repo_name
stringlengths
9
75
topic
stringclasses
30 values
issue_number
int64
1
203k
title
stringlengths
1
976
body
stringlengths
0
254k
state
stringclasses
2 values
created_at
stringlengths
20
20
updated_at
stringlengths
20
20
url
stringlengths
38
105
labels
listlengths
0
9
user_login
stringlengths
1
39
comments_count
int64
0
452
Gozargah/Marzban
api
1,320
Errors in latest dev version
When I try to search a user in the panel, if there are multiple instances only 10 of them will show and I get this error in logs. ![image](https://github.com/user-attachments/assets/07649ebc-e5d9-4d5d-8306-e22b05e304e6) also this error appears in the logs when some user ( I do not know which ) updates his subscription. ![image](https://github.com/user-attachments/assets/80d69c2a-bd34-4e1d-843b-246710cf2130)
closed
2024-09-17T12:24:24Z
2024-09-19T13:00:28Z
https://github.com/Gozargah/Marzban/issues/1320
[ "Question" ]
mhmdh94
1
biolab/orange3
data-visualization
6,837
qt.svg: Cannot open file '<local path>/canvas_icons:/Dropdown.svg'
When trying to run the env with "python -m Orange.canvas", this alert arises: qt.svg: Cannot open file '<local path>/canvas_icons:/Dropdown.svg', because: La sintassi del nome del file, della directory o del volume non ? corretta. (in english: file name syntax, directory or volume is wrong) <!-- Thanks for taking the time to report a bug! If you're raising an issue about an add-on (i.e., installed via Options > Add-ons), raise an issue in the relevant add-on's issue tracker instead. See: https://github.com/biolab?q=orange3 To fix the bug, we need to be able to reproduce it. Please answer the following questions to the best of your ability. --> **What's wrong?** <!-- Be specific, clear, and concise. Include screenshots if relevant. --> <!-- If you're getting an error message, copy it, and enclose it with three backticks (```). --> **How can we reproduce the problem?** <!-- Upload a zip with the .ows file and data. --> <!-- Describe the steps (open this widget, click there, then add this...) --> **What's your environment?** <!-- To find your Orange version, see "Help → About → Version" or `Orange.version.full_version` in code --> - Operating system: - Orange version: - How you installed Orange:
closed
2024-06-17T09:18:54Z
2024-08-30T08:02:45Z
https://github.com/biolab/orange3/issues/6837
[ "bug" ]
Alex72RM
3
satwikkansal/wtfpython
python
348
Generate Jupyter notebooks for all translations
After #343 is done and translations are synced with base repo, translation maintainers shall generate `Jyputer` notebook
open
2024-10-16T08:04:27Z
2024-10-16T08:04:27Z
https://github.com/satwikkansal/wtfpython/issues/348
[]
nifadyev
0
huggingface/transformers
pytorch
36,290
past_key_value(s) name inconsistency causing problems
### System Info - `transformers` version: 4.50.0.dev0 - Platform: Linux-6.4.3-0_fbk14_zion_2601_gcd42476b84e9-x86_64-with-glibc2.34 - Python version: 3.12.9 - Huggingface_hub version: 0.28.1 - Safetensors version: 0.5.2 - Accelerate version: 1.4.0 - Accelerate config: not found - DeepSpeed version: not installed - PyTorch version (GPU?): 2.6.0.dev20241112+cu121 (True) - Tensorflow version (GPU?): not installed (NA) - Flax version (CPU?/GPU?/TPU?): not installed (NA) - Jax version: not installed - JaxLib version: not installed - Using distributed or parallel set-up in script?: no - Using GPU in script?: yes - GPU type: NVIDIA H100 ### Who can help? @ArthurZucker probably others ### Information - [x] The official example scripts - [ ] My own modified scripts ### Tasks - [x] An officially supported task in the `examples` folder (such as GLUE/SQuAD, ...) - [ ] My own task or dataset (give details below) ### Reproduction run https://huggingface.co/docs/transformers/main/en/quantization/torchao ### Expected behavior no error ____ this error is related to https://github.com/huggingface/transformers/pull/36289 a bunch of models use past_key_value and past_key_values interchangeably, this causes issues since kwarg names are hardcoded to be skipped by the _skip_keys_device_placement attribute. This causes issues any time torch.compile is used with a model that has this issue. The above PR fixes the issue for llama but other models like src/transformers/models/moonshine/modeling_moonshine.py src/transformers/models/mistral/modeling_mistral.py src/transformers/models/emu3/modeling_emu3.py ...etc, have the same issue which is actually breaking CI for that PR. this is also the cause of https://github.com/pytorch/ao/issues/1705 which is where this was first surfaced. is there a reason for these two names to be used instead of just one? If not it seems like they should be entirely consolidated to avoid such issues, if so, then _skip_keys_device_placement needs to include both across all models or
open
2025-02-19T22:03:42Z
2025-03-22T08:03:05Z
https://github.com/huggingface/transformers/issues/36290
[ "bug" ]
HDCharles
1
akfamily/akshare
data-science
5,941
AKShare 接口问题报告 - stock_board_industry_index_ths
已经升级到了AKShare最新版:akshare 1.16.58 Python版本:Python 3.12.8 操作系统:Mac 14.6.1 报错接口:stock_board_industry_index_ths 问题描述: 通过stock_board_concept_name_ths获得同花顺的概念板块列表, 然后通过stock_board_industry_index_ths获得板块指数,发现大部分的板块都无法正常获取 代码如下: ``` import akshare as ak sklist = ak.stock_board_concept_name_ths() print(sklist) stock_board_industry_index_ths_df = ak.stock_board_industry_index_ths(symbol="自由贸易港", start_date="20250301", end_date="20250305") print(stock_board_industry_index_ths_df) ``` console返回: ``` name code 0 阿尔茨海默概念 308614 1 AI PC 309121 2 AI手机 309120 3 AI语料 309126 4 阿里巴巴概念 301558 .. ... ... 356 租售同权 302034 357 自由贸易港 306398 358 3D打印 300127 359 5G 300843 360 6G概念 309055 [361 rows x 2 columns] Traceback (most recent call last): File "/1.py", line 6, in <module> stock_board_industry_index_ths_df = ak.stock_board_industry_index_ths(symbol="阿里巴巴概念", start_date="20250301", end_date="20250305") ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/Users/lord/.pyenv/versions/3.12.8/lib/python3.12/site-packages/akshare/stock_feature/stock_board_industry_ths.py", line 139, in stock_board_industry_index_ths symbol_code = code_map[symbol] ~~~~~~~~^^^^^^^^ KeyError: '阿里巴巴概念' ``` 目前试过了:阿尔茨海默概念、AI PC、AI手机、阿里巴巴概念租售同权、自由贸易港 等都无法正确获得数据。
closed
2025-03-21T01:26:21Z
2025-03-21T10:07:47Z
https://github.com/akfamily/akshare/issues/5941
[ "bug" ]
1eez
2
HumanSignal/labelImg
deep-learning
261
Licensing?
While working on a feature for https://github.com/wkentaro/labelme, I (accidentally) copied a line of code from that project into a Google Search. It seems that there's quite some overlap between the code of wkentaro's labelme project and the code in this project. After some more reading, I found that wkentaro's labelme project put [an acknowledgement](https://github.com/wkentaro/labelme#acknowledgement) to https://github.com/mpitid/pylabelme. That project was last touched in 2011 and again has large parts of code that are exactly the same. It seems that mpitid's pylabelme project is not only the origin of wkentaro's labelme project, but also this project. Is that true?
open
2018-03-24T22:37:35Z
2018-03-24T22:37:35Z
https://github.com/HumanSignal/labelImg/issues/261
[]
mbuijs
0
kaliiiiiiiiii/Selenium-Driverless
web-scraping
132
(selenium-driverless 1.7)await driver.find_element(By.XPATH,'xxx') : Unable to find element
closed
2023-12-16T17:57:03Z
2023-12-16T18:01:28Z
https://github.com/kaliiiiiiiiii/Selenium-Driverless/issues/132
[]
User-Clb
1
numba/numba
numpy
9,886
numba jit: "Type of variable <varname>.2 cannot be determined" for a fully specified variable.
# Bug report ### Bug description: I have several functions that work fine with jit and njit. All variables are explicitly typed, such as ```python def afun(parm1:int, parm2:int)->list[int]: varname:int=3 listname:list[int]=[0] ``` In one function, the jit complains about a variable as having an undeterminable type, even though it has been explicitly typed: ```Type of variable 'artp.2' cannot be determined, operation: call $1078load_global.2($binop_add1104.10, func=$1078load_global.2, args=[Var($binop_add1104.10, primes2025a.py:240)], kws=(), vararg=None, varkwarg=None, target=None), location: /home/dakra/./primes2025a.py (240)``` where the code looks like: ```python from numba import njit from numba import jit @jit def sieve12(upToNumm: int=100000000, pnprimorial:int=3) -> list[int]: # early in the function similar to: C0:int=0 modprimorialdo:list[int]=[1,5] lmodprimorialdo:int=len(modprimorialdo) ddocol:int=C0 fdorowcol:list[int]=[C0,C0] artp:int=C0 # and later: # there are assignment statements for useful values for these variables, and then: artp:int=int(ddocol+fdorowcol[C0]*lmodprimorialdo)) ``` The full error report is : ``` Traceback (most recent call last): File "/home/dakra/./primes2025a.py", line 810, in <module> print("sieve12",n,pr,len(primesl:=sieve12(n,pr)), primesl[:10], primesl[-10:]) ^^^^^^^^^^^^^ File "/home/dakra/.local/lib/python3.12/site-packages/numba/core/dispatcher.py", line 423, in _compile_for_args error_rewrite(e, 'typing') File "/home/dakra/.local/lib/python3.12/site-packages/numba/core/dispatcher.py", line 364, in error_rewrite raise e.with_traceback(None) numba.core.errors.TypingError: Failed in nopython mode pipeline (step: nopython frontend) Type of variable 'artp.2' cannot be determined, operation: call $1078load_global.2($binop_add1104.10, func=$1078load_global.2, args=[Var($binop_add1104.10, primes2025a.py:240)], kws=(), vararg=None, varkwarg=None, target=None), location: /home/dakra/./primes2025a.py (240) File "primes2025a.py", line 240: def sieve12(upToNumm: int=100000000, pnprimorial:int=3)->list[int]: <source elided> artp:int=int(ddocol+fdorowcol[C0]*lmodprimorialdo) ^ ``` In another case, the jit processing complained about one of the parameters. What does it take to get the jit to recognize the explicit type specifications? ### CPython versions tested on: 3.12 ### Operating systems tested on: Linux
open
2025-01-06T15:58:31Z
2025-02-14T01:57:27Z
https://github.com/numba/numba/issues/9886
[ "more info needed", "stale" ]
dakra137
3
pydantic/pydantic
pydantic
10,443
Schema generation error when serialization schema holds a reference
### Initial Checks - [X] I confirm that I'm using Pydantic V2 ### Description The following code currently raises: ```python from typing import Annotated from pydantic import BaseModel, PlainSerializer class Sub(BaseModel): pass class Model(BaseModel): sub: Annotated[ Sub, PlainSerializer(lambda v: v, return_type=Sub), ] # pydantic_core._pydantic_core.SchemaError: Definitions error: definition `__main__.Sub:97954749220704` was never filled ``` The reason is that, before schema cleaning, the core schema looks like: ```python { │ 'type': 'definitions', │ 'schema': {'type': 'definition-ref', 'schema_ref': '__main__.Model:107773130038816'}, │ 'definitions': [ │ │ { │ │ │ 'type': 'model', │ │ │ 'cls': <class '__main__.Sub'>, │ │ │ 'schema': {'type': 'model-fields', 'fields': {}, 'model_name': 'Sub', 'computed_fields': []}, │ │ │ 'config': {'title': 'Sub'}, │ │ │ 'ref': '__main__.Sub:107773128271744', │ │ │ 'metadata': {'<stripped>'} │ │ }, │ │ { │ │ │ 'type': 'model', │ │ │ 'cls': <class '__main__.Model'>, │ │ │ 'schema': { │ │ │ │ 'type': 'model-fields', │ │ │ │ 'fields': { │ │ │ │ │ 'sub': { │ │ │ │ │ │ 'type': 'model-field', │ │ │ │ │ │ 'schema': { │ │ │ │ │ │ │ 'type': 'definition-ref', │ │ │ │ │ │ │ 'schema_ref': '__main__.Sub:107773128271744', │ │ │ │ │ │ │ 'serialization': { │ │ │ │ │ │ │ │ 'type': 'function-plain', │ │ │ │ │ │ │ │ 'function': <function Model.<lambda> at 0x7ae519b4f060>, │ │ │ │ │ │ │ │ 'info_arg': False, │ │ │ │ │ │ │ │ 'return_schema': {'type': 'definition-ref', 'schema_ref': '__main__.Sub:107773128271744'} │ │ │ │ │ │ │ } │ │ │ │ │ │ }, │ │ │ │ │ │ 'metadata': {'<stripped>'} │ │ │ │ │ } │ │ │ │ }, │ │ │ │ 'model_name': 'Model', │ │ │ │ 'computed_fields': [] │ │ │ }, │ │ │ 'config': {'title': 'Model'}, │ │ │ 'metadata': {'<stripped>'}, │ │ │ 'ref': '__main__.Model:107773130038816' │ │ } │ ] } ``` Which is quite unusual: the `'definition-ref'` schema to `Sub` has a `serialization` key. Pydantic does not expect this to happen, especially during schema simplification (when counting refs): https://github.com/pydantic/pydantic/blob/01daafaab0aae71d2fb57c42461b3d021a3c56d4/pydantic/_internal/_core_utils.py#L447-L463 At some point, `count_refs` is called with the following schema: ```python { │ 'type': 'definition-ref', │ 'schema_ref': '__main__.Sub:106278832701040', │ 'serialization': { │ │ 'type': 'function-plain', │ │ 'function': <function Model.<lambda> at 0x7aed4dc920c0>, │ │ 'info_arg': False, │ │ 'return_schema': {'type': 'definition-ref', 'schema_ref': '__main__.Sub:106278832701040'} │ } } ``` the "top level" `__main__.Sub` ref is properly counted, but we skip recursion of the `serialization` schema. In the end, the ref counts for `__main__.Sub` is incorrect, and ends up incorrectly being inlined, which results in the schema validation error. ### Example Code _No response_ ### Python, Pydantic & OS Version ```Text 2.9 ```
closed
2024-09-19T07:32:28Z
2024-09-19T13:42:42Z
https://github.com/pydantic/pydantic/issues/10443
[ "bug V2" ]
Viicos
0
microsoft/nni
deep-learning
5,224
AttributeError: 'torch._C.Node' object has no attribute 'schema'
I use the tool to try to prue my model such as (https://github.com/microsoft/nni/blob/dab51f799f77aa72c18774faffaedf8d0ee2c977/examples/model_compress/pruning/admm_pruning_torch.py) I only change the model(with restnet) and the dataloader: But now there is some problem when I use ModelSpeedup File "<ipython-input-7-25297990bbbb>", line 1, in <module> ModelSpeedup(model, torch.randn([1, 2, 224, 224]).to(device), masks).speedup_model() File "D:\anaconda3\lib\site-packages\nni\compression\pytorch\speedup\compressor.py", line 543, in speedup_model self.infer_modules_masks() File "D:\anaconda3\lib\site-packages\nni\compression\pytorch\speedup\compressor.py", line 380, in infer_modules_masks self.update_direct_sparsity(curnode) File "D:\anaconda3\lib\site-packages\nni\compression\pytorch\speedup\compressor.py", line 228, in update_direct_sparsity func = jit_to_python_function(node, self) File "D:\anaconda3\lib\site-packages\nni\compression\pytorch\speedup\jit_translate.py", line 554, in jit_to_python_function return trans_func_dict[node.op_type](node, speedup) File "D:\anaconda3\lib\site-packages\nni\compression\pytorch\speedup\jit_translate.py", line 488, in generate_aten_to_python schema = c_node.schema() AttributeError: 'torch._C.Node' object has no attribute 'schema'
closed
2022-11-11T14:10:09Z
2022-12-05T02:38:01Z
https://github.com/microsoft/nni/issues/5224
[]
sunpeil
3
huggingface/transformers
pytorch
36,025
HIGGS Quantization not working properly
### System Info **Environment** ``` - `transformers` version: 4.48.2 - Platform: Linux-5.4.210-39.1.pagevecsize-x86_64-with-glibc2.27 - Python version: 3.11.10 - Huggingface_hub version: 0.26.2 - Safetensors version: 0.4.5 - Accelerate version: 1.1.1 - Accelerate config: not found - PyTorch version (GPU?): 2.4.0+cu121 (True) - Tensorflow version (GPU?): not installed (NA) - Flax version (CPU?/GPU?/TPU?): not installed (NA) - Jax version: not installed - JaxLib version: not installed - Using distributed or parallel set-up in script?: <fill in> - Using GPU in script?: <fill in> - GPU type: NVIDIA A100-SXM4-80GB - fast_hadamard_transform 1.0.4.post1 ``` ### Who can help? @BlackSamorez @SunMarc @ArthurZucker ### Information - [ ] The official example scripts - [x] My own modified scripts ### Tasks - [ ] An officially supported task in the `examples` folder (such as GLUE/SQuAD, ...) - [ ] My own task or dataset (give details below) ### Reproduction Recently, in the [PR](https://github.com/huggingface/transformers/pull/34997) HIGGS quantization from the paper [Pushing the Limits of Large Language Model Quantization via the Linearity Theorem](https://arxiv.org/abs/2411.17525) was introduced. But when attempting to load the quantized `Llama-3.1-8B-Instruct `model in this format as follows: ```python model_name = "meta-llama/Llama-3.1-8B-Instruct" quantization_config = HiggsConfig(bits=4, p=2) model = AutoModelForCausalLM.from_pretrained( model_name, device_map="auto", torch_dtype=torch.bfloat16, low_cpu_mem_usage=True, quantization_config=quantization_config ) model.config.use_cache = False ``` And doing forward pass with dummy inputs ```python inputs = torch.randint(0, model.config.vocab_size, device="cuda", size=(8,)) with torch.no_grad(): outputs = model(inputs) ``` I get the following error in the RoPE: ```bash File ~/miniconda3/envs/llm/lib/python3.11/site-packages/transformers/models/llama/modeling_llama.py:271, in LlamaAttention.forward(self, hidden_states, position_embeddings, attention_mask, past_key_value, cache_position, **kwargs) [268](https://vscode-remote+ssh-002dremote-002bultramar.vscode-resource.vscode-cdn.net/home/dkuznedelev/FLUTE_Playground/~/miniconda3/envs/llm/lib/python3.11/site-packages/transformers/models/llama/modeling_llama.py:268) value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2) [270](https://vscode-remote+ssh-002dremote-002bultramar.vscode-resource.vscode-cdn.net/home/dkuznedelev/FLUTE_Playground/~/miniconda3/envs/llm/lib/python3.11/site-packages/transformers/models/llama/modeling_llama.py:270) cos, sin = position_embeddings --> [271](https://vscode-remote+ssh-002dremote-002bultramar.vscode-resource.vscode-cdn.net/home/dkuznedelev/FLUTE_Playground/~/miniconda3/envs/llm/lib/python3.11/site-packages/transformers/models/llama/modeling_llama.py:271) query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) [273](https://vscode-remote+ssh-002dremote-002bultramar.vscode-resource.vscode-cdn.net/home/dkuznedelev/FLUTE_Playground/~/miniconda3/envs/llm/lib/python3.11/site-packages/transformers/models/llama/modeling_llama.py:273) if past_key_value is not None: [274](https://vscode-remote+ssh-002dremote-002bultramar.vscode-resource.vscode-cdn.net/home/dkuznedelev/FLUTE_Playground/~/miniconda3/envs/llm/lib/python3.11/site-packages/transformers/models/llama/modeling_llama.py:274) # sin and cos are specific to RoPE models; cache_position needed for the static cache [275](https://vscode-remote+ssh-002dremote-002bultramar.vscode-resource.vscode-cdn.net/home/dkuznedelev/FLUTE_Playground/~/miniconda3/envs/llm/lib/python3.11/site-packages/transformers/models/llama/modeling_llama.py:275) cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} File ~/miniconda3/envs/llm/lib/python3.11/site-packages/transformers/models/llama/modeling_llama.py:169, in apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim) [167](https://vscode-remote+ssh-002dremote-002bultramar.vscode-resource.vscode-cdn.net/home/dkuznedelev/FLUTE_Playground/~/miniconda3/envs/llm/lib/python3.11/site-packages/transformers/models/llama/modeling_llama.py:167) cos = cos.unsqueeze(unsqueeze_dim) [168](https://vscode-remote+ssh-002dremote-002bultramar.vscode-resource.vscode-cdn.net/home/dkuznedelev/FLUTE_Playground/~/miniconda3/envs/llm/lib/python3.11/site-packages/transformers/models/llama/modeling_llama.py:168) sin = sin.unsqueeze(unsqueeze_dim) --> [169](https://vscode-remote+ssh-002dremote-002bultramar.vscode-resource.vscode-cdn.net/home/dkuznedelev/FLUTE_Playground/~/miniconda3/envs/llm/lib/python3.11/site-packages/transformers/models/llama/modeling_llama.py:169) q_embed = (q * cos) + (rotate_half(q) * sin) [170](https://vscode-remote+ssh-002dremote-002bultramar.vscode-resource.vscode-cdn.net/home/dkuznedelev/FLUTE_Playground/~/miniconda3/envs/llm/lib/python3.11/site-packages/transformers/models/llama/modeling_llama.py:170) k_embed = (k * cos) + (rotate_half(k) * sin) [171](https://vscode-remote+ssh-002dremote-002bultramar.vscode-resource.vscode-cdn.net/home/dkuznedelev/FLUTE_Playground/~/miniconda3/envs/llm/lib/python3.11/site-packages/transformers/models/llama/modeling_llama.py:171) return q_embed, k_embed RuntimeError: The size of tensor a (32) must match the size of tensor b (128) at non-singleton dimension 3 ``` ### Expected behavior I would expect successful forward pass through the quantized model.
closed
2025-02-04T08:55:00Z
2025-02-19T05:35:52Z
https://github.com/huggingface/transformers/issues/36025
[ "bug" ]
Godofnothing
3
ipython/ipython
jupyter
14,377
Not properly detecting IPython usage inside virtualenvs created via `uv venv`
I used the [`uv`](https://pypi.org/project/uv/) tool to create my venv and also to install ipython into it (via `uv pip install ipython`). When starting ipython I see the following warning: ``` C:\Users\jburnett1\Code\coordinates data analysis\.venv\Lib\site-packages\IPython\core\interactiveshell.py:937: UserWarning: Attempting to work in a virtualenv. If you encounter problems, please install IPython inside the virtualenv. warn( ``` But if I examine the location of the IPython module it's definitely inside the currently activated venv: ``` import IPython IPython Out[4]: <module 'IPython' from 'C:\\Users\\jburnett1\\Code\\coordinates data analysis\\.venv\\Lib\\site-packages\\IPython\\__init__.py'> import sys sys.executable Out[6]: 'C:\\Users\\jburnett1\\Code\\coordinates data analysis\\.venv\\Scripts\\python.exe' ``` I did find [this very old issue](https://github.com/ipython/ipython/issues/10955) which seemed to have a similar root cause, but the fix doesn't apparently work with the way that `uv` creates venvs & installs packages into them. My version info: ``` sys.version Out[7]: '3.12.1 (tags/v3.12.1:2305ca5, Dec 7 2023, 22:03:25) [MSC v.1937 64 bit (AMD64)]' IPython.__version__ Out[8]: '8.22.2' ``` This is w/ uv version 0.1.6.
open
2024-03-28T14:18:37Z
2024-07-26T07:26:44Z
https://github.com/ipython/ipython/issues/14377
[]
joshburnett
2
coqui-ai/TTS
deep-learning
2,649
[Bug]
### Describe the bug Cannot find speaker file when using local nl models ### To Reproduce 1. download the nl model files 2. Run the code: ``` tts = TTS(model_path = <"model_path">, config_path =<"config_path">, vocoder_path = None, vocoder_config_path = None, progress_bar = False, gpu = False) ``` ### Expected behavior The same normal behaviour as running `TTS('tts_models/nl/css10/vits', progress_bar=False, gpu=False)` ### Logs ```shell FileNotFoundError: [Errno 2] No such file or directory: '/root/.cache/huggingface/hub/models--neongeckocom--tts-vits-css10-nl/snapshots/be7a7c7bee463588626b10777d7fc14ed8c07a3e/speaker_ids.json' ``` ### Environment ```shell TTS==0.13.3 ``` ### Additional context working on a docker container
closed
2023-06-02T15:26:29Z
2023-06-05T08:00:42Z
https://github.com/coqui-ai/TTS/issues/2649
[ "bug" ]
SophieDC98
1
pallets/flask
flask
5,004
Flask routes to return domain/sub-domains information
Currently when checking **flask routes** it provides all routes but **it is no way to see which routes are assigned to which subdomain**. **Default server name:** SERVER_NAME: 'test.local' **Domains (sub-domains):** test.test.local admin.test.local test.local **Adding blueprints:** app.register_blueprint(admin_blueprint,url_prefix='',subdomain='admin') app.register_blueprint(test_subdomain_blueprint,url_prefix='',subdomain='test') ``` $ flask routes * Tip: There are .env or .flaskenv files present. Do "pip install python-dotenv" to use them. Endpoint Methods Rule ------------------------------------------------------- --------- ------------------------------------------------ admin_blueprint.home GET /home test_subdomain_blueprint.home GET /home static GET /static/<path:filename> ... ``` **Feature request** It will be good to see something like below (that will make more clear which route for which subdomain, because now need to go and check configuration). **If it is not possible to fix routes**, can you add or tell which method(s) should be used to get below information from flask? ``` $ flask routes * Tip: There are .env or .flaskenv files present. Do "pip install python-dotenv" to use them. Domain Endpoint Methods Rule ----------------- ---------------------------------------------------- ---------- ------------------------------------------------ admin.test.local admin_blueprint.home GET /home test.test.local test_subdomain_blueprint.home GET /home test.local static GET /static/<path:filename> ... ```
closed
2023-02-26T17:25:08Z
2023-04-29T00:05:02Z
https://github.com/pallets/flask/issues/5004
[ "cli" ]
rimvislt
0
gradio-app/gradio
python
9,959
gr.File should add .html extension to URLs if possible
### Describe the bug When using gr.File, the file uploaded keeps its extension. However, when using a URL like `https://liquipedia.net/starcraft2/Adept`, the file saved in the cache has no extension. This is technically correct. However, since it's HTML being downloaded, it should really save with the `.html` extension (equivalent to right-click and Save As in the browser). This makes it easier for a user to identify where it came from and also makes it easier for file type detection (avoiding the need for things like libmagic). Maybe it could just be a "default_web_extension" option that the user sets in the control. The data source is lost when the upload happens (probably for security reasons?), so once a file has been downloaded to cache, you can't tell what it was originally or where it came from. The workaround would be to assume no extension means HTML, but that's a little error prone too. ### Have you searched existing issues? 🔎 - [X] I have searched and found no existing issues ### Reproduction Just use gr.File to upload a URL by pasting a URL into the File Explorer pop-up that appears when clicking Upload. ### Screenshot _No response_ ### Logs _No response_ ### System Info ```shell gradio==5.4.0 ``` ### Severity I can work around it
closed
2024-11-14T14:10:07Z
2024-12-25T20:46:28Z
https://github.com/gradio-app/gradio/issues/9959
[ "enhancement", "needs designing" ]
JohnDuncanScott
2
CorentinJ/Real-Time-Voice-Cloning
deep-learning
747
PATH ISSUE module note recognized after installation
Hello I am so far doing good with the installation but finally when ready to start it, I receive the error D:\Real Time Voice Cloning - Copy\Real-Time-Voice-Cloning-master>python demo_toolbox.py Traceback (most recent call last): File "demo_toolbox.py", line 2, in <module> from toolbox import Toolbox File "D:\Real Time Voice Cloning - Copy\Real-Time-Voice-Cloning-master\toolbox\__init__.py", line 1, in <module> from toolbox.ui import UI File "D:\Real Time Voice Cloning - Copy\Real-Time-Voice-Cloning-master\toolbox\ui.py", line 6, in <module> from encoder.inference import plot_embedding_as_heatmap File "D:\Real Time Voice Cloning - Copy\Real-Time-Voice-Cloning-master\encoder\inference.py", line 3, in <module> from encoder.audio import preprocess_wav # We want to expose this function from here File "D:\Real Time Voice Cloning - Copy\Real-Time-Voice-Cloning-master\encoder\audio.py", line 7, in <module> import librosa ModuleNotFoundError: No module named 'librosa' The strange thing is that when prompted for librosa or to install librosa (specifically I perform a pip install) librosa is already installed. I believe this is simply a path issue because I have a dual hard drive setup. How exactly do I go about pathing the file to recognize librosa since the demo toolbox simply can't find the librosa. If possible can you maybe use imagery since I don't want to demand too much of your time, especially since you developed this amazing piece of software. Thank you for your diligence as well as pro level programming.
