hexsha
stringlengths
40
40
size
int64
1
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
239
max_stars_repo_name
stringlengths
5
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
โŒ€
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
โŒ€
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
โŒ€
max_issues_repo_path
stringlengths
3
239
max_issues_repo_name
stringlengths
5
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
โŒ€
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
โŒ€
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
โŒ€
max_forks_repo_path
stringlengths
3
239
max_forks_repo_name
stringlengths
5
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
โŒ€
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
โŒ€
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
โŒ€
content
stringlengths
1
1.03M
avg_line_length
float64
1
958k
max_line_length
int64
1
1.03M
alphanum_fraction
float64
0
1
7952b76a0e355dbd7466342c0d34c676ea5a52f1
1,850
py
Python
sdk/python/pulumi_aws/waf/get_rate_based_rule.py
JakeGinnivan/pulumi-aws
c91ef78932964ac74eda7f5da81f65b0f1798c93
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
sdk/python/pulumi_aws/waf/get_rate_based_rule.py
JakeGinnivan/pulumi-aws
c91ef78932964ac74eda7f5da81f65b0f1798c93
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
sdk/python/pulumi_aws/waf/get_rate_based_rule.py
JakeGinnivan/pulumi-aws
c91ef78932964ac74eda7f5da81f65b0f1798c93
[ "ECL-2.0", "Apache-2.0" ]
null
null
null
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import json import warnings import pulumi import pulumi.runtime from typing import Union from .. import utilities, tables class GetRateBasedRuleResult: """ A collection of values returned by getRateBasedRule. """ def __init__(__self__, id=None, name=None): if id and not isinstance(id, str): raise TypeError("Expected argument 'id' to be a str") __self__.id = id """ The provider-assigned unique ID for this managed resource. """ if name and not isinstance(name, str): raise TypeError("Expected argument 'name' to be a str") __self__.name = name class AwaitableGetRateBasedRuleResult(GetRateBasedRuleResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetRateBasedRuleResult( id=self.id, name=self.name) def get_rate_based_rule(name=None,opts=None): """ `waf.RateBasedRule` Retrieves a WAF Rate Based Rule Resource Id. ## Example Usage ```python import pulumi import pulumi_aws as aws example = aws.waf.get_rate_based_rule(name="tfWAFRateBasedRule") ``` :param str name: The name of the WAF rate based rule. """ __args__ = dict() __args__['name'] = name if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = utilities.get_version() __ret__ = pulumi.runtime.invoke('aws:waf/getRateBasedRule:getRateBasedRule', __args__, opts=opts).value return AwaitableGetRateBasedRuleResult( id=__ret__.get('id'), name=__ret__.get('name'))
28.030303
107
0.657297
7952b866b5554bd0bd823fe81e42316f23fa7b9d
9,267
py
Python
myanimelist/media_list.py
Zenrac/python3-mal
025444816ba23a0a9192265e87b7768d4f5488bf
[ "WTFPL" ]
null
null
null
myanimelist/media_list.py
Zenrac/python3-mal
025444816ba23a0a9192265e87b7768d4f5488bf
[ "WTFPL" ]
null
null
null
myanimelist/media_list.py
Zenrac/python3-mal
025444816ba23a0a9192265e87b7768d4f5488bf
[ "WTFPL" ]
null
null
null
#!/usr/bin/python # -*- coding: utf-8 -*- import abc import collections from lxml import etree as et import decimal import datetime import urllib.request, urllib.parse, urllib.error from . import utilities from .base import Base, MalformedPageError, InvalidBaseError, loadable class MalformedMediaListPageError(MalformedPageError): pass class InvalidMediaListError(InvalidBaseError): pass class MediaList(Base, collections.Mapping, metaclass=abc.ABCMeta): __id_attribute = "username" def __getitem__(self, media): return self.list[media] def __contains__(self, media): return media in self.list def __len__(self): return len(self.list) def __iter__(self): for media in self.list: yield media def __init__(self, session, user_name): super(MediaList, self).__init__(session) self.username = user_name if not isinstance(self.username, str) or len(self.username) < 1: raise InvalidMediaListError(self.username) self._list = None self._stats = None # subclasses must define a list type, ala "anime" or "manga" @abc.abstractproperty def type(self): pass # a list verb ala "watch", "read", etc @abc.abstractproperty def verb(self): pass # a list with status ints as indices and status texts as values. @property def user_status_terms(self): statuses = collections.defaultdict(lambda: 'Unknown') statuses[1] = self.verb.capitalize() + 'ing' statuses[2] = 'Completed' statuses[3] = 'On-Hold' statuses[4] = 'Dropped' statuses[6] = 'Plan to ' + self.verb.capitalize() return statuses def parse_entry_media_attributes(self, soup): """ Args: soup: a lxml.html.HtmlElement containing a row from the current media list Return a dict of attributes of the media the row is about. """ row_info = {} try: start = utilities.parse_profile_date(soup.find('.//series_start').text) except ValueError: start = None except: if not self.session.suppress_parse_exceptions: raise if start is not None: try: row_info['aired'] = (start, utilities.parse_profile_date(soup.find('.//series_end').text)) except ValueError: row_info['aired'] = (start, None) except: if not self.session.suppress_parse_exceptions: raise # look up the given media type's status terms. status_terms = getattr(self.session, self.type)(1)._status_terms try: row_info['id'] = int(soup.find('.//series_' + self.type + 'db_id').text) except: if not self.session.suppress_parse_exceptions: raise try: row_info['title'] = soup.find('.//series_title').text except: if not self.session.suppress_parse_exceptions: raise try: row_info['status'] = status_terms[int(soup.find('.//series_status').text)] except: if not self.session.suppress_parse_exceptions: raise try: row_info['picture'] = soup.find('.//series_image').text except: if not self.session.suppress_parse_exceptions: raise return row_info def parse_entry(self, soup): """ Given: soup: a lxml.html.HtmlElement containing a row from the current media list Return a tuple: (media object, dict of this row's parseable attributes) """ # parse the media object first. media_attrs = self.parse_entry_media_attributes(soup) media_id = media_attrs['id'] del media_attrs['id'] media = getattr(self.session, self.type)(media_id).set(media_attrs) entry_info = {} try: entry_info['started'] = utilities.parse_profile_date(soup.find('.//my_start_date').text) except ValueError: entry_info['started'] = None except: if not self.session.suppress_parse_exceptions: raise try: entry_info['finished'] = utilities.parse_profile_date(soup.find('.//my_finish_date').text) except ValueError: entry_info['finished'] = None except: if not self.session.suppress_parse_exceptions: raise try: entry_info['status'] = self.user_status_terms[int(soup.find('.//my_status').text)] except: if not self.session.suppress_parse_exceptions: raise try: entry_info['score'] = int(soup.find('.//my_score').text) # if user hasn't set a score, set it to None to indicate as such. if entry_info['score'] == 0: entry_info['score'] = None except: if not self.session.suppress_parse_exceptions: raise try: entry_info['last_updated'] = datetime.datetime.fromtimestamp(int(soup.find('.//my_last_updated').text)) except: if not self.session.suppress_parse_exceptions: raise return media, entry_info def parse_stats(self, soup): """ Given: soup: a lxml.etree element containing the current media list's stats Return a dict of this media list's stats. """ stats = {} for row in soup.getchildren(): try: key = row.tag.replace('user_', '') if key == 'id': stats[key] = int(row.text) elif key == 'name': stats[key] = row.text elif key == self.verb + 'ing': try: stats[key] = int(row.text) except ValueError: stats[key] = 0 elif key == 'completed': try: stats[key] = int(row.text) except ValueError: stats[key] = 0 elif key == 'onhold': try: stats['on_hold'] = int(row.text) except ValueError: stats[key] = 0 elif key == 'dropped': try: stats[key] = int(row.text) except ValueError: stats[key] = 0 elif key == 'planto' + self.verb: try: stats['plan_to_' + self.verb] = int(row.text) except ValueError: stats[key] = 0 # for some reason, MAL doesn't substitute 'read' in for manga for the verb here elif key == 'days_spent_watching': try: stats['days_spent'] = decimal.Decimal(row.text) except decimal.InvalidOperation: stats[key] = decimal.Decimal(0) except: if not self.session.suppress_parse_exceptions: raise return stats def parse(self, xml): list_info = {} list_page = et.fromstring(xml.encode()) primary_elt = list_page if primary_elt is None: raise MalformedMediaListPageError(self.username, xml, message="Could not find root XML element in " + self.type + " list") bad_username_elt = list_page.find('.//error') if bad_username_elt is not None: raise InvalidMediaListError(self.username, message="Invalid username when fetching " + self.type + " list") stats_elt = list_page.find('.//myinfo') if stats_elt is None and not utilities.check_if_mal_response_is_empty(list_page): raise MalformedMediaListPageError(self.username, xml, message="Could not find stats element in " + self.type + " list") if utilities.check_if_mal_response_is_empty(list_page): raise InvalidMediaListError(self.username, message="Empty result set when fetching " + self.type + " list") list_info['stats'] = self.parse_stats(stats_elt) list_info['list'] = {} for row in list_page.findall(".//%s" % self.type): (media, entry) = self.parse_entry(row) list_info['list'][media] = entry return list_info def load(self): media_list = self.session.session.get('https://myanimelist.net/malappinfo.php?' + urllib.parse.urlencode( {'u': self.username, 'status': 'all', 'type': self.type})).text self.set(self.parse(media_list)) return self @property @loadable('load') def list(self): return self._list @property @loadable('load') def stats(self): return self._stats def section(self, status): return {k: self.list[k] for k in self.list if self.list[k]['status'] == status}
33.576087
119
0.553038
7952b885f3aef57c07eba85abd55ff979228c601
40,477
py
Python
onmt/opts.py
biomed-AI/PROTAC-RL
d682c0d517a2ff8362e5a4a67bb297773daaf5bf
[ "MIT" ]
1
2022-02-15T00:54:34.000Z
2022-02-15T00:54:34.000Z
onmt/opts.py
TanYoh/PROTAC-RL
a8074af6afa478404a3a04da878eb0704e3ec984
[ "MIT" ]
null
null
null
onmt/opts.py
TanYoh/PROTAC-RL
a8074af6afa478404a3a04da878eb0704e3ec984
[ "MIT" ]
null
null
null
""" Implementation of all available options """ from __future__ import print_function import argparse from onmt.models.sru import CheckSRU def model_opts(parser): """ These options are passed to the construction of the model. Be careful with these as they will be used during translation. """ # Embedding Options group = parser.add_argument_group('Model-Embeddings') group.add_argument('-src_word_vec_size', type=int, default=500, help='Word embedding size for src.') group.add_argument('-tgt_word_vec_size', type=int, default=500, help='Word embedding size for tgt.') group.add_argument('-word_vec_size', type=int, default=-1, help='Word embedding size for src and tgt.') group.add_argument('-share_decoder_embeddings', action='store_true', help="""Use a shared weight matrix for the input and output word embeddings in the decoder.""") group.add_argument('-share_embeddings', action='store_true', help="""Share the word embeddings between encoder and decoder. Need to use shared dictionary for this option.""") group.add_argument('-position_encoding', action='store_true', help="""Use a sin to mark relative words positions. Necessary for non-RNN style models. """) group = parser.add_argument_group('Model-Embedding Features') group.add_argument('-feat_merge', type=str, default='concat', choices=['concat', 'sum', 'mlp'], help="""Merge action for incorporating features embeddings. Options [concat|sum|mlp].""") group.add_argument('-feat_vec_size', type=int, default=-1, help="""If specified, feature embedding sizes will be set to this. Otherwise, feat_vec_exponent will be used.""") group.add_argument('-feat_vec_exponent', type=float, default=0.7, help="""If -feat_merge_size is not set, feature embedding sizes will be set to N^feat_vec_exponent where N is the number of values the feature takes.""") # Encoder-Decoder Options group = parser.add_argument_group('Model- Encoder-Decoder') group.add_argument('-model_type', default='text', help="""Type of source model to use. Allows the system to incorporate non-text inputs. Options are [text|img|audio].""") group.add_argument('-encoder_type', type=str, default='rnn', choices=['rnn', 'brnn', 'mean', 'transformer', 'cnn'], help="""Type of encoder layer to use. Non-RNN layers are experimental. Options are [rnn|brnn|mean|transformer|cnn].""") group.add_argument('-decoder_type', type=str, default='rnn', choices=['rnn', 'transformer', 'cnn'], help="""Type of decoder layer to use. Non-RNN layers are experimental. Options are [rnn|transformer|cnn].""") group.add_argument('-layers', type=int, default=-1, help='Number of layers in enc/dec.') group.add_argument('-enc_layers', type=int, default=2, help='Number of layers in the encoder') group.add_argument('-dec_layers', type=int, default=2, help='Number of layers in the decoder') group.add_argument('-rnn_size', type=int, default=-1, help="""Size of rnn hidden states. Overwrites enc_rnn_size and dec_rnn_size""") group.add_argument('-enc_rnn_size', type=int, default=500, help="""Size of encoder rnn hidden states. Must be equal to dec_rnn_size except for speech-to-text.""") group.add_argument('-dec_rnn_size', type=int, default=500, help="""Size of decoder rnn hidden states. Must be equal to enc_rnn_size except for speech-to-text.""") group.add_argument('-audio_enc_pooling', type=str, default='1', help="""The amount of pooling of audio encoder, either the same amount of pooling across all layers indicated by a single number, or different amounts of pooling per layer separated by comma.""") group.add_argument('-cnn_kernel_width', type=int, default=3, help="""Size of windows in the cnn, the kernel_size is (cnn_kernel_width, 1) in conv layer""") group.add_argument('-input_feed', type=int, default=1, help="""Feed the context vector at each time step as additional input (via concatenation with the word embeddings) to the decoder.""") group.add_argument('-bridge', action="store_true", help="""Have an additional layer between the last encoder state and the first decoder state""") group.add_argument('-rnn_type', type=str, default='LSTM', choices=['LSTM', 'GRU', 'SRU'], action=CheckSRU, help="""The gate type to use in the RNNs""") # group.add_argument('-residual', action="store_true", # help="Add residual connections between RNN layers.") group.add_argument('-brnn', action=DeprecateAction, help="Deprecated, use `encoder_type`.") group.add_argument('-context_gate', type=str, default=None, choices=['source', 'target', 'both'], help="""Type of context gate to use. Do not select for no context gate.""") # Attention options group = parser.add_argument_group('Model- Attention') group.add_argument('-global_attention', type=str, default='general', choices=['dot', 'general', 'mlp'], help="""The attention type to use: dotprod or general (Luong) or MLP (Bahdanau)""") group.add_argument('-global_attention_function', type=str, default="softmax", choices=["softmax", "sparsemax"]) group.add_argument('-self_attn_type', type=str, default="scaled-dot", help="""Self attention type in Transformer decoder layer -- currently "scaled-dot" or "average" """) group.add_argument('-heads', type=int, default=8, help='Number of heads for transformer self-attention') group.add_argument('-transformer_ff', type=int, default=2048, help='Size of hidden transformer feed-forward') # Generator and loss options. group.add_argument('-copy_attn', action="store_true", help='Train copy attention layer.') group.add_argument('-generator_function', default="log_softmax", choices=["log_softmax", "sparsemax"], help="""Which function to use for generating probabilities over the target vocabulary (choices: log_softmax, sparsemax)""") group.add_argument('-copy_attn_force', action="store_true", help='When available, train to copy.') group.add_argument('-reuse_copy_attn', action="store_true", help="Reuse standard attention for copy") group.add_argument('-copy_loss_by_seqlength', action="store_true", help="Divide copy loss by length of sequence") group.add_argument('-coverage_attn', action="store_true", help='Train a coverage attention layer.') group.add_argument('-lambda_coverage', type=float, default=1, help='Lambda value for coverage.') def preprocess_opts(parser): """ Pre-procesing options """ # Data options group = parser.add_argument_group('Data') group.add_argument('-data_type', default="text", help="""Type of the source input. Options are [text|img].""") group.add_argument('-train_src', required=True, help="Path to the training source data") group.add_argument('-train_tgt', required=True, help="Path to the training target data") group.add_argument('-valid_src', required=True, help="Path to the validation source data") group.add_argument('-valid_tgt', required=True, help="Path to the validation target data") group.add_argument('-src_dir', default="", help="Source directory for image or audio files.") group.add_argument('-save_data', required=True, help="Output file for the prepared data") group.add_argument('-max_shard_size', type=int, default=0, help="""Deprecated use shard_size instead""") group.add_argument('-shard_size', type=int, default=1000000, help="""Divide src_corpus and tgt_corpus into smaller multiple src_copus and tgt corpus files, then build shards, each shard will have opt.shard_size samples except last shard. shard_size=0 means no segmentation shard_size>0 means segment dataset into multiple shards, each shard has shard_size samples""") # Dictionary options, for text corpus group = parser.add_argument_group('Vocab') group.add_argument('-src_vocab', default="", help="""Path to an existing source vocabulary. Format: one word per line.""") group.add_argument('-tgt_vocab', default="", help="""Path to an existing target vocabulary. Format: one word per line.""") group.add_argument('-features_vocabs_prefix', type=str, default='', help="Path prefix to existing features vocabularies") group.add_argument('-src_vocab_size', type=int, default=50000, help="Size of the source vocabulary") group.add_argument('-tgt_vocab_size', type=int, default=50000, help="Size of the target vocabulary") group.add_argument('-src_words_min_frequency', type=int, default=0) group.add_argument('-tgt_words_min_frequency', type=int, default=0) group.add_argument('-dynamic_dict', action='store_true', help="Create dynamic dictionaries") group.add_argument('-share_vocab', action='store_true', help="Share source and target vocabulary") # Truncation options, for text corpus group = parser.add_argument_group('Pruning') group.add_argument('-src_seq_length', type=int, default=50, help="Maximum source sequence length") group.add_argument('-src_seq_length_trunc', type=int, default=0, help="Truncate source sequence length.") group.add_argument('-tgt_seq_length', type=int, default=50, help="Maximum target sequence length to keep.") group.add_argument('-tgt_seq_length_trunc', type=int, default=0, help="Truncate target sequence length.") group.add_argument('-lower', action='store_true', help='lowercase data') # Data processing options group = parser.add_argument_group('Random') group.add_argument('-shuffle', type=int, default=1, help="Shuffle data") group.add_argument('-seed', type=int, default=3435, help="Random seed") group = parser.add_argument_group('Logging') group.add_argument('-report_every', type=int, default=100000, help="Report status every this many sentences") group.add_argument('-log_file', type=str, default="", help="Output logs to a file under this path.") # Options most relevant to speech group = parser.add_argument_group('Speech') group.add_argument('-sample_rate', type=int, default=16000, help="Sample rate.") group.add_argument('-window_size', type=float, default=.02, help="Window size for spectrogram in seconds.") group.add_argument('-window_stride', type=float, default=.01, help="Window stride for spectrogram in seconds.") group.add_argument('-window', default='hamming', help="Window type for spectrogram generation.") # Option most relevant to image input group.add_argument('-image_channel_size', type=int, default=3, choices=[3, 1], help="""Using grayscale image can training model faster and smaller""") def train_opts(parser): """ Training and saving options """ group = parser.add_argument_group('General') group.add_argument('-data', required=True, help="""Path prefix to the ".train.pt" and ".valid.pt" file path from preprocess.py""") group.add_argument('-save_model', default='model', help="""Model filename (the model will be saved as <save_model>_N.pt where N is the number of steps""") group.add_argument('-save_checkpoint_steps', type=int, default=5000, help="""Save a checkpoint every X steps""") group.add_argument('-keep_checkpoint', type=int, default=-1, help="""Keep X checkpoints (negative: keep all)""") # GPU group.add_argument('-gpuid', default=[], nargs='+', type=int, help="Deprecated see world_size and gpu_ranks.") group.add_argument('-gpu_ranks', default=[], nargs='+', type=int, help="list of ranks of each process.") group.add_argument('-world_size', default=1, type=int, help="total number of distributed processes.") group.add_argument('-gpu_backend', default='nccl', nargs='+', type=str, help="Type of torch distributed backend") group.add_argument('-gpu_verbose_level', default=0, type=int, help="Gives more info on each process per GPU.") group.add_argument('-master_ip', default="localhost", type=str, help="IP of master for torch.distributed training.") group.add_argument('-master_port', default=10000, type=int, help="Port of master for torch.distributed training.") group.add_argument('-seed', type=int, default=-1, help="""Random seed used for the experiments reproducibility.""") # Init options group = parser.add_argument_group('Initialization') group.add_argument('-param_init', type=float, default=0.1, help="""Parameters are initialized over uniform distribution with support (-param_init, param_init). Use 0 to not use initialization""") group.add_argument('-param_init_glorot', action='store_true', help="""Init parameters with xavier_uniform. Required for transfomer.""") group.add_argument('-train_from', default='', type=str, help="""If training from a checkpoint then this is the path to the pretrained model's state_dict.""") # Pretrained word vectors group.add_argument('-pre_word_vecs_enc', help="""If a valid path is specified, then this will load pretrained word embeddings on the encoder side. See README for specific formatting instructions.""") group.add_argument('-pre_word_vecs_dec', help="""If a valid path is specified, then this will load pretrained word embeddings on the decoder side. See README for specific formatting instructions.""") # Fixed word vectors group.add_argument('-fix_word_vecs_enc', action='store_true', help="Fix word embeddings on the encoder side.") group.add_argument('-fix_word_vecs_dec', action='store_true', help="Fix word embeddings on the decoder side.") # Optimization options group = parser.add_argument_group('Optimization- Type') group.add_argument('-batch_size', type=int, default=64, help='Maximum batch size for training') group.add_argument('-batch_type', default='sents', choices=["sents", "tokens"], help="""Batch grouping for batch_size. Standard is sents. Tokens will do dynamic batching""") group.add_argument('-normalization', default='sents', choices=["sents", "tokens"], help='Normalization method of the gradient.') group.add_argument('-accum_count', type=int, default=1, help="""Accumulate gradient this many times. Approximately equivalent to updating batch_size * accum_count batches at once. Recommended for Transformer.""") group.add_argument('-valid_steps', type=int, default=10000, help='Perfom validation every X steps') group.add_argument('-valid_batch_size', type=int, default=32, help='Maximum batch size for validation') group.add_argument('-max_generator_batches', type=int, default=32, help="""Maximum batches of words in a sequence to run the generator on in parallel. Higher is faster, but uses more memory.""") group.add_argument('-train_steps', type=int, default=100000, help='Number of training steps') group.add_argument('-epochs', type=int, default=0, help='Deprecated epochs see train_steps') group.add_argument('-optim', default='sgd', choices=['sgd', 'adagrad', 'adadelta', 'adam', 'sparseadam'], help="""Optimization method.""") group.add_argument('-adagrad_accumulator_init', type=float, default=0, help="""Initializes the accumulator values in adagrad. Mirrors the initial_accumulator_value option in the tensorflow adagrad (use 0.1 for their default). """) group.add_argument('-max_grad_norm', type=float, default=5, help="""If the norm of the gradient vector exceeds this, renormalize it to have the norm equal to max_grad_norm""") group.add_argument('-dropout', type=float, default=0.3, help="Dropout probability; applied in LSTM stacks.") group.add_argument('-truncated_decoder', type=int, default=0, help="""Truncated bptt.""") group.add_argument('-adam_beta1', type=float, default=0.9, help="""The beta1 parameter used by Adam. Almost without exception a value of 0.9 is used in the literature, seemingly giving good results, so we would discourage changing this value from the default without due consideration.""") group.add_argument('-adam_beta2', type=float, default=0.999, help="""The beta2 parameter used by Adam. Typically a value of 0.999 is recommended, as this is the value suggested by the original paper describing Adam, and is also the value adopted in other frameworks such as Tensorflow and Kerras, i.e. see: https://www.tensorflow.org/api_docs/python/tf/train/AdamOptimizer https://keras.io/optimizers/ . Whereas recently the paper "Attention is All You Need" suggested a value of 0.98 for beta2, this parameter may not work well for normal models / default baselines.""") group.add_argument('-label_smoothing', type=float, default=0.0, help="""Label smoothing value epsilon. Probabilities of all non-true labels will be smoothed by epsilon / (vocab_size - 1). Set to zero to turn off label smoothing. For more detailed information, see: https://arxiv.org/abs/1512.00567""") # learning rate group = parser.add_argument_group('Optimization- Rate') group.add_argument('-learning_rate', type=float, default=1.0, help="""Starting learning rate. Recommended settings: sgd = 1, adagrad = 0.1, adadelta = 1, adam = 0.001""") group.add_argument('-learning_rate_decay', type=float, default=0.5, help="""If update_learning_rate, decay learning rate by this much if (i) perplexity does not decrease on the validation set or (ii) steps have gone past start_decay_steps""") group.add_argument('-start_decay_steps', type=int, default=50000, help="""Start decaying every decay_steps after start_decay_steps""") group.add_argument('-decay_steps', type=int, default=10000, help="""Decay every decay_steps""") group.add_argument('-decay_method', type=str, default="", choices=['noam', 'fixed'], help="Use a custom decay rate.") group.add_argument('-warmup_steps', type=int, default=4000, help="""Number of warmup steps for custom decay.""") group = parser.add_argument_group('Logging') group.add_argument('-report_every', type=int, default=50, help="Print stats at this interval.") group.add_argument('-log_file', type=str, default="", help="Output logs to a file under this path.") group.add_argument('-exp_host', type=str, default="", help="Send logs to this crayon server.") group.add_argument('-exp', type=str, default="", help="Name of the experiment for logging.") # Use TensorboardX for visualization during training group.add_argument('-tensorboard', action="store_true", help="""Use tensorboardX for visualization during training. Must have the library tensorboardX.""") group.add_argument("-tensorboard_log_dir", type=str, default="runs/onmt", help="""Log directory for Tensorboard. This is also the name of the run. """) group = parser.add_argument_group('Speech') # Options most relevant to speech group.add_argument('-sample_rate', type=int, default=16000, help="Sample rate.") group.add_argument('-window_size', type=float, default=.02, help="Window size for spectrogram in seconds.") # Option most relevant to image input group.add_argument('-image_channel_size', type=int, default=3, choices=[3, 1], help="""Using grayscale image can training model faster and smaller""") def translate_opts(parser): """ Translation / inference options """ group = parser.add_argument_group('Model') group.add_argument('-model', dest='models', metavar='MODEL', nargs='+', type=str, default=[], required=True, help='Path to model .pt file(s). ' 'Multiple models can be specified, ' 'for ensemble decoding.') group = parser.add_argument_group('Data') group.add_argument('-data_type', default="text", help="Type of the source input. Options: [text|img].") group.add_argument('-src', required=True, help="""Source sequence to decode (one line per sequence)""") group.add_argument('-src_dir', default="", help='Source directory for image or audio files') group.add_argument('-tgt', help='True target sequence (optional)') group.add_argument('-output', default='pred.txt', help="""Path to output the predictions (each line will be the decoded sequence""") group.add_argument('-log_probs', action='store_true', help="Save log probs of predictions, use -output + '_log_probs' ") group.add_argument('-report_bleu', action='store_true', help="""Report bleu score after translation, call tools/multi-bleu.perl on command line""") group.add_argument('-report_rouge', action='store_true', help="""Report rouge 1/2/3/L/SU4 score after translation call tools/test_rouge.py on command line""") # Options most relevant to summarization. group.add_argument('-dynamic_dict', action='store_true', help="Create dynamic dictionaries") group.add_argument('-share_vocab', action='store_true', help="Share source and target vocabulary") group = parser.add_argument_group('Beam') group.add_argument('-fast', action="store_true", help="""Use fast beam search (some features may not be supported!)""") group.add_argument('-beam_size', type=int, default=5, help='Beam size') group.add_argument('-min_length', type=int, default=0, help='Minimum prediction length') group.add_argument('-max_length', type=int, default=100, help='Maximum prediction length.') group.add_argument('-max_sent_length', action=DeprecateAction, help="Deprecated, use `-max_length` instead") group.add_argument('-mask_from', default='', help="""Path to mask. Help to predict only valid tokens""") # Alpha and Beta values for Google Length + Coverage penalty # Described here: https://arxiv.org/pdf/1609.08144.pdf, Section 7 group.add_argument('-stepwise_penalty', action='store_true', help="""Apply penalty at every decoding step. Helpful for summary penalty.""") group.add_argument('-length_penalty', default='none', choices=['none', 'wu', 'avg'], help="""Length Penalty to use.""") group.add_argument('-coverage_penalty', default='none', choices=['none', 'wu', 'summary'], help="""Coverage Penalty to use.""") group.add_argument('-alpha', type=float, default=0., help="""Google NMT length penalty parameter (higher = longer generation)""") group.add_argument('-beta', type=float, default=-0., help="""Coverage penalty parameter""") group.add_argument('-block_ngram_repeat', type=int, default=0, help='Block repetition of ngrams during decoding.') group.add_argument('-ignore_when_blocking', nargs='+', type=str, default=[], help="""Ignore these strings when blocking repeats. You want to block sentence delimiters.""") group.add_argument('-replace_unk', action="store_true", help="""Replace the generated UNK tokens with the source token that had highest attention weight. If phrase_table is provided, it will lookup the identified source token and give the corresponding target token. If it is not provided(or the identified source token does not exist in the table) then it will copy the source token""") group = parser.add_argument_group('Logging') group.add_argument('-verbose', action="store_true", help='Print scores and predictions for each sentence') group.add_argument('-log_file', type=str, default="", help="Output logs to a file under this path.") group.add_argument('-attn_debug', action="store_true", help='Print best attn for each word') group.add_argument('-dump_beam', type=str, default="", help='File to dump beam information to.') group.add_argument('-n_best', type=int, default=1, help="""If verbose is set, will output the n_best decoded sentences""") group = parser.add_argument_group('Efficiency') group.add_argument('-batch_size', type=int, default=30, help='Batch size') group.add_argument('-gpu', type=int, default=-1, help="Device to run on") # Options most relevant to speech. group = parser.add_argument_group('Speech') group.add_argument('-sample_rate', type=int, default=16000, help="Sample rate.") group.add_argument('-window_size', type=float, default=.02, help='Window size for spectrogram in seconds') group.add_argument('-window_stride', type=float, default=.01, help='Window stride for spectrogram in seconds') group.add_argument('-window', default='hamming', help='Window type for spectrogram generation') # Option most relevant to image input group.add_argument('-image_channel_size', type=int, default=3, choices=[3, 1], help="""Using grayscale image can training model faster and smaller""") def agent_opts(parser): """ Train Agent / inference options """ group = parser.add_argument_group('Agent Model') group.add_argument('-pred_rewrite', action='store_true', default=False, help="""Use a sin to mark relative words positions. Necessary for non-RNN style models. """) group.add_argument('-src_type', default='L', type=str, help="L or N,which help us cut src without L_* using for score function.") group.add_argument('-scoring_function', type=str, default="tanimoto", help='Define scoring function.') parser.add_argument('-score_function_num_processes', type=int, default=0, help='multi-thread number for score calculation') parser.add_argument('-score_para_k', type=float, default=0.8, help='multi-thread number for score calculation') parser.add_argument('-score_para_w', type=float, default=0.0, help='multi-thread number for score calculation') parser.add_argument('-score_para_clf', type=str, default='./data/clf_jak3_active.pkl', help='multi-thread number for score calculation') group.add_argument('-sigma', type=int, default=-1, help='scalar sigma for scoring function') group.add_argument('-goal', type=float, default=0.0, help='goal for scoring function') group.add_argument('-optim', default='sgd', choices=['sgd', 'adagrad', 'adadelta', 'adam', 'sparseadam'], help="""Optimization method.""") group.add_argument('-save_model', default='model', help="""Model filename (the model will be saved as <save_model>_N.pt where N is the number of steps""") group.add_argument('-adam_beta1', type=float, default=0.9, help="""The beta1 parameter used by Adam. Almost without exception a value of 0.9 is used in the literature, seemingly giving good results, so we would discourage changing this value from the default without due consideration.""") group.add_argument('-adam_beta2', type=float, default=0.999, help="""The beta2 parameter used by Adam. Typically a value of 0.999 is recommended, as this is the value suggested by the original paper describing Adam, and is also the value adopted in other frameworks such as Tensorflow and Kerras, i.e. see: https://www.tensorflow.org/api_docs/python/tf/train/AdamOptimizer https://keras.io/optimizers/ . Whereas recently the paper "Attention is All You Need" suggested a value of 0.98 for beta2, this parameter may not work well for normal models / default baselines.""") group.add_argument('-label_smoothing', type=float, default=0.0, help="""Label smoothing value epsilon. Probabilities of all non-true labels will be smoothed by epsilon / (vocab_size - 1). Set to zero to turn off label smoothing. For more detailed information, see: https://arxiv.org/abs/1512.00567""") group.add_argument('-learning_rate', type=float, default=1.0, help="""Starting learning rate. Recommended settings: sgd = 1, adagrad = 0.1, adadelta = 1, adam = 0.001""") group.add_argument('-decay_method', type=str, default="", choices=['noam', 'fixed'], help="Use a custom decay rate.") group.add_argument('-warmup_steps', type=int, default=4000, help="""Number of warmup steps for custom decay.""") group.add_argument('-report_every', type=int, default=100000, help="Report status every this many sentences") group.add_argument('-save_checkpoint_steps', type=int, default=5000, help="""Save a checkpoint every X steps""") group.add_argument('-keep_checkpoint', type=int, default=-1, help="""Keep X checkpoints (negative: keep all)""") group.add_argument('-train_steps', type=int, default=100000, help='Number of training steps') group.add_argument('-max_grad_norm', type=float, default=5, help="""If the norm of the gradient vector exceeds this, renormalize it to have the norm equal to max_grad_norm""") group.add_argument('-start_decay_steps', type=int, default=1000, help="""Start decaying every decay_steps after""") group.add_argument('-decay_steps', type=int, default=500, help="""Decay every decay_steps""") group.add_argument('-learning_rate_decay', type=float, default=0.5, help="""If update_learning_rate, decay learning rate by this much if (i) perplexity does not decrease on the validation set or (ii) steps have gone past start_decay_steps""") group.add_argument('-adagrad_accumulator_init', type=float, default=0, help="""Initializes the accumulator values in adagrad. Mirrors the initial_accumulator_value option in the tensorflow adagrad (use 0.1 for their default). """) group.add_argument('-rnn_size', type=int, default=-1, help="""Size of rnn hidden states. Overwrites enc_rnn_size and dec_rnn_size""") group.add_argument('-truncated_decoder', type=int, default=0, help="""Truncated bptt.""") group.add_argument('-max_generator_batches', type=int, default=32, help="""Maximum batches of words in a sequence to run the generator on in parallel. Higher is faster, but uses more memory.""") group.add_argument('-gpu_verbose_level', default=0, type=int, help="Gives more info on each process per GPU.") group.add_argument('-gpu_ranks', default=[], nargs='+', type=int, help="list of ranks of each process.") group.add_argument('-seed', type=int, default=1024, help="""Random seed used for the experiments reproducibility.""") def add_md_help_argument(parser): """ md help parser """ parser.add_argument('-md', action=MarkdownHelpAction, help='print Markdown-formatted help text and exit.') # MARKDOWN boilerplate # Copyright 2016 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. class MarkdownHelpFormatter(argparse.HelpFormatter): """A really bare-bones argparse help formatter that generates valid markdown. This will generate something like: usage # **section heading**: ## **--argument-one** ``` argument-one help text ``` """ def _format_usage(self, usage, actions, groups, prefix): return "" def format_help(self): print(self._prog) self._root_section.heading = '# Options: %s' % self._prog return super(MarkdownHelpFormatter, self).format_help() def start_section(self, heading): super(MarkdownHelpFormatter, self) \ .start_section('### **%s**' % heading) def _format_action(self, action): if action.dest == "help" or action.dest == "md": return "" lines = [] lines.append('* **-%s %s** ' % (action.dest, "[%s]" % action.default if action.default else "[]")) if action.help: help_text = self._expand_help(action) lines.extend(self._split_lines(help_text, 80)) lines.extend(['', '']) return '\n'.join(lines) class MarkdownHelpAction(argparse.Action): """ MD help action """ def __init__(self, option_strings, dest=argparse.SUPPRESS, default=argparse.SUPPRESS, **kwargs): super(MarkdownHelpAction, self).__init__( option_strings=option_strings, dest=dest, default=default, nargs=0, **kwargs) def __call__(self, parser, namespace, values, option_string=None): parser.formatter_class = MarkdownHelpFormatter parser.print_help() parser.exit() class DeprecateAction(argparse.Action): """ Deprecate action """ def __init__(self, option_strings, dest, help=None, **kwargs): super(DeprecateAction, self).__init__(option_strings, dest, nargs=0, help=help, **kwargs) def __call__(self, parser, namespace, values, flag_name): help = self.help if self.mdhelp is not None else "" msg = "Flag '%s' is deprecated. %s" % (flag_name, help) raise argparse.ArgumentTypeError(msg)
53.329381
97
0.572226
7952b8a671b44307164f1eff8fdc3c70ecbe3a59
18,263
py
Python
openfold/model/template.py
aqlaboratory/openfold
d6b36a80e3ee82eee8ac09215fce553d822f86a3
[ "Apache-2.0" ]
789
2021-11-12T16:12:21.000Z
2022-03-28T05:45:19.000Z
openfold/model/template.py
aqlaboratory/openfold
d6b36a80e3ee82eee8ac09215fce553d822f86a3
[ "Apache-2.0" ]
84
2021-11-12T22:23:50.000Z
2022-03-29T01:06:06.000Z
openfold/model/template.py
aqlaboratory/openfold
d6b36a80e3ee82eee8ac09215fce553d822f86a3
[ "Apache-2.0" ]
114
2021-11-12T16:00:57.000Z
2022-03-27T21:32:31.000Z
# Copyright 2021 AlQuraishi Laboratory # Copyright 2021 DeepMind Technologies Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import partial import math from typing import Optional, List import torch import torch.nn as nn from openfold.model.primitives import Linear, LayerNorm, Attention from openfold.model.dropout import ( DropoutRowwise, DropoutColumnwise, ) from openfold.model.pair_transition import PairTransition from openfold.model.triangular_attention import ( TriangleAttentionStartingNode, TriangleAttentionEndingNode, ) from openfold.model.triangular_multiplicative_update import ( TriangleMultiplicationOutgoing, TriangleMultiplicationIncoming, ) from openfold.utils.checkpointing import checkpoint_blocks from openfold.utils.feats import ( build_template_angle_feat, build_template_pair_feat, ) from openfold.utils.tensor_utils import ( add, chunk_layer, ChunkSizeTuner, permute_final_dims, flatten_final_dims, tensor_tree_map, ) class TemplatePointwiseAttention(nn.Module): """ Implements Algorithm 17. """ def __init__(self, c_t, c_z, c_hidden, no_heads, inf, **kwargs): """ Args: c_t: Template embedding channel dimension c_z: Pair embedding channel dimension c_hidden: Hidden channel dimension """ super(TemplatePointwiseAttention, self).__init__() self.c_t = c_t self.c_z = c_z self.c_hidden = c_hidden self.no_heads = no_heads self.inf = inf self.mha = Attention( self.c_z, self.c_t, self.c_t, self.c_hidden, self.no_heads, gating=False, ) def _chunk(self, z: torch.Tensor, t: torch.Tensor, biases: List[torch.Tensor], chunk_size: int, use_lma: bool = False, ) -> torch.Tensor: mha_inputs = { "q_x": z, "kv_x": t, "biases": biases, } return chunk_layer( partial(self.mha, use_lma=use_lma), mha_inputs, chunk_size=chunk_size, no_batch_dims=len(z.shape[:-2]), ) def forward(self, t: torch.Tensor, z: torch.Tensor, template_mask: Optional[torch.Tensor] = None, # This module suffers greatly from a small chunk size chunk_size: Optional[int] = 256, use_lma: bool = False, ) -> torch.Tensor: """ Args: t: [*, N_templ, N_res, N_res, C_t] template embedding z: [*, N_res, N_res, C_t] pair embedding template_mask: [*, N_templ] template mask Returns: [*, N_res, N_res, C_z] pair embedding update """ if template_mask is None: template_mask = t.new_ones(t.shape[:-3]) bias = self.inf * (template_mask[..., None, None, None, None, :] - 1) # [*, N_res, N_res, 1, C_z] z = z.unsqueeze(-2) # [*, N_res, N_res, N_temp, C_t] t = permute_final_dims(t, (1, 2, 0, 3)) # [*, N_res, N_res, 1, C_z] biases = [bias] if chunk_size is not None and not self.training: z = self._chunk(z, t, biases, chunk_size, use_lma=use_lma) else: z = self.mha(q_x=z, kv_x=t, biases=biases, use_lma=use_lma) # [*, N_res, N_res, C_z] z = z.squeeze(-2) return z class TemplatePairStackBlock(nn.Module): def __init__( self, c_t: int, c_hidden_tri_att: int, c_hidden_tri_mul: int, no_heads: int, pair_transition_n: int, dropout_rate: float, inf: float, **kwargs, ): super(TemplatePairStackBlock, self).__init__() self.c_t = c_t self.c_hidden_tri_att = c_hidden_tri_att self.c_hidden_tri_mul = c_hidden_tri_mul self.no_heads = no_heads self.pair_transition_n = pair_transition_n self.dropout_rate = dropout_rate self.inf = inf self.dropout_row = DropoutRowwise(self.dropout_rate) self.dropout_col = DropoutColumnwise(self.dropout_rate) self.tri_att_start = TriangleAttentionStartingNode( self.c_t, self.c_hidden_tri_att, self.no_heads, inf=inf, ) self.tri_att_end = TriangleAttentionEndingNode( self.c_t, self.c_hidden_tri_att, self.no_heads, inf=inf, ) self.tri_mul_out = TriangleMultiplicationOutgoing( self.c_t, self.c_hidden_tri_mul, ) self.tri_mul_in = TriangleMultiplicationIncoming( self.c_t, self.c_hidden_tri_mul, ) self.pair_transition = PairTransition( self.c_t, self.pair_transition_n, ) def forward(self, z: torch.Tensor, mask: torch.Tensor, chunk_size: Optional[int] = None, use_lma: bool = False, _mask_trans: bool = True, _inplace: bool = False, ): single_templates = [ t.unsqueeze(-4) for t in torch.unbind(z, dim=-4) ] single_templates_masks = [ m.unsqueeze(-3) for m in torch.unbind(mask, dim=-3) ] for i in range(len(single_templates)): single = single_templates[i] single_mask = single_templates_masks[i] single = add(single, self.dropout_row( self.tri_att_start( single, chunk_size=chunk_size, mask=single_mask, use_lma=use_lma, ) ), _inplace, ) single = add(single, self.dropout_col( self.tri_att_end( single, chunk_size=chunk_size, mask=single_mask, use_lma=use_lma, ) ), _inplace, ) tmu_update = self.tri_mul_out( single, mask=single_mask, _inplace=_inplace, _add_with_inplace=True, ) if(not _inplace): single = single + self.dropout_row(tmu_update) else: single = tmu_update del tmu_update tmu_update = self.tri_mul_in( single, mask=single_mask, _inplace=_inplace, _add_with_inplace=True, ) if(not _inplace): single = single + self.dropout_row(tmu_update) else: single = tmu_update del tmu_update single = add(single, self.pair_transition( single, mask=single_mask if _mask_trans else None, chunk_size=chunk_size, ), _inplace, ) if(not _inplace): single_templates[i] = single if(not _inplace): z = torch.cat(single_templates, dim=-4) return z class TemplatePairStack(nn.Module): """ Implements Algorithm 16. """ def __init__( self, c_t, c_hidden_tri_att, c_hidden_tri_mul, no_blocks, no_heads, pair_transition_n, dropout_rate, blocks_per_ckpt, tune_chunk_size: bool = False, inf=1e9, **kwargs, ): """ Args: c_t: Template embedding channel dimension c_hidden_tri_att: Per-head hidden dimension for triangular attention c_hidden_tri_att: Hidden dimension for triangular multiplication no_blocks: Number of blocks in the stack pair_transition_n: Scale of pair transition (Alg. 15) hidden dimension dropout_rate: Dropout rate used throughout the stack blocks_per_ckpt: Number of blocks per activation checkpoint. None disables activation checkpointing """ super(TemplatePairStack, self).__init__() self.blocks_per_ckpt = blocks_per_ckpt self.blocks = nn.ModuleList() for _ in range(no_blocks): block = TemplatePairStackBlock( c_t=c_t, c_hidden_tri_att=c_hidden_tri_att, c_hidden_tri_mul=c_hidden_tri_mul, no_heads=no_heads, pair_transition_n=pair_transition_n, dropout_rate=dropout_rate, inf=inf, ) self.blocks.append(block) self.layer_norm = LayerNorm(c_t) self.tune_chunk_size = tune_chunk_size self.chunk_size_tuner = None if(tune_chunk_size): self.chunk_size_tuner = ChunkSizeTuner() def forward( self, t: torch.tensor, mask: torch.tensor, chunk_size: int, use_lma: bool = False, _mask_trans: bool = True, ): """ Args: t: [*, N_templ, N_res, N_res, C_t] template embedding mask: [*, N_templ, N_res, N_res] mask Returns: [*, N_templ, N_res, N_res, C_t] template embedding update """ if(mask.shape[-3] == 1): expand_idx = list(mask.shape) expand_idx[-3] = t.shape[-4] mask = mask.expand(*expand_idx) blocks = [ partial( b, mask=mask, chunk_size=chunk_size, use_lma=use_lma, _mask_trans=_mask_trans, _inplace=not (self.training or torch.is_grad_enabled()), ) for b in self.blocks ] if(chunk_size is not None and self.chunk_size_tuner is not None): chunk_size = self.chunk_size_tuner.tune_chunk_size( representative_fn=blocks[0], args=(t,), min_chunk_size=chunk_size, ) blocks = [partial(b, chunk_size=chunk_size) for b in blocks] t, = checkpoint_blocks( blocks=blocks, args=(t,), blocks_per_ckpt=self.blocks_per_ckpt if self.training else None, ) t = self.layer_norm(t) return t def embed_templates_offload( model, batch, z, pair_mask, templ_dim, template_chunk_size=256, ): """ Args: model: An AlphaFold model object batch: An AlphaFold input batch. See documentation of AlphaFold. z: A [*, N, N, C_z] pair embedding pair_mask: A [*, N, N] pair mask templ_dim: The template dimension of the template tensors in batch template_chunk_size: Integer value controlling how quickly the offloaded pair embedding tensor is brought back into GPU memory. In dire straits, can be lowered to reduce memory consumption of this function even more. Returns: A dictionary of template pair and angle embeddings. A version of the "embed_templates" method of the AlphaFold class that offloads the large template pair tensor to CPU. Slower but more frugal with GPU memory than the original. Useful for long-sequence inference. """ inplace_safe = not (model.training or torch.is_grad_enabled()) # Embed the templates one at a time (with a poor man's vmap) pair_embeds_cpu = [] n = z.shape[-2] n_templ = batch["template_aatype"].shape[templ_dim] for i in range(n_templ): idx = batch["template_aatype"].new_tensor(i) single_template_feats = tensor_tree_map( lambda t: torch.index_select(t, templ_dim, idx), batch, ) # [*, N, N, C_t] t = build_template_pair_feat( single_template_feats, use_unit_vector=model.config.template.use_unit_vector, inf=model.config.template.inf, eps=model.config.template.eps, **model.config.template.distogram, ).to(z.dtype) t = model.template_pair_embedder(t) # [*, 1, N, N, C_z] t = model.template_pair_stack( t, pair_mask.unsqueeze(-3).to(dtype=z.dtype), chunk_size=model.globals.chunk_size, use_lma=model.globals.use_lma, _mask_trans=model.config._mask_trans, ) pair_embeds_cpu.append(t.cpu()) del t # Preallocate the output tensor t = z.new_zeros(z.shape) for i in range(0, n, template_chunk_size): pair_chunks = [ p[..., i: i + template_chunk_size, :, :] for p in pair_embeds_cpu ] pair_chunk = torch.cat(pair_chunks, dim=templ_dim).to(device=z.device) z_chunk = z[..., i: i + template_chunk_size, :, :] att_chunk = model.template_pointwise_att( pair_chunk, z_chunk, template_mask=batch["template_mask"].to(dtype=z.dtype), use_lma=model.globals.use_lma, ) t[..., i: i + template_chunk_size, :, :] = att_chunk del pair_chunks if(inplace_safe): t = t * (torch.sum(batch["template_mask"], dim=-1) > 0) else: t *= (torch.sum(batch["template_mask"], dim=-1) > 0) ret = {} if model.config.template.embed_angles: template_angle_feat = build_template_angle_feat( batch, ) # [*, N, C_m] a = model.template_angle_embedder(template_angle_feat) ret["template_angle_embedding"] = a ret.update({"template_pair_embedding": t}) return ret def embed_templates_average( model, batch, z, pair_mask, templ_dim, templ_group_size=2, ): """ Args: model: An AlphaFold model object batch: An AlphaFold input batch. See documentation of AlphaFold. z: A [*, N, N, C_z] pair embedding pair_mask: A [*, N, N] pair mask templ_dim: The template dimension of the template tensors in batch templ_group_size: Granularity of the approximation. Larger values trade memory for greater proximity to the original function Returns: A dictionary of template pair and angle embeddings. A memory-efficient approximation of the "embed_templates" method of the AlphaFold class. Instead of running pointwise attention over pair embeddings for all of the templates at the same time, it splits templates into groups of size templ_group_size, computes embeddings for each group normally, and then averages the group embeddings. In our experiments, this approximation has a minimal effect on the quality of the resulting embedding, while its low memory footprint allows the number of templates to scale almost indefinitely. """ inplace_safe = not (model.training or torch.is_grad_enabled()) # Embed the templates one at a time (with a poor man's vmap) n = z.shape[-2] n_templ = batch["template_aatype"].shape[templ_dim] out_tensor = z.new_zeros(z.shape) for i in range(0, n_templ, templ_group_size): def slice_template_tensor(t): s = [slice(None) for _ in t.shape] s[templ_dim] = slice(i, i + templ_group_size) return t[s] template_feats = tensor_tree_map( slice_template_tensor, batch, ) # [*, N, N, C_t] t = build_template_pair_feat( template_feats, use_unit_vector=model.config.template.use_unit_vector, inf=model.config.template.inf, eps=model.config.template.eps, **model.config.template.distogram, ).to(z.dtype) # [*, S_t, N, N, C_z] t = model.template_pair_embedder(t) t = model.template_pair_stack( t, pair_mask.unsqueeze(-3).to(dtype=z.dtype), chunk_size=model.globals.chunk_size, use_lma=model.globals.use_lma, _mask_trans=model.config._mask_trans, ) t = model.template_pointwise_att( t, z, template_mask=template_feats["template_mask"].to(dtype=z.dtype), use_lma=model.globals.use_lma, ) denom = math.ceil(n_templ / templ_group_size) if(inplace_safe): t /= denom else: t = t / denom if(inplace_safe): out_tensor += t else: out_tensor = out_tensor + t del t if(inplace_safe): out_tensor *= (torch.sum(batch["template_mask"], dim=-1) > 0) else: out_tensor = out_tensor * (torch.sum(batch["template_mask"], dim=-1) > 0) ret = {} if model.config.template.embed_angles: template_angle_feat = build_template_angle_feat( batch, ) # [*, N, C_m] a = model.template_angle_embedder(template_angle_feat) ret["template_angle_embedding"] = a ret.update({"template_pair_embedding": out_tensor}) return ret
29.7443
81
0.562503
7952ba3874e8098d26cad37114917cd1079b06b4
990
py
Python
multi_timer.py
emguse/env_logger
8db848e8231f995cc056d51d3c6868b382f0ef39
[ "MIT" ]
null
null
null
multi_timer.py
emguse/env_logger
8db848e8231f995cc056d51d3c6868b382f0ef39
[ "MIT" ]
null
null
null
multi_timer.py
emguse/env_logger
8db848e8231f995cc056d51d3c6868b382f0ef39
[ "MIT" ]
null
null
null
import time class multi_timer(): def __init__(self, interval): self.last_time = 0.0 self.up_state = False self.interval = interval def timer(self): if self.last_time + self.interval <= time.time(): self.last_time = time.time() self.up_state = True def main(): INTERVAL_1s = float(1.0) # Enter the interval time in seconds INTERVAL_10s = float(10.0) # Enter the interval time in seconds timer_1s = multi_timer(INTERVAL_1s) timer_10s = multi_timer(INTERVAL_10s) while True: timer_1s.timer() if timer_1s.up_state == True: timer_1s.up_state = False # Write the process here print("1sec: " + str(time.time())) timer_10s.timer() if timer_10s.up_state ==True: timer_10s.up_state = False # Write the process here print("10sec: " + str(time.time())) return if __name__ == "__main__": main()
28.285714
68
0.586869
7952ba6189b49ef4456cd9944dc2e1df35c70bb3
3,708
py
Python
src/statick_web/plugins/tool/jshint_tool_plugin.py
xydesa/statick-web
600f655c128e40a8c1439d912a3d9ab4df7c813a
[ "CC0-1.0" ]
2
2020-02-07T00:13:53.000Z
2020-02-07T00:58:26.000Z
src/statick_web/plugins/tool/jshint_tool_plugin.py
xydesa/statick-web
600f655c128e40a8c1439d912a3d9ab4df7c813a
[ "CC0-1.0" ]
19
2020-02-14T23:47:25.000Z
2022-02-28T21:38:01.000Z
src/statick_web/plugins/tool/jshint_tool_plugin.py
xydesa/statick-web
600f655c128e40a8c1439d912a3d9ab4df7c813a
[ "CC0-1.0" ]
3
2020-02-12T16:16:54.000Z
2020-02-14T00:53:46.000Z
"""Apply jshint tool and gather results.""" import logging import re import subprocess from typing import List, Match, Optional, Pattern from statick_tool.issue import Issue from statick_tool.package import Package from statick_tool.tool_plugin import ToolPlugin class JSHintToolPlugin(ToolPlugin): # type: ignore """Apply jshint tool and gather results.""" def get_name(self) -> str: """Get name of tool.""" return "jshint" # pylint: disable=too-many-locals def scan(self, package: Package, level: str) -> Optional[List[Issue]]: """Run tool and gather output.""" tool_bin = "jshint" tool_config = ".jshintrc" user_config = self.plugin_context.config.get_tool_config( self.get_name(), level, "config" ) if user_config is not None: tool_config = user_config format_file_name = self.plugin_context.resources.get_file(tool_config) flags: List[str] = [] if format_file_name is not None: flags += ["-c", format_file_name] flags += ["-e", ".js,.html", "--extract", "auto", "--reporter", "unix"] user_flags = self.get_user_flags(level) flags += user_flags files: List[str] = [] if "html_src" in package: files += package["html_src"] if "javascript_src" in package: files += package["javascript_src"] total_output: List[str] = [] for src in files: try: exe = [tool_bin] + flags + [src] output = subprocess.check_output( exe, stderr=subprocess.STDOUT, universal_newlines=True ) except subprocess.CalledProcessError as ex: if ex.returncode == 2: # jshint returns 2 upon linting errors total_output.append(ex.output) else: logging.warning( "%s failed! Returncode = %s", tool_bin, ex.returncode ) logging.warning("%s exception: %s", self.get_name(), ex.output) return None except OSError as ex: logging.warning("Couldn't find %s! (%s)", tool_bin, ex) return None for output in total_output: logging.debug("%s", output) with open(self.get_name() + ".log", "w", encoding="utf8") as fid: for output in total_output: fid.write(output) issues: List[Issue] = self.parse_output(total_output) return issues # pylint: enable=too-many-locals def parse_output(self, total_output: List[str]) -> List[Issue]: """Parse tool output and report issues.""" jshint_re = r"(.+):(\d+):(\d+):\s(.+)" parse: Pattern[str] = re.compile(jshint_re) issues: List[Issue] = [] for output in total_output: lines = output.split("\n") for line in lines: match: Optional[Match[str]] = parse.match(line) if match: filename = match.group(1) line_number = match.group(2) issue_type = "jshint" severity = 5 message = match.group(4) issues.append( Issue( filename, line_number, self.get_name(), issue_type, severity, message, None, ) ) return issues
34.018349
83
0.515372
7952bba8abe54583f998a8961c47562a40ef4443
6,767
py
Python
pylearn2/cross_validation/tests/test_cross_validation.py
ikervazquezlopez/Pylearn2
2971e8f64374ffde572d4cf967aad5342beaf5e0
[ "BSD-3-Clause" ]
2,045
2015-01-01T14:07:52.000Z
2022-03-08T08:56:41.000Z
pylearn2/cross_validation/tests/test_cross_validation.py
ikervazquezlopez/Pylearn2
2971e8f64374ffde572d4cf967aad5342beaf5e0
[ "BSD-3-Clause" ]
305
2015-01-02T13:18:24.000Z
2021-08-20T18:03:28.000Z
pylearn2/cross_validation/tests/test_cross_validation.py
ikervazquezlopez/Pylearn2
2971e8f64374ffde572d4cf967aad5342beaf5e0
[ "BSD-3-Clause" ]
976
2015-01-01T17:08:51.000Z
2022-03-25T19:53:17.000Z
""" Tests for cross-validation module. """ import os import tempfile from pylearn2.config import yaml_parse from pylearn2.testing.skip import skip_if_no_sklearn def test_train_cv(): """Test TrainCV class.""" skip_if_no_sklearn() handle, layer0_filename = tempfile.mkstemp() handle, layer1_filename = tempfile.mkstemp() handle, layer2_filename = tempfile.mkstemp() # train the first hidden layer (unsupervised) # (test for TrainCV) trainer = yaml_parse.load(test_yaml_layer0 % {'layer0_filename': layer0_filename}) trainer.main_loop() # train the second hidden layer (unsupervised) # (test for TransformerDatasetCV) trainer = yaml_parse.load(test_yaml_layer1 % {'layer0_filename': layer0_filename, 'layer1_filename': layer1_filename}) trainer.main_loop() # train the third hidden layer (unsupervised) # (test for StackedBlocksCV) trainer = yaml_parse.load(test_yaml_layer2 % {'layer0_filename': layer0_filename, 'layer1_filename': layer1_filename, 'layer2_filename': layer2_filename}) trainer.main_loop() # train the full model (supervised) # (test for PretrainedLayerCV) trainer = yaml_parse.load(test_yaml_layer3 % {'layer0_filename': layer0_filename, 'layer1_filename': layer1_filename, 'layer2_filename': layer2_filename}) trainer.main_loop() # clean up os.remove(layer0_filename) os.remove(layer1_filename) test_yaml_layer0 = """ !obj:pylearn2.cross_validation.TrainCV { dataset_iterator: !obj:pylearn2.cross_validation.dataset_iterators.DatasetKFold { dataset: !obj:pylearn2.testing.datasets.random_one_hot_dense_design_matrix { rng: !obj:numpy.random.RandomState { seed: 1 }, num_examples: 100, dim: 10, num_classes: 2, }, }, model: !obj:pylearn2.models.autoencoder.Autoencoder { nvis: 10, nhid: 8, act_enc: 'sigmoid', act_dec: 'linear' }, algorithm: !obj:pylearn2.training_algorithms.bgd.BGD { batch_size: 50, line_search_mode: 'exhaustive', conjugate: 1, termination_criterion: !obj:pylearn2.termination_criteria.EpochCounter { max_epochs: 1, }, cost: !obj:pylearn2.costs.autoencoder.MeanSquaredReconstructionError { }, }, save_path: %(layer0_filename)s, } """ test_yaml_layer1 = """ !obj:pylearn2.cross_validation.TrainCV { dataset_iterator: !obj:pylearn2.cross_validation.dataset_iterators.TransformerDatasetCV { dataset_iterator: !obj:pylearn2.cross_validation.dataset_iterators.DatasetKFold { dataset: !obj:pylearn2.testing.datasets.random_one_hot_dense_design_matrix { rng: !obj:numpy.random.RandomState { seed: 1 }, num_examples: 100, dim: 10, num_classes: 2, }, }, transformers: !pkl: %(layer0_filename)s, }, model: !obj:pylearn2.models.autoencoder.Autoencoder { nvis: 8, nhid: 6, act_enc: 'sigmoid', act_dec: 'linear' }, algorithm: !obj:pylearn2.training_algorithms.bgd.BGD { batch_size: 50, line_search_mode: 'exhaustive', conjugate: 1, termination_criterion: !obj:pylearn2.termination_criteria.EpochCounter { max_epochs: 1, }, cost: !obj:pylearn2.costs.autoencoder.MeanSquaredReconstructionError { }, }, save_path: %(layer1_filename)s, } """ test_yaml_layer2 = """ !obj:pylearn2.cross_validation.TrainCV { dataset_iterator: !obj:pylearn2.cross_validation.dataset_iterators.TransformerDatasetCV { dataset_iterator: !obj:pylearn2.cross_validation.dataset_iterators.DatasetKFold { dataset: !obj:pylearn2.testing.datasets.random_one_hot_dense_design_matrix { rng: !obj:numpy.random.RandomState { seed: 1 }, num_examples: 100, dim: 10, num_classes: 2, }, }, transformers: !obj:pylearn2.cross_validation.blocks.StackedBlocksCV { layers: [ !pkl: %(layer0_filename)s, !pkl: %(layer1_filename)s, ], }, }, model: !obj:pylearn2.models.autoencoder.Autoencoder { nvis: 6, nhid: 4, act_enc: 'sigmoid', act_dec: 'linear' }, algorithm: !obj:pylearn2.training_algorithms.bgd.BGD { batch_size: 50, line_search_mode: 'exhaustive', conjugate: 1, termination_criterion: !obj:pylearn2.termination_criteria.EpochCounter { max_epochs: 1, }, cost: !obj:pylearn2.costs.autoencoder.MeanSquaredReconstructionError { }, }, save_path: %(layer2_filename)s, } """ test_yaml_layer3 = """ !obj:pylearn2.cross_validation.TrainCV { dataset_iterator: !obj:pylearn2.cross_validation.dataset_iterators.DatasetKFold { dataset: &train !obj:pylearn2.testing.datasets.random_one_hot_dense_design_matrix { rng: !obj:numpy.random.RandomState { seed: 1 }, num_examples: 100, dim: 10, num_classes: 2, }, }, model: !obj:pylearn2.models.mlp.MLP { nvis: 10, layers: [ !obj:pylearn2.cross_validation.mlp.PretrainedLayerCV { layer_name: 'h0', layer_content: !pkl: %(layer0_filename)s, }, !obj:pylearn2.cross_validation.mlp.PretrainedLayerCV { layer_name: 'h1', layer_content: !pkl: %(layer1_filename)s, }, !obj:pylearn2.cross_validation.mlp.PretrainedLayerCV { layer_name: 'h2', layer_content: !pkl: %(layer2_filename)s, }, !obj:pylearn2.models.mlp.Softmax { layer_name: 'y', n_classes: 2, irange: 0., }, ], }, algorithm: !obj:pylearn2.training_algorithms.bgd.BGD { batch_size: 50, line_search_mode: 'exhaustive', conjugate: 1, termination_criterion: !obj:pylearn2.termination_criteria.EpochCounter { max_epochs: 1, }, }, } """
31.919811
78
0.577213
7952bc3d09b6d4ebbc2cd05122e182bdc8d497b5
3,127
py
Python
msgraph-cli-extensions/v1_0/schemaextensions_v1_0/azext_schemaextensions_v1_0/vendored_sdks/schemaextensions/_schema_extensions.py
thewahome/msgraph-cli
33127d9efa23a0e5f5303c93242fbdbb73348671
[ "MIT" ]
null
null
null
msgraph-cli-extensions/v1_0/schemaextensions_v1_0/azext_schemaextensions_v1_0/vendored_sdks/schemaextensions/_schema_extensions.py
thewahome/msgraph-cli
33127d9efa23a0e5f5303c93242fbdbb73348671
[ "MIT" ]
22
2022-03-29T22:54:37.000Z
2022-03-29T22:55:27.000Z
msgraph-cli-extensions/v1_0/schemaextensions_v1_0/azext_schemaextensions_v1_0/vendored_sdks/schemaextensions/_schema_extensions.py
thewahome/msgraph-cli
33127d9efa23a0e5f5303c93242fbdbb73348671
[ "MIT" ]
null
null
null
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import TYPE_CHECKING from azure.mgmt.core import ARMPipelineClient from msrest import Deserializer, Serializer if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from typing import Any, Optional from azure.core.credentials import TokenCredential from ._configuration import SchemaExtensionsConfiguration from .operations import SchemaExtensionsSchemaExtensionOperations from . import models class SchemaExtensions(object): """SchemaExtensions. :ivar schema_extensions_schema_extension: SchemaExtensionsSchemaExtensionOperations operations :vartype schema_extensions_schema_extension: schema_extensions.operations.SchemaExtensionsSchemaExtensionOperations :param credential: Credential needed for the client to connect to Azure. :type credential: ~azure.core.credentials.TokenCredential :param top: Show only the first n items. :type top: int :param skip: Skip the first n items. :type skip: int :param search: Search items by search phrases. :type search: str :param filter: Filter items by property values. :type filter: str :param count: Include count of items. :type count: bool :param str base_url: Service URL """ def __init__( self, credential, # type: "TokenCredential" top=None, # type: Optional[int] skip=None, # type: Optional[int] search=None, # type: Optional[str] filter=None, # type: Optional[str] count=None, # type: Optional[bool] base_url=None, # type: Optional[str] **kwargs # type: Any ): # type: (...) -> None if not base_url: base_url = 'https://graph.microsoft.com/v1.0' self._config = SchemaExtensionsConfiguration(credential, top, skip, search, filter, count, **kwargs) self._client = ARMPipelineClient(base_url=base_url, config=self._config, **kwargs) client_models = {k: v for k, v in models.__dict__.items() if isinstance(v, type)} self._serialize = Serializer(client_models) self._serialize.client_side_validation = False self._deserialize = Deserializer(client_models) self.schema_extensions_schema_extension = SchemaExtensionsSchemaExtensionOperations( self._client, self._config, self._serialize, self._deserialize) def close(self): # type: () -> None self._client.close() def __enter__(self): # type: () -> SchemaExtensions self._client.__enter__() return self def __exit__(self, *exc_details): # type: (Any) -> None self._client.__exit__(*exc_details)
38.134146
119
0.668052
7952bc3d985dfacdb5896735e8f111f36c8b2254
10,203
py
Python
brian2/sphinxext/briandoc.py
chbehrens/brian2
46b5264caa5375ae13084508b5c1049e0c9e019e
[ "BSD-2-Clause" ]
null
null
null
brian2/sphinxext/briandoc.py
chbehrens/brian2
46b5264caa5375ae13084508b5c1049e0c9e019e
[ "BSD-2-Clause" ]
null
null
null
brian2/sphinxext/briandoc.py
chbehrens/brian2
46b5264caa5375ae13084508b5c1049e0c9e019e
[ "BSD-2-Clause" ]
null
null
null
""" ======== briandoc ======== Sphinx extension that handles docstrings in the Numpy standard format with some brian-specific tweaks. [1] It will: - Convert Parameters etc. sections to field lists. - Convert See Also section to a See also entry. - Renumber references. - Extract the signature from the docstring, if it can't be determined otherwise. .. [1] https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt """ from __future__ import absolute_import import re import pydoc import inspect from docutils import statemachine from docutils.parsers.rst import directives, Directive import sphinx from sphinx.roles import XRefRole from sphinx.domains.python import PyXRefRole if sphinx.__version__ < '1.0.1': raise RuntimeError("Sphinx 1.0.1 or newer is required") from brian2.core.preferences import prefs from .docscrape_sphinx import get_doc_object, SphinxDocString class BrianPrefsDirective(Directive): ''' A sphinx 'Directive' for automatically generated documentation of Brian preferences. The directive takes an optional argument, the basename of the preferences to document. In addition, you can specify a `nolinks` option which means that no target links for the references are added. Do this if you document preferences in more then one place. Examples -------- Document one category of preferences and generate links:: .. document_brian_prefs:: core Document all preferences without generating links:: .. document_brian_prefs:: :nolinks: ''' required_arguments = 0 optional_arguments = 1 final_argument_whitespace = True option_spec = {'nolinks': directives.flag} has_content = False def run(self): # The section that should be documented if len(self.arguments): section = self.arguments[0] else: section = None link_targets = not ('nolinks' in self.options) rawtext = prefs.get_documentation(section, link_targets) include_lines = statemachine.string2lines(rawtext, convert_whitespace=True) self.state_machine.insert_input(include_lines, 'Brian preferences') return [] def brianobj_role(role, rawtext, text, lineno, inliner, options={}, content=[]): ''' A Sphinx role, used as a wrapper for the default `py:obj` role, allowing us to use the simple backtick syntax for brian classes/functions without having to qualify the package for classes/functions that are available after a `from brian2 import *`, e.g `NeuronGroup`. Also allows to directly link to preference names using the same syntax. ''' if text in prefs: linktext = text.replace('_', '-').replace('.', '-') text = '%s <brian-pref-%s>' % (text, linktext) # Use sphinx's cross-reference role xref = XRefRole(warn_dangling=True) return xref('std:ref', rawtext, text, lineno, inliner, options, content) else: if text and (not '~' in text): try: # A simple class or function name if not '.' in text: module = __import__('brian2', fromlist=[str(text)]) imported = getattr(module, str(text), None) if hasattr(imported, '__module__'): text = '~' + imported.__module__ + '.' + text if inspect.isfunction(imported): text += '()' # Possibly a method/classmethod/attribute name elif len(text.split('.')) == 2: classname, attrname = text.split('.') # Remove trailing parentheses (will be readded for display) if attrname.endswith('()'): attrname = attrname[:-2] module = __import__('brian2', fromlist=[str(classname)]) imported = getattr(module, str(classname), None) if hasattr(imported, '__module__'): # Add trailing parentheses only for methods not for # attributes if inspect.ismethod(getattr(imported, str(attrname), None)): parentheses = '()' else: parentheses = '' text = ('{classname}.{attrname}{parentheses} ' '<{modname}.{classname}.{attrname}>').format(classname=classname, attrname=attrname, modname=imported.__module__, parentheses=parentheses) except ImportError: pass role = 'py:obj' py_role = PyXRefRole() return py_role(role, rawtext, text, lineno, inliner, options, content) def mangle_docstrings(app, what, name, obj, options, lines, reference_offset=[0]): cfg = dict() if what == 'module': # Strip top title title_re = re.compile(ur'^\s*[#*=]{4,}\n[a-z0-9 -]+\n[#*=]{4,}\s*', re.I | re.S) lines[:] = title_re.sub(u'', u"\n".join(lines)).split(u"\n") exported_members = getattr(obj, '__all__', None) if exported_members: lines.append('*Exported members:* ') # do not print more than 25 members lines.append(', '.join(['`%s`' % member for member in exported_members[:25]])) if len(exported_members) > 25: lines.append('... (%d more members)' % (len(exported_members) - 25)) lines.append('') else: doc = get_doc_object(obj, what, u"\n".join(lines), name=name, config=cfg) lines[:] = unicode(doc).split(u"\n") # replace reference numbers so that there are no duplicates references = [] for line in lines: line = line.strip() m = re.match(ur'^.. \[([a-z0-9_.-])\]', line, re.I) if m: references.append(m.group(1)) # start renaming from the longest string, to avoid overwriting parts references.sort(key=lambda x:-len(x)) if references: for i, line in enumerate(lines): for r in references: if re.match(ur'^\d+$', r): new_r = u"R%d" % (reference_offset[0] + int(r)) else: new_r = u"%s%d" % (r, reference_offset[0]) lines[i] = lines[i].replace(u'[%s]_' % r, u'[%s]_' % new_r) lines[i] = lines[i].replace(u'.. [%s]' % r, u'.. [%s]' % new_r) reference_offset[0] += len(references) def mangle_signature(app, what, name, obj, options, sig, retann): # Do not try to inspect classes that don't define `__init__` if (inspect.isclass(obj) and (not hasattr(obj, '__init__') or 'initializes x; see ' in pydoc.getdoc(obj.__init__))): return '', '' if not (callable(obj) or hasattr(obj, '__argspec_is_invalid_')): return if not hasattr(obj, '__doc__'): return doc = SphinxDocString(pydoc.getdoc(obj)) if doc['Signature']: sig = re.sub(u"^[^(]*", u"", doc['Signature']) return sig, u'' def setup(app, get_doc_object_=get_doc_object): global get_doc_object get_doc_object = get_doc_object_ app.connect('autodoc-process-docstring', mangle_docstrings) app.connect('autodoc-process-signature', mangle_signature) # Extra mangling domains app.add_domain(NumpyPythonDomain) app.add_domain(NumpyCDomain) directives.register_directive('document_brian_prefs', BrianPrefsDirective) # provide the brianobj role with a link to the Python domain app.add_role('brianobj', brianobj_role) #------------------------------------------------------------------------------ # Docstring-mangling domains #------------------------------------------------------------------------------ from docutils.statemachine import ViewList from sphinx.domains.c import CDomain from sphinx.domains.python import PythonDomain class ManglingDomainBase(object): directive_mangling_map = {} def __init__(self, *a, **kw): super(ManglingDomainBase, self).__init__(*a, **kw) self.wrap_mangling_directives() def wrap_mangling_directives(self): for name, objtype in self.directive_mangling_map.items(): self.directives[name] = wrap_mangling_directive( self.directives[name], objtype) class NumpyPythonDomain(ManglingDomainBase, PythonDomain): name = 'np' directive_mangling_map = { 'function': 'function', 'class': 'class', 'exception': 'class', 'method': 'function', 'classmethod': 'function', 'staticmethod': 'function', 'attribute': 'attribute', } class NumpyCDomain(ManglingDomainBase, CDomain): name = 'np-c' directive_mangling_map = { 'function': 'function', 'member': 'attribute', 'macro': 'function', 'type': 'class', 'var': 'object', } def wrap_mangling_directive(base_directive, objtype): class directive(base_directive): def run(self): env = self.state.document.settings.env name = None if self.arguments: m = re.match(r'^(.*\s+)?(.*?)(\(.*)?', self.arguments[0]) name = m.group(2).strip() if not name: name = self.arguments[0] lines = list(self.content) mangle_docstrings(env.app, objtype, name, None, None, lines) self.content = ViewList(lines, self.content.parent) return base_directive.run(self) return directive
36.701439
105
0.559541
7952bce0cd016ab73746766050ad45faabc7be49
872
py
Python
Generic/patterns/observer.py
hc-tec/redis-py
28172eb4de2bfc61b0ff1023dbf7b52d4f4ba47c
[ "MIT" ]
1
2021-11-24T07:54:17.000Z
2021-11-24T07:54:17.000Z
Generic/patterns/observer.py
hc-tec/pydis
28172eb4de2bfc61b0ff1023dbf7b52d4f4ba47c
[ "MIT" ]
1
2021-11-13T15:08:14.000Z
2021-11-13T15:08:14.000Z
Generic/patterns/observer.py
hc-tec/pydis
28172eb4de2bfc61b0ff1023dbf7b52d4f4ba47c
[ "MIT" ]
1
2021-11-24T07:54:28.000Z
2021-11-24T07:54:28.000Z
from typing import List from abc import abstractmethod class AbstractObserver: @abstractmethod def update(self, *args, **kwargs): ... class AbstractSubject: @abstractmethod def attach(self, observer: AbstractObserver): ... @abstractmethod def detach(self, observer: AbstractObserver): ... @abstractmethod def notify(self, *args, **kwargs): ... class Observer(AbstractObserver): def update(self, *args, **kwargs): pass class Subject(AbstractSubject): def __init__(self): self._observers: List[Observer] = [] def attach(self, observer: Observer): self._observers.append(observer) def detach(self, observer: Observer): self._observers.remove(observer) def notify(self, *args, **kwargs): for observer in self._observers: observer.update(*args, **kwargs)
19.818182
53
0.66055
7952be95f94342b709705ee79481164113b97434
2,034
py
Python
hyperlpr/e2e.py
lillin-bug/Vehicle-Detection
4fe7a376788033e67ffec5a0ab584a6b44c0c000
[ "Apache-2.0" ]
13
2018-06-20T08:48:15.000Z
2019-03-07T01:50:07.000Z
hyperlpr/e2e.py
617475jordan/hyperDemo
2b6eb60b900090034373d058646f2d4253a49b90
[ "Apache-2.0" ]
null
null
null
hyperlpr/e2e.py
617475jordan/hyperDemo
2b6eb60b900090034373d058646f2d4253a49b90
[ "Apache-2.0" ]
5
2018-06-20T09:13:18.000Z
2020-04-10T15:24:45.000Z
#coding=utf-8 from keras import backend as K from keras.models import load_model from keras.layers import * import numpy as np import random import string import cv2 import e2emodel as model chars = [u"ไบฌ", u"ๆฒช", u"ๆดฅ", u"ๆธ", u"ๅ†€", u"ๆ™‹", u"่’™", u"่พฝ", u"ๅ‰", u"้ป‘", u"่‹", u"ๆต™", u"็š–", u"้—ฝ", u"่ตฃ", u"้ฒ", u"่ฑซ", u"้„‚", u"ๆน˜", u"็ฒค", u"ๆก‚", u"็ผ", u"ๅท", u"่ดต", u"ไบ‘", u"่—", u"้™•", u"็”˜", u"้’", u"ๅฎ", u"ๆ–ฐ", u"0", u"1", u"2", u"3", u"4", u"5", u"6", u"7", u"8", u"9", u"A", u"B", u"C", u"D", u"E", u"F", u"G", u"H", u"J", u"K", u"L", u"M", u"N", u"P", u"Q", u"R", u"S", u"T", u"U", u"V", u"W", u"X", u"Y", u"Z",u"ๆธฏ",u"ๅญฆ",u"ไฝฟ",u"่ญฆ",u"ๆพณ",u"ๆŒ‚",u"ๅ†›",u"ๅŒ—",u"ๅ—",u"ๅนฟ",u"ๆฒˆ",u"ๅ…ฐ",u"ๆˆ",u"ๆตŽ",u"ๆตท",u"ๆฐ‘",u"่ˆช",u"็ฉบ" ]; pred_model = model.construct_model("./model/ocr_plate_all_w_rnn_2.h5",) import time def fastdecode(y_pred): results = "" confidence = 0.0 table_pred = y_pred.reshape(-1, len(chars)+1) res = table_pred.argmax(axis=1) for i,one in enumerate(res): if one<len(chars) and (i==0 or (one!=res[i-1])): results+= chars[one] confidence+=table_pred[i][one] confidence/= len(results) return results,confidence def recognizeOne(src): # x_tempx= cv2.imread(src) x_tempx = src # x_tempx = cv2.bitwise_not(x_tempx) x_temp = cv2.resize(x_tempx,( 160,40)) x_temp = x_temp.transpose(1, 0, 2) t0 = time.time() y_pred = pred_model.predict(np.array([x_temp])) y_pred = y_pred[:,2:,:] # plt.imshow(y_pred.reshape(16,66)) # plt.show() # # cv2.imshow("x_temp",x_tempx) # cv2.waitKey(0) return fastdecode(y_pred) # # # import os # # path = "/Users/yujinke/PycharmProjects/HyperLPR_Python_web/cache/finemapping" # for filename in os.listdir(path): # if filename.endswith(".png") or filename.endswith(".jpg") or filename.endswith(".bmp"): # x = os.path.join(path,filename) # recognizeOne(x) # # print time.time() - t0 # # # cv2.imshow("x",x) # # cv2.waitKey()
31.78125
138
0.555064
7952beab10b4a44cd448cd627097ea34b8e3125c
7,308
py
Python
composer/algorithms/colout/colout.py
anisehsani/composer
42599682d50409b4a4eb7c91fad85d67418cee13
[ "Apache-2.0" ]
null
null
null
composer/algorithms/colout/colout.py
anisehsani/composer
42599682d50409b4a4eb7c91fad85d67418cee13
[ "Apache-2.0" ]
null
null
null
composer/algorithms/colout/colout.py
anisehsani/composer
42599682d50409b4a4eb7c91fad85d67418cee13
[ "Apache-2.0" ]
null
null
null
