hexsha
stringlengths
40
40
size
int64
1
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
239
max_stars_repo_name
stringlengths
5
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
239
max_issues_repo_name
stringlengths
5
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
239
max_forks_repo_name
stringlengths
5
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
1
1.03M
avg_line_length
float64
1
958k
max_line_length
int64
1
1.03M
alphanum_fraction
float64
0
1
795236d47b3fabc037de675331efa5a541e17a5f
9,140
py
Python
xclim/testing/tests/test_cli.py
fossabot/xclim
31fbdce6545d29e8a762b64b880e04eeb601f9eb
[ "Apache-2.0" ]
null
null
null
xclim/testing/tests/test_cli.py
fossabot/xclim
31fbdce6545d29e8a762b64b880e04eeb601f9eb
[ "Apache-2.0" ]
null
null
null
xclim/testing/tests/test_cli.py
fossabot/xclim
31fbdce6545d29e8a762b64b880e04eeb601f9eb
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- # Tests for `xclim` package, command line interface import numpy as np import pytest import xarray as xr from click.testing import CliRunner import xclim from xclim.cli import cli from xclim.testing import open_dataset try: from dask.distributed import Client except ImportError: Client = None @pytest.mark.parametrize( "indicators,indnames", [ ([xclim.atmos.tg_mean], ["tg_mean"]), ( # Note: This test is dependent on indicator name length and terminal dimensions. [xclim.atmos.tn_mean, xclim.atmos.ice_days], ["tn_mean", "ice_days"], ), ], ) def test_info(indicators, indnames): runner = CliRunner() results = runner.invoke(cli, ["info"] + indnames) for ind in indicators: assert ind.title in results.output assert ind.identifier in results.output def test_indices(): runner = CliRunner() results = runner.invoke(cli, ["indices"]) for name, ind in xclim.core.indicator.registry.items(): assert name.lower() in results.output @pytest.mark.parametrize( "indicator,indname", [ (xclim.atmos.heating_degree_days, "heating_degree_days"), (xclim.land.base_flow_index, "base_flow_index"), ], ) def test_indicator_help(indicator, indname): runner = CliRunner() results = runner.invoke(cli, [indname, "--help"]) for name in indicator.parameters.keys(): if name not in ["ds", "indexer"]: assert name in results.output @pytest.mark.parametrize( "indicator,expected,varnames", [ ("tg_mean", 272.15, ["tas"]), ("dtrvar", 0.0, ["tasmin", "tasmax"]), ("heating_degree_days", 6588.0, ["tas"]), ("solidprcptot", 31622400.0, ["tas", "pr"]), ], ) def test_normal_computation( tasmin_series, tasmax_series, pr_series, tmp_path, indicator, expected, varnames ): tasmin = tasmin_series(np.ones(366) + 270.15, start="1/1/2000") tasmax = tasmax_series(np.ones(366) + 272.15, start="1/1/2000") pr = pr_series(np.ones(366), start="1/1/2000") ds = xr.Dataset( data_vars={ "tasmin": tasmin, "tasmax": tasmax, "tas": xclim.atmos.tg(tasmin, tasmax), "pr": pr, } ) input_file = tmp_path / "in.nc" output_file = tmp_path / "out.nc" ds.to_netcdf(input_file) args = ["-i", str(input_file), "-o", str(output_file), "-v", indicator] runner = CliRunner() results = runner.invoke(cli, args) for varname in varnames: assert f"Parsed {varname} = {varname}" in results.output assert "Processing :" in results.output assert "100% Completed" in results.output out = xr.open_dataset(output_file) outvar = list(out.data_vars.values())[0] np.testing.assert_allclose(outvar[0], expected) def test_multi_input(tas_series, pr_series, tmp_path): tas = tas_series(np.ones(366) + 273.15, start="1/1/2000") pr = pr_series(np.ones(366), start="1/1/2000") tas_file = tmp_path / "multi_tas_in.nc" pr_file = tmp_path / "multi_pr_in.nc" output_file = tmp_path / "out.nc" tas.to_dataset().to_netcdf(tas_file) pr.to_dataset().to_netcdf(pr_file) runner = CliRunner() results = runner.invoke( cli, [ "-i", str(tmp_path / "multi_*_in.nc"), "-o", str(output_file), "-v", "solidprcptot", ], ) assert "Processing : solidprcptot" in results.output out = xr.open_dataset(output_file) assert out.solidprcptot.sum() == 0 def test_multi_output(tmp_path): ds = open_dataset("ERA5/daily_surface_cancities_1990-1993.nc") input_file = tmp_path / "ws_in.nc" output_file = tmp_path / "out.nc" ds.to_netcdf(input_file) runner = CliRunner() results = runner.invoke( cli, [ "-i", str(input_file), "-o", str(output_file), "-v", "wind_speed_from_vector", ], ) assert "Processing : wind_speed_from_vector" in results.output def test_renaming_variable(tas_series, tmp_path): tas = tas_series(np.ones(366), start="1/1/2000") input_file = tmp_path / "tas.nc" output_file = tmp_path / "out.nc" tas.name = "tas" tas.to_netcdf(input_file) with xclim.set_options(cf_compliance="warn"): runner = CliRunner() results = runner.invoke( cli, [ "-i", str(input_file), "-o", str(output_file), "-v", "tn_mean", "--tasmin", "tas", ], ) assert "Processing : tn_mean" in results.output assert "100% Completed" in results.output out = xr.open_dataset(output_file) assert out.tn_mean[0] == 1.0 def test_indicator_chain(tas_series, tmp_path): tas = tas_series(np.ones(366), start="1/1/2000") input_file = tmp_path / "tas.nc" output_file = tmp_path / "out.nc" tas.to_netcdf(input_file) runner = CliRunner() results = runner.invoke( cli, [ "-i", str(input_file), "-o", str(output_file), "-v", "tg_mean", "growing_degree_days", ], ) assert "Processing : tg_mean" in results.output assert "Processing : growing_degree_days" in results.output assert "100% Completed" in results.output out = xr.open_dataset(output_file) assert out.tg_mean[0] == 1.0 assert out.growing_degree_days[0] == 0 def test_missing_variable(tas_series, tmp_path): tas = tas_series(np.ones(366), start="1/1/2000") input_file = tmp_path / "tas.nc" output_file = tmp_path / "out.nc" tas.to_netcdf(input_file) runner = CliRunner() results = runner.invoke( cli, ["-i", str(input_file), "-o", str(output_file), "tn_mean"] ) assert results.exit_code == 2 assert "'tasmin' was not found in the input dataset." in results.output @pytest.mark.parametrize( "options,output", [ (["--dask-nthreads", "2"], "Error: '--dask-maxmem' must be given"), (["--chunks", "time:90"], "100% Complete"), (["--chunks", "time:90,lat:5"], "100% Completed"), (["--version"], xclim.__version__), ], ) def test_global_options(tas_series, tmp_path, options, output): if "dask" in options[0]: pytest.importorskip("dask.distributed") tas = tas_series(np.ones(366), start="1/1/2000") tas = xr.concat([tas] * 10, dim="lat") input_file = tmp_path / "tas.nc" output_file = tmp_path / "out.nc" tas.to_netcdf(input_file) runner = CliRunner() results = runner.invoke( cli, ["-i", str(input_file), "-o", str(output_file)] + options + ["tg_mean"], ) assert output in results.output def test_bad_usage(tas_series, tmp_path): tas = tas_series(np.ones(366), start="1/1/2000") input_file = tmp_path / "tas.nc" output_file = tmp_path / "out.nc" tas.to_netcdf(input_file) runner = CliRunner() # No command results = runner.invoke(cli, ["-i", str(input_file)]) assert "Missing command" in results.output # Indicator not found: results = runner.invoke(cli, ["info", "mean_ether_velocity"]) assert "Indicator 'mean_ether_velocity' not found in xclim" in results.output # No input file given results = runner.invoke(cli, ["-o", str(output_file), "base_flow_index"]) assert "No input file name given" in results.output # No output file given results = runner.invoke(cli, ["-i", str(input_file), "tg_mean"]) assert "No output file name given" in results.output results = runner.invoke( cli, [ "-i", str(input_file), "-o", str(output_file), "--dask-nthreads", "2", "tg_mean", ], ) if Client is None: # dask.distributed not installed assert "distributed scheduler is not installed" in results.output else: assert "'--dask-maxmem' must be given" in results.output @pytest.mark.parametrize("method, pattern", [("-r", "`GH/"), ("-m", "[GH/")]) def test_release_notes(method, pattern): runner = CliRunner() results = runner.invoke( cli, ["release_notes", method], ) assert ":pull:`" not in results.output assert ":issue:`" not in results.output assert ":user:`" not in results.output assert pattern in results.output @pytest.mark.parametrize( "method, error", [ ( ["-m", "-r"], "Cannot return both Markdown and ReStructuredText in same release_notes call.", ), (list(), "Must specify Markdown (-m) or ReStructuredText (-r)."), ], ) def test_release_notes_failure(method, error): runner = CliRunner() results = runner.invoke( cli, ["release_notes", *method], ) assert error in results.output
27.95107
92
0.595295
795238cdd140f802daad16798b0f06c4193fee09
1,908
py
Python
encoding.py
AnuragAnalog/Machine-learning
4ec2657524cb54d715b0bddeb7d8ea3b7644a302
[ "MIT" ]
2
2020-02-23T07:08:08.000Z
2020-06-15T15:11:36.000Z
encoding.py
AnuragAnalog/Machine-learning
4ec2657524cb54d715b0bddeb7d8ea3b7644a302
[ "MIT" ]
1
2020-01-08T13:30:33.000Z
2020-01-08T13:30:33.000Z
encoding.py
AnuragAnalog/Machine-learning
4ec2657524cb54d715b0bddeb7d8ea3b7644a302
[ "MIT" ]
null
null
null
#!/usr/bin/python3 import numpy as np class OneHotEncoder(): def __init__(self): self.unique = dict() self.fit_called = False self.row = 2 self.column = 2 def __str__(self): if self.fit_called: return "Encoding is: "+str(self.unique) else: return "call the fit method to initialize some parameters" def __encode(self, index, n): return [0 if i is not index else 1 for i in range(n)] def fit(self, x): index = 0 self.fit_called = True unique_values = set(x) for value in unique_values: self.unique[value] = index index = index + 1 self.row = len(x) self.column = index return def transform(self, x): encoded = list() for col in x: for key in self.unique.keys(): if col == key: encoded.append(self.__encode(self.unique[key], self.column)) break return np.array(encoded).reshape(self.row, self.column) class categorize(): def __init__(self): self.unique = dict() self.fit_called = False self.row = 2 def __str__(self): if self.fit_called: return "Encoding is: "+str(self.unique) else: return "call the fit method to initialize some parameters" def fit(self, x): index = 0 self.fit_called = True unique_values = set(x) for value in unique_values: self.unique[value] = index index = index + 1 self.row = len(x) return def transform(self, x): encoded = list() for col in x: for key in self.unique.keys(): if col == key: encoded.append(self.unique[key]) break return np.array(encoded)
25.44
80
0.527778
795239ab78c6ead04df71b340941a444cfc25d19
61,589
py
Python
pandas/plotting/_core.py
liaoaoyuan97/pandas
6e707f2f68a4ed7fd990438bc489374641374cff
[ "PSF-2.0", "Apache-2.0", "BSD-3-Clause-No-Nuclear-License-2014", "MIT", "ECL-2.0", "BSD-3-Clause" ]
1
2021-03-24T21:56:40.000Z
2021-03-24T21:56:40.000Z
pandas/plotting/_core.py
amrezz13/pandas
2fad6a38f8ecb1f4f7568ca57cb974f7f058cb9d
[ "PSF-2.0", "Apache-2.0", "BSD-3-Clause-No-Nuclear-License-2014", "MIT", "MIT-0", "ECL-2.0", "BSD-3-Clause" ]
null
null
null
pandas/plotting/_core.py
amrezz13/pandas
2fad6a38f8ecb1f4f7568ca57cb974f7f058cb9d
[ "PSF-2.0", "Apache-2.0", "BSD-3-Clause-No-Nuclear-License-2014", "MIT", "MIT-0", "ECL-2.0", "BSD-3-Clause" ]
null
null
null
import importlib from typing import TYPE_CHECKING, Optional, Sequence, Tuple, Union from pandas._config import get_option from pandas._typing import Label from pandas.util._decorators import Appender, Substitution from pandas.core.dtypes.common import is_integer, is_list_like from pandas.core.dtypes.generic import ABCDataFrame, ABCSeries from pandas.core.base import PandasObject if TYPE_CHECKING: from pandas import DataFrame def hist_series( self, by=None, ax=None, grid: bool = True, xlabelsize: Optional[int] = None, xrot: Optional[float] = None, ylabelsize: Optional[int] = None, yrot: Optional[float] = None, figsize: Optional[Tuple[int, int]] = None, bins: Union[int, Sequence[int]] = 10, backend: Optional[str] = None, legend: bool = False, **kwargs, ): """ Draw histogram of the input series using matplotlib. Parameters ---------- by : object, optional If passed, then used to form histograms for separate groups. ax : matplotlib axis object If not passed, uses gca(). grid : bool, default True Whether to show axis grid lines. xlabelsize : int, default None If specified changes the x-axis label size. xrot : float, default None Rotation of x axis labels. ylabelsize : int, default None If specified changes the y-axis label size. yrot : float, default None Rotation of y axis labels. figsize : tuple, default None Figure size in inches by default. bins : int or sequence, default 10 Number of histogram bins to be used. If an integer is given, bins + 1 bin edges are calculated and returned. If bins is a sequence, gives bin edges, including left edge of first bin and right edge of last bin. In this case, bins is returned unmodified. backend : str, default None Backend to use instead of the backend specified in the option ``plotting.backend``. For instance, 'matplotlib'. Alternatively, to specify the ``plotting.backend`` for the whole session, set ``pd.options.plotting.backend``. .. versionadded:: 1.0.0 legend : bool, default False Whether to show the legend. .. versionadded:: 1.1.0 **kwargs To be passed to the actual plotting function. Returns ------- matplotlib.AxesSubplot A histogram plot. See Also -------- matplotlib.axes.Axes.hist : Plot a histogram using matplotlib. """ plot_backend = _get_plot_backend(backend) return plot_backend.hist_series( self, by=by, ax=ax, grid=grid, xlabelsize=xlabelsize, xrot=xrot, ylabelsize=ylabelsize, yrot=yrot, figsize=figsize, bins=bins, legend=legend, **kwargs, ) def hist_frame( data: "DataFrame", column: Union[Label, Sequence[Label]] = None, by=None, grid: bool = True, xlabelsize: Optional[int] = None, xrot: Optional[float] = None, ylabelsize: Optional[int] = None, yrot: Optional[float] = None, ax=None, sharex: bool = False, sharey: bool = False, figsize: Optional[Tuple[int, int]] = None, layout: Optional[Tuple[int, int]] = None, bins: Union[int, Sequence[int]] = 10, backend: Optional[str] = None, legend: bool = False, **kwargs, ): """ Make a histogram of the DataFrame's. A `histogram`_ is a representation of the distribution of data. This function calls :meth:`matplotlib.pyplot.hist`, on each series in the DataFrame, resulting in one histogram per column. .. _histogram: https://en.wikipedia.org/wiki/Histogram Parameters ---------- data : DataFrame The pandas object holding the data. column : str or sequence If passed, will be used to limit data to a subset of columns. by : object, optional If passed, then used to form histograms for separate groups. grid : bool, default True Whether to show axis grid lines. xlabelsize : int, default None If specified changes the x-axis label size. xrot : float, default None Rotation of x axis labels. For example, a value of 90 displays the x labels rotated 90 degrees clockwise. ylabelsize : int, default None If specified changes the y-axis label size. yrot : float, default None Rotation of y axis labels. For example, a value of 90 displays the y labels rotated 90 degrees clockwise. ax : Matplotlib axes object, default None The axes to plot the histogram on. sharex : bool, default True if ax is None else False In case subplots=True, share x axis and set some x axis labels to invisible; defaults to True if ax is None otherwise False if an ax is passed in. Note that passing in both an ax and sharex=True will alter all x axis labels for all subplots in a figure. sharey : bool, default False In case subplots=True, share y axis and set some y axis labels to invisible. figsize : tuple The size in inches of the figure to create. Uses the value in `matplotlib.rcParams` by default. layout : tuple, optional Tuple of (rows, columns) for the layout of the histograms. bins : int or sequence, default 10 Number of histogram bins to be used. If an integer is given, bins + 1 bin edges are calculated and returned. If bins is a sequence, gives bin edges, including left edge of first bin and right edge of last bin. In this case, bins is returned unmodified. backend : str, default None Backend to use instead of the backend specified in the option ``plotting.backend``. For instance, 'matplotlib'. Alternatively, to specify the ``plotting.backend`` for the whole session, set ``pd.options.plotting.backend``. .. versionadded:: 1.0.0 legend : bool, default False Whether to show the legend. .. versionadded:: 1.1.0 **kwargs All other plotting keyword arguments to be passed to :meth:`matplotlib.pyplot.hist`. Returns ------- matplotlib.AxesSubplot or numpy.ndarray of them See Also -------- matplotlib.pyplot.hist : Plot a histogram using matplotlib. Examples -------- This example draws a histogram based on the length and width of some animals, displayed in three bins .. plot:: :context: close-figs >>> df = pd.DataFrame({ ... 'length': [1.5, 0.5, 1.2, 0.9, 3], ... 'width': [0.7, 0.2, 0.15, 0.2, 1.1] ... }, index=['pig', 'rabbit', 'duck', 'chicken', 'horse']) >>> hist = df.hist(bins=3) """ plot_backend = _get_plot_backend(backend) return plot_backend.hist_frame( data, column=column, by=by, grid=grid, xlabelsize=xlabelsize, xrot=xrot, ylabelsize=ylabelsize, yrot=yrot, ax=ax, sharex=sharex, sharey=sharey, figsize=figsize, layout=layout, legend=legend, bins=bins, **kwargs, ) _boxplot_doc = """ Make a box plot from DataFrame columns. Make a box-and-whisker plot from DataFrame columns, optionally grouped by some other columns. A box plot is a method for graphically depicting groups of numerical data through their quartiles. The box extends from the Q1 to Q3 quartile values of the data, with a line at the median (Q2). The whiskers extend from the edges of box to show the range of the data. By default, they extend no more than `1.5 * IQR (IQR = Q3 - Q1)` from the edges of the box, ending at the farthest data point within that interval. Outliers are plotted as separate dots. For further details see Wikipedia's entry for `boxplot <https://en.wikipedia.org/wiki/Box_plot>`_. Parameters ---------- column : str or list of str, optional Column name or list of names, or vector. Can be any valid input to :meth:`pandas.DataFrame.groupby`. by : str or array-like, optional Column in the DataFrame to :meth:`pandas.DataFrame.groupby`. One box-plot will be done per value of columns in `by`. ax : object of class matplotlib.axes.Axes, optional The matplotlib axes to be used by boxplot. fontsize : float or str Tick label font size in points or as a string (e.g., `large`). rot : int or float, default 0 The rotation angle of labels (in degrees) with respect to the screen coordinate system. grid : bool, default True Setting this to True will show the grid. figsize : A tuple (width, height) in inches The size of the figure to create in matplotlib. layout : tuple (rows, columns), optional For example, (3, 5) will display the subplots using 3 columns and 5 rows, starting from the top-left. return_type : {'axes', 'dict', 'both'} or None, default 'axes' The kind of object to return. The default is ``axes``. * 'axes' returns the matplotlib axes the boxplot is drawn on. * 'dict' returns a dictionary whose values are the matplotlib Lines of the boxplot. * 'both' returns a namedtuple with the axes and dict. * when grouping with ``by``, a Series mapping columns to ``return_type`` is returned. If ``return_type`` is `None`, a NumPy array of axes with the same shape as ``layout`` is returned. %(backend)s\ **kwargs All other plotting keyword arguments to be passed to :func:`matplotlib.pyplot.boxplot`. Returns ------- result See Notes. See Also -------- Series.plot.hist: Make a histogram. matplotlib.pyplot.boxplot : Matplotlib equivalent plot. Notes ----- The return type depends on the `return_type` parameter: * 'axes' : object of class matplotlib.axes.Axes * 'dict' : dict of matplotlib.lines.Line2D objects * 'both' : a namedtuple with structure (ax, lines) For data grouped with ``by``, return a Series of the above or a numpy array: * :class:`~pandas.Series` * :class:`~numpy.array` (for ``return_type = None``) Use ``return_type='dict'`` when you want to tweak the appearance of the lines after plotting. In this case a dict containing the Lines making up the boxes, caps, fliers, medians, and whiskers is returned. Examples -------- Boxplots can be created for every column in the dataframe by ``df.boxplot()`` or indicating the columns to be used: .. plot:: :context: close-figs >>> np.random.seed(1234) >>> df = pd.DataFrame(np.random.randn(10, 4), ... columns=['Col1', 'Col2', 'Col3', 'Col4']) >>> boxplot = df.boxplot(column=['Col1', 'Col2', 'Col3']) Boxplots of variables distributions grouped by the values of a third variable can be created using the option ``by``. For instance: .. plot:: :context: close-figs >>> df = pd.DataFrame(np.random.randn(10, 2), ... columns=['Col1', 'Col2']) >>> df['X'] = pd.Series(['A', 'A', 'A', 'A', 'A', ... 'B', 'B', 'B', 'B', 'B']) >>> boxplot = df.boxplot(by='X') A list of strings (i.e. ``['X', 'Y']``) can be passed to boxplot in order to group the data by combination of the variables in the x-axis: .. plot:: :context: close-figs >>> df = pd.DataFrame(np.random.randn(10, 3), ... columns=['Col1', 'Col2', 'Col3']) >>> df['X'] = pd.Series(['A', 'A', 'A', 'A', 'A', ... 'B', 'B', 'B', 'B', 'B']) >>> df['Y'] = pd.Series(['A', 'B', 'A', 'B', 'A', ... 'B', 'A', 'B', 'A', 'B']) >>> boxplot = df.boxplot(column=['Col1', 'Col2'], by=['X', 'Y']) The layout of boxplot can be adjusted giving a tuple to ``layout``: .. plot:: :context: close-figs >>> boxplot = df.boxplot(column=['Col1', 'Col2'], by='X', ... layout=(2, 1)) Additional formatting can be done to the boxplot, like suppressing the grid (``grid=False``), rotating the labels in the x-axis (i.e. ``rot=45``) or changing the fontsize (i.e. ``fontsize=15``): .. plot:: :context: close-figs >>> boxplot = df.boxplot(grid=False, rot=45, fontsize=15) The parameter ``return_type`` can be used to select the type of element returned by `boxplot`. When ``return_type='axes'`` is selected, the matplotlib axes on which the boxplot is drawn are returned: >>> boxplot = df.boxplot(column=['Col1', 'Col2'], return_type='axes') >>> type(boxplot) <class 'matplotlib.axes._subplots.AxesSubplot'> When grouping with ``by``, a Series mapping columns to ``return_type`` is returned: >>> boxplot = df.boxplot(column=['Col1', 'Col2'], by='X', ... return_type='axes') >>> type(boxplot) <class 'pandas.core.series.Series'> If ``return_type`` is `None`, a NumPy array of axes with the same shape as ``layout`` is returned: >>> boxplot = df.boxplot(column=['Col1', 'Col2'], by='X', ... return_type=None) >>> type(boxplot) <class 'numpy.ndarray'> """ _backend_doc = """\ backend : str, default None Backend to use instead of the backend specified in the option ``plotting.backend``. For instance, 'matplotlib'. Alternatively, to specify the ``plotting.backend`` for the whole session, set ``pd.options.plotting.backend``. .. versionadded:: 1.0.0 """ _bar_or_line_doc = """ Parameters ---------- x : label or position, optional Allows plotting of one column versus another. If not specified, the index of the DataFrame is used. y : label or position, optional Allows plotting of one column versus another. If not specified, all numerical columns are used. color : str, array_like, or dict, optional The color for each of the DataFrame's columns. Possible values are: - A single color string referred to by name, RGB or RGBA code, for instance 'red' or '#a98d19'. - A sequence of color strings referred to by name, RGB or RGBA code, which will be used for each column recursively. For instance ['green','yellow'] each column's %(kind)s will be filled in green or yellow, alternatively. If there is only a single column to be plotted, then only the first color from the color list will be used. - A dict of the form {column name : color}, so that each column will be colored accordingly. For example, if your columns are called `a` and `b`, then passing {'a': 'green', 'b': 'red'} will color %(kind)ss for column `a` in green and %(kind)ss for column `b` in red. .. versionadded:: 1.1.0 **kwargs Additional keyword arguments are documented in :meth:`DataFrame.plot`. Returns ------- matplotlib.axes.Axes or np.ndarray of them An ndarray is returned with one :class:`matplotlib.axes.Axes` per column when ``subplots=True``. """ @Substitution(backend="") @Appender(_boxplot_doc) def boxplot( data, column=None, by=None, ax=None, fontsize=None, rot=0, grid=True, figsize=None, layout=None, return_type=None, **kwargs, ): plot_backend = _get_plot_backend("matplotlib") return plot_backend.boxplot( data, column=column, by=by, ax=ax, fontsize=fontsize, rot=rot, grid=grid, figsize=figsize, layout=layout, return_type=return_type, **kwargs, ) @Substitution(backend=_backend_doc) @Appender(_boxplot_doc) def boxplot_frame( self, column=None, by=None, ax=None, fontsize=None, rot=0, grid=True, figsize=None, layout=None, return_type=None, backend=None, **kwargs, ): plot_backend = _get_plot_backend(backend) return plot_backend.boxplot_frame( self, column=column, by=by, ax=ax, fontsize=fontsize, rot=rot, grid=grid, figsize=figsize, layout=layout, return_type=return_type, **kwargs, ) def boxplot_frame_groupby( grouped, subplots=True, column=None, fontsize=None, rot=0, grid=True, ax=None, figsize=None, layout=None, sharex=False, sharey=True, backend=None, **kwargs, ): """ Make box plots from DataFrameGroupBy data. Parameters ---------- grouped : Grouped DataFrame subplots : bool * ``False`` - no subplots will be used * ``True`` - create a subplot for each group. column : column name or list of names, or vector Can be any valid input to groupby. fontsize : int or str rot : label rotation angle grid : Setting this to True will show the grid ax : Matplotlib axis object, default None figsize : A tuple (width, height) in inches layout : tuple (optional) The layout of the plot: (rows, columns). sharex : bool, default False Whether x-axes will be shared among subplots. sharey : bool, default True Whether y-axes will be shared among subplots. backend : str, default None Backend to use instead of the backend specified in the option ``plotting.backend``. For instance, 'matplotlib'. Alternatively, to specify the ``plotting.backend`` for the whole session, set ``pd.options.plotting.backend``. .. versionadded:: 1.0.0 **kwargs All other plotting keyword arguments to be passed to matplotlib's boxplot function. Returns ------- dict of key/value = group key/DataFrame.boxplot return value or DataFrame.boxplot return value in case subplots=figures=False Examples -------- You can create boxplots for grouped data and show them as separate subplots: .. plot:: :context: close-figs >>> import itertools >>> tuples = [t for t in itertools.product(range(1000), range(4))] >>> index = pd.MultiIndex.from_tuples(tuples, names=['lvl0', 'lvl1']) >>> data = np.random.randn(len(index),4) >>> df = pd.DataFrame(data, columns=list('ABCD'), index=index) >>> grouped = df.groupby(level='lvl1') >>> grouped.boxplot(rot=45, fontsize=12, figsize=(8,10)) The ``subplots=False`` option shows the boxplots in a single figure. .. plot:: :context: close-figs >>> grouped.boxplot(subplots=False, rot=45, fontsize=12) """ plot_backend = _get_plot_backend(backend) return plot_backend.boxplot_frame_groupby( grouped, subplots=subplots, column=column, fontsize=fontsize, rot=rot, grid=grid, ax=ax, figsize=figsize, layout=layout, sharex=sharex, sharey=sharey, **kwargs, ) class PlotAccessor(PandasObject): """ Make plots of Series or DataFrame. Uses the backend specified by the option ``plotting.backend``. By default, matplotlib is used. Parameters ---------- data : Series or DataFrame The object for which the method is called. x : label or position, default None Only used if data is a DataFrame. y : label, position or list of label, positions, default None Allows plotting of one column versus another. Only used if data is a DataFrame. kind : str The kind of plot to produce: - 'line' : line plot (default) - 'bar' : vertical bar plot - 'barh' : horizontal bar plot - 'hist' : histogram - 'box' : boxplot - 'kde' : Kernel Density Estimation plot - 'density' : same as 'kde' - 'area' : area plot - 'pie' : pie plot - 'scatter' : scatter plot (DataFrame only) - 'hexbin' : hexbin plot (DataFrame only) ax : matplotlib axes object, default None An axes of the current figure. subplots : bool, default False Make separate subplots for each column. sharex : bool, default True if ax is None else False In case ``subplots=True``, share x axis and set some x axis labels to invisible; defaults to True if ax is None otherwise False if an ax is passed in; Be aware, that passing in both an ax and ``sharex=True`` will alter all x axis labels for all axis in a figure. sharey : bool, default False In case ``subplots=True``, share y axis and set some y axis labels to invisible. layout : tuple, optional (rows, columns) for the layout of subplots. figsize : a tuple (width, height) in inches Size of a figure object. use_index : bool, default True Use index as ticks for x axis. title : str or list Title to use for the plot. If a string is passed, print the string at the top of the figure. If a list is passed and `subplots` is True, print each item in the list above the corresponding subplot. grid : bool, default None (matlab style default) Axis grid lines. legend : bool or {'reverse'} Place legend on axis subplots. style : list or dict The matplotlib line style per column. logx : bool or 'sym', default False Use log scaling or symlog scaling on x axis. .. versionchanged:: 0.25.0 logy : bool or 'sym' default False Use log scaling or symlog scaling on y axis. .. versionchanged:: 0.25.0 loglog : bool or 'sym', default False Use log scaling or symlog scaling on both x and y axes. .. versionchanged:: 0.25.0 xticks : sequence Values to use for the xticks. yticks : sequence Values to use for the yticks. xlim : 2-tuple/list Set the x limits of the current axes. ylim : 2-tuple/list Set the y limits of the current axes. xlabel : label, optional Name to use for the xlabel on x-axis. Default uses index name as xlabel, or the x-column name for planar plots. .. versionadded:: 1.1.0 .. versionchanged:: 1.2.0 Now applicable to planar plots (`scatter`, `hexbin`). ylabel : label, optional Name to use for the ylabel on y-axis. Default will show no ylabel, or the y-column name for planar plots. .. versionadded:: 1.1.0 .. versionchanged:: 1.2.0 Now applicable to planar plots (`scatter`, `hexbin`). rot : int, default None Rotation for ticks (xticks for vertical, yticks for horizontal plots). fontsize : int, default None Font size for xticks and yticks. colormap : str or matplotlib colormap object, default None Colormap to select colors from. If string, load colormap with that name from matplotlib. colorbar : bool, optional If True, plot colorbar (only relevant for 'scatter' and 'hexbin' plots). position : float Specify relative alignments for bar plot layout. From 0 (left/bottom-end) to 1 (right/top-end). Default is 0.5 (center). table : bool, Series or DataFrame, default False If True, draw a table using the data in the DataFrame and the data will be transposed to meet matplotlib's default layout. If a Series or DataFrame is passed, use passed data to draw a table. yerr : DataFrame, Series, array-like, dict and str See :ref:`Plotting with Error Bars <visualization.errorbars>` for detail. xerr : DataFrame, Series, array-like, dict and str Equivalent to yerr. stacked : bool, default False in line and bar plots, and True in area plot If True, create stacked plot. sort_columns : bool, default False Sort column names to determine plot ordering. secondary_y : bool or sequence, default False Whether to plot on the secondary y-axis if a list/tuple, which columns to plot on secondary y-axis. mark_right : bool, default True When using a secondary_y axis, automatically mark the column labels with "(right)" in the legend. include_bool : bool, default is False If True, boolean values can be plotted. backend : str, default None Backend to use instead of the backend specified in the option ``plotting.backend``. For instance, 'matplotlib'. Alternatively, to specify the ``plotting.backend`` for the whole session, set ``pd.options.plotting.backend``. .. versionadded:: 1.0.0 **kwargs Options to pass to matplotlib plotting method. Returns ------- :class:`matplotlib.axes.Axes` or numpy.ndarray of them If the backend is not the default matplotlib one, the return value will be the object returned by the backend. Notes ----- - See matplotlib documentation online for more on this subject - If `kind` = 'bar' or 'barh', you can specify relative alignments for bar plot layout by `position` keyword. From 0 (left/bottom-end) to 1 (right/top-end). Default is 0.5 (center) """ _common_kinds = ("line", "bar", "barh", "kde", "density", "area", "hist", "box") _series_kinds = ("pie",) _dataframe_kinds = ("scatter", "hexbin") _kind_aliases = {"density": "kde"} _all_kinds = _common_kinds + _series_kinds + _dataframe_kinds def __init__(self, data): self._parent = data @staticmethod def _get_call_args(backend_name, data, args, kwargs): """ This function makes calls to this accessor `__call__` method compatible with the previous `SeriesPlotMethods.__call__` and `DataFramePlotMethods.__call__`. Those had slightly different signatures, since `DataFramePlotMethods` accepted `x` and `y` parameters. """ if isinstance(data, ABCSeries): arg_def = [ ("kind", "line"), ("ax", None), ("figsize", None), ("use_index", True), ("title", None), ("grid", None), ("legend", False), ("style", None), ("logx", False), ("logy", False), ("loglog", False), ("xticks", None), ("yticks", None), ("xlim", None), ("ylim", None), ("rot", None), ("fontsize", None), ("colormap", None), ("table", False), ("yerr", None), ("xerr", None), ("label", None), ("secondary_y", False), ("xlabel", None), ("ylabel", None), ] elif isinstance(data, ABCDataFrame): arg_def = [ ("x", None), ("y", None), ("kind", "line"), ("ax", None), ("subplots", False), ("sharex", None), ("sharey", False), ("layout", None), ("figsize", None), ("use_index", True), ("title", None), ("grid", None), ("legend", True), ("style", None), ("logx", False), ("logy", False), ("loglog", False), ("xticks", None), ("yticks", None), ("xlim", None), ("ylim", None), ("rot", None), ("fontsize", None), ("colormap", None), ("table", False), ("yerr", None), ("xerr", None), ("secondary_y", False), ("sort_columns", False), ("xlabel", None), ("ylabel", None), ] else: raise TypeError( f"Called plot accessor for type {type(data).__name__}, " "expected Series or DataFrame" ) if args and isinstance(data, ABCSeries): positional_args = str(args)[1:-1] keyword_args = ", ".join( f"{name}={repr(value)}" for (name, default), value in zip(arg_def, args) ) msg = ( "`Series.plot()` should not be called with positional " "arguments, only keyword arguments. The order of " "positional arguments will change in the future. " f"Use `Series.plot({keyword_args})` instead of " f"`Series.plot({positional_args})`." ) raise TypeError(msg) pos_args = {name: value for value, (name, _) in zip(args, arg_def)} if backend_name == "pandas.plotting._matplotlib": kwargs = dict(arg_def, **pos_args, **kwargs) else: kwargs = dict(pos_args, **kwargs) x = kwargs.pop("x", None) y = kwargs.pop("y", None) kind = kwargs.pop("kind", "line") return x, y, kind, kwargs def __call__(self, *args, **kwargs): plot_backend = _get_plot_backend(kwargs.pop("backend", None)) x, y, kind, kwargs = self._get_call_args( plot_backend.__name__, self._parent, args, kwargs ) kind = self._kind_aliases.get(kind, kind) # when using another backend, get out of the way if plot_backend.__name__ != "pandas.plotting._matplotlib": return plot_backend.plot(self._parent, x=x, y=y, kind=kind, **kwargs) if kind not in self._all_kinds: raise ValueError(f"{kind} is not a valid plot kind") # The original data structured can be transformed before passed to the # backend. For example, for DataFrame is common to set the index as the # `x` parameter, and return a Series with the parameter `y` as values. data = self._parent.copy() if isinstance(data, ABCSeries): kwargs["reuse_plot"] = True if kind in self._dataframe_kinds: if isinstance(data, ABCDataFrame): return plot_backend.plot(data, x=x, y=y, kind=kind, **kwargs) else: raise ValueError(f"plot kind {kind} can only be used for data frames") elif kind in self._series_kinds: if isinstance(data, ABCDataFrame): if y is None and kwargs.get("subplots") is False: raise ValueError( f"{kind} requires either y column or 'subplots=True'" ) elif y is not None: if is_integer(y) and not data.columns.holds_integer(): y = data.columns[y] # converted to series actually. copy to not modify data = data[y].copy() data.index.name = y elif isinstance(data, ABCDataFrame): data_cols = data.columns if x is not None: if is_integer(x) and not data.columns.holds_integer(): x = data_cols[x] elif not isinstance(data[x], ABCSeries): raise ValueError("x must be a label or position") data = data.set_index(x) if y is not None: # check if we have y as int or list of ints int_ylist = is_list_like(y) and all(is_integer(c) for c in y) int_y_arg = is_integer(y) or int_ylist if int_y_arg and not data.columns.holds_integer(): y = data_cols[y] label_kw = kwargs["label"] if "label" in kwargs else False for kw in ["xerr", "yerr"]: if kw in kwargs and ( isinstance(kwargs[kw], str) or is_integer(kwargs[kw]) ): try: kwargs[kw] = data[kwargs[kw]] except (IndexError, KeyError, TypeError): pass # don't overwrite data = data[y].copy() if isinstance(data, ABCSeries): label_name = label_kw or y data.name = label_name else: match = is_list_like(label_kw) and len(label_kw) == len(y) if label_kw and not match: raise ValueError( "label should be list-like and same length as y" ) label_name = label_kw or data.columns data.columns = label_name return plot_backend.plot(data, kind=kind, **kwargs) __call__.__doc__ = __doc__ @Appender( """ See Also -------- matplotlib.pyplot.plot : Plot y versus x as lines and/or markers. Examples -------- .. plot:: :context: close-figs >>> s = pd.Series([1, 3, 2]) >>> s.plot.line() .. plot:: :context: close-figs The following example shows the populations for some animals over the years. >>> df = pd.DataFrame({ ... 'pig': [20, 18, 489, 675, 1776], ... 'horse': [4, 25, 281, 600, 1900] ... }, index=[1990, 1997, 2003, 2009, 2014]) >>> lines = df.plot.line() .. plot:: :context: close-figs An example with subplots, so an array of axes is returned. >>> axes = df.plot.line(subplots=True) >>> type(axes) <class 'numpy.ndarray'> .. plot:: :context: close-figs Let's repeat the same example, but specifying colors for each column (in this case, for each animal). >>> axes = df.plot.line( ... subplots=True, color={"pig": "pink", "horse": "#742802"} ... ) .. plot:: :context: close-figs The following example shows the relationship between both populations. >>> lines = df.plot.line(x='pig', y='horse') """ ) @Substitution(kind="line") @Appender(_bar_or_line_doc) def line(self, x=None, y=None, **kwargs): """ Plot Series or DataFrame as lines. This function is useful to plot lines using DataFrame's values as coordinates. """ return self(kind="line", x=x, y=y, **kwargs) @Appender( """ See Also -------- DataFrame.plot.barh : Horizontal bar plot. DataFrame.plot : Make plots of a DataFrame. matplotlib.pyplot.bar : Make a bar plot with matplotlib. Examples -------- Basic plot. .. plot:: :context: close-figs >>> df = pd.DataFrame({'lab':['A', 'B', 'C'], 'val':[10, 30, 20]}) >>> ax = df.plot.bar(x='lab', y='val', rot=0) Plot a whole dataframe to a bar plot. Each column is assigned a distinct color, and each row is nested in a group along the horizontal axis. .. plot:: :context: close-figs >>> speed = [0.1, 17.5, 40, 48, 52, 69, 88] >>> lifespan = [2, 8, 70, 1.5, 25, 12, 28] >>> index = ['snail', 'pig', 'elephant', ... 'rabbit', 'giraffe', 'coyote', 'horse'] >>> df = pd.DataFrame({'speed': speed, ... 'lifespan': lifespan}, index=index) >>> ax = df.plot.bar(rot=0) Plot stacked bar charts for the DataFrame .. plot:: :context: close-figs >>> ax = df.plot.bar(stacked=True) Instead of nesting, the figure can be split by column with ``subplots=True``. In this case, a :class:`numpy.ndarray` of :class:`matplotlib.axes.Axes` are returned. .. plot:: :context: close-figs >>> axes = df.plot.bar(rot=0, subplots=True) >>> axes[1].legend(loc=2) # doctest: +SKIP If you don't like the default colours, you can specify how you'd like each column to be colored. .. plot:: :context: close-figs >>> axes = df.plot.bar( ... rot=0, subplots=True, color={"speed": "red", "lifespan": "green"} ... ) >>> axes[1].legend(loc=2) # doctest: +SKIP Plot a single column. .. plot:: :context: close-figs >>> ax = df.plot.bar(y='speed', rot=0) Plot only selected categories for the DataFrame. .. plot:: :context: close-figs >>> ax = df.plot.bar(x='lifespan', rot=0) """ ) @Substitution(kind="bar") @Appender(_bar_or_line_doc) def bar(self, x=None, y=None, **kwargs): """ Vertical bar plot. A bar plot is a plot that presents categorical data with rectangular bars with lengths proportional to the values that they represent. A bar plot shows comparisons among discrete categories. One axis of the plot shows the specific categories being compared, and the other axis represents a measured value. """ return self(kind="bar", x=x, y=y, **kwargs) @Appender( """ See Also -------- DataFrame.plot.bar: Vertical bar plot. DataFrame.plot : Make plots of DataFrame using matplotlib. matplotlib.axes.Axes.bar : Plot a vertical bar plot using matplotlib. Examples -------- Basic example .. plot:: :context: close-figs >>> df = pd.DataFrame({'lab': ['A', 'B', 'C'], 'val': [10, 30, 20]}) >>> ax = df.plot.barh(x='lab', y='val') Plot a whole DataFrame to a horizontal bar plot .. plot:: :context: close-figs >>> speed = [0.1, 17.5, 40, 48, 52, 69, 88] >>> lifespan = [2, 8, 70, 1.5, 25, 12, 28] >>> index = ['snail', 'pig', 'elephant', ... 'rabbit', 'giraffe', 'coyote', 'horse'] >>> df = pd.DataFrame({'speed': speed, ... 'lifespan': lifespan}, index=index) >>> ax = df.plot.barh() Plot stacked barh charts for the DataFrame .. plot:: :context: close-figs >>> ax = df.plot.barh(stacked=True) We can specify colors for each column .. plot:: :context: close-figs >>> ax = df.plot.barh(color={"speed": "red", "lifespan": "green"}) Plot a column of the DataFrame to a horizontal bar plot .. plot:: :context: close-figs >>> speed = [0.1, 17.5, 40, 48, 52, 69, 88] >>> lifespan = [2, 8, 70, 1.5, 25, 12, 28] >>> index = ['snail', 'pig', 'elephant', ... 'rabbit', 'giraffe', 'coyote', 'horse'] >>> df = pd.DataFrame({'speed': speed, ... 'lifespan': lifespan}, index=index) >>> ax = df.plot.barh(y='speed') Plot DataFrame versus the desired column .. plot:: :context: close-figs >>> speed = [0.1, 17.5, 40, 48, 52, 69, 88] >>> lifespan = [2, 8, 70, 1.5, 25, 12, 28] >>> index = ['snail', 'pig', 'elephant', ... 'rabbit', 'giraffe', 'coyote', 'horse'] >>> df = pd.DataFrame({'speed': speed, ... 'lifespan': lifespan}, index=index) >>> ax = df.plot.barh(x='lifespan') """ ) @Substitution(kind="bar") @Appender(_bar_or_line_doc) def barh(self, x=None, y=None, **kwargs): """ Make a horizontal bar plot. A horizontal bar plot is a plot that presents quantitative data with rectangular bars with lengths proportional to the values that they represent. A bar plot shows comparisons among discrete categories. One axis of the plot shows the specific categories being compared, and the other axis represents a measured value. """ return self(kind="barh", x=x, y=y, **kwargs) def box(self, by=None, **kwargs): r""" Make a box plot of the DataFrame columns. A box plot is a method for graphically depicting groups of numerical data through their quartiles. The box extends from the Q1 to Q3 quartile values of the data, with a line at the median (Q2). The whiskers extend from the edges of box to show the range of the data. The position of the whiskers is set by default to 1.5*IQR (IQR = Q3 - Q1) from the edges of the box. Outlier points are those past the end of the whiskers. For further details see Wikipedia's entry for `boxplot <https://en.wikipedia.org/wiki/Box_plot>`__. A consideration when using this chart is that the box and the whiskers can overlap, which is very common when plotting small sets of data. Parameters ---------- by : str or sequence Column in the DataFrame to group by. **kwargs Additional keywords are documented in :meth:`DataFrame.plot`. Returns ------- :class:`matplotlib.axes.Axes` or numpy.ndarray of them See Also -------- DataFrame.boxplot: Another method to draw a box plot. Series.plot.box: Draw a box plot from a Series object. matplotlib.pyplot.boxplot: Draw a box plot in matplotlib. Examples -------- Draw a box plot from a DataFrame with four columns of randomly generated data. .. plot:: :context: close-figs >>> data = np.random.randn(25, 4) >>> df = pd.DataFrame(data, columns=list('ABCD')) >>> ax = df.plot.box() """ return self(kind="box", by=by, **kwargs) def hist(self, by=None, bins=10, **kwargs): """ Draw one histogram of the DataFrame's columns. A histogram is a representation of the distribution of data. This function groups the values of all given Series in the DataFrame into bins and draws all bins in one :class:`matplotlib.axes.Axes`. This is useful when the DataFrame's Series are in a similar scale. Parameters ---------- by : str or sequence, optional Column in the DataFrame to group by. bins : int, default 10 Number of histogram bins to be used. **kwargs Additional keyword arguments are documented in :meth:`DataFrame.plot`. Returns ------- class:`matplotlib.AxesSubplot` Return a histogram plot. See Also -------- DataFrame.hist : Draw histograms per DataFrame's Series. Series.hist : Draw a histogram with Series' data. Examples -------- When we draw a dice 6000 times, we expect to get each value around 1000 times. But when we draw two dices and sum the result, the distribution is going to be quite different. A histogram illustrates those distributions. .. plot:: :context: close-figs >>> df = pd.DataFrame( ... np.random.randint(1, 7, 6000), ... columns = ['one']) >>> df['two'] = df['one'] + np.random.randint(1, 7, 6000) >>> ax = df.plot.hist(bins=12, alpha=0.5) """ return self(kind="hist", by=by, bins=bins, **kwargs) def kde(self, bw_method=None, ind=None, **kwargs): """ Generate Kernel Density Estimate plot using Gaussian kernels. In statistics, `kernel density estimation`_ (KDE) is a non-parametric way to estimate the probability density function (PDF) of a random variable. This function uses Gaussian kernels and includes automatic bandwidth determination. .. _kernel density estimation: https://en.wikipedia.org/wiki/Kernel_density_estimation Parameters ---------- bw_method : str, scalar or callable, optional The method used to calculate the estimator bandwidth. This can be 'scott', 'silverman', a scalar constant or a callable. If None (default), 'scott' is used. See :class:`scipy.stats.gaussian_kde` for more information. ind : NumPy array or int, optional Evaluation points for the estimated PDF. If None (default), 1000 equally spaced points are used. If `ind` is a NumPy array, the KDE is evaluated at the points passed. If `ind` is an integer, `ind` number of equally spaced points are used. **kwargs Additional keyword arguments are documented in :meth:`pandas.%(this-datatype)s.plot`. Returns ------- matplotlib.axes.Axes or numpy.ndarray of them See Also -------- scipy.stats.gaussian_kde : Representation of a kernel-density estimate using Gaussian kernels. This is the function used internally to estimate the PDF. Examples -------- Given a Series of points randomly sampled from an unknown distribution, estimate its PDF using KDE with automatic bandwidth determination and plot the results, evaluating them at 1000 equally spaced points (default): .. plot:: :context: close-figs >>> s = pd.Series([1, 2, 2.5, 3, 3.5, 4, 5]) >>> ax = s.plot.kde() A scalar bandwidth can be specified. Using a small bandwidth value can lead to over-fitting, while using a large bandwidth value may result in under-fitting: .. plot:: :context: close-figs >>> ax = s.plot.kde(bw_method=0.3) .. plot:: :context: close-figs >>> ax = s.plot.kde(bw_method=3) Finally, the `ind` parameter determines the evaluation points for the plot of the estimated PDF: .. plot:: :context: close-figs >>> ax = s.plot.kde(ind=[1, 2, 3, 4, 5]) For DataFrame, it works in the same way: .. plot:: :context: close-figs >>> df = pd.DataFrame({ ... 'x': [1, 2, 2.5, 3, 3.5, 4, 5], ... 'y': [4, 4, 4.5, 5, 5.5, 6, 6], ... }) >>> ax = df.plot.kde() A scalar bandwidth can be specified. Using a small bandwidth value can lead to over-fitting, while using a large bandwidth value may result in under-fitting: .. plot:: :context: close-figs >>> ax = df.plot.kde(bw_method=0.3) .. plot:: :context: close-figs >>> ax = df.plot.kde(bw_method=3) Finally, the `ind` parameter determines the evaluation points for the plot of the estimated PDF: .. plot:: :context: close-figs >>> ax = df.plot.kde(ind=[1, 2, 3, 4, 5, 6]) """ return self(kind="kde", bw_method=bw_method, ind=ind, **kwargs) density = kde def area(self, x=None, y=None, **kwargs): """ Draw a stacked area plot. An area plot displays quantitative data visually. This function wraps the matplotlib area function. Parameters ---------- x : label or position, optional Coordinates for the X axis. By default uses the index. y : label or position, optional Column to plot. By default uses all columns. stacked : bool, default True Area plots are stacked by default. Set to False to create a unstacked plot. **kwargs Additional keyword arguments are documented in :meth:`DataFrame.plot`. Returns ------- matplotlib.axes.Axes or numpy.ndarray Area plot, or array of area plots if subplots is True. See Also -------- DataFrame.plot : Make plots of DataFrame using matplotlib / pylab. Examples -------- Draw an area plot based on basic business metrics: .. plot:: :context: close-figs >>> df = pd.DataFrame({ ... 'sales': [3, 2, 3, 9, 10, 6], ... 'signups': [5, 5, 6, 12, 14, 13], ... 'visits': [20, 42, 28, 62, 81, 50], ... }, index=pd.date_range(start='2018/01/01', end='2018/07/01', ... freq='M')) >>> ax = df.plot.area() Area plots are stacked by default. To produce an unstacked plot, pass ``stacked=False``: .. plot:: :context: close-figs >>> ax = df.plot.area(stacked=False) Draw an area plot for a single column: .. plot:: :context: close-figs >>> ax = df.plot.area(y='sales') Draw with a different `x`: .. plot:: :context: close-figs >>> df = pd.DataFrame({ ... 'sales': [3, 2, 3], ... 'visits': [20, 42, 28], ... 'day': [1, 2, 3], ... }) >>> ax = df.plot.area(x='day') """ return self(kind="area", x=x, y=y, **kwargs) def pie(self, **kwargs): """ Generate a pie plot. A pie plot is a proportional representation of the numerical data in a column. This function wraps :meth:`matplotlib.pyplot.pie` for the specified column. If no column reference is passed and ``subplots=True`` a pie plot is drawn for each numerical column independently. Parameters ---------- y : int or label, optional Label or position of the column to plot. If not provided, ``subplots=True`` argument must be passed. **kwargs Keyword arguments to pass on to :meth:`DataFrame.plot`. Returns ------- matplotlib.axes.Axes or np.ndarray of them A NumPy array is returned when `subplots` is True. See Also -------- Series.plot.pie : Generate a pie plot for a Series. DataFrame.plot : Make plots of a DataFrame. Examples -------- In the example below we have a DataFrame with the information about planet's mass and radius. We pass the 'mass' column to the pie function to get a pie plot. .. plot:: :context: close-figs >>> df = pd.DataFrame({'mass': [0.330, 4.87 , 5.97], ... 'radius': [2439.7, 6051.8, 6378.1]}, ... index=['Mercury', 'Venus', 'Earth']) >>> plot = df.plot.pie(y='mass', figsize=(5, 5)) .. plot:: :context: close-figs >>> plot = df.plot.pie(subplots=True, figsize=(11, 6)) """ if ( isinstance(self._parent, ABCDataFrame) and kwargs.get("y", None) is None and not kwargs.get("subplots", False) ): raise ValueError("pie requires either y column or 'subplots=True'") return self(kind="pie", **kwargs) def scatter(self, x, y, s=None, c=None, **kwargs): """ Create a scatter plot with varying marker point size and color. The coordinates of each point are defined by two dataframe columns and filled circles are used to represent each point. This kind of plot is useful to see complex correlations between two variables. Points could be for instance natural 2D coordinates like longitude and latitude in a map or, in general, any pair of metrics that can be plotted against each other. Parameters ---------- x : int or str The column name or column position to be used as horizontal coordinates for each point. y : int or str The column name or column position to be used as vertical coordinates for each point. s : str, scalar or array_like, optional The size of each point. Possible values are: - A string with the name of the column to be used for marker's size. - A single scalar so all points have the same size. - A sequence of scalars, which will be used for each point's size recursively. For instance, when passing [2,14] all points size will be either 2 or 14, alternatively. .. versionchanged:: 1.1.0 c : str, int or array_like, optional The color of each point. Possible values are: - A single color string referred to by name, RGB or RGBA code, for instance 'red' or '#a98d19'. - A sequence of color strings referred to by name, RGB or RGBA code, which will be used for each point's color recursively. For instance ['green','yellow'] all points will be filled in green or yellow, alternatively. - A column name or position whose values will be used to color the marker points according to a colormap. **kwargs Keyword arguments to pass on to :meth:`DataFrame.plot`. Returns ------- :class:`matplotlib.axes.Axes` or numpy.ndarray of them See Also -------- matplotlib.pyplot.scatter : Scatter plot using multiple input data formats. Examples -------- Let's see how to draw a scatter plot using coordinates from the values in a DataFrame's columns. .. plot:: :context: close-figs >>> df = pd.DataFrame([[5.1, 3.5, 0], [4.9, 3.0, 0], [7.0, 3.2, 1], ... [6.4, 3.2, 1], [5.9, 3.0, 2]], ... columns=['length', 'width', 'species']) >>> ax1 = df.plot.scatter(x='length', ... y='width', ... c='DarkBlue') And now with the color determined by a column as well. .. plot:: :context: close-figs >>> ax2 = df.plot.scatter(x='length', ... y='width', ... c='species', ... colormap='viridis') """ return self(kind="scatter", x=x, y=y, s=s, c=c, **kwargs) def hexbin(self, x, y, C=None, reduce_C_function=None, gridsize=None, **kwargs): """ Generate a hexagonal binning plot. Generate a hexagonal binning plot of `x` versus `y`. If `C` is `None` (the default), this is a histogram of the number of occurrences of the observations at ``(x[i], y[i])``. If `C` is specified, specifies values at given coordinates ``(x[i], y[i])``. These values are accumulated for each hexagonal bin and then reduced according to `reduce_C_function`, having as default the NumPy's mean function (:meth:`numpy.mean`). (If `C` is specified, it must also be a 1-D sequence of the same length as `x` and `y`, or a column label.) Parameters ---------- x : int or str The column label or position for x points. y : int or str The column label or position for y points. C : int or str, optional The column label or position for the value of `(x, y)` point. reduce_C_function : callable, default `np.mean` Function of one argument that reduces all the values in a bin to a single number (e.g. `np.mean`, `np.max`, `np.sum`, `np.std`). gridsize : int or tuple of (int, int), default 100 The number of hexagons in the x-direction. The corresponding number of hexagons in the y-direction is chosen in a way that the hexagons are approximately regular. Alternatively, gridsize can be a tuple with two elements specifying the number of hexagons in the x-direction and the y-direction. **kwargs Additional keyword arguments are documented in :meth:`DataFrame.plot`. Returns ------- matplotlib.AxesSubplot The matplotlib ``Axes`` on which the hexbin is plotted. See Also -------- DataFrame.plot : Make plots of a DataFrame. matplotlib.pyplot.hexbin : Hexagonal binning plot using matplotlib, the matplotlib function that is used under the hood. Examples -------- The following examples are generated with random data from a normal distribution. .. plot:: :context: close-figs >>> n = 10000 >>> df = pd.DataFrame({'x': np.random.randn(n), ... 'y': np.random.randn(n)}) >>> ax = df.plot.hexbin(x='x', y='y', gridsize=20) The next example uses `C` and `np.sum` as `reduce_C_function`. Note that `'observations'` values ranges from 1 to 5 but the result plot shows values up to more than 25. This is because of the `reduce_C_function`. .. plot:: :context: close-figs >>> n = 500 >>> df = pd.DataFrame({ ... 'coord_x': np.random.uniform(-3, 3, size=n), ... 'coord_y': np.random.uniform(30, 50, size=n), ... 'observations': np.random.randint(1,5, size=n) ... }) >>> ax = df.plot.hexbin(x='coord_x', ... y='coord_y', ... C='observations', ... reduce_C_function=np.sum, ... gridsize=10, ... cmap="viridis") """ if reduce_C_function is not None: kwargs["reduce_C_function"] = reduce_C_function if gridsize is not None: kwargs["gridsize"] = gridsize return self(kind="hexbin", x=x, y=y, C=C, **kwargs) _backends = {} def _find_backend(backend: str): """ Find a pandas plotting backend> Parameters ---------- backend : str The identifier for the backend. Either an entrypoint item registered with pkg_resources, or a module name. Notes ----- Modifies _backends with imported backends as a side effect. Returns ------- types.ModuleType The imported backend. """ import pkg_resources # Delay import for performance. for entry_point in pkg_resources.iter_entry_points("pandas_plotting_backends"): if entry_point.name == "matplotlib": # matplotlib is an optional dependency. When # missing, this would raise. continue _backends[entry_point.name] = entry_point.load() try: return _backends[backend] except KeyError: # Fall back to unregistered, module name approach. try: module = importlib.import_module(backend) except ImportError: # We re-raise later on. pass else: if hasattr(module, "plot"): # Validate that the interface is implemented when the option # is set, rather than at plot time. _backends[backend] = module return module raise ValueError( f"Could not find plotting backend '{backend}'. Ensure that you've installed " f"the package providing the '{backend}' entrypoint, or that the package has a " "top-level `.plot` method." ) def _get_plot_backend(backend=None): """ Return the plotting backend to use (e.g. `pandas.plotting._matplotlib`). The plotting system of pandas has been using matplotlib, but the idea here is that it can also work with other third-party backends. In the future, this function will return the backend from a pandas option, and all the rest of the code in this file will use the backend specified there for the plotting. The backend is imported lazily, as matplotlib is a soft dependency, and pandas can be used without it being installed. """ backend = backend or get_option("plotting.backend") if backend == "matplotlib": # Because matplotlib is an optional dependency and first-party backend, # we need to attempt an import here to raise an ImportError if needed. try: import pandas.plotting._matplotlib as module except ImportError: raise ImportError( "matplotlib is required for plotting when the " 'default backend "matplotlib" is selected.' ) from None _backends["matplotlib"] = module if backend in _backends: return _backends[backend] module = _find_backend(backend) _backends[backend] = module return module
34.197113
88
0.567634
79523a4c312c1f4481d0cf4659af74932bbf980b
1,438
py
Python
conans/test/functional/settings_constraint_test.py
wahlm/conan
1afadb5cca9e1c688c7b37c69a0ff3c6a6dbe257
[ "MIT" ]
null
null
null
conans/test/functional/settings_constraint_test.py
wahlm/conan
1afadb5cca9e1c688c7b37c69a0ff3c6a6dbe257
[ "MIT" ]
null
null
null
conans/test/functional/settings_constraint_test.py
wahlm/conan
1afadb5cca9e1c688c7b37c69a0ff3c6a6dbe257
[ "MIT" ]
null
null
null
import unittest from conans.test.utils.tools import TestClient from conans.util.files import save import os class SettingConstraintTest(unittest.TestCase): def settings_constraint_test(self): conanfile = """from conans import ConanFile class Test(ConanFile): name = "Hello" version = "0.1" settings = {"compiler": {"gcc": {"version": ["7.1"]}}} def build(self): self.output.info("Compiler version!: %s" % self.settings.compiler.version) """ test = """from conans import ConanFile class Test(ConanFile): requires = "Hello/0.1@user/channel" def test(self): pass """ client = TestClient() client.save({"conanfile.py": conanfile, "test_package/conanfile.py": test}) default_profile = os.path.join(client.base_folder, ".conan/profiles/default") save(default_profile, "[settings]\ncompiler=gcc\ncompiler.version=6.3") error = client.run("create . user/channel", ignore_error=True) self.assertTrue(error) self.assertIn("Invalid setting '6.3' is not a valid 'settings.compiler.version'", client.user_io.out) client.run("create . user/channel -s compiler=gcc -s compiler.version=7.1") self.assertIn("Hello/0.1@user/channel: Compiler version!: 7.1", client.user_io.out) self.assertIn("Hello/0.1@user/channel: Generating the package", client.user_io.out)
39.944444
91
0.653686
79523acce2a54299a63e6840c2e0f7c465ab818f
1,939
py
Python
contest/abc156/D.py
mola1129/atcoder
1d3b18cb92d0ba18c41172f49bfcd0dd8d29f9db
[ "MIT" ]
null
null
null
contest/abc156/D.py
mola1129/atcoder
1d3b18cb92d0ba18c41172f49bfcd0dd8d29f9db
[ "MIT" ]
null
null
null
contest/abc156/D.py
mola1129/atcoder
1d3b18cb92d0ba18c41172f49bfcd0dd8d29f9db
[ "MIT" ]
null
null
null
MOD = 10 ** 9 + 7 class ModInt: def __init__(self, x): self.x = x % MOD def __str__(self): return str(self.x) __repr__ = __str__ def __add__(self, other): return ( ModInt(self.x + other.x) if isinstance(other, ModInt) else ModInt(self.x + other) ) def __sub__(self, other): return ( ModInt(self.x - other.x) if isinstance(other, ModInt) else ModInt(self.x - other) ) def __mul__(self, other): return ( ModInt(self.x * other.x) if isinstance(other, ModInt) else ModInt(self.x * other) ) def __truediv__(self, other): return ( ModInt( self.x * pow(other.x, MOD - 2, MOD) ) if isinstance(other, ModInt) else ModInt(self.x * pow(other, MOD - 2, MOD)) ) def __pow__(self, other): return ( ModInt(pow(self.x, other.x, MOD)) if isinstance(other, ModInt) else ModInt(pow(self.x, other, MOD)) ) __radd__ = __add__ def __rsub__(self, other): return ( ModInt(other.x - self.x) if isinstance(other, ModInt) else ModInt(other - self.x) ) __rmul__ = __mul__ def __rtruediv__(self, other): return ( ModInt( other.x * pow(self.x, MOD - 2, MOD) ) if isinstance(other, ModInt) else ModInt(other * pow(self.x, MOD - 2, MOD)) ) def __rpow__(self, other): return ( ModInt(pow(other.x, self.x, MOD)) if isinstance(other, ModInt) else ModInt(pow(other, self.x, MOD)) ) n, a, b = map(int, input().split()) ans = pow(2, n, MOD) - 1 product = ModInt(1) div = ModInt(1) for i in range(b + 1): product *= (n - i) div *= i + 1 if i == a - 1 or i == b - 1: ans -= product / div print(ans)
24.2375
79
0.507478
79523ad7c4bc264cf85af4a15171c2d3980018f5
4,070
py
Python
examples/scara/animation.py
yinanl/rocs
bf2483903e39f4c0ea254a9ef56720a1259955ad
[ "BSD-3-Clause" ]
null
null
null
examples/scara/animation.py
yinanl/rocs
bf2483903e39f4c0ea254a9ef56720a1259955ad
[ "BSD-3-Clause" ]
null
null
null
examples/scara/animation.py
yinanl/rocs
bf2483903e39f4c0ea254a9ef56720a1259955ad
[ "BSD-3-Clause" ]
null
null
null
import numpy as np import re import matplotlib.pyplot as plt import matplotlib.patches as patches import matplotlib.lines as lines import matplotlib.animation as animation import sys from os.path import dirname, realpath pypath = dirname(dirname(dirname(realpath(__file__)))) + '/python/' sys.path.insert(1, pypath) from odes import scara # # Load simulated trajectories dirpath = dirname(realpath(__file__)) statefile = "traj_gb2" torqfile = "torq_gb2" sfile = dirpath + '/' + statefile + ".npy" tfile = dirpath + '/' + torqfile + ".npy" thetas = np.load(sfile) torqs = np.load(tfile) # # Joint space to operation space model = scara(0.1) xy2 = model.theta2xy(thetas[:, 0], thetas[:, 1]) x1 = model.l1 * np.cos(thetas[:, 0]) y1 = model.l2 * np.sin(thetas[:, 0]) x2 = xy2[0, :] y2 = xy2[1, :] # # Setup workspace FS = 12 fig, ax = plt.subplots() ax.set_xlim(0, 1.2*(model.l1+model.l2)) ax.set_xlabel(r'$x$') ax.set_ylim(0, model.l1+model.l2) ax.set_ylabel(r'$y$') ax.title # The bar obstacle H = 0.8*model.l1 r = 0.5*model.l1 # bar = plt.plot([0, r], [H, H], linewidth=10, color='k') bar = patches.Rectangle((0, H), r, 0.01, facecolor='tab:gray', hatch='/', zorder=0) ax.add_patch(bar) # Goals nG = 2 G = np.zeros(shape=(2, 2, nG)) G[:, :, 0] = np.array([[0.0277, 0.0597], [0.1852, 0.2134]]) G[:, :, 1] = np.array([[0.2585, 0.2784], [0.0059, 0.0514]]) for i in range(nG): ax.add_patch( patches.Rectangle((G[0, 0, i], G[1, 0, i]), G[0, 1, i]-G[0, 0, i], G[1, 1, i]-G[1, 0, i], linewidth=1.5, facecolor='yellowgreen', fill=True, zorder=0) ) plt.text((G[0, 0, 0]+G[0, 1, 0])*0.4, (G[1, 1, 0]+G[1, 0, 0])/2, r'$g_1$', fontsize=FS) plt.text((G[0, 0, 1]+G[0, 1, 1])*0.49, (G[1, 1, 1]+G[1, 0, 1])/2, r'$g_2$', fontsize=FS) # arm1 = lines.Line2D([0, x1[0]], [0, y1[0]], # linewidth=3, color='k', alpha=0, zorder=1) # arm2 = lines.Line2D([x1[0], x2[0]], [y1[0], y2[0]], # linewidth=3, color='k', alpha=0, zorder=1) # joint1 = patches.Circle((0, 0), radius=0.005, color='k', # fill=True, alpha=1, zorder=2) # joint2 = patches.Circle((x1[0], y1[0]), radius=0.005, color='k', # fill=True, alpha=0, zorder=2) # end = patches.Circle((x2[0], y2[0]), radius=0.005, color='tab:orange', # fill=True, alpha=0, zorder=2) i = 93 arm1 = lines.Line2D([0, x1[i]], [0, y1[i]], linewidth=3, color='k', alpha=1, zorder=1) arm2 = lines.Line2D([x1[i], x2[i]], [y1[i], y2[i]], linewidth=3, color='k', alpha=1, zorder=1) joint1 = patches.Circle((0, 0), radius=0.005, color='k', fill=True, alpha=1, zorder=2) joint2 = patches.Circle((x1[i], y1[i]), radius=0.005, color='k', fill=True, alpha=1, zorder=2) end = patches.Circle((x2[i], y2[i]), radius=0.005, color='tab:orange', fill=True, alpha=1, zorder=2) ax.add_patch(joint1) ax.add_patch(joint2) ax.add_patch(end) ax.add_artist(arm1) ax.add_artist(arm2) # # Animation torque_text = ax.text(0.05, 0.95, '', transform=ax.transAxes) torque_template = 'torques=%.3f,%.3f' def animate(i): arm1.set_data([0, x1[i]], [0, y1[i]]) arm2.set_data([x1[i], x2[i]], [y1[i], y2[i]]) joint2.center = (x1[i], y1[i]) end.center = (x2[i], y2[i]) arm1.set_alpha(1) arm2.set_alpha(1) joint2.set_alpha(1) end.set_alpha(1) joint2.set_zorder(10) end.set_zorder(10) torque_text.set_text(torque_template % (torqs[i, 0], torqs[i, 1])) return joint2, end, torque_text, arm1, arm2 ani = animation.FuncAnimation(fig, animate, x1.size, interval=0.1*500, blit=True) Writer = animation.writers['ffmpeg'] writer = Writer(fps=15, metadata=dict(artist='Me'), bitrate=1800) ani.save(dirpath+'/replay'+'.mp4', writer=writer) # # End-effector trajectory ax.plot(x2, y2, color='peru') plt.savefig(dirpath+'/fig_traj-gb2-os.png') plt.show()
31.796875
76
0.578624
79523afeaa88924ca2693659a2e3adab3587009d
39
py
Python
examples/celery/client.py
mastak/pybrake
32968efbebea07580680f16228be818726c13933
[ "MIT" ]
36
2018-04-24T09:26:12.000Z
2022-02-17T13:44:41.000Z
examples/celery/client.py
mastak/pybrake
32968efbebea07580680f16228be818726c13933
[ "MIT" ]
90
2018-03-06T15:13:53.000Z
2022-03-25T11:32:25.000Z
examples/celery/client.py
mastak/pybrake
32968efbebea07580680f16228be818726c13933
[ "MIT" ]
21
2018-04-04T14:50:12.000Z
2022-03-23T05:48:51.000Z
from tasks import add add.delay(4, 4)
9.75
21
0.717949
79523b8d4d3293a476946b65f6dbae10ebd073c7
4,052
py
Python
gae/layers.py
floregol/gae
d5db3f32a8d26001a9b44f7a863a75a61807461f
[ "MIT" ]
null
null
null
gae/layers.py
floregol/gae
d5db3f32a8d26001a9b44f7a863a75a61807461f
[ "MIT" ]
null
null
null
gae/layers.py
floregol/gae
d5db3f32a8d26001a9b44f7a863a75a61807461f
[ "MIT" ]
null
null
null
from gae.initializations import * import tensorflow as tf flags = tf.app.flags FLAGS = flags.FLAGS # global unique layer ID dictionary for layer name assignment _LAYER_UIDS = {} def get_layer_uid(layer_name=''): """Helper function, assigns unique layer IDs """ if layer_name not in _LAYER_UIDS: _LAYER_UIDS[layer_name] = 1 return 1 else: _LAYER_UIDS[layer_name] += 1 return _LAYER_UIDS[layer_name] def dropout_sparse(x, keep_prob, num_nonzero_elems): """Dropout for sparse tensors. Currently fails for very large sparse tensors (>1M elements) """ noise_shape = [num_nonzero_elems] random_tensor = keep_prob random_tensor += tf.random_uniform(noise_shape) dropout_mask = tf.cast(tf.floor(random_tensor), dtype=tf.bool) pre_out = tf.sparse_retain(x, dropout_mask) return pre_out * (1./keep_prob) class Layer(object): """Base layer class. Defines basic API for all layer objects. # Properties name: String, defines the variable scope of the layer. # Methods _call(inputs): Defines computation graph of layer (i.e. takes input, returns output) __call__(inputs): Wrapper for _call() """ def __init__(self, **kwargs): allowed_kwargs = {'name', 'logging'} for kwarg in list(kwargs.keys()): assert kwarg in allowed_kwargs, 'Invalid keyword argument: ' + kwarg name = kwargs.get('name') if not name: layer = self.__class__.__name__.lower() name = layer + '_' + str(get_layer_uid(layer)) self.name = name self.vars = {} logging = kwargs.get('logging', False) self.logging = logging self.issparse = False def _call(self, inputs): return inputs def __call__(self, inputs): with tf.name_scope(self.name): outputs = self._call(inputs) return outputs class GraphConvolution(Layer): """Basic graph convolution layer for undirected graph without edge labels.""" def __init__(self, input_dim, output_dim, adj, dropout=0., act=tf.nn.relu, **kwargs): super(GraphConvolution, self).__init__(**kwargs) with tf.variable_scope(self.name + '_vars'): self.vars['weights'] = weight_variable_glorot(input_dim, output_dim, name="weights") self.dropout = dropout self.adj = adj self.act = act def _call(self, inputs): x = inputs x = tf.nn.dropout(x, 1-self.dropout) x = tf.matmul(x, self.vars['weights']) x = tf.sparse_tensor_dense_matmul(self.adj, x) outputs = self.act(x) return outputs class GraphConvolutionSparse(Layer): """Graph convolution layer for sparse inputs.""" def __init__(self, input_dim, output_dim, adj, features_nonzero, dropout=0., act=tf.nn.relu, **kwargs): super(GraphConvolutionSparse, self).__init__(**kwargs) with tf.variable_scope(self.name + '_vars'): self.vars['weights'] = weight_variable_glorot(input_dim, output_dim, name="weights") self.dropout = dropout self.adj = adj self.act = act self.issparse = True self.features_nonzero = features_nonzero def _call(self, inputs): x = inputs x = dropout_sparse(x, 1-self.dropout, self.features_nonzero) x = tf.sparse_tensor_dense_matmul(x, self.vars['weights']) x = tf.sparse_tensor_dense_matmul(self.adj, x) outputs = self.act(x) return outputs class InnerProductDecoder(Layer): """Decoder model layer for link prediction.""" def __init__(self, input_dim, dropout=0., act=tf.nn.sigmoid, **kwargs): super(InnerProductDecoder, self).__init__(**kwargs) self.dropout = dropout self.act = act def _call(self, inputs): inputs = tf.nn.dropout(inputs, 1-self.dropout) x = tf.transpose(inputs) x = tf.matmul(inputs, x) x = tf.reshape(x, [-1]) outputs = self.act(x) return outputs
33.487603
107
0.638944
79523ba966f2526d316bb824bb1a129f8f2f69ee
2,895
py
Python
djstripe/contrib/rest_framework/views.py
Korben11/dj-stripe
06661c174f0cda52b33be9a421f8b80438d71ab0
[ "MIT" ]
null
null
null
djstripe/contrib/rest_framework/views.py
Korben11/dj-stripe
06661c174f0cda52b33be9a421f8b80438d71ab0
[ "MIT" ]
null
null
null
djstripe/contrib/rest_framework/views.py
Korben11/dj-stripe
06661c174f0cda52b33be9a421f8b80438d71ab0
[ "MIT" ]
null
null
null
""" .. module:: dj-stripe.contrib.rest_framework.views. :synopsis: Views for the dj-stripe REST API. .. moduleauthor:: Philippe Luickx (@philippeluickx) """ from rest_framework import status from rest_framework.permissions import IsAuthenticated from rest_framework.response import Response from rest_framework.views import APIView from ...models import Customer from ...settings import CANCELLATION_AT_PERIOD_END, subscriber_request_callback from .serializers import CreateSubscriptionSerializer, SubscriptionSerializer class SubscriptionRestView(APIView): """API Endpoints for the Subscription object.""" permission_classes = (IsAuthenticated,) def get(self, request, **kwargs): """ Return the customer's valid subscriptions. Returns with status code 200. """ customer, _created = Customer.get_or_create( subscriber=subscriber_request_callback(self.request) ) serializer = SubscriptionSerializer(customer.subscriptions.all(), many=True) return Response(serializer.data) def post(self, request, **kwargs): """ Create a new current subscription for the user. Returns with status code 201. """ serializer = CreateSubscriptionSerializer(data=request.data) if serializer.is_valid(): try: customer, _created = Customer.get_or_create( subscriber=subscriber_request_callback(self.request) ) customer.add_card(serializer.data["stripe_token"]) charge_immediately = serializer.data.get("charge_immediately") if charge_immediately is None: charge_immediately = True customer.subscribe(serializer.data["plan"], charge_immediately) return Response(serializer.data, status=status.HTTP_201_CREATED) except Exception: # TODO: Better error messages return Response( "Something went wrong processing the payment.", status=status.HTTP_400_BAD_REQUEST, ) return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) def delete(self, request, **kwargs): """ Mark the customers current subscription as canceled. Returns with status code 204. """ try: customer, _created = Customer.get_or_create( subscriber=subscriber_request_callback(self.request) ) customer.subscription.cancel(at_period_end=CANCELLATION_AT_PERIOD_END) return Response(status=status.HTTP_204_NO_CONTENT) except Exception: return Response( "Something went wrong cancelling the subscription.", status=status.HTTP_400_BAD_REQUEST, )
34.058824
84
0.648705
79523bc1d88d5b25c01fb290e8b37b77fb78ab35
2,719
py
Python
ui/widgets/video.py
AP-Atul/Torpido
a646b4d6de7f2e2c96de4c64ce3113f53e3931c2
[ "Unlicense" ]
21
2020-12-23T07:13:10.000Z
2022-01-12T10:32:22.000Z
ui/widgets/video.py
AP-Atul/Torpido
a646b4d6de7f2e2c96de4c64ce3113f53e3931c2
[ "Unlicense" ]
2
2020-12-30T10:45:42.000Z
2021-09-25T09:52:00.000Z
ui/widgets/video.py
AP-Atul/Torpido
a646b4d6de7f2e2c96de4c64ce3113f53e3931c2
[ "Unlicense" ]
1
2021-02-06T21:39:41.000Z
2021-02-06T21:39:41.000Z
""" QWidget for Open cv im show alternative with Qt """ import cv2 import numpy as np from PyQt5 import QtCore, QtWidgets, QtGui from PyQt5.QtGui import QPixmap, QImage from PyQt5.QtWidgets import QMainWindow, QLabel class OpenCVQImage(QtGui.QImage): """ Conversion of open cv image to QImage """ def __init__(self, image: np.ndarray) -> None: if len(image.shape) == 3: height, width, n_channels = image.shape fmt = QtGui.QImage.Format_BGR30 else: height, width = image.shape n_channels = 1 fmt = QtGui.QImage.Format_Grayscale8 super().__init__( image.tostring(), width, height, n_channels * width, fmt ) class QVideoWidget(QtWidgets.QWidget): """ Widget with paint events and communication slot for frame retrieval and display """ def __init__(self, parent=None) -> None: super().__init__(parent) self.image_label = QLabel() self.image_label.setWindowTitle("Video Output") self._frame = None self.__stopped = False def set_frame(self, frame: np.ndarray): """ Set the frame to the window """ if not self.__stopped: self._frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) # frame color convert w, h = frame.shape[1], frame.shape[0] self.image_label.resize(w, h) self.image_label.setPixmap(QPixmap.fromImage( QImage(self._frame, w, h, QImage.Format_RGB888)) ) self.image_label.show() # displays the widget def end(self): """ Close all the windows """ self.__stopped = True self.close() def changeEvent(self, event: QtCore.QEvent) -> None: if event.type() == QtCore.QEvent.EnabledChange: if self.isEnabled(): self._camera_device.new_frame.connect(self._on_new_frame) else: self._camera_device.new_frame.disconnect(self._on_new_frame) super().changeEvent(event) def paintEvent(self, event: QtGui.QPaintEvent) -> None: if self._frame is None: return painter = QtGui.QPainter(self) painter.drawImage(QtCore.QPoint(0, 0), OpenCVQImage(self._frame)) super().paintEvent(event) class QVideoWindow(QMainWindow): """ Separate window for video display """ def __init__(self, window): super().__init__() self.window = window self.video = QVideoWidget(self) self.setCentralWidget(self.video) self.window.videoFrame.connect(self.video.set_frame) self.window.videoClose.connect(self.video.end)
31.252874
91
0.614564
79523bee7dba5a4e57064a2c4fa6da646614ceac
3,626
py
Python
cfgov/v1/management/commands/update_data_snapshot_values.py
higs4281/cfgov-refresh
a02b193fb2373d443265c21845adf8a196e05675
[ "CC0-1.0" ]
1
2019-11-26T20:18:22.000Z
2019-11-26T20:18:22.000Z
cfgov/v1/management/commands/update_data_snapshot_values.py
higs4281/cfgov-refresh
a02b193fb2373d443265c21845adf8a196e05675
[ "CC0-1.0" ]
8
2021-03-11T00:55:51.000Z
2022-02-13T21:10:14.000Z
cfgov/v1/management/commands/update_data_snapshot_values.py
higs4281/cfgov-refresh
a02b193fb2373d443265c21845adf8a196e05675
[ "CC0-1.0" ]
1
2019-12-28T14:04:07.000Z
2019-12-28T14:04:07.000Z
