repo_name
stringlengths
9
75
topic
stringclasses
30 values
issue_number
int64
1
203k
title
stringlengths
1
976
body
stringlengths
0
254k
state
stringclasses
2 values
created_at
stringlengths
20
20
updated_at
stringlengths
20
20
url
stringlengths
38
105
labels
listlengths
0
9
user_login
stringlengths
1
39
comments_count
int64
0
452
babysor/MockingBird
pytorch
764
如何解决colab炼丹每次都要上传数据集预处理数据集还爆磁盘的蛋疼问题
许多同鞋因为家里设备不佳训练模型效果不好,不得不去世界最大乞丐炼丹聚集地colab上训练。但是对于无法扩容google drive和升级colab的同鞋来说,上传数据集真的如同地狱一般,网速又慢空间又不够,而且每次重置都要上传,预处理令人头疼。我耗时9天终于解决了这个问题,现在给各位同学分享我的解决方案。 首先要去kaggle这个网站上面注册一个账号,然后获取token 我已经把预处理了的数据集(用的aidatatang_200zh)上传在上面了,但是下载数据集需要token,token需要注册账号,具体获取token的方法请自行百度,在此不过多赘述。 然后打开colab 修改-> 笔记本设置->运行时把 None 改成 GPU 输入以下代码: ``` !pip install kaggle import json token = {"username":"你的账号","key":"你获取到的token"} with open('/content/kaggle.json', 'w') as file: json.dump(token, file) !mkdir -p ~/.kaggle !cp /content/kaggle.json ~/.kaggle/ !chmod 600 ~/.kaggle/kaggle.json !kaggle config set -n path -v /content ``` 第三行请根据之前获取到的token填写 这一步是准备好kaggle命令行 然后是下载数据集并解压 ``` !kaggle datasets download -d bjorndido/sv2ttspart1 !unzip "/content/datasets/bjorndido/sv2ttspart1/sv2ttspart1.zip" -d "/content/aidatatang_200zh" !rm -rf /content/datasets !kaggle datasets download -d bjorndido/sv2ttspart2 !unzip "/content/datasets/bjorndido/sv2ttspart2/sv2ttspart2.zip" -d "/content/aidatatang_200zh" !rm -rf /content/datasets ``` 为了怕某些童鞋用和我一样的免费版,如果从下载未处理的数据集开始磁盘要爆炸,所以我把预处理过的数据集上传到kaggle了 而且解压后会自己删掉zip,非常滴银杏 实测下载速度能达到200MB/s,网慢点也有50MB/s,非常滴快 这一步要不了10分钟就可以弄好了 ``` !git clone https://github.com/babysor/MockingBird.git !pip install -r /content/MockingBird/requirements.txt git仓库,下载依赖,这一步不多说 ``` 然后改hparams ``` %%writefile /content/MockingBird/synthesizer/hparams.py import ast import pprint import json class HParams(object): def __init__(self, **kwargs): self.__dict__.update(kwargs) def __setitem__(self, key, value): setattr(self, key, value) def __getitem__(self, key): return getattr(self, key) def __repr__(self): return pprint.pformat(self.__dict__) def parse(self, string): # Overrides hparams from a comma-separated string of name=value pairs if len(string) > 0: overrides = [s.split("=") for s in string.split(",")] keys, values = zip(*overrides) keys = list(map(str.strip, keys)) values = list(map(str.strip, values)) for k in keys: self.__dict__[k] = ast.literal_eval(values[keys.index(k)]) return self def loadJson(self, dict): print("\Loading the json with %s\n", dict) for k in dict.keys(): if k not in ["tts_schedule", "tts_finetune_layers"]: self.__dict__[k] = dict[k] return self def dumpJson(self, fp): print("\Saving the json with %s\n", fp) with fp.open("w", encoding="utf-8") as f: json.dump(self.__dict__, f) return self hparams = HParams( ### Signal Processing (used in both synthesizer and vocoder) sample_rate = 16000, n_fft = 800, num_mels = 80, hop_size = 200, # Tacotron uses 12.5 ms frame shift (set to sample_rate * 0.0125) win_size = 800, # Tacotron uses 50 ms frame length (set to sample_rate * 0.050) fmin = 55, min_level_db = -100, ref_level_db = 20, max_abs_value = 4., # Gradient explodes if too big, premature convergence if too small. preemphasis = 0.97, # Filter coefficient to use if preemphasize is True preemphasize = True, ### Tacotron Text-to-Speech (TTS) tts_embed_dims = 512, # Embedding dimension for the graphemes/phoneme inputs tts_encoder_dims = 256, tts_decoder_dims = 128, tts_postnet_dims = 512, tts_encoder_K = 5, tts_lstm_dims = 1024, tts_postnet_K = 5, tts_num_highways = 4, tts_dropout = 0.5, tts_cleaner_names = ["basic_cleaners"], tts_stop_threshold = -3.4, # Value below which audio generation ends. # For example, for a range of [-4, 4], this # will terminate the sequence at the first # frame that has all values < -3.4 ### Tacotron Training tts_schedule = [(2, 1e-3, 10_000, 32), # Progressive training schedule (2, 5e-4, 15_000, 32), # (r, lr, step, batch_size) (2, 2e-4, 20_000, 32), # (r, lr, step, batch_size) (2, 1e-4, 30_000, 32), # (2, 5e-5, 40_000, 32), # (2, 1e-5, 60_000, 32), # (2, 5e-6, 160_000, 32), # r = reduction factor (# of mel frames (2, 3e-6, 320_000, 32), # synthesized for each decoder iteration) (2, 1e-6, 640_000, 32)], # lr = learning rate tts_clip_grad_norm = 1.0, # clips the gradient norm to prevent explosion - set to None if not needed tts_eval_interval = 500, # Number of steps between model evaluation (sample generation) # Set to -1 to generate after completing epoch, or 0 to disable tts_eval_num_samples = 1, # Makes this number of samples ## For finetune usage, if set, only selected layers will be trained, available: encoder,encoder_proj,gst,decoder,postnet,post_proj tts_finetune_layers = [], ### Data Preprocessing max_mel_frames = 900, rescale = True, rescaling_max = 0.9, synthesis_batch_size = 16, # For vocoder preprocessing and inference. ### Mel Visualization and Griffin-Lim signal_normalization = True, power = 1.5, griffin_lim_iters = 60, ### Audio processing options fmax = 7600, # Should not exceed (sample_rate // 2) allow_clipping_in_normalization = True, # Used when signal_normalization = True clip_mels_length = True, # If true, discards samples exceeding max_mel_frames use_lws = False, # "Fast spectrogram phase recovery using local weighted sums" symmetric_mels = True, # Sets mel range to [-max_abs_value, max_abs_value] if True, # and [0, max_abs_value] if False trim_silence = True, # Use with sample_rate of 16000 for best results ### SV2TTS speaker_embedding_size = 256, # Dimension for the speaker embedding silence_min_duration_split = 0.4, # Duration in seconds of a silence for an utterance to be split utterance_min_duration = 1.6, # Duration in seconds below which utterances are discarded use_gst = True, # Whether to use global style token use_ser_for_gst = True, # Whether to use speaker embedding referenced for global style token ) ``` 我用的batch size是32,同鞋们可以根据情况自行更改 开始训练 ``` %cd "/content/MockingBird/" !python synthesizer_train.py train "/content/aidatatang_200zh" -m /content/drive/MyDrive/ ``` 注意,开始这个步骤前请先挂载谷歌云盘,不想挂载的就把-m后面的路径改了 我选择drive是因为下次训练又能继续上传训练的进度继续训练 然后就是欢快的白嫖时间了 氪金的同鞋可以运行!nvidia-smi查看显卡信息,白嫖版的都是tesla t4 16g显存 实测9k步的时候开始出现注意力曲线,loss值为0.45 注意!白嫖版的用户长时间不碰电脑colab会自动断开 再次打开环境会还原成最初的样子 这个时候选择drive保存的优势就体现出来了:不用担心模型重置被删掉 第一次写,写得不好请见谅 希望这篇教程可以帮助到你们
open
2022-10-10T08:52:38Z
2023-03-31T12:02:28Z
https://github.com/babysor/MockingBird/issues/764
[]
HexBanana
10
pyppeteer/pyppeteer
automation
254
Installation in docker fails
I am using Ubuntu bionic container (18.04) ``` Step 19/29 : RUN python3 -m venv . ---> Using cache ---> 921d12b1ff09 Step 20/29 : RUN python3 -m pip install setuptools ---> Using cache ---> 112749c3d9f4 Step 21/29 : RUN python3 -m pip install -U git+https://github.com/pyppeteer/pyppeteer@dev ---> Running in d9ff781c3217 Collecting git+https://github.com/pyppeteer/pyppeteer@dev Cloning https://github.com/pyppeteer/pyppeteer (to dev) to /tmp/pip-d7qe1_0r-build Complete output from command python setup.py egg_info: Traceback (most recent call last): File "<string>", line 1, in <module> File "/usr/lib/python3.6/tokenize.py", line 452, in open buffer = _builtin_open(filename, 'rb') FileNotFoundError: [Errno 2] No such file or directory: '/tmp/pip-d7qe1_0r-build/setup.py' ```
closed
2021-05-11T06:49:12Z
2021-05-11T08:03:34Z
https://github.com/pyppeteer/pyppeteer/issues/254
[]
larytet
1
polarsource/polar
fastapi
5,156
API Reference docs: validate/activate/deactivate license keys don't need a token
### Discussed in https://github.com/orgs/polarsource/discussions/5155 The overlay matches every endpoints: https://github.com/polarsource/polar/blob/37646b3cab3219369bd48b3f105300893515ad9c/sdk/overlays/security.yml#L6-L10 We should exclude those endpoints.
closed
2025-03-04T16:01:26Z
2025-03-04T16:42:42Z
https://github.com/polarsource/polar/issues/5156
[ "docs" ]
frankie567
0
tox-dev/tox
automation
3,249
tox seems to ignore part of tox.ini file
## Issue This PR of mine is failing: https://github.com/open-telemetry/opentelemetry-python/pull/3746 The issue seems to be that `tox` ignores part of the `tox.ini` file, from [this](https://github.com/open-telemetry/opentelemetry-python/pull/3746/files#diff-ef2cef9f88b4fe09ca3082140e67f5ad34fb65fb6e228f119d3812261ae51449R128) line onwards (including that line). When I run `tox -rvvve py38-proto4-opentelemetry-exporter-otlp-proto-grpc` tests fail because certain test requirements that would have been installed if that line was executed are not installed (of course, because that line was not executed). Other tests fail (the PR has many jobs failing besides `py38-proto4-opentelemetry-exporter-otlp-proto-grpc`) as well because they need lines in the `tox.ini` file that are below the line mentioned before. When I run `tox -rvvve py38-proto3-opentelemetry-exporter-otlp-proto-grpc` everything seems to work fine. Here is the output of both commands: [`tox -rvvve py38-proto3-opentelemetry-exporter-otlp-proto-grpc`](https://gist.github.com/ocelotl/2690254b7fc2aa0b04af054e04248949#file-tox-rvvve-py38-proto3-opentelemetry-exporter-otlp-proto-grpc-txt) [`tox -rvvve py38-proto4-opentelemetry-exporter-otlp-proto-grpc`](https://gist.github.com/ocelotl/2690254b7fc2aa0b04af054e04248949#file-tox-rvvve-py38-proto4-opentelemetry-exporter-otlp-proto-grpc-txt) The issue seems to be that `tox` is not executing [this](https://github.com/open-telemetry/opentelemetry-python/pull/3746/files#diff-ef2cef9f88b4fe09ca3082140e67f5ad34fb65fb6e228f119d3812261ae51449R128) line nor anything below that line. For example, when running `tox -rvvve py38-proto3-opentelemetry-exporter-otlp-proto-grpc`, `pip install -r ... test-requirements-0.txt` gets called (line [226](https://gist.github.com/ocelotl/2690254b7fc2aa0b04af054e04248949#file-tox-rvvve-py38-proto3-opentelemetry-exporter-otlp-proto-grpc-txt-L226)): ``` py38-proto3-opentelemetry-exporter-otlp-proto-grpc: 15305 I exit 0 (9.53 seconds) /home/tigre/github/ocelotl/opentelemetry-python> pip install /home/tigre/github/ocelotl/opentelemetry-python/opentelemetry-api /home/tigre/github/ocelotl/opentelemetry-python/opentelemetry-semantic-conventions /home/tigre/github/ocelotl/opentelemetry-python/opentelemetry-sdk /home/tigre/github/ocelotl/opentelemetry-python/tests/opentelemetry-test-utils pid=433928 [tox/execute/api.py:280] py38-proto3-opentelemetry-exporter-otlp-proto-grpc: 15306 W commands_pre[2]> pip install -r /home/tigre/github/ocelotl/opentelemetry-python/exporter/opentelemetry-exporter-otlp-proto-grpc/test-requirements-0.txt [tox/tox_env/api.py:425] ``` But when running `tox -rvvve py38-proto4-opentelemetry-exporter-otlp-proto-grpc` it doesn't, it jumps straight to calling `pytest` (line [226](https://gist.github.com/ocelotl/2690254b7fc2aa0b04af054e04248949#file-tox-rvvve-py38-proto4-opentelemetry-exporter-otlp-proto-grpc-txt-L226)): ``` py38-proto4-opentelemetry-exporter-otlp-proto-grpc: 16148 I exit 0 (10.33 seconds) /home/tigre/github/ocelotl/opentelemetry-python> pip install /home/tigre/github/ocelotl/opentelemetry-python/opentelemetry-api /home/tigre/github/ocelotl/opentelemetry-python/opentelemetry-semantic-conventions /home/tigre/github/ocelotl/opentelemetry-python/opentelemetry-sdk /home/tigre/github/ocelotl/opentelemetry-python/tests/opentelemetry-test-utils pid=436384 [tox/execute/api.py:280] py38-proto4-opentelemetry-exporter-otlp-proto-grpc: 16149 W commands[0]> pytest /home/tigre/github/ocelotl/opentelemetry-python/exporter/opentelemetry-exporter-otlp-proto-grpc/tests [tox/tox_env/api.py:425] ``` ## Environment Provide at least: - OS: `lsb_release -a` ``` No LSB modules are available. Distributor ID: Ubuntu Description: Ubuntu 22.04.3 LTS Release: 22.04 Codename: jammy ``` `tox --version` ``` 4.14.1 from /home/tigre/.pyenv/versions/3.11.2/lib/python3.11/site-packages/tox/__init__.py ``` `pip list` ``` Package Version Editable project location ---------------------------------- ---------- ----------------------------------------------------------------- argcomplete 3.0.8 asttokens 2.2.1 attrs 23.1.0 autopep8 2.0.3 backcall 0.2.0 backoff 2.2.1 beartype 0.16.4 behave 1.2.6 black 23.3.0 bleach 6.0.0 boolean.py 4.0 build 0.10.0 cachetools 5.3.2 certifi 2022.12.7 chardet 5.2.0 charset-normalizer 3.1.0 click 8.1.3 cmake 3.26.3 colorama 0.4.6 colorlog 6.7.0 commonmark 0.9.1 cyclonedx-bom 3.11.7 cyclonedx-python-lib 3.1.5 decorator 5.1.1 distlib 0.3.8 docutils 0.20.1 elementpath 4.1.5 executing 1.2.0 fancycompleter 0.9.1 filelock 3.13.1 flake8 6.0.0 fsspec 2023.4.0 gensim 4.3.1 grpcio 1.59.0 grpcio-tools 1.59.0 huggingface-hub 0.14.1 idna 3.4 importlib-metadata 6.0.1 iniconfig 2.0.0 ipdb 0.13.11 ipython 8.10.0 isodate 0.6.1 isort 5.12.0 jedi 0.18.2 Jinja2 3.1.2 joblib 1.2.0 jsonschema 4.20.0 jsonschema-specifications 2023.11.1 license-expression 30.1.1 lit 16.0.2 Markdown 3.5.1 marko 1.3.0 MarkupSafe 2.1.2 matplotlib-inline 0.1.6 mccabe 0.7.0 mistletoe 1.3.0 mpmath 1.3.0 mypy-extensions 1.0.0 networkx 3.1 nltk 3.8.1 nox 2023.4.22 numpy 1.24.3 nvidia-cublas-cu11 11.10.3.66 nvidia-cuda-cupti-cu11 11.7.101 nvidia-cuda-nvrtc-cu11 11.7.99 nvidia-cuda-runtime-cu11 11.7.99 nvidia-cudnn-cu11 8.5.0.96 nvidia-cufft-cu11 10.9.0.58 nvidia-curand-cu11 10.2.10.91 nvidia-cusolver-cu11 11.4.0.1 nvidia-cusparse-cu11 11.7.4.91 nvidia-nccl-cu11 2.14.3 nvidia-nvtx-cu11 11.7.91 openspecification 0.0.1 opentelemetry-api 0.0.0 /home/tigre/github/ocelotl/opentelemetry-python/opentelemetry-api opentelemetry-sdk 0.0.0 opentelemetry-semantic-conventions 0.0.0 packageurl-python 0.11.2 packaging 23.2 pandas 2.0.1 parse 1.19.1 parse-type 0.6.2 parso 0.8.3 pathspec 0.11.1 pdbpp 0.10.3 pexpect 4.8.0 pickleshare 0.7.5 Pillow 9.5.0 pip 24.0 pip-requirements-parser 32.0.1 platformdirs 4.2.0 pluggy 1.4.0 ply 3.11 prompt-toolkit 3.0.36 protobuf 4.24.3 psycopg2-binary 2.9.9 ptyprocess 0.7.0 pure-eval 0.2.2 py 1.11.0 pycodestyle 2.10.0 pyflakes 3.0.1 Pygments 2.14.0 pyparsing 3.1.1 pyproject-api 1.6.1 pyproject_hooks 1.0.0 pyrepl 0.9.0 pytest 7.3.1 python-dateutil 2.8.2 python-frontmatter 1.1.0 pytz 2023.3 PyYAML 5.1 rdflib 7.0.0 readme-renderer 36.0 referencing 0.31.0 regex 2023.5.4 requests 2.29.0 restview 3.0.1 rpds-py 0.13.1 sacremoses 0.0.53 sbom 2023.10.7 scikit-learn 1.3.0 scipy 1.10.1 semantic-version 2.10.0 sentence-transformers 2.2.2 sentencepiece 0.1.99 setuptools 65.5.0 six 1.16.0 smart-open 6.3.0 sortedcontainers 2.4.0 spdx-tools 0.8.2 specification_parser 0.0.1 stack-data 0.6.2 sympy 1.11.1 threadpoolctl 3.1.0 tokenizers 0.13.3 toml 0.10.2 torch 2.0.0 torchvision 0.15.1 tox 4.14.1 tqdm 4.65.0 traitlets 5.9.0 transformers 4.28.1 triton 2.0.0 typer 0.9.0 typing_extensions 4.5.0 tzdata 2023.3 uritools 4.0.2 urllib3 1.26.15 virtualenv 20.25.0 wcwidth 0.2.6 webencodings 0.5.1 Werkzeug 0.16.1 wheel 0.40.0 wmctrl 0.5 wrapt 1.15.0 xmlschema 2.5.0 xmltodict 0.13.0 zipp 3.15.0 ``` ## Minimal example Check out https://github.com/open-telemetry/opentelemetry-python/pull/3746. Run `tox -rvvve py38-proto3-opentelemetry-exporter-otlp-proto-grpc` (it should work) Run `tox -rvvve py38-proto4-opentelemetry-exporter-otlp-proto-grpc` (it should fail) Sorry if this ends up being a dumb mistake on my part but I just can't find out why this is happening. To make things even more confusing, I have a very similar PR, everything worked perfectly there: https://github.com/open-telemetry/opentelemetry-python/pull/3742
closed
2024-03-21T01:12:26Z
2024-04-12T20:43:57Z
https://github.com/tox-dev/tox/issues/3249
[]
ocelotl
2
strawberry-graphql/strawberry
asyncio
3,613
Hook for new results in subscription (and also on defer/stream)
From #3554 ![CleanShot 2024-09-02 at 19 41 36@2x](https://github.com/user-attachments/assets/894e6cb6-e81e-4410-bf3c-dce5aaf2b515)
open
2024-09-02T17:57:36Z
2025-03-20T15:56:51Z
https://github.com/strawberry-graphql/strawberry/issues/3613
[ "feature-request" ]
patrick91
0
qwj/python-proxy
asyncio
112
It works from command line but not from within a python script
Hello, thanks for pproxy, it's very useful. One problem I am facing is that the following command works well (I can browse the internet normally)... ``` C:\tools>pproxy -l http://127.0.0.1:12345 -r socks5://127.0.0.1:9050 Serving on 127.0.0.1:12345 by http ``` ...but the following script, with the same schemes and settings, doesn't work (I get the error at the end of this issue): ``` import asyncio import pproxy server = pproxy.Server('http://127.0.0.1:12345') remote = pproxy.Connection('socks5://127.0.0.1:9050') args = dict( rserver = [remote], verbose = print ) loop = asyncio.get_event_loop() handler = loop.run_until_complete(server.start_server(args)) try: loop.run_forever() except KeyboardInterrupt: print('exit!') handler.close() loop.run_until_complete(handler.wait_closed()) loop.run_until_complete(loop.shutdown_asyncgens()) loop.close() ``` The error I got: `http_accept() missing 1 required positional argument: 'httpget' from 127.0.0.1`
closed
2021-02-22T20:05:16Z
2021-02-23T14:42:44Z
https://github.com/qwj/python-proxy/issues/112
[]
analyserdmz
2
aleju/imgaug
deep-learning
186
matplotlib to show is not convenient for some linux platform
when pip install,some error appear,such as: Collecting matplotlib>=2.0.0 (from scikit-image>=0.11.0->imgaug==0.2.6) Downloading http://10.123.98.50/pypi/web/packages/ec/06/def4fb2620cbe671ba0cb6462cbd8653fbffa4acd87d6d572659e7c71c13/matplotlib-3.0.0.tar.gz (36.3MB) 100% |################################| 36.3MB 101.1MB/s Complete output from command python setup.py egg_info: Matplotlib 3.0+ does not support Python 2.x, 3.0, 3.1, 3.2, 3.3, or 3.4. Beginning with Matplotlib 3.0, Python 3.5 and above is required. This may be due to an out of date pip. Make sure you have pip >= 9.0.1.