closed
2021-04-28T21:53:03Z
2021-05-04T17:20:36Z
https://github.com/CorentinJ/Real-Time-Voice-Cloning/issues/747
[]
PsychoJack88
1
miguelgrinberg/python-socketio
asyncio
558
unable to stream saved videos from client to server
I can send my live video feed from client to server but when I am streaming the saved video stream I am unable to send it. It shows a segmentation fault. Given below is my code ```python from flask import Flask, render_template, request import socketio from time import sleep import cv2 import json import base64 cap=cv2.VideoCapture('768x576.avi') sio = socketio.Client(engineio_logger=True) @sio.event def connect(): print("CONNECTED") @sio.event def send_data(): i=0 while(1): ret,img=cap.read() if ret: img = cv2.resize(img, (0,0), fx=0.3, fy=0.3) frame = cv2.imencode('.jpg', img)[1].tobytes() frame = base64.encodebytes(frame).decode("utf-8") message(frame) else: break sleep(0.1) def message(json): print("/////////////////////////////500") sio.emit('send',json) @sio.event def disconnect(): print("DISCONNECTED") if __name__ == '__main__': sio.connect('http://localhost:5000') sio.wait() ``` Thanks in advance
closed
2020-11-02T13:14:02Z
2020-11-03T05:19:26Z
https://github.com/miguelgrinberg/python-socketio/issues/558
[ "question" ]
AhmedBhati
2
dmlc/gluon-nlp
numpy
1,094
Add length normalized loss metrics in API
## Description In typical machine translation tasks, training/validation metric loss is computed using some loss function normalized by the length of target sequence. For example, in `train_gnmt.py`, the metric is computed with the following code: ```python loss = loss_function(out, tgt_seq[:, 1:], tgt_valid_length - 1).mean() loss = loss * (tgt_seq.shape[1] - 1) / (tgt_valid_length - 1).mean() ``` Current Mxnet `metric.loss` does not support length normalization. It will be great to add length normalized metric in the api. ## References - https://github.com/apache/incubator-mxnet/blob/master/python/mxnet/metric.py#L1661 - https://github.com/dmlc/gluon-nlp/blob/master/scripts/machine_translation/train_gnmt.py
closed
2020-01-06T07:18:17Z
2020-01-22T06:55:49Z
https://github.com/dmlc/gluon-nlp/issues/1094
[ "enhancement" ]
liuzh47
0
napari/napari
numpy
7,329
napari freeze - QXcbIntegration: Cannot create platform OpenGL context, neither GLX nor EGL are enabled
### 🐛 Bug Report when starting napari I get a frozen napari window displaying the terminal and the following error : ``` (napari) biop@c79840740ddb:~$ napari WARNING: QStandardPaths: XDG_RUNTIME_DIR not set, defaulting to '/tmp/runtime-biop' 08:49:29 : WARNING : MainThread : QStandardPaths: XDG_RUNTIME_DIR not set, defaulting to '/tmp/runtime-biop' WARNING: QXcbIntegration: Cannot create platform OpenGL context, neither GLX nor EGL are enabled 08:49:29 : WARNING : MainThread : QXcbIntegration: Cannot create platform OpenGL context, neither GLX nor EGL are enabled WARNING: QXcbIntegration: Cannot create platform offscreen surface, neither GLX nor EGL are enabled 08:49:29 : WARNING : MainThread : QXcbIntegration: Cannot create platform offscreen surface, neither GLX nor EGL are enabled WARNING: QXcbIntegration: Cannot create platform OpenGL context, neither GLX nor EGL are enabled 08:49:32 : WARNING : MainThread : QXcbIntegration: Cannot create platform OpenGL context, neither GLX nor EGL are enabled WARNING: QXcbIntegration: Cannot create platform OpenGL context, neither GLX nor EGL are enabled 08:49:32 : WARNING : MainThread : QXcbIntegration: Cannot create platform OpenGL context, neither GLX nor EGL are enabled WARNING: composeAndFlush: QOpenGLContext creation failed ``` ### 💡 Steps to Reproduce 1. build a docker image with the docker file : ```dockerfile ARG ALIAS=biop/ ARG BASE_IMAGE=0.1.0 FROM ${ALIAS}biop-vnc-base:${BASE_IMAGE} USER root # create napari env RUN conda create --name napari napari=0.5.4 pyqt -c conda-forge -y RUN chown -R biop:biop /home/biop/ \ && chmod -R a+rwx /home/biop/ ################################################################# # Container start USER biop WORKDIR /home/biop ENTRYPOINT ["/usr/local/bin/jupyter"] CMD ["lab", "--allow-root", "--ip=*", "--port=8888", "--no-browser", "--NotebookApp.token=''", "--NotebookApp.allow_origin='*'", "--notebook-dir=/home/biop"] ``` 2. start the image, follow the link to http://localhost:8888/lab 3. click on VNC icon , to start the desktop 4. start a terminal 5. type `source activate napari` 6. type napari 7. get the error ### 💡 Expected Behavior napari window should pop-up normally ### 🌎 Environment not working env : [napari_notworking.txt](https://github.com/user-attachments/files/17343548/napari_notworking.txt) working env old version (0.4.18) of napari with devbio-napari [devbio_working.txt](https://github.com/user-attachments/files/17343551/devbio_working.txt) ### 💡 Additional Context Thank you for any suggestion you might have Cheers, Romain
closed
2024-10-11T13:55:28Z
2025-03-10T09:54:12Z
https://github.com/napari/napari/issues/7329
[ "bug" ]
romainGuiet
10
sunscrapers/djoser
rest-api
243
Changing Email Templates and Functionality
I was unable to change the email templates for Activation, Confirmation, or PasswordReset email. I wanted to add more to the context like a url with a url scheme for an app (not just http:// or https://). I created a pull request #242 but if there is another way to do this currently, it would be much appreciated. I prefer to stay on the release branch because #242 maybe rejected or take a while to be made into a release.
closed
2017-11-01T13:13:22Z
2017-11-05T01:41:30Z
https://github.com/sunscrapers/djoser/issues/243
[]
hammadzz
4
globaleaks/globaleaks-whistleblowing-software
sqlalchemy
3,185
Add support for Ubuntu Jammy Jellyfish (22.04)
This ticket is to extend support to [Ubuntu Jammy Jellyfish (22.04)](https://ubuntu.com/about/release-cycle) now in beta stage and for which release date is due to April 21, 2022.
closed
2022-02-28T14:43:44Z
2022-08-24T07:27:05Z
https://github.com/globaleaks/globaleaks-whistleblowing-software/issues/3185
[ "C: Packaging" ]
evilaliv3
0
encode/uvicorn
asyncio
1,851
Route identification problem with pyinstaller
fastapi 0.89.1 uvicorn[standard] 0.20.0 (it did not happed on 0.17.6) python 3.11.1 pyinstaller 5.7.0 This promble only happens when i use pyinstaller package the program with version 0.20.0,and when i reduce program version to 0.17.6,it fix. ![image](https://user-images.githubusercontent.com/50483907/215272465-20ea7f38-c831-48ac-bf4a-a7cfa554c0ee.png) When i use thwo routers like this,the router [name]with[s] will not get the state router config/{name} can get state,but /configs cannot get the state,when i change /configs to /configlist , it works. ![2L01F 86%W8`LMH6 87M) 3](https://user-images.githubusercontent.com/50483907/215272483-0dafa840-ec35-4c7c-8673-83786d57bb8f.png)
closed
2023-01-28T14:40:42Z
2023-01-28T21:05:42Z
https://github.com/encode/uvicorn/issues/1851
[]
wxh0402
0
akfamily/akshare
data-science
5,620
AKShare 接口问题报告 | AKShare Interface Issue Report
> 欢迎加入《数据科学实战》知识星球,交流财经数据与量化投资相关内容 | > Welcome to join "Data Science in Practice" Knowledge > Community for discussions on financial data and quantitative investment. > > 详细信息参考 | For detailed information, please visit::https://akshare.akfamily.xyz/learn.html ## 前提 | Prerequisites 遇到任何问题,请先将您的 AKShare 版本升级到**最新版**,可以通过如下命令升级 | Before reporting any issues, please upgrade your AKShare to the **latest version** using the following command:: ``` pip install akshare --upgrade # Python 版本需要大于等于 3.8 | Python version requirement ≥ 3.8 ``` ## 如何提交问题 | How to Submit an Issue 提交问题的同时,请提交以下相关信息,以更精准的解决问题。| Please provide the following information when submitting an issue for more accurate problem resolution. **不符合提交规范的 issues 会被关闭!** | **Issues that don't follow these guidelines will be closed!** **详细问题描述** | Detailed Problem Description 1. 请先详细阅读文档对应接口的使用方式 | Please read the documentation thoroughly for the relevant interface:https://akshare.akfamily.xyz 2. 操作系统版本,目前只支持 64 位操作系统 | Operating system version (64-bit only supported) 3. Python 版本,目前只支持 3.8 以上的版本 | Python version (must be 3.8 or above) 4. AKShare 版本,请升级到最新版 | AKShare version (please upgrade to latest) 5. 接口的名称和相应的调用代码 | Interface name and corresponding code 6. 接口报错的截图或描述 | Screenshot or description of the error 7. 期望获得的正确结果 | Expected correct results
closed
2025-02-16T05:43:44Z
2025-02-16T09:32:27Z
https://github.com/akfamily/akshare/issues/5620
[ "bug" ]
cnfaxian
1
vimalloc/flask-jwt-extended
flask
280
flask_restplus and setting cookies
I'm using `Flask_RESTPlus` and I'm trying to set JWT cookies but looks like `flask_restplus` don't allow to return a `jsonify object` and I can't set the cookies in the response. ``` @api.route('/sign-in') class SignInResource(Resource): def post(self): username_or_email = request.json.get('username_or_email', None) password = request.json.get('password', None) if username_or_email != "test" and password != test: return {"error": "bad credentials"} access_token = create_access_token(identity=user.id) refresh_token = create_refresh_token(identity=user.id) ret = {'sign_in': True} resp = jsonify(ret) set_access_cookies(resp, access_token) set_refresh_cookies(resp, refresh_token) return resp, 200 # DONT ALLOW return JSONIFY Object ``` Is there a workaround for this?
closed
2019-10-17T07:59:22Z
2019-10-17T14:52:17Z
https://github.com/vimalloc/flask-jwt-extended/issues/280
[]
psdon
2
zappa/Zappa
django
928
[Migrated] Is it possible to not include the slug in the function name?
Originally from: https://github.com/Miserlou/Zappa/issues/2194 by [buckmaxwell](https://github.com/buckmaxwell) <!--- Provide a general summary of the issue in the Title above --> ## Context Is it possible to not include the slug in the function name? Ie, change default function name from `<project-name>-<stage-name>` to just `<project-name>`. I'd like to be able to deploy / update an existing lambda by supplying an arn or something. My lambda was created by terraform.
closed
2021-02-20T13:24:39Z
2024-04-13T19:36:45Z
https://github.com/zappa/Zappa/issues/928
[ "no-activity", "auto-closed" ]
jneves
2
yihong0618/running_page
data-visualization
558
设置`IGNORE_BEFORE_SAVING=1`后`gen_svg.py`报错
看了下代码,应该是 `run_page/gpxtrackposter/track.py`中`load_from_db`函数的问题。blame下,是在这个[commit](https://github.com/yihong0618/running_page/commit/f17a3e694a2ba102a218efc16e21a8cf83f0053b#diff-ea1ab7ec71fbeb34ad5d08163ac064c11b28e4ccbe97f75b1a876015aac51a8e)引入的。 未设置该环境变量时,不会触发bug。设置该变量,则导致`summary_polyline`发生未定义先引用错误。 按照我的理解,代码应该改成这个样子: ```python if IGNORE_BEFORE_SAVING: summary_polyline = filter_out(activity.summary_polyline) else: summary_polyline = activity.summary_polyline ```
closed
2023-12-02T13:31:06Z
2023-12-02T14:18:51Z
https://github.com/yihong0618/running_page/issues/558
[]
conanyangqun
4
ivy-llc/ivy
pytorch
28,627
Fix Frontend Failing Test: tensorflow - activations.tensorflow.keras.activations.relu
To-do List: https://github.com/unifyai/ivy/issues/27499
closed
2024-03-17T23:57:00Z
2024-03-25T12:47:11Z
https://github.com/ivy-llc/ivy/issues/28627
[ "Sub Task" ]
ZJay07
0
kizniche/Mycodo
automation
950
Python 3 code input not storing measurements after upgrading to 8.9.1
### Issue Summary A Python 3 code input that was successfully running in Mycodo 8.8.8 without issues is now not storing measurements to the database. Mycodo is logging many of these errors: `ERROR - mycodo.controllers.controller_input_957ddbe6 - StopIteration raised 3 times. Possibly could not read input. Ensure it's connected properly and detected.` The code DOES successfully return the expected value, it just doesn't get stored. I can see the returned value in the Data -> Live view, and also on any of the dashboard widgets that use the live value. I can NOT view historical data (e.g. on either of the graph types) as I could on 8.8.8. This is on a fresh install of Mycodo 8.9.1 with a single Python 3 input configured in the same manner (with the same code) that it was running successfully on 8.8.8. ### Versions: - Mycodo Version: 8.9.1 - Raspberry Pi Version: 4 - Raspbian OS Version: Buster Lite 2020-02-13 ### Reproducibility The Python 3 code manipulates a JSN-SR04T sensor, so you'd need one to test. On a side note, I see that the latest version of Mycodo supports this sensor natively, but my environment has enough background noise the the sensor results are far too inconsistent to use without some manipulation, which I accomplish via code. 1. Go to 'Setup' -> 'Input' 2. Click on 'Linux: Python 3 Code: Store Value(s) [Mycodo]' 3. Configure as shown in this screenshot: ![mycodo_1](https://user-images.githubusercontent.com/80607958/111085807-674bc080-84ef-11eb-8424-5110a3350aef.JPG) The full Python 3 code: ``` import RPi.GPIO as GPIO import time # Define container limit lengths in cm DISTANCE_TO_FULL = 35 # maximum water level; basically the min valid range DISTANCE_TO_EMPTY = 74.5 # minimum water level; basically the max valid range OUTLIER_TOLERANCE = 0.05 # measurements this percentage from other values are considered outliers and discarded # Define GPIO to use on Pi GPIO_TRIGGER = 23 GPIO_ECHO = 18 TRIGGER_TIME = 0.00001 MAX_TIME = 0.1 # max time waiting for response in case something is missed TIME_BETWEEN_MEASUREMENTS = 0.5 # time to sleep between each measurement GPIO.setmode(GPIO.BCM) GPIO.setwarnings(False) GPIO.setup(GPIO_TRIGGER, GPIO.OUT) # Trigger GPIO.setup(GPIO_ECHO, GPIO.IN, pull_up_down=GPIO.PUD_UP) # Echo GPIO.output(GPIO_TRIGGER, False) # This function measures a distance def measure(): # Pulse the trigger/echo line to initiate a measurement GPIO.output(GPIO_TRIGGER, True) time.sleep(TRIGGER_TIME) GPIO.output(GPIO_TRIGGER, False) # ensure start time is set in case of very quick return start = time.time() timeout = start + MAX_TIME # set line to input to check for start of echo response while GPIO.input(GPIO_ECHO) == 0 and start <= timeout: start = time.time() if(start > timeout): return -1 stop = time.time() timeout = stop + MAX_TIME # Wait for end of echo response while GPIO.input(GPIO_ECHO) == 1 and stop <= timeout: stop = time.time() if(stop <= timeout): elapsed = stop-start distance = float(elapsed * 34300)/2.0 else: return -1 return distance # take 3 measurements, discard outliers, return averge result def sample(): measurements = [] attempts = 0 while len(measurements) < 3 and attempts < 15: if attempts > 0: time.sleep(TIME_BETWEEN_MEASUREMENTS) distance = measure() attempts += 1 if(distance >= DISTANCE_TO_FULL and distance <= DISTANCE_TO_EMPTY): measurements.append(distance) if len(measurements) == 3: # check for and remove outlier measurements for i in range(len(measurements)): if is_outlier(measurements, i): measurements.pop(i) # if there are at least 2 good data points remaining, take the average and return it if len(measurements) >= 2: measure_sum = 0 for i in range(len(measurements)): measure_sum += measurements[i] measure_avg = measure_sum/len(measurements) return (measure_avg) else: # we didn't have at least 2 good data points return -2 else: return -1 # run the sample function twice, discard result if both values not within OUTLIER_TOLERANCE of each other def double_sample(): trials = [-1, -1] # run the two trials for i in range(len(trials)): attempt = 0 while attempt < 6 and trials[i] < 0: attempt += 1 trials[i] = sample() # compare the two results if is_outlier(trials, 0): # the two values aren't consistent return -1 else: trial_avg = (trials[0] + trials[1])/2 return trial_avg # compare the value of the list item at the given index to every other item in the list # if the given item varies by more than OUTLIER_TOLERANCE compared to the other items, it's an outlier def is_outlier(list, index): if index > len(list)-1: return False else: outlier_compares = 0 outlier_true = 0 value = list[index] for i in range(len(list)): if i != index: outlier_compares += 1 diff = abs(list[i] - value) diff_percent = diff/list[i] if diff_percent > OUTLIER_TOLERANCE: outlier_true += 1 else: break if outlier_compares == outlier_true: # every other item has a value that is off by at least OUTLIER_TOLERANCE, this is an outlier return True else: # this item is within OUTLIER_TOLERANCE of every other item return False # take the measurement attempts = 0 percent_full = -1 while attempts < 5: attempts += 1 result = double_sample() if result >= 0: percent_full = (1-(result/DISTANCE_TO_EMPTY)) * 100 break GPIO.cleanup() # Store measurements in database (must specify the channel and measurement) self.store_measurement(channel=0, measurement=percent_full) ``` 4. Save/activate the input ### Expected behavior From here, I can navigate to Data -> Live and see the latest measurement as expected: ![mycodo_2](https://user-images.githubusercontent.com/80607958/111085999-72532080-84f0-11eb-9944-477d9cb472ac.JPG) But if I try to create a graph widget, or view async graph data, they're just blank - presumably because historical data isn't being saved to the database properly: ![mycodo_3](https://user-images.githubusercontent.com/80607958/111086098-dbd32f00-84f0-11eb-8252-fe49ed4e1318.JPG) Viewing the log, I see that a bunch of StopIteration errors are being thrown on many (but not all, judging by the timestamps) executions: ![mycodo_4](https://user-images.githubusercontent.com/80607958/111086247-7d5a8080-84f1-11eb-9238-df9b7a8dbef4.JPG) ### Additional context This code has been successfully running on a Mycodo 8.8.8 install for a couple weeks without issues. I attempted to use Mycodo's upgrade function to move to 8.9.1, but that broke my install (HTTP 500 errors on most pages, presumably from a dropped custom measurement I had created - I already created a [separate issue](https://github.com/kizniche/Mycodo/issues/949) for that). So I moved my Mycodo installation to a backup directory and installed 8.9.1 from scratch. Just mentioning in case that might play a part in the issue.
closed
2021-03-14T22:25:22Z
2021-03-18T17:01:36Z
https://github.com/kizniche/Mycodo/issues/950
[ "bug", "Fixed and Committed" ]
rbbrdckybk
6
jonaswinkler/paperless-ng
django
140
Show matching documents when clicking on document count
Hi :wave:, I would like to make the following feature request proposal: ```bash When I click on Tags in the Manage Menu And I click on the document count of a specific tag Then I see all associated documents in the document view using the tag as a filter When I click on Correspondents in the Manage Menu And I click on the document count of a specific correspondent Then I see all associated documents in the document view using the correspondent as a filter When I click on Document types in the Manage Menu And I click on the document count of a specific document type Then I see all associated documents in the document view using the document type as a filter ``` * Maybe this is obsolete with the new filter redesign, but I find it useful to reach the documents within these views * I don't mind if the link is from document count, tag name, or else
closed
2020-12-15T16:30:54Z
2022-06-25T12:58:23Z
https://github.com/jonaswinkler/paperless-ng/issues/140
[ "feature request" ]
Tooa
4
graphql-python/graphql-core
graphql
72
Exception instance returned from resolver is raised within executor instead of being passed down for further resolution.
Today when experimenting with 3rd party library for data validation (https://github.com/samuelcolvin/pydantic) I've noticed that when I take map of validation errors from it (which is dict of lists of `ValueError` and `TypeError` subclasses instances), I need to implement extra step to convert those errors to something else because query executor includes check for `isinstance(result, Exception)`. This check makes it raise returned exception instance, effectively short-circuiting further resolution: https://github.com/graphql-python/graphql-core-next/blob/master/src/graphql/execution/execute.py#L731 The fix for issue was considerably simple to come up with: just write util that converts those errors to a dict as they are included in my result's `validation_errors` key, but I feel such boilerplate should be unnecessary: ``` try: ... run pydantic validation here except (PydanticTypeError, PydanticValueError) as error: return {"validation_errors": flatten_validation_error(error)} ``` Is this implementation a result of something in spec, or mechanism used to keep other feature's (eg. error propagation) code simple? I think we should consider supporting this use-case. Considerable number of libraries use exceptions for messaging (eg. Django with its `ValidationError` and bunch of `core.exceptions.*`)
closed
2019-12-14T22:35:16Z
2020-01-06T13:07:34Z
https://github.com/graphql-python/graphql-core/issues/72
[]
rafalp
1
numpy/numpy
numpy
28,365
BUG: duplication in `ufunc.types`
### Describe the issue: I'm working on type-test code generation, and I assumed that the `ufunc.types` entries would be unique. But as it turns out, that's not the case. Specifically, these are all the duplicate `types` values in the public `numpy` namespace: ``` acos: e->e f->f d->d acosh: e->e f->f d->d asin: e->e f->f d->d asinh: e->e f->f d->d atan: e->e f->f d->d atanh: e->e f->f d->d cbrt: e->e f->f d->d ceil: f->f d->d cosh: e->e f->f d->d exp: f->f d->d exp2: e->e f->f d->d expm1: e->e f->f d->d floor: f->f d->d log: f->f d->d log10: e->e f->f d->d log1p: e->e f->f d->d log2: e->e f->f d->d pow: ee->e ff->f dd->d rint: f->f d->d sinh: e->e f->f d->d sqrt: f->f d->d tan: e->e f->f d->d tanh: e->e f->f d->d trunc: f->f d->d ``` I'm guesing it's related to the e.g. `single` vs `float64` stuff. In my use-case, it's not difficult to work around. But I thought maybe this could maybe cause some performance issues or something 🤷🏻. ### Reproduce the code example: ```python import numpy as np assert len(np.log.types) == len(set(np.log.types)) ``` ### Error message: ```shell Traceback (most recent call last): File "stop_eating_that_clay__son.py", line 3, in <module> assert len(set(np.log.types)) == len(np.log.types) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ AssertionError ``` ### Python and NumPy Versions: ``` 2.2.3 3.13.2 (main, Feb 7 2025, 04:13:54) [GCC 11.4.0] ``` ### Runtime Environment: ``` [{'numpy_version': '2.2.3', 'python': '3.13.2 (main, Feb 7 2025, 04:13:54) [GCC 11.4.0]', 'uname': uname_result(system='Linux', node='pop-os', release='6.9.3-76060903-generic', version='#202405300957~1738770968~22.04~d5f7c84 SMP PREEMPT_DYNAMIC Wed F', machine='x86_64')}, {'simd_extensions': {'baseline': ['SSE', 'SSE2', 'SSE3'], 'found': ['SSSE3', 'SSE41', 'POPCNT', 'SSE42', 'AVX', 'F16C', 'FMA3', 'AVX2'], 'not_found': ['AVX512F', 'AVX512CD', 'AVX512_KNL', 'AVX512_KNM', 'AVX512_SKX', 'AVX512_CLX', 'AVX512_CNL', 'AVX512_ICL']}}, {'architecture': 'Haswell', 'filepath': '/home/joren/.pyenv/versions/3.13.2/lib/python3.13/site-packages/numpy.libs/libscipy_openblas64_-6bb31eeb.so', 'internal_api': 'openblas', 'num_threads': 32, 'prefix': 'libscipy_openblas', 'threading_layer': 'pthreads', 'user_api': 'blas', 'version': '0.3.28'}, {'architecture': 'Haswell', 'filepath': '/home/joren/.pyenv/versions/3.13.2/lib/python3.13/site-packages/scipy.libs/libscipy_openblas-68440149.so', 'internal_api': 'openblas', 'num_threads': 32, 'prefix': 'libscipy_openblas', 'threading_layer': 'pthreads', 'user_api': 'blas', 'version': '0.3.28'}] ``` ### Context for the issue: _No response_
open
2025-02-20T18:39:58Z
2025-02-25T11:06:53Z
https://github.com/numpy/numpy/issues/28365
[ "00 - Bug" ]
jorenham
1
MaartenGr/BERTopic
nlp
1,767
How to get more than 3 representative docs per topic via get_topic_info()?
Hey, thank you so much for making this library! Super awesome. I've seen a bunch of issues here requesting this but haven't found a straightforward easy way to specify it via get_topic_info() as it contains a lot of the information I need. I wish there was a parameter in there like get_topic_info(number_of_representative_documents=3) that I could modify. I'm not sure that `_extract_representative_docs` will work in my context as I'm using umap, hdbscan, and gpt for topic labels, no tfidf or anything, which seems to be a required parameter
open
2024-01-22T22:44:49Z
2024-03-20T09:09:16Z
https://github.com/MaartenGr/BERTopic/issues/1767
[]
youssefabdelm
3
python-gitlab/python-gitlab
api
2,732
first run in jenkins always fails with GitlabHttpError: 403: insufficient_scope
## Description of the problem, including code/CLI snippet we use jenkins for our builds and use semantic-versioning. usually, when someone pushed something into master/main, jenkins creates a new version, tags it to gitlab and builds the distribution. unfortunately, since a few weeks(not sure about that) we have a very wierd behaviour. the first run fails. ## Expected Behavior a regular jenkins build with tags pushed to gitlab and no error ## Actual Behavior we get an error GitlabHttpError: 403: insufficient_scope when jenkins runs the first time on that branch, when i then start it manually, it works. even more wierd: the tag is created! ``` (.pyenv-python) C:\Users\jenkinsSA\AppData\Local\Jenkins\.jenkins\workspace\usermgmtautomation_master> git checkout master Switched to branch 'master' [Pipeline] bat (.pyenv-python) C:\Users\jenkinsSA\AppData\Local\Jenkins\.jenkins\workspace\usermgmtautomation_master> semantic-release version 1>version.txt The next version is: 0.7.3! \U0001f680 No build command specified, skipping [08:54:15] ERROR [semantic_release.cli.commands.version] version.py:553 ERROR version.version: 403: insufficient_scope +--- Traceback (most recent call last) ----+ | C:\Users\jenkinsSA\AppData\Local\Jenkins | | \.jenkins\workspace\usermgmtautomation_m | | aster\.pyenv-python\Lib\site-packages\gi | | tlab\exceptions.py:336 in wrapped_f | | | | 333 @functools.wraps(f) | | 334 def wrapped_f(*args: Any, | | 335 try: | | > 336 return f(*args, ** | | 337 except GitlabHttpError | | 338 raise error(e.erro | | 339 | | | | C:\Users\jenkinsSA\AppData\Local\Jenkins | | \.jenkins\workspace\usermgmtautomation_m | | aster\.pyenv-python\Lib\site-packages\gi | | tlab\mixins.py:300 in create | | | | 297 | | 298 # Handle specific URL for | | 299 path = kwargs.pop("path", | | > 300 server_data = self.gitlab. | | 301 if TYPE_CHECKING: | | 302 assert not isinstance( | | 303 assert self._obj_cls i | | | | C:\Users\jenkinsSA\AppData\Local\Jenkins | | \.jenkins\workspace\usermgmtautomation_m | | aster\.pyenv-python\Lib\site-packages\gi | | tlab\client.py:1021 in http_post | | | | 1018 query_data = query_data o | | 1019 post_data = post_data or | | 1020 | | > 1021 result = self.http_reques | | 1022 "post", | | 1023 path, | | 1024 query_data=query_data | | | | C:\Users\jenkinsSA\AppData\Local\Jenkins | | \.jenkins\workspace\usermgmtautomation_m | | aster\.pyenv-python\Lib\site-packages\gi | | tlab\client.py:794 in http_request | | | | 791 response_body | | 792 ) | | 793 | | > 794 raise gitlab.exceptio | | 795 response_code=res | | 796 error_message=err | | 797 response_body=res | +------------------------------------------+ GitlabHttpError: 403: insufficient_scope The above exception was the direct cause of the following exception: +--- Traceback (most recent call last) ----+ | C:\Users\jenkinsSA\AppData\Local\Jenkins | | \.jenkins\workspace\usermgmtautomation_m | | aster\.pyenv-python\Lib\site-packages\se | | mantic_release\hvcs\gitlab.py:131 in | | create_or_update_release | | | | 128 self, tag: str, release_no | | 129 ) -> str: | | 130 try: | | > 131 return self.create_rel | | 132 tag=tag, release_n | | 133 ) | | 134 except gitlab.GitlabCreate | | | | C:\Users\jenkinsSA\AppData\Local\Jenkins | | \.jenkins\workspace\usermgmtautomation_m | | aster\.pyenv-python\Lib\site-packages\se | | mantic_release\helpers.py:52 in _wrapper | | | | 49 ) | | 50 | | 51 # Call function | | > 52 result = func(*args, * | | 53 | | 54 # Log result | | 55 logger.debug("%s -> %s | | | | C:\Users\jenkinsSA\AppData\Local\Jenkins | | \.jenkins\workspace\usermgmtautomation_m | | aster\.pyenv-python\Lib\site-packages\se | | mantic_release\hvcs\gitlab.py:97 in | | create_release | | | | 94 client.auth() | | 95 log.info("Creating release | | 96 # ref: https://docs.gitlab/ | | > 97 client.projects.get(self.o | | 98 { | | 99 "name": "Release " | | 100 "tag_name": tag, | | | | C:\Users\jenkinsSA\AppData\Local\Jenkins | | \.jenkins\workspace\usermgmtautomation_m | | aster\.pyenv-python\Lib\site-packages\gi | | tlab\exceptions.py:338 in wrapped_f | | | | 335 try: | | 336 return f(*args, ** | | 337 except GitlabHttpError | | > 338 raise error(e.erro | | 339 | | 340 return cast(__F, wrapped_f | | 341 | +------------------------------------------+ GitlabCreateError: 403: insufficient_scope During handling of the above exception, another exception occurred: +--- Traceback (most recent call last) ----+ | C:\Users\jenkinsSA\AppData\Local\Jenkins | | \.jenkins\workspace\usermgmtautomation_m | | aster\.pyenv-python\Lib\site-packages\gi | | tlab\exceptions.py:336 in wrapped_f | | | | 333 @functools.wraps(f) | | 334 def wrapped_f(*args: Any, | | 335 try: | | > 336 return f(*args, ** | | 337 except GitlabHttpError | | 338 raise error(e.erro | | 339 | | | | C:\Users\jenkinsSA\AppData\Local\Jenkins | | \.jenkins\workspace\usermgmtautomation_m | | aster\.pyenv-python\Lib\site-packages\gi | | tlab\mixins.py:368 in update | | | | 365 ) | | 366 | | 367 http_method = self._get_up | | > 368 result = http_method(path, | | 369 if TYPE_CHECKING: | | 370 assert not isinstance( | | 371 return result | | | | C:\Users\jenkinsSA\AppData\Local\Jenkins | | \.jenkins\workspace\usermgmtautomation_m | | aster\.pyenv-python\Lib\site-packages\gi | | tlab\client.py:1075 in http_put | | | | 1072 query_data = query_data o | | 1073 post_data = post_data or | | 1074 | | > 1075 result = self.http_reques | | 1076 "put", | | 1077 path, | | 1078 query_data=query_data | | | | C:\Users\jenkinsSA\AppData\Local\Jenkins | | \.jenkins\workspace\usermgmtautomation_m | | aster\.pyenv-python\Lib\site-packages\gi | | tlab\client.py:794 in http_request | | | | 791 response_body | | 792 ) | | 793 | | > 794 raise gitlab.exceptio | | 795 response_code=res | | 796 error_message=err | | 797 response_body=res | +------------------------------------------+ GitlabHttpError: 403: insufficient_scope The above exception was the direct cause of the following exception: +--- Traceback (most recent call last) ----+ | C:\Users\jenkinsSA\AppData\Local\Jenkins | | \.jenkins\workspace\usermgmtautomation_m | | aster\.pyenv-python\Lib\site-packages\se | | mantic_release\cli\commands\version.py:5 | | 47 in version | | | | 544 noop_report(f"would ha | | 545 else: | | 546 try: | | > 547 release_id = hvcs_ | | 548 tag=new_versio | | 549 release_notes= | | 550 prerelease=new | | | | C:\Users\jenkinsSA\AppData\Local\Jenkins | | \.jenkins\workspace\usermgmtautomation_m | | aster\.pyenv-python\Lib\site-packages\se | | mantic_release\helpers.py:52 in _wrapper | | | | 49 ) | | 50 | | 51 # Call function | | > 52 result = func(*args, * | | 53 | | 54 # Log result | | 55 logger.debug("%s -> %s | | | | C:\Users\jenkinsSA\AppData\Local\Jenkins | | \.jenkins\workspace\usermgmtautomation_m | | aster\.pyenv-python\Lib\site-packages\se | | mantic_release\hvcs\gitlab.py:141 in | | create_or_update_release | | | | 138 self.owner, | | 139 self.repo_name, | | 140 ) | | > 141 return self.edit_relea | | 142 | | 143 def compare_url(self, from_rev | | 144 return | | f"[https://{self.hvcs_domain}/{self](https://{self.hvcs_domain}/%7Bself) | | v}" | | | | C:\Users\jenkinsSA\AppData\Local\Jenkins | | \.jenkins\workspace\usermgmtautomation_m | | aster\.pyenv-python\Lib\site-packages\se | | mantic_release\helpers.py:52 in _wrapper | | | | 49 ) | | 50 | | 51 # Call function | | > 52 result = func(*args, * | | 53 | | 54 # Log result | | 55 logger.debug("%s -> %s | | | | C:\Users\jenkinsSA\AppData\Local\Jenkins | | \.jenkins\workspace\usermgmtautomation_m | | aster\.pyenv-python\Lib\site-packages\se | | mantic_release\hvcs\gitlab.py:118 in | | edit_release_notes | | | | 115 client.auth() | | 116 log.info("Updating release | | 117 | | > 118 client.projects.get(self.o | | 119 release_id, | | 120 { | | 121 "description": rel | | | | C:\Users\jenkinsSA\AppData\Local\Jenkins | | \.jenkins\workspace\usermgmtautomation_m | | aster\.pyenv-python\Lib\site-packages\gi | | tlab\exceptions.py:338 in wrapped_f | | | | 335 try: | | 336 return f(*args, ** | | 337 except GitlabHttpError | | > 338 raise error(e.erro | | 339 | | 340 return cast(__F, wrapped_f | | 341 | +------------------------------------------+ GitlabUpdateError: 403: insufficient_scope Usage: semantic-release version [OPTIONS] Try 'semantic-release version -h' for help. Error: 403: insufficient_scope ``` ## Specifications - python-gitlab version: python_gitlab-3.15.0-py3-none-any.whl - API version you are using (v3/v4): - Gitlab server version (or gitlab.com): gitlab.com
closed
2023-11-27T08:12:16Z
2024-12-02T01:54:49Z
https://github.com/python-gitlab/python-gitlab/issues/2732
[ "support" ]
damnmso
3
indico/indico
sqlalchemy
6,602
Peer-review module: having a synthetic table of the paper status
**Is your feature request related to a problem? Please describe.** For the IPAC conferences Light Peer Review we use the indico Peer-Review module. We have more than 1000 papers submitted to the conference and more than 100 submitted to light peer review. In the judging area we get a list of all papers dominated by the "not submitted" papers. Having a synthetic table giving the number of paper with the number of paper with each status would help. **Describe the solution you'd like** Have somewhere in the peer-review module with the number of papers with each status and a link to see all the papers with that status. **Describe alternatives you've considered** For IPAC'23 I made a script that downloaded the page https://indico.jacow.org/event/37/papers/judging/ and counted the number of papers with each status. **Additional context** This is the list I am referring to. That page would count the number of papers with each "state"value. <img width="654" alt="copie_ecran 2024-11-06 à 15 20 01" src="https://github.com/user-attachments/assets/ea635556-e0df-438c-8c8d-2a121cff459b">
open
2024-11-06T14:51:38Z
2024-11-06T14:51:38Z
https://github.com/indico/indico/issues/6602
[ "enhancement" ]
NicolasDelerueLAL
0
iterative/dvc
machine-learning
10,612
"appending" dvc.log.lock file type idea for exps
I've been using dvc for a while and I understand the architecture and philosophy. I also understand the decisions behind `dvc exp`eriments with the challenge there being trying to align git's linear development notion with experiment's more "parallel" notion. I think having to go through dvc exp is too "heavy". Now, if you think of using special git refs as "backend" storage for experiments, alternatively you can achieve the same with dvc lock files that append (instead of overwrite) runs. This way you can keep original (simple) dvc behavior of just dealing with lock files while also capturing the same information for parameterized runs (exps). So, I should be able to "checkout" a particular run from the dvc.log.lock file instead of having to deal with dvc exp (parameterized or not).