import json import logging import os from django.core.management.base import BaseCommand from v1.models.browse_page import BrowsePage from v1.tests.wagtail_pages.helpers import publish_changes logger = logging.getLogger(__name__) class Command(BaseCommand): help = 'Monthly updates to data snapshot values' def expand_path(self, path): """Expands a relative path into an absolute path""" rootpath = os.path.abspath(os.path.expanduser(path)) return rootpath def add_arguments(self, parser): """Adds all arguments to be processed.""" parser.add_argument( '--snapshot_file', required=True, help='JSON file containing all markets\' data snapshot values' ) def get_data_snapshots(self): """ Gets all data snapshots from browse pages Assumes there is a maximum of one data snapshot per page """ snapshots = [] for page in BrowsePage.objects.all(): stream_data = page.specific.content.stream_data snapshot = list(filter( lambda item: item['type'] == 'data_snapshot', stream_data )) if snapshot: snapshot[0]['value']['page'] = page snapshots.append(snapshot[0]['value']) return snapshots def find_data_snapshot(self, market_key, snapshots): """ Look up data snapshot by the provided market key Assumes there is one data snapshot per key """ for snapshot in snapshots: if snapshot['market_key'] == market_key: return snapshot def handle(self, *args, **options): # Read markets from file into update dicts with open(self.expand_path(options['snapshot_file'])) as json_data: data = json.load(json_data) markets = data['markets'] snapshots = self.get_data_snapshots() for market in markets: key = market['market_key'] snapshot = self.find_data_snapshot(key, snapshots) if not snapshot: # Market may not have been added to Wagtail yet logger.warn('Market key {} not found'.format(key)) continue # Update snapshot fields with the provided values snapshot['last_updated_projected_data'] = market['data_month'] snapshot['num_originations'] = market['num_originations'] snapshot['value_originations'] = market['value_originations'] snapshot['year_over_year_change'] = market['year_over_year_change'] # Update inquiry index info if it exists for this market if "inquiry_yoy_change" in market: snapshot['inquiry_month'] = market['inquiry_month'] snapshot['inquiry_year_over_year_change'] = \ market['inquiry_yoy_change'] else: snapshot['inquiry_month'] = "" snapshot['inquiry_year_over_year_change'] = "" # Update tightness index info if it exists for this market if "tightness_yoy_change" in market: snapshot['tightness_month'] = market['tightness_month'] snapshot['tightness_year_over_year_change'] = \ market['tightness_yoy_change'] else: snapshot['tightness_month'] = "" snapshot['tightness_year_over_year_change'] = "" # Publish changes to the browse page the data snapshot lives on page = snapshot['page'] publish_changes(page.specific)
37.770833
79
0.608935
79523d1fbc085ed5592b2e401854fe1a8138a05b
519
py
Python
questions.py
guptaaastha/quiz
db0dbb005e91b7e418f97e8cdf1329da6ac088ff
[ "MIT" ]
null
null
null
questions.py
guptaaastha/quiz
db0dbb005e91b7e418f97e8cdf1329da6ac088ff
[ "MIT" ]
null
null
null
questions.py
guptaaastha/quiz
db0dbb005e91b7e418f97e8cdf1329da6ac088ff
[ "MIT" ]
null
null
null
question_prompts = [ "In olden days people used the bark of the ________ tree to make a medicine for Malaria.\n (a)Cinchona\n (b)Banyan\n (c)Peepal\n\n", "On which day the world water day is celebrated?\n (a)23rd March\n (b)22nd March\n (c)21st March\n\n", "Which is a method to prevent rust?\n (a)Crystallization\n (b)Sedimentation\n (c)Galvanisation\n\n", "What will happen if carbon dioxide gas is passed through lime water ?\n (a)Calcium carbonate is formed\n (b)The lime water turns milky\n (c)Both of these\n\n" ]
86.5
159
0.739884
79523d2b3a60a9b1bf3f0b7d6b706b9174736b66
12,502
py
Python
detectron/utils/boxes.py
singhnarotam1997/Detectron
ecc6b25fc8869486126f1384b4e6e042a718bd5b
[ "Apache-2.0" ]
60
2021-08-07T09:16:52.000Z
2022-03-14T09:09:00.000Z
detectron/utils/boxes.py
singhnarotam1997/Detectron
ecc6b25fc8869486126f1384b4e6e042a718bd5b
[ "Apache-2.0" ]
4
2021-10-14T02:44:49.000Z
2022-03-14T08:18:20.000Z
detectron/utils/boxes.py
singhnarotam1997/Detectron
ecc6b25fc8869486126f1384b4e6e042a718bd5b
[ "Apache-2.0" ]
11
2021-11-01T00:30:37.000Z
2021-12-08T10:01:52.000Z
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. ############################################################################## # # Based on: # -------------------------------------------------------- # Fast/er R-CNN # Licensed under The MIT License [see LICENSE for details] # Written by Ross Girshick # -------------------------------------------------------- """Box manipulation functions. The internal Detectron box format is [x1, y1, x2, y2] where (x1, y1) specify the top-left box corner and (x2, y2) specify the bottom-right box corner. Boxes from external sources, e.g., datasets, may be in other formats (such as [x, y, w, h]) and require conversion. This module uses a convention that may seem strange at first: the width of a box is computed as x2 - x1 + 1 (likewise for height). The "+ 1" dates back to old object detection days when the coordinates were integer pixel indices, rather than floating point coordinates in a subpixel coordinate frame. A box with x2 = x1 and y2 = y1 was taken to include a single pixel, having a width of 1, and hence requiring the "+ 1". Now, most datasets will likely provide boxes with floating point coordinates and the width should be more reasonably computed as x2 - x1. In practice, as long as a model is trained and tested with a consistent convention either decision seems to be ok (at least in our experience on COCO). Since we have a long history of training models with the "+ 1" convention, we are reluctant to change it even if our modern tastes prefer not to use it. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import numpy as np from detectron.core.config import cfg import detectron.utils.cython_bbox as cython_bbox import detectron.utils.cython_nms as cython_nms bbox_overlaps = cython_bbox.bbox_overlaps def boxes_area(boxes): """Compute the area of an array of boxes.""" w = (boxes[:, 2] - boxes[:, 0] + 1) h = (boxes[:, 3] - boxes[:, 1] + 1) areas = w * h assert np.all(areas >= 0), 'Negative areas founds' return areas def unique_boxes(boxes, scale=1.0): """Return indices of unique boxes.""" v = np.array([1, 1e3, 1e6, 1e9]) hashes = np.round(boxes * scale).dot(v) _, index = np.unique(hashes, return_index=True) return np.sort(index) def xywh_to_xyxy(xywh): """Convert [x1 y1 w h] box format to [x1 y1 x2 y2] format.""" if isinstance(xywh, (list, tuple)): # Single box given as a list of coordinates assert len(xywh) == 4 x1, y1 = xywh[0], xywh[1] x2 = x1 + np.maximum(0., xywh[2] - 1.) y2 = y1 + np.maximum(0., xywh[3] - 1.) return (x1, y1, x2, y2) elif isinstance(xywh, np.ndarray): # Multiple boxes given as a 2D ndarray return np.hstack( (xywh[:, 0:2], xywh[:, 0:2] + np.maximum(0, xywh[:, 2:4] - 1)) ) else: raise TypeError('Argument xywh must be a list, tuple, or numpy array.') def xyxy_to_xywh(xyxy): """Convert [x1 y1 x2 y2] box format to [x1 y1 w h] format.""" if isinstance(xyxy, (list, tuple)): # Single box given as a list of coordinates assert len(xyxy) == 4 x1, y1 = xyxy[0], xyxy[1] w = xyxy[2] - x1 + 1 h = xyxy[3] - y1 + 1 return (x1, y1, w, h) elif isinstance(xyxy, np.ndarray): # Multiple boxes given as a 2D ndarray return np.hstack((xyxy[:, 0:2], xyxy[:, 2:4] - xyxy[:, 0:2] + 1)) else: raise TypeError('Argument xyxy must be a list, tuple, or numpy array.') def filter_small_boxes(boxes, min_size): """Keep boxes with width and height both greater than min_size.""" w = boxes[:, 2] - boxes[:, 0] + 1 h = boxes[:, 3] - boxes[:, 1] + 1 keep = np.where((w > min_size) & (h > min_size))[0] return keep def clip_boxes_to_image(boxes, height, width): """Clip an array of boxes to an image with the given height and width.""" boxes[:, [0, 2]] = np.minimum(width - 1., np.maximum(0., boxes[:, [0, 2]])) boxes[:, [1, 3]] = np.minimum(height - 1., np.maximum(0., boxes[:, [1, 3]])) return boxes def clip_xyxy_to_image(x1, y1, x2, y2, height, width): """Clip coordinates to an image with the given height and width.""" x1 = np.minimum(width - 1., np.maximum(0., x1)) y1 = np.minimum(height - 1., np.maximum(0., y1)) x2 = np.minimum(width - 1., np.maximum(0., x2)) y2 = np.minimum(height - 1., np.maximum(0., y2)) return x1, y1, x2, y2 def clip_tiled_boxes(boxes, im_shape): """Clip boxes to image boundaries. im_shape is [height, width] and boxes has shape (N, 4 * num_tiled_boxes).""" assert boxes.shape[1] % 4 == 0, \ 'boxes.shape[1] is {:d}, but must be divisible by 4.'.format( boxes.shape[1] ) # x1 >= 0 boxes[:, 0::4] = np.maximum(np.minimum(boxes[:, 0::4], im_shape[1] - 1), 0) # y1 >= 0 boxes[:, 1::4] = np.maximum(np.minimum(boxes[:, 1::4], im_shape[0] - 1), 0) # x2 < im_shape[1] boxes[:, 2::4] = np.maximum(np.minimum(boxes[:, 2::4], im_shape[1] - 1), 0) # y2 < im_shape[0] boxes[:, 3::4] = np.maximum(np.minimum(boxes[:, 3::4], im_shape[0] - 1), 0) return boxes def bbox_transform(boxes, deltas, weights=(1.0, 1.0, 1.0, 1.0)): """Forward transform that maps proposal boxes to predicted ground-truth boxes using bounding-box regression deltas. See bbox_transform_inv for a description of the weights argument. """ if boxes.shape[0] == 0: return np.zeros((0, deltas.shape[1]), dtype=deltas.dtype) boxes = boxes.astype(deltas.dtype, copy=False) widths = boxes[:, 2] - boxes[:, 0] + 1.0 heights = boxes[:, 3] - boxes[:, 1] + 1.0 ctr_x = boxes[:, 0] + 0.5 * widths ctr_y = boxes[:, 1] + 0.5 * heights wx, wy, ww, wh = weights dx = deltas[:, 0::4] / wx dy = deltas[:, 1::4] / wy dw = deltas[:, 2::4] / ww dh = deltas[:, 3::4] / wh # Prevent sending too large values into np.exp() dw = np.minimum(dw, cfg.BBOX_XFORM_CLIP) dh = np.minimum(dh, cfg.BBOX_XFORM_CLIP) pred_ctr_x = dx * widths[:, np.newaxis] + ctr_x[:, np.newaxis] pred_ctr_y = dy * heights[:, np.newaxis] + ctr_y[:, np.newaxis] pred_w = np.exp(dw) * widths[:, np.newaxis] pred_h = np.exp(dh) * heights[:, np.newaxis] pred_boxes = np.zeros(deltas.shape, dtype=deltas.dtype) # x1 pred_boxes[:, 0::4] = pred_ctr_x - 0.5 * pred_w # y1 pred_boxes[:, 1::4] = pred_ctr_y - 0.5 * pred_h # x2 (note: "- 1" is correct; don't be fooled by the asymmetry) pred_boxes[:, 2::4] = pred_ctr_x + 0.5 * pred_w - 1 # y2 (note: "- 1" is correct; don't be fooled by the asymmetry) pred_boxes[:, 3::4] = pred_ctr_y + 0.5 * pred_h - 1 return pred_boxes def bbox_transform_inv(boxes, gt_boxes, weights=(1.0, 1.0, 1.0, 1.0)): """Inverse transform that computes target bounding-box regression deltas given proposal boxes and ground-truth boxes. The weights argument should be a 4-tuple of multiplicative weights that are applied to the regression target. In older versions of this code (and in py-faster-rcnn), the weights were set such that the regression deltas would have unit standard deviation on the training dataset. Presently, rather than computing these statistics exactly, we use a fixed set of weights (10., 10., 5., 5.) by default. These are approximately the weights one would get from COCO using the previous unit stdev heuristic. """ ex_widths = boxes[:, 2] - boxes[:, 0] + 1.0 ex_heights = boxes[:, 3] - boxes[:, 1] + 1.0 ex_ctr_x = boxes[:, 0] + 0.5 * ex_widths ex_ctr_y = boxes[:, 1] + 0.5 * ex_heights gt_widths = gt_boxes[:, 2] - gt_boxes[:, 0] + 1.0 gt_heights = gt_boxes[:, 3] - gt_boxes[:, 1] + 1.0 gt_ctr_x = gt_boxes[:, 0] + 0.5 * gt_widths gt_ctr_y = gt_boxes[:, 1] + 0.5 * gt_heights wx, wy, ww, wh = weights targets_dx = wx * (gt_ctr_x - ex_ctr_x) / ex_widths targets_dy = wy * (gt_ctr_y - ex_ctr_y) / ex_heights targets_dw = ww * np.log(gt_widths / ex_widths) targets_dh = wh * np.log(gt_heights / ex_heights) targets = np.vstack((targets_dx, targets_dy, targets_dw, targets_dh)).transpose() return targets def expand_boxes(boxes, scale): """Expand an array of boxes by a given scale.""" w_half = (boxes[:, 2] - boxes[:, 0]) * .5 h_half = (boxes[:, 3] - boxes[:, 1]) * .5 x_c = (boxes[:, 2] + boxes[:, 0]) * .5 y_c = (boxes[:, 3] + boxes[:, 1]) * .5 w_half *= scale h_half *= scale boxes_exp = np.zeros(boxes.shape) boxes_exp[:, 0] = x_c - w_half boxes_exp[:, 2] = x_c + w_half boxes_exp[:, 1] = y_c - h_half boxes_exp[:, 3] = y_c + h_half return boxes_exp def flip_boxes(boxes, im_width): """Flip boxes horizontally.""" boxes_flipped = boxes.copy() boxes_flipped[:, 0::4] = im_width - boxes[:, 2::4] - 1 boxes_flipped[:, 2::4] = im_width - boxes[:, 0::4] - 1 return boxes_flipped def aspect_ratio(boxes, aspect_ratio): """Perform width-relative aspect ratio transformation.""" boxes_ar = boxes.copy() boxes_ar[:, 0::4] = aspect_ratio * boxes[:, 0::4] boxes_ar[:, 2::4] = aspect_ratio * boxes[:, 2::4] return boxes_ar def box_voting(top_dets, all_dets, thresh, scoring_method='ID', beta=1.0): """Apply bounding-box voting to refine `top_dets` by voting with `all_dets`. See: https://arxiv.org/abs/1505.01749. Optional score averaging (not in the referenced paper) can be applied by setting `scoring_method` appropriately. """ # top_dets is [N, 5] each row is [x1 y1 x2 y2, sore] # all_dets is [N, 5] each row is [x1 y1 x2 y2, sore] top_dets_out = top_dets.copy() top_boxes = top_dets[:, :4] all_boxes = all_dets[:, :4] all_scores = all_dets[:, 4] top_to_all_overlaps = bbox_overlaps(top_boxes, all_boxes) for k in range(top_dets_out.shape[0]): inds_to_vote = np.where(top_to_all_overlaps[k] >= thresh)[0] boxes_to_vote = all_boxes[inds_to_vote, :] ws = all_scores[inds_to_vote] top_dets_out[k, :4] = np.average(boxes_to_vote, axis=0, weights=ws) if scoring_method == 'ID': # Identity, nothing to do pass elif scoring_method == 'TEMP_AVG': # Average probabilities (considered as P(detected class) vs. # P(not the detected class)) after smoothing with a temperature # hyperparameter. P = np.vstack((ws, 1.0 - ws)) P_max = np.max(P, axis=0) X = np.log(P / P_max) X_exp = np.exp(X / beta) P_temp = X_exp / np.sum(X_exp, axis=0) P_avg = P_temp[0].mean() top_dets_out[k, 4] = P_avg elif scoring_method == 'AVG': # Combine new probs from overlapping boxes top_dets_out[k, 4] = ws.mean() elif scoring_method == 'IOU_AVG': P = ws ws = top_to_all_overlaps[k, inds_to_vote] P_avg = np.average(P, weights=ws) top_dets_out[k, 4] = P_avg elif scoring_method == 'GENERALIZED_AVG': P_avg = np.mean(ws**beta)**(1.0 / beta) top_dets_out[k, 4] = P_avg elif scoring_method == 'QUASI_SUM': top_dets_out[k, 4] = ws.sum() / float(len(ws))**beta else: raise NotImplementedError( 'Unknown scoring method {}'.format(scoring_method) ) return top_dets_out def nms(dets, thresh): """Apply classic DPM-style greedy NMS.""" if dets.shape[0] == 0: return [] return cython_nms.nms(dets, thresh) def soft_nms( dets, sigma=0.5, overlap_thresh=0.3, score_thresh=0.001, method='linear' ): """Apply the soft NMS algorithm from https://arxiv.org/abs/1704.04503.""" if dets.shape[0] == 0: return dets, [] methods = {'hard': 0, 'linear': 1, 'gaussian': 2} assert method in methods, 'Unknown soft_nms method: {}'.format(method) dets, keep = cython_nms.soft_nms( np.ascontiguousarray(dets, dtype=np.float32), np.float32(sigma), np.float32(overlap_thresh), np.float32(score_thresh), np.uint8(methods[method]) ) return dets, keep
37.770393
80
0.610942
79523d32928d5b66646be72dc85788219dbf989e
3,032
py
Python
nova/db/api/migrations/env.py
MagnusR/nova
798b8d2d825fcf259279ba4370e734242598f76f
[ "Apache-2.0" ]
null
null
null
nova/db/api/migrations/env.py
MagnusR/nova
798b8d2d825fcf259279ba4370e734242598f76f
[ "Apache-2.0" ]
3
2019-05-17T15:49:12.000Z
2019-11-21T10:49:54.000Z
nova/db/api/migrations/env.py
MagnusR/nova
798b8d2d825fcf259279ba4370e734242598f76f
[ "Apache-2.0" ]
null
null
null
# Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from logging.config import fileConfig from sqlalchemy import engine_from_config from sqlalchemy import pool from alembic import context # this is the Alembic Config object, which provides # access to the values within the .ini file in use. config = context.config # Interpret the config file for Python logging unless we're told not to. # This line sets up loggers basically. if config.attributes.get('configure_logger', True): fileConfig(config.config_file_name) # add your model's MetaData object here # for 'autogenerate' support # from myapp import mymodel # target_metadata = mymodel.Base.metadata target_metadata = None def run_migrations_offline(): """Run migrations in 'offline' mode. This configures the context with just a URL and not an Engine, though an Engine is acceptable here as well. By skipping the Engine creation we don't even need a DBAPI to be available. Calls to context.execute() here emit the given string to the script output. """ url = config.get_main_option("sqlalchemy.url") context.configure( url=url, target_metadata=target_metadata, literal_binds=True, dialect_opts={"paramstyle": "named"}, ) with context.begin_transaction(): context.run_migrations() def run_migrations_online(): """Run migrations in 'online' mode. In this scenario we need to create an Engine and associate a connection with the context. This is modified from the default based on the below, since we want to share an engine when unit testing so in-memory database testing actually works. https://alembic.sqlalchemy.org/en/latest/cookbook.html#connection-sharing """ connectable = config.attributes.get('connection', None) if connectable is None: # only create Engine if we don't have a Connection from the outside connectable = engine_from_config( config.get_section(config.config_ini_section), prefix="sqlalchemy.", poolclass=pool.NullPool, ) # when connectable is already a Connection object, calling connect() gives # us a *branched connection*. with connectable.connect() as connection: context.configure( connection=connection, target_metadata=target_metadata ) with context.begin_transaction(): context.run_migrations() if context.is_offline_mode(): run_migrations_offline() else: run_migrations_online()
31.915789
79
0.722296
79523e7b163963d02daf1131c462ffb25713ab85
12,850
py
Python
asreview/review/factory.py
DominiqueMaciejewski/asreview
eb1066074613a5f6f930ff610ff92184e9244f4f
[ "Apache-2.0" ]
280
2020-02-06T12:40:16.000Z
2022-03-19T21:13:55.000Z
asreview/review/factory.py
DominiqueMaciejewski/asreview
eb1066074613a5f6f930ff610ff92184e9244f4f
[ "Apache-2.0" ]
519
2020-02-06T12:08:29.000Z
2022-03-31T16:02:01.000Z
asreview/review/factory.py
DominiqueMaciejewski/asreview
eb1066074613a5f6f930ff610ff92184e9244f4f
[ "Apache-2.0" ]
77
2020-03-06T15:22:08.000Z
2022-03-30T11:21:06.000Z
# Copyright 2019-2020 The ASReview Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import logging from os.path import splitext from pathlib import PurePath import numpy as np from asreview.models.balance.utils import get_balance_model from asreview.compat import convert_id_to_idx from asreview.config import AVAILABLE_CLI_MODI, LABEL_NA from asreview.config import AVAILABLE_REVIEW_CLASSES from asreview.config import DEFAULT_BALANCE_STRATEGY from asreview.config import DEFAULT_FEATURE_EXTRACTION from asreview.config import DEFAULT_MODEL from asreview.config import DEFAULT_N_INSTANCES from asreview.config import DEFAULT_N_PRIOR_EXCLUDED from asreview.config import DEFAULT_N_PRIOR_INCLUDED from asreview.config import DEFAULT_QUERY_STRATEGY from asreview.config import EMAIL_ADDRESS from asreview.config import GITHUB_PAGE from asreview.config import KERAS_MODELS from asreview.data import ASReviewData from asreview.data import load_data from asreview.io.paper_record import preview_record from asreview.models.feature_extraction import get_feature_model from asreview.models.classifiers import get_classifier from asreview.models.query import get_query_model from asreview.review.minimal import MinimalReview from asreview.review.simulate import ReviewSimulate from asreview.settings import ASReviewSettings from asreview.state.utils import open_state from asreview.utils import get_random_state ASCII_LOGO = """ _____ _____ _ /\ / ____| __ \ (_) / \ | (___ | |__) |_____ ___ _____ __ / /\ \ \___ \| _ // _ \ \ / / |/ _ \ \ /\ / / / ____ \ ____) | | \ \ __/\ V /| | __/\ V V / /_/ \_\_____/|_| \_\___| \_/ |_|\___| \_/\_/ """ # noqa ASCII_MSG_SIMULATE = """ --------------------------------------------------------------------------------- | | | Welcome to the ASReview Automated Systematic Review software. | | In this mode the computer will simulate how well the ASReview software | | could have accelerate the systematic review of your dataset. | | You can sit back and relax while the computer runs this simulation. | | | | GitHub page: {0: <58}| | Questions/remarks: {1: <58}| | | --------------------------------------------------------------------------------- """.format(GITHUB_PAGE, EMAIL_ADDRESS) # noqa def _add_defaults(set_param, default_param): set_param.update({ key: value for key, value in default_param.items() if key not in set_param }) def create_as_data(dataset, included_dataset=[], excluded_dataset=[], prior_dataset=[], new=False): """Create ASReviewData object from multiple datasets.""" if isinstance(dataset, (str, PurePath)): dataset = [dataset] if isinstance(included_dataset, (str, PurePath)): included_dataset = [included_dataset] if isinstance(excluded_dataset, (str, PurePath)): excluded_dataset = [excluded_dataset] if isinstance(prior_dataset, (str, PurePath)): prior_dataset = [prior_dataset] as_data = ASReviewData() # Find the URL of the datasets if the dataset is a benchmark dataset. for data in dataset: as_data.append(load_data(data)) if new: as_data.labels = np.full((len(as_data), ), LABEL_NA, dtype=int) for data in included_dataset: as_data.append(load_data(data, data_type="included")) for data in excluded_dataset: as_data.append(load_data(data, data_type="excluded")) for data in prior_dataset: as_data.append(load_data(data, data_type="prior")) return as_data def get_reviewer(dataset, mode="simulate", model=DEFAULT_MODEL, query_strategy=DEFAULT_QUERY_STRATEGY, balance_strategy=DEFAULT_BALANCE_STRATEGY, feature_extraction=DEFAULT_FEATURE_EXTRACTION, n_instances=DEFAULT_N_INSTANCES, n_papers=None, n_queries=None, embedding_fp=None, verbose=0, prior_idx=None, prior_record_id=None, n_prior_included=DEFAULT_N_PRIOR_INCLUDED, n_prior_excluded=DEFAULT_N_PRIOR_EXCLUDED, config_file=None, state_file=None, model_param=None, query_param=None, balance_param=None, feature_param=None, seed=None, included_dataset=[], excluded_dataset=[], prior_dataset=[], new=False, **kwargs): """Get a review object from arguments. See __main__.py for a description of the arguments. """ as_data = create_as_data(dataset, included_dataset, excluded_dataset, prior_dataset, new=new) if len(as_data) == 0: raise ValueError("Supply at least one dataset" " with at least one record.") cli_settings = ASReviewSettings(model=model, n_instances=n_instances, n_queries=n_queries, n_papers=n_papers, n_prior_included=n_prior_included, n_prior_excluded=n_prior_excluded, query_strategy=query_strategy, balance_strategy=balance_strategy, feature_extraction=feature_extraction, mode=mode, data_fp=None) cli_settings.from_file(config_file) if state_file is not None: with open_state(state_file) as state: if state.is_empty(): state.settings = cli_settings settings = state.settings else: settings = cli_settings if n_queries is not None: settings.n_queries = n_queries if n_papers is not None: settings.n_papers = n_papers if model_param is not None: settings.model_param = model_param if query_param is not None: settings.query_param = query_param if balance_param is not None: settings.balance_param = balance_param if feature_param is not None: settings.feature_param = feature_param # Check if mode is valid if mode in AVAILABLE_REVIEW_CLASSES: logging.info(f"Start review in '{mode}' mode.") else: raise ValueError(f"Unknown mode '{mode}'.") logging.debug(settings) # Initialize models. random_state = get_random_state(seed) train_model = get_classifier(settings.model, **settings.model_param, random_state=random_state) query_model = get_query_model(settings.query_strategy, **settings.query_param, random_state=random_state) balance_model = get_balance_model(settings.balance_strategy, **settings.balance_param, random_state=random_state) feature_model = get_feature_model(settings.feature_extraction, **settings.feature_param, random_state=random_state) # LSTM models need embedding matrices. if train_model.name.startswith("lstm-"): texts = as_data.texts train_model.embedding_matrix = feature_model.get_embedding_matrix( texts, embedding_fp) # prior knowledge if prior_idx is not None and prior_record_id is not None and \ len(prior_idx) > 0 and len(prior_record_id) > 0: raise ValueError( "Not possible to provide both prior_idx and prior_record_id" ) if prior_record_id is not None and len(prior_record_id) > 0: prior_idx = convert_id_to_idx(as_data, prior_record_id) # Initialize the review class. if mode == "simulate": reviewer = ReviewSimulate(as_data, model=train_model, query_model=query_model, balance_model=balance_model, feature_model=feature_model, n_papers=settings.n_papers, n_instances=settings.n_instances, n_queries=settings.n_queries, prior_idx=prior_idx, n_prior_included=settings.n_prior_included, n_prior_excluded=settings.n_prior_excluded, state_file=state_file, **kwargs) elif mode == "minimal": reviewer = MinimalReview(as_data, model=train_model, query_model=query_model, balance_model=balance_model, feature_model=feature_model, n_papers=settings.n_papers, n_instances=settings.n_instances, n_queries=settings.n_queries, state_file=state_file, **kwargs) else: raise ValueError("Error finding mode, should never come here...") return reviewer def review(*args, mode="simulate", model=DEFAULT_MODEL, save_model_fp=None, **kwargs): """Perform a review from arguments. Compatible with the CLI interface""" if mode not in AVAILABLE_CLI_MODI: raise ValueError(f"Unknown mode '{mode}'.") reviewer = get_reviewer(*args, mode=mode, model=model, **kwargs) # output the prior indices print("The following records are prior knowledge:\n") for prior_record_id in reviewer.start_idx: preview = preview_record(reviewer.as_data.record(prior_record_id)) print(f"{prior_record_id} - {preview}") # Start the review process. reviewer.review() # If we're dealing with a keras model, we can save the last model weights. if save_model_fp is not None and model in KERAS_MODELS: save_model_h5_fp = splitext(save_model_fp)[0] + ".h5" json_model = model.model.to_json() with open(save_model_fp, "w") as f: json.dump(json_model, f, indent=2) model.model.save_weights(save_model_h5_fp, overwrite=True) def review_simulate(dataset, *args, **kwargs): """CLI simulate mode.""" print(ASCII_LOGO + ASCII_MSG_SIMULATE) # backwards comp if isinstance(dataset, list) and len(dataset) >= 1 and \ dataset[0] in ["ptsd", "example_ptsd", "schoot"]: print(f"\n\nWarning '{dataset[0]}' will deprecate in the future,", "use 'benchmark:van_de_Schoot_2017' instead.\n\n") dataset = "benchmark:van_de_Schoot_2017" # backwards comp if isinstance(dataset, list) and len(dataset) >= 1 and \ dataset[0] in ["ace", "example_cohen", "example_ace"]: print(f"\n\nWarning '{dataset[0]}' will deprecate in the future,", "use 'benchmark:Cohen_2006_ACEInhibitors' instead.\n\n") dataset = "benchmark:Cohen_2006_ACEInhibitors" # backwards comp if isinstance(dataset, list) and len(dataset) >= 1 and \ dataset[0] in ["hall", "example_hall", "example_software"]: print(f"\n\nWarning '{dataset[0]}' will deprecate in the future,", "use 'benchmark:Hall_2012' instead.\n\n") dataset = "benchmark:Hall_2012" review(dataset, *args, mode='simulate', **kwargs)
40.793651
82
0.583502
79523e98d86d0844dbe52845ad09d768b13b8c35
427
py
Python
accelerator/migrations/0071_partnerteammember_champion_admin.py
masschallenge/django-accelerator
8af898b574be3b8335edc8961924d1c6fa8b5fd5
[ "MIT" ]
6
2017-06-14T19:34:01.000Z
2020-03-08T07:16:59.000Z
accelerator/migrations/0071_partnerteammember_champion_admin.py
masschallenge/django-accelerator
8af898b574be3b8335edc8961924d1c6fa8b5fd5
[ "MIT" ]
160
2017-06-20T17:12:13.000Z
2022-03-30T13:53:12.000Z
accelerator/migrations/0071_partnerteammember_champion_admin.py
masschallenge/django-accelerator
8af898b574be3b8335edc8961924d1c6fa8b5fd5
[ "MIT" ]
null
null
null
# Generated by Django 2.2.10 on 2021-08-26 17:49 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('accelerator', '0070_judginground_champion_partner_label') ] operations = [ migrations.AddField( model_name='partnerteammember', name='champion_admin', field=models.BooleanField(default=False), ), ]
22.473684
67
0.639344
79523eb4acb1729bfa56a8a1f4d17b5c1574642e
12,690
py
Python
webapp/python/app.py
g4-5u/isucon7-qualify
4598bbe1941a5df14e55c7150970a3f16e32bcfc
[ "MIT" ]
null
null
null
webapp/python/app.py
g4-5u/isucon7-qualify
4598bbe1941a5df14e55c7150970a3f16e32bcfc
[ "MIT" ]
null
null
null
webapp/python/app.py
g4-5u/isucon7-qualify
4598bbe1941a5df14e55c7150970a3f16e32bcfc
[ "MIT" ]
null
null
null
import MySQLdb.cursors import flask import functools import hashlib import math import os import pathlib import random import string import tempfile import time from flask_caching import Cache static_folder = pathlib.Path(__file__).resolve().parent.parent / 'public' icons_folder = static_folder / 'icons' app = flask.Flask(__name__, static_folder=str(static_folder), static_url_path='') app.secret_key = 'tonymoris' avatar_max_size = 1 * 1024 * 1024 if not os.path.exists(str(icons_folder)): os.makedirs(str(icons_folder)) config = { 'db_host': os.environ.get('ISUBATA_DB_HOST', 'localhost'), 'db_port': int(os.environ.get('ISUBATA_DB_PORT', '3306')), 'db_user': os.environ.get('ISUBATA_DB_USER', 'root'), 'db_password': os.environ.get('ISUBATA_DB_PASSWORD', ''), } cache = Cache(app, config={ 'CACHE_TYPE': 'RedisCache', 'CACHE_DEFAULT_TIMEOUT': 60, 'CACHE_REDIS_HOST': 'redis', 'CACHE_REDIS_PORT': 6379, 'CACHE_REDIS_DB': '0' }) def dbh(): if hasattr(flask.g, 'db'): return flask.g.db flask.g.db = MySQLdb.connect( host = config['db_host'], port = config['db_port'], user = config['db_user'], passwd = config['db_password'], db = 'isubata', charset= 'utf8mb4', cursorclass= MySQLdb.cursors.DictCursor, autocommit = True, ) cur = flask.g.db.cursor() cur.execute("SET SESSION sql_mode='TRADITIONAL,NO_AUTO_VALUE_ON_ZERO,ONLY_FULL_GROUP_BY'") return flask.g.db @app.teardown_appcontext def teardown(error): if hasattr(flask.g, "db"): flask.g.db.close() @app.route('/initialize') def get_initialize(): cur = dbh().cursor() cur.execute("DELETE FROM user WHERE id > 1000") cur.execute("DELETE FROM image WHERE id > 1001") cur.execute("DELETE FROM channel WHERE id > 10") cur.execute("DELETE FROM message WHERE id > 10000") cur.execute("DELETE FROM haveread") cur.close() return ('', 204) def db_get_user(cur, user_id): cur.execute("SELECT * FROM user WHERE id = %s", (user_id,)) return cur.fetchone() def db_add_message(cur, channel_id, user_id, content): cur.execute("INSERT INTO message (channel_id, user_id, content, created_at) VALUES (%s, %s, %s, NOW())", (channel_id, user_id, content)) def login_required(func): @functools.wraps(func) def wrapper(*args, **kwargs): if not "user_id" in flask.session: return flask.redirect('/login', 303) flask.request.user_id = user_id = flask.session['user_id'] user = db_get_user(dbh().cursor(), user_id) if not user: flask.session.pop('user_id', None) return flask.redirect('/login', 303) flask.request.user = user return func(*args, **kwargs) return wrapper def random_string(n): return ''.join([random.choice(string.ascii_letters + string.digits) for i in range(n)]) def register(cur, user, password): salt = random_string(20) pass_digest = hashlib.sha1((salt + password).encode('utf-8')).hexdigest() try: cur.execute( "INSERT INTO user (name, salt, password, display_name, avatar_icon, created_at)" " VALUES (%s, %s, %s, %s, %s, NOW())", (user, salt, pass_digest, user, "default.png")) cur.execute("SELECT LAST_INSERT_ID() AS last_insert_id") return cur.fetchone()['last_insert_id'] except MySQLdb.IntegrityError: flask.abort(409) @app.route('/') def get_index(): if "user_id" in flask.session: return flask.redirect('/channel/1', 303) return flask.render_template('index.html') def get_channel_list_info(focus_channel_id=None): cur = dbh().cursor() cur.execute("SELECT * FROM channel ORDER BY id") channels = cur.fetchall() description = "" for c in channels: if c['id'] == focus_channel_id: description = c['description'] break return channels, description @app.route('/channel/<int:channel_id>') @login_required def get_channel(channel_id): channels, description = get_channel_list_info(channel_id) return flask.render_template('channel.html', channels=channels, channel_id=channel_id, description=description) @app.route('/register') def get_register(): return flask.render_template('register.html') @app.route('/register', methods=['POST']) def post_register(): name = flask.request.form['name'] pw = flask.request.form['password'] if not name or not pw: flask.abort(400) user_id = register(dbh().cursor(), name, pw) flask.session['user_id'] = user_id return flask.redirect('/', 303) @app.route('/login') def get_login(): return flask.render_template('login.html') @app.route('/login', methods=['POST']) def post_login(): name = flask.request.form['name'] cur = dbh().cursor() cur.execute("SELECT id, salt, password FROM user WHERE name = %s", (name,)) row = cur.fetchone() if not row or row['password'] != hashlib.sha1( (row['salt'] + flask.request.form['password']).encode('utf-8')).hexdigest(): flask.abort(403) flask.session['user_id'] = row['id'] return flask.redirect('/', 303) @app.route('/logout') def get_logout(): flask.session.pop('user_id', None) return flask.redirect('/', 303) @app.route('/message', methods=['POST']) def post_message(): user_id = flask.session['user_id'] # user = db_get_user(dbh().cursor(), user_id) message = flask.request.form['message'] channel_id = int(flask.request.form['channel_id']) if not user_id or not message or not channel_id: flask.abort(403) db_add_message(dbh().cursor(), channel_id, user_id, message) return ('', 204) @app.route('/message') def get_message(): user_id = flask.session.get('user_id') if not user_id: flask.abort(403) channel_id = int(flask.request.args.get('channel_id')) last_message_id = int(flask.request.args.get('last_message_id')) cur = dbh().cursor() cur.execute("SELECT id, user_id, content, created_at FROM message WHERE id > %s AND channel_id = %s ORDER BY id DESC LIMIT 100", (last_message_id, channel_id)) rows = cur.fetchall() response = [] for row in rows: r = {} r['id'] = row['id'] cur.execute("SELECT name, display_name, avatar_icon FROM user WHERE id = %s", (row['user_id'],)) r['user'] = cur.fetchone() r['date'] = row['created_at'].strftime("%Y/%m/%d %H:%M:%S") r['content'] = row['content'] response.append(r) response.reverse() max_message_id = max(r['id'] for r in rows) if rows else 0 cur.execute('INSERT INTO haveread (user_id, channel_id, message_id, updated_at, created_at)' ' VALUES (%s, %s, %s, NOW(), NOW())' ' ON DUPLICATE KEY UPDATE message_id = %s, updated_at = NOW()', (user_id, channel_id, max_message_id, max_message_id)) return flask.jsonify(response) @app.route('/fetch') def fetch_unread(): user_id = flask.session.get('user_id') if not user_id: flask.abort(403) # time.sleep(1.0) cur = dbh().cursor() cur.execute('SELECT id FROM channel') rows = cur.fetchall() channel_ids = [row['id'] for row in rows] res = [] for channel_id in channel_ids: cur.execute('SELECT message_id FROM haveread WHERE user_id = %s AND channel_id = %s', (user_id, channel_id)) row = cur.fetchone() if row: cur.execute('SELECT COUNT(*) as cnt FROM message WHERE channel_id = %s AND %s < id', (channel_id, row['message_id'])) else: cur.execute('SELECT COUNT(*) as cnt FROM message WHERE channel_id = %s', (channel_id,)) r = {} r['channel_id'] = channel_id r['unread'] = int(cur.fetchone()['cnt']) res.append(r) return flask.jsonify(res) @app.route('/history/<int:channel_id>') @login_required def get_history(channel_id): page = flask.request.args.get('page') if not page: page = '1' if not page.isnumeric(): flask.abort(400) page = int(page) N = 20 cur = dbh().cursor() cur.execute("SELECT COUNT(*) as cnt FROM message WHERE channel_id = %s", (channel_id,)) cnt = int(cur.fetchone()['cnt']) max_page = math.ceil(cnt / N) if not max_page: max_page = 1 if not 1 <= page <= max_page: flask.abort(400) cur.execute("SELECT id, user_id, content, created_at FROM message WHERE channel_id = %s ORDER BY id DESC LIMIT %s OFFSET %s", (channel_id, N, (page - 1) * N)) rows = cur.fetchall() messages = [] for row in rows: r = {} r['id'] = row['id'] cur.execute("SELECT name, display_name, avatar_icon FROM user WHERE id = %s", (row['user_id'],)) r['user'] = cur.fetchone() r['date'] = row['created_at'].strftime("%Y/%m/%d %H:%M:%S") r['content'] = row['content'] messages.append(r) messages.reverse() channels, description = get_channel_list_info(channel_id) return flask.render_template('history.html', channels=channels, channel_id=channel_id, messages=messages, max_page=max_page, page=page) @app.route('/profile/<user_name>') @login_required def get_profile(user_name): channels, _ = get_channel_list_info() cur = dbh().cursor() cur.execute("SELECT * FROM user WHERE name = %s", (user_name,)) user = cur.fetchone() if not user: flask.abort(404) self_profile = flask.request.user['id'] == user['id'] return flask.render_template('profile.html', channels=channels, user=user, self_profile=self_profile) @app.route('/add_channel') @login_required def get_add_channel(): channels, _ = get_channel_list_info() return flask.render_template('add_channel.html', channels=channels) @app.route('/add_channel', methods=['POST']) @login_required def post_add_channel(): name = flask.request.form['name'] description = flask.request.form['description'] if not name or not description: flask.abort(400) cur = dbh().cursor() cur.execute("INSERT INTO channel (name, description, updated_at, created_at) VALUES (%s, %s, NOW(), NOW())", (name, description)) channel_id = cur.lastrowid return flask.redirect('/channel/' + str(channel_id), 303) @app.route('/profile', methods=['POST']) @login_required def post_profile(): user_id = flask.session.get('user_id') if not user_id: flask.abort(403) cur = dbh().cursor() # user = db_get_user(cur, user_id) # if not user: # flask.abort(403) display_name = flask.request.form.get('display_name') avatar_name = None avatar_data = None if 'avatar_icon' in flask.request.files: file = flask.request.files['avatar_icon'] if file.filename: ext = os.path.splitext(file.filename)[1] if '.' in file.filename else '' if ext not in ('.jpg', '.jpeg', '.png', '.gif'): flask.abort(400) with tempfile.TemporaryFile() as f: file.save(f) f.flush() if avatar_max_size < f.tell(): flask.abort(400) f.seek(0) data = f.read() digest = hashlib.sha1(data).hexdigest() avatar_name = digest + ext avatar_data = data if avatar_name and avatar_data: cur.execute("INSERT INTO image (name, data) VALUES (%s, _binary %s)", (avatar_name, avatar_data)) cur.execute("UPDATE user SET avatar_icon = %s WHERE id = %s", (avatar_name, user_id)) if display_name: cur.execute("UPDATE user SET display_name = %s WHERE id = %s", (display_name, user_id)) return flask.redirect('/', 303) def ext2mime(ext): if ext in ('.jpg', '.jpeg'): return 'image/jpeg' if ext == '.png': return 'image/png' if ext == '.gif': return 'image/gif' return '' @app.route('/icons/<file_name>') @cache.cached(timeout=60) def get_icon(file_name): cur = dbh().cursor() cur.execute("SELECT data FROM image WHERE name = %s", (file_name,)) row = cur.fetchone() ext = os.path.splitext(file_name)[1] if '.' in file_name else '' mime = ext2mime(ext) if row and mime: return flask.Response(row['data'], mimetype=mime) flask.abort(404) if __name__ == "__main__": app.run(port=8080, debug=True, threaded=True)
30.726392
132
0.619307
79523eedb4e3585cf02cda1512a11b90da2d1239
1,248
py
Python
cgi-bin/registro.py
raulsenaferreira/Projeto-Myosotis
b51cc4d7970f8647bcfde8f6dc9fa3d0c96093b6
[ "Apache-2.0" ]
5
2015-09-15T15:30:49.000Z
2021-07-16T23:11:35.000Z
cgi-bin/registro.py
raulsenaferreira/Projeto-Myosotis
b51cc4d7970f8647bcfde8f6dc9fa3d0c96093b6
[ "Apache-2.0" ]
6
2015-08-08T22:47:19.000Z
2015-09-08T01:37:49.000Z
cgi-bin/registro.py
raulsenaferreira/Projeto-Myosotis
b51cc4d7970f8647bcfde8f6dc9fa3d0c96093b6
[ "Apache-2.0" ]
2
2016-07-11T19:56:26.000Z
2018-04-08T14:07:52.000Z
class Registro(object): def __init__(self, nome, imagem, sexo, olhos, corDaPele, cabelo, pesoAproximado, alturaAproximada, tipoFisico, transtornoMental, idade, dataNascimento, diasDesaparecido, dataDesaparecimento, bairroDesaparecimento, cidadeDesaparecimento, ufDesaparecimento, marcaCaracteristica, status, informacoes, boletimOcorrencia, fonte): self.nome = nome self.imagem = imagem self.sexo = sexo self.olhos = olhos self.corDaPele = corDaPele self.cabelo = cabelo self.pesoAproximado = pesoAproximado self.alturaAproximada = alturaAproximada self.tipoFisico =tipoFisico self.transtornoMental = transtornoMental self.idade = idade self.dataNascimento = dataNascimento self.diasDesaparecido = diasDesaparecido self.dataDesaparecimento = dataDesaparecimento self.bairroDesaparecimento = bairroDesaparecimento self.cidadeDesaparecimento = cidadeDesaparecimento self.ufDesaparecimento = ufDesaparecimento self.marcaCaracteristica = marcaCaracteristica self.status = status self.informacoes = informacoes self.boletimOcorrencia = boletimOcorrencia self.fonte = fonte
49.92
328
0.72516
79523fdc5318bd999f7805caf1edfefeb50d75b7
859
py
Python
scam/types/coin_solution.py
grayfallstown/scam-blockchain
2183020cc74bbd1a63dda6eb0d0e73c2a3429594
[ "Apache-2.0" ]
12
2021-08-04T14:35:02.000Z
2022-02-09T04:31:44.000Z
scam/types/coin_solution.py
grayfallstown/scam-blockchain
2183020cc74bbd1a63dda6eb0d0e73c2a3429594
[ "Apache-2.0" ]
8
2021-08-04T20:58:10.000Z
2021-09-11T17:08:28.000Z
scam/types/coin_solution.py
grayfallstown/scam-blockchain
2183020cc74bbd1a63dda6eb0d0e73c2a3429594
[ "Apache-2.0" ]
4
2021-07-28T09:50:55.000Z
2022-03-15T08:43:53.000Z
from dataclasses import dataclass from typing import List from scam.types.blockchain_format.coin import Coin from scam.types.blockchain_format.program import SerializedProgram, INFINITE_COST from scam.util.chain_utils import additions_for_solution from scam.util.streamable import Streamable, streamable @dataclass(frozen=True) @streamable class CoinSolution(Streamable): """ This is a rather disparate data structure that validates coin transfers. It's generally populated with data from different sources, since burned coins are identified by name, so it is built up more often that it is streamed. """ coin: Coin puzzle_reveal: SerializedProgram solution: SerializedProgram def additions(self) -> List[Coin]: return additions_for_solution(self.coin.name(), self.puzzle_reveal, self.solution, INFINITE_COST)
34.36
105
0.784633
7952408e177f6ebf5dc3b4321167f07018bd57ba
7,476
py
Python
web_scraper.py
lschimmel/scraper
1937e0a4b1f7206b8871b3e93314e67635a4012c
[ "MIT" ]
null
null
null
web_scraper.py
lschimmel/scraper
1937e0a4b1f7206b8871b3e93314e67635a4012c
[ "MIT" ]
null
null
null
web_scraper.py
lschimmel/scraper
1937e0a4b1f7206b8871b3e93314e67635a4012c
[ "MIT" ]
null
null
null
from bs4 import BeautifulSoup import requests import os import pathlib import re import csv N = 100 # scrapes webpage's search results # saves a subset of the webpage, and images to a folder def main(): #test conditions # url = 'URL GOES HERE' # i = 1 # scrape_how_to(url, i) # log = ['test', 'item'] # failed = ['fone', 'f2'] # i = 0 # savelog(failed, log, i) # run conditions log = [] failed = [] for i in range(0, N): if i == (N/2): savelog(log, failed, i) else: print('\npage: ', i, '\n____________________________________________________________________________________') try: filename = search_results(i, failed) url = next_url(filename, i, log) except Exception: pass print('failed:\n', failed) savelog(log, failed, i) def savelog(log, failed, i): filename = 'log' + str(i) + '.txt' filename_csv = 'log' + str(i) + '.csv' with open(filename, 'w', encoding='utf-8') as f: f.write('log\n') for item in log: f.write(str(item)) f.write('\n') f.write('\n\nfailed\n') for item in failed: f.write(str(item)) f.write('\n') with open(filename_csv, 'w') as e: writer = csv.writer(e) for item in log: writer.writerow([item]) def scrape_search_results(i, failed): url = 'URL GOES HERE' + str(i*24) html_content = requests.get(url).text soup = BeautifulSoup(html_content, "lxml") # print(soup) soupa = soup.find_all('a') filename = 'searchresults' + str(i) + '.txt' link_set = set() for link in soupa: link_txt = str(link.get('href')) + "\n" link_set.add(link_txt) # print('link set:', link_set) with open(filename, 'w') as f: for item in link_set: # print(item) link_txt1 = str(item) link_txt2 = link_txt1.replace('\\', '') link_txt3 = link_txt2.replace('"n', '') link_txt4 = link_txt3.replace('"', '') # print('link text 4:', link_txt4) if 'URL GOES HERE' in link_txt4: if not "specialoffers" in link_txt4 and not "sale" in link_txt4: f.write(link_txt4) else: failed.append(link_txt4) return filename def next_url(filename, i, log): #iterates over each url in a .txt file, scrapes the webpage for instructions and saves the result in a txt file (file name is the url, first element is the url, second element is either the instructions or the full scrape with open(filename, 'r') as f: for row in f: url = str(row) # print(url) scrape_how_to(url, i, log) # return url def scrape_how_to(urlstringname, i, log): #test conditions url = urlstringname.strip('\n') html_content = requests.get(url).text soup = BeautifulSoup(html_content, "lxml") soup_content = soup.find_all('div', attrs={'class':'loc content-body'}) #find subsections of the soup #breadcrumbs for subfolders breadcrumbs = soup.find('div', attrs= {'class': 'breadcrumbs'}) i = 0 pathlevel0 = 'output_dir' if breadcrumbs: for child in breadcrumbs: if child.string != '\n' and child.string != None: if i == 0: i += 1 # print(i, child.string) foldername = 'lvl' + str(i) + '_' + child.string pathlevel1 = pathlib.Path(pathlevel0, foldername) if pathlevel1.exists(): # print('folder level', i, 'exists') pathlevelj = pathlevel1 pass else: pathlevel1.mkdir(parents=True, exist_ok=False) pathlevelk = pathlib.Path(pathlevel1) # pathlevelj = pathlib.Path(pathlevelk, foldername) else: i += 1 foldername = 'lvl' + str(i) + '_' + child.string pathlevelj= pathlib.Path(pathlevelk, foldername) if pathlevelj.exists(): # print('folder level', i, 'exists') pathlevelk = pathlib.Path(pathlevelj) else: # print('creating new level 1 folder: ', child.string) pathlevelj.mkdir(parents=True, exist_ok=False) pathlevelk = pathlib.Path(pathlevelj) else: pathlevelj = pathlib.Path(pathlevel0, 'Uncategorized') #body content soupa = soup.find_all('div', attrs={'class': 'loc content'}) url_name = url.replace('https://', '-') url_name2 = url_name.replace('/', '-') #make folders and name them + files according to headers try: valid_file_name = re.sub('[^\w_.)( -]', '', soup.h1.string) except Exception: try: valid_file_name = re.sub('[^\w_.)( -]', '', soup.h2.string) except Exception: valid_file_name = 'scrapedarticle_' + str(i) + '.txt' foldername = valid_file_name.strip(' ') new_dir_name = 'a_' + foldername if i == 1: project_dir_name = pathlib.Path(pathlevel1, new_dir_name) else: project_dir_name = pathlib.Path(pathlevelj, new_dir_name) new_dir = pathlib.Path(project_dir_name) new_dir.mkdir(parents=True, exist_ok=True) img_tags = soup.find_all('img') try: # save image urls as txt files urls = [img['data-src'] for img in img_tags] i = 0 for url in urls: i += 1 image_filename = 'image_' + str(i) + '.txt' with open(project_dir_name/image_filename, 'w') as f: f.write(url) except Exception: image_filename = 'image_' + str(i) + '.txt' # print(url) with open(project_dir_name / image_filename, 'w', encoding='utf-8') as f: f.write(str(urlstringname)) f.write('\nerror, saved img_tags instead\n') f.write(str(img_tags)) pass # checks if there is an article container content section, else if there is an instruction section class, else returns full soup # save contents as txt file filename = foldername + '.txt' log.append(filename) log.append(urlstringname) try: if soup_content: with open(new_dir/filename, 'w', encoding="utf-8") as f: f.write(str(urlstringname)) f.write(str(soup_content)) elif soupa: with open(new_dir/filename, 'w', encoding="utf-8") as f: f.write(str(urlstringname)) f.write('\naloc content-body not found, pulled loc content instead. \n\n') f.write(str(soupa)) else: with open(new_dir/filename, 'w', encoding="utf-8") as f: f.write(str(urlstringname)) f.write('\nloc content-body not found, pulled soup instead. \n\n') f.write(str(soup)) except Exception: pass # print(log) return log if __name__ == "__main__": main()
35.942308
226
0.535447
795240d1b6fde8dbab5e8d0739943a699c504a76
2,693
py
Python
data/plugins/npcs/dialogue/vorki_pet.py
FavyTeam/Elderscape_server
38bf75396e4e13222be67d5f15eb0b9862dca6bb
[ "MIT" ]
3
2019-05-09T16:59:13.000Z
2019-05-09T18:29:57.000Z
data/plugins/npcs/dialogue/vorki_pet.py
FavyTeam/Elderscape_server
38bf75396e4e13222be67d5f15eb0b9862dca6bb
[ "MIT" ]
null
null
null
data/plugins/npcs/dialogue/vorki_pet.py
FavyTeam/Elderscape_server
38bf75396e4e13222be67d5f15eb0b9862dca6bb
[ "MIT" ]
7
2019-07-11T23:04:40.000Z
2021-08-02T14:27:13.000Z
#Plugin to handle dialogue for Vorki (Vorkath) pet #Written by Owain #15/08/18 dialogue_ids = [8501, 8502, 8503, 8504, 8503, 8504, 8505, 8506, 8507, 8508, 8509, 8510] def first_click_npc_8025(player): player.getDH().sendDialogues(8500) def chat_8500(player): player.getDH().sendPlayerChat("Hey Vorki, got any interesting dragon facts?", 591) dialogue = random.choice(dialogue_ids) player.nextDialogue = dialogue; def chat_8501(player): player.getDH().sendNpcChat("Although they have wings, dragons rarely fly. This is because" , "the animals they prey on are all ground dwelling.", 591) def chat_8502(player): player.getDH().sendNpcChat("Unlike their creators, dragons have the ability to reproduce." , "Like most reptiles, they are oviparous. This means that they" , "lay eggs rather than birthing live young.", 591) def chat_8503(player): player.getDH().sendNpcChat("Dragons have a very long lifespan and can live for thousands" , "of years. With a lifespan that long, most dragons die to" , "combat instead of age.", 591) def chat_8504(player): player.getDH().sendNpcChat("While very closely related, dragons and wyverns are" , "actually different species. You can easily tell the difference" , "between them by counting the number of legs, dragons" , "have four while wyverns have two.", 591) def chat_8505(player): player.getDH().sendNpcChat("Metallic dragons were created by inserting molten metal" , "into the eggs of other dragons. Very few eggs survived" , "this process.", 591) def chat_8506(player): player.getDH().sendNpcChat("The dragonkin created dragons by fusing their own lifeblood" , "with that of a lizard. The dragonkin created other species" , "in similar ways by using different types of reptile.", 591) def chat_8507(player): player.getDH().sendNpcChat("Dragons have the ability to speak. However, most dragons" , "don't have the brain capacity to do it very well.", 591) def chat_8508(player): player.getDH().sendNpcChat("Dragons share their name with dragon equipment, which" , "was also created by the dragonkin. This equipment is" , "fashioned out of Orikalkum.", 591) def chat_8509(player): player.getDH().sendNpcChat("Although very aggressive, dragons do not typically stray from" , "their own territory. They instead make their homes in places" , "where there is plenty of prey to be found.", 591) def chat_8510(player): player.getDH().sendNpcChat("Dragons have a duct in their mouth from which they" , "can expel various internally produced fluids. The most common" , "of these is a fluid which ignites when it reacts" , "with air. This is how dragons breathe fire.", 591)
53.86
256
0.738953
7952417bbbe7ba6bc326dcfe2f03b6078660121a
60,255
py
Python
alphax/factor_alpha101.py
wangjiehui11235/panther
cf1ca2f0c7107c5cdacf2f7ff4002d43427d9b07
[ "Apache-2.0" ]
3
2020-01-23T22:23:08.000Z
2020-10-12T20:02:16.000Z
alphax/factor_alpha101.py
wangjiehui11235/panther
cf1ca2f0c7107c5cdacf2f7ff4002d43427d9b07
[ "Apache-2.0" ]
1
2019-10-28T05:53:08.000Z
2019-10-28T05:53:08.000Z
alphax/factor_alpha101.py
wangjiehui11235/panther
cf1ca2f0c7107c5cdacf2f7ff4002d43427d9b07
[ "Apache-2.0" ]
9
2019-08-21T07:48:32.000Z
2020-04-04T09:17:54.000Z
# -*- coding: utf-8 -*- import pdb import numba import six import pandas as pd import numpy as np import inspect import datetime from sklearn import preprocessing from numpy import log from utilities.singleton import Singleton # rolling corr of two pandas dataframes def rolling_corr(x, y, win): corr_df = pd.DataFrame(data=np.NaN, index=x.index, columns=x.columns) for begin, end in zip(x.index[:-win + 1], x.index[win - 1:]): corr_df.loc[end] = x.loc[begin:end].corrwith(y.loc[begin:end]) return corr_df # rolling cov of two pandas dataframes def rolling_cov(x, y, win): cov_df = pd.DataFrame(data=np.NaN, index=x.index, columns=x.columns) for begin, end in zip(x.index[:-win + 1], x.index[win - 1:]): x_std = x.loc[begin:end].std() y_std = y.loc[begin:end].std() cov_df.loc[end] = x.loc[begin:end].corrwith(y.loc[begin:end]) * x_std * y_std return cov_df # rolling rank of a pandas dataframe def rolling_rank(df, win): rank_df = pd.DataFrame(data=np.NaN, index=df.index, columns=df.columns) for begin, end in zip(df.index[:-win + 1], df.index[win - 1:]): rank_df.loc[end] = df.loc[begin:end].rank(axis=0, pct=True).iloc[-1] return rank_df # rolling dot of a pandas dataframe def rolling_dot(df, x, win): dot_df = pd.DataFrame(data=np.NaN, index=df.index, columns=df.columns) for begin, end in zip(df.index[:-win + 1], df.index[win - 1:]): # dot_df.loc[end] = x.dot(df.loc[begin:end]) dot_df.loc[end] = np.dot(x, df.loc[begin:end].values) return dot_df # rolling regression residual def rolling_regresi(y, x, win): resi_df = pd.DataFrame(data=np.NaN, index=y.index, columns=y.columns) for begin, end in zip(y.index[:-win + 1], y.index[win - 1:]): yy = y.loc[begin:end] xx = x.loc[begin:end] resi_df.loc[end] = sm.OLS(yy, sm.add_constant(xx)).fit().resid.loc[end] return resi_df # columns covariance of two dataframes def df_covariance(x, y): y = y[x.columns] corr_se = x.corrwith(y) x_cov, y_cov = np.diag(np.cov(x.T)), np.diag(np.cov(y.T)) cov_se = (corr_se * np.sqrt(x_cov) * np.sqrt(y_cov)) return cov_se # return a series of decay linear sum value of last win rows of dataframe df. def decay_linear(df, win): weights = list(range(1, win + 1)) weights = [x * 1. / np.sum(weights) for x in weights] dot_df = rolling_dot(df.iloc[-win:], weights, win) return dot_df.iloc[-1] # return a series of decay linear sum value of last win rows of dataframe df. def decay_linear(df, win): weights = list(range(1, win + 1)) weights = [x * 1. / np.sum(weights) for x in weights] dot_df = rolling_dot(df.iloc[-win:], weights, win) return dot_df.iloc[-1] # return a dataframe of rolling decay linear sum value of dataframe df. def rolling_decay(df, win): weights = list(range(1, win + 1)) weights = [x * 1. / np.sum(weights) for x in weights] dot_df = rolling_dot(df, weights, win) return dot_df # return winsorized series def se_winsorize(se, method='sigma', limits=(3.0, 3.0), drop=False): se = se.copy(deep=True) if method == 'quantile': down, up = se.quantile([limits[0], 1.0 - limits[1]]) elif method == 'sigma': std, mean = se.std(), se.mean() down, up = mean - limits[0]*std, mean + limits[1]*std if drop: se[se<down] = np.NaN se[se>up] = np.NaN else: se[se<down] = down se[se>up] = up return se # return standardized series def se_standardize(se): try: res = (se - se.mean()) / se.std() except: res = pd.Series(data=np.NaN, index=se.index) return res # return indneutralized series def se_indneutralize(se, indu_dict): date = se.name[0] if type(se.name) is tuple else se.name indu = indu_dict[date] try: se = se_winsorize(se, method='quantile', limits=(0.05, 0.05)) se = se_winsorize(se, method='sigma', limits=(3.0, 3.0)) se = se.dropna() if se.empty: return se codes = se.index.intersection(indu.index) se = se.loc[codes] indu = indu.loc[codes] x = np.linalg.lstsq(indu.values, np.matrix(se).T)[0] y = se - indu.dot(x)[0] except: print(date, ': neutralize error!') return y # return indneutralized pandas dataframe def df_indneutralize(df, indu_dict): neu_dict = {} for bar_id in df.index: se = df.loc[bar_id] neu_dict[bar_id] = se_indneutralize(se, indu_dict) neu_df = pd.DataFrame(neu_dict).T return neu_df @six.add_metaclass(Singleton) class FactorAlpha101(object): def __init__(self): __str__ = 'factor_alpha101' self.name = 'Alpha101' self.factor_type1 = 'Features' self.factor_type2 = 'Features' self.description = 'price and volumns features' def alpha101_2(self, data, param1=2, param2=6, dependencies=['turnover_vol', 'close_price', 'open_price'], max_window=10): # -1 * correlation(rank(delta(LOG(VOLUME), 2)), rank(((CLOSE - OPEN) / OPEN)), 6) # 价格和成交量都是一阶diff,所以可以都用复权价 rank_price = ((data['close_price'] - data['open_price']) / data['open_price']).rank(axis=1, pct=True) rank_volume = (np.log(data['turnover_vol'])).diff(periods=param1).rank(axis=1, pct=True) corr_win = param2 id_begin = rank_price.index[-corr_win] alpha = rank_price.loc[id_begin:].corrwith(rank_volume.loc[id_begin:]) return -1.0 * alpha def alpha101_3(self, data, param1=10, param2=-1, dependencies=['open_price', 'turnover_vol'], max_window=11): # -1 * correlation(rank(OPEN), rank(VOLUME), 10) rank_open_df = data['open_price'].rank(axis=1, pct=True) rank_volume_df = data['turnover_vol'].rank(axis=1, pct=True) corr_win = param1 id_begin = rank_open_df.index[-corr_win] alpha = rank_open_df.loc[id_begin:].corrwith(rank_volume_df.loc[id_begin:]) return float(param2) * alpha def alpha101_4(self, data, param1=9, param2=-1, dependencies=['lowest_price'], max_window=10): # -1 * ts_rank(rank(LOW), 9) rank_low = data['lowest_price'].rank(axis=1, pct=True) ts_win = param1 id_begin = rank_low.index[-ts_win] alpha = rank_low.loc[id_begin:].rank(axis=0, pct=True).iloc[-1] return float(param2) * alpha def alpha101_5(self, data, param1=10, dependencies=['open_price', 'close_price', 'vwap'], max_window=10): # rank((OPEN - (sum(VWAP, 10) / 10))) * (-1 * abs(rank((CLOSE - VWAP)))) mean_win = param1 open_vwap = data['open_price'] - data['vwap'].rolling(window=mean_win).mean() rank_open = open_vwap.rank(axis=1, pct=True) abs_rank = (data['close_price'] - data['vwap']).rank(axis=1, pct=True).abs() * (-1.0) alpha = (rank_open * abs_rank).iloc[-1] return alpha def alpha101_6(self, data, param1=10, param2=-1, dependencies=['open_price', 'turnover_vol'], max_window=11): # -1 * correlation(OPEN, VOLUME, 10) # correlation of window history price and volume, use adjusted data here. corr_win = param1 id_begin = data['open_price'].index[-corr_win] alpha = data['open_price'].loc[id_begin:].corrwith(data['turnover_vol'].loc[id_begin:]) return float(param2) * alpha def alpha101_11(self, data, param1=3, param2=3, dependencies=['close_price', 'vwap', 'turnover_vol'], max_window=5): # (rank(ts_max((VWAP - CLOSE), 3)) + rank(ts_min((VWAP - CLOSE), 3))) * rank(delta(VOLUME, 3)) ts_max = (data['vwap'] - data['close_price']).rolling(window=param1).max() ts_min = (data['vwap'] - data['close_price']).rolling(window=param1).min() delta_volume = data['turnover_vol'].diff(periods=param2) rank_ts_max = ts_max.rank(axis=1, pct=True) rank_ts_min = ts_min.rank(axis=1, pct=True) rank_vol = delta_volume.rank(axis=1, pct=True) alpha = ((rank_ts_max + rank_ts_min) * rank_vol).iloc[-1] return alpha def alpha101_12(self, data, param1=1, param2=-1, dependencies=['close_price', 'turnover_vol'], max_window=2): # sign(delta(VOLUME, 1)) * (-1 * delta(CLOSE, 1)) alpha = np.sign(data['turnover_vol'].diff(periods=param1)) * data['close_price'].diff(periods=param1) alpha = alpha.iloc[-1] * float(param2) return alpha def alpha101_13(self, data, param1=5, param2=-1, dependencies=['close_price', 'turnover_vol'], max_window=6): # -1 * rank(covariance(rank(CLOSE), rank(VOLUME), 5)) rank_close_df = data['close_price'].rank(axis=1, pct=True) rank_volume_df = data['turnover_vol'].rank(axis=1, pct=True) corr_win = param1 id_begin = rank_close_df.index[-corr_win] alpha = df_covariance(rank_close_df.loc[id_begin:], rank_volume_df.loc[id_begin:]) return float(param2) * alpha.rank(pct=True) def alpha101_14(self, data, param1=10, param2=3, param3=-1, dependencies=['open_price', 'turnover_vol', 'returns'], max_window=10): # (-1 * rank(delta(RETURNS, 3))) * correlation(OPEN, VOLUME, 10) corr_win = param1 id_begin = data['open_price'].index[-corr_win] corr_se = data['open_price'].loc[id_begin:].corrwith(data['turnover_vol'].loc[id_begin:]) rank_ret_se = (param3) * data['returns'].diff(periods=param2).rank(axis=1, pct=True).iloc[-1] alpha = rank_ret_se * corr_se return alpha def alpha101_15(self, data, param1=3, param2=3, param3=-1, dependencies=['highest_price', 'turnover_vol'], max_window=6): # -1 * sum(rank(correlation(rank(HIGH), rank(VOLUME), 3)), 3) rank_high_df = data['highest_price'].rank(axis=1, pct=True) rank_volume_df = data['turnover_vol'].rank(axis=1, pct=True) corr_win = param1 corr_df = rolling_corr(rank_high_df, rank_volume_df, win=corr_win) sum_win = param2 id_begin = corr_df.index[-sum_win] alpha = corr_df.loc[id_begin:].rank(axis=1, pct=True).sum() return float(param3) * alpha def alpha101_16(self, data, param1=5, param2=-1, dependencies=['highest_price', 'turnover_vol'], max_window=6): # -1 * rank(covariance(rank(HIGH), rank(VOLUME), 5)) rank_high_df = data['highest_price'].rank(axis=1, pct=True) rank_volume_df = data['turnover_vol'].rank(axis=1, pct=True) corr_win = param1 id_begin = rank_high_df.index[-corr_win] alpha = df_covariance(rank_high_df.loc[id_begin:], rank_volume_df.loc[id_begin:]) return float(param2) * alpha.rank(pct=True) def alpha101_18(self, data, param1=10, param2=5, param3=-1, dependencies=['open_price', 'close_price'], max_window=10): # -1 * rank((stddev(abs((CLOSE - OPEN)), 5) + (CLOSE - OPEN)) + correlation(CLOSE, OPEN, 10)) corr_win = param1 id_begin = data['open_price'].index[-corr_win] corr_se = data['open_price'].loc[id_begin:].corrwith(data['close_price'].loc[id_begin:]) price = data['close_price'] - data['open_price'] price_se = (price.abs().rolling(window=param2).std() + price).iloc[-1] alpha = float(param3) * (price_se + corr_se).rank(pct=True) return alpha def alpha101_19(self, data, param1=7, param2=70, param3=1, param4=-1, dependencies=['close_price', 'returns'], max_window=70): # -1 * sign(((CLOSE - delay(CLOSE, 7)) + delta(CLOSE, 7))) * (1 + rank(1 + sum(RETURNS, 250))) sign_se = np.sign(data['close_price'].diff(param1)).iloc[-1] # rank_se = (1.0 + data['returns'].rolling(window=250).sum()).iloc[-1].rank(pct=True) + 1.0 ret_win = param2 rank_se = (float(param3) + data['returns'].rolling(window=ret_win).sum()).iloc[-1].rank(pct=True) alpha = float(param4) * sign_se * rank_se return alpha def alpha101_22(self, data, param1=5, param2=20, param3=-1, dependencies=['close_price', 'highest_price', 'turnover_vol'], max_window=20): # -1 * (delta(correlation(HIGH, VOLUME, 5), 5) * rank(stddev(CLOSE, 20))) corr_df = rolling_corr(data['highest_price'], data['turnover_vol'], win=param1) delta_corr_se = corr_df.diff(periods=param1).iloc[-1] rank_std_se = data['close_price'].rolling(window=param2).std().rank(axis=1, pct=True).iloc[-1] alpha = float(param3) * delta_corr_se * rank_std_se return alpha def alpha101_23(self, data, param1=20, param2=-1, param3=2, param4=0.25, dependencies=['highest_price', 'highest_price'], max_window=20): # ((sum(HIGH, 20) / 20) < HIGH) ? (-1 * delta(HIGH, 2)) : 0 # # original factor calc method # mark = data['high'].rolling(window=20).mean() < data['high'] # delta_high = -1.0 * data['high_raw'].diff(2) # delta_high[mark==False] = 0.0 # alpha = delta_high.iloc[-1] # adjusted factor calc method mark = data['highest_price'].rolling(window=param1).mean() < data['highest_price'] delta_high = float(param2) * data['highest_price'].diff(param3) delta_high[mark==False] = delta_high[mark==False] * param4 alpha = delta_high.iloc[-1] return alpha def alpha101_24(self, data, param1=40, param2=20, param3=6, param4=-1, dependencies=['close_price'], max_window=70): # (((delta((sum(CLOSE, 100) / 100), 100) / delay(CLOSE, 100)) < 0.05) || # ((delta((sum(CLOSE, 100) / 100), 100) / delay(CLOSE, 100))== 0.05)) ? # (-1 * (CLOSE - ts_min(CLOSE, 100))) : (-1 * delta(CLOSE, 3)) # # rearranged # mask = (delta((sum(CLOSE, 100) / 100), 100) / delay(CLOSE, 100)) # mask > 0.05 ? (-1 * delta(CLOSE, 3)) : (-1 * (CLOSE - ts_min(CLOSE, 100))) # # original factor calc method # delta_close = data['close'].rolling(window=100).mean().diff(periods=100) # delay_close = data['close'].shift(periods=100) # mask = delta_close / delay_close # mask_se = mask.iloc[-1] > 0.05 # true_se = -1.0 * data['close_raw'].diff(periods=3).iloc[-1] # false_se = -1.0 * (data['close_raw'] - data['close_raw'].rolling(window=100).min()).iloc[-1] # true_se = true_se.reindex(mask_se.index) # false_index = mask_se[mask_se==False].index # true_se.loc[false_index] = false_se.loc[false_index] # # adjusted factor calc method delta_close = data['close_price'].rolling(window=param1).mean().diff(periods=param2) delay_close = data['close_price'].shift(periods=param2) mask = delta_close / delay_close mask_se = mask.iloc[-1] > mask.iloc[-1].median() true_se = float(param4) * data['close_price'].diff(periods=param3).iloc[-1] false_se = float(param4) * (data['close_price'] - data['close_price'].rolling( window=param1).min()).iloc[-1] true_se = true_se.reindex(mask_se.index) false_index = mask_se[mask_se==False].index true_se.loc[false_index] = false_se.loc[false_index] return true_se def alpha101_26(self, data, param1=10, param2=10, param3=5, param4=-1, dependencies=['highest_price', 'turnover_vol'], max_window=30): # -1 * ts_max(correlation(ts_rank(VOLUME, 5), ts_rank(HIGH, 5), 5), 3) ts_rank_vol = rolling_rank(data['turnover_vol'], win=param1) ts_rank_high = rolling_rank(data['highest_price'], win=param1) corr_df = rolling_corr(ts_rank_vol, ts_rank_high, win=param2) alpha = float(param4) * corr_df.rolling(window=param3).max().iloc[-1] return alpha def alpha101_27(self, data, param1=10, param2=2, param3=-1, dependencies=['vwap', 'turnover_vol'], max_window=12): # (0.5 < rank((sum(correlation(rank(VOLUME), rank(VWAP), 6), 2) / 2.0))) ? (-1 * 1) : 1 rank_vol = data['turnover_vol'].rank(axis=1, pct=True) rank_vwap = data['vwap'].rank(axis=1, pct=True) # # original factor calc method # corr_df = rolling_corr(rank_vol, rank_vwap, win=10) # corr_mean = corr_df.rolling(window=2).mean() # alpha = corr_mean.rank(axis=1, pct=True).iloc[-1] # alpha = -1.0 * np.sign((alpha - 0.5)) # adjusted factor calc method # sum(correlation(rank(VOLUME), rank(VWAP), 6), 2) / 2.0 corr_df = rolling_corr(rank_vol, rank_vwap, win=param1) corr_mean = corr_df.rolling(window=param2).mean() alpha = float(param3)* corr_mean.iloc[-1] return alpha def alpha101_29(self, data, param1=5, param2=4, param3=3,param4=-1,param5=6,param7=20, dependencies=['close_price', 'returns'], max_window=30): # # original formula # min(product(rank(sum(ts_min(rank(-1 * rank(delta(CLOSE, 5))), 2), 1)), 1), 5) + # ts_rank(delay((-1 * RETURNS), 6), 5) # # adjusted formula # min(product(rank(sum(ts_min(rank(-1 * rank(delta(CLOSE, 5))), 4), 3)), 3), 5) + # ts_rank(delay((-1 * RETURNS), 6), 20) df = (float(param4) * data['close_price'].diff(periods=param1).rank(axis=1, pct=True)).rank(axis=1, pct=True) df = np.log(df.rolling(window=param3).min().rolling(window=param3).sum()).rank(axis=1, pct=True) df = df.rolling(window=param3).apply(lambda x: np.prod(x)).rolling(window=param1).min() delay_ret = (float(param4) * data['returns']).shift(periods=param5) rank_win = param7 id_begin = data['returns'].index[-rank_win] ts_rank_ret = delay_ret.loc[id_begin:].rank(axis=0, pct=True) alpha = df.iloc[-1] + ts_rank_ret.iloc[-1] return alpha ''' def alpha101_32(self, data, param1=7, param2=40, param3=5, param4=20, dependencies=['close_price', 'vwap'], max_window=50): # # original formula # scale((sum(CLOSE, 7) / 7) - CLOSE) + 20 * scale(correlation(VWAP, delay(CLOSE, 5), 230)) # # adjusted formula # scale((sum(CLOSE, 7) / 7) - CLOSE) + 20 * scale(correlation(VWAP, delay(CLOSE, 5), 40)) close_se = (data['close_price'].rolling(window=param1).mean() - data['close_price']).iloc[-1] scale_close_se = close_se / close_se.abs().sum() corr_win = param2 id_begin = data['close_price'].index[-corr_win] corr_se = data['close_price'].shift(periods=param3).loc[id_begin:].corrwith(data['vwap'].loc[id_begin:]) scale_corr_se = corr_se / corr_se.abs().sum() alpha = scale_close_se + param4 * scale_corr_se return alpha ''' def alpha101_36(self, data, param1=15, param2=6, param3=10, param4=20, param5=50, param6=2.21, param7=0.7, param8=0.73, param9=0.6, param10=-1, dependencies=['close_price', 'open_price', 'close_price', 'vwap', 'turnover_vol', 'returns'], max_window=60): # # original formula # 2.21 * rank(correlation((CLOSE - OPEN), delay(VOLUME, 1), 15)) + # 0.7 * rank(OPEN - CLOSE) + 0.73 * rank(ts_rank(delay((-1 * RETURNS), 6), 5)) + # rank(abs(correlation(VWAP, ADV20, 6))) + 0.6 * rank((sum(CLOSE, 200) / 200 - OPEN) * (CLOSE - OPEN)) # rank(correlation((CLOSE - OPEN), delay(VOLUME, 1), 15)) corr_win = param1 id_begin = data['close_price'].index[-corr_win] corr_se = data['turnover_vol'].shift(periods=1 ).loc[id_begin:].corrwith((data['close_price'] - data['open_price']).loc[id_begin:]) part1 = corr_se.rank(pct=True) # rank(OPEN - CLOSE) part2 = (data['open_price'] - data['close_price']).iloc[-1].rank(pct=True) # rank(ts_rank(delay((-1 * RETURNS), 6), 5)) ts_rank_win = param1 # change from orignal 5 to 15 id_begin = data['returns'].index[-ts_rank_win] ts_rank_df = (float(param10) * data['returns']).shift(periods=param2).loc[id_begin:].rank(axis=0, pct=True) part3 = ts_rank_df.iloc[-1].rank(pct=True) # rank(abs(correlation(VWAP, ADV20, 6))) corr_win = param3 # change from orignal 6 to 10 id_begin = data['vwap'].index[-corr_win] adv20 = data['turnover_vol'].rolling(window=param4).mean() corr_se = data['vwap'].loc[id_begin:].corrwith(adv20.loc[id_begin:]) part4 = corr_se.abs().rank(pct=True) # rank((sum(CLOSE, 200) / 200 - OPEN) * (CLOSE - OPEN)) sum_win = param5 # change from orignal 200 to 50 sum_close = data['close_price'].rolling(window=sum_win).mean() - data['open_price'] close_open = data['close_price'] - data['open_price'] part5 = (sum_close * close_open).iloc[-1].rank(pct=True) alpha = param6 * part1 + param7 * part2 + param8 * part3 + part4 + param9 * part5 return alpha def alpha101_40(self, data, param1=10, param2=10, param3=-1, dependencies=['highest_price', 'turnover_vol'], max_window=12): # (-1 * rank(stddev(HIGH, 10))) * correlation(HIGH, VOLUME, 10) part1 = float(param3) * data['highest_price'].rolling(window=param1).std().iloc[-1].rank(pct=True) corr_win = param2 id_begin = data['highest_price'].index[-corr_win] part2 = data['highest_price'].loc[id_begin:].corrwith(data['turnover_vol'].loc[id_begin:]) alpha = part1 * part2 return alpha def alpha101_44(self, data, param1=5, param2=-1, dependencies=['highest_price', 'turnover_value'], max_window=11): # -1 * correlation(HIGH, rank(VOLUME), 5) high_df = data['highest_price'] rank_volume_df = data['turnover_value'].rank(axis=1, pct=True) corr_win = param1 id_begin = high_df.index[-corr_win] alpha = high_df.loc[id_begin:].corrwith(rank_volume_df.loc[id_begin:]) return float(param2) * alpha def alpha101_45(self, data, param1=5, param2=20, param3=6, param4=6, param5=5, param6=20, param7=-1, dependencies=['close_price', 'turnover_vol'], max_window=30): # -1 * rank(sum(delay(CLOSE, 5), 20) / 20) * correlation(CLOSE, VOLUME, 2) * rank(correlation(sum(CLOSE, 5), sum(CLOSE, 20), 2)) # rank(sum(delay(CLOSE, 5), 20) / 20) part1 = data['close_price'].shift(periods=param1).rolling(window=param2).mean().iloc[-1].rank(pct=True) # correlation(CLOSE, VOLUME, 2) corr_win = param3 # change from orignal 2 to 6 id_begin = data['close_price'].index[-corr_win] part2 = data['close_price'].loc[id_begin:].corrwith(data['turnover_vol'].loc[id_begin:]) # rank(correlation(sum(CLOSE, 5), sum(CLOSE, 20), 2)) corr_win = param4 # change from orignal 2 to 6 id_begin = data['close_price'].index[-corr_win] close_sum5 = data['close_price'].rolling(window=param5).sum() close_sum20 = data['close_price'].rolling(window=param6).sum() part3 = (close_sum5.loc[id_begin:].corrwith(close_sum20.loc[id_begin:])).rank(pct=True) alpha = float(param7) * part1 * part2 * part3 return alpha def alpha101_50(self, data, param1=5, param2=5, param3=-1, dependencies=['vwap', 'turnover_vol'], max_window=10): # -1 * ts_max(rank(correlation(rank(VOLUME), rank(VWAP), 5)), 5) rank_vwap_df = data['vwap'].rank(axis=1, pct=True) rank_volume_df = data['turnover_vol'].rank(axis=1, pct=True) corr_win = param1 corr_df = rolling_corr(rank_vwap_df, rank_volume_df, win=corr_win) ts_max_win = param2 id_begin = corr_df.index[-ts_max_win] alpha = corr_df.loc[id_begin:].rank(axis=1, pct=True).max() return float(param3) * alpha def alpha101_52(self, data, param1=8, param2=8, param3=80, param4=8, param5=8, dependencies=['lowest_price', 'returns', 'turnover_vol'], max_window=10): # (-ts_min(LOW, 5) + delay(ts_min(LOW, 5), 5)) * # rank(((sum(RETURNS, 240) - sum(RETURNS, 20)) / 220)) * ts_rank(VOLUME, 5) # (-ts_min(LOW, 5) + delay(ts_min(LOW, 5), 5)) ts_max_win = param1 id_begin = data['lowest_price'].index[-ts_max_win] part1 = data['lowest_price'].shift(periods=param2 ).loc[id_begin:].min() - data['lowest_price'].loc[id_begin:].min() # rank(((sum(RETURNS, 240) - sum(RETURNS, 20)) / 220)) long_win, short_win = param3, param4 # change from original 240,20 to 80,8 ret_se = data['returns'].iloc[-long_win:].sum() - data['returns'].iloc[-short_win:].sum() part2 = (ret_se / (1.0 * (long_win - short_win))).rank(pct=True) # ts_rank(VOLUME, 5) ts_rank_win = param5 part3 = data['turnover_vol'].iloc[-ts_rank_win:].rank(axis=0, pct=True).iloc[-1] alpha = part1 * part2 * part3 return alpha def alpha101_53(self, data, param1=2, param2=9, param3=0.001, dependencies=['close_price', 'lowest_price', 'highest_price'], max_window=12): # -1 * delta((((CLOSE - LOW) - (HIGH - CLOSE)) / (CLOSE - LOW)), 9) # rearranged formula # -1 * delta(((2 * CLOSE - LOW - HIGH) / (CLOSE - LOW)), 9) price_df = (data['close_price'] * float(param1) - data['lowest_price'] - data['highest_price']) / ( (data['close_price'] - data['lowest_price']) + param3) alpha = price_df.diff(periods=param2).iloc[-1] return alpha def alpha101_54(self, data, param1=0.001, param2=5, param3=4, param5=-1, dependencies=['close_price', 'lowest_price', 'highest_price', 'open_price'], max_window=5): # (-1 * ((LOW - CLOSE) * (OPEN^5))) / ((LOW - HIGH) * (CLOSE^5)) numerator = (data['lowest_price'] - data['close_price'] + param1) * (data['open_price'] ** param2) denominator = (data['lowest_price'] - data['highest_price'] + param1) * (data['close_price'] ** param2) # use mean average factor of ma_win bars ma_win = param3 alpha = (float(param5)* numerator / denominator).iloc[-ma_win:].mean() alpha[alpha==float(param5)] = np.NaN return alpha def alpha101_55(self, data, param1=12, param2=12, param3=6, param4=-1, dependencies=['close_price','lowest_price', 'highest_price', 'turnover_value'], max_window=20): # -1 * correlation(rank((CLOSE - ts_min(LOW, 12)) / (ts_max(HIGH, 12) - ts_min(LOW, 12))), rank(VOLUME), 6) # CLOSE - ts_min(LOW, 12)) / (ts_max(HIGH, 12) - ts_min(LOW, 12)): 此项价格相除无量纲,所以 # 用复权价格计算; 后续的volume使用value代替 ts_min_low = data['lowest_price'].rolling(window=param1).min() ts_max_high = data['highest_price'].rolling(window=param2).max() price_df = (data['close_price'] - ts_min_low) / (ts_max_high - ts_min_low) rank_price = price_df.rank(axis=1, pct=True) rank_volume = data['turnover_value'].rank(axis=1, pct=True) corr_win = param3 corr_df = rolling_corr(rank_price, rank_volume, win=corr_win) return float(param4) * corr_df.iloc[-1] def alpha101_57(self, data, param1=2, param2=30, param3=4, param4=-1, dependencies=['close_price', 'vwap'], max_window=35): # -1 * (CLOSE - VWAP) / decay_linear(rank(ts_argmax(CLOSE, 30)), 2) # (CLOSE - VWAP) ma_win = param1 numerator = (data['close_price'] - data['vwap']).iloc[-ma_win:].mean() # decay_linear(rank(ts_argmax(CLOSE, 30)), 2) rank_df = data['close_price'].rolling(window=param2).apply(lambda x: x.argmax()).rank(axis=1, pct=True) denominator = decay_linear(rank_df, win=param3) # change win from original 2 to 4 alpha = (float(param4) * numerator / denominator) return alpha def alpha101_58(self, data, param1=9, param2=8, param3=7, param4=-1, dependencies=['vwap', 'turnover_vol','indu'], max_window=25): # -1 * ts_rank(decay_linear(correlation(indneutralize(VWAP, indclass), VOLUME, 3.92795), 7.89291), 5.50322) # indneutralize(VWAP, indclass) neu_df = df_indneutralize(data['vwap'], data['indu']) # # original formula # corr_win, decay_win, ts_rank_win = 9, 8, 7 # decay_df = rolling_decay(rolling_corr(neu_df, data['volume_raw'], win=corr_win), win=decay_win) # ts_rank_se = decay_df.iloc[-ts_rank_win:].rank(axis=0, pct=True).iloc[-1] # alpha = -1.0 * ts_rank_se # adjusted formula --- use a new method instead of ts rank. corr_win, decay_win, ts_mean_win = param1, param2, param3 decay_df = rolling_decay(rolling_corr(neu_df, data['turnover_vol'], win=corr_win), win=decay_win) data_se = decay_df.iloc[-1] - decay_df.iloc[-ts_mean_win:].mean(axis=0) alpha = float(param4)* data_se return alpha