open
2018-09-26T09:19:44Z
2018-10-02T19:27:56Z
https://github.com/aleju/imgaug/issues/186
[]
sanren99999
1
scikit-optimize/scikit-optimize
scikit-learn
615
TypeError: %d format: a number is required
Here is my example: ```python from skopt import Optimizer from skopt.utils import dimensions_aslist from skopt.space import Integer, Categorical, Real NN = { 'activation': Categorical(['identity', 'logistic', 'tanh', 'relu']), 'solver': Categorical(['adam', 'sgd', 'lbfgs']), 'learning_rate': Categorical(['constant', 'invscaling', 'adaptive']), 'hidden_layer_sizes': Categorical([(100,100)]) } listified_space = dimensions_aslist(NN) acq_optimizer_kwargs = {'n_points': 20, 'n_restarts_optimizer': 5, 'n_jobs': 3} acq_func_kwargs = {'xi': 0.01, 'kappa': 1.96} optimizer = Optimizer(listified_space, base_estimator='gp', n_initial_points=10, acq_func='EI', acq_optimizer='auto', random_state=None, acq_optimizer_kwargs=acq_optimizer_kwargs, acq_func_kwargs=acq_fun_kwargs) rand_xs = [] for n in range(10): rand_xs.append(optimizer.ask()) rand_ys = [1,2,3,4,5,6,7,8,9,10] print rand_xs print rand_ys optimizer.tell(rand_xs, rand_ys) ``` Running with `acq_optimizer='lbfgs'` I was seeing `ValueError: The regressor <class 'skopt.learning.gaussian_process.gpr.GaussianProcessRegressor'> should run with acq_optimizer='sampling'.` But by tracing the Optimizer's `_check_arguments()` code I was able to figure out that my base_estimator must simply not have gradients in this Categoricals-only case. Changing to `acq_optimizer='auto'` solves that problem. But now I see a new `TypeError: %d format: a number is required` thrown deep inside skopt/learning/gaussian_process/kernels.py. *If I print the transformed space before it gets passed to the Gaussian process, I see that it isn't really transformed at all: It still has strings in it!* Adding a numerical dimension like `alpha: Real(0.0001, 0.001, prior='log-uniform')` causes the construction and the `.tell()` to succeed because the transformed space is then purely numerical. *So the way purely-categorical spaces are transformed should be updated.* Or there is an other possibility: Does it even make sense to try to do Bayesian optimization on a purely categorical space like this? Say I try setting (A,B), setting (A,C), setting (X,Z), and setting (Y,Z). For the sake of argument say (A,B) does better than (A,C) and (X,Z) does better than (Y,Z). Can we then suppose (X,B) will do better than (Y,C)? Who is to say (Y,C) isn't a super-combination or that the gains we seem to see from varying the first parameter to X or the second to B are unrelated? It seems potentially dangerous to reason this way, so perhaps the intent is that no Bayesian optimization should be possible in purely Categorical spaces. If this is the case, an error should be thrown early to say this. Furthermore, if this is correct, then how are point-values in Categorical dimensions decided during optimization? Are the numerical parameters optimized while Categoricals are selected at random? It seems the previous paragraph should be wrong: If I try many examples with some parameter set to some value and observe a pattern of poor performance, I can update my beliefs to say "This is a bad setting". It shouldn't matter whether a parameter is Categorical or not; Bayesian optimization should be equally powerful in all cases.
closed
2018-01-25T14:28:05Z
2018-04-19T12:09:11Z
https://github.com/scikit-optimize/scikit-optimize/issues/615
[]
pavelkomarov
1
ufoym/deepo
tensorflow
120
Building wheel for torchvision (setup.py): finished with status 'error'
`$ docker build -f Dockerfile.pytorch-py36-cpu .` Collecting git+https://github.com/pytorch/vision.git Cloning https://github.com/pytorch/vision.git to /tmp/pip-req-build-8_0m83s6 Running command git clone -q https://github.com/pytorch/vision.git /tmp/pip-req-build-8_0m83s6 Requirement already satisfied, skipping upgrade: numpy in /usr/local/lib/python3.6/dist-packages (from torchvision==0.5.0a0+7c9bbf5) (1.17.1) Requirement already satisfied, skipping upgrade: six in /usr/local/lib/python3.6/dist-packages (from torchvision==0.5.0a0+7c9bbf5) (1.12.0) Requirement already satisfied, skipping upgrade: torch in /usr/local/lib/python3.6/dist-packages (from torchvision==0.5.0a0+7c9bbf5) (1.2.0) Collecting pillow>=4.1.1 (from torchvision==0.5.0a0+7c9bbf5) Downloading https://files.pythonhosted.org/packages/14/41/db6dec65ddbc176a59b89485e8cc136a433ed9c6397b6bfe2cd38412051e/Pillow-6.1.0-cp36-cp36m-manylinux1_x86_64.whl (2.1MB) Building wheels for collected packages: torchvision Building wheel for torchvision (setup.py): started **Building wheel for torchvision (setup.py): finished with status 'error' ERROR: Command errored out with exit status 1: command: /usr/local/bin/python -u -c 'import sys, setuptools, tokenize; sys.argv[0] = '"'"'/tmp/pip-req-build-8_0m83s6/setup.py'"'"'; __file__='"'"'/tmp/pip-req-build-8_0m83s6/setup.py'"'"';f=getattr(tokenize, '"'"'open'"'"', open)(__file__);code=f.read().replace('"'"'\r\n'"'"', '"'"'\n'"'"');f.close();exec(compile(code, __file__, '"'"'exec'"'"'))' bdist_wheel -d /tmp/pip-wheel-yob68akv --python-tag cp36 cwd: /tmp/pip-req-build-8_0m83s6/** Complete output (513 lines): Building wheel torchvision-0.5.0a0+7c9bbf5 running bdist_wheel running build running build_py creating build creating build/lib.linux-x86_64-3.6 creating build/lib.linux-x86_64-3.6/torchvision copying torchvision/utils.py -> build/lib.linux-x86_64-3.6/torchvision copying torchvision/extension.py -> build/lib.linux-x86_64-3.6/torchvision ... Thank you.
closed
2019-09-02T08:47:29Z
2019-11-19T11:24:47Z
https://github.com/ufoym/deepo/issues/120
[]
oiotoxt
1
PokeAPI/pokeapi
graphql
536
Normalized entities in JSON data?
I asked about this in the Slack channel but didn't get any responses. I looked through the documentation but couldn't find any mention of this; is it possible to ask an endpoint for normalized entity data? Currently the entity relationships are eagerly fetched, so, for example, a berry has a list of flavors, and the flavor entities are included in the json payload for the berry entity. ```jsonc { "id": 1, "name": "cheri", /*... snip ... */ "flavors": [ { "potency": 10, "flavor": { "name": "spicy", "url": "https://pokeapi.co/api/v2/berry-flavor/1/" } } ], } ``` I would like to be able to send a query parameter or header that asks the endpoint to return references to relations instead of nesting them: ```jsonc { "id": 1, "name": "cheri", /*... snip ... */ "flavors": [ "https://pokeapi.co/api/v2/berry-flavor/1/", ], } ``` Of course this requires more API requests to fetch the data the client requires, and I know PokeAPI relies heavily on cacheing. However, it's easier to parse if you are using a stateful client UI (since the client state should already be normalized), and it uses less bandwidth. If the service is using HTTP2 the latency issue from multiple requests is mostly mitigated. Is this something that is supported, or that could possibly be supported in the future? I'd like to use PokeAPI in examples when I'm coaching, but normalizing json payloads adds complexity that I'd rather not focus on (payload normalization is its own topic of study).
closed
2020-10-25T16:08:23Z
2020-12-27T18:27:14Z
https://github.com/PokeAPI/pokeapi/issues/536
[]
parkerault
2
matterport/Mask_RCNN
tensorflow
2,392
Create environment
Could anyone help create the environment in anaconda? I've tried it in different ways and it shows error. I'm trying to create an environment using python 3.4, tensorflow 1.15.3 and keras 2.2.4
open
2020-10-16T11:10:13Z
2022-03-08T14:59:50Z
https://github.com/matterport/Mask_RCNN/issues/2392
[]
teixeirafabiano
3
cupy/cupy
numpy
8,269
CuPy v14 Release Plan
## Roadmap ```[tasklist] ## Planned Features - [ ] #8306 - [ ] `complex32` support for limited APIs (restart [#4454](https://github.com/cupy/cupy/pull/4454)) - [ ] Support bfloat16 - [ ] Structured Data Type - [ ] #8013 - [ ] #6986 - [ ] Drop support for Python 3.9 following [SPEC 0](https://scientific-python.org/specs/spec-0000/) - [ ] https://github.com/cupy/cupy/issues/8215 ``` ```[tasklist] ## Timeline & Release Manager - [ ] **v14.0.0a1** (Mar 2025) - [ ] v14.0.0a2 (TBD) - [ ] **v14.0.0b1** (TBD) - [ ] **v14.0.0rc1** (TBD) - [ ] **v14.0.0** (TBD) ``` ## Notes * Starting in the CuPy v13 development cycle, we have adjusted our release frequency to once every two months. Mid-term or hot-fix releases may be provided depending on necessity, such as for new CUDA/Python version support or critical bug fixes. * The schedule and planned features may be subject to change depending on the progress of the development. * `v13.x` releases will only contain backported pull-requests (mainly bug-fixes) from the v14 (`main`) branch. ## Past Release Plans * v9: https://github.com/cupy/cupy/issues/3891 * v10: https://github.com/cupy/cupy/issues/5049 * v11: https://github.com/cupy/cupy/issues/6246 * v12: https://github.com/cupy/cupy/issues/6866 * v13: https://github.com/cupy/cupy/issues/7555
open
2024-04-03T02:51:19Z
2025-02-13T08:02:10Z
https://github.com/cupy/cupy/issues/8269
[ "issue-checked" ]
asi1024
1
matplotlib/matplotlib
data-visualization
28,931
[Bug]: plt.savefig incorrectly discarded z-axis label when saving Line3D/Bar3D/Surf3D images using bbox_inches='tight'
### Bug summary I drew a 3D bar graph in python3 using ax.bar3d and then saved the image to pdf under bbox_inches='tight' using plt.savefig, but the Z-axis label was missing in the pdf. Note that everything worked fine after switching matplotlib to version 3.5.0 without changing my python3 code. ### Code for reproduction ```Python import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import MultipleLocator def plot_3D_bar(x_data, data, save_path, x_label, y_label, z_label, var_orient='horizon'): if var_orient != 'vertical' and var_orient != 'horizon': print('plot_figure var_orient error!') exit(1) if var_orient == 'vertical': data = list(map(list, zip(*data))) x_number = len(data[0]) y_number = len(data) if len(x_data) != x_number: exit(1) x_data_label = ['A', 'B', 'C', 'D', 'E', 'F', 'G'] if len(x_data_label) % x_number != 0: exit(1) if y_number == 1: label = ['label1'] elif y_number == 2: label = ['label1', 'label2'] elif y_number == 3: label = ['l1', 'l2', 'l3'] else: label = [] if y_number == 1: color = ['green'] elif y_number == 2: color = ['green', 'red'] elif y_number == 3: color = ['green', 'red', 'blue'] else: color = [] if y_number == 1: hatch = ['x'] elif y_number == 2: hatch = ['x', '.'] elif y_number == 3: hatch = ['x', '.', '|'] else: hatch = [] if y_number != len(label) or y_number != len(color) or \ y_number != len(hatch): exit(1) # plt.title('title') plt.rc('text', usetex=False) plt.rc('font', family='Times New Roman', size=15) font1 = {'family': 'Times New Roman', 'weight': 'normal', 'size': 15} bar_width_x = 0.5 dx = [bar_width_x for _ in range(x_number)] bar_width_y = 0.2 dy = [bar_width_y for _ in range(x_number)] ax = plt.subplot(projection='3d') ax.xaxis.set_major_locator(MultipleLocator(1)) ax.yaxis.set_major_locator(MultipleLocator(1)) ax.yaxis.set_minor_locator(MultipleLocator(0.5)) ax.zaxis.set_major_locator(MultipleLocator(5)) ax.tick_params(labelrotation=0) ax.set_xticks(x_data) ax.set_xticklabels(x_data_label, rotation=0) ax.set_yticks(np.arange(y_number)+1) ax.set_yticklabels(label, rotation=0) ax.set_xlabel(x_label, fontweight='bold', size=15) # ax.set_xlim([0, 8]) ax.set_ylabel(y_label, fontweight='bold', size=15) # ax.set_ylim([0, 4]) ax.set_zlabel(z_label, fontweight='bold', size=15) ax.set_zlim([0, 25]) min_x = [0 for _ in range(y_number)] min_z = [0 for _ in range(y_number)] for _ in range(y_number): min_z[_] = np.min(data[_]) for __ in range(x_number): if data[_][__] == min_z[_]: min_x[_] = x_data[__] min_z[_] = round(min_z[_], 2) y_list = [_+1-1/2*bar_width_y for __ in range(x_number)] z_list = [0 for __ in range(x_number)] ax.bar3d(x_data, y_list, z_list, dx=dx, dy=dy, dz=data[_], label=label[_], color=color[_], edgecolor='k', hatch=hatch[_]) ax.text(x=min_x[_], y=_+1, z=min_z[_]+3, s='%.2f' % min_z[_], horizontalalignment='center', verticalalignment='top', backgroundcolor='white', zorder=5, fontsize=10, color='k', fontweight='bold') plt.grid(axis='both', color='gray', linestyle='-') fig = plt.gcf() fig.set_size_inches(4, 4) if save_path is not None: plt.savefig(save_path, bbox_inches='tight') plt.show() x_data = [1, 2, 3, 4, 5, 6, 7] y_data = [[3, 13, 1, 7, 9, 10, 2], [6, 3, 9, 4, 9, 20, 9], [7, 9, 5, 8, 5, 3, 9]] plot_3D_bar(x_data, y_data, 'figure.pdf', '\nxlabel', '\nylabel', '\nzlabel', 'horizon') ``` ### Actual outcome There is no Z-axis label in the saved figure.pdf [figure.pdf](https://github.com/user-attachments/files/17243046/figure.pdf) ### Expected outcome Saved figure.pdf should contain the z-axis label [figure.pdf](https://github.com/user-attachments/files/17243055/figure.pdf) ### Additional information _No response_ ### Operating system Ubuntu 20.04 ### Matplotlib Version 3.9.2 ### Matplotlib Backend _No response_ ### Python version _No response_ ### Jupyter version _No response_ ### Installation pip
closed
2024-10-03T11:05:30Z
2024-10-03T14:17:50Z
https://github.com/matplotlib/matplotlib/issues/28931
[ "status: duplicate" ]
NJU-ZAD
5
JoeanAmier/TikTokDownloader
api
383
unhandled exception,直接使用打包版exe,运行6,1,1,可获取视频数量,但无法下载
报错如下,使用的是打包版,是setting配置问题吗,可否帮忙看看,谢谢! TikTokDownloader V5.5 Traceback (most recent call last): File "main.py", line 19, in <module> File "asyncio\runners.py", line 194, in run File "asyncio\runners.py", line 118, in run File "asyncio\base_events.py", line 686, in run_until_complete File "main.py", line 10, in main File "src\application\TikTokDownloader.py", line 355, in run File "src\application\TikTokDownloader.py", line 244, in main_menu File "src\application\TikTokDownloader.py", line 324, in compatible File "src\application\TikTokDownloader.py", line 251, in complete File "src\application\main_complete.py", line 1709, in run File "src\application\main_complete.py", line 232, in account_acquisition_interactive File "src\application\main_complete.py", line 260, in __secondary_menu File "src\application\main_complete.py", line 263, in account_detail_batch File "src\application\main_complete.py", line 299, in __account_detail_batch File "src\application\main_complete.py", line 445, in deal_account_detail File "src\application\main_complete.py", line 571, in _batch_process_detail TypeError: cannot unpack non-iterable NoneType object [PYI-6840:ERROR] Failed to execute script 'main' due to unhandled exception!
closed
2025-01-22T03:25:34Z
2025-01-22T07:18:57Z
https://github.com/JoeanAmier/TikTokDownloader/issues/383
[]
WaymonHe
2
gee-community/geemap
streamlit
1,180
Scrolling for layer panel
Hi, Is there a way to scroll down the layer panel when we have a lot of layers? Thanks, Daniel ![image](https://user-images.githubusercontent.com/22897462/183275838-f596f477-a0f3-4378-ba12-abda25a252ca.png)
closed
2022-08-07T04:54:23Z
2022-08-08T01:37:02Z
https://github.com/gee-community/geemap/issues/1180
[ "Feature Request" ]
Daniel-Trung-Nguyen
1
coqui-ai/TTS
python
4,162
[Bug] Python 3.12.0
### Describe the bug Hi, My version of python isn't supported by TTS 3.12.0 on Cygwin and 3.12 on Windows 10. Also TTS isn't known when i try to install from pip: pip install TTS ### To Reproduce tried installing from pip or manually ### Expected behavior _No response_ ### Logs ```shell ``` ### Environment ```shell python 3.12 & 3.12.0 ``` ### Additional context _No response_
open
2025-02-27T18:45:18Z
2025-03-06T16:03:13Z
https://github.com/coqui-ai/TTS/issues/4162
[ "bug" ]
TDClarke
4
xlwings/xlwings
automation
2,150
Unable to embed code using version 0.28.9
#### OS Windows 10 #### Versions of xlwings 0.28.9, Excel LTSC Professional Plus 2021 version 2108 and Python 3.8.6 #### I was able to embed my py code using the same setup with xlwings version 0.28.8. But it's not working with the latest version. I used noncommercial license of xlwings Pro with both versions. ### How can I downgrade to version 0.28.8? #### The files and screenshot are attached. ### Only the following commands were used. The embedded code was working with xlwings version 0.28.8, but not working anymore with version 0.28.9 ```python # pip install xlwings # xlwings license update -k noncommercial # xlwings quickstart myproject --addin --ribbon # xlwings code embed ``` [myproject.zip](https://github.com/xlwings/xlwings/files/10485543/myproject.zip) ![Screenshot 2023-01-22 123332](https://user-images.githubusercontent.com/74274076/213936269-af892fee-2288-4b02-aed4-b6fca2c0be26.jpg)
closed
2023-01-22T19:36:29Z
2023-01-25T00:54:53Z
https://github.com/xlwings/xlwings/issues/2150
[]
MansuraKhanom
4
encode/uvicorn
asyncio
1,228
Support Custom HTTP implementations protocols
### Checklist <!-- Please make sure you check all these items before submitting your feature request. --> - [x] There are no similar issues or pull requests for this yet. - [ ] I discussed this idea on the [community chat](https://gitter.im/encode/community) and feedback is positive. ### Is your feature related to a problem? Please describe. <!-- A clear and concise description of what you are trying to achieve. Eg "I want to be able to [...] but I can't because [...]". --> I want to be able to use custom http protocol implementation by providing a module path to it. Eg. `mypackage.http.MyHttpProtocol` ## Describe the solution you would like. <!-- A clear and concise description of what you would want to happen. For API changes, try to provide a code snippet of what you would like the API to look like. --> Uvicorn can import the path and use it as the http implementation, specifically I want to be able to use a full cython based http implementation using httptools for efficiency and speed.
