repo_name
stringlengths
9
75
topic
stringclasses
30 values
issue_number
int64
1
203k
title
stringlengths
1
976
body
stringlengths
0
254k
state
stringclasses
2 values
created_at
stringlengths
20
20
updated_at
stringlengths
20
20
url
stringlengths
38
105
labels
listlengths
0
9
user_login
stringlengths
1
39
comments_count
int64
0
452
ymcui/Chinese-LLaMA-Alpaca-2
nlp
500
关于chinese-alpaca-2-7b-64k模型在inference_hf.py推理部署中使用vllm报错的问题
### 提交前必须检查以下项目 - [X] 请确保使用的是仓库最新代码(git pull),一些问题已被解决和修复。 - [X] 我已阅读[项目文档](https://github.com/ymcui/Chinese-LLaMA-Alpaca-2/wiki)和[FAQ章节](https://github.com/ymcui/Chinese-LLaMA-Alpaca-2/wiki/常见问题)并且已在Issue中对问题进行了搜索,没有找到相似问题和解决方案。 - [x] 第三方插件问题:例如[llama.cpp](https://github.com/ggerganov/llama.cpp)、[LangChain](https://github.com/hwchase17/langchain)、[text-generation-webui](https://github.com/oobabooga/text-generation-webui)等,同时建议到对应的项目中查找解决方案。 ### 问题类型 模型量化和部署 ### 基础模型 Others ### 操作系统 Linux ### 详细描述问题 ``` # 这是运行命令 ``` python scripts/inference/inference_hf.py --base_model model/chinese-alpaca-2-7b-64k --with_prompt --interactive --use_vllm ### 依赖情况(代码类问题务必提供) ``` # 请在此处粘贴依赖情况(请粘贴在本代码块里) ``` bitsandbytes 0.41.1 peft 0.3.0 sentencepiece 0.1.99 torch 2.1.2 torchvision 0.16.2 transformers 4.36.2 ### 运行日志或截图 ``` # 请在此处粘贴运行日志(请粘贴在本代码块里) ``` USE_XFORMERS_ATTENTION: True STORE_KV_BEFORE_ROPE: False Traceback (most recent call last): File "/hy-tmp/Aplaca2/Chinese-LLaMA-Alpaca-2-main/scripts/inference/inference_hf.py", line 129, in <module> model = LLM(model=args.base_model, File "/usr/local/miniconda3/lib/python3.10/site-packages/vllm/entrypoints/llm.py", line 105, in __init__ self.llm_engine = LLMEngine.from_engine_args(engine_args) File "/usr/local/miniconda3/lib/python3.10/site-packages/vllm/engine/llm_engine.py", line 304, in from_engine_args engine_configs = engine_args.create_engine_configs() File "/usr/local/miniconda3/lib/python3.10/site-packages/vllm/engine/arg_utils.py", line 218, in create_engine_configs model_config = ModelConfig(self.model, self.tokenizer, File "/usr/local/miniconda3/lib/python3.10/site-packages/vllm/config.py", line 101, in __init__ self.hf_config = get_config(self.model, trust_remote_code, revision) File "/usr/local/miniconda3/lib/python3.10/site-packages/vllm/transformers_utils/config.py", line 35, in get_config raise e File "/usr/local/miniconda3/lib/python3.10/site-packages/vllm/transformers_utils/config.py", line 23, in get_config config = AutoConfig.from_pretrained( File "/usr/local/miniconda3/lib/python3.10/site-packages/transformers/models/auto/configuration_auto.py", line 1099, in from_pretrained return config_class.from_dict(config_dict, **unused_kwargs) File "/usr/local/miniconda3/lib/python3.10/site-packages/transformers/configuration_utils.py", line 774, in from_dict config = cls(**config_dict) File "/usr/local/miniconda3/lib/python3.10/site-packages/transformers/models/llama/configuration_llama.py", line 160, in __init__ self._rope_scaling_validation() File "/usr/local/miniconda3/lib/python3.10/site-packages/transformers/models/llama/configuration_llama.py", line 180, in _rope_scaling_validation raise ValueError( ValueError: `rope_scaling` must be a dictionary with with two fields, `type` and `factor`, got {'factor': 16.0, 'finetuned': True, 'original_max_position_embeddings': 4096, 'type': 'yarn'}
closed
2024-01-12T10:59:41Z
2024-02-10T01:36:06Z
https://github.com/ymcui/Chinese-LLaMA-Alpaca-2/issues/500
[ "stale" ]
hoohooer
6
pywinauto/pywinauto
automation
599
Custom Type Object wont Take Click
Currently i'm using Pywinauto along with Behave to test a desktop application and i have encountered a road bump. at one point in my automation i need to use double click, currently i have it working as this: ``` @step("User selects {row} in Multi payment window") def step_impl(context, row): """ :param row: that we are going to fill. :type context: behave.runner.Context """ tries = 5 for i in range(tries): try: context.popup[str(row)].click_input(button='left', double=True) except: if i < tries - 1: # i is zero indexed continue else: break ``` It works perfectly! but if i'm not present or the machine is open this will cause issues because i'm using click_input() so i have tried using click(double=True) but returns this error _AttributeError: Neither GUI element (wrapper) nor wrapper method 'click' were found (typo?)_ Is there any way for me to get around this? I need to be able to run in a VM without having a session open. This is the result of running print_control_identifiers(), The items i'm trying to double click is Row 0 and Row 1, they are custom items. ![2018-11-05_13-36-17](https://user-images.githubusercontent.com/36900567/48077689-e1e4d280-e1b5-11e8-92ca-2d84756844fa.jpg)
open
2018-11-06T16:19:56Z
2018-11-10T14:47:43Z
https://github.com/pywinauto/pywinauto/issues/599
[ "question" ]
LeoDOD
3
widgetti/solara
fastapi
402
Media placeholder Jupyter dashboard tutorial
closed
2023-11-27T14:55:40Z
2023-11-27T20:15:09Z
https://github.com/widgetti/solara/issues/402
[]
maartenbreddels
1
feature-engine/feature_engine
scikit-learn
786
yeo-johnson inverse transform throws an erro
``` InvalidIndexError Traceback (most recent call last) File ~\Documents\Repositories\envs\fe_not\lib\site-packages\pandas\core\series.py:1289, in Series.__setitem__(self, key, value) 1288 try: -> 1289 self._set_with_engine(key, value, warn=warn) 1290 except KeyError: 1291 # We have a scalar (or for MultiIndex or object-dtype, scalar-like) 1292 # key that is not present in self.index. File ~\Documents\Repositories\envs\fe_not\lib\site-packages\pandas\core\series.py:1361, in Series._set_with_engine(self, key, value, warn) 1360 def _set_with_engine(self, key, value, warn: bool = True) -> None: -> 1361 loc = self.index.get_loc(key) 1363 # this is equivalent to self._values[key] = value File ~\Documents\Repositories\envs\fe_not\lib\site-packages\pandas\core\indexes\range.py:418, in RangeIndex.get_loc(self, key) 417 raise KeyError(key) --> 418 self._check_indexing_error(key) 419 raise KeyError(key) File ~\Documents\Repositories\envs\fe_not\lib\site-packages\pandas\core\indexes\base.py:6059, in Index._check_indexing_error(self, key) 6056 if not is_scalar(key): 6057 # if key is not a scalar, directly raise an error (the code below 6058 # would convert to numpy arrays and raise later any way) - GH29926 -> 6059 raise InvalidIndexError(key) InvalidIndexError: 64 True 682 True 960 True 1384 True 1100 True ... 763 True 835 True 1216 True 559 True 684 True Name: LotArea, Length: 1022, dtype: bool During handling of the above exception, another exception occurred: IndexingError Traceback (most recent call last) Cell In [21], line 1 ----> 1 train_unt = tf.inverse_transform(train_t) 2 test_unt = tf.inverse_transform(test_t) File c:\users\sole\documents\repositories\feature_engine\feature_engine\transformation\yeojohnson.py:181, in YeoJohnsonTransformer.inverse_transform(self, X) 178 X = self._check_transform_input_and_state(X) 180 for feature in self.variables_: --> 181 X[feature] = self._inverse_transform_series( 182 X[feature], lmbda=self.lambda_dict_[feature] 183 ) 185 return X File c:\users\sole\documents\repositories\feature_engine\feature_engine\transformation\yeojohnson.py:195, in YeoJohnsonTransformer._inverse_transform_series(self, X, lmbda) 193 x_inv[pos] = np.exp(X[pos]) - 1 194 else: # lmbda != 0 --> 195 x_inv[pos] = np.power(X[pos] * lmbda + 1, 1 / lmbda) - 1 197 # when x < 0 198 if lmbda != 2: File ~\Documents\Repositories\envs\fe_not\lib\site-packages\pandas\core\series.py:1329, in Series.__setitem__(self, key, value) 1324 raise KeyError( 1325 "key of type tuple not found and not a MultiIndex" 1326 ) from err 1328 if com.is_bool_indexer(key): -> 1329 key = check_bool_indexer(self.index, key) 1330 key = np.asarray(key, dtype=bool) 1332 if ( 1333 is_list_like(value) 1334 and len(value) != len(self) (...) 1339 # _where call below 1340 # GH#44265 File ~\Documents\Repositories\envs\fe_not\lib\site-packages\pandas\core\indexing.py:2662, in check_bool_indexer(index, key) 2660 indexer = result.index.get_indexer_for(index) 2661 if -1 in indexer: -> 2662 raise IndexingError( 2663 "Unalignable boolean Series provided as " 2664 "indexer (index of the boolean Series and of " 2665 "the indexed object do not match)." 2666 ) 2668 result = result.take(indexer) 2670 # fall through for boolean IndexingError: Unalignable boolean Series provided as indexer (index of the boolean Series and of the indexed object do not match). ``` Error can be reproduced by applying inverse_transform to the code we currently have in the user guide as demo
closed
2024-07-17T09:14:48Z
2024-08-23T17:21:04Z
https://github.com/feature-engine/feature_engine/issues/786
[]
solegalli
0
521xueweihan/HelloGitHub
python
2,681
【开源自荐】CardCarousel - 最易用的 iOS 轮播组件
- 项目地址:https://github.com/YuLeiFuYun/CardCarousel - 类别:Swift - 项目标题:一个功能强大且易于使用的轮播组件,支持使用咒语进行设置 - 项目描述:CardCarousel 可以让你对轮播进行更精细地控制,你可以设置滚动方向、页面尺寸、页间距、滚动停止时的页面对齐方式、自动滚动时的滚动动画效果、页面过渡效果、分页阈值和手动滚动时的页面减速速率等等。CardCarousel 可以在 UIKit 与 SwiftUI 中使用,支持链式调用,提供了丰富的初始化方法,参数可以通过点语法进行设置。更好的是,CardCarousel 还支持通过咒语进行设置。 - 亮点:更精细的控制、更好的易用性与咒语 - 示例代码: ```swift CardCarousel(data: data) { (cell: CustomCell, index: Int, itemIdentifier: Item) in cell.imageView.kf.setImage(with: url) cell.indexLabel.backgroundColor = itemIdentifier.color cell.indexLabel.text = itemIdentifier.index } .cardLayoutSize(widthDimension: .fractionalWidth(0.7), heightDimension: .fractionalHeight(0.7)) .cardTransformMode(.liner(minimumAlpha: 0.3)) .cardCornerRadius(10) .move(to: view) // 咒语(《高级动物》风格) CardCarousel(咒语: "矛盾,自私,好色,爱喜,无聊,善良,爱喜 贪婪,真诚 善变,暗淡 无奈,埋怨", 施法材料: data, 作用域: CGRect(x: 0, y: 100, width: 393, height: 200)) .法术目标(view) // 效果等同于 CardCarousel(frame: CGRect(x: 0, y: 100, width: 393, height: 200), data: data) .cardLayoutSize(widthDimension: .fractionalWidth(0.7), heightDimension: .fractionalHeight(0.7)) .cardTransformMode(.liner) .scrollDirection(.rightToLeft) .loopMode(.rollback) .move(to: view) ``` - 截图: ![罗小黑战记](https://github.com/YuLeiFuYun/CardCarousel/blob/main/Assets/%E7%BD%97%E5%B0%8F%E9%BB%91%E6%88%98%E8%AE%B0.gif?raw=true)
closed
2024-01-27T11:54:03Z
2024-04-24T12:12:53Z
https://github.com/521xueweihan/HelloGitHub/issues/2681
[]
YuLeiFuYun
0
serengil/deepface
machine-learning
884
Memory usage in Windows Server is very high
i use this deepface package in windows server and this works well but memory usage is very high please tell me , this memory usage is normal? ![Capture](https://github.com/serengil/deepface/assets/12672153/ef3c113b-16f1-4839-a369-01760c0cbecc)
closed
2023-11-04T19:41:38Z
2023-11-05T19:20:25Z
https://github.com/serengil/deepface/issues/884
[ "question" ]
ghost
1
jschneier/django-storages
django
603
S3Boto3 listdir can no longer create buckets
Hi, With the recent update of `listdir` in S3Boto3Backend, an undocumented behavior has also changed, I am not sure if this is a bug or if it is intended. Formerly, when performing a `listdir` on a non-existing bucket, the function would call a `_get_or_create_bucket` which would create the bucket if `AWS_AUTO_CREATE_BUCKET` was set to True and then listdir would return that the bucket is empty. After this commit, https://github.com/jschneier/django-storages/commit/b606a5129bc4d0f9189145c80382ba74b63350ef this is no longer the case. An error is raised "NoSuchBucket" if the bucket does not already exist. I am not sure what is the best, but if we follow the principles of a CRUD api, listdir is performing a GET request and I would not expect it to modify the state of the remote resource and create a bucket. But raising an error is also annoying as always checking if a bucket exists before a call to listdir is not very practical. A third option would be: - When `AWS_AUTO_CREATE_BUCKET` is set to True, return that the bucket is empty `return ([], [])` even if the bucket does not exist, because the bucket will be created anyway at the first occasion and this setting is mainly used in test environments - When `AWS_AUTO_CREATE_BUCKET` is set to False, raise the error to warn the user about creating the bucket first. Please, let me know what you think about this or close the issue if the current behavior is intended Thanks
closed
2018-09-20T14:18:03Z
2020-02-03T06:08:02Z
https://github.com/jschneier/django-storages/issues/603
[ "s3boto" ]
baldychristophe
1
capitalone/DataProfiler
pandas
856
Add documentation for `sampling_ratio` option
Related to PR #845 add documentation around the new `sampling_ratio` option paramter
closed
2023-06-05T17:40:23Z
2023-06-28T17:24:04Z
https://github.com/capitalone/DataProfiler/issues/856
[ "Documentation" ]
taylorfturner
1
falconry/falcon
api
1,950
ASGI mount
Hi, I'm really glad to see Falcon supporting ASGI - great job! In some other ASGI frameworks (for example FastAPI, Starlette and BlackSheep) there is the ability to mount other ASGI apps at a certain route. For example: ```python asgi_app = falcon.asgi.App() asgi_app.mount('/admin/', some_other_asgi_app) ``` It's nice because you can include third party ASGI apps within your own app - in my case it's [Piccolo admin](https://github.com/piccolo-orm/piccolo_admin). It also lets you compose your app in interesting ways, by making it consist of smaller sub apps. I wonder if you'd consider this in a future version of Falcon? Or if it's currently possible, and I'm unaware. If you feel it's out of scope, please feel free to close this issue. Thanks.
