repo_name
stringlengths
9
75
topic
stringclasses
30 values
issue_number
int64
1
203k
title
stringlengths
1
976
body
stringlengths
0
254k
state
stringclasses
2 values
created_at
stringlengths
20
20
updated_at
stringlengths
20
20
url
stringlengths
38
105
labels
listlengths
0
9
user_login
stringlengths
1
39
comments_count
int64
0
452
Textualize/rich
python
3,068
[REQUEST]
Please add a way to center/align the Progress module. Currently from what I've seen it can only align to the left but I would love for it to be able to be centered.
closed
2023-07-30T09:04:38Z
2023-07-30T20:53:16Z
https://github.com/Textualize/rich/issues/3068
[ "Needs triage" ]
KingKDot
4
deezer/spleeter
deep-learning
290
Command not found: Spleeter
<img width="568" alt="Screen Shot 2020-03-12 at 9 33 25 AM" src="https://user-images.githubusercontent.com/58147163/76526825-87602400-6444-11ea-9ec2-a16ea279bd02.png"> Any ideas? I followed all the instructions.
closed
2020-03-12T13:34:49Z
2020-05-25T19:25:21Z
https://github.com/deezer/spleeter/issues/290
[ "bug", "invalid" ]
chrisgauthier9
2
ultralytics/ultralytics
computer-vision
18,758
Cannot export model to edgetpu on linux machine
### Search before asking - [x] I have searched the Ultralytics YOLO [issues](https://github.com/ultralytics/ultralytics/issues) and found no similar bug report. ### Ultralytics YOLO Component Other, Export ### Bug The export to edgetpu works in google colab, however I cannot reproduce the model export in a personal computer `from ultralytics import YOLO model = YOLO('yolo11n.pt') # load a pretrained model (recommended for training) results = model.export(format='edgetpu') # export the model to ONNX format` TensorFlow SavedModel: export failure ❌ 77.2s: No module named 'imp' Traceback (most recent call last): File "/home/andrea/venv/myenv2/lib/python3.12/site-packages/ultralytics/engine/exporter.py", line 1285, in _add_tflite_metadata from tensorflow_lite_support.metadata import metadata_schema_py_generated as schema # noqa ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ModuleNotFoundError: No module named 'tensorflow_lite_support' During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/home/andrea/venv/myenv2/lib/python3.12/site-packages/01.py", line 3, in <module> results = model.export(format='edgetpu') # export the model to ONNX format ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/andrea/venv/myenv2/lib/python3.12/site-packages/ultralytics/engine/model.py", line 738, in export return Exporter(overrides=args, _callbacks=self.callbacks)(model=self.model) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/andrea/venv/myenv2/lib/python3.12/site-packages/ultralytics/engine/exporter.py", line 403, in __call__ f[5], keras_model = self.export_saved_model() ^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/andrea/venv/myenv2/lib/python3.12/site-packages/ultralytics/engine/exporter.py", line 176, in outer_func raise e File "/home/andrea/venv/myenv2/lib/python3.12/site-packages/ultralytics/engine/exporter.py", line 171, in outer_func f, model = inner_func(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/andrea/venv/myenv2/lib/python3.12/site-packages/ultralytics/engine/exporter.py", line 1034, in export_saved_model f.unlink() if "quant_with_int16_act.tflite" in str(f) else self._add_tflite_metadata(file) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/andrea/venv/myenv2/lib/python3.12/site-packages/ultralytics/engine/exporter.py", line 1288, in _add_tflite_metadata from tflite_support import metadata # noqa ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/home/andrea/venv/myenv2/lib/python3.12/site-packages/tflite_support/metadata.py", line 28, in <module> from tflite_support import flatbuffers File "/home/andrea/venv/myenv2/lib/python3.12/site-packages/tflite_support/flatbuffers/__init__.py", line 15, in <module> from .builder import Builder File "/home/andrea/venv/myenv2/lib/python3.12/site-packages/tflite_support/flatbuffers/builder.py", line 15, in <module> from . import number_types as N File "/home/andrea/venv/myenv2/lib/python3.12/site-packages/tflite_support/flatbuffers/number_types.py", line 18, in <module> from . import packer File "/home/andrea/venv/myenv2/lib/python3.12/site-packages/tflite_support/flatbuffers/packer.py", line 22, in <module> from . import compat File "/home/andrea/venv/myenv2/lib/python3.12/site-packages/tflite_support/flatbuffers/compat.py", line 19, in <module> import imp ModuleNotFoundError: No module named 'imp' ### Environment Ultralytics 8.3.63 🚀 Python-3.12.3 torch-2.5.1+cu124 CUDA:0 (NVIDIA GeForce RTX 3060, 11938MiB) Setup complete ✅ (12 CPUs, 15.5 GB RAM, 360.8/467.9 GB disk) os: ubuntu python version: 3.12 package onnx2tf version: 1.26.3 ### Minimal Reproducible Example from ultralytics import YOLO model = YOLO('yolo11n.pt') # load a pretrained model (recommended for training) results = model.export(format='edgetpu') # export the model to ONNX format ### Additional _No response_ ### Are you willing to submit a PR? - [ ] Yes I'd like to help by submitting a PR!
open
2025-01-19T11:22:22Z
2025-01-20T15:54:53Z
https://github.com/ultralytics/ultralytics/issues/18758
[ "bug", "exports" ]
Lorsu
3
graphql-python/graphene-django
django
1,515
Documentation Mismatch for Testing API Calls with Django
**What is the current behavior?** The documentation for testing API calls with Django on the official website of [Graphene-Django](https://docs.graphene-python.org/projects/django/en/latest/testing/) shows incorrect usage of a parameter named **op_name** in the code examples for unit tests and pytest integration. However, upon inspecting the corresponding documentation in the [GitHub repository](https://github.com/graphql-python/graphene-django/blob/main/docs/testing.rst), the correct parameter operation_name is used. **Steps to Reproduce** Visit the [Graphene-Django](https://docs.graphene-python.org/projects/django/en/latest/testing/) documentation website's section on testing API calls with Django. Observe the use of op_name in the example code blocks. Compare with the content in the [testing.rst](https://github.com/graphql-python/graphene-django/blob/main/docs/testing.rst) file in the docs folder of the Graphene-Django GitHub repository, where operation_name is correctly used. Expected Behavior The online documentation should reflect the same parameter name, operation_name, as found in the GitHub repository documentation, ensuring consistency and correctness for developers relying on these docs for implementing tests. Motivation / Use Case for Changing the Behavior Ensuring the documentation is accurate and consistent across all platforms is crucial for developer experience and adoption. Incorrect documentation can lead to confusion and errors in implementation, especially for new users of Graphene-Django.
open
2024-04-06T05:32:32Z
2024-07-03T18:44:00Z
https://github.com/graphql-python/graphene-django/issues/1515
[ "🐛bug" ]
hamza-m-farooqi
1
FlareSolverr/FlareSolverr
api
1,288
[yggtorrent] (testing) Exception (yggtorrent): FlareSolverr was unable to process the request, please check FlareSolverr logs. Message: Error: Error solving the challenge. Timeout after 55.0 seconds.: FlareSolverr was unable to process the request, please check FlareSolverr logs. Message: Error: Error solving the challenge. Timeout after 55.0 seconds.
### Have you checked our README? - [X] I have checked the README ### Have you followed our Troubleshooting? - [X] I have followed your Troubleshooting ### Is there already an issue for your problem? - [X] I have checked older issues, open and closed ### Have you checked the discussions? - [X] I have read the Discussions ### Environment ```markdown - FlareSolverr version:3.3.21 - Last working FlareSolverr version:3.3.21 - Operating system: Linux-6.1.79-Unraid-x86_64-with-glibc2.31 - Are you using Docker: yes - FlareSolverr User-Agent (see log traces or / endpoint): Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/120.0.0.0 Safari/537.36 - Are you using a VPN: no - Are you using a Proxy: no - Are you using Captcha Solver: no - If using captcha solver, which one: - URL to test this issue: https://www.ygg.re/ ``` ### Description Hello guys, I hope you are having a nice day. I wanted to thank you all very much for your work. Regarding the issue, I'm having the same issue that we had few days ago with yggtorrent. Already implemented patch published here https://github.com/FlareSolverr/FlareSolverr/issues/1253 However it worked for a few days and stopped working today. ### Logged Error Messages ```text 2024-07-25 18:49:37 INFO ReqId 23039076726592 FlareSolverr 3.3.21 2024-07-25 18:49:37 DEBUG ReqId 23039076726592 Debug log enabled 2024-07-25 18:49:37 INFO ReqId 23039076726592 Testing web browser installation... 2024-07-25 18:49:37 INFO ReqId 23039076726592 Platform: Linux-6.1.79-Unraid-x86_64-with-glibc2.31 2024-07-25 18:49:37 INFO ReqId 23039076726592 Chrome / Chromium path: /usr/bin/chromium 2024-07-25 18:49:41 INFO ReqId 23039076726592 Chrome / Chromium major version: 120 2024-07-25 18:49:41 INFO ReqId 23039076726592 Launching web browser... 2024-07-25 18:49:41 DEBUG ReqId 23039076726592 Launching web browser... 2024-07-25 18:49:42 DEBUG ReqId 23039076726592 Started executable: `/app/chromedriver` in a child process with pid: 32 2024-07-25 18:49:43 INFO ReqId 23039076726592 FlareSolverr User-Agent: Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/120.0.0.0 Safari/537.36 2024-07-25 18:49:43 INFO ReqId 23039076726592 Test successful! 2024-07-25 18:49:43 INFO ReqId 23039076726592 Serving on http://0.0.0.0:8191 2024-07-25 18:49:51 INFO ReqId 23039035483904 Incoming request => POST /v1 body: {'maxTimeout': 55000, 'cmd': 'request.get', 'url': 'https://www.ygg.re/engine/search?do=search&order=desc&sort=publish_date&category=all'} 2024-07-25 18:49:51 DEBUG ReqId 23039035483904 Launching web browser... 2024-07-25 18:49:51 DEBUG ReqId 23039035483904 Started executable: `/app/chromedriver` in a child process with pid: 177 2024-07-25 18:49:51 DEBUG ReqId 23039035483904 New instance of webdriver has been created to perform the request 2024-07-25 18:49:51 DEBUG ReqId 23039027078912 Navigating to... https://www.ygg.re/engine/search?do=search&order=desc&sort=publish_date&category=all 2024-07-25 18:49:54 INFO ReqId 23039027078912 Challenge detected. Title found: Just a moment... 2024-07-25 18:49:54 DEBUG ReqId 23039027078912 Waiting for title (attempt 1): Just a moment... 2024-07-25 18:49:55 DEBUG ReqId 23039027078912 Timeout waiting for selector 2024-07-25 18:49:55 DEBUG ReqId 23039027078912 Try to find the Cloudflare verify checkbox... 2024-07-25 18:49:55 DEBUG ReqId 23039027078912 Cloudflare verify checkbox not found on the page. 2024-07-25 18:49:55 DEBUG ReqId 23039027078912 Try to find the Cloudflare 'Verify you are human' button... 2024-07-25 18:49:55 DEBUG ReqId 23039027078912 The Cloudflare 'Verify you are human' button not found on the page. 2024-07-25 18:49:57 DEBUG ReqId 23039027078912 Waiting for title (attempt 2): Just a moment... 2024-07-25 18:49:58 DEBUG ReqId 23039027078912 Timeout waiting for selector 2024-07-25 18:49:58 DEBUG ReqId 23039027078912 Try to find the Cloudflare verify checkbox... 2024-07-25 18:49:58 DEBUG ReqId 23039027078912 Cloudflare verify checkbox not found on the page. 2024-07-25 18:49:58 DEBUG ReqId 23039027078912 Try to find the Cloudflare 'Verify you are human' button... 2024-07-25 18:49:58 DEBUG ReqId 23039027078912 The Cloudflare 'Verify you are human' button not found on the page. 2024-07-25 18:50:01 DEBUG ReqId 23039027078912 Waiting for title (attempt 3): Just a moment... 2024-07-25 18:50:02 DEBUG ReqId 23039027078912 Timeout waiting for selector 2024-07-25 18:50:02 DEBUG ReqId 23039027078912 Try to find the Cloudflare verify checkbox... 2024-07-25 18:50:02 DEBUG ReqId 23039027078912 Cloudflare verify checkbox not found on the page. 2024-07-25 18:50:02 DEBUG ReqId 23039027078912 Try to find the Cloudflare 'Verify you are human' button... 2024-07-25 18:50:02 DEBUG ReqId 23039027078912 The Cloudflare 'Verify you are human' button not found on the page. 2024-07-25 18:50:04 DEBUG ReqId 23039027078912 Waiting for title (attempt 4): Just a moment... 2024-07-25 18:50:05 DEBUG ReqId 23039027078912 Timeout waiting for selector 2024-07-25 18:50:05 DEBUG ReqId 23039027078912 Try to find the Cloudflare verify checkbox... 2024-07-25 18:50:05 DEBUG ReqId 23039027078912 Cloudflare verify checkbox not found on the page. 2024-07-25 18:50:05 DEBUG ReqId 23039027078912 Try to find the Cloudflare 'Verify you are human' button... 2024-07-25 18:50:05 DEBUG ReqId 23039027078912 The Cloudflare 'Verify you are human' button not found on the page. 2024-07-25 18:50:07 DEBUG ReqId 23039027078912 Waiting for title (attempt 5): Just a moment... 2024-07-25 18:50:08 DEBUG ReqId 23039027078912 Timeout waiting for selector 2024-07-25 18:50:08 DEBUG ReqId 23039027078912 Try to find the Cloudflare verify checkbox... 2024-07-25 18:50:08 DEBUG ReqId 23039027078912 Cloudflare verify checkbox not found on the page. 2024-07-25 18:50:08 DEBUG ReqId 23039027078912 Try to find the Cloudflare 'Verify you are human' button... 2024-07-25 18:50:08 DEBUG ReqId 23039027078912 The Cloudflare 'Verify you are human' button not found on the page. 2024-07-25 18:50:10 DEBUG ReqId 23039027078912 Waiting for title (attempt 6): Just a moment... 2024-07-25 18:50:11 DEBUG ReqId 23039027078912 Timeout waiting for selector 2024-07-25 18:50:11 DEBUG ReqId 23039027078912 Try to find the Cloudflare verify checkbox... 2024-07-25 18:50:11 DEBUG ReqId 23039027078912 Cloudflare verify checkbox not found on the page. 2024-07-25 18:50:11 DEBUG ReqId 23039027078912 Try to find the Cloudflare 'Verify you are human' button... 2024-07-25 18:50:11 DEBUG ReqId 23039027078912 The Cloudflare 'Verify you are human' button not found on the page. 2024-07-25 18:50:13 DEBUG ReqId 23039027078912 Waiting for title (attempt 7): Just a moment... 2024-07-25 18:50:14 DEBUG ReqId 23039027078912 Timeout waiting for selector 2024-07-25 18:50:14 DEBUG ReqId 23039027078912 Try to find the Cloudflare verify checkbox... 2024-07-25 18:50:14 DEBUG ReqId 23039027078912 Cloudflare verify checkbox not found on the page. 2024-07-25 18:50:14 DEBUG ReqId 23039027078912 Try to find the Cloudflare 'Verify you are human' button... 2024-07-25 18:50:14 DEBUG ReqId 23039027078912 The Cloudflare 'Verify you are human' button not found on the page. 2024-07-25 18:50:16 DEBUG ReqId 23039027078912 Waiting for title (attempt 8): Just a moment... 2024-07-25 18:50:17 DEBUG ReqId 23039027078912 Timeout waiting for selector 2024-07-25 18:50:17 DEBUG ReqId 23039027078912 Try to find the Cloudflare verify checkbox... 2024-07-25 18:50:17 DEBUG ReqId 23039027078912 Cloudflare verify checkbox not found on the page. 2024-07-25 18:50:17 DEBUG ReqId 23039027078912 Try to find the Cloudflare 'Verify you are human' button... 2024-07-25 18:50:17 DEBUG ReqId 23039027078912 The Cloudflare 'Verify you are human' button not found on the page. 2024-07-25 18:50:19 DEBUG ReqId 23039027078912 Waiting for title (attempt 9): Just a moment... 2024-07-25 18:50:20 DEBUG ReqId 23039027078912 Timeout waiting for selector 2024-07-25 18:50:20 DEBUG ReqId 23039027078912 Try to find the Cloudflare verify checkbox... 2024-07-25 18:50:20 DEBUG ReqId 23039027078912 Cloudflare verify checkbox not found on the page. 2024-07-25 18:50:20 DEBUG ReqId 23039027078912 Try to find the Cloudflare 'Verify you are human' button... 2024-07-25 18:50:20 DEBUG ReqId 23039027078912 The Cloudflare 'Verify you are human' button not found on the page. 2024-07-25 18:50:22 DEBUG ReqId 23039027078912 Waiting for title (attempt 10): Just a moment... 2024-07-25 18:50:23 DEBUG ReqId 23039027078912 Timeout waiting for selector 2024-07-25 18:50:23 DEBUG ReqId 23039027078912 Try to find the Cloudflare verify checkbox... 2024-07-25 18:50:23 DEBUG ReqId 23039027078912 Cloudflare verify checkbox not found on the page. 2024-07-25 18:50:23 DEBUG ReqId 23039027078912 Try to find the Cloudflare 'Verify you are human' button... 2024-07-25 18:50:23 DEBUG ReqId 23039027078912 The Cloudflare 'Verify you are human' button not found on the page. 2024-07-25 18:50:25 DEBUG ReqId 23039027078912 Waiting for title (attempt 11): Just a moment... 2024-07-25 18:50:26 DEBUG ReqId 23039027078912 Timeout waiting for selector 2024-07-25 18:50:26 DEBUG ReqId 23039027078912 Try to find the Cloudflare verify checkbox... 2024-07-25 18:50:26 DEBUG ReqId 23039027078912 Cloudflare verify checkbox not found on the page. 2024-07-25 18:50:26 DEBUG ReqId 23039027078912 Try to find the Cloudflare 'Verify you are human' button... 2024-07-25 18:50:26 DEBUG ReqId 23039027078912 The Cloudflare 'Verify you are human' button not found on the page. 2024-07-25 18:50:28 DEBUG ReqId 23039027078912 Waiting for title (attempt 12): Just a moment... 2024-07-25 18:50:29 DEBUG ReqId 23039027078912 Timeout waiting for selector 2024-07-25 18:50:29 DEBUG ReqId 23039027078912 Try to find the Cloudflare verify checkbox... 2024-07-25 18:50:29 DEBUG ReqId 23039027078912 Cloudflare verify checkbox not found on the page. 2024-07-25 18:50:29 DEBUG ReqId 23039027078912 Try to find the Cloudflare 'Verify you are human' button... 2024-07-25 18:50:29 DEBUG ReqId 23039027078912 The Cloudflare 'Verify you are human' button not found on the page. 2024-07-25 18:50:31 DEBUG ReqId 23039027078912 Waiting for title (attempt 13): Just a moment... 2024-07-25 18:50:32 DEBUG ReqId 23039027078912 Timeout waiting for selector 2024-07-25 18:50:32 DEBUG ReqId 23039027078912 Try to find the Cloudflare verify checkbox... 2024-07-25 18:50:32 DEBUG ReqId 23039027078912 Cloudflare verify checkbox not found on the page. 2024-07-25 18:50:32 DEBUG ReqId 23039027078912 Try to find the Cloudflare 'Verify you are human' button... 2024-07-25 18:50:32 DEBUG ReqId 23039027078912 The Cloudflare 'Verify you are human' button not found on the page. 2024-07-25 18:50:34 DEBUG ReqId 23039027078912 Waiting for title (attempt 14): Just a moment... 2024-07-25 18:50:35 DEBUG ReqId 23039027078912 Timeout waiting for selector 2024-07-25 18:50:35 DEBUG ReqId 23039027078912 Try to find the Cloudflare verify checkbox... 2024-07-25 18:50:35 DEBUG ReqId 23039027078912 Cloudflare verify checkbox not found on the page. 2024-07-25 18:50:35 DEBUG ReqId 23039027078912 Try to find the Cloudflare 'Verify you are human' button... 2024-07-25 18:50:35 DEBUG ReqId 23039027078912 The Cloudflare 'Verify you are human' button not found on the page. 2024-07-25 18:50:37 DEBUG ReqId 23039027078912 Waiting for title (attempt 15): Just a moment... 2024-07-25 18:50:38 DEBUG ReqId 23039027078912 Timeout waiting for selector 2024-07-25 18:50:38 DEBUG ReqId 23039027078912 Try to find the Cloudflare verify checkbox... 2024-07-25 18:50:38 DEBUG ReqId 23039027078912 Cloudflare verify checkbox not found on the page. 2024-07-25 18:50:38 DEBUG ReqId 23039027078912 Try to find the Cloudflare 'Verify you are human' button... 2024-07-25 18:50:38 DEBUG ReqId 23039027078912 The Cloudflare 'Verify you are human' button not found on the page. 2024-07-25 18:50:40 DEBUG ReqId 23039027078912 Waiting for title (attempt 16): Just a moment... 2024-07-25 18:50:41 DEBUG ReqId 23039027078912 Timeout waiting for selector 2024-07-25 18:50:41 DEBUG ReqId 23039027078912 Try to find the Cloudflare verify checkbox... 2024-07-25 18:50:41 DEBUG ReqId 23039027078912 Cloudflare verify checkbox not found on the page. 2024-07-25 18:50:41 DEBUG ReqId 23039027078912 Try to find the Cloudflare 'Verify you are human' button... 2024-07-25 18:50:41 DEBUG ReqId 23039027078912 The Cloudflare 'Verify you are human' button not found on the page. 2024-07-25 18:50:43 DEBUG ReqId 23039027078912 Waiting for title (attempt 17): Just a moment... 2024-07-25 18:50:44 DEBUG ReqId 23039027078912 Timeout waiting for selector 2024-07-25 18:50:44 DEBUG ReqId 23039027078912 Try to find the Cloudflare verify checkbox... 2024-07-25 18:50:44 DEBUG ReqId 23039027078912 Cloudflare verify checkbox not found on the page. 2024-07-25 18:50:44 DEBUG ReqId 23039027078912 Try to find the Cloudflare 'Verify you are human' button... 2024-07-25 18:50:44 DEBUG ReqId 23039027078912 The Cloudflare 'Verify you are human' button not found on the page. 2024-07-25 18:50:46 DEBUG ReqId 23039027078912 Waiting for title (attempt 18): Just a moment... 2024-07-25 18:50:46 DEBUG ReqId 23039035483904 A used instance of webdriver has been destroyed 2024-07-25 18:50:46 ERROR ReqId 23039035483904 Error: Error solving the challenge. Timeout after 55.0 seconds. 2024-07-25 18:50:46 DEBUG ReqId 23039035483904 Response => POST /v1 body: {'status': 'error', 'message': 'Error: Error solving the challenge. Timeout after 55.0 seconds.', 'startTimestamp': 1721933391173, 'endTimestamp': 1721933446914, 'version': '3.3.21'} 2024-07-25 18:50:46 INFO ReqId 23039035483904 Response in 55.741 s 2024-07-25 18:50:46 INFO ReqId 23039035483904 172.17.0.1 POST http://10.1.10.240:8191/v1 500 Internal Server Error ``` ### Screenshots _No response_
closed
2024-07-25T18:54:10Z
2024-07-25T20:19:26Z
https://github.com/FlareSolverr/FlareSolverr/issues/1288
[ "duplicate" ]
touzenesmy
4
PaddlePaddle/PaddleHub
nlp
2,254
AttributeError: module 'paddle' has no attribute '__version__'
欢迎您反馈PaddleHub使用问题,非常感谢您对PaddleHub的贡献! 在留下您的问题时,辛苦您同步提供如下信息: - 版本、环境信息 1)PaddleHub和PaddlePaddle版本:请提供您的PaddleHub和PaddlePaddle版本号,例如PaddleHub1.4.1,PaddlePaddle1.6.2 2)系统环境:请您描述系统类型,例如Linux/Windows/MacOS/,python版本 - 复现信息:如为报错,请给出复现环境、复现步骤
closed
2023-05-15T06:40:12Z
2023-09-15T08:45:13Z
https://github.com/PaddlePaddle/PaddleHub/issues/2254
[]
HuangXinzhe
3
Kanaries/pygwalker
plotly
252
When deploying the streamlit apllication the graph is not visible in browser the api calls are going st_core which is not there in directory
closed
2023-09-29T02:17:29Z
2023-10-17T11:37:29Z
https://github.com/Kanaries/pygwalker/issues/252
[ "bug", "fixed but needs feedback" ]
JeevankumarDharmalingam
13
geex-arts/django-jet
django
289
Page not found (404)
Hi, I make download of the project later, I try to run the project and I have the next issue when try to surf of the dashboard. Using the URLconf defined in jet.tests.urls, Django tried these URL patterns, in this order: url: http://127.0.0.1:8000/admin/jet ^jet/ ^jet/dashboard/ ^admin/doc/ ^admin/ ^$ [name='index'] ^admin/ ^login/$ [name='login'] ^admin/ ^logout/$ [name='logout'] ^admin/ ^password_change/$ [name='password_change'] ^admin/ ^password_change/done/$ [name='password_change_done'] ^admin/ ^jsi18n/$ [name='jsi18n'] ^admin/ ^r/(?P<content_type_id>\d+)/(?P<object_id>.+)/$ [name='view_on_site'] ^admin/ ^auth/user/ ^admin/ ^tests/testmodel/ ^admin/ ^auth/group/ ^admin/ ^sites/site/ ^admin/ ^tests/relatedtotestmodel/ ^admin/ ^(?P<app_label>auth|tests|sites)/$ [name='app_list'] The current path, admin/jet, didn't match any of these. Somebody can help me please.
