content
stringlengths
5
1.05M
#!/usr/bin/env python """deque.py: Deque implementation""" __author__ = 'rohitsinha' class Deque: def __init__(self): self.items = [] def isEmpty(self): return self.items == [] def addFront(self, item): self.items.append(item) def addRear(self, item): self.items.insert(0, item) def removeFront(self): return self.items.pop() def removeRear(self): return self.items.pop(0) def size(self): return len(self.items) def __str__(self): return str(self.items).strip('[]') if __name__ == '__main__': d = Deque() print(d.isEmpty()) d.addFront(5) d.addRear('Hello') print(d.removeFront()) d.addFront(True) print(d.removeRear()) print(d.size()) print(d.removeFront()) d.addRear('Bye') d.addFront('Bye') print(d)
import numpy as np from keras.models import Sequential from keras.layers import Dense, Activation from keras.layers import Dropout from sklearn.model_selection import train_test_split from sklearn.metrics import confusion_matrix, classification_report import pandas as pd import seaborn as sns import matplotlib.pyplot as plt def one_hot_encode(labels): n_labels = len(labels) n_unique_labels = len(np.unique(labels)) one_hot_encode = np.zeros((n_labels, n_unique_labels + 2)) one_hot_encode[np.arange(n_labels), labels] = 1 one_hot_encode = np.delete(one_hot_encode, 0, axis=1) return one_hot_encode def create_model(n_hidden_units_1, n_hidden_units_2, n_hidden_units_3, n_hidden_units_4, n_classes, n_dim, activation_function='relu', init_type='normal', optimiser='adamax', dropout_rate=0.2, ): model = Sequential() # layer 1 model.add(Dense(n_hidden_units_1, input_dim=n_dim, init=init_type, activation=activation_function)) # layer 2 model.add(Dense(n_hidden_units_2, init=init_type, activation=activation_function)) model.add(Dropout(dropout_rate)) # layer 3 model.add(Dense(n_hidden_units_3, init=init_type, activation=activation_function)) model.add(Dropout(dropout_rate)) # layer4 model.add(Dense(n_hidden_units_4, init=init_type, activation=activation_function)) model.add(Dropout(dropout_rate)) # output layer model.add(Dense(n_classes, init=init_type, activation='softmax')) # model compilation model.compile(loss='categorical_crossentropy', optimizer=optimiser, metrics=['categorical_accuracy']) return model def ann_feature(input_data): labels = input_data['value'] np.save('X', input_data.drop('value', axis=1)) # one hot encoding labels labels_one = one_hot_encode(labels) np.save('y', labels_one) X = np.load('X.npy', allow_pickle=True) y = np.load('y.npy', allow_pickle=True) train_x, test_x, train_y, test_y = train_test_split(X, y, test_size=0.33, random_state=42) n_dim = train_x.shape[1] n_classes = train_y.shape[1] n_hidden_units_1 = n_dim n_hidden_units_2 = 400 # approx n_dim * 2 n_hidden_units_3 = 200 # half of layer 2 n_hidden_units_4 = 100 # create the model model = create_model(n_hidden_units_1, n_hidden_units_2, n_hidden_units_3, n_hidden_units_4, n_classes, n_dim) # train the model history = model.fit(train_x, train_y, epochs=400, batch_size=4) # plot metrics plt.plot(history.history['categorical_accuracy']) plt.title('Accuracy over number of Epochs') plt.xlabel('No. of Epochs') plt.ylabel('Accuracy') plt.savefig('Metrics\\featureepoch.png') # predicting from the model predict = model.predict(test_x, batch_size=4) emotions = ['neutral', 'calm', 'happy', 'sad', 'angry', 'fearful', 'disgust', 'surprised'] # predicted emotions from the test set y_pred = np.argmax(predict, 1) predicted_emo = [] for i in range(0, test_y.shape[0]): emo = emotions[y_pred[i]] predicted_emo.append(emo) actual_emo = [] y_true = np.argmax(test_y, 1) for i in range(0, test_y.shape[0]): emo = emotions[y_true[i]] actual_emo.append(emo) csv_classification = pd.DataFrame(classification_report(actual_emo, predicted_emo, output_dict=True)).transpose() csv_classification.to_csv('Metrics\\feature_only_dnn.csv', sep=',') # generate the confusion matrix cm = confusion_matrix(actual_emo, predicted_emo) print(cm) index = ['angry', 'calm', 'disgust', 'fearful', 'happy', 'neutral', 'sad', 'surprised'] columns = ['angry', 'calm', 'disgust', 'fearful', 'happy', 'neutral', 'sad', 'surprised'] cm_df = pd.DataFrame(cm, index, columns) plt.figure(figsize=(15, 10)) heatmap = sns.heatmap(cm_df, annot=True) fig = heatmap.get_figure() fig.savefig("Metrics\\featuresHeat.png") def ann_feature_gender(input_data): labels = input_data['value'] np.save('X', input_data.drop('value', axis=1)) # one hot encoding labels labels_one = one_hot_encode(labels) np.save('y', labels_one) X = np.load('X.npy', allow_pickle=True) y = np.load('y.npy', allow_pickle=True) train_x, test_x, train_y, test_y = train_test_split(X, y, test_size=0.33, random_state=42) n_dim = train_x.shape[1] n_classes = train_y.shape[1] n_hidden_units_1 = n_dim n_hidden_units_2 = 400 # approx n_dim * 2 n_hidden_units_3 = 200 # half of layer 2 n_hidden_units_4 = 100 # create the model model = create_model(n_hidden_units_1, n_hidden_units_2, n_hidden_units_3, n_hidden_units_4, n_classes, n_dim) # train the model history = model.fit(train_x, train_y, epochs=400, batch_size=4) # plot metrics plt.plot(history.history['categorical_accuracy']) plt.title('Accuracy over number of Epochs') plt.xlabel('No. of Epochs') plt.ylabel('Accuracy') plt.savefig('Metrics\\featureGenderepoch.png') # predicting from the model predict = model.predict(test_x, batch_size=4) emotions = ['neutral', 'calm', 'happy', 'sad', 'angry', 'fearful', 'disgust', 'surprised'] # predicted emotions from the test set y_pred = np.argmax(predict, 1) predicted_emo = [] for i in range(0, test_y.shape[0]): emo = emotions[y_pred[i]] predicted_emo.append(emo) actual_emo = [] y_true = np.argmax(test_y, 1) for i in range(0, test_y.shape[0]): emo = emotions[y_true[i]] actual_emo.append(emo) csv_classification = pd.DataFrame(classification_report(actual_emo, predicted_emo, output_dict=True)).transpose() csv_classification.to_csv('Metrics\\feature_gender_dnn.csv', sep=',') # generate the confusion matrix cm = confusion_matrix(actual_emo, predicted_emo) print(cm) index = ['angry', 'calm', 'disgust', 'fearful', 'happy', 'neutral', 'sad', 'surprised'] columns = ['angry', 'calm', 'disgust', 'fearful', 'happy', 'neutral', 'sad', 'surprised'] cm_df = pd.DataFrame(cm, index, columns) plt.figure(figsize=(15, 10)) heatmap = sns.heatmap(cm_df, annot=True) fig = heatmap.get_figure() fig.savefig("Metrics\\featuresGenderHeat.png") def ann_feature_gender_intensity(input_data): labels = input_data['value'] np.save('X', input_data.drop('value', axis=1)) # one hot encoding labels labels_one = one_hot_encode(labels) np.save('y', labels_one) X = np.load('X.npy', allow_pickle=True) y = np.load('y.npy', allow_pickle=True) train_x, test_x, train_y, test_y = train_test_split(X, y, test_size=0.33, random_state=42) n_dim = train_x.shape[1] n_classes = train_y.shape[1] n_hidden_units_1 = n_dim n_hidden_units_2 = 400 # approx n_dim * 2 n_hidden_units_3 = 200 # half of layer 2 n_hidden_units_4 = 100 # create the model model = create_model(n_hidden_units_1, n_hidden_units_2, n_hidden_units_3, n_hidden_units_4, n_classes, n_dim) # train the model history = model.fit(train_x, train_y, epochs=400, batch_size=4) # plot metrics plt.plot(history.history['categorical_accuracy']) plt.title('Accuracy over number of Epochs') plt.xlabel('No. of Epochs') plt.ylabel('Accuracy') plt.savefig('Metrics\\featureGenderIntepoch.png') # predicting from the model predict = model.predict(test_x, batch_size=4) emotions = ['neutral', 'calm', 'happy', 'sad', 'angry', 'fearful', 'disgust', 'surprised'] # predicted emotions from the test set y_pred = np.argmax(predict, 1) predicted_emo = [] for i in range(0, test_y.shape[0]): emo = emotions[y_pred[i]] predicted_emo.append(emo) actual_emo = [] y_true = np.argmax(test_y, 1) for i in range(0, test_y.shape[0]): emo = emotions[y_true[i]] actual_emo.append(emo) csv_classification = pd.DataFrame(classification_report(actual_emo, predicted_emo, output_dict=True)).transpose() csv_classification.to_csv('Metrics\\feature_gender_intensity_dnn.csv', sep=',') # generate the confusion matrix cm = confusion_matrix(actual_emo, predicted_emo) print(cm) index = ['angry', 'calm', 'disgust', 'fearful', 'happy', 'neutral', 'sad', 'surprised'] columns = ['angry', 'calm', 'disgust', 'fearful', 'happy', 'neutral', 'sad', 'surprised'] cm_df = pd.DataFrame(cm, index, columns) plt.figure(figsize=(15, 10)) heatmap = sns.heatmap(cm_df, annot=True) fig = heatmap.get_figure() fig.savefig("Metrics\\featuresGenderIntHeat.png") if __name__ == '__main__': full_data = pd.read_csv('maxFeatures.csv') no_high = full_data[full_data.intensity != 1] feature_only_data = no_high.drop(['filename', 'emotion_name', 'gender', 'intensity'], axis=1) feature_gender_data = no_high.drop(['filename', 'emotion_name', 'intensity'], axis=1) no_low = full_data[full_data.intensity != 0] feature_gender_intensity_data = no_low.drop(['filename', 'emotion_name'], axis=1) ann_feature(feature_only_data) ann_feature_gender(feature_gender_data) ann_feature_gender_intensity(feature_gender_intensity_data)
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.constant.ParamConstants import * class TradeComplainQueryResponse(object): def __init__(self): self._complain_event_id = None self._complain_reason = None self._content = None self._gmt_create = None self._gmt_finished = None self._gmt_modified = None self._images = None self._leaf_category_name = None self._merchant_order_no = None self._phone_no = None self._status = None self._target_id = None self._target_type = None self._trade_no = None @property def complain_event_id(self): return self._complain_event_id @complain_event_id.setter def complain_event_id(self, value): self._complain_event_id = value @property def complain_reason(self): return self._complain_reason @complain_reason.setter def complain_reason(self, value): self._complain_reason = value @property def content(self): return self._content @content.setter def content(self, value): self._content = value @property def gmt_create(self): return self._gmt_create @gmt_create.setter def gmt_create(self, value): self._gmt_create = value @property def gmt_finished(self): return self._gmt_finished @gmt_finished.setter def gmt_finished(self, value): self._gmt_finished = value @property def gmt_modified(self): return self._gmt_modified @gmt_modified.setter def gmt_modified(self, value): self._gmt_modified = value @property def images(self): return self._images @images.setter def images(self, value): if isinstance(value, list): self._images = list() for i in value: self._images.append(i) @property def leaf_category_name(self): return self._leaf_category_name @leaf_category_name.setter def leaf_category_name(self, value): self._leaf_category_name = value @property def merchant_order_no(self): return self._merchant_order_no @merchant_order_no.setter def merchant_order_no(self, value): self._merchant_order_no = value @property def phone_no(self): return self._phone_no @phone_no.setter def phone_no(self, value): self._phone_no = value @property def status(self): return self._status @status.setter def status(self, value): self._status = value @property def target_id(self): return self._target_id @target_id.setter def target_id(self, value): self._target_id = value @property def target_type(self): return self._target_type @target_type.setter def target_type(self, value): self._target_type = value @property def trade_no(self): return self._trade_no @trade_no.setter def trade_no(self, value): self._trade_no = value def to_alipay_dict(self): params = dict() if self.complain_event_id: if hasattr(self.complain_event_id, 'to_alipay_dict'): params['complain_event_id'] = self.complain_event_id.to_alipay_dict() else: params['complain_event_id'] = self.complain_event_id if self.complain_reason: if hasattr(self.complain_reason, 'to_alipay_dict'): params['complain_reason'] = self.complain_reason.to_alipay_dict() else: params['complain_reason'] = self.complain_reason if self.content: if hasattr(self.content, 'to_alipay_dict'): params['content'] = self.content.to_alipay_dict() else: params['content'] = self.content if self.gmt_create: if hasattr(self.gmt_create, 'to_alipay_dict'): params['gmt_create'] = self.gmt_create.to_alipay_dict() else: params['gmt_create'] = self.gmt_create if self.gmt_finished: if hasattr(self.gmt_finished, 'to_alipay_dict'): params['gmt_finished'] = self.gmt_finished.to_alipay_dict() else: params['gmt_finished'] = self.gmt_finished if self.gmt_modified: if hasattr(self.gmt_modified, 'to_alipay_dict'): params['gmt_modified'] = self.gmt_modified.to_alipay_dict() else: params['gmt_modified'] = self.gmt_modified if self.images: if isinstance(self.images, list): for i in range(0, len(self.images)): element = self.images[i] if hasattr(element, 'to_alipay_dict'): self.images[i] = element.to_alipay_dict() if hasattr(self.images, 'to_alipay_dict'): params['images'] = self.images.to_alipay_dict() else: params['images'] = self.images if self.leaf_category_name: if hasattr(self.leaf_category_name, 'to_alipay_dict'): params['leaf_category_name'] = self.leaf_category_name.to_alipay_dict() else: params['leaf_category_name'] = self.leaf_category_name if self.merchant_order_no: if hasattr(self.merchant_order_no, 'to_alipay_dict'): params['merchant_order_no'] = self.merchant_order_no.to_alipay_dict() else: params['merchant_order_no'] = self.merchant_order_no if self.phone_no: if hasattr(self.phone_no, 'to_alipay_dict'): params['phone_no'] = self.phone_no.to_alipay_dict() else: params['phone_no'] = self.phone_no if self.status: if hasattr(self.status, 'to_alipay_dict'): params['status'] = self.status.to_alipay_dict() else: params['status'] = self.status if self.target_id: if hasattr(self.target_id, 'to_alipay_dict'): params['target_id'] = self.target_id.to_alipay_dict() else: params['target_id'] = self.target_id if self.target_type: if hasattr(self.target_type, 'to_alipay_dict'): params['target_type'] = self.target_type.to_alipay_dict() else: params['target_type'] = self.target_type if self.trade_no: if hasattr(self.trade_no, 'to_alipay_dict'): params['trade_no'] = self.trade_no.to_alipay_dict() else: params['trade_no'] = self.trade_no return params @staticmethod def from_alipay_dict(d): if not d: return None o = TradeComplainQueryResponse() if 'complain_event_id' in d: o.complain_event_id = d['complain_event_id'] if 'complain_reason' in d: o.complain_reason = d['complain_reason'] if 'content' in d: o.content = d['content'] if 'gmt_create' in d: o.gmt_create = d['gmt_create'] if 'gmt_finished' in d: o.gmt_finished = d['gmt_finished'] if 'gmt_modified' in d: o.gmt_modified = d['gmt_modified'] if 'images' in d: o.images = d['images'] if 'leaf_category_name' in d: o.leaf_category_name = d['leaf_category_name'] if 'merchant_order_no' in d: o.merchant_order_no = d['merchant_order_no'] if 'phone_no' in d: o.phone_no = d['phone_no'] if 'status' in d: o.status = d['status'] if 'target_id' in d: o.target_id = d['target_id'] if 'target_type' in d: o.target_type = d['target_type'] if 'trade_no' in d: o.trade_no = d['trade_no'] return o
# import modules import sys import pygame # define color white (red, green, blue) (0-255) WHITE = (255, 255, 255) # is the game finished? finished = False # initialize pygame pygame.init() # set our display as fullscreen game_display = pygame.display.set_mode((0, 0), pygame.FULLSCREEN) # set the background color as white game_display.fill(WHITE) # update the display pygame.display.update() # main loop, do this while game is not finished (finished = False) while not finished: # cycle through events in the queue for event in pygame.event.get(): # if a key has been pushed and released if event.type == pygame.KEYUP: # and if that key is ESCAPE, quit! if event.key == pygame.K_ESCAPE: pygame.quit() sys.exit() # if a different quit event is detected, quit if event.type == pygame.QUIT: # finished = True, so we exit loop finished = True # if we've exited the loop, we quit! pygame.quit() sys.exit()
#!/usr/bin/python3 # booksales.py: show how to use LAST_INSERT_ID(expr) import mysql.connector import cookbook conn = cookbook.connect() try: #@ _UPDATE_COUNTER_ cursor = conn.cursor() cursor.execute(''' INSERT INTO booksales (title,copies) VALUES('The Greater Trumps',LAST_INSERT_ID(1)) ON DUPLICATE KEY UPDATE copies = LAST_INSERT_ID(copies+1) ''') count = cursor.lastrowid cursor.close() conn.commit() #@ _UPDATE_COUNTER_ print("count: %d" % count) except mysql.connector.Error as e: print("Oops, the statement failed") print("Error: %s" % e) conn.close()
import unittest from python_oop.testing.lab.List.extended_list import IntegerList class IntegerListTest(unittest.TestCase): def test_integers_add_when_integer(self): integer_list = IntegerList() internal_list = integer_list.add(1) self.assertEqual([1], internal_list) def test_integers_add_when_not_integer_exception(self): integer_list = IntegerList() # internal_list = integer_list.add(1.0) with self.assertRaises(ValueError): # integer_list.add(1.0) integer_list.add("asd") def test_integers_remove_index_when_index_in_range(self): value_to_remove = 3 integer_list = IntegerList(1, 2, value_to_remove, 4) result = integer_list.remove_index(2) self.assertEqual(value_to_remove, result) self.assertListEqual([1, 2, 4], integer_list.get_data()) # def test_integers_remove_index_when_index_is_negative_not_in_range(self): # integer_list = IntegerList(1, 2, 3, 4) # index = -5 # with self.assertRaises(IndexError): # integer_list.remove_index(index) def test_integers_remove_index_when_index_is_positive_not_in_range(self): integer_list = IntegerList(1, 2, 3, 4) index = 5 with self.assertRaises(IndexError): integer_list.remove_index(index) def test_integers_init_store_only_integers(self): integer_list = IntegerList(1, 2, 3, 4, 'as', 1.0, 5) integer_list.get_data() def test_integers_get_when_index_in_range(self): value_to_get = 3 integer_list = IntegerList(1, 2, value_to_get, 4) result = integer_list.get(2) self.assertEqual(value_to_get, result) self.assertListEqual([1, 2, 3, 4], integer_list.get_data()) def test_integers_get_when_index_is_negative_not_in_range(self): integer_list = IntegerList(1, 2, 3, 4) index = -5 with self.assertRaises(IndexError): integer_list.get(index) def test_integers_get_when_index_is_positive_not_in_range(self): integer_list = IntegerList(1, 2, 3, 4) index = 5 with self.assertRaises(IndexError): integer_list.get(index) def test_integers_insert_when_index_in_range(self): value_to_insert = 3 index_to_insert = 2 integer_list = IntegerList(1, 2, 4) integer_list.insert(index_to_insert, value_to_insert) self.assertListEqual([1, 2, 3, 4], integer_list.get_data()) # def test_integers_insert_when_index_is_negative_not_in_range(self): # value_to_insert = 3 # index_to_insert = -5 # type(value_to_insert) # integer_list = IntegerList(1, 2, 4) # with self.assertRaises(IndexError): # integer_list.insert(index_to_insert, value_to_insert) def test_integers_insert_when_index_is_positive_not_in_range(self): value_to_insert = 3 index_to_insert = 5 integer_list = IntegerList(1, 2, 4) with self.assertRaises(IndexError): integer_list.insert(index_to_insert, value_to_insert) def test_integers_insert_when_not_integer_exception(self): value_to_insert = 'asd' index_to_insert = 2 integer_list = IntegerList(1, 2, 4) with self.assertRaises(ValueError): integer_list.insert(index_to_insert, value_to_insert) def test_integers_biggest(self): biggest = 17 integer_list = IntegerList(1, 2, biggest, 4) self.assertEqual(biggest, integer_list.get_biggest()) def test_integers_get_index(self): el = 5 index = 4 integer_list = IntegerList(1, 2, 3, 4, 5, 6) self.assertEqual(index, integer_list.get_index(el)) if __name__ == '__main__': unittest.main()
import os import identifiers_api from create_identifiers.lib import utils from create_identifiers.lib import arguments from create_identifiers.regulondb_multigenomic import multigenomic_identifiers def run(input_path, **kwargs): """ :param paths: :param kwargs: :return: """ utils.verify_paths(input_path) jsons_data = utils.load_files(input_path) database = kwargs.get("database", None) if database == "regulondbmultigenomic": multigenomic_identifiers.manage_ids(jsons_data, **kwargs) elif database == "regulondbht": pass elif database == "regulondbdatamarts": pass else: raise KeyError("Process of creating identifiers for the selected " f"database({database}) has not been implemented or " f"there's a typo, please verify it before continuing") if __name__ == "__main__": arguments = arguments.load_arguments() input_data_directory = arguments.inputdir regulondb_release_version = os.getenv("RELEASE_VERSION") if os.getenv("RELEASE_VERSION") else arguments.version identifiers_api.connect(arguments.url) kwargs = { "database": arguments.database, "regulondbReleaseVersion": regulondb_release_version, "sourceDBVersion": arguments.sourceversion, "sourceDBName": arguments.source, "organism": arguments.organism } utils.set_log(arguments.log) run(input_data_directory, **kwargs)
def test_service_properties(test_servicer_tls_config): assert isinstance(test_servicer_tls_config.hostport, str) assert test_servicer_tls_config.use_server_ssl is True assert test_servicer_tls_config.ssl_server_credentials is not None assert test_servicer_tls_config.ssl_channel_credentials is not None
from flask import Blueprint, jsonify, request, Response from project import db from project.api.models import Todo, User todo_blueprint = Blueprint( "todos", __name__ ) @todo_blueprint.route("/api/todos") def get_todos(): response = [] todos = db.session.query(Todo).all() for todo in todos: response.append(todo.to_dict()) return jsonify(response) @todo_blueprint.route("/api/todos/<int:todo_id>") def get_todo(todo_id): todo = Todo.query.filter_by(todo_id=todo_id).first() if not todo: return Response(status=404) return jsonify(todo.to_dict()) @todo_blueprint.route("/api/todos/<int:todo_id>", methods=["DELETE"]) def delete_todo(todo_id): todo = Todo.query.filter_by(todo_id=todo_id).first() if not todo: return Response(status=404) db.session.delete(todo) db.session.commit() return Response(status=204) @todo_blueprint.route("/api/todos", methods=["POST", "PUT"]) def create_or_update_todo(): response = {} request_json = request.get_json() # Validation keys = ["title", "content", "completed", "dueDate", "priority"] if request.method == "PUT": keys.append("todoId") for key in keys: if key not in request_json: response["message"] = "Missing {key} in request body".format(key=key) return jsonify(response), 400 user_id = request_json.get("userId") if user_id: user = User.query.filter_by(user_id=user_id).first() if not user: response["message"] = "User not found" return jsonify(response), 404 # Parse the request data todo = None if request.method == "POST": todo = Todo() elif request.method == "PUT": todo_id = int(request_json["todoId"]) todo = Todo.query.filter_by(todo_id=todo_id).first() if not todo: response["message"] = "Todo not found" return jsonify(response), 404 todo.title = request_json["title"] todo.content = request_json["content"] todo.completed = request_json["completed"] todo.due_date = request_json["dueDate"] todo.priority = request_json["priority"] if "userId" in request_json: todo.user_id = user_id if request.method == "POST": db.session.add(todo) response["message"] = "Todo created successfully" elif request.method == "PUT": response["message"] = "Todo updated successfully" db.session.commit() response["todoId"] = todo.todo_id return jsonify(response), 201
import factory import factory.fuzzy from django.contrib.gis.geos import MultiPolygon, Point, Polygon from factory.random import randgen from munigeo.models import Address, Municipality, Street from .models import ContractZone class ContractZoneFactory(factory.django.DjangoModelFactory): name = factory.Faker("bs") boundary = factory.Sequence( lambda n: MultiPolygon( Polygon( ((24 + n, 60), (25 + n, 60), (25 + n, 61), (24 + n, 61), (24 + n, 60)) ) ) ) origin_id = factory.Sequence(lambda n: n) class Meta: model = ContractZone # Because of a bug in django-munigeo v0.3.2 we cannot use Django's get_or_create() for models that # have translated fields, so we need to use this workaround for now. def _get_or_create_municipality(id): try: return Municipality.objects.get(id=id) except Municipality.DoesNotExist: return MunicipalityFactory(id=id) class MunicipalityFactory(factory.django.DjangoModelFactory): name = factory.Faker("city") id = factory.Faker("uuid4") class Meta: model = Municipality class StreetFactory(factory.django.DjangoModelFactory): municipality = factory.LazyFunction(lambda: _get_or_create_municipality("helsinki")) name = factory.Faker("street_name") class Meta: model = Street class AddressFactory(factory.django.DjangoModelFactory): number = factory.LazyFunction(lambda: str(randgen.randint(1, 20))) number_end = factory.LazyAttribute( lambda o: str(int(o.number) + randgen.randint(1, 5)) ) letter = factory.Faker("random_letter") street = factory.SubFactory(StreetFactory) location = factory.LazyFunction( lambda: Point( 24.915 + randgen.uniform(0, 0.040), 60.154 + randgen.uniform(0, 0.022) ) ) class Meta: model = Address
def create_identity(user, sp_mapping): identity = {} for user_attr, out_attr in sp_mapping.items(): if hasattr(user, user_attr): identity[out_attr] = getattr(user, user_attr) return identity
__author__ = 'erik + jc + benni' import numpy as np class Coordinate(object): """ Coordinate is a base class for everything which has a position. """ def __init__(self, id, x, y, z): """ :param id: id of this object :param x: x coordinate :param y: y coordinate :param z: z coordinate :return: """ self._coordinates = np.array([x,y,z]) self._id = id def get_id(self): """ :return: id of this coordinate """ return self._id def get_coordinates(self): """ :return: numpy array holding the coordinates [x,y,z] """ return self._coordinates class Vertex(Coordinate): """ A Vertex object is a part of a surface network. Therefore it is associated with Edges as well as Quads connected to this Vertex. """ def __init__(self, id, x, y, z): """ :param id: id of this vertex. The user has to take care, that this id is unique! :param x: x coordinate :param y: y coordinate :param z: z coordinate :return: """ super(Vertex, self).__init__(id, x, y, z) self._edges = set() self._quads = set() def add_edge(self, edge): """ adds an edge to the vertex. This means, that this edge is connected to the Vertex. :param edge: Edge object :return: """ self._edges.add(edge) def add_quad(self, quad): """ adds an quad to the vertex. This means, that this quad is connected to the Vertex :param quad: Quad object :return: """ self._quads.add(quad) def get_edges(self): """ :return: set of all edges connected to this Vertex """ return self._edges def get_quads(self): """ :return: set of all quads connected to this Vertex :rtype: PetersScheme.Edge """ return self._quads def number_edges(self): """ :return: number of edges connected to this vertex """ return len(self._edges) def number_quads(self): """ :return: number of quads connected to this vertex """ return len(self._quads) class FineVertex(Coordinate): """ A FineVertex object is a vertex of the fine resolution representation of our surface reconstruction. Each of these vertices is associated with a Quad patch of the coarse resolution. Every FineVertex also has a set of parameters u and v, which corresponds to its parametrization in the parameter domain of the associated Quad. """ def __init__(self, id, x, y, z, u, v, quad): """ :param id: id of this vertex. The user has to take care, that this id is unique! :param x: x coordinate :param y: y coordinate :param z: z coordinate :param u: u parameter :param v: v parameter :param quad: associated Quad :return: """ super(FineVertex, self).__init__(id, x, y, z) self._id = id self._quad = quad self._params = {'u':u, 'v':v} def get_parameters(self): """ :return: the dict with both parameters u,v """ return self._params def get_u(self): """ :return: parameter u """ return self._params['u'] def get_v(self): """ :return: parameter v """ return self._params['v'] def get_associated_quad(self): """ Returns the pointer to the patch this FineVertex is associated with. :return: returns a Quad object """ return self._quad class Vertex_DooSabin(Vertex): def __init__(self, id, x, y, z): # self._maltab_id = _id+1 super(Vertex_DooSabin, self).__init__(id, x, y, z) self.neighbouringVertices = [] self.neighbouringFaces = [] self.childFace = None self.parentOrigGrid = None self.A = [] self.B1 = [] self.B2 = [] self.C = [] def getId(self): return self._id def getCoordinates(self): return self._coordinates def addNeighbouringVertex(self, vertex): #vertex should be of the type vertex! self.neighbouringVertices.append(vertex) return def addNeighbouringFace(self, face): #Face should be of the type face! Not a list of vertex ids self.neighbouringFaces.append(face) return
import math import math as m {} x = int(input(int(input()))) print(x)
#-*- coding:utf-8 -*- from flask import Flask,render_template,request import MySQLdb,sys import base64 reload(sys) sys.setdefaultencoding("utf-8") MYSQL_HOST = '127.0.0.1' MYSQL_USER = 'root' MYSQL_PASS = 'root' MYSQL_DB = 'bot' app = Flask(__name__) @app.route('/view') def view(): conn = MySQLdb.connect(MYSQL_HOST, MYSQL_USER,MYSQL_PASS,MYSQL_DB,charset="utf8") cursor = conn.cursor() cursor.execute('select * from bot') results=cursor.fetchall() conn.close() return render_template("show.html", results = results) @app.route('/') def main(): return 'Hello,World' @app.route("/callback",methods=[ 'GET']) def callback(): conn = MySQLdb.connect(MYSQL_HOST, MYSQL_USER,MYSQL_PASS,MYSQL_DB,charset="utf8") cursor = conn.cursor() mac = base64.b64decode(request.values['mac']) ip = base64.b64decode(request.values['ip']) time = base64.b64decode(request.values['time']) print mac,ip,time cursor.execute('insert into bot(mac,ip,time) values ("%s","%s","%s")' %(mac,ip,time)) cursor.close() conn.close() return 'ok' if __name__ == '__main__': try: app.run(host='0.0.0.0',port=80,debug=True,threaded=True) except: pass
""" Copyright (c) Contributors to the Open 3D Engine Project. For complete copyright and license terms please see the LICENSE at the root of this distribution. SPDX-License-Identifier: Apache-2.0 OR MIT """ """ C13751579: Asset Picker UI/UX """ import os import sys from PySide2 import QtWidgets, QtTest, QtCore from PySide2.QtCore import Qt import azlmbr.asset as asset import azlmbr.bus as bus import azlmbr.legacy.general as general import azlmbr.paths import azlmbr.math as math sys.path.append(os.path.join(azlmbr.paths.devroot, 'AutomatedTesting', 'Gem', 'PythonTests')) import editor_python_test_tools.hydra_editor_utils as hydra import editor_python_test_tools.pyside_utils as pyside_utils from editor_python_test_tools.editor_test_helper import EditorTestHelper class AssetPickerUIUXTest(EditorTestHelper): def __init__(self): EditorTestHelper.__init__(self, log_prefix="AssetPicker_UI_UX", args=["level"]) @pyside_utils.wrap_async async def run_test(self): """ Summary: Verify the functionality of Asset Picker and UI/UX properties Expected Behavior: The asset picker opens and is labeled appropriately ("Pick Model Asset" in this instance). The Asset Picker window can be resized and moved around the screen. The file tree expands/retracts appropriately and a scroll bar is present when the menus extend beyond the length of the window. The assets are limited to a valid type for the field selected (mesh assets in this instance) The asset picker is closed and the selected asset is assigned to the mesh component. Test Steps: 1) Open a new level 2) Create entity and add Mesh component 3) Access Entity Inspector 4) Click Asset Picker (Mesh Asset) a) Collapse all the files initially and verify if scroll bar is not visible b) Expand/Verify Top folder of file path c) Expand/Verify Nested folder of file path d) Verify if the ScrollBar appears after expanding folders e) Collapse Nested and Top Level folders and verify if collapsed f) Verify if the correct files are appearing in the Asset Picker g) Move the widget and verify position h) Resize the widget g) Assign Mesh asset 5) Verify if Mesh Asset is assigned via both OK/Enter options Note: - This test file must be called from the Lumberyard Editor command terminal - Any passed and failed tests are written to the Editor.log file. Parsing the file or running a log_monitor are required to observe the test results. :return: None """ self.file_path = ["AutomatedTesting", "Assets", "Objects", "Foliage"] self.incorrect_file_found = False self.mesh_asset = "cedar.azmodel" self.prefix = "" def is_asset_assigned(component, interaction_option): path = os.path.join("assets", "objects", "foliage", "cedar.azmodel") expected_asset_id = asset.AssetCatalogRequestBus(bus.Broadcast, 'GetAssetIdByPath', path, math.Uuid(), False) result = hydra.get_component_property_value(component, "Controller|Configuration|Mesh Asset") expected_asset_str = expected_asset_id.invoke("ToString") result_str = result.invoke("ToString") print(f"Asset assigned for {interaction_option} option: {expected_asset_str == result_str}") return expected_asset_str == result_str def move_and_resize_widget(widget): # Move the widget and verify position initial_position = widget.pos() x, y = initial_position.x() + 5, initial_position.y() + 5 widget.move(x, y) curr_position = widget.pos() move_success = curr_position.x() == x and curr_position.y() == y self.test_success = move_success and self.test_success self.log(f"Widget Move Test: {move_success}") # Resize the widget and verify size width, height = ( widget.geometry().width() + 10, widget.geometry().height() + 10, ) widget.resize(width, height) resize_success = widget.geometry().width() == width and widget.geometry().height() == height self.test_success = resize_success and self.test_success self.log(f"Widget Resize Test: {resize_success}") def verify_files_appeared(model, allowed_asset_extensions, parent_index=QtCore.QModelIndex()): indices = [parent_index] while len(indices) > 0: parent_index = indices.pop(0) for row in range(model.rowCount(parent_index)): cur_index = model.index(row, 0, parent_index) cur_data = cur_index.data(Qt.DisplayRole) if ( "." in cur_data and (cur_data.lower().split(".")[-1] not in allowed_asset_extensions) and not cur_data[-1] == ")" ): print(f"Incorrect file found: {cur_data}") self.incorrect_file_found = True indices = list() break indices.append(cur_index) self.test_success = not self.incorrect_file_found and self.test_success def print_message_prefix(message): print(f"{self.prefix}: {message}") async def asset_picker(prefix, allowed_asset_extensions, asset, interaction_option): active_modal_widget = await pyside_utils.wait_for_modal_widget() if active_modal_widget and self.prefix == "": self.prefix = prefix dialog = active_modal_widget.findChildren(QtWidgets.QDialog, "AssetPickerDialogClass")[0] print_message_prefix(f"Asset Picker title for Mesh: {dialog.windowTitle()}") tree = dialog.findChildren(QtWidgets.QTreeView, "m_assetBrowserTreeViewWidget")[0] scroll_area = tree.findChild(QtWidgets.QWidget, "qt_scrollarea_vcontainer") scroll_bar = scroll_area.findChild(QtWidgets.QScrollBar) # a) Collapse all the files initially and verify if scroll bar is not visible tree.collapseAll() await pyside_utils.wait_for_condition(lambda: not scroll_bar.isVisible(), 0.5) print_message_prefix( f"Scroll Bar is not visible before expanding the tree: {not scroll_bar.isVisible()}" ) # Get Model Index of the file paths model_index_1 = pyside_utils.find_child_by_pattern(tree, self.file_path[0]) print(model_index_1.model()) model_index_2 = pyside_utils.find_child_by_pattern(model_index_1, self.file_path[1]) # b) Expand/Verify Top folder of file path print_message_prefix(f"Top level folder initially collapsed: {not tree.isExpanded(model_index_1)}") tree.expand(model_index_1) print_message_prefix(f"Top level folder expanded: {tree.isExpanded(model_index_1)}") # c) Expand/Verify Nested folder of file path print_message_prefix(f"Nested folder initially collapsed: {not tree.isExpanded(model_index_2)}") tree.expand(model_index_2) print_message_prefix(f"Nested folder expanded: {tree.isExpanded(model_index_2)}") # d) Verify if the ScrollBar appears after expanding folders tree.expandAll() await pyside_utils.wait_for_condition(lambda: scroll_bar.isVisible(), 0.5) print_message_prefix(f"Scroll Bar appeared after expanding tree: {scroll_bar.isVisible()}") # e) Collapse Nested and Top Level folders and verify if collapsed tree.collapse(model_index_2) print_message_prefix(f"Nested folder collapsed: {not tree.isExpanded(model_index_2)}") tree.collapse(model_index_1) print_message_prefix(f"Top level folder collapsed: {not tree.isExpanded(model_index_1)}") # f) Verify if the correct files are appearing in the Asset Picker verify_files_appeared(tree.model(), allowed_asset_extensions) print_message_prefix(f"Expected Assets populated in the file picker: {not self.incorrect_file_found}") # While we are here we can also check if we can resize and move the widget move_and_resize_widget(active_modal_widget) # g) Assign asset tree.collapseAll() await pyside_utils.wait_for_condition( lambda: len(dialog.findChildren(QtWidgets.QFrame, "m_searchWidget")) > 0, 0.5) search_widget = dialog.findChildren(QtWidgets.QFrame, "m_searchWidget")[0] search_line_edit = search_widget.findChildren(QtWidgets.QLineEdit, "textSearch")[0] search_line_edit.setText(asset) tree.expandAll() asset_model_index = pyside_utils.find_child_by_pattern(tree, asset) await pyside_utils.wait_for_condition(lambda: asset_model_index.isValid(), 2.0) tree.expand(asset_model_index) tree.setCurrentIndex(asset_model_index) if interaction_option == "ok": button_box = dialog.findChild(QtWidgets.QDialogButtonBox, "m_buttonBox") ok_button = button_box.button(QtWidgets.QDialogButtonBox.Ok) await pyside_utils.click_button_async(ok_button) elif interaction_option == "enter": QtTest.QTest.keyClick(tree, Qt.Key_Enter, Qt.NoModifier) self.prefix = "" # 1) Open a new level self.test_success = self.create_level( self.args["level"], heightmap_resolution=1024, heightmap_meters_per_pixel=1, terrain_texture_resolution=4096, use_terrain=False, ) # 2) Create entity and add Mesh component entity_position = math.Vector3(125.0, 136.0, 32.0) entity = hydra.Entity("TestEntity") entity.create_entity(entity_position, ["Mesh"]) # 3) Access Entity Inspector editor_window = pyside_utils.get_editor_main_window() entity_inspector = editor_window.findChild(QtWidgets.QDockWidget, "Entity Inspector") component_list_widget = entity_inspector.findChild(QtWidgets.QWidget, "m_componentListContents") # 4) Click on Asset Picker (Mesh Asset) general.select_object("TestEntity") general.idle_wait(0.5) mesh_asset = component_list_widget.findChildren(QtWidgets.QFrame, "Mesh Asset")[0] attached_button = mesh_asset.findChildren(QtWidgets.QPushButton, "attached-button")[0] # Assign Mesh Asset via OK button pyside_utils.click_button_async(attached_button) await asset_picker("Mesh Asset", ["azmodel", "fbx"], "cedar (ModelAsset)", "ok") # 5) Verify if Mesh Asset is assigned try: mesh_success = await pyside_utils.wait_for_condition(lambda: is_asset_assigned(entity.components[0], "ok")) except pyside_utils.EventLoopTimeoutException as err: print(err) mesh_success = False self.test_success = mesh_success and self.test_success # Clear Mesh Asset hydra.get_set_test(entity, 0, "Controller|Configuration|Mesh Asset", None) general.select_object("TestEntity") general.idle_wait(0.5) mesh_asset = component_list_widget.findChildren(QtWidgets.QFrame, "Mesh Asset")[0] attached_button = mesh_asset.findChildren(QtWidgets.QPushButton, "attached-button")[0] # Assign Mesh Asset via Enter pyside_utils.click_button_async(attached_button) await asset_picker("Mesh Asset", ["azmodel", "fbx"], "cedar (ModelAsset)", "enter") # 5) Verify if Mesh Asset is assigned try: mesh_success = await pyside_utils.wait_for_condition(lambda: is_asset_assigned(entity.components[0], "enter")) except pyside_utils.EventLoopTimeoutException as err: print(err) mesh_success = False self.test_success = mesh_success and self.test_success test = AssetPickerUIUXTest() test.run()
from .cli import Cli, CommandGroup from .utils import Option
# -*- coding: utf-8 -*- from __future__ import absolute_import from aiida.orm import RemoteData, FolderData, SinglefileData, Dict from aiida_quantumespresso.calculations.namelists import NamelistsCalculation class Pw2wannier90Calculation(NamelistsCalculation): """ pw2wannier90.x code of the Quantum ESPRESSO distribution, handles the calculation of the Amn, Mmn, ... files to be used to compute Wannier functions with the Wannier90 code. For more information, refer to http://www.quantum-espresso.org/ and http://www.wannier.org/ """ _default_namelists = ['INPUTPP'] _SEEDNAME = 'aiida' _blocked_keywords = [ ('INPUTPP', 'outdir', NamelistsCalculation._OUTPUT_SUBFOLDER), ('INPUTPP', 'prefix', NamelistsCalculation._PREFIX), ('INPUTPP', 'seedname', _SEEDNAME) ] # By default we do not download anything else than aiida.out. One can add the files # _SEEDNAME.amn/.nnm/.eig to inputs.settings['ADDITIONAL_RETRIEVE_LIST'] to retrieve them. _internal_retrieve_list = [] _default_parser = 'quantumespresso.pw2wannier90' @classmethod def define(cls, spec): super(Pw2wannier90Calculation, cls).define(spec) spec.input('nnkp_file', valid_type=SinglefileData, help='A SinglefileData containing the .nnkp file generated by wannier90.x -pp') spec.input('parent_folder', valid_type=(RemoteData, FolderData), help='The output folder of a pw.x calculation') spec.output('output_parameters', valid_type=Dict) spec.default_output_node = 'output_parameters' spec.exit_code( 100, 'ERROR_NO_RETRIEVED_FOLDER', message='The retrieved folder data node could not be accessed.') spec.exit_code( 110, 'ERROR_READING_OUTPUT_FILE', message='The output file could not be read from the retrieved folder.') spec.exit_code( 130, 'ERROR_JOB_NOT_DONE', message='The computation did not finish properly (\'JOB DONE\' not found).') spec.exit_code( 140, 'ERROR_GENERIC_QE_ERROR', message='QE printed an error message') spec.exit_code( 150, 'ERROR_GENERIC_PARSING_FAILURE', message='An error happened while parsing the output file') def prepare_for_submission(self, folder): """ Prepare the inputs of the calculation and the calcinfo data. :param folder: an `aiida.common.folders.Folder` to temporarily write files on disk :return: `aiida.common.datastructures.CalcInfo` instance """ # Run the global namelist logic calcinfo = super(Pw2wannier90Calculation, self).prepare_for_submission(folder) # Put the nnkp in the folder, with the correct filename nnkp_file = self.inputs.nnkp_file calcinfo.local_copy_list.append( (nnkp_file.uuid, nnkp_file.filename, '{}.nnkp'.format(self._SEEDNAME)) ) return calcinfo
"""AssKeyValueMapping definition.""" from collections.abc import Iterable from typing import Any from ass_parser.ass_sections.ass_base_section import AssBaseSection from ass_parser.errors import CorruptAssLineError from ass_parser.observable_mapping_mixin import ObservableMappingMixin class AssKeyValueMapping(ObservableMappingMixin[str, str], AssBaseSection): """ASS key-value mapping section.""" def consume_ass_body_lines(self, lines: list[tuple[int, str]]) -> None: """Populate self from ASS text representation of this section, excluding the ASS header line. :param lines: list of tuples (line_num, line) """ self.clear() for line_num, line in lines: try: key, value = line.split(":", 1) except ValueError as exc: raise CorruptAssLineError( line_num, line, "expected a colon" ) from exc else: self[key] = value.lstrip() def produce_ass_body_lines(self) -> Iterable[str]: """Produce ASS text representation of self, excluding the ASS header line. :return: a generator of ASS section body lines """ for key, value in self.items(): yield f"{key}: {value}" def __eq__(self, other: Any) -> bool: """Check for equality. Ignores event handlers. :param other: other object :return: whether objects are equal """ if not isinstance(other, AssKeyValueMapping): return False return self.name == other.name and self._data == other._data
import os import numpy as np from lib.datasets.dataset_utils import filter_mot_gt_boxes import cv2 import pandas mot_dir = '/home/liuqk/Dataset/MOT' mot = { 'MOT17': { 'train': ['MOT17-13', 'MOT17-11', 'MOT17-10', 'MOT17-09', 'MOT17-05', 'MOT17-04', 'MOT17-02'], 'test': ['MOT17-01', 'MOT17-03', 'MOT17-06', 'MOT17-07', 'MOT17-08', 'MOT17-12', 'MOT17-14'] }, 'MOT16': { 'train': ['MOT16-13', 'MOT16-11', 'MOT16-10', 'MOT16-09', 'MOT16-05', 'MOT16-04', 'MOT16-02'], 'test': ['MOT16-01', 'MOT16-03', 'MOT16-06', 'MOT16-07', 'MOT16-08', 'MOT16-12', 'MOT16-14'] }, '2DMOT2015': { 'train': ['ETH-Bahnhof', 'ETH-Sunnyday', 'KITTI-13', 'KITTI-17', 'PETS09-S2L1', 'TUD-Campus', 'TUD-Stadtmitte'], 'test': ['ADL-Rundle-1', 'ADL-Rundle-3', 'AVG-TownCentre', 'ETH-Crossing', 'ETH-Jelmoli', 'ETH-Linthescher', 'KITTI-16', 'KITTI-19', 'PETS09-S2L2', 'TUD-Crossing', 'Venice-1'] } } # statics on gt boxes dataset = ['2DMOT2015', 'MOT17'] stage = ['train'] max_num_box_per_frame = -1 xywh = np.zeros((0, 4)) for d in dataset: for s in stage: sub_d = mot[d][s] for seq in sub_d: if d in ['MOT17']: seq = seq + '-DPM' one_im_path = os.path.join(mot_dir, d, s, seq, 'img1', '000001.jpg') one_im = cv2.imread(one_im_path) im_h, im_w = one_im.shape[0], one_im.shape[1] gt_path = os.path.join(mot_dir, d, s, seq, 'gt', 'gt.txt') gt = np.loadtxt(gt_path, delimiter=',') if d in ['MOT17']: gt = filter_mot_gt_boxes(gt_boxes=gt, vis_threshold=0.1) for id in range(1, int(np.max(gt[:, 0])) + 1): index = gt[:,0] == id if max_num_box_per_frame < index.sum(): max_num_box_per_frame = index.sum() print('find max number of boxes in one frame: {}'.format(max_num_box_per_frame)) one_seq_boxes = gt[:, 2:6] one_seq_boxes[:, [0, 2]] = one_seq_boxes[:, [0, 2]]# / im_w one_seq_boxes[:, [1, 3]] = one_seq_boxes[:, [1, 3]]# / im_w xywh = np.concatenate((xywh, one_seq_boxes), 0) print(xywh) whr = np.zeros((xywh.shape[0], 3)) whr[:, 0] = xywh[:, 2] # w whr[:, 1] = xywh[:, 3] # h whr[:, 2] = xywh[:, 3] / xywh[:, 2] # ratio, h/w mean_whr = np.mean(whr, axis=0) std_whr = np.std(whr, axis=0) min_whr = np.min(whr, axis=0) max_whr = np.max(whr, axis=0) print('mean [w, h, h/w ]: ', mean_whr) print('std [w, h, h/w]: ', std_whr) print('min [w, h, h/w ]: ', min_whr) print('max [w, h, h/w]: ', max_whr)
from ward import test from users.tests.api import admin_graphql_client from users.tests.factories import user_factory from users.tests.session import db @test("unlogged cannot fetch me") async def _( admin_graphql_client=admin_graphql_client, db=db, user_factory=user_factory ): user = await user_factory(email="user@email.it", is_staff=False) admin_graphql_client.force_login(user) query = """query { me { id email } }""" response = await admin_graphql_client.query(query) assert response.errors[0]["message"] == "Unauthorized" @test("fetch me") async def _( admin_graphql_client=admin_graphql_client, db=db, user_factory=user_factory ): logged_user = await user_factory(email="user@email.it", is_staff=True) admin_graphql_client.force_login(logged_user) query = """query { me { id email } }""" response = await admin_graphql_client.query(query) assert not response.errors assert response.data["me"] == { "id": str(logged_user.id), "email": logged_user.email, } @test("only staff accounts can fetch me") async def _( admin_graphql_client=admin_graphql_client, db=db, user_factory=user_factory ): logged_user = await user_factory(email="user@email.it", is_staff=False) admin_graphql_client.force_login(logged_user) query = """query { me { id email } }""" response = await admin_graphql_client.query(query) assert response.errors[0]["message"] == "Unauthorized"
import pandas as pd import matplotlib.pyplot as plt df = pd.read_csv("http://fbug-store.herokuapp.com/csv") SENSOR_1_ID = "200040001047373333353132" SENSOR_2_ID = "35005c000d51363034323832" SENSOR_3_ID = "2d0049000d51363034323832" WINDOW = 40 df.timestamp = pd.to_datetime(df.timestamp) sensor_1_time = df[df.device == SENSOR_1_ID].timestamp.values sensor_2_time = df[df.device == SENSOR_2_ID].timestamp.values sensor_3_time = df[df.device == SENSOR_3_ID].timestamp.values sensor_1_concentration = df[df.device == SENSOR_1_ID].concentration.rolling(window=WINDOW).mean().values sensor_2_concentration = df[df.device == SENSOR_2_ID].concentration.rolling(window=WINDOW).mean().values sensor_3_concentration = df[df.device == SENSOR_3_ID].concentration.rolling(window=WINDOW).mean().values plt.plot(sensor_1_time, sensor_1_concentration, label="Sensor1") plt.plot(sensor_2_time, sensor_2_concentration, label="Sensor2") plt.plot(sensor_3_time, sensor_3_concentration, label="Sensor3") plt.legend() plt.show() ''' ‘200040001047373333353132’: ‘Sensor 1’, ‘35005c000d51363034323832’: ‘Sensor 2’, ‘2d0049000d51363034323832’: ‘Sensor 3’ '''
# Copyright (c) 2018-2022 The CYBAVO developers # All Rights Reserved. # NOTICE: All information contained herein is, and remains # the property of CYBAVO and its suppliers, # if any. The intellectual and technical concepts contained # herein are proprietary to CYBAVO # Dissemination of this information or reproduction of this materia # is strictly forbidden unless prior written permission is obtained # from CYBAVO. from flask import Blueprint, request from mockserver.models import setAPICode, getAPICode from hashlib import sha256 merchant = Blueprint('merchant', __name__) @merchant.route('/<merchant_id>/apitoken', methods=['GET', 'POST']) def apitoken(merchant_id): args = request.get_json() if (not merchant_id): return 'Invalid parameters', 400 else: setAPICode(merchant_id, args['api_code'], args['api_secret']) print('API Code:', args['api_code'], 'API Secret:', args['api_secret']) return { 'result': 1 }, 200
# # Code by Alexander Pruss and under the MIT license # from mineturtle import * t = Turtle() t.turtle(None) t.pendelay(0) t.angle(0) # align to grid def face(): t.startface() for i in range(4): t.go(20) t.yaw(90) t.endface() t.penblock(block.GLASS) for i in range(2): face() t.roll(-90) face() t.roll(90) t.pitch(90) face() t.pitch(-90) t.penup() t.go(20) t.yaw(90) t.go(20) t.pitch(90) t.go(20) t.pitch(-90) t.yaw(90) t.pitch(-90) t.pendown()
import os import random import pymongo import datetime import seaborn as sns import matplotlib as plt from discord.ext import commands from discord import File from pandas import DataFrame from discord import Embed from dotenv import load_dotenv mongo_client = pymongo.MongoClient("mongodb://localhost:27017/") db = mongo_client["stonk_bot"] usercollection = db["users"] marketcollection = db["market"] askcollection = db['ask'] bidcollection = db['bid'] tradecollection = db['trade'] statuscollection = db['status'] load_dotenv() TOKEN = os.getenv('DISCORD_TOKEN') bot = commands.Bot(command_prefix='!') if len(list(statuscollection.find())) != 1: statuscollection.drop() statuscollection.insert_one({'closed':True}) def is_closed(): return statuscollection.find_one()['closed'] def get_combined_stocks_of_user_with_id(id): asks = askcollection.find({"seller_id": id}) held = usercollection.find_one({"id": id})['stocks'] combined = {} for ask in asks: combined[ask['short']] = combined.get(ask['short'], 0) + ask['amount'] for short in held: combined[short] = combined.get(short, 0) + held[short] return combined @bot.command(name='join', help='join the stock market') async def join(ctx): user_id = ctx.author.id user_name = ctx.author.name user_info = usercollection.find_one({"id": user_id}) if user_info is not None: await ctx.send("you already have joined") return user_info = {'id': user_id, 'balance': 100, 'name': user_name, 'stocks': {}, 'last_time_malocht': datetime.datetime.utcnow() - datetime.timedelta(hours=12)} usercollection.insert_one(user_info) await ctx.send("joined") @bot.command(name='malochen', help='malochen gehen') async def malochen(ctx): user_id = ctx.author.id user_info = usercollection.find_one({"id": user_id}) if user_info is None: await ctx.send("i dont know you you have to !join first") return if user_info['last_time_malocht'] + datetime.timedelta(hours=12) > datetime.datetime.utcnow(): since_last = datetime.datetime.utcnow() - user_info['last_time_malocht'] await ctx.send(f"du hast in den letzten 12 stunden schon malocht since last: {since_last}") return new_money= user_info['balance'] + 200.0 usercollection.update_one({"id": user_id}, { "$set": {"balance": new_money, "last_time_malocht": datetime.datetime.utcnow()}}) await ctx.send("maloche maloche maloche") @bot.command(name='balance', help='shows your balance') async def balance(ctx): user_id = ctx.author.id user_info = usercollection.find_one({"id": user_id}) if user_info is None: await ctx.send("i dont know you you have to !join first") return response = f"```Your balance is: {('%.2f' % user_info['balance'])} Fobicoins\n\n" + "{:<10} {:<10}".format("stock", "amount") user_stocks = get_combined_stocks_of_user_with_id(user_id) for stock in user_stocks: response = response + "\n{:<10} {:<10}".format(stock, user_stocks[stock]) await ctx.send(response+ "```") @bot.command(name='market', help='shows the market') async def market(ctx): market = marketcollection.find() outstring = "```{:<10} {:<20} {:<10} {:<10} {:<10} {:<10} {:<10} {:<10}".format("shorthand", "name", "shares", "self_held", "last_price", "cap", "balance", "div") for stonk in market: outstring = outstring + "\n{:<10} {:<20} {:<10} {:<10} {:<10} {:<10} {:<10} {:<10}".format(stonk['short'], stonk['name'], stonk['shares'], stonk['self_held'], stonk['last_price'], '%.2f' % ((int(stonk['shares'])-int(stonk['self_held'])) * float(stonk['last_price'])), "%.2f" % stonk['balance'], stonk['div']) await ctx.send(outstring+ "```") @bot.command(name='top', help='shows top 10 players') async def overview(ctx): top_ten = usercollection.find().sort("balance", -1).limit(10) market = marketcollection.find() marketPrices= {} for stock in market: marketPrices[stock['short']] = stock['last_price'] outstring = "```{:<15} {:<15} {:<15} {:<15}".format("name", "balance", "net_worth", "car") for player in top_ten: net_worth = float(player['balance']) player_stocks = get_combined_stocks_of_user_with_id(player['id']) for stock_key in player_stocks: net_worth = net_worth + float(player_stocks[stock_key]) * float(marketPrices[stock_key]) outstring = outstring + "\n{:<15} {:<15} {:<15} {:<15}".format(player['name'], "%.2f" % player['balance'], "%.2f" % net_worth, player.get('car', "None")) await ctx.send(outstring+ "```") @bot.command(name='info', help='get info on a specific stock') async def info(ctx, short=None): if short is None: await ctx.send("please provide a short hand") return stock = marketcollection.find_one({"short": short}) if stock is None: await ctx.send("i really dont know this shorthand") return asks = askcollection.find({"short": short}).sort("price_per_stock") outstring = "```asks:\n{:<15} {:<15} {:<15}".format("seller", "amount", "price_per_stock") for ask in asks: outstring = outstring + "\n{:<15} {:<15} {:<15}".format(ask['seller_name'], ask['amount'], ask['price_per_stock']) bids = bidcollection.find({"short": short}).sort("price_per_stock", -1) outstring = outstring + "\n\nbids:\n{:<15} {:<15} {:<15}".format("buyer", "amount", "price_per_stock") for bid in bids: outstring = outstring + "\n{:<15} {:<15} {:<15}".format(bid['buyer_name'], bid['amount'], bid['price_per_stock']) await ctx.send(outstring+ "```") trades = DataFrame(list(tradecollection.find({"short": short}).sort("when"))) if len(trades) < 1: return plot = sns.lineplot(x="when", y="price_per_stock", data=trades) plot.get_figure().savefig("out.png") plt.pyplot.close(plot.get_figure()) await ctx.send(file=File("out.png")) os.remove("out.png") @bot.command(name='ask', help='create a sell order') async def ask(ctx, short=None, amount=None, price_per_stock = None): if is_closed(): await ctx.send("market is closed") return user_id = ctx.author.id user_info = usercollection.find_one({"id": user_id}) if user_info is None: await ctx.send("i dont know you you have to !join first") return if short is None or amount is None: await ctx.send("Usage: !ask <short> <amount> <price_per_stock>") return stock = marketcollection.find_one({"short": short}) if stock is None: await ctx.send("i really dont know this shorthand") return user_id = ctx.author.id user_info = usercollection.find_one({"id": user_id}) if short not in user_info['stocks']: await ctx.send(f"you dont even have any {short}") return amount_of_stocks = int(user_info['stocks'][short]) if amount_of_stocks < int(amount): await ctx.send(f"you dont even have {amount} {short}") return user_info['stocks'][short] = amount_of_stocks - int(amount) usercollection.update_one({"id": user_id}, { "$set": {"stocks": user_info['stocks']}}) ask = {"seller_id": user_id, "seller_name": user_info['name'], "short": short, "amount": int(amount), "price_per_stock": price_per_stock} bids = bidcollection.find({"short": short}).sort("price_per_stock", -1) for bid in bids: if float(ask['price_per_stock']) <= float(bid['price_per_stock']): buy_ask(ask, bid) if bid['amount'] == 0: bidcollection.delete_one({"_id": bid['_id']}) else: bidcollection.update_one({"_id": bid['_id']}, { "$set": {"amount": bid['amount']}}) else: break if ask['amount'] == 0 : break if ask['amount'] == 0: await ctx.send("ask resolved") return askcollection.insert_one(ask) await ctx.send("ask placed") def buy_ask(ask, bid): if bid['buyer_id'] == ask['seller_id']: return bid_amount = int(bid['amount']) ask_amount = int(ask['amount']) ask['amount'] = max(0, ask_amount - bid_amount) bid['amount'] = max(0, bid_amount - ask_amount) amount_sold = ask_amount - int(ask['amount']) if ask['price_per_stock'] < bid['price_per_stock']: price_per_stock = float(bid['price_per_stock']) else: price_per_stock = float(ask['price_per_stock']) money_to_pay = price_per_stock * amount_sold tradecollection.insert_one({"short": ask['short'], "amount_sold": amount_sold, "price_per_stock": price_per_stock, "when": datetime.datetime.utcnow()}) marketcollection.update_one({"short": ask['short']}, { "$set": {"last_price": price_per_stock}}) if 'seller_id' in ask: usercollection.update_one({"id": ask['seller_id']}, { "$inc": {"balance": money_to_pay}}) usercollection.update_one({"id": bid['buyer_id']}, { "$inc": {"balance": -money_to_pay}}) buyer_info = usercollection.find_one({"id": bid['buyer_id']}) current_amount = buyer_info['stocks'].get(bid['short'], 0) buyer_info['stocks'][bid['short']] = current_amount + amount_sold usercollection.update_one({"id": bid['buyer_id']}, { "$set": {"stocks": buyer_info['stocks']}}) @bot.command(name='bid', help='create a buy order') async def bid(ctx, short=None, amount=None, price_per_stock = None): if is_closed(): await ctx.send("market is closed") return user_id = ctx.author.id user_info = usercollection.find_one({"id": user_id}) if user_info is None: await ctx.send("i dont know you you have to !join first") return if short is None or amount is None: await ctx.send("Usage: !bid <short> <amount> <price_per_stock>") return stock = marketcollection.find_one({"short": short}) if stock is None: await ctx.send("i really dont know this shorthand") return user_id = ctx.author.id user_info = usercollection.find_one({"id": user_id}) total_price = int(amount) * float(price_per_stock) if(user_info['balance']< total_price): await ctx.send(f"nice try, but youre missing {total_price- user_info['balance']} fobicoins") return bid = {"buyer_id": user_id, "buyer_name": user_info['name'], "short": short, "amount": amount, "price_per_stock": price_per_stock} current_asks = askcollection.find({"short": short}).sort("price_per_stock") for ask in current_asks: if float(ask['price_per_stock']) <= float(bid['price_per_stock']): buy_ask(ask, bid) if ask['amount'] == 0: askcollection.delete_one({"_id": ask['_id']}) else: askcollection.update_one({"_id": ask['_id']}, { "$set": {"amount": ask['amount']}}) if bid['amount'] == 0 : break if bid['amount'] == 0: await ctx.send("bid resolved") return bidcollection.insert_one(bid) await ctx.send("bid placed") @bot.command(name='cancelbid', help='cancel all bids on a stock') async def cancelbid(ctx, short=None): if is_closed(): await ctx.send("market is closed") return user_id = ctx.author.id user_info = usercollection.find_one({"id": user_id}) if user_info is None: await ctx.send("i dont know you you have to !join first") return if short is None: await ctx.send("Usage: !cancelbid <short>") return bidcollection.delete_many({"buyer_id": user_id, "short": short}) await ctx.send("done") @bot.command(name='cancelask', help='cancel all asks on a stock') async def cancelask(ctx, short=None): if is_closed(): await ctx.send("market is closed") return user_id = ctx.author.id user_info = usercollection.find_one({"id": user_id}) if user_info is None: await ctx.send("i dont know you you have to !join first") return if short is None: await ctx.send("Usage: !cancelask <short>") return asks = askcollection.find({"seller_id": user_id, "short": short}) user_stocks = user_info['stocks'] for ask in asks: user_stocks[short] = user_stocks[short] + ask['amount'] askcollection.delete_one({"_id": ask['_id']}) usercollection.update_one({"id": user_id}, { "$set": {"stocks": user_stocks}}) await ctx.send("done") @bot.command(name='closemarket') @commands.has_role('stonkbot') async def closemarket(ctx): statuscollection.drop() statuscollection.insert_one({'closed':True}) await ctx.send(":bell::bell::bell: market closed :bell::bell::bell:") @bot.command(name='openmarket') @commands.has_role('stonkbot') async def openmarket(ctx): statuscollection.drop() statuscollection.insert_one({'closed':False}) await ctx.send(":bell::bell::bell: market opened :bell::bell::bell:") stonks = marketcollection.find() users = usercollection.find() outstring = "```stock performance:\n{:<15} {:<15} {:<15}".format("short", "profit", "dividend") for stonk in stonks: change = float(stonk['balance']) * random.uniform(-0.15, 0.15 * float(stonk['performance'])) dividend_per_share = 0.0 if change > 0: traded_shares = int(stonk['shares']) - int(stonk['self_held']) dividend_per_share = change * float(stonk['div']) / traded_shares change = change - dividend_per_share * traded_shares marketcollection.update_one({"short": stonk['short']}, { "$inc": {"balance": change}}) outstring = outstring + "\n{:<15} {:<15} {:<15}".format(stonk['short'], "%.2f" % change, "%.2f" % dividend_per_share) for user in users: user_stocks = get_combined_stocks_of_user_with_id(user['id']) number_of_stocks = int(user_stocks.get(stonk['short'], 0)) if number_of_stocks > 0: usercollection.update_one({"id": user['id']}, { "$inc": {"balance": number_of_stocks * dividend_per_share}}) await ctx.send(outstring+ "```") bot.run(TOKEN)
# -*- coding: utf-8 -*- from collections import defaultdict import re from nltk import tree from swda import CorpusReader from tree_pos_map import TreeMapCorpus from tree_pos_map import POSMapCorpus possibleMistranscription = [("its", "it's"), ("Its", "It's"), ("it's", "its"), ("It's", "Its"), ("whose", "who's"), ("Whose", "Who's"), ("who's", "whose"), ("Who's", "Whose"), ("you're", "your"), ("You're", "Your"), ("your", "you're"), ("Your", "You're"), ("their", "they're"), ("Their", "They're"), ("they're", "their"), ("They're", "Their"), ("programme", "program"), ("program", "programme"), ("centre", "center"), ("center", "centre"), ("travelling", "traveling"), ("traveling", "travelling"), ("colouring", "coloring"), ("coloring", "colouring")] class TreeMapWriter: """Object which writes mappings from the words in utterances to the nodes of the corresponding trees in a treebank """ def __init__(self, corpus_path="../swda", metadata_path="swda-metadata.csv", target_folder_path="Maps", ranges=None, errorLog=None): print "started TreeMapWriting" self.write_to_file(corpus_path, metadata_path, target_folder_path, ranges, errorLog) def write_to_file(self, corpus_path, metadata_path, target_folder_path, ranges, errorLog): """Writes files to a target folder with the mappings from words in utterances to tree nodes in trees. """ if errorLog: errorLog = open(errorLog, 'w') corpus = CorpusReader(corpus_path, metadata_path) # Iterate through all transcripts incorrectTrees = 0 folder = None corpus_file = None for trans in corpus.iter_transcripts(): # print "iterating",trans.conversation_no if not trans.has_pos(): continue # print "has pos" if ranges and not trans.conversation_no in ranges: continue # print "in range" # just look at transcripts WITH trees as compliment to the # below models if not trans.has_trees(): continue end = trans.swda_filename.rfind("/") start = trans.swda_filename.rfind("/", 0, end) c_folder = trans.swda_filename[start + 1:end] if c_folder != folder: # for now splitting the maps by folder folder = c_folder if corpus_file: corpus_file.close() corpus_file = open(target_folder_path + "/Tree_map_{0}.csv.text".format(folder), 'w') wordTreeMapList = TreeMapCorpus(False, errorLog) print "new map for folder", folder translist = trans.utterances translength = len(translist) count = 0 # iterating through transcript utterance by utterance # create list of tuples i.e. map from word to the index(ices) # (possibly multiple or null) of the relevant leaf/ves # of a given tree i.e. utt.tree[0].leaves[0] would be a pair (0,0)) while count < translength: utt = trans.utterances[count] words = utt.text_words() wordTreeMap = [] # [((word), (List of LeafIndices))] forwardtrack = 0 backtrack = 0 continued = False # print "\n COUNT" + str(count) # print utt.damsl_act_tag() if len(utt.trees) == 0 or utt.damsl_act_tag() == "x": wordTreeMap.append((utt, [])) # just dummy value # errormessage = "WARNING: NO TREE for file/utt: " +\ # str(utt.swda_filename) + " " + utt.caller + "." + \ # str(utt.utterance_index) + "." + \ #str(utt.subutterance_index) + " " + utt.text # print(errormessage) count += 1 continue # raw_input() # indices for which tree and leaf we're at: i = 0 # tree j = 0 # leaf # initialise pairs of trees and ptb pairs trees = [] for l in range(0, len(utt.trees)): trees.append( (utt.ptb_treenumbers[l], count, l, utt.trees[l])) # print "TREES = " # for tree in trees: # print tree origtrees = list(trees) origcount = count # overcoming the problem of previous utterances contributing # to the tree at this utterance, we need to add the words from # the previous utt add in all the words from previous utterance # with a dialogue act tag/or the same tree? # check that the last tree in the previous utterance # is the same as the previous one previousUttSame = trans.previous_utt_same_speaker(utt) # print previousUttSame lastTreeMap = None if previousUttSame: # print "search for previous full act utt # for " + str(utt.swda_filename) + # str(utt.transcript_index) lastTreeMap = wordTreeMapList.get_treemap( trans, previousUttSame) if ((not lastTreeMap) or (len(lastTreeMap) == 0) or (len(lastTreeMap) == 1 and lastTreeMap[0][1] == [])): # print "no last tree map, backwards searching" while previousUttSame and \ ((not lastTreeMap) or (len(lastTreeMap) == 0) or (len(lastTreeMap) == 1 and lastTreeMap[0][1] == [])): previousUttSame = trans.previous_utt_same_speaker( previousUttSame) # go back one more lastTreeMap = wordTreeMapList.get_treemap(trans, previousUttSame) if previousUttSame: pass # print previousUttSame.transcript_index if not lastTreeMap: pass # print "no last treemap found for:" # print utt.swda_filename # print utt.transcript_index if lastTreeMap and \ (utt.damsl_act_tag() == "+" or (len(lastTreeMap.treebank_numbers) > 0 and lastTreeMap.treebank_numbers[-1] == utt.ptb_treenumbers[0])): continued = True # might have to backtrack # now checking for wrong trees lastPTB = lastTreeMap.treebank_numbers lastIndexes = lastTreeMap.transcript_numbers lastTreesTemp = lastTreeMap.get_trees(trans) lastTrees = [] for i in range(0, len(lastPTB)): lastTrees.append([lastPTB[i], lastIndexes[i][0], lastIndexes[i][1], lastTreesTemp[i]]) if not (lastPTB[-1] == utt.ptb_treenumbers[0]): # print "not same, need to correct!" # print words # print trees # print "last one" # print previousUttSame.text_words() # print lastTrees if utt.ptb_treenumbers[0] - lastPTB[-1] > 1: # backtrack and redo the antecedent count = count - (count - lastIndexes[-1][0]) utt = previousUttSame words = utt.text_words() mytrees = [] for i in range(0, len(lastTrees) - 1): mytrees.append(lastTrees[i]) trees = mytrees + [origtrees[0]] # print "\n(1)backtrack to with new trees:" backtrack = 1 # print utt.transcript_index # print words # print trees # raw_input() # alternately, this utt's tree may be further back # than its antecdent's, rare mistake elif utt.ptb_treenumbers[0] < lastTrees[-1][0]: # continue with this utterance and trees # (if there are any), but replace its first # tree with its antecdents last one forwardtrack = 1 trees = [lastTrees[-1]] + origtrees[1:] # print "\n(2)replacing first one to lasttreemap's:" # print words # print trees # raw_input() if backtrack != 1: # we should have no match found_treemap = False # resetting # for t in wordTreeMapList.keys(): # print t # print wordTreeMapList[t] for t in range(len(lastTreeMap) - 1, -1, -1): # print lastTreeMap[t][1] # if there is a leafIndices for the # word being looked at, gets last mapped one if len(lastTreeMap[t][1]) > 0: # print "last treemapping of last # caller utterance = # " + str(lastTreeMap[t][1][-1]) j = lastTreeMap[t][1][-1][1] + 1 found_treemap = True # print "found last mapping, j -1 = " + str(j-1) # raw_input() break if not found_treemap: pass # print "NO matched last TREEMAP found for \ # previous Utt Same Speaker of " + \ # str(trans.swda_filename) + " " + \ # str(utt.transcript_index) # print lastTreeMap # for tmap in wordTreeMapList.keys(): # print tmap # print wordTreeMapList[tmap] # raw_input() possibleComment = False # can have comments, flag mistranscribe = False LeafIndices = [] # possibly empty list of leaf indices word = words[0] # loop until no more words left to be matched in utterance while len(words) > 0: # print "top WORD:" + word if not mistranscribe: wordtest = re.sub(r"[\.\,\?\"\!]", "", word) wordtest = wordtest.replace("(", "").replace(")", "") match = False LeafIndices = [] # possibly empty list of leaf indices if (possibleComment or word[0:1] in ["{", "}", "-"] or word in ["/", ".", ",", "]"] or wordtest == "" or any([x in word for x in ["<", ">", "*", "[", "+", "]]", "...", "#", "="]])): # no tree equivalent for {D } type annotations if (word[0:1] == "-" or any([x in word for x in ["*", "<<", "<+", "[[", "<"]])) \ and not possibleComment: possibleComment = True if possibleComment: #print("match COMMENT!:" + word) # raw_input() LeafIndices = [] match = True #wordTreeMap.append((word, LeafIndices)) if any([x in word for x in [">>", "]]", ">"]]) or \ word[0] == "-": # turn off comment possibleComment = False #del words[0] # LeadIndices will be null here wordTreeMap.append((word, LeafIndices)) LeafIndices = [] match = True # print "match annotation!:" + word del words[0] # word is consumed, should always be one if len(words) > 0: word = words[0] wordtest = re.sub(r"[\.\,\?\/\)\(\"\!]", "", word) wordtest = wordtest.replace("(", "") wordtest = wordtest.replace(")", "") else: break continue # carry on to next word without updating indices? else: while i < len(trees): # print "i number of trees :" + str(len(utt.trees)) # print "i tree number :" + str(i) # print "i loop word :" + word tree = trees[i][3] # print "looking at ptb number " + str(trees[i][0]) # print "looking at index number " \ #+ str(trees[i][1])+","+str(trees[i][2]) while j < len(tree.leaves()): leaf = tree.leaves()[j] # print "j number of leaves : " \ #+ str(len(tree.leaves())) # print "j loop word : " + word # print "j loop wordtest : " + wordtest # print "j leaf : " + str(j) + " " + leaf breaker = False # exact match if wordtest == leaf or word == leaf: LeafIndices.append((i, j)) wordTreeMap.append((word, LeafIndices)) # print("match!:" + word + " " + \ # str(utt.swda_filename) + " " + \ # utt.caller + "." + \ # str(utt.utterance_index) + \ # "." + str(utt.subutterance_index)) del words[0] # word is consumed if len(words) > 0: word = words[0] # next word wordtest = re.sub( r"[\.\,\?\/\)\(\"\!]", "", word) wordtest = wordtest.replace("(", "") wordtest = wordtest.replace(")", "") LeafIndices = [] j += 1 # increment loop to next leaf match = True breaker = True # raw_input() break elif leaf in wordtest or \ leaf in word and not leaf == ",": testleaf = leaf LeafIndices.append((i, j)) j += 1 for k in range(j, j + 3): # 3 beyond if (k >= len(tree.leaves())): j = 0 i += 1 #breaker = True breaker = True break # got to next tree if (testleaf + tree.leaves()[k]) \ in wordtest or (testleaf + tree.leaves()[k])\ in word: testleaf += tree.leaves()[k] LeafIndices.append((i, k)) j += 1 # concatenation if testleaf == wordtest or \ testleaf == word: # word matched wordTreeMap.append((word, LeafIndices)) del words[0] # remove word # print "match!:" + word +\ #str(utt.swda_filename) + " "\ # + utt.caller + "." + \ # str(utt.utterance_index) +\ # "." + \ # str(utt.subutterance_index)) if len(words) > 0: word = words[0] wordtest = re.sub( r"[\.\,\?\/\)\(\"\!]", "", word) wordtest = wordtest.\ replace("(", "") wordtest = wordtest.