open
2021-08-14T22:17:27Z
2023-07-24T10:34:26Z
https://github.com/falconry/falcon/issues/1950
[ "enhancement", "proposal", "community" ]
dantownsend
1
ansible/ansible
python
84,680
Cron module fails to properly work under some cases on systems with systemd-cron
### Summary Hi! I've found strange situation and killed few days to debug it properly. I started with strange problem that ansble's cron module failed to install any jobs for any users (as I thought), throwing be a (not very useful) python traceback and ``` CronTabError: Unable to read crontab ``` error. Also I found that creating even empty (`crontab <(echo -n)`) crontab fixes the issue. So, problem only happens when user have no (personal) crontab installed. After endless hours of debugging I've found that problem happens when Ansble calling [this](https://github.com/ansible/ansible/blob/cae4f90b21bc40c88a00e712d28531ab0261f759/lib/ansible/modules/cron.py#L539C35-L539C51) command. Then, `systemd-cron`'s `crontab` returns exit code `2` (!!!) in case if user have no crontab yet. (I guess, [here](https://github.com/systemd-cron/systemd-cron/blob/5f6f344de122476a9585d09f3f335138d231066e/src/bin/crontab.cpp#L226C61-L226C67) is the source, but I'm not sure about that) And ansible [expects](https://github.com/ansible/ansible/blob/cae4f90b21bc40c88a00e712d28531ab0261f759/lib/ansible/modules/cron.py#L283) either `0` (success) or `1` (as comment states, it thinks `1` means missing crontab), annd bails out otherwise. I already created an [issue](https://github.com/systemd-cron/systemd-cron/issues/163) on systemd-cron repo with question about making it consistent with other crons, but I also not sure if it is any chances, author will fix that (and also it is no way fixed release will be shipped on all the LTS distros where I faced this issue). May it be possible to fix this (also) on Ansible side by either don't care so much on exit code, or by also support `rc=2`, please? (I can make a PR if needed) ### Issue Type Bug Report ### Component Name cron ### Ansible Version ```console $ ansible --version ansible [core 2.18.2] config file = None configured module search path = ['/home/mva/.ansible/plugins/modules', '/usr/share/ansible/plugins/modules'] ansible python module location = /home/mva/.local/pipx/venvs/ansible/lib/python3.12/site-packages/ansible ansible collection location = /home/mva/.ansible/collections:/usr/share/ansible/collections executable location = /home/mva/.local/bin/ansible python version = 3.12.8 (main, Feb 3 2025, 02:21:59) [GCC 13.3.1 20241220] (/home/mva/.local/pipx/venvs/ansible/bin/python) jinja version = 3.1.4 libyaml = True ``` ### Configuration ```console # if using a version older than ansible-core 2.12 you should omit the '-t all' $ ansible-config dump --only-changed -t all ANSIBLE_FORCE_COLOR(/home/mva/.vcs_repos/alpha/ansbl/ansible.cfg) = True CACHE_PLUGIN(/home/mva/.vcs_repos/alpha/ansbl/ansible.cfg) = jsonfile CACHE_PLUGIN_CONNECTION(/home/mva/.vcs_repos/alpha/ansbl/ansible.cfg) = .ansible/fact_caching CONFIG_FILE() = /home/mva/.vcs_repos/alpha/ansbl/ansible.cfg DEFAULT_BECOME(/home/mva/.vcs_repos/alpha/ansbl/ansible.cfg) = True DEFAULT_BECOME_METHOD(/home/mva/.vcs_repos/alpha/ansbl/ansible.cfg) = sudo DEFAULT_BECOME_USER(/home/mva/.vcs_repos/alpha/ansbl/ansible.cfg) = root DEFAULT_FORKS(/home/mva/.vcs_repos/alpha/ansbl/ansible.cfg) = 7 DEFAULT_HASH_BEHAVIOUR(/home/mva/.vcs_repos/alpha/ansbl/ansible.cfg) = replace DEFAULT_HOST_LIST(/home/mva/.vcs_repos/alpha/ansbl/ansible.cfg) = ['/home/mva/.vcs_repos/alpha/ansbl/meta/inv'] DEFAULT_STDOUT_CALLBACK(/home/mva/.vcs_repos/alpha/ansbl/ansible.cfg) = yaml DEPRECATION_WARNINGS(/home/mva/.vcs_repos/alpha/ansbl/ansible.cfg) = True EDITOR(env: EDITOR) = nvim HOST_KEY_CHECKING(/home/mva/.vcs_repos/alpha/ansbl/ansible.cfg) = True PAGER(env: PAGER) = less RETRY_FILES_ENABLED(/home/mva/.vcs_repos/alpha/ansbl/ansible.cfg) = False SYSTEM_WARNINGS(/home/mva/.vcs_repos/alpha/ansbl/ansible.cfg) = True GALAXY_SERVERS: BECOME: ====== runas: _____ become_user(/home/mva/.vcs_repos/alpha/ansbl/ansible.cfg) = root su: __ become_user(/home/mva/.vcs_repos/alpha/ansbl/ansible.cfg) = root sudo: ____ become_user(/home/mva/.vcs_repos/alpha/ansbl/ansible.cfg) = root CACHE: ===== jsonfile: ________ _uri(/home/mva/.vcs_repos/alpha/ansbl/ansible.cfg) = /home/mva/.vcs_repos/alpha/ansbl/.ansible/fact_caching CONNECTION: ========== paramiko_ssh: ____________ host_key_checking(/home/mva/.vcs_repos/alpha/ansbl/ansible.cfg) = True record_host_keys(/home/mva/.vcs_repos/alpha/ansbl/ansible.cfg) = False ssh: ___ control_path(/home/mva/.vcs_repos/alpha/ansbl/ansible.cfg) = %(directory)s/%%h-%%p-%%r host_key_checking(/home/mva/.vcs_repos/alpha/ansbl/ansible.cfg) = True pipelining(/home/mva/.vcs_repos/alpha/ansbl/ansible.cfg) = True ssh_args(/home/mva/.vcs_repos/alpha/ansbl/ansible.cfg) = -o ControlMaster=auto -o ControlPersist=300s ``` ### OS / Environment Gentoo (host), Ubuntu 24.04 (target) ### Steps to Reproduce <!--- Paste example playbooks or commands between quotes below --> ```yaml (paste below) - ansible.builtin.cron: name: "moo" special_time: "reboot" job: "echo" state: "present" ``` ### Expected Results Cronjob added ### Actual Results ```console fatal: [atlas_db]: FAILED! => changed=false module_stderr: |- OpenSSH_9.8p1, OpenSSL 3.3.2 3 Sep 2024 debug1: Reading configuration data [redacted] debug1: [redacted] line 15: Applying options for * debug3: [redacted] line 46: Including file [redacted] depth 0 (parse only) debug1: Reading configuration data [redacted] debug3: kex names ok: [diffie-hellman-group1-sha1] debug3: kex names ok: [diffie-hellman-group1-sha1] debug3: kex names ok: [diffie-hellman-group1-sha1] debug3: [redacted] line 93: Including file [redacted] depth 0 (parse only) debug1: Reading configuration data [redacted] debug3: [redacted] line 96: Including file [redacted] depth 0 (parse only) debug1: Reading configuration data [redacted] debug3: [redacted] line 6: Including file [redacted] depth 1 (parse only) debug1: Reading configuration data [redacted] debug3: [redacted] line 7: Including file [redacted] depth 1 (parse only) debug1: Reading configuration data [redacted] debug3: [redacted] line 99: Including file [redacted] depth 0 (parse only) debug1: Reading configuration data [redacted] debug3: [redacted] line 100: Including file [redacted] depth 0 (parse only) debug1: Reading configuration data [redacted] debug3: [redacted] line 103: Including file [redacted] depth 0 (parse only) debug1: Reading configuration data [redacted] debug1: [redacted] line 105: Applying options for * debug3: [redacted] line 106: Including file [redacted] depth 0 debug1: Reading configuration data [redacted] debug1: [redacted] line 1: Applying options for * debug2: add_identity_file: ignoring duplicate key ~/.ssh/fp/all/ed.pub debug1: Reading configuration data /etc/ssh/ssh_config debug3: /etc/ssh/ssh_config line 17: Including file /etc/ssh/ssh_config.d/20-systemd-ssh-proxy.conf depth 0 debug1: Reading configuration data /etc/ssh/ssh_config.d/20-systemd-ssh-proxy.conf debug3: /etc/ssh/ssh_config line 17: Including file /etc/ssh/ssh_config.d/9999999gentoo-security.conf depth 0 debug1: Reading configuration data /etc/ssh/ssh_config.d/9999999gentoo-security.conf debug3: /etc/ssh/ssh_config line 17: Including file /etc/ssh/ssh_config.d/9999999gentoo.conf depth 0 debug1: Reading configuration data /etc/ssh/ssh_config.d/9999999gentoo.conf debug2: resolve_canonicalize: hostname 100.100.100.1 is address debug1: Setting implicit ProxyCommand from ProxyJump: ssh -p 55222 -vvv -W '[%h]:%p' [redacted] debug3: expanded UserKnownHostsFile '~/.ssh/known_hosts' -> '[redacted] debug3: expanded UserKnownHostsFile '~/.ssh/known_hosts2' -> '[redacted] debug1: Authenticator provider $SSH_SK_PROVIDER did not resolve; disabling debug1: auto-mux: Trying existing master at '[redacted] debug2: fd 3 setting O_NONBLOCK debug2: mux_client_hello_exchange: master version 4 debug3: mux_client_forwards: request forwardings: 0 local, 0 remote debug3: mux_client_request_session: entering debug3: mux_client_request_alive: entering debug3: mux_client_request_alive: done pid = 17733 debug3: mux_client_request_session: session request sent debug1: mux_client_request_session: master session id: 2 Traceback (most recent call last): File "<stdin>", line 107, in <module> File "<stdin>", line 99, in _ansiballz_main File "<stdin>", line 47, in invoke_module File "<frozen runpy>", line 226, in run_module File "<frozen runpy>", line 98, in _run_module_code File "<frozen runpy>", line 88, in _run_code File "/tmp/ansible_ansible.builtin.cron_payload_n4yg75c0/ansible_ansible.builtin.cron_payload.zip/ansible/modules/cron.py", line 768, in <module> File "/tmp/ansible_ansible.builtin.cron_payload_n4yg75c0/ansible_ansible.builtin.cron_payload.zip/ansible/modules/cron.py", line 630, in main File "/tmp/ansible_ansible.builtin.cron_payload_n4yg75c0/ansible_ansible.builtin.cron_payload.zip/ansible/modules/cron.py", line 257, in __init__ File "/tmp/ansible_ansible.builtin.cron_payload_n4yg75c0/ansible_ansible.builtin.cron_payload.zip/ansible/modules/cron.py", line 279, in read CronTabError: Unable to read crontab debug3: mux_client_read_packet_timeout: read header failed: Broken pipe debug2: Received exit status from master 1 module_stdout: '' msg: |- MODULE FAILURE: No start of json char found See stdout/stderr for the exact error rc: 1 ``` ### Code of Conduct - [x] I agree to follow the Ansible Code of Conduct
closed
2025-02-06T15:09:38Z
2025-02-25T14:00:07Z
https://github.com/ansible/ansible/issues/84680
[ "module", "bug", "affects_2.18" ]
msva
5
redis/redis-om-python
pydantic
59
list and tuple fields could have other types than strings
'this Preview release, list and tuple fields can only contain strings. Problem field: . See docs: TODO'
closed
2022-01-01T08:29:00Z
2022-08-30T09:48:28Z
https://github.com/redis/redis-om-python/issues/59
[]
gam-phon
1
pydata/pandas-datareader
pandas
383
Eurostat - mismatched tag;
`eu_trade_since_2000 = web.DataReader("DS-043327", 'eurostat')` gives the message ` File "<string>", line unknown ParseError: mismatched tag: line 28, column 8` That's not very informative. I have no idea what is going on at all. Part of the pip freeze output is: >numpy==1.13.1 pandas==0.20.3 pandas-datareader==0.5.0
closed
2017-08-24T12:47:41Z
2019-09-26T21:20:30Z
https://github.com/pydata/pandas-datareader/issues/383
[]
HristoBuyukliev
8
sczhou/CodeFormer
pytorch
207
Great job! How amazing, I was planning on reproducing the code myself today, but then it suddenly got updated!
open
2023-04-19T15:17:09Z
2023-04-19T15:20:10Z
https://github.com/sczhou/CodeFormer/issues/207
[]
Liar-zzy
1
Sanster/IOPaint
pytorch
376
[Feature Request] Increase/decrease maximum base cursor size range.
Could it be possible to increase/decrease the maximum sizes for the cursor? I'd love to be able to make my cursor as small as 1px - 2px to get very exact in my masking for smaller images. If this can be adjusted on my own, I'd appreciate some guidance. And I don't mean that I need help figuring out how to work the normal cursor size slider, I'm asking for a change in the maximum smallness and bigness of the cursor or assistance to do it myself. Any help is greatly appreciated! :)
closed
2023-09-21T23:05:38Z
2025-03-21T02:05:02Z
https://github.com/Sanster/IOPaint/issues/376
[ "stale" ]
ArchAngelAries
2
sammchardy/python-binance
api
1,459
python-binance ThreadedWebsocketManager not working with Python 3.11 or 3.12?
**Describe the bug** When I run the following code in PyCharm, it doesn’t print any information. However, if I run it in debug mode, the information appears. This causes the code to not function properly on Python 3.11 or 3.12. **To Reproduce** ``` from binance import ThreadedWebsocketManager def handle_socket_message(msg): print(msg) print(1, flush=True) def main(): # socket manager using threads twm = ThreadedWebsocketManager() twm.start() twm.start_multiplex_socket(callback=handle_socket_message, streams=['!miniTicker@arr']) twm.start_futures_multiplex_socket(callback=handle_socket_message, streams=['!miniTicker@arr']) # join the threaded managers to the main thread while True: twm.join(3) print("join") if __name__ == '__main__': main() ``` **Expected behavior** I need Python-binance to work properly on python3.11or3.12 and to print information **Environment (please complete the following information):** - Python version: 3.11 or 3.12 - Virtual Env: conda - OS: Mac, Ubuntu - python-binance version 1.0.21 **Logs or Additional context** This is running ![image](https://github.com/user-attachments/assets/d6a0cb40-8890-438f-8d52-6adc2d6bf713) This is debug ![image](https://github.com/user-attachments/assets/70d9764c-a4b1-445f-bf1e-008d97d10f5a)
closed
2024-10-29T08:17:14Z
2024-10-30T01:11:17Z
https://github.com/sammchardy/python-binance/issues/1459
[]
XiaoWXHang
5
horovod/horovod
machine-learning
4,043
NVIDIA CUDA TOOLKIT version to run Horovod in Conda Environment
Hi Developers I wish to install horovod inside Conda environment for which I require nccl from NVIDIA CUDA toolkit installed in system so I just wanted to know which is version of NVIDIA CUDA Toolkit is required to build horovod inside conda env to run Pytorch library. Many Thanks Pushkar
open
2024-05-10T06:56:06Z
2025-01-31T23:14:47Z
https://github.com/horovod/horovod/issues/4043
[ "wontfix" ]
ppandit95
2
huggingface/datasets
computer-vision
6,791
`add_faiss_index` raises ValueError: not enough values to unpack (expected 2, got 1)
### Describe the bug Calling `add_faiss_index` on a `Dataset` with a column argument raises a ValueError. The following is the trace ```python 214 def replacement_add(self, x): 215 """Adds vectors to the index. 216 The index must be trained before vectors can be added to it. 217 The vectors are implicitly numbered in sequence. When `n` vectors are (...) 224 `dtype` must be float32. 225 """ --> 227 n, d = x.shape 228 assert d == self.d 229 x = np.ascontiguousarray(x, dtype='float32') ValueError: not enough values to unpack (expected 2, got 1) ``` ### Steps to reproduce the bug 1. Load any dataset like `ds = datasets.load_dataset("wikimedia/wikipedia", "20231101.en")["train"]` 2. Add an FAISS index on any column `ds.add_faiss_index('title')` ### Expected behavior The index should be created ### Environment info - `datasets` version: 2.18.0 - Platform: Linux-6.5.0-26-generic-x86_64-with-glibc2.35 - Python version: 3.9.19 - `huggingface_hub` version: 0.22.2 - PyArrow version: 15.0.2 - Pandas version: 2.2.1 - `fsspec` version: 2024.2.0 - `faiss-cpu` version: 1.8.0
closed
2024-04-08T01:57:03Z
2024-04-11T15:38:05Z
https://github.com/huggingface/datasets/issues/6791
[]
NeuralFlux
3
benbusby/whoogle-search
flask
250
[BUG] Whoogle spits out garbage when going to next page of search results
Whenever i try to go to the next page of a search (e.g. COVID-19) it spits out a ton of garbage The exact string is the following gAAAAABgZPRDBmNckg-txy85CufwUIccaLrnLWvW7gm9lyPJAXd8uFW1bFln-rKIyC3QxQAkoMDGjcZDgNlEtAS5_Kluz1OpGg== It's the same no matter what search i do Steps to reproduce the behavior: 1. Search something 2. Go to the next page 3. See garbage in search bar **Deployment Method** - [ ] Heroku (one-click deploy) - [ ] Docker - [] `run` executable - [x] pip/pipx - [ ] Other: [describe setup] **Version of Whoogle Search** - [] Latest build from [source] (i.e. GitHub, Docker Hub, pip, etc) - [ x] Version [v0.3.1] - [ ] Not sure **Desktop (please complete the following information):** - OS: Windows 7 SP1 Ultimate 64-bit - Browser Google Chrome - Version 89 **Additional context** Issues always occur
closed
2021-03-31T22:19:16Z
2021-04-27T13:46:19Z
https://github.com/benbusby/whoogle-search/issues/250
[ "bug" ]
Rowan-Bird
5
aiortc/aiortc
asyncio
558
Does the Raspberry PI 4B not support Google-CRC32C?
ity -Wdate-time -D_FORTIFY_SOURCE=2 -fPIC -I/usr/include/python3.7m -c src/google_crc32c/_crc32c.c -o build/temp.linux-aarch64-3.7/src/google_crc32c/_crc32c.o src/google_crc32c/_crc32c.c:3:10: fatal error: crc32c/crc32c.h: No such file or directory #include <crc32c/crc32c.h> ^~~~~~~~~~~~~~~~~ compilation terminated. ERROR:root:Compiling the C Extension for the crc32c library failed. To enable building / installing a pure-Python-only version, set 'CRC32C_PURE_PYTHON=1' in the environment. error: command 'aarch64-linux-gnu-gcc' failed with exit status 1 ---------------------------------------- Failed building wheel for google-crc32c Running setup.py clean for google-crc32c Failed to build google-crc32c Installing collected packages: pylibsrtp, google-crc32c, aiortc Running setup.py install for google-crc32c ... error Complete output from command /usr/bin/python3 -u -c "import setuptools, tokenize;__file__='/tmp/pip-install-zemk6oyq/google-crc32c/setup.py';f=getattr(tokenize, 'open', open)(__file__);code=f.read().replace('\r\n', '\n');f.close();exec(compile(code, __file__, 'exec'))" install --record /tmp/pip-record-_30_twxh/install-record.txt --single-version-externally-managed --compile: running install running build running build_py creating build creating build/lib.linux-aarch64-3.7 creating build/lib.linux-aarch64-3.7/google_crc32c copying src/google_crc32c/cext.py -> build/lib.linux-aarch64-3.7/google_crc32c copying src/google_crc32c/_checksum.py -> build/lib.linux-aarch64-3.7/google_crc32c copying src/google_crc32c/__config__.py -> build/lib.linux-aarch64-3.7/google_crc32c copying src/google_crc32c/__init__.py -> build/lib.linux-aarch64-3.7/google_crc32c copying src/google_crc32c/python.py -> build/lib.linux-aarch64-3.7/google_crc32c running build_ext building 'google_crc32c._crc32c' extension creating build/temp.linux-aarch64-3.7 creating build/temp.linux-aarch64-3.7/src creating build/temp.linux-aarch64-3.7/src/google_crc32c aarch64-linux-gnu-gcc -pthread -DNDEBUG -g -fwrapv -O2 -Wall -g -fstack-protector-strong -Wformat -Werror=format-security -Wdate-time -D_FORTIFY_SOURCE=2 -fPIC -I/usr/include/python3.7m -c src/google_crc32c/_crc32c.c -o build/temp.linux-aarch64-3.7/src/google_crc32c/_crc32c.o src/google_crc32c/_crc32c.c:3:10: fatal error: crc32c/crc32c.h: No such file or directory #include <crc32c/crc32c.h> ^~~~~~~~~~~~~~~~~ compilation terminated. ERROR:root:Compiling the C Extension for the crc32c library failed. To enable building / installing a pure-Python-only version, set 'CRC32C_PURE_PYTHON=1' in the environment. error: command 'aarch64-linux-gnu-gcc' failed with exit status 1 /------------------------ Raspberry pi: Distributor ID: Debian Description: Debian GNU/Linux 10 (buster) Release: 10 Codename: buster
closed
2021-09-03T10:14:20Z
2021-09-06T01:04:11Z
https://github.com/aiortc/aiortc/issues/558
[]
Canees
2
junyanz/pytorch-CycleGAN-and-pix2pix
computer-vision
1,409
Abouttransfer learning
closed
2022-04-18T10:05:36Z
2022-04-18T10:05:43Z
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/issues/1409
[]
ZhenyuLiu-SYSU
0
deepfakes/faceswap
deep-learning
722
has installed cuDNN,but not found
**Describe the bug** has installed cuDNN,but not found **To Reproduce** python setup.py **Expected behavior** WARNING Running without root/admin privileges INFO The tool provides tips for installation and installs required python packages INFO Setup in Windows 10 INFO Installed Python: 3.6.8 64bit INFO Encoding: cp936 INFO Upgrading pip... INFO Installed pip: 19.1.1 Enable Docker? [y/N] n INFO Docker Disabled Enable CUDA? [Y/n] y INFO CUDA Enabled INFO CUDA version: 10.1 ERROR cuDNN not found. See https://github.com/deepfakes/faceswap/blob/master/INSTALL.md#cudnn for instructions WARNING The minimum Tensorflow requirement is 1.12. Tensorflow currently has no official prebuild for your CUDA, cuDNN combination. Either install a combination that Tensorflow supports or build and install your own tensorflow-gpu. CUDA Version: 10.1 cuDNN Version: Help: Building Tensorflow: https://www.tensorflow.org/install/install_sources Tensorflow supported versions: https://www.tensorflow.org/install/source#tested_build_configurations Location of custom tensorflow-gpu wheel (leave blank to manually install): INFO Checking System Dependencies... INFO CMake version: 3.14.3 INFO Visual Studio 2015 version: 14.0 INFO Visual Studio C++ version: v14.0.24215.01 INFO 1. Install PIP requirements You may want to execute `chcp 65001` in cmd line to fix Unicode issues on Windows when installing dependencies **Screenshots** ![1](https://user-images.githubusercontent.com/26109912/57536578-07c27e00-7377-11e9-9efa-e3f35b30284f.png) ![2](https://user-images.githubusercontent.com/26109912/57536599-114be600-7377-11e9-9631-59e5a78b6d64.png) ![3](https://user-images.githubusercontent.com/26109912/57536731-60921680-7377-11e9-9845-ce5efd5e07ca.png) **Desktop (please complete the following information):** - Windows 10
closed
2019-05-10T15:00:49Z
2019-05-10T15:09:23Z
https://github.com/deepfakes/faceswap/issues/722
[]
chenkarl
1
Nemo2011/bilibili-api
api
698
[提问]上传视频遇到问题 AttributeError: 'NoneType' object has no attribute '__dict__'. Did you mean: '__dir__'?
