repo_name
stringlengths
9
75
topic
stringclasses
30 values
issue_number
int64
1
203k
title
stringlengths
1
976
body
stringlengths
0
254k
state
stringclasses
2 values
created_at
stringlengths
20
20
updated_at
stringlengths
20
20
url
stringlengths
38
105
labels
listlengths
0
9
user_login
stringlengths
1
39
comments_count
int64
0
452
ansible/awx
django
15,555
execution node install failed on rocky 8.10
### Please confirm the following - [X] I agree to follow this project's [code of conduct](https://docs.ansible.com/ansible/latest/community/code_of_conduct.html). - [X] I have checked the [current issues](https://github.com/ansible/awx/issues) for duplicates. - [X] I understand that AWX is open source software provided for free and that I might not receive a timely response. - [X] I am **NOT** reporting a (potential) security vulnerability. (These should be emailed to `security@ansible.com` instead.) ### Bug Summary Execution node fails to install on rocky 8.10 OS. ### AWX version 24.6.1 ### Select the relevant components - [ ] UI - [ ] UI (tech preview) - [X] API - [ ] Docs - [ ] Collection - [X] CLI - [ ] Other ### Installation method kubernetes ### Modifications no ### Ansible version 2.17.3 ### Operating system Rocky Linux release 8.10 (Green Obsidian) ### Web browser _No response_ ### Steps to reproduce ansible-playbook -i inventory.yml install_receptor.yml -vvv $ cat inventory.yml --- all: hosts: remote-execution: ansible_host: test-instance ansible_user: test # user provided ansible_ssh_private_key_file: ~/.ssh/id_rsa $ cat install_receptor.yml --- - hosts: all become: yes tasks: - name: Create the receptor user user: name: "{{ receptor_user }}" shell: /bin/bash - import_role: name: ansible.receptor.podman - import_role: name: ansible.receptor.setup ### Expected results The playbook run successfully, and the installation of the execute node was successful. ### Actual results $ ansible-playbook -i inventory.yml install_receptor.yml -vv ansible-playbook [core 2.17.3] config file = /home/OS_kkj/.ansible.cfg configured module search path = ['/home/OS_kkj/.ansible/plugins/modules', '/usr/share/ansible/plugins/modules'] ansible python module location = /home/OS_kkj/.local/lib/python3.12/site-packages/ansible ansible collection location = /home/OS_kkj/.ansible/collections:/usr/share/ansible/collections executable location = /home/OS_kkj/.local/bin/ansible-playbook python version = 3.12.1 (main, Aug 30 2024, 16:00:05) [GCC 8.5.0 20210514 (Red Hat 8.5.0-22)] (/usr/local/bin/python3.12) jinja version = 3.1.2 libyaml = True Using /home/OS_kkj/.ansible.cfg as config file Skipping callback 'default', as we already have a stdout callback. Skipping callback 'minimal', as we already have a stdout callback. Skipping callback 'oneline', as we already have a stdout callback. PLAYBOOK: install_receptor.yml *********************************************************************************************************************************************************** 1 plays in install_receptor.yml PLAY [all] ******************************************************************************************************************************************************************************* TASK [Gathering Facts] ******************************************************************************************************************************************************************* task path: /home/gaia_bot/test-instance_install_bundle/install_receptor.yml:2 [WARNING]: Platform linux on host remote-execution is using the discovered Python interpreter at /usr/bin/python3.12, but future installation of another Python interpreter could change the meaning of that path. See https://docs.ansible.com/ansible-core/2.17/reference_appendices/interpreter_discovery.html for more information. ok: [remote-execution] TASK [Create the receptor user] ********************************************************************************************************************************************************** task path: /home/gaia_bot/test-instance_install_bundle/install_receptor.yml:5 ok: [remote-execution] => {"append": false, "changed": false, "comment": "", "group": 1001, "home": "/home/awx", "move_home": false, "name": "awx", "shell": "/bin/bash", "state": "present", "uid": 1001} TASK [ansible.receptor.podman : Include variables] *************************************************************************************************************************************** task path: /home/OS_kkj/.ansible/collections/ansible_collections/ansible/receptor/roles/podman/tasks/main.yml:3 included: /home/OS_kkj/.ansible/collections/ansible_collections/ansible/receptor/roles/podman/tasks/variables.yml for remote-execution TASK [ansible.receptor.podman : Include OS-specific variables "RedHat"] ****************************************************************************************************************** task path: /home/OS_kkj/.ansible/collections/ansible_collections/ansible/receptor/roles/podman/tasks/variables.yml:2 ok: [remote-execution] => {"ansible_facts": {"__podman_packages": ["podman", "crun"]}, "ansible_included_var_files": ["/home/OS_kkj/.ansible/collections/ansible_collections/ansible/receptor/roles/podman/vars/RedHat.yml"], "changed": false} TASK [ansible.receptor.podman : Define podman_packages] ********************************************************************************************************************************** task path: /home/OS_kkj/.ansible/collections/ansible_collections/ansible/receptor/roles/podman/tasks/variables.yml:7 ok: [remote-execution] => {"ansible_facts": {"podman_packages": ["podman", "crun"]}, "changed": false} TASK [ansible.receptor.podman : Run OS-specific tasks] *********************************************************************************************************************************** task path: /home/OS_kkj/.ansible/collections/ansible_collections/ansible/receptor/roles/podman/tasks/main.yml:7 included: /home/OS_kkj/.ansible/collections/ansible_collections/ansible/receptor/roles/podman/tasks/setup-RedHat.yml for remote-execution TASK [ansible.receptor.podman : Install podman packages] ********************************************************************************************************************************* task path: /home/OS_kkj/.ansible/collections/ansible_collections/ansible/receptor/roles/podman/tasks/setup-RedHat.yml:2 An exception occurred during task execution. To see the full traceback, use -vvv. The error was: SyntaxError: future feature annotations is not defined fatal: [remote-execution]: FAILED! => {"changed": false, "module_stderr": "OpenSSH_8.0p1, OpenSSL 1.1.1k FIPS 25 Mar 2021\r\ndebug1: Reading configuration data /etc/ssh/ssh_config\r\ndebug1: Reading configuration data /etc/ssh/ssh_config.d/05-redhat.conf\r\ndebug2: checking match for 'final all' host test-instance originally test-instance\r\ndebug2: match not found\r\ndebug1: Reading configuration data /etc/crypto-policies/back-ends/openssh.config\r\ndebug1: configuration requests final Match pass\r\ndebug1: re-parsing configuration\r\ndebug1: Reading configuration data /etc/ssh/ssh_config\r\ndebug1: Reading configuration data /etc/ssh/ssh_config.d/05-redhat.conf\r\ndebug2: checking match for 'final all' host test-instance originally test-instance\r\ndebug2: match found\r\ndebug1: Reading configuration data /etc/crypto-policies/back-ends/openssh.config\r\ndebug1: auto-mux: Trying existing master\r\ndebug2: fd 3 setting O_NONBLOCK\r\ndebug2: mux_client_hello_exchange: master version 4\r\ndebug2: Received exit status from master 1\r\nShared connection to test-instance closed.\r\n", "module_stdout": "Traceback (most recent call last):\r\n File \"<stdin>\", line 12, in <module>\r\n File \"<frozen importlib._bootstrap>\", line 971, in _find_and_load\r\n File \"<frozen importlib._bootstrap>\", line 951, in _find_and_load_unlocked\r\n File \"<frozen importlib._bootstrap>\", line 894, in _find_spec\r\n File \"<frozen importlib._bootstrap_external>\", line 1157, in find_spec\r\n File \"<frozen importlib._bootstrap_external>\", line 1131, in _get_spec\r\n File \"<frozen importlib._bootstrap_external>\", line 1112, in _legacy_get_spec\r\n File \"<frozen importlib._bootstrap>\", line 441, in spec_from_loader\r\n File \"<frozen importlib._bootstrap_external>\", line 544, in spec_from_file_location\r\n File \"/tmp/ansible_ansible.legacy.dnf_payload_8ttprokq/ansible_ansible.legacy.dnf_payload.zip/ansible/module_utils/basic.py\", line 5\r\nSyntaxError: future feature annotations is not defined\r\n", "msg": "MODULE FAILURE\nSee stdout/stderr for the exact error", "rc": 1} PLAY RECAP ******************************************************************************************************************************************************************************* remote-execution : ok=6 changed=0 unreachable=0 failed=1 skipped=0 rescued=0 ignored=0 ### Additional information _No response_
open
2024-09-27T09:50:47Z
2024-09-27T09:51:03Z
https://github.com/ansible/awx/issues/15555
[ "type:bug", "component:api", "needs_triage", "community" ]
kiju-kang
0
axnsan12/drf-yasg
rest-api
649
ImportError: cannot import name 'URLPattern' from 'rest_framework.compat'
Hi I use drf-yasg and it is very useful tool !!! In generators.py of drf-yasg, it uses following now. https://github.com/axnsan12/drf-yasg/blob/9ccf24c27ad46db4f566170553d49d687b6d21d6/src/drf_yasg/generators.py#L11 However, I think rest_framework.compat don't use URLPattern now. https://github.com/encode/django-rest-framework/commit/bb795674f86828fc5f15d6d61501cc781811e053#diff-ce493f71b3679e91b72126c168670399 So I think drf-yasg can't import URLPattern and raise Exception. ``` ImportError: cannot import name 'URLPattern' from 'rest_framework.compat' (/home/circleci/.local/share/virtualenvs/project-zxI9dQ-Q/lib/python3.7/site-packages/rest_framework/compat.py) ``` Although I don't know the accurate method to resolve it, why don't you add the following code in generators.py ``` from django.urls import ( # noqa URLPattern, URLResolver, ) ```
closed
2020-10-04T04:16:19Z
2020-10-25T19:12:57Z
https://github.com/axnsan12/drf-yasg/issues/649
[]
miyagin15
6
Layout-Parser/layout-parser
computer-vision
41
Error element indices when setting `show_element_id` in the visualization
**Describe the bug** When the input sequence is ordered differently from the element ids, the `lp.draw_box` will create inconsistent id annotation in the visualization. **To Reproduce** Example: ``` background = Image.new('RGB', (1000,1000), color='white') layout = lp.Layout( [ lp.TextBlock(block=lp.Rectangle(x_1=80, y_1=79.0, x_2=490, y_2=92.0), text=None, id=1, type=None, parent=0, next=None), lp.TextBlock(block=lp.Rectangle(x_1=80, y_1=65.0, x_2=488.0, y_2=77.0), text=None, id=0, type=None, parent=0, next=None), lp.TextBlock(block=lp.Rectangle(x_1=80.0, y_1=95.0, x_2=490, y_2=107.0), text=None, id=2, type=None, parent=0, next=None), lp.TextBlock(block=lp.Rectangle(x_1=80, y_1=110.0, x_2=490, y_2=122.0), text=None, id=3, type=None, parent=0, next=None), lp.TextBlock(block=lp.Rectangle(x_1=80.0, y_1=125.0, x_2=490.0, y_2=138.0), text=None, id=4, type=None, parent=0, next=None) ] ).scale((1,2)) lp.draw_box(background, layout, show_element_id=True) ``` Expected output: <img width="533" alt="image" src="https://user-images.githubusercontent.com/22512825/116839673-3a3b9600-aba1-11eb-90e0-360509feeda3.png"> Actual output: <img width="489" alt="image" src="https://user-images.githubusercontent.com/22512825/116839680-3d368680-aba1-11eb-945a-0dc3b752af08.png"> Temporary fix: ```python lp.draw_box(background, [b.set(id=str(b.id)) for b in layout], show_element_id=True) ```
open
2021-05-03T03:51:09Z
2021-05-03T03:52:20Z
https://github.com/Layout-Parser/layout-parser/issues/41
[ "bug" ]
lolipopshock
0
waditu/tushare
pandas
1,614
000905.SH, 000300.SH, 000016.SH,399932.SZ 历史数据错误
指数数据均通过pro.index_daily获取 中证500指数000905.SH 2010年1月26日的pre_close数据错误 应该是4481.16 2019年6月17日的close数据错误 应该是4802.8185 沪深300指数000300.SH 2010年1月26日的pre_close数据错误 应为3328.014 上证50指数000016.SH 2019年9月27日的close数据错误 应为2929.4659 中证消费指数399932.SZ 2010年1月25日的close数据和2010年1月26的pre_close数据错误 应为5823.38 tushareID: 421714
open
2021-12-21T03:59:35Z
2021-12-21T03:59:35Z
https://github.com/waditu/tushare/issues/1614
[]
wcw159951
0
JaidedAI/EasyOCR
pytorch
846
cv2.error: OpenCV(4.5.4) :-1: error: (-5:Bad argument) in function 'getPerspectiveTransform'
This error show when i run easyocr. I tried some latest easyOcr & cv2: ``` easyOcr 1.5.0, 1.6.1 opencv-python 4.5.4, 4.5.5, 4.6.0 ``` but all of them still have this error. ``` File "C:\Program Files\Python310\Lib\site-packages\easyocr\easyocr.py", line 387, in readtext result = self.recognize(img_cv_grey, horizontal_list, free_list,\ File "C:\Program Files\Python310\Lib\site-packages\easyocr\easyocr.py", line 324, in recognize image_list, max_width = get_image_list(h_list, f_list, img_cv_grey, model_height = imgH) File "C:\Program Files\Python310\Lib\site-packages\easyocr\utils.py", line 543, in get_image_list transformed_img = four_point_transform(img, rect) File "C:\Program Files\Python310\Lib\site-packages\easyocr\utils.py", line 401, in four_point_transform M = cv2.getPerspectiveTransform(rect, dst) cv2.error: OpenCV(4.5.5) :-1: error: (-5:Bad argument) in function 'getPerspectiveTransform' > Overload resolution failed: > - src data type = 23 is not supported > - Expected Ptr<cv::UMat> for argument 'src' ```
open
2022-09-09T06:23:12Z
2022-09-09T06:26:55Z
https://github.com/JaidedAI/EasyOCR/issues/846
[]
VERISBABY
0
numpy/numpy
numpy
28,106
Building NumPy from source for Windows on ARM using Clang-cl compiler
Hello Developers, - I am facing an issue while trying to build NumPy for Windows on ARM (WoA) using the Clang-cl compiler. Building NumPy from source requires C and C++ compilers with proper intrinsic support. - Previously, I was able to successfully compile NumPy for WoA using the MSVC-optimized C/C++ CL compiler, enabling CPU baseline features that support ARM. - However, I encountered limitations with the MSVC C/C++ CL compiler, as it does not support certain CPU dispatcher features like ASIMDHP, ASIMDFHM, and SVE. Is there any specific reason why these CPU dispatch features are not supported for WoA in MSVC? - Meanwhile, I attempted to compile NumPy for WoA using the clang-cl compiler (both from MSVC and LLVM toolchains) to check if the CPU dispatcher features would be enabled. While I found that, apart from SVE, all other test features—including baseline features—were supported, I ran into compilation errors due to unidentified instructions. Steps to Reproduce 1. Clone the Source code of NumPy and checkout to latest branch 2. Install LLVM toolchain/MSVC clang toolset 3. Remove the clang and clang++ from the bin directory to avoid conflicts 4. Add the bin path at the top of environment path variable Compilers used for compilation: ![image](https://github.com/user-attachments/assets/a37987bf-80a3-420a-9891-5c8a4df74bf0) Error and Workaround: 1. While building meson_cpu target, got an error with respect to invalid operand "fstcw" in multiarray_tests_c source file. Upon going through source code, the fstcw is floating-point control instructions for x86 assembly. So I made workaround to make one more condition to check whether it is a ARM64 arch build. Then the build proceeded: ![Screenshot 2025-01-06 123245](https://github.com/user-attachments/assets/b43a2620-179e-4c51-9fe1-0498a84d3dea) Workaround: before: ![image](https://github.com/user-attachments/assets/50835ace-b063-49b8-ae0a-f0c750c7071d) After: ![image](https://github.com/user-attachments/assets/dc3bea26-fc30-4438-9583-5f8116545f8c) Issue: 1. Currently the build fails at 240+ targets while compiling meson_cpu due to unidentified assembly instructions: ![image](https://github.com/user-attachments/assets/9acb3673-e660-481f-ac77-17df9500dd2d) Can anyone give some suggestions to overcome this issue? I need enable CPU dispatch support for NumPy on WoA to get better optimised version of NumPy. Thanks!
closed
2025-01-06T07:14:58Z
2025-01-28T03:07:25Z
https://github.com/numpy/numpy/issues/28106
[ "component: SIMD" ]
Mugundanmcw
21
WZMIAOMIAO/deep-learning-for-image-processing
deep-learning
428
大佬问下VGG分类model里面最后输出是batch_size*num_class但是label是batch_size*1这个没法算loss吧程序会报错
closed
2021-12-11T05:55:06Z
2021-12-11T06:14:55Z
https://github.com/WZMIAOMIAO/deep-learning-for-image-processing/issues/428
[]
liufeng34
1
sngyai/Sequoia
pandas
43
有考虑使用Docker吗
如题
closed
2022-12-09T22:17:23Z
2025-03-05T09:48:46Z
https://github.com/sngyai/Sequoia/issues/43
[]
Noth1ngTosayLee
2
scikit-learn/scikit-learn
python
30,736
`randomized_svd` incorrect for complex valued matrices
### Describe the bug The `randomized_svd` utility function accepts complex valued inputs without error, but the result is inconsistent with `scipy.linalg.svd`. ### Steps/Code to Reproduce ```python import numpy as np from scipy import linalg from sklearn.utils.extmath import randomized_svd rng = np.random.RandomState(42) X = rng.randn(100, 20) + 1j * rng.randn(100, 20) _, s, _ = linalg.svd(X) _, s2, _ = randomized_svd(X, n_components=5) print("s:", s[:5]) print("s2:", s2[:5]) ``` ### Expected Results I expected the singular values to be numerically close. ### Actual Results ``` s: [19.81481515 18.69019042 17.62107998 17.23689681 16.3148512 ] s2: [11.25690754 9.97157079 9.01542947 8.06160863 7.54068744] ``` ### Versions ```shell System: python: 3.11.4 (main, Jul 5 2023, 08:40:20) [Clang 14.0.6 ] executable: /Users/clane/miniconda3/bin/python machine: macOS-13.7-arm64-arm-64bit Python dependencies: sklearn: 1.7.dev0 pip: 25.0 setuptools: 65.5.0 numpy: 2.2.2 scipy: 1.15.1 Cython: 3.0.11 pandas: 2.2.3 matplotlib: 3.10.0 joblib: 1.4.2 threadpoolctl: 3.5.0 Built with OpenMP: True threadpoolctl info: user_api: blas internal_api: openblas num_threads: 8 prefix: libscipy_openblas filepath: /Users/clane/Projects/misc/scikit-learn/.venv/lib/python3.11/site-packages/numpy/.dylibs/libscipy_openblas64_.dylib version: 0.3.28 threading_layer: pthreads architecture: neoversen1 user_api: blas internal_api: openblas num_threads: 8 prefix: libscipy_openblas filepath: /Users/clane/Projects/misc/scikit-learn/.venv/lib/python3.11/site-packages/scipy/.dylibs/libscipy_openblas.dylib version: 0.3.28 threading_layer: pthreads architecture: neoversen1 user_api: openmp internal_api: openmp num_threads: 8 prefix: libomp filepath: /opt/homebrew/Cellar/libomp/19.1.3/lib/libomp.dylib version: None ```
open
2025-01-30T01:40:26Z
2025-02-04T10:51:40Z
https://github.com/scikit-learn/scikit-learn/issues/30736
[ "Bug" ]
clane9
0
cvat-ai/cvat
pytorch
8,896
CANNOT Upload Annotations
### Actions before raising this issue - [X] I searched the existing issues and did not find anything similar. - [X] I read/searched [the docs](https://docs.cvat.ai/docs/) ### Steps to Reproduce 1-Create a new project. 2- Add Raw labels 3-Submit & Open. 4-Create a new task under the project 5-Drag .png files 6-Submit & Open to create the task 7- export annotations 8- run the object detection/models with the exported annotations from previous step>> this will create new annotations file (UpdatedAnnotations.xml) 9-import (UpdatedAnnotations.xml) to the same task in step 4 then receiving this error (Cannot read properties of undefined (reading 'push')) ### Expected Behavior I expect that annotations will be uploaded successfully and replace the existing annotations. ### Possible Solution I am a bit of a beginner (i tried searching online with no success) ### Context will need to see results of our object detection/models annotated ### Environment ```Markdown Ubuntu 22.04.5 LTS ------------------------ Client: Docker Engine - Community Version: 27.4.1 API version: 1.47 Go version: go1.22.10 Git commit: b9d17ea Built: Tue Dec 17 15:45:42 2024 OS/Arch: linux/amd64 Context: default Server: Docker Engine - Community Engine: Version: 27.4.1 API version: 1.47 (minimum version 1.24) Go version: go1.22.10 Git commit: c710b88 Built: Tue Dec 17 15:45:42 2024 OS/Arch: linux/amd64 Experimental: false containerd: Version: 1.7.24 GitCommit: 88bf19b2105c8b17560993bee28a01ddc2f97182 runc: Version: 1.2.2 GitCommit: v1.2.2-0-g7cb3632 docker-init: Version: 0.19.0 GitCommit: de40ad0 ```
closed
2025-01-02T07:03:37Z
2025-01-31T13:54:24Z
https://github.com/cvat-ai/cvat/issues/8896
[ "bug", "need info" ]
kotbiat
1
tensorflow/datasets
numpy
5,329
tfds build failed
