hexsha
stringlengths
40
40
size
int64
1
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
239
max_stars_repo_name
stringlengths
5
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
239
max_issues_repo_name
stringlengths
5
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
239
max_forks_repo_name
stringlengths
5
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
1
1.03M
avg_line_length
float64
1
958k
max_line_length
int64
1
1.03M
alphanum_fraction
float64
0
1
7951ef9700a3118310b51c3ba35ef4d26320a2a7
3,372
py
Python
Codeforces/648-2/A.py
dipta007/Competitive-Programming
998d47f08984703c5b415b98365ddbc84ad289c4
[ "MIT" ]
6
2018-10-15T18:45:05.000Z
2022-03-29T04:30:10.000Z
Codeforces/648-2/A.py
dipta007/Competitive-Programming
998d47f08984703c5b415b98365ddbc84ad289c4
[ "MIT" ]
null
null
null
Codeforces/648-2/A.py
dipta007/Competitive-Programming
998d47f08984703c5b415b98365ddbc84ad289c4
[ "MIT" ]
4
2018-01-07T06:20:07.000Z
2019-08-21T15:45:59.000Z
""" Python 3 compatibility tools. """ from __future__ import division, print_function import itertools import sys import os from io import BytesIO, IOBase if sys.version_info[0] < 3: input = raw_input range = xrange filter = itertools.ifilter map = itertools.imap zip = itertools.izip def is_it_local(): script_dir = str(os.getcwd()).split('/') username = "dipta007" return username in script_dir def READ(fileName): if is_it_local(): sys.stdin = open(f'./{fileName}', 'r') # region fastio BUFSIZE = 8192 class FastIO(IOBase): newlines = 0 def __init__(self, file): self._fd = file.fileno() self.buffer = BytesIO() self.writable = "x" in file.mode or "r" not in file.mode self.write = self.buffer.write if self.writable else None def read(self): while True: b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE)) if not b: break ptr = self.buffer.tell() self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr) self.newlines = 0 return self.buffer.read() def readline(self): while self.newlines == 0: b = os.read(self._fd, max(os.fstat(self._fd).st_size, BUFSIZE)) self.newlines = b.count(b"\n") + (not b) ptr = self.buffer.tell() self.buffer.seek(0, 2), self.buffer.write(b), self.buffer.seek(ptr) self.newlines -= 1 return self.buffer.readline() def flush(self): if self.writable: os.write(self._fd, self.buffer.getvalue()) self.buffer.truncate(0), self.buffer.seek(0) class IOWrapper(IOBase): def __init__(self, file): self.buffer = FastIO(file) self.flush = self.buffer.flush self.writable = self.buffer.writable self.write = lambda s: self.buffer.write(s.encode("ascii")) self.read = lambda: self.buffer.read().decode("ascii") self.readline = lambda: self.buffer.readline().decode("ascii") if not is_it_local(): sys.stdin, sys.stdout = IOWrapper(sys.stdin), IOWrapper(sys.stdout) input = lambda: sys.stdin.readline().rstrip("\r\n") # endregion def input1(type=int): return type(input()) def input2(type=int): [a, b] = list(map(type, input().split())) return a, b def input3(type=int): [a, b, c] = list(map(type, input().split())) return a, b, c def input_array(type=int): return list(map(type, input().split())) def input_string(): s = input() return list(s) ############################################################## def main(): t = input1() for ci in range(t): n, m = input2() arr = [[0 for _ in range(m)] for __ in range(n)] for i in range(n): arr[i] = input_array() mn = 0 for i in range(n): for j in range(m): if arr[i][j] == 1: for k in range(n): if arr[k][j] == 0: arr[k][j] = 2 for k in range(m): if arr[i][k] == 0: arr[i][k] = 2 rr = 0 for i in range(n): cnt = 0 for j in range(m): if arr[i][j] == 0: cnt += 1 rr = max(rr, cnt) cc = 0 for j in range(m): cnt = 0 for i in range(n): if arr[i][j] == 0: cnt += 1 cc = max(cc, cnt) mn = min(rr, cc) # print(mn) if mn%2 == 0: print('Vivek') else: print('Ashish') pass if __name__ == '__main__': READ('in.txt') main()
22.184211
73
0.575326
7951f019b6f150d910ee32876a498d97c4787e87
1,235
py
Python
pymeasure/instruments/keithley/__init__.py
ronan-sensome/pymeasure
a88f73ee25e98ef976f3741c08a49da6c4d55f0d
[ "MIT" ]
10
2019-01-23T05:52:59.000Z
2021-11-19T02:56:20.000Z
pymeasure/instruments/keithley/__init__.py
ronan-sensome/pymeasure
a88f73ee25e98ef976f3741c08a49da6c4d55f0d
[ "MIT" ]
null
null
null
pymeasure/instruments/keithley/__init__.py
ronan-sensome/pymeasure
a88f73ee25e98ef976f3741c08a49da6c4d55f0d
[ "MIT" ]
2
2020-01-27T04:40:48.000Z
2020-07-17T03:41:16.000Z
# # This file is part of the PyMeasure package. # # Copyright (c) 2013-2017 PyMeasure Developers # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # from .keithley2000 import Keithley2000 from .keithley2400 import Keithley2400
45.740741
79
0.782186
7951f02f76b5e340b253b4bd106b53162328a893
479
py
Python
05_list_operation/numbers.py
Story5/python-crash-course
9e4e663db83ea9821c1dac83f02106eef7a9a14d
[ "Apache-2.0" ]
null
null
null
05_list_operation/numbers.py
Story5/python-crash-course
9e4e663db83ea9821c1dac83f02106eef7a9a14d
[ "Apache-2.0" ]
null
null
null
05_list_operation/numbers.py
Story5/python-crash-course
9e4e663db83ea9821c1dac83f02106eef7a9a14d
[ "Apache-2.0" ]
null
null
null
for value in range(1,5): print(value) numbers = list(range(1,5)) print(numbers) even_numbers = list(range(2,11,2)) print(even_numbers) squares = [] for value in range(1,11): square = value**2 squares.append(square) print(squares) squares2 = [value**2 for value in range(1,11)] print(squares2) players = ["charles", "martina", "michael", "florence", "eli"] print(players[0:3]) #['charles', 'martina', 'michael'] print(players[-3:]) #['michael', 'florence', 'eli']
20.826087
62
0.661795
7951f035cc0fa28f563ed8de28ad2e714acf11dd
1,261
py
Python
Mini5App/models.py
cs-fullstack-2019-spring/django-mini-project5-Joshtg1104
8584602b039a27a90dda122a70d5bc825be2562c
[ "Apache-2.0" ]
null
null
null
Mini5App/models.py
cs-fullstack-2019-spring/django-mini-project5-Joshtg1104
8584602b039a27a90dda122a70d5bc825be2562c
[ "Apache-2.0" ]
null
null
null
Mini5App/models.py
cs-fullstack-2019-spring/django-mini-project5-Joshtg1104
8584602b039a27a90dda122a70d5bc825be2562c
[ "Apache-2.0" ]
null
null
null
from django.db import models from django.contrib.auth.models import User # Create your models here. class LoginModel(models.Model): name = models.CharField(max_length=70, default="") username = models.CharField(max_length=70, default="") password1 = models.CharField(max_length=200, default="") password2 = models.CharField(max_length=200, default="") email_address = models.EmailField(default="") profile_picture = models.CharField(max_length=800, default="") userForeignKey = models.ForeignKey(User, on_delete=models.SET_NULL, null=True, blank=True) def __str__(self): return self.name class RecipeModel(models.Model): recipe_name = models.CharField(max_length=200, default="") description = models.CharField(max_length=1000, default="") recipe_ingredients = models.CharField(max_length=3000, default="") recipe_directions = models.CharField(max_length=3000, default="") date_created = models.DateField() recipe_creator = models.CharField(max_length=60, default="") recipe_image = models.CharField(max_length=800, default="") recipeForeignKey = models.ForeignKey(LoginModel, on_delete=models.SET_NULL, null=True, blank=True) def __str__(self): return self.recipe_name
39.40625
102
0.736717
7951f18da3e226d30be5ede1f6e6c15a97bb94d6
1,659
py
Python
two_d_nav/utils.py
ZikangXiong/two-d-nav-gym
1ab3d5323e87d672f04a9c796f7ccabb752a6e67
[ "MIT" ]
null
null
null
two_d_nav/utils.py
ZikangXiong/two-d-nav-gym
1ab3d5323e87d672f04a9c796f7ccabb752a6e67
[ "MIT" ]
1
2021-09-06T21:34:21.000Z
2021-09-07T04:26:57.000Z
two_d_nav/utils.py
ZikangXiong/two-d-nav-gym
1ab3d5323e87d672f04a9c796f7ccabb752a6e67
[ "MIT" ]
1
2021-09-07T22:52:13.000Z
2021-09-07T22:52:13.000Z
