github_repo() -> Optional[Repository]: """Returns the GitHub api repo object""" global _REPO if not _REPO: if get_setting("GITHUB_APPLICATION_API_KEY") and get_setting("GITHUB_REPOSITORY_ID"): github_api = Github(get_setting("GITHUB_APPLICATION_API_KEY")) # run those in a thread with anyio since they are blocking _REPO = await to_thread.run_sync(github_api.get_repo, int(get_setting("GITHUB_REPOSITORY_ID"))) return _REPO async def get_github_labels() -> Optional[list[Label]]: """Returns the GitHub labels that should be used on the issue""" global _LABELS if not _LABELS and get_setting("GITHUB_ISSUE_LABEL_NAMES"): repo = await get_github_repo() if repo: _LABELS = [] for label_name in get_setting("GITHUB_ISSUE_LABEL_NAMES"): # run those in a thread with anyio since they are blocking label = await to_thread.run_sync(repo.get_label, label_name) _LABELS.append(label) return _LABELS
import json import pandas as pd import sqlite3 conn = sqlite3.connect('hackernews.sqlite3') curs = conn.cursor() query = '''SELECT author, count(author), sentiment FROM comments GROUP BY author HAVING count(author) >= 50 ORDER BY sentiment LIMIT 10''' curs.execute(query) results = curs.fetchall() df = pd.DataFrame(results, columns=["author", "post count", "sentiment"]) d = df.to_dict() with open('topsalties.json', 'w') as file: json.dump(d, file)
import os import numpy as np os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' # for ignoring the some of tf warnings import tensorflow as tf from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint, TensorBoard from sklearn.model_selection import train_test_split from src.CNN_classification import network from src.CNN_classification import utils def train(X, y, random_state=42, test_size=0.20, stage_train_dir='.', patience=10, epochs=10, batch_size=None, dropout_rate=0.2, dump_model_summary=True, set_lr_scheduler=True, set_checkpoint=True, set_earlystopping=True, set_tensorboard=False, dump_history=True, save_model=True, **kwargs ): N, L = X.shape[0], X.shape[1] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size, random_state=random_state, ) #stratify=y K = len(np.unique(y_train)) # design the architecture of model model = network.create_model((L, L, 1), K, dropout_rate=dropout_rate) # compile the model opt = tf.keras.optimizers.Adam(learning_rate=1e-4) model.compile(optimizer=opt, loss='sparse_categorical_crossentropy', metrics=['sparse_categorical_accuracy']) # Callbacks callbacks = [] if set_lr_scheduler: lr_scheduler = tf.keras.callbacks.ReduceLROnPlateau(factor=0.5, patience=5) callbacks += [lr_scheduler] if set_checkpoint: checkpoint_file = utils.make_path(stage_train_dir, "ckpt-best.h5") checkpoint_cb = ModelCheckpoint(checkpoint_file, save_best_only=True, monitor='val_loss', save_weights_only=False) callbacks += [checkpoint_cb] if set_earlystopping: early_stopping_cb = EarlyStopping(patience=patience, restore_best_weights=True) callbacks += [early_stopping_cb] if set_tensorboard: tensor_board = TensorBoard(log_dir=stage_train_dir) callbacks += [tensor_board] # print model info if dump_model_summary: utils.print_model_summary(model, stage_train_dir) # training the model history = model.fit(X_train, y_train, validation_data=(X_test, y_test), callbacks=callbacks, epochs=epochs, batch_size=batch_size) if save_model: model.save(utils.make_path(stage_train_dir, 'saved-model.h5')) if dump_history: utils.write_numpy_dic_to_json(history.history, utils.make_path(stage_train_dir, 'history.json')) loss_test, accuracy_test = model.evaluate(X_test, y_test, verbose=0) print('loss_test={:.3f}, accuracy_test={:.3f}'.format(loss_test, accuracy_test)) """loaded_model = tf.keras.models.load_model(make_path(stage_train_dir, 'saved-model.h5')) loss_test, accuracy_test = loaded_model.evaluate(X_test, y_test, verbose=0) print('loaded_model_loss_test={:.3f}, loaded_model_accuracy_test={:.3f}'.format(loss_test, accuracy_test))""" return model, history #====================================================================
from setuptools import setup, find_packages setup( name = 'port_dashboard', version = '1.0', packages = find_packages(), package_data = { '': ['LICENSE', 'README.md'], }, # PyPI metadata description = 'generate a port to-do list from C preprocessor macros', author = 'Michael Labbe', author_email = 'mike@frogtoss.com', url = 'https://github.com/mlabbe/port_dashboard', # keywords = ['logging', 'debug', 'release'], )
import scipy def sparseCheck(features, labels): features = features labels = labels """ Takes features and labels as input and checks if any of those is sparse csr_matrix. """ try: print('Checking for Sparse Matrix [*]\n') if scipy.sparse.issparse(features[()]): print('Converting Sparse Features to array []\n') features = features[()].toarray() print( 'Conversion of Sparse Features to array Done [', u'\u2713', ']\n') elif scipy.sparse.issparse(labels[()]): print('Converting Sparse Labels to array []\n') labels = labels[()].toarray() print( 'Conversion of Sparse Labels to array Done [', u'\u2713', ']\n') else: print('No Sparse Matrix Found') except Exception as error: # print('Sparse matrix Check failed with KeyError: ', error) pass return (features, labels)
{%- if cookiecutter.add_graphiql_route == "yes" -%} from .graphiql import handle_graphiql {% endif -%} from .graphql import handle_graphql {%- if cookiecutter.add_health_routes == "yes" %} from .health import ( handle_live as handle_health_live, handle_ready as handle_health_ready, ) {%- endif %} __all__ = ( "handle_graphql", {%- if cookiecutter.add_graphiql_route == "yes" %} "handle_graphiql", {%- endif %} {%- if cookiecutter.add_health_routes == "yes" %} "handle_health_live", "handle_health_ready", {%- endif %} )
from datetime import datetime from cred.database import db class Event(db.Model): __tablename__ = 'event' id = db.Column(db.Integer, primary_key=True) name = db.Column(db.String(240)) location = db.Column(db.String(240)) action = db.Column(db.String(240)) value = db.Column(db.String(240)) time = db.Column(db.DateTime, default=datetime.utcnow) client_id = db.Column(db.Integer, db.ForeignKey('client.id')) client = db.relationship( 'Client', backref=db.backref('events', lazy='dynamic')) def __init__(self, client, name, location, action, value, time=None): self.client = client self.name = name self.location = location self.action = action self.value = value if time is not None: self.time = time def __repr__(self): return '<ID %r, Name %r, Location %r, Action %r, Value %r, Time %r>' % ( self.id, self.name, self.location, self.action, self.value, self.time )