open
2018-01-31T13:36:45Z
2019-01-24T20:31:13Z
https://github.com/geex-arts/django-jet/issues/289
[]
JorgeSevilla
10
ultralytics/ultralytics
python
19,292
Colab default setting could not covert to tflite
### Search before asking - [x] I have searched the Ultralytics YOLO [issues](https://github.com/ultralytics/ultralytics/issues) and found no similar bug report. ### Ultralytics YOLO Component _No response_ ### Bug Few weeks ago I can convert the yolo11n.pt to tflite, but now the colab default python setting will be python 3.11.11. At this version, the tflite could not be converted by onnx2tf. How can I fix it? ![Image](https://github.com/user-attachments/assets/60fa0461-5413-4f7d-92c6-4adac4c368d9) ``` from ultralytics import YOLO model = YOLO('yolo11n.pt') model.export(format='tflite', imgsz=192, int8=True) model = YOLO('yolo11n_saved_model/yolo11n_full_integer_quant.tflite') res = model.predict(imgsz=192) res[0].plot(show=True) ``` ``` Downloading https://ultralytics.com/assets/Arial.ttf to '/root/.config/Ultralytics/Arial.ttf'... 100%|██████████| 755k/755k [00:00<00:00, 116MB/s] Scanning /content/datasets/coco8/labels/val... 4 images, 0 backgrounds, 0 corrupt: 100%|██████████| 4/4 [00:00<00:00, 117.40it/s]New cache created: /content/datasets/coco8/labels/val.cache TensorFlow SavedModel: WARNING ⚠️ >300 images recommended for INT8 calibration, found 4 images. TensorFlow SavedModel: starting TFLite export with onnx2tf 1.26.3... ERROR:root:Internal Python error in the inspect module. Below is the traceback from this internal error. ERROR: The trace log is below. Traceback (most recent call last): File "/usr/local/lib/python3.11/dist-packages/onnx2tf/utils/common_functions.py", line 312, in print_wrapper_func result = func(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/dist-packages/onnx2tf/utils/common_functions.py", line 385, in inverted_operation_enable_disable_wrapper_func result = func(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/dist-packages/onnx2tf/utils/common_functions.py", line 55, in get_replacement_parameter_wrapper_func func(*args, **kwargs) File "/usr/local/lib/python3.11/dist-packages/onnx2tf/ops/Mul.py", line 245, in make_node correction_process_for_accuracy_errors( File "/usr/local/lib/python3.11/dist-packages/onnx2tf/utils/common_functions.py", line 5894, in correction_process_for_accuracy_errors min_abs_err_perm_1: int = [idx for idx in range(len(validation_data_1.shape))] ^^^^^^^^^^^^^^^^^^^^^^^ AttributeError: 'NoneType' object has no attribute 'shape' ERROR: input_onnx_file_path: yolo11n.onnx ERROR: onnx_op_name: wa/model.10/m/m.0/attn/Mul ERROR: Read this and deal with it. https://github.com/PINTO0309/onnx2tf#parameter-replacement ERROR: Alternatively, if the input OP has a dynamic dimension, use the -b or -ois option to rewrite it to a static shape and try again. ERROR: If the input OP of ONNX before conversion is NHWC or an irregular channel arrangement other than NCHW, use the -kt or -kat option. ERROR: Also, for models that include NonMaxSuppression in the post-processing, try the -onwdt option. Traceback (most recent call last): File "/usr/local/lib/python3.11/dist-packages/onnx2tf/utils/common_functions.py", line 312, in print_wrapper_func result = func(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/dist-packages/onnx2tf/utils/common_functions.py", line 385, in inverted_operation_enable_disable_wrapper_func result = func(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/dist-packages/onnx2tf/utils/common_functions.py", line 55, in get_replacement_parameter_wrapper_func func(*args, **kwargs) File "/usr/local/lib/python3.11/dist-packages/onnx2tf/ops/Mul.py", line 245, in make_node correction_process_for_accuracy_errors( File "/usr/local/lib/python3.11/dist-packages/onnx2tf/utils/common_functions.py", line 5894, in correction_process_for_accuracy_errors min_abs_err_perm_1: int = [idx for idx in range(len(validation_data_1.shape))] ^^^^^^^^^^^^^^^^^^^^^^^ AttributeError: 'NoneType' object has no attribute 'shape' During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/usr/local/lib/python3.11/dist-packages/IPython/core/interactiveshell.py", line 3553, in run_code exec(code_obj, self.user_global_ns, self.user_ns) File "<ipython-input-6-da2eaec26985>", line 3, in <cell line: 0> model.export(format='tflite', imgsz=192, int8=True) File "/usr/local/lib/python3.11/dist-packages/ultralytics/engine/model.py", line 741, in export return Exporter(overrides=args, _callbacks=self.callbacks)(model=self.model) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/dist-packages/ultralytics/engine/exporter.py", line 418, in __call__ f[5], keras_model = self.export_saved_model() ^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/dist-packages/ultralytics/engine/exporter.py", line 175, in outer_func f, model = inner_func(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/dist-packages/ultralytics/engine/exporter.py", line 1036, in export_saved_model keras_model = onnx2tf.convert( ^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/dist-packages/onnx2tf/onnx2tf.py", line 1141, in convert op.make_node( File "/usr/local/lib/python3.11/dist-packages/onnx2tf/utils/common_functions.py", line 378, in print_wrapper_func sys.exit(1) SystemExit: 1 During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/usr/local/lib/python3.11/dist-packages/IPython/core/ultratb.py", line 1101, in get_records return _fixed_getinnerframes(etb, number_of_lines_of_context, tb_offset) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/dist-packages/IPython/core/ultratb.py", line 248, in wrapped return f(*args, **kwargs) ^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/dist-packages/IPython/core/ultratb.py", line 281, in _fixed_getinnerframes records = fix_frame_records_filenames(inspect.getinnerframes(etb, context)) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/lib/python3.11/inspect.py", line 1739, in getinnerframes traceback_info = getframeinfo(tb, context) ^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/lib/python3.11/inspect.py", line 1671, in getframeinfo lineno = frame.f_lineno ^^^^^^^^^^^^^^ AttributeError: 'tuple' object has no attribute 'f_lineno' --------------------------------------------------------------------------- AttributeError Traceback (most recent call last) [/usr/local/lib/python3.11/dist-packages/onnx2tf/utils/common_functions.py](https://localhost:8080/#) in print_wrapper_func(*args, **kwargs) 311 try: --> 312 result = func(*args, **kwargs) 313 18 frames AttributeError: 'NoneType' object has no attribute 'shape' During handling of the above exception, another exception occurred: SystemExit Traceback (most recent call last) [... skipping hidden 1 frame] SystemExit: 1 During handling of the above exception, another exception occurred: TypeError Traceback (most recent call last) [... skipping hidden 1 frame] [/usr/local/lib/python3.11/dist-packages/IPython/core/ultratb.py](https://localhost:8080/#) in find_recursion(etype, value, records) 380 # first frame (from in to out) that looks different. 381 if not is_recursion_error(etype, value, records): --> 382 return len(records), 0 383 384 # Select filename, lineno, func_name to track frames with TypeError: object of type 'NoneType' has no len() ``` Thanks, Kris ### Environment colab default Environment ### Minimal Reproducible Example https://colab.research.google.com/github/ultralytics/ultralytics/blob/main/examples/tutorial.ipynb ### Additional _No response_ ### Are you willing to submit a PR? - [ ] Yes I'd like to help by submitting a PR!
open
2025-02-18T09:09:13Z
2025-02-21T01:35:52Z
https://github.com/ultralytics/ultralytics/issues/19292
[ "bug", "non-reproducible", "exports" ]
kris-himax
5
koxudaxi/datamodel-code-generator
fastapi
2,232
[PydanticV2] Add parameter to use Python Regex Engine in order to support look-around
**Is your feature request related to a problem? Please describe.** 1. I wrote a valid JSON Schema with many properties 2. Some properties' pattern make use of look-ahead and look-behind, which are supported by JSON Schema specifications. See: [JSON Schema supported patterns](https://json-schema.org/understanding-json-schema/reference/regular_expressions) 4. `datamodel-code-generator` generated the PydanticV2 models. 5. PydanticV2 doesn't support look-around, look-ahead and look-behind by default (see https://github.com/pydantic/pydantic/issues/7058) ```Python traceback ImportError while loading [...]: in <module> [...] .venv/lib/python3.12/site-packages/pydantic/_internal/_model_construction.py:205: in __new__ complete_model_class( .venv/lib/python3.12/site-packages/pydantic/_internal/_model_construction.py:552: in complete_model_class cls.__pydantic_validator__ = create_schema_validator( .venv/lib/python3.12/site-packages/pydantic/plugin/_schema_validator.py:50: in create_schema_validator return SchemaValidator(schema, config) E pydantic_core._pydantic_core.SchemaError: Error building "model" validator: E SchemaError: Error building "model-fields" validator: E SchemaError: Field "version": E SchemaError: Error building "str" validator: E SchemaError: regex parse error: E ^((?!0[0-9])[0-9]+(\.(?!$)|)){2,4}$ E ^^^ E error: look-around, including look-ahead and look-behind, is not supported ``` **Describe the solution you'd like** PydanticV2 supports look-around, look-ahead and look-behind using Python as regex engine: https://github.com/pydantic/pydantic/issues/7058#issuecomment-2156772918 I'd like to have a configuration parameter to use `python-re` as regex engine for Pydantic V2. **Describe alternatives you've considered** Workaround: 1. Create a custom BaseModel ```python from pydantic import BaseModel, ConfigDict class _BaseModel(BaseModel): model_config = ConfigDict(regex_engine='python-re') ``` 2. Use that class as BaseModel: ```sh datamodel-codegen --base-model "module.with.basemodel._BaseModel" ``` EDIT: Configuration used: ```ini [tool.datamodel-codegen] # Options input = "<project>/data/schemas/" input-file-type = "jsonschema" output = "<project>/models/" output-model-type = "pydantic_v2.BaseModel" # Typing customization base-class = "<project>.models._base_model._BaseModel" enum-field-as-literal = "all" use-annotated = true use-standard-collections = true use-union-operator = true # Field customization collapse-root-models = true snake-case-field = true use-field-description = true # Model customization disable-timestamp = true enable-faux-immutability = true target-python-version = "3.12" use-schema-description = true # OpenAPI-only options # # We may not want to use these options as we are not generating from OpenAPI schemas # but this is a workaround to avoid `type | None` in when we have a default value. # # The author of the tool doesn't know why he flagged this option as OpenAPI only. # Reference: https://github.com/koxudaxi/datamodel-code-generator/issues/1441 strict-nullable = true ```
open
2024-12-17T15:39:44Z
2025-02-06T20:06:51Z
https://github.com/koxudaxi/datamodel-code-generator/issues/2232
[ "bug", "help wanted" ]
ilovelinux
4
deezer/spleeter
deep-learning
88
[Bug] Colab Runtime Disconnected
<!-- PLEASE READ THIS CAREFULLY : - Any issue which does not respect following template or lack of information will be considered as invalid and automatically closed - First check FAQ from wiki to see if your problem is not already known --> ## Description Was having trouble installing for local use, so I decided to try to use the Colab link. ## Step to reproduce <!-- Indicates clearly steps to reproduce the behavior: --> 1. Opened Colab environment 2. Replaced the wget command with ``` from google.colab import files uploaded = files.upload() ``` 3. Ran all steps in order 4. Uploaded a local mp3 file 5. Ran the rest of the steps 6. Got a successful message from the actual separate function, and files exist in the output directory 7. Tried to listen to the output file and got a "runtime disconnected" error ## Output `!spleeter separate -i keenanvskel.mp3 -o output/` Output from the split function ```bash INFO:spleeter:Loading audio b'keenanvskel.mp3' from 0.0 to 600.0 INFO:spleeter:Audio data loaded successfully INFO:spleeter:File output/keenanvskel/vocals.wav written INFO:spleeter:File output/keenanvskel/accompaniment.wav written ``` ``` !ls output/keenanvskel accompaniment.wav vocals.wav ``` Then I ran this `Audio('output/keenanvskel/vocals.wav')` And got this response `Runtime Disconnected` ## Environment | | | | ----------------- | ------------------------------- | | OS | My laptop is running MacOS, but using Colab | | Installation type | pip | | RAM available | Got the green checkmark for both RAM and Disk in the Colab environment | | Hardware spec | unsure | ## Additional context Not sure if this is an issue with spleeter or with Colab. I love this project conceptually so I was excited to try it out, I saw some other posts online about runtime disconnect errors in Colab, but everything I found seems to only occur if it's running for 15 minutes or more. This whole process was less than 5 minutes, and I've tried multiple times and continually get the same error. If this is not the correct place for this type of error, or if I am doing something wrong, feel free to close this bug and let me know what next steps I might take. Will also attach some screenshots of the environment. <img width="1273" alt="Screen Shot 2019-11-13 at 6 42 28 PM" src="https://user-images.githubusercontent.com/11081954/68817684-0e90bd00-0648-11ea-8f55-8228f81970d5.png"> <img width="1291" alt="Screen Shot 2019-11-13 at 6 42 41 PM" src="https://user-images.githubusercontent.com/11081954/68817685-0e90bd00-0648-11ea-8c1b-c6a94dafd747.png"> <img width="1277" alt="Screen Shot 2019-11-13 at 6 42 54 PM" src="https://user-images.githubusercontent.com/11081954/68817686-0e90bd00-0648-11ea-8738-3bec1b194081.png"> <img width="1301" alt="Screen Shot 2019-11-13 at 6 43 22 PM" src="https://user-images.githubusercontent.com/11081954/68817688-13ee0780-0648-11ea-8a8e-c468bd32bf79.png">
closed
2019-11-14T01:02:26Z
2024-03-19T16:51:17Z
https://github.com/deezer/spleeter/issues/88
[ "bug", "invalid", "wontfix" ]
tiwonku
3
proplot-dev/proplot
data-visualization
332
ticklabels of log scale axis should be 'log' by default?
<!-- Thanks for helping us make proplot a better package! If this is a bug report, please use the template provided below. If this is a feature request, you can delete the template text (just try to be descriptive with your request). --> I feel it might be more natural to use 'log' for ticklabels when log scale is used. ### Steps to reproduce ```python import proplot as pplt fig = pplt.figure() ax = fig.subplot(xlabel='x axis', ylabel='y axis') ax.format(yscale='log', ylim=(1e-5, 1e5)) ``` **Expected behavior**: [What you expected to happen] ![image](https://user-images.githubusercontent.com/7038335/151669664-a3a41624-4864-4670-9eec-2a5588803ea9.png) **Actual behavior**: [What actually happened] ![image](https://user-images.githubusercontent.com/7038335/151669671-36421337-caf7-4bf3-b4ac-ea675a0f754d.png) ### Steps for expected behavior I can fix it by hand with `yticklabels='log'` ```python import proplot as pplt fig = pplt.figure() ax = fig.subplot(xlabel='x axis', ylabel='y axis') ax.format(yscale='log', ylim=(1e-5, 1e5), yticklabels='log') ``` ### Proplot version Paste the results of `import matplotlib; print(matplotlib.__version__); import proplot; print(proplot.version)`here. 3.4.3 0.9.5
open
2022-01-29T16:56:23Z
2022-01-29T18:41:10Z
https://github.com/proplot-dev/proplot/issues/332
[ "enhancement" ]
syrte
6
flasgger/flasgger
flask
512
Flasgger Not Working
I tried to use colors.py example of the app, but it isn't working ![Screenshot from 2021-12-16 17-55-24](https://user-images.githubusercontent.com/63342881/146371683-c2279820-e181-4454-b2b8-9183facfee2e.png) ![Screenshot from 2021-12-16 17-55-26](https://user-images.githubusercontent.com/63342881/146371691-a6c09c62-5848-4a5f-8ded-9dab2462cd76.png) It is giving infinite loader ![Screenshot from 2021-12-16 17-52-33](https://user-images.githubusercontent.com/63342881/146371390-64c2b44b-40f4-4db2-9462-8e0736410c07.png) On checking http://localhost:5000/spec, i am seeing the following error ![Screenshot from 2021-12-16 17-52-47](https://user-images.githubusercontent.com/63342881/146371427-705b7c0d-ab24-49a4-98f8-2682f5e1de6b.png) On googling, as fixing the error by doing yaml.safe_load ![Screenshot from 2021-12-16 17-54-10](https://user-images.githubusercontent.com/63342881/146371529-2c6beb97-063e-4c5e-a737-5894266ce9c2.png) I start getting stuck at the following screen ![Screenshot from 2021-12-16 17-54-33](https://user-images.githubusercontent.com/63342881/146371567-19d5d3c0-ceae-46a7-bd6f-f6706755ff43.png) I tried another example from https://github.com/flasgger/flasgger/blob/master/examples/restful.py In this swag_from import is not available in flasgger, on removing that i am seeing the following empty swagger screen. ![Screenshot from 2021-12-16 18-00-43](https://user-images.githubusercontent.com/63342881/146372443-2fceced3-d9d2-4853-9484-51bd3be1f351.png) But the spec file has all the info ![Screenshot from 2021-12-16 18-01-27](https://user-images.githubusercontent.com/63342881/146372527-b5fdf813-d4b3-44fd-884d-40054008212a.png) required I also tried using this example https://github.com/flasgger/flasgger/blob/master/examples/marshmallow_apispec.py but imports doesn't seem to be available in flasgger ![Screenshot from 2021-12-16 18-05-13](https://user-images.githubusercontent.com/63342881/146373162-43c76cb5-cdad-49e2-b408-3fccc0b9aa91.png)
open
2021-12-16T12:24:48Z
2021-12-16T12:37:16Z
https://github.com/flasgger/flasgger/issues/512
[]
akhilgargjosh
0
noirbizarre/flask-restplus
api
211
Unhelpful error when using validation and request has no Content-Type header
When no `content-type='application/json'` header is present, validation fails with `"": "None is not of type u'object'"` Some examples: ``` ~> curl http://localhost:5000/hello -X POST -d '{"name": "test"}' { "errors": { "": "None is not of type u'object'" }, "message": "Input payload validation failed" } ~> curl http://localhost:5000/hello -X POST { "errors": { "": "None is not of type u'object'" }, "message": "Input payload validation failed" } ``` And a successful request: ``` ~> curl http://localhost:5000/hello -X POST -d '{"name": "test"}' -H "Content-Type: application/json" { "hello": "world" } ``` This is the snippet I used, barely changed from the tutorials: ``` python from flask import Flask from flask_restplus import Resource, Api, fields app = Flask(__name__) api = Api(app) resource_fields = api.model('Resource', { 'name': fields.String(required=True), }) @api.route('/hello') class HelloWorld(Resource): @api.expect(resource_fields, validate=True) def post(self): return {'hello': 'world'} if __name__ == '__main__': app.run(debug=True) ```
open
2016-10-25T16:53:26Z
2019-08-16T13:31:35Z
https://github.com/noirbizarre/flask-restplus/issues/211
[ "bug" ]
nfvs
3
vastsa/FileCodeBox
fastapi
198
后台不知道为啥登录不上
![Uploading Snipaste_2024-08-22_16-20-16.png…]()
closed
2024-08-22T08:20:58Z
2024-08-22T08:21:14Z
https://github.com/vastsa/FileCodeBox/issues/198
[]
qiuyu2547
0
OFA-Sys/Chinese-CLIP
computer-vision
192
怎么利用这个工具实现图像描述任务
closed
2023-08-28T07:33:08Z
2023-08-28T13:01:42Z
https://github.com/OFA-Sys/Chinese-CLIP/issues/192
[]
yazheng0307
2
sktime/sktime
scikit-learn
7,134
[ENH] `polars` schema checks - address performance warnings
The current schema checks for lazy `polars` based data types raise performance warnings, e.g., ``` sktime/datatypes/tests/test_check.py::test_check_metadata_inference[Table-polars_lazy_table-fixture:1] /home/runner/work/sktime/sktime/sktime/datatypes/_adapter/polars.py:234: PerformanceWarning: Determining the width of a LazyFrame requires resolving its schema, which is a potentially expensive operation. Use `LazyFrame.collect_schema().len()` to get the width without this warning. metadata["n_features"] = obj.width - len(index_cols) ``` These should be addressed. The tests to execute to check whether these warnings persist are those in the `datatypes` module - these are automatically executed for a change in the impacted file, on remote CI.