**What I need help with / What I was wondering** I am trying to build a dataset using tfds build, while this error occured: TypeError: Unknown resource path: <class 'importlib_resources.readers.MultiplexedPath'>: MultiplexedPath('/home/language_table_use') > root@15298479e1f0:/home/language_table_use# tfds build INFO[build.py]: Loading dataset from path: /home/language_table_use/language_table_use_dataset_builder.py 2024-03-20 10:09:39.534800: I tensorflow/core/util/port.cc:111] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. 2024-03-20 10:09:39.577882: E tensorflow/compiler/xla/stream_executor/cuda/cuda_dnn.cc:9342] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered 2024-03-20 10:09:39.577940: E tensorflow/compiler/xla/stream_executor/cuda/cuda_fft.cc:609] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered 2024-03-20 10:09:39.577973: E tensorflow/compiler/xla/stream_executor/cuda/cuda_blas.cc:1518] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered 2024-03-20 10:09:39.586478: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations. To enable the following instructions: AVX2 AVX512F AVX512_VNNI FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags. Traceback (most recent call last): File "/usr/local/bin/tfds", line 8, in <module> sys.exit(launch_cli()) ^^^^^^^^^^^^ File "/usr/local/lib/python3.11/dist-packages/tensorflow_datasets/scripts/cli/main.py", line 103, in launch_cli app.run(main, flags_parser=_parse_flags) File "/usr/local/lib/python3.11/dist-packages/absl/app.py", line 308, in run _run_main(main, args) File "/usr/local/lib/python3.11/dist-packages/absl/app.py", line 254, in _run_main sys.exit(main(argv)) ^^^^^^^^^^ File "/usr/local/lib/python3.11/dist-packages/tensorflow_datasets/scripts/cli/main.py", line 98, in main args.subparser_fn(args) File "/usr/local/lib/python3.11/dist-packages/tensorflow_datasets/scripts/cli/build.py", line 311, in _build_datasets for builder in builders: File "/usr/local/lib/python3.11/dist-packages/tensorflow_datasets/scripts/cli/build.py", line 362, in _make_builders yield make_builder() ^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/dist-packages/tensorflow_datasets/scripts/cli/build.py", line 477, in _make_builder builder = builder_cls(**builder_kwargs) # pytype: disable=not-instantiable ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/language_table_use/language_table_use_dataset_builder.py", line 19, in __init__ super().__init__(*args, **kwargs) File "/usr/local/lib/python3.11/dist-packages/tensorflow_datasets/core/logging/__init__.py", line 288, in decorator return function(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/dist-packages/tensorflow_datasets/core/dataset_builder.py", line 1319, in __init__ super().__init__(**kwargs) File "/usr/local/lib/python3.11/dist-packages/tensorflow_datasets/core/logging/__init__.py", line 288, in decorator return function(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/dist-packages/tensorflow_datasets/core/dataset_builder.py", line 287, in __init__ self.info.initialize_from_bucket() ^^^^^^^^^ File "/usr/local/lib/python3.11/dist-packages/tensorflow_datasets/core/logging/__init__.py", line 168, in __call__ return function(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/dist-packages/tensorflow_datasets/core/dataset_builder.py", line 476, in info info = self._info() ^^^^^^^^^^^^ File "/home/language_table_use/language_table_use_dataset_builder.py", line 24, in _info return self.dataset_info_from_configs( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/dist-packages/tensorflow_datasets/core/dataset_builder.py", line 1098, in dataset_info_from_configs metadata = self.get_metadata() ^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/dist-packages/tensorflow_datasets/core/dataset_builder.py", line 245, in get_metadata return dataset_metadata.load(cls._get_pkg_dir_path()) ^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/dist-packages/tensorflow_datasets/core/dataset_builder.py", line 235, in _get_pkg_dir_path cls.pkg_dir_path = _get_builder_datadir_path(cls) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/dist-packages/tensorflow_datasets/core/dataset_builder.py", line 150, in _get_builder_datadir_path return epath.resource_path(pkg_names[0]).joinpath(*pkg_names[1:-1]) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/dist-packages/etils/epath/resource_utils.py", line 148, in resource_path raise TypeError(f'Unknown resource path: {type(path)}: {path}') TypeError: Unknown resource path: <class 'importlib_resources.readers.MultiplexedPath'>: MultiplexedPath('/home/language_table_use') **Environment information** (if applicable) * Operating System: Ubuntu 22.04.2 LTS * Python version: Python 3.11.0rc1 * `tensorflow-datasets`/`tfds-nightly` version: tensorflow-datasets 4.9.4 * `tensorflow`/`tensorflow-gpu`/`tf-nightly`/`tf-nightly-gpu` version: tensorflow 2.14.0
closed
2024-03-20T10:22:20Z
2024-03-21T05:21:23Z
https://github.com/tensorflow/datasets/issues/5329
[ "help" ]
CharlieLi2S
2
supabase/supabase-py
fastapi
510
httpx.ReadTimeout: The read operation timed out
**Describe the bug** to call vector search on 73k records supabase (python) failed due timeout error. please put option developer can increase or decrease timeout according situation. otherwise python library not worthful. **To Reproduce** the error can be produce to make embedding to search in huge records about 73k. **Expected behavior** i need to increate the timeout for the rpc method so it can easily with failed. in JavaScript its working where it can takes 25 to 30 secs in python it failed. **Screenshots** Traceback (most recent call last): File "F:\fielder\textkernelfunc\Lib\site-packages\httpx\_transports\default.py", line 60, in map_httpcore_exceptions yield File "F:\fielder\textkernelfunc\Lib\site-packages\httpx\_transports\default.py", line 218, in handle_request resp = self._pool.handle_request(req) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "F:\fielder\textkernelfunc\Lib\site-packages\httpcore\_sync\connection_pool.py", line 253, in handle_request raise exc File "F:\fielder\textkernelfunc\Lib\site-packages\httpcore\_sync\connection_pool.py", line 237, in handle_request response = connection.handle_request(request) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "F:\fielder\textkernelfunc\Lib\site-packages\httpcore\_sync\connection.py", line 90, in handle_request return self._connection.handle_request(request) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "F:\fielder\textkernelfunc\Lib\site-packages\httpcore\_sync\http11.py", line 112, in handle_request raise exc File "F:\fielder\textkernelfunc\Lib\site-packages\httpcore\_sync\http11.py", line 91, in handle_request ) = self._receive_response_headers(**kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "F:\fielder\textkernelfunc\Lib\site-packages\httpcore\_sync\http11.py", line 155, in _receive_response_headers event = self._receive_event(timeout=timeout) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "F:\fielder\textkernelfunc\Lib\site-packages\httpcore\_sync\http11.py", line 191, in _receive_event data = self._network_stream.read( ^^^^^^^^^^^^^^^^^^^^^^^^^^ File "F:\fielder\textkernelfunc\Lib\site-packages\httpcore\backends\sync.py", line 26, in read with map_exceptions(exc_map): File "C:\Users\ishaq\AppData\Local\Programs\Python\Python311\Lib\contextlib.py", line 155, in __exit__ self.gen.throw(typ, value, traceback) File "F:\fielder\textkernelfunc\Lib\site-packages\httpcore\_exceptions.py", line 14, in map_exceptions raise to_exc(exc) httpcore.ReadTimeout: The read operation timed out The above exception was the direct cause of the following exception: Traceback (most recent call last): File "F:\fielder\textkernelfunc\dbhelper.py", line 249, in <module> rs = asyncio.run(job.getTopJobsByCV(tk_res['documentText'])) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\ishaq\AppData\Local\Programs\Python\Python311\Lib\asyncio\runners.py", line 190, in run return runner.run(main) ^^^^^^^^^^^^^^^^ File "C:\Users\ishaq\AppData\Local\Programs\Python\Python311\Lib\asyncio\runners.py", line 118, in run return self._loop.run_until_complete(task) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\ishaq\AppData\Local\Programs\Python\Python311\Lib\asyncio\base_events.py", line 653, in run_until_complete return future.result() ^^^^^^^^^^^^^^^ File "F:\fielder\textkernelfunc\dbhelper.py", line 239, in getTopJobsByCV response = self.connection.rpc('match_jobs', rpc_params).execute() ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "F:\fielder\textkernelfunc\Lib\site-packages\postgrest\_sync\request_builder.py", line 55, in execute r = self.session.request( ^^^^^^^^^^^^^^^^^^^^^ File "F:\fielder\textkernelfunc\Lib\site-packages\httpx\_client.py", line 821, in request return self.send(request, auth=auth, follow_redirects=follow_redirects) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "F:\fielder\textkernelfunc\Lib\site-packages\httpx\_client.py", line 908, in send response = self._send_handling_auth( ^^^^^^^^^^^^^^^^^^^^^^^^^ File "F:\fielder\textkernelfunc\Lib\site-packages\httpx\_client.py", line 936, in _send_handling_auth response = self._send_handling_redirects( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "F:\fielder\textkernelfunc\Lib\site-packages\httpx\_client.py", line 973, in _send_handling_redirects response = self._send_single_request(request) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "F:\fielder\textkernelfunc\Lib\site-packages\httpx\_client.py", line 1009, in _send_single_request response = transport.handle_request(request) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "F:\fielder\textkernelfunc\Lib\site-packages\httpx\_transports\default.py", line 217, in handle_request with map_httpcore_exceptions(): File "C:\Users\ishaq\AppData\Local\Programs\Python\Python311\Lib\contextlib.py", line 155, in __exit__ self.gen.throw(typ, value, traceback) File "F:\fielder\textkernelfunc\Lib\site-packages\httpx\_transports\default.py", line 77, in map_httpcore_exceptions raise mapped_exc(message) from exc httpx.ReadTimeout: The read operation timed out **Desktop (please complete the following information):** - windows 10 -vs code - python 3.11
closed
2023-07-28T18:06:13Z
2024-06-25T07:11:25Z
https://github.com/supabase/supabase-py/issues/510
[ "documentation" ]
ishaqmahsud
4
jackzhenguo/python-small-examples
data-science
35
README.md 文档中的图片修复
README.md 文档中的图片修复 如果不需要, 是不是可以删除呢, 影响阅读
closed
2020-04-18T02:47:23Z
2020-04-27T09:41:53Z
https://github.com/jackzhenguo/python-small-examples/issues/35
[]
tianheg
4
arogozhnikov/einops
numpy
343
[Feature suggestion] Support of tensordict (and tensorclass)
Tensordicts are dicts of tensors with a common batch dimension, tensorclasses dataclasses of tensor. https://pytorch.org/tensordict/ Tensordict seems to be still not fully mature, but is already quite useful. If I am not mistaken, it supports most operations required to write a einops backend -- einsum is missing. Before I (or somebody else) does the work to draft an implementation, I am wondering if this might be included in einops or if @arogozhnikov would either like to wait and see if tensordict gets merged into pytorch proper (https://github.com/pytorch/pytorch/pull/112441) or if the missing einsum functionality would be a stopper. For us, it would already be immensely helpful to be able to use rearrange on the batch dimensions of tensordicts. Cheers
open
2024-09-28T10:28:26Z
2024-12-18T10:42:44Z
https://github.com/arogozhnikov/einops/issues/343
[ "feature suggestion" ]
fzimmermann89
3
onnx/onnx
deep-learning
6,532
[Feature request] aten::_native_mutli-head_attention
### System information 1.17 ### What is the problem that this feature solves? When trying to export the pytorch model with MHA to onnx format, this problem appears. It seems like the pytorch creates the "aten::_native_multi_head_attention node" which isn't supported by onnx yet, see ref [https://discuss.pytorch.org/t/multiheadattention-export-to-onnx-fails-when-using-torch-no-grad/198843](url). Although in this thread someone proposed a solution but it doesn't work for me. ### Alternatives considered _No response_ ### Describe the feature Onnx will support the pytorch MHA implementation in the latest version which is the base of many attention variants. ### Will this influence the current api (Y/N)? No ### Feature Area operators ### Are you willing to contribute it (Y/N) No ### Notes _No response_
closed
2024-11-05T08:05:20Z
2024-11-08T02:00:52Z
https://github.com/onnx/onnx/issues/6532
[ "topic: enhancement" ]
wcycqjy
1
jupyter/nbviewer
jupyter
865
Gist support does not work with GHE
**Describe the bug** When configured to integrate with GitHub Enterprise, Gists do not work. **To Reproduce** Enter Gist URL, e.g. https://ghe.mycompany.com/gist/c3ca62e42d590f81c3a906824b2528b0, in an nbviewer configured `GITHUB_API_URL=https://ghe.mycompany.com/v3/api/`. **Expected behavior** The notebook in the Gist is rendered in nbviewer. **Additional context** Related to #850 and #863.
closed
2019-11-18T03:38:12Z
2019-12-08T20:28:24Z
https://github.com/jupyter/nbviewer/issues/865
[]
ivan-gomes
2
python-gino/gino
sqlalchemy
74
Add example of how to create the database tables
All of the current examples punt on showing how to to create the database tables: ```# You will need to create the database and table manually``` Requiring the user to create the database itself is ok, but having to create all application tables manually would, at least for me, be a show stopper for adopting Gino. We would need to be able to use something equivalent to SQLAlchemy MetaData.sync_all(). I tried calling Gino().sync_all() (as Gino inherits from sa.MetaData), but it complained about not having a database connected to it. Maybe I did something wrong? Does Gino() support a way to semi-automatically create the database tables from the application defined Models? This would be used either on application startup or from separate adminstration scripts. We might even defers to calling non-async methods of SQLAlchemy before the event loop is started. Anything that allows us to use the defined models would be good.
closed
2017-09-23T05:12:59Z
2017-09-23T08:17:10Z
https://github.com/python-gino/gino/issues/74
[]
kinware
3
Lightning-AI/pytorch-lightning
deep-learning
19,751
Validation does not produce any output in PyTorch Lightning using my UNetTestModel
### Bug description I'm trying to validate my model using PyTorch Lightning, but no output or logs are generated during the validation process, despite setting up everything correctly. ![image](https://github.com/Lightning-AI/pytorch-lightning/assets/144128974/df1dd055-f70d-49bb-8316-cd4e2128ce58) And this is my model part: `class UNetTestModel(pl.LightningModule, HyperparametersMixin): def __init__( self, encoder_name='resnet50', encoder_weights='imagenet', in_channels=1, classes=14, loss_fn=DiceCELossWithKL(softmax=True, lambda_dice=0.85, lambda_ce=0.15, lambda_kl=2.0, to_onehot_y=True, include_background=True), loss_function='DiceCELossWithKL', learning_rate=3e-3, ): super().__init__() self.save_hyperparameters() self.model = smp.Unet( encoder_name=encoder_name, encoder_weights=encoder_weights, in_channels=in_channels, classes=classes, ) self.loss_fn = loss_fn self.val_accuracy = torchmetrics.classification.Accuracy(task="multiclass", num_classes=14, average='macro', ignore_index=0) self.val_accuracy_classwise = torchmetrics.classification.Accuracy(task="multiclass", num_classes=14, average='none', ignore_index=0) self.Dice = torchmetrics.classification.Dice(multiclass=True, num_classes=14, average='macro', ignore_index=0) self.F1 = torchmetrics.classification.MulticlassF1Score(num_classes=14, average="macro", ignore_index=0) self.Jaccard = torchmetrics.classification.MulticlassJaccardIndex(num_classes=14, average="macro", ignore_index=0) def forward(self, x): return self.model(x) def training_step(self, batch, batch_idx): images, labels = batch outputs = self.forward(images) loss = self.loss_fn(outputs, labels.unsqueeze(1)) self.log('train_loss', loss, on_step=True, on_epoch=False, logger=True, prog_bar=True) return loss def validation_step(self, batch, batch_idx): images, labels = batch outputs = self.forward(images) loss = self.loss_fn(outputs, labels.unsqueeze(1)) accuracy = self.val_accuracy(outputs, labels) Dice = self.Dice(outputs, labels) F1 = self.F1(outputs, labels) Jaccard = self.Jaccard(outputs, labels) acc = self.val_accuracy_classwise(outputs, labels) self.log('val_loss', loss, on_step=True, on_epoch=False, logger=True, prog_bar=True) self.log('val_accuracy', accuracy, on_step=True, on_epoch=False, logger=True, prog_bar=True) self.log('val_F1', F1, on_step=True, on_epoch=False, logger=True, prog_bar=True) self.log('val_Dice', Dice, on_step=True, on_epoch=False, logger=True, prog_bar=True) self.log('val_Jaccard', Jaccard, on_step=True, on_epoch=False, logger=True, prog_bar=True) self.log('val_acc_4', acc[4], on_step=True, on_epoch=False, logger=True, prog_bar=True) self.log('val_acc_5', acc[5], on_step=True, on_epoch=False, logger=True, prog_bar=True) self.log('val_acc_10', acc[10], on_step=True, on_epoch=False, logger=True, prog_bar=True) self.log('val_acc_12', acc[12], on_step=True, on_epoch=False, logger=True, prog_bar=True) self.log('val_acc_13', acc[13], on_step=True, on_epoch=False, logger=True, prog_bar=True) return {"loss": loss, "accuracy": accuracy} def optimizer_step(self, epoch, batch_idx, optimizer, optimizer_closure, **kwargs): if self.trainer.global_step < 50: lr_scale = min(1.0, float(self.trainer.global_step + 1) / 50) for pg in optimizer.param_groups: pg["lr"] = lr_scale * self.hparams.learning_rate optimizer.step(closure=optimizer_closure) def configure_optimizers(self): optimizer = torch.optim.Adam(self.parameters(), lr=self.hparams.learning_rate) scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=5, eta_min=0.000001, last_epoch=-1) return { 'optimizer': optimizer, 'lr_scheduler': { 'scheduler': scheduler, 'interval': 'epoch', 'frequency': 1, } } ` ### What version are you seeing the problem on? v2.2 ### How to reproduce the bug ```python To view the bug, you can run the colab notebook cells (not those cells marked with Opt). You can reproduce the bug in CheckMetrics cell. It is reproduce-able in kaggle and colab thus really annoying 😡. It would be sooo much oblidged if anyone could help me with this. https://colab.research.google.com/#fileId=https%3A//storage.googleapis.com/kaggle-colab-exported-notebooks/smu-dataset-dl-update-with-new-dataset-5df7b4b9-0565-494d-b22a-c0306ec0418e.ipynb%3FX-Goog-Algorithm%3DGOOG4-RSA-SHA256%26X-Goog-Credential%3Dgcp-kaggle-com%2540kaggle-161607.iam.gserviceaccount.com/20240410/auto/storage/goog4_request%26X-Goog-Date%3D20240410T014637Z%26X-Goog-Expires%3D259200%26X-Goog-SignedHeaders%3Dhost%26X-Goog-Signature%3D0e9d4ad91ecc6e2fae0a51622b97399160be483c4737424d1584ebdcba2a80b870f32feacc256675774b85db2c72329819040ffa6c923e20835b331d995cfea132418460df7cfba6d261e6e3381354d8ca92188ddba7e502fa71fee33c63ed5d5246df0964c3766b7a26c92b559e3e359f4bc4e78b78edf3114d0d52ab54244f7c28b560f6a31a14389b27cb86837fcfb0579c6784958ab181af41a2a915a57eaa6e0e80bc9acc55bca97cbc0311caa0e870004659e568e2acae6de0af29ff8f08bbc9ebea6118b8b9d48aea9d20593a1e3516763105e0c296679a649968501b481f722936008f893bacf0856e288c202e3124902da7cdf635d174169c05b27a&scrollTo=HbUeiVEzr21d&line=4&uniqifier=1 ``` ### Error messages and logs ![image](https://github.com/Lightning-AI/pytorch-lightning/assets/144128974/e0a950cf-2812-4e35-8fcf-64d49e2ee982) ### Environment basic Colab env with pip-qqq-accessible lightning ### More info _No response_
closed
2024-04-10T07:10:13Z
2024-09-30T12:44:30Z
https://github.com/Lightning-AI/pytorch-lightning/issues/19751
[ "bug", "needs triage" ]
lgy112112
0
voila-dashboards/voila
jupyter
1,063
Get current kernel's id/name
Hi, im trying to get the id/name of the kernel that the code is executed on. Is it possible?
closed
2022-01-19T12:34:55Z
2022-01-20T09:25:26Z
https://github.com/voila-dashboards/voila/issues/1063
[]
riegerben
5
gevent/gevent
asyncio
1,180
Add pyproject.toml file?
pip 10 supports `pyproject.toml` files as per [PEP518](https://www.python.org/dev/peps/pep-0518/). In theory this lets us declare our build-time dependencies (notably on Cython) so that a source install can simply be 'pip install gevent.tar.gz' without having to manually install Cython: ```toml [build-system] requires = ["setuptools", "wheel", "Cython >= 0.28.2"] ``` There's a problem with this, however. Unfortunately, [pip 10](https://pip.pypa.io/en/latest/reference/pip/#pep-518-support) will only install wheels for things listed in `requires`. If you're on a platform without a binary wheel for Cython (e.g., FreeBSD or Python 3.7b3 on any system), then [the installation simply bails](https://github.com/pypa/pip/issues/5244): ``` Could not find a version that satisfies the requirement Cython>=0.28.2 (from versions: ) No matching distribution found for Cython>=0.28.2 ``` Because `pyproject.toml` also specifies build isolation, installing Cython ahead of time *also* fails, unless you specify the `--no-build-isolation` flag. So until pip supports installing build deps from source, it's not clear that `pyproject.toml` is a net win.
closed
2018-04-18T14:27:48Z
2019-04-12T22:20:11Z
https://github.com/gevent/gevent/issues/1180
[ "internal" ]
jamadden
1
gradio-app/gradio
data-visualization
10,604
browser environment within gradio for computer use agents
- [x] I have searched to see if a similar issue already exists. **Is your feature request related to a problem? Please describe.** omni parser v2 and many other opens models would benifit with a browser inside spaces that could run these computer use agent models within the spaces enviroment using the zero gpu or other gpu spaces. **Describe the solution you'd like** maybe implemented something from browserbase into gradio? @AK391 @abidlabs @gradio-pr-bot @pngwn @aliabd @freddyaboulton @dawoodkhan82 @aliabid94 @hannahblair @omerXfaruq @whitphx
open
2025-02-17T12:09:48Z
2025-02-17T22:10:10Z
https://github.com/gradio-app/gradio/issues/10604
[ "enhancement" ]
geeve-research
0
python-restx/flask-restx
flask
224
ValueError: too many values to unpack (expected 2) for requestparser
I was using Flask-restplus and migrated to flask-restx. But when I parse a request params, I am getting this error. Suddenly started this error and Same error i was getting for flask-restplus too. args = self.parser.parse_args() File "/dv/virtualenvs-apps/env/lib/python3.6/site-packages/flask_restx/reqparse.py", line 387, in parse_args value, found = arg.parse(req, self.bundle_errors) File "/dv/virtualenvs-apps/env/lib/python3.6/site-packages/flask_restx/reqparse.py", line 215, in parse source = self.source(request) File "/dv/virtualenvs-apps/env/lib/python3.6/site-packages/flask_restx/reqparse.py", line 153, in source values.update(value) File "/dv/virtualenvs-apps/env/lib/python3.6/site-packages/werkzeug/datastructures.py", line 627, in update for key, value in iter_multi_items(other_dict): ValueError: too many values to unpack (expected 2) Any help will be highly appreciated.