import math import numpy as np import pygame from two_d_nav import config def normalize_pos(pos: np.ndarray) -> np.ndarray: map_size = np.array(config.map_size) center = map_size / 2 radius = map_size - center return (pos - center) / radius def denormalize_pos(pos: np.ndarray) -> np.ndarray: map_size = np.array(config.map_size) center = map_size / 2 radius = map_size - center return center + pos * radius class Point: # constructed using a normal tupple def __init__(self, point_t=(0, 0)): self.x = float(point_t[0]) self.y = float(point_t[1]) # define all useful operators def __add__(self, other): return Point((self.x + other.x, self.y + other.y)) def __sub__(self, other): return Point((self.x - other.x, self.y - other.y)) def __mul__(self, scalar): return Point((self.x * scalar, self.y * scalar)) def __div__(self, scalar): return Point((self.x / scalar, self.y / scalar)) def __len__(self): return int(math.sqrt(self.x ** 2 + self.y ** 2)) # get back values in original tuple format def get(self): return self.x, self.y def draw_dashed_line(surf, color, start_pos, end_pos, width=1, dash_length=10): origin = Point(start_pos) target = Point(end_pos) displacement = target - origin length = len(displacement) slope = displacement / length for index in range(0, length / dash_length, 2): start = origin + (slope * index * dash_length) end = origin + (slope * (index + 1) * dash_length) pygame.draw.line(surf, color, start.get(), end.get(), width)
26.333333
79
0.634117
7951f248e13460e8800bcb84f82eec6fff8f9743
657
py
Python
vuln_manager/core/templatetags/vuln_extras.py
jobscry/vuln_manager
ac68308d923b0719b960e45c1b9ff37aab991c89
[ "MIT" ]
null
null
null
vuln_manager/core/templatetags/vuln_extras.py
jobscry/vuln_manager
ac68308d923b0719b960e45c1b9ff37aab991c89
[ "MIT" ]
null
null
null
vuln_manager/core/templatetags/vuln_extras.py
jobscry/vuln_manager
ac68308d923b0719b960e45c1b9ff37aab991c89
[ "MIT" ]
null
null
null
from django import template from django.utils.http import urlquote from django.utils.safestring import mark_safe from cpes.models import Item register = template.Library() @register.filter(needs_autoescape=False) def qstring(val_dict, end_comma=True): q_strings = [] for key, val in val_dict.items(): if val is not None: q_strings.append(urlquote(key) + '=' + urlquote(val)) ret_string = '?' + '&'.join(q_strings) if end_comma: if len(q_strings) > 0: return ret_string + '&' return mark_safe(ret_string) @register.filter def part_display(part): return Item.PART_CHOICES._display_map[part]
27.375
65
0.692542
7951f463e59915f795016c4c60de636d4333f7dc
11,920
py
Python
q2_demux/plugin_setup.py
EmFord/q2-demux
d5dbcb3591d92fb6beff2d2ee7ba77c081907b71
[ "BSD-3-Clause" ]
null
null
null
q2_demux/plugin_setup.py
EmFord/q2-demux
d5dbcb3591d92fb6beff2d2ee7ba77c081907b71
[ "BSD-3-Clause" ]
null
null
null
q2_demux/plugin_setup.py
EmFord/q2-demux
d5dbcb3591d92fb6beff2d2ee7ba77c081907b71
[ "BSD-3-Clause" ]
null
null
null
# ---------------------------------------------------------------------------- # Copyright (c) 2016-2019, QIIME 2 development team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file LICENSE, distributed with this software. # ---------------------------------------------------------------------------- import importlib from qiime2.plugin import ( Plugin, Metadata, MetadataColumn, Categorical, Bool, Str, Int, Float, Range, Citations, TypeMatch ) from q2_types.sample_data import SampleData from q2_types.per_sample_sequences import ( SequencesWithQuality, PairedEndSequencesWithQuality, JoinedSequencesWithQuality) import q2_demux from ._type import (RawSequences, EMPSingleEndSequences, EMPPairedEndSequences, ErrorCorrectionDetails) from ._format import (EMPMultiplexedDirFmt, ErrorCorrectionDetailsDirFmt, EMPSingleEndDirFmt, EMPSingleEndCasavaDirFmt, EMPPairedEndDirFmt, EMPPairedEndCasavaDirFmt) citations = Citations.load('citations.bib', package='q2_demux') plugin = Plugin( name='demux', version=q2_demux.__version__, website='https://github.com/qiime2/q2-demux', package='q2_demux', description=('This QIIME 2 plugin supports demultiplexing of ' 'single-end and paired-end sequence reads and ' 'visualization of sequence quality information.'), short_description='Plugin for demultiplexing & viewing sequence quality.' ) plugin.register_semantic_types( RawSequences, EMPSingleEndSequences, EMPPairedEndSequences, ErrorCorrectionDetails) plugin.register_formats(EMPMultiplexedDirFmt, ErrorCorrectionDetailsDirFmt, EMPSingleEndDirFmt, EMPSingleEndCasavaDirFmt, EMPPairedEndDirFmt, EMPPairedEndCasavaDirFmt) # TODO: remove when aliasing exists plugin.register_semantic_type_to_format( RawSequences, artifact_format=EMPSingleEndDirFmt ) plugin.register_semantic_type_to_format( EMPSingleEndSequences, artifact_format=EMPSingleEndDirFmt ) plugin.register_semantic_type_to_format( EMPPairedEndSequences, artifact_format=EMPPairedEndDirFmt ) plugin.register_semantic_type_to_format( ErrorCorrectionDetails, artifact_format=ErrorCorrectionDetailsDirFmt ) plugin.methods.register_function( function=q2_demux.emp_single, # TODO: remove RawSequences by creating an alias to EMPSequences inputs={'seqs': (RawSequences | EMPSingleEndSequences | EMPPairedEndSequences)}, parameters={'barcodes': MetadataColumn[Categorical], 'golay_error_correction': Bool, 'rev_comp_barcodes': Bool, 'rev_comp_mapping_barcodes': Bool}, outputs=[('per_sample_sequences', SampleData[SequencesWithQuality]), ('error_correction_details', ErrorCorrectionDetails)], input_descriptions={ 'seqs': 'The single-end sequences to be demultiplexed.' }, parameter_descriptions={ 'barcodes': 'The sample metadata column containing the per-sample ' 'barcodes.', 'golay_error_correction': 'Perform 12nt Golay error correction on the ' 'barcode reads.', 'rev_comp_barcodes': 'If provided, the barcode sequence reads will be ' 'reverse complemented prior to demultiplexing.', 'rev_comp_mapping_barcodes': 'If provided, the barcode sequences in ' 'the sample metadata will be reverse ' 'complemented prior to demultiplexing.' }, output_descriptions={ 'per_sample_sequences': 'The resulting demultiplexed sequences.', 'error_correction_details': 'Detail about the barcode error ' 'corrections.' }, name='Demultiplex sequence data generated with the EMP protocol.', description=('Demultiplex sequence data (i.e., map barcode reads to ' 'sample ids) for data generated with the Earth Microbiome ' 'Project (EMP) amplicon sequencing protocol. Details about ' 'this protocol can be found at ' 'http://www.earthmicrobiome.org/protocols-and-standards/'), citations=[ citations['hamady2008'], citations['hamady2009']] ) plugin.methods.register_function( function=q2_demux.emp_paired, inputs={'seqs': EMPPairedEndSequences}, parameters={'barcodes': MetadataColumn[Categorical], 'golay_error_correction': Bool, 'rev_comp_barcodes': Bool, 'rev_comp_mapping_barcodes': Bool}, outputs=[ ('per_sample_sequences', SampleData[PairedEndSequencesWithQuality]), ('error_correction_details', ErrorCorrectionDetails), ], input_descriptions={ 'seqs': 'The paired-end sequences to be demultiplexed.' }, parameter_descriptions={ 'barcodes': 'The sample metadata column containing the per-sample ' 'barcodes.', 'golay_error_correction': 'Perform 12nt Golay error correction on the ' 'barcode reads.', 'rev_comp_barcodes': 'If provided, the barcode sequence reads will be ' 'reverse complemented prior to demultiplexing.', 'rev_comp_mapping_barcodes': 'If provided, the barcode sequences in ' 'the sample metadata will be reverse ' 'complemented prior to demultiplexing.' }, output_descriptions={ 'per_sample_sequences': 'The resulting demultiplexed sequences.', 'error_correction_details': 'Detail about the barcode error ' 'corrections.' }, name=('Demultiplex paired-end sequence data generated with the EMP ' 'protocol.'), description=('Demultiplex paired-end sequence data (i.e., map barcode ' 'reads to sample ids) for data generated with the Earth ' 'Microbiome Project (EMP) amplicon sequencing protocol. ' 'Details about this protocol can be found at ' 'http://www.earthmicrobiome.org/protocols-and-standards/'), citations=[ citations['hamady2008'], citations['hamady2009']] ) plugin.visualizers.register_function( function=q2_demux.summarize, inputs={'data': SampleData[SequencesWithQuality | PairedEndSequencesWithQuality | JoinedSequencesWithQuality]}, parameters={'n': Int}, input_descriptions={ 'data': 'The demultiplexed sequences to be summarized.' }, parameter_descriptions={ 'n': ('The number of sequences that should be selected at random for ' 'quality score plots. The quality plots will present the ' 'average positional qualities across all of the sequences ' 'selected. If input sequences are paired end, plots will be ' 'generated for both forward and reverse reads for the same `n` ' 'sequences.') }, name='Summarize counts per sample.', description=('Summarize counts per sample for all samples, and generate ' 'interactive positional quality plots based on `n` randomly ' 'selected