**Python 版本:** 3.10 **模块版本:** 16.2.0 **运行环境:** Windows <!-- 务必提供模块版本并确保为最新版 --> --- 按照文档给的案例上传视频,credential和视频封面,视频文件都修改了,但是遇见这个问题 AttributeError: 'NoneType' object has no attribute '__dict__'. Did you mean: '__dir__'?
closed
2024-03-01T06:33:22Z
2024-03-15T14:14:36Z
https://github.com/Nemo2011/bilibili-api/issues/698
[ "bug", "solved" ]
RickyCui010
8
snarfed/granary
rest-api
46
Duplicate in-reply-to links on Tweets
In the last week or so, I've noticed Twitter posts have started showing up with duplicated in-reply-to links: ``` <article class="h-entry h-as-note"> <span class="u-uid">tag:twitter.com:653670712104738816</span> <time class="dt-published" datetime="2015-10-12T20:36:57+00:00">2015-10-12T20:36:57+00:00</time> <div class="h-card p-author"> <div class="p-name"><a class="u-url" href="https://kylewm.com">Kyle Mahan</a></div> <img class="u-photo" src="https://twitter.com/kylewmahan/profile_image?size=original" alt=""> </div> <a class="u-url" href="https://twitter.com/kylewmahan/status/653670712104738816"></a> <div class="e-content p-name"> <a href="https://twitter.com/WeWantPlates">@WeWantPlates</a> <a href="https://twitter.com/BethFad91">@BethFad91</a> oh good, it looks like most of the paint has already been scraped off by other people's utensils </div> <a class="u-in-reply-to" href="https://twitter.com/WeWantPlates/status/653649456454365184"></a> <a class="u-in-reply-to" href="https://twitter.com/WeWantPlates/status/653649456454365184"></a> </article> ``` I haven't looked into what's causing this yet
closed
2015-10-13T15:55:00Z
2015-10-13T18:05:29Z
https://github.com/snarfed/granary/issues/46
[]
karadaisy
4
CanopyTax/asyncpgsa
sqlalchemy
101
Asyncpg connection are not returning to a pool
An Asyncpg connection will not return to a pool connection if in the method __aenter__ was raised exception agter acquire_context. ``` async def __aenter__(self): self.acquire_context = self.pool.acquire(timeout=self.timeout) con = await self.acquire_context.__aenter__() self.transaction = con.transaction(**self.trans_kwargs) await self.transaction.__aenter__() return con ``` Cancelled error may be `raised acquire_context` in await of `transaction.__aenter__`. And Connectio return to the pool never.
closed
2019-09-15T19:36:50Z
2019-09-19T19:21:19Z
https://github.com/CanopyTax/asyncpgsa/issues/101
[]
matemax
0
numba/numba
numpy
9,650
Function with @guvectorize allow the index of array out of bound, not sure if this is in purpose
<!-- Thanks for opening an issue! To help the Numba team handle your information efficiently, please first ensure that there is no other issue present that already describes the issue you have (search at https://github.com/numba/numba/issues?&q=is%3Aissue). --> ## Reporting a bug <!-- Before submitting a bug report please ensure that you can check off these boxes: --> - [ x] have tried using the latest released version of Numba (most recent is visible in the release notes (https://numba.readthedocs.io/en/stable/release-notes-overview.html). - [ x] I have included a self contained code sample to reproduce the problem. i.e. it's possible to run as 'python bug.py'. <!-- Please include details of the bug here, including, if applicable, what you expected to happen! --> *Not sure if this behavior is expected or it is potentially can be improved. I did not see much discuss on this issue on the internet, so if this is expected, please ignore this.* Weird behavior: when running a python function decorated by @guvectorize, then the numpy array in this function can run with an out of bound index, and without generating any exception. Example code: ``` import numpy as np from numba import vectorize, float64, guvectorize,int64 @guvectorize([(int64[:], int64, int64[:])], '(n),()->(n)') def g(x, y, res): for i in range(x.shape[0]): res[i] = x[i + 10] + y # Add index 10 to make sure out of boundary for the array x x = np.array([1,2,3]) y = np.array([1]) myRes = g(x, y) print(myRes) # No error, the printed result is: #array([[ 12884901892, 1, 4075923963910]]) ``` So above fundtion try to access an numpy array "x" with an index out of bound in the "g" function. But this does not generate any error, and the result returned a random number. ---- I'm new to this kind of universal function, just guessing the cause. Maybe numba help to convert this python code to another format to execute, like a C code. Well, in C, the array name is a pointer that allow the index to out bound. It just calculate the element address using the array base address + the index, so the code is actually accessing a address that is out of the array and generate this random output. Not sure if correct, would like some insight about this behavior, because this generated a weird behavior in our model testing work. We test the same function with same input but got different output, and we eventually found out there is a index out of bound hiding in a loop and the random array element value caused a random function output. Hope can get some more insight on this behavior. Thanks
closed
2024-07-12T04:11:44Z
2024-08-22T01:52:33Z
https://github.com/numba/numba/issues/9650
[ "question", "stale" ]
BixiongXiang
3
tensorpack/tensorpack
tensorflow
733
The usage of dataflow
Will the get_data() and the reset_state() method be called only once or at the beginning of each epoch? I want to do some curriculum learning. If the get_data() method is called every epoch, then I can record the epoch index in it and change the data as epoch number increases. Currently I have a data set consists of millions of samples. I set the steps_per_epoch to 3000 and the batch size is 8. Thus each epoch only 24k samples are used. I want to use the simplest samples in the first epoch and increase the difficulty as the training goes. But it seems that in the beginning of the second epoch, get_data() is not called again.
closed
2018-04-20T01:23:23Z
2018-05-30T20:59:41Z
https://github.com/tensorpack/tensorpack/issues/733
[ "usage" ]
JesseYang
3
aminalaee/sqladmin
asyncio
415
Protocol, Domain & port with request.get_url over just reporting the path
### Checklist - [X] The bug is reproducible against the latest release or `master`. - [X] There are no similar issues or pull requests to fix it yet. ### Describe the bug When using SQLAdmin behind a proxy, the URLs use 'http://' instead of 'https://' This can be fixed by setting the Uvicorn proxy settings. However, using full URLs will lead to many unnecessary issues. Using just paths as mentioned here will work fine in all cases; https://github.com/encode/starlette/issues/538#issuecomment-1135096753 ### Steps to reproduce the bug Run SQLAdmin behind a proxy. ### Expected behavior All URLs should just be the subpath. ### Actual behavior All URLs contain the protocol, domain (optinally port as well) and finally the path. ### Debugging material _No response_ ### Environment Python 3.8 SQLAdmin 0.8.0 ### Additional context _No response_
closed
2023-01-19T14:06:20Z
2023-03-08T20:34:18Z
https://github.com/aminalaee/sqladmin/issues/415
[ "waiting-for-feedback" ]
Jorricks
5
davidsandberg/facenet
tensorflow
729
IndexError : index 1 is out of bounds for axis 0 with size 1
class_index = class_indices[i] line 332 of tripletloss.py file I am using LFW dataset people per batch = 45 and image per person 5 I have a user. when I have use image per person is 40 than I am also getting this error.
open
2018-04-30T04:07:17Z
2018-04-30T04:10:19Z
https://github.com/davidsandberg/facenet/issues/729
[]
praveenkumarchandaliya
0
ultralytics/ultralytics
pytorch
18,892
why cli results is different with python
### Search before asking - [x] I have searched the Ultralytics YOLO [issues](https://github.com/ultralytics/ultralytics/issues) and [discussions](https://github.com/orgs/ultralytics/discussions) and found no similar questions. ### Question ![Image](https://github.com/user-attachments/assets/0c2516ae-099b-4930-a2fa-d9717df14eca) vs ``` yolo predict model=yolo11m.pt source=video.avi show ``` python code gives no detections. Why? Weights are the same (default)? CLI results: video 1/1 (frame 11/54025) C:\repos\restaurant\detection\video.avi: 480x640 5 persons, 19 chairs, 4 potted plants, 6 dining tables, 1 laptop, 1 vase, 11.7ms ### Additional _No response_
closed
2025-01-25T22:50:01Z
2025-01-27T10:00:54Z
https://github.com/ultralytics/ultralytics/issues/18892
[ "question", "detect" ]
ankhafizov
2
iperov/DeepFaceLab
machine-learning
5,526
Train Quick96 press any key Forever
On step 6, after loading samples it says "Press any key", but nothing happens after pressing... Any ways i can fix it? Thanks. Running trainer. [new] No saved models found. Enter a name of a new model : 1 1 Model first run. Choose one or several GPU idxs (separated by comma). [CPU] : CPU [0] : NVIDIA GeForce GTX 1060 6GB [0] Which GPU indexes to choose? : 0 Initializing models: 100%|###############################################################| 5/5 [00:01<00:00, 2.72it/s] Loading samples: 100%|############################################################| 2951/2951 [00:05<00:00, 497.68it/s] Loading samples: 100%|##########################################################| 33410/33410 [01:09<00:00, 478.53it/s] Для продолжения нажмите любую клавишу . . .
open
2022-05-29T12:27:07Z
2023-07-25T09:36:26Z
https://github.com/iperov/DeepFaceLab/issues/5526
[]
huebez
5
pandas-dev/pandas
python
61,165
BUG: `datetime64[s]` fails round trip using `.to_parquet` and `read_parquet`
### Pandas version checks - [x] I have checked that this issue has not already been reported. - [x] I have confirmed this bug exists on the [latest version](https://pandas.pydata.org/docs/whatsnew/index.html) of pandas. - [x] I have confirmed this bug exists on the [main branch](https://pandas.pydata.org/docs/dev/getting_started/install.html#installing-the-development-version-of-pandas) of pandas. ### Reproducible Example ```python import pandas as pd c = pd.Series(["2024-01-01", "2025-01-01", "2026-01-01"], dtype="datetime64[s]") df0 = c.to_frame() print(df0.dtypes) df0.to_parquet("test.parquet") df1 = pd.read_parquet("test.parquet") print(df1.dtypes) ``` ### Issue Description The `dtype` changes from `datetime64[s]` to `datetime64[ms]`. ### Expected Behavior I would expect the `dtype` to remain unchanged. ### Installed Versions <details> INSTALLED VERSIONS ------------------ commit : 0691c5cf90477d3503834d983f69350f250a6ff7 python : 3.10.16 python-bits : 64 OS : Linux OS-release : 6.8.0-1021-azure Version : #25-Ubuntu SMP Wed Jan 15 20:45:09 UTC 2025 machine : x86_64 processor : x86_64 byteorder : little LC_ALL : None LANG : C.UTF-8 LOCALE : en_US.UTF-8 pandas : 2.2.3 numpy : 2.2.2 pytz : 2025.1 dateutil : 2.9.0.post0 pip : 25.0 Cython : None sphinx : None IPython : 8.34.0 adbc-driver-postgresql: None adbc-driver-sqlite : None bs4 : 4.13.3 blosc : None bottleneck : None dataframe-api-compat : None fastparquet : None fsspec : 2025.3.0 html5lib : None hypothesis : None gcsfs : None jinja2 : 3.1.6 lxml.etree : 5.3.1 matplotlib : None numba : None numexpr : None odfpy : None openpyxl : 3.1.5 pandas_gbq : None psycopg2 : None pymysql : None pyarrow : 19.0.1 pyreadstat : None pytest : None python-calamine : None pyxlsb : None s3fs : None scipy : None sqlalchemy : 2.0.39 tables : None tabulate : None xarray : None xlrd : 2.0.1 xlsxwriter : None zstandard : None tzdata : 2025.1 qtpy : None pyqt5 </details>
closed
2025-03-21T23:39:25Z
2025-03-22T11:19:48Z
https://github.com/pandas-dev/pandas/issues/61165
[ "Bug", "Datetime", "IO Parquet" ]
noahblakesmith
1
explosion/spaCy
nlp
12,611
support future pydantic v2
Spacy uses an older version of pydantic, please lighten the pinning to support 1.10.x and the forthcoming version 2.0.0
closed
2023-05-08T17:00:15Z
2023-09-08T00:02:11Z
https://github.com/explosion/spaCy/issues/12611
[ "enhancement", "third-party" ]
achapkowski
8
httpie/cli
rest-api
1,006
Redirected output starts response headers on same line as request body
When I run a POST request without redirection, I see the response headers start on a new line: ``` } } } } HTTP/1.1 201 Date: Mon, 21 Dec 2020 13:39:00 GMT Content-Length: 0 ``` But when I redirect the output, I see the `HTTP/1.1 201` on the same line as the request: ``` } } } }HTTP/1.1 201 Date: Mon, 21 Dec 2020 13:36:09 GMT Content-Length: 0 ``` The options I specified in each case were `http -v --pretty format --unsorted`; the only difference was in the second case I redirected the output to a file.
closed
2020-12-21T13:43:07Z
2021-02-06T11:19:42Z
https://github.com/httpie/cli/issues/1006
[ "bug" ]
hughpv
5
man-group/arctic
pandas
205
stock tick data storing tutorial.
Hi, is there any tutorial for storing tick data and how to update the data for my symbols?
closed
2016-08-30T03:15:59Z
2017-12-03T21:46:14Z
https://github.com/man-group/arctic/issues/205
[]
leolle
18
serengil/deepface
machine-learning
980
cv:resize issue for functions.extract_faces
Hi, there seems to be an issue with the `functions.extract_faces` method (using ssd). ``` File C:\ProgramData\anaconda3\Lib\site-packages\deepface\commons\functions.py:211, in extract_faces(img, target_size, detector_backend, grayscale, enforce_detection, align) 205 factor = min(factor_0, factor_1) 207 dsize = ( 208 int(current_img.shape[1] * factor), 209 int(current_img.shape[0] * factor), 210 ) --> 211 current_img = cv2.resize(current_img, dsize) 213 diff_0 = target_size[0] - current_img.shape[0] 214 diff_1 = target_size[1] - current_img.shape[1] error: OpenCV(4.9.0) D:\a\opencv-python\opencv-python\opencv\modules\imgproc\src\resize.cpp:4155: error: (-215:Assertion failed) inv_scale_x > 0 in function 'cv::resize' ```
closed
2024-01-28T20:28:28Z
2024-01-31T09:12:05Z
https://github.com/serengil/deepface/issues/980
[ "bug" ]
fechnologies-d
7
pywinauto/pywinauto
automation
932
Panel
## Expected Behavior ## Actual Behavior Unable to get the Control in the Static Panel and open the child window ## Steps to Reproduce the Problem 1. 2. 3. ## Short Example of Code to Demonstrate the Problem ## Specifications - Pywinauto version: - Python version and bitness: - Platform and OS:
open
2020-05-14T10:36:03Z
2020-06-07T13:19:28Z
https://github.com/pywinauto/pywinauto/issues/932
[ "question" ]
uvanesh
3
explosion/spaCy
data-science
13,264
Regex doesn't work if less than 3 characters?