open
2020-09-14T10:31:33Z
2021-01-02T17:57:08Z
https://github.com/python-restx/flask-restx/issues/224
[ "question" ]
BHAUTIK04
3
babysor/MockingBird
pytorch
41
这次训练一半会出现这个EOFError: Ran out of input,怎么回事 PermissionError: [WinError 5] 拒绝访问。
![image](https://user-images.githubusercontent.com/31000405/130423303-8f2e7930-407f-4ce6-8bbb-49756c12d17e.png) 来看看,解决一下
closed
2021-08-23T09:22:46Z
2021-10-01T03:20:37Z
https://github.com/babysor/MockingBird/issues/41
[]
wangkewk
1
miguelgrinberg/flasky
flask
546
Selenium testing failing
Hi Miguel, I'm just about to finish your book, absolutely love it. I've been following along as I read and noticed that the packages are quite outdated (as expected). I decided to code your app using the latest available packages and so far apart from some minor syntax differences it was smooth sailing. This was the case up until the 'End-to-End Testing with Selenium' (15d), it took me 2 days to make it work with `Selenium v4.7.2` and `Unittest` and I just wanted to leave it here in case someone else runs into this problem as well as ask if this is the correct way to do it. It feels more like a hack to me rather than the actual solution so I would really appreciate your input. Below are the packages I'm using as well as my solution to the problem. By the way I'm also using `ChromeDriver 108.0.5359.71` I figured out the solution tanks to <https://github.com/pallets/flask/issues/2776> `requirements/common.txt` ``` alembic==1.8.1 bleach==5.0.1 blinker==1.5 click==8.1.3 colorama==0.4.5 dnspython==2.2.1 dominate==2.7.0 email-validator==1.3.0 Flask==2.2.2 Flask-Bootstrap==3.3.7.1 Flask-HTTPAuth==4.7.0 Flask-Login==0.6.2 Flask-Mail==0.9.1 Flask-Migrate==3.1.0 Flask-Moment==1.0.5 Flask-PageDown==0.4.0 Flask-SQLAlchemy==3.0.2 Flask-WTF==1.0.1 greenlet==2.0.0 idna==3.4 itsdangerous==2.1.2 Jinja2==3.1.2 Mako==1.2.3 Markdown==3.4.1 MarkupSafe==2.1.1 packaging==21.3 pyparsing==3.0.9 python-dateutil==2.8.2 python-dotenv==0.21.0 six==1.16.0 SQLAlchemy==1.4.42 visitor==0.1.3 webencodings==0.5.1 Werkzeug==2.2.2 WTForms==3.0.1 ``` `requirements/common.txt` ``` -r common.txt charset-normalizer==2.1.1 certifi==2022.9.24 commonmark==0.9.1 coverage==6.5.0 defusedxml==0.7.1 Faker==15.2.0 httpie==3.2.1 multidict==6.0.2 Pygments==2.13.0 PySocks==1.7.1 requests==2.28.1 requests-toolbelt==0.10.1 rich==12.6.0 selenium==4.7.2 urllib3==1.26.12 ``` `main/views.py` ```python [...] @main.route('/shutdown') def server_shutdown(): if not current_app.testing: abort(404) # request.environ.get('werkzeug.server.shutdown') has been deprecated # So I used the following instead: os.kill(os.getpid(), signal.SIGINT) return 'Shutting down...' [...] ``` `config.py` ```python [...] # I added the following configuration which is the FIX to my problem class TestingWithSeleniumConfig(TestingConfig): @staticmethod def init_app(app): if os.environ.get('FLASK_RUN_FROM_CLI'): os.environ.pop('FLASK_RUN_FROM_CLI') [...] config = { [...] 'testing-with-selenium': TestingWithSeleniumConfig, [...] } ``` `tests/test_selenium.py` ```python import re import threading import unittest from selenium import webdriver from selenium.webdriver.common.by import By from app import create_app, db, fake from app.models import Role, User, Post class SeleniumTestCase(unittest.TestCase): # I don't like things hardcoded where possible HOST = 'localhost' PORT = 5000 # PyCharm complaining without those client = None app = None app_context = None server_thread = None @classmethod def setUpClass(cls): options = webdriver.ChromeOptions() options.add_argument('headless') # This suppresses some jibberish from webdriver options.add_experimental_option('excludeSwitches', ['enable-logging']) # noinspection PyBroadException try: cls.client = webdriver.Chrome(options=options) except Exception: pass # Skip these tests if the web browser could not be started if cls.client: # Create the application # FIX: making use of 'testing-with-selenium' config cls.app = create_app('testing-with-selenium') cls.app_context = cls.app.app_context() cls.app_context.push() # Suppress logging to keep unittest output clean import logging logger = logging.getLogger('werkzeug') logger.setLevel('ERROR') # Create the database and populate with some fake data db.create_all() Role.insert_roles() fake.users(10) fake.posts(10) # Add an administrator user admin_role = Role.query.filter_by(permissions=0xff).first() admin = User(email='john@example.com', username='john', password='cat', role=admin_role, confirmed=True) db.session.add(admin) db.session.commit() # Start the flask server in a thread cls.server_thread = threading.Thread(target=cls.app.run, kwargs={ 'host': cls.HOST, 'port': cls.PORT, 'debug': False, 'use_reloader': False, 'use_debugger': False }) cls.server_thread.start() @classmethod def tearDownClass(cls): if cls.client: # Stop the Flask server and the browser cls.client.get(f'http://{cls.HOST}:{cls.PORT}/shutdown') cls.client.quit() cls.server_thread.join() # Destroy the database db.drop_all() db.session.remove() # Remove application context cls.app_context.pop() def setUp(self): if not self.client: self.skipTest('Web browser not available') def tearDown(self): pass def test_admin_home_page(self): # Navigate to home page self.client.get(f'http://{self.HOST}:{self.PORT}/') self.assertTrue(re.search(r'Hello,\s+Stranger!', self.client.page_source)) # Navigate to login page self.client.find_element(By.LINK_TEXT, 'Log In').click() self.assertIn('<h1>Login</h1>', self.client.page_source) # Login self.client.find_element(By.NAME, 'email').send_keys('john@example.com') self.client.find_element(By.NAME, 'password').send_keys('cat') self.client.find_element(By.NAME, 'submit').click() self.assertTrue(re.search(r'Hello,\s+john!', self.client.page_source)) # Navigate to the user's profile page self.client.find_element(By.LINK_TEXT, 'Profile').click() self.assertIn('<h1>john</h1>', self.client.page_source) ```
open
2022-12-10T21:06:01Z
2023-09-02T15:40:25Z
https://github.com/miguelgrinberg/flasky/issues/546
[]
sularz-maciej
3
supabase/supabase-py
flask
1,026
Async client: Unresolved attribute reference 'execute' for class 'BaseFilterRequestBuilder'
# Bug report <!-- ⚠️ We receive a lot of bug reports which have already been solved or discussed. If you are looking for help, please try these first: - Docs: https://docs.supabase.com - Discussions: https://github.com/supabase/supabase/discussions - Discord: https://discord.supabase.com Before opening a bug report, please verify the following: --> - [x] I confirm this is a bug with Supabase, not with my own application. - [x] I confirm I have searched the [Docs](https://docs.supabase.com), GitHub [Discussions](https://github.com/supabase/supabase/discussions), and [Discord](https://discord.supabase.com). ## Describe the bug > [!NOTE] > This report was created having in consideration the instruction made by @silentworks in the thread https://discord.com/channels/839993398554656828/1323676367765897297. When using the async client and calling the `execute` method after an `eq` filter, PyCharm generate an `Unresolved attribute reference 'execute' for class 'BaseFilterRequestBuilder'` warning. Exploring the source of the `eq` method I figured out the class `BaseFilterRequestBuilder` doesn't have a definition for the `execute` method and doesn't extend any class which define it. In fact, there is no definition in the whole "base_request_builder.py" file (PyCharm word search). On the other hand, the `select` method is currently defined in `AsyncRequestBuilder` and returns an instance of `AsyncSelectRequestBuilder` (which extends `AsyncQueryRequestBuilder`). This dependency chain correctly provide the `execute` method definition. ## To Reproduce Steps to reproduce the behavior, please provide code snippets or a repository: 1. Create and async client ```python from supabase import create_async_client from app.env import env_vars supabase = await create_async_client( supabase_url=env_vars['SUPABASE_URL'], supabase_key=env_vars['SUPABASE_KEY'], ) ``` 2. Create a select query to any table and schema: ```python result = await supabase.schema('stuff').table('regs').select().eq('key', key).execute() ``` 3. PyCharm generate a warning when calling the `execute()` method ## Expected behavior Call the `execute` method after `eq` without a warning. ## Screenshots ![image](https://github.com/user-attachments/assets/232b2e69-7cd3-4a3f-94c8-9bed399414e5) ## System information - OS: GNU/Linux Fedora 41 KDE Workstation - Version of supabase: 2.11.0 - Version of Python: 3.13.0 - Version of Miniconda: 24.7.1 - Version of Poetry: 1.8.4 (installed with pipx) ## Additional context Using PyCharm Community 2024.3.1.1 (243.22562.220)
open
2025-01-07T20:44:29Z
2025-01-14T16:21:28Z
https://github.com/supabase/supabase-py/issues/1026
[ "bug" ]
KBeDevel
4
Teemu/pytest-sugar
pytest
75
tests skipped with pytest.mark.skipif not shown at all
If I use pytest.mark.skipif for a test, the test is not shown as 'skipped' with pytest-sugar, while regular pytest does. If I use nose.plugins.skip.SkipTest from a test instead, pytest-sugar _does_ see it as skipped. Example code is the following: ``` import pytest import nose def test_foo(): assert True @pytest.mark.skipif(True, reason='testing skipping') def test_skipped(): assert False def test_nose_skipped(): raise nose.plugins.skip.SkipTest('nose skipping') assert False ``` I tried to add some debug statements in pytest_sugar.py, and noticed that for the skipif test there is a 'setup' trigger where report.status says 'skipped' but it becomes 'passed' in the 'teardown' trigger. There is no 'call' trigger for that skipped test. I have not been able to determine any useful things further. This is reported against pytest-sugar 0.5.1 and pytest 2.8.7. I verified that the same problem is present with older versions of pytest-sugar, so it seems this never worked.
closed
2016-02-06T15:04:51Z
2016-03-29T11:43:06Z
https://github.com/Teemu/pytest-sugar/issues/75
[]
patrickdepinguin
4
marimo-team/marimo
data-visualization
3,401
support multiline for mo.ui.chat input & bubble
### Describe the bug <img width="500" alt="Image" src="https://github.com/user-attachments/assets/7dd67d3a-35f8-49e1-85f2-00bc6dd8db6c" /> 1. The input textbox does not support multiple lines. Suggestion: make it an autosizing textarea. Some options: a) Add a new package - https://github.com/Andarist/react-textarea-autosize b) some css, js hack - https://css-tricks.com/auto-growing-inputs-textareas/#aa-other-ideas c) same behaviour as chat panel - but I think this isn't an option, that uses codemirror which is overkill. I tried and b) should work, avoids useLayoutEffect hooks from a) 2. Shift+enter / cmd+enter to add new line, Enter to submit. - This is a bit tricky since we need to override the code editor shortcut (shift+enter will go to the next cell) - One suggestion is we keep the default behaviour of textarea (Enter creates a new line), and we set `Ctrl+Enter` to submit the form 3. The chat bubble will auto format everything to 1 line. I believe there's a simple solution,`chat-ui.tsx` ```.tsx <p className={cn(message.role === "user" && "whitespace-pre-wrap")}> {renderMessage(message)} </p> ``` ### Environment <details> ``` { "marimo": "0.10.12", "OS": "Darwin", "OS Version": "23.6.0", "Processor": "arm", "Python Version": "3.12.8", "Binaries": { "Browser": "131.0.6778.265", "Node": "v23.2.0" }, "Dependencies": { "click": "8.1.3", "docutils": "0.21.2", "itsdangerous": "2.2.0", "jedi": "0.19.2", "markdown": "3.7", "narwhals": "1.20.1", "packaging": "24.2", "psutil": "6.1.1", "pygments": "2.18.0", "pymdown-extensions": "10.13", "pyyaml": "6.0.2", "ruff": "0.6.9", "starlette": "0.45.0", "tomlkit": "0.13.2", "typing-extensions": "4.12.2", "uvicorn": "0.34.0", "websockets": "14.1" }, "Optional Dependencies": { "anywidget": "0.9.13", "duckdb": "1.1.3", "ibis-framework": "9.5.0", "pandas": "2.2.3", "polars": "1.18.0", "pyarrow": "17.0.0" } } ``` </details> ### Code to reproduce ```.py mo.ui.chat( mo.ai.llm.openai( "gpt-4o-mini", system_message="You are a helpful chemist. Output your answer in markdown or latex.", ), show_configuration_controls=True, ) ```
closed
2025-01-11T17:06:54Z
2025-01-13T16:09:41Z
https://github.com/marimo-team/marimo/issues/3401
[ "bug" ]
Light2Dark
2
encode/apistar
api
589
Set correct content-length for 204/304 responses with JSONResponse
The HTTP Codes 204 (No-Content) and 304 (Not-Modified) currently return a Content-Length > 0 when using the JSONResponse: ``` http.JSONResponse(None, status_code=204) ``` This will serialize "None" and return a response with content-length of 4: ``` HTTP/1.1 204 No Content content-length: 4 content-type: application/json ``` The same happens when passing an empty string and empty dict. The first parameter is always serialized, no matter what the status code. This is very annoying when using a client written in Go, as the built-in http library will complain with errors such as `2018/06/17 23:56:11 Unsolicited response received on idle HTTP channel starting with "null"; err=<nil>` Sanic had a similar issue which was fixed a few months ago: https://github.com/channelcat/sanic/pull/1113 It would be great if there was an exception for status codes 204/304 and the response would set Content-Length to 0 and not return any body.
closed
2018-06-17T22:05:40Z
2018-06-20T21:37:35Z
https://github.com/encode/apistar/issues/589
[]
arthurk
2
tqdm/tqdm
jupyter
684
How to work with logging? (Screen + File)
4.29.1 3.7.2 (default, Dec 29 2018, 00:00:04) [Clang 4.0.1 (tags/RELEASE_401/final)] darwin Can tqdm work with logging? Well, I want to log to both screen and file, with the bulid-in logging standard module. This link https://github.com/tqdm/tqdm/issues/313#issuecomment-346819396 works partly well, but not suitable for "Screen+File", just Screen. And Google/StackOverflow didn't give the answer. THX.
open
2019-02-28T15:59:51Z
2019-03-04T01:05:20Z
https://github.com/tqdm/tqdm/issues/684
[ "duplicate 🗐", "question/docs ‽" ]
jinyu121
1
s3rius/FastAPI-template
asyncio
96
Request object isn't passed as argument
Thanks for this package. I have created graphql app using template but getting below error. It seems fastapi doesn't pass request object. ```log ERROR: Exception in ASGI application Traceback (most recent call last): File "/Users/test/Library/Caches/pypoetry/virtualenvs/fastapi-graphql-practice-1UuEp-7G-py3.10/lib/python3.10/site-packages/uvicorn/protocols/websockets/websockets_impl.py", line 184, in run_asgi result = await self.app(self.scope, self.asgi_receive, self.asgi_send) File "/Users/test/Library/Caches/pypoetry/virtualenvs/fastapi-graphql-practice-1UuEp-7G-py3.10/lib/python3.10/site-packages/uvicorn/middleware/proxy_headers.py", line 75, in __call__ return await self.app(scope, receive, send) File "/Users/test/Library/Caches/pypoetry/virtualenvs/fastapi-graphql-practice-1UuEp-7G-py3.10/lib/python3.10/site-packages/fastapi/applications.py", line 261, in __call__ await super().__call__(scope, receive, send) File "/Users/test/Library/Caches/pypoetry/virtualenvs/fastapi-graphql-practice-1UuEp-7G-py3.10/lib/python3.10/site-packages/starlette/applications.py", line 112, in __call__ await self.middleware_stack(scope, receive, send) File "/Users/test/Library/Caches/pypoetry/virtualenvs/fastapi-graphql-practice-1UuEp-7G-py3.10/lib/python3.10/site-packages/starlette/middleware/errors.py", line 146, in __call__ await self.app(scope, receive, send) File "/Users/test/Library/Caches/pypoetry/virtualenvs/fastapi-graphql-practice-1UuEp-7G-py3.10/lib/python3.10/site-packages/starlette/exceptions.py", line 58, in __call__ await self.app(scope, receive, send) File "/Users/test/Library/Caches/pypoetry/virtualenvs/fastapi-graphql-practice-1UuEp-7G-py3.10/lib/python3.10/site-packages/fastapi/middleware/asyncexitstack.py", line 21, in __call__ raise e File "/Users/test/Library/Caches/pypoetry/virtualenvs/fastapi-graphql-practice-1UuEp-7G-py3.10/lib/python3.10/site-packages/fastapi/middleware/asyncexitstack.py", line 18, in __call__ await self.app(scope, receive, send) File "/Users/test/Library/Caches/pypoetry/virtualenvs/fastapi-graphql-practice-1UuEp-7G-py3.10/lib/python3.10/site-packages/starlette/routing.py", line 656, in __call__ await route.handle(scope, receive, send) File "/Users/test/Library/Caches/pypoetry/virtualenvs/fastapi-graphql-practice-1UuEp-7G-py3.10/lib/python3.10/site-packages/starlette/routing.py", line 315, in handle await self.app(scope, receive, send) File "/Users/test/Library/Caches/pypoetry/virtualenvs/fastapi-graphql-practice-1UuEp-7G-py3.10/lib/python3.10/site-packages/starlette/routing.py", line 77, in app await func(session) File "/Users/test/Library/Caches/pypoetry/virtualenvs/fastapi-graphql-practice-1UuEp-7G-py3.10/lib/python3.10/site-packages/fastapi/routing.py", line 264, in app solved_result = await solve_dependencies( File "/Users/test/Library/Caches/pypoetry/virtualenvs/fastapi-graphql-practice-1UuEp-7G-py3.10/lib/python3.10/site-packages/fastapi/dependencies/utils.py", line 498, in solve_dependencies solved_result = await solve_dependencies( File "/Users/test/Library/Caches/pypoetry/virtualenvs/fastapi-graphql-practice-1UuEp-7G-py3.10/lib/python3.10/site-packages/fastapi/dependencies/utils.py", line 498, in solve_dependencies solved_result = await solve_dependencies( File "/Users/test/Library/Caches/pypoetry/virtualenvs/fastapi-graphql-practice-1UuEp-7G-py3.10/lib/python3.10/site-packages/fastapi/dependencies/utils.py", line 498, in solve_dependencies solved_result = await solve_dependencies( File "/Users/test/Library/Caches/pypoetry/virtualenvs/fastapi-graphql-practice-1UuEp-7G-py3.10/lib/python3.10/site-packages/fastapi/dependencies/utils.py", line 523, in solve_dependencies solved = await solve_generator( File "/Users/test/Library/Caches/pypoetry/virtualenvs/fastapi-graphql-practice-1UuEp-7G-py3.10/lib/python3.10/site-packages/fastapi/dependencies/utils.py", line 443, in solve_generator cm = asynccontextmanager(call)(**sub_values) File "/Users/test/.pyenv/versions/3.10.2/lib/python3.10/contextlib.py", line 314, in helper return _AsyncGeneratorContextManager(func, args, kwds) File "/Users/test/.pyenv/versions/3.10.2/lib/python3.10/contextlib.py", line 103, in __init__ self.gen = func(*args, **kwds) TypeError: get_db_session() missing 1 required positional argument: 'request' INFO: connection open INFO: connection closed ```
closed
2022-07-05T07:01:34Z
2022-10-13T21:26:26Z
https://github.com/s3rius/FastAPI-template/issues/96
[]
devNaresh
16
lepture/authlib
flask
456
Two tests/jose/test_jwe.py tests failing
While packaging this package for openSUSE we try to start running the testsuite during the packaging (so that we may catch some unexpected failure to build package correctly) and when running `tests/jose` I got this: ``` [ 11s] + python3.9 -mpytest tests/jose [ 11s] ============================= test session starts ============================== [ 11s] platform linux -- Python 3.9.12, pytest-7.1.1, pluggy-1.0.0 [ 11s] rootdir: /home/abuild/rpmbuild/BUILD/authlib-1.0.1, configfile: tox.ini [ 11s] plugins: anyio-3.5.0, asyncio-0.17.2 [ 11s] asyncio: mode=auto [ 11s] collected 134 items [ 11s] [ 11s] tests/jose/test_jwe.py ..................F.............................. [ 36%] [ 11s] ............................F [ 58%] [ 12s] tests/jose/test_jwk.py ....................... [ 75%] [ 12s] tests/jose/test_jws.py ................ [ 87%] [ 12s] tests/jose/test_jwt.py ................. [100%] [ 12s] [ 12s] =================================== FAILURES =================================== [ 12s] __________________________ JWETest.test_dir_alg_xc20p __________________________ [ 12s] [ 12s] self = <tests.jose.test_jwe.JWETest testMethod=test_dir_alg_xc20p> [ 12s] [ 12s] def test_dir_alg_xc20p(self): [ 12s] jwe = JsonWebEncryption() [ 12s] key = OctKey.generate_key(256, is_private=True) [ 12s] protected = {'alg': 'dir', 'enc': 'XC20P'} [ 12s] > data = jwe.serialize_compact(protected, b'hello', key) [ 12s] [ 12s] tests/jose/test_jwe.py:2657: [ 12s] _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ [ 12s] authlib/jose/rfc7516/jwe.py:80: in serialize_compact [ 12s] enc = self.get_header_enc(protected) [ 12s] _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ [ 12s] [ 12s] self = <authlib.jose.rfc7516.jwe.JsonWebEncryption object at 0x7fad22f4ac40> [ 12s] header = {'alg': 'dir', 'enc': 'XC20P'} [ 12s] [ 12s] def get_header_enc(self, header): [ 12s] if 'enc' not in header: [ 12s] raise MissingEncryptionAlgorithmError() [ 12s] enc = header['enc'] [ 12s] if self._algorithms and enc not in self._algorithms: [ 12s] raise UnsupportedEncryptionAlgorithmError() [ 12s] if enc not in self.ENC_REGISTRY: [ 12s] > raise UnsupportedEncryptionAlgorithmError() [ 12s] E authlib.jose.errors.UnsupportedEncryptionAlgorithmError: unsupported_encryption_algorithm: Unsupported "enc" value in header [ 12s] [ 12s] authlib/jose/rfc7516/jwe.py:678: UnsupportedEncryptionAlgorithmError [ 12s] _______________ JWETest.test_xc20p_content_encryption_decryption _______________ [ 12s] [ 12s] self = <tests.jose.test_jwe.JWETest testMethod=test_xc20p_content_encryption_decryption> [ 12s] [ 12s] def test_xc20p_content_encryption_decryption(self): [ 12s] # https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-xchacha-03#appendix-A.3.1 [ 12s] > enc = JsonWebEncryption.ENC_REGISTRY['XC20P'] [ 12s] E KeyError: 'XC20P' [ 12s] [ 12s] tests/jose/test_jwe.py:2672: KeyError [ 12s] =========================== short test summary info ============================ [ 12s] FAILED tests/jose/test_jwe.py::JWETest::test_dir_alg_xc20p - authlib.jose.err... [ 12s] FAILED tests/jose/test_jwe.py::JWETest::test_xc20p_content_encryption_decryption [ 12s] ======================== 2 failed, 132 passed in 1.08s ========================= ``` [Complete build log](https://github.com/lepture/authlib/files/8655846/_log.txt) with all details of packages used and steps taken to reproduce. - OS: openSUSE/Tumbleweed as of 2022-05-10 - Python Version: various versions of Python, this traceback is from 3.9.12, pytest-7.1.1, and pluggy-1.0.0 - Authlib Version: 1.0.1
open
2022-05-09T23:41:53Z
2025-02-21T14:52:18Z
https://github.com/lepture/authlib/issues/456
[ "bug", "jose" ]
mcepl
4
gee-community/geemap
streamlit
2,231
geemap import fails on GitHub actions
<!-- Please search existing issues to avoid creating duplicates. --> ### Environment Information Github runner setup: ``` Current runner version: '2.322.0' Operating System Runner Image Runner Image Provisioner GITHUB_TOKEN Permissions Secret source: Actions Prepare workflow directory Prepare all required actions Getting action download info Download action repository 'actions/checkout@v3' (SHA:f43a0e5ff2bd294095638e18286ca9a3d1956744) Download action repository 'actions/setup-python@v2' (SHA:e9aba2c848f5ebd159c070c61ea2c4e2b122355e) Download action repository 'pre-commit/action@v3.0.0' (SHA:646c83fcd040023954eafda54b4db0192ce70507) Download action repository 'conda-incubator/setup-miniconda@v3' (SHA:505e6394dae86d6a5c7fbb6e3fb8938e3e863830) Getting action download info Download action repository 'actions/cache@v3' (SHA:2f8e54208210a422b2efd51efaa6bd6d7ca8920f) Complete job name: test ``` ### Description It appears that importing `from IPython.core.display import display` should now be `from IPython.display import display`. I believe that this is causing the issue in Github Actions. ### What I Did Here is the error in Github Actions: ``` ImportError while loading conftest '/home/runner/work/basinscout/basinscout/tests/conftest.py'. tests/conftest.py:5: in <module> from .fixtures import * tests/fixtures/__init__.py:2: in <module> from .basinscout_fxt import ( tests/fixtures/basinscout_fxt.py:7: in <module> from basinscout import BasinScout basinscout/__init__.py:1: in <module> from .basinscout import BasinScout basinscout/basinscout.py:34: in <module> from .features.field import Field basinscout/features/field.py:26: in <module> from ..models.sb_irrigate import _get_openet_dataframe, _get_prism_dataframe basinscout/models/sb_irrigate.py:22: in <module> from geemap import common as geemap /usr/share/miniconda/envs/bscout/lib/python3.11/site-packages/geemap/__init__.py:55: in <module> raise e /usr/share/miniconda/envs/bscout/lib/python3.11/site-packages/geemap/__init__.py:45: in <module> from .geemap import * /usr/share/miniconda/envs/bscout/lib/python3.11/site-packages/geemap/geemap.py:30: in <module> from . import core /usr/share/miniconda/envs/bscout/lib/python3.11/site-packages/geemap/core.py:15: in <module> from . import toolbar /usr/share/miniconda/envs/bscout/lib/python3.11/site-packages/geemap/toolbar.py:20: in <module> from IPython.core.display import display E ImportError: cannot import name 'display' from 'IPython.core.display' (/usr/share/miniconda/envs/bscout/lib/python3.11/site-packages/IPython/core/display.py) Please restart Jupyter kernel after installation if you encounter any errors when importing geemap. ```
closed
2025-03-04T23:19:07Z
2025-03-05T23:39:40Z
https://github.com/gee-community/geemap/issues/2231
[ "bug" ]
dharp
10
sinaptik-ai/pandas-ai
data-science
1,224
Analisis
closed
2024-06-11T17:20:51Z
2024-09-17T16:06:31Z
https://github.com/sinaptik-ai/pandas-ai/issues/1224
[]
ajitetuko
0
jupyter-widgets-contrib/ipycanvas
jupyter
104
image_data Serialization
The setup you currently have for image serialization works so I don't think there's a strong reason to change it, but I figured out a simpler serialization scheme from `canvas` -> `numpy array` that I think would allow you to drop the Pillow dependency if you wanted and would reduce the complexity of `toBytes` in `util.ts`. Figured I ought to share in case its helpful given how much looking at your source code has helped me. **`toBytes`** To get the bytes from a canvas you currently do this https://github.com/martinRenou/ipycanvas/blob/09ca4e04c3c43bca5df46975cad28ada3d50750e/src/widget.ts#L311 https://github.com/martinRenou/ipycanvas/blob/09ca4e04c3c43bca5df46975cad28ada3d50750e/src/utils.ts#L101-L117 I think you could instead just do ```typescript const bytes = this.ctx.getImageData( 0, 0, this.canvas.width, this.canvas.height ).data.buffer; ``` though I found it nice to also include hte width and height in what I pass back to python ([ref](https://github.com/ianhi/ipysegment/blob/5b57d8c83bca79f40d3f1949420fb63642bba4f5/src/widget.ts#L18)) `return { width: image.width, height: image.height, data: new DataView(image.data.buffer) };` then on the python side to get the numpy array without PIL the deserializer looks like ([example](https://github.com/ianhi/ipysegment/blob/5b57d8c83bca79f40d3f1949420fb63642bba4f5/ipysegment/segment.py#L21)) ```python _bytes = None if json['data'] is None else json['data'].tobytes() return np.copy(np.frombuffer(_bytes, dtype=np.uint8).reshape(json['width'], json['height'], 4)) ``` the first line is just the function that gets used byteserialization in ipywidgets and the `copy` is separate the memory from that used by javascript and thus make it a writeable array. Though I think an even more general solution is to use the serializers and traittypes from https://github.com/vidartf/ipydatawidgets which allow `image_data` to just be directly set and accessed as numpy arrays. For example this widget which displays a 2D RGBA image based on numpy arrays https://github.com/vidartf/ipydatawidgets/blob/master/ipydatawidgets/ndarray/media.py ---- I hope this is helpful! If this isn't then no worries and feel free to close this.
closed
2020-06-29T16:18:29Z
2020-09-13T01:18:28Z
https://github.com/jupyter-widgets-contrib/ipycanvas/issues/104
[]
ianhi
9
sgl-project/sglang
pytorch
4,456
[Track] VLM accuracy in MMMU benchmark
This issue keeps track of all vlm models accuracy in MMMU benchmark ``` python python benchmark/mmmu/bench_sglang.py python benchmark/mmmu/bench_hf.py --model-path model ``` | | sglang | hf | |--|--|--| | Qwen2-VL-7B-Instruct | 0.485 | 0.255 | | Qwen2.5-VL-7B-Instruct | 0.477 | 0.242 | | MiniCPM-V-2_6 | 0.426 | | | DeepseekVL2| 0.447 | | | Deepseek-Janus-Pro-7B| | | | Llava + Llama| | | | Llava + qwen| | | | Llava + Mistral| | | | Mlama | | | | Gemma-3-it-4B| 0.409 | 0.403 | | InternVL2.5-38B | 0.61 | |
open
2025-03-15T17:09:50Z
2025-03-23T15:04:20Z
https://github.com/sgl-project/sglang/issues/4456
[ "good first issue", "visIon-LM" ]
yizhang2077
4
aio-libs/aiomysql
asyncio
952
Is there any way to release inactive connection?