sequences.') ) plugin.methods.register_function( function=q2_demux.subsample_single, inputs={'sequences': SampleData[SequencesWithQuality | PairedEndSequencesWithQuality]}, parameters={'fraction': Float % Range(0, 1, inclusive_start=False, inclusive_end=False)}, outputs=[ ('subsampled_sequences', SampleData[SequencesWithQuality]) ], input_descriptions={ 'sequences': 'The demultiplexed sequences to be subsampled.' }, parameter_descriptions={ 'fraction': ('The fraction of sequences to retain in subsample.') }, output_descriptions={ 'subsampled_sequences': 'The subsampled sequences.' }, name='Subsample single-end sequences without replacement.', description=('Generate a random subsample of single-end sequences ' 'containing approximately the fraction of input sequences ' 'specified by the fraction parameter. The number of output ' 'samples will always be equal to the number of input ' 'samples, even if some of those samples contain no ' 'sequences after subsampling.') ) plugin.methods.register_function( function=q2_demux.subsample_paired, inputs={'sequences': SampleData[PairedEndSequencesWithQuality]}, parameters={'fraction': Float % Range(0, 1, inclusive_start=False, inclusive_end=False)}, outputs=[ ('subsampled_sequences', SampleData[PairedEndSequencesWithQuality]) ], input_descriptions={ 'sequences': 'The demultiplexed sequences to be subsampled.' }, parameter_descriptions={ 'fraction': ('The fraction of sequences to retain in subsample.') }, output_descriptions={ 'subsampled_sequences': 'The subsampled sequences.' }, name='Subsample paired-end sequences without replacement.', description=('Generate a random subsample of paired-end sequences ' 'containing approximately the fraction of input sequences ' 'specified by the fraction parameter. The number of output ' 'samples will always be equal to the number of input ' 'samples, even if some of those samples contain no ' 'sequences after subsampling.') ) T = TypeMatch([SequencesWithQuality, PairedEndSequencesWithQuality, JoinedSequencesWithQuality]) plugin.methods.register_function( function=q2_demux.filter_samples, inputs={'demux': SampleData[T]}, parameters={'metadata': Metadata, 'where': Str, 'exclude_ids': Bool}, outputs=[ ('filtered_demux', SampleData[T]) ], input_descriptions={ 'demux': 'The demultiplexed data from which samples should be ' 'filtered.' }, parameter_descriptions={ 'metadata': 'Sample metadata indicating which sample ids to filter. ' 'The optional `where` parameter may be used to filter ids ' 'based on specified conditions in the metadata. The ' 'optional `exclude_ids` parameter may be used to exclude ' 'the ids specified in the metadata from the filter.', 'where': 'Optional SQLite WHERE clause specifying sample metadata ' 'criteria that must be met to be included in the filtered ' 'data. If not provided, all samples in `metadata` that are ' 'also in the demultiplexed data will be retained.', 'exclude_ids': 'Defaults to False. If True, the samples selected by ' 'the `metadata` and optional `where` parameter will be ' 'excluded from the filtered data.', }, output_descriptions={ 'filtered_demux': 'Filtered demultiplexed data.' }, name='Filter samples out of demultiplexed data.', description='Filter samples indicated in given metadata out of ' 'demultiplexed data. Specific samples can be further selected ' 'with the WHERE clause, and the `exclude_ids` parameter ' 'allows for filtering of all samples not specified.', ) importlib.import_module('q2_demux._transformer')
43.663004
79
0.63255
7951f68ba610393d49116c00bab904fbcc380e11
1,612
py
Python
app/__init__.py
adi6ntro/microblog
85c1aad7f4081ebcf6b9038352c4bd1e726e8b13
[ "MIT" ]
null
null
null
app/__init__.py
adi6ntro/microblog
85c1aad7f4081ebcf6b9038352c4bd1e726e8b13
[ "MIT" ]
null
null
null
app/__init__.py
adi6ntro/microblog
85c1aad7f4081ebcf6b9038352c4bd1e726e8b13
[ "MIT" ]
null
null
null
from flask import Flask from config import Config from flask_sqlalchemy import SQLAlchemy from flask_migrate import Migrate from flask_login import LoginManager import logging from logging.handlers import SMTPHandler, RotatingFileHandler import os app = Flask(__name__) app.config.from_object(Config) db = SQLAlchemy(app) migrate = Migrate(app, db) login = LoginManager(app) login.login_view = 'login' from app import routes, models, errors if not app.debug: if app.config['MAIL_SERVER']: auth = None if app.config['MAIL_USERNAME'] or app.config['MAIL_PASSWORD']: auth = (app.config['MAIL_USERNAME'], app.config['MAIL_PASSWORD']) secure = None if app.config['MAIL_USE_TLS']: secure = () mail_handler = SMTPHandler( mailhost=(app.config['MAIL_SERVER'], app.config['MAIL_PORT']), fromaddr='no-reply@' + app.config['MAIL_SERVER'], toaddrs=app.config['ADMINS'], subject='Microblog Failure', credentials=auth, secure=secure) mail_handler.setLevel(logging.ERROR) app.logger.addHandler(mail_handler) if not os.path.exists('logs'): os.mkdir('logs') file_handler = RotatingFileHandler('logs/microblog.log', maxBytes=10240, backupCount=10) file_handler.setFormatter(logging.Formatter( '%(asctime)s %(levelname)s: %(message)s [in %(pathname)s:%(lineno)d]')) file_handler.setLevel(logging.INFO) app.logger.addHandler(file_handler) app.logger.setLevel(logging.INFO) app.logger.info('Microblog startup')
36.636364
79
0.675558
7951f763b65e285eb09ef170e1b0163141aa9eda
19,690
py
Python
pmaf/sequence/_multiple/_stream.py
mmtechslv/PhyloMAF
bab43dd4a4d2812951b1fdf4f1abb83edb79ea88
[ "BSD-3-Clause" ]
1
2021-07-02T06:24:17.000Z
2021-07-02T06:24:17.000Z
pmaf/sequence/_multiple/_stream.py
mmtechslv/PhyloMAF
bab43dd4a4d2812951b1fdf4f1abb83edb79ea88
[ "BSD-3-Clause" ]
1
2021-06-28T12:02:46.000Z
2021-06-28T12:02:46.000Z
pmaf/sequence/_multiple/_stream.py
mmtechslv/PhyloMAF
bab43dd4a4d2812951b1fdf4f1abb83edb79ea88
[ "BSD-3-Clause" ]
null
null
null
import warnings warnings.simplefilter("ignore", category=FutureWarning) from shutil import copyfile from pmaf.sequence._metakit import ( MultiSequenceMetabase, MultiSequenceStreamBackboneMetabase, ) from pmaf.sequence._multiple._multiple import MultiSequence from pmaf.sequence import _shared as seq_shared from random import random from pmaf.sequence._sequence._nucleotide import Nucleotide from pmaf.sequence._metakit import NucleotideMetabase from Bio import SeqIO import tempfile import pandas as pd import tables import pickle import os class MultiSequenceStream(MultiSequenceStreamBackboneMetabase): """:meta private:""" _temp_filename_suffix_maker = lambda self, path_with_preffix: "{}_pmaf_{}".format( path_with_preffix, str(round(100000000 * random())) ) _supported_compression_libraries = ["zlib", "lzo", "bzip2", "blosc"] _default_seq_encoding = "ascii" _default_complevel = 5 _default_path_list = ["/seq", "/meta", "/info"] _default_info_node_path = "/info/dump" _default_seqs_node_path = "/seq/seqs" _default_meta_node_path = "/meta/metas" def __init__( self, filepath=None, expected_rows=1000, mode="DNA", aligned=False, name=None, compressor=False, ): self._name = "" self._mode = None self._stream_filepath = None self._stream_storer = None self._temp_state = True if filepath is None else False self._stream_map = pd.Series(dtype=str) self._last_seq_length = None self._aligned = False self._compressor = None self._expected_rows = None restore_state = False if isinstance(aligned, bool): self._aligned = aligned else: raise TypeError("`aligned` must have bool type") if isinstance(expected_rows, int): if expected_rows > 0: self._expected_rows = expected_rows else: raise ValueError("`expected_rows` must be positive number") else: raise TypeError("`expected_rows` must have int type") if isinstance(compressor, str): if compressor in self._supported_compression_libraries: self._compressor = compressor else: raise ValueError( "Compressor is not supported. Please use one of {}".format( ",".join(self._supported_compression_libraries) ) ) elif compressor == False: self._compressor = False else: raise TypeError("`compressor` must have string type. ") if isinstance(name, str): self._name = name elif name is None: pass else: raise TypeError("Name can be only string or None.") if isinstance(mode, str): if seq_shared.validate_seq_mode(mode): self._mode = mode.lower() else: raise ValueError("Sequence mode can only be 'DNA', 'RNA' or 'Protein'") if isinstance(filepath, str): self._stream_filepath = os.path.abspath(filepath) if os.path.exists(self._stream_filepath): restore_state = True elif filepath is None: tmp_temp_filepath = self._temp_filename_suffix_maker( os.path.join(tempfile.gettempdir(), tempfile.gettempprefix()) ) while os.path.exists(tmp_temp_filepath): tmp_temp_filepath = self._temp_filename_suffix_maker( os.path.join(tempfile.gettempdir(), tempfile.gettempprefix()) ) self._stream_filepath = tmp_temp_filepath else: raise ValueError("`filepath` is invalid.") if restore_state: if not self._restore_init(): raise RuntimeError("Cannot load file.") else: if not self._init_seq_stream_storer(): raise RuntimeError("Cannot be initiate file.") def __repr__(self): class_name = self.