<!-- NOTE: For questions or install related issues, please open a Discussion instead. --> ## How to reproduce the behaviour Taken and adjusted right from the docs: ```python import spacy from spacy.matcher import Matcher nlp = spacy.blank("en") matcher = Matcher(nlp.vocab, validate=True) pattern = [ { "TEXT": { "regex": r"4K" } } ] matcher.add("TV_RESOLUTION", [pattern]) doc = nlp("Sony 55 Inch 4K Ultra HD TV X90K Series:BRAVIA XR LED Smart Google TV, Dolby Vision HDR, Exclusive Features for PS 5 XR55X90K-2022 w/HT-A5000 5.1.2ch Dolby Atmos Sound Bar Surround Home Theater") res = matcher(doc) # res = [] ``` However if I add a `D` after `4K` in both strings, a match is found. Is there a minimal length restriction? ```python import spacy from spacy.matcher import Matcher nlp = spacy.blank("en") matcher = Matcher(nlp.vocab, validate=True) pattern = [ { "TEXT": { "regex": r"4KD" } } ] matcher.add("TV_RESOLUTION", [pattern]) doc = nlp("Sony 55 Inch 4KD Ultra HD TV X90K Series:BRAVIA XR LED Smart Google TV, Dolby Vision HDR, Exclusive Features for PS 5 XR55X90K-2022 w/HT-A5000 5.1.2ch Dolby Atmos Sound Bar Surround Home Theater") res = matcher(doc) # res = [[(11960903833032025891, 3, 4)]] ``` ## Your Environment <!-- Include details of your environment. You can also type `python -m spacy info --markdown` and copy-paste the result here.--> * Operating System: macOS * Python Version Used: 3.11.3 * spaCy Version Used: 3.7.2 * Environment Information: Nothing special
closed
2024-01-23T16:14:48Z
2024-02-23T00:05:21Z
https://github.com/explosion/spaCy/issues/13264
[ "feat / matcher" ]
SHxKM
3
joerick/pyinstrument
django
168
Feature request: cumulated time / total time / ncalls statistics + report
I used pyinstrument today to find bottlenecks in my optical simulation code, and found it overall very helpful. The HTML report is very usable and looks great! One feature I was missing (or didn't find :-)) compared to builtin cProfile, is the possibility to sort / display **cumulative time for individual functions**. I.e. total time spent in that function, regardless of the call stack above. This is really crucial to find "hot" functions, i.e. with short runtime but high call count. In the simplest form, the HTML report could show this as on-hover popup; or make it more fancy and display a sorted list grouped by module / function... If this already possible, I'd appreciate a pointer on how to...
closed
2021-11-30T12:48:12Z
2022-11-06T18:22:40Z
https://github.com/joerick/pyinstrument/issues/168
[]
loehnertj
4
dunossauro/fastapi-do-zero
sqlalchemy
234
Probleminha de versão do python na aula 10
Fiz esse gist, pois tive problema por causa da versão do Python na aula 10 https://gist.github.com/fabiocasadossites/7194d9c6b36eed1452547d7ea8f24bef
closed
2024-08-25T20:23:44Z
2024-08-27T17:32:21Z
https://github.com/dunossauro/fastapi-do-zero/issues/234
[]
fabiocasadossites
2
dmlc/gluon-cv
computer-vision
1,038
Issue with "pose estimation" using GPU
For this tutorial: https://gluon-cv.mxnet.io/build/examples_pose/cam_demo.html. I tried GPU, but failed with problems like : ``` [22:57:26] c:\jenkins\workspace\mxnet-tag\mxnet\src\operator\nn\cudnn\./cudnn_algoreg-inl.h:97: Running performance tests to find the best convolution algorithm, this can take a while... (set the environment variable MXNET_CUDNN_AUTOTUNE_DEFAULT to 0 to disable) [22:57:47] c:\jenkins\workspace\mxnet-tag\mxnet\src\operator\nn\cudnn\./cudnn_algoreg-inl.h:97: Running performance tests to find the best convolution algorithm, this can take a while... (set the environment variable MXNET_CUDNN_AUTOTUNE_DEFAULT to 0 to disable) [22:57:47] c:\jenkins\workspace\mxnet-tag\mxnet\src\operator\nn\cudnn\./cudnn_algoreg-inl.h:97: Running performance tests to find the best convolution algorithm, this can take a while... (set the environment variable MXNET_CUDNN_AUTOTUNE_DEFAULT to 0 to disable) [ WARN:0] global C:\projects\opencv-python\opencv\modules\videoio\src\cap_msmf.cpp (674) SourceReaderCB::~SourceReaderCB terminating async callback ``` It seems a problem with opencv, but why it happened when gpu is used? I am using latest gluoncv with mxnet 1.5 gpu cuda10 on win10.
closed
2019-11-13T15:05:07Z
2021-06-07T07:04:29Z
https://github.com/dmlc/gluon-cv/issues/1038
[ "Stale" ]
dbsxdbsx
4
CorentinJ/Real-Time-Voice-Cloning
python
549
Import Error
Hey, i am trying to run this code and everytime i run demo_toolbox.py there comes an error "failed to load qt binding" i tried reinstalling matplotlib and also tried installing PYQt5 . Need Help !!!
closed
2020-10-06T20:23:24Z
2020-10-12T09:55:04Z
https://github.com/CorentinJ/Real-Time-Voice-Cloning/issues/549
[]
jay-1104
5
Nemo2011/bilibili-api
api
298
【建议】爬取视频弹幕时对cookies应该不设置要求
看了一下代码,发现爬取视频弹幕需要提供cookies,但是大部分视频不需要cookies即可获取弹幕,是否可以修改为若不提供credential也可以爬取弹幕。
closed
2023-05-22T00:03:54Z
2023-05-24T11:17:20Z
https://github.com/Nemo2011/bilibili-api/issues/298
[]
jhzgjhzg
4
Avaiga/taipy
data-visualization
2,293
Have part or dialog centered to the element clicked
### Description Here, I have clicked on an icon and I have a dropdown menu of labels next to where I clicked: ![image](https://github.com/user-attachments/assets/025d60d6-8c2e-47ab-a534-74ac68ddc239) Here, I have clicked on icon and I see a dialog/part showing up next to where I clicked: ![image](https://github.com/user-attachments/assets/0bba233b-f0c6-45f1-bd4a-33d6b99bf64c) I want to do that generically to put anything in this part. If I click somewhere else, this dialog should disappear. ### Acceptance Criteria - [ ] If applicable, a new demo code is provided to show the new feature in action. - [ ] Integration tests exhibiting how the functionality works are added. - [ ] Any new code is covered by a unit tested. - [ ] Check code coverage is at least 90%. - [ ] Related issue(s) in taipy-doc are created for documentation and Release Notes are updated. ### Code of Conduct - [X] I have checked the [existing issues](https://github.com/Avaiga/taipy/issues?q=is%3Aissue+). - [ ] I am willing to work on this issue (optional)
closed
2024-11-29T10:51:56Z
2024-12-17T18:15:45Z
https://github.com/Avaiga/taipy/issues/2293
[ "🖰 GUI", "🟨 Priority: Medium", "✨New feature", "🔒 Staff only" ]
FlorianJacta
15
inducer/pudb
pytest
84
IPython crashes when enabled with %pudb
If you use `%pudb` and then use `!` to enable IPython, it crashes (this is with IPython 1.0). The API has changed, I think. See https://github.com/inducer/pudb/pull/83.
open
2013-08-13T04:34:13Z
2014-01-25T20:17:55Z
https://github.com/inducer/pudb/issues/84
[]
asmeurer
1
gradio-app/gradio
data-visualization
10,611
thinking=true in some models
- [X] I have searched to see if a similar issue already exists. **Is your feature request related to a problem? Please describe.** The IBM model granite has a setting which allows for reasoning or not. You set thinking=true or false. It's like this: ```python input_ids = tokenizer.apply_chat_template(conv, return_tensors="pt", thinking=True, return_dict=True, add_generation_prompt=True).to(device) ``` https://huggingface.co/ibm-granite/granite-3.2-8b-instruct-preview We have no way of setting this on the vllm worker, from what I understand. I can modify the tokenized and have one version or the other, but that's cumbersome to say the least. **Describe the solution you'd like** A way to send additional parameters to the models.
closed
2025-02-17T20:09:40Z
2025-02-17T21:10:44Z
https://github.com/gradio-app/gradio/issues/10611
[]
surak
2
3b1b/manim
python
1,824
Pip doesn't install a new enough numpy
### Describe the bug I ran ``` $ pip install manimgl $ manimgl ``` and got the error ``` import numpy.typing as npt ModuleNotFoundError: No module named 'numpy.typing' ``` ### Additional context I have numpy 1.19 and I numpy.typing requires numpy 1.20. I think the pip requirements files need to specify "numpy >= 1.20" rather than just "numpy" as it does now.
closed
2022-06-02T21:51:49Z
2022-06-04T08:04:34Z
https://github.com/3b1b/manim/issues/1824
[ "bug" ]
thomasahle
3
twopirllc/pandas-ta
pandas
385
Stochastic Rsi is very different from trading view values (again without proof)
**Which version are you running? The lastest version is on Github. Pip is for major releases.** ```python import pandas_ta as ta print(ta.version) ``` **Upgrade.** ```sh $ pip install -U git+https://github.com/twopirllc/pandas-ta ``` **Describe the bug** I ran a simple call to stochastic rsi with the same parameters 14,14,3,3. The result are much different from Tradingview values. **To Reproduce** dt = ta.stochrsi(df['Close'], length=14, rsi_length=14, k=3, d=3) df['momentum_stoch_rsi_d'] = dt['STOCHRSId_14_14_3_3'] df['momentum_stoch_rsi_k'] = dt['STOCHRSIk_14_14_3_3'] It is much different even though parameters are the same. **Screenshots** If applicable, add screenshots to help explain your problem. **Additional context** Add any other context about the problem here. Thanks for using Pandas TA!
closed
2021-09-02T10:48:31Z
2021-09-02T15:19:44Z
https://github.com/twopirllc/pandas-ta/issues/385
[ "bug" ]
hosseinghafarian
1
CorentinJ/Real-Time-Voice-Cloning
tensorflow
1,198
Error when training encoder
Hello, I am appealing to all who can and want to help. so I have a problem when I run encoder training, the first time everything is working fine and then gives an error. here it is: .......... Step 110 Loss: 3.9845 EER: 0.4027 Step time: mean: 31023ms std: 39773ms Average execution time over 10 steps: Blocking, waiting for batch (threaded) (10/10): mean: 26881ms std: 38848ms Data to cpu (10/10): mean: 1ms std: 0ms Forward pass (10/10): mean: 966ms std: 37ms Loss (10/10): mean: 32ms std: 2ms Backward pass (10/10): mean: 2471ms std: 54ms Parameter update (10/10): mean: 7ms std: 1ms Extras (visualizations, saving) (10/10): mean: 0ms std: 1ms ........Traceback (most recent call last): File "Z:\Real-Time-Voice-Cloning-master\encoder_train.py", line 44, in <module> train(**vars(args)) File "Z:\Real-Time-Voice-Cloning-master\encoder\train.py", line 71, in train for step, speaker_batch in enumerate(loader, init_step): File "C:\Users\Professional\AppData\Local\Programs\Python\Python39\lib\site-packages\torch\utils\data\dataloader.py", line 634, in __next__ data = self._next_data() File "C:\Users\Professional\AppData\Local\Programs\Python\Python39\lib\site-packages\torch\utils\data\dataloader.py", line 1326, in _next_data return self._process_data(data) File "C:\Users\Professional\AppData\Local\Programs\Python\Python39\lib\site-packages\torch\utils\data\dataloader.py", line 1372, in _process_data data.reraise() File "C:\Users\Professional\AppData\Local\Programs\Python\Python39\lib\site-packages\torch\_utils.py", line 644, in reraise raise exception Exception: Caught Exception in DataLoader worker process 2. Original Traceback (most recent call last): File "C:\Users\Professional\AppData\Local\Programs\Python\Python39\lib\site-packages\torch\utils\data\_utils\worker.py", line 308, in _worker_loop data = fetcher.fetch(index) File "C:\Users\Professional\AppData\Local\Programs\Python\Python39\lib\site-packages\torch\utils\data\_utils\fetch.py", line 54, in fetch return self.collate_fn(data) File "Z:\Real-Time-Voice-Cloning-master\encoder\data_objects\speaker_verification_dataset.py", line 55, in collate return SpeakerBatch(speakers, self.utterances_per_speaker, partials_n_frames) File "Z:\Real-Time-Voice-Cloning-master\encoder\data_objects\speaker_batch.py", line 9, in __init__ self.partials = {s: s.random_partial(utterances_per_speaker, n_frames) for s in speakers} File "Z:\Real-Time-Voice-Cloning-master\encoder\data_objects\speaker_batch.py", line 9, in <dictcomp> self.partials = {s: s.random_partial(utterances_per_speaker, n_frames) for s in speakers} File "Z:\Real-Time-Voice-Cloning-master\encoder\data_objects\speaker.py", line 34, in random_partial self._load_utterances() File "Z:\Real-Time-Voice-Cloning-master\encoder\data_objects\speaker.py", line 18, in _load_utterances self.utterance_cycler = RandomCycler(self.utterances) File "Z:\Real-Time-Voice-Cloning-master\encoder\data_objects\random_cycler.py", line 14, in __init__ raise Exception("Can't create RandomCycler from an empty collection") Exception: Can't create RandomCycler from an empty collection what wrong? How can I fix it?
open
2023-04-19T10:38:46Z
2023-04-19T10:38:46Z
https://github.com/CorentinJ/Real-Time-Voice-Cloning/issues/1198
[]
terminatormlp
0
scikit-image/scikit-image
computer-vision
6,890
Update Hausdorff Distance example to show usage as a segmentation metric and clarify docstring
### Description: ## What is the issue? The current version of [the Hausdorff Distance example](https://scikit-image.org/docs/stable/auto_examples/segmentation/plot_hausdorff_distance.html#hausdorff-distance) computes the distance on a set of four points. The example, however, is a bit confusing, as generally Hausdorff Distance is used as a segmentation metric, and therefore starts from segmentation masks. As the method itself takes as input parameters named `image0` and `image1`, it leads to some confusion where users may expect the method to work *directly* on the segmentation masks, instead of on "images **of contours**". This is particularly confusing since there is no direct method to compute a "contour image" based on a segmentation mask. We can see this confusion in action in some uses of the metric on GitHub, sometimes in code accompanying published results [e.g. 1, 2]. [1] : "Unsupervised Nuclei Segmentation using Spatial Organization Priors" -- published in MICCAI 22 -- [metrics.py](https://github.com/loic-lb/Unsupervised-Nuclei-Segmentation-using-Spatial-Organization-Priors/blob/58200221430f19c955039d7bf56c0c0f9739ef87/performance/metrics.py), called from [objmetrics.py](https://github.com/loic-lb/Unsupervised-Nuclei-Segmentation-using-Spatial-Organization-Priors/blob/58200221430f19c955039d7bf56c0c0f9739ef87/performance/objmetrics.py) with the same arguments as the Dice score. [2] : "Head and Neck Tumour Segmentation and Precition of Patient Survival" -- published in MICCAI 21 -- [metrics.py](https://github.com/EmmanuelleB985/Head-and-Neck-Tumour-Segmentation-and-Prediction-of-Patient-Survival/blob/bb36a0aa953367775d140abcc112342a50066759/src/Segmentation_Task/metrics.py) returns average of dice and hausdorff_distance, called with the same arguments. ## Possible improvements The easiest way to mitigate the issue would probably be to: * Update the **example** so that it starts from segmentation masks (ground truth and prediction) and shows how to create a "contours" image *then* compute the metric. * Update the **docstring** so that it explicitly states that it expects contours image and not segmentation masks. In the longer term, it may be useful to provide either a method to quickly generate a "contours" image from a binary mask (as the `find_contours` method returns a list of coordinates which is not compatible with the behaviour of `hausdorff_distance`), or an alternative method (e.g. `hausdorff_distance_from_masks`) that uses `find_contours` on the masks first. ### Possible updated example: This could replace: https://github.com/scikit-image/scikit-image/blob/main/doc/examples/segmentation/plot_hausdorff_distance.py ```python """ ================== Hausdorff Distance ================== This example shows how to calculate the Hausdorff distance between a "ground truth" and a "predicted" segmentation mask. The `Hausdorff distance <https://en.wikipedia.org/wiki/Hausdorff_distance>`__ is the maximum distance between any point on the first set and its nearest point on the second set, and vice-versa. To use it as a segmentation metric, the contours of the masks have to be computed first. In this example, this is done by removing the eroded mask from the mask itself. """ import numpy as np import matplotlib.pyplot as plt from skimage import metrics from skimage.morphology import erosion, disk # Creates a "ground truth" binary mask with a disk, and a partially overlapping "predicted" rectangle ground_truth = np.zeros((100, 100), dtype=bool) predicted = ground_truth.copy() ground_truth[30:71, 30:71] = disk(20) predicted[25:65, 40:70] = True # Creates "contours" image by xor-ing an erosion se = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) gt_contour = ground_truth ^ erosion(ground_truth, se) predicted_contour = predicted ^ erosion(predicted, se) # Computes & display the distance & the corresponding pair of points distance = metrics.hausdorff_distance(gt_contour, predicted_contour) pair = metrics.hausdorff_pair(gt_contour, predicted_contour) plt.figure(figsize=(15, 5)) plt.subplot(1, 3, 1) plt.imshow(ground_truth) plt.subplot(1, 3, 2) plt.imshow(predicted) plt.subplot(1, 3, 3) plt.imshow(gt_contour) plt.imshow(predicted_contour, alpha=0.5) plt.plot([pair[0][1], pair[1][1]], [pair[0][0], pair[1][0]], 'wo-') plt.title(f"HD={distance:.3f}px") plt.show() ``` ### Possible updated docstring ```python def hausdorff_distance(image0, image1, method = 'standard'): """Calculate the Hausdorff distance between nonzero elements of given images. To use as a segmentation metric, the method should receive as input images containing the contours of the objects as nonzero elements. Parameters ---------- image0, image1 : ndarray Arrays where ``True`` represents a point that is included in a set of points. Both arrays must have the same shape. method : {'standard', 'modified'}, optional, default = 'standard' The method to use for calculating the Hausdorff distance. ``standard`` is the standard Hausdorff distance, while ``modified`` is the modified Hausdorff distance. Returns ------- distance : float The Hausdorff distance between coordinates of nonzero pixels in ``image0`` and ``image1``, using the Euclidean distance. Notes ----- The Hausdorff distance [1]_ is the maximum distance between any point on ``image0`` and its nearest point on ``image1``, and vice-versa. The Modified Hausdorff Distance (MHD) has been shown to perform better than the directed Hausdorff Distance (HD) in the following work by Dubuisson et al. [2]_. The function calculates forward and backward mean distances and returns the largest of the two. References ---------- .. [1] http://en.wikipedia.org/wiki/Hausdorff_distance .. [2] M. P. Dubuisson and A. K. Jain. A Modified Hausdorff distance for object matching. In ICPR94, pages A:566-568, Jerusalem, Israel, 1994. :DOI:`10.1109/ICPR.1994.576361` http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.1.8155 Examples -------- >>> points_a = (3, 0) >>> points_b = (6, 0) >>> shape = (7, 1) >>> image_a = np.zeros(shape, dtype=bool) >>> image_b = np.zeros(shape, dtype=bool) >>> image_a[points_a] = True >>> image_b[points_b] = True >>> hausdorff_distance(image_a, image_b) 3.0 """ ``` ### Possible additional function To compute directly Hausdorff's distance from the segmentation masks using `find_contours`. ```python def hausdorff_distance_mask(image0, image1, method = 'standard'): """Calculate the Hausdorff distance between the contours of two segmentation masks. Parameters ---------- image0, image1 : ndarray Arrays where ``True`` represents a pixel from a segmented object. Both arrays must have the same shape. method : {'standard', 'modified'}, optional, default = 'standard' The method to use for calculating the Hausdorff distance. ``standard`` is the standard Hausdorff distance, while ``modified`` is the modified Hausdorff distance. Returns ------- distance : float The Hausdorff distance between coordinates of the segmentation mask contours in ``image0`` and ``image1``, using the Euclidean distance. Notes ----- The Hausdorff distance [1]_ is the maximum distance between any point on the contour of ``image0`` and its nearest point on the contour of ``image1``, and vice-versa. The Modified Hausdorff Distance (MHD) has been shown to perform better than the directed Hausdorff Distance (HD) in the following work by Dubuisson et al. [2]_. The function calculates forward and backward mean distances and returns the largest of the two. References ---------- .. [1] http://en.wikipedia.org/wiki/Hausdorff_distance .. [2] M. P. Dubuisson and A. K. Jain. A Modified Hausdorff distance for object matching. In ICPR94, pages A:566-568, Jerusalem, Israel, 1994. :DOI:`10.1109/ICPR.1994.576361` http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.1.8155 Examples -------- >>> ground_truth = np.zeros((100, 100), dtype=bool) >>> predicted = ground_truth.copy() >>> ground_truth[30:71, 30:71] = disk(20) >>> predicted[25:65, 40:70] = True >>> hausdorff_distance_mask(ground_truth, predicted) 11.40175425099138 """ if method not in ('standard', 'modified'): raise ValueError(f'unrecognized method {method}') a_points = np.concatenate(find_contours(image0>0)) b_points = np.concatenate(find_contours(image1>0)) # Handle empty sets properly: # - if both sets are empty, return zero # - if only one set is empty, return infinity if len(a_points) == 0: return 0 if len(b_points) == 0 else np.inf elif len(b_points) == 0: return np.inf fwd, bwd = ( cKDTree(a_points).query(b_points, k=1)[0], cKDTree(b_points).query(a_points, k=1)[0], ) if method == 'standard': # standard Hausdorff distance return max(max(fwd), max(bwd)) elif method == 'modified': # modified Hausdorff distance return max(np.mean(fwd), np.mean(bwd)) ```
open
2023-04-13T08:28:20Z
2023-10-26T11:48:50Z
https://github.com/scikit-image/scikit-image/issues/6890
[ ":pray: Feature request" ]
adfoucart
9
axnsan12/drf-yasg
django
762
Not able to group any ListAPIView using Tags
I am not able to group any ListAPIView using Tags. This seems to be happening for only ListAPIView. There is no error or warning on Django debug console. The particular API gets grouped in the default untagged group. Any ideas on how to overcome this? ``` class GET_CurrencyList_API(generics.ListAPIView): """ List Currencies. API for Listing currencies. **ORDERING**: **Tags**: Currencies """ permission_classes = [permissions.AllowAny] pagination_class = LargeResultsSetPagination filter_backends = (filters.DjangoFilterBackend,) serializer_class = CurrecyListSerializer filterset_class = CurrenciesListFilter queryset = Currencies.objects.all() @swagger_auto_schema(tags=['Currency Ops']) def get_queryset(self): return self.queryset ``` ![image](https://user-images.githubusercontent.com/60269206/146881449-a81f19c0-4122-41a8-9164-2f5ca3bcea62.png) I have tagged both APIs with the Currency Ops group. But only non-listapiviews seem to be grouping. The other API uses generics.GenericAPIView.