closed
2024-11-05T17:01:04Z
2024-11-05T19:47:28Z
https://github.com/iterative/dvc/issues/10612
[]
majidaldo
0
scikit-learn/scikit-learn
data-science
30,744
Unexpected <class 'AttributeError'>. 'LinearRegression' object has no attribute 'positive
My team changed to scikit-learn v1.6.1 this week. We had v1.5.1 before. Our code crashes in this exact line with the error "Unexpected <class 'AttributeError'>. 'LinearRegression' object has no attribute 'positive'". We cannot deploy in production because of this. I am desperate enough to come here to ask for help. I do not understand why it would complain that the attribute does not exist given that we were using v1.5.1 before and the attribute has existed for 4 years now. My only guess is if we are loading a very old pickled model that does not have the attribute, so it crashes here. Unfortunately I cannot share any pieces of code as it is proprietary. _Originally posted by @ItsIronOxide in https://github.com/scikit-learn/scikit-learn/pull/30187#discussion_r1937427235_
open
2025-01-31T15:08:46Z
2025-02-04T06:58:02Z
https://github.com/scikit-learn/scikit-learn/issues/30744
[ "Needs Reproducible Code" ]
ItsIronOxide
2
replicate/cog
tensorflow
2,035
replecate.helpers.fileoutput
replecate.helpers.fileoutput i got this error when try to use fooocus ai from replecate api but the image is complete processing in the server
closed
2024-10-30T13:09:22Z
2024-11-04T13:28:48Z
https://github.com/replicate/cog/issues/2035
[]
uptimeai11062024
1
InstaPy/InstaPy
automation
6,826
Instagram
<!-- Did you know that we have a Discord channel ? Join us: https://discord.gg/FDETsht --> <!-- Is this a Feature Request ? Please, check out our Wiki first https://github.com/timgrossmann/InstaPy/wiki --> ## Expected Behavior ## Current Behavior ## Possible Solution (optional) ## InstaPy > **configuration**
open
2024-09-20T20:04:52Z
2024-09-20T20:04:52Z
https://github.com/InstaPy/InstaPy/issues/6826
[]
R299489
0
explosion/spaCy
machine-learning
13,635
Still encounter "TypeError: issubclass() arg 1 must be a class" problem with pydantic == 2.9.2 and scapy == 3.7.6
### Discussed in https://github.com/explosion/spaCy/discussions/13634 <div type='discussions-op-text'> <sup>Originally posted by **LuoXiaoxi-cxq** September 26, 2024</sup> I was running the training part of the [self-attentive-parser] (https://github.com/nikitakit/self-attentive-parser), where I met this error (probably caused by version problems of `spacy` and `pydantic`): ``` Traceback (most recent call last): File "D:\postgraduate\research\parsing\self-attentive-parser\src\main.py", line 11, in <module> from benepar import char_lstm File "D:\postgraduate\research\parsing\self-attentive-parser\src\benepar\__init__.py", line 20, in <module> from .integrations.spacy_plugin import BeneparComponent, NonConstituentException File "D:\postgraduate\research\parsing\self-attentive-parser\src\benepar\integrations\spacy_plugin.py", line 5, in <module> from .spacy_extensions import ConstituentData, NonConstituentException File "D:\postgraduate\research\parsing\self-attentive-parser\src\benepar\integrations\spacy_extensions.py", line 177, in <module> install_spacy_extensions() File "D:\postgraduate\research\parsing\self-attentive-parser\src\benepar\integrations\spacy_extensions.py", line 153, in install_spacy_extensions from spacy.tokens import Doc, Span, Token File "D:\anaconda\lib\site-packages\spacy\__init__.py", line 14, in <module> from . import pipeline # noqa: F401 File "D:\anaconda\lib\site-packages\spacy\pipeline\__init__.py", line 1, in <module> from .attributeruler import AttributeRuler File "D:\anaconda\lib\site-packages\spacy\pipeline\attributeruler.py", line 6, in <module> from .pipe import Pipe File "spacy\pipeline\pipe.pyx", line 8, in init spacy.pipeline.pipe File "D:\anaconda\lib\site-packages\spacy\training\__init__.py", line 11, in <module> from .callbacks import create_copy_from_base_model # noqa: F401 File "D:\anaconda\lib\site-packages\spacy\training\callbacks.py", line 3, in <module> from ..language import Language File "D:\anaconda\lib\site-packages\spacy\language.py", line 25, in <module> from .training.initialize import init_vocab, init_tok2vec File "D:\anaconda\lib\site-packages\spacy\training\initialize.py", line 14, in <module> from .pretrain import get_tok2vec_ref File "D:\anaconda\lib\site-packages\spacy\training\pretrain.py", line 16, in <module> from ..schemas import ConfigSchemaPretrain File "D:\anaconda\lib\site-packages\spacy\schemas.py", line 216, in <module> class TokenPattern(BaseModel): File "pydantic\main.py", line 299, in pydantic.main.ModelMetaclass.__new__ print("Loaded {:,} test examples.".format(len(test_treebank))) File "pydantic\fields.py", line 411, in pydantic.fields.ModelField.infer File "pydantic\fields.py", line 342, in pydantic.fields.ModelField.__init__ File "pydantic\fields.py", line 451, in pydantic.fields.ModelField.prepare File "pydantic\fields.py", line 545, in pydantic.fields.ModelField._type_analysis File "pydantic\fields.py", line 550, in pydantic.fields.ModelField._type_analysis File "D:\anaconda\lib\typing.py", line 852, in __subclasscheck__ return issubclass(cls, self.__origin__) TypeError: issubclass() arg 1 must be a class ``` [This issue](https://github.com/langchain-ai/langchain/issues/7522) says installing two packages `chromadb` and `pydantic` will work, so I installed them. I ran ``` python -m pip install -U pydantic spacy python -m pip install -U chromadb spacy ``` I am running on Windows 11. Now, my environment is ``` Python == 3.10.14 pydantic == 2.9.2 pydantic-core == 2.23.4 scapy == 3.7.6 typing-extensions == 4.12.2 chromadb == 0.5.9 ``` However, the problem still exists. According to [this issue](https://github.com/explosion/spaCy/issues/12659), the problem ("TypeError: issubclass() arg 1 must be a class") should only exist for `pydantic` v1.10.7 and earlier related to the recent release of `typing_extensions` v4.6.0. My versions are higher, but this error isn't solved.</div>
open
2024-09-26T08:24:35Z
2024-09-26T08:25:47Z
https://github.com/explosion/spaCy/issues/13635
[]
LuoXiaoxi-cxq
0
unionai-oss/pandera
pandas
1,893
DataFrameSchema is not hashable
**Describe the bug** `DataFrameSchema` is not hashable, and therefore cannot be used by e.g. functools.cache - [X] I have checked that this issue has not already been reported. - [X] I have confirmed this bug exists on the latest version of pandera. - [ ] (optional) I have confirmed this bug exists on the main branch of pandera. #### Code Sample, a copy-pastable example ```python import pandera as pa schema = pa.DataFrameSchema({ "column1": pa.Column(int) }) hash(schema) ``` #### Expected behavior Given that `DataFrameSchema` have good `__str__` and `__repr__`s I'd have thought it would be straightforward to make them hashable, and therefore usable as dictionary keys and in turn cache'able. As a local hack, I added the following monkey-patch ```python DataFrameSchema.__hash__ = lambda self: hash(repr(self)) ``` which doesn't seem too terrible? #### Desktop (please complete the following information): - OS: WSL Ubuntu 24.04 LTS on Windows 11 - Browser: N/A - Version: 0.22.1 #### Screenshots N/A #### Additional context N/A
open
2025-01-07T14:49:25Z
2025-01-07T14:49:25Z
https://github.com/unionai-oss/pandera/issues/1893
[ "bug" ]
sparkiegeek
0
CorentinJ/Real-Time-Voice-Cloning
pytorch
443
How can i pass a root directory for datasets ?
datasets_root: None enc_models_dir: encoder\saved_models syn_models_dir: synthesizer\saved_models voc_models_dir: vocoder\saved_models low_mem: False Warning: you did not pass a root directory for datasets as argument. When i open the toolbox,i can't add any projections,pls help
closed
2020-07-24T01:21:32Z
2020-07-24T06:29:20Z
https://github.com/CorentinJ/Real-Time-Voice-Cloning/issues/443
[]
FulvioZozix
3
dmlc/gluon-nlp
numpy
835
Export script for transformer
Currently the transformer decoder reads the shape of the input to decide if it runs the inference mode or evaluation mode. We can probably add an export script to properly export a HybridBlock. @sxjscience @szhengac For masks generation, that can be handled by the `contrib.arange_like` or `arange(max_len)` + `slice_like` already.
open
2019-07-17T22:30:42Z
2019-07-18T12:37:42Z
https://github.com/dmlc/gluon-nlp/issues/835
[ "enhancement" ]
eric-haibin-lin
1
LAION-AI/Open-Assistant
machine-learning
2,705
Add reward model scoring during SFT evaluation
Currently we still need to manually run [sampling_score.py](https://github.com/LAION-AI/Open-Assistant/blob/main/model/model_eval/sampling_score.py) on our [sampling reports](https://open-assistant.github.io/oasst-model-eval/?f=https%3A%2F%2Fraw.githubusercontent.com%2FOpen-Assistant%2Foasst-model-eval%2Fmain%2Fsampling_reports%2Foasst-sft%2F2023-04-17_OpenAssistant_oasst-sft-7e2-llama-30b_sampling_noprefix2.json%0A%0A) after training. In order to simplify the evaluation process and to get a score from our RM earlier during training this evaluation should be integrated directly in the SFT training process as an additional evaluation metric that is reported to wandb. Currently only classic evaluation is done which computes the loss and accuracy scores of an evaluation set. For RL we trained several reward models which can be found on our Huggingface page: 1.4B pythia-based: [oasst-rm-2.1-pythia-1.4b-epoch-2.5](https://huggingface.co/OpenAssistant/oasst-rm-2.1-pythia-1.4b-epoch-2.5), 6.9B pythia-based: [OpenAssistant/oasst-rm-2-pythia-6.9b-epoch-1](https://huggingface.co/OpenAssistant/oasst-rm-2-pythia-6.9b-epoch-1). On the HF page a short snippet is shown how to load the RM and how to compute a reward score for samples. Several things should be considered: 1. Memory usage: The reward model does not need to stay on the GPU the whole time, it could either be kept completely in CPU memory or only be loaded into the GPU for the eval step. 2. The RM model uses the tokenizer configuration of Pythia while we also train models with other tokenizers that have different EOS token representations (e.g. pythia `<|endoftext|>` vs. llama `</s>`). For a meaningful evaluation the special tokens of the trained model replaced to the pythia ones before tokenization. In general it is not possible to directly forward the token-ids but a token to text-conversion of the trained model need to happen followed by again a tokenization of this text to feed it into the RM. If you are to the codebase looking at [trainer_sft.py](https://github.com/LAION-AI/Open-Assistant/blob/main/model/model_training/trainer_sft.py) and checking how to add a custom step into the [HF Trainer](https://huggingface.co/docs/transformers/main_classes/trainer) derived class would probably be a good first step.
open
2023-04-18T09:20:39Z
2023-06-06T01:51:52Z
https://github.com/LAION-AI/Open-Assistant/issues/2705
[ "ml" ]
andreaskoepf
4
ploomber/ploomber
jupyter
487
Improve warnings management when running ploomber build
Sometimes, third-party libraries emit warnings; when ploomber runs a pipeline, it will capture the warnings and show them at the end. - [ ] see if we can do something to improve the information displayed to help the user find what library displayed the warning - [ ] add a way to suppress the warnings. it's possible to not capture them by switching the executor, so maybe add a section in the docs and print a link it if dag executes with warnings
closed
2022-01-17T00:11:45Z
2023-06-21T21:40:46Z
https://github.com/ploomber/ploomber/issues/487
[]
edublancas
1
ultralytics/ultralytics
computer-vision
19,827
How to Freeze Detection Head Layers in YOLOv8m-segment and Train Only Segmentation Head?
### Search before asking - [x] I have searched the Ultralytics YOLO [issues](https://github.com/ultralytics/ultralytics/issues) and [discussions](https://github.com/orgs/ultralytics/discussions) and found no similar questions. ### Question Question: Hi all, I'm working with yolov8m-seg.pt and want to freeze the detection head layers (bounding box/class prediction) while training only the segmentation head (mask prediction). The goal is to fine-tune the segmentation capability without updating the detection part. Has anyone done this before? I’m thinking of freezing layers by setting requires_grad = False for detection-related params, but I’m unsure how to precisely identify them in the head (e.g., model.22). Here’s my tentative code—can someone confirm if this approach works or suggest a better way? ### Additional `from ultralytics import YOLO # Load model model = YOLO("yolov8m-seg.pt") # Freeze detection head layers (guessing these are related to 'detect') for name, param in model.model.named_parameters(): if "detect" in name.lower(): # Is this the right way to target detection head? param.requires_grad = False # Train only segmentation head model.train(data="path/to/data.yaml", epochs=50, imgsz=640)` Questions: Does detect correctly target the detection head, or should I use a different identifier (e.g., specific layer indices)? Will this setup ensure the segmentation head (e.g., mask coefficients/Proto) still trains properly? Any pitfalls to watch out for? Thanks for any insights!
closed
2025-03-23T04:50:37Z
2025-03-24T00:49:05Z
https://github.com/ultralytics/ultralytics/issues/19827
[ "question", "segment" ]
Wang-taoshuo
3
SkalskiP/courses
computer-vision
31
Please add a license?
Would love to add/reuse this repo in other projects, but without a license I am unable to use it. Please consider adding a license?
open
2023-05-25T14:11:50Z
2023-05-29T15:16:16Z
https://github.com/SkalskiP/courses/issues/31
[ "question" ]
tosaddler
2
proplot-dev/proplot
data-visualization
231
Box plot and Violin plot do not show a column, if the column contain NaN values
<!-- Thanks for helping us make proplot a better package! If this is a bug report, please use the template provided below. If this is a feature request, you can delete the template text (just try to be descriptive with your request). --> ### Description Box plot and Violin plots do not show the columns which contain NaN values. ### Steps to reproduce ```python import proplot as plot import numpy as np import pandas as pd # Generate sample data N = 500 state = np.random.RandomState(51423) data = state.normal(size=(N, 5)) + 2 * (state.rand(N, 5) - 0.5) * np.arange(5) data = pd.DataFrame( data, columns=pd.Index(['a', 'b', 'c', 'd', 'e'], name='xlabel') ) #Adding a NaN value to column 'e' new_row = {'a':2, 'b':2, 'c':2, 'd':2, 'e':np.nan} data = data.append(new_row, ignore_index=True) # Generate figure fig, axs = plot.subplots(ncols=2, axwidth=2.5) axs.format(grid=False, suptitle='Boxes and violins demo') # Box plots ax = axs[0] obj1 = ax.boxplot( data, lw=0.7, marker='x', fillcolor='gray5', medianlw=1, mediancolor='k' ) ax.format(title='Box plots', titleloc='uc') # Violin plots ax = axs[1] obj2 = ax.violinplot( data, lw=0.7, fillcolor='gray7', points=500, bw_method=0.3, means=True ) ax.format(title='Violin plots', titleloc='uc') ``` **Expected behavior**: [What you expected to happen] ![Figure 2020-10-29 174050](https://user-images.githubusercontent.com/31694629/97571891-edb6a880-1a0d-11eb-91c2-e498ca95ec9b.png) **Actual behavior**: [What actually happened] ![Figure 2020-10-29 173712](https://user-images.githubusercontent.com/31694629/97571570-d37cca80-1a0d-11eb-9a57-4016328ee65d.png) ### Equivalent steps in matplotlib Please make sure this bug is related to a specific proplot feature. If you're not sure, try to replicate it with the [native matplotlib API](https://matplotlib.org/3.1.1/api/index.html). Matplotlib bugs belong on the [matplotlib github page](https://github.com/matplotlib/matplotlib). ```python # your code here, if applicable ``` ### Proplot version 6.4.0
closed
2020-10-29T12:13:20Z
2021-06-29T20:36:14Z
https://github.com/proplot-dev/proplot/issues/231
[ "support" ]
pratiman-91
1
keras-team/keras
deep-learning
21,073
keras ordinal loss
Hi, could anyone please give me an insight about what the ordinal loss defined in keras represents? https://www.tensorflow.org/ranking/api_docs/python/tfr/keras/losses/OrdinalLoss I'm not able to give an interpretation to that definition, as I don't understand for instance what is I_yi > j. In the documentation there is no citation of any artiecle. However, I'm looking for an objective fuction for image classification with ordinal categories, a sort of image ranking loss. Thanks
open
2025-03-20T11:36:57Z
2025-03-20T13:57:50Z
https://github.com/keras-team/keras/issues/21073
[ "type:support" ]
LucaSCostanzo
0
gee-community/geemap
jupyter
1,192
Errro Import geemap in Colab
Hello, I am trying to run this notebook https://colab.research.google.com/drive/134G8UXjNiQYMbOfUgXg40Nsn6bIEorWV#scrollTo=Uz3eJMcPmREH and it generates the following error: AttributeError: module 'tornado.ioloop' has no attribute '_Selectable' Thank you very much in advance ```
closed
2022-08-09T13:16:37Z
2022-08-09T19:11:30Z
https://github.com/gee-community/geemap/issues/1192
[ "bug" ]
josemanuelgis
3
yihong0618/running_page
data-visualization
427
KEEP 导出数据不包含轨迹图
在APP上面看得到轨迹图的,但是用脚本同步到running page的时候。地图就显示 no map data for this run. REF LINK: Sync task: https://github.com/Kilerd/running_page/actions/runs/5324115043/jobs/9642943711 Commit data: https://github.com/Kilerd/running_page/commit/67634935339ba192a18d74ea96647ec7fd5d2c6e website: https://kilerd.github.io/running_page/
closed
2023-06-20T15:03:21Z
2023-11-01T14:20:35Z
https://github.com/yihong0618/running_page/issues/427
[]
Kilerd
9
keras-rl/keras-rl
tensorflow
290
All policies select_action() func return value of 0 or 1
Hi all, I'm trying to setup a reinforcement learning project using Gym & kears_rl. **_Description:_** Given a numbers in a range (100, 200), I want the agent to alert me when a number is close to the limits, lets say between 0%-10% and 90%-100% of the quantiles. **_Environment info:_** The environment reward: quantile [0, 0.1] -> reward = 1 quantile [0.1, 0.9] -> reward = -1 quantile [0.9, 1] -> reward = 1 The agent need to learn the 10% & 90% limits values. Here is the `observation_space `& `action_space `properties in my environment.py: ``` low = np.array([100]) high = np.array([200]) self.action_space = spaces.Box(low=low, high=high, dtype=np.intt32) self.observation_space = spaces.Box(low=low, high=high, dtype=np.int32) ``` **_main.py info:_** ``` if __name__ == '__main__': env = Env(max_steps=100) nb_actions = env.action_space.shape[0] # equal to 100 model = Sequential() model.add(Flatten(input_shape=(1,) + env.observation_space.shape)) model.add(Dense(8, activation='relu')) model.add(Dense(8, activation='relu')) model.add(Dense(2, activation='softmax')) memory = SequentialMemory(limit=50000, window_length=1) policy = BoltzmannQPolicy() # Create DQN agent dqn = DQNAgent(model=env.model, memory=memory, policy=policy, nb_actions=nb_actions, nb_steps_warmup=10, target_model_update=1e-2) # Compile the DQN agent dqn.compile(Adam(lr=1e-3), metrics=['mae']) # Okay, now it's time to learn something! dqn.fit(env, nb_steps=50000, visualize=False, verbose=1) ``` **_Questions\issues:_** 1. On the fit function (rl/core.py:169), the `action `I get equal to zero. it should be between [100, 200]. Why is that? I expect the action to be within the action_space but I see that all policies return a value of 0 or 1. How I suppose to use the value in the env.step() func? It sounds simple, but I just can't get my head around this one... :( Any help is much appreciated. Thanks.
closed
2019-01-30T11:43:44Z
2019-05-07T17:31:50Z
https://github.com/keras-rl/keras-rl/issues/290
[ "wontfix" ]
yaniv11386
1
Anjok07/ultimatevocalremovergui
pytorch
1,439
使用uvr5产生报错
下面是报错文本 Last Error Received: Process: VR Architecture If this error persists, please contact the developers with the error details. Raw Error Details: MemoryError: "Unable to allocate 1.43 GiB for an array with shape (2, 769, 125046) and data type complex64" Traceback Error: " File "UVR.py", line 6638, in process_start File "separate.py", line 1055, in seperate File "separate.py", line 1196, in inference_vr File "separate.py", line 1173, in postprocess " Error Time Stamp [2024-07-01 18:46:21] Full Application Settings: vr_model: 3_HP-Vocal-UVR aggression_setting: 5 window_size: 512 mdx_segment_size: 256 batch_size: Default crop_size: 256 is_tta: False is_output_image: False is_post_process: False is_high_end_process: False post_process_threshold: 0.2 vr_voc_inst_secondary_model: No Model Selected vr_other_secondary_model: No Model Selected vr_bass_secondary_model: No Model Selected vr_drums_secondary_model: No Model Selected vr_is_secondary_model_activate: False vr_voc_inst_secondary_model_scale: 0.9 vr_other_secondary_model_scale: 0.7 vr_bass_secondary_model_scale: 0.5 vr_drums_secondary_model_scale: 0.5 demucs_model: Choose Model segment: Default overlap: 0.25 overlap_mdx: Default overlap_mdx23: 8 shifts: 2 chunks_demucs: Auto margin_demucs: 44100 is_chunk_demucs: False is_chunk_mdxnet: False is_primary_stem_only_Demucs: False is_secondary_stem_only_Demucs: False is_split_mode: True is_demucs_combine_stems: True is_mdx23_combine_stems: True demucs_voc_inst_secondary_model: No Model Selected demucs_other_secondary_model: No Model Selected demucs_bass_secondary_model: No Model Selected demucs_drums_secondary_model: No Model Selected demucs_is_secondary_model_activate: False demucs_voc_inst_secondary_model_scale: 0.9 demucs_other_secondary_model_scale: 0.7 demucs_bass_secondary_model_scale: 0.5 demucs_drums_secondary_model_scale: 0.5 demucs_pre_proc_model: No Model Selected is_demucs_pre_proc_model_activate: False is_demucs_pre_proc_model_inst_mix: False mdx_net_model: UVR-MDX-NET Inst HQ 3 chunks: Auto margin: 44100 compensate: Auto denoise_option: None is_match_frequency_pitch: True phase_option: Automatic phase_shifts: None is_save_align: False is_match_silence: True is_spec_match: False is_mdx_c_seg_def: False is_invert_spec: False is_deverb_vocals: False deverb_vocal_opt: Main Vocals Only voc_split_save_opt: Lead Only is_mixer_mode: False mdx_batch_size: Default mdx_voc_inst_secondary_model: No Model Selected mdx_other_secondary_model: No Model Selected mdx_bass_secondary_model: No Model Selected mdx_drums_secondary_model: No Model Selected mdx_is_secondary_model_activate: False mdx_voc_inst_secondary_model_scale: 0.9 mdx_other_secondary_model_scale: 0.7 mdx_bass_secondary_model_scale: 0.5 mdx_drums_secondary_model_scale: 0.5 is_save_all_outputs_ensemble: True is_append_ensemble_name: False chosen_audio_tool: Manual Ensemble choose_algorithm: Min Spec time_stretch_rate: 2.0 pitch_rate: 2.0 is_time_correction: True is_gpu_conversion: True is_primary_stem_only: True is_secondary_stem_only: False is_testing_audio: False is_auto_update_model_params: True is_add_model_name: False is_accept_any_input: False is_task_complete: False is_normalization: False is_use_opencl: False is_wav_ensemble: False is_create_model_folder: False mp3_bit_set: 320k semitone_shift: 0 save_format: WAV wav_type_set: 32-bit Float device_set: NVIDIA GeForce RTX 3060 Laptop GPU:0 help_hints_var: True set_vocal_splitter: No Model Selected is_set_vocal_splitter: False is_save_inst_set_vocal_splitter: False model_sample_mode: False model_sample_mode_duration: 30 demucs_stems: All Stems mdx_stems: All Stems
open
2024-07-01T10:55:13Z
2024-07-01T10:56:07Z
https://github.com/Anjok07/ultimatevocalremovergui/issues/1439
[]
FanBo555
1
tatsu-lab/stanford_alpaca
deep-learning
312
openai version
May I know which version of openai is used for training? I wonder if which version provides openai_object since the latest one does not support it. Thank you!