closed
2024-09-18T12:55:28Z
2024-10-06T19:35:47Z
https://github.com/sktime/sktime/issues/7134
[ "good first issue", "module:datatypes", "enhancement" ]
fkiraly
0
chatanywhere/GPT_API_free
api
200
付费API key报错429错误
**Describe the bug 描述bug** 付费API key报错429错误 **To Reproduce 复现方法** 发了一条信息之后, 接着询问时出现的. 之前没有遇到过这样的问题 **Screenshots 截图** ![image](https://github.com/chatanywhere/GPT_API_free/assets/18140259/5f78e23e-d43f-4dc6-9b78-b09760a16ef7) **Tools or Programming Language 使用的工具或编程语言** Botgem **Additional context 其他内容** Add any other context about the problem here.
closed
2024-03-25T05:31:15Z
2024-03-25T19:30:00Z
https://github.com/chatanywhere/GPT_API_free/issues/200
[]
Sanguine-00
1
open-mmlab/mmdetection
pytorch
11,411
infer error about visualizer
mmdetection/mmdet/visualization/local_visualizer.py", line 153, in _draw_instances label_text = classes[ IndexError: tuple index out of range https://github.com/open-mmlab/mmdetection/blob/44ebd17b145c2372c4b700bfb9cb20dbd28ab64a/mmdet/visualization/local_visualizer.py#L153-L154
open
2024-01-19T19:15:23Z
2024-01-20T04:53:14Z
https://github.com/open-mmlab/mmdetection/issues/11411
[]
dongfeicui
1
peerchemist/finta
pandas
31
EMA calculation not matching with Tv output
Hi Can you please check EMA calculation the output is close but not matching with Tv outputs. Better to test this with TV and realign the code.
closed
2019-06-08T08:41:44Z
2020-01-19T12:56:15Z
https://github.com/peerchemist/finta/issues/31
[]
mbmarx
2
lepture/authlib
flask
408
authorize_access_token broken POST?
Hello, I'm really not sure if it is a bug, but when I am trying to use authorize_access_token there is no params in POST body, as I understand they are sending in a new TCP packet (see a tcpdump picture)? ``` oauth = OAuth() oauth.register( 'zoom', client_id=os.environ['ZOOM_CLIENT_ID'], client_secret=os.environ['ZOOM_CLIENT_SECRET'], access_token_url='http://zoom.us/oauth/token', refresh_token_url='http://zoom.us/oauth/token', authorize_url='http://zoom.us/oauth/authorize', client_kwargs={'token_endpoint_auth_method': 'client_secret_post'}, ) def zoom_login(request): redirect_uri = request.build_absolute_uri('/zoom_authorize') return oauth.zoom.authorize_redirect(request, redirect_uri) def zoom_authorize(request): print(request) token = oauth.zoom.authorize_access_token(request, body='aaaa=bbbbb') #resp = oauth.zoom.get('user', token=token) #resp.raise_for_status() #profile = resp.json() # do something with the token and profile #return profile ``` I've started tcpdump and can see this: ![image](https://user-images.githubusercontent.com/1487709/144701688-6ba4c20f-c26c-46ba-8d2c-436063d19c40.png) I think it should be something like this? ``` POST /oauth/token HTTP/1.1 Host: zoom.us User-Agent: Authlib/0.15.5 (+https://authlib.org/) Accept-Encoding: gzip, deflate Accept: application/json Connection: keep-alive Content-Type: application/x-www-form-urlencoded;charset=UTF-8 Content-Length: 216 aaa=bbb&client_id=xaaaaa&client_secret=aaaaaaaa&redirect_uri=ffsadfasd ```
closed
2021-12-04T07:35:07Z
2022-03-15T10:28:31Z
https://github.com/lepture/authlib/issues/408
[ "bug" ]
akam-it
2
flasgger/flasgger
flask
497
TypeError: issubclass() arg 2 must be a class or tuple of classes (when apispec not installed)
I defined Schema using marshmallow, however I was not able to see swaggerUI (having not installed apispec), thus ending with very vague error `File "C:\gryton\projects\turbo_auta_z_usa\venv\Lib\site-packages\flasgger\marshmallow_apispec.py", line 118, in convert_schemas if inspect.isclass(v) and issubclass(v, Schema): TypeError: issubclass() arg 2 must be a class or tuple of classes` Debugging issue it seems that it was even considered before, as in marshmallow_api: ```python if Schema is None: raise RuntimeError('Please install marshmallow and apispec') ``` But this is called too late, as first will go `issubclass(v, Schema)` I would move this checking even to `convert_schemas` start, so it's checked only once per function call, if needed libs are installed, so user that made the same mistake as me would receive more meaningful error.
open
2021-09-23T14:21:16Z
2021-09-23T14:21:16Z
https://github.com/flasgger/flasgger/issues/497
[]
Gryton
0
serengil/deepface
machine-learning
897
Got an assertion error when installing deepface
i got an error like this when installing deepface ``` #13 138.8 Building wheel for fire (setup.py): finished with status 'done' #13 138.8 Created wheel for fire: filename=fire-0.5.0-py2.py3-none-any.whl size=116951 sha256=f36f3a2c5b1987dda9e4c020d73b1617adb6c59ae81200fcf4920bd419c4a21f #13 138.8 Stored in directory: /root/.cache/pip/wheels/90/d4/f7/9404e5db0116bd4d43e5666eaa3e70ab53723e1e3ea40c9a95 #13 138.8 Successfully built imface fire #13 138.8 ERROR: Exception: #13 138.8 Traceback (most recent call last): #13 138.8 File "/usr/lib/python3/dist-packages/pip/_internal/cli/base_command.py", line 165, in exc_logging_wrapper #13 138.8 status = run_func(*args) #13 138.8 File "/usr/lib/python3/dist-packages/pip/_internal/cli/req_command.py", line 205, in wrapper #13 138.8 return func(self, options, args) #13 138.8 File "/usr/lib/python3/dist-packages/pip/_internal/commands/install.py", line 389, in run #13 138.8 to_install = resolver.get_installation_order(requirement_set) #13 138.8 File "/usr/lib/python3/dist-packages/pip/_internal/resolution/resolvelib/resolver.py", line 188, in get_installation_order #13 138.8 weights = get_topological_weights( #13 138.8 File "/usr/lib/python3/dist-packages/pip/_internal/resolution/resolvelib/resolver.py", line 276, in get_topological_weights #13 138.8 assert len(weights) == expected_node_count #13 138.8 AssertionError ```
closed
2023-11-29T05:12:49Z
2023-11-29T05:13:08Z
https://github.com/serengil/deepface/issues/897
[]
ghost
0
tfranzel/drf-spectacular
rest-api
1,382
Inconsistency between [AllowAny] and [] with permission_classes in schema generation
**Describe the bug** When using AllowAny or IsAuthenticatedOrReadOnly, opening the openapi doc using swagger looks like this: ![Image](https://github.com/user-attachments/assets/194ae04e-2b39-4430-ba21-5ebdfb839d88) **To Reproduce** Create an APIView or an @api_view that overrides the permission_classes with [AllowAny] **Expected behavior** Instead, the swagger page should look like this for those endpoints, because they don't require any authentication: ![Image](https://github.com/user-attachments/assets/722188e6-db21-46bc-9eaf-ed40973928e2) **Workaround** In Django, omitting AllowAny when it's the only permission_class doesn't change any behavior, but in drf-spectacular fixes this issue and properly displays the open lock icon in swagger. **Insight** I think the issue comes from these lines: https://github.com/tfranzel/drf-spectacular/blob/205f898ff38f3470bf877f709fcf7e582c83c14d/drf_spectacular/openapi.py#L365-L368 where adding {} as schemes has the effect to require auth in swagger
open
2025-02-17T12:46:12Z
2025-02-17T17:50:07Z
https://github.com/tfranzel/drf-spectacular/issues/1382
[]
ldeluigi
6
Lightning-AI/LitServe
rest-api
195
move `wrap_litserve_start` to utils
> I would rather reserve `conftest` for fixtures and this (seems to be) general functionality move to another utils module _Originally posted by @Borda in https://github.com/Lightning-AI/LitServe/pull/190#discussion_r1705957686_
closed
2024-08-06T18:39:12Z
2024-08-12T10:49:09Z
https://github.com/Lightning-AI/LitServe/issues/195
[ "good first issue", "help wanted" ]
aniketmaurya
5
proplot-dev/proplot
data-visualization
301
Colormaps Docs Error
<!-- Thanks for helping us make proplot a better package! If this is a bug report, please use the template provided below. If this is a feature request, you can delete the template text (just try to be descriptive with your request). --> ### Description The latest docs have error in Colormaps section https://proplot.readthedocs.io/en/latest/colormaps.html# ### Steps to reproduce A "[Minimal, Complete and Verifiable Example](http://matthewrocklin.com/blog/work/2018/02/28/minimal-bug-reports)" will make it much easier for maintainers to help you. ```python import proplot as pplt fig, axs = pplt.show_cmaps(rasterize=True) ``` **Expected behavior**: [What you expected to happen] List of included colormaps **Actual behavior**: [What actually happened] ```TypeError: '>=' not supported between instances of 'list' and 'float'```
closed
2021-11-06T19:09:17Z
2021-11-09T18:19:22Z
https://github.com/proplot-dev/proplot/issues/301
[ "bug" ]
pratiman-91
2
getsentry/sentry
django
87,159
Solve bolding of starred projects
closed
2025-03-17T10:12:00Z
2025-03-17T12:52:06Z
https://github.com/getsentry/sentry/issues/87159
[]
matejminar
0
Avaiga/taipy
data-visualization
2,388
Add Taipy-specific and hidden parameters to navigate()
### Description We had a request to allow a Taipy application to query another Taipy application page, potentially served by another Taipy GUI application. This can be done using the *params* parameter to `navigate()` but then the URL is complemented with the query string that the requestee is willing to hide, for security reasons. ### Solution Proposed `navigate()` will be added a *hidden_params* parameter, with the same semantics as for *params*: a dictionary that holds string keys and serializable value. The `on_navigate` callback will receive an additional *hidden_params* parameter, set to a dictionary that reflects what was provided in the call to `navigate()`. ### Impact of Solution Those parameters are encoded in the GET query header, so no POST is mandatory. In order not to unintendedly overwrite the original headers configuration, each hidden parameter is propagated with an internal (and undocumented) prefix that identifies them before they're encoded in the query header. Taipy GUI will decypher all that before `on_navigate` is triggered. ### Acceptance Criteria - [ ] If applicable, a new demo code is provided to show the new feature in action. - [ ] Integration tests exhibiting how the functionality works are added. - [ ] Any new code is covered by a unit tested. - [ ] Check code coverage is at least 90%. - [ ] Related issue(s) in taipy-doc are created for documentation and Release Notes are updated. ### Code of Conduct - [X] I have checked the [existing issues](https://github.com/Avaiga/taipy/issues?q=is%3Aissue+). - [ ] I am willing to work on this issue (optional)
open
2025-01-09T13:55:18Z
2025-01-31T13:27:58Z
https://github.com/Avaiga/taipy/issues/2388
[ "🖰 GUI", "🟧 Priority: High", "✨New feature", "📝Release Notes" ]
FabienLelaquais
1
marimo-team/marimo
data-visualization
3,869
Code Is Repeated after Minimizing Marimo Interface
### Describe the bug Whenever Multitasking with marimo and other tools, once i go back to marimo after minimizing it, the code in all cells are repeated multiple times making the usage of the Marimo not very friendly. I tried to upgrade to newer version. Same issue persists/ ### Environment <details> ``` { "marimo": "0.11.7", "OS": "Windows", "OS Version": "11", "Processor": "Intel64 Family 6 Model 186 Stepping 2, GenuineIntel", "Python Version": "3.12.4", "Binaries": { "Browser": "132.0.6834.196", "Node": "--" }, "Dependencies": { "click": "8.1.7", "docutils": "0.18.1", "itsdangerous": "2.2.0", "jedi": "0.18.1", "markdown": "3.7", "narwhals": "1.16.0", "packaging": "23.2", "psutil": "5.9.0", "pygments": "2.15.1", "pymdown-extensions": "10.12", "pyyaml": "6.0.1", "ruff": "0.8.2", "starlette": "0.41.3", "tomlkit": "0.13.2", "typing-extensions": "4.11.0", "uvicorn": "0.32.1", "websockets": "14.1" }, "Optional Dependencies": { "altair": "5.0.1", "anywidget": "0.9.13", "duckdb": "1.1.3", "pandas": "2.2.2", "polars": "1.22.0", "pyarrow": "14.0.2" }, "Experimental Flags": { "multi_column": true, "tracing": true, "rtc": true } } ``` </details> ### Code to reproduce import pandas as pd import warnings warnings.simplefilter(action='ignore', category=FutureWarning) df = pd.read_excel(r"C:\Users\ASUS\Desktop\...Pigging Aug\TARC Frac Job Analysis\Lone Star All.xlsx")import pandas as pd import warnings warnings.simplefilter(action='ignore', category=FutureWarning) df = pd.read_excel(r"C:\Users\ASUS\Desktop\....Pigging Aug\TARC Frac Job Analysis\Lone Star All.xlsx")import pandas as pd import warnings warnings.simplefilter(action='ignore', category=FutureWarning) df = pd.read_excel(r"C:\Users\ASUS\Desktop\.. Pigging Aug\TARC Frac Job Analysis\Lone Star All.xlsx")import pandas as pd import warnings warnings.simplefilter(action='ignore', category=FutureWarning) df = pd.read_excel(r"C:\Users\ASUS\Desktop\....Pigging Aug\TARC Frac Job Analysis\Lone Star All.xlsx")import pandas as pd import warnings warnings.simplefilter(action='ignore', category=FutureWarning) df = pd.read_excel(r"C:\Users\ASUS\Desktop\....Pigging Aug\TARC Frac Job Analysis\Lone Star All.xlsx")import pandas as pd import warnings warnings.simplefilter(action='ignore', category=FutureWarning) df = pd.read_excel(r"C:\Users\ASUS\Desktop\....Pigging Aug\TARC Frac Job Analysis\Lone Star All.xlsx")import pandas as pd import warnings warnings.simplefilter(action='ignore', category=FutureWarning) df = pd.read_excel(r"C:\Users\ASUS\Desktop\... Pigging Aug\TARC Frac Job Analysis\Lone Star All.xlsx")import pandas as pd import warnings warnings.simplefilter(action='ignore', category=FutureWarning) df = pd.read_excel(r"C:\Users\ASUS\Desktop\..Pigging Aug\TARC Frac Job Analysis\Lone Star All.xlsx")import pandas as pd import warnings warnings.simplefilter(action='ignore', category=FutureWarning) df = pd.read_excel(r"C:\Users\ASUS\Desktop\..Pigging Aug\TARC Frac Job Analysis\Lone Star All.xlsx")import pandas as pd import warnings warnings.simplefilter(action='ignore', category=FutureWarning) df = pd.read_excel(r"C:\Users\ASUS\Desktop\..Pigging Aug\TARC Frac Job Analysis\Lone Star All.xlsx")import pandas as pd import warnings warnings.simplefilter(action='ignore', category=FutureWarning) df = pd.read_excel(r"C:\Users\ASUS\Desktop\...Pigging Aug\TARC Frac Job Analysis\Lone Star All.xlsx")import pandas as pd import warnings warnings.simplefilter(action='ignore', category=FutureWarning) df = pd.read_excel(r"C:\Users\ASUS\Desktop\.....Pigging Aug\TARC Frac Job Analysis\Lone Star All.xlsx")import pandas as pd import warnings warnings.simplefilter(action='ignore', category=FutureWarning) df = pd.read_excel(r"C:\Users\ASUS\Desktop\....Pigging Aug\TARC Frac Job Analysis\Lone Star All.xlsx")import pandas as pd import warnings warnings.simplefilter(action='ignore', category=FutureWarning) df = pd.read_excel(r"C:\Users\ASUS\Desktop\.... Pigging Aug\TARC Frac Job Analysis\Lone Star All.xlsx")import pandas as pd import warnings warnings.simplefilter(action='ignore', category=FutureWarning) df = pd.read_excel(r"C:\Users\ASUS\Desktop\...Pigging Aug\TARC Frac Job Analysis\Lone Star All.xlsx")import pandas as pd import warnings warnings.simplefilter(action='ignore', category=FutureWarning) df = pd.read_excel(r"C:\Users\ASUS\Desktop\...Pigging Aug\TARC Frac Job Analysis\Lone Star All.xlsx")
closed
2025-02-21T10:04:25Z
2025-02-25T02:00:27Z
https://github.com/marimo-team/marimo/issues/3869
[ "bug" ]
Nashat90
1
huggingface/transformers
python
36,769
Add Audio inputs available in apply_chat_template
### Feature request Hello, I would like to request support for audio processing in the apply_chat_template function. ### Motivation With the rapid advancement of multimodal models, audio processing has become increasingly crucial alongside image and text inputs. Models like Qwen2-Audio, Phi-4-multimodal, and various models now support audio understanding, making this feature essential for modern AI applications. Supporting audio inputs would enable: ```python messages = [ { "role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}] }, { "role": "user", "content": [ {"type": "image", "image": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/bee.jpg"}, {"type": "audio", "audio": "https://huggingface.co/microsoft/Phi-4-multimodal-instruct/resolve/main/examples/what_is_shown_in_this_image.wav"}, {"type": "text", "text": "Follow the instruction in the audio with this image."} ] } ] ``` This enhancement would significantly expand the capabilities of the library to handle the full spectrum of multimodal inputs that state-of-the-art models now support, keeping the transformers library at the forefront of multimodal AI development. ### Your contribution I've tested this implementation with several multimodal models and it works well for processing audio inputs alongside images and text. I'd be happy to contribute this code to the repository if there's interest.
open
2025-03-17T17:05:46Z
2025-03-17T20:41:41Z
https://github.com/huggingface/transformers/issues/36769
[ "Feature request" ]
junnei
1
mlfoundations/open_clip
computer-vision
761
Gradient accumulation may requires scaling before backward
In function train_one_epoch, in the file [src/training/train.py ](https://github.com/mlfoundations/open_clip/blob/main/src/training/train.py#L159)from line 156 to 162, as shown below: ```python losses = loss(**inputs, **inputs_no_accum, output_dict=True) del inputs del inputs_no_accum total_loss = sum(losses.values()) losses["loss"] = total_loss backward(total_loss, scaler) ``` Shouldn't we take the average of loss for gradient accumulation before calling backward()?
open
2023-12-12T17:46:49Z
2023-12-22T01:25:45Z
https://github.com/mlfoundations/open_clip/issues/761
[]
yonghanyu
1
widgetti/solara
jupyter
206
Add release notes
As the Solars package gains wider adoption, it becomes increasingly important to provide users with a convenient way to track changes and make informed decisions when selecting versions. Adding release notes would greatly benefit users.