def alpha101_59(self, data, param1=0.7, param2=0.3, param3=9, param4=12, param5=10, param6=-1, dependencies=['vwap', 'close_price', 'turnover_vol','indu'], max_window=30): # -1 * ts_rank(decay_linear(correlation(indneutralize(((VWAP * 0.728317) + (VWAP * (1 - 0.728317))), # indclass), VOLUME, 4.25197), 16.2289), 8.19648) # Caution: the original formula is almost same with alpha101_58 ( # ((VWAP * 0.728317) + (VWAP * (1 - 0.728317))) == VWAP), so we take an adjusted formula here. # adjusted formula # -1 * ts_rank(decay_linear(correlation(indneutralize(((VWAP * 0.728317) + (CLOSE * (1 - 0.728317))), # indclass), VOLUME, 4.25197), 16.2289), 8.19648) # indneutralize(VWAP, indclass) neu_df = df_indneutralize(data['vwap'] * param1 + data['close_price'] * param2, data['indu']) # # original formula # corr_win, decay_win, ts_rank_win = 9, 12, 10 # decay_df = rolling_decay(rolling_corr(neu_df, data['volume_raw'], win=corr_win), win=decay_win) # ts_rank_se = decay_df.iloc[-ts_rank_win:].rank(axis=0, pct=True).iloc[-1] # alpha = -1.0 * ts_rank_se # adjusted formula --- use a new method instead of ts rank. corr_win, decay_win, ts_mean_win = param3, param4, param5 decay_df = rolling_decay(rolling_corr(neu_df, data['turnover_vol'], win=corr_win), win=decay_win) data_se = decay_df.iloc[-1] - decay_df.iloc[-ts_mean_win:].mean(axis=0) alpha = float(param6) * data_se return alpha def alpha101_62(self, data, param1=20, param2=10, param3=10, param4=2, param5=-1, dependencies=['turnover_vol', 'vwap', 'open_price', 'highest_price', 'lowest_price'], max_window=40): # -1.0 * (rank(correlation(VWAP, sum(ADV20, 22.4101), 9.91009)) < # rank(((rank(OPEN) * 2) < (rank(((HIGH + LOW) / 2)) + rank(HIGH))))) # adjusted formula: between two parts, use - instead of <; between two parts # in the second condition, use - instead of < too; # -1.0 * (rank(correlation(VWAP, sum(ADV20, 22.4101), 9.91009)) - # rank(((rank(OPEN) * 2) - (rank(((HIGH + LOW) / 2)) + rank(HIGH))))) # rank(correlation(VWAP, sum(ADV20, 22.4101), 9.91009)) adv_win, sum_adv_win, corr_win = param1, param2, param3 sum_adv = data['turnover_vol'].rolling(window=adv_win).mean().rolling(window=sum_adv_win).mean() part1 = data['vwap'].iloc[-corr_win:].corrwith(sum_adv.iloc[-corr_win:]).rank(pct=True) # rank(((rank(OPEN) * 2) - (rank(((HIGH + LOW) / 2)) + rank(HIGH)))) rank_open = data['open_price'].rank(axis=1, pct=True) rank_high_low = ((data['highest_price'] + data['lowest_price']) / float(param4)).rank(axis=1, pct=True) rank_high = data['highest_price'].rank(axis=1, pct=True) part2 = (rank_open - rank_high_low - rank_high).rank(axis=1, pct=True).iloc[-1] alpha = float(param5) * (part1 - part2) return alpha def alpha101_66(self, data, param1=0.001, param2=2, param3=12, param4=7, param5=-1, dependencies=['vwap', 'lowest_price', 'open_price', 'highest_price'], max_window=20): # -1 * (rank(decay_linear(delta(VWAP, 3.51013), 7.23052)) + # ts_rank(decay_linear((((LOW * 0.96633) + (LOW * (1 - 0.96633))) - VWAP) / (OPEN - ((HIGH + LOW) / 2)), 11.4157), 6.72611)) # rank(decay_linear(delta(VWAP, 3.51013), 7.23052)) part1 = decay_linear(data['vwap'].diff(periods=4), win=8).rank(pct=True) # ts_rank(decay_linear((((LOW * 0.96633) + (LOW * (1 - 0.96633))) - VWAP) / (OPEN - ((HIGH + LOW) / 2)), 11.4157), 6.72611) # rearranged # ts_rank(decay_linear((LOW - VWAP) / (OPEN - ((HIGH + LOW) / 2)), 11.4157), 6.72611) price_df = (data['lowest_price'] - data['lowest_price'] + param1 ) / (data['open_price'] - (data['highest_price'] + data['lowest_price']) / float(param2) + param1) price_df = (data['lowest_price'] - data['vwap']) / ( data['open_price'] - (data['highest_price'] + data['lowest_price']) / float(param2)) decay_win, ts_win = param3, param4 part2 = rolling_decay(price_df, win=decay_win).iloc[-ts_win:].rank(axis=0, pct=True).iloc[-1] alpha = float(param5) * (part1 + part2) return alpha def alpha101_67(self, data, param1=20, param2=10, param3=5, param4=8, param5=-1, dependencies=['highest_price', 'vwap', 'turnover_vol','indu'], max_window=30): # -1.0 * rank(HIGH - ts_min(HIGH, 2.14593))^ # rank(correlation(indneutralize(VWAP, indclass), indneutralize(ADV20, indclass), 6.02936)) # rank(HIGH - ts_min(HIGH, 2.14593)) # use adjusted formula: mean(rank(HIGH - ts_min(HIGH, 10)), 10) high_df = data['highest_price'] - data['highest_price'].rolling(window=param1).min() part1 = high_df.rank(axis=1, pct=True).iloc[-param2:].mean() # rank(correlation(indneutralize(VWAP, indclass), indneutralize(ADV20, indclass), 6.02936)) neu_vwap = df_indneutralize(data['vwap'], data['indu']) neu_adv = df_indneutralize(data['turnover_vol'].rolling(window=param3).mean(), data['indu']) corr_win = param4 part2 = neu_vwap.iloc[-corr_win:].corrwith(neu_adv.iloc[-corr_win:]).rank(pct=True) alpha = float(param5) * part1 ** part2 return alpha def alpha101_69(self, data, param1=3, param2=5, param3=8, param4=-1, dependencies=['vwap', 'turnover_vol','indu'], max_window=15): # -1 * rank(ts_max(delta(indneutralize(VWAP, indclass), 2.72412), 4.79344))^ # ts_rank(correlation(((CLOSE * 0.490655) + (VWAP * (1 - 0.490655))), ADV20, 4.92416), 9.0615) neu_vwap = df_indneutralize(data['vwap'], data['indu']) neu_adv = df_indneutralize(data['turnover_vol'].rolling(window=5).mean(), data['indu']) # rank(ts_max(delta(indneutralize(VWAP, indclass), 2.72412), 4.79344)) diff_win, ts_max_win = param1, param2 ts_max_df = neu_vwap.diff(periods=diff_win).rolling(window=ts_max_win).max() part1 = ts_max_df.iloc[-1].rank(pct=True) # rank(correlation(indneutralize(VWAP, indclass), indneutralize(ADV20, indclass), 6.02936)) corr_win = param3 part2 = neu_vwap.iloc[-corr_win:].corrwith(neu_adv.iloc[-corr_win:]).rank(pct=True) alpha = float(param4) * (part1 ** part2) return alpha def alpha101_72(self, data, param1=5, param2=1.0e6, param3=9, param4=10, param5=2, param6=8, param7=20, param8=7,param9=3, dependencies=['turnover_vol', 'lowest_price', 'highest_price', 'vwap'], max_window=30): # rank(decay_linear(correlation(((HIGH + LOW) / 2), ADV40, 8.93345), 10.1519)) / # rank(decay_linear(correlation(ts_rank(VWAP, 3.72469), ts_rank(VOLUME, 18.5188), 6.86671), 2.95011)) # rank(decay_linear(correlation(((HIGH + LOW) / 2), ADV40, 8.93345), 10.1519)) ma_vol_win = param1 avg_vol = data['turnover_vol'].rolling(window=ma_vol_win).mean() / param2 corr_win, decay_win = param3, param4 part1 = decay_linear(rolling_corr((data['highest_price'] + data['lowest_price'])/float(param5), avg_vol, win=corr_win), win=decay_win).rank(pct=True) # rank(decay_linear(correlation(ts_rank(VWAP, 3.72469), ts_rank(VOLUME, 18.5188), 6.86671), 2.95011)) ts_rank_vwap = rolling_rank(data['vwap'], win=param6) ts_rank_vol = rolling_rank(data['turnover_vol'], win=param7) corr_win, decay_win = param8, param9 part2 = decay_linear(rolling_corr(ts_rank_vwap, ts_rank_vol, win=corr_win), win=decay_win).rank(pct=True) alpha = part1 / part2 return alpha def alpha101_73(self, data, param1=5, param2=3, param3=0.147155, param4=0.147155, param5=2, param6=4, param7=17,param8=-1,param9=-1, dependencies=['vwap', 'lowest_price', 'open_price'], max_window=25): # -1 * max(rank(decay_linear(delta(VWAP, 4.72775), 2.91864)), # ts_rank(decay_linear((delta((OPEN * 0.147155 + LOW * (1 - 0.147155)), 2.03608) / # (OPEN * 0.147155 + LOW * (1 - 0.147155))) * -1, 3.33829), 16.7411)) # rank(decay_linear(delta(VWAP, 4.72775), 2.91864)) diff_win, decay_win = param1, param2 part1 = decay_linear(data['vwap'].diff(periods=diff_win), win=decay_win).rank(pct=True) # (OPEN * 0.147155 + LOW * (1 - 0.147155)) price = data['open_price'] * param3 + data['lowest_price'] * (1 - param4) # ts_rank(decay_linear((delta((OPEN * 0.147155 + LOW * (1 - 0.147155)), 2.03608) / # (OPEN * 0.147155 + LOW * (1 - 0.147155))) * -1, 3.33829), 16.7411) diff_win, decay_win, ts_rank_win = param5, param6, param7 decay_df = rolling_decay(float(param8) * price.diff(periods=diff_win) / price, win=decay_win) part2 = decay_df.iloc[-ts_rank_win:].rank(axis=0, pct=True).iloc[-1] alpha = (param9) * pd.DataFrame({'part1': part1, 'part2': part2}).max(axis=1) return alpha def alpha101_74(self, data, param1=10, param2=16, param3=15, param4=0.0261661, param5=12, param6=-1, dependencies=['turnover_vol', 'close_price', 'highest_price', 'vwap'], max_window=40): # -1 * (rank(correlation(CLOSE, sum(ADV30, 37.4843), 15.1365)) < # rank(correlation(rank(((HIGH * 0.0261661) + (VWAP * (1 - 0.0261661)))), rank(VOLUME), 11.4791))) # rearranged formula: between two parts, use - instead of < # -1 * (rank(correlation(CLOSE, sum(ADV30, 37.4843), 15.1365)) - # rank(correlation(rank(((HIGH * 0.0261661) + (VWAP * (1 - 0.0261661)))), rank(VOLUME), 11.4791))) # rank(correlation(CLOSE, sum(ADV30, 37.4843), 15.1365)) mean_win, sum_win = param1, param2 # change from 30, 37.48 to 10, 16 adv_sum = data['turnover_vol'].rolling(window=mean_win).mean().rolling(window=sum_win).sum() corr_win = param3 # change from orignal 15.13 to 15 part1 = data['close_price'].iloc[-corr_win:].corrwith(adv_sum.iloc[-corr_win:]).rank(pct=True) # rank(correlation(rank(HIGH * 0.0261661 + VWAP * (1 - 0.0261661)), rank(VOLUME), 11.4791)) rank_price = (data['highest_price'] * param4 + data['vwap'] * (1 - param4)).rank(axis=1, pct=True) rank_vol = data['turnover_vol'].rank(axis=1, pct=True) corr_win = param5 # change from orignal 11.4791 to 12 part2 = rank_price.iloc[-corr_win:].corrwith(rank_vol.iloc[-corr_win:]).rank(pct=True) alpha = float(param6) * (part1 - part2) return alpha def alpha101_75(self, data, param1=8, param2=12, param3=12, dependencies=['vwap', 'turnover_vol', 'lowest_price', 'turnover_vol'], max_window=30): # rank(correlation(VWAP, VOLUME, 4.24304)) < rank(correlation(rank(LOW), rank(ADV50), 12.4413)) # rearranged formula: between two parts, use - instead of < # rank(correlation(VWAP, VOLUME, 4.24304)) - rank(correlation(rank(LOW), rank(ADV50), 12.4413)) # rank(correlation(VWAP, VOLUME, 4.24304)) corr_win = param1 # change from orignal 4.243 to 8 part1 = data['vwap'].iloc[-corr_win:].corrwith(data['turnover_vol'].iloc[-corr_win:]).rank(pct=True) # rank(correlation(rank(LOW), rank(ADV50), 12.4413)) mean_win = param2 # change from orignal 50 to 12 rank_price = data['lowest_price'].rank(axis=1, pct=True) rank_adv = data['turnover_vol'].rolling(window=mean_win).mean().rank(axis=1, pct=True) corr_win = param3 # change from orignal 12.4413 to 12 part2 = rank_price.iloc[-corr_win:].corrwith(rank_adv.iloc[-corr_win:]).rank(pct=True) alpha = part1 - part2 return alpha def alpha101_76(self, data, param1=5, param2=1, param3=5, param4=8, param5=20, param6=5, param7=20, param8=-1, param9=0.5, dependencies=['close_price', 'vwap', 'lowest_price', 'turnover_vol','indu'], max_window=50): # -1 * max(rank(decay_linear(delta(VWAP, 1.24383), 11.8259)), # ts_rank(decay_linear(ts_rank(correlation(indneutralize(LOW, indclass), ADV81, 8.14941), 19.569), 17.1543), 19.383)) neu_low = df_indneutralize(data['lowest_price'], data['indu']) adv = data['turnover_vol'].rolling(window=param1).mean() # rank(decay_linear(delta(VWAP, 1.24383), 11.8259)) diff_win, decay_win = param2, param3 decay_df = rolling_decay(data['vwap'].diff(periods=diff_win), win=decay_win) part1 = decay_df.iloc[-1].rank(pct=True) # ts_rank(decay_linear(ts_rank(correlation(indneutralize(LOW, indclass), ADV81, 8.14941), 19.569), 17.1543), 19.383) corr_win, ts_rank_win1, decay_win, ts_rank_win2 = param4, param5, param6, param7 corr_df = rolling_corr(neu_low, adv, win=corr_win) decay_df = rolling_decay(rolling_rank(corr_df, win=ts_rank_win1), win=decay_win) part2 = decay_df.iloc[-ts_rank_win2:].rank(axis=0, pct=True).iloc[-1] res_df = pd.DataFrame({'part1': part1, 'part2': part2}) # alpha = -1.0 * res_df.max(axis=1) # # use adjusted formula alpha = float(param8) * (res_df.max(axis=1) - param9 * res_df.min(axis=1)) return alpha def alpha101_80(self, data, param1=0.85, param2=0.15, param3=5, param4=4, param5=5, param6=6, param7=6, param8=-1, dependencies=['open_price', 'highest_price', 'turnover_vol', 'highest_price','indu'], max_window=20): # -1 * (rank(sign(delta(indneutralize(((OPEN * 0.868128) + (HIGH * (1 - 0.868128))), indclass), 4.04545)))^ # ts_rank(correlation(HIGH, ADV10, 5.11456), 5.53756)) neu_price = df_indneutralize(data['open_price'] * param1 + data['highest_price'] * param2, data['indu']) adv = data['turnover_vol'].rolling(window=param3).mean() # rank(sign(delta(indneutralize(((OPEN * 0.868128) + (HIGH * (1 - 0.868128))), indclass), 4.04545))) # use decay_linear instead of sign in part1 formula # rank(decay_linear(delta(indneutralize(((OPEN * 0.868128) + (HIGH * (1 - 0.868128))), indclass), 4.04545), 5)) diff_win, decay_win = param4, param5 part1 = decay_linear(neu_price.diff(periods=diff_win), win=decay_win).rank(pct=True) # ts_rank(correlation(HIGH, ADV10, 5.11456), 5.53756) corr_win, ts_rank_win = param6, param7 corr_df = rolling_corr(data['highest_price'], adv, win=corr_win) part2 = corr_df.iloc[-ts_rank_win:].rank(axis=0, pct=True).iloc[-1] alpha = float(param8) * part1 ** part2 return alpha def alpha101_81(self, data, param1=10, param2=10, param3=8, param4=10, param5=4, param6=8, param7=-1, dependencies=['vwap', 'turnover_vol', 'vwap'], max_window=32): # -1 * (rank(LOG(product(rank((rank(correlation(VWAP, sum(ADV10, 49.6054), 8.47743))^4)), 14.9655))) < # rank(correlation(rank(VWAP), rank(VOLUME), 5.07914))) # rearranged formula: between two parts, use - instead of < # -1 * (rank(LOG(product(rank((rank(correlation(VWAP, sum(ADV10, 49.6054), 8.47743))^4)), 14.9655))) - # rank(correlation(rank(VWAP), rank(VOLUME), 5.07914))) # rank(LOG(product(rank((rank(correlation(VWAP, sum(ADV10, 49.6054), 8.47743))^4)), 14.9655))) mean_win, sum_win = param1, param2 # change from 10, 49.6054 to 10, 10 adv_sum = data['turnover_vol'].rolling(window=mean_win).mean().rolling(window=sum_win).sum() corr_win, prod_win = param3, param4 # change from orignal 8.47743, 14.9655 to 8, 10 corr_df = rolling_corr(data['vwap'], adv_sum, corr_win) prod_se = ((corr_df.rank(axis=1, pct=True)) ** param5).rank(axis=1, pct=True).iloc[-prod_win:].cumprod().iloc[-1] part1 = np.log(prod_se).rank(pct=True) # rank(correlation(rank(VWAP), rank(VOLUME), 5.07914)) rank_price = data['vwap'].rank(axis=1, pct=True) rank_vol = data['turnover_vol'].rank(axis=1, pct=True) corr_win = param6 # change from orignal 5.07914 to 8 part2 = rank_price.iloc[-corr_win:].corrwith(rank_vol.iloc[-corr_win:]).rank(pct=True) alpha = float(param7) * (part1 - part2) return alpha def alpha101_82(self, data, param1=1, param2=10, param3=16, param4=6, param5=14, param6=-1, param7=0.5, dependencies=['open_price', 'turnover_vol','indu'], max_window=40): # -1 * min(rank(decay_linear(delta(OPEN, 1.46063), 14.8717)), # ts_rank(decay_linear(correlation(indneutralize(VOLUME, indclass), ((OPEN * 0.634196) + (OPEN * (1 - 0.634196))), 17.4842), 6.92131), 13.4283)) # rearranged formula # -1 * min(rank(decay_linear(delta(OPEN, 1.46063), 14.8717)), # ts_rank(decay_linear(correlation(indneutralize(VOLUME, indclass), OPEN, 17.4842), 6.92131), 13.4283)) # rank(decay_linear(delta(OPEN, 1.46063), 14.8717)) diff_win, decay_win = param1, param2 part1 = decay_linear(data['open_price'].diff(periods=diff_win), win=decay_win).rank(pct=True) # ts_rank(decay_linear(correlation(indneutralize(VOLUME, indclass), OPEN, 17.4842), 6.92131), 13.4283) neu_vol = df_indneutralize(data['turnover_vol'], data['indu']) corr_win, decay_win, ts_rank_win = param3, param4, param5 decay_df = rolling_decay(rolling_corr(neu_vol, data['open_price'], win=corr_win), win=decay_win) part2 = decay_df.iloc[-ts_rank_win:].rank(axis=0, pct=True).iloc[-1] alpha101_df = pd.DataFrame({'part1': part1, 'part2': part2}) # # original alpha formula # alpha = -1.0 * alpha101_df.min(axis=1) # adjusted alpha formula alpha = float(param6) * (alpha101_df.min(axis=1) - float(param7) * alpha101_df.max(axis=1)) return alpha def alpha101_83(self, data, param1=10, param2=2, dependencies=['highest_price', 'lowest_price', 'close_price', 'turnover_vol', 'vwap'], max_window=20): # (rank(delay(((HIGH - LOW) / (sum(CLOSE, 5) / 5)), 2)) * rank(VOLUME)) / # (((HIGH - LOW) / (sum(CLOSE, 5) / 5)) / (VWAP - CLOSE)) # rearranged formula # rank(delay(((HIGH - LOW) / (sum(CLOSE, 5) / 5)), 2)) * rank(VOLUME) * (VWAP - CLOSE) / # ((HIGH - LOW) / (sum(CLOSE, 5) / 5)) # rank(delay(((HIGH - LOW) / (sum(CLOSE, 5) / 5)), 2)) mean_win, delay_win = param1, param2 price_df = ((data['highest_price'] - data['lowest_price']) / data['close_price'].rolling(window=mean_win).mean()) part1 = price_df.diff(periods=delay_win).iloc[-1].rank(pct=True) # rank(VOLUME) * (VWAP - CLOSE) part2 = (data['turnover_vol'].rank(axis=1, pct=True) * (data['vwap'] - data['close_price'])).iloc[-1] # ((HIGH - LOW) / (sum(CLOSE, 5) / 5)) part3 = price_df.iloc[-1] alpha = part1 * part2 / part3 return alpha def alpha101_84(self, data, param1=15, param2=20, param3=6, dependencies=['vwap', 'close_price'], max_window=40): # signedpower(ts_rank((VWAP - ts_max(VWAP, 15.3217)), 20.7127), delta(CLOSE, 4.96796)) # ts_rank((VWAP - ts_max(VWAP, 15.3217)), 20.7127) max_win, rank_win = param1, param2 price_df = data['vwap'] - data['vwap'].rolling(window=max_win).max() part1 = price_df.iloc[-rank_win:].rank(axis=0, pct=True).iloc[-1] # delta(CLOSE, 4.96796) diff_win = param3 part2 = data['close_price'].diff(periods=diff_win).iloc[-1] part2 = data['close_price'].diff(periods=diff_win).iloc[-1].rank(pct=True) alpha = np.sign(part1) * (part1.abs() ** part2) return alpha def alpha101_87(self, data, param1=2, param2=3, param3=0.37, param4=0.63, param5=12, param6=5, param7=14, dependencies=['close_price', 'vwap', 'turnover_vol','indu'], max_window=30): # -1 * max(rank(decay_linear(delta(((CLOSE * 0.369701) + (VWAP * (1 - 0.369701))), 1.91233), 2.65461)), # ts_rank(decay_linear(abs(correlation(indneutralize(ADV81, indclass), CLOSE, 13.4132)), 4.89768), 14.4535)) # rank(decay_linear(delta(((CLOSE * 0.369701) + (VWAP * (1 - 0.369701))), 1.91233), 2.65461)) diff_win, decay_win = param1, param2 price_df = data['close_price'] * param3 + data['vwap'] * param4 part1 = decay_linear(price_df.diff(periods=diff_win), win=decay_win).rank(pct=True) # ts_rank(decay_linear(abs(correlation(indneutralize(ADV81, indclass), CLOSE, 13.4132)), 4.89768), 14.4535) neu_adv = df_indneutralize(data['turnover_vol'].rolling(window=8).mean(), data['indu']) corr_win, decay_win, ts_rank_win = param5, param6, param6 decay_df = rolling_decay(rolling_corr(neu_adv, data['close_price'], win=corr_win).abs(), win=decay_win) part2 = decay_df.iloc[-ts_rank_win:].rank(axis=0, pct=True).iloc[-1] alpha101_df = pd.DataFrame({'part1': part1, 'part2': part2}) # # original alpha formula # alpha = -1.0 * alpha101_df.max(axis=1) # adjusted alpha formula alpha = -1.0 * (alpha101_df.max(axis=1) - 0.5 * alpha101_df.min(axis=1)) return alpha def alpha101_88(self, data, param1=8, param2=20, param3=9, param4=20, param5=9, param6=6, param7=20, dependencies=['open_price', 'highest_price', 'lowest_price', 'close_price', 'turnover_vol'], max_window=50): # min(rank(decay_linear(((rank(OPEN) + rank(LOW)) - (rank(HIGH) + rank(CLOSE))), 8.06882)), # ts_rank(decay_linear(correlation(ts_rank(CLOSE, 8.44728), ts_rank(ADV60, 20.6966), 8.01266), 6.65053), 2.61957)) # rank(decay_linear(((rank(OPEN) + rank(LOW)) - (rank(HIGH) + rank(CLOSE))), 8.06882)) decay_win = param1 open_low = data['open_price'].rank(axis=1, pct=True) + data['lowest_price'].rank(axis=1, pct=True) high_close = data['highest_price'].rank(axis=1, pct=True) + data['close_price'].rank(axis=1, pct=True) part1 = decay_linear(open_low - high_close, win=decay_win).rank(pct=True) # ts_rank(decay_linear(correlation(ts_rank(CLOSE, 8.44728), ts_rank(ADV60, 20.6966), 8.01266), 6.65053), 2.61957) adv_win, ts_close_win, ts_adv_win = param2, param3, param4 adv_df = data['turnover_vol'].rolling(window=adv_win).mean() rank_close = rolling_rank(data['close_price'], win=ts_close_win) rank_adv = rolling_rank(adv_df, win=ts_adv_win) corr_win, decay_win, ts_rank_win = param5, param6, param7 # change from original 8.01266, 6.65053, 2.61957 to 9, 6, 10 decay_df = rolling_decay(rolling_corr(rank_close, rank_adv, win=corr_win), win=decay_win) part2 = decay_df.iloc[-ts_rank_win:].rank(axis=0, pct=True).iloc[-1] # original alpha = pd.DataFrame({'part1': part1, 'part2': part2}).min(axis=1) # # adjusted formula # alpha = pd.DataFrame({'part1': part1, 'part2': part2}).mean(axis=1) return alpha def alpha101_90(self, data, param1=5, param2=4, param3=8, param4=8, param5=6, param6=-1, dependencies=['close_price', 'lowest_price', 'turnover_vol','indu'], max_window=20): # -1 *(rank((CLOSE - ts_max(CLOSE, 4.66719)))^ # ts_rank(correlation(indneutralize(ADV40, indclass), LOW, 5.38375), 3.21856)) # rank((CLOSE - ts_max(CLOSE, 4.66719))) # add a decay linear close_df = data['close_price'] - data['close_price'].rolling(window=param1).max() part1 = decay_linear(close_df.rank(axis=1, pct=True), win=param2).rank(pct=True) # ts_rank(correlation(indneutralize(ADV40, indclass), LOW, 5.38375), 3.21856) neu_adv = df_indneutralize(data['turnover_vol'].rolling(window=param3).mean(), data['indu']) corr_win, ts_rank_win = param4, param5 corr_df = rolling_corr(neu_adv, data['lowest_price'], win=corr_win) part2 = corr_df.iloc[-ts_rank_win:].rank(axis=0, pct=True).iloc[-1] alpha = float(param6) * part1 ** part2 return alpha def alpha101_91(self, data, param1=5, param2=10, param3=10, param4=3, param5=10, param6=8, param7=3, param8=-1, dependencies=['close_price', 'turnover_vol', 'vwap','indu'], max_window=32): # -1 * (ts_rank(decay_linear(decay_linear(correlation(indneutralize(CLOSE, indclass), VOLUME, 9.74928), 16.398), 3.83219), 4.8667) - # rank(decay_linear(correlation(VWAP, ADV30, 4.01303), 2.6809))) neu_close = df_indneutralize(data['close_price'], data['indu']) adv = data['turnover_vol'].rolling(window=param1).mean() # ts_rank(decay_linear(decay_linear(correlation(indneutralize(CLOSE, indclass), VOLUME, 9.74928), 16.398), 3.83219), 4.8667) corr_win, decay_win1, decay_win2, ts_rank_win = param2, param3, param4, param5 decay_df = rolling_decay(rolling_decay(rolling_corr(neu_close, data['turnover_vol'], win=corr_win), win=decay_win1), win=decay_win2) part1 = decay_df.iloc[-ts_rank_win:].rank(axis=0, pct=True).iloc[-1] # rank(decay_linear(correlation(VWAP, ADV30, 4.01303), 2.6809)) corr_win, decay_win = param6, param7 part2 = decay_linear(rolling_corr(data['vwap'], adv, win=corr_win), win=decay_win) alpha = float(param8) * (part1 - part2) return alpha def alpha101_96(self, data, param1=6, param2=4, param3=14, param4=20, param5=8, param6=6, param7=8, param8=12, param9=6, param10=13, param11=-1, dependencies=['vwap', 'turnover_vol', 'close_price'], max_window=50): # -1.0 * max(ts_rank(decay_linear(correlation(rank(VWAP), rank(VOLUME), 3.83878), 4.16783), 8.38151), # ts_rank(decay_linear(ts_argmax(correlation(ts_rank(CLOSE, 7.45404), ts_rank(ADV60, 4.13242), 3.65459), 12.6556), 14.0365), 13.4143)) # ts_rank(decay_linear(correlation(rank(VWAP), rank(VOLUME), 3.83878), 4.16783), 8.38151) rank_vwap = data['vwap'].rank(axis=1, pct=True) rank_vol = data['turnover_vol'].rank(axis=1, pct=True) corr_win, decay_win, ts_rank_win = param1, param2, param3 decay_df = rolling_decay(rolling_corr(rank_vwap, rank_vol, win=corr_win), win=decay_win) part1 = decay_df.iloc[-ts_rank_win:].rank(axis=0, pct=True).iloc[-1] # ts_rank(decay_linear(ts_argmax(correlation(ts_rank(CLOSE, 7.45404), ts_rank(ADV60, 4.13242), 3.65459), 12.6556), 14.0365), 13.4143) adv_win, ts_close_win, ts_adv_win = param4, param5, param6 adv_df = data['turnover_vol'].rolling(window=adv_win).mean() rank_close = rolling_rank(data['close_price'], win=ts_close_win) rank_adv = rolling_rank(adv_df, win=ts_adv_win) # change from original 3.65459, 12.6556, 14.0365, 13.4143 to 8, 12, 6, 13 corr_win, ts_max_win, decay_win, ts_rank_win = param7, param8, param9, param10 corr_df = rolling_corr(rank_close, rank_adv, win=corr_win) ts_argmax_df = corr_df.rolling(window=ts_max_win).apply(lambda x: x.argmax()) decay_df = rolling_decay(ts_argmax_df, win=decay_win) part2 = decay_df.iloc[-ts_rank_win:].rank(axis=0, pct=True).iloc[-1] # original formula alpha = float(param11) * pd.DataFrame({'part1': part1, 'part2': part2}).max(axis=1) # # adjusted formula # alpha = -1 * pd.DataFrame({'part1': part1, 'part2': part2}).mean(axis=1) return alpha def alpha101_97(self, data, param1=4, param2=12, param3=0.7, param4=10, param5=17, param6=8, param7=18, param8=5, param9=16, param10=-1, dependencies=['lowest_price', 'vwap', 'turnover_vol', 'lowest_price','indu'], max_window=45): # -(rank(decay_linear(delta(indneutralize(((LOW * 0.721001) + (VWAP * (1 - 0.721001))), indclass), 3.3705), 20.4523)) - # ts_rank(decay_linear(ts_rank(correlation(ts_rank(LOW, 7.87871), ts_rank(ADV60, 17.255), 4.97547), 18.5925), 15.7152), 6.71659)) # rank(decay_linear(delta(indneutralize(((LOW * 0.721001) + (VWAP * (1 - 0.721001))), indclass), 3.3705), 20.4523)) diff_win, decay_win = param1, param2 price_df = data['lowest_price'] * param3 + data['vwap'] * (1 - param3) part1 = decay_linear(df_indneutralize(price_df, data['indu']).diff(periods=diff_win), win=decay_win).rank(pct=True) # ts_rank(decay_linear(ts_rank(correlation(ts_rank(LOW, 7.87871), ts_rank(ADV60, 17.255), 4.97547), 18.5925), 15.7152), 6.71659) ts_rank_low = rolling_rank(data['lowest_price'], win=param4) ts_rank_adv = rolling_rank(data['turnover_vol'].rolling(window=param4).mean(), win=param5) corr_win, ts_win1, decay_win, ts_win2 = param6, param7, param8, param9 decay_df = rolling_decay(rolling_rank(rolling_corr(ts_rank_low, ts_rank_adv, win=corr_win), win=ts_win1), win=decay_win) part2 = decay_df.iloc[-ts_win2:].rank(axis=0, pct=True).iloc[-1] alpha = float(param10) * (part1 - part2) return alpha def alpha101_99(self, data, param1=20, param2=16, param3=16, param4=9, param5=2, param6=7, param7=-1, dependencies=['highest_price', 'lowest_price', 'turnover_vol'], max_window=50): # -1 * (rank(correlation(sum(((HIGH + LOW) / 2), 19.8975), sum(ADV60, 19.8975), 8.8136)) < # rank(correlation(LOW, VOLUME, 6.28259))) # rearranged formula: between two parts, use - instead of < # -1 * (rank(correlation(sum(((HIGH + LOW) / 2), 19.8975), sum(ADV60, 19.8975), 8.8136)) - # rank(correlation(LOW, VOLUME, 6.28259))) # rank(correlation(sum(((HIGH + LOW) / 2), 19.8975), sum(ADV60, 19.8975), 8.8136)) adv_win, sum_price_win, sum_adv_win, corr_win = param1, param2, param3, param4 sum_price = ((data['highest_price'] + data['lowest_price']) / float(param5)).rolling(window=sum_price_win).mean() sum_adv = data['turnover_vol'].rolling(window=adv_win).mean().rolling(window=sum_adv_win).mean() part1 = sum_price.iloc[-corr_win:].corrwith(sum_adv.iloc[-corr_win:]).rank(pct=True) # rank(correlation(LOW, VOLUME, 6.28259)) corr_win = param6 part2 = data['lowest_price'].iloc[-corr_win:].corrwith(data['turnover_vol'].iloc[-corr_win:]).rank(pct=True) alpha = float(param7) * (part1 - part2) return alpha
52.078652
152
0.614422
795241b7895e6ede3731f43193a16154039353c7
5,834
py
Python
onlinecourse/views.py
acromafireair/final-onlinecourseapp
1c2a0e8304548b5e612d487545d7aeb757150d78
[ "Apache-2.0" ]
null
null
null
onlinecourse/views.py
acromafireair/final-onlinecourseapp
1c2a0e8304548b5e612d487545d7aeb757150d78
[ "Apache-2.0" ]
null
null
null
onlinecourse/views.py
acromafireair/final-onlinecourseapp
1c2a0e8304548b5e612d487545d7aeb757150d78
[ "Apache-2.0" ]
null
null
null
from django.shortcuts import render from django.http import HttpResponseRedirect # <HINT> Import any new Models here from .models import Course, Enrollment, Question, Choice, Submission from django.contrib.auth.models import User from django.shortcuts import get_object_or_404, render, redirect from django.urls import reverse from django.views import generic from django.contrib.auth import login, logout, authenticate import logging # Get an instance of a logger logger = logging.getLogger(__name__) # Create your views here. def registration_request(request): context = {} if request.method == 'GET': return render(request, 'onlinecourse/user_registration_bootstrap.html', context) elif request.method == 'POST': # Check if user exists username = request.POST['username'] password = request.POST['psw'] first_name = request.POST['firstname'] last_name = request.POST['lastname'] user_exist = False try: User.objects.get(username=username) user_exist = True except: logger.error("New user") if not user_exist: user = User.objects.create_user(username=username, first_name=first_name, last_name=last_name, password=password) login(request, user) return redirect("onlinecourse:index") else: context['message'] = "User already exists." return render(request, 'onlinecourse/user_registration_bootstrap.html', context) def login_request(request): context = {} if request.method == "POST": username = request.POST['username'] password = request.POST['psw'] user = authenticate(username=username, password=password) if user is not None: login(request, user) return redirect('onlinecourse:index') else: context['message'] = "Invalid username or password." return render(request, 'onlinecourse/user_login_bootstrap.html', context) else: return render(request, 'onlinecourse/user_login_bootstrap.html', context) def logout_request(request): logout(request) return redirect('onlinecourse:index') def check_if_enrolled(user, course): is_enrolled = False if user.id is not None: # Check if user enrolled num_results = Enrollment.objects.filter(user=user, course=course).count() if num_results > 0: is_enrolled = True return is_enrolled # CourseListView class CourseListView(generic.ListView): template_name = 'onlinecourse/course_list_bootstrap.html' context_object_name = 'course_list' def get_queryset(self): user = self.request.user courses = Course.objects.order_by('-total_enrollment')[:10] for course in courses: if user.is_authenticated: course.is_enrolled = check_if_enrolled(user, course) return courses class CourseDetailView(generic.DetailView): model = Course template_name = 'onlinecourse/course_detail_bootstrap.html' def enroll(request, course_id): course = get_object_or_404(Course, pk=course_id) user = request.user is_enrolled = check_if_enrolled(user, course) if not is_enrolled and user.is_authenticated: # Create an enrollment Enrollment.objects.create(user=user, course=course, mode='honor') course.total_enrollment += 1 course.save() return HttpResponseRedirect(reverse(viewname='onlinecourse:course_details', args=(course.id,))) # <HINT> Create a submit view to create an exam submission record for a course enrollment, # you may implement it based on following logic: # Get user and course object, then get the associated enrollment object created when the user enrolled the course # Create a submission object referring to the enrollment # Collect the selected choices from exam form # Add each selected choice object to the submission object # Redirect to show_exam_result with the submission id def submit(request, course_id): user=request.user course=get_object_or_404(Course,pk=course_id) enrollment=Enrollment.objects.get(user=user,course=course) submission=Submission.objects.create(enrollment=enrollment) selected_answers=extract_answers(request) submission.choices.set(answers) submission.save() return HttpResponseRedirect(reverse(viewname='onlinecourse:show_exam_result', args=(course_id, submission.pk))) # <HINT> A example method to collect the selected choices from the exam form from the request object def extract_answers(request): submitted_anwsers = [] for key in request.POST: if key.startswith('choice'): value = request.POST[key] choice_id = int(value) submitted_anwsers.append(choice_id) return submitted_anwsers # <HINT> Create an exam result view to check if learner passed exam and show their question results and result for each question, # you may implement it based on the following logic: # Get course and submission based on their ids # Get the selected choice ids from the submission record # For each selected choice, check if it is a correct answer or not # Calculate the total score def show_exam_result(request, course_id, submission_id): course=get_object_or_404(Course,pk=course_id) submission=get_object_or_404(Submission,pk=submission_id) answers=submission.objects.all() grade=0.0 for answer in answers.choice_set(): if answer.is_correct: grade += answer.questions.grade context={ 'course':course, 'grade':grade, } return render(request, 'onlinecourse/exam_result_bootstrap.html', context)
38.381579
129
0.69592
7952436a9c3207148bd6d7e5075d21bb3cbe02a4
1,430
py
Python
setup.py
tcordiello/electrumx
f62c982f9b5ace30bdb962d07c4c9c8e7d87032a
[ "MIT" ]
1
2021-08-14T13:46:27.000Z
2021-08-14T13:46:27.000Z
setup.py
denza/electrumx
2ab1dce09152ff917881c2b5e45c15d0efe8e31a
[ "MIT" ]
null
null
null
setup.py
denza/electrumx
2ab1dce09152ff917881c2b5e45c15d0efe8e31a
[ "MIT" ]
null
null
null
import setuptools version = '1.8.6' setuptools.setup( name='electrumX', version=version, scripts=['electrumx_server', 'electrumx_rpc'], python_requires='>=3.6', # via environment variables, in which case I've tested with 15.0.4 # "x11_hash" package (1.4) is required to sync DASH network. # "tribus_hash" package is required to sync Denarius network. # "blake256" package is required to sync Decred network. # "xevan_hash" package is required to sync Xuez network. # "groestlcoin_hash" package is required to sync Groestlcoin network. install_requires=['aiorpcX>=0.7.3,<0.8', 'attrs', 'plyvel', 'pylru', 'aiohttp >= 2', 'uvloop'], packages=setuptools.find_packages(include=('electrumx*',)), description='ElectrumX Server', author='Neil Booth', author_email='kyuupichan@gmail.com', license='MIT Licence', url='https://github.com/kyuupichan/electrumx', long_description='Server implementation for the Electrum protocol', download_url=('https://github.com/kyuupichan/electrumX/archive/' f'{version}.tar.gz'), classifiers=[ 'Development Status :: 5 - Production/Stable', 'Framework :: AsyncIO', 'License :: OSI Approved :: MIT License', 'Operating System :: Unix', "Programming Language :: Python :: 3.6", "Topic :: Database", 'Topic :: Internet', ], )
39.722222
73
0.645455
79524407262885df9a9939287a346d65a627c7a9
3,456
bzl
Python
test/generate_tests.bzl
raytracer/as-tree
991629712f43429874bbf11089d9efcff9c04c45
[ "BlueOak-1.0.0" ]
333
2020-05-10T15:44:48.000Z
2022-03-30T15:10:20.000Z
test/generate_tests.bzl
raytracer/as-tree
991629712f43429874bbf11089d9efcff9c04c45
[ "BlueOak-1.0.0" ]
19
2020-05-13T11:02:34.000Z
2021-11-19T08:22:02.000Z
test/generate_tests.bzl
raytracer/as-tree
991629712f43429874bbf11089d9efcff9c04c45
[ "BlueOak-1.0.0" ]
18
2020-05-13T10:57:09.000Z
2021-12-28T01:34:09.000Z
_update_tags = [ # Avoid being caught with `//...` "manual", # Forces the test to be run locally, without sandboxing "local", # Unconditionally run this rule, and don't run in the sandbox "external", ] def fixture_tests(input_files): tests = [] updates = [] for input_txt_file in input_files: test_name = "test/{}".format(input_txt_file) input_txt_exp_file = "{}.exp".format(input_txt_file) native.sh_test( name = test_name, srcs = ["run_one_fixture.sh"], args = [ "test", "$(location {})".format(input_txt_file), "$(location {})".format(input_txt_exp_file), ], data = [ "//src:as-tree", input_txt_file, input_txt_exp_file, ], size = "small", ) tests.append(test_name) update_name = "update_test/{}".format(input_txt_file) native.sh_test( name = update_name, srcs = ["run_one_fixture.sh"], args = [ "update", "$(location {})".format(input_txt_file), "$(location {})".format(input_txt_exp_file), ], data = [ "//src:as-tree", input_txt_file, input_txt_exp_file, ], tags = _update_tags, size = "small", ) updates.append(update_name) native.test_suite( name = "test/fixture", tests = tests, ) native.test_suite( name = "update_test/fixture", tests = updates, tags = ["manual"], ) def cli_tests(input_files): tests = [] updates = [] for run_sh_file in input_files: input_folder, _slash, _file = run_sh_file.rpartition('/') sh_binary_name = run_sh_file[:-3] native.sh_binary( name = sh_binary_name, srcs = [run_sh_file], data = native.glob([ "{}/**/*.txt".format(input_folder) ]) + ["//src:as-tree"], ) test_name = "test/{}".format(run_sh_file) run_sh_exp_file = "{}.exp".format(run_sh_file) native.sh_test( name = test_name, srcs = ["run_one_cli.sh"], args = [ "test", "$(location {})".format(sh_binary_name), "$(location {})".format(run_sh_exp_file), ], data = [ run_sh_exp_file, ":{}".format(sh_binary_name), ], size = "small", ) tests.append(test_name) update_name = "update_test/{}".format(run_sh_file) native.sh_test( name = update_name, srcs = ["run_one_cli.sh"], args = [ "update", "$(location {})".format(sh_binary_name), "$(location {})".format(run_sh_exp_file), ], data = [ run_sh_exp_file, ":{}".format(sh_binary_name), ], tags = _update_tags, size = "small", ) updates.append(update_name) native.test_suite( name = "test/cli", tests = tests, ) native.test_suite( name = "update_test/cli", tests = updates, tags = ["manual"], )
27.870968
65
0.471065
79524441bb74895ed09d43e8732db5ef6aa5db26
2,678
py
Python
drf_encrypt_content/mixins.py
oguzhancelikarslan/drf-encrypt-content
ec9912dd0938d727374c7215bfc3c5040322e72c
[ "BSD-3-Clause" ]
8
2020-10-03T18:45:29.000Z
2022-02-17T10:21:36.000Z
drf_encrypt_content/mixins.py
oguzhancelikarslan/drf-encrypt-content
ec9912dd0938d727374c7215bfc3c5040322e72c
[ "BSD-3-Clause" ]
1
2021-04-20T08:02:42.000Z
2021-12-20T10:39:00.000Z
drf_encrypt_content/mixins.py
oguzhancelikarslan/drf-encrypt-content
ec9912dd0938d727374c7215bfc3c5040322e72c
[ "BSD-3-Clause" ]
1
2022-02-17T10:21:39.000Z
2022-02-17T10:21:39.000Z
from collections import OrderedDict from django.core.exceptions import ImproperlyConfigured from drf_encrypt_content.rest_encrypt_content import RestEncryptContent class RestEncryptContentMixin(RestEncryptContent): __ALL__ = '__all__' def to_representation(self, instance): representation = super(RestEncryptContentMixin, self).to_representation(instance) encrypted_fields = getattr(self.Meta, 'encrypted_fields', self.__ALL__) excluded_fields = getattr(self.Meta, 'excluded_fields', None) fields_list = list() model_class = getattr(self.Meta, 'model') if encrypted_fields and encrypted_fields != self.__ALL__ and not isinstance(encrypted_fields, (list, tuple)): raise TypeError( 'The `encrypted_fields` option must be a list or tuple or "__all__". ' 'Got %s.' % type(encrypted_fields).__name__ ) if excluded_fields and not isinstance(excluded_fields, (list, tuple)): raise TypeError( 'The `excluded_fields` option must be a list or tuple. Got %s.' % type(excluded_fields).__name__ ) assert not ((encrypted_fields != self.__ALL__) and excluded_fields), ( "Cannot set both 'encrypted_fields' and 'excluded_fields' options on " "serializer {serializer_class}.".format( serializer_class=self.__class__.__name__ ) ) if encrypted_fields == self.__ALL__: fields_list = [key for key, value in representation.items()] else: for field in encrypted_fields: if not (field in representation.keys()): raise ImproperlyConfigured( 'Field name `%s` is not valid for model `%s`.' % (field, model_class.__name__) ) for key in representation.keys(): if key in encrypted_fields: fields_list.append(key) if excluded_fields is not None: for field in excluded_fields: if not (field in fields_list): raise ImproperlyConfigured( 'Field name `%s` is not valid for model `%s`.' % (field, model_class.__name__) ) else: fields_list.remove(field) for key, value in representation.items(): if key in fields_list: if type(representation[key]) is not OrderedDict: representation[key] = self.encrypt_data(str(value)) return representation
39.970149
117
0.59186
7952467e84ec1fb8c8bda205ccd35954409ff891
3,032
py
Python
setup.py
technige/pansi
8014f67f14372bb6d88ca522d40744fff575814a
[ "Apache-2.0" ]
null
null
null
setup.py
technige/pansi
8014f67f14372bb6d88ca522d40744fff575814a
[ "Apache-2.0" ]
null
null
null
setup.py
technige/pansi
8014f67f14372bb6d88ca522d40744fff575814a
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # -*- encoding: utf-8 -*- # Copyright 2020, Nigel Small # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from os.path import dirname, join as path_join from setuptools import setup, find_packages from pansi import ( __author__, __email__, __license__, __package__, __version__, ) source_url = "https://github.com/technige/pansi" with open(path_join(dirname(__file__), "README.rst")) as f: README = f.read().replace(".. image :: art/", ".. image :: {}/raw/master/art/".format(source_url)) packages = find_packages(exclude=("demo", "docs", "test")) package_metadata = { "name": __package__, "version": __version__, "description": "ANSI escape code library for Python", "long_description": README, "author": __author__, "author_email": __email__, "url": source_url, "project_urls": { "Bug Tracker": "{}/issues".format(source_url), "Source Code": source_url, }, "entry_points": { "console_scripts": [ ], }, "packages": packages, "py_modules": [ ], "install_requires": [ "six", ], "extras_require": { }, "license": __license__, "classifiers": [ "Development Status :: 1 - Planning", "Environment :: Console", "Environment :: Console :: Curses", "Intended Audience :: Developers", "Intended Audience :: Information Technology", "License :: OSI Approved :: Apache Software License", "Natural Language :: English", "Operating System :: OS Independent", "Programming Language :: Python", "Programming Language :: Python :: 2", "Programming Language :: Python :: 2.7", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.5", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "Programming Language :: Python :: 3.9", "Programming Language :: Python :: Implementation :: CPython", "Topic :: Software Development", "Topic :: Software Development :: Libraries", "Topic :: System :: Console Fonts", "Topic :: System :: Shells", "Topic :: Terminals", "Topic :: Terminals :: Terminal Emulators/X Terminals", "Topic :: Text Processing", "Topic :: Text Processing :: Markup", "Topic :: Utilities", ], } setup(**package_metadata)
30.938776
82
0.615435
795246857529c74f1c239c7c6dcedfa69df6398b
911
py
Python
BOJ/graph_boj/game_develop.py
mrbartrns/swacademy_structure
778f0546030385237c383d81ec37d5bd9ed1272d
[ "MIT" ]
null
null
null
BOJ/graph_boj/game_develop.py
mrbartrns/swacademy_structure
778f0546030385237c383d81ec37d5bd9ed1272d
[ "MIT" ]
null
null
null
BOJ/graph_boj/game_develop.py
mrbartrns/swacademy_structure
778f0546030385237c383d81ec37d5bd9ed1272d
[ "MIT" ]
null
null
null
# BOJ 1516 from collections import deque import sys sys.stdin = open("../input.txt", "r") si = sys.stdin.readline def topological_sort(indegree): que = deque() ret = [0] * (N + 1) for i in range(1, N + 1): if indegree[i] == 0: ret[i] = time[i] que.append(i) while que: node = que.popleft() for nxt in graph[node]: indegree[nxt] -= 1 if indegree[nxt] == 0: que.append(nxt) ret[nxt] = max(ret[nxt], ret[node] + time[nxt]) return ret N = int(si()) indegree = [0] * (N + 1) graph = [[] for _ in range(N + 1)] time = [0] * (N + 1) for i in range(1, N + 1): arr = list(map(int, si().split(" "))) time[i] = arr[0] for j in range(1, len(arr) - 1): graph[arr[j]].append(i) indegree[i] += 1 ret = topological_sort(indegree) for i in range(1, N + 1): print(ret[i])
23.358974
59
0.507135
795247061340c63f7bb7c956d6bf7cf15a1b9162
3,084
py
Python
src/run_directory.py
zhutianpeng/ImgProcessPlatform_pose
748be1b98a44450671809e1d6040fd9aa0ff7998
[ "Apache-2.0" ]
4
2019-03-05T08:58:18.000Z
2019-09-16T08:30:31.000Z
src/run_directory.py
zhutianpeng/ImgProcessPlatform_pose
748be1b98a44450671809e1d6040fd9aa0ff7998
[ "Apache-2.0" ]
null
null
null
src/run_directory.py
zhutianpeng/ImgProcessPlatform_pose
748be1b98a44450671809e1d6040fd9aa0ff7998
[ "Apache-2.0" ]
null
null
null
import argparse import logging import time import glob import ast import os # import dill import redis from RedisQueue import RedisQueue import dealimg import common import cv2 import numpy as np from estimator import TfPoseEstimator from networks import get_graph_path, model_wh from lifting.prob_model import Prob3dPose from lifting.draw import plot_pose # 为了引入hashset logger = logging.getLogger('TfPoseEstimator') logger.setLevel(logging.DEBUG) ch = logging.StreamHandler() ch.setLevel(logging.DEBUG) formatter = logging.Formatter('[%(asctime)s] [%(name)s] [%(levelname)s] %(message)s') ch.setFormatter(formatter) logger.addHandler(ch) if __name__ == '__main__': parser = argparse.ArgumentParser(description='tf-pose-estimation run by folder') parser.add_argument('--folder', type=str, default='../images/') parser.add_argument('--resolution', type=str, default='432x368', help='network input resolution. default=432x368') parser.add_argument('--model', type=str, default='mobilenet_thin', help='cmu / mobilenet_thin') parser.add_argument('--scales', type=str, default='[None]', help='for multiple scales, eg. [1.0, (1.1, 0.05)]') args = parser.parse_args() scales = ast.literal_eval(args.scales) w, h = model_wh(args.resolution) e = TfPoseEstimator(get_graph_path(args.model), target_size=(w, h)) # 从redis里面读取 # q_face = RedisQueue('face_forward_list') #接收队列 q_pose = RedisQueue('pose_forward_list') #接收队列 q2 = RedisQueue('test_return_list') #发送队列 DB_set = RedisQueue('return_set') #缓存的set i = 0 while True: if q_pose.empty() == False: #1. 接收string,转成 dict dic_receive = eval(q_pose.get()) id_receive = dic_receive['id'] #接收的ID task_receive = dic_receive['task'] jpg = dic_receive['img'] #接收到的是二进制的图片格式 print("接收set测试:"+ "id_receive:"+str(id_receive) + " ;task_receive: "+str(task_receive)) #测试->通过 imgweb = cv2.imdecode(np.fromstring(jpg, dtype=np.uint8), cv2.IMREAD_COLOR) # 转成mat格式 # print(imgweb) # image = dealimg.image_decode_openpose(base64_data, i) #2. open pose deals imgs: # humans = e.inference(imgweb, scales=scales) # image = TfPoseEstimator.draw_humans(imgweb, humans, imgcopy=False) #mat humans = e.inference(imgweb, scales=scales) resultDic = TfPoseEstimator.draw_humans_json(imgweb, humans, imgcopy=False) # dic print(str(resultDic)) # cv2.imwrite('../outimg/ %s.jpg ' % (i), image) # print("现在处理的图片:%s" % i) # i = i + 1 # 将 mat 转成 二进制,存进 hashset 里面 # imghtml = cv2.imencode('.jpg', image)[1].tostring() #二进制格式 # 找到的task;img(原图);处理结果;存成 Dic形式,转成String valueDic = {'task': task_receive, 'img': jpg,'result_pose':str(resultDic)} string_send_list = str(valueDic) # q2.put(imghtml) DB_set.setSet("imgset", id_receive, string_send_list)
34.651685
118
0.646887
7952490068a9005138fea4fef6a6f9e7c5bf0836
6,430
py
Python
tests/mpd/test_tokenizer.py
rdbhost/mopidy
cb15ccef08b15c30ab6cbbac2419622d0804e7ac
[ "Apache-2.0" ]
null
null
null
tests/mpd/test_tokenizer.py
rdbhost/mopidy
cb15ccef08b15c30ab6cbbac2419622d0804e7ac
[ "Apache-2.0" ]
null
null
null
tests/mpd/test_tokenizer.py
rdbhost/mopidy
cb15ccef08b15c30ab6cbbac2419622d0804e7ac
[ "Apache-2.0" ]
null
null
null
import unittest from mopidy.mpd import exceptions, tokenize class TestTokenizer(unittest.TestCase): def assertTokenizeEquals(self, expected, line): # noqa: N802 self.assertEqual(expected, tokenize.split(line)) def assertTokenizeRaises(self, exception, message, line): # noqa: N802 with self.assertRaises(exception) as cm: tokenize.split(line) self.assertEqual(cm.exception.message, message) def test_empty_string(self): ex = exceptions.MpdNoCommand msg = "No command given" self.assertTokenizeRaises(ex, msg, "") self.assertTokenizeRaises(ex, msg, " ") self.assertTokenizeRaises(ex, msg, "\t\t\t") def test_command(self): self.assertTokenizeEquals(["test"], "test") self.assertTokenizeEquals(["test123"], "test123") self.assertTokenizeEquals(["foo_bar"], "foo_bar") def test_command_trailing_whitespace(self): self.assertTokenizeEquals(["test"], "test ") self.assertTokenizeEquals(["test"], "test\t\t\t") def test_command_leading_whitespace(self): ex = exceptions.MpdUnknownError msg = "Letter expected" self.assertTokenizeRaises(ex, msg, " test") self.assertTokenizeRaises(ex, msg, "\ttest") def test_invalid_command(self): ex = exceptions.MpdUnknownError msg = "Invalid word character" self.assertTokenizeRaises(ex, msg, "foo/bar") self.assertTokenizeRaises(ex, msg, "æøå") self.assertTokenizeRaises(ex, msg, "test?") self.assertTokenizeRaises(ex, msg, 'te"st') def test_unquoted_param(self): self.assertTokenizeEquals(["test", "param"], "test param") self.assertTokenizeEquals(["test", "param"], "test\tparam") def test_unquoted_param_leading_whitespace(self): self.assertTokenizeEquals(["test", "param"], "test param") self.assertTokenizeEquals(["test", "param"], "test\t\tparam") def test_unquoted_param_trailing_whitespace(self): self.assertTokenizeEquals(["test", "param"], "test param ") self.assertTokenizeEquals(["test", "param"], "test param\t\t") def test_unquoted_param_invalid_chars(self): ex = exceptions.MpdArgError msg = "Invalid unquoted character" self.assertTokenizeRaises(ex, msg, 'test par"m') self.assertTokenizeRaises(ex, msg, "test foo\bbar") self.assertTokenizeRaises(ex, msg, 'test foo"bar"baz') self.assertTokenizeRaises(ex, msg, "test foo'bar") def test_unquoted_param_numbers(self): self.assertTokenizeEquals(["test", "123"], "test 123") self.assertTokenizeEquals(["test", "+123"], "test +123") self.assertTokenizeEquals(["test", "-123"], "test -123") self.assertTokenizeEquals(["test", "3.14"], "test 3.14") def test_unquoted_param_extended_chars(self): self.assertTokenizeEquals(["test", "æøå"], "test æøå") self.assertTokenizeEquals(["test", "?#$"], "test ?#$") self.assertTokenizeEquals(["test", "/foo/bar/"], "test /foo/bar/") self.assertTokenizeEquals(["test", "foo\\bar"], "test foo\\bar") def test_unquoted_params(self): self.assertTokenizeEquals(["test", "foo", "bar"], "test foo bar") def test_quoted_param(self): self.assertTokenizeEquals(["test", "param"], 'test "param"') self.assertTokenizeEquals(["test", "param"], 'test\t"param"') def test_quoted_param_leading_whitespace(self): self.assertTokenizeEquals(["test", "param"], 'test "param"') self.assertTokenizeEquals(["test", "param"], 'test\t\t"param"') def test_quoted_param_trailing_whitespace(self): self.assertTokenizeEquals(["test", "param"], 'test "param" ') self.assertTokenizeEquals(["test", "param"], 'test "param"\t\t') def test_quoted_param_invalid_chars(self): ex = exceptions.MpdArgError msg = "Space expected after closing '\"'" self.assertTokenizeRaises(ex, msg, 'test "foo"bar"') self.assertTokenizeRaises(ex, msg, 'test "foo"bar" ') self.assertTokenizeRaises(ex, msg, 'test "foo"bar') self.assertTokenizeRaises(ex, msg, 'test "foo"bar ') def test_quoted_param_numbers(self): self.assertTokenizeEquals(["test", "123"], 'test "123"') self.assertTokenizeEquals(["test", "+123"], 'test "+123"') self.assertTokenizeEquals(["test", "-123"], 'test "-123"') self.assertTokenizeEquals(["test", "3.14"], 'test "3.14"') def test_quoted_param_spaces(self): self.assertTokenizeEquals(["test", "foo bar"], 'test "foo bar"') self.assertTokenizeEquals(["test", "foo bar"], 'test "foo bar"') self.assertTokenizeEquals(["test", " param\t"], 'test " param\t"') def test_quoted_param_extended_chars(self): self.assertTokenizeEquals(["test", "æøå"], 'test "æøå"') self.assertTokenizeEquals(["test", "?#$"], 'test "?#$"') self.assertTokenizeEquals(["test", "/foo/bar/"], 'test "/foo/bar/"') def test_quoted_param_escaping(self): self.assertTokenizeEquals(["test", "\\"], r'test "\\"') self.assertTokenizeEquals(["test", '"'], r'test "\""') self.assertTokenizeEquals(["test", " "], r'test "\ "') self.assertTokenizeEquals(["test", "\\n"], r'test "\\\n"') def test_quoted_params(self): self.assertTokenizeEquals(["test", "foo", "bar"], 'test "foo" "bar"') def test_mixed_params(self): self.assertTokenizeEquals(["test", "foo", "bar"], 'test foo "bar"') self.assertTokenizeEquals(["test", "foo", "bar"], 'test "foo" bar') self.assertTokenizeEquals(["test", "1", "2"], 'test 1 "2"') self.assertTokenizeEquals(["test", "1", "2"], 'test "1" 2') self.assertTokenizeEquals( ["test", "foo bar", "baz", "123"], 'test "foo bar" baz 123' ) self.assertTokenizeEquals( ["test", 'foo"bar', "baz", "123"], r'test "foo\"bar" baz 123' ) def test_unbalanced_quotes(self): ex = exceptions.MpdArgError msg = "Invalid unquoted character" self.assertTokenizeRaises(ex, msg, 'test "foo bar" baz"') def test_missing_closing_quote(self): ex = exceptions.MpdArgError msg = "Missing closing '\"'" self.assertTokenizeRaises(ex, msg, 'test "foo') self.assertTokenizeRaises(ex, msg, 'test "foo a ')
43.445946
77
0.630638
795249480cc0f47f2a08c7ca9cdcc4b29850734b
11,295
py
Python
Mobility Algorithms/Queues at Known Locations/Machine_Learning/train_test_export_ML_model_offline.py
James-OHara/NCHRP-BSM-Traffic-Measures
d6842c9dc63de8c2d470482fbfd1ec91a9c2ae56
[ "Apache-2.0" ]
null
null
null
Mobility Algorithms/Queues at Known Locations/Machine_Learning/train_test_export_ML_model_offline.py
James-OHara/NCHRP-BSM-Traffic-Measures
d6842c9dc63de8c2d470482fbfd1ec91a9c2ae56
[ "Apache-2.0" ]
null
null
null
Mobility Algorithms/Queues at Known Locations/Machine_Learning/train_test_export_ML_model_offline.py
James-OHara/NCHRP-BSM-Traffic-Measures
d6842c9dc63de8c2d470482fbfd1ec91a9c2ae56
[ "Apache-2.0" ]
null
null
null
"""This python script trains supervised machine learning Random Forest models on the complete data provided, ouptputs performance metrics, and exports the trained Random Forest to a pickle file. Test with: python train_test_export_ML_model_offline.py sample_BSMs_X_file.csv sample_max_queues_Y_file.csv sample_vehicle_length_by_type_file.csv sample_stoplines_file.csv sample_signal_timing_file.csv sample_link_corner_points_file.csv """ # load additional libraries for this script (the rest are in queue_fx.py) import argparse import numpy as np import pandas as pd from datetime import timedelta from datetime import datetime from sklearn.model_selection import train_test_split # ML Model from sklearn.ensemble import RandomForestClassifier from sklearn import metrics import joblib # python module in the Machine_Learning folder import queue_fx # define path names supporting_files_path = "../Supporting_Files/" # Queue values from definition QUEUE_START_SPEED = 0.00 QUEUE_FOLLOWING_SPEED = (10.0 *0.681818) # convert ft/sec to mph QUEUE_HEADWAY_DISTANCE = 20.0 #ft, in queue definition QUEUE_DISTANCE_WITHIN_STOP_POINT = 20 #ft def format_queues(y_df_name): """Bin the number of vehicles in queue into pairs. Assumption: This reduces the number of classes for multiclass classification by half without losing too much information.""" # Creating a queue indicator column # add a column to y_df that is an indicator 1/0 for queue at intersection yes/no y_df_name['queue_indicator'] = 0 mask_queue = (y_df_name['queue_count_max']>0) y_df_name.loc[mask_queue,'queue_indicator'] = 1 # Creating a queue count binned column, pairs of # vehs # bin the queue counts into pairs as high as your max queue count observed in your training data binned_queues = [-np.inf,0,2,4,6,8,10,12,14,16,18,20,22,24,26,28] bin_labels = ["no_queue","1-2", "3-4", "5-6", "7-8", "9-10", "11-12", "13-14", "15-16", "17-18", "19-20", "21-22", "23-24", "25-26", "27-28"] # convert the categorically binned queue_count_binned column to int with .cat.codes y_df_name['queue_count_binned']=pd.cut(x=y_df_name['queue_count_max'], bins=binned_queues, labels = bin_labels, include_lowest =True).cat.codes #print(y_df_name.head()) return y_df_name def join_features_and_labels(base_df_name, y_df_name, stopline_avg_df_name, signals_df_name): """Join the aggregated features (created from BSMs and supporting files) and their labels (queue count and length). Stopline_avg_df is outputted from the create_avg_stoplines_df function.""" # join the labels (y_df) to the featuers (base_df) df_xy = y_df_name.merge(base_df_name, how= 'left', left_on=['time','link'],right_on=['time_30', 'assigned_linkID']) df_xy = df_xy.drop(['assigned_linkID', 'time_30'], axis=1) # Bring in a few link-specific features (e.g., # lanes, direction) by joining stopline_avg_df to base_df # This will add two features based on link: n_lanes and link_direction df_xy = df_xy.merge(stopline_avg_df_name, how='left', left_on=['link'], right_on=['Link_ID']) df_xy = df_xy.drop(['Link_ID','mean_X', 'mean_Y'], axis=1) # join signals df columns to base_df # issue of link ID 16:15 since accidentally coded as 15:16 in signals file! whoops. df_xy = df_xy.merge(signals_df_name, how='left', left_on=['time','link'], right_on=['time_30','Link_ID']) df_xy = df_xy.drop(['Link_ID', 'time_30'], axis=1) #print(df_xy.columns) return df_xy def add_previous_time_queue_count_col(df_xy_name): """Creating a column that captures the previous 30 seconds queue_count for each link as a new feature""" # to datetime df_xy_name['time_30_dt']= pd.to_datetime(df_xy_name['time'], format="%H:%M:%S") # add a new column that is 30 secs prior to current time df_xy_name['previous_time_30sec'] = df_xy_name['time_30_dt'] - timedelta(seconds=30) # now remove the date from the datetime df_xy_name['time_30_dt'] = df_xy_name['time_30_dt'].dt.time df_xy_name['previous_time_30sec'] = df_xy_name['previous_time_30sec'].dt.time # self inner join, left on current time, right on previous time 30sec (same link!) base = pd.merge(df_xy_name, df_xy_name, left_index = True, left_on=['previous_time_30sec','link'], right_on=['time_30_dt','link'], how = 'inner', copy=False, suffixes=('', '_previous')) # columns to keep in base cols_keep = df_xy_name.columns.tolist() cols_keep.append('queue_count_max_previous') # keep only the original columns plus the queue_count_max_previous base = base.loc[:,base.columns.isin(['time','link','queue_count_max_previous'])] df_xy = df_xy_name.merge(base, how='left', left_on=['time','link'], right_on=['time','link']) df_xy.drop(['previous_time_30sec', 'time_30_dt'], axis=1, inplace=True) #print(df_xy.columns) return df_xy def split_into_X_and_Y(df_xy_name, label_selection = 'queue_count_binned'): """Separate the features (X) and the labels (Y). The default label selection (Y) is queue_count_binned. However, you could use queue_count_max (not binned) or queue_indicator for the classifier instead.""" # preparing X and y col_lst = ['queue_count_max', 'queue_len_max', 'queue_indicator', 'queue_count_binned','time'] X = df_xy_name.loc[:,~df_xy_name.columns.isin(col_lst)] #.to_numpy() #print(X.shape, "shape of features X") y = df_xy_name[label_selection] #.to_numpy() #print(y.shape, "shape of labels y") return X, y def train_RF_model(X_train, X_test, y_train): """Train the Random Forest Classifier and make predictions on held out test data. Model parameters are set to those that worked well for testing and validation in this project.""" model_rf = RandomForestClassifier(n_estimators=150, max_depth=50, random_state=0) model_rf.fit(X_train, y_train) # make predictions # no changes to 33% test set other than scaling predicted_rf = model_rf.predict(X_test) return predicted_rf, model_rf def evaluate_RF_model(expected, predicted_rf): """Report out performance measures for the trained RF model on unseen test data. Measures include accuracy, weighted F1-score, confusion matrix, False Positive Rate (FPR), and False Negative Rate (FNR).""" # summarize the fit of the model print("Accuracy:", metrics.accuracy_score(expected, predicted_rf)) # choose F1-score type print("Weighted F1-Score:", metrics.f1_score(expected, predicted_rf, average ='weighted')) #print(metrics.classification_report(expected, predicted_rf)) print("Confusion Matrix", metrics.confusion_matrix(expected, predicted_rf)) rf_conf_matrix = metrics.confusion_matrix(expected, predicted_rf) # calculating FNR and FPR all_0_preds = len(predicted_rf[predicted_rf ==0]) correct_0_preds = rf_conf_matrix[0,0] FN = all_0_preds-correct_0_preds FP = sum(rf_conf_matrix[0])-rf_conf_matrix[0,0] TN = rf_conf_matrix[0,0] total_n = np.sum(rf_conf_matrix) TP = total_n-FN-FP-TN print("FN:", FN, "FP:", FP, "TP:", TP, "TN:", TN) FNR = FN/(FN+TP) FPR = FP/(FP+TN) print("FPR:",FPR*100,'%') print("FNR:",FNR*100,'%') def export_trained_RF_model(model_name, joblib_output_filename): """Export the trained RF model as a joblib pickel .pkl file""" print("FB joblib file:", joblib_output_filename, "MUST END IN .pkl") joblib.dump(model_name, joblib_output_filename) def main(): """Parse six command line arguments then run data cleaning, feature engineering, ML Random Forest training, and model export.""" parser = argparse.ArgumentParser(description='Script to output trained Supervised ML Classifier (Random Forest), for offline purposes.') parser.add_argument('BSMs_X_filename') # CSV file of all BSMs for ML model training and testing. The BSMs will be used to create aggregated ML features (X). parser.add_argument('max_queues_Y_filename') # CSV file outtputed from ground_truth_max_queue_counts_and_lengths.py. These are the supervised ML labels (Y). parser.add_argument('veh_lengths_filename') # supporting CSV file of vehicle lengths in ft by type parser.add_argument('stoplines_filename') # supporting CSV file of stop line X,Y coordinates for each link and lane parser.add_argument('signal_timing_filename') # supporting CSV file of signal timing for each link every 30 seconds parser.add_argument('link_corners_filename') # supporting CSV file with link corner points for BSM assignment parser.add_argument('--out', help = 'Output pkl file (include .pkl)') # name of exported ML model, needs .pkl extension args = parser.parse_args() # read in the six files df = queue_fx.read_BSMs_file(args.BSMs_X_filename) y_df = format_queues(queue_fx.read_max_queues_Y_file(args.max_queues_Y_filename)) veh_len_df = queue_fx.read_veh_lengths_file(args.veh_lengths_filename) stoplines_df = queue_fx.read_stoplines_file(args.stoplines_filename) signals_df = queue_fx.read_signal_timing_file(args.signal_timing_filename) link_points_df = queue_fx.read_link_corners_file(args.link_corners_filename) # create the avg stoplines X,Y df stopline_avg_df = queue_fx.create_avg_stoplines_df(stoplines_df) # format the time df.transtime = df.transtime.apply(queue_fx.format_result) # create a new column that assigns BSM to 30 second time interval df['transtime_30sec'] = df['transtime'].dt.round('30S') # Assign BSMs to links df = queue_fx.assign_BSMs_to_roadway_links(df, link_points_df) # join columns from veh len to main BSMs df df = queue_fx.join_veh_len_to_BSM_df(df, veh_len_df) # Engineer the aggregated BSM features by assigned link and 30 secs base_df = queue_fx.feature_engineering(df, stopline_avg_df) # Join all features and labels df_xy = join_features_and_labels(base_df, y_df, stopline_avg_df, signals_df) # Add a column to the features for the previous time step's queue count for each link df_xy = add_previous_time_queue_count_col(df_xy) # Handle any missing values df_xy = queue_fx.label_encode_categorical_features(queue_fx.handle_missing_data(df_xy, df)) X,y = split_into_X_and_Y(df_xy) # scale the features X for classification X = queue_fx.feature_scaling_X(X) # Split the data into training and testing sets for ML. # This code is for training and testing new ML models. X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=0) # train the RF classifier and make predictions from the test set X's predicted_rf, model_rf = train_RF_model(X_train, X_test, y_train) # print model performance results evaluate_RF_model(y_test, predicted_rf) # export the trained RF model as a .pkl file if args.out: output_file = args.out else: output_file = "Exported_Trained_RF_Model.pkl" export_trained_RF_model(model_rf, output_file) if __name__ == "__main__": main()
49.108696
237
0.723063
795249e8fde080574bbc776ca2d274f0a0a663dd
15,430
py
Python
desktop/libs/notebook/src/notebook/connectors/base.py
integrateai/hue
ca2ea6c5e3979b963b151931ac4a689f69131b54
[ "Apache-2.0" ]
null
null
null
desktop/libs/notebook/src/notebook/connectors/base.py
integrateai/hue
ca2ea6c5e3979b963b151931ac4a689f69131b54
[ "Apache-2.0" ]
null
null
null
desktop/libs/notebook/src/notebook/connectors/base.py
integrateai/hue
ca2ea6c5e3979b963b151931ac4a689f69131b54
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # Licensed to Cloudera, Inc. under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. Cloudera, Inc. licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import logging import re import uuid from django.utils.translation import ugettext as _ from desktop.conf import has_multi_cluster from desktop.lib.exceptions_renderable import PopupException from desktop.lib.i18n import smart_unicode from notebook.conf import get_ordered_interpreters LOG = logging.getLogger(__name__) class SessionExpired(Exception): pass class QueryExpired(Exception): def __init__(self, message=None): super(QueryExpired, self).__init__() self.message = message class AuthenticationRequired(Exception): def __init__(self, message=None): super(AuthenticationRequired, self).__init__() self.message = message class OperationTimeout(Exception): pass class OperationNotSupported(Exception): pass class QueryError(Exception): def __init__(self, message, handle=None): super(QueryError, self).__init__(message) self.message = message or _('No error message, please check the logs.') self.handle = handle self.extra = {} def __unicode__(self): return smart_unicode(self.message) class Notebook(object): def __init__(self, document=None, **options): self.document = None if document is not None: self.data = document.data self.document = document else: _data = { 'name': 'My Notebook', 'uuid': str(uuid.uuid4()), 'description': '', 'type': 'notebook', 'isSaved': False, 'isManaged': False, # Aka isTask 'skipHistorify': False, 'sessions': [], 'snippets': [], } _data.update(options) self.data = json.dumps(_data) def get_json(self): _data = self.get_data() return json.dumps(_data) def get_data(self): _data = json.loads(self.data) if self.document is not None: _data['id'] = self.document.id _data['is_history'] = self.document.is_history return _data def get_str(self): return '\n\n\n'.join(['USE %s;\n\n%s' % (snippet['database'], Notebook.statement_with_variables(snippet)) for snippet in self.get_data()['snippets']]) @staticmethod def statement_with_variables(snippet): statement_raw = snippet['statement_raw'] hasCurlyBracketParameters = snippet['type'] != 'pig' variables = {} for variable in snippet['variables']: variables[variable['name']] = variable if variables: variables_names = [] for variable in snippet['variables']: variables_names.append(variable['name']) variablesString = '|'.join(variables_names) def replace(match): p1 = match.group(1) p2 = match.group(2) variable = variables[p2] value = str(variable['value']) return p1 + (value if value is not None else variable['meta'].get('placeholder','')) return re.sub("([^\\\\])\\$" + ("{(" if hasCurlyBracketParameters else "(") + variablesString + ")(=[^}]*)?" + ("}" if hasCurlyBracketParameters else ""), replace, statement_raw) return statement_raw def add_hive_snippet(self, database, sql): _data = json.loads(self.data) _data['snippets'].append(self._make_snippet({ 'status': 'running', 'statement_raw': sql, 'statement': sql, 'type': 'hive', 'properties': { 'files': [], 'functions': [], 'settings': [], }, 'database': database, })) self._add_session(_data, 'hive') self.data = json.dumps(_data) def add_java_snippet(self, clazz, app_jar, arguments, files): _data = json.loads(self.data) _data['snippets'].append(self._make_snippet({ u'type': u'java', u'status': u'running', u'properties': { u'files': files, u'class': clazz, u'app_jar': app_jar, u'arguments': arguments, u'archives': [], } })) self._add_session(_data, 'java') self.data = json.dumps(_data) def add_sqoop_snippet(self, statement, arguments, files): _data = json.loads(self.data) _data['snippets'].append(self._make_snippet({ u'type': u'sqoop1', u'status': u'running', u'properties': { u'files': files, u'arguments': arguments, u'archives': [], u'statement': statement } })) self._add_session(_data, 'java') self.data = json.dumps(_data) def add_spark_snippet(self, clazz, jars, arguments, files): _data = json.loads(self.data) _data['snippets'].append(self._make_snippet({ u'type': u'spark', u'status': u'running', u'properties': { u'files': files, u'class': clazz, u'app_jar': jars, u'arguments': arguments, u'archives': [], u'spark_opts': '' } })) self._add_session(_data, 'spark') self.data = json.dumps(_data) def add_shell_snippet(self, shell_command, arguments=None, archives=None, files=None, env_var=None, last_executed=None, capture_output=True): _data = json.loads(self.data) if arguments is None: arguments = [] if archives is None: archives = [] if files is None: files = [] if env_var is None: env_var = [] _data['snippets'].append(self._make_snippet({ u'type': u'shell', u'status': u'running', u'properties': { u'files': files, u'shell_command': shell_command, u'arguments': arguments, u'archives': archives, u'env_var': env_var, u'command_path': shell_command, u'capture_output': capture_output }, u'lastExecuted': last_executed })) self._add_session(_data, 'shell') self.data = json.dumps(_data) def _make_snippet(self, _snippet): return { 'status': _snippet.get('status', 'ready'), 'id': str(uuid.uuid4()), 'statement_raw': _snippet.get('statement', ''), 'statement': _snippet.get('statement', ''), 'type': _snippet.get('type'), 'properties': _snippet['properties'], 'name': _snippet.get('name', '%(type)s snippet' % _snippet), 'database': _snippet.get('database'), 'result': {}, 'variables': [], 'lastExecuted': _snippet.get('lastExecuted'), 'capture_output': _snippet.get('capture_output', True) } def _add_session(self, data, snippet_type): from notebook.connectors.hiveserver2 import HS2Api # Cyclic dependency if snippet_type not in [_s['type'] for _s in data['sessions']]: data['sessions'].append({ 'type': snippet_type, 'properties': HS2Api.get_properties(snippet_type), 'id': None } ) def execute(self, request, batch=False): from notebook.api import _execute_notebook # Cyclic dependency notebook_data = self.get_data() snippet = notebook_data['snippets'][0] snippet['wasBatchExecuted'] = batch return _execute_notebook(request, notebook_data, snippet) def get_api(request, snippet): from notebook.connectors.oozie_batch import OozieApi if snippet.get('wasBatchExecuted'): return OozieApi(user=request.user, request=request) if snippet['type'] == 'report': snippet['type'] = 'impala' interpreter = [interpreter for interpreter in get_ordered_interpreters(request.user) if interpreter['type'] == snippet['type']] if not interpreter: if snippet['type'] == 'hbase': interpreter = [{ 'name': 'hbase', 'type': 'hbase', 'interface': 'hbase', 'options': {}, 'is_sql': False }] elif snippet['type'] == 'kafka': interpreter = [{ 'name': 'kafka', 'type': 'kafka', 'interface': 'kafka', 'options': {}, 'is_sql': False }] elif snippet['type'] == 'solr': interpreter = [{ 'name': 'solr', 'type': 'solr', 'interface': 'solr', 'options': {}, 'is_sql': False }] elif snippet['type'] == 'custom': interpreter = [{ 'name': snippet['name'], 'type': snippet['type'], 'interface': snippet['interface'], 'options': snippet.get('options', {}), 'is_sql': False }] else: raise PopupException(_('Snippet type %(type)s is not configured in hue.ini') % snippet) interpreter = interpreter[0] interface = interpreter['interface'] # Multi cluster if has_multi_cluster(): cluster = json.loads(request.POST.get('cluster', '""')) # Via Catalog autocomplete API or Notebook create sessions if cluster == '""' or cluster == 'undefined': cluster = None if not cluster and snippet.get('compute'): # Via notebook.ko.js cluster = snippet['compute'] else: cluster = None cluster_name = cluster.get('id') if cluster else None if cluster and 'altus:dataware:k8s' in cluster_name: interface = 'hiveserver2' elif cluster and 'crn:altus:dataware:' in cluster_name: interface = 'altus-adb' elif cluster and 'crn:altus:dataeng:' in cluster_name: interface = 'dataeng' LOG.info('Selected cluster %s %s interface %s' % (cluster_name, cluster, interface)) snippet['interface'] = interface if interface == 'hiveserver2': from notebook.connectors.hiveserver2 import HS2Api return HS2Api(user=request.user, request=request, cluster=cluster) elif interface == 'oozie': return OozieApi(user=request.user, request=request) elif interface == 'livy': from notebook.connectors.spark_shell import SparkApi return SparkApi(request.user) elif interface == 'livy-batch': from notebook.connectors.spark_batch import SparkBatchApi return SparkBatchApi(request.user) elif interface == 'text' or interface == 'markdown': from notebook.connectors.text import TextApi return TextApi(request.user) elif interface == 'rdbms': from notebook.connectors.rdbms import RdbmsApi return RdbmsApi(request.user, interpreter=snippet['type'], query_server=snippet.get('query_server')) elif interface == 'altus-adb': from notebook.connectors.altus_adb import AltusAdbApi return AltusAdbApi(user=request.user, cluster_name=cluster_name, request=request) elif interface == 'dataeng': from notebook.connectors.dataeng import DataEngApi return DataEngApi(user=request.user, request=request, cluster_name=cluster_name) elif interface == 'jdbc': if interpreter['options'] and interpreter['options'].get('url', '').find('teradata') >= 0: from notebook.connectors.jdbc_teradata import JdbcApiTeradata return JdbcApiTeradata(request.user, interpreter=interpreter) elif interpreter['options'] and interpreter['options'].get('url', '').find('presto') >= 0: from notebook.connectors.jdbc_presto import JdbcApiPresto return JdbcApiPresto(request.user, interpreter=interpreter) elif interpreter['options'] and interpreter['options'].get('url', '').find('clickhouse') >= 0: from notebook.connectors.jdbc_clickhouse import JdbcApiClickhouse return JdbcApiClickhouse(request.user, interpreter=interpreter) else: from notebook.connectors.jdbc import JdbcApi return JdbcApi(request.user, interpreter=interpreter) elif interface == 'teradata': from notebook.connectors.jdbc import JdbcApiTeradata return JdbcApiTeradata(request.user, interpreter=interpreter) elif interface == 'presto': from notebook.connectors.jdbc_presto import JdbcApiPresto return JdbcApiPresto(request.user, interpreter=interpreter) elif interface == 'sqlalchemy': from notebook.connectors.sqlalchemyapi import SqlAlchemyApi return SqlAlchemyApi(request.user, interpreter=interpreter) elif interface == 'solr': from notebook.connectors.solr import SolrApi return SolrApi(request.user, interpreter=interpreter) elif interface == 'hbase': from notebook.connectors.hbase import HBaseApi return HBaseApi(request.user) elif interface == 'kafka': from notebook.connectors.kafka import KafkaApi return KafkaApi(request.user) elif interface == 'pig': return OozieApi(user=request.user, request=request) # Backward compatibility until Hue 4 else: raise PopupException(_('Notebook connector interface not recognized: %s') % interface) def _get_snippet_session(notebook, snippet): session = [session for session in notebook['sessions'] if session['type'] == snippet['type']] if not session: raise SessionExpired() else: return session[0] # Base API class Api(object): def __init__(self, user, interpreter=None, request=None, cluster=None, query_server=None): self.user = user self.interpreter = interpreter self.request = request self.cluster = cluster self.query_server = query_server def create_session(self, lang, properties=None): return { 'type': lang, 'id': None, 'properties': properties if not None else [] } def close_session(self, session): pass def fetch_result(self, notebook, snippet, rows, start_over): pass def fetch_result_size(self, notebook, snippet): raise OperationNotSupported() def download(self, notebook, snippet, format, user_agent=None, max_rows=None, store_data_type_in_header=False): pass def get_log(self, notebook, snippet, startFrom=None, size=None): return 'No logs' def autocomplete(self, snippet, database=None, table=None, column=None, nested=None): return {} def progress(self, snippet, logs=None): return 50 def get_jobs(self, notebook, snippet, logs): return [] def get_sample_data(self, snippet, database=None, table=None, column=None, async=False, operation=None): raise NotImplementedError() def export_data_as_hdfs_file(self, snippet, target_file, overwrite): raise NotImplementedError() def export_data_as_table(self, notebook, snippet, destination, is_temporary=False, location=None): raise NotImplementedError() def export_large_data_to_hdfs(self, notebook, snippet, destination): raise NotImplementedError() def statement_risk(self, notebook, snippet): raise NotImplementedError() def statement_compatibility(self, notebook, snippet, source_platform, target_platform): raise NotImplementedError() def statement_similarity(self, notebook, snippet, source_platform, target_platform): raise NotImplementedError() def _get_snippet_name(notebook, unique=False, table_format=False): name = (('%(name)s' + ('-%(id)s' if unique else '') if notebook.get('name') else '%(type)s-%(id)s') % notebook) if table_format: name = re.sub('[-|\s:]', '_', name) return name
32.690678
184
0.663383
79524a683cc4cfed3e8143de34ed0d5259d60a0a
21,312
py
Python
third_party/protobuf/src/gtest/test/run_tests_test.py
apkbox/nano-rpc
d9d253b104399b443fb377cac2856b8997b1dab6
[ "BSD-3-Clause" ]
null
null
null
third_party/protobuf/src/gtest/test/run_tests_test.py
apkbox/nano-rpc
d9d253b104399b443fb377cac2856b8997b1dab6
[ "BSD-3-Clause" ]
null
null
null
third_party/protobuf/src/gtest/test/run_tests_test.py
apkbox/nano-rpc
d9d253b104399b443fb377cac2856b8997b1dab6
[ "BSD-3-Clause" ]
null
null
null