closed
2024-02-29T09:05:54Z
2024-03-02T09:39:32Z
https://github.com/tatsu-lab/stanford_alpaca/issues/312
[]
cswangxiaowei
1
CorentinJ/Real-Time-Voice-Cloning
pytorch
780
pip3 install -r requirements.txt not working
when i try to run pip3 install -r requirements.txt it gives me an error saying Command "python setup.py egg_info" failed with error code 1 in /tmp/pip-install-z3vkjilm/PyQt5/
closed
2021-06-21T02:35:44Z
2021-06-21T02:57:34Z
https://github.com/CorentinJ/Real-Time-Voice-Cloning/issues/780
[]
smithblaze911
0
plotly/dash-bio
dash
28
create common user for all dash gallery apps
as mentioned in : https://github.com/plotly/streambed/issues/11788#issuecomment-436746312 - [x] see with Chelsea if this user already exists - [x] create `developers`/`dataliberation` user on dds - [x] dash-gallery exceeded the 15 person license, checkup with Hamza on that, as new user cannot create apps - [x] delete /dash-bio app from sham's account (if not there's url conflict..) - [x] add dash-bio path to common user - [ ] setup environment requirements for dash-bio app so that Chitra's app works: https://github.com/plotly/streambed/issues/11803 - [x] redeploy master with `developers` as user - [x] edit pr template with new steps for deployment, now everyone will be responsible for redeploy once they merge to master
closed
2018-11-11T17:01:23Z
2018-11-30T00:52:29Z
https://github.com/plotly/dash-bio/issues/28
[]
VeraZab
1
home-assistant/core
python
140,591
BUG: utility_meter.reset action does not populate recommendation list
### The problem when using utility_meter.reset action in the UI it does not recommend utility meters you have but if you manually enter one by its entity name it does function correctly. this does not happen with utility_meter.calibrate which works as expected ![Image](https://github.com/user-attachments/assets/e72f6fc6-7654-47d6-9e51-7159f187270d) ![Image](https://github.com/user-attachments/assets/3b884111-f7c2-4eac-ba09-d2606c83acc4) Spoke with @frenck about this on discord and it looks as if its an old backwards compatibility issue from 3 years ago. ### What version of Home Assistant Core has the issue? 2025.3.2 ### What was the last working version of Home Assistant Core? _No response_ ### What type of installation are you running? Home Assistant OS ### Integration causing the issue Utility Meter ### Link to integration documentation on our website https://www.home-assistant.io/integrations/utility_meter/ ### Diagnostics information _No response_ ### Example YAML snippet ```yaml ``` ### Anything in the logs that might be useful for us? ```txt ``` ### Additional information _No response_
open
2025-03-14T11:26:31Z
2025-03-14T12:19:09Z
https://github.com/home-assistant/core/issues/140591
[ "integration: utility_meter" ]
MichaelMKKelly
4
pytorch/pytorch
machine-learning
149,828
bump XNNPACK dependency to fix GCC 14 build on aarch64-linux
### 🐛 Describe the bug bundled version of XNNPACK cannot be built on aarch64-linux with GCC14 because of this issue https://github.com/google/XNNPACK/issues/7726 the issue has been fixed in XNNPACK in the meanwhile: https://github.com/google/XNNPACK/commit/3bc2a32a44db62434248197bceefa37f4f05153e suggestion: bump the XNNPACK dependency in `third_party` to newer commit which contains the fix ### Versions 2.6.0 cc @malfet @seemethere @snadampal @milpuz01 @aditew01 @nikhil-arm @fadara01
open
2025-03-23T15:16:07Z
2025-03-24T03:51:04Z
https://github.com/pytorch/pytorch/issues/149828
[ "module: build", "triaged", "actionable", "module: xnnpack", "module: arm" ]
prusnak
1
Evil0ctal/Douyin_TikTok_Download_API
fastapi
306
[BUG] 抖音获取数据时失败
***发生错误的平台?*** 如:抖音 ***发生错误的端点?*** 如:API-V1/API-V2 ***提交的输入值?*** 如:短视频链接 ***是否有再次尝试?*** 如:是,发生错误后X时间后错误依旧存在。 ***你有查看本项目的自述文件或接口文档吗?*** 如:有,并且很确定该问题是程序导致的。 *******报错提示如下*********** ValueError: 获取抖音视频数据出错了: 0, message='Attempt to decode JSON with unexpected mimetype: text/plain; charset=utf-8', url=URL('https://www.douyin.com/aweme/v1/web/aweme/detail/?device_platform=webapp&aid=6383&channel=channel_pc_web&aweme_id=7289724683019111714&pc_client_type=1&version_code=190500&version_name=19.5.0&cookie_enabled=true&screen_width=1344&screen_height=756&browser_language=zh-CN&browser_platform=Win32&browser_name=Firefox&browser_version=118.0&browser_online=true&engine_name=Gecko&engine_version=109.0&os_name=Windows&os_version=10&cpu_core_num=16&device_memory=&platform=PC&webid=7284189800734082615&msToken=B1N9FM825TkvFbayDsDvZxM8r5suLrsfQbC93TciS0O9Iii8iJpAPd__FM2rpLUJi5xtMencSXLeNn8xmOS9q7bP0CUsrt9oVTL08YXLPRzZm0dHKLc9PGRlyEk=&X-Bogus=DFSzswSLaJ0ANnEftYQ3ot9WcBnF')
closed
2023-10-23T11:27:16Z
2024-02-07T03:43:41Z
https://github.com/Evil0ctal/Douyin_TikTok_Download_API/issues/306
[ "BUG" ]
jiupinjiandingshi
1
ckan/ckan
api
8,092
readthedocs sphinx build failures
## CKAN version master ## Describe the bug infinite loop in build, looks like no tags are returned from `git log`? ### Steps to reproduce check sphinx logs ### Expected behavior build docs on rtd working ### Additional details ```python-traceback Traceback (most recent call last): File "/home/docs/checkouts/readthedocs.org/user_builds/ckan/envs/latest/lib/python3.10/site-packages/sphinx/config.py", line 358, in eval_config_file exec(code, namespace) # NoQA: S102 File "/home/docs/checkouts/readthedocs.org/user_builds/ckan/checkouts/latest/doc/conf.py", line 388, in <module> current_release_tag_value = get_current_release_tag() File "/home/docs/checkouts/readthedocs.org/user_builds/ckan/checkouts/latest/doc/conf.py", line 211, in get_current_release_tag return get_latest_release_tag() File "/home/docs/checkouts/readthedocs.org/user_builds/ckan/checkouts/latest/doc/conf.py", line 228, in get_latest_release_tag return get_latest_release_version() File "/home/docs/checkouts/readthedocs.org/user_builds/ckan/checkouts/latest/doc/conf.py", line 237, in get_latest_release_version version = get_latest_release_tag()[len('ckan-'):] File "/home/docs/checkouts/readthedocs.org/user_builds/ckan/checkouts/latest/doc/conf.py", line 228, in get_latest_release_tag return get_latest_release_version() File "/home/docs/checkouts/readthedocs.org/user_builds/ckan/checkouts/latest/doc/conf.py", line 237, in get_latest_release_version version = get_latest_release_tag()[len('ckan-'):] … ```
closed
2024-02-28T20:29:59Z
2024-03-07T09:31:31Z
https://github.com/ckan/ckan/issues/8092
[]
wardi
0
sinaptik-ai/pandas-ai
data-visualization
1,669
Addition of LLM base models
### 🚀 The feature Instead of calling a LLM via API, I want the library to be capable of leveraging base models(Llama, Deepseek etc.) installed in the local machine. ### Motivation, pitch Hi! I was trying out the library but found myself running out of tokens pretty quickly. I believe that adding an option to add the base models can be really effective for users who want to leverage their computational resources for the task and build their applications. ### Alternatives _No response_ ### Additional context _No response_
closed
2025-03-11T15:47:56Z
2025-03-14T16:47:12Z
https://github.com/sinaptik-ai/pandas-ai/issues/1669
[]
SnehalBhartiya
3
autogluon/autogluon
data-science
4,966
[BUG] Incorrect learning rate schedule when using multiple GPUs in `MultiModalPredictor`
**Bug Report Checklist** <!-- Please ensure at least one of the following to help the developers troubleshoot the problem: --> - [x] I provided code that demonstrates a minimal reproducible example. <!-- Ideal, especially via source install --> - [x] I confirmed bug exists on the latest mainline of AutoGluon via source install. <!-- Preferred --> - [x] I confirmed bug exists on the latest stable version of AutoGluon. <!-- Unnecessary if prior items are checked --> **Describe the bug** <!-- A clear and concise description of what the bug is. --> Based on [this line](https://github.com/autogluon/autogluon/blob/e1961672e5d34661ab2e4e78dba64a8741cc88f0/multimodal/src/autogluon/multimodal/optimization/lit_module.py#L384) we have that the maximum number of steps for the training of `MultiModalPredictor` is computed as ``` max_steps = ( len(self.trainer.datamodule.train_dataloader()) * self.trainer.max_epochs // self.trainer.accumulate_grad_batches ) ``` However, `len(self.trainer.datamodule.train_dataloader())` will return the number of steps in one epoch **before considering the number of GPUs used for training**. **Example**: 1. I have a dataset of 800 samples and a batch size of 10 -> one epoch will take 80 steps. 1. I train on a machine with 4 GPUs -> effective batch size becomes 40 -> one epoch will take 20 steps. 1. I train for 5 epochs -> `max_steps=100`. 1. `MultiModalPredictor` will compute `max_steps=400` and will set the learning rate schedule accordingly. 1. As a consequence, if I choose `warmup_steps=0.1` (so that 10% of total training steps should be devoted to warmup) and `lr_schedule="cosine_decay"` (so that the learning rate should decay up to a value of 0 at the very last training step), I will actually see that **40% of the training steps are devoted to warmup and after that the learning rate decays slowly up to some positive, non-zero value**. **Expected behavior** <!-- A clear and concise description of what you expected to happen. --> In the example above, we would expect to see a linear growth in the learning rate for the first 10% of the training and then a cosine decay up to 0 at the very last step. **To Reproduce** <!-- A minimal script to reproduce the issue. Links to Colab notebooks or similar tools are encouraged. If the code is too long, feel free to put it in a public gist and link it in the issue: https://gist.github.com. In short, we are going to copy-paste your code to run it and we expect to get the same result as you. --> Minimal example: [gist](https://gist.github.com/SnoopKilla/cba71dd9f2ce99e4371a51b46b872f57) **Steps to reproduce**: 1. Run the code on a machine with 4 GPUs available. 2. Check the tensorboard logs for the plotted learning rate schedule and assert that it is not as expected. **Screenshots / Logs** <!-- If applicable, add screenshots or logs to help explain your problem. --> <img width="951" alt="Image" src="https://github.com/user-attachments/assets/eb2c7cca-752b-4595-aa89-c5cb1e6c05b2" /> **Installed Versions** <!-- Please run the following code snippet: --> <details> ``` INSTALLED VERSIONS ------------------ date : 2025-03-07 time : 21:52:25.057437 python : 3.11.10.final.0 OS : Linux OS-release : 4.14.355-275.570.amzn2.x86_64 Version : #1 SMP Sat Nov 30 09:51:35 UTC 2024 machine : x86_64 processor : x86_64 num_cores : 96 cpu_ram_mb : 382905.51953125 cuda version : 12.550.127.05 num_gpus : 4 gpu_ram_mb : [22500, 22245, 22500, 22500] avail_disk_size_mb : 441560 accelerate : 0.34.2 autogluon : 1.2 autogluon.common : 1.2 autogluon.core : 1.2 autogluon.features : 1.2 autogluon.multimodal : 1.2 autogluon.tabular : 1.2 autogluon.timeseries : 1.2 boto3 : 1.35.63 catboost : 1.2.7 coreforecast : 0.0.12 defusedxml : 0.7.1 einops : 0.8.0 evaluate : 0.4.3 fastai : 2.7.18 fugue : 0.9.1 gluonts : 0.16.0 huggingface-hub : 0.26.2 hyperopt : 0.2.7 imodels : None jinja2 : 3.1.4 joblib : 1.4.2 jsonschema : 4.21.1 lightgbm : 4.5.0 lightning : 2.4.0 matplotlib : 3.9.2 mlforecast : 0.13.4 networkx : 3.4.2 nlpaug : 1.1.11 nltk : 3.8.1 numpy : 1.26.4 nvidia-ml-py3 : 7.352.0 omegaconf : 2.2.3 onnx : None onnxruntime : None onnxruntime-gpu : None openmim : 0.3.9 optimum : None optimum-intel : None orjson : 3.10.12 pandas : 2.2.3 pdf2image : 1.17.0 Pillow : 10.4.0 psutil : 6.1.0 pyarrow : 18.0.0 pytesseract : 0.3.10 pytorch-lightning : 2.4.0 pytorch-metric-learning: 2.3.0 ray : 2.39.0 requests : 2.32.3 scikit-image : 0.24.0 scikit-learn : 1.5.2 scikit-learn-intelex : None scipy : 1.14.1 seqeval : 1.2.2 skl2onnx : None spacy : 3.7.5 statsforecast : 1.7.8 tabpfn : None tensorboard : 2.18.0 text-unidecode : 1.3 timm : 1.0.3 torch : 2.5.1+cu124 torchmetrics : 1.2.1 torchvision : 0.20.1+cu124 tqdm : 4.66.5 transformers : 4.47.1 utilsforecast : 0.2.4 vowpalwabbit : None xgboost : 2.1.3 None ``` </details>
open
2025-03-07T21:53:31Z
2025-03-07T21:53:31Z
https://github.com/autogluon/autogluon/issues/4966
[ "bug: unconfirmed", "Needs Triage" ]
SnoopKilla
0
huggingface/text-generation-inference
nlp
2,670
Prefix caching causes 2 different responses from the same HTTP call with seed set depending on what machine calls
### System Info tag:2.3.1 docker image running on nvidia 4090 on top of 20.04 Ubuntu ``` 2024-10-18T19:25:04.160854Z INFO text_generation_launcher: Args { model_id: "Qwen/Qwen2.5-Coder-1.5B", revision: None, validation_workers: 2, sharded: None, num_shard: None, quantize: Some( Fp8, ), speculate: Some( 6, ), dtype: None, trust_remote_code: false, max_concurrent_requests: 128, max_best_of: 2, max_stop_sequences: 4, max_top_n_tokens: 5, max_input_tokens: Some( 9000, ), max_input_length: None, max_total_tokens: Some( 9999, ), waiting_served_ratio: 0.3, max_batch_prefill_tokens: Some( 10000, ), max_batch_total_tokens: None, max_waiting_tokens: 20, max_batch_size: None, cuda_graphs: None, hostname: "3f2367249b02", port: 80, shard_uds_path: "/tmp/text-generation-server", master_addr: "localhost", master_port: 29500, huggingface_hub_cache: None, weights_cache_override: None, disable_custom_kernels: false, cuda_memory_fraction: 1.0, rope_scaling: None, rope_factor: None, json_output: false, otlp_endpoint: None, otlp_service_name: "text-generation-inference.router", cors_allow_origin: [], api_key: None, watermark_gamma: None, watermark_delta: None, ngrok: false, ngrok_authtoken: None, ngrok_edge: None, tokenizer_config_path: None, disable_grammar_support: false, env: false, max_client_batch_size: 4, lora_adapters: None, usage_stats: On, } ``` ### Information - [X] Docker - [ ] The CLI directly ### Tasks - [X] An officially supported command - [ ] My own modifications ### Reproduction Dumped the raw HTTP request from my server that is calling then replicated on my personal machine to the same TGI server and get 2 different responses. I dumped the raw HTTP calls because after validating the payload my only thought was maybe headers but there are no headers included aside from Content-Type and Content-Length. Using fasthttp in golang to make the call. The current example isn't the best since the responses are close. Normally I get garbage from the server call and quality from the local machine call. I tried rolling back to v2.2.0 to exclude prefix caching in case that was the problem but the qwen model is not supported. Is it possible to disable prefix caching to test? Server ``` POST /generate HTTP/1.1 Host: <REDACTED>:8080 Content-Type: application/json Content-Length: 789 {"inputs":"\u003c|file_sep|\u003ebot/tts_handler.py\n\u003c|fim_prefix|\u003eimport io\nimport logging\nfrom elevenlabs import generate, Voice, VoiceSettings, set_api_key\nfrom config import Config\n\nlogger= logging.getLogger(__name__)\n\nclass TTSHandler:\n def __init(self, config: Config):\n self.config = config\n self.voice = Voice(config.voice_id)\n self.voice_settings = VoiceSettings(config.voice_settings)\n \u003c|fim_suffix|\u003e\n \n\n\n\u003c|fim_middle|\u003e","parameters":{"do_sample":false,"max_new_tokens":1000,"return_full_text":false,"stop":["\u003c|file_sep|\u003e","\u003c|repo_name|\u003e","\u003c|fim_prefix|\u003e","\n"],"seed":69420,"temperature":0.3,"top_k":50,"top_p":0.8,"watermark":false,"details":true},"stream":false} ``` Response ``` {"generated_text":"set_api_key(config.elevenlabs_api_key1\n","details":{"finish_reason":"stop_sequence","generated_tokens":12,"seed":69420,"prefill":[],"tokens":[{"id":746,"text":"set","logprob":0.0,"special":false},{"id":11697,"text":"_api","logprob":0.0,"special":false},{"id":3097,"text":"_key","logprob":0.0,"special":false},{"id":8754,"text":"(config","logprob":0.0,"special":false},{"id":1734,"text":".e","logprob":0.0,"special":false},{"id":273,"text":"le","logprob":0.0,"special":false},{"id":1037,"text":"ven","logprob":0.0,"special":false},{"id":70271,"text":"labs","logprob":0.0,"special":false},{"id":11697,"text":"_api","logprob":0.0,"special":false},{"id":3097,"text":"_key","logprob":0.0,"special":false},{"id":16,"text":"1","logprob":0.0,"special":false},{"id":198,"text":"\n","logprob":0.0,"special":false}]}} ``` Local ``` POST /generate HTTP/1.1 Host: <REDACTED>:8080 Content-Type: application/json Content-Length: 789 {"inputs":"\u003c|file_sep|\u003ebot/tts_handler.py\n\u003c|fim_prefix|\u003eimport io\nimport logging\nfrom elevenlabs import generate, Voice, VoiceSettings, set_api_key\nfrom config import Config\n\nlogger= logging.getLogger(__name__)\n\nclass TTSHandler:\n def __init(self, config: Config):\n self.config = config\n self.voice = Voice(config.voice_id)\n self.voice_settings = VoiceSettings(config.voice_settings)\n \u003c|fim_suffix|\u003e\n \n\n\n\u003c|fim_middle|\u003e","parameters":{"do_sample":false,"max_new_tokens":1000,"return_full_text":false,"stop":["\u003c|file_sep|\u003e","\u003c|repo_name|\u003e","\u003c|fim_prefix|\u003e","\n"],"seed":69420,"temperature":0.3,"top_k":50,"top_p":0.8,"watermark":false,"details":true},"stream":false} ``` Response ``` {"generated_text":"set_api_key(config.elevenlabs_api_key(config123456789012\\\n","details":{"finish_reason":"stop_sequence","generated_tokens":25,"seed":69420,"prefill":[],"tokens":[{"id":746,"text":"set","logprob":0.0,"special":false},{"id":11697,"text":"_api","logprob":0.0,"special":false},{"id":3097,"text":"_key","logprob":0.0,"special":false},{"id":8754,"text":"(config","logprob":0.0,"special":false},{"id":1734,"text":".e","logprob":0.0,"special":false},{"id":273,"text":"le","logprob":0.0,"special":false},{"id":1037,"text":"ven","logprob":0.0,"special":false},{"id":70271,"text":"labs","logprob":0.0,"special":false},{"id":11697,"text":"_api","logprob":0.0,"special":false},{"id":3097,"text":"_key","logprob":0.0,"special":false},{"id":8754,"text":"(config","logprob":0.0,"special":false},{"id":16,"text":"1","logprob":0.0,"special":false},{"id":17,"text":"2","logprob":0.0,"special":false},{"id":18,"text":"3","logprob":0.0,"special":false},{"id":19,"text":"4","logprob":0.0,"special":false},{"id":20,"text":"5"," logprob":0.0,"special":false},{"id":21,"text":"6","logprob":0.0,"special":false},{"id":22,"text":"7","logprob":0.0,"special":false},{"id":23,"text":"8","logprob":0.0,"special":false},{"id":24,"text":"9","logprob":0.0,"special":false},{"id":15,"text":"0","logprob":0.0,"special":false},{"id":16,"text":"1","logprob":-0.3125,"special":false},{"id":17,"text":"2","logprob":0.0,"special":false},{"id":59,"text":"\\","logprob":-2.078125,"special":false},{"id":198,"text":"\n","logprob":0.0,"special":false}]}} ``` ### Expected behavior Same response with the same call to the same tgi server regardless of the macine
open
2024-10-18T21:53:57Z
2024-10-23T20:05:06Z
https://github.com/huggingface/text-generation-inference/issues/2670
[]
sam-ulrich1
5
onnx/onnx
pytorch
6,561
No Adapter From Version $17 for GroupNormalization
# Ask a Question ### Question Im trying to convert my onnx model (with GroupNormalization op) from domain version 11 to 21 by using ` converted_model = version_converter.convert_version(model, 21)` and got error `line 37, in convert_version converted_model_str = C.convert_version(model_str, target_version) RuntimeError: /github/workspace/onnx/version_converter/BaseConverter.h:73: adapter_lookup: Assertion `false` failed: No Adapter From Version $17 for GroupNormalization ` ### Further information and my onnx version info etc as following ` >>> import onnx >>> onnx.__version__ '1.16.0' >>> onnx.defs.onnx_opset_version() 21 >>> ` and GN supporting info on onnx official doc is like following ![image](https://github.com/user-attachments/assets/5eedeee5-3c1f-4b58-9dfa-19aa9222686b) how can i fix this "No adapter" problem? i also tried upgrade onnx==1.17.0, and got the same issue.
open
2024-11-29T10:44:41Z
2024-11-29T10:44:41Z
https://github.com/onnx/onnx/issues/6561
[ "question" ]
yzhou0919
0
healthchecks/healthchecks
django
535
ServiceNow
### Discussed in https://github.com/healthchecks/healthchecks/discussions/532 <div type='discussions-op-text'> <sup>Originally posted by **yellowdigital** June 16, 2021</sup> Hello, We have a requirement to add in integration to ServiceNow platform. Initially we had this working using the existing "webhook" integration and posting in a well formed JSON body string to the webhook. This was working well but was not using strong authentication, only basic Auth in the header. We now need to extend this functionality to allow for an Oauth2 token request phase, then using bearer auth with the returned token, to post the data into the webhook URL. Would anybody be interested in developing an new integration to handle this scenario? We would be prepared to contribute towards the cost of building this and getting it approved into the public repository healthchecks.</div>
open
2021-06-22T11:45:38Z
2023-07-14T17:53:14Z
https://github.com/healthchecks/healthchecks/issues/535
[ "new integration" ]
yellowdigital
0
deeppavlov/DeepPavlov
nlp
1,567
👩‍💻📞 DeepPavlov Community Call #16
Dear DeepPavlov community, We are excited to announce that we are back with our Community Calls in English. The next one will be on May 26! Don’t miss the chance to meet with our team and learn more about building Knowledge Graph-infused AI assistants with DeepPavlov Dream. Daniel Kornev, CPO of DeepPavlov, will talk about DeepPavlov Dream, the first open-source academia-built multiskill AI assistant platform that uses KGs in its skills and in the shared memory of the system. You will find out how the team has integrated KGs into the AI Assistant platform, and how you can leverage it in building your own KG-infused AI assistants today. As always, we are waiting for your suggestions and hope to see them on Calls! **DeepPavlov Community Call #16, English Edition (May 26th, 2022) We’ll hold it on May 26th, 2022 at 16:00 UTC.** > Add to your calendar: > https://bit.ly/DPMonthlyCall We welcome you to join us at our DeepPavlov Community Call #16 to let us know what you think about the latest changes and tell us how DeepPavlov helps you in your projects! > Agenda for DeepPavlov Community Call #16: > > 16:00 –16:10 | Greeting > > 16:10 –16:30 | About DeepPavlov Dream > > 16:30 –17:00 | DeepPavlov Dream: building knowledge graph-based AI assistants > > 17:00 –17:30 | Q&A with DeepPavlov Engineering Team In case you’ve missed the last one, we’ve uploaded a record — [see the playlist](https://bit.ly/DPCommunityCall13_Video). Check it out! ### **DeepPavlov Library Feedback Survey** We want to hear your thoughts. You can fill in this form to let us know how you use DeepPavlov Library, what you want us to add or improve! We are anxious to hear your thoughts! https://bit.ly/DPLibrarySurvey ### ****Interested?**** Please let us know and leave a comment with any topics or questions you’d like to hear about! We can’t promise to cover everything but we’ll do our best later this month or in a future call. After calling in or watching, please do fill in the survey to let us know if you have any feedback on the format or content: https://bit.ly/dpcallsurvey See you! The [DeepPavlov](https://deeppavlov.ai/) team
closed
2022-05-26T12:43:25Z
2022-06-16T11:41:29Z
https://github.com/deeppavlov/DeepPavlov/issues/1567
[ "discussion" ]
PolinaMrdv
0
gevent/gevent
asyncio
1,902
PY311: unknown type name ‘CFrame’
This error occurred post python-greenlet/greenlet#306 ``` building 'gevent._gevent_c_greenlet_primitives' extension gcc -pthread -Wsign-compare -DNDEBUG -g -fwrapv -O3 -Wall -fPIC -I/opt/hostedtoolcache/Python/3.11.0-rc.1/x64/include/python3.11 -I/opt/hostedtoolcache/Python/3.11.0-rc.1/x64/include/python3.11 -I/tmp/pip-install-vmkvai20/gevent_1002667104154261abd2e40bb0aa2cf6/deps -Isrc/gevent -Isrc/gevent/libev -Isrc/gevent/resolver -I. -I/home/runner/work/geventmp/geventmp/target/venv/build/cpython-3.11.0.candidate.1/include -I/opt/hostedtoolcache/Python/3.11.0-rc.1/x64/include/python3.11 -c src/gevent/_greenlet_primitives.c -o build/temp.linux-x86_64-cpython-311/src/gevent/_greenlet_primitives.o In file included from src/gevent/_greenlet_primitives.c:1050: /tmp/pip-install-vmkvai20/gevent_1002667104154261abd2e40bb0aa2cf6/deps/greenlet/greenlet.h:42:5: error: unknown type name ‘CFrame’ 42 | CFrame* cframe; | ^~~~~~ error: command '/usr/bin/gcc' failed with exit code 1 [end of output] ``` https://github.com/karellen/geventmp/runs/8051746537?check_suite_focus=true#step:4:708
closed
2022-08-27T17:02:08Z
2022-10-14T15:05:03Z
https://github.com/gevent/gevent/issues/1902
[]
arcivanov
0
littlecodersh/ItChat
api
925
很好用
itchat真的不错
closed
2020-07-20T02:42:51Z
2023-11-16T12:35:45Z
https://github.com/littlecodersh/ItChat/issues/925
[]
2905683882
2
keras-team/keras
deep-learning
20,576
How do I specify a ragged tensor as an input object in a sequential model (Keras v3)
I am following the [object detection tutorial with yolov8 and kerascv](https://keras.io/examples/vision/yolov8/) However, instead of using yolo for object detection, I would like to use a custom sequential model. My roadblock is at the point of defining the input layer. I would like it to take in a ragged tensor. According to the [keras v2 docs](https://keras.io/2.16/api/layers/core_layers/input/), there is an option to specify `ragged=True` and define the input layer via `inputs = tf.keras.Input(shape = [] , dtype = tf.int64, ragged = True)` However in [keras v3](https://keras.io/api/layers/core_layers/input/), the `ragged` option has been removed. So how do I proceed with defining an input layer that takes in a ragged tensor?