closed
2021-10-24T06:18:35Z
2021-10-28T01:24:38Z
https://github.com/encode/uvicorn/issues/1228
[]
kumaraditya303
1
ranaroussi/yfinance
pandas
2,200
yfinance - Unable to retrieve Ticker earnings_dates
### Describe bug Unable to retrieve Ticker earnings_dates E.g. for NVDA, using Python get yf message back: $NVDA: possibly delisted; no earnings dates found ditto for AMD and apparently all other valid ticker symbols: $AMD: possibly delisted; no earnings dates found A list of all methods available for yf Ticker includes both earnings_dates and a likely newer entry called get_earnings_dates but neither one currently returns 1) a history of Qtrly Earnings report dates nor 2) a list of future Qtrly Earnings report dates The earnings_dates method/function/process has worked very well in the past at retrieving both the Earnings Dates as well as the actual release approx Times, like 8AM, after 4PM, etc. ### Simple code that reproduces your problem yf_tkr_obj = yf.Ticker("NVDA") df_earnings_dates=yf_tkr_obj.earnings_dates None seems to get returned. ### Debug log Unable to supply this, diff PC ### Bad data proof _No response_ ### `yfinance` version yfinance 0.2.51 ### Python version 3.7 ### Operating system Debian Buster
closed
2025-01-02T19:58:24Z
2025-01-02T23:03:06Z
https://github.com/ranaroussi/yfinance/issues/2200
[]
SymbReprUnlim
1
python-restx/flask-restx
flask
272
Remove default HTTP 200 response code in doc
**Ask a question** Hi, I was wondering if it's possible to remove the default "200 - Success" response in the swagger.json? My model: ``` user_model = api.model( "User", { "user_id": fields.String, "project_id": fields.Integer(default=1), "reward_points": fields.Integer(default=0), "rank": fields.String, }, ) ``` The route: ``` @api.route("/") class UserRouteList(Resource): @api.doc(model=user_model, body=user_model) @api.response(201, "User created", user_model) @api.marshal_with(user_model, code=201) def post(self): """Add user""" data = api.payload return ( userDB.add(data), 201 ) ``` **Additional context** flask-restx version: 0.2.0 ![image](https://user-images.githubusercontent.com/34584653/103555872-3593f900-4eb1-11eb-8d29-16f1629489ab.png)
closed
2021-01-04T16:26:19Z
2021-02-01T12:29:09Z
https://github.com/python-restx/flask-restx/issues/272
[ "question" ]
mateusz-chrzastek
2
flasgger/flasgger
api
585
a little miss
when i forget install this packet -> apispec page will back err -> internal server error just have not other tips, so i search the resource code, in marshmallow_apispec.py ![image](https://github.com/flasgger/flasgger/assets/101400891/ab69ea20-f0d6-46fa-8064-b2ef36028709) there have some import code, if err ,set Schema = None
open
2023-06-27T07:43:36Z
2023-06-27T07:45:55Z
https://github.com/flasgger/flasgger/issues/585
[]
Spectator133
2
benlubas/molten-nvim
jupyter
237
[Feature Request] Option to show images only in output buffer
Option to show images only in the output buffer and not in the virtual text while still having virtual text enabled. This is because images can be very buggy in the virtual text compared to the buffer and it is nice to have the virtual text enabled for other types of output. This could be its own option where you specify to show images in: "virtual_text", "output_buffer", "virtual_text_and_output_buffer", "native_application". There are many ways this option could be implemented and this is just a suggestion for how the API could look.
closed
2024-09-12T11:11:37Z
2024-10-05T13:59:42Z
https://github.com/benlubas/molten-nvim/issues/237
[ "enhancement" ]
michaelbrusegard
0
keras-team/keras
machine-learning
21,004
Ensured torch import is properly handled
Before : try: import torch # noqa: F401 except ImportError: pass After : try: import torch # noqa: F401 except ImportError: torch = None # Explicitly set torch to None if not installed
open
2025-03-07T19:58:17Z
2025-03-13T07:09:01Z
https://github.com/keras-team/keras/issues/21004
[ "type:Bug" ]
FNICKE
1
huggingface/pytorch-image-models
pytorch
1,477
[FEATURE] Huge discrepancy between HuggingFace and timm in terms of the initialization of ViT
I see a huge discrepancy between HuggingFace and timm in terms of the initialization of ViT. Timm's implementation uses trunc_normal whereas huggingface uses "module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)". I noticed this cause a huge drop in performance when training ViT models on imagenet with huggingface implementaion. I'm not sure if it's not just the initialization but also something more. Is it possible if one of you check and try to make the huggingface implementation as consistent as the timm's version? Thanks!
closed
2022-09-28T18:57:06Z
2023-02-02T04:45:09Z
https://github.com/huggingface/pytorch-image-models/issues/1477
[ "enhancement" ]
Phuoc-Hoan-Le
7
desec-io/desec-stack
rest-api
223
Send emails asynchronously
Currently, requests that trigger emails have to wait until the email has been sent. This is "not nice", and also opens a timing side channel for email enumeration at account registration or password reset. Let's move to an asynchronous solution, like: - https://pypi.org/project/django-celery-email/ (full-fledged) - https://github.com/pinax/django-mailer/ (much simpler) - (Simple threading does not seem like the best solution: https://code.djangoproject.com/ticket/19214#comment:5)
closed
2019-07-02T22:27:43Z
2019-07-12T01:01:43Z
https://github.com/desec-io/desec-stack/issues/223
[ "bug", "api" ]
peterthomassen
1
marcomusy/vedo
numpy
1,035
Adding text to screenshot
Hi there, May I know how to adjust the size and text font of the text on a screenshot? Thank you so much This is my code: vp = Plotter(axes=0, offscreen=True) text = str(lab) vp.add(text) vp.show(item, interactive=False, at=0) screenshot(os.path.join(save_path,file_name))
closed
2024-01-25T07:43:40Z
2024-01-25T09:16:36Z
https://github.com/marcomusy/vedo/issues/1035
[]
priyabiswas12
2
AirtestProject/Airtest
automation
1,150
执行了70来次才出现的一个问题,非常偶现
Traceback (most recent call last): File "/Users/administrator/jenkinsauto/workspace/autotest-IOS/initmain.py", line 35, in <module> raise e File "/Users/administrator/jenkinsauto/workspace/autotest-IOS/initmain.py", line 27, in <module> t.pushtag_ios() File "/Users/administrator/jenkinsauto/workspace/autotest-IOS/pubscirpt/tag.py", line 25, in pushtag_ios touch(Template(r'tag输入.png')) File "/usr/local/lib/python3.11/site-packages/airtest/utils/logwraper.py", line 124, in wrapper res = f(*args, **kwargs) ^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/site-packages/airtest/core/api.py", line 367, in touch pos = loop_find(v, timeout=ST.FIND_TIMEOUT) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/site-packages/airtest/utils/logwraper.py", line 124, in wrapper res = f(*args, **kwargs) ^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/site-packages/airtest/core/cv.py", line 62, in loop_find screen = G.DEVICE.snapshot(filename=None, quality=ST.SNAPSHOT_QUALITY) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/site-packages/airtest/core/ios/ios.py", line 47, in wrapper return func(self, *args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/site-packages/airtest/core/ios/ios.py", line 615, in snapshot data = self._neo_wda_screenshot() ^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/site-packages/airtest/core/ios/ios.py", line 601, in _neo_wda_screenshot raw_value = base64.b64decode(value) ^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/Cellar/python@3.11/3.11.4_1/Frameworks/Python.framework/Versions/3.11/lib/python3.11/base64.py", line 88, in b64decode return binascii.a2b_base64(s, strict_mode=validate) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ binascii.Error: Invalid base64-encoded string: number of data characters (2433109) cannot be 1 more than a multiple of 4
open
2023-07-28T09:15:06Z
2023-07-28T09:15:06Z
https://github.com/AirtestProject/Airtest/issues/1150
[]
z929151231
0
Evil0ctal/Douyin_TikTok_Download_API
api
322
[Feature request] Brief and clear description of the problem
**Is your feature request related to a problem? Please describe.** A clear and concise description of what the problem is. Ex. I'm always frustrated when [...] **Describe the solution you'd like** A clear and concise description of what you want to happen. **Describe alternatives you've considered** A clear and concise description of any alternative solutions or features you've considered. **Additional context** Add any other context or screenshots about the feature request here.
closed
2024-02-05T21:10:46Z
2024-02-07T03:40:58Z
https://github.com/Evil0ctal/Douyin_TikTok_Download_API/issues/322
[ "enhancement" ]
s6k6s6
0
ipyflow/ipyflow
jupyter
40
separate modes for prod / dev
closed
2020-08-06T22:17:30Z
2021-03-08T05:45:32Z
https://github.com/ipyflow/ipyflow/issues/40
[]
smacke
0
nvbn/thefuck
python
889
how can you get the history for current terminal session
cuz it has not been written to the history file, how to get it? I'm very curious
open
2019-03-03T10:49:49Z
2023-10-30T20:00:47Z
https://github.com/nvbn/thefuck/issues/889
[]
imroc
1
donnemartin/system-design-primer
python
235
Anki Error on Launching using Ubuntu 18.10
I'm using Ubuntu 18.10 on Lenovo Thinkpad: I get this error right after the install using Ubuntu software install ....after installed ...when pressing Launch button: _____________________________________________________ Error during startup: Traceback (most recent call last): File "/usr/share/anki/aqt/main.py", line 50, in __init__ self.setupUI() File "/usr/share/anki/aqt/main.py", line 75, in setupUI self.setupMainWindow() File "/usr/share/anki/aqt/main.py", line 585, in setupMainWindow tweb = self.toolbarWeb = aqt.webview.AnkiWebView() File "/usr/share/anki/aqt/webview.py", line 114, in __init__ self.focusProxy().installEventFilter(self) AttributeError: 'NoneType' object has no attribute 'installEventFilter' _____________________________________________________ Anki version: 2.1.0+dfsg-1 Updated: 11/17/2018 The error message won't reappear unless you uninstall and reboot O/S. Any help is appreciated. Thanks! DJ
open
2018-11-17T16:17:20Z
2019-04-10T00:51:09Z
https://github.com/donnemartin/system-design-primer/issues/235
[ "help wanted", "needs-review" ]
FunMyWay
6
piskvorky/gensim
machine-learning
3,154
Yes, thanks. If it's really a bug with the FB model, not much we can do about it.
Yes, thanks. If it's really a bug with the FB model, not much we can do about it. _Originally posted by @piskvorky in https://github.com/RaRe-Technologies/gensim/issues/2969#issuecomment-799811459_
closed
2021-05-19T22:08:58Z
2021-05-19T23:05:28Z
https://github.com/piskvorky/gensim/issues/3154
[]
Dino1981
0
streamlit/streamlit
data-visualization
10,029
st.radio label alignment and label_visibility issues in the latest versions
### Checklist - [X] I have searched the [existing issues](https://github.com/streamlit/streamlit/issues) for similar issues. - [X] I added a very descriptive title to this issue. - [X] I have provided sufficient information below to help reproduce this issue. ### Summary The st.radio widget has two unexpected behaviors in the latest versions of Streamlit: The label is centered instead of left-aligned, which is inconsistent with previous versions. The label_visibility option 'collapsed' does not work as expected, and the label remains visible. ### Reproducible Code Example ```Python import streamlit as st # Store the initial value of widgets in session state if "visibility" not in st.session_state: st.session_state.visibility = "visible" st.session_state.disabled = False st.session_state.horizontal = False col1, col2 = st.columns(2) with col1: st.checkbox("Disable radio widget", key="disabled") st.checkbox("Orient radio options horizontally", key="horizontal") with col2: st.radio( "Set label visibility 👇", ["visible", "hidden", "collapsed"], key="visibility", label_visibility=st.session_state.visibility, disabled=st.session_state.disabled, horizontal=st.session_state.horizontal, ) ``` ### Steps To Reproduce please play with the options of the above snippet, and inspect label ### Expected Behavior The label of the st.radio widget should be left-aligned, consistent with previous versions. When label_visibility='collapsed' is set, the label should not be visible. ### Current Behavior The label is centered. Setting label_visibility='collapsed' does not hide the label; it remains visible. ### Is this a regression? - [ ] Yes, this used to work in a previous version. ### Debug info - Streamlit version: 1.41.1 - Python version: - Operating System: - Browser: ### Additional Information _No response_
closed
2024-12-16T12:28:53Z
2024-12-16T16:06:20Z
https://github.com/streamlit/streamlit/issues/10029
[ "type:bug", "feature:st.radio", "status:awaiting-team-response" ]
Panosero
4
deeppavlov/DeepPavlov
tensorflow
1,372
Go-Bot: migrate to PyTorch (policy)
Moved to internal Trello
closed
2021-01-12T11:19:57Z
2021-11-30T10:16:57Z
https://github.com/deeppavlov/DeepPavlov/issues/1372
[]
danielkornev
0
jina-ai/clip-as-service
pytorch
235
Support for FP16 (mixed precision) trained models
I trained a little german BERT Model with FP16 and tensorflow, so the Nvidia suggestion https://github.com/google-research/bert/pull/255 the suggestions are hosted in this repository https://github.com/thorjohnsen/bert/tree/gpu_optimizations Training works fine, but bert-as-service doesn't work with that, because of the tensorflows typechecks when loading the graph. Same problem with the fp16 option activated. Is there a simple way of modifiing bert-as-service or convert the model so i can use the embeddings with bert-as-service? Thank you!
closed
2019-02-13T17:20:31Z
2019-03-14T03:44:38Z
https://github.com/jina-ai/clip-as-service/issues/235
[]
miweru
1
ultralytics/ultralytics
computer-vision
18,799
YOLO导出TensorRT格式或许不支持JetPack 6.2
### Search before asking - [x] I have searched the Ultralytics YOLO [issues](https://github.com/ultralytics/ultralytics/issues) and [discussions](https://github.com/orgs/ultralytics/discussions) and found no similar questions. ### Question 你好!我目前发现我在将pytorch格式转成tensorRT格式时,程序会报错: 下面的错误表明似乎无法支持tensorRT,目前的jetson orin nano super的tensorRT版本是10.3.并且无法降级 requirements: Ultralytics requirement ['tensorrt>7.0.0,!=10.1.0'] not found, attempting AutoUpdate... error: subprocess-exited-with-error × python setup.py egg_info did not run successfully. │ exit code: 1 ╰─> [6 lines of output] Traceback (most recent call last): File "<string>", line 2, in <module> File "<pip-setuptools-caller>", line 34, in <module> File "/tmp/pip-install-zhfqxl_t/tensorrt-cu12_7e93d472a67644448c0bd7e73bd68a66/setup.py", line 71, in <module> raise RuntimeError("TensorRT does not currently build wheels for Tegra systems") RuntimeError: TensorRT does not currently build wheels for Tegra systems [end of output] note: This error originates from a subprocess, and is likely not a problem with pip. error: metadata-generation-failed × Encountered error while generating package metadata. ╰─> See above for output. note: This is an issue with the package mentioned above, not pip. hint: See above for details. Retry 1/2 failed: Command 'pip install --no-cache-dir "tensorrt>7.0.0,!=10.1.0" ' returned non-zero exit status 1. error: subprocess-exited-with-error × python setup.py egg_info did not run successfully. │ exit code: 1 ╰─> [6 lines of output] Traceback (most recent call last): File "<string>", line 2, in <module> File "<pip-setuptools-caller>", line 34, in <module> File "/tmp/pip-install-cnl6plvw/tensorrt-cu12_af3eec6e67824417ac3fee8b4d1a66b0/setup.py", line 71, in <module> raise RuntimeError("TensorRT does not currently build wheels for Tegra systems") RuntimeError: TensorRT does not currently build wheels for Tegra systems [end of output] note: This error originates from a subprocess, and is likely not a problem with pip. error: metadata-generation-failed × Encountered error while generating package metadata. ╰─> See above for output. note: This is an issue with the package mentioned above, not pip. hint: See above for details. Retry 2/2 failed: Command 'pip install --no-cache-dir "tensorrt>7.0.0,!=10.1.0" ' returned non-zero exit status 1. requirements: ❌ Command 'pip install --no-cache-dir "tensorrt>7.0.0,!=10.1.0" ' returned non-zero exit status 1. TensorRT: export failure ❌ 14.1s: No module named 'tensorrt' Traceback (most recent call last): File "/home/nvidia/YOLO11/YOLO/lib/python3.10/site-packages/ultralytics/engine/exporter.py", line 810, in export_engine import tensorrt as trt # noqa ModuleNotFoundError: No module named 'tensorrt' During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/home/nvidia/YOLO11/v3(m-model)/convert.py", line 7, in <module> model.export(format="engine") # creates 'best.engine' File "/home/nvidia/YOLO11/YOLO/lib/python3.10/site-packages/ultralytics/engine/model.py", line 738, in export return Exporter(overrides=args, _callbacks=self.callbacks)(model=self.model) File "/home/nvidia/YOLO11/YOLO/lib/python3.10/site-packages/ultralytics/engine/exporter.py", line 396, in __call__ f[1], _ = self.export_engine(dla=dla) File "/home/nvidia/YOLO11/YOLO/lib/python3.10/site-packages/ultralytics/engine/exporter.py", line 180, in outer_func raise e File "/home/nvidia/YOLO11/YOLO/lib/python3.10/site-packages/ultralytics/engine/exporter.py", line 175, in outer_func f, model = inner_func(*args, **kwargs) File "/home/nvidia/YOLO11/YOLO/lib/python3.10/site-packages/ultralytics/engine/exporter.py", line 814, in export_engine import tensorrt as trt # noqa ModuleNotFoundError: No module named 'tensorrt' ### Additional _No response_
open
2025-01-21T12:45:56Z
2025-01-23T14:31:26Z
https://github.com/ultralytics/ultralytics/issues/18799
[ "question", "embedded", "exports" ]
Vectorvin
6
hpcaitech/ColossalAI
deep-learning
5,601
[FEATURE]: support multiple (partial) backward passes for zero
### Describe the feature In some vae training, users may use weight adaptive loss which may compute grad of some parameters twice, like ![image](https://github.com/hpcaitech/ColossalAI/assets/23111350/c729d68c-4b41-4cb7-8491-ee86c6ea506d) This will trigger backward hook twice. Based on pytorch's document, we may use post-grad-accumulation hook to solve this problem. ![image](https://github.com/hpcaitech/ColossalAI/assets/23111350/346f19e6-2a82-4644-9cfd-6f2446a32164)
closed
2024-04-16T05:02:06Z
2024-04-16T09:49:22Z
https://github.com/hpcaitech/ColossalAI/issues/5601
[ "enhancement" ]
ver217
0
exaloop/codon
numpy
595
Is there a way to use python Enum?