# Copyright 2021 MosaicML. All Rights Reserved. """Core ColOut classes and functions.""" from __future__ import annotations import logging import textwrap import weakref from typing import TypeVar import torch from PIL.Image import Image as PillowImage from torchvision.datasets import VisionDataset from composer.algorithms.utils.augmentation_common import image_as_type from composer.core import Algorithm, Event, Logger, State from composer.core.types import Tensor from composer.datasets.utils import add_vision_dataset_transform log = logging.getLogger(__name__) ImgT = TypeVar("ImgT", torch.Tensor, PillowImage) __all__ = ["ColOut", "ColOutTransform", "colout_batch"] def colout_batch(X: ImgT, p_row: float = 0.15, p_col: float = 0.15) -> ImgT: """Applies ColOut augmentation to a batch of images, dropping the same random rows and columns from all images in a batch. See the :doc:`Method Card </method_cards/colout>` for more details. Example: .. testcode:: from composer.algorithms.colout import colout_batch new_X = colout_batch( X=X_example, p_row=0.15, p_col=0.15 ) Args: X: :class:`PIL.Image.Image` or :class:`torch.Tensor` of image data. In the latter case, must be a single image of shape ``CHW`` or a batch of images of shape ``NCHW``. p_row: Fraction of rows to drop (drop along H). Default: ``0.15``. p_col: Fraction of columns to drop (drop along W). Default: ``0.15``. Returns: torch.Tensor: Input batch tensor with randomly dropped columns and rows. """ # Convert image to Tensor if needed X_tensor = image_as_type(X, torch.Tensor) # Get the dimensions of the image row_size = X_tensor.shape[-2] col_size = X_tensor.shape[-1] # Determine how many rows and columns to keep kept_row_size = int((1 - p_row) * row_size) kept_col_size = int((1 - p_col) * col_size) # Randomly choose indices to keep. Must be sorted for slicing kept_row_idx = sorted(torch.randperm(row_size)[:kept_row_size].numpy()) kept_col_idx = sorted(torch.randperm(col_size)[:kept_col_size].numpy()) # Keep only the selected row and columns X_colout = X_tensor[..., kept_row_idx, :] X_colout = X_colout[..., :, kept_col_idx] # convert back to same type as input, and strip added batch dim if needed; # we can't just reshape to input shape because we've reduced the spatial size if not isinstance(X, torch.Tensor) or (X.ndim < X_colout.ndim): X_colout = X_colout.reshape(X_colout.shape[-3:]) X_colout = image_as_type(X_colout, type(X)) return X_colout class ColOutTransform: """Torchvision-like transform for performing the ColOut augmentation, where random rows and columns are dropped from a single image. See the :doc:`Method Card </method_cards/colout>` for more details. Example: .. testcode:: from torchvision import datasets, transforms from composer.algorithms.colout import ColOutTransform colout_transform = ColOutTransform(p_row=0.15, p_col=0.15) transforms = transforms.Compose([colout_transform, transforms.ToTensor()]) Args: p_row (float): Fraction of rows to drop (drop along H). Default: ``0.15``. p_col (float): Fraction of columns to drop (drop along W). Default: ``0.15``. """ def __init__(self, p_row: float = 0.15, p_col: float = 0.15): self.p_row = p_row self.p_col = p_col def __call__(self, img: ImgT) -> ImgT: """Drops random rows and columns from a single image. Args: img (torch.Tensor or PIL Image): An input image as a torch.Tensor or PIL image Returns: torch.Tensor or PIL Image: A smaller image with rows and columns dropped """ return colout_batch(img, self.p_row, self.p_col) class ColOut(Algorithm): """Drops a fraction of the rows and columns of an input image. If the fraction of rows/columns dropped isn't too large, this does not significantly alter the content of the image, but reduces its size and provides extra variability. If ``batch`` is True (the default), this algorithm runs on :attr:`Event.INIT` to insert a dataset transformation. It is a no-op if this algorithm already applied itself on the :attr:`State.train_dataloader.dataset`. Otherwise, if ``batch`` is False, then this algorithm runs on :attr:`Event.AFTER_DATALOADER` to modify the batch. See the :doc:`Method Card </method_cards/colout>` for more details. Example: .. testcode:: from composer.algorithms import ColOut from composer.trainer import Trainer colout_algorithm = ColOut(p_row=0.15, p_col=0.15, batch=True) trainer = Trainer( model=model, train_dataloader=train_dataloader, eval_dataloader=eval_dataloader, max_duration="1ep", algorithms=[colout_algorithm], optimizers=[optimizer] ) Args: p_row (float): Fraction of rows to drop (drop along H). Default: ``0.15``. p_col (float): Fraction of columns to drop (drop along W). Default: ``0.15``. batch (bool): Run ColOut at the batch level. Default: ``True``. """ def __init__(self, p_row: float = 0.15, p_col: float = 0.15, batch: bool = True): if not (0 <= p_col <= 1): raise ValueError("p_col must be between 0 and 1") if not (0 <= p_row <= 1): raise ValueError("p_row must be between 0 and 1") self.p_row = p_row self.p_col = p_col self.batch = batch self._transformed_datasets = weakref.WeakSet() def match(self, event: Event, state: State) -> bool: if self.batch: return event == Event.AFTER_DATALOADER else: return event == Event.FIT_START and state.train_dataloader.dataset not in self._transformed_datasets def _apply_sample(self, state: State) -> None: """Add the ColOut dataset transform to the dataloader.""" dataset = state.train_dataloader.dataset transform = ColOutTransform(p_row=self.p_row, p_col=self.p_col) if not isinstance(dataset, VisionDataset): raise TypeError( textwrap.dedent(f"""\ To use {type(self).__name__}, the dataset must be a {VisionDataset.__qualname__}, not {type(dataset).__name__}""")) add_vision_dataset_transform(dataset, transform, is_tensor_transform=False) self._transformed_datasets.add(dataset) def _apply_batch(self, state: State) -> None: """Transform a batch of images using the ColOut augmentation.""" inputs, labels = state.batch_pair assert isinstance(inputs, Tensor), "Multiple Tensors not supported yet for ColOut" new_inputs = colout_batch(inputs, p_row=self.p_row, p_col=self.p_col) state.batch = (new_inputs, labels) def apply(self, event: Event, state: State, logger: Logger) -> None: if self.batch: self._apply_batch(state) else: self._apply_sample(state)
37.476923
120
0.655446
7952c318602472bf666621ed5e15363ef9620813
59
py
Python
nnsvs/__init__.py
oatsu-gh/nnsvs
510f37bc1d1f15282646e4d34435b5d63686cf40
[ "MIT" ]
298
2020-05-03T04:45:59.000Z
2022-03-31T14:38:52.000Z
nnsvs/__init__.py
oatsu-gh/nnsvs
510f37bc1d1f15282646e4d34435b5d63686cf40
[ "MIT" ]
54
2020-05-02T16:14:30.000Z
2022-03-30T18:04:11.000Z
nnsvs/__init__.py
oatsu-gh/nnsvs
510f37bc1d1f15282646e4d34435b5d63686cf40
[ "MIT" ]
39
2020-05-08T04:50:17.000Z
2022-03-21T18:46:14.000Z
# coding: utf-8 from .version import version as __version__
29.5
43
0.79661
7952c5430ec778869f3f63341b3815069c7cf637
1,826
py
Python
hooks/pre_gen_project.py
ma7modx/cookiecutter-django
c29ed729acc973977809311bdaa493342dfd38c6
[ "BSD-3-Clause" ]
null
null
null
hooks/pre_gen_project.py
ma7modx/cookiecutter-django
c29ed729acc973977809311bdaa493342dfd38c6
[ "BSD-3-Clause" ]
2
2018-09-27T10:51:31.000Z
2018-10-04T17:16:42.000Z
hooks/pre_gen_project.py
ma7modx/cookiecutter-django
c29ed729acc973977809311bdaa493342dfd38c6
[ "BSD-3-Clause" ]
null
null
null
""" NOTE: the below code is to be maintained Python 2.x-compatible as the whole Cookiecutter Django project initialization can potentially be run in Python 2.x environment. TODO: ? restrict Cookiecutter Django project initialization to Python 3.x environments only """ from __future__ import print_function import sys TERMINATOR = "\x1b[0m" WARNING = "\x1b[1;33m [WARNING]: " INFO = "\x1b[1;33m [INFO]: " HINT = "\x1b[3;33m" SUCCESS = "\x1b[1;32m [SUCCESS]: " project_slug = "{{ cookiecutter.project_slug }}" if hasattr(project_slug, "isidentifier"): assert project_slug.isidentifier(), "'{}' project slug is not a valid Python identifier.".format( project_slug ) assert "\\" not in "{{ cookiecutter.author_name }}", "Don't include backslashes in author name." python_major_version = sys.version_info[0] if python_major_version == 2: print( WARNING + "Cookiecutter Django does not support Python 2. " "Stability is guaranteed with Python 3.6+ only, " "are you sure you want to proceed (y/n)? " + TERMINATOR ) yes_options, no_options = frozenset(["y"]), frozenset(["n"]) while True: choice = raw_input().lower() if choice in yes_options: break elif choice in no_options: print(INFO + "Generation process stopped as requested." + TERMINATOR) sys.exit(1) else: print( HINT + "Please respond with {} or {}: ".format( ", ".join( ["'{}'".format(o) for o in yes_options if not o == ""] ), ", ".join( ["'{}'".format(o) for o in no_options if not o == ""] ), ) + TERMINATOR )
32.607143
101
0.572289
7952c55667949ed2ef22e3aaff632db7c22d313e
19,460
py
Python
beets/autotag/mb.py
adammillerio/beets
c1d93165f05ba87387c61ae2eda3c93a77efa956
[ "MIT" ]
null
null
null
beets/autotag/mb.py
adammillerio/beets
c1d93165f05ba87387c61ae2eda3c93a77efa956
[ "MIT" ]
null
null
null
beets/autotag/mb.py
adammillerio/beets
c1d93165f05ba87387c61ae2eda3c93a77efa956
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # This file is part of beets. # Copyright 2016, Adrian Sampson. # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. """Searches for albums in the MusicBrainz database. """ from __future__ import division, absolute_import, print_function import musicbrainzngs import re import traceback from six.moves.urllib.parse import urljoin from beets import logging import beets.autotag.hooks import beets from beets import util from beets import config import six VARIOUS_ARTISTS_ID = '89ad4ac3-39f7-470e-963a-56509c546377' if util.SNI_SUPPORTED: BASE_URL = 'https://musicbrainz.org/' else: BASE_URL = 'http://musicbrainz.org/' SKIPPED_TRACKS = ['[data track]'] FIELDS_TO_MB_KEYS = { 'catalognum': 'catno', 'country': 'country', 'label': 'label', 'media': 'format', 'year': 'date', } musicbrainzngs.set_useragent('beets', beets.__version__, 'https://beets.io/') class MusicBrainzAPIError(util.HumanReadableException): """An error while talking to MusicBrainz. The `query` field is the parameter to the action and may have any type. """ def __init__(self, reason, verb, query, tb=None): self.query = query if isinstance(reason, musicbrainzngs.WebServiceError): reason = u'MusicBrainz not reachable' super(MusicBrainzAPIError, self).__init__(reason, verb, tb) def get_message(self): return u'{0} in {1} with query {2}'.format( self._reasonstr(), self.verb, repr(self.query) ) log = logging.getLogger('beets') RELEASE_INCLUDES = ['artists', 'media', 'recordings', 'release-groups', 'labels', 'artist-credits', 'aliases', 'recording-level-rels', 'work-rels', 'work-level-rels', 'artist-rels'] TRACK_INCLUDES = ['artists', 'aliases'] if 'work-level-rels' in musicbrainzngs.VALID_INCLUDES['recording']: TRACK_INCLUDES += ['work-level-rels', 'artist-rels'] if 'genres' in musicbrainzngs.VALID_INCLUDES['recording']: RELEASE_INCLUDES += ['genres'] def track_url(trackid): return urljoin(BASE_URL, 'recording/' + trackid) def album_url(albumid): return urljoin(BASE_URL, 'release/' + albumid) def configure(): """Set up the python-musicbrainz-ngs module according to settings from the beets configuration. This should be called at startup. """ hostname = config['musicbrainz']['host'].as_str() musicbrainzngs.set_hostname(hostname) musicbrainzngs.set_rate_limit( config['musicbrainz']['ratelimit_interval'].as_number(), config['musicbrainz']['ratelimit'].get(int), ) def _preferred_alias(aliases): """Given an list of alias structures for an artist credit, select and return the user's preferred alias alias or None if no matching alias is found. """ if not aliases: return # Only consider aliases that have locales set. aliases = [a for a in aliases if 'locale' in a] # Search configured locales in order. for locale in config['import']['languages'].as_str_seq(): # Find matching primary aliases for this locale. matches = [a for a in aliases if a['locale'] == locale and 'primary' in a] # Skip to the next locale if we have no matches if not matches: continue return matches[0] def _preferred_release_event(release): """Given a release, select and return the user's preferred release event as a tuple of (country, release_date). Fall back to the default release event if a preferred event is not found. """ countries = config['match']['preferred']['countries'].as_str_seq() for country in countries: for event in release.get('release-event-list', {}): try: if country in event['area']['iso-3166-1-code-list']: return country, event['date'] except KeyError: pass return release.get('country'), release.get('date') def _flatten_artist_credit(credit): """Given a list representing an ``artist-credit`` block, flatten the data into a triple of joined artist name strings: canonical, sort, and credit. """ artist_parts = [] artist_sort_parts = [] artist_credit_parts = [] for el in credit: if isinstance(el, six.string_types): # Join phrase. artist_parts.append(el) artist_credit_parts.append(el) artist_sort_parts.append(el) else: alias = _preferred_alias(el['artist'].get('alias-list', ())) # An artist. if alias: cur_artist_name = alias['alias'] else: cur_artist_name = el['artist']['name'] artist_parts.append(cur_artist_name) # Artist sort name. if alias: artist_sort_parts.append(alias['sort-name']) elif 'sort-name' in el['artist']: artist_sort_parts.append(el['artist']['sort-name']) else: artist_sort_parts.append(cur_artist_name) # Artist credit. if 'name' in el: artist_credit_parts.append(el['name']) else: artist_credit_parts.append(cur_artist_name) return ( ''.join(artist_parts), ''.join(artist_sort_parts), ''.join(artist_credit_parts), ) def track_info(recording, index=None, medium=None, medium_index=None, medium_total=None): """Translates a MusicBrainz recording result dictionary into a beets ``TrackInfo`` object. Three parameters are optional and are used only for tracks that appear on releases (non-singletons): ``index``, the overall track number; ``medium``, the disc number; ``medium_index``, the track's index on its medium; ``medium_total``, the number of tracks on the medium. Each number is a 1-based index. """ info = beets.autotag.hooks.TrackInfo( title=recording['title'], track_id=recording['id'], index=index, medium=medium, medium_index=medium_index, medium_total=medium_total, data_source=u'MusicBrainz', data_url=track_url(recording['id']), ) if recording.get('artist-credit'): # Get the artist names. info.artist, info.artist_sort, info.artist_credit = \ _flatten_artist_credit(recording['artist-credit']) # Get the ID and sort name of the first artist. artist = recording['artist-credit'][0]['artist'] info.artist_id = artist['id'] if recording.get('length'): info.length = int(recording['length']) / (1000.0) lyricist = [] composer = [] composer_sort = [] for work_relation in recording.get('work-relation-list', ()): if work_relation['type'] != 'performance': continue info.work = work_relation['work']['title'] info.mb_workid = work_relation['work']['id'] if 'disambiguation' in work_relation['work']: info.work_disambig = work_relation['work']['disambiguation'] for artist_relation in work_relation['work'].get( 'artist-relation-list', ()): if 'type' in artist_relation: type = artist_relation['type'] if type == 'lyricist': lyricist.append(artist_relation['artist']['name']) elif type == 'composer': composer.append(artist_relation['artist']['name']) composer_sort.append( artist_relation['artist']['sort-name']) if lyricist: info.lyricist = u', '.join(lyricist) if composer: info.composer = u', '.join(composer) info.composer_sort = u', '.join(composer_sort) arranger = [] for artist_relation in recording.get('artist-relation-list', ()): if 'type' in artist_relation: type = artist_relation['type'] if type == 'arranger': arranger.append(artist_relation['artist']['name']) if arranger: info.arranger = u', '.join(arranger) info.decode() return info def _set_date_str(info, date_str, original=False): """Given a (possibly partial) YYYY-MM-DD string and an AlbumInfo object, set the object's release date fields appropriately. If `original`, then set the original_year, etc., fields. """ if date_str: date_parts = date_str.split('-') for key in ('year', 'month', 'day'): if date_parts: date_part = date_parts.pop(0) try: date_num = int(date_part) except ValueError: continue if original: key = 'original_' + key setattr(info, key, date_num) def album_info(release): """Takes a MusicBrainz release result dictionary and returns a beets AlbumInfo object containing the interesting data about that release. """ # Get artist name using join phrases. artist_name, artist_sort_name, artist_credit_name = \ _flatten_artist_credit(release['artist-credit']) # Basic info. track_infos = [] index = 0 for medium in release['medium-list']: disctitle = medium.get('title') format = medium.get('format') if format in config['match']['ignored_media'].as_str_seq(): continue all_tracks = medium['track-list'] if ('data-track-list' in medium and not config['match']['ignore_data_tracks']): all_tracks += medium['data-track-list'] track_count = len(all_tracks) if 'pregap' in medium: all_tracks.insert(0, medium['pregap']) for track in all_tracks: if ('title' in track['recording'] and track['recording']['title'] in SKIPPED_TRACKS): continue if ('video' in track['recording'] and track['recording']['video'] == 'true' and config['match']['ignore_video_tracks']): continue # Basic information from the recording. index += 1 ti = track_info( track['recording'], index, int(medium['position']), int(track['position']), track_count, ) ti.release_track_id = track['id'] ti.disctitle = disctitle ti.media = format ti.track_alt = track['number'] # Prefer track data, where present, over recording data. if track.get('title'): ti.title = track['title'] if track.get('artist-credit'): # Get the artist names. ti.artist, ti.artist_sort, ti.artist_credit = \ _flatten_artist_credit(track['artist-credit']) ti.artist_id = track['artist-credit'][0]['artist']['id'] if track.get('length'): ti.length = int(track['length']) / (1000.0) track_infos.append(ti) info = beets.autotag.hooks.AlbumInfo( album=release['title'], album_id=release['id'], artist=artist_name, artist_id=release['artist-credit'][0]['artist']['id'], tracks=track_infos, mediums=len(release['medium-list']), artist_sort=artist_sort_name, artist_credit=artist_credit_name, data_source=u'MusicBrainz', data_url=album_url(release['id']), ) info.va = info.artist_id == VARIOUS_ARTISTS_ID if info.va: info.artist = config['va_name'].as_str() info.asin = release.get('asin') info.releasegroup_id = release['release-group']['id'] info.albumstatus = release.get('status') # Get the disambiguation strings at the release and release group level. if release['release-group'].get('disambiguation'): info.releasegroupdisambig = \ release['release-group'].get('disambiguation') if release.get('disambiguation'): info.albumdisambig = release.get('disambiguation') # Get the "classic" Release type. This data comes from a legacy API # feature before MusicBrainz supported multiple release types. if 'type' in release['release-group']: reltype = release['release-group']['type'] if reltype: info.albumtype = reltype.lower() # Log the new-style "primary" and "secondary" release types. # Eventually, we'd like to actually store this data, but we just log # it for now to help understand the differences. if 'primary-type' in release['release-group']: rel_primarytype = release['release-group']['primary-type'] if rel_primarytype: log.debug('primary MB release type: ' + rel_primarytype.lower()) if 'secondary-type-list' in release['release-group']: if release['release-group']['secondary-type-list']: log.debug('secondary MB release type(s): ' + ', '.join( [secondarytype.lower() for secondarytype in release['release-group']['secondary-type-list']])) # Release events. info.country, release_date = _preferred_release_event(release) release_group_date = release['release-group'].get('first-release-date') if not release_date: # Fall back if release-specific date is not available. release_date = release_group_date _set_date_str(info, release_date, False) _set_date_str(info, release_group_date, True) # Label name. if release.get('label-info-list'): label_info = release['label-info-list'][0] if label_info.get('label'): label = label_info['label']['name'] if label != '[no label]': info.label = label info.catalognum = label_info.get('catalog-number') # Text representation data. if release.get('text-representation'): rep = release['text-representation'] info.script = rep.get('script') info.language = rep.get('language') # Media (format). if release['medium-list']: first_medium = release['medium-list'][0] info.media = first_medium.get('format') genres = release.get('genre-list') if config['musicbrainz']['genres'] and genres: info.genre = ';'.join(g['name'] for g in genres) info.decode() return info def match_album(artist, album, tracks=None, extra_tags=None): """Searches for a single album ("release" in MusicBrainz parlance) and returns an iterator over AlbumInfo objects. May raise a MusicBrainzAPIError. The query consists of an artist name, an album name, and, optionally, a number of tracks on the album and any other extra tags. """ # Build search criteria. criteria = {'release': album.lower().strip()} if artist is not None: criteria['artist'] = artist.lower().strip() else: # Various Artists search. criteria['arid'] = VARIOUS_ARTISTS_ID if tracks is not None: criteria['tracks'] = six.text_type(tracks) # Additional search cues from existing metadata. if extra_tags: for tag in extra_tags: key = FIELDS_TO_MB_KEYS[tag] value = six.text_type(extra_tags.get(tag, '')).lower().strip() if key == 'catno': value = value.replace(u' ', '') if value: criteria[key] = value # Abort if we have no search terms. if not any(criteria.values()): return try: log.debug(u'Searching for MusicBrainz releases with: {!r}', criteria) res = musicbrainzngs.search_releases( limit=config['musicbrainz']['searchlimit'].get(int), **criteria) except musicbrainzngs.MusicBrainzError as exc: raise MusicBrainzAPIError(exc, 'release search', criteria, traceback.format_exc()) for release in res['release-list']: # The search result is missing some data (namely, the tracks), # so we just use the ID and fetch the rest of the information. albuminfo = album_for_id(release['id']) if albuminfo is not None: yield albuminfo def match_track(artist, title): """Searches for a single track and returns an iterable of TrackInfo objects. May raise a MusicBrainzAPIError. """ criteria = { 'artist': artist.lower().strip(), 'recording': title.lower().strip(), } if not any(criteria.values()): return try: res = musicbrainzngs.search_recordings( limit=config['musicbrainz']['searchlimit'].get(int), **criteria) except musicbrainzngs.MusicBrainzError as exc: raise MusicBrainzAPIError(exc, 'recording search', criteria, traceback.format_exc()) for recording in res['recording-list']: yield track_info(recording) def _parse_id(s): """Search for a MusicBrainz ID in the given string and return it. If no ID can be found, return None. """ # Find the first thing that looks like a UUID/MBID. match = re.search(u'[a-f0-9]{8}(-[a-f0-9]{4}){3}-[a-f0-9]{12}', s) if match: return match.group() def album_for_id(releaseid): """Fetches an album by its MusicBrainz ID and returns an AlbumInfo object or None if the album is not found. May raise a MusicBrainzAPIError. """ log.debug(u'Requesting MusicBrainz release {}', releaseid) albumid = _parse_id(releaseid) if not albumid: log.debug(u'Invalid MBID ({0}).', releaseid) return try: res = musicbrainzngs.get_release_by_id(albumid, RELEASE_INCLUDES) except musicbrainzngs.ResponseError: log.debug(u'Album ID match failed.') return None except musicbrainzngs.MusicBrainzError as exc: raise MusicBrainzAPIError(exc, u'get release by ID', albumid, traceback.format_exc()) return album_info(res['release']) def track_for_id(releaseid): """Fetches a track by its MusicBrainz ID. Returns a TrackInfo object or None if no track is found. May raise a MusicBrainzAPIError. """ trackid = _parse_id(releaseid) if not trackid: log.debug(u'Invalid MBID ({0}).', releaseid) return try: res = musicbrainzngs.get_recording_by_id(trackid, TRACK_INCLUDES) except musicbrainzngs.ResponseError: log.debug(u'Track ID match failed.') return None except musicbrainzngs.MusicBrainzError as exc: raise MusicBrainzAPIError(exc, u'get recording by ID', trackid, traceback.format_exc()) return track_info(res['recording'])
35.641026
77
0.616084
7952c5a014fd6436c3d7ad00c4de38a77f55cd98
230
py
Python
public/app/models/all_transactions.py
iconation/ICONScan
3fb2f364a678a0e8d2b8a4a0d2275fbe8e2e3b50
[ "Apache-2.0" ]
null
null
null
public/app/models/all_transactions.py
iconation/ICONScan
3fb2f364a678a0e8d2b8a4a0d2275fbe8e2e3b50
[ "Apache-2.0" ]
null
null
null
public/app/models/all_transactions.py
iconation/ICONScan
3fb2f364a678a0e8d2b8a4a0d2275fbe8e2e3b50
[ "Apache-2.0" ]
null
null
null
class AllTransactions: def __init__ (self, db): db.sql.execute (open ("app/sql/all_icx_transactions.sql", "rb").read()) self.result = db.sql.fetchall() def process (db): return AllTransactions(db).result
25.555556
79
0.66087
7952c6bcb478498482cddbee36d74677a502ecd2
5,403
py
Python
contrib/seeds/makeseeds.py
afiniel/but
ac5a1d9d05c3b4cb7c6087bcfb19da218e40f8c3
[ "MIT" ]
13
2021-04-24T14:07:48.000Z
2021-12-29T18:10:08.000Z
contrib/seeds/makeseeds.py
afiniel/but
ac5a1d9d05c3b4cb7c6087bcfb19da218e40f8c3
[ "MIT" ]
13
2021-04-22T17:44:59.000Z
2022-02-22T10:38:44.000Z
contrib/seeds/makeseeds.py
afiniel/but
ac5a1d9d05c3b4cb7c6087bcfb19da218e40f8c3
[ "MIT" ]
22
2021-06-05T00:58:07.000Z
2022-02-12T16:46:36.000Z
#!/usr/bin/env python3 # Copyright (c) 2013-2016 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. # # Generate seeds.txt from "protx list valid 1" # NSEEDS=512 MAX_SEEDS_PER_ASN=4 # These are hosts that have been observed to be behaving strangely (e.g. # aggressively connecting to every node). SUSPICIOUS_HOSTS = { } import re import sys import dns.resolver import collections import json import time import multiprocessing PATTERN_IPV4 = re.compile(r"^((\d{1,3})\.(\d{1,3})\.(\d{1,3})\.(\d{1,3})):(\d+)$") PATTERN_IPV6 = re.compile(r"^\[([0-9a-z:]+)\]:(\d+)$") PATTERN_ONION = re.compile(r"^([abcdefghijklmnopqrstuvwxyz234567]{16}\.onion):(\d+)$") def parseip(ip): m = PATTERN_IPV4.match(ip) sortkey = None ip = None if m is None: m = PATTERN_IPV6.match(ip) if m is None: m = PATTERN_ONION.match(ip) if m is None: return None else: net = 'onion' ipstr = sortkey = m.group(1) port = int(m.group(2)) else: net = 'ipv6' if m.group(1) in ['::']: # Not interested in localhost return None ipstr = m.group(1) sortkey = ipstr # XXX parse IPv6 into number, could use name_to_ipv6 from generate-seeds port = int(m.group(2)) else: # Do IPv4 sanity check ip = 0 for i in range(0,4): if int(m.group(i+2)) < 0 or int(m.group(i+2)) > 255: return None ip = ip + (int(m.group(i+2)) << (8*(3-i))) if ip == 0: return None net = 'ipv4' sortkey = ip ipstr = m.group(1) port = int(m.group(6)) return { "net": net, "ip": ipstr, "port": port, "ipnum": ip, "sortkey": sortkey } def filtermulticollateralhash(mns): '''Filter out MNs sharing the same collateral hash''' hist = collections.defaultdict(list) for mn in mns: hist[mn['collateralHash']].append(mn) return [mn for mn in mns if len(hist[mn['collateralHash']]) == 1] def filtermulticollateraladdress(mns): '''Filter out MNs sharing the same collateral address''' hist = collections.defaultdict(list) for mn in mns: hist[mn['collateralAddress']].append(mn) return [mn for mn in mns if len(hist[mn['collateralAddress']]) == 1] def filtermultipayoutaddress(mns): '''Filter out MNs sharing the same payout address''' hist = collections.defaultdict(list) for mn in mns: hist[mn['state']['payoutAddress']].append(mn) return [mn for mn in mns if len(hist[mn['state']['payoutAddress']]) == 1] def resolveasn(resolver, ip): asn = int([x.to_text() for x in resolver.query('.'.join(reversed(ip.split('.'))) + '.origin.asn.cymru.com', 'TXT').response.answer][0].split('\"')[1].split(' ')[0]) return asn # Based on Greg Maxwell's seed_filter.py def filterbyasn(ips, max_per_asn, max_total): # Sift out ips by type ips_ipv4 = [ip for ip in ips if ip['net'] == 'ipv4'] ips_ipv6 = [ip for ip in ips if ip['net'] == 'ipv6'] ips_onion = [ip for ip in ips if ip['net'] == 'onion'] my_resolver = dns.resolver.Resolver() pool = multiprocessing.Pool(processes=16) # OpenDNS servers my_resolver.nameservers = ['208.67.222.222', '208.67.220.220'] # Resolve ASNs in parallel asns = [pool.apply_async(resolveasn, args=(my_resolver, ip['ip'])) for ip in ips_ipv4] # Filter IPv4 by ASN result = [] asn_count = {} for i in range(len(ips_ipv4)): ip = ips_ipv4[i] if len(result) == max_total: break try: asn = asns[i].get() if asn not in asn_count: asn_count[asn] = 0 if asn_count[asn] == max_per_asn: continue asn_count[asn] += 1 result.append(ip) except: sys.stderr.write('ERR: Could not resolve ASN for "' + ip['ip'] + '"\n') # TODO: filter IPv6 by ASN # Add back non-IPv4 result.extend(ips_ipv6) result.extend(ips_onion) return result def main(): # This expects a json as outputted by "protx list valid 1" if len(sys.argv) > 1: with open(sys.argv[1], 'r') as f: mns = json.load(f) else: mns = json.load(sys.stdin) # Skip PoSe banned MNs mns = [mn for mn in mns if mn['state']['PoSeBanHeight'] == -1] # Skip MNs with < 10000 confirmations mns = [mn for mn in mns if mn['confirmations'] >= 100] # Filter out MNs which are definitely from the same person/operator mns = filtermulticollateralhash(mns) mns = filtermulticollateraladdress(mns) mns = filtermultipayoutaddress(mns) # Extract IPs ips = [parseip(mn['state']['service']) for mn in mns] # Look up ASNs and limit results, both per ASN and globally. ips = filterbyasn(ips, MAX_SEEDS_PER_ASN, NSEEDS) # Sort the results by IP address (for deterministic output). ips.sort(key=lambda x: (x['net'], x['sortkey'])) for ip in ips: if ip['net'] == 'ipv6': print('[%s]:%i' % (ip['ip'], ip['port'])) else: print('%s:%i' % (ip['ip'], ip['port'])) if __name__ == '__main__': main()
31.596491
168
0.585601
7952c88d5ecff2e02c14d66029c5f34017d324d0
5,468
py
Python
awx_collection/plugins/modules/tower_receive.py
bhyunki/awx
ce588a6af5a5c7f71a5b176ffe53eda5ebc3492c
[ "Apache-2.0" ]
1
2021-04-15T18:50:58.000Z
2021-04-15T18:50:58.000Z
awx_collection/plugins/modules/tower_receive.py
bhyunki/awx
ce588a6af5a5c7f71a5b176ffe53eda5ebc3492c
[ "Apache-2.0" ]
35
2021-03-01T06:34:26.000Z
2022-03-01T01:18:42.000Z
awx_collection/plugins/modules/tower_receive.py
bhyunki/awx
ce588a6af5a5c7f71a5b176ffe53eda5ebc3492c
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/python # coding: utf-8 -*- # (c) 2017, John Westcott IV <john.westcott.iv@redhat.com> # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import absolute_import, division, print_function __metaclass__ = type ANSIBLE_METADATA = {'metadata_version': '1.1', 'status': ['deprecated'], 'supported_by': 'community'} DOCUMENTATION = ''' --- module: tower_receive deprecated: removed_in: "14.0.0" why: Deprecated in favor of upcoming C(_export) module. alternative: Once published, use M(tower_export) instead. author: "John Westcott IV (@john-westcott-iv)" short_description: Receive assets from Ansible Tower. description: - Receive assets from Ansible Tower. See U(https://www.ansible.com/tower) for an overview. options: all: description: - Export all assets type: bool default: 'False' organization: description: - List of organization names to export default: [] type: list elements: str user: description: - List of user names to export default: [] type: list elements: str team: description: - List of team names to export default: [] type: list elements: str credential_type: description: - List of credential type names to export default: [] type: list elements: str credential: description: - List of credential names to export default: [] type: list elements: str notification_template: description: - List of notification template names to export default: [] type: list elements: str inventory_script: description: - List of inventory script names to export default: [] type: list elements: str inventory: description: - List of inventory names to export default: [] type: list elements: str project: description: - List of project names to export default: [] type: list elements: str job_template: description: - List of job template names to export default: [] type: list elements: str workflow: description: - List of workflow names to export default: [] type: list elements: str requirements: - "ansible-tower-cli >= 3.3.0" notes: - Specifying a name of "all" for any asset type will export all items of that asset type. extends_documentation_fragment: awx.awx.auth_legacy ''' EXAMPLES = ''' - name: Export all tower assets tower_receive: all: True tower_config_file: "~/tower_cli.cfg" - name: Export all inventories tower_receive: inventory: - all - name: Export a job template named "My Template" and all Credentials tower_receive: job_template: - "My Template" credential: - all ''' RETURN = ''' assets: description: The exported assets returned: success type: dict sample: [ {}, {} ] ''' from ..module_utils.tower_legacy import TowerLegacyModule, tower_auth_config, HAS_TOWER_CLI try: from tower_cli.cli.transfer.receive import Receiver from tower_cli.cli.transfer.common import SEND_ORDER from tower_cli.utils.exceptions import TowerCLIError from tower_cli.conf import settings TOWER_CLI_HAS_EXPORT = True except ImportError: TOWER_CLI_HAS_EXPORT = False def main(): argument_spec = dict( all=dict(type='bool', default=False), credential=dict(type='list', default=[], elements='str'), credential_type=dict(type='list', default=[], elements='str'), inventory=dict(type='list', default=[], elements='str'), inventory_script=dict(type='list', default=[], elements='str'), job_template=dict(type='list', default=[], elements='str'), notification_template=dict(type='list', default=[], elements='str'), organization=dict(type='list', default=[], elements='str'), project=dict(type='list', default=[], elements='str'), team=dict(type='list', default=[], elements='str'), user=dict(type='list', default=[], elements='str'), workflow=dict(type='list', default=[], elements='str'), ) module = TowerLegacyModule(argument_spec=argument_spec, supports_check_mode=False) module.deprecate(msg="This module is deprecated and will be replaced by the AWX CLI export command.", version="awx.awx:14.0.0") if not HAS_TOWER_CLI: module.fail_json(msg='ansible-tower-cli required for this module') if not TOWER_CLI_HAS_EXPORT: module.fail_json(msg='ansible-tower-cli version does not support export') export_all = module.params.get('all') assets_to_export = {} for asset_type in SEND_ORDER: assets_to_export[asset_type] = module.params.get(asset_type) result = dict( assets=None, changed=False, message='', ) tower_auth = tower_auth_config(module) with settings.runtime_values(**tower_auth): try: receiver = Receiver() result['assets'] = receiver.export_assets(all=export_all, asset_input=assets_to_export) module.exit_json(**result) except TowerCLIError as e: result['message'] = e.message module.fail_json(msg='Receive Failed', **result) if __name__ == '__main__': main()
27.34
131
0.645208
7952c9600d46fc478a084344b6b070cb5976121f
972
py
Python
promgen/util.py
kfdm/promgen
2fdff588fbee7cc74fdffec35f18c64e8ec420e6
[ "MIT", "Apache-2.0", "BSD-3-Clause" ]
null
null
null
promgen/util.py
kfdm/promgen
2fdff588fbee7cc74fdffec35f18c64e8ec420e6
[ "MIT", "Apache-2.0", "BSD-3-Clause" ]
null
null
null
promgen/util.py
kfdm/promgen
2fdff588fbee7cc74fdffec35f18c64e8ec420e6
[ "MIT", "Apache-2.0", "BSD-3-Clause" ]
null
null
null
# Copyright (c) 2017 LINE Corporation # These sources are released under the terms of the MIT license: see LICENSE import requests.sessions from promgen.version import __version__ # Wrappers around request api to ensure we always attach our user agent # https://github.com/requests/requests/blob/master/requests/api.py def post(url, data=None, json=None, **kwargs): with requests.sessions.Session() as session: session.headers['User-Agent'] = 'promgen/{}'.format(__version__) return session.post(url, data=data, json=json, **kwargs) def get(url, params=None, **kwargs): with requests.sessions.Session() as session: session.headers['User-Agent'] = 'promgen/{}'.format(__version__) return session.get(url, params=params, **kwargs) def delete(url, **kwargs): with requests.sessions.Session() as session: session.headers['User-Agent'] = 'promgen/{}'.format(__version__) return session.delete(url, **kwargs)
34.714286
76
0.708848
7952c977de00561db80ce8d8b1efbcdbbfd6764c
2,412
py
Python
Software/Python/grove_dht_pro.py
yasu-kun/GrovePi
1d583cfee9397290587282750bdc25dd910b0018
[ "MIT" ]
null
null
null
Software/Python/grove_dht_pro.py
yasu-kun/GrovePi
1d583cfee9397290587282750bdc25dd910b0018
[ "MIT" ]
null
null
null
Software/Python/grove_dht_pro.py
yasu-kun/GrovePi
1d583cfee9397290587282750bdc25dd910b0018
[ "MIT" ]
null
null
null
#!/usr/bin/env python # # GrovePi Example for using the Grove Temperature & Humidity Sensor Pro # (http://www.seeedstudio.com/wiki/Grove_-_Temperature_and_Humidity_Sensor_Pro) # # The GrovePi connects the Raspberry Pi and Grove sensors. # You can learn more about GrovePi here: http://www.dexterindustries.com/GrovePi # # Have a question about this example? Ask on the forums here: http://forum.dexterindustries.com/c/grovepi # ''' ## License The MIT License (MIT) GrovePi for the Raspberry Pi: an open source platform for connecting Grove Sensors to the Raspberry Pi. Copyright (C) 2017 Dexter Industries Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ''' import grovepi import math # Connect the Grove Temperature & Humidity Sensor Pro to digital port D4 # This example uses the blue colored sensor. # SIG,NC,VCC,GND sensor = 4 # The Sensor goes on digital port 4. # temp_humidity_sensor_type # Grove Base Kit comes with the blue sensor. blue = 0 # The Blue colored sensor. white = 1 # The White colored sensor. while True: try: # This example uses the blue colored sensor. # The first parameter is the port, the second parameter is the type of sensor. [temp,humidity] = grovepi.dht(sensor,white) if math.isnan(temp) == False and math.isnan(humidity) == False: print("temp = %.02f C humidity =%.02f%%"%(temp, humidity)) except IOError: print ("Error")
40.881356
107
0.752488
7952c97ca185c8c1f29d623c1376ff5ca796fd56
3,711
py
Python
heatmap/guided_backprop.py
MickeyZeng/Data-Visualization
c7005d1096545d7a5eb96dd0c9bc13e874d42fa4
[ "MIT" ]
null
null
null
heatmap/guided_backprop.py
MickeyZeng/Data-Visualization
c7005d1096545d7a5eb96dd0c9bc13e874d42fa4
[ "MIT" ]
null
null
null
heatmap/guided_backprop.py
MickeyZeng/Data-Visualization
c7005d1096545d7a5eb96dd0c9bc13e874d42fa4
[ "MIT" ]
null
null
null
""" Created on Thu Oct 26 11:23:47 2017 @author: Utku Ozbulak - github.com/utkuozbulak """ import torch from torch.nn import ReLU class GuidedBackprop(): """ Produces gradients generated with guided back propagation from the given image """ def __init__(self, model): self.model = model self.gradients = None self.forward_relu_outputs = [] # Put model in evaluation mode self.model.eval() self.update_relus() self.hook_layers() def hook_layers(self): def hook_function(module, grad_in, grad_out): self.gradients = grad_in[0] # Register hook to the first layer first_layer = list(self.model.features._modules.items())[0][1] first_layer.register_backward_hook(hook_function) def update_relus(self): """ Updates relu activation functions so that 1- stores output in forward pass 2- imputes zero for gradient values that are less than zero """ def relu_backward_hook_function(module, grad_in, grad_out): """ If there is a negative gradient, change it to zero """ # Get last forward output corresponding_forward_output = self.forward_relu_outputs[-1] corresponding_forward_output[corresponding_forward_output > 0] = 1 modified_grad_out = corresponding_forward_output * torch.clamp(grad_in[0], min=0.0) del self.forward_relu_outputs[-1] # Remove last forward output return (modified_grad_out,) def relu_forward_hook_function(module, ten_in, ten_out): """ Store results of forward pass """ self.forward_relu_outputs.append(ten_out) # Loop through layers, hook up ReLUs for pos, module in self.model.features._modules.items(): if isinstance(module, ReLU): module.register_backward_hook(relu_backward_hook_function) module.register_forward_hook(relu_forward_hook_function) def generate_gradients(self, input_image, target_class): # Forward pass model_output = self.model(input_image) # Zero gradients self.model.zero_grad() # Target for backprop one_hot_output = torch.FloatTensor(1, model_output.size()[-1]).zero_() one_hot_output[0][target_class] = 1 # Backward pass model_output.backward(gradient=one_hot_output) # Convert Pytorch variable to numpy array # [0] to get rid of the first channel (1,3,224,224) gradients_as_arr = self.gradients.data.numpy()[0] return gradients_as_arr # if __name__ == '__main__': # Snake # target_example = 0 # (original_image, prep_img, target_class, file_name_to_export, pretrained_model) = \ # get_example_params(target_example) # # # Guided backprop # GBP = GuidedBackprop(pretrained_model) # # Get gradients # guided_grads = GBP.generate_gradients(prep_img, target_class) # # Save colored gradients # save_gradient_images(guided_grads, file_name_to_export + '_Guided_BP_color') # # Convert to grayscale # grayscale_guided_grads = convert_to_grayscale(guided_grads) # # Save grayscale gradients # save_gradient_images(grayscale_guided_grads, file_name_to_export + '_Guided_BP_gray') # # Positive and negative saliency maps # pos_sal, neg_sal = get_positive_negative_saliency(guided_grads) # save_gradient_images(pos_sal, file_name_to_export + '_pos_sal') # save_gradient_images(neg_sal, file_name_to_export + '_neg_sal') # print('Guided backprop completed')
37.484848
95
0.663164
7952c9f24c36ca687a698eb5f5a58215c97c6724
1,800
py
Python
skl2onnx/shape_calculators/svd.py
MaxNoe/sklearn-onnx
698c9347e7c70cbb1a2c5bba1657e6548ff5897d
[ "MIT" ]
1
2021-04-12T12:38:20.000Z
2021-04-12T12:38:20.000Z
skl2onnx/shape_calculators/svd.py
MaxNoe/sklearn-onnx
698c9347e7c70cbb1a2c5bba1657e6548ff5897d
[ "MIT" ]
null
null
null
skl2onnx/shape_calculators/svd.py
MaxNoe/sklearn-onnx
698c9347e7c70cbb1a2c5bba1657e6548ff5897d
[ "MIT" ]
1
2020-10-01T09:26:27.000Z
2020-10-01T09:26:27.000Z
# ------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # -------------------------------------------------------------------------- from ..common._registration import register_shape_calculator from ..common.data_types import ( FloatTensorType, Int64TensorType, DoubleTensorType ) from ..common.utils import check_input_and_output_numbers from ..common.utils import check_input_and_output_types def calculate_sklearn_truncated_svd_output_shapes(operator): """ Allowed input/output patterns are 1. [N, C] ---> [N, K] Transform feature dimension from C to K """ check_input_and_output_numbers(operator, input_count_range=1, output_count_range=1) check_input_and_output_types( operator, good_input_types=[ FloatTensorType, Int64TensorType, DoubleTensorType], good_output_types=[FloatTensorType, DoubleTensorType]) if len(operator.inputs[0].type.shape) != 2: raise RuntimeError('Only 2-D tensor(s) can be input(s).') N = operator.inputs[0].type.shape[0] K = (operator.raw_operator.n_components if operator.type == 'SklearnTruncatedSVD' else operator.raw_operator.n_components_) operator.outputs[0].type.shape = [N, K] register_shape_calculator('SklearnIncrementalPCA', calculate_sklearn_truncated_svd_output_shapes) register_shape_calculator('SklearnPCA', calculate_sklearn_truncated_svd_output_shapes) register_shape_calculator('SklearnTruncatedSVD', calculate_sklearn_truncated_svd_output_shapes)
39.130435
76
0.655556
7952caa64d8b156eb59cb505b7bc2793a2d3ee09
19,226
py
Python
py/riscv/AssemblyHelperRISCV.py
jeremybennett/force-riscv
a5222a3b3fa8a0b9464204056ddca148f16b7e49
[ "Apache-2.0" ]
null
null
null
py/riscv/AssemblyHelperRISCV.py
jeremybennett/force-riscv
a5222a3b3fa8a0b9464204056ddca148f16b7e49
[ "Apache-2.0" ]
null
null
null
py/riscv/AssemblyHelperRISCV.py
jeremybennett/force-riscv
a5222a3b3fa8a0b9464204056ddca148f16b7e49
[ "Apache-2.0" ]
null
null
null
# # Copyright (C) [2020] Futurewei Technologies, Inc. # # FORCE-RISCV is licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, EITHER # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, MERCHANTABILITY OR # FIT FOR A PARTICULAR PURPOSE. # See the License for the specific language governing permissions and # limitations under the License. # from base.AssemblyHelper import AssemblyHelper from riscv.PrivilegeLevel import PrivilegeLevelRISCV ## This class facilitates generating common RISC-V instructions using common defaults. It provides a # simpler, higher-level alternative to using the Sequence.genInstruction() command with less # flexibility. class AssemblyHelperRISCV(AssemblyHelper): ## Generate instructions to advance the system register containing the exception return address # to the next instruction address. This will generally result in skipping the instruction that # triggered the exception. # # @param aScratchRegIndex The index of a register that can be freely modified. # @param aPrivLevelRegIndex The index of a register containing a value representing the current # privilege level. def genIncrementExceptionReturnAddress(self, aScratchRegIndex, aPrivLevelRegIndex): for priv_level in self.genPrivilegeLevelInstructions(aPrivLevels=tuple(PrivilegeLevelRISCV)[1:], aInstrCountPerLevel=3, aScratchRegIndex=aScratchRegIndex, aPrivLevelRegIndex=aPrivLevelRegIndex): self.genReadSystemRegister(aScratchRegIndex, ('%sepc' % priv_level.name.lower())) self.genAddImmediate(aScratchRegIndex, 4) self.genWriteSystemRegister(('%sepc' % priv_level.name.lower()), aScratchRegIndex) ## Generate instructions to set the system register containing the exception return address # to the provided recovery address. This will generally result in skipping the instruction that # triggered the exception and resuming execution at the recovery address. # # @param aScratchRegIndex The index of a register that can be freely modified. # @param aRecoveryRegIndex The index of a register that contains the desired recovery address. # @param aPrivLevelRegIndex The index of a register containing a value representing the current # privilege level. def genProvidedExceptionReturnAddress(self, aScratchRegIndex, aRecoveryRegIndex, aPrivLevelRegIndex): for priv_level in self.genPrivilegeLevelInstructions(aPrivLevels=tuple(PrivilegeLevelRISCV)[1:], aInstrCountPerLevel=1, aScratchRegIndex=aScratchRegIndex, aPrivLevelRegIndex=aPrivLevelRegIndex): self.genWriteSystemRegister(('%sepc' % priv_level.name.lower()), aRecoveryRegIndex) ## Generate a relative branch instruction to the specified address. # # @param aTargetAddr The target address of the branch. def genRelativeBranchToAddress(self, aTargetAddr): br_offset = self.getBranchOffset(aTargetAddr, 20) self.genRelativeBranch(br_offset) ## Generate a relative branch instruction. # # @param aBrOffset The branch offset. def genRelativeBranch(self, aBrOffset): self.mSequence.genInstruction('JAL##RISCV', {'rd': 0, 'simm20': aBrOffset, 'NoRestriction': 1}) ## Generate a relative branch instruction targeting a labeled address. Record the branch for # later verification that the expected address was targeted via the addLabel() method. # # @param aBrOffset The branch offset. # @param aLabel The label the branch is targeting. def genRelativeBranchToLabel(self, aBrOffset, aLabel): self.recordBranchToLabel(aLabel, aBrOffset) self.genRelativeBranch(aBrOffset) ## Generate a relative branch with link instruction to the specified address. # # @param aTargetAddr The target address of the branch. def genRelativeBranchWithLinkToAddress(self, aTargetAddr): br_offset = self.getBranchOffset(aTargetAddr, 20) self.genRelativeBranchWithLink(br_offset) ## Generate a relative branch with link instruction. # # @param aBrOffset The branch offset. def genRelativeBranchWithLink(self, aBrOffset): # We use the conventional link register x1 # TODO(Noah): Provide a mechanism for using alternate link registers when there is time to # do so if it is deemed valuable. self.mSequence.genInstruction('JAL##RISCV', {'rd': 1, 'simm20': aBrOffset, 'NoRestriction': 1}) ## Generate an instruction to return to the address contained in the default link register. def genReturn(self): # We use the conventional link register x1 # TODO(Noah): Provide a mechanism for using alternate link registers when there is time to # do so if it is deemed valuable. self.mSequence.genInstruction('JALR##RISCV', {'rd': 0, 'rs1': 1, 'simm12': 0, 'NoRestriction': 1}) ## Generate an instruction to load the specified register with a small immediate value. # # @param aRegIndex The index of the register to load. # @param aImmVal The immediate value to load. def genMoveImmediate(self, aRegIndex, aImmVal): self.genAddImmediate(aRegIndex, aImmVal, aSrcRegIndex=0) ## Generate an instruction to shift the specified register to the left. # # @param aDestRegIndex The index of the register to write the result to. # @param aShiftAmount The number of bits to shift. # @param aSrcRegIndex The index of the register containing the value to shift. May be omitted # if the destination register is also the source register. def genShiftLeftImmediate(self, aDestRegIndex, aShiftAmount, aSrcRegIndex=None): src_reg_index = aSrcRegIndex if aSrcRegIndex is not None else aDestRegIndex self.mSequence.genInstruction('SLLI#RV64I#RISCV', {'rd': aDestRegIndex, 'rs1': src_reg_index, 'shamt': aShiftAmount}) ## Generate an instruction to shift the specified register to the right. # # @param aDestRegIndex The index of the register to write the result to. # @param aShiftAmount The number of bits to shift. # @param aSrcRegIndex The index of the register containing the value to shift. May be omitted # if the destination register is also the source register. def genShiftRightImmediate(self, aDestRegIndex, aShiftAmount, aSrcRegIndex=None): src_reg_index = aSrcRegIndex if aSrcRegIndex is not None else aDestRegIndex self.mSequence.genInstruction('SRLI#RV64I#RISCV', {'rd': aDestRegIndex, 'rs1': src_reg_index, 'shamt': aShiftAmount}) ## Generate an instruction to AND a specified register with an immediate value. # # @param aDestRegIndex The index of the register to write the result to. # @param aImmVal The immediate value to AND. # @param aSrcRegIndex The index of the register containing the value to AND. May be omitted if # the destination register is also the source register. def genAndImmediate(self, aDestRegIndex, aImmVal, aSrcRegIndex=None): src_reg_index = aSrcRegIndex if aSrcRegIndex is not None else aDestRegIndex self.mSequence.genInstruction('ANDI##RISCV', {'rd': aDestRegIndex, 'rs1': src_reg_index, 'simm12': aImmVal}) ## Generate an instruction to OR a specified register with an immediate value. # # @param aDestRegIndex The index of the register to write the result to. # @param aImmVal The immediate value to OR. # @param aSrcRegIndex The index of the register containing the value to OR. May be omitted if # the destination register is also the source register. def genOrImmediate(self, aDestRegIndex, aImmVal, aSrcRegIndex=None): src_reg_index = aSrcRegIndex if aSrcRegIndex is not None else aDestRegIndex self.mSequence.genInstruction('ORI##RISCV', {'rd': aDestRegIndex, 'rs1': src_reg_index, 'simm12': aImmVal}) ## Generate an instruction to XOR a specified register with an immediate value. # # @param aDestRegIndex The index of the register to write the result to. # @param aImmVal The immediate value to XOR. # @param aSrcRegIndex The index of the register containing the value to XOR. May be omitted if # the destination register is also the source register. def genXorImmediate(self, aDestRegIndex, aImmVal, aSrcRegIndex=None): src_reg_index = aSrcRegIndex if aSrcRegIndex is not None else aDestRegIndex self.mSequence.genInstruction('XORI##RISCV', {'rd': aDestRegIndex, 'rs1': src_reg_index, 'simm12': aImmVal}) ## Generate an instruction to add an immediate value to a specified register. # # @param aDestRegIndex The index of the register to write the result to. # @param aImmVal The immediate value to add to the register value. # @param aSrcRegIndex The index of the register containing the value to be added to. May be # omitted if the destination register is also the source register. def genAddImmediate(self, aDestRegIndex, aImmVal, aSrcRegIndex=None): src_reg_index = aSrcRegIndex if aSrcRegIndex is not None else aDestRegIndex self.mSequence.genInstruction('ADDI##RISCV', {'rd': aDestRegIndex, 'rs1': src_reg_index, 'simm12': aImmVal}) ## Generate an instruction to load the specified register with the value in a different # register. # # @param aDestRegIndex The index of the register to write the result to. # @param aSrcRegIndex The index of the register containing the value to copied. def genMoveRegister(self, aDestRegIndex, aSrcRegIndex): self.genAddRegister(aDestRegIndex, aSrcRegIndex, aSrcRegIndex2=0) ## Generate an instruction to AND two registers. # # @param aDestRegIndex The index of the register to write the result to. # @param aSrcRegIndex1 The index of the register containing one of the values to AND. # @param aSrcRegIndex2 The index of the register containing one of the values to AND. May be # omitted if the destination register is also one of the source registers. def genAndRegister(self, aDestRegIndex, aSrcRegIndex1, aSrcRegIndex2=None): src_reg_index_2 = aSrcRegIndex2 if aSrcRegIndex2 is not None else aDestRegIndex self.mSequence.genInstruction('AND##RISCV', {'rd': aDestRegIndex, 'rs1': aSrcRegIndex1, 'rs2': src_reg_index_2}) ## Generate an instruction to OR two registers. # # @param aDestRegIndex The index of the register to write the result to. # @param aSrcRegIndex1 The index of the register containing one of the values to OR. # @param aSrcRegIndex2 The index of the register containing one of the values to OR. May be # omitted if the destination register is also one of the source registers. def genOrRegister(self, aDestRegIndex, aSrcRegIndex1, aSrcRegIndex2=None): src_reg_index_2 = aSrcRegIndex2 if aSrcRegIndex2 is not None else aDestRegIndex self.mSequence.genInstruction('OR##RISCV', {'rd': aDestRegIndex, 'rs1': aSrcRegIndex1, 'rs2': src_reg_index_2}) ## Generate an instruction to take the one's complement of a register. # # @param aDestRegIndex The index of the register to write the result to. # @param aSrcRegIndex The index of the register containing the value to NOT. May be omitted if # the destination register is also the source register. def genNotRegister(self, aDestRegIndex, aSrcRegIndex=None): self.genXorImmediate(aDestRegIndex, 0xFFF, aSrcRegIndex) ## Generate an instruction to add two registers. # # @param aDestRegIndex The index of the register to write the result to. # @param aSrcRegIndex1 The index of the register containing one of the values to add. # @param aSrcRegIndex2 The index of the register containing one of the values to add. May be # omitted if the destination register is also one of the source registers. def genAddRegister(self, aDestRegIndex, aSrcRegIndex1, aSrcRegIndex2=None): src_reg_index_2 = aSrcRegIndex2 if aSrcRegIndex2 is not None else aDestRegIndex self.mSequence.genInstruction('ADD##RISCV', {'rd': aDestRegIndex, 'rs1': aSrcRegIndex1, 'rs2': src_reg_index_2}) ## Generate an instruction to subtract one register from another. # # @param aDestRegIndex The index of the register to write the result to. # @param aSubtrahendRegIndex The index of the register containing the value to subtract from # the minuend. # @param aMinuendRegIndex The index of the register containing the value to be subtracted from. # May be omitted if the destination register is also used as the minuend. def genSubRegister(self, aDestRegIndex, aSubtrahendRegIndex, aMinuendRegIndex=None): minuend_reg_index = aMinuendRegIndex if aMinuendRegIndex is not None else aDestRegIndex self.mSequence.genInstruction('SUB##RISCV', {'rd': aDestRegIndex, 'rs1': minuend_reg_index, 'rs2': aSubtrahendRegIndex}) ## Generate an instruction to load a register with the value in the specified system register. # # @param aDestRegIndex The index of the register to write the result to. # @param aSysRegName The name of the system register to read. def genReadSystemRegister(self, aDestRegIndex, aSysRegName): self.mSequence.genInstruction('CSRRS#register#RISCV', {'rd': aDestRegIndex, 'rs1': 0, 'csr': self.mSequence.getRegisterIndex(aSysRegName)}) ## Generate an instruction to write a system register with the value contained in another # register. # # @param aSysRegName The name of the system register to write to. # @param aSrcRegIndex The index of the register containing the value to write to the system # register. def genWriteSystemRegister(self, aSysRegName, aSrcRegIndex): self.mSequence.genInstruction('CSRRW#register#RISCV', {'rd': 0, 'rs1': aSrcRegIndex, 'csr': self.mSequence.getRegisterIndex(aSysRegName)}) ## Generate an instruction to load a value from a memory location defined in a GPR w/ a 12 bit # immediate offset. Value loaded into GPR. # # @param aDestRegIndex The index of the register to be written with the value from memory. # @param aAddrRegIndex The index of the register containing the address to load from memory # @param aImmOffsetVal The 12b signed immediate offset applied to the address in aAddrRegIndex def genLoadMemory(self, aDestRegIndex, aAddrRegIndex, aImmOffsetVal): self.mSequence.genInstruction('LD##RISCV', {'rd': aDestRegIndex, 'rs1': aAddrRegIndex, 'simm12':aImmOffsetVal, 'NoRestriction': 1}) ## Generate a conditional branch instruction to the specified address. # # @param aLhRegIndex The index of the register to use for the left-hand side of the comparison. # @param aRhRegIndex The index of the register to use for the right-hand side of the # comparison. # @param aTargetAddr The target address of the branch. # @param aCondition A two-letter string encoding the branch condition. def genConditionalBranchToAddress(self, aLhRegIndex, aRhRegIndex, aTargetAddr, aCondition): br_offset = self.getBranchOffset(aTargetAddr, 12) self.genConditionalBranch(aLhRegIndex, aRhRegIndex, br_offset, aCondition) ## Generate a conditional branch instruction targeting a labeled address. Record the branch for # later verification that the expected address was targeted via the addLabel() method. # # @param aLhRegIndex The index of the register to use for the left-hand side of the comparison. # @param aRhRegIndex The index of the register to use for the right-hand side of the # comparison. # @param aBrOffset The branch offset. # @param aCondition A two-letter string encoding the branch condition. # @param aLabel The label the branch is targeting. def genConditionalBranchToLabel(self, aLhRegIndex, aRhRegIndex, aBrOffset, aCondition, aLabel): self.recordBranchToLabel(aLabel, aBrOffset) self.genConditionalBranch(aLhRegIndex, aRhRegIndex, aBrOffset, aCondition) ## Generate a conditional branch instruction. # # @param aLhRegIndex The index of the register to use for the left-hand side of the comparison. # @param aRhRegIndex The index of the register to use for the right-hand side of the # comparison. # @param aBrOffset The branch offset. # @param aCondition A two-letter string encoding the branch condition. def genConditionalBranch(self, aLhRegIndex, aRhRegIndex, aBrOffset, aCondition): CONDITIONS = {'EQ': 0, 'NE': 1, 'LT': 2, 'LTU': 3, 'GE': 4, 'GEU': 5} instr = 'B%s##RISCV' % aCondition self.mSequence.genInstruction(instr, {'rs1': aLhRegIndex, 'rs2': aRhRegIndex, 'simm12': aBrOffset, 'NoRestriction': 1}) ## Generate an instruction to return from an exception. # # @param aScratchRegIndex The index of a register that can be freely modified. # @param aPrivLevel The privilege level in which the exception return will be executed. def genExceptionReturn(self, aPrivLevel): self.mSequence.genInstruction('%sRET##RISCV' % aPrivLevel.name, {'NoRestriction': 1}) ## Generate branch instructions to determine the current privilege level. This method yields at # the appropriate locations in the branch instruction structure to allow the caller to generate # specific instructions for the privilege level. It is assumed that each privilege level # executes the same number of instructions, as specified by aInstrCountPerLevel. # # @param aPrivLevels A list of privilege levels for which to generate instructions. # @param aInstrCountPerLevel The number of custom instructions to be generated for each # privilege level. # @param aScratchRegIndex The index of a register that can be freely modified. # @param aPrivLevelRegIndex The index of a register containing a value representing the current # privilege level. def genPrivilegeLevelInstructions(self, aPrivLevels, aInstrCountPerLevel, aScratchRegIndex, aPrivLevelRegIndex): # Loop through all privilege levels except the last one; the last privilege level doesn't # need the surroudning branch instructions. for (i, priv_level) in enumerate(aPrivLevels[:-1]): self.genMoveImmediate(aScratchRegIndex, priv_level.value) cond_branch_offset = (2 + aInstrCountPerLevel) * 2 self.genConditionalBranch(aPrivLevelRegIndex, aScratchRegIndex, cond_branch_offset, 'NE') yield priv_level rel_branch_offset = ((3 + aInstrCountPerLevel) * (len(aPrivLevels) - i - 1) - 2) * 2 self.genRelativeBranch(rel_branch_offset) # Generate code for the last privilege level. yield aPrivLevels[-1] ## Return the shift amount for PC-relative branch instructions. def getBranchShift(self): return 1
60.649842
202
0.731041
7952cabc78198b5ff97e744c979d3651ab8906ec
6,404
py
Python
src/datadog_api_client/v1/model/widget_display_type.py
mrhwick/datadog-api-client-python
9f57bf378b80b7558070087182722f4ca88d630d
[ "Apache-2.0" ]
null
null
null
src/datadog_api_client/v1/model/widget_display_type.py
mrhwick/datadog-api-client-python
9f57bf378b80b7558070087182722f4ca88d630d
[ "Apache-2.0" ]
null
null
null
src/datadog_api_client/v1/model/widget_display_type.py
mrhwick/datadog-api-client-python
9f57bf378b80b7558070087182722f4ca88d630d
[ "Apache-2.0" ]
null
null
null
# coding: utf-8 # Unless explicitly stated otherwise all files in this repository are licensed under the Apache-2.0 License. # This product includes software developed at Datadog (https://www.datadoghq.com/). # Copyright 2019-Present Datadog, Inc. import re # noqa: F401 import sys # noqa: F401 import nulltype # noqa: F401 from datadog_api_client.v1.model_utils import ( # noqa: F401 ApiTypeError, ModelComposed, ModelNormal, ModelSimple, cached_property, change_keys_js_to_python, convert_js_args_to_python_args, date, datetime, file_type, none_type, validate_get_composed_info, ) class WidgetDisplayType(ModelSimple): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. Attributes: allowed_values (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict with a capitalized key describing the allowed value and an allowed value. These dicts store the allowed enum values. validations (dict): The key is the tuple path to the attribute and the for var_name this is (var_name,). The value is a dict that stores validations for max_length, min_length, max_items, min_items, exclusive_maximum, inclusive_maximum, exclusive_minimum, inclusive_minimum, and regex. additional_properties_type (tuple): A tuple of classes accepted as additional properties values. """ allowed_values = { ('value',): { 'AREA': "area", 'BARS': "bars", 'LINE': "line", }, } validations = { } additional_properties_type = None _nullable = False @cached_property def openapi_types(): """ This must be a method because a model may have properties that are of type self, this must run after the class is loaded Returns openapi_types (dict): The key is attribute name and the value is attribute type. """ return { 'value': (str,), } @cached_property def discriminator(): return None attribute_map = {} _composed_schemas = None required_properties = set([ '_data_store', '_check_type', '_spec_property_naming', '_path_to_item', '_configuration', '_visited_composed_classes', ]) @convert_js_args_to_python_args def __init__(self, value, *args, **kwargs): """WidgetDisplayType - a model defined in OpenAPI Args: value (str): Type of display to use for the request.., must be one of ["area", "bars", "line", ] # noqa: E501 Keyword Args: _check_type (bool): if True, values for parameters in openapi_types will be type checked and a TypeError will be raised if the wrong type is input. Defaults to True _path_to_item (tuple/list): This is a list of keys or values to drill down to the model in received_data when deserializing a response _spec_property_naming (bool): True if the variable names in the input data are serialized names, as specified in the OpenAPI document. False if the variable names in the input data are pythonic names, e.g. snake case (default) _configuration (Configuration): the instance to use when deserializing a file_type parameter. If passed, type conversion is attempted If omitted no type conversion is done. _visited_composed_classes (tuple): This stores a tuple of classes that we have traveled through so that if we see that class again we will not use its discriminator again. When traveling through a discriminator, the composed schema that is is traveled through is added to this set. For example if Animal has a discriminator petType and we pass in "Dog", and the class Dog allOf includes Animal, we move through Animal once using the discriminator, and pick Dog. Then in Dog, we will make an instance of the Animal class but this time we won't travel through its discriminator because we passed in _visited_composed_classes = (Animal,) """ _check_type = kwargs.pop('_check_type', True) _spec_property_naming = kwargs.pop('_spec_property_naming', False) _path_to_item = kwargs.pop('_path_to_item', ()) _configuration = kwargs.pop('_configuration', None) _visited_composed_classes = kwargs.pop('_visited_composed_classes', ()) if args: raise ApiTypeError( "Invalid positional arguments=%s passed to %s. Remove those invalid positional arguments." % ( args, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), ) self._data_store = {} self._check_type = _check_type self._spec_property_naming = _spec_property_naming self._path_to_item = _path_to_item self._configuration = _configuration self._visited_composed_classes = _visited_composed_classes + (self.__class__,) self.value = value if kwargs: raise ApiTypeError( "Invalid named arguments=%s passed to %s. Remove those invalid named arguments." % ( kwargs, self.__class__.__name__, ), path_to_item=_path_to_item, valid_classes=(self.__class__,), )
38.119048
122
0.574329
7952cbd7eb2c048813931c881ec351c93bfb8214
81
py
Python
web_server/web_server/models/__init__.py
mahonda/project-vending-machine
8180163047a14ec61cbbedc5a63702f7b05c4c29
[ "MIT" ]
null
null
null
web_server/web_server/models/__init__.py
mahonda/project-vending-machine
8180163047a14ec61cbbedc5a63702f7b05c4c29
[ "MIT" ]
null
null
null
web_server/web_server/models/__init__.py
mahonda/project-vending-machine
8180163047a14ec61cbbedc5a63702f7b05c4c29
[ "MIT" ]
null
null
null
from .Doggo import Doggo from .Owner import Owner from .invmodel import invmodel
20.25
30
0.814815
7952cc0e4763474e66bcd6758d30899b7a38a931
13,385
py
Python
featexp/base.py
luobaozhu/featexp
c371494e9cfd08dababdfa5226929b1b7f0c8f73
[ "MIT" ]
1
2020-11-26T07:46:58.000Z
2020-11-26T07:46:58.000Z
featexp/base.py
luobaozhu/featexp
c371494e9cfd08dababdfa5226929b1b7f0c8f73
[ "MIT" ]
null
null
null
featexp/base.py
luobaozhu/featexp
c371494e9cfd08dababdfa5226929b1b7f0c8f73
[ "MIT" ]
null
null
null
import pandas as pd import numpy as np from matplotlib import pyplot as plt def get_grouped_data(input_data, feature, target_col, bins, cuts=0): """ Bins continuous features into equal sample size buckets and returns the target mean in each bucket. Separates out nulls into another bucket. :param input_data: dataframe containg features and target column :param feature: feature column name :param target_col: target column :param bins: Number bins required :param cuts: if buckets of certain specific cuts are required. Used on test data to use cuts from train. :return: If cuts are passed only grouped data is returned, else cuts and grouped data is returned """ has_null = pd.isnull(input_data[feature]).sum() > 0 if has_null == 1: data_null = input_data[pd.isnull(input_data[feature])] input_data = input_data[~pd.isnull(input_data[feature])] input_data.reset_index(inplace=True, drop=True) is_train = 0 if cuts == 0: is_train = 1 prev_cut = min(input_data[feature]) - 1 cuts = [prev_cut] reduced_cuts = 0 for i in range(1, bins + 1): next_cut = np.percentile(input_data[feature], i * 100 / bins) if next_cut > prev_cut + .000001: # float numbers shold be compared with some threshold! cuts.append(next_cut) else: reduced_cuts = reduced_cuts + 1 prev_cut = next_cut # if reduced_cuts>0: # print('Reduced the number of bins due to less variation in feature') cut_series = pd.cut(input_data[feature], cuts) else: cut_series = pd.cut(input_data[feature], cuts) grouped = input_data.groupby([cut_series], as_index=True).agg( {target_col: [np.size, np.mean], feature: [np.mean]}) grouped.columns = ['_'.join(cols).strip() for cols in grouped.columns.values] grouped[grouped.index.name] = grouped.index grouped.reset_index(inplace=True, drop=True) grouped = grouped[[feature] + list(grouped.columns[0:3])] grouped = grouped.rename(index=str, columns={target_col + '_size': 'Samples_in_bin'}) grouped = grouped.reset_index(drop=True) corrected_bin_name = '[' + str(min(input_data[feature])) + ', ' + str(grouped.loc[0, feature]).split(',')[1] grouped[feature] = grouped[feature].astype('category') grouped[feature] = grouped[feature].cat.add_categories(corrected_bin_name) grouped.loc[0, feature] = corrected_bin_name if has_null == 1: grouped_null = grouped.loc[0:0, :].copy() grouped_null[feature] = grouped_null[feature].astype('category') grouped_null[feature] = grouped_null[feature].cat.add_categories('Nulls') grouped_null.loc[0, feature] = 'Nulls' grouped_null.loc[0, 'Samples_in_bin'] = len(data_null) grouped_null.loc[0, target_col + '_mean'] = data_null[target_col].mean() grouped_null.loc[0, feature + '_mean'] = np.nan grouped[feature] = grouped[feature].astype('str') grouped = pd.concat([grouped_null, grouped], axis=0) grouped.reset_index(inplace=True, drop=True) grouped[feature] = grouped[feature].astype('str').astype('category') if is_train == 1: return (cuts, grouped) else: return (grouped) def draw_plots(input_data, feature, target_col, trend_correlation=None): """ Draws univariate dependence plots for a feature :param input_data: grouped data contained bins of feature and target mean. :param feature: feature column name :param target_col: target column :param trend_correlation: correlation between train and test trends of feature wrt target :return: Draws trend plots for feature """ trend_changes = get_trend_changes(grouped_data=input_data, feature=feature, target_col=target_col) plt.figure(figsize=(12, 5)) ax1 = plt.subplot(1, 2, 1) ax1.plot(input_data[target_col + '_mean'], marker='o') ax1.set_xticks(np.arange(len(input_data))) ax1.set_xticklabels((input_data[feature]).astype('str')) plt.xticks(rotation=45) ax1.set_xlabel('Bins of ' + feature) ax1.set_ylabel('Average of ' + target_col) comment = "Trend changed " + str(trend_changes) + " times" if trend_correlation == 0: comment = comment + '\n' + 'Correlation with train trend: NA' elif trend_correlation != None: comment = comment + '\n' + 'Correlation with train trend: ' + str(int(trend_correlation * 100)) + '%' props = dict(boxstyle='round', facecolor='wheat', alpha=0.3) ax1.text(0.05, 0.95, comment, fontsize=12, verticalalignment='top', bbox=props, transform=ax1.transAxes) plt.title('Average of ' + target_col + ' wrt ' + feature) ax2 = plt.subplot(1, 2, 2) ax2.bar(np.arange(len(input_data)), input_data['Samples_in_bin'], alpha=0.5) ax2.set_xticks(np.arange(len(input_data))) ax2.set_xticklabels((input_data[feature]).astype('str')) plt.xticks(rotation=45) ax2.set_xlabel('Bins of ' + feature) ax2.set_ylabel('Bin-wise sample size') plt.title('Samples in bins of ' + feature) plt.tight_layout() plt.show() def get_trend_changes(grouped_data, feature, target_col, threshold=0.03): """ Calculates number of times the trend of feature wrt target changed direction. :param grouped_data: grouped dataset :param feature: feature column name :param target_col: target column :param threshold: minimum % difference required to count as trend change :return: number of trend chagnes for the feature """ grouped_data = grouped_data.loc[grouped_data[feature] != 'Nulls', :].reset_index(drop=True) target_diffs = grouped_data[target_col + '_mean'].diff() target_diffs = target_diffs[~np.isnan(target_diffs)].reset_index(drop=True) max_diff = grouped_data[target_col + '_mean'].max() - grouped_data[target_col + '_mean'].min() target_diffs_mod = target_diffs.fillna(0).abs() low_change = target_diffs_mod < threshold * max_diff target_diffs_norm = target_diffs.divide(target_diffs_mod) target_diffs_norm[low_change] = 0 target_diffs_norm = target_diffs_norm[target_diffs_norm != 0] target_diffs_lvl2 = target_diffs_norm.diff() changes = target_diffs_lvl2.fillna(0).abs() / 2 tot_trend_changes = int(changes.sum()) if ~np.isnan(changes.sum()) else 0 return (tot_trend_changes) def get_trend_correlation(grouped, grouped_test, feature, target_col): """ Calculates correlation between train and test trend of feature wrt target. :param grouped: train grouped data :param grouped_test: test grouped data :param feature: feature column name :param target_col: target column name :return: trend correlation between train and test """ grouped = grouped[grouped[feature] != 'Nulls'].reset_index(drop=True) grouped_test = grouped_test[grouped_test[feature] != 'Nulls'].reset_index(drop=True) if grouped_test.loc[0, feature] != grouped.loc[0, feature]: grouped_test[feature] = grouped_test[feature].cat.add_categories(grouped.loc[0, feature]) grouped_test.loc[0, feature] = grouped.loc[0, feature] grouped_test_train = grouped.merge(grouped_test[[feature, target_col + '_mean']], on=feature, how='left', suffixes=('', '_test')) nan_rows = pd.isnull(grouped_test_train[target_col + '_mean']) | pd.isnull( grouped_test_train[target_col + '_mean_test']) grouped_test_train = grouped_test_train.loc[~nan_rows, :] if len(grouped_test_train) > 1: trend_correlation = np.corrcoef(grouped_test_train[target_col + '_mean'], grouped_test_train[target_col + '_mean_test'])[0, 1] else: trend_correlation = 0 print("Only one bin created for " + feature + ". Correlation can't be calculated") return (trend_correlation) def univariate_plotter(feature, data, target_col, bins=10, data_test=0): """ Calls the draw plot function and editing around the plots :param feature: feature column name :param data: dataframe containing features and target columns :param target_col: target column name :param bins: number of bins to be created from continuous feature :param data_test: test data which has to be compared with input data for correlation :return: grouped data if only train passed, else (grouped train data, grouped test data) """ print(' {:^100} '.format('Plots for ' + feature)) if data[feature].dtype == 'O': print('Categorical feature not supported') else: cuts, grouped = get_grouped_data(input_data=data, feature=feature, target_col=target_col, bins=bins) has_test = type(data_test) == pd.core.frame.DataFrame if has_test: grouped_test = get_grouped_data(input_data=data_test.reset_index(drop=True), feature=feature, target_col=target_col, bins=bins, cuts=cuts) trend_corr = get_trend_correlation(grouped, grouped_test, feature, target_col) print(' {:^100} '.format('Train data plots')) draw_plots(input_data=grouped, feature=feature, target_col=target_col) print(' {:^100} '.format('Test data plots')) draw_plots(input_data=grouped_test, feature=feature, target_col=target_col, trend_correlation=trend_corr) else: draw_plots(input_data=grouped, feature=feature, target_col=target_col) print( '--------------------------------------------------------------------------------------------------------------') print('\n') if has_test: return (grouped, grouped_test) else: return (grouped) def get_univariate_plots(data, target_col, features_list=0, bins=10, data_test=0): """ Creates univariate dependence plots for features in the dataset :param data: dataframe containing features and target columns :param target_col: target column name :param features_list: by default creates plots for all features. If list passed, creates plots of only those features. :param bins: number of bins to be created from continuous feature :param data_test: test data which has to be compared with input data for correlation :return: Draws univariate plots for all columns in data """ if type(features_list) == int: features_list = list(data.columns) features_list.remove(target_col) for cols in features_list: if cols != target_col and data[cols].dtype == 'O': print(cols + ' is categorical. Categorical features not supported yet.') elif cols != target_col and data[cols].dtype != 'O': univariate_plotter(feature=cols, data=data, target_col=target_col, bins=bins, data_test=data_test) def get_trend_stats(data, target_col, features_list=0, bins=10, data_test=0): """ Calculates trend changes and correlation between train/test for list of features :param data: dataframe containing features and target columns :param target_col: target column name :param features_list: by default creates plots for all features. If list passed, creates plots of only those features. :param bins: number of bins to be created from continuous feature :param data_test: test data which has to be compared with input data for correlation :return: dataframe with trend changes and trend correlation (if test data passed) """ if type(features_list) == int: features_list = list(data.columns) features_list.remove(target_col) stats_all = [] has_test = type(data_test) == pd.core.frame.DataFrame ignored = [] for feature in features_list: if data[feature].dtype == 'O' or feature == target_col: ignored.append(feature) else: cuts, grouped = get_grouped_data(input_data=data, feature=feature, target_col=target_col, bins=bins) trend_changes = get_trend_changes(grouped_data=grouped, feature=feature, target_col=target_col) if has_test: grouped_test = get_grouped_data(input_data=data_test.reset_index(drop=True), feature=feature, target_col=target_col, bins=bins, cuts=cuts) trend_corr = get_trend_correlation(grouped, grouped_test, feature, target_col) trend_changes_test = get_trend_changes(grouped_data=grouped_test, feature=feature, target_col=target_col) stats = [feature, trend_changes, trend_changes_test, trend_corr] else: stats = [feature, trend_changes] stats_all.append(stats) stats_all_df = pd.DataFrame(stats_all) stats_all_df.columns = ['Feature', 'Trend_changes'] if has_test == False else ['Feature', 'Trend_changes', 'Trend_changes_test', 'Trend_correlation'] if len(ignored) > 0: print('Categorical features ' + str(ignored) + ' ignored. Categorical features not supported yet.') print('Returning stats for all numeric features') return (stats_all_df)
49.758364
125
0.665446
7952ccc66a9215c56e45a434eec475746810d3ac
1,033
py
Python
setup.py
krzpiesiewicz/timeseries-pytorch
1e543caf9ea3918fc65fa9d715a75273be99c8ec
[ "MIT" ]
null
null
null
setup.py
krzpiesiewicz/timeseries-pytorch
1e543caf9ea3918fc65fa9d715a75273be99c8ec
[ "MIT" ]
null
null
null
setup.py
krzpiesiewicz/timeseries-pytorch
1e543caf9ea3918fc65fa9d715a75273be99c8ec
[ "MIT" ]
null
null
null
import setuptools with open("README.md", "r", encoding="utf-8") as fh: long_description = fh.read() setuptools.setup( name="timeseries-pytorch", version="0.0.1", author="Krzysztof Piesiewicz", author_email="krz.piesiewicz@gmail.com", description="A pytorch extension for timeseries package", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/krzpiesiewicz/timeseries-pytorch", packages=setuptools.find_packages(exclude=['tests', 'examples']), classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", ], dependency_links=[ "https://github.com/krzpiesiewicz/pytorch-fit#egg=pytorch_fit", "https://github.com/krzpiesiewicz/timeseries#egg=timeseries", ], install_requires=[ "pandas>=1.0.5", "numpy~=1.19.0", ], test_requirements=["pytest>=6.2.0"], python_requires='>=3.6', )
32.28125
71
0.659245
7952ceaaed122da5fb26882fa23ff22ff2e25b08
4,281
py
Python
Gaurav/Assignment 7/faster thread.py
Gaurav3963/AGS-intern-files
ee4db12755cf680c0575b3c1a6a6146ee415743a
[ "MIT" ]
null
null
null
Gaurav/Assignment 7/faster thread.py
Gaurav3963/AGS-intern-files
ee4db12755cf680c0575b3c1a6a6146ee415743a
[ "MIT" ]
null
null
null
Gaurav/Assignment 7/faster thread.py
Gaurav3963/AGS-intern-files
ee4db12755cf680c0575b3c1a6a6146ee415743a
[ "MIT" ]
1
2021-07-26T05:45:53.000Z
2021-07-26T05:45:53.000Z
# -*- coding: utf-8 -*- """ Created on Thu Jun 3 16:07:39 2021 @author: patil """ # -*- coding: utf-8 -*- """ Created on Wed Jun 2 17:47:33 2021 @author: patil """ import pyodbc as db import pandas as pd import time as t import _thread conn = db.connect('Driver={SQL Server};''Server=DESKTOP-VI5MRAI\GAURAVPATIL;''Database=sample;''Trusted_Connection=yes;') c = conn.cursor() def checktable(table_name): c = conn.cursor() try: #c.execute("SELECT 1 FROM INFORMATION_SCHEMA.TABLES WHERE TABLE_NAME = N'"+table_name+"'") c.execute("SELECT * from "+table_name) except: print('Table Dosent exists.\n\n') new_table = conn.cursor() new_table.execute("CREATE TABLE "+table_name+"(NAME varchar(50),ID bigint,Price float,Discount float);"); new_table.commit() new_table.close() finally: c.close() #checktable("Table_1") #checktable("Table_2") #checktable("Table_3") def executeNew1(dataset) : con = db.connect('Driver={SQL Server};''Server=DESKTOP-VI5MRAI\GAURAVPATIL;''Database=sample;''Trusted_Connection=yes;') print("Thread 1 starting time : ",t.time()) data1 = pd.read_csv("C:\Office\AGS - Internship\AGS-intern-files\Gaurav\Assignment 6\\"+dataset+".csv") cursor = con.cursor() old = t.time() for row in data1.itertuples(): b = str(row.ID) if(b[0]=='4'): cursor.execute("INSERT into Table_1 values(?,?,?,?)",row.NAME,row.ID,row.Total_Amount,row.Total_Amount*0.02) elif(b[0]=='5'): cursor.execute("INSERT into Table_2 values(?,?,?,?)",row.NAME,row.ID,row.Total_Amount,row.Total_Amount*0.03) else: cursor.execute("INSERT into Table_3 values(?,?,?,?)",row.NAME,row.ID,row.Total_Amount,row.Total_Amount*0.04) cursor.commit() cursor.close() required = t.time()-old ''' print("\n\nTable 1") sql_query = pd.read_sql_query('select * from Table_1',conn) print(sql_query) print("\n\nTable 2") sql_query = pd.read_sql_query('select * from Table_2',conn) print(sql_query) print("\n\nTable 3") sql_query = pd.read_sql_query('select * from Table_3',conn) print(sql_query) ''' print("\n\nTime Required for Thread 1 : ",required) con.close() def executeNew2(dataset) : conn = db.connect('Driver={SQL Server};''Server=DESKTOP-VI5MRAI\GAURAVPATIL;''Database=sample;''Trusted_Connection=yes;') print("Thread 2 starting time : ",t.time()) data = pd.read_csv("C:\Office\AGS - Internship\AGS-intern-files\Gaurav\Assignment 6\\"+dataset+".csv") curso = conn.cursor() old = t.time() for row in data.itertuples(): b = str(row.ID) if(b[0]=='4'): curso.execute("INSERT into Table_1 values(?,?,?,?)",row.NAME,row.ID,row.Total_Amount,row.Total_Amount*0.02) elif(b[0]=='5'): curso.execute("INSERT into Table_2 values(?,?,?,?)",row.NAME,row.ID,row.Total_Amount,row.Total_Amount*0.03) else: curso.execute("INSERT into Table_3 values(?,?,?,?)",row.NAME,row.ID,row.Total_Amount,row.Total_Amount*0.04) curso.commit() curso.close() required = t.time()-old ''' print("\n\nTable 1") sql_query = pd.read_sql_query('select * from Table_1',conn) print(sql_query) print("\n\nTable 2") sql_query = pd.read_sql_query('select * from Table_2',conn) print(sql_query) print("\n\nTable 3") sql_query = pd.read_sql_query('select * from Table_3',conn) print(sql_query) ''' print("\n\nTime Required for Thread 2: ",required) conn.close() e = t.time() #t1 = td.Thread(target=executeNew1("Book1")) #t2 = td.Thread(target=executeNew2("Book2")) _thread.start_new_thread( executeNew1,("Book1",) ) _thread.start_new_thread( executeNew2,("Book2",) ) #p1 = multiprocessing.Process(target=executeNew1("Book1")) #p2 = multiprocessing.Process(target=executeNew2, args=("Book2")) # starting thread 1 #t1.start() # starting thread 2 #t2.start() # wait until thread 1 is completely executed #t1.join() # wait until thread 2 is completely executed #t2.join() print("time needed is ",t.time()-e) conn.close() # both threads completely executed print("Done!")