closed
2024-12-02T06:42:20Z
2025-01-31T02:00:17Z
https://github.com/keras-team/keras/issues/20576
[ "stat:awaiting response from contributor", "stale", "type:Bug" ]
fninsiima
4
mitmproxy/mitmproxy
python
6,886
mitmdump crashes on dns requests in reverse proxy mode
#### Problem Description I ran a simple mitmdump instance in reverse proxy mode and when I send DNS requests it crashes and stops listening and proccessing packets. I get `Python interoperability task shutting down. Task failed: UDP recv() failed` error in the logs. This only happens for some domains, for example it doesn't happen for github.com but it happens for google.com. It looks like DNS response retransmission packet is causing the crash. Also tried mitmproxy and mitmweb, they were no different, tried version 9 and it too crashed. This issue is not present in linux. #### Steps to reproduce the behavior: 1. mitmdump --mode reverse:dns://1.1.1.1@53 2. nslookup google.com 127.0.0.1 #### System Information Mitmproxy: 10.3.0 binary Python: 3.12.3 OpenSSL: OpenSSL 3.2.1 30 Jan 2024 Platform: Windows-10-10.0.19045-SP0 #### Logs this is the log without debug: ``` >mitmdump --mode reverse:dns://1.1.1.1@53 [02:31:08.275] reverse proxy to dns://1.1.1.1 listening at *:53. [02:31:16.025][127.0.0.1:51093] client connect [02:31:16.027][127.0.0.1:51093] server connect 1.1.1.1:53 127.0.0.1:51093: DNS QUERY (PTR) 1.0.0.127.in-addr.arpa << NXDOMAIN [02:31:16.157][127.0.0.1:51095] client connect [02:31:16.158][127.0.0.1:51095] server connect 1.1.1.1:53 127.0.0.1:51095: DNS QUERY (A) google.com.lan << NXDOMAIN [02:31:16.287][127.0.0.1:51097] client connect [02:31:16.288][127.0.0.1:51097] server connect 1.1.1.1:53 127.0.0.1:51097: DNS QUERY (AAAA) google.com.lan << NXDOMAIN [02:31:16.415][127.0.0.1:51099] client connect [02:31:16.417][127.0.0.1:51099] server connect 1.1.1.1:53 127.0.0.1:51099: DNS QUERY (A) google.com << 216.239.38.120 [02:31:16.454][127.0.0.1:51101] client connect [02:31:16.456][127.0.0.1:51101] server connect 1.1.1.1:53 127.0.0.1:51101: DNS QUERY (AAAA) google.com << 2001:4860:4802:32::78 127.0.0.1:51099: DNS QUERY (A) google.com << 142.250.186.46 [02:31:16.527] Task failed: UDP recv() failed disabled backtrace [02:31:16.527][127.0.0.1:51097] server disconnect 1.1.1.1:53 [02:31:16.530][127.0.0.1:51097] client disconnect [02:31:16.530][127.0.0.1:51093] server disconnect 1.1.1.1:53 [02:31:16.531][127.0.0.1:51099] server disconnect 1.1.1.1:53 [02:31:16.532][127.0.0.1:51093] client disconnect [02:31:16.532][127.0.0.1:51099] client disconnect [02:31:16.533][127.0.0.1:51095] server disconnect 1.1.1.1:53 [02:31:16.533][127.0.0.1:51101] server disconnect 1.1.1.1:53 [02:31:16.534][127.0.0.1:51095] client disconnect [02:31:16.534][127.0.0.1:51101] client disconnect ``` and with debug: ``` >mitmdump --mode reverse:dns://8.8.8.8@53 --set termlog_verbosity=debug --set console_eventlog_verbosity=debug --set proxy_debug=true [02:33:53.054] Initializing UDP server ... [02:33:53.055] UDP server listening on 0.0.0.0:53 ... [02:33:53.056] UDP server successfully initialized. [02:33:53.071] Initializing UDP server ... [02:33:53.072] UDP server listening on [::]:53 ... [02:33:53.073] UDP server successfully initialized. [02:33:53.073] reverse proxy to dns://8.8.8.8 listening at *:53. [02:33:56.896][127.0.0.1:64743] client connect [02:33:56.896][127.0.0.1:64743] >> Start({}) [02:33:56.897][127.0.0.1:64743] >> Start({}) [02:33:56.898][127.0.0.1:64743] >> DataReceived(client, b'\x00\x01\x01\x00\x00\x01\x00\x00\x00\x00\x00\x00\x011\x010\x010\x03127\x07in-addr\x04arpa\x00\x00\x0c\x00\x01') [02:33:56.899][127.0.0.1:64743] >> DataReceived(client, b'\x00\x01\x01\x00\x00\x01\x00\x00\x00\x00\x00\x00\x011\x010\x010\x03127\x07in-addr\x04arpa\x00\x00\x0c\x00\x01') [02:33:56.900][127.0.0.1:64743] << NextLayerHook(data=NextLayer:None) [02:33:56.900][127.0.0.1:64743] << NextLayerHook(data=NextLayer:None) [02:33:56.901][127.0.0.1:64743] >> Reply(NextLayerHook(data=NextLayer:DNSLayer(state: start)), None) [02:33:56.901][127.0.0.1:64743] >> Reply(NextLayerHook(data=NextLayer:DNSLayer(state: start)), None) [02:33:56.901][127.0.0.1:64743] [nextlayer] DNSLayer(state: start) [02:33:56.902][127.0.0.1:64743] >> Start({}) [02:33:56.903][127.0.0.1:64743] >> DataReceived(client, b'\x00\x01\x01\x00\x00\x01\x00\x00\x00\x00\x00\x00\x011\x010\x010\x03127\x07in-addr\x04arpa\x00\x00\x0c\x00\x01') [02:33:56.904][127.0.0.1:64743] << DnsRequestHook(flow=<DNSFlow request=Message(timestamp=1717196636.9047368, id=1, query=True, op_code=0, authoritative_answer=False, truncation=False, recursion_desired=True, recursion_available=False, reserved=0, response_code=0, questions=[Question(name='1.0.0.127.in-addr.arpa', type=12, class_=1)], answers=[], authorities=[], additionals=[]) response=None >) [02:33:56.905][127.0.0.1:64743] << DnsRequestHook(flow=<DNSFlow [02:33:56.905][127.0.0.1:64743] << DnsRequestHook(flow=<DNSFlow [02:33:56.906][127.0.0.1:64743] >> Reply(DnsRequestHook(flow=<DNSFlow request=Message(timestamp=1717196636.9047368, id=1, query=True, op_code=0, authoritative_answer=False, truncation=False, recursion_desired=True, recursion_available=False, reserved=0, response_code=0, questions=[Question(name='1.0.0.127.in-addr.arpa', type=12, class_=1)], answers=[], authorities=[], additionals=[]) response=None >), None) [02:33:56.906][127.0.0.1:64743] >> Reply(DnsRequestHook(flow=<DNSFlow [02:33:56.907][127.0.0.1:64743] >> Reply(DnsRequestHook(flow=<DNSFlow [02:33:56.907][127.0.0.1:64743] << OpenConnection({'connection': Server({'id': '…5eb969', 'address': ('8.8.8.8', 53), 'transport_protocol': 'udp'})}) [02:33:56.907][127.0.0.1:64743] << OpenConnection({'connection': Server({'id': '…5eb969', 'address': ('8.8.8.8', 53), 'transport_protocol': 'udp'})}) [02:33:56.908][127.0.0.1:64743] << OpenConnection({'connection': Server({'id': '…5eb969', 'address': ('8.8.8.8', 53), 'transport_protocol': 'udp'})}) [02:33:56.910][127.0.0.1:64743] server connect 8.8.8.8:53 [02:33:56.914][127.0.0.1:64743] >> Reply(OpenConnection({'connection': Server({'id': '…5eb969', 'address': ('8.8.8.8', 53), 'peername': ('8.8.8.8', 53), 'sockname': ('192.168.0.17', 64744), 'state': <ConnectionState.OPEN: 3>, 'transport_protocol': 'udp', 'timestamp_start': 1717196636.908739})}), None) [02:33:56.914][127.0.0.1:64743] >> Reply(OpenConnection({'connection': Server({'id': '…5eb969', 'address': ('8.8.8.8', 53), 'peername': ('8.8.8.8', 53), 'sockname': ('192.168.0.17', 64744), 'state': <ConnectionState.OPEN: 3>, 'transport_protocol': 'udp', 'timestamp_start': 1717196636.908… [02:33:56.915][127.0.0.1:64743] << SendData(server, b'\x00\x01\x01\x00\x00\x01\x00\x00\x00\x00\x00\x00\x011\x010\x010\x03127\x07in-addr\x04arpa\x00\x00\x0c\x00\x01') [02:33:56.915][127.0.0.1:64743] << SendData(server, b'\x00\x01\x01\x00\x00\x01\x00\x00\x00\x00\x00\x00\x011\x010\x010\x03127\x07in-addr\x04arpa\x00\x00\x0c\x00\x01') [02:33:56.991][127.0.0.1:64743] >> DataReceived(server, b'\x00\x01\x81\x83\x00\x01\x00\x00\x00\x01\x00\x00\x011\x010\x010\x03127\x07in-addr\x04arpa\x00\x00\x0c\x00\x01\xc0\x16\x00\x06\x00\x01\x00\x00\x07&\x008\x01b\x0fin-addr-servers\xc0\x1e\x05nstld\x04iana\x03org\x00x\x86\xb5L\x00\x00\x07\x08\x00\x00\x03\x84\x00\t:\x80\x00\x00\x0e\x10') [02:33:56.992][127.0.0.1:64743] >> DataReceived(server, b'\x00\x01\x81\x83\x00\x01\x00\x00\x00\x01\x00\x00\x011\x010\x010\x03127\x07in-addr\x04arpa\x00\x00\x0c\x00\x01\xc0\x16\x00\x06\x00\x01\x00\x00\x07&\x008\x01b\x0fin-addr-servers\xc0\x1e\x05nstld\x04iana\x03org\x00x\x86\xb5L\x00\x00\… [02:33:56.993][127.0.0.1:64743] << DnsResponseHook(flow=<DNSFlow request=Message(timestamp=1717196636.9047368, id=1, query=True, op_code=0, authoritative_answer=False, truncation=False, recursion_desired=True, recursion_available=False, reserved=0, response_code=0, questions=[Question(name='1.0.0.127.in-addr.arpa', type=12, class_=1)], answers=[], authorities=[], additionals=[]) response=Message(timestamp=1717196636.9930813, id=1, query=False, op_code=0, authoritative_answer=False, truncation=False, recursion_desired=True, recursion… [02:33:56.996][127.0.0.1:64743] << DnsResponseHook(flow=<DNSFlow 127.0.0.1:64743: DNS QUERY (PTR) 1.0.0.127.in-addr.arpa << NXDOMAIN [02:33:56.997][127.0.0.1:64743] >> Reply(DnsResponseHook(flow=<DNSFlow request=Message(timestamp=1717196636.9047368, id=1, query=True, op_code=0, authoritative_answer=False, truncation=False, recursion_desired=True, recursion_available=False, reserved=0, response_code=0, questions=[Question(name='1.0.0.127.in-addr.arpa', type=12, class_=1)], answers=[], authorities=[], additionals=[]) response=Message(timestamp=1717196636.9930813, id=1, query=False, op_code=0, authoritative_answer=False, truncation=False, recursion_desired=True, rec… [02:33:56.998][127.0.0.1:64743] >> Reply(DnsResponseHook(flow=<DNSFlow [02:33:56.998][127.0.0.1:64743] << SendData(client, b'\x00\x01\x81\x83\x00\x01\x00\x00\x00\x01\x00\x00\x011\x010\x010\x03127\x07in-addr\x04arpa\x00\x00\x0c\x00\x01\x07in-addr\x04arpa\x00\x00\x06\x00\x01\x00\x00\x07&\x008\x01b\x0fin-addr-servers\xc0\x1e\x05nstld\x04iana\x03org\x00x\x86\xb5L\x00\x00\x07\x08\x00\x00\x03\x84\x00\t:\x80\x00\x00\x0e\x10') [02:33:56.999][127.0.0.1:64743] << SendData(client, b'\x00\x01\x81\x83\x00\x01\x00\x00\x00\x01\x00\x00\x011\x010\x010\x03127\x07in-addr\x04arpa\x00\x00\x0c\x00\x01\x07in-addr\x04arpa\x00\x00\x06\x00\x01\x00\x00\x07&\x008\x01b\x0fin-addr-servers\xc0\x1e\x05nstld\x04iana\x03org\x00x\x86\xb… [02:33:57.001][127.0.0.1:64745] client connect [02:33:57.001][127.0.0.1:64745] >> Start({}) [02:33:57.002][127.0.0.1:64745] >> Start({}) [02:33:57.003][127.0.0.1:64745] >> DataReceived(client, b'\x00\x02\x01\x00\x00\x01\x00\x00\x00\x00\x00\x00\x06google\x03com\x03lan\x00\x00\x01\x00\x01') [02:33:57.003][127.0.0.1:64745] >> DataReceived(client, b'\x00\x02\x01\x00\x00\x01\x00\x00\x00\x00\x00\x00\x06google\x03com\x03lan\x00\x00\x01\x00\x01') [02:33:57.003][127.0.0.1:64745] << NextLayerHook(data=NextLayer:None) [02:33:57.004][127.0.0.1:64745] << NextLayerHook(data=NextLayer:None) [02:33:57.004][127.0.0.1:64745] >> Reply(NextLayerHook(data=NextLayer:DNSLayer(state: start)), None) [02:33:57.004][127.0.0.1:64745] >> Reply(NextLayerHook(data=NextLayer:DNSLayer(state: start)), None) [02:33:57.005][127.0.0.1:64745] [nextlayer] DNSLayer(state: start) [02:33:57.008][127.0.0.1:64745] >> Start({}) [02:33:57.008][127.0.0.1:64745] >> DataReceived(client, b'\x00\x02\x01\x00\x00\x01\x00\x00\x00\x00\x00\x00\x06google\x03com\x03lan\x00\x00\x01\x00\x01') [02:33:57.009][127.0.0.1:64745] << DnsRequestHook(flow=<DNSFlow request=Message(timestamp=1717196637.0096836, id=2, query=True, op_code=0, authoritative_answer=False, truncation=False, recursion_desired=True, recursion_available=False, reserved=0, response_code=0, questions=[Question(name='google.com.lan', type=1, class_=1)], answers=[], authorities=[], additionals=[]) response=None >) [02:33:57.010][127.0.0.1:64745] << DnsRequestHook(flow=<DNSFlow [02:33:57.010][127.0.0.1:64745] << DnsRequestHook(flow=<DNSFlow [02:33:57.011][127.0.0.1:64745] >> Reply(DnsRequestHook(flow=<DNSFlow request=Message(timestamp=1717196637.0096836, id=2, query=True, op_code=0, authoritative_answer=False, truncation=False, recursion_desired=True, recursion_available=False, reserved=0, response_code=0, questions=[Question(name='google.com.lan', type=1, class_=1)], answers=[], authorities=[], additionals=[]) response=None >), None) [02:33:57.011][127.0.0.1:64745] >> Reply(DnsRequestHook(flow=<DNSFlow [02:33:57.012][127.0.0.1:64745] >> Reply(DnsRequestHook(flow=<DNSFlow [02:33:57.013][127.0.0.1:64745] << OpenConnection({'connection': Server({'id': '…599044', 'address': ('8.8.8.8', 53), 'transport_protocol': 'udp'})}) [02:33:57.013][127.0.0.1:64745] << OpenConnection({'connection': Server({'id': '…599044', 'address': ('8.8.8.8', 53), 'transport_protocol': 'udp'})}) [02:33:57.013][127.0.0.1:64745] << OpenConnection({'connection': Server({'id': '…599044', 'address': ('8.8.8.8', 53), 'transport_protocol': 'udp'})}) [02:33:57.015][127.0.0.1:64745] server connect 8.8.8.8:53 [02:33:57.016][127.0.0.1:64745] >> Reply(OpenConnection({'connection': Server({'id': '…599044', 'address': ('8.8.8.8', 53), 'peername': ('8.8.8.8', 53), 'sockname': ('192.168.0.17', 64746), 'state': <ConnectionState.OPEN: 3>, 'transport_protocol': 'udp', 'timestamp_start': 1717196637.0141444})}), None) [02:33:57.016][127.0.0.1:64745] >> Reply(OpenConnection({'connection': Server({'id': '…599044', 'address': ('8.8.8.8', 53), 'peername': ('8.8.8.8', 53), 'sockname': ('192.168.0.17', 64746), 'state': <ConnectionState.OPEN: 3>, 'transport_protocol': 'udp', 'timestamp_start': 1717196637.014… [02:33:57.016][127.0.0.1:64745] << SendData(server, b'\x00\x02\x01\x00\x00\x01\x00\x00\x00\x00\x00\x00\x06google\x03com\x03lan\x00\x00\x01\x00\x01') [02:33:57.016][127.0.0.1:64745] << SendData(server, b'\x00\x02\x01\x00\x00\x01\x00\x00\x00\x00\x00\x00\x06google\x03com\x03lan\x00\x00\x01\x00\x01') [02:33:57.224][127.0.0.1:64745] >> DataReceived(server, b'\x00\x02\x81\x83\x00\x01\x00\x00\x00\x01\x00\x00\x06google\x03com\x03lan\x00\x00\x01\x00\x01\x00\x00\x06\x00\x01\x00\x01Qk\x00@\x01a\x0croot-servers\x03net\x00\x05nstld\x0cverisign-grs\x03com\x00x\xa4\x99n\x00\x00\x07\x08\x00\x00\x03\x84\x00\t:\x80\x00\x01Q\x80') [02:33:57.224][127.0.0.1:64745] >> DataReceived(server, b'\x00\x02\x81\x83\x00\x01\x00\x00\x00\x01\x00\x00\x06google\x03com\x03lan\x00\x00\x01\x00\x01\x00\x00\x06\x00\x01\x00\x01Qk\x00@\x01a\x0croot-servers\x03net\x00\x05nstld\x0cverisign-grs\x03com\x00x\xa4\x99n\x00\x00\x07\x08\x00\x00\… [02:33:57.226][127.0.0.1:64745] << DnsResponseHook(flow=<DNSFlow request=Message(timestamp=1717196637.0096836, id=2, query=True, op_code=0, authoritative_answer=False, truncation=False, recursion_desired=True, recursion_available=False, reserved=0, response_code=0, questions=[Question(name='google.com.lan', type=1, class_=1)], answers=[], authorities=[], additionals=[]) response=Message(timestamp=1717196637.226156, id=2, query=False, op_code=0, authoritative_answer=False, truncation=False, recursion_desired=True, recursion_available… [02:33:57.237][127.0.0.1:64745] << DnsResponseHook(flow=<DNSFlow 127.0.0.1:64745: DNS QUERY (A) google.com.lan << NXDOMAIN [02:33:57.239][127.0.0.1:64745] >> Reply(DnsResponseHook(flow=<DNSFlow request=Message(timestamp=1717196637.0096836, id=2, query=True, op_code=0, authoritative_answer=False, truncation=False, recursion_desired=True, recursion_available=False, reserved=0, response_code=0, questions=[Question(name='google.com.lan', type=1, class_=1)], answers=[], authorities=[], additionals=[]) response=Message(timestamp=1717196637.226156, id=2, query=False, op_code=0, authoritative_answer=False, truncation=False, recursion_desired=True, recursion_ava… [02:33:57.240][127.0.0.1:64745] >> Reply(DnsResponseHook(flow=<DNSFlow [02:33:57.241][127.0.0.1:64745] << SendData(client, b'\x00\x02\x81\x83\x00\x01\x00\x00\x00\x01\x00\x00\x06google\x03com\x03lan\x00\x00\x01\x00\x01\x00\x00\x06\x00\x01\x00\x01Qk\x00@\x01a\x0croot-servers\x03net\x00\x05nstld\x0cverisign-grs\x03com\x00x\xa4\x99n\x00\x00\x07\x08\x00\x00\x03\x84\x00\t:\x80\x00\x01Q\x80') [02:33:57.241][127.0.0.1:64745] << SendData(client, b'\x00\x02\x81\x83\x00\x01\x00\x00\x00\x01\x00\x00\x06google\x03com\x03lan\x00\x00\x01\x00\x01\x00\x00\x06\x00\x01\x00\x01Qk\x00@\x01a\x0croot-servers\x03net\x00\x05nstld\x0cverisign-grs\x03com\x00x\xa4\x99n\x00\x00\x07\x08\x00\x00\x03\… [02:33:57.242][127.0.0.1:64747] client connect [02:33:57.243][127.0.0.1:64747] >> Start({}) [02:33:57.243][127.0.0.1:64747] >> Start({}) [02:33:57.244][127.0.0.1:64747] >> DataReceived(client, b'\x00\x03\x01\x00\x00\x01\x00\x00\x00\x00\x00\x00\x06google\x03com\x03lan\x00\x00\x1c\x00\x01') [02:33:57.244][127.0.0.1:64747] >> DataReceived(client, b'\x00\x03\x01\x00\x00\x01\x00\x00\x00\x00\x00\x00\x06google\x03com\x03lan\x00\x00\x1c\x00\x01') [02:33:57.244][127.0.0.1:64747] << NextLayerHook(data=NextLayer:None) [02:33:57.244][127.0.0.1:64747] << NextLayerHook(data=NextLayer:None) [02:33:57.245][127.0.0.1:64747] >> Reply(NextLayerHook(data=NextLayer:DNSLayer(state: start)), None) [02:33:57.245][127.0.0.1:64747] >> Reply(NextLayerHook(data=NextLayer:DNSLayer(state: start)), None) [02:33:57.246][127.0.0.1:64747] [nextlayer] DNSLayer(state: start) [02:33:57.246][127.0.0.1:64747] >> Start({}) [02:33:57.246][127.0.0.1:64747] >> DataReceived(client, b'\x00\x03\x01\x00\x00\x01\x00\x00\x00\x00\x00\x00\x06google\x03com\x03lan\x00\x00\x1c\x00\x01') [02:33:57.247][127.0.0.1:64747] << DnsRequestHook(flow=<DNSFlow request=Message(timestamp=1717196637.2477021, id=3, query=True, op_code=0, authoritative_answer=False, truncation=False, recursion_desired=True, recursion_available=False, reserved=0, response_code=0, questions=[Question(name='google.com.lan', type=28, class_=1)], answers=[], authorities=[], additionals=[]) response=None >) [02:33:57.247][127.0.0.1:64747] << DnsRequestHook(flow=<DNSFlow [02:33:57.248][127.0.0.1:64747] << DnsRequestHook(flow=<DNSFlow [02:33:57.248][127.0.0.1:64747] >> Reply(DnsRequestHook(flow=<DNSFlow request=Message(timestamp=1717196637.2477021, id=3, query=True, op_code=0, authoritative_answer=False, truncation=False, recursion_desired=True, recursion_available=False, reserved=0, response_code=0, questions=[Question(name='google.com.lan', type=28, class_=1)], answers=[], authorities=[], additionals=[]) response=None >), None) [02:33:57.249][127.0.0.1:64747] >> Reply(DnsRequestHook(flow=<DNSFlow [02:33:57.249][127.0.0.1:64747] >> Reply(DnsRequestHook(flow=<DNSFlow [02:33:57.249][127.0.0.1:64747] << OpenConnection({'connection': Server({'id': '…fb45f4', 'address': ('8.8.8.8', 53), 'transport_protocol': 'udp'})}) [02:33:57.250][127.0.0.1:64747] << OpenConnection({'connection': Server({'id': '…fb45f4', 'address': ('8.8.8.8', 53), 'transport_protocol': 'udp'})}) [02:33:57.250][127.0.0.1:64747] << OpenConnection({'connection': Server({'id': '…fb45f4', 'address': ('8.8.8.8', 53), 'transport_protocol': 'udp'})}) [02:33:57.252][127.0.0.1:64747] server connect 8.8.8.8:53 [02:33:57.252][127.0.0.1:64747] >> Reply(OpenConnection({'connection': Server({'id': '…fb45f4', 'address': ('8.8.8.8', 53), 'peername': ('8.8.8.8', 53), 'sockname': ('192.168.0.17', 64748), 'state': <ConnectionState.OPEN: 3>, 'transport_protocol': 'udp', 'timestamp_start': 1717196637.2506948})}), None) [02:33:57.252][127.0.0.1:64747] >> Reply(OpenConnection({'connection': Server({'id': '…fb45f4', 'address': ('8.8.8.8', 53), 'peername': ('8.8.8.8', 53), 'sockname': ('192.168.0.17', 64748), 'state': <ConnectionState.OPEN: 3>, 'transport_protocol': 'udp', 'timestamp_start': 1717196637.250… [02:33:57.257][127.0.0.1:64747] << SendData(server, b'\x00\x03\x01\x00\x00\x01\x00\x00\x00\x00\x00\x00\x06google\x03com\x03lan\x00\x00\x1c\x00\x01') [02:33:57.257][127.0.0.1:64747] << SendData(server, b'\x00\x03\x01\x00\x00\x01\x00\x00\x00\x00\x00\x00\x06google\x03com\x03lan\x00\x00\x1c\x00\x01') [02:33:57.323][127.0.0.1:64747] >> DataReceived(server, b'\x00\x03\x81\x83\x00\x01\x00\x00\x00\x01\x00\x00\x06google\x03com\x03lan\x00\x00\x1c\x00\x01\x00\x00\x06\x00\x01\x00\x01Q~\x00@\x01a\x0croot-servers\x03net\x00\x05nstld\x0cverisign-grs\x03com\x00x\xa4\x99n\x00\x00\x07\x08\x00\x00\x03\x84\x00\t:\x80\x00\x01Q\x80') [02:33:57.324][127.0.0.1:64747] >> DataReceived(server, b'\x00\x03\x81\x83\x00\x01\x00\x00\x00\x01\x00\x00\x06google\x03com\x03lan\x00\x00\x1c\x00\x01\x00\x00\x06\x00\x01\x00\x01Q~\x00@\x01a\x0croot-servers\x03net\x00\x05nstld\x0cverisign-grs\x03com\x00x\xa4\x99n\x00\x00\x07\x08\x00\x00\… [02:33:57.325][127.0.0.1:64747] << DnsResponseHook(flow=<DNSFlow request=Message(timestamp=1717196637.2477021, id=3, query=True, op_code=0, authoritative_answer=False, truncation=False, recursion_desired=True, recursion_available=False, reserved=0, response_code=0, questions=[Question(name='google.com.lan', type=28, class_=1)], answers=[], authorities=[], additionals=[]) response=Message(timestamp=1717196637.325521, id=3, query=False, op_code=0, authoritative_answer=False, truncation=False, recursion_desired=True, recursion_availabl… [02:33:57.327][127.0.0.1:64747] << DnsResponseHook(flow=<DNSFlow 127.0.0.1:64747: DNS QUERY (AAAA) google.com.lan << NXDOMAIN [02:33:57.328][127.0.0.1:64747] >> Reply(DnsResponseHook(flow=<DNSFlow request=Message(timestamp=1717196637.2477021, id=3, query=True, op_code=0, authoritative_answer=False, truncation=False, recursion_desired=True, recursion_available=False, reserved=0, response_code=0, questions=[Question(name='google.com.lan', type=28, class_=1)], answers=[], authorities=[], additionals=[]) response=Message(timestamp=1717196637.325521, id=3, query=False, op_code=0, authoritative_answer=False, truncation=False, recursion_desired=True, recursion_av… [02:33:57.329][127.0.0.1:64747] >> Reply(DnsResponseHook(flow=<DNSFlow [02:33:57.329][127.0.0.1:64747] << SendData(client, b'\x00\x03\x81\x83\x00\x01\x00\x00\x00\x01\x00\x00\x06google\x03com\x03lan\x00\x00\x1c\x00\x01\x00\x00\x06\x00\x01\x00\x01Q~\x00@\x01a\x0croot-servers\x03net\x00\x05nstld\x0cverisign-grs\x03com\x00x\xa4\x99n\x00\x00\x07\x08\x00\x00\x03\x84\x00\t:\x80\x00\x01Q\x80') [02:33:57.330][127.0.0.1:64747] << SendData(client, b'\x00\x03\x81\x83\x00\x01\x00\x00\x00\x01\x00\x00\x06google\x03com\x03lan\x00\x00\x1c\x00\x01\x00\x00\x06\x00\x01\x00\x01Q~\x00@\x01a\x0croot-servers\x03net\x00\x05nstld\x0cverisign-grs\x03com\x00x\xa4\x99n\x00\x00\x07\x08\x00\x00\x03\… [02:33:57.331][127.0.0.1:64749] client connect [02:33:57.331][127.0.0.1:64749] >> Start({}) [02:33:57.332][127.0.0.1:64749] >> Start({}) [02:33:57.334][127.0.0.1:64749] >> DataReceived(client, b'\x00\x04\x01\x00\x00\x01\x00\x00\x00\x00\x00\x00\x06google\x03com\x00\x00\x01\x00\x01') [02:33:57.334][127.0.0.1:64749] >> DataReceived(client, b'\x00\x04\x01\x00\x00\x01\x00\x00\x00\x00\x00\x00\x06google\x03com\x00\x00\x01\x00\x01') [02:33:57.334][127.0.0.1:64749] << NextLayerHook(data=NextLayer:None) [02:33:57.335][127.0.0.1:64749] << NextLayerHook(data=NextLayer:None) [02:33:57.335][127.0.0.1:64749] >> Reply(NextLayerHook(data=NextLayer:DNSLayer(state: start)), None) [02:33:57.335][127.0.0.1:64749] >> Reply(NextLayerHook(data=NextLayer:DNSLayer(state: start)), None) [02:33:57.336][127.0.0.1:64749] [nextlayer] DNSLayer(state: start) [02:33:57.336][127.0.0.1:64749] >> Start({}) [02:33:57.337][127.0.0.1:64749] >> DataReceived(client, b'\x00\x04\x01\x00\x00\x01\x00\x00\x00\x00\x00\x00\x06google\x03com\x00\x00\x01\x00\x01') [02:33:57.337][127.0.0.1:64749] << DnsRequestHook(flow=<DNSFlow request=Message(timestamp=1717196637.3370032, id=4, query=True, op_code=0, authoritative_answer=False, truncation=False, recursion_desired=True, recursion_available=False, reserved=0, response_code=0, questions=[Question(name='google.com', type=1, class_=1)], answers=[], authorities=[], additionals=[]) response=None >) [02:33:57.338][127.0.0.1:64749] << DnsRequestHook(flow=<DNSFlow [02:33:57.338][127.0.0.1:64749] << DnsRequestHook(flow=<DNSFlow [02:33:57.338][127.0.0.1:64749] >> Reply(DnsRequestHook(flow=<DNSFlow request=Message(timestamp=1717196637.3370032, id=4, query=True, op_code=0, authoritative_answer=False, truncation=False, recursion_desired=True, recursion_available=False, reserved=0, response_code=0, questions=[Question(name='google.com', type=1, class_=1)], answers=[], authorities=[], additionals=[]) response=None >), None) [02:33:57.339][127.0.0.1:64749] >> Reply(DnsRequestHook(flow=<DNSFlow [02:33:57.339][127.0.0.1:64749] >> Reply(DnsRequestHook(flow=<DNSFlow [02:33:57.339][127.0.0.1:64749] << OpenConnection({'connection': Server({'id': '…918d60', 'address': ('8.8.8.8', 53), 'transport_protocol': 'udp'})}) [02:33:57.340][127.0.0.1:64749] << OpenConnection({'connection': Server({'id': '…918d60', 'address': ('8.8.8.8', 53), 'transport_protocol': 'udp'})}) [02:33:57.340][127.0.0.1:64749] << OpenConnection({'connection': Server({'id': '…918d60', 'address': ('8.8.8.8', 53), 'transport_protocol': 'udp'})}) [02:33:57.342][127.0.0.1:64749] server connect 8.8.8.8:53 [02:33:57.342][127.0.0.1:64749] >> Reply(OpenConnection({'connection': Server({'id': '…918d60', 'address': ('8.8.8.8', 53), 'peername': ('8.8.8.8', 53), 'sockname': ('192.168.0.17', 64750), 'state': <ConnectionState.OPEN: 3>, 'transport_protocol': 'udp', 'timestamp_start': 1717196637.3415804})}), None) [02:33:57.343][127.0.0.1:64749] >> Reply(OpenConnection({'connection': Server({'id': '…918d60', 'address': ('8.8.8.8', 53), 'peername': ('8.8.8.8', 53), 'sockname': ('192.168.0.17', 64750), 'state': <ConnectionState.OPEN: 3>, 'transport_protocol': 'udp', 'timestamp_start': 1717196637.341… [02:33:57.343][127.0.0.1:64749] << SendData(server, b'\x00\x04\x01\x00\x00\x01\x00\x00\x00\x00\x00\x00\x06google\x03com\x00\x00\x01\x00\x01') [02:33:57.344][127.0.0.1:64749] << SendData(server, b'\x00\x04\x01\x00\x00\x01\x00\x00\x00\x00\x00\x00\x06google\x03com\x00\x00\x01\x00\x01') [02:33:57.376][127.0.0.1:64749] >> DataReceived(server, b'\x00\x04\x81\x80\x00\x01\x00\x01\x00\x00\x00\x00\x06google\x03com\x00\x00\x01\x00\x01\xc0\x0c\x00\x01\x00\x01\x00\x00\x00<\x00\x04\xd8\xef&x') [02:33:57.377][127.0.0.1:64749] >> DataReceived(server, b'\x00\x04\x81\x80\x00\x01\x00\x01\x00\x00\x00\x00\x06google\x03com\x00\x00\x01\x00\x01\xc0\x0c\x00\x01\x00\x01\x00\x00\x00<\x00\x04\xd8\xef&x') [02:33:57.379][127.0.0.1:64749] << DnsResponseHook(flow=<DNSFlow request=Message(timestamp=1717196637.3370032, id=4, query=True, op_code=0, authoritative_answer=False, truncation=False, recursion_desired=True, recursion_available=False, reserved=0, response_code=0, questions=[Question(name='google.com', type=1, class_=1)], answers=[], authorities=[], additionals=[]) response=Message(timestamp=1717196637.378082, id=4, query=False, op_code=0, authoritative_answer=False, truncation=False, recursion_desired=True, recursion_available=Tru… [02:33:57.380][127.0.0.1:64749] << DnsResponseHook(flow=<DNSFlow 127.0.0.1:64749: DNS QUERY (A) google.com << 216.239.38.120 [02:33:57.381][127.0.0.1:64749] >> Reply(DnsResponseHook(flow=<DNSFlow