I cannot find an example : ( .
closed
2024-09-30T07:21:46Z
2024-09-30T07:28:37Z
https://github.com/exaloop/codon/issues/595
[]
BeneficialCode
0
mwaskom/seaborn
data-visualization
3,584
UserWarning: The figure layout has changed to tight self._figure.tight_layout(*args, **kwargs)
I have encountered a persistent `UserWarning` when using Seaborn's `pairplot` function, indicating a change in figure layout to tight. ![UserWarning The figure layout has changed to tight](https://github.com/mwaskom/seaborn/assets/119931656/be3021ce-a1a3-404d-80ab-112dce529174) ![image](https://github.com/mwaskom/seaborn/assets/119931656/a07e5ec9-e176-4412-8956-e0cda060cedb) `\anaconda3\Lib\site-packages\seaborn\axisgrid.py:118: UserWarning: The figure layout has changed to tight self._figure.tight_layout(*args, **kwargs)` `\AppData\Local\Temp\ipykernel_17504\146091522.py:3: UserWarning: The figure layout has changed to tight plt.tight_layout()` The warning appears even when attempting to adjust the layout using `plt.tight_layout()` or other methods. The warning does not seem to affect the appearance or functionality of the plot, but it's causing some concern. Seeking guidance on resolving or understanding the implications of this warning. Any insights or recommendations would be greatly appreciated. Thank you!
closed
2023-12-05T19:21:49Z
2023-12-05T22:23:49Z
https://github.com/mwaskom/seaborn/issues/3584
[]
rahulsaran21
1
AirtestProject/Airtest
automation
595
有截图的时候会报错 AttributeError: module 'cv2.cv2' has no attribute 'xfeatures2d'
AttributeError: module 'cv2.cv2' has no attribute 'xfeatures2d' 好像也没什么影响,麻烦看一下 ![QQ截图20191107124605](https://user-images.githubusercontent.com/52645118/68360868-9f552d80-015c-11ea-98d0-282b422145ad.png)
open
2019-11-07T04:47:01Z
2019-11-14T07:13:36Z
https://github.com/AirtestProject/Airtest/issues/595
[]
abcdd12
5
gevent/gevent
asyncio
1,679
Python 3.8.6 and perhaps other recent Python 3.8 builds are incompatible
* gevent version: 1.4.0 * Python version: Please be as specific as possible: the `python:3.8` docker image as of 2020-09-24 6:30PM PST * Operating System: Linux - ubuntu or Docker on Windows or Docker on Mac or Google container optimized linux ### Description: Trying to boot a gunicorn worker with `--worker-class=gevent` and it logs this and then infinite loops: ```<frozen importlib._bootstrap>:219: RuntimeWarning: greenlet.greenlet size changed, may indicate binary incompatibility. Expected 144 from C header, got 152 from PyObject <frozen importlib._bootstrap>:219: RuntimeWarning: greenlet.greenlet size changed, may indicate binary incompatibility. Expected 144 from C header, got 152 from PyObject <frozen importlib._bootstrap>:219: RuntimeWarning: greenlet.greenlet size changed, may indicate binary incompatibility. Expected 144 from C header, got 152 from PyObject <frozen importlib._bootstrap>:219: RuntimeWarning: greenlet.greenlet size changed, may indicate binary incompatibility. Expected 144 from C header, got 152 from PyObject <frozen importlib._bootstrap>:219: RuntimeWarning: greenlet.greenlet size changed, may indicate binary incompatibility. Expected 144 from C header, got 152 from PyObject <frozen importlib._bootstrap>:219: RuntimeWarning: greenlet.greenlet size changed, may indicate binary incompatibility. Expected 144 from C header, got 152 from PyObject <frozen importlib._bootstrap>:219: RuntimeWarning: greenlet.greenlet size changed, may indicate binary incompatibility. Expected 144 from C header, got 152 from PyObject [2020-09-25 01:13:02 +0000] [1] [INFO] Starting gunicorn 19.9.0 [2020-09-25 01:13:02 +0000] [1] [INFO] Listening at: http://0.0.0.0:8000 (1) [2020-09-25 01:13:02 +0000] [1] [INFO] Using worker: gevent /usr/local/lib/python3.8/os.py:1023: RuntimeWarning: line buffering (buffering=1) isn't supported in binary mode, the default buffer size will be used return io.open(fd, *args, **kwargs) [2020-09-25 01:13:02 +0000] [7] [INFO] Booting worker with pid: 7 [2020-09-25 01:13:02 +0000] [7] [INFO] Made Psycopg2 Green /usr/local/lib/python3.8/os.py:1023: RuntimeWarning: line buffering (buffering=1) isn't supported in binary mode, the default buffer size will be used return io.open(fd, *args, **kwargs) [2020-09-25 01:13:02 +0000] [8] [INFO] Booting worker with pid: 8 [2020-09-25 01:13:02 +0000] [8] [INFO] Made Psycopg2 Green /usr/local/lib/python3.8/os.py:1023: RuntimeWarning: line buffering (buffering=1) isn't supported in binary mode, the default buffer size will be used return io.open(fd, *args, **kwargs) [2020-09-25 01:13:02 +0000] [9] [INFO] Booting worker with pid: 9 [2020-09-25 01:13:02 +0000] [9] [INFO] Made Psycopg2 Green # infinite loop ```
closed
2020-09-25T01:34:56Z
2020-09-25T10:25:02Z
https://github.com/gevent/gevent/issues/1679
[]
AaronFriel
2
microsoft/nni
deep-learning
5,651
Can not download Tar when Build from Source
The tar package cannot be downloaded when the source code is used for building. nni version: dev python: 3.7.9 os: openeuler-20.03 How to reproduce it? ``` git clone https://github.com/microsoft/nni.git cd nni export NNI_RELEASE=2.0 python setup.py build_ts ``` ![image](https://github.com/microsoft/nni/assets/67537842/22c0c8c6-1927-4882-a107-d4e9bf136399) https://nodejs.org/dist/v18.15.0/node-v18.15.0-linux-aarch64.tar.xz
open
2023-07-28T08:28:37Z
2023-08-11T07:09:50Z
https://github.com/microsoft/nni/issues/5651
[]
zhuofeng6
3
KevinMusgrave/pytorch-metric-learning
computer-vision
331
problem with implem of mAP@R ?
Hi, Thanks for open-sourcing this repo! I want to report a problem which I noticed the the [XBM repo](https://github.com/msight-tech/research-xbm) which uses code similar to yours for mAP@R calculation (I am not sure who's based on who, opening this issue on both). I suspect there is a mistake in the implementation of mAP@R: [Line 99](https://github.com/KevinMusgrave/pytorch-metric-learning/blob/9559b21559ca6fbcb46d2d51d7953166e18f9de6/src/pytorch_metric_learning/utils/accuracy_calculator.py#L99), you divide by max_possible_matches_per_row for this query (which for mAP@R is equal to R for each query). But what should be done is divide by the __actual__ number of relevant items in the R-best-ranked ones for this query (as is done for [mAP](https://github.com/KevinMusgrave/pytorch-metric-learning/blob/9559b21559ca6fbcb46d2d51d7953166e18f9de6/src/pytorch_metric_learning/utils/accuracy_calculator.py#L97) 2 line later). wikipedia page on AP: ![image](https://user-images.githubusercontent.com/16518885/119520716-d27d0300-bd7a-11eb-89c0-a303569d50c3.png) (by the way, for mAP, as you do line 98, one has to decide what to do with queries which have no relevant items and on which AP is therefore not defined. You use max_possible_values_per_row=0 for these rows, but I am not sure this is the most standard choice, maybe it's good to give to option to set AP=0, or AP=1, or exclude these rows...) Regards, A
closed
2021-05-25T15:24:50Z
2021-05-26T06:58:39Z
https://github.com/KevinMusgrave/pytorch-metric-learning/issues/331
[ "question" ]
drasros
3
liangliangyy/DjangoBlog
django
525
文章只是点播视频吗?
<!-- 如果你不认真勾选下面的内容,我可能会直接关闭你的 Issue。 提问之前,建议先阅读 https://github.com/ruby-china/How-To-Ask-Questions-The-Smart-Way --> **我确定我已经查看了** (标注`[ ]`为`[x]`) - [x] [DjangoBlog的readme](https://github.com/liangliangyy/DjangoBlog/blob/master/README.md) - [x] [配置说明](https://github.com/liangliangyy/DjangoBlog/blob/master/bin/config.md) - [x] [其他 Issues](https://github.com/liangliangyy/DjangoBlog/issues) ---- **我要申请** (标注`[ ]`为`[x]`) - [ ] BUG 反馈 - [ ] 添加新的特性或者功能 - [x] 请求技术支持
closed
2021-11-22T07:10:34Z
2022-03-02T11:22:56Z
https://github.com/liangliangyy/DjangoBlog/issues/525
[]
glinxx
2
httpie/cli
rest-api
1,247
Test new httpie command on various actions
We have 2 actions that gets triggered when specific files are edited (for testing snap/brew works), they test the `http` but not `httpie`, so let's also test it too.
closed
2021-12-21T17:32:58Z
2021-12-23T18:55:40Z
https://github.com/httpie/cli/issues/1247
[ "bug", "new" ]
isidentical
1
scrapy/scrapy
python
6,378
Edit Contributing.rst document to specify how to propose documentation suggestions
There are multiple types of contributions that the community can suggest including bug reports, feature requests, code improvements, security vulnerability reports, and documentation changes. For the Scrapy.py project it was difficult to discern what process to follow to make a documentation improvement suggestion. I want to suggest an additional section to the documentation that clearly explains how to propose a non-code related change. This section will follow the guidelines outlined in the Contributing.rst file from another open source project, https://github.com/beetbox/beets
closed
2024-05-26T15:43:40Z
2024-07-10T07:37:32Z
https://github.com/scrapy/scrapy/issues/6378
[]
jtoallen
11
pytorch/pytorch
machine-learning
149,186
torch.fx.symbolic_trace failed on deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
### 🐛 Describe the bug I try to compile deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B to mlir with the following script. ```python # Import necessary libraries import torch from transformers import AutoModelForCausalLM, AutoTokenizer from torch.export import export import onnx from torch_mlir import fx # Load the DeepSeek model and tokenizer model_name = "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) class Qwen2(torch.nn.Module): def __init__(self) -> None: super().__init__() self.qwen = model def forward(self, x): result = self.qwen(x) result.past_key_values = () return result qwen2 = Qwen2() # Define a prompt for the model prompt = "What are the benefits of using AI in healthcare?" # Encode the prompt input_ids = tokenizer.encode(prompt, return_tensors="pt") exported_program: torch.export.ExportedProgram = export ( qwen2, (input_ids,) ) traced_model = torch.fx.symbolic_trace(qwen2) m = fx.export_and_import(traced_model, (input_ids,), enable_ir_printing=True, enable_graph_printing=True) with open("qwen1.5b_s.mlir", "w") as f: f.write(str(m)) ``` But it failed with following backtrace. ```shell /home/hmsjwzb/work/models/QWEN/qwen/lib/python3.11/site-packages/torch/backends/mkldnn/__init__.py:78: UserWarning: TF32 acceleration on top of oneDNN is available for Intel GPUs. The current Torch version does not have Intel GPU Support. (Triggered internally at /pytorch/aten/src/ATen/Context.cpp:148.) torch._C._set_onednn_allow_tf32(_allow_tf32) /home/hmsjwzb/work/models/QWEN/qwen/lib/python3.11/site-packages/torch/backends/mkldnn/__init__.py:78: UserWarning: TF32 acceleration on top of oneDNN is available for Intel GPUs. The current Torch version does not have Intel GPU Support. (Triggered internally at /pytorch/aten/src/ATen/Context.cpp:148.) torch._C._set_onednn_allow_tf32(_allow_tf32) Traceback (most recent call last): File "/home/hmsjwzb/work/models/QWEN/qwen5.py", line 55, in <module> traced_model = torch.fx.symbolic_trace(qwen2) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/hmsjwzb/work/models/QWEN/qwen/lib/python3.11/site-packages/torch/fx/_symbolic_trace.py", line 1314, in symbolic_trace graph = tracer.trace(root, concrete_args) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/hmsjwzb/work/models/QWEN/qwen/lib/python3.11/site-packages/torch/_dynamo/eval_frame.py", line 838, in _fn return fn(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^ File "/home/hmsjwzb/work/models/QWEN/qwen/lib/python3.11/site-packages/torch/fx/_symbolic_trace.py", line 838, in trace (self.create_arg(fn(*args)),), ^^^^^^^^^ File "/home/hmsjwzb/work/models/QWEN/qwen5.py", line 18, in forward result = self.qwen(x) ^^^^^^^^^^^^ File "/home/hmsjwzb/work/models/QWEN/qwen/lib/python3.11/site-packages/torch/fx/_symbolic_trace.py", line 813, in module_call_wrapper return self.call_module(mod, forward, args, kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/hmsjwzb/work/models/QWEN/qwen/lib/python3.11/site-packages/torch/fx/_symbolic_trace.py", line 531, in call_module ret_val = forward(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/hmsjwzb/work/models/QWEN/qwen/lib/python3.11/site-packages/torch/fx/_symbolic_trace.py", line 806, in forward return _orig_module_call(mod, *args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/hmsjwzb/work/models/QWEN/qwen/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1751, in _wrapped_call_impl return self._call_impl(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/hmsjwzb/work/models/QWEN/qwen/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1762, in _call_impl return forward_call(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/hmsjwzb/work/models/QWEN/qwen/lib/python3.11/site-packages/transformers/utils/deprecation.py", line 172, in wrapped_func return func(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^ File "/home/hmsjwzb/work/models/QWEN/qwen/lib/python3.11/site-packages/transformers/models/qwen2/modeling_qwen2.py", line 856, in forward outputs = self.model( ^^^^^^^^^^^ File "/home/hmsjwzb/work/models/QWEN/qwen/lib/python3.11/site-packages/torch/fx/_symbolic_trace.py", line 813, in module_call_wrapper return self.call_module(mod, forward, args, kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/hmsjwzb/work/models/QWEN/qwen/lib/python3.11/site-packages/torch/fx/_symbolic_trace.py", line 531, in call_module ret_val = forward(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/hmsjwzb/work/models/QWEN/qwen/lib/python3.11/site-packages/torch/fx/_symbolic_trace.py", line 806, in forward return _orig_module_call(mod, *args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/hmsjwzb/work/models/QWEN/qwen/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1751, in _wrapped_call_impl return self._call_impl(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/hmsjwzb/work/models/QWEN/qwen/lib/python3.11/site-packages/torch/nn/modules/module.py", line 1762, in _call_impl return forward_call(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/hmsjwzb/work/models/QWEN/qwen/lib/python3.11/site-packages/transformers/models/qwen2/modeling_qwen2.py", line 542, in forward cache_position = torch.arange( ^^^^^^^^^^^^^ TypeError: arange() received an invalid combination of arguments - got (int, Proxy, device=Attribute), but expected one of: * (Number end, *, Tensor out = None, torch.dtype dtype = None, torch.layout layout = None, torch.device device = None, bool pin_memory = False, bool requires_grad = False) * (Number start, Number end, *, torch.dtype dtype = None, torch.layout layout = None, torch.device device = None, bool pin_memory = False, bool requires_grad = False) * (Number start, Number end, Number step = 1, *, Tensor out = None, torch.dtype dtype = None, torch.layout layout = None, torch.device device = None, bool pin_memory = False, bool requires_grad = False) ``` With Some debug, it seems the Trace module wrap x with Proxy to make it Proxy(x) and pass it to Qwen2. The Proxy caused error in the execution of neural network. ### Versions ```shell Collecting environment information... PyTorch version: 2.7.0.dev20250310+cpu Is debug build: False CUDA used to build PyTorch: None ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.5 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: 19.1.7 (https://github.com/llvm/llvm-project.git cd708029e0b2869e80abe31ddb175f7c35361f90) CMake version: version 3.31.6 Libc version: glibc-2.35 Python version: 3.11.11+local (heads/3.11-dirty:f0895aa9c1d, Dec 20 2024, 14:17:01) [GCC 11.4.0] (64-bit runtime) Python platform: Linux-6.8.0-52-generic-x86_64-with-glibc2.35 Is CUDA available: False CUDA runtime version: No CUDA CUDA_MODULE_LOADING set to: N/A GPU models and configuration: No CUDA Nvidia driver version: No CUDA cuDNN version: No CUDA HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 46 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 32 On-line CPU(s) list: 0-31 Vendor ID: GenuineIntel Model name: 13th Gen Intel(R) Core(TM) i9-13900 CPU family: 6 Model: 183 Thread(s) per core: 2 Core(s) per socket: 24 Socket(s): 1 Stepping: 1 CPU max MHz: 5600.0000 CPU min MHz: 800.0000 BogoMIPS: 3993.60 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb ssbd ibrs ibpb stibp ibrs_enhanced tpr_shadow flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb intel_pt sha_ni xsaveopt xsavec xgetbv1 xsaves split_lock_detect user_shstk avx_vnni dtherm ida arat pln pts hwp hwp_notify hwp_act_window hwp_epp hwp_pkg_req hfi vnmi umip pku ospke waitpkg gfni vaes vpclmulqdq tme rdpid movdiri movdir64b fsrm md_clear serialize pconfig arch_lbr ibt flush_l1d arch_capabilities Virtualization: VT-x L1d cache: 896 KiB (24 instances) L1i cache: 1.3 MiB (24 instances) L2 cache: 32 MiB (12 instances) L3 cache: 36 MiB (1 instance) NUMA node(s): 1 NUMA node0 CPU(s): 0-31 Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Reg file data sampling: Mitigation; Clear Register File Vulnerability Retbleed: Not affected Vulnerability Spec rstack overflow: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI BHI_DIS_S Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] numpy==2.2.3 [pip3] nvidia-cublas-cu12==12.4.5.8 [pip3] nvidia-cuda-cupti-cu12==12.4.127 [pip3] nvidia-cuda-nvrtc-cu12==12.4.127 [pip3] nvidia-cuda-runtime-cu12==12.4.127 [pip3] nvidia-cudnn-cu12==9.1.0.70 [pip3] nvidia-cufft-cu12==11.2.1.3 [pip3] nvidia-curand-cu12==10.3.5.147 [pip3] nvidia-cusolver-cu12==11.6.1.9 [pip3] nvidia-cusparse-cu12==12.3.1.170 [pip3] nvidia-cusparselt-cu12==0.6.2 [pip3] nvidia-nccl-cu12==2.21.5 [pip3] nvidia-nvjitlink-cu12==12.4.127 [pip3] nvidia-nvtx-cu12==12.4.127 [pip3] onnx==1.16.1 [pip3] onnxscript==0.2.2 [pip3] optree==0.14.0 [pip3] torch==2.7.0.dev20250310+cpu [pip3] torchvision==0.22.0.dev20250310+cpu [pip3] triton==3.2.0 [conda] magma-cuda121 2.6.1 1 pytorch ``` cc @ezyang @SherlockNoMad @EikanWang @jgong5 @wenzhe-nrv @chauhang @penguinwu @avikchaudhuri @gmagogsfm @zhxchen17 @tugsbayasgalan @angelayi @suo @ydwu4
open
2025-03-14T08:37:31Z
2025-03-24T06:33:05Z
https://github.com/pytorch/pytorch/issues/149186
[ "module: fx", "oncall: pt2", "oncall: export" ]
FlintWangacc
4
gunthercox/ChatterBot
machine-learning
2,190
After my training using a third-party corpus, the robot was unable to answer accurately
I plan to use Chatterbot to build a chatbot. After training with a third-party corpus, MY questions cannot be answered accurately, and the error rate is almost 100%. How can I solve it
open
2021-08-11T08:20:54Z
2021-08-11T08:22:29Z
https://github.com/gunthercox/ChatterBot/issues/2190
[]
jianwei923
1
gevent/gevent
asyncio
1,981
How to determine the saturation of the generated little green leaves
I want to observe how long the green applet waits in the ready queue for the loop to be dispatched. Because I want to determine if I am generating too many greenlets
closed
2023-08-03T12:14:10Z
2023-08-03T13:10:35Z
https://github.com/gevent/gevent/issues/1981
[]
xpf629629
3
davidteather/TikTok-Api
api
612
[BUG] - It seems that a csrf_session_id is now needed in cookies
`userPosts` endpoint stops to work on my side since several hours. According to my first investigations, It seems a new cookie is now needed : csrf_session_id I tried to fix that but was not able to make it work again for now
closed
2021-06-09T17:00:49Z
2021-06-24T21:01:53Z
https://github.com/davidteather/TikTok-Api/issues/612
[ "bug" ]
vdemay
8
seleniumbase/SeleniumBase
pytest
2,761
Can the nodejs code in the integrations/nodejs directory be automatically generated?