open
2023-07-11T12:39:34Z
2023-10-02T17:01:31Z
https://github.com/widgetti/solara/issues/206
[]
lp9052
3
3b1b/manim
python
2,125
No video is generated
Showing the following error Manim Extension XTerm Serves as a terminal for logging purpose. Extension Version 0.2.13 MSV d:\All document\VS Code\Python>"manim" "d:\All document\VS Code\Python\new2.py" CreateCircle Manim Community v0.18.0 Animation 0: Create(Circle): 0%| | 0/60 [00:00<?, ?it/s][rawvideo @ 0194dfa0]Estimating duration from bitrate, this may be inaccurate Input #0, rawvideo, from 'pipe:': Duration: N/A, start: 0.000000, bitrate: N/A Stream #0.0: Video: rawvideo, rgba, 1920x1080, 60 tbr, 60 tbn, 60 tbc Unknown encoder 'libx264' +--------------------- Traceback (most recent call last) ---------------------+ | C:\tools\Manim\Lib\site-packages\manim\cli\render\commands.py:115 in render | | | | 112 try: | | 113 with tempconfig({}): | | 114 scene = SceneClass() | | > 115 scene.render() | | 116 except Exception: | | 117 error_console.print_exception() | | 118 sys.exit(1) | | | | C:\tools\Manim\Lib\site-packages\manim\scene\scene.py:223 in render | | | | 220 """ | | 221 self.setup() | | 222 try: | | > 223 self.construct() | | 224 except EndSceneEarlyException: | | 225 pass | | 226 except RerunSceneException as e: | | | | d:\All document\VS Code\Python\new2.py:6 in construct | | | | 3 def construct(self): | | 4 circle = Circle() # create a circle | | 5 circle.set_fill(PINK, opacity=0.5) # set the color and transpa | | > 6 self.play(Create(circle)) # show the circle on screen | | 7 self.wait(1) | | 8 | | | | C:\tools\Manim\Lib\site-packages\manim\scene\scene.py:1080 in play | | | | 1077 return | | 1078 | | 1079 start_time = self.renderer.time | | > 1080 self.renderer.play(self, *args, **kwargs) | | 1081 run_time = self.renderer.time - start_time | | 1082 if subcaption: | | 1083 if subcaption_duration is None: | | | | C:\tools\Manim\Lib\site-packages\manim\renderer\cairo_renderer.py:104 in | | play | | | | 101 # In this case, as there is only a wait, it will be the l | | 102 self.freeze_current_frame(scene.duration) | | 103 else: | | > 104 scene.play_internal() | | 105 self.file_writer.end_animation(not self.skip_animations) | | 106 | | 107 self.num_plays += 1 | | | | C:\tools\Manim\Lib\site-packages\manim\scene\scene.py:1245 in play_internal | | | | 1242 for t in self.time_progression: | | 1243 self.update_to_time(t) | | 1244 if not skip_rendering and not self.skip_animation_previe | | > 1245 self.renderer.render(self, t, self.moving_mobjects) | | 1246 if self.stop_condition is not None and self.stop_conditi | | 1247 self.time_progression.close() | | 1248 break | | | | C:\tools\Manim\Lib\site-packages\manim\renderer\cairo_renderer.py:150 in | | render | | | | 147 | | 148 def render(self, scene, time, moving_mobjects): | | 149 self.update_frame(scene, moving_mobjects) | | > 150 self.add_frame(self.get_frame()) | | 151 | | 152 def get_frame(self): | | 153 """ | | | | C:\tools\Manim\Lib\site-packages\manim\renderer\cairo_renderer.py:180 in | | add_frame | | | | 177 return | | 178 self.time += num_frames * dt | | 179 for _ in range(num_frames): | | > 180 self.file_writer.write_frame(frame) | | 181 | | 182 def freeze_current_frame(self, duration: float): | | 183 """Adds a static frame to the movie for a given duration. The | | | | C:\tools\Manim\Lib\site-packages\manim\scene\scene_file_writer.py:391 in | | write_frame | | | | 388 elif config.renderer == RendererType.CAIRO: | | 389 frame = frame_or_renderer | | 390 if write_to_movie(): | | > 391 self.writing_process.stdin.write(frame.tobytes()) | | 392 if is_png_format() and not config["dry_run"]: | | 393 self.output_image_from_array(frame) | | 394 | +-----------------------------------------------------------------------------+ OSError: [Errno 22] Invalid argument [19512] Execution returned code=1 in 2.156 seconds returned signal null
closed
2024-04-26T19:50:07Z
2024-04-26T20:16:04Z
https://github.com/3b1b/manim/issues/2125
[]
ghost
0
ultralytics/ultralytics
deep-learning
19,632
about precision --Yolov11--fromdocker
### Search before asking - [x] I have searched the Ultralytics YOLO [issues](https://github.com/ultralytics/ultralytics/issues) and [discussions](https://github.com/orgs/ultralytics/discussions) and found no similar questions. ### Question # baout preciseion I't's been my first time to use ultarlytics in dokcer way.I'am confused about the yolov11.pt give defaulted in the docker image. the validation rst seems quite low : root@71643adeada8:/ultralytics# yolo val detect data=coco.yaml device=0 batch=8 Ultralytics 8.3.86 🚀 Python-3.11.10 torch-2.5.1+cu124 CUDA:0 (NVIDIA GeForce RTX 4070 Ti SUPER, 16376MiB) YOLO11n summary (fused): 100 layers, 2,616,248 parameters, 0 gradients, 6.5 GFLOPs val: Scanning /datasets/coco/labels/val2017.cache... 4952 images, 48 backgrounds, 0 corrupt: 100%|██████████| 5000/5000 [00:00<?, ?it/s] Class Images Instances Box(P R mAP50 mAP50-95): 100%|██████████| 625/625 [00:50<00:00, 12.41it/s] all 5000 36335 0.652 0.505 0.549 0.393 person 2693 10777 0.759 0.676 0.753 0.524 bicycle 149 314 0.682 0.404 0.478 0.276 car 535 1918 0.661 0.533 0.585 0.376 motorcycle 159 367 0.768 0.605 0.677 0.445 airplane 97 143 0.803 0.797 0.867 0.69 bus 189 283 0.772 0.707 0.774 0.651 train 157 190 0.832 0.805 0.862 0.681 truck 250 414 0.586 0.415 0.477 0.323 boat 121 424 0.579 0.351 0.413 0.22 traffic light 191 634 0.646 0.347 0.416 0.218 fire hydrant 86 101 0.867 0.743 0.806 0.637 stop sign 69 75 0.712 0.613 0.662 0.601 parking meter 37 60 0.698 0.55 0.613 0.467 bench 235 411 0.575 0.28 0.325 0.217 ### Additional _No response_
open
2025-03-11T04:57:45Z
2025-03-11T05:15:52Z
https://github.com/ultralytics/ultralytics/issues/19632
[ "question", "detect" ]
deadwoodeatmoon
2
sigmavirus24/github3.py
rest-api
641
Strict option for branch protection
The [protected branches API](https://developer.github.com/v3/repos/branches/) now contains a new option called _strict_, which defines whether the branch that is being merged into a protected branch has to be rebased before. Since github3.py doesn't have this feature implemented yet, it is automatically set to _true_, which is quite limiting. It would be very practical to implement this feature. This should be easy; I'll try to take a look into it and provide a pull request shortly. ## <bountysource-plugin> --- Want to back this issue? **[Post a bounty on it!](https://www.bountysource.com/issues/38540587-strict-option-for-branch-protection?utm_campaign=plugin&utm_content=tracker%2F183477&utm_medium=issues&utm_source=github)** We accept bounties via [Bountysource](https://www.bountysource.com/?utm_campaign=plugin&utm_content=tracker%2F183477&utm_medium=issues&utm_source=github). </bountysource-plugin>
closed
2016-10-20T14:37:30Z
2021-11-01T01:08:43Z
https://github.com/sigmavirus24/github3.py/issues/641
[]
kristian-lesko
7
d2l-ai/d2l-en
tensorflow
2,308
Add chapter on diffusion models
GANs are the most advanced topic currently discussed in d2l.ai. However, diffusion models have taken the image generation mantle from GANs. Holding up GANs as the final chapter of the book and not discussing diffusion models at all feels like a clear indication of dated content. Additionally, fast.ai just announced that they will be adding diffusion models to their intro curriculum, as I imagine will many other intro courses. Want to make sure there's at least a discussion about this here if the content isn't already in progress or roadmapped.
open
2022-09-16T21:41:12Z
2023-05-15T13:48:32Z
https://github.com/d2l-ai/d2l-en/issues/2308
[ "feature request" ]
dmarx
4
litestar-org/litestar
pydantic
3,601
Bug: Custom plugin with lifespan breaks channel startup hook
### Description I wrote a simple plugin with a lifespan based on a context manager. When I add the custom plugin and the channels plugin, the channels plugin does not initialize properly. If I remove the lifespan from the custom plugin it works. ### URL to code causing the issue _No response_ ### MCVE ```python from litestar import Litestar, post from litestar.testing import TestClient from litestar.channels import ChannelsPlugin from litestar.channels.backends.memory import MemoryChannelsBackend from litestar.channels import ChannelsPlugin from litestar.plugins import InitPluginProtocol from contextlib import asynccontextmanager from collections.abc import AsyncGenerator import logging @post("/publish_something") async def handler(channels: ChannelsPlugin) -> None: channels.publish("test", "my_new_channel") @asynccontextmanager async def some_lifecycle(app: "Litestar") -> "AsyncGenerator[None, None]": logging.info("some startup") try: yield finally: logging.info("some shutdown") class SomePlugin(InitPluginProtocol): def on_app_init(self, app_config: "AppConfig") -> "AppConfig": # comment this out and the startup works app_config.lifespan = [some_lifecycle] return app_config with TestClient( app=Litestar( debug=True, plugins=[ ChannelsPlugin(backend=MemoryChannelsBackend(history=0), channels=[], arbitrary_channels_allowed=True), SomePlugin(), ], route_handlers=[handler], ) ) as client: client.post("/publish_something") ``` ### Steps to reproduce ```bash 1. Run the script 2. It errors out when hitting the publish_something route ``` ### Screenshots ```bash "![SCREENSHOT_DESCRIPTION](SCREENSHOT_LINK.png)" ``` ### Logs ```bash INFO - 2024-06-26 12:15:33,244 - root - bug - some startup ERROR - 2024-06-26 12:15:33,255 - litestar - config - Uncaught exception (connection_type=http, path=/publish_something): Traceback (most recent call last): File "/root/innovation-framework/.venv/lib/python3.12/site-packages/litestar/channels/plugin.py", line 144, in publish self._pub_queue.put_nowait((data, list(channels))) # type: ignore[union-attr] ^^^^^^^^^^^^^^^^^^^^^^^^^^ AttributeError: 'NoneType' object has no attribute 'put_nowait' The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/root/innovation-framework/.venv/lib/python3.12/site-packages/litestar/middleware/_internal/exceptions/middleware.py", line 159, in __call__ await self.app(scope, receive, capture_response_started) File "/root/innovation-framework/.venv/lib/python3.12/site-packages/litestar/_asgi/asgi_router.py", line 99, in __call__ await asgi_app(scope, receive, send) File "/root/innovation-framework/.venv/lib/python3.12/site-packages/litestar/routes/http.py", line 80, in handle response = await self._get_response_for_request( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/root/innovation-framework/.venv/lib/python3.12/site-packages/litestar/routes/http.py", line 132, in _get_response_for_request return await self._call_handler_function( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/root/innovation-framework/.venv/lib/python3.12/site-packages/litestar/routes/http.py", line 152, in _call_handler_function response_data, cleanup_group = await self._get_response_data( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/root/innovation-framework/.venv/lib/python3.12/site-packages/litestar/routes/http.py", line 200, in _get_response_data else await route_handler.fn(**parsed_kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/root/innovation-framework/bug.py", line 14, in handler channels.publish("test", "my_new_channel") File "/root/innovation-framework/.venv/lib/python3.12/site-packages/litestar/channels/plugin.py", line 146, in publish raise RuntimeError("Plugin not yet initialized. Did you forget to call on_startup?") from e RuntimeError: Plugin not yet initialized. Did you forget to call on_startup? INFO - 2024-06-26 12:15:33,264 - httpx - _client - HTTP Request: POST http://testserver.local/publish_something "HTTP/1.1 500 Internal Server Error" INFO - 2024-06-26 12:15:33,266 - root - bug - some shutdown ``` ### Litestar Version 2.9.1 ### Platform - [X] Linux - [ ] Mac - [ ] Windows - [ ] Other (Please specify in the description above)
closed
2024-06-26T10:19:20Z
2025-03-20T15:54:48Z
https://github.com/litestar-org/litestar/issues/3601
[ "Bug :bug:" ]
TheZwieback
1
cleanlab/cleanlab
data-science
400
Update links between tutorial notebook and example notebook
Update links between [tutorial notebook](https://github.com/cleanlab/cleanlab/blob/master/docs/source/tutorials/token_classification.ipynb) and [example notebook](https://github.com/cleanlab/examples/pull/7) so these properly point at each other (across all future versions of cleanlab).
closed
2022-09-06T00:45:17Z
2022-09-15T13:42:01Z
https://github.com/cleanlab/cleanlab/issues/400
[]
elisno
1
pytorch/pytorch
machine-learning
149,275
torch.onnx.export Dynamic shapes output not working
### 🐛 Describe the bug export not working when using `nvidia/nv-embed-v2` model, if i remove `sentence_embeddings` from the input, it would make the input static ```python !pip install datasets==3.3.2 !pip install onnx==1.17.0 onnxscript==0.2.2 torch==2.6.0 torchvision==0.21.0 onnxruntime-gpu==1.21.0 !git clone https://github.com/ducknificient/transformers.git !pip install /content/transformers import torch import torch.nn.functional as F from transformers import AutoTokenizer, AutoModel model = AutoModel.from_pretrained( 'nvidia/nv-embed-v2', trust_remote_code=True,) model.eval() batch_size = 4 dummy_input_ids = torch.randint(0, 32000, (batch_size, 128)) # Batch size 2, sequence length 128 dummy_attention_mask = torch.ones((batch_size, 128), dtype=torch.int64) dummy_pool_mask = torch.ones((batch_size, 128), dtype=torch.int64) from torch.export import Dim dynamic_shapes = { "input_ids": (Dim.DYNAMIC, Dim.DYNAMIC), "attention_mask": (Dim.DYNAMIC, Dim.DYNAMIC), "pool_mask": (Dim.DYNAMIC, Dim.DYNAMIC), "sentence_embeddings": (Dim.DYNAMIC, Dim.DYNAMIC), } # with torch.inference_mode(): torch.onnx.export( model, # PyTorch model # (features,), # Model inputs (dummy_input_ids, dummy_attention_mask, dummy_pool_mask), output_path, # Output file export_params=True, # Store the trained weights opset_version=14, # ONNX opset version input_names=['input_ids', 'attention_mask','pool_mask'], # Input names output_names=['sentence_embeddings'], # Output names dynamic_shapes=dynamic_shapes, # Dynamic axes dynamo=True, verbose=True # Detailed output ) print(f"Model exported to {output_path}") ``` this is the error ``` /usr/local/lib/python3.11/dist-packages/onnxscript/converter.py:823: FutureWarning: 'onnxscript.values.Op.param_schemas' is deprecated in version 0.1 and will be removed in the future. Please use '.op_signature' instead. param_schemas = callee.param_schemas() /usr/local/lib/python3.11/dist-packages/onnxscript/converter.py:823: FutureWarning: 'onnxscript.values.OnnxFunction.param_schemas' is deprecated in version 0.1 and will be removed in the future. Please use '.op_signature' instead. param_schemas = callee.param_schemas() `loss_type=None` was set in the config but it is unrecognised.Using the default loss: `ForCausalLMLoss`. [torch.onnx] Obtain model graph for `NVEmbedModel([...]` with `torch.export.export(..., strict=False)`... [torch.onnx] Obtain model graph for `NVEmbedModel([...]` with `torch.export.export(..., strict=False)`... ❌ [torch.onnx] Obtain model graph for `NVEmbedModel([...]` with `torch.export.export`... [torch.onnx] Obtain model graph for `NVEmbedModel([...]` with `torch.export.export`... ❌ [torch.onnx] Obtain model graph for `NVEmbedModel([...]` with Torch Script... /usr/lib/python3.11/contextlib.py:105: FutureWarning: `torch.backends.cuda.sdp_kernel()` is deprecated. In the future, this context manager will be removed. Please see `torch.nn.attention.sdpa_kernel()` for the new context manager, with updated signature. self.gen = func(*args, **kwds) W0316 15:11:47.871000 14360 torch/fx/experimental/symbolic_shapes.py:6307] failed during evaluate_expr(Eq((u0//128), 1), hint=None, size_oblivious=True, forcing_spec=False E0316 15:11:47.872000 14360 torch/fx/experimental/recording.py:299] failed while running evaluate_expr(*(Eq((u0//128), 1), None), **{'fx_node': False, 'size_oblivious': True}) W0316 15:11:47.918000 14360 torch/fx/experimental/symbolic_shapes.py:6830] Unable to find user code corresponding to {u0} [torch.onnx] Obtain model graph for `NVEmbedModel([...]` with Torch Script... ❌ [torch.onnx] Obtain model graph for `NVEmbedModel([...]` with internal Dynamo apis... [torch.onnx] Obtain model graph for `NVEmbedModel([...]` with internal Dynamo apis... ❌ --------------------------------------------------------------------------- UserError Traceback (most recent call last) [/usr/local/lib/python3.11/dist-packages/torch/onnx/_internal/exporter/_capture_strategies.py](https://localhost:8080/#) in __call__(self, model, args, kwargs, dynamic_shapes) 109 try: --> 110 exported_program = self._capture(model, args, kwargs, dynamic_shapes) 111 except Exception as e: 17 frames UserError: When `dynamic_shapes` is specified as a dict, its top-level keys must be the arg names ['input_ids', 'attention_mask', 'pool_mask'] of `inputs`, but here they are ['input_ids', 'attention_mask', 'pool_mask', 'sentence_embeddings']. Alternatively, you could also ignore arg names entirely and specify `dynamic_shapes` as a list/tuple matching `inputs`. For more information about this error, see: https://pytorch.org/docs/main/generated/exportdb/index.html#dynamic-shapes-validation The above exception was the direct cause of the following exception: TorchExportError Traceback (most recent call last) [/usr/local/lib/python3.11/dist-packages/torch/onnx/_internal/exporter/_core.py](https://localhost:8080/#) in export(model, args, kwargs, registry, dynamic_shapes, input_names, output_names, report, verify, profile, dump_exported_program, artifacts_dir, verbose) 1290 # torch.jit.trace is due to the fallback and can be confusing to users. 1291 # We save all errors in the error report. -> 1292 raise _errors.TorchExportError( 1293 _STEP_ONE_ERROR_MESSAGE 1294 + ( TorchExportError: Failed to export the model with torch.export. This is step 1/3 of exporting the model to ONNX. Next steps: - Modify the model code for `torch.export.export` to succeed. Refer to https://pytorch.org/docs/stable/generated/exportdb/index.html for more information. - Debug `torch.export.export` and summit a PR to PyTorch. - Create an issue in the PyTorch GitHub repository against the *torch.export* component and attach the full error stack as well as reproduction scripts. ## Exception summary <class 'torch._dynamo.exc.UserError'>: When `dynamic_shapes` is specified as a dict, its top-level keys must be the arg names ['input_ids', 'attention_mask', 'pool_mask'] of `inputs`, but here they are ['input_ids', 'attention_mask', 'pool_mask', 'sentence_embeddings']. Alternatively, you could also ignore arg names entirely and specify `dynamic_shapes` as a list/tuple matching `inputs`. For more information about this error, see: https://pytorch.org/docs/main/generated/exportdb/index.html#dynamic-shapes-validation (Refer to the full stack trace above for more information.) ``` ### Versions Collecting environment information... PyTorch version: 2.6.0+cu124 Is debug build: False CUDA used to build PyTorch: 12.4 ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.4 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: 14.0.0-1ubuntu1.1 CMake version: version 3.31.6 Libc version: glibc-2.35 Python version: 3.11.11 (main, Dec 4 2024, 08:55:07) [GCC 11.4.0] (64-bit runtime) Python platform: Linux-6.1.85+-x86_64-with-glibc2.35 Is CUDA available: True CUDA runtime version: 12.5.82 CUDA_MODULE_LOADING set to: LAZY GPU models and configuration: GPU 0: NVIDIA L4 Nvidia driver version: 550.54.15 cuDNN version: Probably one of the following: /usr/lib/x86_64-linux-gnu/libcudnn.so.9.2.1 /usr/lib/x86_64-linux-gnu/libcudnn_adv.so.9.2.1 /usr/lib/x86_64-linux-gnu/libcudnn_cnn.so.9.2.1 /usr/lib/x86_64-linux-gnu/libcudnn_engines_precompiled.so.9.2.1 /usr/lib/x86_64-linux-gnu/libcudnn_engines_runtime_compiled.so.9.2.1 /usr/lib/x86_64-linux-gnu/libcudnn_graph.so.9.2.1 /usr/lib/x86_64-linux-gnu/libcudnn_heuristic.so.9.2.1 /usr/lib/x86_64-linux-gnu/libcudnn_ops.so.9.2.1 HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: True CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 46 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 12 On-line CPU(s) list: 0-11 Vendor ID: GenuineIntel Model name: Intel(R) Xeon(R) CPU @ 2.20GHz CPU family: 6 Model: 85 Thread(s) per core: 2 Core(s) per socket: 6 Socket(s): 1 Stepping: 7 BogoMIPS: 4400.48 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc rep_good nopl xtopology nonstop_tsc cpuid tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm mpx avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves arat avx512_vnni md_clear arch_capabilities Hypervisor vendor: KVM Virtualization type: full L1d cache: 192 KiB (6 instances) L1i cache: 192 KiB (6 instances) L2 cache: 6 MiB (6 instances) L3 cache: 38.5 MiB (1 instance) NUMA node(s): 1 NUMA node0 CPU(s): 0-11 Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Vulnerable Vulnerability Reg file data sampling: Not affected Vulnerability Retbleed: Vulnerable Vulnerability Spec rstack overflow: Not affected Vulnerability Spec store bypass: Vulnerable Vulnerability Spectre v1: Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers Vulnerability Spectre v2: Vulnerable; IBPB: disabled; STIBP: disabled; PBRSB-eIBRS: Vulnerable; BHI: Vulnerable (Syscall hardening enabled) Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Vulnerable Versions of relevant libraries: [pip3] numpy==1.26.4 [pip3] nvidia-cublas-cu12==12.4.5.8 [pip3] nvidia-cuda-cupti-cu12==12.4.127 [pip3] nvidia-cuda-nvrtc-cu12==12.4.127 [pip3] nvidia-cuda-runtime-cu12==12.4.127 [pip3] nvidia-cudnn-cu12==9.1.0.70 [pip3] nvidia-cufft-cu12==11.2.1.3 [pip3] nvidia-curand-cu12==10.3.5.147 [pip3] nvidia-cusolver-cu12==11.6.1.9 [pip3] nvidia-cusparse-cu12==12.3.1.170 [pip3] nvidia-cusparselt-cu12==0.6.2 [pip3] nvidia-nccl-cu12==2.21.5 [pip3] nvidia-nvjitlink-cu12==12.4.127 [pip3] nvidia-nvtx-cu12==12.4.127 [pip3] nvtx==0.2.11 [pip3] onnx==1.17.0 [pip3] onnxruntime-gpu==1.21.0 [pip3] onnxscript==0.2.2 [pip3] optree==0.14.1 [pip3] pynvjitlink-cu12==0.5.2 [pip3] torch==2.6.0+cu124 [pip3] torchaudio==2.6.0+cu124 [pip3] torchsummary==1.5.1 [pip3] torchvision==0.21.0+cu124 [pip3] triton==3.2.0 [conda] Could not collect
closed
2025-03-16T15:19:49Z
2025-03-17T03:30:06Z
https://github.com/pytorch/pytorch/issues/149275
[]
ducknificient
3
keras-team/keras
deep-learning
20,475
Cannot generate heatmaps using Gradcam library
import numpy as np import tensorflow as tf from tf_explain.core.grad_cam import GradCAM import matplotlib.pyplot as plt # Initialize Grad-CAM explainer explainer = GradCAM() # Specify the layer for Grad-CAM in the VGG16 model (vgg16_tr) conv_layer_name = 'block5_conv2' # Adjusted to use 'block5_conv2' # Get a batch from the validation generator X_val, y_val = val_generator.__getitem__(0) # Process each image in the batch for i in range(len(X_val)): # Add batch dimension to match the expected input shape for Grad-CAM image_to_explain = np.expand_dims(X_val[i], axis=0) # Shape: (1, 128, 128, 3) label_to_explain = np.expand_dims(y_val[i], axis=0) # Shape: (1, num_classes) true_class = np.argmax(y_val[i]) # Get the true class index from the label # Ensure the image is passed as a tf.Tensor (not a NumPy array) image_to_explain = tf.convert_to_tensor(image_to_explain, dtype=tf.float32) # Generate the Grad-CAM heatmap heatmap = explainer.explain( validation_data=(image_to_explain, label_to_explain), # Pass the single image and its label model=vgg16_tr, class_index=true_class, layer_name=conv_layer_name ) # Plot the original image and Grad-CAM heatmap fig, ax = plt.subplots(1, 2, figsize=(10, 5)) # Original image ax[0].imshow(X_val[i]) ax[0].set_title(f'Original Image {i+1}') ax[0].axis('off') # Grad-CAM heatmap overlay ax[1].imshow(X_val[i]) # Show the original image first ax[1].imshow(heatmap, cmap='jet', alpha=0.3) # Overlay heatmap with transparency ax[1].set_title(f'Grad-CAM Heatmap {i+1}') ax[1].axis('off') plt.tight_layout() plt.show() I'm trying to generate heatmaps using inbuilt GradCam function for the celebA dataset. But I get the below error. I have reviewed the size to the input going to the GradCam it is (1, 128,128,3). error: When providing `inputs` as a list/tuple, all values in the list/tuple must be KerasTensors. Received: inputs=[[<KerasTensor shape=(None, 128, 128, 3), dtype=float32, sparse=None, name=keras_tensor>]] including invalid value [<KerasTensor shape=(None, 128, 128, 3), dtype=float32, sparse=None, name=keras_tensor>] of type <class 'list'> If anyone could help me debug this, it would be much appriciated.