\ replace(")", "") # reinitialise leaves LeafIndices = [] j = k + 1 match = True breaker = True # raw_input() break else: # otherwise go on j += 1 if breaker: break if match: break if j >= len(tree.leaves()): j = 0 i += 1 if match: break # could not match word! try mistranscriptions first: if not match: if not mistranscribe: # one final stab at matching! mistranscribe = True for pair in possibleMistranscription: if pair[0] == wordtest: wordtest = pair[1] if len(wordTreeMap) > 0: if len(wordTreeMap[-1][1]) > 0: i = wordTreeMap[-1][1][-1][0] j = wordTreeMap[-1][1][-1][1] else: # go back to beginning of # tree search i = 0 j = 0 else: i = 0 # go back to beginning j = 0 break # matched elif continued: # possible lack of matching up of words in # previous utterance same caller and same # tree// not always within same tree!! errormessage = "Possible bad start for \ CONTINUED UTT ''" + words[0] + "'' in file/utt: "\ + str(utt.swda_filename) + "\n " + utt.caller + \ "." + str(utt.utterance_index) + "." + \ str(utt.subutterance_index) + \ "POSSIBLE COMMENT = " + str(possibleComment) # print errormessage if not errorLog is None: errorLog.write(errormessage + "\n") # raw_input() if backtrack == 1: backtrack += 1 elif backtrack == 2: # i.e. we've done two loops and # still haven't found it, try the other way count = origcount utt = trans.utterances[count] words = utt.text_words() word = words[0] trees = [lastTrees[-1]] + origtrees[1:] # print "\nSECOND PASS(2)replacing \ # first one to lasttreemap's:" # print words # print trees backtrack += 1 # mistranscribe = False #TODO perhaps needed wordTreeMap = [] # switch to forward track this is # the only time we want to try # from the previous mapped leaf in the # other tree foundTreemap = False for t in range(len(lastTreeMap) - 1, -1, -1): # backwards iteration through words # print lastTreeMap[t][1] if len(lastTreeMap[t][1]) > 0: # print "last treemapping of last \ # caller utterance = " + \ # str(lastTreeMap[t][1][-1]) j = lastTreeMap[t][1][-1][1] + 1 foundTreemap = True # print "found last mapping, j = " \ #+ str(j) # raw_input() # break when last tree # mapped word from this caller is found break if not foundTreemap: # print "NO matched last TREEMAP found\ # for previous Utt Same Speaker of " + \ # str(utt.swda_filename) + " " + \ # utt.caller + "." + \ # str(utt.utterance_index) + "." +\ # str(utt.subutterance_index) j = 0 # for tmap in wordTreeMapList.keys(): # print tmap # print wordTreeMapList[tmap] # raw_input() i = 0 # go back to first tree continue elif forwardtrack == 1: forwardtrack += 1 elif forwardtrack == 2: count = count - (count - lastIndexes[-1][0]) utt = previousUttSame words = utt.text_words() word = words[0] mytrees = [] for i in range(0, len(lastTrees) - 1): mytrees.append(lastTrees[i]) trees = mytrees + [origtrees[0]] # print "\nSECOND PASS(1)backtrack to \ # with new trees:" # print utt.transcript_index # print words # print trees forwardtrack += 1 # mistranscribe = False #TODO maybe needed wordTreeMap = [] # raw_input() elif forwardtrack == 3 or backtrack == 3: # if this hasn't worked reset to old trees # print "trying final reset" count = origcount utt = trans.utterances[count] words = utt.text_words() word = words[0] trees = origtrees forwardtrack = 0 backtrack = 0 # mistranscribe = False #TODO maybe needed wordTreeMap = [] # raw_input() else: pass # print "resetting search" # raw_input() # unless forward tracking now, # just go back to beginning i = 0 # go back to beginning of tree search j = 0 else: mistranscribe = False LeafIndices = [] wordTreeMap.append((word, LeafIndices)) errormessage = "WARNING: 440 no/partial tree \ mapping for ''" + words[0] + "'' in file/utt: "\ + str(utt.swda_filename) + " \n" + utt.caller\ + "." + str(utt.utterance_index) + "." + \ str(utt.subutterance_index) + \ "POSSIBLE COMMENT = " + str(possibleComment) # print utt.text_words() del words[0] # remove word # for trip in wordTreeMap: # print "t",trip if len(words) > 0: word = words[0] wordtest = re.sub(r"[\.\,\?\/\)\(\"\!]", "", word) wordtest = wordtest.replace("(", "") wordtest = wordtest.replace(")", "") # print errormessage if errorLog: errorLog.write("possible wrong tree mapping:" + errormessage + "\n") raw_input() # end of while loop (words) mytreenumbers = [] for treemap in trees: # the whole list but the tree mytreenumbers.append(treemap[:-1]) if not len(utt.text_words()) == len(wordTreeMap): print "ERROR. uneven lengths!" print utt.text_words() print wordTreeMap print trans.swda_filename print utt.transcript_index raw_input() count += 1 continue # add the treemap wordTreeMapList.append(trans.conversation_no, utt.transcript_index, tuple(mytreenumbers), tuple(wordTreeMap)) count += 1 # rewrite after each transcript filedict = defaultdict(str) for key in wordTreeMapList.keys(): csv_string = '"' + str(list(wordTreeMapList[key])) + '"' mytreenumbers = wordTreeMapList[key].transcript_numbers myptbnumbers = wordTreeMapList[key].treebank_numbers tree_list_string = '"' for i in range(0, len(mytreenumbers)): treemap = [myptbnumbers[i]] + mytreenumbers[i] tree_list_string += str(treemap) + ";" tree_list_string = tree_list_string[:-1] + '"' filename = '"' + key[0:key.rfind(':')] + '"' transindex = key[key.rfind(':') + 1:] filedict[int(transindex)] = filename \ + "\t" + transindex + '\t' + csv_string + "\t" \ + tree_list_string + "\n" for key in sorted(filedict.keys()): corpus_file.write(filedict[key]) wordTreeMapList = TreeMapCorpus(False, errorLog) # reset each time print "\n" + str(incorrectTrees) + " incorrect trees" corpus_file.close() if not errorLog is None: errorLog.close() class POSMapWriter: """Object which writes mappings from the words in utterances to the corresponding POS tags. """ def __init__(self, corpus_path="../swda", metadata_path="swda-metadata.csv", target_folder_path="Maps", ranges=None, errorLog=None): print "started MapWriting" self.write_to_file(corpus_path, metadata_path, target_folder_path, ranges, errorLog) def write_to_file(self, corpus_path, metadata_path, target_folder_path, ranges, errorLog): """Writes files to a target folder with the mappings from words in utterances to corresponding POS tags. """ if errorLog: errorLog = open(errorLog, 'w') corpus = CorpusReader(corpus_path, metadata_path) folder = None corpus_file = None for trans in corpus.iter_transcripts(): # print "iterating",trans.conversation_no if not trans.has_pos(): continue # print "has pos" if ranges and not trans.conversation_no in ranges: continue # print "in range" # just look at transcripts WITHOUT trees as compliment to the # above models if trans.has_trees(): continue end = trans.swda_filename.rfind("/") start = trans.swda_filename.rfind("/", 0, end) c_folder = trans.swda_filename[start + 1:end] if c_folder != folder: # for now splitting the maps by folder folder = c_folder if corpus_file: corpus_file.close() corpus_file = open(target_folder_path + "/POS_map_{0}.csv.text".format(folder), 'w') wordPOSMapList = POSMapCorpus(False, errorLog) print "new map for folder", folder translist = trans.utterances translength = len(translist) count = 0 # iterating through transcript utterance by utterance while count < translength: utt = trans.utterances[count] words = utt.text_words() wordPOSMap = [] if len(utt.pos) == 0: # no POS wordPOSMap.append((utt, [])) # just dummy value wordPOSMapList.append(trans.conversation_no, utt.transcript_index, list(wordPOSMap)) errormessage = "WARNING: NO POS for file/utt: " +\ str(utt.swda_filename) + " " + utt.caller + "." + \ str(utt.utterance_index) + "." + \ str(utt.subutterance_index) + " " + utt.text # print errormessage # raw_input() else: # indices for which POS we're at j = 0 possibleComment = False # can have comments, flag mistranscribe = False word = words[0] # loop until no more words left to be matched in utterance while len(words) > 0: word = words[0] # print "top WORD:" + word if not mistranscribe: wordtest = re.sub(r"[\.\,\?\/\)\(\"\!\\]", "", word) wordtest = wordtest.replace("(", "").\ replace(")", "").replace("/", "") match = False POSIndices = [] if (possibleComment or word[0:1] in ["{", "}", "-"] or word in ["/", ".", ",", "]"] or wordtest == "" or any([x in word for x in ["<", ">", "*", "[", "+", "]]", "...", "#", "="]])): # no tree equivalent for {D } type annotations if (word[0:1] == "-" or any([x in word for x in ["*", "<<", "<+", "[[", "<"]])) \ and not possibleComment: possibleComment = True if possibleComment: # print "match COMMENT!:" + word # raw_input() POSIndices = [] match = True if (any([x in word for x in [">>", "]]", "))", ">"]]) or word[0] == "-") \ and not word == "->": # turn off comment possibleComment = False if (">>" in word or "]]" in word or "))" in word or ">" in word and not word == "->"): # turn off comment possibleComment = False #del words[0] wordPOSMap.append((word, POSIndices)) POSIndices = [] match = True # print "match annotation!:" + word del words[0] # word is consumed if len(words) > 0: word = words[0] wordtest = re.sub(r"[\.\,\?\/\)\(\"\!\\]", "", word) wordtest = wordtest.replace("(", "") wordtest = wordtest.replace(")", "") else: break continue # carry on to next word else: myPOS = utt.regularize_pos_lemmas() while j < len(myPOS): pos = myPOS[j][0] # pair of (word,POS) # print "j number of pos : " + str(len(myPOS)) # print "j loop word : " + word # print "j loop wordtest : " + wordtest # print "j pos : " + str(j) + " " + str(pos) # raw_input() breaker = False if wordtest == pos or word == pos: # exact match POSIndices.append(j) wordPOSMap.append((word, POSIndices)) # print "match!:" + word + " in file/utt: "\ # + str(utt.swda_filename) + \ # str(utt.transcript_index)) del words[0] # word is consumed if len(words) > 0: word = words[0] # next word wordtest = re.sub( r"[\.\,\?\/\)\(\"\!\\]", "", word) wordtest = wordtest.replace("(", "").\ replace(")", "").replace("/", "") POSIndices = [] j += 1 # increment lead number match = True breaker = True # raw_input() break elif (pos in wordtest or pos in word) \ and not pos in [",", "."]: # substring relation testpos = pos POSIndices.append(j) j += 1 if wordtest[-1] == "-" and \ pos == wordtest[0:-1]: wordPOSMap.append((word, POSIndices)) del words[0] # remove word # print "match!:" + word + " in \ # file/utt: " + str(utt.swda_filename) \ #+ str(utt.transcript_index) if len(words) > 0: word = words[0] wordtest = re.sub( r"[\.\,\?\/\)\(\"\!\\]", "", word) wordtest = wordtest.\ replace("(", "").\ replace(")", "").\ replace("/", "") POSIndices = [] match = True breaker = True break for k in range(j, j + 3): if (k >= len(myPOS)): breaker = True break if (testpos + myPOS[k][0]) in wordtest\ or (testpos + myPOS[k][0]) in word: testpos += myPOS[k][0] POSIndices.append(k) j += 1 # concatenation if testpos == wordtest or \ testpos == word: # matched wordPOSMap.append((word, POSIndices)) del words[0] # remove word # print "match!:" +\ # word + " in file/utt: " + \ # str(utt.swda_filename) +\ # str(utt.transcript_index)) if len(words) > 0: word = words[0] wordtest = re.sub( r"[\.\,\?\/\)\(\"\!\\]", "", word) wordtest = wordtest.\ replace("(", "") wordtest = wordtest.\ replace(")", "") POSIndices = [] j = k + 1 match = True breaker = True break else: j += 1 # otherwise go on if breaker: break if match: break # could not match word! Could be mistransription if not match: # print "false checking other options" # print j # print word # print wordtest if not mistranscribe: mistranscribe = True for pair in possibleMistranscription: if pair[0] == wordtest: wordtest = pair[1] break # matched if wordtest[-1] == "-": # partial words wordtest = wordtest[0:-1] if "'" in wordtest: wordtest = wordtest.replace("'", "") if len(wordPOSMap) > 0: found = False for n in range( len(wordPOSMap) - 1, -1, -1): if len(wordPOSMap[n][1]) > 0: j = wordPOSMap[n][1][-1] + 1 # print j found = True break if not found: # if not possible go back to # the beginning! j = 0 else: j = 0 # print j else: mistranscribe = False wordPOSMap.append((word, POSIndices)) errormessage = "WARNING: no/partial POS \ mapping for ''" + words[0] + "'' in file/utt:"\ + str(utt.swda_filename) + "-" + \ str(utt.transcript_index) + \ "POSSIBLE COMMENT = " + \ str(possibleComment) del words[0] # remove word if len(words) > 0: word = words[0] wordtest = re.sub(r"[\.\,\?\/\)\(\"\!\\]", "", word) wordtest = wordtest.replace("(", "").\ replace(")", "").replace("/", "") # print errormessage if errorLog: errorLog.write("possible wrong POS : " + errormessage + "\n") # raw_input() # end of while loop (words) if not len(wordPOSMap) == len(utt.text_words()): print "Error " print "Length mismatch in file/utt: " + \ str(utt.swda_filename) + str(utt.transcript_index) print utt.text_words() print wordPOSMap raw_input() wordPOSMapList.append(trans.conversation_no, str(utt.transcript_index), list(wordPOSMap)) # print "\nadded POSmap " + str(trans.swda_filename) + \ #"." + str(utt.transcript_index) + "\n" csv_string = '"' + str(wordPOSMap) + '"' corpus_file.write('"' + str(utt.conversation_no) + '"\t' + str(utt.transcript_index) + '\t' + csv_string + "\n") count += 1 corpus_file.close() if errorLog: errorLog.close() if __name__ == '__main__': t = TreeMapWriter()
from django import forms from .models import Userm,Neighborhood,Business,Post class NewProfileForm(forms.ModelForm): class Meta: model = Userm exclude = ['user'] class PostForm(forms.ModelForm): class Meta: model = Post exclude = ['author','post_date']
from diagrams import Cluster, Diagram, Edge from diagrams.aws.analytics import KinesisDataStreams, KinesisDataFirehose from diagrams.aws.compute import Lambda from diagrams.aws.database import DDB from diagrams.aws.integration import Eventbridge, SQS from diagrams.aws.mobile import Amplify from diagrams.aws.network import APIGateway from diagrams.onprem.client import User from diagrams.onprem.compute import Server graph_attr = { "viewport": "1024,768" } with Diagram(filename="rent-price-webcrawler", outformat="jpg", direction="TB", show=False): cron = Eventbridge("Cron(daily)") lambda_crawler = Lambda("Crawler") lambda_enrichment = Lambda("Enrichment") lambda_search = Lambda("Search") sqs_queue = SQS("Offers Enrichment") ddb_table = DDB("Offers") frontend = Amplify("Frontend") api_gateway_entrypoint = APIGateway("API Entrypoint") user = User("User") webserver = Server("Webserver") with Cluster("Collection and Enrichment"): cron >> Edge(label="Trigger") >> lambda_crawler << Edge(label="Get Web Page") << webserver lambda_crawler >> Edge(label="Send message to Queue") >> sqs_queue lambda_crawler >> Edge(label="Write to Table") >> ddb_table sqs_queue >> Edge(label="Send message to Listener") >> lambda_enrichment lambda_enrichment >> Edge(label="Write to Table") >> ddb_table with Cluster("User interaction"): user >> Edge(label="Access") >> frontend frontend >> Edge(label="Request") >> api_gateway_entrypoint api_gateway_entrypoint >> Edge(label="Trigger") >> lambda_search lambda_search >> Edge(label="Query") >> ddb_table
class WrongfulError(Exception): """定义异常,此类为传入字符不合法异常,无法正常转换为数字时间""" def __init__(self,err='Unknown error.'): Exception.__init__(self,err)
class CIL_Node: pass class ProgramCil(CIL_Node): def __init__(self, types, data, code): self.types = types self.data = data self.code = code class TypeCil(CIL_Node): def __init__(self, idx, attributes=[], methods=[]): self.id = idx self.attributes = attributes self.methods = methods class AttributeCil(CIL_Node): def __init__(self, idx): self.id = idx class MethodCil(CIL_Node): def __init__(self, idx, ref): self.id = idx self.ref = ref class FunctionCil(CIL_Node): def __init__(self, idx, args=[], localsx=[], body=[]): self.id = idx self.args = args self.locals = localsx self.body = body class IfCil(CIL_Node): def __init__(self, condition, label): self.condition = condition self.label = label class ArgCil(CIL_Node): def __init__(self, idx): self.id = idx class LocalCil(CIL_Node): def __init__(self, idx): self.id = idx class AssignmentCil(CIL_Node): def __init__(self, idx, expr): self.id = idx self.expr = expr class StringCil(CIL_Node): def __init__(self, idx: str, text: str): self.id = idx self.text = text class LabelCil(CIL_Node): def __init__(self, idx): self.id = idx class GotoCil(CIL_Node): def __init__(self, label): self.label = label class GetAttrCil(CIL_Node): def __init__(self, typex, attr): self.type = typex self.attr = attr class SetAttr(CIL_Node): def __init__(self, typex, attr, value): self.type = typex self.attr = attr self.value = value class GetIndex(CIL_Node): def __init__(self, array, index): self.array = array self.index = index class SetIndex(CIL_Node): def __init__(self, array, index, value): self.array = array self.index = index self.value = value
class Node(object): def __init__(self, val, left, right, next): self.val = val self.left = left self.right = right self.next = next class Solution(object): def connect(self, root): """ :type root: Node :rtype: Node """ if not root: return None curr_lv_head = root while curr_lv_head: next_lv_head = next_lv_tail = None curr = curr_lv_head while curr: if curr.left: if next_lv_head is None: next_lv_head = next_lv_tail = curr.left else: next_lv_tail.next = curr.left next_lv_tail = curr.left if curr.right: if next_lv_head is None: next_lv_head = next_lv_tail = curr.right else: next_lv_tail.next = curr.right next_lv_tail = curr.right curr = curr.next curr_lv_head = next_lv_head return root
#! /usr/bin/env python # encoding: utf-8 from aoc2017.day_14 import hash_grid_2 def test_hash_grid_2_1(): input_ = "flqrgnkx" output = 1242 assert hash_grid_2(input_) == output
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from ... import _utilities from ._enums import * __all__ = [ 'ActorArgs', 'CaseClassificationArgs', ] @pulumi.input_type class ActorArgs: def __init__(__self__, *, display_name: Optional[pulumi.Input[str]] = None, email: Optional[pulumi.Input[str]] = None): """ An object containing information about the effective user and authenticated principal responsible for an action. :param pulumi.Input[str] display_name: The name to display for the actor. If not provided, it is inferred from credentials supplied during case creation. When an email is provided, a display name must also be provided. This will be obfuscated if the user is a Google Support agent. :param pulumi.Input[str] email: The email address of the actor. If not provided, it is inferred from credentials supplied during case creation. If the authenticated principal does not have an email address, one must be provided. When a name is provided, an email must also be provided. This will be obfuscated if the user is a Google Support agent. """ if display_name is not None: pulumi.set(__self__, "display_name", display_name) if email is not None: pulumi.set(__self__, "email", email) @property @pulumi.getter(name="displayName") def display_name(self) -> Optional[pulumi.Input[str]]: """ The name to display for the actor. If not provided, it is inferred from credentials supplied during case creation. When an email is provided, a display name must also be provided. This will be obfuscated if the user is a Google Support agent. """ return pulumi.get(self, "display_name") @display_name.setter def display_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "display_name", value) @property @pulumi.getter def email(self) -> Optional[pulumi.Input[str]]: """ The email address of the actor. If not provided, it is inferred from credentials supplied during case creation. If the authenticated principal does not have an email address, one must be provided. When a name is provided, an email must also be provided. This will be obfuscated if the user is a Google Support agent. """ return pulumi.get(self, "email") @email.setter def email(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "email", value) @pulumi.input_type class CaseClassificationArgs: def __init__(__self__, *, display_name: Optional[pulumi.Input[str]] = None, id: Optional[pulumi.Input[str]] = None): """ A classification object with a product type and value. :param pulumi.Input[str] display_name: The display name of the classification. :param pulumi.Input[str] id: The unique ID for a classification. Must be specified for case creation. """ if display_name is not None: pulumi.set(__self__, "display_name", display_name) if id is not None: pulumi.set(__self__, "id", id) @property @pulumi.getter(name="displayName") def display_name(self) -> Optional[pulumi.Input[str]]: """ The display name of the classification. """ return pulumi.get(self, "display_name") @display_name.setter def display_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "display_name", value) @property @pulumi.getter def id(self) -> Optional[pulumi.Input[str]]: """ The unique ID for a classification. Must be specified for case creation. """ return pulumi.get(self, "id") @id.setter def id(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "id", value)
from datetime import datetime from typing import Any, Dict, List, Optional import pydantic from python_on_whales.utils import DockerCamelModel class ObjectVersion(DockerCamelModel): index: int class NamedResourceSpec(DockerCamelModel): kind: str value: str class DiscreteResourceSpec(DockerCamelModel): kind: str value: int class AssignedGenericResources(DockerCamelModel): named_resource_spec: Optional[NamedResourceSpec] discrete_resource_spec: Optional[DiscreteResourceSpec] class ContainerStatus(DockerCamelModel): container_id: str = pydantic.Field(alias="ContainerID") pid: int = pydantic.Field(alias="PID") exit_code: Optional[int] class TaskStatus(DockerCamelModel): timestamp: datetime state: str message: str err: Optional[str] container_status: Optional[ContainerStatus] class LogDriver(DockerCamelModel): name: str options: Dict[str, str] class NetworkAttachmentConfig(DockerCamelModel): target: str aliases: List[str] driver_opts: Optional[Dict[str, str]] class Platform(DockerCamelModel): architecture: Optional[str] os: Optional[str] = pydantic.Field(alias="OS") class Spread(DockerCamelModel): spread_descriptor: str class Placement(DockerCamelModel): constraints: Optional[List[str]] preferences: Optional[List[Spread]] max_replicas: Optional[int] platforms: Optional[List[Platform]] class RestartPolicy(DockerCamelModel): condition: str delay: int max_attempts: int window: int class PluginPrivilege(DockerCamelModel): name: str description: str value: List[str] class PluginSpec(DockerCamelModel): name: str remote: str disabled: bool plugin_privilege: List[PluginPrivilege] class ContainerSpec(DockerCamelModel): image: str labels: Optional[Dict[str, str]] command: Optional[List[str]] args: Optional[List[str]] hostname: Optional[str] env: Optional[List[str]] dir: Optional[str] user: Optional[str] groups: Optional[List[str]] privileges: Any tty: Optional[bool] = pydantic.Field(alias="TTY") open_stdin: Optional[bool] read_only: Optional[bool] mounts: Optional[List[Any]] stop_signal: Optional[str] stop_grace_period: Optional[int] health_check: Any hosts: Optional[List[str]] dns_config: Any secrets: Optional[List[Any]] configs: Optional[List[Any]] isolation: Optional[str] init: Optional[bool] sysctls: Any class NetworkAttachmentSpec(DockerCamelModel): container_id: str = pydantic.Field(alias="ContainerID") class ResourceObject(DockerCamelModel): nano_cpus: Optional[int] = pydantic.Field(alias="NanoCPUs") memory_bytes: Optional[int] generic_resources: Optional[List[AssignedGenericResources]] class Resources(DockerCamelModel): limits: Optional[ResourceObject] reservation: Optional[ResourceObject] class TaskSpec(DockerCamelModel): # TODO: set types for Any plugin_spec: Optional[PluginSpec] container_spec: Optional[ContainerSpec] network_attachment_spec: Optional[NetworkAttachmentSpec] resources: Resources restart_policy: Any placement: Placement force_update: Optional[int] runtime: Optional[str] networks: Optional[List[NetworkAttachmentConfig]] log_driver: Optional[LogDriver] class TaskInspectResult(DockerCamelModel): id: str = pydantic.Field(alias="ID") version: ObjectVersion created_at: datetime updated_at: datetime name: Optional[str] labels: Optional[Dict[str, str]] spec: TaskSpec service_id: str = pydantic.Field(alias="ServiceID") slot: Optional[int] node_id: Optional[str] = pydantic.Field(alias="NodeID") assigned_generic_resources: Optional[List[AssignedGenericResources]] status: TaskStatus desired_state: str
from random import randint from celery_tasks.sms.tasks import send_sms_code from django.shortcuts import render, redirect from django import http from django.views import View import re, json, logging from django.contrib.auth import login, authenticate, logout, mixins from django.core.paginator import Paginator, EmptyPage from goods.models import SKU from oauth.utils import generate_openid_signature, check_openid_signature from orders.models import OrderInfo, OrderGoods from .utils import generate_email_verify_url, check_verify_token from .models import User, Address from meiduo_mall.utils.response_code import RETCODE from django_redis import get_redis_connection from django.conf import settings from celery_tasks.email.tasks import send_verify_email from meiduo_mall.utils.view import LoginRequiredView from carts.utils import merge_cart_cookie_to_redis logger = logging.getLogger('django') class RegisterView(View): """展示注册界面""" def get(self, request): return render(request, 'register.html') # 获取注册信息 def post(self, request): query_dict = request.POST username = query_dict.get('username') password = query_dict.get('password') password2 = query_dict.get('password2') mobile = query_dict.get('mobile') sms_code = query_dict.get('sms_code') allow = query_dict.get('allow') # 校验注册信息 if all([username, password, mobile, sms_code, allow]) is False: return http.HttpResponse("缺少必要参数") if not re.match(r'^[a-zA-Z0-9_-]{5,20}$', username): return http.HttpResponse("请输入5-20个字符的用户名") if not re.match(r'^[0-9A-Za-z]{8,20}$', password): return http.HttpResponse("请输入8-20位密码") if not password == password2: return http.HttpResponse("两次密码输入不一致") if not re.match(r'^1[3456789]\d{9}$', mobile): return http.HttpResponse("您输入的手机号格式不正确") # 校验短信验证码 redis_conn = get_redis_connection('verify_code') sms_code_server = redis_conn.get("sms_%s" % mobile) redis_conn.delete("sms_%s" % mobile) if sms_code_server is None: return http.HttpResponse("短信验证码过期") sms_code_server = sms_code_server.decode() if sms_code_server != sms_code: return http.HttpResponse("短信验证码输入错误") # 创建用户并加密密码 user = User.objects.create_user(username=username, password=password, mobile=mobile) # 保留登录状态 login(request, user) # 返回主页 response = redirect('/') response.set_cookie('username', user.username, max_age=settings.SESSION_COOKIE_AGE) return response class UsernameCountView(View): """检查用户名是否重复""" def get(self, request, username): count = User.objects.filter(username=username).count() response_data = {'count': count, 'code': RETCODE.OK, 'errmsg': 'ok'} return http.JsonResponse(response_data) class MobileCountView(View): """检查手机号是否重复""" def get(self, request, mobile): count = User.objects.filter(mobile=mobile).count() response_data = {'count': count, 'code': RETCODE.OK, 'errmsg': 'ok'} return http.JsonResponse(response_data) # 登录界面 class LoginView(View): def get(self, request): return render(request, 'login.html') # 获取登录信息 def post(self, request): username = request.POST.get('username') password = request.POST.get('password') remember = request.POST.get('remember') # 认证用户名和密码(有一个为None即返回None) user = authenticate(request, username=username, password=password) if user is None: return render(request, 'login.html', {'account_errmsg': '用户名或密码错误'}) # 保持登录状态 login(request, user) # 设置未勾选记住密码时session为关闭浏览器即失效 if remember != 'on': request.session.set_expiry(0) # 判断请求来源(url字符串查询) next = request.GET.get('next') if next == "/orders/settlement/": merge_cart_cookie_to_redis(request) response = redirect('/carts/') else: response = redirect(next or '/') # 设置cookie response.set_cookie('username', user.username, max_age=settings.SESSION_COOKIE_AGE if remember else None) response.delete_cookie("carts") return response class LogoutView(View): """退出登录""" def get(self, request): logout(request) response = redirect('/login/') response.delete_cookie('username') return response class UserInfoView(mixins.LoginRequiredMixin, View): """mixins扩展用来返回进入登录页面之前的页面""" def get(self, request): return render(request, 'user_center_info.html') class EmailView(View): """设置邮箱""" # 接受请求 def put(self, request): json_dict = json.loads(request.body.decode()) email = json_dict.get('email') # 校验 if not email: return http.JsonResponse({'code': RETCODE.NECESSARYPARAMERR, 'errmsg': '缺少必要参数'}) if not re.match(r'^[a-z0-9][\w\.\-]*@[a-z0-9\-]+(\.[a-z]{2,5}){1,2}$', email): return http.JsonResponse({'code': RETCODE.EMAILERR, 'errmsg': '邮箱错误'}) # 修改邮箱字段 user = request.user User.objects.filter(username=user.username, email='').update(email=email) # 生成激活链接 verify_url = generate_email_verify_url(user) print(verify_url) # celery 异步发邮件 send_verify_email.delay(email, verify_url) return http.JsonResponse({'code': RETCODE.OK, 'errmsg': '添加邮件成功'}) class VerifyEmailUrl(View): """邮箱激活""" def get(self, request): token = request.GET.get('token') # 获取token # 校验 if token is None: return http.HttpResponseForbidden("缺少token") # 解密token并获取user user = check_verify_token(token) if user is None: return http.HttpResponseForbidden("token无效") # 设置email_active为True user.email_active = True user.save() return redirect('/info/') class AddressView(LoginRequiredView): """收货地址页面展示""" def get(self, request): user = request.user # 查询所有收货地址 address_qs = Address.objects.filter(user=user, is_deleted=False) # 定义列表包装地址字典数据 address_list = [] for address_model in address_qs: address_list.append({ 'id': address_model.id, 'title': address_model.title, 'receiver': address_model.receiver, 'province': address_model.province.name, 'province_id': address_model.province.id, 'city': address_model.city.name, 'city_id': address_model.city.id, 'district': address_model.district.name, 'district_id': address_model.district.id, 'place': address_model.place, 'mobile': address_model.mobile, 'tel': address_model.tel, 'email': address_model.email }) # print(address_list) # 外层包装 context = { 'addresses': address_list, 'default_address_id': user.default_address_id } # print(context) # 渲染 return render(request, 'user_center_site.html', context) class CreateAdderssView(LoginRequiredView): """新增地址""" def post(self, request): # 地址不能超过20个 user = request.user count = Address.objects.filter(user=user, is_deleted=False).count() if count >= 20: return http.JsonResponse({'code': RETCODE.THROTTLINGERR, 'errmsg': '超出上限'}) # 接收数据 json_dict = json.loads(request.body.decode()) title = json_dict.get('title') receiver = json_dict.get('receiver') province_id = json_dict.get('province_id') city_id = json_dict.get('city_id') district_id = json_dict.get('district_id') place = json_dict.get('place') mobile = json_dict.get('mobile') tel = json_dict.get('tel') email = json_dict.get('email') # 校验 if all([title, receiver, province_id, city_id, district_id, place, mobile]) is False: return http.HttpResponseForbidden("缺少必要参数") if not re.match(r'^1[345789]\d{9}$', mobile): return http.HttpResponseForbidden("mobile格式错误") if tel: if not re.match(r'^(0[0-9]{2,3}-)?([2-9][0-9]{6,7})+(-[0-9]{1,4})?$', tel): return http.HttpResponseForbidden("tel格式错误") if email: if not re.match(r'^[a-z0-9][\w\.\-]*@[a-z0-9\-]+(\.[a-z]{2,5}){1,2}$', email): return http.HttpResponseForbidden("email格式错误") # 保存数据 try: address_model = Address.objects.create( user=request.user, title=title, receiver=receiver, province_id=province_id, city_id=city_id, district_id=district_id, place=place, mobile=mobile, tel=tel, email=email ) except Exception as e: logger.error(e) return http.JsonResponse({'code': RETCODE.PARAMERR, 'errmsg': '新增地址失败'}) # 没有默认地址则设为默认地址 if user.default_address is None: user.default_address = address_model user.save() #  数据转换为字典 address_dict = { 'id': address_model.id, 'title': address_model.title, 'receiver': address_model.receiver, 'province_id': address_model.province.id, 'province': address_model.province.name, 'city_id': address_model.city.id, 'city': address_model.city.name, 'district_id': address_model.district.id, 'district': address_model.district.name, 'place': address_model.place, 'mobile': address_model.mobile, 'tel': address_model.tel, 'email': address_model.email } # 响应 return http.JsonResponse({'code': RETCODE.OK, 'errmsg': '新增地址成功', 'address': address_dict}) class UpdateDestroyAddressView(LoginRequiredView): """修改删除收货地址""" def put(self, request, address_id): """接收请求体数据""" json_dict = json.loads(request.body.decode()) title = json_dict.get('title') receiver = json_dict.get('receiver') province_id = json_dict.get('province_id') city_id = json_dict.get('city_id') district_id = json_dict.get('district_id') place = json_dict.get('place') mobile = json_dict.get('mobile') tel = json_dict.get('tel') email = json_dict.get('email') # 校验 if all([title, receiver, province_id, city_id, district_id, place, mobile]) is False: return http.HttpResponseForbidden("缺少必要参数") if not re.match(r'^1[345789]\d{9}$', mobile): return http.HttpResponseForbidden("mobile格式错误") if tel: if not re.match(r'^(0[0-9]{2,3}-)?([2-9][0-9]{6,7})+(-[0-9]{1,4})?$', tel): return http.HttpResponseForbidden("tel格式错误") if email: if not re.match(r'^[a-z0-9][\w\.\-]*@[a-z0-9\-]+(\.[a-z]{2,5}){1,2}$', email): return http.HttpResponseForbidden("email格式错误") # 修改 try: Address.objects.filter(id=address_id).update( title=title, receiver=receiver, province_id=province_id, city_id=city_id, district_id=district_id, place=place, mobile=mobile, tel=tel, email=email ) except Exception as e: logger.error(e) return http.JsonResponse({'code': RETCODE.PARAMERR, 'errmsg': '修改失败'}) # 获取修改后模型对象 address_model = Address.objects.get(id=address_id) address_dict = { 'id': address_model.id, 'title': address_model.title, 'receiver': address_model.receiver, 'province_id': address_model.province.id, 'province': address_model.province.name, 'city_id': address_model.city.id, 'city': address_model.city.name, 'district_id': address_model.district.id, 'district': address_model.district.name, 'place': address_model.place, 'mobile': address_model.mobile, 'tel': address_model.tel, 'email': address_model.email } # 响应 return http.JsonResponse({'code': RETCODE.OK, 'errmsg': '修改地址成功', 'address': address_dict}) def delete(self, request, address_id): """删除地址""" # 获取删除address_id try: address = Address.objects.get(id=address_id) # 修改数据库中is_delete为True address.is_deleted = True address.save() except Exception as e: logger.error(e) return http.JsonResponse({'code': RETCODE.PARAMERR, 'errmsg': 'address_id不存在'}) # 响应 return http.JsonResponse({'code': RETCODE.OK, 'errmsg': '删除地址成功'}) class DefaultAddressView(LoginRequiredView): """修改默认收货地址""" def put(self, request, address_id): try: address = Address.objects.get(id=address_id) user = request.user user.default_address = address user.save() return http.JsonResponse({'code': RETCODE.OK, 'errmsg': '设置默认地址成功'}) except Exception as e: logger.error(e) return http.JsonResponse({'code': RETCODE.PARAMERR, 'errmsg': '设置默认地址失败'}) class UpdateAddressTitleView(LoginRequiredView): """修改收货地址标题""" def put(self, request, address_id): json_dict = json.loads(request.body.decode()) title = json_dict.get('title') if title is None: return http.JsonResponse({'code': RETCODE.PARAMERR, 'errmsg': '缺少必传参数'}) try: address = Address.objects.get(id=address_id) address.title = title address.save() return http.JsonResponse({'code': RETCODE.OK, 'errmsg': '修改成功'}) except Exception as e: logger.error(e) return http.JsonResponse({'code': RETCODE.PARAMERR, 'errmsg': '修改失败'}) class ChangePasswordView(LoginRequiredView): """修改密码""" def get(self, request): """展示界面""" return render(request, 'user_center_pass.html') def post(self, request): """接收表单""" query_dict = request.POST old_pwd = query_dict.get('old_pwd') new_pwd = query_dict.get('new_pwd') new_cpwd = query_dict.get('new_cpwd') # 校验 if all([old_pwd, new_pwd, new_cpwd]) is False: return http.HttpResponseForbidden("缺少必传参数") user = request.user if user.check_password(old_pwd) is False: return render(request, 'user_center_pass.html', {'oringin_pwd_errmsg': '原密码错误'}) if not re.match(r'^[0-9A-Za-z]{8,20}$', new_pwd): return http.HttpResponseForbidden("密码最短8位,最长20位") if new_cpwd != new_pwd: return http.HttpResponseForbidden("两次密码输入不一致") # 修改密码:user.set_password user.set_password(new_pwd) user.save() # 清除登录中状态 logout(request) # 清除cookie中username response = redirect('/login/') response.delete_cookie('username') # 重定向到login界面 return response class UserBrowsHistoryView(LoginRequiredView): """用户商品浏览记录""" def post(self, request): # 接收请求体中的sku_id json_dict = json.loads(request.body.decode()) sku_id = json_dict.get("sku_id") # 检验sku_id是否真实 try: sku = SKU.objects.get(id=sku_id) except SKU.DoesNotExist: return http.HttpResponseForbidden("商品不存在") # 创建redis连接对象 redis_conn = get_redis_connection('history') # 创建管道 pl = redis_conn.pipeline() # 获取用户并拼接key user = request.user key = "history_%s" % user.id # 去重 pl.lrem(key, 0, sku_id) # 添加到列表开头 pl.lpush(key, sku_id) # 截取列表前5个 pl.ltrim(key, 0, 4) # 执行管道 pl.execute() # 响应 return http.JsonResponse({"code": RETCODE.OK, "errmsg": "OK"}) def get(self, request): """获取浏览记录并返回前端展示""" # 获取当前登录对象 user = request.user # 创建数据库连接 redis_conn = get_redis_connection("history") # 获取用户所有redis中储存的浏览记录列表 sku_ids = redis_conn.lrange("history_%s" % user.id, 0, -1) # 创建列表保存字典 sku_list = [] # 根据浏览记录列表中sku_id获取sku对象模型存入字典 for sku_id in sku_ids: sku_model = SKU.objects.get(id=sku_id) sku_list.append({ "id": sku_model.id, "name": sku_model.name, "default_image_url": sku_model.default_image.url, "price": sku_model.price }) # 响应 return http.JsonResponse({"code": RETCODE.OK, "errmsg": "OK", "skus": sku_list}) class UserOrderView(LoginRequiredView, View): """订单""" def get(self, request, page_num): user = request.user order_qs = OrderInfo.objects.filter(user_id=user.id) order_list = [] for order_model in order_qs: sku_list = [] sku_qs = OrderGoods.objects.filter(order_id=order_model.order_id) for sku_model in sku_qs: sku = SKU.objects.get(id=sku_model.sku_id) sku_list.append({ "name": sku.name, "price": sku_model.price, "count": sku_model.count, "default_image": sku.default_image, "amount": str(sku.price * sku_model.count) }) order_list.append({ "order_id": order_model.order_id, "create_time": order_model.create_time, "sku_list": sku_list, "total_amount": order_model.total_amount, "freight": order_model.freight, "pay_method_name": OrderInfo.PAY_METHOD_CHOICES[order_model.pay_method - 1][1], "status": order_model.status, "status_name": OrderInfo.ORDER_STATUS_CHOICES[order_model.status - 1][1], # "pay_method_name": order_model.pay_method, # "status_name": order_model.status } ) paginator = Paginator(order_list, 5) # 获取指定页数据 try: page_skus = paginator.page(page_num) except EmptyPage: return http.HttpResponse("当前页面不存在") # 获取总页面 total_page = paginator.num_pages # print(order_list) context = { "page_orders": page_skus, "page_num": page_num, 'total_page': total_page, # 总页数 } return render(request, "user_center_order.html", context) class FindPasswordView(View): """找回密码""" def get(self, request): return render(request, "find_password.html") class CheckInofView(View): """第一步""" def get(self, request, user_name): query_dict = request.GET text = query_dict.get("text") if all([user_name, text]) is False: return http.JsonResponse({"code": RETCODE, "errmsg": "缺少必传参数"}) uuid = query_dict.get("image_code_id") redis_conn = get_redis_connection("verify_code") image_code_server = redis_conn.get('img_%s' % uuid) image_code_client = query_dict.get('text') image_code_server = image_code_server.decode() if image_code_server.lower() != image_code_client.lower(): return http.JsonResponse({"code": RETCODE.IMAGECODEERR, "errmsg": "验证码输入错误"}, status=400) if not redis_conn.get("img_%s" % uuid): return http.JsonResponse({"code": RETCODE.DBERR, "errmsg": "验证码过期"}) try: if re.match(r'^1[3-9]\d{9}$', user_name): # 尝试匹配手机号,成功则将账号输入栏的对应数据库查询项改为mobile user = User.objects.get(mobile=user_name) else: # 否则将账号输入栏的对应数据库查询项设为username user = User.objects.get(username=user_name) except User.DoesNotExist: return http.JsonResponse({"code": RETCODE.USERERR, "errmsg": "账号不存在"}, status=404) mobile = user.mobile access_token = generate_openid_signature([user_name, mobile]) mobile = mobile[0:3] + "*" * 4 + mobile[-4:] return http.JsonResponse({"code": RETCODE.OK, "errmsg": "OK", "mobile": mobile, "access_token": access_token}) class SmsCodeSendView(View): """发短信""" def get(self, request): query_dict = request.GET access_token = query_dict.get("access_token") user_info = check_openid_signature(access_token) mobile = user_info[1] user_name = user_info[0] redis_conn = get_redis_connection('verify_code') # 查询数据库中是否有标志 send_flag = redis_conn.get('sms_flag_%s' % mobile) if send_flag: return http.JsonResponse({"message": "error"}) # 生成短信验证码 sms_code = "%06d" % randint(0, 999999) # print(sms_code) logger.info(sms_code) pl = redis_conn.pipeline() pl.setex('sms_%s' % mobile, 300, sms_code) # 设置标志60秒过期,标明该手机号60s内发过一次短信 pl.setex('sms_flag_%s' % mobile, 60, 1) pl.execute() send_sms_code.delay(mobile, sms_code) return http.JsonResponse({"message": "OK"}) class CheckSmsCodeView(View): """第二步,验证短信""" def get(self, request, user_name): query_dict = request.GET sms_code = query_dict.get("sms_code") user = User.objects.get(username=user_name) mobile = user.mobile redis_conn = get_redis_connection('verify_code') sms_code_server = redis_conn.get("sms_%s" % mobile) redis_conn.delete("sms_%s" % mobile) if sms_code_server is None: return http.HttpResponse("短信验证码过期") sms_code_server = sms_code_server.decode() if sms_code_server != sms_code: return http.HttpResponse("短信验证码输入错误") user_id = user.id access_token = generate_openid_signature([user_name, mobile]) return http.JsonResponse({"code": RETCODE.OK, "errmsg": "OK", "user_id": user_id, "access_token": access_token}) class NewPasswordView(View): def post(self, request, user_id): json_dict = json.loads(request.body.decode()) new_pwd = json_dict.get('password') new_cpwd = json_dict.get('password2') try: User.objects.get(id=user_id) except User.DoesNotExist: return http.HttpResponseForbidden("无此用户") access_token = json_dict.get("access_token") user_info = check_openid_signature(access_token) mobile = user_info[1] user_name = user_info[0] try: User.objects.get(mobile=mobile) except User.DoesNotExist: return http.HttpResponseForbidden("非法请求") # 校验 user = User.objects.get(id=user_id) if all([new_pwd, new_cpwd]) is False: return http.HttpResponseForbidden("缺少必传参数") if not re.match(r'^[0-9A-Za-z]{8,20}$', new_pwd): return http.HttpResponseForbidden("密码最短8位,最长20位") if new_cpwd != new_pwd: return http.HttpResponseForbidden("两次密码输入不一致") if authenticate(request, username=user_name, password=new_pwd): return http.JsonResponse({"code": RETCODE.PWDERR, "errmsg": "与原密码重复"}, status=400) # 修改密码:user.set_password user.set_password(new_pwd) user.save() return http.JsonResponse({"code": RETCODE.OK, "errmsg": "OK"})
quote = """ Alright, but apart from the Sanitation, the Medicine, Education, Wine, Public Order, Irrigation, Roads, the Fresh-Water System, and Public Health, what have the Romans ever done for us? """ for c in quote: if c.isupper(): print(c)
def showMenu(): output = "" output += "---------------------------------------\n" output += "| |\n" output += "| |> |--| |--| /\ /\ |\n" output += "| |> |__| |__| / \/ \ |\n" output += "| |\n" output += "| |\n" output += "| ----- /\ /\ / | / |\n" output += "| | /--\ / \ / | / |\n" output += "| | / \ / \/ | \ |\n" output += "| |\n" output += "| |\n" output += "| |\n" output += "| Space) play |\n" output += "| |\n" output += "| Q) Quit |\n" output += "| |\n" output += "---------------------------------------\n" return output
""" This script is equivalent of the jupyter notebook example_locust_dataset.ipynb but in a standard python script. """ from tridesclous import * import pyqtgraph as pg from matplotlib import pyplot import time from pprint import pprint dirname = 'tridesclous_olfactory_bulb' def initialize_catalogueconstructor(): #download dataset localdir, filenames, params = download_dataset(name='olfactory_bulb') print(filenames) print(params) print() #create a DataIO import os, shutil if os.path.exists(dirname): #remove is already exists shutil.rmtree(dirname) dataio = DataIO(dirname=dirname) # feed DataIO dataio.set_data_source(type='RawData', filenames=filenames, **params) #The dataset contains 16 channels but 14 and 15 are respiration and trigs. dataio.add_one_channel_group(channels=range(14), chan_grp=0) print(dataio) def apply_catalogue_steps_auto(): dataio = DataIO(dirname=dirname) cc = CatalogueConstructor(dataio=dataio) params = get_auto_params_for_catalogue(dataio, chan_grp=0) params['adjacency_radius_um'] = 400. apply_all_catalogue_steps(cc, params, verbose=True) print(cc) def open_cataloguewindow(): dataio = DataIO(dirname=dirname) catalogueconstructor = CatalogueConstructor(dataio=dataio) app = pg.mkQApp() win = CatalogueWindow(catalogueconstructor) win.show() app.exec_() def run_peeler(): dataio = DataIO(dirname=dirname) catalogue = dataio.load_catalogue(chan_grp=0) peeler_params = get_auto_params_for_peelers(dataio, chan_grp=0) pprint(peeler_params) peeler = Peeler(dataio) peeler.change_params(catalogue=catalogue, **peeler_params) t1 = time.perf_counter() peeler.run() t2 = time.perf_counter() print('peeler.run', t2-t1) def open_PeelerWindow(): dataio = DataIO(dirname=dirname) print(dataio) initial_catalogue = dataio.load_catalogue(chan_grp=0) app = pg.mkQApp() win = PeelerWindow(dataio=dataio, catalogue=initial_catalogue) win.show() app.exec_() if __name__ =='__main__': #~ initialize_catalogueconstructor() #~ apply_catalogue_steps_auto() #~ open_cataloguewindow() run_peeler() #~ open_PeelerWindow()
from django.db import models # Create your models here. class Link(models.Model): chave = models.SlugField(verbose_name="Identificação Rede",max_length=100,unique=True) descricao = models.CharField(verbose_name='Descrição',max_length=100) url = models.URLField(max_length=200,null=False,blank=False) criado = models.DateTimeField(auto_now_add=True) alterado = models.DateTimeField(auto_now=True) class Meta: verbose_name = "Link" verbose_name_plural = "Links" ordering=['chave'] def __str__(self): return self.chave
"""AppArmor control for host.""" from __future__ import annotations import logging from pathlib import Path import shutil from awesomeversion import AwesomeVersion from ..coresys import CoreSys, CoreSysAttributes from ..exceptions import DBusError, HostAppArmorError from ..resolution.const import UnsupportedReason from ..utils.apparmor import validate_profile from .const import HostFeature _LOGGER: logging.Logger = logging.getLogger(__name__) class AppArmorControl(CoreSysAttributes): """Handle host AppArmor controls.""" def __init__(self, coresys: CoreSys): """Initialize host power handling.""" self.coresys: CoreSys = coresys self._profiles: set[str] = set() @property def available(self) -> bool: """Return True if AppArmor is available on host.""" return ( HostFeature.OS_AGENT in self.sys_host.features and UnsupportedReason.APPARMOR not in self.sys_resolution.unsupported ) @property def version(self) -> AwesomeVersion | None: """Return hosts AppArmor Version.""" return self.sys_dbus.agent.apparmor.version def exists(self, profile_name: str) -> bool: """Return True if a profile exists.""" return profile_name in self._profiles def _get_profile(self, profile_name: str) -> Path: """Get a profile from AppArmor store.""" if profile_name not in self._profiles: raise HostAppArmorError( f"Can't find {profile_name} for removing", _LOGGER.error ) return Path(self.sys_config.path_apparmor, profile_name) async def load(self) -> None: """Load available profiles.""" for content in self.sys_config.path_apparmor.iterdir(): if not content.is_file(): continue self._profiles.add(content.name) _LOGGER.info("Loading AppArmor Profiles: %s", self._profiles) # Load profiles if self.available: for profile_name in self._profiles: try: await self._load_profile(profile_name) except HostAppArmorError: pass else: _LOGGER.warning("AppArmor is not enabled on host") async def load_profile(self, profile_name: str, profile_file: Path) -> None: """Load/Update a new/exists profile into AppArmor.""" if not validate_profile(profile_name, profile_file): raise HostAppArmorError( f"AppArmor profile '{profile_name}' is not valid", _LOGGER.error ) # Copy to AppArmor folder dest_profile: Path = Path(self.sys_config.path_apparmor, profile_name) try: await self.sys_run_in_executor(shutil.copyfile, profile_file, dest_profile) except OSError as err: raise HostAppArmorError( f"Can't copy {profile_file}: {err}", _LOGGER.error ) from err # Load profiles _LOGGER.info("Adding/updating AppArmor profile: %s", profile_name) self._profiles.add(profile_name) if not self.available: return await self._load_profile(profile_name) async def remove_profile(self, profile_name: str) -> None: """Remove a AppArmor profile.""" profile_file: Path = self._get_profile(profile_name) # Unload if apparmor is enabled if self.available: await self._unload_profile(profile_name) try: await self.sys_run_in_executor(profile_file.unlink) except OSError as err: raise HostAppArmorError( f"Can't remove profile: {err}", _LOGGER.error ) from err _LOGGER.info("Removing AppArmor profile: %s", profile_name) self._profiles.remove(profile_name) async def backup_profile(self, profile_name: str, backup_file: Path) -> None: """Backup A profile into a new file.""" profile_file: Path = self._get_profile(profile_name) try: await self.sys_run_in_executor(shutil.copy, profile_file, backup_file) except OSError as err: raise HostAppArmorError( f"Can't backup profile {profile_name}: {err}", _LOGGER.error ) from err async def _load_profile(self, profile_name: str) -> None: """Load a profile on the host.""" try: await self.sys_dbus.agent.apparmor.load_profile( self.sys_config.path_extern_apparmor.joinpath(profile_name), self.sys_config.path_extern_apparmor_cache, ) except DBusError as err: raise HostAppArmorError( f"Can't load profile {profile_name}: {err!s}", _LOGGER.error ) from err async def _unload_profile(self, profile_name: str) -> None: """Unload a profile on the host.""" try: await self.sys_dbus.agent.apparmor.unload_profile( self.sys_config.path_extern_apparmor.joinpath(profile_name), self.sys_config.path_extern_apparmor_cache, ) except DBusError as err: raise HostAppArmorError( f"Can't unload profile {profile_name}: {err!s}", _LOGGER.error ) from err
# wemos_flash.py Test flash chips with ESP8266 host # Released under the MIT License (MIT). See LICENSE. # Copyright (c) 2020 Peter Hinch import uos from machine import SPI, Pin from flash_spi import FLASH cspins = (Pin(5, Pin.OUT, value=1), Pin(14, Pin.OUT, value=1)) spi=SPI(-1, baudrate=20_000_000, sck=Pin(4), miso=Pin(0), mosi=Pin(2)) def get_flash(): flash = FLASH(spi, cspins) print('Instantiated Flash') return flash directory = '/fl_ext' a = bytearray(range(256)) # Data to write b = bytearray(256) # Data to read back files = {} # n:length errors = 0 def fname(n): return '{}/{:05d}'.format(directory, n + 1) # Names start 00001 def fcreate(n): # Create a binary file of random length length = int.from_bytes(uos.urandom(2), 'little') + 1 # 1-65536 bytes linit = length with open(fname(n), 'wb') as f: while(length): nw = min(length, 256) f.write(a[:nw]) length -= nw files[n] = length return linit def fcheck(n): length = files[n] with open(fname(n), 'rb') as f: while(length): nr = f.readinto(b) if not nr: return False if a[:nr] != b[:nr]: return False length -= nr return True def check_all(): global errors for n in files: if fcheck(n): print('File {:d} OK'.format(n)) else: print('Error in file', n) errors += 1 print('Total errors:', errors) def remove_all(): for n in files: uos.remove(fname(n)) def flash_test(format=False): eep = get_flash() if format: uos.VfsLfs2.mkfs(eep) try: uos.mount(eep,'/fl_ext') except OSError: # Already mounted pass for n in range(128): length = fcreate(n) print('Created', n, length) print('Created files', files) check_all() for _ in range(100): for x in range(5): # Rewrite 5 files with new lengths n = int.from_bytes(uos.urandom(1), 'little') & 0x7f length = fcreate(n) print('Rewrote', n, length) check_all() remove_all() msg='''Run wemos_flash.flash_test(True) to format new array, otherwise wemos_flash.flash_test() Runs prolonged test of filesystem.''' print(msg)
from vrepper.lib.vrepConst import sim_jointfloatparam_velocity, simx_opmode_buffer, simx_opmode_streaming from vrepper.utils import check_ret, blocking import numpy as np class vrepobject(): def __init__(self, env, handle, is_joint=True): self.env = env self.handle = handle self.is_joint = is_joint def get_orientation(self, relative_to=None): eulerAngles, = check_ret(self.env.simxGetObjectOrientation( self.handle, -1 if relative_to is None else relative_to.handle, blocking)) return eulerAngles def get_position(self, relative_to=None): position, = check_ret(self.env.simxGetObjectPosition( self.handle, -1 if relative_to is None else relative_to.handle, blocking)) return position def get_velocity(self): return check_ret(self.env.simxGetObjectVelocity( self.handle, # -1 if relative_to is None else relative_to.handle, blocking)) # linearVel, angularVel def set_velocity(self, v): self._check_joint() return check_ret(self.env.simxSetJointTargetVelocity( self.handle, v, blocking)) def set_force(self, f): self._check_joint() return check_ret(self.env.simxSetJointForce( self.handle, f, blocking)) def set_position_target(self, angle): """ Set desired position of a servo :param int angle: target servo angle in degrees :return: None if successful, otherwise raises exception """ self._check_joint() return check_ret(self.env.simxSetJointTargetPosition( self.handle, -np.deg2rad(angle), blocking)) def force_position(self, angle): """ Force desired position of a servo :param int angle: target servo angle in degrees :return: None if successful, otherwise raises exception """ self._check_joint() return check_ret(self.env.simxSetJointPosition( self.handle, -np.deg2rad(angle), blocking)) def set_position(self, x, y, z): """ Set object to specific position (should never be done with joints) :param pos: tuple or list with 3 coordinates :return: None """ pos = (x, y, z) return check_ret(self.env.simxSetObjectPosition(self.handle, -1, pos, blocking)) def get_joint_angle(self): self._check_joint() angle = check_ret( self.env.simxGetJointPosition( self.handle, blocking ) ) return -np.rad2deg(angle[0]) def get_joint_force(self): self._check_joint() force = check_ret( self.env.simxGetJointForce( self.handle, blocking ) ) return force def get_joint_velocity(self): self._check_joint() vel = check_ret(self.env.simxGetObjectFloatParameter( self.handle, sim_jointfloatparam_velocity, blocking )) return vel def read_force_sensor(self): state, forceVector, torqueVector = check_ret(self.env.simxReadForceSensor( self.handle, blocking)) if state & 1 == 1: return None # sensor data not ready else: return forceVector, torqueVector def get_vision_image(self): resolution, image = check_ret(self.env.simxGetVisionSensorImage( self.handle, 0, # options=0 -> RGB blocking, )) dim, im = resolution, image nim = np.array(im, dtype='uint8') nim = np.reshape(nim, (dim[1], dim[0], 3)) nim = np.flip(nim, 0) # LR flip nim = np.flip(nim, 2) # RGB -> BGR return nim def _check_joint(self): if not self.is_joint: raise Exception("Trying to call a joint function on a non-joint object.") def get_global_variable(self, name, is_first_time): if is_first_time: return self.env.simxGetFloatSignal(self.cid, name, simx_opmode_streaming) else: return self.env.simxGetFloatSignal(self.cid, name, simx_opmode_buffer)
#!/usr/bin/python2.7 def fib(n): """ TODO """ result = [] a, b = 0, 1 while a < n: result.append(a) a, b = b, a + b return result f = fib print (f.__doc__) print f(100)
from __future__ import absolute_import, unicode_literals, print_function, division import sys import os import datetime import json from pytest import raises from flexmock import flexmock from .helper import json_data, json_str sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))) import stampr class Test(object): def setup(self): (flexmock(stampr.client.Client).should_receive("ping").once()) stampr.authenticate("user", "pass") self.created = stampr.batch.Batch(batch_id=2, config_id=1) self.uncreated = stampr.batch.Batch(config_id=1) self.start = datetime.datetime(1900, 1, 1, 0, 0, 0) self.finish = datetime.datetime(2000, 1, 1, 0, 0, 0) class TestBatchInit(Test): def test_generate_a_config(self): (flexmock(stampr.client.Client.current) .should_receive("_api") .with_args("post", ("configs", ), returnenvelope=False, output="single", turnaround="threeday", size="standard", style="color") .and_return({ "config_id": 7 })) subject = stampr.batch.Batch() assert subject.config_id == 7 def test_failure_with_config_and_config_id(self): with raises(ValueError): stampr.batch.Batch(config_id=2, config=flexmock()) class TestBatchBlock(Test): def test_yield_itself(self): yielded = None batch = stampr.batch.Batch(config_id=1) with batch as b: yielded = b assert yielded == batch class TestBatchInitDefault(Test): def test_that_it_has_a_config_id(self): assert self.uncreated.config_id == 1 def test_that_it_has_no_template(self): assert self.uncreated.template is None def test_that_it_has_a_default_status(self): assert self.uncreated.status == "processing" class TestBatchInitFromData(Test): def setup(self): super(TestBatchInitFromData, self).setup() self.created_from_data = stampr.batch.Batch(**json_data("batch_create")) def test_that_it_has_a_config_id(self): assert self.created_from_data.config_id == 1 def test_that_it_has_a_template(self): assert self.created_from_data.template == "bleh" def test_that_it_has_a_status(self): assert self.created_from_data.status == "processing" def test_that_it_has_an_id(self): assert self.created_from_data.id == 2 class TestBatchTemplate(Test): def test_set_the_value(self): subject = self.uncreated subject.template = "hello" assert subject.template == "hello" def test_accept_none(self): subject = self.uncreated subject.template = None assert subject.template is None def test_fail_with_a_bad_type(self): with raises(TypeError): self.uncreated.template = 12 def test_fail_if_the_batch_is_already_created(self): with raises(stampr.exceptions.ReadOnlyError): self.created.template = "hello" class TestBatchStatusNotCreated(Test): def test_accept_a_correct_value(self): subject = self.uncreated assert subject.status == "processing" # The default. subject.status = "hold" assert subject.status == "hold" def test_refuse_incorrect_string(self): with raises(ValueError): self.uncreated.status = "frog" def test_bad_type(self): with raises(TypeError): self.uncreated.status = 14 class TestBatchStatusCreated(Test): def test_no_authentication(self): stampr.client.Client._current = stampr.client.NullClient() with raises(stampr.exceptions.APIError): self.created.status = "hold" def test_accept_a_correct_value_and_update(self): subject = self.created (flexmock(stampr.client.Client.current) .should_receive("_api") .with_args("post", ("batches", 2), status="hold") .and_return(json_data("batch_create"))) assert subject.status == "processing" subject.status = "hold" assert subject.status == "hold" def test_do_nothing_if_value_hasnt_changed(self): subject = self.created subject.status = "processing" assert subject.status == "processing" class TestBatchCreate(Test): def test_no_authentication(self): stampr.client.Client._current = stampr.client.NullClient() with raises(stampr.exceptions.APIError): self.uncreated.create() def test_post_a_creation_request_without_a_template(self): subject = self.uncreated (flexmock(stampr.client.Client.current) .should_receive("_api") .with_args("post", ("batches",), config_id=1, status="processing") .and_return(json_data("batch_create"))) subject.create() assert subject.id == 2 def test_post_a_creation_request_with_a_template(self): subject = stampr.batch.Batch(config_id=1, template="Bleh") (flexmock(stampr.client.Client.current) .should_receive("_api") .with_args("post", ("batches",), config_id=1, status="processing", template="Bleh") .and_return(json_data("batch_create"))) subject.create() assert subject.id == 2 class TestBatchDelete(Test): def test_no_authentication(self): stampr.client.Client._current = stampr.client.NullClient() with raises(stampr.exceptions.APIError): self.created.delete() def test_delete_the_batch(self): subject = stampr.batch.Batch(config_id=1, template="Bleh", batch_id=2) (flexmock(stampr.client.Client.current) .should_receive("_api") .with_args("delete", ("batches", 2)) .and_return(True)) subject.delete() def test_fail_if_the_batch_isnt_created_yet(self): with raises(stampr.exceptions.APIError): self.uncreated.delete() class TestBatchIndex(Test): def test_no_authentication(self): stampr.client.Client._current = stampr.client.NullClient() with raises(stampr.exceptions.APIError): stampr.batch.Batch[4677] def test_retreive_a_specific_batch(self): (flexmock(stampr.client.Client.current) .should_receive("_api") .with_args("get", ("batches", 1)) .and_return(json_data("batch_index"))) batch = stampr.batch.Batch[1] assert isinstance(batch, stampr.batch.Batch) assert batch.id == 2 def test_fail_with_a_negative_id(self): with raises(ValueError): stampr.batch.Batch[-1] def test_fail_with_a_bad_id(self): with raises(TypeError): stampr.batch.Batch["fred"] def test_retreive_a_specific_batch(self): (flexmock(stampr.client.Client.current) .should_receive("_api") .with_args("get", ("batches", 1)) .and_return([])) with raises(stampr.exceptions.RequestError): stampr.batch.Batch[1] class TestBatchBrowse(Test): def test_no_authentication(self): stampr.client.Client._current = stampr.client.NullClient() with raises(stampr.exceptions.APIError): stampr.batch.Batch.browse(self.start, self.finish) def test_retrieve_a_list_over_a_period(self): for i in [0, 1, 2]: (flexmock(stampr.client.Client.current) .should_receive("_api") .with_args("get", ("batches", "browse", "1900-01-01T00:00:00", "2000-01-01T00:00:00", i)) .and_return(json_data("batches_%d" % i))) batches = stampr.batch.Batch.browse(self.start, self.finish) assert [b.id for b in batches] == [2, 3, 4] def test_fail_with_bad_start(self): with raises(TypeError): stampr.batch.Batch.browse(1, 3) class TestBatchBrowseWithStatus(Test): def test_retrieve_a_list_of_batches_over_a_period_with_given_status(self): for i in [0, 1, 2]: (flexmock(stampr.client.Client.current) .should_receive("_api") .with_args("get", ("batches", "with", "processing", "1900-01-01T00:00:00", "2000-01-01T00:00:00", i)) .and_return(json_data("batches_%d" % i))) batches = stampr.batch.Batch.browse(self.start, self.finish, status="processing") assert [b.id for b in batches] == [2, 3, 4] def test_fail_with_a_bad_status_type(self): with raises(TypeError): stampr.batch.Batch.browse(self.start, self.finish, status=12) def test_fail_with_a_bad_status_value(self): with raises(ValueError): stampr.batch.Batch.browse(self.start, self.finish, status="frog") def test_fail_with_a_bad_period(self): with raises(TypeError): stampr.batch.Batch.browse(1, 3, status="processing") class TestBatchMailing(Test): def test_create_a_mailing(self): (flexmock(stampr.client.Client.current) .should_receive("_api") .with_args("post", ("configs", ), returnenvelope=False, output="single", turnaround="threeday", size="standard", style="color") .and_return({ "config_id": 7 })) batch = stampr.batch.Batch(batch_id=6, template="frog") mail = batch.mailing() assert isinstance(mail, stampr.mailing.Mailing) assert mail.batch_id == 6
from typing import Any, Dict, List, Text import regex import re import rasa.shared.utils.io from rasa.shared.constants import DOCS_URL_COMPONENTS from rasa.nlu.tokenizers.tokenizer import Token, Tokenizer from rasa.shared.nlu.training_data.message import Message class WhitespaceTokenizer(Tokenizer): defaults = { # Flag to check whether to split intents "intent_tokenization_flag": False, # Symbol on which intent should be split "intent_split_symbol": "_", # Regular expression to detect tokens "token_pattern": None, } # the following language should not be tokenized using the WhitespaceTokenizer not_supported_language_list = ["zh", "ja", "th"] def __init__(self, component_config: Dict[Text, Any] = None) -> None: """Construct a new tokenizer using the WhitespaceTokenizer framework.""" super().__init__(component_config) self.emoji_pattern = self.get_emoji_regex() if "case_sensitive" in self.component_config: rasa.shared.utils.io.raise_warning( "The option 'case_sensitive' was moved from the tokenizers to the " "featurizers.", docs=DOCS_URL_COMPONENTS, ) @staticmethod def get_emoji_regex(): return re.compile( "[" "\U0001F600-\U0001F64F" # emoticons "\U0001F300-\U0001F5FF" # symbols & pictographs "\U0001F680-\U0001F6FF" # transport & map symbols "\U0001F1E0-\U0001F1FF" # flags (iOS) "\U00002702-\U000027B0" "\U000024C2-\U0001F251" "\u200d" # zero width joiner "\u200c" # zero width non-joiner "]+", flags=re.UNICODE, ) def remove_emoji(self, text: Text) -> Text: """Remove emoji if the full text, aka token, matches the emoji regex.""" match = self.emoji_pattern.fullmatch(text) if match is not None: return "" return text def tokenize(self, message: Message, attribute: Text) -> List[Token]: text = message.get(attribute) # we need to use regex instead of re, because of # https://stackoverflow.com/questions/12746458/python-unicode-regular-expression-matching-failing-with-some-unicode-characters # remove 'not a word character' if words = regex.sub( # there is a space or an end of a string after it r"[^\w#@&]+(?=\s|$)|" # there is a space or beginning of a string before it # not followed by a number r"(\s|^)[^\w#@&]+(?=[^0-9\s])|" # not in between numbers and not . or @ or & or - or # # e.g. 10'000.00 or blabla@gmail.com # and not url characters r"(?<=[^0-9\s])[^\w._~:/?#\[\]()@!$&*+,;=-]+(?=[^0-9\s])", " ", text, ).split() words = [self.remove_emoji(w) for w in words] words = [w for w in words if w] # if we removed everything like smiles `:)`, use the whole text as 1 token if not words: words = [text] tokens = self._convert_words_to_tokens(words, text) return self._apply_token_pattern(tokens)
from .vika import Vika __all__ = (Vika, )
"""User Profile""" from django.db import models from django.utils.translation import gettext_lazy as _ from src.apps.core.models import BaseAuditableModel from src.apps.user.models import User class UserProfile(BaseAuditableModel): """User profile model""" GENDER = ( ('M', 'Male'), ('F', 'Female'), ('None', 'None'), ) SEATS = (('Window', 'Window seat'), ('Aisle', 'Aisle seat')) first_name = models.CharField( _('First Name'), max_length=255, null=True, ) middle_name = models.CharField( _('Middle Name'), max_length=255, null=True, ) last_name = models.CharField( _('Last Name'), max_length=255, null=True, ) gender = models.CharField( _('Gender'), max_length=10, choices=GENDER, default=None, null=True, ) phone = models.CharField( _('Phone number'), null=True, max_length=100, ) photo_url = models.CharField( _('Passport photograph'), null=False, default='https://res.cloudinary.com/veeqtor/image/upload/v1561820733/' 'airtech/user_photo_placeholder.png', max_length=255, ) photo_public_id = models.CharField( _('Passport public id'), null=False, default='iowjgoirgoierhgio934843897986798', max_length=100, ) dob = models.DateField( _('Date of Birth'), null=True, ) seat_preference = models.CharField(_('Seat Preference'), max_length=10, choices=SEATS, default=None, null=True) user = models.OneToOneField( User, related_name='user_profile', on_delete=models.CASCADE, ) @property def display_name(self) -> str: """Returns the display of the user""" return f'{self.first_name} {self.last_name}' class Meta: """Meta""" verbose_name_plural = 'User profiles' db_table = 'user_profiles' def __str__(self): """String representation""" return f'{self.display_name}' class Passport(BaseAuditableModel): """Model for the passport table""" image = models.CharField( _('Passport Image URL'), max_length=255, null=True, ) passport_number = models.CharField(_('Passport Number'), max_length=100, null=True, unique=True) country = models.CharField(_('Country of Citizenship'), max_length=255, null=True) issued_date = models.DateField( _('Issued date'), null=True, ) expiry_date = models.DateField( _('Expiry date'), null=True, ) profile = models.ForeignKey( UserProfile, related_name='passports', on_delete=models.CASCADE, ) class Meta: """Meta""" verbose_name_plural = 'Passports' db_table = 'user_passports' def __str__(self): """String representation""" return f'{self.passport_number} - {self.country}'