#!/usr/bin/env python # # Copyright 2009 Google Inc. All Rights Reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """Tests for run_tests.py test runner script.""" __author__ = 'vladl@google.com (Vlad Losev)' import os import re import sets import sys import unittest sys.path.append(os.path.join(os.path.dirname(sys.argv[0]), os.pardir)) import run_tests GTEST_DBG_DIR = 'scons/build/dbg/scons' GTEST_OPT_DIR = 'scons/build/opt/scons' GTEST_OTHER_DIR = 'scons/build/other/scons' def AddExeExtension(path): """Appends .exe to the path on Windows or Cygwin.""" if run_tests.IS_WINDOWS or run_tests.IS_CYGWIN: return path + '.exe' else: return path class FakePath(object): """A fake os.path module for testing.""" def __init__(self, current_dir=os.getcwd(), known_paths=None): self.current_dir = current_dir self.tree = {} self.path_separator = os.sep # known_paths contains either absolute or relative paths. Relative paths # are absolutized with self.current_dir. if known_paths: self._AddPaths(known_paths) def _AddPath(self, path): ends_with_slash = path.endswith('/') path = self.abspath(path) if ends_with_slash: path += self.path_separator name_list = path.split(self.path_separator) tree = self.tree for name in name_list[:-1]: if not name: continue if name in tree: tree = tree[name] else: tree[name] = {} tree = tree[name] name = name_list[-1] if name: if name in tree: assert tree[name] == 1 else: tree[name] = 1 def _AddPaths(self, paths): for path in paths: self._AddPath(path) def PathElement(self, path): """Returns an internal representation of directory tree entry for path.""" tree = self.tree name_list = self.abspath(path).split(self.path_separator) for name in name_list: if not name: continue tree = tree.get(name, None) if tree is None: break return tree def normpath(self, path): return os.path.normpath(path) def abspath(self, path): return self.normpath(os.path.join(self.current_dir, path)) def isfile(self, path): return self.PathElement(self.abspath(path)) == 1 def isdir(self, path): return type(self.PathElement(self.abspath(path))) == type(dict()) def basename(self, path): return os.path.basename(path) def dirname(self, path): return os.path.dirname(path) def join(self, *kargs): return os.path.join(*kargs) class FakeOs(object): """A fake os module for testing.""" P_WAIT = os.P_WAIT def __init__(self, fake_path_module): self.path = fake_path_module # Some methods/attributes are delegated to the real os module. self.environ = os.environ def listdir(self, path): assert self.path.isdir(path) return self.path.PathElement(path).iterkeys() def spawnv(self, wait, executable, *kargs): assert wait == FakeOs.P_WAIT return self.spawn_impl(executable, kargs) class GetTestsToRunTest(unittest.TestCase): """Exercises TestRunner.GetTestsToRun.""" def NormalizeGetTestsToRunResults(self, results): """Normalizes path data returned from GetTestsToRun for comparison.""" def NormalizePythonTestPair(pair): """Normalizes path data in the (directory, python_script) pair.""" return (os.path.normpath(pair[0]), os.path.normpath(pair[1])) def NormalizeBinaryTestPair(pair): """Normalizes path data in the (directory, binary_executable) pair.""" directory, executable = map(os.path.normpath, pair) # On Windows and Cygwin, the test file names have the .exe extension, but # they can be invoked either by name or by name+extension. Our test must # accommodate both situations. if run_tests.IS_WINDOWS or run_tests.IS_CYGWIN: executable = re.sub(r'\.exe$', '', executable) return (directory, executable) python_tests = sets.Set(map(NormalizePythonTestPair, results[0])) binary_tests = sets.Set(map(NormalizeBinaryTestPair, results[1])) return (python_tests, binary_tests) def AssertResultsEqual(self, results, expected): """Asserts results returned by GetTestsToRun equal to expected results.""" self.assertEqual(self.NormalizeGetTestsToRunResults(results), self.NormalizeGetTestsToRunResults(expected), 'Incorrect set of tests returned:\n%s\nexpected:\n%s' % (results, expected)) def setUp(self): self.fake_os = FakeOs(FakePath( current_dir=os.path.abspath(os.path.dirname(run_tests.__file__)), known_paths=[AddExeExtension(GTEST_DBG_DIR + '/gtest_unittest'), AddExeExtension(GTEST_OPT_DIR + '/gtest_unittest'), 'test/gtest_color_test.py'])) self.fake_configurations = ['dbg', 'opt'] self.test_runner = run_tests.TestRunner(injected_os=self.fake_os, injected_subprocess=None, injected_script_dir='.') def testBinaryTestsOnly(self): """Exercises GetTestsToRun with parameters designating binary tests only.""" # A default build. self.AssertResultsEqual( self.test_runner.GetTestsToRun( ['gtest_unittest'], '', False, available_configurations=self.fake_configurations), ([], [(GTEST_DBG_DIR, GTEST_DBG_DIR + '/gtest_unittest')])) # An explicitly specified directory. self.AssertResultsEqual( self.test_runner.GetTestsToRun( [GTEST_DBG_DIR, 'gtest_unittest'], '', False, available_configurations=self.fake_configurations), ([], [(GTEST_DBG_DIR, GTEST_DBG_DIR + '/gtest_unittest')])) # A particular configuration. self.AssertResultsEqual( self.test_runner.GetTestsToRun( ['gtest_unittest'], 'other', False, available_configurations=self.fake_configurations), ([], [(GTEST_OTHER_DIR, GTEST_OTHER_DIR + '/gtest_unittest')])) # All available configurations self.AssertResultsEqual( self.test_runner.GetTestsToRun( ['gtest_unittest'], 'all', False, available_configurations=self.fake_configurations), ([], [(GTEST_DBG_DIR, GTEST_DBG_DIR + '/gtest_unittest'), (GTEST_OPT_DIR, GTEST_OPT_DIR + '/gtest_unittest')])) # All built configurations (unbuilt don't cause failure). self.AssertResultsEqual( self.test_runner.GetTestsToRun( ['gtest_unittest'], '', True, available_configurations=self.fake_configurations + ['unbuilt']), ([], [(GTEST_DBG_DIR, GTEST_DBG_DIR + '/gtest_unittest'), (GTEST_OPT_DIR, GTEST_OPT_DIR + '/gtest_unittest')])) # A combination of an explicit directory and a configuration. self.AssertResultsEqual( self.test_runner.GetTestsToRun( [GTEST_DBG_DIR, 'gtest_unittest'], 'opt', False, available_configurations=self.fake_configurations), ([], [(GTEST_DBG_DIR, GTEST_DBG_DIR + '/gtest_unittest'), (GTEST_OPT_DIR, GTEST_OPT_DIR + '/gtest_unittest')])) # Same test specified in an explicit directory and via a configuration. self.AssertResultsEqual( self.test_runner.GetTestsToRun( [GTEST_DBG_DIR, 'gtest_unittest'], 'dbg', False, available_configurations=self.fake_configurations), ([], [(GTEST_DBG_DIR, GTEST_DBG_DIR + '/gtest_unittest')])) # All built configurations + explicit directory + explicit configuration. self.AssertResultsEqual( self.test_runner.GetTestsToRun( [GTEST_DBG_DIR, 'gtest_unittest'], 'opt', True, available_configurations=self.fake_configurations), ([], [(GTEST_DBG_DIR, GTEST_DBG_DIR + '/gtest_unittest'), (GTEST_OPT_DIR, GTEST_OPT_DIR + '/gtest_unittest')])) def testPythonTestsOnly(self): """Exercises GetTestsToRun with parameters designating Python tests only.""" # A default build. self.AssertResultsEqual( self.test_runner.GetTestsToRun( ['gtest_color_test.py'], '', False, available_configurations=self.fake_configurations), ([(GTEST_DBG_DIR, 'test/gtest_color_test.py')], [])) # An explicitly specified directory. self.AssertResultsEqual( self.test_runner.GetTestsToRun( [GTEST_DBG_DIR, 'test/gtest_color_test.py'], '', False, available_configurations=self.fake_configurations), ([(GTEST_DBG_DIR, 'test/gtest_color_test.py')], [])) # A particular configuration. self.AssertResultsEqual( self.test_runner.GetTestsToRun( ['gtest_color_test.py'], 'other', False, available_configurations=self.fake_configurations), ([(GTEST_OTHER_DIR, 'test/gtest_color_test.py')], [])) # All available configurations self.AssertResultsEqual( self.test_runner.GetTestsToRun( ['test/gtest_color_test.py'], 'all', False, available_configurations=self.fake_configurations), ([(GTEST_DBG_DIR, 'test/gtest_color_test.py'), (GTEST_OPT_DIR, 'test/gtest_color_test.py')], [])) # All built configurations (unbuilt don't cause failure). self.AssertResultsEqual( self.test_runner.GetTestsToRun( ['gtest_color_test.py'], '', True, available_configurations=self.fake_configurations + ['unbuilt']), ([(GTEST_DBG_DIR, 'test/gtest_color_test.py'), (GTEST_OPT_DIR, 'test/gtest_color_test.py')], [])) # A combination of an explicit directory and a configuration. self.AssertResultsEqual( self.test_runner.GetTestsToRun( [GTEST_DBG_DIR, 'gtest_color_test.py'], 'opt', False, available_configurations=self.fake_configurations), ([(GTEST_DBG_DIR, 'test/gtest_color_test.py'), (GTEST_OPT_DIR, 'test/gtest_color_test.py')], [])) # Same test specified in an explicit directory and via a configuration. self.AssertResultsEqual( self.test_runner.GetTestsToRun( [GTEST_DBG_DIR, 'gtest_color_test.py'], 'dbg', False, available_configurations=self.fake_configurations), ([(GTEST_DBG_DIR, 'test/gtest_color_test.py')], [])) # All built configurations + explicit directory + explicit configuration. self.AssertResultsEqual( self.test_runner.GetTestsToRun( [GTEST_DBG_DIR, 'gtest_color_test.py'], 'opt', True, available_configurations=self.fake_configurations), ([(GTEST_DBG_DIR, 'test/gtest_color_test.py'), (GTEST_OPT_DIR, 'test/gtest_color_test.py')], [])) def testCombinationOfBinaryAndPythonTests(self): """Exercises GetTestsToRun with mixed binary/Python tests.""" # Use only default configuration for this test. # Neither binary nor Python tests are specified so find all. self.AssertResultsEqual( self.test_runner.GetTestsToRun( [], '', False, available_configurations=self.fake_configurations), ([(GTEST_DBG_DIR, 'test/gtest_color_test.py')], [(GTEST_DBG_DIR, GTEST_DBG_DIR + '/gtest_unittest')])) # Specifying both binary and Python tests. self.AssertResultsEqual( self.test_runner.GetTestsToRun( ['gtest_unittest', 'gtest_color_test.py'], '', False, available_configurations=self.fake_configurations), ([(GTEST_DBG_DIR, 'test/gtest_color_test.py')], [(GTEST_DBG_DIR, GTEST_DBG_DIR + '/gtest_unittest')])) # Specifying binary tests suppresses Python tests. self.AssertResultsEqual( self.test_runner.GetTestsToRun( ['gtest_unittest'], '', False, available_configurations=self.fake_configurations), ([], [(GTEST_DBG_DIR, GTEST_DBG_DIR + '/gtest_unittest')])) # Specifying Python tests suppresses binary tests. self.AssertResultsEqual( self.test_runner.GetTestsToRun( ['gtest_color_test.py'], '', False, available_configurations=self.fake_configurations), ([(GTEST_DBG_DIR, 'test/gtest_color_test.py')], [])) def testIgnoresNonTestFiles(self): """Verifies that GetTestsToRun ignores non-test files in the filesystem.""" self.fake_os = FakeOs(FakePath( current_dir=os.path.abspath(os.path.dirname(run_tests.__file__)), known_paths=[AddExeExtension(GTEST_DBG_DIR + '/gtest_nontest'), 'test/'])) self.test_runner = run_tests.TestRunner(injected_os=self.fake_os, injected_subprocess=None, injected_script_dir='.') self.AssertResultsEqual( self.test_runner.GetTestsToRun( [], '', True, available_configurations=self.fake_configurations), ([], [])) def testWorksFromDifferentDir(self): """Exercises GetTestsToRun from a directory different from run_test.py's.""" # Here we simulate an test script in directory /d/ called from the # directory /a/b/c/. self.fake_os = FakeOs(FakePath( current_dir=os.path.abspath('/a/b/c'), known_paths=[ '/a/b/c/', AddExeExtension('/d/' + GTEST_DBG_DIR + '/gtest_unittest'), AddExeExtension('/d/' + GTEST_OPT_DIR + '/gtest_unittest'), '/d/test/gtest_color_test.py'])) self.fake_configurations = ['dbg', 'opt'] self.test_runner = run_tests.TestRunner(injected_os=self.fake_os, injected_subprocess=None, injected_script_dir='/d/') # A binary test. self.AssertResultsEqual( self.test_runner.GetTestsToRun( ['gtest_unittest'], '', False, available_configurations=self.fake_configurations), ([], [('/d/' + GTEST_DBG_DIR, '/d/' + GTEST_DBG_DIR + '/gtest_unittest')])) # A Python test. self.AssertResultsEqual( self.test_runner.GetTestsToRun( ['gtest_color_test.py'], '', False, available_configurations=self.fake_configurations), ([('/d/' + GTEST_DBG_DIR, '/d/test/gtest_color_test.py')], [])) def testNonTestBinary(self): """Exercises GetTestsToRun with a non-test parameter.""" self.assert_( not self.test_runner.GetTestsToRun( ['gtest_unittest_not_really'], '', False, available_configurations=self.fake_configurations)) def testNonExistingPythonTest(self): """Exercises GetTestsToRun with a non-existent Python test parameter.""" self.assert_( not self.test_runner.GetTestsToRun( ['nonexistent_test.py'], '', False, available_configurations=self.fake_configurations)) if run_tests.IS_WINDOWS or run_tests.IS_CYGWIN: def testDoesNotPickNonExeFilesOnWindows(self): """Verifies that GetTestsToRun does not find _test files on Windows.""" self.fake_os = FakeOs(FakePath( current_dir=os.path.abspath(os.path.dirname(run_tests.__file__)), known_paths=['/d/' + GTEST_DBG_DIR + '/gtest_test', 'test/'])) self.test_runner = run_tests.TestRunner(injected_os=self.fake_os, injected_subprocess=None, injected_script_dir='.') self.AssertResultsEqual( self.test_runner.GetTestsToRun( [], '', True, available_configurations=self.fake_configurations), ([], [])) class RunTestsTest(unittest.TestCase): """Exercises TestRunner.RunTests.""" def SpawnSuccess(self, unused_executable, unused_argv): """Fakes test success by returning 0 as an exit code.""" self.num_spawn_calls += 1 return 0 def SpawnFailure(self, unused_executable, unused_argv): """Fakes test success by returning 1 as an exit code.""" self.num_spawn_calls += 1 return 1 def setUp(self): self.fake_os = FakeOs(FakePath( current_dir=os.path.abspath(os.path.dirname(run_tests.__file__)), known_paths=[ AddExeExtension(GTEST_DBG_DIR + '/gtest_unittest'), AddExeExtension(GTEST_OPT_DIR + '/gtest_unittest'), 'test/gtest_color_test.py'])) self.fake_configurations = ['dbg', 'opt'] self.test_runner = run_tests.TestRunner(injected_os=self.fake_os, injected_subprocess=None) self.num_spawn_calls = 0 # A number of calls to spawn. def testRunPythonTestSuccess(self): """Exercises RunTests to handle a Python test success.""" self.fake_os.spawn_impl = self.SpawnSuccess self.assertEqual( self.test_runner.RunTests( [(GTEST_DBG_DIR, 'test/gtest_color_test.py')], []), 0) self.assertEqual(self.num_spawn_calls, 1) def testRunBinaryTestSuccess(self): """Exercises RunTests to handle a binary test success.""" self.fake_os.spawn_impl = self.SpawnSuccess self.assertEqual( self.test_runner.RunTests( [], [(GTEST_DBG_DIR, GTEST_DBG_DIR + '/gtest_unittest')]), 0) self.assertEqual(self.num_spawn_calls, 1) def testRunPythonTestFauilure(self): """Exercises RunTests to handle a Python test failure.""" self.fake_os.spawn_impl = self.SpawnFailure self.assertEqual( self.test_runner.RunTests( [(GTEST_DBG_DIR, 'test/gtest_color_test.py')], []), 1) self.assertEqual(self.num_spawn_calls, 1) def testRunBinaryTestFailure(self): """Exercises RunTests to handle a binary test failure.""" self.fake_os.spawn_impl = self.SpawnFailure self.assertEqual( self.test_runner.RunTests( [], [(GTEST_DBG_DIR, GTEST_DBG_DIR + '/gtest_unittest')]), 1) self.assertEqual(self.num_spawn_calls, 1) def testCombinedTestSuccess(self): """Exercises RunTests to handle a success of both Python and binary test.""" self.fake_os.spawn_impl = self.SpawnSuccess self.assertEqual( self.test_runner.RunTests( [(GTEST_DBG_DIR, GTEST_DBG_DIR + '/gtest_unittest')], [(GTEST_DBG_DIR, GTEST_DBG_DIR + '/gtest_unittest')]), 0) self.assertEqual(self.num_spawn_calls, 2) def testCombinedTestSuccessAndFailure(self): """Exercises RunTests to handle a success of both Python and binary test.""" def SpawnImpl(executable, argv): self.num_spawn_calls += 1 # Simulates failure of a Python test and success of a binary test. if '.py' in executable or '.py' in argv[0]: return 1 else: return 0 self.fake_os.spawn_impl = SpawnImpl self.assertEqual( self.test_runner.RunTests( [(GTEST_DBG_DIR, GTEST_DBG_DIR + '/gtest_unittest')], [(GTEST_DBG_DIR, GTEST_DBG_DIR + '/gtest_unittest')]), 0) self.assertEqual(self.num_spawn_calls, 2) if __name__ == '__main__': unittest.main()
34.653659
80
0.637669
79524ad739458878d268280471fd6bc0f3019965
6,586
py
Python
S7/python_files/model.py
garima-mahato/EVA4
e8efe40a4de2d5da3a04314f52a02610ecde16f1
[ "MIT" ]
null
null
null
S7/python_files/model.py
garima-mahato/EVA4
e8efe40a4de2d5da3a04314f52a02610ecde16f1
[ "MIT" ]
null
null
null
S7/python_files/model.py
garima-mahato/EVA4
e8efe40a4de2d5da3a04314f52a02610ecde16f1
[ "MIT" ]
1
2020-05-02T17:15:22.000Z
2020-05-02T17:15:22.000Z
from __future__ import print_function import math import numpy import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torchvision import datasets, transforms from torch.optim.lr_scheduler import StepLR import matplotlib.pyplot as plt from torchsummary import summary from tqdm import tqdm class SeparableConv2d(nn.Module): def __init__(self,in_channels,out_channels,kernel_size=1,stride=1,padding=0,dilation=1,bias=False): super(SeparableConv2d,self).__init__() self.conv1 = nn.Conv2d(in_channels,in_channels,kernel_size,stride,padding,dilation,groups=in_channels,bias=bias) self.pointwise = nn.Conv2d(in_channels,out_channels,1,1,0,1,1,bias=bias) def forward(self,x): x = self.conv1(x) x = self.pointwise(x) return x class Net(nn.Module): def __init__(self, dropout_value): super(Net, self).__init__() self.dropout_value = dropout_value self.num_of_channels = 3 # Input Block self.convblock1 = nn.Sequential( nn.Conv2d(in_channels=self.num_of_channels, out_channels=32, kernel_size=(3, 3), padding=1, bias=False), nn.ReLU(), nn.BatchNorm2d(32), nn.Dropout(self.dropout_value) ) # input_size = 32x32x3, output_size = 32x32x32, RF = 3x3 # CONVOLUTION BLOCK 1 self.convblock2 = nn.Sequential( nn.Conv2d(in_channels=32, out_channels=64, kernel_size=(3, 3), padding=1, bias=False), nn.ReLU(), nn.BatchNorm2d(64), nn.Dropout(self.dropout_value) ) # input_size = 32x32x32, output_size = 32x32x64, RF = 5x5 self.convblock3 = nn.Sequential( nn.Conv2d(in_channels=64, out_channels=128, kernel_size=(3, 3), padding=1, bias=False), nn.ReLU(), nn.BatchNorm2d(128), nn.Dropout(self.dropout_value) ) # input_size = 32x32x64, output_size = 32x32x128, RF = 7x7 # TRANSITION BLOCK 1 self.convblock4 = nn.Sequential( nn.Conv2d(in_channels=128, out_channels=32, kernel_size=(1, 1), padding=0, bias=False), ) # input_size = 32x32x128, output_size = 32x32x32, RF = 7x7 self.pool1 = nn.MaxPool2d(2, 2) # input_size = 32x32x32, output_size = 16x16x32, RF = 8x8 # CONVOLUTION BLOCK 2 self.convblock5 = nn.Sequential( nn.Conv2d(in_channels=32, out_channels=64, kernel_size=(3, 3), padding=1, bias=False), nn.ReLU(), nn.BatchNorm2d(64), nn.Dropout(self.dropout_value) ) # input_size = 16x16x32, output_size = 16x16x64, RF = 12x12 self.convblock6 = SeparableConv2d(in_channels=64, out_channels=128, kernel_size=1, stride=1, padding=1, dilation=1, bias=False) # input_size = 16x16x64, output_size = 16x16x128, RF = 16x16 # TRANSITION BLOCK 2 self.convblock7 = nn.Sequential( nn.Conv2d(in_channels=128, out_channels=64, kernel_size=(1, 1), padding=0, bias=False), ) # input_size = 16x16x128, output_size = 16x16x64, RF = 16x16 self.pool2 = nn.MaxPool2d(2, 2) # input_size = 16x16x64, output_size = 8x8x64, RF = 18x18 # CONVOLUTION BLOCK 3 self.convblock8 = nn.Sequential( nn.Conv2d(in_channels=64, out_channels=128, kernel_size=(3, 3), padding=2, dilation=2, bias=False), nn.ReLU(), nn.BatchNorm2d(128), nn.Dropout(self.dropout_value) ) # input_size = 8x8x64, output_size = 8x8x128, RF = [18+(5-1)*4] = 34x34 self.convblock9 = nn.Sequential( nn.Conv2d(in_channels=128, out_channels=256, kernel_size=(3, 3), padding=1, bias=False), nn.ReLU(), nn.BatchNorm2d(256), nn.Dropout(self.dropout_value) ) # input_size = 8x8x128, output_size = 8x8x256, RF = [34+(3-1)*4] = 42x42 # TRANSITION BLOCK 3 self.convblock10 = nn.Sequential( nn.Conv2d(in_channels=256, out_channels=64, kernel_size=(1, 1), padding=0, bias=False), ) # input_size = 8x8x256, output_size = 8x8x64, RF = 42x42 self.pool3 = nn.MaxPool2d(2, 2) # input_size = 8x8x64, output_size = 4x4x64, RF = 42+(2-1)*4 = 46x46 # CONVOLUTION BLOCK 4 self.convblock11 = nn.Sequential( nn.Conv2d(in_channels=64, out_channels=128, kernel_size=(3, 3), padding=1, bias=False), nn.ReLU(), nn.BatchNorm2d(128), nn.Dropout(self.dropout_value) ) # input_size = 4x4x64, output_size = 4x4x128, RF = 46+(3-1)*8 = 62x62 self.convblock12 = nn.Sequential( nn.Conv2d(in_channels=128, out_channels=256, kernel_size=(3, 3), padding=1, bias=False), nn.ReLU(), nn.BatchNorm2d(256), nn.Dropout(self.dropout_value) ) # input_size = 4x4x128, output_size = 4x4x256, RF = 62+(3-1)*8 = 78x78 # OUTPUT BLOCK self.gap = nn.Sequential( nn.AvgPool2d(kernel_size=4) ) # input_size = 4x4x256, output_size = 1x1x256, RF = 78+(4-1)*8 = 102x102 self.convblock13 = nn.Sequential( nn.Conv2d(in_channels=256, out_channels=64, kernel_size=(1, 1), padding=0, bias=False) ) # input_size = 1x1x256, output_size = 1x1x64, RF = 102x102 self.convblock14 = nn.Sequential( nn.Conv2d(in_channels=64, out_channels=32, kernel_size=(1, 1), padding=0, bias=False) ) # input_size = 1x1x64, output_size = 1x1x32, RF = 102x102 self.convblock15 = nn.Sequential( nn.Conv2d(in_channels=32, out_channels=10, kernel_size=(1, 1), padding=0, bias=False) ) # input_size = 1x1x32, output_size = 1x1x10, RF = 102x102 def forward(self, x): x = self.convblock1(x) x = self.convblock2(x) x = self.convblock3(x) x = self.convblock4(x) x = self.pool1(x) x = self.convblock5(x) x = self.convblock6(x) x = self.convblock7(x) x = self.pool2(x) x = self.convblock8(x) x = self.convblock9(x) x = self.convblock10(x) x = self.pool3(x) x = self.convblock11(x) x = self.convblock12(x) x = self.gap(x) x = self.convblock13(x) x = self.convblock14(x) x = self.convblock15(x) x = x.view(-1, 10) return F.log_softmax(x, dim=-1)
42.766234
136
0.600668
79524b60de15e6362b16730d5d05073917209179
4,829
py
Python
p3_collab-compet/maddpg_agentlab.py
francelico/deep-reinforcement-learning
65ea99a4ecf527cb9d8a703313da4815f4688ff0
[ "MIT" ]
null
null
null
p3_collab-compet/maddpg_agentlab.py
francelico/deep-reinforcement-learning
65ea99a4ecf527cb9d8a703313da4815f4688ff0
[ "MIT" ]
6
2020-01-28T22:59:05.000Z
2022-02-10T01:12:12.000Z
p3_collab-compet/maddpg_agentlab.py
francelico/deep-reinforcement-learning
65ea99a4ecf527cb9d8a703313da4815f4688ff0
[ "MIT" ]
null
null
null
# main code that contains the neural network setup # policy + critic updates # see ddpg.py for other details in the network from ddpg import DDPGAgent import torch from utilities import soft_update, transpose_to_tensor, transpose_list #device = torch.device("cuda" if torch.cuda.is_available() else "cpu") device = 'cpu' class MADDPG: def __init__(self, discount_factor=0.95, tau=0.02): super(MADDPG, self).__init__() # critic input = obs_full + actions = 14+2+2+2=20 self.maddpg_agent = [DDPGAgent(14, 16, 8, 2, 20, 32, 16), DDPGAgent(14, 16, 8, 2, 20, 32, 16), DDPGAgent(14, 16, 8, 2, 20, 32, 16)] self.discount_factor = discount_factor self.tau = tau self.iter = 0 def get_actors(self): """get actors of all the agents in the MADDPG object""" actors = [ddpg_agent.actor for ddpg_agent in self.maddpg_agent] return actors def get_target_actors(self): """get target_actors of all the agents in the MADDPG object""" target_actors = [ddpg_agent.target_actor for ddpg_agent in self.maddpg_agent] return target_actors def act(self, obs_all_agents, noise=0.0): """get actions from all agents in the MADDPG object""" actions = [agent.act(obs, noise) for agent, obs in zip(self.maddpg_agent, obs_all_agents)] return actions def target_act(self, obs_all_agents, noise=0.0): """get target network actions from all the agents in the MADDPG object """ target_actions = [ddpg_agent.target_act(obs, noise) for ddpg_agent, obs in zip(self.maddpg_agent, obs_all_agents)] return target_actions def update(self, samples, agent_number, logger): """update the critics and actors of all the agents """ # need to transpose each element of the samples # to flip obs[parallel_agent][agent_number] to # obs[agent_number][parallel_agent] obs, obs_full, action, reward, next_obs, next_obs_full, done = map(transpose_to_tensor, samples) obs_full = torch.stack(obs_full) next_obs_full = torch.stack(next_obs_full) agent = self.maddpg_agent[agent_number] agent.critic_optimizer.zero_grad() #critic loss = batch mean of (y- Q(s,a) from target network)^2 #y = reward of this timestep + discount * Q(st+1,at+1) from target network target_actions = self.target_act(next_obs) target_actions = torch.cat(target_actions, dim=1) target_critic_input = torch.cat((next_obs_full.t(),target_actions), dim=1).to(device) with torch.no_grad(): q_next = agent.target_critic(target_critic_input) y = reward[agent_number].view(-1, 1) + self.discount_factor * q_next * (1 - done[agent_number].view(-1, 1)) action = torch.cat(action, dim=1) critic_input = torch.cat((obs_full.t(), action), dim=1).to(device) q = agent.critic(critic_input) huber_loss = torch.nn.SmoothL1Loss() critic_loss = huber_loss(q, y.detach()) critic_loss.backward() #torch.nn.utils.clip_grad_norm_(agent.critic.parameters(), 0.5) agent.critic_optimizer.step() #update actor network using policy gradient agent.actor_optimizer.zero_grad() # make input to agent # detach the other agents to save computation # saves some time for computing derivative q_input = [ self.maddpg_agent[i].actor(ob) if i == agent_number \ else self.maddpg_agent[i].actor(ob).detach() for i, ob in enumerate(obs) ] q_input = torch.cat(q_input, dim=1) # combine all the actions and observations for input to critic # many of the obs are redundant, and obs[1] contains all useful information already q_input2 = torch.cat((obs_full.t(), q_input), dim=1) # get the policy gradient actor_loss = -agent.critic(q_input2).mean() actor_loss.backward() #torch.nn.utils.clip_grad_norm_(agent.actor.parameters(),0.5) agent.actor_optimizer.step() al = actor_loss.cpu().detach().item() cl = critic_loss.cpu().detach().item() logger.add_scalars('agent%i/losses' % agent_number, {'critic loss': cl, 'actor_loss': al}, self.iter) def update_targets(self): """soft update targets""" self.iter += 1 for ddpg_agent in self.maddpg_agent: soft_update(ddpg_agent.target_actor, ddpg_agent.actor, self.tau) soft_update(ddpg_agent.target_critic, ddpg_agent.critic, self.tau)
39.581967
122
0.625388
79524b941919fc9fe975167cb7a6682bf87cd63e
4,989
py
Python
test/vanilla/legacy/Expected/AcceptanceTests/BodyBinary/bodybinary/aio/operations/_upload_operations.py
cfculhane/autorest.python
8cbca95faee88d933a58bbbd17b76834faa8d387
[ "MIT" ]
null
null
null
test/vanilla/legacy/Expected/AcceptanceTests/BodyBinary/bodybinary/aio/operations/_upload_operations.py
cfculhane/autorest.python
8cbca95faee88d933a58bbbd17b76834faa8d387
[ "MIT" ]
null
null
null
test/vanilla/legacy/Expected/AcceptanceTests/BodyBinary/bodybinary/aio/operations/_upload_operations.py
cfculhane/autorest.python
8cbca95faee88d933a58bbbd17b76834faa8d387
[ "MIT" ]
1
2022-03-28T08:58:03.000Z
2022-03-28T08:58:03.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- import functools from typing import Any, Callable, Dict, Generic, IO, Optional, TypeVar import warnings from azure.core.exceptions import ( ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error, ) from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse from azure.core.rest import HttpRequest from azure.core.tracing.decorator_async import distributed_trace_async from ..._vendor import _convert_request from ...operations._upload_operations import build_binary_request, build_file_request T = TypeVar("T") ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class UploadOperations: """UploadOperations async operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ def __init__(self, client, config, serializer, deserializer) -> None: self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config @distributed_trace_async async def file(self, file_param: IO, **kwargs: Any) -> None: """Uploading json file. :param file_param: JSON file with payload { "more": "cowbell" }. :type file_param: IO :keyword callable cls: A custom type or function that will be passed the direct response :return: None, or the result of cls(response) :rtype: None :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop("cls", None) # type: ClsType[None] error_map = {401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop("error_map", {})) content_type = kwargs.pop("content_type", "application/json") # type: Optional[str] _content = file_param request = build_file_request( content_type=content_type, content=_content, template_url=self.file.metadata["url"], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response) if cls: return cls(pipeline_response, None, {}) file.metadata = {"url": "/binary/file"} # type: ignore @distributed_trace_async async def binary(self, file_param: IO, **kwargs: Any) -> None: """Uploading binary file. :param file_param: Non-empty binary file. :type file_param: IO :keyword callable cls: A custom type or function that will be passed the direct response :return: None, or the result of cls(response) :rtype: None :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop("cls", None) # type: ClsType[None] error_map = {401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop("error_map", {})) content_type = kwargs.pop("content_type", "application/octet-stream") # type: Optional[str] _content = file_param request = build_binary_request( content_type=content_type, content=_content, template_url=self.binary.metadata["url"], ) request = _convert_request(request) request.url = self._client.format_url(request.url) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response) if cls: return cls(pipeline_response, None, {}) binary.metadata = {"url": "/binary/octet"} # type: ignore
39.595238
106
0.670876
79524c05c8c18ef0440cd7afdeb79eec47f39750
408
py
Python
GCL/losses/losses.py
lem0nle/PyGCL
340b0201a5edf4236fef4c96b958ff373ceb7f28
[ "Apache-2.0" ]
361
2021-07-09T15:15:23.000Z
2022-03-30T07:08:10.000Z
GCL/losses/losses.py
lem0nle/PyGCL
340b0201a5edf4236fef4c96b958ff373ceb7f28
[ "Apache-2.0" ]
25
2021-08-21T11:06:26.000Z
2022-03-29T02:51:56.000Z
GCL/losses/losses.py
lem0nle/PyGCL
340b0201a5edf4236fef4c96b958ff373ceb7f28
[ "Apache-2.0" ]
45
2021-08-07T02:59:45.000Z
2022-03-29T05:07:17.000Z
import torch from abc import ABC, abstractmethod class Loss(ABC): @abstractmethod def compute(self, anchor, sample, pos_mask, neg_mask, *args, **kwargs) -> torch.FloatTensor: pass def __call__(self, anchor, sample, pos_mask=None, neg_mask=None, *args, **kwargs) -> torch.FloatTensor: loss = self.compute(anchor, sample, pos_mask, neg_mask, *args, **kwargs) return loss
31.384615
107
0.683824
79524caab16dd28e6b2536bf40a39304e7d920cf
516
py
Python
tests/test_python.py
jayvdb/dephell_pythons
17afb28bd89652718410998dcd13bfdde9dfd865
[ "MIT" ]
2
2019-03-20T14:39:55.000Z
2019-04-21T15:48:36.000Z
tests/test_python.py
jayvdb/dephell_pythons
17afb28bd89652718410998dcd13bfdde9dfd865
[ "MIT" ]
4
2019-07-24T13:51:09.000Z
2020-05-28T14:28:14.000Z
tests/test_python.py
jayvdb/dephell_pythons
17afb28bd89652718410998dcd13bfdde9dfd865
[ "MIT" ]
3
2019-12-19T01:38:56.000Z
2021-09-28T02:43:43.000Z
import sys from dephell_pythons import Pythons def test_lib_paths(): p = Pythons().current assert len(p.lib_paths) > 2 # appveyor makes some hacks for python path libs_found = {path for path in sys.path if 'Scripts' not in path and 'dephell' not in path} libs_real = {str(path) for path in p.lib_paths if 'Scripts' not in str(path) and 'dephell' not in str(path)} assert libs_found == libs_real def test_lib_path(): p = Pythons().current assert 'site-packages' in str(p.lib_path)
30.352941
112
0.699612
79524cdfda340a378ede662e359fa940dbd9655a
951
py
Python
setup.py
Arfaouim/moire-lattice-generator
c46065d27f64010d4bf4c8b0209c27369c316e1e
[ "MIT" ]
1
2021-06-24T13:59:00.000Z
2021-06-24T13:59:00.000Z
setup.py
Arfaouim/moire-lattice-generator
c46065d27f64010d4bf4c8b0209c27369c316e1e
[ "MIT" ]
null
null
null
setup.py
Arfaouim/moire-lattice-generator
c46065d27f64010d4bf4c8b0209c27369c316e1e
[ "MIT" ]
null
null
null
import setuptools with open("README.md", "r", encoding="utf-8") as fh: long_description = fh.read() with open('requirements.txt') as f: requirements = f.read().splitlines() setuptools.setup( name="latticegen", version="0.0.1", author="T.A. de Jong", author_email="tobiasadejong@gmail.com", description="A small package to create images of atomic lattices", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/TAdejong/moire-lattice-generator", packages=setuptools.find_packages(), classifiers=[ "Programming Language :: Python :: 3", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", "Topic :: Scientific/Engineering", ], python_requires='>=3.7', install_requires=requirements, test_requires=[ 'pytest', "hypothesis", ], test_suite="pytest", )
28.818182
70
0.6551
79524d9ebddca959d8ecc93fa7911704399810b4
826
py
Python
com/jefferson/bd.py
jefferson-paixao/devops_ac03_testes
a069be042de162ea19e973a157280b16d1c60d12
[ "Apache-2.0" ]
null
null
null
com/jefferson/bd.py
jefferson-paixao/devops_ac03_testes
a069be042de162ea19e973a157280b16d1c60d12
[ "Apache-2.0" ]
null
null
null
com/jefferson/bd.py
jefferson-paixao/devops_ac03_testes
a069be042de162ea19e973a157280b16d1c60d12
[ "Apache-2.0" ]
null
null
null
class bancodedados(): def criando_tabela(self,coluna,campo,valor): import sqlite3 conn = sqlite3.connect(':memory:') c = conn.cursor() with open('criando_tabela.sql', 'r') as content_file: content = content_file.read() c.execute(content) with open('copiando_tabela.sql', 'r') as content_file: content = content_file.read() c.execute(content) c.execute('SELECT * teste WHERE name = '+coluna) for row in c.fetchall(): notnull = row[3] pk = row[5] conn.commit() conn.close() if campo == "pk": print (pk == valor) return pk == valor elif campo == "notnull": print (notnull == valor) return notnull == valor
28.482759
62
0.521792
79524df2c022ab3e2c9a52de1ec6d746cdfffadf
4,179
py
Python
model_src/colour/bw_network/backward_model.py
imbyjuli/blackboard-tensorflow-nrp
93fb4b5ba18e5e3c55526670160ee3ec21626e43
[ "Apache-2.0" ]
null
null
null
model_src/colour/bw_network/backward_model.py
imbyjuli/blackboard-tensorflow-nrp
93fb4b5ba18e5e3c55526670160ee3ec21626e43
[ "Apache-2.0" ]
null
null
null
model_src/colour/bw_network/backward_model.py
imbyjuli/blackboard-tensorflow-nrp
93fb4b5ba18e5e3c55526670160ee3ec21626e43
[ "Apache-2.0" ]
null
null
null
from __future__ import absolute_import from __future__ import division from __future__ import print_function # Imports import numpy as np import tensorflow as tf import cv2 import csv from backward_weights import init_locally_backward_weights ,initiate_backward_weights from backward_layers import ait_backwards,pit_backwards,v4_backwards,v2_backwards, create_direction_for_eval tf.logging.set_verbosity(tf.logging.INFO) def ventral_feed_backward(features, labels, mode): #========================================================================================== ####### weights and biases described in v_layers_weights #========================================================================================== n_field_1 = 40 * 40 * 3 use_sparse = True input_layer_size = { #"classes": tf.argmax(input=logits, axis=1), "v2_1": (40,40), "v2_2": (40,40), "v4": (40,40), "PIT": (40,40), "AIT": (5,1) } for degrees in [0,45,90,135]: input_layer_size ["v1_"+str(degrees)] = (40,40) weights, bias = initiate_backward_weights(input_layer_size) packed_backward_weights = init_locally_backward_weights(input_layer_size) #========================================================================================== ####### initiation #========================================================================================== input_layers = {} for key in input_layer_size.keys(): img_x,img_y = input_layer_size [key] features_float = tf.cast(features[key], tf.float32) input_layers[key] = tf.reshape(features_float, [-1, img_x*img_y * 1]) #print(input_layers.keys()) #========================================================================================== ####### layers described in v_layers #========================================================================================== AIT_b = ait_backwards(input_layers) PIT_b = pit_backwards(AIT_b,input_layers,packed_backward_weights, weights,bias, use_sparse = use_sparse) v4_b = v4_backwards(PIT_b,input_layers,packed_backward_weights,weights,bias, use_sparse = use_sparse) v2_b = v2_backwards(v4_b,input_layers,packed_backward_weights,weights,bias, use_sparse = use_sparse) # final_dense = tf.layers.dense(v2_backward) logits = tf.layers.dense(inputs = v2_b, units = 40 * 40) tf.summary.image("v2_b",tf.reshape(v2_b,[-1,40,40,1]),1) tf.summary.image("logits",tf.reshape(logits,[-1,40,40,1]),1) #========================================================================================== ####### Prediction with Tensorflow #========================================================================================== predictions = { # Generate predictions (for PREDICT and EVAL mode) #"classes": tf.argmax(input=logits, axis=1), # Add `softmax_tensor` to the graph. It is used for PREDICT and by the # `logging_hook`. "probabilities": tf.nn.softmax(logits, name="softmax_tensor") } if mode == tf.estimator.ModeKeys.PREDICT: #sess.run(print_activation_dict(return_tensors)) return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions) #splitting into two lists along dimension 1 #x_coord_label,y_coord_label = tf.split(labels,2,1) #AdagradOptimizer #loss = eucledian_distance(x_coord_pred,x_coord_label,y_coord_pred,y_coord_label) loss = tf.losses.mean_squared_error( labels=labels , predictions=logits) if mode == tf.estimator.ModeKeys.TRAIN: # change optimiser if wanted optimizer = tf.train.AdagradOptimizer(learning_rate=0.05) train_op = optimizer.minimize( loss=loss, global_step=tf.train.get_global_step()) return tf.estimator.EstimatorSpec(mode=mode, loss=loss, train_op=train_op) # Add evaluation metrics (for EVAL mode) eval_metric_ops = { "accuracy": tf.metrics.accuracy( labels=create_direction_for_eval(labels), predictions=create_direction_for_eval(logits))} return tf.estimator.EstimatorSpec( mode=mode, loss=loss, eval_metric_ops=eval_metric_ops)
32.146154
108
0.581718
79524e14ef26f9e56c447ba4dd5e8b39e5a7bfac
873
py
Python
tests/test_jira_connection.py
Lee-Sutton/pyjournal
a91457ea327f7df3b865c3a8fce38dd580a4cb14
[ "MIT" ]
null
null
null
tests/test_jira_connection.py
Lee-Sutton/pyjournal
a91457ea327f7df3b865c3a8fce38dd580a4cb14
[ "MIT" ]
13
2019-03-30T01:52:51.000Z
2021-06-01T23:01:33.000Z
tests/test_jira_connection.py
Lee-Sutton/pyjournal
a91457ea327f7df3b865c3a8fce38dd580a4cb14
[ "MIT" ]
null
null
null
from collections import namedtuple from unittest.mock import patch from pyjournal.jira_connection import Jira @patch('pyjournal.jira_connection.JIRA') def test_jira(jira_api, fake): url = fake.url() email = fake.email() password = 'password' Jira(url, email, password) jira_api.assert_called_with(url, auth=(email, password)) Sprint = namedtuple('Sprint', ['state', 'id']) @patch('pyjournal.jira_connection.JIRA') def test_active_issues(jira_api, fake): url = fake.url() email = fake.email() password = 'password' jira_api().sprints.return_value = [Sprint('ACTIVE', 1), Sprint('INACTIVE', 2)] jira = Jira(url, email, password) board_id = 2 issues = jira.active_issues(board_id) assert issues is not None jira_api().sprints.assert_called_with(board_id=board_id) jira_api().search_issues.assert_called()
24.942857
82
0.706758
79524ecc2e51c375b32965f9dbd6cf66a839077d
3,510
py
Python
gilp/tests/test_graphic.py
xbrq/gilp
7fb1d2425d905aa43a5bcde25713b40878bc30d1
[ "MIT" ]
18
2020-07-24T02:35:14.000Z
2022-01-28T18:51:46.000Z
gilp/tests/test_graphic.py
xbrq/gilp
7fb1d2425d905aa43a5bcde25713b40878bc30d1
[ "MIT" ]
3
2021-01-25T11:18:45.000Z
2021-09-04T23:21:28.000Z
gilp/tests/test_graphic.py
xbrq/gilp
7fb1d2425d905aa43a5bcde25713b40878bc30d1
[ "MIT" ]
3
2021-02-12T05:02:31.000Z
2021-09-04T22:29:58.000Z
import pytest import numpy as np import plotly.graph_objects as plt from gilp._graphic import (Figure, num_format, linear_string, equation_string, label) # The following functions are not tested since they create visual objects: # table, vector, scatter, line, equation, and polygon @pytest.mark.parametrize("n,s",[ (1.0, '1'), (1.0001, '1'), (1.023, '1.023'), (0.0, '0'), (3.45667777, '3.457'), (2.00000005, '2'), (1.9999999, '2')]) def test_num_format(n,s): assert num_format(n) == s @pytest.mark.parametrize("A,i,c,s",[ (np.array([1,2,3]), [2,4,6], None, '1x<sub>2</sub> + 2x<sub>4</sub> + 3x<sub>6</sub>'), (np.array([1.000001,-1.9999999,0.00]), [1,2,3], None, '1x<sub>1</sub> - 2x<sub>2</sub> + 0x<sub>3</sub>'), (np.array([-1,-3,11]), [1,3,6], None, '-1x<sub>1</sub> - 3x<sub>3</sub> + 11x<sub>6</sub>'), (np.array([-3,4]), [1,3], 1, '1 - 3x<sub>1</sub> + 4x<sub>3</sub>')]) def test_linear_string(A,i,c,s): assert linear_string(A,i,c) == s @pytest.mark.parametrize("A,b,comp,s",[ (np.array([1,2,3]), 4, " = ", '1x<sub>1</sub> + 2x<sub>2</sub> + 3x<sub>3</sub> = 4'), (np.array([2.8999999,1.66666,-3.33333]), 17, " ≤ ", '2.9x<sub>1</sub> + 1.667x<sub>2</sub> - 3.333x<sub>3</sub> ≤ 17')]) def test_equation_string(A,b,comp,s): assert equation_string(A,b,comp) == s @pytest.mark.parametrize("d,s",[ (dict(BFS=[2.990,4.567,0.00001,1.0001], B=[3,6,4], Obj=1567.3456), "<b>BFS</b>: (2.99, 4.567, 0, 1)<br>" + "<b>B</b>: (3, 6, 4)<br>" + "<b>Obj</b>: 1567.346"), (dict(BFS=[1.0001,3.99999,0.00001,1.0001], B=[4,5,6], Obj=-17.8900), "<b>BFS</b>: (1, 4, 0, 1)<br>" + "<b>B</b>: (4, 5, 6)<br>" + "<b>Obj</b>: -17.89")]) def test_label(d,s): assert label(d) == s def test_trace_map(): fig = Figure(subplots=False) fig.add_trace(plt.Scatter(x=[1], y=[1]), name='abc3') fig.add_trace(plt.Scatter(x=[2], y=[1]), name='abc1') fig.add_trace(plt.Scatter(x=[1], y=[2]), name='test2') fig.add_traces([plt.Scatter(x=[1], y=[2]), plt.Scatter(x=[1], y=[2])], name='test4') with pytest.raises(ValueError,match='.* trace name is already in use.'): fig.add_trace(plt.Scatter(x=[1], y=[3]), name='test2') assert fig.get_indices(name='test4') == [3,4] assert fig.get_indices(name='abc1') == [1] assert fig.get_indices(name='abc', containing=True) == [0,1] assert fig.get_indices(name='test', containing=True) == [2,3,4] # TODO: rework these test cases # def test_axis_bad_inputs(): # fig = plt.Figure() # with pytest.raises(ValueError, match='.*vectors of length 2 or 3'): # st.set_axis_limits(fig,[np.array([[2],[3],[4],[5]])]) # with pytest.raises(ValueError, match='.*retrieve 2 or 3 axis limits'): # st.get_axis_limits(fig,4) # @pytest.mark.parametrize("x_list,n,limits",[ # ([np.array([[0],[1]]), # np.array([[1],[1]]), # np.array([[0.5],[1]]), # np.array([[0.5],[0.5]]), # np.array([[1],[2]])], # 2,[1.3,2.6]), # ([np.array([[0],[1],[1]]), # np.array([[1],[0],[2]]), # np.array([[0],[3],[1]]), # np.array([[1],[1],[0]]), # np.array([[0],[2],[1]])], # 3,[1.3,3.9,2.6])]) # def test_axis_limits(x_list,n,limits): # fig = plt.Figure() # st.set_axis_limits(fig,x_list) # assert np.allclose(st.get_axis_limits(fig,n),limits,atol=1e-7)
33.75
78
0.538462
79524fce4649054912206a3339e867a4b0d5ae8a
6,902
py
Python
tensorflow/python/data/experimental/kernel_tests/matching_files_dataset_test.py
AdaAlarm/tensorflow
e0db063159751276a92d88a4ad6d481b1199318c
[ "Apache-2.0" ]
10
2021-05-25T17:43:04.000Z
2022-03-08T10:46:09.000Z
tensorflow/python/data/experimental/kernel_tests/matching_files_dataset_test.py
CaptainGizzy21/tensorflow
3457a2b122e50b4d44ceaaed5a663d635e5c22df
[ "Apache-2.0" ]
1,056
2019-12-15T01:20:31.000Z
2022-02-10T02:06:28.000Z
tensorflow/python/data/experimental/kernel_tests/matching_files_dataset_test.py
CaptainGizzy21/tensorflow
3457a2b122e50b4d44ceaaed5a663d635e5c22df
[ "Apache-2.0" ]
6
2016-09-07T04:00:15.000Z
2022-01-12T01:47:38.000Z
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for the private `MatchingFilesDataset`.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import shutil import tempfile from absl.testing import parameterized from tensorflow.python.data.experimental.ops import matching_files from tensorflow.python.data.kernel_tests import checkpoint_test_base from tensorflow.python.data.kernel_tests import test_base from tensorflow.python.framework import combinations from tensorflow.python.framework import errors from tensorflow.python.platform import test from tensorflow.python.util import compat class MatchingFilesDatasetTest(test_base.DatasetTestBase, parameterized.TestCase): def setUp(self): super(MatchingFilesDatasetTest, self).setUp() self.tmp_dir = tempfile.mkdtemp() def tearDown(self): shutil.rmtree(self.tmp_dir, ignore_errors=True) super(MatchingFilesDatasetTest, self).tearDown() def _touchTempFiles(self, filenames): for filename in filenames: open(os.path.join(self.tmp_dir, filename), 'a').close() @combinations.generate(test_base.default_test_combinations()) def testNonExistingDirectory(self): """Test the MatchingFiles dataset with a non-existing directory.""" self.tmp_dir = os.path.join(self.tmp_dir, 'nonexistingdir') dataset = matching_files.MatchingFilesDataset( os.path.join(self.tmp_dir, '*')) self.assertDatasetProduces( dataset, expected_error=(errors.NotFoundError, '')) @combinations.generate(test_base.default_test_combinations()) def testEmptyDirectory(self): """Test the MatchingFiles dataset with an empty directory.""" dataset = matching_files.MatchingFilesDataset( os.path.join(self.tmp_dir, '*')) self.assertDatasetProduces( dataset, expected_error=(errors.NotFoundError, '')) @combinations.generate(test_base.default_test_combinations()) def testSimpleDirectory(self): """Test the MatchingFiles dataset with a simple directory.""" filenames = ['a', 'b', 'c'] self._touchTempFiles(filenames) dataset = matching_files.MatchingFilesDataset( os.path.join(self.tmp_dir, '*')) self.assertDatasetProduces( dataset, expected_output=[ compat.as_bytes(os.path.join(self.tmp_dir, filename)) for filename in filenames ], assert_items_equal=True) @combinations.generate(test_base.default_test_combinations()) def testFileSuffixes(self): """Test the MatchingFiles dataset using the suffixes of filename.""" filenames = ['a.txt', 'b.py', 'c.py', 'd.pyc'] self._touchTempFiles(filenames) dataset = matching_files.MatchingFilesDataset( os.path.join(self.tmp_dir, '*.py')) self.assertDatasetProduces( dataset, expected_output=[ compat.as_bytes(os.path.join(self.tmp_dir, filename)) for filename in filenames[1:-1] ], assert_items_equal=True) @combinations.generate(test_base.default_test_combinations()) def testFileMiddles(self): """Test the MatchingFiles dataset using the middles of filename.""" filenames = ['aa.txt', 'bb.py', 'bbc.pyc', 'cc.pyc'] self._touchTempFiles(filenames) dataset = matching_files.MatchingFilesDataset( os.path.join(self.tmp_dir, 'b*.py*')) self.assertDatasetProduces( dataset, expected_output=[ compat.as_bytes(os.path.join(self.tmp_dir, filename)) for filename in filenames[1:3] ], assert_items_equal=True) @combinations.generate(test_base.default_test_combinations()) def testNestedDirectories(self): """Test the MatchingFiles dataset with nested directories.""" filenames = [] width = 8 depth = 4 for i in range(width): for j in range(depth): new_base = os.path.join(self.tmp_dir, str(i), *[str(dir_name) for dir_name in range(j)]) os.makedirs(new_base) child_files = ['a.py', 'b.pyc'] if j < depth - 1 else ['c.txt', 'd.log'] for f in child_files: filename = os.path.join(new_base, f) filenames.append(filename) open(filename, 'w').close() patterns = [ os.path.join(self.tmp_dir, os.path.join(*['**' for _ in range(depth)]), suffix) for suffix in ['*.txt', '*.log'] ] dataset = matching_files.MatchingFilesDataset(patterns) next_element = self.getNext(dataset) expected_filenames = [ compat.as_bytes(filename) for filename in filenames if filename.endswith('.txt') or filename.endswith('.log') ] actual_filenames = [] while True: try: actual_filenames.append(compat.as_bytes(self.evaluate(next_element()))) except errors.OutOfRangeError: break self.assertItemsEqual(expected_filenames, actual_filenames) class MatchingFilesDatasetCheckpointTest( checkpoint_test_base.CheckpointTestBase, parameterized.TestCase): def _build_iterator_graph(self, test_patterns): return matching_files.MatchingFilesDataset(test_patterns) @combinations.generate(test_base.default_test_combinations()) def testMatchingFilesCore(self): tmp_dir = tempfile.mkdtemp() width = 16 depth = 8 for i in range(width): for j in range(depth): new_base = os.path.join(tmp_dir, str(i), *[str(dir_name) for dir_name in range(j)]) if not os.path.exists(new_base): os.makedirs(new_base) child_files = ['a.py', 'b.pyc'] if j < depth - 1 else ['c.txt', 'd.log'] for f in child_files: filename = os.path.join(new_base, f) open(filename, 'w').close() patterns = [ os.path.join(tmp_dir, os.path.join(*['**' for _ in range(depth)]), suffix) for suffix in ['*.txt', '*.log'] ] num_outputs = width * len(patterns) self.run_core_tests(lambda: self._build_iterator_graph(patterns), num_outputs) shutil.rmtree(tmp_dir, ignore_errors=True) if __name__ == '__main__': test.main()
35.035533
80
0.67111
79524fe027206757c991850457d43905974adb25
40,616
py
Python
elephant/spike_train_generation.py
healther/elephant
b4525dcabc1f4c2204479f580100151eaebd8603
[ "BSD-3-Clause" ]
null
null
null
elephant/spike_train_generation.py
healther/elephant
b4525dcabc1f4c2204479f580100151eaebd8603
[ "BSD-3-Clause" ]
null
null
null
elephant/spike_train_generation.py
healther/elephant
b4525dcabc1f4c2204479f580100151eaebd8603
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- """ Functions to generate spike trains from analog signals, or to generate random spike trains. Some functions are based on the NeuroTools stgen module, which was mostly written by Eilif Muller, or from the NeuroTools signals.analogs module. :copyright: Copyright 2015 by the Elephant team, see AUTHORS.txt. :license: Modified BSD, see LICENSE.txt for details. """ from __future__ import division import numpy as np from quantities import ms, mV, Hz, Quantity, dimensionless from neo import SpikeTrain import random from elephant.spike_train_surrogates import dither_spike_train import warnings def spike_extraction(signal, threshold=0.0 * mV, sign='above', time_stamps=None, extr_interval=(-2 * ms, 4 * ms)): """ Return the peak times for all events that cross threshold and the waveforms. Usually used for extracting spikes from a membrane potential to calculate waveform properties. Similar to spike_train_generation.peak_detection. Parameters ---------- signal : neo AnalogSignal object 'signal' is an analog signal. threshold : A quantity, e.g. in mV 'threshold' contains a value that must be reached for an event to be detected. Default: 0.0 * mV. sign : 'above' or 'below' 'sign' determines whether to count thresholding crossings that cross above or below the threshold. Default: 'above'. time_stamps: None, quantity array or Object with .times interface if 'spike_train' is a quantity array or exposes a quantity array exposes the .times interface, it provides the time_stamps around which the waveform is extracted. If it is None, the function peak_detection is used to calculate the time_stamps from signal. Default: None. extr_interval: unpackable time quantities, len == 2 'extr_interval' specifies the time interval around the time_stamps where the waveform is extracted. The default is an interval of '6 ms'. Default: (-2 * ms, 4 * ms). Returns ------- result_st : neo SpikeTrain object 'result_st' contains the time_stamps of each of the spikes and the waveforms in result_st.waveforms. """ # Get spike time_stamps if time_stamps is None: time_stamps = peak_detection(signal, threshold, sign=sign) elif hasattr(time_stamps, 'times'): time_stamps = time_stamps.times elif type(time_stamps) is Quantity: raise TypeError("time_stamps must be None, a quantity array or" + " expose the.times interface") if len(time_stamps) == 0: return SpikeTrain(time_stamps, units=signal.times.units, t_start=signal.t_start, t_stop=signal.t_stop, waveforms=np.array([]), sampling_rate=signal.sampling_rate) # Unpack the extraction interval from tuple or array extr_left, extr_right = extr_interval if extr_left > extr_right: raise ValueError("extr_interval[0] must be < extr_interval[1]") if any(np.diff(time_stamps) < extr_interval[1]): warnings.warn("Waveforms overlap.", UserWarning) data_left = ((extr_left * signal.sampling_rate).simplified).magnitude data_right = ((extr_right * signal.sampling_rate).simplified).magnitude data_stamps = (((time_stamps - signal.t_start) * signal.sampling_rate).simplified).magnitude data_stamps = data_stamps.astype(int) borders_left = data_stamps + data_left borders_right = data_stamps + data_right borders = np.dstack((borders_left, borders_right)).flatten() waveforms = np.array( np.split(np.array(signal), borders.astype(int))[1::2]) * signal.units # len(np.shape(waveforms)) == 1 if waveforms do not have the same width. # this can occur when extr_interval indexes beyond the signal. # Workaround: delete spikes shorter than the maximum length with if len(np.shape(waveforms)) == 1: max_len = (np.array([len(x) for x in waveforms])).max() to_delete = np.array([idx for idx, x in enumerate(waveforms) if len(x) < max_len]) waveforms = np.delete(waveforms, to_delete, axis=0) waveforms = np.array([x for x in waveforms]) warnings.warn("Waveforms " + ("{:d}, " * len(to_delete)).format(*to_delete) + "exceeded signal and had to be deleted. " + "Change extr_interval to keep.") waveforms = waveforms[:, np.newaxis, :] return SpikeTrain(time_stamps, units=signal.times.units, t_start=signal.t_start, t_stop=signal.t_stop, sampling_rate=signal.sampling_rate, waveforms=waveforms, left_sweep=extr_left) def threshold_detection(signal, threshold=0.0 * mV, sign='above'): """ Returns the times when the analog signal crosses a threshold. Usually used for extracting spike times from a membrane potential. Adapted from version in NeuroTools. Parameters ---------- signal : neo AnalogSignal object 'signal' is an analog signal. threshold : A quantity, e.g. in mV 'threshold' contains a value that must be reached for an event to be detected. Default: 0.0 * mV. sign : 'above' or 'below' 'sign' determines whether to count thresholding crossings that cross above or below the threshold. format : None or 'raw' Whether to return as SpikeTrain (None) or as a plain array of times ('raw'). Returns ------- result_st : neo SpikeTrain object 'result_st' contains the spike times of each of the events (spikes) extracted from the signal. """ assert threshold is not None, "A threshold must be provided" if sign is 'above': cutout = np.where(signal > threshold)[0] elif sign in 'below': cutout = np.where(signal < threshold)[0] if len(cutout) <= 0: events = np.zeros(0) else: take = np.where(np.diff(cutout) > 1)[0] + 1 take = np.append(0, take) time = signal.times events = time[cutout][take] events_base = events.base if events_base is None: # This occurs in some Python 3 builds due to some # bug in quantities. events_base = np.array([event.base for event in events]) # Workaround result_st = SpikeTrain(events_base, units=signal.times.units, t_start=signal.t_start, t_stop=signal.t_stop) return result_st def peak_detection(signal, threshold=0.0 * mV, sign='above', format=None): """ Return the peak times for all events that cross threshold. Usually used for extracting spike times from a membrane potential. Similar to spike_train_generation.threshold_detection. Parameters ---------- signal : neo AnalogSignal object 'signal' is an analog signal. threshold : A quantity, e.g. in mV 'threshold' contains a value that must be reached for an event to be detected. sign : 'above' or 'below' 'sign' determines whether to count thresholding crossings that cross above or below the threshold. Default: 'above'. format : None or 'raw' Whether to return as SpikeTrain (None) or as a plain array of times ('raw'). Default: None. Returns ------- result_st : neo SpikeTrain object 'result_st' contains the spike times of each of the events (spikes) extracted from the signal. """ assert threshold is not None, "A threshold must be provided" if sign is 'above': cutout = np.where(signal > threshold)[0] peak_func = np.argmax elif sign in 'below': cutout = np.where(signal < threshold)[0] peak_func = np.argmin else: raise ValueError("sign must be 'above' or 'below'") if len(cutout) <= 0: events_base = np.zeros(0) else: # Select thr crossings lasting at least 2 dtps, np.diff(cutout) > 2 # This avoids empty slices border_start = np.where(np.diff(cutout) > 1)[0] border_end = border_start + 1 borders = np.concatenate((border_start, border_end)) borders = np.append(0, borders) borders = np.append(borders, len(cutout)-1) borders = np.sort(borders) true_borders = cutout[borders] right_borders = true_borders[1::2] + 1 true_borders = np.sort(np.append(true_borders[0::2], right_borders)) # Workaround for bug that occurs when signal goes below thr for 1 dtp, # Workaround eliminates empy slices from np. split backward_mask = np.absolute(np.ediff1d(true_borders, to_begin=1)) > 0 forward_mask = np.absolute(np.ediff1d(true_borders[::-1], to_begin=1)[::-1]) > 0 true_borders = true_borders[backward_mask * forward_mask] split_signal = np.split(np.array(signal), true_borders)[1::2] maxima_idc_split = np.array([peak_func(x) for x in split_signal]) max_idc = maxima_idc_split + true_borders[0::2] events = signal.times[max_idc] events_base = events.base if events_base is None: # This occurs in some Python 3 builds due to some # bug in quantities. events_base = np.array([event.base for event in events]) # Workaround if format is None: result_st = SpikeTrain(events_base, units=signal.times.units, t_start=signal.t_start, t_stop=signal.t_stop) elif 'raw': result_st = events_base else: raise ValueError("Format argument must be None or 'raw'") return result_st def _homogeneous_process(interval_generator, args, mean_rate, t_start, t_stop, as_array): """ Returns a spike train whose spikes are a realization of a random process generated by the function `interval_generator` with the given rate, starting at time `t_start` and stopping `time t_stop`. """ def rescale(x): return (x / mean_rate.units).rescale(t_stop.units) n = int(((t_stop - t_start) * mean_rate).simplified) number = np.ceil(n + 3 * np.sqrt(n)) if number < 100: number = min(5 + np.ceil(2 * n), 100) assert number > 4 # if positive, number cannot be less than 5 isi = rescale(interval_generator(*args, size=int(number))) spikes = np.cumsum(isi) spikes += t_start i = spikes.searchsorted(t_stop) if i == len(spikes): # ISI buffer overrun extra_spikes = [] t_last = spikes[-1] + rescale(interval_generator(*args, size=1))[0] while t_last < t_stop: extra_spikes.append(t_last) t_last = t_last + rescale(interval_generator(*args, size=1))[0] # np.concatenate does not conserve units spikes = Quantity( np.concatenate( (spikes, extra_spikes)).magnitude, units=spikes.units) else: spikes = spikes[:i] if as_array: spikes = spikes.magnitude else: spikes = SpikeTrain( spikes, t_start=t_start, t_stop=t_stop, units=spikes.units) return spikes def homogeneous_poisson_process(rate, t_start=0.0 * ms, t_stop=1000.0 * ms, as_array=False): """ Returns a spike train whose spikes are a realization of a Poisson process with the given rate, starting at time `t_start` and stopping time `t_stop`. All numerical values should be given as Quantities, e.g. 100*Hz. Parameters ---------- rate : Quantity scalar with dimension 1/time The rate of the discharge. t_start : Quantity scalar with dimension time The beginning of the spike train. t_stop : Quantity scalar with dimension time The end of the spike train. as_array : bool If True, a NumPy array of sorted spikes is returned, rather than a SpikeTrain object. Raises ------ ValueError : If `t_start` and `t_stop` are not of type `pq.Quantity`. Examples -------- >>> from quantities import Hz, ms >>> spikes = homogeneous_poisson_process(50*Hz, 0*ms, 1000*ms) >>> spikes = homogeneous_poisson_process( 20*Hz, 5000*ms, 10000*ms, as_array=True) """ if not isinstance(t_start, Quantity) or not isinstance(t_stop, Quantity): raise ValueError("t_start and t_stop must be of type pq.Quantity") rate = rate.rescale((1 / t_start).units) mean_interval = 1 / rate.magnitude return _homogeneous_process( np.random.exponential, (mean_interval,), rate, t_start, t_stop, as_array) def inhomogeneous_poisson_process(rate, as_array=False): """ Returns a spike train whose spikes are a realization of an inhomogeneous Poisson process with the given rate profile. Parameters ---------- rate : neo.AnalogSignal A `neo.AnalogSignal` representing the rate profile evolving over time. Its values have all to be `>=0`. The output spiketrain will have `t_start = rate.t_start` and `t_stop = rate.t_stop` as_array : bool If True, a NumPy array of sorted spikes is returned, rather than a SpikeTrain object. Raises ------ ValueError : If `rate` contains any negative value. """ # Check rate contains only positive values if any(rate < 0) or not rate.size: raise ValueError( 'rate must be a positive non empty signal, representing the' 'rate at time t') else: #Generate n hidden Poisson SpikeTrains with rate equal to the peak rate max_rate = max(rate) homogeneous_poiss = homogeneous_poisson_process( rate=max_rate, t_stop=rate.t_stop, t_start=rate.t_start) # Compute the rate profile at each spike time by interpolation rate_interpolated = _analog_signal_linear_interp( signal=rate, times=homogeneous_poiss.magnitude * homogeneous_poiss.units) # Accept each spike at time t with probability rate(t)/max_rate u = np.random.uniform(size=len(homogeneous_poiss)) * max_rate spikes = homogeneous_poiss[u < rate_interpolated.flatten()] if as_array: spikes = spikes.magnitude return spikes def _analog_signal_linear_interp(signal, times): ''' Compute the linear interpolation of a signal at desired times. Given the `signal` (neo.AnalogSignal) taking value `s0` and `s1` at two consecutive time points `t0` and `t1` `(t0 < t1)`, for every time `t` in `times`, such that `t0<t<=t1` is returned the value of the linear interpolation, given by: `s = ((s1 - s0) / (t1 - t0)) * t + s0`. Parameters ---------- times : Quantity vector(time) The time points for which the interpolation is computed signal : neo.core.AnalogSignal The analog signal containing the discretization of the function to interpolate Returns ------ out: Quantity array representing the values of the interpolated signal at the times given by times Notes ----- If `signal` has sampling period `dt=signal.sampling_period`, its values are defined at `t=signal.times`, such that `t[i] = signal.t_start + i * dt` The last of such times is lower than signal.t_stop`:t[-1] = signal.t_stop - dt`. For the interpolation at times t such that `t[-1] <= t <= signal.t_stop`, the value of `signal` at `signal.t_stop` is taken to be that at time `t[-1]`. ''' dt = signal.sampling_period t_start = signal.t_start.rescale(signal.times.units) t_stop = signal.t_stop.rescale(signal.times.units) # Extend the signal (as a dimensionless array) copying the last value # one time, and extend its times to t_stop signal_extended = np.vstack( [signal.magnitude, signal[-1].magnitude]).flatten() times_extended = np.hstack([signal.times, t_stop]) * signal.times.units time_ids = np.floor(((times - t_start) / dt).rescale( dimensionless).magnitude).astype('i') # Compute the slope m of the signal at each time in times y1 = signal_extended[time_ids] y2 = signal_extended[time_ids + 1] m = (y2 - y1) / dt # Interpolate the signal at each time in times by linear interpolation out = (y1 + m * (times - times_extended[time_ids])) * signal.units return out.rescale(signal.units) def homogeneous_gamma_process(a, b, t_start=0.0 * ms, t_stop=1000.0 * ms, as_array=False): """ Returns a spike train whose spikes are a realization of a gamma process with the given parameters, starting at time `t_start` and stopping time `t_stop` (average rate will be b/a). All numerical values should be given as Quantities, e.g. 100*Hz. Parameters ---------- a : int or float The shape parameter of the gamma distribution. b : Quantity scalar with dimension 1/time The rate parameter of the gamma distribution. t_start : Quantity scalar with dimension time The beginning of the spike train. t_stop : Quantity scalar with dimension time The end of the spike train. as_array : bool If True, a NumPy array of sorted spikes is returned, rather than a SpikeTrain object. Raises ------ ValueError : If `t_start` and `t_stop` are not of type `pq.Quantity`. Examples -------- >>> from quantities import Hz, ms >>> spikes = homogeneous_gamma_process(2.0, 50*Hz, 0*ms, 1000*ms) >>> spikes = homogeneous_gamma_process( 5.0, 20*Hz, 5000*ms, 10000*ms, as_array=True) """ if not isinstance(t_start, Quantity) or not isinstance(t_stop, Quantity): raise ValueError("t_start and t_stop must be of type pq.Quantity") b = b.rescale((1 / t_start).units).simplified rate = b / a k, theta = a, (1 / b.magnitude) return _homogeneous_process(np.random.gamma, (k, theta), rate, t_start, t_stop, as_array) def _n_poisson(rate, t_stop, t_start=0.0 * ms, n=1): """ Generates one or more independent Poisson spike trains. Parameters ---------- rate : Quantity or Quantity array Expected firing rate (frequency) of each output SpikeTrain. Can be one of: * a single Quantity value: expected firing rate of each output SpikeTrain * a Quantity array: rate[i] is the expected firing rate of the i-th output SpikeTrain t_stop : Quantity Single common stop time of each output SpikeTrain. Must be > t_start. t_start : Quantity (optional) Single common start time of each output SpikeTrain. Must be < t_stop. Default: 0 s. n: int (optional) If rate is a single Quantity value, n specifies the number of SpikeTrains to be generated. If rate is an array, n is ignored and the number of SpikeTrains is equal to len(rate). Default: 1 Returns ------- list of neo.SpikeTrain Each SpikeTrain contains one of the independent Poisson spike trains, either n SpikeTrains of the same rate, or len(rate) SpikeTrains with varying rates according to the rate parameter. The time unit of the SpikeTrains is given by t_stop. """ # Check that the provided input is Hertz of return error try: for r in rate.reshape(-1, 1): r.rescale('Hz') except AttributeError: raise ValueError('rate argument must have rate unit (1/time)') # Check t_start < t_stop and create their strip dimensions if not t_start < t_stop: raise ValueError( 't_start (=%s) must be < t_stop (=%s)' % (t_start, t_stop)) # Set number n of output spike trains (specified or set to len(rate)) if not (type(n) == int and n > 0): raise ValueError('n (=%s) must be a positive integer' % str(n)) rate_dl = rate.simplified.magnitude.flatten() # Check rate input parameter if len(rate_dl) == 1: if rate_dl < 0: raise ValueError('rate (=%s) must be non-negative.' % rate) rates = np.array([rate_dl] * n) else: rates = rate_dl.flatten() if any(rates < 0): raise ValueError('rate must have non-negative elements.') sts = [] for r in rates: sts.append(homogeneous_poisson_process(r * Hz, t_start, t_stop)) return sts def single_interaction_process( rate, rate_c, t_stop, n=2, jitter=0 * ms, coincidences='deterministic', t_start=0 * ms, min_delay=0 * ms, return_coinc=False): """ Generates a multidimensional Poisson SIP (single interaction process) plus independent Poisson processes A Poisson SIP consists of Poisson time series which are independent except for simultaneous events in all of them. This routine generates a SIP plus additional parallel independent Poisson processes. See [1]. Parameters ----------- t_stop: quantities.Quantity Total time of the simulated processes. The events are drawn between 0 and `t_stop`. rate: quantities.Quantity Overall mean rate of the time series to be generated (coincidence rate `rate_c` is subtracted to determine the background rate). Can be: * a float, representing the overall mean rate of each process. If so, it must be higher than `rate_c`. * an iterable of floats (one float per process), each float representing the overall mean rate of a process. If so, all the entries must be larger than `rate_c`. rate_c: quantities.Quantity Coincidence rate (rate of coincidences for the n-dimensional SIP). The SIP spike trains will have coincident events with rate `rate_c` plus independent 'background' events with rate `rate-rate_c`. n: int, optional If `rate` is a single Quantity value, `n` specifies the number of SpikeTrains to be generated. If rate is an array, `n` is ignored and the number of SpikeTrains is equal to `len(rate)`. Default: 1 jitter: quantities.Quantity, optional Jitter for the coincident events. If `jitter == 0`, the events of all n correlated processes are exactly coincident. Otherwise, they are jittered around a common time randomly, up to +/- `jitter`. coincidences: string, optional Whether the total number of injected coincidences must be determin- istic (i.e. rate_c is the actual rate with which coincidences are generated) or stochastic (i.e. rate_c is the mean rate of coincid- ences): * 'deterministic': deterministic rate * 'stochastic': stochastic rate Default: 'deterministic' t_start: quantities.Quantity, optional Starting time of the series. If specified, it must be lower than t_stop Default: 0 * ms min_delay: quantities.Quantity, optional Minimum delay between consecutive coincidence times. Default: 0 * ms return_coinc: bool, optional Whether to return the coincidence times for the SIP process Default: False Returns -------- output: list Realization of a SIP consisting of n Poisson processes characterized by synchronous events (with the given jitter) If `return_coinc` is `True`, the coincidence times are returned as a second output argument. They also have an associated time unit (same as `t_stop`). References ---------- [1] Kuhn, Aertsen, Rotter (2003) Neural Comput 15(1):67-101 EXAMPLE: >>> import quantities as qt >>> import jelephant.core.stocmod as sm >>> sip, coinc = sm.sip_poisson(n=10, n=0, t_stop=1*qt.sec, \ rate=20*qt.Hz, rate_c=4, return_coinc = True) ************************************************************************* """ # Check if n is a positive integer if not (isinstance(n, int) and n > 0): raise ValueError('n (=%s) must be a positive integer' % str(n)) # Assign time unit to jitter, or check that its existing unit is a time # unit jitter = abs(jitter) # Define the array of rates from input argument rate. Check that its length # matches with n if rate.ndim == 0: if rate < 0 * Hz: raise ValueError( 'rate (=%s) must be non-negative.' % str(rate)) rates_b = np.array( [rate.magnitude for _ in range(n)]) * rate.units else: rates_b = np.array(rate).flatten() * rate.units if not all(rates_b >= 0. * Hz): raise ValueError('*rate* must have non-negative elements') # Check: rate>=rate_c if np.any(rates_b < rate_c): raise ValueError('all elements of *rate* must be >= *rate_c*') # Check min_delay < 1./rate_c if not (rate_c == 0 * Hz or min_delay < 1. / rate_c): raise ValueError( "'*min_delay* (%s) must be lower than 1/*rate_c* (%s)." % (str(min_delay), str((1. / rate_c).rescale(min_delay.units)))) # Generate the n Poisson processes there are the basis for the SIP # (coincidences still lacking) embedded_poisson_trains = _n_poisson( rate=rates_b - rate_c, t_stop=t_stop, t_start=t_start) # Convert the trains from neo SpikeTrain objects to simpler Quantity # objects embedded_poisson_trains = [ emb.view(Quantity) for emb in embedded_poisson_trains] # Generate the array of times for coincident events in SIP, not closer than # min_delay. The array is generated as a quantity from the Quantity class # in the quantities module if coincidences == 'deterministic': Nr_coinc = int(((t_stop - t_start) * rate_c).rescale(dimensionless)) while True: coinc_times = t_start + \ np.sort(np.random.random(Nr_coinc)) * (t_stop - t_start) if len(coinc_times) < 2 or min(np.diff(coinc_times)) >= min_delay: break elif coincidences == 'stochastic': while True: coinc_times = homogeneous_poisson_process( rate=rate_c, t_stop=t_stop, t_start=t_start) if len(coinc_times) < 2 or min(np.diff(coinc_times)) >= min_delay: break # Convert coinc_times from a neo SpikeTrain object to a Quantity object # pq.Quantity(coinc_times.base)*coinc_times.units coinc_times = coinc_times.view(Quantity) # Set the coincidence times to T-jitter if larger. This ensures that # the last jittered spike time is <T for i in range(len(coinc_times)): if coinc_times[i] > t_stop - jitter: coinc_times[i] = t_stop - jitter # Replicate coinc_times n times, and jitter each event in each array by # +/- jitter (within (t_start, t_stop)) embedded_coinc = coinc_times + \ np.random.random( (len(rates_b), len(coinc_times))) * 2 * jitter - jitter embedded_coinc = embedded_coinc + \ (t_start - embedded_coinc) * (embedded_coinc < t_start) - \ (t_stop - embedded_coinc) * (embedded_coinc > t_stop) # Inject coincident events into the n SIP processes generated above, and # merge with the n independent processes sip_process = [ np.sort(np.concatenate(( embedded_poisson_trains[m].rescale(t_stop.units), embedded_coinc[m].rescale(t_stop.units))) * t_stop.units) for m in range(len(rates_b))] # Convert back sip_process and coinc_times from Quantity objects to # neo.SpikeTrain objects sip_process = [ SpikeTrain(t, t_start=t_start, t_stop=t_stop).rescale(t_stop.units) for t in sip_process] coinc_times = [ SpikeTrain(t, t_start=t_start, t_stop=t_stop).rescale(t_stop.units) for t in embedded_coinc] # Return the processes in the specified output_format if not return_coinc: output = sip_process else: output = sip_process, coinc_times return output def _pool_two_spiketrains(a, b, extremes='inner'): """ Pool the spikes of two spike trains a and b into a unique spike train. Parameters ---------- a, b : neo.SpikeTrains Spike trains to be pooled extremes: str, optional Only spikes of a and b in the specified extremes are considered. * 'inner': pool all spikes from max(a.tstart_ b.t_start) to min(a.t_stop, b.t_stop) * 'outer': pool all spikes from min(a.tstart_ b.t_start) to max(a.t_stop, b.t_stop) Default: 'inner' Output ------ neo.SpikeTrain containing all spikes in a and b falling in the specified extremes """ unit = a.units times_a_dimless = list(a.view(Quantity).magnitude) times_b_dimless = list(b.rescale(unit).view(Quantity).magnitude) times = (times_a_dimless + times_b_dimless) * unit if extremes == 'outer': t_start = min(a.t_start, b.t_start) t_stop = max(a.t_stop, b.t_stop) elif extremes == 'inner': t_start = max(a.t_start, b.t_start) t_stop = min(a.t_stop, b.t_stop) times = times[times > t_start] times = times[times < t_stop] else: raise ValueError( 'extremes (%s) can only be "inner" or "outer"' % extremes) pooled_train = SpikeTrain( times=sorted(times.magnitude), units=unit, t_start=t_start, t_stop=t_stop) return pooled_train def _pool_spiketrains(trains, extremes='inner'): """ Pool spikes from any number of spike trains into a unique spike train. Parameters ---------- trains: list list of spike trains to merge extremes: str, optional Only spikes of a and b in the specified extremes are considered. * 'inner': pool all spikes from min(a.t_start b.t_start) to max(a.t_stop, b.t_stop) * 'outer': pool all spikes from max(a.tstart_ b.t_start) to min(a.t_stop, b.t_stop) Default: 'inner' Output ------ neo.SpikeTrain containing all spikes in trains falling in the specified extremes """ merge_trains = trains[0] for t in trains[1:]: merge_trains = _pool_two_spiketrains( merge_trains, t, extremes=extremes) t_start, t_stop = merge_trains.t_start, merge_trains.t_stop merge_trains = sorted(merge_trains) merge_trains = np.squeeze(merge_trains) merge_trains = SpikeTrain( merge_trains, t_stop=t_stop, t_start=t_start, units=trains[0].units) return merge_trains def _sample_int_from_pdf(a, n): """ Draw n independent samples from the set {0,1,...,L}, where L=len(a)-1, according to the probability distribution a. a[j] is the probability to sample j, for each j from 0 to L. Parameters ----- a: numpy.array Probability vector (i..e array of sum 1) that at each entry j carries the probability to sample j (j=0,1,...,len(a)-1). n: int Number of samples generated with the function Output ------- array of n samples taking values between 0 and n=len(a)-1. """ A = np.cumsum(a) # cumulative distribution of a u = np.random.uniform(0, 1, size=n) U = np.array([u for i in a]).T # copy u (as column vector) len(a) times return (A < U).sum(axis=1) def _mother_proc_cpp_stat(A, t_stop, rate, t_start=0 * ms): """ Generate the hidden ("mother") Poisson process for a Compound Poisson Process (CPP). Parameters ---------- A : numpy.array Amplitude distribution. A[j] represents the probability of a synchronous event of size j. The sum over all entries of a must be equal to one. t_stop : quantities.Quantity The stopping time of the mother process rate : quantities.Quantity Homogeneous rate of the n spike trains that will be genereted by the CPP function t_start : quantities.Quantity, optional The starting time of the mother process Default: 0 ms Output ------ Poisson spike train representing the mother process generating the CPP """ N = len(A) - 1 exp_A = np.dot(A, range(N + 1)) # expected value of a exp_mother = (N * rate) / float(exp_A) # rate of the mother process return homogeneous_poisson_process( rate=exp_mother, t_stop=t_stop, t_start=t_start) def _cpp_hom_stat(A, t_stop, rate, t_start=0 * ms): """ Generate a Compound Poisson Process (CPP) with amplitude distribution A and heterogeneous firing rates r=r[0], r[1], ..., r[-1]. Parameters ---------- A : numpy.ndarray Amplitude distribution. A[j] represents the probability of a synchronous event of size j. The sum over all entries of A must be equal to one. t_stop : quantities.Quantity The end time of the output spike trains rate : quantities.Quantity Average rate of each spike train generated t_start : quantities.Quantity, optional The start time of the output spike trains Default: 0 ms Output ------ List of n neo.SpikeTrains, having average firing rate r and correlated such to form a CPP with amplitude distribution a """ # Generate mother process and associated spike labels mother = _mother_proc_cpp_stat( A=A, t_stop=t_stop, rate=rate, t_start=t_start) labels = _sample_int_from_pdf(A, len(mother)) N = len(A) - 1 # Number of trains in output try: # Faster but more memory-consuming approach M = len(mother) # number of spikes in the mother process spike_matrix = np.zeros((N, M), dtype=bool) # for each spike, take its label l for spike_id, l in enumerate(labels): # choose l random trains train_ids = random.sample(range(N), l) # and set the spike matrix for that train for train_id in train_ids: spike_matrix[train_id, spike_id] = True # and spike to True times = [[] for i in range(N)] for train_id, row in enumerate(spike_matrix): times[train_id] = mother[row].view(Quantity) except MemoryError: # Slower (~2x) but less memory-consuming approach print('memory case') times = [[] for i in range(N)] for t, l in zip(mother, labels): train_ids = random.sample(range(N), l) for train_id in train_ids: times[train_id].append(t) trains = [SpikeTrain( times=t, t_start=t_start, t_stop=t_stop) for t in times] return trains def _cpp_het_stat(A, t_stop, rate, t_start=0. * ms): """ Generate a Compound Poisson Process (CPP) with amplitude distribution A and heterogeneous firing rates r=r[0], r[1], ..., r[-1]. Parameters ---------- A : array CPP's amplitude distribution. A[j] represents the probability of a synchronous event of size j among the generated spike trains. The sum over all entries of A must be equal to one. t_stop : Quantity (time) The end time of the output spike trains rate : Quantity (1/time) Average rate of each spike train generated t_start : quantities.Quantity, optional The start time of the output spike trains Default: 0 ms Output ------ List of neo.SpikeTrains with different firing rates, forming a CPP with amplitude distribution A """ # Computation of Parameters of the two CPPs that will be merged # (uncorrelated with heterog. rates + correlated with homog. rates) N = len(rate) # number of output spike trains A_exp = np.dot(A, range(N + 1)) # expectation of A r_sum = np.sum(rate) # sum of all output firing rates r_min = np.min(rate) # minimum of the firing rates r1 = r_sum - N * r_min # rate of the uncorrelated CPP r2 = r_sum / float(A_exp) - r1 # rate of the correlated CPP r_mother = r1 + r2 # rate of the hidden mother process # Check the analytical constraint for the amplitude distribution if A[1] < (r1 / r_mother).rescale(dimensionless).magnitude: raise ValueError('A[1] too small / A[i], i>1 too high') # Compute the amplitude distrib of the correlated CPP, and generate it a = [(r_mother * i) / float(r2) for i in A] a[1] = a[1] - r1 / float(r2) CPP = _cpp_hom_stat(a, t_stop, r_min, t_start) # Generate the independent heterogeneous Poisson processes POISS = [ homogeneous_poisson_process(i - r_min, t_start, t_stop) for i in rate] # Pool the correlated CPP and the corresponding Poisson processes out = [_pool_two_spiketrains(CPP[i], POISS[i]) for i in range(N)] return out def compound_poisson_process(rate, A, t_stop, shift=None, t_start=0 * ms): """ Generate a Compound Poisson Process (CPP; see [1]) with a given amplitude distribution A and stationary marginal rates r. The CPP process is a model for parallel, correlated processes with Poisson spiking statistics at pre-defined firing rates. It is composed of len(A)-1 spike trains with a correlation structure determined by the amplitude distribution A: A[j] is the probability that a spike occurs synchronously in any j spike trains. The CPP is generated by creating a hidden mother Poisson process, and then copying spikes of the mother process to j of the output spike trains with probability A[j]. Note that this function decorrelates the firing rate of each SpikeTrain from the probability for that SpikeTrain to participate in a synchronous event (which is uniform across SpikeTrains). Parameters ---------- rate : quantities.Quantity Average rate of each spike train generated. Can be: - a single value, all spike trains will have same rate rate - an array of values (of length len(A)-1), each indicating the firing rate of one process in output A : array CPP's amplitude distribution. A[j] represents the probability of a synchronous event of size j among the generated spike trains. The sum over all entries of A must be equal to one. t_stop : quantities.Quantity The end time of the output spike trains. shift : None or quantities.Quantity, optional If None, the injected synchrony is exact. If shift is a Quantity, all the spike trains are shifted independently by a random amount in the interval [-shift, +shift]. Default: None t_start : quantities.Quantity, optional The t_start time of the output spike trains. Default: 0 s Returns ------- List of neo.SpikeTrains SpikeTrains with specified firing rates forming the CPP with amplitude distribution A. References ---------- [1] Staude, Rotter, Gruen (2010) J Comput Neurosci 29:327-350. """ # Check A is a probability distribution (it sums to 1 and is positive) if abs(sum(A) - 1) > np.finfo('float').eps: raise ValueError( 'A must be a probability vector, sum(A)= %f !=1' % (sum(A))) if any([a < 0 for a in A]): raise ValueError( 'A must be a probability vector, all the elements of must be >0') # Check that the rate is not an empty Quantity if rate.ndim == 1 and len(rate.magnitude) == 0: raise ValueError('Rate is an empty Quantity array') # Return empty spike trains for specific parameters elif A[0] == 1 or np.sum(np.abs(rate.magnitude)) == 0: return [ SpikeTrain([] * t_stop.units, t_stop=t_stop, t_start=t_start) for i in range(len(A) - 1)] else: # Homogeneous rates if rate.ndim == 0: cpp = _cpp_hom_stat(A=A, t_stop=t_stop, rate=rate, t_start=t_start) # Heterogeneous rates else: cpp = _cpp_het_stat(A=A, t_stop=t_stop, rate=rate, t_start=t_start) if shift is None: return cpp # Dither the output spiketrains else: cpp = [ dither_spike_train(cp, shift=shift, edges=True)[0] for cp in cpp] return cpp # Alias for the compound poisson process cpp = compound_poisson_process