open
2021-12-21T06:22:39Z
2025-03-21T10:49:34Z
https://github.com/axnsan12/drf-yasg/issues/762
[ "bug", "help wanted", "1.21.x" ]
aibharata
2
serengil/deepface
deep-learning
537
RAM leak with multiple calls
Hello @serengil, many thanks for this awesome library! I noticed a non neglectible memory leak when calling `DeepFace.analyze()` multiple times. I've seen #78 and your suggestion to not use the function in a `for` loop and to use the `tf.keras.backend.clear_session()` to clear the tf graph. Unfortunately, even calling `tf.keras.backend.clear_session()` at every iteration does not stop the memory leak. I really need to use a for loop, as I'm processing a large dataset of videos, so I need to extract the frames and pass them to the function (can't use filenames instead of actual frames). The pseudo-code is the following: ```python models = {} models['race'] = DeepFace.build_model('Race') dataset_results = list() for v in videos: frame_list = extract_fixed_number_of_frames(v) deepface_result = DeepFace.analyze(frame_list, actions=['race'], models=models) dataset_results.append(deepface_result) ``` The dataset is too large to load it entirely and call `DeepFace.analyze([frame_list_1, ..., frame_list_v])`. Do I have other options other than splitting the dataset into chunks that can fit my RAM considering the memory leak? Do you have any idea on what part of the code is leaking memory? The models are pre-built and the face detector (opencv) is allocated once and retrieved as a global variable, so those should be ok.
closed
2022-08-19T09:01:54Z
2022-08-20T11:14:55Z
https://github.com/serengil/deepface/issues/537
[ "question" ]
nicobonne
6
nltk/nltk
nlp
3,024
nltk 3.7 requires explicit download of omw-1.4 on Linux
Consider the following script: ``` import nltk nltk.download("wordnet") nltk.corpus.wordnet.synsets("test") ``` This runs successfully on both Windows and Linux for nltk version 3.5, however for version 3.7 it only succeeds for Windows and produces the following error on Linux: > [nltk_data] Downloading package wordnet to > [nltk_data] [redacted]/nltk_data... > [nltk_data] Package wordnet is already up-to-date! > Traceback (most recent call last): > File "[redacted]/.venv/lib/python3.9/site-packages/nltk/corpus/util.py", line 84, in __load > root = nltk.data.find(f"{self.subdir}/{zip_name}") > File "[redacted]/.venv/lib/python3.9/site-packages/nltk/data.py", line 583, in find > raise LookupError(resource_not_found) > LookupError: > \********************************************************************** > Resource omw-1.4 not found. > Please use the NLTK Downloader to obtain the resource: > > \>\>\> import nltk > \>\>\> nltk.download('omw-1.4') >
closed
2022-07-21T09:24:05Z
2024-11-18T13:38:10Z
https://github.com/nltk/nltk/issues/3024
[]
lanzkron
8
facebookresearch/fairseq
pytorch
5,142
text after filtering OOV is empty output
Japanese TTS downloaded the model with - wget https://dl.fbaipublicfiles.com/mms/tts/jvn.tar.gz after running infer.py, there is no text after the line - text after filtering OOV: What's the problem?
closed
2023-05-24T03:02:51Z
2023-05-25T01:20:41Z
https://github.com/facebookresearch/fairseq/issues/5142
[ "bug", "needs triage" ]
lisea2017
8
tensorlayer/TensorLayer
tensorflow
535
Failed: TensorLayer (b10975ab)
*Sent by Read the Docs (readthedocs@readthedocs.org). Created by [fire](https://fire.fundersclub.com/).* --- | TensorLayer build #7116813 --- | ![](https://media.readthedocs.org/images/email-header.png) --- | Build Failed for TensorLayer (latest) --- Error: Problem parsing YAML configuration. Invalid "python.version": expected one of (2, 2.7, 3, 3.5), got 3.6 You can find out more about this failure here: [TensorLayer build #7116813](https://readthedocs.org/projects/tensorlayer/builds/7116813/) \- failed If you have questions, a good place to start is the FAQ: <https://docs.readthedocs.io/en/latest/faq.html> You can unsubscribe from these emails in your [Notification Settings](https://readthedocs.org/dashboard/tensorlayer/notifications/) Keep documenting, Read the Docs | Read the Docs <https://readthedocs.org> --- ![](http://email.readthedocs.org/o/eJwNzEkOgzAMAMDXNEfLWZzlkMdkMQWJEskBqv6-zAOmZxuNsUlt2aCO6Cyi00Yn0CaQh0QU3MvhlysSTJabZYJw6efKfbQJQ95qzT7qaotPXvdaDVVqFLhZTIEjekYl-eRjDtnLj-UJl00Yluvoz9f2q0Ibnz_GJiq7)
closed
2018-04-30T04:12:23Z
2018-04-30T04:26:32Z
https://github.com/tensorlayer/TensorLayer/issues/535
[]
fire-bot
0
lux-org/lux
pandas
186
[SETUP] Failed building wheel for scikit-learn
I am working on a Ubuntu 18.04.5 LTS machine, and I am trying to install lux-api using pip as described in the docs. My installation exits on the following error: error: Command "x86_64-linux-gnu-gcc -pthread -Wno-unused-result -Wsign-compare -DNDEBUG -g -fwrapv -O2 -Wall -g -fstack-protector-strong -Wformat -Werror=format-security -g -fwrapv -O2 -g -fstack-protector-strong -Wformat -Werror=format-security -Wdate-time -D_FORTIFY_SOURCE=2 -fPIC -I/usr/local/lib/python3.7/dist-packages/numpy/core/include -I/usr/local/lib/python3.7/dist-packages/numpy/core/include -I/usr/include/python3.7m -c sklearn/__check_build/_check_build.c -o build/temp.linux-x86_64-3.7/sklearn/__check_build/_check_build.o -MMD -MF build/temp.linux-x86_64-3.7/sklearn/__check_build/_check_build.o.d -fopenmp" failed with exit status 1 Any help will be great! Thanks
closed
2020-12-23T20:01:14Z
2021-01-06T09:21:17Z
https://github.com/lux-org/lux/issues/186
[ "setup" ]
vmreyes12
1
d2l-ai/d2l-en
tensorflow
1,779
The `devices` argument in the TF implementation of d2l.predict_seq2seq
The TF implementation of `d2l.predict_seq2seq` in https://github.com/d2l-ai/d2l-en/pull/1768/files?file-filters%5B%5D=.md#diff-dbae7acee5140a9e76359207c8a1b718efcc82d4e7fbd194d6036ab0ee8e2130R883 removes `devices` argument with a note "We don't need the `device` argument in TF as TF uses available device automatically." @biswajitsahoo1111 and @terrytangyuan, does it hurt if we force to specify `device` like what we do in the mxnet and pytorch implementations? One benefit is that the same `d2l.predict_seq2seq` function will share the same interface (same list of arguments, all passing `device`) to allow us to combine many code blocks to avoid redundancy.
open
2021-06-08T01:42:02Z
2023-10-31T14:20:58Z
https://github.com/d2l-ai/d2l-en/issues/1779
[ "tensorflow-adapt-track" ]
astonzhang
5
davidsandberg/facenet
computer-vision
919
Training on a small dataset
I have a small dataset and I get the OutOfRangeError after a few epochs. Is it possible to use the dataset multiple times (e.g. `dataset.repeat()` )? How should I modify the code?
open
2018-11-13T14:20:13Z
2019-04-25T07:23:45Z
https://github.com/davidsandberg/facenet/issues/919
[]
FSet89
1
vaexio/vaex
data-science
2,343
[BUG-REPORT] rename when the new name is already a column has unexpected results
so this is a tricky little bug Because we were renaming but not dropping the original columns, _sometimes_ vaex wouldn't overwrite correctly (I'll make an issue in the vaex github). You can run these to understand the issue fully ``` import vaex import numpy as np df = vaex.example()[["x","y"]] df["data_x"] = np.random.rand(len(df)) df["data_y"] = np.random.rand(len(df)) df.rename("data_x", "x") df.rename("data_y", "y") ``` This will work as expected. The dataframe will show 2 columns, x, and y, and the values will match that of data_x and data_y This will _fail_ ``` df = vaex.from_arrays( data_x = np.random.rand(1000), data_y = np.random.rand(1000), x = np.random.rand(1000), y = np.random.rand(1000) ) df.rename("data_x", "x") df.rename("data_y", "y") ``` The reason has to do with the state. If you look at the `state_get()` of either dataframe `df.state_get()` You'll see something like this ``` {'virtual_columns': {}, 'column_names': ['x', 'y', 'x', 'y'], 'renamed_columns': [('data_x', 'x'), ('data_y', 'y')], ... } ``` You see the columns are `["x", "y", "x", "y]` The _issue_ is that whichever x and y came second will be the ones used. So when we rename data_x and data_y, if they were "first" in the dataframe, the rename won't work as expected ## What should happen? Ideally, if the column already exists, it should be renamed to a hidden `_column_` and the new one should take over. But at the minimum, vaex should throw an error that you cannot rename to a column that already exists. One of these, but ideally the first **Software information** - Vaex version (`import vaex; vaex.__version__)`: 4.16.0 - Vaex was installed via: pip / conda-forge / from source - OS:
open
2023-02-24T16:42:20Z
2023-02-24T16:42:47Z
https://github.com/vaexio/vaex/issues/2343
[]
Ben-Epstein
0
KevinMusgrave/pytorch-metric-learning
computer-vision
727
Numpy requirement
Hello, pytorch-metric-learning has this numpy requirement that makes it hard to work with other package needing numpy > 2.0. Would it be possible to loosen the numpy requirement ? https://github.com/KevinMusgrave/pytorch-metric-learning/blob/60bab5ff9233de90b01a5c28d6a5c6cb02604640/setup.py#L42
closed
2024-10-31T14:49:41Z
2024-11-04T09:32:39Z
https://github.com/KevinMusgrave/pytorch-metric-learning/issues/727
[]
pchampio
2
pytorch/vision
computer-vision
8,270
CocoDetection dataset incompatible with Faster R-CNN model Training and mAP calculation
### 🐛 Describe the bug ### **🐛 Bug** I would like to thank you for Object Detection Finetuning tutorial. The **CocoDetection** dataset appears to be incompatible with the Faster R-CNN model, I have been using **transforms-v2-end-to-end-object-detection-segmentation-example** for coco detection. The TorchVision Object Detection Finetuning tutorial specifies the format of datasets to be compatible with the Mask R-CNN model: datasets' getitem method should output an image and a target with fields boxes, labels, area, etc. The CocoDetection dataset returns the COCO annotations as the target. After Training and Evaluation (_engine.evaluate)_ The mAP scrores are always 0 for every epoch. **Dataset:** ```Python from torchvision.datasets import CocoDetection ,wrap_dataset_for_transforms_v2 transforms = v2.Compose( [ v2.ToPILImage(), v2.Resize(512), v2.RandomPhotometricDistort(p=1), v2.RandomZoomOut(fill={tv_tensors.Image: (123, 117, 104), "others": 0}), v2.RandomIoUCrop(), v2.RandomHorizontalFlip(p=1), v2.ToTensor(), v2.ToDtype(torch.float32, scale=True), ] ) dataset = CocoDetection(root_dir, annotation_file,transforms=transforms) dataset = wrap_dataset_for_transforms_v2(dataset, target_keys=("boxes", "labels")) ``` ### **Expected behavior** FasterRcnn model output from evaluation: 45514: {'boxes': tensor([[ 40.1482, 48.6490, 46.0760, 50.4945], [ 56.4980, 98.9506, 59.9611, 99.8110], [ 16.5955, 50.3514, 20.7766, 51.7256], [ 7.7093, 49.7779, 9.9628, 51.1177], [ 23.2416, 115.2277, 27.9833, 116.0603], [ 6.2100, 43.7826, 12.1565, 44.4718], [ 84.3244, 92.1326, 89.6173, 92.8679], [ 27.8029, 111.4202, 33.1342, 112.3421], [ 6.4772, 83.6187, 11.6571, 85.1347], [ 12.0571, 57.7298, 17.3467, 58.6374], [ 52.0026, 100.2936, 55.6111, 101.0397], [ 32.9334, 95.2229, 36.7513, 96.0473], [ 11.9714, 50.6148, 16.0876, 51.3073], [ 36.5298, 99.2084, 40.1270, 100.3034], [ 56.8915, 95.4639, 59.8486, 96.2372], [ 29.7059, 95.3435, 34.5201, 96.1218], [ 83.4291, 96.4723, 89.3993, 97.1828], [ 80.5682, 114.7297, 86.4728, 115.2060], [ 55.3361, 96.1351, 57.5648, 97.3579], [ 87.8969, 120.9048, 91.9940, 122.8857], [ 79.1790, 95.7387, 83.8181, 96.0961], [ 5.2113, 81.8440, 12.3168, 82.5170], [ 11.9503, 9.1723, 15.8027, 10.5436], [ 43.5947, 115.0965, 46.6917, 116.0323], [ 36.3678, 44.5311, 45.5149, 45.0957], [ 64.0280, 91.6801, 70.0944, 92.6666], [ 34.9408, 48.2833, 39.4942, 48.7989], [ 44.6860, 34.5384, 48.7593, 35.4988], [ 8.5666, 52.0507, 9.7412, 53.2962], [ 59.0582, 114.7045, 62.3767, 115.6113], [ 42.6140, 95.4168, 47.2140, 95.9096], [ 51.6593, 116.3869, 54.5132, 117.3841], [ 10.2391, 8.1375, 15.3591, 9.5619], [ 79.1855, 103.1416, 83.1228, 104.2892], [ 11.6779, 115.0183, 15.2959, 115.6937], [ 92.2911, 64.1361, 97.0701, 65.2341], [ 77.5316, 94.2480, 88.9283, 103.3851], [ 20.0655, 29.8961, 25.1227, 31.4927], [ 41.8090, 91.6322, 66.6452, 114.4692], [ 1.7047, 99.8426, 5.1214, 100.9323], [ 21.0609, 30.4280, 25.2658, 31.7394], [ 77.2151, 111.6185, 83.4417, 112.1318], [ 21.3434, 105.4950, 25.2204, 106.5172], [ 0.0000, 100.4384, 44.0517, 127.3968], [ 37.8296, 43.6599, 41.4970, 44.9153], [101.9358, 28.7851, 107.8658, 29.7577], [ 84.6480, 112.4950, 89.6441, 113.4983], [ 32.0187, 48.2305, 34.6299, 49.9225], [ 21.0508, 96.1484, 49.0644, 115.7840], [ 78.7586, 91.0307, 83.5991, 92.0456], [ 7.4563, 99.3216, 11.9333, 100.4296], [ 41.8862, 39.9427, 48.0095, 40.6046], [ 64.2320, 110.5276, 69.4041, 111.1726], [ 48.5087, 35.6968, 51.0966, 36.3254], [ 69.9470, 80.5252, 77.2012, 81.4588], [ 64.5411, 5.3913, 69.1044, 6.1687], [ 14.9313, 118.7279, 18.5300, 119.9807], [ 67.1189, 75.9650, 74.1020, 76.6732], [104.7447, 31.4134, 109.5322, 32.3514], [ 68.2009, 112.8180, 71.6182, 113.7542], [ 77.4721, 33.7746, 80.8393, 34.7606], [ 9.3352, 80.4828, 12.7890, 82.0704], [ 65.1386, 107.5109, 71.5020, 108.5092], [ 0.0000, 95.9446, 24.0685, 127.6092], [ 43.3848, 100.4263, 46.2075, 101.2998], [ 14.2563, 116.5107, 17.7641, 117.3038], [ 75.3176, 28.1107, 79.5012, 29.0837], [ 21.1844, 99.2131, 24.2272, 100.0415], [ 59.2131, 7.5139, 63.0848, 8.2906], [ 0.0000, 48.6410, 43.9125, 57.1178], [ 92.4588, 61.7449, 97.9917, 62.5649], [ 0.0000, 40.3103, 21.4952, 74.7319], [ 26.3296, 18.2271, 30.6895, 19.6554], [ 24.1920, 8.1525, 29.7535, 9.5155], [ 0.0000, 82.6814, 1.6050, 86.1069], [ 69.8429, 91.4722, 74.5880, 92.6022], [ 40.0346, 106.1212, 43.5103, 107.1371], [ 77.5447, 109.2828, 81.9013, 110.5845], [ 68.1803, 44.8517, 73.7433, 45.6382], [ 0.0000, 84.0534, 3.4056, 85.0159], [ 38.7503, 35.8580, 56.7992, 47.4848], [ 50.1666, 31.5740, 53.6334, 32.6867], [ 31.0113, 101.1863, 33.5362, 101.8402], [ 53.7563, 9.7722, 55.8778, 10.9179], [ 51.0325, 13.5929, 54.7412, 14.6228], [ 18.1654, 104.8237, 21.8600, 105.6227], [ 19.5623, 35.9696, 24.1356, 37.0714], [ 69.2776, 28.0173, 88.3530, 39.2125], [ 75.1365, 115.5374, 77.8445, 116.9997], [ 31.0881, 58.5975, 34.6037, 59.4643], [ 1.6351, 80.1350, 6.1082, 81.3295], [ 22.8064, 117.3966, 62.7837, 127.8345], [ 63.6129, 70.9242, 69.0646, 71.9814], [ 3.4624, 87.2172, 8.6216, 88.5247], [ 55.8403, 28.8055, 59.7083, 30.4423], [ 26.2743, 18.7395, 31.5674, 19.9733], [ 26.8567, 117.3554, 32.5164, 117.9245], [ 55.5966, 104.9360, 58.4963, 105.7098], [ 88.1490, 100.0630, 91.5376, 101.2722], [ 61.8169, 10.4709, 64.8416, 11.5875]], device='cuda:0'), 'labels': tensor([13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13], device='cuda:0'), 'scores': tensor([0.3700, 0.3590, 0.3542, 0.3493, 0.3464, 0.3439, 0.3411, 0.3396, 0.3373, 0.3338, 0.3312, 0.3304, 0.3297, 0.3272, 0.3269, 0.3263, 0.3233, 0.3213, 0.3156, 0.3152, 0.3146, 0.3145, 0.3119, 0.3090, 0.3085, 0.3070, 0.3041, 0.3034, 0.3016, 0.3015, 0.3014, 0.3011, 0.3009, 0.2997, 0.2996, 0.2984, 0.2978, 0.2973, 0.2968, 0.2955, 0.2954, 0.2952, 0.2939, 0.2928, 0.2921, 0.2914, 0.2912, 0.2906, 0.2905, 0.2902, 0.2898, 0.2891, 0.2878, 0.2870, 0.2870, 0.2867, 0.2864, 0.2861, 0.2856, 0.2854, 0.2844, 0.2830, 0.2829, 0.2821, 0.2808, 0.2808, 0.2805, 0.2804, 0.2799, 0.2796, 0.2796, 0.2791, 0.2791, 0.2789, 0.2788, 0.2780, 0.2775, 0.2774, 0.2767, 0.2766, 0.2765, 0.2762, 0.2761, 0.2757, 0.2751, 0.2748, 0.2744, 0.2743, 0.2740, 0.2737, 0.2737, 0.2736, 0.2735, 0.2733, 0.2733, 0.2731, 0.2728, 0.2726, 0.2725, 0.2721], device='cuda:0')}} But the mAP calculation is always: Test: [ 0/245] eta: 0:00:23 model_time: 0.0417 (0.0417) evaluator_time: 0.0033 (0.0033) time: 0.0973 data: 0.0519 max mem: 3903 