#!/usr/bin/env python2 # -*- coding: utf-8 -*- ################################################## # GNU Radio Python Flow Graph # Title: Top Block # Generated: Wed Feb 14 21:28:23 2018 ################################################## if __name__ == '__main__': import ctypes import sys if sys.platform.startswith('linux'): try: x11 = ctypes.cdll.LoadLibrary('libX11.so') x11.XInitThreads() except: print "Warning: failed to XInitThreads()" from PyQt4 import Qt from gnuradio import blocks from gnuradio import eng_notation from gnuradio import gr from gnuradio import qtgui from gnuradio.eng_option import eng_option from gnuradio.filter import firdes from optparse import OptionParser import sip import sys from gnuradio import qtgui class top_block(gr.top_block, Qt.QWidget): def __init__(self): gr.top_block.__init__(self, "Top Block") Qt.QWidget.__init__(self) self.setWindowTitle("Top Block") qtgui.util.check_set_qss() try: self.setWindowIcon(Qt.QIcon.fromTheme('gnuradio-grc')) except: pass self.top_scroll_layout = Qt.QVBoxLayout() self.setLayout(self.top_scroll_layout) self.top_scroll = Qt.QScrollArea() self.top_scroll.setFrameStyle(Qt.QFrame.NoFrame) self.top_scroll_layout.addWidget(self.top_scroll) self.top_scroll.setWidgetResizable(True) self.top_widget = Qt.QWidget() self.top_scroll.setWidget(self.top_widget) self.top_layout = Qt.QVBoxLayout(self.top_widget) self.top_grid_layout = Qt.QGridLayout() self.top_layout.addLayout(self.top_grid_layout) self.settings = Qt.QSettings("GNU Radio", "top_block") self.restoreGeometry(self.settings.value("geometry").toByteArray()) ################################################## # Variables ################################################## self.samp_rate = samp_rate = 32000 self.c4 = c4 = (1,1,1,1,-1,-1,-1,1,-1,-1,-1,-1,1,1,-1,1,1,-1,-1) self.c3 = c3 = (1,1,1,-1,-1,-1,1,-1,1,1,-1) self.c2 = c2 = (1,1,1,-1,-1,1,-1) self.c1 = c1 = (1,-1) ################################################## # Blocks ################################################## self.qtgui_time_sink_x_0 = qtgui.time_sink_f( 1024, #size samp_rate, #samp_rate "", #name 1 #number of inputs ) self.qtgui_time_sink_x_0.set_update_time(0.10) self.qtgui_time_sink_x_0.set_y_axis(-2, 2) self.qtgui_time_sink_x_0.set_y_label('Amplitude', "") self.qtgui_time_sink_x_0.enable_tags(-1, True) self.qtgui_time_sink_x_0.set_trigger_mode(qtgui.TRIG_MODE_FREE, qtgui.TRIG_SLOPE_POS, 0.0, 0, 0, "") self.qtgui_time_sink_x_0.enable_autoscale(False) self.qtgui_time_sink_x_0.enable_grid(False) self.qtgui_time_sink_x_0.enable_axis_labels(True) self.qtgui_time_sink_x_0.enable_control_panel(False) if not True: self.qtgui_time_sink_x_0.disable_legend() labels = ['', '', '', '', '', '', '', '', '', ''] widths = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] colors = ["blue", "red", "green", "black", "cyan", "magenta", "yellow", "dark red", "dark green", "blue"] styles = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1] markers = [-1, -1, -1, -1, -1, -1, -1, -1, -1, -1] alphas = [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0] for i in xrange(1): if len(labels[i]) == 0: self.qtgui_time_sink_x_0.set_line_label(i, "Data {0}".format(i)) else: self.qtgui_time_sink_x_0.set_line_label(i, labels[i]) self.qtgui_time_sink_x_0.set_line_width(i, widths[i]) self.qtgui_time_sink_x_0.set_line_color(i, colors[i]) self.qtgui_time_sink_x_0.set_line_style(i, styles[i]) self.qtgui_time_sink_x_0.set_line_marker(i, markers[i]) self.qtgui_time_sink_x_0.set_line_alpha(i, alphas[i]) self._qtgui_time_sink_x_0_win = sip.wrapinstance(self.qtgui_time_sink_x_0.pyqwidget(), Qt.QWidget) self.top_layout.addWidget(self._qtgui_time_sink_x_0_win) self.blocks_vector_source_x_0_0_0_0 = blocks.vector_source_s(c4, True, 1, []) self.blocks_vector_source_x_0_0_0 = blocks.vector_source_s(c3, True, 1, []) self.blocks_vector_source_x_0_0 = blocks.vector_source_s(c2, True, 1, []) self.blocks_vector_source_x_0 = blocks.vector_source_s(c1, True, 1, []) self.blocks_short_to_float_0 = blocks.short_to_float(1, 1) self.blocks_and_xx_0 = blocks.and_ss() ################################################## # Connections ################################################## self.connect((self.blocks_and_xx_0, 0), (self.blocks_short_to_float_0, 0)) self.connect((self.blocks_short_to_float_0, 0), (self.qtgui_time_sink_x_0, 0)) self.connect((self.blocks_vector_source_x_0, 0), (self.blocks_and_xx_0, 0)) self.connect((self.blocks_vector_source_x_0_0, 0), (self.blocks_and_xx_0, 1)) self.connect((self.blocks_vector_source_x_0_0_0, 0), (self.blocks_and_xx_0, 2)) self.connect((self.blocks_vector_source_x_0_0_0_0, 0), (self.blocks_and_xx_0, 3)) def closeEvent(self, event): self.settings = Qt.QSettings("GNU Radio", "top_block") self.settings.setValue("geometry", self.saveGeometry()) event.accept() def get_samp_rate(self): return self.samp_rate def set_samp_rate(self, samp_rate): self.samp_rate = samp_rate self.qtgui_time_sink_x_0.set_samp_rate(self.samp_rate) def get_c4(self): return self.c4 def set_c4(self, c4): self.c4 = c4 self.blocks_vector_source_x_0_0_0_0.set_data(self.c4, []) def get_c3(self): return self.c3 def set_c3(self, c3): self.c3 = c3 self.blocks_vector_source_x_0_0_0.set_data(self.c3, []) def get_c2(self): return self.c2 def set_c2(self, c2): self.c2 = c2 self.blocks_vector_source_x_0_0.set_data(self.c2, []) def get_c1(self): return self.c1 def set_c1(self, c1): self.c1 = c1 self.blocks_vector_source_x_0.set_data(self.c1, []) def main(top_block_cls=top_block, options=None): from distutils.version import StrictVersion if StrictVersion(Qt.qVersion()) >= StrictVersion("4.5.0"): style = gr.prefs().get_string('qtgui', 'style', 'raster') Qt.QApplication.setGraphicsSystem(style) qapp = Qt.QApplication(sys.argv) tb = top_block_cls() tb.start() tb.show() def quitting(): tb.stop() tb.wait() qapp.connect(qapp, Qt.SIGNAL("aboutToQuit()"), quitting) qapp.exec_() if __name__ == '__main__': main()
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Oct 11 10:31:47 2021 @author: nd """ import sys import re from .build_struts import * # add file names here ## origin file #file_in = sys.argv[1] ## output file file_out = "_output.txt" # read in file def file_read(file_in): lines = open(file_in, "r").readlines() return lines # outputs file def file_output(file_out_list): # sec_strut_output, helices, b_sheets, loops, gaps out_type = ['secStrut', 'helix', 'sheet', 'loop', 'gap'] for i, j in zip(out_type, file_out_list): convert_list = [str(x) for x in j] wrt = open(i + file_out, "w") for line in ','.join(convert_list): wrt.write(line) # extracts needed residue information def extract_info(in_file): new_list = [] for line in in_file: line_s = line.split() line_seg = line[16:35].split() try: line_s[1] = int(line_s[1]) new_line_s = [line_s[0], line_s[2], line_s[1], line[16:25], line_seg[-2], line_seg[-1][:-1], float(line_s[-3]), float(line_s[-2]), float(line_s[-1])] new_list.append(new_line_s) except: continue return new_list # Extracts helix residue information and builds a list of helices # lists info for each alph carbon in each helix def helix(in_list): helix_list, temp_helix, scraps, temp = [], [], [], [] for res in (in_list): try: int(res[1]) == False except: if "H" in res[3] or "I" in res[3] or "G" in res[3]: temp_helix.append(res) else: scraps.append(res) for res in temp_helix: if temp == []: temp.append([res[1], res[2], res[-3], res[-2], res[-1]]) elif res[2] == temp[-1][1] + 1: temp.append([res[1], res[2], res[-3], res[-2], res[-1]]) else: helix_list.append(temp) temp = [] temp.append([res[1], res[2], res[-3], res[-2], res[-1]]) helix_list.append(temp) return helix_list, scraps # Extracts strand residue information def sheet_loop(in_list): temp_sheet, new_sheet = [], [] # builds a list of strand residues # and directly hydrogen bonded strand residues for strand in in_list: temp_strand = [] for res in strand: if res[3] not in temp_strand and bool(re.search("0[a-zA-Z]+", res[3])) == False: temp_strand.append(res[3]) if res[4] not in temp_strand and bool(re.search("0[a-zA-Z]+", res[4])) == False: temp_strand.append(res[4]) if res[5] not in temp_strand and bool(re.search("0[a-zA-Z]+", res[5])) == False: temp_strand.append(res[5]) temp_sheet.append(temp_strand) # groups strands into sheets new_sheet.append(temp_sheet[0]) for strand in temp_sheet: if strand in new_sheet: continue elif strand not in new_sheet: for strand_l in new_sheet: if len(set(strand).difference(strand_l)) < len(strand): a = list(dict.fromkeys(strand + strand_l)) new_sheet.append(a) new_sheet.remove(strand_l) break elif len(set(strand).difference(strand_l)) == len(strand) and strand_l == new_sheet[-1]: new_sheet.append(strand) else: continue return new_sheet # Extracts strand residue information # Builds a list of sheets def sheets(in_list): strand_list, temp_sheet, scraps, temp = [], [], [], [] for res in (in_list): try: int(res[1]) == False except: if "E" in res[3]: temp_sheet.append(res) else: scraps.append(res) for res in temp_sheet: if temp == []: temp.append([res[0], res[1], res[2], str(res[0])+res[1], str(res[4])+res[1], res[5]+res[1], res[-3], res[-2], res[-1]]) elif res[2] == temp[-1][2] + 1: temp.append([res[0], res[1], res[2], str(res[0])+res[1], str(res[4])+res[1], res[5]+res[1], res[-3], res[-2], res[-1]]) else: strand_list.append(temp) temp = [] temp.append([res[0], res[1], res[2], str(res[0])+res[1], str(res[4])+res[1], res[5]+res[1], res[-2], res[-1]]) strand_list.append(temp) # converts list of strands to a list of sheets sheet_list = sheet_loop(strand_list) # extracts positional info for sheet residues out_list = [] for sheet in sheet_list: out_sheet_t = [] for res in sheet: for item in temp_sheet: if int(res[:-1]) == int(item[0]): out_sheet_t.append(item[1:3]+item[-3:]) out_list.append(out_sheet_t) return out_list, scraps # extracts loops and gaps def disordered(full_list, scrap_list): gaps, loops, loop = [], [], [] # finds gaps i = full_list[0][2] item_k = False for item in full_list: item_l = [item[1], item[2], item[-3], item[-2], item[-1]] if item_l[1] == i: continue elif item_l[1] != i+1 and item_l[0] == item_k[0]: gaps.append([item_k, item_l]) i = item_l[1] item_k = item_l #finds loops j = scrap_list[0][2] for item in scrap_list: item_l = [item[1], item[2], item[-3], item[-2], item[-1]] if item_l[1] == j: loop.append(item_l) j = item_l[1] elif j == scrap_list[-1] and len(loop) > 0: loops.append(loop) j = item_l[1] elif item_l[1] == j+1: loop.append(item_l) j = item_l[1] elif item_l[1] > j+1: loops.append(loop) loop = [] loop.append(item_l) j = item_l[1] elif item_l[1] < j+1 and len(loop) > 0: loops.append(loop) loop = [] loop.append(item_l) j = item_l[1] else: loop = [] loop.append(item_l) j = item_l[1] # finds loop ends loop_ends = [] for i in loops: loop_ends.append([i[0], i[-1]]) return loop_ends, gaps # Main fxn def main_sec_strut(file_in): file_list_1 = file_read(file_in) extract = extract_info(file_list_1) helices, scraps = helix(extract) b_sheets, leftovers = sheets(scraps) loops, gaps = disordered(extract, leftovers) sec_strut_output = helices + b_sheets file_output([sec_strut_output, helices, b_sheets, loops, gaps]) secondary_struts(helices,b_sheets) disorganized_struts(helices, b_sheets, loops) gap_struts(gaps)
# # Test solvers give the same output # import pybamm import numpy as np import unittest import liionpack as lp class TestSolvers(unittest.TestCase): def test_consistent_results_1_step(self): Rsmall = 1e-6 netlist = lp.setup_circuit( Np=1, Ns=1, Rb=Rsmall, Rc=Rsmall, Ri=5e-2, V=4.0, I=1.0 ) # PyBaMM parameters chemistry = pybamm.parameter_sets.Chen2020 parameter_values = pybamm.ParameterValues(chemistry=chemistry) # Cycling experiment experiment = pybamm.Experiment( [("Discharge at 1 A for 100 s or until 3.3 V",)] * 1, period="10 s" ) # Solve pack with casadi a = lp.solve( netlist=netlist, parameter_values=parameter_values, experiment=experiment, inputs=None, nproc=1, manager="casadi" ) # Solve pack with dask b = lp.solve( netlist=netlist, parameter_values=parameter_values, experiment=experiment, inputs=None, nproc=1, manager="dask" ) # Solve pack with ray c = lp.solve( netlist=netlist, parameter_values=parameter_values, experiment=experiment, inputs=None, nproc=1, manager="ray" ) v_a = a["Terminal voltage [V]"] v_b = b["Terminal voltage [V]"] v_c = c["Terminal voltage [V]"] assert np.allclose(v_a, v_b) assert np.allclose(v_b, v_c) if __name__ == "__main__": unittest.main()
#!/usr/bin/env python2.7 # -*- coding: UTF-8 -*- from sys import stdin from collections import defaultdict import re def main(): list = [] for l in stdin: # every line in the input text = l.decode('utf8') # decode from utf-8 encoded string text = text.rstrip('\n') # strip newline from the end of the line words = text.split("\t") list.append(words) # To return a new list, use the sorted() built-in function... #orderedList = sorted(list, key=lambda x: x[1], reverse=True) for word, stat in sorted(list, key=lambda x: x[1], reverse=True): print ("{0}\t{1}".format(word.encode('utf-8'),stat)) # if the script is called directly (as opposed to being imported) # call the main function. # This prevents it from being run when this module is imported if __name__ == '__main__': main()
class TreeNode: def __init__(self, x): self.val = x self.left = None self.right = None class Solution: def isBalanced(self, root: TreeNode) -> bool: return self.depth(root) != -1 def depth(self, root): if not root: return 0 left = self.depth(root.left) if left == -1: return -1 right = self.depth(root.right) if right == -1: return -1 return max(left, right) + 1 if abs(left - right) < 2 else -1