### Is your feature request related to a problem? _No response_ ### Describe the solution you'd like I want set lifetime at client side (not using wait_timeout) ### Describe alternatives you've considered connection that when created at startupprobe does not release for a log time. I want release this connection when no more query execute ### Additional context _No response_ ### Code of Conduct - [X] I agree to follow the aio-libs Code of Conduct
closed
2023-08-11T08:13:17Z
2023-08-14T11:12:15Z
https://github.com/aio-libs/aiomysql/issues/952
[ "enhancement" ]
hyeongguen-song
0
thp/urlwatch
automation
462
ignore_* options do not appear to work when added to urlwatch.yaml
Per the documentation, added the following parameters to $HOME/.config/urlwatch/urlwatch.yaml url: ignore_connection_errors: true ignore_http_error_codes: 4xx, 5xx I still get connection errors. When I add these two options beneath the URL that is failing with connection errors, I no longer get e-mails about it. Version being used: ii urlwatch 2.17-1 all monitors webpages for you
closed
2020-03-11T17:56:24Z
2020-07-20T09:53:39Z
https://github.com/thp/urlwatch/issues/462
[]
jpiszcz
7
kubeflow/katib
scikit-learn
1,670
golint has been archived
/kind feature **Describe the solution you'd like** [A clear and concise description of what you want to happen.] Currently, we are using [golint](https://github.com/kubeflow/katib/blob/master/hack/verify-golint.sh) as a linter for Go, although [golint repository](https://github.com/golang/lint) has been archived. So, it might be better replace golint to other linter(ex: [golangci-lint](https://github.com/golangci/golangci-lint)). **Anything else you would like to add:** [Miscellaneous information that will assist in solving the issue.]
closed
2021-09-17T06:01:35Z
2021-09-24T06:09:38Z
https://github.com/kubeflow/katib/issues/1670
[ "kind/feature" ]
tenzen-y
7
huggingface/pytorch-image-models
pytorch
1,610
What batch size number other than 1024 have you tried when training a DeiT model?
What batch size number other than batch size of 1024 have you tried when training a DeiT or ViT model? In the paper, DeiT (https://arxiv.org/abs/2012.12877), they used a batch size of 1024 and they mentioned that the learning rate should be scaled according to the batch size. However, I was wondering if you guys have any experience or successfully train a DeiT model with a batch size that is even less than 512? If yes, what accuracy did you achieve? This would be helpful for someone training on constrained resources that cannot train on a batch size of 1024.
closed
2023-01-03T18:12:20Z
2023-02-01T17:35:08Z
https://github.com/huggingface/pytorch-image-models/issues/1610
[]
Phuoc-Hoan-Le
2
stanford-oval/storm
nlp
167
PGVector and GraphRAG support (Retrieval for RAG and GraphRAG)
Hi, I have my own RAG and GraphRAG systems and I wanted to integrate STROM Retrieval for PGVector and GraphRAG. Can you please integrate support for such Retrievals?
open
2024-09-12T05:50:57Z
2025-01-03T19:49:13Z
https://github.com/stanford-oval/storm/issues/167
[]
k2ai
2
lukas-blecher/LaTeX-OCR
pytorch
350
How to join the contribution?
I have experience with model compression and I want to contrbute. I want to know where to get the training dataset and pretrained weights?
open
2023-12-26T06:40:19Z
2023-12-26T06:40:19Z
https://github.com/lukas-blecher/LaTeX-OCR/issues/350
[]
MaybeRichard
0
PaddlePaddle/ERNIE
nlp
343
encode.sh报错:The shape of Input(Length) should be [batch_size]
Hi, 我在使用encode.py来计算一句话的embedding, 正如Readme介绍的那样:https://github.com/PaddlePaddle/ERNIE#faq1-how-to-get-sentencetokens-embedding-of-ernie 我的encode脚本为: ```shell TASK_DATA_PATH=. MODEL_PATH=/path/to/model export FLAGS_sync_nccl_allreduce=1 export CUDA_VISIBLE_DEVICES=4 python -u ernie_encoder.py \ --use_cuda true \ --batch_size 3 \ --output_dir "./test" \ --init_pretraining_params ${MODEL_PATH}/trained_chinese/params \ --data_set ${TASK_DATA_PATH}/baidu_input/dev.tsv \ --vocab_path ${MODEL_PATH}/vocab.txt \ --max_seq_len 128 \ --ernie_config_path ${MODEL_PATH}/ernie_config.json ``` 其中,baidu_input/dev.tsv 如下: ```shell label\ttext_a\n 0\t你吃了么\n 1\t我吃过了\n 0\t谢谢你啊\n ``` 模型报错: ```shell Device count: 1 Total num examples: 3 WARNING:root:paddle.fluid.layers.py_reader() may be deprecated in the near future. Please use paddle.fluid.io.PyReader() instead. Traceback (most recent call last): File "ernie_encoder.py", line 182, in <module> main(args) File "ernie_encoder.py", line 130, in main args, pyreader_name='reader', ernie_config=ernie_config) File "ernie_encoder.py", line 77, in create_model unpad_enc_out = fluid.layers.sequence_unpad(enc_out, length=seq_lens) File "/home/mapingshuo/paddle_release_home/python-distribute/lib/python2.7/site-packages/paddle/fluid/layers/nn.py", line 4842, in sequence_unpad outputs={'Out': out}) File "/home/mapingshuo/paddle_release_home/python-distribute/lib/python2.7/site-packages/paddle/fluid/layer_helper.py", line 43, in append_op return self.main_program.current_block().append_op(*args, **kwargs) File "/home/mapingshuo/paddle_release_home/python-distribute/lib/python2.7/site-packages/paddle/fluid/framework.py", line 2116, in append_op attrs=kwargs.get("attrs", None)) File "/home/mapingshuo/paddle_release_home/python-distribute/lib/python2.7/site-packages/paddle/fluid/framework.py", line 1499, in __init__ self.desc.infer_shape(self.block.desc) paddle.fluid.core_avx.EnforceNotMet: -------------------------------------------- C++ Call Stacks (More useful to developers): -------------------------------------------- 0 std::string paddle::platform::GetTraceBackString<std::string const&>(std::string const&, char const*, int) 1 paddle::platform::EnforceNotMet::EnforceNotMet(std::string const&, char const*, int) 2 paddle::operators::SequenceUnpadOp::InferShape(paddle::framework::InferShapeContext*) const 3 paddle::framework::OpDesc::InferShape(paddle::framework::BlockDesc const&) const ------------------------------------------ Python Call Stacks (More useful to users): ------------------------------------------ File "/home/mapingshuo/paddle_release_home/python-distribute/lib/python2.7/site-packages/paddle/fluid/framework.py", line 2116, in append_op attrs=kwargs.get("attrs", None)) File "/home/mapingshuo/paddle_release_home/python-distribute/lib/python2.7/site-packages/paddle/fluid/layer_helper.py", line 43, in append_op return self.main_program.current_block().append_op(*args, **kwargs) File "/home/mapingshuo/paddle_release_home/python-distribute/lib/python2.7/site-packages/paddle/fluid/layers/nn.py", line 4842, in sequence_unpad outputs={'Out': out}) File "ernie_encoder.py", line 77, in create_model unpad_enc_out = fluid.layers.sequence_unpad(enc_out, length=seq_lens) File "ernie_encoder.py", line 130, in main args, pyreader_name='reader', ernie_config=ernie_config) File "ernie_encoder.py", line 182, in <module> main(args) ---------------------- Error Message Summary: ---------------------- PaddleCheckError: Expected len_dims.size() == 1, but received len_dims.size():2 != 1:1. The shape of Input(Length) should be [batch_size]. at [/home/mapingshuo/Paddle/paddle/fluid/operators/sequence_ops/sequence_unpad_op.cc:41] [operator < sequence_unpad > error] ``` 请问是什么原因,谢谢
closed
2019-10-15T04:58:46Z
2019-11-25T02:54:09Z
https://github.com/PaddlePaddle/ERNIE/issues/343
[]
mapingshuo
2
pydata/xarray
numpy
9,789
Support DataTree in apply_ufunc
Sub-issue of https://github.com/pydata/xarray/issues/9106
open
2024-11-16T21:41:20Z
2024-11-16T21:41:32Z
https://github.com/pydata/xarray/issues/9789
[ "contrib-help-wanted", "topic-DataTree" ]
shoyer
0
521xueweihan/HelloGitHub
python
2,876
【开源自荐】🏎 Nping: 使用 Rust 开发的实时可视化终端 Ping 命令
## 推荐项目 - 项目地址: https://github.com/hanshuaikang/Nping - 类别:Rust - 项目标题:使用 Rust 开发的实时可视化终端 Ping 命令 - 项目描述:Nping 顾名思义, 牛批的 Ping, 是一个用 Rust 开发的使用 ICMP 协议 的 Ping 工具。支持多个地址并发 Ping, 支持可视化延迟/抖动/丢包率/平均延迟 实时展示,并附带酷炫的实时折线图展示。 - 亮点:支持多地址并发 Ping, 支持实时图表可视化 运行截图: ![nping](https://github.com/user-attachments/assets/ead9781e-8951-40b8-bdce-2020a561899c) ![Jietu20241229-170130-HD (2)](https://github.com/user-attachments/assets/c9230ece-a576-4641-aa77-41c47be65006) - 后续更新计划: - 支持更酷炫的 UI 展示 - 支持更多的网络监控指标
closed
2024-12-30T12:14:51Z
2025-02-16T05:31:46Z
https://github.com/521xueweihan/HelloGitHub/issues/2876
[]
hanshuaikang
0
mwaskom/seaborn
matplotlib
3,748
How to hide legend while using seaborn.objects?
I really like the flexibility of seaborn.objects. I would like to ask how to hide its legend? Next is my code: ```python import pandas as pd import numpy as np # Define parameters num_cages = 20 # Number of cages num_weeks = 10 # Number of weeks samples_per_week = 5 # Number of samples per week # Generate data np.random.seed(42) # For reproducibility # Create Week variable (1-10) weeks = np.tile(np.arange(1, num_weeks + 1), num_cages * samples_per_week) # Create Cage variable (1-20) cages = np.repeat(np.arange(1, num_cages + 1), num_weeks * samples_per_week) # Create Weight variable (randomly generated, assumed mean=50, std=5) weights = np.random.normal(loc=50, scale=5, size=len(weeks)) # Create DataFrame total_data = pd.DataFrame({ 'Week': weeks, 'Cage': cages, 'Weight': weights }) ( so.Plot(total_data, x='Week', y="Weight", color='Cage') .facet('Cage', wrap=cols).label(col="Cage") .layout(extent=[0.,0.,3.,3.]) .limit(y=(0, None)) .scale(color="Paired") .add(so.Line(), so.Agg()) .add(so.Dot(), so.Agg('mean')) .add(so.Band(), so.Est()) ) ``` ![output](https://github.com/user-attachments/assets/6e49f18e-ea2d-4ffe-994c-f8c7305b6337)
closed
2024-08-18T02:43:15Z
2024-09-15T19:03:50Z
https://github.com/mwaskom/seaborn/issues/3748
[]
MarkChenXY163
1
graphql-python/graphene
graphql
894
Is there any way to name field on the ObjectTypes keyword?
I want to define Type as follows. ``` type Edge { from: Int to: Int } ``` But,Python give me a syntax error because `from` is keyword ``` class Edge(graphene.ObjectType): from = graphene.Int() to = graphene.Int() ``` Can't I define this Type?
closed
2019-01-18T06:15:57Z
2019-01-21T02:20:49Z
https://github.com/graphql-python/graphene/issues/894
[]
nkg168
2
rthalley/dnspython
asyncio
954
Timeout in asynchronous and synchronous DoQ query doesn't work
There is a timeout parameter in dns.asyncquery.quic and dns.query.quic, however when set it to a value, it doesn't work as expected, when connecting to an unreachable server, both the asynchronous and synchronous quic function always time out after about 1 minute. To reproduce: ``` import asyncio import dns.message import dns.asyncquery import dns.rdatatype async def check_doq(ip, query_name, timeout): query = dns.message.make_query(query_name, dns.rdatatype.A) response = await dns.asyncquery.quic(query, ip, timeout=timeout) print(response) if __name__ == "__main__": asyncio.run(check_doq("1.2.3.4", "dnspython.org", 6)) ``` System info: - dnspython version [2.4] - Python version [3.10.12] - OS version [CentOS 7.8.2003]
closed
2023-07-11T03:38:47Z
2023-07-13T00:07:48Z
https://github.com/rthalley/dnspython/issues/954
[ "Bug", "Fixed" ]
fleurysun
2
microsoft/MMdnn
tensorflow
56
Hi @kitstar , When I convert tensorlflow to mxnet. The following error occurs.
Platform (like ubuntu 16.04/win10): Python version: Source framework with version (like Tensorflow 1.4.1 with GPU): Destination framework with version (like CNTK 2.3 with GPU): Pre-trained model path (webpath or webdisk path): Running scripts:
closed
2018-01-18T12:31:34Z
2018-01-18T12:32:29Z
https://github.com/microsoft/MMdnn/issues/56
[]
Albert-Ye
0
Miserlou/Zappa
flask
2,047
lambda_concurrency setting not adjusting provisioned concurrency
<!--- Provide a general summary of the issue in the Title above --> ## Context Using zappa 0.5.0 "lambda_concurrency": 2 to set https://docs.aws.amazon.com/lambda/latest/dg/configuration-concurrency.html#configuration-concurrency-provisioned ## Expected Behavior <!--- Tell us what should happen --> was expecting **Provisioned concurrency configurations** in Lambda to be set to 2 for the version just uploaded ## Actual Behavior <!--- Tell us what happens instead --> Provisioned concurrency configurations is unset and remains at 2 for my previous version ## Your Environment * Zappa version used: 0.5.0
open
2020-02-28T12:29:59Z
2021-11-09T21:39:12Z
https://github.com/Miserlou/Zappa/issues/2047
[ "feature-request" ]
alecl
9
deezer/spleeter
deep-learning
288
[Discussion]EnvironmentFileNotFound,help!
solved
closed
2020-03-10T08:21:25Z
2020-03-11T01:31:14Z
https://github.com/deezer/spleeter/issues/288
[ "question" ]
freejacklee
0
ScrapeGraphAI/Scrapegraph-ai
machine-learning
949
why are my results so bad here?
```""" Example of Search Graph """ import os from dotenv import load_dotenv from scrapegraphai.graphs import SearchGraph from china_unis import universities os.environ.clear() load_dotenv() # ************************************************ # Define the configuration for the graph # ************************************************ openai_key = os.getenv("OPENAI_API_KEY") graph_config = { "llm": { "api_key": openai_key, "model": "openai/gpt-4o-2024-08-06", }, "max_results": 2, "verbose": True, } prompt = f""" Get me the contact email addresses of the following universities: {universities[:10]} """ # ************************************************ # Create the SearchGraph instance and run it # ************************************************ search_graph = SearchGraph( prompt=prompt, config=graph_config ) result = search_graph.run() print(result) # Save results to both JSON and TXT formats for flexibility import json from pathlib import Path from datetime import datetime # Create output directory if it doesn't exist output_dir = Path("output") output_dir.mkdir(exist_ok=True) # Generate timestamp for unique filenames timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") # Save as JSON json_path = output_dir / f"university_contacts_{timestamp}.json" with open(json_path, "w", encoding="utf-8") as f: json.dump(result, f, indent=2, ensure_ascii=False) # Save as TXT txt_path = output_dir / f"university_contacts_{timestamp}.txt" with open(txt_path, "w", encoding="utf-8") as f: f.write(str(result)) print(f"\nResults saved to:") print(f"JSON: {json_path}") print(f"TXT: {txt_path}") ``` input: ``` universities = [ "Beijing Foreign Studies University", "Beijing Jiaotong University", "Beijing Language and Culture University", "Beijing Radio and Television University", "Beijing University of Chinese Medicine", "Beijing University of Posts and Telecommunications", "Central China Normal University", "Chong Qing University", "Donghua University", "East China Normal University", "Harbin Engineering University", "Harbin Institute of Technology Shenzhen Graduate School", "Henan University", "Hubei University", "Jiangxi Normal University", "Jilin University", "Nanjing University", "Ningbo University", "Northeast Normal University", "Northwest University", "Northwestern Polytechnical University", "Ocean University of China", "Peking University", "Renmin University of China", "Shaanxi Normal University", "Shanghai International Studies University", "Shanghai Normal University", "Shanghai University", "Shanghai University of Traditional Chinese Medicine", "Sichuan Normal University", "Sichuan University", "Sun Yat-sen University", "The Central Academy of Drama", "Tianjin University", "Tianjin University of Finance and Economics", "Tsinghua University", "Wuhan University", "Yanbian University", "Yangzhou University", "Zhejiang University", "Zhongnan University of Economics and Law", "Zhuhai College of Jilin University", "Shanghai University", "Sichuan Normal University", "Chong Qing University", "Shanghai University of Finance & Economics", "Beijing Institute of Technology", "North China University of Technology", "Beijing University of Chemical Technology", "Shantou University", "China Medical University", "Chinese Culture University", "Dharma Drum Buddhist College", "Feng Chia University", "Fo Guang University", "Nanhua University", "National Central University", "National Cheng Kung University", "National Chengchi University", "National Taipei University", "National Taipei University of Technology", "National Taiwan Normal University", "National Taiwan University", "Shih Chien University", "Tatung University", "Tzu Chi University", "Chung Yuan Christian University", "Southern Taiwan University of Science and Technology", "National Taiwan University", "National University of Kaohsiung", "Asia University", "University of Taipei", "Lingnan University", "The Hong Kong Institute of Education" ] ``` gets me only: ``` { "Beijing Foreign Studies University": [ "summerschool@bfsu.edu.cn", "study@bfsu.edu.cn" ], "Beijing Jiaotong University": "NA", "Beijing Language and Culture University": "NA", "Beijing Radio and Television University": "NA", "Beijing University of Chinese Medicine": "NA", "Beijing University of Posts and Telecommunications": "NA", "Central China Normal University": "NA", "Chong Qing University": "NA", "Donghua University": "NA", "East China Normal University": "NA", "sources": [ "https://iss.bfsu.edu.cn/notice_intro.php?id=84", "https://osao.bfsu.edu.cn/info/1042/2097.htm", "https://greatyop.com/chinese-universities-agency-no-province/", "https://freestudyinchina.com/silk-road-scholarship-beijing-jiaotong-university/" ] } ```
open
2025-03-14T12:18:01Z
2025-03-21T08:21:04Z
https://github.com/ScrapeGraphAI/Scrapegraph-ai/issues/949
[]
nyck33
2
jmcnamara/XlsxWriter
pandas
424
Feature request: Example creating and sending workbooks on-the-fly with Python 3 & Django
```python import xlsxwriter from io import BytesIO from django.http import StreamingHttpResponse from django.views.generic import View def get_foo_table_data(): """ Some table data """ return [ [1, 2, 3], [4, 5, 6], [7, 8, 9], ] class MyView(View): def get(self, request): data = get_foo_table_data() # create workbook with worksheet output = BytesIO() book = xlsxwriter.Workbook(output) sheet = book.add_worksheet() # fill worksheet with foo data for row, columns in enumerate(data): for column, cell_data in enumerate(columns): sheet.write(row, column, cell_data) book.close() # close book and save it in "output" output.seek(0) # seek stream on begin to retrieve all data from it # send "output" object to stream with mimetype and filename response = StreamingHttpResponse( output, content_type='application/vnd.openxmlformats-officedocument.spreadsheetml.sheet' ) response['Content-Disposition'] = 'attachment; filename=foo.xlsx' return response ```
closed
2017-03-28T15:54:01Z
2018-08-16T22:55:56Z
https://github.com/jmcnamara/XlsxWriter/issues/424
[ "documentation", "short term" ]
MrYoda
12
the0demiurge/ShadowSocksShare
flask
82
节点全部阵亡?