38.172932
93
0.641274
7952505591894de61ba5269d2ed071b733a940c4
5,371
py
Python
mypy_django_plugin/main.py
Naddiseo/django-stubs
cff5ab463c911283a9c43a26a38cb7bd4deebbd5
[ "BSD-3-Clause" ]
null
null
null
mypy_django_plugin/main.py
Naddiseo/django-stubs
cff5ab463c911283a9c43a26a38cb7bd4deebbd5
[ "BSD-3-Clause" ]
null
null
null
mypy_django_plugin/main.py
Naddiseo/django-stubs
cff5ab463c911283a9c43a26a38cb7bd4deebbd5
[ "BSD-3-Clause" ]
null
null
null
import os from typing import Callable, Optional, cast, Dict from mypy.checker import TypeChecker from mypy.nodes import TypeInfo from mypy.options import Options from mypy.plugin import Plugin, FunctionContext, ClassDefContext, MethodContext from mypy.types import Type, Instance from mypy_django_plugin import helpers, monkeypatch from mypy_django_plugin.plugins.fields import determine_type_of_array_field from mypy_django_plugin.plugins.migrations import determine_model_cls_from_string_for_migrations from mypy_django_plugin.plugins.models import process_model_class from mypy_django_plugin.plugins.related_fields import extract_to_parameter_as_get_ret_type_for_related_field, reparametrize_with from mypy_django_plugin.plugins.settings import DjangoConfSettingsInitializerHook def transform_model_class(ctx: ClassDefContext) -> None: try: sym = ctx.api.lookup_fully_qualified(helpers.MODEL_CLASS_FULLNAME) except KeyError: # models.Model is not loaded, skip metadata model write pass else: if sym is not None and isinstance(sym.node, TypeInfo): sym.node.metadata['django']['model_bases'][ctx.cls.fullname] = 1 process_model_class(ctx) def transform_manager_class(ctx: ClassDefContext) -> None: sym = ctx.api.lookup_fully_qualified_or_none(helpers.MANAGER_CLASS_FULLNAME) if sym is not None and isinstance(sym.node, TypeInfo): sym.node.metadata['django']['manager_bases'][ctx.cls.fullname] = 1 def determine_proper_manager_type(ctx: FunctionContext) -> Type: api = cast(TypeChecker, ctx.api) ret = ctx.default_return_type if not api.tscope.classes: # not in class return ret outer_model_info = api.tscope.classes[0] if not outer_model_info.has_base(helpers.MODEL_CLASS_FULLNAME): return ret if not isinstance(ret, Instance): return ret for i, base in enumerate(ret.type.bases): if base.type.fullname() in {helpers.MANAGER_CLASS_FULLNAME, helpers.RELATED_MANAGER_CLASS_FULLNAME, helpers.BASE_MANAGER_CLASS_FULLNAME}: ret.type.bases[i] = reparametrize_with(base, [Instance(outer_model_info, [])]) return ret return ret class DjangoPlugin(Plugin): def __init__(self, options: Options) -> None: super().__init__(options) self.django_settings = os.environ.get('DJANGO_SETTINGS_MODULE') if self.django_settings: monkeypatch.load_graph_to_add_settings_file_as_a_source_seed(self.django_settings) monkeypatch.inject_dependencies(self.django_settings) else: monkeypatch.restore_original_load_graph() monkeypatch.restore_original_dependencies_handling() def get_current_model_bases(self) -> Dict[str, int]: model_sym = self.lookup_fully_qualified(helpers.MODEL_CLASS_FULLNAME) if model_sym is not None and isinstance(model_sym.node, TypeInfo): if 'django' not in model_sym.node.metadata: model_sym.node.metadata['django'] = { 'model_bases': {helpers.MODEL_CLASS_FULLNAME: 1} } return model_sym.node.metadata['django']['model_bases'] else: return {} def get_current_manager_bases(self) -> Dict[str, int]: manager_sym = self.lookup_fully_qualified(helpers.MANAGER_CLASS_FULLNAME) if manager_sym is not None and isinstance(manager_sym.node, TypeInfo): if 'django' not in manager_sym.node.metadata: manager_sym.node.metadata['django'] = { 'manager_bases': {helpers.MANAGER_CLASS_FULLNAME: 1} } return manager_sym.node.metadata['django']['manager_bases'] else: return {} def get_function_hook(self, fullname: str ) -> Optional[Callable[[FunctionContext], Type]]: if fullname in {helpers.FOREIGN_KEY_FULLNAME, helpers.ONETOONE_FIELD_FULLNAME, helpers.MANYTOMANY_FIELD_FULLNAME}: return extract_to_parameter_as_get_ret_type_for_related_field if fullname == 'django.contrib.postgres.fields.array.ArrayField': return determine_type_of_array_field manager_bases = self.get_current_manager_bases() if fullname in manager_bases: return determine_proper_manager_type def get_method_hook(self, fullname: str ) -> Optional[Callable[[MethodContext], Type]]: if fullname in {'django.apps.registry.Apps.get_model', 'django.db.migrations.state.StateApps.get_model'}: return determine_model_cls_from_string_for_migrations return None def get_base_class_hook(self, fullname: str ) -> Optional[Callable[[ClassDefContext], None]]: if fullname in self.get_current_model_bases(): return transform_model_class if fullname == helpers.DUMMY_SETTINGS_BASE_CLASS: return DjangoConfSettingsInitializerHook(settings_module=self.django_settings) if fullname in self.get_current_manager_bases(): return transform_manager_class return None def plugin(version): return DjangoPlugin
41.635659
128
0.689443
7952508f8557f8db3bef292a9c99cc827c410152
3,365
py
Python
AutenticacioJuego.py
Kelly901/Proyecto2
198c04c3324253e0ec7ea74d3edaefbd182e026f
[ "Apache-2.0" ]
null
null
null
AutenticacioJuego.py
Kelly901/Proyecto2
198c04c3324253e0ec7ea74d3edaefbd182e026f
[ "Apache-2.0" ]
null
null
null
AutenticacioJuego.py
Kelly901/Proyecto2
198c04c3324253e0ec7ea74d3edaefbd182e026f
[ "Apache-2.0" ]
null
null
null
from Juego import Juego import json class AutenticacionJuego: juego=[] juego2=[] def __init__(self): self.contador=0 def crearJuego(self,nombre,anio,precio,categoria1,categoria2,categoria3,foto,banner,descripcion): self.juego.append(Juego(self.contador,nombre,anio,precio,categoria1,categoria2,categoria3,foto,banner,descripcion)) self.contador+=1 return True #Crear juego 2 para validar que el nombre no coincida def crearJuego2(self,nombre,anio,precio,categoria1,categoria2,categoria3,foto,banner,descripcion): for ju in self.juego: if ju.nombre==nombre: print("El nombre esta repetido") return False self.juego.append(Juego(self.contador,nombre,anio,precio,categoria1,categoria2,categoria3,foto,banner,descripcion)) self.contador+=1 return True def mostrar(self): print('id: \t nombre \tcategoria1 \t categoria2 \t categoria3 \t descripcion') for ju in self.juego: print(str(ju.id )+'\t'+ju.nombre+'\t\t\t\t'+ju.precio+'\t\t'+ju.categoria1+'\t\t\t'+ju.categoria2+'\t\t\t\t'+ju.categoria3+'\t\t\t\t'+ju.descripcion) def descomponer(self,texto): texto2=texto.split("\n") for r in texto2: texto3=r.split(",") print(r.split(",")) if texto[0]=="": return "no se puede" self.crearJuego(texto3[0],texto3[1],texto3[2],texto3[3],texto3[4],texto3[5],texto3[6],texto3[7],texto3[8]) return texto def dump(self,id): for ju in self.juego: if str(ju.id)==id: return { 'id':ju.id, 'nombre':ju.nombre, 'anio':ju.anio, 'precio': ju.precio, 'categoria1':ju.categoria1, 'categoria2':ju.categoria2, 'categoria3':ju.categoria3, 'foto' :ju.foto, 'banner' :ju.banner, 'descripcion' :ju.descripcion } return False def dump2(self,nombre): for ju in self.juego: if ju.nombre==nombre: return { 'id':ju.id, 'nombre':ju.nombre, 'anio':ju.anio, 'precio': ju.precio, 'categoria1':ju.categoria1, 'categoria2':ju.categoria2, 'categoria3':ju.categoria3, 'foto' :ju.foto, 'banner' :ju.banner, 'descripcion' :ju.descripcion, 'estado':'1' } return False #Retornar imagen def nombreJuego(self,id): for ju in self.juego: if str(ju.id)==id: return ju.nombre return False #Retornar foto def fotoJuego(self,id): for ju in self.juego: if str(ju.id)==id: return ju.foto return False def bucarJuego(self,nombre): for j in self.juego: if j.nombre==nombre: print("El juego si existe") return True print("El juego no existe") return False def modificarJuego(self,id,nombre,anio,precio,categoria1,categoria2,categoria3,foto,banner,descripcion): for us in self.juego: if self.comparar_nombre(nombre)=="si": if str(us.id) ==id: print(1) us.nombre=nombre us.anio=anio us.precio=precio us.categoria1=categoria1 us.categoria2=categoria2 us.categoria3=categoria3 us.foto=foto us.banner=banner us.descripcion=descripcion print("si se pudo") return True return False def comparar_nombre(self,nombre): for us in self.juego: if us.nombre==nombre: print("no se pudo por el nombre de usuario") return "no" print("si se puede") return "si" def eliminar(self,id): self.juego.pop(id) return True
23.865248
152
0.658247
795250dabe27df678f8cdb20201f3cb38ab3fef4
5,003
py
Python
tests/modules/file_list_handling/test_remote_file_list_creation.py
mhaberler/gribmagic
f7a8c3f0653e421ca57f4200ec2e0ba0ce4064e0
[ "MIT" ]
1
2021-11-14T06:25:44.000Z
2021-11-14T06:25:44.000Z
tests/modules/file_list_handling/test_remote_file_list_creation.py
mhaberler/gribmagic
f7a8c3f0653e421ca57f4200ec2e0ba0ce4064e0
[ "MIT" ]
null
null
null
tests/modules/file_list_handling/test_remote_file_list_creation.py
mhaberler/gribmagic
f7a8c3f0653e421ca57f4200ec2e0ba0ce4064e0
[ "MIT" ]
null
null
null
from datetime import datetime from pathlib import Path from unittest.mock import patch import pytest from src.enumerations.weather_models import WeatherModels from src.exceptions.wrong_weather_model_exception import \ WrongWeatherModelException from src.modules.config.constants import KEY_VARIABLES, KEY_GRIB_PACKAGE_TYPES, \ KEY_FORECAST_STEPS, \ KEY_DIRECTORY_TEMPLATE, KEY_REMOTE_SERVER, KEY_FILE_TEMPLATE, \ KEY_INITIALIZATION_DATE_FORMAT, KEY_FORECAST_STEPS_STR_LEN from src.modules.file_list_handling.remote_file_list_creation import \ build_remote_file_lists_for_variable_files, \ build_remote_file_lists_for_package_files, \ build_remote_file_list @patch( 'src.modules.file_list_handling.remote_file_list_creation.MODEL_CONFIG', { WeatherModels.ICON_EU.value: { KEY_VARIABLES: ['air_temperature_2m'], KEY_FORECAST_STEPS: {0: [0, 1]}, KEY_DIRECTORY_TEMPLATE: 'test_remote_dir/{initialization_time}/{variable_name_lower}', KEY_FILE_TEMPLATE: 'test_remote_file_{level_type}_{initialization_date}{initialization_time}_' '{forecast_step}_{variable_name_upper}.grib2.bz2', KEY_REMOTE_SERVER: 'test1', KEY_INITIALIZATION_DATE_FORMAT: '%Y%m%d', }} ) def test_build_remote_model_file_lists(): to_test = build_remote_file_lists_for_variable_files(WeatherModels.ICON_EU, 0, datetime(2020, 6, 10).date()) assert to_test == [Path( 'test1/test_remote_dir/00/t_2m/test_remote_file_single-level_2020061000_000_T_2M.grib2.bz2'), Path( 'test1/test_remote_dir/00/t_2m/test_remote_file_single-level_2020061000_001_T_2M.grib2.bz2')] def test_build_remote_model_file_lists_wrong_weather_model(): with pytest.raises(WrongWeatherModelException) as exc: _ = build_remote_file_lists_for_variable_files( WeatherModels.AROME_METEO_FRANCE, 0, datetime(2020, 6, 10).date()) assert str( exc.value) == 'Please choose one of [icon_global, icon_eu, cosmo_d2, cosmo_d2_eps, icon_eu_eps]' @patch( 'src.modules.file_list_handling.remote_file_list_creation.MODEL_CONFIG', { WeatherModels.AROME_METEO_FRANCE.value: { KEY_VARIABLES: ['air_temperature_2m'], KEY_FORECAST_STEPS: {0: [0, 1]}, KEY_FILE_TEMPLATE: 'test_remote_file_{initialization_date}{initialization_time}_' '{forecast_step}_{grib_package_type}.grib2.bz2', KEY_REMOTE_SERVER: 'test1', KEY_INITIALIZATION_DATE_FORMAT: '%Y%m%d', KEY_GRIB_PACKAGE_TYPES: ['Package1'], KEY_FORECAST_STEPS_STR_LEN: 2, KEY_DIRECTORY_TEMPLATE: '' }} ) def test_build_remote_model_file_lists_for_package(): to_test = build_remote_file_lists_for_package_files( WeatherModels.AROME_METEO_FRANCE, 0, datetime(2020, 6, 10).date()) assert to_test == [ Path('test1/test_remote_file_2020061000_00_Package1.grib2.bz2'), Path('test1/test_remote_file_2020061000_01_Package1.grib2.bz2')] @patch( 'src.modules.file_list_handling.remote_file_list_creation.MODEL_CONFIG', { WeatherModels.AROME_METEO_FRANCE.value: { KEY_VARIABLES: ['air_temperature_2m'], KEY_FORECAST_STEPS: {0: [0, 1]}, KEY_FILE_TEMPLATE: 'test_remote_file_{initialization_date}{initialization_time}_' '{forecast_step}_{grib_package_type}.grib2.bz2', KEY_REMOTE_SERVER: 'test1', KEY_INITIALIZATION_DATE_FORMAT: '%Y%m%d', KEY_GRIB_PACKAGE_TYPES: ['Package1'], KEY_FORECAST_STEPS_STR_LEN: 2, KEY_DIRECTORY_TEMPLATE: '' }} ) def test_build_remote_file_list(): to_test = build_remote_file_list( WeatherModels.AROME_METEO_FRANCE, 0, datetime(2020, 6, 10).date()) assert to_test == [ Path('test1/test_remote_file_2020061000_00_Package1.grib2.bz2'), Path('test1/test_remote_file_2020061000_01_Package1.grib2.bz2')] def test_build_remote_model_file_lists_for_package_wrong_model(): with pytest.raises(WrongWeatherModelException) as excinfo: _ = build_remote_file_lists_for_package_files(WeatherModels.ICON_EU, 0, datetime(2020, 6, 10).date()) assert str(excinfo.value) == 'Please choose one of [arome_meteo_france, geos5, gfs, harmonie_knmi]'
43.885965
120
0.63262
7952513fcaecee979d79e7eb79fe616b5c6524a9
4,387
py
Python
ktapp/helpers/search.py
cu2/KT
8a0964b77dce150358637faa679d969a07e42f07
[ "CC-BY-3.0" ]
5
2015-04-13T09:44:31.000Z
2017-10-19T01:07:58.000Z
ktapp/helpers/search.py
cu2/KT
8a0964b77dce150358637faa679d969a07e42f07
[ "CC-BY-3.0" ]
49
2015-02-15T07:12:05.000Z
2022-03-11T23:11:43.000Z
ktapp/helpers/search.py
cu2/KT
8a0964b77dce150358637faa679d969a07e42f07
[ "CC-BY-3.0" ]
null
null
null
from django.conf import settings from django.db.models import Q from django.template.defaultfilters import slugify from ktapp import models from ktapp import utils as kt_utils def get_q_pieces(q): # limit length of query string and number of query pieces return q[:200].split()[:20] def find_film_by_link(q): # search by IMDB link: if 'imdb.com/title' in q: try: imdb_link = q[q.index('imdb.com/title')+15:].split('/')[0] except Exception: imdb_link = None if imdb_link: try: film = models.Film.objects.get(imdb_link=imdb_link) except models.Film.DoesNotExist: film = None if film: return film # search by port.hu link: if 'port.hu' in q: porthu_link = kt_utils.parse_porthu_link(q) if porthu_link: try: film = models.Film.objects.get(porthu_link=porthu_link) except models.Film.DoesNotExist: film = None if film: return film # search by wikipedia link: if 'wikipedia.org' in q: try: wikipedia_link = q[q.index('://')+3:] except Exception: wikipedia_link = None if wikipedia_link: try: film = models.Film.objects.get(wikipedia_link_en__contains=wikipedia_link) except (models.Film.DoesNotExist, models.Film.MultipleObjectsReturned): try: film = models.Film.objects.get(wikipedia_link_hu__contains=wikipedia_link) except (models.Film.DoesNotExist, models.Film.MultipleObjectsReturned): film = None if film: return film return None def search_safe_slugify(value): # remove dashes from the beginning # because __search='+-anything' breaks with ProgrammingError: (1064, "syntax error, unexpected '-'") return slugify(value).lstrip('-') def find_artists(q_pieces, limit): if settings.DATABASES['default']['ENGINE'] == 'django.db.backends.sqlite3': return models.Artist.objects.filter( slug_cache__icontains=' '.join([q_piece for q_piece in q_pieces if q_piece]) ).order_by('-number_of_ratings')[:limit] return models.Artist.objects.filter( slug_cache__search=' '.join(['+%s*' % search_safe_slugify(q_piece) for q_piece in q_pieces if search_safe_slugify(q_piece)]) ).order_by('-number_of_ratings')[:limit] def find_users(q_pieces, limit): if settings.DATABASES['default']['ENGINE'] == 'django.db.backends.sqlite3': return models.KTUser.objects.filter( slug_cache__icontains=' '.join([q_piece for q_piece in q_pieces if q_piece]) ).order_by('username')[:limit] return models.KTUser.objects.filter( slug_cache__search=' '.join(['+%s*' % search_safe_slugify(q_piece) for q_piece in q_pieces if search_safe_slugify(q_piece)]) ).order_by('username')[:limit] def find_topics(q_pieces, limit): topics = models.Topic.objects.select_related('last_comment', 'last_comment__created_by') for q_piece in q_pieces: topics = topics.filter( Q(title__icontains=q_piece) | Q(slug_cache__icontains=slugify(q_piece)) ) return topics.order_by('-number_of_comments')[:limit] def find_polls(q_pieces, limit): polls = models.Poll.objects for q_piece in q_pieces: polls = polls.filter( Q(title__icontains=q_piece) | Q(slug_cache__icontains=slugify(q_piece)) ) return polls.order_by('-number_of_votes')[:limit] def find_roles(q_pieces, limit): roles = models.FilmArtistRelationship.objects.select_related('artist', 'film').filter(role_type=models.FilmArtistRelationship.ROLE_TYPE_ACTOR) for q_piece in q_pieces: roles = roles.filter( Q(role_name__icontains=q_piece) | Q(slug_cache__icontains=slugify(q_piece)) ) return roles.order_by('-film__number_of_ratings', '-artist__number_of_ratings')[:limit] def find_sequels(q_pieces, limit): sequels = models.Sequel.objects for q_piece in q_pieces: sequels = sequels.filter( Q(name__icontains=q_piece) | Q(slug_cache__icontains=slugify(q_piece)) ) return sequels.order_by('name')[:limit]
36.865546
146
0.644632
79525285bf6a67a9880597766525a93f9f200be5
8,821
py
Python
src/collision_manager.py
Tomaszu97/game-engine
dcf34e0741edecdb2902871ef7488ea873844e65
[ "MIT" ]
1
2022-02-09T07:41:30.000Z
2022-02-09T07:41:30.000Z
src/collision_manager.py
Tomaszu97/game-engine
dcf34e0741edecdb2902871ef7488ea873844e65
[ "MIT" ]
null
null
null
src/collision_manager.py
Tomaszu97/game-engine
dcf34e0741edecdb2902871ef7488ea873844e65
[ "MIT" ]
null
null
null
from pygame import Rect from .shared import * from .game_object import * class CollisionManager(): #TODO first load the whole level ,then handle this stuff, otherwise race condition sometimes happens def __init__(self): # collision handlers # elastic collision def BNC(object, other_object, elastic=True): sign = lambda x: 1 if x>=0 else -1 # return if object width or height is 0 if other_object.hitbox_size.x == 0 or other_object.hitbox_size.y == 0: return # move them away and collide if Rect(object.hitbox_position, object.hitbox_size).colliderect(Rect(other_object.hitbox_position, other_object.hitbox_size)): relative_position = object.position + (object.size/2) - other_object.position - (other_object.size/2) total_speed = object.movement_speed + other_object.movement_speed if object.mass == 0 or other_object.mass == 0: mass_ratio = 1 other_mass_ratio = 1 else: mass_ratio = object.mass / (object.mass+other_object.mass) other_mass_ratio = other_object.mass / (object.mass+other_object.mass) # relpos from other to me if relative_position.x < 0: # self approach from the left x_intersection = -round(object.hitbox_position.x+object.hitbox_size.x-other_object.hitbox_position.x) else: # self approach from the right x_intersection = round(other_object.hitbox_position.x+other_object.hitbox_size.x-object.hitbox_position.x) if relative_position.y < 0: # self approach from above y_intersection = -round(object.hitbox_position.y+object.hitbox_size.y-other_object.hitbox_position.y) else: # self approach from below y_intersection = round(other_object.hitbox_position.y+other_object.hitbox_size.y-object.hitbox_position.y) #TODO optimize it if abs(x_intersection) > abs(y_intersection): if object.mass != 0: object.move(0, y_intersection*other_mass_ratio) if elastic: object.movement_speed.y = sign(y_intersection)*abs(other_mass_ratio*total_speed.y) else: object.movement_speed.y = 0 if other_object.mass != 0: other_object.move(0, -y_intersection*mass_ratio) if elastic: other_object.movement_speed.y = -sign(y_intersection)*abs(mass_ratio*total_speed.y) else: other_object.movement_speed.y = 0 else: if object.mass != 0: object.move(x_intersection*other_mass_ratio, 0) if elastic: object.movement_speed.x = sign(x_intersection)*abs(other_mass_ratio*total_speed.x) else: object.movement_speed.x = 0 if other_object.mass != 0: other_object.move(-x_intersection*mass_ratio, 0) if elastic: other_object.movement_speed.x = -sign(x_intersection)*abs(mass_ratio*total_speed.x) else: other_object.movement_speed.x = 0 # inelastic collision def HIT(object, other_object): return BNC(object, other_object, elastic=False) # take damage - first object takes damage def TDM(object, other_object): try: object.hp -= other_object.damage if object.hp < 0: object.kill() except AttributeError: return # make damage - second object takes damage def MDM(object, other_object): return TDM(other_object, object) # kill yourself def KYS(object, other_object): object.kill() # kill him def KHM(object, other_object): return KYS(other_object, object) # teamwork - stop processing collision if both objects are in the same team def TMW(object, other_object): # stop processing collision if both are in the same team if object.team == other_object.team: return False # call trapdoor handler if trapdoor is not triggered def TRP(object, other_object): # optimize it - maybe take advantage of collision order (higher first) if object.type == TRAPDOOR: trapdoor = object else: trapdoor = other_object if not trapdoor.triggered: trapdoor.triggered = True trapdoor.handler() # bullet kys - kill a bullet def BKS(object, other_object): # optimize it if object.type == BULLET: bullet = object else: bullet = other_object bullet.kill() # matrix defining collision behavior self.collision_matrix = [ # NULL PLAYER ALLY ENEMY SPAWNER BULLET CONTAINER DECORATION LABEL WALL TRAPDOOR DIALOG TEXTINPUT [ [HIT], ],# NULL [ [HIT], None, ],# PLAYER [ None, None, None, ],# ALLY [ None, [HIT,MDM], [HIT,MDM], None, ],# ENEMY [ None, None, None, None, None, ],# SPAWNER [ None, [TMW,MDM,BKS], [TMW,MDM,BKS], [TMW,MDM,BKS], None, None, ],# BULLET [ None, [HIT], [HIT], None, None, None, None, ],# CONTAINER [ None, None, None, None, None, None, None, None, ],# DECORATION [ None, None, None, None, None, None, None, None, None, ],# LABEL [ [HIT], [HIT], [HIT], [HIT], None, [BNC], [HIT], None, None, None, ],# WALL [ None, [TRP], None, None, None, None, None, None, None, None, None, ],# TRAPDOOR [ None, None, None, None, None, None, None, None, None, None, None, None, ],# DIALOG [ None, None, None, None, None, None, None, None, None, None, None, None, None, ],# TEXTINPUT ] def get_on_collide(self, object, other_object): #TODO - handle invincibility # if self.is_invincible: # self.process_collision[str(object.type.name)][:-1] srt = sorted([object.type, other_object.type], reverse=True) return self.collision_matrix[srt[0]][srt[1]] def handle_collision(self, object, other_object): functions = self.get_on_collide(object, other_object) if functions: if Rect(object.hitbox_position, object.hitbox_size).colliderect(Rect(other_object.hitbox_position, other_object.hitbox_size)): for function in functions: srt = sorted([object, other_object], key=lambda x: x.type, reverse=True) # pass object with higher type number as first parameter if function(srt[0], srt[1]) is False: break # break when one of the handlers returns False return True return False #TODO optimize it def handle_all_collisions(self, to_collide): for object in to_collide: for other_object in to_collide: if object is not other_object: self.handle_collision(object, other_object)
53.460606
155
0.488833
7952528a99e67b752388a5669b6b0b5216d34e2c
3,827
py
Python
tests/components/sensor/test_rflink.py
bxnyintuc/home-assistant
70fff26383ed02cd8acf4c0f336e8d9ab9e0d598
[ "Apache-2.0" ]
null
null
null
tests/components/sensor/test_rflink.py
bxnyintuc/home-assistant
70fff26383ed02cd8acf4c0f336e8d9ab9e0d598
[ "Apache-2.0" ]
null
null
null
tests/components/sensor/test_rflink.py
bxnyintuc/home-assistant
70fff26383ed02cd8acf4c0f336e8d9ab9e0d598
[ "Apache-2.0" ]
null
null
null
"""Test for RFlink sensor components. Test setup of rflink sensor component/platform. Verify manual and automatic sensor creation. """ from homeassistant.components.rflink import ( CONF_RECONNECT_INTERVAL) from homeassistant.const import STATE_UNKNOWN from ..test_rflink import mock_rflink DOMAIN = 'sensor' CONFIG = { 'rflink': { 'port': '/dev/ttyABC0', 'ignore_devices': ['ignore_wildcard_*', 'ignore_sensor'], }, DOMAIN: { 'platform': 'rflink', 'devices': { 'test': { 'name': 'test', 'sensor_type': 'temperature', }, }, }, } async def test_default_setup(hass, monkeypatch): """Test all basic functionality of the rflink sensor component.""" # setup mocking rflink module event_callback, create, _, _ = await mock_rflink( hass, CONFIG, DOMAIN, monkeypatch) # make sure arguments are passed assert create.call_args_list[0][1]['ignore'] # test default state of sensor loaded from config config_sensor = hass.states.get('sensor.test') assert config_sensor assert config_sensor.state == 'unknown' assert config_sensor.attributes['unit_of_measurement'] == '°C' # test event for config sensor event_callback({ 'id': 'test', 'sensor': 'temperature', 'value': 1, 'unit': '°C', }) await hass.async_block_till_done() assert hass.states.get('sensor.test').state == '1' # test event for new unconfigured sensor event_callback({ 'id': 'test2', 'sensor': 'temperature', 'value': 0, 'unit': '°C', }) await hass.async_block_till_done() # test state of new sensor new_sensor = hass.states.get('sensor.test2') assert new_sensor assert new_sensor.state == '0' assert new_sensor.attributes['unit_of_measurement'] == '°C' assert new_sensor.attributes['icon'] == 'mdi:thermometer' async def test_disable_automatic_add(hass, monkeypatch): """If disabled new devices should not be automatically added.""" config = { 'rflink': { 'port': '/dev/ttyABC0', }, DOMAIN: { 'platform': 'rflink', 'automatic_add': False, }, } # setup mocking rflink module event_callback, _, _, _ = await mock_rflink( hass, config, DOMAIN, monkeypatch) # test event for new unconfigured sensor event_callback({ 'id': 'test2', 'sensor': 'temperature', 'value': 0, 'unit': '°C', }) await hass.async_block_till_done() # make sure new device is not added assert not hass.states.get('sensor.test2') async def test_entity_availability(hass, monkeypatch): """If Rflink device is disconnected, entities should become unavailable.""" # Make sure Rflink mock does not 'recover' to quickly from the # disconnect or else the unavailability cannot be measured config = CONFIG failures = [True, True] config[CONF_RECONNECT_INTERVAL] = 60 # Create platform and entities _, _, _, disconnect_callback = await mock_rflink( hass, config, DOMAIN, monkeypatch, failures=failures) # Entities are available by default assert hass.states.get('sensor.test').state == STATE_UNKNOWN # Mock a disconnect of the Rflink device disconnect_callback() # Wait for dispatch events to propagate await hass.async_block_till_done() # Entity should be unavailable assert hass.states.get('sensor.test').state == 'unavailable' # Reconnect the Rflink device disconnect_callback() # Wait for dispatch events to propagate await hass.async_block_till_done() # Entities should be available again assert hass.states.get('sensor.test').state == STATE_UNKNOWN
28.139706
79
0.642279
795253857d177009dd688f2eadfc2447131b928d
3,323
py
Python
asposeslidescloud/models/i_shape_export_options.py
rizwanniazigroupdocs/aspose-slides-cloud-python
f692a7082387350f80f0b389c1914e33b800a76f
[ "MIT" ]
null
null
null
asposeslidescloud/models/i_shape_export_options.py
rizwanniazigroupdocs/aspose-slides-cloud-python
f692a7082387350f80f0b389c1914e33b800a76f
[ "MIT" ]
null
null
null
asposeslidescloud/models/i_shape_export_options.py
rizwanniazigroupdocs/aspose-slides-cloud-python
f692a7082387350f80f0b389c1914e33b800a76f
[ "MIT" ]
1
2020-12-25T16:28:49.000Z
2020-12-25T16:28:49.000Z
# coding: utf-8 # ----------------------------------------------------------------------------------- # <copyright company="Aspose"> # Copyright (c) 2018 Aspose.Slides for Cloud # </copyright> # <summary> # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # </summary> # ----------------------------------------------------------------------------------- import pprint import re # noqa: F401 import six class IShapeExportOptions(object): """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { } attribute_map = { } type_determiners = { } def __init__(self): # noqa: E501 """IShapeExportOptions - a model defined in Swagger""" # noqa: E501 def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, IShapeExportOptions): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
33.908163
85
0.585615
795253cc36d0064e285be6f46b6d3bdeab66069c
2,603
py
Python
esperancanordeste/context_processors.py
klebercode/esperancanordeste
5ceb28f9b04619db21e83c2417e453b7c84647a6
[ "MIT" ]
null
null
null
esperancanordeste/context_processors.py
klebercode/esperancanordeste
5ceb28f9b04619db21e83c2417e453b7c84647a6
[ "MIT" ]
null
null
null
esperancanordeste/context_processors.py
klebercode/esperancanordeste
5ceb28f9b04619db21e83c2417e453b7c84647a6
[ "MIT" ]
null
null
null
# coding: utf-8 from django.shortcuts import get_object_or_404 from esperancanordeste.core.models import Enterprise, SocialLogo from esperancanordeste.catalog.models import Category from esperancanordeste.newsletter.models import Subscribe from esperancanordeste.newsletter.forms import SubscribeForm def enterprise_proc(request): """ View Function """ context = {} try: enterprise = get_object_or_404(Enterprise, pk=1) except: enterprise = '' social_list = SocialLogo.objects.all() category_list = Category.objects.all() # newsletter if request.method == 'POST' and 'subscribe' in request.POST: newsletter_form = SubscribeForm(request.POST, prefix='Subscribe') if newsletter_form.is_valid(): obj = Subscribe.objects.filter( email=newsletter_form.cleaned_data['email']) if not obj: newsletter_form.save() context['subscribe_success'] = True else: context['subscribe_exist'] = True else: newsletter_form = SubscribeForm(prefix='Subscribe') context['enterprise'] = enterprise context['social_list'] = social_list context['cat_list'] = category_list context['newsletter_form'] = newsletter_form return context class EnterpriseExtraContext(object): """ Class Based View """ try: enterprise = get_object_or_404(Enterprise, pk=1) except: enterprise = '' social_list = SocialLogo.objects.all() category_list = Category.objects.all() extra_context = { 'enterprise': enterprise, 'social_list': social_list, 'cat_list': category_list, } def process_request(self, request): extra_context = {} # newsletter if request.method == 'POST' and 'subscribe' in request.POST: newsletter_form = SubscribeForm(request.POST, prefix='Subscribe') if newsletter_form.is_valid(): obj = Subscribe.objects.filter( email=newsletter_form.cleaned_data['email']) if not obj: newsletter_form.save() extra_context['subscribe_success'] = True else: extra_context['subscribe_exist'] = True else: newsletter_form = SubscribeForm(prefix='Subscribe') def get_context_data(self, **kwargs): context = super(EnterpriseExtraContext, self).get_context_data(**kwargs) context.update(self.extra_context) return context
31.743902
77
0.632731
795255ce6c7514658d17d893e1e7fb1bfd0b7a60
5,872
py
Python
push_notifications/south_migrations/0002_auto__add_field_apnsdevice_date_created__add_field_gcmdevice_date_created.py
peterhinson/django-push-notifications
bf4e781aa4e67ea287027aa0d93c0faa0953c591
[ "MIT" ]
1
2015-03-04T04:30:19.000Z
2015-03-04T04:30:19.000Z
push_notifications/south_migrations/0002_auto__add_field_apnsdevice_date_created__add_field_gcmdevice_date_created.py
peterhinson/django-push-notifications
bf4e781aa4e67ea287027aa0d93c0faa0953c591
[ "MIT" ]
null
null
null
push_notifications/south_migrations/0002_auto__add_field_apnsdevice_date_created__add_field_gcmdevice_date_created.py
peterhinson/django-push-notifications
bf4e781aa4e67ea287027aa0d93c0faa0953c591
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from south.utils import datetime_utils as datetime from south.db import db from south.v2 import SchemaMigration from django.db import models from django.conf import settings try: from django.contrib.auth import get_user_model except ImportError: # django < 1.5 from django.contrib.auth.models import User else: User = get_user_model() AUTH_USER_MODEL = getattr(settings, "AUTH_USER_MODEL", "auth.User") class Migration(SchemaMigration): def forwards(self, orm): # Adding field "APNSDevice.date_created" db.add_column( "push_notifications_apnsdevice", "date_created", self.gf("django.db.models.fields.DateTimeField")(auto_now_add=True, null=True, blank=True), keep_default=False ) # Adding field "GCMDevice.date_created" db.add_column( "push_notifications_gcmdevice", "date_created", self.gf("django.db.models.fields.DateTimeField")(auto_now_add=True, null=True, blank=True), keep_default=False ) def backwards(self, orm): # Deleting field "APNSDevice.date_created" db.delete_column("push_notifications_apnsdevice", "date_created") # Deleting field "GCMDevice.date_created" db.delete_column("push_notifications_gcmdevice", "date_created") models = { u"auth.group": { "Meta": {"object_name": "Group"}, "id": ("django.db.models.fields.AutoField", [], {"primary_key": "True"}), "name": ("django.db.models.fields.CharField", [], {"unique": "True", "max_length": "80"}), 'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}) }, u'auth.permission': { 'Meta': { 'ordering': "(u'content_type__app_label', u'content_type__model', u'codename')", 'unique_together': "((u'content_type', u'codename'),)", "object_name": "Permission" }, "codename": ("django.db.models.fields.CharField", [], {"max_length": "100"}), "content_type": ("django.db.models.fields.related.ForeignKey", [], {"to": u"orm['contenttypes.ContentType']"}), "id": ("django.db.models.fields.AutoField", [], {"primary_key": "True"}), "name": ("django.db.models.fields.CharField", [], {"max_length": "50"}) }, "%s.%s" % (User._meta.app_label, User._meta.module_name): { "Meta": {"object_name": User.__name__, 'db_table': "'%s'" % User._meta.db_table}, "date_joined": ("django.db.models.fields.DateTimeField", [], {"default": "datetime.datetime.now"}), "email": ("django.db.models.fields.EmailField", [], {"max_length": "75", "blank": "True"}), "first_name": ("django.db.models.fields.CharField", [], {"max_length": "30", "blank": "True"}), "groups": ("django.db.models.fields.related.ManyToManyField", [], {"to": u"orm['auth.Group']", "symmetrical": "False", "blank": "True"}), u"id": ("django.db.models.fields.AutoField", [], {"primary_key": "True"}), "is_active": ("django.db.models.fields.BooleanField", [], {"default": "True"}), "is_staff": ("django.db.models.fields.BooleanField", [], {"default": "False"}), "is_superuser": ("django.db.models.fields.BooleanField", [], {"default": "False"}), "last_login": ("django.db.models.fields.DateTimeField", [], {"default": "datetime.datetime.now"}), "last_name": ("django.db.models.fields.CharField", [], {"max_length": "30", "blank": "True"}), "password": ("django.db.models.fields.CharField", [], {"max_length": "128"}), "user_permissions": ("django.db.models.fields.related.ManyToManyField", [], {"to": u"orm['auth.Permission']", "symmetrical": "False", "blank": "True"}), "username": ("django.db.models.fields.CharField", [], {"unique": "True", "max_length": "30"}) }, u"contenttypes.contenttype": { 'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, "app_label": ("django.db.models.fields.CharField", [], {"max_length": "100"}), "id": ("django.db.models.fields.AutoField", [], {"primary_key": "True"}), "model": ("django.db.models.fields.CharField", [], {"max_length": "100"}), "name": ("django.db.models.fields.CharField", [], {"max_length": "100"}) }, u'push_notifications.apnsdevice': { "Meta": {"object_name": "APNSDevice"}, "active": ("django.db.models.fields.BooleanField", [], {"default": "True"}), "date_created": ("django.db.models.fields.DateTimeField", [], {"auto_now_add": "True", "null": "True", "blank": "True"}), "device_id": ("uuidfield.fields.UUIDField", [], {"max_length": "32", "null": "True", "blank": "True"}), "id": ("django.db.models.fields.AutoField", [], {"primary_key": "True"}), "name": ("django.db.models.fields.CharField", [], {"max_length": "255", "null": "True", "blank": "True"}), "registration_id": ("django.db.models.fields.CharField", [], {"unique": "True", "max_length": "64"}), "user": ("django.db.models.fields.related.ForeignKey", [], {"to": u"orm['%s.%s']" % (User._meta.app_label, User._meta.object_name), "null": "True", "blank": "True"}) }, u"push_notifications.gcmdevice": { "Meta": {"object_name": "GCMDevice"}, "active": ("django.db.models.fields.BooleanField", [], {"default": "True"}), "date_created": ("django.db.models.fields.DateTimeField", [], {"auto_now_add": "True", "null": "True", "blank": "True"}), "device_id": ("push_notifications.fields.HexIntegerField", [], {"null": "True", "blank": "True"}), "id": ("django.db.models.fields.AutoField", [], {"primary_key": "True"}), "name": ("django.db.models.fields.CharField", [], {"max_length": "255", "null": "True", "blank": "True"}), "registration_id": ("django.db.models.fields.TextField", [], {}), "user": ("django.db.models.fields.related.ForeignKey", [], {"to": u"orm['%s.%s']" % (User._meta.app_label, User._meta.object_name), "null": "True", "blank": "True"}) } } complete_apps = ['push_notifications']
53.87156
152
0.647139
795255ce9558cdcebad46a90da7b6ff0c9173971
11,176
py
Python
lib/fast_rcnn/config.py
Turoad/py-RFCN-priv
f2837b0aa2b74941bf5a62304798b74547d486f4
[ "MIT" ]
1
2021-05-14T15:12:22.000Z
2021-05-14T15:12:22.000Z
lib/fast_rcnn/config.py
Turoad/py-RFCN-priv
f2837b0aa2b74941bf5a62304798b74547d486f4
[ "MIT" ]
null
null
null
lib/fast_rcnn/config.py
Turoad/py-RFCN-priv
f2837b0aa2b74941bf5a62304798b74547d486f4
[ "MIT" ]
null
null
null
# -------------------------------------------------------- # Fast R-CNN # Copyright (c) 2015 Microsoft # Licensed under The MIT License [see LICENSE for details] # Written by Ross Girshick # -------------------------------------------------------- """Fast R-CNN config system. This file specifies default config options for Fast R-CNN. You should not change values in this file. Instead, you should write a config file (in yaml) and use cfg_from_file(yaml_file) to load it and override the default options. Most tools in $ROOT/tools take a --cfg option to specify an override file. - See tools/{train,test}_net.py for example code that uses cfg_from_file() - See experiments/cfgs/*.yml for example YAML config override files """ import os import os.path as osp import numpy as np # `pip install easydict` if you don't have it from easydict import EasyDict as edict import getpass __C = edict() # Consumers can get config by: # from fast_rcnn_config import cfg cfg = __C # # Training options # __C.TRAIN = edict() __C.TRAIN.DATA_ROOT = ' ' # Root dir for dataset __C.TRAIN.LABELMAP_PATH = ' ' # Lablemap for classes to ID __C.TRAIN.SOURCE = ' ' # Train list for images and annotation XML or categroy label __C.TRAIN.MIN_AREA = 16 # Min area of bbox __C.TRAIN.MAX_RATIO = 32 # Max long/short ratio of bbox __C.TRAIN.LABEL_SHUFFLING = False # Label shuffle bootstrapping __C.TRAIN.SHUFFLE = True # Shuffle train images __C.TRAIN.USE_FLIPPED = True # Use horizontally-flipped images during training? __C.TRAIN.COLOR_FACTOR = (0.95, 1.05) # color aug __C.TRAIN.CONTRAST_FACTOR = (0.95, 1.05) # contrast aug __C.TRAIN.BRIGTHNESS_FACTOR = (0.95, 1.05) # brightness aug __C.TRAIN.GAUSSIAN_BLUR = False # 1/4 prop for (3, 3) gaussian blur __C.TRAIN.CROP = False # im crop implement as SSD __C.TRAIN.CROP_MAX_ATTEMPTS = 200 __C.TRAIN.CROP_AREA = (0.5, 1) __C.TRAIN.CROP_RATIO = (0.5, 2) __C.TRAIN.MIN_COVERED = 0.5 # Scales to use during training (can list multiple scales) # Each scale is the pixel size of an image's shortest side __C.TRAIN.SCALES = (600,) # Max pixel size of the longest side of a scaled input image __C.TRAIN.MAX_SIZE = 1000 # Images to use per minibatch __C.TRAIN.IMS_PER_BATCH = 2 # Minibatch size (number of regions of interest [ROIs]) __C.TRAIN.BATCH_SIZE = 128 # Fraction of minibatch that is labeled foreground (i.e. class > 0) __C.TRAIN.FG_FRACTION = 0.25 # Overlap threshold for a ROI to be considered foreground (if >= FG_THRESH) __C.TRAIN.FG_THRESH = 0.5 # Overlap threshold for a ROI to be considered background (class = 0 if # overlap in [LO, HI)) __C.TRAIN.BG_THRESH_HI = 0.5 __C.TRAIN.BG_THRESH_LO = 0.1 # Train bounding-box regressors __C.TRAIN.BBOX_REG = True # Overlap required between a ROI and ground-truth box in order for that ROI to # be used as a bounding-box regression training example __C.TRAIN.BBOX_THRESH = 0.5 # Iterations between snapshots __C.TRAIN.SNAPSHOT_ITERS = 40000 # solver.prototxt specifies the snapshot path prefix, this adds an optional # infix to yield the path: <prefix>[_<infix>]_iters_XYZ.caffemodel __C.TRAIN.SNAPSHOT_INFIX = '' # Use a prefetch thread in roi_data_layer.layer # So far I haven't found this useful; likely more engineering work is required __C.TRAIN.USE_PREFETCH = False # Normalize the targets (subtract empirical mean, divide by empirical stddev) __C.TRAIN.BBOX_NORMALIZE_TARGETS = True # Deprecated (inside weights) __C.TRAIN.BBOX_INSIDE_WEIGHTS = (1.0, 1.0, 1.0, 1.0) # Normalize the targets using "precomputed" (or made up) means and stdevs # (BBOX_NORMALIZE_TARGETS must also be True) __C.TRAIN.BBOX_NORMALIZE_TARGETS_PRECOMPUTED = False __C.TRAIN.BBOX_NORMALIZE_MEANS = (0.0, 0.0, 0.0, 0.0) __C.TRAIN.BBOX_NORMALIZE_STDS = (0.1, 0.1, 0.2, 0.2) __C.TRAIN.RPN_NORMALIZE_TARGETS = False __C.TRAIN.RPN_NORMALIZE_MEANS = (0.0, 0.0, 0.0, 0.0) __C.TRAIN.RPN_NORMALIZE_STDS = (0.1, 0.1, 0.2, 0.2) # Train using these proposals __C.TRAIN.PROPOSAL_METHOD = 'selective_search' # Make minibatches from images that have similar aspect ratios (i.e. both # tall and thin or both short and wide) in order to avoid wasting computation # on zero-padding. __C.TRAIN.ASPECT_GROUPING = True # Use RPN to detect objects __C.TRAIN.HAS_RPN = False # IOU >= thresh: positive example __C.TRAIN.RPN_POSITIVE_OVERLAP = 0.7 # IOU < thresh: negative example __C.TRAIN.RPN_NEGATIVE_OVERLAP = 0.3 # If an anchor statisfied by positive and negative conditions set to negative __C.TRAIN.RPN_CLOBBER_POSITIVES = False # Max number of foreground examples __C.TRAIN.RPN_FG_FRACTION = 0.5 # Total number of examples __C.TRAIN.RPN_BATCHSIZE = 256 # NMS threshold used on RPN proposals __C.TRAIN.RPN_NMS_THRESH = 0.7 __C.TRAIN.ONLY_INSIDE_ANCHORS = True # Number of top scoring boxes to keep before apply NMS to RPN proposals __C.TRAIN.RPN_PRE_NMS_TOP_N = 12000 # Number of top scoring boxes to keep after applying NMS to RPN proposals __C.TRAIN.RPN_POST_NMS_TOP_N = 2000 # Proposal height and width both need to be greater than RPN_MIN_SIZE (at orig image scale) __C.TRAIN.RPN_MIN_SIZE = 8 # Deprecated (outside weights) __C.TRAIN.RPN_BBOX_INSIDE_WEIGHTS = (1.0, 1.0, 1.0, 1.0) # Give the positive RPN examples weight of p * 1 / {num positives} # and give negatives a weight of (1 - p) # Set to -1.0 to use uniform example weighting __C.TRAIN.RPN_POSITIVE_WEIGHT = -1.0 # Parameters for "Online Hard-example Mining Algorithm" __C.TRAIN.USE_OHEM = False # For diversity and de-duplication __C.TRAIN.OHEM_USE_NMS = True __C.TRAIN.OHEM_NMS_THRESH = 0.7 # whether use class aware box or not __C.TRAIN.AGNOSTIC = False # # Testing options # __C.TEST = edict() # Scales to use during testing (can list multiple scales) # Each scale is the pixel size of an image's shortest side __C.TEST.SCALES = (600,) # Max pixel size of the longest side of a scaled input image __C.TEST.MAX_SIZE = 1000 # Overlap threshold used for non-maximum suppression (suppress boxes with # IoU >= this threshold) __C.TEST.NMS = 0.3 # Flag for soft-NMS method. 0 performs standard NMS, 1 performs soft-NMS with linear weighting and # 2 performs soft-NMS with Gaussian weighting __C.TEST.SOFT_NMS = 1 # Experimental: treat the (K+1) units in the cls_score layer as linear # predictors (trained, eg, with one-vs-rest SVMs). __C.TEST.SVM = False # Test using bounding-box regressors __C.TEST.BBOX_REG = True # Propose boxes __C.TEST.HAS_RPN = False # Test using these proposals __C.TEST.PROPOSAL_METHOD = 'selective_search' ## NMS threshold used on RPN proposals __C.TEST.RPN_NMS_THRESH = 0.7 ## Number of top scoring boxes to keep before apply NMS to RPN proposals __C.TEST.RPN_PRE_NMS_TOP_N = 6000 ## Number of top scoring boxes to keep after applying NMS to RPN proposals __C.TEST.RPN_POST_NMS_TOP_N = 300 # Proposal height and width both need to be greater than RPN_MIN_SIZE (at orig image scale) __C.TEST.RPN_MIN_SIZE = 8 # whether use class aware box or not __C.TEST.AGNOSTIC = False # Apply bounding box voting __C.TEST.BBOX_VOTE = False # Apply box scoring heuristics __C.TEST.BBOX_VOTE_N_WEIGHTED_SCORE = 1 __C.TEST.BBOX_VOTE_WEIGHT_EMPTY = 0.5 __C.TEST.ITER_BBOX_REG = False __C.TEST.ADD_OLD_BBOX = False __C.TEST.ITER_THRESH = 0.0 __C.TEST.BBOX_REG_BATCH_SIZE = 300 # # MISC # __C.DATABASE_ROOT = osp.abspath(osp.join('/home', getpass.getuser(), 'Database')) # for example: /home/priv/Database # The mapping from image coordinates to feature map coordinates might cause # some boxes that are distinct in image space to become identical in feature # coordinates. If DEDUP_BOXES > 0, then DEDUP_BOXES is used as the scale factor # for identifying duplicate boxes. # 1/16 is correct for {Alex,Caffe}Net, VGG_CNN_M_1024, and VGG16 __C.DEDUP_BOXES = 1./16. # Pixel mean values (BGR order) as a (1, 1, 3) array # We use the same pixel mean for all networks even though it's not exactly what # they were trained with __C.PIXEL_MEANS = np.array([[[102.9801, 115.9465, 122.7717]]]) __C.PIXEL_STDS = np.array([[[1.0, 1.0, 1.0]]]) # For reproducibility __C.RNG_SEED = 3 # A small number that's used many times __C.EPS = 1e-14 # Root directory of project __C.ROOT_DIR = osp.abspath(osp.join(osp.dirname(__file__), '..', '..')) # Data directory __C.DATA_DIR = osp.abspath(osp.join(__C.ROOT_DIR, 'data')) # Model directory __C.MODELS_DIR = osp.abspath(osp.join(__C.ROOT_DIR, 'models', 'pascal_voc')) # Name (or path to) the matlab executable __C.MATLAB = 'matlab' # Place outputs under an experiments directory __C.EXP_DIR = 'default' # Use GPU implementation of non-maximum suppression __C.USE_GPU_NMS = True # Default GPU device id __C.GPU_ID = 0 def get_output_dir(imdb, net=None): """Return the directory where experimental artifacts are placed. If the directory does not exist, it is created. A canonical path is built using the name from an imdb and a network (if not None). """ outdir = osp.abspath(osp.join(__C.ROOT_DIR, 'output', __C.EXP_DIR, imdb.name)) if net is not None: outdir = osp.join(outdir, net.name) if not os.path.exists(outdir): os.makedirs(outdir) return outdir def _merge_a_into_b(a, b): """Merge config dictionary a into config dictionary b, clobbering the options in b whenever they are also specified in a. """ if type(a) is not edict: return for k, v in a.iteritems(): # a must specify keys that are in b if not b.has_key(k): raise KeyError('{} is not a valid config key'.format(k)) # the types must match, too old_type = type(b[k]) if old_type is not type(v): if isinstance(b[k], np.ndarray): v = np.array(v, dtype=b[k].dtype) else: raise ValueError(('Type mismatch ({} vs. {}) ' 'for config key: {}').format(type(b[k]), type(v), k)) # recursively merge dicts if type(v) is edict: try: _merge_a_into_b(a[k], b[k]) except: print('Error under config key: {}'.format(k)) raise else: b[k] = v def cfg_from_file(filename): """Load a config file and merge it into the default options.""" import yaml with open(filename, 'r') as f: yaml_cfg = edict(yaml.load(f)) _merge_a_into_b(yaml_cfg, __C) def cfg_from_list(cfg_list): """Set config keys via list (e.g., from command line).""" from ast import literal_eval assert len(cfg_list) % 2 == 0 for k, v in zip(cfg_list[0::2], cfg_list[1::2]): key_list = k.split('.') d = __C for subkey in key_list[:-1]: assert d.has_key(subkey) d = d[subkey] subkey = key_list[-1] assert d.has_key(subkey) try: value = literal_eval(v) except: # handle the case when v is a string literal value = v assert type(value) == type(d[subkey]), \ 'type {} does not match original type {}'.format( type(value), type(d[subkey])) d[subkey] = value
32.967552
118
0.698908
79525657ca25cd7a1a45c008198d2521372793ef
18,836
py
Python
data/level/level124.py
levelupai/match3-level-similarity
cc9b28b8741b41bea1273c8bc9b4d265d79a1dca
[ "Apache-2.0" ]
null
null
null
data/level/level124.py
levelupai/match3-level-similarity
cc9b28b8741b41bea1273c8bc9b4d265d79a1dca
[ "Apache-2.0" ]
6
2020-07-04T02:53:08.000Z
2022-03-11T23:53:14.000Z
data/level/level124.py
levelupai/match3-level-similarity
cc9b28b8741b41bea1273c8bc9b4d265d79a1dca
[ "Apache-2.0" ]
3
2019-12-31T11:42:59.000Z
2021-03-28T20:06:13.000Z
data = { 'level_index': 124, 'move_count': 32, 'board_info': { (0, 0): { 'base': (14, 1), 'cover': (64, 1), 'fall_point': (0, -1), 'next': (0, 1), 'prev': (0, -1) }, (0, 1): { 'base': (4, 1), 'cover': (64, 1), 'next': (0, 1), 'prev': (0, -1) }, (0, 2): { 'base': (14, 1), 'cover': (64, 1), 'next': (0, 1), 'prev': (0, -1) }, (0, 3): { 'base': (50, 1), 'cover': (64, 1), 'next': (0, 1), 'prev': (0, -1) }, (0, 4): { 'base': (14, 1), 'cover': (64, 1), 'next': (0, 1), 'prev': (0, -1) }, (0, 5): { 'base': (50, 1), 'cover': (64, 1), 'next': (0, 1), 'prev': (0, -1) }, (0, 8): { 'base': (50, 1), 'cover': (64, 1), 'fall_point': (0, -1), 'next': (0, 1), 'prev': (0, -1) }, (0, 10): { 'base': (14, 1), 'cover': (64, 1), 'next': (0, 1), 'prev': (0, -1) }, (0, 11): { 'base': (4, 1), 'next': (0, 1), 'prev': (0, -1) }, (0, 12): { 'base': (1, 1), 'next': (0, 1), 'prev': (0, -1) }, (0, 13): { 'base': (1, 1), 'next': (0, 1), 'prev': (0, -1) }, (0, 14): { 'base': (6, 1), 'next': (0, 1), 'prev': (0, -1) }, (0, 15): { 'base': (4, 1), 'next': (0, 1), 'prev': (0, -1) }, (0, 16): { 'base': (1, 1), 'next': (0, 1), 'prev': (0, -1) }, (0, 17): { 'base': (14, 1), 'cover': (64, 1), 'next': (0, 1), 'prev': (0, -1) }, (1, 0): { 'base': (66, 2), 'fall_point': (0, -1), 'next': (0, 1), 'prev': (0, -1) }, (1, 1): { 'base': (66, 1), 'next': (0, 1), 'prev': (0, -1) }, (1, 2): { 'base': (66, 1), 'next': (0, 1), 'prev': (0, -1) }, (1, 3): { 'base': (66, 2), 'next': (0, 1), 'prev': (0, -1) }, (1, 4): { 'base': (66, 1), 'next': (0, 1), 'prev': (0, -1) }, (1, 5): { 'base': (66, 1), 'next': (0, 1), 'prev': (0, -1) }, (1, 6): { 'base': (66, 2), 'next': (0, 1), 'prev': (0, -1) }, (1, 8): { 'base': (50, 1), 'cover': (64, 1), 'fall_point': (0, -1), 'next': (0, 1), 'prev': (0, -1) }, (1, 9): { 'base': (2, 1), 'next': (0, 1), 'prev': (0, -1) }, (1, 10): { 'base': (5, 1), 'next': (0, 1), 'prev': (0, -1) }, (1, 11): { 'base': (2, 1), 'next': (0, 1), 'prev': (0, -1) }, (1, 12): { 'base': (6, 1), 'next': (0, 1), 'prev': (0, -1) }, (1, 13): { 'base': (2, 1), 'next': (0, 1), 'prev': (0, -1) }, (1, 14): { 'base': (6, 1), 'next': (0, 1), 'prev': (0, -1) }, (1, 15): { 'base': (2, 1), 'next': (0, 1), 'prev': (0, -1) }, (1, 16): { 'base': (5, 1), 'next': (0, 1), 'prev': (0, -1) }, (1, 17): { 'base': (5, 1), 'next': (0, 1), 'prev': (0, -1) }, (2, 5): { 'base': (1, 1), 'cover': (63, 1), 'next': (0, 1), 'prev': (0, -1) }, (2, 6): { 'base': (2, 1), 'cover': (63, 1), 'next': (0, 1), 'prev': (0, -1) }, (2, 8): { 'base': (4, 1), 'fall_point': (0, -1), 'next': (0, 1), 'prev': (0, -1) }, (2, 9): { 'base': (1, 1), 'next': (0, 1), 'prev': (0, -1) }, (2, 10): { 'base': (5, 1), 'next': (0, 1), 'prev': (0, -1) }, (2, 11): { 'base': (2, 1), 'next': (0, 1), 'prev': (0, -1) }, (2, 12): { 'base': (50, 1), 'cover': (64, 1), 'next': (0, 1), 'prev': (0, -1) }, (2, 14): { 'base': (50, 1), 'cover': (64, 1), 'next': (0, 1), 'prev': (0, -1) }, (2, 15): { 'base': (5, 1), 'next': (0, 1), 'prev': (0, -1) }, (2, 16): { 'base': (5, 1), 'next': (0, 1), 'prev': (0, -1) }, (2, 17): { 'base': (4, 1), 'next': (0, 1), 'prev': (0, -1) }, (3, 0): { 'base': (5, 1), 'fall_point': (0, -1), 'next': (0, 1), 'prev': (0, -1) }, (3, 1): { 'base': (5, 1), 'next': (0, 1), 'prev': (0, -1) }, (3, 2): { 'base': (1, 1), 'next': (0, 1), 'prev': (0, -1) }, (3, 3): { 'base': (1, 1), 'next': (0, 1), 'prev': (0, -1) }, (3, 4): { 'base': (2, 1), 'next': (0, 1), 'prev': (0, -1) }, (3, 5): { 'base': (5, 1), 'next': (0, 1), 'prev': (0, -1) }, (3, 6): { 'base': (1, 1), 'next': (0, 1), 'prev': (0, -1) }, (3, 8): { 'base': (5, 1), 'cover': (64, 2), 'fall_point': (0, -1), 'next': (0, 1), 'prev': (0, -1) }, (3, 9): { 'base': (5, 1), 'next': (0, 1), 'prev': (0, -1) }, (3, 10): { 'base': (2, 1), 'next': (0, 1), 'prev': (0, -1) }, (3, 11): { 'base': (50, 1), 'cover': (64, 2), 'next': (0, 1), 'prev': (0, -1) }, (3, 15): { 'base': (50, 1), 'cover': (64, 2), 'next': (0, 1), 'prev': (0, -1) }, (3, 16): { 'base': (4, 1), 'next': (0, 1), 'prev': (0, -1) }, (3, 17): { 'base': (5, 1), 'next': (0, 1), 'prev': (0, -1) }, (4, 0): { 'base': (4, 1), 'fall_point': (0, -1), 'next': (0, 1), 'prev': (0, -1) }, (4, 1): { 'base': (5, 1), 'next': (0, 1), 'prev': (0, -1) }, (4, 2): { 'base': (2, 1), 'next': (0, 1), 'prev': (0, -1) }, (4, 3): { 'base': (5, 1), 'next': (0, 1), 'prev': (0, -1) }, (4, 4): { 'base': (2, 1), 'next': (0, 1), 'prev': (0, -1) }, (4, 5): { 'base': (1, 1), 'next': (0, 1), 'prev': (0, -1) }, (4, 6): { 'base': (1, 1), 'next': (0, 1), 'prev': (0, -1) }, (4, 8): { 'base': (50, 1), 'cover': (64, 2), 'fall_point': (0, -1), 'next': (0, 1), 'prev': (0, -1) }, (4, 10): { 'base': (4, 1), 'cover': (64, 1), 'next': (0, 1), 'prev': (0, -1) }, (4, 16): { 'base': (5, 1), 'cover': (64, 1), 'next': (0, 1), 'prev': (0, -1) }, (4, 17): { 'base': (2, 1), 'next': (0, 1), 'prev': (0, -1) }, (5, 0): { 'base': (1, 1), 'fall_point': (0, -1), 'next': (0, 1), 'prev': (0, -1) }, (5, 1): { 'base': (2, 1), 'next': (0, 1), 'prev': (0, -1) }, (5, 2): { 'base': (5, 1), 'next': (0, 1), 'prev': (0, -1) }, (5, 3): { 'base': (6, 1), 'next': (0, 1), 'prev': (0, -1) }, (5, 4): { 'base': (1, 1), 'next': (0, 1), 'prev': (0, -1) }, (5, 5): { 'base': (2, 1), 'next': (0, 1), 'prev': (0, -1) }, (5, 6): { 'base': (2, 1), 'next': (0, 1), 'prev': (0, -1) }, (5, 12): { 'base': (1, 1), 'cover': (64, 2), 'fall_point': (0, -1), 'next': (0, 1), 'prev': (0, -1) }, (5, 13): { 'base': (50, 1), 'cover': (64, 2), 'next': (0, 1), 'prev': (0, -1) }, (5, 14): { 'base': (50, 1), 'cover': (64, 2), 'next': (0, 1), 'prev': (0, -1) }, (6, 0): { 'base': (1, 1), 'fall_point': (0, -1), 'next': (0, 1), 'prev': (0, -1) }, (6, 1): { 'base': (6, 1), 'next': (0, 1), 'prev': (0, -1) }, (6, 2): { 'base': (5, 1), 'next': (0, 1), 'prev': (0, -1) }, (6, 3): { 'base': (2, 1), 'next': (0, 1), 'prev': (0, -1) }, (6, 4): { 'base': (5, 1), 'next': (0, 1), 'prev': (0, -1) }, (6, 5): { 'base': (1, 1), 'next': (0, 1), 'prev': (0, -1) }, (6, 6): { 'base': (1, 1), 'next': (0, 1), 'prev': (0, -1) }, (6, 8): { 'base': (50, 1), 'cover': (64, 2), 'fall_point': (0, -1), 'next': (0, 1), 'prev': (0, -1) }, (6, 10): { 'base': (50, 1), 'cover': (64, 1), 'next': (0, 1), 'prev': (0, -1) }, (6, 16): { 'base': (50, 1), 'cover': (64, 1), 'next': (0, 1), 'prev': (0, -1) }, (6, 17): { 'base': (2, 1), 'next': (0, 1), 'prev': (0, -1) }, (7, 0): { 'base': (2, 1), 'fall_point': (0, -1), 'next': (0, 1), 'prev': (0, -1) }, (7, 1): { 'base': (5, 1), 'next': (0, 1), 'prev': (0, -1) }, (7, 2): { 'base': (2, 1), 'next': (0, 1), 'prev': (0, -1) }, (7, 3): { 'base': (5, 1), 'next': (0, 1), 'prev': (0, -1) }, (7, 4): { 'base': (1, 1), 'next': (0, 1), 'prev': (0, -1) }, (7, 5): { 'base': (4, 1), 'next': (0, 1), 'prev': (0, -1) }, (7, 6): { 'base': (5, 1), 'next': (0, 1), 'prev': (0, -1) }, (7, 8): { 'base': (5, 1), 'cover': (64, 2), 'fall_point': (0, -1), 'next': (0, 1), 'prev': (0, -1) }, (7, 9): { 'base': (5, 1), 'next': (0, 1), 'prev': (0, -1) }, (7, 10): { 'base': (4, 1), 'next': (0, 1), 'prev': (0, -1) }, (7, 11): { 'base': (50, 1), 'cover': (64, 2), 'next': (0, 1), 'prev': (0, -1) }, (7, 15): { 'base': (4, 1), 'cover': (64, 2), 'next': (0, 1), 'prev': (0, -1) }, (7, 16): { 'base': (5, 1), 'next': (0, 1), 'prev': (0, -1) }, (7, 17): { 'base': (2, 1), 'next': (0, 1), 'prev': (0, -1) }, (8, 5): { 'base': (5, 1), 'cover': (63, 1), 'next': (0, 1), 'prev': (0, -1) }, (8, 6): { 'base': (5, 1), 'cover': (63, 1), 'next': (0, 1), 'prev': (0, -1) }, (8, 8): { 'base': (1, 1), 'fall_point': (0, -1), 'next': (0, 1), 'prev': (0, -1) }, (8, 9): { 'base': (1, 1), 'next': (0, 1), 'prev': (0, -1) }, (8, 10): { 'base': (6, 1), 'next': (0, 1), 'prev': (0, -1) }, (8, 11): { 'base': (1, 1), 'next': (0, 1), 'prev': (0, -1) }, (8, 12): { 'base': (5, 1), 'cover': (64, 1), 'next': (0, 1), 'prev': (0, -1) }, (8, 14): { 'base': (50, 1), 'cover': (64, 1), 'next': (0, 1), 'prev': (0, -1) }, (8, 15): { 'base': (5, 1), 'next': (0, 1), 'prev': (0, -1) }, (8, 16): { 'base': (6, 1), 'next': (0, 1), 'prev': (0, -1) }, (8, 17): { 'base': (6, 1), 'next': (0, 1), 'prev': (0, -1) }, (9, 0): { 'base': (66, 2), 'fall_point': (0, -1), 'next': (0, 1), 'prev': (0, -1) }, (9, 1): { 'base': (66, 1), 'next': (0, 1), 'prev': (0, -1) }, (9, 2): { 'base': (66, 1), 'next': (0, 1), 'prev': (0, -1) }, (9, 3): { 'base': (66, 2), 'next': (0, 1), 'prev': (0, -1) }, (9, 4): { 'base': (66, 1), 'next': (0, 1), 'prev': (0, -1) }, (9, 5): { 'base': (66, 1), 'next': (0, 1), 'prev': (0, -1) }, (9, 6): { 'base': (66, 2), 'next': (0, 1), 'prev': (0, -1) }, (9, 8): { 'base': (50, 1), 'cover': (64, 1), 'fall_point': (0, -1), 'next': (0, 1), 'prev': (0, -1) }, (9, 9): { 'base': (6, 1), 'next': (0, 1), 'prev': (0, -1) }, (9, 10): { 'base': (2, 1), 'next': (0, 1), 'prev': (0, -1) }, (9, 11): { 'base': (2, 1), 'next': (0, 1), 'prev': (0, -1) }, (9, 12): { 'base': (6, 1), 'next': (0, 1), 'prev': (0, -1) }, (9, 13): { 'base': (6, 1), 'next': (0, 1), 'prev': (0, -1) }, (9, 14): { 'base': (5, 1), 'next': (0, 1), 'prev': (0, -1) }, (9, 15): { 'base': (1, 1), 'next': (0, 1), 'prev': (0, -1) }, (9, 16): { 'base': (2, 1), 'next': (0, 1), 'prev': (0, -1) }, (9, 17): { 'base': (2, 1), 'next': (0, 1), 'prev': (0, -1) }, (10, 0): { 'base': (14, 1), 'cover': (64, 1), 'fall_point': (0, -1), 'next': (0, 1), 'prev': (0, -1) }, (10, 1): { 'base': (50, 1), 'cover': (64, 1), 'next': (0, 1), 'prev': (0, -1) }, (10, 2): { 'base': (14, 1), 'cover': (64, 1), 'next': (0, 1), 'prev': (0, -1) }, (10, 3): { 'base': (2, 1), 'cover': (64, 1), 'next': (0, 1), 'prev': (0, -1) }, (10, 4): { 'base': (14, 1), 'cover': (64, 1), 'next': (0, 1), 'prev': (0, -1) }, (10, 5): { 'base': (50, 1), 'cover': (64, 1), 'next': (0, 1), 'prev': (0, -1) }, (10, 8): { 'base': (50, 1), 'cover': (64, 1), 'fall_point': (0, -1), 'next': (0, 1), 'prev': (0, -1) }, (10, 10): { 'base': (14, 1), 'cover': (64, 1), 'next': (0, 1), 'prev': (0, -1) }, (10, 11): { 'base': (1, 1), 'next': (0, 1), 'prev': (0, -1) }, (10, 12): { 'base': (2, 1), 'next': (0, 1), 'prev': (0, -1) }, (10, 13): { 'base': (2, 1), 'next': (0, 1), 'prev': (0, -1) }, (10, 14): { 'base': (5, 1), 'next': (0, 1), 'prev': (0, -1) }, (10, 15): { 'base': (2, 1), 'next': (0, 1), 'prev': (0, -1) }, (10, 16): { 'base': (5, 1), 'next': (0, 1), 'prev': (0, -1) }, (10, 17): { 'base': (14, 1), 'cover': (64, 1), 'next': (0, 1), 'prev': (0, -1) } }, 'trans_info': { (0, 0): { 14: 17, 50: 10 }, (0, 9): { 50: 10 } } }
23.283066
34
0.196114
7952568943402b63936a3af28376de4aaa6410c4
700
py
Python
nbr/schemas/session.py
zhivykh/nbrunner
b5b77aec3b9c71d594ca116f2b5eefeb08dd0475
[ "MIT" ]
null
null
null
nbr/schemas/session.py
zhivykh/nbrunner
b5b77aec3b9c71d594ca116f2b5eefeb08dd0475
[ "MIT" ]
null
null
null
nbr/schemas/session.py
zhivykh/nbrunner
b5b77aec3b9c71d594ca116f2b5eefeb08dd0475
[ "MIT" ]
null
null
null
from typing import Optional from pydantic import BaseModel class Kernel(BaseModel): """Kernel model.""" id: str name: str last_activity: str execution_state: str connections: int class Notebook(BaseModel): """Notebook model.""" path: Optional[str] = None name: str class Session(BaseModel): """Session model.""" id: str path: str name: str type: str kernel: Kernel notebook: Notebook class KernelName(BaseModel): """Kernel name scheme.""" name: str = "python3" class CreateSession(BaseModel): """Session scheme.""" kernel: KernelName = KernelName() name: str path: str type: str = "notebook"
14.893617
37
0.627143
79525894106470b417346e762a67939d672214ea
23,559
py
Python
uspy/features/lsr.py
jwarndt/uspy
ab5bb73f9243a1d7978c83ccb63e7189fc18cd8a
[ "MIT" ]
null
null
null
uspy/features/lsr.py
jwarndt/uspy
ab5bb73f9243a1d7978c83ccb63e7189fc18cd8a
[ "MIT" ]
null
null
null
uspy/features/lsr.py
jwarndt/uspy
ab5bb73f9243a1d7978c83ccb63e7189fc18cd8a
[ "MIT" ]
null
null
null
import math import os import cv2 from osgeo import gdal from osgeo import ogr from osgeo import osr import skimage from skimage.color import rgb2gray from skimage._shared._warnings import expected_warnings from scipy.stats import entropy import numpy as np from nmapy.utilities.io import * class LSR_data_object: def __init__(self, orientation_image, region_support, labeled_regions, label_id, orientation_threshold): self.orientation_image = orientation_image self.region_support = region_support self.labeled_regions = labeled_regions self.label_id = label_id self.orientation_threshold = orientation_threshold def __calc_mag_ang(im): dx = cv2.Sobel(np.float32(im), cv2.CV_32F, 1, 0, ksize=7) dy = cv2.Sobel(np.float32(im), cv2.CV_32F, 0, 1, ksize=7) mag, ang = cv2.cartToPolar(dx, dy, angleInDegrees=1) return mag, ang, dx, dy def write_lsr_shapefile(lsf_arr, output, geotran): ulx = geotran[0] uly = geotran[3] cell_width = geotran[1] cell_height = geotran[5] vector_driver = ogr.GetDriverByName("ESRI Shapefile") vector_ds = vector_driver.CreateDataSource(output) srs = osr.SpatialReference() srs.ImportFromEPSG(4326) layer = vector_ds.CreateLayer(output[:-4], srs, ogr.wkbLineString) line_length = ogr.FieldDefn("len", ogr.OFTReal) layer.CreateField(line_length) line_ori = ogr.FieldDefn("ori", ogr.OFTReal) layer.CreateField(line_ori) line_con = ogr.FieldDefn("con", ogr.OFTReal) layer.CreateField(line_con) for n in lsf_arr: out_feature = ogr.Feature(layer.GetLayerDefn()) out_feature.SetField("len", n[0]) out_feature.SetField("ori", np.rad2deg(n[3])+180) out_feature.SetField("con", n[4]) dx = n[0]/(np.sqrt(4*(1+np.tan(n[3])**2))); dy = np.tan(n[3])*dx; x1 = ulx + (n[1]+dx) * cell_width y1 = uly + (n[2]+dy) * cell_height x2 = ulx + (n[1]-dx) * cell_width y2 = uly + (n[2]-dy) * cell_height line = ogr.Geometry(ogr.wkbLineString) line.AddPoint(x1, y1) line.AddPoint(x2, y2) #wkt_geom = line.ExportToWkt() out_feature.SetGeometry(line) layer.CreateFeature(out_feature) out_feature = None vector_ds = None def lsr_feature(image_name, output, block, scale, mag_threshold=20, lsr_threshold=20, distance_threshold=8, orientation_threshold=22.5): assert(type(block) != None and type(scale) != None) ds = gdal.Open(image_name) image = ds.ReadAsArray() geotran = ds.GetGeoTransform() ulx = geotran[0] uly = geotran[3] in_cell_width = geotran[1] in_cell_height = geotran[5] ds = None # block and scale parameters are in meters # convert meters to image space (number of pixels) # the conversion is very crude at the moment, should really # be using projected data if "wv2" in image_name: cell_width = 0.46 if "wv3" in image_name: cell_width = 0.31 # in number of pixels relative to the input data GSD block = int(block / cell_width) scale = int(scale / cell_width) out_srs = osr.SpatialReference() out_srs.ImportFromEPSG(4326) out_srs_wkt = out_srs.ExportToWkt() out_cell_width = block * in_cell_width out_cell_height = block * in_cell_height image = np.moveaxis(image, 0, -1) # expects an image in rows, columns, channels with expected_warnings(['precision']): image = skimage.img_as_ubyte(rgb2gray(image)) lsr_im = line_support_regions(image) for i in range(0, lsr_im.shape[0], block): outrow = [] for j in range(0, lsr_im.shape[1], block): center_i = int(i+block/2.) center_j = int(j+block/2.) if center_i-int(scale/2.) < 0: top = 0 else: top = center_i-int(scale/2.) if center_i+int(scale/2.) > lsr_im.shape[0]: bot = lsr_im.shape[0] else: bot = center_i+int(scale/2.) if center_j-int(scale/2.) < 0: left = 0 else: left = center_j-int(scale/2.) if center_j+int(scale/2.) > lsr_im.shape[1]: right = lsr_im.shape[1] else: right = center_j+int(scale/2.) scale_arr = lsr_im[top:bot+1,left:right+1] feat_vec = __lsr_hist_feature(scale_arr) outrow.append(feat_vec) out_image.append(outrow) out_image = np.moveaxis(out_image, -1, 0) if output: out_geotran = (ulx, out_cell_width, 0, uly, 0, out_cell_height) write_geotiff(output, out_image, out_geotran, out_srs_wkt) return np.array(out_image) def lsr_feat_vec(image_name, scales): ds = gdal.Open(image_name) image = ds.ReadAsArray() geotran = ds.GetGeoTransform() ulx = geotran[0] uly = geotran[3] in_cell_width = geotran[1] in_cell_height = geotran[5] ds = None image = np.moveaxis(image, 0, -1) # expects an image in rows, columns, channels with expected_warnings(['precision']): image = skimage.img_as_ubyte(rgb2gray(image)) lsr_im = line_support_regions(image) # center pixel location center_i = int(image.shape[0] / 2.) center_j = int(image.shape[1] / 2.) if "wv2" in image_name: cell_width = 0.46 if "wv3" in image_name: cell_width = 0.31 out = [] for s in scales: # convert meters to pixel counts n_pixels = int(s / cell_width) # number of pixels for the scale if center_i-int(n_pixels/2) < 0: top = 0 else: top = center_i-int(n_pixels/2) if center_i+int(n_pixels/2) > lsr_im.shape[0]: bot = image.shape[0] else: bot = center_i+int(n_pixels/2) if center_j-int(n_pixels/2) < 0: left = 0 else: left = center_j-int(n_pixels/2) if center_j+int(n_pixels/2) > lsr_im.shape[1]: right = image.shape[1] else: right = center_j+int(n_pixels/2) feat_vec = __lsr_hist_feature(lsr_im[top:bot+1,left:right+1]) out.append(feat_vec) return np.array(out).flatten() def __lsr_hist_feature(lsr_im, orders=[1,2], peak_nums=2): """ 1. number of lines 2. line length mean 3. line length variance 4. line orientation variance 5. line contrast mean 6. line orientation entropy 7. line length entropy 8. line contrast entropy """ feat_vec = [] orientations = lsr_im[1].flatten() orientations = orientations[np.where(orientations != -1)] lengths = lsr_im[0].flatten() lengths = lengths[np.where(lengths != -1)] contrasts = lsr_im[2].flatten() contrasts = contrasts[np.where(contrasts != -1)] feat_vec.append(len(lengths)) feat_vec.append(np.mean(lengths)) feat_vec.append(np.var(lengths)) feat_vec.append(np.var(orientations)) feat_vec.append(np.mean(contrasts)) or_bins = np.linspace(90, 270, 51) len_bins = np.linspace(0, 200, 51) con_bins = np.linspace(0, 100, 51) or_hist = np.histogram(orientations, or_bins, density=True) len_hist = np.histogram(lengths, len_bins, density=True) con_hist = np.histogram(contrasts, con_bins, density=True) or_ent = entropy(or_hist[0]) len_ent = entropy(len_hist[0]) con_ent = entropy(con_hist[0]) feat_vec.append(or_ent) feat_vec.append(len_ent) feat_vec.append(con_ent) return np.array(feat_vec) def line_support_regions(array, mag_threshold=20, lsr_threshold=20, distance_threshold=8, orientation_threshold=22.5): """ input is a gray scale image """ # calculate gradient orientation and magnitude mag, ang, dx, dy = __calc_mag_ang(array) mag *= 0.001 # tmp(edmim<magThreshold)=-1; temp = np.where(mag < mag_threshold, -1, ang) # set pixels to -1 if magnitude is below the mag_threshold data_ob = __label_regions(temp, distance_threshold, orientation_threshold) lsr_m = data_ob.labeled_regions line_idx = np.unique(lsr_m) # lsfarr = zeros(max(lsrM(:)),5); lsf_arr = np.zeros(shape=(np.max(lsr_m), 9)) count = 0 l = 1 for l in range(1, np.max(line_idx)): # idx=find(lsrM==l); idx = np.argwhere(lsr_m.ravel() == l) # returns an array of indices # eim = zeros(size(im)); eim = np.zeros(shape=temp.shape) # eim(idx) = 1; eim = np.where(lsr_m == l, 1, eim) # if (sum(eim(:)) <= lsrThreshold) if np.sum(eim) <= lsr_threshold: # ignore small line support region continue # ix_wi = dx(idx) # iy_wi = dy(idx) Ix_wi = dx.ravel()[idx] # extract elements in dx at index locations where lsr_m == l Iy_wi = dy.ravel()[idx] grd_wi = mag.ravel()[idx] # find major orientation ST = [[np.sum(Ix_wi**2), np.sum(Ix_wi*Iy_wi)], [np.sum(Ix_wi*Iy_wi), np.sum(Iy_wi**2)]] # V, D = eig(ST) # matlab returns returns diagonal matrix D of eigenvalues and matrix V whose columns are the corresponding right eigenvectors, so that A*V = V*D. D, V = np.linalg.eig(ST) # python's return of D is a 1D array, D = np.diag(D) # make D on the diagonal to conform to matlab's procedure # if D(1,1)<D(2,2) # lorn=atan(V(2,1)/V(1,1)); # else # lorn=atan(V(2,2)/V(1,2)); # end if D[0][0] < D[1][1]: # lorn=atan(V(2,1)/V(1,1)); lorn = np.arctan(V[1][0]/V[0][0]) else: # lorn=atan(V(2,2)/V(1,2)); lorn = np.arctan(V[1][1]/V[0][1]) # vote for r # [Ytmp,Xtmp]=ind2sub(size(im),idx); Ytmp, Xtmp = np.unravel_index(idx, temp.shape) Ytmp+=1 # indices need += 1 for some indexing weirdness... Xtmp+=1 # Raccm=round(Xtmp.*cos(lorn-pi/2)+Ytmp.*sin(lorn-pi/2)); Raccm=np.round(Xtmp*math.cos(lorn-(math.pi/2))+Ytmp*math.sin(lorn-(math.pi/2))) rng=np.arange(Raccm.min(),Raccm.max()+1) accm=np.zeros(shape=(len(rng))) for k in range(len(idx)): rc = np.round(Xtmp[k]*math.cos(lorn-math.pi/2)+Ytmp[k]*math.sin(lorn-math.pi/2)) accm[np.where(rng==rc)] = accm[np.where(rng==rc)] + grd_wi[k] mxid = np.argmax(accm) Xmx=max(Xtmp[np.where(Raccm==rng[mxid])]) Xmn=min(Xtmp[np.where(Raccm==rng[mxid])]) Ymx=max(Ytmp[np.where(Raccm==rng[mxid])]) Ymn=min(Ytmp[np.where(Raccm==rng[mxid])]) lmx = ((Xmx+Xmn)/2) - 1 lmy = ((Ymx+Ymn)/2) - 1 llen = math.sqrt((Xmx-Xmn)**2+(Ymx-Ymn)**2) lsf_arr[count][0] = llen lsf_arr[count][1] = lmx lsf_arr[count][2] = lmy lsf_arr[count][3] = lorn lcon=np.mean(grd_wi[(np.where(Raccm==rng[mxid]))]) lsf_arr[count][4] = lcon lsf_raster[0][int(lmy)][int(lmx)] = llen lsf_raster[1][int(lmy)][int(lmx)] = np.rad2deg(lorn)+180 lsf_raster[2][int(lmy)][int(lmx)] = lcon count+=1 lsf_arr = lsf_arr[0:count,:] return lsf_raster def calc_line_support_regions(image_name, mag_threshold=20, lsr_threshold=20, distance_threshold=8, orientation_threshold=22.5, output_lsr_shapefile=False): """ Parameters: ------------ image_name: str the image filename mag_threshold: int or float pixels with magnitude above mag_threshold are considered for line support regions lsr_threshold: int or float threshold for the smallest line support region distance_threshold: int or float the size of the kernel used for counting the number of pixels contributing to a line support region orientation_threshold: int or float the number of degrees (+ or -) that is allowed when determining if pixels are in the same line support region Returns: -------- lsf_raster: ndarray (3 bands, n rows, m cols) lsf_raster[0] is line length values (in pixels) lsf_raster[1] is line orientation values (in degrees) lsf_raster[2] is line contrast values geotran: gdal geotransform """ ds = gdal.Open(image_name) image = ds.ReadAsArray() geotran = ds.GetGeoTransform() ulx = geotran[0] uly = geotran[3] in_cell_width = geotran[1] in_cell_height = geotran[5] ds = None out_srs = osr.SpatialReference() out_srs.ImportFromEPSG(4326) out_srs_wkt = out_srs.ExportToWkt() lsf_raster = np.ones(shape=(image.shape))*-1 # output lsf_raster is 3 band. image = np.moveaxis(image, 0, -1) # expects an image in rows, columns, channels with expected_warnings(['precision']): image = skimage.img_as_ubyte(rgb2gray(image)) # calculate gradient orientation and magnitude mag, ang, dx, dy = __calc_mag_ang(image) mag *= 0.001 # tmp(edmim<magThreshold)=-1; temp = np.where(mag < mag_threshold, -1, ang) # set pixels to -1 if magnitude is below the mag_threshold data_ob = __label_regions(temp, distance_threshold, orientation_threshold) lsr_m = data_ob.labeled_regions line_idx = np.unique(lsr_m) # lsfarr = zeros(max(lsrM(:)),5); lsf_arr = np.zeros(shape=(np.max(lsr_m), 5)) count = 0 l = 1 for l in range(1, np.max(line_idx)): # idx=find(lsrM==l); idx = np.argwhere(lsr_m.ravel() == l) # returns an array of indices # eim = zeros(size(im)); eim = np.zeros(shape=temp.shape) # eim(idx) = 1; eim = np.where(lsr_m == l, 1, eim) # if (sum(eim(:)) <= lsrThreshold) if np.sum(eim) <= lsr_threshold: # ignore small line support region continue # ix_wi = dx(idx) # iy_wi = dy(idx) Ix_wi = dx.ravel()[idx] # extract elements in dx at index locations where lsr_m == l Iy_wi = dy.ravel()[idx] grd_wi = mag.ravel()[idx] # find major orientation ST = [[np.sum(Ix_wi**2), np.sum(Ix_wi*Iy_wi)], [np.sum(Ix_wi*Iy_wi), np.sum(Iy_wi**2)]] # V, D = eig(ST) # matlab returns returns diagonal matrix D of eigenvalues and matrix V whose columns are the corresponding right eigenvectors, so that A*V = V*D. D, V = np.linalg.eig(ST) # python's return of D is a 1D array, D = np.diag(D) # make D on the diagonal to conform to matlab's procedure # if D(1,1)<D(2,2) # lorn=atan(V(2,1)/V(1,1)); # else # lorn=atan(V(2,2)/V(1,2)); # end if D[0][0] < D[1][1]: # lorn=atan(V(2,1)/V(1,1)); lorn = np.arctan(V[1][0]/V[0][0]) else: # lorn=atan(V(2,2)/V(1,2)); lorn = np.arctan(V[1][1]/V[0][1]) # vote for r # [Ytmp,Xtmp]=ind2sub(size(im),idx); Ytmp, Xtmp = np.unravel_index(idx, temp.shape) Ytmp+=1 # indices need += 1 for some indexing weirdness... Xtmp+=1 # Raccm=round(Xtmp.*cos(lorn-pi/2)+Ytmp.*sin(lorn-pi/2)); Raccm=np.round(Xtmp*math.cos(lorn-(math.pi/2))+Ytmp*math.sin(lorn-(math.pi/2))) rng=np.arange(Raccm.min(),Raccm.max()+1) accm=np.zeros(shape=(len(rng))) for k in range(len(idx)): rc = np.round(Xtmp[k]*math.cos(lorn-math.pi/2)+Ytmp[k]*math.sin(lorn-math.pi/2)) accm[np.where(rng==rc)] = accm[np.where(rng==rc)] + grd_wi[k] mxid = np.argmax(accm) Xmx=max(Xtmp[np.where(Raccm==rng[mxid])]) Xmn=min(Xtmp[np.where(Raccm==rng[mxid])]) Ymx=max(Ytmp[np.where(Raccm==rng[mxid])]) Ymn=min(Ytmp[np.where(Raccm==rng[mxid])]) lmx = ((Xmx+Xmn)/2) - 1 lmy = ((Ymx+Ymn)/2) - 1 llen = math.sqrt((Xmx-Xmn)**2+(Ymx-Ymn)**2) lsf_arr[count][0] = llen lsf_arr[count][1] = lmx lsf_arr[count][2] = lmy lsf_arr[count][3] = lorn lcon=np.mean(grd_wi[(np.where(Raccm==rng[mxid]))]) lsf_arr[count][4] = lcon lsf_raster[0][int(lmy)][int(lmx)] = llen lsf_raster[1][int(lmy)][int(lmx)] = np.rad2deg(lorn)+180 lsf_raster[2][int(lmy)][int(lmx)] = lcon count+=1 lsf_arr = lsf_arr[0:count,:] #lsf_arr[:,1] = ulx + lsf_arr[:,1] * in_cell_width #lsf_arr[:,2] = uly + lsf_arr[:,2] * in_cell_height if output_lsr_shapefile: write_lsr_shapefile(lsf_arr, os.path.join(os.path.dirname(image_name), os.path.basename(image_name)[:-4])+"_lsr_MT"+str(mag_threshold)+"_LT"+str(lsr_threshold)+"_DT"+str(distance_threshold)+"_OT"+str(orientation_threshold)+".shp", geotran) return lsf_raster def __label_regions(orientation_image, distance_threshold, orientation_threshold): labeled_regions = np.zeros(shape=orientation_image.shape, dtype=int) # labeled image region_support = np.zeros(shape=orientation_image.shape, dtype=int) # counts of pixels supporting the region out_l = [] out_row_idx = [] out_col_idx = [] ws = distance_threshold*2 i = 0 while i < orientation_image.shape[0]: j = 0 while j < orientation_image.shape[1]: if orientation_image[i][j] >= 0: center_i = i center_j = j # now get the row and col indices for the kernel # (top, bot, left, right). The kernel is centered on orientation_image[i][j] if center_i - ws > 0: # avoid indexing out of bounds of the top of the array top = center_i - ws else: top = 0 if center_i + ws < orientation_image.shape[0] - 1: # avoid indexing out of bounds of the bottom of the array bot = center_i + ws else: bot = orientation_image.shape[0] - 1 if center_j - ws > 0: # avoid indexing out of bounds to the left of the array left = center_j - ws else: left = 0 if center_j + ws < orientation_image.shape[1] - 1: # avoid indexing out of bounds to the right of the array right = center_j + ws else: right = orientation_image.shape[1] - 1 pixel_count = 0 ii = top while ii <= bot: jj = left while jj <= right: dist = math.sqrt((center_i-ii)*(center_i-ii)+(center_j-jj)*(center_j-jj)) if dist <= distance_threshold and orientation_image[ii][jj] >= 0 and (ii != center_i or jj != center_j): abs_orientation_diff = abs(orientation_image[center_i][center_j] - orientation_image[ii][jj]) # when abs_orientation_diff is large, it means that the orientations of the pixels are similar c2 = 360 - abs_orientation_diff # when c2 is small, it means that the orientations of the pixels are similar if abs_orientation_diff < c2: c = abs_orientation_diff else: c = c2 if c < orientation_threshold: pixel_count += 1 jj+=1 ii+=1 region_support[i][j] = pixel_count out_l.append(pixel_count) out_row_idx.append(i) out_col_idx.append(j) j+=1 i+=1 # sort the support regions based on the number of contributing pixels out_l, out_row_idx, out_col_idx = (list(t) for t in zip(*sorted(zip(out_l, out_row_idx, out_col_idx)))) # begin expanding regions with support. start with the line with the most support first and count down from there label_id = 0 data_object = LSR_data_object(orientation_image, region_support, labeled_regions, 0, orientation_threshold) for k in range(len(out_l)-1, -1, -1): if data_object.labeled_regions[out_row_idx[k]][out_col_idx[k]] == 0: # if values at this location have not been written, center_i = out_row_idx[k] center_j = out_col_idx[k] # if out_m[tgti + tgtj * rows] == 0: if data_object.region_support[center_i][center_j] == 0: # there were no pixels with similar orientation connected to eachother continue # tgt = image[tgti + tgtj * rows] orientation = data_object.orientation_image[center_i][center_j] # orientation at this location # out_m[tgti + tgtj * rows] = 0 data_object.region_support[center_i][center_j] = 0 data_object.label_id+=1 top = center_i bot = center_i left = center_j right = center_j # now expand out from center_i, center_j and label the support region __expand(data_object, center_i, center_j, center_i, center_j) return data_object def __expand(data_object, origin_i, origin_j, candidate_i, candidate_j): """ label regions with pixels of similar orientation """ abs_orientation_diff = abs(data_object.orientation_image[candidate_i][candidate_j] - data_object.orientation_image[origin_i][origin_j]) # when abs_orientation_diff is large, it means that the orientations of the pixels are similar c2 = 360 - abs_orientation_diff # when c2 is small, it means that the orientations of the pixels are similar if abs_orientation_diff < c2: c = abs_orientation_diff else: c = c2 # if c > ot or image[i + j * rows] < 0 or seg_res[i + j * rows] > 0: if c > data_object.orientation_threshold or data_object.orientation_image[candidate_i][candidate_j] < 0 or data_object.labeled_regions[candidate_i][candidate_j] > 0: return # seg_res[i + j * rows] = label_n data_object.labeled_regions[candidate_i][candidate_j] = data_object.label_id # out_m[i + j * rows] = 0 data_object.region_support[candidate_i][candidate_j] = 0 # continue expanding until the bounds of the array are reached. Worst case scenario # is that a line support region spans the entire image if candidate_i + 1 < data_object.orientation_image.shape[0]: __expand(data_object, candidate_i, candidate_j, candidate_i + 1, candidate_j) if candidate_j + 1 < data_object.orientation_image.shape[1]: __expand(data_object, candidate_i, candidate_j, candidate_i, candidate_j + 1) if candidate_i - 1 >= 0: __expand(data_object, candidate_i, candidate_j, candidate_i - 1, candidate_j) if candidate_j - 1 >= 0: __expand(data_object, candidate_i, candidate_j, candidate_i, candidate_j - 1)