from datetime import ( datetime ) from pydantic import ( BaseModel ) from typing import ( Optional, List, ) __all__ = [ "Company", ] class Value(BaseModel): value: str enum_id: Optional[int] = None enum_code: Optional[str] = None class CustomFieldValue(BaseModel): field_id: int field_name: str field_code: Optional[str] = None field_type: str values: List[Value] class Company(BaseModel): id: int name: str responsible_user_id: int created_at: datetime updated_at: datetime group_id: int created_by: int updated_by: int is_deleted: bool custom_fields_values: Optional[List[CustomFieldValue]]
#!/usr/bin/env python # -*- encoding: utf-8 -*- """ Topic: 利用generator模仿tail -f www.log | grep "python" 对变化的日志文件持续查看含有python的行 Desc : """ import time __author__ = 'Xiong Neng' def tail(f): f.seek(0, 2) # 移动到EOF while True: line = f.readline() if not line: time.sleep(0.2) continue yield line def grep(lines, search_text): for line in lines: if search_text in line: yield line def my_tail_search(filename, keyword): wwwlog = tail(open(filename)) pylines = grep(wwwlog, keyword) for line in pylines: print(line) def main(): pass
from ibis.tests.expr.mocks import BaseMockConnection class MockImpalaConnection(BaseMockConnection): @property def dialect(self): from ibis.backends.impala.compiler import ImpalaDialect return ImpalaDialect def _build_ast(self, expr, context): from ibis.backends.impala.compiler import build_ast return build_ast(expr, context)
##Here we plot distributrions of how many individuals were correct for each states. import seaborn as sns import matplotlib.pyplot as plt import numpy as np from scipy.stats import gaussian_kde pal = sns.diverging_palette(10, 220, sep=80, n=5,l=40,center='light') pal2 = sns.diverging_palette(10, 220, sep=80, n=5,l=40,center='dark') pal[2] = pal2[2] def ilogit(x): return 1/(1+np.exp(-x)) def plot_figure1a(true_data, false_data): #Basic figure paramters sns.set_context('paper', font_scale=1.5) #Plot distributions, adjust legend etc... sns.distplot(true_data.groupby(['states']).mean()['correct_start'],hist_kws=dict(histtype='stepfilled',alpha=.9,ec="k"), color='white',bins=np.linspace(0,1,10),label='True',kde=False) sns.distplot(false_data.groupby(['states']).mean()['correct_start'],hist_kws=dict(histtype='stepfilled',alpha=.8,ec="k"), color='grey',bins=np.linspace(0,1,10),label='False',kde=False) plt.yticks(np.linspace(0,25,6)) plt.xlim(0,1) plt.xlabel('Proportion correct') plt.ylabel('Count') #Save figure plt.tight_layout() def joint_hpdi(samples_extracted): for idx in range(5): x = samples_extracted['alpha_p'][:,idx] y = samples_extracted['beta_p'][:,idx] k = gaussian_kde(np.vstack([x, y])) xi, yi = np.mgrid[x.min():x.max():x.size**0.5*1j,y.min():y.max():y.size**0.5*1j] zi = k(np.vstack([xi.flatten(), yi.flatten()])) #set zi to 0-1 scale zi = (zi-zi.min())/(zi.max() - zi.min()) zi =zi.reshape(xi.shape) #set up plot origin = 'lower' levels = [.11,1] CS = plt.contourf(xi, yi, zi,levels = levels, shade=True, linewidths=(1,), alpha=.5, colors=[pal[idx], pal[idx]], origin=origin) plt.xlabel('Intercept') plt.ylabel('Effect of \nconfidence') plt.ylim(-1.5,1.5) plt.xlim(-1,1) plt.xticks(np.linspace(-1.5,1.5,5)) plt.xticks(np.linspace(-1.5,1.5,5)) def plot_figure1b(samples_extracted,stan_data_logistic): x = np.linspace(np.min(stan_data_logistic['x']),np.max(stan_data_logistic['x']),10) for idx in range(5): y = np.array([samples_extracted['alpha_p'][:,idx] + samples_extracted['beta_p'][:,idx] * item for item in x]) y = ilogit(y) cis = np.percentile(y, q=[5.5,94.5],axis=1) plt.plot(50*(x/2+.5)+50, np.mean(y, axis=1),color=pal[idx]) plt.fill_between(50*(x/2+.5)+50, cis[0,:], cis[1,:],alpha=.3,color=pal[idx]) plt.ylim(.2,.8) plt.xlim(50,100) plt.ylabel('Accuracy') plt.xlabel('Reported confidence') def plot_fig1cd(stan_model_data, df, samples, correct=True): x = np.linspace(-.5, .5, 100) x_transformed = (x+.5)*100 for idx in range(5): avg_conf = np.mean(stan_model_data['confidence'][df['pol_recode']==idx+1]) y = np.array([ilogit(samples['alpha_p'][:,idx] + \ samples['b_conf_p'][:,idx] * avg_conf +\ samples['b_socConf_p'][:,idx] * item) for item in x]) if correct: plt.plot(x_transformed, np.mean(y,axis=1),color=pal[idx]) ci = np.percentile(y, axis=1, q=[5.5,94.5]) plt.fill_between(x_transformed, ci[0], ci[1], color=pal[idx],alpha=.3) else: plt.plot(x_transformed[::-1], np.mean(y,axis=1),color=pal[idx]) ci = np.percentile(y, axis=1, q=[5.5,94.5]) plt.fill_between(x_transformed[::-1], ci[0], ci[1], color=pal[idx],alpha=.3) plt.ylabel('Probability of switching') plt.ylim(0,1) plt.xlim(0,100) plt.xlabel('Social disagreement') def plot_switch_predicted_acuracy(data, switch_samples, correct=True): extracted_switch_samples_correct = switch_samples.extract(['alpha_p', 'b_conf_p', 'b_socConf_p', 'yhat']) correct_data = data[data['correct_start']==correct] pal[2] = pal2[2] sns.set_context('paper', font_scale=1.5) correct_data['yhat'] = np.mean(extracted_switch_samples_correct['yhat'],axis=0) grouped = correct_data.groupby(['pol_recode']).mean().reset_index() plt.scatter(grouped['yhat'], grouped['switched'],color=pal,s=100) plt.plot([0,1], [0,1], ls='--', color='black') plt.ylim(0.15, 0.4) plt.xlim(0.15, 0.4) plt.yticks(np.linspace(.15,.4,6)) plt.yticks(np.linspace(.15,.4,6)) plt.xlabel('Predicted \nswitching') plt.ylabel('Observed \nswitching') np.percentile(extracted_switch_samples_correct['yhat'],axis=1, q=[5.5, 94.5])
class Solution(object): def XXX(self, root): if not root: return 0 return max(self.XXX(root.left), self.XXX(root.right)) + 1
from bs4 import BeautifulSoup import requests import time def get_movie_budgets( page_index): r = requests.get('https://www.the-numbers.com/movie/budgets/all/%s'% (page_index,)) html_doc = r.content soup = BeautifulSoup(html_doc, 'html.parser') rows = [tr for tr in soup.find_all('tr') if len(tr) == 13 ] return [(row.contents[4].a.string.encode('utf-8').strip(), row.contents[6].string.encode('utf-8').strip(), row.contents[10].string.encode('utf-8').strip()) for row in rows] def write_movie_data( filename="gross.dat", max_page=120): page_index_list = [(100*i)+1 for i in range(max_page)] for index in page_index_list: time.sleep(4) movies = get_movie_budgets( str(index)) file = open(filename,'a') for m in movies: file.write('{}|{}|{}\n'.format(*m)) file.close() if __name__ == '__main__': write_movie_data()
class Transformer(object): def __init__(self, pc=None): self.pc = pc def transform_jump(self, cond, true_path, false_path, **kwargs): return None def transform_ret(self, ret_value, **kwargs): return None def transform_branch(self, cond, true_path, false_path, **kwargs): return None def we_are_not_transformed(kind): return True