__class__.__name__ name = self._name if self._name is not None else "N/A" count = len(self._stream_map) stream_filepath = self._stream_filepath aligned = "Yes" if self._aligned else "No" repr_str = "<{}: {}, Total Sequences: {}, Filepath: {}, Aligned: {}>".format( class_name, name, count, stream_filepath, aligned ) return repr_str def __exit__(self, exc_type, exc_value, traceback): if self._temp_state: os.unlink(self._stream_filepath) return def _init_seq_stream_storer(self): """""" ret = False try: tmp_filters = ( tables.Filters( complib=self._compressor, complevel=self._default_complevel ) if self._compressor else None ) tmp_stream_store = tables.open_file( self._stream_filepath, mode="a", title=self._name, filters=tmp_filters ) tmp_stream_store.create_group("/", "seq", "Raw sequences") tmp_stream_store.create_vlarray( "/seq", "seqs", atom=tables.VLStringAtom(), expectedrows=self._expected_rows, ) tmp_stream_store.create_group("/", "meta", "Sequence metadata") tmp_stream_store.create_vlarray( "/meta", "metas", atom=tables.ObjectAtom(), expectedrows=self._expected_rows, ) tmp_stream_store.create_group("/", "info", "Instance attributes") tmp_stream_store.create_vlarray( "/info", "dump", atom=tables.ObjectAtom(), expectedrows=1 ) self._stream_storer = tmp_stream_store ret = True except: pass return ret def _restore_init(self): """""" ret = False try: tmp_stream_store_read = tables.open_file(self._stream_filepath, mode="r") group_list = [] for group in tmp_stream_store_read.walk_groups(): group_list.append(group._v_pathname) if all([group in group_list for group in self._default_path_list]): tmp_instance_dict_bytes = tmp_stream_store_read.get_node( self._default_info_node_path ).read()[0] tmp_instance_dict = pickle.loads(tmp_instance_dict_bytes) self.__dict__.update(tmp_instance_dict) tmp_stream_store_read.close() tmp_filters = ( tables.Filters( complib=self._compressor, complevel=self._default_complevel ) if self._compressor else None ) tmp_stream_store = tables.open_file( self._stream_filepath, mode="a", filters=tmp_filters ) self._stream_storer = tmp_stream_store ret = True except: pass return ret def close(self, copy_filepath=None): """ Parameters ---------- copy_filepath : (Default value = None) Returns ------- """ tmp_instance_dict = { k: v for k, v in self.__dict__.items() if k not in ["_stream_filepath", "_stream_storer"] } tmp_instance_dict_bytes = pickle.dumps(tmp_instance_dict) self._stream_storer.get_node(self._default_info_node_path).remove() self._stream_storer.create_vlarray( "/info", "dump", atom=tables.ObjectAtom(), expectedrows=1 ) self._stream_storer.get_node(self._default_info_node_path).append( tmp_instance_dict_bytes ) self._stream_storer.close() if copy_filepath is not None and isinstance(copy_filepath, str): if not os.path.exists(copy_filepath): copyfile(self._stream_filepath, copy_filepath) else: raise FileExistsError() if self._temp_state: os.unlink(self._stream_filepath) return def get_sequence_by_acc(self, acc_number): """ Parameters ---------- acc_number : Returns ------- """ ret = None if acc_number in self._stream_map.index: ret = self._get_sequence_by_acc_id(acc_number) return ret def get_multiseq_by_accs(self, acc_numbers): """ Parameters ---------- acc_numbers : Returns ------- """ ret = None if isinstance(acc_numbers, list): if len(acc_numbers) > 0: if self._stream_map.index.isin(acc_numbers).sum() == len(acc_numbers): seq_list = [] for name in acc_numbers: seq_list.append(self._get_sequence_by_acc_id(name)) ret = MultiSequence( seq_list, name=self._name, aligned=self._aligned, metadata={"accession-numbers": "; ".join(acc_numbers)}, ) return ret def iter_sequences(self): """""" for acc_num in self._stream_map.index.values.tolist(): yield self._get_sequence_by_acc_id(acc_num) def write_all_to_fasta(self, fasta_fp, write_in_chunks=100): """ Parameters ---------- fasta_fp : write_in_chunks : (Default value = 100) Returns ------- """ if not os.path.exists(fasta_fp): if isinstance(write_in_chunks, int): if write_in_chunks >= 0: chunks = ( len(self._stream_map) if write_in_chunks == 0 else write_in_chunks ) from Bio.Seq import Seq with open(fasta_fp, "a") as fasta_handle: chunk_counter = chunks records_chunk = [] for sequence in self.iter_sequences(): tmp_record_metadata = ( sequence.metadata["description"] if "description" in sequence.metadata.keys() else self._name ) next_record = SeqIO.SeqRecord( Seq(sequence.text), sequence.name, description=tmp_record_metadata, ) if chunk_counter > 1: records_chunk.append(next_record) chunk_counter = chunk_counter - 1 else: records_chunk.append(next_record) chunk_counter = chunks SeqIO.write(records_chunk, fasta_handle, "fasta") records_chunk = [] if chunk_counter > 0: SeqIO.write(records_chunk, fasta_handle, "fasta") else: raise TypeError("`write_in_chunks` must be integer.") else: raise FileExistsError("Target file must not exists.") return def _get_sequence_by_acc_id(self, accid): """ Parameters ---------- accid : Returns ------- """ seqid = self._accid_to_seqid(accid) seq_str = self._retrieve_seq_by_seqid(seqid) seq_meta_pack = self._retrieve_meta_by_seqid(seqid) tmp_seq = Nucleotide(seq_str, accid, mode=self._mode) tmp_seq.restore_buckle(seq_meta_pack) return tmp_seq def _accid_to_seqid(self, accid): """ Parameters ---------- accid : Returns ------- """ return self._stream_map[accid] def _retrieve_seq_by_seqid(self, seqid): """ Parameters ---------- seqid : Returns ------- """ tmp_seq_bytes = self._stream_storer.get_node(self._default_seqs_node_path)[ seqid ] return tmp_seq_bytes.decode(self._default_seq_encoding) def _retrieve_meta_by_seqid(self, seqid): """ Parameters ---------- seqid : Returns ------- """ tmp_meta_bytes = self._stream_storer.get_node(self._default_meta_node_path)[ seqid ] return pickle.loads(tmp_meta_bytes) def append_sequence(self, sequence): """ Parameters ---------- sequence : Returns ------- """ if isinstance(sequence, NucleotideMetabase): if isinstance(sequence, Nucleotide): if sequence.mode == self._mode: if (sequence.name is not None) and ( sequence.name not in self._stream_map.index ): if self._verify_sequence(sequence.text): self._append_sequence(sequence) self._stream_storer.flush() else: raise ValueError("Sequences do not have same length.") else: raise ValueError( "Sequence name must be unique and have legnth > 0." ) else: raise ValueError("All sequences must have same mode.") else: raise TypeError("`sequence` have invalid type.") def _append_sequence(self, sequence_instance): """ Parameters ---------- sequence_instance : Returns ------- """ tmp_metadata = sequence_instance.buckle_for_uid(self._name) tmp_seq_str = sequence_instance.text seqid = self._insert_seq_vlarray(tmp_seq_str) metaid = self._insert_meta_vlarray(tmp_metadata) if seqid == metaid: self._stream_map[str(sequence_instance.name)] = seqid else: raise RuntimeError( "Impossible condition. Stream file might have been externally modified!" ) return def extend_multiseq(self, multiseq): """ Parameters ---------- multiseq : Returns ------- """ if isinstance(multiseq, MultiSequenceMetabase): if multiseq.count > 0: if multiseq.mode == self._mode: for sequence in multiseq.sequences: if (sequence.name is None) or ( sequence.name in self._stream_map.index ): raise ValueError( "Sequence name must be unique and have legnth > 0." ) if not self._verify_sequence(sequence.text): raise ValueError("Sequences do not have same length.") self._append_multiseq(multiseq) self._stream_storer.flush() else: raise ValueError("All sequences must have same mode.") else: raise TypeError("`multiseq` have invalid type.") def _append_multiseq(self, multiseq): """ Parameters ---------- multiseq : Returns ------- """ for sequence in multiseq.sequences: self._append_sequence(sequence) return def append_string(self, name, mode, sequence_str, metadata_dict={}): """ Parameters ---------- name : mode : sequence_str : metadata_dict : (Default value = {}) Returns ------- """ if ( isinstance(name, str) and isinstance(sequence_str, str) and isinstance(metadata_dict, dict) and isinstance(mode, str) ): if mode == self._mode: if len(name) > 0 and (name not in self._stream_map.index): if self._verify_sequence(sequence_str): self._append_sequence_str(name, sequence_str, metadata_dict) self._stream_storer.flush() else: raise ValueError("Sequences do not have same length.") else: raise ValueError( "Sequence name must be unique and have legnth > 0." ) else: raise ValueError("All sequences must have same mode.") else: raise TypeError("Invalid parameter types.") return def _append_sequence_str(self, seq_name, sequence_str, metadata_dict): """ Parameters ---------- seq_name : sequence_str : metadata_dict : Returns ------- """ seqid = self._insert_seq_vlarray(sequence_str) metaid = self._insert_meta_vlarray(metadata_dict) if seqid == metaid: self._stream_map[seq_name] = seqid else: raise RuntimeError( "Impossible condition. Stream file might have been externally modified!" ) return def _insert_seq_vlarray(self, seq_data): """ Parameters ---------- seq_data : Returns ------- """ self._last_seq_length = len(seq_data) seq_data_bytes = seq_data.encode(self._default_seq_encoding) self._stream_storer.get_node(self._default_seqs_node_path).append( seq_data_bytes ) return self._stream_storer.get_node(self._default_seqs_node_path).nrows - 1 def _insert_meta_vlarray(self, metadata): """ Parameters ---------- metadata : Returns ------- """ metadata_bytes = pickle.dumps(metadata) self._stream_storer.get_node(self._default_meta_node_path).append( metadata_bytes ) return self._stream_storer.get_node(self._default_meta_node_path).nrows - 1 def _verify_sequence(self, seq_str): """ Parameters ---------- seq_str : Returns ------- """ ret = True if self._aligned: if self._last_seq_length is not None: if self._last_seq_length == len(seq_str): ret = False return ret @property def name(self): """""" return self._name @property def mode(self): """""" return self._mode @property def count(self): """""" return len(self._stream_map) @property def summarize(self): """""" return @property def accession_numbers(self): """""" return self._stream_map.index.tolist()
30.153139
88
0.521229
7951f76c643f4ee7ccc9214282c505e92cbf5651
7,767
py
Python
django_baker/bakery.py
RobKuipers/django-baker
8f523f67bc94f4da5cc74754db47e34c19d47627
[ "BSD-3-Clause" ]
1
2021-01-05T21:24:25.000Z
2021-01-05T21:24:25.000Z
django_baker/bakery.py
RobKuipers/django-baker
8f523f67bc94f4da5cc74754db47e34c19d47627
[ "BSD-3-Clause" ]
2
2021-09-28T15:50:00.000Z
2021-09-28T16:05:20.000Z
django_baker/bakery.py
RobKuipers/django-baker
8f523f67bc94f4da5cc74754db47e34c19d47627
[ "BSD-3-Clause" ]
1
2022-02-05T17:31:29.000Z
2022-02-05T17:31:29.000Z
from __future__ import print_function import os import re import itertools from django.db.models.fields import SlugField from django.template.loader import get_template from django.template import Context from six import iteritems class Baker(object): """ Given a dictionary of apps and models, Baker will bake up a bunch of files that will help get your new app up and running quickly. """ def bake(self, apps_and_models): """ Iterates a dictionary of apps and models and creates all the necessary files to get up and running quickly. """ for app_label, models_app in iteritems(apps_and_models): models, app = models_app models = list(models) model_names = {model.__name__: self.get_field_names_for_model(model) for model in models} self.create_directories(app) self.create_init_files(app, model_names.keys(), models) self.remove_empty_startapp_files(app) for file_name in ["forms", "admin"]: file_path = "%s/%s.py" % (app.path, file_name) template_path = "django_baker/%s" % (file_name) self.create_file_from_template(file_path, template_path, {"model_names": model_names}) for model in models: model_attributes = self.model_attributes(app, model) self.create_files_from_templates(model_attributes) def get_field_names_for_model(self, model): """ Returns fields other than id and uneditable fields (DateTimeField where auto_now or auto_now_add is True) """ return [field.name for field in model._meta.get_fields() if field.name != "id" and not (field.get_internal_type() == "DateTimeField" and (field.auto_now is True or field.auto_now_add is True)) and field.concrete and (not field.is_relation or field.one_to_one or (field.many_to_one and field.related_model))] def create_directories(self, app): """ If not already there, adds a directory for views, urls and templates. """ for folder_name in ["views", "urls", "templates/%s" % app.label]: directory_path = "%s/%s" % (app.path, folder_name) if not os.path.exists(directory_path): os.makedirs(directory_path) def create_init_files(self, app, model_names, models): """ If not already there, creates a new init file in views and urls directory. Init file imports from all of the files within the directory. """ model_name_slugs = ["%s_views" % (self.camel_to_slug(model_name)) for model_name in model_names] model_names_dict = {self.camel_to_slug(model.__name__): self.camel_to_slug(self.model_name_plural(model)) for model in models} for folder_name in ["views", "urls"]: file_path = "%s/%s/__init__.py" % (app.path, folder_name) template_path = "django_baker/__init__%s" % folder_name self.create_file_from_template(file_path, template_path, {"app_label": app.label, "model_name_slugs": model_name_slugs, "model_names_dict": model_names_dict }) def model_attributes(self, app, model): """ Creates a dictionary of model attributes that will be used in the templates. """ model_name = model.__name__ model_name_plural = self.model_name_plural(model) slug_field = self.get_unique_slug_field_name(model) slug_field_name = slug_field.name if slug_field else "slug" lookup_field = slug_field_name if slug_field else "pk" return { 'app_label': app.label, 'app_path': app.path, 'model': model, 'model_name': model_name, 'model_name_slug': self.camel_to_slug(model_name), 'model_name_plural': model_name_plural, 'model_name_plural_slug': self.camel_to_slug(model_name_plural), 'model_fields': self.get_field_names_for_model(model), 'slug_field': slug_field, 'slug_field_name': slug_field_name, 'lookup_field': lookup_field } def create_files_from_templates(self, model_attributes): """ Determines the correct path to put each file and then calls create file method. """ for folder_name in ["views", "urls"]: file_path = "%s/%s/%s_%s.py" % (model_attributes['app_path'], folder_name, model_attributes['model_name_slug'], folder_name) template_path = "django_baker/%s" % (folder_name) self.create_file_from_template(file_path, template_path, model_attributes) for file_name in ["base", "list", "detail", "create", "update", "delete"]: file_path = "%s/templates/%s/%s_%s.html" % (model_attributes['app_path'], model_attributes['app_label'], model_attributes['model_name_slug'], file_name) template_path = "django_baker/%s.html" % (file_name) self.create_file_from_template(file_path, template_path, model_attributes) def create_file_from_template(self, file_path, template_path, context_variables): """ Takes template file and context variables and uses django's render method to create new file. """ if os.path.exists(file_path): print("\033[91m" + file_path + " already exists. Skipping." + "\033[0m") return with open(file_path, 'w') as new_file: new_file.write(get_template(template_path).render(context_variables)) print("\033[92m" + "successfully baked " + file_path + "\033[0m") def remove_empty_startapp_files(self, app): """ Removes 'empty' (less than or equal to 4 lines, as that is what they begin with) views, admin, and tests files. """ for file_name in ["views", "admin", "tests"]: file_path = "%s/%s.py" % (app.path, file_name) if os.path.exists(file_path): num_lines = sum(1 for _ in open(file_path)) if num_lines <= 4: os.remove(file_path) def camel_to_slug(self, name): """ Helper method to convert camel case string (PumpernickelBread) to slug string (pumpernickel_bread) """ name = re.sub(r'([a-z])([A-Z])', r'\1 \2', name).title().replace(" ", "").replace("_", "") s1 = re.sub('(.)([A-Z][a-z]+)', r'\1_\2', name) slug = re.sub('([a-z0-9])([A-Z])', r'\1_\2', s1).lower() return slug def model_name_plural(self, model): """ Gets the pluralized version of a model. Simply adds an 's' to model name if verbose_name_plural isn't set. """ if isinstance(model._meta.verbose_name_plural, str): return model._meta.verbose_name_plural return "%ss" % model.__name__ def get_unique_slug_field_name(self, model): """ Determines if model has exactly 1 SlugField that is unique. If so, returns it. Otherwise returns None. """ slug_fields = [] for field in model._meta.get_fields(): if isinstance(field, SlugField) and field.unique: slug_fields.append(field) if len(slug_fields) == 1: return slug_fields[0] return None