request=Message(timestamp=1717196637.3370032, id=4, query=True, op_code=0, authoritative_answer=False, truncation=False, recursion_desired=True, recursion_available=False, reserved=0, response_code=0, questions=[Question(name='google.com', type=1, class_=1)], answers=[], authorities=[], additionals=[]) response=Message(timestamp=1717196637.378082, id=4, query=False, op_code=0, authoritative_answer=False, truncation=False, recursion_desired=True, recursion_availab… [02:33:57.382][127.0.0.1:64749] >> Reply(DnsResponseHook(flow=<DNSFlow [02:33:57.382][127.0.0.1:64749] << SendData(client, b'\x00\x04\x81\x80\x00\x01\x00\x01\x00\x00\x00\x00\x06google\x03com\x00\x00\x01\x00\x01\x06google\x03com\x00\x00\x01\x00\x01\x00\x00\x00<\x00\x04\xd8\xef&x') [02:33:57.382][127.0.0.1:64749] << SendData(client, b'\x00\x04\x81\x80\x00\x01\x00\x01\x00\x00\x00\x00\x06google\x03com\x00\x00\x01\x00\x01\x06google\x03com\x00\x00\x01\x00\x01\x00\x00\x00<\x00\x04\xd8\xef&x') [02:33:57.385][127.0.0.1:64751] client connect [02:33:57.386][127.0.0.1:64751] >> Start({}) [02:33:57.386][127.0.0.1:64751] >> Start({}) [02:33:57.387][127.0.0.1:64751] >> DataReceived(client, b'\x00\x05\x01\x00\x00\x01\x00\x00\x00\x00\x00\x00\x06google\x03com\x00\x00\x1c\x00\x01') [02:33:57.387][127.0.0.1:64751] >> DataReceived(client, b'\x00\x05\x01\x00\x00\x01\x00\x00\x00\x00\x00\x00\x06google\x03com\x00\x00\x1c\x00\x01') [02:33:57.388][127.0.0.1:64751] << NextLayerHook(data=NextLayer:None) [02:33:57.388][127.0.0.1:64751] << NextLayerHook(data=NextLayer:None) [02:33:57.389][127.0.0.1:64751] >> Reply(NextLayerHook(data=NextLayer:DNSLayer(state: start)), None) [02:33:57.389][127.0.0.1:64751] >> Reply(NextLayerHook(data=NextLayer:DNSLayer(state: start)), None) [02:33:57.389][127.0.0.1:64751] [nextlayer] DNSLayer(state: start) [02:33:57.390][127.0.0.1:64751] >> Start({}) [02:33:57.390][127.0.0.1:64751] >> DataReceived(client, b'\x00\x05\x01\x00\x00\x01\x00\x00\x00\x00\x00\x00\x06google\x03com\x00\x00\x1c\x00\x01') [02:33:57.390][127.0.0.1:64751] << DnsRequestHook(flow=<DNSFlow request=Message(timestamp=1717196637.3909478, id=5, query=True, op_code=0, authoritative_answer=False, truncation=False, recursion_desired=True, recursion_available=False, reserved=0, response_code=0, questions=[Question(name='google.com', type=28, class_=1)], answers=[], authorities=[], additionals=[]) response=None >) [02:33:57.391][127.0.0.1:64751] << DnsRequestHook(flow=<DNSFlow [02:33:57.391][127.0.0.1:64751] << DnsRequestHook(flow=<DNSFlow [02:33:57.392][127.0.0.1:64751] >> Reply(DnsRequestHook(flow=<DNSFlow request=Message(timestamp=1717196637.3909478, id=5, query=True, op_code=0, authoritative_answer=False, truncation=False, recursion_desired=True, recursion_available=False, reserved=0, response_code=0, questions=[Question(name='google.com', type=28, class_=1)], answers=[], authorities=[], additionals=[]) response=None >), None) [02:33:57.393][127.0.0.1:64751] >> Reply(DnsRequestHook(flow=<DNSFlow [02:33:57.397][127.0.0.1:64751] >> Reply(DnsRequestHook(flow=<DNSFlow [02:33:57.397][127.0.0.1:64751] << OpenConnection({'connection': Server({'id': '…ef76b5', 'address': ('8.8.8.8', 53), 'transport_protocol': 'udp'})}) [02:33:57.397][127.0.0.1:64751] << OpenConnection({'connection': Server({'id': '…ef76b5', 'address': ('8.8.8.8', 53), 'transport_protocol': 'udp'})}) [02:33:57.398][127.0.0.1:64751] << OpenConnection({'connection': Server({'id': '…ef76b5', 'address': ('8.8.8.8', 53), 'transport_protocol': 'udp'})}) [02:33:57.400][127.0.0.1:64751] server connect 8.8.8.8:53 [02:33:57.400][127.0.0.1:64751] >> Reply(OpenConnection({'connection': Server({'id': '…ef76b5', 'address': ('8.8.8.8', 53), 'peername': ('8.8.8.8', 53), 'sockname': ('192.168.0.17', 64752), 'state': <ConnectionState.OPEN: 3>, 'transport_protocol': 'udp', 'timestamp_start': 1717196637.3989928})}), None) [02:33:57.400][127.0.0.1:64751] >> Reply(OpenConnection({'connection': Server({'id': '…ef76b5', 'address': ('8.8.8.8', 53), 'peername': ('8.8.8.8', 53), 'sockname': ('192.168.0.17', 64752), 'state': <ConnectionState.OPEN: 3>, 'transport_protocol': 'udp', 'timestamp_start': 1717196637.398… [02:33:57.401][127.0.0.1:64751] << SendData(server, b'\x00\x05\x01\x00\x00\x01\x00\x00\x00\x00\x00\x00\x06google\x03com\x00\x00\x1c\x00\x01') [02:33:57.401][127.0.0.1:64751] << SendData(server, b'\x00\x05\x01\x00\x00\x01\x00\x00\x00\x00\x00\x00\x06google\x03com\x00\x00\x1c\x00\x01') [02:33:57.414][127.0.0.1:64749] >> DataReceived(server, b'\x00\x04\x81\x80\x00\x01\x00\x01\x00\x00\x00\x00\x06google\x03com\x00\x00\x01\x00\x01\xc0\x0c\x00\x01\x00\x01\x00\x00\x00,\x00\x04\xac\xd9\x11N') [02:33:57.414][127.0.0.1:64749] >> DataReceived(server, b'\x00\x04\x81\x80\x00\x01\x00\x01\x00\x00\x00\x00\x06google\x03com\x00\x00\x01\x00\x01\xc0\x0c\x00\x01\x00\x01\x00\x00\x00,\x00\x04\xac\xd9\x11N') [02:33:57.416][127.0.0.1:64749] << DnsResponseHook(flow=<DNSFlow request=Message(timestamp=1717196637.3370032, id=4, query=True, op_code=0, authoritative_answer=False, truncation=False, recursion_desired=True, recursion_available=False, reserved=0, response_code=0, questions=[Question(name='google.com', type=1, class_=1)], answers=[], authorities=[], additionals=[]) response=Message(timestamp=1717196637.4160051, id=4, query=False, op_code=0, authoritative_answer=False, truncation=False, recursion_desired=True, recursion_available=Tr… [02:33:57.417][127.0.0.1:64749] << DnsResponseHook(flow=<DNSFlow 127.0.0.1:64749: DNS QUERY (A) google.com << 172.217.17.78 [02:33:57.418][127.0.0.1:64749] >> Reply(DnsResponseHook(flow=<DNSFlow request=Message(timestamp=1717196637.3370032, id=4, query=True, op_code=0, authoritative_answer=False, truncation=False, recursion_desired=True, recursion_available=False, reserved=0, response_code=0, questions=[Question(name='google.com', type=1, class_=1)], answers=[], authorities=[], additionals=[]) response=Message(timestamp=1717196637.4160051, id=4, query=False, op_code=0, authoritative_answer=False, truncation=False, recursion_desired=True, recursion_availa… [02:33:57.420][127.0.0.1:64749] >> Reply(DnsResponseHook(flow=<DNSFlow [02:33:57.420][127.0.0.1:64749] << SendData(client, b'\x00\x04\x81\x80\x00\x01\x00\x01\x00\x00\x00\x00\x06google\x03com\x00\x00\x01\x00\x01\x06google\x03com\x00\x00\x01\x00\x01\x00\x00\x00,\x00\x04\xac\xd9\x11N') [02:33:57.421][127.0.0.1:64749] << SendData(client, b'\x00\x04\x81\x80\x00\x01\x00\x01\x00\x00\x00\x00\x06google\x03com\x00\x00\x01\x00\x01\x06google\x03com\x00\x00\x01\x00\x01\x00\x00\x00,\x00\x04\xac\xd9\x11N') [02:33:57.422] Python interoperability task shutting down. [02:33:57.422] Task failed: UDP recv() failed disabled backtrace [02:33:57.422][127.0.0.1:64747] >> ConnectionClosed(connection=Client({'id': '…9b2509', 'address': None, 'peername': ('127.0.0.1', 64747), 'sockname': ('0.0.0.0', 53), 'transport_protocol': 'udp', 'timestamp_start': 1717196637.2426941, 'proxy_mode': ProxyMode.parse('reverse:dns://8.8.8.8@53')})) [02:33:57.423][127.0.0.1:64747] >> ConnectionClosed(connection=Client({'id': '…9b2509', 'address': None, 'peername': ('127.0.0.1', 64747), 'sockname': ('0.0.0.0', 53), 'transport_protocol': 'udp', 'timestamp_start': 1717196637.2426941, 'proxy_mode': ProxyMode.parse('reverse:dns://8.8.8.8… [02:33:57.424][127.0.0.1:64747] << CloseConnection({'connection': Server({'id': '…fb45f4', 'address': ('8.8.8.8', 53), 'peername': ('8.8.8.8', 53), 'sockname': ('192.168.0.17', 64748), 'state': <ConnectionState.OPEN: 3>, 'transport_protocol': 'udp', 'timestamp_start': 1717196637.2506948})}) [02:33:57.428][127.0.0.1:64747] << CloseConnection({'connection': Server({'id': '…fb45f4', 'address': ('8.8.8.8', 53), 'peername': ('8.8.8.8', 53), 'sockname': ('192.168.0.17', 64748), 'state': <ConnectionState.OPEN: 3>, 'transport_protocol': 'udp', 'timestamp_start': 1717196637.2506948}… [02:33:57.428][127.0.0.1:64749] >> ConnectionClosed(connection=Client({'id': '…0187a5', 'address': None, 'peername': ('127.0.0.1', 64749), 'sockname': ('0.0.0.0', 53), 'transport_protocol': 'udp', 'timestamp_start': 1717196637.3318255, 'proxy_mode': ProxyMode.parse('reverse:dns://8.8.8.8@53')})) [02:33:57.429][127.0.0.1:64749] >> ConnectionClosed(connection=Client({'id': '…0187a5', 'address': None, 'peername': ('127.0.0.1', 64749), 'sockname': ('0.0.0.0', 53), 'transport_protocol': 'udp', 'timestamp_start': 1717196637.3318255, 'proxy_mode': ProxyMode.parse('reverse:dns://8.8.8.8… [02:33:57.430][127.0.0.1:64749] << CloseConnection({'connection': Server({'id': '…918d60', 'address': ('8.8.8.8', 53), 'peername': ('8.8.8.8', 53), 'sockname': ('192.168.0.17', 64750), 'state': <ConnectionState.OPEN: 3>, 'transport_protocol': 'udp', 'timestamp_start': 1717196637.3415804})}) [02:33:57.430][127.0.0.1:64749] << CloseConnection({'connection': Server({'id': '…918d60', 'address': ('8.8.8.8', 53), 'peername': ('8.8.8.8', 53), 'sockname': ('192.168.0.17', 64750), 'state': <ConnectionState.OPEN: 3>, 'transport_protocol': 'udp', 'timestamp_start': 1717196637.3415804}… [02:33:57.431][127.0.0.1:64747] >> ConnectionClosed(connection=Server({'id': '…fb45f4', 'address': ('8.8.8.8', 53), 'peername': ('8.8.8.8', 53), 'sockname': ('192.168.0.17', 64748), 'transport_protocol': 'udp', 'timestamp_start': 1717196637.2506948})) [02:33:57.431][127.0.0.1:64747] >> ConnectionClosed(connection=Server({'id': '…fb45f4', 'address': ('8.8.8.8', 53), 'peername': ('8.8.8.8', 53), 'sockname': ('192.168.0.17', 64748), 'transport_protocol': 'udp', 'timestamp_start': 1717196637.2506948})) [02:33:57.431][127.0.0.1:64747] server disconnect 8.8.8.8:53 [02:33:57.431] UDP client task shutting down. [02:33:57.432][127.0.0.1:64749] >> ConnectionClosed(connection=Server({'id': '…918d60', 'address': ('8.8.8.8', 53), 'peername': ('8.8.8.8', 53), 'sockname': ('192.168.0.17', 64750), 'transport_protocol': 'udp', 'timestamp_start': 1717196637.3415804})) [02:33:57.432][127.0.0.1:64749] >> ConnectionClosed(connection=Server({'id': '…918d60', 'address': ('8.8.8.8', 53), 'peername': ('8.8.8.8', 53), 'sockname': ('192.168.0.17', 64750), 'transport_protocol': 'udp', 'timestamp_start': 1717196637.3415804})) [02:33:57.433][127.0.0.1:64749] server disconnect 8.8.8.8:53 [02:33:57.433] UDP client task shutting down. [02:33:57.433][127.0.0.1:64743] >> ConnectionClosed(connection=Client({'id': '…bf686d', 'address': None, 'peername': ('127.0.0.1', 64743), 'sockname': ('0.0.0.0', 53), 'transport_protocol': 'udp', 'timestamp_start': 1717196636.8954246, 'proxy_mode': ProxyMode.parse('reverse:dns://8.8.8.8@53')})) [02:33:57.434][127.0.0.1:64743] >> ConnectionClosed(connection=Client({'id': '…bf686d', 'address': None, 'peername': ('127.0.0.1', 64743), 'sockname': ('0.0.0.0', 53), 'transport_protocol': 'udp', 'timestamp_start': 1717196636.8954246, 'proxy_mode': ProxyMode.parse('reverse:dns://8.8.8.8… [02:33:57.434][127.0.0.1:64743] << CloseConnection({'connection': Server({'id': '…5eb969', 'address': ('8.8.8.8', 53), 'peername': ('8.8.8.8', 53), 'sockname': ('192.168.0.17', 64744), 'state': <ConnectionState.OPEN: 3>, 'transport_protocol': 'udp', 'timestamp_start': 1717196636.908739})}) [02:33:57.435][127.0.0.1:64743] << CloseConnection({'connection': Server({'id': '…5eb969', 'address': ('8.8.8.8', 53), 'peername': ('8.8.8.8', 53), 'sockname': ('192.168.0.17', 64744), 'state': <ConnectionState.OPEN: 3>, 'transport_protocol': 'udp', 'timestamp_start': 1717196636.908739})… [02:33:57.435][127.0.0.1:64745] >> ConnectionClosed(connection=Client({'id': '…01f92f', 'address': None, 'peername': ('127.0.0.1', 64745), 'sockname': ('0.0.0.0', 53), 'transport_protocol': 'udp', 'timestamp_start': 1717196637.0013015, 'proxy_mode': ProxyMode.parse('reverse:dns://8.8.8.8@53')})) [02:33:57.435][127.0.0.1:64745] >> ConnectionClosed(connection=Client({'id': '…01f92f', 'address': None, 'peername': ('127.0.0.1', 64745), 'sockname': ('0.0.0.0', 53), 'transport_protocol': 'udp', 'timestamp_start': 1717196637.0013015, 'proxy_mode': ProxyMode.parse('reverse:dns://8.8.8.8… [02:33:57.436][127.0.0.1:64745] << CloseConnection({'connection': Server({'id': '…599044', 'address': ('8.8.8.8', 53), 'peername': ('8.8.8.8', 53), 'sockname': ('192.168.0.17', 64746), 'state': <ConnectionState.OPEN: 3>, 'transport_protocol': 'udp', 'timestamp_start': 1717196637.0141444})}) [02:33:57.436][127.0.0.1:64745] << CloseConnection({'connection': Server({'id': '…599044', 'address': ('8.8.8.8', 53), 'peername': ('8.8.8.8', 53), 'sockname': ('192.168.0.17', 64746), 'state': <ConnectionState.OPEN: 3>, 'transport_protocol': 'udp', 'timestamp_start': 1717196637.0141444}… [02:33:57.437][127.0.0.1:64751] >> ConnectionClosed(connection=Client({'id': '…82296b', 'address': None, 'peername': ('127.0.0.1', 64751), 'sockname': ('0.0.0.0', 53), 'transport_protocol': 'udp', 'timestamp_start': 1717196637.3855908, 'proxy_mode': ProxyMode.parse('reverse:dns://8.8.8.8@53')})) [02:33:57.437][127.0.0.1:64751] >> ConnectionClosed(connection=Client({'id': '…82296b', 'address': None, 'peername': ('127.0.0.1', 64751), 'sockname': ('0.0.0.0', 53), 'transport_protocol': 'udp', 'timestamp_start': 1717196637.3855908, 'proxy_mode': ProxyMode.parse('reverse:dns://8.8.8.8… [02:33:57.437][127.0.0.1:64751] << CloseConnection({'connection': Server({'id': '…ef76b5', 'address': ('8.8.8.8', 53), 'peername': ('8.8.8.8', 53), 'sockname': ('192.168.0.17', 64752), 'state': <ConnectionState.OPEN: 3>, 'transport_protocol': 'udp', 'timestamp_start': 1717196637.3989928})}) [02:33:57.438][127.0.0.1:64751] << CloseConnection({'connection': Server({'id': '…ef76b5', 'address': ('8.8.8.8', 53), 'peername': ('8.8.8.8', 53), 'sockname': ('192.168.0.17', 64752), 'state': <ConnectionState.OPEN: 3>, 'transport_protocol': 'udp', 'timestamp_start': 1717196637.3989928}… [02:33:57.438][127.0.0.1:64747] client disconnect [02:33:57.439][127.0.0.1:64749] client disconnect [02:33:57.439][127.0.0.1:64743] >> ConnectionClosed(connection=Server({'id': '…5eb969', 'address': ('8.8.8.8', 53), 'peername': ('8.8.8.8', 53), 'sockname': ('192.168.0.17', 64744), 'transport_protocol': 'udp', 'timestamp_start': 1717196636.908739})) [02:33:57.440][127.0.0.1:64743] >> ConnectionClosed(connection=Server({'id': '…5eb969', 'address': ('8.8.8.8', 53), 'peername': ('8.8.8.8', 53), 'sockname': ('192.168.0.17', 64744), 'transport_protocol': 'udp', 'timestamp_start': 1717196636.908739})) [02:33:57.443][127.0.0.1:64743] server disconnect 8.8.8.8:53 [02:33:57.443] UDP client task shutting down. [02:33:57.444][127.0.0.1:64745] >> ConnectionClosed(connection=Server({'id': '…599044', 'address': ('8.8.8.8', 53), 'peername': ('8.8.8.8', 53), 'sockname': ('192.168.0.17', 64746), 'transport_protocol': 'udp', 'timestamp_start': 1717196637.0141444})) [02:33:57.445][127.0.0.1:64745] >> ConnectionClosed(connection=Server({'id': '…599044', 'address': ('8.8.8.8', 53), 'peername': ('8.8.8.8', 53), 'sockname': ('192.168.0.17', 64746), 'transport_protocol': 'udp', 'timestamp_start': 1717196637.0141444})) [02:33:57.445][127.0.0.1:64745] server disconnect 8.8.8.8:53 [02:33:57.446] UDP client task shutting down. [02:33:57.446][127.0.0.1:64751] >> ConnectionClosed(connection=Server({'id': '…ef76b5', 'address': ('8.8.8.8', 53), 'peername': ('8.8.8.8', 53), 'sockname': ('192.168.0.17', 64752), 'transport_protocol': 'udp', 'timestamp_start': 1717196637.3989928})) [02:33:57.447][127.0.0.1:64751] >> ConnectionClosed(connection=Server({'id': '…ef76b5', 'address': ('8.8.8.8', 53), 'peername': ('8.8.8.8', 53), 'sockname': ('192.168.0.17', 64752), 'transport_protocol': 'udp', 'timestamp_start': 1717196637.3989928})) [02:33:57.447][127.0.0.1:64751] server disconnect 8.8.8.8:53 [02:33:57.447] UDP client task shutting down. [02:33:57.448][127.0.0.1:64743] client disconnect [02:33:57.448][127.0.0.1:64745] client disconnect [02:33:57.449][127.0.0.1:64751] client disconnect ```
closed
2024-05-31T23:16:59Z
2024-09-30T21:38:33Z
https://github.com/mitmproxy/mitmproxy/issues/6886
[ "kind/bug", "help wanted", "area/rust" ]
lostact
3
TracecatHQ/tracecat
fastapi
418
Empty action not picked up by validation (on commit)
**Describe the bug** As described in title, results in unhelpful 500 internal server error in frontend, but in the API service logs you see the validation errors: <img width="816" alt="Screenshot 2024-10-09 at 7 18 55 PM" src="https://github.com/user-attachments/assets/36290784-5a62-47a4-a37c-b0cd57e09b03"> **To Reproduce** 1. Create new workflow 2. Add reshape action 3. Press commit (do not save action) 4. Run workflow via manual trigger **Expected behavior** Error that action is empty on commit **Screenshots** <img width="1721" alt="Screenshot 2024-10-09 at 7 03 20 PM" src="https://github.com/user-attachments/assets/1056b841-f445-4a17-911d-6823ea191a49"> <img width="1303" alt="Screenshot 2024-10-09 at 7 03 10 PM" src="https://github.com/user-attachments/assets/761d416f-4d7e-467a-b4d9-d0a30b204be7">
closed
2024-10-10T02:19:13Z
2024-10-23T16:53:12Z
https://github.com/TracecatHQ/tracecat/issues/418
[ "bug", "engine" ]
topher-lo
0
sigmavirus24/github3.py
rest-api
258
User Keys Are Now Immutable
See: https://github.com/octokit/octokit.rb/pull/491
closed
2014-06-20T20:58:19Z
2014-12-03T04:42:03Z
https://github.com/sigmavirus24/github3.py/issues/258
[]
sigmavirus24
0
CorentinJ/Real-Time-Voice-Cloning
python
1,106
Generated output audio is only 1 sec.
Unfortunately, I could not find a solution in closed issues, so I hope for help. The final audio is only 1 second. What could cause this to happen?
open
2022-09-04T13:49:03Z
2022-09-04T13:49:03Z
https://github.com/CorentinJ/Real-Time-Voice-Cloning/issues/1106
[]
netrunner-exe
0
modAL-python/modAL
scikit-learn
62
Committee class does not update to new labels correctly.
Hi, I encountered an exception in the `Committee` class when trying to capture the score after teaching the committee with unseen data containing new classes. The problem seem to be that the `teach` function does the following: 1. Adds the new data to the training set X and y 2. Updates the known classes based on the classes known to the estimators given by the learners 3. Refits the estimators (hence updating the known classes to include the new classes) Step 2 should not depend on the estimators or happen after Step 3. I am working on a PR to fix this.
closed
2019-11-22T13:13:28Z
2019-11-26T08:17:17Z
https://github.com/modAL-python/modAL/issues/62
[]
philipjhj
2
MaartenGr/BERTopic
nlp
1,447
Python 3.10 supported
Hi, I'm wondering when will python 3.10 be supported? Best,
open
2023-08-01T13:30:31Z
2023-08-01T17:23:46Z
https://github.com/MaartenGr/BERTopic/issues/1447
[]
FlorentinLavaud
1
PaddlePaddle/PaddleHub
nlp
1,413
TypeError: the 'package' argument is required to perform a relative import for '.module'
欢迎您反馈PaddleHub使用问题,非常感谢您对PaddleHub的贡献! 在留下您的问题时,辛苦您同步提供如下信息: - 版本、环境信息 1)PaddleHub和PaddlePaddle版本:PaddlePaddle版本为1.7.2,Paddlehub版本为1.6.2 2)系统环境:Windows,python3.7 - 复现信息:做cv模型的迁移学习 -代码如下: import paddlehub as hub test_dir = './database/img.jpg' model = hub.Module(directory='finetuned_model_to_module/') prediction = model.predict(test_dir) print(prediction) -报错信息如下:Traceback (most recent call last): File "E:/Data/AppData/firefox/demo2.py", line 4, in <module> model = hub.Module(directory='finetuned_model_to_module/',use_gpu=False) File "E:\miniconda3\lib\site-packages\paddlehub\module\module.py", line 104, in __new__ module = cls.init_with_directory(directory=directory, **kwargs) File "E:\miniconda3\lib\site-packages\paddlehub\module\module.py", line 193, in init_with_directory _module = importlib.import_module("{}.module".format(basename)) File "E:\miniconda3\lib\importlib\__init__.py", line 122, in import_module raise TypeError(msg.format(name)) TypeError: the 'package' argument is required to perform a relative import for '.module' 文件夹下包含 1. finetuned_model_to_module -module.py -__init__.py -model_finetune 2. demo2.py
closed
2021-05-14T09:03:20Z
2022-01-19T02:44:35Z
https://github.com/PaddlePaddle/PaddleHub/issues/1413
[]
poopit
2
AUTOMATIC1111/stable-diffusion-webui
pytorch
15,578
[Feature Request]: Add a scheduler pattern to the filename save options now that it has been removed from the sampler in 1.9.0
### Is there an existing issue for this? - [X] I have searched the existing issues and checked the recent builds/commits ### What would your feature do ? In previous versions of webui, using the [sampler] pattern in the "Images filename pattern" setting would include the scheduler in the output text. Since 1.9.0 and the separation of the scheduler from the sample in the UI, this no longer works. For example, previously [sampler] would add "DPM++ SDE Karras" into your image filename. Now it will just add "DPM++ SDE". The [custom filename wiki page](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Custom-Images-Filename-Name-and-Subdirectory#patterns) does not list any new option to include the scheduler in the filename either. ### Proposed workflow 1. Add an appropriate pattern option e.g. [scheduler] to the "Images filename pattern" setting that will add the appropriate text to the filename. 2. Update the wiki documentation if the feature is added. ### Additional information _No response_
closed
2024-04-20T12:56:28Z
2024-04-21T04:11:11Z
https://github.com/AUTOMATIC1111/stable-diffusion-webui/issues/15578
[ "enhancement" ]
roamingfrog
1
tfranzel/drf-spectacular
rest-api
650
Feature Request: Support for custom versioning classes
I have an application that uses AcceptHeaderVersioning in production but it has been migrated from no versioning at all. In order to not break existing clients, we have the following `REST_FRAMEWORK` settings: ~~~python 'DEFAULT_VERSION': '1', 'ALLOWED_VERSIONS': ('1', '2'), ~~~ Some endpoints are available in version 1 and 2 and some are only available in version 1 (or no version given) and if the client always sends version 2, it will receive version 1 for endpoints that only support version 1. (And yes, since you'll be asking, the plan is to migrate those version 1 views directly to version 3 in case we want to change them... So each client expects "their" api version.) I've tried to migrate that application from drf-yasg to drf-spectacular, since we already use JSONSchema for some views so support for openapi 3 would be a definite win for us. (Our JSON Schemata are even displayed in the swagger ui with drf-spectacular, but at the end of the page, and not at all in redoc... I think some other issue points that out as well.) Unfortunately setting `DEFAULT_VERSION` is not compatible with the fix for #637, as the OP has pointed out. Since giving an Accept Header is pretty inconvient in the browser (in redoc as well as the browsable DRF API), we have a custom versioning class that accepts `QueryParameterVersioning` as well as `AcceptHeaderVersioning` although the latter is required in production. This just works in `drf_yasg` (although we had problems customising the documentation for other parts of the api which may be easier in drf-spectacular). If I disable the custom class and just use `AcceptHeaderVersioning`, I can generate the correct schema for each version on the command line and in the schema view, if I monkey-patch `modify_media_types_for_versioning` to change the media type for the default version as well, however it's not clear to me how to switch versions in swagger or redoc. (But maybe I simply overlooked something.) Also probably being able to override a workflow method on a subclass would be a cleaner approach than having to monkey patch a function in `plumbing.py`. So what are your thoughts on this?
closed
2022-02-08T16:09:00Z
2022-02-16T16:03:35Z
https://github.com/tfranzel/drf-spectacular/issues/650
[]
TauPan
10
coqui-ai/TTS
python
2,699
Error
### Describe the bug **hey** > while installing the TTS, the error encountered is : ERROR: Ignored the following versions that require a different python version: 0.0.10.2 Requires-Python >=3.6.0, <3.9; 0.0.10.3 Requires-Python >=3.6.0, <3.9; 0.0.11 Requires-Python >=3.6.0, <3.9; 0.0.12 Requires-Python >=3.6.0, <3.9; 0.0.13.1 Requires-Python >=3.6.0, <3.9; 0.0.13.2 Requires-Python >=3.6.0, <3.9; 0.0.14.1 Requires-Python >=3.6.0, <3.9; 0.0.15 Requires-Python >=3.6.0, <3.9; 0.0.15.1 Requires-Python >=3.6.0, <3.9; 0.0.9 Requires-Python >=3.6.0, <3.9; 0.0.9.1 Requires-Python >=3.6.0, <3.9; 0.0.9.2 Requires-Python >=3.6.0, <3.9; 0.0.9a10 Requires-Python >=3.6.0, <3.9; 0.0.9a9 Requires-Python >=3.6.0, <3.9; 0.1.0 Requires-Python >=3.6.0, <3.10; 0.1.1 Requires-Python >=3.6.0, <3.10; 0.1.2 Requires-Python >=3.6.0, <3.10; 0.1.3 Requires-Python >=3.6.0, <3.10; 0.10.0 Requires-Python >=3.7.0, <3.11; 0.10.1 Requires-Python >=3.7.0, <3.11; 0.10.2 Requires-Python >=3.7.0, <3.11; 0.11.0 Requires-Python >=3.7.0, <3.11; 0.11.1 Requires-Python >=3.7.0, <3.11; 0.12.0 Requires-Python >=3.7.0, <3.11; 0.13.0 Requires-Python >=3.7.0, <3.11; 0.13.1 Requires-Python >=3.7.0, <3.11; 0.13.2 Requires-Python >=3.7.0, <3.11; 0.13.3 Requires-Python >=3.7.0, <3.11; 0.14.0 Requires-Python >=3.7.0, <3.11; 0.14.2 Requires-Python >=3.7.0, <3.11; 0.14.3 Requires-Python >=3.7.0, <3.11; 0.2.0 Requires-Python >=3.6.0, <3.10; 0.2.1 Requires-Python >=3.6.0, <3.10; 0.2.2 Requires-Python >=3.6.0, <3.10; 0.3.0 Requires-Python >=3.6.0, <3.10; 0.3.1 Requires-Python >=3.6.0, <3.10; 0.4.0 Requires-Python >=3.6.0, <3.10; 0.4.1 Requires-Python >=3.6.0, <3.10; 0.4.2 Requires-Python >=3.6.0, <3.10; 0.5.0 Requires-Python >=3.6.0, <3.10; 0.6.0 Requires-Python >=3.6.0, <3.10; 0.6.1 Requires-Python >=3.6.0, <3.10; 0.6.2 Requires-Python >=3.6.0, <3.10; 0.7.0 Requires-Python >=3.7.0, <3.11; 0.7.1 Requires-Python >=3.7.0, <3.11; 0.8.0 Requires-Python >=3.7.0, <3.11; 0.9.0 Requires-Python >=3.7.0, <3.11 > ERROR: Could not find a version that satisfies the requirement TTS (from versions: none) > ERROR: No matching distribution found for TTS > ### To Reproduce pip install TTS current python version : Python 3.11.1 ### Expected behavior it should get installed correctly ### Logs _No response_ ### Environment ```shell ..... ``` ### Additional context _No response_
closed
2023-06-22T10:23:14Z
2023-06-25T08:07:03Z
https://github.com/coqui-ai/TTS/issues/2699
[ "bug" ]
junaidbashir11
1
BeanieODM/beanie
pydantic
971
[BUG] DeleteRules.DELETE_LINKS is not working?