closed
2024-05-10T02:50:06Z
2024-05-10T03:25:00Z
https://github.com/seleniumbase/SeleniumBase/issues/2761
[ "question" ]
cloudswar
1
Textualize/rich
python
2,512
[BUG] Weird coloring when SSHed into a server
**Describe the bug** So basically, when I am SSHed into a server, the coloring of text is not right <br> Here's the raw text: ``` [grey50][04/09/22 18:15:58][/] [blue3]122.161.67.108 [/] -- [magenta1]/ [/] [chartreuse4][/] -- [light_steel_blue]Mozilla/5.0 (Macintosh; Intel Mac OS X 10.15; rv:104.0) Gecko/20100101 Firefox/104.0 en-GB,en;q=0.5[/] [grey50][04/09/22 18:16:12][/] [blue3]122.161.67.108 [/] -- [magenta1]/random [/] [chartreuse4](https://apiofcats.xyz/) [/][orange3](xlyhtdqqlw571.png)[/] -- [light_steel_blue]Mozilla/5.0 (Macintosh; Intel Mac OS X 10.15; rv:104.0) Gecko/20100101 Firefox/104.0 en-GB,en;q=0.5[/] [grey50][04/09/22 18:16:13][/] [blue3]122.161.67.108 [/] -- [magenta1]/random [/] [chartreuse4](https://apiofcats.xyz/) [/][orange3](7c6icgbmp7t71.jpeg)[/] -- [light_steel_blue]Mozilla/5.0 (Macintosh; Intel Mac OS X 10.15; rv:104.0) Gecko/20100101 Firefox/104.0 en-GB,en;q=0.5[/] [grey50][04/09/22 18:16:15][/] [blue3]122.161.67.108 [/] -- [magenta1]/random [/] [chartreuse4](https://apiofcats.xyz/) [/][orange3](l0r5l6xg76w81.png)[/] -- [light_steel_blue]Mozilla/5.0 (Macintosh; Intel Mac OS X 10.15; rv:104.0) Gecko/20100101 Firefox/104.0 en-GB,en;q=0.5[/] [grey50][04/09/22 18:16:16][/] [blue3]122.161.67.108 [/] -- [magenta1]/random [/] [chartreuse4](https://apiofcats.xyz/) [/][orange3](nafb03x2hp591.png)[/] -- [light_steel_blue]Mozilla/5.0 (Macintosh; Intel Mac OS X 10.15; rv:104.0) Gecko/20100101 Firefox/104.0 en-GB,en;q=0.5[/] [grey50][04/09/22 18:16:18][/] [blue3]122.161.67.108 [/] -- [magenta1]/random [/] [chartreuse4](https://apiofcats.xyz/) [/][orange3](y1okoracutl81.png)[/] -- [light_steel_blue]Mozilla/5.0 (Macintosh; Intel Mac OS X 10.15; rv:104.0) Gecko/20100101 Firefox/104.0 en-GB,en;q=0.5[/] [grey50][04/09/22 18:16:19][/] [blue3]122.161.67.108 [/] -- [magenta1]/random [/] [chartreuse4](https://apiofcats.xyz/) [/][orange3](tg6gtejsgzh71.jpeg)[/] -- [light_steel_blue]Mozilla/5.0 (Macintosh; Intel Mac OS X 10.15; rv:104.0) Gecko/20100101 Firefox/104.0 en-GB,en;q=0.5[/] [grey50][04/09/22 18:16:21][/] [blue3]122.161.67.108 [/] -- [magenta1]/random [/] [chartreuse4](https://apiofcats.xyz/) [/][orange3](redditsave.com_updates_i_got_cat_food_and_there_is_a_kitten_as-rik5p67nw0x81.mp4)[/] -- [light_steel_blue]Mozilla/5.0 (Macintosh; Intel Mac OS X 10.15; rv:104.0) Gecko/20100101 Firefox/104.0 en-GB,en;q=0.5[/] [grey50][04/09/22 18:22:35][/] [blue3]122.161.67.108 [/] -- [magenta1]/ [/] [chartreuse4][/] -- [light_steel_blue]Mozilla/5.0 (Macintosh; Intel Mac OS X 10.15; rv:104.0) Gecko/20100101 Firefox/104.0 en-GB,en;q=0.5[/] [grey50][04/09/22 18:23:59][/] [blue3]122.161.67.108 [/] -- [magenta1]/api/random[/] [chartreuse4](https://apiofcats.xyz/) [/] -- [light_steel_blue]Mozilla/5.0 (Macintosh; Intel Mac OS X 10.15; rv:104.0) Gecko/20100101 Firefox/104.0 en-GB,en;q=0.5[/] [grey50][04/09/22 18:24:01][/] [blue3]122.161.67.108 [/] -- [magenta1]/api/stats [/] [chartreuse4](https://apiofcats.xyz/) [/] -- [light_steel_blue]Mozilla/5.0 (Macintosh; Intel Mac OS X 10.15; rv:104.0) Gecko/20100101 Firefox/104.0 en-GB,en;q=0.5[/] ``` <br> This is what its supposed to look like: ![Screenshot 2022-09-04 at 6 32 26 PM](https://user-images.githubusercontent.com/79649185/188314886-c27c9be9-90d2-449e-b8bc-a12379798dbe.png) <br> This is what it looks like when I am SSHed into my server: ![Screenshot 2022-09-04 at 6 33 20 PM](https://user-images.githubusercontent.com/79649185/188314927-8017b9d9-86ff-4c5f-a416-a99830f60cc6.png) <br> **Platform** <details> <summary>Click to expand</summary> <br> **Local machine:** MacOS Monterey 12.5.1 **Server:** Ubuntu 22.04.1 LTS <br> Output of ```python -m rich.diagnose; pip freeze | grep rich```: (on my local machine, ie mac) ``` ╭───────────────────────── <class 'rich.console.Console'> ─────────────────────────╮ │ A high level console interface. │ │ │ │ ╭──────────────────────────────────────────────────────────────────────────────╮ │ │ │ <console width=167 ColorSystem.TRUECOLOR> │ │ │ ╰──────────────────────────────────────────────────────────────────────────────╯ │ │ │ │ color_system = 'truecolor' │ │ encoding = 'utf-8' │ │ file = <_io.TextIOWrapper name='<stdout>' mode='w' encoding='utf-8'> │ │ height = 28 │ │ is_alt_screen = False │ │ is_dumb_terminal = False │ │ is_interactive = True │ │ is_jupyter = False │ │ is_terminal = True │ │ legacy_windows = False │ │ no_color = False │ │ options = ConsoleOptions( │ │ size=ConsoleDimensions(width=167, height=28), │ │ legacy_windows=False, │ │ min_width=1, │ │ max_width=167, │ │ is_terminal=True, │ │ encoding='utf-8', │ │ max_height=28, │ │ justify=None, │ │ overflow=None, │ │ no_wrap=False, │ │ highlight=None, │ │ markup=None, │ │ height=None │ │ ) │ │ quiet = False │ │ record = False │ │ safe_box = True │ │ size = ConsoleDimensions(width=167, height=28) │ │ soft_wrap = False │ │ stderr = False │ │ style = None │ │ tab_size = 8 │ │ width = 167 │ ╰──────────────────────────────────────────────────────────────────────────────────╯ ╭─── <class 'rich._windows.WindowsConsoleFeatures'> ────╮ │ Windows features available. │ │ │ │ ╭───────────────────────────────────────────────────╮ │ │ │ WindowsConsoleFeatures(vt=False, truecolor=False) │ │ │ ╰───────────────────────────────────────────────────╯ │ │ │ │ truecolor = False │ │ vt = False │ ╰───────────────────────────────────────────────────────╯ ╭────── Environment Variables ───────╮ │ { │ │ 'TERM': 'xterm-kitty', │ │ 'COLORTERM': 'truecolor', │ │ 'CLICOLOR': None, │ │ 'NO_COLOR': None, │ │ 'TERM_PROGRAM': None, │ │ 'COLUMNS': None, │ │ 'LINES': None, │ │ 'JUPYTER_COLUMNS': None, │ │ 'JUPYTER_LINES': None, │ │ 'JPY_PARENT_PID': None, │ │ 'VSCODE_VERBOSE_LOGGING': None │ │ } │ ╰────────────────────────────────────╯ platform="Darwin" rich==12.5.1 ``` <br> (on my server, ie ubuntu) ``` ╭───────────────────────── <class 'rich.console.Console'> ─────────────────────────╮ │ A high level console interface. │ │ │ │ ╭──────────────────────────────────────────────────────────────────────────────╮ │ │ │ <console width=167 ColorSystem.STANDARD> │ │ │ ╰──────────────────────────────────────────────────────────────────────────────╯ │ │ │ │ color_system = 'standard' │ │ encoding = 'utf-8' │ │ file = <_io.TextIOWrapper name='<stdout>' mode='w' encoding='utf-8'> │ │ height = 28 │ │ is_alt_screen = False │ │ is_dumb_terminal = False │ │ is_interactive = True │ │ is_jupyter = False │ │ is_terminal = True │ │ legacy_windows = False │ │ no_color = False │ │ options = ConsoleOptions( │ │ size=ConsoleDimensions(width=167, height=28), │ │ legacy_windows=False, │ │ min_width=1, │ │ max_width=167, │ │ is_terminal=True, │ │ encoding='utf-8', │ │ max_height=28, │ │ justify=None, │ │ overflow=None, │ │ no_wrap=False, │ │ highlight=None, │ │ markup=None, │ │ height=None │ │ ) │ │ quiet = False │ │ record = False │ │ safe_box = True │ │ size = ConsoleDimensions(width=167, height=28) │ │ soft_wrap = False │ │ stderr = False │ │ style = None │ │ tab_size = 8 │ │ width = 167 │ ╰──────────────────────────────────────────────────────────────────────────────────╯ ╭─── <class 'rich._windows.WindowsConsoleFeatures'> ────╮ │ Windows features available. │ │ │ │ ╭───────────────────────────────────────────────────╮ │ │ │ WindowsConsoleFeatures(vt=False, truecolor=False) │ │ │ ╰───────────────────────────────────────────────────╯ │ │ │ │ truecolor = False │ │ vt = False │ ╰───────────────────────────────────────────────────────╯ ╭────── Environment Variables ───────╮ │ { │ │ 'TERM': 'xterm-kitty', │ │ 'COLORTERM': None, │ │ 'CLICOLOR': None, │ │ 'NO_COLOR': None, │ │ 'TERM_PROGRAM': None, │ │ 'COLUMNS': None, │ │ 'LINES': None, │ │ 'JUPYTER_COLUMNS': None, │ │ 'JUPYTER_LINES': None, │ │ 'JPY_PARENT_PID': None, │ │ 'VSCODE_VERBOSE_LOGGING': None │ │ } │ ╰────────────────────────────────────╯ platform="Linux" rich==12.5.1 ``` </details>
closed
2022-09-04T13:09:51Z
2022-09-24T18:31:14Z
https://github.com/Textualize/rich/issues/2512
[ "Needs triage" ]
msr8
4
deeppavlov/DeepPavlov
tensorflow
1,338
404 in the docs
Our docs contain 404 links for nemo tutorials [here](http://docs.deeppavlov.ai/en/master/features/models/nemo.html) below in the model training section
closed
2020-11-05T18:33:14Z
2022-04-01T11:35:14Z
https://github.com/deeppavlov/DeepPavlov/issues/1338
[ "bug" ]
oserikov
2
Evil0ctal/Douyin_TikTok_Download_API
api
431
[BUG] 4.0.3版本更换了cookies依然无法获取视频的信息
***发生错误的平台?*** 抖音 ***发生错误的端点?*** /api/hybrid/video_data ***提交的输入值?*** [如:短视频链接](https://v.douyin.com/ijtxc3Go/) ***是否有再次尝试?*** 是。 ***你有查看本项目的自述文件或接口文档吗?*** 有。log如下: 程序出现异常,请检查错误信息。 ERROR 无效响应类型。响应类型: <class 'NoneType'> 程序出现异常,请检查错误信息。
closed
2024-06-15T07:23:47Z
2024-06-17T14:05:06Z
https://github.com/Evil0ctal/Douyin_TikTok_Download_API/issues/431
[ "BUG" ]
ilucl
12
slackapi/bolt-python
fastapi
879
Installation issue
I have noticed that anytime i update my code for my webhook that uses oauth that is deployed, it suddenly starts requesting for me to install the app again into the organisation. I don't think this is going to be sustainable once the app is actually published. What's the solution for this? my guess is slack pings it a lot and i might not have zero downtime deployments. I am using [this ](https://github.com/slackapi/bolt-python/tree/main/examples/django/oauth_app)
closed
2023-04-08T00:01:47Z
2023-04-08T09:18:08Z
https://github.com/slackapi/bolt-python/issues/879
[]
smyja
1
wiseodd/generative-models
tensorflow
18
loss compute
i think, should use `nn.BCEloss`, not `-(torch.mean(torch.log(D_real)) + torch.mean(torch.log(1 - D_fake)))`
closed
2017-05-05T01:28:26Z
2017-12-29T11:44:38Z
https://github.com/wiseodd/generative-models/issues/18
[]
JiangWeixian
0
strawberry-graphql/strawberry-django
graphql
340
optimizer over fetching rows
Hi, It looks like Query Optimizer is over fetching rows when working with Relay connections. I works fine with List but not with Connections. So when I build schema using List, query below gets executed as single SQL But when using Connection, I get two SQLs. I guess thats how it works? Or could it be "optimized" ? `strawberry-graphql-django = "^0.16.0"` repro https://github.com/tasiotas/strawberry_debug thank you ```gql #query query MyQuery { user(pk: "1") { products { edges { node { name } } } } } ``` ```sql # first query SELECT "app_user"."id" FROM "app_user" WHERE "app_user"."id" = '1' LIMIT 21 ``` ```sql # second query SELECT "app_product"."id", "app_product"."name", "app_product"."size", # <- this shouldnt be here, didnt ask for it in the query "app_product"."user_id" FROM "app_product" WHERE "app_product"."user_id" IN ('1') ```
closed
2023-08-16T22:25:21Z
2025-03-20T15:57:17Z
https://github.com/strawberry-graphql/strawberry-django/issues/340
[ "bug" ]
tasiotas
12
piskvorky/gensim
data-science
3,288
Python 3.10 wheels
Hello! Is there a reason why there are no wheels for python 3.10? See https://pypi.org/project/gensim/4.1.2/#files If not, are you planning to add them? Let me know if I can help in any way! Best,
closed
2022-02-08T10:45:44Z
2022-03-18T14:05:48Z
https://github.com/piskvorky/gensim/issues/3288
[ "testing", "reach MEDIUM", "impact MEDIUM" ]
LouisTrezzini
2
polakowo/vectorbt
data-visualization
29
Returns_Accessor
Is there a generic way to create a new method for these performance metrics, kind of how indicators has an indicator factory? Would be nice to be able to add these performance metrics and a generic way to implement new ones and add to the portfolio class. I've only started implementing the examples so I might not have dug deep enough to find how to do this yet
closed
2020-07-30T13:11:45Z
2024-03-16T09:19:10Z
https://github.com/polakowo/vectorbt/issues/29
[]
stevennevins
8
tflearn/tflearn
tensorflow
833
Accuracy null and low loss
Hello everyone and thank you for looking at my question. I have data made of date (one entry per minute) for the first column and congestion (value, between 0 and 200) for the 2nd. My goal is to feed it to my neural network and so be able to predict for the next week the congestion at each minute (my dataset is more than 10M of entry, I shouldn't have problem of lack of data for training). Problem: I have an error (may be linked to me using the wrong loss/optimizer). When using my code (10 000 data of training for now) I have an accuracy of 0, a low loss (0.00X) and a bad prediction (not even close to the reality). Do you have any idea of where it could come from (I use Adam as an optimizer, Mean_square for loss and linear for activation)? Here is an example of what I got > Training Step: 7100 | total loss: 0.00304 | time: 1.385s | Adam | epoch: 100 | loss: 0.00304 - binary_acc: 0.0000 | val_loss: 0.00260 - val_acc: 0.0000 -- iter: 8999/8999 My code look like that: ``` from __future__ import print_function import numpy import numpy as np import tflearn from pandas import DataFrame from pandas import Series from pandas import concat from pandas import read_csv from sklearn.preprocessing import MinMaxScaler from sklearn.metrics import mean_squared_error from math import sqrt import datetime # Preprocessing function from tflearn import Accuracy def preprocess(data): return np.array(data, dtype=np.int32) def parser(x): return datetime.datetime.strptime(x, '%Y-%m-%d %H:%M:%S') # frame a sequence as a supervised learning problem def timeseries_to_supervised(data, lag=1): df = DataFrame(data) columns = [df.shift(i) for i in range(1, lag + 1)] columns.append(df) df = concat(columns, axis=1) df.fillna(0, inplace=True) return df def difference(dataset, interval=1): diff = list() for i in range(interval, len(dataset)): value = dataset[i] - dataset[i - interval] diff.append(value) return Series(diff) # invert differenced value def inverse_difference(history, yhat, interval=1): return yhat + history[-interval] # scale train and test data to [-1, 1] def scale(train, test): # fit scaler scaler = MinMaxScaler(feature_range=(-1, 1)) scaler = scaler.fit(train) # transform train train = train.reshape(train.shape[0], train.shape[1]) train_scaled = scaler.transform(train) # transform test test = test.reshape(test.shape[0], test.shape[1]) test_scaled = scaler.transform(test) return scaler, train_scaled, test_scaled # inverse scaling for a forecasted value def invert_scale(scaler, X, value): new_row = [x for x in X] + [value] array = numpy.array(new_row) array = array.reshape(1, len(array)) inverted = scaler.inverse_transform(array) return inverted[0, -1] def fit_lstm(train, batch_size, nb_epoch, neurons): X, y = train[0:-1], train[:, -1] X = X[:, 0].reshape(len(X), 1) y = y.reshape(len(y), 1) # Build neural network net = tflearn.input_data(shape=[None, 1]) net = tflearn.fully_connected(net, 1, activation='linear') acc = Accuracy() net = tflearn.regression(net, optimizer='adam', learning_rate=0.001, loss='mean_square', metric=acc) # Define model model = tflearn.DNN(net) print (X.shape) model.fit(X, y, n_epoch=nb_epoch, batch_size=batch_size, shuffle=False, show_metric=True) return model # make a one-step forecast def forecast_lstm(model, X): X = X.reshape(len(X), 1) yhat = model.predict(X) return yhat[0, 0] # Load CSV file, indicate that the first column represents labels data = read_csv('nowcastScaled.csv', header=0, parse_dates=[0], index_col=0, squeeze=True, date_parser=parser) # transform data to be stationary raw_values = data.values diff_values = difference(raw_values, 1) # transform data to be supervised learning supervised = timeseries_to_supervised(diff_values, 1) supervised_values = supervised.values # split data into train and test-sets train, test = supervised_values[0:10000], supervised_values[10000:11000] # transform the scale of the data scaler, train_scaled, test_scaled = scale(train, test) # fit the model lstm_model = fit_lstm(train_scaled, 16, 15, 1) lstm_model.save('ModelTrainTfLearn') # forecast the entire training dataset to build up state for forecasting train_reshaped = train_scaled[:, 0].reshape(len(train_scaled), 1) predictiont = lstm_model.predict(train_reshaped) print("Prediction: %s" % str(predictiont[0][:3])) # only show first 3 probas # walk-forward validation on the test data predictions = list() error_scores = list() for i in range(len(test_scaled)): # make one-step forecast X, y = test_scaled[i, 0:-1], test_scaled[i, -1] yhat = forecast_lstm(lstm_model, X) # X, y = test_scaled[i, 0:-1], test_scaled[i, -1] # invert scaling yhat = invert_scale(scaler, X, yhat) # # invert differencing yhat = inverse_difference(raw_values, yhat, len(test_scaled) + 1 - i) # store forecast predictions.append(yhat) rmse = sqrt(mean_squared_error(raw_values[10000:11000], predictions)) print('%d) Test RMSE: %.3f' % (1, rmse)) error_scores.append(rmse) print (predictions) print (raw_values[10000:11000]) ``` What I'm trying to do is a time series prediction, is tflearn good for that or is it just my way to do it that is wrong? Thank your for your attention and help. (Linked is the file I'm using) [nowcastScaled.zip](https://github.com/tflearn/tflearn/files/1141334/nowcastScaled.zip)
closed
2017-07-12T08:29:35Z
2017-07-20T05:58:42Z
https://github.com/tflearn/tflearn/issues/833
[]
Erickira3
1
Sanster/IOPaint
pytorch
429
[BUG]pydantic_core._pydantic_core.ValidationError: 1 validation error for Config paint_by_example_example_image Input should be an instance of Image [type=is_instance_of, input_value=None, input_type=NoneType]