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'mainWindows.ui' # # Created by: PyQt5 UI code generator 5.13.2 # # WARNING! All changes made in this file will be lost! from PyQt5 import QtCore, QtGui, QtWidgets import cv2 as cv import matplotlib.pyplot as plt import numpy as np import math import json import os from tkinter import filedialog import tkinter as tk from PIL import Image from PyQt5.QtGui import QPixmap, QImage class Ui_MainWindow(object): def setupUi(self, MainWindow): MainWindow.setObjectName("MainWindow") MainWindow.resize(798, 598) palette = QtGui.QPalette() brush = QtGui.QBrush(QtGui.QColor(255, 170, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Button, brush) brush = QtGui.QBrush(QtGui.QColor(53, 53, 53)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Light, brush) brush = QtGui.QBrush(QtGui.QColor(57, 57, 57)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(47, 47, 47)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Active, QtGui.QPalette.Window, brush) brush = QtGui.QBrush(QtGui.QColor(255, 170, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Button, brush) brush = QtGui.QBrush(QtGui.QColor(53, 53, 53)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Light, brush) brush = QtGui.QBrush(QtGui.QColor(57, 57, 57)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(47, 47, 47)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Inactive, QtGui.QPalette.Window, brush) brush = QtGui.QBrush(QtGui.QColor(255, 170, 0)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Button, brush) brush = QtGui.QBrush(QtGui.QColor(53, 53, 53)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Light, brush) brush = QtGui.QBrush(QtGui.QColor(47, 47, 47)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Base, brush) brush = QtGui.QBrush(QtGui.QColor(47, 47, 47)) brush.setStyle(QtCore.Qt.SolidPattern) palette.setBrush(QtGui.QPalette.Disabled, QtGui.QPalette.Window, brush) MainWindow.setPalette(palette) self.centralwidget = QtWidgets.QWidget(MainWindow) self.centralwidget.setObjectName("centralwidget") self.verticalLayout = QtWidgets.QVBoxLayout(self.centralwidget) self.verticalLayout.setObjectName("verticalLayout") self.stackedWidget = QtWidgets.QStackedWidget(self.centralwidget) self.stackedWidget.setObjectName("stackedWidget") self.page = QtWidgets.QWidget() self.page.setObjectName("page") self.verticalLayout_2 = QtWidgets.QVBoxLayout(self.page) self.verticalLayout_2.setObjectName("verticalLayout_2") self.Title = QtWidgets.QLabel(self.page) self.Title.setMaximumSize(QtCore.QSize(769, 140)) font = QtGui.QFont() font.setPointSize(20) font.setBold(True) font.setWeight(75) self.Title.setFont(font) self.Title.setTextFormat(QtCore.Qt.RichText) self.Title.setAlignment(QtCore.Qt.AlignCenter) self.Title.setObjectName("Title") self.verticalLayout_2.addWidget(self.Title) self.widget = QtWidgets.QWidget(self.page) self.widget.setObjectName("widget") self.pushButton = QtWidgets.QPushButton(self.widget) self.pushButton.setGeometry(QtCore.QRect(150, 150, 171, 81)) font = QtGui.QFont() font.setPointSize(12) font.setBold(True) font.setWeight(75) self.pushButton.setFont(font) self.pushButton.setStyleSheet("QPushButton {\n" " background-color: rgb(255, 170, 0);\n" " font-color:\n" "}") self.pushButton.setObjectName("pushButton") self.pushButton_2 = QtWidgets.QPushButton(self.widget) self.pushButton_2.setGeometry(QtCore.QRect(440, 150, 171, 81)) font = QtGui.QFont() font.setPointSize(12) font.setBold(True) font.setWeight(75) self.pushButton_2.setFont(font) self.pushButton_2.setStyleSheet("QPushButton {\n" " background-color: rgb(255, 170, 0);\n" " font-color:\n" "}") self.pushButton_2.setObjectName("pushButton_2") self.verticalLayout_2.addWidget(self.widget) self.stackedWidget.addWidget(self.page) self.page_2 = QtWidgets.QWidget() self.page_2.setObjectName("page_2") self.label = QtWidgets.QLabel(self.page_2) self.label.setGeometry(QtCore.QRect(9, 9, 250, 170)) self.label.setText("") self.label.setScaledContents(True) self.label.setObjectName("label") self.label_2 = QtWidgets.QLabel(self.page_2) self.label_2.setGeometry(QtCore.QRect(9, 360, 250, 170)) self.label_2.setText("") self.label_2.setScaledContents(True) self.label_2.setObjectName("label_2") self.label_3 = QtWidgets.QLabel(self.page_2) self.label_3.setGeometry(QtCore.QRect(9, 185, 250, 169)) self.label_3.setText("") self.label_3.setScaledContents(True) self.label_3.setObjectName("label_3") self.label_4 = QtWidgets.QLabel(self.page_2) self.label_4.setGeometry(QtCore.QRect(265, 185, 250, 169)) self.label_4.setText("") self.label_4.setScaledContents(True) self.label_4.setObjectName("label_4") self.label_5 = QtWidgets.QLabel(self.page_2) self.label_5.setGeometry(QtCore.QRect(265, 360, 250, 170)) self.label_5.setText("") self.label_5.setScaledContents(True) self.label_5.setObjectName("label_5") self.label_6 = QtWidgets.QLabel(self.page_2) self.label_6.setGeometry(QtCore.QRect(265, 9, 250, 170)) self.label_6.setText("") self.label_6.setScaledContents(True) self.label_6.setObjectName("label_6") self.label_7 = QtWidgets.QLabel(self.page_2) self.label_7.setGeometry(QtCore.QRect(521, 185, 250, 169)) self.label_7.setText("") self.label_7.setScaledContents(True) self.label_7.setObjectName("label_7") self.label_8 = QtWidgets.QLabel(self.page_2) self.label_8.setGeometry(QtCore.QRect(521, 9, 250, 170)) self.label_8.setText("") self.label_8.setScaledContents(True) self.label_8.setObjectName("label_8") self.label_9 = QtWidgets.QLabel(self.page_2) self.label_9.setGeometry(QtCore.QRect(521, 360, 250, 170)) self.label_9.setText("") self.label_9.setScaledContents(True) self.label_9.setObjectName("label_9") self.stackedWidget.addWidget(self.page_2) self.verticalLayout.addWidget(self.stackedWidget) MainWindow.setCentralWidget(self.centralwidget) self.menubar = QtWidgets.QMenuBar(MainWindow) self.menubar.setGeometry(QtCore.QRect(0, 0, 798, 21)) self.menubar.setObjectName("menubar") MainWindow.setMenuBar(self.menubar) self.statusbar = QtWidgets.QStatusBar(MainWindow) self.statusbar.setObjectName("statusbar") MainWindow.setStatusBar(self.statusbar) self.retranslateUi(MainWindow) self.stackedWidget.setCurrentIndex(0) QtCore.QMetaObject.connectSlotsByName(MainWindow) self.button_click() def retranslateUi(self, MainWindow): _translate = QtCore.QCoreApplication.translate MainWindow.setWindowTitle(_translate("MainWindow", "CBIR Using Color and Shape Dechiptors")) self.Title.setText(_translate("MainWindow", "<html><head/><body><p><span style=\" color:#eaa400;\">CBIR Using Color and Shape Dechiptors</span></p></body></html>")) self.pushButton.setText(_translate("MainWindow", "Refresh Database")) self.pushButton_2.setText(_translate("MainWindow", "Search Image")) def button_click(self): self.pushButton.clicked.connect(self.refreshDatabase) self.pushButton_2.clicked.connect(self.searchImage) pass def displayImage(self, listImage): for index, img in enumerate(listImage): # print(index, ' ', img) # print('Successfull read') self.stackedWidget.setCurrentIndex(1) img = 'image/'+ img if index == 0: self.label.setPixmap(QtGui.QPixmap(img)) elif index == 1: self.label_2.setPixmap(QtGui.QPixmap(img)) elif index == 2: self.label_3.setPixmap(QtGui.QPixmap(img)) elif index == 3: self.label_4.setPixmap(QtGui.QPixmap(img)) elif index == 4: self.label_5.setPixmap(QtGui.QPixmap(img)) elif index == 5: self.label_6.setPixmap(QtGui.QPixmap(img)) elif index == 6: self.label_7.setPixmap(QtGui.QPixmap(img)) elif index == 7: self.label_8.setPixmap(QtGui.QPixmap(img)) elif index == 8: self.label_9.setPixmap(QtGui.QPixmap(img)) else: break def searchImage(self): fname = self.openWindow() _, _, moments, img = self.main(fname) Hasil = self.fetchDatabase(moments.tolist()) Hasil = dict(sorted(Hasil.items(), key=lambda item: item[1])) # Print Hasil dari Similarity yang telah di urutkan # print(Hasil) self.displayImage(Hasil) def canberraDistance(self, A : list, B : list): total = 0 for i in range(7): top = abs(A[i]-B[i]) bottom = abs(A[i]) + abs(B[i]) total += top/bottom pass return total def fetchDatabase(self, imageQquery : list): result = [] object = {} fjson = open('DatabaseMoments.json') dataMoment = json.load(fjson) for i in dataMoment: fname = dataMoment[i]['Name'] fmoments = dataMoment[i]['moments'] value = self.canberraDistance(imageQquery, fmoments) object[fname] = value return object def refreshDatabase(self): dbImages = {} for index, img in enumerate(self.listImg()): dir = 'image/'+img stdValue, stdDotValue, moments, citra = self.main(dir) objImg = { "Name": img, # "value1": stdValue, # "value2": stdDotValue, "moments": moments.tolist() } dbImages[index] = objImg with open('DatabaseMoments.json', 'w') as outfile: json.dump(dbImages, outfile) def listImg(self): for (root, dirs, fname) in os.walk('image', topdown=True): return fname pass def main(self, fImg: str = 'image/flower1.jpg'): clrImg = cv.imread(fImg) # clrImg = cv.imread('image/flower1.jpg') scale_percent = 50 #calculate the 50 percent of original dimensions width = int(clrImg.shape[1] * scale_percent / 100) height = int(clrImg.shape[0] * scale_percent / 100) dsize = (width, height) clrImg = cv.resize(clrImg, dsize) # #Plot # plt.imshow(cv.cvtColor(clrImg, cv.COLOR_BGR2RGB)) # plt.show() # Convert to Lab labImg = cv.cvtColor(clrImg, cv.COLOR_BGR2RGB) labImg = cv.cvtColor(labImg, cv.COLOR_RGB2Lab) # Getting L Value from labImg splitImg = labImg L, a, b = cv.split(splitImg) # print(L[332,348]) # splitImg[:,:,0] = 0 # splitImg[:,:,2] = 0 # splitImg[:,:,1] = 0 # Convert to Grayscale grayImg = splitImg[:,:,0] # Gaussian Blur blrImg = cv.GaussianBlur(grayImg, (3,3), 0) # Gradient Image using Sobel kernelSize = 1 sobelx = cv.Sobel(blrImg,cv.CV_64F,1,0,ksize=kernelSize) abs_sobelx = np.absolute(sobelx) sobel_x = np.uint8(abs_sobelx) sobely = cv.Sobel(blrImg,cv.CV_64F,0,1,ksize=kernelSize) abs_sobely = np.absolute(sobely) sobel_y = np.uint8(abs_sobely) sobelImg = cv.addWeighted(sobel_x, 0.5, sobel_y, 0.5, 0) # gradient_magnitude = np.sqrt(np.square(sobel_x) + np.square(sobel_y)) # gradient_magnitude *= 255.0 / gradient_magnitude.max() # Standard Deviation Gradient Image stdValue = np.std(sobelImg) ret,thresh1 = cv.threshold(sobelImg,stdValue,255,cv.THRESH_BINARY) dotImg = cv.multiply(sobelImg, thresh1) stdDotValue = np.std(dotImg) # menghitung Moment pada Gambar # countour, hierarchy = cv.findContours(dotImg, cv.RETR_TREE, cv.CHAIN_APPROX_SIMPLE) # countourImg = cv.drawContours(clrImg, countour, -1, (0,255,0), 1) MomentsImg = cv.HuMoments(cv.moments(dotImg)).flatten() # for i in range(7): MomentsImg[i] = -1 * math.copysign(1.0, MomentsImg[i]) * math.log10(abs(MomentsImg[i])) # cv.imshow('Original Image', clrImg) # cv.imshow('Lab Color Image', labImg) # cv.imshow('Blur Lab Image', blrImg) # cv.imshow('Grayscale form LabImg', grayImg) # cv.imshow('Sobel X', sobel_x) # cv.imshow('Sobel Y', sobel_y) # cv.imshow('Final Sobel', sobelImg) # cv.imshow('Binary Image', thresh1) # cv.imshow('Contour Image', countourImg) # # cv.imshow('2 Images. Sobel | Binary', dotImg) # cv.waitKey() # cv.destroyAllWindows() # clrImg = cv.cvtColor(clrImg, cv.COLOR_BGR2RGB) # print('RGB Value of (348,332) to (352,336): ') # print(clrImg[332:335, 348:351]) # print() # print('Lab Value of (348,332) to (352,336): ') # print(labImg[331:336, 347:352]) # print() # print('Grayscale Lab of (348,332) to (352,336): ') # print(grayImg[331:336, 347:352]) # print() # print('Blur Lab Value of (348,332) to (352,336): ') # print(blrImg[331:336, 347:352]) # print() # print('Sobel X Image of (348,332) to (352,336): ') # print(sobel_x[332:335, 348:351]) # print() # print('Sobel Y Image of (348,332) to (352,336): ') # print(sobel_y[332:335, 348:351]) # print() # print('Sobel Image of (348,332) to (352,336): ') # print(sobelImg[332:335, 348:351]) # print() # print('Thresholding Image of (348,332) to (352,336): ') # print(thresh1[332:335, 348:351]) # print() # print('Dot Product Image of (348,332) to (352,336): ') # print(dotImg[332:335, 348:351]) # print(MomentsImg) # return stdValue # print(fImg, ': ', stdValue, ' ', stdDotValue) # print(MomentImg) return stdValue, stdDotValue, MomentsImg, dotImg def openWindow(self): root = tk.Tk() root.withdraw() file_path = filedialog.askopenfilename() return file_path if __name__ == "__main__": import sys app = QtWidgets.QApplication(sys.argv) MainWindow = QtWidgets.QMainWindow() ui = Ui_MainWindow() ui.setupUi(MainWindow) MainWindow.show() sys.exit(app.exec_())
from unittest import TestCase from utilities import getDictValue class Test_Utilities(TestCase): def setUp(self): self.fixture = {'posts': {'comments': [{'text': 'smartidea'}]}} def tearDown(self): self.fixture = None def test_get_dict_value(self): out = getDictValue(self.fixture,'posts.comments.0.text') self.assertEqual(out,'smartidea')
from django.contrib import messages from django.test import TestCase from django.urls import reverse from bookclubs.forms import LogInForm from bookclubs.models import User from bookclubs.tests.helpers import LogInTester, reverse_with_next class LogInViewTestCase(TestCase, LogInTester): """Tests for the log in view""" fixtures = [ 'bookclubs/tests/fixtures/default_user.json', ] def setUp(self): self.url = reverse('log_in') self.user = User.objects.get(username='@johndoe') def test_log_in_url(self): self.assertEqual(self.url, '/log_in/') def test_get_log_in(self): response = self.client.get(self.url) self.assertEqual(response.status_code, 200) self.assertTemplateUsed(response, 'log_in.html') form = response.context['form'] next = response.context['next'] self.assertTrue(isinstance(form, LogInForm)) self.assertFalse(form.is_bound) self.assertFalse(next) messages_list = list(response.context['messages']) self.assertEqual(len(messages_list), 0) # self.assert_no_menu(response) def test_get_log_in_with_redirect(self): destination_url = reverse('feed') self.url = reverse_with_next('log_in', destination_url) response = self.client.get(self.url) self.assertEqual(response.status_code, 200) self.assertTemplateUsed(response, 'log_in.html') form = response.context['form'] next = response.context['next'] self.assertTrue(isinstance(form, LogInForm)) self.assertFalse(form.is_bound) self.assertEqual(next, destination_url) messages_list = list(response.context['messages']) self.assertEqual(len(messages_list), 0) def test_get_log_in_redirects_when_logged_in(self): self.client.login(username=self.user.username, password="Password123") response = self.client.get(self.url, follow=True) redirect_url = reverse('feed') self.assertRedirects(response, redirect_url, status_code=302, target_status_code=200) self.assertTemplateUsed(response, 'feed.html') def test_unsuccesful_log_in(self): form_input = {'username': '@johndoe', 'password': 'WrongPassword123'} response = self.client.post(self.url, form_input) self.assertEqual(response.status_code, 200) self.assertTemplateUsed(response, 'log_in.html') form = response.context['form'] self.assertTrue(isinstance(form, LogInForm)) self.assertFalse(form.is_bound) self.assertFalse(self._is_logged_in()) messages_list = list(response.context['messages']) self.assertEqual(len(messages_list), 1) self.assertEqual(messages_list[0].level, messages.ERROR) def test_log_in_with_blank_username(self): form_input = {'username': '', 'password': 'WrongPassword123'} response = self.client.post(self.url, form_input) self.assertEqual(response.status_code, 200) self.assertTemplateUsed(response, 'log_in.html') form = response.context['form'] self.assertTrue(isinstance(form, LogInForm)) self.assertFalse(form.is_bound) self.assertFalse(self._is_logged_in()) messages_list = list(response.context['messages']) self.assertEqual(len(messages_list), 1) self.assertEqual(messages_list[0].level, messages.ERROR) def test_log_in_with_blank_password(self): form_input = {'username': '@johndoe', 'password': ''} response = self.client.post(self.url, form_input) self.assertEqual(response.status_code, 200) self.assertTemplateUsed(response, 'log_in.html') form = response.context['form'] self.assertTrue(isinstance(form, LogInForm)) self.assertFalse(form.is_bound) self.assertFalse(self._is_logged_in()) messages_list = list(response.context['messages']) self.assertEqual(len(messages_list), 1) self.assertEqual(messages_list[0].level, messages.ERROR) def test_succesful_log_in(self): form_input = {'username': '@johndoe', 'password': 'Password123'} response = self.client.post(self.url, form_input, follow=True) self.assertTrue(self._is_logged_in()) response_url = reverse('feed') self.assertRedirects(response, response_url, status_code=302, target_status_code=200) self.assertTemplateUsed(response, 'feed.html') messages_list = list(response.context['messages']) self.assertEqual(len(messages_list), 0) # self.assert_menu(response) def test_succesful_log_in_with_redirect(self): redirect_url = reverse('feed') form_input = {'username': '@johndoe', 'password': 'Password123', 'next': redirect_url} response = self.client.post(self.url, form_input, follow=True) self.assertTrue(self._is_logged_in()) self.assertRedirects(response, redirect_url, status_code=302, target_status_code=200) self.assertTemplateUsed(response, 'feed.html') messages_list = list(response.context['messages']) self.assertEqual(len(messages_list), 0) def test_post_log_in_redirects_when_logged_in(self): self.client.login(username=self.user.username, password="Password123") form_input = {'username': '@wronguser', 'password': 'WrongPassword123'} response = self.client.post(self.url, form_input, follow=True) redirect_url = reverse('feed') self.assertRedirects(response, redirect_url, status_code=302, target_status_code=200) self.assertTemplateUsed(response, 'feed.html') def test_post_log_in_with_incorrect_credentials_and_redirect(self): redirect_url = reverse('feed') form_input = {'username': '@johndoe', 'password': 'WrongPassword123', 'next': redirect_url} response = self.client.post(self.url, form_input) next = response.context['next'] self.assertEqual(next, redirect_url) def test_valid_log_in_by_inactive_user(self): self.user.is_active = False self.user.save() form_input = {'username': '@johndoe', 'password': 'Password123'} response = self.client.post(self.url, form_input, follow=True) self.assertEqual(response.status_code, 200) self.assertTemplateUsed(response, 'log_in.html') form = response.context['form'] self.assertTrue(isinstance(form, LogInForm)) self.assertFalse(form.is_bound) self.assertFalse(self._is_logged_in()) messages_list = list(response.context['messages']) self.assertEqual(len(messages_list), 1) self.assertEqual(messages_list[0].level, messages.ERROR)
import sys import tkinter as tk import tkinter.font as tk_font from tkinter import messagebox def beep(): print("\a", end="") sys.stdout.flush() class BoardValues(): """ Board values.""" none = 0 loss = 1 draw = 2 unknown = 3 win = 4 class SkillLevels(): """ Skill levels.""" random = 0 beginner = 1 advanced = 2 class App: def kill_callback(self): self.window.destroy() def __init__(self): self.x0 = 0 self.y0 = 0 self.tree_links = [] self.walls = [] # Make the widgets. self.window = tk.Tk() self.window.title("tic_tac_toe") self.window.protocol("WM_DELETE_WINDOW", self.kill_callback) self.window.geometry("355x342") # Control area. menubar = tk.Menu(self.window) game_menu = tk.Menu(menubar, tearoff=False) game_menu.add_command(label="Play X", command=self.play_x, underline=5) game_menu.add_command(label="Play O", command=self.play_o, underline=5) game_menu.add_separator() game_menu.add_command(label="Exit", command=self.window.destroy, underline=0) menubar.add_cascade(label="Game", menu=game_menu) level_menu = tk.Menu(menubar, tearoff=False) self.skill_level = tk.IntVar() level_menu.add_radiobutton(label="Random", variable=self.skill_level, value=int(SkillLevels.random)) level_menu.add_radiobutton(label="Beginner", variable=self.skill_level, value=int(SkillLevels.beginner)) level_menu.add_radiobutton(label="Advanced", variable=self.skill_level, value=int(SkillLevels.advanced)) self.skill_level.set(SkillLevels.random) menubar.add_cascade(label="Level", menu=level_menu) # Build the board. font = tk_font.Font(size=65) sq_width = 2 sq_height = 1 padx = 5 pady = 5 row = 1 self.squares = [[None for c in range(3)] for r in range(3)] self.squares[0][0] = tk.Label(self.window, width=sq_width, height=sq_height, bg="white", text="00", borderwidth=2, relief=tk.SUNKEN, font=font) self.squares[0][0].grid(padx=padx, pady=pady, row=row, column=0) self.squares[0][0].bind("<Button-1>", lambda event: self.square_clicked(event, (0, 0))) self.squares[0][1] = tk.Label(self.window, width=sq_width, height=sq_height, bg="white", text="01", borderwidth=2, relief=tk.SUNKEN, font=font) self.squares[0][1].grid(padx=padx, pady=pady, row=row, column=1) self.squares[0][1].bind("<Button-1>", lambda event: self.square_clicked(event, (0, 1))) self.squares[0][2] = tk.Label(self.window, width=sq_width, height=sq_height, bg="white", text="02", borderwidth=2, relief=tk.SUNKEN, font=font) self.squares[0][2].grid(padx=padx, pady=pady, row=row, column=2) self.squares[0][2].bind("<Button-1>", lambda event: self.square_clicked(event, (0, 2))) row += 1 self.squares[1][0] = tk.Label(self.window, width=sq_width, height=sq_height, bg="white", text="10", borderwidth=2, relief=tk.SUNKEN, font=font) self.squares[1][0].grid(padx=padx, pady=pady, row=row, column=0) self.squares[1][0].bind("<Button-1>", lambda event: self.square_clicked(event, (1, 0))) self.squares[1][1] = tk.Label(self.window, width=sq_width, height=sq_height, bg="white", text="11", borderwidth=2, relief=tk.SUNKEN, font=font) self.squares[1][1].grid(padx=padx, pady=pady, row=row, column=1) self.squares[1][1].bind("<Button-1>", lambda event: self.square_clicked(event, (1, 1))) self.squares[1][2] = tk.Label(self.window, width=sq_width, height=sq_height, bg="white", text="12", borderwidth=2, relief=tk.SUNKEN, font=font) self.squares[1][2].grid(padx=padx, pady=pady, row=row, column=2) self.squares[1][2].bind("<Button-1>", lambda event: self.square_clicked(event, (1, 2))) row += 1 self.squares[2][0] = tk.Label(self.window, width=sq_width, height=sq_height, bg="white", text="20", borderwidth=2, relief=tk.SUNKEN, font=font) self.squares[2][0].grid(padx=padx, pady=pady, row=row, column=0) self.squares[2][0].bind("<Button-1>", lambda event: self.square_clicked(event, (2, 0))) self.squares[2][1] = tk.Label(self.window, width=sq_width, height=sq_height, bg="white", text="21", borderwidth=2, relief=tk.SUNKEN, font=font) self.squares[2][1].grid(padx=padx, pady=pady, row=row, column=1) self.squares[2][1].bind("<Button-1>", lambda event: self.square_clicked(event, (2, 1))) self.squares[2][2] = tk.Label(self.window, width=sq_width, height=sq_height, bg="white", text="22", borderwidth=2, relief=tk.SUNKEN, font=font) self.squares[2][2].grid(padx=padx, pady=pady, row=row, column=2) self.squares[2][2].bind("<Button-1>", lambda event: self.square_clicked(event, (2, 2))) # Bind some shortcut keys. self.window.bind_all("<Control-x>", self.shortcut_play_x) self.window.bind_all("<Control-o>", self.shortcut_play_o) # Prepare for a game. self.play_x() # Force focus so Alt+F4 closes this window and not the Python shell. self.window.focus_force() self.window.config(menu=menubar) self.window.mainloop() def shortcut_play_x(self, event): self.play_x() def shortcut_play_o(self, event): self.play_o() def play_x(self): self.reset_game("X", "O") def play_o(self): self.reset_game("O", "X") # Let the computer move. self.make_computer_move() def reset_game(self, player, computer): """ Prepare for a new game.""" self.board = [[" " for r in range(3)] for c in range(3)] for r in range(3): for c in range(3): self.squares[r][c]["text"] = "" self.board[r][c] = " " self.user_player = player self.computer_player = computer self.current_player = "X" self.num_squares_taken = 0 def square_clicked(self, event, rc): """ The user clicked a square.""" # See if a game is in progress. if self.current_player == " ": return # Get the row and column. r, c = rc # See if the spot is already taken. if self.board[r][c] != " ": beep() return # Take this square. self.board[r][c] = self.current_player self.squares[r][c]["text"] = self.current_player self.num_squares_taken += 1 # See if there is a winner. if self.is_winner(r, c): self.show_winner() return elif self.num_squares_taken == 9: # We have a cat's game. self.show_cats_game() return # Switch players. self.current_player = self.computer_player # Let the computer move. self.make_computer_move() def is_winner(self, r, c): """ Return true if the player who just took spare [r, c] has won.""" player = self.board[r][c] if ((player == self.board[r][0]) and \ (player == self.board[r][1]) and \ (player == self.board[r][2])): return True if ((player == self.board[0][c]) and \ (player == self.board[1][c]) and \ (player == self.board[2][c])): return True if ((r == c) or (r + c == 2)): if ((player == self.board[0][0]) and \ (player == self.board[1][1]) and \ (player == self.board[2][2])): return True if ((player == self.board[0][2]) and \ (player == self.board[1][1]) and \ (player == self.board[2][0])): return True return False def show_winner(self): """ Display a winner message.""" text = f"{self.current_player} Wins!" messagebox.showinfo(text, text) self.current_player = " " def show_cats_game(self): text = "It's a tie!" messagebox.showinfo(text, text) self.current_player = " " def make_computer_move(self): """ Make the computer take a move.""" # Check the skill level. skill_level = self.skill_level.get() if skill_level == SkillLevels.random: # Random moves. best_r, best_c = self.random_move() # print("Random") elif skill_level == SkillLevels.beginner: # Minimax looking 3 moves ahead. best_value, best_r, best_c = self.board_value(self.computer_player, self.user_player, 1, 3) # print("Beginner") else: # Minimax looking 9 moves ahead. best_value, best_r, best_c = self.board_value(self.computer_player, self.user_player, 1, 9) # print("Advanced") # Make the move. self.board[best_r][best_c] = self.computer_player self.squares[best_r][best_c]["text"] = self.computer_player self.num_squares_taken += 1 # See if there is a winner. if self.is_winner(best_r, best_c): self.show_winner() return elif self.num_squares_taken == 9: # We have a cat's game. self.show_cats_game() return # Switch whose move it is. self.current_player = self.user_player def random_move(self): """ Move randomly.""" best_r = -1 best_c = -1 # Pick a random move. move = random.randint(0, 9 - self.num_squares_taken) # Find that move. for row in range(3): for col in range(3): if self.board[row][col] == " ": move -= 1 if move < 0: best_r = row best_c = col break if best_r >= 0: break return best_r, best_c def board_value(self, player1, player2, depth, max_depth): """ Find the best board value for player1.""" # If we are too deep, then we don't know. if (depth > max_depth) or (self.num_squares_taken == 9): return BoardValues.unknown, -1, -1 # Track the worst move for player2. player2_value = BoardValues.win # Make test moves. for row in range(3): for col in range(3): # See if this move is taken. if self.board[row][col] == ' ': # Try this move. self.board[row][col] = player1 self.num_squares_taken += 1 # See if this gives player1 a win. if self.is_winner(row, col): # This gives player1 a win and therefore player2 a loss. # Take this move. best_r = row best_c = col player2_value = BoardValues.loss else: # Recursively try moves for player2. test_r = -1 test_c = -1 test_value = BoardValues.none test_value, test_r, test_c = self.board_value(player2, player1, depth + 1, max_depth) # See if this is an improvement for player 2. if player2_value >= test_value: best_r = row best_c = col player2_value = test_value # Undo the move. self.board[row][col] = " " self.num_squares_taken -= 1 # If player2 will lose, stop searching. if player2_value == BoardValues.loss: break # If player2 will lose, stop searching. if player2_value == BoardValues.loss: break # We now know the worst we can force player2 to do. # Convert that into a board value for player1. if player2_value == BoardValues.loss: best_value = BoardValues.win elif player2_value == BoardValues.win: best_value = BoardValues.loss else: best_value = player2_value return best_value, best_r, best_c if __name__ == '__main__': app = App() # app.root.destroy()
from django.db import models # Create your models here. class Task(models.Model): task_name = models.CharField(max_length= 200) task_desc = models.CharField(max_length= 200) date_created = models.DateTimeField(auto_now=True) completed = models.BooleanField(default=False) image = models.ImageField(upload_to='Images/', default='Images/None/No0img.jpg')
""" Module used for initializing plots to draw histograms. """ import numpy as np import matplotlib.pyplot as plt import const def init_bar_plot(): """ Initialize histogram stacked bar plot. """ _fig, axis = plt.subplots() axis.set_title('Stacked bar plot histogram (BGR)') axis.set_xlabel('Bin') axis.set_ylabel('Frequency (num of pixels)') axis.set_ylim(0, 700000) _n, _bins, bars_blue = axis.hist(0, const.BINS, rwidth=const.BAR_WIDTH, histtype='bar', stacked=True, color='blue', label='Blue') _n, _bins, bars_green = axis.hist(0, const.BINS, rwidth=const.BAR_WIDTH, histtype='bar', stacked=True, color='green', label='Green') _n, _bins, bars_red = axis.hist(0, const.BINS, rwidth=const.BAR_WIDTH, histtype='bar', stacked=True, color='red', label='Red') axis.legend() return bars_blue, bars_green, bars_red def init_line_plot(): """ Initialize line plot histogram of all 3 channels """ _fig, axis = plt.subplots() axis.set_title('Line histogram (BGR)') axis.set_xlabel('Bin') axis.set_ylabel('Frequency (num of pixels)') axis.set_xlim(0, const.MAX_PIXEL_VAL-1) axis.set_ylim(0, 54000) line_blue, = axis.plot(const.FULL_BINS, np.zeros((const.MAX_PIXEL_VAL,)), color='b', label='Blue') line_green, = axis.plot(const.FULL_BINS, np.zeros((const.MAX_PIXEL_VAL,)), color='g', label='Green') line_red, = axis.plot(const.FULL_BINS, np.zeros((const.MAX_PIXEL_VAL,)), color='r', label='Red') axis.legend() return line_blue, line_green, line_red def turn_on_interactive_and_show(): """ Turn on interactive plotting and show plot. """ plt.ion() plt.show()
from flask import Flask, send_from_directory def loader(app: Flask): """ This function is to create multiple static files based on the ``STATICFILES`` configuration. """ staticfiles = app.config.get("STATICFILES", []) for static in staticfiles: path, endpoint, static_folder = static static_host = None if len(static) == 4: static_host = static[-1] def serve_static(filename): cache_timeout = app.get_send_file_max_age(filename) return send_from_directory( static_folder, filename, cache_timeout=cache_timeout ) app.add_url_rule( path.rstrip("/") + "/<path:filename>", endpoint=endpoint, host=static_host, view_func=serve_static, )
from .. import core from .mixin import ArrayMixin class NumpyArray(ArrayMixin, core.NumpyArray): """An underlying numpy array. .. versionadded:: (cfdm) 1.7.0 """ def __getitem__(self, indices): """Returns a subspace of the array as a numpy array. x.__getitem__(indices) <==> x[indices] The indices that define the subspace must be either `Ellipsis` or a sequence that contains an index for each dimension. In the latter case, each dimension's index must either be a `slice` object or a sequence of two or more integers. Indexing is similar to numpy indexing. The only difference to numpy indexing (given the restrictions on the type of indices allowed) is: * When two or more dimension's indices are sequences of integers then these indices work independently along each dimension (similar to the way vector subscripts work in Fortran). .. versionadded:: (cfdm) 1.7.0 """ return self.get_subspace( self._get_component("array"), indices, copy=True ) def to_memory(self): """Bring an array on disk into memory and retain it there. There is no change to an array that is already in memory. .. versionadded:: (cfdm) 1.7.0 :Returns: `{{class}}` The array that is stored in memory. **Examples:** >>> b = a.to_memory() """ return self
import pytest from backend.blockchain.blockchain import Blockchain from backend.blockchain.block import GENESIS_DATA @pytest.fixture def blockchain(): return Blockchain() @pytest.fixture def foo_chain(blockchain): for i in range(3): blockchain.add_block(i) return blockchain def test_blockchain(blockchain): assert blockchain.chain[0].hash == GENESIS_DATA["hash"] def test_add_block(blockchain): data = "foo" blockchain.add_block(data) assert blockchain.chain[-1].data == data def test_blockchain_vlidity(blockchain, foo_chain): blockchain.blockchain_validity(foo_chain.chain) def test_bad_genesis_block(blockchain, foo_chain): foo_chain.chain[0].data = "foo" with pytest.raises(Exception, match="The chain does not begin with the genesis block !!!"): blockchain.blockchain_validity(foo_chain.chain) def test_replace_chain(foo_chain): blockchain = Blockchain() blockchain.replace_chain(foo_chain.chain) assert blockchain.chain == foo_chain.chain def test_replace_chain_shorter_chain(foo_chain): blockchain = Blockchain() with pytest.raises(Exception, match="The chain must be longer than the existing chain !!!"): foo_chain.replace_chain(blockchain.chain) def test_replace_chain_bad_chain(foo_chain): blockchain = Blockchain() foo_chain.chain[1].data = "foo" with pytest.raises(Exception, match="The chain is invalid:"): blockchain.replace_chain(foo_chain.chain)
# -*- coding: utf-8 -*- import os import pytest from Bio.Seq import Seq import numpy as numpy from neoRNA.io.mut_count_io import MutCountIO parametrize = pytest.mark.parametrize class TestMutRateIO(object): fileDir = os.path.dirname(os.path.realpath('__file__')) __EXAMPLE_FILENAME = 'tests/io/example_files/mutation_rate_example.csv' __EXAMPLE_FILE_PATH = os.path.join(fileDir, __EXAMPLE_FILENAME) __SEQUENCE = Seq('GGGAGCCTGCCCTCTGATCTCTGCCTGTTCCTCTGTCCCACAGAGGGCAAAGGCTACGGGTCAGAGAGCGGGGAGGAGGACGGTGCCGGTTTCG') def test_init(self): mut_rate_record = MutCountIO(self.__SEQUENCE) assert mut_rate_record is not None def test_initWithRatesList(self): mut_rate_record = MutCountIO(self.__SEQUENCE) rates_list = [0.1, 0.2, 0.3] mut_rate_record.rates = rates_list assert mut_rate_record is not None assert mut_rate_record.rates.size == 3 def test_initWithFileLoad(self): mut_rate_record = MutCountIO(self.__SEQUENCE, self.__EXAMPLE_FILE_PATH) assert mut_rate_record is not None def test_ratesParsing(self): mut_rate_record = MutCountIO(self.__SEQUENCE, self.__EXAMPLE_FILE_PATH) assert len(str(self.__SEQUENCE)) == mut_rate_record.rates.size def test_ratesFixing(self): mut_rate_record = MutCountIO(self.__SEQUENCE, self.__EXAMPLE_FILE_PATH) rates = mut_rate_record.rates assert rates[0] == -999 fixed_rates = mut_rate_record.get_fixed_rates() assert fixed_rates[0] == 0 def test_ACOnlyRates(self): sequence_string = 'ACGTATG' rates_list = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, -999] mut_rate_record = MutCountIO(Seq(sequence_string)) mut_rate_record.rates = rates_list assert mut_rate_record.get_ac_only_rates().tolist() == [0.1, 0.2, -999.0, -999.0, 0.5, -999.0, -999.0]
import pytest import requests def test_swagger(): model_endpoint = 'http://localhost:5000/swagger.json' r = requests.get(url=model_endpoint) assert r.status_code == 200 assert r.headers['Content-Type'] == 'application/json' json = r.json() assert 'swagger' in json assert json.get('info') and json.get('info').get('title') == 'MAX Audio Classifier' assert json.get('info').get('version') == '1.1.0' assert json.get('info').get('description') == 'Identify sounds in short audio clips' def test_metadata(): model_endpoint = 'http://localhost:5000/model/metadata' r = requests.get(url=model_endpoint) assert r.status_code == 200 metadata = r.json() assert metadata['id'] == 'audio_embeddings-tf-imagenet' assert metadata['name'] == 'audio_embeddings TensorFlow Model' assert metadata['description'] == 'audio_embeddings TensorFlow model trained on Audio Set' assert metadata['license'] == 'Apache 2.0' def test_predict(): model_endpoint = 'http://localhost:5000/model/predict' file_path = 'assets/birds1.wav' with open(file_path, 'rb') as file: file_form = {'audio': (file_path, file, 'audio/wav')} r = requests.post(url=model_endpoint, files=file_form) assert r.status_code == 200 response = r.json() assert response['status'] == 'ok' assert response['predictions'][0]['label_id'] == '/m/015p6' assert response['predictions'][0]['label'] == 'Bird' assert response['predictions'][0]['probability'] > 0.4 def test_empty_filter(): model_endpoint = 'http://localhost:5000/model/predict?filter=' file_path = 'assets/gunshots.wav' with open(file_path, 'rb') as file: file_form = {'audio': (file_path, file, 'audio/wav')} r = requests.post(url=model_endpoint, files=file_form) assert r.status_code == 200 response = r.json() assert response['status'] == 'ok' assert len(response['predictions']) >= 5 assert response['predictions'][0]['label_id'] == '/m/032s66' assert response['predictions'][0]['label'] == 'Gunshot, gunfire' assert response['predictions'][0]['probability'] > 0.5 def test_multi_empty_filter(): model_endpoint = 'http://localhost:5000/model/predict?filter=,,' file_path = 'assets/gunshots.wav' with open(file_path, 'rb') as file: file_form = {'audio': (file_path, file, 'audio/wav')} r = requests.post(url=model_endpoint, files=file_form) assert r.status_code == 200 response = r.json() assert response['status'] == 'ok' assert len(response['predictions']) >= 5 assert response['predictions'][0]['label_id'] == '/m/032s66' assert response['predictions'][0]['label'] == 'Gunshot, gunfire' assert response['predictions'][0]['probability'] > 0.5 def test_filter(): model_endpoint = 'http://localhost:5000/model/predict?filter=Cap%20gun' file_path = 'assets/gunshots.wav' with open(file_path, 'rb') as file: file_form = {'audio': (file_path, file, 'audio/wav')} r = requests.post(url=model_endpoint, files=file_form) assert r.status_code == 200 response = r.json() assert response['status'] == 'ok' assert len(response['predictions']) == 1 assert response['predictions'][0]['label_id'] == '/m/073cg4' assert response['predictions'][0]['label'] == 'Cap gun' assert response['predictions'][0]['probability'] > 0.2 def test_multi_filter(): model_endpoint = 'http://localhost:5000/model/predict?filter=Clang,Ding' file_path = 'assets/gunshots.wav' with open(file_path, 'rb') as file: file_form = {'audio': (file_path, file, 'audio/wav')} r = requests.post(url=model_endpoint, files=file_form) assert r.status_code == 200 response = r.json() assert response['status'] == 'ok' assert len(response['predictions']) == 2 assert response['predictions'][0]['label_id'] == '/m/07rv4dm' assert response['predictions'][0]['label'] == 'Clang' assert response['predictions'][0]['probability'] > 0.1 assert response['predictions'][1]['label_id'] == '/m/07phxs1' assert response['predictions'][1]['label'] == 'Ding' assert response['predictions'][1]['probability'] > 0.09 if __name__ == '__main__': pytest.main([__file__])
# -*- coding: utf-8 -*- import os import sys import argparse # env sys.path.append('/usr/lib/python2.7/dist-packages/') sys.path.append('/usr/lib/python2.7/') sys.path.append('/usr/local/lib/python2.7/dist-packages/') sys.path.append('/data2/django_1.8/') sys.path.append('/data2/django_projects/') sys.path.append('/data2/django_third/') os.environ.setdefault("DJANGO_SETTINGS_MODULE", "djczech.settings") from django.conf import settings from djczech.reconciliation.data.models import Cheque from djzbar.utils.informix import get_session from djtools.fields import TODAY from datetime import date, datetime from itertools import islice from sqlalchemy import exc """ Shell script that munges CSV data """ import csv EARL = settings.INFORMIX_EARL # set up command-line options desc = """ Accepts as input a CSV file """ parser = argparse.ArgumentParser(description=desc) parser.add_argument( "-f", "--file", help="File name.", dest="phile" ) parser.add_argument( "-d", "--date", help="Import date format: 1891-05-01", dest="date" ) parser.add_argument( "--test", action='store_true', help="Dry run?", dest="test" ) def main(): """ main function """ # convert date to datetime import_date = datetime.strptime(date, "%Y-%m-%d") print "import_date = {}".format(import_date) # for some reason we set jbpayee equal to the import date # plus user info jbpayee = "{}_{}".format( TODAY, settings.ADMINS[0][0] ) # CSV headers fieldnames = ( "jbstatus_date", "jbstatus", "jbamount", "jbaccount", "jbchkno", "jbpayee" ) # remove all lines up to and including the headers line with open(phile, "r") as f: n = 0 for line in f.readlines(): n += 1 if 'As of date' in line: # line in which field names was found break f.close() f = islice(open(phile, "r"), n, None) # read the CSV file reader = csv.DictReader(f, fieldnames, delimiter=',') # create database session if test: print EARL print settings.IMPORT_STATUS session = get_session(EARL) session.autoflush = False x = 0 for r in reader: # convert amount from string to float and strip dollar sign try: jbamount = float(r["jbamount"][1:].replace(',','')) except: jbamount = 0 # status date try: jbstatus_date = datetime.strptime( r["jbstatus_date"], "%m/%d/%Y" ) except: jbstatus_date = None # check number try: cheque_number = int(r["jbchkno"]) except: cheque_number = 0 # create a Cheque object cheque = Cheque( jbimprt_date=import_date, jbstatus_date=jbstatus_date, jbchkno=cheque_number, jbchknolnk=cheque_number, jbstatus=settings.IMPORT_STATUS, jbaction="", jbaccount=r["jbaccount"], jbamount=jbamount, jbamountlnk=jbamount, jbpayee=jbpayee ) # missing fields: jbissue_date, jbpostd_dat if test: print "{}) {}".format(x, cheque.__dict__) else: # insert the data try: session.add(cheque) session.flush() except exc.SQLAlchemyError as e: print e print "Bad data: {}".format(cheque.__dict__) session.rollback() x += 1 if not test: session.commit() # fin print "Checks processed: {}".format(x) session.close() ###################### # shell command line ###################### if __name__ == "__main__": args = parser.parse_args() phile = args.phile date = args.date test = args.test if not phile or not date: print "mandatory options are missing: file name and date\n" parser.print_help() exit(-1) sys.exit(main())
#! /usr/bin/env python3 ''' Problem 33 - Project Euler http://projecteuler.net/index.php?section=problems&id=033 ''' from math import gcd from fractions import Fraction from functools import reduce from operator import mul def is_digit_cancelling_fraction_pair(i, j): i_s = str(i) j_s = str(j) for s in i_s: if s in j_s and i_s[0] != i_s[1] and j_s[0] != j_s[1]: i2 = int(i_s.replace(s,'')) j2 = int(j_s.replace(s,'')) if i % 10 != 0 and j % 10 != 0 and Fraction(i,j) == Fraction(i2,j2): return True return False if __name__ == '__main__': pairs = [(i, j) for i in range(10, 100) for j in range(i+1,100)] p2 = list(filter(lambda x: is_digit_cancelling_fraction_pair(*x), pairs)) print(p2) print(reduce(mul, map(lambda x: Fraction(x[0], x[1]), p2)).denominator)
# -*- coding: utf-8 -*- r""" Finite State Machines, Automata, Transducers This module adds support for finite state machines, automata and transducers. See classes :class:`Automaton` and :class:`Transducer` (or the more general class :class:`FiniteStateMachine`) and the :ref:`examples <finite_state_machine_examples>` below for details creating one. Contents ======== :class:`FiniteStateMachine` and derived classes :class:`Transducer` and :class:`Automaton` ------------------------------------------------------------------------------------------ Accessing parts of a finite state machine ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ .. csv-table:: :class: contentstable :widths: 30, 70 :delim: | :meth:`~FiniteStateMachine.state` | Get a state by its label :meth:`~FiniteStateMachine.states` | List of states :meth:`~FiniteStateMachine.iter_states` | Iterator over the states :meth:`~FiniteStateMachine.initial_states` | List of initial states :meth:`~FiniteStateMachine.iter_initial_states` | Iterator over initial states :meth:`~FiniteStateMachine.final_states` | List of final states :meth:`~FiniteStateMachine.iter_final_states` | Iterator over final states :meth:`~FiniteStateMachine.transition` | Get a transition by its states and labels :meth:`~FiniteStateMachine.transitions` | List of transitions :meth:`~FiniteStateMachine.iter_transitions` | Iterator over the transitions :meth:`~FiniteStateMachine.predecessors` | List of predecessors of a state :meth:`~FiniteStateMachine.induced_sub_finite_state_machine` | Induced sub-machine :meth:`~FiniteStateMachine.accessible_components` | Accessible components :meth:`~FiniteStateMachine.final_components` | Final components (connected components which cannot be left again) (Modified) Copies ^^^^^^^^^^^^^^^^^ .. csv-table:: :class: contentstable :widths: 30, 70 :delim: | :meth:`~FiniteStateMachine.empty_copy` | Returns an empty deep copy :meth:`~FiniteStateMachine.deepcopy` | Returns a deep copy :meth:`~FiniteStateMachine.relabeled` | Returns a relabeled deep copy Manipulation ^^^^^^^^^^^^ .. csv-table:: :class: contentstable :widths: 30, 70 :delim: | :meth:`~FiniteStateMachine.add_state` | Add a state :meth:`~FiniteStateMachine.add_states` | Add states :meth:`~FiniteStateMachine.delete_state` | Delete a state :meth:`~FiniteStateMachine.add_transition` | Add a transition :meth:`~FiniteStateMachine.add_transitions_from_function` | Add transitions :attr:`~FiniteStateMachine.on_duplicate_transition` | Hook for handling duplicate transitions :meth:`~FiniteStateMachine.add_from_transition_function` | Add transitions by a transition function :meth:`~FiniteStateMachine.delete_transition` | Delete a transition :meth:`~FiniteStateMachine.remove_epsilon_transitions` | Remove epsilon transitions (not implemented) :meth:`~FiniteStateMachine.split_transitions` | Split transitions with input words of length ``> 1`` :meth:`~FiniteStateMachine.determine_alphabets` | Determines input and output alphabets :meth:`~FiniteStateMachine.construct_final_word_out` | Construct final output by implicitly reading trailing letters; cf. :meth:`~FiniteStateMachine.with_final_word_out` Properties ^^^^^^^^^^ .. csv-table:: :class: contentstable :widths: 30, 70 :delim: | :meth:`~FiniteStateMachine.has_state` | Checks for a state :meth:`~FiniteStateMachine.has_initial_state` | Checks for an initial state :meth:`~FiniteStateMachine.has_initial_states` | Checks for initial states :meth:`~FiniteStateMachine.has_final_state` | Checks for an final state :meth:`~FiniteStateMachine.has_final_states` | Checks for final states :meth:`~FiniteStateMachine.has_transition` | Checks for a transition :meth:`~FiniteStateMachine.is_deterministic` | Checks for a deterministic machine :meth:`~FiniteStateMachine.is_complete` | Checks for a complete machine :meth:`~FiniteStateMachine.is_connected` | Checks for a connected machine :meth:`~FiniteStateMachine.is_Markov_chain` | Checks for a Markov chain :meth:`~FiniteStateMachine.is_monochromatic` | Checks whether the colors of all states are equal :meth:`~FiniteStateMachine.asymptotic_moments` | Main terms of expectation and variance of sums of labels Operations ^^^^^^^^^^ .. csv-table:: :class: contentstable :widths: 30, 70 :delim: | :meth:`~FiniteStateMachine.disjoint_union` | Disjoint union (not implemented) :meth:`~FiniteStateMachine.concatenation` | Concatenation (not implemented) :meth:`~FiniteStateMachine.Kleene_closure` | Kleene closure (not implemented) :meth:`Automaton.intersection` | Intersection of automata :meth:`Transducer.intersection` | Intersection of transducers :meth:`Transducer.cartesian_product` | Cartesian product of a transducer with another finite state machine :meth:`~FiniteStateMachine.product_FiniteStateMachine` | Product of finite state machines :meth:`~FiniteStateMachine.composition` | Composition (output of other is input of self) :meth:`~FiniteStateMachine.input_projection` | Input projection (output is deleted) :meth:`~FiniteStateMachine.output_projection` | Output projection (old output is new input) :meth:`~FiniteStateMachine.projection` | Input or output projection :meth:`~FiniteStateMachine.transposition` | Transposition (all transitions are reversed) :meth:`~FiniteStateMachine.with_final_word_out` | Machine with final output constructed by implicitly reading trailing letters, cf. :meth:`~FiniteStateMachine.construct_final_word_out` for inplace version :meth:`Automaton.determinisation` | Determinisation of an automaton :meth:`~FiniteStateMachine.process` | Process input :meth:`Automaton.process` | Process input of an automaton (output differs from general case) :meth:`Transducer.process` | Process input of a transducer (output differs from general case) :meth:`~FiniteStateMachine.iter_process` | Return process iterator Simplification ^^^^^^^^^^^^^^ .. csv-table:: :class: contentstable :widths: 30, 70 :delim: | :meth:`~FiniteStateMachine.prepone_output` | Prepone output where possible :meth:`~FiniteStateMachine.equivalence_classes` | List of equivalent states :meth:`~FiniteStateMachine.quotient` | Quotient with respect to equivalence classes :meth:`~FiniteStateMachine.merged_transitions` | Merge transitions while adding input :meth:`~FiniteStateMachine.markov_chain_simplification` | Simplification of a Markov chain :meth:`Automaton.minimization` | Minimization of an automaton :meth:`Transducer.simplification` | Simplification of a transducer Conversion ^^^^^^^^^^ .. csv-table:: :class: contentstable :widths: 30, 70 :delim: | :meth:`~FiniteStateMachine.adjacency_matrix` | (Weighted) adjacency :class:`matrix <Matrix>` :meth:`~FiniteStateMachine.graph` | Underlying :class:`DiGraph` :meth:`~FiniteStateMachine.plot` | Plot LaTeX output ++++++++++++ .. csv-table:: :class: contentstable :widths: 30, 70 :delim: | :meth:`~FiniteStateMachine.latex_options` | Set options :meth:`~FiniteStateMachine.set_coordinates` | Set coordinates of the states :meth:`~FiniteStateMachine.default_format_transition_label` | Default formatting of words in transition labels :meth:`~FiniteStateMachine.format_letter_negative` | Format negative numbers as overlined number :meth:`~FiniteStateMachine.format_transition_label_reversed` | Format words in transition labels in reversed order :class:`FSMState` ----------------- .. csv-table:: :class: contentstable :widths: 30, 70 :delim: | :attr:`~FSMState.final_word_out` | Final output of a state :attr:`~FSMState.is_final` | Describes whether a state is final or not :attr:`~FSMState.is_initial` | Describes whether a state is initial or not :meth:`~FSMState.label` | Label of a state :meth:`~FSMState.relabeled` | Returns a relabeled deep copy of a state :meth:`~FSMState.fully_equal` | Checks whether two states are fully equal (including all attributes) :class:`FSMTransition` ---------------------- .. csv-table:: :class: contentstable :widths: 30, 70 :delim: | :attr:`~FSMTransition.from_state` | State in which transition starts :attr:`~FSMTransition.to_state` | State in which transition ends :attr:`~FSMTransition.word_in` | Input word of the transition :attr:`~FSMTransition.word_out` | Output word of the transition :meth:`~FSMTransition.deepcopy` | Returns a deep copy of the transition Helper Functions ---------------- .. csv-table:: :class: contentstable :widths: 30, 70 :delim: | :func:`equal` | Checks whether all elements of ``iterator`` are equal :func:`full_group_by` | Group iterable by values of some key :func:`startswith` | Determine whether list starts with the given prefix :func:`FSMLetterSymbol` | Returns a string associated to the input letter :func:`FSMWordSymbol` | Returns a string associated to a word :func:`is_FSMState` | Tests whether an object inherits from :class:`FSMState` :func:`is_FSMTransition` | Tests whether an object inherits from :class:`FSMTransition` :func:`is_FiniteStateMachine` | Tests whether an object inherits from :class:`FiniteStateMachine` :func:`duplicate_transition_ignore` | Default function for handling duplicate transitions :func:`duplicate_transition_raise_error` | Raise error when inserting a duplicate transition :func:`duplicate_transition_add_input` | Add input when inserting a duplicate transition .. _finite_state_machine_examples: Examples ======== We start with a general :class:`FiniteStateMachine`. Later there will be also an :class:`Automaton` and a :class:`Transducer`. A simple finite state machine ----------------------------- We can easily create a finite state machine by :: sage: fsm = FiniteStateMachine() sage: fsm Finite state machine with 0 states By default this is the empty finite state machine, so not very interesting. Let's create and add some states and transitions:: sage: day = fsm.add_state('day') sage: night = fsm.add_state('night') sage: sunrise = fsm.add_transition(night, day) sage: sunset = fsm.add_transition(day, night) Let us look at ``sunset`` more closely:: sage: sunset Transition from 'day' to 'night': -|- Note that could also have created and added the transitions directly by:: sage: fsm.add_transition('day', 'night') Transition from 'day' to 'night': -|- This would have had added the states automatically, since they are present in the transitions. Anyhow, we got the following finite state machine:: sage: fsm Finite state machine with 2 states We can also obtain the underlying directed graph by :: sage: fsm.graph() Digraph on 2 vertices To visualize a finite state machine, we can use :func:`~sage.misc.latex.latex` and run the result through LaTeX, see the section on :ref:`finite_state_machine_LaTeX_output` below. Alternatively, we could have created the finite state machine above simply by :: sage: FiniteStateMachine([('night', 'day'), ('day', 'night')]) Finite state machine with 2 states See :class:`FiniteStateMachine` for a lot of possibilities to create finite state machines. .. _finite_state_machine_recognizing_NAFs_example: A simple Automaton (recognizing NAFs) --------------------------------------- We want to build an automaton which recognizes non-adjacent forms (NAFs), i.e., sequences which have no adjacent non-zeros. We use `0`, `1`, and `-1` as digits:: sage: NAF = Automaton( ....: {'A': [('A', 0), ('B', 1), ('B', -1)], 'B': [('A', 0)]}) sage: NAF.state('A').is_initial = True sage: NAF.state('A').is_final = True sage: NAF.state('B').is_final = True sage: NAF Automaton with 2 states Of course, we could have specified the initial and final states directly in the definition of ``NAF`` by ``initial_states=['A']`` and ``final_states=['A', 'B']``. So let's test the automaton with some input:: sage: sage.combinat.finite_state_machine.FSMOldProcessOutput = False # activate new output behavior sage: NAF([0]) True sage: NAF([0, 1]) True sage: NAF([1, -1]) False sage: NAF([0, -1, 0, 1]) True sage: NAF([0, -1, -1, -1, 0]) False sage: NAF([-1, 0, 0, 1, 1]) False Alternatively, we could call that by :: sage: NAF.process([0, -1, 0, 1]) (True, 'B') which gives additionally the state in which we arrived. .. _finite_state_machine_LaTeX_output: LaTeX output ------------ We can visualize a finite state machine by converting it to LaTeX by using the usual function :func:`~sage.misc.latex.latex`. Within LaTeX, TikZ is used for typesetting the graphics, see the :wikipedia:`PGF/TikZ`. :: sage: print latex(NAF) \begin{tikzpicture}[auto, initial text=, >=latex] \node[state, accepting, initial] (v0) at (3.000000, 0.000000) {$\text{\texttt{A}}$}; \node[state, accepting] (v1) at (-3.000000, 0.000000) {$\text{\texttt{B}}$}; \path[->] (v0) edge[loop above] node {$0$} (); \path[->] (v0.185.00) edge node[rotate=360.00, anchor=north] {$1, -1$} (v1.355.00); \path[->] (v1.5.00) edge node[rotate=0.00, anchor=south] {$0$} (v0.175.00); \end{tikzpicture} We can turn this into a graphical representation. :: sage: view(NAF) # not tested To actually see this, use the live documentation in the Sage notebook and execute the cells in this and the previous section. Several options can be set to customize the output, see :meth:`~FiniteStateMachine.latex_options` for details. In particular, we use :meth:`~FiniteStateMachine.format_letter_negative` to format `-1` as `\overline{1}`. :: sage: NAF.latex_options( ....: coordinates={'A': (0, 0), ....: 'B': (6, 0)}, ....: initial_where={'A': 'below'}, ....: format_letter=NAF.format_letter_negative, ....: format_state_label=lambda x: ....: r'\mathcal{%s}' % x.label() ....: ) sage: print latex(NAF) \begin{tikzpicture}[auto, initial text=, >=latex] \node[state, accepting, initial, initial where=below] (v0) at (0.000000, 0.000000) {$\mathcal{A}$}; \node[state, accepting] (v1) at (6.000000, 0.000000) {$\mathcal{B}$}; \path[->] (v0) edge[loop above] node {$0$} (); \path[->] (v0.5.00) edge node[rotate=0.00, anchor=south] {$1, \overline{1}$} (v1.175.00); \path[->] (v1.185.00) edge node[rotate=360.00, anchor=north] {$0$} (v0.355.00); \end{tikzpicture} sage: view(NAF) # not tested A simple transducer (binary inverter) ------------------------------------- Let's build a simple transducer, which rewrites a binary word by iverting each bit:: sage: inverter = Transducer({'A': [('A', 0, 1), ('A', 1, 0)]}, ....: initial_states=['A'], final_states=['A']) We can look at the states and transitions:: sage: inverter.states() ['A'] sage: for t in inverter.transitions(): ....: print t Transition from 'A' to 'A': 0|1 Transition from 'A' to 'A': 1|0 Now we apply a word to it and see what the transducer does:: sage: inverter([0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1]) [1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0] ``True`` means, that we landed in a final state, that state is labeled ``'A'``, and we also got an output. A transducer which performs division by `3` in binary ----------------------------------------------------- Now we build a transducer, which divides a binary number by `3`. The labels of the states are the remainder of the division. The transition function is :: sage: def f(state_from, read): ....: if state_from + read <= 1: ....: state_to = 2*state_from + read ....: write = 0 ....: else: ....: state_to = 2*state_from + read - 3 ....: write = 1 ....: return (state_to, write) which assumes reading a binary number from left to right. We get the transducer with :: sage: D = Transducer(f, initial_states=[0], final_states=[0], ....: input_alphabet=[0, 1]) Let us try to divide `12` by `3`:: sage: D([1, 1, 0, 0]) [0, 1, 0, 0] Now we want to divide `13` by `3`:: sage: D([1, 1, 0, 1]) Traceback (most recent call last): ... ValueError: Invalid input sequence. The raised ``ValueError`` means `13` is not divisible by `3`. .. _finite_state_machine_gray_code_example: Gray Code --------- The Gray code is a binary :wikipedia:`numeral system <Numeral_system>` where two successive values differ in only one bit, cf. the :wikipedia:`Gray_code`. The Gray code of an integer `n` is obtained by a bitwise xor between the binary expansion of `n` and the binary expansion of `\lfloor n/2\rfloor`; the latter corresponds to a shift by one position in binary. The purpose of this example is to construct a transducer converting the standard binary expansion to the Gray code by translating this construction into operations with transducers. For this construction, the least significant digit is at the left-most position. Note that it is easier to shift everything to the right first, i.e., multiply by `2` instead of building `\lfloor n/2\rfloor`. Then, we take the input xor with the right shift of the input and forget the first letter. We first construct a transducer shifting the binary expansion to the right. This requires storing the previously read digit in a state. :: sage: def shift_right_transition(state, digit): ....: if state == 'I': ....: return (digit, None) ....: else: ....: return (digit, state) sage: shift_right_transducer = Transducer( ....: shift_right_transition, ....: initial_states=['I'], ....: input_alphabet=[0, 1], ....: final_states=[0]) sage: shift_right_transducer.transitions() [Transition from 'I' to 0: 0|-, Transition from 'I' to 1: 1|-, Transition from 0 to 0: 0|0, Transition from 0 to 1: 1|0, Transition from 1 to 0: 0|1, Transition from 1 to 1: 1|1] sage: sage.combinat.finite_state_machine.FSMOldProcessOutput = False sage: shift_right_transducer([0, 1, 1, 0]) [0, 1, 1] sage: shift_right_transducer([1, 0, 0]) [1, 0] The output of the shifts above look a bit weird (from a right-shift transducer, we would expect, for example, that ``[1, 0, 0]`` was mapped to ``[0, 1, 0]``), since we write ``None`` instead of the zero at the left. Further, note that only `0` is listed as a final state as we have to enforce that a most significant zero is read as the last input letter in order to flush the last digit:: sage: shift_right_transducer([0, 1, 0, 1]) Traceback (most recent call last): ... ValueError: Invalid input sequence. Next, we construct the transducer performing the xor operation. We also have to take ``None`` into account as our ``shift_right_transducer`` waits one iteration until it starts writing output. This corresponds with our intention to forget the first letter. :: sage: def xor_transition(state, digits): ....: if digits[0] is None or digits[1] is None: ....: return (0, None) ....: else: ....: return (0, digits[0].__xor__(digits[1])) sage: from itertools import product sage: xor_transducer = Transducer( ....: xor_transition, ....: initial_states=[0], ....: final_states=[0], ....: input_alphabet=list(product([None, 0, 1], [0, 1]))) sage: xor_transducer.transitions() [Transition from 0 to 0: (None, 0)|-, Transition from 0 to 0: (None, 1)|-, Transition from 0 to 0: (0, 0)|0, Transition from 0 to 0: (0, 1)|1, Transition from 0 to 0: (1, 0)|1, Transition from 0 to 0: (1, 1)|0] sage: xor_transducer([(None, 0), (None, 1), (0, 0), (0, 1), (1, 0), (1, 1)]) [0, 1, 1, 0] sage: xor_transducer([(0, None)]) Traceback (most recent call last): ... ValueError: Invalid input sequence. The transducer computing the Gray code is then constructed as a :meth:`cartesian product <Transducer.cartesian_product>` between the shifted version and the original input (represented here by the ``shift_right_transducer`` and the :meth:`identity transducer <sage.combinat.finite_state_machine_generators.TransducerGenerators.Identity>`, respectively). This cartesian product is then fed into the ``xor_transducer`` as a :meth:`composition <FiniteStateMachine.composition>` of transducers. As described in :meth:`Transducer.cartesian_product`, we have to temporarily set ``finite_state_machine.FSMOldCodeTransducerCartesianProduct`` to ``False`` in order to disable backwards compatible code. :: sage: sage.combinat.finite_state_machine.FSMOldCodeTransducerCartesianProduct = False sage: product_transducer = shift_right_transducer.cartesian_product(transducers.Identity([0, 1])) sage: sage.combinat.finite_state_machine.FSMOldCodeTransducerCartesianProduct = True sage: Gray_transducer = xor_transducer(product_transducer) We use :meth:`~FiniteStateMachine.construct_final_word_out` to make sure that all output is written; otherwise, we would have to make sure that a sufficient number of trailing zeros is read. :: sage: Gray_transducer.construct_final_word_out([0]) sage: Gray_transducer.transitions() [Transition from (('I', 0), 0) to ((0, 0), 0): 0|-, Transition from (('I', 0), 0) to ((1, 0), 0): 1|-, Transition from ((0, 0), 0) to ((0, 0), 0): 0|0, Transition from ((0, 0), 0) to ((1, 0), 0): 1|1, Transition from ((1, 0), 0) to ((0, 0), 0): 0|1, Transition from ((1, 0), 0) to ((1, 0), 0): 1|0] There is a :meth:`prepackaged transducer <sage.combinat.finite_state_machine_generators.TransducerGenerators.GrayCode>` for Gray code, let's see whether they agree. We have to use :meth:`~FiniteStateMachine.relabeled` to relabel our states with integers. :: sage: constructed = Gray_transducer.relabeled() sage: packaged = transducers.GrayCode() sage: constructed == packaged True Finally, we check that this indeed computes the Gray code of the first 10 non-negative integers. :: sage: for n in srange(10): ....: Gray_transducer(n.bits()) [] [1] [1, 1] [0, 1] [0, 1, 1] [1, 1, 1] [1, 0, 1] [0, 0, 1] [0, 0, 1, 1] [1, 0, 1, 1] Using the hook-functions ------------------------ Let's use the previous example "divison by `3`" to demonstrate the optional state and transition parameters ``hook``. First, we define, what those functions should do. In our case, this is just saying in which state we are and which transition we take :: sage: def state_hook(state, process): ....: print "We are now in State %s." % (state.label(),) sage: from sage.combinat.finite_state_machine import FSMWordSymbol sage: def transition_hook(transition, process): ....: print ("Currently we go from %s to %s, " ....: "reading %s and writing %s." % ( ....: transition.from_state, transition.to_state, ....: FSMWordSymbol(transition.word_in), ....: FSMWordSymbol(transition.word_out))) Now, let's add these hook-functions to the existing transducer:: sage: for s in D.iter_states(): ....: s.hook = state_hook sage: for t in D.iter_transitions(): ....: t.hook = transition_hook Rerunning the process again now gives the following output:: sage: D.process([1, 1, 0, 1]) We are now in State 0. Currently we go from 0 to 1, reading 1 and writing 0. We are now in State 1. Currently we go from 1 to 0, reading 1 and writing 1. We are now in State 0. Currently we go from 0 to 0, reading 0 and writing 0. We are now in State 0. Currently we go from 0 to 1, reading 1 and writing 0. We are now in State 1. (False, 1, [0, 1, 0, 0]) The example above just explains the basic idea of using hook-functions. In the following, we will use those hooks more seriously. Detecting sequences with same number of `0` and `1` --------------------------------------------------- Suppose we have a binary input and want to accept all sequences with the same number of `0` and `1`. This cannot be done with a finite automaton. Anyhow, we can make usage of the hook functions to extend our finite automaton by a counter:: sage: from sage.combinat.finite_state_machine import FSMState, FSMTransition sage: C = FiniteStateMachine() sage: def update_counter(state, process): ....: l = process.read_letter() ....: process.fsm.counter += 1 if l == 1 else -1 ....: if process.fsm.counter > 0: ....: next_state = 'positive' ....: elif process.fsm.counter < 0: ....: next_state = 'negative' ....: else: ....: next_state = 'zero' ....: return FSMTransition(state, process.fsm.state(next_state), ....: l, process.fsm.counter) sage: C.add_state(FSMState('zero', hook=update_counter, ....: is_initial=True, is_final=True)) 'zero' sage: C.add_state(FSMState('positive', hook=update_counter)) 'positive' sage: C.add_state(FSMState('negative', hook=update_counter)) 'negative' Now, let's input some sequence:: sage: C.counter = 0; C([1, 1, 1, 1, 0, 0]) (False, 'positive', [1, 2, 3, 4, 3, 2]) The result is False, since there are four `1` but only two `0`. We land in the state ``positive`` and we can also see the values of the counter in each step. Let's try some other examples:: sage: C.counter = 0; C([1, 1, 0, 0]) (True, 'zero', [1, 2, 1, 0]) sage: C.counter = 0; C([0, 1, 0, 0]) (False, 'negative', [-1, 0, -1, -2]) See also methods :meth:`Automaton.process` and :meth:`Transducer.process` (or even :meth:`FiniteStateMachine.process`), the explanation of the parameter ``hook`` and the examples in :class:`FSMState` and :class:`FSMTransition`, and the description and examples in :class:`FSMProcessIterator` for more information on processing and hooks. AUTHORS: - Daniel Krenn (2012-03-27): initial version - Clemens Heuberger (2012-04-05): initial version - Sara Kropf (2012-04-17): initial version - Clemens Heuberger (2013-08-21): release candidate for Sage patch - Daniel Krenn (2013-08-21): release candidate for Sage patch - Sara Kropf (2013-08-21): release candidate for Sage patch - Clemens Heuberger (2013-09-02): documentation improved - Daniel Krenn (2013-09-13): comments from trac worked in - Clemens Heuberger (2013-11-03): output (labels) of determinisation, product, composition, etc. changed (for consistency), representation of state changed, documentation improved - Daniel Krenn (2013-11-04): whitespaces in documentation corrected - Clemens Heuberger (2013-11-04): full_group_by added - Daniel Krenn (2013-11-04): next release candidate for Sage patch - Sara Kropf (2013-11-08): fix for adjacency matrix - Clemens Heuberger (2013-11-11): fix for prepone_output - Daniel Krenn (2013-11-11): comments from trac #15078 included: docstring of FiniteStateMachine rewritten, Automaton and Transducer inherited from FiniteStateMachine - Daniel Krenn (2013-11-25): documentation improved according to comments from trac #15078 - Clemens Heuberger, Daniel Krenn, Sara Kropf (2014-02-21--2014-07-18): A huge bunch of improvements. Details see #15841, #15847, #15848, #15849, #15850, #15922, #15923, #15924, #15925, #15928, #15960, #15961, #15962, #15963, #15975, #16016, #16024, #16061, #16128, #16132, #16138, #16139, #16140, #16143, #16144, #16145, #16146, #16191, #16200, #16205, #16206, #16207, #16229, #16253, #16254, #16255, #16266, #16355, #16357, #16387, #16425, #16539, #16555, #16557, #16588, #16589, #16666, #16668, #16674, #16675, #16677. ACKNOWLEDGEMENT: - Clemens Heuberger, Daniel Krenn and Sara Kropf are supported by the Austrian Science Fund (FWF): P 24644-N26. Methods ======= """ #***************************************************************************** # Copyright (C) 2012--2014 Clemens Heuberger <clemens.heuberger@aau.at> # 2012--2014 Daniel Krenn <dev@danielkrenn.at> # 2012--2014 Sara Kropf <sara.kropf@aau.at> # # Distributed under the terms of the GNU General Public License (GPL) # as published by the Free Software Foundation; either version 2 of # the License, or (at your option) any later version. # http://www.gnu.org/licenses/ #***************************************************************************** from sage.structure.sage_object import SageObject from sage.graphs.digraph import DiGraph from sage.matrix.constructor import matrix from sage.rings.integer_ring import ZZ from sage.rings.real_mpfr import RR from sage.symbolic.ring import SR from sage.calculus.var import var from sage.misc.cachefunc import cached_function from sage.misc.latex import latex from sage.misc.misc import verbose from sage.functions.trig import cos, sin, atan2 from sage.symbolic.constants import pi from copy import copy from copy import deepcopy import itertools from itertools import imap from collections import defaultdict, OrderedDict def full_group_by(l, key=lambda x: x): """ Group iterable ``l`` by values of ``key``. INPUT: - iterable ``l`` - key function ``key`` OUTPUT: A list of pairs ``(k, elements)`` such that ``key(e)=k`` for all ``e`` in ``elements``. This is similar to ``itertools.groupby`` except that lists are returned instead of iterables and no prior sorting is required. We do not require - that the keys are sortable (in contrast to the approach via ``sorted`` and ``itertools.groupby``) and - that the keys are hashable (in contrast to the implementation proposed in `<http://stackoverflow.com/a/15250161>`_). However, it is required - that distinct keys have distinct ``str``-representations. The implementation is inspired by `<http://stackoverflow.com/a/15250161>`_, but non-hashable keys are allowed. EXAMPLES:: sage: from sage.combinat.finite_state_machine import full_group_by sage: t = [2/x, 1/x, 2/x] sage: r = full_group_by([0, 1, 2], key=lambda i:t[i]) sage: sorted(r, key=lambda p:p[1]) [(2/x, [0, 2]), (1/x, [1])] sage: from itertools import groupby sage: for k, elements in groupby(sorted([0, 1, 2], ....: key=lambda i:t[i]), ....: key=lambda i:t[i]): ....: print k, list(elements) 2/x [0] 1/x [1] 2/x [2] Note that the behavior is different from ``itertools.groupby`` because neither `1/x<2/x` nor `2/x<1/x` does hold. Here, the result ``r`` has been sorted in order to guarantee a consistent order for the doctest suite. """ elements = defaultdict(list) original_keys = {} for item in l: k = key(item) s = str(k) if s in original_keys: if original_keys[s]!