# Generated by Django 3.2 on 2021-05-01 08:58 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('store', '0001_initial'), ] operations = [ migrations.RenameField( model_name='category', old_name='website_category', new_name='store_category', ), ]
# coding=UTF-8 #------------------------------------------------------------------------------ # Copyright (c) 2007-2016, Acoular Development Team. #------------------------------------------------------------------------------ # separate file to find out about version without importing the acoular lib __author__ = "Acoular developers" __date__ = "11 May 2016" __version__ = "16.5"
# Copyright 2000 - 2013 NeuStar, Inc.All rights reserved. # NeuStar, the Neustar logo and related names and logos are registered # trademarks, service marks or tradenames of NeuStar, Inc. All other # product names, company names, marks, logos and symbols may be trademarks # of their respective owners. __author__ = 'Jon Bodner' import connection import json import urllib class RestApiClient: def __init__(self, username, password, use_http=False, host="restapi.ultradns.com"): """Initialize a Rest API Client. Arguments: username -- The username of the user password -- The password of the user Keyword Arguments: use_http -- For internal testing purposes only, lets developers use http instead of https. host -- Allows you to point to a server other than the production server. """ self.rest_api_connection = connection.RestApiConnection(use_http, host) self.rest_api_connection.auth(username, password) # Zones # create a primary zone def create_primary_zone(self, account_name, zone_name): """Creates a new primary zone. Arguments: account_name -- The name of the account that will contain this zone. zone_name -- The name of the zone. It must be unique. """ zone_properties = {"name": zone_name, "accountName": account_name, "type": "PRIMARY"} primary_zone_info = {"forceImport": True, "createType": "NEW"} zone_data = {"properties": zone_properties, "primaryCreateInfo": primary_zone_info} return self.rest_api_connection.post("/v1/zones", json.dumps(zone_data)) # list zones for account def get_zones_of_account(self, account_name, q=None, **kwargs): """Returns a list of zones for the specified account. Arguments: account_name -- The name of the account. Keyword Arguments: q -- The search parameters, in a dict. Valid keys are: name - substring match of the zone name zone_type - one of: PRIMARY SECONDARY ALIAS sort -- The sort column used to order the list. Valid values for the sort field are: NAME ACCOUNT_NAME RECORD_COUNT ZONE_TYPE reverse -- Whether the list is ascending(False) or descending(True) offset -- The position in the list for the first returned element(0 based) limit -- The maximum number of rows to be returned. """ uri = "/v1/accounts/" + account_name + "/zones" params = build_params(q, kwargs) return self.rest_api_connection.get(uri, params) # get zone metadata def get_zone_metadata(self, zone_name): """Returns the metadata for the specified zone. Arguments: zone_name -- The name of the zone being returned. """ return self.rest_api_connection.get("/v1/zones/" + zone_name) # delete a zone def delete_zone(self, zone_name): """Deletes the specified zone. Arguments: zone_name -- The name of the zone being deleted. """ return self.rest_api_connection.delete("/v1/zones/"+zone_name) # RRSets # list rrsets for a zone def get_rrsets(self, zone_name, q=None, **kwargs): """Returns the list of RRSets in the specified zone. Arguments: zone_name -- The name of the zone. Keyword Arguments: q -- The search parameters, in a dict. Valid keys are: ttl - must match the TTL for the rrset owner - substring match of the owner name value - substring match of the first BIND field value sort -- The sort column used to order the list. Valid values for the sort field are: OWNER TTL TYPE reverse -- Whether the list is ascending(False) or descending(True) offset -- The position in the list for the first returned element(0 based) limit -- The maximum number of rows to be returned. """ uri = "/v1/zones/" + zone_name + "/rrsets" params = build_params(q, kwargs) return self.rest_api_connection.get(uri, params) # list rrsets by type for a zone # q The query used to construct the list. Query operators are ttl, owner, and value def get_rrsets_by_type(self, zone_name, rtype, q=None, **kwargs): """Returns the list of RRSets in the specified zone of the specified type. Arguments: zone_name -- The name of the zone. rtype -- The type of the RRSets. This can be numeric (1) or if a well-known name is defined for the type (A), you can use it instead. Keyword Arguments: q -- The search parameters, in a dict. Valid keys are: ttl - must match the TTL for the rrset owner - substring match of the owner name value - substring match of the first BIND field value sort -- The sort column used to order the list. Valid values for the sort field are: OWNER TTL TYPE reverse -- Whether the list is ascending(False) or descending(True) offset -- The position in the list for the first returned element(0 based) limit -- The maximum number of rows to be returned. """ uri = "/v1/zones/" + zone_name + "/rrsets/" + rtype params = build_params(q, kwargs) return self.rest_api_connection.get(uri,params) # create an rrset def create_rrset(self, zone_name, rtype, owner_name, ttl, rdata): """Creates a new RRSet in the specified zone. Arguments: zone_name -- The zone that will contain the new RRSet. The trailing dot is optional. rtype -- The type of the RRSet. This can be numeric (1) or if a well-known name is defined for the type (A), you can use it instead. owner_name -- The owner name for the RRSet. If no trailing dot is supplied, the owner_name is assumed to be relative (foo). If a trailing dot is supplied, the owner name is assumed to be absolute (foo.zonename.com.) ttl -- The TTL value for the RRSet. rdata -- The BIND data for the RRSet as a string. If there is a single resource record in the RRSet, you can pass in the single string. If there are multiple resource records in this RRSet, pass in a list of strings. """ if type(rdata) is not list: rdata = [rdata] rrset = {"ttl": ttl, "rdata": rdata} return self.rest_api_connection.post("/v1/zones/"+zone_name+"/rrsets/"+rtype+"/"+owner_name, json.dumps(rrset)) # edit an rrset(PUT) def edit_rrset(self, zone_name, rtype, owner_name, ttl, rdata): """Updates an existing RRSet in the specified zone. Arguments: zone_name -- The zone that contains the RRSet. The trailing dot is optional. rtype -- The type of the RRSet. This can be numeric (1) or if a well-known name is defined for the type (A), you can use it instead. owner_name -- The owner name for the RRSet. If no trailing dot is supplied, the owner_name is assumed to be relative (foo). If a trailing dot is supplied, the owner name is assumed to be absolute (foo.zonename.com.) ttl -- The updated TTL value for the RRSet. rdata -- The updated BIND data for the RRSet as a string. If there is a single resource record in the RRSet, you