32.431818
125
0.636066
7952cefda21df3ff6c858300dc512504405e1924
40,265
py
Python
ui/Ui_UpSite.py
osDanielLee/UpSite
99da7c321dde2df52c2b886263541b30dd998f67
[ "BSD-3-Clause" ]
1
2016-11-25T11:10:44.000Z
2016-11-25T11:10:44.000Z
ui/Ui_UpSite.py
osDanielLee/UpSite
99da7c321dde2df52c2b886263541b30dd998f67
[ "BSD-3-Clause" ]
null
null
null
ui/Ui_UpSite.py
osDanielLee/UpSite
99da7c321dde2df52c2b886263541b30dd998f67
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'E:\workspace\UpSite\ui\UpSite.ui' # # Created by: PyQt4 UI code generator 4.11.4 # # WARNING! All changes made in this file will be lost! from PyQt4 import QtCore, QtGui try: _fromUtf8 = QtCore.QString.fromUtf8 except AttributeError: def _fromUtf8(s): return s try: _encoding = QtGui.QApplication.UnicodeUTF8 def _translate(context, text, disambig): return QtGui.QApplication.translate(context, text, disambig, _encoding) except AttributeError: def _translate(context, text, disambig): return QtGui.QApplication.translate(context, text, disambig) class Ui_CTH(object): def setupUi(self, CTH): CTH.setObjectName(_fromUtf8("CTH")) CTH.resize(700, 580) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Preferred, QtGui.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(CTH.sizePolicy().hasHeightForWidth()) CTH.setSizePolicy(sizePolicy) icon = QtGui.QIcon() icon.addPixmap(QtGui.QPixmap(_fromUtf8(":/ICO/bug.ico")), QtGui.QIcon.Normal, QtGui.QIcon.Off) CTH.setWindowIcon(icon) self.centralWidget = QtGui.QWidget(CTH) self.centralWidget.setObjectName(_fromUtf8("centralWidget")) self.formLayout_2 = QtGui.QFormLayout(self.centralWidget) self.formLayout_2.setFieldGrowthPolicy(QtGui.QFormLayout.AllNonFixedFieldsGrow) self.formLayout_2.setObjectName(_fromUtf8("formLayout_2")) self.tabWidget = QtGui.QTabWidget(self.centralWidget) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Expanding, QtGui.QSizePolicy.Expanding) sizePolicy.setHorizontalStretch(1) sizePolicy.setVerticalStretch(1) sizePolicy.setHeightForWidth(self.tabWidget.sizePolicy().hasHeightForWidth()) self.tabWidget.setSizePolicy(sizePolicy) self.tabWidget.setLayoutDirection(QtCore.Qt.LeftToRight) self.tabWidget.setAutoFillBackground(False) self.tabWidget.setObjectName(_fromUtf8("tabWidget")) self.baseTab = QtGui.QWidget() self.baseTab.setObjectName(_fromUtf8("baseTab")) self.gridLayout_8 = QtGui.QGridLayout(self.baseTab) self.gridLayout_8.setObjectName(_fromUtf8("gridLayout_8")) self.widget_2 = QtGui.QWidget(self.baseTab) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Maximum, QtGui.QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.widget_2.sizePolicy().hasHeightForWidth()) self.widget_2.setSizePolicy(sizePolicy) self.widget_2.setObjectName(_fromUtf8("widget_2")) self.verticalLayout = QtGui.QVBoxLayout(self.widget_2) self.verticalLayout.setObjectName(_fromUtf8("verticalLayout")) self.basicParaWidget = QtGui.QWidget(self.widget_2) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Maximum, QtGui.QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.basicParaWidget.sizePolicy().hasHeightForWidth()) self.basicParaWidget.setSizePolicy(sizePolicy) self.basicParaWidget.setObjectName(_fromUtf8("basicParaWidget")) self.gridLayout = QtGui.QGridLayout(self.basicParaWidget) self.gridLayout.setObjectName(_fromUtf8("gridLayout")) self.updatePara = QtGui.QPushButton(self.basicParaWidget) self.updatePara.setObjectName(_fromUtf8("updatePara")) self.gridLayout.addWidget(self.updatePara, 7, 1, 1, 1) self.label_7 = QtGui.QLabel(self.basicParaWidget) self.label_7.setObjectName(_fromUtf8("label_7")) self.gridLayout.addWidget(self.label_7, 0, 0, 1, 1) self.widget_7 = QtGui.QWidget(self.basicParaWidget) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Preferred, QtGui.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.widget_7.sizePolicy().hasHeightForWidth()) self.widget_7.setSizePolicy(sizePolicy) self.widget_7.setObjectName(_fromUtf8("widget_7")) self.horizontalLayout_2 = QtGui.QHBoxLayout(self.widget_7) self.horizontalLayout_2.setObjectName(_fromUtf8("horizontalLayout_2")) self.num = QtGui.QLineEdit(self.widget_7) self.num.setInputMethodHints(QtCore.Qt.ImhDigitsOnly) self.num.setObjectName(_fromUtf8("num")) self.horizontalLayout_2.addWidget(self.num) self.gridLayout.addWidget(self.widget_7, 0, 1, 1, 1) self.widget_6 = QtGui.QWidget(self.basicParaWidget) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Preferred, QtGui.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.widget_6.sizePolicy().hasHeightForWidth()) self.widget_6.setSizePolicy(sizePolicy) self.widget_6.setObjectName(_fromUtf8("widget_6")) self.verticalLayout_6 = QtGui.QVBoxLayout(self.widget_6) self.verticalLayout_6.setObjectName(_fromUtf8("verticalLayout_6")) self.name = QtGui.QLineEdit(self.widget_6) self.name.setInputMethodHints(QtCore.Qt.ImhFormattedNumbersOnly) self.name.setInputMask(_fromUtf8("")) self.name.setMaxLength(32767) self.name.setObjectName(_fromUtf8("name")) self.verticalLayout_6.addWidget(self.name) self.gridLayout.addWidget(self.widget_6, 2, 1, 1, 1) self.widget_8 = QtGui.QWidget(self.basicParaWidget) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Preferred, QtGui.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.widget_8.sizePolicy().hasHeightForWidth()) self.widget_8.setSizePolicy(sizePolicy) self.widget_8.setObjectName(_fromUtf8("widget_8")) self.horizontalLayout_3 = QtGui.QHBoxLayout(self.widget_8) self.horizontalLayout_3.setObjectName(_fromUtf8("horizontalLayout_3")) self.alarmValue = QtGui.QLineEdit(self.widget_8) self.alarmValue.setInputMethodHints(QtCore.Qt.ImhDigitsOnly) self.alarmValue.setObjectName(_fromUtf8("alarmValue")) self.horizontalLayout_3.addWidget(self.alarmValue) self.gridLayout.addWidget(self.widget_8, 5, 1, 1, 1) self.widget_4 = QtGui.QWidget(self.basicParaWidget) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Preferred, QtGui.QSizePolicy.Maximum) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.widget_4.sizePolicy().hasHeightForWidth()) self.widget_4.setSizePolicy(sizePolicy) self.widget_4.setObjectName(_fromUtf8("widget_4")) self.verticalLayout_5 = QtGui.QVBoxLayout(self.widget_4) self.verticalLayout_5.setObjectName(_fromUtf8("verticalLayout_5")) self.recordTime = QtGui.QLineEdit(self.widget_4) self.recordTime.setInputMethodHints(QtCore.Qt.ImhDigitsOnly) self.recordTime.setObjectName(_fromUtf8("recordTime")) self.verticalLayout_5.addWidget(self.recordTime) self.gridLayout.addWidget(self.widget_4, 3, 1, 1, 1) self.widget_10 = QtGui.QWidget(self.basicParaWidget) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Preferred, QtGui.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.widget_10.sizePolicy().hasHeightForWidth()) self.widget_10.setSizePolicy(sizePolicy) self.widget_10.setObjectName(_fromUtf8("widget_10")) self.horizontalLayout_5 = QtGui.QHBoxLayout(self.widget_10) self.horizontalLayout_5.setObjectName(_fromUtf8("horizontalLayout_5")) self.handComboBox = QtGui.QComboBox(self.widget_10) self.handComboBox.setObjectName(_fromUtf8("handComboBox")) self.handComboBox.addItem(_fromUtf8("")) self.handComboBox.addItem(_fromUtf8("")) self.horizontalLayout_5.addWidget(self.handComboBox) self.gridLayout.addWidget(self.widget_10, 6, 1, 1, 1) self.widget_5 = QtGui.QWidget(self.basicParaWidget) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Preferred, QtGui.QSizePolicy.Maximum) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.widget_5.sizePolicy().hasHeightForWidth()) self.widget_5.setSizePolicy(sizePolicy) self.widget_5.setObjectName(_fromUtf8("widget_5")) self.horizontalLayout = QtGui.QHBoxLayout(self.widget_5) self.horizontalLayout.setObjectName(_fromUtf8("horizontalLayout")) self.sampleInterval = QtGui.QLineEdit(self.widget_5) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Maximum, QtGui.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.sampleInterval.sizePolicy().hasHeightForWidth()) self.sampleInterval.setSizePolicy(sizePolicy) self.sampleInterval.setInputMethodHints(QtCore.Qt.ImhDigitsOnly) self.sampleInterval.setObjectName(_fromUtf8("sampleInterval")) self.horizontalLayout.addWidget(self.sampleInterval) self.sampleInvBox = QtGui.QComboBox(self.widget_5) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Expanding, QtGui.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.sampleInvBox.sizePolicy().hasHeightForWidth()) self.sampleInvBox.setSizePolicy(sizePolicy) self.sampleInvBox.setObjectName(_fromUtf8("sampleInvBox")) self.sampleInvBox.addItem(_fromUtf8("")) self.sampleInvBox.addItem(_fromUtf8("")) self.sampleInvBox.addItem(_fromUtf8("")) self.horizontalLayout.addWidget(self.sampleInvBox) self.gridLayout.addWidget(self.widget_5, 4, 1, 1, 1) self.refreshPara = QtGui.QPushButton(self.basicParaWidget) self.refreshPara.setObjectName(_fromUtf8("refreshPara")) self.gridLayout.addWidget(self.refreshPara, 9, 1, 1, 1) self.calibrationClockButton = QtGui.QPushButton(self.basicParaWidget) self.calibrationClockButton.setObjectName(_fromUtf8("calibrationClockButton")) self.gridLayout.addWidget(self.calibrationClockButton, 8, 1, 1, 1) self.label_12 = QtGui.QLabel(self.basicParaWidget) self.label_12.setObjectName(_fromUtf8("label_12")) self.gridLayout.addWidget(self.label_12, 5, 0, 1, 1) self.label_14 = QtGui.QLabel(self.basicParaWidget) self.label_14.setObjectName(_fromUtf8("label_14")) self.gridLayout.addWidget(self.label_14, 6, 0, 1, 1) self.label_11 = QtGui.QLabel(self.basicParaWidget) self.label_11.setObjectName(_fromUtf8("label_11")) self.gridLayout.addWidget(self.label_11, 4, 0, 1, 1) self.label_10 = QtGui.QLabel(self.basicParaWidget) self.label_10.setObjectName(_fromUtf8("label_10")) self.gridLayout.addWidget(self.label_10, 3, 0, 1, 1) self.label_8 = QtGui.QLabel(self.basicParaWidget) self.label_8.setObjectName(_fromUtf8("label_8")) self.gridLayout.addWidget(self.label_8, 2, 0, 1, 1) self.stopRecord = QtGui.QPushButton(self.basicParaWidget) self.stopRecord.setObjectName(_fromUtf8("stopRecord")) self.gridLayout.addWidget(self.stopRecord, 10, 1, 1, 1) self.verticalLayout.addWidget(self.basicParaWidget) self.gridLayout_8.addWidget(self.widget_2, 0, 1, 2, 1) self.displayBasicInfoWidget = QtGui.QWidget(self.baseTab) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Preferred, QtGui.QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.displayBasicInfoWidget.sizePolicy().hasHeightForWidth()) self.displayBasicInfoWidget.setSizePolicy(sizePolicy) self.displayBasicInfoWidget.setObjectName(_fromUtf8("displayBasicInfoWidget")) self.gridLayout_10 = QtGui.QGridLayout(self.displayBasicInfoWidget) self.gridLayout_10.setObjectName(_fromUtf8("gridLayout_10")) self.label_9 = QtGui.QLabel(self.displayBasicInfoWidget) font = QtGui.QFont() font.setPointSize(12) self.label_9.setFont(font) self.label_9.setObjectName(_fromUtf8("label_9")) self.gridLayout_10.addWidget(self.label_9, 2, 0, 1, 1) self.humidity = QtGui.QLCDNumber(self.displayBasicInfoWidget) self.humidity.setObjectName(_fromUtf8("humidity")) self.gridLayout_10.addWidget(self.humidity, 1, 1, 1, 1) self.temperature_c = QtGui.QLCDNumber(self.displayBasicInfoWidget) self.temperature_c.setObjectName(_fromUtf8("temperature_c")) self.gridLayout_10.addWidget(self.temperature_c, 2, 1, 1, 1) self.co2concentration = QtGui.QLCDNumber(self.displayBasicInfoWidget) self.co2concentration.setObjectName(_fromUtf8("co2concentration")) self.gridLayout_10.addWidget(self.co2concentration, 0, 1, 1, 1) self.label_6 = QtGui.QLabel(self.displayBasicInfoWidget) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Maximum, QtGui.QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.label_6.sizePolicy().hasHeightForWidth()) self.label_6.setSizePolicy(sizePolicy) font = QtGui.QFont() font.setPointSize(12) self.label_6.setFont(font) self.label_6.setObjectName(_fromUtf8("label_6")) self.gridLayout_10.addWidget(self.label_6, 3, 0, 1, 1) self.label_5 = QtGui.QLabel(self.displayBasicInfoWidget) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Maximum, QtGui.QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.label_5.sizePolicy().hasHeightForWidth()) self.label_5.setSizePolicy(sizePolicy) font = QtGui.QFont() font.setPointSize(12) self.label_5.setFont(font) self.label_5.setObjectName(_fromUtf8("label_5")) self.gridLayout_10.addWidget(self.label_5, 1, 0, 1, 1) self.temperature_f = QtGui.QLCDNumber(self.displayBasicInfoWidget) self.temperature_f.setObjectName(_fromUtf8("temperature_f")) self.gridLayout_10.addWidget(self.temperature_f, 3, 1, 1, 1) self.label_4 = QtGui.QLabel(self.displayBasicInfoWidget) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Maximum, QtGui.QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.label_4.sizePolicy().hasHeightForWidth()) self.label_4.setSizePolicy(sizePolicy) font = QtGui.QFont() font.setPointSize(12) self.label_4.setFont(font) self.label_4.setObjectName(_fromUtf8("label_4")) self.gridLayout_10.addWidget(self.label_4, 0, 0, 1, 1) self.label_13 = QtGui.QLabel(self.displayBasicInfoWidget) font = QtGui.QFont() font.setPointSize(12) self.label_13.setFont(font) self.label_13.setObjectName(_fromUtf8("label_13")) self.gridLayout_10.addWidget(self.label_13, 4, 0, 1, 1) self.pressure = QtGui.QLCDNumber(self.displayBasicInfoWidget) self.pressure.setObjectName(_fromUtf8("pressure")) self.gridLayout_10.addWidget(self.pressure, 4, 1, 1, 1) self.gridLayout_8.addWidget(self.displayBasicInfoWidget, 0, 0, 2, 1) self.tabWidget.addTab(self.baseTab, _fromUtf8("")) self.tab = QtGui.QWidget() self.tab.setObjectName(_fromUtf8("tab")) self.gridLayout_3 = QtGui.QGridLayout(self.tab) self.gridLayout_3.setObjectName(_fromUtf8("gridLayout_3")) self.deleteFileButton = QtGui.QPushButton(self.tab) self.deleteFileButton.setObjectName(_fromUtf8("deleteFileButton")) self.gridLayout_3.addWidget(self.deleteFileButton, 1, 1, 1, 1) self.refreshFiles = QtGui.QPushButton(self.tab) self.refreshFiles.setObjectName(_fromUtf8("refreshFiles")) self.gridLayout_3.addWidget(self.refreshFiles, 2, 1, 1, 1) self.receiveFiles = QtGui.QPushButton(self.tab) self.receiveFiles.setObjectName(_fromUtf8("receiveFiles")) self.gridLayout_3.addWidget(self.receiveFiles, 0, 1, 1, 1) self.fileOperTableWidget = QtGui.QTableWidget(self.tab) self.fileOperTableWidget.setObjectName(_fromUtf8("fileOperTableWidget")) self.fileOperTableWidget.setColumnCount(3) self.fileOperTableWidget.setRowCount(0) item = QtGui.QTableWidgetItem() self.fileOperTableWidget.setHorizontalHeaderItem(0, item) item = QtGui.QTableWidgetItem() self.fileOperTableWidget.setHorizontalHeaderItem(1, item) item = QtGui.QTableWidgetItem() self.fileOperTableWidget.setHorizontalHeaderItem(2, item) self.gridLayout_3.addWidget(self.fileOperTableWidget, 0, 0, 7, 1) self.tranferFileButton = QtGui.QPushButton(self.tab) self.tranferFileButton.setObjectName(_fromUtf8("tranferFileButton")) self.gridLayout_3.addWidget(self.tranferFileButton, 3, 1, 1, 1) self.tabWidget.addTab(self.tab, _fromUtf8("")) self.recordTab = QtGui.QWidget() self.recordTab.setObjectName(_fromUtf8("recordTab")) self.gridLayout_4 = QtGui.QGridLayout(self.recordTab) self.gridLayout_4.setObjectName(_fromUtf8("gridLayout_4")) self.recordrangeBox = QtGui.QGroupBox(self.recordTab) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Maximum, QtGui.QSizePolicy.Maximum) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.recordrangeBox.sizePolicy().hasHeightForWidth()) self.recordrangeBox.setSizePolicy(sizePolicy) self.recordrangeBox.setObjectName(_fromUtf8("recordrangeBox")) self.gridLayout_2 = QtGui.QGridLayout(self.recordrangeBox) self.gridLayout_2.setObjectName(_fromUtf8("gridLayout_2")) self.queryButton = QtGui.QPushButton(self.recordrangeBox) self.queryButton.setObjectName(_fromUtf8("queryButton")) self.gridLayout_2.addWidget(self.queryButton, 7, 1, 1, 1) self.label_2 = QtGui.QLabel(self.recordrangeBox) self.label_2.setObjectName(_fromUtf8("label_2")) self.gridLayout_2.addWidget(self.label_2, 1, 2, 1, 1) self.afterDateEdit = QtGui.QDateEdit(self.recordrangeBox) self.afterDateEdit.setObjectName(_fromUtf8("afterDateEdit")) self.gridLayout_2.addWidget(self.afterDateEdit, 6, 1, 1, 1) self.beginDateEdit = QtGui.QDateEdit(self.recordrangeBox) self.beginDateEdit.setDateTime(QtCore.QDateTime(QtCore.QDate(2001, 1, 1), QtCore.QTime(0, 0, 0))) self.beginDateEdit.setMaximumTime(QtCore.QTime(23, 59, 59)) self.beginDateEdit.setObjectName(_fromUtf8("beginDateEdit")) self.gridLayout_2.addWidget(self.beginDateEdit, 5, 1, 1, 1) self.radioButton = QtGui.QRadioButton(self.recordrangeBox) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Fixed, QtGui.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.radioButton.sizePolicy().hasHeightForWidth()) self.radioButton.setSizePolicy(sizePolicy) self.radioButton.setObjectName(_fromUtf8("radioButton")) self.gridLayout_2.addWidget(self.radioButton, 5, 0, 1, 1) self.label = QtGui.QLabel(self.recordrangeBox) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Maximum, QtGui.QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.label.sizePolicy().hasHeightForWidth()) self.label.setSizePolicy(sizePolicy) self.label.setObjectName(_fromUtf8("label")) self.gridLayout_2.addWidget(self.label, 6, 0, 1, 1) self.alldateRadioButton = QtGui.QRadioButton(self.recordrangeBox) self.alldateRadioButton.setChecked(True) self.alldateRadioButton.setObjectName(_fromUtf8("alldateRadioButton")) self.gridLayout_2.addWidget(self.alldateRadioButton, 0, 0, 1, 1) self.beforedayRadioButton = QtGui.QRadioButton(self.recordrangeBox) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Fixed, QtGui.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.beforedayRadioButton.sizePolicy().hasHeightForWidth()) self.beforedayRadioButton.setSizePolicy(sizePolicy) self.beforedayRadioButton.setObjectName(_fromUtf8("beforedayRadioButton")) self.gridLayout_2.addWidget(self.beforedayRadioButton, 1, 0, 1, 1) self.beforeMonthRadioButton = QtGui.QRadioButton(self.recordrangeBox) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Fixed, QtGui.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.beforeMonthRadioButton.sizePolicy().hasHeightForWidth()) self.beforeMonthRadioButton.setSizePolicy(sizePolicy) self.beforeMonthRadioButton.setObjectName(_fromUtf8("beforeMonthRadioButton")) self.gridLayout_2.addWidget(self.beforeMonthRadioButton, 3, 0, 1, 1) self.beforeMonthBox = QtGui.QSpinBox(self.recordrangeBox) self.beforeMonthBox.setObjectName(_fromUtf8("beforeMonthBox")) self.gridLayout_2.addWidget(self.beforeMonthBox, 3, 1, 1, 1) self.beforeDayBox = QtGui.QSpinBox(self.recordrangeBox) self.beforeDayBox.setObjectName(_fromUtf8("beforeDayBox")) self.gridLayout_2.addWidget(self.beforeDayBox, 1, 1, 1, 1) self.label_3 = QtGui.QLabel(self.recordrangeBox) self.label_3.setObjectName(_fromUtf8("label_3")) self.gridLayout_2.addWidget(self.label_3, 3, 2, 1, 1) self.gridLayout_4.addWidget(self.recordrangeBox, 0, 0, 1, 1) self.widget_3 = QtGui.QWidget(self.recordTab) self.widget_3.setObjectName(_fromUtf8("widget_3")) self.verticalLayout_2 = QtGui.QVBoxLayout(self.widget_3) self.verticalLayout_2.setObjectName(_fromUtf8("verticalLayout_2")) self.displayDetailInfoTableWidget = QtGui.QTableWidget(self.widget_3) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Preferred, QtGui.QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.displayDetailInfoTableWidget.sizePolicy().hasHeightForWidth()) self.displayDetailInfoTableWidget.setSizePolicy(sizePolicy) self.displayDetailInfoTableWidget.setObjectName(_fromUtf8("displayDetailInfoTableWidget")) self.displayDetailInfoTableWidget.setColumnCount(6) self.displayDetailInfoTableWidget.setRowCount(0) item = QtGui.QTableWidgetItem() self.displayDetailInfoTableWidget.setHorizontalHeaderItem(0, item) item = QtGui.QTableWidgetItem() self.displayDetailInfoTableWidget.setHorizontalHeaderItem(1, item) item = QtGui.QTableWidgetItem() self.displayDetailInfoTableWidget.setHorizontalHeaderItem(2, item) item = QtGui.QTableWidgetItem() self.displayDetailInfoTableWidget.setHorizontalHeaderItem(3, item) item = QtGui.QTableWidgetItem() self.displayDetailInfoTableWidget.setHorizontalHeaderItem(4, item) item = QtGui.QTableWidgetItem() self.displayDetailInfoTableWidget.setHorizontalHeaderItem(5, item) self.verticalLayout_2.addWidget(self.displayDetailInfoTableWidget) self.gridLayout_4.addWidget(self.widget_3, 0, 1, 1, 1) self.fileOperWidget = QtGui.QWidget(self.recordTab) self.fileOperWidget.setObjectName(_fromUtf8("fileOperWidget")) self.verticalLayout_4 = QtGui.QVBoxLayout(self.fileOperWidget) self.verticalLayout_4.setObjectName(_fromUtf8("verticalLayout_4")) self.fileOperBox = QtGui.QGroupBox(self.fileOperWidget) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Ignored, QtGui.QSizePolicy.Ignored) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.fileOperBox.sizePolicy().hasHeightForWidth()) self.fileOperBox.setSizePolicy(sizePolicy) self.fileOperBox.setObjectName(_fromUtf8("fileOperBox")) self.gridLayout_6 = QtGui.QGridLayout(self.fileOperBox) self.gridLayout_6.setObjectName(_fromUtf8("gridLayout_6")) self.dirTreeView = QtGui.QTreeView(self.fileOperBox) self.dirTreeView.setObjectName(_fromUtf8("dirTreeView")) self.gridLayout_6.addWidget(self.dirTreeView, 0, 0, 1, 2) self.loadinFileButton = QtGui.QPushButton(self.fileOperBox) self.loadinFileButton.setObjectName(_fromUtf8("loadinFileButton")) self.gridLayout_6.addWidget(self.loadinFileButton, 1, 1, 1, 1) self.verticalLayout_4.addWidget(self.fileOperBox) self.gridLayout_4.addWidget(self.fileOperWidget, 2, 0, 1, 1) self.drawCurveWidget = QtGui.QWidget(self.recordTab) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Preferred, QtGui.QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.drawCurveWidget.sizePolicy().hasHeightForWidth()) self.drawCurveWidget.setSizePolicy(sizePolicy) self.drawCurveWidget.setObjectName(_fromUtf8("drawCurveWidget")) self.horizontalLayout_6 = QtGui.QHBoxLayout(self.drawCurveWidget) self.horizontalLayout_6.setObjectName(_fromUtf8("horizontalLayout_6")) self.drawCurveLayout = QtGui.QVBoxLayout() self.drawCurveLayout.setObjectName(_fromUtf8("drawCurveLayout")) self.horizontalLayout_6.addLayout(self.drawCurveLayout) self.gridLayout_4.addWidget(self.drawCurveWidget, 1, 1, 2, 1) self.groupBox = QtGui.QGroupBox(self.recordTab) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Minimum, QtGui.QSizePolicy.Maximum) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.groupBox.sizePolicy().hasHeightForWidth()) self.groupBox.setSizePolicy(sizePolicy) self.groupBox.setObjectName(_fromUtf8("groupBox")) self.gridLayout_5 = QtGui.QGridLayout(self.groupBox) self.gridLayout_5.setObjectName(_fromUtf8("gridLayout_5")) self.tempCheckBox = QtGui.QCheckBox(self.groupBox) sizePolicy = QtGui.QSizePolicy(QtGui.QSizePolicy.Minimum, QtGui.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.tempCheckBox.sizePolicy().hasHeightForWidth()) self.tempCheckBox.setSizePolicy(sizePolicy) self.tempCheckBox.setChecked(True) self.tempCheckBox.setObjectName(_fromUtf8("tempCheckBox")) self.gridLayout_5.addWidget(self.tempCheckBox, 3, 0, 1, 1) self.co2CheckBox = QtGui.QCheckBox(self.groupBox) self.co2CheckBox.setChecked(True) self.co2CheckBox.setObjectName(_fromUtf8("co2CheckBox")) self.gridLayout_5.addWidget(self.co2CheckBox, 0, 0, 1, 1) self.humiCheckBox = QtGui.QCheckBox(self.groupBox) self.humiCheckBox.setChecked(True) self.humiCheckBox.setObjectName(_fromUtf8("humiCheckBox")) self.gridLayout_5.addWidget(self.humiCheckBox, 4, 0, 1, 1) self.co2Line = QtGui.QLabel(self.groupBox) self.co2Line.setText(_fromUtf8("")) self.co2Line.setObjectName(_fromUtf8("co2Line")) self.gridLayout_5.addWidget(self.co2Line, 0, 1, 1, 1) self.tempLine = QtGui.QLabel(self.groupBox) self.tempLine.setText(_fromUtf8("")) self.tempLine.setObjectName(_fromUtf8("tempLine")) self.gridLayout_5.addWidget(self.tempLine, 3, 1, 1, 1) self.humLine = QtGui.QLabel(self.groupBox) self.humLine.setText(_fromUtf8("")) self.humLine.setObjectName(_fromUtf8("humLine")) self.gridLayout_5.addWidget(self.humLine, 4, 1, 1, 1) self.atmospheriCheckBox = QtGui.QCheckBox(self.groupBox) self.atmospheriCheckBox.setChecked(True) self.atmospheriCheckBox.setObjectName(_fromUtf8("atmospheriCheckBox")) self.gridLayout_5.addWidget(self.atmospheriCheckBox, 5, 0, 1, 1) self.batteryCheckBox = QtGui.QCheckBox(self.groupBox) self.batteryCheckBox.setChecked(True) self.batteryCheckBox.setObjectName(_fromUtf8("batteryCheckBox")) self.gridLayout_5.addWidget(self.batteryCheckBox, 6, 0, 1, 1) self.atmoLine = QtGui.QLabel(self.groupBox) self.atmoLine.setText(_fromUtf8("")) self.atmoLine.setObjectName(_fromUtf8("atmoLine")) self.gridLayout_5.addWidget(self.atmoLine, 5, 1, 1, 1) self.battLine = QtGui.QLabel(self.groupBox) self.battLine.setText(_fromUtf8("")) self.battLine.setObjectName(_fromUtf8("battLine")) self.gridLayout_5.addWidget(self.battLine, 6, 1, 1, 1) self.gridLayout_4.addWidget(self.groupBox, 1, 0, 1, 1) self.tabWidget.addTab(self.recordTab, _fromUtf8("")) self.formLayout_2.setWidget(0, QtGui.QFormLayout.FieldRole, self.tabWidget) CTH.setCentralWidget(self.centralWidget) self.statusBar = QtGui.QStatusBar(CTH) self.statusBar.setToolTip(_fromUtf8("")) self.statusBar.setStatusTip(_fromUtf8("")) self.statusBar.setAutoFillBackground(True) self.statusBar.setObjectName(_fromUtf8("statusBar")) CTH.setStatusBar(self.statusBar) self.menuBar = QtGui.QMenuBar(CTH) self.menuBar.setGeometry(QtCore.QRect(0, 0, 700, 23)) self.menuBar.setObjectName(_fromUtf8("menuBar")) self.fileMenu = QtGui.QMenu(self.menuBar) self.fileMenu.setObjectName(_fromUtf8("fileMenu")) self.helpMenu = QtGui.QMenu(self.menuBar) self.helpMenu.setObjectName(_fromUtf8("helpMenu")) CTH.setMenuBar(self.menuBar) self.openAct = QtGui.QAction(CTH) self.openAct.setObjectName(_fromUtf8("openAct")) self.loadAct = QtGui.QAction(CTH) self.loadAct.setObjectName(_fromUtf8("loadAct")) self.exitAct = QtGui.QAction(CTH) self.exitAct.setObjectName(_fromUtf8("exitAct")) self.action_4 = QtGui.QAction(CTH) self.action_4.setObjectName(_fromUtf8("action_4")) self.setparaAct = QtGui.QAction(CTH) self.setparaAct.setObjectName(_fromUtf8("setparaAct")) self.refreshAct = QtGui.QAction(CTH) self.refreshAct.setObjectName(_fromUtf8("refreshAct")) self.lookpicAct = QtGui.QAction(CTH) self.lookpicAct.setObjectName(_fromUtf8("lookpicAct")) self.helpAct = QtGui.QAction(CTH) self.helpAct.setObjectName(_fromUtf8("helpAct")) self.aboutAct = QtGui.QAction(CTH) self.aboutAct.setObjectName(_fromUtf8("aboutAct")) self.actionSave = QtGui.QAction(CTH) self.actionSave.setCheckable(False) icon1 = QtGui.QIcon() icon1.addPixmap(QtGui.QPixmap(_fromUtf8(":/image/16x16/save.png")), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.actionSave.setIcon(icon1) self.actionSave.setObjectName(_fromUtf8("actionSave")) self.actionHelp = QtGui.QAction(CTH) self.actionHelp.setCheckable(False) icon2 = QtGui.QIcon() icon2.addPixmap(QtGui.QPixmap(_fromUtf8(":/image/16x16/info.png")), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.actionHelp.setIcon(icon2) self.actionHelp.setObjectName(_fromUtf8("actionHelp")) self.actionExit = QtGui.QAction(CTH) self.actionExit.setCheckable(False) self.actionExit.setChecked(False) icon3 = QtGui.QIcon() icon3.addPixmap(QtGui.QPixmap(_fromUtf8(":/image/16x16/close-tab.png")), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.actionExit.setIcon(icon3) self.actionExit.setObjectName(_fromUtf8("actionExit")) self.actionRefresh = QtGui.QAction(CTH) self.actionRefresh.setCheckable(False) self.actionRefresh.setChecked(False) icon4 = QtGui.QIcon() icon4.addPixmap(QtGui.QPixmap(_fromUtf8(":/image/16x16/refresh.png")), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.actionRefresh.setIcon(icon4) self.actionRefresh.setObjectName(_fromUtf8("actionRefresh")) self.actionOpen = QtGui.QAction(CTH) icon5 = QtGui.QIcon() icon5.addPixmap(QtGui.QPixmap(_fromUtf8(":/image/16x16/folder.png")), QtGui.QIcon.Normal, QtGui.QIcon.Off) self.actionOpen.setIcon(icon5) self.actionOpen.setObjectName(_fromUtf8("actionOpen")) self.fileMenu.addAction(self.exitAct) self.helpMenu.addAction(self.helpAct) self.menuBar.addAction(self.fileMenu.menuAction()) self.menuBar.addAction(self.helpMenu.menuAction()) self.retranslateUi(CTH) self.tabWidget.setCurrentIndex(0) QtCore.QObject.connect(self.exitAct, QtCore.SIGNAL(_fromUtf8("triggered()")), CTH.close) QtCore.QMetaObject.connectSlotsByName(CTH) def retranslateUi(self, CTH): CTH.setWindowTitle(_translate("CTH", "CTH", None)) self.updatePara.setText(_translate("CTH", "ๆ›ดๆ”นๅ‚ๆ•ฐ", None)) self.label_7.setText(_translate("CTH", "ไปชๅ™จ็ผ–ๅท", None)) self.handComboBox.setItemText(0, _translate("CTH", "็ซ‹ๅณ", None)) self.handComboBox.setItemText(1, _translate("CTH", "ๆ‰‹ๅŠจ", None)) self.sampleInvBox.setItemText(0, _translate("CTH", "็ง’", None)) self.sampleInvBox.setItemText(1, _translate("CTH", "ๅˆ†", None)) self.sampleInvBox.setItemText(2, _translate("CTH", "ๆ—ถ", None)) self.refreshPara.setText(_translate("CTH", "ๅˆทๆ–ฐ", None)) self.calibrationClockButton.setText(_translate("CTH", "ๆ กๅ‡†ๆ—ถ้’Ÿ", None)) self.label_12.setText(_translate("CTH", "ไบŒๆฐงๅŒ–็ขณๆŠฅ่ญฆๅ€ผ", None)) self.label_14.setText(_translate("CTH", "็ซ‹ๅณ/ๆ‰‹ๅŠจ", None)) self.label_11.setText(_translate("CTH", "้‡‡ๆ ท้—ด้š”", None)) self.label_10.setText(_translate("CTH", "่ฎฐๅฝ•ๆฌกๆ•ฐ", None)) self.label_8.setText(_translate("CTH", "ๆต‹้‡ๅ็งฐ", None)) self.stopRecord.setText(_translate("CTH", "ๅœๆญข่ฎฐๅฝ•", None)) self.label_9.setText(_translate("CTH", "ๆ‘„ๆฐๅบฆ(โ„ƒ)", None)) self.label_6.setText(_translate("CTH", "ๅŽๆฐๅบฆ(โ„‰)", None)) self.label_5.setText(_translate("CTH", "ๆนฟๅบฆ(%)", None)) self.label_4.setText(_translate("CTH", "ไบŒๆฐงๅŒ–็ขณๆต“ๅบฆ(PPM)", None)) self.label_13.setText(_translate("CTH", "ๅคงๆฐ”ๅŽ‹(hPa)", None)) self.tabWidget.setTabText(self.tabWidget.indexOf(self.baseTab), _translate("CTH", "ๅŸบๆœฌไฟกๆฏ", None)) self.deleteFileButton.setText(_translate("CTH", "ๅˆ ้™คๆ–‡ไปถ", None)) self.refreshFiles.setText(_translate("CTH", "ๅˆทๆ–ฐ", None)) self.receiveFiles.setText(_translate("CTH", "ๆŽฅๆ”ถๆ–‡ไปถ", None)) item = self.fileOperTableWidget.horizontalHeaderItem(0) item.setText(_translate("CTH", "ๆ–‡ไปถๅ", None)) item = self.fileOperTableWidget.horizontalHeaderItem(1) item.setText(_translate("CTH", "ๆ–‡ไปถๅคงๅฐ", None)) item = self.fileOperTableWidget.horizontalHeaderItem(2) item.setText(_translate("CTH", "ๆ›ดๆ–ฐๆ—ถ้—ด", None)) self.tranferFileButton.setText(_translate("CTH", "่ฝฌๆขๆ–‡ไปถ", None)) self.tabWidget.setTabText(self.tabWidget.indexOf(self.tab), _translate("CTH", "ๆ–‡ไปถๆ“ไฝœ", None)) self.recordrangeBox.setTitle(_translate("CTH", "่ฎฐๅฝ•ๆŸฅ่ฏข่Œƒๅ›ด", None)) self.queryButton.setText(_translate("CTH", "ๅผ€ๅง‹ๆŸฅ่ฏข", None)) self.label_2.setText(_translate("CTH", "ๅคฉ", None)) self.radioButton.setText(_translate("CTH", "ไปŽ", None)) self.label.setText(_translate("CTH", " ๅˆฐ", None)) self.alldateRadioButton.setText(_translate("CTH", "ๆ‰€ๆœ‰ๆ—ฅๆœŸ", None)) self.beforedayRadioButton.setText(_translate("CTH", "ๅ‰", None)) self.beforeMonthRadioButton.setText(_translate("CTH", "ๅ‰", None)) self.label_3.setText(_translate("CTH", "ๆœˆ", None)) item = self.displayDetailInfoTableWidget.horizontalHeaderItem(0) item.setText(_translate("CTH", "ๆ—ถ้—ด", None)) item = self.displayDetailInfoTableWidget.horizontalHeaderItem(1) item.setText(_translate("CTH", "ไบŒๆฐงๅŒ–็ขณๆต“ๅบฆ", None)) item = self.displayDetailInfoTableWidget.horizontalHeaderItem(2) item.setText(_translate("CTH", "ๆธฉๅบฆ", None)) item = self.displayDetailInfoTableWidget.horizontalHeaderItem(3) item.setText(_translate("CTH", "ๆนฟๅบฆ", None)) item = self.displayDetailInfoTableWidget.horizontalHeaderItem(4) item.setText(_translate("CTH", "ๅคงๆฐ”ๅŽ‹", None)) item = self.displayDetailInfoTableWidget.horizontalHeaderItem(5) item.setText(_translate("CTH", "็”ตๆฑ ็”ตๅŽ‹", None)) self.fileOperBox.setTitle(_translate("CTH", "ๆ–‡ไปถ็ฎก็†", None)) self.loadinFileButton.setText(_translate("CTH", "ๅฏผๅ…ฅๆ–‡ไปถ", None)) self.groupBox.setTitle(_translate("CTH", "ๆ›ฒ็บฟๅ›พ", None)) self.tempCheckBox.setText(_translate("CTH", "ๆธฉๅบฆ", None)) self.co2CheckBox.setText(_translate("CTH", "ไบŒๆฐงๅŒ–็ขณๆต“ๅบฆ", None)) self.humiCheckBox.setText(_translate("CTH", "ๆนฟๅบฆ", None)) self.atmospheriCheckBox.setText(_translate("CTH", "ๅคงๆฐ”ๅŽ‹", None)) self.batteryCheckBox.setText(_translate("CTH", "็”ตๆฑ ็”ตๅŽ‹", None)) self.tabWidget.setTabText(self.tabWidget.indexOf(self.recordTab), _translate("CTH", "่ฎฐๅฝ•ๆŸฅ่ฏข", None)) self.fileMenu.setTitle(_translate("CTH", "ๆ–‡ไปถ", None)) self.helpMenu.setTitle(_translate("CTH", "ๅธฎๅŠฉ", None)) self.openAct.setText(_translate("CTH", "ๆ‰“ๅผ€", None)) self.loadAct.setText(_translate("CTH", "ๅฏผๅ…ฅ", None)) self.exitAct.setText(_translate("CTH", "้€€ๅ‡บ", None)) self.action_4.setText(_translate("CTH", "่ฏปๅ–ๅ‚ๆ•ฐ", None)) self.setparaAct.setText(_translate("CTH", "่ฎพ็ฝฎๅ‚ๆ•ฐ", None)) self.refreshAct.setText(_translate("CTH", "ๅˆทๆ–ฐ", None)) self.lookpicAct.setText(_translate("CTH", "ๆŸฅ็œ‹ๆ›ฒ็บฟๅ›พ", None)) self.helpAct.setText(_translate("CTH", "ๆ“ไฝœ่ฏดๆ˜Ž", None)) self.aboutAct.setText(_translate("CTH", "ๅ…ณไบŽ", None)) self.actionSave.setText(_translate("CTH", "save", None)) self.actionSave.setToolTip(_translate("CTH", "save", None)) self.actionHelp.setText(_translate("CTH", "help", None)) self.actionHelp.setToolTip(_translate("CTH", "help", None)) self.actionExit.setText(_translate("CTH", "exit", None)) self.actionExit.setToolTip(_translate("CTH", "exit", None)) self.actionRefresh.setText(_translate("CTH", "refresh", None)) self.actionRefresh.setToolTip(_translate("CTH", "refresh", None)) self.actionOpen.setText(_translate("CTH", "open", None)) self.actionOpen.setToolTip(_translate("CTH", "open", None)) import UpSite_rc if __name__ == "__main__": import sys app = QtGui.QApplication(sys.argv) CTH = QtGui.QMainWindow() ui = Ui_CTH() ui.setupUi(CTH) CTH.show() sys.exit(app.exec_())
60.186846
118
0.701229
7952cf6aeeaddde1a6cb8780b0d0c59ade36800c
50,779
py
Python
napalm/nxos/nxos.py
TomCos/napalm
81045d7e3a095b8d125505718ffe88fe40378be8
[ "Apache-2.0" ]
null
null
null
napalm/nxos/nxos.py
TomCos/napalm
81045d7e3a095b8d125505718ffe88fe40378be8
[ "Apache-2.0" ]
null
null
null
napalm/nxos/nxos.py
TomCos/napalm
81045d7e3a095b8d125505718ffe88fe40378be8
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Copyright 2015 Spotify AB. All rights reserved. # # The contents of this file are licensed under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with the # License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations under # the License. from __future__ import unicode_literals # import stdlib from builtins import super import os import re import time import tempfile import uuid from collections import defaultdict # import third party lib from requests.exceptions import ConnectionError from netaddr import IPAddress from netaddr.core import AddrFormatError from netmiko import file_transfer from nxapi_plumbing import Device as NXOSDevice from nxapi_plumbing import NXAPIAuthError, NXAPIConnectionError, NXAPICommandError # import NAPALM Base import napalm.base.helpers from napalm.base import NetworkDriver from napalm.base.utils import py23_compat from napalm.base.exceptions import ConnectionException from napalm.base.exceptions import MergeConfigException from napalm.base.exceptions import CommandErrorException from napalm.base.exceptions import ReplaceConfigException from napalm.base.netmiko_helpers import netmiko_args import napalm.base.constants as c def ensure_netmiko_conn(func): """Decorator that ensures Netmiko connection exists.""" def wrap_function(self, filename=None, config=None): try: netmiko_object = self._netmiko_device if netmiko_object is None: raise AttributeError() except AttributeError: device_type = c.NETMIKO_MAP[self.platform] netmiko_optional_args = self.netmiko_optional_args if "port" in netmiko_optional_args: netmiko_optional_args["port"] = 22 self._netmiko_open( device_type=device_type, netmiko_optional_args=netmiko_optional_args ) func(self, filename=filename, config=config) return wrap_function class NXOSDriverBase(NetworkDriver): """Common code shared between nx-api and nxos_ssh.""" def __init__(self, hostname, username, password, timeout=60, optional_args=None): if optional_args is None: optional_args = {} self.hostname = hostname self.username = username self.password = password self.timeout = timeout self.replace = True self.loaded = False self.changed = False self.merge_candidate = "" self.candidate_cfg = "candidate_config.txt" self.rollback_cfg = "rollback_config.txt" self._dest_file_system = optional_args.pop("dest_file_system", "bootflash:") self.netmiko_optional_args = netmiko_args(optional_args) self.device = None @ensure_netmiko_conn def load_replace_candidate(self, filename=None, config=None): if not filename and not config: raise ReplaceConfigException( "filename or config parameter must be provided." ) if not filename: tmp_file = self._create_tmp_file(config) filename = tmp_file else: if not os.path.isfile(filename): raise ReplaceConfigException("File {} not found".format(filename)) try: transfer_result = file_transfer( self._netmiko_device, source_file=filename, dest_file=self.candidate_cfg, file_system=self._dest_file_system, direction="put", overwrite_file=True, ) if not transfer_result["file_exists"]: raise ValueError() except Exception: msg = ( "Could not transfer file. There was an error " "during transfer. Please make sure remote " "permissions are set." ) raise ReplaceConfigException(msg) self.replace = True self.loaded = True if config and os.path.isfile(tmp_file): os.remove(tmp_file) def load_merge_candidate(self, filename=None, config=None): if not filename and not config: raise MergeConfigException("filename or config param must be provided.") self.merge_candidate += "\n" # insert one extra line if filename is not None: with open(filename, "r") as f: self.merge_candidate += f.read() else: self.merge_candidate += config self.replace = False self.loaded = True def _send_command(self, command, raw_text=False): raise NotImplementedError def _commit_merge(self): try: output = self._send_config(self.merge_candidate) if output and "Invalid command" in output: raise MergeConfigException("Error while applying config!") except Exception as e: self.changed = True self.rollback() raise MergeConfigException(str(e)) self.changed = True # clear the merge buffer self.merge_candidate = "" def _get_merge_diff(self): """ The merge diff is not necessarily what needs to be loaded for example under NTP, even though the 'ntp commit' command might be alread configured, it is mandatory to be sent otherwise it won't take the new configuration - see: https://github.com/napalm-automation/napalm-nxos/issues/59 therefore this method will return the real diff (but not necessarily what is being sent by the merge_load_config() """ diff = [] running_config = self.get_config(retrieve="running")["running"] running_lines = running_config.splitlines() for line in self.merge_candidate.splitlines(): if line not in running_lines and line: if line[0].strip() != "!": diff.append(line) return "\n".join(diff) def _get_diff(self): """Get a diff between running config and a proposed file.""" diff = [] self._create_sot_file() diff_out = self._send_command( "show diff rollback-patch file {} file {}".format( "sot_file", self.candidate_cfg ), raw_text=True, ) try: diff_out = ( diff_out.split("Generating Rollback Patch")[1] .replace("Rollback Patch is Empty", "") .strip() ) for line in diff_out.splitlines(): if line: if line[0].strip() != "!" and line[0].strip() != ".": diff.append(line.rstrip(" ")) except (AttributeError, KeyError): raise ReplaceConfigException( "Could not calculate diff. It's possible the given file doesn't exist." ) return "\n".join(diff) def compare_config(self): if self.loaded: if not self.replace: return self._get_merge_diff() diff = self._get_diff() return diff return "" def commit_config(self, message=""): if message: raise NotImplementedError( "Commit message not implemented for this platform" ) if self.loaded: # Create checkpoint from current running-config self._save_to_checkpoint(self.rollback_cfg) if self.replace: self._load_cfg_from_checkpoint() else: self._commit_merge() self._copy_run_start() self.loaded = False else: raise ReplaceConfigException("No config loaded.") def discard_config(self): if self.loaded: # clear the buffer self.merge_candidate = "" if self.loaded and self.replace: self._delete_file(self.candidate_cfg) self.loaded = False def _create_sot_file(self): """Create Source of Truth file to compare.""" # Bug on on NX-OS 6.2.16 where overwriting sot_file would take exceptionally long time # (over 12 minutes); so just delete the sot_file try: self._delete_file(filename="sot_file") except Exception: pass commands = [ "terminal dont-ask", "checkpoint file sot_file", "no terminal dont-ask", ] self._send_command_list(commands) def ping( self, destination, source=c.PING_SOURCE, ttl=c.PING_TTL, timeout=c.PING_TIMEOUT, size=c.PING_SIZE, count=c.PING_COUNT, vrf=c.PING_VRF, ): """ Execute ping on the device and returns a dictionary with the result. Output dictionary has one of following keys: * success * error In case of success, inner dictionary will have the followin keys: * probes_sent (int) * packet_loss (int) * rtt_min (float) * rtt_max (float) * rtt_avg (float) * rtt_stddev (float) * results (list) 'results' is a list of dictionaries with the following keys: * ip_address (str) * rtt (float) """ ping_dict = {} version = "" try: version = "6" if IPAddress(destination).version == 6 else "" except AddrFormatError: # Allow use of DNS names pass command = "ping{version} {destination}".format( version=version, destination=destination ) command += " timeout {}".format(timeout) command += " packet-size {}".format(size) command += " count {}".format(count) if source != "": command += " source {}".format(source) if vrf != "": command += " vrf {}".format(vrf) output = self._send_command(command, raw_text=True) if "connect:" in output: ping_dict["error"] = output elif "PING" in output: ping_dict["success"] = { "probes_sent": 0, "packet_loss": 0, "rtt_min": 0.0, "rtt_max": 0.0, "rtt_avg": 0.0, "rtt_stddev": 0.0, "results": [], } results_array = [] for line in output.splitlines(): fields = line.split() if "icmp" in line: if "Unreachable" in line: if "(" in fields[2]: results_array.append( { "ip_address": py23_compat.text_type( fields[2][1:-1] ), "rtt": 0.0, } ) else: results_array.append( { "ip_address": py23_compat.text_type(fields[1]), "rtt": 0.0, } ) elif "truncated" in line: if "(" in fields[4]: results_array.append( { "ip_address": py23_compat.text_type( fields[4][1:-2] ), "rtt": 0.0, } ) else: results_array.append( { "ip_address": py23_compat.text_type(fields[3][:-1]), "rtt": 0.0, } ) elif fields[1] == "bytes": if version == "6": m = fields[5][5:] else: m = fields[6][5:] results_array.append( { "ip_address": py23_compat.text_type(fields[3][:-1]), "rtt": float(m), } ) elif "packets transmitted" in line: ping_dict["success"]["probes_sent"] = int(fields[0]) ping_dict["success"]["packet_loss"] = int(fields[0]) - int( fields[3] ) elif "min/avg/max" in line: m = fields[3].split("/") ping_dict["success"].update( { "rtt_min": float(m[0]), "rtt_avg": float(m[1]), "rtt_max": float(m[2]), } ) ping_dict["success"].update({"results": results_array}) return ping_dict def traceroute( self, destination, source=c.TRACEROUTE_SOURCE, ttl=c.TRACEROUTE_TTL, timeout=c.TRACEROUTE_TIMEOUT, vrf=c.TRACEROUTE_VRF, ): _HOP_ENTRY_PROBE = [ r"\s+", r"(", # beginning of host_name (ip_address) RTT group r"(", # beginning of host_name (ip_address) group only r"([a-zA-Z0-9\.:-]*)", # hostname r"\s+", r"\(?([a-fA-F0-9\.:][^\)]*)\)?" # IP Address between brackets r")?", # end of host_name (ip_address) group only # also hostname/ip are optional -- they can or cannot be specified # if not specified, means the current probe followed the same path as the previous r"\s+", r"(\d+\.\d+)\s+ms", # RTT r"|\*", # OR *, when non responsive hop r")", # end of host_name (ip_address) RTT group ] _HOP_ENTRY = [r"\s?", r"(\d+)"] # space before hop index? # hop index traceroute_result = {} timeout = 5 # seconds probes = 3 # 3 probes/jop and this cannot be changed on NXOS! version = "" try: version = "6" if IPAddress(destination).version == 6 else "" except AddrFormatError: # Allow use of DNS names pass if source: source_opt = "source {source}".format(source=source) command = "traceroute{version} {destination} {source_opt}".format( version=version, destination=destination, source_opt=source_opt ) else: command = "traceroute{version} {destination}".format( version=version, destination=destination ) try: traceroute_raw_output = self._send_command(command, raw_text=True) except CommandErrorException: return { "error": "Cannot execute traceroute on the device: {}".format(command) } hop_regex = "".join(_HOP_ENTRY + _HOP_ENTRY_PROBE * probes) traceroute_result["success"] = {} if traceroute_raw_output: for line in traceroute_raw_output.splitlines(): hop_search = re.search(hop_regex, line) if not hop_search: continue hop_details = hop_search.groups() hop_index = int(hop_details[0]) previous_probe_host_name = "*" previous_probe_ip_address = "*" traceroute_result["success"][hop_index] = {"probes": {}} for probe_index in range(probes): host_name = hop_details[3 + probe_index * 5] ip_address_raw = hop_details[4 + probe_index * 5] ip_address = napalm.base.helpers.convert( napalm.base.helpers.ip, ip_address_raw, ip_address_raw ) rtt = hop_details[5 + probe_index * 5] if rtt: rtt = float(rtt) else: rtt = timeout * 1000.0 if not host_name: host_name = previous_probe_host_name if not ip_address: ip_address = previous_probe_ip_address if hop_details[1 + probe_index * 5] == "*": host_name = "*" ip_address = "*" traceroute_result["success"][hop_index]["probes"][ probe_index + 1 ] = { "host_name": py23_compat.text_type(host_name), "ip_address": py23_compat.text_type(ip_address), "rtt": rtt, } previous_probe_host_name = host_name previous_probe_ip_address = ip_address return traceroute_result def _get_checkpoint_file(self): filename = "temp_cp_file_from_napalm" self._set_checkpoint(filename) command = "show file {}".format(filename) output = self._send_command(command, raw_text=True) self._delete_file(filename) return output def _set_checkpoint(self, filename): commands = [ "terminal dont-ask", "checkpoint file {}".format(filename), "no terminal dont-ask", ] self._send_command_list(commands) def _save_to_checkpoint(self, filename): """Save the current running config to the given file.""" commands = [ "terminal dont-ask", "checkpoint file {}".format(filename), "no terminal dont-ask", ] self._send_command_list(commands) def _delete_file(self, filename): commands = [ "terminal dont-ask", "delete {}".format(filename), "no terminal dont-ask", ] self._send_command_list(commands) @staticmethod def _create_tmp_file(config): tmp_dir = tempfile.gettempdir() rand_fname = py23_compat.text_type(uuid.uuid4()) filename = os.path.join(tmp_dir, rand_fname) with open(filename, "wt") as fobj: fobj.write(config) return filename def _disable_confirmation(self): self._send_command_list(["terminal dont-ask"]) def get_config(self, retrieve="all"): config = {"startup": "", "running": "", "candidate": ""} # default values if retrieve.lower() in ("running", "all"): command = "show running-config" config["running"] = py23_compat.text_type( self._send_command(command, raw_text=True) ) if retrieve.lower() in ("startup", "all"): command = "show startup-config" config["startup"] = py23_compat.text_type( self._send_command(command, raw_text=True) ) return config def get_lldp_neighbors(self): """IOS implementation of get_lldp_neighbors.""" lldp = {} neighbors_detail = self.get_lldp_neighbors_detail() for intf_name, entries in neighbors_detail.items(): lldp[intf_name] = [] for lldp_entry in entries: hostname = lldp_entry["remote_system_name"] # Match IOS behaviour of taking remote chassis ID # When lacking a system name (in show lldp neighbors) if hostname == "N/A": hostname = lldp_entry["remote_chassis_id"] lldp_dict = {"port": lldp_entry["remote_port"], "hostname": hostname} lldp[intf_name].append(lldp_dict) return lldp def get_lldp_neighbors_detail(self, interface=""): lldp = {} lldp_interfaces = [] if interface: command = "show lldp neighbors interface {} detail".format(interface) else: command = "show lldp neighbors detail" lldp_entries = self._send_command(command, raw_text=True) lldp_entries = py23_compat.text_type(lldp_entries) lldp_entries = napalm.base.helpers.textfsm_extractor( self, "show_lldp_neighbors_detail", lldp_entries ) if len(lldp_entries) == 0: return {} for idx, lldp_entry in enumerate(lldp_entries): local_intf = lldp_entry.pop("local_interface") or lldp_interfaces[idx] # Convert any 'not advertised' to an empty string for field in lldp_entry: if "not advertised" in lldp_entry[field]: lldp_entry[field] = "" # Add field missing on IOS lldp_entry["parent_interface"] = "" # Translate the capability fields lldp_entry[ "remote_system_capab" ] = napalm.base.helpers.transform_lldp_capab( lldp_entry["remote_system_capab"] ) lldp_entry[ "remote_system_enable_capab" ] = napalm.base.helpers.transform_lldp_capab( lldp_entry["remote_system_enable_capab"] ) # Turn the interfaces into their long version local_intf = napalm.base.helpers.canonical_interface_name(local_intf) lldp.setdefault(local_intf, []) lldp[local_intf].append(lldp_entry) return lldp class NXOSDriver(NXOSDriverBase): def __init__(self, hostname, username, password, timeout=60, optional_args=None): super().__init__( hostname, username, password, timeout=timeout, optional_args=optional_args ) if optional_args is None: optional_args = {} # nxos_protocol is there for backwards compatibility, transport is the preferred method self.transport = optional_args.get( "transport", optional_args.get("nxos_protocol", "https") ) if self.transport == "https": self.port = optional_args.get("port", 443) elif self.transport == "http": self.port = optional_args.get("port", 80) self.ssl_verify = optional_args.get("ssl_verify", False) self.platform = "nxos" def open(self): try: self.device = NXOSDevice( host=self.hostname, username=self.username, password=self.password, timeout=self.timeout, port=self.port, transport=self.transport, verify=self.ssl_verify, api_format="jsonrpc", ) self._send_command("show hostname") except (NXAPIConnectionError, NXAPIAuthError): # unable to open connection raise ConnectionException("Cannot connect to {}".format(self.hostname)) def close(self): self.device = None def _send_command(self, command, raw_text=False): """ Wrapper for NX-API show method. Allows more code sharing between NX-API and SSH. """ return self.device.show(command, raw_text=raw_text) def _send_command_list(self, commands): return self.device.config_list(commands) def _send_config(self, commands): if isinstance(commands, py23_compat.string_types): # Has to be a list generator and not generator expression (not JSON serializable) commands = [command for command in commands.splitlines() if command] return self.device.config_list(commands) @staticmethod def _compute_timestamp(stupid_cisco_output): """ Some fields such `uptime` are returned as: 23week(s) 3day(s) This method will determine the epoch of the event. e.g.: 23week(s) 3day(s) -> 1462248287 """ if not stupid_cisco_output or stupid_cisco_output == "never": return -1.0 if "(s)" in stupid_cisco_output: pass elif ":" in stupid_cisco_output: stupid_cisco_output = stupid_cisco_output.replace(":", "hour(s) ", 1) stupid_cisco_output = stupid_cisco_output.replace(":", "minute(s) ", 1) stupid_cisco_output += "second(s)" else: stupid_cisco_output = stupid_cisco_output.replace("d", "day(s) ") stupid_cisco_output = stupid_cisco_output.replace("h", "hour(s)") things = { "second(s)": {"weight": 1}, "minute(s)": {"weight": 60}, "hour(s)": {"weight": 3600}, "day(s)": {"weight": 24 * 3600}, "week(s)": {"weight": 7 * 24 * 3600}, "year(s)": {"weight": 365.25 * 24 * 3600}, } things_keys = things.keys() for part in stupid_cisco_output.split(): for key in things_keys: if key in part: things[key]["count"] = napalm.base.helpers.convert( int, part.replace(key, ""), 0 ) delta = sum( [det.get("count", 0) * det.get("weight") for det in things.values()] ) return time.time() - delta @staticmethod def _get_table_rows(parent_table, table_name, row_name): """ Inconsistent behavior: {'TABLE_intf': [{'ROW_intf': { vs {'TABLE_mac_address': {'ROW_mac_address': [{ vs {'TABLE_vrf': {'ROW_vrf': {'TABLE_adj': {'ROW_adj': { """ if parent_table is None: return [] _table = parent_table.get(table_name) _table_rows = [] if isinstance(_table, list): _table_rows = [_table_row.get(row_name) for _table_row in _table] elif isinstance(_table, dict): _table_rows = _table.get(row_name) if not isinstance(_table_rows, list): _table_rows = [_table_rows] return _table_rows def _get_reply_table(self, result, table_name, row_name): return self._get_table_rows(result, table_name, row_name) def _get_command_table(self, command, table_name, row_name): json_output = self._send_command(command) return self._get_reply_table(json_output, table_name, row_name) def is_alive(self): if self.device: return {"is_alive": True} else: return {"is_alive": False} def _copy_run_start(self): results = self.device.save(filename="startup-config") if not results: msg = "Unable to save running-config to startup-config!" raise CommandErrorException(msg) def _load_cfg_from_checkpoint(self): commands = [ "terminal dont-ask", "rollback running-config file {}".format(self.candidate_cfg), "no terminal dont-ask", ] try: rollback_result = self._send_command_list(commands) except ConnectionError: # requests will raise an error with verbose warning output (don't fail on this). return finally: self.changed = True # For nx-api a list is returned so extract the result associated with the # 'rollback' command. rollback_result = rollback_result[1] msg = ( rollback_result.get("msg") if rollback_result.get("msg") else rollback_result ) error_msg = True if rollback_result.get("error") else False if "Rollback failed." in msg or error_msg: raise ReplaceConfigException(msg) elif rollback_result == []: raise ReplaceConfigException def rollback(self): if self.changed: self.device.rollback(self.rollback_cfg) self._copy_run_start() self.changed = False def get_facts(self): facts = {} facts["vendor"] = "Cisco" show_version = self._send_command("show version") facts["model"] = show_version.get("chassis_id", "") facts["hostname"] = show_version.get("host_name", "") facts["serial_number"] = show_version.get("proc_board_id", "") facts["os_version"] = show_version.get("sys_ver_str", "") uptime_days = show_version.get("kern_uptm_days", 0) uptime_hours = show_version.get("kern_uptm_hrs", 0) uptime_mins = show_version.get("kern_uptm_mins", 0) uptime_secs = show_version.get("kern_uptm_secs", 0) uptime = 0 uptime += uptime_days * 24 * 60 * 60 uptime += uptime_hours * 60 * 60 uptime += uptime_mins * 60 uptime += uptime_secs facts["uptime"] = uptime iface_cmd = "show interface" interfaces_out = self._send_command(iface_cmd) interfaces_body = interfaces_out["TABLE_interface"]["ROW_interface"] interface_list = [intf_data["interface"] for intf_data in interfaces_body] facts["interface_list"] = interface_list hostname_cmd = "show hostname" hostname = self._send_command(hostname_cmd).get("hostname") if hostname: facts["fqdn"] = hostname return facts def get_interfaces(self): interfaces = {} iface_cmd = "show interface" interfaces_out = self._send_command(iface_cmd) interfaces_body = interfaces_out["TABLE_interface"]["ROW_interface"] for interface_details in interfaces_body: interface_name = interface_details.get("interface") interface_mtu = interface_details.get("eth_mtu", 0) interface_mtu = int(interface_mtu) # Earlier version of Nexus returned a list for 'eth_bw' (observed on 7.1(0)N1(1a)) interface_speed = interface_details.get("eth_bw", 0) if isinstance(interface_speed, list): interface_speed = interface_speed[0] interface_speed = int(interface_speed / 1000) if "admin_state" in interface_details: is_up = interface_details.get("admin_state", "") == "up" else: is_up = interface_details.get("state", "") == "up" interfaces[interface_name] = { "is_up": is_up, "is_enabled": (interface_details.get("state") == "up"), "description": py23_compat.text_type( interface_details.get("desc", "").strip('"') ), "last_flapped": self._compute_timestamp( interface_details.get("eth_link_flapped", "") ), "speed": interface_speed, "mtu": interface_mtu, "mac_address": napalm.base.helpers.convert( napalm.base.helpers.mac, interface_details.get("eth_hw_addr") ), } return interfaces def get_bgp_neighbors(self): results = {} bgp_state_dict = { "Idle": {"is_up": False, "is_enabled": True}, "Active": {"is_up": False, "is_enabled": True}, "Open": {"is_up": False, "is_enabled": True}, "Established": {"is_up": True, "is_enabled": True}, "Closing": {"is_up": True, "is_enabled": True}, "Shutdown": {"is_up": False, "is_enabled": False}, } """ af_name_dict = { 'af-id': {'safi': "af-name"}, 'af-id': {'safi': "af-name"}, 'af-id': {'safi': "af-name"} } """ af_name_dict = { 1: {1: "ipv4", 128: "vpnv4"}, 2: {1: "ipv6", 128: "vpnv6"}, 25: {70: "l2vpn"}, } try: cmd = "show bgp all summary vrf all" vrf_list = self._get_command_table(cmd, "TABLE_vrf", "ROW_vrf") except NXAPICommandError: vrf_list = [] for vrf_dict in vrf_list: result_vrf_dict = { "router_id": py23_compat.text_type(vrf_dict["vrf-router-id"]), "peers": {}, } af_list = vrf_dict.get("TABLE_af", {}).get("ROW_af", []) if isinstance(af_list, dict): af_list = [af_list] for af_dict in af_list: saf_dict = af_dict.get("TABLE_saf", {}).get("ROW_saf", {}) neighbors_list = saf_dict.get("TABLE_neighbor", {}).get( "ROW_neighbor", [] ) if isinstance(neighbors_list, dict): neighbors_list = [neighbors_list] for neighbor_dict in neighbors_list: neighborid = napalm.base.helpers.ip(neighbor_dict["neighborid"]) remoteas = napalm.base.helpers.as_number( neighbor_dict["neighboras"] ) state = py23_compat.text_type(neighbor_dict["state"]) bgp_state = bgp_state_dict[state] afid_dict = af_name_dict[int(af_dict["af-id"])] safi_name = afid_dict[int(saf_dict["safi"])] result_peer_dict = { "local_as": int(vrf_dict["vrf-local-as"]), "remote_as": remoteas, "remote_id": neighborid, "is_enabled": bgp_state["is_enabled"], "uptime": -1, "description": "", "is_up": bgp_state["is_up"], "address_family": { safi_name: { "sent_prefixes": -1, "accepted_prefixes": -1, "received_prefixes": int( neighbor_dict["prefixreceived"] ), } }, } result_vrf_dict["peers"][neighborid] = result_peer_dict vrf_name = vrf_dict["vrf-name-out"] if vrf_name == "default": vrf_name = "global" results[vrf_name] = result_vrf_dict return results def cli(self, commands): cli_output = {} if type(commands) is not list: raise TypeError("Please enter a valid list of commands!") for command in commands: command_output = self._send_command(command, raw_text=True) cli_output[py23_compat.text_type(command)] = command_output return cli_output def get_arp_table(self, vrf=""): if vrf: msg = "VRF support has not been added for this getter on this platform." raise NotImplementedError(msg) arp_table = [] command = "show ip arp" arp_table_vrf = self._get_command_table(command, "TABLE_vrf", "ROW_vrf") arp_table_raw = self._get_table_rows(arp_table_vrf[0], "TABLE_adj", "ROW_adj") for arp_table_entry in arp_table_raw: raw_ip = arp_table_entry.get("ip-addr-out") raw_mac = arp_table_entry.get("mac") age = arp_table_entry.get("time-stamp") if age == "-": age_sec = -1.0 elif ":" not in age: # Cisco sometimes returns a sub second arp time 0.411797 try: age_sec = float(age) except ValueError: age_sec = -1.0 else: fields = age.split(":") if len(fields) == 3: try: fields = [float(x) for x in fields] hours, minutes, seconds = fields age_sec = 3600 * hours + 60 * minutes + seconds except ValueError: age_sec = -1.0 age_sec = round(age_sec, 1) interface = py23_compat.text_type(arp_table_entry.get("intf-out")) arp_table.append( { "interface": interface, "mac": napalm.base.helpers.convert( napalm.base.helpers.mac, raw_mac, raw_mac ), "ip": napalm.base.helpers.ip(raw_ip), "age": age_sec, } ) return arp_table def _get_ntp_entity(self, peer_type): ntp_entities = {} command = "show ntp peers" ntp_peers_table = self._get_command_table(command, "TABLE_peers", "ROW_peers") for ntp_peer in ntp_peers_table: if ntp_peer.get("serv_peer", "").strip() != peer_type: continue peer_addr = napalm.base.helpers.ip(ntp_peer.get("PeerIPAddress").strip()) ntp_entities[peer_addr] = {} return ntp_entities def get_ntp_peers(self): return self._get_ntp_entity("Peer") def get_ntp_servers(self): return self._get_ntp_entity("Server") def get_ntp_stats(self): ntp_stats = [] command = "show ntp peer-status" ntp_stats_table = self._get_command_table( command, "TABLE_peersstatus", "ROW_peersstatus" ) for ntp_peer in ntp_stats_table: peer_address = napalm.base.helpers.ip(ntp_peer.get("remote").strip()) syncmode = ntp_peer.get("syncmode") stratum = int(ntp_peer.get("st")) hostpoll = int(ntp_peer.get("poll")) reachability = int(ntp_peer.get("reach")) delay = float(ntp_peer.get("delay")) ntp_stats.append( { "remote": peer_address, "synchronized": (syncmode == "*"), "referenceid": peer_address, "stratum": stratum, "type": "", "when": "", "hostpoll": hostpoll, "reachability": reachability, "delay": delay, "offset": 0.0, "jitter": 0.0, } ) return ntp_stats def get_interfaces_ip(self): interfaces_ip = {} ipv4_command = "show ip interface" ipv4_interf_table_vrf = self._get_command_table( ipv4_command, "TABLE_intf", "ROW_intf" ) for interface in ipv4_interf_table_vrf: interface_name = py23_compat.text_type(interface.get("intf-name", "")) addr_str = interface.get("prefix") unnumbered = py23_compat.text_type(interface.get("unnum-intf", "")) if addr_str: address = napalm.base.helpers.ip(addr_str) prefix = int(interface.get("masklen", "")) if interface_name not in interfaces_ip.keys(): interfaces_ip[interface_name] = {} if "ipv4" not in interfaces_ip[interface_name].keys(): interfaces_ip[interface_name]["ipv4"] = {} if address not in interfaces_ip[interface_name].get("ipv4"): interfaces_ip[interface_name]["ipv4"][address] = {} interfaces_ip[interface_name]["ipv4"][address].update( {"prefix_length": prefix} ) elif unnumbered: for interf in ipv4_interf_table_vrf: interf_name = py23_compat.text_type(interf.get("intf-name", "")) if interf_name == unnumbered: address = napalm.base.helpers.ip(interf.get("prefix")) prefix = int(interf.get("masklen", "")) if interface_name not in interfaces_ip.keys(): interfaces_ip[interface_name] = {} if "ipv4" not in interfaces_ip[interface_name].keys(): interfaces_ip[interface_name]["ipv4"] = {} if address not in interfaces_ip[interface_name].get("ipv4"): interfaces_ip[interface_name]["ipv4"][address] = {} interfaces_ip[interface_name]["ipv4"][address].update( {"prefix_length": prefix} ) secondary_addresses = interface.get("TABLE_secondary_address", {}).get( "ROW_secondary_address", [] ) if type(secondary_addresses) is dict: secondary_addresses = [secondary_addresses] for secondary_address in secondary_addresses: secondary_address_ip = napalm.base.helpers.ip( secondary_address.get("prefix1") ) secondary_address_prefix = int(secondary_address.get("masklen1", "")) if "ipv4" not in interfaces_ip[interface_name].keys(): interfaces_ip[interface_name]["ipv4"] = {} if secondary_address_ip not in interfaces_ip[interface_name].get( "ipv4" ): interfaces_ip[interface_name]["ipv4"][secondary_address_ip] = {} interfaces_ip[interface_name]["ipv4"][secondary_address_ip].update( {"prefix_length": secondary_address_prefix} ) ipv6_command = "show ipv6 interface" ipv6_interf_table_vrf = self._get_command_table( ipv6_command, "TABLE_intf", "ROW_intf" ) for interface in ipv6_interf_table_vrf: interface_name = py23_compat.text_type(interface.get("intf-name", "")) if interface_name not in interfaces_ip.keys(): interfaces_ip[interface_name] = {} if "ipv6" not in interfaces_ip[interface_name].keys(): interfaces_ip[interface_name]["ipv6"] = {} if "addr" not in interface.keys(): # Handle nexus 9000 ipv6 interface output addrs = [addr["addr"] for addr in interface["TABLE_addr"]["ROW_addr"]] interface["addr"] = addrs if type(interface.get("addr", "")) is list: for ipv6_address in interface.get("addr", ""): address = napalm.base.helpers.ip(ipv6_address.split("/")[0]) prefix = int(ipv6_address.split("/")[-1]) if address not in interfaces_ip[interface_name].get("ipv6"): interfaces_ip[interface_name]["ipv6"][address] = {} interfaces_ip[interface_name]["ipv6"][address].update( {"prefix_length": prefix} ) else: address = napalm.base.helpers.ip( interface.get("addr", "").split("/")[0] ) prefix = interface.get("prefix", "").split("/")[-1] if prefix: prefix = int(interface.get("prefix", "").split("/")[-1]) else: prefix = 128 if address not in interfaces_ip[interface_name].get("ipv6"): interfaces_ip[interface_name]["ipv6"][address] = {} interfaces_ip[interface_name]["ipv6"][address].update( {"prefix_length": prefix} ) return interfaces_ip def get_mac_address_table(self): mac_table = [] command = "show mac address-table" mac_table_raw = self._get_command_table( command, "TABLE_mac_address", "ROW_mac_address" ) for mac_entry in mac_table_raw: raw_mac = mac_entry.get("disp_mac_addr") interface = py23_compat.text_type(mac_entry.get("disp_port")) try: vlan = int(mac_entry.get("disp_vlan")) except ValueError: vlan = 0 active = True static = mac_entry.get("disp_is_static") != "0" moves = 0 last_move = 0.0 mac_table.append( { "mac": napalm.base.helpers.mac(raw_mac), "interface": interface, "vlan": vlan, "active": active, "static": static, "moves": moves, "last_move": last_move, } ) return mac_table def get_snmp_information(self): snmp_information = {} snmp_command = "show running-config" snmp_raw_output = self.cli([snmp_command]).get(snmp_command, "") snmp_config = napalm.base.helpers.textfsm_extractor( self, "snmp_config", snmp_raw_output ) if not snmp_config: return snmp_information snmp_information = { "contact": py23_compat.text_type(""), "location": py23_compat.text_type(""), "community": {}, "chassis_id": py23_compat.text_type(""), } for snmp_entry in snmp_config: contact = py23_compat.text_type(snmp_entry.get("contact", "")) if contact: snmp_information["contact"] = contact location = py23_compat.text_type(snmp_entry.get("location", "")) if location: snmp_information["location"] = location community_name = py23_compat.text_type(snmp_entry.get("community", "")) if not community_name: continue if community_name not in snmp_information["community"].keys(): snmp_information["community"][community_name] = { "acl": py23_compat.text_type(snmp_entry.get("acl", "")), "mode": py23_compat.text_type(snmp_entry.get("mode", "").lower()), } else: acl = py23_compat.text_type(snmp_entry.get("acl", "")) if acl: snmp_information["community"][community_name]["acl"] = acl mode = py23_compat.text_type(snmp_entry.get("mode", "").lower()) if mode: snmp_information["community"][community_name]["mode"] = mode return snmp_information def get_users(self): _CISCO_TO_CISCO_MAP = {"network-admin": 15, "network-operator": 5} _DEFAULT_USER_DICT = {"password": "", "level": 0, "sshkeys": []} users = {} command = "show running-config" section_username_raw_output = self.cli([command]).get(command, "") section_username_tabled_output = napalm.base.helpers.textfsm_extractor( self, "users", section_username_raw_output ) for user in section_username_tabled_output: username = user.get("username", "") if not username: continue if username not in users: users[username] = _DEFAULT_USER_DICT.copy() password = user.get("password", "") if password: users[username]["password"] = py23_compat.text_type(password.strip()) level = 0 role = user.get("role", "") if role.startswith("priv"): level = int(role.split("-")[-1]) else: level = _CISCO_TO_CISCO_MAP.get(role, 0) if level > users.get(username).get("level"): # unfortunately on Cisco you can set different priv levels for the same user # Good news though: the device will consider the highest level users[username]["level"] = level sshkeytype = user.get("sshkeytype", "") sshkeyvalue = user.get("sshkeyvalue", "") if sshkeytype and sshkeyvalue: if sshkeytype not in ["ssh-rsa", "ssh-dsa"]: continue users[username]["sshkeys"].append(py23_compat.text_type(sshkeyvalue)) return users def get_network_instances(self, name=""): """ get_network_instances implementation for NX-OS """ # command 'show vrf detail' returns all VRFs with detailed information # format: list of dictionaries with keys such as 'vrf_name' and 'rd' command = "show vrf detail" vrf_table_raw = self._get_command_table(command, "TABLE_vrf", "ROW_vrf") # command 'show vrf interface' returns all interfaces including their assigned VRF # format: list of dictionaries with keys 'if_name', 'vrf_name', 'vrf_id' and 'soo' command = "show vrf interface" intf_table_raw = self._get_command_table(command, "TABLE_if", "ROW_if") # create a dictionary with key = 'vrf_name' and value = list of interfaces vrf_intfs = defaultdict(list) for intf in intf_table_raw: vrf_intfs[intf["vrf_name"]].append(py23_compat.text_type(intf["if_name"])) vrfs = {} for vrf in vrf_table_raw: vrf_name = py23_compat.text_type(vrf.get("vrf_name")) vrfs[vrf_name] = {} vrfs[vrf_name]["name"] = vrf_name # differentiate between VRF type 'DEFAULT_INSTANCE' and 'L3VRF' if vrf_name == "default": vrfs[vrf_name]["type"] = "DEFAULT_INSTANCE" else: vrfs[vrf_name]["type"] = "L3VRF" vrfs[vrf_name]["state"] = { "route_distinguisher": py23_compat.text_type(vrf.get("rd")) } # convert list of interfaces (vrf_intfs[vrf_name]) to expected format # format = dict with key = interface name and empty values vrfs[vrf_name]["interfaces"] = {} vrfs[vrf_name]["interfaces"]["interface"] = dict.fromkeys( vrf_intfs[vrf_name], {} ) # if name of a specific VRF was passed as an argument # only return results for this particular VRF if name: if name in vrfs.keys(): return {py23_compat.text_type(name): vrfs[name]} else: return {} # else return results for all VRFs else: return vrfs
38.911111
95
0.537801
7952cf6f77f4ac9948de6020fb529933a715bc93
337
py
Python
pythran/tests/openmp.legacy/omp_parallel_private.py
xmar/pythran
dbf2e8b70ed1e4d4ac6b5f26ead4add940a72592
[ "BSD-3-Clause" ]
null
null
null
pythran/tests/openmp.legacy/omp_parallel_private.py
xmar/pythran
dbf2e8b70ed1e4d4ac6b5f26ead4add940a72592
[ "BSD-3-Clause" ]
null
null
null
pythran/tests/openmp.legacy/omp_parallel_private.py
xmar/pythran
dbf2e8b70ed1e4d4ac6b5f26ead4add940a72592
[ "BSD-3-Clause" ]
1
2017-03-12T20:32:36.000Z
2017-03-12T20:32:36.000Z
def omp_parallel_private(): sum = 0 num_threads = 0 if 'omp parallel': sum1 = 7 'omp for' for i in xrange(1, 1000): sum1 += i if 'omp critical': sum += sum1 num_threads += 1 known_sum = (999 * 1000) / 2 + 7 * num_threads return known_sum == sum
18.722222
50
0.486647
7952cffea3bdbe7a056dbe492ad7a909cd23fe13
17,818
py
Python
models/external_functions.py
fyviezhao/dressing-in-order
63790663ad0420d9d2dabed22d5c56dd40422313
[ "BSD-3-Clause" ]
null
null
null
models/external_functions.py
fyviezhao/dressing-in-order
63790663ad0420d9d2dabed22d5c56dd40422313
[ "BSD-3-Clause" ]
null
null
null
models/external_functions.py
fyviezhao/dressing-in-order
63790663ad0420d9d2dabed22d5c56dd40422313
[ "BSD-3-Clause" ]
null
null
null
""" Functions are modified on top of GFLA. GFLA's license: https://github.com/RenYurui/Global-Flow-Local-Attention/blob/master/LICENSE.md """ import torch import torch.nn as nn import torchvision.models as models import torch.nn.functional as F import os import torchvision.transforms as transforms import numpy as np class GANLoss(nn.Module): """Define different GAN objectives. The GANLoss class abstracts away the need to create the target label tensor that has the same size as the input. """ def __init__(self, gan_mode, target_real_label=1.0, target_fake_label=0.0): """ Initialize the GANLoss class. Parameters: gan_mode (str) - - the type of GAN objective. It currently supports vanilla, lsgan, and wgangp. target_real_label (bool) - - label for a real image target_fake_label (bool) - - label of a fake image Note: Do not use sigmoid as the last layer of Discriminator. LSGAN needs no sigmoid. vanilla GANs will handle it with BCEWithLogitsLoss. """ super(GANLoss, self).__init__() self.register_buffer('real_label', torch.tensor(target_real_label)) self.register_buffer('fake_label', torch.tensor(target_fake_label)) self.gan_mode = gan_mode if gan_mode == 'lsgan': self.loss = nn.MSELoss() elif gan_mode == 'vanilla': self.loss = nn.BCEWithLogitsLoss() elif gan_mode in ['wgangp']: self.loss = None else: raise NotImplementedError('gan mode %s not implemented' % gan_mode) def get_target_tensor(self, prediction, target_is_real): """Create label tensors with the same size as the input. Parameters: prediction (tensor) - - tpyically the prediction from a discriminator target_is_real (bool) - - if the ground truth label is for real images or fake images Returns: A label tensor filled with ground truth label, and with the size of the input """ if target_is_real: target_tensor = self.real_label else: target_tensor = self.fake_label return target_tensor.expand_as(prediction) def __call__(self, prediction, target_is_real): """Calculate loss given Discriminator's output and grount truth labels. Parameters: prediction (tensor) - - tpyically the prediction output from a discriminator target_is_real (bool) - - if the ground truth label is for real images or fake images Returns: the calculated loss. """ if self.gan_mode in ['lsgan', 'vanilla']: target_tensor = self.get_target_tensor(prediction, target_is_real) loss = self.loss(prediction, target_tensor) elif self.gan_mode == 'wgangp': if target_is_real: loss = -prediction.mean() else: loss = prediction.mean() return loss def cal_gradient_penalty(netD, real_data, fake_data, device, type='mixed', constant=1.0, lambda_gp=10.0): """Calculate the gradient penalty loss, used in WGAN-GP paper https://arxiv.org/abs/1704.00028 Arguments: netD (network) -- discriminator network real_data (tensor array) -- real images fake_data (tensor array) -- generated images from the generator device (str) -- GPU / CPU: from torch.device('cuda:{}'.format(self.gpu_ids[0])) if self.gpu_ids else torch.device('cpu') type (str) -- if we mix real and fake data or not [real | fake | mixed]. constant (float) -- the constant used in formula ( | |gradient||_2 - constant)^2 lambda_gp (float) -- weight for this loss Returns the gradient penalty loss """ if lambda_gp > 0.0: if type == 'real': # either use real images, fake images, or a linear interpolation of two. interpolatesv = real_data elif type == 'fake': interpolatesv = fake_data elif type == 'mixed': alpha = torch.rand(real_data.shape[0], 1, device=device) alpha = alpha.expand(real_data.shape[0], real_data.nelement() // real_data.shape[0]).contiguous().view(*real_data.shape) interpolatesv = alpha * real_data + ((1 - alpha) * fake_data) else: raise NotImplementedError('{} not implemented'.format(type)) interpolatesv.requires_grad_(True) disc_interpolates = netD(interpolatesv) gradients = torch.autograd.grad(outputs=disc_interpolates, inputs=interpolatesv, grad_outputs=torch.ones(disc_interpolates.size()).to(device), create_graph=True, retain_graph=True, only_inputs=True) gradients = gradients[0].view(real_data.size(0), -1) # flat the data gradient_penalty = (((gradients + 1e-16).norm(2, dim=1) - constant) ** 2).mean() * lambda_gp # added eps return gradient_penalty, gradients else: return 0.0, None class MultiAffineRegularizationLoss(nn.Module): def __init__(self, kz_dic): super(MultiAffineRegularizationLoss, self).__init__() self.kz_dic=kz_dic self.method_dic={} for key in kz_dic: instance = AffineRegularizationLoss(kz_dic[key]) self.method_dic[key] = instance self.layers = sorted(kz_dic, reverse=True) def __call__(self, flow_fields): loss=0 for i in range(len(flow_fields)): method = self.method_dic[self.layers[i]] loss += method(flow_fields[i]) return loss class AffineRegularizationLoss(nn.Module): """docstring for AffineRegularizationLoss""" # kernel_size: kz def __init__(self, kz): super(AffineRegularizationLoss, self).__init__() self.kz = kz self.criterion = torch.nn.L1Loss() from models.networks.block_extractor.block_extractor import BlockExtractor from models.networks.local_attn_reshape.local_attn_reshape import LocalAttnReshape self.extractor = BlockExtractor(kernel_size=kz) self.reshape = LocalAttnReshape() temp = np.arange(kz) A = np.ones([kz*kz, 3]) A[:, 0] = temp.repeat(kz) A[:, 1] = temp.repeat(kz).reshape((kz,kz)).transpose().reshape(kz**2) AH = A.transpose() k = np.dot(A, np.dot(np.linalg.inv(np.dot(AH, A)), AH)) - np.identity(kz**2) #K = (A((AH A)^-1)AH - I) self.kernel = np.dot(k.transpose(), k) self.kernel = torch.from_numpy(self.kernel).unsqueeze(1).view(kz**2, kz, kz).unsqueeze(1) def __call__(self, flow_fields): grid = self.flow2grid(flow_fields) grid_x = grid[:,0,:,:].unsqueeze(1) grid_y = grid[:,1,:,:].unsqueeze(1) weights = self.kernel.type_as(flow_fields) #import pdb; pdb.set_trace() loss_x = self.calculate_loss(grid_x, weights) loss_y = self.calculate_loss(grid_y, weights) return loss_x+loss_y def calculate_loss(self, grid, weights): results = nn.functional.conv2d(grid, weights) # KH K B [b, kz*kz, w, h] b, c, h, w = results.size() kernels_new = self.reshape(results, self.kz) f = torch.zeros(b, 2, h, w).type_as(kernels_new) + float(int(self.kz/2)) grid_H = self.extractor(grid, f) result = torch.nn.functional.avg_pool2d(grid_H*kernels_new, self.kz, self.kz) loss = torch.mean(result)*self.kz**2 return loss def flow2grid(self, flow_field): b,c,h,w = flow_field.size() x = torch.arange(w).view(1, -1).expand(h, -1).type_as(flow_field).float() y = torch.arange(h).view(-1, 1).expand(-1, w).type_as(flow_field).float() grid = torch.stack([x,y], dim=0) grid = grid.unsqueeze(0).expand(b, -1, -1, -1) return flow_field+grid class VGGLoss(nn.Module): r""" Perceptual loss, VGG-based https://arxiv.org/abs/1603.08155 https://github.com/dxyang/StyleTransfer/blob/master/utils.py """ def __init__(self, weights=[1.0, 1.0, 1.0, 1.0, 1.0]): super(VGGLoss, self).__init__() self.add_module('vgg', VGG19()) self.criterion = torch.nn.L1Loss() self.weights = weights def compute_gram(self, x): b, ch, h, w = x.size() f = x.view(b, ch, w * h) f_T = f.transpose(1, 2) G = f.bmm(f_T) / (h * w * ch) return G def __call__(self, x, y, last_only=False, content_only=False): # Compute features x_vgg, y_vgg = self.vgg(x), self.vgg(y) if not last_only: content_loss = 0.0 content_loss += self.weights[0] * self.criterion(x_vgg['relu1_1'], y_vgg['relu1_1']) content_loss += self.weights[1] * self.criterion(x_vgg['relu2_1'], y_vgg['relu2_1']) content_loss += self.weights[2] * self.criterion(x_vgg['relu3_1'], y_vgg['relu3_1']) content_loss += self.weights[3] * self.criterion(x_vgg['relu4_1'], y_vgg['relu4_1']) content_loss += self.weights[4] * self.criterion(x_vgg['relu5_1'], y_vgg['relu5_1']) if content_only: return content_loss # Compute loss style_loss = 0.0 style_loss += self.criterion(self.compute_gram(x_vgg['relu2_2']), self.compute_gram(y_vgg['relu2_2'])) style_loss += self.criterion(self.compute_gram(x_vgg['relu3_4']), self.compute_gram(y_vgg['relu3_4'])) style_loss += self.criterion(self.compute_gram(x_vgg['relu4_4']), self.compute_gram(y_vgg['relu4_4'])) style_loss += self.criterion(self.compute_gram(x_vgg['relu5_2']), self.compute_gram(y_vgg['relu5_2'])) else: content_loss = self.criterion(x_vgg['relu5_1'], y_vgg['relu5_1']) if content_only: return content_loss style_loss = self.criterion(self.compute_gram(x_vgg['relu5_2']), self.compute_gram(y_vgg['relu5_2'])) return content_loss, style_loss class PerceptualCorrectness(nn.Module): r""" """ def __init__(self, layer=['rel1_1','relu2_1','relu3_1','relu4_1']): super(PerceptualCorrectness, self).__init__() self.add_module('vgg', VGG19()) self.layer = layer self.eps=1e-8 from models.networks.resample2d_package.resample2d import Resample2d self.resample = Resample2d(4, 1, sigma=2) def __call__(self, target, source, flow_list, used_layers, mask=None, use_bilinear_sampling=False): used_layers=sorted(used_layers, reverse=True) # self.target=target # self.source=source self.target_vgg, self.source_vgg = self.vgg(target), self.vgg(source) loss = 0 for i in range(len(flow_list)): loss += self.calculate_loss(flow_list[i], self.layer[used_layers[i]], mask, use_bilinear_sampling) return loss def calculate_loss(self, flow, layer, mask=None, use_bilinear_sampling=False): target_vgg = self.target_vgg[layer] source_vgg = self.source_vgg[layer] [b, c, h, w] = target_vgg.shape # maps = F.interpolate(maps, [h,w]).view(b,-1) flow = F.interpolate(flow, [h,w]) target_all = target_vgg.view(b, c, -1) #[b C N2] source_all = source_vgg.view(b, c, -1).transpose(1,2) #[b N2 C] source_norm = source_all/(source_all.norm(dim=2, keepdim=True)+self.eps) target_norm = target_all/(target_all.norm(dim=1, keepdim=True)+self.eps) correction = torch.bmm(source_norm, target_norm) #[b N2 N2] (correction_max,max_indices) = torch.max(correction, dim=1) # interple with bilinear sampling if use_bilinear_sampling: input_sample = self.bilinear_warp(source_vgg, flow).view(b, c, -1) else: input_sample = self.resample(source_vgg, flow).view(b, c, -1) correction_sample = F.cosine_similarity(input_sample, target_all) #[b 1 N2] loss_map = torch.exp(-correction_sample/(correction_max+self.eps)) if mask is None: loss = torch.mean(loss_map) - torch.exp(torch.tensor(-1).type_as(loss_map)) else: mask=F.interpolate(mask, size=(target_vgg.size(2), target_vgg.size(3))) mask=mask.view(-1, target_vgg.size(2)*target_vgg.size(3)) loss_map = loss_map - torch.exp(torch.tensor(-1).type_as(loss_map)) loss = torch.sum(mask * loss_map)/(torch.sum(mask)+self.eps) # print(correction_sample[0,2076:2082]) # print(correction_max[0,2076:2082]) # coor_x = [32,32] # coor = max_indices[0,32+32*64] # coor_y = [int(coor%64), int(coor/64)] # source = F.interpolate(self.source, [64,64]) # target = F.interpolate(self.target, [64,64]) # source_i = source[0] # target_i = target[0] # source_i = source_i.view(3, -1) # source_i[:,coor]=-1 # source_i[0,coor]=1 # source_i = source_i.view(3,64,64) # target_i[:,32,32]=-1 # target_i[0,32,32]=1 # lists = str(int(torch.rand(1)*100)) # img_numpy = util.tensor2im(source_i.data) # util.save_image(img_numpy, 'source'+lists+'.png') # img_numpy = util.tensor2im(target_i.data) # util.save_image(img_numpy, 'target'+lists+'.png') return loss def bilinear_warp(self, source, flow): [b, c, h, w] = source.shape x = torch.arange(w).view(1, -1).expand(h, -1).type_as(source).float() / (w-1) y = torch.arange(h).view(-1, 1).expand(-1, w).type_as(source).float() / (h-1) grid = torch.stack([x,y], dim=0) grid = grid.unsqueeze(0).expand(b, -1, -1, -1) grid = 2*grid - 1 flow = 2*flow/torch.tensor([w, h]).view(1, 2, 1, 1).expand(b, -1, h, w).type_as(flow) grid = (grid+flow).permute(0, 2, 3, 1) input_sample = F.grid_sample(source, grid).view(b, c, -1) return input_sample class VGG19(torch.nn.Module): def __init__(self): super(VGG19, self).__init__() features = models.vgg19(pretrained=True).features self.relu1_1 = torch.nn.Sequential() self.relu1_2 = torch.nn.Sequential() self.relu2_1 = torch.nn.Sequential() self.relu2_2 = torch.nn.Sequential() self.relu3_1 = torch.nn.Sequential() self.relu3_2 = torch.nn.Sequential() self.relu3_3 = torch.nn.Sequential() self.relu3_4 = torch.nn.Sequential() self.relu4_1 = torch.nn.Sequential() self.relu4_2 = torch.nn.Sequential() self.relu4_3 = torch.nn.Sequential() self.relu4_4 = torch.nn.Sequential() self.relu5_1 = torch.nn.Sequential() self.relu5_2 = torch.nn.Sequential() self.relu5_3 = torch.nn.Sequential() self.relu5_4 = torch.nn.Sequential() for x in range(2): self.relu1_1.add_module(str(x), features[x]) for x in range(2, 4): self.relu1_2.add_module(str(x), features[x]) for x in range(4, 7): self.relu2_1.add_module(str(x), features[x]) for x in range(7, 9): self.relu2_2.add_module(str(x), features[x]) for x in range(9, 12): self.relu3_1.add_module(str(x), features[x]) for x in range(12, 14): self.relu3_2.add_module(str(x), features[x]) for x in range(14, 16): self.relu3_2.add_module(str(x), features[x]) for x in range(16, 18): self.relu3_4.add_module(str(x), features[x]) for x in range(18, 21): self.relu4_1.add_module(str(x), features[x]) for x in range(21, 23): self.relu4_2.add_module(str(x), features[x]) for x in range(23, 25): self.relu4_3.add_module(str(x), features[x]) for x in range(25, 27): self.relu4_4.add_module(str(x), features[x]) for x in range(27, 30): self.relu5_1.add_module(str(x), features[x]) for x in range(30, 32): self.relu5_2.add_module(str(x), features[x]) for x in range(32, 34): self.relu5_3.add_module(str(x), features[x]) for x in range(34, 36): self.relu5_4.add_module(str(x), features[x]) # don't need the gradients, just want the features for param in self.parameters(): param.requires_grad = False def forward(self, x): relu1_1 = self.relu1_1(x) relu1_2 = self.relu1_2(relu1_1) relu2_1 = self.relu2_1(relu1_2) relu2_2 = self.relu2_2(relu2_1) relu3_1 = self.relu3_1(relu2_2) relu3_2 = self.relu3_2(relu3_1) relu3_3 = self.relu3_3(relu3_2) relu3_4 = self.relu3_4(relu3_3) relu4_1 = self.relu4_1(relu3_4) relu4_2 = self.relu4_2(relu4_1) relu4_3 = self.relu4_3(relu4_2) relu4_4 = self.relu4_4(relu4_3) relu5_1 = self.relu5_1(relu4_4) relu5_2 = self.relu5_2(relu5_1) relu5_3 = self.relu5_3(relu5_2) relu5_4 = self.relu5_4(relu5_3) out = { 'relu1_1': relu1_1, 'relu1_2': relu1_2, 'relu2_1': relu2_1, 'relu2_2': relu2_2, 'relu3_1': relu3_1, 'relu3_2': relu3_2, 'relu3_3': relu3_3, 'relu3_4': relu3_4, 'relu4_1': relu4_1, 'relu4_2': relu4_2, 'relu4_3': relu4_3, 'relu4_4': relu4_4, 'relu5_1': relu5_1, 'relu5_2': relu5_2, 'relu5_3': relu5_3, 'relu5_4': relu5_4, } return out