=k: raise ValueError("Two distinct elements with representation " "%s " % s) else: original_keys[s]=k elements[s].append(item) return [(original_keys[s], values ) for (s, values) in elements.items()] def equal(iterator): """ Checks whether all elements of ``iterator`` are equal. INPUT: - ``iterator`` -- an iterator of the elements to check OUTPUT: ``True`` or ``False``. This implements `<http://stackoverflow.com/a/3844832/1052778>`_. EXAMPLES:: sage: from sage.combinat.finite_state_machine import equal sage: equal([0, 0, 0]) True sage: equal([0, 1, 0]) False sage: equal([]) True sage: equal(iter([None, None])) True We can test other properties of the elements than the elements themselves. In the following example, we check whether all tuples have the same lengths:: sage: equal(len(x) for x in [(1, 2), (2, 3), (3, 1)]) True sage: equal(len(x) for x in [(1, 2), (1, 2, 3), (3, 1)]) False """ try: iterator = iter(iterator) first = next(iterator) return all(first == rest for rest in iterator) except StopIteration: return True def startswith(list, prefix): """ Determine whether list starts with the given prefix. INPUT: - ``list`` -- list - ``prefix`` -- list representing the prefix OUTPUT: ``True`` or ``False``. Similar to :meth:`str.startswith`. EXAMPLES:: sage: from sage.combinat.finite_state_machine import startswith sage: startswith([1, 2, 3], [1, 2]) True sage: startswith([1], [1, 2]) False sage: startswith([1, 3, 2], [1, 2]) False """ return list[:len(prefix)] == prefix #***************************************************************************** FSMEmptyWordSymbol = '-' EmptyWordLaTeX = r'\varepsilon' EndOfWordLaTeX = r'\$' FSMOldCodeTransducerCartesianProduct = True FSMOldProcessOutput = True # See trac #16132 (deprecation). tikz_automata_where = {"right": 0, "above": 90, "left": 180, "below": 270} def FSMLetterSymbol(letter): """ Returns a string associated to the input letter. INPUT: - ``letter`` -- the input letter or ``None`` (representing the empty word). OUTPUT: If ``letter`` is ``None`` the symbol for the empty word ``FSMEmptyWordSymbol`` is returned, otherwise the string associated to the letter. EXAMPLES:: sage: from sage.combinat.finite_state_machine import FSMLetterSymbol sage: FSMLetterSymbol(0) '0' sage: FSMLetterSymbol(None) '-' """ return FSMEmptyWordSymbol if letter is None else repr(letter) def FSMWordSymbol(word): """ Returns a string of ``word``. It may returns the symbol of the empty word ``FSMEmptyWordSymbol``. INPUT: - ``word`` -- the input word. OUTPUT: A string of ``word``. EXAMPLES:: sage: from sage.combinat.finite_state_machine import FSMWordSymbol sage: FSMWordSymbol([0, 1, 1]) '0,1,1' """ if not isinstance(word, list): return FSMLetterSymbol(word) if len(word) == 0: return FSMEmptyWordSymbol s = '' for letter in word: s += (',' if len(s) > 0 else '') + FSMLetterSymbol(letter) return s #***************************************************************************** def is_FSMState(S): """ Tests whether or not ``S`` inherits from :class:`FSMState`. TESTS:: sage: from sage.combinat.finite_state_machine import is_FSMState, FSMState sage: is_FSMState(FSMState('A')) True """ return isinstance(S, FSMState) class FSMState(SageObject): """ Class for a state of a finite state machine. INPUT: - ``label`` -- the label of the state. - ``word_out`` -- (default: ``None``) a word that is written when the state is reached. - ``is_initial`` -- (default: ``False``) - ``is_final`` -- (default: ``False``) - ``final_word_out`` -- (default: ``None``) a word that is written when the state is reached as the last state of some input; only for final states. - ``hook`` -- (default: ``None``) A function which is called when the state is reached during processing input. It takes two input parameters: the first is the current state (to allow using the same hook for several states), the second is the current process iterator object (to have full access to everything; e.g. the next letter from the input tape can be read in). It can output the next transition, i.e. the transition to take next. If it returns ``None`` the process iterator chooses. Moreover, this function can raise a ``StopIteration`` exception to stop processing of a finite state machine the input immediately. See also the example below. - ``color`` -- (default: ``None``) In order to distinguish states, they can be given an arbitrary "color" (an arbitrary object). This is used in :meth:`FiniteStateMachine.equivalence_classes`: states of different colors are never considered to be equivalent. Note that :meth:`Automaton.determinisation` requires that ``color`` is hashable. - ``allow_label_None`` -- (default: ``False``) If ``True`` allows also ``None`` as label. Note that a state with label ``None`` is used in :class:`FSMProcessIterator`. OUTPUT: Returns a state of a finite state machine. EXAMPLES:: sage: from sage.combinat.finite_state_machine import FSMState sage: A = FSMState('state 1', word_out=0, is_initial=True) sage: A 'state 1' sage: A.label() 'state 1' sage: B = FSMState('state 2') sage: A == B False We can also define a final output word of a final state which is used if the input of a transducer leads to this state. Such final output words are used in subsequential transducers. :: sage: C = FSMState('state 3', is_final=True, final_word_out='end') sage: C.final_word_out ['end'] The final output word can be a single letter, ``None`` or a list of letters:: sage: A = FSMState('A') sage: A.is_final = True sage: A.final_word_out = 2 sage: A.final_word_out [2] sage: A.final_word_out = [2, 3] sage: A.final_word_out [2, 3] Only final states can have a final output word which is not ``None``:: sage: B = FSMState('B') sage: B.final_word_out is None True sage: B.final_word_out = 2 Traceback (most recent call last): ... ValueError: Only final states can have a final output word, but state B is not final. Setting the ``final_word_out`` of a final state to ``None`` is the same as setting it to ``[]`` and is also the default for a final state:: sage: C = FSMState('C', is_final=True) sage: C.final_word_out [] sage: C.final_word_out = None sage: C.final_word_out [] sage: C.final_word_out = [] sage: C.final_word_out [] It is not allowed to use ``None`` as a label:: sage: from sage.combinat.finite_state_machine import FSMState sage: FSMState(None) Traceback (most recent call last): ... ValueError: Label None reserved for a special state, choose another label. This can be overridden by:: sage: FSMState(None, allow_label_None=True) None Note that :meth:`Automaton.determinisation` requires that ``color`` is hashable:: sage: A = Automaton([[0, 0, 0]], initial_states=[0]) sage: A.state(0).color = [] sage: A.determinisation() Traceback (most recent call last): ... TypeError: unhashable type: 'list' sage: A.state(0).color = () sage: A.determinisation() Automaton with 1 states We can use a hook function of a state to stop processing. This is done by raising a ``StopIteration`` exception. The following code demonstrates this:: sage: T = Transducer([(0, 1, 9, 'a'), (1, 2, 9, 'b'), ....: (2, 3, 9, 'c'), (3, 4, 9, 'd')], ....: initial_states=[0], ....: final_states=[4], ....: input_alphabet=[9]) sage: def stop(current_state, process_iterator): ....: raise StopIteration() sage: T.state(3).hook = stop sage: T.process([9, 9, 9, 9]) (False, 3, ['a', 'b', 'c']) """ is_initial = False """ Describes whether the state is initial. EXAMPLES:: sage: T = Automaton([(0,0,0)]) sage: T.initial_states() [] sage: T.state(0).is_initial = True sage: T.initial_states() [0] """ def __init__(self, label, word_out=None, is_initial=False, is_final=False, final_word_out=None, hook=None, color=None, allow_label_None=False): """ See :class:`FSMState` for more information. EXAMPLES:: sage: from sage.combinat.finite_state_machine import FSMState sage: FSMState('final', is_final=True) 'final' TESTS:: sage: A = FSMState('A', is_final=True) sage: A.final_word_out [] sage: A.is_final = True sage: A = FSMState('A', is_final=True, final_word_out='end') sage: A.final_word_out ['end'] sage: A = FSMState('A', is_final=True, ....: final_word_out=['e', 'n', 'd']) sage: A.final_word_out ['e', 'n', 'd'] sage: A = FSMState('A', is_final=True, final_word_out=[]) sage: A.final_word_out [] sage: A = FSMState('A', is_final=True, final_word_out=None) sage: A.final_word_out [] sage: A = FSMState('A', is_final=False) sage: A.final_word_out is None True sage: A.is_final = False sage: A = FSMState('A', is_final=False, final_word_out='end') Traceback (most recent call last): ... ValueError: Only final states can have a final output word, but state A is not final. sage: A = FSMState('A', is_final=False, ....: final_word_out=['e', 'n', 'd']) Traceback (most recent call last): ... ValueError: Only final states can have a final output word, but state A is not final. sage: A = FSMState('A', is_final=False, final_word_out=None) sage: A.final_word_out is None True sage: A = FSMState('A', is_final=False, final_word_out=[]) Traceback (most recent call last): ... ValueError: Only final states can have a final output word, but state A is not final. """ if not allow_label_None and label is None: raise ValueError("Label None reserved for a special state, " "choose another label.") self._label_ = label if isinstance(word_out, list): self.word_out = word_out elif word_out is not None: self.word_out = [word_out] else: self.word_out = [] self.is_initial = is_initial self._final_word_out_ = None self.is_final = is_final self.final_word_out = final_word_out if hook is not None: if hasattr(hook, '__call__'): self.hook = hook else: raise TypeError('Wrong argument for hook.') self.color = color def __lt__(self, other): """ Returns True if label of ``self`` is less than label of ``other``. INPUT: - `other` -- a state. OUTPUT: True or False. EXAMPLE:: sage: from sage.combinat.finite_state_machine import FSMState sage: FSMState(0) < FSMState(1) True """ return self.label() < other.label() @property def final_word_out(self): """ The final output word of a final state which is written if the state is reached as the last state of the input of the finite state machine. For a non-final state, the value is ``None``. ``final_word_out`` can be a single letter, a list or ``None``, but for a final-state, it is always saved as a list. EXAMPLES:: sage: from sage.combinat.finite_state_machine import FSMState sage: A = FSMState('A', is_final=True, final_word_out=2) sage: A.final_word_out [2] sage: A.final_word_out = 3 sage: A.final_word_out [3] sage: A.final_word_out = [3, 4] sage: A.final_word_out [3, 4] sage: A.final_word_out = None sage: A.final_word_out [] sage: B = FSMState('B') sage: B.final_word_out is None True A non-final state cannot have a final output word:: sage: B.final_word_out = [3, 4] Traceback (most recent call last): ... ValueError: Only final states can have a final output word, but state B is not final. """ return self._final_word_out_ @final_word_out.setter def final_word_out(self, final_word_out): """ Sets the value of the final output word of a final state. INPUT: - ``final_word_out`` -- a list, any element or ``None``. OUTPUT: Nothing. TESTS:: sage: from sage.combinat.finite_state_machine import FSMState sage: B = FSMState('B') sage: B.final_word_out = [] Traceback (most recent call last): ... ValueError: Only final states can have a final output word, but state B is not final. sage: B.final_word_out = None sage: B.final_word_out is None True """ if not self.is_final: if final_word_out is not None: raise ValueError("Only final states can have a " "final output word, but state %s is not final." % (self.label())) else: self._final_word_out_ = None elif isinstance(final_word_out, list): self._final_word_out_ = final_word_out elif final_word_out is not None: self._final_word_out_ = [final_word_out] else: self._final_word_out_ = [] @property def is_final(self): """ Describes whether the state is final or not. ``True`` if the state is final and ``False`` otherwise. EXAMPLES:: sage: from sage.combinat.finite_state_machine import FSMState sage: A = FSMState('A', is_final=True, final_word_out=3) sage: A.is_final True sage: A.is_final = False Traceback (most recent call last): ... ValueError: State A cannot be non-final, because it has a final output word. Only final states can have a final output word. sage: A.final_word_out = None sage: A.is_final = False sage: A.is_final False """ return (self.final_word_out is not None) @is_final.setter def is_final(self, is_final): """ Defines the state as a final state or a non-final state. INPUT: - ``is_final`` -- ``True`` if the state should be final and ``False`` otherwise. OUTPUT: Nothing. TESTS:: sage: from sage.combinat.finite_state_machine import FSMState sage: A = FSMState('A', is_final=True) sage: A.final_word_out [] sage: A.is_final = False sage: A.final_word_out is None True sage: A = FSMState('A', is_final=True, final_word_out='a') sage: A.is_final = False Traceback (most recent call last): ... ValueError: State A cannot be non-final, because it has a final output word. Only final states can have a final output word. sage: A = FSMState('A', is_final=True, final_word_out=[]) sage: A.is_final = False sage: A.final_word_out is None True """ if is_final and self.final_word_out is None: self._final_word_out_ = [] elif not is_final: if not self.final_word_out: self._final_word_out_ = None else: raise ValueError("State %s cannot be non-final, because it " "has a final output word. Only final states " "can have a final output word. " % self.label()) def label(self): """ Returns the label of the state. INPUT: Nothing. OUTPUT: The label of the state. EXAMPLES:: sage: from sage.combinat.finite_state_machine import FSMState sage: A = FSMState('state') sage: A.label() 'state' """ return self._label_ def __copy__(self): """ Returns a (shallow) copy of the state. INPUT: Nothing. OUTPUT: A new state. EXAMPLES:: sage: from sage.combinat.finite_state_machine import FSMState sage: A = FSMState('A') sage: copy(A) 'A' """ new = FSMState(self.label(), self.word_out, self.is_initial, self.is_final, color=self.color, final_word_out=self.final_word_out) if hasattr(self, 'hook'): new.hook = self.hook return new copy = __copy__ def __deepcopy__(self, memo): """ Returns a deep copy of the state. INPUT: - ``memo`` -- a dictionary storing already processed elements. OUTPUT: A new state. EXAMPLES:: sage: from sage.combinat.finite_state_machine import FSMState sage: A = FSMState('A') sage: deepcopy(A) 'A' """ try: label = self._deepcopy_relabel_ except AttributeError: label = deepcopy(self.label(), memo) new = FSMState(label, deepcopy(self.word_out, memo), self.is_initial, self.is_final) if hasattr(self, 'hook'): new.hook = deepcopy(self.hook, memo) new.color = deepcopy(self.color, memo) new.final_word_out = deepcopy(self.final_word_out, memo) return new def deepcopy(self, memo=None): """ Returns a deep copy of the state. INPUT: - ``memo`` -- (default: ``None``) a dictionary storing already processed elements. OUTPUT: A new state. EXAMPLES:: sage: from sage.combinat.finite_state_machine import FSMState sage: A = FSMState((1, 3), color=[1, 2], ....: is_final=True, final_word_out=3) sage: B = deepcopy(A) sage: B (1, 3) sage: B.label == A.label True sage: B.label is A.label False sage: B.color == A.color True sage: B.color is A.color False sage: B.is_final == A.is_final True sage: B.is_final is A.is_final True sage: B.final_word_out == A.final_word_out True sage: B.final_word_out is A.final_word_out False """ return deepcopy(self, memo) def relabeled(self, label, memo=None): """ Returns a deep copy of the state with a new label. INPUT: - ``label`` -- the label of new state. - ``memo`` -- (default: ``None``) a dictionary storing already processed elements. OUTPUT: A new state. EXAMPLES:: sage: from sage.combinat.finite_state_machine import FSMState sage: A = FSMState('A') sage: A.relabeled('B') 'B' """ self._deepcopy_relabel_ = label new = deepcopy(self, memo) del self._deepcopy_relabel_ return new def __hash__(self): """ Returns a hash value for the object. INPUT: Nothing. OUTPUT: The hash of this state. TESTS:: sage: from sage.combinat.finite_state_machine import FSMState sage: A = FSMState('A') sage: hash(A) #random -269909568 """ return hash(self.label()) def _repr_(self): """ Returns the string "label". INPUT: Nothing. OUTPUT: A string. TESTS: sage: from sage.combinat.finite_state_machine import FSMState sage: FSMState('A')._repr_() "'A'" """ return repr(self.label()) def __eq__(left, right): """ Returns True if two states are the same, i.e., if they have the same labels. INPUT: - ``left`` -- a state. - ``right`` -- a state. OUTPUT: True or False. Note that the hooks and whether the states are initial or final are not checked. To fully compare two states (including these attributes), use :meth:`.fully_equal`. As only the labels are used when hashing a state, only the labels can actually be compared by the equality relation. Note that the labels are unique within one finite state machine, so this may only lead to ambiguities when comparing states belonging to different finite state machines. EXAMPLES:: sage: from sage.combinat.finite_state_machine import FSMState sage: A = FSMState('A') sage: B = FSMState('A', is_initial=True) sage: A == B True """ if not is_FSMState(right): return False return left.label() == right.label() def __ne__(left, right): """ Tests for inequality, complement of __eq__. INPUT: - ``left`` -- a state. - ``right`` -- a state. OUTPUT: True or False. EXAMPLES:: sage: from sage.combinat.finite_state_machine import FSMState sage: A = FSMState('A', is_initial=True) sage: B = FSMState('A', is_final=True) sage: A != B False """ return (not (left == right)) def fully_equal(left, right, compare_color=True): """ Checks whether two states are fully equal, i.e., including all attributes except ``hook``. INPUT: - ``left`` -- a state. - ``right`` -- a state. - ``compare_color`` -- If ``True`` (default) colors are compared as well, otherwise not. OUTPUT: ``True`` or ``False``. Note that usual comparison by ``==`` does only compare the labels. EXAMPLES:: sage: from sage.combinat.finite_state_machine import FSMState sage: A = FSMState('A') sage: B = FSMState('A', is_initial=True) sage: A.fully_equal(B) False sage: A == B True sage: A.is_initial = True; A.color = 'green' sage: A.fully_equal(B) False sage: A.fully_equal(B, compare_color=False) True """ color = not compare_color or left.color == right.color return (left.__eq__(right) and left.is_initial == right.is_initial and left.is_final == right.is_final and left.final_word_out == right.final_word_out and left.word_out == right.word_out and color) def __nonzero__(self): """ Returns True. INPUT: Nothing. OUTPUT: True or False. TESTS:: sage: from sage.combinat.finite_state_machine import FSMState sage: FSMState('A').__nonzero__() True """ return True # A state cannot be zero (see __init__) #***************************************************************************** def is_FSMTransition(T): """ Tests whether or not ``T`` inherits from :class:`FSMTransition`. TESTS:: sage: from sage.combinat.finite_state_machine import is_FSMTransition, FSMTransition sage: is_FSMTransition(FSMTransition('A', 'B')) True """ return isinstance(T, FSMTransition) class FSMTransition(SageObject): """ Class for a transition of a finite state machine. INPUT: - ``from_state`` -- state from which transition starts. - ``to_state`` -- state in which transition ends. - ``word_in`` -- the input word of the transitions (when the finite state machine is used as automaton) - ``word_out`` -- the output word of the transitions (when the finite state machine is used as transducer) OUTPUT: A transition of a finite state machine. EXAMPLES:: sage: from sage.combinat.finite_state_machine import FSMState, FSMTransition sage: A = FSMState('A') sage: B = FSMState('B') sage: S = FSMTransition(A, B, 0, 1) sage: T = FSMTransition('A', 'B', 0, 1) sage: T == S True sage: U = FSMTransition('A', 'B', 0) sage: U == T False """ from_state = None """State from which the transition starts. Read-only.""" to_state = None """State in which the transition ends. Read-only.""" word_in = None """Input word of the transition. Read-only.""" word_out = None """Output word of the transition. Read-only.""" def __init__(self, from_state, to_state, word_in=None, word_out=None, hook=None): """ See :class:`FSMTransition` for more information. EXAMPLES:: sage: from sage.combinat.finite_state_machine import FSMTransition sage: FSMTransition('A', 'B', 0, 1) Transition from 'A' to 'B': 0|1 """ if is_FSMState(from_state): self.from_state = from_state else: self.from_state = FSMState(from_state) if is_FSMState(to_state): self.to_state = to_state else: self.to_state = FSMState(to_state) if isinstance(word_in, list): self.word_in = word_in elif word_in is not None: self.word_in = [word_in] else: self.word_in = [] if isinstance(word_out, list): self.word_out = word_out elif word_out is not None: self.word_out = [word_out] else: self.word_out = [] if hook is not None: if hasattr(hook, '__call__'): self.hook = hook else: raise TypeError('Wrong argument for hook.') def __lt__(self, other): """ Returns True if ``self`` is less than ``other`` with respect to the key ``(self.from_state, self.word_in, self.to_state, self.word_out)``. INPUT: - `other` -- a transition. OUTPUT: True or False. EXAMPLE:: sage: from sage.combinat.finite_state_machine import FSMTransition sage: FSMTransition(0,1,0,0) < FSMTransition(1,0,0,0) True """ return (self.from_state, self.word_in, self.to_state, self.word_out) < \ (other.from_state, other.word_in, other.to_state, other.word_out) def __copy__(self): """ Returns a (shallow) copy of the transition. INPUT: Nothing. OUTPUT: A new transition. EXAMPLES:: sage: from sage.combinat.finite_state_machine import FSMTransition sage: t = FSMTransition('A', 'B', 0) sage: copy(t) Transition from 'A' to 'B': 0|- """ new = FSMTransition(self.from_state, self.to_state, self.word_in, self.word_out) if hasattr(self, 'hook'): new.hook = self.hook return new copy = __copy__ def __deepcopy__(self, memo): """ Returns a deep copy of the transition. INPUT: - ``memo`` -- a dictionary storing already processed elements. OUTPUT: A new transition. EXAMPLES:: sage: from sage.combinat.finite_state_machine import FSMTransition sage: t = FSMTransition('A', 'B', 0) sage: deepcopy(t) Transition from 'A' to 'B': 0|- """ new = FSMTransition(deepcopy(self.from_state, memo), deepcopy(self.to_state, memo), deepcopy(self.word_in, memo), deepcopy(self.word_out, memo)) if hasattr(self, 'hook'): new.hook = deepcopy(self.hook, memo) return new def deepcopy(self, memo=None): """ Returns a deep copy of the transition. INPUT: - ``memo`` -- (default: ``None``) a dictionary storing already processed elements. OUTPUT: A new transition. EXAMPLES:: sage: from sage.combinat.finite_state_machine import FSMTransition sage: t = FSMTransition('A', 'B', 0) sage: deepcopy(t) Transition from 'A' to 'B': 0|- """ return deepcopy(self, memo) def __hash__(self): """ Since transitions are mutable, they should not be hashable, so we return a type error. INPUT: Nothing. OUTPUT: The hash of this transition. EXAMPLES:: sage: from sage.combinat.finite_state_machine import FSMTransition sage: hash(FSMTransition('A', 'B')) Traceback (most recent call last): ... TypeError: Transitions are mutable, and thus not hashable. """ raise TypeError("Transitions are mutable, and thus not hashable.") def _repr_(self): """ Represents a transitions as from state to state and input, output. INPUT: Nothing. OUTPUT: A string. EXAMPLES:: sage: from sage.combinat.finite_state_machine import FSMTransition sage: FSMTransition('A', 'B', 0, 0)._repr_() "Transition from 'A' to 'B': 0|0" """ return "Transition from %s to %s: %s" % (repr(self.from_state), repr(self.to_state), self._in_out_label_()) def _in_out_label_(self): """ Returns the input and output of a transition as "word_in|word_out". INPUT: Nothing. OUTPUT: A string of the input and output labels. EXAMPLES:: sage: from sage.combinat.finite_state_machine import FSMTransition sage: FSMTransition('A', 'B', 0, 1)._in_out_label_() '0|1' """ return "%s|%s" % (FSMWordSymbol(self.word_in), FSMWordSymbol(self.word_out)) def __eq__(left, right): """ Returns True if the two transitions are the same, i.e., if the both go from the same states to the same states and read and write the same words. Note that the hooks are not checked. INPUT: - ``left`` -- a transition. - ``right`` -- a transition. OUTPUT: True or False. EXAMPLES:: sage: from sage.combinat.finite_state_machine import FSMState, FSMTransition sage: A = FSMState('A', is_initial=True) sage: t1 = FSMTransition('A', 'B', 0, 1) sage: t2 = FSMTransition(A, 'B', 0, 1) sage: t1 == t2 True """ if not is_FSMTransition(right): raise TypeError('Only instances of FSMTransition ' \ 'can be compared.') return left.from_state == right.from_state \ and left.to_state == right.to_state \ and left.word_in == right.word_in \ and left.word_out == right.word_out def __ne__(left, right): """ INPUT: - ``left`` -- a transition. - ``right`` -- a transition. OUTPUT: True or False. Tests for inequality, complement of __eq__. EXAMPLES:: sage: from sage.combinat.finite_state_machine import FSMState, FSMTransition sage: A = FSMState('A', is_initial=True) sage: t1 = FSMTransition('A', 'B', 0, 1) sage: t2 = FSMTransition(A, 'B', 0, 1) sage: t1 != t2 False """ return (not (left == right)) def __nonzero__(self): """ Returns True. INPUT: Nothing. OUTPUT: True or False. EXAMPLES:: sage: from sage.combinat.finite_state_machine import FSMTransition sage: FSMTransition('A', 'B', 0).__nonzero__() True """ return True # A transition cannot be zero (see __init__) #***************************************************************************** def is_FiniteStateMachine(FSM): """ Tests whether or not ``FSM`` inherits from :class:`FiniteStateMachine`. TESTS:: sage: from sage.combinat.finite_state_machine import is_FiniteStateMachine sage: is_FiniteStateMachine(FiniteStateMachine()) True sage: is_FiniteStateMachine(Automaton()) True sage: is_FiniteStateMachine(Transducer()) True """ return isinstance(FSM, FiniteStateMachine) def duplicate_transition_ignore(old_transition, new_transition): """ Default function for handling duplicate transitions in finite state machines. This implementation ignores the occurrence. See the documentation of the ``on_duplicate_transition`` parameter of :class:`FiniteStateMachine`. INPUT: - ``old_transition`` -- A transition in a finite state machine. - ``new_transition`` -- A transition, identical to ``old_transition``, which is to be inserted into the finite state machine. OUTPUT: The same transition, unchanged. EXAMPLES:: sage: from sage.combinat.finite_state_machine import duplicate_transition_ignore sage: from sage.combinat.finite_state_machine import FSMTransition sage: duplicate_transition_ignore(FSMTransition(0, 0, 1), ....: FSMTransition(0, 0, 1)) Transition from 0 to 0: 1|- """ return old_transition def duplicate_transition_raise_error(old_transition, new_transition): """ Alternative function for handling duplicate transitions in finite state machines. This implementation raises a ``ValueError``. See the documentation of the ``on_duplicate_transition`` parameter of :class:`FiniteStateMachine`. INPUT: - ``old_transition`` -- A transition in a finite state machine. - ``new_transition`` -- A transition, identical to ``old_transition``, which is to be inserted into the finite state machine. OUTPUT: Nothing. A ``ValueError`` is raised. EXAMPLES:: sage: from sage.combinat.finite_state_machine import duplicate_transition_raise_error sage: from sage.combinat.finite_state_machine import FSMTransition sage: duplicate_transition_raise_error(FSMTransition(0, 0, 1), ....: FSMTransition(0, 0, 1)) Traceback (most recent call last): ... ValueError: Attempting to re-insert transition Transition from 0 to 0: 1|- """ raise ValueError("Attempting to re-insert transition %s" % old_transition) def duplicate_transition_add_input(old_transition, new_transition): """ Alternative function for handling duplicate transitions in finite state machines. This implementation adds the input label of the new transition to the input label of the old transition. This is intended for the case where a Markov chain is modelled by a finite state machine using the input labels as transition probabilities. See the documentation of the ``on_duplicate_transition`` parameter of :class:`FiniteStateMachine`. INPUT: - ``old_transition`` -- A transition in a finite state machine. - ``new_transition`` -- A transition, identical to ``old_transition``, which is to be inserted into the finite state machine. OUTPUT: A transition whose input weight is the sum of the input weights of ``old_transition`` and ``new_transition``. EXAMPLES:: sage: from sage.combinat.finite_state_machine import duplicate_transition_add_input sage: from sage.combinat.finite_state_machine import FSMTransition sage: duplicate_transition_add_input(FSMTransition('a', 'a', 1/2), ....: FSMTransition('a', 'a', 1/2)) Transition from 'a' to 'a': 1|- Input labels must be lists of length 1:: sage: duplicate_transition_add_input(FSMTransition('a', 'a', [1, 1]), ....: FSMTransition('a', 'a', [1, 1])) Traceback (most recent call last): ... TypeError: Trying to use duplicate_transition_add_input on "Transition from 'a' to 'a': 1,1|-" and "Transition from 'a' to 'a': 1,1|-", but input words are assumed to be lists of length 1 """ if (hasattr(old_transition.word_in, '__iter__') and len(old_transition.word_in) == 1 and hasattr(new_transition.word_in, '__iter__') and len(new_transition.word_in) == 1): old_transition.word_in = [old_transition.word_in[0] + new_transition.word_in[0]] else: raise TypeError('Trying to use duplicate_transition_add_input on ' + '"%s" and "%s", ' % (old_transition, new_transition) + 'but input words are assumed to be lists of length 1') return old_transition class FiniteStateMachine(SageObject): """ Class for a finite state machine. A finite state machine is a finite set of states connected by transitions. INPUT: - ``data`` -- can be any of the following: #. a dictionary of dictionaries (of transitions), #. a dictionary of lists (of states or transitions), #. a list (of transitions), #. a function (transition function), #. an other instance of a finite state machine. - ``initial_states`` and ``final_states`` -- the initial and final states of this machine - ``input_alphabet`` and ``output_alphabet`` -- the input and output alphabets of this machine - ``determine_alphabets`` -- If ``True``, then the function :meth:`.determine_alphabets` is called after ``data`` was read and processed, if ``False``, then not. If it is ``None``, then it is decided during the construction of the finite state machine whether :meth:`.determine_alphabets` should be called. - ``with_final_word_out`` -- If given (not ``None``), then the function :meth:`.with_final_word_out` (more precisely, its inplace pendant :meth:`.construct_final_word_out`) is called with input ``letters=with_final_word_out`` at the end of the creation process. - ``store_states_dict`` -- If ``True``, then additionally the states are stored in an interal dictionary for speed up. - ``on_duplicate_transition`` -- A function which is called when a transition is inserted into ``self`` which already existed (same ``from_state``, same ``to_state``, same ``word_in``, same ``word_out``). This function is assumed to take two arguments, the first being the already existing transition, the second being the new transition (as an :class:`FSMTransition`). The function must return the (possibly modified) original transition. By default, we have ``on_duplicate_transition=None``, which is interpreted as ``on_duplicate_transition=duplicate_transition_ignore``, where ``duplicate_transition_ignore`` is a predefined function ignoring the occurrence. Other such predefined functions are ``duplicate_transition_raise_error`` and ``duplicate_transition_add_input``. OUTPUT: A finite state machine. The object creation of :class:`Automaton` and :class:`Transducer` is the same as the one described here (i.e. just replace the word ``FiniteStateMachine`` by ``Automaton`` or ``Transducer``). Each transition of an automaton has an input label. Automata can, for example, be determinised (see :meth:`Automaton.determinisation`) and minimized (see :meth:`Automaton.minimization`). Each transition of a transducer has an input and an output label. Transducers can, for example, be simplified (see :meth:`Transducer.simplification`). EXAMPLES:: sage: from sage.combinat.finite_state_machine import FSMState, FSMTransition See documentation for more examples. We illustrate the different input formats: #. The input-data can be a dictionary of dictionaries, where - the keys of the outer dictionary are state-labels (from-states of transitions), - the keys of the inner dictionaries are state-labels (to-states of transitions), - the values of the inner dictionaries specify the transition more precisely. The easiest is to use a tuple consisting of an input and an output word:: sage: FiniteStateMachine({'a':{'b':(0, 1), 'c':(1, 1)}}) Finite state machine with 3 states Instead of the tuple anything iterable (e.g. a list) can be used as well. If you want to use the arguments of :class:`FSMTransition` directly, you can use a dictionary:: sage: FiniteStateMachine({'a':{'b':{'word_in':0, 'word_out':1}, ....: 'c':{'word_in':1, 'word_out':1}}}) Finite state machine with 3 states In the case you already have instances of :class:`FSMTransition`, it is possible to use them directly:: sage: FiniteStateMachine({'a':{'b':FSMTransition('a', 'b', 0, 1), ....: 'c':FSMTransition('a', 'c', 1, 1)}}) Finite state machine with 3 states #. The input-data can be a dictionary of lists, where the keys are states or label of states. The list-elements can be states:: sage: a = FSMState('a') sage: b = FSMState('b') sage: c = FSMState('c') sage: FiniteStateMachine({a:[b, c]}) Finite state machine with 3 states Or the list-elements can simply be labels of states:: sage: FiniteStateMachine({'a':['b', 'c']}) Finite state machine with 3 states The list-elements can also be transitions:: sage: FiniteStateMachine({'a':[FSMTransition('a', 'b', 0, 1), ....: FSMTransition('a', 'c', 1, 1)]}) Finite state machine with 3 states Or they can be tuples of a label, an input word and an output word specifying a transition:: sage: FiniteStateMachine({'a':[('b', 0, 1), ('c', 1, 1)]}) Finite state machine with 3 states #. The input-data can be a list, where its elements specify transitions:: sage: FiniteStateMachine([FSMTransition('a', 'b', 0, 1), ....: FSMTransition('a', 'c', 1, 1)]) Finite state machine with 3 states It is possible to skip ``FSMTransition`` in the example above:: sage: FiniteStateMachine([('a', 'b', 0, 1), ('a', 'c', 1, 1)]) Finite state machine with 3 states The parameters of the transition are given in tuples. Anyhow, anything iterable (e.g. a list) is possible. You can also name the parameters of the transition. For this purpose you take a dictionary:: sage: FiniteStateMachine([{'from_state':'a', 'to_state':'b', ....: 'word_in':0, 'word_out':1}, ....: {'from_state':'a', 'to_state':'c', ....: 'word_in':1, 'word_out':1}]) Finite state machine with 3 states Other arguments, which :class:`FSMTransition` accepts, can be added, too. #. The input-data can also be function acting as transition function: This function has two input arguments: #. a label of a state (from which the transition starts), #. a letter of the (input-)alphabet (as input-label of the transition). It returns a tuple with the following entries: #. a label of a state (to which state the transition goes), #. a letter of or a word over the (output-)alphabet (as output-label of the transition). It may also output a list of such tuples if several transitions from the from-state and the input letter exist (this means that the finite state machine is non-deterministic). If the transition does not exist, the function should raise a ``LookupError`` or return an empty list. When constructing a finite state machine in this way, some inital states and an input alphabet have to be specified. :: sage: def f(state_from, read): ....: if int(state_from) + read <= 2: ....: state_to = 2*int(state_from)+read ....: write = 0 ....: else: ....: state_to = 2*int(state_from) + read - 5 ....: write = 1 ....: return (str(state_to), write) sage: F = FiniteStateMachine(f, input_alphabet=[0, 1], ....: initial_states=['0'], ....: final_states=['0']) sage: F([1, 0, 1]) (True, '0', [0, 0, 1]) #. The input-data can be an other instance of a finite state machine:: sage: FiniteStateMachine(FiniteStateMachine([])) Traceback (most recent call last): ... NotImplementedError The following examples demonstrate the use of ``on_duplicate_transition``:: sage: F = FiniteStateMachine([['a', 'a', 1/2], ['a', 'a', 1/2]]) sage: F.transitions() [Transition from 'a' to 'a': 1/2|-] :: sage: from sage.combinat.finite_state_machine import duplicate_transition_raise_error sage: F1 = FiniteStateMachine([['a', 'a', 1/2], ['a', 'a', 1/2]], ....: on_duplicate_transition=duplicate_transition_raise_error) Traceback (most recent call last): ... ValueError: Attempting to re-insert transition Transition from 'a' to 'a': 1/2|- Use ``duplicate_transition_add_input`` to emulate a Markov chain, the input labels are considered as transition probabilities:: sage: from sage.combinat.finite_state_machine import duplicate_transition_add_input sage: F = FiniteStateMachine([['a', 'a', 1/2], ['a', 'a', 1/2]], ....: on_duplicate_transition=duplicate_transition_add_input) sage: F.transitions() [Transition from 'a' to 'a': 1|-] Use ``with_final_word_out`` to construct final output:: sage: T = Transducer([(0, 1, 0, 0), (1, 0, 0, 0)], ....: initial_states=[0], ....: final_states=[0], ....: with_final_word_out=0) sage: for s in T.iter_final_states(): ....: print s, s.final_word_out 0 [] 1 [0] TESTS:: sage: a = FSMState('S_a', 'a') sage: b = FSMState('S_b', 'b') sage: c = FSMState('S_c', 'c') sage: d = FSMState('S_d', 'd') sage: FiniteStateMachine({a:[b, c], b:[b, c, d], ....: c:[a, b], d:[a, c]}) Finite state machine with 4 states We have several constructions which lead to the same finite state machine:: sage: A = FSMState('A') sage: B = FSMState('B') sage: C = FSMState('C') sage: FSM1 = FiniteStateMachine( ....: {A:{B:{'word_in':0, 'word_out':1}, ....: C:{'word_in':1, 'word_out':1}}}) sage: FSM2 = FiniteStateMachine({A:{B:(0, 1), C:(1, 1)}}) sage: FSM3 = FiniteStateMachine( ....: {A:{B:FSMTransition(A, B, 0, 1), ....: C:FSMTransition(A, C, 1, 1)}}) sage: FSM4 = FiniteStateMachine({A:[(B, 0, 1), (C, 1, 1)]}) sage: FSM5 = FiniteStateMachine( ....: {A:[FSMTransition(A, B, 0, 1), FSMTransition(A, C, 1, 1)]}) sage: FSM6 = FiniteStateMachine( ....: [{'from_state':A, 'to_state':B, 'word_in':0, 'word_out':1}, ....: {'from_state':A, 'to_state':C, 'word_in':1, 'word_out':1}]) sage: FSM7 = FiniteStateMachine([(A, B, 0, 1), (A, C, 1, 1)]) sage: FSM8 = FiniteStateMachine( ....: [FSMTransition(A, B, 0, 1), FSMTransition(A, C, 1, 1)]) sage: FSM1 == FSM2 == FSM3 == FSM4 == FSM5 == FSM6 == FSM7 == FSM8 True It is possible to skip ``FSMTransition`` in the example above. Some more tests for different input-data:: sage: FiniteStateMachine({'a':{'a':[0, 0], 'b':[1, 1]}, ....: 'b':{'b':[1, 0]}}) Finite state machine with 2 states sage: a = FSMState('S_a', 'a') sage: b = FSMState('S_b', 'b') sage: c = FSMState('S_c', 'c') sage: d = FSMState('S_d', 'd') sage: t1 = FSMTransition(a, b) sage: t2 = FSMTransition(b, c) sage: t3 = FSMTransition(b, d) sage: t4 = FSMTransition(c, d) sage: FiniteStateMachine([t1, t2, t3, t4]) Finite state machine with 4 states """ on_duplicate_transition = duplicate_transition_ignore """ Which function to call when a duplicate transition is inserted. See the documentation of the parameter ``on_duplicate_transition`` of the class :class:`FiniteStateMachine` for details. """ #************************************************************************* # init #************************************************************************* def __init__(self, data=None, initial_states=None, final_states=None, input_alphabet=None, output_alphabet=None, determine_alphabets=None, with_final_word_out=None, store_states_dict=True, on_duplicate_transition=None): """ See :class:`FiniteStateMachine` for more information. TEST:: sage: FiniteStateMachine() Finite state machine with 0 states """ self._states_ = [] # List of states in the finite state # machine. Each state stores a list of # outgoing transitions. if store_states_dict: self._states_dict_ = {} if initial_states is not None: if not hasattr(initial_states, '__iter__'): raise TypeError('Initial states must be iterable ' \ '(e.g. a list of states).') for s in initial_states: state = self.add_state(s) state.is_initial = True if final_states is not None: if not hasattr(final_states, '__iter__'): raise TypeError('Final states must be iterable ' \ '(e.g. a list of states).') for s in final_states: state = self.add_state(s) state.is_final = True self.input_alphabet = input_alphabet self.output_alphabet = output_alphabet if on_duplicate_transition is None: on_duplicate_transition = duplicate_transition_ignore if hasattr(on_duplicate_transition, '__call__'): self.on_duplicate_transition=on_duplicate_transition else: raise TypeError('on_duplicate_transition must be callable') if data is None: pass elif is_FiniteStateMachine(data): raise NotImplementedError elif hasattr(data, 'iteritems'): # data is a dict (or something similar), # format: key = from_state, value = iterator of transitions for (sf, iter_transitions) in data.iteritems(): self.add_state(sf) if hasattr(iter_transitions, 'iteritems'): for (st, transition) in iter_transitions.iteritems(): self.add_state(st) if is_FSMTransition(transition): self.add_transition(transition) elif hasattr(transition, 'iteritems'): self.add_transition(sf, st, **transition) elif hasattr(transition, '__iter__'): self.add_transition(sf, st, *transition) else: self.add_transition(sf, st, transition) elif hasattr(iter_transitions, '__iter__'): for transition in iter_transitions: if hasattr(transition, '__iter__'): L = [sf] L.extend(transition) elif is_FSMTransition(transition): L = transition else: L = [sf, transition] self.add_transition(L) else: raise TypeError('Wrong input data for transition.') if determine_alphabets is None and input_alphabet is None \ and output_alphabet is None: determine_alphabets = True elif hasattr(data, '__iter__'): # data is a something that is iterable, # items are transitions for transition in data: if is_FSMTransition(transition): self.add_transition(transition) elif hasattr(transition, 'iteritems'): self.add_transition(transition) elif hasattr(transition, '__iter__'): self.add_transition(transition) else: raise TypeError('Wrong input data for transition.') if determine_alphabets is None and input_alphabet is None \ and output_alphabet is None: determine_alphabets = True elif hasattr(data, '__call__'): self.add_from_transition_function(data) else: raise TypeError('Cannot decide what to do with data.') if determine_alphabets: self.determine_alphabets() if with_final_word_out is not None: self.construct_final_word_out(with_final_word_out) self._allow_composition_ = True #************************************************************************* # copy and hash #************************************************************************* def __copy__(self): """ Returns a (shallow) copy of the finite state machine. INPUT: Nothing. OUTPUT: A new finite state machine. TESTS:: sage: copy(FiniteStateMachine()) Traceback (most recent call last): ... NotImplementedError """ raise NotImplementedError copy = __copy__ def empty_copy(self, memo=None, new_class=None): """ Returns an empty deep copy of the finite state machine, i.e., ``input_alphabet``, ``output_alphabet``, ``on_duplicate_transition`` are preserved, but states and transitions are not. INPUT: - ``memo`` -- a dictionary storing already processed elements. - ``new_class`` -- a class for the copy. By default (``None``), the class of ``self`` is used. OUTPUT: A new finite state machine. EXAMPLES:: sage: from sage.combinat.finite_state_machine import duplicate_transition_raise_error sage: F = FiniteStateMachine([('A', 'A', 0, 2), ('A', 'A', 1, 3)], ....: input_alphabet=[0, 1], ....: output_alphabet=[2, 3], ....: on_duplicate_transition=duplicate_transition_raise_error) sage: FE = F.empty_copy(); FE Finite state machine with 0 states sage: FE.input_alphabet [0, 1] sage: FE.output_alphabet [2, 3] sage: FE.on_duplicate_transition == duplicate_transition_raise_error True TESTS:: sage: T = Transducer() sage: type(T.empty_copy()) <class 'sage.combinat.finite_state_machine.Transducer'> sage: type(T.empty_copy(new_class=Automaton)) <class 'sage.combinat.finite_state_machine.Automaton'> """ if new_class is None: new = self.__class__() else: new = new_class() new.input_alphabet = deepcopy(self.input_alphabet, memo) new.output_alphabet = deepcopy(self.output_alphabet, memo) new.on_duplicate_transition = self.on_duplicate_transition return new def __deepcopy__(self, memo): """ Returns a deep copy of the finite state machine. INPUT: - ``memo`` -- a dictionary storing already processed elements. OUTPUT: A new finite state machine. EXAMPLES:: sage: F = FiniteStateMachine([('A', 'A', 0, 1), ('A', 'A', 1, 0)]) sage: deepcopy(F) Finite state machine with 1 states """ relabel = hasattr(self, '_deepcopy_relabel_') new = self.empty_copy(memo=memo) relabel_iter = itertools.count(0) for state in self.iter_states(): if relabel: if self._deepcopy_labels_ is None: state._deepcopy_relabel_ = next(relabel_iter) elif hasattr(self._deepcopy_labels_, '__call__'): state._deepcopy_relabel_ = self._deepcopy_labels_(state.label()) elif hasattr(self._deepcopy_labels_, '__getitem__'): state._deepcopy_relabel_ = self._deepcopy_labels_[state.label()] else: raise TypeError("labels must be None, a callable " "or a dictionary.") s = deepcopy(state, memo) if relabel: del state._deepcopy_relabel_ new.add_state(s) for transition in self.iter_transitions(): new.add_transition(deepcopy(transition, memo)) return new def deepcopy(self, memo=None): """ Returns a deep copy of the finite state machine. INPUT: - ``memo`` -- (default: ``None``) a dictionary storing already processed elements. OUTPUT: A new finite state machine. EXAMPLES:: sage: F = FiniteStateMachine([('A', 'A', 0, 1), ('A', 'A', 1, 0)]) sage: deepcopy(F) Finite state machine with 1 states TESTS: Make sure that the links between transitions and states are still intact:: sage: C = deepcopy(F) sage: C.transitions()[0].from_state is C.state('A') True sage: C.transitions()[0].to_state is C.state('A') True """ return deepcopy(self, memo) def relabeled(self, memo=None, labels=None): """ Returns a deep copy of the finite state machine, but the states are relabeled. INPUT: - ``memo`` -- (default: ``None``) a dictionary storing already processed elements. - ``labels`` -- (default: ``None``) a dictionary or callable mapping old labels to new labels. If ``None``, then the new labels are integers starting with 0. OUTPUT: A new finite state machine. EXAMPLES:: sage: FSM1 = FiniteStateMachine([('A', 'B'), ('B', 'C'), ('C', 'A')]) sage: FSM1.states() ['A', 'B', 'C'] sage: FSM2 = FSM1.relabeled() sage: FSM2.states() [0, 1, 2] sage: FSM3 = FSM1.relabeled(labels={'A': 'a', 'B': 'b', 'C': 'c'}) sage: FSM3.states() ['a', 'b', 'c'] sage: FSM4 = FSM2.relabeled(labels=lambda x: 2*x) sage: FSM4.states() [0, 2, 4] TESTS:: sage: FSM2.relabeled(labels=1) Traceback (most recent call last): ... TypeError: labels must be None, a callable or a dictionary. """ self._deepcopy_relabel_ = True self._deepcopy_labels_ = labels new = deepcopy(self, memo) del self._deepcopy_relabel_ del self._deepcopy_labels_ return new def induced_sub_finite_state_machine(self, states): """ Returns a sub-finite-state-machine of the finite state machine induced by the given states. INPUT: - ``states`` -- a list (or an iterator) of states (either labels or instances of :class:`FSMState`) of the sub-finite-state-machine. OUTPUT: A new finite state machine. It consists (of deep copies) of the given states and (deep copies) of all transitions of ``self`` between these states. EXAMPLE:: sage: FSM = FiniteStateMachine([(0, 1, 0), (0, 2, 0), ....: (1, 2, 0), (2, 0, 0)]) sage: sub_FSM = FSM.induced_sub_finite_state_machine([0, 1]) sage: sub_FSM.states() [0, 1] sage: sub_FSM.transitions() [Transition from 0 to 1: 0|-] sage: FSM.induced_sub_finite_state_machine([3]) Traceback (most recent call last): ... ValueError: 3 is not a state of this finite state machine. TESTS: Make sure that the links between transitions and states are still intact:: sage: sub_FSM.transitions()[0].from_state is sub_FSM.state(0) True """ good_states = set() for state in states: if not self.has_state(state): raise ValueError("%s is not a state of this finite state machine." % state) good_states.add(self.state(state)) memo = {} new = self.empty_copy(memo=memo) for state in good_states: s = deepcopy(state, memo) new.add_state(s) for state in good_states: for transition in self.iter_transitions(state): if transition.to_state in good_states: new.add_transition(deepcopy(transition, memo)) return new def __hash__(self): """ Since finite state machines are mutable, they should not be hashable, so we return a type error. INPUT: Nothing. OUTPUT: The hash of this finite state machine. EXAMPLES:: sage: hash(FiniteStateMachine()) Traceback (most recent call last): ... TypeError: Finite state machines are mutable, and thus not hashable. """ if getattr(self, "_immutable", False): return hash((tuple(self.states()), tuple(self.transitions()))) raise TypeError("Finite state machines are mutable, " \ "and thus not hashable.") #************************************************************************* # operators #************************************************************************* def __or__(self, other): """ Returns the disjoint union of the finite state machines self and other. INPUT: - ``other`` -- a finite state machine. OUTPUT: A new finite state machine. TESTS:: sage: FiniteStateMachine() | FiniteStateMachine([('A', 'B')]) Traceback (most recent call last): ... NotImplementedError """ if is_FiniteStateMachine(other): return self.disjoint_union(other) __add__ = __or__ def __iadd__(self, other): """ TESTS:: sage: F = FiniteStateMachine() sage: F += FiniteStateMachine() Traceback (most recent call last): ... NotImplementedError """ raise NotImplementedError def __and__(self, other): """ Returns the intersection of ``self`` with ``other``. TESTS:: sage: FiniteStateMachine() & FiniteStateMachine([('A', 'B')]) Traceback (most recent call last): ... NotImplementedError """ if is_FiniteStateMachine(other): return self.intersection(other) def __imul__(self, other): """ TESTS:: sage: F = FiniteStateMachine() sage: F *= FiniteStateMachine() Traceback (most recent call last): ... NotImplementedError """ raise NotImplementedError def __call__(self, *args, **kwargs): """ .. WARNING:: The default output of this method is scheduled to change. This docstring describes the new default behaviour, which can already be achieved by setting ``FSMOldProcessOutput`` to ``False``. Calls either method :meth:`.composition` or :meth:`.process` (with ``full_output=False``). By setting ``FSMOldProcessOutput`` to ``False`` the new desired output is produced. EXAMPLES:: sage: sage.combinat.finite_state_machine.FSMOldProcessOutput = False # activate new output behavior sage: from sage.combinat.finite_state_machine import FSMState sage: A = FSMState('A', is_initial=True, is_final=True) sage: binary_inverter = Transducer({A:[(A, 0, 1), (A, 1, 0)]}) sage: binary_inverter([0, 1, 0, 0, 1, 1]) [1, 0, 1, 1, 0, 0] :: sage: F = Transducer([('A', 'B', 1, 0), ('B', 'B', 1, 1), ....: ('B', 'B', 0, 0)], ....: initial_states=['A'], final_states=['B']) sage: G = Transducer([(1, 1, 0, 0), (1, 2, 1, 0), ....: (2, 2, 0, 1), (2, 1, 1, 1)], ....: initial_states=[1], final_states=[1]) sage: H = G(F) sage: H.states() [('A', 1), ('B', 1), ('B', 2)] """ if len(args) == 0: raise TypeError("Called with too few arguments.") if is_FiniteStateMachine(args[0]): return self.composition(*args, **kwargs) if hasattr(args[0], '__iter__'): if not kwargs.has_key('full_output'): kwargs['full_output'] = False return self.process(*args, **kwargs) raise TypeError("Do not know what to do with that arguments.") #************************************************************************* # tests #************************************************************************* def __nonzero__(self): """ Returns True if the finite state machine consists of at least one state. INPUT: Nothing. OUTPUT: True or False. TESTS:: sage: FiniteStateMachine().__nonzero__() False """ return len(self._states_) > 0 def __eq__(left, right): """ Returns ``True`` if the two finite state machines are equal, i.e., if they have the same states and the same transitions. INPUT: - ``left`` -- a finite state machine. - ``right`` -- a finite state machine. OUTPUT: ``True`` or ``False``. Note that this function compares all attributes of a state (by using :meth:`FSMState.fully_equal`) except for colors. Colors are handled as follows: If the colors coincide, then the finite state machines are also considered equal. If not, then they are considered as equal if both finite state machines are monochromatic. EXAMPLES:: sage: F = FiniteStateMachine([('A', 'B', 1)]) sage: F == FiniteStateMachine() False sage: G = FiniteStateMachine([('A', 'B', 1)], ....: initial_states=['A']) sage: F == G False sage: F.state('A').is_initial = True sage: F == G True This shows the behavior when the states have colors:: sage: F.state('A').color = 'red' sage: G.state('A').color = 'red' sage: F == G True sage: G.state('A').color = 'blue' sage: F == G False sage: F.state('B').color = 'red' sage: F.is_monochromatic() True sage: G.state('B').color = 'blue' sage: G.is_monochromatic() True sage: F == G True """ if not is_FiniteStateMachine(right): raise TypeError('Only instances of FiniteStateMachine ' 'can be compared.') if len(left._states_) != len(right._states_): return False colors_equal = True for state in left.iter_states(): try: right_state = right.state(state.label()) except LookupError: return False # we handle colors separately if not state.fully_equal(right_state, compare_color=False): return False if state.color != right_state.color: colors_equal = False left_transitions = state.transitions right_transitions = right.state(state).transitions if len(left_transitions) != len(right_transitions): return False for t in left_transitions: if t not in right_transitions: return False # handle colors if colors_equal: return True if left.is_monochromatic() and right.is_monochromatic(): return True return False def __ne__(left, right): """ Tests for inequality, complement of :meth:`.__eq__`. INPUT: - ``left`` -- a finite state machine. - ``right`` -- a finite state machine. OUTPUT: True or False. EXAMPLES:: sage: E = FiniteStateMachine([('A', 'B', 0)]) sage: F = Automaton([('A', 'B', 0)]) sage: G = Transducer([('A', 'B', 0, 1)]) sage: E == F True sage: E == G False """ return (not (left == right)) def __contains__(self, item): """ Returns true, if the finite state machine contains the state or transition item. Note that only the labels of the states and the input and output words are tested. INPUT: - ``item`` -- a state or a transition. OUTPUT: True or False. EXAMPLES:: sage: from sage.combinat.finite_state_machine import FSMState, FSMTransition sage: F = FiniteStateMachine([('A', 'B', 0), ('B', 'A', 1)]) sage: FSMState('A', is_initial=True) in F True sage: 'A' in F False sage: FSMTransition('A', 'B', 0) in F True """ if is_FSMState(item): return self.has_state(item) if is_FSMTransition(item): return self.has_transition(item) return False def is_Markov_chain(self, is_zero=None): """ Checks whether ``self`` is a Markov chain where the transition probabilities are modeled as input labels. INPUT: - ``is_zero`` -- by default (``is_zero=None``), checking for zero is simply done by :meth:`~sage.structure.element.Element.is_zero`. This parameter can be used to provide a more sophisticated check for zero, e.g. in the case of symbolic probabilities, see the examples below. OUTPUT: ``True`` or ``False``. :attr:`on_duplicate_transition` must be :func:`duplicate_transition_add_input` and the sum of the input weights of the transitions leaving a state must add up to 1. EXAMPLES:: sage: from sage.combinat.finite_state_machine import duplicate_transition_add_input sage: F = Transducer([[0, 0, 1/4, 0], [0, 1, 3/4, 1], ....: [1, 0, 1/2, 0], [1, 1, 1/2, 1]], ....: on_duplicate_transition=duplicate_transition_add_input) sage: F.is_Markov_chain() True :attr:`on_duplicate_transition` must be :func:`duplicate_transition_add_input`:: sage: F = Transducer([[0, 0, 1/4, 0], [0, 1, 3/4, 1], ....: [1, 0, 1/2, 0], [1, 1, 1/2, 1]]) sage: F.is_Markov_chain() False Sum of input labels of the transitions leaving states must be 1:: sage: F = Transducer([[0, 0, 1/4, 0], [0, 1, 3/4, 1], ....: [1, 0, 1/2, 0]], ....: on_duplicate_transition=duplicate_transition_add_input) sage: F.is_Markov_chain() False If the probabilities are variables in the symbolic ring, :func:`~sage.symbolic.assumptions.assume` will do the trick:: sage: var('p q') (p, q) sage: F = Transducer([(0, 0, p, 1), (0, 0, q, 0)], ....: on_duplicate_transition=duplicate_transition_add_input) sage: assume(p + q == 1) sage: (p + q - 1).is_zero() True sage: F.is_Markov_chain() True sage: forget() sage: del(p, q) If the probabilities are variables in some polynomial ring, the parameter ``is_zero`` can be used:: sage: R.<p, q> = PolynomialRing(QQ) sage: def is_zero_polynomial(polynomial): ....: return polynomial in (p + q - 1)*R sage: F = Transducer([(0, 0, p, 1), (0, 0, q, 0)], ....: on_duplicate_transition=duplicate_transition_add_input) sage: F.is_Markov_chain() False sage: F.is_Markov_chain(is_zero_polynomial) True """ def default_is_zero(expression): return expression.is_zero() is_zero_function = default_is_zero if is_zero is not None: is_zero_function = is_zero if self.on_duplicate_transition != duplicate_transition_add_input: return False return all(is_zero_function(sum(t.word_in[0] for t in state.transitions) - 1) for state in self.states()) #************************************************************************* # representations / LaTeX #************************************************************************* def _repr_(self): """ Represents the finite state machine as "Finite state machine with n states" where n is the number of states. INPUT: Nothing. OUTPUT: A string. EXAMPLES:: sage: FiniteStateMachine()._repr_() 'Finite state machine with 0 states' """ return "Finite state machine with %s states" % len(self._states_) default_format_letter = latex format_letter = default_format_letter def format_letter_negative(self, letter): r""" Format negative numbers as overlined numbers, everything else by standard LaTeX formatting. INPUT: ``letter`` -- anything. OUTPUT: Overlined absolute value if letter is a negative integer, :func:`latex(letter) <sage.misc.latex.latex>` otherwise. EXAMPLES:: sage: A = Automaton([(0, 0, -1)]) sage: map(A.format_letter_negative, [-1, 0, 1, 'a', None]) ['\\overline{1}', 0, 1, \text{\texttt{a}}, \mbox{\rm None}] sage: A.latex_options(format_letter=A.format_letter_negative) sage: print(latex(A)) \begin{tikzpicture}[auto, initial text=, >=latex] \node[state] (v0) at (3.000000, 0.000000) {$0$}; \path[->] (v0) edge[loop above] node {$\overline{1}$} (); \end{tikzpicture} """ if letter in ZZ and letter < 0: return r'\overline{%d}' % -letter else: return latex(letter) def format_transition_label_reversed(self, word): r""" Format words in transition labels in reversed order. INPUT: ``word`` -- list of letters. OUTPUT: String representation of ``word`` suitable to be typeset in mathematical mode, letters are written in reversed order. This is the reversed version of :meth:`.default_format_transition_label`. In digit expansions, digits are frequently processed from the least significant to the most significant position, but it is customary to write the least significant digit at the right-most position. Therefore, the labels have to be reversed. EXAMPLE:: sage: T = Transducer([(0, 0, 0, [1, 2, 3])]) sage: T.format_transition_label_reversed([1, 2, 3]) '3 2 1' sage: T.latex_options(format_transition_label=T.format_transition_label_reversed) sage: print latex(T) \begin{tikzpicture}[auto, initial text=, >=latex] \node[state] (v0) at (3.000000, 0.000000) {$0$}; \path[->] (v0) edge[loop above] node {$0\mid 3 2 1$} (); \end{tikzpicture} TEST: Check that #16357 is fixed:: sage: T = Transducer() sage: T.format_transition_label_reversed([]) '\\varepsilon' """ return self.default_format_transition_label(reversed(word)) def default_format_transition_label(self, word): r""" Default formatting of words in transition labels for LaTeX output. INPUT: ``word`` -- list of letters OUTPUT: String representation of ``word`` suitable to be typeset in mathematical mode. - For a non-empty word: Concatenation of the letters, piped through ``self.format_letter`` and separated by blanks. - For an empty word: ``sage.combinat.finite_state_machine.EmptyWordLaTeX``. There is also a variant :meth:`.format_transition_label_reversed` writing the words in reversed order. EXAMPLES: #. Example of a non-empty word:: sage: T = Transducer() sage: print T.default_format_transition_label( ....: ['a', 'alpha', 'a_1', '0', 0, (0, 1)]) \text{\texttt{a}} \text{\texttt{alpha}} \text{\texttt{a{\char`\_}1}} 0 0 \left(0, 1\right) #. In the example above, ``'a'`` and ``'alpha'`` should perhaps be symbols:: sage: var('a alpha a_1') (a, alpha, a_1) sage: print T.default_format_transition_label([a, alpha, a_1]) a \alpha a_{1} #. Example of an empty word:: sage: print T.default_format_transition_label([]) \varepsilon We can change this by setting ``sage.combinat.finite_state_machine.EmptyWordLaTeX``:: sage: sage.combinat.finite_state_machine.EmptyWordLaTeX = '' sage: T.default_format_transition_label([]) '' Finally, we restore the default value:: sage: sage.combinat.finite_state_machine.EmptyWordLaTeX = r'\varepsilon' #. This method is the default value for ``FiniteStateMachine.format_transition_label``. That can be changed to be any other function:: sage: A = Automaton([(0, 1, 0)]) sage: def custom_format_transition_label(word): ....: return "t" sage: A.latex_options(format_transition_label=custom_format_transition_label) sage: print latex(A) \begin{tikzpicture}[auto, initial text=, >=latex] \node[state] (v0) at (3.000000, 0.000000) {$0$}; \node[state] (v1) at (-3.000000, 0.000000) {$1$}; \path[->] (v0) edge node[rotate=360.00, anchor=south] {$t$} (v1); \end{tikzpicture} TEST: Check that #16357 is fixed:: sage: T = Transducer() sage: T.default_format_transition_label([]) '\\varepsilon' sage: T.default_format_transition_label(iter([])) '\\varepsilon' """ result = " ".join(imap(self.format_letter, word)) if result: return result else: return EmptyWordLaTeX format_transition_label = default_format_transition_label def latex_options(self, coordinates=None, format_state_label=None, format_letter=None, format_transition_label=None, loop_where=None, initial_where=None, accepting_style=None, accepting_distance=None, accepting_where=None, accepting_show_empty=None): r""" Set options for LaTeX output via :func:`~sage.misc.latex.latex` and therefore :func:`~sage.misc.latex.view`. INPUT: - ``coordinates`` -- a dictionary or a function mapping labels of states to pairs interpreted as coordinates. If no coordinates are given, states a placed equidistantly on a circle of radius `3`. See also :meth:`.set_coordinates`. - ``format_state_label`` -- a function mapping labels of states to a string suitable for typesetting in LaTeX's mathematics mode. If not given, :func:`~sage.misc.latex.latex` is used. - ``format_letter`` -- a function mapping letters of the input and output alphabets to a string suitable for typesetting in LaTeX's mathematics mode. If not given, :meth:`.default_format_transition_label` uses :func:`~sage.misc.latex.latex`. - ``format_transition_label`` -- a function mapping words over the input and output alphabets to a string suitable for typesetting in LaTeX's mathematics mode. If not given, :meth:`.default_format_transition_label` is used. - ``loop_where`` -- a dictionary or a function mapping labels of initial states to one of ``'above'``, ``'left'``, ``'below'``, ``'right'``. If not given, ``'above'`` is used. - ``initial_where`` -- a dictionary or a function mapping labels of initial states to one of ``'above'``, ``'left'``, ``'below'``, ``'right'``. If not given, TikZ' default (currently ``'left'``) is used. - ``accepting_style`` -- one of ``'accepting by double'`` and ``'accepting by arrow'``. If not given, ``'accepting by double'`` is used unless there are non-empty final output words. - ``accepting_distance`` -- a string giving a LaTeX length used for the length of the arrow leading from a final state. If not given, TikZ' default (currently ``'3ex'``) is used unless there are non-empty final output words, in which case ``'7ex'`` is used. - ``accepting_where`` -- a dictionary or a function mapping labels of final states to one of ``'above'``, ``'left'``, ``'below'``, ``'right'``. If not given, TikZ' default (currently ``'right'``) is used. If the final state has a final output word, it is also possible to give an angle in degrees. - ``accepting_show_empty`` -- if ``True`` the arrow of an empty final output word is labeled as well. Note that this implicitly implies ``accepting_style='accepting by arrow'``. If not given, the default ``False`` is used. OUTPUT: Nothing. As TikZ (cf. the :wikipedia:`PGF/TikZ`) is used to typeset the graphics, the syntax is oriented on TikZ' syntax. This is a convenience function collecting all options for LaTeX output. All of its functionality can also be achieved by directly setting the attributes - ``coordinates``, ``format_label``, ``loop_where``, ``initial_where``, and ``accepting_where`` of :class:`FSMState` (here, ``format_label`` is a callable without arguments, everything else is a specific value); - ``format_label`` of :class:`FSMTransition` (``format_label`` is a callable without arguments); - ``format_state_label``, ``format_letter``, ``format_transition_label``, ``accepting_style``, ``accepting_distance``, and ``accepting_show_empty`` of :class:`FiniteStateMachine`. This function, however, also (somewhat) checks its input and serves to collect documentation on all these options. The function can be called several times, only those arguments which are not ``None`` are taken into account. By the same means, it can be combined with directly setting some attributes as outlined above. EXAMPLES: See also the section on :ref:`finite_state_machine_LaTeX_output` in the introductory examples of this module. :: sage: T = Transducer(initial_states=[4], ....: final_states=[0, 3]) sage: for j in srange(4): ....: T.add_transition(4, j, 0, [0, j]) ....: T.add_transition(j, 4, 0, [0, -j]) ....: T.add_transition(j, j, 0, 0) Transition from 4 to 0: 0|0,0 Transition from 0 to 4: 0|0,0 Transition from 0 to 0: 0|0 Transition from 4 to 1: 0|0,1 Transition from 1 to 4: 0|0,-1 Transition from 1 to 1: 0|0 Transition from 4 to 2: 0|0,2 Transition from 2 to 4: 0|0,-2 Transition from 2 to 2: 0|0 Transition from 4 to 3: 0|0,3 Transition from 3 to 4: 0|0,-3 Transition from 3 to 3: 0|0 sage: T.add_transition(4, 4, 0, 0) Transition from 4 to 4: 0|0 sage: T.state(3).final_word_out = [0, 0] sage: T.latex_options( ....: coordinates={4: (0, 0), ....: 0: (-6, 3), ....: 1: (-2, 3), ....: 2: (2, 3), ....: 3: (6, 3)}, ....: format_state_label=lambda x: r'\mathbf{%s}' % x, ....: format_letter=lambda x: r'w_{%s}' % x, ....: format_transition_label=lambda x: ....: r"{\scriptstyle %s}" % T.default_format_transition_label(x), ....: loop_where={4: 'below', 0: 'left', 1: 'above', ....: 2: 'right', 3:'below'}, ....: initial_where=lambda x: 'above', ....: accepting_style='accepting by double', ....: accepting_distance='10ex', ....: accepting_where={0: 'left', 3: 45} ....: ) sage: T.state(4).format_label=lambda: r'\mathcal{I}' sage: latex(T) \begin{tikzpicture}[auto, initial text=, >=latex] \node[state, initial, initial where=above] (v0) at (0.000000, 0.000000) {$\mathcal{I}$}; \node[state, accepting, accepting where=left] (v1) at (-6.000000, 3.000000) {$\mathbf{0}$}; \node[state, accepting, accepting where=45] (v2) at (6.000000, 3.000000) {$\mathbf{3}$}; \path[->] (v2.45.00) edge node[rotate=45.00, anchor=south] {$\$ \mid {\scriptstyle w_{0} w_{0}}$} ++(45.00:10ex); \node[state] (v3) at (-2.000000, 3.000000) {$\mathbf{1}$}; \node[state] (v4) at (2.000000, 3.000000) {$\mathbf{2}$}; \path[->] (v1) edge[loop left] node[rotate=90, anchor=south] {${\scriptstyle w_{0}}\mid {\scriptstyle w_{0}}$} (); \path[->] (v1.-21.57) edge node[rotate=-26.57, anchor=south] {${\scriptstyle w_{0}}\mid {\scriptstyle w_{0} w_{0}}$} (v0.148.43); \path[->] (v3) edge[loop above] node {${\scriptstyle w_{0}}\mid {\scriptstyle w_{0}}$} (); \path[->] (v3.-51.31) edge node[rotate=-56.31, anchor=south] {${\scriptstyle w_{0}}\mid {\scriptstyle w_{0} w_{-1}}$} (v0.118.69); \path[->] (v4) edge[loop right] node[rotate=90, anchor=north] {${\scriptstyle w_{0}}\mid {\scriptstyle w_{0}}$} (); \path[->] (v4.-118.69) edge node[rotate=56.31, anchor=north] {${\scriptstyle w_{0}}\mid {\scriptstyle w_{0} w_{-2}}$} (v0.51.31); \path[->] (v2) edge[loop below] node {${\scriptstyle w_{0}}\mid {\scriptstyle w_{0}}$} (); \path[->] (v2.-148.43) edge node[rotate=26.57, anchor=north] {${\scriptstyle w_{0}}\mid {\scriptstyle w_{0} w_{-3}}$} (v0.21.57); \path[->] (v0.158.43) edge node[rotate=333.43, anchor=north] {${\scriptstyle w_{0}}\mid {\scriptstyle w_{0} w_{0}}$} (v1.328.43); \path[->] (v0.128.69) edge node[rotate=303.69, anchor=north] {${\scriptstyle w_{0}}\mid {\scriptstyle w_{0} w_{1}}$} (v3.298.69); \path[->] (v0.61.31) edge node[rotate=56.31, anchor=south] {${\scriptstyle w_{0}}\mid {\scriptstyle w_{0} w_{2}}$} (v4.231.31); \path[->] (v0.31.57) edge node[rotate=26.57, anchor=south] {${\scriptstyle w_{0}}\mid {\scriptstyle w_{0} w_{3}}$} (v2.201.57); \path[->] (v0) edge[loop below] node {${\scriptstyle w_{0}}\mid {\scriptstyle w_{0}}$} (); \end{tikzpicture} sage: view(T) # not tested To actually see this, use the live documentation in the Sage notebook and execute the cells. By changing some of the options, we get the following output:: sage: T.latex_options( ....: format_transition_label=T.default_format_transition_label, ....: accepting_style='accepting by arrow', ....: accepting_show_empty=True ....: ) sage: latex(T) \begin{tikzpicture}[auto, initial text=, >=latex, accepting text=, accepting/.style=accepting by arrow, accepting distance=10ex] \node[state, initial, initial where=above] (v0) at (0.000000, 0.000000) {$\mathcal{I}$}; \node[state] (v1) at (-6.000000, 3.000000) {$\mathbf{0}$}; \path[->] (v1.180.00) edge node[rotate=360.00, anchor=south] {$\$ \mid \varepsilon$} ++(180.00:10ex); \node[state] (v2) at (6.000000, 3.000000) {$\mathbf{3}$}; \path[->] (v2.45.00) edge node[rotate=45.00, anchor=south] {$\$ \mid w_{0} w_{0}$} ++(45.00:10ex); \node[state] (v3) at (-2.000000, 3.000000) {$\mathbf{1}$}; \node[state] (v4) at (2.000000, 3.000000) {$\mathbf{2}$}; \path[->] (v1) edge[loop left] node[rotate=90, anchor=south] {$w_{0}\mid w_{0}$} (); \path[->] (v1.-21.57) edge node[rotate=-26.57, anchor=south] {$w_{0}\mid w_{0} w_{0}$} (v0.148.43); \path[->] (v3) edge[loop above] node {$w_{0}\mid w_{0}$} (); \path[->] (v3.-51.31) edge node[rotate=-56.31, anchor=south] {$w_{0}\mid w_{0} w_{-1}$} (v0.118.69); \path[->] (v4) edge[loop right] node[rotate=90, anchor=north] {$w_{0}\mid w_{0}$} (); \path[->] (v4.-118.69) edge node[rotate=56.31, anchor=north] {$w_{0}\mid w_{0} w_{-2}$} (v0.51.31); \path[->] (v2) edge[loop below] node {$w_{0}\mid w_{0}$} (); \path[->] (v2.-148.43) edge node[rotate=26.57, anchor=north] {$w_{0}\mid w_{0} w_{-3}$} (v0.21.57); \path[->] (v0.158.43) edge node[rotate=333.43, anchor=north] {$w_{0}\mid w_{0} w_{0}$} (v1.328.43); \path[->] (v0.128.69) edge node[rotate=303.69, anchor=north] {$w_{0}\mid w_{0} w_{1}$} (v3.298.69); \path[->] (v0.61.31) edge node[rotate=56.31, anchor=south] {$w_{0}\mid w_{0} w_{2}$} (v4.231.31); \path[->] (v0.31.57) edge node[rotate=26.57, anchor=south] {$w_{0}\mid w_{0} w_{3}$} (v2.201.57); \path[->] (v0) edge[loop below] node {$w_{0}\mid w_{0}$} (); \end{tikzpicture} sage: view(T) # not tested TESTS:: sage: T.latex_options(format_state_label='Nothing') Traceback (most recent call last): ... TypeError: format_state_label must be callable. sage: T.latex_options(format_letter='') Traceback (most recent call last): ... TypeError: format_letter must be callable. sage: T.latex_options(format_transition_label='') Traceback (most recent call last): ... TypeError: format_transition_label must be callable. sage: T.latex_options(loop_where=37) Traceback (most recent call last): ... TypeError: loop_where must be a callable or a dictionary. sage: T.latex_options(loop_where=lambda x: 'top') Traceback (most recent call last): ... ValueError: loop_where for 4 must be in ['below', 'right', 'above', 'left']. sage: T.latex_options(initial_where=90) Traceback (most recent call last): ... TypeError: initial_where must be a callable or a dictionary. sage: T.latex_options(initial_where=lambda x: 'top') Traceback (most recent call last): ... ValueError: initial_where for 4 must be in ['below', 'right', 'above', 'left']. sage: T.latex_options(accepting_style='fancy') Traceback (most recent call last): ... ValueError: accepting_style must be in ['accepting by double', 'accepting by arrow']. sage: T.latex_options(accepting_where=90) Traceback (most recent call last): ... TypeError: accepting_where must be a callable or a dictionary. sage: T.latex_options(accepting_where=lambda x: 'top') Traceback (most recent call last): ... ValueError: accepting_where for 0 must be in ['below', 'right', 'above', 'left']. sage: T.latex_options(accepting_where={0: 'above', 3: 'top'}) Traceback (most recent call last): ... ValueError: accepting_where for 3 must be a real number or be in ['below', 'right', 'above', 'left']. """ if coordinates is not None: self.set_coordinates(coordinates) if format_state_label is not None: if not hasattr(format_state_label, '__call__'): raise TypeError('format_state_label must be callable.') self.format_state_label = format_state_label if format_letter is not None: if not hasattr(format_letter, '__call__'): raise TypeError('format_letter must be callable.') self.format_letter = format_letter if format_transition_label is not None: if not hasattr(format_transition_label, '__call__'): raise TypeError('format_transition_label must be callable.') self.format_transition_label = format_transition_label if loop_where is not None: permissible = list(tikz_automata_where.iterkeys()) for state in self.states(): if hasattr(loop_where, '__call__'): where = loop_where(state.label()) else: try: where = loop_where[state.label()] except TypeError: raise TypeError("loop_where must be a " "callable or a dictionary.") except KeyError: continue if where in permissible: state.loop_where = where else: raise ValueError('loop_where for %s must be in %s.' % (state.label(), permissible)) if initial_where is not None: permissible = list(tikz_automata_where.iterkeys()) for state in self.iter_initial_states(): if hasattr(initial_where, '__call__'): where = initial_where(state.label()) else: try: where = initial_where[state.label()] except TypeError: raise TypeError("initial_where must be a " "callable or a dictionary.") except KeyError: continue if where in permissible: state.initial_where = where else: raise ValueError('initial_where for %s must be in %s.' % (state.label(), permissible)) if accepting_style is not None: permissible = ['accepting by double', 'accepting by arrow'] if accepting_style in permissible: self.accepting_style = accepting_style else: raise ValueError('accepting_style must be in %s.' % permissible) if accepting_distance is not None: self.accepting_distance = accepting_distance if accepting_where is not None: permissible = list(tikz_automata_where.iterkeys()) for state in self.iter_final_states(): if hasattr(accepting_where, '__call__'): where = accepting_where(state.label()) else: try: where = accepting_where[state.label()] except TypeError: raise TypeError("accepting_where must be a " "callable or a dictionary.") except KeyError: continue if where in permissible: state.accepting_where = where elif hasattr(state, 'final_word_out') \ and state.final_word_out: if where in RR: state.accepting_where = where else: raise ValueError('accepting_where for %s must ' 'be a real number or be in %s.' % (state.label(), permissible)) else: raise ValueError('accepting_where for %s must be in %s.' % (state.label(), permissible)) if accepting_show_empty is not None: self.accepting_show_empty = accepting_show_empty def _latex_(self): r""" Returns a LaTeX code for the graph of the finite state machine. INPUT: Nothing. OUTPUT: A string. EXAMPLES:: sage: F = FiniteStateMachine([('A', 'B', 1, 2)], ....: initial_states=['A'], ....: final_states=['B']) sage: F.state('A').initial_where='below' sage: print latex(F) # indirect doctest \begin{tikzpicture}[auto, initial text=, >=latex] \node[state, initial, initial where=below] (v0) at (3.000000, 0.000000) {$\text{\texttt{A}}$}; \node[state, accepting] (v1) at (-3.000000, 0.000000) {$\text{\texttt{B}}$}; \path[->] (v0) edge node[rotate=360.00, anchor=south] {$ $} (v1); \end{tikzpicture} """ def label_rotation(angle, both_directions): """ Given an angle of a transition, compute the TikZ string to rotate the label. """ angle_label = angle anchor_label = "south" if angle > 90 or angle <= -90: angle_label = angle + 180 if both_directions: # if transitions in both directions, the transition to the # left has its label below the transition, otherwise above anchor_label = "north" return "rotate=%.2f, anchor=%s" % (angle_label, anchor_label) setup_latex_preamble() options = ["auto", "initial text=", ">=latex"] nonempty_final_word_out = False for state in self.iter_final_states(): if state.final_word_out: nonempty_final_word_out = True break if hasattr(self, "accepting_style"): accepting_style = self.accepting_style elif nonempty_final_word_out: accepting_style = "accepting by arrow" else: accepting_style = "accepting by double" if accepting_style == "accepting by arrow": options.append("accepting text=") options.append("accepting/.style=%s" % accepting_style) if hasattr(self, "accepting_distance"): accepting_distance = self.accepting_distance elif nonempty_final_word_out: accepting_distance = "7ex" else: accepting_distance = None if accepting_style == "accepting by arrow" and accepting_distance: options.append("accepting distance=%s" % accepting_distance) if hasattr(self, "accepting_show_empty"): accepting_show_empty = self.accepting_show_empty else: accepting_show_empty = False result = "\\begin{tikzpicture}[%s]\n" % ", ".join(options) j = 0; for vertex in self.iter_states(): if not hasattr(vertex, "coordinates"): vertex.coordinates = (3*cos(2*pi*j/len(self.states())), 3*sin(2*pi*j/len(self.states()))) options = "" if vertex.is_final: if not (vertex.final_word_out and accepting_style == "accepting by arrow") \ and not accepting_show_empty: # otherwise, we draw a custom made accepting path # with label below options += ", accepting" if hasattr(vertex, "accepting_where"): options += ", accepting where=%s" % ( vertex.accepting_where,) if vertex.is_initial: options += ", initial" if hasattr(vertex, "initial_where"): options += ", initial where=%s" % vertex.initial_where if hasattr(vertex, "format_label"): label = vertex.format_label() elif hasattr(self, "format_state_label"): label = self.format_state_label(vertex) else: label = latex(vertex.label()) result += "\\node[state%s] (v%d) at (%f, %f) {$%s$};\n" % ( options, j, vertex.coordinates[0], vertex.coordinates[1], label) vertex._number_ = j if vertex.is_final and (vertex.final_word_out or accepting_show_empty): angle = 0 if hasattr(vertex, "accepting_where"): angle = tikz_automata_where.get(vertex.accepting_where, vertex.accepting_where) result += "\\path[->] (v%d.%.2f) edge node[%s] {$%s \mid %s$} ++(%.2f:%s);\n" % ( j, angle, label_rotation(angle, False), EndOfWordLaTeX, self.format_transition_label(vertex.final_word_out), angle, accepting_distance) j += 1 def key_function(s): return (s.from_state, s.to_state) # We use an OrderedDict instead of a dict in order to have a # defined ordering of the transitions in the output. See # http://trac.sagemath.org/ticket/16580#comment:3 . As the # transitions have to be sorted anyway, the performance # penalty should be bearable; nevertheless, this is only # required for doctests. adjacent = OrderedDict( (pair, list(transitions)) for pair, transitions in itertools.groupby( sorted(self.iter_transitions(), key=key_function), key=key_function )) for ((source, target), transitions) in adjacent.iteritems(): if len(transitions) > 0: labels = [] for transition in transitions: if hasattr(transition, "format_label"): labels.append(transition.format_label()) else: labels.append(self._latex_transition_label_( transition, self.format_transition_label)) label = ", ".join(labels) if source != target: angle = atan2( target.coordinates[1] - source.coordinates[1], target.coordinates[0] - source.coordinates[0]) * 180/pi both_directions = (target, source) in adjacent if both_directions: angle_source = ".%.2f" % ((angle + 5).n(),) angle_target = ".