open
2024-11-08T23:10:43Z
2024-12-03T08:15:10Z
https://github.com/keras-team/keras/issues/20475
[ "type:Bug" ]
jeev0306
4
modin-project/modin
pandas
7,023
`test_corr_non_numeric` failed due to different exception messages
Also `test_cov_numeric_only`. Found in https://github.com/modin-project/modin/pull/6954
open
2024-03-07T12:02:02Z
2024-03-07T14:11:24Z
https://github.com/modin-project/modin/issues/7023
[ "bug 🦗", "pandas concordance 🐼", "P2" ]
anmyachev
0
erdewit/ib_insync
asyncio
243
examples/tk.py fails with "RuntimeError: Cannot run the event loop while another loop is running"
Hi Ewald, seems to be very nice library which I am starting to use now. Running the examples with single modification of my local host, port, and client_id in the IB.connect() line. examples/qt_ticker_table.py runs fine examples/tk.py fails: ``` rusakov@dfk78:~/mcai/github/ib_insync (master)$ python examples/tk.py Traceback (most recent call last): File "examples/tk.py", line 47, in <module> app.run() File "examples/tk.py", line 36, in run self.loop.run_forever() File "/opt/local/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/asyncio/base_events.py", line 531, in run_forever self._check_runnung() File "/opt/local/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/asyncio/base_events.py", line 526, in _check_runnung 'Cannot run the event loop while another loop is running') RuntimeError: Cannot run the event loop while another loop is running ``` ----------- MacOS: 10.14.6 Python 3.7.7 ib_insync: latest, installed from git, hash f4e0525 nest-asyncio: 1.3.2 eventkit: 0.8.6
closed
2020-04-29T08:41:56Z
2020-05-04T11:37:52Z
https://github.com/erdewit/ib_insync/issues/243
[]
drusakov778
6
NullArray/AutoSploit
automation
584
Unhandled Exception (55ded4728)
Autosploit version: `3.0` OS information: `Linux-4.18.0-kali2-amd64-x86_64-with-Kali-kali-rolling-kali-rolling` Running context: `autosploit.py` Error meesage: `argument of type 'NoneType' is not iterable` Error traceback: ``` Traceback (most recent call): File "/root/Desktop/AutoSploit/autosploit/main.py", line 117, in main terminal.terminal_main_display(loaded_tokens) File "/root/Desktop/AutoSploit/lib/term/terminal.py", line 474, in terminal_main_display if "help" in choice_data_list: TypeError: argument of type 'NoneType' is not iterable ``` Metasploit launched: `False`
closed
2019-03-24T02:05:49Z
2019-04-02T20:25:18Z
https://github.com/NullArray/AutoSploit/issues/584
[]
AutosploitReporter
0
marcomusy/vedo
numpy
1,121
Smooth boundary line of a mesh
Hi, I'm looking to smooth just the boundary line of a mesh (not the entire mesh), I was wondering if there's any functionality in vedo to achieve this? Thanks!
closed
2024-05-17T01:26:33Z
2024-06-13T18:35:26Z
https://github.com/marcomusy/vedo/issues/1121
[]
sean-d-zydex
2
dpgaspar/Flask-AppBuilder
rest-api
1,567
Running tests: DB Creation and initialization failed
I don't know if this is a flask_appbuilder issue, probably not. But I do need to solve this in order to be able to run tests via bash (so I can write and test tests and finish my pull request according to the new reset password functions). ### Environment Flask-Appbuilder version: 3.1.1 pip freeze output: -f /usr/share/pip-wheels apispec==3.3.2 attrs==20.2.0 Babel==2.8.0 blinker==1.4 Brotli==1.0.9 certifi==2020.6.20 chardet==3.0.4 click==7.1.2 colorama==0.4.3 dash==1.17.0 dash-core-components==1.13.0 dash-html-components==1.1.1 dash-renderer==1.8.3 dash-table==4.11.0 defusedxml==0.6.0 dnspython==2.0.0 email-validator==1.1.1 Flask==1.1.2 Flask-AppBuilder==3.1.1 Flask-Babel==1.0.0 Flask-Compress==1.8.0 Flask-JWT-Extended==3.24.1 Flask-Limiter==1.4 Flask-Login==0.4.1 Flask-Mail==0.9.1 Flask-Maintenance==0.0.1 Flask-OpenID==1.2.5 Flask-ReCaptcha==0.4.2 Flask-SQLAlchemy==2.4.4 Flask-WTF==0.14.3 future==0.18.2 idna==2.10 itsdangerous==1.1.0 Jinja2==2.11.2 jsonschema==3.2.0 limits==1.5.1 lxml==4.6.1 MarkupSafe==1.1.1 marshmallow==3.8.0 marshmallow-enum==1.5.1 marshmallow-sqlalchemy==0.23.1 mysqlclient==2.0.1 numpy==1.19.4 oauthlib==3.1.0 onetimepass==1.0.1 pandas==1.1.4 pandas-datareader==0.9.0 pathlib==1.0.1 plotly==4.12.0 prison==0.1.3 PyJWT==1.7.1 PyQRCode==1.2.1 pyrsistent==0.17.3 python-dateutil==2.8.1 python-dotenv==0.14.0 python3-openid==3.2.0 pytz==2020.1 PyYAML==5.3.1 requests==2.24.0 requests-oauthlib==1.3.0 retrying==1.3.3 six==1.15.0 SQLAlchemy==1.3.19 SQLAlchemy-Utils==0.36.8 urllib3==1.25.10 Werkzeug==1.0.1 WTForms==2.3.3 ### Describe the expected results ```python Running the flask_appbuilder/tests without any error ``` ### Describe the actual results ```pytb ERROR:flask_appbuilder.security.sqla.manager:DB Creation and initialization failed: 'NoneType' object has no attribute 'drivername' (No creation and initialization of the db causes all tests to fail) Traceback (most recent call last): File "/home/username/.virtualenvs/venv/lib/python3.8/site-packages/sqlalchemy/util/_collections.py", line 1020, in __call__ return self.registry[key] KeyError: 140584349521664 During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/home/username/.virtualenvs/venv/lib/python3.8/site-packages/flask_appbuilder/security/sqla/manager.py", line 99, in create_db engine = self.get_session.get_bind(mapper=None, clause=None) File "/home/username/.virtualenvs/venv/lib/python3.8/site-packages/sqlalchemy/orm/scoping.py", line 163, in do return getattr(self.registry(), name)(*args, **kwargs) File "/home/username/.virtualenvs/venv/lib/python3.8/site-packages/sqlalchemy/util/_collections.py", line 1022, in __call__ return self.registry.setdefault(key, self.createfunc()) File "/home/username/.virtualenvs/venv/lib/python3.8/site-packages/sqlalchemy/orm/session.py", line 3286, in __call__ return self.class_(**local_kw) File "/home/username/.virtualenvs/venv/lib/python3.8/site-packages/flask_sqlalchemy/__init__.py", line 138, in __init__ bind = options.pop('bind', None) or db.engine File "/home/username/.virtualenvs/venv/lib/python3.8/site-packages/flask_sqlalchemy/__init__.py", line 943, in engine return self.get_engine() File "/home/username/.virtualenvs/venv/lib/python3.8/site-packages/flask_sqlalchemy/__init__.py", line 962, in get_engine return connector.get_engine() File "/home/username/.virtualenvs/venv/lib/python3.8/site-packages/flask_sqlalchemy/__init__.py", line 555, in get_engine options = self.get_options(sa_url, echo) File "/home/username/.virtualenvs/venv/lib/python3.8/site-packages/flask_sqlalchemy/__init__.py", line 570, in get_options self._sa.apply_driver_hacks(self._app, sa_url, options) File "/home/username/.virtualenvs/venv/lib/python3.8/site-packages/flask_sqlalchemy/__init__.py", line 883, in apply_driver_hacks if sa_url.drivername.startswith('mysql'): AttributeError: 'NoneType' object has no attribute 'drivername' ``` ### Steps to reproduce 1) startup Bash console on Pythonanywhere 2) workon virtualenvironment 3) copy ........site-packages/flask_appbuilder/test dir to /home/username/app/ 4) cd /home/username/app 5) python -m unittest discover -- Thanks!
closed
2021-02-11T12:10:07Z
2021-02-12T08:23:25Z
https://github.com/dpgaspar/Flask-AppBuilder/issues/1567
[]
runoutnow
1
biolab/orange3
pandas
6,675
File widget: add option to skip a range of rows not holding headers or data
<!-- Thanks for taking the time to submit a feature request! For the best chance at our team considering your request, please answer the following questions to the best of your ability. --> **What's your use case?** Many datasets that are available online as open data have rows that are not column headers or actual records holding the data. Often they hold descriptions of the features and/or other general data such as licensing info. These could be either above or below the actual data. Also, some datasets have column headers spanning more than one row. When importing these datasets in Orange, these rows confuse the mechanisms to recognize variables and variable types. **What's your proposed solution?** It would be nice to be able to specify a range of rows that has to be disregarded, e.g. rows 3-5, when importing a file **Are there any alternative solutions?** Using a spreadsheet to do it manually.
closed
2023-12-13T14:28:02Z
2024-01-05T10:38:14Z
https://github.com/biolab/orange3/issues/6675
[]
wvdvegte
5
pyppeteer/pyppeteer
automation
136
Downloading a file (into memory) with pyppeteer
I'm navigating a site in pyppeteer that contains logic in which file download links must be followed in the same session in which they're surfaced. It's complex enough such that simply replaying the requests with postman fails and is not worth reverse-engineering. This means that I need to use pyppeteer to follow a direct link to download a file. I've looked at these links for how this is done in puppeteer: https://stackoverflow.com/questions/46966341/puppeteer-how-to-set-download-location https://stackoverflow.com/questions/55408302/how-to-get-the-download-stream-buffer-using-puppeteer and I'm a bit confused because a) it appears that [setDownloadBehavior](https://chromedevtools.github.io/devtools-protocol/tot/Page/#method-setDownloadBehavior) is deprecated b) if I were to use `page.evaluate` to use puppeteer-type logic, I'm not sure how I would send data back into my python script. Ideally I would read the file into memory to upload to s3 and skip writing to disk.
open
2020-06-13T15:56:26Z
2020-10-21T01:08:32Z
https://github.com/pyppeteer/pyppeteer/issues/136
[ "bug", "fixed-in-2.1.1" ]
jessrosenfield
5
waditu/tushare
pandas
1,039
[BUG]前复权数据与同花顺不一致
代码: df_bar = ts.pro_bar(ts_code='603156.SH', adj='qfq', start_date='20190507', end_date='20190509') print(df_bar) 结果: ts_code trade_date open high ... change pct_chg vol amount 0 603156.SH 20190509 35.75 35.77 ... -1.18 -3.21 25671.86 89925.308 1 603156.SH 20190508 35.77 37.35 ... 0.61 1.69 35060.53 190153.269 2 603156.SH 20190507 34.56 36.31 ... 1.96 5.73 33827.22 177132.146 其中第2行的open、high等前复权数据与同花顺不一致(同花顺open为35.71) ![image](https://user-images.githubusercontent.com/9362411/57576429-4436cc80-7492-11e9-8523-6a31b7b87223.png) (我的注册链接:https://tushare.pro/register?reg=265109)
closed
2019-05-12T00:45:49Z
2019-05-12T12:26:05Z
https://github.com/waditu/tushare/issues/1039
[]
ghost0917
2
waditu/tushare
pandas
1,231
做了访问限制吗?google vm无法访问http://file.tushare.org
一天只调用一次get_stock_basics,没有暴力爬,今天突然就不行了?connection reset by peer,而国内网就没问题
closed
2019-12-23T05:12:41Z
2019-12-24T01:46:57Z
https://github.com/waditu/tushare/issues/1231
[]
sidazhang123
0
MycroftAI/mycroft-core
nlp
2,363
Error during paring
After I pair, it gives me this error ```bash 21:01:28.914 | ERROR | 5174 | mycroft.skills.settings:_issue_api_call:310 | Failed to upload skill settings meta for mycroft-pairing|19.08 Traceback (most recent call last): File "/root/mycroft-core/mycroft/skills/settings.py", line 307, in _issue_api_call self.api.upload_skill_metadata(self.settings_meta) File "/root/mycroft-core/mycroft/api/__init__.py", line 382, in upload_skill_metadata "json": settings_meta File "/root/mycroft-core/mycroft/api/__init__.py", line 69, in request return self.send(params) File "/root/mycroft-core/mycroft/api/__init__.py", line 152, in send return self.get_response(response, no_refresh) File "/root/mycroft-core/mycroft/api/__init__.py", line 174, in get_response raise HTTPError(data, response=response) requests.exceptions.HTTPError: {'skill_gid': ['Received skill setting definition before manifest for skill mycroft-pairing|19.08']} ~~~~4 | mycroft.skills.settings:_update_settings_meta:301 | DEPRECATION WARNING: The "name" attribute in the settingsmeta file is no longer supported. ``` I am running ```mycroft-core 19.8.1``` on my Linux raspberry pi 1 B+ (I didn't install the PiCroft but install as normal Linux)
closed
2019-10-12T02:04:23Z
2019-11-18T21:46:20Z
https://github.com/MycroftAI/mycroft-core/issues/2363
[ "Type: Bug - complex" ]
weathon
6
biolab/orange3
scikit-learn
6,835
Orange3 version 3.37.0 of the graph_ranks function is replaced by what
<!-- Thanks for taking the time to report a bug! If you're raising an issue about an add-on (i.e., installed via Options > Add-ons), raise an issue in the relevant add-on's issue tracker instead. See: https://github.com/biolab?q=orange3 To fix the bug, we need to be able to reproduce it. Please answer the following questions to the best of your ability. --> **What's wrong?** <!-- Be specific, clear, and concise. Include screenshots if relevant. --> <!-- If you're getting an error message, copy it, and enclose it with three backticks (```). --> **How can we reproduce the problem?** <!-- Upload a zip with the .ows file and data. --> <!-- Describe the steps (open this widget, click there, then add this...) --> **What's your environment?** <!-- To find your Orange version, see "Help → About → Version" or `Orange.version.full_version` in code --> - Operating system: - Orange version: - How you installed Orange:
closed
2024-06-15T02:54:18Z
2024-07-05T07:12:15Z
https://github.com/biolab/orange3/issues/6835
[ "bug report" ]
CandB1314
1
developmentseed/lonboard
jupyter
293
Troubleshooting docs page
- if you see an error like "model not found", reload your _browser tab_ (not the Jupyter kernel) and try again
closed
2023-12-06T18:44:28Z
2024-09-24T21:06:18Z
https://github.com/developmentseed/lonboard/issues/293
[]
kylebarron
2
Evil0ctal/Douyin_TikTok_Download_API
fastapi
37
宝塔部署里面只能选一个启动文件
Web启动文件选择web_zh.py API启动文件选择web_api.py 尝试创建了2个项目好像后面那个启动不成功 那这样是Web和Api是需要2台服务器分别来部署吗?
closed
2022-06-08T08:31:33Z
2022-06-11T02:42:41Z
https://github.com/Evil0ctal/Douyin_TikTok_Download_API/issues/37
[]
chris-ss
2
ray-project/ray
data-science
51,496
CI test windows://python/ray/tests:test_advanced_4 is consistently_failing
CI test **windows://python/ray/tests:test_advanced_4** is consistently_failing. Recent failures: - https://buildkite.com/ray-project/postmerge/builds/8965#0195aaf1-9737-4a02-a7f8-1d7087c16fb1 - https://buildkite.com/ray-project/postmerge/builds/8965#0195aa03-5c4f-4156-97c5-9793049512c1 DataCaseName-windows://python/ray/tests:test_advanced_4-END Managed by OSS Test Policy
closed
2025-03-19T00:05:32Z
2025-03-19T21:52:09Z
https://github.com/ray-project/ray/issues/51496
[ "bug", "triage", "core", "flaky-tracker", "ray-test-bot", "ci-test", "weekly-release-blocker", "stability" ]
can-anyscale
3
tflearn/tflearn
tensorflow
1,131
QuickStart tutorial can use columns_to_ignore in load_csv() function call
load_csv line can be since there's `columns_to_ignore` param's supported ``` data, labels = load_csv('titanic_dataset.csv', target_column=0, columns_to_ignore=[2, 7], categorical_labels=True, n_classes=2) ``` and we don't need to do that in preprocess() ``` def preprocess(passengers): for i in range(len(passengers)): passengers[i][1] = 1. if passengers[i][1] == 'female' else 0. return np.array(passengers, dtype=np.float32) ``` Thus, calling preprocess could be ``` data = preprocess(data) ``` as well as predict part becomes ``` dicaprio, winslet = preprocess([dicaprio, winslet]) ```
open
2019-06-13T17:36:47Z
2019-06-13T17:36:47Z
https://github.com/tflearn/tflearn/issues/1131
[]
nicechester
0
idealo/image-super-resolution
computer-vision
187
Different scaling factors depending on model used
I've tried running the code provided here https://github.com/idealo/image-super-resolution#prediction on a sample image. My code is as follows import numpy as np from PIL import Image from ISR.models import RDN, RRDN img = Image.open('data/input/0001.png') lr_img = np.array(img) model = RDN(weights='noise-cancel') sr_img = model.predict(lr_img) img = Image.fromarray(sr_img) img.save('result.png', 'PNG') When using `model = RRDN(weights='gans')` the resulting image is 4 times the size of the input, but with RDN models, it is twice the size. Is it possible to run prediction with different scales? It is difficult to truly compare the results of the different models because of that, but I might have missed something. If this is the intended behavior, what is the best approach to target a specific resolution? (in regard to chaining models together perhaps)
open
2021-03-14T12:43:59Z
2021-03-14T12:43:59Z
https://github.com/idealo/image-super-resolution/issues/187
[]
axymeus
0
pytest-dev/pytest-cov
pytest
290
Ok, it appears to be as you explained in https://github.com/pytest-dev/pytest-cov/issues/285#issuecomment-488733091
Ok, it appears to be as you explained in https://github.com/pytest-dev/pytest-cov/issues/285#issuecomment-488733091 in fact against current master the following patch is sufficient to not cause an error: ```diff diff --git a/proj/app/__init__.py b/proj/app/__init__.py index e69de29..7ec32ee 100644 --- a/proj/app/__init__.py +++ b/proj/app/__init__.py @@ -0,0 +1 @@ +from . import templatetags diff --git a/proj/app/templatetags/__init__.py b/proj/app/templatetags/__init__.py index e69de29..2e046b5 100644 --- a/proj/app/templatetags/__init__.py +++ b/proj/app/templatetags/__init__.py @@ -0,0 +1 @@ +from . import tags ``` `pytest --cov -n2` completes green with the following result: ``` ============================================================================ test session starts ============================================================================= platform linux -- Python 3.6.8, pytest-4.4.1, py-1.8.0, pluggy-0.9.0 Django settings: proj.settings (from environment variable) rootdir: /home/friedel/git/pytest-django-xdist-cov-bug plugins: xdist-1.28.0, forked-1.0.2, django-3.4.8, cov-2.7.1 gw0 [2] / gw1 [2] .. [100%] ----------- coverage: platform linux, python 3.6.8-final-0 ----------- Name Stmts Miss Cover ------------------------------------------------------- proj/app/__init__.py 1 0 100% proj/app/admin.py 1 0 100% proj/app/models.py 1 0 100% proj/app/templatetags/__init__.py 1 0 100% proj/app/templatetags/tags.py 4 0 100% proj/app/views.py 3 0 100% proj/proj/__init__.py 0 0 100% proj/proj/urls.py 4 0 100% ------------------------------------------------------- TOTAL 15 0 100% ========================================================================== 2 passed in 2.16 seconds ========================================================================== ``` But the result raises more questions (which is probably a good thing): 1.) home.html is not only reported with coverage of 0% (probably because of https://github.com/nedbat/django_coverage_plugin/issues/36 ) but omitted completely. 2.) https://docs.djangoproject.com/en/2.2/howto/custom-template-tags/ (or 1.11 or any version) does not mention that templatetags libraries need to be imported anywhere. I'm not sure if any of the relevant modules mentions that (pytest-cov, pytest-xdist, pytest-django or django_coverage_plugin). Since production code runs without those imports (and `--cov` and `-n2` on their own as well) I suspect there's still a bug somewhere and importing those modules explicitly is just a workaround, with the advantage that it's simpler than my initial workaround of moving the busines code of the template tags and filters out of the tag library module and testing it separately. You seem sure that there's no bug in pytest-cov, so I suspect there might be one in pytest-django or pytest_coverage_plugin. In any case, thanks for your assistance! _Originally posted by @TauPan in https://github.com/pytest-dev/pytest-cov/issues/285#issuecomment-489447382_
closed
2019-05-13T12:57:15Z
2019-05-13T12:57:43Z
https://github.com/pytest-dev/pytest-cov/issues/290
[]
TauPan
1
Miserlou/Zappa
flask
2,130
documentation link is not working
*Zappa documentation link is not working* I tried to acccess https://blog.zappa.io/, but its not loading
closed
2020-06-30T06:57:55Z
2021-02-08T17:45:07Z
https://github.com/Miserlou/Zappa/issues/2130
[]
avinash-bhosale
8
cvat-ai/cvat
computer-vision
9,157
[Question] how can i fetch frames with annotation via APIs?