**Describe the bug** DeleteRules.DELETE_LINKS is not working. Delete a document success but all linked document didn't **To Reproduce** ```python import asyncio from typing import Optional from beanie import BackLink, Document, Link, init_beanie from beanie.odm.utils.encoder import Encoder from motor.motor_asyncio import AsyncIOMotorClient from pydantic import Field from beanie import DeleteRules, WriteRules class Person(Document): name: str age: int cars: list[Link["Car"]] = Field(default_factory=list) class Car(Document): manufacturer: str price: float owner: Optional[BackLink[Person]] = Field(default=None, original_field="cars") async def init(): client = AsyncIOMotorClient( "mongodb://localhost:27017", ) await init_beanie(database=client.test_db, document_models=[Person, Car]) p1 = Person( name="John", age=25, ) p1.cars = [ Car(manufacturer="Toyota", price=10000), Car(manufacturer="BMW", price=20000) ] await p1.save(link_rule=WriteRules.WRITE) # The above code runs fine person = await Person.find_one(Person.name == "John") print(person) # Only person document is deleted, cars didn't await person.delete(link_rule=DeleteRules.DELETE_LINKS) asyncio.run(init()) ``` **Expected behavior** - Document and all linked document will be deleted **Additional context** - Maybe I misunderstood how it works. Can you explain it?
closed
2024-07-13T15:20:57Z
2024-09-22T02:41:49Z
https://github.com/BeanieODM/beanie/issues/971
[ "Stale" ]
dinhtuanan
4
dnouri/nolearn
scikit-learn
112
Different ways to install the packet
Hello, I tried to install the packet using pip as you suggest in the docs but I have some internet access problems from the command windows so I can't install it. I also tried in the old fashion, that means download the .zip , unzip and run $ python setup.py install but it doesn' work. Any other idea? Thank you
closed
2015-06-08T08:30:27Z
2015-06-15T12:27:55Z
https://github.com/dnouri/nolearn/issues/112
[]
pattysan
3
open-mmlab/mmdetection
pytorch
11,832
多卡训练卡住,单卡GPU利用率为0,其余100%
如图: ![image](https://github.com/open-mmlab/mmdetection/assets/56680663/1a35476c-4488-4bb3-b7b7-37ba48a191b9) 自定义model后,训练总是出现卡住的情况。表现为时而单卡GPU利用率为0,其余皆为100%,训练速度大幅降低 而训练config中配置好的模型就不会出现这个问题 已经尝试export NCCL_P2P_DISABLE=1, 调整num_workers的方案,都没有用 有没有知道该如何解决
open
2024-07-05T05:22:10Z
2025-03-07T06:05:55Z
https://github.com/open-mmlab/mmdetection/issues/11832
[]
WangJian981002
3
polyaxon/traceml
data-visualization
14
Patch level went down?
Hi, I am trying to get `pandas-summary` working, and had version 0.0.41 installed. I ran into the issue fixed by #11/#12, so I tried to upgrade. It seems like the version was changed to 0.0.5 with https://github.com/mouradmourafiq/pandas-summary/commit/42227d51d8d458ebce7090db971259565fb6ccdf When I try to upgrade to 0.0.5, pip picks up the 0.0.41 version since its patch level is considered greater than 0.0.5. I am somewhat new to the Python world, so I could be missing an easy way to do this, but wondering if the new version should be updated to 0.0.42 or 0.1.0 to better comply with [semver](https://semver.org/). ``` pip install pandas-summary== Collecting pandas-summary== Could not find a version that satisfies the requirement pandas-summary== (from versions: 0.0.3, 0.0.4, 0.0.5, 0.0.41) No matching distribution found for pandas-summary== ``` For now my workaround is to use `pip install pandas-summary==0.0.5` to install the exact version that I want to use.
closed
2018-06-21T20:42:06Z
2021-11-21T18:17:09Z
https://github.com/polyaxon/traceml/issues/14
[]
panozzaj
0
sherlock-project/sherlock
python
2,122
Do we really need to package Sherlock for various platforms?
With the recent efforts to package Sherlock, this question came to mind: Do we really need to package Sherlock for various platforms? I personally don't think it's necessary for a few reasons: - It would add more complexity to the entire workflow. - It would be necessary to maintain packaging on multiple different platforms. - The conventional way of packaging Python projects probably already works well for most; More below. I believe that any platform that has some way to install Python along with Pip can theoretically install the Sherlock project without any problems. Publishing it only on PyPI seems to be the best path. This would also be easier to maintain, due to having a single point of origin. Sherlock doesn't seem like the type of project that needs specific packaging for each platform at the moment. With the exception of installation on Termux environments, which apparently has some issues installing pandas; I talk more about this here: https://github.com/sherlock-project/sherlock/issues/1945#issuecomment-1850757406 @sdushantha @ppfeister What do you think of these thoughts?
closed
2024-05-13T19:18:43Z
2024-11-05T01:28:08Z
https://github.com/sherlock-project/sherlock/issues/2122
[ "question" ]
matheusfelipeog
17
graphdeco-inria/gaussian-splatting
computer-vision
1,019
Failed to build diff_gaussian_rasterization simple_knn
Hi there. Following [this video's](https://www.youtube.com/watch?v=UXtuigy_wYc) tutorial for Gaussian splatting and I get stuck in the `conda env create --file environment.yml` part. Throwing an error which is due to simple-knn Error: ``` (base) C:\Users\rohil\gaussian-splatting>SET DISTUTILS_USE_SDK=1 (base) C:\Users\rohil\gaussian-splatting>conda env create --file environment.yml Could not load conda plugin `anaconda-cloud-auth`: cannot import name 'ChannelAuthBase' from 'conda.plugins.types' (C:\Users\rohil\anaconda3\lib\site-packages\conda\plugins\types.py) WARNING conda.plugins.manager:load_entrypoints(84): Could not load conda plugin `anaconda-cloud-auth`: cannot import name 'ChannelAuthBase' from 'conda.plugins.types' (C:\Users\rohil\anaconda3\lib\site-packages\conda\plugins\types.py) Collecting package metadata (repodata.json): done Solving environment: done ==> WARNING: A newer version of conda exists. <== current version: 23.3.1 latest version: 24.9.2 Please update conda by running $ conda update -n base -c defaults conda Or to minimize the number of packages updated during conda update use conda install conda=24.9.2 Downloading and Extracting Packages Preparing transaction: done Verifying transaction: done Executing transaction: - "By downloading and using the CUDA Toolkit conda packages, you accept the terms and conditions of the CUDA End User License Agreement (EULA): https://docs.nvidia.com/cuda/eula/index.html" done Installing pip dependencies: / Ran pip subprocess with arguments: ['C:\\Users\\rohil\\anaconda3\\envs\\gaussian_splatting\\python.exe', '-m', 'pip', 'install', '-U', '-r', 'C:\\Users\\rohil\\gaussian-splatting\\condaenv.pry8d3d7.requirements.txt', '--exists-action=b'] Pip subprocess output: Processing c:\users\rohil\gaussian-splatting\submodules\diff-gaussian-rasterization Preparing metadata (setup.py): started Preparing metadata (setup.py): finished with status 'done' Processing c:\users\rohil\gaussian-splatting\submodules\simple-knn Preparing metadata (setup.py): started Preparing metadata (setup.py): finished with status 'done' Building wheels for collected packages: diff_gaussian_rasterization, simple_knn Building wheel for diff_gaussian_rasterization (setup.py): started Building wheel for diff_gaussian_rasterization (setup.py): finished with status 'error' Running setup.py clean for diff_gaussian_rasterization Building wheel for simple_knn (setup.py): started Building wheel for simple_knn (setup.py): finished with status 'error' Running setup.py clean for simple_knn Failed to build diff_gaussian_rasterization simple_knn Installing collected packages: simple_knn, diff_gaussian_rasterization Running setup.py install for simple_knn: started Running setup.py install for simple_knn: finished with status 'error' Pip subprocess error: error: subprocess-exited-with-error × python setup.py bdist_wheel did not run successfully. │ exit code: 1 ╰─> [89 lines of output] running bdist_wheel running build running build_py creating build creating build\lib.win-amd64-cpython-37 creating build\lib.win-amd64-cpython-37\diff_gaussian_rasterization copying diff_gaussian_rasterization\__init__.py -> build\lib.win-amd64-cpython-37\diff_gaussian_rasterization running build_ext C:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\torch\utils\cpp_extension.py:346: UserWarning: Error checking compiler version for cl: [WinError 2] The system cannot find the file specified warnings.warn(f'Error checking compiler version for {compiler}: {error}') C:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\torch\utils\cpp_extension.py:813: UserWarning: The detected CUDA version (11.8) has a minor version mismatch with the version that was used to compile PyTorch (11.6). Most likely this shouldn't be a problem. warnings.warn(CUDA_MISMATCH_WARN.format(cuda_str_version, torch.version.cuda)) building 'diff_gaussian_rasterization._C' extension creating C:\Users\rohil\gaussian-splatting\submodules\diff-gaussian-rasterization\build\temp.win-amd64-cpython-37 creating C:\Users\rohil\gaussian-splatting\submodules\diff-gaussian-rasterization\build\temp.win-amd64-cpython-37\Release creating C:\Users\rohil\gaussian-splatting\submodules\diff-gaussian-rasterization\build\temp.win-amd64-cpython-37\Release\cuda_rasterizer Emitting ninja build file C:\Users\rohil\gaussian-splatting\submodules\diff-gaussian-rasterization\build\temp.win-amd64-cpython-37\Release\build.ninja... Compiling objects... Allowing ninja to set a default number of workers... (overridable by setting the environment variable MAX_JOBS=N) [1/5] cl /showIncludes /nologo /O2 /W3 /GL /DNDEBUG /MD /MD /wd4819 /wd4251 /wd4244 /wd4267 /wd4275 /wd4018 /wd4190 /EHsc -IC:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\torch\include -IC:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\torch\include\torch\csrc\api\include -IC:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\torch\include\TH -IC:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\torch\include\THC "-IC:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8\include" -IC:\Users\rohil\anaconda3\envs\gaussian_splatting\include -IC:\Users\rohil\anaconda3\envs\gaussian_splatting\Include -c C:\Users\rohil\gaussian-splatting\submodules\diff-gaussian-rasterization\ext.cpp /FoC:\Users\rohil\gaussian-splatting\submodules\diff-gaussian-rasterization\build\temp.win-amd64-cpython-37\Release\ext.obj -DTORCH_API_INCLUDE_EXTENSION_H -DTORCH_EXTENSION_NAME=_C -D_GLIBCXX_USE_CXX11_ABI=0 /std:c++14 FAILED: C:/Users/rohil/gaussian-splatting/submodules/diff-gaussian-rasterization/build/temp.win-amd64-cpython-37/Release/ext.obj cl /showIncludes /nologo /O2 /W3 /GL /DNDEBUG /MD /MD /wd4819 /wd4251 /wd4244 /wd4267 /wd4275 /wd4018 /wd4190 /EHsc -IC:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\torch\include -IC:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\torch\include\torch\csrc\api\include -IC:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\torch\include\TH -IC:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\torch\include\THC "-IC:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8\include" -IC:\Users\rohil\anaconda3\envs\gaussian_splatting\include -IC:\Users\rohil\anaconda3\envs\gaussian_splatting\Include -c C:\Users\rohil\gaussian-splatting\submodules\diff-gaussian-rasterization\ext.cpp /FoC:\Users\rohil\gaussian-splatting\submodules\diff-gaussian-rasterization\build\temp.win-amd64-cpython-37\Release\ext.obj -DTORCH_API_INCLUDE_EXTENSION_H -DTORCH_EXTENSION_NAME=_C -D_GLIBCXX_Uninja: fatal: ReadFile: The handle is invalid. SE_CXX11_ABI=0 /std:c++14 CreateProcess failed: The system cannot find the file specified. Traceback (most recent call last): File "C:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\torch\utils\cpp_extension.py", line 1814, in _run_ninja_build env=env) File "C:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\subprocess.py", line 512, in run output=stdout, stderr=stderr) subprocess.CalledProcessError: Command '['ninja', '-v']' returned non-zero exit status 1. The above exception was the direct cause of the following exception: Traceback (most recent call last): File "<string>", line 36, in <module> File "<pip-setuptools-caller>", line 34, in <module> File "C:\Users\rohil\gaussian-splatting\submodules\diff-gaussian-rasterization\setup.py", line 32, in <module> 'build_ext': BuildExtension File "C:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\setuptools\__init__.py", line 103, in setup return distutils.core.setup(**attrs) File "C:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\setuptools\_distutils\core.py", line 185, in setup return run_commands(dist) File "C:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\setuptools\_distutils\core.py", line 201, in run_commands dist.run_commands() File "C:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\setuptools\_distutils\dist.py", line 969, in run_commands self.run_command(cmd) File "C:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\setuptools\dist.py", line 963, in run_command super().run_command(command) File "C:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\setuptools\_distutils\dist.py", line 988, in run_command cmd_obj.run() File "C:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\wheel\bdist_wheel.py", line 368, in run self.run_command("build") File "C:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\setuptools\_distutils\cmd.py", line 318, in run_command self.distribution.run_command(command) File "C:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\setuptools\dist.py", line 963, in run_command super().run_command(command) File "C:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\setuptools\_distutils\dist.py", line 988, in run_command cmd_obj.run() File "C:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\setuptools\_distutils\command\build.py", line 131, in run self.run_command(cmd_name) File "C:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\setuptools\_distutils\cmd.py", line 318, in run_command self.distribution.run_command(command) File "C:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\setuptools\dist.py", line 963, in run_command super().run_command(command) File "C:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\setuptools\_distutils\dist.py", line 988, in run_command cmd_obj.run() File "C:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\setuptools\command\build_ext.py", line 88, in run _build_ext.run(self) File "C:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\setuptools\_distutils\command\build_ext.py", line 345, in run self.build_extensions() File "C:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\torch\utils\cpp_extension.py", line 765, in build_extensions build_ext.build_extensions(self) File "C:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\setuptools\_distutils\command\build_ext.py", line 467, in build_extensions self._build_extensions_serial() File "C:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\setuptools\_distutils\command\build_ext.py", line 493, in _build_extensions_serial self.build_extension(ext) File "C:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\setuptools\command\build_ext.py", line 249, in build_extension _build_ext.build_extension(self, ext) File "C:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\setuptools\_distutils\command\build_ext.py", line 555, in build_extension depends=ext.depends, File "C:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\torch\utils\cpp_extension.py", line 747, in win_wrap_ninja_compile with_cuda=with_cuda) File "C:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\torch\utils\cpp_extension.py", line 1492, in _write_ninja_file_and_compile_objects error_prefix='Error compiling objects for extension') File "C:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\torch\utils\cpp_extension.py", line 1824, in _run_ninja_build raise RuntimeError(message) from e RuntimeError: Error compiling objects for extension [end of output] note: This error originates from a subprocess, and is likely not a problem with pip. ERROR: Failed building wheel for diff_gaussian_rasterization error: subprocess-exited-with-error × python setup.py bdist_wheel did not run successfully. │ exit code: 1 ╰─> [84 lines of output] running bdist_wheel running build running build_ext C:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\torch\utils\cpp_extension.py:346: UserWarning: Error checking compiler version for cl: [WinError 2] The system cannot find the file specified warnings.warn(f'Error checking compiler version for {compiler}: {error}') C:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\torch\utils\cpp_extension.py:813: UserWarning: The detected CUDA version (11.8) has a minor version mismatch with the version that was used to compile PyTorch (11.6). Most likely this shouldn't be a problem. warnings.warn(CUDA_MISMATCH_WARN.format(cuda_str_version, torch.version.cuda)) building 'simple_knn._C' extension creating C:\Users\rohil\gaussian-splatting\submodules\simple-knn\build creating C:\Users\rohil\gaussian-splatting\submodules\simple-knn\build\temp.win-amd64-cpython-37 creating C:\Users\rohil\gaussian-splatting\submodules\simple-knn\build\temp.win-amd64-cpython-37\Release Emitting ninja build file C:\Users\rohil\gaussian-splatting\submodules\simple-knn\build\temp.win-amd64-cpython-37\Release\build.ninja... Compiling objects... Allowing ninja to set a default number of workers... (overridable by setting the environment variable MAX_JOBS=N) [1/3] cl /showIncludes /nologo /O2 /W3 /GL /DNDEBUG /MD /MD /wd4819 /wd4251 /wd4244 /wd4267 /wd4275 /wd4018 /wd4190 /EHsc -IC:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\torch\include -IC:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\torch\include\torch\csrc\api\include -IC:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\torch\include\TH -IC:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\torch\include\THC "-IC:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8\include" -IC:\Users\rohil\anaconda3\envs\gaussian_splatting\include -IC:\Users\rohil\anaconda3\envs\gaussian_splatting\Include -c C:\Users\rohil\gaussian-splatting\submodules\simple-knn\ext.cpp /FoC:\Users\rohil\gaussian-splatting\submodules\simple-knn\build\temp.win-amd64-cpython-37\Release\ext.obj /wd4624 -DTORCH_API_INCLUDE_EXTENSION_H -DTORCH_EXTENSION_NAME=_C -D_GLIBCXX_USE_CXX11_ABI=0 /std:c++14 FAILED: C:/Users/rohil/gaussian-splatting/submodules/simple-knn/build/temp.win-amd64-cpython-37/Release/ext.obj cl /showIncludes /nologo /O2 /W3 /GL /DNDEBUG /MD /MD /wd4819 /wd4251 /wd4244 /wd4267 /wd4275 /wd4018 /wd4190 /EHsc -IC:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\torch\include -IC:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\torch\include\torch\csrc\api\include -IC:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\torch\include\TH -IC:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\torch\include\THC "-IC:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8\include" -IC:\Users\rohil\anaconda3\envs\gaussian_splatting\include -IC:\Users\rohil\anaconda3\envs\gaussian_splatting\Include -c C:\Users\rohil\gaussian-splatting\submodules\simple-knn\ext.cpp /FoC:\Users\rohil\gaussian-splatting\submodules\simple-knn\build\temp.win-amd64-cpython-37\Release\ext.obj /wd4624 -DTORCH_API_INCLUDE_EXTENSION_H -DTORCH_EXTENSION_NAME=_C -D_GLIBCXX_USE_CXX11_ABI=0 /std:c++14 CreateProcess failed: The system cannot finninja: fatal: ReadFile: The handle is invalid. d the file specified. Traceback (most recent call last): File "C:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\torch\utils\cpp_extension.py", line 1814, in _run_ninja_build env=env) File "C:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\subprocess.py", line 512, in run output=stdout, stderr=stderr) subprocess.CalledProcessError: Command '['ninja', '-v']' returned non-zero exit status 1. The above exception was the direct cause of the following exception: Traceback (most recent call last): File "<string>", line 36, in <module> File "<pip-setuptools-caller>", line 34, in <module> File "C:\Users\rohil\gaussian-splatting\submodules\simple-knn\setup.py", line 33, in <module> 'build_ext': BuildExtension File "C:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\setuptools\__init__.py", line 103, in setup return distutils.core.setup(**attrs) File "C:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\setuptools\_distutils\core.py", line 185, in setup return run_commands(dist) File "C:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\setuptools\_distutils\core.py", line 201, in run_commands dist.run_commands() File "C:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\setuptools\_distutils\dist.py", line 969, in run_commands self.run_command(cmd) File "C:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\setuptools\dist.py", line 963, in run_command super().run_command(command) File "C:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\setuptools\_distutils\dist.py", line 988, in run_command cmd_obj.run() File "C:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\wheel\bdist_wheel.py", line 368, in run self.run_command("build") File "C:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\setuptools\_distutils\cmd.py", line 318, in run_command self.distribution.run_command(command) File "C:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\setuptools\dist.py", line 963, in run_command super().run_command(command) File "C:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\setuptools\_distutils\dist.py", line 988, in run_command cmd_obj.run() File "C:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\setuptools\_distutils\command\build.py", line 131, in run self.run_command(cmd_name) File "C:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\setuptools\_distutils\cmd.py", line 318, in run_command self.distribution.run_command(command) File "C:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\setuptools\dist.py", line 963, in run_command super().run_command(command) File "C:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\setuptools\_distutils\dist.py", line 988, in run_command cmd_obj.run() File "C:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\setuptools\command\build_ext.py", line 88, in run _build_ext.run(self) File "C:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\setuptools\_distutils\command\build_ext.py", line 345, in run self.build_extensions() File "C:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\torch\utils\cpp_extension.py", line 765, in build_extensions build_ext.build_extensions(self) File "C:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\setuptools\_distutils\command\build_ext.py", line 467, in build_extensions self._build_extensions_serial() File "C:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\setuptools\_distutils\command\build_ext.py", line 493, in _build_extensions_serial self.build_extension(ext) File "C:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\setuptools\command\build_ext.py", line 249, in build_extension _build_ext.build_extension(self, ext) File "C:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\setuptools\_distutils\command\build_ext.py", line 555, in build_extension depends=ext.depends, File "C:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\torch\utils\cpp_extension.py", line 747, in win_wrap_ninja_compile with_cuda=with_cuda) File "C:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\torch\utils\cpp_extension.py", line 1492, in _write_ninja_file_and_compile_objects error_prefix='Error compiling objects for extension') File "C:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\torch\utils\cpp_extension.py", line 1824, in _run_ninja_build raise RuntimeError(message) from e RuntimeError: Error compiling objects for extension [end of output] note: This error originates from a subprocess, and is likely not a problem with pip. ERROR: Failed building wheel for simple_knn error: subprocess-exited-with-error × Running setup.py install for simple_knn did not run successfully. │ exit code: 1 ╰─> [99 lines of output] running install C:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\setuptools\_distutils\cmd.py:66: SetuptoolsDeprecationWarning: setup.py install is deprecated. !! ******************************************************************************** Please avoid running ``setup.py`` directly. Instead, use pypa/build, pypa/installer or other standards-based tools. See https://blog.ganssle.io/articles/2021/10/setup-py-deprecated.html for details. ******************************************************************************** !! self.initialize_options() running build running build_ext C:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\torch\utils\cpp_extension.py:346: UserWarning: Error checking compiler version for cl: [WinError 2] The system cannot find the file specified warnings.warn(f'Error checking compiler version for {compiler}: {error}') C:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\torch\utils\cpp_extension.py:813: UserWarning: The detected CUDA version (11.8) has a minor version mismatch with the version that was used to compile PyTorch (11.6). Most likely this shouldn't be a problem. warnings.warn(CUDA_MISMATCH_WARN.format(cuda_str_version, torch.version.cuda)) building 'simple_knn._C' extension creating C:\Users\rohil\gaussian-splatting\submodules\simple-knn\build creating C:\Users\rohil\gaussian-splatting\submodules\simple-knn\build\temp.win-amd64-cpython-37 creating C:\Users\rohil\gaussian-splatting\submodules\simple-knn\build\temp.win-amd64-cpython-37\Release Emitting ninja build file C:\Users\rohil\gaussian-splatting\submodules\simple-knn\build\temp.win-amd64-cpython-37\Release\build.ninja... Compiling objects... Allowing ninja to set a default number of workers... (overridable by setting the environment variable MAX_JOBS=N) [1/3] cl /showIncludes /nologo /O2 /W3 /GL /DNDEBUG /MD /MD /wd4819 /wd4251 /wd4244 /wd4267 /wd4275 /wd4018 /wd4190 /EHsc -IC:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\torch\include -IC:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\torch\include\torch\csrc\api\include -IC:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\torch\include\TH -IC:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\torch\include\THC "-IC:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8\include" -IC:\Users\rohil\anaconda3\envs\gaussian_splatting\include -IC:\Users\rohil\anaconda3\envs\gaussian_splatting\Include -c C:\Users\rohil\gaussian-splatting\submodules\simple-knn\ext.cpp /FoC:\Users\rohil\gaussian-splatting\submodules\simple-knn\build\temp.win-amd64-cpython-37\Release\ext.obj /wd4624 -DTORCH_API_INCLUDE_EXTENSION_H -DTORCH_EXTENSION_NAME=_C -D_GLIBCXX_USE_CXX11_ABI=0 /std:c++14 FAILED: C:/Users/rohil/gaussian-splatting/submodules/simple-knn/build/temp.win-amd64-cpython-37/Release/ext.obj cl /showIncludes /nologo /O2 /W3 /GL /DNDEBUG /MD /MD /wd4819 /wd4251 /wd4244 /wd4267 /wd4275 /wd4018 /wd4190 /EHsc -IC:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\torch\include -IC:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\torch\include\torch\csrc\api\include -IC:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\torch\include\TH -IC:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\torch\include\THC "-IC:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8\include" -IC:\Users\rohil\anaconda3\envs\gaussian_splatting\include -IC:\Users\rohil\anaconda3\envs\gaussian_splatting\Include -c C:\Users\rohil\gaussian-splatting\submodules\simple-knn\ext.cpp /FoC:\Users\rohil\gaussian-splatting\submodules\simple-knn\build\temp.win-amd64-cpython-37\Release\ext.obj /wd4624 -DTORCH_API_INCLUDE_EXTENSION_H -DTORCH_EXTENSION_NAME=_C -D_GLIBCXX_USE_CXX11_ABI=0 /std:c++14 CreateProcess failed: The system cannot finninja: fatal: ReadFile: The handle is invalid. d the file specified. Traceback (most recent call last): File "C:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\torch\utils\cpp_extension.py", line 1814, in _run_ninja_build env=env) File "C:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\subprocess.py", line 512, in run output=stdout, stderr=stderr) subprocess.CalledProcessError: Command '['ninja', '-v']' returned non-zero exit status 1. The above exception was the direct cause of the following exception: Traceback (most recent call last): File "<string>", line 36, in <module> File "<pip-setuptools-caller>", line 34, in <module> File "C:\Users\rohil\gaussian-splatting\submodules\simple-knn\setup.py", line 33, in <module> 'build_ext': BuildExtension File "C:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\setuptools\__init__.py", line 103, in setup return distutils.core.setup(**attrs) File "C:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\setuptools\_distutils\core.py", line 185, in setup return run_commands(dist) File "C:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\setuptools\_distutils\core.py", line 201, in run_commands dist.run_commands() File "C:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\setuptools\_distutils\dist.py", line 969, in run_commands self.run_command(cmd) File "C:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\setuptools\dist.py", line 963, in run_command super().run_command(command) File "C:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\setuptools\_distutils\dist.py", line 988, in run_command cmd_obj.run() File "C:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\setuptools\command\install.py", line 78, in run return orig.install.run(self) File "C:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\setuptools\_distutils\command\install.py", line 697, in run self.run_command('build') File "C:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\setuptools\_distutils\cmd.py", line 318, in run_command self.distribution.run_command(command) File "C:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\setuptools\dist.py", line 963, in run_command super().run_command(command) File "C:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\setuptools\_distutils\dist.py", line 988, in run_command cmd_obj.run() File "C:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\setuptools\_distutils\command\build.py", line 131, in run self.run_command(cmd_name) File "C:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\setuptools\_distutils\cmd.py", line 318, in run_command self.distribution.run_command(command) File "C:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\setuptools\dist.py", line 963, in run_command super().run_command(command) File "C:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\setuptools\_distutils\dist.py", line 988, in run_command cmd_obj.run() File "C:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\setuptools\command\build_ext.py", line 88, in run _build_ext.run(self) File "C:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\setuptools\_distutils\command\build_ext.py", line 345, in run self.build_extensions() File "C:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\torch\utils\cpp_extension.py", line 765, in build_extensions build_ext.build_extensions(self) File "C:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\setuptools\_distutils\command\build_ext.py", line 467, in build_extensions self._build_extensions_serial() File "C:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\setuptools\_distutils\command\build_ext.py", line 493, in _build_extensions_serial self.build_extension(ext) File "C:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\setuptools\command\build_ext.py", line 249, in build_extension _build_ext.build_extension(self, ext) File "C:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\setuptools\_distutils\command\build_ext.py", line 555, in build_extension depends=ext.depends, File "C:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\torch\utils\cpp_extension.py", line 747, in win_wrap_ninja_compile with_cuda=with_cuda) File "C:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\torch\utils\cpp_extension.py", line 1492, in _write_ninja_file_and_compile_objects error_prefix='Error compiling objects for extension') File "C:\Users\rohil\anaconda3\envs\gaussian_splatting\lib\site-packages\torch\utils\cpp_extension.py", line 1824, in _run_ninja_build raise RuntimeError(message) from e RuntimeError: Error compiling objects for extension [end of output] note: This error originates from a subprocess, and is likely not a problem with pip. error: legacy-install-failure × Encountered error while trying to install package. ╰─> simple_knn note: This is an issue with the package mentioned above, not pip. hint: See above for output from the failure. failed CondaEnvException: Pip failed ``` I have tried some methods from the other issues like [this](https://github.com/graphdeco-inria/gaussian-splatting/issues/1014#issuecomment-2421791642) however to no avail. Help is greatly appreciated. Thanks!