%.2f" % ((angle + 175).n(),) else: angle_source = "" angle_target = "" result += "\\path[->] (v%d%s) edge node[%s] {$%s$} (v%d%s);\n" % ( source._number_, angle_source, label_rotation(angle, both_directions), label, target._number_, angle_target) else: loop_where = "above" if hasattr(source, "loop_where"): loop_where = source.loop_where rotation = {'left': '[rotate=90, anchor=south]', 'right': '[rotate=90, anchor=north]'} result += "\\path[->] (v%d) edge[loop %s] node%s {$%s$} ();\n" % ( source._number_, loop_where, rotation.get(loop_where, ''), label) result += "\\end{tikzpicture}" return result def _latex_transition_label_(self, transition, format_function=latex): r""" Returns the proper transition label. INPUT: - ``transition`` - a transition - ``format_function`` - a function formatting the labels OUTPUT: A string. TESTS:: sage: F = FiniteStateMachine([('A', 'B', 0, 1)]) sage: t = F.transitions()[0] sage: F._latex_transition_label_(t) ' ' """ return ' ' def set_coordinates(self, coordinates, default=True): """ Set coordinates of the states for the LaTeX representation by a dictionary or a function mapping labels to coordinates. INPUT: - ``coordinates`` -- a dictionary or a function mapping labels of states to pairs interpreted as coordinates. - ``default`` -- If ``True``, then states not given by ``coordinates`` get a default position on a circle of radius 3. OUTPUT: Nothing. EXAMPLES:: sage: F = Automaton([[0, 1, 1], [1, 2, 2], [2, 0, 0]]) sage: F.set_coordinates({0: (0, 0), 1: (2, 0), 2: (1, 1)}) sage: F.state(0).coordinates (0, 0) We can also use a function to determine the coordinates:: sage: F = Automaton([[0, 1, 1], [1, 2, 2], [2, 0, 0]]) sage: F.set_coordinates(lambda l: (l, 3/(l+1))) sage: F.state(2).coordinates (2, 1) """ states_without_coordinates = [] for state in self.iter_states(): try: state.coordinates = coordinates[state.label()] continue except (KeyError, TypeError): pass try: state.coordinates = coordinates(state.label()) continue except TypeError: pass states_without_coordinates.append(state) if default: n = len(states_without_coordinates) for j, state in enumerate(states_without_coordinates): state.coordinates = (3*cos(2*pi*j/n), 3*sin(2*pi*j/n)) #************************************************************************* # other #************************************************************************* def _matrix_(self, R=None): """ Returns the adjacency matrix of the finite state machine. See :meth:`.adjacency_matrix` for more information. EXAMPLES:: sage: B = FiniteStateMachine({0: {0: (0, 0), 'a': (1, 0)}, ....: 'a': {2: (0, 0), 3: (1, 0)}, ....: 2:{0:(1, 1), 4:(0, 0)}, ....: 3:{'a':(0, 1), 2:(1, 1)}, ....: 4:{4:(1, 1), 3:(0, 1)}}, ....: initial_states=[0]) sage: B._matrix_() [1 1 0 0 0] [0 0 1 1 0] [x 0 0 0 1] [0 x x 0 0] [0 0 0 x x] """ return self.adjacency_matrix() def adjacency_matrix(self, input=None, entry=None): """ Returns the adjacency matrix of the underlying graph. INPUT: - ``input`` -- Only transitions with input label ``input`` are respected. - ``entry`` -- The function ``entry`` takes a transition and the return value is written in the matrix as the entry ``(transition.from_state, transition.to_state)``. The default value (``None``) of entry takes the variable ``x`` to the power of the sum of the output word of the transition. OUTPUT: A matrix. If any label of a state is not an integer, the finite state machine is relabeled at the beginning. If there are more than one transitions between two states, then the different return values of ``entry`` are added up. EXAMPLES:: sage: B = FiniteStateMachine({0:{0:(0, 0), 'a':(1, 0)}, ....: 'a':{2:(0, 0), 3:(1, 0)}, ....: 2:{0:(1, 1), 4:(0, 0)}, ....: 3:{'a':(0, 1), 2:(1, 1)}, ....: 4:{4:(1, 1), 3:(0, 1)}}, ....: initial_states=[0]) sage: B.adjacency_matrix() [1 1 0 0 0] [0 0 1 1 0] [x 0 0 0 1] [0 x x 0 0] [0 0 0 x x] This is equivalent to:: sage: matrix(B) [1 1 0 0 0] [0 0 1 1 0] [x 0 0 0 1] [0 x x 0 0] [0 0 0 x x] It is also possible to use other entries in the adjacency matrix:: sage: B.adjacency_matrix(entry=(lambda transition: 1)) [1 1 0 0 0] [0 0 1 1 0] [1 0 0 0 1] [0 1 1 0 0] [0 0 0 1 1] sage: B.adjacency_matrix(1, entry=(lambda transition: ....: exp(I*transition.word_out[0]*var('t')))) [ 0 1 0 0 0] [ 0 0 0 1 0] [e^(I*t) 0 0 0 0] [ 0 0 e^(I*t) 0 0] [ 0 0 0 0 e^(I*t)] sage: a = Automaton([(0, 1, 0), ....: (1, 2, 0), ....: (2, 0, 1), ....: (2, 1, 0)], ....: initial_states=[0], ....: final_states=[0]) sage: a.adjacency_matrix() [0 1 0] [0 0 1] [1 1 0] """ def default_function(transitions): var('x') return x**sum(transition.word_out) if entry is None: entry = default_function relabeledFSM = self l = len(relabeledFSM.states()) for state in self.iter_states(): if state.label() not in ZZ or state.label() >= l \ or state.label() < 0: relabeledFSM = self.relabeled() break dictionary = {} for transition in relabeledFSM.iter_transitions(): if input is None or transition.word_in == [input]: if (transition.from_state.label(), transition.to_state.label()) in dictionary: dictionary[(transition.from_state.label(), transition.to_state.label())] \ += entry(transition) else: dictionary[(transition.from_state.label(), transition.to_state.label())] \ = entry(transition) return matrix(len(relabeledFSM.states()), dictionary) def determine_alphabets(self, reset=True): """ Determines the input and output alphabet according to the transitions in self. INPUT: - ``reset`` -- If reset is ``True``, then the existing input and output alphabets are erased, otherwise new letters are appended to the existing alphabets. OUTPUT: Nothing. After this operation the input alphabet and the output alphabet of self are a list of letters. .. TODO:: At the moment, the letters of the alphabets need to be hashable. EXAMPLES:: sage: T = Transducer([(1, 1, 1, 0), (1, 2, 2, 1), ....: (2, 2, 1, 1), (2, 2, 0, 0)], ....: final_states=[1], ....: determine_alphabets=False) sage: T.state(1).final_word_out = [1, 4] sage: (T.input_alphabet, T.output_alphabet) (None, None) sage: T.determine_alphabets() sage: (T.input_alphabet, T.output_alphabet) ([0, 1, 2], [0, 1, 4]) """ if reset: ain = set() aout = set() else: ain = set(self.input_alphabet) aout = set(self.output_alphabet) for t in self.iter_transitions(): for letter in t.word_in: ain.add(letter) for letter in t.word_out: aout.add(letter) for s in self.iter_final_states(): for letter in s.final_word_out: aout.add(letter) self.input_alphabet = list(ain) self.output_alphabet = list(aout) #************************************************************************* # get states and transitions #************************************************************************* def states(self): """ Returns the states of the finite state machine. INPUT: Nothing. OUTPUT: The states of the finite state machine as list. EXAMPLES:: sage: FSM = Automaton([('1', '2', 1), ('2', '2', 0)]) sage: FSM.states() ['1', '2'] """ return copy(self._states_) def iter_states(self): """ Returns an iterator of the states. INPUT: Nothing. OUTPUT: An iterator of the states of the finite state machine. EXAMPLES:: sage: FSM = Automaton([('1', '2', 1), ('2', '2', 0)]) sage: [s.label() for s in FSM.iter_states()] ['1', '2'] """ return iter(self._states_) def transitions(self, from_state=None): """ Returns a list of all transitions. INPUT: - ``from_state`` -- (default: ``None``) If ``from_state`` is given, then a list of transitions starting there is given. OUTPUT: A list of all transitions. EXAMPLES:: sage: FSM = Automaton([('1', '2', 1), ('2', '2', 0)]) sage: FSM.transitions() [Transition from '1' to '2': 1|-, Transition from '2' to '2': 0|-] """ return list(self.iter_transitions(from_state)) def iter_transitions(self, from_state=None): """ Returns an iterator of all transitions. INPUT: - ``from_state`` -- (default: ``None``) If ``from_state`` is given, then a list of transitions starting there is given. OUTPUT: An iterator of all transitions. EXAMPLES:: sage: FSM = Automaton([('1', '2', 1), ('2', '2', 0)]) sage: [(t.from_state.label(), t.to_state.label()) ....: for t in FSM.iter_transitions('1')] [('1', '2')] sage: [(t.from_state.label(), t.to_state.label()) ....: for t in FSM.iter_transitions('2')] [('2', '2')] sage: [(t.from_state.label(), t.to_state.label()) ....: for t in FSM.iter_transitions()] [('1', '2'), ('2', '2')] """ if from_state is None: return self._iter_transitions_all_() else: return iter(self.state(from_state).transitions) def _iter_transitions_all_(self): """ Returns an iterator over all transitions. INPUT: Nothing. OUTPUT: An iterator over all transitions. EXAMPLES:: sage: FSM = Automaton([('1', '2', 1), ('2', '2', 0)]) sage: [(t.from_state.label(), t.to_state.label()) ....: for t in FSM._iter_transitions_all_()] [('1', '2'), ('2', '2')] """ for state in self.iter_states(): for t in state.transitions: yield t def initial_states(self): """ Returns a list of all initial states. INPUT: Nothing. OUTPUT: A list of all initial states. EXAMPLES:: sage: from sage.combinat.finite_state_machine import FSMState sage: A = FSMState('A', is_initial=True) sage: B = FSMState('B') sage: F = FiniteStateMachine([(A, B, 1, 0)]) sage: F.initial_states() ['A'] """ return list(self.iter_initial_states()) def iter_initial_states(self): """ Returns an iterator of the initial states. INPUT: Nothing. OUTPUT: An iterator over all initial states. EXAMPLES:: sage: from sage.combinat.finite_state_machine import FSMState sage: A = FSMState('A', is_initial=True) sage: B = FSMState('B') sage: F = FiniteStateMachine([(A, B, 1, 0)]) sage: [s.label() for s in F.iter_initial_states()] ['A'] """ return itertools.ifilter(lambda s:s.is_initial, self.iter_states()) def final_states(self): """ Returns a list of all final states. INPUT: Nothing. OUTPUT: A list of all final states. EXAMPLES:: sage: from sage.combinat.finite_state_machine import FSMState sage: A = FSMState('A', is_final=True) sage: B = FSMState('B', is_initial=True) sage: C = FSMState('C', is_final=True) sage: F = FiniteStateMachine([(A, B), (A, C)]) sage: F.final_states() ['A', 'C'] """ return list(self.iter_final_states()) def iter_final_states(self): """ Returns an iterator of the final states. INPUT: Nothing. OUTPUT: An iterator over all initial states. EXAMPLES:: sage: from sage.combinat.finite_state_machine import FSMState sage: A = FSMState('A', is_final=True) sage: B = FSMState('B', is_initial=True) sage: C = FSMState('C', is_final=True) sage: F = FiniteStateMachine([(A, B), (A, C)]) sage: [s.label() for s in F.iter_final_states()] ['A', 'C'] """ return itertools.ifilter(lambda s:s.is_final, self.iter_states()) def state(self, state): """ Returns the state of the finite state machine. INPUT: - ``state`` -- If ``state`` is not an instance of :class:`FSMState`, then it is assumed that it is the label of a state. OUTPUT: Returns the state of the finite state machine corresponding to ``state``. If no state is found, then a ``LookupError`` is thrown. EXAMPLES:: sage: from sage.combinat.finite_state_machine import FSMState sage: A = FSMState('A') sage: FSM = FiniteStateMachine([(A, 'B'), ('C', A)]) sage: FSM.state('A') == A True sage: FSM.state('xyz') Traceback (most recent call last): ... LookupError: No state with label xyz found. """ def what(s, switch): if switch: return s.label() else: return s switch = is_FSMState(state) try: return self._states_dict_[what(state, switch)] except AttributeError: for s in self.iter_states(): if what(s, not switch) == state: return s except KeyError: pass raise LookupError("No state with label %s found." % (what(state, switch),)) def transition(self, transition): """ Returns the transition of the finite state machine. INPUT: - ``transition`` -- If ``transition`` is not an instance of :class:`FSMTransition`, then it is assumed that it is a tuple ``(from_state, to_state, word_in, word_out)``. OUTPUT: Returns the transition of the finite state machine corresponding to ``transition``. If no transition is found, then a ``LookupError`` is thrown. EXAMPLES:: sage: from sage.combinat.finite_state_machine import FSMTransition sage: t = FSMTransition('A', 'B', 0) sage: F = FiniteStateMachine([t]) sage: F.transition(('A', 'B', 0)) Transition from 'A' to 'B': 0|- sage: id(t) == id(F.transition(('A', 'B', 0))) True """ if not is_FSMTransition(transition): transition = FSMTransition(*transition) for s in self.iter_transitions(transition.from_state): if s == transition: return s raise LookupError("No transition found.") #************************************************************************* # properties (state and transitions) #************************************************************************* def has_state(self, state): """ Returns whether ``state`` is one of the states of the finite state machine. INPUT: - ``state`` can be a :class:`FSMState` or a label of a state. OUTPUT: True or False. EXAMPLES:: sage: FiniteStateMachine().has_state('A') False """ try: self.state(state) return True except LookupError: return False def has_transition(self, transition): """ Returns whether ``transition`` is one of the transitions of the finite state machine. INPUT: - ``transition`` has to be a :class:`FSMTransition`. OUTPUT: True or False. EXAMPLES:: sage: from sage.combinat.finite_state_machine import FSMTransition sage: t = FSMTransition('A', 'A', 0, 1) sage: FiniteStateMachine().has_transition(t) False sage: FiniteStateMachine().has_transition(('A', 'A', 0, 1)) Traceback (most recent call last): ... TypeError: Transition is not an instance of FSMTransition. """ if is_FSMTransition(transition): return transition in self.iter_transitions() raise TypeError("Transition is not an instance of FSMTransition.") def has_initial_state(self, state): """ Returns whether ``state`` is one of the initial states of the finite state machine. INPUT: - ``state`` can be a :class:`FSMState` or a label. OUTPUT: True or False. EXAMPLES:: sage: F = FiniteStateMachine([('A', 'A')], initial_states=['A']) sage: F.has_initial_state('A') True """ try: return self.state(state).is_initial except LookupError: return False def has_initial_states(self): """ Returns whether the finite state machine has an initial state. INPUT: Nothing. OUTPUT: True or False. EXAMPLES:: sage: FiniteStateMachine().has_initial_states() False """ return len(self.initial_states()) > 0 def has_final_state(self, state): """ Returns whether ``state`` is one of the final states of the finite state machine. INPUT: - ``state`` can be a :class:`FSMState` or a label. OUTPUT: True or False. EXAMPLES:: sage: FiniteStateMachine(final_states=['A']).has_final_state('A') True """ try: return self.state(state).is_final except LookupError: return False def has_final_states(self): """ Returns whether the finite state machine has a final state. INPUT: Nothing. OUTPUT: True or False. EXAMPLES:: sage: FiniteStateMachine().has_final_states() False """ return len(self.final_states()) > 0 #************************************************************************* # properties #************************************************************************* def is_deterministic(self): """ Returns whether the finite finite state machine is deterministic. INPUT: Nothing. OUTPUT: ``True`` or ``False``. A finite state machine is considered to be deterministic if each transition has input label of length one and for each pair `(q,a)` where `q` is a state and `a` is an element of the input alphabet, there is at most one transition from `q` with input label `a`. TESTS:: sage: fsm = FiniteStateMachine() sage: fsm.add_transition(('A', 'B', 0, [])) Transition from 'A' to 'B': 0|- sage: fsm.is_deterministic() True sage: fsm.add_transition(('A', 'C', 0, [])) Transition from 'A' to 'C': 0|- sage: fsm.is_deterministic() False sage: fsm.add_transition(('A', 'B', [0,1], [])) Transition from 'A' to 'B': 0,1|- sage: fsm.is_deterministic() False """ for state in self.iter_states(): for transition in state.transitions: if len(transition.word_in) != 1: return False transition_classes_by_word_in = full_group_by( state.transitions, key=lambda t: t.word_in) for key,transition_class in transition_classes_by_word_in: if len(transition_class) > 1: return False return True def is_complete(self): """ Returns whether the finite state machine is complete. INPUT: Nothing. OUTPUT: ``True`` or ``False``. A finite state machine is considered to be complete if each transition has an input label of length one and for each pair `(q, a)` where `q` is a state and `a` is an element of the input alphabet, there is exactly one transition from `q` with input label `a`. EXAMPLES:: sage: fsm = FiniteStateMachine([(0, 0, 0, 0), ....: (0, 1, 1, 1), ....: (1, 1, 0, 0)], ....: determine_alphabets=False) sage: fsm.is_complete() Traceback (most recent call last): ... ValueError: No input alphabet is given. Try calling determine_alphabets(). sage: fsm.input_alphabet = [0, 1] sage: fsm.is_complete() False sage: fsm.add_transition((1, 1, 1, 1)) Transition from 1 to 1: 1|1 sage: fsm.is_complete() True sage: fsm.add_transition((0, 0, 1, 0)) Transition from 0 to 0: 1|0 sage: fsm.is_complete() False """ if self.input_alphabet is None: raise ValueError("No input alphabet is given. " "Try calling determine_alphabets().") for state in self.iter_states(): for transition in state.transitions: if len(transition.word_in) != 1: return False transition_classes_by_word_in = full_group_by( state.transitions, key=lambda t: t.word_in) for key, transition_class in transition_classes_by_word_in: if len(transition_class) > 1: return False # all input labels are lists, extract the only element outgoing_alphabet = [key[0] for key, transition_class in transition_classes_by_word_in] if not sorted(self.input_alphabet) == sorted(outgoing_alphabet): return False return True def is_connected(self): """ TESTS:: sage: FiniteStateMachine().is_connected() Traceback (most recent call last): ... NotImplementedError """ raise NotImplementedError #************************************************************************* # let the finite state machine work #************************************************************************* def process(self, *args, **kwargs): """ Returns whether the finite state machine accepts the input, the state where the computation stops and which output is generated. INPUT: - ``input_tape`` -- The input tape can be a list with entries from the input alphabet. - ``initial_state`` -- (default: ``None``) The state in which to start. If this parameter is ``None`` and there is only one initial state in the machine, then this state is taken. OUTPUT: A triple, where - the first entry is ``True`` if the input string is accepted, - the second gives the reached state after processing the input tape (This is a state with label ``None`` if the input could not be processed, i.e., when at one point no transition to go could be found.), and - the third gives a list of the output labels used during processing (in the case the finite state machine runs as transducer). EXAMPLES:: sage: from sage.combinat.finite_state_machine import FSMState sage: A = FSMState('A', is_initial = True, is_final = True) sage: binary_inverter = FiniteStateMachine({A:[(A, 0, 1), (A, 1, 0)]}) sage: binary_inverter.process([0, 1, 0, 0, 1, 1]) (True, 'A', [1, 0, 1, 1, 0, 0]) Alternatively, we can invoke this function by:: sage: binary_inverter([0, 1, 0, 0, 1, 1]) (True, 'A', [1, 0, 1, 1, 0, 0]) :: sage: NAF_ = FSMState('_', is_initial = True, is_final = True) sage: NAF1 = FSMState('1', is_final = True) sage: NAF = FiniteStateMachine( ....: {NAF_: [(NAF_, 0), (NAF1, 1)], NAF1: [(NAF_, 0)]}) sage: [NAF.process(w)[0] for w in [[0], [0, 1], [1, 1], [0, 1, 0, 1], ....: [0, 1, 1, 1, 0], [1, 0, 0, 1, 1]]] [True, True, False, True, False, False] Non-deterministic finite state machines cannot be handeled. :: sage: T = Transducer([(0, 1, 0, 0), (0, 2, 0, 0)], ....: initial_states=[0]) sage: T.process([0]) Traceback (most recent call last): ... NotImplementedError: Non-deterministic path encountered when processing input. sage: T = Transducer([(0, 1, [0, 0], 0), (0, 2, [0, 0, 1], 0), ....: (0, 1, 1, 2), (1, 0, [], 1), (1, 1, 1, 3)], ....: initial_states=[0], final_states=[0, 1]) sage: T.process([0]) (False, None, None) sage: T.process([0, 0]) Traceback (most recent call last): ... NotImplementedError: Non-deterministic path encountered when processing input. sage: T.process([1]) (True, 1, [2]) sage: T.process([1, 1]) Traceback (most recent call last): ... NotImplementedError: process cannot handle epsilon transition leaving state 1. """ it = self.iter_process(*args, **kwargs) for _ in it: pass return (it.accept_input, it.current_state, it.output_tape) def iter_process(self, input_tape=None, initial_state=None, **kwargs): """ See :meth:`.process` for more informations. EXAMPLES:: sage: inverter = Transducer({'A': [('A', 0, 1), ('A', 1, 0)]}, ....: initial_states=['A'], final_states=['A']) sage: it = inverter.iter_process(input_tape=[0, 1, 1]) sage: for _ in it: ....: pass sage: it.output_tape [1, 0, 0] """ return FSMProcessIterator(self, input_tape, initial_state, **kwargs) #************************************************************************* # change finite state machine (add/remove state/transitions) #************************************************************************* def add_state(self, state): """ Adds a state to the finite state machine and returns the new state. If the state already exists, that existing state is returned. INPUT: - ``state`` is either an instance of :class:`FSMState` or, otherwise, a label of a state. OUTPUT: The new or existing state. EXAMPLES:: sage: from sage.combinat.finite_state_machine import FSMState sage: F = FiniteStateMachine() sage: A = FSMState('A', is_initial=True) sage: F.add_state(A) 'A' """ try: return self.state(state) except LookupError: pass # at this point we know that we have a new state if is_FSMState(state): s = state else: s = FSMState(state) s.transitions = list() self._states_.append(s) try: self._states_dict_[s.label()] = s except AttributeError: pass return s def add_states(self, states): """ Adds several states. See add_state for more information. INPUT: - ``states`` -- a list of states or iterator over states. OUTPUT: Nothing. EXAMPLES:: sage: F = FiniteStateMachine() sage: F.add_states(['A', 'B']) sage: F.states() ['A', 'B'] """ for state in states: self.add_state(state) def add_transition(self, *args, **kwargs): """ Adds a transition to the finite state machine and returns the new transition. If the transition already exists, the return value of ``self.on_duplicate_transition`` is returned. See the documentation of :class:`FiniteStateMachine`. INPUT: The following forms are all accepted: :: sage: from sage.combinat.finite_state_machine import FSMState, FSMTransition sage: A = FSMState('A') sage: B = FSMState('B') sage: FSM = FiniteStateMachine() sage: FSM.add_transition(FSMTransition(A, B, 0, 1)) Transition from 'A' to 'B': 0|1 sage: FSM = FiniteStateMachine() sage: FSM.add_transition(A, B, 0, 1) Transition from 'A' to 'B': 0|1 sage: FSM = FiniteStateMachine() sage: FSM.add_transition(A, B, word_in=0, word_out=1) Transition from 'A' to 'B': 0|1 sage: FSM = FiniteStateMachine() sage: FSM.add_transition('A', 'B', {'word_in': 0, 'word_out': 1}) Transition from 'A' to 'B': {'word_in': 0, 'word_out': 1}|- sage: FSM = FiniteStateMachine() sage: FSM.add_transition(from_state=A, to_state=B, ....: word_in=0, word_out=1) Transition from 'A' to 'B': 0|1 sage: FSM = FiniteStateMachine() sage: FSM.add_transition({'from_state': A, 'to_state': B, ....: 'word_in': 0, 'word_out': 1}) Transition from 'A' to 'B': 0|1 sage: FSM = FiniteStateMachine() sage: FSM.add_transition((A, B, 0, 1)) Transition from 'A' to 'B': 0|1 sage: FSM = FiniteStateMachine() sage: FSM.add_transition([A, B, 0, 1]) Transition from 'A' to 'B': 0|1 If the states ``A`` and ``B`` are not instances of :class:`FSMState`, then it is assumed that they are labels of states. OUTPUT: The new transition. """ if len(args) + len(kwargs) == 0: return if len(args) + len(kwargs) == 1: if len(args) == 1: d = args[0] if is_FSMTransition(d): return self._add_fsm_transition_(d) else: d = next(kwargs.itervalues()) if hasattr(d, 'iteritems'): args = [] kwargs = d elif hasattr(d, '__iter__'): args = d kwargs = {} else: raise TypeError("Cannot decide what to do with input.") data = dict(zip( ('from_state', 'to_state', 'word_in', 'word_out', 'hook'), args)) data.update(kwargs) data['from_state'] = self.add_state(data['from_state']) data['to_state'] = self.add_state(data['to_state']) return self._add_fsm_transition_(FSMTransition(**data)) def _add_fsm_transition_(self, t): """ Adds a transition. INPUT: - ``t`` -- an instance of :class:`FSMTransition`. OUTPUT: The new transition. TESTS:: sage: from sage.combinat.finite_state_machine import FSMTransition sage: F = FiniteStateMachine() sage: F._add_fsm_transition_(FSMTransition('A', 'B')) Transition from 'A' to 'B': -|- """ try: existing_transition = self.transition(t) except LookupError: pass else: return self.on_duplicate_transition(existing_transition, t) from_state = self.add_state(t.from_state) self.add_state(t.to_state) from_state.transitions.append(t) return t def add_from_transition_function(self, function, initial_states=None, explore_existing_states=True): """ Constructs a finite state machine from a transition function. INPUT: - ``function`` may return a tuple (new_state, output_word) or a list of such tuples. - ``initial_states`` -- If no initial states are given, the already existing initial states of self are taken. - If ``explore_existing_states`` is True (default), then already existing states in self (e.g. already given final states) will also be processed if they are reachable from the initial states. OUTPUT: Nothing. EXAMPLES:: sage: F = FiniteStateMachine(initial_states=['A'], ....: input_alphabet=[0, 1]) sage: def f(state, input): ....: return [('A', input), ('B', 1-input)] sage: F.add_from_transition_function(f) sage: F.transitions() [Transition from 'A' to 'A': 0|0, Transition from 'A' to 'B': 0|1, Transition from 'A' to 'A': 1|1, Transition from 'A' to 'B': 1|0, Transition from 'B' to 'A': 0|0, Transition from 'B' to 'B': 0|1, Transition from 'B' to 'A': 1|1, Transition from 'B' to 'B': 1|0] Initial states can also be given as a parameter:: sage: F = FiniteStateMachine(input_alphabet=[0,1]) sage: def f(state, input): ....: return [('A', input), ('B', 1-input)] sage: F.add_from_transition_function(f,initial_states=['A']) sage: F.initial_states() ['A'] Already existing states in the finite state machine (the final states in the example below) are also explored:: sage: F = FiniteStateMachine(initial_states=[0], ....: final_states=[1], ....: input_alphabet=[0]) sage: def transition_function(state, letter): ....: return(1-state, []) sage: F.add_from_transition_function(transition_function) sage: F.transitions() [Transition from 0 to 1: 0|-, Transition from 1 to 0: 0|-] If ``explore_existing_states=False``, however, this behavior is turned off, i.e., already existing states are not explored:: sage: F = FiniteStateMachine(initial_states=[0], ....: final_states=[1], ....: input_alphabet=[0]) sage: def transition_function(state, letter): ....: return(1-state, []) sage: F.add_from_transition_function(transition_function, ....: explore_existing_states=False) sage: F.transitions() [Transition from 0 to 1: 0|-] TEST:: sage: F = FiniteStateMachine(initial_states=['A']) sage: def f(state, input): ....: return [('A', input), ('B', 1-input)] sage: F.add_from_transition_function(f) Traceback (most recent call last): ... ValueError: No input alphabet is given. Try calling determine_alphabets(). :: sage: def transition(state, where): ....: return (vector([0, 0]), 1) sage: Transducer(transition, input_alphabet=[0], initial_states=[0]) Traceback (most recent call last): ... TypeError: mutable vectors are unhashable """ if self.input_alphabet is None: raise ValueError("No input alphabet is given. " "Try calling determine_alphabets().") if initial_states is None: not_done = self.initial_states() elif hasattr(initial_states, '__iter__'): not_done = [] for s in initial_states: state = self.add_state(s) state.is_initial = True not_done.append(state) else: raise TypeError('Initial states must be iterable ' \ '(e.g. a list of states).') if len(not_done) == 0: raise ValueError("No state is initial.") if explore_existing_states: ignore_done = self.states() for s in not_done: try: ignore_done.remove(s) except ValueError: pass else: ignore_done = [] while len(not_done) > 0: s = not_done.pop(0) for letter in self.input_alphabet: try: return_value = function(s.label(), letter) except LookupError: continue if not hasattr(return_value, "pop"): return_value = [return_value] try: for (st_label, word) in return_value: pass except TypeError: raise ValueError("The callback function for " "add_from_transition is expected " "to return a pair (new_state, " "output_label) or a list of such pairs. " "For the state %s and the input " "letter %s, it however returned %s, " "which is not acceptable." % (s.label(), letter, return_value)) for (st_label, word) in return_value: if not self.has_state(st_label): not_done.append(self.add_state(st_label)) elif len(ignore_done) > 0: u = self.state(st_label) if u in ignore_done: not_done.append(u) ignore_done.remove(u) self.add_transition(s, st_label, word_in=letter, word_out=word) def add_transitions_from_function(self, function, labels_as_input=True): """ Adds one or more transitions if ``function(state, state)`` says that there are some. INPUT: - ``function`` -- a transition function. Given two states ``from_state`` and ``to_state`` (or their labels if ``label_as_input`` is true), this function shall return a tuple ``(word_in, word_out)`` to add a transition from ``from_state`` to ``to_state`` with input and output labels ``word_in`` and ``word_out``, respectively. If no such addition is to be added, the transition function shall return ``None``. The transition function may also return a list of such tuples in order to add multiple transitions between the pair of states. - ``label_as_input`` -- (default: ``True``) OUTPUT: Nothing. EXAMPLES:: sage: F = FiniteStateMachine() sage: F.add_states(['A', 'B', 'C']) sage: def f(state1, state2): ....: if state1 == 'C': ....: return None ....: return (0, 1) sage: F.add_transitions_from_function(f) sage: len(F.transitions()) 6 Multiple transitions are also possible:: sage: F = FiniteStateMachine() sage: F.add_states([0, 1]) sage: def f(state1, state2): ....: if state1 != state2: ....: return [(0, 1), (1, 0)] ....: else: ....: return None sage: F.add_transitions_from_function(f) sage: F.transitions() [Transition from 0 to 1: 0|1, Transition from 0 to 1: 1|0, Transition from 1 to 0: 0|1, Transition from 1 to 0: 1|0] TESTS:: sage: F = FiniteStateMachine() sage: F.add_state(0) 0 sage: def f(state1, state2): ....: return 1 sage: F.add_transitions_from_function(f) Traceback (most recent call last): ... ValueError: The callback function for add_transitions_from_function is expected to return a pair (word_in, word_out) or a list of such pairs. For states 0 and 0 however, it returned 1, which is not acceptable. """ for s_from in self.iter_states(): for s_to in self.iter_states(): try: if labels_as_input: return_value = function(s_from.label(), s_to.label()) else: return_value = function(s_from, s_to) except LookupError: continue if return_value is None: continue if not hasattr(return_value, "pop"): transitions = [return_value] else: transitions = return_value for t in transitions: if not hasattr(t, '__getitem__'): raise ValueError("The callback function for " "add_transitions_from_function " "is expected to return a " "pair (word_in, word_out) or a " "list of such pairs. For " "states %s and %s however, it " "returned %s, which is not " "acceptable." % (s_from, s_to, return_value)) label_in = t[0] try: label_out = t[1] except LookupError: label_out = None self.add_transition(s_from, s_to, label_in, label_out) def delete_transition(self, t): """ Deletes a transition by removing it from the list of transitions of the state, where the transition starts. INPUT: - ``t`` -- a transition. OUTPUT: Nothing. EXAMPLES:: sage: F = FiniteStateMachine([('A', 'B', 0), ('B', 'A', 1)]) sage: F.delete_transition(('A', 'B', 0)) sage: F.transitions() [Transition from 'B' to 'A': 1|-] """ transition = self.transition(t) transition.from_state.transitions.remove(transition) def delete_state(self, s): """ Deletes a state and all transitions coming or going to this state. INPUT: - ``s`` -- a label of a state or an :class:`FSMState`. OUTPUT: Nothing. EXAMPLES:: sage: from sage.combinat.finite_state_machine import FSMTransition sage: t1 = FSMTransition('A', 'B', 0) sage: t2 = FSMTransition('B', 'B', 1) sage: F = FiniteStateMachine([t1, t2]) sage: F.delete_state('A') sage: F.transitions() [Transition from 'B' to 'B': 1|-] TESTS:: sage: F._states_ ['B'] sage: F._states_dict_ # This shows that #16024 is fixed. {'B': 'B'} """ state = self.state(s) for transition in self.transitions(): if transition.to_state == state: self.delete_transition(transition) self._states_.remove(state) try: del self._states_dict_[state.label()] except AttributeError: pass def remove_epsilon_transitions(self): """ TESTS:: sage: FiniteStateMachine().remove_epsilon_transitions() Traceback (most recent call last): ... NotImplementedError """ raise NotImplementedError def accessible_components(self): """ Returns a new finite state machine with the accessible states of self and all transitions between those states. INPUT: Nothing. OUTPUT: A finite state machine with the accessible states of self and all transitions between those states. A state is accessible if there is a directed path from an initial state to the state. If self has no initial states then a copy of the finite state machine self is returned. EXAMPLES:: sage: F = Automaton([(0, 0, 0), (0, 1, 1), (1, 1, 0), (1, 0, 1)], ....: initial_states=[0]) sage: F.accessible_components() Automaton with 2 states :: sage: F = Automaton([(0, 0, 1), (0, 0, 1), (1, 1, 0), (1, 0, 1)], ....: initial_states=[0]) sage: F.accessible_components() Automaton with 1 states TESTS: Check whether input of length > 1 works:: sage: F = Automaton([(0, 1, [0, 1]), (0, 2, 0)], ....: initial_states=[0]) sage: F.accessible_components() Automaton with 3 states """ if len(self.initial_states()) == 0: return deepcopy(self) memo = {} def accessible(from_state, read): return [(deepcopy(x.to_state, memo), x.word_out) for x in self.iter_transitions(from_state) if x.word_in[0] == read] new_initial_states=map(lambda x: deepcopy(x, memo), self.initial_states()) result = self.empty_copy() result.add_from_transition_function(accessible, initial_states=new_initial_states) for final_state in self.iter_final_states(): try: new_final_state=result.state(final_state.label) new_final_state.is_final=True except LookupError: pass return result # ************************************************************************* # creating new finite state machines # ************************************************************************* def disjoint_union(self, other): """ TESTS:: sage: F = FiniteStateMachine([('A', 'A')]) sage: FiniteStateMachine().disjoint_union(F) Traceback (most recent call last): ... NotImplementedError """ raise NotImplementedError def concatenation(self, other): """ TESTS:: sage: F = FiniteStateMachine([('A', 'A')]) sage: FiniteStateMachine().concatenation(F) Traceback (most recent call last): ... NotImplementedError """ raise NotImplementedError def Kleene_closure(self): """ TESTS:: sage: FiniteStateMachine().Kleene_closure() Traceback (most recent call last): ... NotImplementedError """ raise NotImplementedError def intersection(self, other): """ TESTS:: sage: FiniteStateMachine().intersection(FiniteStateMachine()) Traceback (most recent call last): ... NotImplementedError """ raise NotImplementedError def product_FiniteStateMachine(self, other, function, new_input_alphabet=None, only_accessible_components=True, final_function=None, new_class=None): r""" Returns a new finite state machine whose states are `d`-tuples of states of the original finite state machines. INPUT: - ``other`` -- a finite state machine (for `d=2`) or a list (or iterable) of `d-1` finite state machines. - ``function`` has to accept `d` transitions from `A_j` to `B_j` for `j\in\{1, \ldots, d\}` and returns a pair ``(word_in, word_out)`` which is the label of the transition `A=(A_1, \ldots, A_d)` to `B=(B_1, \ldots, B_d)`. If there is no transition from `A` to `B`, then ``function`` should raise a ``LookupError``. - ``new_input_alphabet`` (optional) -- the new input alphabet as a list. - ``only_accessible_components`` -- If ``True`` (default), then the result is piped through :meth:`.accessible_components`. If no ``new_input_alphabet`` is given, it is determined by :meth:`.determine_alphabets`. - ``final_function`` -- A function mapping `d` final states of the original finite state machines to the final output of the corresponding state in the new finite state machine. By default, the final output is the empty word if both final outputs of the constituent states are empty; otherwise, a ``ValueError`` is raised. - ``new_class`` -- Class of the new finite state machine. By default (``None``), the class of ``self`` is used. OUTPUT: A finite state machine whose states are `d`-tuples of states of the original finite state machines. A state is initial or final if all constituent states are initial or final, respectively. The labels of the transitions are defined by ``function``. The final output of a final state is determined by calling ``final_function`` on the constituent states. The color of a new state is the tuple of colors of the constituent states of ``self`` and ``other``. EXAMPLES:: sage: F = Automaton([('A', 'B', 1), ('A', 'A', 0), ('B', 'A', 2)], ....: initial_states=['A'], final_states=['B'], ....: determine_alphabets=True) sage: G = Automaton([(1, 1, 1)], initial_states=[1], final_states=[1]) sage: def addition(transition1, transition2): ....: return (transition1.word_in[0] + transition2.word_in[0], ....: None) sage: H = F.product_FiniteStateMachine(G, addition, [0, 1, 2, 3], only_accessible_components=False) sage: H.transitions() [Transition from ('A', 1) to ('B', 1): 2|-, Transition from ('A', 1) to ('A', 1): 1|-, Transition from ('B', 1) to ('A', 1): 3|-] sage: H1 = F.product_FiniteStateMachine(G, addition, [0, 1, 2, 3], only_accessible_components=False) sage: H1.states()[0].label()[0] is F.states()[0] True sage: H1.states()[0].label()[1] is G.states()[0] True :: sage: F = Automaton([(0,1,1/4), (0,0,3/4), (1,1,3/4), (1,0,1/4)], ....: initial_states=[0] ) sage: G = Automaton([(0,0,1), (1,1,3/4), (1,0,1/4)], ....: initial_states=[0] ) sage: H = F.product_FiniteStateMachine( ....: G, lambda t1,t2: (t1.word_in[0]*t2.word_in[0], None)) sage: H.states() [(0, 0), (1, 0)] :: sage: F = Automaton([(0,1,1/4), (0,0,3/4), (1,1,3/4), (1,0,1/4)], ....: initial_states=[0] ) sage: G = Automaton([(0,0,1), (1,1,3/4), (1,0,1/4)], ....: initial_states=[0] ) sage: H = F.product_FiniteStateMachine(G, ....: lambda t1,t2: (t1.word_in[0]*t2.word_in[0], None), ....: only_accessible_components=False) sage: H.states() [(0, 0), (1, 0), (0, 1), (1, 1)] Also final output words are considered according to the function ``final_function``:: sage: F = Transducer([(0, 1, 0, 1), (1, 1, 1, 1), (1, 1, 0, 1)], ....: final_states=[1]) sage: F.state(1).final_word_out = 1 sage: G = Transducer([(0, 0, 0, 1), (0, 0, 1, 0)], final_states=[0]) sage: G.state(0).final_word_out = 1 sage: def minus(t1, t2): ....: return (t1.word_in[0] - t2.word_in[0], ....: t1.word_out[0] - t2.word_out[0]) sage: H = F.product_FiniteStateMachine(G, minus) Traceback (most recent call last): ... ValueError: A final function must be given. sage: def plus(s1, s2): ....: return s1.final_word_out[0] + s2.final_word_out[0] sage: H = F.product_FiniteStateMachine(G, minus, ....: final_function=plus) sage: H.final_states() [(1, 0)] sage: H.final_states()[0].final_word_out [2] Products of more than two finite state machines are also possible:: sage: def plus(s1, s2, s3): ....: if s1.word_in == s2.word_in == s3.word_in: ....: return (s1.word_in, ....: sum(s.word_out[0] for s in (s1, s2, s3))) ....: else: ....: raise LookupError sage: T0 = transducers.CountSubblockOccurrences([0, 0], [0, 1, 2]) sage: T1 = transducers.CountSubblockOccurrences([1, 1], [0, 1, 2]) sage: T2 = transducers.CountSubblockOccurrences([2, 2], [0, 1, 2]) sage: T = T0.product_FiniteStateMachine([T1, T2], plus) sage: T.transitions() [Transition from ((), (), ()) to ((0,), (), ()): 0|0, Transition from ((), (), ()) to ((), (1,), ()): 1|0, Transition from ((), (), ()) to ((), (), (2,)): 2|0, Transition from ((0,), (), ()) to ((0,), (), ()): 0|1, Transition from ((0,), (), ()) to ((), (1,), ()): 1|0, Transition from ((0,), (), ()) to ((), (), (2,)): 2|0, Transition from ((), (1,), ()) to ((0,), (), ()): 0|0, Transition from ((), (1,), ()) to ((), (1,), ()): 1|1, Transition from ((), (1,), ()) to ((), (), (2,)): 2|0, Transition from ((), (), (2,)) to ((0,), (), ()): 0|0, Transition from ((), (), (2,)) to ((), (1,), ()): 1|0, Transition from ((), (), (2,)) to ((), (), (2,)): 2|1] sage: T([0, 0, 1, 1, 2, 2, 0, 1, 2, 2]) [0, 1, 0, 1, 0, 1, 0, 0, 0, 1] ``other`` can also be an iterable:: sage: T == T0.product_FiniteStateMachine(iter([T1, T2]), plus) True TESTS: Check that colors are correctly dealt with. In particular, the new colors have to be hashable such that :meth:`Automaton.determinisation` does not fail:: sage: A = Automaton([[0, 0, 0]], initial_states=[0]) sage: B = A.product_FiniteStateMachine(A, ....: lambda t1, t2: (0, None)) sage: B.states()[0].color (None, None) sage: B.determinisation() Automaton with 1 states Check handling of the parameter ``other``:: sage: A.product_FiniteStateMachine(None, plus) Traceback (most recent call last): ... ValueError: other must be a finite state machine or a list of finite state machines. sage: A.product_FiniteStateMachine([None], plus) Traceback (most recent call last): ... ValueError: other must be a finite state machine or a list of finite state machines. Test whether ``new_class`` works:: sage: T = Transducer() sage: type(T.product_FiniteStateMachine(T, None)) <class 'sage.combinat.finite_state_machine.Transducer'> sage: type(T.product_FiniteStateMachine(T, None, ....: new_class=Automaton)) <class 'sage.combinat.finite_state_machine.Automaton'> """ def default_final_function(*args): if any(s.final_word_out for s in args): raise ValueError("A final function must be given.") return [] if final_function is None: final_function = default_final_function result = self.empty_copy(new_class=new_class) if new_input_alphabet is not None: result.input_alphabet = new_input_alphabet else: result.input_alphabet = None if hasattr(other, '__iter__'): machines = [self] machines.extend(other) if not all(is_FiniteStateMachine(m) for m in machines): raise ValueError("other must be a finite state machine " "or a list of finite state machines.") elif is_FiniteStateMachine(other): machines = [self, other] else: raise ValueError("other must be a finite state machine or " "a list of finite state machines.") for transitions in itertools.product( *(m.iter_transitions() for m in machines)): try: word = function(*transitions) except LookupError: continue result.add_transition(tuple(t.from_state for t in transitions), tuple(t.to_state for t in transitions), word[0], word[1]) for state in result.states(): if all(s.is_initial for s in state.label()): state.is_initial = True if all(s.is_final for s in state.label()): state.is_final = True state.final_word_out = final_function(*state.label()) state.color = tuple(s.color for s in state.label()) if only_accessible_components: if result.input_alphabet is None: result.determine_alphabets() return result.accessible_components() else: return result def composition(self, other, algorithm=None, only_accessible_components=True): """ Returns a new transducer which is the composition of ``self`` and ``other``. INPUT: - ``other`` -- a transducer - ``algorithm`` -- can be one of the following - ``direct`` -- The composition is calculated directly. There can be arbitrarily many initial and final states, but the input and output labels must have length 1. WARNING: The output of other is fed into self. - ``explorative`` -- An explorative algorithm is used. At least the following restrictions apply, but are not checked: - both self and other have exactly one initial state - all input labels of transitions have length exactly 1 The input alphabet of self has to be specified. This is a very limited implementation of composition. WARNING: The output of ``other`` is fed into ``self``. If algorithm is ``None``, then the algorithm is chosen automatically (at the moment always ``direct``). OUTPUT: A new transducer. The labels of the new finite state machine are pairs of states of the original finite state machines. The color of a new state is the tuple of colors of the constituent states. EXAMPLES:: sage: F = Transducer([('A', 'B', 1, 0), ('B', 'A', 0, 1)], ....: initial_states=['A', 'B'], final_states=['B'], ....: determine_alphabets=True) sage: G = Transducer([(1, 1, 1, 0), (1, 2, 0, 1), ....: (2, 2, 1, 1), (2, 2, 0, 0)], ....: initial_states=[1], final_states=[2], ....: determine_alphabets=True) sage: Hd = F.composition(G, algorithm='direct') sage: Hd.initial_states() [(1, 'B'), (1, 'A')] sage: Hd.transitions() [Transition from (1, 'B') to (1, 'A'): 1|1, Transition from (1, 'A') to (2, 'B'): 0|0, Transition from (2, 'B') to (2, 'A'): 0|1, Transition from (2, 'A') to (2, 'B'): 1|0] :: sage: F = Transducer([('A', 'B', 1, [1, 0]), ('B', 'B', 1, 1), ....: ('B', 'B', 0, 0)], ....: initial_states=['A'], final_states=['B']) sage: G = Transducer([(1, 1, 0, 0), (1, 2, 1, 0), ....: (2, 2, 0, 1), (2, 1, 1, 1)], ....: initial_states=[1], final_states=[1]) sage: He = G.composition(F, algorithm='explorative') sage: He.transitions() [Transition from ('A', 1) to ('B', 2): 1|0,1, Transition from ('B', 2) to ('B', 2): 0|1, Transition from ('B', 2) to ('B', 1): 1|1, Transition from ('B', 1) to ('B', 1): 0|0, Transition from ('B', 1) to ('B', 2): 1|0] Also final output words are considered if ``algorithm='direct'`` or ``None``:: sage: F = Transducer([('A', 'B', 1, 0), ('B', 'A', 0, 1)], ....: initial_states=['A', 'B'], ....: final_states=['A', 'B']) sage: F.state('A').final_word_out = 0 sage: F.state('B').final_word_out = 1 sage: G = Transducer([(1, 1, 1, 0), (1, 2, 0, 1), ....: (2, 2, 1, 1), (2, 2, 0, 0)], ....: initial_states=[1], final_states=[2]) sage: G.state(2).final_word_out = 0 sage: Hd = F.composition(G, algorithm='direct') sage: Hd.final_states() [(2, 'B')] Note that ``(2, 'A')`` is not final, as the final output `0` of state `2` of `G` cannot be processed in state ``'A'`` of `F`. :: sage: [s.final_word_out for s in Hd.final_states()] [[1, 0]] Be aware that after composition, different transitions may share the same output label (same python object):: sage: F = Transducer([ ('A','B',0,0), ('B','A',0,0)], ....: initial_states=['A'], ....: final_states=['A']) sage: F.transitions()[0].word_out is F.transitions()[1].word_out False sage: G = Transducer([('C','C',0,1)],) ....: initial_states=['C'], ....: final_states=['C']) sage: H = G.composition(F) sage: H.transitions()[0].word_out is H.transitions()[1].word_out True In the explorative algorithm, transducers with non-empty final output words are currently not implemented:: sage: A = transducers.GrayCode() sage: B = transducers.abs([0, 1]) sage: A.composition(B, algorithm='explorative') Traceback (most recent call last): ... NotImplementedError: Explorative composition is not implemented for transducers with non-empty final output words. Try the direct algorithm instead. Similarly, the explorative algorithm cannot handle non-deterministic finite state machines:: sage: A = Transducer([(0, 0, 0, 0), (0, 1, 0, 0)]) sage: B = transducers.Identity([0]) sage: A.composition(B, algorithm='explorative') Traceback (most recent call last): ... NotImplementedError: Explorative composition is currently not implemented for non-deterministic transducers. sage: B.composition(A, algorithm='explorative') Traceback (most recent call last): ... NotImplementedError: Explorative composition is currently not implemented for non-deterministic transducers. TESTS: Due to the limitations of the two algorithms the following (examples from above, but different algorithm used) does not give a full answer or does not work. In the following, ``algorithm='explorative'`` is inadequate, as ``F`` has more than one initial state:: sage: F = Transducer([('A', 'B', 1, 0), ('B', 'A', 0, 1)], ....: initial_states=['A', 'B'], final_states=['B'], ....: determine_alphabets=True) sage: G = Transducer([(1, 1, 1, 0), (1, 2, 0, 1), ....: (2, 2, 1, 1), (2, 2, 0, 0)], ....: initial_states=[1], final_states=[2], ....: determine_alphabets=True) sage: He = F.composition(G, algorithm='explorative') sage: He.initial_states() [(1, 'A')] sage: He.transitions() [Transition from (1, 'A') to (2, 'B'): 0|0, Transition from (2, 'B') to (2, 'A'): 0|1, Transition from (2, 'A') to (2, 'B'): 1|0] In the following example, ``algorithm='direct'`` is inappropriate as there are edges with output labels of length greater than 1:: sage: F = Transducer([('A', 'B', 1, [1, 0]), ('B', 'B', 1, 1), ....: ('B', 'B', 0, 0)], ....: initial_states=['A'], final_states=['B']) sage: G = Transducer([(1, 1, 0, 0), (1, 2, 1, 0), ....: (2, 2, 0, 1), (2, 1, 1, 1)], ....: initial_states=[1], final_states=[1]) sage: Hd = G.composition(F, algorithm='direct') In the following examples, we compose transducers and automata and check whether the types are correct. :: sage: from sage.combinat.finite_state_machine import ( ....: is_Automaton, is_Transducer) sage: T = Transducer([(0, 0, 0, 0)], initial_states=[0]) sage: A = Automaton([(0, 0, 0)], initial_states=[0]) sage: is_Transducer(T.composition(T, algorithm='direct')) True sage: is_Transducer(T.composition(T, algorithm='explorative')) True sage: T.composition(A, algorithm='direct') Traceback (most recent call last): ... TypeError: Composition with automaton is not possible. sage: T.composition(A, algorithm='explorative') Traceback (most recent call last): ... TypeError: Composition with automaton is not possible. sage: A.composition(A, algorithm='direct') Traceback (most recent call last): ... TypeError: Composition with automaton is not possible. sage: A.composition(A, algorithm='explorative') Traceback (most recent call last): ... TypeError: Composition with automaton is not possible. sage: is_Automaton(A.composition(T, algorithm='direct')) True sage: is_Automaton(A.composition(T, algorithm='explorative')) True """ if not other._allow_composition_: raise TypeError("Composition with automaton is not " "possible.") if algorithm is None: algorithm = 'direct' if algorithm == 'direct': return self._composition_direct_(other, only_accessible_components) elif algorithm == 'explorative': return self._composition_explorative_(other) else: raise ValueError("Unknown algorithm %s." % (algorithm,)) def _composition_direct_(self, other, only_accessible_components=True): """ See :meth:`.composition` for details. TESTS:: sage: F = Transducer([('A', 'B', 1, 0), ('B', 'A', 0, 1)], ....: initial_states=['A', 'B'], final_states=['B'], ....: determine_alphabets=True) sage: G = Transducer([(1, 1, 1, 0), (1, 2, 0, 1), ....: (2, 2, 1, 1), (2, 2, 0, 0)], ....: initial_states=[1], final_states=[2], ....: determine_alphabets=True) sage: Hd = F._composition_direct_(G) sage: Hd.initial_states() [(1, 'B'), (1, 'A')] sage: Hd.transitions() [Transition from (1, 'B') to (1, 'A'): 1|1, Transition from (1, 'A') to (2, 'B'): 0|0, Transition from (2, 'B') to (2, 'A'): 0|1, Transition from (2, 'A') to (2, 'B'): 1|0] """ def function(transition1, transition2): if transition1.word_out == transition2.word_in: return (transition1.word_in, transition2.word_out) else: raise LookupError result = other.product_FiniteStateMachine( self, function, only_accessible_components=only_accessible_components, final_function=lambda s1, s2: [], new_class=self.__class__) for state_result in result.iter_states(): state = state_result.label()[0] if state.is_final: accept, state_to, output = self.process( state.final_word_out, initial_state=self.state(state_result.label()[1])) if not accept: state_result.is_final = False else: state_result.is_final = True state_result.final_word_out = output return result def _composition_explorative_(self, other): """ See :meth:`.composition` for details. TESTS:: sage: F = Transducer([('A', 'B', 1, [1, 0]), ('B', 'B', 1, 1), ....: ('B', 'B', 0, 0)], ....: initial_states=['A'], final_states=['B']) sage: G = Transducer([(1, 1, 0, 0), (1, 2, 1, 0), ....: (2, 2, 0, 1), (2, 1, 1, 1)], ....: initial_states=[1], final_states=[1]) sage: He = G._composition_explorative_(F) sage: He.transitions() [Transition from ('A', 1) to ('B', 2): 1|0,1, Transition from ('B', 2) to ('B', 2): 0|1, Transition from ('B', 2) to ('B', 1): 1|1, Transition from ('B', 1) to ('B', 1): 0|0, Transition from ('B', 1) to ('B', 2): 1|0] Check that colors are correctly dealt with. In particular, the new colors have to be hashable such that :meth:`Automaton.determinisation` does not fail:: sage: T = Transducer([[0, 0, 0, 0]], initial_states=[0]) sage: A = T.input_projection() sage: B = A.composition(T, algorithm='explorative') sage: B.states()[0].color (None, None) sage: B.determinisation() Automaton with 1 states .. TODO:: The explorative algorithm should be re-implemented using the process iterators of both finite state machines. """ def composition_transition(state, input): (state1, state2) = state transition1 = None for transition in other.iter_transitions(state1): if transition.word_in == [input]: transition1 = transition break if transition1 is None: raise LookupError new_state1 = transition1.to_state new_state2 = state2 output = [] for o in transition1.word_out: transition2 = None for transition in self.iter_transitions(new_state2): if transition.word_in == [o]: transition2 = transition break if transition2 is None: raise LookupError new_state2 = transition2.to_state output += transition2.word_out return ((new_state1, new_state2), output) if any(s.final_word_out for s in self.iter_final_states()) or \ any(s.final_word_out for s in other.iter_final_states()): raise NotImplementedError("Explorative composition is not " "implemented for transducers with " "non-empty final output words. Try " "the direct algorithm instead.") if not self.is_deterministic() or not other.is_deterministic(): raise NotImplementedError("Explorative composition is " "currently not implemented for " "non-deterministic transducers.") F = other.empty_copy(new_class=self.__class__) new_initial_states = [(other.initial_states()[0], self.initial_states()[0])] F.add_from_transition_function(composition_transition, initial_states=new_initial_states) for state in F.states(): if all(map(lambda s: s.is_final, state.label())): state.is_final = True state.color = tuple(map(lambda s: s.color, state.label())) return F def input_projection(self): """ Returns an automaton where the output of each transition of self is deleted. INPUT: Nothing OUTPUT: An automaton. EXAMPLES:: sage: F = FiniteStateMachine([('A', 'B', 0, 1), ('A', 'A', 1, 1), ....: ('B', 'B', 1, 0)]) sage: G = F.input_projection() sage: G.transitions() [Transition from 'A' to 'B': 0|-, Transition from 'A' to 'A': 1|-, Transition from 'B' to 'B': 1|-] """ return self.projection(what='input') def output_projection(self): """ Returns a automaton where the input of each transition of self is deleted and the new input is the original output. INPUT: Nothing OUTPUT: An automaton. EXAMPLES:: sage: F = FiniteStateMachine([('A', 'B', 0, 1), ('A', 'A', 1, 1), ....: ('B', 'B', 1, 0)]) sage: G = F.output_projection() sage: G.transitions() [Transition from 'A' to 'B': 1|-, Transition from 'A' to 'A': 1|-, Transition from 'B' to 'B': 0|-] Final output words are also considered correctly:: sage: H = Transducer([('A', 'B', 0, 1), ('A', 'A', 1, 1), ....: ('B', 'B', 1, 0), ('A', ('final', 0), 0, 0)], ....: final_states=['A', 'B']) sage: H.state('B').final_word_out = 2 sage: J = H.output_projection() sage: J.states() ['A', 'B', ('final', 0), ('final', 1)] sage: J.transitions() [Transition from 'A' to 'B': 1|-, Transition from 'A' to 'A': 1|-, Transition from 'A' to ('final', 0): 0|-, Transition from 'B' to 'B': 0|-, Transition from 'B' to ('final', 1): 2|-] sage: J.final_states() ['A', ('final', 1)] """ return self.projection(what='output') def projection(self, what='input'): """ Returns an Automaton which transition labels are the projection of the transition labels of the input. INPUT: - ``what`` -- (default: ``input``) either ``input`` or ``output``. OUTPUT: An automaton. EXAMPLES:: sage: F = FiniteStateMachine([('A', 'B', 0, 1), ('A', 'A', 1, 1), ....: ('B', 'B', 1, 0)]) sage: G = F.projection(what='output') sage: G.transitions() [Transition from 'A' to 'B': 1|-, Transition from 'A' to 'A': 1|-, Transition from 'B' to 'B': 0|-] """ new = Automaton() # TODO: use empty_copy() in order to # preserve on_duplicate_transition and future extensions. # for this, empty_copy would need a new optional argument # use_class=None ? if what == 'input': new.input_alphabet = copy(self.input_alphabet) elif what == 'output': new.input_alphabet = copy(self.output_alphabet) else: raise NotImplementedError state_mapping = {} for state in self.iter_states(): state_mapping[state] = new.add_state(deepcopy(state)) for transition in self.iter_transitions(): if what == 'input': new_word_in = transition.word_in elif what == 'output': new_word_in = transition.word_out else: raise NotImplementedError new.add_transition((state_mapping[transition.from_state], state_mapping[transition.to_state], new_word_in, None)) if what == 'output': states = [s for s in self.iter_final_states() if s.final_word_out] if not states: return new number = 0 while new.has_state(('final', number)): number += 1 final = new.add_state(('final', number)) final.is_final = True for state in states: output = state.final_word_out new.state(state_mapping[state]).final_word_out = [] new.state(state_mapping[state]).is_final = False new.add_transition((state_mapping[state], final, output, None)) return new def transposition(self): """ Returns a new finite state machine, where all transitions of the input finite state machine are reversed. INPUT: Nothing. OUTPUT: A new finite state machine. EXAMPLES:: sage: aut = Automaton([('A', 'A', 0), ('A', 'A', 1), ('A', 'B', 0)], ....: initial_states=['A'], final_states=['B']) sage: aut.transposition().transitions('B') [Transition from 'B' to 'A': 0|-] :: sage: aut = Automaton([('1', '1', 1), ('1', '2', 0), ('2', '2', 0)], ....: initial_states=['1'], final_states=['1', '2']) sage: aut.transposition().initial_states() ['1', '2'] TESTS: If a final state of ``self`` has a non-empty final output word, transposition is not implemented:: sage: T = Transducer([('1', '1', 1, 0), ('1', '2', 0, 1), ....: ('2', '2', 0, 2)], ....: initial_states=['1'], ....: final_states=['1', '2']) sage: T.state('1').final_word_out = [2, 5] sage: T.transposition() Traceback (most recent call last): ... NotImplementedError: Transposition for transducers with final output words is not implemented. """ transposition = self.empty_copy() for state in self.iter_states(): transposition.add_state(deepcopy(state)) for transition in self.iter_transitions(): transposition.add_transition( transition.to_state.label(), transition.from_state.label(), transition.word_in, transition.word_out) for initial in self.iter_initial_states(): state = transposition.state(initial.label()) if not initial.is_final: state.is_final = True state.is_initial = False for final in self.iter_final_states(): state = transposition.state(final.label()) if final.final_word_out: raise NotImplementedError("Transposition for transducers " "with final output words is not " "implemented.") if not final.is_initial: state.is_final = False state.is_initial = True return transposition def split_transitions(self): """ Returns a new transducer, where all transitions in self with input labels consisting of more than one letter are replaced by a path of the corresponding length. INPUT: Nothing. OUTPUT: A new transducer. EXAMPLES:: sage: A = Transducer([('A', 'B', [1, 2, 3], 0)], ....: initial_states=['A'], final_states=['B']) sage: A.split_transitions().states() [('A', ()), ('B', ()), ('A', (1,)), ('A', (1, 2))] """ new = self.empty_copy() for state in self.states(): new.add_state(FSMState((state, ()), is_initial=state.is_initial, is_final=state.is_final)) for transition in self.transitions(): for j in range(len(transition.word_in)-1): new.add_transition(( (transition.from_state, tuple(transition.word_in[:j])), (transition.from_state, tuple(transition.word_in[:j+1])), transition.word_in[j], [])) new.add_transition(( (transition.from_state, tuple(transition.word_in[:-1])), (transition.to_state, ()), transition.word_in[-1:], transition.word_out)) return new def final_components(self): """ Returns the final components of a finite state machine as finite state machines. INPUT: Nothing. OUTPUT: A list of finite state machines, each representing a final component of ``self``. A final component of a transducer ``T`` is a strongly connected component ``C`` such that there are no transitions of ``T`` leaving ``C``. The final components are the only parts of a transducer which influence the main terms of the asympotic behaviour of the sum of output labels of a transducer, see [HKP2014]_ and [HKW2014]_. EXAMPLES:: sage: T = Transducer([['A', 'B', 0, 0], ['B', 'C', 0, 1], ....: ['C', 'B', 0, 1], ['A', 'D', 1, 0], ....: ['D', 'D', 0, 0], ['D', 'B', 1, 0], ....: ['A', 'E', 2, 0], ['E', 'E', 0, 0]]) sage: FC = T.final_components() sage: sorted(FC[0].transitions()) [Transition from 'B' to 'C': 0|1, Transition from 'C' to 'B': 0|1] sage: FC[1].transitions() [Transition from 'E' to 'E': 0|0] Another example (cycle of length 2):: sage: T = Automaton([[0, 1, 0], [1, 0, 0]]) sage: len(T.final_components()) == 1 True sage: T.final_components()[0].transitions() [Transition from 0 to 1: 0|-, Transition from 1 to 0: 0|-] REFERENCES: .. [HKP2014] Clemens Heuberger, Sara Kropf, and Helmut Prodinger, *Asymptotic analysis of the sum of the output of transducer*, in preparation. """ DG = self.digraph() condensation = DG.strongly_connected_components_digraph() return [self.induced_sub_finite_state_machine(map(self.state, component)) for component in condensation.vertices() if condensation.out_degree(component) == 0] # ************************************************************************* # simplifications # ************************************************************************* def prepone_output(self): """ For all paths, shift the output of the path from one transition to the earliest possible preceeding transition of the path. INPUT: Nothing. OUTPUT: Nothing. Apply the following to each state `s` (except initial states) of the finite state machine as often as possible: If the letter `a` is a prefix of the output label of all transitions from `s` (including the final output of `s`), then remove it from all these labels and append it to all output labels of all transitions leading to `s`. We assume that the states have no output labels, but final outputs are allowed. EXAMPLES:: sage: A = Transducer([('A', 'B', 1, 1), ....: ('B', 'B', 0, 0), ....: ('B', 'C', 1, 0)], ....: initial_states=['A'], ....: final_states=['C']) sage: A.prepone_output() sage: A.transitions() [Transition from 'A' to 'B': 1|1,0, Transition from 'B' to 'B': 0|0, Transition from 'B' to 'C': 1|-] :: sage: B = Transducer([('A', 'B', 0, 1), ....: ('B', 'C', 1, [1, 1]), ....: ('B', 'C', 0, 1)], ....: initial_states=['A'], ....: final_states=['C']) sage: B.prepone_output() sage: B.transitions() [Transition from 'A' to 'B': 0|1,1, Transition from 'B' to 'C': 1|1, Transition from 'B' to 'C': 0|-] If initial states are not labeled as such, unexpected results may be obtained:: sage: C = Transducer([(0,1,0,0)]) sage: C.prepone_output() verbose 0 (...: finite_state_machine.py, prepone_output) All transitions leaving state 0 have an output label with prefix 0. However, there is no inbound transition and it is not an initial state. This routine (possibly called by simplification) therefore erased this prefix from all outbound transitions. sage: C.transitions() [Transition from 0 to 1: 0|-] Also the final output of final states can be changed:: sage: T = Transducer([('A', 'B', 0, 1), ....: ('B', 'C', 1, [1, 1]), ....: ('B', 'C', 0, 1)], ....: initial_states=['A'], ....: final_states=['B']) sage: T.state('B').final_word_out = [1] sage: T.prepone_output() sage: T.transitions() [Transition from 'A' to 'B': 0|1,1, Transition from 'B' to 'C': 1|1, Transition from 'B' to 'C': 0|-] sage: T.state('B').final_word_out [] :: sage: S = Transducer([('A', 'B', 0, 1), ....: ('B', 'C', 1, [1, 1]), ....: ('B', 'C', 0, 1)], ....: initial_states=['A'], ....: final_states=['B']) sage: S.state('B').final_word_out = [0] sage: S.prepone_output() sage: S.transitions() [Transition from 'A' to 'B': 0|1, Transition from 'B' to 'C': 1|1,1, Transition from 'B' to 'C': 0|1] sage: S.state('B').final_word_out [0] Output labels do not have to be hashable:: sage: C = Transducer([(0, 1, 0, []), ....: (1, 0, 0, [vector([0, 0]), 0]), ....: (1, 1, 1, [vector([0, 0]), 1]), ....: (0, 0, 1, 0)], ....: determine_alphabets=False, ....: initial_states=[0]) sage: C.prepone_output() sage: sorted(C.transitions()) [Transition from 0 to 1: 0|(0, 0), Transition from 0 to 0: 1|0, Transition from 1 to 0: 0|0, Transition from 1 to 1: 1|1,(0, 0)] """ def find_common_output(state): if any(itertools.ifilter( lambda transition: not transition.word_out, self.transitions(state))) \ or state.is_final and not state.final_word_out: return tuple() first_letters = map(lambda transition: transition.word_out[0], self.transitions(state)) if state.is_final: first_letters = first_letters + [state.final_word_out[0]] if not first_letters: return tuple() first_item = first_letters.pop() if all([item == first_item for item in first_letters]): return (first_item,) return tuple() changed = 1 iteration = 0 while changed > 0: changed = 0 iteration += 1 for state in self.iter_states(): if state.is_initial: continue if state.word_out: raise NotImplementedError( "prepone_output assumes that all states have " "empty output word, but state %s has output " "word %s" % (state, state.word_out)) common_output = find_common_output(state) if common_output: changed += 1 if state.is_final: assert state.final_word_out[0] == common_output[0] state.final_word_out = state.final_word_out[1:] for transition in self.transitions(state): assert transition.word_out[0] == common_output[0] transition.word_out = transition.word_out[1:] found_inbound_transition = False for transition in self.iter_transitions(): if transition.to_state == state: transition.word_out = transition.word_out \ + [common_output[0]] found_inbound_transition = True if not found_inbound_transition: verbose( "All transitions leaving state %s have an " "output label with prefix %s. However, " "there is no inbound transition and it is " "not an initial state. This routine " "(possibly called by simplification) " "therefore erased this prefix from all " "outbound transitions." % (state, common_output[0]), level=0) def equivalence_classes(self): r""" Returns a list of equivalence classes of states. INPUT: Nothing. OUTPUT: A list of equivalence classes of states. Two states `a` and `b` are equivalent if and only if there is a bijection `\varphi` between paths starting at `a` and paths starting at `b` with the following properties: Let `p_a` be a path from `a` to `a'` and `p_b` a path from `b` to `b'` such that `\varphi(p_a)=p_b`, then - `p_a.\mathit{word}_\mathit{in}=p_b.\mathit{word}_\mathit{in}`, - `p_a.\mathit{word}_\mathit{out}=p_b.\mathit{word}_\mathit{out}`, - `a'` and `b'` have the same output label, and - `a'` and `b'` are both final or both non-final and have the same final output word. The function :meth:`.equivalence_classes` returns a list of the equivalence classes to this equivalence relation. This is one step of Moore's minimization algorithm. .. SEEALSO:: :meth:`.minimization` EXAMPLES:: sage: fsm = FiniteStateMachine([("A", "B", 0, 1), ("A", "B", 1, 0), ....: ("B", "C", 0, 0), ("B", "C", 1, 1), ....: ("C", "D", 0, 1), ("C", "D", 1, 0), ....: ("D", "A", 0, 0), ("D", "A", 1, 1)]) sage: sorted(fsm.equivalence_classes()) [['A', 'C'], ['B', 'D']] sage: fsm.state("A").is_final = True sage: sorted(fsm.equivalence_classes()) [['A'], ['B'], ['C'], ['D']] sage: fsm.state("C").is_final = True sage: sorted(fsm.equivalence_classes()) [['A', 'C'], ['B', 'D']] sage: fsm.state("A").final_word_out = 1 sage: sorted(fsm.equivalence_classes()) [['A'], ['B'], ['C'], ['D']] sage: fsm.state("C").final_word_out = 1 sage: sorted(fsm.equivalence_classes()) [['A', 'C'], ['B', 'D']] """ # Two states `a` and `b` are j-equivalent if and only if there # is a bijection `\varphi` between paths of length <= j # starting at `a` and paths starting at `b` with the following # properties: Let `p_a` be a path from `a` to `a'` and `p_b` a # path from `b` to `b'` such that `\varphi(p_a)=p_b`, then # # - `p_a.\mathit{word}_{in}=p_b.\mathit{word}_{in}`, # - `p_a.\mathit{word}_{out}=p_b.\mathit{word}_{out}`, # - `a'` and `b'` have the same output label, and # - `a'` and `b'` are both final or both non-final. # If for some j the relations j-1 equivalent and j-equivalent # coincide, then they are equal to the equivalence relation # described in the docstring. # classes_current holds the equivalence classes of # j-equivalence, classes_previous holds the equivalence # classes of j-1 equivalence. # initialize with 0-equivalence classes_previous = [] key_0 = lambda state: (state.is_final, state.color, state.word_out, state.final_word_out) states_grouped = full_group_by(self.states(), key=key_0) classes_current = [equivalence_class for (key,equivalence_class) in states_grouped] while len(classes_current) != len(classes_previous): class_of = {} classes_previous = classes_current classes_current = [] for k in range(len(classes_previous)): for state in classes_previous[k]: class_of[state] = k key_current = lambda state: sorted( [(transition.word_in, transition.word_out, class_of[transition.to_state]) for transition in state.transitions]) for class_previous in classes_previous: states_grouped = full_group_by(class_previous, key=key_current) classes_current.extend([equivalence_class for (key,equivalence_class) in states_grouped]) return classes_current def quotient(self, classes): r""" Constructs the quotient with respect to the equivalence classes. INPUT: - ``classes`` is a list of equivalence classes of states. OUTPUT: A finite state machine. The labels of the new states are tuples of states of the ``self``, corresponding to ``classes``. Assume that `c` is a class, and `a` and `b` are states in `c`. Then there is a bijection `\varphi` between the transitions from `a` and the transitions from `b` with the following properties: if `\varphi(t_a)=t_b`, then - `t_a.\mathit{word}_\mathit{in}=t_b.\mathit{word}_\mathit{in}`, - `t_a.\mathit{word}_\mathit{out}=t_b.