closed
2019-09-21T06:02:18Z
2019-09-21T06:16:16Z
https://github.com/the0demiurge/ShadowSocksShare/issues/82
[]
unl89
1
kynan/nbstripout
jupyter
122
`--dryrun` flag
See which files would be affected by `nbstripout`
closed
2020-03-29T19:23:33Z
2020-05-10T17:45:29Z
https://github.com/kynan/nbstripout/issues/122
[ "type:enhancement", "resolution:fixed" ]
VikashKothary
2
DistrictDataLabs/yellowbrick
scikit-learn
723
ParallelCoordinates have different index
**Describe the bug** The graph showing Output of ParallelCoordinates is incorrect. As,the code in the docs outputs a different graph. **To Reproduce** ```python import os from yellowbrick.download import download_all ## The path to the test data sets FIXTURES = os.path.join(os.getcwd(), "data") ## Dataset loading mechanisms datasets = { "bikeshare": os.path.join(FIXTURES, "bikeshare", "bikeshare.csv"), "concrete": os.path.join(FIXTURES, "concrete", "concrete.csv"), "credit": os.path.join(FIXTURES, "credit", "credit.csv"), "energy": os.path.join(FIXTURES, "energy", "energy.csv"), "game": os.path.join(FIXTURES, "game", "game.csv"), "mushroom": os.path.join(FIXTURES, "mushroom", "mushroom.csv"), "occupancy": os.path.join(FIXTURES, "occupancy", "occupancy.csv"), "spam": os.path.join(FIXTURES, "spam", "spam.csv"), } import pandas as pd def load_data(name, download=True): """ Loads and wrangles the passed in dataset by name. If download is specified, this method will download any missing files. """ # Get the path from the datasets path = datasets[name] # Check if the data exists, otherwise download or raise if not os.path.exists(path): if download: download_all() else: raise ValueError(( "'{}' dataset has not been downloaded, " "use the download.py module to fetch datasets" ).format(name)) # Return the data frame return pd.read_csv(path) # Load the classification data set data = load_data("occupancy") # Specify the features of interest and the classes of the target features = [ "temperature", "relative humidity", "light", "C02", "humidity" ] classes = ["unoccupied", "occupied"] # Extract the instances and target X = data[features] y = data.occupancy from yellowbrick.features import ParallelCoordinates # Instantiate the visualizer visualizer = ParallelCoordinates( classes=classes, features=features, sample=0.5, shuffle=True ) # Fit and transform the data to the visualizer visualizer.fit_transform(X, y) # Finalize the title and axes then display the visualization visualizer.poof(outpath='rank1d_graph.pdf') ``` **Dataset** occupancy dataset Its in yellowbrick/yellowbrick/datasets/fixtures **Expected behavior** As expected, in the above visualization, the domain of the light feature should be from [0, 1600], far larger than the range of temperature in [50, 96]. **Graph shown is attached below** [rank1d_graph.pdf](https://github.com/DistrictDataLabs/yellowbrick/files/2827967/rank1d_graph.pdf) [rank1d_graph.pdf](https://github.com/DistrictDataLabs/yellowbrick/files/2827969/rank1d_graph.pdf) **Desktop (please complete the following information):** - OS: Linux18.04 [rank1d_graph.pdf](https://github.com/DistrictDataLabs/yellowbrick/files/2827972/rank1d_graph.pdf) - Python Version 3.6 - Yellowbrick Version 0.9
closed
2019-02-04T12:40:49Z
2019-02-05T02:55:38Z
https://github.com/DistrictDataLabs/yellowbrick/issues/723
[ "type: question" ]
dnabanita7
5
deezer/spleeter
deep-learning
417
[Feature] Traditional instruments
## Description <!-- Can you use traditional instrument to train the program like Zither, erhu, monochord, flute, etc. When I use Speeter for the song with those instrument, Speeter does not recognize and get a bad result, if you need songs with those instrument, just let me know by email, i will send you. By the way, Thank you all of you for your great product, I love it --> ## Additional information <!-- Add any additional description --> My email: ductrungktdn@gmail.com
closed
2020-06-12T06:07:53Z
2020-06-12T12:24:20Z
https://github.com/deezer/spleeter/issues/417
[ "enhancement", "feature" ]
ductrungktdn
0
RobertCraigie/prisma-client-py
asyncio
430
Do not override already set env variables from `.env`
## Problem <!-- A clear and concise description of what the problem is. Ex. I'm always frustrated when [...] --> Currently the `.env` variables take precedence over the system environment variables, this can cause issues as the Prisma CLI will use the system environment variables instead which could lead to migrations being applied to a different database if you have two different connection strings set. ## Suggested solution <!-- A clear and concise description of what you want to happen. --> System environment variables should take priority. ## Additional context Mentioned in #420.
closed
2022-06-18T13:05:51Z
2022-06-18T13:50:09Z
https://github.com/RobertCraigie/prisma-client-py/issues/430
[ "bug/2-confirmed", "kind/bug", "process/candidate", "topic: client", "level/beginner", "priority/high" ]
RobertCraigie
0
wger-project/wger
django
1,154
Not possible to reset password
``` AttributeError at /en/user/password/reset/check/abc/set-password 'NoneType' object has no attribute 'is_bound' ```
closed
2022-10-17T10:27:26Z
2022-11-30T13:22:21Z
https://github.com/wger-project/wger/issues/1154
[ "bug" ]
rolandgeider
2
mherrmann/helium
web-scraping
7
arm64 support
Can we get geckodriver for arm64v8?
closed
2020-03-13T20:23:12Z
2020-10-17T13:23:23Z
https://github.com/mherrmann/helium/issues/7
[]
kamikaze
4
dbfixtures/pytest-postgresql
pytest
332
Dependabot couldn't authenticate with https://pypi.python.org/simple/
Dependabot couldn't authenticate with https://pypi.python.org/simple/. You can provide authentication details in your [Dependabot dashboard](https://app.dependabot.com/accounts/ClearcodeHQ) by clicking into the account menu (in the top right) and selecting 'Config variables'. [View the update logs](https://app.dependabot.com/accounts/ClearcodeHQ/update-logs/48530955).
closed
2020-09-24T04:35:32Z
2020-09-24T07:29:31Z
https://github.com/dbfixtures/pytest-postgresql/issues/332
[]
dependabot-preview[bot]
0
qwj/python-proxy
asyncio
17
Socks5 relay uses a wrong protocol?
Hi, I am using pproxy as a socks5 relay server. according to `proto.py`, `Socks5.connect` sends `b'\x05\x01\x02\x01' + ...` to server at first. But other socks5 clients only sends `b'\x05\x02\x00\x01` Another proof is running two `pproxy` process, one is: ```bash pproxy -l socks5://:8080/ -v ``` the other is: ```bash pproxy -l socks5://:8081/ -v -r socks5://localhost:8080 --test http://ifconfig.co/ ``` It results in `Unsupported protocol b'1' from ::1` and `Exception: Unknown remote protocol`. I am going to figure out the correct protocol then. Thanks!
closed
2018-11-30T03:03:25Z
2018-11-30T03:57:08Z
https://github.com/qwj/python-proxy/issues/17
[]
laohyx
5
hbldh/bleak
asyncio
1,189
Generic Access Profile not being discovered on MacOS
* bleak version: 0.11.0 * Python version: Python 3.9.13 * Operating System: MacOS Ventura 13.0.1 (22A400) * BlueZ version (`bluetoothctl -v`) in case of Linux: N/A ### Description I am trying to read the "Device Name" characteristic by connecting to the device and using `read_gatt_char`. The Generic Access Profile is present when I inspect the device with LightBlue I am receiving: bleak.exc.BleakError: Characteristic 00002a00-0000-1000-8000-00805f9b34fb was not found! And the service is not being discovered: ``` Connected: True 0000180a-0000-1000-8000-00805f9b34fb (Handle: 14): Device Information 00001818-0000-1000-8000-00805f9b34fb (Handle: 37): Cycling Power 00001826-0000-1000-8000-00805f9b34fb (Handle: 51): Fitness Machine 0000181c-0000-1000-8000-00805f9b34fb (Handle: 70): User Data ``` ### What I Did ``` async def main(address): async with BleakClient(address) as client: print(f"Connected: {client.is_connected}") for x in client.services: print(x) test = await client.read_gatt_char('00002a00-0000-1000-8000-00805f9b34fb') ``` ### Logs ``` test = await client.read_gatt_char('00002a00-0000-1000-8000-00805f9b34fb') File "/usr/local/lib/python3.9/site-packages/bleak/backends/corebluetooth/client.py", line 237, in read_gatt_char raise BleakError("Characteristic {} was not found!".format(char_specifier)) bleak.exc.BleakError: Characteristic 00002a00-0000-1000-8000-00805f9b34fb was not found! ```
closed
2023-01-03T16:46:01Z
2023-07-19T01:51:56Z
https://github.com/hbldh/bleak/issues/1189
[ "duplicate", "3rd party issue", "Backend: Core Bluetooth" ]
andrewgrabbs
1
nteract/papermill
jupyter
581
Papermill fails for notebooks without nb.metadata.kernelspec.language (e.g. from VSCode)
I think notebooks created through VSCode do not specify the language in the kernelspec. So when I try to run Papermill, it fails with the stack trace: ``` Traceback (most recent call last): File "/Users/kennysong/GDrive/Projects/test/env/lib/python3.7/site-packages/ipython_genutils/ipstruct.py", line 132, in __getattr__ result = self[key] KeyError: 'language' During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/Users/kennysong/GDrive/Projects/test/env/bin/papermill", line 8, in <module> sys.exit(papermill()) File "/Users/kennysong/GDrive/Projects/test/env/lib/python3.7/site-packages/click/core.py", line 829, in __call__ return self.main(*args, **kwargs) File "/Users/kennysong/GDrive/Projects/test/env/lib/python3.7/site-packages/click/core.py", line 782, in main rv = self.invoke(ctx) File "/Users/kennysong/GDrive/Projects/test/env/lib/python3.7/site-packages/click/core.py", line 1066, in invoke return ctx.invoke(self.callback, **ctx.params) File "/Users/kennysong/GDrive/Projects/test/env/lib/python3.7/site-packages/click/core.py", line 610, in invoke return callback(*args, **kwargs) File "/Users/kennysong/GDrive/Projects/test/env/lib/python3.7/site-packages/click/decorators.py", line 21, in new_func return f(get_current_context(), *args, **kwargs) File "/Users/kennysong/GDrive/Projects/test/env/lib/python3.7/site-packages/papermill/cli.py", line 256, in papermill execution_timeout=execution_timeout, File "/Users/kennysong/GDrive/Projects/test/env/lib/python3.7/site-packages/papermill/execute.py", line 91, in execute_notebook nb = parameterize_notebook(nb, parameters, report_mode) File "/Users/kennysong/GDrive/Projects/test/env/lib/python3.7/site-packages/papermill/parameterize.py", line 77, in parameterize_notebook language = nb.metadata.kernelspec.language File "/Users/kennysong/GDrive/Projects/test/env/lib/python3.7/site-packages/ipython_genutils/ipstruct.py", line 134, in __getattr__ raise AttributeError(key) AttributeError: language ``` You can replicate this by creating a blank `.ipynb` from VSCode, and then trying to run it with Papermill (with at least one parameter). I think an easy workaround would be to allow the user to specify "language" as a command line flag.
closed
2021-02-27T07:25:59Z
2021-03-08T20:55:28Z
https://github.com/nteract/papermill/issues/581
[ "bug" ]
kennysong
1
django-cms/django-cms
django
7,351
[DOC] No changes for version 3.10.1 in CHANGELOG.md
https://github.com/django-cms/django-cms/blob/develop/CHANGELOG.rst
closed
2022-06-28T04:21:25Z
2022-06-28T10:06:38Z
https://github.com/django-cms/django-cms/issues/7351
[ "component: documentation" ]
DmytroLitvinov
3
deepspeedai/DeepSpeed
pytorch
6,525
[BUG] pydantic_core._pydantic_core.ValidationError: 1 validation error for DeepSpeedZeroConfig
We are using DeepSpeed; transformer, accelerate to fine tune Qwen llm, and hit the below issue. [rank2]: pydantic_core._pydantic_core.ValidationError: 1 validation error for DeepSpeedZeroConfig [rank2]: stage3_prefetch_bucket_size [rank2]: Input should be a valid integer, got a number with a fractional part [type=int_from_float, input_value=15099494.4, input_type=float] [rank2]: For further information visit https://errors.pydantic.dev/2.9/v/int_from_float Relevant stack: [rank2]: File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/transformers/trainer.py", line 1539, in train [rank2]: return inner_training_loop( [rank2]: File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/transformers/trainer.py", line 1690, in _inner_training_loop [rank2]: model, self.optimizer, self.lr_scheduler = self.accelerator.prepare( [rank2]: File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/accelerate/accelerator.py", line 1318, in prepare [rank2]: result = self._prepare_deepspeed(*args) [rank2]: File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/accelerate/accelerator.py", line 1815, in _prepare_deepspeed [rank2]: engine, optimizer, _, lr_scheduler = deepspeed.initialize(**kwargs) [rank2]: File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/deepspeed/__init__.py", line 179, in initialize [rank2]: config_class = DeepSpeedConfig(config, mpu, mesh_device=mesh_device) [rank2]: File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/deepspeed/runtime/config.py", line 797, in __init__ [rank2]: self._initialize_params(copy.copy(self._param_dict)) [rank2]: File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/deepspeed/runtime/config.py", line 817, in _initialize_params [rank2]: self.zero_config = get_zero_config(param_dict) [rank2]: File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/deepspeed/runtime/zero/config.py", line 71, in get_zero_config [rank2]: return DeepSpeedZeroConfig(**zero_config_dict) [rank2]: File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/deepspeed/runtime/config_utils.py", line 57, in __init__ [rank2]: super().__init__(**data) [rank2]: File "/opt/conda/envs/py_3.10/lib/python3.10/site-packages/pydantic/main.py", line 211, in __init__ [rank2]: validated_self = self.__pydantic_validator__.validate_python(data, self_instance=self) [rank2]: pydantic_core._pydantic_core.ValidationError: 1 validation error for DeepSpeedZeroConfig **This was working prior to Pydantic migration PR** https://github.com/microsoft/DeepSpeed/pull/5167 In our case, the stage3_prefetch_bucket_size parameter in DeepSpeedZeroConfig is calculated as 0.9 * hidden_size * hidden_size as per https://github.com/huggingface/transformers/blob/main/src/transformers/integrations/deepspeed.py#L244 . Hidden_size is 4096 and stage3_prefetch_bucket_size turns out to be 15099494.4 One of the solution is to convert the stage3_prefetch_bucket_size value to int in transformer library (deepspeed integration file) ``` diff --git a/src/transformers/integrations/deepspeed.py b/src/transformers/integrations/deepspeed.py index aae1204ac..622080d41 100644 --- a/src/transformers/integrations/deepspeed.py +++ b/src/transformers/integrations/deepspeed.py @@ -241,7 +241,7 @@ class HfTrainerDeepSpeedConfig(HfDeepSpeedConfig): # automatically assign the optimal config values based on model config self.fill_only( "zero_optimization.stage3_prefetch_bucket_size", - 0.9 * hidden_size * hidden_size, + int(0.9 * hidden_size * hidden_size), ) self.fill_only( "zero_optimization.stage3_param_persistence_threshold", ``` I am not sure if this is the right solution, requesting DeepSpeed team's help here.
closed
2024-09-11T21:29:14Z
2024-11-04T03:01:54Z
https://github.com/deepspeedai/DeepSpeed/issues/6525
[ "bug", "training" ]
jagadish-amd
15
aws/aws-sdk-pandas
pandas
2,441
wr.athena.to_iceberg does same account table look up first even though data_source is specified
### Describe the bug When calling: `wr.athena.to_iceberg` It first check if the table exists by calling (see line #3 below) ``` try: # Create Iceberg table if it doesn't exist if not catalog.does_table_exist(database=database, table=table, boto3_session=boto3_session): _create_iceberg_table( df=df, database=database, table=table, path=table_location, # type: ignore[arg-type] wg_config=wg_config, partition_cols=partition_cols, additional_table_properties=additional_table_properties, index=index, data_source=data_source, workgroup=workgroup, encryption=encryption, kms_key=kms_key, boto3_session=boto3_session, dtype=dtype, ) ``` In the `wr.catalog.does_table_exist()` call, there is nothing that can specify data_source or catalog_id (even though in the API you could add catalog_id). This caused my to_iceberg call to fail because I need to write to cross account. Can this be fixed to either allow catalog_id or data_source to be used? ### How to Reproduce ``` *P.S. Please do not attach files as it's considered a security risk. Add code snippets directly in the message body as much as possible.* ``` Just try the to_iceberg call and try to write a table but don't give yourself permission to your same account glue catalog. You will get the following access denied error: An error occurred (AccessDeniedException) when calling the GetTable operation ### Expected behavior _No response_ ### Your project _No response_ ### Screenshots _No response_ ### OS amazon linux ### Python version 3.9 ### AWS SDK for pandas version 3.3.0 ### Additional context _No response_
closed
2023-08-25T15:57:01Z
2023-08-31T09:18:55Z
https://github.com/aws/aws-sdk-pandas/issues/2441
[ "bug" ]
Xiangyu-C
5
miguelgrinberg/python-socketio
asyncio
1,256
AsyncServer.enter_room() is not awaitable
**Describe the bug** When attempting to call `AsyncServer.enter_room()` with await, a TypeError exception is thrown: `TypeError: object NoneType can't be used in 'await' expression` **To Reproduce** Steps to reproduce the behavior: 1. Implement a basic AsyncServer class 2. On `connect`, attempt to enter SID into a room with `await sio.enter_room(sid, 'testroom')` 3. TypeError will be thrown Calling the function without an await statement enters the client into the room as expected. **Expected behavior** The docs, along with code, label this function as a coroutine, when in fact it does not return any awaitable, making it functionally not a coroutine. **Additional context** The `enter_room()` method calls the AsyncServer's manager instance: https://github.com/miguelgrinberg/python-socketio/blob/d40b3a33fff5c6b896559fc534ccd611ab9cf1f4/src/socketio/async_manager.py#L72 Which calls the synchronous inherited function, `basic_enter_room()`. As such, `None` is returned instead of an awaitable.
closed
2023-10-13T21:58:03Z
2023-10-15T14:27:19Z
https://github.com/miguelgrinberg/python-socketio/issues/1256
[ "question" ]
tt2468
3
falconry/falcon
api
2,082
Add default `testpaths` to `pytest`'s config
Some of our users/packagers have expressed a wish to be able to run `pytest` without any parameters. Otherwise `pytest` seems to pick all tests, including tutorials and what not. Add `testpaths = tests` to our configs. While at it, maybe we should consolidate these configs inside `pyproject.toml`, as opposed to `setup.cfg`? The `pytest` docs state that > Usage of `setup.cfg` is not recommended unless for very simple use cases. `.cfg` files use a different parser than `pytest.ini` and `tox.ini` which might cause hard to track down problems. When possible, it is recommended to use the latter files, or `pyproject.toml`, to hold your pytest configuration.
closed
2022-06-27T17:52:34Z
2022-06-27T19:07:14Z
https://github.com/falconry/falcon/issues/2082
[ "maintenance", "community" ]
vytas7
0
horovod/horovod
deep-learning
3,825
CI for tf-head: package `tf-nightly-gpu` must be replaced by `tf-nightly`
Example: https://github.com/horovod/horovod/actions/runs/4007634282/jobs/6882833168 ``` 2023-01-25T18:03:55.7944804Z #39 1.522 ========================================================= 2023-01-25T18:03:55.7945146Z #39 1.522 The "tf-nightly-gpu" package has been removed! 2023-01-25T18:03:55.7945386Z #39 1.522 2023-01-25T18:03:55.7945680Z #39 1.522 Please install "tf-nightly" instead. 2023-01-25T18:03:55.7945896Z #39 1.522 2023-01-25T18:03:55.7946153Z #39 1.522 Other than the name, the two packages have been identical 2023-01-25T18:03:55.7946550Z #39 1.522 since tf-nightly 2.1, or roughly since Sep 2019. For more 2023-01-25T18:03:55.7947051Z #39 1.522 information, see: pypi.org/project/tf-nightly-gpu 2023-01-25T18:03:55.7947364Z #39 1.522 ========================================================= ```
closed
2023-01-25T18:08:12Z
2023-01-26T10:04:22Z
https://github.com/horovod/horovod/issues/3825
[ "bug" ]
maxhgerlach
0
akfamily/akshare
data-science
5,291
能否新增港股期货实时行情的接口?
目前的futures_global_em接口里头没有港股期货实时行情,在文档里头也找不到港股期货的接口
closed
2024-10-30T19:19:52Z
2024-10-31T10:26:43Z
https://github.com/akfamily/akshare/issues/5291
[]
yong900630
1
smarie/python-pytest-cases
pytest
330
@fixture incompatible with pytest 8.0.0
pytest 8.0.0 just released earlier today, and it looks like there's an incompatibility with `pytest_cases.fixture`. Minimal example: ```python from pytest_cases import fixture @fixture def a(): return "a" def test_a(a): assert a == "a" ``` pytest 7.4.4, pytest-cases 3.8.2, Python 3.11.7 — Passes ✅ pytest 8.0.0, pytest-cases 3.8.2, Python 3.11.7 — Fails ❌ Traceback: ``` .venv/lib/python3.11/site-packages/_pytest/nodes.py:152: in _create return super().__call__(*k, **kw) .venv/lib/python3.11/site-packages/_pytest/python.py:1801: in __init__ fixtureinfo = fm.getfixtureinfo(self, self.obj, self.cls) .venv/lib/python3.11/site-packages/_pytest/fixtures.py:1490: in getfixtureinfo names_closure, arg2fixturedefs = self.getfixtureclosure( E TypeError: getfixtureclosure() got an unexpected keyword argument 'initialnames' During handling of the above exception, another exception occurred: .venv/lib/python3.11/site-packages/pluggy/_hooks.py:501: in __call__ return self._hookexec(self.name, self._hookimpls.copy(), kwargs, firstresult) .venv/lib/python3.11/site-packages/pluggy/_manager.py:119: in _hookexec return self._inner_hookexec(hook_name, methods, kwargs, firstresult) .venv/lib/python3.11/site-packages/_pytest/python.py:277: in pytest_pycollect_makeitem return list(collector._genfunctions(name, obj)) .venv/lib/python3.11/site-packages/_pytest/python.py:486: in _genfunctions definition: FunctionDefinition = FunctionDefinition.from_parent( .venv/lib/python3.11/site-packages/_pytest/python.py:1809: in from_parent return super().from_parent(parent=parent, **kw) .venv/lib/python3.11/site-packages/_pytest/nodes.py:275: in from_parent return cls._create(parent=parent, **kw) .venv/lib/python3.11/site-packages/_pytest/nodes.py:167: in _create return super().__call__(*k, **known_kw) .venv/lib/python3.11/site-packages/_pytest/python.py:1801: in __init__ fixtureinfo = fm.getfixtureinfo(self, self.obj, self.cls) .venv/lib/python3.11/site-packages/_pytest/fixtures.py:1490: in getfixtureinfo names_closure, arg2fixturedefs = self.getfixtureclosure( E TypeError: getfixtureclosure() got an unexpected keyword argument 'initialnames' ```
closed
2024-01-28T02:56:57Z
2024-03-08T21:14:37Z
https://github.com/smarie/python-pytest-cases/issues/330
[]
jayqi
3
healthchecks/healthchecks
django
410
[UI / UX] Show Request Body instead of "HTTP POST from <ip address>" message in Log display of checks dashboard.