Test: [100/245] eta: 0:00:12 model_time: 0.0388 (0.0390) evaluator_time: 0.0016 (0.0018) time: 0.0882 data: 0.0472 max mem: 3903 Test: [200/245] eta: 0:00:03 model_time: 0.0388 (0.0389) evaluator_time: 0.0015 (0.0018) time: 0.0874 data: 0.0466 max mem: 3903 Test: [244/245] eta: 0:00:00 model_time: 0.0388 (0.0388) evaluator_time: 0.0019 (0.0018) time: 0.0880 data: 0.0478 max mem: 3903 Test: Total time: 0:00:21 (0.0879 s / it) Averaged stats: model_time: 0.0388 (0.0388) evaluator_time: 0.0019 (0.0018) Accumulating evaluation results... DONE (t=0.06s). Accumulating evaluation results... DONE (t=0.06s). IoU metric: bbox Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.000 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000 Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.000 IoU metric: segm Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.000 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000 Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.000 ### To Reproduce Steps to reproduce the behaviour: Follow the steps in Object Detection Finetuning tutorial substituting a dataset with COCO Detection ( torchvision.datasets.CocoDetection ). I get predicted mAP 0 within the coco_eval. IoU metric: bbox Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.000 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000 Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.000 ### Versions Collecting environment information... PyTorch version: 2.1.2 Is debug build: False CUDA used to build PyTorch: 11.8 ROCM used to build PyTorch: N/A OS: Microsoft Windows 11 Home GCC version: Could not collect Clang version: Could not collect CMake version: Could not collect Libc version: N/A Python version: 3.11.5 | packaged by Anaconda, Inc. | (main, Sep 11 2023, 13:26:23) [MSC v.1916 64 bit (AMD64)] (64-bit runtime) Python platform: Windows-10-10.0.22631-SP0 Is CUDA available: True CUDA runtime version: 11.8.89 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA GeForce RTX 3060 Laptop GPU Nvidia driver version: 522.06 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture=9 CurrentClockSpeed=2300 DeviceID=CPU0 Family=198 L2CacheSize=11776 L2CacheSpeed= Manufacturer=GenuineIntel MaxClockSpeed=2300 Name=12th Gen Intel(R) Core(TM) i7-12700H ProcessorType=3 Revision= Versions of relevant libraries: [pip3] numpy==1.26.2 [pip3] pytorch-ignite==0.4.13 [pip3] pytorch-lightning==1.9.5 [pip3] torch==2.1.2 [pip3] torchmetrics==0.10.3 [pip3] torchsummary==1.5.1 [pip3] torchvision==0.16.2 [conda] blas 1.0 mkl [conda] mkl 2023.1.0 h6b88ed4_46358 [conda] mkl-service 2.4.0 py311h2bbff1b_1 [conda] mkl_fft 1.3.8 py311h2bbff1b_0 [conda] mkl_random 1.2.4 py311h59b6b97_0 [conda] numpy 1.26.2 py311hdab7c0b_0 [conda] numpy-base 1.26.2 py311hd01c5d8_0 [conda] pytorch 2.1.2 py3.11_cuda11.8_cudnn8_0 pytorch [conda] pytorch-cuda 11.8 h24eeafa_5 pytorch [conda] pytorch-ignite 0.4.13 pypi_0 pypi [conda] pytorch-lightning 1.9.5 pypi_0 pypi [conda] pytorch-mutex 1.0 cuda pytorch [conda] torchmetrics 0.10.3 pypi_0 pypi [conda] torchsummary 1.5.1 pypi_0 pypi [conda] torchvision 0.16.2 pypi_0 pypi
open
2024-02-12T20:12:37Z
2024-03-14T19:50:35Z
https://github.com/pytorch/vision/issues/8270
[]
anirudh6415
2
Anjok07/ultimatevocalremovergui
pytorch
1,730
GaboxR67/MelBandRoformers
Last Error Received: Process: Ensemble Mode If this error persists, please contact the developers with the error details. Raw Error Details: AttributeError: ""'norm'"" Traceback Error: " File "UVR.py", line 9274, in process_start File "separate.py", line 730, in seperate File "separate.py", line 943, in demix File "lib_v5\tfc_tdf_v3.py", line 167, in __init__ File "ml_collections\config_dict\config_dict.py", line 829, in __getattr__ " Error Time Stamp [2025-02-06 12:11:31] Full Application Settings: vr_model: Choose Model aggression_setting: 5 window_size: 512 mdx_segment_size: Default batch_size: Default crop_size: 256 is_tta: False is_output_image: False is_post_process: False is_high_end_process: False post_process_threshold: 0.2 vr_voc_inst_secondary_model: No Model Selected vr_other_secondary_model: No Model Selected vr_bass_secondary_model: No Model Selected vr_drums_secondary_model: No Model Selected vr_is_secondary_model_activate: False vr_voc_inst_secondary_model_scale: 0.9 vr_other_secondary_model_scale: 0.7 vr_bass_secondary_model_scale: 0.5 vr_drums_secondary_model_scale: 0.5 demucs_model: Choose Model segment: Default overlap: 0.25 overlap_mdx: Default overlap_mdx23: 2 shifts: 2 chunks_demucs: Auto margin_demucs: 44100 is_chunk_demucs: False is_chunk_mdxnet: False is_primary_stem_only_Demucs: False is_secondary_stem_only_Demucs: False is_split_mode: True is_demucs_combine_stems: True is_mdx23_combine_stems: True demucs_voc_inst_secondary_model: No Model Selected demucs_other_secondary_model: No Model Selected demucs_bass_secondary_model: No Model Selected demucs_drums_secondary_model: No Model Selected demucs_is_secondary_model_activate: False demucs_voc_inst_secondary_model_scale: 0.9 demucs_other_secondary_model_scale: 0.7 demucs_bass_secondary_model_scale: 0.5 demucs_drums_secondary_model_scale: 0.5 demucs_pre_proc_model: No Model Selected is_demucs_pre_proc_model_activate: False is_demucs_pre_proc_model_inst_mix: False mdx_net_model: Choose Model chunks: Auto margin: 44100 compensate: Auto denoise_option: None is_match_frequency_pitch: True is_demud: False phase_option: Automatic phase_shifts: None is_save_align: False is_match_silence: True is_spec_match: False is_mdx_c_seg_def: True is_use_torch_inference_mode: False is_invert_spec: False is_deverb_vocals: False deverb_vocal_opt: Main Vocals Only voc_split_save_opt: Lead Only is_mixer_mode: False mdx_batch_size: Default mdx_voc_inst_secondary_model: No Model Selected mdx_other_secondary_model: No Model Selected mdx_bass_secondary_model: No Model Selected mdx_drums_secondary_model: No Model Selected mdx_is_secondary_model_activate: True mdx_voc_inst_secondary_model_scale: 0.9 mdx_other_secondary_model_scale: 0.7 mdx_bass_secondary_model_scale: 0.5 mdx_drums_secondary_model_scale: 0.5 is_save_all_outputs_ensemble: True is_append_ensemble_name: False chosen_audio_tool: Manual Ensemble choose_algorithm: Min Spec time_stretch_rate: 2.0 pitch_rate: 2.0 is_time_correction: True is_gpu_conversion: True is_primary_stem_only: False is_secondary_stem_only: False is_testing_audio: False is_auto_update_model_params: True is_add_model_name: False is_accept_any_input: False is_save_to_input_path: False apollo_overlap: 2 apollo_chunk_size: 5 apollo_model: Choose Model is_task_complete: False is_normalization: False is_use_directml: False is_wav_ensemble: False is_create_model_folder: False mp3_bit_set: 320k semitone_shift: 0 save_format: WAV wav_type_set: PCM_16 device_set: NVIDIA GeForce RTX 4080 Laptop GPU:0 help_hints_var: True set_vocal_splitter: No Model Selected is_set_vocal_splitter: False is_save_inst_set_vocal_splitter: False model_sample_mode: True model_sample_mode_duration: 30 demudder_method: Combine Methods demucs_stems: Bass mdx_stems: All Stems Patch Version: UVR_Patch_1_21_25_2_28_BETA
open
2025-02-06T10:13:20Z
2025-02-11T14:12:35Z
https://github.com/Anjok07/ultimatevocalremovergui/issues/1730
[]
infyplay
1
mckinsey/vizro
data-visualization
866
Fix theme flickering
There's a quick theme change flickering that happens when the page is refreshed. It doesn't depend on the default theme set in the vm.Dashboard. It looks like this started happening since the 0.1.25 version.
closed
2024-11-12T10:14:20Z
2024-11-13T14:05:31Z
https://github.com/mckinsey/vizro/issues/866
[]
huong-li-nguyen
0
InstaPy/InstaPy
automation
6,570
get_key = shared_data.get("entry_data").get("ProfilePage") - AttributeError: 'NoneType' object has no attribute 'get'
Just yesterday (3/28/2022) instapy stopped working for me: with smart_run(session): File "C:\Python39\lib\contextlib.py", line 119, in __enter__ return next(self.gen) File "C:\Users\Eric\AppData\Roaming\Python\Python39\site-packages\instapy\util.py", line 1983, in smart_run session.login() File "C:\Users\Eric\AppData\Roaming\Python\Python39\site-packages\instapy\instapy.py", line 475, in login self.followed_by = log_follower_num(self.browser, self.username, self.logfolder) File "C:\Users\Eric\AppData\Roaming\Python\Python39\site-packages\instapy\print_log_writer.py", line 21, in log_follower_num followed_by = getUserData("graphql.user.edge_followed_by.count", browser) File "C:\Users\Eric\AppData\Roaming\Python\Python39\site-packages\instapy\util.py", line 501, in getUserData get_key = shared_data.get("entry_data").get("ProfilePage") AttributeError: 'NoneType' object has no attribute 'get'
closed
2022-03-29T06:27:12Z
2022-03-29T07:55:19Z
https://github.com/InstaPy/InstaPy/issues/6570
[]
ersom
1
plotly/dash-table
plotly
560
Renaming export button [feature suggestion]
Hi, the possibility to rename export button from "Export" to something custom could be necessary for apps where context suggests more elaborate naming or naming in another language. Thank you:)
open
2019-08-28T09:19:18Z
2019-08-28T09:19:18Z
https://github.com/plotly/dash-table/issues/560
[]
vetertann
0
nonebot/nonebot2
fastapi
2,478
Feature: 查看已安装插件及版本
### 希望能解决的问题 列出所有已安装的插件,以及查看已安装插件的版本 ### 描述所需要的功能 列出所有已安装的插件,以及查看已安装插件的版本
closed
2023-12-04T02:51:25Z
2023-12-10T10:13:48Z
https://github.com/nonebot/nonebot2/issues/2478
[ "enhancement" ]
WindStill
4
scikit-hep/awkward
numpy
2,455
`ak.flatten` flattens strings with `axis != None`
### Version of Awkward Array main ### Description and code to reproduce We are leaning towards strings being a robust abstraction — if you want to erase a string, remove the parameters (or use `ak.enforce_type`). However, there are some holes in this, notably with `ak.flatten`: ```python >>> ak.flatten(["hello", "moto"], axis=1) 'hellomoto' ``` We should ensure that this raises an error.
closed
2023-05-11T14:24:57Z
2023-05-26T17:51:54Z
https://github.com/scikit-hep/awkward/issues/2455
[ "bug (unverified)" ]
agoose77
0
huggingface/datasets
numpy
7,047
Save Dataset as Sharded Parquet
### Feature request `to_parquet` currently saves the dataset as one massive, monolithic parquet file, rather than as several small parquet files. It should shard large datasets automatically. ### Motivation This default behavior makes me very sad because a program I ran for 6 hours saved its results using `to_parquet`, putting the entire billion+ row dataset into a 171 GB *single shard parquet file* which pyarrow, apache spark, etc. all cannot work with without completely exhausting the memory of my system. I was previously able to work with larger-than-memory parquet files, but not this one. I *assume* the reason why this is happening is because it is a single shard. Making sharding the default behavior puts datasets in parity with other frameworks, such as spark, which automatically shard when a large dataset is saved as parquet. ### Your contribution I could change the logic here https://github.com/huggingface/datasets/blob/bf6f41e94d9b2f1c620cf937a2e85e5754a8b960/src/datasets/io/parquet.py#L109-L158 to use `pyarrow.dataset.write_dataset`, which seems to support sharding, or periodically open new files. We would only shard if the user passed in a path rather than file handle.
open
2024-07-12T23:47:51Z
2024-07-17T12:07:08Z
https://github.com/huggingface/datasets/issues/7047
[ "enhancement" ]
tom-p-reichel
2
pytorch/vision
computer-vision
8,087
Custom coco format dataset
Hello! Can you suggest the structure of this dataset? I want to use a custom dataset in coco format. But I need to know what folder/file structure is needed for training. ```python def get_args_parser(add_help=True): import argparse parser = argparse.ArgumentParser(description="PyTorch Detection Training", add_help=add_help) parser.add_argument("--data-path", default="/datasets01/COCO/022719/", type=str, help="dataset path") parser.add_argument( "--dataset", default="coco", type=str, help="dataset name. Use coco for object detection and instance segmentation and coco_kp for Keypoint detection", ) ```
closed
2023-11-02T10:18:15Z
2023-11-07T15:01:36Z
https://github.com/pytorch/vision/issues/8087
[]
Egorundel
10
d2l-ai/d2l-en
machine-learning
2,590
Website of preview version is down.
Please fix. Thanks!
open
2024-03-13T15:16:28Z
2024-04-29T14:30:59Z
https://github.com/d2l-ai/d2l-en/issues/2590
[]
Shujian2015
5
521xueweihan/HelloGitHub
python
2,743
【项目推荐】一个简单易用,跨平台的通用版本管理器,VMR
## 推荐项目 - 项目地址:https://github.com/gvcgo/version-manager - 类别:Go - 项目标题:一个简单易用,跨平台却非常强大的通用版本管理器,VMR - 项目描述: 目前各种SDK版本管理器存在以下缺点: - 各种语言的SDK版本管理器各自为政,彼此间差异较大,跨平台支持也不够完善。因此,作为多语言开发者,希望有一款开箱即用,能够支持多种常见编程语言的版本管理器。 - 现存的版本管理器很少有支持编程工具安装的,例如,很多发布在github上的好的开源工具,只能手动下载安装,比较麻烦。 - 现存的版本管理器都是直接从SDK列表页抓取然后下载,抓取结果不会缓存起来,每次都需要额外请求,效率较低。一旦列表页改版,也存在不可用的风险。 - 现存的版本管理器操作不够方便,例如,使用list命令列出列表时,如果列表太长,显示效果非常不好。 - 现存的版本管理器,各种纷繁的插件,各种不同的命令,使用起来复杂又麻烦。 VMR的出现,正是为了解决上述问题。 - 亮点: - **跨平台**,支持Windows,Linux,MacOS - 支持**60多种语言和工具**,省心 - 受到lazygit的启发,拥有更友好的TUI,更符合直觉,且**无需记忆任何命令** - 支持针**对项目锁定SDK版本** - 支持**反向代理**/**本地代理**设置,提高国内用户下载体验 - 相比于其他SDK管理器,拥有**更优秀的架构设计**,响应更**快**,**稳定性更高** - **无需麻烦的插件**,开箱即用 - **无需docker**,纯本地安装,效率更高 - **更高的可扩展性**,甚至可以通过使用conda来支持数以千计的应用 - 截图: <p style="" align="center"> <img src="https://cdn.jsdelivr.net/gh/moqsien/img_repo@main/vmr_logo_trans.png" alt="logo" width="360" height="120"> </p> <div align=center><img src="https://cdn.jsdelivr.net/gh/moqsien/img_repo@main/vmr.gif"></div> - 后续更新计划: - 修复用户提出的bug。 - 新增对用户提出的新语言的支持。
open
2024-05-06T02:29:34Z
2024-06-05T03:29:18Z
https://github.com/521xueweihan/HelloGitHub/issues/2743
[ "Go 项目" ]
moqsien
0
pyqtgraph/pyqtgraph
numpy
3,017
Export to SVG with opacity on items
It would be very nice if the opacities of the items were respected when exporting to SVG. Opacities are set with `setOpacity` method of the `ImageItem` (which very conveniently works with any other item). Here is a minimal example where the resulting image is grey (black blended with white). However, the saved SVG is two images, one black and one white and the opacity of the white image is 100% (instead of 50% that was set in the code). ```python import numpy as np import pyqtgraph as pg from pyqtgraph.Qt import QtCore app = pg.mkQApp("Blend images example") ## Create window with GraphicsView widget w = pg.GraphicsView() w.show() w.resize(800,800) w.setWindowTitle('Two images blended with opacity') view = pg.ViewBox() w.setCentralItem(view) ## lock the aspect ratio view.setAspectLocked(True) ## Create image item img1 = pg.ImageItem(np.zeros((200,200))) img1.setLevels([0, 1]) view.addItem(img1) ## Create image item img2 = pg.ImageItem(np.ones((200,200))) img2.setLevels([0, 1]) view.addItem(img2) img2.setOpacity(0.5) ## Set initial view bounds view.setRange(QtCore.QRectF(0, 0, 200, 200)) if __name__ == '__main__': pg.exec() ``` **Displayed image in the app**: ![image](https://github.com/pyqtgraph/pyqtgraph/assets/55240925/c44266f1-8b8a-4473-b79b-5e7da6c6f674) **Saved SVG**: ![test](https://github.com/pyqtgraph/pyqtgraph/assets/55240925/dcf72abe-139a-4567-bafb-0aa663394723)
open
2024-05-02T10:31:58Z
2024-05-02T10:37:24Z
https://github.com/pyqtgraph/pyqtgraph/issues/3017
[ "enhancement", "exporters", "svg" ]
ElpadoCan
0
Kludex/mangum
asyncio
154
[Question] What is a purpose of using asyncio.Queue() in HTTPCycle
https://github.com/jordaneremieff/mangum/blob/8763b9736a8ef60d16e10a204617f9b25fcd6a61/mangum/protocols/http.py#L45-L46
closed
2020-12-29T12:14:01Z
2020-12-30T11:30:35Z
https://github.com/Kludex/mangum/issues/154
[]
ediskandarov
2
simple-login/app
flask
2,015
Private vulnerability reporting ?