closed
2024-10-20T15:01:08Z
2024-10-24T09:24:37Z
https://github.com/graphdeco-inria/gaussian-splatting/issues/1019
[]
Ujjwal-Rohilla
1
BayesWitnesses/m2cgen
scikit-learn
287
NotImplementedError: Model 'numpy_ndarray' is not supported
while running `m2cgen --language java ModelOnline.joblib > model1.java` got error `NotImplementedError: Model 'numpy_ndarray' is not supported`. Are there plans to support it?
closed
2020-08-03T17:14:29Z
2020-08-04T15:56:30Z
https://github.com/BayesWitnesses/m2cgen/issues/287
[]
yarix
5
unit8co/darts
data-science
2,743
[BUG] RIN and Likelihood models
**Describe the bug** When using a Torch-based model with `use_reversible_instance_norm=True` and a `likelihood` specified (e.g., GaussianLikelihood), the model's predicted distribution parameters appear to be denormalized by the Reversible Instance Normalization (RINorm). This seems unintended, as RINorm should generally only affect the forecasted target values, not learned distribution parameters. **To Reproduce** ```python from darts.models import NLinearModel from darts.utils.likelihood_models import GaussianLikelihood # Constant TS creation constant_two = np.ones(100) * 2 constant_two_series = TimeSeries.from_values(constant_two) # Create normal model without likelihood and with reversible instance norm model_normal = NLinearModel(20, 10, use_reversible_instance_norm=False) model.fit(constant_two_series) normal_pred_series = model.predict(20, series=constant_two_series) # Create model with likelihood and with reversible instance norm model_likelihood_with_revin = NLinearModel(20, 10, use_reversible_instance_norm=True, likelihood=GaussianLikelihood()) model_likelihood_with_revin.fit(constant_two_series) likelihood_with_revin_pred_series = model_likelihood_with_revin.predict(20, series=constant_two_series) # Create model with likelihood and with reversible instance norm model_likelihood = NLinearModel(20, 10, use_reversible_instance_norm=False, likelihood=GaussianLikelihood()) model_likelihood.fit(constant_two_series) likelihood_pred_series = model_likelihood.predict(20, series=constant_two_series) # Create side-by-side plots fig, axes = plt.subplots(1, 3, figsize=(14, 5)) # Left plot: Normal model constant_two_series.plot(ax=axes[0], label="constant") normal_pred_series.plot(ax=axes[0], label="normal") axes[0].set_title("NLinear (no likelihood, with RevIN)") axes[0].legend() # Right plot: Likelihood model constant_two_series.plot(ax=axes[1], label="constant") likelihood_with_revin_pred_series.plot(ax=axes[1], label="likelihood") axes[1].set_title("NLinear (with Gaussian Likelihood, with RevIN)") axes[1].legend() # Right plot: Likelihood model constant_two_series.plot(ax=axes[2], label="constant") likelihood_pred_series.plot(ax=axes[2], label="likelihood") axes[2].set_title("NLinear (with Gaussian Likelihood, without RevIN)") axes[2].legend() plt.tight_layout() plt.show() ``` ![Image](https://github.com/user-attachments/assets/fb569a9d-9c17-4cc0-a783-78dfc98b4400) **Expected behavior** While denormalizing the predicted output values makes sense in standard forecasting scenarios, applying this enormalization to distribution parameters (like the mean or variance from a likelihood model) is typically not appropriate. These parameters should remain in the normalized space unless explicitly required otherwise. **System (please complete the following information):** - Python version: 3.11.11 - darts version: 0.34.0 **Additional context** When inspecting the code responsible for applying RINorm—specifically in `darts.models.forecasting.pl_forecasting_module`, lines 48 to 67—it appears that all outputs of the model are denormalized. [Link to Code](https://github.com/unit8co/darts/blob/42776790183bbe42411fc2dba3e1e8416f9263e8/darts/models/forecasting/pl_forecasting_module.py#L48C5-L67C27)
open
2025-03-24T08:13:58Z
2025-03-24T08:19:43Z
https://github.com/unit8co/darts/issues/2743
[ "bug", "triage" ]
PaulRabich
0
wagtail/wagtail
django
12,210
The Workflow task type filter doesn't work in the task chooser modal
To reproduce: - add a custom workflow task - create said task type - edit a workflow to add the task and choose from existing https://www.loom.com/share/c9db3cac043a47938dd862655e9764a9?sid=33905af7-34c2-4419-bfb1-1ab598a66c25 Wagtail 6.2+ Confirmed it works in Wagtail 6.1
closed
2024-08-06T14:10:47Z
2024-08-08T17:52:30Z
https://github.com/wagtail/wagtail/issues/12210
[ "type:Bug", "component:Workflow" ]
zerolab
1
aiortc/aiortc
asyncio
257
Videostream-cli webcam to another videostream-cli not working
Thank you for this amazing package. I am trying to use this package for streaming on raspberry pi to Ubuntu machine receiving frames and handle it with opencv like in server example. Tried those on raspberry pi: 1. Server example works fine 2. Webcam works fine 3. Videostream-cli example, streaming an mp4 video works fine and timing is correct But running videostream-cli with webcam instead of video doesn't work, I receive first one or couple of frames correctly then the stream get stopped hang or receiving curropted frames. * I had tried different type of cameras * and test on raspberry pi 3 and 4 * tried different versions of ffmpeg even downloading source and compile it Non of them was able to stream successfully. Why is this happening since both sever and webcam both works fine, means PYAV and FFMPEG installed correctly. This how I am running videostream-cli: on raspberry pi: `python cli.py offer` and this how I modified the code to make offer stream from webcam: ``` # create media source if args.play_from: player = MediaPlayer(args.play_from) else: if args.role == "offer": options = {"framerate": "30", "video_size": "640x480"} player = MediaPlayer("/dev/video0", format="v4l2", options=options) else: player = None ```` on Ubuntu machine I run `python cli.py answer --record-to video.mp4`
closed
2020-01-26T17:14:18Z
2021-03-07T14:53:25Z
https://github.com/aiortc/aiortc/issues/257
[ "question" ]
AnasMK
8
jupyter/docker-stacks
jupyter
1,852
[BUG] - file permission problem on CentOS 7
### What docker image(s) are you using? base-notebook ### OS system and architecture running docker image CentOS 7.6.1810 / amd64 ### What Docker command are you running? 'docker run -d --restart=always --name=jupyterlab -p 18888:8888 jupyter/base-notebook' ### How to Reproduce the problem? 1. Run the docker run command. 2. Open the jupyter url, it could be opened, but the file browser is blank. Error information is in the container logs. 3. Try to create a notebook, it will display: Error Unexpected error while saving file: Untitled1.ipynb [Errno 2] No such file or directory: '/home/jovyan/.~Untitled1.ipynb' -> '/home/jovyan/Untitled1.ipynb' ![2022-12-28](https://user-images.githubusercontent.com/99703980/209791027-6ea621bf-afbf-424a-b356-b6a009cfef15.png) ### Command output ```bash session #before access the url: $ docker logs jupyterlab Entered start.sh with args: jupyter lab WARNING: no write access to /home/jovyan. Try starting the container with group 'users' (100), e.g. using "--group-add=users". Executing the command: jupyter lab Fail to get yarn configuration. /opt/conda/bin/node[15]: ../../src/node_platform.cc:61:std::unique_ptr<long unsigned int> node::WorkerThreadsTaskRunner::DelayedTaskScheduler::Start(): Assertion `(0) == (uv_thread_create(t.get(), start_thread, this))' failed. 1: 0x7fb61bcec5e9 node::Abort() [/opt/conda/bin/../lib/libnode.so.108] 2: 0x7fb61bcec67b [/opt/conda/bin/../lib/libnode.so.108] 3: 0x7fb61bd6254d node::WorkerThreadsTaskRunner::WorkerThreadsTaskRunner(int) [/opt/conda/bin/../lib/libnode.so.108] 4: 0x7fb61bd62632 node::NodePlatform::NodePlatform(int, v8::TracingController*, v8::PageAllocator*) [/opt/conda/bin/../lib/libnode.so.108] 5: 0x7fb61bcae367 [/opt/conda/bin/../lib/libnode.so.108] 6: 0x7fb61bcaee67 node::InitializeOncePerProcess(std::vector<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, std::allocator<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > > > const&, node::ProcessFlags::Flags) [/opt/conda/bin/../lib/libnode.so.108] 7: 0x7fb61bcaf223 node::Start(int, char**) [/opt/conda/bin/../lib/libnode.so.108] 8: 0x7fb61b289d90 [/lib/x86_64-linux-gnu/libc.so.6] 9: 0x7fb61b289e40 __libc_start_main [/lib/x86_64-linux-gnu/libc.so.6] 10: 0x55947ac6507f [/opt/conda/bin/node] [I 2022-12-28 09:24:05.743 ServerApp] jupyter_server_terminals | extension was successfully linked. [I 2022-12-28 09:24:05.749 ServerApp] jupyterlab | extension was successfully linked. [W 2022-12-28 09:24:05.752 NotebookApp] 'ip' has moved from NotebookApp to ServerApp. This config will be passed to ServerApp. Be sure to update your config before our next release. [W 2022-12-28 09:24:05.752 NotebookApp] 'port' has moved from NotebookApp to ServerApp. This config will be passed to ServerApp. Be sure to update your config before our next release. [W 2022-12-28 09:24:05.752 NotebookApp] 'port' has moved from NotebookApp to ServerApp. This config will be passed to ServerApp. Be sure to update your config before our next release. [I 2022-12-28 09:24:05.755 ServerApp] nbclassic | extension was successfully linked. [I 2022-12-28 09:24:05.757 ServerApp] Writing Jupyter server cookie secret to /home/jovyan/.local/share/jupyter/runtime/jupyter_cookie_secret [I 2022-12-28 09:24:06.005 ServerApp] notebook_shim | extension was successfully linked. [I 2022-12-28 09:24:06.348 ServerApp] notebook_shim | extension was successfully loaded. [I 2022-12-28 09:24:06.350 ServerApp] jupyter_server_terminals | extension was successfully loaded. [I 2022-12-28 09:24:06.351 LabApp] JupyterLab extension loaded from /opt/conda/lib/python3.10/site-packages/jupyterlab [I 2022-12-28 09:24:06.351 LabApp] JupyterLab application directory is /opt/conda/share/jupyter/lab [I 2022-12-28 09:24:06.355 ServerApp] jupyterlab | extension was successfully loaded. [I 2022-12-28 09:24:06.366 ServerApp] nbclassic | extension was successfully loaded. [I 2022-12-28 09:24:06.366 ServerApp] Serving notebooks from local directory: /home/jovyan [I 2022-12-28 09:24:06.366 ServerApp] Jupyter Server 2.0.5 is running at: [I 2022-12-28 09:24:06.366 ServerApp] http://5fbe0adaadef:8888/lab?token=6ffb6ebf104eb5eae301400b3142aa1c0dbc065ae3387a9d [I 2022-12-28 09:24:06.366 ServerApp] or http://127.0.0.1:8888/lab?token=6ffb6ebf104eb5eae301400b3142aa1c0dbc065ae3387a9d [I 2022-12-28 09:24:06.366 ServerApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation). [C 2022-12-28 09:24:06.370 ServerApp] To access the server, open this file in a browser: file:///home/jovyan/.local/share/jupyter/runtime/jpserver-8-open.html Or copy and paste one of these URLs: http://5fbe0adaadef:8888/lab?token=6ffb6ebf104eb5eae301400b3142aa1c0dbc065ae3387a9d or http://127.0.0.1:8888/lab?token=6ffb6ebf104eb5eae301400b3142aa1c0dbc065ae3387a9d ``` ### Expected behavior _No response_ ### Actual behavior It can not be used at all. ### Anything else? The funny part is, when I buildt docker-stacks-foundation and base-notebook images myself, only changing the ROOT_CONTAINER from ubuntu:22.04 to ubuntu:focal in the Dockerfile, the problem disappeard. It seems that the Docker image ubuntu:22.04 has file permission problem with CentOS 7. I tried many other methods on adapting the file permissions, they just didn't work. The log is here. [jupyterlab.log](https://github.com/jupyter/docker-stacks/files/10313412/jupyterlab.log)
closed
2022-12-28T09:53:03Z
2022-12-28T20:17:22Z
https://github.com/jupyter/docker-stacks/issues/1852
[ "type:Bug" ]
iskoldt-X
1
plotly/dash
plotly
3,138
Bump Flask and Werkzeug versions
We pin `flask` and `werkzeug` to older (3.0.6 / 3.0.3) versions. We should upgrade these. We'll need to ensure compatibility across our ecosystem (OSS and Enterprise libraries). This is likely not something for 3.0 but worth considering.
open
2025-01-29T14:07:00Z
2025-03-11T14:17:10Z
https://github.com/plotly/dash/issues/3138
[ "infrastructure", "P2" ]
ndrezn
2
davidsandberg/facenet
computer-vision
760
how to determine the model has convergence when train the model?
Is it cost a lot of time to make the model convergence?
open
2018-05-25T07:15:23Z
2018-05-25T07:15:23Z
https://github.com/davidsandberg/facenet/issues/760
[]
boyliwensheng
0
junyanz/pytorch-CycleGAN-and-pix2pix
pytorch
686
Any reason can cause color blocks?
![image](https://user-images.githubusercontent.com/15172283/60316045-a47ac280-999b-11e9-8e44-789cea49e970.png) when i use pix2pix train the model, it can generate the picture with color blocks, anyone can help me what reason may cause this problem, thanks.
closed
2019-06-28T03:57:52Z
2020-07-28T20:26:34Z
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/issues/686
[]
wadesunyang
1
keras-team/keras
tensorflow
20,063
Dropout in ConvLSTM Cell
Really quick question here. In the ConvLSTMCell [here](https://github.com/keras-team/keras/blob/v3.3.3/keras/src/layers/rnn/conv_lstm.py#L236-L242), the dropout code has been commented out. `recurrent_dropout` also doesn't seem to do anything, except it is used in the `DropoutRNNCell` mixin. Is this a bug or am I missing something?
closed
2024-07-30T00:44:05Z
2024-08-06T16:46:55Z
https://github.com/keras-team/keras/issues/20063
[ "type:Bug" ]
dryglicki
5
Kanaries/pygwalker
pandas
24
Embedding directly in html
So I would love to use pygwalker in my project which is currently serving the data analytics through a simple flask server. Is there any easy way already available?
closed
2023-02-22T09:32:43Z
2023-02-24T08:34:09Z
https://github.com/Kanaries/pygwalker/issues/24
[]
DeastinY
4
mwaskom/seaborn
matplotlib
3,701
Feature Request: Continuous axes heat map
Feature Request: Continuous axes heat map. This would function similarly to the existing heatmap feature but allow for continuous axes rather than purely categorical. On the backend, it would behave more similarly to a 2d histplot, but instead of performing a count of data the function would accept an array_like containing values or perhaps keywords corresponding to aggregators (e.g. 'min', 'max', etc.). A special case would be 'count' which would behave like a regular histogram. Many thanks for your excellent work maintaining an excellent library.
closed
2024-05-31T03:55:38Z
2025-01-26T15:39:56Z
https://github.com/mwaskom/seaborn/issues/3701
[]
HThawley
1
kizniche/Mycodo
automation
1,091
Dashboard not displaying after 8.12.6 upgrade
### Describe the problem/bug After upgrading to the latest version v8.12.6 the Dashboard is no longer dispalying correctly - just empty boxes. Issue on Chrome (desktop) and Safari (phone). I've tried adding and editing widgets to no avail. Seems to be an issue with pulling the data? ### Versions: - Mycodo Version: 8.12.6 - Raspberry Pi Version: 3B+ - Raspbian OS Version: Buster ### Screenshots ![Mycodo 8 12 6](https://user-images.githubusercontent.com/33920783/133855462-3a8b2402-13f5-40fd-9728-192c52745045.JPG) Thanks for the awesome work that you are doing with Mycodo. I've been using it for the past 5 years for growing mushrooms. I see you recently started a new project - really cool!
closed
2021-09-17T21:41:09Z
2021-09-18T06:43:55Z
https://github.com/kizniche/Mycodo/issues/1091
[]
jacopienaar
9
ResidentMario/missingno
data-visualization
157
Value Error while using missingno bar
While working on a kaggle dataset for june challenge i came across this error. ValueError: The number of FixedLocator locations (0), usually from a call to set_ticks, does not match the number of ticklabels (81). I am using this code import missingno as msno plt.figure(figsize = (20,10)) msno.bar(data) plt.show() Please fix the issue.
closed
2022-06-10T14:00:07Z
2022-11-20T08:48:10Z
https://github.com/ResidentMario/missingno/issues/157
[]
prashant2-4-4
1
huggingface/datasets
pandas
7,326
Remove upper bound for fsspec
### Describe the bug As also raised by @cyyever in https://github.com/huggingface/datasets/pull/7296 and @NeilGirdhar in https://github.com/huggingface/datasets/commit/d5468836fe94e8be1ae093397dd43d4a2503b926#commitcomment-140952162 , `datasets` has a problematic version constraint on `fsspec`. In our case this causes (unnecessary?) troubles due to a race condition bug in that version of the corresponding `gcsfs` plugin, that causes deadlocks: https://github.com/fsspec/gcsfs/pull/643 We just use a version override to ignore the constraint from `datasets`, but imho the version constraint could just be removed in the first place? The last few PRs bumping the upper bound were basically uneventful: * https://github.com/huggingface/datasets/pull/7219 * https://github.com/huggingface/datasets/pull/6921 * https://github.com/huggingface/datasets/pull/6747 ### Steps to reproduce the bug - ### Expected behavior Installing `fsspec>=2024.10.0` along `datasets` should be possible without overwriting constraints. ### Environment info All recent datasets versions
open
2024-12-13T11:35:12Z
2025-01-03T15:34:37Z
https://github.com/huggingface/datasets/issues/7326
[]
fellhorn
1
airtai/faststream
asyncio
1,986
Bug: FastAPI raised exception "AnyDict not defined" while adding RabbitMessage as parameter to subscriber
**Describe the bug** I am trying to amend my current FastAPI based app with subscribers for RabbitMQ. Inside the subscriber function I need access to the full message or at least the correlation_id and the headers. However, I seem not to get acces to them from the Request parameter, thus, trying to add the `message: RabbitMessage`, but then it explodes. On the FastApi Lifespan `yield` this following exception is raised, but *only* if the subscriber endpoint ask for RabbitMessage: ``` File "/.../.venv/lib/python3.12/site-packages/pydantic/type_adapter.py", line 270, in _init_core_attrs self._core_schema = _getattr_no_parents(self._type, '__pydantic_core_schema__') ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/.../.venv/lib/python3.12/site-packages/pydantic/type_adapter.py", line 112, in _getattr_no_parents raise AttributeError(attribute) AttributeError: __pydantic_core_schema__ During handling of the above exception, another exception occurred: Traceback (most recent call last): File "/.../.venv/lib/python3.12/site-packages/pydantic/_internal/_generate_schema.py", line 864, in _resolve_forward_ref obj = _typing_extra.eval_type_backport(obj, globalns=self._types_namespace) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/.../.venv/lib/python3.12/site-packages/pydantic/_internal/_typing_extra.py", line 279, in eval_type_backport return _eval_type_backport(value, globalns, localns, type_params) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/.../.venv/lib/python3.12/site-packages/pydantic/_internal/_typing_extra.py", line 303, in _eval_type_backport return _eval_type(value, globalns, localns, type_params) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/.../.venv/lib/python3.12/site-packages/pydantic/_internal/_typing_extra.py", line 332, in _eval_type return typing._eval_type( # type: ignore ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/lib/python3.12/typing.py", line 414, in _eval_type return t._evaluate(globalns, localns, recursive_guard) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/lib/python3.12/typing.py", line 924, in _evaluate eval(self.__forward_code__, globalns, localns), ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "<string>", line 1, in <module> NameError: name 'AnyDict' is not defined The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/.../.venv/lib/python3.12/site-packages/starlette/routing.py", line 693, in lifespan async with self.lifespan_context(app) as maybe_state: File "/usr/lib/python3.12/contextlib.py", line 210, in __aenter__ return await anext(self.gen) ^^^^^^^^^^^^^^^^^^^^^ File "/.../.venv/lib/python3.12/site-packages/fastapi/routing.py", line 134, in merged_lifespan async with nested_context(app) as maybe_nested_state: File "/usr/lib/python3.12/contextlib.py", line 210, in __aenter__ return await anext(self.gen) ^^^^^^^^^^^^^^^^^^^^^ File "/.../.venv/lib/python3.12/site-packages/faststream/broker/fastapi/router.py", line 324, in start_broker_lifespan await self.broker.start() File "/.../.venv/lib/python3.12/site-packages/faststream/rabbit/broker/broker.py", line 508, in start await super().start() File "/.../.venv/lib/python3.12/site-packages/faststream/broker/core/usecase.py", line 219, in start await self.connect() File "/.../.venv/lib/python3.12/site-packages/faststream/rabbit/broker/broker.py", line 426, in connect connection = await super().connect(**kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/.../.venv/lib/python3.12/site-packages/faststream/broker/core/usecase.py", line 227, in connect self.setup() File "/.../.venv/lib/python3.12/site-packages/faststream/broker/core/usecase.py", line 238, in setup self.setup_subscriber(h) File "/.../.venv/lib/python3.12/site-packages/faststream/broker/core/usecase.py", line 251, in setup_subscriber subscriber.setup(**data) File "/.../.venv/lib/python3.12/site-packages/faststream/rabbit/subscriber/usecase.py", line 127, in setup super().setup( File "/.../.venv/lib/python3.12/site-packages/faststream/broker/subscriber/usecase.py", line 182, in setup call.setup( File "/.../.venv/lib/python3.12/site-packages/faststream/broker/subscriber/call_item.py", line 92, in setup dependant = self.handler.set_wrapped( ^^^^^^^^^^^^^^^^^^^^^^^^^ File "/.../.venv/lib/python3.12/site-packages/faststream/broker/wrapper/call.py", line 159, in set_wrapped call = decor(call) ^^^^^^^^^^^ File "/.../.venv/lib/python3.12/site-packages/faststream/broker/fastapi/router.py", line 231, in wrapper return wrap_callable_to_fastapi_compatible( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/.../.venv/lib/python3.12/site-packages/faststream/broker/fastapi/route.py", line 94, in wrap_callable_to_fastapi_compatible dependent=get_fastapi_native_dependant(user_callable, list(dependencies)), ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/.../.venv/lib/python3.12/site-packages/faststream/broker/fastapi/get_dependant.py", line 32, in get_fastapi_native_dependant dependent = get_dependant( ^^^^^^^^^^^^^^ File "/.../.venv/lib/python3.12/site-packages/fastapi/dependencies/utils.py", line 277, in get_dependant param_details = analyze_param( ^^^^^^^^^^^^^^ File "/.../.venv/lib/python3.12/site-packages/fastapi/dependencies/utils.py", line 478, in analyze_param field = create_model_field( ^^^^^^^^^^^^^^^^^^^ File "/.../.venv/lib/python3.12/site-packages/fastapi/utils.py", line 96, in create_model_field return ModelField(**kwargs) # type: ignore[arg-type] ^^^^^^^^^^^^^^^^^^^^ File "<string>", line 6, in __init__ File "/.../.venv/lib/python3.12/site-packages/fastapi/_compat.py", line 110, in __post_init__ self._type_adapter: TypeAdapter[Any] = TypeAdapter( ^^^^^^^^^^^^ File "/.../.venv/lib/python3.12/site-packages/pydantic/type_adapter.py", line 257, in __init__ self._init_core_attrs(rebuild_mocks=False) File "/.../.venv/lib/python3.12/site-packages/pydantic/type_adapter.py", line 135, in wrapped return func(self, *args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/.../.venv/lib/python3.12/site-packages/pydantic/type_adapter.py", line 277, in _init_core_attrs self._core_schema = _get_schema(self._type, config_wrapper, parent_depth=self._parent_depth) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/.../.venv/lib/python3.12/site-packages/pydantic/type_adapter.py", line 95, in _get_schema schema = gen.generate_schema(type_) ^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/.../.venv/lib/python3.12/site-packages/pydantic/_internal/_generate_schema.py", line 655, in generate_schema schema = self._generate_schema_inner(obj) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/.../.venv/lib/python3.12/site-packages/pydantic/_internal/_generate_schema.py", line 908, in _generate_schema_inner return self._annotated_schema(obj) ^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/.../.venv/lib/python3.12/site-packages/pydantic/_internal/_generate_schema.py", line 2028, in _annotated_schema schema = self._apply_annotations(source_type, annotations) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/.../.venv/lib/python3.12/site-packages/pydantic/_internal/_generate_schema.py", line 2107, in _apply_annotations schema = get_inner_schema(source_type) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/.../.venv/lib/python3.12/site-packages/pydantic/_internal/_schema_generation_shared.py", line 83, in __call__ schema = self._handler(source_type) ^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/.../.venv/lib/python3.12/site-packages/pydantic/_internal/_generate_schema.py", line 2189, in new_handler schema = metadata_get_schema(source, get_inner_schema) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/.../.venv/lib/python3.12/site-packages/pydantic/_internal/_generate_schema.py", line 2185, in <lambda> lambda source, handler: handler(source) ^^^^^^^^^^^^^^^ File "/.../.venv/lib/python3.12/site-packages/pydantic/_internal/_schema_generation_shared.py", line 83, in __call__ schema = self._handler(source_type) ^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/.../.venv/lib/python3.12/site-packages/pydantic/_internal/_generate_schema.py", line 2189, in new_handler schema = metadata_get_schema(source, get_inner_schema) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/.../.venv/lib/python3.12/site-packages/pydantic/_internal/_generate_schema.py", line 2185, in <lambda> lambda source, handler: handler(source) ^^^^^^^^^^^^^^^ File "/.../.venv/lib/python3.12/site-packages/pydantic/_internal/_schema_generation_shared.py", line 83, in __call__ schema = self._handler(source_type) ^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/.../.venv/lib/python3.12/site-packages/pydantic/_internal/_generate_schema.py", line 2088, in inner_handler schema = self._generate_schema_inner(obj) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/.../.venv/lib/python3.12/site-packages/pydantic/_internal/_generate_schema.py", line 929, in _generate_schema_inner return self.match_type(obj) ^^^^^^^^^^^^^^^^^^^^ File "/.../.venv/lib/python3.12/site-packages/pydantic/_internal/_generate_schema.py", line 1025, in match_type return self._dataclass_schema(obj, None) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/.../.venv/lib/python3.12/site-packages/pydantic/_internal/_generate_schema.py", line 1822, in _dataclass_schema args = sorted( ^^^^^^^ File "/.../.venv/lib/python3.12/site-packages/pydantic/_internal/_generate_schema.py", line 1823, in <genexpr> (self._generate_dc_field_schema(k, v, decorators) for k, v in fields.items()), ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/.../.venv/lib/python3.12/site-packages/pydantic/_internal/_generate_schema.py", line 1132, in _generate_dc_field_schema common_field = self._common_field_schema(name, field_info, decorators) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/.../.venv/lib/python3.12/site-packages/pydantic/_internal/_generate_schema.py", line 1308, in _common_field_schema schema = self._apply_annotations( ^^^^^^^^^^^^^^^^^^^^^^^^ File "/.../.venv/lib/python3.12/site-packages/pydantic/_internal/_generate_schema.py", line 2107, in _apply_annotations schema = get_inner_schema(source_type) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/.../.venv/lib/python3.12/site-packages/pydantic/_internal/_schema_generation_shared.py", line 83, in __call__ schema = self._handler(source_type) ^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/.../.venv/lib/python3.12/site-packages/pydantic/_internal/_generate_schema.py", line 2088, in inner_handler schema = self._generate_schema_inner(obj) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/.../.venv/lib/python3.12/site-packages/pydantic/_internal/_generate_schema.py", line 918, in _generate_schema_inner return self.generate_schema(self._resolve_forward_ref(obj)) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/.../.venv/lib/python3.12/site-packages/pydantic/_internal/_generate_schema.py", line 866, in _resolve_forward_ref raise PydanticUndefinedAnnotation.from_name_error(e) from e pydantic.errors.PydanticUndefinedAnnotation: name 'AnyDict' is not defined For further information visit https://errors.pydantic.dev/2.9/u/undefined-annotation ``` **How to reproduce** Include source code: The faststream subscriber setup: ```python from fastapi import FastAPI, Request from faststream.rabbit.fastapi import RabbitRouter from faststream.rabbit import RabbitBroker, RabbitQueue, RabbitExchange from faststream.rabbit import RabbitMessage from faststream.types import AnyDict @rabbit_router.subscriber(queue=action_queue, no_ack=False, retry=3, include_in_schema=False) async def action_subscriber(request: Request, body: str, message: RabbitMessage): logger.info(f"Action subscriber received message: {body}") await publish_message(f"Action subscriber received message: {body}", exchange="logs", sub_channel='info') ``` The App.py. ```python from fastapi import FastAPI, status, Request ... def create_app() -> FastAPI: @asynccontextmanager async def lifespan(app: FastAPI): print('lifespan start') yield print('lifespan end') # Pass the lifespan function to FastAPI app = FastAPI( docs_url=docs_url, redoc_url=redoc_url, openapi_url=openapi_url, lifespan=lifespan ) # Register routes register_routes(app) return app # Instantiate the app app = create_app() ... def register_routes(app: FastAPI): app.include_router(rabbit_router, include_in_schema=False) ```
closed
2024-12-15T08:31:39Z
2024-12-15T16:09:15Z
https://github.com/airtai/faststream/issues/1986
[ "bug" ]
easyjoh
2
PokemonGoF/PokemonGo-Bot
automation
5,520
Can't get it to evolve (SOLVED CLOSE)
EDIT: FIGURED IT OUT CLOSE PLEASE, accidentally kept // in front of something that broke it [2016-09-17 18:39:59] [MainThread] [EvolvePokemon] [WARNING] evolve_speed is deprecated, instead please use 'min_evolve_speed' and 'max_evolved_speed'. However when I look at config https://github.com/PokemonGoF/PokemonGo-Bot/blob/master/docs/configuration_files.md#evolve-all-configuration it looks like this is correct notation ``` }, { "type": "EvolvePokemon", "config": { "enabled": true, "evolve_list": "pidgey, Nidoran F, Nidoran M, magnemite", "donot_evolve_list": "none", "first_evolve_by": "cp", "evolve_above_cp": 100, "evolve_above_iv": 0.8, "logic": "or", "min_evolve_speed": 16, "max_evolve_speed": 20, "use_lucky_egg": false } ``` ### Other Information OS: Mac OSX <!-- Tell us what Operating system you're using --> Branch: Git Commit: 11123a82 Python Version:
closed
2016-09-18T01:50:20Z
2016-09-18T04:57:44Z
https://github.com/PokemonGoF/PokemonGo-Bot/issues/5520
[]
HelloTroy
2