Hi, Thanks for the great project btw. I'd like to suggest change of UI / UX in Log display of checks dashboard. As-is: Logs displays preview message with "HTTP POST from <ip address>" To-be: Logs displays preview message with Request Body like "Temperature is now 35c. It looks good.". In my humble opinion, "HTTP POST from <ip address>" is quite useless. That message does not help cron job administrator because what he wants is in Request Body. So what do you think about replacing the preview message with the request body? Many thanks to healthchecks team. Kind regards.
closed
2020-08-06T09:43:10Z
2021-08-27T09:45:49Z
https://github.com/healthchecks/healthchecks/issues/410
[]
aeharvlee
4
pbugnion/gmaps
jupyter
325
Use of Different Marker Symbol on maps
Hello All, How can I set different marker symbol for different data. Like P for parking or some sign for restaurants using gmaps. Thanks In advance
open
2019-10-20T21:38:37Z
2019-10-20T21:38:37Z
https://github.com/pbugnion/gmaps/issues/325
[]
Prapi123
0
python-restx/flask-restx
flask
525
Using marshal with required fields for a response
Hey, I'm just looking for some clarity if I'm understanding marshal wrong. I have created a model with some fields marked as required. I have a controller with a GET method annotated with @ns.marshall_with(model) This method gets some data from another datasource, if the data is missing one of the fields marked as required in the model, the marshaled object stills returns 200 with said property and a value of null. Right here was my first head scratch I would have expected that a required field that was not mapped to throw an error. But I thought, given I'm doing the marshal with an annotation, it is just making sure the returning object has the specified property, no the value. Here is question 1, am I right here? Is this what is happening? I keep on testing with the assumption above, so I imported 'marshal' and try to marshal the object before the return my_data = marshal(data_source_object, model) Again here my understanding was that this time a validation would happen when marshalling and it would raise an exception due to the missing field but then again, it just added the property with null value. Could somebody clear this one out for me? am I doing this wrong and marshal will not throw errors on missing required fields? and if so, what is a good way to validate this kind of scenarios? Thanks for any help in advance
closed
2023-03-02T16:36:52Z
2023-03-02T20:07:57Z
https://github.com/python-restx/flask-restx/issues/525
[ "question" ]
PabloCR
2
proplot-dev/proplot
matplotlib
26
Matplotlib subplots not working with seaborn distplot
#### Code sample, a copy-pastable example if possible A "[Minimal, Complete and Verifiable Example](http://matthewrocklin.com/blog/work/2018/02/28/minimal-bug-reports)" will make it much easier for maintainers to help you. ```python import pandas as pd import xarray as xr import numpy as np def drop_nans_and_flatten(dataArray: xr.DataArray) -> np.ndarray: """flatten the array and drop nans from that array. Useful for plotting histograms. Arguments: --------- : dataArray (xr.DataArray) the DataArray of your value you want to flatten """ # drop NaNs and flatten return dataArray.values[~np.isnan(dataArray.values)] # create dimensions of xarray object times = pd.date_range(start='1981-01-31', end='2019-04-30', freq='M') lat = np.linspace(0, 1, 224) lon = np.linspace(0, 1, 176) rand_arr = np.random.randn(len(times), len(lat), len(lon)) # create xr.Dataset coords = {'time': times, 'lat':lat, 'lon':lon} dims = ['time', 'lat', 'lon'] ds = xr.Dataset({'precip': (dims, rand_arr)}, coords=coords) ds['month'], ds['year'] = ds['time.month'], ds['time.year'] ``` Making plot using `proplot` ```python import proplot as plot import calendar f, axs = plot.subplots(nrows=4, ncols=3, axwidth=1.5, figsize=(8,12), share=2) # share=3, span=1, axs.format( xlabel='Precip', ylabel='Density', suptitle='Distribution', ) month_abbrs = list(calendar.month_abbr) mean_ds = ds.groupby('time.month').mean(dim='time') flattened = [] for mth in np.arange(1, 13): ax = axs[mth - 1] ax.set_title(month_abbrs[mth]) print(f"Plotting {month_abbrs[mth]}") flat = drop_nans_and_flatten(mean_ds.sel(month=mth).precip) flattened.append(flat) sns.distplot(flat, ax=ax, **{'kde': False}) ``` #### Actual result vs. expected result This should explain **why** the current behavior is a problem and why the expected result is a better solution. The proplot returns a plot like follows: <img width="576" alt="download-25" src="https://user-images.githubusercontent.com/21049064/61491130-72f78480-a9a6-11e9-9781-65aa8b8da98a.png"> It looks empty plot. Also the axes are only sharing the x-axis for each column but I want it to be shared across all subplots. The `matplotlib` version does what I expect. ```python fig, axs = plt.subplots(4, 3, figsize=(8, 12), sharex=True, sharey=True) month_abbrs = [m for m in calendar.month_abbr if m != ''] for mth in range(0, 12): ax_ix = np.unravel_index(mth, (4, 3)) ax = axs[ax_ix] mth_str = month_abbrs[mth] sns.distplot(flattened[mth], ax=ax) ax.set_title(mth_str) fig.suptitle('Distribution of Rainfall each Month'); ``` <img width="576" alt="download-26" src="https://user-images.githubusercontent.com/21049064/61491139-78ed6580-a9a6-11e9-9f21-c3292aeac8ca.png">
closed
2019-07-18T20:56:47Z
2020-04-09T17:24:04Z
https://github.com/proplot-dev/proplot/issues/26
[ "bug" ]
tommylees112
5
psf/black
python
3,887
E704 and concise formatting for dummy implementations
This preview style change https://github.com/psf/black/pull/3796 violates E704 as implemented by flake8 / pycodestyle. Note that the change itself is PEP 8 compliant. E704 is disabled by default in pycodestyle for this reason. ruff intentionally does not implement E704, instead explicitly deferring to Black on this question. At a minimum we should update https://black.readthedocs.io/en/stable/the_black_code_style/current_style.html#flake8 , but figured I'd open an issue to discuss.
closed
2023-09-13T00:00:41Z
2024-01-30T18:23:18Z
https://github.com/psf/black/issues/3887
[ "T: bug", "F: empty lines", "C: preview style" ]
hauntsaninja
5
scikit-hep/awkward
numpy
2,551
Form and np.dtype inconsistencies
### Version of Awkward Array 2.2.4 ### Description and code to reproduce Hi @agoose77 - here are some very minor issues I run into when conversion an `np.dtype` to a string required by a Form. Perhaps, we should to handle this in a more consistent manner... Please, have a look. Thanks. - [ ] `EmptyArray` can have `parameters`, but: ```python Issue: EmptyForm cannot contain parameters. ``` - [ ] Should 'int32' and 'i32' be the same? ```python AssertionError: assert ListOffsetForm('int32', NumpyForm('float64')) == ListOffsetForm('i32', NumpyForm('float64')) ``` - [ ] `ak.index._dtype_to_form` dict has no `bool`: ```python @property def form(self): > return ByteMaskedForm(ak.index._dtype_to_form[self._mask.dtype], self.content.form, self._valid_when, parameters=self._parameters,) E KeyError: dtype('bool') ``` using `ak.types.numpytype.dtype_to_primitive(self._mask.dtype)`: ```python > assert builder.form == layout.form E AssertionError: assert ByteMaskedForm('bool', NumpyForm('float64'), True) == ByteMaskedForm('i8', NumpyForm('float64'), True) ```
closed
2023-06-29T14:32:19Z
2023-06-29T15:22:32Z
https://github.com/scikit-hep/awkward/issues/2551
[ "bug (unverified)" ]
ianna
3
ultralytics/yolov5
machine-learning
12,645
Negative-width bounding boxes when running on M1 (mps) HW
### Search before asking - [X] I have searched the YOLOv5 [issues](https://github.com/ultralytics/yolov5/issues) and [discussions](https://github.com/ultralytics/yolov5/discussions) and found no similar questions. ### Question I am running a trained YOLOv5x6 model using val.py with the --save_json option. I have a few images where the resulting .json file includes one or more boxes with negative width values (not negative x or y values, which seem normal and are discussed in other issues, but negative _width_ values), but I have only observed this behavior when running on M1 hardware (with the "mps" device). All the boxes I've observed that have this property are low-ish confidence, but neither the confidence nor the absolute width/height are so low that I would call this a "junk bounding box". I get identical, non-negative boxes processing the same images with the same weights on CUDA or CPU devices. Just in case the default precision is different on M1, I tried this with and without half-precision inference, but could not replicate the negative boxes on CUDA/CPU devices. So, this is a two-part question: 1. Are negative-width bounding boxes expected, and/or is there an interpretation of these boxes? Should I expect to take the absolute value of the width and add it to the x value as if it were positive to get the right edge of the box, or should still add the (negative) width to the x value to get the other edge of the box? 2. In general, are there common patterns of differences between M1 and CUDA/CPU devices? Are results expected to be identical to reasonable precision? If the answers are "no, that should never happen" and "no, they should all be identical", I will try to provide a reproducible example. I don't currently have permission to share the offending images, so I'm trying to see whether there's a logical explanation before going down that path. Thanks! -Dan ### Additional _No response_
closed
2024-01-18T04:15:23Z
2024-12-18T02:36:46Z
https://github.com/ultralytics/yolov5/issues/12645
[ "question", "Stale" ]
agentmorris
16
tflearn/tflearn
data-science
272
2D convolution on CIFAR10 example shows poor results
I posted this in stackoverflow, but it may be more appropriate here. https://stackoverflow.com/questions/38885226/2d-convolution-in-tflearn-cnn-trashes-learning-for-mnist-and-cifar-10-benchmarks Essentially I just want to make sure there isn't a bug in the 2D convolution or maxpooling functions. Following the tutorial script here: https://github.com/tflearn/tflearn/blob/master/examples/images/convnet_cifar10.py I get completely random classifications (10% validation accuracy), all the way through 50 epochs. Commenting out the 2d convolution and max pooling steps though, it goes up to about 50% validation accuracy. To me this sounds intuitively wrong (as if the convolution function is somehow accidentally shuffling the input data), but perhaps this example is simply a poor classifier. Is this reproducible for others, or is there something wrong with my tflearn or tensorflow builds?
closed
2016-08-11T16:48:26Z
2016-08-16T04:20:50Z
https://github.com/tflearn/tflearn/issues/272
[]
scottyler89
11
jupyter/nbgrader
jupyter
1,736
Failing tests
It seems to me that there are two issues causing tests to fail. 1- JupyterLab [announcements](https://jupyterlab.readthedocs.io/en/stable/user/announcements.html) pop-up is interfering with `test_formgrader.spec.ts`, and 2- `node-canvas` is requested for a version that doesn't have a build for the `node` used in the testing environment, and it can't be built. (Related?: https://github.com/jupyterlab/jupyterlab/pull/13722) I am writing them down in case someone else encounters them too. Maybe I can create a pr as well soon.
closed
2023-02-24T10:56:44Z
2023-03-03T14:36:37Z
https://github.com/jupyter/nbgrader/issues/1736
[]
tuncbkose
2
CorentinJ/Real-Time-Voice-Cloning
python
860
Does quality depend on batch size? I only have 6 gb of memory, but I want results like in paper.
closed
2021-10-04T18:16:02Z
2021-10-11T16:24:18Z
https://github.com/CorentinJ/Real-Time-Voice-Cloning/issues/860
[]
fancat-programer
8
horovod/horovod
machine-learning
3,938
horovod slower than pytorch DDP
**Environment:** 1. Framework: (TensorFlow, Keras, PyTorch, MXNet) : pytorch 2. Framework version: 2.0 3. Horovod version: 0.28 4. MPI version: 5. CUDA version: 6. NCCL version: 7. Python version: 8. Spark / PySpark version: 9. Ray version: 10. OS and version: 11. GCC version: 12. CMake version: **Checklist:** 1. Did you search issues to find if somebody asked this question before? 2. If your question is about hang, did you read [this doc](https://github.com/horovod/horovod/blob/master/docs/running.rst)? 3. If your question is about docker, did you read [this doc](https://github.com/horovod/horovod/blob/master/docs/docker.rst)? 4. Did you check if you question is answered in the [troubleshooting guide](https://github.com/horovod/horovod/blob/master/docs/troubleshooting.rst)? **Bug report:** I have two questions 1) I am running [yolox_ddp](https://github.com/Megvii-BaseDetection/YOLOX) on 8 A100 gpus. Then I modified code to use horovod and also modified data loader accordingly as per [example](https://horovod.readthedocs.io/en/stable/pytorch.html). During my training, horovod result seems **5x slower** than pytorch DDP result. any reason why this much slower? 2) I am trying to run same code on habana gaudi2 using hccl collective ops. but installing horovod using pip doesn't have option to build with hccl. how can build horovod with hccl? Thanks
closed
2023-06-02T00:01:26Z
2023-12-15T04:10:51Z
https://github.com/horovod/horovod/issues/3938
[ "question", "wontfix" ]
purvang3
4
jmcnamara/XlsxWriter
pandas
802
Installing the package doesn't include the test helper functions
Hi, I am using XlsxWriter to do SOMETHING but it appears to do SOMETHING ELSE. I am using Python version 3.8.0 and XlsxWriter 1.4.0 It seems to me that installing the package with Poetry (or just Pip), does not include the `test` package, which contains some helper functions (e.g. to compare 2 XLSX files).
closed
2021-05-04T15:13:50Z
2021-05-04T16:25:07Z
https://github.com/jmcnamara/XlsxWriter/issues/802
[]
StampixSMO
1
tqdm/tqdm
jupyter
1,537
AttributeError: 'tqdm' object has no attribute 'last_print_t' on Python 3.12
- [x] I have marked all applicable categories: + [x] exception-raising bug + [ ] visual output bug - [x] I have visited the [source website], and in particular read the [known issues] - [x] I have searched through the [issue tracker] for duplicates - [x] I have mentioned version numbers, operating system and environment, where applicable: ```python import tqdm, sys print(tqdm.__version__, sys.version, sys.platform) ``` [source website]: https://github.com/tqdm/tqdm/ [known issues]: https://github.com/tqdm/tqdm/#faq-and-known-issues [issue tracker]: https://github.com/tqdm/tqdm/issues?q= ### Environment x86_64-linux Python 3.12.1 pytest 7.4.3 pytest-asyncio 0.23.2 pluggy 1.3.0 tqdm 4.66.1 ### Description I'm aware Python 3.12 is not supported according to the trove classifiers, but I hope it will be soon. We're seeing the following exception many times during testing on Python 3.12.1, the tests run fine on 3.11.7. ```pytb Exception ignored in: <function tqdm.__del__ at 0x7ffff64a2c00> Traceback (most recent call last): File "/build/tqdm-4.66.1/tqdm/std.py", line 1149, in __del__ self.close() File "/build/tqdm-4.66.1/tqdm/std.py", line 1278, in close if self.last_print_t < self.start_t + self.delay: ^^^^^^^^^^^^^^^^^ AttributeError: 'tqdm' object has no attribute 'last_print_t' ```
open
2023-12-13T14:05:07Z
2024-11-07T12:29:38Z
https://github.com/tqdm/tqdm/issues/1537
[]
mweinelt
2
keras-team/keras
data-science
20,370
Issue on file_editor
If I add the compile method before saving model, it shows the error like this. - keras/src/saving/file_editor_test.py ```` def get_source_model(): inputs = keras.Input((2,)) x = keras.layers.Dense(3, name="mydense")(inputs) outputs = keras.layers.Dense(3, name="output_layer")(x) model = keras.Model(inputs, outputs) model.compile(loss='mse', optimizer='adam') return model ```` - error ```` self = <h5py._hl.selections2.ScalarReadSelection object at 0x70c6dda64640> fspace = <h5py.h5s.SpaceID object at 0x70c6dd94c1d0> args = (slice(None, None, None),) def __init__(self, fspace, args): if args == (): self.mshape = None elif args == (Ellipsis,): self.mshape = () else: > raise ValueError("Illegal slicing argument for scalar dataspace") ValueError: Illegal slicing argument for scalar dataspace ```` Since the compiler value has no shape in h5 store, when parsing value by "[:]", it returned the error. ```` def _extract_weights_from_store(self, data, metadata=None, inner_path=""): .... else: result[key] = value[:] ```` I think we could remove the other values except for "layers" on "self.weights_dict". However, confirmation is needed.
closed
2024-10-17T12:18:43Z
2024-10-19T11:02:49Z
https://github.com/keras-team/keras/issues/20370
[]
shashaka
2
Kinto/kinto
api
2,588
Dev server returns 409 on POST
## Steps to reproduce ``` ➜ http POST $SERVER/buckets/main/collections -a mat:123 HTTP/1.1 201 Created Access-Control-Expose-Headers: Content-Type, Content-Length, Backoff, Retry-After, Alert Connection: keep-alive Content-Length: 96 Content-Security-Policy: default-src 'none'; frame-ancestors 'none'; base-uri 'none'; Content-Type: application/json Date: Tue, 18 Aug 2020 09:53:05 GMT ETag: "1597744385553" Last-Modified: Tue, 18 Aug 2020 09:53:05 GMT Server: nginx X-Content-Type-Options: nosniff { "data": { "id": "KuX3wy-C", "last_modified": 1597744385553 }, "permissions": { "write": [ "account:mat" ] } } ➜ http POST $SERVER/buckets/main/collections -a mat:123 HTTP/1.1 201 Created Access-Control-Expose-Headers: Content-Type, Content-Length, Backoff, Retry-After, Alert Connection: keep-alive Content-Length: 96 Content-Security-Policy: default-src 'none'; frame-ancestors 'none'; base-uri 'none'; Content-Type: application/json Date: Tue, 18 Aug 2020 09:53:08 GMT ETag: "1597744388379" Last-Modified: Tue, 18 Aug 2020 09:53:08 GMT Server: nginx X-Content-Type-Options: nosniff { "data": { "id": "k4MaRMTU", "last_modified": 1597744388379 }, "permissions": { "write": [ "account:mat" ] } } ➜ http POST $SERVER/buckets/main/collections/k4MaRMTU/records -a mat:123 HTTP/1.1 201 Created Access-Control-Expose-Headers: Content-Type, Content-Length, Backoff, Retry-After, Alert Connection: keep-alive Content-Length: 124 Content-Security-Policy: default-src 'none'; frame-ancestors 'none'; base-uri 'none'; Content-Type: application/json Date: Tue, 18 Aug 2020 09:53:22 GMT ETag: "1597744402010" Last-Modified: Tue, 18 Aug 2020 09:53:22 GMT Server: nginx X-Content-Type-Options: nosniff { "data": { "id": "4a11b2f9-8c12-4348-ab6c-41da4da4ef5c", "last_modified": 1597744402010 }, "permissions": { "write": [ "account:mat" ] } } ➜ http POST $SERVER/buckets/main/collections/k4MaRMTU/records -a mat:123 HTTP/1.1 409 Conflict Access-Control-Expose-Headers: Content-Type, Content-Length, Backoff, Retry-After, Alert Connection: keep-alive Content-Length: 100 Content-Security-Policy: default-src 'none'; frame-ancestors 'none'; base-uri 'none'; Content-Type: application/json Date: Tue, 18 Aug 2020 09:53:24 GMT Retry-After: 3 Server: nginx X-Content-Type-Options: nosniff { "code": 409, "errno": 122, "error": "Conflict", "message": "Integrity constraint violated, please retry." } ``` See also #2295
closed
2020-08-18T09:54:33Z
2020-08-18T10:17:09Z
https://github.com/Kinto/kinto/issues/2588
[]
leplatrem
1
fastapi-users/fastapi-users
fastapi
1,391
on_after_failed_login and on_before_login (Feature Request)
Thanks alot for the wonderful job done thus far. You approach is really superb. I am pretty new to FastAPI but much in love with this library. I would love to request if these 2 events could be added to the authentication (/login). **on_after_failed_login():** in case of multiple failed attempt, I would love to keep track of this failed attempt and possibly delay/deny future attempts **on_before_login() -> bool:** based on the number of previous failed login attempts I may want to decide if to allow or deny login at this moment. Am thinking this would only be called after every other conditions/parameters like the password, is_active, is_verified has been checked and ready generate the jwt/access_token, such that it would allow us raise exception/return false to deny the user login access ** Also, in situation where the admin created a new user account and forwarded the credentials to the user's email. I maybe want to force the user to change the default password. I may want to abort the login process just before the final stage and redirect the user to the change password screen before s/he can proceed This would be cleaner for further customization
closed
2024-05-23T14:51:07Z
2024-07-14T13:23:48Z
https://github.com/fastapi-users/fastapi-users/issues/1391
[]
Pauldic
1
yzhao062/pyod
data-science
489
Project dependencies may have API risk issues
Hi, In **pyod**, inappropriate dependency versioning constraints can cause risks. Below are the dependencies and version constraints that the project is using ``` joblib matplotlib numpy>=1.19 numba>=0.51 scipy>=1.5.1 six statsmodels ``` The version constraint **==** will introduce the risk of dependency conflicts because the scope of dependencies is too strict. The version constraint **No Upper Bound** and **\*** will introduce the risk of the missing API Error because the latest version of the dependencies may remove some APIs. After further analysis, in this project, The version constraint of dependency **six** can be changed to *>=1.4.0,<=1.16.0*. The above modification suggestions can reduce the dependency conflicts as much as possible, and introduce the latest version as much as possible without calling Error in the projects. The invocation of the current project includes all the following methods. In version **six-1.3**, the API **six.add_metaclass** whch is used by the current project in **pyod/models/base.py** is missing. <img width="460" alt="image" src="https://user-images.githubusercontent.com/109138844/227123724-8fb95b55-b4ac-4ccf-b6ad-13495c4fd39d.png"> <details> <summary>The calling methods from the six</summary> <pre> six.iteritems six.add_metaclass </pre> </details> <details> <summary>The calling methods from the all methods</summary> <pre> histogram.astype.astype anomaly_scores.cpu.detach.numpy self.OCSVM.super.__init__ self.clf_.fit pyod.models.cof.COF torch.nn.BatchNorm1d pyod.models.sos.SOS.fit self.CD.super.__init__ self._train_autoencoder self.hist_loss_disc.append pyod.models.sos.SOS numpy.where n_dim.n_samples.np.random.rand.astype operator.itemgetter i.X.copy.reshape self.predict_confidence tensorflow.keras.backend.square self._set_small_large_clusters combo.models.score_comb.aom pyod.models.cblof.CBLOF.predict matplotlib.pyplot.subplot.set_ylim warnings.warn pyod.models.lscp.LSCP.predict self.fit_query numpy.delete pyod.models.sod.SOD.decision_function overall_loss.append sklearn.ensemble.IsolationForest res.append i.str.names.compile numpy.empty self.discriminator.predict self.bin_edges_.append Z.reshape.reshape self.enc.optimizer.apply_gradients zip scipy.spatial.distance.squareform.max l.rstrip pythresh.thresholds.moll.MOLL self.l2_regularizer.l2.self.hidden_activation.hidden_neurons.Dense pyod.models.copod.COPOD.explain_outlier numpy.unique hasattr X.self.discriminator.predict.ravel itertools.combinations six.add_metaclass numpy.min self.disc_xz pyod.utils.check_parameter self.O.sum os.path.dirname data.cuda.float version_path.open.read fig.add_subplot.set_ylabel wcos_list.append pyod.models.copod.COPOD.predict _g.sbn_path_index.itemgetter sklearn.preprocessing.MinMaxScaler.fit.transform sklearn.linear_model.LinearRegression.fit self.clustering_estimator_.predict self._get_param_names pythresh.thresholds.regr.REGR pyod.models.lscp.LSCP.fit utils.utility.get_optimal_n_bins numpy.random.RandomState.rand utils.utility.invert_order __f self.estimators_features_.append second.np.array.reshape self.XGBOD.super.__init__ test_scores.reshape.scaler.transform.ravel.clip outliers.np.array.ravel NotImplementedError self.detector_.decision_function tensorflow.keras.optimizers.legacy.Adam matplotlib.pyplot.suptitle numpy.argsort numpy.abs scipy.spatial.distance.cdist pyod.models.knn.KNN.fit_predict tensorflow.keras.layers.Dropout numpy.zeros_like h5py.File numpy.max self.discriminator.train_on_batch str pyod.models.suod.SUOD.decision_function pyod.models.loda.LODA.predict utils.utility.generate_bagging_indices pythresh.thresholds.dsn.DSN potential.np.array.squeeze.append numpy.bincount numpy.searchsorted centerer.transform estimator.decision_function tensorflow.keras.models.Model.add_loss _pairwise_distances_no_broadcast_helper key.partition pyod.models.deep_svdd.DeepSVDD sklearn_base._partition_estimators numpy.sum self.fit scipy.sparse.csr_matrix getattr sklearn.preprocessing.RobustScaler scipy.special.erf.clip self.combine_model.compile numpy.digitize self.HBOS.super.__init__ _calculate_outlier_scores range n_dim.n_samples.np.random.randn.epsilon.astype inner_autoencoder.to.load_state_dict numpy.cumsum pyod.models.lof.LOF.fit gaal_base.create_discriminator i.beta.copy statsmodels.distributions.empirical_distribution.ECDF matplotlib.pyplot.ylim sklearn.utils.check_consistent_length numpy.argmax pythresh.thresholds.vae.VAE self.neigh.kneighbors self.InnerAutoencoder.super.