47.650307
119
0.597528
7951f837dd07fabae720689af49805b073c46ae9
2,243
py
Python
mcycle/constants.py
momargoh/MCycle
4eed4b80fe041527f9765f9b6ca135fce864ed0f
[ "Apache-2.0" ]
7
2018-05-08T08:42:07.000Z
2022-01-27T14:40:45.000Z
mcycle/constants.py
momargoh/MCycle
4eed4b80fe041527f9765f9b6ca135fce864ed0f
[ "Apache-2.0" ]
6
2018-05-20T05:52:48.000Z
2019-09-05T19:56:29.000Z
mcycle/constants.py
momargoh/MCycle
4eed4b80fe041527f9765f9b6ca135fce864ed0f
[ "Apache-2.0" ]
4
2018-05-06T20:57:34.000Z
2021-07-03T04:32:15.000Z
# THIS FILE IS AUTOMATICALLY GENERATED: DO NOT EDIT! # Tolerances TOLABS_X = 1e-10 # CoolProp input_pairs INPUT_PAIR_INVALID = 0 QT_INPUTS = 1 PQ_INPUTS = 2 QSmolar_INPUTS = 3 QSmass_INPUTS = 4 HmolarQ_INPUTS = 5 HmassQ_INPUTS = 6 DmolarQ_INPUTS = 7 DmassQ_INPUTS = 8 PT_INPUTS = 9 DmassT_INPUTS = 10 DmolarT_INPUTS = 11 HmolarT_INPUTS = 12 HmassT_INPUTS = 13 SmolarT_INPUTS = 14 SmassT_INPUTS = 15 TUmolar_INPUTS = 16 TUmass_INPUTS = 17 DmassP_INPUTS = 18 DmolarP_INPUTS = 19 HmassP_INPUTS = 20 HmolarP_INPUTS = 21 PSmass_INPUTS = 22 PSmolar_INPUTS = 23 PUmass_INPUTS = 24 PUmolar_INPUTS = 25 HmassSmass_INPUTS = 26 HmolarSmolar_INPUTS = 27 SmassUmass_INPUTS = 28 SmolarUmolar_INPUTS = 29 DmassHmass_INPUTS = 30 DmolarHmolar_INPUTS = 31 DmassSmass_INPUTS = 32 DmolarSmolar_INPUTS = 33 DmassUmass_INPUTS = 34 DmolarUmolar_INPUTS = 35 # CoolProp imposed phases iphase_liquid = 0 iphase_supercritical = 1 iphase_supercritical_gas = 2 iphase_supercritical_liquid = 3 iphase_critical_point = 4 iphase_gas = 5 iphase_twophase = 6 iphase_unknown = 7 iphase_not_imposed = 8 # MCycle phases PHASE_LIQUID = 0 PHASE_SUPERCRITICAL = 1 PHASE_SUPERCRITICAL_GAS = 2 PHASE_SUPERCRITICAL_LIQUID = 3 PHASE_CRITICAL_POINT = 4 PHASE_VAPOUR = 5 PHASE_VAPOR = 5 PHASE_GAS = 5 PHASE_TWOPHASE = 6 PHASE_UNKNOWN = 7 PHASE_NOT_IMPOSED = 8 PHASE_SATURATED_LIQUID = 9 PHASE_SATURATED_VAPOUR = 10 PHASE_SATURATED_VAPOR = 10 # Unit Phases UNITPHASE_NONE = 0 UNITPHASE_ALL = 1 UNITPHASE_LIQUID = 2 UNITPHASE_VAPOUR = 3 UNITPHASE_VAPOR = 3 UNITPHASE_GAS = 3 UNITPHASE_TWOPHASE_EVAPORATING = 4 UNITPHASE_TP_EVAP = 4 UNITPHASE_TWOPHASE_CONDENSING = 5 UNITPHASE_TP_COND = 5 UNITPHASE_SUPERCRITICAL = 6 UNITPHASE_ALL_SINGLEPHASE = 7 UNITPHASE_ALL_SP = 7 UNITPHASE_ALL_TWOPHASE = 8 UNITPHASE_ALL_TP = 8 # Transfer mechanisms TRANSFER_NONE = 0 TRANSFER_ALL = 1 TRANSFER_HEAT = 2 TRANSFER_FRICTION = 3 # Flows FLOW_NONE = 0 FLOW_ALL = 1 WORKING_FLUID = 2 FLOW_PRIMARY = 2 FLOW1 = 2 SECONDARY_FLUID = 3 FLOW_SECONDARY = 3 FLOW2 = 3 # HxFlowConfig FLOWSENSE_UNDEFINED = 0 COUNTERFLOW = 1 PARALLELFLOW = 2 CROSSFLOW = 3 # Constraints NO_CONSTRAINT = 0 CONSTANT_P = 1 CONSTANT_V = 2 # MCycle SOURCE_URL = 'https://github.com/momargoh/MCycle' DOCS_URL = 'https://mcycle.readthedocs.io'
20.768519
52
0.800267
7951f8f7c8305aaf71be43c3b809dcf7e5bfd182
8,886
py
Python
broadlink/__init__.py
thewh1teagle/python-broadlink
6ab23e92614ea89df1fe168a00bcf74d91356ed6
[ "MIT" ]
1
2020-11-06T01:12:43.000Z
2020-11-06T01:12:43.000Z
broadlink/__init__.py
thewh1teagle/python-broadlink
6ab23e92614ea89df1fe168a00bcf74d91356ed6
[ "MIT" ]
null
null
null
broadlink/__init__.py
thewh1teagle/python-broadlink
6ab23e92614ea89df1fe168a00bcf74d91356ed6
[ "MIT" ]
1
2020-11-06T14:45:17.000Z
2020-11-06T14:45:17.000Z
#!/usr/bin/python3 """The python-broadlink library.""" import socket import time from datetime import datetime from typing import Dict, List, Union, Tuple, Type from .alarm import S1C from .climate import hysen from .cover import dooya from .device import device from .helpers import get_local_ip from .light import lb1 from .remote import rm, rm2, rm4 from .sensor import a1 from .switch import bg1, mp1, sp1, sp2 def get_devices() -> Dict[int, Tuple[Type[device], str, str]]: """Return all supported devices.""" return { 0x0000: (sp1, "SP1", "Broadlink"), 0x2711: (sp2, "SP2", "Broadlink"), 0x2716: (sp2, "NEO PRO", "Ankuoo"), 0x2717: (sp2, "NEO", "Ankuoo"), 0x2719: (sp2, "SP2-compatible", "Honeywell"), 0x271a: (sp2, "SP2-compatible", "Honeywell"), 0x2720: (sp2, "SP mini", "Broadlink"), 0x2728: (sp2, "SP2-compatible", "URANT"), 0x2733: (sp2, "SP3", "Broadlink"), 0x2736: (sp2, "SP mini+", "Broadlink"), 0x273e: (sp2, "SP mini", "Broadlink"), 0x7530: (sp2, "SP2", "Broadlink (OEM)"), 0x7539: (sp2, "SP2-IL", "Broadlink (OEM)"), 0x753e: (sp2, "SP mini 3", "Broadlink"), 0x7540: (sp2, "MP2", "Broadlink"), 0X7544: (sp2, "SP2-CL", "Broadlink"), 0x7546: (sp2, "SP2-UK/BR/IN", "Broadlink (OEM)"), 0x7547: (sp2, "SC1", "Broadlink"), 0x7918: (sp2, "SP2", "Broadlink (OEM)"), 0x7919: (sp2, "SP2-compatible", "Honeywell"), 0x791a: (sp2, "SP2-compatible", "Honeywell"), 0x7d00: (sp2, "SP3-EU", "Broadlink (OEM)"), 0x7d0d: (sp2, "SP mini 3", "Broadlink (OEM)"), 0x9479: (sp2, "SP3S-US", "Broadlink"), 0x947a: (sp2, "SP3S-EU", "Broadlink"), 0x2712: (rm, "RM pro/pro+", "Broadlink"), 0x272a: (rm, "RM pro", "Broadlink"), 0x2737: (rm, "RM mini 3", "Broadlink"), 0x273d: (rm, "RM pro", "Broadlink"), 0x277c: (rm, "RM home", "Broadlink"), 0x2783: (rm, "RM home", "Broadlink"), 0x2787: (rm, "RM pro", "Broadlink"), 0x278b: (rm, "RM plus", "Broadlink"), 0x278f: (rm, "RM mini", "Broadlink"), 0x2797: (rm, "RM pro+", "Broadlink"), 0x279d: (rm, "RM pro+", "Broadlink"), 0x27a1: (rm, "RM plus", "Broadlink"), 0x27a6: (rm, "RM plus", "Broadlink"), 0x27a9: (rm, "RM pro+", "Broadlink"), 0x27c2: (rm, "RM mini 3", "Broadlink"), 0x27c3: (rm, "RM pro+", "Broadlink"), 0x27cc: (rm, "RM mini 3", "Broadlink"), 0x27cd: (rm, "RM mini 3", "Broadlink"), 0x27d0: (rm, "RM mini 3", "Broadlink"), 0x27d1: (rm, "RM mini 3", "Broadlink"), 0x27de: (rm, "RM mini 3", "Broadlink"), 0x51da: (rm4, "RM4 mini", "Broadlink"), 0x5f36: (rm4, "RM mini 3", "Broadlink"), 0x6026: (rm4, "RM4 pro", "Broadlink"), 0x6070: (rm4, "RM4C mini", "Broadlink"), 0x610e: (rm4, "RM4 mini", "Broadlink"), 0x610f: (rm4, "RM4C mini", "Broadlink"), 0x61a2: (rm4, "RM4 pro", "Broadlink"), 0x62bc: (rm4, "RM4 mini", "Broadlink"), 0x62be: (rm4, "RM4C mini", "Broadlink"), 0x648d: (rm4, "RM4 mini", "Broadlink"), 0x649b: (rm4, "RM4 pro", "Broadlink"), 0x2714: (a1, "e-Sensor", "Broadlink"), 0x4eb5: (mp1, "MP1-1K4S", "Broadlink"), 0x4ef7: (mp1, "MP1-1K4S", "Broadlink (OEM)"), 0x4f1b: (mp1, "MP1-1K3S2U", "Broadlink (OEM)"), 0x4f65: (mp1, "MP1-1K3S2U", "Broadlink"), 0x5043: (lb1, "SB800TD", "Broadlink (OEM)"), 0x504e: (lb1, "LB1", "Broadlink"), 0x60c7: (lb1, "LB1", "Broadlink"), 0x60c8: (lb1, "LB1", "Broadlink"), 0x6112: (lb1, "LB1", "Broadlink"), 0x2722: (S1C, "S2KIT", "Broadlink"), 0x4ead: (hysen, "HY02B05H", "Hysen"), 0x4e4d: (dooya, "DT360E-45/20", "Dooya"), 0x51e3: (bg1, "BG800/BG900", "BG Electrical"), } def gendevice( dev_type: int, host: Tuple[str, int], mac: Union[bytes, str], name: str = None, is_locked: bool = None, ) -> device: """Generate a device.""" try: dev_class, model, manufacturer = get_devices()[dev_type] except KeyError: return device(host, mac, dev_type, name=name, is_locked=is_locked) return dev_class( host, mac, dev_type, name=name, model=model, manufacturer=manufacturer, is_locked=is_locked, ) def discover( timeout: int = None, local_ip_address: str = None, discover_ip_address: str = '255.255.255.255', discover_ip_port: int = 80, ) -> List[device]: """Discover devices connected to the local network.""" local_ip_address = local_ip_address or get_local_ip() address = local_ip_address.split('.') cs = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) cs.