So, I have our CVAT running locally and for a certain Job X i want to fetch all the frames with annotation via APIs ![Image](https://github.com/user-attachments/assets/2f3efb01-f3ea-46af-abcd-ca459858013e)
closed
2025-02-27T19:47:49Z
2025-03-03T09:12:33Z
https://github.com/cvat-ai/cvat/issues/9157
[ "question" ]
prabaljainn
4
apify/crawlee-python
web-scraping
549
Add init script for Playwright browser context
- For now, let's use a data file containing fingerprints \(or at minimum user agents\) from the Apify fingerprint dataset. - Use the init script from the [fingerprint suite](https://github.com/apify/fingerprint-suite/blob/master/packages/fingerprint-injector/src/utils.js). - A fingerprint, selected based on parameters such as OS or browser type, should be passed to the init script. - Load the JS init script from a file and convert it into a string for injection. - Inject the script into the Playwright browser context using `BrowserContext.add_init_scripts()`. - Possible inspiration: - [undetected-playwright-python](https://github.com/kaliiiiiiiiii/undetected-playwright-python), - \[playwright*stealth\]\(https://github.com/AtuboDad/playwright*stealth\).
closed
2024-09-27T18:02:14Z
2025-02-05T15:04:06Z
https://github.com/apify/crawlee-python/issues/549
[ "enhancement", "t-tooling", "product roadmap" ]
vdusek
0
nerfstudio-project/nerfstudio
computer-vision
2,998
Train model from custom data without COLMAP
Hi, I'm trying to build some NeRF models from images acquired with the [PyRep](https://github.com/stepjam/PyRep) simulator and I cannot use COLMAP to extract camera intrinsics and extrinsics. I'm currently filling a transform.json with intrinsic and extrinsic parameters from the simulator, but I don't manage to train a model with such data. I attach a screenshot of a trained model, which presents several inconsistencies. ![Screenshot from 2024-03-12 11-24-46](https://github.com/nerfstudio-project/nerfstudio/assets/32268209/77363bfd-a6da-4f1d-a5ee-8d52ce9e982a) I rendered the images from PyRep in the OpenGL mode, so according to the [documentation](https://docs.nerf.studio/quickstart/data_conventions.html) the data should be in the right format. I attach [here](https://github.com/nerfstudio-project/nerfstudio/files/14571277/pyrep_images.zip) the data that I am using for training. Thanks in advance for the support.
closed
2024-03-12T11:12:37Z
2024-08-06T07:15:10Z
https://github.com/nerfstudio-project/nerfstudio/issues/2998
[]
fedeceola
2
LibreTranslate/LibreTranslate
api
130
Submit translations
How can translations be provided to improve the LibreTranslate application? | English | magyar (Hungarian) incorrect | magyar (Hungarian) correct | |----|----|----| | bootstrap | bootstrap | rendszerindítás | | queue | sor | várakozási sor | | script | szkript | parancsfájl | | server | szerver | kiszolgáló | | What’s the time? | Mennyi az idő? | Hany óra? | Translations could be added from: 1. [Angol-magyar informatikai szótár](https://regi.tankonyvtar.hu/en/tartalom/tkt/angol-magyar/adatok.html). [PDF version](https://regi.tankonyvtar.hu/en/tartalom/tkt/angol-magyar/angol-magyar.pdf) 2. [SZTAKI dictionary](https://szotar.sztaki.hu/en) What do you think? Thank you
closed
2021-09-05T23:24:30Z
2021-10-09T14:13:25Z
https://github.com/LibreTranslate/LibreTranslate/issues/130
[ "enhancement" ]
ovari
2
ScrapeGraphAI/Scrapegraph-ai
machine-learning
411
Groq example results in context_length_exceeded error
**Describe the bug** I'm getting an error when running the Groq example on the repo. I confirmed my Groq key works when making a normal request. *Code* ```python from scrapegraphai.graphs import SearchGraph import os groq_key = os.getenv("GROQ_API_KEY") # Define the configuration for the graph graph_config = { "llm": { "model": "groq/gemma-7b-it", "api_key": groq_key, "temperature": 0 }, "embeddings": { "model": "ollama/nomic-embed-text", "base_url": "http://localhost:11434", # set ollama URL arbitrarily }, "max_results": 5, } # Create the SearchGraph instance search_graph = SearchGraph( prompt="List me all the traditional recipes from Chioggia", config=graph_config ) # Run the graph result = search_graph.run() print(result) ``` *Error* ```text groq.BadRequestError: Error code: 400 - {'error': {'message': 'Please reduce the length of the messages or completion.', 'type': 'invalid_request_error', 'param': 'messages', 'code': 'context_length_exceeded'}} ``` **Desktop (please complete the following information):** - OS: MacOS 13.6.7 - Version: 1.7.4
closed
2024-06-26T22:13:20Z
2024-07-10T10:36:02Z
https://github.com/ScrapeGraphAI/Scrapegraph-ai/issues/411
[]
yngwz
2
taverntesting/tavern
pytest
21
Logger format issue in python 2.7
In the **entry.py** file, **line 63**, the logger format is as follows: `{asctime:s} [{levelname:s}]: ({name:s}:{lineno:d}) {message:s}` Any logging output will just print the line above and not the actual variables. A quick fix is by replacing it with the following: `%(asctime)s [%(levelname)s]: (%(name)s:%(lineno)d) %(message)s` I have only tested this on python 2.7.
closed
2018-01-25T14:07:11Z
2018-01-25T16:32:05Z
https://github.com/taverntesting/tavern/issues/21
[]
JadedLlama
1
Textualize/rich
python
2,762
[BUG] rich.progress.Progress transient option not working when exception is thrown within context
- [x] I've checked [docs](https://rich.readthedocs.io/en/latest/introduction.html) and [closed issues](https://github.com/Textualize/rich/issues?q=is%3Aissue+is%3Aclosed) for possible solutions. - [x] I can't find my issue in the [FAQ](https://github.com/Textualize/rich/blob/master/FAQ.md). **Describe the bug** When an exception is thrown from within the Progress context, the progress bar fails to exit correctly and leaves a blank line even when transient=True. To be fair, my use case is pretty niche. ```python class DownloadContext: """Context for Downloader.""" def __init__(self, progress: Progress): """Context for Downloader.""" self.progress = progress def foobar(path): # if file exists then skip download if path.is_file(): raise SkipDownloadException # do download class Downloader: """Download files or webpages with rich progressbar.""" @contextmanager def begin(self): status: DownloaderExitStatus with Progress(transient=True) as prog: try: yield DownloadContext(prog) except SkipDownloadException: status=DownloaderExitStatus.SUCCESS_SKIPPED else: status=DownloaderExitStatus.SUCCESS_DOWNLOAD # print appropriate message based on status downloader = Downloader() with downloader.begin() as context: context.foobar() ``` When ``foobar()`` runs without throwing an exception python exits my ``with Downloader.begin() as context`` block, evaluates the ``else`` part of my try/except/else block and the progress bars disappear like they're supposed to but when ``SkipDownloadException`` is thrown in ``foobar()`` it goes to the ``except SkipDownloadException`` statement like expected and prints my messages, but the progress bars leave behind a blank line. I think this might just be a unique edge case, but maybe a more seasoned python programmer can tell me if I'm misunderstanding the ``with`` statement, generators, or exceptions or something. I tried using [this hack](https://github.com/Textualize/rich/issues/110#issuecomment-642805102) as a workaround, but I got this error: ``AttributeError: 'str' object has no attribute 'segment'`` **Edit 1:** I was able to work around the blank lines by using this command ``console.control(Control.move(0,-1))`` but the issue still persists. **Edit 2:** After continuing to work on my project, I realized that raising an exception isn't the problem. The blanks lines occur because when the skip exception occurs, no tasks are added to the progress bar, so it never goes away. Adding something like this ``progress.add_task("", completed=100.0)`` solves the problem with the quirk that if you set visible=False, the problem reappears. I'm going to leave this issue open because it seems weird that the progress bar won't go away without adding an already completed task but, if this is desired behavior, then it's okay to close it. **Platform** <details> <summary>Click to expand</summary> What platform (Win/Linux/Mac) are you running on? What terminal software are you using? > Linux I may ask you to copy and paste the output of the following commands. It may save some time if you do it now. If you're using Rich in a terminal: ``` python -m rich.diagnose pip freeze | grep rich ``` ```bash $ python -m rich.diagnose ╭───────────────────────── <class 'rich.console.Console'> ─────────────────────────╮ │ A high level console interface. │ │ │ │ ╭──────────────────────────────────────────────────────────────────────────────╮ │ │ │ <console width=188 ColorSystem.TRUECOLOR> │ │ │ ╰──────────────────────────────────────────────────────────────────────────────╯ │ │ │ │ color_system = 'truecolor' │ │ encoding = 'utf-8' │ │ file = <_io.TextIOWrapper name='<stdout>' mode='w' encoding='utf-8'> │ │ height = 42 │ │ is_alt_screen = False │ │ is_dumb_terminal = False │ │ is_interactive = True │ │ is_jupyter = False │ │ is_terminal = True │ │ legacy_windows = False │ │ no_color = False │ │ options = ConsoleOptions( │ │ size=ConsoleDimensions(width=188, height=42), │ │ legacy_windows=False, │ │ min_width=1, │ │ max_width=188, │ │ is_terminal=True, │ │ encoding='utf-8', │ │ max_height=42, │ │ justify=None, │ │ overflow=None, │ │ no_wrap=False, │ │ highlight=None, │ │ markup=None, │ │ height=None │ │ ) │ │ quiet = False │ │ record = False │ │ safe_box = True │ │ size = ConsoleDimensions(width=188, height=42) │ │ soft_wrap = False │ │ stderr = False │ │ style = None │ │ tab_size = 8 │ │ width = 188 │ ╰──────────────────────────────────────────────────────────────────────────────────╯ ╭─── <class 'rich._windows.WindowsConsoleFeatures'> ────╮ │ Windows features available. │ │ │ │ ╭───────────────────────────────────────────────────╮ │ │ │ WindowsConsoleFeatures(vt=False, truecolor=False) │ │ │ ╰───────────────────────────────────────────────────╯ │ │ │ │ truecolor = False │ │ vt = False │ ╰───────────────────────────────────────────────────────╯ ╭────── Environment Variables ───────╮ │ { │ │ 'TERM': 'xterm-256color', │ │ 'COLORTERM': 'truecolor', │ │ 'CLICOLOR': None, │ │ 'NO_COLOR': None, │ │ 'TERM_PROGRAM': None, │ │ 'COLUMNS': None, │ │ 'LINES': None, │ │ 'JUPYTER_COLUMNS': None, │ │ 'JUPYTER_LINES': None, │ │ 'JPY_PARENT_PID': None, │ │ 'VSCODE_VERBOSE_LOGGING': None │ │ } │ ╰────────────────────────────────────╯ platform="Linux" $ pip freeze | grep rich rich==12.6.0 ``` If you're using Rich in a Jupyter Notebook, run the following snippet in a cell and paste the output in your bug report. ```python from rich.diagnose import report report() ``` **N/A** </details>
open
2023-01-18T22:40:05Z
2023-01-21T03:19:54Z
https://github.com/Textualize/rich/issues/2762
[ "Needs triage" ]
TerranWorks
1
babysor/MockingBird
pytorch
996
请问作者大大,encoder如何训练?
看了知乎链接的教程,尝试训练encoder ![Screenshot 2024-04-29 184437](https://github.com/babysor/MockingBird/assets/51695272/901047ec-0d6a-4dd8-842a-6d813eae230c) 练了半天,这结果似乎没什么变化 ![wei_umap_038600](https://github.com/babysor/MockingBird/assets/51695272/b924f344-9ab0-429e-bfaa-ea6dde7c791f) ![wei_umap_038700](https://github.com/babysor/MockingBird/assets/51695272/7d0b5ba1-9105-487b-8be5-d50ae50bd88d) 数据自建的,有2个多G 问题1:这种情况是正常的吗?如果不正常是什么原因造成的? 问题2:根据知乎上的说法“**实测了一次 训练synthesizer时,4000左右step就能attention收敛,22k step的时候loss就到0.35了,可以很快进行finetune,算是超越预期。**”,训练synthesizer时,如何把encoder加入?
open
2024-04-30T01:59:55Z
2024-04-30T09:22:32Z
https://github.com/babysor/MockingBird/issues/996
[]
onedotone-wei
2
autogluon/autogluon
computer-vision
4,195
[timeseries] When saving predictor to a folder with an existing predictor, delete the old predictor
## Description - When the user sets `TimeSeriesPredictor(path="folder/with/existing/predictor")`, a lot of weird undocumented behaviors may occur (e.g., #4150). We currently log a warning in this case, but it's often ignored by the users, leading to confusion. A cleaner option would be to delete all the files related to the old predictor.
closed
2024-05-14T07:50:06Z
2024-06-27T09:24:45Z
https://github.com/autogluon/autogluon/issues/4195
[ "enhancement", "module: timeseries" ]
shchur
2
dunossauro/fastapi-do-zero
pydantic
180
Link do Projecto
https://github.com/HulitosCode/fast_zero
closed
2024-06-18T11:54:23Z
2024-06-18T12:00:02Z
https://github.com/dunossauro/fastapi-do-zero/issues/180
[]
HulitosCode
0
localstack/localstack
python
11,537
bug: EventBridge pattern using suffix generates incorrect rule
### Is there an existing issue for this? - [X] I have searched the existing issues ### Current Behavior I'm trying to create an EventBridge rule using the `suffix` matcher, with CDK: ```javascript new Rule(this, "TestRule", { eventPattern: { source: ["aws.s3"], detailType: ["Object Created"], detail: { bucket: { name: ["test-s3-bucket"] }, object: { key: [{ suffix: "/test.json" }] }, }, }, targets: [...], }); ``` Creating the rule succeeds, but when there is an event it throws an error saying the rule is invalid (somthing like: suffix value must be a string, not an array). Upon further inspection it looks like the rule this ends up creating contains the pattern: `{ suffix: ["/test.json"] }` However If I change this to `prefix`, it creates the rule correctly without the array: `{ prefix: "/test.json" }` ### Expected Behavior In the rule created by cloudformation the value`"/test.json"` should not be inside an array ### How are you starting LocalStack? With a docker-compose file ### Steps To Reproduce - create an evenbridge rule using CDK/cloudformation and use the `suffix` matcher in the event pattern - call `awslocal events describe-rule --name {rule name here}` - the EventPattern in the rule will have the suffix value inside an array ### Environment ```markdown - OS: Mac OS 14 - LocalStack: LocalStack version: 3.7.2 LocalStack Docker image sha: sha256:6121fe59d0c05ccc30bee5d4f24fce23c3e3148a4438551982a5bf60657a9e8d LocalStack build date: 2024-09-06 LocalStack build git hash: 854016a0 ``` ### Anything else? _No response_
closed
2024-09-18T18:41:45Z
2024-12-05T13:54:19Z
https://github.com/localstack/localstack/issues/11537
[ "type: bug", "aws:cloudformation", "status: backlog" ]
arshsingh
3
localstack/localstack
python
12,019
bug: Secret exists but is not found
### Is there an existing issue for this? - [X] I have searched the existing issues ### Current Behavior We have a couple of secrets that we store in the Secrets Manager using a localstack image. When we fetch the secret through AWS's SDK, it returns a 400 ResoureNotFoundException. ![image](https://github.com/user-attachments/assets/09adb8e5-cdff-4b48-8673-eb4f6e324955) ### Expected Behavior For it to return the secrets that exist in the Secrets Manager's localstack image. ### How are you starting LocalStack? With a docker-compose file ### Steps To Reproduce #### How are you starting localstack (e.g., `bin/localstack` command, arguments, or `docker-compose.yml`) docker compose up --build -d #### Client commands (e.g., AWS SDK code snippet, or sequence of "awslocal" commands) ##Inside localstack container works awslocal secretsmanager get-secret-value --secret-id <secret-name> ##Outside container in the same network as localstack doesn't secretsManagerClient.GetSecretValue(context.Background(), secretValueInput) ### Environment ```markdown - OS: alpine:latest - LocalStack LocalStack version:stable LocalStack Docker image sha:sha256:518e0fe312f173c8c5268d5e68520b0006716156582c035d9b633db460e73865 LocalStack build date:Nov 29, 2024 at 8:59 pm LocalStack build git hash: ``` ### Anything else? The latest tag without this issue that we found was 4.0.2.
open
2024-12-11T11:12:42Z
2025-01-03T10:07:33Z
https://github.com/localstack/localstack/issues/12019
[ "type: bug", "aws:secretsmanager", "status: backlog" ]
bernardo-rodrigues-vwds
13
ivy-llc/ivy
pytorch
27,892
clip_vector_norm
closed
2024-01-10T04:05:38Z
2024-01-25T23:01:01Z
https://github.com/ivy-llc/ivy/issues/27892
[ "Sub Task", "Stale" ]
JoshOlam
2
plotly/dash
data-science
2,266
Typo in method for context_value upon create
https://github.com/plotly/dash/blob/2bd83a98322f95243359d846ec9e97a5b542a36e/dash/_pages.py#L254 I think this may be a typo. It would error out: File "/opt/homebrew/lib/python3.10/site-packages/dash/_pages.py", line 254, in register_page if context_value.get().get("ignore_register_page"): LookupError: <ContextVar name='callback_context' at 0x11f7bff10> removing the '.get()' method fixed it.