__init__ self.loss_fn.backward disc_zz_tape.gradient torch.nn.Dropout angles_scalers2.append tensorflow.keras.Input join.split pyod.models.suod.SUOD.fit tensorflow.zeros_like estimator.fit self.n_jobs.Parallel self._get_alpha_n list.append print inner_autoencoder.to.zero_grad numpy.isin self._generate_new_features pyod.models.mo_gaal.MO_GAAL.fit self.generator.compile pyod.models.alad.ALAD self._d2a.sum self.n_features_.self.dropout_rate.Dropout pyod.models.rgraph.RGraph.predict self._build_model numpy.sqrt combo.models.score_comb.median self.estimators_.append scipy.spatial.distance.pdist criterion.item sklearn.mixture.GaussianMixture numpy.get_printoptions self.active_support_elastic_net self.decoder.add_module self.LOF.super.__init__ numpy.diff numpy.random.choice.astype torch.float32.dist.torch.tensor.to multiprocessing.cpu_count self.threshold_.test_scores.astype train_scores.reshape arff.load.keys self.generator self._decision_function self._make_estimator sklearn.neighbors.KernelDensity pyod.models.rod.ROD.fit whiten_data self.COF.super.__init__ pyod.models.feature_bagging.FeatureBagging.fit self.n_random_cuts.pred_scores.ravel self.scaler.transform.astype self.network.parameters pythresh.thresholds.qmcd.QMCD iforest.IForest combo.models.score_comb.average tensorflow.keras.backend.random_normal pythresh.thresholds.decomp.DECOMP len ac_dist.append inner_autoencoder pyod.models.cblof.CBLOF divmod self.activation_hidden_disc.l_dim.Dense.tfa.layers.SpectralNormalization pyod.models.lunar.LUNAR.fit sys.path.append fig.add_subplot.set_xlabel sys.path.insert sklearn.neighbors.KDTree p.n.contam.n.int.n.binom.cdf.np.vectorize self.contamination.eval xx.ravel numpy.linalg.matrix_rank matplotlib.pyplot.yticks tensorflow.math.reduce_sum self._get_decision_scores self.kde_.score_samples self.SUOD.super.__init__ self.encoder.add_module self.detector_._score_samples pythresh.thresholds.hist.HIST float threshold.y_pred.astype pyod.models.ocsvm.OCSVM numpy.greater_equal matplotlib.pyplot.subplots_adjust subspaces_scores.append self.detector_.fit self._fit_fast abs scipy.spatial.minkowski_distance matplotlib.pyplot.title tensorflow.keras.losses.BinaryCrossentropy features.append self.model.load_state_dict matplotlib.font_manager.FontProperties multiprocessing.Pool.close self.disc_xx.optimizer.apply_gradients sklearn.decomposition.PCA pyod.models.gmm.GMM.fit pyod.models.so_gaal.SO_GAAL.decision_function first_ind.append numpy.exp self.decision_function self._cof_fast start_ind.self.hist_loss_generator.pd.Series.rolling sum pyod.models.mcd.MCD matplotlib.pyplot.subplot.scatter np.where numba.prange torch.nn.Tanh utility.precision_n_scores numpy.fill_diagonal multiprocessing.Pool.join torch.device pyod.models.iforest.IForest.decision_function numpy.isnan self.scaler_.transform torch.nn.Sigmoid sklearn.preprocessing.MinMaxScaler.fit hbos.HBOS torch.no_grad numpy.random.randn torch.squeeze X_train.torch.from_numpy.float.cuda max_s.min_s.second.np.array.reshape pyod.models.lof.LOF.decision_function sklearn.neighbors.BallTree pythresh.thresholds.all.ALL numpy.random.seed pyod.models.alad.ALAD.decision_function numpy.linalg.norm numpy.round pyod.models.auto_encoder_torch.AutoEncoder pyod.models.copod.COPOD.decision_function pyod.models.combination.maximization fig.add_subplot.plot sklearn.neighbors.DistanceMetric.get_metric numpy.column_stack pyod.models.abod.ABOD.keys encoder X.np.linalg.pinv.T.X.sum self.model_.fit inner_autoencoder.to.parameters pyod.models.inne.INNE.predict tensorflow.keras.Model.compile sklearn.utils.check_X_y detector.fit i.str.names.predict self.l2_regularizer.l2.self.hidden_activation.neurons.Dense torch.float32.train_y.torch.tensor.to matplotlib.pyplot.subplots torch.nn.Sequential ocsvm.OCSVM numpy.count_nonzero self.train_step pyod.utils.example.data_visualize pyod.models.loda.LODA data_cuda.self.model.cpu.numpy setattr self._predict_decision_scores numpy.absolute x.min numpy.random.choice generate_indices multiprocessing.Pool joblib.dump Cooks_dist sklearn.utils.validation.check_random_state matplotlib.pyplot.figure.add_subplot numpy.random.RandomState.shuffle pyod.utils.stat_models.pearsonr self._x2d super self.loss_fn sklearn.utils.validation.check_array self.threshold_.pred_score.astype.ravel self.SO_GAAL.super.__init__ sklearn.preprocessing.StandardScaler.fit.transform sklearn.preprocessing.RobustScaler.fit_transform self.X_train_new_.self.clf_.predict.ravel pyod.utils.data.evaluate_print get_losses model.predict max numpy.random.RandomState.seed self.hidden_activation.neurons.Dense axs.bar self.model self.activation_hidden_gen.l_dim.Dense numpy.reshape numpy.less sklearn.utils.estimator_checks.check_estimator self.network self.SOD.super.__init__ decoder matplotlib.pyplot.subplot.legend window_smoothening.start_ind.self.hist_loss_generator.pd.Series.rolling.mean angles_scalers1.append sklearn.utils.check_random_state.shuffle pyod.models.cd.CD.fit num_index.X.astype numpy.finfo i.X.reshape pyod.utils.utility.check_detector detector.decision_function self.device.data.to.float.cuda time_mat.np.mean.tolist pyod.models.sampling.Sampling.predict total_loss_generator.numpy numpy.square tensorflow.keras.layers.Dense self._get_competent_detectors numpy.meshgrid pyod.models.lmdd.LMDD.predict params.items self.network.load_state_dict sklearn.preprocessing.MinMaxScaler pyod.models.lmdd.LMDD count_instances pyod.models.inne.INNE sklearn.preprocessing.MinMaxScaler.transform pyod.utils.data.generate_data_clusters joblib.load.decision_function numpy.copy tensorflow.keras.Model.summary sklearn.decomposition.sparse_encode pythresh.thresholds.fwfm.FWFM torch.utils.data.DataLoader self._sod yy.ravel alpha_list.append self.latent_dim_G.Dense pyod.models.iforest.IForest.predict self._set_cluster_centers self.__dis self.elastic_net_subspace_clustering.toarray numpy.cumsum.tolist pyod.models.cof.COF.decision_function joblib.parallel.cpu_count self.inner_autoencoder.super.__init__ torch.nn.Linear pyod.models.auto_encoder.AutoEncoder pyod.models.xgbod.XGBOD.predict pythresh.thresholds.clust.CLUST roc_list.pd.DataFrame.transpose matplotlib.pyplot.xlim TypeError pyod.models.loci.LOCI cross_entropy pyod.models.xgbod.XGBOD sklearn.cluster.KMeans pyod.models.auto_encoder.AutoEncoder.decision_function pyod.models.so_gaal.SO_GAAL arff.load pyod.models.mo_gaal.MO_GAAL window_smoothening.start_ind.self.hist_loss_disc.pd.Series.rolling.mean tensorflow.keras.backend.abs numpy.maximum self.neigh.fit y.astype.astype numpy.identity pyod.models.ecod.ECOD.decision_function pyod.models.combination.moa warnings.filters.pop X_enc.self.dec.numpy i.str.names.train_on_batch numpy.sign AutoEncoder.fit sklearn.utils.validation.check_is_fitted WEIGHT_MODEL pyod.models.kde.KDE.decision_function self._snn tensorflow.keras.backend.shape inner_autoencoder.to.eval euclidean_sq.np.sum.np.sqrt.ravel pyod.models.rgraph.RGraph.decision_function euclidean combo.models.score_comb.maximization _wcos get_label_n matplotlib.pyplot.subplot joblib.load.predict pyod.models.cof.COF.predict torch.optim.Adam.zero_grad self.histograms_.append sklearn.neighbors.NearestNeighbors.kneighbors pyod.models.knn.KNN.fit time_list.pd.DataFrame.transpose AttributeError pythresh.thresholds.karch.KARCH enumerate self._decision_function_default numpy.prod pyod.models.vae.VAE.predict pyod.models.lunar.LUNAR.predict X_norm.self.enc.numpy sklearn_base._pprint self.COPOD.super.__init__ sklearn.base.clone.set_params pyod.models.kde.KDE str.split matplotlib.pyplot.ylabel _set_random_states numpy.percentile joblib.parallel.delayed self.WEIGHT_MODEL.super.__init__ tensorflow.keras.models.Sequential pyod.models.mcd.MCD.fit numpy.random.shuffle collections.defaultdict pyod.models.hbos.HBOS.decision_function sorted pyod.models.hbos.HBOS numpy.nanargmin numpy.float64 pyod.models.loci.LOCI.predict potential.np.array.squeeze pythresh.thresholds.yj.YJ self.query_model.optimizer.apply_gradients value.get_params.items self._validate_estimator pyod.models.alad.ALAD.fit InnerAutoencoder i.str.names numpy.amax torch.nn.ReLU.keys pyod.models.hbos.HBOS.fit self.l2_regularizer.l2.self.hidden_activation.reversed_neurons.Dense self.model.to scipy.stats.skew key.valid_params.set_params self._get_dist_by_method.ravel criterion.backward n_neighbours.SCORE_MODEL.to pyod.models.auto_encoder.AutoEncoder.fit tensorflow.concat self.vae_loss fig.add_subplot.set_title self.MCD.super.__init__ matplotlib.pyplot.figure numpy.mean self.device.data.to.float sklearn.utils.deprecated numpy.zeros.append self.RGraph.super.__init__ joblib.Parallel j.ind.set.intersection pyod.models.sod.SOD data.best_model.cpu.numpy torch.tensor self.neigh_.kneighbors matplotlib.pyplot.scatter pyod.models.kpca.KPCA threshold.pred_scores.astype dec_tape.gradient tensorflow.keras.Model.get_weights pyod.models.ecod.ECOD.predict pyod.models.vae.VAE.decision_function f.read pyod.models.xgbod.XGBOD.decision_function self.disc_zz.optimizer.apply_gradients pyod.models.so_gaal.SO_GAAL.fit sklearn.base.clone.get_params getattr.delayed numpy.vstack pyod.models.sod.SOD.predict sklearn.utils.column_or_1d matplotlib.pyplot.xticks _add_sub_plot pyod.utils.data.generate_data_categorical scores.scores.max.ravel numpy.dot tensorflow.math.square numpy.append tensorflow.keras.backend.int_shape random_state.uniform.tolist pyod.models.sampling.Sampling.decision_function self.combine_model.train_on_batch tensorflow.keras.layers.Lambda self.discriminator pyod.models.ocsvm.OCSVM.decision_function self.clustering_estimator_.fit self.hist_loss_gen.append pyod.models.iforest.IForest iter tensorflow.keras.initializers.VarianceScaling join six.iteritems pythresh.thresholds.clf.CLF pythresh.thresholds.meta.META test_scores.reshape.scaler.transform.ravel self.dist.pairwise numpy.apply_along_axis tensorflow.keras.models.Sequential.compile numpy.sin self.model.state_dict numpy.random.RandomState.get_state pythresh.thresholds.eb.EB torch.optim.Adam.state_dict _calculate_outlier_scores_auto self.loss_fn.item numpy.flatnonzero sigmoid self._process_decision_scores sklearn.covariance.MinCovDet self.kde_.fit list sklearn.neighbors.LocalOutlierFactor criterion data.best_model.cpu torch.cuda.is_available disc_tape.gradient self._cof_memory pyod.models.gmm.GMM.decision_function self.SOS.super.__init__ tensorflow.keras.backend.sum inner_autoencoder.to.state_dict self.model.zero_grad pyod.models.sos.SOS.decision_function kernel y.astype.astype.ravel.sum pyod.utils.utility.standardizer pyod.models.kpca.KPCA.fit prn_list.pd.DataFrame.transpose pyod.models.sod.SOD.fit tensorflow.keras.backend.mean matplotlib.pyplot.legend numpy.intersect1d y_test.reshape numpy.random.rand torch.float32.val_dist.torch.tensor.to set sklearn.neighbors.NearestNeighbors.fit clf.decision_function pyod.models.auto_encoder.AutoEncoder.predict self.detector_.score_samples tensorflow.keras.regularizers.l2 train_y.out.criterion.sum.backward self.dec self._decision_function.extend numpy.hstack.append sklearn.utils.validation.check_random_state.choice pyod.models.suod.SUOD axs.plot self.LUNAR.super.__init__ numpy.average disc_xx_tape.gradient self.discriminator.compile sklearn.datasets.make_blobs self.LMDD.super.__init__ self._get_dist_by_method combination.average math.ceil self.KNN.super.__init__ scores.append scipy.stats.pearsonr _check_params matplotlib.lines.Line2D scores.np.isnan.any numpy.random.RandomState pythresh.thresholds.aucp.AUCP scipy.io.loadmat locals self.score_scalar_.transform filter numpy.asarray disc_xz_tape.gradient numpy.nanstd self.disc_xz.optimizer.apply_gradients first.np.array.reshape.scaler1.transform.reshape.append sklearn.utils.multiclass.check_classification_targets X_train.torch.from_numpy.float self._d2a pyod.models.feature_bagging.FeatureBagging numpy.linspace self.FeatureBagging.super.__init__ tensorflow.keras.optimizers.legacy.SGD self.PCA.super.__init__ self.discriminator.optimizer.apply_gradients self.tree_.query scipy.io.loadmat.ravel self.enc.compile sklearn.preprocessing.StandardScaler self.final_norm self.ECOD.super.__init__ _plot numpy.asarray.sum second.np.array.reshape.scaler2.transform.reshape.append pyod.models.auto_encoder_torch.AutoEncoder.predict np.full best_model matplotlib.pyplot.subplot.set_xlabel numpy.ravel check_parameter torch.float32.train_y.torch.tensor.to.cpu gaal_base.create_generator pyod.models.loci.LOCI.decision_function pyod.models.pca.PCA.predict matplotlib.pyplot.subplot.axis sklearn.base.clone pyod.models.gmm.GMM self.hidden_neurons_.pop numpy.nonzero numpy.var pythresh.thresholds.ocsvm.OCSVM self._init_c pythresh.thresholds.fgd.FGD torch.from_numpy pyod.utils.example.visualize sklearn.metrics.euclidean_distances self.CBLOF.super.__init__ numpy.squeeze sklearn.metrics.precision_score self.model_.approximate key.endswith numpy.hstack pandas.Series j.local_region_list.collections.Counter.items _offset._r.np.add.n_inliers.np.multiply.np.round.astype PyODKernelPCA _get_critical_values os.path.join sklearn.utils.check_random_state.uniform super.__init__ prn_mat.np.mean.tolist Z.reshape.min test_local_region.self.training_pseudo_label_.ravel utils.torch_utility.get_activation_by_name start_ind.self.hist_loss_discriminator.pd.Series.rolling pyod.models.cblof.CBLOF.decision_function pyod.models.inne.INNE.decision_function ValueError pyod.models.lof.LOF.predict pyod.models.knn.KNN pythresh.thresholds.mad.MAD self._b2o torch.optim.Adam.step subspaces_scores.np.array.T.np.average.reshape self.dec.optimizer.apply_gradients standardization_flag_list.append self.decoder n_outliers_.append self.ALAD.super.__init__ warnings.filterwarnings sklearn.utils.validation.check_X_y self.output_activation.self.n_features_.Dense roc_mat.np.mean.tolist min RuntimeError beta_list.append self.LOCI.super.__init__ sklearn.model_selection.train_test_split int pca.transform X.clf.fit.predict i.str.names.evaluate numpy.array.append warnings.simplefilter numpy.random.permutation self.disc_xz.compile pyod.models.mcd.MCD.predict idx.tolist.tolist pythresh.thresholds.iqr.IQR self._init_detectors clf.predict pyod.models.rod.ROD joblib.delayed f.read.splitlines self.detector_.mahalanobis max_f.min_f.first.np.array.reshape _snn_imp self.output_activation.self.latent_dim.Dense pyod.models.lmdd.LMDD.decision_function matplotlib.pyplot.plot self.model.eval _calculate_wocs loss_disc.numpy matplotlib.pyplot.xlabel first.np.array.reshape pyod.models.combination.median clf.fit sklearn.utils.column_or_1d.ravel torch.sum SCORE_MODEL numpy.nan_to_num pyod.models.auto_encoder_torch.AutoEncoder.decision_function tape.gradient utils.utility._get_sklearn_version pyod.models.ecod.ECOD.fit printer sklearn.svm.OneClassSVM _generate_data self.random_state.choice pyod.models.cd.CD.predict numpy.put scale_angles pythresh.thresholds.gesd.GESD self.AutoEncoder.super.__init__ tensorflow_addons.layers.SpectralNormalization dis _get_perplexity joblib.load.fit anomaly_scores.cpu.detach pyod.models.lscp.LSCP self.limits_.append numpy.full.append self._score_samples self.enc numpy.add self.DeepSVDD.super.__init__ tensorflow.GradientTape self.n_bins.lower act_layer_xx.numpy.numpy numba.njit pythresh.thresholds.filter.FILTER pandas.concat.to_csv tensorflow.ones_like collections.Counter self.SCORE_MODEL.super.__init__ data.get_outliers_inliers self.O.sum.ravel numpy.multiply self.model.parameters numpy.linalg.solve sklearn.linear_model.LinearRegression n_row.n_row.np.full.astype type pyod.models.copod.COPOD self._set_n_classes self.activation_hidden_disc.l_dim.Dense self.random_state_.get_state utils.utility.precision_n_scores combination.maximization.ravel window_smoothening.start_ind.self.hist_loss_discriminator.pd.Series.rolling.mean utils.utility.check_detector tensorflow.keras.Model.add_loss torch.float32.val_y.torch.tensor.to window_smoothening.start_ind.self.hist_loss_gen.pd.Series.rolling.mean i.format.self.train_history.append self.mean.any pyod.models.ecod.ECOD self.scaler_.fit_transform numpy.random.normal _parallel_ecdf.delayed tensorflow.keras.models.Model.compile os.path.abspath pyod.models.lof.LOF numpy.random.uniform self.MO_GAAL.super.__init__ self.generator.predict joblib.load matplotlib.pyplot.tight_layout torch.is_tensor data_cuda.self.model.cpu io.open loss_gen.numpy self.pca.fit self.PyODDataset.super.__init__ pyod.models.cof.COF.fit sklearn.utils.check_random_state.randint pyod.models.loda.LODA.fit self.generator.optimizer.apply_gradients pyod.utils.utility.precision_n_scores pyod.models.mo_gaal.MO_GAAL.decision_function pyod.models.mo_gaal.MO_GAAL.predict second.np.array.reshape.scaler2.transform.reshape self.device.data.to.float.to utils.utility.check_parameter matplotlib.pyplot.subplot.contourf pyod.models.deep_svdd.DeepSVDD.decision_function scipy.special.erf _get_sampling_N self.elastic_net_subspace_clustering self.threshold_.pred_score.astype pyod.models.auto_encoder_torch.AutoEncoder.fit self.IForest.super.__init__ numpy.histogram ModuleNotFoundError self.ABOD.super.__init__ pyod.models.suod.SUOD.predict PyODDataset numpy.full pyod.models.lunar.LUNAR math.sqrt pandas.concat numpy.array pyod.utils.utility.generate_bagging_indices self.ROD.super.__init__ dict ord pythresh.thresholds.mtt.MTT pyod.utils.stat_models.pairwise_distances_no_broadcast pyod.models.xgbod.XGBOD.fit self.hidden_activation.self.n_features_.Dense pyod.models.copod.COPOD.fit pyod.models.gmm.GMM.predict numpy.vectorize sklearn.preprocessing.StandardScaler.fit self.scaler.transform pyod.models.loci.LOCI.fit scipy.spatial.distance.squareform self.dis_measure_ pyod.models.abod.ABOD.items self.l2_regularizer.l2.self.output_activation.self.n_features_.Dense pyod.models.vae.VAE.fit pyod.models.feature_bagging.FeatureBagging.decision_function pyod.models.lmdd.LMDD.fit ground_truth.y_pred.sum sklearn.neighbors.NearestNeighbors pyod.models.alad.ALAD.predict dict.update self.threshold_.self.decision_scores_.astype.ravel self._scalar.transform pyod.models.knn.KNN.predict sklearn.metrics.roc_auc_score tensorflow.keras.models.Sequential.add self._calculate_decision_score _check_dim pyod.models.lunar.LUNAR.decision_function numpy.log2 self.disc_xx self.network.train pythresh.thresholds.boot.BOOT tensorflow.keras.backend.exp pyod.models.abod.ABOD.decision_function self.activation_hidden.l_dim.Dense pyod.utils.utility.argmaxn tensorflow.math.reduce_mean tensorflow.keras.models.Model setuptools.find_packages pyod.models.loda.LODA.decision_function tensorflow.keras.initializers.Identity self.network.cpu pyod.models.kde.KDE.fit x.max n.x.np.vectorize pyod.models.ocsvm.OCSVM.fit numpy.nan_to_num.reshape self.combine_model.evaluate metric.lower inspect.signature tensorflow.keras.Model cover_radius.np.isnan.all pyod.models.sos.SOS.predict chr pyod.models.rgraph.RGraph.fit enc_tape.gradient self.latent_dim.self.sampling.Lambda self.method.lower numpy.log numpy.place matplotlib.pyplot.subplot.set_xlim self.l2_regularizer.l2.self.hidden_activation.self.hidden_neurons_.Dense self.MAD.super.__init__ pythresh.thresholds.zscore.ZSCORE scipy.stats.binom.cdf j.ind_arr.tolist self._fit_default columns.self.O.max.max numpy.arccos self.model_.decision_function generate_negative_samples self._check_subset_size pyod.models.cblof.CBLOF.fit pyod.models.abod.ABOD.predict pyod.models.mad.MAD pyod.models.abod.ABOD tensorflow.random.set_seed n_neighbours.WEIGHT_MODEL.to self.VAE.super.__init__ total_loss_discriminator.numpy utils.stat_models.pairwise_distances_no_broadcast pyod.models.rgraph.RGraph pyod.models.kde.KDE.predict pyod.models.so_gaal.SO_GAAL.predict read_arff sklearn.neighbors.KDTree.query tensorflow.keras.models.Sequential.summary sklearn.utils.validation.check_random_state.randint numpy.quantile self.loss self.get_outlier_scores combo.models.score_comb.moa numpy.iinfo numpy.median open init_signature.parameters.values pyod.models.mad.MAD.predict self.n_bins_.append self.disc_zz.compile get_color_codes self.disc_zz torch.nn.LayerNorm geometric_median.append collections.defaultdict.items copod.COPOD erf_score.clip.ravel scipy.spatial.distance_matrix pythresh.thresholds.mcst.MCST pyod.models.iforest.IForest.fit pyod.models.deep_svdd.DeepSVDD.predict sklearn.utils.check_array numpy.ones.astype start_ind.self.hist_loss_gen.pd.Series.rolling pyod.models.abod.ABOD.fit self.encoder numpy.zeros numpy.arange sklearn.utils.column_or_1d.max list.remove self._fit six.add_metaclass exec sklearn.utils.random.sample_without_replacement n_clusters.int._r._r.random_state.uniform.tolist model self.threshold_.test_scores.astype.ravel pyod.models.kpca.KPCA.decision_function pyod.models.knn.KNN.decision_function pyod.models.cd.CD.decision_function self.disc_xx.compile self.model.fit train_y.out.criterion.sum base_dl._get_tensorflow_version ... </pre> </details> @developer Could please help me check this issue? May I pull a request to fix it? Thank you very much.
open
2023-03-23T06:41:18Z
2023-03-23T06:41:18Z
https://github.com/yzhao062/pyod/issues/489
[]
PyDeps
0
miguelgrinberg/Flask-SocketIO
flask
1,530
Can nginx interface with SocketIO using a unix socket
I am trying to configure Nginx to communicate with Flask-SocketIO via a Unix socket as outlined in the link below but the Nginx WS requests to uwsgi always time out. I would like to use this approach, if possible, because of the it seems that it would simplify deployment of multiple uwsgi's since it would not require allocation of instance specific ports as outlined in the 'Using nginx as a WebSocket Reverse Proxy' of the Flask-SocketIO documentation. I would appreciate it if you could comment as to whether Abrahmasen's should work and whether it would be a good approach for deploying multiple uwsgi instances under nginx? Thank you very much for your great library and the comprehensive documentation. https://michaelabrahamsen.com/posts/configuring-uwsgi-and-nginx-for-use-with-flask-socketio
closed
2021-04-21T21:01:24Z
2021-06-27T19:38:16Z
https://github.com/miguelgrinberg/Flask-SocketIO/issues/1530
[ "question" ]
eric-gilbertson
10
keras-team/keras
pytorch
20,876
Scikit-Learn API Wrappers don't work with Model input
When using the new Scikit-Learn API Wrappers with a compiled Model as input, the wrapper does not work, running into errors citing that the underlying model isn't compiled. The following code, adapted from the example in the [`SKLearnClassifier` documentation](https://keras.io/api/utils/sklearn_wrappers/#sklearnclassifier-class) to pass in a Model instance rather than a callable, runs into this issue. I also had to fix a couple bugs present in that code for it to work, and those couple fixes are noted in the code: ```python from keras.src.layers import Dense, Input from keras.src.models.model import Model # FIX: previously imported from keras.src.layers def dynamic_model(X, y, loss, layers=[10]): # Creates a basic MLP model dynamically choosing the input and # output shapes. n_features_in = X.shape[1] inp = Input(shape=(n_features_in,)) hidden = inp for layer_size in layers: hidden = Dense(layer_size, activation="relu")(hidden) n_outputs = y.shape[1] if len(y.shape) > 1 else 1 out = [Dense(n_outputs, activation="softmax")(hidden)] model = Model(inp, out) model.compile(loss=loss, optimizer="rmsprop") return model from sklearn.datasets import make_classification from keras.wrappers import SKLearnClassifier X, y = make_classification(n_samples=1000, n_features=10, n_classes=2) # FIX: n_classes 3 -> 2 est = SKLearnClassifier( model=dynamic_model(X, y, loss="categorical_crossentropy", layers=[20, 20, 20]) # pass in compiled Model instance instead of callable ) est.fit(X, y, epochs=5) ``` The error arises when fitting the model in that last line and is reproduced below. I believe this is from the fact that the model is cloned by default in `self._get_model()`, and `clone_model()` does not recompile the model. ``` --------------------------------------------------------------------------- RuntimeError Traceback (most recent call last) [<ipython-input-24-c9dcff454e13>](https://localhost:8080/#) in <cell line: 0>() 27 ) 28 ---> 29 est.fit(X, y, epochs=5) 1 frames [/usr/local/lib/python3.11/dist-packages/keras/src/wrappers/sklearn_wrapper.py](https://localhost:8080/#) in fit(self, X, y, **kwargs) 162 y = self._process_target(y, reset=True) 163 model = self._get_model(X, y) --> 164 _check_model(model) 165 166 fit_kwargs = self.fit_kwargs or {} [/usr/local/lib/python3.11/dist-packages/keras/src/wrappers/utils.py](https://localhost:8080/#) in _check_model(model) 25 # compile model if user gave us an un-compiled model 26 if not model.compiled or not model.loss or not model.optimizer: ---> 27 raise RuntimeError( 28 "Given model needs to be compiled, and have a loss and an " 29 "optimizer." RuntimeError: Given model needs to be compiled, and have a loss and an optimizer. ```
closed
2025-02-07T21:21:33Z
2025-03-13T02:05:56Z
https://github.com/keras-team/keras/issues/20876
[ "stat:awaiting response from contributor", "stale", "type:Bug" ]
swbedoya
3
AutoViML/AutoViz
scikit-learn
55
HTMl and BOKEH not output all!