**Model** LAMA **Describe the bug** [2024-01-24 09:36:41,914] ERROR in app: Exception on /inpaint [POST] Traceback (most recent call last): File "E:\wss\python\pycharm-work\lama-cleaner-0.37.0\venv\lib\site-packages\flask\app.py", line 2447, in wsgi_app response = self.full_dispatch_request() File "E:\wss\python\pycharm-work\lama-cleaner-0.37.0\venv\lib\site-packages\flask\app.py", line 1952, in full_dispatch_request rv = self.handle_user_exception(e) File "E:\wss\python\pycharm-work\lama-cleaner-0.37.0\venv\lib\site-packages\flask_cors\extension.py", line 176, in wrapped_function return cors_after_request(app.make_response(f(*args, **kwargs))) File "E:\wss\python\pycharm-work\lama-cleaner-0.37.0\venv\lib\site-packages\flask\app.py", line 1821, in handle_user_exception reraise(exc_type, exc_value, tb) File "E:\wss\python\pycharm-work\lama-cleaner-0.37.0\venv\lib\site-packages\flask\_compat.py", line 39, in reraise raise value File "E:\wss\python\pycharm-work\lama-cleaner-0.37.0\venv\lib\site-packages\flask\app.py", line 1950, in full_dispatch_request rv = self.dispatch_request() File "E:\wss\python\pycharm-work\lama-cleaner-0.37.0\venv\lib\site-packages\flask\app.py", line 1936, in dispatch_request return self.view_functions[rule.endpoint](**req.view_args) File "E:\wss\python\pycharm-work\lama-cleaner-0.37.0\lama_cleaner\server.py", line 259, in process p2p_guidance_scale=form["p2pGuidanceScale"], File "E:\wss\python\pycharm-work\lama-cleaner-0.37.0\venv\lib\site-packages\pydantic\main.py", line 164, in __init__ __pydantic_self__.__pydantic_validator__.validate_python(data, self_instance=__pydantic_self__) pydantic_core._pydantic_core.ValidationError: 1 validation error for Config paint_by_example_example_image Input should be an instance of Image [type=is_instance_of, input_value=None, input_type=NoneType] For further information visit https://errors.pydantic.dev/2.4/v/is_instance_of **System Info** (venv) E:\wss\python\pycharm-work\lama-cleaner-0.37.0>python main.py --model=lama --device=cpu --port=8085 - Platform: Windows-10-10.0.19041-SP0 - Python version: 3.7.2 - torch: 1.13.1 - Pillow: 9.5.0 - diffusers: 0.12.1 - transformers: 4.30.2 - opencv-python: 4.9.0.80 - xformers: N/A - accelerate: 0.20.3 - lama-cleaner: N/A 2024-01-24 09:33:59.046 | INFO | lama_cleaner.helper:load_jit_model:102 - Loading model from: C:\Users\wss\.cache\torch\hub\checkpoints\big-lama.pt 2024-01-24 09:33:59.799 | INFO | lama_cleaner.helper:load_jit_model:102 - Loading model from: C:\Users\wss\.cache\torch\hub\checkpoints\clickseg_pplnet. pt * Running on http://127.0.0.1:8085/ (Press CTRL+C to quit) 127.0.0.1 - - [24/Jan/2024 09:34:06] "GET / HTTP/1.1" 200 - 127.0.0.1 - - [24/Jan/2024 09:34:07] "GET /model HTTP/1.1" 200 - 127.0.0.1 - - [24/Jan/2024 09:34:07] "GET /inputimage HTTP/1.1" 200 - 127.0.0.1 - - [24/Jan/2024 09:34:07] "GET /is_desktop HTTP/1.1" 200 - 127.0.0.1 - - [24/Jan/2024 09:34:07] "GET /is_disable_model_switch HTTP/1.1" 200 - 127.0.0.1 - - [24/Jan/2024 09:34:07] "GET /is_enable_file_manager HTTP/1.1" 200 - 127.0.0.1 - - [24/Jan/2024 09:34:07] "GET /is_enable_auto_saving HTTP/1.1" 200 - 127.0.0.1 - - [24/Jan/2024 09:34:14] "GET /model HTTP/1.1" 200 -
closed
2024-01-24T03:15:51Z
2025-02-27T02:01:44Z
https://github.com/Sanster/IOPaint/issues/429
[ "stale" ]
wang3680
3
PaddlePaddle/PaddleHub
nlp
1,869
运行trainer.train()出现label should not out of bound, but gotTensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True, [2])
- 版本、环境信息 1)例如PaddleHub2.1.1,PaddlePaddle2.2.2.post101使用erine_tiny 2)系统环境:aistudio平台 - 复现信息:ValueError: label should not out of bound, but gotTensor(shape=[1], dtype=int64, place=CUDAPlace(0), stop_gradient=True,[2] - 代码:https://aistudio.baidu.com/aistudio/datasetdetail/146374/0
closed
2022-05-14T02:57:07Z
2022-05-25T01:56:52Z
https://github.com/PaddlePaddle/PaddleHub/issues/1869
[]
fatepary
2
viewflow/viewflow
django
28
right lookup over flow_task fields
Need to add full path to flow_task name or get_objects_or_404(Task, process__flow_cls=flow_task.flow_cls, flow_task=flow_task)
closed
2014-03-28T00:37:33Z
2014-05-01T09:58:12Z
https://github.com/viewflow/viewflow/issues/28
[ "request/enhancement" ]
kmmbvnr
1
jpadilla/django-rest-framework-jwt
django
368
Validate and get the user using the jwt token inside a view or consumer
I am using django-rest-framework for the REST API. Also, for JSON web token authentication I am using django-rest-framework-jwt. After a successful login, the user is provided with a token. I have found how to [verify a token](https://getblimp.github.io/django-rest-framework-jwt/#verify-token) with the api call, but is there any way to validate the token inside a view and get the user of that token, similar to request.user? I need it to validate inside the consumer when using [django-channels](https://channels.readthedocs.io/en/stable/index.html): ``` def ws_connect(message): params = parse_qs(message.content["query_string"]) if b"token" in params: token = params[b"token"][0] # validate the token and get the user object # create an object with that user ```
open
2017-09-15T02:24:36Z
2018-08-20T05:28:08Z
https://github.com/jpadilla/django-rest-framework-jwt/issues/368
[]
robinlery
1
biolab/orange3
data-visualization
6,173
Feature Statistics - open issues
<!-- If something's not right with Orange, fill out the bug report template at: https://github.com/biolab/orange3/issues/new?assignees=&labels=bug+report&template=bug_report.md&title= If you have an idea for a new feature, fill out the feature request template at: https://github.com/biolab/orange3/issues/new?assignees=&labels=&template=feature_request.md&title= --> After PR #6158 there are some open issues left that should be discussed: - [x] Compute Mode for numeric variables? - [x] Show Mode in the widget to make it consistent with the new (and improved) output? Currently the mode is squeezed into the Median column, which would otherwise be empty for categorical variables. But numeric variables could have both... - [ ] Documentation should be updated - [x] There are some warnings which could cause issues in the future: ``` Orange/statistics/util.py:510: FutureWarning: Unlike other reduction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts along. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to True or False to avoid this warning. res = scipy.stats.stats.mode(x, axis) ``` ``` orange-widget-base/orangewidget/gui.py:2068: UserWarning: decorate OWFeatureStatistics.commit with @gui.deferred and then explicitly call commit.now or commit.deferred. ```
closed
2022-10-14T13:50:34Z
2023-02-23T11:00:15Z
https://github.com/biolab/orange3/issues/6173
[ "wish", "snack" ]
lanzagar
2
pytest-dev/pytest-xdist
pytest
328
Re-run errored tests on another node
With https://github.com/pytest-dev/pytest-xdist/issues/327 (errors due to out-of-memory), it would be useful if those tests could be run on another node automatically/optionally. I guess that `--dist=each` would consider the test(s) to be OK if it failed only on one node, but I am using `--dist=loadfile` (for performance reasons).
open
2018-08-02T05:27:24Z
2018-08-02T08:19:31Z
https://github.com/pytest-dev/pytest-xdist/issues/328
[]
blueyed
4
marcomusy/vedo
numpy
912
linewidth in silhouette
problem: how to close linewidth in silhouette mesh: [SMPL_A.txt](https://github.com/marcomusy/vedo/files/12273512/SMPL_A.txt) code: ``` from vedo import settings, Plotter, Mesh settings.use_depth_peeling = True plt = Plotter() path_mesh = "SMPL_A.obj" mesh = Mesh(path_mesh).lighting("off").c("pink").alpha(0.5) plt.show( mesh, mesh.silhouette(border_edges=True, feature_angle=False).linewidth(3).color("dr"), ) plt.close() ``` result: ![image](https://github.com/marcomusy/vedo/assets/34391447/2172c29d-fd1e-4dbb-a6f2-dc9bceef2bb6)
closed
2023-08-07T07:41:01Z
2023-08-24T06:45:38Z
https://github.com/marcomusy/vedo/issues/912
[]
LogWell
3
jacobgil/pytorch-grad-cam
computer-vision
22
'image not found' error
I see that several people get the image not found error. Here is my solution: 'brew install libomp' Added a comment to Readme: https://github.com/punnerud/pytorch-grad-cam
closed
2019-06-04T13:27:22Z
2019-06-04T16:39:31Z
https://github.com/jacobgil/pytorch-grad-cam/issues/22
[]
punnerud
1
pallets-eco/flask-sqlalchemy
flask
563
many to many relationship, cann't add any data.
I use the case which was provided from official website (http://flask-sqlalchemy.pocoo.org/2.3/models/#many-to-many-relationships),this can create three tables, but when I add new data, they raise "AttributeError: 'tuple' object has no attribute 'foreign_keys'" my code: ``` from flask import Flask from flask_sqlalchemy import SQLAlchemy from app import adminApp db=SQLAlchemy(adminApp) tags = db.Table('tags', db.Column('tag_id', db.Integer, db.ForeignKey('tag.id')), db.Column('page_id', db.Integer, db.ForeignKey('page.id')) ) class Page(db.Model): id = db.Column(db.Integer, primary_key=True) tags = db.relationship('Tag', secondary=tags, backref=db.backref('pages', lazy='dynamic')) class Tag(db.Model): id = db.Column(db.Integer, primary_key=True) db.create_all() tag1=Tag() tag2=Tag() page1=Page() page2=Page() ``` error informations: `File "f:/zww/project/testmanytomany.py", line 21, in <module> tag1=Tag() File "<string>", line 2, in __init__ File "D:\Anaconda3\envs\webpy\lib\site-packages\sqlalchemy\orm\instrumentation.py", line 347, in _new_state_if_none state = self._state_constructor(instance, self) File "D:\Anaconda3\envs\webpy\lib\site-packages\sqlalchemy\util\langhelpers.py", line 764, in __get__ obj.__dict__[self.__name__] = result = self.fget(obj) File "D:\Anaconda3\envs\webpy\lib\site-packages\sqlalchemy\orm\instrumentation.py", line 177, in _state_constructor self.dispatch.first_init(self, self.class_) File "D:\Anaconda3\envs\webpy\lib\site-packages\sqlalchemy\event\attr.py", line 256, in __call__ fn(*args, **kw) File "D:\Anaconda3\envs\webpy\lib\site-packages\sqlalchemy\orm\mapper.py", line 2976, in _event_on_first_init configure_mappers() File "D:\Anaconda3\envs\webpy\lib\site-packages\sqlalchemy\orm\mapper.py", line 2872, in configure_mappers mapper._post_configure_properties() File "D:\Anaconda3\envs\webpy\lib\site-packages\sqlalchemy\orm\mapper.py", line 1765, in _post_configure_properties prop.init() File "D:\Anaconda3\envs\webpy\lib\site-packages\sqlalchemy\orm\interfaces.py", line 184, in init self.do_init() File "D:\Anaconda3\envs\webpy\lib\site-packages\sqlalchemy\orm\relationships.py", line 1654, in do_init self._setup_join_conditions() File "D:\Anaconda3\envs\webpy\lib\site-packages\sqlalchemy\orm\relationships.py", line 1729, in _setup_join_conditions can_be_synced_fn=self._columns_are_mapped File "D:\Anaconda3\envs\webpy\lib\site-packages\sqlalchemy\orm\relationships.py", line 1987, in __init__ self._determine_joins() File "D:\Anaconda3\envs\webpy\lib\site-packages\sqlalchemy\orm\relationships.py", line 2053, in _determine_joins consider_as_foreign_keys=consider_as_foreign_keys File "<string>", line 2, in join_condition File "D:\Anaconda3\envs\webpy\lib\site-packages\sqlalchemy\sql\selectable.py", line 964, in _join_condition a, a_subset, b, consider_as_foreign_keys) File "D:\Anaconda3\envs\webpy\lib\site-packages\sqlalchemy\sql\selectable.py", line 996, in _joincond_scan_left_right b.foreign_keys, AttributeError: 'tuple' object has no attribute 'foreign_keys'` I use python3.5 with anaconda, mysql and pymysql as a connector between python3 and mysql. please help me , I spent much time to find a solution with google, but I failed.
closed
2017-10-26T16:13:52Z
2020-12-05T20:55:27Z
https://github.com/pallets-eco/flask-sqlalchemy/issues/563
[]
dreamsuifeng
2
biolab/orange3
pandas
6,657
Documentation for Table.from_list
<!-- This is an issue template. Please fill in the relevant details in the sections below. Wrap code and verbatim terminal window output into triple backticks, see: https://help.github.com/articles/basic-writing-and-formatting-syntax/#quoting-code If you're raising an issue about an add-on (e.g. installed via Options > Add-ons), raise an issue on the relevant add-on's issue tracker instead. See: https://github.com/biolab?q=orange3 --> ##### Orange version <!-- From menu _Help→About→Version_ or code `Orange.version.full_version` --> '3.36.2' ##### Expected behavior I would like to know how to use `Table.from_list` method or if is there an alternative for creating a table from a lists of lists, or list of dicts. The domain has discrete and string (meta) variables, but I have no idea how the domain relates to the list of values. Should discrete variables come first? later?
closed
2023-11-27T13:08:41Z
2023-11-27T13:21:44Z
https://github.com/biolab/orange3/issues/6657
[]
dhilst
0
chezou/tabula-py
pandas
198
CalledProcessError after bundling Python script into executable with PyInstaller
<!--- Provide a general summary of your changes in the Title above --> # Summary of your issue I've been using tabula-py to convert a series of pdf tables into csv files for my program to parse through and collect some data. The code works perfectly when just in the script, but if I attempt to bundle my code into an executable file using PyInstaller I get an error. Thanks for any help you can give! # Check list before submit <!--- Write and check the following questionaries. --> - Your PDF URL: Unable to upload due to sensitivity of PDF. - Paste the output of `import tabula; tabula.environment_info()` on Python REPL: Python version: 3.8.0 (tags/v3.8.0:fa919fd, Oct 14 2019, 19:21:23) [MSC v.1916 32 bit (Intel)] Java version: java version "1.8.0_131" Java(TM) SE Runtime Environment (build 1.8.0_131-b11) Java HotSpot(TM) Client VM (build 25.131-b11, mixed mode, sharing) tabula-py version: 1.4.3 platform: Windows-7-6.1.7601-SP1 uname: uname_result(system='Windows', node='L17CA-D7426CPS', release='7', version='6.1.7601', machine='AMD64', processor='Intel64 Family 6 Model 94 Stepping 3, GenuineIntel') linux_distribution: ('', '', '') mac_ver: ('', ('', '', ''), '') # What did you do when you faced the problem? Upon facing the problem I tried the previous solutions, namely putting the PDF in the same folder as the executable and modifying my tabula-py version to 1.3.1. Neither fix was successful. <!--- Provide your information to reproduce the issue. --> ## Code: ``` pdf_path = pdf_path output_path = output_path try: tabula.convert_into(pdf_path,pages='all', guess=False,output_format="CSV",output_path=output_path) #Try to convert the file except AttributeError: messagebox.showerror("Operation cancelled!", "In order to continue, please re-run the program and select a PDF file.") ``` ## Expected behavior: A .csv file with the tables that were contained within the PDF. ## Actual behavior: ![image](https://user-images.githubusercontent.com/46826008/70953425-10bab280-201e-11ea-876a-c3d71d478152.png) ## Related Issues: #60 #93 #86
closed
2019-12-17T00:34:05Z
2023-04-06T01:40:51Z
https://github.com/chezou/tabula-py/issues/198
[]
adammet
5
seleniumbase/SeleniumBase
web-scraping
2,178
Unable to obtain multiple texts:self.get_text('li.el-menu-item')
![image](https://github.com/seleniumbase/SeleniumBase/assets/49641020/9112ad72-d4e1-4e34-95e0-361428c4ec93) I need to retrieve these files into a list, currently only the first one can be obtained 触发事件 流程列表 触发策略
closed
2023-10-11T11:04:28Z
2023-10-12T02:33:52Z
https://github.com/seleniumbase/SeleniumBase/issues/2178
[ "question" ]
luckyboy-wei
2
miguelgrinberg/Flask-SocketIO
flask
1,851
Does the windows environment cause multiple client links to block
Hello, I am using Flask-SocketIO to process tasks, if a user sends multiple tasks, it will cause the link Flask-SocketIO to block, my environment is windows
closed
2022-07-22T10:09:36Z
2022-07-22T10:17:18Z
https://github.com/miguelgrinberg/Flask-SocketIO/issues/1851
[]
zhenzi0322
1
Lightning-AI/LitServe
api
177
Show warning if `batch` & `unbatch` is implemented but max_batch_size not set in `LitServer`
## 🚀 Feature <!-- A clear and concise description of the feature proposal --> ### Motivation <!-- Please outline the motivation for the proposal. Is your feature request related to a problem? e.g., I'm always frustrated when [...]. If this is related to another GitHub issue, please link here too --> ### Pitch <!-- A clear and concise description of what you want to happen. --> ### Alternatives <!-- A clear and concise description of any alternative solutions or features you've considered, if any. --> ### Additional context <!-- Add any other context or screenshots about the feature request here. -->
closed
2024-07-19T18:13:44Z
2024-08-02T14:57:26Z
https://github.com/Lightning-AI/LitServe/issues/177
[ "enhancement", "good first issue", "help wanted" ]
aniketmaurya
2
CorentinJ/Real-Time-Voice-Cloning
deep-learning
667
Dataset option is blur(not usable) in GUI
![Screenshot (4)](https://user-images.githubusercontent.com/34327216/108250234-dad5fa00-710a-11eb-84a5-21472a3084de.png) How to enable dataset option ? It is not usable in GUI. Where to extract data sets? <dataset_root> means any folder ?
closed
2021-02-17T18:30:13Z
2021-02-17T20:23:42Z
https://github.com/CorentinJ/Real-Time-Voice-Cloning/issues/667
[]
clonereal
1
httpie/cli
rest-api
1,523
[macOS] Lag when piping stdout
When redirecting httpie output to a pipe, there is a significant lag in the total execution time: 1. Without pipe ``` time http http://localhost:8508/api/v1 > /dev/null http http://localhost:8508/api/v1> /dev/null 0.12s user 0.05s system 59% cpu 0.282 total ``` 2. With pipe ``` time http http://localhost:8508/api/v1 | cat > /dev/null http http://localhost:8508/api/v1 0.12s user 0.04s system 86% cpu 0.193 total cat > /dev/null 0.00s user 0.00s system 0% cpu 0.973 total ``` Note that the lag appears to be happening in the `cat` command after `httpie`, which doesn't make sense and doesn't happen for `curl` or `wget`: ``` time curl -s http://localhost:8508/api/v1 > /dev/null curl -s http://localhost:8508/api/v1 > /dev/null 0.01s user 0.01s system 56% cpu 0.024 total time curl -s http://localhost:8508/api/v1 | cat > /dev/null curl -s http://localhost:8508/api/v1 0.00s user 0.01s system 44% cpu 0.035 total cat > /dev/null 0.00s user 0.00s system 9% cpu 0.034 total ``` ## Checklist - [x] I've searched for similar issues. - [x] I'm using the latest version of HTTPie.
closed
2023-07-30T23:28:36Z
2024-01-31T18:01:32Z
https://github.com/httpie/cli/issues/1523
[ "bug", "new" ]
gsakkis
5
arogozhnikov/einops
numpy
167
[BUG] einops materializes tensors that could be views
**Describe the bug** That a lot for this great library! My code looks much nicer now. Today I noticed that einops exhibits suboptimal behavior when repeating tensors in ways that could be views. In the example below, expanding with PyTorch creates a view that actually reuses the same memory as the original tensor. If I use einops instead to expand the dimensions, I get a fully realized tensor with a much larger memory footprint. **Reproduction steps** ```python $ ipython Python 3.9.9 (main, Jan 5 2022, 20:20:26) Type 'copyright', 'credits' or 'license' for more information IPython 8.0.1 -- An enhanced Interactive Python. Type '?' for help. Exception reporting mode: Verbose In [1]: x = torch.arange(10) In [2]: import einops as eo In [3]: a = eo.repeat(x, "i -> 8 3 i") In [4]: a.storage().size(), a.storage().data_ptr() Out[4]: (240, 93944369638784) In [5]: b = x.expand((8, 3, -1)) In [6]: b.storage().size(), b.storage().data_ptr() Out[6]: (10, 93944370155264) In [7]: x.storage().size(), x.storage().data_ptr() Out[7]: (10, 93944370155264) ``` **Expected behavior** I would expect einops to be as efficient as creating the view directly. **Your platform** ``` torch==1.10.1 einops==0.3.2 ```
closed
2022-01-19T17:23:03Z
2022-01-19T18:53:09Z
https://github.com/arogozhnikov/einops/issues/167
[ "bug" ]
martenlienen
2
kaliiiiiiiiii/Selenium-Driverless
web-scraping
150
sendkeys-elemwrite ?