39.861298
143
0.602986
7952d2538afb2a1c560af0897c14f0bc2c2e1a03
124
py
Python
npm/apps.py
alexsilva/django-npm
8d5c55c0219fda074ceabdd93b3806e65a008d9e
[ "MIT" ]
null
null
null
npm/apps.py
alexsilva/django-npm
8d5c55c0219fda074ceabdd93b3806e65a008d9e
[ "MIT" ]
null
null
null
npm/apps.py
alexsilva/django-npm
8d5c55c0219fda074ceabdd93b3806e65a008d9e
[ "MIT" ]
1
2019-10-17T15:13:13.000Z
2019-10-17T15:13:13.000Z
from django.apps import AppConfig class NPMConfig(AppConfig): name = 'npm' verbose_name = "NPM package installer"
17.714286
42
0.725806
7952d2b747f6fc0fb56f9bda37d301b79d4f78ec
6,353
py
Python
seahub/api2/endpoints/repo_trash.py
weimens/seahub
5ecf78ed7a2ddc72a23961804ee41be21c24893f
[ "Apache-2.0" ]
101
2021-05-16T06:00:03.000Z
2021-12-01T02:02:29.000Z
seahub/api2/endpoints/repo_trash.py
weimens/seahub
5ecf78ed7a2ddc72a23961804ee41be21c24893f
[ "Apache-2.0" ]
null
null
null
seahub/api2/endpoints/repo_trash.py
weimens/seahub
5ecf78ed7a2ddc72a23961804ee41be21c24893f
[ "Apache-2.0" ]
2
2021-10-19T05:22:40.000Z
2022-01-12T03:55:34.000Z
# Copyright (c) 2012-2016 Seafile Ltd. import stat import logging from rest_framework.authentication import SessionAuthentication from rest_framework.permissions import IsAuthenticated from rest_framework.response import Response from rest_framework.views import APIView from rest_framework import status from seahub.api2.throttling import UserRateThrottle from seahub.api2.authentication import TokenAuthentication from seahub.api2.utils import api_error from seahub.signals import clean_up_repo_trash from seahub.utils.timeutils import timestamp_to_isoformat_timestr from seahub.utils.repo import get_repo_owner from seahub.views import check_folder_permission from seahub.group.utils import is_group_admin from seahub.api2.endpoints.group_owned_libraries import get_group_id_by_repo_owner from seaserv import seafile_api from pysearpc import SearpcError from constance import config logger = logging.getLogger(__name__) class RepoTrash(APIView): authentication_classes = (TokenAuthentication, SessionAuthentication) permission_classes = (IsAuthenticated, ) throttle_classes = (UserRateThrottle, ) def get_item_info(self, trash_item): item_info = { 'parent_dir': trash_item.basedir, 'obj_name': trash_item.obj_name, 'deleted_time': timestamp_to_isoformat_timestr(trash_item.delete_time), 'scan_stat': trash_item.scan_stat, 'commit_id': trash_item.commit_id, } if stat.S_ISDIR(trash_item.mode): is_dir = True else: is_dir = False item_info['is_dir'] = is_dir item_info['size'] = trash_item.file_size if not is_dir else '' item_info['obj_id'] = trash_item.obj_id if not is_dir else '' return item_info def get(self, request, repo_id, format=None): """ Return deleted files/dirs of a repo/folder Permission checking: 1. all authenticated user can perform this action. """ # argument check path = request.GET.get('path', '/') # resource check repo = seafile_api.get_repo(repo_id) if not repo: error_msg = 'Library %s not found.' % repo_id return api_error(status.HTTP_404_NOT_FOUND, error_msg) try: dir_id = seafile_api.get_dir_id_by_path(repo_id, path) except SearpcError as e: logger.error(e) error_msg = 'Internal Server Error' return api_error(status.HTTP_500_INTERNAL_SERVER_ERROR, error_msg) if not dir_id: error_msg = 'Folder %s not found.' % path return api_error(status.HTTP_404_NOT_FOUND, error_msg) # permission check if check_folder_permission(request, repo_id, path) is None: error_msg = 'Permission denied.' return api_error(status.HTTP_403_FORBIDDEN, error_msg) try: show_days = int(request.GET.get('show_days', '0')) except ValueError: show_days = 0 if show_days < 0: error_msg = 'show_days invalid.' return api_error(status.HTTP_400_BAD_REQUEST, error_msg) scan_stat = request.GET.get('scan_stat', None) try: # a list will be returned, with at least 1 item in it # the last item is not a deleted entry, and it contains an attribute named 'scan_stat' deleted_entries = seafile_api.get_deleted(repo_id, show_days, path, scan_stat) except Exception as e: logger.error(e) error_msg = 'Internal Server Error' return api_error(status.HTTP_500_INTERNAL_SERVER_ERROR, error_msg) scan_stat = deleted_entries[-1].scan_stat more = True if scan_stat is not None else False items = [] if len(deleted_entries) > 1: entries_without_scan_stat = deleted_entries[0:-1] # sort entry by delete time entries_without_scan_stat.sort( key=lambda x: x.delete_time, reverse=True) for item in entries_without_scan_stat: item_info = self.get_item_info(item) items.append(item_info) result = { 'data': items, 'more': more, 'scan_stat': scan_stat, } return Response(result) def delete(self, request, repo_id, format=None): """ Clean library's trash. Permission checking: 1. repo owner can perform this action. 2. is group admin. """ # argument check try: keep_days = int(request.data.get('keep_days', 0)) except ValueError: error_msg = 'keep_days invalid.' return api_error(status.HTTP_400_BAD_REQUEST, error_msg) # resource check repo = seafile_api.get_repo(repo_id) if not repo: error_msg = 'Library %s not found.' % repo_id return api_error(status.HTTP_404_NOT_FOUND, error_msg) # permission check username = request.user.username repo_owner = get_repo_owner(request, repo_id) if not config.ENABLE_USER_CLEAN_TRASH: error_msg = 'Permission denied.' return api_error(status.HTTP_403_FORBIDDEN, error_msg) if '@seafile_group' in repo_owner: group_id = get_group_id_by_repo_owner(repo_owner) if not is_group_admin(group_id, username): error_msg = 'Permission denied.' return api_error(status.HTTP_403_FORBIDDEN, error_msg) else: if username != repo_owner: error_msg = 'Permission denied.' return api_error(status.HTTP_403_FORBIDDEN, error_msg) try: seafile_api.clean_up_repo_history(repo_id, keep_days) org_id = None if not request.user.org else request.user.org.org_id clean_up_repo_trash.send(sender=None, org_id=org_id, operator=username, repo_id=repo_id, repo_name=repo.name, repo_owner=repo_owner, days=keep_days) except Exception as e: logger.error(e) error_msg = 'Internal Server Error' return api_error(status.HTTP_500_INTERNAL_SERVER_ERROR, error_msg) return Response({'success': True})
35.294444
98
0.647096
7952d3806dbc35bce4dfeb2e6e4b9d9cca068fae
1,108
py
Python
tests/passive/test_all_ports.py
jonyboi396825/COM-Server
e4e8a1a5e9f86c1036ebb7ac3d39c20b63e7e905
[ "MIT" ]
4
2021-11-09T04:11:51.000Z
2022-01-30T01:03:16.000Z
tests/passive/test_all_ports.py
jonyboi396825/COM-Server
e4e8a1a5e9f86c1036ebb7ac3d39c20b63e7e905
[ "MIT" ]
55
2021-11-15T16:36:25.000Z
2022-03-10T04:48:08.000Z
tests/passive/test_all_ports.py
jonyboi396825/COM-Server
e4e8a1a5e9f86c1036ebb7ac3d39c20b63e7e905
[ "MIT" ]
1
2021-11-12T02:14:07.000Z
2021-11-12T02:14:07.000Z
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Tests if lists ports properly. Needs Arduino microcontroller to be plugged in to test (otherwise skipped). """ import glob import sys import re from com_server.tools import all_ports import pytest if sys.platform.startswith("linux"): # usb and acm for linux only _usb = glob.glob("/dev/ttyUSB[0-9]*") _acm = glob.glob("/dev/ttyACM[0-9]*") MATCH = "/dev/ttyUSB[0-9]*|/dev/ttyACM[0-9]*" elif sys.platform.startswith("darwin"): # mac; use cu.*, not tty.* _usb = glob.glob("/dev/cu.usbserial*") _acm = glob.glob("/dev/cu.usbmodem*") MATCH = "/dev/cu.usb(serial|modem).*" elif sys.platform.startswith("win"): # windows _usb = [f"COM{i+1}" for i in range(256)] _acm = [] MATCH = "COM[0-9]+" else: # platform not supported for the test _usb, _acm = [], [] @pytest.mark.skipif(len(_usb + _acm) <= 0, reason="port not connected") def test_ports(): """ Tests if `all_ports` is listing properly. """ ports = [a for a, _, _ in all_ports() if re.match(MATCH, a)] assert len(ports) > 0
24.622222
106
0.624549
7952d4429bcacf01ac83eb864d49b7b030f98b62
5,648
py
Python
core/webserver.py
RASSec/Mario-Mario-
7bc3e6fbf9548ec4be0864c47b250f5e1fbb0a28
[ "Apache-2.0" ]
1
2021-11-09T08:55:10.000Z
2021-11-09T08:55:10.000Z
core/webserver.py
RASSec/Mario-Mario-
7bc3e6fbf9548ec4be0864c47b250f5e1fbb0a28
[ "Apache-2.0" ]
null
null
null
core/webserver.py
RASSec/Mario-Mario-
7bc3e6fbf9548ec4be0864c47b250f5e1fbb0a28
[ "Apache-2.0" ]
1
2021-11-09T08:55:12.000Z
2021-11-09T08:55:12.000Z
import time import api.web from api.mongo import evetomongo from lib.data import config, clean_status from api.mongo import clean_mongo, show_db from api.logger import logger import os import json from flask import Flask, request, redirect, url_for, jsonify, send_from_directory, make_response, Response def webserver(): app = Flask(__name__) @app.route('/api/map', methods=['GET']) def map(): begintime = request.args.get("begintime") endtime = request.args.get("endtime") result = api.web.map(begintime=begintime, endtime=endtime) return jsonify(result) # @app.route('/api/upload', methods=['GET', 'POST']) # def upload_file(): # if request.method == 'POST': # file = request.files['file'] # result = api.web.upload_pcap(file) # return result # elif request.method == "GET": # return ''' # <!doctype html> # <title>Upload new File</title> # <h1>Upload new File</h1> # <form action="" method=post enctype=multipart/form-data> # <p><input type=file name=file> # <input type=submit value=Upload> # </form> # ''' @app.route('/api/evefile', methods=['GET', 'POST']) def upload_evefile(): if request.method == 'POST': config['client_ip'] = request.remote_addr file = request.files['clientfile'].readlines() evetomongo(eve_file=file) return "upload eve.json success" elif request.method == "GET": return ''' <!doctype html> <title>Upload new File</title> <h1>Upload new File</h1> <form action="" method=post enctype=multipart/form-data> <p><input type=file name=evefile> <input type=submit value=Upload> </form> ''' @app.route('/api/cleanstatus',methods=['GET']) def get_clean_status(): return clean_status['clean_db'] @app.route('/api/db', methods=['GET', 'POST']) def clean_db(): if request.method == 'GET': result = show_db() return result if request.method == 'POST': logger.warning("{} ่ฏทๆฑ‚ๆธ…็†ๆ•ฐๆฎๅบ“".format(request.remote_addr)) clean_status['clean_db'] = "waiting process" return "start clean db" @app.route('/api/rules', methods=['GET', 'POST']) def set_rules(): if request.method == 'POST': set_info = request.get_data().decode('utf-8') set_rules_info = json.loads(set_info) api.web.set_clientrules(set_rules_info['rules_info']) return "ok" elif request.method == 'GET': server = request.args.get('server') query = request.args.get('search') allrules = {} if query != None: allrules['rules'] = api.web.get_allrules(server, query) else: allrules['rules'] = api.web.get_allrules(server) return jsonify(allrules) @app.route('/api/rules/del', methods=['POST', 'DELETE']) def del_client_rules(): if request.method == 'POST': del_info = request.get_data().decode('utf-8') del_id = json.loads(del_info)['id'] del_result = api.web.del_rules(del_id) return del_result if request.method == 'DELETE': del_result = api.web.del_rules("all") return del_result @app.route('/api/rules/change', methods=['POST']) def change_client_rules(): if request.method == 'POST': change_info = request.get_data().decode('utf-8') change_id = json.loads(change_info)['id'] change_type = json.loads(change_info)['type'] api.web.change_rules(change_id, change_type) return "{} changed to type {}".format(change_id, change_type) # @app.route('/api/pcap', methods=['POST']) # def analyze_pcap(): # filename = request.form.get('filename') # result = api.web.analyze_pcap(filename) # return result # @app.route('/api/demo', methods=['POST']) # def demo_information(): # num = request.form.get('demonum') # generate_demo_information(int(num)) # result = {} # result['newdatenum'] = num # return jsonify(result) @app.route('/api/vulsearch', methods=['POST']) def vul_search(): ip = request.form.get('query').strip('\n').strip('\r').strip() search_result = api.web.vul_search(ip) result = {} result['data'] = search_result return jsonify(result) @app.route('/install.sh') def send_install_file(): logger.info("{} ๅผ€ๅง‹ๅฎ‰่ฃ…".format(request.remote_addr)) install_file = api.web.customization_install(request.remote_addr) return install_file @app.route('/local.rules') def get_clientrules(): logger.info("ไธ‹ๅ‘้˜ฒๅพก็ญ–็•ฅ่‡ณ {}".format(request.remote_addr)) clientrules = open( './ThirPath/marioips/rules/local.rules', 'r') rulesfile = clientrules.read() clientrules.close() return rulesfile @app.route('/marioips.tar.gz') def send_conf_tar(): logger.info("{} ไธ‹่ฝฝๅฎขๆˆท็ซฏไธป็จ‹ๅบ".format(request.remote_addr)) file_dir = os.getcwd() + "/ThirPath/marioips/" api.web.make_tar() response = make_response(send_from_directory( file_dir, "marioips.tar.gz", as_attachment=True)) return response app.config['JSON_AS_ASCII'] = False app.run(host='0.0.0.0', port=5000, debug=True)
37.157895
106
0.578081
7952d445d9c100ea5f467f1fd717585ed0f0dc89
337
py
Python
testMonthbox.py
altmind/npyscreen
8ce31204e1de1fbd2939ffe2d8c3b3120e93a4d0
[ "BSD-2-Clause" ]
442
2015-06-01T15:02:34.000Z
2022-02-23T12:40:58.000Z
testMonthbox.py
altmind/npyscreen
8ce31204e1de1fbd2939ffe2d8c3b3120e93a4d0
[ "BSD-2-Clause" ]
79
2015-06-23T15:06:51.000Z
2021-09-06T20:29:16.000Z
testMonthbox.py
altmind/npyscreen
8ce31204e1de1fbd2939ffe2d8c3b3120e93a4d0
[ "BSD-2-Clause" ]
138
2015-07-07T20:05:21.000Z
2022-01-21T17:09:42.000Z
#!/bin/env python import npyscreen class MainFm(npyscreen.Form): def create(self): self.mb = self.add(npyscreen.MonthBox, use_datetime = True) class TestApp(npyscreen.NPSAppManaged): def onStart(self): self.addForm("MAIN", MainFm) if __name__ == "__main__": A = TestApp() A.run()
18.722222
46
0.620178
7952d60c21430e41013b1b0ef3079780b0ec6f18
6,150
py
Python
PythonClient/car/lidar_occ_grid.py
VegaVK/AirSim
c7c1f55a7d5dc97f1fdd98fb1df191db2576da12
[ "MIT" ]
null
null
null
PythonClient/car/lidar_occ_grid.py
VegaVK/AirSim
c7c1f55a7d5dc97f1fdd98fb1df191db2576da12
[ "MIT" ]
null
null
null
PythonClient/car/lidar_occ_grid.py
VegaVK/AirSim
c7c1f55a7d5dc97f1fdd98fb1df191db2576da12
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 import rospy import setup_path import airsim import cv2 import numpy as np import os import sys import math import setup_path import argparse import pprint import time from geometry_msgs.msg import Point from visualization_msgs.msg import Marker # Use below in settings.json with blocks environment # Overall gains and parameters: TimeStep=0.01 TotalRunTime=60 # Simple Velocity Tracker, Proportional only Kp=0.3 TargetVel=5 # m/s AccelScale=4.0 BrakeScale=2.0 binSize=0.2 # in meters, binning size for occupancy grid, for use on lidar data rospy.init_node('ramp_merge', anonymous=True) RdrMarkerPub = rospy.Publisher("radar_markers_rviz",Marker,queue_size=100) def Plant(CaccAccel, PlantID): # Converts CaccAccel into throttle and brake inputs for each vehicle # Saturation Stuff if CaccAccel>AccelScale: CaccAccel=AccelScale elif CaccAccel<-BrakeScale: CaccAccel=-BrakeScale # Now rescale to [0,1] and set them if CaccAccel>=0: car_controls.throttle=float(CaccAccel/AccelScale) car_controls.brake = 0 elif CaccAccel<0: car_controls.throttle=0 car_controls.brake = -1.0*float(CaccAccel/BrakeScale) client.setCarControls(car_controls, PlantID) # if PlantID=="CarLLV": # Debugging stuff # print(CaccAccel) # print(car_controls.throttle) return 0 def parse_lidarData(data): # reshape array of floats to array of [X,Y,Z] points = np.array(data.point_cloud, dtype=np.dtype('f4')) points = np.reshape(points, (int(points.shape[0]/3), 3)) return points def filter_and_bin(points): # Filter out all points on the ground and then bin them to the required resolution. toDelList=[] for pointIdx in range(len(points)): # print(points[pointIdx]) # print(points[pointIdx][2]) if (points[pointIdx][2]<=-2) or (points[pointIdx][2]>=0.8) or (points[pointIdx][0]>=30) \ or (points[pointIdx][1]>=30): # Z-axis from pointcloud is inverted # print(points[pointIdx][2]) # print('APPENDING idx' + str(pointIdx)) toDelList.append(pointIdx) # print(toDelList) # print('Before Filtering: '+ str(len(points))) points=np.delete(points,toDelList,axis=0) # print('After: ' +str(len(points))) scaleFactor=1/binSize # First scale all points, floor them and then rescale points=points*scaleFactor points=np.floor(points) points=points/scaleFactor return points def RadarMarkerPublisher(InputList,RadarPublisher): # MarkerArrayIn=visualization_msgs.msg.MarkerArray() markerTemp=Marker() markerTemp.header.frame_id = "map" markerTemp.type = markerTemp.CUBE_LIST markerTemp.action = markerTemp.ADD markerTemp.scale.x = 0.4 markerTemp.scale.y = 0.4 markerTemp.scale.z = 0.2 markerTemp.color.r = 0.0 markerTemp.color.g = 1.0 markerTemp.color.b = 1.0 markerTemp.color.a = 1.0 for itemDxj in InputList: tempPoint=Point() tempPoint.x=itemDxj[0] tempPoint.y=-itemDxj[1] tempPoint.z=0 if any(np.isnan([itemDxj[0],itemDxj[1],itemDxj[2]])): # print('found NaN') pass else: markerTemp.points.append(tempPoint) RadarPublisher.publish(markerTemp) # Create all cars and setup client = airsim.CarClient() client.confirmConnection() # client.enableApiControl(True, "CarRLV") client.enableApiControl(True, "CarR1") client.enableApiControl(True, "CarR2") client.enableApiControl(True, "CarR3") client.enableApiControl(True, "CarR4") client.enableApiControl(True, "CarR5") client.enableApiControl(True, "CarR6") client.enableApiControl(True, "CarR7") client.enableApiControl(True, "CarR8") client.enableApiControl(True, "CarR9") client.enableApiControl(True, "CarR10") car_controls= airsim.CarControls() car_controls.is_manual_gear = False startTime=time.time() RunTime=time.time()-startTime while RunTime<TotalRunTime: # Max Run time; RunTime=time.time()-startTime # Get all states StateRLV = client.getCarState("CarFPV") # print(StateRLV) StateR1 = client.getCarState("CarR1") StateR2 = client.getCarState("CarR2") StateR3 = client.getCarState("CarR3") StateR4 = client.getCarState("CarR4") StateR5 = client.getCarState("CarR5") StateR6 = client.getCarState("CarR6") StateR7 = client.getCarState("CarR7") StateR8 = client.getCarState("CarR8") StateR9 = client.getCarState("CarR9") StateR10 = client.getCarState("CarR10") accelReq= Kp*(TargetVel-StateR1.speed) Plant(accelReq, "CarR1") accelReq= Kp*(TargetVel-StateR2.speed) Plant(accelReq, "CarR2") accelReq= Kp*(TargetVel-StateR3.speed) Plant(accelReq, "CarR3") accelReq= Kp*(TargetVel-StateR4.speed) Plant(accelReq, "CarR4") accelReq= Kp*(TargetVel-StateR5.speed) Plant(accelReq, "CarR5") accelReq= Kp*(TargetVel-StateR6.speed) Plant(accelReq, "CarR6") accelReq= Kp*(TargetVel-StateR7.speed) Plant(accelReq, "CarR7") accelReq= Kp*(TargetVel-StateR8.speed) Plant(accelReq, "CarR8") accelReq= Kp*(TargetVel-StateR9.speed) Plant(accelReq, "CarR9") accelReq= Kp*(TargetVel-StateR10.speed) Plant(accelReq, "CarR10") # Now just sleep so the cars are allowed to move time.sleep(TimeStep) # Get Lidar Data: lidarData = client.getLidarData( lidar_name = 'LidarSensor1', vehicle_name = 'CarFPV') if (len(lidarData.point_cloud) < 3): print("\tNo points received from Lidar data") else: points = parse_lidarData(lidarData) points=filter_and_bin(points) RadarMarkerPublisher(points,RdrMarkerPub) # print("\tTime_stamp: %d number_of_points: %d" % (lidarData.time_stamp, len(points))) # print(points[0]) # print("\t\tlidar position: %s" % (pprint.pformat(lidarData.pose.position))) # print("\t\tlidar orientation: %s" % (pprint.pformat(lidarData.pose.orientation))) #restore to original state client.reset() client.enableApiControl(False) print('done')
32.198953
99
0.687967
7952d6b36661d93c315d7500c0c1c017f48fd367
9,728
py
Python
src/train.py
prabhudevguntur/voice_conversion
0f6799870d8dbd2a61639bfb0530e8979cdd1ff7
[ "MIT" ]
null
null
null
src/train.py
prabhudevguntur/voice_conversion
0f6799870d8dbd2a61639bfb0530e8979cdd1ff7
[ "MIT" ]
null
null
null
src/train.py
prabhudevguntur/voice_conversion
0f6799870d8dbd2a61639bfb0530e8979cdd1ff7
[ "MIT" ]
null
null
null
import argparse import os import numpy as np import itertools import sys from tqdm import tqdm from torch.utils.data import DataLoader from torch.autograd import Variable from models import * from data_proc import DataProc import torch.nn as nn import torch.nn.functional as F import torch from utils import plot_batch_train parser = argparse.ArgumentParser() parser.add_argument("--epoch", type=int, default=0, help="epoch to start training from") parser.add_argument("--n_epochs", type=int, default=100, help="number of epochs of training") parser.add_argument("--model_name", type=str, help="name of the model") parser.add_argument("--dataset", type=str, help="path to dataset for training") parser.add_argument("--n_spkrs", type=int, default=2, help="number of speakers for conversion") parser.add_argument("--batch_size", type=int, default=4, help="size of the batches") parser.add_argument("--lr", type=float, default=0.0001, help="adam: learning rate") parser.add_argument("--b1", type=float, default=0.5, help="adam: decay of first order momentum of gradient") parser.add_argument("--b2", type=float, default=0.999, help="adam: decay of first order momentum of gradient") parser.add_argument("--decay_epoch", type=int, default=50, help="epoch from which to start lr decay") parser.add_argument("--n_cpu", type=int, default=8, help="number of cpu threads to use during batch generation") parser.add_argument("--img_height", type=int, default=128, help="size of image height") parser.add_argument("--img_width", type=int, default=128, help="size of image width") parser.add_argument("--channels", type=int, default=1, help="number of image channels") parser.add_argument("--plot_interval", type=int, default=1, help="epoch interval between saving plots (disable with -1)") parser.add_argument("--checkpoint_interval", type=int, default=1, help="interval between saving model checkpoints") parser.add_argument("--n_downsample", type=int, default=2, help="number downsampling layers in encoder") parser.add_argument("--dim", type=int, default=32, help="number of filters in first encoder layer") opt = parser.parse_args() print(opt) cuda = True if torch.cuda.is_available() else False # Create sample and checkpoint directories os.makedirs("saved_models/%s" % opt.model_name, exist_ok=True) # Create plot output directories if opt.plot_interval != -1: os.makedirs("out_train/%s/plot_A2B/" % opt.model_name, exist_ok=True) os.makedirs("out_train/%s/plot_B2A/" % opt.model_name, exist_ok=True) # Losses criterion_GAN = torch.nn.MSELoss() criterion_pixel = torch.nn.L1Loss() input_shape = (opt.channels, opt.img_height, opt.img_width) # Dimensionality (channel-wise) of image embedding shared_dim = opt.dim * 2 ** opt.n_downsample # Initialize generator and discriminator encoder = Encoder(dim=opt.dim, in_channels=opt.channels, n_downsample=opt.n_downsample) shared_G = ResidualBlock(features=shared_dim) G1 = Generator(dim=opt.dim, out_channels=opt.channels, n_upsample=opt.n_downsample, shared_block=shared_G) G2 = Generator(dim=opt.dim, out_channels=opt.channels, n_upsample=opt.n_downsample, shared_block=shared_G) D1 = Discriminator(input_shape) D2 = Discriminator(input_shape) if cuda: encoder = encoder.cuda() G1 = G1.cuda() G2 = G2.cuda() D1 = D1.cuda() D2 = D2.cuda() criterion_GAN.cuda() criterion_pixel.cuda() if opt.epoch != 0: # Load pretrained models encoder.load_state_dict(torch.load("saved_models/%s/encoder_%02d.pth" % (opt.model_name, opt.epoch))) G1.load_state_dict(torch.load("saved_models/%s/G1_%02d.pth" % (opt.model_name, opt.epoch))) G2.load_state_dict(torch.load("saved_models/%s/G2_%02d.pth" % (opt.model_name, opt.epoch))) D1.load_state_dict(torch.load("saved_models/%s/D1_%02d.pth" % (opt.model_name, opt.epoch))) D2.load_state_dict(torch.load("saved_models/%s/D2_%02d.pth" % (opt.model_name, opt.epoch))) else: # Initialize weights encoder.apply(weights_init_normal) G1.apply(weights_init_normal) G2.apply(weights_init_normal) D1.apply(weights_init_normal) D2.apply(weights_init_normal) # Loss weights lambda_0 = 10 # GAN lambda_1 = 0.1 # KL (encoded spect) lambda_2 = 100 # ID pixel-wise lambda_3 = 0.1 # KL (encoded translated spect) lambda_4 = 100 # Cycle pixel-wise lambda_5 = 10 # latent space L1 # Optimizers optimizer_G = torch.optim.Adam( itertools.chain(encoder.parameters(), G1.parameters(), G2.parameters()), lr=opt.lr, betas=(opt.b1, opt.b2), ) optimizer_D1 = torch.optim.Adam(D1.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2)) optimizer_D2 = torch.optim.Adam(D2.parameters(), lr=opt.lr, betas=(opt.b1, opt.b2)) # Learning rate update schedulers lr_scheduler_G = torch.optim.lr_scheduler.LambdaLR( optimizer_G, lr_lambda=LambdaLR(opt.n_epochs, opt.epoch, opt.decay_epoch).step ) lr_scheduler_D1 = torch.optim.lr_scheduler.LambdaLR( optimizer_D1, lr_lambda=LambdaLR(opt.n_epochs, opt.epoch, opt.decay_epoch).step ) lr_scheduler_D2 = torch.optim.lr_scheduler.LambdaLR( optimizer_D2, lr_lambda=LambdaLR(opt.n_epochs, opt.epoch, opt.decay_epoch).step ) Tensor = torch.cuda.FloatTensor if cuda else torch.Tensor # Prepare dataloader dataloader = torch.utils.data.DataLoader( DataProc(opt, split='train'), batch_size=opt.batch_size, shuffle=True, num_workers=opt.n_cpu, pin_memory=True ) def compute_kl(mu): mu_2 = torch.pow(mu, 2) loss = torch.mean(mu_2) return loss # ---------- # Training # ---------- for epoch in range(opt.epoch, opt.n_epochs): losses = {'G': [],'D': []} progress = tqdm(enumerate(dataloader),desc='',total=len(dataloader)) for i, batch in progress: # Set model input X1 = Variable(batch["A"].type(Tensor)) X2 = Variable(batch["B"].type(Tensor)) # Adversarial ground truths valid = Variable(Tensor(np.ones((X1.size(0), *D1.output_shape))), requires_grad=False) fake = Variable(Tensor(np.zeros((X1.size(0), *D1.output_shape))), requires_grad=False) # ------------------------------- # Train Encoder and Generators # ------------------------------- optimizer_G.zero_grad() # Get shared latent representation mu1, Z1 = encoder(X1) mu2, Z2 = encoder(X2) # Latent space feat feat_1 = mu1.view(mu1.size()[0], -1).mean(dim=0) feat_2 = mu2.view(mu2.size()[0], -1).mean(dim=0) # Reconstruct speech recon_X1 = G1(Z1) recon_X2 = G2(Z2) # Translate speech fake_X1 = G1(Z2) fake_X2 = G2(Z1) # Cycle translation mu1_, Z1_ = encoder(fake_X1) mu2_, Z2_ = encoder(fake_X2) cycle_X1 = G1(Z2_) cycle_X2 = G2(Z1_) # Losses loss_GAN_1 = lambda_0 * criterion_GAN(D1(fake_X1), valid) loss_GAN_2 = lambda_0 * criterion_GAN(D2(fake_X2), valid) loss_KL_1 = lambda_1 * compute_kl(mu1) loss_KL_2 = lambda_1 * compute_kl(mu2) loss_ID_1 = lambda_2 * criterion_pixel(recon_X1, X1) loss_ID_2 = lambda_2 * criterion_pixel(recon_X2, X2) loss_KL_1_ = lambda_3 * compute_kl(mu1_) loss_KL_2_ = lambda_3 * compute_kl(mu2_) loss_cyc_1 = lambda_4 * criterion_pixel(cycle_X1, X1) loss_cyc_2 = lambda_4 * criterion_pixel(cycle_X2, X2) loss_feat = lambda_5 * criterion_pixel(feat_1, feat_2) # Total loss loss_G = ( loss_KL_1 + loss_KL_2 + loss_ID_1 + loss_ID_2 + loss_GAN_1 + loss_GAN_2 + loss_KL_1_ + loss_KL_2_ + loss_cyc_1 + loss_cyc_2 + loss_feat ) loss_G.backward() optimizer_G.step() # ----------------------- # Train Discriminator 1 # ----------------------- optimizer_D1.zero_grad() loss_D1 = criterion_GAN(D1(X1), valid) + criterion_GAN(D1(fake_X1.detach()), fake) loss_D1.backward() optimizer_D1.step() # ----------------------- # Train Discriminator 2 # ----------------------- optimizer_D2.zero_grad() loss_D2 = criterion_GAN(D2(X2), valid) + criterion_GAN(D2(fake_X2.detach()), fake) loss_D2.backward() optimizer_D2.step() # -------------- # Log Progress # -------------- losses['G'].append(loss_G.item()) losses['D'].append((loss_D1 + loss_D2).item()) # Update progress bar progress.set_description("[Epoch %d/%d] [D loss: %f] [G loss: %f] " % (epoch,opt.n_epochs,np.mean(losses['D']), np.mean(losses['G']))) # Plot first batch every epoch or few epochs if opt.plot_interval != -1 and epoch % opt.plot_interval == 0 and i == 0: plot_batch_train(opt.model_name, 'plot_A2B', epoch, X1, cycle_X1, fake_X2, X2) plot_batch_train(opt.model_name, 'plot_B2A', epoch, X2, cycle_X2, fake_X1, X1) # Update learning rates lr_scheduler_G.step() lr_scheduler_D1.step() lr_scheduler_D2.step() if opt.checkpoint_interval != -1 and epoch % opt.checkpoint_interval == 0: # Save model checkpoints torch.save(encoder.state_dict(), "saved_models/%s/encoder_%02d.pth" % (opt.model_name, epoch)) torch.save(G1.state_dict(), "saved_models/%s/G1_%02d.pth" % (opt.model_name, epoch)) torch.save(G2.state_dict(), "saved_models/%s/G2_%02d.pth" % (opt.model_name, epoch)) torch.save(D1.state_dict(), "saved_models/%s/D1_%02d.pth" % (opt.model_name, epoch)) torch.save(D2.state_dict(), "saved_models/%s/D2_%02d.pth" % (opt.model_name, epoch))
36.709434
121
0.663343
7952d8d0d8ac3b4f74da68cb9d1e2efc59cfae5c
3,098
py
Python
opsdroid/memory.py
JiahnChoi/opsdroid.kr
0893456b0f9f6c70edf7c330a7593d87450538cc
[ "Apache-2.0" ]
712
2016-08-09T21:30:07.000Z
2022-03-24T09:38:21.000Z
opsdroid/memory.py
JiahnChoi/opsdroid.kr
0893456b0f9f6c70edf7c330a7593d87450538cc
[ "Apache-2.0" ]
1,767
2016-07-27T13:01:25.000Z
2022-03-29T04:25:10.000Z
opsdroid/memory.py
JiahnChoi/opsdroid.kr
0893456b0f9f6c70edf7c330a7593d87450538cc
[ "Apache-2.0" ]
536
2016-07-31T14:23:41.000Z
2022-03-22T17:35:15.000Z
"""Class for persisting information in opsdroid.""" import logging _LOGGER = logging.getLogger(__name__) class Memory: """A Memory object. An object to obtain, store and persist data outside of opsdroid. Attributes: databases (:obj:`list` of :obj:`Database`): List of database objects. memory (:obj:`dict`): In-memory dictionary to store data. """ def __init__(self): """Create object with minimum properties.""" self.databases = [] async def get(self, key, default=None): """Get data object for a given key. Gets the key value found in-memory or from the database(s). Args: key (str): Key to retrieve data. Returns: A data object for the given key, otherwise `None`. """ _LOGGER.debug(_("Getting %s from memory."), key) result = await self._get_from_database(key) return result or default async def put(self, key, data): """Put a data object to a given key. Stores the key and value in memory and the database(s). Args: key (str): Key for the data to store. data (obj): Data object to store. """ _LOGGER.debug(_("Putting %s to memory."), key) await self._put_to_database(key, data) async def delete(self, key): """Delete data object for a given key. Deletes the key value found in-memory or from the database(s). Args: key (str): Key to delete data. """ _LOGGER.debug(_("Deleting %s from memory."), key) await self._delete_from_database(key) async def _get_from_database(self, key): """Get updates from databases for a given key. Gets the first key value found from the database(s). Args: key (str): Key to retrieve data from a database. Returns: The first key value (data object) found from the database(s). Or `None` when no database is defined or no value is found. Todo: * Handle multiple databases """ if not self.databases: return None # pragma: nocover results = [] for database in self.databases: results.append(await database.get(key)) return results[0] async def _put_to_database(self, key, data): """Put updates into databases for a given key. Stores the key and value on each database defined. Args: key (str): Key for the data to store. data (obj): Data object to store. """ if self.databases: for database in self.databases: await database.put(key, data) async def _delete_from_database(self, key): """Delete data from databases for a given key. Deletes the key and value on each database defined. Args: key (str): Key for the data to delete. """ if self.databases: for database in self.databases: await database.delete(key)
26.93913
77
0.585862
7952d9c8f97cebb4f884183a34924c457f717577
1,931
py
Python
pipenv/resolver.py
ksonj/pipenv
72bbd6206ae80fcdbcb25a11a7a289a12ad5c1d6
[ "MIT" ]
null
null
null
pipenv/resolver.py
ksonj/pipenv
72bbd6206ae80fcdbcb25a11a7a289a12ad5c1d6
[ "MIT" ]
null
null
null
pipenv/resolver.py
ksonj/pipenv
72bbd6206ae80fcdbcb25a11a7a289a12ad5c1d6
[ "MIT" ]
null
null
null
import os import sys import json import logging os.environ['PIP_PYTHON_PATH'] = sys.executable for _dir in ('vendor', 'patched', '..'): dirpath = os.path.sep.join([os.path.dirname(__file__), _dir]) sys.path.insert(0, dirpath) def which(*args, **kwargs): return sys.executable def main(): is_verbose = '--verbose' in ' '.join(sys.argv) do_pre = '--pre' in ' '.join(sys.argv) do_clear = '--clear' in ' '.join(sys.argv) is_debug = '--debug' in ' '.join(sys.argv) new_sys_argv = [] for v in sys.argv: if v.startswith('--'): continue else: new_sys_argv.append(v) sys.argv = new_sys_argv import pipenv.core if is_verbose: logging.getLogger('pip9').setLevel(logging.INFO) logging.getLogger('notpip').setLevel(logging.INFO) if is_debug: # Shit's getting real at this point. logging.getLogger('pip9').setLevel(logging.DEBUG) logging.getLogger('notpip').setLevel(logging.DEBUG) if 'PIPENV_PACKAGES' in os.environ: packages = os.environ['PIPENV_PACKAGES'].strip().split('\n') else: packages = sys.argv[1:] for i, package in enumerate(packages): if package.startswith('--'): del packages[i] project = pipenv.core.project def resolve(packages, pre, sources, verbose, clear): import pipenv.utils return pipenv.utils.resolve_deps( packages, which, project=project, pre=pre, sources=sources, clear=clear, verbose=verbose, ) results = resolve( packages, pre=do_pre, sources=project.sources, verbose=is_verbose, clear=do_clear, ) print('RESULTS:') if results: print(json.dumps(results)) else: print(json.dumps([])) if __name__ == '__main__': main()
25.407895
68
0.5826
7952dc01bb9276dbc38704715c2103054e876005
3,306
py
Python
CRUD/settings.py
Anik-Bardhan/Employee-List
70f9361ce2a67c0a4966fb3075a53adc7cf62607
[ "MIT" ]
null
null
null
CRUD/settings.py
Anik-Bardhan/Employee-List
70f9361ce2a67c0a4966fb3075a53adc7cf62607
[ "MIT" ]
null
null
null
CRUD/settings.py
Anik-Bardhan/Employee-List
70f9361ce2a67c0a4966fb3075a53adc7cf62607
[ "MIT" ]
null
null
null
""" Django settings for CRUD project. Generated by 'django-admin startproject' using Django 3.2.9. For more information on this file, see https://docs.djangoproject.com/en/3.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.2/ref/settings/ """ from pathlib import Path # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'django-insecure-$&p($2#g@-yll5-1tlw-jq(871(fza__hmx=%6$)rp@oe%*!qh' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'register', 'crispy_forms', ] CRISPY_TEMPLATE_PACK = 'bootstrap4' MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'CRUD.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'CRUD.wsgi.application' # Database # https://docs.djangoproject.com/en/3.2/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': BASE_DIR / 'db.sqlite3', } } # Password validation # https://docs.djangoproject.com/en/3.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.2/howto/static-files/ STATIC_URL = '/static/' # Default primary key field type # https://docs.djangoproject.com/en/3.2/ref/settings/#default-auto-field DEFAULT_AUTO_FIELD = 'django.db.models.BigAutoField'
25.430769
91
0.698427
7952dc47df56e7abe32825640599d818abb6b3e1
506
py
Python
Interview_Preparation_Kit/balanced-brackets.py
csixteen/HackerRank
3ef6fa48599341f481b9e266c69df2d449a7b313
[ "MIT" ]
4
2018-04-19T20:32:54.000Z
2020-04-21T12:28:00.000Z
Interview_Preparation_Kit/balanced-brackets.py
csixteen/HackerRank
3ef6fa48599341f481b9e266c69df2d449a7b313
[ "MIT" ]
null
null
null
Interview_Preparation_Kit/balanced-brackets.py
csixteen/HackerRank
3ef6fa48599341f481b9e266c69df2d449a7b313
[ "MIT" ]
null
null
null
from collections import deque def isBalanced(s): brackets_close = {')': '(', '}': '{', ']': '['} stack = deque(s[0]) for c in s[1:]: if c in brackets_close: if len(stack) > 0 and brackets_close[c] == stack[-1]: stack.pop() else: return 'NO' else: stack.append(c) return 'NO' if len(stack) > 0 else 'YES' if __name__ == '__main__': for _ in range(int(input())): print(isBalanced(input()))
22
65
0.488142
7952dc61a2a90601e50cb1193be023c9d0e4eca0
6,074
py
Python
tests/django_init.py
MicrohexHQ/peeringdb
179377ba778c594a1af3cf55a77f3b11e57f4b06
[ "BSD-2-Clause" ]
null
null
null
tests/django_init.py
MicrohexHQ/peeringdb
179377ba778c594a1af3cf55a77f3b11e57f4b06
[ "BSD-2-Clause" ]
null
null
null
tests/django_init.py
MicrohexHQ/peeringdb
179377ba778c594a1af3cf55a77f3b11e57f4b06
[ "BSD-2-Clause" ]
null
null
null
from django.conf import settings # lazy init for translations _ = lambda s: s #from django.utils.translation import ugettext_lazy as _ settings.configure( PACKAGE_VERSION="dev", RELEASE_ENV="dev", MIGRATION_MODULES={"django_peeringdb":None}, INSTALLED_APPS=[ 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.admin', 'django.contrib.sessions', 'django.contrib.sites', 'django_inet', 'django_peeringdb', 'django_namespace_perms', 'django_countries', 'oauth2_provider', 'peeringdb_server', 'allauth', 'allauth.account', 'reversion', 'rest_framework', 'dal', 'dal_select2', 'corsheaders', 'captcha', ], CACHES={ "default": { "BACKEND": "django.core.cache.backends.db.DatabaseCache", "LOCATION": "django_cache" } }, TEMPLATES=[{ "BACKEND": 'django.template.backends.django.DjangoTemplates', "APP_DIRS": True, "OPTIONS": { "context_processors": [ "django.contrib.auth.context_processors.auth", "django.template.context_processors.debug", "django.template.context_processors.request", "django.template.context_processors.i18n", "django.template.context_processors.media", "django.template.context_processors.static", "django.template.context_processors.tz", "django.contrib.messages.context_processors.messages", ], #"loaders" : TEMPLATE_LOADERS } }], LANGUAGE_CODE='en-us', LANGUAGES=[ ('en', _('English')), ('pt', _('Portuguese')), ], USE_L10N=True, USE_I18N=True, MIDDLEWARE_CLASSES=( 'corsheaders.middleware.CorsMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.locale.LocaleMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'peeringdb_server.maintenance.Middleware', ), SOUTH_TESTS_MIGRATE=False, SOUTH_SKIP_TESTS=True, AUTH_USER_MODEL='peeringdb_server.User', TABLE_PREFIX='peeringdb_', PEERINGDB_ABSTRACT_ONLY=True, COUNTRIES_OVERRIDE={'XK': _('Kosovo')}, CLIENT_COMPAT={ "client":{"min": (0,6), "max":(0,6,5)}, "backends":{ "django_peeringdb":{"min":(0,6), "max":(0,6,5)} } }, DATABASE_ENGINE='django.db.backends.sqlite3', DATABASES={ 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': ':memory:', }, #XXX - this is supposed to work to mimic replication # during tests, but doesnt. So instead we use the # peeringdb_server.db_router.TestRouter class instead # which just always used the default db for read and writes #'read' : { # 'ENGINE': 'django.db.backends.sqlite3', # 'NAME': ':memory:', # 'TEST' : { 'MIRROR' : 'default' } #} }, #XXX - change to peeringdb_server.db_router.DatabaseRouter #if repliation mimicing (see above) gets fixed DATABASE_ROUTERS=["peeringdb_server.db_router.TestRouter"], DEBUG=False, GUEST_GROUP_ID=1, USER_GROUP_ID=2, TEMPLATE_DEBUG=False, BASE_URL="localost", PASSWORD_RESET_URL="localhost", API_CACHE_ROOT="tests/api-cache", API_CACHE_ENABLED=False, SUGGEST_ENTITY_ORG=1234, API_URL="localhost", REST_FRAMEWORK={ 'DEFAULT_AUTHENTICATION_CLASSES': ( 'rest_framework.authentication.BasicAuthentication', 'rest_framework.authentication.SessionAuthentication'), 'DEFAULT_MODEL_SERIALIZER_CLASS': 'rest_framework.serializers.HyperlinkedModelSerializer', 'DEFAULT_PERMISSION_CLASSES': [ 'rest_framework.permissions.DjangoModelPermissionsOrAnonReadOnly', 'django_namespace_perms.rest.BasePermission', ], 'DEFAULT_RENDERER_CLASSES': ( 'peeringdb_server.renderers.MetaJSONRenderer', ) }, NSP_MODE="crud", NSP_GUEST_GROUP="guest", DEBUG_EMAIL=True, TIME_ZONE="UTC", USE_TZ=True, AUTHENTICATION_BACKENDS=( "django_namespace_perms.auth.backends.NSPBackend", ), ROOT_URLCONF="peeringdb_com.urls", LOGGING={ 'version': 1, 'disable_existing_loggers': False, 'handlers': { 'stderr': { 'level': 'DEBUG', 'class': 'logging.StreamHandler', }, }, 'loggers': { '': { 'handlers': ['stderr'], 'level': 'DEBUG', 'propagate': False }, }, }, OAUTH_ENABLED=False, RECAPTCHA_PUBLIC_KEY="", EMAIL_SUBJECT_PREFIX="[test]", CORS_ORIGIN_WHITELIST=[], CORS_ALLOW_METHODS=["GET", "OPTIONS"], CORS_ALLOW_CREDENTIALS=False, DATA_QUALITY_MAX_PREFIX_V4_LIMIT=500000, DATA_QUALITY_MAX_PREFIX_V6_LIMIT=500000, DATA_QUALITY_MIN_PREFIXLEN_V4 = 18, DATA_QUALITY_MAX_PREFIXLEN_V4 = 28, DATA_QUALITY_MIN_PREFIXLEN_V6 = 64, DATA_QUALITY_MAX_PREFIXLEN_V6 = 116, TUTORIAL_MODE=False, CAPTCHA_TEST_MODE=True, SITE_ID=1, IXF_POSTMORTEM_LIMIT=250, ABSTRACT_ONLY=True, GOOGLE_GEOLOC_API_KEY="AIzatest", RATELIMITS={ "view_affiliate_to_org_POST": "100/m", "resend_confirmation_mail": "2/m", "view_request_ownership_GET": "3/m", "view_username_retrieve_initiate": "2/m", "view_request_ownership_POST": "3/m", "request_login_POST": "10/m", "view_verify_POST": "2/m", "request_translation": "10/m", "view_import_ixlan_ixf_preview": "1/m", "view_import_net_ixf_postmortem": "1/m" })
33.558011
98
0.613928
7952dc8a75e875e334299f135e89fe68078f97df
1,205
py
Python
quick_sort.py
sazlin/data-structures
a7ec654dfcb46fdb1e3ccbf16d02c62e36ff2f36
[ "MIT" ]
1
2015-02-17T06:23:53.000Z
2015-02-17T06:23:53.000Z
quick_sort.py
sazlin/data-structures
a7ec654dfcb46fdb1e3ccbf16d02c62e36ff2f36
[ "MIT" ]
null
null
null
quick_sort.py
sazlin/data-structures
a7ec654dfcb46fdb1e3ccbf16d02c62e36ff2f36
[ "MIT" ]
null
null
null
def quick_sort(values): """simple quick sort implementation""" if len(values) == 0: return [] elif len(values) == 1: return values elif len(values) == 2: if values[0] > values[1]: return values[::-1] else: return values pivot = values[0] less_list = [x for x in values if x < pivot] more_list = [x for x in values if x > pivot] same_list = [x for x in values if x == pivot] # keep track of dupes less_list = less_list + same_list if len(more_list) == 0: more_list.append(less_list.pop()) return quick_sort(less_list) + quick_sort(more_list) if __name__ == '__main__': import timeit print "Quick Sort | Worst Case |",\ timeit.timeit( setup=""" from quick_sort import quick_sort worst_case_values = [i for i in xrange(100,1,-1)] """, stmt="quick_sort(worst_case_values)", number=100) print "Quick Sort | Best Case |",\ timeit.timeit( setup=""" from quick_sort import quick_sort best_case_values = [i for i in xrange(1,100,1)] """, stmt="quick_sort(best_case_values)", number=100)
30.125
72
0.580083
7952dccce0cf433f8f4ce4f89ca135aca74690aa
2,033
py
Python
tests/conftest.py
jackdesert/anony-mouse
61e111ef6a38ea9e440fc76610676555dce1795c
[ "MIT" ]
null
null
null
tests/conftest.py
jackdesert/anony-mouse
61e111ef6a38ea9e440fc76610676555dce1795c
[ "MIT" ]
null
null
null
tests/conftest.py
jackdesert/anony-mouse
61e111ef6a38ea9e440fc76610676555dce1795c
[ "MIT" ]
null
null
null
import os from pyramid.paster import get_appsettings from pyramid.scripting import prepare from pyramid.testing import DummyRequest, testConfig import pytest import webtest from amouse import main def pytest_addoption(parser): parser.addoption('--ini', action='store', metavar='INI_FILE') @pytest.fixture(scope='session') def ini_file(request): # potentially grab this path from a pytest option return os.path.abspath(request.config.option.ini or 'testing.ini') @pytest.fixture(scope='session') def app_settings(ini_file): return get_appsettings(ini_file) @pytest.fixture(scope='session') def app(app_settings): return main({}, **app_settings) @pytest.fixture def testapp(app): testapp = webtest.TestApp( app, extra_environ={ 'HTTP_HOST': 'example.com', }, ) return testapp @pytest.fixture def app_request(app): """ A real request. This request is almost identical to a real request but it has some drawbacks in tests as it's harder to mock data and is heavier. """ with prepare(registry=app.registry) as env: request = env['request'] request.host = 'example.com' yield request @pytest.fixture def dummy_request(): """ A lightweight dummy request. This request is ultra-lightweight and should be used only when the request itself is not a large focus in the call-stack. It is much easier to mock and control side-effects using this object, however: - It does not have request extensions applied. - Threadlocals are not properly pushed. """ request = DummyRequest() request.host = 'example.com' return request @pytest.fixture def dummy_config(dummy_request): """ A dummy :class:`pyramid.config.Configurator` object. This allows for mock configuration, including configuration for ``dummy_request``, as well as pushing the appropriate threadlocals. """ with testConfig(request=dummy_request) as config: yield config
23.367816
78
0.699951
7952dd8663c79f11a2df45c8e1155213164a9bef
109
py
Python
Sessions/S04/module2.py
paulbordea/session3
a2edf697cbe9b9aa98383562416d4fdf1e19b482
[ "MIT" ]
null
null
null
Sessions/S04/module2.py
paulbordea/session3
a2edf697cbe9b9aa98383562416d4fdf1e19b482
[ "MIT" ]
null
null
null
Sessions/S04/module2.py
paulbordea/session3
a2edf697cbe9b9aa98383562416d4fdf1e19b482
[ "MIT" ]
null
null
null
def f(): print('f executed from module 2') if __name__ == '__main__': print('We are in module 2')
13.625
37
0.605505
7952dd9397307dafc607ed562a985e589e5af5a6
695
py
Python
validation_tool/iout/ancillary_data.py
TUW-GEO/web-validation-tool
e73faeeda0a5abe4366f1dd39c77d2e63d8bae93
[ "MIT" ]
null
null
null
validation_tool/iout/ancillary_data.py
TUW-GEO/web-validation-tool
e73faeeda0a5abe4366f1dd39c77d2e63d8bae93
[ "MIT" ]
null
null
null
validation_tool/iout/ancillary_data.py
TUW-GEO/web-validation-tool
e73faeeda0a5abe4366f1dd39c77d2e63d8bae93
[ "MIT" ]
null
null
null
''' Created on Jun 26, 2013 @author: pydev ''' import scipy.io as sc_io import numpy as np #import general.grid.dgg.warp_grid_constants as dgg_const import psycopg2 as psql #ind_ld = dgg_const.ind_ld() porosity = sc_io.readsav('/media/sf_D/porosity_ind_ld.sav')['porosity'] porosity_top=porosity['porosity_top'] conn = psql.connect("host=dbs1.ipf.tuwien.ac.at dbname=grid user=cpa password=pass4cpa") # Open a cursor to perform database operations cur = conn.cursor() for i,gpi in enumerate(ind_ld.tolist()): command = "UPDATE warp_grid SET porosity_top = '%.6f' WHERE id = '%d'"%(porosity_top[i],gpi) cur.execute(command) conn.commit() cur.close() conn.close()
20.441176
96
0.717986
7952ddc643f193680f513dcde6ca7fba6cbaa322
5,539
py
Python
girder/api/docs.py
adsorensen/girder
ae461d1198e6173f36168a71d4f7a9a5f66e6b70
[ "Apache-2.0" ]
null
null
null
girder/api/docs.py
adsorensen/girder
ae461d1198e6173f36168a71d4f7a9a5f66e6b70
[ "Apache-2.0" ]
null
null
null
girder/api/docs.py
adsorensen/girder
ae461d1198e6173f36168a71d4f7a9a5f66e6b70
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- ############################################################################### # Copyright Kitware Inc. # # Licensed under the Apache License, Version 2.0 ( the "License" ); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################### import collections import functools import six from girder import logprint models = collections.defaultdict(dict) # routes is dict of dicts of dicts # e.g. routes[resource][path][method] routes = collections.defaultdict( functools.partial(collections.defaultdict, dict)) def _toRoutePath(resource, route): """ Convert a base resource type and list of route components into a Swagger-compatible route path. """ # Convert wildcard tokens from :foo form to {foo} form convRoute = [ '{%s}' % token[1:] if token[0] == ':' else token for token in route ] path = '/'.join(['', resource] + convRoute) return path def _toOperation(info, resource, handler): """ Augment route info, returning a Swagger-compatible operation description. """ operation = dict(info) operation['tags'] = [resource] # Operation Object spec: # Unique string used to identify the operation. The id MUST be unique among # all operations described in the API. if 'operationId' not in operation: operation['operationId'] = resource + '_' + handler.__name__ return operation def addRouteDocs(resource, route, method, info, handler): """ This is called for route handlers that have a description attr on them. It gathers the necessary information to build the swagger documentation, which is consumed by the docs.Describe endpoint. :param resource: The name of the resource, e.g. "item" :type resource: str :param route: The route to describe. :type route: tuple[str] :param method: The HTTP method for this route, e.g. "POST" :type method: str :param info: The information representing the API documentation, typically from ``girder.api.describe.Description.asDict``. :type info: dict :param handler: The actual handler method for this route. :type handler: function """ path = _toRoutePath(resource, route) operation = _toOperation(info, resource, handler) # Add the operation to the given route if method not in routes[resource][path]: routes[resource][path][method] = operation def removeRouteDocs(resource, route, method, info, handler): """ Remove documentation for a route handler. :param resource: The name of the resource, e.g. "item" :type resource: str :param route: The route to describe. :type route: tuple[str] :param method: The HTTP method for this route, e.g. "POST" :type method: str :param info: The information representing the API documentation. :type info: dict :param handler: The actual handler method for this route. :type handler: function """ if resource not in routes: return path = _toRoutePath(resource, route) if path not in routes[resource]: return if method in routes[resource][path]: del routes[resource][path][method] # Clean up any empty route paths if not routes[resource][path]: del routes[resource][path] if not routes[resource]: del routes[resource] def addModel(name, model, resources=None, silent=False): """ Add a model to the Swagger documentation. :param resources: The type(s) of resource(s) to add the model to. New resource types may be implicitly defined, with the expectation that routes will be added for them at some point. If no resources are passed, the model will be exposed for every resource type :param resources: str or tuple/list[str] :param name: The name of the model. :type name: str :param model: The model to add. :type model: dict :param silent: Set this to True to suppress warnings. :type silent: bool .. warning:: This is a low-level API which does not validate the format of ``model``. See the `Swagger Model documentation`_ for a complete specification of the correct format for ``model``. .. versionchanged:: The syntax and behavior of this function was modified after v1.3.2. The previous implementation did not include a resources parameter. .. _Swagger Model documentation: https://github.com/OAI/ OpenAPI-Specification/blob/0122c22e7fb93b571740dd3c6e141c65563a18be/ versions/2.0.md#definitionsObject """ if resources: if isinstance(resources, six.string_types): resources = (resources,) for resource in resources: models[resource][name] = model else: if not silent: logprint.warning( 'WARNING: adding swagger models without specifying resources ' 'to bind to is discouraged (%s).' % name) models[None][name] = model
34.836478
79
0.657339
7952dec39289e9e4e164e9af1642a14cd5f7c5ce
12,850
py
Python
lib/python/treadmill/tests/presence_test.py
krcooke/treadmill
613008fee88a150f983ab12d8ef2e118fb77bb51
[ "Apache-2.0" ]
133
2016-09-15T13:36:12.000Z
2021-01-18T06:29:13.000Z
lib/python/treadmill/tests/presence_test.py
krcooke/treadmill
613008fee88a150f983ab12d8ef2e118fb77bb51
[ "Apache-2.0" ]
108
2016-12-28T23:41:27.000Z
2020-03-05T21:20:37.000Z
lib/python/treadmill/tests/presence_test.py
krcooke/treadmill
613008fee88a150f983ab12d8ef2e118fb77bb51
[ "Apache-2.0" ]
69
2016-09-23T20:38:58.000Z
2020-11-11T02:31:21.000Z
"""Unit test for Treadmill linux runtime presence module. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import os import io import shutil import tempfile import time import unittest import kazoo import kazoo.client import mock import treadmill from treadmill import exc from treadmill import presence from treadmill.tests.testutils import mockzk PROCCGROUPS = """#subsys_name hierarchy num_cgroups enabled cpuset 6 1 1 cpu 7 1 1 cpuacct 7 1 1 memory 4 1 1 devices 3 20 1 freezer 8 1 1 net_cls 2 1 1 blkio 10 1 1 perf_event 11 1 1 hugetlb 9 1 1 pids 5 1 1 net_prio 2 1 1""" # pylint: disable=C0301 PROCMOUNTS = """rootfs / rootfs rw 0 0 sysfs /sys sysfs rw,seclabel,nosuid,nodev,noexec,relatime 0 0 proc /proc proc rw,nosuid,nodev,noexec,relatime 0 0 devtmpfs /dev devtmpfs rw,seclabel,nosuid,size=239696k,nr_inodes=59924,mode=755 0 0 securityfs /sys/kernel/security securityfs rw,nosuid,nodev,noexec,relatime 0 0 tmpfs /dev/shm tmpfs rw,seclabel,nosuid,nodev 0 0 devpts /dev/pts devpts rw,seclabel,nosuid,noexec,relatime,gid=5,mode=620,ptmxmode=000 0 0 tmpfs /run tmpfs rw,seclabel,nosuid,nodev,mode=755 0 0 tmpfs /sys/fs/cgroup tmpfs ro,seclabel,nosuid,nodev,noexec,mode=755 0 0 cgroup /sys/fs/cgroup/systemd cgroup rw,nosuid,nodev,noexec,relatime,xattr,release_agent=/usr/lib/systemd/systemd-cgroups-agent,name=systemd 0 0 pstore /sys/fs/pstore pstore rw,nosuid,nodev,noexec,relatime 0 0 cgroup /sys/fs/cgroup/net_cls,net_prio cgroup rw,nosuid,nodev,noexec,relatime,net_prio,net_cls 0 0 cgroup /sys/fs/cgroup/devices cgroup rw,nosuid,nodev,noexec,relatime,devices 0 0 cgroup /sys/fs/cgroup/memory cgroup rw,nosuid,nodev,noexec,relatime,memory 0 0 cgroup /sys/fs/cgroup/pids cgroup rw,nosuid,nodev,noexec,relatime,pids 0 0 cgroup /sys/fs/cgroup/cpuset cgroup rw,nosuid,nodev,noexec,relatime,cpuset 0 0 cgroup /sys/fs/cgroup/cpu,cpuacct cgroup rw,nosuid,nodev,noexec,relatime,cpuacct,cpu 0 0 cgroup /sys/fs/cgroup/freezer cgroup rw,nosuid,nodev,noexec,relatime,freezer 0 0 cgroup /sys/fs/cgroup/hugetlb cgroup rw,nosuid,nodev,noexec,relatime,hugetlb 0 0 cgroup /sys/fs/cgroup/blkio cgroup rw,nosuid,nodev,noexec,relatime,blkio 0 0 cgroup /sys/fs/cgroup/perf_event cgroup rw,nosuid,nodev,noexec,relatime,perf_event 0 0 configfs /sys/kernel/config configfs rw,relatime 0 0 /dev/mapper/VolGroup00-LogVol00 / xfs rw,seclabel,relatime,attr2,inode64,noquota 0 0 selinuxfs /sys/fs/selinux selinuxfs rw,relatime 0 0 systemd-1 /proc/sys/fs/binfmt_misc autofs rw,relatime,fd=33,pgrp=1,timeout=300,minproto=5,maxproto=5,direct 0 0 debugfs /sys/kernel/debug debugfs rw,relatime 0 0 mqueue /dev/mqueue mqueue rw,seclabel,relatime 0 0 hugetlbfs /dev/hugepages hugetlbfs rw,seclabel,relatime 0 0 sunrpc /var/lib/nfs/rpc_pipefs rpc_pipefs rw,relatime 0 0 nfsd /proc/fs/nfsd nfsd rw,relatime 0 0 /dev/sda2 /boot xfs rw,seclabel,relatime,attr2,inode64,noquota 0 0 vagrant /vagrant vboxsf rw,nodev,relatime 0 0 home_centos_treadmill /home/centos/treadmill vboxsf rw,nodev,relatime 0 0 home_centos_treadmill-pid1 /home/centos/treadmill-pid1 vboxsf rw,nodev,relatime 0 0 tmpfs /run/user/1000 tmpfs rw,seclabel,nosuid,nodev,relatime,size=50040k,mode=700,uid=1000,gid=1000 0 0""" # noqa: E501 _ORIGINAL_OPEN = open def _open_side_effect(path, *args): if path == '/proc/mounts': return io.StringIO(PROCMOUNTS) elif path == '/proc/cgroups': return io.StringIO(PROCCGROUPS) else: return _ORIGINAL_OPEN(path, *args) class PresenceTest(mockzk.MockZookeeperTestCase): """Mock test for treadmill.presence.""" def setUp(self): self.root = tempfile.mkdtemp() self.events_dir = os.path.join(self.root, 'appevents') os.mkdir(self.events_dir) self.zkclient = treadmill.zkutils.ZkClient() super(PresenceTest, self).setUp() def tearDown(self): if self.root and os.path.isdir(self.root): shutil.rmtree(self.root) @mock.patch('kazoo.client.KazooClient.create', mock.Mock()) @mock.patch('kazoo.client.KazooClient.get', mock.Mock()) @mock.patch('treadmill.sysinfo.hostname', mock.Mock()) @mock.patch('treadmill.subproc.check_call', mock.Mock()) @mock.patch('time.sleep', mock.Mock) def test_registration(self): """Verifies presence registration.""" treadmill.sysinfo.hostname.return_value = 'myhostname' manifest = { 'task': 't-0001', 'name': 'foo.test1', 'uniqueid': 'AAAAAA', 'proid': 'andreik', 'services': [ { 'command': '/usr/bin/python -m SimpleHTTPServer', 'name': 'web_server', 'restart': { 'interval': 60, 'limit': 3 } }, { 'command': '/usr/bin/python -m SimpleHTTPServer', 'name': 'another_server' }, { 'command': 'sshd -D -f /etc/ssh/sshd_config', 'name': 'sshd', 'proid': None } ], 'endpoints': [ { 'port': 22, 'name': 'ssh', 'real_port': 5001, }, { 'port': 8000, 'name': 'http', 'real_port': 5000, } ] } app_presence = presence.EndpointPresence(self.zkclient, manifest) app_presence.register_endpoints() kazoo.client.KazooClient.create.assert_has_calls( [ mock.call( '/endpoints/foo/test1:tcp:ssh', value=b'myhostname:5001', acl=mock.ANY, ephemeral=True, makepath=True, sequence=False ), mock.call( '/endpoints/foo/test1:tcp:http', value=b'myhostname:5000', acl=mock.ANY, ephemeral=True, makepath=True, sequence=False ), ] ) retry_happened = [] def node_exists(*_args, **_kwargs): """Simulate existence of ephemeral node.""" if retry_happened: return else: retry_happened.append(1) raise kazoo.client.NodeExistsError() kazoo.client.KazooClient.create.reset() kazoo.client.KazooClient.create.side_effect = node_exists kazoo.client.KazooClient.get.return_value = (b'{}', {}) app_presence.register_endpoints() self.assertTrue(retry_happened) self.assertTrue(time.sleep.called) kazoo.client.KazooClient.create.assert_has_calls( [ mock.call( '/endpoints/foo/test1:tcp:ssh', value=b'myhostname:5001', acl=mock.ANY, ephemeral=True, makepath=True, sequence=False ), mock.call( '/endpoints/foo/test1:tcp:http', value=b'myhostname:5000', acl=mock.ANY, ephemeral=True, makepath=True, sequence=False ), ] ) kazoo.client.KazooClient.create.reset() kazoo.client.KazooClient.create.side_effect = ( kazoo.client.NodeExistsError ) self.assertRaises(exc.ContainerSetupError, app_presence.register_endpoints) @mock.patch('kazoo.client.KazooClient.get', mock.Mock()) @mock.patch('kazoo.client.KazooClient.delete', mock.Mock()) @mock.patch('kazoo.client.KazooClient.get_children', mock.Mock()) def test_kill(self): """Checks removal of the endpoints.""" zk_content = { 'running': { 'myproid.aaa': b'xxx.xx.com', 'myproid.bbb': b'yyy.xx.com' }, 'endpoints': { 'myproid': { 'aaa:tcp:http': b'xxx.xx.com:1234', 'bbb:tcp:http': b'yyy.xx.com:1234', }, }, 'servers': { 'xxx.xx.com': {}, }, 'server.presence': { 'xxx.xx.com': {}, }, 'placement': { 'xxx.xx.com': { 'myproid.aaa': {}, 'myproid.bbb': {}, } }, 'scheduled': { 'myproid.aaa': { 'endpoints': [{'name': 'http', 'port': 8888}], }, 'myproid.bbb': { 'endpoints': [{'name': 'http', 'port': 8888}], }, } } self.make_mock_zk(zk_content) presence.kill_node(self.zkclient, 'xxx.xx.com') # aaa running node is removed. self.assertNotIn('myproid.aaa', zk_content['running']) # bbb is not removed, as 'running' node has different hostname. self.assertIn('myproid.bbb', zk_content['running']) # Same for endpoints - aaa is removed, bbb is not. self.assertNotIn('aaa:tcp:http', zk_content['endpoints']['myproid']) self.assertIn('bbb:tcp:http', zk_content['endpoints']['myproid']) self.assertNotIn('xxx.xx.com', zk_content['server.presence']) def test_server_node(self): """Test returning server.presence node for hostname and presence_id.""" self.assertEqual( presence.server_node('xxx.xx.com', '-1'), 'xxx.xx.com' ) self.assertEqual( presence.server_node('yyy.yy.com', '12345'), 'yyy.yy.com#12345' ) def test_parse_server(self): """Test returning hostname and presence_id for server.presence node.""" self.assertEqual( presence.parse_server('xxx.xx.com'), ('xxx.xx.com', '-1') ) self.assertEqual( presence.parse_server('yyy.yy.com#12345'), ('yyy.yy.com', '12345') ) def test_server_hostname(self): """Test returning hostname for given server.presence node.""" self.assertEqual(presence.server_hostname('xxx.xx.com'), 'xxx.xx.com') self.assertEqual( presence.server_hostname('yyy.yy.com#12345'), 'yyy.yy.com' ) def test_find_server(self): """Test finding server.""" zkclient_mock = mock.Mock() zkclient_mock.get_children.return_value = [ 'yyy.yy.com#12345', 'zzz.zz.com' ] self.assertEqual( presence.find_server(zkclient_mock, 'xxx.xx.com'), None ) self.assertEqual( presence.find_server(zkclient_mock, 'yyy.yy.com'), '/server.presence/yyy.yy.com#12345' ) self.assertEqual( presence.find_server(zkclient_mock, 'zzz.zz.com'), '/server.presence/zzz.zz.com' ) def test_register_server(self): """Test registering server.""" zkclient_mock = mock.Mock() zkclient_mock.get.return_value = (b"{parent: 'rack:test123'}\n", None) zkclient_mock.create.return_value = '/server.presence/xxx.xx.com#12345' server_presence_path = presence.register_server( zkclient_mock, 'xxx.xx.com', {'up_since': '123.45'} ) self.assertEqual( server_presence_path, '/server.presence/xxx.xx.com#12345' ) zkclient_mock.set.assert_called_once_with( '/servers/xxx.xx.com', b'{"parent": "rack:test123", "up_since": "123.45"}' ) zkclient_mock.create.assert_called_once_with( '/server.presence/xxx.xx.com#', b'{"seen": false}', acl=mock.ANY, ephemeral=True, makepath=True, sequence=True ) def test_unregister_server(self): """Test unregistering server.""" zkclient_mock = mock.Mock() zkclient_mock.get_children.side_effect = lambda path: { '/server.presence': ['yyy.yy.com#12345', 'zzz.zz.com'] }.get(path, []) presence.unregister_server(zkclient_mock, 'xxx.xx.com') zkclient_mock.delete.assert_not_called() presence.unregister_server(zkclient_mock, 'yyy.yy.com') zkclient_mock.delete.assert_called_with( '/server.presence/yyy.yy.com#12345' ) presence.unregister_server(zkclient_mock, 'zzz.zz.com') zkclient_mock.delete.assert_called_with('/server.presence/zzz.zz.com') if __name__ == '__main__': unittest.main()
35.793872
144
0.588794
7952ded1ad228e7ffae3f9667d8caefdf29a86c8
16,846
py
Python
apps/sad/models.py
upeu-jul-20161-epis-ads2/americas
a9632bb7d6fb4f6479f41e5cd61efcdd3d435095
[ "BSD-3-Clause" ]
null
null
null
apps/sad/models.py
upeu-jul-20161-epis-ads2/americas
a9632bb7d6fb4f6479f41e5cd61efcdd3d435095
[ "BSD-3-Clause" ]
null
null
null
apps/sad/models.py
upeu-jul-20161-epis-ads2/americas
a9632bb7d6fb4f6479f41e5cd61efcdd3d435095
[ "BSD-3-Clause" ]
null
null
null
# _*_ coding: utf-8 _*_ """ @copyright Copyright (c) 2014 Submit Consulting @author Angel Sullon (@asullom) @package auth @Descripcion Definiciรณn de los modelos """ from django.db import models from django.utils.translation import ugettext_lazy as _ from django.utils.text import capfirst, get_text_list from django.dispatch import receiver from django.db.models import signals from unicodedata import normalize from django.core.exceptions import ValidationError from django.core.exceptions import NON_FIELD_ERRORS import datetime # models from django.contrib.auth.models import AbstractUser # managers from .managers import UserManager from apps.params.models import Person from django.contrib.auth.models import Group, Permission from apps.space.models import Solution, Association, Enterprise, Headquar # others # TODO Is done por ahora ON = 'ON' OFF = 'OFF' USER_STATUS_CHOICES = ( (ON, _('Activate')), (OFF, _('Deactivate')), ) class User(AbstractUser): """ Tabla para usuarios """ class Meta: # swappable = 'AUTH_USER_MODEL' #ver django-angular-seed verbose_name = capfirst(_('user')) verbose_name_plural = capfirst(_('users')) permissions = ( ('user', 'Can ALL user'), ) db_table = 'auth_user' # comentar desde aqui last_headquar_id = models.CharField(max_length=50, null=True, blank=True) last_module_id = models.CharField(max_length=50, null=True, blank=True) person = models.OneToOneField( Person, verbose_name=_('Person'), null=True, blank=True, # unique=True OneToOneField ya es unico # related_name='user' ) # hgroups = models.ManyToManyField(Group, verbose_name=_(u'groups'), # through='UserHeadquar', # related_name='users_as_group', null=True, blank=True) objects = UserManager() # override the default manager def __str__(self): return self.username ''' def validate_unique(self, exclude=None): raise ValidationError( { NON_FIELD_ERRORS: ('Person with same ... already exists.',) } ) super(User, self).validate_unique(exclude=exclude) ''' ''' def clean(self): #raise ValidationError('foo must not be empty') raise ValidationError( { 'identity_num': ('Person with same ... already exists.',) } ) ''' ''' def save(self, *args, **kwargs): # TODO Mandar con Exception no con ValidationError if Person.objects.exclude(id=self.person.id).filter(identity_type=self.person.identity_type, identity_num=self.person.identity_num).count() > 0: raise ValidationError({ 'identity_num': (_(u'%(model_name)s with this %(field_label)s already exists.') % { 'model_name': _('Person'), 'field_label': get_text_list( (capfirst(_('number')), capfirst(_('Type')) ),_('and') ), },), }) return super(User, self).save(*args, **kwargs) ''' ''' def validate_unique(self, exclude=None): # if self.person: if Person.objects.exclude(id=self.person.id).filter(identity_type=self.person.identity_type, identity_num=self.person.identity_num).count() > 0: raise ValidationError({ 'identity_num': (_(u'%(model_name)s with this %(field_label)s already exists.') % { 'model_name': _('Person'), 'field_label': get_text_list( (capfirst(_('number')), capfirst(_('Type')) ),_('and') ), },), }) return super(User, self).validate_unique(exclude=exclude) ''' ''' def save(self, *args, **kwargs): pk = self.pk if self.person: self.first_name = self.person.first_name self.last_name = self.person.last_name super(User, self).save(*args, **kwargs) if not pk: # solo despues de crear un nuevo usuario UserStatus.objects.create(description='alta', user=self) ''' def user_pre_save(sender, instance, raw, **kwargs): instance.last_login = datetime.datetime.now() if instance.person: instance.first_name = instance.person.first_name instance.last_name = instance.person.last_name @receiver(signals.post_save, sender=User) def user_post_save(sender, instance, created, raw, **kwargs): if created: # solo despues de crear un nuevo usuario UserStatus.objects.create(description='Alta', user=instance) signals.pre_save.connect(user_pre_save, sender=User) # signals.post_save.connect(user_post_save, sender=User) class UserStatus(models.Model): """ Tabla para el historial de los estados de los usuarios """ status = models.CharField( _('Status'), max_length=50, choices=USER_STATUS_CHOICES, default=ON ) description = models.TextField(_('Description'), null=True, blank=True) # related_name=userstatus_set user = models.ForeignKey(User, verbose_name=capfirst(_('user'))) created_at = models.DateTimeField(_('Created at'), auto_now_add=True) updated_at = models.DateTimeField(_('Updated at'), auto_now=True) class Meta: verbose_name = _('User status') verbose_name_plural = _('User statuses') db_table = 'sad_user_status' def __str__(self): return '%s %s' % (self.user.username, self.status) INPUT = "INPUT" OUTPUT = "OUTPUT" ACCESS_TYPE_CHOICES = ( (INPUT, "Input"), (OUTPUT, "Output"), ) class Access(models.Model): """ Tabla que registra los accesos de los usuarios al sistema """ access_type = models.CharField( _('Access type'), max_length=50, choices=ACCESS_TYPE_CHOICES, default=INPUT) ip = models.CharField(_('IP'), max_length=50, null=True, blank=True) session_key = models.TextField(_('Session key'), null=True, blank=True) user = models.ForeignKey(User, verbose_name=capfirst(_('user'))) created_at = models.DateTimeField(_('Created at'), auto_now_add=True) class Meta: verbose_name = _('Access') verbose_name_plural = _('Accesses') permissions = ( ("access", "Can ALL access"), ) def __str__(self): return "%s %s" % (self.user.username, self.access_type) PRO = 'PRO' WEB = 'WEB' CONTABILIDAD = 'CONTABILIDAD' COBRANZAS = 'COBRANZAS' SOCIOS = 'SOCIOS' REUNIONES = 'REUNIONES' BACKEND = 'BACKEND' MODULE_CHOICES = ( (PRO, 'PROFESIONAL'), (WEB, 'WEB INFORMATIVA'), (CONTABILIDAD, 'CONTABILIDAD'), (COBRANZAS, 'COBRANZAS'), (SOCIOS, 'SOCIOS'), (REUNIONES, 'REUNIONES'), (BACKEND, 'BACKEND'), ) class Module(models.Model): """ Modulos del sistema """ module = models.CharField( _('Module'), max_length=50, choices=MODULE_CHOICES, default=BACKEND) name = models.CharField(capfirst(_('name')), max_length=50) is_active = models.BooleanField(capfirst(_('active')), default=True) icon = models.CharField(_('Icon'), max_length=50, null=True, blank=True) description = models.TextField(_('Description'), null=True, blank=True) created_at = models.DateTimeField(_('Created at'), auto_now_add=True) updated_at = models.DateTimeField(_('Updated at'), auto_now=True) solutions = models.ManyToManyField( Solution, verbose_name=_('Solutions'), null=True, blank=True) # , through='ModuleSolution' groups = models.ManyToManyField( Group, related_name='module_set', verbose_name=capfirst(_('groups')), null=True, blank=True) # , through='ModuleGroup' # related_name cambia module_set x initial_groups_module_set initial_groups = models.ManyToManyField( Group, related_name='initial_groups_module_set', verbose_name=_('Initial groups'), null=True, blank=True) # , through='ModuleInitialGroup' class Meta: ordering = ['-id', ] verbose_name = _('Module') verbose_name_plural = _('Modules') permissions = ( ('module', 'Can ALL module'), ) unique_together = ('module', 'name',) def __str__(self): return '%s (%s)' % (self.name, dict((x, y) for x, y in MODULE_CHOICES)[self.module]) def validate_unique(self, exclude=None): if normalize('NFKD', self.name).encode('ascii', 'ignore').lower() in list( normalize('NFKD', c['name']).encode('ascii', 'ignore').lower() for c in self.__class__.objects.values('name').exclude(pk=self.pk).filter(module=self.module) ): raise ValidationError({ 'name': (_(u'%(model_name)s with this %(field_label)s already exists.') % { 'model_name': '%s "%s"' % (capfirst(_('Module')) + '', dict(MODULE_CHOICES).get(self.module)), 'field_label': capfirst(_('name')), }, ), }) super(Module, self).validate_unique(exclude=exclude) class Menu(models.Model): """ Menus del sistema """ module = models.CharField( _('Module'), max_length=50, choices=MODULE_CHOICES, default=BACKEND) title = models.CharField(capfirst(_('title')), max_length=50) url = models.CharField(max_length=150, default='#') pos = models.IntegerField(_('Position'), default=1) icon = models.CharField( _('Icon'), max_length=50, null=True, blank=True, default='') is_active = models.BooleanField(capfirst(_('active')), default=True) description = models.TextField(_('Description'), null=True, blank=True) created_at = models.DateTimeField(_('Created at'), auto_now_add=True) updated_at = models.DateTimeField(_('Updated at'), auto_now=True) permission = models.ForeignKey( Permission, verbose_name=_('permission'), null=True, blank=True) # related_name='parent', parent = models.ForeignKey( 'self', verbose_name=_('Parent'), null=True, blank=True) class Meta: verbose_name = _('Menu') verbose_name_plural = _('Menus') permissions = ( ('menu', 'Can ALL menu'), ) def __str__(self): return '%s (%s)' % (self.title, dict((x, y) for x, y in MODULE_CHOICES)[self.module]) class UserEnterprise(models.Model): """ Permisos a nivel de empresa """ created_at = models.DateTimeField(_('Created at'), auto_now_add=True) updated_at = models.DateTimeField(_('Updated at'), auto_now=True) user = models.ForeignKey(User, verbose_name=_('user')) group = models.ForeignKey(Group, verbose_name=_('group')) enterprise = models.ForeignKey(Enterprise, verbose_name=_('Enterprise')) class Meta: verbose_name = _('User enterprise') verbose_name_plural = _('User enterprises') db_table = 'sad_user_enterprise' def __str__(self): return '%s %s - %s' % (self.user.username, self.enterprise.name, self.group.name) class UserHeadquar(models.Model): """ Permisos a nivel de sede headquar """ created_at = models.DateTimeField(_('Created at'), auto_now_add=True) updated_at = models.DateTimeField(_('Updated at'), auto_now=True) user = models.ForeignKey(User, verbose_name=_('user')) group = models.ForeignKey(Group, verbose_name=_('group')) headquar = models.ForeignKey(Headquar, verbose_name=_('Headquar')) class Meta: verbose_name = _('User headquar') verbose_name_plural = _('User headquars') db_table = 'sad_user_headquar' def __str__(self): return '%s %s %s - %s' % (self.user.username, self.headquar.name, self.headquar.enterprise.name, self.group.name) class UserAssociation(models.Model): """ Permisos a nivel de association """ created_at = models.DateTimeField(_('Created at'), auto_now_add=True) updated_at = models.DateTimeField(_('Updated at'), auto_now=True) user = models.ForeignKey(User, verbose_name=_('user')) group = models.ForeignKey(Group, verbose_name=_('group')) association = models.ForeignKey(Association, verbose_name=_('Association')) class Meta: verbose_name = _('User association') verbose_name_plural = _('User association') db_table = 'sad_user_association' def __str__(self): return '%s %s - %s' % (self.user.username, self.association.name, self.group.name) class Ticket(models.Model): """ Tabla para impresiones de tickets """ text = models.CharField(_('Text'), max_length=150, null=True, blank=True) row = models.IntegerField(_('Row'), default=1) user = models.ForeignKey( User, verbose_name=_('user'), null=True, blank=True) class Meta: verbose_name = _('Ticket') verbose_name_plural = _('Tickets') permissions = ( ('ticket', 'Can ALL ticket'), ) def __str__(self): return '%s %s' % (self.user.username, self.text) class Backup(models.Model): """ Tabla para registro de las copias de la db """ file_name = models.CharField(_('File name'), max_length=50) description = models.TextField(_('Description'), null=True, blank=True) size = models.CharField(_('Size'), max_length=50, null=True, blank=True) user = models.ForeignKey(User, verbose_name=_('user')) created_at = models.DateTimeField(_('Created at'), auto_now_add=True) class Meta: verbose_name = _('Backup') verbose_name_plural = _('Backups') permissions = ( ('backup', 'Can ALL backup'), ) def __str__(self): return self.file_name ''' Mantener esto desactivado hasta poner en producciรณn Modelos que se usan solo para cambiar el verbose_name de las relaciones. Desactivar antes de hacer una migraciรณn a sad o un backup $python manage.py makemigrations sad $python manage.py migrate sad $python manage.py dumpdata > fixtures/backup_datayyyymmdd.json class GroupPermission(models.Model): """ """ permission = models.ForeignKey( Permission, verbose_name=capfirst(_('permission')), null=True, blank=True) group = models.ForeignKey( Group, verbose_name=capfirst(_('group')), null=True, blank=True) class Meta: verbose_name = _('Group-permission') verbose_name_plural = _('Group-permissions') db_table = 'auth_group_permissions' def __str__(self): return '%s-%s' % (self.group, self.permission.codename) class UserGroup(models.Model): """ """ user = models.ForeignKey( User, verbose_name=capfirst(_('user')), null=True, blank=True) group = models.ForeignKey( Group, verbose_name=capfirst(_('group')), null=True, blank=True) class Meta: verbose_name = _('User-group') verbose_name_plural = _('User-groups') db_table = 'auth_user_groups' def __str__(self): return '%s-%s' % (self.user, self.group) class ModuleSolution(models.Model): """ Solo para cambiar el mensaje de Module-group relationship: "Module_initial_groups object" para Module-group: "Backend-MASTER" """ module = models.ForeignKey( Module, verbose_name=_('Module'), null=True, blank=True) solution = models.ForeignKey( Solution, verbose_name=_('Solution'), null=True, blank=True) class Meta: verbose_name = _('Module-solution') verbose_name_plural = _('Module-solutions') db_table = 'sad_module_solutions' def __str__(self): return '%s-%s' % (self.module, self.solution) class ModuleGroup(models.Model): """ """ module = models.ForeignKey( Module, verbose_name=_('Module'), null=True, blank=True) group = models.ForeignKey( Group, verbose_name=capfirst(_('group')), null=True, blank=True) class Meta: verbose_name = _('Module-group') verbose_name_plural = _('Module-groups') db_table = 'sad_module_groups' def __str__(self): return '%s-%s' % (self.module, self.group) class ModuleInitialGroup(models.Model): """ """ module = models.ForeignKey( Module, verbose_name=_('Module'), null=True, blank=True) group = models.ForeignKey( Group, verbose_name=capfirst(_('group')), null=True, blank=True) class Meta: verbose_name = _('Module-initial group') verbose_name_plural = _('Module-initial groups') db_table = 'sad_module_initial_groups' def __str__(self): return '%s-%s' % (self.module, self.group) '''
31.784906
152
0.631248
7952df80495044abc65ee30af9623cc1e23e09ba
7,628
py
Python
base/base_trainer.py
Lo1s/superresolution
18052465694bfc2543b9af71d8012d854a516d1a
[ "MIT", "Unlicense" ]
1
2021-06-19T15:03:58.000Z
2021-06-19T15:03:58.000Z
base/base_trainer.py
Lo1s/superresolution
18052465694bfc2543b9af71d8012d854a516d1a
[ "MIT", "Unlicense" ]
null
null
null
base/base_trainer.py
Lo1s/superresolution
18052465694bfc2543b9af71d8012d854a516d1a
[ "MIT", "Unlicense" ]
null
null
null
import os import torch import torchvision.transforms as transforms import torchvision.utils as vutils from PIL import Image from abc import abstractmethod from numpy import inf from logger import TensorboardWriter from model.esrgan.utils.utils import MODEL_KEY, GENERATOR_KEY, DISCRIMINATOR_KEY from test import save_predictions_as_imgs # Load base low-resolution image. fixed_lr = transforms.ToTensor()(Image.open(os.path.join("data/inputs/Set5", "butterfly.png"))).unsqueeze(0) class BaseTrainer: """ Base class for all trainers """ def __init__(self, models, criterion, metric_ftns, optimizers, config, device, monitor_cfg_key='monitor', epochs_cfg_key='epochs'): self.device = device self.fixed_lr = fixed_lr.to(self.device) self.config = config self.logger = config.get_logger('trainer', config['trainer']['verbosity']) self.models = models self.criterion = criterion self.metric_ftns = metric_ftns self.optimizers = optimizers cfg_trainer = config['trainer'] self.epochs = cfg_trainer[epochs_cfg_key] self.save_period = cfg_trainer['save_period'] self.monitor = cfg_trainer.get(monitor_cfg_key, 'off') # configuration to monitor model performance and save best if self.monitor == 'off': self.mnt_mode = 'off' self.mnt_best = 0 else: self.mnt_mode, self.mnt_metric = self.monitor.split() assert self.mnt_mode in ['min', 'max'] self.mnt_best = inf if self.mnt_mode == 'min' else -inf self.early_stop = cfg_trainer.get('early_stop', inf) self.plot_epoch_result = cfg_trainer.get('plot_epoch_result', inf) if self.early_stop <= 0: self.early_stop = inf self.start_epoch = 1 self.checkpoint_dir = config.save_dir # setup visualization writer instance self.writer = TensorboardWriter(config.log_dir, self.logger, cfg_trainer['tensorboard']) if config.resume is not None: self._resume_checkpoint(config.resume) @abstractmethod def _train_epoch(self, epoch): """ Training logic for an epoch :param epoch: Current epoch number """ raise NotImplementedError def train(self): """ Full training logic """ not_improved_count = 0 for epoch in range(self.start_epoch, self.epochs + 1): result = self._train_epoch(epoch) # save logged informations into log dict log = {'epoch': epoch} log.update(result) # print logged informations to the screen for key, value in log.items(): self.logger.info(' {:15s}: {}'.format(str(key), value)) # evaluate model performance according to configured metric, save best checkpoint as model_best best = False if self.mnt_mode != 'off': try: # check whether model performance improved or not, according to specified metric(mnt_metric) improved = (self.mnt_mode == 'min' and log[self.mnt_metric] <= self.mnt_best) or \ (self.mnt_mode == 'max' and log[self.mnt_metric] >= self.mnt_best) except KeyError: self.logger.warning("Warning: Metric '{}' is not found. " "Model performance monitoring is disabled.".format(self.mnt_metric)) self.mnt_mode = 'off' improved = False if improved: self.mnt_best = log[self.mnt_metric] not_improved_count = 0 best = True else: not_improved_count += 1 if not_improved_count > self.early_stop: self.logger.info("Validation performance didn\'t improve for {} epochs. " "Training stops.".format(self.early_stop)) break if epoch % self.save_period == 0: self._save_checkpoint(epoch, save_best=best) def _save_checkpoint(self, epoch, save_best=False): """ Saving checkpoints :param epoch: current epoch number :param log: logging information of the epoch :param save_best: if True, rename the saved checkpoint to 'model_best.pth' """ for i, model in enumerate(self.models): optimizer = self.optimizers[i] arch = type(model).__name__ state = { 'arch': arch, 'epoch': epoch, 'state_dict': model.state_dict(), 'optimizer': optimizer.state_dict(), 'monitor_best': self.mnt_best, 'config': self.config } filename = str(self.checkpoint_dir / 'checkpoint-{}_epoch_{}.pth'.format(arch, epoch)) torch.save(state, filename) self.logger.info("Saving checkpoint: {} ...".format(filename)) if save_best: best_path = str(self.checkpoint_dir / f'model_{arch}_best.pth') torch.save(state, best_path) self.logger.info(f'Saving current best: model_{arch}_best.pth ...') # Each one epoch create a sr image. arch = type(self.models[MODEL_KEY]).__name__ with torch.no_grad(): sr = self.models[MODEL_KEY](self.fixed_lr) vutils.save_image( sr.detach(), os.path.join(self.checkpoint_dir, f'checkpoint-{arch}_epoch_{epoch}.png'), normalize=True ) def _resume_checkpoint(self, resume_paths): """ Resume from saved checkpoints :param resume_path: Checkpoint path to be resumed """ for i, path in enumerate(resume_paths): self.logger.info("Loading checkpoint: {} ...".format(path)) checkpoint = torch.load(path) self.start_epoch = checkpoint['epoch'] + 1 self.mnt_best = checkpoint['monitor_best'] if 'Generator' in checkpoint['arch']: key = GENERATOR_KEY arch_param = 'arch_esrgan_gen' elif 'Discriminator' in checkpoint['arch']: key = DISCRIMINATOR_KEY arch_param = 'arch_esrgan_disc' else: key = MODEL_KEY arch_param = 'arch_single' # load architecture params from checkpoint. if checkpoint['config'][arch_param] != self.config[arch_param]: self.logger.warning( "Warning: Architecture configuration given in config file is different from that of " "checkpoint. This may yield an exception while state_dict is being loaded.") self.models[key].load_state_dict(checkpoint['state_dict']) # load optimizer state from checkpoint only when optimizer type is not changed. if checkpoint['config']['optimizer']['type'] != self.config['optimizer']['type']: self.logger.warning( "Warning: Optimizer type given in config file is different from that of checkpoint. " "Optimizer parameters not being resumed.") else: self.optimizers[key].load_state_dict(checkpoint['optimizer']) self.logger.info("Checkpoint loaded. Resume training from epoch {}".format(self.start_epoch))