closed
2022-10-09T21:15:14Z
2023-03-21T18:42:12Z
https://github.com/plotly/dash/issues/2266
[]
SKnight79
1
ageitgey/face_recognition
python
1,199
Problem regarding installation of face_recognition API
* face_recognition version: 1.3.0 * Python version: 3.8.2 * Operating System: Ubuntu 20.04 ### Description I wanted to install `face_recognition` api with the command `pip3 install face_recognition` and every time I do this, I get an error as following: ``` Collecting face_recognition Using cached face_recognition-1.3.0-py2.py3-none-any.whl (15 kB) Requirement already satisfied: face-recognition-models>=0.3.0 in /home/pritam_pagla/.local/lib/python3.8/site-packages (from face_recognition) (0.3.0) Requirement already satisfied: numpy in /home/pritam_pagla/.local/lib/python3.8/site-packages (from face_recognition) (1.19.1) Requirement already satisfied: Click>=6.0 in /usr/lib/python3/dist-packages (from face_recognition) (7.0) Requirement already satisfied: Pillow in /usr/lib/python3/dist-packages (from face_recognition) (7.0.0) Collecting dlib>=19.7 Using cached dlib-19.21.0.tar.gz (3.2 MB) Building wheels for collected packages: dlib Building wheel for dlib (setup.py) ... error ERROR: Command errored out with exit status 1: command: /usr/bin/python3 -u -c 'import sys, setuptools, tokenize; sys.argv[0] = '"'"'/tmp/pip-install-x8p3gvgy/dlib/setup.py'"'"'; __file__='"'"'/tmp/pip-install-x8p3gvgy/dlib/setup.py'"'"';f=getattr(tokenize, '"'"'open'"'"', open)(__file__);code=f.read().replace('"'"'\r\n'"'"', '"'"'\n'"'"');f.close();exec(compile(code, __file__, '"'"'exec'"'"'))' bdist_wheel -d /tmp/pip-wheel-8yvcs9nr cwd: /tmp/pip-install-x8p3gvgy/dlib/ Complete output (53 lines): running bdist_wheel running build running build_py package init file 'tools/python/dlib/__init__.py' not found (or not a regular file) running build_ext Traceback (most recent call last): File "/tmp/pip-install-x8p3gvgy/dlib/setup.py", line 120, in get_cmake_version out = subprocess.check_output(['cmake', '--version']) File "/usr/lib/python3.8/subprocess.py", line 411, in check_output return run(*popenargs, stdout=PIPE, timeout=timeout, check=True, File "/usr/lib/python3.8/subprocess.py", line 489, in run with Popen(*popenargs, **kwargs) as process: File "/usr/lib/python3.8/subprocess.py", line 854, in __init__ self._execute_child(args, executable, preexec_fn, close_fds, File "/usr/lib/python3.8/subprocess.py", line 1702, in _execute_child raise child_exception_type(errno_num, err_msg, err_filename) FileNotFoundError: [Errno 2] No such file or directory: 'cmake' During handling of the above exception, another exception occurred: Traceback (most recent call last): File "<string>", line 1, in <module> File "/tmp/pip-install-x8p3gvgy/dlib/setup.py", line 223, in <module> setup( File "/usr/lib/python3/dist-packages/setuptools/__init__.py", line 144, in setup return distutils.core.setup(**attrs) File "/usr/lib/python3.8/distutils/core.py", line 148, in setup dist.run_commands() File "/usr/lib/python3.8/distutils/dist.py", line 966, in run_commands self.run_command(cmd) File "/usr/lib/python3.8/distutils/dist.py", line 985, in run_command cmd_obj.run() File "/usr/lib/python3/dist-packages/wheel/bdist_wheel.py", line 223, in run self.run_command('build') File "/usr/lib/python3.8/distutils/cmd.py", line 313, in run_command self.distribution.run_command(command) File "/usr/lib/python3.8/distutils/dist.py", line 985, in run_command cmd_obj.run() File "/usr/lib/python3.8/distutils/command/build.py", line 135, in run self.run_command(cmd_name) File "/usr/lib/python3.8/distutils/cmd.py", line 313, in run_command self.distribution.run_command(command) File "/usr/lib/python3.8/distutils/dist.py", line 985, in run_command cmd_obj.run() File "/tmp/pip-install-x8p3gvgy/dlib/setup.py", line 129, in run cmake_version = self.get_cmake_version() File "/tmp/pip-install-x8p3gvgy/dlib/setup.py", line 122, in get_cmake_version raise RuntimeError("\n*******************************************************************\n" + RuntimeError: ******************************************************************* CMake must be installed to build the following extensions: _dlib_pybind11 ******************************************************************* ---------------------------------------- ERROR: Failed building wheel for dlib Running setup.py clean for dlib Failed to build dlib Installing collected packages: dlib, face-recognition Running setup.py install for dlib ... error ERROR: Command errored out with exit status 1: command: /usr/bin/python3 -u -c 'import sys, setuptools, tokenize; sys.argv[0] = '"'"'/tmp/pip-install-x8p3gvgy/dlib/setup.py'"'"'; __file__='"'"'/tmp/pip-install-x8p3gvgy/dlib/setup.py'"'"';f=getattr(tokenize, '"'"'open'"'"', open)(__file__);code=f.read().replace('"'"'\r\n'"'"', '"'"'\n'"'"');f.close();exec(compile(code, __file__, '"'"'exec'"'"'))' install --record /tmp/pip-record-czi36j35/install-record.txt --single-version-externally-managed --user --prefix= --compile --install-headers /home/pritam_pagla/.local/include/python3.8/dlib cwd: /tmp/pip-install-x8p3gvgy/dlib/ Complete output (55 lines): running install running build running build_py package init file 'tools/python/dlib/__init__.py' not found (or not a regular file) running build_ext Traceback (most recent call last): File "/tmp/pip-install-x8p3gvgy/dlib/setup.py", line 120, in get_cmake_version out = subprocess.check_output(['cmake', '--version']) File "/usr/lib/python3.8/subprocess.py", line 411, in check_output return run(*popenargs, stdout=PIPE, timeout=timeout, check=True, File "/usr/lib/python3.8/subprocess.py", line 489, in run with Popen(*popenargs, **kwargs) as process: File "/usr/lib/python3.8/subprocess.py", line 854, in __init__ self._execute_child(args, executable, preexec_fn, close_fds, File "/usr/lib/python3.8/subprocess.py", line 1702, in _execute_child raise child_exception_type(errno_num, err_msg, err_filename) FileNotFoundError: [Errno 2] No such file or directory: 'cmake' During handling of the above exception, another exception occurred: Traceback (most recent call last): File "<string>", line 1, in <module> File "/tmp/pip-install-x8p3gvgy/dlib/setup.py", line 223, in <module> setup( File "/usr/lib/python3/dist-packages/setuptools/__init__.py", line 144, in setup return distutils.core.setup(**attrs) File "/usr/lib/python3.8/distutils/core.py", line 148, in setup dist.run_commands() File "/usr/lib/python3.8/distutils/dist.py", line 966, in run_commands self.run_command(cmd) File "/usr/lib/python3.8/distutils/dist.py", line 985, in run_command cmd_obj.run() File "/usr/lib/python3/dist-packages/setuptools/command/install.py", line 61, in run return orig.install.run(self) File "/usr/lib/python3.8/distutils/command/install.py", line 589, in run self.run_command('build') File "/usr/lib/python3.8/distutils/cmd.py", line 313, in run_command self.distribution.run_command(command) File "/usr/lib/python3.8/distutils/dist.py", line 985, in run_command cmd_obj.run() File "/usr/lib/python3.8/distutils/command/build.py", line 135, in run self.run_command(cmd_name) File "/usr/lib/python3.8/distutils/cmd.py", line 313, in run_command self.distribution.run_command(command) File "/usr/lib/python3.8/distutils/dist.py", line 985, in run_command cmd_obj.run() File "/tmp/pip-install-x8p3gvgy/dlib/setup.py", line 129, in run cmake_version = self.get_cmake_version() File "/tmp/pip-install-x8p3gvgy/dlib/setup.py", line 122, in get_cmake_version raise RuntimeError("\n*******************************************************************\n" + RuntimeError: ******************************************************************* CMake must be installed to build the following extensions: _dlib_pybind11 ******************************************************************* ---------------------------------------- ERROR: Command errored out with exit status 1: /usr/bin/python3 -u -c 'import sys, setuptools, tokenize; sys.argv[0] = '"'"'/tmp/pip-install-x8p3gvgy/dlib/setup.py'"'"'; __file__='"'"'/tmp/pip-install-x8p3gvgy/dlib/setup.py'"'"';f=getattr(tokenize, '"'"'open'"'"', open)(__file__);code=f.read().replace('"'"'\r\n'"'"', '"'"'\n'"'"');f.close();exec(compile(code, __file__, '"'"'exec'"'"'))' install --record /tmp/pip-record-czi36j35/install-record.txt --single-version-externally-managed --user --prefix= --compile --install-headers /home/pritam_pagla/.local/include/python3.8/dlib Check the logs for full command output. ``` Can somebody please provide me with the solution required!
open
2020-08-12T17:43:29Z
2020-08-13T02:10:40Z
https://github.com/ageitgey/face_recognition/issues/1199
[]
Pritam-Pagla
1
deeppavlov/DeepPavlov
tensorflow
844
Setting `DP_MODELS_PATH` and `DP_DOWNLOADS_PATH` variables doesn't really work
All configs in DeepPavlov library have their own way of what is written in `MODELS_PATH`: * some configs have just `{ROOT_PATH}/models` * some configs have one more folder, ex. `{ROOT_PATH}/models/kbqa_mix_lowercase` * some configs have a lot of additional folders, ex. `{ROOT_PATH}/models/classifiers/insults_kaggle_v3` This makes pointless setting `DP_MODELS_PATH` environment variable because it will overwrite `MODELS_PATH` and all paths that have additional folders cannot be found then. I think it could be fixed by standardizing `MODELS_PATH` in all configs as `{ROOT_PATH}/models`, and all additional folders should be in a different variable (` MY_FOLDER = {MODELS_PATH/whatever/folders}`).
closed
2019-05-15T17:32:06Z
2019-06-26T11:05:14Z
https://github.com/deeppavlov/DeepPavlov/issues/844
[ "bug" ]
my-master
1
scikit-learn/scikit-learn
machine-learning
31,032
`weighted_percentile` should error/warn when all sample weights 0
### Describe the bug Noticed while working on #29431 ### Steps/Code to Reproduce See the following test: https://github.com/scikit-learn/scikit-learn/blob/cd0478f42b2c873853e6317e3c4f2793dc149636/sklearn/utils/tests/test_stats.py#L67-L73 ### Expected Results Error or warning should probably be given. You're effectively asking for a quantile of a empty array. ### Actual Results When all sample weights are 0, what happens is that `percentile_in_sorted` (as in the index of desired observation in array is the) is `101` (the last item). We should probably add a check and give a warning when `sample_weights` is all zero cc @ogrisel @glemaitre ### Versions ```shell n/a ```
open
2025-03-20T01:57:45Z
2025-03-21T17:30:17Z
https://github.com/scikit-learn/scikit-learn/issues/31032
[ "Bug" ]
lucyleeow
1
nteract/papermill
jupyter
660
nbclient.exceptions.DeadKernelError if Python Warnings Filter set to 'default'
## Question <!-- A clear and concise description of what the bug is. --> :wave: Hi. While trying to get a nightly notebook `pytest` test working again with modern `papermill` and `scrapbook` (c.f. https://github.com/scikit-hep/pyhf/pull/1841) I noticed that if I have [Python filter warnings](https://docs.python.org/3/library/warnings.html#the-warnings-filter) set to `'default'`, I can get a `nbclient.exceptions.DeadKernelError` from `papermill` if the notebook being executed has any IPython/Jupyter [magics](https://ipython.readthedocs.io/en/stable/interactive/magics.html) like shell evaluation with `!`. Example from https://github.com/scikit-hep/pyhf/pull/1841: ```yaml - name: Test example notebooks shell: bash run: | # Override the ini option for filterwarnings with an empty list to disable error # on filterwarnings as testing for notebooks to run with the latest API, not if # Jupyter infrastructure is warning free. # Though still show warnings by setting warning control to 'default'. export PYTHONWARNINGS='default' pytest --override-ini filterwarnings= tests/test_notebooks.py ``` Do you have any ideas why setting [`PYTHONWARNINGS='default'`](https://docs.python.org/3/using/cmdline.html#envvar-PYTHONWARNINGS) which will > print the first occurrence of matching warnings for each location (module + line number) where the warning is issued would cause a `nbclient.exceptions.DeadKernelError`, which goes away if `PYTHONWARNINGS` is not set? ## Log files There is a log file for ```console $ PYTHONWARNINGS='default' pytest --override-ini filterwarnings= tests/test_notebooks.py -k test_xml_importexport &> /tmp/pythonwarnings_log.txt ``` at https://github.com/scikit-hep/pyhf/issues/1840#issuecomment-1089982787, which I can link here: https://github.com/scikit-hep/pyhf/files/8425002/pythonwarnings_log.txt ### Related Issues and PRs * https://github.com/scikit-hep/pyhf/issues/1840 * https://github.com/scikit-hep/pyhf/pull/1841
open
2022-04-06T08:40:12Z
2022-04-06T14:29:06Z
https://github.com/nteract/papermill/issues/660
[ "bug", "help wanted" ]
matthewfeickert
0
ultralytics/yolov5
deep-learning
12,519
index: 2 Got: 384 Expected: 640
### Search before asking - [X] I have searched the YOLOv5 [issues](https://github.com/ultralytics/yolov5/issues) and [discussions](https://github.com/ultralytics/yolov5/discussions) and found no similar questions. ### Question I have been using the Ultralytics Python module to use my yolov5 model made with Ultralytics Hub I switched to doing it this way, (gives more customization): [https://docs.ultralytics.com/yolov5/tutorials/train_custom_data](url) However if I try to use the Ultralytics module to load the model, I get this: ``` TypeError: ERROR best.pt appears to be an Ultralytics YOLOv5 model originally trained with https://github.com/ultralytics/yolov5. This model is NOT forwards compatible with YOLOv8 at https://github.com/ultralytics/ultralytics. Recommend fixes are to train a new model using the latest 'ultralytics' package or to run a command with an official YOLOv8 model, i.e. 'yolo predict model=yolov8n.pt' ``` So I switched to using torch.hub.load() It loads the model fine, however when it trys to get detection results, I get this error: ``` onnxruntime.capi.onnxruntime_pybind11_state.InvalidArgument: [ONNXRuntimeError] : 2 : INVALID_ARGUMENT : Got invalid dimensions for input: images for the following indices index: 2 Got: 384 Expected: 640 Please fix either the inputs or the model. ``` I have gotten this error before using the Ultralytics module, I just changed the imgsz argument and that fixed it. It appears that torch doesnt support that argument and Im unsure of how to go about fixing this. Ive tried: - imgsz - imgsize - size And nothing works Ive looked through this page about torch.hub.load() to no avail: [https://docs.ultralytics.com/yolov5/tutorials/pytorch_hub_model_loading/](url) I am unsure of what to do from here, any help is appreciated. ### Code ``` import os import dxcam import cv2 import torch from ultralytics import YOLO os.chdir(os.path.dirname(__file__)) model = torch.hub.load('ultralytics/yolov5', 'custom', path='best.onnx', _verbose=False) # Initzialize a DXcam camera camera = dxcam.create(device_idx=0, output_color="BGR") left = 0 top = 0 right = 1360 bottom = 768 cv2.namedWindow("test", cv2.WINDOW_NORMAL) cv2.resizeWindow("test", 400, 200) cv2.setWindowProperty("test", cv2.WND_PROP_TOPMOST, 1) while True: frame = camera.grab(region=(left,top,right,bottom)) if frame is None: continue results = model(frame, imgsz=640) cv2.imshow("test", frame) cv2.waitKey(1) ```
closed
2023-12-17T17:45:54Z
2024-02-09T04:05:16Z
https://github.com/ultralytics/yolov5/issues/12519
[ "question", "Stale" ]
DylDevs
13
allenai/allennlp
pytorch
5,274
allennlp.common.checks.ConfigurationError: srl not in acceptable choices for dataset_reader
``` from allennlp.models import load_archive from allennlp.predictors.predictor import Predictor import allennlp def get_srl_predictor(): if torch.cuda.is_available(): archive = allennlp.models.archival.load_archive("https://s3-us-west-2.amazonaws.com/allennlp/models/bert-base-srl-2019.06.17.tar.gz", cuda_device=0) else: archive = load_archive("https://s3-us-west-2.amazonaws.com/allennlp/models/bert-base-srl-2019.06.17.tar.gz") return Predictor.from_archive(archive) ``` Loading the above mentioned model is thorwing this error: allennlp.common.checks.ConfigurationError: srl not in acceptable choices for dataset_reader.type: ['babi', 'conll2003', 'interleaving', 'multitask', 'sequence_tagging', 'sharded', 'text_classification_json', 'multitask_shim']. You should either use the --include-package flag to make sure the correct module is loaded, or use a fully qualified class name in your config file like {"model": "my_module.models.MyModel"} to have it imported automatically. I tried using Predictot.path('https://s3-us-west-2.amazonaws.com/allennlp/models/bert-base-srl-2019.06.17.tar.gz'). But I am getting the same error. Can anyone please help me? Thankyou
closed
2021-06-20T07:10:09Z
2022-06-01T21:21:45Z
https://github.com/allenai/allennlp/issues/5274
[ "question" ]
jeevana28
6
mckinsey/vizro
plotly
584
Custom data does not get picked up if directly defined inside custom chart
### Which package? vizro ### Package version 0.1.18 ### Description If this is supposed to be like this, then I think we need to raise an error earlier or document it somewhere. Optimally this should work though: https://py.cafe/huong-li-nguyen/vizro-bug-filter-interaction If the custom data argument is defined directly inside the custom data chart code, it doesn't get picked up (see example app and screenshot). So this **does not work**: ``` @capture("graph") def custom_chart(x: str, y: str, color: str, data_frame: pd.DataFrame = None): fig = px.box( df_gapminder, x=x, y=y, color=color, custom_data=[color], # this does not get picked up if defined here? ) return fig ``` It only gets picked up if the custom_data argument is part of the custom data function so **this works**: ``` def custom_chart(x: str, y: str, color: str, custom_data: str, data_frame: pd.DataFrame = None): fig = px.box( df_gapminder, x=x, y=y, color=color, custom_data=[custom_data], ) ``` <img width="1223" alt="Screenshot 2024-07-14 at 20 09 33" src="https://github.com/user-attachments/assets/a9d9ed8d-6e27-4450-8ba1-8ccd42dd564c"> Is it supposed to be like this? If yes, shall we raise a validation error earlier? ### How to Reproduce https://py.cafe/huong-li-nguyen/vizro-bug-filter-interaction ### Output _No response_ ### Code of Conduct - [X] I agree to follow the [Code of Conduct](https://github.com/mckinsey/vizro/blob/main/CODE_OF_CONDUCT.md).
closed
2024-07-14T18:17:07Z
2024-07-15T06:28:43Z
https://github.com/mckinsey/vizro/issues/584
[ "Bug Report :bug:", "Needs triage :mag:" ]
huong-li-nguyen
1
christabor/flask_jsondash
plotly
85
Clear api results field on modal popup
Just to prevent any confusion as to what is loaded there.
closed
2017-03-01T19:04:52Z
2017-03-02T20:28:18Z
https://github.com/christabor/flask_jsondash/issues/85
[ "enhancement" ]
christabor
0
Anjok07/ultimatevocalremovergui
pytorch
630
Got this error getting vocals from long webm video
Last Error Received: Process: MDX-Net The application was unable to allocate enough system memory to use this model. Please do the following: 1. Restart this application. 2. Ensure any CPU intensive applications are closed. 3. Then try again. Please Note: Intel Pentium and Intel Celeron processors do not work well with this application. If the error persists, the system may not have enough RAM, or your CPU might not be supported. Raw Error Details: RuntimeError: "[enforce fail at C:\actions-runner\_work\pytorch\pytorch\builder\windows\pytorch\c10\core\impl\alloc_cpu.cpp:72] data. DefaultCPUAllocator: not enough memory: you tried to allocate 15500083200 bytes." Traceback Error: " File "UVR.py", line 4716, in process_start File "separate.py", line 287, in seperate File "separate.py", line 360, in demix_base File "separate.py", line 350, in initialize_mix " Error Time Stamp [2023-06-23 13:40:33] Full Application Settings: vr_model: Choose Model aggression_setting: 10 window_size: 512 batch_size: Default crop_size: 256 is_tta: False is_output_image: False is_post_process: False is_high_end_process: False post_process_threshold: 0.2 vr_voc_inst_secondary_model: No Model Selected vr_other_secondary_model: No Model Selected vr_bass_secondary_model: No Model Selected vr_drums_secondary_model: No Model Selected vr_is_secondary_model_activate: False vr_voc_inst_secondary_model_scale: 0.9 vr_other_secondary_model_scale: 0.7 vr_bass_secondary_model_scale: 0.5 vr_drums_secondary_model_scale: 0.5 demucs_model: Choose Model segment: Default overlap: 0.25 shifts: 2 chunks_demucs: Auto margin_demucs: 44100 is_chunk_demucs: False is_chunk_mdxnet: False is_primary_stem_only_Demucs: False is_secondary_stem_only_Demucs: False is_split_mode: True is_demucs_combine_stems: True demucs_voc_inst_secondary_model: No Model Selected demucs_other_secondary_model: No Model Selected demucs_bass_secondary_model: No Model Selected demucs_drums_secondary_model: No Model Selected demucs_is_secondary_model_activate: False demucs_voc_inst_secondary_model_scale: 0.9 demucs_other_secondary_model_scale: 0.7 demucs_bass_secondary_model_scale: 0.5 demucs_drums_secondary_model_scale: 0.5 demucs_pre_proc_model: No Model Selected is_demucs_pre_proc_model_activate: False is_demucs_pre_proc_model_inst_mix: False mdx_net_model: UVR-MDX-NET Inst HQ 1 chunks: Auto margin: 44100 compensate: Auto is_denoise: False is_invert_spec: False is_mixer_mode: False mdx_batch_size: Default mdx_voc_inst_secondary_model: No Model Selected mdx_other_secondary_model: No Model Selected mdx_bass_secondary_model: No Model Selected mdx_drums_secondary_model: No Model Selected mdx_is_secondary_model_activate: False mdx_voc_inst_secondary_model_scale: 0.9 mdx_other_secondary_model_scale: 0.7 mdx_bass_secondary_model_scale: 0.5 mdx_drums_secondary_model_scale: 0.5 is_save_all_outputs_ensemble: True is_append_ensemble_name: False chosen_audio_tool: Manual Ensemble choose_algorithm: Min Spec time_stretch_rate: 2.0 pitch_rate: 2.0 is_gpu_conversion: True is_primary_stem_only: False is_secondary_stem_only: True is_testing_audio: False is_add_model_name: False is_accept_any_input: False is_task_complete: False is_normalization: False is_create_model_folder: False mp3_bit_set: 320k save_format: WAV wav_type_set: PCM_16 help_hints_var: False model_sample_mode: False model_sample_mode_duration: 30 demucs_stems: All Stems
open
2023-06-23T17:43:18Z
2023-06-23T17:43:18Z
https://github.com/Anjok07/ultimatevocalremovergui/issues/630
[]
Comput3rUs3r
0
NVlabs/neuralangelo
computer-vision
207
Direct point cloud extraction. Mesh extraction: addressing different results
Hi, I was wondering if there is a way to directly extract a point cloud without extracting the mesh first? I am seeing different results in the mesh during training and after extracting the mesh. Do you have any idea why this is happening? Thank you!
open
2024-07-29T15:11:36Z
2024-07-29T15:11:36Z
https://github.com/NVlabs/neuralangelo/issues/207
[]
camolina2
0
cleanlab/cleanlab
data-science
638
Whether cleanlab can be used for graph link prediction?