File "C:\Users\Administrator\Desktop\Proxy-Changer-main\drivertest.py", line 83, in <module> asyncio.run(main()) File "C:\Users\Administrator\AppData\Local\Programs\Python\Python311\Lib\asyncio\runners.py", line 190, in run return runner.run(main) ^^^^^^^^^^^^^^^^ File "C:\Users\Administrator\AppData\Local\Programs\Python\Python311\Lib\asyncio\runners.py", line 118, in run return self._loop.run_until_complete(task) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\Administrator\AppData\Local\Programs\Python\Python311\Lib\asyncio\base_events.py", line 650, in run_until_complete return future.result() ^^^^^^^^^^^^^^^ File "C:\Users\Administrator\Desktop\Proxy-Changer-main\drivertest.py", line 78, in main epostagiris.write("yunus") ^^^^^^^^^^^^^^^^^ AttributeError: 'coroutine' object has no attribute 'write' sys:1: RuntimeWarning: coroutine 'Chrome.find_element' was never awaited async def main(): options = webdriver.ChromeOptions() async with webdriver.Chrome(options=options) as driver: await driver.get('---') #await driver.sleep(1.5) #await driver.wait_for_cdp("Page.domContentEventFired", timeout=10) # wait 10s for elem to exist birincitik = await driver.find_element(By.XPATH, '//*[@id="SupportFormRow.486349168100130"]/div[3]/label[2]') await birincitik.click(move_to=True) time.sleep(10) ikincitik = await driver.find_element(By.XPATH, '//*[@id="SupportFormRow.334536476675719"]/div[4]/label[1]/span') await ikincitik.click(move_to=True) ucuncutik = await driver.find_element(By.XPATH, '//*[@id="SupportFormRow.650238494993366"]/div[4]/label[1]/span') await ucuncutik.click(move_to=True) epostatik = await driver.find_element(By.XPATH, '//*[@id="454337367989067"]') await ucuncutik.click(move_to=True) epostagiris = driver.find_element(By.XPATH, '//*[@id="454337367989067"]') epostagiris.write("yunus") time.sleep(10) #await epostagiris.click(move_to=True) asyncio.run(main())
closed
2024-01-15T10:02:52Z
2024-01-15T10:30:22Z
https://github.com/kaliiiiiiiiii/Selenium-Driverless/issues/150
[]
yemrekula0748
1
neuml/txtai
nlp
377
OpenMP issues with torch 1.13+ on macOS
macOS users are running into a compatibility issue between Faiss and Torch related to OpenMP. This has also affected the GitHub Actions build. It would be great if a macOS user took a look at trying to figure out the root cause. See this comment for debugging ideas https://github.com/neuml/txtai/issues/498#issuecomment-1627807236. _Note: The GitHub Actions build is currently pinned to torch==1.12.1._
closed
2022-11-01T18:23:06Z
2023-07-10T17:06:04Z
https://github.com/neuml/txtai/issues/377
[ "bug" ]
davidmezzetti
2
Evil0ctal/Douyin_TikTok_Download_API
fastapi
243
我用cloudflare解析了域名,为什么无法访问,是不是我使用了泛解析,还是证书问题?
***发生错误的平台?*** 如:抖音/TikTok ***发生错误的端点?*** 如:API-V1/API-V2/Web APP ***提交的输入值?*** 如:短视频链接 ***是否有再次尝试?*** 如:是,发生错误后X时间后错误依旧存在。 ***你有查看本项目的自述文件或接口文档吗?*** 如:有,并且很确定该问题是程序导致的。
closed
2023-08-17T15:19:25Z
2023-09-12T15:22:05Z
https://github.com/Evil0ctal/Douyin_TikTok_Download_API/issues/243
[ "help wanted" ]
tiermove
3
zappa/Zappa
flask
738
[Migrated] Zappa appears to fail silently when it can't create a bucket
Originally from: https://github.com/Miserlou/Zappa/issues/1860 by [fbidu](https://github.com/fbidu) <!--- Provide a general summary of the issue in the Title above --> ## Context I'm using Python 3.7 but that doesn't seem to affect the issue itself. In my initial config, I put a "bucket_name" that, by accident, already existed but wasn't mine. When I tried to deploy, I got this somewhat cryptic error message ``` Traceback (most recent call last): File "/home/fbidu/.local/share/virtualenvs/predict-Rd_jSeMc/lib/python3.7/site-packages/zappa/core.py", line 924, in upload_to_s3 self.s3_client.head_bucket(Bucket=bucket_name) File "/home/fbidu/.local/share/virtualenvs/predict-Rd_jSeMc/lib/python3.7/site-packages/botocore/client.py", line 357, in _api_call return self._make_api_call(operation_name, kwargs) File "/home/fbidu/.local/share/virtualenvs/predict-Rd_jSeMc/lib/python3.7/site-packages/botocore/client.py", line 661, in _make_api_call raise error_class(parsed_response, operation_name) botocore.exceptions.ClientError: An error occurred (403) when calling the HeadBucket operation: Forbidden During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/home/fbidu/.local/share/virtualenvs/predict-Rd_jSeMc/lib/python3.7/site-packages/zappa/cli.py", line 2779, in handle sys.exit(cli.handle()) File "/home/fbidu/.local/share/virtualenvs/predict-Rd_jSeMc/lib/python3.7/site-packages/zappa/cli.py", line 509, in handle self.dispatch_command(self.command, stage) File "/home/fbidu/.local/share/virtualenvs/predict-Rd_jSeMc/lib/python3.7/site-packages/zappa/cli.py", line 546, in dispatch_command self.deploy(self.vargs['zip']) File "/home/fbidu/.local/share/virtualenvs/predict-Rd_jSeMc/lib/python3.7/site-packages/zappa/cli.py", line 723, in deploy self.zip_path, self.s3_bucket_name, disable_progress=self.disable_progress) File "/home/fbidu/.local/share/virtualenvs/predict-Rd_jSeMc/lib/python3.7/site-packages/zappa/core.py", line 931, in upload_to_s3 Bucket=bucket_name, File "/home/fbidu/.local/share/virtualenvs/predict-Rd_jSeMc/lib/python3.7/site-packages/botocore/client.py", line 357, in _api_call return self._make_api_call(operation_name, kwargs) File "/home/fbidu/.local/share/virtualenvs/predict-Rd_jSeMc/lib/python3.7/site-packages/botocore/client.py", line 661, in _make_api_call raise error_class(parsed_response, operation_name) botocore.exceptions.ClientError: An error occurred (IllegalLocationConstraintException) when calling the CreateBucket operation: The unspecified location constraint is incompatible for the region specific endpoint this request was sent to. ``` After changing the bucket name to a new, unique one, the deployment immediately worked. ## Expected Behavior <!--- Tell us what should happen --> I think Zappa should check about this error and give a more clear warning ## Actual Behavior <!--- Tell us what happens instead --> I got an weird error ## Possible Fix <!--- Not obligatory, but suggest a fix or reason for the bug --> I think that zappa can make some assertion before trying to do the deploy ## Steps to Reproduce <!--- Provide a link to a live example, or an unambiguous set of steps to --> <!--- reproduce this bug include code to reproduce, if relevant --> 1. Set `bucket_name` to any name that already exists and does not belong to your user. In my case it was "zappa-predict" at us-east-1 2. Try to run `zappa deploy`
closed
2021-02-20T12:41:35Z
2022-07-16T06:24:36Z
https://github.com/zappa/Zappa/issues/738
[]
jneves
1
Johnserf-Seed/TikTokDownload
api
532
异常,本地网络请求异常。 异常: 0, message='Attempt to decode JSON with unexpected mimetype: text/plain; charset=utf-8', url=URL('https://www.douyin.com/aweme/v1/web/user/profile/other/?device_platform=webapp&aid=6383&sec_user_id=MS4wLjABAAAA4vgRHGrSG6rPlffm3RvwHWL8TBq7O4YnM5jHUNXz0-s&cookie_enabled=true& platform=PC&downlink=10&X-Bogus=DFSzswVuSYhANxXhtyf4ql9WX7J-')
**描述出现的错误** 遇到bug先在issues中搜索,没有得到解决方案再提交。 对出现bug的地方做清晰而简洁的描述。 **bug复现** 复现这次行为的步骤: 1.首先更改了什么什么 2.点击了什么什么 3.“……” **截图** 如果适用,添加屏幕截图以帮助解释您的问题。 **桌面(请填写以下信息):** -操作系统:[例如windows10 64bit] -vpn代理:[例如开启、关闭] -项目版本:[如1.4.2.2] -py版本:[如3.11.1] -依赖库的版本:[出错的库版本号] **附文** 在此处添加有关此问题的其他备注。
closed
2023-08-31T16:45:48Z
2023-09-01T13:03:57Z
https://github.com/Johnserf-Seed/TikTokDownload/issues/532
[ "故障(bug)", "额外求助(help wanted)", "无效(invalid)" ]
Hkxuan
1
amidaware/tacticalrmm
django
1,229
Request: Register all repos with OpenHub and Coverity Scan
Tactical RMM is already registered with OpenHub - https://www.openhub.net/p/tacticalrmm It would be great for the project (and visibility) to register all the repos associated with Tactical RMM (core, agent, web) with both OpenHub and Coverity Scan - https://scan.coverity.com/ - a static analysis tool that is free for open source projects.
closed
2022-07-28T13:40:57Z
2022-10-26T12:09:47Z
https://github.com/amidaware/tacticalrmm/issues/1229
[ "help wanted" ]
UranusBytes
1
pallets/flask
flask
4,604
Update of the downloadable documentation of flask2.0
I would love to be able to download the latest flask2.0 docs as it's always a good resource and since the update of flask the docs have been updated online but the downloadable versions are still in flask1.x.x ![flask](https://user-images.githubusercontent.com/55891685/169630359-e2941ef1-62c6-47d6-ac43-85fbfeedadf1.png)
closed
2022-05-21T02:08:44Z
2022-06-05T00:07:17Z
https://github.com/pallets/flask/issues/4604
[]
forinda
2
kizniche/Mycodo
automation
1,016
Error 500 - internal server error
Hey mate its me fumetin again xD Was installing a new input on my new raspberry and while trying to add i believe it was "anyleaf ph meter I2C" got me this error that dont allow me to get into New INPUTS page. here the Error: Error (Full Traceback): Traceback (most recent call last): File "/home/pi/Mycodo/env/lib/python3.7/site-packages/flask/app.py", line 2447, in wsgi_app response = self.full_dispatch_request() File "/home/pi/Mycodo/env/lib/python3.7/site-packages/flask/app.py", line 1952, in full_dispatch_request rv = self.handle_user_exception(e) File "/home/pi/Mycodo/env/lib/python3.7/site-packages/flask_restx/api.py", line 652, in error_router return original_handler(e) File "/home/pi/Mycodo/env/lib/python3.7/site-packages/flask/app.py", line 1821, in handle_user_exception reraise(exc_type, exc_value, tb) File "/home/pi/Mycodo/env/lib/python3.7/site-packages/flask/_compat.py", line 39, in reraise raise value File "/home/pi/Mycodo/env/lib/python3.7/site-packages/flask/app.py", line 1950, in full_dispatch_request rv = self.dispatch_request() File "/home/pi/Mycodo/env/lib/python3.7/site-packages/flask/app.py", line 1936, in dispatch_request return self.view_functions[rule.endpoint](**req.view_args) File "/home/pi/Mycodo/env/lib/python3.7/site-packages/flask_login/utils.py", line 272, in decorated_view return func(*args, **kwargs) File "/home/pi/Mycodo/mycodo/mycodo_flask/routes_page.py", line 2166, in page_input devices_1wire_w1thermsensor=devices_1wire_w1thermsensor) File "/home/pi/Mycodo/env/lib/python3.7/site-packages/flask/templating.py", line 140, in render_template ctx.app, File "/home/pi/Mycodo/env/lib/python3.7/site-packages/flask/templating.py", line 120, in _render rv = template.render(context) File "/home/pi/Mycodo/env/lib/python3.7/site-packages/jinja2/environment.py", line 1304, in render self.environment.handle_exception() File "/home/pi/Mycodo/env/lib/python3.7/site-packages/jinja2/environment.py", line 925, in handle_exception raise rewrite_traceback_stack(source=source) File "/home/pi/Mycodo/mycodo/mycodo_flask/templates/pages/input.html", line 3, in top-level template code {% set help_page = ["https://kizniche.github.io/Mycodo/Inputs/", dict_translation['input']['title']] %} File "/home/pi/Mycodo/mycodo/mycodo_flask/templates/layout.html", line 375, in top-level template code {%- block body %}{% endblock -%} File "/home/pi/Mycodo/mycodo/mycodo_flask/templates/pages/input.html", line 35, in block 'body' {% include 'pages/data_options/input.html' %} File "/home/pi/Mycodo/mycodo/mycodo_flask/templates/pages/data_options/input.html", line 201, in top-level template code {% include 'pages/form_options/Interface.html' %} File "/home/pi/Mycodo/mycodo/mycodo_flask/templates/pages/form_options/Interface.html", line 1, in top-level template code {% if 'interface' in dict_options['options_disabled'] %} jinja2.exceptions.UndefinedError: 'dict object' has no attribute 'options_disabled' Thanks for ur time and such an incredible program ( im already running whit another raspberry for last 3 months whitout any issue).
closed
2021-05-30T15:24:59Z
2021-06-05T16:32:42Z
https://github.com/kizniche/Mycodo/issues/1016
[ "duplicate" ]
Fumetin
1
google-research/bert
nlp
1,010
Finding results on STS Benchmark dataset
Hi, Can someone tell how results on https://paperswithcode.com/sota/semantic-textual-similarity-on-sts-benchmark are found? What architecture BERT, ALBERT follow to get the output.
open
2020-02-25T05:11:10Z
2020-02-25T05:11:10Z
https://github.com/google-research/bert/issues/1010
[]
dheerajiiitv
0
junyanz/pytorch-CycleGAN-and-pix2pix
computer-vision
668
Confusion with CycleGAN testing regarding domains
Hi I am trying to train a CycleGAN such that I can translate images from domain B to domain A. After training the initial model I wanted to test it on some out-of-training-set images from domain B. So I used: `python test.py --dataroot datasets/my_proj/testB --name my_cyclegan_proj --model test --no_dropout` However when I open the index.html the view the results I am confused. As I understand it real_A refers to a real image from domain A, however the pictures with this label in the html file are my pictures from the folder testB, which are real images from domain B. I've double checked that my trainA, testA and trainB, testB folder contain only the images from their respective domains. Additionally, like some previous issues mentioned I renamed `latest_net_G_B.pth -> latest_net_G.pth` Does this have something to do with the --direction flag? Or am I still confused about the labeling of the results?
closed
2019-06-06T16:47:18Z
2024-09-02T16:54:27Z
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/issues/668
[]
patrick-han
4
Anjok07/ultimatevocalremovergui
pytorch
998
UVR5
Last Error Received: Process: VR Architecture Missing file error raised. Please address the error and try again. If this error persists, please contact the developers with the error details. Raw Error Details: FileNotFoundError: "[WinError 2] The system cannot find the file specified" Traceback Error: " File "UVR.py", line 6638, in process_start File "separate.py", line 1079, in seperate File "separate.py", line 382, in final_process File "separate.py", line 446, in write_audio File "separate.py", line 419, in save_with_message File "separate.py", line 393, in save_audio_file File "separate.py", line 1318, in save_format File "pydub\audio_segment.py", line 820, in from_wav File "pydub\audio_segment.py", line 735, in from_file File "pydub\utils.py", line 274, in mediainfo_json File "subprocess.py", line 951, in __init__ File "subprocess.py", line 1420, in _execute_child " Error Time Stamp [2023-11-30 18:03:02] Full Application Settings: vr_model: 7_HP2-UVR aggression_setting: 10 window_size: 1024 mdx_segment_size: 256 batch_size: Default crop_size: 256 is_tta: False is_output_image: False is_post_process: False is_high_end_process: False post_process_threshold: 0.2 vr_voc_inst_secondary_model: No Model Selected vr_other_secondary_model: No Model Selected vr_bass_secondary_model: No Model Selected vr_drums_secondary_model: No Model Selected vr_is_secondary_model_activate: False vr_voc_inst_secondary_model_scale: 0.9 vr_other_secondary_model_scale: 0.7 vr_bass_secondary_model_scale: 0.5 vr_drums_secondary_model_scale: 0.5 demucs_model: Choose Model segment: Default overlap: 0.25 overlap_mdx: Default overlap_mdx23: 8 shifts: 2 chunks_demucs: Auto margin_demucs: 44100 is_chunk_demucs: False is_chunk_mdxnet: False is_primary_stem_only_Demucs: False is_secondary_stem_only_Demucs: False is_split_mode: True is_demucs_combine_stems: True is_mdx23_combine_stems: True demucs_voc_inst_secondary_model: No Model Selected demucs_other_secondary_model: No Model Selected demucs_bass_secondary_model: No Model Selected demucs_drums_secondary_model: No Model Selected demucs_is_secondary_model_activate: False demucs_voc_inst_secondary_model_scale: 0.9 demucs_other_secondary_model_scale: 0.7 demucs_bass_secondary_model_scale: 0.5 demucs_drums_secondary_model_scale: 0.5 demucs_pre_proc_model: No Model Selected is_demucs_pre_proc_model_activate: False is_demucs_pre_proc_model_inst_mix: False mdx_net_model: UVR-MDX-NET Inst HQ 3 chunks: Auto margin: 44100 compensate: Auto denoise_option: None is_match_frequency_pitch: True phase_option: Automatic phase_shifts: None is_save_align: False is_match_silence: True is_spec_match: False is_mdx_c_seg_def: False is_invert_spec: False is_deverb_vocals: False deverb_vocal_opt: Main Vocals Only voc_split_save_opt: Lead Only is_mixer_mode: False mdx_batch_size: Default mdx_voc_inst_secondary_model: No Model Selected mdx_other_secondary_model: No Model Selected mdx_bass_secondary_model: No Model Selected mdx_drums_secondary_model: No Model Selected mdx_is_secondary_model_activate: False mdx_voc_inst_secondary_model_scale: 0.9 mdx_other_secondary_model_scale: 0.7 mdx_bass_secondary_model_scale: 0.5 mdx_drums_secondary_model_scale: 0.5 is_save_all_outputs_ensemble: True is_append_ensemble_name: False chosen_audio_tool: Time Stretch choose_algorithm: Min Spec time_stretch_rate: 2.0 pitch_rate: 4.0 is_time_correction: True is_gpu_conversion: False is_primary_stem_only: False is_secondary_stem_only: True is_testing_audio: False is_auto_update_model_params: True is_add_model_name: True is_accept_any_input: False is_task_complete: False is_normalization: False is_use_opencl: False is_wav_ensemble: False is_create_model_folder: False mp3_bit_set: 320k semitone_shift: 0 save_format: MP3 wav_type_set: 64-bit Float device_set: Default help_hints_var: True set_vocal_splitter: No Model Selected is_set_vocal_splitter: False is_save_inst_set_vocal_splitter: False model_sample_mode: False model_sample_mode_duration: 30 demucs_stems: All Stems mdx_stems: All Stems
closed
2023-11-30T14:53:22Z
2023-11-30T15:03:48Z
https://github.com/Anjok07/ultimatevocalremovergui/issues/998
[]
Soorenaca
0
docarray/docarray
pydantic
1,544
Indexing field of DocList type (=subindex)is not yet supported.