39.937173
112
0.583901
7952e11bfc31e447441b435b7e5ed005bbd41a60
53,020
py
Python
src/datera/datera_api22.py
JochenFriedrich/cinder-driver
bab97011d30b8927e13908dc6651d45257d6522c
[ "Apache-2.0" ]
null
null
null
src/datera/datera_api22.py
JochenFriedrich/cinder-driver
bab97011d30b8927e13908dc6651d45257d6522c
[ "Apache-2.0" ]
null
null
null
src/datera/datera_api22.py
JochenFriedrich/cinder-driver
bab97011d30b8927e13908dc6651d45257d6522c
[ "Apache-2.0" ]
null
null
null
# Copyright 2017 Datera # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import contextlib import math import random import re import time import uuid import eventlet import ipaddress import six from oslo_log import log as logging from oslo_utils import excutils from oslo_utils import units from cinder import exception from cinder.i18n import _ from cinder.image import image_utils from cinder.volume import utils as volutils from cinder import utils from cinder.volume import volume_types from os_brick import exception as brick_exception import cinder.volume.drivers.datera.datera_common as datc LOG = logging.getLogger(__name__) API_VERSION = "2.2" class DateraApi(object): # ================= # = Create Volume = # ================= def _create_volume_2_2(self, volume): tenant = self._create_tenant_2_2(volume) policies = self._get_policies_for_resource(volume) num_replicas = int(policies['replica_count']) storage_name = policies['default_storage_name'] volume_name = policies['default_volume_name'] template = policies['template'] placement = policies['placement_mode'] if template: app_params = ( { 'create_mode': "openstack", # 'uuid': str(volume['id']), 'name': datc._get_name(volume['id']), 'app_template': '/app_templates/{}'.format(template) }) else: app_params = ( { 'create_mode': "openstack", 'uuid': str(volume['id']), 'name': datc._get_name(volume['id']), 'access_control_mode': 'deny_all', 'storage_instances': [ { 'name': storage_name, 'volumes': [ { 'name': volume_name, 'size': volume['size'], 'placement_mode': placement, 'replica_count': num_replicas, 'snapshot_policies': [ ] } ] } ] }) self._issue_api_request( datc.URL_TEMPLATES['ai'](), 'post', body=app_params, api_version=API_VERSION, tenant=tenant) self._update_qos_2_2(volume, policies, tenant) # ================= # = Extend Volume = # ================= def _extend_volume_2_2(self, volume, new_size): if volume['size'] >= new_size: LOG.warning("Volume size not extended due to original size being " "greater or equal to new size. Originial: " "%(original)s, New: %(new)s", { 'original': volume['size'], 'new': new_size}) return tenant = self._create_tenant_2_2(volume) policies = self._get_policies_for_resource(volume) template = policies['template'] if template: LOG.warning("Volume size not extended due to template binding:" " volume: %(volume)s, template: %(template)s", {'volume': volume, 'template': template}) return with self._offline_flip_2_2(volume, tenant): # Change Volume Size app_inst = datc._get_name(volume['id']) data = { 'size': new_size } store_name, vol_name = self._scrape_template(policies) self._issue_api_request( datc.URL_TEMPLATES['vol_inst']( store_name, vol_name).format(app_inst), method='put', body=data, api_version=API_VERSION, tenant=tenant) # ================= # = Cloned Volume = # ================= def _create_cloned_volume_2_2(self, volume, src_vref): policies = self._get_policies_for_resource(volume) tenant = self._create_tenant_2_2(volume) store_name, vol_name = self._scrape_template(policies) src = "/" + datc.URL_TEMPLATES['vol_inst']( store_name, vol_name).format(datc._get_name(src_vref['id'])) data = { 'create_mode': 'openstack', 'name': datc._get_name(volume['id']), 'uuid': str(volume['id']), 'clone_volume_src': {'path': src}, } self._issue_api_request( datc.URL_TEMPLATES['ai'](), 'post', body=data, api_version=API_VERSION, tenant=tenant) if volume['size'] > src_vref['size']: self._extend_volume_2_2(volume, volume['size']) # ================= # = Delete Volume = # ================= def _delete_volume_2_2(self, volume): self._detach_volume_2_2(None, volume) tenant = self._create_tenant_2_2(volume) app_inst = datc._get_name(volume['id']) try: self._issue_api_request( datc.URL_TEMPLATES['ai_inst']().format(app_inst), method='delete', api_version=API_VERSION, tenant=tenant) except exception.NotFound: msg = ("Tried to delete volume %s, but it was not found in the " "Datera cluster. Continuing with delete.") LOG.info(msg, datc._get_name(volume['id'])) # ================= # = Ensure Export = # ================= def _ensure_export_2_2(self, context, volume, connector=None): self.create_export(context, volume, connector) # ========================= # = Initialize Connection = # ========================= def _initialize_connection_2_2(self, volume, connector): # Now online the app_instance (which will online all storage_instances) multipath = connector.get('multipath', False) tenant = self._create_tenant_2_2(volume) url = datc.URL_TEMPLATES['ai_inst']().format( datc._get_name(volume['id'])) data = { 'admin_state': 'online' } app_inst = self._issue_api_request( url, method='put', body=data, api_version=API_VERSION, tenant=tenant)['data'] storage_instances = app_inst["storage_instances"] si = storage_instances[0] # randomize portal chosen choice = 0 policies = self._get_policies_for_resource(volume) if policies["round_robin"]: choice = random.randint(0, 1) portal = si['access']['ips'][choice] + ':3260' iqn = si['access']['iqn'] if multipath: portals = [p + ':3260' for p in si['access']['ips']] iqns = [iqn for _ in si['access']['ips']] lunids = [self._get_lunid() for _ in si['access']['ips']] result = { 'driver_volume_type': 'iscsi', 'data': { 'target_discovered': False, 'target_iqn': iqn, 'target_iqns': iqns, 'target_portal': portal, 'target_portals': portals, 'target_lun': self._get_lunid(), 'target_luns': lunids, 'volume_id': volume['id'], 'discard': False}} else: result = { 'driver_volume_type': 'iscsi', 'data': { 'target_discovered': False, 'target_iqn': iqn, 'target_portal': portal, 'target_lun': self._get_lunid(), 'volume_id': volume['id'], 'discard': False}} if self.use_chap_auth: result['data'].update( auth_method="CHAP", auth_username=self.chap_username, auth_password=self.chap_password) return result # ================= # = Create Export = # ================= def _create_export_2_2(self, context, volume, connector): tenant = self._create_tenant_2_2(volume) url = datc.URL_TEMPLATES['ai_inst']().format( datc._get_name(volume['id'])) data = { 'admin_state': 'offline', 'force': True } self._issue_api_request( url, method='put', body=data, api_version=API_VERSION, tenant=tenant) policies = self._get_policies_for_resource(volume) store_name, _ = self._scrape_template(policies) if connector and connector.get('ip'): # Case where volume_type has non default IP Pool info if policies['ip_pool'] != 'default': initiator_ip_pool_path = self._issue_api_request( "access_network_ip_pools/{}".format( policies['ip_pool']), api_version=API_VERSION, tenant=tenant)['path'] # Fallback to trying reasonable IP based guess else: initiator_ip_pool_path = self._get_ip_pool_for_string_ip_2_2( connector['ip'], tenant) ip_pool_url = datc.URL_TEMPLATES['si_inst']( store_name).format(datc._get_name(volume['id'])) ip_pool_data = {'ip_pool': {'path': initiator_ip_pool_path}} self._issue_api_request(ip_pool_url, method="put", body=ip_pool_data, api_version=API_VERSION, tenant=tenant) url = datc.URL_TEMPLATES['ai_inst']().format( datc._get_name(volume['id'])) data = { 'admin_state': 'online' } self._issue_api_request( url, method='put', body=data, api_version=API_VERSION, tenant=tenant) # Check if we've already setup everything for this volume url = (datc.URL_TEMPLATES['si']().format(datc._get_name(volume['id']))) storage_instances = self._issue_api_request( url, api_version=API_VERSION, tenant=tenant) # Handle adding initiator to product if necessary # Then add initiator to ACL if (connector and connector.get('initiator') and not policies['acl_allow_all']): initiator_name = "OpenStack_{}_{}".format( self.driver_prefix, str(uuid.uuid4())[:4]) initiator_group = datc.INITIATOR_GROUP_PREFIX + str(uuid.uuid4()) # TODO(_alastor_): actually check for existing initiator found = False initiator = connector['initiator'] if not found: # TODO(_alastor_): Take out the 'force' flag when we fix # DAT-15931 data = {'id': initiator, 'name': initiator_name, 'force': True} # Try and create the initiator # If we get a conflict, ignore it self._issue_api_request("initiators", method="post", body=data, conflict_ok=True, api_version=API_VERSION, tenant=tenant) # Create initiator group with initiator in it initiator_path = "/initiators/{}".format(initiator) initiator_group_path = "/initiator_groups/{}".format( initiator_group) ig_data = {'name': initiator_group, 'members': [{'path': initiator_path}]} self._issue_api_request("initiator_groups", method="post", body=ig_data, conflict_ok=True, api_version=API_VERSION, tenant=tenant) # Create ACL with initiator group as reference for each # storage_instance in app_instance # TODO(_alastor_): We need to avoid changing the ACLs if the # template already specifies an ACL policy. for si in storage_instances['data']: acl_url = (datc.URL_TEMPLATES['si']() + "/{}/acl_policy").format( datc._get_name(volume['id']), si['name']) existing_acl = self._issue_api_request( acl_url, method="get", api_version=API_VERSION, tenant=tenant)['data'] data = {} # Grabbing only the 'path' key from each existing initiator # within the existing acl. eacli --> existing acl initiator eacli = [] for acl in existing_acl['initiators']: nacl = {} nacl['path'] = acl['path'] eacli.append(nacl) data['initiators'] = eacli # Grabbing only the 'path' key from each existing initiator # group within the existing acl. eaclig --> existing # acl initiator group eaclig = [] for acl in existing_acl['initiator_groups']: nacl = {} nacl['path'] = acl['path'] eaclig.append(nacl) data['initiator_groups'] = eaclig data['initiator_groups'].append({"path": initiator_group_path}) self._issue_api_request(acl_url, method="put", body=data, api_version=API_VERSION, tenant=tenant) if self.use_chap_auth: auth_url = (datc.URL_TEMPLATES['si']() + "/{}/auth").format( datc._get_name(volume['id']), si['name']) data = {'type': 'chap', 'target_user_name': self.chap_username, 'target_pswd': self.chap_password} self._issue_api_request( auth_url, method="put", api_version=API_VERSION, tenant=tenant, body=data, sensitive=True) # Check to ensure we're ready for go-time self._si_poll_2_2(volume, policies, tenant) # ================= # = Detach Volume = # ================= def _detach_volume_2_2(self, context, volume, attachment=None): tenant = self._create_tenant_2_2(volume) url = datc.URL_TEMPLATES['ai_inst']().format( datc._get_name(volume['id'])) data = { 'admin_state': 'offline', 'force': True } try: self._issue_api_request( url, method='put', body=data, api_version=API_VERSION, tenant=tenant) except exception.NotFound: msg = ("Tried to detach volume %s, but it was not found in the " "Datera cluster. Continuing with detach.") LOG.info(msg, volume['id']) # TODO(_alastor_): Make acl cleaning multi-attach aware self._clean_acl_2_2(volume, tenant) def _check_for_acl_2_2(self, initiator_path, tenant): """Returns True if an acl is found for initiator_path """ # TODO(_alastor_) when we get a /initiators/:initiator/acl_policies # endpoint use that instead of this monstrosity initiator_groups = self._issue_api_request( "initiator_groups", api_version=API_VERSION, tenant=tenant) for ig, igdata in initiator_groups.items(): if initiator_path in igdata['members']: LOG.debug("Found initiator_group: %s for initiator: %s", ig, initiator_path) return True LOG.debug("No initiator_group found for initiator: %s", initiator_path) return False def _clean_acl_2_2(self, volume, tenant): policies = self._get_policies_for_resource(volume) store_name, _ = self._scrape_template(policies) acl_url = (datc.URL_TEMPLATES["si_inst"]( store_name) + "/acl_policy").format(datc._get_name(volume['id'])) try: initiator_group = self._issue_api_request( acl_url, api_version=API_VERSION, tenant=tenant)['data'][ 'initiator_groups'][0]['path'] # TODO(_alastor_): Re-enable this when we get a force-delete # option on the /initiators endpoint # initiator_iqn_path = self._issue_api_request( # initiator_group.lstrip("/"), api_version=API_VERSION, # tenant=tenant)[ # "data"]["members"][0]["path"] # Clear out ACL and delete initiator group self._issue_api_request(acl_url, method="put", body={'initiator_groups': []}, api_version=API_VERSION, tenant=tenant) self._issue_api_request(initiator_group.lstrip("/"), method="delete", api_version=API_VERSION, tenant=tenant) # TODO(_alastor_): Re-enable this when we get a force-delete # option on the /initiators endpoint # if not self._check_for_acl_2_2(initiator_iqn_path): # self._issue_api_request(initiator_iqn_path.lstrip("/"), # method="delete", # api_version=API_VERSION, # tenant=tenant) except (IndexError, exception.NotFound): LOG.debug("Did not find any initiator groups for volume: %s", volume) # =================== # = Create Snapshot = # =================== def _create_snapshot_2_2(self, snapshot): tenant = self._create_tenant_2_2(snapshot) policies = self._get_policies_for_resource(snapshot) store_name, vol_name = self._scrape_template(policies) url_template = datc.URL_TEMPLATES['vol_inst']( store_name, vol_name) + '/snapshots' url = url_template.format(datc._get_name(snapshot['volume_id'])) snap_params = { 'uuid': snapshot['id'], } snap = self._issue_api_request( url, method='post', body=snap_params, api_version=API_VERSION, tenant=tenant) snapu = "/".join((url, snap['data']['timestamp'])) self._snap_poll_2_2(snapu, tenant) # =================== # = Delete Snapshot = # =================== def _delete_snapshot_2_2(self, snapshot): tenant = self._create_tenant_2_2(snapshot) policies = self._get_policies_for_resource(snapshot) store_name, vol_name = self._scrape_template(policies) snap_temp = datc.URL_TEMPLATES['vol_inst']( store_name, vol_name) + '/snapshots' snapu = snap_temp.format(datc._get_name(snapshot['volume_id'])) snapshots = [] try: snapshots = self._issue_api_request(snapu, method='get', api_version=API_VERSION, tenant=tenant) except exception.NotFound: msg = ("Tried to delete snapshot %s, but parent volume %s was " "not found in Datera cluster. Continuing with delete.") LOG.info(msg, datc._get_name(snapshot['id']), datc._get_name(snapshot['volume_id'])) return try: for snap in snapshots['data']: if snap['uuid'] == snapshot['id']: url_template = snapu + '/{}' url = url_template.format(snap['timestamp']) self._issue_api_request( url, method='delete', api_version=API_VERSION, tenant=tenant) break else: raise exception.NotFound except exception.NotFound: msg = ("Tried to delete snapshot %s, but was not found in " "Datera cluster. Continuing with delete.") LOG.info(msg, datc._get_name(snapshot['id'])) # ======================== # = Volume From Snapshot = # ======================== def _create_volume_from_snapshot_2_2(self, volume, snapshot): tenant = self._create_tenant_2_2(volume) policies = self._get_policies_for_resource(snapshot) store_name, vol_name = self._scrape_template(policies) snap_temp = datc.URL_TEMPLATES['vol_inst']( store_name, vol_name) + '/snapshots' snapu = snap_temp.format(datc._get_name(snapshot['volume_id'])) snapshots = self._issue_api_request( snapu, method='get', api_version=API_VERSION, tenant=tenant) for snap in snapshots['data']: if snap['uuid'] == snapshot['id']: found_ts = snap['utc_ts'] break else: raise exception.NotFound snap_url = (snap_temp + '/{}').format( datc._get_name(snapshot['volume_id']), found_ts) self._snap_poll_2_2(snap_url, tenant) src = "/" + snap_url app_params = ( { 'create_mode': 'openstack', 'uuid': str(volume['id']), 'name': datc._get_name(volume['id']), 'clone_snapshot_src': {'path': src}, }) self._issue_api_request( datc.URL_TEMPLATES['ai'](), method='post', body=app_params, api_version=API_VERSION, tenant=tenant) if (volume['size'] > snapshot['volume_size']): self._extend_volume_2_2(volume, volume['size']) # ========== # = Retype = # ========== def _retype_2_2(self, ctxt, volume, new_type, diff, host): LOG.debug("Retype called\n" "Volume: %(volume)s\n" "NewType: %(new_type)s\n" "Diff: %(diff)s\n" "Host: %(host)s\n", {'volume': volume, 'new_type': new_type, 'diff': diff, 'host': host}) def _put(vol_params, tenant): url = datc.URL_TEMPLATES['vol_inst']( old_pol['default_storage_name'], old_pol['default_volume_name']).format( datc._get_name(volume['id'])) self._issue_api_request( url, method='put', body=vol_params, api_version=API_VERSION, tenant=tenant) # We'll take the fast route only if the types share the same backend # And that backend matches this driver old_pol = self._get_policies_for_resource(volume) new_pol = self._get_policies_for_volume_type(new_type) if (host['capabilities']['vendor_name'].lower() == self.backend_name.lower()): LOG.debug("Starting fast volume retype") if old_pol.get('template') or new_pol.get('template'): LOG.warning( "Fast retyping between template-backed volume-types " "unsupported. Type1: %s, Type2: %s", volume['volume_type_id'], new_type) if old_pol.get('acl_allow_all') != new_pol.get('acl_allow_all'): LOG.warning( "Changing acl_allow_all unsupported for fast retyping" "Type1: %s, Type2: %s", volume['volume_type_id'], new_type) tenant = self._create_tenant_2_2(volume) self._update_qos_2_2(volume, new_pol, tenant, clear_old=True) # Only replica_count ip_pool requires offlining the app_instance if (new_pol['replica_count'] != old_pol['replica_count'] or new_pol['ip_pool'] != old_pol['ip_pool']): with self._offline_flip_2_2(volume, tenant): vol_params = ( { 'placement_mode': new_pol['placement_mode'], 'replica_count': new_pol['replica_count'], }) _put(vol_params, tenant) elif new_pol['placement_mode'] != old_pol['placement_mode']: vol_params = ( { 'placement_mode': new_pol['placement_mode'], }) _put(vol_params, tenant) return True else: LOG.debug("Couldn't fast-retype volume between specified types") return False # ========== # = Manage = # ========== def _manage_existing_2_2(self, volume, existing_ref): # Only volumes created under the requesting tenant can be managed in # the v2.1+ API. Eg. If tenant A is the tenant for the volume to be # managed, it must also be tenant A that makes this request. # This will be fixed in a later API update tenant = self._create_tenant_2_2(volume) existing_ref = existing_ref['source-name'] if existing_ref.count(":") not in (2, 3): raise exception.ManageExistingInvalidReference( _("existing_ref argument must be of this format: " "tenant:app_inst_name:storage_inst_name:vol_name or " "app_inst_name:storage_inst_name:vol_name")) app_inst_name = existing_ref.split(":")[0] try: (tenant, app_inst_name, storage_inst_name, vol_name) = existing_ref.split(":") except TypeError: app_inst_name, storage_inst_name, vol_name = existing_ref.split( ":") tenant = None LOG.debug("Managing existing Datera volume %s " "Changing name to %s", datc._get_name(volume['id']), existing_ref) data = {'name': datc._get_name(volume['id'])} self._issue_api_request(datc.URL_TEMPLATES['ai_inst']().format( app_inst_name), method='put', body=data, api_version=API_VERSION, tenant=tenant) # =================== # = Manage Get Size = # =================== def _manage_existing_get_size_2_2(self, volume, existing_ref): tenant = self._create_tenant_2_2(volume) existing_ref = existing_ref['source-name'] if existing_ref.count(":") != 2: raise exception.ManageExistingInvalidReference( _("existing_ref argument must be of this format:" "app_inst_name:storage_inst_name:vol_name")) app_inst_name, si_name, vol_name = existing_ref.split(":") app_inst = self._issue_api_request( datc.URL_TEMPLATES['ai_inst']().format(app_inst_name), api_version=API_VERSION, tenant=tenant) return self._get_size_2_2( volume, tenant, app_inst, si_name, vol_name) def _get_size_2_2(self, volume, tenant=None, app_inst=None, si_name=None, vol_name=None): """Helper method for getting the size of a backend object If app_inst is provided, we'll just parse the dict to get the size instead of making a separate http request """ policies = self._get_policies_for_resource(volume) si_name = si_name if si_name else policies['default_storage_name'] vol_name = vol_name if vol_name else policies['default_volume_name'] if not app_inst: vol_url = datc.URL_TEMPLATES['ai_inst']().format( datc._get_name(volume['id'])) app_inst = self._issue_api_request( vol_url, api_version=API_VERSION, tenant=tenant)['data'] if 'data' in app_inst: app_inst = app_inst['data'] sis = app_inst['storage_instances'] found_si = None for si in sis: if si['name'] == si_name: found_si = si break found_vol = None for vol in found_si['volumes']: if vol['name'] == vol_name: found_vol = vol size = found_vol['size'] return size # ========================= # = Get Manageable Volume = # ========================= def _get_manageable_volumes_2_2(self, cinder_volumes, marker, limit, offset, sort_keys, sort_dirs): # Use the first volume to determine the tenant we're working under if cinder_volumes: tenant = self._create_tenant_2_2(cinder_volumes[0]) else: tenant = None LOG.debug("Listing manageable Datera volumes") app_instances = self._issue_api_request( datc.URL_TEMPLATES['ai'](), api_version=API_VERSION, tenant=tenant)['data'] results = [] cinder_volume_ids = [vol['id'] for vol in cinder_volumes] for ai in app_instances: ai_name = ai['name'] reference = None size = None safe_to_manage = False reason_not_safe = "" cinder_id = None extra_info = None if re.match(datc.UUID4_RE, ai_name): cinder_id = ai_name.lstrip(datc.OS_PREFIX) if (not cinder_id and ai_name.lstrip(datc.OS_PREFIX) not in cinder_volume_ids): safe_to_manage, reason_not_safe = self._is_manageable_2_2(ai) if safe_to_manage: si = list(ai['storage_instances'].values())[0] si_name = si['name'] vol = list(si['volumes'].values())[0] vol_name = vol['name'] size = vol['size'] reference = {"source-name": "{}:{}:{}".format( ai_name, si_name, vol_name)} results.append({ 'reference': reference, 'size': size, 'safe_to_manage': safe_to_manage, 'reason_not_safe': reason_not_safe, 'cinder_id': cinder_id, 'extra_info': extra_info}) page_results = volutils.paginate_entries_list( results, marker, limit, offset, sort_keys, sort_dirs) return page_results def _is_manageable_2_2(self, app_inst): if len(app_inst['storage_instances']) == 1: si = list(app_inst['storage_instances'].values())[0] if len(si['volumes']) == 1: return (True, "") return (False, "App Instance has more than one storage instance or volume") # ============ # = Unmanage = # ============ def _unmanage_2_2(self, volume): tenant = self._create_tenant_2_2(volume) LOG.debug("Unmanaging Cinder volume %s. Changing name to %s", volume['id'], datc._get_unmanaged(volume['id'])) data = {'name': datc._get_unmanaged(volume['id'])} self._issue_api_request(datc.URL_TEMPLATES['ai_inst']().format( datc._get_name(volume['id'])), method='put', body=data, api_version=API_VERSION, tenant=tenant) # ==================== # = Fast Image Clone = # ==================== def _clone_image_2_2(self, context, volume, image_location, image_meta, image_service): # We're not going to fast image clone if the feature is not enabled # and/or we can't reach the image being requested if (not self.image_cache or not self._image_accessible(context, volume, image_meta)): return None, False # Check to make sure we're working with a valid volume type try: found = volume_types.get_volume_type(context, self.image_type) except (exception.VolumeTypeNotFound, exception.InvalidVolumeType): found = None if not found: msg = _("Invalid volume type: %s") LOG.error(msg, self.image_type) raise ValueError("Option datera_image_cache_volume_type_id must be" " set to a valid volume_type id") LOG.debug("Starting fast image clone") # TODO(_alastor_): determine if Datera is already an image backend # for this request and direct clone instead of caching # Dummy volume, untracked by Cinder src_vol = {'id': image_meta['id'], 'volume_type_id': self.image_type, 'size': volume['size']} # Determine if we have a cached version of the image cached = self._vol_exists_2_2(src_vol) if cached: metadata = self._get_metadata_2_2(src_vol) # Check to see if the master image has changed since we created # The cached version ts = self._get_vol_timestamp_2_2(src_vol) mts = time.mktime(image_meta['updated_at'].timetuple()) LOG.debug("Original image timestamp: %s, cache timestamp %s", mts, ts) # If the image is created by Glance, we'll trust that even if the # timestamps don't match up, the data is ok to clone as it's not # managed by this driver if metadata.get('type') == 'image': LOG.debug("Found Glance volume-backed image for %s", src_vol['id']) # If the master image time is greater than the volume creation # time, we invalidate the cache and delete the volume. The # exception is if the cached volume was created by Glance. We # NEVER want to delete this volume. It's annotated with # 'type': 'image' in the metadata, so we'll check for that elif mts > ts and metadata.get('type') != 'image': LOG.debug("Cache is older than original image, deleting cache") cached = False self._delete_volume_2_2(src_vol) # If we don't have the image, we'll cache it if not cached: LOG.debug("No image cache found for: %s, caching image", image_meta['id']) self._cache_vol(context, src_vol, image_meta, image_service) # Now perform the clone of the found image or newly cached image self._create_cloned_volume_2_2(volume, src_vol) # Force volume resize vol_size = volume['size'] volume['size'] = 0 self._extend_volume_2_2(volume, vol_size) volume['size'] = vol_size # Determine if we need to retype the newly created volume vtype_id = volume.get('volume_type_id') if vtype_id and self.image_type and vtype_id != self.image_type: vtype = volume_types.get_volume_type(context, vtype_id) LOG.debug("Retyping newly cloned volume from type: %s to type: %s", self.image_type, vtype_id) diff, discard = volume_types.volume_types_diff( context, self.image_type, vtype_id) host = {'capabilities': {'vendor_name': self.backend_name}} self._retype_2_2(context, volume, vtype, diff, host) return None, True def _cache_vol(self, context, vol, image_meta, image_service): image_id = image_meta['id'] # Pull down image and determine if valid with image_utils.TemporaryImages.fetch(image_service, context, image_id) as tmp_image: data = image_utils.qemu_img_info(tmp_image) fmt = data.file_format if fmt is None: raise exception.ImageUnacceptable( reason=_("'qemu-img info' parsing failed."), image_id=image_id) backing_file = data.backing_file if backing_file is not None: raise exception.ImageUnacceptable( image_id=image_id, reason=_("fmt=%(fmt)s backed by:%(backing_file)s") % {'fmt': fmt, 'backing_file': backing_file, }) vsize = int( math.ceil(float(data.virtual_size) / units.Gi)) vol['size'] = vsize vtype = vol['volume_type_id'] LOG.info("Creating cached image with volume type: %(vtype)s and " "size %(size)s", {'vtype': vtype, 'size': vsize}) self._create_volume_2_2(vol) with self._connect_vol(context, vol) as device: LOG.debug("Moving image %s to volume %s", image_meta['id'], datc._get_name(vol['id'])) image_utils.convert_image(tmp_image, device, 'raw', run_as_root=True) LOG.debug("Finished moving image %s to volume %s", image_meta['id'], datc._get_name(vol['id'])) data = image_utils.qemu_img_info(device, run_as_root=True) if data.file_format != 'raw': raise exception.ImageUnacceptable( image_id=image_id, reason=_( "Converted to %(vol_format)s, but format is " "now %(file_format)s") % { 'vol_format': 'raw', 'file_format': data.file_format}) # TODO(_alastor_): Remove this snapshot creation when we fix # "created_at" attribute in the frontend # We don't actually care about the snapshot uuid, we just want # a single snapshot snapshot = {'id': str(uuid.uuid4()), 'volume_id': vol['id']} self._create_snapshot_2_2(snapshot) self._update_metadata_2_2(vol, {'type': 'cached_image'}) # Cloning offline AI is ~4 seconds faster than cloning online AI self._detach_volume_2_2(None, vol) def _get_vol_timestamp_2_2(self, volume): tenant = self._create_tenant_2_2() policies = self._get_policies_for_resource(volume) store_name, vol_name = self._scrape_template(policies) snap_temp = datc.URL_TEMPLATES['vol_inst']( store_name, vol_name) + '/snapshots' snapu = snap_temp.format(datc._get_name(volume['id'])) snapshots = self._issue_api_request(snapu, method='get', api_version=API_VERSION, tenant=tenant) if len(snapshots['data']) == 1: return float(snapshots['data'][0]['utc_ts']) else: # We'll return 0 if we find no snapshots (or the incorrect number) # to ensure the timestamp comparison with the master copy fails # since the master copy will always have a timestamp > 0. LOG.debug("Number of snapshots found: %s", len(snapshots['data'])) return 0 def _vol_exists_2_2(self, volume): LOG.debug("Checking if volume %s exists", volume['id']) tenant = self._create_tenant_2_2(volume) try: return self._issue_api_request( datc.URL_TEMPLATES['ai_inst']().format( datc._get_name(volume['id'])), api_version=API_VERSION, tenant=tenant) LOG.debug("Volume %s exists", volume['id']) except exception.NotFound: LOG.debug("Volume %s not found", volume['id']) return {} @contextlib.contextmanager def _connect_vol(self, context, vol): connector = None try: # Start connection, get the connector object and create the # export (ACL, IP-Pools, etc) conn = self._initialize_connection_2_2( vol, {'multipath': False}) connector = utils.brick_get_connector( conn['driver_volume_type'], use_multipath=False, device_scan_attempts=10, conn=conn) connector_info = {'initiator': connector.get_initiator()} self._create_export_2_2(None, vol, connector_info) retries = 10 attach_info = conn['data'] while True: try: attach_info.update( connector.connect_volume(conn['data'])) break except brick_exception.FailedISCSITargetPortalLogin: retries -= 1 if not retries: LOG.error(_("Could not log into portal before end of " "polling period")) raise LOG.debug("Failed to login to portal, retrying") eventlet.sleep(2) device_path = attach_info['path'] yield device_path finally: # Close target connection if connector: # Best effort disconnection try: connector.disconnect_volume(attach_info, attach_info) except Exception: pass # =========== # = Tenancy = # =========== def _create_tenant_2_2(self, volume=None): # Create the Datera tenant if specified in the config # Otherwise use the tenant provided if self.tenant_id is None: tenant = None elif self.tenant_id.lower() == "map" and volume: # Convert dashless uuid to uuid with dashes # Eg: 0e33e95a9b154d348c675a1d8ea5b651 --> # 0e33e95a-9b15-4d34-8c67-5a1d8ea5b651 tenant = datc._get_name(str(uuid.UUID(volume["project_id"]))) elif self.tenant_id.lower() == "map" and not volume: tenant = None else: tenant = self.tenant_id if tenant: params = {'name': tenant} self._issue_api_request( 'tenants', method='post', body=params, conflict_ok=True, api_version=API_VERSION) return tenant # ========= # = Login = # ========= def _login_2_2(self): """Use the san_login and san_password to set token.""" body = { 'name': self.username, 'password': self.password } if self.ldap: body['remote_server'] = self.ldap # Unset token now, otherwise potential expired token will be sent # along to be used for authorization when trying to login. self.datera_api_token = None try: LOG.debug('Getting Datera auth token.') results = self._issue_api_request( 'login', 'put', body=body, sensitive=True, api_version=API_VERSION, tenant=None) self.datera_api_token = results['key'] except exception.NotAuthorized: with excutils.save_and_reraise_exception(): LOG.error('Logging into the Datera cluster failed. Please ' 'check your username and password set in the ' 'cinder.conf and start the cinder-volume ' 'service again.') # =========== # = Polling = # =========== def _snap_poll_2_2(self, url, tenant): eventlet.sleep(datc.DEFAULT_SNAP_SLEEP) TIMEOUT = 20 retry = 0 poll = True while poll and not retry >= TIMEOUT: retry += 1 snap = self._issue_api_request(url, api_version=API_VERSION, tenant=tenant)['data'] if snap['op_state'] == 'available': poll = False else: eventlet.sleep(1) if retry >= TIMEOUT: raise exception.VolumeDriverException( message=_('Snapshot not ready.')) def _si_poll_2_2(self, volume, policies, tenant): # Initial 4 second sleep required for some Datera versions eventlet.sleep(datc.DEFAULT_SI_SLEEP) TIMEOUT = 10 retry = 0 check_url = datc.URL_TEMPLATES['si_inst']( policies['default_storage_name']).format( datc._get_name(volume['id'])) poll = True while poll and not retry >= TIMEOUT: retry += 1 si = self._issue_api_request(check_url, api_version=API_VERSION, tenant=tenant)['data'] if si['op_state'] == 'available': poll = False else: eventlet.sleep(1) if retry >= TIMEOUT: raise exception.VolumeDriverException( message=_('Resource not ready.')) # ================ # = Volume Stats = # ================ def _get_volume_stats_2_2(self, refresh=False): if refresh or not self.cluster_stats: try: LOG.debug("Updating cluster stats info.") results = self._issue_api_request( 'system', api_version=API_VERSION)['data'] if 'uuid' not in results: LOG.error( 'Failed to get updated stats from Datera Cluster.') stats = { 'volume_backend_name': self.backend_name, 'vendor_name': 'Datera', 'driver_version': self.VERSION, 'storage_protocol': 'iSCSI', 'total_capacity_gb': ( int(results['total_capacity']) / units.Gi), 'free_capacity_gb': ( int(results['available_capacity']) / units.Gi), 'reserved_percentage': 0, 'QoS_support': True, } self.cluster_stats = stats except exception.DateraAPIException: LOG.error('Failed to get updated stats from Datera cluster.') return self.cluster_stats # ======= # = QoS = # ======= def _update_qos_2_2(self, resource, policies, tenant, clear_old=False): url = datc.URL_TEMPLATES['vol_inst']( policies['default_storage_name'], policies['default_volume_name']) + '/performance_policy' url = url.format(datc._get_name(resource['id'])) type_id = resource.get('volume_type_id', None) if type_id is not None: iops_per_gb = int(policies.get('iops_per_gb', 0)) bandwidth_per_gb = int(policies.get('bandwidth_per_gb', 0)) # Filter for just QOS policies in result. All of their keys # should end with "max" fpolicies = {k: int(v) for k, v in policies.items() if k.endswith("max")} # Filter all 0 values from being passed fpolicies = dict(filter(lambda _v: _v[1] > 0, fpolicies.items())) # Calculate and set iops/gb and bw/gb, but only if they don't # exceed total_iops_max and total_bw_max aren't set since they take # priority if iops_per_gb: ipg = iops_per_gb * resource['size'] # Not using zero, because zero means unlimited im = fpolicies.get('total_iops_max', 1) r = ipg if ipg > im: r = im fpolicies['total_iops_max'] = r if bandwidth_per_gb: bpg = bandwidth_per_gb * resource['size'] # Not using zero, because zero means unlimited bm = fpolicies.get('total_iops_max', 1) r = bpg if bpg > bm: r = bm fpolicies['total_bandwidth_max'] = r if fpolicies or clear_old: try: self._issue_api_request( url, 'delete', api_version=API_VERSION, tenant=tenant) except exception.NotFound: LOG.debug("No existing performance policy found") if fpolicies: self._issue_api_request( url, 'post', body=fpolicies, api_version=API_VERSION, tenant=tenant) # ============ # = IP Pools = # ============ def _get_ip_pool_for_string_ip_2_2(self, ip, tenant): """Takes a string ipaddress and return the ip_pool API object dict """ pool = 'default' ip_obj = ipaddress.ip_address(six.text_type(ip)) ip_pools = self._issue_api_request('access_network_ip_pools', api_version=API_VERSION, tenant=tenant) for ipdata in ip_pools['data']: for adata in ipdata['network_paths']: if not adata.get('start_ip'): continue pool_if = ipaddress.ip_interface( "/".join((adata['start_ip'], str(adata['netmask'])))) if ip_obj in pool_if.network: pool = ipdata['name'] return self._issue_api_request( "access_network_ip_pools/{}".format(pool), api_version=API_VERSION, tenant=tenant)['data']['path'] # ============ # = Metadata = # ============ def _get_metadata_2_2(self, volume): tenant = self._create_tenant_2_2(volume) url = datc.URL_TEMPLATES['ai_inst']().format( datc._get_name(volume['id'])) + "/metadata" return self._issue_api_request(url, api_version=API_VERSION, tenant=tenant)['data'] def _update_metadata_2_2(self, volume, keys): tenant = self._create_tenant_2_2(volume) url = datc.URL_TEMPLATES['ai_inst']().format( datc._get_name(volume['id'])) + "/metadata" self._issue_api_request( url, method='put', body=keys, api_version=API_VERSION, tenant=tenant) @contextlib.contextmanager def _detach_flip_2_2(self, volume, tenant): # Offline App Instance, if necessary reonline = False app_inst = self._issue_api_request( datc.URL_TEMPLATES['ai_inst']().format( datc._get_name(volume['id'])), api_version=API_VERSION, tenant=tenant) if app_inst['data']['admin_state'] == 'online': reonline = True self._detach_volume_2_2(None, volume) yield # Online Volume, if it was online before if reonline: self._create_export_2_2(None, volume, None) @contextlib.contextmanager def _offline_flip_2_2(self, volume, tenant): reonline = False app_inst = self._issue_api_request( datc.URL_TEMPLATES['ai_inst']().format( datc._get_name(volume['id'])), api_version=API_VERSION, tenant=tenant) if app_inst['data']['admin_state'] == 'online': reonline = True data = {'admin_state': 'offline'} self._issue_api_request(datc.URL_TEMPLATES['ai_inst']().format( datc._get_name(volume['id'])), method='put', body=data, api_version=API_VERSION, tenant=tenant) yield if reonline: data = {'admin_state': 'online'} self._issue_api_request(datc.URL_TEMPLATES['ai_inst']().format( datc._get_name(volume['id'])), method='put', body=data, api_version=API_VERSION, tenant=tenant)
41.78093
79
0.530441
7952e21d54a6679133845f09ca3eb01188569397
590
py
Python
exercises/exc_01_11.py
attwaben/spacy-course
aa684aef31cfe8c41838017b9f6bf77fb89eac0f
[ "MIT" ]
null
null
null
exercises/exc_01_11.py
attwaben/spacy-course
aa684aef31cfe8c41838017b9f6bf77fb89eac0f
[ "MIT" ]
null
null
null
exercises/exc_01_11.py
attwaben/spacy-course
aa684aef31cfe8c41838017b9f6bf77fb89eac0f
[ "MIT" ]
null
null
null
import spacy # Import the Matcher from spacy.matcher import Matcher nlp = spacy.load("en_core_web_sm") doc = nlp("New iPhone X release date leaked as Apple reveals pre-orders by mistake") # Initialize the Matcher with the shared vocabulary matcher = Matcher(nlp.vocab) # Create a pattern matching two tokens: "iPhone" and "X" pattern = [{"TEXT" : "iPhone" }, {"TEXT" : "X"}] # Add the pattern to the matcher matcher.add("IPHONE_X_PATTERN", None, pattern) # Use the matcher on the doc matches = matcher(doc) print("Matches:", [doc[start:end].text for match_id, start, end in matches])
28.095238
84
0.728814
7952e44a92a97ea590ea4378f2d36072e403617b
3,825
py
Python
pipeline/component_framework/constant.py
sdgdsffdsfff/bk-sops-tencent
e8aff91f822e79031e12b0f66943830f44ced506
[ "Apache-2.0" ]
1
2020-09-24T07:39:16.000Z
2020-09-24T07:39:16.000Z
pipeline/component_framework/constant.py
sdgdsffdsfff/bk-sops-tencent
e8aff91f822e79031e12b0f66943830f44ced506
[ "Apache-2.0" ]
5
2021-02-08T20:46:54.000Z
2021-06-10T22:54:45.000Z
pipeline/component_framework/constant.py
sdgdsffdsfff/bk-sops-tencent
e8aff91f822e79031e12b0f66943830f44ced506
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- """ Tencent is pleased to support the open source community by making ่“้ฒธๆ™บไบ‘PaaSๅนณๅฐ็คพๅŒบ็‰ˆ (BlueKing PaaS Community Edition) available. Copyright (C) 2017-2020 THL A29 Limited, a Tencent company. All rights reserved. Licensed under the MIT License (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://opensource.org/licenses/MIT Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import copy from pipeline.exceptions import ConstantNotExistException, ConstantReferenceException from pipeline.core.data.expression import ConstantTemplate, deformat_constant_key from pipeline.utils.graph import Graph class ConstantPool(object): def __init__(self, pool, lazy=False): self.raw_pool = pool self.pool = None if not lazy: self.resolve() def resolve(self): if self.pool: return refs = self.get_reference_info() nodes = refs.keys() flows = [] for node in nodes: for ref in refs[node]: if ref in nodes: flows.append([node, ref]) graph = Graph(nodes, flows) # circle reference check trace = graph.get_cycle() if trace: raise ConstantReferenceException('Exist circle reference between constants: %s' % '->'.join(trace)) # resolve the constants reference pool = {} temp_pool = copy.deepcopy(self.raw_pool) # get those constants which are referenced only(not refer other constants) referenced_only = ConstantPool._get_referenced_only(temp_pool) while temp_pool: for ref in referenced_only: value = temp_pool[ref]['value'] # resolve those constants which reference the 'ref' for key, info in temp_pool.items(): maps = {deformat_constant_key(ref): value} temp_pool[key]['value'] = ConstantTemplate(info['value']).resolve_data(maps) pool[ref] = temp_pool[ref] temp_pool.pop(ref) referenced_only = ConstantPool._get_referenced_only(temp_pool) self.pool = pool @staticmethod def _get_referenced_only(pool): referenced_only = [] for key, info in pool.items(): reference = ConstantTemplate(info['value']).get_reference() formatted_reference = ['${%s}' % ref for ref in reference] reference = [c for c in formatted_reference if c in pool] if not reference: referenced_only.append(key) return referenced_only def get_reference_info(self, strict=True): refs = {} for key, info in self.raw_pool.items(): reference = ConstantTemplate(info['value']).get_reference() formatted_reference = ['${%s}' % ref for ref in reference] ref = [c for c in formatted_reference if not strict or c in self.raw_pool] refs[key] = ref return refs def resolve_constant(self, constant): if not self.pool: self.resolve() if constant not in self.pool: raise ConstantNotExistException('constant %s not exist.' % constant) return self.pool[constant]['value'] def resolve_value(self, val): if not self.pool: self.resolve() maps = {deformat_constant_key(key): self.pool[key]['value'] for key in self.pool} return ConstantTemplate(val).resolve_data(maps)
37.135922
115
0.641569
7952e4b01196c04380ea23918dc575f02235b708
5,961
py
Python
src/mbed_cloud/_backends/billing/models/quota_usage_report.py
GQMai/mbed-cloud-sdk-python
76ef009903415f37f69dcc5778be8f5fb14c08fe
[ "Apache-2.0" ]
12
2017-12-28T11:18:43.000Z
2020-10-04T12:11:15.000Z
src/mbed_cloud/_backends/billing/models/quota_usage_report.py
GQMai/mbed-cloud-sdk-python
76ef009903415f37f69dcc5778be8f5fb14c08fe
[ "Apache-2.0" ]
50
2017-12-21T12:50:41.000Z
2020-01-13T16:07:08.000Z
src/mbed_cloud/_backends/billing/models/quota_usage_report.py
GQMai/mbed-cloud-sdk-python
76ef009903415f37f69dcc5778be8f5fb14c08fe
[ "Apache-2.0" ]
8
2018-04-25T17:47:29.000Z
2019-08-29T06:38:27.000Z
# coding: utf-8 """ Billing API Billing API allows users to retrieve billing reports and service package details. OpenAPI spec version: 1.4.7 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from pprint import pformat from six import iteritems import re class QuotaUsageReport(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'amount': 'int', 'campaign_name': 'str', 'time': 'datetime', 'type': 'str' } attribute_map = { 'amount': 'amount', 'campaign_name': 'campaign_name', 'time': 'time', 'type': 'type' } def __init__(self, amount=None, campaign_name=None, time=None, type=None): """ QuotaUsageReport - a model defined in Swagger """ self._amount = amount self._campaign_name = campaign_name self._time = time self._type = type self.discriminator = None @property def amount(self): """ Gets the amount of this QuotaUsageReport. Amount of quota usage entry. Negative if it is quota consumption. :return: The amount of this QuotaUsageReport. :rtype: int """ return self._amount @amount.setter def amount(self, amount): """ Sets the amount of this QuotaUsageReport. Amount of quota usage entry. Negative if it is quota consumption. :param amount: The amount of this QuotaUsageReport. :type: int """ if amount is None: raise ValueError("Invalid value for `amount`, must not be `None`") self._amount = amount @property def campaign_name(self): """ Gets the campaign_name of this QuotaUsageReport. Campaign name of quota usage entry. Null if quota usage entry type is not reservation or reservation release. :return: The campaign_name of this QuotaUsageReport. :rtype: str """ return self._campaign_name @campaign_name.setter def campaign_name(self, campaign_name): """ Sets the campaign_name of this QuotaUsageReport. Campaign name of quota usage entry. Null if quota usage entry type is not reservation or reservation release. :param campaign_name: The campaign_name of this QuotaUsageReport. :type: str """ self._campaign_name = campaign_name @property def time(self): """ Gets the time of this QuotaUsageReport. Added time of quota usage entry in RFC3339 date-time with millisecond accuracy and UTC time zone. :return: The time of this QuotaUsageReport. :rtype: datetime """ return self._time @time.setter def time(self, time): """ Sets the time of this QuotaUsageReport. Added time of quota usage entry in RFC3339 date-time with millisecond accuracy and UTC time zone. :param time: The time of this QuotaUsageReport. :type: datetime """ if time is None: raise ValueError("Invalid value for `time`, must not be `None`") self._time = time @property def type(self): """ Gets the type of this QuotaUsageReport. Type of quota usage entry. :return: The type of this QuotaUsageReport. :rtype: str """ return self._type @type.setter def type(self, type): """ Sets the type of this QuotaUsageReport. Type of quota usage entry. :param type: The type of this QuotaUsageReport. :type: str """ if type is None: raise ValueError("Invalid value for `type`, must not be `None`") allowed_values = ["reservation", "reservation_release", "reservation_termination", "package_renewal", "package_creation", "package_termination"] if type not in allowed_values: raise ValueError( "Invalid value for `type` ({0}), must be one of {1}" .format(type, allowed_values) ) self._type = type def to_dict(self): """ Returns the model properties as a dict """ result = {} for attr, _ in iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """ Returns the string representation of the model """ return pformat(self.to_dict()) def __repr__(self): """ For `print` and `pprint` """ return self.to_str() def __eq__(self, other): """ Returns true if both objects are equal """ if not isinstance(other, QuotaUsageReport): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """ Returns true if both objects are not equal """ return not self == other
27.85514
152
0.571716
7952e4f4ec31da946e6d02032a7f8c3804c54a34
3,077
py
Python
p053_more_on_functions.py
bayramcicek/py-repo
e99d8881dd3eb5296ec5dcfba4de2c3418044897
[ "Unlicense" ]
null
null
null
p053_more_on_functions.py
bayramcicek/py-repo
e99d8881dd3eb5296ec5dcfba4de2c3418044897
[ "Unlicense" ]
null
null
null
p053_more_on_functions.py
bayramcicek/py-repo
e99d8881dd3eb5296ec5dcfba4de2c3418044897
[ "Unlicense" ]
null
null
null
#!/usr/bin/python3.6 # created by cicek on 13.09.2018 22:19 ''' Python allows to have function with varying number of arguments. Using *args as a function parameter enables you to pass an arbitrary number of arguments to that function. The arguments are then accessible as the tuple args in the body of the function. ''' def function(named_arg, *args): # The parameter *args must come after the named parameters to a function. # The name args is just a convention; you can choose to use another. print(named_arg) # 1 print(args) # (2, 3, 4, 5) function(1, 2, 3, 4, 5) def my_func(x, *args): print(x) # 8 print(args) # () my_func(8) my_func(8, 9, 12) # 8 # (9, 12) my_func(8, 9) # 8 # (9,) print("--------------------------------") def function(x, y, food="pizza"): print(food) print(x) print(y) function(1, 2) function(3, 4, "tacos") # output: # pizza # 1 # 2 # tacos # 3 # 4 print("---------------------------------") def f(x, *y): print(x + sum(y)) # 10010 f(1, 2, 3, 4, 10000) print("---------------------------------") # you can use *args alone without a named argument def function(*args): print(args) # (1,2,3,4,5) function(1,2,3,4,5) # "The parameter *args must come after the named parameters to a function[if any]." print("---------------------------------") def function(pokemon_motto, *animals): print(pokemon_motto) print(animals) function('Gotta Catch Them All', 'Bulbasaur', 'Ivysaur', 'Venusaur', 'Charmander', 'Charmeleon', 'Charizard') # output # Gotta Catch Them All # ('Bulbasaur', 'Ivysaur', 'Venusaur', 'Charmander', 'Charmeleon', 'Charizard') print("---------------------------------") ''' The * means "anyhting else". With *args you could pass any amount of arguments to that function. In the example, the first argument is named_argument = 1. This is because it's the first argument passed and in the function it's named. the rest of the arguments are 2, 3, 4,5. Since they are not named, they fall in the *args category. Therefore, it they are converted to a tuple for use inside the function.''' print("---------------------------------") def func(*args): print(args) func("hi", 1, "hello") # ('hi', 1, 'hello') print("---------------------------------") # You can actually use named parameters after *args but they become keyword-only arguments. def spam(*eggs, egg): print(egg) spam(1, 2, egg = 3) #3 # spam(1, 2, 3) #TypeError spam() needs keyword-only argument egg print("---------------------------------") def function( named_arg, b, *a): print(named_arg) print(b) print(a) function(44, "g", 2,6,7) # 44 # g # (2, 6, 7) --> tuple print("---------------------------------") def function(named_arg, *args): print(named_arg, type(named_arg)) # (1, 2, 3) <class 'tuple'> print(args, type(args)) # (4, 5, 6, 7, 8) <class 'tuple'> function((1,2,3),4, 5, 6, 7, 8) print("---------------------------------") def multiply(first,*another): for i in another: print(i*first) multiply(5,2,3,4,5,6) # Result: # 10 # 15 # 20 # 25 # 30
21.669014
109
0.579786
7952e4fb88eb85def3df4c7041294dd733063c80
3,629
py
Python
robinhood/quote.py
Marxvim/Robinhood-1
c3c83391dcb3eb1b1584bf83a0d965d82c4679ed
[ "MIT" ]
17
2020-03-21T14:19:11.000Z
2021-12-29T07:16:01.000Z
robinhood/quote.py
Marxvim/Robinhood-1
c3c83391dcb3eb1b1584bf83a0d965d82c4679ed
[ "MIT" ]
null
null
null
robinhood/quote.py
Marxvim/Robinhood-1
c3c83391dcb3eb1b1584bf83a0d965d82c4679ed
[ "MIT" ]
5
2020-06-11T20:51:44.000Z
2022-01-10T06:35:25.000Z
from .detail.const_dict import ConstDict from .detail.common import timestamp_now, _to_float from datetime import datetime import pandas as pd class QuoteBase(ConstDict): def __init__(self, quote, time=None): quote['time'] = time if time else timestamp_now() ConstDict.__init__(self, quote) def _get(self, key): return self._dict[key] def _get_float(self, key): return _to_float(self._get(key)) @property def symbol(self) -> str: return self._dict['symbol'] @property def time(self) -> pd.Timestamp: return self._dict['time'] class Quote(QuoteBase): """ Example json quote { "ask_price":"253.810000", "ask_size":144, "bid_price":"253.510000", "bid_size":100, "last_trade_price":"254.290000", "last_extended_hours_trade_price":"253.500000", "previous_close":"254.810000", "adjusted_previous_close":"254.810000", "previous_close_date":"2020-03-30", "symbol":"AAPL", "trading_halted":"False", "has_traded":"True", "last_trade_price_source":"consolidated", "updated_at":"2020-03-31T21:27:45Z", "instrument":"https://api.robinhood.com/instruments/450dfc6d-5510-4d40-abfb-f633b7d9be3e/" } """ @property def ask(self) -> float: return self._get_float('ask_price') def __init__(self, quote): QuoteBase.__init__(self, quote) @property def bid(self) -> float: return self._get_float('bid_price') @property def mark(self) -> float: return self._get_float('last_trade_price') @property def previous_close(self) -> float: return self._get_float('last_trade_price') @property def adjusted_previous_close(self) -> float: return self._get_float('last_trade_price') @property def ask_size(self) -> int: return self._dict['ask_size'] @property def bid_size(self) -> int: return self._dict['bid_size'] class CryptoQuote(QuoteBase): """ Example json quote { "ask_price":"6457.583965", "bid_price":"6449.317366", "mark_price":"6453.450665", "high_price":"6539.245000", "low_price":"6319.569798", "open_price":"6441.625000", "symbol":"BTCUSD", "id":"3d961844-d360-45fc-989b-f6fca761d511", "volume":"0.000000" ##Note Rb currently always returns volume being 0 } """ def __init__(self, quote): QuoteBase.__init__(self, quote) @property def ask(self) -> float: return self._get_float('ask_price') @property def bid(self) -> float: return self._get_float('bid_price') @property def mark(self) -> float: return self._get_float('mark_price') @property def high(self) -> float: return self._get_float('high_price') @property def low(self) -> float: return self._get_float('low_price') @property def open(self) -> float: return self._get_float('open_price') class HistoricalQuote(QuoteBase): float_columns = ['open_price', 'close_price', 'high_price', 'low_price', 'volume'] """ Example json historical quote: { 'begins_at': '2020-04-28T13:00:00Z', 'open_price': '285.150000', 'close_price': '285.130000', 'high_price': '285.300100', 'low_price': '285.130000', 'volume': 3006, 'session': 'pre', 'interpolated': False} Note: historical quotes are the same for crypto/regular quotes """ def __init__(self, quote: dict): QuoteBase.__init__(self, quote, pd.Timestamp(quote['begins_at'])) @property def low(self): return self._get_float('low_price') @property def high(self): return self._get_float('high_price') @property def open(self): return self._get_float('open_price') @property def close(self): return self._get_float('close_price') @property def volume(self): return self._get_float('volume')
22.128049
93
0.695233
7952e546db55a99523e0d050f27e09da0723baf3
49,045
py
Python
third_party/python/Lib/test/test_sys.py
appotry/cosmopolitan
af4687cc3f2331a23dc336183ab58fe001cda082
[ "ISC" ]
null
null
null
third_party/python/Lib/test/test_sys.py
appotry/cosmopolitan
af4687cc3f2331a23dc336183ab58fe001cda082
[ "ISC" ]
null
null
null
third_party/python/Lib/test/test_sys.py
appotry/cosmopolitan
af4687cc3f2331a23dc336183ab58fe001cda082
[ "ISC" ]
null
null
null
import unittest, test.support from test.support.script_helper import assert_python_ok, assert_python_failure import sys, io, os import cosmo import struct import subprocess import textwrap import warnings import operator import codecs import gc import sysconfig import platform import locale # count the number of test runs, used to create unique # strings to intern in test_intern() numruns = 0 try: import _thread import threading except ImportError: threading = None class SysModuleTest(unittest.TestCase): def setUp(self): self.orig_stdout = sys.stdout self.orig_stderr = sys.stderr self.orig_displayhook = sys.displayhook def tearDown(self): sys.stdout = self.orig_stdout sys.stderr = self.orig_stderr sys.displayhook = self.orig_displayhook test.support.reap_children() def test_original_displayhook(self): import builtins out = io.StringIO() sys.stdout = out dh = sys.__displayhook__ self.assertRaises(TypeError, dh) if hasattr(builtins, "_"): del builtins._ dh(None) self.assertEqual(out.getvalue(), "") self.assertTrue(not hasattr(builtins, "_")) dh(42) self.assertEqual(out.getvalue(), "42\n") self.assertEqual(builtins._, 42) del sys.stdout self.assertRaises(RuntimeError, dh, 42) def test_lost_displayhook(self): del sys.displayhook code = compile("42", "<string>", "single") self.assertRaises(RuntimeError, eval, code) def test_custom_displayhook(self): def baddisplayhook(obj): raise ValueError sys.displayhook = baddisplayhook code = compile("42", "<string>", "single") self.assertRaises(ValueError, eval, code) def test_original_excepthook(self): err = io.StringIO() sys.stderr = err eh = sys.__excepthook__ self.assertRaises(TypeError, eh) try: raise ValueError(42) except ValueError as exc: eh(*sys.exc_info()) self.assertTrue(err.getvalue().endswith("ValueError: 42\n")) def test_excepthook(self): with test.support.captured_output("stderr") as stderr: sys.excepthook(1, '1', 1) self.assertTrue("TypeError: print_exception(): Exception expected for " \ "value, str found" in stderr.getvalue()) # FIXME: testing the code for a lost or replaced excepthook in # Python/pythonrun.c::PyErr_PrintEx() is tricky. def test_exit(self): # call with two arguments self.assertRaises(TypeError, sys.exit, 42, 42) # call without argument with self.assertRaises(SystemExit) as cm: sys.exit() self.assertIsNone(cm.exception.code) rc, out, err = assert_python_ok('-c', 'import sys; sys.exit()') self.assertEqual(rc, 0) self.assertEqual(out, b'') self.assertEqual(err, b'') # call with integer argument with self.assertRaises(SystemExit) as cm: sys.exit(42) self.assertEqual(cm.exception.code, 42) # call with tuple argument with one entry # entry will be unpacked with self.assertRaises(SystemExit) as cm: sys.exit((42,)) self.assertEqual(cm.exception.code, 42) # call with string argument with self.assertRaises(SystemExit) as cm: sys.exit("exit") self.assertEqual(cm.exception.code, "exit") # call with tuple argument with two entries with self.assertRaises(SystemExit) as cm: sys.exit((17, 23)) self.assertEqual(cm.exception.code, (17, 23)) # test that the exit machinery handles SystemExits properly rc, out, err = assert_python_failure('-c', 'raise SystemExit(47)') self.assertEqual(rc, 47) self.assertEqual(out, b'') self.assertEqual(err, b'') def check_exit_message(code, expected, **env_vars): rc, out, err = assert_python_failure('-c', code, **env_vars) self.assertEqual(rc, 1) self.assertEqual(out, b'') self.assertTrue(err.startswith(expected), "%s doesn't start with %s" % (ascii(err), ascii(expected))) # test that stderr buffer is flushed before the exit message is written # into stderr check_exit_message( r'import sys; sys.stderr.write("unflushed,"); sys.exit("message")', b"unflushed,message") # test that the exit message is written with backslashreplace error # handler to stderr check_exit_message( r'import sys; sys.exit("surrogates:\uDCFF")', b"surrogates:\\udcff") # test that the unicode message is encoded to the stderr encoding # instead of the default encoding (utf8) check_exit_message( r'import sys; sys.exit("h\xe9")', b"h\xe9", PYTHONIOENCODING='latin-1') def test_getdefaultencoding(self): self.assertRaises(TypeError, sys.getdefaultencoding, 42) # can't check more than the type, as the user might have changed it self.assertIsInstance(sys.getdefaultencoding(), str) # testing sys.settrace() is done in test_sys_settrace.py # testing sys.setprofile() is done in test_sys_setprofile.py def test_setcheckinterval(self): with warnings.catch_warnings(): warnings.simplefilter("ignore") self.assertRaises(TypeError, sys.setcheckinterval) orig = sys.getcheckinterval() for n in 0, 100, 120, orig: # orig last to restore starting state sys.setcheckinterval(n) self.assertEqual(sys.getcheckinterval(), n) @unittest.skipUnless(threading, 'Threading required for this test.') def test_switchinterval(self): self.assertRaises(TypeError, sys.setswitchinterval) self.assertRaises(TypeError, sys.setswitchinterval, "a") self.assertRaises(ValueError, sys.setswitchinterval, -1.0) self.assertRaises(ValueError, sys.setswitchinterval, 0.0) orig = sys.getswitchinterval() # sanity check self.assertTrue(orig < 0.5, orig) try: for n in 0.00001, 0.05, 3.0, orig: sys.setswitchinterval(n) self.assertAlmostEqual(sys.getswitchinterval(), n) finally: sys.setswitchinterval(orig) def test_recursionlimit(self): self.assertRaises(TypeError, sys.getrecursionlimit, 42) oldlimit = sys.getrecursionlimit() self.assertRaises(TypeError, sys.setrecursionlimit) self.assertRaises(ValueError, sys.setrecursionlimit, -42) sys.setrecursionlimit(10000) self.assertEqual(sys.getrecursionlimit(), 10000) sys.setrecursionlimit(oldlimit) @unittest.skipIf("tiny" in cosmo.MODE, "") def test_recursionlimit_recovery(self): if hasattr(sys, 'gettrace') and sys.gettrace(): self.skipTest('fatal error if run with a trace function') oldlimit = sys.getrecursionlimit() def f(): f() try: for depth in (10, 25, 50, 75, 100, 250, 1000): try: sys.setrecursionlimit(depth) except RecursionError: # Issue #25274: The recursion limit is too low at the # current recursion depth continue # Issue #5392: test stack overflow after hitting recursion # limit twice self.assertRaises((RecursionError, MemoryError), f) self.assertRaises((RecursionError, MemoryError), f) finally: sys.setrecursionlimit(oldlimit) @unittest.skip @test.support.cpython_only def test_setrecursionlimit_recursion_depth(self): # Issue #25274: Setting a low recursion limit must be blocked if the # current recursion depth is already higher than the "lower-water # mark". Otherwise, it may not be possible anymore to # reset the overflowed flag to 0. from _testcapi import get_recursion_depth def set_recursion_limit_at_depth(depth, limit): recursion_depth = get_recursion_depth() if recursion_depth >= depth: with self.assertRaises(RecursionError) as cm: sys.setrecursionlimit(limit) self.assertRegex(str(cm.exception), "cannot set the recursion limit to [0-9]+ " "at the recursion depth [0-9]+: " "the limit is too low") else: set_recursion_limit_at_depth(depth, limit) oldlimit = sys.getrecursionlimit() try: sys.setrecursionlimit(1000) for limit in (10, 25, 50, 75, 100, 150, 200): # formula extracted from _Py_RecursionLimitLowerWaterMark() if limit > 200: depth = limit - 50 else: depth = limit * 3 // 4 set_recursion_limit_at_depth(depth, limit) finally: sys.setrecursionlimit(oldlimit) @unittest.skipIf("tiny" in cosmo.MODE, "") def test_recursionlimit_fatalerror(self): # A fatal error occurs if a second recursion limit is hit when recovering # from a first one. code = textwrap.dedent(""" import sys def f(): try: f() except RecursionError: f() sys.setrecursionlimit(%d) f()""") with test.support.SuppressCrashReport(): for i in (50, 1000): sub = subprocess.Popen([sys.executable, '-c', code % i], stderr=subprocess.PIPE) err = sub.communicate()[1] self.assertTrue(sub.returncode, sub.returncode) self.assertIn( b"Fatal Python error: ", err) @unittest.skip def test_getwindowsversion(self): # Raise SkipTest if sys doesn't have getwindowsversion attribute test.support.get_attribute(sys, "getwindowsversion") v = sys.getwindowsversion() self.assertEqual(len(v), 5) self.assertIsInstance(v[0], int) self.assertIsInstance(v[1], int) self.assertIsInstance(v[2], int) self.assertIsInstance(v[3], int) self.assertIsInstance(v[4], str) self.assertRaises(IndexError, operator.getitem, v, 5) self.assertIsInstance(v.major, int) self.assertIsInstance(v.minor, int) self.assertIsInstance(v.build, int) self.assertIsInstance(v.platform, int) self.assertIsInstance(v.service_pack, str) self.assertIsInstance(v.service_pack_minor, int) self.assertIsInstance(v.service_pack_major, int) self.assertIsInstance(v.suite_mask, int) self.assertIsInstance(v.product_type, int) self.assertEqual(v[0], v.major) self.assertEqual(v[1], v.minor) self.assertEqual(v[2], v.build) self.assertEqual(v[3], v.platform) self.assertEqual(v[4], v.service_pack) # This is how platform.py calls it. Make sure tuple # still has 5 elements maj, min, buildno, plat, csd = sys.getwindowsversion() def test_call_tracing(self): self.assertRaises(TypeError, sys.call_tracing, type, 2) @unittest.skipUnless(hasattr(sys, "setdlopenflags"), 'test needs sys.setdlopenflags()') def test_dlopenflags(self): self.assertTrue(hasattr(sys, "getdlopenflags")) self.assertRaises(TypeError, sys.getdlopenflags, 42) oldflags = sys.getdlopenflags() self.assertRaises(TypeError, sys.setdlopenflags) sys.setdlopenflags(oldflags+1) self.assertEqual(sys.getdlopenflags(), oldflags+1) sys.setdlopenflags(oldflags) @test.support.refcount_test def test_refcount(self): # n here must be a global in order for this test to pass while # tracing with a python function. Tracing calls PyFrame_FastToLocals # which will add a copy of any locals to the frame object, causing # the reference count to increase by 2 instead of 1. global n self.assertRaises(TypeError, sys.getrefcount) c = sys.getrefcount(None) n = None self.assertEqual(sys.getrefcount(None), c+1) del n self.assertEqual(sys.getrefcount(None), c) if hasattr(sys, "gettotalrefcount"): self.assertIsInstance(sys.gettotalrefcount(), int) def test_getframe(self): self.assertRaises(TypeError, sys._getframe, 42, 42) self.assertRaises(ValueError, sys._getframe, 2000000000) self.assertTrue( SysModuleTest.test_getframe.__code__ \ is sys._getframe().f_code ) # sys._current_frames() is a CPython-only gimmick. def test_current_frames(self): have_threads = True try: import _thread except ImportError: have_threads = False if have_threads: self.current_frames_with_threads() else: self.current_frames_without_threads() # Test sys._current_frames() in a WITH_THREADS build. @test.support.reap_threads def current_frames_with_threads(self): import threading import traceback # Spawn a thread that blocks at a known place. Then the main # thread does sys._current_frames(), and verifies that the frames # returned make sense. entered_g = threading.Event() leave_g = threading.Event() thread_info = [] # the thread's id def f123(): g456() def g456(): thread_info.append(threading.get_ident()) entered_g.set() leave_g.wait() t = threading.Thread(target=f123) t.start() entered_g.wait() # At this point, t has finished its entered_g.set(), although it's # impossible to guess whether it's still on that line or has moved on # to its leave_g.wait(). self.assertEqual(len(thread_info), 1) thread_id = thread_info[0] d = sys._current_frames() main_id = threading.get_ident() self.assertIn(main_id, d) self.assertIn(thread_id, d) # Verify that the captured main-thread frame is _this_ frame. frame = d.pop(main_id) self.assertTrue(frame is sys._getframe()) # Verify that the captured thread frame is blocked in g456, called # from f123. This is a litte tricky, since various bits of # threading.py are also in the thread's call stack. frame = d.pop(thread_id) stack = traceback.extract_stack(frame) for i, (filename, lineno, funcname, sourceline) in enumerate(stack): if funcname == "f123": break else: self.fail("didn't find f123() on thread's call stack") self.assertEqual(sourceline, "g456()") # And the next record must be for g456(). filename, lineno, funcname, sourceline = stack[i+1] self.assertEqual(funcname, "g456") self.assertIn(sourceline, ["leave_g.wait()", "entered_g.set()"]) # Reap the spawned thread. leave_g.set() t.join() # Test sys._current_frames() when thread support doesn't exist. def current_frames_without_threads(self): # Not much happens here: there is only one thread, with artificial # "thread id" 0. d = sys._current_frames() self.assertEqual(len(d), 1) self.assertIn(0, d) self.assertTrue(d[0] is sys._getframe()) def test_attributes(self): self.assertIsInstance(sys.api_version, int) self.assertIsInstance(sys.argv, list) self.assertIn(sys.byteorder, ("little", "big")) self.assertIsInstance(sys.builtin_module_names, tuple) self.assertIsInstance(sys.copyright, str) self.assertIsInstance(sys.exec_prefix, str) self.assertIsInstance(sys.base_exec_prefix, str) self.assertIsInstance(sys.executable, str) self.assertEqual(len(sys.float_info), 11) self.assertEqual(sys.float_info.radix, 2) self.assertEqual(len(sys.int_info), 2) self.assertTrue(sys.int_info.bits_per_digit % 5 == 0) self.assertTrue(sys.int_info.sizeof_digit >= 1) self.assertEqual(type(sys.int_info.bits_per_digit), int) self.assertEqual(type(sys.int_info.sizeof_digit), int) self.assertIsInstance(sys.hexversion, int) self.assertEqual(len(sys.hash_info), 9) self.assertLess(sys.hash_info.modulus, 2**sys.hash_info.width) # sys.hash_info.modulus should be a prime; we do a quick # probable primality test (doesn't exclude the possibility of # a Carmichael number) for x in range(1, 100): self.assertEqual( pow(x, sys.hash_info.modulus-1, sys.hash_info.modulus), 1, "sys.hash_info.modulus {} is a non-prime".format( sys.hash_info.modulus) ) self.assertIsInstance(sys.hash_info.inf, int) self.assertIsInstance(sys.hash_info.nan, int) self.assertIsInstance(sys.hash_info.imag, int) algo = sysconfig.get_config_var("Py_HASH_ALGORITHM") if sys.hash_info.algorithm in {"fnv", "siphash24"}: self.assertIn(sys.hash_info.hash_bits, {32, 64}) self.assertIn(sys.hash_info.seed_bits, {32, 64, 128}) if algo == 1: self.assertEqual(sys.hash_info.algorithm, "siphash24") elif algo == 2: self.assertEqual(sys.hash_info.algorithm, "fnv") else: self.assertIn(sys.hash_info.algorithm, {"fnv", "siphash24"}) else: # PY_HASH_EXTERNAL self.assertEqual(algo, 0) self.assertGreaterEqual(sys.hash_info.cutoff, 0) self.assertLess(sys.hash_info.cutoff, 8) self.assertIsInstance(sys.maxsize, int) self.assertIsInstance(sys.maxunicode, int) self.assertEqual(sys.maxunicode, 0x10FFFF) self.assertIsInstance(sys.platform, str) self.assertIsInstance(sys.prefix, str) self.assertIsInstance(sys.base_prefix, str) self.assertIsInstance(sys.version, str) vi = sys.version_info self.assertIsInstance(vi[:], tuple) self.assertEqual(len(vi), 5) self.assertIsInstance(vi[0], int) self.assertIsInstance(vi[1], int) self.assertIsInstance(vi[2], int) self.assertIn(vi[3], ("alpha", "beta", "candidate", "final")) self.assertIsInstance(vi[4], int) self.assertIsInstance(vi.major, int) self.assertIsInstance(vi.minor, int) self.assertIsInstance(vi.micro, int) self.assertIn(vi.releaselevel, ("alpha", "beta", "candidate", "final")) self.assertIsInstance(vi.serial, int) self.assertEqual(vi[0], vi.major) self.assertEqual(vi[1], vi.minor) self.assertEqual(vi[2], vi.micro) self.assertEqual(vi[3], vi.releaselevel) self.assertEqual(vi[4], vi.serial) self.assertTrue(vi > (1,0,0)) self.assertIsInstance(sys.float_repr_style, str) self.assertIn(sys.float_repr_style, ('short', 'legacy')) if not sys.platform.startswith('win'): self.assertIsInstance(sys.abiflags, str) @unittest.skipUnless(hasattr(sys, 'thread_info'), 'Threading required for this test.') def test_thread_info(self): info = sys.thread_info self.assertEqual(len(info), 3) self.assertIn(info.name, ('nt', 'pthread', 'solaris', None)) self.assertIn(info.lock, ('semaphore', 'mutex+cond', None)) def test_43581(self): # Can't use sys.stdout, as this is a StringIO object when # the test runs under regrtest. self.assertEqual(sys.__stdout__.encoding, sys.__stderr__.encoding) def test_intern(self): global numruns numruns += 1 self.assertRaises(TypeError, sys.intern) s = "never interned before" + str(numruns) self.assertTrue(sys.intern(s) is s) s2 = s.swapcase().swapcase() self.assertTrue(sys.intern(s2) is s) # Subclasses of string can't be interned, because they # provide too much opportunity for insane things to happen. # We don't want them in the interned dict and if they aren't # actually interned, we don't want to create the appearance # that they are by allowing intern() to succeed. class S(str): def __hash__(self): return 123 self.assertRaises(TypeError, sys.intern, S("abc")) def test_sys_flags(self): self.assertTrue(sys.flags) attrs = ("debug", "inspect", "interactive", "optimize", "dont_write_bytecode", "no_user_site", "no_site", "ignore_environment", "verbose", "bytes_warning", "quiet", "hash_randomization", "isolated") for attr in attrs: self.assertTrue(hasattr(sys.flags, attr), attr) self.assertEqual(type(getattr(sys.flags, attr)), int, attr) self.assertTrue(repr(sys.flags)) self.assertEqual(len(sys.flags), len(attrs)) def assert_raise_on_new_sys_type(self, sys_attr): # Users are intentionally prevented from creating new instances of # sys.flags, sys.version_info, and sys.getwindowsversion. attr_type = type(sys_attr) with self.assertRaises(TypeError): attr_type() with self.assertRaises(TypeError): attr_type.__new__(attr_type) def test_sys_flags_no_instantiation(self): self.assert_raise_on_new_sys_type(sys.flags) def test_sys_version_info_no_instantiation(self): self.assert_raise_on_new_sys_type(sys.version_info) @unittest.skip # why is this even allowed def test_sys_getwindowsversion_no_instantiation(self): # Skip if not being run on Windows. test.support.get_attribute(sys, "getwindowsversion") self.assert_raise_on_new_sys_type(sys.getwindowsversion()) @test.support.cpython_only def test_clear_type_cache(self): sys._clear_type_cache() def test_ioencoding(self): env = dict(os.environ) # Test character: cent sign, encoded as 0x4A (ASCII J) in CP424, # not representable in ASCII. env["PYTHONIOENCODING"] = "cp424" p = subprocess.Popen([sys.executable, "-c", 'print(chr(0xa2))'], stdout = subprocess.PIPE, env=env) out = p.communicate()[0].strip() expected = ("\xa2" + os.linesep).encode("cp424") self.assertEqual(out, expected) env["PYTHONIOENCODING"] = "ascii:replace" p = subprocess.Popen([sys.executable, "-c", 'print(chr(0xa2))'], stdout = subprocess.PIPE, env=env) out = p.communicate()[0].strip() self.assertEqual(out, b'?') env["PYTHONIOENCODING"] = "ascii" p = subprocess.Popen([sys.executable, "-c", 'print(chr(0xa2))'], stdout=subprocess.PIPE, stderr=subprocess.PIPE, env=env) out, err = p.communicate() self.assertEqual(out, b'') self.assertIn(b'UnicodeEncodeError:', err) self.assertIn(rb"'\xa2'", err) env["PYTHONIOENCODING"] = "ascii:" p = subprocess.Popen([sys.executable, "-c", 'print(chr(0xa2))'], stdout=subprocess.PIPE, stderr=subprocess.PIPE, env=env) out, err = p.communicate() self.assertEqual(out, b'') self.assertIn(b'UnicodeEncodeError:', err) self.assertIn(rb"'\xa2'", err) env["PYTHONIOENCODING"] = ":surrogateescape" p = subprocess.Popen([sys.executable, "-c", 'print(chr(0xdcbd))'], stdout=subprocess.PIPE, env=env) out = p.communicate()[0].strip() self.assertEqual(out, b'\xbd') @unittest.skipUnless(test.support.FS_NONASCII, 'requires OS support of non-ASCII encodings') @unittest.skipUnless(sys.getfilesystemencoding() == locale.getpreferredencoding(False), 'requires FS encoding to match locale') def test_ioencoding_nonascii(self): env = dict(os.environ) env["PYTHONIOENCODING"] = "" p = subprocess.Popen([sys.executable, "-c", 'print(%a)' % test.support.FS_NONASCII], stdout=subprocess.PIPE, env=env) out = p.communicate()[0].strip() self.assertEqual(out, os.fsencode(test.support.FS_NONASCII)) @unittest.skipIf(sys.base_prefix != sys.prefix, 'Test is not venv-compatible') def test_executable(self): # sys.executable should be absolute self.assertEqual(os.path.abspath(sys.executable), sys.executable.replace("//", "/")) # Issue #7774: Ensure that sys.executable is an empty string if argv[0] # has been set to a non existent program name and Python is unable to # retrieve the real program name # For a normal installation, it should work without 'cwd' # argument. For test runs in the build directory, see #7774. python_dir = os.path.dirname(os.path.realpath(sys.executable)) p = subprocess.Popen( ["nonexistent", "-c", 'import sys; print(sys.executable.replace("//", "/").encode("ascii", "backslashreplace"))'], executable=sys.executable, stdout=subprocess.PIPE, cwd=python_dir) stdout = p.communicate()[0] executable = stdout.strip().decode("ASCII") p.wait() self.assertIn(executable, ['', repr(sys.executable.replace("//", "/").encode("ascii", "backslashreplace"))]) def check_fsencoding(self, fs_encoding, expected=None): self.assertIsNotNone(fs_encoding) codecs.lookup(fs_encoding) if expected: self.assertEqual(fs_encoding, expected) def test_getfilesystemencoding(self): fs_encoding = sys.getfilesystemencoding() if sys.platform == 'darwin': expected = 'utf-8' else: expected = None self.check_fsencoding(fs_encoding, expected) def c_locale_get_error_handler(self, isolated=False, encoding=None): # Force the POSIX locale env = os.environ.copy() env["LC_ALL"] = "C" code = '\n'.join(( 'import sys', 'def dump(name):', ' std = getattr(sys, name)', ' print("%s: %s" % (name, std.errors))', 'dump("stdin")', 'dump("stdout")', 'dump("stderr")', )) args = [sys.executable, "-c", code] if isolated: args.append("-I") if encoding is not None: env['PYTHONIOENCODING'] = encoding else: env.pop('PYTHONIOENCODING', None) p = subprocess.Popen(args, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, env=env, universal_newlines=True) stdout, stderr = p.communicate() return stdout def test_c_locale_surrogateescape(self): out = self.c_locale_get_error_handler(isolated=True) self.assertEqual(out, 'stdin: surrogateescape\n' 'stdout: surrogateescape\n' 'stderr: backslashreplace\n') # replace the default error handler out = self.c_locale_get_error_handler(encoding=':ignore') self.assertEqual(out, 'stdin: ignore\n' 'stdout: ignore\n' 'stderr: backslashreplace\n') # force the encoding out = self.c_locale_get_error_handler(encoding='iso8859-1') self.assertEqual(out, 'stdin: strict\n' 'stdout: strict\n' 'stderr: backslashreplace\n') out = self.c_locale_get_error_handler(encoding='iso8859-1:') self.assertEqual(out, 'stdin: strict\n' 'stdout: strict\n' 'stderr: backslashreplace\n') # have no any effect out = self.c_locale_get_error_handler(encoding=':') self.assertEqual(out, 'stdin: surrogateescape\n' 'stdout: surrogateescape\n' 'stderr: backslashreplace\n') out = self.c_locale_get_error_handler(encoding='') self.assertEqual(out, 'stdin: surrogateescape\n' 'stdout: surrogateescape\n' 'stderr: backslashreplace\n') def test_implementation(self): # This test applies to all implementations equally. levels = {'alpha': 0xA, 'beta': 0xB, 'candidate': 0xC, 'final': 0xF} self.assertTrue(hasattr(sys.implementation, 'name')) self.assertTrue(hasattr(sys.implementation, 'version')) self.assertTrue(hasattr(sys.implementation, 'hexversion')) self.assertTrue(hasattr(sys.implementation, 'cache_tag')) version = sys.implementation.version self.assertEqual(version[:2], (version.major, version.minor)) hexversion = (version.major << 24 | version.minor << 16 | version.micro << 8 | levels[version.releaselevel] << 4 | version.serial << 0) self.assertEqual(sys.implementation.hexversion, hexversion) # PEP 421 requires that .name be lower case. self.assertEqual(sys.implementation.name, sys.implementation.name.lower()) @test.support.cpython_only def test_debugmallocstats(self): # Test sys._debugmallocstats() from test.support.script_helper import assert_python_ok args = ['-c', 'import sys; sys._debugmallocstats()'] ret, out, err = assert_python_ok(*args) self.assertIn(b"free PyDictObjects", err) # The function has no parameter self.assertRaises(TypeError, sys._debugmallocstats, True) @unittest.skipUnless(False and hasattr(sys, "getallocatedblocks"), "sys.getallocatedblocks unavailable on this build") def test_getallocatedblocks(self): if (os.environ.get('PYTHONMALLOC', None) and not sys.flags.ignore_environment): self.skipTest("cannot test if PYTHONMALLOC env var is set") # Some sanity checks with_pymalloc = sysconfig.get_config_var('WITH_PYMALLOC') a = sys.getallocatedblocks() self.assertIs(type(a), int) if with_pymalloc: self.assertGreater(a, 0) else: # When WITH_PYMALLOC isn't available, we don't know anything # about the underlying implementation: the function might # return 0 or something greater. self.assertGreaterEqual(a, 0) try: # While we could imagine a Python session where the number of # multiple buffer objects would exceed the sharing of references, # it is unlikely to happen in a normal test run. self.assertLess(a, sys.gettotalrefcount()) except AttributeError: # gettotalrefcount() not available pass gc.collect() b = sys.getallocatedblocks() self.assertLessEqual(b, a) gc.collect() c = sys.getallocatedblocks() self.assertIn(c, range(b - 50, b + 50)) @test.support.requires_type_collecting def test_is_finalizing(self): self.assertIs(sys.is_finalizing(), False) # Don't use the atexit module because _Py_Finalizing is only set # after calling atexit callbacks code = """if 1: import sys class AtExit: is_finalizing = sys.is_finalizing print = print def __del__(self): self.print(self.is_finalizing(), flush=True) # Keep a reference in the __main__ module namespace, so the # AtExit destructor will be called at Python exit ref = AtExit() """ rc, stdout, stderr = assert_python_ok('-c', code) self.assertEqual(stdout.rstrip(), b'True') def test_sys_tracebacklimit(self): code = """if 1: import sys def f1(): 1 / 0 def f2(): f1() sys.tracebacklimit = %r f2() """ def check(tracebacklimit, expected): p = subprocess.Popen([sys.executable, '-c', code % tracebacklimit], stderr=subprocess.PIPE) out = p.communicate()[1] self.assertEqual(out.splitlines(), expected) traceback = [ b'Traceback (most recent call last):', b' File "<string>", line 8, in <module>', b' File "<string>", line 6, in f2', b' File "<string>", line 4, in f1', b'ZeroDivisionError: division by zero' ] check(10, traceback) check(3, traceback) check(2, traceback[:1] + traceback[2:]) check(1, traceback[:1] + traceback[3:]) check(0, [traceback[-1]]) check(-1, [traceback[-1]]) check(1<<1000, traceback) check(-1<<1000, [traceback[-1]]) check(None, traceback) @test.support.cpython_only class SizeofTest(unittest.TestCase): def setUp(self): self.P = struct.calcsize('P') self.longdigit = sys.int_info.sizeof_digit import _testcapi self.gc_headsize = _testcapi.SIZEOF_PYGC_HEAD check_sizeof = test.support.check_sizeof def test_gc_head_size(self): # Check that the gc header size is added to objects tracked by the gc. vsize = test.support.calcvobjsize gc_header_size = self.gc_headsize # bool objects are not gc tracked self.assertEqual(sys.getsizeof(True), vsize('') + self.longdigit) # but lists are self.assertEqual(sys.getsizeof([]), vsize('Pn') + gc_header_size) def test_errors(self): class BadSizeof: def __sizeof__(self): raise ValueError self.assertRaises(ValueError, sys.getsizeof, BadSizeof()) class InvalidSizeof: def __sizeof__(self): return None self.assertRaises(TypeError, sys.getsizeof, InvalidSizeof()) sentinel = ["sentinel"] self.assertIs(sys.getsizeof(InvalidSizeof(), sentinel), sentinel) class FloatSizeof: def __sizeof__(self): return 4.5 self.assertRaises(TypeError, sys.getsizeof, FloatSizeof()) self.assertIs(sys.getsizeof(FloatSizeof(), sentinel), sentinel) class OverflowSizeof(int): def __sizeof__(self): return int(self) self.assertEqual(sys.getsizeof(OverflowSizeof(sys.maxsize)), sys.maxsize + self.gc_headsize) with self.assertRaises(OverflowError): sys.getsizeof(OverflowSizeof(sys.maxsize + 1)) with self.assertRaises(ValueError): sys.getsizeof(OverflowSizeof(-1)) with self.assertRaises((ValueError, OverflowError)): sys.getsizeof(OverflowSizeof(-sys.maxsize - 1)) def test_default(self): size = test.support.calcvobjsize self.assertEqual(sys.getsizeof(True), size('') + self.longdigit) self.assertEqual(sys.getsizeof(True, -1), size('') + self.longdigit) @unittest.skip("alignment of C struct?") def test_objecttypes(self): # check all types defined in Objects/ calcsize = struct.calcsize size = test.support.calcobjsize vsize = test.support.calcvobjsize check = self.check_sizeof # bool check(True, vsize('') + self.longdigit) # buffer # XXX # builtin_function_or_method check(len, size('4P')) # XXX check layout # bytearray samples = [b'', b'u'*100000] for sample in samples: x = bytearray(sample) check(x, vsize('n2Pi') + x.__alloc__()) # bytearray_iterator check(iter(bytearray()), size('nP')) # bytes check(b'', vsize('n') + 1) check(b'x' * 10, vsize('n') + 11) # cell def get_cell(): x = 42 def inner(): return x return inner check(get_cell().__closure__[0], size('P')) # code def check_code_size(a, expected_size): self.assertGreaterEqual(sys.getsizeof(a), expected_size) check_code_size(get_cell().__code__, size('6i13P')) check_code_size(get_cell.__code__, size('6i13P')) def get_cell2(x): def inner(): return x return inner check_code_size(get_cell2.__code__, size('6i13P') + calcsize('n')) # complex check(complex(0,1), size('2d')) # method_descriptor (descriptor object) check(str.lower, size('3PP')) # classmethod_descriptor (descriptor object) # XXX # member_descriptor (descriptor object) import datetime check(datetime.timedelta.days, size('3PP')) # getset_descriptor (descriptor object) import collections check(collections.defaultdict.default_factory, size('3PP')) # wrapper_descriptor (descriptor object) check(int.__add__, size('3P2P')) # method-wrapper (descriptor object) check({}.__iter__, size('2P')) # dict check({}, size('nQ2P') + calcsize('2nP2n') + 8 + (8*2//3)*calcsize('n2P')) longdict = {1:1, 2:2, 3:3, 4:4, 5:5, 6:6, 7:7, 8:8} check(longdict, size('nQ2P') + calcsize('2nP2n') + 16 + (16*2//3)*calcsize('n2P')) # dictionary-keyview check({}.keys(), size('P')) # dictionary-valueview check({}.values(), size('P')) # dictionary-itemview check({}.items(), size('P')) # dictionary iterator check(iter({}), size('P2nPn')) # dictionary-keyiterator check(iter({}.keys()), size('P2nPn')) # dictionary-valueiterator check(iter({}.values()), size('P2nPn')) # dictionary-itemiterator check(iter({}.items()), size('P2nPn')) # dictproxy class C(object): pass check(C.__dict__, size('P')) # BaseException check(BaseException(), size('5Pb')) # UnicodeEncodeError check(UnicodeEncodeError("", "", 0, 0, ""), size('5Pb 2P2nP')) # UnicodeDecodeError check(UnicodeDecodeError("", b"", 0, 0, ""), size('5Pb 2P2nP')) # UnicodeTranslateError check(UnicodeTranslateError("", 0, 1, ""), size('5Pb 2P2nP')) # ellipses check(Ellipsis, size('')) # EncodingMap import codecs, encodings.iso8859_3 x = codecs.charmap_build(encodings.iso8859_3.decoding_table) check(x, size('32B2iB')) # enumerate check(enumerate([]), size('n3P')) # reverse check(reversed(''), size('nP')) # float check(float(0), size('d')) # sys.floatinfo check(sys.float_info, vsize('') + self.P * len(sys.float_info)) # frame import inspect CO_MAXBLOCKS = 20 x = inspect.currentframe() ncells = len(x.f_code.co_cellvars) nfrees = len(x.f_code.co_freevars) extras = x.f_code.co_stacksize + x.f_code.co_nlocals +\ ncells + nfrees - 1 check(x, vsize('12P3ic' + CO_MAXBLOCKS*'3i' + 'P' + extras*'P')) # function def func(): pass check(func, size('12P')) class c(): @staticmethod def foo(): pass @classmethod def bar(cls): pass # staticmethod check(foo, size('PP')) # classmethod check(bar, size('PP')) # generator def get_gen(): yield 1 check(get_gen(), size('Pb2PPP')) # iterator check(iter('abc'), size('lP')) # callable-iterator import re check(re.finditer('',''), size('2P')) # list samples = [[], [1,2,3], ['1', '2', '3']] for sample in samples: check(sample, vsize('Pn') + len(sample)*self.P) # sortwrapper (list) # XXX # cmpwrapper (list) # XXX # listiterator (list) check(iter([]), size('lP')) # listreverseiterator (list) check(reversed([]), size('nP')) # int check(0, vsize('')) check(1, vsize('') + self.longdigit) check(-1, vsize('') + self.longdigit) PyLong_BASE = 2**sys.int_info.bits_per_digit check(int(PyLong_BASE), vsize('') + 2*self.longdigit) check(int(PyLong_BASE**2-1), vsize('') + 2*self.longdigit) check(int(PyLong_BASE**2), vsize('') + 3*self.longdigit) # module check(unittest, size('PnPPP')) # None check(None, size('')) # NotImplementedType check(NotImplemented, size('')) # object check(object(), size('')) # property (descriptor object) class C(object): def getx(self): return self.__x def setx(self, value): self.__x = value def delx(self): del self.__x x = property(getx, setx, delx, "") check(x, size('4Pi')) # PyCapsule # XXX # rangeiterator check(iter(range(1)), size('4l')) # reverse check(reversed(''), size('nP')) # range check(range(1), size('4P')) check(range(66000), size('4P')) # set # frozenset PySet_MINSIZE = 8 samples = [[], range(10), range(50)] s = size('3nP' + PySet_MINSIZE*'nP' + '2nP') for sample in samples: minused = len(sample) if minused == 0: tmp = 1 # the computation of minused is actually a bit more complicated # but this suffices for the sizeof test minused = minused*2 newsize = PySet_MINSIZE while newsize <= minused: newsize = newsize << 1 if newsize <= 8: check(set(sample), s) check(frozenset(sample), s) else: check(set(sample), s + newsize*calcsize('nP')) check(frozenset(sample), s + newsize*calcsize('nP')) # setiterator check(iter(set()), size('P3n')) # slice check(slice(0), size('3P')) # super check(super(int), size('3P')) # tuple check((), vsize('')) check((1,2,3), vsize('') + 3*self.P) # type # static type: PyTypeObject fmt = 'P2n15Pl4Pn9Pn11PIP' if hasattr(sys, 'getcounts'): fmt += '3n2P' s = vsize(fmt) check(int, s) # class s = vsize(fmt + # PyTypeObject '3P' # PyAsyncMethods '36P' # PyNumberMethods '3P' # PyMappingMethods '10P' # PySequenceMethods '2P' # PyBufferProcs '4P') class newstyleclass(object): pass # Separate block for PyDictKeysObject with 8 keys and 5 entries check(newstyleclass, s + calcsize("2nP2n0P") + 8 + 5*calcsize("n2P")) # dict with shared keys check(newstyleclass().__dict__, size('nQ2P') + 5*self.P) o = newstyleclass() o.a = o.b = o.c = o.d = o.e = o.f = o.g = o.h = 1 # Separate block for PyDictKeysObject with 16 keys and 10 entries check(newstyleclass, s + calcsize("2nP2n0P") + 16 + 10*calcsize("n2P")) # dict with shared keys check(newstyleclass().__dict__, size('nQ2P') + 10*self.P) # unicode # each tuple contains a string and its expected character size # don't put any static strings here, as they may contain # wchar_t or UTF-8 representations samples = ['1'*100, '\xff'*50, '\u0100'*40, '\uffff'*100, '\U00010000'*30, '\U0010ffff'*100] asciifields = "nnbP" compactfields = asciifields + "nPn" unicodefields = compactfields + "P" for s in samples: maxchar = ord(max(s)) if maxchar < 128: L = size(asciifields) + len(s) + 1 elif maxchar < 256: L = size(compactfields) + len(s) + 1 elif maxchar < 65536: L = size(compactfields) + 2*(len(s) + 1) else: L = size(compactfields) + 4*(len(s) + 1) check(s, L) # verify that the UTF-8 size is accounted for s = chr(0x4000) # 4 bytes canonical representation check(s, size(compactfields) + 4) # compile() will trigger the generation of the UTF-8 # representation as a side effect compile(s, "<stdin>", "eval") check(s, size(compactfields) + 4 + 4) # TODO: add check that forces the presence of wchar_t representation # TODO: add check that forces layout of unicodefields # weakref import weakref check(weakref.ref(int), size('2Pn2P')) # weakproxy # XXX # weakcallableproxy check(weakref.proxy(int), size('2Pn2P')) def check_slots(self, obj, base, extra): expected = sys.getsizeof(base) + struct.calcsize(extra) if gc.is_tracked(obj) and not gc.is_tracked(base): expected += self.gc_headsize self.assertEqual(sys.getsizeof(obj), expected) def test_slots(self): # check all subclassable types defined in Objects/ that allow # non-empty __slots__ check = self.check_slots class BA(bytearray): __slots__ = 'a', 'b', 'c' check(BA(), bytearray(), '3P') class D(dict): __slots__ = 'a', 'b', 'c' check(D(x=[]), {'x': []}, '3P') class L(list): __slots__ = 'a', 'b', 'c' check(L(), [], '3P') class S(set): __slots__ = 'a', 'b', 'c' check(S(), set(), '3P') class FS(frozenset): __slots__ = 'a', 'b', 'c' check(FS(), frozenset(), '3P') from collections import OrderedDict class OD(OrderedDict): __slots__ = 'a', 'b', 'c' check(OD(x=[]), OrderedDict(x=[]), '3P') def test_pythontypes(self): # check all types defined in Python/ size = test.support.calcobjsize vsize = test.support.calcvobjsize check = self.check_sizeof # _ast.AST import _ast check(_ast.AST(), size('P')) try: raise TypeError except TypeError: tb = sys.exc_info()[2] # traceback if tb is not None: check(tb, size('2P2i')) # symtable entry # XXX # sys.flags check(sys.flags, vsize('') + self.P * len(sys.flags)) def test_asyncgen_hooks(self): old = sys.get_asyncgen_hooks() self.assertIsNone(old.firstiter) self.assertIsNone(old.finalizer) firstiter = lambda *a: None sys.set_asyncgen_hooks(firstiter=firstiter) hooks = sys.get_asyncgen_hooks() self.assertIs(hooks.firstiter, firstiter) self.assertIs(hooks[0], firstiter) self.assertIs(hooks.finalizer, None) self.assertIs(hooks[1], None) finalizer = lambda *a: None sys.set_asyncgen_hooks(finalizer=finalizer) hooks = sys.get_asyncgen_hooks() self.assertIs(hooks.firstiter, firstiter) self.assertIs(hooks[0], firstiter) self.assertIs(hooks.finalizer, finalizer) self.assertIs(hooks[1], finalizer) sys.set_asyncgen_hooks(*old) cur = sys.get_asyncgen_hooks() self.assertIsNone(cur.firstiter) self.assertIsNone(cur.finalizer) def test_main(): test.support.run_unittest(SysModuleTest, SizeofTest) if __name__ == "__main__": test_main()