\mathit{word}_\mathit{out}`, and - `t_a` and `t_b` lead to some equivalent states `a'` and `b'`. Non-initial states may be merged with initial states, the resulting state is an initial state. All states in a class must have the same ``is_final``, ``final_word_out`` and ``word_out`` values. EXAMPLES:: sage: fsm = FiniteStateMachine([("A", "B", 0, 1), ("A", "B", 1, 0), ....: ("B", "C", 0, 0), ("B", "C", 1, 1), ....: ("C", "D", 0, 1), ("C", "D", 1, 0), ....: ("D", "A", 0, 0), ("D", "A", 1, 1)]) sage: fsmq = fsm.quotient([[fsm.state("A"), fsm.state("C")], ....: [fsm.state("B"), fsm.state("D")]]) sage: fsmq.transitions() [Transition from ('A', 'C') to ('B', 'D'): 0|1, Transition from ('A', 'C') to ('B', 'D'): 1|0, Transition from ('B', 'D') to ('A', 'C'): 0|0, Transition from ('B', 'D') to ('A', 'C'): 1|1] sage: fsmq.relabeled().transitions() [Transition from 0 to 1: 0|1, Transition from 0 to 1: 1|0, Transition from 1 to 0: 0|0, Transition from 1 to 0: 1|1] sage: fsmq1 = fsm.quotient(fsm.equivalence_classes()) sage: fsmq1 == fsmq True sage: fsm.quotient([[fsm.state("A"), fsm.state("B"), fsm.state("C"), fsm.state("D")]]) Traceback (most recent call last): ... AssertionError: Transitions of state 'A' and 'B' are incompatible. TESTS:: sage: fsm = FiniteStateMachine([("A", "B", 0, 1), ("A", "B", 1, 0), ....: ("B", "C", 0, 0), ("B", "C", 1, 1), ....: ("C", "D", 0, 1), ("C", "D", 1, 0), ....: ("D", "A", 0, 0), ("D", "A", 1, 1)], ....: final_states=["A", "C"]) sage: fsm.state("A").final_word_out = 1 sage: fsm.state("C").final_word_out = 2 sage: fsmq = fsm.quotient([[fsm.state("A"), fsm.state("C")], ....: [fsm.state("B"), fsm.state("D")]]) Traceback (most recent call last): ... AssertionError: Class ['A', 'C'] mixes final states with different final output words. """ new = self.empty_copy() state_mapping = {} # Create new states and build state_mapping for c in classes: new_label = tuple(c) new_state = c[0].relabeled(new_label) new.add_state(new_state) for state in c: state_mapping[state] = new_state # Copy data from old transducer for c in classes: new_state = state_mapping[c[0]] sorted_transitions = sorted( [(state_mapping[t.to_state], t.word_in, t.word_out) for t in c[0].transitions]) for transition in self.iter_transitions(c[0]): new.add_transition( from_state = new_state, to_state = state_mapping[transition.to_state], word_in = transition.word_in, word_out = transition.word_out) # check that all class members have the same information (modulo classes) for state in c: new_state.is_initial = new_state.is_initial or state.is_initial assert new_state.is_final == state.is_final, \ "Class %s mixes final and non-final states" % (c,) assert new_state.word_out == state.word_out, \ "Class %s mixes different word_out" % (c,) assert new_state.color == state.color, \ "Class %s mixes different colors" % (c,) assert sorted_transitions == sorted( [(state_mapping[t.to_state], t.word_in, t.word_out) for t in state.transitions]), \ "Transitions of state %s and %s are incompatible." % (c[0], state) assert new_state.final_word_out == state.final_word_out, \ "Class %s mixes final states with different " \ "final output words." % (c,) return new def merged_transitions(self): """ Merges transitions which have the same ``from_state``, ``to_state`` and ``word_out`` while adding their ``word_in``. INPUT: Nothing. OUTPUT: A finite state machine with merged transitions. If no mergers occur, return ``self``. EXAMPLE:: sage: from sage.combinat.finite_state_machine import duplicate_transition_add_input sage: T = Transducer([[1, 2, 1/4, 1], [1, -2, 1/4, 1], [1, -2, 1/2, 1], ....: [2, 2, 1/4, 1], [2, -2, 1/4, 1], [-2, -2, 1/4, 1], ....: [-2, 2, 1/4, 1], [2, 3, 1/2, 1], [-2, 3, 1/2, 1]], ....: on_duplicate_transition=duplicate_transition_add_input) sage: T1 = T.merged_transitions() sage: T1 is T False sage: sorted(T1.transitions()) [Transition from -2 to -2: 1/4|1, Transition from -2 to 2: 1/4|1, Transition from -2 to 3: 1/2|1, Transition from 1 to 2: 1/4|1, Transition from 1 to -2: 3/4|1, Transition from 2 to -2: 1/4|1, Transition from 2 to 2: 1/4|1, Transition from 2 to 3: 1/2|1] Applying the function again does not change the result:: sage: T2 = T1.merged_transitions() sage: T2 is T1 True """ def key(transition): return (transition.to_state, transition.word_out) new = self.empty_copy() changed = False state_dict = {} memo = {} for state in self.states(): new_state = deepcopy(state,memo) state_dict[state] = new_state new.add_state(new_state) for state in self.states(): grouped_transitions = itertools.groupby(sorted(state.transitions, key=key), key=key) for (to_state, word_out), transitions in grouped_transitions: transition_list = list(transitions) changed = changed or len(transition_list) > 1 word_in = 0 for transition in transition_list: if hasattr(transition.word_in, '__iter__') and len(transition.word_in) == 1: word_in += transition.word_in[0] else: raise TypeError('%s does not have a list of length 1 as word_in' % transition) new.add_transition((state, to_state, word_in, word_out)) if changed: return new else: return self def markov_chain_simplification(self): """ Consider ``self`` as Markov chain with probabilities as input labels and simplify it. INPUT: Nothing. OUTPUT: Simplified version of ``self``. EXAMPLE:: sage: from sage.combinat.finite_state_machine import duplicate_transition_add_input sage: T = Transducer([[1, 2, 1/4, 0], [1, -2, 1/4, 0], [1, -2, 1/2, 0], ....: [2, 2, 1/4, 1], [2, -2, 1/4, 1], [-2, -2, 1/4, 1], ....: [-2, 2, 1/4, 1], [2, 3, 1/2, 2], [-2, 3, 1/2, 2]], ....: initial_states=[1], ....: final_states=[3], ....: on_duplicate_transition=duplicate_transition_add_input) sage: T1 = T.markov_chain_simplification() sage: sorted(T1.transitions()) [Transition from ((1,),) to ((2, -2),): 1|0, Transition from ((2, -2),) to ((2, -2),): 1/2|1, Transition from ((2, -2),) to ((3,),): 1/2|2] """ current = self.merged_transitions() number_states = len(current.states()) while True: current = current.simplification() new_number_states = len(current.states()) new = current.merged_transitions() if new is current and number_states == new_number_states: return new current = new number_states = new_number_states def with_final_word_out(self, letters, allow_non_final=True): """ Constructs a new finite state machine with final output words for all states by implicitly reading trailing letters until a final state is reached. INPUT: - ``letters`` -- either an element of the input alphabet or a list of such elements. This is repeated cyclically when needed. - ``allow_non_final`` -- a boolean (default: ``True``) which indicates whether we allow that some states may be non-final in the resulting finite state machine. I.e., if ``False`` then each state has to have a path to a final state with input label matching ``letters``. OUTPUT: A finite state machine. The inplace version of this function is :meth:`.construct_final_word_out`. Suppose for the moment a single element ``letter`` as input for ``letters``. This is equivalent to ``letters = [letter]``. We will discuss the general case below. Let ``word_in`` be a word over the input alphabet and assume that the original finite state machine transforms ``word_in`` to ``word_out`` reaching a possibly non-final state ``s``. Let further `k` be the minimum number of letters ``letter`` such that there is a path from ``s`` to some final state ``f`` whose input label consists of `k` copies of ``letter`` and whose output label is ``path_word_out``. Then the state ``s`` of the resulting finite state machine is a final state with final output ``path_word_out + f.final_word_out``. Therefore, the new finite state machine transforms ``word_in`` to ``word_out + path_word_out + f.final_word_out``. This is e.g. useful for finite state machines operating on digit expansions: there, it is sometimes required to read a sufficient number of trailing zeros (at the most significant positions) in order to reach a final state and to flush all carries. In this case, this method constructs an essentially equivalent finite state machine in the sense that it not longer requires adding sufficiently many trailing zeros. However, it is the responsibility of the user to make sure that if adding trailing zeros to the input anyway, the output is equivalent. If ``letters`` consists of more than one letter, then it is assumed that (not necessarily complete) cycles of ``letters`` are appended as trailing input. .. SEEALSO:: :ref:`example on Gray code <finite_state_machine_gray_code_example>` EXAMPLES: #. A simple transducer transforming `00` blocks to `01` blocks:: sage: T = Transducer([(0, 1, 0, 0), (1, 0, 0, 1)], ....: initial_states=[0], ....: final_states=[0]) sage: T.process([0, 0, 0]) (False, 1, [0, 1, 0]) sage: T.process([0, 0, 0, 0]) (True, 0, [0, 1, 0, 1]) sage: F = T.with_final_word_out(0) sage: for f in F.iter_final_states(): ....: print f, f.final_word_out 0 [] 1 [1] sage: F.process([0, 0, 0]) (True, 1, [0, 1, 0, 1]) sage: F.process([0, 0, 0, 0]) (True, 0, [0, 1, 0, 1]) #. A more realistic example: Addition of `1` in binary. We construct a transition function transforming the input to its binary expansion:: sage: def binary_transition(carry, input): ....: value = carry + input ....: if value.mod(2) == 0: ....: return (value/2, 0) ....: else: ....: return ((value-1)/2, 1) Now, we only have to start with a carry of `1` to get the required transducer:: sage: T = Transducer(binary_transition, ....: input_alphabet=[0, 1], ....: initial_states=[1], ....: final_states=[0]) We test this for the binary expansion of `7`:: sage: T.process([1, 1, 1]) (False, 1, [0, 0, 0]) The final carry `1` has not be flushed yet, we have to add a trailing zero:: sage: T.process([1, 1, 1, 0]) (True, 0, [0, 0, 0, 1]) We check that with this trailing zero, the transducer performs as advertised:: sage: all(ZZ(T(k.bits()+[0]), base=2) == k + 1 ....: for k in srange(16)) True However, most of the time, we produce superfluous trailing zeros:: sage: T(11.bits()+[0]) [0, 0, 1, 1, 0] We now use this method:: sage: F = T.with_final_word_out(0) sage: for f in F.iter_final_states(): ....: print f, f.final_word_out 1 [1] 0 [] The same tests as above, but we do not have to pad with trailing zeros anymore:: sage: F.process([1, 1, 1]) (True, 1, [0, 0, 0, 1]) sage: all(ZZ(F(k.bits()), base=2) == k + 1 ....: for k in srange(16)) True No more trailing zero in the output:: sage: F(11.bits()) [0, 0, 1, 1] sage: all(F(k.bits())[-1] == 1 ....: for k in srange(16)) True #. Here is an example, where we allow trailing repeated `10`:: sage: T = Transducer([(0, 1, 0, 'a'), ....: (1, 2, 1, 'b'), ....: (2, 0, 0, 'c')], ....: initial_states=[0], ....: final_states=[0]) sage: F = T.with_final_word_out([1, 0]) sage: for f in F.iter_final_states(): ....: print f, ''.join(f.final_word_out) 0 1 bc Trying this with trailing repeated `01` does not produce a ``final_word_out`` for state ``1``, but for state ``2``:: sage: F = T.with_final_word_out([0, 1]) sage: for f in F.iter_final_states(): ....: print f, ''.join(f.final_word_out) 0 2 c #. Here another example with a more-letter trailing input:: sage: T = Transducer([(0, 1, 0, 'a'), ....: (1, 2, 0, 'b'), (1, 2, 1, 'b'), ....: (2, 3, 0, 'c'), (2, 0, 1, 'e'), ....: (3, 1, 0, 'd'), (3, 1, 1, 'd')], ....: initial_states=[0], ....: final_states=[0], ....: with_final_word_out=[0, 0, 1, 1]) sage: for f in T.iter_final_states(): ....: print f, ''.join(f.final_word_out) 0 1 bcdbcdbe 2 cdbe 3 dbe TESTS: #. Reading copies of ``letter`` may result in a cycle. In this simple example, we have no final state at all:: sage: T = Transducer([(0, 1, 0, 0), (1, 0, 0, 0)], ....: initial_states=[0]) sage: T.with_final_word_out(0) Traceback (most recent call last): ... ValueError: The finite state machine contains a cycle starting at state 0 with input label 0 and no final state. #. A unique transition with input word ``letter`` is required:: sage: T = Transducer([(0, 1, 0, 0), (0, 2, 0, 0)]) sage: T.with_final_word_out(0) Traceback (most recent call last): ... ValueError: No unique transition leaving state 0 with input label 0. It is not a problem if there is no transition starting at state ``1`` with input word ``letter``:: sage: T = Transducer([(0, 1, 0, 0)]) sage: F = T.with_final_word_out(0) sage: for f in F.iter_final_states(): ....: print f, f.final_word_out Anyhow, you can override this by:: sage: T = Transducer([(0, 1, 0, 0)]) sage: T.with_final_word_out(0, allow_non_final=False) Traceback (most recent call last): ... ValueError: No unique transition leaving state 1 with input label 0. #. All transitions must have input labels of length `1`:: sage: T = Transducer([(0, 0, [], 0)]) sage: T.with_final_word_out(0) Traceback (most recent call last): ... NotImplementedError: All transitions must have input labels of length 1. Consider calling split_transitions(). sage: T = Transducer([(0, 0, [0, 1], 0)]) sage: T.with_final_word_out(0) Traceback (most recent call last): ... NotImplementedError: All transitions must have input labels of length 1. Consider calling split_transitions(). #. An empty list as input is not allowed:: sage: T = Transducer([(0, 0, [], 0)]) sage: T.with_final_word_out([]) Traceback (most recent call last): ... ValueError: letters is not allowed to be an empty list. """ new = deepcopy(self) new.construct_final_word_out(letters, allow_non_final) return new def construct_final_word_out(self, letters, allow_non_final=True): """ This is an inplace version of :meth:`.with_final_word_out`. See :meth:`.with_final_word_out` for documentation and examples. TESTS:: sage: T = Transducer([(0, 1, 0, 0), (1, 0, 0, 1)], ....: initial_states=[0], ....: final_states=[0]) sage: F = T.with_final_word_out(0) sage: T.construct_final_word_out(0) sage: T == F # indirect doctest True sage: T = Transducer([(0, 1, 0, None)], ....: final_states=[1]) sage: F = T.with_final_word_out(0) sage: F.state(0).final_word_out [] """ from itertools import cycle, izip_longest if not isinstance(letters, list): letters = [letters] elif not letters: raise ValueError( "letters is not allowed to be an empty list.") in_progress = set() cache = {} def find_final_word_out(state): # The return value is the output which is produced when # reading the given letters until a final state is reached. # If no final state can be reached, then None is returned. # For final states, the final word out is returned. # For final states with empty final output, that is []. position, letter = next(trailing_letters) if state.is_final: return state.final_word_out if (state, position) in cache: return cache[state, position] if (state, position) in in_progress: raise ValueError( "The finite state machine contains a cycle " "starting at state %s with input label %s " "and no final state." % (state, letter)) if any(len(t.word_in) != 1 for t in state.transitions): raise NotImplementedError( "All transitions must have input labels of length " "1. Consider calling split_transitions().") transitions = [t for t in state.transitions if t.word_in == [letter]] if allow_non_final and not transitions: final_word_out = None elif len(transitions) != 1: raise ValueError( "No unique transition leaving state %s with input " "label %s." % (state, letter)) else: in_progress.add((state, position)) next_word = find_final_word_out(transitions[0].to_state) if next_word is not None: final_word_out = transitions[0].word_out + next_word else: final_word_out = None in_progress.remove((state, position)) cache[state, position] = final_word_out return final_word_out for state in self.iter_states(): assert(not in_progress) # trailing_letters is an infinite iterator additionally # marking positions trailing_letters = cycle(enumerate(letters)) find_final_word_out(state) # actual modifications can only be carried out after all final words # have been computed as it may not be permissible to stop at a # formerly non-final state unless a cycle has been completed. for (state, position), final_word_out in cache.iteritems(): if position == 0 and final_word_out is not None: state.is_final = True state.final_word_out = final_word_out # ************************************************************************* # other # ************************************************************************* def graph(self, edge_labels='words_in_out'): """ Returns the graph of the finite state machine with labeled vertices and labeled edges. INPUT: - ``edge_label``: (default: ``'words_in_out'``) can be - ``'words_in_out'`` (labels will be strings ``'i|o'``) - a function with which takes as input a transition and outputs (returns) the label OUTPUT: A graph. EXAMPLES:: sage: from sage.combinat.finite_state_machine import FSMState sage: A = FSMState('A') sage: T = Transducer() sage: T.graph() Digraph on 0 vertices sage: T.add_state(A) 'A' sage: T.graph() Digraph on 1 vertex sage: T.add_transition(('A', 'A', 0, 1)) Transition from 'A' to 'A': 0|1 sage: T.graph() Looped digraph on 1 vertex """ if edge_labels == 'words_in_out': label_fct = lambda t:t._in_out_label_() elif hasattr(edge_labels, '__call__'): label_fct = edge_labels else: raise TypeError('Wrong argument for edge_labels.') graph_data = [] isolated_vertices = [] for state in self.iter_states(): transitions = state.transitions if len(transitions) == 0: isolated_vertices.append(state.label()) for t in transitions: graph_data.append((t.from_state.label(), t.to_state.label(), label_fct(t))) G = DiGraph(graph_data) G.add_vertices(isolated_vertices) return G digraph = graph def plot(self): """ Plots a graph of the finite state machine with labeled vertices and labeled edges. INPUT: Nothing. OUTPUT: A plot of the graph of the finite state machine. TESTS:: sage: FiniteStateMachine([('A', 'A', 0)]).plot() """ return self.graph(edge_labels='words_in_out').plot() def predecessors(self, state, valid_input=None): """ Lists all predecessors of a state. INPUT: - ``state`` -- the state from which the predecessors should be listed. - ``valid_input`` -- If ``valid_input`` is a list, then we only consider transitions whose input labels are contained in ``valid_input``. ``state`` has to be a :class:`FSMState` (not a label of a state). If input labels of length larger than `1` are used, then ``valid_input`` has to be a list of lists. OUTPUT: A list of states. EXAMPLES:: sage: A = Transducer([('I', 'A', 'a', 'b'), ('I', 'B', 'b', 'c'), ....: ('I', 'C', 'c', 'a'), ('A', 'F', 'b', 'a'), ....: ('B', 'F', ['c', 'b'], 'b'), ('C', 'F', 'a', 'c')], ....: initial_states=['I'], final_states=['F']) sage: A.predecessors(A.state('A')) ['A', 'I'] sage: A.predecessors(A.state('F'), valid_input=['b', 'a']) ['F', 'C', 'A', 'I'] sage: A.predecessors(A.state('F'), valid_input=[['c', 'b'], 'a']) ['F', 'C', 'B'] """ if valid_input is not None: valid_list = list() for input in valid_input: input_list = input if not isinstance(input_list, list): input_list = [input] valid_list.append(input_list) valid_input = valid_list unhandeled_direct_predecessors = {s:[] for s in self.states() } for t in self.transitions(): if valid_input is None or t.word_in in valid_input: unhandeled_direct_predecessors[t.to_state].append(t.from_state) done = [] open = [state] while len(open) > 0: s = open.pop() candidates = unhandeled_direct_predecessors[s] if candidates is not None: open.extend(candidates) unhandeled_direct_predecessors[s] = None done.append(s) return(done) def asymptotic_moments(self, variable=SR.symbol('n')): r""" Returns the main terms of expectation and variance of the sum of output labels and its covariance with the sum of input labels. INPUT: - ``variable`` -- a symbol denoting the length of the input, by default `n`. OUTPUT: A dictionary consisting of - ``expectation`` -- `e n + \operatorname{Order}(1)`, - ``variance`` -- `v n + \operatorname{Order}(1)`, - ``covariance`` -- `c n + \operatorname{Order}(1)` for suitable constants `e`, `v` and `c`. Assume that all input and output labels are numbers and that ``self`` is complete and has only one final component. Assume further that this final component is aperiodic. Furthermore, assume that there is exactly one initial state and that all states are final. Denote by `X_n` the sum of output labels written by the finite state machine when reading a random input word of length `n` over the input alphabet (assuming equidistribution). Then the expectation of `X_n` is `en+O(1)`, the variance of `X_n` is `vn+O(1)` and the covariance of `X_n` and the sum of input labels is `cn+O(1)`, cf. [HKW2014]_, Theorem 2. In the case of non-integer input or output labels, performance degrades significantly. For rational input and output labels, consider rescaling to integers. This limitation comes from the fact that determinants over polynomial rings can be computed much more efficiently than over the symbolic ring. In fact, we compute (parts) of a trivariate generating function where the input and output labels are exponents of some indeterminates, see [HKW2014]_, Theorem 2 for details. If those exponents are integers, we can use a polynomial ring. EXAMPLES: #. A trivial example: write the negative of the input:: sage: T = Transducer([(0, 0, 0, 0), (0, 0, 1, -1)], ....: initial_states=[0], ....: final_states=[0]) sage: T([0, 1, 1]) [0, -1, -1] sage: moments = T.asymptotic_moments() sage: moments['expectation'] -1/2*n + Order(1) sage: moments['variance'] 1/4*n + Order(1) sage: moments['covariance'] -1/4*n + Order(1) #. For the case of the Hamming weight of the non-adjacent-form (NAF) of integers, cf. the :wikipedia:`Non-adjacent_form` and the :ref:`example on recognizing NAFs <finite_state_machine_recognizing_NAFs_example>`, the following agrees with the results in [HP2007]_. We first use the transducer to convert the standard binary expansion to the NAF given in [HP2007]_. We use the parameter ``with_final_word_out`` such that we do not have to add sufficiently many trailing zeros:: sage: NAF = Transducer([(0, 0, 0, 0), ....: (0, '.1', 1, None), ....: ('.1', 0, 0, [1, 0]), ....: ('.1', 1, 1, [-1, 0]), ....: (1, 1, 1, 0), ....: (1, '.1', 0, None)], ....: initial_states=[0], ....: final_states=[0], ....: with_final_word_out=[0]) As an example, we compute the NAF of `27` by this transducer. :: sage: binary_27 = 27.bits() sage: binary_27 [1, 1, 0, 1, 1] sage: NAF_27 = NAF(binary_27) sage: NAF_27 [-1, 0, -1, 0, 0, 1, 0] sage: ZZ(NAF_27, base=2) 27 Next, we are only interested in the Hamming weight:: sage: def weight(state, input): ....: if input is None: ....: result = 0 ....: else: ....: result = ZZ(input != 0) ....: return (0, result) sage: weight_transducer = Transducer(weight, ....: input_alphabet=[-1, 0, 1], ....: initial_states=[0], ....: final_states=[0]) At the moment, we can not use composition with ``NAF``, because it has non-empty final output words:: sage: NAFweight = weight_transducer.composition( ....: NAF, ....: algorithm='explorative') Traceback (most recent call last): ... NotImplementedError: Explorative composition is not implemented for transducers with non-empty final output words. Try the direct algorithm instead. Thus, we change ``NAF``, then compose and again construct the final output words:: sage: for s in NAF.final_states(): ....: s.final_word_out = [] sage: NAFweight = weight_transducer.composition( ....: NAF, ....: algorithm='explorative').relabeled() sage: NAFweight.construct_final_word_out(0) sage: sorted(NAFweight.transitions()) [Transition from 0 to 0: 0|0, Transition from 0 to 1: 1|-, Transition from 1 to 0: 0|1,0, Transition from 1 to 2: 1|1,0, Transition from 2 to 1: 0|-, Transition from 2 to 2: 1|0] sage: NAFweight(binary_27 + [0, 0]) [1, 0, 1, 0, 0, 1, 0] Now, we actually compute the asymptotic moments:: sage: moments = NAFweight.asymptotic_moments() sage: moments['expectation'] 1/3*n + Order(1) sage: moments['variance'] 2/27*n + Order(1) sage: moments['covariance'] Order(1) #. This is Example 3.1 in [HKW2014]_, where a transducer with variable output labels is given. There, the aim was to choose the output labels of this very simple transducer such that the input and output sum are asymptotically independent, i.e., the constant `c` vanishes. :: sage: var('a_1, a_2, a_3, a_4') (a_1, a_2, a_3, a_4) sage: T = Transducer([[0, 0, 0, a_1], [0, 1, 1, a_3], ....: [1, 0, 0, a_4], [1, 1, 1, a_2]], ....: initial_states=[0], final_states=[0, 1]) sage: moments = T.asymptotic_moments() verbose 0 (...) Non-integer output weights lead to significant performance degradation. sage: moments['expectation'] 1/4*(a_1 + a_2 + a_3 + a_4)*n + Order(1) sage: moments['covariance'] -1/4*(a_1 - a_2)*n + Order(1) Therefore, the asymptotic covariance vanishes if and only if `a_2=a_1`. #. This is Example 6.2 in [HKW2014]_, dealing with the transducer converting the binary expansion of an integer into Gray code (cf. the :wikipedia:`Gray_code` and the :ref:`example on Gray code <finite_state_machine_gray_code_example>`):: sage: moments = transducers.GrayCode().asymptotic_moments() sage: moments['expectation'] 1/2*n + Order(1) sage: moments['variance'] 1/4*n + Order(1) sage: moments['covariance'] Order(1) #. This is the first part of Example 6.3 in [HKW2014]_, counting the number of 10 blocks in the standard binary expansion. The least significant digit is at the left-most position:: sage: block10 = transducers.CountSubblockOccurrences( ....: [1, 0], ....: input_alphabet=[0, 1]) sage: sorted(block10.transitions()) [Transition from () to (): 0|0, Transition from () to (1,): 1|0, Transition from (1,) to (): 0|1, Transition from (1,) to (1,): 1|0] sage: moments = block10.asymptotic_moments() sage: moments['expectation'] 1/4*n + Order(1) sage: moments['variance'] 1/16*n + Order(1) sage: moments['covariance'] Order(1) #. This is the second part of Example 6.3 in [HKW2014]_, counting the number of 11 blocks in the standard binary expansion. The least significant digit is at the left-most position:: sage: block11 = transducers.CountSubblockOccurrences( ....: [1, 1], ....: input_alphabet=[0, 1]) sage: sorted(block11.transitions()) [Transition from () to (): 0|0, Transition from () to (1,): 1|0, Transition from (1,) to (): 0|0, Transition from (1,) to (1,): 1|1] sage: var('N') N sage: moments = block11.asymptotic_moments(N) sage: moments['expectation'] 1/4*N + Order(1) sage: moments['variance'] 5/16*N + Order(1) sage: correlation = (moments['covariance'].coefficient(N) / ....: (1/2 * sqrt(moments['variance'].coefficient(N)))) sage: correlation 2/5*sqrt(5) #. This is Example 6.4 in [HKW2014]_, counting the number of 01 blocks minus the number of 10 blocks in the standard binary expansion. The least significant digit is at the left-most position:: sage: block01 = transducers.CountSubblockOccurrences( ....: [0, 1], ....: input_alphabet=[0, 1]) sage: sage.combinat.finite_state_machine.FSMOldCodeTransducerCartesianProduct = False sage: product_01x10 = block01.cartesian_product(block10) sage: block_difference = transducers.sub([0, 1])(product_01x10) sage: T = block_difference.simplification().relabeled() sage: sage.combinat.finite_state_machine.FSMOldCodeTransducerCartesianProduct = True sage: T.transitions() [Transition from 0 to 1: 0|-1, Transition from 0 to 0: 1|0, Transition from 1 to 1: 0|0, Transition from 1 to 0: 1|1, Transition from 2 to 1: 0|0, Transition from 2 to 0: 1|0] sage: moments = T.asymptotic_moments() sage: moments['expectation'] Order(1) sage: moments['variance'] Order(1) sage: moments['covariance'] Order(1) #. The finite state machine must have a unique final component:: sage: T = Transducer([(0, -1, -1, -1), (0, 1, 1, 1), ....: (-1, -1, -1, -1), (-1, -1, 1, -1), ....: (1, 1, -1, 1), (1, 1, 1, 1)], ....: initial_states=[0], ....: final_states=[0, 1, -1]) sage: T.asymptotic_moments() Traceback (most recent call last): ... NotImplementedError: asymptotic_moments is only implemented for finite state machines with one final component. In this particular example, the first letter of the input decides whether we reach the loop at `-1` or the loop at `1`. In the first case, we have `X_n = -n`, while we have `X_n = n` in the second case. Therefore, the expectation `E(X_n)` of `X_n` is `E(X_n) = 0`. We get `(X_n-E(X_n))^2 = n^2` in all cases, which results in a variance of `n^2`. So this example shows that the variance may be non-linear if there is more than one final component. TESTS: #. An input alphabet must be given:: sage: T = Transducer([[0, 0, 0, 0]], ....: initial_states=[0], final_states=[0], ....: determine_alphabets=False) sage: T.asymptotic_moments() Traceback (most recent call last): ... ValueError: No input alphabet is given. Try calling determine_alphabets(). #. The finite state machine must have a unique initial state:: sage: T = Transducer([(0, 0, 0, 0)]) sage: T.asymptotic_moments() Traceback (most recent call last): ... ValueError: A unique initial state is required. #. The finite state machine must be complete:: sage: T = Transducer([[0, 0, 0, 0]], ....: initial_states=[0], final_states=[0], ....: input_alphabet=[0, 1]) sage: T.asymptotic_moments() Traceback (most recent call last): ... NotImplementedError: This finite state machine is not complete. #. The final component of the finite state machine must be aperiodic:: sage: T = Transducer([(0, 1, 0, 0), (1, 0, 0, 0)], ....: initial_states=[0], final_states=[0, 1]) sage: T.asymptotic_moments() Traceback (most recent call last): ... NotImplementedError: asymptotic_moments is only implemented for finite state machines whose unique final component is aperiodic. #. Non-integer input or output labels lead to a warning:: sage: T = Transducer([[0, 0, 0, 0], [0, 0, 1, -1/2]], ....: initial_states=[0], final_states=[0]) sage: moments = T.asymptotic_moments() verbose 0 (...) Non-integer output weights lead to significant performance degradation. sage: moments['expectation'] -1/4*n + Order(1) sage: moments['variance'] 1/16*n + Order(1) sage: moments['covariance'] -1/8*n + Order(1) This warning can be silenced by :func:`~sage.misc.misc.set_verbose`:: sage: set_verbose(-1, "finite_state_machine.py") sage: moments = T.asymptotic_moments() sage: moments['expectation'] -1/4*n + Order(1) sage: moments['variance'] 1/16*n + Order(1) sage: moments['covariance'] -1/8*n + Order(1) sage: set_verbose(0, "finite_state_machine.py") #. Check whether ``word_out`` of ``FSMState`` are correctly dealt with:: sage: from sage.combinat.finite_state_machine import FSMState sage: s = FSMState(0, word_out=2, ....: is_initial=True, ....: is_final=True) sage: T = Transducer([(s, s, 0, 1)], ....: initial_states=[s], final_states=[s]) sage: T([0, 0]) [2, 1, 2, 1, 2] sage: T.asymptotic_moments()['expectation'] 3*n + Order(1) The same test for non-integer output:: sage: from sage.combinat.finite_state_machine import FSMState sage: s = FSMState(0, word_out=2/3) sage: T = Transducer([(s, s, 0, 1/2)], ....: initial_states=[s], final_states=[s]) sage: T.asymptotic_moments()['expectation'] verbose 0 (...) Non-integer output weights lead to significant performance degradation. 7/6*n + Order(1) #. All states of ``self`` have to be final:: sage: T = Transducer([(0, 1, 1, 4)], initial_states=[0]) sage: T.asymptotic_moments() Traceback (most recent call last): ... ValueError: Not all states are final. ALGORITHM: See [HKW2014]_, Theorem 2. REFERENCES: .. [HKW2014] Clemens Heuberger, Sara Kropf and Stephan Wagner, *Combinatorial Characterization of Independent Transducers via Functional Digraphs*, :arxiv:`1404.3680`. .. [HP2007] Clemens Heuberger and Helmut Prodinger, *The Hamming Weight of the Non-Adjacent-Form under Various Input Statistics*, Periodica Mathematica Hungarica Vol. 55 (1), 2007, pp. 81–96, :doi:`10.1007/s10998-007-3081-z`. """ from sage.calculus.functional import derivative from sage.rings.polynomial.polynomial_ring_constructor import PolynomialRing from sage.rings.rational_field import QQ if self.input_alphabet is None: raise ValueError("No input alphabet is given. " "Try calling determine_alphabets().") if len(self.initial_states()) != 1: raise ValueError("A unique initial state is required.") if not all(state.is_final for state in self.iter_states()): raise ValueError("Not all states are final.") if not self.is_complete(): raise NotImplementedError("This finite state machine is " "not complete.") final_components = self.final_components() if len(final_components) != 1: raise NotImplementedError("asymptotic_moments is only " "implemented for finite state machines " "with one final component.") final_component = final_components[0] if not final_component.digraph().is_aperiodic(): raise NotImplementedError("asymptotic_moments is only " "implemented for finite state machines " "whose unique final component is " "aperiodic.") def get_matrix(fsm, x, y): return fsm.adjacency_matrix( entry=lambda transition: x**sum(transition.word_in) * y**(sum(transition.word_out) + sum(transition.from_state.word_out))) K = len(self.input_alphabet) R = PolynomialRing(QQ, ("x", "y", "z")) (x, y, z) = R.gens() try: M = get_matrix(self, x, y) except TypeError: verbose("Non-integer output weights lead to " "significant performance degradation.", level=0) # fall back to symbolic ring R = SR x = R.symbol() y = R.symbol() z = R.symbol() M = get_matrix(self, x, y) def substitute_one(g): return g.subs({x: 1, y: 1, z: 1}) else: def substitute_one(g): # the result of the substitution shall live in QQ, # not in the polynomial ring R, so the method # subs does not achieve the result. # Therefore, we need this helper function. return g(1, 1, 1) f = (M.parent().identity_matrix() - z/K*M).det() f_x = substitute_one(derivative(f, x)) f_y = substitute_one(derivative(f, y)) f_z = substitute_one(derivative(f, z)) f_xy = substitute_one(derivative(f, x, y)) f_xz = substitute_one(derivative(f, x, z)) f_yz = substitute_one(derivative(f, y, z)) f_yy = substitute_one(derivative(f, y, y)) f_zz = substitute_one(derivative(f, z, z)) e_2 = f_y / f_z v_2 = (f_y**2 * (f_zz+f_z) + f_z**2 * (f_yy+f_y) - 2*f_y*f_z*f_yz) / f_z**3 c = (f_x * f_y * (f_zz+f_z) + f_z**2 * f_xy - f_y*f_z*f_xz - f_x*f_z*f_yz) / f_z**3 return {'expectation': e_2*variable + SR(1).Order(), 'variance': v_2*variable + SR(1).Order(), 'covariance': c*variable + SR(1).Order()} def is_monochromatic(self): """ Checks whether the colors of all states are equal. INPUT: Nothing. OUTPUT: ``True`` or ``False``. EXAMPLES:: sage: G = transducers.GrayCode() sage: [s.color for s in G.iter_states()] [None, None, None] sage: G.is_monochromatic() True sage: G.state(1).color = 'blue' sage: G.is_monochromatic() False """ return equal(s.color for s in self.iter_states()) #***************************************************************************** def is_Automaton(FSM): """ Tests whether or not ``FSM`` inherits from :class:`Automaton`. TESTS:: sage: from sage.combinat.finite_state_machine import is_FiniteStateMachine, is_Automaton sage: is_Automaton(FiniteStateMachine()) False sage: is_Automaton(Automaton()) True sage: is_FiniteStateMachine(Automaton()) True """ return isinstance(FSM, Automaton) class Automaton(FiniteStateMachine): """ This creates an automaton, which is a finite state machine, whose transitions have input labels. An automaton has additional features like creating a deterministic and a minimized automaton. See class :class:`FiniteStateMachine` for more information. EXAMPLES: We can create an automaton recognizing even numbers (given in binary and read from left to right) in the following way:: sage: A = Automaton([('P', 'Q', 0), ('P', 'P', 1), ....: ('Q', 'P', 1), ('Q', 'Q', 0)], ....: initial_states=['P'], final_states=['Q']) sage: A Automaton with 2 states sage: A([0]) True sage: A([1, 1, 0]) True sage: A([1, 0, 1]) False Note that the full output of the commands can be obtained by calling :meth:`.process` and looks like this:: sage: A.process([1, 0, 1]) (False, 'P') TESTS:: sage: Automaton() Automaton with 0 states """ def __init__(self, *args, **kwargs): """ Initialize an automaton. See :class:`Automaton` and its parent :class:`FiniteStateMachine` for more information. TESTS:: sage: Transducer()._allow_composition_ True sage: Automaton()._allow_composition_ False """ super(Automaton, self).__init__(*args, **kwargs) self._allow_composition_ = False def _repr_(self): """ Represents the finite state machine as "Automaton with n states" where n is the number of states. INPUT: Nothing. OUTPUT: A string. EXAMPLES:: sage: Automaton()._repr_() 'Automaton with 0 states' """ return "Automaton with %s states" % len(self._states_) def _latex_transition_label_(self, transition, format_function=latex): r""" Returns the proper transition label. INPUT: - ``transition`` - a transition - ``format_function`` - a function formatting the labels OUTPUT: A string. EXAMPLES:: sage: F = Automaton([('A', 'B', 1)]) sage: print latex(F) # indirect doctest \begin{tikzpicture}[auto, initial text=, >=latex] \node[state] (v0) at (3.000000, 0.000000) {$\text{\texttt{A}}$}; \node[state] (v1) at (-3.000000, 0.000000) {$\text{\texttt{B}}$}; \path[->] (v0) edge node[rotate=360.00, anchor=south] {$1$} (v1); \end{tikzpicture} TESTS:: sage: F = Automaton([('A', 'B', 0, 1)]) sage: t = F.transitions()[0] sage: F._latex_transition_label_(t) \left[0\right] """ return format_function(transition.word_in) def intersection(self, other, only_accessible_components=True): """ Returns a new automaton which accepts an input if it is accepted by both given automata. INPUT: - ``other`` -- an automaton - ``only_accessible_components`` -- If ``True`` (default), then the result is piped through :meth:`.accessible_components`. If no ``new_input_alphabet`` is given, it is determined by :meth:`.determine_alphabets`. OUTPUT: A new automaton which computes the intersection (see below) of the languages of ``self`` and ``other``. The set of states of the new automaton is the cartesian product of the set of states of both given automata. There is a transition `((A, B), (C, D), a)` in the new automaton if there are transitions `(A, C, a)` and `(B, D, a)` in the old automata. The methods :meth:`.intersection` and :meth:`.cartesian_product` are the same (for automata). EXAMPLES:: sage: aut1 = Automaton([('1', '2', 1), ....: ('2', '2', 1), ....: ('2', '2', 0)], ....: initial_states=['1'], ....: final_states=['2'], ....: determine_alphabets=True) sage: aut2 = Automaton([('A', 'A', 1), ....: ('A', 'B', 0), ....: ('B', 'B', 0), ....: ('B', 'A', 1)], ....: initial_states=['A'], ....: final_states=['B'], ....: determine_alphabets=True) sage: res = aut1.intersection(aut2) sage: (aut1([1, 1]), aut2([1, 1]), res([1, 1])) (True, False, False) sage: (aut1([1, 0]), aut2([1, 0]), res([1, 0])) (True, True, True) sage: res.transitions() [Transition from ('1', 'A') to ('2', 'A'): 1|-, Transition from ('2', 'A') to ('2', 'B'): 0|-, Transition from ('2', 'A') to ('2', 'A'): 1|-, Transition from ('2', 'B') to ('2', 'B'): 0|-, Transition from ('2', 'B') to ('2', 'A'): 1|-] For automata with epsilon-transitions, intersection is not well defined. But for any finite state machine, epsilon-transitions can be removed by :meth:`.remove_epsilon_transitions`. :: sage: a1 = Automaton([(0, 0, 0), ....: (0, 1, None), ....: (1, 1, 1), ....: (1, 2, 1)], ....: initial_states=[0], ....: final_states=[1], ....: determine_alphabets=True) sage: a2 = Automaton([(0, 0, 0), (0, 1, 1), (1, 1, 1)], ....: initial_states=[0], ....: final_states=[1], ....: determine_alphabets=True) sage: a1.intersection(a2) Traceback (most recent call last): ... ValueError: An epsilon-transition (with empty input) was found. sage: a1.remove_epsilon_transitions() # not tested (since not implemented yet) sage: a1.intersection(a2) # not tested """ if not is_Automaton(other): raise TypeError( "Only an automaton can be intersected with an automaton.") def function(transition1, transition2): if not transition1.word_in or not transition2.word_in: raise ValueError( "An epsilon-transition (with empty input) was found.") if transition1.word_in == transition2.word_in: return (transition1.word_in, None) else: raise LookupError return self.product_FiniteStateMachine( other, function, only_accessible_components=only_accessible_components) cartesian_product = intersection def determinisation(self): """ Returns a deterministic automaton which accepts the same input words as the original one. INPUT: Nothing. OUTPUT: A new automaton, which is deterministic. The labels of the states of the new automaton are frozensets of states of ``self``. The color of a new state is the frozenset of colors of the constituent states of ``self``. Therefore, the colors of the constituent states have to be hashable. The input alphabet must be specified. EXAMPLES:: sage: aut = Automaton([('A', 'A', 0), ('A', 'B', 1), ('B', 'B', 1)], ....: initial_states=['A'], final_states=['B']) sage: aut.determinisation().transitions() [Transition from frozenset(['A']) to frozenset(['A']): 0|-, Transition from frozenset(['A']) to frozenset(['B']): 1|-, Transition from frozenset(['B']) to frozenset([]): 0|-, Transition from frozenset(['B']) to frozenset(['B']): 1|-, Transition from frozenset([]) to frozenset([]): 0|-, Transition from frozenset([]) to frozenset([]): 1|-] :: sage: A = Automaton([('A', 'A', 1), ('A', 'A', 0), ('A', 'B', 1), ....: ('B', 'C', 0), ('C', 'C', 1), ('C', 'C', 0)], ....: initial_states=['A'], final_states=['C']) sage: A.determinisation().states() [frozenset(['A']), frozenset(['A', 'B']), frozenset(['A', 'C']), frozenset(['A', 'C', 'B'])] :: sage: A = Automaton([(0, 1, 1), (0, 2, [1, 1]), (0, 3, [1, 1, 1]), ....: (1, 0, -1), (2, 0, -2), (3, 0, -3)], ....: initial_states=[0], final_states=[0, 1, 2, 3]) sage: B = A.determinisation().relabeled() sage: all(t.to_state.label() == 2 for t in ....: B.state(2).transitions) True sage: B.state(2).is_final False sage: B.delete_state(2) # this is a sink sage: sorted(B.transitions()) [Transition from 0 to 1: 1|-, Transition from 1 to 0: -1|-, Transition from 1 to 3: 1|-, Transition from 3 to 0: -2|-, Transition from 3 to 4: 1|-, Transition from 4 to 0: -3|-] Note that colors of states have to be hashable:: sage: A = Automaton([[0, 0, 0]], initial_states=[0]) sage: A.state(0).color = [] sage: A.determinisation() Traceback (most recent call last): ... TypeError: unhashable type: 'list' sage: A.state(0).color = () sage: A.determinisation() Automaton with 1 states TESTS: This is from #15078, comment 13. :: sage: D = {'A': [('A', 'a'), ('B', 'a'), ('A', 'b')], ....: 'C': [], 'B': [('C', 'b')]} sage: auto = Automaton(D, initial_states=['A'], final_states=['C']) sage: auto.is_deterministic() False sage: auto.process(list('aaab')) Traceback (most recent call last): ... NotImplementedError: Non-deterministic path encountered when processing input. sage: auto.states() ['A', 'C', 'B'] sage: Ddet = auto.determinisation() sage: Ddet Automaton with 3 states sage: Ddet.is_deterministic() True sage: sorted(Ddet.transitions()) [Transition from frozenset(['A']) to frozenset(['A', 'B']): 'a'|-, Transition from frozenset(['A']) to frozenset(['A']): 'b'|-, Transition from frozenset(['A', 'B']) to frozenset(['A', 'B']): 'a'|-, Transition from frozenset(['A', 'B']) to frozenset(['A', 'C']): 'b'|-, Transition from frozenset(['A', 'C']) to frozenset(['A', 'B']): 'a'|-, Transition from frozenset(['A', 'C']) to frozenset(['A']): 'b'|-] sage: Ddet.initial_states() [frozenset(['A'])] sage: Ddet.final_states() [frozenset(['A', 'C'])] """ if any(len(t.word_in) > 1 for t in self.iter_transitions()): return self.split_transitions().determinisation() epsilon_successors = {} direct_epsilon_successors = {} for state in self.iter_states(): direct_epsilon_successors[state] = set( t.to_state for t in self.iter_transitions(state) if not t.word_in) epsilon_successors[state] = set([state]) old_count_epsilon_successors = 0 count_epsilon_successors = len(epsilon_successors) while old_count_epsilon_successors < count_epsilon_successors: old_count_epsilon_successors = count_epsilon_successors count_epsilon_successors = 0 for state in self.iter_states(): for direct_successor in direct_epsilon_successors[state]: epsilon_successors[state] = epsilon_successors[state].union(epsilon_successors[direct_successor]) count_epsilon_successors += len(epsilon_successors[state]) def set_transition(states, letter): result = set() for state in states: for transition in self.iter_transitions(state): if transition.word_in == [letter]: result.add(transition.to_state) result = result.union(*(epsilon_successors[s] for s in result)) return (frozenset(result), []) result = self.empty_copy() new_initial_states = [frozenset(self.iter_initial_states())] result.add_from_transition_function(set_transition, initial_states=new_initial_states) for state in result.iter_states(): state.is_final = any(s.is_final for s in state.label()) state.color = frozenset(s.color for s in state.label()) return result def minimization(self, algorithm=None): """ Returns the minimization of the input automaton as a new automaton. INPUT: - ``algorithm`` -- Either Moore's algorithm (by ``algorithm='Moore'`` or as default for deterministic automata) or Brzozowski's algorithm (when ``algorithm='Brzozowski'`` or when the automaton is not deterministic) is used. OUTPUT: A new automaton. The resulting automaton is deterministic and has a minimal number of states. EXAMPLES:: sage: A = Automaton([('A', 'A', 1), ('A', 'A', 0), ('A', 'B', 1), ....: ('B', 'C', 0), ('C', 'C', 1), ('C', 'C', 0)], ....: initial_states=['A'], final_states=['C']) sage: B = A.minimization(algorithm='Brzozowski') sage: B.transitions(B.states()[1]) [Transition from frozenset([frozenset(['A', 'C', 'B']), frozenset(['C', 'B']), frozenset(['A', 'C'])]) to frozenset([frozenset(['A', 'C', 'B']), frozenset(['C', 'B']), frozenset(['A', 'C']), frozenset(['C'])]): 0|-, Transition from frozenset([frozenset(['A', 'C', 'B']), frozenset(['C', 'B']), frozenset(['A', 'C'])]) to frozenset([frozenset(['A', 'C', 'B']), frozenset(['C', 'B']), frozenset(['A', 'C'])]): 1|-] sage: len(B.states()) 3 sage: C = A.minimization(algorithm='Brzozowski') sage: C.transitions(C.states()[1]) [Transition from frozenset([frozenset(['A', 'C', 'B']), frozenset(['C', 'B']), frozenset(['A', 'C'])]) to frozenset([frozenset(['A', 'C', 'B']), frozenset(['C', 'B']), frozenset(['A', 'C']), frozenset(['C'])]): 0|-, Transition from frozenset([frozenset(['A', 'C', 'B']), frozenset(['C', 'B']), frozenset(['A', 'C'])]) to frozenset([frozenset(['A', 'C', 'B']), frozenset(['C', 'B']), frozenset(['A', 'C'])]): 1|-] sage: len(C.states()) 3 :: sage: aut = Automaton([('1', '2', 'a'), ('2', '3', 'b'), ....: ('3', '2', 'a'), ('2', '1', 'b'), ....: ('3', '4', 'a'), ('4', '3', 'b')], ....: initial_states=['1'], final_states=['1']) sage: min = aut.minimization(algorithm='Brzozowski') sage: [len(min.states()), len(aut.states())] [3, 4] sage: min = aut.minimization(algorithm='Moore') Traceback (most recent call last): ... NotImplementedError: Minimization via Moore's Algorithm is only implemented for deterministic finite state machines """ deterministic = self.is_deterministic() if algorithm == "Moore" or (algorithm is None and deterministic): return self._minimization_Moore_() elif algorithm == "Brzozowski" or (algorithm is None and not deterministic): return self._minimization_Brzozowski_() else: raise NotImplementedError("Algorithm '%s' is not implemented. Choose 'Moore' or 'Brzozowski'" % algorithm) def _minimization_Brzozowski_(self): """ Returns a minimized automaton by using Brzozowski's algorithm. See also :meth:`.minimization`. TESTS:: sage: A = Automaton([('A', 'A', 1), ('A', 'A', 0), ('A', 'B', 1), ....: ('B', 'C', 0), ('C', 'C', 1), ('C', 'C', 0)], ....: initial_states=['A'], final_states=['C']) sage: B = A._minimization_Brzozowski_() sage: len(B.states()) 3 """ return self.transposition().determinisation().transposition().determinisation() def _minimization_Moore_(self): """ Returns a minimized automaton by using Moore's algorithm. See also :meth:`.minimization`. TESTS:: sage: aut = Automaton([('1', '2', 'a'), ('2', '3', 'b'), ....: ('3', '2', 'a'), ('2', '1', 'b'), ....: ('3', '4', 'a'), ('4', '3', 'b')], ....: initial_states=['1'], final_states=['1']) sage: min = aut._minimization_Moore_() Traceback (most recent call last): ... NotImplementedError: Minimization via Moore's Algorithm is only implemented for deterministic finite state machines """ if self.is_deterministic(): return self.quotient(self.equivalence_classes()) else: raise NotImplementedError("Minimization via Moore's Algorithm is only " \ "implemented for deterministic finite state machines") def process(self, *args, **kwargs): """ .. WARNING:: The default output of this method is scheduled to change. This docstring describes the new default behaviour, which can already be achieved by setting ``FSMOldProcessOutput`` to ``False``. Returns whether the automaton accepts the input and the state where the computation stops. INPUT: - ``input_tape`` -- The input tape can be a list with entries from the input alphabet. - ``initial_state`` -- (default: ``None``) The state in which to start. If this parameter is ``None`` and there is only one initial state in the machine, then this state is taken. - ``full_output`` -- (default: ``True``) If set, then the full output is given, otherwise only whether the sequence is accepted or not (the first entry below only). OUTPUT: The full output is a pair, where - the first entry is ``True`` if the input string is accepted and - the second gives the state reached after processing the input tape (This is a state with label ``None`` if the input could not be processed, i.e., when at one point no transition to go could be found.). By setting ``FSMOldProcessOutput`` to ``False`` the new desired output is produced. EXAMPLES:: sage: sage.combinat.finite_state_machine.FSMOldProcessOutput = False # activate new output behavior sage: from sage.combinat.finite_state_machine import FSMState sage: NAF_ = FSMState('_', is_initial = True, is_final = True) sage: NAF1 = FSMState('1', is_final = True) sage: NAF = Automaton( ....: {NAF_: [(NAF_, 0), (NAF1, 1)], NAF1: [(NAF_, 0)]}) sage: [NAF.process(w) for w in [[0], [0, 1], [1, 1], [0, 1, 0, 1], ....: [0, 1, 1, 1, 0], [1, 0, 0, 1, 1]]] [(True, '_'), (True, '1'), (False, None), (True, '1'), (False, None), (False, None)] If we just want a condensed output, we use:: sage: [NAF.process(w, full_output=False) ....: for w in [[0], [0, 1], [1, 1], [0, 1, 0, 1], ....: [0, 1, 1, 1, 0], [1, 0, 0, 1, 1]]] [True, True, False, True, False, False] It is equivalent to:: sage: [NAF(w) for w in [[0], [0, 1], [1, 1], [0, 1, 0, 1], ....: [0, 1, 1, 1, 0], [1, 0, 0, 1, 1]]] [True, True, False, True, False, False] The following example illustrates the difference between non-existing paths and reaching a non-final state:: sage: NAF.process([2]) (False, None) sage: NAF.add_transition(('_', 's', 2)) Transition from '_' to 's': 2|- sage: NAF.process([2]) (False, 's') """ if FSMOldProcessOutput: from sage.misc.superseded import deprecation deprecation(16132, "The output of Automaton.process " "(and thus of Automaton.__call__) " "will change. Please use the corresponding " "functions from FiniteStateMachine " "for the original output.") return super(Automaton, self).process(*args, **kwargs) if not kwargs.has_key('full_output'): kwargs['full_output'] = True it = self.iter_process(*args, **kwargs) for _ in it: pass # process output if kwargs['full_output']: return (it.accept_input, it.current_state) else: return it.accept_input #***************************************************************************** def is_Transducer(FSM): """ Tests whether or not ``FSM`` inherits from :class:`Transducer`. TESTS:: sage: from sage.combinat.finite_state_machine import is_FiniteStateMachine, is_Transducer sage: is_Transducer(FiniteStateMachine()) False sage: is_Transducer(Transducer()) True sage: is_FiniteStateMachine(Transducer()) True """ return isinstance(FSM, Transducer) class Transducer(FiniteStateMachine): """ This creates a transducer, which is a finite state machine, whose transitions have input and output labels. An transducer has additional features like creating a simplified transducer. See class :class:`FiniteStateMachine` for more information. EXAMPLES: We can create a transducer performing the addition of 1 (for numbers given in binary and read from right to left) in the following way:: sage: T = Transducer([('C', 'C', 1, 0), ('C', 'N', 0, 1), ....: ('N', 'N', 0, 0), ('N', 'N', 1, 1)], ....: initial_states=['C'], final_states=['N']) sage: T Transducer with 2 states sage: T([0]) [1] sage: T([1,1,0]) [0, 0, 1] sage: ZZ(T(15.digits(base=2)+[0]), base=2) 16 Note that we have padded the binary input sequence by a `0` so that the transducer can reach its final state. TESTS:: sage: Transducer() Transducer with 0 states """ def _repr_(self): """ Represents the transducer as "Transducer with n states" where n is the number of states. INPUT: Nothing. OUTPUT: A string. EXAMPLES:: sage: Transducer()._repr_() 'Transducer with 0 states' """ return "Transducer with %s states" % len(self._states_) def _latex_transition_label_(self, transition, format_function=latex): r""" Returns the proper transition label. INPUT: - ``transition`` - a transition - ``format_function`` - a function formatting the labels OUTPUT: A string. EXAMPLES:: sage: F = Transducer([('A', 'B', 1, 2)]) sage: print latex(F) # indirect doctest \begin{tikzpicture}[auto, initial text=, >=latex] \node[state] (v0) at (3.000000, 0.000000) {$\text{\texttt{A}}$}; \node[state] (v1) at (-3.000000, 0.000000) {$\text{\texttt{B}}$}; \path[->] (v0) edge node[rotate=360.00, anchor=south] {$1\mid 2$} (v1); \end{tikzpicture} TESTS:: sage: F = Transducer([('A', 'B', 0, 1)]) sage: t = F.transitions()[0] sage: F._latex_transition_label_(t) \left[0\right] \mid \left[1\right] """ return (format_function(transition.word_in) + "\\mid " + format_function(transition.word_out)) def intersection(self, other, only_accessible_components=True): """ Returns a new transducer which accepts an input if it is accepted by both given finite state machines producing the same output. INPUT: - ``other`` -- a transducer - ``only_accessible_components`` -- If ``True`` (default), then the result is piped through :meth:`.accessible_components`. If no ``new_input_alphabet`` is given, it is determined by :meth:`.determine_alphabets`. OUTPUT: A new transducer which computes the intersection (see below) of the languages of ``self`` and ``other``. The set of states of the transducer is the cartesian product of the set of states of both given transducer. There is a transition `((A, B), (C, D), a, b)` in the new transducer if there are transitions `(A, C, a, b)` and `(B, D, a, b)` in the old transducers. EXAMPLES:: sage: transducer1 = Transducer([('1', '2', 1, 0), ....: ('2', '2', 1, 0), ....: ('2', '2', 0, 1)], ....: initial_states=['1'], ....: final_states=['2']) sage: transducer2 = Transducer([('A', 'A', 1, 0), ....: ('A', 'B', 0, 0), ....: ('B', 'B', 0, 1), ....: ('B', 'A', 1, 1)], ....: initial_states=['A'], ....: final_states=['B']) sage: res = transducer1.intersection(transducer2) sage: res.transitions() [Transition from ('1', 'A') to ('2', 'A'): 1|0, Transition from ('2', 'A') to ('2', 'A'): 1|0] In general, transducers are not closed under intersection. But for transducer which do not have epsilon-transitions, the intersection is well defined (cf. [BaWo2012]_). However, in the next example the intersection of the two transducers is not well defined. The intersection of the languages consists of `(a^n, b^n c^n)`. This set is not recognizable by a *finite* transducer. :: sage: t1 = Transducer([(0, 0, 'a', 'b'), ....: (0, 1, None, 'c'), ....: (1, 1, None, 'c')], ....: initial_states=[0], ....: final_states=[0, 1]) sage: t2 = Transducer([('A', 'A', None, 'b'), ....: ('A', 'B', 'a', 'c'), ....: ('B', 'B', 'a', 'c')], ....: initial_states=['A'], ....: final_states=['A', 'B']) sage: t2.intersection(t1) Traceback (most recent call last): ... ValueError: An epsilon-transition (with empty input or output) was found. TESTS:: sage: transducer1 = Transducer([('1', '2', 1, 0)], ....: initial_states=['1'], ....: final_states=['2']) sage: transducer2 = Transducer([('A', 'B', 1, 0)], ....: initial_states=['A'], ....: final_states=['B']) sage: res = transducer1.intersection(transducer2) sage: res.final_states() [('2', 'B')] sage: transducer1.state('2').final_word_out = 1 sage: transducer2.state('B').final_word_out = 2 sage: res = transducer1.intersection(transducer2) sage: res.final_states() [] REFERENCES: .. [BaWo2012] Javier Baliosian and Dina Wonsever, *Finite State Transducers*, chapter in *Handbook of Finite State Based Models and Applications*, edited by Jiacun Wang, Chapman and Hall/CRC, 2012. """ if not is_Transducer(other): raise TypeError( "Only a transducer can be intersected with a transducer.") def function(transition1, transition2): if not transition1.word_in or not transition2.word_in \ or not transition1.word_out or not transition2.word_out: raise ValueError("An epsilon-transition " "(with empty input or output) was found.") if transition1.word_in == transition2.word_in \ and transition1.word_out == transition2.word_out: return (transition1.word_in, transition1.word_out) else: raise LookupError new = self.product_FiniteStateMachine( other, function, only_accessible_components=only_accessible_components, final_function=lambda s1, s2: s1.final_word_out) for state in new.iter_final_states(): state0 = self.state(state.label()[0]) state1 = other.state(state.label()[1]) if state0.final_word_out != state1.final_word_out: state.final_word_out = None state.is_final = False return new def cartesian_product(self, other, only_accessible_components=True): """ .. WARNING:: The default output of this method is scheduled to change. This docstring describes the new default behaviour, which can already be achieved by setting ``FSMOldCodeTransducerCartesianProduct`` to ``False``. Return a new transducer which can simultaneously process an input with the machines ``self`` and ``other`` where the output labels are `d`-tuples of the original output labels. INPUT: - ``other`` - a finite state machine (if `d=2`) or a list (or other iterable) of `d-1` finite state machines - ``only_accessible_components`` -- If ``True`` (default), then the result is piped through :meth:`.accessible_components`. If no ``new_input_alphabet`` is given, it is determined by :meth:`.determine_alphabets`. OUTPUT: A transducer which can simultaneously process an input with ``self`` and the machine(s) in ``other``. The set of states of the new transducer is the cartesian product of the set of states of ``self`` and ``other``. Let `(A_j, B_j, a_j, b_j)` for `j\in\{1, \ldots, d\}` be transitions in the machines ``self`` and in ``other``. Then there is a transition `((A_1, \ldots, A_d), (B_1, \ldots, B_d), a, (b_1, \ldots, b_d))` in the new transducer if `a_1 = \cdots = a_d =: a`. EXAMPLES: Originally a different output was constructed by :meth:`Transducer.cartesian_product`. This output is now produced by :meth:`Transducer.intersection`. :: sage: transducer1 = Transducer([('A', 'A', 0, 0), ....: ('A', 'A', 1, 1)], ....: initial_states=['A'], ....: final_states=['A'], ....: determine_alphabets=True) sage: transducer2 = Transducer([(0, 1, 0, ['b', 'c']), ....: (0, 0, 1, 'b'), ....: (1, 1, 0, 'a')], ....: initial_states=[0], ....: final_states=[1], ....: determine_alphabets=True) sage: result = transducer1.cartesian_product(transducer2) doctest:...: DeprecationWarning: The output of Transducer.cartesian_product will change. Please use Transducer.intersection for the original output. See http://trac.sagemath.org/16061 for details. sage: result Transducer with 0 states By setting ``FSMOldCodeTransducerCartesianProduct`` to ``False`` the new desired output is produced. :: sage: sage.combinat.finite_state_machine.FSMOldCodeTransducerCartesianProduct = False sage: result = transducer1.cartesian_product(transducer2) sage: result Transducer with 2 states sage: result.transitions() [Transition from ('A', 0) to ('A', 1): 0|(0, 'b'),(None, 'c'), Transition from ('A', 0) to ('A', 0): 1|(1, 'b'), Transition from ('A', 1) to ('A', 1): 0|(0, 'a')] sage: result([1, 0, 0]) [(1, 'b'), (0, 'b'), (None, 'c'), (0, 'a')] sage: (transducer1([1, 0, 0]), transducer2([1, 0, 0])) ([1, 0, 0], ['b', 'b', 'c', 'a']) Also final output words are correctly processed:: sage: transducer1.state('A').final_word_out = 2 sage: result = transducer1.cartesian_product(transducer2) sage: result.final_states()[0].final_word_out [(2, None)] The following transducer counts the number of 11 blocks minus the number of 10 blocks over the alphabet ``[0, 1]``. :: sage: count_11 = transducers.CountSubblockOccurrences( ....: [1, 1], ....: input_alphabet=[0, 1]) sage: count_10 = transducers.CountSubblockOccurrences( ....: [1, 0], ....: input_alphabet=[0, 1]) sage: count_11x10 = count_11.cartesian_product(count_10) sage: difference = transducers.sub([0, 1])(count_11x10) sage: T = difference.simplification().relabeled() sage: T.initial_states() [1] sage: sorted(T.transitions()) [Transition from 0 to 1: 0|-1, Transition from 0 to 0: 1|1, Transition from 1 to 1: 0|0, Transition from 1 to 0: 1|0] sage: input = [0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0] sage: output = [0, 0, 1, -1, 0, -1, 0, 0, 0, 1, 1, -1] sage: T(input) == output True If ``other`` is an automaton, then :meth:`.cartesian_product` returns ``self`` where the input is restricted to the input accepted by ``other``. For example, if the transducer transforms the standard binary expansion into the non-adjacent form and the automaton recognizes the binary expansion without adjacent ones, then the cartesian product of these two is a transducer which does not change the input (except for changing ``a`` to ``(a, None)`` and ignoring a leading `0`). :: sage: NAF = Transducer([(0, 1, 0, None), ....: (0, 2, 1, None), ....: (1, 1, 0, 0), ....: (1, 2, 1, 0), ....: (2, 1, 0, 1), ....: (2, 3, 1, -1), ....: (3, 2, 0, 0), ....: (3, 3, 1, 0)], ....: initial_states=[0], ....: final_states=[1], ....: determine_alphabets=True) sage: aut11 = Automaton([(0, 0, 0), (0, 1, 1), (1, 0, 0)], ....: initial_states=[0], ....: final_states=[0, 1], ....: determine_alphabets=True) sage: res = NAF.cartesian_product(aut11) sage: res([1, 0, 0, 1, 0, 1, 0]) [(1, None), (0, None), (0, None), (1, None), (0, None), (1, None)] This is obvious because if the standard binary expansion does not have adjacent ones, then it is the same as the non-adjacent form. Be aware that :meth:`.cartesian_product` is not commutative. :: sage: aut11.cartesian_product(NAF) Traceback (most recent call last): ... TypeError: Only an automaton can be intersected with an automaton. The cartesian product of more than two finite state machines can also be computed:: sage: T0 = transducers.CountSubblockOccurrences([0, 0], [0, 1, 2]) sage: T1 = transducers.CountSubblockOccurrences([1, 1], [0, 1, 2]) sage: T2 = transducers.CountSubblockOccurrences([2, 2], [0, 1, 2]) sage: T = T0.cartesian_product([T1, T2]) sage: T.transitions() [Transition from ((), (), ()) to ((0,), (), ()): 0|(0, 0, 0), Transition from ((), (), ()) to ((), (1,), ()): 1|(0, 0, 0), Transition from ((), (), ()) to ((), (), (2,)): 2|(0, 0, 0), Transition from ((0,), (), ()) to ((0,), (), ()): 0|(1, 0, 0), Transition from ((0,), (), ()) to ((), (1,), ()): 1|(0, 0, 0), Transition from ((0,), (), ()) to ((), (), (2,)): 2|(0, 0, 0), Transition from ((), (1,), ()) to ((0,), (), ()): 0|(0, 0, 0), Transition from ((), (1,), ()) to ((), (1,), ()): 1|(0, 1, 0), Transition from ((), (1,), ()) to ((), (), (2,)): 2|(0, 0, 0), Transition from ((), (), (2,)) to ((0,), (), ()): 0|(0, 0, 0), Transition from ((), (), (2,)) to ((), (1,), ()): 1|(0, 0, 0), Transition from ((), (), (2,)) to ((), (), (2,)): 2|(0, 0, 1)] sage: T([0, 0, 1, 1, 2, 2, 0, 1, 2, 2]) [(0, 0, 0), (1, 0, 0), (0, 0, 0), (0, 1, 0), (0, 0, 0), (0, 0, 1), (0, 0, 0), (0, 0, 0), (0, 0, 0), (0, 0, 1)] """ if FSMOldCodeTransducerCartesianProduct: from sage.misc.superseded import deprecation deprecation(16061, "The output of Transducer.cartesian_product " "will change. Please use " "Transducer.intersection for the original " "output.") return self.intersection( other, only_accessible_components=only_accessible_components) def function(*transitions): if equal(t.word_in for t in transitions): return (transitions[0].word_in, list(itertools.izip_longest( *(t.word_out for t in transitions) ))) else: raise LookupError def final_function(*states): return list(itertools.izip_longest(*(s.final_word_out for s in states))) return self.product_FiniteStateMachine( other, function, final_function=final_function, only_accessible_components=only_accessible_components) def simplification(self): """ Returns a simplified transducer. INPUT: Nothing. OUTPUT: A new transducer. This function simplifies a transducer by Moore's algorithm, first moving common output labels of transitions leaving a state to output labels of transitions entering the state (cf. :meth:`.prepone_output`). The resulting transducer implements the same function as the original transducer. EXAMPLES:: sage: fsm = Transducer([("A", "B", 0, 1), ("A", "B", 1, 0), ....: ("B", "C", 0, 0), ("B", "C", 1, 1), ....: ("C", "D", 0, 1), ("C", "D", 1, 0), ....: ("D", "A", 0, 0), ("D", "A", 1, 1)]) sage: fsms = fsm.simplification() sage: fsms Transducer with 2 states sage: fsms.transitions() [Transition from ('A', 'C') to ('B', 'D'): 0|1, Transition from ('A', 'C') to ('B', 'D'): 1|0, Transition from ('B', 'D') to ('A', 'C'): 0|0, Transition from ('B', 'D') to ('A', 'C'): 1|1] sage: fsms.relabeled().transitions() [Transition from 0 to 1: 0|1, Transition from 0 to 1: 1|0, Transition from 1 to 0: 0|0, Transition from 1 to 0: 1|1] :: sage: fsm = Transducer([("A", "A", 0, 0), ....: ("A", "B", 1, 1), ....: ("A", "C", 1, -1), ....: ("B", "A", 2, 0), ....: ("C", "A", 2, 0)]) sage: fsm_simplified = fsm.simplification() sage: fsm_simplified Transducer with 2 states sage: fsm_simplified.transitions() [Transition from ('A',) to ('A',): 0|0, Transition from ('A',) to ('B', 'C'): 1|1,0, Transition from ('A',) to ('B', 'C'): 1|-1,0, Transition from ('B', 'C') to ('A',): 2|-] :: sage: from sage.combinat.finite_state_machine import duplicate_transition_add_input sage: T = Transducer([('A', 'A', 1/2, 0), ....: ('A', 'B', 1/4, 1), ....: ('A', 'C', 1/4, 1), ....: ('B', 'A', 1, 0), ....: ('C', 'A', 1, 0)], ....: initial_states=[0], ....: final_states=['A', 'B', 'C'], ....: on_duplicate_transition=duplicate_transition_add_input) sage: sorted(T.simplification().transitions()) [Transition from ('A',) to ('A',): 1/2|0, Transition from ('A',) to ('B', 'C'): 1/2|1, Transition from ('B', 'C') to ('A',): 1|0] Illustrating the use of colors in order to avoid identification of states:: sage: T = Transducer( [[0,0,0,0], [0,1,1,1], ....: [1,0,0,0], [1,1,1,1]], ....: initial_states=[0], ....: final_states=[0,1]) sage: sorted(T.simplification().transitions()) [Transition from (0, 1) to (0, 1): 0|0, Transition from (0, 1) to (0, 1): 1|1] sage: T.state(0).color = 0 sage: T.state(0).color = 1 sage: sorted(T.simplification().transitions()) [Transition from (0,) to (0,): 0|0, Transition from (0,) to (1,): 1|1, Transition from (1,) to (0,): 0|0, Transition from (1,) to (1,): 1|1] """ fsm = deepcopy(self) fsm.prepone_output() return fsm.quotient(fsm.equivalence_classes()) def process(self, *args, **kwargs): """ .. WARNING:: The default output of this method is scheduled to change. This docstring describes the new default behaviour, which can already be achieved by setting ``FSMOldProcessOutput`` to ``False``. Returns whether the transducer accepts the input, the state where the computation stops and which output is generated. INPUT: - ``input_tape`` -- The input tape can be a list with entries from the input alphabet. - ``initial_state`` -- (default: ``None``) The state in which to start. If this parameter is ``None`` and there is only one initial state in the machine, then this state is taken. - ``full_output`` -- (default: ``True``) If set, then the full output is given, otherwise only the generated output (the third entry below only). If the input is not accepted, a ``ValueError`` is raised. OUTPUT: The full output is a triple, where - the first entry is ``True`` if the input string is accepted, - the second gives the reached state after processing the input tape (This is a state with label ``None`` if the input could not be processed, i.e., when at one point no transition to go could be found.), and - the third gives a list of the output labels used during processing. By setting ``FSMOldProcessOutput`` to ``False`` the new desired output is produced. EXAMPLES:: sage: sage.combinat.finite_state_machine.FSMOldProcessOutput = False # activate new output behavior sage: from sage.combinat.finite_state_machine import FSMState sage: A = FSMState('A', is_initial = True, is_final = True) sage: binary_inverter = Transducer({A:[(A, 0, 1), (A, 1, 0)]}) sage: binary_inverter.process([0, 1, 0, 0, 1, 1]) (True, 'A', [1, 0, 1, 1, 0, 0]) If we are only interested in the output, we can also use:: sage: binary_inverter([0, 1, 0, 0, 1, 1]) [1, 0, 1, 1, 0, 0] The following transducer transforms `0^n 1` to `1^n 2`:: sage: T = Transducer([(0, 0, 0, 1), (0, 1, 1, 2)]) sage: T.state(0).is_initial = True sage: T.state(1).is_final = True We can see the different possibilites of the output by:: sage: [T.process(w) for w in [[1], [0, 1], [0, 0, 1], [0, 1, 1], ....: [0], [0, 0], [2, 0], [0, 1, 2]]] [(True, 1, [2]), (True, 1, [1, 2]), (True, 1, [1, 1, 2]), (False, None, None), (False, 0, [1]), (False, 0, [1, 1]), (False, None, None), (False, None, None)] If we just want a condensed output, we use:: sage: [T.process(w, full_output=False) ....: for w in [[1], [0, 1], [0, 0, 1]]] [[2], [1, 2], [1, 1, 2]] sage: T.process([0, 1, 2], full_output=False) Traceback (most recent call last): ... ValueError: Invalid input sequence. It is equivalent to:: sage: [T(w) for w in [[1], [0, 1], [0, 0, 1]]] [[2], [1, 2], [1, 1, 2]] sage: T([0, 1, 2]) Traceback (most recent call last): ... ValueError: Invalid input sequence. """ if FSMOldProcessOutput: from sage.misc.superseded import deprecation deprecation(16132, "The output of Transducer.process " "(and thus of Transducer.__call__) " "will change. Please use the corresponding " "functions from FiniteStateMachine " "for the original output.") return super(Transducer, self).process(*args, **kwargs) if not kwargs.has_key('full_output'): kwargs['full_output'] = True it = self.iter_process(*args, **kwargs) for _ in it: pass # process output if kwargs['full_output']: if it.current_state.label() is None: return (it.accept_input, it.current_state, None) else: return (it.accept_input, it.current_state, it.output_tape) else: if not it.accept_input: raise ValueError("Invalid input sequence.") return it.output_tape #***************************************************************************** def is_FSMProcessIterator(PI): """ Tests whether or not ``PI`` inherits from :class:`FSMProcessIterator`. TESTS:: sage: from sage.combinat.finite_state_machine import is_FSMProcessIterator, FSMProcessIterator sage: is_FSMProcessIterator(FSMProcessIterator(FiniteStateMachine([[0, 0, 0, 0]], initial_states=[0]))) True """ return isinstance(PI, FSMProcessIterator) class FSMProcessIterator(SageObject): """ This class is for processing an input string on a finite state machine. An instance of this class is generated when :meth:`FiniteStateMachine.process` or :meth:`FiniteStateMachine.iter_process` of the finite state machine is invoked. It behaves like an iterator which, in each step, takes one letter of the input and runs (one step on) the finite state machine with this input. More precisely, in each step, the process iterator takes an outgoing transition of the current state, whose input label equals the input letter of the tape. The output label of the transition, if present, is written on the output tape. INPUT: - ``fsm`` -- The finite state machine on which the input should be processed. - ``input_tape`` -- The input tape. It can be anything that is iterable. - ``initial_state`` -- The initial state in which the machine starts. If this is ``None``, the unique inital state of the finite state machine is takes. If there are several, a ``ValueError`` is raised. The process (iteration) stops if there are no more input letters on the tape. In this case a StopIteration exception is thrown. As result the following attributes are available: - ``accept_input`` -- Is ``True`` if the reached state is a final state. - ``current_state`` -- The current/reached state in the process. - ``output_tape`` -- The written output. Current values of those attributes (except ``accept_input``) are (also) available during the iteration. OUTPUT: An iterator. EXAMPLES: The following transducer reads binary words and outputs a word, where blocks of ones are replaced by just a single one. Further only words that end with a zero are accepted. :: sage: T = Transducer({'A': [('A', 0, 0), ('B', 1, None)], ....: 'B': [('B', 1, None), ('A', 0, [1, 0])]}, ....: initial_states=['A'], final_states=['A']) sage: input = [1, 1, 0, 0, 1, 0, 1, 1, 1, 0] sage: T.process(input) (True, 'A', [1, 0, 0, 1, 0, 1, 0]) The function :meth:`FiniteStateMachine.process` created a new ``FSMProcessIterator``. We can do that manually, too, and get full access to the iteration process:: sage: from sage.combinat.finite_state_machine import FSMProcessIterator sage: it = FSMProcessIterator(T, input_tape=input) sage: for _ in it: ....: print (it.current_state, it.output_tape) ('B', []) ('B', []) ('A', [1, 0]) ('A', [1, 0, 0]) ('B', [1, 0, 0]) ('A', [1, 0, 0, 1, 0]) ('B', [1, 0, 0, 1, 0]) ('B', [1, 0, 0, 1, 0]) ('B', [1, 0, 0, 1, 0]) ('A', [1, 0, 0, 1, 0, 1, 0]) sage: it.accept_input True TESTS:: sage: T = Transducer([[0, 0, 0, 0]]) sage: T.process([]) Traceback (most recent call last): ... ValueError: No state is initial. :: sage: T = Transducer([[0, 1, 0, 0]], initial_states=[0, 1]) sage: T.process([]) Traceback (most recent call last): ... ValueError: Several initial states. """ def __init__(self, fsm, input_tape=None, initial_state=None, **kwargs): """ See :class:`FSMProcessIterator` for more information. EXAMPLES:: sage: from sage.combinat.finite_state_machine import FSMProcessIterator sage: inverter = Transducer({'A': [('A', 0, 1), ('A', 1, 0)]}, ....: initial_states=['A'], final_states=['A']) sage: it = FSMProcessIterator(inverter, input_tape=[0, 1]) sage: for _ in it: ....: pass sage: it.output_tape [1, 0] """ self.fsm = fsm if initial_state is None: fsm_initial_states = self.fsm.initial_states() try: self.current_state = fsm_initial_states[0] except IndexError: raise ValueError("No state is initial.") if len(fsm_initial_states) > 1: raise ValueError("Several initial states.") else: self.current_state = initial_state self.output_tape = [] if input_tape is None: self._input_tape_iter_ = iter([]) else: if hasattr(input_tape, '__iter__'): self._input_tape_iter_ = iter(input_tape) else: raise ValueError("Given input tape is not iterable.") def __iter__(self): """ Returns ``self``. TESTS:: sage: from sage.combinat.finite_state_machine import FSMProcessIterator sage: inverter = Transducer({'A': [('A', 0, 1), ('A', 1, 0)]}, ....: initial_states=['A'], final_states=['A']) sage: it = FSMProcessIterator(inverter, input_tape=[0, 1]) sage: id(it) == id(iter(it)) True """ return self def next(self): """ Makes one step in processing the input tape. INPUT: Nothing. OUTPUT: It returns the taken transition. A ``StopIteration`` exception is thrown when there is nothing more to read. EXAMPLES:: sage: from sage.combinat.finite_state_machine import FSMProcessIterator sage: inverter = Transducer({'A': [('A', 0, 1), ('A', 1, 0)]}, ....: initial_states=['A'], final_states=['A']) sage: it = FSMProcessIterator(inverter, input_tape=[0, 1]) sage: it.next() Transition from 'A' to 'A': 0|1 sage: it.next() Transition from 'A' to 'A': 1|0 sage: it.next() Traceback (most recent call last): ... StopIteration TESTS:: sage: Z = Transducer() sage: s = Z.add_state(0) sage: s.is_initial = True sage: s.is_final = True sage: s.final_word_out = [1, 2] sage: Z.process([]) (True, 0, [1, 2]) """ if hasattr(self, 'accept_input'): raise StopIteration try: # process current state transition = None try: transition = self.current_state.hook( self.current_state, self) except AttributeError: pass self.write_word(self.current_state.word_out) # get next if not isinstance(transition, FSMTransition): next_word = [] found = False try: while not found: next_word.append(self.read_letter()) if len(next_word) == 1 and any(not t.word_in for t in self.current_state.transitions): raise NotImplementedError( "process cannot handle epsilon transition " "leaving state %s." % self.current_state.label()) try: transition = self.get_next_transition( next_word) found = True except ValueError: pass if found and any( t is not transition and startswith(t.word_in, next_word) for t in self.current_state.transitions): raise NotImplementedError("Non-deterministic " "path encountered " "when processing " "input.") except StopIteration: # this means input tape is finished if len(next_word) > 0: self.current_state = FSMState(None, allow_label_None=True) raise StopIteration # process transition try: transition.hook(transition, self) except AttributeError: pass self.write_word(transition.word_out) # go to next state self.current_state = transition.to_state except StopIteration: # this means, either input tape is finished or # someone has thrown StopIteration manually (in one # of the hooks) if self.current_state.label is None or not self.current_state.is_final: self.accept_input = False if not hasattr(self, 'accept_input'): self.accept_input = True if self.current_state.is_final: self.write_word(self.current_state.final_word_out) raise StopIteration # return return transition def read_letter(self): """ Reads a letter from the input tape. INPUT: Nothing. OUTPUT: A letter. Exception ``StopIteration`` is thrown if tape has reached the end. EXAMPLES:: sage: from sage.combinat.finite_state_machine import FSMProcessIterator sage: inverter = Transducer({'A': [('A', 0, 1), ('A', 1, 0)]}, ....: initial_states=['A'], final_states=['A']) sage: it = FSMProcessIterator(inverter, input_tape=[0, 1]) sage: it.read_letter() 0 """ return self._input_tape_iter_.next() def write_letter(self, letter): """ Writes a letter on the output tape. INPUT: - ``letter`` -- the letter to be written. OUTPUT: Nothing. EXAMPLES:: sage: from sage.combinat.finite_state_machine import FSMProcessIterator sage: inverter = Transducer({'A': [('A', 0, 1), ('A', 1, 0)]}, ....: initial_states=['A'], final_states=['A']) sage: it = FSMProcessIterator(inverter, input_tape=[0, 1]) sage: it.write_letter(42) sage: it.output_tape [42] """ self.output_tape.append(letter) def write_word(self, word): """ Writes a word on the output tape. INPUT: - ``word`` -- the word to be written. OUTPUT: Nothing. EXAMPLES:: sage: from sage.combinat.finite_state_machine import FSMProcessIterator sage: inverter = Transducer({'A': [('A', 0, 1), ('A', 1, 0)]}, ....: initial_states=['A'], final_states=['A']) sage: it = FSMProcessIterator(inverter, input_tape=[0, 1]) sage: it.write_word([4, 2]) sage: it.output_tape [4, 2] """ for letter in word: self.write_letter(letter) def get_next_transition(self, word_in): """ Returns the next transition according to ``word_in``. It is assumed that we are in state ``self.current_state``. INPUT: - ``word_in`` -- the input word. OUTPUT: The next transition according to ``word_in``. It is assumed that we are in state ``self.current_state``. If no transition matches, a ``ValueError`` is thrown. EXAMPLES:: sage: from sage.combinat.finite_state_machine import FSMProcessIterator sage: inverter = Transducer({'A': [('A', 0, 1), ('A', 1, 0)]}, ....: initial_states=['A'], final_states=['A']) sage: it = FSMProcessIterator(inverter, input_tape=[0, 1]) sage: it.get_next_transition([0]) Transition from 'A' to 'A': 0|1 sage: it.get_next_transition([2]) Traceback (most recent call last): ... ValueError: No transition with input [2] found. """ for transition in self.current_state.transitions: if transition.word_in == word_in: return transition raise ValueError("No transition with input %s found." % (word_in,)) #***************************************************************************** @cached_function def setup_latex_preamble(): r""" This function adds the package ``tikz`` with support for automata to the preamble of Latex so that the finite state machines can be drawn nicely. INPUT: Nothing. OUTPUT: Nothing. See the section on :ref:`finite_state_machine_LaTeX_output` in the introductory examples of this module. TESTS:: sage: from sage.combinat.finite_state_machine import setup_latex_preamble sage: setup_latex_preamble() sage: ("\usepackage{tikz}" in latex.extra_preamble()) == latex.has_file("tikz.sty") True """ latex.add_package_to_preamble_if_available('tikz') latex.add_to_mathjax_avoid_list("tikz") if latex.has_file("tikz.sty"): latex.add_to_preamble(r'\usetikzlibrary{automata}') #*****************************************************************************
from django.contrib import admin from . import models class LibraryAdmin(admin.ModelAdmin): search_fields = ( "owner", "name", "repository__owner", "repository__name", "repository__remote_id", ) admin.site.register(models.Library, LibraryAdmin)