can pass in the single string. If there are multiple resource records in this RRSet, pass in a list of strings. """ if type(rdata) is not list: rdata = [rdata] rrset = {"ttl": ttl, "rdata": rdata} uri = "/v1/zones/" + zone_name + "/rrsets/" + rtype + "/" + owner_name return self.rest_api_connection.put(uri,json.dumps(rrset)) # delete an rrset def delete_rrset(self, zone_name, rtype, owner_name): """Deletes an RRSet. Arguments: zone_name -- The zone containing the RRSet to be deleted. The trailing dot is optional. rtype -- The type of the RRSet. This can be numeric (1) or if a well-known name is defined for the type (A), you can use it instead. owner_name -- The owner name for the RRSet. If no trailing dot is supplied, the owner_name is assumed to be relative (foo). If a trailing dot is supplied, the owner name is assumed to be absolute (foo.zonename.com.) """ return self.rest_api_connection.delete("/v1/zones/" + zone_name + "/rrsets/" + rtype + "/" + owner_name) # Accounts # get account details for user def get_account_details(self): """Returns a list of all accounts of which the current user is a member.""" return self.rest_api_connection.get("/v1/accounts") # Version # get version def version(self): """Returns the version of the REST API server.""" return self.rest_api_connection.get("/v1/version") # Status # get status def status(self): """Returns the status of the REST API server.""" return self.rest_api_connection.get("/v1/status") def build_params(q, args): params = {} params.update(args) if q is not None: params.update(q) return params
import visitors.visitor as visitor from pipeline import State from cl_ast import * class FormatVisitor(State): def __init__(self, sname, fname): super().__init__(sname) self.fname = fname def run(self, ast): printed_ast = self.visit(ast) f = open(self.fname, 'w') f.write(printed_ast) f.close() return ast # Visitor for each node @visitor.on('node') def visit(self, node, tabs): ans = '\t' * tabs + f'\\__{node.__class__.__name__}' return ans @visitor.when(ProgramNode) def visit(self, node, tabs=0): ans = '\t' * tabs + f'\\__ProgramNode ({node.row},{node.col}) [<class> ... <class>]' statements = '\n'.join(self.visit(child, tabs + 1) for child in node.declarations) return f'{ans}\n{statements}' @visitor.when(ClassDeclarationNode) def visit(self, node, tabs=0): parent = '' if node.parent is None else f": {node.parent}" ans = '\t' * tabs + f'\\__ClassDeclarationNode ({node.row},{node.col}): class {node.id} {parent} {{ <feature> ... <feature> }}' features = '\n'.join(self.visit(child, tabs + 1) for child in node.features) return f'{ans}\n{features}' @visitor.when(AttrDeclarationNode) def visit(self, node, tabs=0): ans = '\t' * tabs + f'\\__AttrDeclarationNode ({node.row},{node.col}): {node.id} : {node.type}' return f'{ans}' @visitor.when(VarDeclarationNode) def visit(self, node, tabs=0): ans = '\t' * tabs + f'\\__VarDeclarationNode ({node.row},{node.col}): {node.id} : {node.type} = <expr>' expr = self.visit(node.expr, tabs + 1) return f'{ans}\n{expr}' @visitor.when(FuncDeclarationNode) def visit(self, node, tabs=0): params = ', '.join(':'.join(param) for param in node.params) ans = '\t' * tabs + f'\\__FuncDeclarationNode ({node.row},{node.col}): {node.id}({params}) : {node.type} -> <body>' body = f'{self.visit(node.body, tabs + 1)}' # body = f'\n{self.visit(node.body, tabs + 1)}'.join(self.visit(child, tabs + 1) for child in node.body) return f'{ans}\n{body}' @visitor.when(ConstantNode) def visit(self, node, tabs=0): return '\t' * tabs + f'\\__ ({node.row},{node.col}){node.__class__.__name__}: {node.lex}' @visitor.when(BinaryOperationNode) def visit(self, node, tabs=0): ans = '\t' * tabs + f'\\__<expr> ({node.row},{node.col}){node.__class__.__name__} <expr>' left = self.visit(node.left, tabs + 1) right = self.visit(node.right, tabs + 1) return f'{ans}\n{left}\n{right}' @visitor.when(UnaryOperationNode) def visit(self, node, tabs=0): ans = '\t' * tabs + f'\\__ ({node.row},{node.col}){node.__class__.__name__} <expr>' expr = self.visit(node.expr, tabs + 1) return f'{ans}\n{expr}' @visitor.when(AssignNode) def visit(self, node, tabs=0): ans = '\t' * tabs + f'\\__AssignNode ({node.row},{node.col}): {node.id} <- <expr>' expr = self.visit(node.expr, tabs + 1) return f'{ans}\n{expr}' @visitor.when(WhileNode) def visit(self, node, tabs=0): ans = '\t' * tabs + f'\\__{node.__class__.__name__}: while ({node.row},{node.col}) <cond> loop <expr> pool' cond = self.visit(node.cond, tabs + 1) expr = self.visit(node.expr, tabs + 1) return f'{ans}\n{cond}\n{expr}' @visitor.when(ConditionalNode) def visit(self, node, tabs=0): ans = '\t' * tabs + f'\\__ {node.__class__.__name__}: if ({node.row},{node.col}) <cond> then <expr> else <expr> fi' cond = self.visit(node.cond, tabs + 1) stm = self.visit(node.stm, tabs + 1) else_stm = self.visit(node.else_stm, tabs + 1) return f'{ans}\n{cond}\n{stm}\n{else_stm}' @visitor.when(CaseNode) def visit(self, node, tabs=0): ans = '\t' * tabs + f'\\__ {node.__class__.__name__}: case ({node.row},{node.col}) <expr> of <case-list> esac' expr = self.visit(node.expr, tabs + 1) case_list = '\n'.join(self.visit(child, tabs + 1) for child in node.case_list) return f'{ans}\n{expr}\n{case_list}' @visitor.when(OptionNode) def visit(self, node, tabs=0): ans = '\t' * tabs + f'\\__ {node.__class__.__name__}: {node.id} : {node.typex} ({node.row},{node.col}) -> <expr>' expr = self.visit(node.expr, tabs + 1) return f'{ans}\n{expr}' @visitor.when(BlockNode) def visit(self, node, tabs=0): ans = '\t' * tabs + f'\\__ {node.__class__.__name__} ({node.row},{node.col})' + '{ <expr_list> }' expr = '\n'.join(self.visit(child, tabs + 1) for child in node.expr_list) return f'{ans}\n{expr}' @visitor.when(NewNode) def visit(self, node, tabs=0): return '\t' * tabs + f'\\__ NewNode ({node.row},{node.col}): new {node.type}()' @visitor.when(VariableNode) def visit(self, node, tabs=0): return '\t' * tabs + f'\\__ VarAccessNode ({node.row},{node.col}): {node.id}' @visitor.when(LetNode) def visit(self, node, tabs=0): ans = '\t' * tabs + f'\\__ {node.__class__.__name__} let ({node.row},{node.col}) <init_list> in <expr>' init_list = '\n'.join(self.visit(arg, tabs + 1) for arg in node.init_list) expr = self.visit(node.expr, tabs + 1) return f'{ans}\n{init_list}\n{expr}' @visitor.when(ParentCallNode) def visit(self, node, tabs=0): obj = self.visit(node.obj, tabs + 1) ans = '\t' * tabs + f'\\__ParentCallNode ({node.row},{node.col}) : <obj>@{node.type}.{node.id}(<expr>, ..., <expr>)' args = '\n'.join(self.visit(arg, tabs + 1) for arg in node.args) return f'{ans}\n{obj}\n{args}' @visitor.when(ExprCallNode) def visit(self, node, tabs=0): obj = self.visit(node.obj, tabs + 1) ans = '\t' * tabs + f'\\__ExprCallNode ({node.row},{node.col}) : <obj>.{node.id}(<expr>, ..., <expr>)' args = '\n'.join(self.visit(arg, tabs + 1) for arg in node.args) return f'{ans}\n{obj}\n{args}' @visitor.when(SelfCallNode) def visit(self, node, tabs=0): ans = '\t' * tabs + f'\\__SelfCallNode ({node.row},{node.col}) : {node.id}(<expr>, ..., <expr>)' args = '\n'.join(self.visit(arg, tabs + 1) for arg in node.args) return f'{ans}\n{args}'