38.346364
116
0.582852
7952e5c7ae85dbca7d6c640913b3074b35e01434
602
py
Python
src/main/easy/search_insert.py
eu-snehagupta/Leetcode
7cfce8a385e0b0290fe054ecfd48e9a7a9a5ba83
[ "MIT" ]
null
null
null
src/main/easy/search_insert.py
eu-snehagupta/Leetcode
7cfce8a385e0b0290fe054ecfd48e9a7a9a5ba83
[ "MIT" ]
null
null
null
src/main/easy/search_insert.py
eu-snehagupta/Leetcode
7cfce8a385e0b0290fe054ecfd48e9a7a9a5ba83
[ "MIT" ]
null
null
null
# Given a sorted array of distinct integers and # a target value, return the index if the target is found. # If not, return the index where it would be if it were inserted in order. # # Example 1: # Input: nums = [1,3,5,6], target = 5 # Output: 2 # Constraints: # 1 <= nums.length <= 10**4 # -10**4 <= nums[i] <= 10**4 # nums contains distinct values sorted in ascending order. # -10**4 <= target <= 10**4 def search_insert(nums, target): nums.append(target) nums.sort() return nums.index(target) if __name__ == '__main__': input_array = [1] print(search_insert(input_array, 0))
26.173913
74
0.664452
7952e5ca7de493242a32782badc6302611bb2a91
14,175
py
Python
homeassistant/components/onewire/sensor.py
galihmelon/core
0c852b5f816c9b21f244b7acebfcc952ff29b937
[ "Apache-2.0" ]
null
null
null
homeassistant/components/onewire/sensor.py
galihmelon/core
0c852b5f816c9b21f244b7acebfcc952ff29b937
[ "Apache-2.0" ]
33
2020-12-18T07:14:41.000Z
2022-03-31T06:03:54.000Z
homeassistant/components/onewire/sensor.py
galihmelon/core
0c852b5f816c9b21f244b7acebfcc952ff29b937
[ "Apache-2.0" ]
null
null
null
"""Support for 1-Wire environment sensors.""" from glob import glob import logging import os from pi1wire import InvalidCRCException, Pi1Wire, UnsupportResponseException from pyownet import protocol import voluptuous as vol from homeassistant.components.sensor import PLATFORM_SCHEMA from homeassistant.config_entries import SOURCE_IMPORT from homeassistant.const import ( CONF_HOST, CONF_PORT, CONF_TYPE, ELECTRICAL_CURRENT_AMPERE, LIGHT_LUX, PERCENTAGE, PRESSURE_MBAR, TEMP_CELSIUS, VOLT, ) import homeassistant.helpers.config_validation as cv from homeassistant.helpers.entity import Entity from .const import ( CONF_MOUNT_DIR, CONF_NAMES, CONF_TYPE_OWFS, CONF_TYPE_OWSERVER, CONF_TYPE_SYSBUS, DEFAULT_OWSERVER_PORT, DEFAULT_SYSBUS_MOUNT_DIR, DOMAIN, PRESSURE_CBAR, ) _LOGGER = logging.getLogger(__name__) DEVICE_SENSORS = { # Family : { SensorType: owfs path } "10": {"temperature": "temperature"}, "12": {"temperature": "TAI8570/temperature", "pressure": "TAI8570/pressure"}, "22": {"temperature": "temperature"}, "26": { "temperature": "temperature", "humidity": "humidity", "humidity_hih3600": "HIH3600/humidity", "humidity_hih4000": "HIH4000/humidity", "humidity_hih5030": "HIH5030/humidity", "humidity_htm1735": "HTM1735/humidity", "pressure": "B1-R1-A/pressure", "illuminance": "S3-R1-A/illuminance", "voltage_VAD": "VAD", "voltage_VDD": "VDD", "current": "IAD", }, "28": {"temperature": "temperature"}, "3B": {"temperature": "temperature"}, "42": {"temperature": "temperature"}, "1D": {"counter_a": "counter.A", "counter_b": "counter.B"}, "EF": {"HobbyBoard": "special"}, } DEVICE_SUPPORT_SYSBUS = ["10", "22", "28", "3B", "42"] # EF sensors are usually hobbyboards specialized sensors. # These can only be read by OWFS. Currently this driver only supports them # via owserver (network protocol) HOBBYBOARD_EF = { "HobbyBoards_EF": { "humidity": "humidity/humidity_corrected", "humidity_raw": "humidity/humidity_raw", "temperature": "humidity/temperature", }, "HB_MOISTURE_METER": { "moisture_0": "moisture/sensor.0", "moisture_1": "moisture/sensor.1", "moisture_2": "moisture/sensor.2", "moisture_3": "moisture/sensor.3", }, } SENSOR_TYPES = { # SensorType: [ Measured unit, Unit ] "temperature": ["temperature", TEMP_CELSIUS], "humidity": ["humidity", PERCENTAGE], "humidity_hih3600": ["humidity", PERCENTAGE], "humidity_hih4000": ["humidity", PERCENTAGE], "humidity_hih5030": ["humidity", PERCENTAGE], "humidity_htm1735": ["humidity", PERCENTAGE], "humidity_raw": ["humidity", PERCENTAGE], "pressure": ["pressure", PRESSURE_MBAR], "illuminance": ["illuminance", LIGHT_LUX], "wetness_0": ["wetness", PERCENTAGE], "wetness_1": ["wetness", PERCENTAGE], "wetness_2": ["wetness", PERCENTAGE], "wetness_3": ["wetness", PERCENTAGE], "moisture_0": ["moisture", PRESSURE_CBAR], "moisture_1": ["moisture", PRESSURE_CBAR], "moisture_2": ["moisture", PRESSURE_CBAR], "moisture_3": ["moisture", PRESSURE_CBAR], "counter_a": ["counter", "count"], "counter_b": ["counter", "count"], "HobbyBoard": ["none", "none"], "voltage": ["voltage", VOLT], "voltage_VAD": ["voltage", VOLT], "voltage_VDD": ["voltage", VOLT], "current": ["current", ELECTRICAL_CURRENT_AMPERE], } PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend( { vol.Optional(CONF_NAMES): {cv.string: cv.string}, vol.Optional(CONF_MOUNT_DIR, default=DEFAULT_SYSBUS_MOUNT_DIR): cv.string, vol.Optional(CONF_HOST): cv.string, vol.Optional(CONF_PORT, default=DEFAULT_OWSERVER_PORT): cv.port, } ) def hb_info_from_type(dev_type="std"): """Return the proper info array for the device type.""" if "std" in dev_type: return DEVICE_SENSORS if "HobbyBoard" in dev_type: return HOBBYBOARD_EF async def async_setup_platform(hass, config, async_add_entities, discovery_info=None): """Old way of setting up 1-Wire platform.""" if config.get(CONF_HOST): config[CONF_TYPE] = CONF_TYPE_OWSERVER elif config[CONF_MOUNT_DIR] == DEFAULT_SYSBUS_MOUNT_DIR: config[CONF_TYPE] = CONF_TYPE_SYSBUS else: # pragma: no cover # This part of the implementation does not conform to policy regarding 3rd-party libraries, and will not longer be updated. # https://developers.home-assistant.io/docs/creating_platform_code_review/#5-communication-with-devicesservices config[CONF_TYPE] = CONF_TYPE_OWFS hass.async_create_task( hass.config_entries.flow.async_init( DOMAIN, context={"source": SOURCE_IMPORT}, data=config ) ) async def async_setup_entry(hass, config_entry, async_add_entities): """Set up 1-Wire platform.""" entities = await hass.async_add_executor_job(get_entities, config_entry.data) async_add_entities(entities, True) def get_entities(config): """Get a list of entities.""" entities = [] device_names = {} if CONF_NAMES in config: if isinstance(config[CONF_NAMES], dict): device_names = config[CONF_NAMES] conf_type = config[CONF_TYPE] # We have an owserver on a remote(or local) host/port if conf_type == CONF_TYPE_OWSERVER: owhost = config[CONF_HOST] owport = config[CONF_PORT] _LOGGER.debug("Initializing using %s:%s", owhost, owport) try: owproxy = protocol.proxy(host=owhost, port=owport) devices = owproxy.dir() except protocol.Error as exc: _LOGGER.error( "Cannot connect to owserver on %s:%d, got: %s", owhost, owport, exc ) return entities for device in devices: _LOGGER.debug("Found device: %s", device) family = owproxy.read(f"{device}family").decode() dev_type = "std" if "EF" in family: dev_type = "HobbyBoard" family = owproxy.read(f"{device}type").decode() if family not in hb_info_from_type(dev_type): _LOGGER.warning( "Ignoring unknown family (%s) of sensor found for device: %s", family, device, ) continue for sensor_key, sensor_value in hb_info_from_type(dev_type)[family].items(): if "moisture" in sensor_key: s_id = sensor_key.split("_")[1] is_leaf = int( owproxy.read(f"{device}moisture/is_leaf.{s_id}").decode() ) if is_leaf: sensor_key = f"wetness_{s_id}" sensor_id = os.path.split(os.path.split(device)[0])[1] device_file = os.path.join(os.path.split(device)[0], sensor_value) entities.append( OneWireProxy( device_names.get(sensor_id, sensor_id), device_file, sensor_key, owproxy, ) ) # We have a raw GPIO ow sensor on a Pi elif conf_type == CONF_TYPE_SYSBUS: base_dir = config[CONF_MOUNT_DIR] _LOGGER.debug("Initializing using SysBus %s", base_dir) for p1sensor in Pi1Wire(base_dir).find_all_sensors(): family = p1sensor.mac_address[:2] sensor_id = f"{family}-{p1sensor.mac_address[2:]}" if family not in DEVICE_SUPPORT_SYSBUS: _LOGGER.warning( "Ignoring unknown family (%s) of sensor found for device: %s", family, sensor_id, ) continue device_file = f"/sys/bus/w1/devices/{sensor_id}/w1_slave" entities.append( OneWireDirect( device_names.get(sensor_id, sensor_id), device_file, "temperature", p1sensor, ) ) if not entities: _LOGGER.error( "No onewire sensor found. Check if dtoverlay=w1-gpio " "is in your /boot/config.txt. " "Check the mount_dir parameter if it's defined" ) # We have an owfs mounted else: # pragma: no cover # This part of the implementation does not conform to policy regarding 3rd-party libraries, and will not longer be updated. # https://developers.home-assistant.io/docs/creating_platform_code_review/#5-communication-with-devicesservices base_dir = config[CONF_MOUNT_DIR] _LOGGER.debug("Initializing using OWFS %s", base_dir) _LOGGER.warning( "The OWFS implementation of 1-Wire sensors is deprecated, " "and should be migrated to OWServer (on localhost:4304). " "If migration to OWServer is not feasible on your installation, " "please raise an issue at https://github.com/home-assistant/core/issues/new" "?title=Unable%20to%20migrate%20onewire%20from%20OWFS%20to%20OWServer", ) for family_file_path in glob(os.path.join(base_dir, "*", "family")): with open(family_file_path) as family_file: family = family_file.read() if "EF" in family: continue if family in DEVICE_SENSORS: for sensor_key, sensor_value in DEVICE_SENSORS[family].items(): sensor_id = os.path.split(os.path.split(family_file_path)[0])[1] device_file = os.path.join( os.path.split(family_file_path)[0], sensor_value ) entities.append( OneWireOWFS( device_names.get(sensor_id, sensor_id), device_file, sensor_key, ) ) return entities class OneWire(Entity): """Implementation of a 1-Wire sensor.""" def __init__(self, name, device_file, sensor_type): """Initialize the sensor.""" self._name = f"{name} {sensor_type.capitalize()}" self._device_file = device_file self._unit_of_measurement = SENSOR_TYPES[sensor_type][1] self._state = None self._value_raw = None @property def name(self): """Return the name of the sensor.""" return self._name @property def state(self): """Return the state of the sensor.""" if "count" in self._unit_of_measurement: return int(self._state) return self._state @property def unit_of_measurement(self): """Return the unit the value is expressed in.""" return self._unit_of_measurement @property def device_state_attributes(self): """Return the state attributes of the sensor.""" return {"device_file": self._device_file, "raw_value": self._value_raw} @property def unique_id(self) -> str: """Return a unique ID.""" return self._device_file class OneWireProxy(OneWire): """Implementation of a 1-Wire sensor through owserver.""" def __init__(self, name, device_file, sensor_type, owproxy): """Initialize the sensor.""" super().__init__(name, device_file, sensor_type) self._owproxy = owproxy def _read_value_ownet(self): """Read a value from the owserver.""" return self._owproxy.read(self._device_file).decode().lstrip() def update(self): """Get the latest data from the device.""" value = None value_read = False try: value_read = self._read_value_ownet() except protocol.Error as exc: _LOGGER.error("Owserver failure in read(), got: %s", exc) if value_read: value = round(float(value_read), 1) self._value_raw = float(value_read) self._state = value class OneWireDirect(OneWire): """Implementation of a 1-Wire sensor directly connected to RPI GPIO.""" def __init__(self, name, device_file, sensor_type, owsensor): """Initialize the sensor.""" super().__init__(name, device_file, sensor_type) self._owsensor = owsensor def update(self): """Get the latest data from the device.""" value = None try: self._value_raw = self._owsensor.get_temperature() value = round(float(self._value_raw), 1) except ( FileNotFoundError, InvalidCRCException, UnsupportResponseException, ) as ex: _LOGGER.warning("Cannot read from sensor %s: %s", self._device_file, ex) self._state = value class OneWireOWFS(OneWire): # pragma: no cover """Implementation of a 1-Wire sensor through owfs. This part of the implementation does not conform to policy regarding 3rd-party libraries, and will not longer be updated. https://developers.home-assistant.io/docs/creating_platform_code_review/#5-communication-with-devicesservices """ def _read_value_raw(self): """Read the value as it is returned by the sensor.""" with open(self._device_file) as ds_device_file: lines = ds_device_file.readlines() return lines def update(self): """Get the latest data from the device.""" value = None try: value_read = self._read_value_raw() if len(value_read) == 1: value = round(float(value_read[0]), 1) self._value_raw = float(value_read[0]) except ValueError: _LOGGER.warning("Invalid value read from %s", self._device_file) except FileNotFoundError: _LOGGER.warning("Cannot read from sensor: %s", self._device_file) self._state = value
35.977157
131
0.605996
7952e61159ec31a4be5394b50f30cbc20f9b414e
22,649
py
Python
tools/aws_benchmarking/server/cluster_master.py
missyliu/Paddle
3fd33d4df9aa44f482bca8214cca8e6d90f06da2
[ "Apache-2.0" ]
null
null
null
tools/aws_benchmarking/server/cluster_master.py
missyliu/Paddle
3fd33d4df9aa44f482bca8214cca8e6d90f06da2
[ "Apache-2.0" ]
null
null
null
tools/aws_benchmarking/server/cluster_master.py
missyliu/Paddle
3fd33d4df9aa44f482bca8214cca8e6d90f06da2
[ "Apache-2.0" ]
null
null
null
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import json import math import time import threading import logging import copy import netaddr import boto3 import namesgenerator import paramiko from BaseHTTPServer import BaseHTTPRequestHandler, HTTPServer # You must have aws_access_key_id, aws_secret_access_key, region set in # ~/.aws/credentials and ~/.aws/config def str2bool(v): if v.lower() in ('yes', 'true', 't', 'y', '1'): return True elif v.lower() in ('no', 'false', 'f', 'n', '0'): return False else: raise argparse.ArgumentTypeError('Boolean value expected.') parser = argparse.ArgumentParser(description=__doc__) parser.add_argument( '--key_name', type=str, default="", help="required, key pair name") parser.add_argument( '--security_group_id', type=str, default="", help="required, the security group id associated with your VPC") parser.add_argument( '--vpc_id', type=str, default="", help="The VPC in which you wish to run test") parser.add_argument( '--subnet_id', type=str, default="", help="The Subnet_id in which you wish to run test") parser.add_argument( '--pserver_instance_type', type=str, default="c5.2xlarge", help="your pserver instance type, c5.2xlarge by default") parser.add_argument( '--trainer_instance_type', type=str, default="p2.8xlarge", help="your trainer instance type, p2.8xlarge by default") parser.add_argument( '--task_name', type=str, default="", help="the name you want to identify your job") parser.add_argument( '--pserver_image_id', type=str, default="ami-da2c1cbf", help="ami id for system image, default one has nvidia-docker ready, use ami-1ae93962 for us-east-2" ) parser.add_argument( '--trainer_image_id', type=str, default="ami-da2c1cbf", help="ami id for system image, default one has nvidia-docker ready, use ami-1ae93962 for us-west-2" ) parser.add_argument( '--availability_zone', type=str, default="us-east-2a", help="aws zone id to place ec2 instances") parser.add_argument( '--trainer_count', type=int, default=1, help="Trainer count") parser.add_argument( '--pserver_count', type=int, default=1, help="Pserver count") parser.add_argument( '--pserver_bash_file', type=str, default=os.path.join(os.path.dirname(__file__), "pserver.sh.template"), help="pserver bash file path") parser.add_argument( '--pserver_command', type=str, default="", help="pserver start command") parser.add_argument( '--trainer_bash_file', type=str, default=os.path.join(os.path.dirname(__file__), "trainer.sh.template"), help="trainer bash file path") parser.add_argument( '--trainer_command', type=str, default="", help="trainer start command") parser.add_argument( '--action', type=str, default="serve", help="create|cleanup|serve") parser.add_argument('--pem_path', type=str, help="private key file") parser.add_argument( '--pserver_port', type=str, default="5436", help="pserver port") parser.add_argument( '--docker_image', type=str, default="busybox", help="training docker image") parser.add_argument( '--master_server_port', type=int, default=5436, help="master server port") parser.add_argument( '--master_server_ip', type=str, default="", help="master server private ip") parser.add_argument( '--no_clean_up', type=str2bool, default=False, help="whether to clean up after training") args = parser.parse_args() ec2client = boto3.client('ec2') args.log_path = os.path.join(os.path.dirname(__file__), "logs/") logging.basicConfig( filename=args.log_path + 'master.log', level=logging.INFO, format='%(asctime)s %(message)s') log_files = ["master.log"] def create_subnet(): # if no vpc id provided, list vpcs logging.info("start creating subnet") if not args.vpc_id: logging.info("no vpc provided, trying to find the default one") vpcs_desc = ec2client.describe_vpcs( Filters=[{ "Name": "isDefault", "Values": ["true", ] }], ) if len(vpcs_desc["Vpcs"]) == 0: raise ValueError('No default VPC') args.vpc_id = vpcs_desc["Vpcs"][0]["VpcId"] vpc_cidrBlock = vpcs_desc["Vpcs"][0]["CidrBlock"] logging.info("default vpc fount with id %s and CidrBlock %s" % (args.vpc_id, vpc_cidrBlock)) if not vpc_cidrBlock: logging.info("trying to find cidrblock for vpc") vpcs_desc = ec2client.describe_vpcs( Filters=[{ "Name": "vpc-id", "Values": [args.vpc_id, ], }], ) if len(vpcs_desc["Vpcs"]) == 0: raise ValueError('No VPC found') vpc_cidrBlock = vpcs_desc["Vpcs"][0]["CidrBlock"] logging.info("cidrblock for vpc is %s" % vpc_cidrBlock) # list subnets in vpc in order to create a new one logging.info("trying to find ip blocks for new subnet") subnets_desc = ec2client.describe_subnets( Filters=[{ "Name": "vpc-id", "Values": [args.vpc_id, ], }], ) ips_taken = [] for subnet_dec in subnets_desc["Subnets"]: ips_taken.append(subnet_dec["CidrBlock"]) ip_blocks_avaliable = netaddr.IPSet( [vpc_cidrBlock]) ^ netaddr.IPSet(ips_taken) # adding 10 addresses as buffer cidr_prefix = 32 - math.ceil( math.log(args.pserver_count + args.trainer_count + 10, 2)) if cidr_prefix <= 16: raise ValueError('Too many nodes to fit in current VPC') for ipnetwork in ip_blocks_avaliable.iter_cidrs(): try: subnet_cidr = ipnetwork.subnet(int(cidr_prefix)).next() logging.info("subnet ip block found %s" % (subnet_cidr)) break except Exception: pass if not subnet_cidr: raise ValueError( 'No avaliable subnet to fit required nodes in current VPC') logging.info("trying to create subnet") subnet_desc = ec2client.create_subnet( CidrBlock=str(subnet_cidr), VpcId=args.vpc_id, AvailabilityZone=args.availability_zone) subnet_id = subnet_desc["Subnet"]["SubnetId"] subnet_waiter = ec2client.get_waiter('subnet_available') # sleep for 1s before checking its state time.sleep(1) subnet_waiter.wait(SubnetIds=[subnet_id, ]) logging.info("subnet created") logging.info("adding tags to newly created subnet") ec2client.create_tags( Resources=[subnet_id, ], Tags=[{ "Key": "Task_name", 'Value': args.task_name }]) return subnet_id def generate_task_name(): return namesgenerator.get_random_name() def script_to_str(file_path): if not file_path: return "echo $PSERVER_HOSTS" file = open(file_path, 'r') text = file.read().strip() file.close() return text def run_instances(image_id, instance_type, count, role, cmd=""): if count == 0: return [] response = ec2client.run_instances( ImageId=image_id, InstanceType=instance_type, MaxCount=count, MinCount=count, UserData=cmd, DryRun=False, InstanceInitiatedShutdownBehavior="stop", KeyName=args.key_name, Placement={'AvailabilityZone': args.availability_zone}, NetworkInterfaces=[{ 'DeviceIndex': 0, 'SubnetId': args.subnet_id, "AssociatePublicIpAddress": True, 'Groups': args.security_group_ids }], TagSpecifications=[{ 'ResourceType': "instance", 'Tags': [{ "Key": 'Task_name', "Value": args.task_name }, { "Key": 'Role', "Value": role }] }]) instance_ids = [] for instance in response["Instances"]: instance_ids.append(instance["InstanceId"]) if len(instance_ids) > 0: logging.info(str(len(instance_ids)) + " instance(s) created") else: logging.info("no instance created") #create waiter to make sure it's running logging.info("waiting for instance to become accessible") waiter = ec2client.get_waiter('instance_status_ok') waiter.wait( Filters=[{ "Name": "instance-status.status", "Values": ["ok"] }, { "Name": "instance-status.reachability", "Values": ["passed"] }, { "Name": "instance-state-name", "Values": ["running"] }], InstanceIds=instance_ids) instances_response = ec2client.describe_instances(InstanceIds=instance_ids) return instances_response["Reservations"][0]["Instances"] def create_pservers(): try: return run_instances( image_id=args.pserver_image_id, instance_type=args.pserver_instance_type, count=args.pserver_count, role="PSERVER", ) except Exception: logging.exception("error while trying to create pservers") cleanup(args.task_name) def log_to_file(source, filename): if not filename in log_files: log_files.append(filename) with open(args.log_path + filename, "a") as log_file: for line in iter(source.readline, ""): log_file.write(line) def parse_command(command_raw, defaults={}): if not command_raw: command_raw = "" commands_processed = [] parameter_map = copy.copy(defaults) for seg in command_raw.split(","): if ":" in seg: parameters = seg.split(":") parameter_map[parameters[0]] = parameters[1] else: commands_processed.append(seg) for key, val in parameter_map.iteritems(): commands_processed.append("--" + key + " " + str(val)) return " ".join(commands_processed) def create_trainers(kickoff_cmd, pserver_endpoints_str): def create_and_start_trainer(trainer_index): logging.info("trainer " + str(trainer_index) + " is starting") instance_response = run_instances( image_id=args.trainer_image_id, instance_type=args.trainer_instance_type, count=1, role="TRAINER", )[0] trainer_ip = instance_response["PrivateIpAddress"] logging.info("trainer " + str(trainer_index) + " started") ssh_key = paramiko.RSAKey.from_private_key_file(args.pem_path) ssh_client = paramiko.SSHClient() ssh_client.set_missing_host_key_policy(paramiko.AutoAddPolicy()) ssh_client.connect(hostname=trainer_ip, username="ubuntu", pkey=ssh_key) logging.info("trainer " + str(trainer_index) + " terminal connected via ssh") cmd = kickoff_cmd.format( PSERVER_HOSTS=pserver_endpoints_str, DOCKER_IMAGE=args.docker_image, TRAINER_INDEX=str(trainer_index), TASK_NAME=args.task_name, TRAINER_COUNT=args.trainer_count, COMMAND=parse_command(args.trainer_command, {"device": "GPU"}), MASTER_ENDPOINT=args.master_server_ip + ":" + str(args.master_server_port)) logging.info(cmd) stdin, stdout, stderr = ssh_client.exec_command(command=cmd) # read and save output log logging.info("trainer " + str(trainer_index) + " command executed, keep fetching log") stdout_thread = threading.Thread( target=log_to_file, args=( stdout, "trainer_" + str(trainer_index) + ".log", )) stderr_thread = threading.Thread( target=log_to_file, args=( stderr, "trainer_" + str(trainer_index) + "_err.log", )) stdout_thread.start() stderr_thread.start() stdout_thread.join() stderr_thread.join() return_code = stdout.channel.recv_exit_status() if return_code != 0: trainer_create_results[trainer_index] = {'has_error': True} raise ValueError("trainer didn't finish with exit code 0") ssh_client.close() # multi thread starting trainer instance and run kickoff command trainer_threads = [] trainer_create_results = {} try: for i in xrange(args.trainer_count): logging.info("starting tread for trainer " + str(i)) trainer_thread = threading.Thread( target=create_and_start_trainer, args=(i, )) trainer_thread.start() trainer_threads.append(trainer_thread) for trainer_thread in trainer_threads: trainer_thread.join() for result in trainer_create_results: if result["has_error"]: logging.error( "error during trainer starting or training, destorying the while cluster " ) cleanup(args.task_name) break logging.info("all trainers stopped") except Exception, e: logging.info( "Training exception, clean up resources, please check log for more info" ) finally: cleanup(args.task_name) def cleanup(task_name): if args.no_clean_up: logging.info("no clean up option set, going to leave the setup running") return #shutdown all ec2 instances print("going to clean up " + task_name + " instances") instances_response = ec2client.describe_instances(Filters=[{ "Name": "tag:Task_name", "Values": [task_name] }]) instance_ids = [] if len(instances_response["Reservations"]) > 0: for reservation in instances_response["Reservations"]: for instance in reservation["Instances"]: instance_ids.append(instance["InstanceId"]) ec2client.terminate_instances(InstanceIds=instance_ids) instance_termination_waiter = ec2client.get_waiter( 'instance_terminated') instance_termination_waiter.wait(InstanceIds=instance_ids) #delete the subnet created subnet = ec2client.describe_subnets(Filters=[{ "Name": "tag:Task_name", "Values": [task_name] }]) if len(subnet["Subnets"]) > 0: ec2client.delete_subnet(SubnetId=subnet["Subnets"][0]["SubnetId"]) # no subnet delete waiter, just leave it. logging.info("Clearnup done") return def kickoff_pserver(host, pserver_endpoints_str): try: ssh_key = paramiko.RSAKey.from_private_key_file(args.pem_path) ssh_client = paramiko.SSHClient() ssh_client.set_missing_host_key_policy(paramiko.AutoAddPolicy()) ssh_client.connect(hostname=host, username="ubuntu", pkey=ssh_key) cmd = (script_to_str(args.pserver_bash_file)).format( PSERVER_HOSTS=pserver_endpoints_str, DOCKER_IMAGE=args.docker_image, PSERVER_PORT=args.pserver_port, TASK_NAME=args.task_name, COMMAND=parse_command(args.pserver_command, {"device": "CPU"}), TRAINER_COUNT=args.trainer_count, TRAINER_INDEX=0, # there is no way to use 0.0.0.0:port to start pserver # has to docker --network="host" with host ip to make this work SERVER_ENDPOINT=host + ":" + str(args.pserver_port), MASTER_ENDPOINT=args.master_server_ip + ":" + str(args.master_server_port)) logging.info(cmd) stdin, stdout, stderr = ssh_client.exec_command(command=cmd) stdout_thread = threading.Thread( target=log_to_file, args=( stdout, "pserver_" + host + ".log", )) stderr_thread = threading.Thread( target=log_to_file, args=( stderr, "pserver_" + host + "_err.log", )) stdout_thread.start() stderr_thread.start() stdout_thread.join() stderr_thread.join() return_code = stdout.channel.recv_exit_status() logging.info(return_code) if return_code != 0: raise Exception("Error while kicking off pserver training process") except Exception: logging.exception("Error while kicking off pserver training process") cleanup(args.task_name) finally: ssh_client.close() def init_args(): if not args.task_name: args.task_name = generate_task_name() logging.info("task name generated %s" % (args.task_name)) if not args.pem_path: args.pem_path = os.path.expanduser("~") + "/" + args.key_name + ".pem" if args.security_group_id: args.security_group_ids = (args.security_group_id, ) args.trainers_job_done_count = 0 def create_cluster(): if not args.subnet_id: logging.info("creating subnet for this task") args.subnet_id = create_subnet() logging.info("subnet %s created" % (args.subnet_id)) logging.info("creating pservers") pserver_create_response = create_pservers() logging.info("pserver created, collecting pserver ips") pserver_endpoints = [] for pserver in pserver_create_response: pserver_endpoints.append(pserver["NetworkInterfaces"][0][ "PrivateIpAddress"] + ":" + args.pserver_port) pserver_endpoints_str = ",".join(pserver_endpoints) logging.info("kicking off pserver training process") pserver_threads = [] for pserver in pserver_create_response: pserver_thread = threading.Thread( target=kickoff_pserver, args=(pserver["PrivateIpAddress"], pserver_endpoints_str)) pserver_thread.start() pserver_threads.append(pserver_thread) logging.info("all pserver training process started") logging.info("creating trainers and kicking off trainer training process") create_trainers( kickoff_cmd=script_to_str(args.trainer_bash_file), pserver_endpoints_str=pserver_endpoints_str) for pserver_thread in pserver_threads: pserver_thread.join() logging.info("all process ended") def start_server(args): class S(BaseHTTPRequestHandler): def _set_headers(self): self.send_response(200) self.send_header('Content-type', 'text/text') self.end_headers() def do_HEAD(self): self._set_headers() def do_404(self): self.send_response(404) self.send_header('Content-type', 'text/text') self.end_headers() logging.info("Received invalid GET request" + self.path) self.wfile.write("NO ACTION FOUND") def do_GET(self): request_path = self.path if request_path == "/status" or request_path == "/master_logs": self._set_headers() logging.info("Received request to return status") with open(args.log_path + "master.log", "r") as logfile: self.wfile.write(logfile.read().strip()) elif request_path == "/list_logs" or request_path == "/logs": self._set_headers() self.wfile.write("\n".join(log_files)) elif "/log/" in request_path: self._set_headers() log_file_path = request_path.replace("/log/", "") logging.info("requesting log file path is" + args.log_path + log_file_path) with open(args.log_path + log_file_path, "r") as logfile: self.wfile.write(logfile.read().strip()) else: self.do_404() def do_POST(self): request_path = self.path if request_path == "/save_data": self._set_headers() logging.info("Received request to save data") self.wfile.write("DATA SAVED!") content_length = int(self.headers['Content-Length']) post_data = self.rfile.read(content_length) if args.task_name: with open(args.task_name + ".txt", "a") as text_file: text_file.write(post_data + "\n") elif request_path == "/cleanup": self._set_headers() logging.info("Received request to cleanup cluster") cleanup(args.task_name) self.wfile.write("cleanup in progress") else: self.do_404() server_address = ('', args.master_server_port) httpd = HTTPServer(server_address, S) logging.info("HTTP server is starting") httpd.serve_forever() def print_arguments(): logging.info('----------- Configuration Arguments -----------') for arg, value in sorted(vars(args).iteritems()): logging.info('%s: %s' % (arg, value)) logging.info('------------------------------------------------') if __name__ == "__main__": print_arguments() if args.action == "create": logging.info("going to create cluster") if not args.key_name or not args.security_group_id: raise ValueError("key_name and security_group_id are required") init_args() create_cluster() elif args.action == "cleanup": logging.info("going to cleanup cluster") if not args.task_name: raise ValueError("task_name is required") cleanup(args.task_name) elif args.action == "serve": # serve mode if not args.master_server_ip: raise ValueError( "No master server ip set, please run with --action create") logging.info("going to start serve and create cluster") init_args() logging.info("starting server in another thread") server_thread = threading.Thread(target=start_server, args=(args, )) server_thread.start() create_cluster() server_thread.join() elif args.action == "test": start_server(args)
32.68254
103
0.622721
7952e748d0d63226000aab83d0f9108214accaf9
970
py
Python
mcpipy/mobius.py
wangtt03/raspberryjammod
d828d1b225c0dfc25d91f4e3569ce620fa231e14
[ "MIT" ]
338
2015-01-20T15:07:48.000Z
2022-02-25T17:31:06.000Z
mcpipy/mobius.py
wangtt03/raspberryjammod
d828d1b225c0dfc25d91f4e3569ce620fa231e14
[ "MIT" ]
58
2015-03-26T12:21:41.000Z
2022-02-20T21:01:33.000Z
mcpipy/mobius.py
wangtt03/raspberryjammod
d828d1b225c0dfc25d91f4e3569ce620fa231e14
[ "MIT" ]
112
2015-08-10T19:20:44.000Z
2022-02-23T08:58:52.000Z
# # Code by Alexander Pruss and under the MIT license # from mine import * import sys def draw_surface(xf,yf,zf,a0,a1,asteps,b0,b1,bsteps,ox,oy,oz,scalex,scaley,scalez,mcblock,mcmeta): for i in range(asteps): a = (a0 * (asteps-1-i) + a1 * i) / asteps for j in range(bsteps): b = (b0 * (bsteps-1-j) + b1 * j) / bsteps x = xf(a,b) y = yf(a,b) z = zf(a,b) # print a,b,ox+x * scalex, oy+y * scaley, oz+z * scalez mc.setBlock(ox+x * scalex, oy+y * scaley, oz+z * scalez, mcblock, mcmeta) mc = Minecraft() playerPos = mc.player.getPos() xformula = lambda a,b: (3 + a * cos(b/2)) * cos(b) yformula = lambda a,b: a * sin(b/2) zformula = lambda a,b: (3 + a * cos(b/2)) * sin(b) scale = 15 b = block.STONE m = 0 draw_surface(xformula,yformula,zformula,-1.,1.,10*scale,0,2*pi,30*scale,playerPos.x,playerPos.y+scale,playerPos.z,scale,scale,scale,b, m) mc.postToChat("Formula done")
28.529412
138
0.593814
7952e824ec1f34f2bd465f3e6cfe635a7991d294
21,266
py
Python
tests/hikari/impl/test_rate_limits.py
sabidib/hikari
e1e112a1b2938890e4abd38eb07b559fda7eedbb
[ "MIT" ]
520
2020-10-12T22:53:55.000Z
2022-03-30T17:59:53.000Z
tests/hikari/impl/test_rate_limits.py
sabidib/hikari
e1e112a1b2938890e4abd38eb07b559fda7eedbb
[ "MIT" ]
319
2020-10-11T19:04:03.000Z
2022-03-31T16:55:28.000Z
tests/hikari/impl/test_rate_limits.py
sabidib/hikari
e1e112a1b2938890e4abd38eb07b559fda7eedbb
[ "MIT" ]
85
2020-10-17T20:25:47.000Z
2022-03-31T15:19:40.000Z
# -*- coding: utf-8 -*- # Copyright (c) 2020 Nekokatt # Copyright (c) 2021 davfsa # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import asyncio import contextlib import logging import math import statistics import sys import threading import time import mock import pytest from hikari.impl import rate_limits from tests.hikari import hikari_test_helpers class MockFuture(mock.Mock): def __await__(self): if False: yield # Turns this into a generator. return None class TestBaseRateLimiter: def test_context_management(self): class MockedBaseRateLimiter(rate_limits.BaseRateLimiter): close = mock.Mock() acquire = NotImplemented with MockedBaseRateLimiter() as m: pass m.close.assert_called_once() class TestBurstRateLimiter: @pytest.fixture() def mock_burst_limiter(self): class Impl(rate_limits.BurstRateLimiter): async def acquire(self, *args, **kwargs) -> None: raise NotImplementedError return Impl(__name__) @pytest.mark.parametrize(("queue", "is_empty"), [(["foo", "bar", "baz"], False), ([], True)]) def test_is_empty(self, queue, is_empty, mock_burst_limiter): mock_burst_limiter.queue = queue assert mock_burst_limiter.is_empty is is_empty def test_close_removes_all_futures_from_queue(self, event_loop, mock_burst_limiter): mock_burst_limiter.throttle_task = None futures = [event_loop.create_future() for _ in range(10)] mock_burst_limiter.queue = list(futures) mock_burst_limiter.close() assert len(mock_burst_limiter.queue) == 0 def test_close_cancels_all_futures_pending_when_futures_pending(self, event_loop, mock_burst_limiter): mock_burst_limiter.throttle_task = None futures = [event_loop.create_future() for _ in range(10)] mock_burst_limiter.queue = list(futures) mock_burst_limiter.close() for i, future in enumerate(futures): assert future.cancelled(), f"future {i} was not cancelled" def test_close_is_silent_when_no_futures_pending(self, mock_burst_limiter): mock_burst_limiter.throttle_task = None mock_burst_limiter.queue = [] mock_burst_limiter.close() assert True, "passed successfully" def test_close_cancels_throttle_task_if_running(self, event_loop, mock_burst_limiter): task = event_loop.create_future() mock_burst_limiter.throttle_task = task mock_burst_limiter.close() assert mock_burst_limiter.throttle_task is None, "task was not overwritten with None" assert task.cancelled(), "throttle_task is not cancelled" def test_close_when_closed(self, mock_burst_limiter): # Double-running shouldn't do anything adverse. mock_burst_limiter.close() mock_burst_limiter.close() class TestManualRateLimiter: @pytest.mark.asyncio() async def test_acquire_returns_completed_future_if_throttle_task_is_None(self, event_loop): with rate_limits.ManualRateLimiter() as limiter: limiter.throttle_task = None future = MockFuture() event_loop.create_future = mock.Mock(return_value=future) await limiter.acquire() future.set_result.assert_called_once_with(None) @pytest.mark.asyncio() async def test_acquire_returns_incomplete_future_if_throttle_task_is_not_None(self, event_loop): with rate_limits.ManualRateLimiter() as limiter: limiter.throttle_task = event_loop.create_future() future = MockFuture() event_loop.create_future = mock.Mock(return_value=future) await limiter.acquire() future.set_result.assert_not_called() @pytest.mark.asyncio() async def test_acquire_places_future_on_queue_if_throttle_task_is_not_None(self, event_loop): with rate_limits.ManualRateLimiter() as limiter: limiter.throttle_task = event_loop.create_future() future = MockFuture() event_loop.create_future = mock.Mock(return_value=future) assert len(limiter.queue) == 0 await limiter.acquire() assert len(limiter.queue) == 1 assert future in limiter.queue future.set_result.assert_not_called() @pytest.mark.asyncio() async def test_throttle_cancels_existing_task(self): with rate_limits.ManualRateLimiter() as limiter: limiter.throttle_task = asyncio.get_running_loop().create_future() old_task = limiter.throttle_task limiter.throttle(0) assert old_task.cancelled() assert old_task is not limiter.throttle_task @pytest.mark.asyncio() async def test_throttle_schedules_throttle(self): with hikari_test_helpers.mock_class_namespace(rate_limits.ManualRateLimiter, slots_=False)() as limiter: limiter.unlock_later = mock.AsyncMock() limiter.throttle(0) await limiter.throttle_task limiter.unlock_later.assert_called_once_with(0) @pytest.mark.asyncio() async def test_throttle_chews_queue_completing_futures(self, event_loop): with rate_limits.ManualRateLimiter() as limiter: futures = [event_loop.create_future() for _ in range(10)] limiter.queue = list(futures) await limiter.unlock_later(0.01) for i, future in enumerate(futures): assert future.done(), f"future {i} was not done" @pytest.mark.asyncio() async def test_throttle_sleeps_before_popping_queue(self, event_loop): # GIVEN slept_at = float("nan") popped_at = [] async def mock_sleep(_): nonlocal slept_at slept_at = time.perf_counter() class MockList(list): def pop(self, _=-1): popped_at.append(time.perf_counter()) return event_loop.create_future() with hikari_test_helpers.mock_class_namespace(rate_limits.ManualRateLimiter, slots_=False)() as limiter: with mock.patch("asyncio.sleep", wraps=mock_sleep): limiter.queue = MockList() # WHEN await limiter.unlock_later(5) # THEN for i, pop_time in enumerate(popped_at): assert slept_at < pop_time, f"future {i} popped before initial sleep" @pytest.mark.asyncio() async def test_throttle_clears_throttle_task(self, event_loop): with rate_limits.ManualRateLimiter() as limiter: limiter.throttle_task = event_loop.create_future() await limiter.unlock_later(0) assert limiter.throttle_task is None class TestWindowedBurstRateLimiter: @pytest.fixture() def ratelimiter(self): inst = hikari_test_helpers.mock_class_namespace(rate_limits.WindowedBurstRateLimiter, slots_=False)( __name__, 3, 3 ) yield inst with contextlib.suppress(Exception): inst.close() @pytest.mark.asyncio() async def test_drip_if_not_throttled_and_not_ratelimited(self, ratelimiter, event_loop): ratelimiter.drip = mock.Mock() ratelimiter.throttle_task = None ratelimiter.is_rate_limited = mock.Mock(return_value=False) future = MockFuture() event_loop.create_future = mock.Mock(return_value=future) await ratelimiter.acquire() ratelimiter.drip.assert_called_once_with() future.set_result.assert_called_once_with(None) @pytest.mark.asyncio() async def test_no_drip_if_throttle_task_is_not_None(self, ratelimiter, event_loop): ratelimiter.drip = mock.Mock() ratelimiter.throttle_task = asyncio.get_running_loop().create_future() ratelimiter.is_rate_limited = mock.Mock(return_value=False) future = MockFuture() event_loop.create_future = mock.Mock(return_value=future) await ratelimiter.acquire() ratelimiter.drip.assert_not_called() @pytest.mark.asyncio() async def test_no_drip_if_rate_limited(self, ratelimiter, event_loop): ratelimiter.drip = mock.Mock() ratelimiter.throttle_task = False ratelimiter.is_rate_limited = mock.Mock(return_value=True) future = MockFuture() event_loop.create_future = mock.Mock(return_value=future) await ratelimiter.acquire() ratelimiter.drip.assert_not_called() @pytest.mark.asyncio() async def test_task_scheduled_if_rate_limited_and_throttle_task_is_None(self, ratelimiter, event_loop): ratelimiter.drip = mock.Mock() ratelimiter.throttle_task = None ratelimiter.throttle = mock.AsyncMock() ratelimiter.is_rate_limited = mock.Mock(return_value=True) future = MockFuture() event_loop.create_future = mock.Mock(return_value=future) await ratelimiter.acquire() assert ratelimiter.throttle_task is not None ratelimiter.throttle.assert_called() @pytest.mark.asyncio() async def test_task_not_scheduled_if_rate_limited_and_throttle_task_not_None(self, ratelimiter, event_loop): ratelimiter.drip = mock.Mock() ratelimiter.throttle_task = event_loop.create_future() old_task = ratelimiter.throttle_task ratelimiter.is_rate_limited = mock.Mock(return_value=True) future = MockFuture() event_loop.create_future = mock.Mock(return_value=future) await ratelimiter.acquire() assert old_task is ratelimiter.throttle_task, "task was rescheduled, that shouldn't happen :(" @pytest.mark.asyncio() async def test_future_is_added_to_queue_if_throttle_task_is_not_None(self, ratelimiter, event_loop): ratelimiter.drip = mock.Mock() ratelimiter.throttle_task = asyncio.get_running_loop().create_future() ratelimiter.is_rate_limited = mock.Mock(return_value=False) future = MockFuture() event_loop.create_future = mock.Mock(return_value=future) await ratelimiter.acquire() # use slice to prevent aborting test with index error rather than assertion error if this fails. assert ratelimiter.queue[-1:] == [future] @pytest.mark.asyncio() async def test_future_is_added_to_queue_if_rate_limited(self, ratelimiter, event_loop): ratelimiter.drip = mock.Mock() ratelimiter.throttle_task = None ratelimiter.is_rate_limited = mock.Mock(return_value=True) future = MockFuture() event_loop.create_future = mock.Mock(return_value=future) try: await ratelimiter.acquire() # use slice to prevent aborting test with index error rather than assertion error if this fails. assert ratelimiter.queue[-1:] == [future] finally: ratelimiter.throttle_task.cancel() @pytest.mark.asyncio() async def test_throttle_consumes_queue(self, event_loop): with rate_limits.WindowedBurstRateLimiter(__name__, 0.01, 1) as rl: rl.queue = [event_loop.create_future() for _ in range(15)] old_queue = list(rl.queue) await rl.throttle() assert len(rl.queue) == 0 for i, future in enumerate(old_queue): assert future.done(), f"future {i} was incomplete!" @pytest.mark.asyncio() @hikari_test_helpers.timeout(20) @hikari_test_helpers.retry(5) async def test_throttle_when_limited_sleeps_then_bursts_repeatedly(self, event_loop): # Schedule concurrently but do not break our timeout. # We should retry a few times, as CI runners may run too slowly if # under load. As much as we try, this will always be time-relative, # which is not a good test, but too much mocking is needed to obfuscate # out that detail. # TODO: find a better way of doing this? await event_loop.run_in_executor(None, self._run_test_throttle_logic) def _run_test_throttle_logic(self): threads = [ threading.Thread( target=self._run_test_throttle_logic_on_this_thread, ) for _ in range(20) ] for thread in threads: thread.start() for thread in threads: thread.join() def _run_test_throttle_logic_on_this_thread(self): event_loop = asyncio.new_event_loop() asyncio.set_event_loop(event_loop) try: event_loop.run_until_complete(self._run_test_throttle_logic_on_loop(event_loop)) finally: event_loop.close() @staticmethod async def _run_test_throttle_logic_on_loop(event_loop): limit = 2 period = 1.5 total_requests = int(period * limit * 2) max_distance_within_window = 0.05 completion_times = [] logger = logging.getLogger(__name__) def create_task(i): logger.info("making task %s", i) future = event_loop.create_future() future.add_done_callback(lambda _: completion_times.append(time.perf_counter())) return future with rate_limits.WindowedBurstRateLimiter(__name__, period, limit) as rl: futures = [create_task(i) for i in range(total_requests)] rl.queue = list(futures) rl.reset_at = time.perf_counter() logger.info("throttling back") await rl.throttle() # die if we take too long... logger.info("waiting for stuff to finish") await asyncio.wait(futures, timeout=period * limit + period) assert ( len(completion_times) == total_requests ), f"expected {total_requests} completions but got {len(completion_times)}" # E203 - Whitespace before ":". Black reformats it windows = [completion_times[i : i + limit] for i in range(0, total_requests, limit)] # noqa: E203 for i, window in enumerate(windows): logger.info("window %s %s", i, window) mode = statistics.mode(window) for j, element in enumerate(window): assert math.isclose(element, mode, abs_tol=max_distance_within_window), ( f"not close! windows[{i}][{j}], future {i * len(window) + j}, " f"val {element}, mode {mode}, max diff {max_distance_within_window}" ) assert len(windows) >= 3, "not enough windows to sample correctly" assert len(windows[0]) > 1, "not enough datapoints per window to sample correctly" for i in range(1, len(windows)): previous_last = windows[i - 1][-1] next_first = windows[i][0] logger.info("intra-window index=%s value=%s versus index=%s value=%s", i - 1, previous_last, i, next_first) assert math.isclose(next_first - previous_last, period, abs_tol=max_distance_within_window), ( f"distance between windows is not acceptable! {i - 1}={previous_last} {i}={next_first}, " f"max diff = {max_distance_within_window}" ) @pytest.mark.asyncio() async def test_throttle_resets_throttle_task(self, event_loop): with rate_limits.WindowedBurstRateLimiter(__name__, 0.01, 1) as rl: rl.queue = [event_loop.create_future() for _ in range(15)] rl.throttle_task = None await rl.throttle() assert rl.throttle_task is None def test_get_time_until_reset_if_not_rate_limited(self): with hikari_test_helpers.mock_class_namespace(rate_limits.WindowedBurstRateLimiter, slots_=False)( __name__, 0.01, 1 ) as rl: rl.is_rate_limited = mock.Mock(return_value=False) assert rl.get_time_until_reset(420) == 0.0 def test_get_time_until_reset_if_rate_limited(self): with hikari_test_helpers.mock_class_namespace(rate_limits.WindowedBurstRateLimiter, slots_=False)( __name__, 0.01, 1 ) as rl: rl.is_rate_limited = mock.Mock(return_value=True) rl.reset_at = 420.4 assert rl.get_time_until_reset(69.8) == 420.4 - 69.8 def test_is_rate_limited_when_rate_limit_expired_resets_self(self): with rate_limits.WindowedBurstRateLimiter(__name__, 403, 27) as rl: now = 180 rl.reset_at = 80 rl.remaining = 4 assert not rl.is_rate_limited(now) assert rl.reset_at == now + 403 assert rl.remaining == 27 @pytest.mark.parametrize("remaining", [-1, 0, 1]) def test_is_rate_limited_when_rate_limit_not_expired_only_returns_False(self, remaining): with rate_limits.WindowedBurstRateLimiter(__name__, 403, 27) as rl: now = 420 rl.reset_at = now + 69 rl.remaining = remaining assert rl.is_rate_limited(now) is (remaining <= 0) class TestExponentialBackOff: def test___init___raises_on_too_large_int_base(self): base = int(sys.float_info.max) + int(sys.float_info.max * 1 / 100) with pytest.raises(ValueError, match="int too large to be represented as a float"): rate_limits.ExponentialBackOff(base=base) def test___init___raises_on_too_large_int_maximum(self): maximum = int(sys.float_info.max) + int(sys.float_info.max * 1 / 200) with pytest.raises(ValueError, match="int too large to be represented as a float"): rate_limits.ExponentialBackOff(maximum=maximum) def test___init___raises_on_too_large_int_jitter_multiplier(self): jitter_multiplier = int(sys.float_info.max) + int(sys.float_info.max * 1 / 300) with pytest.raises(ValueError, match="int too large to be represented as a float"): rate_limits.ExponentialBackOff(jitter_multiplier=jitter_multiplier) def test___init___raises_on_not_finite_base(self): with pytest.raises(ValueError, match="base must be a finite number"): rate_limits.ExponentialBackOff(base=float("inf")) def test___init___raises_on_not_finite_maximum(self): with pytest.raises(ValueError, match="maximum must be a finite number"): rate_limits.ExponentialBackOff(maximum=float("nan")) def test___init___raises_on_not_finite_jitter_multiplier(self): with pytest.raises(ValueError, match="jitter_multiplier must be a finite number"): rate_limits.ExponentialBackOff(jitter_multiplier=float("inf")) def test_reset(self): eb = rate_limits.ExponentialBackOff() eb.increment = 10 eb.reset() assert eb.increment == 0 @pytest.mark.parametrize(("iteration", "backoff"), enumerate((1, 2, 4, 8, 16, 32))) def test_increment_linear(self, iteration, backoff): eb = rate_limits.ExponentialBackOff(2, 64, 0) for _ in range(iteration): next(eb) assert next(eb) == backoff def test_increment_raises_on_numerical_limitation(self): power = math.log(sys.float_info.max, 5) + 0.5 eb = rate_limits.ExponentialBackOff( base=5, maximum=sys.float_info.max, jitter_multiplier=0.0, initial_increment=power ) assert next(eb) == sys.float_info.max def test_increment_maximum(self): max_bound = 64 eb = rate_limits.ExponentialBackOff(2, max_bound, 0) iterations = math.ceil(math.log2(max_bound)) for _ in range(iterations): next(eb) assert next(eb) == max_bound def test_increment_does_not_increment_when_on_maximum(self): eb = rate_limits.ExponentialBackOff(2, 32, initial_increment=5, jitter_multiplier=0) assert eb.increment == 5 assert next(eb) == 32 assert eb.increment == 5 @pytest.mark.parametrize(("iteration", "backoff"), enumerate((1, 2, 4, 8, 16, 32))) def test_increment_jitter(self, iteration, backoff): abs_tol = 1 eb = rate_limits.ExponentialBackOff(2, 64, abs_tol) for _ in range(iteration): next(eb) assert math.isclose(next(eb), backoff, abs_tol=abs_tol) def test_iter_returns_self(self): eb = rate_limits.ExponentialBackOff(2, 64, 123) assert iter(eb) is eb
40.429658
119
0.67615
7952e8f694241643e0e7988d971554f6b4d638d0
42
py
Python
src/pyecom/__init__.py
xavibj/pyecom
f66aa8db9ec0edb77d3f707a72ac0b7594002c7b
[ "MIT" ]
null
null
null
src/pyecom/__init__.py
xavibj/pyecom
f66aa8db9ec0edb77d3f707a72ac0b7594002c7b
[ "MIT" ]
null
null
null
src/pyecom/__init__.py
xavibj/pyecom
f66aa8db9ec0edb77d3f707a72ac0b7594002c7b
[ "MIT" ]
null
null
null
__version__ = "0.1.1" from .main import *
14
21
0.666667
7952e9370ca246690c07443dd0649685a5fcbfd0
18,399
py
Python
datasets/spoken_word_dataset.py
lwang114/InformationQuantizer
45419140708e612495fd324a9e5724306d4d4129
[ "MIT" ]
null
null
null
datasets/spoken_word_dataset.py
lwang114/InformationQuantizer
45419140708e612495fd324a9e5724306d4d4129
[ "MIT" ]
null
null
null
datasets/spoken_word_dataset.py
lwang114/InformationQuantizer
45419140708e612495fd324a9e5724306d4d4129
[ "MIT" ]
null
null
null
import torch import torchaudio import torchvision from torchvision import transforms import nltk from nltk.stem import WordNetLemmatizer from collections import defaultdict # from allennlp.predictors.predictor import Predictor # import allennlp_models.structured_prediction import numpy as np import re import os import json from tqdm import tqdm from itertools import combinations from copy import deepcopy from PIL import Image from scipy import signal from kaldiio import ReadHelper # dep_parser = Predictor.from_path("https://storage.googleapis.com/allennlp-public-models/biaffine-dependency-parser-ptb-2020.04.06.tar.gz") # dep_parser._model = dep_parser._model.cuda() # lemmatizer = WordNetLemmatizer() UNK = "###UNK###" NULL = "###NULL###" BLANK = "###BLANK###" SIL = "SIL" IGNORED_TOKENS = ["GARBAGE", "+BREATH+", "+LAUGH+", "+NOISE+"] lemmatizer = WordNetLemmatizer() def log_normalize(x): x.add_(1e-6).log_() mean = x.mean() std = x.std() return x.sub_(mean).div_(std + 1e-6) def fix_embedding_length(emb, L, padding=0): size = emb.size()[1:] if emb.size(0) < L: if padding == 0: pad = torch.zeros((L-emb.size(0),)+size, dtype=emb.dtype) else: pad = padding*torch.ones((L-emb.size(0),)+size, dtype=emb.dtype) emb = torch.cat([emb, pad], dim=0) else: emb = emb[:L] return emb def collate_fn_spoken_word(batch): audios = [t[0] for t in batch] phone_labels = [t[1] for t in batch] labels = [t[2] for t in batch] input_masks = [t[3] for t in batch] phone_masks = [t[4] for t in batch] word_masks = [t[5] for t in batch] indices = [t[6] for t in batch] if isinstance(audios[0], list): audios = [ torch.nn.utils.rnn.pad_sequence(audio)\ for audio in audios ] input_masks = [ torch.nn.utils.rnn.pad_sequence(input_mask) for input_mask in input_masks ] audios = torch.nn.utils.rnn.pad_sequence(audios, batch_first=True) # (bsz, n_seg, n_pos, d) input_masks = torch.nn.utils.rnn.pad_sequence(input_masks, batch_first=True) # (bsz, n_seg, n_pos) audios = audios.permute(0, 2, 1, 3) input_masks = input_masks.permute(0, 2, 1) else: audios = torch.nn.utils.rnn.pad_sequence(audios, batch_first=True) input_masks = torch.nn.utils.rnn.pad_sequence(input_masks, batch_first=True) phone_labels = torch.nn.utils.rnn.pad_sequence(phone_labels, batch_first=True) labels = torch.stack(labels) phone_masks = torch.nn.utils.rnn.pad_sequence(phone_masks, batch_first=True) return audios, phone_labels, labels, input_masks, phone_masks, indices def embed(feat, method='average'): if method == 'average': return feat.mean(0) elif method == 'resample': new_feat = signal.resample(feat.detach().numpy(), 4) return torch.FloatTensor(new_feat.flatten()) class SpokenWordDataset(torch.utils.data.Dataset): def __init__( self, data_path, preprocessor, split, splits = { "train": ["train-clean-100", "train-clean-360"], "validation": ["dev-clean"], "test": ["dev-clean"], }, augment=False, use_segment=False, audio_feature="cpc", phone_label="predicted", ds_method="average", sample_rate=16000, min_class_size=50, n_overlap=0, debug=False ): self.preprocessor = preprocessor if debug: splits['train'] = [splits['train'][0]] self.splits = splits[split] self.data_path = data_path self.use_segment = use_segment self.ds_method = ds_method self.sample_rate = sample_rate self.n_overlap = n_overlap self.debug = debug data = [] for sp in self.splits: # Load data paths to audio and visual features examples = load_data_split(preprocessor.dataset_name, data_path, sp, min_class_size=min_class_size, audio_feature=audio_feature, phone_label=phone_label, debug=debug) data.extend(examples) print("Number of {} audio files = {}".format(split, len(examples))) # Set up transforms self.audio_transforms = [ torchaudio.transforms.MelSpectrogram( sample_rate=sample_rate, win_length=sample_rate * 25 // 1000, n_mels=preprocessor.num_features, hop_length=sample_rate * 10 // 1000, ), torchvision.transforms.Lambda(log_normalize), ] if augment: augmentation = [ torchaudio.transforms.FrequencyMasking(27, iid_masks=True), torchaudio.transforms.FrequencyMasking(27, iid_masks=True), torchaudio.transforms.TimeMasking(100, iid_masks=True), torchaudio.transforms.TimeMasking(100, iid_masks=True), ] self.audio_transforms.extend(augmentation) self.audio_transforms = torchvision.transforms.Compose(self.audio_transforms) audio = [example["audio"] for example in data] text = [example["text"] for example in data] phonemes = [example["phonemes"] for example in data] true_phonemes = [example["true_phonemes"] for example in data] self.dataset = [list(item) for item in zip(audio, text, phonemes, true_phonemes)] self.class_to_indices = defaultdict(list) for idx, item in enumerate(self.dataset): self.class_to_indices[item[1]].append(idx) self.audio_feature_type = audio_feature def load_audio(self, audio_file): if self.audio_feature_type in ["cpc", "cpc_big"]: if audio_file.split('.')[-1] == "txt": audio = np.loadtxt(audio_file) else: with ReadHelper(f"ark: gunzip -c {audio_file} |") as ark_f: for k, audio in ark_f: continue inputs = torch.FloatTensor(audio) elif self.audio_feature_type in ["bnf", "bnf+cpc"]: if audio_file.split('.')[-1] == "txt": audio = np.loadtxt(audio_file) else: with ReadHelper(f"ark: gunzip -c {audio_file} |") as ark_f: for k, audio in ark_f: continue if self.audio_feature_type == "bnf+cpc": cpc_feat = np.loadtxt(audio_file.replace("bnf", "cpc")) feat_len = min(audio.shape[0], cpc_feat.shape[0]) audio = np.concatenate([audio[:feat_len], cpc_feat[:feat_len]], axis=-1) inputs = torch.FloatTensor(audio) elif self.audio_feature_type in ['vq-wav2vec', 'wav2vec', 'wav2vec2']: audio, _ = torchaudio.load(audio_file) inputs = audio.squeeze(0) else: Exception(f"Audio feature type {self.audio_feature_type} not supported") input_mask = torch.ones(inputs.size(0)) return inputs, input_mask def segment(self, feat, segments, method="average"): """ Args: feat : (num. of frames, feature dim.) segments : a list of dicts of phoneme boundaries Returns: sfeat : (max num. of segments, feature dim.) mask : (max num. of segments,) """ sfeats = [] word_begin = segments[0]["begin"] dur = segments[-1]["end"] - segments[0]["begin"] for i, segment in enumerate(segments): if segment["text"] == SIL: continue phn = segment["text"] begin = int(round((segment["begin"]-word_begin)*100, 3)) end = int(round((segment["end"]-word_begin)*100, 3)) if self.n_overlap > 0: begin = max(begin - self.n_overlap, 0) end = max(end + self.n_overlap, feat.size(0)) dur = max(end - begin, 1) if begin >= feat.size(0): print(f'Warning: ({phn}, {begin}, {end}) begin idx {begin} >= feature size {feat.size(0)}') segment_feat = feat[-1] elif begin != end: segment_feat = embed(feat[begin:end], method=method) else: segment_feat = embed(feat[begin:end+1], method=method) if torch.any(torch.isnan(segment_feat)): print(f'Bad segment feature for feature of size {feat.size()}, begin {begin}, end {end}') sfeats.append(segment_feat) sfeat = torch.stack(sfeats) if method == "no-op": mask = torch.zeros(len(feat), len(sfeats)) else: mask = torch.ones(len(sfeats)) return sfeat, mask def unsegment(self, sfeat, segments): """ Args: sfeat : (num. of segments, feature dim.) segments : a list of dicts of phoneme boundaries Returns: feat : (num. of frames, feature dim.) """ if sfeat.ndim == 1: sfeat = sfeat.unsqueeze(-1) word_begin = segments[0]['begin'] dur = segments[-1]["end"] - segments[0]["begin"] nframes = int(round(dur * 100, 3)) feat = torch.zeros((nframes, *sfeat.size()[1:])) for i, segment in enumerate(segments): if segment["text"] == SIL: continue begin = int(round((segment["begin"]-word_begin)*100, 3)) end = int(round((segment["end"]-word_begin)*100, 3)) if i >= sfeat.size(0): break if begin != end: feat[begin:end] = sfeat[i] else: feat[begin:end+1] = sfeat[i] return feat.squeeze(-1) def __getitem__(self, idx): audio_file, label, phoneme_dicts, _ = self.dataset[idx] audio_inputs, input_mask = self.load_audio(audio_file) if self.use_segment: audio_inputs, input_mask = self.segment(audio_inputs, phoneme_dicts, method=self.ds_method) phonemes = [phn_dict["text"] for phn_dict in phoneme_dicts] word_labels = self.preprocessor.to_word_index([label]) phone_labels = self.preprocessor.to_index(phonemes) if self.use_segment: word_mask = torch.zeros(1, len(phoneme_dicts), len(phoneme_dicts)) else: word_mask = torch.zeros(1, len(audio_inputs), len(audio_inputs)) for t in range(len(phoneme_dicts)): word_mask[0, t, t] = 1. phone_mask = torch.ones(len(phonemes)) return audio_inputs,\ phone_labels,\ word_labels,\ input_mask,\ phone_mask,\ word_mask,\ idx def __len__(self): return len(self.dataset) class SpokenWordPreprocessor: def __init__( self, dataset_name, data_path, num_features, splits = { "train": ["train-clean-100", "train-clean-360"], "validation": ["dev-clean"], "test": ["dev-clean"] }, tokens_path=None, lexicon_path=None, use_words=False, prepend_wordsep=False, audio_feature="mfcc", phone_label="predicted", sample_rate=16000, min_class_size=50, ignore_index=-100, use_blank=True, debug=False, ): self.dataset_name = dataset_name self.data_path = data_path self.num_features = num_features self.ignore_index = ignore_index self.min_class_size = min_class_size self.use_blank = use_blank self.wordsep = " " self._prepend_wordsep = prepend_wordsep if debug: splits['train'] = [splits['train'][0]] metadata_file = os.path.join(data_path, f"{dataset_name}.json") data = [] for split_type, spl in splits.items(): if split_type == 'test_oos': continue for sp in spl: data.extend(load_data_split(dataset_name, data_path, sp, audio_feature=audio_feature, phone_label=phone_label, min_class_size=self.min_class_size, debug=debug)) visual_words = set() tokens = set() for ex in data: visual_words.add(ex["text"]) for phn in ex["phonemes"]: if phone_label == "groundtruth" and not "phoneme" in phn["text"]: phn["text"] = re.sub(r"[0-9]", "", phn["text"]) tokens.add(phn["text"]) self.tokens = sorted(tokens) self.visual_words = sorted(visual_words) if self.use_blank: self.tokens = [BLANK]+self.tokens self.visual_words = [BLANK]+self.visual_words self.tokens_to_index = {t:i for i, t in enumerate(self.tokens)} self.words_to_index = {t:i for i, t in enumerate(self.visual_words)} print(f"Preprocessor: number of phone classes: {self.num_tokens}") print(f"Preprocessor: number of visual word classes: {self.num_visual_words}") @property def num_tokens(self): return len(self.tokens) @property def num_visual_words(self): return len(self.visual_words) def to_index(self, sent): tok_to_idx = self.tokens_to_index return torch.LongTensor([tok_to_idx.get(t, 0) for t in sent]) def to_word_index(self, sent): tok_to_idx = self.words_to_index return torch.LongTensor([tok_to_idx.get(t, 0) for t in sent]) def to_text(self, indices): text = [] for t, i in enumerate(indices): if (i == 0) and (t != 0): prev_token = text[t-1] text.append(prev_token) else: text.append(self.tokens[i]) return text def to_word_text(self, indices): return [self.visual_words[i] for i in indices] def tokens_to_word_text(self, indices): T = len(indices) path = [self.visual_words[i] for i in indices] sent = [] for i in range(T): if path[i] == BLANK: continue elif (i != 0) and (path[i] == path[i-1]): continue else: sent.append(path[i]) return sent def tokens_to_text(self, indices): T = len(indices) path = self.to_text(indices) sent = [] for i in range(T): if path[i] == BLANK: continue elif (i != 0) and (path[i] == path[i-1]): continue else: sent.append(path[i]) return sent def load_data_split(dataset_name, data_path, split, audio_feature="mfcc", phone_label="predicted", min_class_size=50, max_keep_size=1000, debug=False): """ Returns: examples : a list of mappings of { "audio" : filename of audio, "text" : a list of tokenized words for the class name, } """ examples = [] if os.path.exists(os.path.join(data_path, f'{split}.json')): word_files = [f'{split}.json'] else: word_files = [word_file for word_file in os.listdir(data_path) if word_file.split('.')[-1] == 'json'] for word_file in word_files: word_f = open(os.path.join(data_path, word_file), "r") label_counts = dict() for line in word_f: if debug and len(examples) >= 100: break word = json.loads(line.rstrip("\n")) label = lemmatizer.lemmatize(word["label"].lower()) if not label in label_counts: label_counts[label] = 1 else: label_counts[label] += 1 if label_counts[label] > max_keep_size: continue audio_path = None audio_id = word["audio_id"] word_id = word['word_id'] if audio_feature in ["mfcc", "vq-wav2vec", "wav2vec2", "wav2vec"]: audio_path = os.path.join(data_path, split, f"{audio_id}_{word_id}.wav") if not os.path.exists(audio_path): word_id = int(word_id) audio_file = f"{audio_id}_{word_id:04d}.wav" audio_path = os.path.join(data_path, split, audio_file) elif audio_feature in ["cpc", "cpc_big"]: audio_path = os.path.join(data_path, f"../{dataset_name}_{audio_feature}_txt/{audio_id}_{word_id}.txt") if not os.path.exists(audio_path): audio_path = os.path.join(data_path, f"../{dataset_name}_{audio_feature}/{audio_id}_{word_id}.ark.gz") if not os.path.exists(audio_path): word_id = int(word_id) audio_file = f"{audio_id}_{word_id:04d}.txt" audio_path = os.path.join(data_path, f"../{dataset_name}_{audio_feature}_txt", audio_file) elif audio_feature in ["bnf", "bnf+cpc"]: audio_file = f"{audio_id}_{word_id}.txt" audio_path = os.path.join(data_path, f"../{dataset_name}_bnf_txt", audio_file) else: Exception(f"Audio feature type {audio_feature} not supported") true_phonemes = word["phonemes"] if "children" in true_phonemes: true_phonemes = [phn for phn in true_phonemes["children"] if phn["text"] != SIL] if len(true_phonemes) == 0: continue for phn_idx in range(len(true_phonemes)): # In Mboshi, each phoneme is written as ``phoneme{index}'' if not "phoneme" in true_phonemes[phn_idx]["text"]: true_phonemes[phn_idx]["text"] = re.sub(r"[0-9]", "", true_phonemes[phn_idx]["text"]) noisy = False for phn in true_phonemes: if phn["text"] in IGNORED_TOKENS or (phn["text"][0] == "+"): noisy = True break if noisy: continue dur = round(true_phonemes[-1]['end'] - true_phonemes[0]['begin'], 3) phonemes = None if phone_label == "groundtruth": phonemes = deepcopy(true_phonemes) elif phone_label == "multilingual": phonemes = [phn for phn in word["predicted_segments_multilingual"] if phn["text"] != SIL] elif phone_label == "multilingual_phones": phonemes = deepcopy(word["multilingual_phones"]) elif phone_label == "predicted": phonemes = [phn for phn in word["predicted_segments"] if phn["text"] != SIL] elif phone_label == "predicted_wav2vec2": if not "predicted_segments_wav2vec2" in word: continue phonemes = [phn for phn in word["predicted_segments_wav2vec2"] if phn["text"] != SIL] else: raise ValueError(f"Invalid phone label type: {phone_label}") phonemes = [phn for phn in phonemes if round(phn['end'] - phonemes[0]['begin'], 3) <= dur] if not len(phonemes): print(f'Skip example without segments: {phonemes}') continue if phonemes[-1]['end'] - phonemes[0]['begin'] != dur: phonemes[-1]['end'] = phonemes[0]['begin'] + dur example = {"audio": audio_path, "text": label, "phonemes": phonemes, "true_phonemes": true_phonemes} examples.append(example) word_f.close() return examples if __name__ == "__main__": preproc = SpokenWordPreprocessor(num_features=80, data_path="/ws/ifp-53_2/hasegawa/lwang114/data/flickr30k/")
35.179732
140
0.613946
7952eaa0e9016cfbd529661ea6ed10b4951e3805
778
py
Python
examples/python/kitti_pipeline.py
PRBonn/voxblox_pybind
69337cff825260434a908df13aae2bc04ea3f8da
[ "MIT" ]
7
2022-02-09T13:46:20.000Z
2022-02-10T02:29:38.000Z
examples/python/kitti_pipeline.py
PRBonn/voxblox_pybind
69337cff825260434a908df13aae2bc04ea3f8da
[ "MIT" ]
null
null
null
examples/python/kitti_pipeline.py
PRBonn/voxblox_pybind
69337cff825260434a908df13aae2bc04ea3f8da
[ "MIT" ]
2
2022-02-09T13:07:10.000Z
2022-02-09T16:12:56.000Z
#!/usr/bin/env python3 # @file kitti_pipeline.py # @author Ignacio Vizzo [ivizzo@uni-bonn.de] # # Copyright (c) 2021 Ignacio Vizzo, all rights reserved import argh from kitti_dataset import KITTIOdometryDataset as Dataset from tsdf_pipeline import TSDFPipeline def main( kitti_root_dir: str, sequence: int = 0, config: str = "config/kitti.yaml", n_scans: int = -1, jump: int = 0, visualize: bool = False, ): """Help here!""" map_name = f"kitti_{sequence}_scans_{str(n_scans)}" dataset = Dataset(kitti_root_dir, sequence, config) pipeline = TSDFPipeline(dataset, config, jump, n_scans, map_name) pipeline.run() pipeline.draw_mesh() if visualize else None if __name__ == "__main__": argh.dispatch_command(main)
25.933333
69
0.690231
7952eab8feb8e3fa120ac79428ec0286d3a9abc8
1,601
py
Python
tests/test_linter.py
noma4i/SublimeLinter3_backup
479feb8acb3847b71c24f88835f091a023948b17
[ "MIT" ]
null
null
null
tests/test_linter.py
noma4i/SublimeLinter3_backup
479feb8acb3847b71c24f88835f091a023948b17
[ "MIT" ]
1
2021-09-08T11:18:17.000Z
2021-09-08T11:18:17.000Z
tests/test_linter.py
noma4i/SublimeLinter3_backup
479feb8acb3847b71c24f88835f091a023948b17
[ "MIT" ]
1
2021-09-08T09:43:47.000Z
2021-09-08T09:43:47.000Z
# coding=utf8 # # test_util.py # Part of SublimeLinter3, a code checking framework for Sublime Text 3 # # Written by Joshua Hagins # # Project: https://github.com/SublimeLinter/SublimeLinter3 # License: MIT # """This module tests functions in the lint.util module.""" from mock import MagicMock class TestLinter: """ Class for testing Linter class """ def mock_view_window(self): mwindow = MagicMock('window') mview = MagicMock('view') mview.window = MagicMock(return_value=mwindow) mview.project_file_name = MagicMock(return_value='ppp') return mview, mwindow def test_replace_settings_tokens__no_replace(self): """ Testing if can leave settings without changes if no tokens match """ from lint import linter mview, mwindow = self.mock_view_window() m = linter.Linter(mview, mwindow) settings = {'ignore_match': {'rb': ['.*unexpected.*end.*', 'some error']}} m.replace_settings_tokens(settings) assert settings == {'ignore_match': {'rb': ['.*unexpected.*end.*', 'some error']}} def test_replace_settings_tokens__replace(self): """ Testing if can leave settings without changes if token matches """ from lint import linter mview, mwindow = self.mock_view_window() m = linter.Linter(mview, mwindow) settings = {'ignore_match': {'rb': ['.*unexpected.*end.*', '${sublime} error']}} m.replace_settings_tokens(settings) assert settings == {'ignore_match': {'rb': ['.*unexpected.*end.*', 'mocked_sublime_packages_path error']}}
33.354167
114
0.662711
7952eb7c6fc70c7fa57bceb81769e6bc2c6286fa
1,313
py
Python
ieeextreme/x10_memory_management.py
ieeeunswsb/cpworkshop
8da33deb295f4ca04ec025adc510d67a65d3d56c
[ "MIT" ]
1
2019-07-09T14:40:18.000Z
2019-07-09T14:40:18.000Z
ieeextreme/x10_memory_management.py
ieeeunswsb/cpworkshop
8da33deb295f4ca04ec025adc510d67a65d3d56c
[ "MIT" ]
null
null
null
ieeextreme/x10_memory_management.py
ieeeunswsb/cpworkshop
8da33deb295f4ca04ec025adc510d67a65d3d56c
[ "MIT" ]
null
null
null
# from math import floor answers = [] test_cases = int(input()) for i in range(test_cases): pages, page_size, memory_accesses = map(int, input().split(" ")) fifo_swaps = 0 lru_swaps = 0 lru_mem = [] fifo_mem = [] for j in range(memory_accesses): address_accessed = int(input()) page_num = address_accessed // page_size # first deal with fifo if page_num not in fifo_mem: if len(fifo_mem) < pages: fifo_mem.append(page_num) else: # print(f"Swap page {fifo_mem[0]} with page {page_num}") del fifo_mem[0] fifo_mem.append(page_num) fifo_swaps += 1 # print(fifo_mem) # now deal with lru if page_num not in lru_mem: if len(lru_mem) < pages: lru_mem = [page_num] + lru_mem else: del lru_mem[-1] lru_mem = [page_num] + lru_mem lru_swaps += 1 else: del lru_mem[lru_mem.index(page_num)] lru_mem = [page_num] + lru_mem if lru_swaps < fifo_swaps: answers.append(f"yes {fifo_swaps} {lru_swaps}") else: answers.append(f"no {fifo_swaps} {lru_swaps}") for ans in answers: print(ans)
26.26
72
0.538462
7952ecd98f17ddf979b725287530c9581f1bbf37
33,956
py
Python
dataset.py
etraiger/PCWG
e66441df98dc712d3b9915aaf2c6f0d7feb7e52d
[ "MIT" ]
1
2019-03-18T17:05:27.000Z
2019-03-18T17:05:27.000Z
dataset.py
etraiger/PCWG
e66441df98dc712d3b9915aaf2c6f0d7feb7e52d
[ "MIT" ]
null
null
null
dataset.py
etraiger/PCWG
e66441df98dc712d3b9915aaf2c6f0d7feb7e52d
[ "MIT" ]
null
null
null