The autoviz work well for chart_format svg, but BOKEH and HTML not all the dataset work well, when running I encounter: ~\anaconda3\lib\site-packages\pandas\core\indexes\base.py in get_loc(self, key, method, tolerance) 3361 return self._engine.get_loc(casted_key) 3362 except KeyError as err: -> 3363 raise KeyError(key) from err 3364 3365 if is_scalar(key) and isna(key) and not self.hasnans: KeyError: '' After searching through the internet, it seems like the problems is with the pandas! Sorry but I do not know how to fix that! Kind regard, [autoviz_test.zip](https://github.com/AutoViML/AutoViz/files/7698983/autoviz_test.zip)
closed
2021-12-12T15:17:59Z
2021-12-13T00:44:36Z
https://github.com/AutoViML/AutoViz/issues/55
[]
nhatvietnam
2
darrenburns/posting
rest-api
51
Duplicate/clone an API request
Thank you for creating a TUI API client and sharing your work with the world. I have a feature request I'd like to share. When creating API requests it's often easier to clone an existing one and tweak a few things like the request payload. It'd be convenient if posting supported this.
closed
2024-07-20T09:17:19Z
2024-08-02T22:57:50Z
https://github.com/darrenburns/posting/issues/51
[]
pieterdd
0
ansible/ansible
python
84,433
template error while templating string:
### Summary We first try to do a lookup vault to fetch the password, the password has characters "{%!" the below is how the rendered template file looks like ```db: create: true admin_user: "user1" admin_password: !unsafe "4{%!<----" users: "pgsqladmin": password: !unsafe "4{%!<----" "applicationscourtorders": context_user: true password: "password" ``` during a combine step ``` - name: Combine db variables from item-specific service values set_fact: merged_db_vars: "{{ merged_db_vars | combine(specific_service_vars.ansible_facts.db, recursive=True) }}" when: specific_service_vars.ansible_facts.db is defined ``` we get the following error " Error was a <class 'ansible.errors.AnsibleError'>, original message: template error while templating string: unexpected char '!' at 3. String: 4{%!<-ka---\n\" Have tried multiple options using to_yaml, to_json, quote Can someone please help in getting this problem solved? ### Issue Type Bug Report ### Component Name jinja2 ### Ansible Version ```console $ ansible --version ansible [core 2.13.13] config file = None configured module search path = ['/home/azureadmin/.ansible/plugins/modules', '/usr/share/ansible/plugins/modules'] ansible python module location = /opt/ansible/lib64/python3.8/site-packages/ansible ansible collection location = /home/azureadmin/.ansible/collections:/usr/share/ansible/collections executable location = /opt/ansible/bin/ansible python version = 3.8.8 (default, Aug 25 2021, 16:13:02) [GCC 8.5.0 20210514 (Red Hat 8.5.0-3)] jinja version = 3.1.4 libyaml = True ``` ### Configuration ```console # if using a version older than ansible-core 2.12 you should omit the '-t all' $ ansible-config dump --only-changed -t all - ``` ### OS / Environment centos8 ### Steps to Reproduce We first try to do a lookup vault to fetch the password, the password has characters "{%!" the below is how the rendered template file looks like ```db: create: true admin_user: "user1" admin_password: !unsafe "4{%!<----" users: "pgsqladmin": password: !unsafe "4{%!<----" "applicationscourtorders": context_user: true password: "password" ``` during a combine step ``` - name: Combine db variables from item-specific service values set_fact: merged_db_vars: "{{ merged_db_vars | combine(specific_service_vars.ansible_facts.db, recursive=True) }}" when: specific_service_vars.ansible_facts.db is defined ``` ### Expected Results I expected this to combine ### Actual Results ```console " Error was a <class 'ansible.errors.AnsibleError'>, original message: template error while templating string: unexpected char '!' at 3. String: 4{%!<-ka---\n\" ``` ### Code of Conduct - [X] I agree to follow the Ansible Code of Conduct
closed
2024-12-05T16:17:28Z
2025-02-18T14:00:11Z
https://github.com/ansible/ansible/issues/84433
[ "needs_info", "bug", "bot_closed", "affects_2.13" ]
jyothi-balla
6
HIT-SCIR/ltp
nlp
198
生成的release中语义角色标注问题
我在windows下使用ltp_test处理的结果如下: sent id="0" cont="特朗普 是 在 接受 福克斯 电视台 “ 福克斯 周日 新闻 ” 栏目 采访 时 做出 上述 表态 的 。" word id="0" cont="特朗普" pos="nh" ne="S-Nh" parent="1" relate="SBV" word id="1" cont="是" pos="v" ne="O" parent="-1" relate="HED" arg id="0" type="ۦ#x0F;" beg="0" end="0" 这个结果的语义角色标注有乱码,而且和语言云的xml结果比较,缺少sem。使用的是3.3.1的模型文件,最新的release。求解答。 语言云结果: sent id="0" cont="特朗普是在接受福克斯电视台“福克斯周日新闻”栏目采访时做出上述表态的。" word id="0" cont="特朗普" pos="nh" ne="S-Nh" parent="1" relate="SBV" semparent="3" semrelate="Agt" sem id="0" parent="3" relate="Agt" word id="1" cont="是" pos="v" ne="O" parent="-1" relate="HED" semparent="3" semrelate="mMod" arg id="0" type="A0" beg="0" end="0" sem id="0" parent="3" relate="mMod"
closed
2016-12-14T03:21:43Z
2016-12-14T10:59:55Z
https://github.com/HIT-SCIR/ltp/issues/198
[]
Icomming
4
google-research/bert
tensorflow
885
How many "num_tpu_cores" be set ?
I try to pretraining with **run_pretraining.py** using **tpu-v2-32** How many "num_tpu_cores" be set ? When tested with tpu-v2-8 worked fine(num_tpu_cores=8). python3 run_pretraining.py \ --input_file=gs://... \ --output_dir=gs://... \ --do_train=True \ --do_eval=True \ --bert_config_file=/data/workspace/bert/bert_config.json \ --train_batch_size=64 \ --max_seq_length=128 \ --max_predictions_per_seq=19 \ --num_train_steps=100 \ --num_warmup_steps=70 \ --learning_rate=1e-4 \ --use_tpu=True \ --num_tpu_cores=32 \ --tpu_name=grpc://ip:8470 \ --tpu_zone=us-central1-a \ --gcp_project=myproject **This are parameters to run. Is that correct? When i do this, i got an error like this :** ValueError: TPUConfig.num_shards is not set correctly. According to TPU system metadata for Tensorflow master (grpc://...:8470): num_replicas should be (8), got (32). For non-model-parallelism, num_replicas should be the total num of TPU cores in the system. For model-parallelism, the total number of TPU cores should be num_cores_per_replica * num_replicas. Please set it accordingly or leave it as `None` **When i set "num_tpu_cores=8", I got the following error :** I1025 05:22:42.688320 140065835681600 tpu_estimator.py:557] Init TPU system ERROR:tensorflow:Error recorded from evaluation_loop: From /job:worker/replica:0/task:0: Cloud TPU: Invalid TPU configuration, ensure ClusterResolver is passed to tpu.RunConfig [[{{node configure_distributed_tpu/_0}}]] Am I missing something else? Or which one should I set?
closed
2019-10-25T05:27:02Z
2020-08-08T12:39:57Z
https://github.com/google-research/bert/issues/885
[]
jwkim912
2
oegedijk/explainerdashboard
plotly
240
Retrieving the Original Values from Sklearn Pipeline
Hello, I'm trying to incorporate sklearn pipelines into Explainerdashboard, as below: ```python from sklearn.ensemble import RandomForestClassifier from sklearn.preprocessing import StandardScaler from sklearn.pipeline import make_pipeline from explainerdashboard import ExplainerDashboard, ClassifierExplainer from explainerdashboard.dashboard_components import * from explainerdashboard.custom import * from explainerdashboard.datasets import titanic_survive, feature_descriptions X_train, y_train, X_test, y_test = titanic_survive() model = RandomForestClassifier(n_estimators=50, max_depth=5) # .fit(X_train, y_train) pipeline = make_pipeline(StandardScaler(), model) pipeline.fit(X_train, y_train) explainer = ClassifierExplainer( pipeline, # model, X_test, y_test, # cats=["Sex", "Deck", "Embarked"], labels=["Not Survived", "Survived"], descriptions=feature_descriptions, ) ExplainerDashboard( explainer, tabs=[ IndividualPredictionsComposite, ], ).run(port=9050, debug=True) ``` I expected to see the pre-scaled data in the dashboard (e.g. sex_male=0 or 1). However, it seems the values I see on the dashboard are the data that has gone through the StandardScalar step (e.g. sex_male=0.7, 1.3). Is there any way to achieve my goal? Thank you very much for an incredible open source work!
closed
2022-11-30T06:48:59Z
2022-11-30T10:26:16Z
https://github.com/oegedijk/explainerdashboard/issues/240
[]
woochan-jang
1
pydata/pandas-datareader
pandas
568
Not able to load AAPL stock data
Hi I am trying to load AAPL stock data using import pandas_datareader as pdr but i am not able to import data in my envirnment
closed
2018-08-21T17:48:26Z
2023-10-31T16:41:23Z
https://github.com/pydata/pandas-datareader/issues/568
[]
Preerahul
23
seleniumbase/SeleniumBase
web-scraping
2,793
CloudFlare verification not working under VPN
The following code works on a direct connection (no verification asked), however when using VPN (or an http proxy, NordVPN in my case) clicking on the verification box doesn't let the verification go through: ```python URL = 'https://rateyourmusic.com/artist/pink-floyd/' with SB(uc=True) as sb: sb.driver.uc_open(URL) if sb.is_element_visible('iframe[src*="challenge"]'): iframe = sb.find_element('iframe[src*="challenge"]') sb.driver.switch_to.frame(iframe) confirm_input = sb.driver.find_element(By.CSS_SELECTOR, 'input') confirm_input.click() sb.sleep(2) ``` I have tried other libraries with undected capabilities through VPN, and while most didn't go through I was able to go past the verification box with https://github.com/kaliiiiiiiiii/Selenium-Driverless. Anyone else experienced a similar behaviour?
closed
2024-05-21T16:26:09Z
2024-05-22T13:10:15Z
https://github.com/seleniumbase/SeleniumBase/issues/2793
[ "invalid usage", "UC Mode / CDP Mode" ]
bjornkarlsson
10
AUTOMATIC1111/stable-diffusion-webui
deep-learning
16,558
[Bug]: AttributeError: 'ImageDraw' object has no attribute 'multiline_textsize'
### Checklist - [ ] The issue exists after disabling all extensions - [X] The issue exists on a clean installation of webui - [ ] The issue is caused by an extension, but I believe it is caused by a bug in the webui - [ ] The issue exists in the current version of the webui - [ ] The issue has not been reported before recently - [ ] The issue has been reported before but has not been fixed yet ### What happened? I am using this google colab notebook https://colab.research.google.com/github/TheLastBen/fast-stable-diffusion/blob/main/fast_stable_diffusion_AUTOMATIC1111.ipynb which install the latest version of your webui. I try to do img2img => inpaint upload, then I select X/Y/Z Plot, I set the X type to Prompt S/R from the list, then I enter a value for example mall,bedroom and finally click in generate, it generates the image but in the end fails to display it with this error [Bug]: AttributeError: 'ImageDraw' object has no attribute 'multiline_textsize' ### Steps to reproduce the problem 1. Go to img2img 2. Select Input Upload and upload files 3. input prompt and negative prompt 4. choose the script X/Y/Z Plot 5. For X Type choose from the list Prompt S/R 6. Input X Type values "mall,bedroom" 7. Click on generate ### What should have happened? Generated image should be displayed properly and no error ### What browsers do you use to access the UI ? Google Chrome ### Sysinfo [sysinfo-2024-10-17-13-23.json](https://github.com/user-attachments/files/17413181/sysinfo-2024-10-17-13-23.json) ### Console logs ```Shell Loading weights [88967f03f2] from /content/gdrive/MyDrive/sd/stable-diffusion-webui/models/Stable-diffusion/juggernaut_final.safetensors Creating model from config: /content/gdrive/MyDrive/sd/stable-diffusion-webui/configs/v1-inference.yaml Running on public URL: https://5427cc1b69b8f33387.gradio.live ✔ Connected Startup time: 15.1s (import torch: 8.6s, import gradio: 0.8s, setup paths: 0.9s, other imports: 0.5s, load scripts: 0.6s, create ui: 0.8s, gradio launch: 1.6s, add APIs: 1.2s). Applying attention optimization: xformers... done. Model loaded in 4.9s (load weights from disk: 1.2s, create model: 0.5s, apply weights to model: 2.1s, load textual inversion embeddings: 0.7s, calculate empty prompt: 0.2s). 100% 20/20 [00:09<00:00, 2.20it/s] X/Y/Z plot will create 2 images on 1 2x1 grid. (Total steps to process: 40) 100% 20/20 [00:09<00:00, 2.18it/s] 100% 20/20 [00:09<00:00, 2.12it/s] *** Error completing request *** Arguments: ('task(n9dp069tm1booho)', <gradio.routes.Request object at 0x7e4bfdc11fc0>, 4, 'Photograph of cinematic photo realistic skin texture, photorealistic, raw portrait photo of 20 year old Ukrainina girl wearing white dress, big breast, neutral, diamond and angular face, grey eyes, straight and high nose, (with long purple pin curly hairstyle:1.5), (blemish pale skin, skin flaws:1.6), (freckles:1.7), 8k, realistic beautiful, gorgeous insanely detailed octane render, 35mgraph, film, bokeh, ultramodern, vibrant, professional, 4k, highly detailed background of mall, front view and side view', '(worst quality, low quality:1.4), (deformed, distorted, disfigured:1.2), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, blurry, amputation. tattoo, watermark, text, black and white photo', [], None, None, None, None, None, <PIL.Image.Image image mode=RGB size=1536x768 at 0x7E4BFDD8A1D0>, <PIL.Image.Image image mode=RGBA size=1536x768 at 0x7E4BFDD8AFB0>, 4, 0, 2, 1, 1, 9, 1.5, 0.95, 0.0, 768, 768, 1, 0, 1, 0, 0, '', '', '', [], False, [], '', 'upload', None, 8, False, 1, 0.5, 4, 0, 0.5, 2, 20, 'DPM++ 2M', 'Automatic', False, '', 0.8, -1, False, -1, 0, 0, 0, '* `CFG Scale` should be 2 or lower.', True, True, '', '', True, 50, True, 1, 0, False, 4, 0.5, 'Linear', 'None', '<p style="margin-bottom:0.75em">Recommended settings: Sampling Steps: 80-100, Sampler: Euler a, Denoising strength: 0.8</p>', 128, 8, ['left', 'right', 'up', 'down'], 1, 0.05, 128, 4, 0, ['left', 'right', 'up', 'down'], False, False, 'positive', 'comma', 0, False, False, 'start', '', '<p style="margin-bottom:0.75em">Will upscale the image by the selected scale factor; use width and height sliders to set tile size</p>', 64, 0, 2, 7, 'white dress,sport cloth', [], 0, '', [], 0, '', [], True, False, False, True, False, False, False, 0, False) {} Traceback (most recent call last): File "/content/gdrive/MyDrive/sd/stable-diffusion-webui/modules/call_queue.py", line 74, in f res = list(func(*args, **kwargs)) File "/content/gdrive/MyDrive/sd/stable-diffusion-webui/modules/call_queue.py", line 53, in f res = func(*args, **kwargs) File "/content/gdrive/MyDrive/sd/stable-diffusion-webui/modules/call_queue.py", line 37, in f res = func(*args, **kwargs) File "/content/gdrive/MyDrive/sd/stable-diffusion-webui/modules/img2img.py", line 240, in img2img processed = modules.scripts.scripts_img2img.run(p, *args) File "/content/gdrive/MyDrive/sd/stable-diffusion-webui/modules/scripts.py", line 780, in run processed = script.run(p, *script_args) File "/content/gdrive/MyDrive/sd/stable-diffusion-webui/scripts/xyz_grid.py", line 769, in run processed = draw_xyz_grid( File "/content/gdrive/MyDrive/sd/stable-diffusion-webui/scripts/xyz_grid.py", line 380, in draw_xyz_grid grid = images.draw_grid_annotations(grid, grid_max_w, grid_max_h, hor_texts, ver_texts, margin_size) File "/content/gdrive/MyDrive/sd/stable-diffusion-webui/modules/images.py", line 228, in draw_grid_annotations draw_texts(d, x, y, hor_texts[col], fnt, fontsize) File "/content/gdrive/MyDrive/sd/stable-diffusion-webui/modules/images.py", line 171, in draw_texts while drawing.multiline_textsize(line.text, font=fnt)[0] > line.allowed_width and fontsize > 0: AttributeError: 'ImageDraw' object has no attribute 'multiline_textsize' --- X/Y/Z plot will create 2 images on 1 2x1 grid. (Total steps to process: 40) 100% 20/20 [00:09<00:00, 2.07it/s] 100% 20/20 [00:10<00:00, 2.00it/s] *** Error completing request *** Arguments: ('task(fru5mdqk4k0ohne)', <gradio.routes.Request object at 0x7e4bfddd1c90>, 4, 'Photograph of cinematic photo realistic skin texture, photorealistic, raw portrait photo of 20 year old Ukrainina girl wearing white dress, big breast, neutral, diamond and angular face, grey eyes, straight and high nose, (with long purple pin curly hairstyle:1.5), (blemish pale skin, skin flaws:1.6), (freckles:1.7), 8k, realistic beautiful, gorgeous insanely detailed octane render, 35mgraph, film, bokeh, ultramodern, vibrant, professional, 4k, highly detailed background of mall, front view and side view', '(worst quality, low quality:1.4), (deformed, distorted, disfigured:1.2), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, blurry, amputation. tattoo, watermark, text, black and white photo', [], None, None, None, None, None, <PIL.Image.Image image mode=RGB size=1536x768 at 0x7E4BFDDD1FC0>, <PIL.Image.Image image mode=RGBA size=1536x768 at 0x7E4BFDDD1720>, 4, 0, 2, 1, 1, 9, 1.5, 0.95, 0.0, 768, 768, 1, 0, 1, 0, 0, '', '', '', [], False, [], '', 'upload', None, 8, False, 1, 0.5, 4, 0, 0.5, 2, 20, 'DPM++ 2M', 'Automatic', False, '', 0.8, -1, False, -1, 0, 0, 0, '* `CFG Scale` should be 2 or lower.', True, True, '', '', True, 50, True, 1, 0, False, 4, 0.5, 'Linear', 'None', '<p style="margin-bottom:0.75em">Recommended settings: Sampling Steps: 80-100, Sampler: Euler a, Denoising strength: 0.8</p>', 128, 8, ['left', 'right', 'up', 'down'], 1, 0.05, 128, 4, 0, ['left', 'right', 'up', 'down'], False, False, 'positive', 'comma', 0, False, False, 'start', '', '<p style="margin-bottom:0.75em">Will upscale the image by the selected scale factor; use width and height sliders to set tile size</p>', 64, 0, 2, 7, 'white dress,sport cloth', [], 0, '', [], 0, '', [], True, False, False, True, False, False, False, 0, False) {} Traceback (most recent call last): File "/content/gdrive/MyDrive/sd/stable-diffusion-webui/modules/call_queue.py", line 74, in f res = list(func(*args, **kwargs)) File "/content/gdrive/MyDrive/sd/stable-diffusion-webui/modules/call_queue.py", line 53, in f res = func(*args, **kwargs) File "/content/gdrive/MyDrive/sd/stable-diffusion-webui/modules/call_queue.py", line 37, in f res = func(*args, **kwargs) File "/content/gdrive/MyDrive/sd/stable-diffusion-webui/modules/img2img.py", line 240, in img2img processed = modules.scripts.scripts_img2img.run(p, *args) File "/content/gdrive/MyDrive/sd/stable-diffusion-webui/modules/scripts.py", line 780, in run processed = script.run(p, *script_args) File "/content/gdrive/MyDrive/sd/stable-diffusion-webui/scripts/xyz_grid.py", line 769, in run processed = draw_xyz_grid( File "/content/gdrive/MyDrive/sd/stable-diffusion-webui/scripts/xyz_grid.py", line 380, in draw_xyz_grid grid = images.draw_grid_annotations(grid, grid_max_w, grid_max_h, hor_texts, ver_texts, margin_size) File "/content/gdrive/MyDrive/sd/stable-diffusion-webui/modules/images.py", line 228, in draw_grid_annotations draw_texts(d, x, y, hor_texts[col], fnt, fontsize) File "/content/gdrive/MyDrive/sd/stable-diffusion-webui/modules/images.py", line 171, in draw_texts while drawing.multiline_textsize(line.text, font=fnt)[0] > line.allowed_width and fontsize > 0: AttributeError: 'ImageDraw' object has no attribute 'multiline_textsize' ``` ### Additional information _No response_
open
2024-10-17T13:28:31Z
2024-10-17T21:44:08Z
https://github.com/AUTOMATIC1111/stable-diffusion-webui/issues/16558
[ "bug-report" ]
david-chainreactdev
1
igorbenav/fastcrud
sqlalchemy
144
disable specific crud methods?
**Is your feature request related to a problem? Please describe.** How to disable `create`/`delete`, for example? i don't see it in docs. **Describe the solution you'd like** crud_router constructor, set `create_schema=None`, `delete_schema=None`, but doesn't work. docs still show such methods.
closed
2024-08-03T13:44:31Z
2024-08-04T00:48:20Z
https://github.com/igorbenav/fastcrud/issues/144
[ "enhancement" ]
LeiYangGH
2