from avatar.models import Avatar from django.shortcuts import render from rest_framework import status from rest_framework.decorators import permission_classes, api_view from rest_framework.permissions import IsAuthenticatedOrReadOnly from rest_framework import viewsets from rest_framework.views import APIView from avatar.serializers import AvatarSerializer class AvatarViewSet(viewsets.ModelViewSet): queryset = Avatar.objects.all() serializer_class = AvatarSerializer
def SubsequenceLength(string): seen = {} maximum_length = 0 start = 0 for end in range(len(string)): if string[end] in seen: start = max(start, seen[string[end]] + 1) seen[string[end]] = end maximum_length = max(maximum_length, end-start + 1) return maximum_length print(SubsequenceLength("geeksforgeeks"))
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('umibukela', '0019_auto_20170124_1252'), ] operations = [ migrations.AlterField( model_name='cycleresultset', name='monitors', field=models.ManyToManyField(help_text=b"Only monitors for the current partner are shown. If you update the Partner you'll have to save and edit this Cycle Result Set again to see the available monitors.", to='umibukela.Monitor', blank=True), ), ]
# Copyright 2013 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import tempfile import unittest import md5_check class TestMd5Check(unittest.TestCase): def testCallAndRecordIfStale(self): input_strings = ['string1', 'string2'] input_file1 = tempfile.NamedTemporaryFile() input_file2 = tempfile.NamedTemporaryFile() file1_contents = 'input file 1' file2_contents = 'input file 2' input_file1.write(file1_contents) input_file1.flush() input_file2.write(file2_contents) input_file2.flush() input_files = [input_file1.name, input_file2.name] record_path = tempfile.NamedTemporaryFile(suffix='.stamp') def CheckCallAndRecord(should_call, message, force=False): self.called = False def MarkCalled(): self.called = True md5_check.CallAndRecordIfStale( MarkCalled, record_path=record_path.name, input_paths=input_files, input_strings=input_strings, force=force) self.failUnlessEqual(should_call, self.called, message) CheckCallAndRecord(True, 'should call when record doesn\'t exist') CheckCallAndRecord(False, 'should not call when nothing changed') CheckCallAndRecord(True, force=True, message='should call when forced') input_file1.write('some more input') input_file1.flush() CheckCallAndRecord(True, 'changed input file should trigger call') input_files = input_files[::-1] CheckCallAndRecord(False, 'reordering of inputs shouldn\'t trigger call') input_files = input_files[:1] CheckCallAndRecord(True, 'removing file should trigger call') input_files.append(input_file2.name) CheckCallAndRecord(True, 'added input file should trigger call') input_strings[0] = input_strings[0] + ' a bit longer' CheckCallAndRecord(True, 'changed input string should trigger call') input_strings = input_strings[::-1] CheckCallAndRecord(True, 'reordering of string inputs should trigger call') input_strings = input_strings[:1] CheckCallAndRecord(True, 'removing a string should trigger call') input_strings.append('a brand new string') CheckCallAndRecord(True, 'added input string should trigger call') if __name__ == '__main__': unittest.main()
import os import shutil from time import sleep from cerium import AndroidDriver from watchdog.events import FileSystemEventHandler from watchdog.observers import Observer from constants import DIR_CHOOSE, DIRECTORY, POSITION from quizzes import insert_db from utils import choose_parsing, confirm_question, question_parsing shutil.rmtree(DIRECTORY) os.mkdir(DIRECTORY) driver = AndroidDriver(wireless=True) # driver = AndroidDriver() # driver.auto_connect() class FileEventHandler(FileSystemEventHandler): def __init__(self): FileSystemEventHandler.__init__(self) def on_created(self, event): global question, options if event.src_path.split('\\')[-1] == 'findQuiz': sleep(0.5) try: question, options = question_parsing() x, y = confirm_question(question, options) while not os.path.exists(DIR_CHOOSE): driver.click(x, y) sleep(0.2) except KeyError: driver.back() sleep(0.2) option = POSITION[-1] driver.swipe_up() driver.click(option['x'], option['y']) print('游戏开始') elif event.src_path.split('\\')[-1] == 'choose': sleep(1) question, answer = choose_parsing(question, options) print('问题:', question) print('答案:', answer) insert_db(question, answer) elif event.src_path.split('\\')[-1] == 'fightResult': print('游戏结束\n') driver.back() sleep(0.2) option = POSITION[-1] driver.swipe_up() driver.click(option['x'], option['y']) print('游戏开始') if __name__ == "__main__": observer = Observer() handler = FileEventHandler() observer.schedule(handler, DIRECTORY, True) print('游戏开始') option = POSITION[-1] driver.click(option['x'], option['y']) observer.start() try: while True: sleep(1) except KeyboardInterrupt: observer.stop() observer.join()
import time def get_next_array(the_str): j = 0 k = -1 next_array = [-1] + [0] * (len(the_str)-1) while j < len(the_str) - 1: if k == -1 or the_str[j] == the_str[k]: j += 1 k += 1 next_array[j] = k else: k = next_array[k] return next_array def kmp(aim_str, model_str): aim_len = len(aim_str) model_len = len(model_str) re = [] if aim_len >= model_len: i = 0 j = 0 next_array = get_next_array(model_str) while i < aim_len: if j == -1 or aim_str[i] == model_str[j]: i += 1 j += 1 else: j = next_array[j] if j == model_len: re.append(i - model_len) i = i - model_len + 1 j = 0 return ["time: " + str(len(re))] + re start = time.time() print(kmp("ababaababababba", "aba")) print(time.time()-start) print(get_next_array("abbababababab"))
''' Test script for GrFNN, plotting the entrainment for a sin wave of changing frequency. @author T. Kaplan ''' import numpy as np import matplotlib matplotlib.use('TkAgg') import matplotlib.pyplot as plt import time from gfnn import FrequencyType, FrequencyDist, ZParams, GrFNN from plot import spectro_plot # Construct our model by instantiating the class defined above dim_in = 300 freq_dist = FrequencyDist(0.25, 6.0, dim_in, FrequencyType.LINEAR) zparams = ZParams() model = GrFNN(freq_dist, zparams, fs=160) # Stimulus - 50 seconds of FHz sin, at a changing frequency (4->2) F = 4 t1 = np.arange(0, 25, model.dt) x1 = np.sin(2 * np.pi * F * t1) * 0.25 t2 = np.arange(25, 50, model.dt) x2 = np.sin(2 * np.pi * F/2 * t2) * 0.25 # Prepare an initial plot t = np.concatenate([t1, t2]) x = np.concatenate([x1, x2]) px = freq_dist.dist py = np.zeros(px.shape) plt.plot(px, py) zs = np.empty((len(t), dim_in), dtype=np.complex64) t0 = time.time() for i in range(len(t)): out = model(x[i]) zs[i] = out # Update plot: if i % 10 == 0: py = np.abs(out) plt.gca().lines[0].set_ydata(py) plt.gca().relim() plt.gca().autoscale_view() plt.pause(0.01) t1 = time.time() print('Took', round(t1-t0, 2)) plt.show()
#!/usr/bin/env python # encoding: utf-8 from flask import render_template from .. import demo @demo.app_errorhandler(404) def page_not_found(e): return "page not found" @demo.app_errorhandler(500) def internal_server_error(e): return "internal server error"
# -*- coding: utf-8 -*- """SuperDARN data support for grdex files(Alpha Level!) Parameters ---------- platform : string 'superdarn' name : string 'grdex' tag : string 'north' or 'south' for Northern/Southern hemisphere data Note ---- Requires davitpy and davitpy to load SuperDARN files. Uses environment variables set by davitpy to download files from Virginia Tech SuperDARN data servers. davitpy routines are used to load SuperDARN data. This material is based upon work supported by the National Science Foundation under Grant Number 1259508. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. Warnings -------- Cleaning only removes entries that have 0 vectors, grdex files are constituted from what it is thought to be good data. """ from __future__ import print_function from __future__ import absolute_import import sys import os import pandas as pds import numpy as np import pysat platform = 'superdarn' name = 'grdex' tags = {'north':'', 'south':''} sat_ids = {'':['north', 'south']} test_dates = {'':{'north':pysat.datetime(2009,1,1), 'south':pysat.datetime(2009,1,1)}} def list_files(tag='north', sat_id=None, data_path=None, format_str=None): """Return a Pandas Series of every file for chosen satellite data Parameters ----------- tag : (string) Denotes type of file to load. Accepted types are 'north' and 'south'. (default='north') sat_id : (string or NoneType) Specifies the satellite ID for a constellation. Not used. (default=None) data_path : (string or NoneType) Path to data directory. If None is specified, the value previously set in Instrument.files.data_path is used. (default=None) format_str : (string or NoneType) User specified file format. If None is specified, the default formats associated with the supplied tags are used. (default=None) Returns -------- pysat.Files.from_os : (pysat._files.Files) A class containing the verified available files """ if format_str is None and tag is not None: if tag == 'north' or tag == 'south': hemi_fmt = ''.join(('{year:4d}{month:02d}{day:02d}.', tag, '.grdex')) return pysat.Files.from_os(data_path=data_path, format_str=hemi_fmt) else: estr = 'Unrecognized tag name for SuperDARN, north or south.' raise ValueError(estr) elif format_str is None: estr = 'A tag name must be passed to SuperDARN.' raise ValueError (estr) else: return pysat.Files.from_os(data_path=data_path, format_str=format_str) def load(fnames, tag=None, sat_id=None): import davitpy if len(fnames) <= 0: return pysat.DataFrame(None), pysat.Meta(None) elif len(fnames) == 1: myPtr = davitpy.pydarn.sdio.sdDataPtr(sTime=pysat.datetime(1980, 1, 1), fileType='grdex', eTime=pysat.datetime(2250, 1, 1), hemi=tag, fileName=fnames[0]) myPtr.open() in_list = [] in_dict = {'stid':[], 'channel':[], 'noisemean':[], 'noisesd':[], 'gsct':[], 'nvec':[], 'pmax':[], 'start_time':[], 'end_time':[], 'vemax':[], 'vemin':[], 'pmin':[], 'programid':[], 'wmax':[], 'wmin':[], 'freq':[]} while True: info = myPtr.readRec() if info is None: myPtr.close() break drift_frame = pds.DataFrame.from_records(info.vector.__dict__, nrows=len(info.pmax), index=info.vector.index) drift_frame['partial'] = 1 drift_frame.drop('index', axis=1, inplace=True) drift_frame.index.name = 'index' sum_vec = 0 for nvec in info.nvec: in_list.append(drift_frame.iloc[sum_vec:sum_vec+nvec]) sum_vec += nvec in_dict['stid'].extend(info.stid) in_dict['channel'].extend(info.channel) in_dict['noisemean'].extend(info.noisemean) in_dict['noisesd'].extend(info.noisesd) in_dict['gsct'].extend(info.gsct) in_dict['nvec'].extend(info.nvec) in_dict['pmax'].extend(info.pmax) in_dict['start_time'].extend([info.sTime]*len(info.pmax)) in_dict['end_time'].extend([info.eTime]*len(info.pmax)) in_dict['vemax'].extend(info.vemax) in_dict['vemin'].extend(info.vemin) in_dict['pmin'].extend(info.pmin) in_dict['programid'].extend(info.programid) in_dict['wmax'].extend(info.wmax) in_dict['wmin'].extend(info.wmin) in_dict['freq'].extend(info.freq) output = pds.DataFrame(in_dict) output['vector'] = in_list output.index = output.start_time output.drop('start_time', axis=1, inplace=True) return output, pysat.Meta() else: raise ValueError('Only one filename currently supported.') #def default(ivm): # # return def clean(self): # remove data when there are no vectors idx, = np.where(self['nvec'] > 0) self.data = self.data.iloc[idx] return def download(date_array, tag, sat_id, data_path, user=None, password=None): """ Download SuperDARN data from Virginia Tech organized for loading by pysat. """ import sys import os import pysftp import davitpy if user is None: user = os.environ['DBREADUSER'] if password is None: password = os.environ['DBREADPASS'] with pysftp.Connection( os.environ['VTDB'], username=user, password=password) as sftp: for date in date_array: myDir = '/data/'+date.strftime("%Y")+'/grdex/'+tag+'/' fname = date.strftime("%Y%m%d")+'.' + tag + '.grdex' local_fname = fname+'.bz2' saved_fname = os.path.join(data_path,local_fname) full_fname = os.path.join(data_path,fname) try: print('Downloading file for '+date.strftime('%D')) sys.stdout.flush() sftp.get(myDir+local_fname, saved_fname) os.system('bunzip2 -c '+saved_fname+' > '+ full_fname) os.system('rm ' + saved_fname) except IOError: print('File not available for '+date.strftime('%D')) return
def load(h): return ({'abbr': 192, 'code': 192, 'title': 'Medical meteorological products'}, {'abbr': 193, 'code': 193, 'title': 'Diagnostic meteorological products'}, {'abbr': 194, 'code': 194, 'title': 'Analyse error products'}, {'abbr': 195, 'code': 195, 'title': 'Probabilities from deterministic local-model'}, {'abbr': 196, 'code': 196, 'title': 'Probabilities from WarnMOS'}, {'abbr': 197, 'code': 197, 'title': 'Mineral dust'}, {'abbr': 198, 'code': 198, 'title': 'Covariance'}, {'abbr': 254, 'code': 254, 'title': 'DUMMIES for testing'}, {'abbr': None, 'code': 255, 'title': 'Missing'})
"""dobbyproject URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/2.2/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: path('', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: path('', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.urls import include, path 2. Add a URL to urlpatterns: path('blog/', include('blog.urls')) """ from django.contrib import admin from django.urls import path import dobby.views import board.views urlpatterns = [ path('admin/', admin.site.urls), path('', dobby.views.home, name='home'), path('signup/', dobby.views.signup, name='signup'), path('userroom/', dobby.views.userroom, name='userroom'), path('board/', board.views.board_home, name='board_home'), path('error/', dobby.views.error, name='error'), path('board', board.views.board_home, name='board_home'), path('board/<int:board_id>/', board.views.detail, name='detail'), path('board/new/', board.views.new, name='new'), path('board/create/', board.views.create, name='create'), ]
from app import app, db from flask import render_template @app.errorhandler(404) def error_404(error): return render_template('errors/404.html'), 404 @app.errorhandler(500) def error_500(error): db.session.remove() return render_template('errors/500.html'), 500 @app.errorhandler(413) def error_413(error): return render_template('errors/413.html'), 413
from spec import Spec, skip, eq_, raises from invoke.tasks import task, Task from invoke.loader import Loader from _utils import support # # NOTE: Most Task tests use @task as it's the primary interface and is a very # thin wrapper around Task itself. This way we don't have to write 2x tests for # both Task and @task. Meh :) # def _func(): pass class task_(Spec): "@task" def setup(self): self.loader = Loader(root=support) self.vanilla = self.loader.load_collection('decorator') def allows_access_to_wrapped_object(self): def lolcats(): pass eq_(task(lolcats).body, lolcats) def allows_alias_specification(self): eq_(self.vanilla['foo'], self.vanilla['bar']) def allows_multiple_aliases(self): eq_(self.vanilla['foo'], self.vanilla['otherbar']) def allows_default_specification(self): eq_(self.vanilla[''], self.vanilla['biz']) @raises(ValueError) def raises_ValueError_on_multiple_defaults(self): self.loader.load_collection('decorator_multi_default') def sets_arg_help(self): eq_(self.vanilla['punch'].help['why'], 'Motive') def sets_arg_kind(self): skip() def allows_annotating_args_as_positional(self): eq_(self.vanilla['one_positional'].positional, ['pos']) eq_(self.vanilla['two_positionals'].positional, ['pos1', 'pos2']) def when_positional_arg_missing_all_non_default_args_are_positional(self): eq_(self.vanilla['implicit_positionals'].positional, ['pos1', 'pos2']) def pre_tasks_stored_as_simple_list_of_strings(self): @task(pre=['whatever']) def func(): pass eq_(func.pre, ['whatever']) def allows_star_args_as_shortcut_for_pre(self): @task('my', 'pre', 'tasks') def func(): pass eq_(func.pre, ('my', 'pre', 'tasks')) @raises(TypeError) def no_ambiguity_between_star_args_and_pre_kwarg(self): @task('lol', 'wut', pre=['no', 'wai']) def func(): pass class Task_(Spec): class attributes: def has_default_flag(self): eq_(Task(_func).is_default, False) class callability: def setup(self): @task def foo(): "My docstring" return 5 self.task = foo def dunder_call_wraps_body_call(self): eq_(self.task(), 5) def tracks_times_called(self): eq_(self.task.called, False) self.task() eq_(self.task.called, True) eq_(self.task.times_called, 1) self.task() eq_(self.task.times_called, 2) def wraps_body_docstring(self): eq_(self.task.__doc__, "My docstring") def wraps_body_name(self): eq_(self.task.__name__, "foo") class get_arguments: def setup(self): @task(positional=['arg3', 'arg1']) def mytask(arg1, arg2=False, arg3=5): pass self.task = mytask self.args = self.task.get_arguments() self.argdict = self._arglist_to_dict(self.args) def _arglist_to_dict(self, arglist): # This kinda duplicates Context.add_arg(x) for x in arglist :( ret = {} for arg in arglist: for name in arg.names: ret[name] = arg return ret def _task_to_dict(self, task): return self._arglist_to_dict(task.get_arguments()) def positional_args_come_first(self): eq_(self.args[0].name, 'arg3') eq_(self.args[1].name, 'arg1') eq_(self.args[2].name, 'arg2') def kinds_are_preserved(self): eq_( map(lambda x: x.kind, self.args), # Remember that the default 'kind' is a string. [int, str, bool] ) def positional_flag_is_preserved(self): eq_( map(lambda x: x.positional, self.args), [True, True, False] ) def turns_function_signature_into_Arguments(self): eq_(len(self.args), 3, str(self.args)) assert 'arg2' in self.argdict def shortflags_created_by_default(self): assert 'a' in self.argdict assert self.argdict['a'] is self.argdict['arg1'] def shortflags_dont_care_about_positionals(self): "Positionalness doesn't impact whether shortflags are made" for short, long_ in ( ('a', 'arg1'), ('r', 'arg2'), ('g', 'arg3'), ): assert self.argdict[short] is self.argdict[long_] def autocreated_short_flags_can_be_disabled(self): @task(auto_shortflags=False) def mytask(arg): pass args = self._task_to_dict(mytask) assert 'a' not in args assert 'arg' in args def autocreated_shortflags_dont_collide(self): "auto-created short flags don't collide" @task def mytask(arg1, arg2, barg): pass args = self._task_to_dict(mytask) assert 'a' in args assert args['a'] is args['arg1'] assert 'r' in args assert args['r'] is args['arg2'] assert 'b' in args assert args['b'] is args['barg'] def early_auto_shortflags_shouldnt_lock_out_real_shortflags(self): # I.e. "task --foo -f" => --foo should NOT get to pick '-f' for its # shortflag or '-f' is totally fucked. @task def mytask(longarg, l): pass args = self._task_to_dict(mytask) assert 'longarg' in args assert 'o' in args assert args['o'] is args['longarg'] assert 'l' in args
from typing import Tuple import math def normal_approximation_to_binomial(n: int, p: float) -> Tuple[float, float]: mu = p * n sigma = math.sqrt(p * (1 - p) * n) return mu, sigma from lesson5 import normal_cdf normal_probability_below = normal_cdf def normal_probability_above(lo: float, mu: float =0, sigma: float = 1) -> float: return 1-normal_cdf(lo, mu, sigma) def normal_probability_between(lo: float, hi: float, mu: float = 0, sigma: float = 1): return normal_cdf(hi, mu, sigma) - normal_cdf(lo, mu, sigma) def normal_probability_outside(lo: float, hi: float, mu: float = 0, sigma: float = 1): return 1 - normal_probability_between(lo, hi, mu, sigma) from lesson5 import inverse_normal_cdf def normal_upper_bound(probability: float, mu: float = 0, sigma: float = 1) -> float: return inverse_normal_cdf(probability, mu, sigma) def normal_lower_bound(probability: float, mu: float = 0, sigma: float = 1) -> float: return inverse_normal_cdf(1- probability, mu, sigma) def normal_two_sided_bounds(probability: float, mu: float = 0, sigma: float = 1) -> Tuple[float, float]: tail_probability = (1 - probability) / 2 upper_bound = normal_lower_bound(tail_probability, mu, sigma) lower_bound = normal_upper_bound(tail_probability, mu, sigma) return lower_bound, upper_bound mu_0, sigma_0 = normal_approximation_to_binomial(1000, 0.5) lower_bound, upper_bound = normal_two_sided_bounds(0.95, mu_0, sigma_0) lo, hi = normal_two_sided_bounds(0.95, mu_0, sigma_0) mu_1, sigma_1 = normal_approximation_to_binomial(1000, 0.55) type2_probability = normal_probability_between(lo, hi, mu_1, sigma_1) power = 1 - type2_probability hi = normal_upper_bound(0.95, mu_0, sigma_0) type2_probability = normal_probability_below(hi, mu_1, sigma_1) power = 1 - type2_probability def two_sided_p_value(x: float, mu: float =0, sigma: float = 1) -> float: if x >= mu: return 2 * normal_probability_above(x, mu, sigma) else: return 2 * normal_probability_below(x, mu, sigma) two_sided_p_value(529.5, mu_0, sigma_0) import random extreme_value_count = 0 for _ in range(1000): num_heads = sum(1 if random.random() < 0.5 else 0 for _ in range(1000)) if num_heads >= 530 or num_heads <= 470: extreme_value_count += 1 #assert 59 < extreme_value_count < 65, f'{extreme_value_count}' two_sided_p_value(531.5, mu_0, sigma_0) upper_p_value = normal_probability_above lower_p_value = normal_probability_below upper_p_value(524.5, mu_0, sigma_0) upper_p_value(526.5, mu_0, sigma_0) # p-hacking from typing import List def run_experiment() -> List[bool]: return [random.random() < 0.5 for _ in range(1000)] def reject_fairness(experiment: List[bool]) -> bool: num_heads = len([flip for flip in experiment if flip]) return num_heads < 469 or num_heads > 531 random.seed(0) experiments = [run_experiment() for _ in range(1000)] num_rejections = len([experiment for experiment in experiments if reject_fairness(experiment)]) assert num_rejections == 46 def estimated_parameters(N: int, n: int): p = n / N sigma = math.sqrt(p * (1 - p) / N) return p, sigma # for a_b_test_statistic we use null hypothesis def a_b_test_statistic(N_A: int, n_A: int, N_B: int, n_B: int) -> float: p_A, sigma_A = estimated_parameters(N_A, n_A) p_B, sigma_B = estimated_parameters(N_B, n_B) return (p_B - p_A) / math.sqrt(sigma_A ** 2 + sigma_B ** 2) # if ad A takes 200 clicks from 1000 viewers and ad B 180 from 1000 then z = expected value of typical diff gaussian z = a_b_test_statistic(1000, 200, 1000, 180) # -1.14 # Probability for this difference if mean values where equal two_sided_p_value(z) # 0.254 # If add B took 150 clicks, then the probability for this difference if p_a and p_b where equal is: z = a_b_test_statistic(1000, 200, 1000, 150) # -2.94 two_sided_p_value(z) # 0.003 # Very small probability for such a click difference if ad a and b where same effective def B(alpha: float, beta: float) -> float: # B is a normalization constant such as total probability equals 1 return math.gamma(alpha) * math.gamma(beta) / math.gamma(alpha + beta) def b_pdf(x: float, alpha: float, beta: float) -> float: if x <= 0 or x >= 1: return 0 return x ** (alpha - 1) * (1 - x) ** (beta - 1) / B(alpha, beta) # In general the weight of this distribution is set around value : alpha / (alpha + beta) # the higher a and b are, the more narrow the distro is # if a greater than b, the weight is close to 1 # if b greater than a, the weight is close to 0
FILE_TYPE_OPTIONS = {} USAGE_RIGHT_OPTIONS = {} ASPECT_RATIO_OPTIONS = {'tall': 't', 'square': 's', 'wide': 'w', 'panoramic': 'xw'} IMAGE_SIZE_OPTIONS = {'any': '', 'icon': 'i', 'medium': 'm', 'large': 'l', 'exactly': 'ex', '400x300+': 'qsvga', '640x480+': 'vga', '800x600+': 'svga', '1024x768+': 'xga', '2mp+': '2mp', '4mp+': '4mp', '6mp+': '6mp', '8mp+': '8mp', '10mp+': '10mp', '12mp+': '12mp', '15mp+': '15mp', '20mp+': '20mp', '40mp+': '40mp', '70mp+': '70mp'} def aspect_ratio_paramenter(option): if not option: return None ASPECT_RATIO_PARAM = 'iar' return ASPECT_RATIO_PARAM + ':' + ASPECT_RATIO_OPTIONS[option] def image_size_parameter(option): if not option: return None IMAGE_SIZE_PARAM = 'isz' if isinstance(option, (tuple, list)): width, height = option values = ':{},iszw:{},iszh:{}'.format(IMAGE_SIZE_OPTIONS['exactly'], width, height) return IMAGE_SIZE_PARAM + values else: return IMAGE_SIZE_PARAM + ':' + IMAGE_SIZE_OPTIONS[option] def image_aspect_parameters(aspect_ratio, image_size): if any([aspect_ratio, image_size]) is False: return None else: IMAGE_RELATED = 'tbs=' values = filter(lambda x: x is not None, [aspect_ratio, image_size]) options = ','.join(list(values)) return '{}{}'.format(IMAGE_RELATED, options) def query_builder(query, image_size=None, aspect_ratio=None, page_number=0): if query is None: raise ValueError('query must have a value.') SEARCH_TYPE = 'tbm' IMAGES = 'isch' SEARCH_TYPE_PARAM = '='.join([SEARCH_TYPE, IMAGES]) BASE_URL = 'https://www.google.com/search?' + SEARCH_TYPE_PARAM # Add page number PAGE_NUMBER = 'ijn' page_number_param = '='.join([PAGE_NUMBER, str(page_number)]) URL = '&'.join([BASE_URL, page_number_param]) # Add query value QUERY_TYPE = 'q' query_param = '='.join([QUERY_TYPE, str(query)]) URL = '&'.join([URL, query_param]) # Add image aspects parameters iar = aspect_ratio_paramenter(aspect_ratio) isz = image_size_parameter(image_size) image_aspect_param = image_aspect_parameters(iar, isz) if image_aspect_param is not None: URL = '&'.join([URL, image_aspect_param]) return URL
# -*- coding: utf-8 -*- class Link(object): def __init__(self, link): self.url = link['url'] self.id = link['id'] def __str__(self): return '\t\tId: {0} \n\t\tUrl: {1}'.format(self.id, self.url)
# Copyright (c) 2009 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. { 'variables': { 'chromium_code': 1, 'nacl_scons_dir': '../../third_party/native_client/googleclient/native_client/scons-out', }, 'includes': [ 'common.gypi', ], 'targets': [ { 'target_name': 'build_nacl', 'type': 'none', 'variables': { 'nacl_libs': [ 'google_nacl_imc', 'google_nacl_imc_c', ], 'nacl_lib_dir': '<(nacl_scons_dir)/<(CONFIGURATION)-<(OS)/lib', 'nacl_output_dir': '<(SHARED_INTERMEDIATE_DIR)/nacl_libs', }, 'actions': [ { 'action_name': 'build_nacl', 'inputs' : [ 'build_nacl.py', ], 'outputs': [ '<(nacl_output_dir)/google_nacl_imc<(LIBRARY_SUFFIX)', '<(nacl_output_dir)/google_nacl_imc_c<(LIBRARY_SUFFIX)', 'dummy_file_that_never_gets_built_so_scons_always_runs', ], 'action': [ 'C:/Python24/python.exe', '<@(_inputs)', '--output="<(nacl_output_dir)"', '--configuration="<(CONFIGURATION)"', '--platform=<(OS)', '<@(nacl_libs)', ], }, ], 'all_dependent_settings': { 'include_dirs': [ '<(nacldir)', ], 'libraries': [ '-l<(nacl_output_dir)/google_nacl_imc<(LIBRARY_SUFFIX)', '-l<(nacl_output_dir)/google_nacl_imc_c<(LIBRARY_SUFFIX)', ], }, }, ], }
""" Executors that run trials in their environment. """ from powerlift.executors.azure_ci import AzureContainerInstance from powerlift.executors.docker import InsecureDocker from powerlift.executors.localmachine import LocalMachine
import sys from abc import ABC, abstractmethod from typing import TYPE_CHECKING, List, Dict, Any import logging log = logging.getLogger(__name__) import pygame from pygame.event import Event if TYPE_CHECKING: from src.scene import Scene, GameScene class EventName(str): pass class Observer(ABC): @abstractmethod def subscribe(self) -> EventName: """Subscribe self to some event name. :returns the event name to which this observer just subscribed""" @abstractmethod def update(self, data: Any) -> None: """This method is called when an event - to which this observer is subscribed - happens.""" subscribers: Dict[EventName, List[Observer]] = {} def subscribe(event_name: EventName, observer: Observer) -> EventName: """Subscribe an observer to a specific event name. :returns the event name to which the observer just subscribed""" if event_name in subscribers: subscribers[event_name].append(observer) subscribers[event_name] = [observer] return event_name def notify(event_name: EventName, *args, **kwargs) -> None: """Notify all observers subscribed to an event with event name.""" n_observers = 0 if event_name in subscribers: for observer in subscribers[event_name]: n_observers += 1 observer.update(*args, **kwargs) log.debug(f"Notifying {n_observers} observers " f"of event '{event_name}'") def unsubscribe_all() -> None: global subscribers subscribers = {} class EventHandler(ABC): scene: 'Scene' def __init__(self, scene: 'Scene'): self.scene = scene @abstractmethod def handle_events(self, events: List[Event]) -> None: raise NotImplementedError class AppEventHandler(EventHandler): def __init__(self, scene: 'Scene'): super().__init__(scene) def handle_events(self, events: List[Event]) -> None: for event in events: if event.type == pygame.QUIT: pygame.quit() print("Successful termination") sys.exit(0) class TextEventHandler(EventHandler): text: str def __init__(self, scene: 'GameScene'): super().__init__(scene) self.text = "" def handle_events(self, events: List[Event]) -> None: self.text = "" # reset the text before handling events for event in events: if event.type == pygame.KEYDOWN: self.text += event.unicode def get_text_from_this_tick(self) -> str: """Return the text inputted during the last game tick. :return: text that may be an empty string """ return self.text
import uvicore from uvicore.console import command, argument, option from uvicore.support.dumper import dd, dump @command() @option('--raw', is_flag=True, help='Show output without prettyprinter') def bindings(raw: bool = False): """List all Ioc Bindings""" if not raw: uvicore.log.header("List of all Ioc bindings") uvicore.log.line() dump(uvicore.ioc.bindings) else: dic = {} for key, binding in uvicore.ioc.bindings.items(): dic[key] = binding.__dict__ print(dic) @command() def singletons(): """List Singleton Ioc Bindings""" uvicore.log.header("List of all Ioc singleton bindings") uvicore.log.line() bindings = {key:binding for (key, binding) in uvicore.ioc.bindings.items() if binding.singleton == True} dump(bindings) @command() @argument('type') def type(type: str): """List Ioc Bindings of a Specific Type (comma separated)""" uvicore.log.header("List of all {} Ioc bindings".format(type)) uvicore.log.line() types = [] if ',' in type: parts = type.split(',') for part in parts: types.append(part.upper()) else: types = [type.upper()] bindings = {} for key, binding in uvicore.ioc.bindings.items(): if binding.type.upper() in types: bindings[key] = binding #bindings = {key:binding for (key, binding) in uvicore.ioc.bindings.items() if binding.type.upper() == type} dump(bindings) @command() def overrides(): """List Overridden Ioc Bindings""" uvicore.log.header("List of all Ioc bindings that have been overridden") uvicore.log.line() bindings = {key:binding for (key, binding) in uvicore.ioc.bindings.items() if binding.path != key} # overridden = {} # for key, binding in uvicore.ioc.bindings.items(): # if key != binding.path: # overridden[key] = binding dump(bindings) @command() @argument('key', default='') @option('--raw', is_flag=True, help='Show output without prettyprinter') def get(key: str = None, raw: bool = False): """Get a binding by name""" if not raw: dump(uvicore.ioc.binding(key)) else: print(uvicore.ioc.binding(key).__dict__)
import argparse from .create import get_data_create_parser, execute_data_create_tool from .inspect import get_data_inspect_parser, execute_data_inspect_tool from .lint import get_data_lint_parser, execute_data_lint_tool # Dictionary of functions which execute their respective tool TOOLS = { 'create': execute_data_create_tool, 'inspect': execute_data_inspect_tool, 'lint': execute_data_lint_tool } def get_data_parser(): """ Generates the parser used for the data container tool. :returns: the parser generated :rtype: :class:`argparse.ArgumentParser` """ parser = argparse.ArgumentParser(description='Surround Data Container Tool') sub_parser = parser.add_subparsers(description='This tool must be called with one of the following commands', dest='command') sub_parser.add_parser('create', parents=[get_data_create_parser()], help='Capture new data into a container with metadata', description='Create a data container from a file or directory') sub_parser.add_parser('inspect', parents=[get_data_inspect_parser()], help='Inspect a data containers contents and/or metadata', description='Inspect the metadata and/or contents of a data container') sub_parser.add_parser('lint', parents=[get_data_lint_parser()], help='Check the validity of a data container', description='Check the validity of a data container') return parser def execute_data_tool(parser, args, extra_args): """ Executes the data container tool using the parser and arguments provided. Uses the TOOLS dictionary and the command argument to execute the correct sub-command function. :param parser: the parser used to get the arguments :type parser: :class:`argparse.ArgumentParser` :param args: the arguments parsed from the user :type args: :class:`argparse.Namespace` """ if args.command in TOOLS: TOOLS[args.command](parser, args) elif not args.command: parser.print_help() else: parser.print_usage() def main(): """ Entry point used when this script is executed directly, parses the arguments and executes the data container tool. """ parser = get_data_parser() args = parser.parse_args() execute_data_tool(parser, args, []) if __name__ == "__main__": main()
from math import pi from re import I import sys import time import os.path as osp import argparse import torch import torch.nn as nn import numpy as np import torchreid from torchreid.utils import ( Logger, check_isfile, set_random_seed, collect_env_info, resume_from_checkpoint, load_pretrained_weights, compute_model_complexity ) from test_default_config import videodata_kwargs, get_default_config from tqdm import tqdm def parse_data_for_eval(data): features = data['feature'] pids = data['pid'] camids = data['camid'] return features, pids, camids def feature_loader(data_loader, load_type='avg'): if load_type == 'avg': load_type = torch.mean else: load_type = lambda x, y: x data_lenth = len(data_loader.dataset) batch_size = data_loader.batch_size sqeuence_len = data_loader.dataset.seq_len f_ = np.zeros(shape=(data_lenth, 512), dtype=np.float32) pids_ = np.zeros(shape=(data_lenth), dtype=np.int64) camids_ = np.zeros(shape=(data_lenth), dtype=np.int64) all_ = np.zeros(shape=(data_lenth, sqeuence_len, 512), dtype=np.float32) # all_ = [] idxs = [i for i in range(batch_size)] for batch_idx, data in tqdm(enumerate(data_loader)): batch_idxs = [(batch_idx-1) * batch_size + i for i in range(batch_size)] features, pids, camids = parse_data_for_eval(data) f_[batch_idxs] = load_type(features, dim=1).numpy()[idxs] pids_[batch_idxs] = pids[idxs] camids_[batch_idxs] = camids[idxs] all_[batch_idxs] = features[idxs] f_ = torch.tensor(f_, dtype=torch.float32) all_ = torch.tensor(all_, dtype=torch.float32) # pids_ = np.asarray(pids_) # camids_ = np.asarray(camids_) return f_, pids_, camids_, all_ if __name__ == '__main__': cfg = get_default_config() cfg.use_gpu = torch.cuda.is_available() cfg.merge_from_file('test_config.yaml') set_random_seed(cfg.train.seed) datamanager = torchreid.data.VideoRLDataManager(**videodata_kwargs(cfg)) train_loader = datamanager.train_loader query_loader = datamanager.test_loader['mars']['query'] gallery_loader = datamanager.test_loader['mars']['gallery'] print('Extracting features from train set ...') tf, t_pids, t_camids, t_all = feature_loader(train_loader) print('Done, obtained {}-by-{} matrix'.format(tf.size(0), tf.size(1))) torch.save(tf, 'train_avg_feature.pt') torch.save(t_all, 'train_all_feature.pt') np.save('train_pids.npy', t_pids) np.save('train_camids.npy', t_camids) print('Extracting features from query set ...') qf, q_pids, q_camids, q_all = feature_loader(query_loader) print('Done, obtained {}-by-{} matrix'.format(qf.size(0), qf.size(1))) torch.save(qf, './query_avg_feature.pt') torch.save(q_all, './query_all_feature.pt') np.save('./query_pids.npy', q_pids) np.save('./query_camids.npy', q_camids) print('Extracting features from gallery set ...') gf, g_pids, g_camids, g_all = feature_loader(gallery_loader) print('Done, obtained {}-by-{} matrix'.format(gf.size(0), gf.size(1))) torch.save(gf, './gallery_avg_feature.pt') torch.save(g_all, './gallery_all_feature.pt') np.save('./gallery_pids.npy', g_pids) np.save('./gallery_camids.npy', g_camids)
import ConfigParser import duo_web as duo from contextlib import closing from flask import Flask, request, session, redirect, url_for, render_template, flash # config DEBUG = True # create flask application app = Flask(__name__) app.config.from_object(__name__) # config parser def grab_keys(filename='duo.conf'): config = ConfigParser.RawConfigParser() config.read(filename) akey = config.get('duo', 'akey') ikey = config.get('duo', 'ikey') skey = config.get('duo', 'skey') host = config.get('duo', 'host') return {'akey': akey, 'ikey': ikey, 'skey': skey, 'host': host} # app-specific configs def app_config(filename='app.conf'): config = ConfigParser.RawConfigParser() config.read(filename) return config.get('app', 'skey') # Routing functions @app.route('/') def show_entries(): return render_template('show_entries.html') @app.route('/mfa', methods=['GET', 'POST']) def mfa(): result = grab_keys() sec = duo.sign_request(result['ikey'], result['skey'], result['akey'], session['user']) if request.method == 'GET': return render_template('duoframe.html', duohost=result['host'], sig_request=sec) if request.method == 'POST': user = duo.verify_response(result['ikey'], result['skey'], result['akey'], request.args.get('sig_response')) if user == session['user']: return render_template(url_for('mfa'), user=user) @app.route('/success', methods=['POST']) def success(): return redirect(url_for('show_entries')) @app.route('/login', methods=['GET', 'POST']) def login(): error = None if request.method == 'POST': if request.form['username'] == "": error = 'Type something in the username field.' else: session['logged_in'] = True session['user'] = request.form['username'] flash('You are logged in') return redirect(url_for('mfa')) return render_template('login.html', error=error) @app.route('/logout') def logout(): session.pop('logged_in', None) flash('You were logged out') return redirect(url_for('show_entries')) # main body if __name__ == '__main__': app.secret_key = app_config('app.conf') app.run(host="0.0.0.0", port=5000)
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Train 3072-7800-512 Gaussian-Bernoulli-Multinomial DBM with pre-training on CIFAR-10, augmented (x10) using shifts by 1 pixel in all directions and horizontal mirroring. Gaussian RBM is initialized from 26 small RBMs trained on patches 8x8 of images, as in [1]. Multinomial RBM trained with increasing k in CD-k and decreasing learning rate over time. Per sample validation mean reconstruction error for DBM monotonically decreases during training from ~0.3 to ~0.11 at the end. The training took approx. 26 x 35m + 5h 52m + 4h 55m + 11h 11m = = 1d 13h 8m on GTX 1060. I also trained for longer with options ``` --small-l2 2e-3 --small-epochs 120 --small-sparsity-cost 0 \ --increase-n-gibbs-steps-every 20 --epochs 80 72 200 \ --l2 2e-3 0.01 1e-8 --max-mf-updates 70 ``` with a decrease of MSRE from ~0.6 to ~0.147 at the end and it took ~3d 1h 41m on GTX 1060. Note that DBM is trained without centering. References ---------- [1] A. Krizhevsky and G. Hinton. Learning multiple layers of features from tine images. 2009. """ print __doc__ import os import argparse import numpy as np from keras import regularizers from keras.callbacks import EarlyStopping, ReduceLROnPlateau from keras.initializers import glorot_uniform from keras.models import Sequential from keras.layers import Dense, Activation, Dropout, BatchNormalization as BN from sklearn.metrics import accuracy_score import env from bm import DBM from bm.rbm import GaussianRBM, MultinomialRBM from bm.utils import (RNG, Stopwatch, one_hot, one_hot_decision_function, unhot) from bm.utils.augmentation import shift, horizontal_mirror from bm.utils.dataset import (load_cifar10, im_flatten, im_unflatten) from bm.utils.optimizers import MultiAdam def make_augmentation(X_train, y_train, n_train, args): X_aug = None X_aug_path = os.path.join(args.data_path, 'X_aug.npy') y_train = y_train.tolist() * 10 RNG(seed=1337).shuffle(y_train) augment = True if os.path.isfile(X_aug_path): print "\nLoading augmented data ..." X_aug = np.load(X_aug_path) print "Checking augmented data ..." if len(X_aug) == 10 * n_train: augment = False if augment: print "\nAugmenting data ..." s = Stopwatch(verbose=True).start() X_aug = np.zeros((10 * n_train, 32, 32, 3), dtype=np.float32) X_train = im_unflatten(X_train) X_aug[:n_train] = X_train for i in xrange(n_train): for k, offset in enumerate(( ( 1, 0), (-1, 0), ( 0, 1), ( 0, -1) )): img = X_train[i].copy() X_aug[(k + 1) * n_train + i] = shift(img, offset=offset) for i in xrange(5 * n_train): X_aug[5 * n_train + i] = horizontal_mirror(X_aug[i].copy()) # shuffle once again RNG(seed=1337).shuffle(X_aug) # convert to 'uint8' type to save disk space X_aug *= 255. X_aug = X_aug.astype('uint8') # flatten to (10 * `n_train`, 3072) shape X_aug = im_flatten(X_aug) # save to disk np.save(X_aug_path, X_aug) s.elapsed() print "\n" return X_aug, y_train def make_small_rbms((X_train, X_val), args): X_train = im_unflatten(X_train) X_val = im_unflatten(X_val) small_rbm_config = dict(n_visible=8 * 8 * 3, n_hidden=300, sigma=1., W_init=0.001, vb_init=0., hb_init=0., n_gibbs_steps=1, learning_rate=args.small_lr, momentum=np.geomspace(0.5, 0.9, 8), max_epoch=args.small_epochs, batch_size=args.small_batch_size, l2=args.small_l2, sample_v_states=True, sample_h_states=True, sparsity_target=args.small_sparsity_target, sparsity_cost=args.small_sparsity_cost, dbm_first=True, # !!! metrics_config=dict( msre=True, feg=True, train_metrics_every_iter=2000, val_metrics_every_epoch=2, feg_every_epoch=2, n_batches_for_feg=100, ), verbose=True, display_filters=12, display_hidden_activations=36, v_shape=(8, 8, 3), dtype='float32', tf_saver_params=dict(max_to_keep=1)) small_rbms = [] # first 16 ... for i in xrange(4): for j in xrange(4): rbm_id = 4 * i + j rbm_dirpath = args.small_dirpath_prefix + str(rbm_id) + '/' if os.path.isdir(rbm_dirpath): print "\nLoading small RBM #{0} ...\n\n".format(rbm_id) rbm = GaussianRBM.load_model(rbm_dirpath) else: print "\nTraining small RBM #{0} ...\n\n".format(rbm_id) X_patches = X_train[:, 8 * i:8 * (i + 1), 8 * j:8 * (j + 1), :] X_patches_val = X_val[:, 8 * i:8 * (i + 1), 8 * j:8 * (j + 1), :] X_patches = im_flatten(X_patches) X_patches_val = im_flatten(X_patches_val) rbm = GaussianRBM(random_seed=9000 + rbm_id, model_path=rbm_dirpath, **small_rbm_config) rbm.fit(X_patches, X_patches_val) small_rbms.append(rbm) # next 9 ... for i in xrange(3): for j in xrange(3): rbm_id = 16 + 3 * i + j rbm_dirpath = args.small_dirpath_prefix + str(rbm_id) + '/' if os.path.isdir(rbm_dirpath): print "\nLoading small RBM #{0} ...\n\n".format(rbm_id) rbm = GaussianRBM.load_model(rbm_dirpath) else: print "\nTraining small RBM #{0} ...\n\n".format(rbm_id) X_patches = X_train[:, 4 + 8 * i:4 + 8 * (i + 1), 4 + 8 * j:4 + 8 * (j + 1), :] X_patches_val = X_val[:, 4 + 8 * i:4 + 8 * (i + 1), 4 + 8 * j:4 + 8 * (j + 1), :] X_patches = im_flatten(X_patches) X_patches_val = im_flatten(X_patches_val) rbm = GaussianRBM(random_seed=args.small_random_seed + rbm_id, model_path=rbm_dirpath, **small_rbm_config) rbm.fit(X_patches, X_patches_val) small_rbms.append(rbm) # ... and the last one rbm_id = 25 rbm_dirpath = args.small_dirpath_prefix + str(rbm_id) + '/' if os.path.isdir(rbm_dirpath): print "\nLoading small RBM #{0} ...\n\n".format(rbm_id) rbm = GaussianRBM.load_model(rbm_dirpath) else: print "\nTraining small RBM #{0} ...\n\n".format(rbm_id) X_patches = X_train.copy() # (N, 32, 32, 3) X_patches = X_patches.transpose(0, 3, 1, 2) # (N, 3, 32, 32) X_patches = X_patches.reshape((-1, 3, 4, 8, 4, 8)).mean(axis=4).mean(axis=2) # (N, 3, 8, 8) X_patches = X_patches.transpose(0, 2, 3, 1) # (N, 8, 8, 3) X_patches = im_flatten(X_patches) # (N, 8*8*3) X_patches_val = X_val.copy() X_patches_val = X_patches_val.transpose(0, 3, 1, 2) X_patches_val = X_patches_val.reshape((-1, 3, 4, 8, 4, 8)).mean(axis=4).mean(axis=2) X_patches_val = X_patches_val.transpose(0, 2, 3, 1) X_patches_val = im_flatten(X_patches_val) rbm = GaussianRBM(random_seed=9000 + rbm_id, model_path=rbm_dirpath, **small_rbm_config) rbm.fit(X_patches, X_patches_val) small_rbms.append(rbm) return small_rbms def make_large_weights(small_rbms): W = np.zeros((300 * 26, 32, 32, 3), dtype=np.float32) W[...] = RNG(seed=1234).rand(*W.shape) * 5e-6 vb = np.zeros((32, 32, 3)) hb = np.zeros(300 * 26) for i in xrange(4): for j in xrange(4): rbm_id = 4 * i + j weights = small_rbms[rbm_id].get_tf_params(scope='weights') W_small = weights['W'] W_small = W_small.T # (300, 192) W_small = im_unflatten(W_small) # (300, 8, 8, 3) W[300 * rbm_id: 300 * (rbm_id + 1), 8 * i:8 * (i + 1), 8 * j:8 * (j + 1), :] = W_small vb[8 * i:8 * (i + 1), 8 * j:8 * (j + 1), :] += im_unflatten(weights['vb']) hb[300 * rbm_id: 300 * (rbm_id + 1)] = weights['hb'] for i in xrange(3): for j in xrange(3): rbm_id = 16 + 3 * i + j weights = small_rbms[rbm_id].get_tf_params(scope='weights') W_small = weights['W'] W_small = W_small.T W_small = im_unflatten(W_small) W[300 * rbm_id: 300 * (rbm_id + 1), 4 + 8 * i:4 + 8 * (i + 1), 4 + 8 * j:4 + 8 * (j + 1), :] = W_small vb[4 + 8 * i:4 + 8 * (i + 1), 4 + 8 * j:4 + 8 * (j + 1), :] += im_unflatten(weights['vb']) hb[300 * rbm_id: 300 * (rbm_id + 1)] = weights['hb'] weights = small_rbms[25].get_tf_params(scope='weights') W_small = weights['W'] W_small = W_small.T W_small = im_unflatten(W_small) vb_small = im_unflatten(weights['vb']) for i in xrange(8): for j in xrange(8): U = W_small[:, i, j, :] U = np.expand_dims(U, -1) U = np.expand_dims(U, -1) U = U.transpose(0, 2, 3, 1) W[-300:, 4 * i:4 * (i + 1), 4 * j:4 * (j + 1), :] = U / 16. vb[4 * i:4 * (i + 1), 4 * j:4 * (j + 1), :] += vb_small[i, j, :].reshape((1, 1, 3)) / 16. hb[-300:] = weights['hb'] W = im_flatten(W) W = W.T vb /= 2. vb[4:-4, 4:-4, :] /= 1.5 vb = im_flatten(vb) return W, vb, hb def make_grbm((X_train, X_val), small_rbms, args): if os.path.isdir(args.grbm_dirpath): print "\nLoading G-RBM ...\n\n" grbm = GaussianRBM.load_model(args.grbm_dirpath) else: print "\nAssembling weights for large Gaussian RBM ...\n\n" W, vb, hb = make_large_weights(small_rbms) print "\nTraining G-RBM ...\n\n" grbm = GaussianRBM(n_visible=32 * 32 * 3, n_hidden=300 * 26, sigma=1., W_init=W, vb_init=vb, hb_init=hb, n_gibbs_steps=args.n_gibbs_steps[0], learning_rate=args.lr[0], momentum=np.geomspace(0.5, 0.9, 8), max_epoch=args.epochs[0], batch_size=args.batch_size[0], l2=args.l2[0], sample_v_states=True, sample_h_states=True, sparsity_target=0.1, sparsity_cost=1e-4, dbm_first=True, # !!! metrics_config=dict( msre=True, feg=True, train_metrics_every_iter=1000, val_metrics_every_epoch=1, feg_every_epoch=2, n_batches_for_feg=50, ), verbose=True, display_filters=24, display_hidden_activations=36, v_shape=(32, 32, 3), random_seed=args.random_seed[0], dtype='float32', tf_saver_params=dict(max_to_keep=1), model_path=args.grbm_dirpath) grbm.fit(X_train, X_val) return grbm def make_mrbm((Q_train, Q_val), args): if os.path.isdir(args.mrbm_dirpath): print "\nLoading M-RBM ...\n\n" mrbm = MultinomialRBM.load_model(args.mrbm_dirpath) else: print "\nTraining M-RBM ...\n\n" epochs = args.epochs[1] n_every = args.increase_n_gibbs_steps_every n_gibbs_steps = np.arange(args.n_gibbs_steps[1], args.n_gibbs_steps[1] + epochs / n_every) learning_rate = args.lr[1] / np.arange(1, 1 + epochs / n_every) n_gibbs_steps = np.repeat(n_gibbs_steps, n_every) learning_rate = np.repeat(learning_rate, n_every) mrbm = MultinomialRBM(n_visible=300 * 26, n_hidden=512, n_samples=512, W_init=0.001, hb_init=0., vb_init=0., n_gibbs_steps=n_gibbs_steps, learning_rate=learning_rate, momentum=np.geomspace(0.5, 0.9, 8), max_epoch=max(args.epochs[1], n_every), batch_size=args.batch_size[1], l2=args.l2[1], sample_h_states=True, sample_v_states=True, sparsity_target=0.2, sparsity_cost=1e-4, dbm_last=True, # !!! metrics_config=dict( msre=True, pll=True, feg=True, train_metrics_every_iter=1000, val_metrics_every_epoch=2, feg_every_epoch=2, n_batches_for_feg=50, ), verbose=True, display_filters=0, display_hidden_activations=100, random_seed=args.random_seed[1], dtype='float32', tf_saver_params=dict(max_to_keep=1), model_path=args.mrbm_dirpath) mrbm.fit(Q_train, Q_val) return mrbm def make_rbm_transform(rbm, X, path, np_dtype=None): H = None transform = True if os.path.isfile(path): H = np.load(path) if len(X) == len(H): transform = False if transform: H = rbm.transform(X, np_dtype=np_dtype) np.save(path, H) return H def make_dbm((X_train, X_val), rbms, (Q, G), args): if os.path.isdir(args.dbm_dirpath): print "\nLoading DBM ...\n\n" dbm = DBM.load_model(args.dbm_dirpath) dbm.load_rbms(rbms) # !!! else: print "\nTraining DBM ...\n\n" dbm = DBM(rbms=rbms, n_particles=args.n_particles, v_particle_init=X_train[:args.n_particles].copy(), h_particles_init=(Q[:args.n_particles].copy(), G[:args.n_particles].copy()), n_gibbs_steps=args.n_gibbs_steps[2], max_mf_updates=args.max_mf_updates, mf_tol=args.mf_tol, learning_rate=np.geomspace(args.lr[2], 1e-6, args.epochs[2]), momentum=np.geomspace(0.5, 0.9, 10), max_epoch=args.epochs[2], batch_size=args.batch_size[2], l2=args.l2[2], max_norm=args.max_norm, sample_v_states=True, sample_h_states=(True, True), sparsity_target=args.sparsity_target, sparsity_cost=args.sparsity_cost, sparsity_damping=args.sparsity_damping, train_metrics_every_iter=1000, val_metrics_every_epoch=2, random_seed=args.random_seed[2], verbose=True, display_filters=12, display_particles=36, v_shape=(32, 32, 3), dtype='float32', tf_saver_params=dict(max_to_keep=1), model_path=args.dbm_dirpath) dbm.fit(X_train, X_val) return dbm def make_mlp((X_train, y_train), (X_val, y_val), (X_test, y_test), (W, hb), args): dense_params = {} if W is not None and hb is not None: dense_params['weights'] = (W, hb) # define and initialize MLP model mlp = Sequential([ Dense(7800, input_shape=(3 * 32 * 32,), kernel_regularizer=regularizers.l2(args.mlp_l2), kernel_initializer=glorot_uniform(seed=3333), **dense_params), BN(), Activation('relu'), Dropout(args.mlp_dropout, seed=4444), Dense(10, kernel_initializer=glorot_uniform(seed=5555)), Activation('softmax'), ]) mlp.compile(optimizer=MultiAdam(lr=0.001, lr_multipliers={'dense_1': args.mlp_lrm[0], 'dense_2': args.mlp_lrm[1]}), loss='categorical_crossentropy', metrics=['accuracy']) # train and evaluate classifier with Stopwatch(verbose=True) as s: early_stopping = EarlyStopping(monitor=args.mlp_val_metric, patience=6, verbose=2) reduce_lr = ReduceLROnPlateau(monitor=args.mlp_val_metric, factor=0.2, verbose=2, patience=3, min_lr=1e-5) callbacks = [early_stopping, reduce_lr] try: mlp.fit(X_train, one_hot(y_train, n_classes=10), epochs=args.mlp_epochs, batch_size=args.mlp_batch_size, shuffle=False, validation_data=(X_val, one_hot(y_val, n_classes=10)), callbacks=callbacks) except KeyboardInterrupt: pass y_pred = mlp.predict(X_test) y_pred = unhot(one_hot_decision_function(y_pred), n_classes=10) print "Test accuracy: {:.4f}".format(accuracy_score(y_test, y_pred)) # save predictions, targets, and fine-tuned weights np.save(args.mlp_save_prefix + 'y_pred.npy', y_pred) np.save(args.mlp_save_prefix + 'y_test.npy', y_test) W_finetuned, _ = mlp.layers[0].get_weights() np.save(args.mlp_save_prefix + 'W_finetuned.npy', W_finetuned) def main(): # training settings parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) # general parser.add_argument('--gpu', type=str, default='0', metavar='ID', help="ID of the GPU to train on (or '' to train on CPU)") # data parser.add_argument('--n-train', type=int, default=49000, metavar='N', help='number of training examples') parser.add_argument('--n-val', type=int, default=1000, metavar='N', help='number of validation examples') parser.add_argument('--data-path', type=str, default='../data/', metavar='PATH', help='directory for storing augmented data etc.') parser.add_argument('--no-aug', action='store_true', help="if enabled, don't augment data") # small RBMs related parser.add_argument('--small-lr', type=float, default=1e-3, metavar='LR', nargs='+', help='learning rate or sequence of such (per epoch)') parser.add_argument('--small-epochs', type=int, default=100, metavar='N', help='number of epochs to train') parser.add_argument('--small-batch-size', type=int, default=48, metavar='B', help='input batch size for training') parser.add_argument('--small-l2', type=float, default=1e-3, metavar='L2', help='L2 weight decay coefficient') parser.add_argument('--small-sparsity-target', type=float, default=0.1, metavar='T', help='desired probability of hidden activation') parser.add_argument('--small-sparsity-cost', type=float, default=1e-3, metavar='C', help='controls the amount of sparsity penalty') parser.add_argument('--small-random-seed', type=int, default=9000, metavar='N', help="random seeds for models training") parser.add_argument('--small-dirpath-prefix', type=str, default='../models/rbm_cifar_small_', metavar='PREFIX', help='directory path prefix to save RBMs trained on patches') # M-RBM related parser.add_argument('--increase-n-gibbs-steps-every', type=int, default=16, metavar='I', help='increase number of Gibbs steps every specified number of epochs for M-RBM') # common for RBMs and DBM parser.add_argument('--n-gibbs-steps', type=int, default=(1, 1, 1), metavar='N', nargs='+', help='(initial) number of Gibbs steps for CD/PCD') parser.add_argument('--lr', type=float, default=(5e-4, 5e-5, 4e-5), metavar='LR', nargs='+', help='(initial) learning rates') parser.add_argument('--epochs', type=int, default=(64, 33, 100), metavar='N', nargs='+', help='number of epochs to train') parser.add_argument('--batch-size', type=int, default=(100, 100, 100), metavar='B', nargs='+', help='input batch size for training, `--n-train` and `--n-val`' + \ 'must be divisible by this number (for DBM)') parser.add_argument('--l2', type=float, default=(1e-3, 0.005, 0.), metavar='L2', nargs='+', help='L2 weight decay coefficients') parser.add_argument('--random-seed', type=int, default=(1111, 2222, 3333), metavar='N', nargs='+', help='random seeds for models training') # save dirpaths parser.add_argument('--grbm-dirpath', type=str, default='../models/grbm_cifar/', metavar='DIRPATH', help='directory path to save Gaussian RBM') parser.add_argument('--mrbm-dirpath', type=str, default='../models/mrbm_cifar/', metavar='DIRPATH', help='directory path to save Multinomial RBM') parser.add_argument('--dbm-dirpath', type=str, default='../models/dbm_cifar/', metavar='DIRPATH', help='directory path to save DBM') # DBM related parser.add_argument('--n-particles', type=int, default=100, metavar='M', help='number of persistent Markov chains') parser.add_argument('--max-mf-updates', type=int, default=50, metavar='N', help='maximum number of mean-field updates per weight update') parser.add_argument('--mf-tol', type=float, default=1e-11, metavar='TOL', help='mean-field tolerance') parser.add_argument('--max-norm', type=float, default=4., metavar='C', help='maximum norm constraint') parser.add_argument('--sparsity-target', type=float, default=(0.2, 0.2), metavar='T', nargs='+', help='desired probability of hidden activation') parser.add_argument('--sparsity-cost', type=float, default=(1e-4, 1e-3), metavar='C', nargs='+', help='controls the amount of sparsity penalty') parser.add_argument('--sparsity-damping', type=float, default=0.9, metavar='D', help='decay rate for hidden activations probs') # MLP related parser.add_argument('--mlp-no-init', action='store_true', help='if enabled, use random initialization') parser.add_argument('--mlp-l2', type=float, default=1e-4, metavar='L2', help='L2 weight decay coefficient') parser.add_argument('--mlp-lrm', type=float, default=(0.01, 1.), metavar='LRM', nargs='+', help='learning rate multipliers of 1e-3') parser.add_argument('--mlp-epochs', type=int, default=100, metavar='N', help='number of epochs to train') parser.add_argument('--mlp-val-metric', type=str, default='val_acc', metavar='S', help="metric on validation set to perform early stopping, {'val_acc', 'val_loss'}") parser.add_argument('--mlp-batch-size', type=int, default=128, metavar='N', help='input batch size for training') parser.add_argument('--mlp-dropout', type=float, default=0.7, metavar='P', help='probability of visible units being set to zero') parser.add_argument('--mlp-save-prefix', type=str, default='../data/grbm_', metavar='PREFIX', help='prefix to save MLP predictions and targets') # parse and check params args = parser.parse_args() os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu for x, m in ( (args.n_gibbs_steps, 3), (args.lr, 3), (args.epochs, 3), (args.batch_size, 3), (args.l2, 3), (args.random_seed, 3), ): if len(x) == 1: x *= m # prepare data (load + scale + split) print "\nPreparing data ..." X, y = load_cifar10(mode='train', path=args.data_path) X = X.astype(np.float32) X /= 255. RNG(seed=42).shuffle(X) RNG(seed=42).shuffle(y) n_train = min(len(X), args.n_train) n_val = min(len(X), args.n_val) X_train = X[:n_train] X_val = X[-n_val:] y_train = y[:n_train] y_val = y[-n_val:] if not args.no_aug: # augment data X_aug, y_train = make_augmentation(X_train, y_train, n_train, args) # convert + scale augmented data again X_train = X_aug.astype(np.float32) X_train /= 255. print "Augmented shape: {0}".format(X_train.shape) print "Augmented range: {0}".format((X_train.min(), X_train.max())) # center and normalize training data X_mean = X_train.mean(axis=0) X_std = X_train.std(axis=0) if not args.no_aug: mean_path = os.path.join(args.data_path, 'X_aug_mean.npy') std_path = os.path.join(args.data_path, 'X_aug_std.npy') if not os.path.isfile(mean_path): np.save(mean_path, X_mean) if not os.path.isfile(std_path): np.save(std_path, X_std) X_train -= X_mean X_train /= X_std X_val -= X_mean X_val /= X_std print "Augmented mean: ({0:.3f}, ...); std: ({1:.3f}, ...)".format(X_train.mean(axis=0)[0], X_train.std(axis=0)[0]) print "Augmented range: ({0:.3f}, {1:.3f})\n\n".format(X_train.min(), X_train.max()) # train 26 small Gaussian RBMs on patches small_rbms = None if not os.path.isdir(args.grbm_dirpath): small_rbms = make_small_rbms((X_train, X_val), args) # assemble large weight matrix and biases # and pre-train large Gaussian RBM (G-RBM) grbm = make_grbm((X_train, X_val), small_rbms, args) # extract features Q = p_{G-RBM}(h|v=X) print "\nExtracting features from G-RBM ...\n\n" Q_train, Q_val = None, None if not os.path.isdir(args.mrbm_dirpath) or not os.path.isdir(args.dbm_dirpath): Q_train_path = os.path.join(args.data_path, 'Q_train_cifar.npy') Q_train = make_rbm_transform(grbm, X_train, Q_train_path, np_dtype=np.float16) if not os.path.isdir(args.mrbm_dirpath): Q_val_path = os.path.join(args.data_path, 'Q_val_cifar.npy') Q_val = make_rbm_transform(grbm, X_val, Q_val_path) # pre-train Multinomial RBM (M-RBM) mrbm = make_mrbm((Q_train, Q_val), args) # extract features G = p_{M-RBM}(h|v=Q) print "\nExtracting features from M-RBM ...\n\n" Q, G = None, None if not os.path.isdir(args.dbm_dirpath): Q = Q_train[:args.n_particles] G_path = os.path.join(args.data_path, 'G_train_cifar.npy') G = make_rbm_transform(mrbm, Q, G_path) # jointly train DBM dbm = make_dbm((X_train, X_val), (grbm, mrbm), (Q, G), args) # load test data X_test, y_test = load_cifar10(mode='test', path=args.data_path) X_test /= 255. X_test -= X_mean X_test /= X_std # G-RBM discriminative fine-tuning: # initialize MLP with learned weights, # add FC layer and train using backprop print "\nG-RBM Discriminative fine-tuning ...\n\n" W, hb = None, None if not args.mlp_no_init: weights = grbm.get_tf_params(scope='weights') W = weights['W'] hb = weights['hb'] make_mlp((X_train, y_train), (X_val, y_val), (X_test, y_test), (W, hb), args) if __name__ == '__main__': main()
# Copyright 2017 Bo Shao. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """ This class is only used at inference time. In the case of a production system, the SessionData has to be maintained so that ChatSession objects can expire and then be cleaned from the memory. """ class SessionData: def __init__(self): self.session_dict = {} def add_session(self): items = self.session_dict.items() if items: last_id = max(k for k, v in items) else: last_id = 0 new_id = last_id + 1 self.session_dict[new_id] = ChatSession(new_id) return new_id def get_session(self, session_id): return self.session_dict[session_id] class ChatSession: def __init__(self, session_id): """ Args: session_id: The integer ID of the chat session. """ self.session_id = session_id self.howru_asked = False self.user_name = None self.call_me = None self.last_question = None self.last_answer = None self.update_pair = True self.last_topic = None self.keep_topic = False # Will be storing the information of the pending action: # The action function name, the parameter for answer yes, and the parameter for answer no. self.pending_action = {'func': None, 'Yes': None, 'No': None} def before_prediction(self): self.update_pair = True self.keep_topic = False def after_prediction(self, new_question, new_answer): self._update_last_pair(new_question, new_answer) self._clear_last_topic() def _update_last_pair(self, new_question, new_answer): """ Last pair is updated after each prediction except in a few cases. """ if self.update_pair: self.last_question = new_question self.last_answer = new_answer def _clear_last_topic(self): """ Last topic is cleared after each prediction except in a few cases. """ if not self.keep_topic: self.last_topic = None def update_pending_action(self, func_name, yes_para, no_para): self.pending_action['func'] = func_name self.pending_action['Yes'] = yes_para self.pending_action['No'] = no_para def clear_pending_action(self): """ Pending action is, and only is, cleared at the end of function: execute_pending_action_and_reply. """ self.pending_action['func'] = None self.pending_action['Yes'] = None self.pending_action['No'] = None
from applications.config.appconfig import AppConfig class ObjectUpdateStatus(object): ObjStatusList = list() gqlClient = None def __init__(self, client, vision_workspace_name): self.ObjStatusList.clear() self.gqlClient = client self.vision_workspace_name = vision_workspace_name def add_tracking_object_status(self, id, rois, x, y, z, u, v, w): for roi in rois: objStatus = { "id": str(id), "state": { "roi": roi, "pose": {"x": x, "y": y, "z": z, "u": u, "v": v, "w": w}, }, } self.ObjStatusList.append(objStatus) # don't send 'state' data for undetermined objects def add_empty_object_status(self, id): objStatus = { "id": str(id), # "state": { # "roi": roi, # "pose": { # "x": x, # "y": y, # "z": z, # "u": u, # "v": v, # "w": w # } # } } self.ObjStatusList.append(objStatus) def sendObjStatus(self, undetectedObjectIDList): # process undetected marks for markerID in undetectedObjectIDList: # self.add_tracking_object_status(markerID, [None], # None, None, None, None, None, None) self.add_empty_object_status(markerID) # process duplicated marks checkIDList = list() for objStatus in self.ObjStatusList: objID = objStatus["id"] if objID in checkIDList: self.ObjStatusList.remove(objStatus) else: checkIDList.append(objID) status = {"objectStatus": self.ObjStatusList} if AppConfig.ObjTrackingDebugMode == False: self.gqlClient.update_tracking_workspace_status( name=self.vision_workspace_name, status=status ) else: print("\n", status, "\n") def contains_object_status(self): return len(self.ObjStatusList) > 0 def clear_object_status(self): self.ObjStatusList.clear()
""" Test access_policies """ from copy import deepcopy from os import environ from unittest import TestCase from uuid import uuid4 from archivist.archivist import Archivist # pylint: disable=fixme # pylint: disable=missing-docstring # pylint: disable=unused-variable DISPLAY_NAME = "AccessPolicy display name" PROPS = { "display_name": DISPLAY_NAME, "description": "Policy description", } FILTERS = [ { "or": [ "attributes.arc_home_location_identity=locations/5ea815f0-4de1-4a84-9377-701e880fe8ae", "attributes.arc_home_location_identity=locations/27eed70b-9e2b-4db1-b8c4-e36505350dcc", ] }, { "or": [ "attributes.arc_display_type=Valve", "attributes.arc_display_type=Pump", ] }, { "or": [ "attributes.ext_vendor_name=SynsationIndustries", ] }, ] ACCESS_PERMISSIONS = [ { "subjects": [ "subjects/6a951b62-0a26-4c22-a886-1082297b063b", "subjects/a24306e5-dc06-41ba-a7d6-2b6b3e1df48d", ], "behaviours": ["Attachments", "RecordEvidence"], "include_attributes": [ "arc_display_name", "arc_display_type", "arc_firmware_version", ], "user_attributes": [{"or": ["group:maintainers", "group:supervisors"]}], } ] class TestAccessPolicies(TestCase): """ Test Archivist AccessPolicies Create method """ maxDiff = None @classmethod def setUpClass(cls): with open(environ["TEST_AUTHTOKEN_FILENAME"], encoding="utf-8") as fd: auth = fd.read().strip() cls.arch = Archivist(environ["TEST_ARCHIVIST"], auth, verify=False) cls.props = deepcopy(PROPS) cls.props["display_name"] = f"{DISPLAY_NAME} {uuid4()}" def test_access_policies_create(self): """ Test access_policy creation """ access_policy = self.arch.access_policies.create( self.props, FILTERS, ACCESS_PERMISSIONS ) self.assertEqual( access_policy["display_name"], self.props["display_name"], msg="Incorrect display name", ) def test_access_policies_update(self): """ Test access_policy update """ access_policy = self.arch.access_policies.create( self.props, FILTERS, ACCESS_PERMISSIONS ) self.assertEqual( access_policy["display_name"], self.props["display_name"], msg="Incorrect display name", ) access_policy = self.arch.access_policies.update( access_policy["identity"], props=self.props, filters=FILTERS, access_permissions=ACCESS_PERMISSIONS, ) def test_access_policies_delete(self): """ Test access_policy delete """ access_policy = self.arch.access_policies.create( self.props, FILTERS, ACCESS_PERMISSIONS ) self.assertEqual( access_policy["display_name"], self.props["display_name"], msg="Incorrect display name", ) access_policy = self.arch.access_policies.delete( access_policy["identity"], ) self.assertEqual( access_policy, {}, msg="Incorrect access_policy", ) def test_access_policies_list(self): """ Test access_policy list """ # TODO: filtering on display_name does not currently work... access_policies = self.arch.access_policies.list( display_name=self.props["display_name"] ) for access_policy in access_policies: self.assertEqual( access_policy["display_name"], self.props["display_name"], msg="Incorrect display name", ) self.assertGreater( len(access_policy["display_name"]), 0, msg="Incorrect display name", ) def test_access_policies_count(self): """ Test access_policy count """ count = self.arch.access_policies.count() self.assertGreaterEqual( count, 0, msg="Count is zero", )