import pandas as pd import numpy as np import datetime import math import configuration import rews import binning import warnings warnings.simplefilter('ignore', np.RankWarning) def getSeparatorValue(separator): try: return {"TAB":"\t", "SPACE":" ", "COMMA": ",", "SEMI-COLON":";"}[separator.upper()] except: raise Exception("Unkown separator: '%s'" % separator) def getDecimalValue(decimal): try: return {"FULL STOP":".", "COMMA":","}[decimal.upper()] except: raise Exception("Unkown decimal: '%s'" % decimal) class DeviationMatrix(object): def __init__(self,deviationMatrix,countMatrix): self.matrix = deviationMatrix self.count = countMatrix class CalibrationBase: def __init__(self, x, y): self.x = x self.y = y self.requiredColumns = [self.x, self.y] def variance(self, df, col): return ((df[col].mean() - df[col]) ** 2.0).sum() def covariance(self, df, colA, colB): return df[[colA,colB]].cov()[colA][colB] # assumes unbiased estimator (normalises with N-1) def sigA(self,df,slope, intercept, count): sumPredYfromX = sum((df[self.y] - (intercept + df[self.x]*slope ))**2) sumX = (df[self.x]).sum() sumXX = (df[self.x]**2).sum() return ((sumPredYfromX/(count-2))*(sumXX/(count*sumXX - sumX**2)))**0.5 def sigB(self,df,slope, intercept, count): sumPredYfromX = sum((df[self.y] - (intercept + df[self.x]*slope ))**2) sumX = (df[self.x]).sum() sumXX = (df[self.x]**2).sum() return ((sumPredYfromX/(count-2))/(count*sumXX - sumX**2))**0.5 def mean(self, df, col): return df[col].mean() def intercept(self, df, slope): return self.mean(df, self.y) - slope * self.mean(df, self.x) class York(CalibrationBase): def covariance(self, df, colA, colB): return ((df[colA].mean() - df[colA]) * (df[colB].mean() - df[colB])).sum() def __init__(self, x, y, timeStepInSeconds, df): movingAverageWindow = self.calculateMovingAverageWindow(timeStepInSeconds) self.xRolling = "xRolling" self.yRolling = "yRolling" self.xDiffSq = "xDiffSq" self.yDiffSq = "yDiffSq" df[self.xRolling] = pd.rolling_mean(df[x], window = movingAverageWindow, min_periods = 1) df[self.yRolling] = pd.rolling_mean(df[y], window = movingAverageWindow, min_periods = 1) df[self.xDiffSq] = ((df[x] - df[self.xRolling])** 2.0) df[self.yDiffSq] = ((df[y] - df[self.yRolling])** 2.0) # this needed in uncertainty? CalibrationBase.__init__(self, x, y) self.requiredColumns += [self.xDiffSq, self.yDiffSq] def calculateMovingAverageWindow(self, timeStepInSeconds): movingAverageMultiplier = 3 minimumMovingAveageWindowInSeconds = movingAverageMultiplier * 60 * 60 movingAveageWindowInSeconds = max([minimumMovingAveageWindowInSeconds, movingAverageMultiplier * timeStepInSeconds]) if movingAveageWindowInSeconds % timeStepInSeconds != 0: raise Exception("Cannot calculate moving average window. Moving average window (%ds) is not integer multiple of timestep (%ds)" % (movingAveageWindowInSeconds, timeStepInSeconds)) movingAverageWindow = movingAveageWindowInSeconds / timeStepInSeconds return movingAverageWindow def slope(self, df): alpha = self.calculateAlpha(df) varianceX = self.variance(df, self.x) varianceY = self.variance(df, self.y) covarianceXY = self.covariance(df, self.x, self.y) gradientNumerator = math.sin(alpha) * varianceY + math.cos(alpha) * covarianceXY gradientDenominator = math.sin(alpha) * covarianceXY + math.cos(alpha) * varianceX return (gradientNumerator / gradientDenominator) def calculateAlpha(self, df): xYorkVariance = df[self.xDiffSq].dropna().sum() yYorkVariance = df[self.yDiffSq].dropna().sum() covarianceXY = self.covariance(df, self.x, self.y) varianceX = self.variance(df, self.x) print covarianceXY,varianceX,xYorkVariance return math.atan2(covarianceXY ** 2.0 / varianceX ** 2.0 * xYorkVariance, yYorkVariance) class RatioOfMeans(CalibrationBase): def slope(self, df): return self.mean(df, self.y) / self.mean(df, self.x) class LeastSquares(CalibrationBase): def _slope(self, df): varianceX = self.variance(df, self.x) covarianceXY = self.covariance(df, self.x, self.y) return covarianceXY ** 2.0 / varianceX ** 2.0 def slope(self, df): A =np.vstack([df[self.x].as_matrix(), np.ones(len(df))]).T slope, residual, rank, s = np.linalg.lstsq(A, df[self.y]) return slope[0] class SiteCalibrationCalculator: def __init__(self, directionBinColumn, valueColumn, calibrationSectorDataframe, actives = None): self.calibrationSectorDataframe = calibrationSectorDataframe self.valueColumn = valueColumn self.directionBinColumn = directionBinColumn if actives != None: activeSectors = [] for direction in actives: if actives[direction]: activeSectors.append(int(direction)) self.calibrationSectorDataframe = self.calibrationSectorDataframe.loc[activeSectors,:] self.calibrationSectorDataframe['SpeedUpAt10'] = (10*self.calibrationSectorDataframe['Slope'] + self.calibrationSectorDataframe['Offset'])/10.0 self.IECLimitCalculator() def turbineValue(self, row): directionBin = row[self.directionBinColumn] if np.isnan(directionBin): return np.nan if not directionBin in self.calibrationSectorDataframe.index: return np.nan value = row[self.valueColumn] if np.isnan(value): return np.nan return self.calibrate(directionBin, value) def calibrate(self, directionBin, value): return self.calibrationSectorDataframe['Offset'][directionBin] + self.calibrationSectorDataframe['Slope'][directionBin] * value def IECLimitCalculator(self): if len(self.calibrationSectorDataframe.index) == 36 and 'vRatio' in self.calibrationSectorDataframe.columns: self.calibrationSectorDataframe['pctSpeedUp'] = (self.calibrationSectorDataframe['vRatio']-1)*100 self.calibrationSectorDataframe['LowerLimit'] = pd.Series(data=np.roll(((self.calibrationSectorDataframe['vRatio']-1)*100)-2.0,1),index=self.calibrationSectorDataframe.index) self.calibrationSectorDataframe['UpperLimit'] = pd.Series(data=np.roll(((self.calibrationSectorDataframe['vRatio']-1)*100)+2.0,1),index=self.calibrationSectorDataframe.index) self.calibrationSectorDataframe['IECValid'] = np.logical_and(self.calibrationSectorDataframe['pctSpeedUp'] > self.calibrationSectorDataframe['LowerLimit'], self.calibrationSectorDataframe['pctSpeedUp'] < self.calibrationSectorDataframe['UpperLimit']) print self.calibrationSectorDataframe[['pctSpeedUp','LowerLimit','UpperLimit','IECValid']] return True def getSectorValidity(self, key, timeStep): ba = self.calibrationSectorDataframe.loc[key,'belowAbove'] return ba[0]*(timeStep/3600.0) > 6.0 and ba[1]*(timeStep/3600.0) > 6.0 class ShearExponentCalculator: def __init__(self, shearMeasurements): self.shearMeasurements = shearMeasurements def calculateMultiPointShear(self, row): # 3 point measurement: return shear= 1/ (numpy.polyfit(x, y, deg, rcond=None, full=False) ) windspeeds = [np.log(row[col]) for col in self.shearMeasurements.values()] heights = [np.log(height) for height in self.shearMeasurements.keys()] deg = 1 # linear if len([ws for ws in windspeeds if not np.isnan(ws)]) < 1: return np.nan polyfitResult = np.polyfit(windspeeds, heights, deg, rcond=None, full=False) shearThreePT = 1/ polyfitResult[0] return shearThreePT def calculateTwoPointShear(self,row): # superseded by self.calculateMultiPointShear return math.log(row[self.upperColumn] / row[self.lowerColumn]) * self.overOneLogHeightRatio def shearExponent(self, row): return self.calculateMultiPointShear(row) class Dataset: def __init__(self, config, rotorGeometry, analysisConfig): self.relativePath = configuration.RelativePath(config.path) self.nameColumn = "Dataset Name" self.name = config.name self.timeStepInSeconds = config.timeStepInSeconds self.timeStamp = config.timeStamp self.actualPower = "Actual Power" self.hasAllPowers = None not in (config.powerMin,config.powerMax,config.powerSD) self.powerMin = "Power Min" self.powerMax = "Power Max" self.powerSD = "Power SD" self.hubWindSpeed = "Hub Wind Speed" self.hubTurbulence = "Hub Turbulence" self.hubDensity = "Hub Density" self.shearExponent = "Shear Exponent" self.referenceShearExponent = "Reference Shear Exponent" self.turbineShearExponent = "Turbine Shear Exponent" self.windDirection = "Wind Direction" self.profileRotorWindSpeed = "Profile Rotor Wind Speed" self.profileHubWindSpeed = "Profile Hub Wind Speed" self.profileHubToRotorRatio = "Hub to Rotor Ratio" self.profileHubToRotorDeviation = "Hub to Rotor Deviation" self.residualWindSpeed = "Residual Wind Speed" self.hasShear = len(config.shearMeasurements) > 1 self.hasDirection = config.referenceWindDirection not in (None,'') self.shearCalibration = "TurbineLocation" in config.shearMeasurements.keys() and "ReferenceLocation" in config.shearMeasurements.keys() self.hubWindSpeedForTurbulence = self.hubWindSpeed if config.turbulenceWSsource != 'Reference' else config.referenceWindSpeed self.turbRenormActive = analysisConfig.turbRenormActive self.turbulencePower = 'Turbulence Power' self.rewsDefined = config.rewsDefined self.sensitivityDataColumns = config.sensitivityDataColumns dateConverter = lambda x: datetime.datetime.strptime(x, config.dateFormat) dataFrame = pd.read_csv(self.relativePath.convertToAbsolutePath(config.inputTimeSeriesPath), index_col=config.timeStamp, \ parse_dates = True, date_parser = dateConverter, sep = getSeparatorValue(config.separator), \ skiprows = config.headerRows, decimal = getDecimalValue(config.decimal)).replace(config.badData, np.nan) if config.startDate != None and config.endDate != None: dataFrame = dataFrame[config.startDate : config.endDate] elif config.startDate != None: dataFrame = dataFrame[config.startDate : ] elif config.endDate != None: dataFrame = dataFrame[ : config.endDate] dataFrame[self.nameColumn] = config.name dataFrame[self.timeStamp] = dataFrame.index if self.hasDirection: dataFrame[self.windDirection] = dataFrame[config.referenceWindDirection] if self.hasShear: if not self.shearCalibration: dataFrame[self.shearExponent] = dataFrame.apply(ShearExponentCalculator(config.shearMeasurements).shearExponent, axis=1) else: dataFrame[self.turbineShearExponent] = dataFrame.apply(ShearExponentCalculator(config.shearMeasurements["TurbineLocation"]).shearExponent, axis=1) dataFrame[self.referenceShearExponent] = dataFrame.apply(ShearExponentCalculator(config.shearMeasurements["ReferenceLocation"]).shearExponent, axis=1) dataFrame[self.shearExponent] = dataFrame[self.referenceShearExponent] dataFrame[self.residualWindSpeed] = 0.0 if config.calculateHubWindSpeed: if dataFrame[config.referenceWindSpeed].count() < 1: raise Exception("Reference wind speed column is empty: cannot apply calibration") if dataFrame[config.referenceWindDirection].count() < 1: raise Exception("Reference wind direction column is empty: cannot apply calibration") self.calibrationCalculator = self.createCalibration(dataFrame, config, config.timeStepInSeconds) dataFrame[self.hubWindSpeed] = dataFrame.apply(self.calibrationCalculator.turbineValue, axis=1) if dataFrame[self.hubWindSpeed].count() < 1: raise Exception("Hub wind speed column is empty after application of calibration") if (config.hubTurbulence != ''): dataFrame[self.hubTurbulence] = dataFrame[config.hubTurbulence] else: dataFrame[self.hubTurbulence] = dataFrame[config.referenceWindSpeedStdDev] / dataFrame[self.hubWindSpeedForTurbulence] if config.calibrationMethod != "Specified": dataFrame[self.residualWindSpeed] = (dataFrame[self.hubWindSpeed] - dataFrame[config.turbineLocationWindSpeed]) / dataFrame[self.hubWindSpeed] windSpeedBin = "Wind Speed Bin" turbulenceBin = "Turbulence Bin" windSpeedBins = binning.Bins(analysisConfig.powerCurveFirstBin, analysisConfig.powerCurveBinSize, analysisConfig.powerCurveLastBin) turbulenceBins = binning.Bins(0.01, 0.01/windSpeedBins.numberOfBins, 0.02) aggregations = binning.Aggregations(analysisConfig.powerCurveMinimumCount) dataFrame[windSpeedBin] = dataFrame[self.hubWindSpeed].map(windSpeedBins.binCenter) dataFrame[turbulenceBin] = dataFrame[self.hubTurbulence].map(turbulenceBins.binCenter) self.residualWindSpeedMatrix = DeviationMatrix( dataFrame[self.residualWindSpeed].groupby([dataFrame[windSpeedBin], dataFrame[turbulenceBin]]).aggregate(aggregations.average), dataFrame[self.residualWindSpeed].groupby([dataFrame[windSpeedBin], dataFrame[turbulenceBin]]).count()) else: self.residualWindSpeedMatrix = None else: dataFrame[self.hubWindSpeed] = dataFrame[config.hubWindSpeed] if (config.hubTurbulence != ''): dataFrame[self.hubTurbulence] = dataFrame[config.hubTurbulence] else: dataFrame[self.hubTurbulence] = dataFrame[config.referenceWindSpeedStdDev] / dataFrame[self.hubWindSpeedForTurbulence] self.residualWindSpeedMatrix = None if self.shearCalibration and config.shearCalibrationMethod != "Reference": self.shearCalibrationCalculator = self.createShearCalibration(dataFrame,config, config.timeStepInSeconds) dataFrame[self.shearExponent] = dataFrame.apply(self.shearCalibrationCalculator.turbineValue, axis=1) if config.calculateDensity: dataFrame[self.hubDensity] = 100.0 * dataFrame[config.pressure] / (273.15 + dataFrame[config.temperature]) / 287.058 self.hasDensity = True else: if config.density != None: dataFrame[self.hubDensity] = dataFrame[config.density] self.hasDensity = True else: self.hasDensity = False if config.power != None: dataFrame[self.actualPower] = dataFrame[config.power] self.hasActualPower = True else: self.hasActualPower = False if self.hasAllPowers: dataFrame[self.powerMin] = dataFrame[config.powerMin] dataFrame[self.powerMax] = dataFrame[config.powerMax] dataFrame[self.powerSD] = dataFrame[config.powerSD] dataFrame = self.filterDataFrame(dataFrame, config.filters) dataFrame = self.excludeData(dataFrame, config) if self.rewsDefined: dataFrame = self.defineREWS(dataFrame, config, rotorGeometry) self.fullDataFrame = dataFrame.copy() self.dataFrame = self.extractColumns(dataFrame).dropna() if self.windDirection in self.dataFrame.columns: self.fullDataFrame[self.windDirection] = self.fullDataFrame[self.windDirection].astype(float) self.analysedDirections = (round(self.fullDataFrame[self.windDirection].min() + config.referenceWindDirectionOffset), round(self.fullDataFrame[self.windDirection].max()+config.referenceWindDirectionOffset)) def createShearCalibration(self, dataFrame, config, timeStepInSeconds): df = dataFrame.copy() if config.shearCalibrationMethod == "Specified": raise NotImplementedError else: calibration = self.getCalibrationMethod(config.shearCalibrationMethod, self.referenceShearExponent, self.turbineShearExponent, timeStepInSeconds, dataFrame) if hasattr(self,"filteredCalibrationDataframe"): dataFrame = self.filteredCalibrationDataframe else: dataFrame = self.filterDataFrame(dataFrame, config.calibrationFilters) self.filteredCalibrationDataframe = dataFrame.copy() if config.calibrationStartDate != None and config.calibrationEndDate != None: dataFrame = dataFrame[config.calibrationStartDate : config.calibrationEndDate] dataFrame = dataFrame[calibration.requiredColumns + [self.referenceDirectionBin, config.referenceWindDirection]].dropna() if len(dataFrame) < 1: raise Exception("No data are available to carry out calibration.") siteCalibCalc = self.createSiteCalibrationCalculator(dataFrame, self.referenceShearExponent, calibration) dataFrame = df return siteCalibCalc def createCalibration(self, dataFrame, config, timeStepInSeconds): self.referenceDirectionBin = "Reference Direction Bin Centre" dataFrame[config.referenceWindDirection] = (dataFrame[config.referenceWindDirection] + config.referenceWindDirectionOffset) % 360 siteCalibrationBinWidth = 360.0 / config.siteCalibrationNumberOfSectors dataFrame[self.referenceDirectionBin] = (dataFrame[config.referenceWindDirection] - config.siteCalibrationCenterOfFirstSector) / siteCalibrationBinWidth dataFrame[self.referenceDirectionBin] = np.round(dataFrame[self.referenceDirectionBin], 0) * siteCalibrationBinWidth + config.siteCalibrationCenterOfFirstSector dataFrame[self.referenceDirectionBin] = (dataFrame[self.referenceDirectionBin] + 360) % 360 #dataFrame[self.referenceDirectionBin] -= float(config.siteCalibrationCenterOfFirstSector) if config.calibrationMethod == "Specified": if all([dir in config.calibrationSlopes.keys() for dir in config.calibrationActives.keys()]): print "Applying Specified calibration" print "Direction\tSlope\tOffset\tApplicable Datapoints" for direction in config.calibrationSlopes: if config.calibrationActives[direction]: mask = (dataFrame[self.referenceDirectionBin] == direction) dataCount = dataFrame[mask][self.referenceDirectionBin].count() print "%0.2f\t%0.2f\t%0.2f\t%d" % (direction, config.calibrationSlopes[direction], config.calibrationOffsets[direction], dataCount) df = pd.DataFrame([config.calibrationSlopes, config.calibrationOffsets], index=['Slope','Offset']).T return SiteCalibrationCalculator( self.referenceDirectionBin, config.referenceWindSpeed,df, actives = config.calibrationActives) else: raise Exception("The specified slopes have different bin centres to that specified by siteCalibrationCenterOfFirstSector which is: {0}".format(config.siteCalibrationCenterOfFirstSector)) else: df = dataFrame.copy() calibration = self.getCalibrationMethod(config.calibrationMethod,config.referenceWindSpeed, config.turbineLocationWindSpeed, timeStepInSeconds, dataFrame) if config.calibrationStartDate != None and config.calibrationEndDate != None: dataFrame = dataFrame[config.calibrationStartDate : config.calibrationEndDate] dataFrame = self.filterDataFrame(dataFrame, config.calibrationFilters) self.filteredCalibrationDataframe = dataFrame.copy() dataFrame = dataFrame[calibration.requiredColumns + [self.referenceDirectionBin, config.referenceWindDirection]].dropna() if len(dataFrame) < 1: raise Exception("No data are available to carry out calibration.") siteCalibCalc = self.createSiteCalibrationCalculator(dataFrame,config.referenceWindSpeed, calibration) dataFrame = df return siteCalibCalc def getCalibrationMethod(self,calibrationMethod,referenceColumn, turbineLocationColumn, timeStepInSeconds, dataFrame): if calibrationMethod == "RatioOfMeans": calibration = RatioOfMeans(referenceColumn, turbineLocationColumn) elif calibrationMethod == "LeastSquares": calibration = LeastSquares(referenceColumn, turbineLocationColumn) elif calibrationMethod == "York": calibration = York(referenceColumn, turbineLocationColumn, timeStepInSeconds, dataFrame) else: raise Exception("Calibration method not recognised: %s" % calibrationMethod) return calibration def createSiteCalibrationCalculator(self,dataFrame, valueColumn, calibration ): groups = dataFrame[calibration.requiredColumns].groupby(dataFrame[self.referenceDirectionBin]) slopes = {} intercepts = {} counts = {} belowAbove = {} sigA = {} sigB = {} cov = {} corr = {} vRatio= {} for group in groups: directionBinCenter = group[0] sectorDataFrame = group[1].dropna() if len(sectorDataFrame.index)>1: slopes[directionBinCenter] = calibration.slope(sectorDataFrame) intercepts[directionBinCenter] = calibration.intercept(sectorDataFrame, slopes[directionBinCenter]) counts[directionBinCenter] = sectorDataFrame[valueColumn].count() try: sigA[directionBinCenter] = calibration.sigA(sectorDataFrame,slopes[directionBinCenter], intercepts[directionBinCenter], counts[directionBinCenter]) # 'ErrInGradient' sigB[directionBinCenter] = calibration.sigB(sectorDataFrame,slopes[directionBinCenter], intercepts[directionBinCenter], counts[directionBinCenter]) # 'ErrInIntercept' #cov[directionBinCenter] = calibration.covariance(sectorDataFrame, calibration.x,calibration.y ) cov[directionBinCenter] = sigA[directionBinCenter]*sigB[directionBinCenter]*(-1.0 * sectorDataFrame[calibration.x].sum())/((counts[directionBinCenter] * (sectorDataFrame[calibration.x]**2).sum())**0.5) corr[directionBinCenter] =sectorDataFrame[[calibration.x, calibration.y]].corr()[calibration.x][calibration.y] vRatio[directionBinCenter] = (sectorDataFrame[calibration.y]/sectorDataFrame[calibration.x]).mean()# T_A1/R_A1 - this is currently mean of all data except: pass if valueColumn == self.hubWindSpeedForTurbulence: belowAbove[directionBinCenter] = (sectorDataFrame[sectorDataFrame[valueColumn] <= 8.0][valueColumn].count(),sectorDataFrame[sectorDataFrame[valueColumn] > 8.0][valueColumn].count()) calibrationSectorDataframe = pd.DataFrame([slopes,intercepts,counts, sigA, sigB, cov, corr, vRatio], ["Slope","Offset","Count","SigA","SigB","Cov","Corr","vRatio"] ).T if len(belowAbove.keys()): calibrationSectorDataframe['belowAbove'] = belowAbove.values() print calibrationSectorDataframe return SiteCalibrationCalculator(self.referenceDirectionBin, valueColumn, calibrationSectorDataframe) def isValidText(self, text): if text == None: return False return len(text) > 0 def excludeData(self, dataFrame, config): mask = pd.Series([True]*len(dataFrame),index=dataFrame.index) print "Data set length prior to exclusions: {0}".format(len(mask[mask])) for exclusion in config.exclusions: startDate = exclusion[0] endDate = exclusion[1] active = exclusion[2] if active: subMask = (dataFrame[self.timeStamp] >= startDate) & (dataFrame[self.timeStamp] <= endDate) mask = mask & ~subMask print "Applied exclusion: {0} to {1}\n\t- data set length: {2}".format(exclusion[0].strftime("%Y-%m-%d %H:%M"),exclusion[1].strftime("%Y-%m-%d %H:%M"),len(mask[mask])) print "Data set length after exclusions: {0}".format(len(mask[mask])) return dataFrame[mask] def extractColumns(self, dataFrame): requiredCols = [] requiredCols.append(self.nameColumn) requiredCols.append(self.timeStamp) requiredCols.append(self.hubWindSpeed) requiredCols.append(self.hubTurbulence) if self.hasDensity: requiredCols.append(self.hubDensity) if self.hasShear: requiredCols.append(self.shearExponent) if self.hasDirection: requiredCols.append(self.windDirection) if self.rewsDefined: requiredCols.append(self.profileRotorWindSpeed) requiredCols.append(self.profileHubWindSpeed) requiredCols.append(self.profileHubToRotorRatio) requiredCols.append(self.profileHubToRotorDeviation) if self.hasAllPowers: requiredCols.append(self.powerMin) requiredCols.append(self.powerMax) requiredCols.append(self.powerSD) if self.hasActualPower: requiredCols.append(self.actualPower) for col in self.sensitivityDataColumns: if col not in requiredCols: requiredCols.append(col) if len(dataFrame[requiredCols].dropna()[requiredCols[0]]) > 0: return dataFrame[requiredCols] else: print "Number of null columns:" print dataFrame[requiredCols].isnull().sum() text = "One of the required columns is empty.\n" for col in requiredCols: text += "- %s: %d\n" % (col, dataFrame[col].dropna().count()) raise Exception(text) def createDerivedColumn(self,df,cols): d = df.copy() d['Derived'] = 1 for col in cols: d['Derived'] *= ((df[col[0]]*float(col[1]))+float(col[2]))**float(col[3]) return d['Derived'] def applyToDFilter(self,mask,componentFilter,dataFrame,printMsg=True): startTime = (dataFrame.index - datetime.timedelta(seconds=self.timeStepInSeconds)) endTime = dataFrame.index # explicit assumption is that we're using end format data. dayMask = dataFrame[self.timeStamp].apply(lambda x,d : True if x.isoweekday() in d else False, args=[componentFilter.daysOfTheWeek] ) todMask = np.logical_and( startTime.time >= componentFilter.startTime.time(), endTime.time <= componentFilter.endTime.time() ) if len(componentFilter.months) > 0: monthMask = dataFrame[self.timeStamp].apply(lambda x,d : True if x.month in d else False, args=[componentFilter.months] ) dayMask = dayMask & monthMask totalMask = dayMask & todMask mask = mask | totalMask if printMsg: print "Applied filter:", str(componentFilter) return mask.copy() def applySimpleFilter(self,mask,componentFilter,dataFrame,printMsg=True): filterColumn = componentFilter.column filterType = componentFilter.filterType filterInclusive = componentFilter.inclusive if not componentFilter.derived: filterValue = componentFilter.value else: filterValue = self.createDerivedColumn(dataFrame,componentFilter.value) #print (filterColumn, filterType, filterInclusive, filterValue) if filterType.lower() == "below": mask = self.addFilterBelow(dataFrame, mask, filterColumn, filterValue, filterInclusive) elif filterType.lower() == "above": mask = self.addFilterAbove(dataFrame, mask, filterColumn, filterValue, filterInclusive) elif filterType.lower() == "aboveorbelow" or filterType.lower() == "notequal": mask = self.addFilterBelow(dataFrame, mask, filterColumn, filterValue, filterInclusive) mask = self.addFilterAbove(dataFrame, mask, filterColumn, filterValue, filterInclusive) else: raise Exception("Filter type not recognised: %s" % filterType) if printMsg: print "Applied Filter:{col}-{typ}-{val}\n\tData set length:{leng}".format( col=filterColumn,typ=filterType,val="Derived Column" if type(filterValue) == pd.Series else filterValue,leng=len(mask[~mask])) return mask.copy() def applyRelationshipFilter(self, mask, componentFilter, dataFrame): filterConjunction = componentFilter.conjunction if filterConjunction not in ("AND","OR"): raise NotImplementedError("Filter conjunction not implemented, please use AND or OR...") filterConjuction = np.logical_or if filterConjunction == "OR" else np.logical_and masks = [] newMask = pd.Series([False]*len(mask),index=mask.index) if len(componentFilter.clauses) < 2: raise Exception("Number of clauses in a relationship must be > 1") for filter in componentFilter.clauses: filterMask = self.applySimpleFilter(newMask,filter,dataFrame,printMsg=False) masks.append(filterMask) baseMask = masks[0] for filterMask in masks[1:]: baseMask = filterConjuction(baseMask,filterMask) # only if commutative (e.g. AND / OR) mask = np.logical_or(mask,baseMask) print "Applied Relationship (AND/OR) Filter:\n\tData set length:{leng}".format(leng=len(mask[~mask])) return mask.copy() def filterDataFrame(self, dataFrame, filters): if len(filters) < 1: return dataFrame print "" print "Filter Details" print "Derived\tColumn\tFilterType\tInclusive\tValue" for componentFilter in filters: if componentFilter.active: componentFilter.printSummary() print "" mask = pd.Series([False]*len(dataFrame),index=dataFrame.index) print "Data set length prior to filtering: {0}".format(len(mask[~mask])) print "" for componentFilter in filters: if componentFilter.active: if not componentFilter.applied: try: if hasattr(componentFilter,"startTime"): mask = self.applyToDFilter(mask,componentFilter,dataFrame) elif hasattr(componentFilter, "clauses"): mask = self.applyRelationshipFilter(mask, componentFilter, dataFrame) else: mask = self.applySimpleFilter(mask,componentFilter,dataFrame) print dataFrame[~mask][self.timeStamp].min() , " to " , dataFrame[~mask][self.timeStamp].max() componentFilter.applied = True except: componentFilter.applied = False print "" return dataFrame[~mask] def addFilterBelow(self, dataFrame, mask, filterColumn, filterValue, filterInclusive): if filterInclusive: return mask | (dataFrame[filterColumn] <= filterValue) else: return mask | (dataFrame[filterColumn] < filterValue) def addFilterAbove(self, dataFrame, mask, filterColumn, filterValue, filterInclusive): if filterInclusive: return mask | (dataFrame[filterColumn] >= filterValue) else: return mask | (dataFrame[filterColumn] > filterValue) def defineREWS(self, dataFrame, config, rotorGeometry): profileLevels = rews.ProfileLevels(rotorGeometry, config.windSpeedLevels) if config.rotorMode == "EvenlySpacedLevels": self.rotor = rews.EvenlySpacedRotor(rotorGeometry, config.numberOfRotorLevels) elif config.rotorMode == "ProfileLevels": self.rotor = rews.ProfileLevelsRotor(rotorGeometry, profileLevels) else: raise Exception("Unknown rotor mode: % s" % config.rotorMode) rotorEquivalentWindSpeedCalculator = rews.RotorEquivalentWindSpeed(profileLevels, self.rotor) if config.hubMode == "Interpolated": profileHubWindSpeedCalculator = rews.InterpolatedHubWindSpeed(profileLevels, rotorGeometry) elif config.hubMode == "PiecewiseExponent": profileHubWindSpeedCalculator = rews.PiecewiseExponentHubWindSpeed(profileLevels, rotorGeometry) else: raise Exception("Unknown hub mode: % s" % config.hubMode) dataFrame[self.profileHubWindSpeed] = dataFrame.apply(profileHubWindSpeedCalculator.hubWindSpeed, axis=1) dataFrame[self.profileRotorWindSpeed] = dataFrame.apply(rotorEquivalentWindSpeedCalculator.rotorWindSpeed, axis=1) dataFrame[self.profileHubToRotorRatio] = dataFrame[self.profileRotorWindSpeed] / dataFrame[self.profileHubWindSpeed] dataFrame[self.profileHubToRotorDeviation] = dataFrame[self.profileHubToRotorRatio] - 1.0 return dataFrame
46.13587
264
0.668012
7952ed9bfc2d2444ea096f1a732945fb800bae3c
424
py
Python
examples/textrank-docker/textrank.py
peter-xbs/newsroom_chinese
7fcae68b2ea5584d08d0c48faee34a0734237e6b
[ "Apache-2.0" ]
82
2018-05-01T16:32:38.000Z
2019-05-18T01:43:15.000Z
examples/textrank-docker/textrank.py
peter-xbs/newsroom_chinese
7fcae68b2ea5584d08d0c48faee34a0734237e6b
[ "Apache-2.0" ]
20
2018-05-01T19:32:48.000Z
2019-04-12T07:57:48.000Z
examples/textrank-docker/textrank.py
peter-xbs/newsroom_chinese
7fcae68b2ea5584d08d0c48faee34a0734237e6b
[ "Apache-2.0" ]
15
2018-05-01T17:34:11.000Z
2019-05-07T09:28:21.000Z
import json, sys from gensim.summarization.summarizer import summarize WORD_COUNT = 50 for line in sys.stdin: article = json.loads(line) try: summary = summarize( article["text"], word_count = WORD_COUNT) except ValueError: # Handles "input must have more than one sentence" summary = article["text"] print(summary.replace("\n", " "), flush = True)
16.96
58
0.617925
7952ee1a3eefcd6338a4c035fbaa51d6e720aae8
3,399
py
Python
asposehtmlcloud/models/object_exist.py
aspose-html-cloud/aspose-html-cloud-python
b5abc7aba8ef0df355207480c2cccb282c09a970
[ "MIT" ]
2
2020-08-27T15:45:12.000Z
2022-03-07T03:52:16.000Z
asposehtmlcloud/models/object_exist.py
aspose-html-cloud/aspose-html-cloud-python
b5abc7aba8ef0df355207480c2cccb282c09a970
[ "MIT" ]
null
null
null
asposehtmlcloud/models/object_exist.py
aspose-html-cloud/aspose-html-cloud-python
b5abc7aba8ef0df355207480c2cccb282c09a970
[ "MIT" ]
4
2018-05-19T16:03:03.000Z
2021-11-19T10:58:33.000Z
# coding: utf-8 """ -------------------------------------------------------------------------------------------------------------------- <copyright company="Aspose" file="object_exist.py"> Copyright (c) 2020 Aspose.HTML for Cloud </copyright> <summary> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. </summary> -------------------------------------------------------------------------------------------------------------------- """ from asposehtmlcloud.models import BaseModel class ObjectExist(BaseModel): """ Attributes: model_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ model_types = { 'exists': 'bool', 'is_folder': 'bool' } attribute_map = { 'exists': 'exists', 'is_folder': 'isFolder' } def __init__(self, exists=None, is_folder=None): self._exists = None self._is_folder = None self.exists = exists self.is_folder = is_folder @property def exists(self): """Gets the exists of this ObjectExist. Indicates that the file or folder exists. :return: The exists of this ObjectExist. :rtype: bool """ return self._exists @exists.setter def exists(self, exists): """Sets the exists of this ObjectExist. Indicates that the file or folder exists. :param exists: The exists of this ObjectExist. :type: bool """ if exists is None: raise ValueError("Invalid value for `exists`, must not be `None`") self._exists = exists @property def is_folder(self): """Gets the is_folder of this ObjectExist. True if it is a folder, false if it is a file. :return: The is_folder of this ObjectExist. :rtype: bool """ return self._is_folder @is_folder.setter def is_folder(self, is_folder): """Sets the is_folder of this ObjectExist. True if it is a folder, false if it is a file. :param is_folder: The is_folder of this ObjectExist. :type: bool """ if is_folder is None: raise ValueError("Invalid value for `is_folder`, must not be `None`") self._is_folder = is_folder
31.472222
116
0.614593
7952ef68d33755b7f8de00981d79347d5622988d
791
py
Python
tests/kubernetes/checks/test_ImageDigest.py
cclauss/checkov
60a385fcaff1499cf00c2d0018575fe5ab71f556
[ "Apache-2.0" ]
4,013
2019-12-09T13:16:54.000Z
2022-03-31T14:31:01.000Z
tests/kubernetes/checks/test_ImageDigest.py
cclauss/checkov
60a385fcaff1499cf00c2d0018575fe5ab71f556
[ "Apache-2.0" ]
1,258
2019-12-17T09:55:51.000Z
2022-03-31T19:17:17.000Z
tests/kubernetes/checks/test_ImageDigest.py
cclauss/checkov
60a385fcaff1499cf00c2d0018575fe5ab71f556
[ "Apache-2.0" ]
638
2019-12-19T08:57:38.000Z
2022-03-30T21:38:37.000Z
import os import unittest from checkov.kubernetes.checks.ImageDigest import check from checkov.kubernetes.runner import Runner from checkov.runner_filter import RunnerFilter class TestImageDigest(unittest.TestCase): def test_summary(self): runner = Runner() current_dir = os.path.dirname(os.path.realpath(__file__)) test_files_dir = current_dir + "/example_ImageDigest" report = runner.run(root_folder=test_files_dir,runner_filter=RunnerFilter(checks=[check.id])) summary = report.get_summary() self.assertEqual(summary['passed'], 3) self.assertEqual(summary['failed'], 2) self.assertEqual(summary['skipped'], 0) self.assertEqual(summary['parsing_errors'], 0) if __name__ == '__main__': unittest.main()
29.296296
101
0.71555
7952ef9311339b7f142769365f4abb26e89c3009
669
py
Python
source_code_final/entries/urls.py
momentum-pt-team-1/django-diary-example
89bb758a64ede14123b28504c7eea1c8df582a64
[ "MIT" ]
null
null
null
source_code_final/entries/urls.py
momentum-pt-team-1/django-diary-example
89bb758a64ede14123b28504c7eea1c8df582a64
[ "MIT" ]
null
null
null
source_code_final/entries/urls.py
momentum-pt-team-1/django-diary-example
89bb758a64ede14123b28504c7eea1c8df582a64
[ "MIT" ]
3
2021-07-06T14:07:44.000Z
2021-07-06T20:14:08.000Z
from django.urls import path from . import views urlpatterns = [ path("", views.EntryListView.as_view(), name="entry-list"), path( "entry/<int:pk>", views.EntryDetailView.as_view(), name="entry-detail" ), path("create", views.EntryCreateView.as_view(), name="entry-create"), path( "entry/<int:pk>/update", views.EntryUpdateView.as_view(), name="entry-update", ), path( "entry/<int:pk>/delete", views.EntryDeleteView.as_view(), name="entry-delete", ), path("ajax", views.view_returns_json, name="ajax"), path('ajax/create', views.ajax_create_entry, name="ajax-create"), ]
27.875
78
0.615845
7952efb0e9e83b2728995926109d06ff5683ae2c
18,674
py
Python
playwright/_impl/_assertions.py
px-tech/playwright-python
ab954acef18fba57bb1c114fe2399d3d02a9ecb9
[ "Apache-2.0" ]
null
null
null
playwright/_impl/_assertions.py
px-tech/playwright-python
ab954acef18fba57bb1c114fe2399d3d02a9ecb9
[ "Apache-2.0" ]
null
null
null
playwright/_impl/_assertions.py
px-tech/playwright-python
ab954acef18fba57bb1c114fe2399d3d02a9ecb9
[ "Apache-2.0" ]
1
2022-01-29T10:35:58.000Z
2022-01-29T10:35:58.000Z
# Copyright (c) Microsoft Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any, List, Pattern, Union from urllib.parse import urljoin from playwright._impl._api_structures import ExpectedTextValue, FrameExpectOptions from playwright._impl._fetch import APIResponse from playwright._impl._locator import Locator from playwright._impl._page import Page from playwright._impl._str_utils import escape_regex_flags class AssertionsBase: def __init__(self, locator: Locator, is_not: bool = False) -> None: self._actual_locator = locator self._loop = locator._loop self._dispatcher_fiber = locator._dispatcher_fiber self._is_not = is_not async def _expect_impl( self, expression: str, expect_options: FrameExpectOptions, expected: Any, message: str, ) -> None: __tracebackhide__ = True expect_options["isNot"] = self._is_not if expect_options.get("timeout") is None: expect_options["timeout"] = 5_000 if expect_options["isNot"]: message = message.replace("expected to", "expected not to") if "useInnerText" in expect_options and expect_options["useInnerText"] is None: del expect_options["useInnerText"] result = await self._actual_locator._expect(expression, expect_options) if result["matches"] == self._is_not: log = "\n".join(result.get("log", "")).strip() if log: log = "\nCall log:\n" + log if expected is not None: raise AssertionError(f"{message} '{expected}' {log}") raise AssertionError(f"{message} {log}") class PageAssertions(AssertionsBase): def __init__(self, page: Page, is_not: bool = False) -> None: super().__init__(page.locator(":root"), is_not) self._actual_page = page @property def _not(self) -> "PageAssertions": return PageAssertions(self._actual_page, not self._is_not) async def to_have_title( self, title_or_reg_exp: Union[Pattern, str], timeout: float = None ) -> None: expected_values = to_expected_text_values( [title_or_reg_exp], normalize_white_space=True ) __tracebackhide__ = True await self._expect_impl( "to.have.title", FrameExpectOptions(expectedText=expected_values, timeout=timeout), title_or_reg_exp, "Page title expected to be", ) async def not_to_have_title( self, title_or_reg_exp: Union[Pattern, str], timeout: float = None ) -> None: __tracebackhide__ = True await self._not.to_have_title(title_or_reg_exp, timeout) async def to_have_url( self, url_or_reg_exp: Union[str, Pattern], timeout: float = None ) -> None: __tracebackhide__ = True base_url = self._actual_page.context._options.get("baseURL") if isinstance(url_or_reg_exp, str) and base_url: url_or_reg_exp = urljoin(base_url, url_or_reg_exp) expected_text = to_expected_text_values([url_or_reg_exp]) await self._expect_impl( "to.have.url", FrameExpectOptions(expectedText=expected_text, timeout=timeout), url_or_reg_exp, "Page URL expected to be", ) async def not_to_have_url( self, url_or_reg_exp: Union[Pattern, str], timeout: float = None ) -> None: __tracebackhide__ = True await self._not.to_have_url(url_or_reg_exp, timeout) class LocatorAssertions(AssertionsBase): def __init__(self, locator: Locator, is_not: bool = False) -> None: super().__init__(locator, is_not) self._actual_locator = locator @property def _not(self) -> "LocatorAssertions": return LocatorAssertions(self._actual_locator, not self._is_not) async def to_contain_text( self, expected: Union[List[Union[Pattern, str]], Pattern, str], use_inner_text: bool = None, timeout: float = None, ) -> None: __tracebackhide__ = True if isinstance(expected, list): expected_text = to_expected_text_values( expected, match_substring=True, normalize_white_space=True ) await self._expect_impl( "to.contain.text.array", FrameExpectOptions( expectedText=expected_text, useInnerText=use_inner_text, timeout=timeout, ), expected, "Locator expected to contain text", ) else: expected_text = to_expected_text_values( [expected], match_substring=True, normalize_white_space=True ) await self._expect_impl( "to.have.text", FrameExpectOptions( expectedText=expected_text, useInnerText=use_inner_text, timeout=timeout, ), expected, "Locator expected to contain text", ) async def not_to_contain_text( self, expected: Union[List[Union[Pattern, str]], Pattern, str], use_inner_text: bool = None, timeout: float = None, ) -> None: __tracebackhide__ = True await self._not.to_contain_text(expected, use_inner_text, timeout) async def to_have_attribute( self, name: str, value: Union[str, Pattern], timeout: float = None, ) -> None: __tracebackhide__ = True expected_text = to_expected_text_values([value]) await self._expect_impl( "to.have.attribute", FrameExpectOptions( expressionArg=name, expectedText=expected_text, timeout=timeout ), value, "Locator expected to have attribute", ) async def not_to_have_attribute( self, name: str, value: Union[str, Pattern], timeout: float = None, ) -> None: __tracebackhide__ = True await self._not.to_have_attribute(name, value, timeout) async def to_have_class( self, expected: Union[List[Union[Pattern, str]], Pattern, str], timeout: float = None, ) -> None: __tracebackhide__ = True if isinstance(expected, list): expected_text = to_expected_text_values(expected) await self._expect_impl( "to.have.class.array", FrameExpectOptions(expectedText=expected_text, timeout=timeout), expected, "Locator expected to have class", ) else: expected_text = to_expected_text_values([expected]) await self._expect_impl( "to.have.class", FrameExpectOptions(expectedText=expected_text, timeout=timeout), expected, "Locator expected to have class", ) async def not_to_have_class( self, expected: Union[List[Union[Pattern, str]], Pattern, str], timeout: float = None, ) -> None: __tracebackhide__ = True await self._not.to_have_class(expected, timeout) async def to_have_count( self, count: int, timeout: float = None, ) -> None: __tracebackhide__ = True await self._expect_impl( "to.have.count", FrameExpectOptions(expectedNumber=count, timeout=timeout), count, "Locator expected to have count", ) async def not_to_have_count( self, count: int, timeout: float = None, ) -> None: __tracebackhide__ = True await self._not.to_have_count(count, timeout) async def to_have_css( self, name: str, value: Union[str, Pattern], timeout: float = None, ) -> None: __tracebackhide__ = True expected_text = to_expected_text_values([value]) await self._expect_impl( "to.have.css", FrameExpectOptions( expressionArg=name, expectedText=expected_text, timeout=timeout ), value, "Locator expected to have CSS", ) async def not_to_have_css( self, name: str, value: Union[str, Pattern], timeout: float = None, ) -> None: __tracebackhide__ = True await self._not.to_have_css(name, value, timeout) async def to_have_id( self, id: Union[str, Pattern], timeout: float = None, ) -> None: __tracebackhide__ = True expected_text = to_expected_text_values([id]) await self._expect_impl( "to.have.id", FrameExpectOptions(expectedText=expected_text, timeout=timeout), id, "Locator expected to have ID", ) async def not_to_have_id( self, id: Union[str, Pattern], timeout: float = None, ) -> None: __tracebackhide__ = True await self._not.to_have_id(id, timeout) async def to_have_js_property( self, name: str, value: Any, timeout: float = None, ) -> None: __tracebackhide__ = True await self._expect_impl( "to.have.property", FrameExpectOptions( expressionArg=name, expectedValue=value, timeout=timeout ), value, "Locator expected to have JS Property", ) async def not_to_have_js_property( self, name: str, value: Any, timeout: float = None, ) -> None: __tracebackhide__ = True await self._not.to_have_js_property(name, value, timeout) async def to_have_value( self, value: Union[str, Pattern], timeout: float = None, ) -> None: __tracebackhide__ = True expected_text = to_expected_text_values([value]) await self._expect_impl( "to.have.value", FrameExpectOptions(expectedText=expected_text, timeout=timeout), value, "Locator expected to have Value", ) async def not_to_have_value( self, value: Union[str, Pattern], timeout: float = None, ) -> None: __tracebackhide__ = True await self._not.to_have_value(value, timeout) async def to_have_text( self, expected: Union[List[Union[Pattern, str]], Pattern, str], use_inner_text: bool = None, timeout: float = None, ) -> None: __tracebackhide__ = True if isinstance(expected, list): expected_text = to_expected_text_values( expected, normalize_white_space=True ) await self._expect_impl( "to.have.text.array", FrameExpectOptions( expectedText=expected_text, useInnerText=use_inner_text, timeout=timeout, ), expected, "Locator expected to have text", ) else: expected_text = to_expected_text_values( [expected], normalize_white_space=True ) await self._expect_impl( "to.have.text", FrameExpectOptions( expectedText=expected_text, useInnerText=use_inner_text, timeout=timeout, ), expected, "Locator expected to have text", ) async def not_to_have_text( self, expected: Union[List[Union[Pattern, str]], Pattern, str], use_inner_text: bool = None, timeout: float = None, ) -> None: __tracebackhide__ = True await self._not.to_have_text(expected, use_inner_text, timeout) async def to_be_checked( self, timeout: float = None, checked: bool = None, ) -> None: __tracebackhide__ = True await self._expect_impl( "to.be.checked" if checked is None or checked is True else "to.be.unchecked", FrameExpectOptions(timeout=timeout), None, "Locator expected to be checked", ) async def not_to_be_checked( self, timeout: float = None, ) -> None: __tracebackhide__ = True await self._not.to_be_checked(timeout) async def to_be_disabled( self, timeout: float = None, ) -> None: __tracebackhide__ = True await self._expect_impl( "to.be.disabled", FrameExpectOptions(timeout=timeout), None, "Locator expected to be disabled", ) async def not_to_be_disabled( self, timeout: float = None, ) -> None: __tracebackhide__ = True await self._not.to_be_disabled(timeout) async def to_be_editable( self, timeout: float = None, ) -> None: __tracebackhide__ = True await self._expect_impl( "to.be.editable", FrameExpectOptions(timeout=timeout), None, "Locator expected to be editable", ) async def not_to_be_editable( self, timeout: float = None, ) -> None: __tracebackhide__ = True await self._not.to_be_editable(timeout) async def to_be_empty( self, timeout: float = None, ) -> None: __tracebackhide__ = True await self._expect_impl( "to.be.empty", FrameExpectOptions(timeout=timeout), None, "Locator expected to be empty", ) async def not_to_be_empty( self, timeout: float = None, ) -> None: __tracebackhide__ = True await self._not.to_be_empty(timeout) async def to_be_enabled( self, timeout: float = None, ) -> None: __tracebackhide__ = True await self._expect_impl( "to.be.enabled", FrameExpectOptions(timeout=timeout), None, "Locator expected to be enabled", ) async def not_to_be_enabled( self, timeout: float = None, ) -> None: __tracebackhide__ = True await self._not.to_be_enabled(timeout) async def to_be_hidden( self, timeout: float = None, ) -> None: __tracebackhide__ = True await self._expect_impl( "to.be.hidden", FrameExpectOptions(timeout=timeout), None, "Locator expected to be hidden", ) async def not_to_be_hidden( self, timeout: float = None, ) -> None: __tracebackhide__ = True await self._not.to_be_hidden(timeout) async def to_be_visible( self, timeout: float = None, ) -> None: __tracebackhide__ = True await self._expect_impl( "to.be.visible", FrameExpectOptions(timeout=timeout), None, "Locator expected to be visible", ) async def not_to_be_visible( self, timeout: float = None, ) -> None: __tracebackhide__ = True await self._not.to_be_visible(timeout) async def to_be_focused( self, timeout: float = None, ) -> None: __tracebackhide__ = True await self._expect_impl( "to.be.focused", FrameExpectOptions(timeout=timeout), None, "Locator expected to be focused", ) async def not_to_be_focused( self, timeout: float = None, ) -> None: __tracebackhide__ = True await self._not.to_be_focused(timeout) class APIResponseAssertions: def __init__(self, response: APIResponse, is_not: bool = False) -> None: self._loop = response._loop self._dispatcher_fiber = response._dispatcher_fiber self._is_not = is_not self._actual = response @property def _not(self) -> "APIResponseAssertions": return APIResponseAssertions(self._actual, not self._is_not) async def to_be_ok( self, ) -> None: __tracebackhide__ = True if self._is_not is not self._actual.ok: return message = f"Response status expected to be within [200..299] range, was '{self._actual.status}'" if self._is_not: message = message.replace("expected to", "expected not to") log_list = await self._actual._fetch_log() log = "\n".join(log_list).strip() if log: message += f"\n Call log:\n{log}" raise AssertionError(message) async def not_to_be_ok(self) -> None: __tracebackhide__ = True await self._not.to_be_ok() def expected_regex( pattern: Pattern, match_substring: bool, normalize_white_space: bool ) -> ExpectedTextValue: expected = ExpectedTextValue( regexSource=pattern.pattern, regexFlags=escape_regex_flags(pattern), matchSubstring=match_substring, normalizeWhiteSpace=normalize_white_space, ) return expected def to_expected_text_values( items: Union[List[Pattern], List[str], List[Union[str, Pattern]]], match_substring: bool = False, normalize_white_space: bool = False, ) -> List[ExpectedTextValue]: out: List[ExpectedTextValue] = [] assert isinstance(items, list) for item in items: if isinstance(item, str): out.append( ExpectedTextValue( string=item, matchSubstring=match_substring, normalizeWhiteSpace=normalize_white_space, ) ) elif isinstance(item, Pattern): out.append(expected_regex(item, match_substring, normalize_white_space)) return out
31.227425
104
0.584717
7952f0281ff39a40555f5d12a1bb289ddbcf363f
1,995
py
Python
gauss_carrier_vs_space.py
kai-neuhaus/mr-oct-simulation
a99576377da916418b937eb553b62af6ab44b8fd
[ "MIT" ]
4
2020-07-30T00:38:34.000Z
2021-11-09T10:53:39.000Z
gauss_carrier_vs_space.py
kai-neuhaus/mr-oct-simulation
a99576377da916418b937eb553b62af6ab44b8fd
[ "MIT" ]
null
null
null
gauss_carrier_vs_space.py
kai-neuhaus/mr-oct-simulation
a99576377da916418b937eb553b62af6ab44b8fd
[ "MIT" ]
null
null
null
from scipy import * from scipy.signal import hilbert from matplotlib.pyplot import * import my_format_lib as mylib mylib.format_plot() # manuscript:lst:gausscarrspace N = 20000 # buffer size SR = 20e6 # sample rate [s] tau_scan = linspace(0, N / SR, N) # time range [s] wavelength = 1330e-9 # [m] wavelengthBW = 60e-9 # [m] L_FWHM = 2*log(2)/pi * wavelength**2 / wavelengthBW L_sigma = L_FWHM/2/sqrt(2*log(2)) D_k = pi/sqrt(log(2))*wavelengthBW/wavelength**2 v_M = 0.05 # [m/s] D_L = tau_scan * v_M # spatial range [m] D_L_um = D_L*1e6 f_D = 2 * v_M / wavelength #[1/s] L_0 = 23e-6 #[m] K = 2*pi / wavelength I_t = exp(-1j * 2 * K * D_L) * exp(-(D_L-L_0)**2 * (D_k**2)) plot(D_L_um,I_t) # manuscript:lst:gausscarrspace plot(D_L_um,abs(hilbert(real(I_t)))) arrow_x = D_L_um[where(abs(hilbert(real(I_t))) >= 0.5+0j)[0]] print(arrow_x) gca().annotate('', # leave empty as otherwise arrow is scaled to text textcoords='data', xycoords='data', xy=(arrow_x[0],0.5), xytext=(arrow_x[0]-10,0.5), arrowprops=dict(arrowstyle='->')) gca().annotate('', # leave empty as otherwise arrow is scaled to text textcoords='data', xycoords='data', xy=(arrow_x[-1],0.5), xytext=(arrow_x[-1]+10,0.5), arrowprops=dict(arrowstyle='->')) gca().annotate('FWHM', xycoords='data', textcoords='data', xy=(arrow_x[-1]+1,0.55) ) # grid(True) print('L_FWHM',L_FWHM,'m') print('L_sigma',L_sigma,'m') print('scan distance',max(D_L),'m') print('f_D',f_D,'Hz') s0 = D_L[(array(where(abs(hilbert(real(I_t))) > 0.5)).min())] s1 = D_L[(array(where(abs(hilbert(real(I_t))) > 0.5)).max())] FWHM = abs(s0 - s1) print('measured FHWM', FWHM, 'm') xlabel('Space ($\mathrm{\mu m}$)') # Dk # xlabel('$\Delta l$ ($\mu$m)') # spr ylabel('Amplitude (arb.)') # grid(True) tight_layout() savefig('gauss_carrier_vs_space.pdf') show()
32.177419
69
0.594486
7952f09d5b4ba247e95a7aef094f51906cbf8652
3,702
py
Python
n3jet/general/single/general_init_model_rerun.py
JosephPB/n3jet
f097c5e829b5f86fc0ce9007c5fa76ea229dfc56
[ "MIT" ]
3
2020-06-03T13:50:59.000Z
2021-12-01T08:21:34.000Z
n3jet/general/single/general_init_model_rerun.py
JosephPB/n3jet
f097c5e829b5f86fc0ce9007c5fa76ea229dfc56
[ "MIT" ]
2
2021-08-25T16:15:38.000Z
2022-02-10T03:36:12.000Z
n3jet/general/single/general_init_model_rerun.py
JosephPB/n3jet
f097c5e829b5f86fc0ce9007c5fa76ea229dfc56
[ "MIT" ]
1
2020-06-12T15:00:56.000Z
2020-06-12T15:00:56.000Z
import argparse from n3jet.general import SingleModelRun from n3jet.utils.general_utils import bool_convert def parse(): """ Parse arguments """ parser = argparse.ArgumentParser(description= """ Training multiple models on the same dataset for error analysis. Here we assume that the momenta and njet files already exist and will be passed to the script by the user """ ) parser.add_argument( '--yaml_file', dest='yaml_file', help='YAML file with config parameters', type=str, default = "False" ) parser.add_argument( '--mom_file', dest='mom_file', help='destination of momenta file', type=str, ) parser.add_argument( '--nj_file', dest='nj_file', help='NJet file', type=str, ) parser.add_argument( '--delta_cut', dest='delta_cut', help='proximity of jets according to JADE algorithm', type=float, default=0.01, ) parser.add_argument( '--model_base_dir', dest='model_base_dir', help='model base directory in which folders will be created', type=str, ) parser.add_argument( '--model_dir', dest='model_dir', help='model directory which will be created on top of model_base_dir', type=str, ) parser.add_argument( '--training_reruns', dest='training_reruns', help='number of training reruns for testing, default: 1', type=int, default=1, ) parser.add_argument( '--all_legs', dest='all_legs', help='train on data from all legs, not just all jets, default: False', type=str, default='False', ) parser.add_argument( '--all_pairs', dest='all_pairs', help='train on data from all pairs (except for initial state particles), not just all jets, default: False', type=str, default='False', ) parser.add_argument( '--lr', dest='lr', help='learning rate', type=float, default=0.01, ) parser.add_argument( '--hp', dest='hp', help='use float64 precision', type=str, default="False", ) parser.add_argument( '--md', dest='md', help='train using model_dataset flag', type=str, default="False", ) args = parser.parse_args() return args if __name__ == "__main__": args = parse() yaml_file = args.yaml_file mom_file = args.mom_file nj_file = args.nj_file delta_cut = args.delta_cut model_base_dir = args.model_base_dir model_dir = args.model_dir training_reruns = args.training_reruns all_legs = bool_convert(args.all_legs) all_pairs = bool_convert(args.all_pairs) lr = args.lr hp = bool_convert(args.hp) md = bool_convert(args.md) if yaml_file != "False": singlemodel = SingleModelRun.from_yaml(yaml_file) else: singlemodel = SingleModelRun( mom_file = mom_file, nj_file = nj_file, delta_cut = delta_cut, model_base_dir = model_base_dir, model_dir = model_dir, training_reruns = training_reruns, all_legs = all_legs, all_pairs = all_pairs, lr = lr, high_precision = hp, model_dataset = md ) singlemodel.train()
24.038961
116
0.548622
7952f0ae105c9158cae0204ff0d3102e8bd96c83
2,192
py
Python
scripts/patches/sagemaker.py
compose-x/troposphere
9a94a8fafd8b4da1cd1f4239be0e7aa0681fd8d4
[ "BSD-2-Clause" ]
null
null
null
scripts/patches/sagemaker.py
compose-x/troposphere
9a94a8fafd8b4da1cd1f4239be0e7aa0681fd8d4
[ "BSD-2-Clause" ]
null
null
null
scripts/patches/sagemaker.py
compose-x/troposphere
9a94a8fafd8b4da1cd1f4239be0e7aa0681fd8d4
[ "BSD-2-Clause" ]
null
null
null
patches = [ # Rename AWS::SageMaker::Device.Device to AWS::SageMaker::Device.DeviceProperty { "op": "move", "from": "/PropertyTypes/AWS::SageMaker::Device.Device", "path": "/PropertyTypes/AWS::SageMaker::Device.DeviceProperty", }, { "op": "replace", "path": "/ResourceTypes/AWS::SageMaker::Device/Properties/Device/Type", "value": "DeviceProperty", }, # Rename AWS::SageMaker::ModelBiasJobDefinition.EndpointInput to AWS::SageMaker::ModelBiasJobDefinition.ModelBiasEndpointInput { "op": "move", "from": "/PropertyTypes/AWS::SageMaker::ModelBiasJobDefinition.EndpointInput", "path": "/PropertyTypes/AWS::SageMaker::ModelBiasJobDefinition.ModelBiasEndpointInput", }, { "op": "replace", "path": "/PropertyTypes/AWS::SageMaker::ModelBiasJobDefinition.ModelBiasJobInput/Properties/EndpointInput/Type", "value": "ModelBiasEndpointInput", }, # Rename AWS::SageMaker::ModelExplainabilityJobDefinition.EndpointInput to AWS::SageMaker::ModelExplainabilityJobDefinition.ModelExplainabilityEndpointInput { "op": "move", "from": "/PropertyTypes/AWS::SageMaker::ModelExplainabilityJobDefinition.EndpointInput", "path": "/PropertyTypes/AWS::SageMaker::ModelExplainabilityJobDefinition.ModelExplainabilityEndpointInput", }, { "op": "replace", "path": "/PropertyTypes/AWS::SageMaker::ModelExplainabilityJobDefinition.ModelExplainabilityJobInput/Properties/EndpointInput/Type", "value": "ModelExplainabilityEndpointInput", }, # Rename AWS::SageMaker::ModelQualityJobDefinition.EndpointInput to AWS::SageMaker::ModelQualityJobDefinition.ModelQualityEndpointInput { "op": "move", "from": "/PropertyTypes/AWS::SageMaker::ModelQualityJobDefinition.EndpointInput", "path": "/PropertyTypes/AWS::SageMaker::ModelQualityJobDefinition.ModelQualityEndpointInput", }, { "op": "replace", "path": "/PropertyTypes/AWS::SageMaker::ModelQualityJobDefinition.ModelQualityJobInput/Properties/EndpointInput/Type", "value": "ModelQualityEndpointInput", }, ]
46.638298
160
0.694343
7952f0eed3a20f9c04bf3c7a1b79a112291b37d7
220
py
Python
exercises/en/exc_01_28b.py
betatim/MCL-DSCI-011-programming-in-python
b51f43a6bb1bedf0db028613d48d6566309ec44a
[ "MIT" ]
1
2020-06-26T20:15:44.000Z
2020-06-26T20:15:44.000Z
exercises/en/exc_01_28b.py
betatim/MCL-DSCI-011-programming-in-python
b51f43a6bb1bedf0db028613d48d6566309ec44a
[ "MIT" ]
20
2020-06-15T23:05:20.000Z
2020-09-01T22:07:45.000Z
exercises/en/exc_01_28b.py
betatim/MCL-DSCI-011-programming-in-python
b51f43a6bb1bedf0db028613d48d6566309ec44a
[ "MIT" ]
1
2020-06-25T20:53:13.000Z
2020-06-25T20:53:13.000Z
import pandas as pd # The data hockey_players = pd.read_csv('data/canucks.csv') # Find the total salary of the team # Save it in an object called player_cost ____ = hockey_players[[____]].____() # Display it ____
14.666667
48
0.727273
7952f13c6642c0e09f4344de98e4f32f9c029029
2,801
py
Python
asreview/webapp/start_flask.py
J535D165/asreview
eda3c52a595d739093c3cd6cd37d41eeed6dd15c
[ "Apache-2.0" ]
null
null
null
asreview/webapp/start_flask.py
J535D165/asreview
eda3c52a595d739093c3cd6cd37d41eeed6dd15c
[ "Apache-2.0" ]
null
null
null
asreview/webapp/start_flask.py
J535D165/asreview
eda3c52a595d739093c3cd6cd37d41eeed6dd15c
[ "Apache-2.0" ]
null
null
null
import logging import os import webbrowser from threading import Timer from flask import Flask from flask import send_from_directory from flask.json import jsonify from flask.templating import render_template from flask_cors import CORS from asreview import __version__ as asreview_version from asreview.entry_points.lab import _lab_parser from asreview.webapp import api # set logging level if os.environ.get('FLASK_ENV', "") == "development": logging.basicConfig(level=logging.DEBUG) else: logging.basicConfig(level=logging.INFO) def _url(host, port): return "http://{host}:{port}/".format(host=host, port=port) def _open_browser(host, port): webbrowser.open_new(_url(host, port)) def create_app(**kwargs): app = Flask( __name__, instance_relative_config=True, static_folder="build/static", template_folder="build" ) # Get the ASReview arguments. kwargs.pop("dataset", None) app.config['asr_kwargs'] = kwargs # Ensure the instance folder exists. try: os.makedirs(app.instance_path) except OSError: pass CORS(app, resources={r"/api/*": {"origins": "*"}}) app.register_blueprint(api.bp) @app.route('/', methods=['GET']) def index(): return render_template("index.html") @app.route('/favicon.ico') def send_favicon(): return send_from_directory( 'build', 'favicon.ico', mimetype='image/vnd.microsoft.icon' ) @app.route('/boot', methods=["GET"]) def api_boot(): """Get the boot info""" if os.environ.get("FLASK_ENV", None) == "development": status = "development" else: status = "asreview" try: import asreviewcontrib.covid19 # noqa status = "asreview-covid19" except ImportError: logging.debug("covid19 plugin not found") # get the asreview version response = jsonify({ "status": status, "version": asreview_version, }) response.headers.add('Access-Control-Allow-Origin', '*') return response return app def main(argv): parser = _lab_parser(prog="lab") kwargs = vars(parser.parse_args(argv)) host = kwargs.pop("ip") port = kwargs.pop("port") def _internal_open_webbrowser(): _open_browser(host, port) # open webbrowser if not in flask development mode if os.environ.get('FLASK_ENV', "") != "development": Timer(1, _internal_open_webbrowser).start() print( "\n\n\n\nIf your browser doesn't open. " "Please navigate to '{url}'\n\n\n\n".format(url=_url(host, port))) app = create_app(**kwargs) app.run(host=host, port=port)
24.146552
74
0.625134
7952f2635431c35255bc154f6b7373b0943fcb7a
2,156
py
Python
deprecated/examples_robust/affect/mosi_early_fusion_robust.py
kapikantzari/MultiBench
44ab6ea028682040a0c04de68239ce5cdf15123f
[ "MIT" ]
148
2021-03-06T06:54:13.000Z
2022-03-29T19:27:21.000Z
deprecated/examples_robust/affect/mosi_early_fusion_robust.py
kapikantzari/MultiBench
44ab6ea028682040a0c04de68239ce5cdf15123f
[ "MIT" ]
10
2021-07-19T22:57:49.000Z
2022-02-04T03:12:29.000Z
deprecated/examples_robust/affect/mosi_early_fusion_robust.py
kapikantzari/MultiBench
44ab6ea028682040a0c04de68239ce5cdf15123f
[ "MIT" ]
18
2021-07-22T07:17:27.000Z
2022-03-27T16:11:40.000Z
from unimodals.common_models import GRU, MLP from robustness.all_in_one import general_train, general_test from get_data_robust import get_dataloader from fusions.common_fusions import ConcatEarly from training_structures.Simple_Early_Fusion import train, test import torch import sys import os sys.path.append(os.path.dirname(os.path.dirname(os.getcwd()))) sys.path.append('/home/pliang/multibench/MultiBench/datasets/affect') # Support mosi/mosi_unaligned/mosei/mosei_unaligned traindata, validdata, robust_text, robust_vision, robust_audio, robust_timeseries = get_dataloader( '../../../affect/processed/mosi_data.pkl', '../../../affect/mosi', 'mosi') # mosi # encoders=GRU(325,512,dropout=True,has_padding=True).cuda() # head=MLP(512,256, 1).cuda() # mosei encoders = GRU(409, 800, dropout=True, has_padding=True).cuda() head = MLP(800, 400, 1).cuda() # encoders=[GRU(35,70,dropout=True,has_padding=True).cuda(), \ # GRU(74,150,dropout=True,has_padding=True).cuda(),\ # GRU(300,600,dropout=True,has_padding=True).cuda()] # head=MLP(820,400,1).cuda() # iemocap ''' encoders=[GRU(35,70,dropout=True,has_padding=True).cuda(), \ GRU(74,150,dropout=True,has_padding=True).cuda(),\ GRU(300,600,dropout=True,has_padding=True).cuda()] head=MLP(820,400,4).cuda() ''' fusion = ConcatEarly().cuda() # Support simple early_fusion and early_fusion with removing bias # mosi/mosei def trainprocess(filename): train(encoders, fusion, head, traindata, validdata, 1000, True, True, task="regression", optimtype=torch.optim.AdamW, lr=1e-5, save=filename, weight_decay=0.01, criterion=torch.nn.L1Loss(), regularization=False) filename = general_train(trainprocess, 'mosi_early_fusion') # iemocap ''' train(encoders,fusion,head,traindata,validdata,1000,True,True, \ optimtype=torch.optim.AdamW,lr=1e-4,save='best.pt', \ weight_decay=0.01,regularization=False) ''' def testprocess(model, robustdata): return test(model, robustdata, True, torch.nn.L1Loss(), "regression") general_test(testprocess, filename, [ robust_text, robust_vision, robust_audio, robust_timeseries]) # test(model,testdata,True,)
34.222222
121
0.743043
7952f2bd3b02fc360aa21f0d361a6d348cd09ff7
9,372
py
Python
ansible/modules/cloud/digital_ocean/digital_ocean_floating_ip.py
EnjoyLifeFund/macHighSierra-py36-pkgs
5668b5785296b314ea1321057420bcd077dba9ea
[ "BSD-3-Clause", "BSD-2-Clause", "MIT" ]
1
2022-01-25T22:52:58.000Z
2022-01-25T22:52:58.000Z
ansible/modules/cloud/digital_ocean/digital_ocean_floating_ip.py
EnjoyLifeFund/Debian_py36_packages
1985d4c73fabd5f08f54b922e73a9306e09c77a5
[ "BSD-3-Clause", "BSD-2-Clause", "MIT" ]
null
null
null
ansible/modules/cloud/digital_ocean/digital_ocean_floating_ip.py
EnjoyLifeFund/Debian_py36_packages
1985d4c73fabd5f08f54b922e73a9306e09c77a5
[ "BSD-3-Clause", "BSD-2-Clause", "MIT" ]
null
null
null
#!/usr/bin/python # -*- coding: utf-8 -*- # # (c) 2015, Patrick F. Marques <patrickfmarques@gmail.com> # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import absolute_import, division, print_function __metaclass__ = type ANSIBLE_METADATA = {'metadata_version': '1.1', 'status': ['preview'], 'supported_by': 'community'} DOCUMENTATION = ''' --- module: digital_ocean_floating_ip short_description: Manage DigitalOcean Floating IPs description: - Create/delete/assign a floating IP. version_added: "2.4" author: "Patrick Marques (@patrickfmarques)" options: state: description: - Indicate desired state of the target. default: present choices: ['present', 'absent'] ip: description: - Public IP address of the Floating IP. Used to remove an IP required: false default: None region: description: - The region that the Floating IP is reserved to. required: false default: None droplet_id: description: - The Droplet that the Floating IP has been assigned to. required: false default: None oauth_token: description: - DigitalOcean OAuth token. required: true notes: - Version 2 of DigitalOcean API is used. requirements: - "python >= 2.6" ''' EXAMPLES = ''' - name: "Create a Floating IP in region lon1" digital_ocean_floating_ip: state: present region: lon1 - name: "Create a Floating IP assigned to Droplet ID 123456" digital_ocean_floating_ip: state: present droplet_id: 123456 - name: "Delete a Floating IP with ip 1.2.3.4" digital_ocean_floating_ip: state: absent ip: "1.2.3.4" ''' RETURN = ''' # Digital Ocean API info https://developers.digitalocean.com/documentation/v2/#floating-ips data: description: a DigitalOcean Floating IP resource returned: success and no resource constraint type: dict sample: { "action": { "id": 68212728, "status": "in-progress", "type": "assign_ip", "started_at": "2015-10-15T17:45:44Z", "completed_at": null, "resource_id": 758603823, "resource_type": "floating_ip", "region": { "name": "New York 3", "slug": "nyc3", "sizes": [ "512mb", "1gb", "2gb", "4gb", "8gb", "16gb", "32gb", "48gb", "64gb" ], "features": [ "private_networking", "backups", "ipv6", "metadata" ], "available": true }, "region_slug": "nyc3" } } ''' import json import time from ansible.module_utils.basic import AnsibleModule from ansible.module_utils.basic import env_fallback from ansible.module_utils.urls import fetch_url class Response(object): def __init__(self, resp, info): self.body = None if resp: self.body = resp.read() self.info = info @property def json(self): if not self.body: if "body" in self.info: return json.loads(self.info["body"]) return None try: return json.loads(self.body) except ValueError: return None @property def status_code(self): return self.info["status"] class Rest(object): def __init__(self, module, headers): self.module = module self.headers = headers self.baseurl = 'https://api.digitalocean.com/v2' def _url_builder(self, path): if path[0] == '/': path = path[1:] return '%s/%s' % (self.baseurl, path) def send(self, method, path, data=None, headers=None): url = self._url_builder(path) data = self.module.jsonify(data) timeout = self.module.params['timeout'] resp, info = fetch_url(self.module, url, data=data, headers=self.headers, method=method, timeout=timeout) # Exceptions in fetch_url may result in a status -1, the ensures a if info['status'] == -1: self.module.fail_json(msg=info['msg']) return Response(resp, info) def get(self, path, data=None, headers=None): return self.send('GET', path, data, headers) def put(self, path, data=None, headers=None): return self.send('PUT', path, data, headers) def post(self, path, data=None, headers=None): return self.send('POST', path, data, headers) def delete(self, path, data=None, headers=None): return self.send('DELETE', path, data, headers) def wait_action(module, rest, ip, action_id, timeout=10): end_time = time.time() + 10 while time.time() < end_time: response = rest.get('floating_ips/{0}/actions/{1}'.format(ip, action_id)) status_code = response.status_code status = response.json['action']['status'] # TODO: check status_code == 200? if status == 'completed': return True elif status == 'errored': module.fail_json(msg='Floating ip action error [ip: {0}: action: {1}]'.format( ip, action_id), data=json) module.fail_json(msg='Floating ip action timeout [ip: {0}: action: {1}]'.format( ip, action_id), data=json) def core(module): api_token = module.params['oauth_token'] state = module.params['state'] ip = module.params['ip'] droplet_id = module.params['droplet_id'] rest = Rest(module, {'Authorization': 'Bearer {0}'.format(api_token), 'Content-type': 'application/json'}) if state in ('present'): if droplet_id is not None and module.params['ip'] is not None: # Lets try to associate the ip to the specified droplet associate_floating_ips(module, rest) else: create_floating_ips(module, rest) elif state in ('absent'): response = rest.delete("floating_ips/{0}".format(ip)) status_code = response.status_code json_data = response.json if status_code == 204: module.exit_json(changed=True) elif status_code == 404: module.exit_json(changed=False) else: module.exit_json(changed=False, data=json_data) def get_floating_ip_details(module, rest): ip = module.params['ip'] response = rest.get("floating_ips/{0}".format(ip)) status_code = response.status_code json_data = response.json if status_code == 200: return json_data['floating_ip'] else: module.fail_json(msg="Error assigning floating ip [{0}: {1}]".format( status_code, json_data["message"]), region=module.params['region']) def assign_floating_id_to_droplet(module, rest): ip = module.params['ip'] payload = { "type": "assign", "droplet_id": module.params['droplet_id'], } response = rest.post("floating_ips/{0}/actions".format(ip), data=payload) status_code = response.status_code json_data = response.json if status_code == 201: wait_action(module, rest, ip, json_data['action']['id']) module.exit_json(changed=True, data=json_data) else: module.fail_json(msg="Error creating floating ip [{0}: {1}]".format( status_code, json_data["message"]), region=module.params['region']) def associate_floating_ips(module, rest): floating_ip = get_floating_ip_details(module, rest) droplet = floating_ip['droplet'] # TODO: If already assigned to a droplet verify if is one of the specified as valid if droplet is not None and str(droplet['id']) in [module.params['droplet_id']]: module.exit_json(changed=False) else: assign_floating_id_to_droplet(module, rest) def create_floating_ips(module, rest): payload = { } if module.params['region'] is not None: payload["region"] = module.params['region'] if module.params['droplet_id'] is not None: payload["droplet_id"] = module.params['droplet_id'] response = rest.post("floating_ips", data=payload) status_code = response.status_code json_data = response.json if status_code == 202: module.exit_json(changed=True, data=json_data) else: module.fail_json(msg="Error creating floating ip [{0}: {1}]".format( status_code, json_data["message"]), region=module.params['region']) def main(): module = AnsibleModule( argument_spec=dict( state=dict(choices=['present', 'absent'], default='present'), ip=dict(aliases=['id'], required=False), region=dict(required=False), droplet_id=dict(required=False), oauth_token=dict( no_log=True, # Support environment variable for DigitalOcean OAuth Token fallback=(env_fallback, ['DO_API_TOKEN', 'DO_API_KEY', 'DO_OAUTH_TOKEN']), required=True, ), validate_certs=dict(type='bool', default=True), timeout=dict(type='int', default=30), ), required_if=([ ('state', 'delete', ['ip']) ]), mutually_exclusive=( ['region', 'droplet_id'] ), ) core(module) if __name__ == '__main__': main()
28.925926
113
0.606701
7952f36b73aea65f0b8715440b4ec099ba021ea4
896
py
Python
main.py
jphandrigan/exposedsurface
796c2af01247750e9957173ee9b4938e537af467
[ "Unlicense" ]
null
null
null
main.py
jphandrigan/exposedsurface
796c2af01247750e9957173ee9b4938e537af467
[ "Unlicense" ]
null
null
null
main.py
jphandrigan/exposedsurface
796c2af01247750e9957173ee9b4938e537af467
[ "Unlicense" ]
null
null
null
#import libraries from scipy.interpolate import interp1d import matplotlib.pyplot as plt import numpy as np #set the tank/compartment volume (in Litres) volume = '12124' x = np.array([20820, 43910, 5254, 6272, 4343, 2380, 3372, 5678, 1575, 2978, 3675, 4155, 7948, 10510, 3186, 9464, 7949, 3785, 5678, 7949, 34000, 16670, 3747, 2300, 4500,11356,3785,7570,13249, 36000, 22976, 34000, 34000, 31797.46, 31000, 36000, 16655, 4921,14763, 18927.05, 31797.4]) #L y = np.array([54, 88.17, 18, 20, 16, 13, 13,16.3, 6.6, 13, 7.9, 15, 23, 24.8, 12, 24, 17.8, 8.83, 11.9, 19.8, 83.94, 41.2, 12.4, 7.6, 8.7,26.85,7.62,15.4,30.94, 84.6, 55.57, 85.60, 85.00,75.5302, 63.7, 84.1,38.46, 9.94, 31.31, 56.11, 79.61]) #m2 f = interp1d(x,y,fill_value="extrapolate") type(f) f(volume) print ('A tank/compartment with a volume of {} L has an estimated exposed surface area of: {} m2.'.format(volume,f(volume)))
49.777778
284
0.668527
7952f3af071807311bee5afeb1e9ec3bf7e1fa4f
288
py
Python
Python/Curos_Python_curemvid/Exercicios_dos_videos/Ex104.py
Jhonattan-rocha/Meus-primeiros-programas
f5971b66c0afd049b5d0493e8b7a116b391d058e
[ "MIT" ]
null
null
null
Python/Curos_Python_curemvid/Exercicios_dos_videos/Ex104.py
Jhonattan-rocha/Meus-primeiros-programas
f5971b66c0afd049b5d0493e8b7a116b391d058e
[ "MIT" ]
null
null
null
Python/Curos_Python_curemvid/Exercicios_dos_videos/Ex104.py
Jhonattan-rocha/Meus-primeiros-programas
f5971b66c0afd049b5d0493e8b7a116b391d058e
[ "MIT" ]
null
null
null
def leiaint(msg): while True: n = input(msg) if n.isnumeric(): valor = int(n) break else: print("Digite um nรบmero vรกlido") return valor num = leiaint("digite um nรบmero inteiro: ") print(f"Vocรช digitou o nรบmero {num}")
20.571429
44
0.538194
7952f3b68dabd65d8015eb5dcae6347e711f3ea0
2,101
py
Python
frappe/desk/form/run_method.py
chentaoz/frappe
ee3c4943bf6177ad3b410cdb0d802af486751a65
[ "MIT" ]
5
2017-09-12T15:56:31.000Z
2022-03-09T13:50:21.000Z
frappe/desk/form/run_method.py
chentaoz/frappe
ee3c4943bf6177ad3b410cdb0d802af486751a65
[ "MIT" ]
212
2017-08-16T13:03:18.000Z
2020-10-06T12:26:21.000Z
frappe/desk/form/run_method.py
chentaoz/frappe
ee3c4943bf6177ad3b410cdb0d802af486751a65
[ "MIT" ]
14
2020-11-04T11:22:44.000Z
2022-02-01T20:59:37.000Z
# Copyright (c) 2015, Frappe Technologies Pvt. Ltd. and Contributors # MIT License. See license.txt from __future__ import unicode_literals import json, inspect import frappe from frappe import _ from frappe.utils import cint from six import text_type, string_types @frappe.whitelist() def runserverobj(method, docs=None, dt=None, dn=None, arg=None, args=None): """run controller method - old style""" if not args: args = arg or "" if dt: # not called from a doctype (from a page) if not dn: dn = dt # single doc = frappe.get_doc(dt, dn) else: doc = frappe.get_doc(json.loads(docs)) doc._original_modified = doc.modified doc.check_if_latest() if not doc.has_permission("read"): frappe.msgprint(_("Not permitted"), raise_exception = True) if doc: try: args = json.loads(args) except ValueError: args = args try: fnargs, varargs, varkw, defaults = inspect.getargspec(getattr(doc, method)) except ValueError: fnargs = inspect.getfullargspec(getattr(doc, method)).args varargs = inspect.getfullargspec(getattr(doc, method)).varargs varkw = inspect.getfullargspec(getattr(doc, method)).varkw defaults = inspect.getfullargspec(getattr(doc, method)).defaults if not fnargs or (len(fnargs)==1 and fnargs[0]=="self"): r = doc.run_method(method) elif "args" in fnargs or not isinstance(args, dict): r = doc.run_method(method, args) else: r = doc.run_method(method, **args) if r: #build output as csv if cint(frappe.form_dict.get('as_csv')): make_csv_output(r, doc.doctype) else: frappe.response['message'] = r frappe.response.docs.append(doc) def make_csv_output(res, dt): """send method response as downloadable CSV file""" import frappe from six import StringIO import csv f = StringIO() writer = csv.writer(f) for r in res: row = [] for v in r: if isinstance(v, string_types): v = v.encode("utf-8") row.append(v) writer.writerow(row) f.seek(0) frappe.response['result'] = text_type(f.read(), 'utf-8') frappe.response['type'] = 'csv' frappe.response['doctype'] = dt.replace(' ','')
25.621951
78
0.698239
7952f4768e11aeef8d12a312c4032a70c9ce1d05
8,080
py
Python
pysnmp/HH3C-MP-MIB.py
agustinhenze/mibs.snmplabs.com
1fc5c07860542b89212f4c8ab807057d9a9206c7
[ "Apache-2.0" ]
11
2021-02-02T16:27:16.000Z
2021-08-31T06:22:49.000Z
pysnmp/HH3C-MP-MIB.py
agustinhenze/mibs.snmplabs.com
1fc5c07860542b89212f4c8ab807057d9a9206c7
[ "Apache-2.0" ]
75
2021-02-24T17:30:31.000Z
2021-12-08T00:01:18.000Z
pysnmp/HH3C-MP-MIB.py
agustinhenze/mibs.snmplabs.com
1fc5c07860542b89212f4c8ab807057d9a9206c7
[ "Apache-2.0" ]
10
2019-04-30T05:51:36.000Z
2022-02-16T03:33:41.000Z
# # PySNMP MIB module HH3C-MP-MIB (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/HH3C-MP-MIB # Produced by pysmi-0.3.4 at Mon Apr 29 19:15:35 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # ObjectIdentifier, Integer, OctetString = mibBuilder.importSymbols("ASN1", "ObjectIdentifier", "Integer", "OctetString") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") ConstraintsUnion, ValueSizeConstraint, ConstraintsIntersection, SingleValueConstraint, ValueRangeConstraint = mibBuilder.importSymbols("ASN1-REFINEMENT", "ConstraintsUnion", "ValueSizeConstraint", "ConstraintsIntersection", "SingleValueConstraint", "ValueRangeConstraint") hh3cRhw, = mibBuilder.importSymbols("HH3C-OID-MIB", "hh3cRhw") ifIndex, = mibBuilder.importSymbols("IF-MIB", "ifIndex") ObjectGroup, NotificationGroup, ModuleCompliance = mibBuilder.importSymbols("SNMPv2-CONF", "ObjectGroup", "NotificationGroup", "ModuleCompliance") NotificationType, Gauge32, TimeTicks, Counter64, ObjectIdentity, IpAddress, Integer32, Bits, iso, MibScalar, MibTable, MibTableRow, MibTableColumn, Counter32, Unsigned32, MibIdentifier, ModuleIdentity = mibBuilder.importSymbols("SNMPv2-SMI", "NotificationType", "Gauge32", "TimeTicks", "Counter64", "ObjectIdentity", "IpAddress", "Integer32", "Bits", "iso", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "Counter32", "Unsigned32", "MibIdentifier", "ModuleIdentity") DisplayString, TextualConvention = mibBuilder.importSymbols("SNMPv2-TC", "DisplayString", "TextualConvention") hh3cMultilinkPPP = ModuleIdentity((1, 3, 6, 1, 4, 1, 25506, 8, 33)) if mibBuilder.loadTexts: hh3cMultilinkPPP.setLastUpdated('200405180000Z') if mibBuilder.loadTexts: hh3cMultilinkPPP.setOrganization('Hangzhou H3C Tech. Co., Ltd.') hh3cMpObjects = MibIdentifier((1, 3, 6, 1, 4, 1, 25506, 8, 33, 1)) hh3cMpMultilinkTable = MibTable((1, 3, 6, 1, 4, 1, 25506, 8, 33, 1, 1), ) if mibBuilder.loadTexts: hh3cMpMultilinkTable.setStatus('current') hh3cMpMultilinkEntry = MibTableRow((1, 3, 6, 1, 4, 1, 25506, 8, 33, 1, 1, 1), ).setIndexNames((0, "IF-MIB", "ifIndex")) if mibBuilder.loadTexts: hh3cMpMultilinkEntry.setStatus('current') hh3cMpMultilinkDescr = MibTableColumn((1, 3, 6, 1, 4, 1, 25506, 8, 33, 1, 1, 1, 1), DisplayString()).setMaxAccess("readonly") if mibBuilder.loadTexts: hh3cMpMultilinkDescr.setStatus('current') hh3cMpBundleName = MibTableColumn((1, 3, 6, 1, 4, 1, 25506, 8, 33, 1, 1, 1, 2), DisplayString()).setMaxAccess("readonly") if mibBuilder.loadTexts: hh3cMpBundleName.setStatus('current') hh3cMpBundledSlot = MibTableColumn((1, 3, 6, 1, 4, 1, 25506, 8, 33, 1, 1, 1, 3), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: hh3cMpBundledSlot.setStatus('current') hh3cMpBundledMemberCnt = MibTableColumn((1, 3, 6, 1, 4, 1, 25506, 8, 33, 1, 1, 1, 4), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: hh3cMpBundledMemberCnt.setStatus('current') hh3cMpLostFragments = MibTableColumn((1, 3, 6, 1, 4, 1, 25506, 8, 33, 1, 1, 1, 5), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: hh3cMpLostFragments.setStatus('current') hh3cMpReorderedPkts = MibTableColumn((1, 3, 6, 1, 4, 1, 25506, 8, 33, 1, 1, 1, 6), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: hh3cMpReorderedPkts.setStatus('current') hh3cMpUnassignedPkts = MibTableColumn((1, 3, 6, 1, 4, 1, 25506, 8, 33, 1, 1, 1, 7), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: hh3cMpUnassignedPkts.setStatus('current') hh3cMpInterleavedPkts = MibTableColumn((1, 3, 6, 1, 4, 1, 25506, 8, 33, 1, 1, 1, 8), Counter32()).setMaxAccess("readonly") if mibBuilder.loadTexts: hh3cMpInterleavedPkts.setStatus('current') hh3cMpRcvdSequence = MibTableColumn((1, 3, 6, 1, 4, 1, 25506, 8, 33, 1, 1, 1, 9), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: hh3cMpRcvdSequence.setStatus('current') hh3cMpSentSequence = MibTableColumn((1, 3, 6, 1, 4, 1, 25506, 8, 33, 1, 1, 1, 10), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: hh3cMpSentSequence.setStatus('current') hh3cMpMemberlinkTable = MibTable((1, 3, 6, 1, 4, 1, 25506, 8, 33, 1, 2), ) if mibBuilder.loadTexts: hh3cMpMemberlinkTable.setStatus('current') hh3cMpMemberlinkEntry = MibTableRow((1, 3, 6, 1, 4, 1, 25506, 8, 33, 1, 2, 1), ).setIndexNames((0, "IF-MIB", "ifIndex"), (0, "HH3C-MP-MIB", "hh3cMpMemberlinkSeqNumber")) if mibBuilder.loadTexts: hh3cMpMemberlinkEntry.setStatus('current') hh3cMpMemberlinkSeqNumber = MibTableColumn((1, 3, 6, 1, 4, 1, 25506, 8, 33, 1, 2, 1, 1), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: hh3cMpMemberlinkSeqNumber.setStatus('current') hh3cMpMemberlinkIfIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 25506, 8, 33, 1, 2, 1, 2), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: hh3cMpMemberlinkIfIndex.setStatus('current') hh3cMpMemberlinkDescr = MibTableColumn((1, 3, 6, 1, 4, 1, 25506, 8, 33, 1, 2, 1, 3), DisplayString()).setMaxAccess("readonly") if mibBuilder.loadTexts: hh3cMpMemberlinkDescr.setStatus('current') hh3cMpMemberlinkMpStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 25506, 8, 33, 1, 2, 1, 4), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: hh3cMpMemberlinkMpStatus.setStatus('current') hh3cMpNotifications = MibIdentifier((1, 3, 6, 1, 4, 1, 25506, 8, 33, 2)) hh3cMpConformance = MibIdentifier((1, 3, 6, 1, 4, 1, 25506, 8, 33, 3)) hh3cMpCompliances = MibIdentifier((1, 3, 6, 1, 4, 1, 25506, 8, 33, 3, 1)) hh3cMpCompliance = ModuleCompliance((1, 3, 6, 1, 4, 1, 25506, 8, 33, 3, 1, 1)).setObjects(("HH3C-MP-MIB", "hh3cMpMandatoryGroup")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): hh3cMpCompliance = hh3cMpCompliance.setStatus('current') hh3cMpGroups = MibIdentifier((1, 3, 6, 1, 4, 1, 25506, 8, 33, 3, 2)) hh3cMpMandatoryGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 25506, 8, 33, 3, 2, 1)).setObjects(("HH3C-MP-MIB", "hh3cMpBundledMemberCnt"), ("HH3C-MP-MIB", "hh3cMpMemberlinkSeqNumber"), ("HH3C-MP-MIB", "hh3cMpMemberlinkIfIndex")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): hh3cMpMandatoryGroup = hh3cMpMandatoryGroup.setStatus('current') hh3cMpInfoGroup = ObjectGroup((1, 3, 6, 1, 4, 1, 25506, 8, 33, 3, 2, 2)).setObjects(("HH3C-MP-MIB", "hh3cMpMultilinkDescr"), ("HH3C-MP-MIB", "hh3cMpBundleName"), ("HH3C-MP-MIB", "hh3cMpBundledSlot"), ("HH3C-MP-MIB", "hh3cMpBundledMemberCnt"), ("HH3C-MP-MIB", "hh3cMpLostFragments"), ("HH3C-MP-MIB", "hh3cMpReorderedPkts"), ("HH3C-MP-MIB", "hh3cMpUnassignedPkts"), ("HH3C-MP-MIB", "hh3cMpInterleavedPkts"), ("HH3C-MP-MIB", "hh3cMpRcvdSequence"), ("HH3C-MP-MIB", "hh3cMpSentSequence"), ("HH3C-MP-MIB", "hh3cMpMemberlinkDescr"), ("HH3C-MP-MIB", "hh3cMpMemberlinkMpStatus")) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): hh3cMpInfoGroup = hh3cMpInfoGroup.setStatus('current') mibBuilder.exportSymbols("HH3C-MP-MIB", hh3cMpMemberlinkTable=hh3cMpMemberlinkTable, hh3cMpNotifications=hh3cMpNotifications, hh3cMpBundleName=hh3cMpBundleName, hh3cMpMultilinkEntry=hh3cMpMultilinkEntry, hh3cMpInterleavedPkts=hh3cMpInterleavedPkts, hh3cMpCompliances=hh3cMpCompliances, hh3cMpMultilinkTable=hh3cMpMultilinkTable, hh3cMpMemberlinkDescr=hh3cMpMemberlinkDescr, hh3cMultilinkPPP=hh3cMultilinkPPP, hh3cMpBundledMemberCnt=hh3cMpBundledMemberCnt, hh3cMpObjects=hh3cMpObjects, hh3cMpUnassignedPkts=hh3cMpUnassignedPkts, hh3cMpMemberlinkSeqNumber=hh3cMpMemberlinkSeqNumber, hh3cMpMemberlinkEntry=hh3cMpMemberlinkEntry, hh3cMpCompliance=hh3cMpCompliance, hh3cMpSentSequence=hh3cMpSentSequence, hh3cMpMultilinkDescr=hh3cMpMultilinkDescr, hh3cMpLostFragments=hh3cMpLostFragments, hh3cMpMemberlinkIfIndex=hh3cMpMemberlinkIfIndex, hh3cMpConformance=hh3cMpConformance, hh3cMpRcvdSequence=hh3cMpRcvdSequence, hh3cMpMemberlinkMpStatus=hh3cMpMemberlinkMpStatus, PYSNMP_MODULE_ID=hh3cMultilinkPPP, hh3cMpGroups=hh3cMpGroups, hh3cMpInfoGroup=hh3cMpInfoGroup, hh3cMpMandatoryGroup=hh3cMpMandatoryGroup, hh3cMpBundledSlot=hh3cMpBundledSlot, hh3cMpReorderedPkts=hh3cMpReorderedPkts)
113.802817
1,175
0.757797
7952f4da8d0f59c070bdbc91205dac936d33fe41
489
py
Python
setup.py
shardul08/Code-Sleep-Python
b76e6eccca62f92d6064eaeeaadc385a6f2b39d8
[ "MIT" ]
420
2017-05-13T13:43:46.000Z
2022-03-29T20:22:39.000Z
setup.py
shardul08/Code-Sleep-Python
b76e6eccca62f92d6064eaeeaadc385a6f2b39d8
[ "MIT" ]
162
2017-10-04T15:48:10.000Z
2022-02-04T07:32:07.000Z
setup.py
shardul08/Code-Sleep-Python
b76e6eccca62f92d6064eaeeaadc385a6f2b39d8
[ "MIT" ]
280
2017-10-04T16:20:04.000Z
2022-02-04T07:15:06.000Z
from setuptools import setup setup( name="code_sleep_python", description="Launch some awesome python projects", url="https://github.com/prateekiiest/Code-Sleep-Python", author="Prateek Chanda", author_email="prateekkol21@gmail.com", license="MIT", packages=['code_sleep_python'], include_package_data=True, version="1.0.0", classifiers=[ "Topic :: Utilities", "License :: OSI Approved :: MIT License", ], ) ยฉ 2018 GitHub, Inc.