import requests import math import os import time import lxml.html PROXY_TXT_API = 'https://www.proxyscan.io/api/proxy?type=https&format=txt&uptime=100' PLATFORM = os.name def get_proxy(): ''' Get proxy (str) from API. ''' proxy = requests.get(PROXY_TXT_API).text return proxy.rstrip() def convert_size(size_bytes): ''' Convert from bytes to human readable sizes (str). ''' # https://stackoverflow.com/a/14822210 if size_bytes == 0: return '0 B' size_name = ('B', 'KB', 'MB', 'GB', 'TB') i = int(math.floor(math.log(size_bytes, 1024))) p = math.pow(1024, i) s = round(size_bytes / p, 2) return '%s %s' % (s, size_name[i]) def download_speed(bytes_read, start_time): ''' Convert speed to human readable speed (str). ''' if bytes_read == 0: return '0 B/s' elif time.time()-start_time == 0: return '- B/s' size_name = ('B/s', 'KB/s', 'MB/s', 'GB/s', 'TB/s') bps = bytes_read/(time.time()-start_time) i = int(math.floor(math.log(bps, 1024))) p = math.pow(1024, i) s = round(bps / p, 2) return '%s %s' % (s, size_name[i]) def get_link_info(url): ''' Get file name and size. Returns list: [File Name, Downloaded Size] ''' try: r = requests.get(url) html = lxml.html.fromstring(r.content) if html.xpath('//*[@id="pass"]'): return ['Private File', '- MB'] name = html.xpath('//td[@class=\'normal\']')[0].text size = html.xpath('//td[@class=\'normal\']')[2].text return [name, size] except: return None
import time import RPi.GPIO as GPIO GPIO.setmode(GPIO.BCM) digitBitmap = {0: 0b00111111, 1: 0b00000110, 2: 0b01011011, 3: 0b01001111, 4: 0b01100110, 5: 0b01101101, 6: 0b01111101, 7: 0b00000111, 8: 0b01111111, 9: 0b01100111} masks = {'a': 0b00000001, 'b': 0b00000010, 'c': 0b00000100, 'd': 0b00001000, 'e': 0b00010000, 'f': 0b00100000, 'g': 0b01000000} pins = {'a': 17, 'b': 22, 'c': 6, 'd': 13, 'e': 19, 'f': 27, 'g': 5} def renderChar(c): val = digitBitmap[c] GPIO.output(list(pins.values()), GPIO.LOW) for k, v in masks.items(): if val & v == v: GPIO.output(pins[k], GPIO.HIGH) try: GPIO.setup(list(pins.values()), GPIO.OUT) GPIO.output(list(pins.values()), GPIO.LOW) val = 0 while True: print("Printing " + str(val)) renderChar(val) val = 0 if val == 9 else (val + 1) time.sleep(1) except KeyboardInterrupt: print("Goodbye") finally: GPIO.cleanup()
import tkinter as tk class SimpleTableInput(tk.Frame): def __init__(self, parent, rows, columns): tk.Frame.__init__(self, parent) self._entry = {} self.rows = rows self.columns = columns # register a command to use for validation vcmd = (self.register(self._validate), "%P") # create the table of widgets for row in range(self.rows): for column in range(self.columns): index = (row, column) e = tk.Entry(self, validate="key", validatecommand=vcmd) e.grid(row=row, column=column, stick="nsew") self._entry[index] = e # adjust column weights so they all expand equally for column in range(self.columns): self.grid_columnconfigure(column, weight=1) # designate a final, empty row to fill up any extra space self.grid_rowconfigure(rows, weight=1) def get(self): '''Return a list of lists, containing the data in the table''' result = [] for row in range(self.rows): current_row = [] for column in range(self.columns): index = (row, column) current_row.append(self._entry[index].get()) result.append(current_row) return result def _validate(self, P): '''Perform input validation. Allow only an empty value, or a value that can be converted to a float ''' if P.strip() == "": return True try: f = float(P) except ValueError: self.bell() return False return True class Example(tk.Frame): def __init__(self, parent): tk.Frame.__init__(self, parent) self.table = SimpleTableInput(self, 3, 4) self.submit = tk.Button(self, text="Submit", command=self.on_submit) self.table.pack(side="top", fill="both", expand=True) self.submit.pack(side="bottom") def on_submit(self): print(self.table.get()) root = tk.Tk() Example(root).pack(side="top", fill="both", expand=True) root.mainloop()
from __future__ import absolute_import from __future__ import unicode_literals from couchexport.export import get_writer class WorkBook(object): _undefined = '---' @property def undefined(self): return self._undefined def __init__(self, file, format): self._headers = {} self.writer = get_writer(format.slug) self.file = file self.writer.open((), file) def open(self, table_name, headers): self.writer.add_table(table_name, headers) self._headers[table_name] = headers def write_row(self, table_name, row): headers = self._headers[table_name] for key in row: if key not in headers: raise AttributeError() self.writer.write_row(table_name, [row.get(h) for h in headers]) def close(self): self.writer.close()
from django_elasticsearch_dsl_drf.serializers import DocumentSerializer from rest_framework import serializers from radical_translations.core.documents import ResourceDocument class ResourceDocumentSerializer(DocumentSerializer): highlight = serializers.SerializerMethodField() class Meta: document = ResourceDocument def get_highlight(self, obj): if hasattr(obj.meta, "highlight"): return obj.meta.highlight.__dict__["_d_"] return {} class SimpleResourceDocumentSerializer(DocumentSerializer): class Meta: document = ResourceDocument fields = [ "id", "title", "date_display", "year", "places", "is_original", "is_translation", "form_genre", ]
from afterpay.exceptions.afterpay_error import AfterpayError class ServerError(AfterpayError): """ A common cause of this response from PUT/POST endpoints is that the request body is missing or empty. """ pass