import torch from torch.autograd import Variable from torch import optim from torch import nn import torch.nn.functional as F import numpy as np from agents.Agent import Agent from .config import DDPG_CONFIG import basenets import copy from utils import databuffer import os from collections import deque from utils.mathutils import explained_variance from .DDPG import DDPG from rlnets.DDPG import FCDDPG_C from .config import TD3_CONFIG class TD3(DDPG): def __init__(self,hyperparams): config = copy.deepcopy(TD3_CONFIG) config.update(hyperparams) super(TD3, self).__init__(config) self.d = config["actor_delayed_steps"] self.smooth_noise = config["smooth_noise"] self.epsilon = config["smooth_epsilon"] self.e_Critic_double = FCDDPG_C(self.n_states, self.n_action_dims, n_hiddens=self.hidden_layers_v, nonlinear=self.act_func, usebn=self.using_bn, initializer="uniform", initializer_param={"last_lower": 3e-3, "last_upper": 3e-3} ) self.t_Critic_double = FCDDPG_C(self.n_states, self.n_action_dims, n_hiddens=self.hidden_layers_v, nonlinear=self.act_func, usebn=self.using_bn, initializer="uniform", initializer_param={"last_lower": 3e-3, "last_upper": 3e-3} ) self.hard_update(self.t_Critic, self.e_Critic) self.optimizer_c = self.optimizer_c_func(list(self.e_Critic.parameters()) + list(self.e_Critic_double.parameters()), lr = self.lrv) def cuda(self): DDPG.cuda(self) self.e_Critic_double.cuda() self.t_Critic_double.cuda() def learn(self): for i in range(self.d): # sample batch memory from all memory batch_memory = self.sample_batch(self.batch_size)[0] if self.norm_ob: batch_memory['state'] = np.clip( (batch_memory['state'] - self.ob_mean) / np.sqrt(self.ob_var + 1e-8), -10, 10) batch_memory['next_state'] = np.clip( (batch_memory['next_state'] - self.ob_mean) / np.sqrt(self.ob_var + 1e-8), -10, 10) if self.norm_rw: batch_memory['reward'] = np.clip(batch_memory['reward'] / np.sqrt(self.rw_var + 1e-8), -10, 10) self.r = self.r.resize_(batch_memory['reward'].shape).copy_(torch.Tensor(batch_memory['reward'])) self.done = self.done.resize_(batch_memory['done'].shape).copy_(torch.Tensor(batch_memory['done'])) self.s_ = self.s_.resize_(batch_memory['next_state'].shape).copy_(torch.Tensor(batch_memory['next_state'])) self.a = self.a.resize_(batch_memory['action'].shape).copy_(torch.Tensor(batch_memory['action'])) self.s = self.s.resize_(batch_memory['state'].shape).copy_(torch.Tensor(batch_memory['state'])) # Target Policy Smoothing' a_noise = np.clip(np.random.normal(0, self.smooth_noise, size = self.a.size()), -self.epsilon, self.epsilon) a_noise = torch.Tensor(a_noise).type_as(self.a) a_ = torch.clamp(self.t_Actor(self.s_) + a_noise, -self.action_bounds, self.action_bounds) # Clipping Double Q Learning q_1 = self.t_Critic(self.s_, a_) q_2 = self.t_Critic_double(self.s_, a_) q_target = self.r + (1 - self.done) * self.gamma * torch.min(q_1, q_2) q_target = q_target.detach().squeeze() q_eval_1 = self.e_Critic(self.s, self.a).squeeze() q_eval_2 = self.e_Critic_double(self.s, self.a).squeeze() self.Qt = q_target.cpu().numpy() self.Qe1 = q_eval_1.detach().cpu().numpy() self.Qe2 = q_eval_2.detach().cpu().numpy() # update critic self.loss_c = self.loss(q_eval_1, q_target) + self.loss(q_eval_2, q_target) self.e_Critic.zero_grad() self.e_Critic_double.zero_grad() self.loss_c.backward() if self.max_grad_norm is not None: torch.nn.utils.clip_grad_norm_(self.e_Critic.parameters(), self.max_grad_norm) torch.nn.utils.clip_grad_norm_(self.e_Critic_double.parameters(), self.max_grad_norm) self.optimizer_c.step() # update actor self.loss_a = -self.e_Critic(self.s, self.e_Actor(self.s)).mean() self.e_Actor.zero_grad() self.loss_a.backward() if self.max_grad_norm is not None: torch.nn.utils.clip_grad_norm_(self.e_Actor.parameters(), self.max_grad_norm) self.optimizer_a.step() self.learn_step_counter += 1 self.noise = self.noise * ( 1 - self.exploration_noise_decrement) if self.noise > self.noise_min else self.noise_min # check to replace target parameters self.soft_update(self.t_Actor, self.e_Actor, self.replace_tau) self.soft_update(self.t_Critic, self.e_Critic, self.replace_tau) self.soft_update(self.t_Critic_double, self.e_Critic_double, self.replace_tau) def run_td3_train(env, agent, max_timesteps, logger, log_interval): timestep_counter = 0 total_updates = max_timesteps / env.num_envs epinfobuf = deque(maxlen=100) observations = env.reset() loss_a = 0 loss_c = 0 explained_var = 0 while (True): # collection of training data mb_obs, mb_as, mb_dones, mb_rs, mb_obs_ = [], [], [], [], [] epinfos = [] for i in range(0, agent.nsteps, env.num_envs): observations = torch.Tensor(observations) if timestep_counter > agent.learn_start_step: actions = agent.choose_action(observations) actions = actions.cpu().numpy().clip(env.action_space.low, env.action_space.high) else: actions = [] for i in range(env.num_envs): actions.append(env.action_space.sample()) actions = np.asarray(actions, dtype=np.float32) observations = observations.cpu().numpy() observations_, rewards, dones, infos = env.step(actions) for info in infos: maybeepinfo = info.get('episode') if maybeepinfo: epinfos.append(maybeepinfo) mb_obs.append(observations) mb_as.append(actions) mb_rs.append(rewards) mb_obs_.append(observations_) mb_dones.append(dones) observations = observations_ epinfobuf.extend(epinfos) def reshape_data(arr): s = arr.shape return arr.reshape(s[0] * s[1], *s[2:]) mb_obs = reshape_data(np.asarray(mb_obs, dtype=np.float32)) mb_rs = reshape_data(np.asarray(mb_rs, dtype=np.float32)) mb_as = reshape_data(np.asarray(mb_as)) mb_dones = reshape_data(np.asarray(mb_dones, dtype=np.uint8)) mb_obs_ = reshape_data(np.asarray(mb_obs_, dtype=np.float32)) # store transition transition = { 'state': mb_obs if mb_obs.ndim == 2 else np.expand_dims(mb_obs, 1), 'action': mb_as if mb_as.ndim == 2 else np.expand_dims(mb_as, 1), 'reward': mb_rs if mb_rs.ndim == 2 else np.expand_dims(mb_rs, 1), 'next_state': mb_obs_ if mb_obs_.ndim == 2 else np.expand_dims(mb_obs_, 1), 'done': mb_dones if mb_dones.ndim == 2 else np.expand_dims(mb_dones, 1), } agent.store_transition(transition) # training controller timestep_counter += agent.nsteps if timestep_counter >= max_timesteps: break if timestep_counter > agent.batch_size: # Update observation and reward mean and var. if agent.norm_ob: agent.ob_mean, agent.ob_var = env.ob_rms.mean, env.ob_rms.var if agent.norm_rw: agent.rw_mean, agent.rw_var = env.ret_rms.mean, env.ret_rms.var for i in range(0, agent.nsteps): agent.learn() # adjust learning rate for policy and value function # decay_coef = 1 - agent.learn_step_counter / total_updates # adjust_learning_rate(agent.optimizer_a, original_lr=agent.lr, decay_coef=decay_coef) # adjust_learning_rate(agent.optimizer_c, original_lr=agent.lrv, decay_coef=decay_coef) explained_var += 0.5 * explained_variance(agent.Qe1, agent.Qt) explained_var += 0.5 * explained_variance(agent.Qe2, agent.Qt) loss_a += agent.loss_a.item() loss_c += agent.loss_c.item() if agent.learn_step_counter % log_interval == 0: print("------------------log information------------------") print("total_timesteps:".ljust(20) + str(timestep_counter)) print("iterations:".ljust(20) + str(agent.learn_step_counter) + " / " + str(int(total_updates))) print("explained_var:".ljust(20) + str(explained_var / log_interval)) logger.add_scalar("explained_var/train", explained_var / log_interval, timestep_counter) print("episode_len:".ljust(20) + "{:.1f}".format(np.mean([epinfo['l'] for epinfo in epinfobuf]))) print("episode_rew:".ljust(20) + str(np.mean([epinfo['r'] for epinfo in epinfobuf]))) logger.add_scalar("episode_reward/train", np.mean([epinfo['r'] for epinfo in epinfobuf]), timestep_counter) print("max_episode_rew:".ljust(20) + str(np.max([epinfo['r'] for epinfo in epinfobuf]))) print("min_episode_rew:".ljust(20) + str(np.min([epinfo['r'] for epinfo in epinfobuf]))) print("loss_a:".ljust(20) + str(loss_a / log_interval)) logger.add_scalar("actor_loss/train", loss_a / log_interval, timestep_counter) print("loss_c:".ljust(20) + str(loss_c / log_interval)) logger.add_scalar("critic_loss/train", loss_c / log_interval, timestep_counter) print("action_noise_std:".ljust(20) + str(agent.noise)) explained_var = 0 loss_a = 0 loss_c = 0 return agent def adjust_learning_rate(optimizer, original_lr=1e-4, decay_coef=0.95): for param_group in optimizer.param_groups: param_group['lr'] = original_lr * decay_coef
from flask import Flask, request, json from flask_cors import CORS from bs4 import BeautifulSoup import requests import base64 from PIL import Image import numpy as np import io import re from eval import evaluate from locateWord import find_word import os app = Flask(__name__) CORS(app) links = "" words = "" imgArray = [] def scrape_videos(websiteURL): html_text = requests.get(websiteURL).text soup = BeautifulSoup(html_text, 'lxml') video_div_container = soup.find('div', {"itemtype":"http://schema.org/VideoObject"}) try: video = video_div_container.select("#video_con_signasl_1")[0].find('source') videoLink = video['src'] except: try: videoLink = video_div_container.select("iframe")[0].attrs['src'] + "&autoplay=1" videoLink = videoLink.replace("loop=1", "loop=0") except: videoLink = "unavailable" return str(videoLink) def compile_videos(words): all_videos = [] for word in words: all_videos.append(scrape_videos('https://www.signasl.org/sign/' + str(word))) return all_videos @app.route('/api/getText', methods=['GET']) def api(): global words, links return{ "link": links, "words": words } def cleanText(word): punctuations = '''!()-[]{};:'"\,<>./?@#$%^&*_~''' clean_word = "" for char in word: if char not in punctuations: clean_word = clean_word + char return clean_word @app.route('/api/sendText', methods=['POST']) def findVideos(): global words, links request_data = json.loads(request.data) cleaned_words = list(map(cleanText, request_data['content'].lower().split())) links = compile_videos(cleaned_words) words = list(request_data['content'].split()) return { 'message': links, 'words': words } @app.route('/api/sendImage', methods=['POST']) def getImageData(): global imgArray request_data = json.loads(request.data) if (request_data['save'] == "True"): image_data = re.sub('^data:image/.+;base64,', '', request_data['image_data']) imgdata = base64.b64decode(image_data) image = Image.open(io.BytesIO(imgdata)) image = np.array(image) imgArray.append(image) return { 'word': "" } else: prediction = evaluate(imgArray) word = find_word(prediction) imgArray = [] return { 'word': word }
import os,sys # change the path accoring to the test folder in system #sys.path.append('/home/ubuntu/setup/src/fogflow/test/UnitTest/v1') from datetime import datetime import copy import json import requests import time import pytest import data_ngsi10 import sys # change it by broker ip and port brokerIp="http://localhost:8070" print("Testing of v1 API") # testCase 1 ''' To test subscription request ''' def test_getSubscription1(): url=brokerIp+"/ngsi10/subscribeContext" headers={'Content-Type' : 'application/json'} r=requests.post(url,data=json.dumps(data_ngsi10.subdata1),headers=headers) resp_content=r.content resInJson= resp_content.decode('utf8').replace("'", '"') resp=json.loads(resInJson) #print(resp) assert r.status_code == 200 #testCase 2 ''' To test entity creation with attributes, then susbscribing and get subscription using ID ''' def test_getSubscription2(): #create an entity url=brokerIp+"/ngsi10/updateContext" headers={'Content-Type' : 'application/json'} r = requests.post(url,data=json.dumps(data_ngsi10.subdata2),headers=headers) resp_content=r.content resInJson=resp_content.decode('utf8').replace("'",'"') resp=json.loads(resInJson) #print(resp) #subscribing url=brokerIp+"/ngsi10/subscribeContext" headers= {'Content-Type': 'application/json'} r=requests.post(url,data=json.dumps(data_ngsi10.subdata3),headers=headers) resp_content=r.content resInJson= resp_content.decode('utf8').replace("'", '"') resp=json.loads(resInJson) #print(resp) resp=resp['subscribeResponse'] sid=resp['subscriptionId'] #print(sid) #get request to fetch subscription get_url=brokerIp+"/ngsi10/subscription/" url=get_url+sid r=requests.get(url) resp_content=r.content resInJson= resp_content.decode('utf8').replace("'", '"') resp=json.loads(resInJson) resp=resp['entities'] sid2=resp[0]["id"] if "Result1"==sid2: print("\nValidated") else: print("\nNot Validated") assert r.status_code == 200 #testCase 3 ''' To test entity creation with one attribute : pressure only followed by subscribing and get using ID ''' def test_getSubscription3(): #create an entity url=brokerIp+"/ngsi10/updateContext" headers={'Content-Type' : 'application/json'} r = requests.post(url,data=json.dumps(data_ngsi10.subdata4),headers=headers) resp_content=r.content resInJson=resp_content.decode('utf8').replace("'",'"') resp=json.loads(resInJson) #print(resp) #subscribing url=brokerIp+"/ngsi10/subscribeContext" headers= {'Content-Type': 'application/json'} r=requests.post(url,data=json.dumps(data_ngsi10.subdata5),headers=headers) resp_content=r.content resInJson= resp_content.decode('utf8').replace("'", '"') resp=json.loads(resInJson) #print(resp) resp=resp['subscribeResponse'] sid=resp['subscriptionId'] #print(sid) #get request to fetch subscription get_url=brokerIp+"/ngsi10/subscription/" url=get_url+sid r=requests.get(url) resp_content=r.content resInJson= resp_content.decode('utf8').replace("'", '"') resp=json.loads(resInJson) resp=resp['entities'] sid2=resp[0]["id"] if "Result2"==sid2: print("\nValidated") else: print("\nNot Validated") assert r.status_code == 200 #testCase 4 ''' To test entity creation with one attribute : Temperature only followed by subscription and get using ID ''' def test_getSubscription4(): #create an entity url=brokerIp+"/ngsi10/updateContext" headers={'Content-Type' : 'application/json'} r = requests.post(url,data=json.dumps(data_ngsi10.subdata6),headers=headers) resp_content=r.content resInJson=resp_content.decode('utf8').replace("'",'"') resp=json.loads(resInJson) #print(resp) #subscribing url=brokerIp+"/ngsi10/subscribeContext" headers= {'Content-Type': 'application/json'} r=requests.post(url,data=json.dumps(data_ngsi10.subdata7),headers=headers) resp_content=r.content resInJson= resp_content.decode('utf8').replace("'", '"') resp=json.loads(resInJson) #print(resp) resp=resp['subscribeResponse'] sid=resp['subscriptionId'] #print(sid) #get request to fetch subscription get_url=brokerIp+"/ngsi10/subscription/" url=get_url+sid r=requests.get(url) resp_content=r.content resInJson= resp_content.decode('utf8').replace("'", '"') resp=json.loads(resInJson) resp=resp['entities'] sid2=resp[0]["id"] if "Result3"==sid2: print("\nValidated") else: print("\nNot Validated") assert r.status_code == 200 #testCase 5 ''' To test create entity without passing Domain data followed by subscription and get using ID ''' def test_getSubscription5(): #create an entity url=brokerIp+"/ngsi10/updateContext" headers={'Content-Type' : 'application/json'} r = requests.post(url,data=json.dumps(data_ngsi10.subdata8),headers=headers) resp_content=r.content resInJson=resp_content.decode('utf8').replace("'",'"') resp=json.loads(resInJson) #print(resp) #subscribing url=brokerIp+"/ngsi10/subscribeContext" headers= {'Content-Type': 'application/json'} r=requests.post(url,data=json.dumps(data_ngsi10.subdata9),headers=headers) resp_content=r.content resInJson= resp_content.decode('utf8').replace("'", '"') resp=json.loads(resInJson) #print(resp) resp=resp['subscribeResponse'] sid=resp['subscriptionId'] #print(sid) #get request to fetch subscription get_url=brokerIp+"/ngsi10/subscription/" url=get_url+sid r=requests.get(url) resp_content=r.content resInJson= resp_content.decode('utf8').replace("'", '"') resp=json.loads(resInJson) resp=resp['entities'] sid2=resp[0]["id"] if "Result4"==sid2: print("\nValidated") else: print("\nNot Validated") assert r.status_code == 200 #testCase 6 ''' To test create entity without attributes followed by subscription and get using Id ''' def test_getSubscription6(): #create an entity url=brokerIp+"/ngsi10/updateContext" headers={'Content-Type' : 'application/json'} r = requests.post(url,data=json.dumps(data_ngsi10.subdata10),headers=headers) resp_content=r.content resInJson=resp_content.decode('utf8').replace("'",'"') resp=json.loads(resInJson) #print(resp) #subscribing url=brokerIp+"/ngsi10/subscribeContext" headers= {'Content-Type': 'application/json'} r=requests.post(url,data=json.dumps(data_ngsi10.subdata11),headers=headers) resp_content=r.content resInJson= resp_content.decode('utf8').replace("'", '"') resp=json.loads(resInJson) #print(resp) resp=resp['subscribeResponse'] sid=resp['subscriptionId'] #print(sid) #get request to fetch subscription get_url=brokerIp+"/ngsi10/subscription/" url=get_url+sid r=requests.get(url) resp_content=r.content resInJson= resp_content.decode('utf8').replace("'", '"') resp=json.loads(resInJson) resp=resp['entities'] sid2=resp[0]["id"] if "Result5"==sid2: print("\nValidated") else: print("\nNot Validated") assert r.status_code == 200 #testCase 7 ''' To test create entity without attributes and Metadata and followed by sbscription and get using Id ''' def test_getSubscription7(): #create an entity url=brokerIp+"/ngsi10/updateContext" headers={'Content-Type' : 'application/json'} r = requests.post(url,data=json.dumps(data_ngsi10.subdata12),headers=headers) resp_content=r.content resInJson=resp_content.decode('utf8').replace("'",'"') resp=json.loads(resInJson) #print(resp) #print(r.status_code) #subscribing url=brokerIp+"/ngsi10/subscribeContext" headers= {'Content-Type': 'application/json'} r=requests.post(url,data=json.dumps(data_ngsi10.subdata13),headers=headers) resp_content=r.content resInJson= resp_content.decode('utf8').replace("'", '"') resp=json.loads(resInJson) #print(resp) resp=resp['subscribeResponse'] sid=resp['subscriptionId'] #print(sid) #get request to fetch subscription get_url=brokerIp+"/ngsi10/subscription/" url=get_url+sid r=requests.get(url) resp_content=r.content resInJson= resp_content.decode('utf8').replace("'", '"') resp=json.loads(resInJson) resp=resp['entities'] sid2=resp[0]["id"] if "Result6"==sid2: print("\nValidated") else: print("\nNot Validated") assert r.status_code == 200 #testCase 8 ''' To test create entity without entity type followed by subscription and get using Id ''' def test_getSubscription8(): #create an entity url=brokerIp+"/ngsi10/updateContext" headers={'Content-Type' : 'application/json'} r = requests.post(url,data=json.dumps(data_ngsi10.subdata14),headers=headers) resp_content=r.content resInJson=resp_content.decode('utf8').replace("'",'"') resp=json.loads(resInJson) #print(resp) #subscribing url=brokerIp+"/ngsi10/subscribeContext" headers= {'Content-Type': 'application/json'} r=requests.post(url,data=json.dumps(data_ngsi10.subdata15),headers=headers) resp_content=r.content resInJson= resp_content.decode('utf8').replace("'", '"') resp=json.loads(resInJson) #print(resp) resp=resp['subscribeResponse'] sid=resp['subscriptionId'] #print(sid) #get request to fetch subscription get_url=brokerIp+"/ngsi10/subscription/" url=get_url+sid r=requests.get(url) resp_content=r.content resInJson= resp_content.decode('utf8').replace("'", '"') resp=json.loads(resInJson) resp=resp['entities'] sid2=resp[0]["id"] if "Result7"==sid2: print("\nValidated") else: print("\nNot Validated") assert r.status_code == 200 #testCase 9 ''' To test get subscription request by first posting subscription request followed by delete request ''' def test_getSubscription9(): #create an entity url=brokerIp+"/ngsi10/subscribeContext" headers= {'Content-Type': 'application/json'} r=requests.post(url,data=json.dumps(data_ngsi10.subdata16),headers=headers) resp_content=r.content resInJson= resp_content.decode('utf8').replace("'", '"') resp=json.loads(resInJson) #print(resp) resp=resp['subscribeResponse'] sid=resp['subscriptionId'] #print(sid) #subscribing url_del=brokerIp+"/ngsi10/subscription/" url=url_del+sid r = requests.delete(url,headers=headers) #print(r.status_code) #get request to fetch subscription get_url=brokerIp+"/ngsi10/subscription" url=get_url+sid r=requests.get(url) print("Subscription with sid-"+sid+" not found") assert r.status_code == 404 #testCase 10 ''' To test the update post request to create entity ''' def test_getSubscription10(): url=brokerIp+"/ngsi10/updateContext" headers={'Content-Type' : 'application/json'} r=requests.post(url,data=json.dumps(data_ngsi10.subdata17),headers=headers) resp_content=r.content resInJson= resp_content.decode('utf8').replace("'", '"') resp=json.loads(resInJson) #print(resp) #print(r.status_code) assert r.status_code == 200 #testCase 11 ''' To test subscription with attributes and using ID to validate it ''' def test_getSubscription11(): #create an entity url=brokerIp+"/ngsi10/updateContext" headers={'Content-Type' : 'application/json'} r=requests.post(url,data=json.dumps(data_ngsi10.subdata18),headers=headers) resp_content=r.content resInJson=resp_content.decode('utf8').replace("'",'"') resp=json.loads(resInJson) #print(resp) #subscribing url=brokerIp+"/ngsi10/subscribeContext" headers= {'Content-Type': 'application/json'} r=requests.post(url,data=json.dumps(data_ngsi10.subdata19),headers=headers) resp_content=r.content resInJson= resp_content.decode('utf8').replace("'", '"') resp=json.loads(resInJson) #print(resp) resp=resp['subscribeResponse'] sid=resp['subscriptionId'] #print(sid) #update the created entity url=brokerIp+"/ngsi10/updateContext" r=requests.post(url,data=json.dumps(data_ngsi10.subdata20),headers=headers) resp_content1=r.content resInJson=resp_content1.decode('utf8').replace("'",'"') resp1=json.loads(resInJson) #print(resp1) #validate via accumulator url="http://0.0.0.0:8888/validateNotification" r=requests.post(url,json={"subscriptionId" : sid}) print(r.content) assert r.status_code == 200 #testCase 12 ''' To test subscription for its if and else part : 1) for Destination Header ''' '''def test_getSubscription12(): #create an entity url=brokerIp+"/ngsi10/updateContext" headers={'Content-Type' : 'application/json'} r=requests.post(url,data=json.dumps(data_ngsi10.subdata21),headers=headers) resp_content=r.content resInJson=resp_content.decode('utf8').replace("'",'"') resp=json.loads(resInJson) #print(resp) #subscribing url=brokerIp+"/ngsi10/subscribeContext" headers= {'Content-Type': 'application/json','Destination' : 'orion-broker'} r=requests.post(url,data=json.dumps(data_ngsi10.subdata22),headers=headers) resp_content=r.content resInJson= resp_content.decode('utf8').replace("'", '"') resp=json.loads(resInJson) #print(resp) resp=resp['subscribeResponse'] sid=resp['subscriptionId'] #print(sid) #update the created entity url=brokerIp+"/ngsi10/updateContext" r=requests.post(url,data=json.dumps(data_ngsi10.subdata23),headers=headers) resp_content1=r.content resInJson=resp_content1.decode('utf8').replace("'",'"') resp1=json.loads(resInJson) #print(resp1) #validate via accumulator url="http://127.0.0.1:1026/v2/entities/" #r=requests.post(url,json={"subscriptionId" : sid}) r=requests.get(url) print(r.content) resp_content=r.content resInJson= resp_content.decode('utf8').replace("'", '"') resp=json.loads(resInJson) #if resp[0]["id"]=="Result11" and resp[0]["type"]=="Result11": #print("\nValidated") #else: #print("\nNot Validated") assert r.status_code == 200 ''' #testCase 13 ''' To test subscription for its if and else part : 2) for User - Agent Header ''' def test_getSubscription18(): #create an entity url=brokerIp+"/ngsi10/updateContext" headers={'Content-Type' : 'application/json'} r=requests.post(url,data=json.dumps(data_ngsi10.subdata24),headers=headers) resp_content1=r.content resInJson=resp_content1.decode('utf8').replace("'",'"') resp1=json.loads(resInJson) #print(resp1) #subscribing url=brokerIp+"/ngsi10/subscribeContext" headers= {'Content-Type': 'application/json','User-Agent' : 'lightweight-iot-broker'} r=requests.post(url,data=json.dumps(data_ngsi10.subdata25),headers=headers) resp_content=r.content resInJson= resp_content.decode('utf8').replace("'", '"') resp=json.loads(resInJson) #print(resp) resp=resp['subscribeResponse'] sid=resp['subscriptionId'] #print(sid) #update created entity url=brokerIp+"/ngsi10/updateContext" r=requests.post(url,data=json.dumps(data_ngsi10.subdata26),headers=headers) resp_content1=r.content resInJson=resp_content1.decode('utf8').replace("'",'"') resp1=json.loads(resInJson) #print(resp1) #validate via accumulator url="http://0.0.0.0:8888/validateNotification" r=requests.post(url,json={"subscriptionId" : sid}) print(r.content) assert r.status_code == 200 #testCase 14 ''' To test subcription for its if else part : 3) Require-Reliability Header ''' def test_getSubscription19(): #create an entity url=brokerIp+"/ngsi10/updateContext" headers={'Content-Type' : 'application/json'} r=requests.post(url,data=json.dumps(data_ngsi10.subdata27),headers=headers) resp_content1=r.content resInJson=resp_content1.decode('utf8').replace("'",'"') resp1=json.loads(resInJson) #print(resp1) #subscribing url=brokerIp+"/ngsi10/subscribeContext" headers= {'Content-Type': 'application/json','Require-Reliability' : 'true'} r=requests.post(url,data=json.dumps(data_ngsi10.subdata28),headers=headers) resp_content=r.content resInJson= resp_content.decode('utf8').replace("'", '"') resp=json.loads(resInJson) #print(resp) resp=resp['subscribeResponse'] sid=resp['subscriptionId'] #print(sid) #update the created entity url=brokerIp+"/ngsi10/updateContext" r=requests.post(url,data=json.dumps(data_ngsi10.subdata29),headers=headers) resp_content1=r.content resInJson=resp_content1.decode('utf8').replace("'",'"') resp1=json.loads(resInJson) #print(resp1) #validate via accumulator url="http://0.0.0.0:8888/validateNotification" r=requests.post(url,json={"subscriptionId" : sid}) print(r.content) assert r.status_code == 200 #testCase 15 ''' To test subscription with two headers simultaneously : 4) Destination and User-Agent ''' def test_getSubscription20(): #create an entity url=brokerIp+"/ngsi10/updateContext" headers={'Content-Type' : 'application/json'} r=requests.post(url,data=json.dumps(data_ngsi10.subdata30),headers=headers) resp_content1=r.content resInJson=resp_content1.decode('utf8').replace("'",'"') resp1=json.loads(resInJson) #print(resp1) #subscribing url=brokerIp+"/ngsi10/subscribeContext" headers= {'Content-Type': 'application/json','Destination' : 'orion-broker','User-Agent':'lightweight-iot-broker'} r=requests.post(url,data=json.dumps(data_ngsi10.subdata31),headers=headers) resp_content=r.content resInJson= resp_content.decode('utf8').replace("'", '"') resp=json.loads(resInJson) #print(resp) resp=resp['subscribeResponse'] sid=resp['subscriptionId'] #print(sid) #update created entity url=brokerIp+"/ngsi10/updateContext" r=requests.post(url,data=json.dumps(data_ngsi10.subdata32),headers=headers) resp_content1=r.content resInJson=resp_content1.decode('utf8').replace("'",'"') resp1=json.loads(resInJson) #print(resp1) #validate via accumulator url="http://0.0.0.0:8888/validateNotification" r=requests.post(url,json={"subscriptionId" : sid}) #print(r.content) if r.content=="Not validated": print("\nValidated") else: print("\nNot Validated") assert r.status_code == 200 #testCase 16 ''' To test subscription with two headers simultaneously : 4) User-Agent and Require-Reliability ''' def test_getSubscription21(): #create an entity url=brokerIp+"/ngsi10/updateContext" headers={'Content-Type' : 'application/json'} r=requests.post(url,data=json.dumps(data_ngsi10.subdata33),headers=headers) resp_content1=r.content resInJson=resp_content1.decode('utf8').replace("'",'"') resp1=json.loads(resInJson) #print(resp1) #subscribing url=brokerIp+"/ngsi10/subscribeContext" headers= {'Content-Type': 'application/json','User-Agent':'lightweight-iot-broker','Require-Reliability':'true'} r=requests.post(url,data=json.dumps(data_ngsi10.subdata34),headers=headers) resp_content=r.content resInJson= resp_content.decode('utf8').replace("'", '"') resp=json.loads(resInJson) #print(resp) resp=resp['subscribeResponse'] sid=resp['subscriptionId'] #print(sid) #update created entity url=brokerIp+"/ngsi10/updateContext" r=requests.post(url,data=json.dumps(data_ngsi10.subdata35),headers=headers) resp_content1=r.content resInJson=resp_content1.decode('utf8').replace("'",'"') resp1=json.loads(resInJson) #print(resp1) #validate via accumulator url="http://0.0.0.0:8888/validateNotification" r=requests.post(url,json={"subscriptionId" : sid}) print(r.content) assert r.status_code == 200 #testCase 17 ''' To test subscription with two headers simultaneously : 4) Destination and Require-Reliability headers ''' def test_getSubscription22(): #create an entity url=brokerIp+"/ngsi10/updateContext" headers={'Content-Type' : 'application/json'} r=requests.post(url,data=json.dumps(data_ngsi10.subdata36),headers=headers) resp_content1=r.content resInJson=resp_content1.decode('utf8').replace("'",'"') resp1=json.loads(resInJson) #print(resp1) #subscribing url=brokerIp+"/ngsi10/subscribeContext" headers= {'Content-Type': 'application/json','Destination':'orion-broker','Require-Reliability':'true'} r=requests.post(url,data=json.dumps(data_ngsi10.subdata37),headers=headers) resp_content=r.content resInJson= resp_content.decode('utf8').replace("'", '"') resp=json.loads(resInJson) #print(resp) resp=resp['subscribeResponse'] sid=resp['subscriptionId'] #print(sid) #update created entity url=brokerIp+"/ngsi10/updateContext" r=requests.post(url,data=json.dumps(data_ngsi10.subdata38),headers=headers) resp_content1=r.content resInJson=resp_content1.decode('utf8').replace("'",'"') resp1=json.loads(resInJson) #print(resp1) #validate via accumulator url="http://0.0.0.0:8888/validateNotification" r=requests.post(url,json={"subscriptionId" : sid}) #print(r.content) if r.content == "Not validated": print("\nValidated") else: print("\nNot Validated") assert r.status_code == 200 #testCase 18 ''' To test subscription with all headers simultaneously : 5) Destination, User-Agent and Require-Reliability headers ''' def test_getSubscription23(): #create an entity url=brokerIp+"/ngsi10/updateContext" headers={'Content-Type' : 'application/json'} r=requests.post(url,data=json.dumps(data_ngsi10.subdata39),headers=headers) resp_content1=r.content resInJson=resp_content1.decode('utf8').replace("'",'"') resp1=json.loads(resInJson) #print(resp1) #subscribing url=brokerIp+"/ngsi10/subscribeContext" headers= {'Content-Type': 'application/json','Destination':'orion-broker','User-Agent':'lightweight-iot-broker','Require-Reliability':'true'} r=requests.post(url,data=json.dumps(data_ngsi10.subdata40),headers=headers) resp_content=r.content resInJson= resp_content.decode('utf8').replace("'", '"') resp=json.loads(resInJson) #print(resp) resp=resp['subscribeResponse'] sid=resp['subscriptionId'] #print(sid) #update created entity url=brokerIp+"/ngsi10/updateContext" r=requests.post(url,data=json.dumps(data_ngsi10.subdata41),headers=headers) resp_content1=r.content resInJson=resp_content1.decode('utf8').replace("'",'"') resp1=json.loads(resInJson) #print(resp1) #validate via accumulator url="http://0.0.0.0:8888/validateNotification" r=requests.post(url,json={"subscriptionId" : sid}) #print(r.content) if r.content == "Not validated": print("\nValidated") else: print("\nNot Validated") assert r.status_code == 200 #testCase 19 ''' To test for get subscripton requests ''' def test_getsubscription24(): url=brokerIp+"/ngsi10/subscription" r=requests.get(url) assert r.status_code == 200 #testCase 20 ''' To test for get all entities ''' def test_getallentities(): url=brokerIp+"/ngsi10/entity" r=requests.get(url) assert r.status_code == 200 #testCase 21 ''' To test for query request using Id ''' def test_queryrequest1(): url=brokerIp+"/ngsi10/queryContext" headers={'Content-Type':'appliction/json'} r=requests.post(url,data=json.dumps(data_ngsi10.subdata42),headers=headers) #print(r.content) assert r.status_code == 200 #testCase 22 ''' To test for query request using type ''' def test_queryrequest2(): url=brokerIp+"/ngsi10/queryContext" headers={'Content-Type':'appliction/json'} r=requests.post(url,data=json.dumps(data_ngsi10.subdata43),headers=headers) #print(r.content) assert r.status_code == 200 #testCase 23 ''' To test for query request using geo-scope(polygon) ''' def test_queryrequest3(): url=brokerIp+"/ngsi10/queryContext" headers={'Content-Type':'appliction/json'} r=requests.post(url,data=json.dumps(data_ngsi10.subdata44),headers=headers) #print(r.content) assert r.status_code == 200 #testCase 24 ''' To test for query request multiple filter ''' def test_queryrequest4(): url=brokerIp+"/ngsi10/queryContext" headers={'Content-Type':'appliction/json'} r=requests.post(url,data=json.dumps(data_ngsi10.subdata45),headers=headers) #print(r.content) assert r.status_code == 200 #testCase 25 ''' To test if wrong payload is decoded or not ''' def test_case25(): url=brokerIp+"/ngsi10/updateContext" headers={'Content-Type':'appliction/json'} r=requests.post(url,data=json.dumps(data_ngsi10.subdata46),headers=headers) #print(r.status_code) assert r.status_code == 200 #testCase26 ''' To test the response on passing DELETE in updateAction in payload ''' def test_case26(): #create v1 entity url=brokerIp+"/ngsi10/updateContext" headers={'Content-Type':'appliction/json','User-Agent':'lightweight-iot-broker'} r=requests.post(url,data=json.dumps(data_ngsi10.subdata47),headers=headers) #print(r.content) #get the created entity url=brokerIp+"/ngsi10/entity/Result047" r=requests.get(url) #print(r.content) #passing DELETE in update payload url=brokerIp+"/ngsi10/updateContext" headers={'Content-Type':'appliction/json','User-Agent':'lightweight-iot-broker'} r=requests.post(url,data=json.dumps(data_ngsi10.subdata48),headers=headers) #print(r.content) #get the created entity url=brokerIp+"/ngsi10/entity/Result047" r=requests.get(url) #print(r.content) assert r.status_code == 404 #testCase 27 ''' To test the entity creation with empty payload ''' def test_case27(): url=brokerIp+"/ngsi10/updateContext" headers={'Content-Type':'appliction/json'} r=requests.post(url,data=json.dumps(data_ngsi10.subdata49),headers=headers) #print(r.content) assert r.status_code == 200 #testCase 28 ''' To test the subscription with empty payload ''' def test_case28(): url=brokerIp+"/ngsi10/subscribeContext" headers= {'Content-Type': 'application/json'} r=requests.post(url,data=json.dumps(data_ngsi10.subdata49),headers=headers) resp_content=r.content resInJson= resp_content.decode('utf8').replace("'", '"') resp=json.loads(resInJson) #print(resp) resp=resp['subscribeResponse'] sid=resp['subscriptionId'] #print(sid) assert r.status_code == 200 #testCase 29 ''' To get subscription of empty payload when subscribing ''' def test_case29(): url=brokerIp+"/ngsi10/subscribeContext" headers= {'Content-Type': 'application/json'} r=requests.post(url,data=json.dumps(data_ngsi10.subdata49),headers=headers) resp_content=r.content resInJson= resp_content.decode('utf8').replace("'", '"') resp=json.loads(resInJson) #print(resp) resp=resp['subscribeResponse'] sid=resp['subscriptionId'] #print(sid) #get request get_url=brokerIp+"/ngsi10/subscription/" url=get_url+sid r=requests.get(url) #print(r.content) assert r.status_code == 200 #testCase 30 ''' To test the action of API on passing an attribute as a command in payload ''' def test_cases30(): url=brokerIp+"/ngsi10/updateContext" headers={'Content-Type':'appliction/json','User-Agent':'lightweight-iot-broker'} r=requests.post(url,data=json.dumps(data_ngsi10.subdata50),headers=headers) #print(r.content) assert r.status_code == 500 #testCase 31 ''' To test the fiware header with updateAction equal to UPDATE ''' def test_case31(): #create and register entity url=brokerIp+"/NGSI9/registerContext" headers={'Content-Type':'appliction/json','fiware-service':'openiot','fiware-servicepath':'/'} r=requests.post(url,data=json.dumps(data_ngsi10.subdata51),headers=headers) #print(r.content) # maiing a updateContext request url=brokerIp+"/ngsi10/updateContext" headers={'Content-Type':'appliction/json','fiware-service':'openiot','fiware-servicepath':'/'} r=requests.post(url,data=json.dumps(data_ngsi10.subdata57),headers=headers) #print(r.content) assert r.status_code == 200 #testCase 32 ''' To test the fiware header with updateAction equal to APPEND ''' def test_case32(): url=brokerIp+"/NGSI9/registerContext" headers={'Content-Type':'appliction/json','fiware-service':'openiot','fiware-servicepath':'/'} r=requests.post(url,data=json.dumps(data_ngsi10.subdata52),headers=headers) #print(r.content) # maiing a updateContext request url=brokerIp+"/ngsi10/updateContext" headers={'Content-Type':'appliction/json','fiware-service':'openiot','fiware-servicepath':'/'} r=requests.post(url,data=json.dumps(data_ngsi10.subdata57),headers=headers) #print(r.content) assert r.status_code == 200 #testCase 33 ''' To test the fiware header with updateAction equal to delete ''' def test_case33(): #create v1 entity url=brokerIp+"/ngsi10/updateContext" headers={'Content-Type':'appliction/json','fiware-service':'Abc','fiware-servicepath':'pqr'} r=requests.post(url,data=json.dumps(data_ngsi10.subdata53),headers=headers) #print(r.content) #get the created entity url=brokerIp+"/ngsi10/entity/Result053" r=requests.get(url) #print(r.content) #passing DELETE in update payload url=brokerIp+"/ngsi10/updateContext" headers={'Content-Type':'appliction/json','fiware-service':'Abc','fiware-servicepath':'pqr'} r=requests.post(url,data=json.dumps(data_ngsi10.subdata54),headers=headers) #print(r.content) #get the created entity url=brokerIp+"/ngsi10/entity/Result053" r=requests.get(url) #print(r.content) assert r.status_code == 404 #testCase 34 ''' To test the notifyContext request ''' def test_case34(): url=brokerIp+"/ngsi10/notifyContext" headers={'Content-Type':'appliction/json'} r=requests.post(url,data=json.dumps(data_ngsi10.subdata55),headers=headers) #print(r.content) assert r.status_code == 200 #testCase 35 ''' To test unsubscribing feature ''' def test_case35(): #create subscription url=brokerIp+"/ngsi10/subscribeContext" headers= {'Content-Type': 'application/json'} r=requests.post(url,data=json.dumps(data_ngsi10.subdata56),headers=headers) resp_content=r.content resInJson= resp_content.decode('utf8').replace("'", '"') resp=json.loads(resInJson) resp=resp['subscribeResponse'] sid=resp['subscriptionId'] #print(sid) #unsubscribe Context url=brokerIp+"/ngsi10/unsubscribeContext" headers={'Content-Type': 'application/json'} r=requests.post(url,json={"subscriptionId":sid,"originator":"POMN"},headers=headers) #print(r.content) assert r.status_code == 200 #testCase 36 ''' To test entity creation using other route ''' def test_case36(): url=brokerIp+"/v1/updateContext" headers={'Content-Type':'appliction/json'} r=requests.post(url,data=json.dumps(data_ngsi10.subdata56),headers=headers) #print(r.content) assert r.status_code == 200 #testCase 37 ''' To test and fetch unique entity ''' def test_case37(): url=brokerIp+"/ngsi10/entity/Result14" r=requests.get(url) #print(r.content) assert r.status_code == 200 #testCase 38 ''' To test and fetch attribute specific to an entity ''' def test_case38(): url=brokerIp+"/ngsi10/entity/Result14/pressure" r=requests.get(url) resp_content=r.content resInJson= resp_content.decode('utf8').replace("'", '"') resp=json.loads(resInJson) #print(r.content) name=resp['name'] type1=resp['type'] val=resp['value'] if name=='pressure' and type1=='float' and val==55: print("\nValidated") else: print("\nNot Validated") assert r.status_code == 200
import math def IR(spot:list, m=1): """ IR(): A function to calculate Single Effective Interest Rate from an array of spot rates. :param spot: An array/List of Spot rates :type spot: list :param m: Frequency of Interest Calculation (eg: 2 for Semi-annually), defaults to 1. :type m: float :return: float, None for -ve values of m. :rtype: float """ if(m<=0 or len(spot)==0): return None return spot[-1] def FR(spot:list, k:float, m=1): """ FR(): A function to calculate Forward Rate from an array of spot rates. :param spot: An array/List of Spot rates :type spot: list :param k: Term Period to calculate Forward rate from. (Eg: Nth year forward rate **K** years from now) :type k: float :param m: Frequency of Interest Calculation (eg: 2 for Semi-annually), defaults to 1. :type m: float :return: float, None for -ve values of m. :rtype: float """ if(m<=0 or k<=0 or len(spot)<=1 or k>len(spot)): return None num = (1+spot[-1]/m)**(len(spot)*m) denom = (1+spot[k-1]/m)**(k*m) if(denom==0): return None sum = (num/denom) -1 return sum
import mongoengine from models.base_event import BaseEvent from models.user import * class BaseChannel(Document): # Ownership and Managers created_by = ReferenceField('User', required=True) owner = ReferenceField('User', default=created_by) moderators = ListField(ReferenceField('User'), default=[]) # Channel information name = StringField(required=True) subname = StringField(required=True, unique=True) wallpaper_url = StringField(default=utils.get_random_wallpaper()) profile_url = StringField(required=True) description = StringField() created_at = DateTimeField(default=datetime.utcnow()) location = PointField(default=[-179, -85]) tags = ListField(StringField(), default=[]) promote_image_urls = ListField(StringField()) # Manage users in the channel followed_by = ListField(ReferenceField('User'), default=[]) liked_by = ListField(ReferenceField('User'), default=[]) reported_by = ListField(ReferenceField('User'), default=[]) threads = ListField(ReferenceField('BaseThread'), default=[]) meta = {'allow_inheritance': True}
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. # This file handles all flask-restful resources for /v3/ec2tokens import flask from keystoneclient.contrib.ec2 import utils as ec2_utils from oslo_serialization import jsonutils from six.moves import http_client from keystone.api._shared import EC2_S3_Resource from keystone.api._shared import json_home_relations from keystone.common import render_token from keystone.common import utils from keystone import exception from keystone.i18n import _ from keystone.server import flask as ks_flask CRED_TYPE_EC2 = 'ec2' class EC2TokensResource(EC2_S3_Resource.ResourceBase): @staticmethod def _check_signature(creds_ref, credentials): signer = ec2_utils.Ec2Signer(creds_ref['secret']) signature = signer.generate(credentials) # NOTE(davechecn): credentials.get('signature') is not guaranteed to # exist, we need to check it explicitly. if credentials.get('signature'): if utils.auth_str_equal(credentials['signature'], signature): return True # NOTE(vish): Some client libraries don't use the port when # signing requests, so try again without the port. elif ':' in credentials['host']: hostname, _port = credentials.split(':') credentials['host'] = hostname # NOTE(davechen): we need to reinitialize 'signer' to avoid # contaminated status of signature, this is similar with # other programming language libraries, JAVA for example. signer = ec2_utils.Ec2Signer(creds_ref['secret']) signature = signer.generate(credentials) if utils.auth_str_equal( credentials['signature'], signature): return True raise exception.Unauthorized(_('Invalid EC2 signature.')) # Raise the exception when credentials.get('signature') is None else: raise exception.Unauthorized( _('EC2 signature not supplied.')) @ks_flask.unenforced_api def post(self): """Authenticate ec2 token. POST /v3/ec2tokens """ token = self.handle_authenticate() token_reference = render_token.render_token_response_from_model(token) resp_body = jsonutils.dumps(token_reference) response = flask.make_response(resp_body, http_client.OK) response.headers['X-Subject-Token'] = token.id response.headers['Content-Type'] = 'application/json' return response class EC2TokensAPI(ks_flask.APIBase): _name = 'ec2tokens' _import_name = __name__ resources = [] resource_mapping = [ ks_flask.construct_resource_map( resource=EC2TokensResource, url='/ec2tokens', resource_kwargs={}, rel='ec2tokens', resource_relation_func=( json_home_relations.os_ec2_resource_rel_func)) ] APIs = (EC2TokensAPI,)
from shape import Shape from color import Color from location import Location from random import randint def create_questions(shape, color, location, image_id): shape_name = shape.name.lower() color_name = color.name.lower() location_name = location.name.lower() questions = [ (f'what shape is in the image?', shape_name), (f'what shape is present?', shape_name), (f'what shape does the image contain?', shape_name), (f'what is the {color_name} shape?', shape_name), (f'what color is the {shape_name}?', color_name), (f'what is the color of the {shape_name}?', color_name), (f'what color is the shape?', color_name), (f'what is the color of the shape?', color_name), (f'what is the position of the shape?', location_name), (f'where is the shape?', location_name), (f'where is the {shape_name}?', location_name), (f'where is the {color_name} shape?', location_name), ] yes_no_questions = [] for s in Shape: cur_shape_name = s.name.lower() pos_answer = 'yes' if s is shape else 'no' yes_no_questions.append((f'is there a {cur_shape_name}?', pos_answer)) yes_no_questions.append((f'is there a {cur_shape_name} in the image?', pos_answer)) yes_no_questions.append((f'does the image contain a {cur_shape_name}?', pos_answer)) yes_no_questions.append((f'is a {cur_shape_name} present?', pos_answer)) neg_answer = 'no' if s is shape else 'yes' yes_no_questions.append((f'is there not a {cur_shape_name}?', neg_answer)) yes_no_questions.append((f'is there not a {cur_shape_name} in the image?', neg_answer)) yes_no_questions.append((f'does the image not contain a {cur_shape_name}?', neg_answer)) yes_no_questions.append((f'is no {cur_shape_name} present?', neg_answer)) for c in Color: cur_color_name = c.name.lower() pos_answer = 'yes' if c is color else 'no' yes_no_questions.append((f'is there a {cur_color_name} shape?', pos_answer)) yes_no_questions.append((f'is there a {cur_color_name} shape in the image?', pos_answer)) yes_no_questions.append((f'does the image contain a {cur_color_name} shape?', pos_answer)) yes_no_questions.append((f'is a {cur_color_name} shape present?', pos_answer)) neg_answer = 'no' if c is color else 'yes' yes_no_questions.append((f'is there not a {cur_color_name} shape?', neg_answer)) yes_no_questions.append((f'is there not a {cur_color_name} shape in the image?', neg_answer)) yes_no_questions.append((f'does the image not contain a {cur_color_name} shape?', neg_answer)) yes_no_questions.append((f'is no {cur_color_name} shape present?', neg_answer)) for l in Location: cur_location_name = l.name.lower() pos_answer = 'yes' if l is location else 'no' yes_no_questions.append((f'is there a shape in the {cur_location_name}?', pos_answer)) yes_no_questions.append((f'is there a shape in the {cur_location_name} in the image?', pos_answer)) yes_no_questions.append((f'does the image contain a shape in the {cur_location_name}?', pos_answer)) yes_no_questions.append((f'is a shape present in the {cur_location_name}?', pos_answer)) neg_answer = 'no' if s is shape else 'yes' pos_answer = 'yes' if l is location else 'no' yes_no_questions.append((f'is there not a shape in the {cur_location_name}?', pos_answer)) yes_no_questions.append((f'is there not a shape in the {cur_location_name} in the image?', pos_answer)) yes_no_questions.append((f'does the image not contain a shape in the {cur_location_name}?', pos_answer)) yes_no_questions.append((f'is a shape not present in the {cur_location_name}?', pos_answer)) questions = list(filter(lambda _: randint(0, 99) < 48, questions)) yes_no_questions = list(filter(lambda _: randint(0, 99) < 12, yes_no_questions)) all_questions = questions + yes_no_questions return (list(map(lambda x: x + (image_id,), all_questions)), len(yes_no_questions))
# Generated by Django 3.0.6 on 2021-07-14 21:46 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('evaluation', '0003_auto_20210714_1450'), ] operations = [ migrations.AlterField( model_name='test_assign', name='done', field=models.CharField(blank=True, default='Asignado', max_length=100, null=True), ), ]
# -------------------------------------------------------- # Original Code # https://github.com/VITA-Group/UAV-NDFT # Pytorch multi-GPU Faster R-CNN # Licensed under The MIT License [see LICENSE for details] # Written by Jiasen Lu, Jianwei Yang, based on code from Ross Girshick # # Modified by Chaehyeon Lee # -------------------------------------------------------- from __future__ import absolute_import from __future__ import division from __future__ import print_function import _init_paths import os import sys import numpy as np import argparse import pprint import pdb import time import cv2 import torch from torch.autograd import Variable import torch.nn as nn import torch.optim as optim import pickle from roi_data_layer.roidb import combined_roidb from roi_data_layer.roibatchLoader import roibatchLoader from model.utils.config import cfg, cfg_from_file, cfg_from_list, get_output_dir from model.rpn.bbox_transform import clip_boxes from model.nms.nms_wrapper import nms from model.rpn.bbox_transform import bbox_transform_inv from model.utils.net_utils import vis_detections from model.faster_rcnn.vgg16 import vgg16 from model.faster_rcnn.resnet import resnet import pdb try: xrange # Python 2 except NameError: xrange = range # Python 3 def parse_args(): """ Parse input arguments """ parser = argparse.ArgumentParser(description='Train a Fast R-CNN network') parser.add_argument('--dataset', dest='dataset', help='training dataset', default='uav', type=str) parser.add_argument('--cfg', dest='cfg_file', help='optional config file', default='cfgs/vgg16.yml', type=str) parser.add_argument('--net', dest='net', help='vgg16, res50, res101, res152', default='res101', type=str) parser.add_argument('--set', dest='set_cfgs', help='set config keys', default=None, nargs=argparse.REMAINDER) parser.add_argument('--save_dir', dest='save_dir', help='directory to save models', default="models", type=str) parser.add_argument('--cuda', dest='cuda', help='whether use CUDA', action='store_true') parser.add_argument('--ls', dest='large_scale', help='whether use large imag scale', action='store_true') parser.add_argument('--mGPUs', dest='mGPUs', help='whether use multiple GPUs', action='store_true') parser.add_argument('--cag', dest='class_agnostic', help='whether perform class_agnostic bbox regression', action='store_true') parser.add_argument('--parallel_type', dest='parallel_type', help='which part of model to parallel, 0: all, 1: model before roi pooling', default=0, type=int) parser.add_argument('--checksession', dest='checksession', help='checksession to load model', default=1, type=int) parser.add_argument('--checkepoch', dest='checkepoch', help='checkepoch to load network', default=4, type=int) parser.add_argument('--checkpoint', dest='checkpoint', help='checkpoint to load network', default=3960, type=int) parser.add_argument('--vis', dest='vis', help='visualization mode', action='store_true') parser.add_argument('--model_dir', dest='model_dir', help='directory to save models', default="models", type=str) parser.add_argument('--gamma_altitude', dest='gamma_altitude', help='the gamma is used to control the relative weight of the adversarial loss of altitude', type=float, required=True) parser.add_argument('--gamma_angle', dest='gamma_angle', help='the gamma is used to control the relative weight of the adversarial loss of viewing angle', type=float, required=True) parser.add_argument('--gamma_weather', dest='gamma_weather', help='the gamma is used to control the relative weight of the adversarial loss of weather', type=float, required=True) parser.add_argument('--use_restarting', dest='use_restarting', help='where to use restarting', action='store_true') parser.add_argument('--is_baseline_method', dest='is_baseline_method', help='whether to evaluate the baseline method', action='store_true') parser.add_argument('--ovthresh', dest='ovthresh', help='the IoU threshold for evaluation', default=0.7, type=float) parser.add_argument('--overall_eval', dest='overall_eval', help='display the evaluation results regularly', action='store_true') parser.add_argument('--checkpoint_name', dest='checkpoint_name', help='checkpoint name', default="faster_rcnn_final.pth", type=str) args = parser.parse_args() return args lr = cfg.TRAIN.LEARNING_RATE momentum = cfg.TRAIN.MOMENTUM weight_decay = cfg.TRAIN.WEIGHT_DECAY if __name__ == '__main__': args = parse_args() print('Called with args:') print(args) if torch.cuda.is_available() and not args.cuda: print("WARNING: You have a CUDA device, so you should probably run with --cuda") np.random.seed(cfg.RNG_SEED) if args.dataset == "pascal_voc": args.imdb_name = "voc_2007_trainval" args.imdbval_name = "voc_2007_test" args.set_cfgs = ['ANCHOR_SCALES', '[8, 16, 32]', 'ANCHOR_RATIOS', '[0.5,1,2]'] if args.dataset == "uav": args.imdb_name = "uav_2017_trainval" args.imdbval_name = "uav_2017_test" args.set_cfgs = ['ANCHOR_SCALES', '[1, 2, 4, 8, 16]', 'ANCHOR_RATIOS', '[0.5,1,2]', 'MAX_NUM_GT_BOXES', '20'] elif args.dataset == "pascal_voc_0712": args.imdb_name = "voc_2007_trainval+voc_2012_trainval" args.imdbval_name = "voc_2007_test" args.set_cfgs = ['ANCHOR_SCALES', '[8, 16, 32]', 'ANCHOR_RATIOS', '[0.5,1,2]'] elif args.dataset == "coco": args.imdb_name = "coco_2014_train+coco_2014_valminusminival" args.imdbval_name = "coco_2014_minival" args.set_cfgs = ['ANCHOR_SCALES', '[4, 8, 16, 32]', 'ANCHOR_RATIOS', '[0.5,1,2]'] elif args.dataset == "imagenet": args.imdb_name = "imagenet_train" args.imdbval_name = "imagenet_val" args.set_cfgs = ['ANCHOR_SCALES', '[8, 16, 32]', 'ANCHOR_RATIOS', '[0.5,1,2]'] elif args.dataset == "vg": args.imdb_name = "vg_150-50-50_minitrain" args.imdbval_name = "vg_150-50-50_minival" args.set_cfgs = ['ANCHOR_SCALES', '[4, 8, 16, 32]', 'ANCHOR_RATIOS', '[0.5,1,2]'] args.cfg_file = "cfgs/{}_ls.yml".format(args.net) if args.large_scale else "cfgs/{}.yml".format(args.net) if args.cfg_file is not None: cfg_from_file(args.cfg_file) if args.set_cfgs is not None: cfg_from_list(args.set_cfgs) print('Using config:') pprint.pprint(cfg) cfg.TRAIN.USE_FLIPPED = False imdb, roidb, ratio_list, ratio_index = combined_roidb(args.imdbval_name, False) imdb.competition_mode(on=True) imdb.set_gamma_altitude(args.gamma_altitude) imdb.set_gamma_angle(args.gamma_angle) imdb.set_gamma_weather(args.gamma_weather) imdb.set_epoch(args.checkepoch) imdb.set_ckpt(args.checkpoint) print('{:d} roidb entries'.format(len(roidb))) print(imdb.classes) if args.gamma_altitude > 1e-10 and args.gamma_angle > 1e-10 and args.gamma_weather > 1e-10: nuisance_type = "A+V+W" elif args.gamma_altitude > 1e-10 and args.gamma_angle > 1e-10: nuisance_type = "A+V" elif args.gamma_altitude > 1e-10 and args.gamma_weather > 1e-10: nuisance_type = "A+W" elif args.gamma_angle > 1e-10 and args.gamma_weather > 1e-10: nuisance_type = "V+W" elif args.gamma_altitude > 1e-10: nuisance_type = "A" elif args.gamma_angle > 1e-10: nuisance_type = "V" elif args.gamma_weather > 1e-10: nuisance_type = "W" else: nuisance_type ="Baseline" if args.overall_eval: nuisance_type = "Overall" model_dir = os.path.join(args.model_dir, nuisance_type, 'altitude={}_angle={}_weather={}(0)'.format(str(args.gamma_altitude), str(args.gamma_angle), str(args.gamma_weather))) if not os.path.exists(model_dir): raise Exception('There is no input directory for loading network from ' + model_dir) load_name = os.path.join(model_dir, args.checkpoint_name) # initilize the network here. if args.net == 'vgg16': fasterRCNN = vgg16(imdb.classes, pretrained=False, class_agnostic=args.class_agnostic) elif args.net == 'res101': fasterRCNN = resnet(imdb.classes, 101, pretrained=False, class_agnostic=args.class_agnostic) elif args.net == 'res50': fasterRCNN = resnet(imdb.classes, 50, pretrained=False, class_agnostic=args.class_agnostic) elif args.net == 'res152': fasterRCNN = resnet(imdb.classes, 152, pretrained=False, class_agnostic=args.class_agnostic) else: print("network is not defined") pdb.set_trace() fasterRCNN.create_architecture() print("load checkpoint %s" % (load_name)) checkpoint = torch.load(load_name) for key in ['RCNN_angle_score.weight', 'RCNN_angle_score.bias', 'RCNN_altitude_score.weight', 'RCNN_altitude_score.bias', 'RCNN_weather_score.weight', 'RCNN_weather_score.bias' ]: if key in checkpoint['model'].keys(): del checkpoint['model'][key] model_dict = fasterRCNN.state_dict() model_dict.update(checkpoint['model']) fasterRCNN.load_state_dict(model_dict) # fasterRCNN.load_state_dict(checkpoint['model']) if 'pooling_mode' in checkpoint.keys(): cfg.POOLING_MODE = checkpoint['pooling_mode'] print('load model successfully!') # initilize the tensor holder here. im_data = torch.FloatTensor(1) im_info = torch.FloatTensor(1) meta_data = torch.FloatTensor(1) num_boxes = torch.LongTensor(1) gt_boxes = torch.FloatTensor(1) # ship to cuda if args.cuda: im_data = im_data.cuda() im_info = im_info.cuda() meta_data = meta_data.cuda() num_boxes = num_boxes.cuda() gt_boxes = gt_boxes.cuda() # make variable im_data = Variable(im_data) im_info = Variable(im_info) meta_data = Variable(meta_data) num_boxes = Variable(num_boxes) gt_boxes = Variable(gt_boxes) if args.cuda: cfg.CUDA = True if args.cuda: fasterRCNN.cuda() start = time.time() max_per_image = 100 vis = args.vis if vis: thresh = 0.05 else: thresh = 0.0 save_name = 'faster_rcnn_10' num_images = len(imdb.image_index) print(num_images) all_boxes = [[[] for _ in xrange(num_images)] for _ in xrange(imdb.num_classes)] output_dir = get_output_dir(imdb, save_name) dataset = roibatchLoader(roidb, ratio_list, ratio_index, 1, \ imdb.num_classes, training=False, normalize=False) dataloader = torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=False, num_workers=4, pin_memory=True) data_iter = iter(dataloader) _t = {'im_detect': time.time(), 'misc': time.time()} det_file = os.path.join(output_dir, 'detections.pkl') fasterRCNN.eval() empty_array = np.transpose(np.array([[], [], [], [], []]), (1, 0)) for i in range(num_images): data = next(data_iter) im_data.data.resize_(data[0].size()).copy_(data[0]) im_info.data.resize_(data[1].size()).copy_(data[1]) meta_data.data.resize_(data[2].size()).copy_(data[2]) gt_boxes.data.resize_(data[3].size()).copy_(data[3]) num_boxes.data.resize_(data[4].size()).copy_(data[4]) det_tic = time.time() rois, cls_prob, bbox_pred, _, _, _ = fasterRCNN(im_data=im_data, im_info=im_info, meta_data=meta_data, gt_boxes=gt_boxes, num_boxes=num_boxes) scores = cls_prob.data boxes = rois.data[:, :, 1:5] if cfg.TEST.BBOX_REG: # Apply bounding-box regression deltas box_deltas = bbox_pred.data if cfg.TRAIN.BBOX_NORMALIZE_TARGETS_PRECOMPUTED: # Optionally normalize targets by a precomputed mean and stdev if args.class_agnostic: box_deltas = box_deltas.view(-1, 4) * torch.FloatTensor(cfg.TRAIN.BBOX_NORMALIZE_STDS).cuda() \ + torch.FloatTensor(cfg.TRAIN.BBOX_NORMALIZE_MEANS).cuda() box_deltas = box_deltas.view(1, -1, 4) else: box_deltas = box_deltas.view(-1, 4) * torch.FloatTensor(cfg.TRAIN.BBOX_NORMALIZE_STDS).cuda() \ + torch.FloatTensor(cfg.TRAIN.BBOX_NORMALIZE_MEANS).cuda() box_deltas = box_deltas.view(1, -1, 4 * len(imdb.classes)) pred_boxes = bbox_transform_inv(boxes, box_deltas, 1) pred_boxes = clip_boxes(pred_boxes, im_info.data, 1) else: # Simply repeat the boxes, once for each class pred_boxes = np.tile(boxes, (1, scores.shape[1])) pred_boxes /= data[1][0][2].item() scores = scores.squeeze() pred_boxes = pred_boxes.squeeze() det_toc = time.time() detect_time = det_toc - det_tic misc_tic = time.time() if vis: im = cv2.imread(imdb.image_path_at(i)) im2show = np.copy(im) for j in xrange(1, imdb.num_classes): inds = torch.nonzero(scores[:, j] > thresh).view(-1) # if there is det if inds.numel() > 0: cls_scores = scores[:, j][inds] _, order = torch.sort(cls_scores, 0, True) if args.class_agnostic: cls_boxes = pred_boxes[inds, :] else: cls_boxes = pred_boxes[inds][:, j * 4:(j + 1) * 4] cls_dets = torch.cat((cls_boxes, cls_scores.unsqueeze(1)), 1) # cls_dets = torch.cat((cls_boxes, cls_scores), 1) cls_dets = cls_dets[order] keep = nms(cls_dets, cfg.TEST.NMS) cls_dets = cls_dets[keep.view(-1).long()] if vis: im2show = vis_detections(im2show, imdb.classes[j], cls_dets.cpu().numpy(), 0.3) all_boxes[j][i] = cls_dets.cpu().numpy() else: all_boxes[j][i] = empty_array # Limit to max_per_image detections *over all classes* if max_per_image > 0: image_scores = np.hstack([all_boxes[j][i][:, -1] for j in xrange(1, imdb.num_classes)]) all_boxes[j][i] = np.concatenate( (all_boxes[j][i], np.tile(meta_data.cpu().numpy(), (len(image_scores), 1))), axis=1) if len(image_scores) > max_per_image: image_thresh = np.sort(image_scores)[-max_per_image] for j in xrange(1, imdb.num_classes): keep = np.where(all_boxes[j][i][:, -1] >= image_thresh)[0] all_boxes[j][i] = all_boxes[j][i][keep, :] misc_toc = time.time() nms_time = misc_toc - misc_tic sys.stdout.write('im_detect: {:d}/{:d} {:.3f}s {:.3f}s \r' \ .format(i + 1, num_images, detect_time, nms_time)) sys.stdout.flush() if vis: cv2.imwrite('result.png', im2show) pdb.set_trace() # cv2.imshow('test', im2show) # cv2.waitKey(0) with open(det_file, 'wb') as f: pickle.dump(all_boxes, f, pickle.HIGHEST_PROTOCOL) print('Evaluating detections') imdb.evaluate_detections(all_boxes, output_dir, nuisance_type=nuisance_type, baseline_method=args.is_baseline_method, ovthresh=args.ovthresh, memo=args.checkpoint_name) end = time.time() print("test time: %0.4fs" % (end - start))
"""jxgl.cqu.edu.cn 网址的路由 """ import logging import re import time from typing import List, Union, Dict, Optional from hashlib import md5 from bs4 import BeautifulSoup from requests import Session from ..model import Course, ExperimentCourse, Exam from . import HOST, HEADERS __all__ = ("Route", "Parsed", "Jxgl") class Route: home = "/home.aspx" mainform = "/MAINFRM.aspx" logintest = "/sys/Main_banner.aspx" class TeachingArrangement: "教学安排模块" # 个人课表 personal_courses = "/znpk/Pri_StuSel.aspx" # 查询个人课表 personal_courses_table = "/znpk/Pri_StuSel_rpt.aspx" # 考试安排表 personal_exams = "/kssw/stu_ksap.aspx" # 查询考试安排 personal_exams_table = "/kssw/stu_ksap_rpt.aspx" class Assignment: """成绩单 为了避开因未评教而拒绝提供成绩单查询的行为,通过老教务网接口获取数据。 """ # 发送 POST 获取会话 oldjw_login = "http://oldjw.cqu.edu.cn:8088/login.asp" # 全部成绩 whole_assignment = "http://oldjw.cqu.edu.cn:8088/score/sel_score/sum_score_sel.asp" class Parsed: class Assignment: class LoginIncorrectError(ValueError): pass @staticmethod def whole_assignment(u: str, p: str, kwargs: dict = {}) -> dict: """通过老教务网接口获取成绩单。 登录密码和新教务网不同,如果没修改过,应为身份证后 6 位。 :param str u: 学号 :param str p: 登录密码 :param dict kwargs: (可选) 连接时传递给 requests 库的额外参数(详见 requests 库中的 request) 包含字段:: 学号(str) 姓名(str) 专业(str) GPA(str) 查询时间(str) 详细(List[dict]) 课程编码(str) 课程名称(str) 成绩(str) 学分(str) 选修(str) 类别(str) 教师(str) 考别(str) 备注(str) 时间(str) """ login_form = { # 学号,非统一身份认证号 "username": u, # 老教务网的密码和新教务不同,一般为身份证后 6 位。 "password": p, # 不知道干啥的,好像也没用 "submit1.x": 20, "submit1.y": 22, # 院系快速导航 "select1": "#" } session = Session() resp = session.post(Route.Assignment.oldjw_login, data=login_form, **kwargs) resp_text = resp.content.decode("gbk") if "你的密码不正确,请到教务处咨询(学生密码错误请向学院教务人员或辅导员查询)!" in resp_text: raise Parsed.Assignment.LoginIncorrectError( "学号或密码错误,老教务处的密码默认为身份证后六位," # "或到教务处咨询(学生密码错误请向学院教务人员或辅导员查询)!" ) assignments = session.get(Route.Assignment.whole_assignment, **kwargs).content.decode("gbk") assparse = BeautifulSoup(assignments, "lxml") header_text = str(assparse.select_one("td > p:nth-child(2)")) header = [t for t in (re.sub(r"</b>|</?p>|\s", "", t) for t in header_text.split("<b>")) if t != ""] details = [] for tr in assparse.select("tr")[3:-1]: tds = [re.sub(r"\s", "", td.text) for td in tr.select("td")] data = { "课程编码": tds[1], "课程名称": tds[2], "成绩": tds[3], "学分": tds[4], "选修": tds[5], "类别": tds[6], "教师": tds[7], "考别": tds[8], "备注": tds[9], "时间": tds[10], } details.append(data) 查询时间 = re.search(r"查询时间:(2\d{3}-\d{1,2}-\d{1,2} \d{1,2}:\d{1,2}:\d{1,2})", assignments) table = { "学号": header[0][3:], "姓名": header[1][3:], "专业": header[2][3:], "GPA": header[3][4:], "查询时间": 查询时间[1] if 查询时间 is not None else "Unknown", "详细": details, } return table class Jxgl(): """与教学管理系统交互 :param str username: 教学管理系统的用户名(学号) :param str password: 教学管理系统的密码 :param str jxglUrl: (可选) 教学管理系统的地址(含协议名及域名,如"http://jxgl.cqu.edu.cn") :param Session session: (可选) 自定义 Session 对象 :param dict headers: (可选) 访问教学管理系统使用的请求头 创建后不会自动登陆,需要使用 login 方法来登陆 """ class NoUserError(ValueError): "使用了不存在的用户名的登陆错误时抛出的异常" pass class LoginIncorrectError(ValueError): "用户名或密码不正确的登陆错误时抛出的异常" pass class LoginExpired(Exception): "登陆 cookies 过期或尚未登陆时抛出的异常" pass class UnregisteredError(Exception): "学生未注册(开学期间可能出现已在辅导员处注册但依然出现此错误的情况)时抛出抛出的异常" pass jxglUrl: str username: str password: str session: Session def login(self, kwargs: dict = {}) -> None: """向主页发出请求,发送帐号密码表单,获取 cookie :param dict kwargs: (可选) 连接时传递给 requests 库的额外参数(详见 requests 库中的 request) 帐号或密码错误则抛出异常 NoUserError 或 LoginIncorrectError; 学生未注册(开学期间可能出现已在辅导员处注册但依然出现此错误的情况)则抛出 UnregisteredError """ # 初始化 Cookie url = f"{self.jxglUrl}/home.aspx" resp = self.session.get(url, **kwargs) # fix: 偶尔不需要设置 cookie, 直接就进入主页了 # 这是跳转页 JavaScript 的等效代码 pattern = re.compile(r"(?<=document.cookie=')DSafeId=([A-Z0-9]+);(?=';)") if pattern.search(resp.text): first_cookie = re.search(pattern, resp.text)[1] self.session.cookies.set("DSafeId", first_cookie) time.sleep(0.680) resp = self.session.get(url, **kwargs) new_cookie = resp.headers.get("set-cookie", self.session.cookies.get_dict()) c = { 1: re.search("(?<=ASP.NET_SessionId=)([a-zA-Z0-9]+)(?=;)", new_cookie)[1], 2: re.search("(?<=_D_SID=)([A-Z0-9]+)(?=;)", new_cookie)[1] } self.session.cookies.set("ASP.NET_SessionId", c[1]) self.session.cookies.set("_D_SID", c[2]) # 发送表单 url = f"{self.jxglUrl}/_data/index_login.aspx" html = BeautifulSoup(self.session.get(url, **kwargs).text, "lxml") login_form = { "__VIEWSTATE": html.select_one("#Logon > input[name=__VIEWSTATE]")["value"], "__VIEWSTATEGENERATOR": html.select_one("#Logon > input[name=__VIEWSTATEGENERATOR]")["value"], "Sel_Type": "STU", "txt_dsdsdsdjkjkjc": self.username, # 学号 "txt_dsdfdfgfouyy": "", # 密码, 实际上的密码加密后赋值给 efdfdfuuyyuuckjg "txt_ysdsdsdskgf": "", "pcInfo": "", "typeName": "", "aerererdsdxcxdfgfg": "", "efdfdfuuyyuuckjg": self._chkpwd(self.username, self.password), } page_text = self.session.post(url, data=login_form, **kwargs).content.decode(encoding='GBK') if "正在加载权限数据..." in page_text: return if "账号或密码不正确!请重新输入。" in page_text: raise self.LoginIncorrectError if "该账号尚未分配角色!" in page_text: raise self.NoUserError if "alert('您尚未报到注册成功,请到学院咨询并办理相关手续!" in page_text: raise self.UnregisteredError else: raise ValueError("意料之外的登陆返回页面") def __init__( self, username: str, password: str, jxglUrl: str = HOST.PREFIX, session: Optional[Session] = None, headers: dict = HEADERS ) -> None: self.username: str = username self.password: str = password self.jxglUrl: str = jxglUrl self.session: Session = Session() if session is None else session self.session.headers.update(HEADERS) def getExamsTerms(self, kwargs: dict = {}) -> Dict[int, str]: """获取考试安排的学期列表 :param dict kwargs: (可选) 连接时传递给 requests 库的额外参数(详见 requests 库中的 request) 返回一个字典,结构:{学期编号(int): 学期名称(str)} 注:似乎只会有一个学期 """ url: str = f"{self.jxglUrl}{Route.TeachingArrangement.personal_exams}" return self.parseExamsTerms(self.session.get(url, **kwargs).text) @staticmethod def parseExamsTerms(htmlText: str) -> Dict[int, str]: """解析考试安排学期列表的 html 文本""" el_学年学期 = BeautifulSoup(htmlText, "lxml").select("select[name=sel_xnxq] > option") return {int(i.attrs["value"]): i.text for i in el_学年学期} def getCoursesTerms(self, kwargs: dict = {}) -> Dict[int, str]: """获取课程表的学期列表 :param dict kwargs: (可选) 连接时传递给 requests 库的额外参数(详见 requests 库中的 request) 返回一个字典,结构:{学期编号(int): 学期名称(str)} """ url: str = f"{self.jxglUrl}{Route.TeachingArrangement.personal_courses}" return self.parseCoursesTerms(self.session.get(url, **kwargs).text) @staticmethod def parseCoursesTerms(htmlText: str) -> Dict[int, str]: """解析课程表学期列表的 html 文本""" el_学年学期 = BeautifulSoup(htmlText, "lxml").select("select[name=Sel_XNXQ] > option") return {int(i.attrs["value"]): i.text for i in el_学年学期} def getCourses(self, termId: int, kwargs: dict = {}) -> List[Union[Course, ExperimentCourse]]: """获取指定学期的课程表 :param int termId: 学期编号,包含在 getCoursesTerms 方法的返回值中 :param dict kwargs: (可选) 连接时传递给 requests 库的额外参数(详见 requests 库中的 request) """ url = f"{self.jxglUrl}{Route.TeachingArrangement.personal_courses_table}" resp = self.session.post(url, data={"Sel_XNXQ": termId, "px": 0, "rad": "on"}, **kwargs) if ("您正查看的此页已过期" in resp.text): raise self.LoginExpired return self.parseCourses(resp.text) @staticmethod def parseCourses(htmlText: str) -> List[Union[Course, ExperimentCourse]]: """解析课程表的 html 文本""" listing = BeautifulSoup(htmlText, "lxml").select("table > tbody > tr") return [Jxgl._makeCourse(i) for i in listing] def getExams(self, termId: int, kwargs: dict = {}) -> List[Exam]: """获取指定学期的考试安排 :param int termId: 学期编号,包含在 getExamsTerms 方法的返回值中 :param dict kwargs: (可选) 连接时传递给 requests 库的额外参数(详见 requests 库中的 request) """ url = f"{self.jxglUrl}{Route.TeachingArrangement.personal_exams_table}" resp = self.session.post(url, data={"sel_xnxq": termId}, **kwargs) if ("您正查看的此页已过期" in resp.text): raise self.LoginExpired return self.parseExams(resp.text) @staticmethod def parseExams(htmlText: str) -> List[Exam]: """解析考试安排的 html 文本""" listing = BeautifulSoup(htmlText, "lxml").select("table[ID=ID_Table] > tr") return [Jxgl._makeExam(i) for i in listing] def isLogined(self, kwargs: dict = {}) -> bool: """判断是否处于登陆状态 :param dict kwargs: (可选) 连接时传递给 requests 库的额外参数(详见 requests 库中的 request) 处于登陆状态则返回 True,否则返回 False """ return self.session.get(f"{self.jxglUrl}{Route.logintest}", allow_redirects=False, **kwargs).status_code == 200 @staticmethod def _makeExam(tr: BeautifulSoup) -> Exam: td = tr.select("td") return Exam( identifier=td[1].text, score=float(td[2].text), classifier=td[3].text, exam_type=td[4].text, time=td[5].text, location=td[6].text, seat_no=int(td[7].text) ) @staticmethod def _makeCourse(tr: BeautifulSoup) -> Union[Course, ExperimentCourse]: "根据传入的 tr 元素,获取对应的 Course 对象" td = tr.select("td") # 第一列是序号,忽略 if len(td) == 13: return Course( identifier=td[1].text if td[1].text != "" else td[1].attrs.get("hidevalue", ''), score=float(td[2].text if td[2].text != "" else td[2].attrs.get("hidevalue", '')), time_total=float(td[3].text if td[3].text != "" else td[3].attrs.get("hidevalue", '')), time_teach=float(td[4].text if td[4].text != "" else td[4].attrs.get("hidevalue", '')), time_practice=float(td[5].text if td[5].text != "" else td[5].attrs.get("hidevalue", '')), classifier=td[6].text if td[6].text != "" else td[6].attrs.get("hidevalue", ''), teach_type=td[7].text if td[7].text != "" else td[7].attrs.get("hidevalue", ''), exam_type=td[8].text if td[8].text != "" else td[8].attrs.get("hidevalue", ''), teacher=td[9].text if td[9].text != "" else td[9].attrs.get("hidevalue", ''), week_schedule=td[10].text, day_schedule=td[11].text, location=td[12].text ) elif len(td) == 12: return ExperimentCourse( identifier=td[1].text if td[1].text != "" else td[1].attrs.get("hidevalue", ''), score=float(td[2].text if td[2].text != "" else td[2].attrs.get("hidevalue", '')), time_total=float(td[3].text if td[3].text != "" else td[3].attrs.get("hidevalue", '')), time_teach=float(td[4].text if td[4].text != "" else td[4].attrs.get("hidevalue", '')), time_practice=float(td[5].text if td[5].text != "" else td[5].attrs.get("hidevalue", '')), project_name=td[6].text if td[6].text != "" else td[6].attrs.get("hidevalue", ''), teacher=td[7].text if td[7].text != "" else td[7].attrs.get("hidevalue", ''), hosting_teacher=td[8].text if td[8].text != "" else td[8].attrs.get("hidevalue", ''), week_schedule=td[9].text if td[9].text != "" else td[9].attrs.get("hidevalue", ''), day_schedule=td[10].text if td[10].text != "" else td[10].attrs.get("hidevalue", ''), location=td[11].text if td[11].text != "" else td[11].attrs.get("hidevalue", ''), ) else: logging.error("未知的数据结构") logging.error(tr.prettify()) raise ValueError("未知的数据结构") @staticmethod def _md5(string: str) -> str: return md5(string.encode()).hexdigest().upper() @staticmethod def _chkpwd(username: str, password: str) -> str: "赋值给: efdfdfuuyyuuckjg" schoolcode = "10611" return Jxgl._md5(username + Jxgl._md5(password)[0:30].upper() + schoolcode)[0:30].upper()
"""Module containing the ticket for flights serializers""" from rest_framework import serializers from ticket.models import Ticket from flight.serializers import FlightDetailSerializer class TicketSerializer(serializers.ModelSerializer): """Class to handle the serializing and deserializing of ticket data""" flight = FlightDetailSerializer(many=True, read_only=True) class Meta: """Class to add additional information to the serializer""" model = Ticket fields = ['id', 'ticket_class', 'cost', 'booked', 'owners', 'created_at','updated_at','deleted_at', 'flight'] extra_kwargs = {'flight': {'required': False}}
from collections import Counter from unittest import mock, TestCase import numpy as np from ngs_tools import sequence from . import mixins class TestSequence(mixins.TestMixin, TestCase): def test_alignment_to_cigar(self): self.assertEqual('4D', sequence.alignment_to_cigar('ACGT', '----')) self.assertEqual('1M2D1M', sequence.alignment_to_cigar('ACGT', 'A--T')) self.assertEqual('4I', sequence.alignment_to_cigar('----', 'AAAT')) self.assertEqual( '3M1X', sequence.alignment_to_cigar('ACGT', 'ACNV', mismatch=True) ) with self.assertRaises(sequence.SequenceError): sequence.alignment_to_cigar('AAAA', 'AAA') with self.assertRaises(sequence.SequenceError): sequence.alignment_to_cigar('----', '----') def test_call_consensus_with_qualities(self): with open(self.sequences_path, 'r') as f1, open(self.qualities_path, 'r') as f2: sequences = [line.strip() for line in f1 if not line.isspace()] qualities = [line.strip() for line in f2 if not line.isspace()] consensuses, assignments = sequence.call_consensus_with_qualities( sequences, qualities ) counts = Counter(assignments) # Check that assignments are ordered self.assertEqual( sorted(counts.values(), reverse=True), [counts[i] for i in range(len(counts))] ) common = counts.most_common(2) self.assertTrue(common[0][1] > 50) self.assertTrue(common[1][1] > 25) def test_call_consensus_with_qualities_allow_ambiguous(self): sequences = ['AAAC', 'AAAG'] qualities = ['AAAA', 'AAAA'] consensuses, assignments = sequence.call_consensus_with_qualities( sequences, qualities, allow_ambiguous=True ) self.assertEqual(consensuses, ['AAAS']) np.testing.assert_equal(assignments, [0, 0]) def test_call_consensus_with_qualities_return_qualities(self): with open(self.sequences_path, 'r') as f1, open(self.qualities_path, 'r') as f2: sequences = [line.strip() for line in f1 if not line.isspace()] qualities = [line.strip() for line in f2 if not line.isspace()] consensuses, assignments, consensus_qualities = sequence.call_consensus_with_qualities( sequences, qualities, return_qualities=True ) counts = Counter(assignments) common = counts.most_common(2) self.assertTrue(common[0][1] > 50) self.assertTrue(common[1][1] > 25) def test_levenshtein_distance(self): self.assertEqual(1, sequence.levenshtein_distance('AC', 'AT')) self.assertEqual(0, sequence.levenshtein_distance('AT', 'AN')) self.assertEqual(2, sequence.levenshtein_distance('XZ', 'ZX')) def test_levenshtein_distance_raises_error(self): with mock.patch('ngs_tools.sequence.LEVENSHTEIN_DISTANCE_ALIGNER', None): with self.assertRaises(sequence.SequenceError): sequence.levenshtein_distance('AC', 'AT') def test_hamming_distance(self): self.assertEqual(0, sequence.hamming_distance('ACTG', 'ACTG')) self.assertEqual(1, sequence.hamming_distance('ACTG', 'ACTT')) self.assertEqual(0, sequence.hamming_distance('ACTG', 'ACTN')) def test_hamming_distances(self): np.testing.assert_equal( np.array([0, 1, 0]), sequence.hamming_distances('ACTG', ['ACTG', 'ACTT', 'ACTN']) ) def test_hamming_distance_matrix(self): np.testing.assert_equal( np.array([[0, 1, 0], [1, 0, 0], [0, 0, 0]]), sequence.hamming_distance_matrix(['ACTG', 'ACTT', 'ACTN'], ['ACTG', 'ACTT', 'ACTN']) ) def test_pairwise_hamming_distances(self): np.testing.assert_equal( np.array([[0, 1, 0], [1, 0, 0], [0, 0, 0]]), sequence.pairwise_hamming_distances(['ACTG', 'ACTT', 'ACTN']) ) def test_correct_sequences_to_whitelist(self): sequences = ['ACTG', 'ACTT', 'AGCC', 'TTTT'] qualities = ['AAAA', 'AAAA', 'AAAA', 'AAAA'] whitelist = ['ACTG', 'TTTN'] with mock.patch('ngs_tools.sequence.utils.progress', mixins.tqdm_mock),\ mock.patch('ngs_tools.sequence.progress', mixins.tqdm_mock): corrections = sequence.correct_sequences_to_whitelist( sequences, qualities, whitelist ) self.assertEqual(['ACTG', 'ACTG', None, 'TTTN'], corrections) def test_correct_sequences_to_whitelist_simple(self): sequences = ['ACTG', 'ACTT', 'AGCC', 'TTTT'] whitelist = ['ACTG', 'TTTN'] with mock.patch('ngs_tools.sequence.utils.progress', mixins.tqdm_mock),\ mock.patch('ngs_tools.sequence.progress', mixins.tqdm_mock): corrections = sequence.correct_sequences_to_whitelist_simple( sequences, whitelist ) self.assertEqual({ 'ACTG': 'ACTG', 'ACTT': 'ACTG', 'AGCC': None, 'TTTT': 'TTTN' }, corrections)