Please, I sent you an email on Thu, Jan 11, 3:54 PM (7 days ago), regarding a vulnerability on the latest codebase with a severity of High 7.7. Could you please consider enabling GitHub private reporting for this repository, so that the process of private reporting go smooth? https://docs.github.com/en/code-security/security-advisories/working-with-repository-security-advisories/configuring-private-vulnerability-reporting-for-a-repository
closed
2024-01-18T15:24:00Z
2024-01-19T17:52:20Z
https://github.com/simple-login/app/issues/2015
[]
Sim4n6
0
tqdm/tqdm
jupyter
1,237
Add integration to prometheus pushgateway
- [x] I have marked all applicable categories: + [ ] documentation request (i.e. "X is missing from the documentation." If instead I want to ask "how to use X?" I understand [StackOverflow#tqdm] is more appropriate) + [x] new feature request - [x] I have visited the [source website], and in particular read the [known issues] - [x] I have searched through the [issue tracker] for duplicates - [ ] I have mentioned version numbers, operating system and environment, where applicable: ```python import tqdm, sys print(tqdm.__version__, sys.version, sys.platform) ``` [source website]: https://github.com/tqdm/tqdm/ [known issues]: https://github.com/tqdm/tqdm/#faq-and-known-issues [issue tracker]: https://github.com/tqdm/tqdm/issues?q= [StackOverflow#tqdm]: https://stackoverflow.com/questions/tagged/tqdm
open
2021-08-30T03:35:58Z
2021-08-30T03:36:53Z
https://github.com/tqdm/tqdm/issues/1237
[]
MartinForReal
0
K3D-tools/K3D-jupyter
jupyter
61
Grid text overlays surface mesh
Image is pretty obvious. Let me know if you need an example to reproduce it, my current one requires external dependencies. ![k3d-text-over-mesh](https://user-images.githubusercontent.com/378115/27334708-70e7ead6-55ca-11e7-8246-15aa40c8a0c3.png)
closed
2017-06-20T13:10:38Z
2017-10-30T10:38:36Z
https://github.com/K3D-tools/K3D-jupyter/issues/61
[]
martinal
5
kaliiiiiiiiii/Selenium-Driverless
web-scraping
34
Error: No module named 'selenium_driverless.pycdp' on Linux
Hi there, Not sure if this is related to the other CDP bug reported on Linux but just in case: trying out the examples provided in the readme give the following error (with or without async) ``` Error: ModuleNotFoundError: No module named 'selenium_driverless.pycdp' ``` Any idea what might be causing this?
closed
2023-08-20T03:22:03Z
2023-08-27T09:34:18Z
https://github.com/kaliiiiiiiiii/Selenium-Driverless/issues/34
[ "needs information" ]
alisawazrak
2
Asabeneh/30-Days-Of-Python
python
12
Reference code for exercises
Thanks for the open source code, is there any reference code for the exercise?
closed
2019-12-20T10:59:13Z
2019-12-20T11:28:18Z
https://github.com/Asabeneh/30-Days-Of-Python/issues/12
[]
Donaghys
1
HIT-SCIR/ltp
nlp
376
batch处理的时候,分词会引入空字符
![image](https://user-images.githubusercontent.com/31469418/86356593-19639500-bc9f-11ea-9e68-c08a2a72a705.png) 可以看到分词得到的结果,会有字段为空,从最后2个文本可以看到文本末尾并没有空格 这样会影响后续句法分析的结果,参见第1条文本
closed
2020-07-02T12:06:13Z
2020-07-02T13:11:20Z
https://github.com/HIT-SCIR/ltp/issues/376
[]
Nipi64310
3
microsoft/nni
tensorflow
4,966
Or(<function DoReFaQuantizer.validate_config.<locals>.<lambda> at 0x000001EF3142C9D0>) did not validate 'input'
I use the > configure_list = [{ 'quant_types': ['weight','input','output'], 'quant_bits': { 'weight': 8, 'input': 8, 'output': 8 }, # you can just use `int` here because all `quan_types` share same bits length, see config for `ReLu6` below. 'op_types':['Conv2d'] }] dummy_input = torch.rand(32, 2, 224, 224).to(device) quantizer = DoReFaQuantizer(net, configure_list, optimizer) quantizer.compress() > The the error: > SchemaError: Or(And(And({Optional('quant_types'): Schema([<function DoReFaQuantizer.validate_config.<locals>.<lambda> at 0x000001EF3142C9D0>]), Optional('quant_bits'): Or(And(<class 'int'>, <function DoReFaQuantizer.validate_config.<locals>.<lambda> at 0x000001EF189AD670>), Schema({Optional('weight'): And(<class 'int'>, <function DoReFaQuantizer.validate_config.<locals>.<lambda> at 0x000001EF189AD550>)})), Optional('op_types'): And([<class 'str'>], <function CompressorSchema._modify_schema.<locals>.<lambda> at 0x000001EF0ADA3F70>), Optional('op_names'): And([<class 'str'>], <function CompressorSchema._modify_schema.<locals>.<lambda> at 0x000001EF189BC040>), Optional('exclude'): <class 'bool'>}, <function CompressorSchema._modify_schema.<locals>.<lambda> at 0x000001EF189BC1F0>), <function QuantizerSchema._modify_schema.<locals>.<lambda> at 0x000001EF189BC160>)) did not validate {'quant_types': ['weight', 'input', 'output'], 'quant_bits': {'weight': 8, 'input': 8, 'output': 8}, 'op_types': ['Conv2d']} Key 'quant_types' error: Or(<function DoReFaQuantizer.validate_config.<locals>.<lambda> at 0x000001EF3142C9D0>) did not validate 'input' <lambda>('input') should evaluate to True > When I find the > from nni.algorithms.compression.pytorch.quantization import DoReFaQuantizer > ,the validate_config is only support weight? > def validate_config(self, model, config_list): """ Parameters ---------- model : torch.nn.Module Model to be pruned config_list : list of dict List of configurations """ schema = QuantizerSchema([{ Optional('quant_types'): Schema([lambda x: x in ['weight']]), Optional('quant_bits'): Or(And(int, lambda n: 0 < n < 32), Schema({ Optional('weight'): And(int, lambda n: 0 < n < 32) })), Optional('op_types'): [str], Optional('op_names'): [str], Optional('exclude'): bool }], model, logger) schema.validate(config_list) >
open
2022-06-27T01:54:55Z
2022-07-05T07:19:26Z
https://github.com/microsoft/nni/issues/4966
[ "user raised", "support", "quantize" ]
sunpeil
2
suitenumerique/docs
django
416
Add mermaid.js support
## Feature Request **Is your feature request related to a problem or unsupported use case? Please describe.** This will allow users to do diagrams (and other cool stuff) in their docs. This has been requested by a few users with a technical background. **Describe the solution you'd like** I'd like to add support of Mermaid.js. I saw there is a custom plugin for it : https://github.com/defensestation/blocknote-mermaid
open
2024-11-12T14:12:22Z
2025-03-18T15:10:25Z
https://github.com/suitenumerique/docs/issues/416
[ "designed" ]
virgile-dev
7
deepinsight/insightface
pytorch
2,359
C++ build on insightface
Can any one provide the same implementation in c++ because I want to run face detection and face recognition in c++ I am already using it in python but my requirement is to convert all code into c++
open
2023-07-03T12:46:19Z
2023-07-06T06:38:19Z
https://github.com/deepinsight/insightface/issues/2359
[]
AwaisPF
3
iperov/DeepFaceLab
deep-learning
568
DFL 2.0 'copy' is not defined
Hi :) First: i think thats the right direction u goes :) if i start the DFl 2.0 i got an error: Error: name 'copy' is not defined Traceback (most recent call last): File "N:\xy\_internal\DeepFaceLab\mainscripts\Trainer.py", line 57, in trainerThread debug=debug, File "N:\xy\_internal\DeepFaceLab\models\ModelBase.py", line 173, in __init__ self.on_initialize() File "N:\xy\_internal\DeepFaceLab\models\Model_SAEHD\Model.py", line 575, in on_initialize src_dst_loss_gv_op = self.src_dst_opt.get_update_op (src_dst_loss_gv ) File "N:\xy\_internal\DeepFaceLab\core\leras\optimizers.py", line 94, in get_update_op g = self.tf_clip_norm(g, self.clipnorm, norm) File "N:\xy\_internal\DeepFaceLab\core\leras\optimizers.py", line 28, in tf_clip_norm g_shape = copy.copy(then_expression.get_shape()) NameError: name 'copy' is not defined
closed
2020-01-22T19:48:15Z
2020-01-23T06:44:20Z
https://github.com/iperov/DeepFaceLab/issues/568
[]
blanuk
1
twopirllc/pandas-ta
pandas
466
Problem with strategy (all)
**Which version are you running? The lastest version is on Github. Pip is for major releases.** ```python import pandas_ta as ta print(ta.version) ``` 0.3.14b0 **Do you have _TA Lib_ also installed in your environment?** ```sh $ pip list ``` Yes TA-Lib 0.4.17 **Upgrade.** ```sh $ pip install -U git+https://github.com/twopirllc/pandas-ta ``` **Describe the bug** When trying to add all indicators (ta.AllStrategy) to my dataframe I get: ```sh Traceback (most recent call last): File "C:\Users\hanna\Anaconda3\lib\multiprocessing\pool.py", line 119, in worker result = (True, func(*args, **kwds)) File "C:\Users\hanna\Anaconda3\lib\multiprocessing\pool.py", line 44, in mapstar return list(map(*args)) File "C:\Users\hanna\Anaconda3\lib\site-packages\pandas_ta\core.py", line 467, in _mp_worker return getattr(self, method)(*args, **kwargs) File "C:\Users\hanna\Anaconda3\lib\site-packages\pandas_ta\core.py", line 874, in cdl_pattern result = cdl_pattern(open_=open_, high=high, low=low, close=close, name=name, offset=offset, **kwargs) File "C:\Users\hanna\Anaconda3\lib\site-packages\pandas_ta\candles\cdl_pattern.py", line 64, in cdl_pattern pattern_result = Series(pattern_func(open_, high, low, close, **kwargs) / 100 * scalar) File "_abstract.pxi", line 352, in talib._ta_lib.Function.__call__ File "_abstract.pxi", line 383, in talib._ta_lib.Function.__call_function File "C:\Users\hanna\Anaconda3\lib\site-packages\talib\__init__.py", line 24, in wrapper return func(*args, **kwargs) TypeError: Argument 'open' has incorrect type (expected numpy.ndarray, got NoneType) ``` As you can see it is probably due to cdl_pattern error. When I switch to ta.CommonStrategy I get: Index(['open', 'high', 'low', 'close', 'volume', 'SMA_10', 'SMA_20', 'SMA_50', 'SMA_200', 'VOL_SMA_20'], I get 6 indicators(sma) added to my dataframe. Is this the expected behavior? Only 6 common indicators?
closed
2022-01-20T12:36:09Z
2022-01-22T00:17:18Z
https://github.com/twopirllc/pandas-ta/issues/466
[ "question", "wontfix", "info" ]
hn2
26
google/seq2seq
tensorflow
239
No Speedup for Multiple GPUs?
I just switched to using an 8 GPU AWS instance from a 1 GPU machine, same instance. The log shows that tensorflow finds the additional GPUs, but the log makes it seem that there's no significant speedup using the additional GPUs. When I was using 1 GPU, it was about 150 seconds for 100 steps, and it's still about the same on the bigger machine, as shown. Is there something else I need to do to enable a speedup? This is using the Google/seq2seq neural machine translation tutorial. `INFO:tensorflow:loss = 0.115634, step = 186203 (143.421 sec) INFO:tensorflow:Saving checkpoints for 186303 into /home/ubuntu/models/nmt_tutorial/large/model.ckpt. INFO:tensorflow:global_step/sec: 0.693705 INFO:tensorflow:loss = 0.22715, step = 186303 (144.154 sec)`
open
2017-05-31T21:27:48Z
2017-09-07T03:47:12Z
https://github.com/google/seq2seq/issues/239
[]
npowell88
3
globaleaks/globaleaks-whistleblowing-software
sqlalchemy
4,218
The "enter a receipt interfaces" does not show up when a direct link to a context is used
### What version of GlobaLeaks are you using? 5.0.11 ### What browser(s) are you seeing the problem on? All ### What operating system(s) are you seeing the problem on? Linux ### Describe the issue As reported by [sperti](https://github.com/esperti) the "enter a receipt interfaces" does not show up when a direct link to a context is used ### Proposed solution _No response_
closed
2024-10-04T08:38:04Z
2024-10-05T10:39:47Z
https://github.com/globaleaks/globaleaks-whistleblowing-software/issues/4218
[ "T: Bug", "C: Client" ]
evilaliv3
1
huggingface/text-generation-inference
nlp
2,757
The same model, but different loading methods will result in very different inference speeds?
### System Info TGI version latest;single NVIDIA GeForce RTX 3090; ### Information - [X] Docker - [ ] The CLI directly ### Tasks - [X] An officially supported command - [ ] My own modifications ### Reproduction The first loading method (loading llama3 8B model from Hugging face): ``` model=meta-llama/Meta-Llama-3-8B-Instruct volume=/home/data/Project/model # share a volume with the Docker container to avoid downloading weights every run sudo docker run -it --name tgi_llama3_8B --restart=unless-stopped --shm-size 48g -p 3002:80 --runtime "nvidia" --gpus '"device=1"' -v $volume:/data \ -e HF_TOKEN=$token \ -e HF_ENDPOINT="https://hf-mirror.com" \ -e HF_HUB_ENABLE_HF_TRANSFER=False \ -e USE_FLASH_ATTENTION=False \ -e HF_HUB_OFFLINE=1 \ ghcr.chenby.cn/huggingface/text-generation-inference:latest \ --model-id $model ``` The second loading method (loading llama3 8B model from local directory): ``` model=/data/ans_model/meta-llama/Meta-Llama-3-8B-Instruct volume=/home/data/Project/model # share a volume with the Docker container to avoid downloading weights every run sudo docker run -it --name tgi_llama3_8B --restart=unless-stopped --shm-size 48g -p 3002:80 --runtime "nvidia" --gpus '"device=1"' -v $volume:/data \ -e HF_TOKEN=$token \ -e HF_ENDPOINT="https://hf-mirror.com" \ -e HF_HUB_ENABLE_HF_TRANSFER=False \ -e USE_FLASH_ATTENTION=False \ -e HF_HUB_OFFLINE=1 \ ghcr.chenby.cn/huggingface/text-generation-inference:latest \ --model-id $model ``` ### Expected behavior The inference speed of the llama3 8B model loaded from Hugging face is much faster than that loaded from the local directory. I don't know why this happens, how can I fix it? Faster: ![fast](https://github.com/user-attachments/assets/89857167-9fc9-4267-b9c7-376fda993f96) ![fast_2](https://github.com/user-attachments/assets/60c33952-a99a-4460-8773-f696ae5f5193) Slower: ![small](https://github.com/user-attachments/assets/2f56e9c4-886a-4161-b56a-a57aca0f8666) ![small_2](https://github.com/user-attachments/assets/f608e179-8e42-49fb-931f-a5fc182f4465)
open
2024-11-19T12:55:49Z
2024-11-19T13:06:01Z
https://github.com/huggingface/text-generation-inference/issues/2757
[]
hjs2027864933
1
explosion/spaCy
machine-learning
13,293
Install via `requirements.txt` documentation doesn't work
The docs [state](https://spacy.io/usage/models#models-download) I can specify the model like this in `requirements.txt`: ``` spacy>=3.0.0,<4.0.0 en_core_web_sm @ https://github.com/explosion/spacy-models/releases/download/en_core_web_sm-3.4.0/en_core_web_sm-3.4.0-py3-none-any.whl ``` This attempts to download spacy `3.4.4`. And a VERY long series of exceptions like this is raised: ``` 45.29 thinc/backends/numpy_ops.cpp:2408:34: error: ‘_PyCFrame’ {aka ‘struct _PyCFrame’} has no member named ‘use_tracing’ 45.29 2408 | (unlikely((tstate)->cframe->use_tracing) &&\ 45.29 | ^~~~~~~~~~~ 45.29 thinc/backends/numpy_ops.cpp:1001:43: note: in definition of macro ‘unlikely’ 45.29 1001 | #define unlikely(x) __builtin_expect(!!(x), 0) 45.29 | ^ 45.29 thinc/backends/numpy_ops.cpp:2513:15: note: in expansion of macro ‘__Pyx_IsTracing’ 45.29 2513 | if (__Pyx_IsTracing(tstate, 0, 0)) {\ 45.29 | ^~~~~~~~~~~~~~~ 45.29 thinc/backends/numpy_ops.cpp:46877:3: note: in expansion of macro ‘__Pyx_TraceReturn’ 45.29 46877 | __Pyx_TraceReturn(Py_None, 1); 45.29 | ^~~~~~~~~~~~~~~~~ ``` All my attempts so far to cache Spacy's download by specifying the model in `requirements.txt` have failed (see replies below). Context: I'm installing this in Docker. Python image is `python:3.12.1-slim`
open
2024-01-30T19:46:14Z
2024-09-25T05:38:14Z
https://github.com/explosion/spaCy/issues/13293
[ "docs", "install" ]
SHxKM
18
pytest-dev/pytest-django
pytest
1,009
assertRaisesMessage expects wrong excepted_exception type
I am trying to use `assertRaisesMessage` to test for `save()` raising an `IntegrityError`. However, the `expected_exception` expected type is `BaseException`. vscode shows me `Type[Exception]` for `TestCase.assertRaisesMessage`. Code snippet: ```python from django.db.utils import IntegrityError from pytest_django.asserts import assertRaisesMessage def test_some_functionality(): with assertRaisesMessage(IntegrityError, constraint_name): user.save() ``` mypy error: > Argument 1 to "assertRaisesMessage" has incompatible type "Type[IntegrityError]"; expected "BaseException" [arg-type]mypy(error)
closed
2022-04-21T14:50:12Z
2022-04-26T08:57:23Z
https://github.com/pytest-dev/pytest-django/issues/1009
[]
mschoettle
0
datapane/datapane
data-visualization
26
token and graph plotting issues
So, the issue that I am facing is that I am not able to publish the report on the data pane server. it is showing the token is invalid but that's not the case I have rechecked it and the token seems fine. The second issue is when I am trying to display graphs only the first dp.Plot() method is working and other graphs are shown blank. I am using google colab with python version 3.6.7 Hope, to get the fix of this issue.
closed
2020-09-25T17:54:34Z
2020-10-21T15:22:58Z
https://github.com/datapane/datapane/issues/26
[]
pooja-anandani
3
thp/urlwatch
automation
332
Can urlwatch do the same thing Website Watcher does?