#!/usr/bin/env python # -*- coding: utf-8 -*- # Author: Yuki Furuta <furushchev@jsk.imi.i.u-tokyo.ac.jp> import chainer import chainer.links as L import chainer.functions as F from ... import links class DeepEpisodicMemoryDecoder(chainer.Chain): """Deep Episodic Memory Decoder""" def __init__(self, num_episodes, in_channels=None, dropout=None): if in_channels is None: in_channels = 1000 if dropout is None: dropout = 0.1 super(DeepEpisodicMemoryDecoder, self).__init__( fc_lstm=links.ConvolutionLSTM2D( in_channels, in_channels, 1, pad=0), fc_deconv=L.Deconvolution2D( in_channels, 64, 4, stride=1, pad=0), # lstm1=links.ConvolutionLSTM2D(64, 64, 3), lstm_norm1=links.LayerNormalization(), deconv1=L.Deconvolution2D( 64, 64, 3, stride=2, pad=1, outsize=(8, 8)), deconv_norm1=links.LayerNormalization(), # lstm2=links.ConvolutionLSTM2D(64, 64, 3), lstm_norm2=links.LayerNormalization(), deconv2=L.Deconvolution2D( 64, 64, 3, stride=2, pad=1, outsize=(16, 16)), deconv_norm2=links.LayerNormalization(), # lstm3=links.ConvolutionLSTM2D(64, 32, 3), lstm_norm3=links.LayerNormalization(), deconv3=L.Deconvolution2D( 32, 32, 5, stride=2, pad=2, outsize=(32, 32)), deconv_norm3=links.LayerNormalization(), # lstm4=links.ConvolutionLSTM2D(32, 32, 5), lstm_norm4=links.LayerNormalization(), deconv4=L.Deconvolution2D( 32, 32, 5, stride=2, pad=2, outsize=(64, 64)), deconv_norm4=links.LayerNormalization(), # lstm5=links.ConvolutionLSTM2D(32, 32, 5), lstm_norm5=links.LayerNormalization(), deconv5=L.Deconvolution2D( 32, 3, 5, stride=2, pad=2, outsize=(128, 128)), ) self.in_channels = in_channels self.dropout = dropout self.num_episodes = num_episodes def reset_state(self): for link in self.links(): if link != self and hasattr(link, "reset_state"): link.reset_state() def __call__(self, x): xp = self.xp assert x.ndim == 4, "%s != 4" % (x.ndim) # B,2C,1,1 assert x.shape[1] == self.in_channels * 2 assert x.shape[2] == x.shape[3] == 1 c0, h0 = F.split_axis(x, 2, axis=1) self.fc_lstm.set_state(c0, h0) l0 = h0 outputs = [] for i in range(self.num_episodes): l0 = self.fc_lstm(l0) # d0 = self.fc_deconv(F.dropout(l0, ratio=self.dropout)) d0 = F.relu(d0) # l1 = self.lstm1(F.dropout(d0, ratio=self.dropout)) l1 = self.lstm_norm1(l1) # d1 = self.deconv1(F.dropout(l1, ratio=self.dropout)) d1 = F.relu(self.deconv_norm1(d1)) # l2 = self.lstm2(F.dropout(d1, ratio=self.dropout)) l2 = self.lstm_norm2(l2) # d2 = self.deconv2(F.dropout(l2, ratio=self.dropout)) d2 = F.relu(self.deconv_norm2(d2)) # l3 = self.lstm3(F.dropout(d2, ratio=self.dropout)) l3 = self.lstm_norm3(l3) # d3 = self.deconv3(F.dropout(l3, ratio=self.dropout)) d3 = F.relu(self.deconv_norm3(d3)) # l4 = self.lstm4(F.dropout(d3, ratio=self.dropout)) l4 = self.lstm_norm4(l4) # d4 = self.deconv4(F.dropout(l4, ratio=self.dropout)) d4 = F.relu(self.deconv_norm4(d4)) # l5 = self.lstm5(F.dropout(d4, ratio=self.dropout)) l5 = self.lstm_norm5(l5) # o = self.deconv5(F.dropout(l5, ratio=self.dropout)) o = F.relu(o) # o = o[:, None, :, :, :] outputs.append(o) # <- B1CHW outputs = F.concat(outputs, axis=1) # BNCHW return outputs
import shutil import pytest from jupytext import read from jupytext.cli import jupytext from .utils import requires_ir_kernel, requires_nbconvert, skip_on_windows @requires_nbconvert @skip_on_windows def test_pipe_nbconvert_execute(tmpdir): tmp_ipynb = str(tmpdir.join("notebook.ipynb")) tmp_py = str(tmpdir.join("notebook.py")) with open(tmp_py, "w") as fp: fp.write( """1 + 2 """ ) jupytext( args=[ tmp_py, "--to", "ipynb", "--pipe-fmt", "ipynb", "--pipe", "jupyter nbconvert --stdin --stdout --to notebook --execute", ] ) nb = read(tmp_ipynb) assert len(nb.cells) == 1 assert nb.cells[0].outputs[0]["data"] == {"text/plain": "3"} @requires_nbconvert @skip_on_windows def test_pipe_nbconvert_execute_sync(tmpdir): tmp_ipynb = str(tmpdir.join("notebook.ipynb")) tmp_py = str(tmpdir.join("notebook.py")) with open(tmp_py, "w") as fp: fp.write( """1 + 2 """ ) jupytext( args=[ tmp_py, "--set-formats", "py,ipynb", "--sync", "--pipe-fmt", "ipynb", "--pipe", "jupyter nbconvert --stdin --stdout --to notebook --execute", ] ) nb = read(tmp_ipynb) assert len(nb.cells) == 1 assert nb.cells[0].outputs[0]["data"] == {"text/plain": "3"} @requires_nbconvert @skip_on_windows def test_execute(tmpdir, caplog, capsys): tmp_ipynb = str(tmpdir.join("notebook.ipynb")) tmp_py = str(tmpdir.join("notebook.py")) with open(tmp_py, "w") as fp: fp.write( """1 + 2 """ ) jupytext(args=[tmp_py, "--to", "ipynb", "--execute"]) nb = read(tmp_ipynb) assert len(nb.cells) == 1 assert nb.cells[0].outputs[0]["data"] == {"text/plain": "3"} @requires_nbconvert def test_execute_readme_ok(tmpdir): tmp_md = str(tmpdir.join("notebook.md")) with open(tmp_md, "w") as fp: fp.write( """ A readme with correct instructions ```python 1 + 2 ``` """ ) jupytext(args=[tmp_md, "--execute"]) @requires_nbconvert @skip_on_windows def test_execute_readme_not_ok(tmpdir): tmp_md = str(tmpdir.join("notebook.md")) with open(tmp_md, "w") as fp: fp.write( """ A readme with incorrect instructions (a is not defined) ```python a + 1 ``` """ ) import nbconvert with pytest.raises( nbconvert.preprocessors.execute.CellExecutionError, match="is not defined" ): jupytext(args=[tmp_md, "--execute"]) @requires_nbconvert @skip_on_windows def test_execute_sync(tmpdir, caplog, capsys): tmp_ipynb = str(tmpdir.join("notebook.ipynb")) tmp_py = str(tmpdir.join("notebook.py")) with open(tmp_py, "w") as fp: fp.write( """1 + 2 """ ) jupytext(args=[tmp_py, "--set-formats", "py,ipynb", "--sync", "--execute"]) nb = read(tmp_ipynb) assert len(nb.cells) == 1 assert nb.cells[0].outputs[0]["data"] == {"text/plain": "3"} @requires_nbconvert @requires_ir_kernel @skip_on_windows def test_execute_r(tmpdir, caplog, capsys): # pragma: no cover tmp_ipynb = str(tmpdir.join("notebook.ipynb")) tmp_md = str(tmpdir.join("notebook.md")) with open(tmp_md, "w") as fp: fp.write( """```r 1 + 2 + 3 ``` """ ) jupytext(args=[tmp_md, "--to", "ipynb", "--execute"]) nb = read(tmp_ipynb) assert len(nb.cells) == 1 assert nb.cells[0].outputs[0]["data"]["text/markdown"] == "6" @requires_nbconvert @skip_on_windows def test_execute_in_subfolder(tmpdir, caplog, capsys): subfolder = tmpdir.mkdir("subfolder") tmp_csv = str(subfolder.join("inputs.csv")) tmp_py = str(subfolder.join("notebook.py")) tmp_ipynb = str(subfolder.join("notebook.ipynb")) with open(tmp_csv, "w") as fp: fp.write("1\n2\n") with open(tmp_py, "w") as fp: fp.write( """import ast with open('inputs.csv') as fp: text = fp.read() sum(ast.literal_eval(line) for line in text.splitlines()) """ ) jupytext(args=[tmp_py, "--to", "ipynb", "--execute"]) nb = read(tmp_ipynb) assert len(nb.cells) == 3 assert nb.cells[2].outputs[0]["data"] == {"text/plain": "3"} tmp2_py = str(tmpdir.mkdir("another_folder").join("notebook.py")) tmp2_ipynb = str(tmpdir.join("another_folder", "notebook.ipynb")) shutil.copy(tmp_py, tmp2_py) # Executing without run-path fails import nbconvert with pytest.raises( nbconvert.preprocessors.execute.CellExecutionError, match="No such file or directory: 'inputs.csv'", ): jupytext(args=[tmp2_py, "--to", "ipynb", "--execute"]) # Raise if folder does not exists with pytest.raises(ValueError, match="is not a valid path"): jupytext(args=[tmp2_py, "--to", "ipynb", "--run-path", "wrong_path"]) # Execute in full path jupytext(args=[tmp2_py, "--to", "ipynb", "--run-path", str(subfolder)]) nb = read(tmp2_ipynb) assert len(nb.cells) == 3 assert nb.cells[2].outputs[0]["data"] == {"text/plain": "3"} # Execute in path relative to notebook dir jupytext(args=[tmp2_py, "--to", "ipynb", "--run-path", "../subfolder"]) nb = read(tmp2_ipynb) assert len(nb.cells) == 3 assert nb.cells[2].outputs[0]["data"] == {"text/plain": "3"}