25.736842
60
0.660532
7952f50419b3ddda31f9908adb2efe1750212d2f
695
bzl
Python
source/bazel/deps/ubuntu_14_04_clang_10_sysroot/get.bzl
luxe/unilang
6c8a431bf61755f4f0534c6299bd13aaeba4b69e
[ "MIT" ]
33
2019-05-30T07:43:32.000Z
2021-12-30T13:12:32.000Z
source/bazel/deps/ubuntu_14_04_clang_10_sysroot/get.bzl
luxe/unilang
6c8a431bf61755f4f0534c6299bd13aaeba4b69e
[ "MIT" ]
371
2019-05-16T15:23:50.000Z
2021-09-04T15:45:27.000Z
source/bazel/deps/ubuntu_14_04_clang_10_sysroot/get.bzl
luxe/unilang
6c8a431bf61755f4f0534c6299bd13aaeba4b69e
[ "MIT" ]
6
2019-08-22T17:37:36.000Z
2020-11-07T07:15:32.000Z
# Do not edit this file directly. # It was auto-generated by: code/programs/reflexivity/reflexive_refresh load("@bazel_tools//tools/build_defs/repo:http.bzl", "http_archive") def ubuntu1404Clang10Sysroot(): http_archive( name="ubuntu_14_04_clang_10_sysroot" , build_file="//bazel/deps/ubuntu_14_04_clang_10_sysroot:build.BUILD" , sha256="6204f7998b543e7190ba55c7a0fe81d59afcaf8171e9dc34975fbf18bc9e4853" , strip_prefix="ubuntu_14_04_clang_10_sysroot-79690a1aefd7fd84e77e9bf785acb1dc82e55c4e" , urls = [ "https://github.com/Unilang/ubuntu_14_04_clang_10_sysroot/archive/79690a1aefd7fd84e77e9bf785acb1dc82e55c4e.tar.gz", ], )
40.882353
127
0.755396
7952f5cfcfcb30086bde61904447171d9e42d0cd
28,101
py
Python
northstar/averages.py
iosonofabio/semiknn
c7819a7ae850df1264f8d92f7bdc02f85afc21c2
[ "MIT" ]
null
null
null
northstar/averages.py
iosonofabio/semiknn
c7819a7ae850df1264f8d92f7bdc02f85afc21c2
[ "MIT" ]
null
null
null
northstar/averages.py
iosonofabio/semiknn
c7819a7ae850df1264f8d92f7bdc02f85afc21c2
[ "MIT" ]
null
null
null
# vim: fdm=indent # author: Fabio Zanini # date: 17/06/19 # content: Atlas averages __all__ = ['Averages'] import warnings import numpy as np import pandas as pd from anndata import AnnData import leidenalg from .fetch_atlas import AtlasFetcher from .cluster_with_annotations import ClusterWithAnnotations class Averages(object): '''Annotate new cell types using averages of an atlas''' def __init__( self, atlas, n_cells_per_type=None, n_features_per_cell_type=30, n_features_overdispersed=500, features_additional=None, n_pcs=20, n_neighbors=10, n_neighbors_out_of_atlas=5, distance_metric='correlation', threshold_neighborhood=0.8, clustering_metric='cpm', resolution_parameter=0.001, normalize_counts=True, join='keep_first', ): '''Prepare the model for cell annotation Args: atlas (str, list of str, list of dict, dict, or AnnData): cell atlas to use. Generally there are two kind of choices: The first possibility selects the corresponding cell atlas or atlases from northstar's online list. The names of currently available dataset is here: https://github.com/iosonofabio/atlas_averages/blob/master/table.tsv (check the first column for atlas names). If a list of str, multiple atlases will be fetched and combined. Only features that are in all atlases will be kept. If you use this feature, be careful to not mix atlases from different species. If a list of dict, it merges atlases as above but you can specify what cell types to fetch from each atlas. Each element of the list must be a dict with two key-value pairs: 'atlas_name' is the atlas name, and 'cell_types' must be a list of cell types to retain. Example: atlas=[{'atlas_name': 'Enge_2017', 'cell_types': ['alpha']}] would load the atlas Enge_2017 and only retain alpha cells. You can also use a dict to specify a single atlas and to retain only certain cell types. The format is as above, e.g. to select only alpha cells from Enge_2017 you can use: atlas={'atlas_name': 'Enge_2017', 'cell_types': ['alpha']}. The second possibility is to use a custom atlas (e.g. some unpublished data). 'atlas' must be an AnnData object with cell type averages ("cells") as rows and genes as columns and one cell metadata column 'NumberOfCells' describing the number of cells for each cell type. In other words: adata.obs['NumberOfCells'] must exist, and: adata.obs_names must contain the known cell types. n_cells_per_type (None or int): if None, use the number of cells per type from the atlas. Else, fix it to this number for all types. n_features_per_cell_type (int): number of features marking each fixed column (atlas cell type). The argument 'features' takes priority over this one. n_features_overdispersed (int): number of unbiased, overdispersed features to be picked from the new dataset. The argument 'features' takes priority over this one. features_additional (list of str or None): additional features to keep on top of automatic selection. The argument 'features' takes priority over this one. n_pcs (int): number of principal components to keep in the weighted PCA. n_neighbors (int): number of neighbors in the similarity graph. n_neighbors_out_of_atlas (int): number of neighbors coming out of the atlas nodes into the new dataset. distance_metric (str): metric to use as distance. It should be a metric accepted by scipy.spatial.distance.cdist. threshold_neighborhood (float): do not consider distances larger than this as neighbors clustering_metric (str): 'cpm' (default, Cell Potts Model) or 'modularity'. Sets the type of partition used in the clustering step. resolution_parameter (float): number between 0 and 1 that sets how easy it is for the clustering algorithm to make new clusters normalize_counts (bool): whether to renormalize the counts at the merging stage to make sure atlas and new data follow the same normalization. Be careful if you turn this off. join (str): must be 'keep_first', 'union', or 'intersection'. This argument is used when sourcing multiple atlases and decides what to do with features that are not present in all atlases. 'keep_first' keeps the features in the first atlas and pads the other atlases with zeros, 'union' pads every atlas that is missing a feature and 'intersection' only keep features that are in all atlases. ''' self.atlas = atlas self.n_cells_per_type = n_cells_per_type self.n_features_per_cell_type = n_features_per_cell_type self.n_features_overdispersed = n_features_overdispersed self.features_additional = features_additional self.n_pcs = n_pcs self.n_neighbors = n_neighbors self.n_neighbors_out_of_atlas = n_neighbors_out_of_atlas self.distance_metric = distance_metric self.threshold_neighborhood = threshold_neighborhood self.clustering_metric = clustering_metric self.resolution_parameter = resolution_parameter self.normalize_counts = normalize_counts self.join = join def fit(self, new_data): '''Run with averages of the atlas Args: new_data (pandas.DataFrame or anndata.AnnData): the new data to be clustered. If a dataframe, t must have features as rows and cell names as columns (as in loom files). anndata uses the opposite convention, so it must have cell names as rows (obs_names) and features as columns (var_names) and this class will transpose it. Returns: None, but this instance of Averages acquired the property `membership` containing the cluster memberships (cell types) of the columns except the first n_fixed. The first n_fixed columns are assumes to have distinct memberships in the range [0, n_fixed - 1]. ''' self.new_data = new_data self._check_init_arguments() self.fetch_atlas_if_needed() self.compute_feature_intersection() self._check_feature_intersection() self.prepare_feature_selection() self.select_features() self._check_feature_selection() self.merge_atlas_newdata() self.compute_pca() self.compute_similarity_graph() self.cluster_graph() def fit_transform(self, new_data): '''Run with averages of the atlas and return the cell types Args: new_data (pandas.DataFrame or anndata.AnnData): the new data to be clustered. If a dataframe, t must have features as rows and cell names as columns (as in loom files). anndata uses the opposite convention, so it must have cell names as rows (obs_names) and features as columns (var_names) and this class will transpose it. Returns: the cluster memberships (cell types) of the columns except the first n_fixed. The first n_fixed columns are assumes to have distinct memberships in the range [0, n_fixed - 1]. ''' self.fit(new_data) return self.membership def _check_init_arguments(self): # Check atlas at = self.atlas if isinstance(at, str): pass elif isinstance(at, list) or isinstance(at, tuple): for elem in at: if isinstance(elem, str): pass elif isinstance(elem, dict): if 'atlas_name' not in elem: raise ValueError('List of atlases: format incorrect') if 'cell_types' not in elem: raise ValueError('List of atlases: format incorrect') else: raise ValueError('List of atlases: format incorrect') elif isinstance(at, dict) and ('atlas_name' in at) and \ ('cell_types' in at): pass elif isinstance(at, AnnData): if 'NumberOfCells' not in at.obs: raise AttributeError( 'atlas must have a "NumberOfCells" obs column') else: raise ValueError('Atlas not formatted correctly') # Convert new data to anndata if needed nd = self.new_data if isinstance(nd, AnnData): pass elif isinstance(nd, pd.DataFrame): # AnnData uses features as columns, so transpose and convert # (the assumption is that in the DataFrame convention, rows are # features) nd = AnnData( X=nd.values.T, obs={'CellID': nd.columns.values}, var={'GeneName': nd.index.values}, ) nd.obs_names = nd.obs['CellID'] nd.var_names = nd.var['GeneName'] self.new_data = nd else: raise ValueError( 'New data must be an AnnData object or pd.DataFrame', ) # New data could be too small to do PCA n_newcells, n_newgenes = self.new_data.shape if n_newgenes < self.n_pcs: warnings.warn( ('The number of features in the new data is lenn than ' + 'the number of PCs, so northstar might give inaccurate ' + 'results')) if n_newcells < self.n_pcs: warnings.warn( ('The number of cells in the new data is lenn than ' + 'the number of PCs, so northstar might give inaccurate ' + 'results')) if min(n_newgenes, n_newcells) < self.n_pcs: warnings.warn('Reducing the number of PCs to {:}'.format( min(n_newgenes, n_newcells))) self.n_pcs = min(n_newgenes, n_newcells) # New data could be too small for knn if n_newcells < self.n_neighbors + 1: warnings.warn( ('The number of cells in the new data is less than the ' + 'number of neighbors requested for the knn: reducing the ' + 'number of graph neighbors to {:}'.format( max(1, n_newcells - 1)), )) self.n_neighbors = max(1, n_newcells - 1) nf1 = self.n_features_per_cell_type nf2 = self.n_features_overdispersed nf3 = self.features_additional if not isinstance(nf1, int): raise ValueError('n_features_per_cell_type must be an int >= 0') if not isinstance(nf1, int): raise ValueError('n_features_overdispersed must be an int >= 0') if (nf1 < 1) and (nf2 < 1) and (nf3 < 1): raise ValueError('No features selected') def _check_feature_intersection(self): L = len(self.features_ovl) if L == 0: raise ValueError( ('No overlapping features in atlas and new data, are gene ' + 'names correct for this species?')) if L < 50: warnings.warn( ('Only {:} overlapping features found in atlas and new ' + 'data'.format(L))) def _check_feature_selection(self): L = len(self.features) if L == 0: raise ValueError( ('No features survived selection, check nortstar parameters')) if L < self.n_pcs: warnings.warn( ('Only {0} features selected, reducing PCA to {0} components'.format(L))) self.n_pcs = L def fetch_atlas_if_needed(self): '''Fetch atlas(es) if needed''' at = self.atlas if isinstance(at, str): self.atlas = AtlasFetcher().fetch_atlas( at, kind='average', ) elif isinstance(self.atlas, list) or isinstance(self.atlas, tuple): self.atlas = AtlasFetcher().fetch_multiple_atlases( at, kind='average', join=self.join, ) elif isinstance(at, dict) and ('atlas_name' in at) and \ ('cell_types' in at): self.atlas = AtlasFetcher().fetch_atlas( at['atlas_name'], kind='average', cell_types=at['cell_types'], ) def compute_feature_intersection(self): '''Calculate the intersection of features between atlas and new data''' # Intersect features self.features_atlas = self.atlas.var_names.values self.features_newdata = self.new_data.var_names.values self.features_ovl = np.intersect1d( self.features_atlas, self.features_newdata, ) def prepare_feature_selection(self): # Cell names and types self.cell_types_atlas = self.atlas.obs_names self.cell_names_atlas = self.atlas.obs_names self.cell_names_newdata = self.new_data.obs_names ctypes_ext = [] cnames_ext = [] if self.n_cells_per_type is None: ncells_per_ct = self.atlas.obs['NumberOfCells'].astype(np.int64) else: ncells_per_ct = [self.n_cells_per_type] * self.atlas.shape[0] for i, ni in enumerate(ncells_per_ct): for ii in range(ni): ctypes_ext.append(self.cell_types_atlas[i]) cnames_ext.append(self.cell_types_atlas[i]+'_{:}'.format(ii+1)) self.cell_types_atlas_extended = ctypes_ext self.cell_names_atlas_extended = cnames_ext # Numbers self.n_atlas = self.atlas.shape[0] self.n_newdata = self.new_data.shape[0] self.n_total = self.n_atlas + self.n_newdata self.n_atlas_extended = len(self.cell_names_atlas_extended) self.n_total_extended = self.n_atlas_extended + self.n_newdata # Cell numbers self.sizes = np.ones(self.n_total, np.float32) if self.n_cells_per_type is not None: self.sizes[:self.n_atlas] *= self.n_cells_per_type else: self.sizes[:self.n_atlas] = self.atlas.obs['NumberOfCells'].astype( np.float32) def select_features(self): '''Select features among the overlap of atlas and new data Returns: ndarray of feature names. ''' features_atlas = self.features_atlas features_newdata = self.features_newdata features_ovl = list(self.features_ovl) features_add = self.features_additional n_atlas = self.n_atlas nf1 = self.n_features_per_cell_type nf2 = self.n_features_overdispersed features = set() # Atlas markers if (nf1 > 0) and (n_atlas > 1): matrix = self.atlas.X for icol in range(n_atlas): ge1 = matrix[icol] ge2 = (matrix.sum(axis=0) - ge1) / (n_atlas - 1) fold_change = np.log2(ge1 + 0.1) - np.log2(ge2 + 0.1) tmp = np.argsort(fold_change)[::-1] ind_markers_atlas = [] for i in tmp: if features_atlas[i] in features_ovl: ind_markers_atlas.append(i) if len(ind_markers_atlas) == nf1: break # Add atlas markers features |= set(features_atlas[ind_markers_atlas]) # Overdispersed features from new data if nf2 > 0: if nf2 >= len(features_ovl): features |= set(features_ovl) else: matrix = self.new_data.X nd_mean = matrix.mean(axis=0) nd_var = matrix.var(axis=0) fano = (nd_var + 1e-10) / (nd_mean + 1e-10) tmp = np.argsort(fano)[::-1] ind_ovd_newdata = [] for i in tmp: if features_newdata[i] in features_ovl: ind_ovd_newdata.append(i) if len(ind_ovd_newdata) == nf2: break # Add overdispersed features features |= set(features_newdata[ind_ovd_newdata]) # Additional features if features_add is not None: features |= (set(features_add) & set(features_ovl)) self.features = np.array(list(features)) def merge_atlas_newdata(self): '''Merge atlas data and the new data after feature selection NOTE: is self.normalize is True, the merged count matrix is normalized by 1 million total counts. ''' features = self.features L = len(features) N1 = self.n_atlas N = self.n_total # This is the largest memory footprint of northstar matrix = np.empty((N, L), dtype=np.float32) # Find the feature indices for atlas ind_features_atlas = pd.Series( np.arange(len(self.features_atlas)), index=self.features_atlas, ).loc[features].values matrix[:N1] = self.atlas.X[:, ind_features_atlas] # Find the feature indices for new data ind_features_newdata = pd.Series( np.arange(len(self.features_newdata)), index=self.features_newdata, ).loc[features].values matrix[N1:] = self.new_data.X[:, ind_features_newdata] # The normalization function also sets pseudocounts if self.normalize_counts: matrix = 1e6 * (matrix.T / (matrix.sum(axis=1) + 0.1)).T self.matrix = matrix def compute_pca(self): '''Compute k nearest neighbors from a matrix with fixed nodes Returns: list of lists with the first k or less indices of the neighbors for each free column. The length is N - n_fixed. For each now, there are less than k entries if no other column within the distance threshold were found, or if N < k. The algorithm proceeds as follows: 0. take the log of the counts 1. subtract the mean along the observation axis (N) and divide by the standard dev along the same axis 2. calculate the weighted covariance matrix 3. calculate normal PCA on that matrix ''' matrix = self.matrix sizes = self.sizes n_atlas = self.n_atlas n_pcs = self.n_pcs # Test input arguments N, L = matrix.shape if len(sizes) != N: raise ValueError('Matrix and sizes dimensions do not match') if n_atlas >= N: raise ValueError('n_fixed larger or equal matrix number of columns') if n_pcs > min(L, N): raise ValueError('n_pcs greater than smaller matrix dimension, those eigenvalues are zero') # 0. take log matrix = np.log10(matrix + 0.1) # 1. standardize weights = 1.0 * sizes / sizes.sum() mean_w = weights @ matrix var_w = weights @ ((matrix - mean_w)**2) std_w = np.sqrt(var_w) Xnorm = (matrix - mean_w) / std_w # take care of non-varying components Xnorm[np.isnan(Xnorm)] = 0 # 2. weighted covariance # This matrix has size L x L. Typically L ~ 500 << N, so the covariance # L x L is much smaller than N x N cov_w = np.cov(Xnorm.T, fweights=sizes) # 3. PCA # rvects columns are the right singular vectors evals, evects = np.linalg.eig(cov_w) # sort by decreasing eigenvalue (explained variance) and truncate ind = evals.argsort()[::-1][:n_pcs] # NOTE: we do not actually need the eigenvalues anymore lvects = np.real(evects.T[ind]) # calculate right singular vectors given the left singular vectors # NOTE: this is true even if we truncated the PCA via n_pcs << L # rvects columns are the right singular vectors rvects = (lvects @ Xnorm.T).T # 4. expand embedded vectors to account for sizes # NOTE: this could be done by carefully tracking multiplicities # in the neighborhood calculation, but it's not worth it: the # amount of overhead memory used here is small because only a few # principal components are used Ne = int(np.sum(sizes)) rvectse = np.empty((Ne, n_pcs), np.float32) cell_type_expanded = [] i = 0 n_fixed_expanded = 0 for isi, size in enumerate(sizes): if isi < n_atlas: cte = self.cell_types_atlas[isi] n_fixed_expanded += int(size) else: cte = '' cell_type_expanded.extend([cte] * int(size)) for j in range(int(size)): rvectse[i] = rvects[isi] i += 1 cell_type_expanded = np.array(cell_type_expanded) self.pca_data = { 'pcs': rvects, 'pcs_expanded': rvectse, 'cell_type': cell_type_expanded, 'n_atlas': n_fixed_expanded, } def compute_similarity_graph(self): '''Compute similarity graph from the extended PC space 1. calculate the distance matrix by expanding atlas columns 2. calculate neighborhoods 3. construct similarity graph from neighborhood lists ''' from scipy.spatial.distance import cdist import igraph as ig sizes = self.sizes n_atlas = self.n_atlas k = self.n_neighbors kout = self.n_neighbors_out_of_atlas metric = self.distance_metric threshold = self.threshold_neighborhood rvects = self.pca_data['pcs'] rvectse = self.pca_data['pcs_expanded'] Ne = len(rvectse) # 5. calculate distance matrix and neighbors # we do it row by row, it costs a bit in terms of runtime but # has huge savings in terms of memory since we don't need the square # distance matrix n_fixede = int(np.sum(sizes[:n_atlas])) neighbors = [] # Treat things within and outside of the atlas differently # Atlas neighbors i = 0 for isi in range(n_atlas): # Find the nearest neighbors in the new data drow = cdist(rvects[[isi]], rvects[n_atlas:], metric=metric)[0] ind = np.argpartition(-drow, -kout)[-kout:] # Discard the ones beyond threshold ind = ind[drow[ind] <= threshold] # Indices are not sorted within ind, so we need to sort them # in descending order by distance (more efficient in the next step) ind = ind[np.argsort(drow[ind])] for ii in range(int(sizes[isi])): # Internal edges neis = list(range(i, i+int(sizes[isi]))) # Remove self neis.remove(i+ii) # External edges neis.extend(list(ind + n_fixede)) neighbors.append(neis) i += int(sizes[isi]) # New data neighbors for i in range(n_fixede, Ne): drow = cdist(rvectse[[i]], rvectse, metric=metric)[0] # set distance to self as a high number, to avoid self drow[i] = drow.max() + 1 # Find largest k negative distances (k neighbors) ind = np.argpartition(-drow, -k)[-k:] # Discard the ones beyond threshold ind = ind[drow[ind] <= threshold] # Indices are not sorted within ind, so we need to sort them # in descending order by distance (more efficient in the next step) ind = ind[np.argsort(drow[ind])] neighbors.append(list(ind)) self.neighbors = neighbors # Construct graph from the lists of neighbors edges_d = set() for i, neis in enumerate(neighbors): for n in neis: edges_d.add(frozenset((i, n))) edges = [tuple(e) for e in edges_d] self.graph = ig.Graph(n=Ne, edges=edges, directed=False) def cluster_graph(self): '''Compute communities from a matrix with fixed nodes Returns: None, but Averages.membership is set as an array with size N - n_fixed with the atlas cell types of all cells from the new dataset. ''' clu = ClusterWithAnnotations( self.graph, self.cell_types_atlas_extended, resolution_parameter=self.resolution_parameter, metric=self.clustering_metric, ) self.membership = clu.fit_transform() def estimate_closest_atlas_cell_type(self): '''Estimate atlas cell type closest to each new cluster''' from scipy.spatial.distance import cdist # Use PC space rvectse = self.pca_data['pcs'] n_atlas = self.pca_data['n_atlas'] cell_types = self.pca_data['cell_type'][:n_atlas] L = rvectse.shape[1] # Extract atlas averages in PC space cell_types_atlas = np.unique(cell_types) rvectse_atlas = rvectse[:n_atlas] N = len(cell_types_atlas) avg_atl = np.empty((L, N), np.float32) for i, ct in enumerate(cell_types_atlas): # They are already replicates, take the first copy avg_atl[:, i] = rvectse_atlas[cell_types == ct][0] # Calculate averages for the new clusters cell_types_new = list(set(self.membership) - set(cell_types_atlas)) rvectse_new = rvectse[n_atlas:] N = len(cell_types_new) avg_new = np.empty((L, N), np.float32) for i, ct in enumerate(cell_types_new): avg_new[:, i] = rvectse_new[self.membership == ct].mean(axis=0) # Calculate distance matrix between new and old in the high-dimensional # feature-selected space dmat = cdist(avg_new.T, avg_atl.T, metric='euclidean') # Pick the closest closest = np.argmin(dmat, axis=1) # Give it actual names closest = pd.Series(cell_types[closest], index=cell_types_new) return closest def embed(self, method='tsne', **kwargs): X = self.pca_data['pcs_expanded'] index = list(self.cell_names_atlas_extended) + list(self.cell_names_newdata) if method == 'pca': emb = X[:, :2] elif method == 'tsne': from sklearn.manifold import TSNE kwargs['perplexity'] = kwargs.get('perplexity', 30) model = TSNE( n_components=2, **kwargs, ) emb = model.fit_transform(X) elif method == 'umap': from umap import UMAP model = UMAP( n_components=2, **kwargs, ) emb = model.fit_transform(X) res = pd.DataFrame( emb, index=index, columns=['Dimension 1', 'Dimension 2'], ) res['CellType'] = list(self.cell_types_atlas_extended) + list(self.membership) res['Dataset'] = (['Atlas'] * self.n_atlas_extended) + (['New'] * self.n_newdata) return res
38.813536
103
0.585388
7952f6c31b36e611f26f0127b69a16a8c23ba42c
750
py
Python
benchmark_apps/elmerfem/umfpack/src/amd/deps.py
readex-eu/readex-apps
38493b11806c306f4e8f1b7b2d97764b45fac8e2
[ "BSD-3-Clause" ]
2
2020-11-25T13:10:11.000Z
2021-03-15T20:26:35.000Z
elmerfem/umfpack/src/amd/deps.py
jcmcmurry/pipelining
8fface1a501b5050f58e7b902aacdcdde68e9648
[ "MIT" ]
null
null
null
elmerfem/umfpack/src/amd/deps.py
jcmcmurry/pipelining
8fface1a501b5050f58e7b902aacdcdde68e9648
[ "MIT" ]
2
2021-08-02T23:23:40.000Z
2022-02-26T12:39:30.000Z
#!/usr/bin/python # # create preprocessing instructions # from sources.lst # import re sources="amd_aat amd_1 amd_2 amd_dump amd_postorder amd_post_tree amd_defaults amd_order amd_control amd_info amd_valid amd_preprocess" amd_sources=[] for f in re.split(" ",sources): nf=re.sub('amd_','amd_i_',f) + ".c" amd_sources.append(nf) print nf + ":\n\t" + "$(CPP) $(INCLUDES) -DINT " + f + ".c > " + nf for f in re.split(" ",sources): nf=re.sub('amd_','amd_l_',f) + ".c" amd_sources.append(nf) print nf + ":\n\t" + "$(CPP) $(INCLUDES) -DLONG " + f + ".c > " + nf print print "AMD_CPP_SOURCES = \\" for f in amd_sources: if f == amd_sources[len(amd_sources)-1]: print "\t"+f else: print "\t"+f + " \\"
25.862069
135
0.612
7952f7ba9aac09e27d901d3b907dbba68d8f6bd6
1,665
py
Python
nemo_text_processing/inverse_text_normalization/ru/taggers/electronic.py
hamjam/NeMo
b3484d32e1317666151f931bfa39867d88ed8658
[ "Apache-2.0" ]
4,145
2019-09-13T08:29:43.000Z
2022-03-31T18:31:44.000Z
nemo_text_processing/inverse_text_normalization/ru/taggers/electronic.py
hamjam/NeMo
b3484d32e1317666151f931bfa39867d88ed8658
[ "Apache-2.0" ]
2,031
2019-09-17T16:51:39.000Z
2022-03-31T23:52:41.000Z
nemo_text_processing/inverse_text_normalization/ru/taggers/electronic.py
hamjam/NeMo
b3484d32e1317666151f931bfa39867d88ed8658
[ "Apache-2.0" ]
1,041
2019-09-13T10:08:21.000Z
2022-03-30T06:37:38.000Z
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from nemo_text_processing.text_normalization.en.graph_utils import GraphFst try: from pynini.lib import pynutil PYNINI_AVAILABLE = True except (ModuleNotFoundError, ImportError): PYNINI_AVAILABLE = False class ElectronicFst(GraphFst): """ Finite state transducer for classifying electronic, e.g. "ัะน ะฑะธ ัะพะฑะฐะบะฐ ัะฝ ะดะธ ั‚ะพั‡ะบะฐ ั€ัƒ" -> electronic { username: "ab@nd.ru" } Args: tn_electronic: Text normalization Electronic graph deterministic: if True will provide a single transduction option, for False multiple transduction are generated (used for audio-based normalization) """ def __init__(self, tn_electronic, deterministic: bool = True): super().__init__(name="electronic", kind="classify", deterministic=deterministic) graph = tn_electronic.final_graph graph = graph.invert().optimize() graph = pynutil.insert("username: \"") + graph + pynutil.insert("\"") graph = self.add_tokens(graph) self.fst = graph.optimize()
37
94
0.718318
7952f8e616853ea1228bb4e68a099563a531d6be
2,704
py
Python
dask/array/tests/test_svg.py
Juanlu001/dask
ba29ba377ae71e5a90fa5ef5198c7d317b45c06a
[ "BSD-3-Clause" ]
9,684
2016-02-12T16:09:21.000Z
2022-03-31T19:38:26.000Z
dask/array/tests/test_svg.py
Juanlu001/dask
ba29ba377ae71e5a90fa5ef5198c7d317b45c06a
[ "BSD-3-Clause" ]
7,059
2016-02-11T18:32:45.000Z
2022-03-31T22:12:40.000Z
dask/array/tests/test_svg.py
Juanlu001/dask
ba29ba377ae71e5a90fa5ef5198c7d317b45c06a
[ "BSD-3-Clause" ]
1,794
2016-02-13T23:28:39.000Z
2022-03-30T14:33:19.000Z
import xml.etree.ElementTree import pytest import dask.array as da from dask.array.svg import draw_sizes def parses(text): cleaned = text.replace("&rarr;", "") # xml doesn't like righarrow character assert xml.etree.ElementTree.fromstring(cleaned) is not None # parses cleanly def test_basic(): parses(da.ones(10).to_svg()) parses(da.ones((10, 10)).to_svg()) parses(da.ones((10, 10, 10)).to_svg()) parses(da.ones((10, 10, 10, 10)).to_svg()) parses(da.ones((10, 10, 10, 10, 10)).to_svg()) parses(da.ones((10, 10, 10, 10, 10, 10)).to_svg()) parses(da.ones((10, 10, 10, 10, 10, 10, 10)).to_svg()) def test_repr_html(): pytest.importorskip("jinja2") assert da.ones([])._repr_html_() assert da.ones(10)[:0]._repr_html_() assert da.ones(10)._repr_html_() assert da.ones((10, 10))._repr_html_() assert da.ones((10, 10, 10))._repr_html_() assert da.ones((10, 10, 10, 10))._repr_html_() def test_errors(): # empty arrays with pytest.raises(NotImplementedError) as excpt: da.ones([]).to_svg() assert "0 dimensions" in str(excpt.value) # Scalars with pytest.raises(NotImplementedError) as excpt: da.asarray(1).to_svg() assert "0 dimensions" in str(excpt.value) # 0-length dims arrays with pytest.raises(NotImplementedError) as excpt: da.ones(10)[:0].to_svg() assert "0-length dimensions" in str(excpt.value) # unknown chunk sizes with pytest.raises(NotImplementedError) as excpt: x = da.ones(10) x = x[x > 5] x.to_svg() assert "unknown chunk sizes" in str(excpt.value) def test_repr_html_size_units(): pytest.importorskip("jinja2") x = da.ones((10000, 5000)) x = da.ones((3000, 10000), chunks=(1000, 1000)) text = x._repr_html_() assert "MB" in text or "MiB" in text assert str(x.shape) in text assert str(x.dtype) in text parses(text) x = da.ones((3000, 10000, 50), chunks=(1000, 1000, 10)) parses(x._repr_html_()) def test_draw_sizes(): assert draw_sizes((10, 10), size=100) == (100, 100) # respect symmetry assert draw_sizes((10, 10), size=200) == (200, 200) # respect size keyword assert draw_sizes((10, 5), size=100) == (100, 50) # respect small ratios a, b, c = draw_sizes((1000, 100, 10)) assert a > b assert b > c assert a < b * 5 assert b < c * 5 def test_too_many_lines_fills_sides_darker(): data = da.ones((16000, 2400, 3600), chunks=(1, 2400, 3600)) text = data.to_svg() assert "8B4903" in text assert text.count("\n") < 300 def test_3d(): text = da.ones((10, 10, 10, 10, 10)).to_svg() assert text.count("<svg") == 1
28.166667
82
0.629438
7952f9949f07290893265d144331fc1b932ae0fa
197
py
Python
membership/admin.py
ADpDinamo/site
d7313cd6c151a381ccc803b81768673587cb8d45
[ "Apache-2.0" ]
null
null
null
membership/admin.py
ADpDinamo/site
d7313cd6c151a381ccc803b81768673587cb8d45
[ "Apache-2.0" ]
8
2021-03-19T10:14:39.000Z
2022-03-12T00:24:41.000Z
membership/admin.py
ADpDinamo/site
d7313cd6c151a381ccc803b81768673587cb8d45
[ "Apache-2.0" ]
null
null
null
from django.contrib import admin from .models import Membership, UserMembership, Subcription admin.site.register(Membership) admin.site.register(UserMembership) admin.site.register(Subcription)
21.888889
59
0.837563
7952f99a1868e1fbb8a2550993cea9165a5f32aa
10,530
py
Python
src/Methods/utils/Crqa.py
syncpy/SyncPy
70f990971a4b4215549559134812c7469c87c88f
[ "CECILL-B" ]
20
2015-11-27T10:08:57.000Z
2021-11-17T22:19:36.000Z
src/Methods/utils/Crqa.py
syncpy/SyncPy
70f990971a4b4215549559134812c7469c87c88f
[ "CECILL-B" ]
3
2015-11-13T13:08:04.000Z
2022-02-03T15:42:40.000Z
src/Methods/utils/Crqa.py
syncpy/SyncPy
70f990971a4b4215549559134812c7469c87c88f
[ "CECILL-B" ]
14
2015-12-17T09:25:43.000Z
2021-02-26T14:37:48.000Z
### This file is a part of the Syncpy library. ### Copyright 2015, ISIR / Universite Pierre et Marie Curie (UPMC) ### Main contributor(s): Giovanna Varni, Marie Avril, ### syncpy@isir.upmc.fr ### ### This software is a computer program whose for investigating ### synchrony in a fast and exhaustive way. ### ### This software is governed by the CeCILL-B license under French law ### and abiding by the rules of distribution of free software. You ### can use, modify and/ or redistribute the software under the terms ### of the CeCILL-B license as circulated by CEA, CNRS and INRIA at the ### following URL "http://www.cecill.info". ### As a counterpart to the access to the source code and rights to ### copy, modify and redistribute granted by the license, users are ### provided only with a limited warranty and the software's author, ### the holder of the economic rights, and the successive licensors ### have only limited liability. ### ### In this respect, the user's attention is drawn to the risks ### associated with loading, using, modifying and/or developing or ### reproducing the software by the user in light of its specific ### status of free software, that may mean that it is complicated to ### manipulate, and that also therefore means that it is reserved for ### developers and experienced professionals having in-depth computer ### knowledge. Users are therefore encouraged to load and test the ### software's suitability as regards their requirements in conditions ### enabling the security of their systems and/or data to be ensured ### and, more generally, to use and operate it in the same conditions ### as regards security. ### ### The fact that you are presently reading this means that you have ### had knowledge of the CeCILL-B license and that you accept its terms. """ .. moduleauthor:: Giovanna Varni """ import numpy as np import pandas as pd import matplotlib.pyplot as plt import itertools import CrossRecurrencePlot def Crqa(x,y,m,t,e,distance,standardization,window,window_size,step,lmin,thw): """ It computes the following (cross)recurrence measures from the (cross)recurrence plot of two uni/multi-variate signals x and y (in pandas DataFrame format): Recurrence Rate (RR), Determinism (DET), Average Diagonal Line Length (L), Maximum Diagonal Line Length (L_max), Entropy (ENT). :param x: first input signal :type x: pd.DataFrame :param y: second input signal :type y: pd.DataFrame :param m: embedding dimension :type m: int :param t: embedding delay :type t: int :param eps: threshold for recurrence :type eps: float :param distance: It specifies which distance method is used. It can assumes the following values:\n 1. 'euclidean'; 2. 'maximum'; 3. 'manhattan' :type distance: str :param standardization: if True data are nomalize to zero mean and unitary variance :type standardization: bool :param window: second input signal :type window: bool :param window_size: embedding dimension :type window_size: int :param step: embedding delay :type step: int :param lmin: threshold :type lmin: int :param thw: distance method :type thw: int """ ' Raise error if parameters are not in the correct type ' if not(isinstance(x, pd.DataFrame)) : raise TypeError("Requires x to be a pd.DataFrame") if not(isinstance(y, pd.DataFrame)) : raise TypeError("Requires y to be a pd.DataFrame") if not(isinstance(m, int)) : raise TypeError("Requires m to be an integer") if not(isinstance(t, int)) : raise TypeError("Requires t to be an integer") if not(isinstance(e, float)): raise TypeError("requires eps to be a float") if not(isinstance(distance, str)) : raise TypeError("Requires distance to be a string") if not(isinstance(standardization, bool)) : raise TypeError("Requires standardization to be a bool") if not(isinstance(window, bool)) : raise TypeError("Requires window to be an boolean") if not(isinstance(window_size, int)) : raise TypeError("Requires window_size to be an integer") if not(isinstance(step, int)) : raise TypeError("Requires step to be an integer") if not(isinstance(lmin, int)) : raise TypeError("Requires lmin to be an integer") if not(isinstance(thw, int)) : raise TypeError("Requires thw to be an integer") ' Raise error if parameters do not respect input rules ' if m <= 0 : raise ValueError("Requires m to be positive and greater than 0") if t <= 0 : raise ValueError("Requires t to be positive and greater from 0") if e <0: raise ValueError("Requires eps to be positive") if distance != 'euclidean' and distance != 'maximum' and distance !='manhattan': raise ValueError("Requires a valid way to compute distance") if window_size<= 0 or window_size>x.shape[0]: raise ValueError("Requires window_size to be positive and greater than 0 and lesser than the length of the input signals") if step <= 0 or step > x.shape[0]/3.0: raise ValueError("Requires window to be positive and greater than 0 and lesser equal to one third of the length of the signals") if lmin <=0 or lmin > x.shape[0]: raise ValueError("Requires lmin to be positive and greater than 0 and lesser than the length of the input signal") if thw < 0 or thw > x.shape[0]: raise ValueError("Requires thw to be positive and greater than 0 and lesser than the length of the input signals") 'Error if x and y have not the same size' if x.shape[0]!=y.shape[0] : raise ValueError("The two signals have different length") plot=False RR_w=np.array([]) DET_w=np.array([]) L_w=np.array([]) L_w_max=np.array([]) Entr_w=np.array([]) pos = 0 result=dict() if not window: c=CrossRecurrencePlot.CrossRecurrencePlot(x,y,m,t,e,distance,standardization,plot) crp_m=1-c['crp'].copy() if (crp_m.shape[0]!=crp_m.shape[1]): thw=0 hist_P=np.zeros([1,crp_m.shape[0]])[0] RR_w=np.append(RR_w, RR(crp_m,thw)) DET_w=np.append(DET_w, DET(crp_m,hist_P,RR_w,lmin)) L_w=np.append(L_w, L(crp_m,hist_P,lmin)) L_w_max=np.append(L_w_max, L_max(crp_m,hist_P,lmin)) Entr_w=np.append(Entr_w,Entr(crp_m,hist_P,lmin)) result['RR']= RR_w result['DET']= DET_w result['L']= L_w result['L_max']= L_w_max result['ENT']=Entr_w else: if window_size < 5+(m-1)*t: window_size=5+(m-1)*t while((pos+window_size)<x.shape[0]): end = pos+window_size-1 windowed_x=x[pos:end].reset_index(drop=True) windowed_y=y[pos:end].reset_index(drop=True) hist_P=np.zeros([1,window_size])[0] c_wind=CrossRecurrencePlot.CrossRecurrencePlot(windowed_x,windowed_y,m,t,e,distance,standardization,plot) crp_m_wind=1-c_wind['crp'].copy() RR_w=np.append(RR_w, RR(crp_m_wind,thw)) DET_w=np.append(DET_w, DET(crp_m_wind,hist_P,RR_w,lmin)) L_w=np.append(L_w, L(crp_m_wind,hist_P,lmin)) L_w_max=np.append(L_w_max, L_max(crp_m_wind,hist_P,lmin)) Entr_w=np.append(Entr_w,Entr(crp_m_wind,hist_P,lmin)) result['RR']= RR_w result['DET']= DET_w result['L']= L_w result['L_max']= L_w_max result['ENT']=Entr_w pos += step return result #crqa measures def RR(crp_matrix,thw): """ It computes the Recurrence Rate (RR) """ if crp_matrix.shape[0] == 0 : raise ValueError("Error : crp_matrix signal 0 is empty") if crp_matrix.shape[1] == 0 : raise ValueError("Error : crp_matrix signal 1 is empty") if (thw==0) or (thw==1): rr=(1.0/(crp_matrix.shape[0]*crp_matrix.shape[1]))*(np.count_nonzero(crp_matrix)-thw*np.trace(crp_matrix,offset=thw)) else: rr=(1.0/(crp_matrix.shape[0]*crp_matrix[1]))*(np.count_nonzero(crp_matrix)-2*np.trace(crp_matrix,offset=thw)) return rr def DET(crp_matrix,hist_P,rr,lmin): """ It computes the Determinism (DET) """ if np.any(rr == 0) : raise ValueError("DET cannot computed, a division for zero occurred") for offs in range(-(crp_matrix.shape[0]-1),crp_matrix.shape[0],1): diag_line=np.diagonal(crp_matrix,offset=offs) length_diag_line=np.array(length_ones_seq(diag_line)) if (not length_diag_line.size) or (length_ones_seq(length_diag_line)<lmin).all(): continue indices_diag_line=np.hstack(np.where(length_diag_line >=lmin)) for i in range(0,indices_diag_line.size): hist_P[length_diag_line[indices_diag_line[i]]-1]=hist_P[length_diag_line[indices_diag_line[i]]-1]+1 det=1.0*(sum(np.arange(lmin,crp_matrix.shape[0])*hist_P[lmin:crp_matrix.shape[0]]))/(rr*(crp_matrix.shape[0]*crp_matrix.shape[1])) if det>1: det=1.0 return det def L(crp_matrix,hist_P,lmin): """ It computes the Average Diagonal Line Length (L) """ if sum(hist_P[lmin-1:crp_matrix.shape[0]])==0 : raise ValueError("L cannot computed, a division for zero occurred") l_avg=1.0*(np.sum(np.arange(lmin,crp_matrix.shape[0]+1)*hist_P[lmin-1:crp_matrix.shape[0]]))/sum(hist_P[lmin-1:crp_matrix.shape[0]]) return l_avg def L_max(crp_matrix,hist_P,lmin): """ It computes the Maximum Diagonal Line Length (L) """ l_max=np.max(np.where(hist_P!=0))+1 return l_max def Entr(crp_matrix,hist_P,lmin): """ It computes the Entropy (ENTR) """ if np.sum(hist_P[lmin-1:crp_matrix.shape[0]])==0 : raise ValueError("ENTR cannot computed, a division for zero occurred") hist_P_norm=1.0*hist_P[lmin-1:crp_matrix.shape[0]]/np.sum(hist_P[lmin-1:crp_matrix.shape[0]]) hist_P_norm_def=hist_P_norm[np.nonzero(hist_P_norm)] entr=-np.sum(hist_P_norm_def*np.log(hist_P_norm_def)) return entr def length_ones_seq(diag_line): """ It computes the length of a sequence of ones """ return np.array([sum(g) for b, g in itertools.groupby(diag_line) if b])
36.310345
172
0.653086
7952f9fcef76496c3d8f5d171b6746ea451f785c
4,949
py
Python
gr_utilities/_paramtreecfg.py
ZeitgeberH/FISH-VIEWER
ce7e2e89d1f1895e8e7596da1d04afb324a0075d
[ "BSD-3-Clause" ]
5
2022-01-25T17:35:15.000Z
2022-02-09T00:52:20.000Z
gr_utilities/_paramtreecfg.py
ZeitgeberH/FISH-VIEWER
ce7e2e89d1f1895e8e7596da1d04afb324a0075d
[ "BSD-3-Clause" ]
null
null
null
gr_utilities/_paramtreecfg.py
ZeitgeberH/FISH-VIEWER
ce7e2e89d1f1895e8e7596da1d04afb324a0075d
[ "BSD-3-Clause" ]
null
null
null
import numpy as np from pyqtgraph.parametertree.parameterTypes import QtEnumParameter as enum from pyqtgraph.Qt import QtWidgets dlg = QtWidgets.QFileDialog cfg = { 'list': { 'limits': { 'type': 'checklist', 'limits': ['a', 'b', 'c'] } }, 'file': { 'acceptMode': { 'type': 'list', 'limits': list(enum(dlg.AcceptMode, dlg).enumMap) }, 'fileMode': { 'type': 'list', 'limits': list(enum(dlg.FileMode, dlg).enumMap) }, 'viewMode': { 'type': 'list', 'limits': list(enum(dlg.ViewMode, dlg).enumMap) }, 'dialogLabel': { 'type': 'list', 'limits': list(enum(dlg.DialogLabel, dlg).enumMap) }, 'relativeTo': { 'type': 'str', 'value': None }, 'directory': { 'type': 'str', 'value': None }, 'windowTitle': { 'type': 'str', 'value': None }, 'nameFilter': { 'type': 'str', 'value': None } }, 'float': { 'Float Information': { 'type': 'str', 'readonly': True, 'value': 'Note that all options except "finite" also apply to "int" parameters', }, 'step': { 'type': 'float', 'limits': [0, None], 'value': 1, }, 'limits': { 'type': 'list', 'limits': {'[0, None]': [0, None], '[1, 5]': [1, 5]}, }, 'suffix': { 'type': 'list', 'limits': ['Hz', 's', 'm'], }, 'siPrefix': { 'type': 'bool', 'value': True }, 'finite': { 'type': 'bool', 'value': True, }, 'dec': { 'type': 'bool', 'value': False, }, 'minStep': { 'type': 'float', 'value': 1.0e-12, }, }, 'checklist': { 'limits': { 'type': 'checklist', 'limits': ['one', 'two', 'three', 'four'], }, 'exclusive': { 'type': 'bool', 'value': False, } }, 'pen': { 'Pen Information': { 'type': 'str', 'value': 'Click the button to see options', 'readonly': True, }, }, 'slider': { 'step': { 'type': 'float', 'limits': [0, None], 'value': 1, }, 'format': { 'type': 'str', 'value': '{0:>3}', }, 'precision': { 'type': 'int', 'value': 2, 'limits': [1, None], }, 'span': { 'type': 'list', 'limits': {'linspace(-pi, pi)': np.linspace(-np.pi, np.pi), 'arange(10)**2': np.arange(10) ** 2}, }, 'How to Set': { 'type': 'list', 'limits': ['Use span', 'Use step + limits'], } }, 'calendar': { 'format': { 'type': 'str', 'value': 'MM DD', } }, 'Applies to All Types': { 'Extra Information': { 'type': 'text', 'value': 'These apply to all parameters. Watch how this text box is altered by any setting you change.', 'default': 'These apply to all parameters. Watch how this text box is altered by any setting you change.', 'readonly': True, }, 'readonly': { 'type': 'bool', 'value': True, }, 'removable': { 'type': 'bool', 'tip': 'Adds a context menu option to remove this parameter', 'value': False, }, 'visible': { 'type': 'bool', 'value': True, }, 'disabled': { 'type': 'bool', 'value': False, }, 'title': { 'type': 'str', 'value': 'Meta Options', }, 'default': { 'tip': 'The default value that gets set when clicking the arrow in the right column', 'type': 'str', }, 'expanded': { 'type': 'bool', 'value': True, }, }, 'No Extra Options': { 'text': 'Unlike the other parameters shown, these don\'t have extra settable options.\n' \ + 'Note: "int" *does* have the same options as float, mentioned above', 'int': 10, 'str': 'Hi, world!', 'color': '#fff', 'bool': False, 'colormap': None, 'progress': 50, 'action': None, 'font': 'Inter', } }
26.324468
119
0.372398
7952fb4aeaa03cc7c4b7284e40eb5e8011bbbaa9
4,904
py
Python
layers.py
zhangbo2008/GAT_network
c871a2aceceaa5d638c96c21d23d64ed07c07b4c
[ "MIT" ]
null
null
null
layers.py
zhangbo2008/GAT_network
c871a2aceceaa5d638c96c21d23d64ed07c07b4c
[ "MIT" ]
null
null
null
layers.py
zhangbo2008/GAT_network
c871a2aceceaa5d638c96c21d23d64ed07c07b4c
[ "MIT" ]
null
null
null
import numpy as np import torch import torch.nn as nn import torch.nn.functional as F # ่ฟ™ไธชๆ˜ฏๅšcities ้—ฎ้ข˜็š„ class GraphAttentionLayer(nn.Module): """ Simple GAT layer, similar to https://arxiv.org/abs/1710.10903 """ def __init__(self, in_features, out_features, dropout, alpha, concat=True): super(GraphAttentionLayer, self).__init__() self.dropout = dropout self.in_features = in_features self.out_features = out_features self.alpha = alpha self.concat = concat self.W = nn.Parameter(torch.zeros(size=(in_features, out_features))) # ่ฟ™ไธชๅˆๅง‹ๅŒ–ๆฒก็œ‹ๅคชๆ‡‚. in_features ๅฐฑๆ˜ฏ่ฎบๆ–‡่ฟ™ไธช็š„F out_features ๅฐฑๆ˜ฏ่ฎบๆ–‡ไธญ็š„F' nn.init.xavier_uniform_(self.W.data, gain=1.414) self.a = nn.Parameter(torch.zeros(size=(2*out_features, 1))) nn.init.xavier_uniform_(self.a.data, gain=1.414) self.leakyrelu = nn.LeakyReLU(self.alpha) def forward(self, input, adj): h = torch.mm(input, self.W) # ๅ–w็š„ไธ€่กŒ N = h.size()[0]# batch_size a_input = torch.cat([h.repeat(1, N).view(N * N, -1), h.repeat(N, 1)], dim=1).view(N, -1, 2 * self.out_features) e = self.leakyrelu(torch.matmul(a_input, self.a).squeeze(2)) zero_vec = -9e15*torch.ones_like(e) attention = torch.where(adj > 0, e, zero_vec) attention = F.softmax(attention, dim=1) attention = F.dropout(attention, self.dropout, training=self.training) h_prime = torch.matmul(attention, h) if self.concat: return F.elu(h_prime) else: return h_prime def __repr__(self): return self.__class__.__name__ + ' (' + str(self.in_features) + ' -> ' + str(self.out_features) + ')' # ่ฟ™ไธชๆ˜ฏๅšcontent้—ฎ้ข˜็š„. class SpecialSpmmFunction(torch.autograd.Function): """Special function for only sparse region backpropataion layer.""" @staticmethod def forward(ctx, indices, values, shape, b): assert indices.requires_grad == False a = torch.sparse_coo_tensor(indices, values, shape) ctx.save_for_backward(a, b) ctx.N = shape[0] return torch.matmul(a, b) @staticmethod def backward(ctx, grad_output): a, b = ctx.saved_tensors grad_values = grad_b = None if ctx.needs_input_grad[1]: grad_a_dense = grad_output.matmul(b.t()) edge_idx = a._indices()[0, :] * ctx.N + a._indices()[1, :] grad_values = grad_a_dense.view(-1)[edge_idx] if ctx.needs_input_grad[3]: grad_b = a.t().matmul(grad_output) return None, grad_values, None, grad_b class SpecialSpmm(nn.Module): def forward(self, indices, values, shape, b): return SpecialSpmmFunction.apply(indices, values, shape, b) class SpGraphAttentionLayer(nn.Module): """ Sparse version GAT layer, similar to https://arxiv.org/abs/1710.10903 """ def __init__(self, in_features, out_features, dropout, alpha, concat=True): super(SpGraphAttentionLayer, self).__init__() self.in_features = in_features self.out_features = out_features self.alpha = alpha self.concat = concat self.W = nn.Parameter(torch.zeros(size=(in_features, out_features))) nn.init.xavier_normal_(self.W.data, gain=1.414) self.a = nn.Parameter(torch.zeros(size=(1, 2*out_features))) nn.init.xavier_normal_(self.a.data, gain=1.414) self.dropout = nn.Dropout(dropout) self.leakyrelu = nn.LeakyReLU(self.alpha) self.special_spmm = SpecialSpmm() def forward(self, input, adj): dv = 'cuda' if input.is_cuda else 'cpu' N = input.size()[0] edge = adj.nonzero().t() h = torch.mm(input, self.W) # h: N x out assert not torch.isnan(h).any() # Self-attention on the nodes - Shared attention mechanism edge_h = torch.cat((h[edge[0, :], :], h[edge[1, :], :]), dim=1).t() # edge: 2*D x E edge_e = torch.exp(-self.leakyrelu(self.a.mm(edge_h).squeeze())) assert not torch.isnan(edge_e).any() # edge_e: E e_rowsum = self.special_spmm(edge, edge_e, torch.Size([N, N]), torch.ones(size=(N,1), device=dv)) # e_rowsum: N x 1 edge_e = self.dropout(edge_e) # edge_e: E h_prime = self.special_spmm(edge, edge_e, torch.Size([N, N]), h) assert not torch.isnan(h_prime).any() # h_prime: N x out h_prime = h_prime.div(e_rowsum) # h_prime: N x out assert not torch.isnan(h_prime).any() if self.concat: # if this layer is not last layer, return F.elu(h_prime) else: # if this layer is last layer, return h_prime def __repr__(self): return self.__class__.__name__ + ' (' + str(self.in_features) + ' -> ' + str(self.out_features) + ')'
34.780142
119
0.611338
7952fbb0ee1a2207bcd4f39f82106a3ed13b8043
14,773
py
Python
pytype/blocks_test.py
Jrryy/pytype
2d2855dc97d5ccee22ad233a83524616c17c44c9
[ "Apache-2.0" ]
3,882
2015-03-22T12:17:15.000Z
2022-03-31T17:13:20.000Z
pytype/blocks_test.py
Jrryy/pytype
2d2855dc97d5ccee22ad233a83524616c17c44c9
[ "Apache-2.0" ]
638
2015-11-03T06:34:44.000Z
2022-03-31T23:41:48.000Z
pytype/blocks_test.py
Jrryy/pytype
2d2855dc97d5ccee22ad233a83524616c17c44c9
[ "Apache-2.0" ]
301
2015-08-14T10:21:17.000Z
2022-03-08T11:03:40.000Z
"""Tests for blocks.py. To create test cases, you can disassemble source code with the help of the dis module. For example, in Python 3.7, this snippet: import dis import opcode def f(): return None bytecode = dis.Bytecode(f) for x in bytecode.codeobj.co_code: print(f'{x} ({opcode.opname[x]})') prints: 100 (LOAD_CONST) 0 (<0>) 83 (RETURN_VALUE) 0 (<0>) """ from pytype import blocks from pytype.pyc import opcodes from pytype.pyc import pyc from pytype.tests import test_utils import unittest class BaseBlocksTest(unittest.TestCase, test_utils.MakeCodeMixin): """A base class for implementing tests testing blocks.py.""" # These tests check disassembled bytecode, which varies from version to # version, so we fix the test version. python_version = (3, 7) class OrderingTest(BaseBlocksTest): """Tests for order_code in blocks.py.""" def _order_code(self, code): """Helper function to disassemble and then order code.""" disassembled_code = pyc.visit(code, blocks.DisCodeVisitor()) return blocks.order_code(disassembled_code, self.python_version) def test_trivial(self): # Disassembled from: # | return None o = test_utils.Py37Opcodes co = self.make_code([ o.LOAD_CONST, 0, o.RETURN_VALUE, 0, ], name="trivial") ordered_code = self._order_code(co) b0, = ordered_code.order self.assertEqual(len(b0.code), 2) self.assertCountEqual([], b0.incoming) self.assertCountEqual([], b0.outgoing) def test_has_opcode(self): # Disassembled from: # | return None o = test_utils.Py37Opcodes co = self.make_code([ o.LOAD_CONST, 0, o.RETURN_VALUE, 0, ], name="trivial") ordered_code = self._order_code(co) self.assertTrue(ordered_code.has_opcode(opcodes.LOAD_CONST)) self.assertTrue(ordered_code.has_opcode(opcodes.RETURN_VALUE)) self.assertFalse(ordered_code.has_opcode(opcodes.POP_TOP)) def test_yield(self): # Disassembled from: # | yield 1 # | yield None o = test_utils.Py37Opcodes co = self.make_code([ # b0: o.LOAD_CONST, 0, o.YIELD_VALUE, 0, # b1: o.POP_TOP, 0, o.LOAD_CONST, 0, o.RETURN_VALUE, 0, ], name="yield") ordered_code = self._order_code(co) self.assertEqual(ordered_code.co_name, "yield") b0, b1 = ordered_code.order self.assertCountEqual(b0.outgoing, [b1]) self.assertCountEqual(b1.incoming, [b0]) self.assertCountEqual(b0.incoming, []) self.assertCountEqual(b1.outgoing, []) def test_triangle(self): # Disassembled from: # | x = y # | if y > 1: # | x -= 2 # | return x o = test_utils.Py37Opcodes co = self.make_code([ # b0: o.LOAD_GLOBAL, 0, o.STORE_FAST, 0, o.LOAD_GLOBAL, 0, o.LOAD_CONST, 1, o.COMPARE_OP, 4, o.POP_JUMP_IF_FALSE, 20, # b1: o.LOAD_FAST, 0, o.LOAD_CONST, 2, o.INPLACE_SUBTRACT, 0, o.STORE_FAST, 0, # b2: o.LOAD_FAST, 0, o.RETURN_VALUE, 0, ], name="triangle") ordered_code = self._order_code(co) self.assertEqual(ordered_code.co_name, "triangle") b0, b1, b2 = ordered_code.order self.assertCountEqual(b0.incoming, []) self.assertCountEqual(b0.outgoing, [b1, b2]) self.assertCountEqual(b1.incoming, [b0]) self.assertCountEqual(b1.outgoing, [b2]) self.assertCountEqual(b2.incoming, [b0, b1]) self.assertCountEqual(b2.outgoing, []) def test_diamond(self): # Disassembled from: # | x = y # | if y > 1: # | x -= 2 # | else: # | x += 2 # | return x o = test_utils.Py37Opcodes co = self.make_code([ # b0: o.LOAD_GLOBAL, 0, o.STORE_FAST, 0, o.LOAD_GLOBAL, 0, o.LOAD_CONST, 1, o.COMPARE_OP, 4, o.POP_JUMP_IF_FALSE, 22, # b1: o.LOAD_FAST, 0, o.LOAD_CONST, 2, o.INPLACE_SUBTRACT, 0, o.STORE_FAST, 0, o.JUMP_FORWARD, 8, # b2: o.LOAD_FAST, 0, o.LOAD_CONST, 2, o.INPLACE_ADD, 0, o.STORE_FAST, 0, # b3: o.LOAD_FAST, 0, o.RETURN_VALUE, 0, ], name="diamond") ordered_code = self._order_code(co) self.assertEqual(ordered_code.co_name, "diamond") b0, b1, b2, b3 = ordered_code.order self.assertCountEqual(b0.incoming, []) self.assertCountEqual(b0.outgoing, [b1, b2]) self.assertCountEqual(b1.incoming, [b0]) self.assertCountEqual(b1.outgoing, [b3]) self.assertCountEqual(b2.incoming, [b0]) self.assertCountEqual(b2.outgoing, [b3]) self.assertCountEqual(b3.incoming, [b1, b2]) self.assertCountEqual(b3.outgoing, []) def test_raise(self): # Disassembled from: # | raise ValueError() # | return 1 o = test_utils.Py37Opcodes co = self.make_code([ # b0: o.LOAD_GLOBAL, 0, o.CALL_FUNCTION, 0, o.RAISE_VARARGS, 1, o.LOAD_CONST, 1, o.RETURN_VALUE, 0, # dead. ], name="raise") ordered_code = self._order_code(co) self.assertEqual(ordered_code.co_name, "raise") b0, b1 = ordered_code.order self.assertEqual(len(b0.code), 2) self.assertCountEqual(b0.incoming, []) self.assertCountEqual(b0.outgoing, [b1]) self.assertCountEqual(b1.incoming, [b0]) self.assertCountEqual(b1.outgoing, []) def test_call(self): # Disassembled from: # | f() o = test_utils.Py37Opcodes co = self.make_code([ # b0: o.LOAD_GLOBAL, 0, o.CALL_FUNCTION, 0, # b1: o.POP_TOP, 0, o.LOAD_CONST, 0, o.RETURN_VALUE, 0, ], name="call") ordered_code = self._order_code(co) b0, b1 = ordered_code.order self.assertEqual(len(b0.code), 2) self.assertEqual(len(b1.code), 3) self.assertCountEqual(b0.outgoing, [b1]) def test_finally(self): # Disassembled from: # | try: # | pass # | finally: # | pass o = test_utils.Py37Opcodes co = self.make_code([ # b0: o.SETUP_FINALLY, 4, o.POP_BLOCK, 0, # b1: o.LOAD_CONST, 0, # b2: o.END_FINALLY, 0, # b3: o.LOAD_CONST, 0, o.RETURN_VALUE, 0, ], name="finally") ordered_code = self._order_code(co) b0, b1, b2, b3 = ordered_code.order self.assertEqual(len(b0.code), 2) self.assertEqual(len(b1.code), 1) self.assertEqual(len(b2.code), 1) self.assertEqual(len(b3.code), 2) self.assertCountEqual(b0.outgoing, [b1, b2]) def test_except(self): # Disassembled from: # | try: # | pass # | except: # | pass o = test_utils.Py37Opcodes co = self.make_code([ # b0: o.SETUP_EXCEPT, 4, o.POP_BLOCK, 0, # b1: o.JUMP_FORWARD, 12, # b2: o.POP_TOP, 0, o.POP_TOP, 0, o.POP_TOP, 0, o.POP_EXCEPT, 0, o.JUMP_FORWARD, 2, # b3: o.END_FINALLY, 0, # b4: o.LOAD_CONST, 0, o.RETURN_VALUE, 0, ], name="except") ordered_code = self._order_code(co) b0, b1, b2, b3 = ordered_code.order self.assertEqual(len(b0.code), 2) self.assertEqual(len(b1.code), 1) self.assertEqual(len(b2.code), 5) self.assertEqual(len(b3.code), 2) self.assertCountEqual([b1, b2], b0.outgoing) self.assertCountEqual([b3], b1.outgoing) self.assertCountEqual([b3], b2.outgoing) def test_return(self): # Disassembled from: # | return None # | return None o = test_utils.Py37Opcodes co = self.make_code([ o.LOAD_CONST, 0, o.RETURN_VALUE, 0, # dead. o.LOAD_CONST, 1, # dead. o.RETURN_VALUE, 0, # dead. ], name="return") ordered_code = self._order_code(co) b0, = ordered_code.order self.assertEqual(len(b0.code), 2) def test_with(self): # Disassembled from: # | with None: # | pass o = test_utils.Py37Opcodes co = self.make_code([ # b0: o.LOAD_CONST, 0, o.SETUP_WITH, 6, o.POP_TOP, 0, o.POP_BLOCK, 0, # b1: o.LOAD_CONST, 0, # b2: o.WITH_CLEANUP_START, 0, # b3: o.WITH_CLEANUP_FINISH, 0, o.END_FINALLY, 0, # b4: o.LOAD_CONST, 0, o.RETURN_VALUE, 0, ], name="with") ordered_code = self._order_code(co) b0, b1, b2, b3, b4 = ordered_code.order self.assertEqual(len(b0.code), 4) self.assertEqual(len(b1.code), 1) self.assertEqual(len(b2.code), 1) self.assertEqual(len(b3.code), 2) self.assertEqual(len(b4.code), 2) class BlockStackTest(BaseBlocksTest): """Test the add_pop_block_targets function.""" def test_finally(self): # Disassembled from: # | try: # | pass # | finally: # | pass o = test_utils.Py37Opcodes co = self.make_code([ o.SETUP_FINALLY, 4, o.POP_BLOCK, 0, o.LOAD_CONST, 0, o.END_FINALLY, 0, o.LOAD_CONST, 0, o.RETURN_VALUE, 0, ], name="finally") bytecode = opcodes.dis(co.co_code, python_version=self.python_version) blocks.add_pop_block_targets(bytecode, self.python_version) # END_FINALLY == SETUP_FINALLY.target self.assertEqual(bytecode[3], bytecode[0].target) # END_FINALLY == POP_BLOCK.block_target self.assertEqual(bytecode[3], bytecode[1].block_target) def test_except(self): # Disassembled from: # | try: # | pass # | except: # | pass o = test_utils.Py37Opcodes co = self.make_code([ o.SETUP_EXCEPT, 4, o.POP_BLOCK, 0, o.JUMP_FORWARD, 12, o.POP_TOP, 0, o.POP_TOP, 0, o.POP_TOP, 0, o.JUMP_FORWARD, 2, o.END_FINALLY, 0, o.LOAD_CONST, 0, o.RETURN_VALUE, 0, ], name="except") bytecode = opcodes.dis(co.co_code, python_version=self.python_version) blocks.add_pop_block_targets(bytecode, self.python_version) # POP_TOP == SETUP_EXCEPT.target self.assertEqual(bytecode[3], bytecode[0].target) # POP_TOP == POP_BLOCK.block_target self.assertEqual(bytecode[3], bytecode[1].block_target) def test_with(self): # Disassembled from: # | with None: # | pass o = test_utils.Py37Opcodes co = self.make_code([ o.LOAD_CONST, 0, o.SETUP_WITH, 6, o.POP_TOP, 0, o.POP_BLOCK, 0, o.LOAD_CONST, 0, o.WITH_CLEANUP_START, 0, o.WITH_CLEANUP_FINISH, 0, o.END_FINALLY, 0, o.LOAD_CONST, 0, o.RETURN_VALUE, 0, ], name="with") bytecode = opcodes.dis(co.co_code, python_version=self.python_version) blocks.add_pop_block_targets(bytecode, self.python_version) # WITH_CLEANUP_START == SETUP_WITH.target self.assertEqual(bytecode[5], bytecode[1].target) # WITH_CLEANUP_START == POP_BLOCK.block_target self.assertEqual(bytecode[5], bytecode[3].block_target) def test_loop(self): # Disassembled from: # | while []: # | break o = test_utils.Py37Opcodes co = self.make_code([ o.SETUP_LOOP, 10, o.BUILD_LIST, 0, o.POP_JUMP_IF_FALSE, 10, o.BREAK_LOOP, 0, o.JUMP_ABSOLUTE, 2, o.POP_BLOCK, 0, o.LOAD_CONST, 0, o.RETURN_VALUE, 0, ]) bytecode = opcodes.dis(co.co_code, python_version=self.python_version) blocks.add_pop_block_targets(bytecode, self.python_version) # LOAD_CONST == SETUP_LOOP.target self.assertEqual(bytecode[6], bytecode[0].target) # POP_BLOCK == POP_JUMP_IF_FALSE.target self.assertEqual(bytecode[5], bytecode[2].target) # BUILD_LIST == JUMP_ABSOLUTE.target self.assertEqual(bytecode[1], bytecode[4].target) # LOAD_CONST == POP_BLOCK.block_target self.assertEqual(bytecode[6], bytecode[5].block_target) def test_break(self): # Disassembled from: # | while True: # | if []: # | break o = test_utils.Py37Opcodes co = self.make_code([ o.SETUP_LOOP, 10, o.BUILD_LIST, 0, o.POP_JUMP_IF_FALSE, 2, o.BREAK_LOOP, 0, o.JUMP_ABSOLUTE, 2, o.POP_BLOCK, 0, o.LOAD_CONST, 0, o.RETURN_VALUE, 0, ]) bytecode = opcodes.dis(co.co_code, python_version=self.python_version) blocks.add_pop_block_targets(bytecode, self.python_version) # LOAD_CONST == SETUP_LOOP.target self.assertEqual(bytecode[6], bytecode[0].target) # LOAD_CONST == BREAK_LOOP.block_target self.assertEqual(bytecode[6], bytecode[3].block_target) # BUILD_LIST == POP_JUMP_IF_FALSE.target self.assertEqual(bytecode[1], bytecode[2].target) # BUILD_LIST == JUMP_ABSOLUTE.target self.assertEqual(bytecode[1], bytecode[4].target) def test_continue(self): # Disassembled from: # | while True: # | try: # | continue # | except: # | pass o = test_utils.Py37Opcodes co = self.make_code([ o.SETUP_LOOP, 24, o.SETUP_EXCEPT, 6, o.CONTINUE_LOOP, 2, o.POP_BLOCK, 0, o.JUMP_ABSOLUTE, 2, o.POP_TOP, 0, o.POP_TOP, 0, o.POP_TOP, 0, o.POP_EXCEPT, 0, o.JUMP_ABSOLUTE, 2, o.END_FINALLY, 0, o.JUMP_ABSOLUTE, 2, o.POP_BLOCK, 0, o.LOAD_CONST, 0, o.RETURN_VALUE, 0, ]) bytecode = opcodes.dis(co.co_code, python_version=self.python_version) blocks.add_pop_block_targets(bytecode, self.python_version) # LOAD_CONST == SETUP_LOOP.target self.assertEqual(bytecode[13], bytecode[0].target) # POP_TOP == SETUP_EXCEPT.target self.assertEqual(bytecode[5], bytecode[1].target) # SETUP_EXCEPT == CONTINUE_LOOP.target self.assertEqual(bytecode[1], bytecode[2].target) # SETUP_EXCEPT == JUMP_ABSOLUTE.target self.assertEqual(bytecode[1], bytecode[4].target) # SETUP_EXCEPT == JUMP_ABSOLUTE.target self.assertEqual(bytecode[1], bytecode[9].target) # SETUP_EXCEPT == JUMP_ABSOLUTE.target self.assertEqual(bytecode[1], bytecode[11].target) def test_apply_typecomments(self): # Disassembly + type comment map from # a = 1; b = 2 # type: float # The type comment should only apply to b. o = test_utils.Py37Opcodes co = self.make_code([ o.LOAD_CONST, 1, o.STORE_FAST, 0, o.LOAD_CONST, 2, o.STORE_FAST, 1, o.LOAD_CONST, 0, o.RETURN_VALUE, 0, ]) ordered_code = blocks.merge_annotations( blocks.process_code(co, self.python_version), {1: "float"}, []) bytecode = ordered_code.order[0].code self.assertIsNone(bytecode[1].annotation) self.assertEqual(bytecode[3].annotation, "float") if __name__ == "__main__": unittest.main()
28.90998
78
0.613484
7952fc086c62542f78d17bc2a34db6fbd7bd1105
1,468
py
Python
test/test_remove_file_extensions.py
DanB288/youtube_title_parse
965b4a6a4d233ac20a6bbd974a26490d6306059c
[ "MIT" ]
15
2018-10-28T09:30:18.000Z
2022-02-08T11:40:15.000Z
test/test_remove_file_extensions.py
DanB288/youtube_title_parse
965b4a6a4d233ac20a6bbd974a26490d6306059c
[ "MIT" ]
12
2020-04-19T12:54:14.000Z
2021-05-19T20:34:40.000Z
test/test_remove_file_extensions.py
DanB288/youtube_title_parse
965b4a6a4d233ac20a6bbd974a26490d6306059c
[ "MIT" ]
4
2020-05-24T17:18:07.000Z
2021-11-12T20:50:42.000Z
# -*- coding: utf-8 -*- import unittest from six import with_metaclass from .meta import MetaTestSequence tests = [ # https://youtu.be/A2RwHnfI2y8 { "input": "Ga-In (๊ฐ€์ธ) - Nostalgia (๋…ธ์Šคํ…”์ง€์•„) - Lyrics [Hangul+Translation] .mov", "expected": ["Ga-In (๊ฐ€์ธ)", "Nostalgia (๋…ธ์Šคํ…”์ง€์•„)"], }, # https://www.youtube.com/watch?v=PYBuIwuD1DA {"input": "show me - B-free.m4v", "expected": ["show me", "B-free"]}, # https://www.youtube.com/watch?v=5hINYNZslP0 { "input": "์„ฑ์‹œ๊ฒฝ Sung Si Kyung - ๋‚ด๊ฒŒ ์˜ค๋Š” ๊ธธ.mp4", "expected": ["์„ฑ์‹œ๊ฒฝ Sung Si Kyung", "๋‚ด๊ฒŒ ์˜ค๋Š” ๊ธธ"], }, # Things that are NOT file extensions are not removed: # https://www.youtube.com/watch?v=E2yLg9iW1_0 {"input": "์—์ดํ•‘ํฌ - Mr.chu", "expected": ["์—์ดํ•‘ํฌ", "Mr.chu"]}, # https://www.youtube.com/watch?v=P1Oya1PqKFc { "input": "Far East Movement - Live My Life (Feat. Justin Bieber) cover by J.Fla", "expected": [ "Far East Movement", "Live My Life (Feat. Justin Bieber) cover by J.Fla", ], }, # https://www.youtube.com/watch?v=rnQBF2CIygg # Thing that ends in a file extension without a preceding `.`: { "input": "Baka Oppai - A Piece Of Toast", "expected": ["Baka Oppai", "A Piece Of Toast"], }, ] class TestSequence(with_metaclass(MetaTestSequence, unittest.TestCase)): test_cases = tests test_type = __file__ if __name__ == "__main__": unittest.main()
31.913043
89
0.595368
7952fc143114ff6681ef7955223d2174514d27f5
266
py
Python
xontrib/macro_lib/data.py
anki-code/xontrib-macro-lib
9ec22bb104399ad92a4b4f583c4a7d1de7fbf576
[ "MIT" ]
5
2021-03-27T09:28:05.000Z
2022-03-23T08:14:38.000Z
xontrib/macro_lib/data.py
anki-code/xontrib-macro-lib
9ec22bb104399ad92a4b4f583c4a7d1de7fbf576
[ "MIT" ]
null
null
null
xontrib/macro_lib/data.py
anki-code/xontrib-macro-lib
9ec22bb104399ad92a4b4f583c4a7d1de7fbf576
[ "MIT" ]
1
2022-03-18T20:40:09.000Z
2022-03-18T20:40:09.000Z
import json from xonsh.contexts import Block class JsonBlock(Block): __xonsh_block__ = str def __enter__(self): return json.loads(self.macro_block) def __exit__(self, *exc): del self.macro_block, self.macro_globals, self.macro_locals
20.461538
67
0.714286
7952fd29bf76b6400d20eaed6774b5e72f8c970b
267
py
Python
125. Valid palindrome.py
bogdan824/LeetCode-Problems_02
b5ffd0b0bbb8f63fde2f89c672ca1976c2855b09
[ "MIT" ]
null
null
null
125. Valid palindrome.py
bogdan824/LeetCode-Problems_02
b5ffd0b0bbb8f63fde2f89c672ca1976c2855b09
[ "MIT" ]
null
null
null
125. Valid palindrome.py
bogdan824/LeetCode-Problems_02
b5ffd0b0bbb8f63fde2f89c672ca1976c2855b09
[ "MIT" ]
null
null
null
def isPalindrome(s): s = s.lower() holdit = "" for charac in s: if charac.isalpha(): holdit+=charac i=0 j=len(holdit)-1 while i<=j: if holdit[i]!=holdit[j]: return False i+=1 j-=1 return True s = "0P" print(isPalindrome(s))
14.052632
27
0.561798