41.043554
248
0.585636
79525ab2de58efae22644e9364fd217576d7c5eb
8,670
py
Python
package_control/cmd.py
Shekharrajak/my_sublime_packages
4627b7faa47b0b03578c339fb5081be9d92867a6
[ "Unlicense", "MIT" ]
1
2018-06-23T08:07:39.000Z
2018-06-23T08:07:39.000Z
package_control/cmd.py
Shekharrajak/my_sublime_packages
4627b7faa47b0b03578c339fb5081be9d92867a6
[ "Unlicense", "MIT" ]
null
null
null
package_control/cmd.py
Shekharrajak/my_sublime_packages
4627b7faa47b0b03578c339fb5081be9d92867a6
[ "Unlicense", "MIT" ]
null
null
null
import os import subprocess import re import sys if os.name == 'nt': from ctypes import windll, create_unicode_buffer try: # Allow using this file on the website where the sublime # module is unavailable import sublime except (ImportError): sublime = None from .console_write import console_write from .unicode import unicode_from_os from .show_error import show_error from . import text try: # Python 2 str_cls = unicode except (NameError): # Python 3 str_cls = str def create_cmd(args, basename_binary=False): """ Takes an array of strings to be passed to subprocess.Popen and creates a string that can be pasted into a terminal :param args: The array containing the binary name/path and all arguments :param basename_binary: If only the basename of the binary should be disabled instead of the full path :return: The command string """ if basename_binary: args[0] = os.path.basename(args[0]) if os.name == 'nt': return subprocess.list2cmdline(args) else: escaped_args = [] for arg in args: if re.search('^[a-zA-Z0-9/_^\\-\\.:=]+$', arg) == None: arg = u"'" + arg.replace(u"'", u"'\\''") + u"'" escaped_args.append(arg) return u' '.join(escaped_args) class Cli(object): """ Base class for running command line apps :param binary_locations: The full filesystem path to the executable for the version control system. May be set to None to allow the code to try and find it. May also be a list of locations to attempt. This allows settings to be shared across operating systems. """ # Prevent duplicate lookups binary_paths = {} cli_name = None def __init__(self, binary_locations, debug): self.binary_locations = binary_locations self.debug = debug def execute(self, args, cwd, input=None, encoding='utf-8', meaningful_output=False, ignore_errors=None): """ Creates a subprocess with the executable/args :param args: A list of the executable path and all arguments to it :param cwd: The directory in which to run the executable :param input: The input text to send to the program :param meaningful_output: If the output from the command is possibly meaningful and should be displayed if in debug mode :param ignore_errors: A regex of errors to ignore :return: A string of the executable output """ startupinfo = None if os.name == 'nt': startupinfo = subprocess.STARTUPINFO() startupinfo.dwFlags |= subprocess.STARTF_USESHOWWINDOW # Make sure the cwd is ascii try: cwd.encode('mbcs') except UnicodeEncodeError: buf = create_unicode_buffer(512) if windll.kernel32.GetShortPathNameW(cwd, buf, len(buf)): cwd = buf.value if self.debug: console_write( u''' Executing %s [%s] ''', (create_cmd(args), cwd) ) try: if sys.platform == 'win32' and sys.version_info < (3,): cwd = cwd.encode('mbcs') proc = subprocess.Popen(args, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, startupinfo=startupinfo, cwd=cwd, env=os.environ) if input and isinstance(input, str_cls): input = input.encode(encoding) stuck = True if sublime: def kill_proc(): if not stuck: return # This doesn't actually work! proc.kill() binary_name = os.path.basename(args[0]) if re.search('git', binary_name): is_vcs = True elif re.search('hg', binary_name): is_vcs = True message = u'The process %s seems to have gotten stuck.' % binary_name if is_vcs: message += text.format( u''' This is likely due to a password or passphrase prompt. Please ensure %s works without a prompt, or change the "ignore_vcs_packages" Package Control setting to true. Sublime Text will need to be restarted once these changes are made. ''', binary_name ) show_error(message) sublime.set_timeout(kill_proc, 60000) output, _ = proc.communicate(input) stuck = False output = output.decode(encoding) output = output.replace('\r\n', '\n').rstrip(' \n\r') if proc.returncode != 0: if not ignore_errors or re.search(ignore_errors, output) is None: show_error( u''' Error executing: %s %s VCS-based packages can be ignored with the "ignore_vcs_packages" setting. ''', (create_cmd(args), output) ) return False if meaningful_output and self.debug and len(output) > 0: console_write(output, indent=' ', prefix=False) return output except (OSError) as e: show_error( u''' Error executing: %s %s Try checking your "%s_binary" setting? ''', (create_cmd(args), unicode_from_os(e), self.cli_name) ) return False def find_binary(self, name): """ Locates the executable by looking in the PATH and well-known directories :param name: The string filename of the executable :return: The filesystem path to the executable, or None if not found """ # Use the cached path if self.cli_name in Cli.binary_paths: return Cli.binary_paths[self.cli_name] check_binaries = [] # Use the settings first if self.binary_locations: if not isinstance(self.binary_locations, list): self.binary_locations = [self.binary_locations] check_binaries.extend(self.binary_locations) # Next check the PATH for dir_ in os.environ['PATH'].split(os.pathsep): check_binaries.append(os.path.join(dir_, name)) # Finally look in common locations that may not be in the PATH if os.name == 'nt': dirs = ['C:\\Program Files\\Git\\bin', 'C:\\Program Files (x86)\\Git\\bin', 'C:\\Program Files\\TortoiseGit\\bin', 'C:\\Program Files\\Mercurial', 'C:\\Program Files (x86)\\Mercurial', 'C:\\Program Files (x86)\\TortoiseHg', 'C:\\Program Files\\TortoiseHg', 'C:\\cygwin\\bin'] else: # ST seems to launch with a minimal set of environmental variables # on OS X, so we add some common paths for it dirs = ['/usr/local/git/bin', '/usr/local/bin'] for dir_ in dirs: check_binaries.append(os.path.join(dir_, name)) if self.debug: console_write( u''' Looking for %s at: "%s" ''', (self.cli_name, '", "'.join(check_binaries)) ) for path in check_binaries: if os.path.exists(path) and not os.path.isdir(path) and os.access(path, os.X_OK): if self.debug: console_write( u''' Found %s at "%s" ''', (self.cli_name, path) ) Cli.binary_paths[self.cli_name] = path return path if self.debug: console_write( u''' Could not find %s on your machine ''', self.cli_name ) return None
31.18705
108
0.51511
79525aec2be7db4c5a2bcc9affd18d707018f860
5,278
py
Python
Models/classTemplateTF/model.py
UTS-AnimalLogicAcademy/nuke-ML-server
3bec5e9efc1f3101e7506401eb57e7b8c955f84c
[ "Apache-2.0" ]
123
2019-05-14T19:50:42.000Z
2022-03-21T11:32:30.000Z
Models/classTemplateTF/model.py
UTS-AnimalLogicAcademy/nuke-ML-server
3bec5e9efc1f3101e7506401eb57e7b8c955f84c
[ "Apache-2.0" ]
30
2019-05-23T18:48:29.000Z
2021-06-26T01:17:13.000Z
Models/classTemplateTF/model.py
UTS-AnimalLogicAcademy/nuke-ML-server
3bec5e9efc1f3101e7506401eb57e7b8c955f84c
[ "Apache-2.0" ]
34
2019-05-14T17:43:26.000Z
2021-11-10T23:53:02.000Z
from __future__ import print_function import sys import os import time import scipy.misc import numpy as np import cv2 import tensorflow as tf tf.compat.v1.disable_eager_execution() # For TF 2.x compatibility from ..baseModel import BaseModel from ..common.util import print_, get_saved_model_list, linear_to_srgb import message_pb2 class Model(BaseModel): """Load your trained model and do inference in Nuke""" def __init__(self): super(Model, self).__init__() self.name = 'Classification Template' dir_path = os.path.dirname(os.path.realpath(__file__)) self.checkpoints_dir = os.path.join(dir_path, 'checkpoints') self.batch_size = 1 # Initialise checkpoint name to the most recent trained model ckpt_names = get_saved_model_list(self.checkpoints_dir) if not ckpt_names: # empty list self.checkpoint_name = '' else: self.checkpoint_name = ckpt_names[-1] self.prev_ckpt_name = self.checkpoint_name # Button to get classification label self.get_label = False # Define options self.options = ('checkpoint_name',) self.buttons = ('get_label',) # Define inputs/outputs self.inputs = {'input': 3} self.outputs = {'output': 3} def load_model(self): # Check if empty or invalid checkpoint name if self.checkpoint_name=='': ckpt_names = get_saved_model_list(self.checkpoints_dir) if not ckpt_names: raise ValueError("No checkpoints found in {}".format(self.checkpoints_dir)) else: raise ValueError("Empty checkpoint name, try an available checkpoint in {} (ex: {})" .format(self.checkpoints_dir, ckpt_names[-1])) print_("Loading trained model checkpoint...\n", 'm') # Load from given checkpoint file name model = tf.keras.models.load_model(os.path.join(self.checkpoints_dir, self.checkpoint_name)) model._make_predict_function() print_("...Checkpoint {} loaded\n".format(self.checkpoint_name), 'm') return model def inference(self, image_list): """Do an inference on the model with a set of inputs. # Arguments: image_list: The input image list Return the result of the inference. """ image = image_list[0] image = linear_to_srgb(image).copy() image = (image * 255).astype(np.uint8) if not hasattr(self, 'model'): # Initialise tensorflow graph tf.compat.v1.reset_default_graph() config = tf.compat.v1.ConfigProto() config.gpu_options.allow_growth=True self.sess = tf.compat.v1.Session(config=config) # Necessary to switch / load_weights on different h5 file tf.compat.v1.keras.backend.set_session(self.sess) # Load most recent trained model self.model = self.load_model() self.graph = tf.compat.v1.get_default_graph() self.prev_ckpt_name = self.checkpoint_name self.class_labels = (self.checkpoint_name.split('.')[0]).split('_') else: tf.compat.v1.keras.backend.set_session(self.sess) # If checkpoint name has changed, load new checkpoint if self.prev_ckpt_name != self.checkpoint_name or self.checkpoint_name == '': self.model = self.load_model() self.graph = tf.compat.v1.get_default_graph() self.class_labels = (self.checkpoint_name.split('.')[0]).split('_') # If checkpoint correctly loaded, update previous checkpoint name self.prev_ckpt_name = self.checkpoint_name image = cv2.resize(image, dsize=(224, 224), interpolation=cv2.INTER_NEAREST) # Predict on new data image_batch = np.expand_dims(image, 0) # Preprocess a numpy array encoding a batch of images (RGB values within [0, 255]) image_batch = tf.keras.applications.mobilenet.preprocess_input(image_batch) start = time.time() with self.graph.as_default(): y_prob = self.model.predict(image_batch) y_class = y_prob.argmax(axis=-1)[0] duration = time.time() - start # Print results on server side print('Inference duration: {:4.3f}s'.format(duration)) class_scores = str(["{0:0.4f}".format(i) for i in y_prob[0]]).replace("'", "") print("Class scores: {} --> Label: {}".format(class_scores, self.class_labels[y_class])) # If get_label button is pressed in Nuke if self.get_label: # Send back which class was detected script_msg = message_pb2.FieldValuePairAttrib() script_msg.name = "PythonScript" # Create a Python script message to run in Nuke nuke_msg = "Class scores: {}\\nLabel: {}".format(class_scores, self.class_labels[y_class]) python_script = "nuke.message('{}')\n".format(nuke_msg) script_msg_val = script_msg.values.add() script_msg_str = script_msg_val.string_attributes.add() script_msg_str.values.extend([python_script]) return [image_list[0], script_msg] return [image_list[0]]
41.234375
102
0.636036
79525cf11f35655760597ff820c2b99354cf838c
4,921
py
Python
clusterman/cli/manage.py
akshaysharma096/clusterman
27f4bd217fe201a4c0b9bf460c5a9e155ee88041
[ "Apache-2.0" ]
281
2019-11-15T03:12:43.000Z
2022-01-07T06:36:58.000Z
clusterman/cli/manage.py
akshaysharma096/clusterman
27f4bd217fe201a4c0b9bf460c5a9e155ee88041
[ "Apache-2.0" ]
38
2019-11-18T20:15:47.000Z
2022-03-28T11:28:45.000Z
clusterman/cli/manage.py
akshaysharma096/clusterman
27f4bd217fe201a4c0b9bf460c5a9e155ee88041
[ "Apache-2.0" ]
21
2019-11-16T07:49:40.000Z
2022-02-09T18:13:48.000Z
# Copyright 2019 Yelp Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from getpass import getuser from socket import gethostname import arrow import staticconf from clusterman.args import add_cluster_arg from clusterman.args import add_cluster_config_directory_arg from clusterman.args import add_pool_arg from clusterman.args import add_scheduler_arg from clusterman.args import subparser from clusterman.autoscaler.pool_manager import PoolManager from clusterman.cli.util import timeout_wrapper from clusterman.config import POOL_NAMESPACE from clusterman.util import ask_for_confirmation from clusterman.util import get_autoscaler_scribe_stream from clusterman.util import log_to_scribe LOG_TEMPLATE = f"{arrow.now()} {gethostname()} {__name__}" def get_target_capacity_value(target_capacity: str, pool: str, scheduler: str) -> int: target_capacity = target_capacity.lower() pool_namespace = POOL_NAMESPACE.format(pool=pool, scheduler=scheduler) if target_capacity == "min": return staticconf.read_int("scaling_limits.min_capacity", namespace=pool_namespace) elif target_capacity == "max": return staticconf.read_int("scaling_limits.max_capacity", namespace=pool_namespace) else: return int(target_capacity) def change_target_capacity(manager: PoolManager, target_capacity: str, dry_run: bool) -> str: old_target = manager.target_capacity requested_target = get_target_capacity_value(target_capacity, manager.pool, manager.scheduler) if not dry_run and not ask_for_confirmation( f"Modifying target capacity for {manager.cluster}, {manager.pool}.{manager.scheduler} " f"from {old_target} to {requested_target}. Proceed? " ): print("Aborting operation.") return "" new_target = manager.modify_target_capacity(requested_target, dry_run) return ( f"Target capacity for {manager.pool}.{manager.scheduler} on {manager.cluster} manually changed " f"from {old_target} to {new_target} by {getuser()}" ) def mark_stale(manager: PoolManager, dry_run: bool) -> str: if not dry_run and not ask_for_confirmation( f"Marking all resource groups in {manager.cluster}, {manager.pool}.{manager.scheduler} stale. Proceed? " ): print("Aborting operation.") return "" manager.mark_stale(dry_run) return ( f"All resource groups in {manager.pool}.{manager.scheduler} on {manager.cluster} manually " f"marked as stale by {getuser()}" ) @timeout_wrapper def main(args: argparse.Namespace) -> None: if args.target_capacity and args.mark_stale: raise ValueError("Cannot specify --target-capacity and --mark-stale simultaneously") manager = PoolManager(args.cluster, args.pool, args.scheduler) log_messages = [] if args.target_capacity: log_message = change_target_capacity(manager, args.target_capacity, args.dry_run) log_messages.append(log_message) elif args.mark_stale: log_message = mark_stale(manager, args.dry_run) log_messages.append(log_message) for log_message in log_messages: if not log_message: continue print(log_message) if not args.dry_run: scribe_stream = get_autoscaler_scribe_stream(args.cluster, args.pool, args.scheduler) log_to_scribe(scribe_stream, f"{LOG_TEMPLATE} {log_message}") @subparser("manage", "check the status of a cluster", main) def add_manager_parser(subparser, required_named_args, optional_named_args): # pragma: no cover add_cluster_arg(required_named_args, required=True) add_pool_arg(required_named_args) add_scheduler_arg(required_named_args) optional_named_args.add_argument( "--target-capacity", metavar="X", help="New target capacity for the cluster (valid options: min, max, positive integer)", ) optional_named_args.add_argument( "--mark-stale", action="store_true", help=( 'Mark the resource groups of a cluster as "stale" (ASGs only); these resource groups ' "will no longer contribute to the pool's target capacity." ), ) optional_named_args.add_argument( "--dry-run", action="store_true", help="Just print what would happen, don't actually add or remove instances", ) add_cluster_config_directory_arg(optional_named_args)
39.368
118
0.731355
79525e47465a3120276741fcfebcf63773fdc65e
19,381
py
Python
research/object_detection/protos/box_predictor_pb2.py
nobillowseagit/models
cbac8468537edbe679ddadad365da47a5ac966d8
[ "Apache-2.0" ]
16
2018-12-17T15:30:16.000Z
2021-08-20T03:07:07.000Z
research/object_detection/protos/box_predictor_pb2.py
nobillowseagit/models
cbac8468537edbe679ddadad365da47a5ac966d8
[ "Apache-2.0" ]
null
null
null
research/object_detection/protos/box_predictor_pb2.py
nobillowseagit/models
cbac8468537edbe679ddadad365da47a5ac966d8
[ "Apache-2.0" ]
13
2019-05-13T11:01:43.000Z
2022-03-28T07:39:53.000Z
# Generated by the protocol buffer compiler. DO NOT EDIT! # source: object_detection/protos/box_predictor.proto import sys _b=sys.version_info[0]<3 and (lambda x:x) or (lambda x:x.encode('latin1')) from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database from google.protobuf import descriptor_pb2 # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from object_detection.protos import hyperparams_pb2 as object__detection_dot_protos_dot_hyperparams__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='object_detection/protos/box_predictor.proto', package='object_detection.protos', syntax='proto2', serialized_pb=_b('\n+object_detection/protos/box_predictor.proto\x12\x17object_detection.protos\x1a)object_detection/protos/hyperparams.proto\"\x9b\x02\n\x0c\x42oxPredictor\x12Y\n\x1b\x63onvolutional_box_predictor\x18\x01 \x01(\x0b\x32\x32.object_detection.protos.ConvolutionalBoxPredictorH\x00\x12P\n\x17mask_rcnn_box_predictor\x18\x02 \x01(\x0b\x32-.object_detection.protos.MaskRCNNBoxPredictorH\x00\x12G\n\x12rfcn_box_predictor\x18\x03 \x01(\x0b\x32).object_detection.protos.RfcnBoxPredictorH\x00\x42\x15\n\x13\x62ox_predictor_oneof\"\xf2\x02\n\x19\x43onvolutionalBoxPredictor\x12>\n\x10\x63onv_hyperparams\x18\x01 \x01(\x0b\x32$.object_detection.protos.Hyperparams\x12\x14\n\tmin_depth\x18\x02 \x01(\x05:\x01\x30\x12\x14\n\tmax_depth\x18\x03 \x01(\x05:\x01\x30\x12&\n\x1bnum_layers_before_predictor\x18\x04 \x01(\x05:\x01\x30\x12\x19\n\x0buse_dropout\x18\x05 \x01(\x08:\x04true\x12%\n\x18\x64ropout_keep_probability\x18\x06 \x01(\x02:\x03\x30.8\x12\x16\n\x0bkernel_size\x18\x07 \x01(\x05:\x01\x31\x12\x18\n\rbox_code_size\x18\x08 \x01(\x05:\x01\x34\x12&\n\x17\x61pply_sigmoid_to_scores\x18\t \x01(\x08:\x05\x66\x61lse\x12%\n\x1a\x63lass_prediction_bias_init\x18\n \x01(\x02:\x01\x30\"\xe3\x02\n\x14MaskRCNNBoxPredictor\x12<\n\x0e\x66\x63_hyperparams\x18\x01 \x01(\x0b\x32$.object_detection.protos.Hyperparams\x12\x1a\n\x0buse_dropout\x18\x02 \x01(\x08:\x05\x66\x61lse\x12%\n\x18\x64ropout_keep_probability\x18\x03 \x01(\x02:\x03\x30.5\x12\x18\n\rbox_code_size\x18\x04 \x01(\x05:\x01\x34\x12>\n\x10\x63onv_hyperparams\x18\x05 \x01(\x0b\x32$.object_detection.protos.Hyperparams\x12%\n\x16predict_instance_masks\x18\x06 \x01(\x08:\x05\x66\x61lse\x12\'\n\x1amask_prediction_conv_depth\x18\x07 \x01(\x05:\x03\x32\x35\x36\x12 \n\x11predict_keypoints\x18\x08 \x01(\x08:\x05\x66\x61lse\"\xf9\x01\n\x10RfcnBoxPredictor\x12>\n\x10\x63onv_hyperparams\x18\x01 \x01(\x0b\x32$.object_detection.protos.Hyperparams\x12\"\n\x17num_spatial_bins_height\x18\x02 \x01(\x05:\x01\x33\x12!\n\x16num_spatial_bins_width\x18\x03 \x01(\x05:\x01\x33\x12\x13\n\x05\x64\x65pth\x18\x04 \x01(\x05:\x04\x31\x30\x32\x34\x12\x18\n\rbox_code_size\x18\x05 \x01(\x05:\x01\x34\x12\x17\n\x0b\x63rop_height\x18\x06 \x01(\x05:\x02\x31\x32\x12\x16\n\ncrop_width\x18\x07 \x01(\x05:\x02\x31\x32') , dependencies=[object__detection_dot_protos_dot_hyperparams__pb2.DESCRIPTOR,]) _BOXPREDICTOR = _descriptor.Descriptor( name='BoxPredictor', full_name='object_detection.protos.BoxPredictor', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='convolutional_box_predictor', full_name='object_detection.protos.BoxPredictor.convolutional_box_predictor', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='mask_rcnn_box_predictor', full_name='object_detection.protos.BoxPredictor.mask_rcnn_box_predictor', index=1, number=2, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='rfcn_box_predictor', full_name='object_detection.protos.BoxPredictor.rfcn_box_predictor', index=2, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ _descriptor.OneofDescriptor( name='box_predictor_oneof', full_name='object_detection.protos.BoxPredictor.box_predictor_oneof', index=0, containing_type=None, fields=[]), ], serialized_start=116, serialized_end=399, ) _CONVOLUTIONALBOXPREDICTOR = _descriptor.Descriptor( name='ConvolutionalBoxPredictor', full_name='object_detection.protos.ConvolutionalBoxPredictor', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='conv_hyperparams', full_name='object_detection.protos.ConvolutionalBoxPredictor.conv_hyperparams', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='min_depth', full_name='object_detection.protos.ConvolutionalBoxPredictor.min_depth', index=1, number=2, type=5, cpp_type=1, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='max_depth', full_name='object_detection.protos.ConvolutionalBoxPredictor.max_depth', index=2, number=3, type=5, cpp_type=1, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='num_layers_before_predictor', full_name='object_detection.protos.ConvolutionalBoxPredictor.num_layers_before_predictor', index=3, number=4, type=5, cpp_type=1, label=1, has_default_value=True, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='use_dropout', full_name='object_detection.protos.ConvolutionalBoxPredictor.use_dropout', index=4, number=5, type=8, cpp_type=7, label=1, has_default_value=True, default_value=True, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='dropout_keep_probability', full_name='object_detection.protos.ConvolutionalBoxPredictor.dropout_keep_probability', index=5, number=6, type=2, cpp_type=6, label=1, has_default_value=True, default_value=float(0.8), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='kernel_size', full_name='object_detection.protos.ConvolutionalBoxPredictor.kernel_size', index=6, number=7, type=5, cpp_type=1, label=1, has_default_value=True, default_value=1, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='box_code_size', full_name='object_detection.protos.ConvolutionalBoxPredictor.box_code_size', index=7, number=8, type=5, cpp_type=1, label=1, has_default_value=True, default_value=4, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='apply_sigmoid_to_scores', full_name='object_detection.protos.ConvolutionalBoxPredictor.apply_sigmoid_to_scores', index=8, number=9, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='class_prediction_bias_init', full_name='object_detection.protos.ConvolutionalBoxPredictor.class_prediction_bias_init', index=9, number=10, type=2, cpp_type=6, label=1, has_default_value=True, default_value=float(0), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=402, serialized_end=772, ) _MASKRCNNBOXPREDICTOR = _descriptor.Descriptor( name='MaskRCNNBoxPredictor', full_name='object_detection.protos.MaskRCNNBoxPredictor', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='fc_hyperparams', full_name='object_detection.protos.MaskRCNNBoxPredictor.fc_hyperparams', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='use_dropout', full_name='object_detection.protos.MaskRCNNBoxPredictor.use_dropout', index=1, number=2, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='dropout_keep_probability', full_name='object_detection.protos.MaskRCNNBoxPredictor.dropout_keep_probability', index=2, number=3, type=2, cpp_type=6, label=1, has_default_value=True, default_value=float(0.5), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='box_code_size', full_name='object_detection.protos.MaskRCNNBoxPredictor.box_code_size', index=3, number=4, type=5, cpp_type=1, label=1, has_default_value=True, default_value=4, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='conv_hyperparams', full_name='object_detection.protos.MaskRCNNBoxPredictor.conv_hyperparams', index=4, number=5, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='predict_instance_masks', full_name='object_detection.protos.MaskRCNNBoxPredictor.predict_instance_masks', index=5, number=6, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='mask_prediction_conv_depth', full_name='object_detection.protos.MaskRCNNBoxPredictor.mask_prediction_conv_depth', index=6, number=7, type=5, cpp_type=1, label=1, has_default_value=True, default_value=256, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='predict_keypoints', full_name='object_detection.protos.MaskRCNNBoxPredictor.predict_keypoints', index=7, number=8, type=8, cpp_type=7, label=1, has_default_value=True, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=775, serialized_end=1130, ) _RFCNBOXPREDICTOR = _descriptor.Descriptor( name='RfcnBoxPredictor', full_name='object_detection.protos.RfcnBoxPredictor', filename=None, file=DESCRIPTOR, containing_type=None, fields=[ _descriptor.FieldDescriptor( name='conv_hyperparams', full_name='object_detection.protos.RfcnBoxPredictor.conv_hyperparams', index=0, number=1, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='num_spatial_bins_height', full_name='object_detection.protos.RfcnBoxPredictor.num_spatial_bins_height', index=1, number=2, type=5, cpp_type=1, label=1, has_default_value=True, default_value=3, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='num_spatial_bins_width', full_name='object_detection.protos.RfcnBoxPredictor.num_spatial_bins_width', index=2, number=3, type=5, cpp_type=1, label=1, has_default_value=True, default_value=3, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='depth', full_name='object_detection.protos.RfcnBoxPredictor.depth', index=3, number=4, type=5, cpp_type=1, label=1, has_default_value=True, default_value=1024, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='box_code_size', full_name='object_detection.protos.RfcnBoxPredictor.box_code_size', index=4, number=5, type=5, cpp_type=1, label=1, has_default_value=True, default_value=4, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='crop_height', full_name='object_detection.protos.RfcnBoxPredictor.crop_height', index=5, number=6, type=5, cpp_type=1, label=1, has_default_value=True, default_value=12, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), _descriptor.FieldDescriptor( name='crop_width', full_name='object_detection.protos.RfcnBoxPredictor.crop_width', index=6, number=7, type=5, cpp_type=1, label=1, has_default_value=True, default_value=12, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, options=None, file=DESCRIPTOR), ], extensions=[ ], nested_types=[], enum_types=[ ], options=None, is_extendable=False, syntax='proto2', extension_ranges=[], oneofs=[ ], serialized_start=1133, serialized_end=1382, ) _BOXPREDICTOR.fields_by_name['convolutional_box_predictor'].message_type = _CONVOLUTIONALBOXPREDICTOR _BOXPREDICTOR.fields_by_name['mask_rcnn_box_predictor'].message_type = _MASKRCNNBOXPREDICTOR _BOXPREDICTOR.fields_by_name['rfcn_box_predictor'].message_type = _RFCNBOXPREDICTOR _BOXPREDICTOR.oneofs_by_name['box_predictor_oneof'].fields.append( _BOXPREDICTOR.fields_by_name['convolutional_box_predictor']) _BOXPREDICTOR.fields_by_name['convolutional_box_predictor'].containing_oneof = _BOXPREDICTOR.oneofs_by_name['box_predictor_oneof'] _BOXPREDICTOR.oneofs_by_name['box_predictor_oneof'].fields.append( _BOXPREDICTOR.fields_by_name['mask_rcnn_box_predictor']) _BOXPREDICTOR.fields_by_name['mask_rcnn_box_predictor'].containing_oneof = _BOXPREDICTOR.oneofs_by_name['box_predictor_oneof'] _BOXPREDICTOR.oneofs_by_name['box_predictor_oneof'].fields.append( _BOXPREDICTOR.fields_by_name['rfcn_box_predictor']) _BOXPREDICTOR.fields_by_name['rfcn_box_predictor'].containing_oneof = _BOXPREDICTOR.oneofs_by_name['box_predictor_oneof'] _CONVOLUTIONALBOXPREDICTOR.fields_by_name['conv_hyperparams'].message_type = object__detection_dot_protos_dot_hyperparams__pb2._HYPERPARAMS _MASKRCNNBOXPREDICTOR.fields_by_name['fc_hyperparams'].message_type = object__detection_dot_protos_dot_hyperparams__pb2._HYPERPARAMS _MASKRCNNBOXPREDICTOR.fields_by_name['conv_hyperparams'].message_type = object__detection_dot_protos_dot_hyperparams__pb2._HYPERPARAMS _RFCNBOXPREDICTOR.fields_by_name['conv_hyperparams'].message_type = object__detection_dot_protos_dot_hyperparams__pb2._HYPERPARAMS DESCRIPTOR.message_types_by_name['BoxPredictor'] = _BOXPREDICTOR DESCRIPTOR.message_types_by_name['ConvolutionalBoxPredictor'] = _CONVOLUTIONALBOXPREDICTOR DESCRIPTOR.message_types_by_name['MaskRCNNBoxPredictor'] = _MASKRCNNBOXPREDICTOR DESCRIPTOR.message_types_by_name['RfcnBoxPredictor'] = _RFCNBOXPREDICTOR _sym_db.RegisterFileDescriptor(DESCRIPTOR) BoxPredictor = _reflection.GeneratedProtocolMessageType('BoxPredictor', (_message.Message,), dict( DESCRIPTOR = _BOXPREDICTOR, __module__ = 'object_detection.protos.box_predictor_pb2' # @@protoc_insertion_point(class_scope:object_detection.protos.BoxPredictor) )) _sym_db.RegisterMessage(BoxPredictor) ConvolutionalBoxPredictor = _reflection.GeneratedProtocolMessageType('ConvolutionalBoxPredictor', (_message.Message,), dict( DESCRIPTOR = _CONVOLUTIONALBOXPREDICTOR, __module__ = 'object_detection.protos.box_predictor_pb2' # @@protoc_insertion_point(class_scope:object_detection.protos.ConvolutionalBoxPredictor) )) _sym_db.RegisterMessage(ConvolutionalBoxPredictor) MaskRCNNBoxPredictor = _reflection.GeneratedProtocolMessageType('MaskRCNNBoxPredictor', (_message.Message,), dict( DESCRIPTOR = _MASKRCNNBOXPREDICTOR, __module__ = 'object_detection.protos.box_predictor_pb2' # @@protoc_insertion_point(class_scope:object_detection.protos.MaskRCNNBoxPredictor) )) _sym_db.RegisterMessage(MaskRCNNBoxPredictor) RfcnBoxPredictor = _reflection.GeneratedProtocolMessageType('RfcnBoxPredictor', (_message.Message,), dict( DESCRIPTOR = _RFCNBOXPREDICTOR, __module__ = 'object_detection.protos.box_predictor_pb2' # @@protoc_insertion_point(class_scope:object_detection.protos.RfcnBoxPredictor) )) _sym_db.RegisterMessage(RfcnBoxPredictor) # @@protoc_insertion_point(module_scope)
51.545213
2,256
0.774573
79525eb8bf148e6484aed8e264c929a8f0ca9145
129
py
Python
unobase/commenting/signals.py
unomena/unobase
175e768afa1608f9f34d1e5a053763ad27db0f7e
[ "BSD-3-Clause" ]
null
null
null
unobase/commenting/signals.py
unomena/unobase
175e768afa1608f9f34d1e5a053763ad27db0f7e
[ "BSD-3-Clause" ]
null
null
null
unobase/commenting/signals.py
unomena/unobase
175e768afa1608f9f34d1e5a053763ad27db0f7e
[ "BSD-3-Clause" ]
null
null
null
__author__ = 'michael' from django.dispatch import Signal user_commented = Signal(providing_args=['user', 'request', 'comment'])
32.25
70
0.767442
79525fb76b6d260cd6a5ed91ddad96dfa1d316c5
4,087
py
Python
utils/metrics.py
leonardozcm/Point-Completion-Fig-AutoGenerator
109f5a414f51469fac82d0d23cde69efb9cf97e0
[ "Apache-2.0" ]
31
2021-08-22T15:01:58.000Z
2022-03-19T12:26:21.000Z
utils/metrics.py
leonardozcm/ASFM-Net-Pytorch
2584d2d098c760e559d3f632b72b9ad9881c59d5
[ "MIT" ]
10
2021-09-06T09:07:38.000Z
2022-02-12T08:12:54.000Z
utils/metrics.py
leonardozcm/SnowflakeNet
93e7151610765e7e2b41ace2d03c8750f0b6c80c
[ "MIT" ]
5
2021-08-30T00:53:17.000Z
2022-03-20T11:57:25.000Z
# -*- coding: utf-8 -*- # @Author: Haozhe Xie # @Date: 2019-08-08 14:31:30 # @Last Modified by: Haozhe Xie # @Last Modified time: 2020-05-25 09:13:32 # @Email: cshzxie@gmail.com import logging import open3d import torch from Chamfer3D.dist_chamfer_3D import chamfer_3DDist class Metrics(object): ITEMS = [{ 'name': 'ChamferDistance', 'enabled': True, 'eval_func': 'cls._get_chamfer_distance', 'eval_object': chamfer_3DDist(), # 'eval_object': ChamferDistance(ignore_zeros=True), 'is_greater_better': False, 'init_value': 32767 }] @classmethod def get(cls, pred, gt): _items = cls.items() _values = [0] * len(_items) for i, item in enumerate(_items): eval_func = eval(item['eval_func']) _values[i] = eval_func(pred, gt) return _values @classmethod def items(cls): return [i for i in cls.ITEMS if i['enabled']] @classmethod def names(cls): _items = cls.items() return [i['name'] for i in _items] @classmethod def _get_f_score(cls, pred, gt, th=0.01): """References: https://github.com/lmb-freiburg/what3d/blob/master/util.py""" pred = cls._get_open3d_ptcloud(pred) gt = cls._get_open3d_ptcloud(gt) dist1 = pred.compute_point_cloud_distance(gt) dist2 = gt.compute_point_cloud_distance(pred) recall = float(sum(d < th for d in dist2)) / float(len(dist2)) precision = float(sum(d < th for d in dist1)) / float(len(dist1)) return 2 * recall * precision / (recall + precision) if recall + precision else 0 @classmethod def _get_open3d_ptcloud(cls, tensor): tensor = tensor.squeeze().cpu().numpy() ptcloud = open3d.geometry.PointCloud() ptcloud.points = open3d.utility.Vector3dVector(tensor) return ptcloud @classmethod def _get_chamfer_distance(cls, pred, gt): # chamfer_distance = cls.ITEMS[1]['eval_object'] chamfer_distance = cls.ITEMS[0]['eval_object'] d1, d2, _, _ = chamfer_distance(pred, gt) cd = torch.mean(d1) + torch.mean(d2) return cd.item() * 1000 # return chamfer_distance(pred, gt).item() * 1000 @classmethod def _get_emd_distance(cls, pred, gt): emd_distance = cls.ITEMS[0]['eval_object'] return torch.mean(emd_distance(pred, gt)).item() def __init__(self, metric_name, values): self._items = Metrics.items() self._values = [item['init_value'] for item in self._items] self.metric_name = metric_name if type(values).__name__ == 'list': self._values = values elif type(values).__name__ == 'dict': metric_indexes = {} for idx, item in enumerate(self._items): item_name = item['name'] metric_indexes[item_name] = idx for k, v in values.items(): if k not in metric_indexes: logging.warn('Ignore Metric[Name=%s] due to disability.' % k) continue self._values[metric_indexes[k]] = v else: raise Exception('Unsupported value type: %s' % type(values)) def state_dict(self): _dict = dict() for i in range(len(self._items)): item = self._items[i]['name'] value = self._values[i] _dict[item] = value return _dict def __repr__(self): return str(self.state_dict()) def better_than(self, other): if other is None: return True _index = -1 for i, _item in enumerate(self._items): if _item['name'] == self.metric_name: _index = i break if _index == -1: raise Exception('Invalid metric name to compare.') _metric = self._items[i] _value = self._values[_index] other_value = other._values[_index] return _value > other_value if _metric['is_greater_better'] else _value < other_value
32.181102
93
0.590898
7952609e9f72568f6207d4ca79537c3b28a117d4
203
py
Python
classy_start/paths.py
mfonism/django-classy-start
70b73e1a836c2ae4c3bae6f53846b07a30a81ac0
[ "MIT" ]
1
2022-01-20T18:48:46.000Z
2022-01-20T18:48:46.000Z
classy_start/paths.py
mfonism/django-classy-start
70b73e1a836c2ae4c3bae6f53846b07a30a81ac0
[ "MIT" ]
8
2020-10-05T15:27:07.000Z
2021-02-16T17:17:54.000Z
classy_start/paths.py
mfonism/django-classy-start
70b73e1a836c2ae4c3bae6f53846b07a30a81ac0
[ "MIT" ]
5
2020-10-05T18:11:44.000Z
2022-01-21T18:33:13.000Z
import pathlib TEMPLATES_DIR = pathlib.Path(__file__).resolve(strict=True).parent / 'conf' APP_TEMPLATES_DIR = TEMPLATES_DIR / 'app_template' PROJECT_TEMPLATES_DIR = TEMPLATES_DIR / 'project_template'
29
75
0.807882
795260caef24ee8f231bab564ac699dadd75fb00
1,375
py
Python
cogdl/data/dataloader.py
Somefive/cogdl
1c5ab88aafc27529495d0d22f781055619e27cb2
[ "MIT" ]
1
2021-03-17T07:23:51.000Z
2021-03-17T07:23:51.000Z
cogdl/data/dataloader.py
yingyukexiansheng/cogdl
cf594cdb3a97f45333d08c937205d1a691828a33
[ "MIT" ]
null
null
null
cogdl/data/dataloader.py
yingyukexiansheng/cogdl
cf594cdb3a97f45333d08c937205d1a691828a33
[ "MIT" ]
null
null
null
import torch.utils.data from torch.utils.data.dataloader import default_collate from cogdl.data import Batch, Data class DataLoader(torch.utils.data.DataLoader): r"""Data loader which merges data objects from a :class:`cogdl.data.dataset` to a mini-batch. Args: dataset (Dataset): The dataset from which to load the data. batch_size (int, optional): How may samples per batch to load. (default: :obj:`1`) shuffle (bool, optional): If set to :obj:`True`, the data will be reshuffled at every epoch (default: :obj:`True`) """ def __init__(self, dataset, batch_size=1, shuffle=True, **kwargs): super(DataLoader, self).__init__( # dataset, batch_size, shuffle, collate_fn=lambda data_list: Batch.from_data_list(data_list), **kwargs dataset, batch_size, shuffle, collate_fn=self.collate_fn, **kwargs, ) @staticmethod def collate_fn(batch): item = batch[0] if isinstance(item, Data): return Batch.from_data_list(batch) elif isinstance(item, torch.Tensor): return default_collate(batch) elif isinstance(item, float): return torch.tensor(batch, dtype=torch.float) raise TypeError("DataLoader found invalid type: {}".format(type(item)))
34.375
114
0.633455
795260edc9b41a9d3c0c76ccf0622e352e51fd4a
132
py
Python
myproj/api/routes/hello_v1/__init__.py
jbarguil/python-rest-server
d050d095555c9bad3e2e94b4e0c51075cc6ad3bc
[ "MIT" ]
null
null
null
myproj/api/routes/hello_v1/__init__.py
jbarguil/python-rest-server
d050d095555c9bad3e2e94b4e0c51075cc6ad3bc
[ "MIT" ]
null
null
null
myproj/api/routes/hello_v1/__init__.py
jbarguil/python-rest-server
d050d095555c9bad3e2e94b4e0c51075cc6ad3bc
[ "MIT" ]
null
null
null
"""v1 of the Hello API """ from .api import api, blueprint from .hello import namespace as ns_hello api.add_namespace(ns_hello)
13.2
40
0.742424
7952611de7e54899944a86432e54961eb181d179
1,055
py
Python
src/groups/migrations/0001_initial.py
OmarYehia/django-social_network
83fc6fd288fe23684409c43bf51c7fca01297481
[ "MIT" ]
null
null
null
src/groups/migrations/0001_initial.py
OmarYehia/django-social_network
83fc6fd288fe23684409c43bf51c7fca01297481
[ "MIT" ]
null
null
null
src/groups/migrations/0001_initial.py
OmarYehia/django-social_network
83fc6fd288fe23684409c43bf51c7fca01297481
[ "MIT" ]
1
2021-05-13T15:08:12.000Z
2021-05-13T15:08:12.000Z
# Generated by Django 3.2 on 2021-05-03 23:05 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ('profiles', '0007_alter_relationship_managers'), ] operations = [ migrations.CreateModel( name='Group', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=50)), ('overview', models.TextField(blank=True, default='No overview available', max_length=500, null=True)), ('updated_at', models.DateTimeField(auto_now=True)), ('created_at', models.DateTimeField(auto_now_add=True)), ('owner', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='+', to='profiles.profile')), ('user', models.ManyToManyField(blank=True, to='profiles.Profile')), ], ), ]
36.37931
131
0.617062
7952619ae3844ac0b36c3566ebb9a2737af62eb2
7,587
py
Python
gsae/utils/load_splits.py
dbhaskar92/GSAE
3340dfc38f95b29ff04d890d93deedf8dcae9324
[ "Apache-2.0" ]
3
2021-05-18T21:28:54.000Z
2022-01-29T23:59:18.000Z
gsae/utils/load_splits.py
dbhaskar92/GSAE
3340dfc38f95b29ff04d890d93deedf8dcae9324
[ "Apache-2.0" ]
null
null
null
gsae/utils/load_splits.py
dbhaskar92/GSAE
3340dfc38f95b29ff04d890d93deedf8dcae9324
[ "Apache-2.0" ]
3
2021-07-07T17:48:28.000Z
2022-01-29T23:59:21.000Z
import numpy as np import torch import torch.utils.data from torch import nn, optim from torch.nn import functional as F from gsae.utils import eval_metrics # DEFINE THESE GLOBAL VARIABLES WITH YOUR OWN PATHS TO DATA ######################################## SEQ3_DATA_DIR = '' SEQ4_DATA_DIR = '' HIVTAR_DATA_DIR = '' TEBOWN_DATA_DIR = '' ######################################## def load_seq3(batch_size=100,gnn=False, subsize=None, lognorm=False): train_coeffs = np.load(SEQ3_DATA_DIR+"train_normcoeffs_0523.npy") train_adjs = np.load(SEQ3_DATA_DIR+"train_adjs_0523.npy") train_energies = np.load(SEQ3_DATA_DIR+"train_energies_0523.npy") test_coeffs = np.load(SEQ3_DATA_DIR+"test_normcoeffs_0523.npy") test_adjs = np.load(SEQ3_DATA_DIR+"test_adjs_0523.npy") test_energies = np.load(SEQ3_DATA_DIR+"test_energies_0523.npy") if lognorm: # shift train_coeffs += np.abs(train_coeffs.min()) + 1 test_coeffs += np.abs(train_coeffs.min()) + 1 # log train_coeffs = np.log(train_coeffs) test_coeffs = np.log(test_coeffs) if gnn: train_diracs = torch.eye(train_adjs.shape[-1]).unsqueeze(0).repeat(train_adjs.shape[0],1,1) train_tup = (torch.Tensor(train_diracs), torch.Tensor(train_adjs), torch.Tensor(train_energies)) else: train_tup = (torch.Tensor(train_coeffs), torch.Tensor(train_energies)) if gnn: test_diracs = torch.eye(test_adjs.shape[-1]).unsqueeze(0).repeat(test_adjs.shape[0],1,1) test_tup = (torch.Tensor(test_diracs), torch.Tensor(test_adjs), torch.Tensor(test_energies)) else: test_tup = (torch.Tensor(test_coeffs), torch.Tensor(test_adjs), torch.Tensor(test_energies)) ################# # SUBSET DATA ################# if subsize != None: train_tup, _ = eval_metrics.compute_subsample(train_tup, subsize) test_tup, _ = eval_metrics.compute_subsample(test_tup, subsize) train_dataset = torch.utils.data.TensorDataset(*train_tup) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True) return train_loader, train_tup, test_tup def load_seq4(batch_size=100, gnn=False, subsize=None): train_coeffs = np.load(SEQ4_DATA_DIR+"train_normcoeffs_0523.npy") train_adjs = np.load(SEQ4_DATA_DIR+"train_adjs_0523.npy") train_energies = np.load(SEQ4_DATA_DIR+"train_energies_0523.npy") test_coeffs = np.load(SEQ4_DATA_DIR+"test_normcoeffs_0523.npy") test_adjs = np.load(SEQ4_DATA_DIR+"test_adjs_0523.npy") test_energies = np.load(SEQ4_DATA_DIR+"test_energies_0523.npy") if gnn: train_diracs = torch.eye(train_adjs.shape[-1]).unsqueeze(0).repeat(train_adjs.shape[0],1,1) train_tup = (torch.Tensor(train_diracs), torch.Tensor(train_adjs), torch.Tensor(train_energies)) else: train_tup = (torch.Tensor(train_coeffs), torch.Tensor(train_energies)) if gnn: test_diracs = torch.eye(test_adjs.shape[-1]).unsqueeze(0).repeat(test_adjs.shape[0],1,1) test_tup = (torch.Tensor(test_diracs), torch.Tensor(test_adjs), torch.Tensor(test_energies)) else: test_tup = (torch.Tensor(test_coeffs), torch.Tensor(test_adjs), torch.Tensor(test_energies)) ################# # SUBSET DATA ################# if subsize != None: train_tup, _ = eval_metrics.compute_subsample(train_tup, subsize) test_tup, _ = eval_metrics.compute_subsample(test_tup, subsize) train_dataset = torch.utils.data.TensorDataset(*train_tup) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True) return train_loader, train_tup, test_tup def load_hivtar(batch_size=100,gnn=False,subsize=None): train_coeffs = np.load(HIVTAR_DATA_DIR+"train_normcoeffs_0523.npy") train_adjs = np.load(HIVTAR_DATA_DIR+"train_adjs_0523.npy") train_energies = np.load(HIVTAR_DATA_DIR+"train_energies_0523.npy") test_coeffs = np.load(HIVTAR_DATA_DIR+"test_normcoeffs_0523.npy") test_adjs = np.load(HIVTAR_DATA_DIR+"test_adjs_0523.npy") test_energies = np.load(HIVTAR_DATA_DIR+"test_energies_0523.npy") if gnn: train_diracs = torch.eye(train_adjs.shape[-1]).unsqueeze(0).repeat(train_adjs.shape[0],1,1) train_tup = (torch.Tensor(train_diracs), torch.Tensor(train_adjs), torch.Tensor(train_energies)) else: train_tup = (torch.Tensor(train_coeffs), torch.Tensor(train_energies)) if gnn: test_diracs = torch.eye(test_adjs.shape[-1]).unsqueeze(0).repeat(test_adjs.shape[0],1,1) test_tup = (torch.Tensor(test_diracs), torch.Tensor(test_adjs), torch.Tensor(test_energies)) else: test_tup = (torch.Tensor(test_coeffs), torch.Tensor(test_adjs), torch.Tensor(test_energies)) ################# # SUBSET DATA ################# if subsize != None: train_tup, _ = eval_metrics.compute_subsample(train_tup, subsize) test_tup, _ = eval_metrics.compute_subsample(test_tup, subsize) train_dataset = torch.utils.data.TensorDataset(*train_tup) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True) return train_loader, train_tup, test_tup def load_tebown(batch_size=100,gnn=False, subsize=None): train_coeffs = np.load(TEBOWN_DATA_DIR+"train_normcoeffs_0523.npy") train_adjs = np.load(TEBOWN_DATA_DIR+"train_adjs_0523.npy") train_energies = np.load(TEBOWN_DATA_DIR+"train_energies_0523.npy") test_coeffs = np.load(TEBOWN_DATA_DIR+"test_normcoeffs_0523.npy") test_adjs = np.load(TEBOWN_DATA_DIR+"test_adjs_0523.npy") test_energies = np.load(TEBOWN_DATA_DIR+"test_energies_0523.npy") if gnn: train_diracs = torch.eye(train_adjs.shape[-1]).unsqueeze(0).repeat(train_adjs.shape[0],1,1) train_tup = (torch.Tensor(train_diracs), torch.Tensor(train_adjs), torch.Tensor(train_energies)) else: train_tup = (torch.Tensor(train_coeffs), torch.Tensor(train_energies)) if gnn: test_diracs = torch.eye(test_adjs.shape[-1]).unsqueeze(0).repeat(test_adjs.shape[0],1,1) test_tup = (torch.Tensor(test_diracs), torch.Tensor(test_adjs), torch.Tensor(test_energies)) else: test_tup = (torch.Tensor(test_coeffs), torch.Tensor(test_adjs), torch.Tensor(test_energies)) ################# # SUBSET DATA ################# if subsize != None: train_tup, _ = eval_metrics.compute_subsample(train_tup, subsize) test_tup, _ = eval_metrics.compute_subsample(test_tup, subsize) train_dataset = torch.utils.data.TensorDataset(*train_tup) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True) return train_loader, train_tup, test_tup
33.131004
99
0.626203
795261c4a0db7e1ccd4e62ff4c7a884211b985e0
3,567
py
Python
accelerator/test_methods/a_test_rechain.py
sebras/berkeman-accelerator
be9d1b25ffdb66411db465bdbf3932ab937c5ace
[ "Apache-2.0" ]
null
null
null
accelerator/test_methods/a_test_rechain.py
sebras/berkeman-accelerator
be9d1b25ffdb66411db465bdbf3932ab937c5ace
[ "Apache-2.0" ]
null
null
null
accelerator/test_methods/a_test_rechain.py
sebras/berkeman-accelerator
be9d1b25ffdb66411db465bdbf3932ab937c5ace
[ "Apache-2.0" ]
null
null
null
############################################################################ # # # Copyright (c) 2019 Carl Drougge # # # # Licensed under the Apache License, Version 2.0 (the "License"); # # you may not use this file except in compliance with the License. # # You may obtain a copy of the License at # # # # http://www.apache.org/licenses/LICENSE-2.0 # # # # Unless required by applicable law or agreed to in writing, software # # distributed under the License is distributed on an "AS IS" BASIS, # # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # # See the License for the specific language governing permissions and # # limitations under the License. # # # ############################################################################ from __future__ import print_function from __future__ import division from __future__ import unicode_literals description = r''' Test re-using datasets (from test_selfchain) in new chains, and verify that the old chain still works. Also tests that the dataset cache is updated correctly on re-chaining. ''' from accelerator.dataset import Dataset, DatasetWriter jobids = ('selfchain',) def synthesis(job): manual_chain = [Dataset(jobids.selfchain, name) for name in "abcdefgh"] manual_abf = [manual_chain[0], manual_chain[1], manual_chain[5]] # build a local abf chain prev = None for ix, ds in enumerate(manual_abf): name = "abf%d" % (ix,) prev = ds.link_to_here(name, override_previous=prev) manual_abf_data = list(Dataset.iterate_list(None, None, manual_abf)) local_abf_data = list(Dataset(job, "abf2").iterate_chain(None, None)) assert manual_abf_data == local_abf_data # disconnect h, verify there is no chain manual_chain[-1].link_to_here("alone", override_previous=None) assert len(Dataset(job, "alone").chain()) == 1 # check that the original chain is unhurt assert manual_chain == manual_chain[-1].chain() # So far so good, now make a chain long enough to have a cache. prev = None ix = 0 going = True while going: if prev and "cache" in prev._data: going = False name = "longchain%d" % (ix,) dw = DatasetWriter(name=name, previous=prev) dw.add("ix", "number") dw.get_split_write()(ix) prev = dw.finish() ix += 1 # we now have a chain that goes one past the first cache point full_chain = Dataset(prev).chain() assert "cache" in full_chain[-2]._data # just to check the above logic is correct assert "cache" not in full_chain[-1]._data # just to be sure.. full_chain[-2].link_to_here("nocache", override_previous=None) full_chain[-1].link_to_here("withcache", override_previous=full_chain[-3]) assert "cache" not in Dataset(job, "nocache")._data assert "cache" in Dataset(job, "withcache")._data # And make sure they both get the right data too. assert list(Dataset(prev).iterate_chain(None, "ix")) == list(range(ix)) assert list(Dataset(job, "nocache").iterate_chain(None, "ix")) == [ix - 2] assert list(Dataset(job, "withcache").iterate_chain(None, "ix")) == list(range(ix - 2)) + [ix - 1]
46.934211
99
0.583403
795263e8dea3e395ad6bb8df0351e520a0a4f702
219
py
Python
dsat/test/__init__.py
jul/dsat
f1d4263eb29530f931273f0dd2e74b93b8bacca3
[ "BSD-2-Clause" ]
2
2015-10-25T04:07:40.000Z
2017-06-22T20:18:10.000Z
dsat/test/__init__.py
jul/dsat
f1d4263eb29530f931273f0dd2e74b93b8bacca3
[ "BSD-2-Clause" ]
5
2015-01-20T14:44:28.000Z
2015-01-20T14:50:12.000Z
dsat/test/__init__.py
jul/dsat
f1d4263eb29530f931273f0dd2e74b93b8bacca3
[ "BSD-2-Clause" ]
null
null
null
from __future__ import absolute_import import unittest from dsat.test.test_state import TestFilterDict from dsat.test.test_st_send_parse import TestSendParse if __name__ == '__main__': unittest.main(verbosity=4)
21.9
54
0.821918
7952644ebf47766b7f6eae6f77084e12872117a4
3,702
py
Python
RAISoft/instruments/TTi.py
daveraees/EMA_Test_Lab
a3073c5ec205d6ee327a993b38e92698c12cb0a6
[ "MIT" ]
null
null
null
RAISoft/instruments/TTi.py
daveraees/EMA_Test_Lab
a3073c5ec205d6ee327a993b38e92698c12cb0a6
[ "MIT" ]
null
null
null
RAISoft/instruments/TTi.py
daveraees/EMA_Test_Lab
a3073c5ec205d6ee327a993b38e92698c12cb0a6
[ "MIT" ]
null
null
null
#from GPIBdevices import GPIBDevice #from SERIALdevices import SERIALDevice from DummyMeter import Bedna # import bus from numpy import array from time import sleep class PStsx3510P(Bedna): """ # test PowerSource from threading import Thread from time import sleep import random PowerSource = PStsx3510P('PowerSourceTTi') def Source(): while True: PowerSource.set_volts(random.random()) PowerSource.Measure() #PowerSource.OUTqueue.join() print 'source:', PowerSource.Readings sleep(0.5) return def Valve(): while True: #PT100.Measure() sleep(0.5) PowerSource.Set(random.random()) PowerSource.Measure() #PowerSource.OUTqueue.join() print 'valve:', PowerSource.Readings return source = Thread(target=Source) valve = Thread(target=Valve) source.setDaemon(True) valve.setDaemon(True) source.start() valve.start() valve.join(50) source.join(54) """ sleeptime = 0.1 def __init__(self, BUS): Bedna.__init__(self, BUS) self.Readings = {'U(V)':array([]), 'I(A)':array([])} self.dev.initSequence = ['I 1.0'] self.init() self.limitA = self.get_amperes_limit() self.out_of_bounds = 0 return def _assert_OPC(self): self.Bus.write_string('*OPC') return def Measure(self): volts = self._get_volts() amperes = self._get_amperes() self.Readings['U(V)'] = array([volts]) self.Readings['I(A)'] = array([amperes]) #wats = self._get_wats() #self.Readings = array([wats]) measurement_error = 0 return measurement_error def _get_volts(self): self.Bus.write_string(('VO?')) sleep(self.sleeptime) voltage = self.Bus.read_string() voltage = voltage.strip('V') return float(voltage) def set_volts(self, voltage): cmdString = ('V %f' % voltage) self.Bus.write_string( cmdString) return def _get_amperes(self): self.Bus.write_string(('IO?')) sleep(self.sleeptime) amperes = self.Bus.read_string() amperes = amperes.strip('A') return float(amperes) def get_amperes_limit(self): cmdString = ('I?') self.Bus.write_string(cmdString) sleep(self.sleeptime) amperes = self.Bus.read_string() print amperes amperes = amperes.strip('I') return float(amperes) def set_amperes_limit(self, amperes): cmdString = ('I %f' % amperes) self.Bus.write_string(cmdString) return def _get_wats(self): self.Bus.write_string(('POWER?')) sleep(self.sleeptime) wats = self.Bus.read_string() wats = wats.strip('W') return float(wats) def set_output_on(self): self.Bus.write_string(('OP 1' )) return def set_output_off(self): self.Bus.write_string(('OP 0' )) return def Set(self, value): out_of_bounds = 0 if value < 0: out_of_bounds = 1 self.set_volts(0.0) elif value > 4.0: # limit the PELTIER voltage to 4 volts out_of_bounds = 2 self.set_volts(35) else: self.Bus.write_string(('V %f' % value)) #self._assert_OPC() self.out_of_bounds = out_of_bounds return
30.097561
71
0.548622
7952648bd92bca9903e524922674905dc24b5a47
2,601
py
Python
cumulusci/tasks/salesforce/BaseRetrieveMetadata.py
justindonnaruma/CumulusCI
cc097c1f6f102a104f83ad9a9684af9d6bc0af31
[ "BSD-3-Clause" ]
null
null
null
cumulusci/tasks/salesforce/BaseRetrieveMetadata.py
justindonnaruma/CumulusCI
cc097c1f6f102a104f83ad9a9684af9d6bc0af31
[ "BSD-3-Clause" ]
2
2021-03-25T23:56:47.000Z
2021-03-31T19:52:05.000Z
cumulusci/tasks/salesforce/BaseRetrieveMetadata.py
justindonnaruma/CumulusCI
cc097c1f6f102a104f83ad9a9684af9d6bc0af31
[ "BSD-3-Clause" ]
null
null
null
from cumulusci.core.utils import process_bool_arg from cumulusci.tasks.salesforce import BaseSalesforceMetadataApiTask from cumulusci.utils import zip_inject_namespace from cumulusci.utils import zip_strip_namespace from cumulusci.utils import zip_tokenize_namespace class BaseRetrieveMetadata(BaseSalesforceMetadataApiTask): task_options = { 'path': { 'description': 'The path to write the retrieved metadata', 'required': True, }, 'unmanaged': { 'description': "If True, changes namespace_inject to replace tokens with a blank string", }, 'namespace_inject': { 'description': "If set, the namespace tokens in files and filenames are replaced with the namespace's prefix", }, 'namespace_strip': { 'description': "If set, all namespace prefixes for the namespace specified are stripped from files and filenames", }, 'namespace_tokenize': { 'description': "If set, all namespace prefixes for the namespace specified are replaced with tokens for use with namespace_inject", }, 'namespaced_org': { 'description': "If True, the tokens %%%NAMESPACED_ORG%%% and ___NAMESPACED_ORG___ will get replaced with the namespace. The default is false causing those tokens to get stripped and replaced with an empty string. Set this if deploying to a namespaced scratch org or packaging org.", }, } def _run_task(self): api = self._get_api() src_zip = api() self._extract_zip(src_zip) self.logger.info('Extracted retrieved metadata into {}'.format(self.options['path'])) def _process_namespace(self, src_zip): if self.options.get('namespace_tokenize'): src_zip = zip_tokenize_namespace(src_zip, self.options['namespace_tokenize'], logger=self.logger) if self.options.get('namespace_inject'): kwargs = {} kwargs['unmanaged'] = process_bool_arg(self.options.get('unmanaged', True)) kwargs['namespaced_org'] = process_bool_arg(self.options.get('namespaced_org', False)) kwargs['logger'] = self.logger src_zip = zip_inject_namespace(src_zip, self.options['namespace_inject'], **kwargs) if self.options.get('namespace_strip'): src_zip = zip_strip_namespace(src_zip, self.options['namespace_strip'], logger=self.logger) return src_zip def _extract_zip(self, src_zip): src_zip = self._process_namespace(src_zip) src_zip.extractall(self.options['path'])
49.075472
296
0.678201
795264c0eb2e7292c1dd16f454213f7cbda121ea
1,664
py
Python
origins/migrations/0081_auto_20220106_0124.py
dennereed/paleocore
d6da6c39cde96050ee4b9e7213ec1200530cbeee
[ "MIT" ]
null
null
null
origins/migrations/0081_auto_20220106_0124.py
dennereed/paleocore
d6da6c39cde96050ee4b9e7213ec1200530cbeee
[ "MIT" ]
null
null
null
origins/migrations/0081_auto_20220106_0124.py
dennereed/paleocore
d6da6c39cde96050ee4b9e7213ec1200530cbeee
[ "MIT" ]
null
null
null
# Generated by Django 3.2.5 on 2022-01-06 01:24 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('origins', '0080_auto_20211209_1423'), ] operations = [ migrations.AddField( model_name='nomen', name='generic_name', field=models.CharField(blank=True, help_text='The genus portion of the scientific name, e.g. Homo.', max_length=255, null=True), ), migrations.AddField( model_name='nomen', name='specific_epithet', field=models.CharField(blank=True, help_text='The trivial (species) portion of the scientific name, e.g. sapiens.', max_length=255, null=True), ), migrations.AddField( model_name='nomen', name='taxon_rank_group', field=models.CharField(blank=True, choices=[('species-group', 'species-group'), ('genus-group', 'genus-group'), ('family-group', 'family-group')], max_length=255, null=True), ), migrations.AddField( model_name='nomen', name='type_genus', field=models.CharField(blank=True, max_length=255, null=True), ), migrations.AddField( model_name='nomen', name='type_species', field=models.CharField(blank=True, max_length=255, null=True), ), migrations.AlterField( model_name='nomen', name='authorship', field=models.CharField(blank=True, help_text='The authorship of the naming publication, date included, e.g. King, 1864', max_length=255, null=True), ), ]
37.818182
186
0.602163
79526558c7b20033331dcc6b639869c681bc3b2e
16,733
py
Python
app/engine/skill_system.py
zerorock1312/lt-maker-master
82f733683f9dba763a5de8567c41fd7cbcfb0173
[ "MIT" ]
null
null
null
app/engine/skill_system.py
zerorock1312/lt-maker-master
82f733683f9dba763a5de8567c41fd7cbcfb0173
[ "MIT" ]
null
null
null
app/engine/skill_system.py
zerorock1312/lt-maker-master
82f733683f9dba763a5de8567c41fd7cbcfb0173
[ "MIT" ]
null
null
null
class Defaults(): @staticmethod def can_select(unit) -> bool: return unit.team == 'player' @staticmethod def check_ally(unit1, unit2) -> bool: if unit1 is unit2: return True elif unit1.team == 'player' or unit1.team == 'other': return unit2.team == 'player' or unit2.team == 'other' else: return unit2.team == unit1.team return False @staticmethod def check_enemy(unit1, unit2) -> bool: if unit1.team == 'player' or unit1.team == 'other': return not (unit2.team == 'player' or unit2.team == 'other') else: return not unit2.team == unit1.team return True @staticmethod def can_trade(unit1, unit2) -> bool: return unit2.position and unit1.team == unit2.team and check_ally(unit1, unit2) @staticmethod def exp_multiplier(unit1, unit2) -> float: return 1.0 @staticmethod def enemy_exp_multiplier(unit1, unit2) -> float: return 1.0 @staticmethod def steal_icon(unit1, unit2) -> bool: return False @staticmethod def has_canto(unit1, unit2) -> bool: return False @staticmethod def empower_heal(unit1, unit2) -> int: return 0 @staticmethod def limit_maximum_range(unit, item) -> int: return 1000 @staticmethod def modify_maximum_range(unit, item) -> int: return 0 @staticmethod def movement_type(unit): return None @staticmethod def sight_range(unit): return 0 @staticmethod def empower_splash(unit): return 0 @staticmethod def modify_buy_price(unit, item) -> float: return 1.0 @staticmethod def modify_sell_price(unit, item) -> float: return 1.0 @staticmethod def damage_formula(unit) -> str: return 'DAMAGE' @staticmethod def resist_formula(unit) -> str: return 'DEFENSE' @staticmethod def accuracy_formula(unit) -> str: return 'HIT' @staticmethod def avoid_formula(unit) -> str: return 'AVOID' @staticmethod def crit_accuracy_formula(unit) -> str: return 'CRIT_HIT' @staticmethod def crit_avoid_formula(unit) -> str: return 'CRIT_AVOID' @staticmethod def attack_speed_formula(unit) -> str: return 'ATTACK_SPEED' @staticmethod def defense_speed_formula(unit) -> str: return 'DEFENSE_SPEED' # Takes in unit, returns False if not present # All default hooks are exclusive formula = ('damage_formula', 'resist_formula', 'accuracy_formula', 'avoid_formula', 'crit_accuracy_formula', 'crit_avoid_formula', 'attack_speed_formula', 'defense_speed_formula') default_behaviours = ( 'pass_through', 'vantage', 'ignore_terrain', 'crit_anyway', 'ignore_region_status', 'no_double', 'def_double', 'alternate_splash', 'ignore_rescue_penalty', 'ignore_forced_movement', 'distant_counter') # Takes in unit, returns default value exclusive_behaviours = ('can_select', 'movement_type', 'sight_range', 'empower_splash') exclusive_behaviours += formula # Takes in unit and item, returns default value item_behaviours = ('modify_buy_price', 'modify_sell_price', 'limit_maximum_range', 'modify_maximum_range') # Takes in unit and target, returns default value targeted_behaviours = ('check_ally', 'check_enemy', 'can_trade', 'exp_multiplier', 'enemy_exp_multiplier', 'steal_icon', 'has_canto', 'empower_heal') # Takes in unit, item returns bonus modify_hooks = ( 'modify_damage', 'modify_resist', 'modify_accuracy', 'modify_avoid', 'modify_crit_accuracy', 'modify_crit_avoid', 'modify_attack_speed', 'modify_defense_speed') # Takes in unit, item, target, mode, returns bonus dynamic_hooks = ('dynamic_damage', 'dynamic_resist', 'dynamic_accuracy', 'dynamic_avoid', 'dynamic_crit_accuracy', 'dynamic_crit_avoid', 'dynamic_attack_speed', 'dynamic_defense_speed', 'dynamic_multiattacks') # Takes in unit, item, target, mode returns bonus multiply_hooks = ('damage_multiplier', 'resist_multiplier') # Takes in unit simple_event_hooks = ('on_death',) # Takes in playback, unit, item, target combat_event_hooks = ('start_combat', 'cleanup_combat', 'end_combat', 'pre_combat', 'post_combat', 'test_on', 'test_off') # Takes in actions, playback, unit, item, target, mode subcombat_event_hooks = ('after_hit', 'after_take_hit') # Takes in unit, item item_event_hooks = ('on_add_item', 'on_remove_item', 'on_equip_item', 'on_unequip_item') def condition(skill, unit) -> bool: for component in skill.components: if component.defines('condition'): if not component.condition(unit): return False return True for behaviour in default_behaviours: func = """def %s(unit): for skill in unit.skills: for component in skill.components: if component.defines('%s'): if component.ignore_conditional or condition(skill, unit): return component.%s(unit) return False""" \ % (behaviour, behaviour, behaviour) exec(func) for behaviour in exclusive_behaviours: func = """def %s(unit): for skill in unit.skills: for component in skill.components: if component.defines('%s'): if component.ignore_conditional or condition(skill, unit): return component.%s(unit) return Defaults.%s(unit)""" \ % (behaviour, behaviour, behaviour, behaviour) exec(func) for behaviour in targeted_behaviours: func = """def %s(unit1, unit2): for skill in unit1.skills: for component in skill.components: if component.defines('%s'): if component.ignore_conditional or condition(skill, unit1): return component.%s(unit1, unit2) return Defaults.%s(unit1, unit2)""" \ % (behaviour, behaviour, behaviour, behaviour) exec(func) for behaviour in item_behaviours: func = """def %s(unit, item): for skill in unit.skills: for component in skill.components: if component.defines('%s'): if component.ignore_conditional or condition(skill, unit): return component.%s(unit, item) return Defaults.%s(unit, item)""" \ % (behaviour, behaviour, behaviour, behaviour) exec(func) for hook in modify_hooks: func = """def %s(unit, item): val = 0 for skill in unit.skills: for component in skill.components: if component.defines('%s'): if component.ignore_conditional or condition(skill, unit): val += component.%s(unit, item) return val""" \ % (hook, hook, hook) exec(func) for hook in dynamic_hooks: func = """def %s(unit, item, target, mode): val = 0 for skill in unit.skills: for component in skill.components: if component.defines('%s'): if component.ignore_conditional or condition(skill, unit): val += component.%s(unit, item, target, mode) return val""" \ % (hook, hook, hook) exec(func) for hook in multiply_hooks: func = """def %s(unit, item, target, mode): val = 1 for skill in unit.skills: for component in skill.components: if component.defines('%s'): if component.ignore_conditional or condition(skill, unit): val *= component.%s(unit, item, target, mode) return val""" \ % (hook, hook, hook) exec(func) for hook in simple_event_hooks: func = """def %s(unit): for skill in unit.skills: for component in skill.components: if component.defines('%s'): if component.ignore_conditional or condition(skill, unit): component.%s(unit)""" \ % (hook, hook, hook) exec(func) for hook in combat_event_hooks: func = """def %s(playback, unit, item, target, mode): for skill in unit.skills: for component in skill.components: if component.defines('%s'): if component.ignore_conditional or condition(skill, unit): component.%s(playback, unit, item, target, mode)""" \ % (hook, hook, hook) exec(func) for hook in subcombat_event_hooks: func = """def %s(actions, playback, unit, item, target, mode): for skill in unit.skills: for component in skill.components: if component.defines('%s'): component.%s(actions, playback, unit, item, target, mode)""" \ % (hook, hook, hook) exec(func) for hook in item_event_hooks: func = """def %s(unit, item): for skill in unit.skills: for component in skill.components: if component.defines('%s'): component.%s(unit, item)""" \ % (hook, hook, hook) exec(func) def available(unit, item) -> bool: """ If any hook reports false, then it is false """ for skill in unit.skills: for component in skill.components: if component.defines('available'): if component.ignore_conditional or condition(skill, unit): if not component.available(unit, item): return False return True def stat_change(unit, stat) -> int: bonus = 0 for skill in unit.skills: for component in skill.components: if component.defines('stat_change'): if component.ignore_conditional or condition(skill, unit): d = component.stat_change(unit) bonus += d.get(stat, 0) return bonus def growth_change(unit, stat) -> int: bonus = 0 for skill in unit.skills: for component in skill.components: if component.defines('growth_change'): if component.ignore_conditional or condition(skill, unit): d = component.growth_change(unit) bonus += d.get(stat, 0) return bonus def mana(playback, unit, item, target) -> int: mana = 0 for skill in unit.skills: for component in skill.components: if component.defines('mana'): if component.ignore_conditional or condition(skill, unit): d = component.mana(playback, unit, item, target) mana += d return mana def can_unlock(unit, region) -> bool: for skill in unit.skills: for component in skill.components: if component.defines('can_unlock'): if component.ignore_conditional or condition(skill, unit): if component.can_unlock(unit, region): return True return False def on_upkeep(actions, playback, unit) -> tuple: # actions, playback for skill in unit.skills: for component in skill.components: if component.defines('on_upkeep'): if component.ignore_conditional or condition(skill, unit): component.on_upkeep(actions, playback, unit) return actions, playback def on_endstep(actions, playback, unit) -> tuple: # actions, playback for skill in unit.skills: for component in skill.components: if component.defines('on_endstep'): if component.ignore_conditional or condition(skill, unit): component.on_endstep(actions, playback, unit) return actions, playback def on_end_chapter(unit, skill): for component in skill.components: if component.defines('on_end_chapter'): if component.ignore_conditional or condition(skill, unit): component.on_end_chapter(unit, skill) def init(skill): """ Initializes any data on the parent skill if necessary """ for component in skill.components: if component.defines('init'): component.init(skill) def on_add(unit, skill): for component in skill.components: if component.defines('on_add'): component.on_add(unit, skill) for other_skill in unit.skills: for component in other_skill.components: if component.defines('on_gain_skill'): component.on_gain_skill(unit, skill) def on_remove(unit, skill): for component in skill.components: if component.defines('on_remove'): component.on_remove(unit, skill) def re_add(unit, skill): for component in skill.components: if component.defines('re_add'): component.re_add(unit, skill) def get_text(skill) -> str: for component in skill.components: if component.defines('text'): return component.text() return None def get_cooldown(skill) -> float: for component in skill.components: if component.defines('cooldown'): return component.cooldown() return None def trigger_charge(unit, skill): for component in skill.components: if component.defines('trigger_charge'): component.trigger_charge(unit, skill) return None def get_extra_abilities(unit): abilities = {} for skill in unit.skills: for component in skill.components: if component.defines('extra_ability'): if component.ignore_conditional or condition(skill, unit): new_item = component.extra_ability(unit) ability_name = new_item.name abilities[ability_name] = new_item return abilities def get_combat_arts(unit): from app.engine import item_funcs, target_system combat_arts = {} for skill in unit.skills: if not condition(skill, unit): continue combat_art = None combat_art_weapons = [item for item in item_funcs.get_all_items(unit) if item_funcs.available(unit, item)] combat_art_set_max_range = None combat_art_modify_max_range = None for component in skill.components: if component.defines('combat_art'): combat_art = component.combat_art(unit) if component.defines('combat_art_weapon_filter'): combat_art_weapons = component.combat_art_weapon_filter(unit) if component.defines('combat_art_set_max_range'): combat_art_set_max_range = component.combat_art_set_max_range(unit) if component.defines('combat_art_modify_max_range'): combat_art_modify_max_range = component.combat_art_modify_max_range(unit) if combat_art and combat_art_weapons: good_weapons = [] # Check which of the good weapons meet the range requirements for weapon in combat_art_weapons: # Just for testing range if combat_art_set_max_range: weapon._force_max_range = max(0, combat_art_set_max_range) elif combat_art_modify_max_range: max_range = max(item_funcs.get_range(unit, weapon)) weapon._force_max_range = max(0, max_range + combat_art_modify_max_range) targets = target_system.get_valid_targets(unit, weapon) weapon._force_max_range = None if targets: good_weapons.append(weapon) if good_weapons: combat_arts[skill.name] = (skill, good_weapons) return combat_arts def activate_combat_art(unit, skill): for component in skill.components: if component.defines('on_activation'): component.on_activation(unit) def deactivate_all_combat_arts(unit): for skill in unit.skills: for component in skill.components: if component.defines('on_deactivation'): component.on_deactivation(unit)
37.350446
149
0.595769
795265591cb23f5862ab396366f61bce30369b4a
710
py
Python
NTA_detect_domain_flux.py
SYANiDE-/ViolentPython
1e56ef7f006272b170bba0a642860a892c016baa
[ "BSD-2-Clause" ]
2
2019-02-21T08:38:32.000Z
2019-02-22T03:15:02.000Z
NTA_detect_domain_flux.py