Basically I can bulk import thousands of links into website watcher and it will detect and alert me if the link has any changes (without considering HTML tags -- just content) Can urlwatch do the same thing? I need to be able to bulk import links and alert me if there's a content change in the website. I don't want to manually set each link. Also, what if the page has Ajax/Javascript content, can it process those? Website Watcher -https://www.aignes.com/features.htm
closed
2018-12-06T19:57:49Z
2020-07-10T13:34:04Z
https://github.com/thp/urlwatch/issues/332
[]
majestique
1
dask/dask
pandas
11,145
Concat with unknown divisions raises TypeError
**Describe the issue**: When trying to concatenate multiple Dataframes without known divisions with Dask.Dataframe.multi.concat an error is raised as shown below. ![image](https://github.com/dask/dask/assets/80762836/610a213b-ea1f-4237-82fc-6594b7a264ee) After some digging in the codebase I found some logic causing it: https://github.com/dask/dask/blob/42ccab530ba01c00b51e89a48acd6bd178e94afb/dask/dataframe/multi.py#L1310 results in an empty list as the dataframes are not of type __Frame_ but of type _dask_expr._collection.DataFrame_ Which then causes https://github.com/dask/dask/blob/42ccab530ba01c00b51e89a48acd6bd178e94afb/dask/dataframe/multi.py#L1337 to always be True -> Comparing Nones after that **Minimal Complete Verifiable Example**: ```python import dask.dataframe as dd first = dd.from_dict( { "a": [1, 2, 3], }, npartitions=1 ).clear_divisions() second = dd.from_dict( { "b": [3, 1, 3], }, npartitions=1, ).clear_divisions() dd.multi.concat([first,second]) ``` **Anything else we need to know?**: Strange thing is that when doing the following it actually works, so now we're confused why it isn't using the same concat function and what the difference is? ```python dd.concat([first,second]) ``` **Environment**: - Dask version: 2024.5.1 - Python version: 3.10.11 - Operating System: Linux - Install method (conda, pip, source): pip
closed
2024-05-24T14:00:05Z
2024-11-12T15:05:29Z
https://github.com/dask/dask/issues/11145
[ "needs triage" ]
manschoe
3
amidaware/tacticalrmm
django
1,416
Github does not want me to sponsor any more (drops PayPal). Alternative?
In some way this is a feature request,.. As Github drops PayPal from sponsoring (only), I cannot use it any more. I don´t really like PayPal, but in this case it´s my only option. And I guess I´m not the only one. Will there be an alternative?
closed
2023-01-25T20:17:40Z
2023-02-20T20:46:10Z
https://github.com/amidaware/tacticalrmm/issues/1416
[]
forti42
2
python-arq/arq
asyncio
272
Logging jobs info to database
I want to log job infomation to a database (PostgreSQL). Where is the best place to put it ?
closed
2021-10-25T01:51:04Z
2023-04-04T17:47:39Z
https://github.com/python-arq/arq/issues/272
[]
hieulw
1
miguelgrinberg/Flask-SocketIO
flask
1,111
Keeping a Socket.io connection on in the background
**Your question** I currently have a Tweepy streaming api connected via flask socketio and everything is working fine (tweets are streaming in without any problems). Question: is it possible to configure socketio in such a manner that when a user lands on the webpage, the latest streamed tweets are already showing? Right now, when a user lands on the page, the flask app "loads", and as a result, the screen is blank (as it is waiting to receive new tweets to stream in). Instead, is it possible to keep the stream alive in the background so when a user visits, the latest tweets are already loaded on the page? Thank You
closed
2019-11-25T21:21:40Z
2019-11-26T01:38:57Z
https://github.com/miguelgrinberg/Flask-SocketIO/issues/1111
[ "question" ]
ghost
1
plotly/dash
data-visualization
2,882
Switching back and forth between dcc.Tabs doesn't seem to release memory in the browser
In a dash app with a 50 000 point scatter chart in tab 1 and another in tab 2, switching back and forth between those tabs increases the memory footprint that I see in the Chrome task manager by about 100 MB every time but it doesn't look like any gets released. ![Screenshot from 2024-06-11 12-12-08](https://github.com/plotly/dash/assets/41019918/fc89a033-4157-42c4-806b-2a47a539dc2b) In the snapshot above, the memory footprint has climbed to 1.5 GB. Within a few minutes of not using the app it dropped, but only to 1 GB so it's still way higher than it was before I'd interacted with it. Also, it looks like [others in the community have seen something similar](https://community.plotly.com/t/analyzing-memory-footprint-of-a-dash-app/24751). **Describe your context** Please provide us your environment, so we can easily reproduce the issue. - replace the result of `pip list | grep dash` below ``` dash 2.17.0 dash-ag-grid 2.1.0 dash-bio 1.0.2 dash-bootstrap-components 1.4.2 dash-bootstrap-templates 1.1.2 dash-chart-editor 0.0.1a4 dash-core-components 2.0.0 dash-cytoscape 0.3.0 dash-dangerously-set-inner-html 0.0.2 dash-design-kit 1.10.0 dash-embedded 2.14.0 dash-enterprise 1.0.0 dash-enterprise-auth 0.1.1 dash-enterprise-libraries 1.4.1 dash-extensions 0.1.6 dash-facebook-login 0.0.2 dash-gif-component 1.1.0 dash-html-components 2.0.0 dash-iconify 0.1.2 dash-mantine-components 0.12.1 dash-notes 0.0.3 dash-renderer 1.9.0 dash-snapshots 2.2.7 dash-table 5.0.0 dash-user-analytics 0.0.2 ``` - if frontend related, tell us your Browser, Version and OS - OS: Unbuntu 22.04 - Browser Chrome - Version 122 Example app: ```python import dash from dash import dash_table import dash_core_components as dcc import dash_html_components as html from dash.dependencies import Input, Output import plotly.graph_objs as go import numpy as np import pandas as pd # Data generation for plots and table np.random.seed(42) # for reproducibility x = np.linspace(0, 10, 50000) y1 = np.random.randn(50000) y2 = np.sin(x) + np.random.randn(50000) * 0.2 table_data = pd.DataFrame(np.random.randn(10, 4), columns=list("ABCD")) # App initialization app = dash.Dash(__name__) server = app.server # Layout app.layout = html.Div([ dcc.Tabs(id="tabs", value='tab-1', children=[ dcc.Tab(label='Scatter Plot 1', value='tab-1'), dcc.Tab(label='Scatter Plot 2', value='tab-2'), dcc.Tab(label='Data Table', value='tab-3'), ]), html.Div(id='tabs-content') ]) # Callback to update tab content @app.callback(Output('tabs-content', 'children'), Input('tabs', 'value')) def render_content(tab): if tab == 'tab-1': return dcc.Graph( id='scatter-plot-1', figure={ 'data': [go.Scatter(x=x, y=y1, mode='markers')], 'layout': go.Layout(title='Scatter Plot 1') } ) elif tab == 'tab-2': return dcc.Graph( id='scatter-plot-2', figure={ 'data': [go.Scatter(x=x, y=y2, mode='markers')], 'layout': go.Layout(title='Scatter Plot 2') } ) elif tab == 'tab-3': return html.Div([ html.H4('Data Table'), dash_table.DataTable( data=table_data.to_dict('records'), columns=[{'name': i, 'id': i} for i in table_data.columns] ) ]) if __name__ == '__main__': app.run_server(debug=False) ```
open
2024-06-11T16:34:16Z
2024-08-13T19:51:36Z
https://github.com/plotly/dash/issues/2882
[ "bug", "sev-2", "P3" ]
michaelbabyn
0
pytest-dev/pytest-django
pytest
936
Connection already closed
_After the first test runner, the connection to DB dropped._ `django.db.utils.InterfaceError: connection already closed` _Seems to work with_ `pytest-django==4.2.0` **But broken with:** ``` pytest==6.2.4 pytest-django==4.4.0 psycopg2-binary==2.9.1 ``` **Error log:** ``` self = <django.db.backends.postgresql.base.DatabaseWrapper object at 0x7f66ebdddb80> name = None @async_unsafe def create_cursor(self, name=None): if name: # In autocommit mode, the cursor will be used outside of a # transaction, hence use a holdable cursor. cursor = self.connection.cursor(name, scrollable=False, withhold=self.connection.autocommit) else: > cursor = self.connection.cursor() E django.db.utils.InterfaceError: connection already closed ../../../../../env/lib/python3.8/site-packages/django/db/backends/postgresql/base.py:236: InterfaceError args = (<django.db.backends.postgresql.base.DatabaseWrapper object at 0x7f66ebdddb80>, None) kwargs = {} event_loop = <_UnixSelectorEventLoop running=False closed=False debug=False> @functools.wraps(func) def inner(*args, **kwargs): if not os.environ.get('DJANGO_ALLOW_ASYNC_UNSAFE'): # Detect a running event loop in this thread. try: event_loop = asyncio.get_event_loop() except RuntimeError: pass else: if event_loop.is_running(): raise SynchronousOnlyOperation(message) # Pass onwards. > return func(*args, **kwargs) ```
closed
2021-06-22T08:15:41Z
2023-10-26T20:09:05Z
https://github.com/pytest-dev/pytest-django/issues/936
[]
sweetpythoncode
8
odoo/odoo
python
202,837
[18.0] base: DateTime widget cannot be set in seconds, and there is a problem displayed
### Odoo Version - [ ] 16.0 - [x] 17.0 - [x] 18.0 - [ ] Other (specify) ### Steps to Reproduce ![Image](https://github.com/user-attachments/assets/7d2021cc-627c-4709-ad3c-f87d04c7bbc0) I saw that the default value of the parameter 'show_seconds' in the source code is true, Actually, the widget does not display the option for seconds, When I set 'show_seconds' to false in the option of the view, it can display seconds, but setting it on the field has no effect ``` export const dateTimeField = { ...dateField, displayName: _t("Date & Time"), supportedOptions: [ ...dateField.supportedOptions, { label: _t("Time interval"), name: "rounding", type: "number", default: 5, help: _t( `Control the number of minutes in the time selection. E.g. set it to 15 to work in quarters.` ), }, { label: _t("Show seconds"), name: "show_seconds", type: "boolean", default: true, help: _t(`Displays or hides the seconds in the datetime value.`), }, { label: _t("Show time"), name: "show_time", type: "boolean", default: true, help: _t(`Displays or hides the time in the datetime value.`), }, ], extractProps: ({ attrs, options }, dynamicInfo) => ({ ...dateField.extractProps({ attrs, options }, dynamicInfo), showSeconds: exprToBoolean(options.show_seconds ?? true), showTime: exprToBoolean(options.show_time ?? true), }), supportedTypes: ["datetime"], }; ``` ### Log Output ```shell ``` ### Support Ticket _No response_
open
2025-03-21T08:35:29Z
2025-03-21T08:35:29Z
https://github.com/odoo/odoo/issues/202837
[]
a1061026202
0
ckan/ckan
api
8,725
DataStore Delete Uncaught ProgrammingErrors
## CKAN version master branch (2.11 ??) ## Describe the bug pSQL ProgrammingErrors are not caught and re-raised as ValidationErrors in datastore_delete ### Steps to reproduce Steps to reproduce the behavior: - Have a datastore field that is a text field - Insert some data - Try to delete with filters on the text field but pass an integer - See fatal error ### Expected behavior The pSQL errors are caught, parsed and re-raised as ValidationErrors just like in datastore_create and datastore_upsert ### Additional details Stacktrace example: ``` The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/srv/app/ckan/registry/src/ckan/ckan/config/middleware/../../views/api.py", line 279, in action result = function(context, request_data) File "/srv/app/ckan/registry/src/ckan/ckan/logic/__init__.py", line 581, in wrapped result = _action(context, data_dict, **kw) File "/srv/app/ckan/registry/src/ckanext-datastore-search/ckanext/datastore_search/logic/action.py", line 69, in datastore_delete func_result = up_func(context, data_dict) File "/srv/app/ckan/registry/src/ckan/ckanext/datastore/logic/action.py", line 488, in datastore_delete result = backend.delete(context, data_dict) File "/srv/app/ckan/registry/src/ckan/ckanext/datastore/backend/postgres.py", line 2119, in delete delete_data(context, data_dict) File "/srv/app/ckan/registry/src/ckan/ckanext/datastore/backend/postgres.py", line 1660, in delete_data results = _execute_single_statement(context, sql_string, where_values) File "/srv/app/ckan/registry/src/ckan/ckanext/datastore/backend/postgres.py", line 795, in _execute_single_statement results = context['connection'].execute( File "/srv/app/ckan/registry/lib/python3.10/site-packages/sqlalchemy/engine/base.py", line 1416, in execute return meth( File "/srv/app/ckan/registry/lib/python3.10/site-packages/sqlalchemy/sql/elements.py", line 515, in _execute_on_connection return connection._execute_clauseelement( File "/srv/app/ckan/registry/lib/python3.10/site-packages/sqlalchemy/engine/base.py", line 1638, in _execute_clauseelement ret = self._execute_context( File "/srv/app/ckan/registry/lib/python3.10/site-packages/sqlalchemy/engine/base.py", line 1843, in _execute_context return self._exec_single_context( File "/srv/app/ckan/registry/lib/python3.10/site-packages/sqlalchemy/engine/base.py", line 1983, in _exec_single_context self._handle_dbapi_exception( File "/srv/app/ckan/registry/lib/python3.10/site-packages/sqlalchemy/engine/base.py", line 2352, in _handle_dbapi_exception raise sqlalchemy_exception.with_traceback(exc_info[2]) from e File "/srv/app/ckan/registry/lib/python3.10/site-packages/sqlalchemy/engine/base.py", line 1964, in _exec_single_context self.dialect.do_execute( File "/srv/app/ckan/registry/lib/python3.10/site-packages/sqlalchemy/engine/default.py", line 942, in do_execute cursor.execute(statement, parameters) sqlalchemy.exc.ProgrammingError: (psycopg2.errors.UndefinedFunction) operator does not exist: text = integer LINE 1: ...611a8-0514-47f4-a6f7-bc42ba1569f4" WHERE (prim_id = 1) RETUR... ^ HINT: No operator matches the given name and argument types. You might need to add explicit type casts. [SQL: DELETE FROM "c69611a8-0514-47f4-a6f7-bc42ba1569f4" WHERE (prim_id = %(value_0)s) RETURNING _id, "prim_id", "example_text_field"] [parameters: {'value_0': 1}] ```
open
2025-03-17T18:22:22Z
2025-03-19T19:20:06Z
https://github.com/ckan/ckan/issues/8725
[]
JVickery-TBS
3
thtrieu/darkflow
tensorflow
917
From Darknet to Darkflow and then Movidius
Hi, I'm going to use a retrained model with darknet of YOLOv2Tiny on the Movidius NCS. I cannot produce a .pb and .meta file from .cfg and .weights and I don't know why. I use the command: `python3 flow --model apple_tiny_yolov2/apple_tiny_yolov2.cfg --load apple_tiny_yolov2/apple_tiny_yolov2_1000.weights --savepb` but the systems answer: ``` /home/tart/Desktop/YOLO/darkflow-master/darkflow/dark/darknet.py:54: UserWarning: ./cfg/apple_tiny_yolov2_1000.cfg not found, use apple_tiny_yolov2/apple_tiny_yolov2.cfg instead cfg_path, FLAGS.model)) Parsing apple_tiny_yolov2/apple_tiny_yolov2.cfg Loading apple_tiny_yolov2/apple_tiny_yolov2_1000.weights ... Traceback (most recent call last): File "flow", line 6, in <module> cliHandler(sys.argv) File "/home/tart/Desktop/YOLO/darkflow-master/darkflow/cli.py", line 26, in cliHandler tfnet = TFNet(FLAGS) File "/home/tart/Desktop/YOLO/darkflow-master/darkflow/net/build.py", line 58, in __init__ darknet = Darknet(FLAGS) File "/home/tart/Desktop/YOLO/darkflow-master/darkflow/dark/darknet.py", line 27, in __init__ self.load_weights() File "/home/tart/Desktop/YOLO/darkflow-master/darkflow/dark/darknet.py", line 82, in load_weights wgts_loader = loader.create_loader(*args) File "/home/tart/Desktop/YOLO/darkflow-master/darkflow/utils/loader.py", line 105, in create_loader return load_type(path, cfg) File "/home/tart/Desktop/YOLO/darkflow-master/darkflow/utils/loader.py", line 19, in __init__ self.load(*args) File "/home/tart/Desktop/YOLO/darkflow-master/darkflow/utils/loader.py", line 70, in load val = walker.walk(new.wsize[par]) File "/home/tart/Desktop/YOLO/darkflow-master/darkflow/utils/loader.py", line 130, in walk 'Over-read {}'.format(self.path) AssertionError: Over-read apple_tiny_yolov2/apple_tiny_yolov2_1000.weights ``` Can you help me? Thanks a lot
open
2018-10-08T08:46:13Z
2018-10-08T08:46:13Z
https://github.com/thtrieu/darkflow/issues/917
[]
keldrom
0
nalepae/pandarallel
pandas
135
[Feature Request] Timer on Progress Bar
I'm switching to this package on places using tqdm.pandas earlier, think it would be nice to have a similar timer at the progress bar to track Estimated Time to Finish and monitor the speed.
open
2021-02-12T22:00:19Z
2024-04-27T07:48:12Z
https://github.com/nalepae/pandarallel/issues/135
[]
zhenyulin
5