I am creating database of the following format, but unable to index/search User -- Folder (multiple folders) -- Document (multiple documents) -- Sentences ( document split into sentences) For the datastore, I get the error `Indexing field of DocList type (=subindex)is not yet supported.` when using HNSWLIB 1. What alternative datastore can I use that currently support the case, or what alternate strategy I could use to implement the same 2. Is searching in sub-sub index possible? Is there a direct function or alternate strategy to use as of now? 3. I want to search for relevant sentences from all of the documents in one folder at once, so how can I search through all of them at once
closed
2023-05-16T14:03:27Z
2023-05-17T06:53:04Z
https://github.com/docarray/docarray/issues/1544
[]
munish0838
4
ultralytics/ultralytics
pytorch
18,853
inference time
### Search before asking - [x] I have searched the Ultralytics YOLO [issues](https://github.com/ultralytics/ultralytics/issues) and [discussions](https://github.com/orgs/ultralytics/discussions) and found no similar questions. ### Question Hi Is there a script I can use to measure the inference time? ### Additional _No response_
open
2025-01-23T16:08:44Z
2025-01-23T20:42:35Z
https://github.com/ultralytics/ultralytics/issues/18853
[ "question" ]
MuhabHariri
5
strawberry-graphql/strawberry
graphql
3,473
Upgrade causes "no current event loop in thread" exception
Moving from 0.225.1 to 0.227.2, I get event loop exceptions like: https://wedgworths-inc.sentry.io/share/issue/1ea8832512944d21b11adc8dedcacef7/ I don't use async so I'm confused why exception is in that area of the code. I wonder if it has something to do with 63dfc89fc799e3b50700270fe243d3f53d543412
closed
2024-04-26T16:55:49Z
2025-03-20T15:56:42Z
https://github.com/strawberry-graphql/strawberry/issues/3473
[ "bug" ]
paltman
1
miguelgrinberg/flasky
flask
308
Purpose of seed() in User model
```python class User(UserMixin, db.Model): ... def generate_fake(count=100): from sqlalchemy.exc import IntegrityError from random import seed import forgery_py seed() for i in range(count): u = User(email=forgery_py.internet.email_address(), username=forgery_py.internet.user_name(True), password=forgery_py.lorem_ipsum.word(), confirmed=True, ``` What's the purpose of calling `seed()` just above the loop ?
closed
2017-10-25T07:31:42Z
2017-10-26T14:19:29Z
https://github.com/miguelgrinberg/flasky/issues/308
[ "question" ]
noisytoken
2
recommenders-team/recommenders
deep-learning
1,616
[BUG] Error in integration tests with SASRec
### Description <!--- Describe your issue/bug/request in detail --> we got this error in the nightly integration tests: ``` tests/integration/examples/test_notebooks_gpu.py ..............F [100%] =================================== FAILURES =================================== _ test_sasrec_quickstart_integration[/recsys_data/RecSys/SASRec-tf2/data/-1-128-expected_values0-42] _ notebooks = {'als_deep_dive': '/home/recocat/myagent/_work/1/s/examples/02_model_collaborative_filtering/als_deep_dive.ipynb', 'al...p_dive': '/home/recocat/myagent/_work/1/s/examples/02_model_collaborative_filtering/cornac_bivae_deep_dive.ipynb', ...} output_notebook = 'output.ipynb', kernel_name = 'python3' data_dir = '/recsys_data/RecSys/SASRec-tf2/data/', num_epochs = 1 batch_size = 128, expected_values = {'Hit@10': 0.4244, 'ndcg@10': 0.2626} seed = 42 @pytest.mark.gpu @pytest.mark.integration @pytest.mark.parametrize( "data_dir, num_epochs, batch_size, expected_values, seed", [ ( "/recsys_data/RecSys/SASRec-tf2/data/", 1, 128, {"ndcg@10": 0.2626, "Hit@10": 0.4244}, 42, ) ], ) def test_sasrec_quickstart_integration( notebooks, output_notebook, kernel_name, data_dir, ``` link: https://dev.azure.com/best-practices/recommenders/_build/results?buildId=56130&view=logs&j=11a98e2c-5412-5289-91fd-519c9484010b&t=bd06083a-594e-5d8b-fa42-0b1a3b2f6a78 ### In which platform does it happen? <!--- Describe the platform where the issue is happening (use a list if needed) --> <!--- For example: --> <!--- * Azure Data Science Virtual Machine. --> <!--- * Azure Databricks. --> <!--- * Other platforms. --> ### How do we replicate the issue? <!--- Please be specific as possible (use a list if needed). --> <!--- For example: --> <!--- * Create a conda environment for pyspark --> <!--- * Run unit test `test_sar_pyspark.py` with `pytest -m 'spark'` --> <!--- * ... --> ### Expected behavior (i.e. solution) <!--- For example: --> <!--- * The tests for SAR PySpark should pass successfully. --> ### Other Comments FYI @anargyri @aeroabir
closed
2022-01-19T14:14:01Z
2022-01-19T20:12:33Z
https://github.com/recommenders-team/recommenders/issues/1616
[ "bug" ]
miguelgfierro
1
dask/dask
scikit-learn
11,226
Negative lookahead suddenly incorrectly parsed
In Dask 2024.2.1 we suddenly have an issue with a regex with a negative lookahead. It somehow is invalid now. ```python import dask.dataframe as dd regex = 'negativelookahead(?!/check)' ddf = dd.from_dict( { "test": ["negativelookahead", "negativelookahead/check/negativelookahead", ], }, npartitions=1) ddf["test"].str.contains(regex).head() ``` This results in the following error: ```python --------------------------------------------------------------------------- ArrowInvalid Traceback (most recent call last) Cell In[2], line 8 2 regex = 'negativelookahead(?!/check)' 3 ddf = dd.from_dict( 4 { 5 "test": ["negativelookahead", "negativelookahead/check/negativelookahead", ], 6 }, 7 npartitions=1) ----> 8 ddf["test"].str.contains(regex).head() File /opt/conda/lib/python3.10/site-packages/dask_expr/_collection.py:702, in FrameBase.head(self, n, npartitions, compute) 700 out = new_collection(expr.Head(self, n=n, npartitions=npartitions)) 701 if compute: --> 702 out = out.compute() 703 return out File /opt/conda/lib/python3.10/site-packages/dask_expr/_collection.py:476, in FrameBase.compute(self, fuse, **kwargs) 474 out = out.repartition(npartitions=1) 475 out = out.optimize(fuse=fuse) --> 476 return DaskMethodsMixin.compute(out, **kwargs) File /opt/conda/lib/python3.10/site-packages/dask/base.py:375, in DaskMethodsMixin.compute(self, **kwargs) 351 def compute(self, **kwargs): 352 """Compute this dask collection 353 354 This turns a lazy Dask collection into its in-memory equivalent. (...) 373 dask.compute 374 """ --> 375 (result,) = compute(self, traverse=False, **kwargs) 376 return result File /opt/conda/lib/python3.10/site-packages/dask/base.py:661, in compute(traverse, optimize_graph, scheduler, get, *args, **kwargs) 658 postcomputes.append(x.__dask_postcompute__()) 660 with shorten_traceback(): --> 661 results = schedule(dsk, keys, **kwargs) 663 return repack([f(r, *a) for r, (f, a) in zip(results, postcomputes)]) File /opt/conda/lib/python3.10/site-packages/dask_expr/_expr.py:3727, in Fused._execute_task(graph, name, *deps) 3725 for i, dep in enumerate(deps): 3726 graph["_" + str(i)] = dep -> 3727 return dask.core.get(graph, name) File /opt/conda/lib/python3.10/site-packages/dask_expr/_accessor.py:102, in FunctionMap.operation(obj, accessor, attr, args, kwargs) 100 @staticmethod 101 def operation(obj, accessor, attr, args, kwargs): --> 102 out = getattr(getattr(obj, accessor, obj), attr)(*args, **kwargs) 103 return maybe_wrap_pandas(obj, out) File /opt/conda/lib/python3.10/site-packages/pyarrow/compute.py:263, in _make_generic_wrapper.<locals>.wrapper(memory_pool, options, *args, **kwargs) 261 if args and isinstance(args[0], Expression): 262 return Expression._call(func_name, list(args), options) --> 263 return func.call(args, options, memory_pool) File /opt/conda/lib/python3.10/site-packages/pyarrow/_compute.pyx:385, in pyarrow._compute.Function.call() File /opt/conda/lib/python3.10/site-packages/pyarrow/error.pxi:154, in pyarrow.lib.pyarrow_internal_check_status() File /opt/conda/lib/python3.10/site-packages/pyarrow/error.pxi:91, in pyarrow.lib.check_status() ArrowInvalid: Invalid regular expression: invalid perl operator: (?! ``` **Environment**: - Dask version: 2024.2.1 - Python version: 3.10 - Operating System: Linux - Install method (conda, pip, source): pip
closed
2024-07-15T07:23:02Z
2024-07-17T12:59:24Z
https://github.com/dask/dask/issues/11226
[ "needs triage" ]
manschoe
3
ARM-DOE/pyart
data-visualization
751
There is a bug in pyart/io/cfradial.py
when I read the code of cfradial.py, I found that there is a value named 'radar_reciever_bandwidth' in pyart/io/cfradial.py line 62. This is wrong because you named it 'radar_receiver_bandwidth' in other file. It may cause other errors, I hope you can fix it soon.
closed
2018-06-06T08:58:36Z
2018-06-07T01:55:06Z
https://github.com/ARM-DOE/pyart/issues/751
[]
YvZheng
4
sunscrapers/djoser
rest-api
46
doesn't work is_authenticated() at the themplate
doesn't work is_authenticated() with 'rest_framework.authentication.TokenAuthentication' installed. how to fix it?
closed
2015-05-12T17:22:57Z
2015-05-13T08:28:52Z
https://github.com/sunscrapers/djoser/issues/46
[]
ghost
2
babysor/MockingBird
deep-learning
437
【长期】训练克隆特定人声音&finetune
[AyahaShirane](https://github.com/AyahaShirane) 专项训练参照这个视频MockingBird数据集制作教程-手把手教你克隆海子姐的声线_哔哩哔哩_bilibili<https://www.bilibili.com/video/BV1dq4y137pH> 实测在已有模型基础上训练20K左右就能改变成想要的语音语调了。你如果是想要泛用型台湾口音的话,就尽可能收集更多人的数据集,否则会偏向特定某一个人的口音,而且断句和停顿似乎也会受到新数据集的影响 Reference: #380 > 作者却苦于近期精力限制只能势单力薄处理一些小的bug,也看到issue区有不少爱好与开发者想要学习或二次改造更好满足自己需求,不过比较零碎难以展开。为了让项目和AI持续可以给大家提供更多价值,共同学习,我在issue区根据不同主题创建长期交流频道,若留言人数超过20也将建立对应交流群。 > - 如何改参数,搞出更逼真的克隆效果 435 > - 如何改模型,搞出更好效果 436 > - 训练克隆特定人声音&finetune 437 > - 学术/论文讨论/训练分析 438 > - 跨语言支持 440 > - 工程化/新场景讨论(绝不做恶 & 合法合规) 439
open
2022-03-07T15:14:08Z
2023-11-20T06:15:40Z
https://github.com/babysor/MockingBird/issues/437
[ "discussion" ]
babysor
18
deeppavlov/DeepPavlov
nlp
1,519
Could not find a version that satisfies the requirement uvloop==0.14.0 (from deeppavlov)
Want to contribute to DeepPavlov? Please read the [contributing guideline](http://docs.deeppavlov.ai/en/master/devguides/contribution_guide.html) first. Please enter all the information below, otherwise your issue may be closed without a warning. **DeepPavlov version** (you can look it up by running `pip show deeppavlov`): **Python version**: python==3.6 **Operating system** (ubuntu linux, windows, ...): windows **Issue**: **Content or a name of a configuration file**: ``` ``` **Command that led to error**: ``` pip install deeppavlov==0.17.0 pip install deeppavlov==0.15.0 ``` **Error (including full traceback)**: ``` Collecting pymorphy2==0.8 Using cached pymorphy2-0.8-py2.py3-none-any.whl (46 kB) Collecting uvloop==0.14.0 Using cached uvloop-0.14.0.tar.gz (2.0 MB) ERROR: Command errored out with exit status 1: command: 'D:\anaconda\envs\deeplove\python.exe' -c 'import io, os, sys, setuptools, tokenize; sys.argv[0] = '"'"'C:\\Users\\64518\\AppData\\Local\\Temp\\pip-install-l6up2mdb\\uvloop_b30d837ca1cd4ee69a0d711ff1872366\\setup.py'"'"'; __file__= '"'"'C:\\Users\\64518\\AppData\\Local\\Temp\\pip-install-l6up2mdb\\uvloop_b30d837ca1cd4ee69a0d711ff1872366\\setup.py'"'"';f = getattr(tokenize, '"'"'open'"'"', open)(__file__) if os.path.exists(__file__) else io.StringIO('"'"'from setuptools imp ort setup; setup()'"'"');code = f.read().replace('"'"'\r\n'"'"', '"'"'\n'"'"');f.close();exec(compile(code, __file__, '"'"'exec'"'"'))' egg_info --egg-base 'C:\Users\64518\AppData\Local\Temp\pip-pip-egg-info-ucpd9os3' cwd: C:\Users\64518\AppData\Local\Temp\pip-install-l6up2mdb\uvloop_b30d837ca1cd4ee69a0d711ff1872366\ Complete output (5 lines): Traceback (most recent call last): File "<string>", line 1, in <module> File "C:\Users\64518\AppData\Local\Temp\pip-install-l6up2mdb\uvloop_b30d837ca1cd4ee69a0d711ff1872366\setup.py", line 15, in <module> raise RuntimeError('uvloop does not support Windows at the moment') RuntimeError: uvloop does not support Windows at the moment ---------------------------------------- WARNING: Discarding https://files.pythonhosted.org/packages/84/2e/462e7a25b787d2b40cf6c9864a9e702f358349fc9cfb77e83c38acb73048/uvloop-0.14.0.tar.gz#sha256=123ac9c0c7dd71464f58f1b4ee0bbd81285d96cdda8bc3519281b8973e3a461e (from https://pypi.org/si mple/uvloop/). Command errored out with exit status 1: python setup.py egg_info Check the logs for full command output. ERROR: Could not find a version that satisfies the requirement uvloop==0.14.0 (from deeppavlov) (from versions: 0.4.1, 0.4.2, 0.4.3, 0.4.4, 0.4.5, 0.4.6, 0.4.7, 0.4.8, 0.4.9, 0.4.10, 0.4.11, 0.4.12, 0.4.13, 0.4.14, 0.4.15, 0.4.16, 0.4.17, 0.4.18 , 0.4.19, 0.4.20, 0.4.21, 0.4.22, 0.4.23, 0.4.24, 0.4.25, 0.4.26, 0.4.27, 0.4.28, 0.4.29, 0.4.30, 0.4.31, 0.4.32, 0.4.33, 0.4.34, 0.5.0, 0.5.1, 0.5.2, 0.5.3, 0.5.4, 0.5.5, 0.6.0, 0.6.5, 0.6.6, 0.6.7, 0.6.8, 0.7.0, 0.7.1, 0.7.2, 0.8.0, 0.8.1, 0.9 .0, 0.9.1, 0.10.0, 0.10.1, 0.10.2, 0.10.3, 0.11.0, 0.11.1, 0.11.2, 0.11.3, 0.12.0rc1, 0.12.0, 0.12.1, 0.12.2, 0.13.0rc1, 0.13.0, 0.14.0rc1, 0.14.0rc2, 0.14.0, 0.15.0, 0.15.1) ERROR: No matching distribution found for uvloop==0.14.0 ```
closed
2022-01-28T09:16:07Z
2022-04-01T11:46:48Z
https://github.com/deeppavlov/DeepPavlov/issues/1519
[ "bug" ]
645187919
2
aminalaee/sqladmin
fastapi
776
with ... as ... statement can make sesssion close,which will lead to DetachedInstanceError
### Checklist - [X] The bug is reproducible against the latest release or `master`. - [X] There are no similar issues or pull requests to fix it yet. ### Describe the bug sqladmin/models ``` def _run_query_sync(self, stmt: ClauseElement) -> Any: with self.session_maker(expire_on_commit=False) as session: result = session.execute(stmt) return result.scalars().unique().all() ``` In the code, the use of a with ... as ... statement to manage the session led to an unexpected closure of the session, which may caused the following error in some case:  sqlalchemy.orm.exc.DetachedInstanceError: > https://docs.sqlalchemy.org/en/20/errors.html#parent-instance-x-is-not-bound-to-a-session-lazy-load-deferred-load-refresh-etc-operation-cannot-proceed This error occurs because closing the session detaches instances that still require the session for lazy loading or other operations. To resolve this, I modified the code to manage the session explicitly, avoiding its premature closure. This change prevents the DetachedInstanceError by keeping the session open until all required operations are complete. ``` def _run_query_sync(self, stmt: ClauseElement) -> Any: session = self.session_maker(expire_on_commit=False) result = session.execute(stmt) return result.scalars().unique().all() ``` With this modification, the error no longer occurs, and the instances remain attached to the session as needed. ### Steps to reproduce the bug _No response_ ### Expected behavior _No response_ ### Actual behavior _No response_ ### Debugging material _No response_ ### Environment Windows 10 / ptyhon 3.10.11 / sqladmin 0.16.1 ### Additional context _No response_
open
2024-05-30T08:41:13Z
2024-06-07T05:06:09Z
https://github.com/aminalaee/sqladmin/issues/776
[]
ChengChe106
8
TencentARC/GFPGAN
deep-learning
279
styleGAN 256x256
hello, is there any pretrained styleGAN2 with 256x256 px that provided, as the FFHQ dataset is too large to download and it may take a long times for training.
open
2022-10-04T02:16:00Z
2022-10-09T03:21:44Z
https://github.com/TencentARC/GFPGAN/issues/279
[]
greatbaozi001
2