As the official documentation says, cleanlab can handle image, text, audio, or tabular data, so can it be used for graph data, like link prediction?
closed
2023-02-19T06:50:46Z
2023-05-31T22:05:21Z
https://github.com/cleanlab/cleanlab/issues/638
[ "question" ]
xioacd99
2
django-import-export/django-import-export
django
1,168
What is the right way to import specific sheet in excel??
I would like to import specific sheet in excel file... what is the correct way to implement this??
closed
2020-07-28T15:19:40Z
2020-07-31T20:13:55Z
https://github.com/django-import-export/django-import-export/issues/1168
[ "question" ]
rmControls
1
pallets-eco/flask-wtf
flask
345
cannot import name 'FlaskForm'
When I run `from flask_wtf import FlaskForm` I get: ```pytb Traceback (most recent call last): File "F:/Dokumente/Programmierung/Python/wtforms/wtforms.py", line 5, in <module> from flask_wtf import FlaskForm File "C:\Users\Niklas\Documents\venvs\testenv\lib\site-packages\flask_wtf\__init__.py", line 15, in <module> from .csrf import CSRFProtect, CsrfProtect File "C:\Users\Niklas\Documents\venvs\testenv\lib\site-packages\flask_wtf\csrf.py", line 11, in <module> from wtforms import ValidationError File "F:\Dokumente\Programmierung\Python\wtforms\wtforms.py", line 5, in <module> from flask_wtf import FlaskForm ImportError: cannot import name 'FlaskForm'` ``` The versions I use are: Flask-WTF 2.2.1 Flask 1.0.2 Python 3.6.5
closed
2018-07-29T17:44:17Z
2020-04-21T06:24:40Z
https://github.com/pallets-eco/flask-wtf/issues/345
[]
Toxenum
1
deepset-ai/haystack
pytorch
8,483
Use of meta data of documents inside components
**Problem Description** When using a set of documents in a component like DocumentSplitter esp in a pipeline, the current working is that the same parameters of the component like split_by, split_length etc are applied to all documents. But that may not always be the case, as it is for my need. **Suggested Solution** The suggestion is to use the meta properties of the document as a potent way for the developer to pass dynamic parameters. Hence, if the meta data has a parameter the same as the component parameter (for e.g. "split_by" then that parameter will be taken for that document. Since all documents anyway work with the "content" field of each document while processing, it can extend it to the meta fields in case they exist. **Current Alternative Solution** The need I am working on is a typical RAG pipeline. But due to the requirement that each file in the pipeline may want to be split in a different strategy, I am constraint to treat each document and its pre and post processing as a batch and I loop through the documents. Thus, it is not a batch of documents in a pipeline but a batch of pipelines with 1 document each. **Additional context** I was told by some data scientists that the choice of a splitting strategy is based on the contents of the document and in their opinion a standard process to follow. Thanks.
open
2024-10-23T13:17:16Z
2025-01-09T07:30:31Z
https://github.com/deepset-ai/haystack/issues/8483
[ "P3" ]
rmrbytes
2
globaleaks/globaleaks-whistleblowing-software
sqlalchemy
4,067
Options suggestions to disable reminder emails
### Proposal This suggestion is to request the possibility to: 1. stop sending reminder notification (report settings) email when a report is in "closed" status, or checkbox option to set it in the status change panel. 2. stop sending the default notification reminder (channel settings) email when at least one receiver will open the report. ### Motivation and context 1 . Since the notification email has a generic text with no reference to a single report, the manual deactivation of a notification setting for every report could become quite confusing, because they could have to scroll every report to see which one has an active notification. And then, in all our cases receivers don't expect to receive reminder emails when reports are closed. 2. in our experience some receivers are listed in the default context receivers but sometimes they don't manage the reports, neither open them because of various reasons, so other receivers manage the report. Those receivers continue to receive the daily "unread report" email, but really the report has been already read. Considering that those emails are sent daily, this mechanism could create confusion and bring receivers to not use it at all. Thanks for considering.
open
2024-05-06T13:15:01Z
2024-08-05T16:06:35Z
https://github.com/globaleaks/globaleaks-whistleblowing-software/issues/4067
[ "C: Client", "C: Backend", "T: Feature" ]
larrykind
7
paperless-ngx/paperless-ngx
django
8,096
Dokumenten Export über NAS zeigt Warnung
### Description Ich bekomme diese Warnung angezeigt. Was kann denn das sein? WARNINGS: ?: Filename format {created_year}/{correspondent}/{title} is using the old style, please update to use double curly brackets HINT: {{ created_year }}/{{ correspondent }}/{{ title }} ### Steps to reproduce Nach jeder sicherung ### Webserver logs ```bash keine ``` ### Browser logs _No response_ ### Paperless-ngx version 2.13.0 ### Host OS lxc container ### Installation method Docker - official image ### System status _No response_ ### Browser _No response_ ### Configuration changes _No response_ ### Please confirm the following - [X] I believe this issue is a bug that affects all users of Paperless-ngx, not something specific to my installation. - [X] This issue is not about the OCR or archive creation of a specific file(s). Otherwise, please see above regarding OCR tools. - [X] I have already searched for relevant existing issues and discussions before opening this report. - [X] I have updated the title field above with a concise description.
closed
2024-10-29T06:58:54Z
2024-12-04T03:17:50Z
https://github.com/paperless-ngx/paperless-ngx/issues/8096
[ "not a bug" ]
totocotonio
3
allure-framework/allure-python
pytest
730
`allure.dynamic.title` does not create an appropriate title if fixture steps fail
**Describe the bug** No appropriate title in case of test's fixture fail **To Reproduce** 1. Create failed fixture 2. Add fixture to the test 3. Add parametrized test with title param 4. Add `allure.dynamic.title` based on parametrized title 5. Run the test **Expected behavior** Title of the failed test same as title in param **Screenshots** Normally passed test: <img width="1440" alt="allure-dynamic-test-pass" src="https://user-images.githubusercontent.com/18244131/217164909-7e5d4b6f-4415-4065-9665-402d3ed73953.png"> Test failed in test body (like `assert False` statement inside the `test_case()`): <img width="1440" alt="allure-dynamic-assert-fail" src="https://user-images.githubusercontent.com/18244131/217164919-34923e2f-d45a-4c28-9cdd-34c3d4e99c44.png"> **Actual behavior** Test failed in any fixture passed to the `test_case(failed_fixture)`: <img width="1440" alt="allure-dynamic-fixture-fail" src="https://user-images.githubusercontent.com/18244131/217164930-6a0166e7-41b8-4aed-ba6d-bd784a73c953.png"> Source code example including `allure.dynamic.title` with test params and fixtures: <img width="646" alt="allure-dynamic-source" src="https://user-images.githubusercontent.com/18244131/217164955-f05e4570-071d-4614-839f-d6473445ef62.png"> **Environment:** | Allure version | 2.20.1 | | --- | --- | | Test framework | pytest@7.2.1 | | Allure adaptor | allure-pytest@2.12.0 |
closed
2023-02-07T06:30:19Z
2023-02-08T09:33:17Z
https://github.com/allure-framework/allure-python/issues/730
[ "theme:pytest" ]
storenth
3
supabase/supabase-py
flask
681
Advice or example of mocking the client for tests
**Is your feature request related to a problem? Please describe.** - I'm working on a FastAPI project that uses the `supabase-py` client. - I am writing tests focused on API interaction (payload validation, return structure, etc). - Many of the endpoints interact with the supabase client to fetch data, perform some transforms and return it. - I want to mock the client and fake a query return - without actually calling Supabase. - However, I cannot find an example of best practice on how to do this. **Describe the solution you'd like** - An example of how to mock the client to provide mocked query returns. **Describe alternatives you've considered** - Considered running local DB to run tests against - but feels heavy
closed
2024-02-02T00:16:46Z
2024-10-26T08:14:12Z
https://github.com/supabase/supabase-py/issues/681
[]
philliphartin
6
babysor/MockingBird
deep-learning
614
hifigan的训练无法直接使用cpu,且修改代码后无法接着训练
**Summary[问题简述(一句话)]** A clear and concise description of what the issue is. hifigan的训练无法直接使用cpu,且修改代码后无法接着训练 **Env & To Reproduce[复现与环境]** 描述你用的环境、代码版本、模型 最新环境、代码版本,模型:hifigan **Screenshots[截图(如有)]** If applicable, add screenshots to help 将MockingBird-main\vocoder\hifigan下trian.py中41行torch.cuda.manual_seed(h.seed)改为torch..manual_seed(h.seed); 42行 device = torch.device('cuda:{:d}'.format(rank))改为device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')。 之后可以以cpu训练,但每次运行相同代码无法接着上一次训练。
open
2022-06-12T01:52:36Z
2022-07-02T04:57:25Z
https://github.com/babysor/MockingBird/issues/614
[]
HSQhere
2
huggingface/diffusers
deep-learning
10,872
[Feature request] Please add from_single_file support in SanaTransformer2DModel to support first Sana Apache licensed model
**Is your feature request related to a problem? Please describe.** We all know Sana model is very good but unfortunately the LICENSE is restrictive. Recently a Sana finetuned model is released under Apache LICENSE. Unfortunately SanaTransformer2DModel does not support from_single_file to use it **Describe the solution you'd like.** ```python import torch from diffusers import SanaPipeline from diffusers import SanaTransformer2DModel model_path = "Efficient-Large-Model/Sana_1600M_1024px_MultiLing" dtype = torch.float16 transformer = SanaTransformer2DModel.from_single_file ( "Swarmeta-AI/Twig-v0-alpha/Twig-v0-alpha-1.6B-2048x-fp16.pth", torch_dtype=dtype, ) pipe = SanaPipeline.from_pretrained( pretrained_model_name_or_path=model_path, transformer=transformer, torch_dtype=dtype, use_safetensors=True, ) pipe.to("cuda") pipe.enable_model_cpu_offload() pipe.enable_vae_slicing() pipe.enable_vae_tiling() inference_params = { "prompt": "rose flower", "negative_prompt": "", "height": 1024, "width": 1024, "guidance_scale": 4.0, "num_inference_steps": 20, } image = pipe(**inference_params).images[0] image.save("sana.png") ``` ``` (venv) C:\aiOWN\diffuser_webui>python sana_apache.py Traceback (most recent call last): File "C:\aiOWN\diffuser_webui\sana_apache.py", line 6, in <module> transformer = SanaTransformer2DModel.from_single_file ( AttributeError: type object 'SanaTransformer2DModel' has no attribute 'from_single_file' ``` **Describe alternatives you've considered.** No alternatives available as far as I know **Additional context.** N.A.
closed
2025-02-23T11:36:21Z
2025-03-10T03:08:32Z
https://github.com/huggingface/diffusers/issues/10872
[ "help wanted", "Good second issue", "contributions-welcome", "roadmap" ]
nitinmukesh
5
SALib/SALib
numpy
102
Negative sobol indices
Hi, I wonder how to interpret negative numbers for the values of sensitivity indices. For example in one of my results, a parameter x has S1 = -71.6 and ST = 0.52. Likewise I saw that the example here gives negative indices: https://waterprogramming.wordpress.com/2013/08/05/running-sobol-sensitivity-analysis-using-salib/ I thought that Sobol sensitivity indices were by definition positive, since they are defined as a quote of two different variances (see https://en.wikipedia.org/wiki/Variance-based_sensitivity_analysis). Did I misunderstand something? Best, Jonatan
closed
2016-09-26T08:38:39Z
2016-10-25T15:50:11Z
https://github.com/SALib/SALib/issues/102
[ "question" ]
rJonatan
4
yzhao062/pyod
data-science
2
AUC Score & Precision score are different why not same?
from pyod.utils.data import evaluate_print # evaluate and print the results print("\nOn Training Data:") evaluate_print(clf_name, y_true, y_scores) On Training Data: KNN ROC:0.9352, precision @ rank n:0.568 from sklearn import metrics print("Accuracy Score",round(metrics.accuracy_score(y_true, y_pred),2)) print("Precision Score",round(metrics.precision_score(y_true, y_pred),2)) print("Recall Score",round(metrics.recall_score(y_true, y_pred),2)) print("F1 Score",round(metrics.f1_score(y_true, y_pred),2)) print("Roc Auc score",round(metrics.roc_auc_score(y_true, y_pred),2)) Accuracy Score 0.92 Precision Score 0.55 Recall Score 0.59 F1 Score 0.57 Roc Auc score 0.77
closed
2018-06-04T19:35:54Z
2022-01-07T03:12:09Z
https://github.com/yzhao062/pyod/issues/2
[ "question" ]
vchouksey
8
jupyterhub/repo2docker
jupyter
682
Provide 'podman' as a build backend
### Proposed change Currently, only docker is available to build images. We should: 1. Abstract the interface that builds a Dockerfile 2. Implement docker (via docker-py) as the default implementation 3. Allow [podman](https://podman.io/) to be the second implementation, so we can make sure our design isn't docker specific. podman supports building Dockerfiles directly, so this should be a fairly minimal change. ### Alternative options We do (1) and (2) in core, but leave (3) to be a plugin. ### Who would use this feature? Anyone who doesn't want to use the docker daemon. There are good technical and social reasons for this. ### How much effort will adding it take? Abstracting the current docker calls behind an interface shouldn't be too much work. Podman is going to be interesting. It seems pretty production ready, but treats running on ubuntu as an extreme second class citizen - I haven't been able to get it to run yet. So that might be more challenging - making the case for keeping the podman build bits in an extension. ### Who can do this work? You'd need some familiarity with the docker python client and Dockerfile.
closed
2019-05-20T20:42:47Z
2021-07-02T12:44:27Z
https://github.com/jupyterhub/repo2docker/issues/682
[ "enhancement", "needs: discussion" ]
yuvipanda
3
WZMIAOMIAO/deep-learning-for-image-processing
pytorch
574
yolo spp
导儿,我完整下载你的项目,运行yolospp,为啥这边飘红啊 ![@_08OIKN4 )8%__UQK8%KI](https://user-images.githubusercontent.com/91045571/174536929-0b77f2a3-396b-4988-a914-e18a03607569.png) 我改成import torch_utils,确实不飘红了 但是运行的时候,变成了这样 ![RFN}_{EL{PM~L5)79{F1$8U](https://user-images.githubusercontent.com/91045571/174537087-6ded22df-e358-4190-a7b8-0279fdd5fd5d.png) 这是什么问题啊
closed
2022-06-20T06:18:00Z
2022-06-22T08:45:22Z
https://github.com/WZMIAOMIAO/deep-learning-for-image-processing/issues/574
[]
yinshuisiyuan123
2
TarrySingh/Artificial-Intelligence-Deep-Learning-Machine-Learning-Tutorials
scikit-learn
421
Will close as no description has been provided.
Will close as no description has been provided. _Originally posted by @lorenzodb1 in https://github.com/Yelp/detect-secrets/issues/801#issuecomment-2064959387_
open
2024-04-26T17:42:54Z
2024-04-26T17:42:54Z
https://github.com/TarrySingh/Artificial-Intelligence-Deep-Learning-Machine-Learning-Tutorials/issues/421
[]
Geraldine-Maes
0
ageitgey/face_recognition
machine-learning
605
Confidence matrix for recognition
* face_recognition version:1.2.3 * Python version: 3.5.2 * Operating System: Ubuntu 16.0.4 ### Description Describe what you were trying to get done. Tell us what happened, what went wrong, and what you expected to happen. IMPORTANT: If your issue is related to a specific picture, include it so others can reproduce the issue. ### What I Did I build the Model from the knn classifier file ### Question Can we have API that provide us the confidence matrix of a detected face So, that we can be sure that after 95% of confidence we mark that the face is recognised. Paste the command(s) you ran and the output. If there was a crash, please include the traceback here. ```
open
2018-08-28T11:03:59Z
2018-08-28T11:03:59Z
https://github.com/ageitgey/face_recognition/issues/605
[]
hemanthkumar3111
0
plotly/dash
data-visualization
2,288
Dynamic dcc.Dropdown clears `search_value`
**Describe your context** ``` dash 2.6.2 dash-bootstrap-components 1.2.1 dash-core-components 2.0.0 dash-html-components 2.0.0 dash-table 5.0.0 ``` **Describe the bug** Dynamic dcc.Dropdown clears `search_value` immediately when trying to search after the first value is selected. Moreover, it hides selected value when trying to search for something different (e.g. searching 'a' hides selected 'Item 3'). **Expected behavior** dcc.Dropdown behaves in the same way when searching for the first and second time. **Screenshots** https://user-images.githubusercontent.com/20649678/198055941-86374cd2-2225-45bf-bf8b-b0a8154fbc50.mp4 **Minimal example** ```python from dash import Dash, html, dcc, Input, Output, State from dash.exceptions import PreventUpdate app = Dash(__name__,) items = [{'label': f'Item {i}', 'value': i, 'search': f'{i}'} for i in range(100)] app.layout = html.Div( children=[ dcc.Dropdown( options=items[:10], placeholder='Type to search', multi=True, id='dropdown', style={'width': '350px'}, ), html.Div( ['Values: ', html.Br(), 'Search value: ',], id='value-container', style={'margin-top': '250px'}, ), ] ) @app.callback( [ Output('dropdown', 'options'), Output('dropdown', 'value'), Output('dropdown', 'search_value'), ], [Input('dropdown', 'search_value'),], [State('dropdown', 'options'), State('dropdown', 'value'),], ) def update_options(search_value, items_list, chosen_list): if not search_value: raise PreventUpdate items_return = [] for i in items: if ( search_value.lower() in i['search'].lower() or search_value.lower() in i['label'].lower() ): items_return.append(i) if len(items_return) > 10: return [items_return, chosen_list, search_value] return [items_return, chosen_list, search_value] @app.callback( Output('value-container', 'children'), [ Input('dropdown', 'options'), Input('dropdown', 'value'), Input('dropdown', 'search_value'), ], ) def update_options2(options, value, search_value): value = value if value else [] search_value = search_value if search_value else '' return [ 'Values: ' + ' '.join(str(v) for v in value), html.Br(), 'Search value: ' + str(search_value), ] if __name__ == '__main__': app.run_server(debug=True) ```
closed
2022-10-26T14:49:59Z
2022-11-06T15:33:22Z
https://github.com/plotly/dash/issues/2288
[]
AlimU11
2
PablocFonseca/streamlit-aggrid
streamlit
249
ColumnsAutoSizeMode.FIT_CONTENTS not work in second tab of st.tabs
Using the columns_auto_size_mode=ColumnsAutoSizeMode.FIT_CONTENTS parameter in the AgGrid() call seems to work for all my tables on my first tab; but in my second tab, it sometimes reduces the first few columns of my AgGrid to minimum width. And if I use the suppressColumnVirtualisation:True option, it reduces all the columns to minimum width. **my first tab:** ![image](https://github.com/PablocFonseca/streamlit-aggrid/assets/59600164/0d23e854-8610-4ad3-9667-a4adb5fd49a6) **my second tab:** ![image](https://github.com/PablocFonseca/streamlit-aggrid/assets/59600164/8e177f62-e438-47e3-b9ba-8a6abc289a8b) here is my code(streamlit==1.29.0, streamlit-aggrid==0.3.3): ``` import streamlit as st import pandas as pd from st_aggrid import GridOptionsBuilder, AgGrid, ColumnsAutoSizeMode data = { 'System Name': ['System A', 'System B', 'System C', 'System D'], 'Value 1': [10, 20, 30, 40], 'Value 2': [1, 2, 3, 4], 'Value 3': [10, 20, 30, 40], 'Value 4': [1, 2, 3, 4], 'Value 5': [10, 20, 30, 40], 'Value 6': [1, 2, 3, 4], 'Value 7': [10, 20, 30, 40], 'Value 8': [1, 2, 3, 4], 'Value 9': [10, 20, 30, 40], 'Value 10': [1, 2, 3, 4], 'Value 11': [10, 20, 30, 40], 'Value 12': [1, 2, 3, 4], 'Value 13': [10, 20, 30, 40], 'Value 14': [1, 2, 3, 4], 'Value 15': [10, 20, 30, 40], 'Value 16': [1, 2, 3, 4], } df = pd.DataFrame(data) # gridOptions1 gb1 = GridOptionsBuilder.from_dataframe(df) gridOptions1 = gb1.build() # gridOptions2 gb2 = GridOptionsBuilder.from_dataframe(df) other_options = {'suppressColumnVirtualisation': True} gb2.configure_grid_options(**other_options) gridOptions2 = gb2.build() tab1, tab2 = st.tabs(['tab1', 'tab2']) with tab1: AgGrid( df, gridOptions=gridOptions1, columns_auto_size_mode=ColumnsAutoSizeMode.FIT_CONTENTS, key='1', ) with tab2: st.write('no FIT_CONTENTS and no suppressColumnVirtualisation') AgGrid( df, gridOptions=gridOptions1, key='2-1', ) st.write('FIT_CONTENTS and no suppressColumnVirtualisation') AgGrid( df, gridOptions=gridOptions1, columns_auto_size_mode=ColumnsAutoSizeMode.FIT_CONTENTS, key='2-2', ) st.write('FIT_CONTENTS and suppressColumnVirtualisation is true') AgGrid( df, gridOptions=gridOptions2, columns_auto_size_mode=ColumnsAutoSizeMode.FIT_CONTENTS, key='2-3', ) ```
open
2024-02-20T06:59:30Z
2024-03-21T17:22:32Z
https://github.com/PablocFonseca/streamlit-aggrid/issues/249
[ "bug" ]
spiritdncyer
0