SYANiDE-/ViolentPython
1e56ef7f006272b170bba0a642860a892c016baa
[ "BSD-2-Clause" ]
null
null
null
NTA_detect_domain_flux.py
SYANiDE-/ViolentPython
1e56ef7f006272b170bba0a642860a892c016baa
[ "BSD-2-Clause" ]
null
null
null
#!/usr/bin/env python2 from scapy.all import * import sys def QRTest(pk): if pk.haslayer(DNSRR) and pk.getlayer(UDP).sport == 53: rcode = pk.getlayer(DNS).rcode qname = pk.getlayer(DNSQR).qname if rcode == 3: print("[!] Name lookup failed: %s" % qname) return True else: return False def main(): if len(sys.argv) <> 2: print("USAGE: %S %S" % (sys.argv[0], "[pcap file]")) sys.exit() else: UR = 0 pk = rdpcap(sys.argv[1]) for p in pk: if QRTest(p): UR = UR + 1 print("[!] %d total unanswered DNS requests" % UR) if __name__=="__main__": main()
21.515152
60
0.504225
795267097d2f8a808fe305716e45f2dd983268d2
6,106
py
Python
canopy/openapi/models/new_study_data_source.py
CanopySimulations/canopy-python
9ec37e674e65d6fbef0402ac0c612c163d55631e
[ "MIT" ]
null
null
null
canopy/openapi/models/new_study_data_source.py
CanopySimulations/canopy-python
9ec37e674e65d6fbef0402ac0c612c163d55631e
[ "MIT" ]
1
2022-01-31T10:18:08.000Z
2022-01-31T10:18:08.000Z
canopy/openapi/models/new_study_data_source.py
CanopySimulations/canopy-python
9ec37e674e65d6fbef0402ac0c612c163d55631e
[ "MIT" ]
null
null
null
# coding: utf-8 """ Canopy.Api No description provided (generated by Openapi Generator https://github.com/openapitools/openapi-generator) # noqa: E501 The version of the OpenAPI document: v1 Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six from canopy.openapi.configuration import Configuration class NewStudyDataSource(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'config_type': 'str', 'user_id': 'str', 'config_id': 'str', 'name': 'str', 'is_edited': 'bool' } attribute_map = { 'config_type': 'configType', 'user_id': 'userId', 'config_id': 'configId', 'name': 'name', 'is_edited': 'isEdited' } def __init__(self, config_type=None, user_id=None, config_id=None, name=None, is_edited=None, local_vars_configuration=None): # noqa: E501 """NewStudyDataSource - a model defined in OpenAPI""" # noqa: E501 if local_vars_configuration is None: local_vars_configuration = Configuration() self.local_vars_configuration = local_vars_configuration self._config_type = None self._user_id = None self._config_id = None self._name = None self._is_edited = None self.discriminator = None if config_type is not None: self.config_type = config_type if user_id is not None: self.user_id = user_id if config_id is not None: self.config_id = config_id if name is not None: self.name = name if is_edited is not None: self.is_edited = is_edited @property def config_type(self): """Gets the config_type of this NewStudyDataSource. # noqa: E501 :return: The config_type of this NewStudyDataSource. # noqa: E501 :rtype: str """ return self._config_type @config_type.setter def config_type(self, config_type): """Sets the config_type of this NewStudyDataSource. :param config_type: The config_type of this NewStudyDataSource. # noqa: E501 :type: str """ self._config_type = config_type @property def user_id(self): """Gets the user_id of this NewStudyDataSource. # noqa: E501 :return: The user_id of this NewStudyDataSource. # noqa: E501 :rtype: str """ return self._user_id @user_id.setter def user_id(self, user_id): """Sets the user_id of this NewStudyDataSource. :param user_id: The user_id of this NewStudyDataSource. # noqa: E501 :type: str """ self._user_id = user_id @property def config_id(self): """Gets the config_id of this NewStudyDataSource. # noqa: E501 :return: The config_id of this NewStudyDataSource. # noqa: E501 :rtype: str """ return self._config_id @config_id.setter def config_id(self, config_id): """Sets the config_id of this NewStudyDataSource. :param config_id: The config_id of this NewStudyDataSource. # noqa: E501 :type: str """ self._config_id = config_id @property def name(self): """Gets the name of this NewStudyDataSource. # noqa: E501 :return: The name of this NewStudyDataSource. # noqa: E501 :rtype: str """ return self._name @name.setter def name(self, name): """Sets the name of this NewStudyDataSource. :param name: The name of this NewStudyDataSource. # noqa: E501 :type: str """ self._name = name @property def is_edited(self): """Gets the is_edited of this NewStudyDataSource. # noqa: E501 :return: The is_edited of this NewStudyDataSource. # noqa: E501 :rtype: bool """ return self._is_edited @is_edited.setter def is_edited(self, is_edited): """Sets the is_edited of this NewStudyDataSource. :param is_edited: The is_edited of this NewStudyDataSource. # noqa: E501 :type: bool """ self._is_edited = is_edited def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, NewStudyDataSource): return False return self.to_dict() == other.to_dict() def __ne__(self, other): """Returns true if both objects are not equal""" if not isinstance(other, NewStudyDataSource): return True return self.to_dict() != other.to_dict()
27.137778
143
0.585653
7952671517cfbf1dc7e9bc8daf3e7bd62e1d2b1d
4,919
py
Python
read_data_cifar100.py
ImLaoBJie/yolo3_sort_deepsort
ae34fab9a2a7ae122a38bc44d145f049e2808b52
[ "MIT" ]
13
2020-07-16T16:59:49.000Z
2022-02-06T14:12:32.000Z
read_data_cifar100.py
ronyclear/yolo3sort
6a6028d42f240aa0b79656f36f85f96b9a90ab00
[ "MIT" ]
2
2020-10-13T02:03:55.000Z
2021-04-24T14:59:04.000Z
read_data_cifar100.py
ronyclear/yolo3sort
6a6028d42f240aa0b79656f36f85f96b9a90ab00
[ "MIT" ]
4
2019-12-28T05:59:32.000Z
2020-04-12T14:13:35.000Z
import pickle import numpy as np import os import matplotlib.pyplot as plt PATH = 'cifar-100-python/' REMOVE = list(range(0, 100)) REMAIN = list(np.concatenate([[11, 35, 46, 98], [8, 13, 48, 58], [81, 85]])) for i in REMAIN: REMOVE.remove(i) def filter(image, label): # filter remove_index = [] for index, element in enumerate(label): if int(element) in REMOVE: remove_index.append(index) label = np.delete(label, remove_index) image = np.delete(image, remove_index, 0) if not REMAIN == []: value = 0 for index in REMAIN: label[label == np.int32(index)] = np.int32(value) value = value + 1 return image, label def load_CIFAR_batch(filename, N, data_filter: bool): # 单个batch # load single batch of cifar with open(filename, 'rb') as f: datadict = pickle.load(f, encoding='latin1') # dict类型 image = datadict['data'] # X, ndarray, 像素值 label = datadict['fine_labels'] # Y, list, 标签, 分类 # check the id of fine_labels relevant to the coarse_labels # label = np.array(label) # coarse = np.array(datadict['coarse_labels']) # print(np.unique(label[np.array(np.where(coarse == 19))[0]])) # reshape, 一维数组转为矩阵10000行3列。每个entries是32x32 # transpose,转置 # astype,复制,同时指定类型 image = image.reshape(N, 3, 32, 32).transpose(0, 2, 3, 1).astype('float') label = np.array(label) if data_filter: image, label = filter(image, label) return image, label def load_CIFAR100(path, data_filter: bool): # 所有batch # load all of cifar images = [] # list labels = [] # 训练集 f = os.path.join(path, 'train') image, label = load_CIFAR_batch(f, 50000, data_filter) images.append(image) labels.append(label) images = np.concatenate(images) # [ndarray, ndarray] 合并为一个ndarray labels = np.concatenate(labels) # 测试集 img_val, lab_val = load_CIFAR_batch(os.path.join(path, 'test'), 10000, data_filter) return images, labels, img_val, lab_val # 警告:使用该函数可能会导致内存溢出,可以适当修改减少扩充量 # WARNING:Using this function may cause out of memory and OS breakdown def creat_more_data(images): # 通过旋转、翻转扩充数据 expand dataset through rotation and mirroring images_rot90 = [] images_rot180 = [] images_rot270 = [] img_lr = [] img_ud = [] for index in range(0, images.shape[0]): band_1 = images[index, :, :, 0] band_2 = images[index, :, :, 1] band_3 = images[index, :, :, 2] # 旋转90, rotating 90 degrees band_1_rot90 = np.rot90(band_1) band_2_rot90 = np.rot90(band_2) band_3_rot90 = np.rot90(band_3) images_rot90.append(np.dstack((band_1_rot90, band_2_rot90, band_3_rot90))) # 180 band_1_rot180 = np.rot90(band_1_rot90) band_2_rot180 = np.rot90(band_2_rot90) band_3_rot180 = np.rot90(band_3_rot90) images_rot180.append(np.dstack((band_1_rot180, band_2_rot180, band_3_rot180))) # 270 band_1_rot270 = np.rot90(band_1_rot180) band_2_rot270 = np.rot90(band_2_rot180) band_3_rot270 = np.rot90(band_3_rot180) images_rot270.append(np.dstack((band_1_rot270, band_2_rot270, band_3_rot270))) # 左右翻转 flip horizontally lr1 = np.flip(band_1, 0) lr2 = np.flip(band_2, 0) lr3 = np.flip(band_3, 0) img_lr.append(np.dstack((lr1, lr2, lr3))) # 上下反转 flip vertical ud1 = np.flip(band_1, 1) ud2 = np.flip(band_2, 1) ud3 = np.flip(band_3, 1) img_ud.append(np.dstack((ud1, ud2, ud3))) rot90 = np.array(images_rot90) rot180 = np.array(images_rot180) rot270 = np.array(images_rot270) lr = np.array(img_lr) ud = np.array(img_ud) images = np.concatenate((rot90, rot180, rot270, lr, ud)) return images def shuffle(images, labels): permutation = np.random.permutation(images.shape[0]) shuffled_dataset = images[permutation, :, :, :] shuffled_labels = labels[permutation] return shuffled_dataset, shuffled_labels def data(path, more_data: bool, shuffle_data: bool, data_filter: bool): images, labels, img_val, lab_val = load_CIFAR100(path, data_filter) if more_data: # 扩充数据 expand dataset images = creat_more_data(np.array(images)) # 扩充标签 expend labels labels = np.concatenate((labels, labels, labels, labels, labels, labels)) if shuffle_data: images, labels = shuffle(images, labels) img_val, lab_val = shuffle(img_val, lab_val) return images, labels, img_val, lab_val def main(): images, labels, img_val, lab_val = data(PATH, False, True, True) # test print(len(images)) print(len(labels)) plt.imshow(images[0] / 255) print(images[0]) print(labels[0]) plt.show() if __name__ == '__main__': main()
29.106509
87
0.630616
7952675efdb3678e523cae7768d4d265a384a903
654
py
Python
taco_aug_scripts/get_zw_metal_avg_wxh.py
dbash/zerowaste
4047ae92a31cece9d848d38a57fd33cc85e7a8bb
[ "MIT" ]
11
2021-06-09T04:16:39.000Z
2022-03-02T07:33:25.000Z
taco_aug_scripts/get_zw_metal_avg_wxh.py
dbash/zerowaste
4047ae92a31cece9d848d38a57fd33cc85e7a8bb
[ "MIT" ]
2
2022-01-11T10:15:15.000Z
2022-03-24T23:16:13.000Z
create_zerowasteaug/get_zw_metal_avg_wxh.py
dbash/zerowaste
4047ae92a31cece9d848d38a57fd33cc85e7a8bb
[ "MIT" ]
3
2021-11-02T08:26:10.000Z
2022-02-24T06:09:58.000Z
import json import os import shutil import ntpath # f = open('/research/axns2/mabdelfa/TACO/data/coco_format/labels.json',) data = json.load(f) total_w = 0 total_h = 0 n = 0 for ann in data['annotations']: if ann['category_id'] == 3: total_w += ann['bbox'][2] total_h += ann['bbox'][3] n += 1 print(total_w/n, total_h/n) f = open('/research/axns2/mabdelfa/zerowaste/zerowaste-f/train/labels.json',) data = json.load(f) total_w = 0 total_h = 0 n = 0 for ann in data['annotations']: if ann['category_id'] == 3: total_w += ann['bbox'][2] total_h += ann['bbox'][3] n += 1 print(total_w/n, total_h/n)
21.8
77
0.619266
795267c3f831a21d6f02048c881ca79c8ce5cbe4
2,090
py
Python
tests/providers/google/cloud/operators/test_video_intelligence_system.py
IGIT-CN/airflow
a6e5bcd59198afe5716813e84ebc4c59eade532c
[ "Apache-2.0" ]
3
2015-08-25T13:56:44.000Z
2020-03-21T10:26:58.000Z
tests/providers/google/cloud/operators/test_video_intelligence_system.py
IGIT-CN/airflow
a6e5bcd59198afe5716813e84ebc4c59eade532c
[ "Apache-2.0" ]
37
2020-07-21T07:50:02.000Z
2022-03-29T22:31:28.000Z
tests/providers/google/cloud/operators/test_video_intelligence_system.py
IGIT-CN/airflow
a6e5bcd59198afe5716813e84ebc4c59eade532c
[ "Apache-2.0" ]
4
2020-07-17T14:02:28.000Z
2022-02-23T04:29:58.000Z
# # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import os import pytest from airflow.providers.google.cloud.example_dags.example_video_intelligence import GCP_BUCKET_NAME from tests.providers.google.cloud.utils.gcp_authenticator import GCP_AI_KEY, GCP_GCS_KEY from tests.test_utils.gcp_system_helpers import CLOUD_DAG_FOLDER, GoogleSystemTest, provide_gcp_context GCP_PROJECT_ID = os.environ.get("GCP_PROJECT_ID", "example-project") GCP_VIDEO_SOURCE_URL = "https://www.sample-videos.com/video123/mp4/720/big_buck_bunny_720p_1mb.mp4" @pytest.mark.backend("mysql", "postgres") @pytest.mark.credential_file(GCP_AI_KEY) class CloudVideoIntelligenceExampleDagsTest(GoogleSystemTest): @provide_gcp_context(GCP_AI_KEY) def setUp(self): self.create_gcs_bucket(GCP_BUCKET_NAME, location="europe-north1") self.execute_with_ctx( cmd=[ "bash", "-c", f"curl {GCP_VIDEO_SOURCE_URL} | gsutil cp - gs://{GCP_BUCKET_NAME}/video.mp4" ], key=GCP_GCS_KEY ) super().setUp() @provide_gcp_context(GCP_AI_KEY) def tearDown(self): self.delete_gcs_bucket(GCP_BUCKET_NAME) super().tearDown() @provide_gcp_context(GCP_AI_KEY) def test_example_dag(self): self.run_dag('example_gcp_video_intelligence', CLOUD_DAG_FOLDER)
38.703704
103
0.745455
795268ec9e57b5fa316a76d81f92ba12d0f3ef4f
30,778
py
Python
bin/jbam_tools_v02.py
yasinkaymaz/ViralGenomeAssembly
03e75ee7358946823660a299e0718213dbbd161c
[ "MIT" ]
null
null
null
bin/jbam_tools_v02.py
yasinkaymaz/ViralGenomeAssembly
03e75ee7358946823660a299e0718213dbbd161c
[ "MIT" ]
null
null
null
bin/jbam_tools_v02.py
yasinkaymaz/ViralGenomeAssembly
03e75ee7358946823660a299e0718213dbbd161c
[ "MIT" ]
null
null
null
#!/usr/bin/python ###standard modules import argparse #parse initial arguements from command line import re import os import os.path import pickle import sys import subprocess import textwrap import glob import csv from collections import defaultdict, Counter #from collections import namedtuple import collections #key science modules import pysam #for reading sam files as well as other files import numpy as np import pybedtools as pybt #import numpy.string_ #import csv ## key bio python modules #print pybt.check_for_bedtools() import Bio from Bio import SeqIO from Bio.SeqRecord import SeqRecord from Bio.Seq import Seq from Bio.Alphabet import generic_dna from Bio import AlignIO from Bio import Phylo #not used yet but good for reading dendograms from clustalw ###other biologic modules import pybedtools as pybt #pybedtools.load_path_config( 'bedtoolspath.txt')#{ ###global variable to allow for documentation in location for subcommands ###this is populated as code is traversed initially until main is launched at end ##This work will all be in as start zero and end 1 coordinates UCSC unless noted ## e.g. in ACTG , CT would be designated as 1,3 (this is the same as python) ##built in defaults to incorporated key programs specific to install## ## these never change on an install unlike the config file that can require ## modificaitons between builds, organisms, etc. #note to programmers: pysam access is all base [0,1) for tabix and fasta files # Fastafile.fetch(self, reference=None, start=None, end=None, region=None) # (reference = None, start = None, end = None, region = None) ############################################################################### # INSTALL SPECIFIC ENVIRONMENTAL PARAMETERS ################################## ############################################################################### #binpath='/data/bailey/CNV_MIP_R01/pipeline_design/bin' #path_clustalw='/usr/bin/clustalw' #pybt.set_tempdir('/scratch') #pybt.load_path_config( { 'bedtools' , '/share/pkg/bedtools/2.22.0/bin/', 'tabix' , '/share/pkg/tabix/0.2.6/', 'r', '/share/pkg/R/2.15.0/bin/R', 'tabix', '/share/pkg/tabix/0.2.6/'}) ############################################################################### # INITIALIZE GLOBAL VARIABLES ################################################# ############################################################################### subcommands={} #collects data at the point #https://www.docker.io/learn_more/ ############################################################################### # LIST OF NEEDED DATA SETS #################################################### ############################################################################### # Common SNPs(137) - SNPs with >= 1% minor allele frequency (MAF), mapping only once to reference assembly. # Flagged SNPs(137) - SNPs < 1% minor allele frequency (MAF) (or unknown), mapping only once to reference assembly, flagged in dbSnp as "clinically associated" -- not necessarily a risk allele! # Mult. SNPs(137) - SNPs mapping in more than one place on reference assembly. #All SNPs(137) - all SNPs from dbSNP mapping to reference assembly. #ALL SNPS (138) #gunzip -c snp138.txt.gz | cut -f 2- | bgzip > snp138.bed0.gz #tabix -s 1 -b 2 -e 3 -0 snp138.bed0.gz ###Get all text UCSC file ### #gunzip -c simpleRepeat.txt.gz | cut -f 2- | bgzip > simpleRepeat.bed0.gz #tabix -s 1 -b 2 -e 3 -0 simpleRepeat.bed0.gz ####All SNPs is the most useful since it contains everything else and can be parsed to our specifications ############################################################################### # MAIN ############################################################### ############################################################################### aparser=argparse.ArgumentParser() def main( args ): """Main allows selection of the main subcommand (aka function). Each subcommand launches a separate function. The pydoc subcommand launches pydoc on this overall program file. :param args: the main command line arguments passed minus subcommand """ #print globals().keys() if len(args) == 0 or args[0] in ["h", "help", "-h", "--h", "--help","-help"] : verbosity= 'shortDesc' if args[0] in ["help" , "--help", "-help"]: verbosity = 'longDesc' program_name=os.path.basename(__file__) print "USAGE:",program_name, "[-h] subcommand [suboptions]" print "DESCRIPTION: A collection of tools to create and manipulate MIPs" print "SUBCOMMANDS:" #tw=TextWrap() for k in subcommands.keys(): text=subcommands[k][verbosity] text= textwrap.dedent(text) if text: text = "%s: %s " %(k, text ) print textwrap.fill(text,77, initial_indent='', subsequent_indent=' ') print "HELP:" print "pydoc detailed documentation of program structure" print "-h/-help short / long subcommand descriptions" print "For specific options:",program_name,"[subcommand] --help" elif args[0] == 'pydoc': os.system( "pydoc " + os.path.abspath(__file__) ) elif args[0] in subcommands.keys(): #execute sub command function globals()[args[0]](args[1:]) else: print "unknown subcommand (" + args[0] + ") use -h for list of subcommands!" sys.exit(-1) sys.exit(0) #normal exit #------------------------------------------------------------------------------ ############################################################################### #### SUBCOMMAND DESIGN_REGION ################################################ ############################################################################### #------------------------------------------------------------------------------ ############################################################################### #### SUBCOMMAND: MERGE BAM ALIGNED CONTIGS AGAINST REFERENCE ################# ############################################################################### shortDescText="merge ref aligned contigs that overlap when placed on reference" longDescText="""merge contigs that have been aligned to a reference-- finds overlaps and deals with poorly trimmed ends (containing extraneous seq) as well as with poor depth and resolves sequence differences due to these artifcats """ subcommands['ref_merge_contigs'] = { 'shortDesc':shortDescText, 'longDesc': longDescText } def ref_merge_contigs(args): """This subcommand scans a bam file against a region or genome and merges sequences (contigs) resolving discrepancies based on multiple different parameters including distance from end of contig, number of differences from reference, depth of reads, etc. """ aparser.add_argument("-c", "--contig_bam", required=True, help='indexed contig bam file against reference') aparser.add_argument("-n", "--nameChr", required=True, help='indexed contig bam file against reference (added by Cliff and Yasin)') aparser.add_argument("-r", "--read_bam", required=False, help='indexed read bam file against reference') aparser.add_argument("-f", "--fasta_reference", required=True, help='indexed read bam file against reference') aparser.add_argument("-u", "--unmapped_trim_length" ,required=True, type=int, help='number of bases to remove when end not aligned') aparser.add_argument("-t", "--mapped_trim_max_length", required=True, type=int, help='number of base pairs from end of contig to potentially trim') aparser.add_argument("-g", "--good_end_max_mismatch", required=True, type=int, help='number of mismatches to tolerate before calling bad end') aparser.add_argument("--min_unique_bp", required=True,type=int ,help = ' number of unique bases') aparser.add_argument( "--regions_to_mask", required=False, help='repetitive or other regions to exclude') aparser.add_argument("--wipe", required=False, action="store_true",help='wipe any intermediate tmp files (fully_reruns process)') aparser.add_argument("--verbose", required=False, action="store_true",help='provide additional output for debugging') aparser.add_argument("--check",required=False, action="store_true",help='initial check of genome databases for integrity') aparser.add_argument("-o","--outfilebase", help='output base path and filename for generated data') ##fix need to change the program name## fullname= aparser.prog + " ref_merge_contigs" aparser.prog=fullname args=aparser.parse_args(args=args) contigbam=pysam.Samfile(args.contig_bam, 'rb') ###load reference sequence ### from Bio import SeqIO refseqs = list( SeqIO.parse(args.fasta_reference, "fasta")) print refseqs[0].id print refseqs[0] newref=[None] * (len(refseqs[0].seq)+1) ###load mask regions ### tmp=FlexBed.readfile(args.regions_to_mask, args.nameChr) maskbed=FlexBed(tmp) if args.read_bam: readbam=pysam.Samfile(args.read_bam, 'rb') print "Mapped # of reads:", readbam.mapped print "Reference of reads mapped to is ", readbam.references print "Reference length :", readbam.lengths # Read_pile = readbam.pileup(readbam.references[0]) NucleotidesfromReads = {} for readcol in readbam.pileup(readbam.references[0]): readcolnucleotides = [] deletedReads=[] # print ("\ncoverage at base %s = %s" %(readcol.pos, readcol.n)) for pileupread in readcol.pileups: # if not pileupread.is_del and not pileupread.is_refskip: # query position is None if is_del or is_refskip is set. if pileupread.indel > 0: # print pileupread.indel, readcol.reference_pos, pileupread.alignment.query_sequence[pileupread.query_position:pileupread.query_position+pileupread.indel+1] readcolnucleotides.append(pileupread.alignment.query_sequence[pileupread.query_position:pileupread.query_position+pileupread.indel+1]) elif pileupread.is_del: # print readcol.reference_pos deletedReads.append(readcol.reference_pos) readcolnucleotides.append(pileupread.alignment.query_sequence[pileupread.query_position]) else: readcolnucleotides.append(pileupread.alignment.query_sequence[pileupread.query_position]) readnucleotidecomposition=collections.Counter(readcolnucleotides) # print readnucleotidecomposition, ConsensusReadBase='' if len(readnucleotidecomposition.most_common(2)) > 1: if readnucleotidecomposition.most_common(2)[0][1] == readnucleotidecomposition.most_common(2)[1][1]: # print readcol.pos, readnucleotidecomposition.most_common(1)[0], readnucleotidecomposition.most_common(2)[1], refseqs[0].seq[readcol.reference_pos] ConsensusReadBase=refseqs[0].seq[readcol.reference_pos] else: ConsensusReadBase=readnucleotidecomposition.most_common(1)[0][0] else: ConsensusReadBase=readnucleotidecomposition.most_common(1)[0][0] # print readcol.pos, readnucleotidecomposition.most_common(1)[0] if len(deletedReads) > readcol.n/2: # print len(deletedReads), readcol.reference_pos ConsensusReadBase='' else: pass # print readnucleotidecomposition # print(readnucleotidecomposition.most_common(1)) # print readcol.reference_pos, readnucleotidecomposition.most_common(1)[0][0] NucleotidesfromReads[readcol.reference_pos]=ConsensusReadBase print NucleotidesfromReads # print ('\tbase in read %s = %s' %(pileupread.alignment.query_name,pileupread.alignment.query_sequence[pileupread.query_position])) # for readread in readcol.pileups: # print readread.query_position, readread.alignment.seq[readread.query_position] #HERE STORE READ BASE frequencies in a dict. keep Major variant. ### output basic statistics for the bam file # print "NO COORDINATE #:", contigbam.nocoordinate print "Contigs MAPPED #:", contigbam.mapped # print "REFERENCE #: contigbam.nreferences print "REFERENCES:", contigbam.references print "REF LENGTHS:", contigbam.lengths ### NEW REFERENCE GENOME ### # refbases= [None]* (len refseqs[0].Seq +10000) ### GENERATE LIST OF CONTIGS ### print "READING CONTIGS..." contigs=[] contigdict={} for s in contigbam: a=ContigSegment() # print "a:",a a.data=s a.name = a.data.query_name a.length = a.data.query_length contigdict[a.name]=a contigs.append(a) if a.data.is_unmapped: ###add code here to dump unmapped contigs continue else: a.start = a.data.reference_start a.end = a.data.reference_end ### SORT CONTIGS DESCENDING ORDER ### print "SORTING CONTIGS ON THE BASIS OF LENGTH LARGEST TO SMALLEST..." contigs = sorted(contigs, key=lambda cntg:cntg.data.query_length, reverse=True) print "Sorting done." ############################################################################# ### RUN THROUGH THE ENTIRE PILEUP ########################################### pile = contigbam.pileup(contigbam.references[0]) for col in pile: ref_base='' contig_bases=[] for read in col.pileups: readbase = read.alignment.seq[read.query_position] ref_base = refseqs[0].seq[col.reference_pos] # print read.query_position, readbase, ref_base # print read.query_position ### the entire inserted sequence ### readseq = read.alignment.query_sequence[read.query_position: read.query_position+read.indel+1] qname= read.alignment.query_name ### DETERMINE BASES FROM EITHER END (NEGATIVE -- RIGHT)(POSITIVE --LEFT) endpos=calculate_endposition(read.query_position, read.alignment.query_length) if contigdict[qname].leftmost_endpos==None: contigdict[qname].leftmost_endpos=endpos contigdict[qname].rightmost_endpos=endpos #print col.pos, ref_base, readbase, readseq, read.indel if abs (endpos) <= int(args.mapped_trim_max_length): d= [endpos,read.indel,readbase, ref_base, read.query_position ,readseq ] #print qname, endpos, read.query_position, read.alignment.query_length, " ", if endpos <0: contigdict[qname].right_bases.append(d) contigdict[qname].right_aligned+=1 if readbase!=ref_base: contigdict[qname].right_mismatches+=1 else: contigdict[qname].left_bases.append(d) contigdict[qname].left_aligned+=1 if readbase!=ref_base: contigdict[qname].left_mismatches+=1 # print qname, contigdict[qname].left_mismatches,":" , contigdict[qname].left_aligned, " ",contigdict[qname].right_mismatches, ":", contigdict[qname].right_aligned ############################################################################# print "CONTIG PROCESSING FOR DUP/REPEAT CONTENT AND FOR END ALIGNMENT QUALITY..." for c in contigs: ### find repetitive content #print c.leftmost_endpos, c.rightmost_endpos, c.length if c.data.is_unmapped==False: qname = c.name repeatoverlap=maskbed.calc_bp_overlap2interval(contigbam.references[0],c.start, c.end) c.uniquebp = c.end-c.start - repeatoverlap #print c.start, c.end, "LEN", c.length, "UNIQUE",c.uniquebp #check right alignment for x in c.right_bases: if x[1]==0 and x[2]==x[3]: c.right_last_good=x[0] else: break #check left alignment c.left_bases=sorted(c.left_bases , key= lambda x:x[0],reverse=True) for x in c.left_bases: if x[1]==0 and x[2]==x[3]: c.left_last_good=x[0] else: break #print c.left_bases #print c.left_last_good ############################################################################# pile = contigbam.pileup(contigbam.references[0]) #TODO: learn out to reset print "PICK THE BEST BASE AND RECORD CHANGES..." for col in pile: ref_base='' contig_bases=[] ### HERE WE CAN START LOOKING AT GENOMIC REGIONS WITHOUT CONTIGS TO SEE IF THERE IS READ SUPPORT FROM READ ALIGNMENT FILE, ### from i=0 to i=endOfGenome: IF i is not col.reference_pos; then look at alignment file to see if there is any read aligned to i. in other words, check if col.reference_pos in NucleotidesfromReads.keys(): ### if if col.reference_pos in NucleotidesfromReads.keys(): TRUE then take the base as newbase for read in col.pileups: readbase = read.alignment.query_sequence[read.query_position] ref_base = refseqs[0].seq[col.reference_pos] readseq = read.alignment.query_sequence[read.query_position: read.query_position+read.indel+1] # print col.pos, "R",ref_base, readbase, readseq ### DETERMINE BASES FROM END ### endpos=calculate_endposition(read.query_position, read.alignment.query_length) valid=True repeat=False if abs (endpos) <= int(args.mapped_trim_max_length): last_good_base = contigdict[read.alignment.query_name].left_last_good if endpos < 0: last_good_base = contigdict[read.alignment.query_name].right_last_good if last_good_base == None or abs(endpos) < abs(last_good_base): valid=False if contigdict[read.alignment.query_name].uniquebp < args.min_unique_bp: repeat=True readdata = [readbase, readseq, endpos, read.indel, read.query_position, read.alignment.query_length, read.alignment.query_name, valid, repeat] contig_bases.append(readdata) ### out of contig loop ################# allbasecounts = [ c[1] for c in contig_bases ] allbasecounts = Counter(allbasecounts) #VALID CONTIGS ARE ANCHORED IN NONREPETIVE SEQUENCE contig_bases_valid=[c for c in contig_bases if c[7]==True and c[8]==False] validbasecounts=[c[1] for c in contig_bases_valid ] validbasecounts=Counter(validbasecounts) validbases=validbasecounts.keys() # print "here is valid bases", validbases, col.reference_pos newbase="NOT DETERMINED" if len (validbases) == 1: ### we have single sequence in all our contigs that are valid ### # if ref_base == validbases[0] and col.reference_pos in NucleotidesfromReads.keys(): #contigs same as reference AND READ PILE UP IS PRESENT # newbase=NucleotidesfromReads[col.reference_pos] # elif ref_base != validbases[0] and col.reference_pos in NucleotidesfromReads.keys(): # newbase= validbases[0].lower() #lowercase (for reference) if col.reference_pos in NucleotidesfromReads.keys(): newbase=NucleotidesfromReads[col.reference_pos]#************************************************* else: #contigs represent a substitution newbase=validbases[0] #uppercase elif len (validbases) > 1: if len(validbases[0]) > 1 or len(validbases[1]) > 1: print "This should be inserted: ", validbases[0], validbases[1] if ref_base in validbases: #MULTIPLE WELL PLACED VALID CONTIGS# maxlen=max( [c[5] for c in contig_bases_valid ] ) lendict={} for c in contig_bases_valid: lendict[c[5]] = c[1] #WARNINGS START if lendict[maxlen] != ref_base and args.verbose: print col.pos, ref_base print "WARNING ref_base", ref_base, " is not the largest contig", c[5], lendict print " ", contig_bases for c in contig_bases_valid: if len(c[1])>10: print col.pos, ref_base, c[1],"WARNINGSKIPPING LARGE INSERTION" #WARNINGS END if col.reference_pos in NucleotidesfromReads.keys(): newbase=NucleotidesfromReads[col.reference_pos]#************************************************* #HERE WHERE YOU NEED TO PICK MAJOR VARIANT!!! print "Here you should pick Major var:", NucleotidesfromReads[col.reference_pos], col.reference_pos else: newbase=ref_base.lower()#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! else: if args.verbose: print "WARNING: NO REF BASE DESPITE MULTIPLE BASES--PICK LARGER CONTIG" contig_bases=sorted(contig_bases, key=lambda cntg:cntg[5], reverse=True) if col.reference_pos in NucleotidesfromReads.keys(): newbase=NucleotidesfromReads[col.reference_pos]#************************************************* else: newbase=contig_bases[0][1] #HERE WHERE YOU CAN PICK MAJOR VARIANT!!! elif len (validbases) ==0: check=[] for c in contig_bases: span=abs(c[2])+c[3] if c[2] > 0: #left with #print "LEFT TRIM ",span, args.unmapped_trim_length if span > int(args.unmapped_trim_length): contigdict[c[6]].left_trim=args.unmapped_trim_length starttrim=contigdict[c[6]].left_trim-c[2]+1 newbase=c[1][starttrim:] ###add a removal step #print "fixiing trim", starttrim, contigdict[c[6]].left_trim, newbase else: newbase='' else: #C[2] <0 left if len(c[1]) > 5: print contig_bases print " ",allbasecounts print "RIGHT ",span, args.unmapped_trim_length print else: #toss it newbase='' check.append(newbase) check=sorted(check,key=lambda x:len(x),reverse=True) if len(check) > 1: print "here is check: ", check if check[0]=='': check[0]=None newbase=None ### OUT OF THE LOOP newref[col.pos]=newbase if newbase == "NOT DETERMINED" : print "NEWBASE",newbase print ref_base, col.pos print contig_bases print allbasecounts print contig_bases_valid sys.exit(0) #######################################################################3##### ### DUMP THE OUTPUT ######################################################## lastpos=None contig=0 gfile = open ( args.outfilebase + "_genome.fa", 'w') gfile.write( '>'+args.outfilebase + "\n") cfile = open ( args.outfilebase + "_contig_new.fa", 'w') contigseq='' for seq in newref: if seq==None: gfile.write('N') else: gfile.write(seq) contigseq+=seq if seq==None and lastpos!=None: name=str(contig).zfill(3) cfile.write( ">"+name+"\n") cfile.write(contigseq+"\n") contigseq='' contig+=1 lastpos=seq gfile.close() cfile.close() ###### DUMP THE OLD CONTIGS ALBEIT TRIMMED ################################## cfile = open ( args.outfilebase + "_contig_old.fa", 'w') for c in contigs: header=">"+c.name seq='' begin=None end=None if c.data.is_unmapped: begin=args.unmapped_trim_length end=c.length-args.unmapped_trim_length header+="_tt" else: #left #### print c.left_last_good, c.right_last_good, c.name begin=args.unmapped_trim_length left="t" if c.left_last_good !=None and begin <= args.mapped_trim_max_length: begin=c.left_last_good-1 left="T" #right end=c.length-args.unmapped_trim_length right="t" if c.right_last_good != None and c.right_last_good <= args.mapped_trim_max_length: end= c.length + c.right_last_good + 1 right="T" header+="_"+left+right header+=str(begin) + "-"+str(end) + " OLDLEN" + str(c.length) #### print len (c.data.query_sequence), c.length seq= c.data.query_sequence[begin:end] cfile.write(header+ "\n"+ seq + "\n") cfile.close() def calculate_endposition(readposition, readlength): endpos=0 # zero is the edge , positive bases are left, negative are negative if readposition < readlength/2 : endpos=readposition + 1 #left side will be positive bases from end else: endpos=-1*(readlength-readposition) #right side will be negative bases from end return endpos class ContigSegment(): """ A Data structure for Segments """ def __init__(self): self.seq=None self.ref_begin=None self.ref_end=None self.name=None self.length=None self.rightmost_endpos=None self.leftmost_endpos=None self.left_mismatches=0 self.right_mismatches=0 self.left_last_good=None self.right_last_good=None self.left_bases=[] self.right_bases=[] self.left_aligned=0 self.right_aligned=0 self.left_trim=None #number of bases to trim back self.right_trim =None #base corrections self.fixes=[] # [[start,end,newbases]] newbases="" for deletion self.data=None self.base_aligned_unique=None ##---------------------------------------------------------------------------- class FlexBed: """flexible format bed class for in memory manipulations note: beds are just lists but this provides static methods to operate on such lists. the only fixed data requirements are: #col(1)seq/chr name #col(2)begin position (zero coordinate) #col(3)end position (one cooridnate) #col(4)name note: a bed is only defined seq:start:end:orient (no more required) seq """ def __init__(self,bed): """sets up a standard bed format file""" self.bed=bed self.current_positions=[0,0,0,0,0] self.previous_sequences=[ [] ] * len(self.current_positions) #0=seq,#1=start,#2=stop,#3=name, #4=score,#5=orientation def bed_set (self, bed): """ set the bed with in the bed object , provides no checking """ self.bed_clear() self.bed=bed def bed_clear(self): self.bed=[] self.current_positions= [position] * len(self.current_positions) self.previous_sequences=[ [] ] * len(self.current_positions) def walker_reset(self,counter=None, position=0): """ walker reset will reset the current_positions to index position zero by default """ if counter!=None: self.current_positions[counter]=position self.previous_sequences[counter]=[] else: self.current_positions= [position] * len(self.current_positions) self.previous_sequences=[ [] ] * len(self.current_positions) def walker_get_counters(self): return list(self.current_positions) def bed_sort(self): #TODO: need to actually add a sort function if len(self.bed)==0: return from operator import itemgetter #print self.bed[0:4] #check to be sure that first element self.bed.sort(key=itemgetter(0,1,2)) return def writefile(self,filename): outfile=open(filename, 'w') #print outfile, len(self.bed) for i in self.bed: outline=outfile.write("\t".join([str(x) for x in i])+ "\n") outfile.close() return def walker_step_upto(self, seq, start, counter=0): # for i in xrange (self.current_positions[counter],len(self.bed)): # feature=self.bed[i] # if seq!=feature[0]: return def walker_get_range(self, seq, start, end, counter=0,trim=False, \ autoincrement=False): """walks along chromosome in zero one coordinates this requires that comparisons are done in order sorted sequences and shorted coordinates""" newbed = [] for i in xrange ( self.current_positions[counter], len(self.bed) ): feature=self.bed[i] #print feature if seq==feature[0] : #bed feature on same seq as our range if feature[2] < start: #bed feature less than start of range if autoincrement==True: self.current_positions[counter]=i+1 #so increment counter continue #and go to next newbegin=max(start,feature[1]) newend=min(end,feature[2]) if newend-newbegin > 0: #bed feature within our range newbed.append(feature) continue else: # query feature << bed feature break # already past it so stop if seq < feature[0]: #stop and bail current seq position is greater than seq break return newbed # return list (empty if nothing intersecting) return [] def calc_bp_overlap2interval(self,seq,begin,end ): totalbases=0 for bedsegment in self.bed: intersect=Interval.intersect2seq( seq,begin,end, bedsegment[0], bedsegment[1],bedsegment[2] ) #print intersect[3] totalbases+=intersect[3] return totalbases @staticmethod def readfile(filepath, check='chr', checknum=True, seq=0, start=1, stop=2, name=3,score=4,orient=5): """read a tab-delimited bed file and return bed list of lists""" lines = open(filepath, "r").readlines() print lines bed= FlexBed.readlist(lines, check=check,checknum=checknum,seq=seq,start=start, stop=stop,name=name,score=score,orient=orient) return bed @staticmethod def readlist(textlist, check='chr',checknum=True, seq=0, start=1, stop=2, name=3,score=4,orient=5): bed=[] #print "textlist",textlist usedcolumns=[seq,start,stop,name,score,orient] for line in textlist: if line.startswith("#"): continue x=line.strip().split("\t") y=[ x[seq],x[start],x[stop],None,None,None ] if name!=None: y[3]=x[name] if score!=None: y[4]=x[score] if orient!=None: y[5]=x[orient] for i in xrange(0,len(x)): if i in usedcolumns: continue else: y.append(x[i]) if checknum: y[1]=int(y[1]) y[2]=int(y[2]) if not x[0].startswith(check): print >> sys.stderr, x[self.chrom]+ " is not a proper seq name with : ("+check+")" sys.exit() bed.append(y) return bed #write a bed #bed.split("\t") #print bed # bed.check(check='chr',checknum=True) #def bed.readlist(self,tab_delimited_list): #"""parse list of tab-delimited text into bed list of lists""" #tablist.strip() #return #def bed.check(tab_delmited_bed_list): ###THIS is now used in my code ### class Interval: """ ucsc genome coordinates [a,b) """ @staticmethod def intersect2interval(begin1,end1, begin2,end2): "intersect [a,b) [c,d) returns new begin and end of intersect" newbegin=max(begin1,begin2) newend=min(end1,end2) intersect=newend-newbegin if intersect <=0: return (0,'','') return intersect, newbegin, newend @staticmethod def intervalWellWithinInterval2(begin1,end1,begin2,end2,flank): "must be ensconced by a certain distance " #TODO: finish this @staticmethod def intervalWithinInterval2(begin1,end1,begin2,end2): "is [begin1,end1) within [begin2,end2)" if begin1 >= begin2 and end1 <= end2: return True return False @staticmethod def intersect2seq( seq1,begin1,end1, seq2,begin2,end2): if seq1!=seq2: print "MISS", seq1 , seq2 return [None,None,None,0] newbegin=max(begin1,begin2) newend=min(end1,end2) intersect=newend-newbegin if intersect<=0: return [None,None,None,0] return (seq1,newbegin,newend,intersect) ###WHAT IS THIS CLASS DOING IN MY CODE!!!!! class coordmapper: """given a mapping file this class allows cross mapping. Mapping that isn't unique will cause failure.""" def __init__(self): """list of coordinates""" self.coord=[] self.reverseNames={} #pushes list positions self.forwardNames={} #pushes list positions def load_coord(self,coordlist): """seq, begin, end, name, seq, begin, end, orient, First seq alway forward/plus orientation. Requires 0,1 coordinates (aka bed file) No data checks currently! """ self.coord=coordlist return def append(self, coordarray): """[seq1,begin1,end1, seq2,begin2,end2,orient, name1,name2,data...] No data checks currently! """ self.coord.append(coordarray) return def recalculateSeqLookup(self): """this recalculates dictionaries for more rapid lookups""" def checkData(self): """NOT IMPLEMENTED: could check consistency of the data""" def forwardMap(self, seq,begin,end=None): """given seq1,begin1,[end1], return seq2 equilvalent""" return def reverseMap(self,seq,begin,end=None): """given se2,begin,[end2], lookup seq1 equilvaent...""" return ############################################################################### ############################################################################### #------------------------------------------------------------------------------ #main is left to the bottom so that global variables can be populated if __name__ == "__main__": if len (sys.argv)==1: sys.argv.append("-h") #if no command then it is a cry for help main(sys.argv[1:])
38.665829
255
0.662649
795268edd6c4ccd02cba51eeca0a18534bcc7c6f
3,387
py
Python
python_package/madflow/parameters.py
simonthor/madflow
cc4ee123d1d6cea7295a8f4be774eff87ea727cf
[ "Apache-2.0" ]
6
2021-06-22T06:49:48.000Z
2021-06-24T02:38:37.000Z
python_package/madflow/parameters.py
simonthor/madflow
cc4ee123d1d6cea7295a8f4be774eff87ea727cf
[ "Apache-2.0" ]
13
2021-06-14T13:27:03.000Z
2022-03-28T09:53:46.000Z
python_package/madflow/parameters.py
simonthor/madflow
cc4ee123d1d6cea7295a8f4be774eff87ea727cf
[ "Apache-2.0" ]
1
2022-02-15T19:27:36.000Z
2022-02-15T19:27:36.000Z
""" Utilities and functions to deal with the parameters of the model """ from .config import DTYPE, DTYPECOMPLEX, complex_me, float_me, run_eager import numpy as np import tensorflow as tf from itertools import chain GS_SIGNATURE = [tf.TensorSpec(shape=[None], dtype=DTYPECOMPLEX)] ALPHAS_SIGNATURE = [tf.TensorSpec(shape=[None], dtype=DTYPE)] @tf.function(input_signature=ALPHAS_SIGNATURE) def _alphas_to_gs(alpha_s): return complex_me(2.0 * tf.math.sqrt(np.pi * alpha_s)) class Model: """This class is instantiated with knowledge about all couplings and parameters in the process of interest and provides an interface to compute them in a per-phase space basis Parameters --------- constants: tuple(DTYPE) tuple with all constants of the model functions: tuple(functions) tuple with all parameters of the model which depend on g_s """ def __init__(self, constants, functions): self._tuple_constants = constants self._tuple_functions = functions self._constants = list(constants) self._to_evaluate = [tf.function(i, input_signature=GS_SIGNATURE) for i in functions] self._frozen = [] @property def frozen(self): """Whether the model is frozen for a given value of alpha_s or not""" return bool(self._frozen) def freeze_alpha_s(self, alpha_s): """The model can be frozen to a specific value of alpha_s such that all phase space points are evaluated at that value Parameters ---------- alpha_s: float """ if self.frozen: raise ValueError("The model is already frozen") self._frozen = self._evaluate(float_me([alpha_s])) def unfreeze(self): """Remove the frozen status""" self._frozen = [] @tf.function(input_signature=ALPHAS_SIGNATURE) def _evaluate(self, alpha_s): """Evaluate all couplings for the given values of alpha_s Parameters ---------- alpha_s: tensor of shape (None,) """ gs = _alphas_to_gs(alpha_s) results = [fun(gs) for fun in self._to_evaluate] if not results: return self._constants if not self._constants: return results return list(chain.from_iterable([self._constants, results])) def get_masses(self): """Get the masses that entered the model as constants""" masses = [] for key, val in self._tuple_constants._asdict().items(): if key.startswith("mdl_M"): masses.append(val) return masses def parse_parameter(self, parameter_name): """Parse a (constant) parameter given its string name""" if parameter_name == "ZERO": return 0.0 if hasattr(self._tuple_constants, parameter_name): return getattr(self._tuple_constants, parameter_name) if hasattr(self._tuple_functions, parameter_name): return getattr(self._tuple_functions, parameter_name) raise AttributeError(f"The model class does not contain parameter {parameter_name}") def evaluate(self, alpha_s=None): """Evaluate alpha_s, if the model is frozen returns the frozen values""" if self.frozen: return self._frozen return self._evaluate(alpha_s)
34.212121
93
0.64659
79526936d823fb0451afd6fbf6985a5c34d9f1e0
2,640
py
Python
saleor/order/tests/test_order_search.py
Vultik/saleor
dc8548f7ad49cc26950dbfa0fd81f02617350240
[ "CC-BY-4.0" ]
null
null
null
saleor/order/tests/test_order_search.py
Vultik/saleor
dc8548f7ad49cc26950dbfa0fd81f02617350240
[ "CC-BY-4.0" ]
null
null
null
saleor/order/tests/test_order_search.py
Vultik/saleor
dc8548f7ad49cc26950dbfa0fd81f02617350240
[ "CC-BY-4.0" ]
null
null
null
from decimal import Decimal from ...discount import DiscountValueType from ..models import OrderLine from ..search import prepare_order_search_vector_value, update_order_search_vector def test_update_order_search_vector(order): # given order.search_vector = "" order.save(update_fields=["search_vector"]) assert not order.search_vector # when update_order_search_vector(order) # then assert order.search_vector def test_prepare_order_search_vector_value( order_with_lines, address_usa, payment_dummy ): # given order = order_with_lines order.shipping_address = address_usa order.save(update_fields=["shipping_address"]) order.discounts.create( value_type=DiscountValueType.FIXED, name="discount", translated_name="discount translated", value=Decimal("20"), reason="Discount reason", amount=(order.undiscounted_total - order.total).gross, # type: ignore ) psp_reference = "TestABC" payment_dummy.psp_reference = psp_reference payment_dummy.save(update_fields=["psp_reference"]) # when search_vector = prepare_order_search_vector_value(order) # then assert search_vector def test_prepare_order_search_vector_value_empty_relation_fields( order_with_lines, payment_dummy ): # given order = order_with_lines order.billing_address = None order.shipping_address = None order.save(update_fields=["shipping_address", "billing_address"]) order.discounts.create( value_type=DiscountValueType.FIXED, value=Decimal("20"), reason="Discount reason", amount=(order.undiscounted_total - order.total).gross, # type: ignore ) payment_dummy.psp_reference = None payment_dummy.save(update_fields=["psp_reference"]) lines = [] for line in order.lines.all(): line.product_sku = None lines.append(line) OrderLine.objects.bulk_update(lines, ["product_sku"]) # when search_vector_value = prepare_order_search_vector_value(order) # then assert search_vector_value def test_prepare_order_search_vector_value_no_relations_data(order, address_usa): # given order.shipping_address = address_usa order.user = None order.billing_address = None order.shipping_address = None order.save(update_fields=["shipping_address", "billing_address", "user"]) assert not order.lines.all() assert not order.discounts.all() assert not order.payments.all() # when search_vector_value = prepare_order_search_vector_value(order) # then assert search_vector_value
27.5
82
0.723106
7952697d914fdc80daa0d4bd33b92e0970954677
992
py
Python
tests/test_cband_h5.py
RocketRoss/setigen
fde4434094b5cc0d095c341d0b90e8f65c9e9215
[ "MIT" ]
21
2019-01-25T20:44:56.000Z
2022-03-16T23:30:26.000Z
tests/test_cband_h5.py
RocketRoss/setigen
fde4434094b5cc0d095c341d0b90e8f65c9e9215
[ "MIT" ]
7
2020-07-15T08:54:27.000Z
2021-09-24T03:57:30.000Z
tests/test_cband_h5.py
RocketRoss/setigen
fde4434094b5cc0d095c341d0b90e8f65c9e9215
[ "MIT" ]
10
2020-03-17T17:59:26.000Z
2022-02-01T08:33:11.000Z
import pytest import os import numpy as np # from astropy import units as u import setigen as stg @pytest.fixture() def frame_setup_from_h5(): my_path = os.path.abspath(os.path.dirname(__file__)) path = os.path.join(my_path, 'assets/sample.fil') frame = stg.Frame(waterfall=path) return frame def test_setup_from_h5(frame_setup_from_h5): frame = frame_setup_from_h5 assert frame.fchans == 1024 assert frame.tchans == 32 assert frame.shape == (32, 1024) assert frame.df == pytest.approx(1.3969838619232178) assert frame.dt == pytest.approx(1.431655765333332) assert frame.fmax == pytest.approx(6663999999.873341) assert frame.fmin == pytest.approx(6663998569.361866) assert frame.mean() == pytest.approx(484170.38) assert frame.noise_mean == pytest.approx(461739.75) assert frame.std() == pytest.approx(253477.6) assert frame.noise_std == pytest.approx(217443.1) assert np.min(frame.data) == pytest.approx(15350.96)
28.342857
57
0.714718
79526a360c29da4c2b5320e1dc30a9a350d4bff9
5,249
py
Python
molar/backend/database/query.py
aspuru-guzik-group/molar
a3e0c337bd8a41c94b2c25831c95048cc7614f04
[ "BSD-3-Clause" ]
4
2021-07-20T18:49:44.000Z
2021-10-15T00:58:12.000Z
molar/backend/database/query.py
aspuru-guzik-group/molar
a3e0c337bd8a41c94b2c25831c95048cc7614f04
[ "BSD-3-Clause" ]
null
null
null
molar/backend/database/query.py
aspuru-guzik-group/molar
a3e0c337bd8a41c94b2c25831c95048cc7614f04
[ "BSD-3-Clause" ]
2
2022-01-07T17:57:42.000Z
2022-01-13T21:00:20.000Z
# std from typing import Any, Dict, List, Optional, Union # external import pkg_resources import sqlalchemy from sqlalchemy.orm import aliased, Session # molar from molar.backend import schemas from molar.backend.database.utils import sqlalchemy_to_dict INFORMATION_QUERY = open( pkg_resources.resource_filename("molar", "sql/information_query.sql"), "r" ).read() def resolve_type(type: str, models, alias_registry=None): if alias_registry is None: alias_registry = {} types = type.split(".") if len(types) == 1: if isinstance(models, sqlalchemy.orm.attributes.InstrumentedAttribute): return models[types[0]].astext type_ = getattr(models, types[0], None) if type_ is not None: return type_ if types[0] in alias_registry.keys(): return alias_registry[types[0]] raise ValueError(f"Type {type} not found in database!") submodel = getattr(models, types[0], None) if submodel is None and types[0] in alias_registry.keys(): submodel = alias_registry[types[0]] if submodel is not None: return resolve_type(".".join(types[1:]), submodel, alias_registry) raise ValueError(f"Type {type} not found in database!") def query_builder( db: Session, models, types: schemas.QueryTypes, limit: int, offset: int, joins: Optional[schemas.QueryJoins] = None, filters: Optional[schemas.QueryFilters] = None, order_by: Optional[schemas.QueryOrderBys] = None, aliases: Optional[schemas.QueryAliases] = None, ): alias_registry: Dict[str, Any] = {} # Resolving aliases if aliases is not None: if not isinstance(aliases, list): aliases = [aliases] for alias in aliases: alias_registry[alias.alias] = aliased( resolve_type(alias.type, models), name=alias.alias ) # Resolving main types if not isinstance(types, list): types = [types] db_objs = [] for type_ in types: db_obj = resolve_type(type_, models, alias_registry) db_objs.append(db_obj) query = db.query(*db_objs) if joins is not None: if not isinstance(joins, list): joins = [joins] for join in joins: joined_table = resolve_type( join.type, models, alias_registry, ) onclause = None if join.on is not None: onclause = resolve_type( join.on.column1, models, alias_registry ) == resolve_type(join.on.column2, models, alias_registry) query = query.join( joined_table, onclause, isouter=True if join.join_type == "outer" else False, full=True if join.join_type == "full" else False, ) if filters is not None: filters = expand_filters(filters, models, alias_registry) query = query.filter(filters) if order_by is not None: if not isinstance(order_by, list): order_by = [order_by] order_bys = [] for ob in order_by: t = resolve_type(ob.type, models, alias_registry) if ob.order == "asc": order_bys.append(t.asc()) else: order_bys.append(t.desc()) query = query.order_by(*order_bys) query = query.offset(offset).limit(limit) return query, db_objs, types def process_query_output(db_objs, query_results, types): if len(db_objs) == 1: return [sqlalchemy_to_dict(db_objs[0], r, types[0]) for r in query_results] results = [] for result in query_results: result_dict = {} for res, db_obj, t in zip(result, db_objs, types): result_dict.update(sqlalchemy_to_dict(db_obj, res, t, add_table_name=True)) results.append(result_dict) return results def expand_filters(filters, models, alias_registry): if isinstance(filters, schemas.QueryFilterList): filters = [expand_filters(f) for f in filters.filters] if filters.op == "and": return sqlalchemy.and_(*filters) elif filters.op == "or": return sqlalchemy.or_(*filters) else: raise ValueError(f"Filter operator not supported: {filters.op}") elif isinstance(filters, schemas.QueryFilter): type = resolve_type(filters.type, models, alias_registry) operator = filters.op if filters.op == "==": operator = "__eq__" elif filters.op == "!=": operator = "__ne__" elif filters.op == ">": operator = "__gt__" elif filters.op == "<": operator = "__lt__" elif filters.op == ">=": operator = "__ge__" elif filters.op == "<=": operator = "__le__" # If value is another column value = filters.value if isinstance(value, str): try: value_type = resolve_type(value, models, alias_registry) except ValueError: pass else: value = value_type return getattr(type, operator)(value)
30.34104
87
0.594589
79526a522d81da774830d310028e606e8f0cd906
14,324
py
Python
metal/unit.py
cHemingway/test
7fcbd56ad6fe5368b927ea146363bf3d69cd7617
[ "Apache-2.0" ]
24
2020-07-24T18:33:58.000Z
2022-03-23T21:00:19.000Z
metal/unit.py
cHemingway/test
7fcbd56ad6fe5368b927ea146363bf3d69cd7617
[ "Apache-2.0" ]
4
2020-07-27T05:44:26.000Z
2021-09-02T16:05:47.000Z
metal/unit.py
cHemingway/test
7fcbd56ad6fe5368b927ea146363bf3d69cd7617
[ "Apache-2.0" ]
1
2020-07-25T15:13:20.000Z
2020-07-25T15:13:20.000Z
import json import sys class Control: enter = "enter" exit = "exit" cancel = "cancel" class Level: info = "info" warning = "expect" assertion = "assert" class Scope: def __init__(self, name): self.executed = 0 self.errors = 0 self.warnings = 0 self.children = [] self.tests = [] self.cancelled = False self.parent = None self.name = name self.description = None def __iadd__(self, rhs): self.executed += rhs.executed self.errors += rhs.errors self.warnings += rhs.warnings self.children.append(rhs) return self #def cancel(self, ): def append_test(self, data): if "level" in data and "condition" in data: self.executed += 1 if not data["condition"]: if data["level"] == "assert": self.errors += 1 elif data["level"] == "expect": self.warnings += 1 self.tests.append(data) def to_dict(self): res = { "summary": { "executed": self.executed, "warnings": self.warnings, "errors": self.errors }, "cancelled": self.cancelled, "children": [ch.to_dict() for ch in self.children], "tests": self.tests } if self.description: res["description"] = self.description return res class MainScope(Scope): def __init__(self): super().__init__('<main>') def loc_str(file, line): return "{}({})".format(file.replace('\\\\', '\\'), line) def message_str(file, line, level, condition): return loc_str(file, line) + (" assertion " if level == "assert" else " expectation ") + ("succeeded " if condition else "failed ") class Reporter: def __init__(self): self.hrf_sink = sys.stdout self.print_level = 'warning' # all, warning error self.json_sink = None self.__scope_stack = [MainScope()] def should_print(self, level = Level.info, condition = 1): if self.hrf_sink is None: return False if self.print_level == 'all': return True if self.print_level == 'warning': return (not condition) and level >= Level.warning return (not condition) and level == Level.assertion @property def current_scope(self): return self.__scope_stack[len(self.__scope_stack) - 1] def critical(self, file, line, control): if self.hrf_sink: self.hrf_sink.write("{} critical check failed, cancelling\n".format(loc_str(file, line))) self.current_scope.cancelled = True self.current_scope.append_test({"type": "critical", "file": file, "line": line, "control": control}) def loop(self, file, line, control): if self.hrf_sink: self.hrf_sink.write("{} for loop cancelled\n".format(loc_str(file, line))) self.current_scope.append_test({"type": "loop", "file": file, "line": line, "control": control}) def ranged(self, file, line, control, condition_or_length, range_info, range_info_values=None): data = {"type": "ranged", "file": file, "line": line, "control": control, "length": condition_or_length, "control": control} if control == "cancel": if self.hrf_sink: self.hrf_sink.write("{} ranged test cancelled at pos {}\n".format(loc_str(file, line), condition_or_length)) elif control =="exit": if self.hrf_sink: self.hrf_sink.write("{} ranged test completed with {} elements\n".format(loc_str(file, line), condition_or_length)) elif control == 'enter': lhs, lhs_len, rhs, rhs_len = range_info data['range_info'] = {'lhs': lhs, 'lhs_len': lhs_len, 'rhs': rhs, 'rhs_len': rhs_len} if range_info_values: lhs_v, lhs_len_v, rhs_v, rhs_len_v = range_info_values data['range_info_values'] = {'lhs': lhs_v, 'lhs_len': lhs_len_v, 'rhs': rhs_v, 'rhs_len': rhs_len_v} self.hrf_sink.write("{} ranged test starting with {} elements for {}[0 ... {}] and {}[0 ... {}]: [{}[0 ... {}], {}[0 ... {}]]\n" .format(loc_str(file, line), condition_or_length, lhs, lhs_len, rhs, rhs_len, lhs_v, lhs_len_v, rhs_v, rhs_len_v)) else: self.hrf_sink.write("{} ranged test starting with {} elements for {}[0 ... {}] and {}[0 ... {}]\n" .format(loc_str(file, line), condition_or_length, lhs, lhs_len, rhs, rhs_len)) else: raise Exception("Unknown control {}".format(control)) self.current_scope.append_test(data) def call(self, file, line, control, condition, function, description=None): if control == 'enter': scp = Scope(function if function else "**unknown**") scp.parent = self.current_scope if description: scp.description = description self.__scope_stack.append(scp) self.hrf_sink.write("{} entering test case {}\n" .format(loc_str(file, line), (" " + description) if description else function)) elif control == 'exit': sc = self.current_scope self.hrf_sink.write("{} {} test case {}, {} with : {{executed: {}, warnings: {}, errors: {}}}\n" .format(loc_str(file, line), 'cancelling' if sc.cancelled else 'exiting', (" " + description) if description else function, ("succeeded " if condition == 0 else "failed "), sc.executed, sc.warnings, sc.errors)) self.__scope_stack.pop() self.__scope_stack[len(self.__scope_stack) - 1] += sc else: raise Exception('Unknown control {}'.format(control)) def log(self, file, line, message): if self.hrf_sink: self.hrf_sink.write("{} log: {}\n".format(loc_str(file, line), message)) self.current_scope.append_test({"type": "log", "file": file, "line": line, "message": message}) def checkpoint(self, file, line): if self.should_print(): self.hrf_sink.write("{} checkpoint\n".format(loc_str(file, line))) self.current_scope.append_test({"type": "checkpoint", "file": file, "line": line}) def message(self, file, line, level, condition, message): if self.hrf_sink: self.hrf_sink.write("{} message: {}\n".format(message_str(file, line, level, condition), message)) self.current_scope.append_test({"type": "message", "file": file, "line": line, "message": message, "level": level, "condition": condition}) def plain (self, file, line, level, condition, description, value=None): if self.hrf_sink and value: self.hrf_sink.write("{} [plain]: {}: [{}]\n".format(message_str(file, line, level, condition), description, value)) elif self.hrf_sink: self.hrf_sink.write("{} [plain]: {}\n".format(message_str(file, line, level, condition), description)) self.current_scope.append_test({"type": "plain", "file": file, "line": line, "description": description, "level": level, "condition": condition}) def equal(self, file, line, level, condition, lhs, rhs, lhs_val=None, rhs_val=None): ex = '{} == {}'.format(lhs, rhs) if rhs else lhs if self.hrf_sink and lhs_val and rhs_val: self.hrf_sink.write("{} [equal]: {}: [{} == {}]\n".format(message_str(file, line, level, condition), ex, lhs_val, rhs_val)) elif self.hrf_sink: self.hrf_sink.write("{} [equal]: {}\n".format(message_str(file, line, level, condition), ex)) self.current_scope.append_test({"type": "equal", "file": file, "line": line, "lhs" : lhs, "rhs": rhs, "level": level, "condition": condition, "lhs_val" : lhs_val, "rhs_val": rhs_val}) def not_equal(self, file, line, level, condition, lhs, rhs, lhs_val=None, rhs_val=None): ex = '{} != {}'.format(lhs, rhs) if rhs else lhs if self.hrf_sink and lhs_val and rhs_val: self.hrf_sink.write("{} [not_equal]: {}: [{} != {}]\n".format(message_str(file, line, level, condition), ex, lhs_val, rhs_val)) elif self.hrf_sink: self.hrf_sink.write("{} [not_equal]: {}\n".format(message_str(file, line, level, condition), ex)) self.current_scope.append_test({"type": "not_equal", "file": file, "line": line, "lhs" : lhs, "rhs": rhs, "level": level, "condition": condition, "lhs_val" : lhs_val, "rhs_val": rhs_val}) def ge(self, file, line, level, condition, lhs, rhs, lhs_val=None, rhs_val=None): ex = '{} >= {}'.format(lhs, rhs) if rhs else lhs if self.hrf_sink and lhs_val and rhs_val: self.hrf_sink.write("{} [ge]: {}: [{} >= {}]\n".format(message_str(file, line, level, condition), ex, lhs_val, rhs_val)) elif self.hrf_sink: self.hrf_sink.write("{} [ge]: {}\n".format(message_str(file, line, level, condition), ex)) self.current_scope.append_test({"type": "ge", "file": file, "line": line, "lhs" : lhs, "rhs": rhs, "level": level, "condition": condition, "lhs_val" : lhs_val, "rhs_val": rhs_val}) def le(self, file, line, level, condition, lhs, rhs, lhs_val=None, rhs_val=None): ex = '{} <= {}'.format(lhs, rhs) if rhs else lhs if self.hrf_sink and lhs_val and rhs_val: self.hrf_sink.write("{} [le]: {}: [{} <= {}]\n".format(message_str(file, line, level, condition), ex, lhs_val, rhs_val)) elif self.hrf_sink: self.hrf_sink.write("{} [le]: {}\n".format(message_str(file, line, level, condition), ex)) self.current_scope.append_test({"type": "le", "file": file, "line": line, "lhs" : lhs, "rhs": rhs, "level": level, "condition": condition, "lhs_val" : lhs_val, "rhs_val": rhs_val}) def greater(self, file, line, level, condition, lhs, rhs, lhs_val=None, rhs_val=None): ex = '{} > {}'.format(lhs, rhs) if rhs else lhs if self.hrf_sink and lhs_val and rhs_val: self.hrf_sink.write("{} [greater]: {}: [{} > {}]\n".format(message_str(file, line, level, condition), ex, lhs_val, rhs_val)) elif self.hrf_sink: self.hrf_sink.write("{} [greater]: {}\n".format(message_str(file, line, level, condition), ex)) self.current_scope.append_test({"type": "greater", "file": file, "line": line, "lhs" : lhs, "rhs": rhs, "level": level, "condition": condition, "lhs_val" : lhs_val, "rhs_val": rhs_val}) def lesser(self, file, line, level, condition, lhs, rhs, lhs_val=None, rhs_val=None): ex = '{} < {}'.format(lhs, rhs) if rhs else lhs if self.hrf_sink and lhs_val and rhs_val: self.hrf_sink.write("{} [lesser]: {}: [{} < {}]\n".format(message_str(file, line, level, condition), ex, lhs_val, rhs_val)) elif self.hrf_sink: self.hrf_sink.write("{} [lesser]: {}\n".format(message_str(file, line, level, condition), ex)) self.current_scope.append_test({"type": "lesser", "file": file, "line": line, "lhs" : lhs, "rhs": rhs, "level": level, "condition": condition, "lhs_val" : lhs_val, "rhs_val": rhs_val}) def close(self, file, line, level, condition, lhs, rhs, tolerance, lhs_val=None, rhs_val=None, tolerance_val=None): expression = lhs if rhs and tolerance: expression = '{} = {} +- ~ {}'.format(lhs, rhs, tolerance) if self.hrf_sink and lhs_val and rhs_val: self.hrf_sink.write("{} [close]: {}: [{} = {} +- {}]\n".format(message_str(file, line, level, condition), expression, lhs_val, rhs_val, tolerance_val)) elif self.hrf_sink: self.hrf_sink.write("{} [close]: {}\n".format(message_str(file, line, level, condition), expression)) self.current_scope.append_test({"type": "close", "file": file, "line": line, "lhs" : lhs, "rhs": rhs, "level": level, "condition": condition, "lhs_val" : lhs_val, "rhs_val": rhs_val, "tolerance": tolerance, "tolerance_val": tolerance_val}) def close_relative(self, file, line, level, condition, lhs, rhs, tolerance, lhs_val=None, rhs_val=None, tolerance_val=None): expression = lhs if rhs and tolerance: expression = '{} = {} +- ~ {}'.format(lhs, rhs, tolerance) if self.hrf_sink and lhs_val and rhs_val: self.hrf_sink.write("{} [close_relative]: {}: [{} = {} +- ~ {}]\n".format(message_str(file, line, level, condition), expression, lhs_val, rhs_val, tolerance_val)) elif self.hrf_sink: self.hrf_sink.write("{} [close_relative]: {}\n".format(message_str(file, line, level, condition), expression)) self.current_scope.append_test({"type": "close", "file": file, "line": line, "lhs" : lhs, "rhs": rhs, "level": level, "condition": condition, "lhs_val" : lhs_val, "rhs_val": rhs_val, "tolerance": tolerance, "tolerance_val": tolerance_val}) def predicate(self, file, line, level, condition, function, args, function_val=None, args_val=None): if self.hrf_sink and function_val and args_val: self.hrf_sink.write("{} [predicate]: {}({}): [{}({})]\n".format(message_str(file, line, level, condition), function, ', '.join(args), function_val, ', '.join(args_val))) elif self.hrf_sink: self.hrf_sink.write("{} [predicate]: {}({})\n".format(message_str(file, line, level, condition), function, ', '.join(args))) self.current_scope.append_test({"type": "close", "file": file, "line": line, "function": function, "args": args, "level": level, "condition": condition, "function_val": function_val, "args_val": args_val}) def report(self, file, line, condition): if self.hrf_sink: self.hrf_sink.write("{}: full test report: {{executed: {}, warnings: {}, errors: {}}}\n" .format(loc_str(file, line), self.__scope_stack[0].executed, self.__scope_stack[0].warnings, self.__scope_stack[0].errors)) if self.json_sink: self.json_sink.write(json.dumps(self.__scope_stack[0].to_dict()))
53.447761
247
0.590687
79526b32e1bed3a119aff208442acaf6a1cd2382
9,656
py
Python
excel_validator.py
Vinaychalluru/excel_validator
9e5f7d643694abccd807a5417030f0e67a4b1a40
[ "MIT" ]
null
null
null
excel_validator.py
Vinaychalluru/excel_validator
9e5f7d643694abccd807a5417030f0e67a4b1a40
[ "MIT" ]
null
null
null
excel_validator.py
Vinaychalluru/excel_validator
9e5f7d643694abccd807a5417030f0e67a4b1a40
[ "MIT" ]
1
2019-11-08T03:09:03.000Z
2019-11-08T03:09:03.000Z
#!/usr/bin/python -u # -*- coding: UTF-8 -*- import argparse import os.path import sys import time import yaml from openpyxl.reader.excel import load_workbook from openpyxl.styles import PatternFill from openpyxl.utils import column_index_from_string, get_column_letter from progress.bar import Bar from validator import * def isValid(type, value, coordinate, errors, value2 = None): '''Takes the validation type assigned to the cell, cell value, coordinates of the cell, errors of previous validation break list ''' #Assigning each class to the validation type classmap = { 'NotBlank': NotBlankValidator.NotBlankValidator, 'Type': TypeValidator.TypeValidator, 'Length': LengthValidator.LengthValidator, 'Regex': RegexValidator.RegexValidator, 'Email': EmailValidator.EmailValidator, 'Choice': ChoiceValidator.ChoiceValidator, 'Date': DateTimeValidator.DateTimeValidator, 'ExcelDate': ExcelDateValidator.ExcelDateValidator, 'Country': CountryValidator.CountryValidator, 'Conditional': ConditionalValidator.ConditionalValidator } violations = [] #name is the validation type name (NotBlank, Regex, Length ,.... etc) #data is the value assigned by the user to be validated ( 3 chars , regex pattern , ... etc) name = list(type.keys())[0] data =list(type.values())[0] validator = classmap[name](data) #conditional validator will take two arguments to evaluate if name != 'Conditional': result = validator.validate(value) else: result = validator.validate(value, value2) #If the cell value breakes the validation tule , append violations list if (result == False): violations.append(validator.getMessage()) if len(violations) > 0: errors.append((coordinate, violations)) #return result != False #result is the output of each validation for each cell if (result == False): return False else: return True def setSettings(config): '''function takes the config yaml file and converts it to dictionary ''' settings = {} #excludes are the columns that we won't validate excludes = [] print ("Get validation config " + config) try: stream = open(config, 'r') except IOError as e: print (e) exit(1) config = yaml.safe_load(stream) #Make sure that the yaml file follows the rules if 'validators' in config and 'columns' in config.get('validators'): settings['validators'] = config.get('validators').get('columns') else: return False if 'default' in config.get('validators') : settings['defaultValidator'] = config.get('validators').get('default')[0] else: settings['defaultValidator'] = None if 'excludes' in config: for column in config.get('excludes'): excludes.append(column_index_from_string(column)) settings['excludes'] = excludes else: settings['excludes'] = [] if 'range' in config: settings['range'] = config.get('range')[0] + "1:" + config.get('range')[1] else: settings['range'] = None if 'header' in config: settings['header'] = config.get('header') else: settings['header'] = True return settings def markErrors(errors, excelFile, sheetName, tmpDir, printErrors = False): ''' Function takes the error lists (coordinates,violations) , excel file , sheet name output directory ''' progressBar = Bar('Processing', max = len(errors)) #Checking size of the file if os.path.getsize(excelFile) > 10485760: print ("Log broken cells") for error in errors: progressBar.next() if printErrors.lower() == "true": print ("Broken Excel cell: " + error[0] + " [ "+ ','.join(error[1]) + " ]") else: print ("Broken Excel cell: " + error[0]) progressBar.finish(); return #open Excel file newFile = os.path.join(tmpDir , "errors_" + time.strftime("%Y-%m-%d") + "_" + str(int(time.time())) + "_" + os.path.basename(excelFile)) fileName,fileExtension = os.path.splitext(excelFile) if fileExtension == '.xlsm': wb = load_workbook(excelFile, keep_vba=True, data_only=True) else: wb = load_workbook(excelFile, data_only=True) creator = wb.properties.creator ws = wb.get_sheet_by_name(sheetName) #fill the error values with red pattern redFill = PatternFill(start_color='FFFF0000', end_color = 'FFFF0000', fill_type = 'solid') for error in errors: progressBar.next() print ("Broken Excel cell: " + error[0]) cell = ws[error[0]] if printErrors: cell.value = ','.join(error[1]) cell.fill = redFill progressBar.finish() #save error excel file wb.properties.creator = creator print ("[[Save file: " + newFile + "]]") try: wb.save(newFile) except Exception as e: print (e) exit(1) return newFile def validate(settings, excelFile, sheetName, tmpDir, printErrors = False): '''the main function of valitations, takes settings dictionary (validations) and returns the validation result ''' print ("Validate Excel Sheet " + sheetName) errors = [] #open Excel file print ("Parse Excel file") wb = load_workbook(excelFile, keep_vba=True, data_only=True, read_only=True) #ws = wb.get_sheet_by_name(sheetName) ws = wb[sheetName] progressBar = Bar('Processing', max=ws.max_row) if 'range' in settings and settings['range'] != None: settings['range'] = settings['range'] + (str)(ws.max_row) # range now equals A1:D(150) for example #iterate excel sheet rowCounter = 0 for row in ws.iter_rows(settings['range']): progressBar.next() columnCounter = 0 rowCounter = rowCounter + 1 #do not parse empty rows if isEmpty(row): continue for cell in row: columnCounter = columnCounter + 1 try: value = cell.value except ValueError: #case when it is not possible to read value at all from any reason column = get_column_letter(columnCounter) coordinates = "%s%d" % (column, rowCounter) errors.append((coordinates, ValueError)) #find header (first) row #if the code founded the first header "ID", then it is the header row if settings['header'] != True: if value == settings['header']: #Replace the header with true incase it meets a value of "ID" downside settings['header'] = True # skip el row break #skip excludes column if hasattr(cell, 'column') and cell.column in settings['excludes']: continue column = get_column_letter(columnCounter) coordinates = "%s%d" % (column, rowCounter) ## column:A Coordinate:A2, for example if column in settings['validators']: for type in settings['validators'][column]: name = list(type.keys())[0] # notblank, Regex, Length if name != 'Conditional': res = isValid(type, value, coordinates, errors) else: fieldB = list(type.values())[0]['fieldB'] value2 = ws[fieldB + str(rowCounter)].value res = isValid(type, value, coordinates, errors, value2) if not res: break elif settings['defaultValidator'] != None: isValid(settings['defaultValidator'], value, coordinates, errors) progressBar.finish() print ("Found %d error(s)" % len(errors)) if (len(errors) > 0): return markErrors(errors, excelFile, sheetName, tmpDir, printErrors) return True def isEmpty(row): ''' function to get if the row is empty or not ''' for cell in row: if cell.value: return False return True if __name__ == '__main__': parser = argparse.ArgumentParser(description = 'Mark validation errors in Excel sheet.') parser.add_argument('config', metavar = 'config', help = 'Path to YAML config file') parser.add_argument('file', metavar = 'file', help = 'Path to excel sheet file') parser.add_argument('sheetName', metavar = 'sheetName', help = 'Excel Sheet Name') parser.add_argument('tmpDir', metavar = 'tmpDir', help = 'Temporary directory path') parser.add_argument('--errors', metavar = 'errors', help = 'Print errors messages in cells marked as invalid') args = parser.parse_args() settings = setSettings(args.config) if settings == False: sys.exit("Incorrect config file " + args.config) try: results = validate(settings, args.file, args.sheetName, args.tmpDir, args.errors) except Exception as e: sys.exit("Error occured: " + str(e)) # if result = true that means file is originaly true and all values are correct # if result != True and not equal None, get result file name # if results !=True and equal None that means File is too large , Exit if results != True: if results: sys.exit("Validation errors store in: [[" + results + "]]") else: sys.exit("Invalid file is too big to generate annotated Excel file") sys.exit(0)
33.880702
140
0.613815
79526c03d69ed64515442e861d8f14dbac929b0b
15,175
py
Python
google/ads/google_ads/v6/proto/resources/ad_group_ad_asset_view_pb2.py
arammaliachi/google-ads-python
a4fe89567bd43eb784410523a6306b5d1dd9ee67
[ "Apache-2.0" ]
null
null
null
google/ads/google_ads/v6/proto/resources/ad_group_ad_asset_view_pb2.py
arammaliachi/google-ads-python
a4fe89567bd43eb784410523a6306b5d1dd9ee67
[ "Apache-2.0" ]
null
null
null
google/ads/google_ads/v6/proto/resources/ad_group_ad_asset_view_pb2.py
arammaliachi/google-ads-python
a4fe89567bd43eb784410523a6306b5d1dd9ee67