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) cs.setsockopt(socket.SOL_SOCKET, socket.SO_BROADCAST, 1) cs.bind((local_ip_address, 0)) port = cs.getsockname()[1] starttime = time.time() devices = [] timezone = int(time.timezone / -3600) packet = bytearray(0x30) year = datetime.now().year if timezone < 0: packet[0x08] = 0xff + timezone - 1 packet[0x09] = 0xff packet[0x0a] = 0xff packet[0x0b] = 0xff else: packet[0x08] = timezone packet[0x09] = 0 packet[0x0a] = 0 packet[0x0b] = 0 packet[0x0c] = year & 0xff packet[0x0d] = year >> 8 packet[0x0e] = datetime.now().minute packet[0x0f] = datetime.now().hour subyear = str(year)[2:] packet[0x10] = int(subyear) packet[0x11] = datetime.now().isoweekday() packet[0x12] = datetime.now().day packet[0x13] = datetime.now().month packet[0x18] = int(address[0]) packet[0x19] = int(address[1]) packet[0x1a] = int(address[2]) packet[0x1b] = int(address[3]) packet[0x1c] = port & 0xff packet[0x1d] = port >> 8 packet[0x26] = 6 checksum = sum(packet, 0xbeaf) & 0xffff packet[0x20] = checksum & 0xff packet[0x21] = checksum >> 8 cs.sendto(packet, (discover_ip_address, discover_ip_port)) if timeout is None: response = cs.recvfrom(1024) responsepacket = bytearray(response[0]) host = response[1] devtype = responsepacket[0x34] | responsepacket[0x35] << 8 mac = responsepacket[0x3f:0x39:-1] name = responsepacket[0x40:].split(b'\x00')[0].decode('utf-8') is_locked = bool(responsepacket[-1]) device = gendevice(devtype, host, mac, name=name, is_locked=is_locked) cs.close() return device while (time.time() - starttime) < timeout: cs.settimeout(timeout - (time.time() - starttime)) try: response = cs.recvfrom(1024) except socket.timeout: cs.close() return devices responsepacket = bytearray(response[0]) host = response[1] devtype = responsepacket[0x34] | responsepacket[0x35] << 8 mac = responsepacket[0x3f:0x39:-1] name = responsepacket[0x40:].split(b'\x00')[0].decode('utf-8') is_locked = bool(responsepacket[-1]) device = gendevice(devtype, host, mac, name=name, is_locked=is_locked) devices.append(device) cs.close() return devices # Setup a new Broadlink device via AP Mode. Review the README to see how to enter AP Mode. # Only tested with Broadlink RM3 Mini (Blackbean) def setup(ssid: str, password: str, security_mode: int) -> None: """Set up a new Broadlink device via AP mode.""" # Security mode options are (0 - none, 1 = WEP, 2 = WPA1, 3 = WPA2, 4 = WPA1/2) payload = bytearray(0x88) payload[0x26] = 0x14 # This seems to always be set to 14 # Add the SSID to the payload ssid_start = 68 ssid_length = 0 for letter in ssid: payload[(ssid_start + ssid_length)] = ord(letter) ssid_length += 1 # Add the WiFi password to the payload pass_start = 100 pass_length = 0 for letter in password: payload[(pass_start + pass_length)] = ord(letter) pass_length += 1 payload[0x84] = ssid_length # Character length of SSID payload[0x85] = pass_length # Character length of password payload[0x86] = security_mode # Type of encryption (00 - none, 01 = WEP, 02 = WPA1, 03 = WPA2, 04 = WPA1/2) checksum = sum(payload, 0xbeaf) & 0xffff payload[0x20] = checksum & 0xff # Checksum 1 position payload[0x21] = checksum >> 8 # Checksum 2 position sock = socket.socket(socket.AF_INET, # Internet socket.SOCK_DGRAM) # UDP sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) sock.setsockopt(socket.SOL_SOCKET, socket.SO_BROADCAST, 1) sock.sendto(payload, ('255.255.255.255', 80)) sock.close()
36.719008
112
0.585415
7951fa6331f6d6df56acdbd36acbd540b6636374
4,945
py
Python
Blockchain.py
Sukarnascience/Blockchain_Using_Py
b88dfc316c054ee8407ba2a1e1e3ac68a692ba80
[ "MIT" ]
1
2021-07-09T02:54:24.000Z
2021-07-09T02:54:24.000Z
Blockchain.py
Sukarnascience/Blockchain_Using_Py
b88dfc316c054ee8407ba2a1e1e3ac68a692ba80
[ "MIT" ]
null
null
null
Blockchain.py
Sukarnascience/Blockchain_Using_Py
b88dfc316c054ee8407ba2a1e1e3ac68a692ba80
[ "MIT" ]
null
null
null
import mysql.connector as sql from tkinter import * from tkinter import messagebox import hashlib import csv def block(transaction): sender = transaction[0] recever = transaction[1] ammount = transaction[2] previous_hash = transaction[3] new_hash_data = "{},{},{},{}".format(sender,recever,ammount,previous_hash) assign_new_hash = hashlib.sha256(new_hash_data.encode()).hexdigest() return assign_new_hash def login(): username = UN.get() password = PW.get() database=sql.connect(host="localhost",passwd="1234",user="root",database="school") cc=database.cursor() cc.execute("select * from account where username='{}';".format(username)) data = cc.fetchall() if(data[0][1]==password): screen.destroy() def ledger(): database=sql.connect(host="localhost",passwd="1234",user="root",database="school") cc=database.cursor() cc.execute("select * from ledger;") data = cc.fetchall() printoutintxt = open("Myledger.csv",'a') mytyper = csv.writer(printoutintxt) for i in data: mytyper.writerow(list(i)) printoutintxt.close() messagebox.showinfo("Thank You","Print Out has beed dun successfully \nnamed \"Myledger.csv\" in home Page ") def add_block(): global newhashdata database=sql.connect(host="localhost",passwd="1234",user="root",database="school") cc=database.cursor() cc.execute("select * from ledger;") data = cc.fetchall() lastData = data[-1] PH = lastData[-1] newhashdata = block([SN.get(),RN.get(),AM.get(),PH]) cc.execute("INSERT INTO ledger values('{}','{}',{},'{}');".format(SN.get(),RN.get(),AM.get(),newhashdata)) database.commit() database.close() messagebox.showinfo("Great","Your block has added successfully") mainscreen = Tk() mainscreen.title("Block Chain - S.jana") mainscreen.geometry("480x250") l1=Label(mainscreen,text="Add your Block in Block Chain",font=("Courier",20)) l1.pack() l2=Label(mainscreen,text="-----------------------------",font=("Courier",20)) l2.pack() l3=Label(mainscreen,text="Sender :",font=("Courier",15)) l3.place(x=20,y=80) l4=Label(mainscreen,text="Recever :",font=("Courier",15)) l4.place(x=20,y=120) l6=Label(mainscreen,text="Ammount :",font=("Courier",15)) l6.place(x=20,y=160) b2=Button(mainscreen,text="See Ledger",command=ledger) b2.place(x=240+30,y=200) b3=Button(mainscreen,text="Add the Block in chain",command=add_block) b3.place(x=100+30,y=200) SN=StringVar() RN=StringVar() AM=IntVar() u1=Entry(mainscreen,textvariable=SN) u1.place(x=220,y=80) u2=Entry(mainscreen,textvariable=RN) u2.place(x=220,y=120) u4=Entry(mainscreen,textvariable=AM) u4.place(x=220,y=160) mainscreen.mainloop() else: messagebox.showwarning("Not Alloud","Please check your Details\nBecause the data is not matching with out database") def signup(): username = NUN.get() password = NPW.get() passwordV = VPW.get() if(password==passwordV): database=sql.connect(host="localhost",passwd="1234",user="root",database="school") cc=database.cursor() cc.execute("INSERT INTO account values ('{}','{}');".format(username,password)) database.commit() database.close() messagebox.showinfo("Alloud","Your Account has created successfully :)") else: messagebox.showerror("Not Alloud","Please check your password and re-password\nthey both are not same") screen = Tk() screen.title("Entry Gate") screen.geometry("600x240") l1=Label(screen,text="Login Signup", font=("Courier",20)) l1.pack() l2=Label(screen,text="|\n|\n|\n|\n|\n|", font=("Courier",20)) l2.pack() l3=Label(screen,text="UserName :",font=("Courier",15)) l3.place(x=20,y=60) l4=Label(screen,text="Password :",font=("Courier",15)) l4.place(x=20,y=100) l6=Label(screen,text="UserName :",font=("Courier",15)) l6.place(x=320,y=60) l7=Label(screen,text="Password :",font=("Courier",15)) l7.place(x=320,y=100) l8=Label(screen,text="Re-Password:",font=("Courier",15)) l8.place(x=320,y=140) b1=Button(screen,text="Login",command=login) b1.place(x=130,y=200) b3=Button(screen,text="Signup",command=signup) b3.place(x=415,y=200) UN=StringVar() PW=StringVar() NUN=StringVar() NPW=StringVar() VPW=StringVar() u1=Entry(screen,textvariable=UN) u1.place(x=150,y=65) u2=Entry(screen,textvariable=PW) u2.place(x=150,y=105) u4=Entry(screen,textvariable=NUN) u4.place(x=465,y=65) u5=Entry(screen,textvariable=NPW) u5.place(x=465,y=105) u6=Entry(screen,textvariable=VPW) u6.place(x=465,y=145) screen.mainloop()
34.103448
124
0.627503
7951fa90900749187c175648eca7f72de772b342
48
py
Python
libhoney/version.py
DavidCain/libhoney-py
3ae150edad4503d6acc4f1c245a02e6761b11ae5
[ "Apache-2.0" ]
null
null
null
libhoney/version.py
DavidCain/libhoney-py
3ae150edad4503d6acc4f1c245a02e6761b11ae5
[ "Apache-2.0" ]
null
null
null
libhoney/version.py
DavidCain/libhoney-py
3ae150edad4503d6acc4f1c245a02e6761b11ae5
[ "Apache-2.0" ]
null
null
null
VERSION = "1.11.0" # Update using bump2version
24
47
0.708333
7951fb7ddda0d62547c66de1a2a78b7aaddd0965
7,179
py
Python
pandas/tests/scalar/interval/test_interval.py
zhezherun/pandas
36c1104b7ad9761e020f7e8198eb60da4045d169
[ "BSD-3-Clause" ]
1
2018-11-11T22:18:13.000Z
2018-11-11T22:18:13.000Z