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # Generated by the protocol buffer compiler. DO NOT EDIT! # source: google/ads/googleads/v6/resources/ad_group_ad_asset_view.proto """Generated protocol buffer code.""" from google.protobuf import descriptor as _descriptor from google.protobuf import message as _message from google.protobuf import reflection as _reflection from google.protobuf import symbol_database as _symbol_database # @@protoc_insertion_point(imports) _sym_db = _symbol_database.Default() from google.ads.google_ads.v6.proto.common import policy_pb2 as google_dot_ads_dot_googleads_dot_v6_dot_common_dot_policy__pb2 from google.ads.google_ads.v6.proto.enums import asset_field_type_pb2 as google_dot_ads_dot_googleads_dot_v6_dot_enums_dot_asset__field__type__pb2 from google.ads.google_ads.v6.proto.enums import asset_performance_label_pb2 as google_dot_ads_dot_googleads_dot_v6_dot_enums_dot_asset__performance__label__pb2 from google.ads.google_ads.v6.proto.enums import policy_approval_status_pb2 as google_dot_ads_dot_googleads_dot_v6_dot_enums_dot_policy__approval__status__pb2 from google.ads.google_ads.v6.proto.enums import policy_review_status_pb2 as google_dot_ads_dot_googleads_dot_v6_dot_enums_dot_policy__review__status__pb2 from google.api import field_behavior_pb2 as google_dot_api_dot_field__behavior__pb2 from google.api import resource_pb2 as google_dot_api_dot_resource__pb2 from google.api import annotations_pb2 as google_dot_api_dot_annotations__pb2 DESCRIPTOR = _descriptor.FileDescriptor( name='google/ads/googleads/v6/resources/ad_group_ad_asset_view.proto', package='google.ads.googleads.v6.resources', syntax='proto3', serialized_options=b'\n%com.google.ads.googleads.v6.resourcesB\027AdGroupAdAssetViewProtoP\001ZJgoogle.golang.org/genproto/googleapis/ads/googleads/v6/resources;resources\242\002\003GAA\252\002!Google.Ads.GoogleAds.V6.Resources\312\002!Google\\Ads\\GoogleAds\\V6\\Resources\352\002%Google::Ads::GoogleAds::V6::Resources', create_key=_descriptor._internal_create_key, serialized_pb=b'\n>google/ads/googleads/v6/resources/ad_group_ad_asset_view.proto\x12!google.ads.googleads.v6.resources\x1a+google/ads/googleads/v6/common/policy.proto\x1a\x34google/ads/googleads/v6/enums/asset_field_type.proto\x1a;google/ads/googleads/v6/enums/asset_performance_label.proto\x1a:google/ads/googleads/v6/enums/policy_approval_status.proto\x1a\x38google/ads/googleads/v6/enums/policy_review_status.proto\x1a\x1fgoogle/api/field_behavior.proto\x1a\x19google/api/resource.proto\x1a\x1cgoogle/api/annotations.proto\"\xda\x05\n\x12\x41\x64GroupAdAssetView\x12J\n\rresource_name\x18\x01 \x01(\tB3\xe0\x41\x03\xfa\x41-\n+googleads.googleapis.com/AdGroupAdAssetView\x12\x44\n\x0b\x61\x64_group_ad\x18\t \x01(\tB*\xe0\x41\x03\xfa\x41$\n\"googleads.googleapis.com/AdGroupAdH\x00\x88\x01\x01\x12:\n\x05\x61sset\x18\n \x01(\tB&\xe0\x41\x03\xfa\x41 \n\x1egoogleads.googleapis.com/AssetH\x01\x88\x01\x01\x12Y\n\nfield_type\x18\x02 \x01(\x0e\x32@.google.ads.googleads.v6.enums.AssetFieldTypeEnum.AssetFieldTypeB\x03\xe0\x41\x03\x12\x19\n\x07\x65nabled\x18\x08 \x01(\x08\x42\x03\xe0\x41\x03H\x02\x88\x01\x01\x12[\n\x0epolicy_summary\x18\x03 \x01(\x0b\x32>.google.ads.googleads.v6.resources.AdGroupAdAssetPolicySummaryB\x03\xe0\x41\x03\x12n\n\x11performance_label\x18\x04 \x01(\x0e\x32N.google.ads.googleads.v6.enums.AssetPerformanceLabelEnum.AssetPerformanceLabelB\x03\xe0\x41\x03:\x8c\x01\xea\x41\x88\x01\n+googleads.googleapis.com/AdGroupAdAssetView\x12Ycustomers/{customer_id}/adGroupAdAssetViews/{ad_group_id}~{ad_id}~{asset_id}~{field_type}B\x0e\n\x0c_ad_group_adB\x08\n\x06_assetB\n\n\x08_enabled\"\xc4\x02\n\x1b\x41\x64GroupAdAssetPolicySummary\x12S\n\x14policy_topic_entries\x18\x01 \x03(\x0b\x32\x30.google.ads.googleads.v6.common.PolicyTopicEntryB\x03\xe0\x41\x03\x12\x64\n\rreview_status\x18\x02 \x01(\x0e\x32H.google.ads.googleads.v6.enums.PolicyReviewStatusEnum.PolicyReviewStatusB\x03\xe0\x41\x03\x12j\n\x0f\x61pproval_status\x18\x03 \x01(\x0e\x32L.google.ads.googleads.v6.enums.PolicyApprovalStatusEnum.PolicyApprovalStatusB\x03\xe0\x41\x03\x42\x84\x02\n%com.google.ads.googleads.v6.resourcesB\x17\x41\x64GroupAdAssetViewProtoP\x01ZJgoogle.golang.org/genproto/googleapis/ads/googleads/v6/resources;resources\xa2\x02\x03GAA\xaa\x02!Google.Ads.GoogleAds.V6.Resources\xca\x02!Google\\Ads\\GoogleAds\\V6\\Resources\xea\x02%Google::Ads::GoogleAds::V6::Resourcesb\x06proto3' , dependencies=[google_dot_ads_dot_googleads_dot_v6_dot_common_dot_policy__pb2.DESCRIPTOR,google_dot_ads_dot_googleads_dot_v6_dot_enums_dot_asset__field__type__pb2.DESCRIPTOR,google_dot_ads_dot_googleads_dot_v6_dot_enums_dot_asset__performance__label__pb2.DESCRIPTOR,google_dot_ads_dot_googleads_dot_v6_dot_enums_dot_policy__approval__status__pb2.DESCRIPTOR,google_dot_ads_dot_googleads_dot_v6_dot_enums_dot_policy__review__status__pb2.DESCRIPTOR,google_dot_api_dot_field__behavior__pb2.DESCRIPTOR,google_dot_api_dot_resource__pb2.DESCRIPTOR,google_dot_api_dot_annotations__pb2.DESCRIPTOR,]) _ADGROUPADASSETVIEW = _descriptor.Descriptor( name='AdGroupAdAssetView', full_name='google.ads.googleads.v6.resources.AdGroupAdAssetView', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='resource_name', full_name='google.ads.googleads.v6.resources.AdGroupAdAssetView.resource_name', index=0, number=1, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=b'\340A\003\372A-\n+googleads.googleapis.com/AdGroupAdAssetView', file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='ad_group_ad', full_name='google.ads.googleads.v6.resources.AdGroupAdAssetView.ad_group_ad', index=1, number=9, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=b'\340A\003\372A$\n\"googleads.googleapis.com/AdGroupAd', file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='asset', full_name='google.ads.googleads.v6.resources.AdGroupAdAssetView.asset', index=2, number=10, type=9, cpp_type=9, label=1, has_default_value=False, default_value=b"".decode('utf-8'), message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=b'\340A\003\372A \n\036googleads.googleapis.com/Asset', file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='field_type', full_name='google.ads.googleads.v6.resources.AdGroupAdAssetView.field_type', index=3, number=2, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=b'\340A\003', file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='enabled', full_name='google.ads.googleads.v6.resources.AdGroupAdAssetView.enabled', index=4, number=8, type=8, cpp_type=7, label=1, has_default_value=False, default_value=False, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=b'\340A\003', file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='policy_summary', full_name='google.ads.googleads.v6.resources.AdGroupAdAssetView.policy_summary', index=5, number=3, type=11, cpp_type=10, label=1, has_default_value=False, default_value=None, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=b'\340A\003', file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='performance_label', full_name='google.ads.googleads.v6.resources.AdGroupAdAssetView.performance_label', index=6, number=4, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=b'\340A\003', file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=b'\352A\210\001\n+googleads.googleapis.com/AdGroupAdAssetView\022Ycustomers/{customer_id}/adGroupAdAssetViews/{ad_group_id}~{ad_id}~{asset_id}~{field_type}', is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ _descriptor.OneofDescriptor( name='_ad_group_ad', full_name='google.ads.googleads.v6.resources.AdGroupAdAssetView._ad_group_ad', index=0, containing_type=None, create_key=_descriptor._internal_create_key, fields=[]), _descriptor.OneofDescriptor( name='_asset', full_name='google.ads.googleads.v6.resources.AdGroupAdAssetView._asset', index=1, containing_type=None, create_key=_descriptor._internal_create_key, fields=[]), _descriptor.OneofDescriptor( name='_enabled', full_name='google.ads.googleads.v6.resources.AdGroupAdAssetView._enabled', index=2, containing_type=None, create_key=_descriptor._internal_create_key, fields=[]), ], serialized_start=470, serialized_end=1200, ) _ADGROUPADASSETPOLICYSUMMARY = _descriptor.Descriptor( name='AdGroupAdAssetPolicySummary', full_name='google.ads.googleads.v6.resources.AdGroupAdAssetPolicySummary', filename=None, file=DESCRIPTOR, containing_type=None, create_key=_descriptor._internal_create_key, fields=[ _descriptor.FieldDescriptor( name='policy_topic_entries', full_name='google.ads.googleads.v6.resources.AdGroupAdAssetPolicySummary.policy_topic_entries', index=0, number=1, type=11, cpp_type=10, label=3, has_default_value=False, default_value=[], message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=b'\340A\003', file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='review_status', full_name='google.ads.googleads.v6.resources.AdGroupAdAssetPolicySummary.review_status', index=1, number=2, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=b'\340A\003', file=DESCRIPTOR, create_key=_descriptor._internal_create_key), _descriptor.FieldDescriptor( name='approval_status', full_name='google.ads.googleads.v6.resources.AdGroupAdAssetPolicySummary.approval_status', index=2, number=3, type=14, cpp_type=8, label=1, has_default_value=False, default_value=0, message_type=None, enum_type=None, containing_type=None, is_extension=False, extension_scope=None, serialized_options=b'\340A\003', file=DESCRIPTOR, create_key=_descriptor._internal_create_key), ], extensions=[ ], nested_types=[], enum_types=[ ], serialized_options=None, is_extendable=False, syntax='proto3', extension_ranges=[], oneofs=[ ], serialized_start=1203, serialized_end=1527, ) _ADGROUPADASSETVIEW.fields_by_name['field_type'].enum_type = google_dot_ads_dot_googleads_dot_v6_dot_enums_dot_asset__field__type__pb2._ASSETFIELDTYPEENUM_ASSETFIELDTYPE _ADGROUPADASSETVIEW.fields_by_name['policy_summary'].message_type = _ADGROUPADASSETPOLICYSUMMARY _ADGROUPADASSETVIEW.fields_by_name['performance_label'].enum_type = google_dot_ads_dot_googleads_dot_v6_dot_enums_dot_asset__performance__label__pb2._ASSETPERFORMANCELABELENUM_ASSETPERFORMANCELABEL _ADGROUPADASSETVIEW.oneofs_by_name['_ad_group_ad'].fields.append( _ADGROUPADASSETVIEW.fields_by_name['ad_group_ad']) _ADGROUPADASSETVIEW.fields_by_name['ad_group_ad'].containing_oneof = _ADGROUPADASSETVIEW.oneofs_by_name['_ad_group_ad'] _ADGROUPADASSETVIEW.oneofs_by_name['_asset'].fields.append( _ADGROUPADASSETVIEW.fields_by_name['asset']) _ADGROUPADASSETVIEW.fields_by_name['asset'].containing_oneof = _ADGROUPADASSETVIEW.oneofs_by_name['_asset'] _ADGROUPADASSETVIEW.oneofs_by_name['_enabled'].fields.append( _ADGROUPADASSETVIEW.fields_by_name['enabled']) _ADGROUPADASSETVIEW.fields_by_name['enabled'].containing_oneof = _ADGROUPADASSETVIEW.oneofs_by_name['_enabled'] _ADGROUPADASSETPOLICYSUMMARY.fields_by_name['policy_topic_entries'].message_type = google_dot_ads_dot_googleads_dot_v6_dot_common_dot_policy__pb2._POLICYTOPICENTRY _ADGROUPADASSETPOLICYSUMMARY.fields_by_name['review_status'].enum_type = google_dot_ads_dot_googleads_dot_v6_dot_enums_dot_policy__review__status__pb2._POLICYREVIEWSTATUSENUM_POLICYREVIEWSTATUS _ADGROUPADASSETPOLICYSUMMARY.fields_by_name['approval_status'].enum_type = google_dot_ads_dot_googleads_dot_v6_dot_enums_dot_policy__approval__status__pb2._POLICYAPPROVALSTATUSENUM_POLICYAPPROVALSTATUS DESCRIPTOR.message_types_by_name['AdGroupAdAssetView'] = _ADGROUPADASSETVIEW DESCRIPTOR.message_types_by_name['AdGroupAdAssetPolicySummary'] = _ADGROUPADASSETPOLICYSUMMARY _sym_db.RegisterFileDescriptor(DESCRIPTOR) AdGroupAdAssetView = _reflection.GeneratedProtocolMessageType('AdGroupAdAssetView', (_message.Message,), { 'DESCRIPTOR' : _ADGROUPADASSETVIEW, '__module__' : 'google.ads.googleads.v6.resources.ad_group_ad_asset_view_pb2' # @@protoc_insertion_point(class_scope:google.ads.googleads.v6.resources.AdGroupAdAssetView) }) _sym_db.RegisterMessage(AdGroupAdAssetView) AdGroupAdAssetPolicySummary = _reflection.GeneratedProtocolMessageType('AdGroupAdAssetPolicySummary', (_message.Message,), { 'DESCRIPTOR' : _ADGROUPADASSETPOLICYSUMMARY, '__module__' : 'google.ads.googleads.v6.resources.ad_group_ad_asset_view_pb2' # @@protoc_insertion_point(class_scope:google.ads.googleads.v6.resources.AdGroupAdAssetPolicySummary) }) _sym_db.RegisterMessage(AdGroupAdAssetPolicySummary) DESCRIPTOR._options = None _ADGROUPADASSETVIEW.fields_by_name['resource_name']._options = None _ADGROUPADASSETVIEW.fields_by_name['ad_group_ad']._options = None _ADGROUPADASSETVIEW.fields_by_name['asset']._options = None _ADGROUPADASSETVIEW.fields_by_name['field_type']._options = None _ADGROUPADASSETVIEW.fields_by_name['enabled']._options = None _ADGROUPADASSETVIEW.fields_by_name['policy_summary']._options = None _ADGROUPADASSETVIEW.fields_by_name['performance_label']._options = None _ADGROUPADASSETVIEW._options = None _ADGROUPADASSETPOLICYSUMMARY.fields_by_name['policy_topic_entries']._options = None _ADGROUPADASSETPOLICYSUMMARY.fields_by_name['review_status']._options = None _ADGROUPADASSETPOLICYSUMMARY.fields_by_name['approval_status']._options = None # @@protoc_insertion_point(module_scope)
69.610092
2,385
0.816738
79526d509f0b5aebf6b83e2b5a23e69b459f8168
6,913
py
Python
tests/testapp/models.py
behconsci/django-extensions
716832fb9fbe78c6970930b378e0c0962beccd2e
[ "MIT" ]
null
null
null
tests/testapp/models.py
behconsci/django-extensions
716832fb9fbe78c6970930b378e0c0962beccd2e
[ "MIT" ]
null
null
null
tests/testapp/models.py
behconsci/django-extensions
716832fb9fbe78c6970930b378e0c0962beccd2e
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from django.db import models from django_extensions.db.fields import ( AutoSlugField, RandomCharField, ShortUUIDField, ) from django_extensions.db.fields.json import JSONField from django_extensions.db.models import ActivatorModel, TimeStampedModel class Secret(models.Model): name = models.CharField(blank=True, max_length=255, null=True) text = models.TextField(blank=True, null=True) class Meta: app_label = 'django_extensions' class Name(models.Model): name = models.CharField(max_length=50) class Meta: app_label = 'django_extensions' class Note(models.Model): note = models.TextField() class Meta: app_label = 'django_extensions' class Personality(models.Model): description = models.CharField(max_length=50) class Club(models.Model): name = models.CharField(max_length=50) class Person(models.Model): name = models.ForeignKey(Name, on_delete=models.CASCADE) age = models.PositiveIntegerField() children = models.ManyToManyField('self') notes = models.ManyToManyField(Note) personality = models.OneToOneField( Personality, null=True, on_delete=models.CASCADE) clubs = models.ManyToManyField(Club, through='testapp.Membership') class Meta: app_label = 'django_extensions' class Membership(models.Model): person = models.ForeignKey(Person, on_delete=models.CASCADE) club = models.ForeignKey(Club, on_delete=models.CASCADE) created = models.DateTimeField(auto_now=True) class Post(ActivatorModel): title = models.CharField(max_length=255) class Meta: app_label = 'django_extensions' class PostWithTitleOrdering(Post): class Meta: proxy = True ordering = ['title'] class SluggedTestModel(models.Model): title = models.CharField(max_length=42) slug = AutoSlugField(populate_from='title') class Meta: app_label = 'django_extensions' class SluggedTestBytesLookupValueModel(models.Model): title = models.CharField(max_length=42) slug = AutoSlugField(populate_from=b'title') class Meta: app_label = 'django_extensions' class ChildSluggedTestModel(SluggedTestModel): class Meta: app_label = 'django_extensions' def get_readable_title(instance): return "The title is {}".format(instance.title) class ModelMethodSluggedTestModel(models.Model): title = models.CharField(max_length=42) slug = AutoSlugField(populate_from='get_readable_title') class Meta: app_label = 'django_extensions' def get_readable_title(self): return get_readable_title(self) class FunctionSluggedTestModel(models.Model): title = models.CharField(max_length=42) slug = AutoSlugField(populate_from=get_readable_title) class Meta: app_label = 'django_extensions' class FKSluggedTestModel(models.Model): related_field = models.ForeignKey(SluggedTestModel, on_delete=models.CASCADE) slug = AutoSlugField(populate_from="related_field__title") class Meta: app_label = 'django_extensions' class FKSluggedTestModelCallable(models.Model): related_field = models.ForeignKey(ModelMethodSluggedTestModel, on_delete=models.CASCADE) slug = AutoSlugField(populate_from="related_field__get_readable_title") class Meta: app_label = 'django_extensions' class JSONFieldTestModel(models.Model): a = models.IntegerField() j_field = JSONField() class Meta: app_label = 'django_extensions' class ShortUUIDTestModel_field(models.Model): a = models.IntegerField() uuid_field = ShortUUIDField() class Meta: app_label = 'django_extensions' class ShortUUIDTestModel_pk(models.Model): uuid_field = ShortUUIDField(primary_key=True) class Meta: app_label = 'django_extensions' class ShortUUIDTestAgregateModel(ShortUUIDTestModel_pk): a = models.IntegerField() class Meta: app_label = 'django_extensions' class ShortUUIDTestManyToManyModel(ShortUUIDTestModel_pk): many = models.ManyToManyField(ShortUUIDTestModel_field) class Meta: app_label = 'django_extensions' class RandomCharTestModel(models.Model): random_char_field = RandomCharField(length=8, unique=False) class Meta: app_label = 'django_extensions' class RandomCharTestModelUnique(models.Model): random_char_field = RandomCharField(length=8, unique=True) class Meta: app_label = 'django_extensions' class RandomCharTestModelAlphaDigits(models.Model): random_char_field = RandomCharField(length=8, unique=True) class Meta: app_label = 'django_extensions' class RandomCharTestModelLowercaseAlphaDigits(models.Model): random_char_field = RandomCharField(length=8, lowercase=True) class Meta: app_label = 'django_extensions' verbose_name = 'lowercase alpha digits' class RandomCharTestModelUppercaseAlphaDigits(models.Model): random_char_field = RandomCharField(length=8, uppercase=True) class Meta: app_label = 'django_extensions' verbose_name = 'uppercase alpha digits' class RandomCharTestModelLowercase(models.Model): random_char_field = RandomCharField(length=8, lowercase=True, include_digits=False) class Meta: app_label = 'django_extensions' class RandomCharTestModelUppercase(models.Model): random_char_field = RandomCharField(length=8, uppercase=True, include_digits=False) class Meta: app_label = 'django_extensions' class RandomCharTestModelAlpha(models.Model): random_char_field = RandomCharField(length=8, include_digits=False) class Meta: app_label = 'django_extensions' class RandomCharTestModelDigits(models.Model): random_char_field = RandomCharField(length=8, include_alpha=False) class Meta: app_label = 'django_extensions' class RandomCharTestModelPunctuation(models.Model): random_char_field = RandomCharField( length=8, include_punctuation=True, include_digits=False, include_alpha=False, ) class Meta: app_label = 'django_extensions' class TimestampedTestModel(TimeStampedModel): class Meta: app_label = 'django_extensions' class Permission(models.Model): text = models.CharField(max_length=32) person = models.ForeignKey(Person, on_delete=models.CASCADE) class UniqueTestAppModel(models.Model): global_id = models.CharField(max_length=32, unique=True) class SqlDiff(models.Model): number = models.CharField(max_length=40, null=True, verbose_name='Chargennummer') creator = models.CharField(max_length=20, null=True, blank=True) class SqlDiffUniqueTogether(models.Model): aaa = models.CharField(max_length=20) bbb = models.CharField(max_length=20) class Meta: unique_together = ['aaa', 'bbb']
25.047101
92
0.729929
79526d97613a8658719e35ea734ad3566bf14f36
9,484
py
Python
enigma/machine.py
spgill/enigma
b9cf3aff2e3c4ef442c578cbddc39a9b53dadb4e
[ "MIT" ]
1
2021-01-01T14:02:53.000Z
2021-01-01T14:02:53.000Z
enigma/machine.py
spgill/enigma
b9cf3aff2e3c4ef442c578cbddc39a9b53dadb4e
[ "MIT" ]
null
null
null
enigma/machine.py
spgill/enigma
b9cf3aff2e3c4ef442c578cbddc39a9b53dadb4e
[ "MIT" ]
null
null
null
# stdlib imports import array import enum import io import pickle import random # third party imports # local module imports import enigma.rotors as rotors class OUTPUT(enum.Enum): PENTAGRAPH = 1 CONTINUOUS = 2 class Machine: def __init__( self, plugboardStack=[], rotorStack=[], reflector=None, state=None, stateSeed='', outputMode=OUTPUT.PENTAGRAPH ): """Initialize a new Enigma Machine. """ # Initialize the empty variables self.plugboard = [] self.rotors = [] self.reflector = None self.pentacount = 0 # Unpack the state if state: self.stateSet(state) # If seed is present, generate randomized state elif stateSeed: self.stateRandom(stateSeed) # or unpack the args into the class else: self._initPlugboard(plugboardStack) self._initRotors(rotorStack) self._initReflector(reflector) # Link all of the rotors and reflectors together self._link() # Go ahead and set a break point self.breakSet() # Store the mode self.mode = outputMode def _initPlugboard(self, stack): '''Initialize the plugboard translation matrix''' # Start with an 1:1 mapping self.plugboard = array.array('b', [i for i in range(26)]) # Swap up the mappings for each desired pair for pair in stack: x = pair[0] y = pair[1] x = rotors._RotorBase._abet.index(x.upper()) y = rotors._RotorBase._abet.index(y.upper()) self.plugboard[x] = y self.plugboard[y] = x def _initRotors(self, stack): '''Check the passed rotors to see if they're strings or real rotors''' for i, entry in enumerate(stack): rotor = None # if it's an actual rotor instance, keep on swimming if isinstance(entry, rotors._RotorBase): rotor = entry # if it's a string, turn it into a rotor if isinstance(entry, str): rotor = rotors.stringToRotor(entry) # Must be invalid then if rotor is None: raise TypeError( 'Unknown type of rotor passed into the machine' ) # Append it, yo self.rotors.append(rotor) def _initReflector(self, reflector): '''Check to make sure a real reflector was passed in''' # if it's an actual reflector instance, keep on swimming if isinstance(reflector, rotors._ReflectorBase): self.reflector = reflector # if it's a string, turn it into a reflector if isinstance(reflector, str): self.reflector = rotors.stringToReflector(reflector) # Must be invalid then if self.reflector is None: raise TypeError( 'Unknown type of reflector passed into the machine' ) def _link(self): """Link the rotors and reflectors together in a node-like fashion""" # Link the rotors forward for i in range(len(self.rotors))[:-1]: self.rotors[i].next = self.rotors[i + 1] # Link the rotors backwards for i in range(len(self.rotors))[1:]: self.rotors[i].previous = self.rotors[i - 1] # Link the reflector into the loop self.rotors[-1].next = self.reflector self.reflector.previous = self.rotors[-1] def _checkByte(self, b): '''Sanitize a single character''' # Uppercase alpha. Good to go. if b >= 65 and b <= 90: return b # Lowercase alpha. Let's capitalize it. elif b >= 97 and b <= 122: return b - 32 # Invalid character. else: return False def stateGet(self): '''Get a serialized state of the machine. (the 'settings')''' return pickle.dumps(( self.plugboard, self.rotors, self.reflector ), -1) def stateSet(self, state): '''Set the state of the machine from a serialized input''' ( self.plugboard, self.rotors, self.reflector ) = pickle.loads(state) def stateRandom(self, seed): """Randomly generate a state from a string seed""" # Seed the random generator random.seed(seed) # Generate a random plugboard plugboardStack = [] abet = list('ABCDEFGHIJKLMNOPQRSTUVWXYZ') for i in range(random.randint(0, 13)): pair = '' for j in range(2): k = random.randrange(0, len(abet)) pair += abet[k] del abet[k] plugboardStack.append(pair) self._initPlugboard(plugboardStack) # Generate random rotors (there will always be three) rotorStack = [] abet = list('ABCDEFGHIJKLMNOPQRSTUVWXYZ') rotorNames = sorted( [r._short for r in rotors._RotorBase.__subclasses__()] ) rotorNames.remove('base-ref') for i in range(3): rotor = '{0}:{1}:{2}'.format( random.choice(rotorNames), random.choice(abet), random.choice(abet) ) rotorStack.append(rotor) self._initRotors(rotorStack) # Pick a random reflector reflNames = sorted( [r._short for r in rotors._ReflectorBase.__subclasses__()] ) reflector = random.choice(reflNames) self._initReflector(reflector) def breakSet(self): '''Save the current state to be easily returned to later''' self._breakstate = self.stateGet() def breakGo(self): '''Return to the saved break state''' assert hasattr(self, '_breakstate') self.stateSet(self._breakstate) def translatePin(self, pin): """ Translate a singular pin (as an integer) through the plugboard, rotors, reflector, and back again. """ # Isolate the first (maybe only) rotor rotor = self.rotors[0] # Forward through the plugboard pin = self.plugboard[pin] # Send the pin through the rotors pin = rotor.translate(pin) # Backwards through the plugboard pin = self.plugboard[pin] # Step the rotors rotor.step() # Return the fruits of our labor return pin def translateChunk(self, chunk_in): """ Translate a non-empty bytes or bytearray object through the machine. """ # Initialize the outgoing chunk chunk_out = bytearray() # Text modes for byte_in in chunk_in: # Check the byte byte_out = self._checkByte(byte_in) if not byte_out: continue # Convert the byte to a pin byte_out -= 65 # Run it through the machine byte_out = self.translatePin(byte_out) # Convert it back into a byte byte_out += 65 # Append it to the array chunk_out.append(byte_out) # If pentagraph mode is on, increment and Check if self.mode == OUTPUT.PENTAGRAPH: self.pentacount += 1 if self.pentacount == 5: chunk_out.append(0x20) self.pentacount = 0 # Return the processed chunk return chunk_out def translateString(self, s, **kwargs): """Lazy method to translate a string""" # Reset the pentagraph counter self.pentacount = 0 return str(self.translateChunk(bytes(s), **kwargs)) def _readChunks(self, stream, chunkSize): """Yield discrete chunks from a stream.""" while True: data = stream.read(chunkSize) if not data: break yield data def _streamSize(self, stream): """Return the size of a stream in bytes""" stream.seek(0, 2) size = stream.tell() stream.seek(0) return size def translateStream( self, stream_in, stream_out=None, progressCallback=None, chunkSize=128, **kwargs ): """Translate a stream (file-like object) chunk by chunk.""" # Reset the pentagraph counter self.pentacount = 0 # Figure out the size of the input stream stream_in_size = self._streamSize(stream_in) # If no outgoing stream is specified, make one if not stream_out: stream_out = io.BytesIO() stream_out_size = 0 # Make the initial call to the progress function if progressCallback: progressCallback(stream_out_size, stream_in_size) # Iterate through chunks for chunk_in in self._readChunks(stream_in, chunkSize): chunk_out = self.translateChunk(chunk_in, **kwargs) stream_out.write(chunk_out) stream_out_size += chunkSize if progressCallback: progressCallback(stream_out_size, stream_in_size) # Return the outgoing stream (in case one wasn't passed in) return stream_out
29.453416
78
0.560418
79526dc8083815714585aa4e3c0857f0f19c6166
28,272
py
Python
neutron/services/segments/plugin.py
acdc-cloud/neutron
2510836886555179f9e9e39b1fdbf94296befc51
[ "Apache-2.0" ]
1
2018-10-19T01:48:37.000Z
2018-10-19T01:48:37.000Z
neutron/services/segments/plugin.py
acdc-cloud/neutron
2510836886555179f9e9e39b1fdbf94296befc51
[ "Apache-2.0" ]
null
null
null
neutron/services/segments/plugin.py
acdc-cloud/neutron
2510836886555179f9e9e39b1fdbf94296befc51
[ "Apache-2.0" ]
null
null
null
# Copyright 2016 Hewlett Packard Enterprise Development, LP # # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import copy from keystoneauth1 import loading as ks_loading import netaddr from neutron_lib.api.definitions import ip_allocation as ipalloc_apidef from neutron_lib.api.definitions import l2_adjacency as l2adj_apidef from neutron_lib.api.definitions import network as net_def from neutron_lib.api.definitions import port as port_def from neutron_lib.api.definitions import subnet as subnet_def from neutron_lib.api import validators from neutron_lib.callbacks import events from neutron_lib.callbacks import registry from neutron_lib.callbacks import resources from neutron_lib import constants from neutron_lib.exceptions import placement as placement_exc from neutron_lib.plugins import directory from novaclient import client as nova_client from novaclient import exceptions as nova_exc from oslo_config import cfg from oslo_log import log from oslo_utils import excutils from neutron._i18n import _ from neutron.db import _resource_extend as resource_extend from neutron.extensions import segment from neutron.notifiers import batch_notifier from neutron.objects import network as net_obj from neutron.objects import subnet as subnet_obj from neutron.services.segments import db from neutron.services.segments import exceptions from neutron.services.segments import placement_client LOG = log.getLogger(__name__) NOVA_API_VERSION = '2.41' IPV4_RESOURCE_CLASS = 'IPV4_ADDRESS' SEGMENT_NAME_STUB = 'Neutron segment id %s' MAX_INVENTORY_UPDATE_RETRIES = 10 @resource_extend.has_resource_extenders @registry.has_registry_receivers class Plugin(db.SegmentDbMixin, segment.SegmentPluginBase): _instance = None supported_extension_aliases = ["segment", "ip_allocation", l2adj_apidef.ALIAS, "standard-attr-segment", "subnet-segmentid-writable", 'segments-peer-subnet-host-routes'] __native_pagination_support = True __native_sorting_support = True __filter_validation_support = True def __init__(self): self.nova_updater = NovaSegmentNotifier() self.segment_host_routes = SegmentHostRoutes() @staticmethod @resource_extend.extends([net_def.COLLECTION_NAME]) def _extend_network_dict_binding(network_res, network_db): if not directory.get_plugin('segments'): return # TODO(carl_baldwin) Make this work with service subnets when # it's a thing. is_adjacent = (not network_db.subnets or not network_db.subnets[0].segment_id) network_res[l2adj_apidef.L2_ADJACENCY] = is_adjacent @staticmethod @resource_extend.extends([subnet_def.COLLECTION_NAME]) def _extend_subnet_dict_binding(subnet_res, subnet_db): subnet_res['segment_id'] = subnet_db.get('segment_id') @staticmethod @resource_extend.extends([port_def.COLLECTION_NAME]) def _extend_port_dict_binding(port_res, port_db): if not directory.get_plugin('segments'): return value = ipalloc_apidef.IP_ALLOCATION_IMMEDIATE if port_db.get('ip_allocation'): value = port_db.get('ip_allocation') port_res[ipalloc_apidef.IP_ALLOCATION] = value @classmethod def get_instance(cls): if cls._instance is None: cls._instance = cls() return cls._instance @registry.receives(resources.SEGMENT, [events.BEFORE_DELETE]) def _prevent_segment_delete_with_subnet_associated( self, resource, event, trigger, context, segment, for_net_delete=False): """Raise exception if there are any subnets associated with segment.""" if for_net_delete: # don't check if this is a part of a network delete operation return segment_id = segment['id'] subnets = subnet_obj.Subnet.get_objects(context, segment_id=segment_id) subnet_ids = [s.id for s in subnets] if subnet_ids: reason = _("The segment is still associated with subnet(s) " "%s") % ", ".join(subnet_ids) raise exceptions.SegmentInUse(segment_id=segment_id, reason=reason) class Event(object): def __init__(self, method, segment_ids, total=None, reserved=None, segment_host_mappings=None, host=None): self.method = method if isinstance(segment_ids, set): self.segment_ids = segment_ids else: self.segment_id = segment_ids self.total = total self.reserved = reserved self.segment_host_mappings = segment_host_mappings self.host = host @registry.has_registry_receivers class NovaSegmentNotifier(object): def __init__(self): self.p_client, self.n_client = self._get_clients() self.batch_notifier = batch_notifier.BatchNotifier( cfg.CONF.send_events_interval, self._send_notifications) def _get_clients(self): p_client = placement_client.PlacementAPIClient() n_auth = ks_loading.load_auth_from_conf_options(cfg.CONF, 'nova') n_session = ks_loading.load_session_from_conf_options( cfg.CONF, 'nova', auth=n_auth) extensions = [ ext for ext in nova_client.discover_extensions(NOVA_API_VERSION) if ext.name == "server_external_events"] n_client = nova_client.Client( NOVA_API_VERSION, session=n_session, region_name=cfg.CONF.nova.region_name, endpoint_type=cfg.CONF.nova.endpoint_type, extensions=extensions) return p_client, n_client def _send_notifications(self, batched_events): for event in batched_events: try: event.method(event) except placement_exc.PlacementEndpointNotFound: LOG.debug('Placement API was not found when trying to ' 'update routed networks IPv4 inventories') return def _notify_subnet(self, context, subnet, segment_id): total, reserved = self._calculate_inventory_total_and_reserved(subnet) if total: segment_host_mappings = net_obj.SegmentHostMapping.get_objects( context, segment_id=segment_id) self.batch_notifier.queue_event(Event( self._create_or_update_nova_inventory, segment_id, total=total, reserved=reserved, segment_host_mappings=segment_host_mappings)) @registry.receives(resources.SUBNET, [events.AFTER_CREATE]) def _notify_subnet_created(self, resource, event, trigger, context, subnet, **kwargs): segment_id = subnet.get('segment_id') if not segment_id or subnet['ip_version'] != constants.IP_VERSION_4: return self._notify_subnet(context, subnet, segment_id) def _create_or_update_nova_inventory(self, event): try: self._update_nova_inventory(event) except placement_exc.PlacementResourceProviderNotFound: self._create_nova_inventory(event.segment_id, event.total, event.reserved, event.segment_host_mappings) def _update_nova_inventory(self, event): for count in range(MAX_INVENTORY_UPDATE_RETRIES): ipv4_inventory = self.p_client.get_inventory(event.segment_id, IPV4_RESOURCE_CLASS) if event.total: ipv4_inventory['total'] += event.total if event.reserved: ipv4_inventory['reserved'] += event.reserved try: self.p_client.update_inventory(event.segment_id, ipv4_inventory, IPV4_RESOURCE_CLASS) return except placement_exc.PlacementInventoryUpdateConflict: LOG.debug('Re-trying to update Nova IPv4 inventory for ' 'routed network segment: %s', event.segment_id) LOG.error('Failed to update Nova IPv4 inventory for routed ' 'network segment: %s', event.segment_id) def _get_nova_aggregate_uuid(self, aggregate): try: return aggregate.uuid except AttributeError: with excutils.save_and_reraise_exception(): LOG.exception("uuid was not returned as part of the aggregate " "object which indicates that the Nova API " "backend does not support microversions. Ensure " "that the compute endpoint in the service " "catalog points to the v2.1 API.") def _create_nova_inventory(self, segment_id, total, reserved, segment_host_mappings): name = SEGMENT_NAME_STUB % segment_id resource_provider = {'name': name, 'uuid': segment_id} self.p_client.create_resource_provider(resource_provider) aggregate = self.n_client.aggregates.create(name, None) aggregate_uuid = self._get_nova_aggregate_uuid(aggregate) self.p_client.associate_aggregates(segment_id, [aggregate_uuid]) for mapping in segment_host_mappings: self.n_client.aggregates.add_host(aggregate.id, mapping.host) ipv4_inventory = {'total': total, 'reserved': reserved, 'min_unit': 1, 'max_unit': 1, 'step_size': 1, 'allocation_ratio': 1.0, 'resource_class': IPV4_RESOURCE_CLASS} self.p_client.create_inventory(segment_id, ipv4_inventory) def _calculate_inventory_total_and_reserved(self, subnet): total = 0 reserved = 0 allocation_pools = subnet.get('allocation_pools') or [] for pool in allocation_pools: total += int(netaddr.IPAddress(pool['end']) - netaddr.IPAddress(pool['start'])) + 1 if total: if subnet['gateway_ip']: total += 1 reserved += 1 if subnet['enable_dhcp']: reserved += 1 return total, reserved @registry.receives(resources.SUBNET, [events.AFTER_UPDATE]) def _notify_subnet_updated(self, resource, event, trigger, context, subnet, original_subnet, **kwargs): segment_id = subnet.get('segment_id') original_segment_id = original_subnet.get('segment_id') if not segment_id or subnet['ip_version'] != constants.IP_VERSION_4: return if original_segment_id != segment_id: # Migration to routed network, treat as create self._notify_subnet(context, subnet, segment_id) return filters = {'segment_id': [segment_id], 'ip_version': [constants.IP_VERSION_4]} if not subnet['allocation_pools']: plugin = directory.get_plugin() alloc_pools = [s['allocation_pools'] for s in plugin.get_subnets(context, filters=filters)] if not any(alloc_pools): self.batch_notifier.queue_event(Event( self._delete_nova_inventory, segment_id)) return original_total, original_reserved = ( self._calculate_inventory_total_and_reserved(original_subnet)) updated_total, updated_reserved = ( self._calculate_inventory_total_and_reserved(subnet)) total = updated_total - original_total reserved = updated_reserved - original_reserved if total or reserved: segment_host_mappings = None if not original_subnet['allocation_pools']: segment_host_mappings = net_obj.SegmentHostMapping.get_objects( context, segment_id=segment_id) self.batch_notifier.queue_event(Event( self._create_or_update_nova_inventory, segment_id, total=total, reserved=reserved, segment_host_mappings=segment_host_mappings)) @registry.receives(resources.SUBNET, [events.AFTER_DELETE]) def _notify_subnet_deleted(self, resource, event, trigger, context, subnet, **kwargs): segment_id = subnet.get('segment_id') if not segment_id or subnet['ip_version'] != constants.IP_VERSION_4: return total, reserved = self._calculate_inventory_total_and_reserved(subnet) if total: filters = {'segment_id': [segment_id], 'ip_version': [4]} plugin = directory.get_plugin() if plugin.get_subnets_count(context, filters=filters) > 0: self.batch_notifier.queue_event(Event( self._update_nova_inventory, segment_id, total=-total, reserved=-reserved)) else: self.batch_notifier.queue_event(Event( self._delete_nova_inventory, segment_id)) def _get_aggregate_id(self, segment_id): aggregate_uuid = self.p_client.list_aggregates( segment_id)['aggregates'][0] aggregates = self.n_client.aggregates.list() for aggregate in aggregates: nc_aggregate_uuid = self._get_nova_aggregate_uuid(aggregate) if nc_aggregate_uuid == aggregate_uuid: return aggregate.id def _delete_nova_inventory(self, event): aggregate_id = self._get_aggregate_id(event.segment_id) aggregate = self.n_client.aggregates.get_details( aggregate_id) for host in aggregate.hosts: self.n_client.aggregates.remove_host(aggregate_id, host) self.n_client.aggregates.delete(aggregate_id) self.p_client.delete_resource_provider(event.segment_id) @registry.receives(resources.SEGMENT_HOST_MAPPING, [events.AFTER_CREATE]) def _notify_host_addition_to_aggregate(self, resource, event, trigger, context, host, current_segment_ids, **kwargs): subnets = subnet_obj.Subnet.get_objects(context, segment_id=current_segment_ids) segment_ids = {s.segment_id for s in subnets} self.batch_notifier.queue_event(Event(self._add_host_to_aggregate, segment_ids, host=host)) def _add_host_to_aggregate(self, event): for segment_id in event.segment_ids: try: aggregate_id = self._get_aggregate_id(segment_id) except placement_exc.PlacementAggregateNotFound: LOG.info('When adding host %(host)s, aggregate not found ' 'for routed network segment %(segment_id)s', {'host': event.host, 'segment_id': segment_id}) continue try: self.n_client.aggregates.add_host(aggregate_id, event.host) except nova_exc.Conflict: LOG.info('Host %(host)s already exists in aggregate for ' 'routed network segment %(segment_id)s', {'host': event.host, 'segment_id': segment_id}) @registry.receives(resources.PORT, [events.AFTER_CREATE, events.AFTER_DELETE]) def _notify_port_created_or_deleted(self, resource, event, trigger, context, port, **kwargs): if not self._does_port_require_nova_inventory_update(port): return ipv4_subnets_number, segment_id = ( self._get_ipv4_subnets_number_and_segment_id(port, context)) if segment_id: if event == events.AFTER_DELETE: ipv4_subnets_number = -ipv4_subnets_number self.batch_notifier.queue_event(Event(self._update_nova_inventory, segment_id, reserved=ipv4_subnets_number)) @registry.receives(resources.PORT, [events.AFTER_UPDATE]) def _notify_port_updated(self, resource, event, trigger, context, **kwargs): port = kwargs.get('port') original_port = kwargs.get('original_port') does_original_port_require_nova_inventory_update = ( self._does_port_require_nova_inventory_update(original_port)) does_port_require_nova_inventory_update = ( self._does_port_require_nova_inventory_update(port)) if not (does_original_port_require_nova_inventory_update or does_port_require_nova_inventory_update): return original_port_ipv4_subnets_number, segment_id = ( self._get_ipv4_subnets_number_and_segment_id(original_port, context)) if not segment_id: return port_ipv4_subnets_number = len(self._get_ipv4_subnet_ids(port)) if not does_original_port_require_nova_inventory_update: original_port_ipv4_subnets_number = 0 if not does_port_require_nova_inventory_update: port_ipv4_subnets_number = 0 update = port_ipv4_subnets_number - original_port_ipv4_subnets_number if update: self.batch_notifier.queue_event(Event(self._update_nova_inventory, segment_id, reserved=update)) def _get_ipv4_subnets_number_and_segment_id(self, port, context): ipv4_subnet_ids = self._get_ipv4_subnet_ids(port) if not ipv4_subnet_ids: return 0, None subnet = subnet_obj.Subnet.get_object(context, id=ipv4_subnet_ids[0]) if subnet and subnet.segment_id: return len(ipv4_subnet_ids), subnet.segment_id return 0, None def _does_port_require_nova_inventory_update(self, port): device_owner = port.get('device_owner') if (device_owner.startswith(constants.DEVICE_OWNER_COMPUTE_PREFIX) or device_owner == constants.DEVICE_OWNER_DHCP): return False return True def _get_ipv4_subnet_ids(self, port): ipv4_subnet_ids = [] for ip in port.get('fixed_ips', []): if netaddr.IPAddress( ip['ip_address']).version == constants.IP_VERSION_4: ipv4_subnet_ids.append(ip['subnet_id']) return ipv4_subnet_ids @registry.has_registry_receivers class SegmentHostRoutes(object): def _get_subnets(self, context, network_id): return subnet_obj.Subnet.get_objects(context, network_id=network_id) def _calculate_routed_network_host_routes(self, context, ip_version, network_id=None, subnet_id=None, segment_id=None, host_routes=None, gateway_ip=None, old_gateway_ip=None, deleted_cidr=None): """Calculate host routes for routed network. This method is used to calculate the host routes for routed networks both when handling the user create or update request and when making updates to subnets on the network in response to events: AFTER_CREATE and AFTER_DELETE. :param ip_version: IP version (4/6). :param network_id: Network ID. :param subnet_id: UUID of the subnet. :param segment_id: Segement ID associated with the subnet. :param host_routes: Current host_routes of the subnet. :param gateway_ip: The subnets gateway IP address. :param old_gateway_ip: The old gateway IP address of the subnet when it is changed on update. :param deleted_cidr: The cidr of a deleted subnet. :returns Host routes with routes for the other subnet's on the routed network appended unless a route to the destination already exists. """ if host_routes is None: host_routes = [] dest_ip_nets = [netaddr.IPNetwork(route['destination']) for route in host_routes] # Drop routes to the deleted cidr, when the subnet was deleted. if deleted_cidr: delete_route = {'destination': deleted_cidr, 'nexthop': gateway_ip} if delete_route in host_routes: host_routes.remove(delete_route) for subnet in self._get_subnets(context, network_id): if (subnet.id == subnet_id or subnet.segment_id == segment_id or subnet.ip_version != ip_version): continue subnet_ip_net = netaddr.IPNetwork(subnet.cidr) if old_gateway_ip: old_route = {'destination': str(subnet.cidr), 'nexthop': old_gateway_ip} if old_route in host_routes: host_routes.remove(old_route) dest_ip_nets.remove(subnet_ip_net) if gateway_ip: # Use netaddr here in case the user provided a summary route # (supernet route). I.e subnet.cidr = 10.0.1.0/24 and # the user provided a host route for 10.0.0.0/16. We don't # need to append a route in this case. if not any(subnet_ip_net in ip_net for ip_net in dest_ip_nets): host_routes.append({'destination': subnet.cidr, 'nexthop': gateway_ip}) return host_routes def _host_routes_need_update(self, host_routes, calc_host_routes): """Compare host routes and calculated host routes :param host_routes: Current host routes :param calc_host_routes: Host routes + calculated host routes for routed network :returns True if host_routes and calc_host_routes are not equal """ return ((set((route['destination'], route['nexthop']) for route in host_routes) != set((route['destination'], route['nexthop']) for route in calc_host_routes))) def _update_routed_network_host_routes(self, context, network_id, deleted_cidr=None): """Update host routes on subnets on a routed network after event Host routes on the subnets on a routed network may need updates after any CREATE or DELETE event. :param network_id: Network ID :param deleted_cidr: The cidr of a deleted subnet. """ for subnet in self._get_subnets(context, network_id): host_routes = [{'destination': str(route.destination), 'nexthop': route.nexthop} for route in subnet.host_routes] calc_host_routes = self._calculate_routed_network_host_routes( context=context, ip_version=subnet.ip_version, network_id=subnet.network_id, subnet_id=subnet.id, segment_id=subnet.segment_id, host_routes=copy.deepcopy(host_routes), gateway_ip=subnet.gateway_ip, deleted_cidr=deleted_cidr) if self._host_routes_need_update(host_routes, calc_host_routes): LOG.debug( "Updating host routes for subnet %s on routed network %s", (subnet.id, subnet.network_id)) plugin = directory.get_plugin() plugin.update_subnet(context, subnet.id, {'subnet': { 'host_routes': calc_host_routes}}) @registry.receives(resources.SUBNET, [events.BEFORE_CREATE]) def host_routes_before_create(self, resource, event, trigger, context, subnet, **kwargs): segment_id = subnet.get('segment_id') gateway_ip = subnet.get('gateway_ip') if validators.is_attr_set(subnet.get('host_routes')): host_routes = subnet.get('host_routes') else: host_routes = [] if segment_id is not None and validators.is_attr_set(gateway_ip): calc_host_routes = self._calculate_routed_network_host_routes( context=context, ip_version=netaddr.IPNetwork(subnet['cidr']).version, network_id=subnet['network_id'], segment_id=subnet['segment_id'], host_routes=copy.deepcopy(host_routes), gateway_ip=gateway_ip) if (not host_routes or self._host_routes_need_update(host_routes, calc_host_routes)): subnet['host_routes'] = calc_host_routes @registry.receives(resources.SUBNET, [events.BEFORE_UPDATE]) def host_routes_before_update(self, resource, event, trigger, **kwargs): context = kwargs['context'] subnet, original_subnet = kwargs['request'], kwargs['original_subnet'] segment_id = subnet.get('segment_id', original_subnet['segment_id']) gateway_ip = subnet.get('gateway_ip', original_subnet['gateway_ip']) host_routes = subnet.get('host_routes', original_subnet['host_routes']) if (segment_id and (host_routes != original_subnet['host_routes'] or gateway_ip != original_subnet['gateway_ip'])): calc_host_routes = self._calculate_routed_network_host_routes( context=context, ip_version=netaddr.IPNetwork(original_subnet['cidr']).version, network_id=original_subnet['network_id'], segment_id=segment_id, host_routes=copy.deepcopy(host_routes), gateway_ip=gateway_ip, old_gateway_ip=original_subnet['gateway_ip'] if ( gateway_ip != original_subnet['gateway_ip']) else None) if self._host_routes_need_update(host_routes, calc_host_routes): subnet['host_routes'] = calc_host_routes @registry.receives(resources.SUBNET, [events.AFTER_CREATE]) def host_routes_after_create(self, resource, event, trigger, **kwargs): context = kwargs['context'] subnet = kwargs['subnet'] # If there are other subnets on the network and subnet has segment_id # ensure host routes for all subnets are updated. if (len(self._get_subnets(context, subnet['network_id'])) > 1 and subnet.get('segment_id')): self._update_routed_network_host_routes(context, subnet['network_id']) @registry.receives(resources.SUBNET, [events.AFTER_DELETE]) def host_routes_after_delete(self, resource, event, trigger, context, subnet, **kwargs): # If this is a routed network, remove any routes to this subnet on # this networks remaining subnets. if subnet.get('segment_id'): self._update_routed_network_host_routes( context, subnet['network_id'], deleted_cidr=subnet['cidr'])
46.271686
79
0.624186
79526e3a2cbb8312099bad294c645cd36ef0b1cb
2,819
py
Python
build/lib/anipick/char.py
pengode-handal/anipick
f711620d9c12581f13f951204151b60eac4e1736
[ "MIT" ]
1
2022-03-02T07:59:15.000Z
2022-03-02T07:59:15.000Z
build/lib/anipick/char.py
pengode-handal/anipick
f711620d9c12581f13f951204151b60eac4e1736
[ "MIT" ]
null
null
null
build/lib/anipick/char.py
pengode-handal/anipick
f711620d9c12581f13f951204151b60eac4e1736
[ "MIT" ]
null
null
null
import requests from googlesearch import search from bs4 import BeautifulSoup from .error_handling import SearchNotWork, NoResultFound class Charapedia: def __init__(self, char: str): try: mal_char_id = search('site:myanimelist.net {} character info inurl:/character/'.format(char), num_results=0) except SearchNotWork: raise SearchNotWork('Search Library Not Work') try: mal_char_id = ''.join(mal_char_id).split('/')[4] except: raise NoResultFound('Character Not Found') self.mal_char_id = mal_char_id base_api = 'https://api.jikan.moe/v3/character/{}/'.format(self.mal_char_id) r = requests.get(base_api) result = r.json() self.result = result #Caharcter Name try: name = result['name'] name = f'{name} ({result["name_kanji"]})' except KeyError: raise NoResultFound(f'{char} is not Anime characters or u typo') self.name = name or None #url name url = result['url'] self.url = url #image url image_url = result['image_url'] self.image_url = image_url #about about = result['about'] if 'No biography written.' in about: self.age = about about = ''.join(about) self.about = about self.anu = self.about.split('\n') #age try: age = self.anu[0].split('Age: ')[1] except: age = 'Age biography not written.' self.age = age #birthday try: try: birthday = self.anu[1].split('Birthday: ')[1] except: birthday = self.anu[0].split('Birthday: ')[1] except: birthday = 'Birthday biography not written' self.birthday = birthday #height try: try: height = self.anu[1].split('Height: ')[1] except: try: height = self.anu[2].split('Height: ')[1] except: height = self.anu[3].split('Height:')[1] except: height = 'Height biography not written' self.height = height #weight try: try: weight = self.anu[1].split('Weight: ')[1] except: try: weight = self.anu[2].split('Weight: ')[1] except: weight = self.anu[3].split('Weight:')[1] except: weight = 'weight biography not written' self.weight = weight #nickname nickname = result['nicknames'] nickname = ', '.join(nickname) if ',' not in nickname: nickname = 'None' self.nickname = nickname #anime reference @property def anime(self) -> list: anime = [] for nama in self.result['animeography']: anime.append(nama['name']) anime = ', '.join(anime) return anime or None #manga reference @property def manga(self) -> list: manga = [] for nama in self.result['mangaography']: manga.append(nama['name']) manga = ', '.join(manga) return manga or None
27.105769
114
0.60447
79526ed527e874489a5258e088040fb8d2ea6fc8
5,485
py
Python
tests/python/contrib/test_ethosu/test_replace_pooling.py
Xuyuanjia2014/tvm
892f8305e77ad506660b851f9ce4c81be0f95d9d
[ "Zlib", "Unlicense", "Apache-2.0", "BSD-2-Clause", "MIT", "ECL-2.0", "BSD-3-Clause" ]
null
null
null
tests/python/contrib/test_ethosu/test_replace_pooling.py
Xuyuanjia2014/tvm
892f8305e77ad506660b851f9ce4c81be0f95d9d
[ "Zlib", "Unlicense", "Apache-2.0", "BSD-2-Clause", "MIT", "ECL-2.0", "BSD-3-Clause" ]
null
null
null
tests/python/contrib/test_ethosu/test_replace_pooling.py
Xuyuanjia2014/tvm
892f8305e77ad506660b851f9ce4c81be0f95d9d
[ "Zlib", "Unlicense", "Apache-2.0", "BSD-2-Clause", "MIT", "ECL-2.0", "BSD-3-Clause" ]
null
null
null
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import pytest pytest.importorskip("ethosu.vela") import tvm from tvm import relay from tvm.relay.testing import run_opt_pass from tvm.relay.backend.contrib.ethosu.tir import spec from tvm.relay.backend.contrib.ethosu.tir.compiler import lower_to_tir from .infra import make_ethosu_pooling, get_pooling_args @pytest.mark.parametrize( "ifm_shape, ofm_channels, ifm_layout, ofm_layout, rounding_mode", [ ((1, 5, 9, 3), 3, "NHWC", "NHWC", "TFL"), ((1, 8, 3, 9, 16), 40, "NHCWB16", "NHCWB16", "NATURAL"), ((1, 8, 3, 9, 16), 40, "NHCWB16", "NHWC", "TRUNCATE"), ((1, 8, 9, 40), 40, "NHWC", "NHCWB16", "TFL"), ], ) @pytest.mark.parametrize("pooling_type", ["AVG", "MAX"]) @pytest.mark.parametrize("activation", ["NONE", "CLIP"]) def test_pooling_single( ifm_shape, ofm_channels, ifm_layout, ofm_layout, pooling_type, activation, rounding_mode, ): pool_shape = (3, 2) strides = (1, 2) padding = (1, 1, 1, 0) ifm = relay.var("ifm", shape=ifm_shape, dtype="int8") pooling = make_ethosu_pooling( ifm, pooling_type, pool_shape, ofm_channels, strides, padding, activation, ifm_layout, ofm_layout, rounding_mode, ) func = relay.Function(relay.analysis.free_vars(pooling), pooling) func = run_opt_pass(func, relay.transform.InferType()) mod, _ = lower_to_tir(func) data = [] def _visit(stmt): if isinstance(stmt, tvm.tir.Call): data.append(get_pooling_args(stmt)) tvm.tir.stmt_functor.post_order_visit(mod["main"].body, _visit) if ifm_layout == "NHWC": ifm_stride_c = 1 ifm_stride_w = ifm_shape[3] ifm_stride_h = ifm_shape[2] * ifm_shape[3] ofm_height = (ifm_shape[1] - pool_shape[0] + padding[0] + padding[0]) // strides[0] + 1 ofm_width = (ifm_shape[2] - pool_shape[1] + padding[1] + padding[1]) // strides[1] + 1 else: ifm_stride_w = 16 ifm_stride_c = 16 * ifm_shape[3] ifm_stride_h = 16 * ifm_shape[2] * ifm_shape[3] ofm_height = (ifm_shape[1] - pool_shape[0] + padding[0] + padding[0]) // strides[0] + 1 ofm_width = (ifm_shape[3] - pool_shape[1] + padding[1] + padding[1]) // strides[1] + 1 if ofm_layout == "NHWC": ofm_stride_c = 1 ofm_stride_w = ofm_channels if ofm_width > 1 else 1 ofm_stride_h = ofm_channels * ofm_width if ofm_height > 1 else 1 else: ofm_stride_w = 16 ofm_stride_c = 16 * ofm_width ofm_stride_h = 16 * ofm_width * ((ofm_channels - 1) // 16 + 1) serial_pooling = spec.SerialPooling( ifm=spec.SerialFeatureMap( data_type="int8", height=ifm_shape[1], width=ifm_shape[2] if ifm_layout == "NHWC" else ifm_shape[3], channels=ofm_channels, tile_height_0=ifm_shape[1], tile_height_1=0, tile_width_0=ifm_shape[2] if ifm_layout == "NHWC" else ifm_shape[3], tile_address_0=0, tile_address_1=0, tile_address_2=0, tile_address_3=0, scale=1.0, zero_point=0, layout=ifm_layout, stride_h=ifm_stride_h, stride_w=ifm_stride_w, stride_c=ifm_stride_c, ), ofm=spec.SerialFeatureMap( data_type="int8", height=ofm_height, width=ofm_width, channels=ofm_channels, tile_height_0=ofm_height, tile_height_1=0, tile_width_0=ofm_width, tile_address_0=0, tile_address_1=0, tile_address_2=0, tile_address_3=0, scale=1.0, zero_point=0, layout=ofm_layout, stride_h=ofm_stride_h, stride_w=ofm_stride_w, stride_c=ofm_stride_c, ), pooling_type=pooling_type, pool_shape=spec.SerialKernel( width=pool_shape[1], height=pool_shape[0], stride_w=strides[1], stride_h=strides[0], dilation_w=1, dilation_h=1, ), padding=spec.SerialPadding( top=padding[0], left=padding[1], bottom=padding[2], right=padding[3] ), activation=spec.SerialActivation( op=activation, clip_min=10 if activation == "CLIP" else 0, clip_max=100 if activation == "CLIP" else 0, ), rounding_mode=rounding_mode, upscale="NONE", ) assert data[0] == ["ethosu_pooling"] + list(serial_pooling) if __name__ == "__main__": pytest.main([__file__])
33.858025
95
0.60948
79526f539b86da455bb0ee580c6958bcb341cb8a
1,105
py
Python
setup.py
srimani-programmer/password-checker
8a069e7806d53ee2d274e3d2362253215d49446e
[ "MIT" ]
null
null
null
setup.py
srimani-programmer/password-checker
8a069e7806d53ee2d274e3d2362253215d49446e
[ "MIT" ]
null
null
null
setup.py
srimani-programmer/password-checker
8a069e7806d53ee2d274e3d2362253215d49446e
[ "MIT" ]
null
null
null
from setuptools import setup def readme(): with open('README.md') as f: README = f.read() return README setup( name="password-checker", version="1.0.0", description="A Python package to check vulnerability and strength of a password.", long_description=readme(), long_description_content_type="text/markdown", url="https://github.com/srimani-programmer/password-checker", author="Sri Manikanta Palakollu", author_email="srimani.crypter@gmail.com", license="MIT", packages=setuptools.find_packages(), classifiers=[ "License :: OSI Approved :: MIT License", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.5", "Programming Language :: Python :: 3.5", "Intended Audience :: Developers", "Operating System :: OS Independent", "Topic :: Software Development :: Libraries :: Python Modules", ], packages=["password_checker"], include_package_data=True, )
33.484848
86
0.644344
79526fb74a18df42297d4ef1cdf728ec17327d74
10,054
py
Python
SOURCES/ddstat/ddstat.py
dingqiangliu/vertica-minio
0defc75084743f872b659f1dd35a989a57939de3
[ "Apache-2.0" ]
null
null
null
SOURCES/ddstat/ddstat.py
dingqiangliu/vertica-minio
0defc75084743f872b659f1dd35a989a57939de3
[ "Apache-2.0" ]
null
null
null
SOURCES/ddstat/ddstat.py
dingqiangliu/vertica-minio
0defc75084743f872b659f1dd35a989a57939de3
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python2 #encoding: utf-8 # # Copyright (c) 2017 - 2020 # Description: cluster monitoring # Author: DingQiang Liu import os, sys from optparse import OptionParser import logging import time from cStringIO import StringIO import re from getpass import getuser from cluster import getCluster import util.reflection as reflection old_stdout = sys.stdout sys.stdout = mystdout = StringIO() import dstat as dstatmodule import dstatproxy sys.stdout = old_stdout srcclusterdstatmodule = reflection.overridemodule(dstatmodule, dstatproxy) logger = logging.getLogger("clustermon") ansi = { 'reset': '\033[0;0m', 'bold': '\033[1m', 'reverse': '\033[2m', 'underline': '\033[4m', 'clear': '\033[2J', 'clearline': '\033[2K', 'save': '\033[s', 'restore': '\033[u', 'save_all': '\0337', 'restore_all': '\0338', 'linewrap': '\033[7h', 'nolinewrap': '\033[7l', 'up': '\033[1A', 'down': '\033[1B', 'right': '\033[1C', 'left': '\033[1D', 'default': '\033[0;0m', } def remotecall(src, args, nodeNamesPattern) : """ remotely execute script on Vertica cluster. Arguments: - src: string, python scriptlet. - args: dictionary of arguments for script. - nodeNamesPattern: regular expression pattern for select Vertica nodes. Returns: list of result from each nodes of Vertica cluster. """ ret = {} hosts = args.pop('hosts', ['localhost']) user = args.pop('user', getuser()) vc = getCluster(hosts, user) mch = vc.executors.remote_exec(src) mch.send_each(args) q = mch.make_receive_queue(endmarker=None) terminated = 0 while 1: channel, result = q.get() if result is None : terminated += 1 if terminated == len(mch): break continue else: nodeName = channel.gateway.id ret.update({nodeName: result}) return [ret[k] for k in [key for key in sorted(ret) if nodeNamesPattern.match(key) ]] def initmonitor(hosts, user, nodeNamesPattern, output2csv, args) : """ remotely execute script on Vertica cluster. Arguments: - hosts: list of host name or IP. - args: list of arguments for dstat - nodeNamesPattern: regular expression pattern for select Vertica nodes. Returns: header list of ansi lines and csv lines """ headers = ['', ''] src = srcclusterdstatmodule + """ def myExit(code) : raise 'exitcode: ' + str(code) if __name__ == '__channelexec__' or __name__ == '__main__' : global totlist, nodeName nodeName = channel.gateway.id.split('-')[0] # remove the tailing '-slave' remoteargs = channel.receive() args = remoteargs["args"] nodeName = nodeName.rjust(int(remoteargs["maxNodeNameLength"])) output2csv = remoteargs["output2csv"] old_stdout = sys.stdout old_exit = sys.exit sys.exit = myExit from cStringIO import StringIO sys.stdout = mystdout = StringIO() try : dstatmodule.initterm() dstatmodule.op = dstatmodule.Options(args) dstatmodule.theme = dstatmodule.set_theme() dstatmodule.main() dstatmodule.perform(0) except : channel.send([mystdout.getvalue(), '']) else : channel.send([header(totlist, totlist), csvheader(totlist) if output2csv else '']) sys.stdout = old_stdout sys.exit = old_exit """ for lines in remotecall(src, {'args': args, 'maxNodeNameLength': max([len(n) for n in hosts]), 'output2csv': output2csv, 'hosts': hosts, 'user': user}, nodeNamesPattern) : #only get headers from 1st node headers = lines break return headers def monitoring(update, nodeNamesPattern, output2csv) : """ remotely execute script on Vertica cluster. Arguments: - update: sequence number - nodeNamesPattern: regular expression pattern for select Vertica nodes. Returns: list of ansi monitoring lines and csv lines """ src = """ if __name__ == '__channelexec__' or __name__ == '__main__' : global op, outputfile remoteargs = channel.receive() update = remoteargs["update"] output2csv = remoteargs["output2csv"] old_stdout = sys.stdout from cStringIO import StringIO sys.stdout = mystdout = StringIO() old_exit = sys.exit sys.exit = myExit # DEBUG if output2csv : op.output = '/tmp/unkown.csv' outputfile = mycsvout = StringIO() try : dstatmodule.perform(update) except : pass finally : channel.send([mystdout.getvalue(), mycsvout.getvalue() if output2csv else '']) sys.stdout = old_stdout sys.exit = old_exit """ return remotecall(src, {"update": update, 'output2csv': output2csv}, nodeNamesPattern) def RepresentsInt(s): try: int(s) return True except ValueError: return False def myExit(code) : raise 'exitcode: ' + str(code) if __name__ == "__main__": class MyOptionParser(OptionParser): def error(self, msg): pass parser = MyOptionParser() hostsEnv = ','.join([h for h in os.getenv('NODE_LIST', 'localhost').split(" ") if h != '']) parser.add_option('-H', '--hosts', type='string', dest='hostsCSV', default=hostsEnv, help='hosts name or IP seperated by comma, default is "%s"' % hostsEnv) parser.add_option('-S', '--select', type='string', dest='nodeNamesExpress', default='.*', help='regular expression for select hosts to show, default is ".*" for all hosts') defaultUser = getuser() parser.add_option('-U', '--user', type='string', dest='user', default=defaultUser, help='os user to access the cluster, default is current user: "%s"' % defaultUser) parser.add_option('--output', type='string', dest="outputFile", default=None, help='write CSV output to file') parser.usage = "" helpArgs = ['-h', '--help', '--list'] if [ a for a in sys.argv[1:] if a in helpArgs] : # hack for replace help info old_stdout = sys.stdout sys.stdout = mystdout = StringIO() old_exit = sys.exit try : dstatmodule.initterm() dstatmodule.Options([ a for a in sys.argv[1:] if a in helpArgs ]) except : pass if not '--list' in sys.argv[1:] : parser.remove_option('--output') parser.print_help() sys.stdout = old_stdout sys.exit = old_exit print(mystdout.getvalue().replace('dstat', 'ddstat').replace('Options:', 'Additional options:')) exit(0) args = ["--time", "--nodename"] needAll = True noColor = False noHeaders = False skipnext = False for arg in sys.argv[1:] : if arg in ['-H', '--hosts', '-U', '--user', '-S', '--select', '--output', '-t', '--time', '--nodename', '--color', '--nocolor', '--noheaders', '--noupdate']: if arg == '--color' : noColor = False if arg == '--nocolor' : noColor = True if arg == '--noheaders' : noHeaders = True if arg in ['-H', '--hosts', '-U', '--user', '-S', '--select', '--output']: skipnext = True continue if skipnext : skipnext = False else : args.append(arg) if arg[0] == '-'and len(arg) > 1 and arg not in ['--bits', '--float', '--integer', '--bw', '--black-on-white', '--output', '--profile']: needAll = False delay = 1 count = -1 if len(args) >= 1 : last1 = args[-1] last2 = '' if len(args) >= 2 : last2 = args[-2] if RepresentsInt(last2) and RepresentsInt(last1): delay = int(last2) count = int(last1) args = args[:-2] elif RepresentsInt(last1): delay = int(last1) args = args[:-1] if delay <= 0 : delay = 1 if needAll : args = args + ['--all'] if not noColor : args = args + ['--color'] args = args + ['--noheaders', '--noupdate', str(delay), '0'] # '--noupdate' should be the lastest parameter (options, _) = parser.parse_args() hosts = options.hostsCSV.split(',') nodeNamesPattern = re.compile(options.nodeNamesExpress) outputfile = None try: # init, get headers headers = initmonitor(hosts, options.user, nodeNamesPattern, not options.outputFile is None, args) if 'not recognized' in headers[0]: print(headers[0].replace('dstat', 'ddstat')) exit(1) newFile = True if options.outputFile : if os.path.exists(options.outputFile) : outputfile = open(options.outputFile, 'a', 0) newFile = False else : outputfile = open(options.outputFile, 'w', 0) # get counters UPDATE_BEGIN = 1000 # Seems there will be weird issue if update increase from 1 update = UPDATE_BEGIN sys.stdout.write(ansi['nolinewrap']) while (count != 0) : if not noHeaders : sys.stdout.write(headers[0]) if outputfile and newFile and update == UPDATE_BEGIN : outputfile.write(headers[1]) for lines in monitoring(update, nodeNamesPattern, not options.outputFile is None) : sys.stdout.write(lines[0]) # TODO: average line if outputfile : outputfile.write(lines[1]) update += 1 if update < 0 : update = UPDATE_BEGIN + 1 if (count > 0) and (update - UPDATE_BEGIN >= count) : break time.sleep(delay) except KeyboardInterrupt : pass finally : if outputfile : outputfile.flush() outputfile.close() sys.stdout.write(ansi['reset']) sys.stdout.write('\r') sys.stdout.flush() exit(0)
30.466667
178
0.582455
7952719678e7657e79ff48d081e9d315ed60c5ff
757
py
Python
ckanext/scheming/tests/test_group_display.py
fjelltopp/ckanext-scheming
e7f863d5b94547d2362f93b0888a60b34ff6bae5
[ "MIT" ]
null
null
null
ckanext/scheming/tests/test_group_display.py
fjelltopp/ckanext-scheming
e7f863d5b94547d2362f93b0888a60b34ff6bae5
[ "MIT" ]
10
2020-03-17T19:21:12.000Z
2021-05-10T10:47:16.000Z
ckanext/scheming/tests/test_group_display.py
fjelltopp/ckanext-scheming
e7f863d5b94547d2362f93b0888a60b34ff6bae5
[ "MIT" ]
null
null
null
import pytest from ckantoolkit.tests.factories import Sysadmin, Organization, Group @pytest.mark.usefixtures("clean_db") class TestOrganizationDisplay(object): def test_organization_displays_custom_fields(self, app): user = Sysadmin() Organization(user=user, name="org-one", department_id="3008") response = app.get("/organization/about/org-one") assert "Department ID" in response.body @pytest.mark.usefixtures("clean_db") class TestGroupDisplay(object): def test_group_displays_custom_fields(self, app): user = Sysadmin() Group(user=user, name="group-one", bookface="theoneandonly", type='group') response = app.get("/group/about/group-one") assert "Bookface" in response.body
32.913043
82
0.712021
795271d979672aace5c79565e2cb6c238daa0259
5,788
py
Python
custom_components/sensor/folder.py
robmarkcole/HASS-folder-sensor
3d451415ef8e72270b37162b9d84eb746c068477
[ "MIT" ]
3
2018-02-02T10:40:17.000Z
2018-02-23T00:38:58.000Z
custom_components/sensor/folder.py
robmarkcole/HASS-folder-sensor
3d451415ef8e72270b37162b9d84eb746c068477
[ "MIT" ]
1
2018-02-01T09:17:16.000Z
2018-02-01T19:07:55.000Z
custom_components/sensor/folder.py
robmarkcole/HASS-folder-sensor
3d451415ef8e72270b37162b9d84eb746c068477
[ "MIT" ]
null
null
null
""" Sensor for monitoring the contents of a folder. For more details about this platform, refer to the documentation at https://home-assistant.io/components/sensor.folder/ """ import datetime from datetime import timedelta import glob import logging import os import voluptuous as vol from homeassistant.helpers.entity import Entity import homeassistant.helpers.config_validation as cv from homeassistant.const import CONF_NAME from homeassistant.components.sensor import PLATFORM_SCHEMA _LOGGER = logging.getLogger(__name__) CONF_FOLDER_PATH = 'folder' CONF_FILTER = 'filter' CONF_RECURSIVE = 'recursive' DEFAULT_FILTER = '*' DEFAULT_NAME = '' DEFAULT_RECURSIVE = False FILE = 'file' EVENT_FILE_ADDED = 'file_added' EVENT_FILE_DELETED = 'file_deleted' EVENT_FILE_MODIFIED = 'file_modified' SCAN_INTERVAL = timedelta(seconds=1) PLATFORM_SCHEMA = PLATFORM_SCHEMA.extend({ vol.Required(CONF_FOLDER_PATH): cv.isdir, vol.Optional(CONF_FILTER, default=DEFAULT_FILTER): cv.string, vol.Optional(CONF_NAME, default=DEFAULT_NAME): cv.string, vol.Optional(CONF_RECURSIVE, default=DEFAULT_RECURSIVE): cv.boolean, }) def get_timestamp(file_path): """Return the timestamp of file.""" mtime = os.stat(file_path).st_mtime return datetime.datetime.fromtimestamp(mtime).isoformat() def get_files_dict(folder_path, filter_term, recursive): """Return the dict of file paths and mod times, applying filter.""" if recursive: query = folder_path + '**/' + filter_term files_list = glob.glob(query, recursive=True) else: query = folder_path + filter_term files_list = glob.glob(query, recursive=False) files_list = [f for f in files_list if os.path.isfile(f)] files_dict = {f: get_timestamp(f) for f in files_list} return files_dict def get_size(files_list): """Return the sum of the size in bytes of files in the list.""" size_list = [os.stat(f).st_size for f in files_list] return sum(size_list) def setup_platform(hass, config, add_devices, discovery_info=None): """Set up the folder sensor.""" folder_path = config.get(CONF_FOLDER_PATH) if not hass.config.is_allowed_path(folder_path): _LOGGER.error("folder %s is not valid or allowed", folder_path) else: folder = Folder( folder_path, config.get(CONF_FILTER), config.get(CONF_NAME), config.get(CONF_RECURSIVE)) add_devices([folder], True) class Folder(Entity): """Representation of a folder.""" ICON = 'mdi:folder' def __init__(self, folder_path, filter_term, name, recursive): """Initialize the data object.""" folder_path = os.path.join(folder_path, '') # If no trailing / add it self._folder_path = folder_path # Need to check its a valid path self._filter_term = filter_term if name == DEFAULT_NAME: self._name = os.path.split(os.path.split(folder_path)[0])[1] else: self._name = name self._recursive = recursive self._files_record = get_files_dict( folder_path, filter_term, recursive) self._number_of_files = len(self._files_record) self._size = get_size(list(self._files_record.keys())) self._unit_of_measurement = 'MB' self._last_added = None self._last_deleted = None self._last_modified = None def update(self): """Update the sensor.""" current_files = get_files_dict( self._folder_path, self._filter_term, self._recursive) self._number_of_files = len(current_files) self._size = get_size(list(current_files.keys())) for file_path in set( list(current_files.keys()) + list(self._files_record.keys())): if file_path not in self._files_record: self.hass.bus.fire( EVENT_FILE_ADDED, {FILE: file_path}) self._last_added = file_path self._files_record[file_path] = current_files[file_path] elif file_path not in current_files: self.hass.bus.fire( EVENT_FILE_DELETED, {FILE: file_path}) self._last_deleted = file_path self._files_record.pop(file_path, None) elif file_path in self._files_record and current_files: if self._files_record[file_path] != current_files[file_path]: self.hass.bus.fire( EVENT_FILE_MODIFIED, {FILE: file_path}) self._last_modified = file_path self._files_record[file_path] = current_files[file_path] @property def name(self): """Return the name of the sensor.""" return self._name @property def state(self): """Return the state of the sensor.""" decimals = 2 size_mb = round(self._size/1e6, decimals) return size_mb @property def icon(self): """Icon to use in the frontend, if any.""" return self.ICON @property def device_state_attributes(self): """Return other details about the sensor state.""" attr = { 'folder': self._folder_path, 'filter': self._filter_term, 'recursive': self._recursive, 'number_of_files': self._number_of_files, 'bytes': self._size, 'last_added': self._last_added, 'last_deleted': self._last_deleted, 'last_modified': self._last_modified } return attr @property def unit_of_measurement(self): """Return the unit of measurement of this entity, if any.""" return self._unit_of_measurement
33.456647
78
0.646856
795272827e309bb50ffc78a45ab9a5f53ebaf313
1,798
py
Python
scss/tests/functions/compass/test_gradients.py
ojengwa/pyScss
fcd3b4604bc5cd34b0d36e845f89e5abaa7058ea
[ "MIT" ]
1
2016-02-13T15:46:39.000Z
2016-02-13T15:46:39.000Z
scss/tests/functions/compass/test_gradients.py
ojengwa/pyScss
fcd3b4604bc5cd34b0d36e845f89e5abaa7058ea
[ "MIT" ]
null
null
null
scss/tests/functions/compass/test_gradients.py
ojengwa/pyScss
fcd3b4604bc5cd34b0d36e845f89e5abaa7058ea
[ "MIT" ]
null
null
null
"""Tests for Compass gradient generation.""" from scss.expression import Calculator from scss.functions.compass.gradients import COMPASS_GRADIENTS_LIBRARY, linear_gradient from scss.rule import Namespace from scss.types import String, List, Number, Color import pytest @pytest.fixture def calc(): ns = Namespace(functions=COMPASS_GRADIENTS_LIBRARY) return Calculator(ns).evaluate_expression def test_linear_gradient(): # Set up some values to = String.unquoted('to') bottom = String.unquoted('bottom') left = String.unquoted('left') angle = Number(45, 'deg') red = Color.from_name('red') blue = Color.from_name('blue') start = Number(0, "%") middle = Number(50, "%") end = Number(100, "%") assert ( linear_gradient(left, List((red, start)), List((blue, middle))) == String('linear-gradient(left, red, blue 50%)') ) assert ( linear_gradient(List((to, bottom)), blue, List((red, end))) == String('linear-gradient(to bottom, blue, red)') ) @pytest.mark.xfail('True', reason="rainbow still has intermediate values added") def test_linear_gradient_idempotent(calc): # linear-gradient should leave valid syntax alone. # Examples graciously stolen from MDN: # https://developer.mozilla.org/en-US/docs/Web/CSS/linear-gradient trials = [ 'linear-gradient(45deg, blue, red)', 'linear-gradient(to left top, blue, red)', 'linear-gradient(0deg, blue, green 40%, red)', 'linear-gradient(to right, red, orange, yellow, green, blue, indigo, violet)', 'linear-gradient(to bottom right, red, rgba(255,0,0,0))', 'linear-gradient(to bottom, hsl(0, 80%, 70%), #bada55)', ] for trial in trials: assert calc(trial) == String(trial)
31
87
0.660178
795272d39e4a6dacdb4d5a3ddb7b34a1a3d778e7
4,270
py
Python
lib/ssds.py
iSmida/DetectionYolo
b7e1eb26ca874da797cee02cb3e1639cf3546e0c
[ "MIT" ]
3
2019-08-28T10:08:24.000Z
2020-08-10T08:58:42.000Z
lib/ssds.py
iSmida/DetectionYolo
b7e1eb26ca874da797cee02cb3e1639cf3546e0c
[ "MIT" ]
null
null
null
lib/ssds.py
iSmida/DetectionYolo
b7e1eb26ca874da797cee02cb3e1639cf3546e0c
[ "MIT" ]
1
2020-04-29T11:01:43.000Z
2020-04-29T11:01:43.000Z
from __future__ import print_function import numpy as np import torch from torch.autograd import Variable import torch.backends.cudnn as cudnn import timeit from lib.layers import * from lib.utils.timer import Timer from lib.utils.data_augment import preproc from lib.modeling.model_builder import create_model from lib.utils.config_parse import cfg class ObjectDetector: def __init__(self, viz_arch=False): self.cfg = cfg # Build model print('===> Building model') self.model, self.priorbox = create_model(cfg.MODEL) self.priors = Variable(self.priorbox.forward(), volatile=True) print(self.model) # Print the model architecture and parameters if viz_arch is True: print('Model architectures:\n{}\n'.format(self.model)) # Utilize GPUs for computation self.use_gpu = torch.cuda.is_available() #self.use_gpu = False self.half = False if self.use_gpu: print('Utilize GPUs for computation') print('Number of GPU available', torch.cuda.device_count()) self.model.cuda() self.priors.cuda() cudnn.benchmark = True # self.model = torch.nn.DataParallel(self.model).module # Utilize half precision self.half = cfg.MODEL.HALF_PRECISION if self.half: self.model = self.model.half() self.priors = self.priors.half() # Build preprocessor and detector self.preprocessor = preproc(cfg.MODEL.IMAGE_SIZE, cfg.DATASET.PIXEL_MEANS, -2) self.detector = Detect(cfg.POST_PROCESS, self.priors) # Load weight: if cfg.RESUME_CHECKPOINT == '': AssertionError('RESUME_CHECKPOINT can not be empty') print('=> loading checkpoint {:s}'.format(cfg.RESUME_CHECKPOINT)) checkpoint = torch.load(cfg.RESUME_CHECKPOINT) # checkpoint = torch.load(cfg.RESUME_CHECKPOINT, map_location='gpu' if self.use_gpu else 'cpu') self.model.load_state_dict(checkpoint) # test only self.model.eval() def predict(self, img, threshold=0.4, check_time=False): # make sure the input channel is 3 assert img.shape[2] == 3 scale = torch.Tensor([img.shape[1::-1], img.shape[1::-1]]) _t = {'preprocess': Timer(), 'net_forward': Timer(), 'detect': Timer(), 'output': Timer()} # preprocess image _t['preprocess'].tic() x = Variable(self.preprocessor(img)[0].unsqueeze(0),volatile=True) if self.use_gpu: x = x.cuda() if self.half: x = x.half() preprocess_time = _t['preprocess'].toc() t0 = timeit.default_timer() # forward _t['net_forward'].tic() out = self.model(x) # forward pass net_forward_time = _t['net_forward'].toc() elapsed = timeit.default_timer() - t0 # detect _t['detect'].tic() detections = self.detector.forward(out) detect_time = _t['detect'].toc() # output _t['output'].tic() labels, scores, coords = [list() for _ in range(3)] # for batch in range(detections.size(0)): # print('Batch:', batch) batch=0 for classes in range(detections.size(1)): num = 0 while detections[batch,classes,num,0] >= threshold: scores.append(detections[batch,classes,num,0]) labels.append(classes-1) coords.append(detections[batch,classes,num,1:]*scale) num+=1 output_time = _t['output'].toc() total_time = preprocess_time + net_forward_time + detect_time + output_time if check_time is True: return labels, scores, coords, (total_time, preprocess_time, net_forward_time, detect_time, output_time) # total_time = preprocess_time + net_forward_time + detect_time + output_time # print('total time: {} \n preprocess: {} \n net_forward: {} \n detect: {} \n output: {}'.format( # total_time, preprocess_time, net_forward_time, detect_time, output_time # )) return labels, scores, coords, elapsed
39.174312
116
0.605152
7952734c32f89b44a128eeda5c79b42a2ebda219
545
py
Python
manage.py
panda1994zhang/earthquake
1dead943782a73a535e04929a5302ef1db2b4d84
[ "MIT" ]
3
2018-09-19T10:57:27.000Z
2019-05-08T02:10:41.000Z
manage.py
aoii103/EarthquakeSpy
437228128dbe40bd7976013d4187c062109360bc
[ "MIT" ]
6
2020-08-05T11:08:13.000Z
2021-06-10T19:57:20.000Z
manage.py
panda1994zhang/earthquake
1dead943782a73a535e04929a5302ef1db2b4d84
[ "MIT" ]
1
2020-08-31T11:33:54.000Z
2020-08-31T11:33:54.000Z
#!/usr/bin/env python import os import sys if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "EarthquakeSpy.settings") try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv)
34.0625
77
0.689908