pandas/tests/scalar/interval/test_interval.py
zhezherun/pandas
36c1104b7ad9761e020f7e8198eb60da4045d169
[ "BSD-3-Clause" ]
null
null
null
pandas/tests/scalar/interval/test_interval.py
zhezherun/pandas
36c1104b7ad9761e020f7e8198eb60da4045d169
[ "BSD-3-Clause" ]
null
null
null
from __future__ import division import numpy as np from pandas import Interval, Timestamp, Timedelta import pandas.core.common as com import pytest @pytest.fixture def interval(): return Interval(0, 1) class TestInterval(object): def test_properties(self, interval): assert interval.closed == 'right' assert interval.left == 0 assert interval.right == 1 assert interval.mid == 0.5 def test_repr(self, interval): assert repr(interval) == "Interval(0, 1, closed='right')" assert str(interval) == "(0, 1]" interval_left = Interval(0, 1, closed='left') assert repr(interval_left) == "Interval(0, 1, closed='left')" assert str(interval_left) == "[0, 1)" def test_contains(self, interval): assert 0.5 in interval assert 1 in interval assert 0 not in interval msg = "__contains__ not defined for two intervals" with pytest.raises(TypeError, match=msg): interval in interval interval_both = Interval(0, 1, closed='both') assert 0 in interval_both assert 1 in interval_both interval_neither = Interval(0, 1, closed='neither') assert 0 not in interval_neither assert 0.5 in interval_neither assert 1 not in interval_neither def test_equal(self): assert Interval(0, 1) == Interval(0, 1, closed='right') assert Interval(0, 1) != Interval(0, 1, closed='left') assert Interval(0, 1) != 0 def test_comparison(self): with pytest.raises(TypeError, match='unorderable types'): Interval(0, 1) < 2 assert Interval(0, 1) < Interval(1, 2) assert Interval(0, 1) < Interval(0, 2) assert Interval(0, 1) < Interval(0.5, 1.5) assert Interval(0, 1) <= Interval(0, 1) assert Interval(0, 1) > Interval(-1, 2) assert Interval(0, 1) >= Interval(0, 1) def test_hash(self, interval): # should not raise hash(interval) @pytest.mark.parametrize('left, right, expected', [ (0, 5, 5), (-2, 5.5, 7.5), (10, 10, 0), (10, np.inf, np.inf), (-np.inf, -5, np.inf), (-np.inf, np.inf, np.inf), (Timedelta('0 days'), Timedelta('5 days'), Timedelta('5 days')), (Timedelta('10 days'), Timedelta('10 days'), Timedelta('0 days')), (Timedelta('1H10M'), Timedelta('5H5M'), Timedelta('3H55M')), (Timedelta('5S'), Timedelta('1H'), Timedelta('59M55S'))]) def test_length(self, left, right, expected): # GH 18789 iv = Interval(left, right) result = iv.length assert result == expected @pytest.mark.parametrize('left, right, expected', [ ('2017-01-01', '2017-01-06', '5 days'), ('2017-01-01', '2017-01-01 12:00:00', '12 hours'), ('2017-01-01 12:00', '2017-01-01 12:00:00', '0 days'), ('2017-01-01 12:01', '2017-01-05 17:31:00', '4 days 5 hours 30 min')]) @pytest.mark.parametrize('tz', (None, 'UTC', 'CET', 'US/Eastern')) def test_length_timestamp(self, tz, left, right, expected): # GH 18789 iv = Interval(Timestamp(left, tz=tz), Timestamp(right, tz=tz)) result = iv.length expected = Timedelta(expected) assert result == expected @pytest.mark.parametrize('left, right', [ ('a', 'z'), (('a', 'b'), ('c', 'd')), (list('AB'), list('ab')), (Interval(0, 1), Interval(1, 2))]) def test_length_errors(self, left, right): # GH 18789 iv = Interval(left, right) msg = 'cannot compute length between .* and .*' with pytest.raises(TypeError, match=msg): iv.length def test_math_add(self, closed): interval = Interval(0, 1, closed=closed) expected = Interval(1, 2, closed=closed) result = interval + 1 assert result == expected result = 1 + interval assert result == expected result = interval result += 1 assert result == expected msg = r"unsupported operand type\(s\) for \+" with pytest.raises(TypeError, match=msg): interval + interval with pytest.raises(TypeError, match=msg): interval + 'foo' def test_math_sub(self, closed): interval = Interval(0, 1, closed=closed) expected = Interval(-1, 0, closed=closed) result = interval - 1 assert result == expected result = interval result -= 1 assert result == expected msg = r"unsupported operand type\(s\) for -" with pytest.raises(TypeError, match=msg): interval - interval with pytest.raises(TypeError, match=msg): interval - 'foo' def test_math_mult(self, closed): interval = Interval(0, 1, closed=closed) expected = Interval(0, 2, closed=closed) result = interval * 2 assert result == expected result = 2 * interval assert result == expected result = interval result *= 2 assert result == expected msg = r"unsupported operand type\(s\) for \*" with pytest.raises(TypeError, match=msg): interval * interval msg = r"can\'t multiply sequence by non-int" with pytest.raises(TypeError, match=msg): interval * 'foo' def test_math_div(self, closed): interval = Interval(0, 1, closed=closed) expected = Interval(0, 0.5, closed=closed) result = interval / 2.0 assert result == expected result = interval result /= 2.0 assert result == expected msg = r"unsupported operand type\(s\) for /" with pytest.raises(TypeError, match=msg): interval / interval with pytest.raises(TypeError, match=msg): interval / 'foo' def test_math_floordiv(self, closed): interval = Interval(1, 2, closed=closed) expected = Interval(0, 1, closed=closed) result = interval // 2 assert result == expected result = interval result //= 2 assert result == expected msg = r"unsupported operand type\(s\) for //" with pytest.raises(TypeError, match=msg): interval // interval with pytest.raises(TypeError, match=msg): interval // 'foo' def test_constructor_errors(self): msg = "invalid option for 'closed': foo" with pytest.raises(ValueError, match=msg): Interval(0, 1, closed='foo') msg = 'left side of interval must be <= right side' with pytest.raises(ValueError, match=msg): Interval(1, 0) @pytest.mark.parametrize('tz_left, tz_right', [ (None, 'UTC'), ('UTC', None), ('UTC', 'US/Eastern')]) def test_constructor_errors_tz(self, tz_left, tz_right): # GH 18538 left = Timestamp('2017-01-01', tz=tz_left) right = Timestamp('2017-01-02', tz=tz_right) error = TypeError if com._any_none(tz_left, tz_right) else ValueError with pytest.raises(error): Interval(left, right)
31.765487
78
0.579329
7951fd3bdeab71dc53a8f29e08bf0f4419ded088
21,742
py
Python
pytorch/libs/nnet/pooling.py
Angelnatao/asv-subtools
77d4d940d235b16e9e36a6ee07ce283fa36f4172
[ "Apache-2.0" ]
1
2020-11-21T08:03:59.000Z
2020-11-21T08:03:59.000Z
pytorch/libs/nnet/pooling.py
Angelnatao/asv-subtools
77d4d940d235b16e9e36a6ee07ce283fa36f4172
[ "Apache-2.0" ]
null
null
null
pytorch/libs/nnet/pooling.py
Angelnatao/asv-subtools
77d4d940d235b16e9e36a6ee07ce283fa36f4172
[ "Apache-2.0" ]
null
null
null
# -*- coding:utf-8 -*- # Copyright xmuspeech (Author: Snowdar 2019-05-29 2020-06-10) import numpy as np import torch import torch.nn.functional as F from libs.support.utils import to_device from .components import * ## Pooling ✿ class StatisticsPooling(torch.nn.Module): """ An usual mean [+ stddev] poolling layer""" def __init__(self, input_dim, stddev=True, unbiased=False, eps=1.0e-10): super(StatisticsPooling, self).__init__() self.stddev = stddev self.input_dim = input_dim if self.stddev : self.output_dim = 2 * input_dim else : self.output_dim = input_dim self.eps = eps # Used for unbiased estimate of stddev self.unbiased = unbiased def forward(self, inputs): """ @inputs: a 3-dimensional tensor (a batch), including [samples-index, frames-dim-index, frames-index] """ assert len(inputs.shape) == 3 assert inputs.shape[1] == self.input_dim # Get the num of frames counts = inputs.shape[2] mean = inputs.sum(dim=2, keepdim=True) / counts if self.stddev : if self.unbiased and counts > 1: counts = counts - 1 # The sqrt (as follows) is deprecated because it results in Nan problem. # std = torch.unsqueeze(torch.sqrt(torch.sum((inputs - mean)**2, dim=2) / counts), dim=2) # There is a eps to solve this problem. # Another method: Var is equal to std in "cat" way, actually. So, just use Var directly. var = torch.sum((inputs - mean)**2, dim=2, keepdim=True) / counts std = torch.sqrt(var.clamp(min=self.eps)) return torch.cat((mean, std), dim=1) else: return mean def get_output_dim(self): return self.output_dim def extra_repr(self): return '{input_dim}, {output_dim}, stddev={stddev}, unbiased={unbiased}, eps={eps}'.format(**self.__dict__) @classmethod def thop_count(self, m, x, y): pass # To do # x = x[0] # kernel_ops = torch.zeros(m.weight.size()[2:]).numel() # Kw x Kh # bias_ops = 1 if m.bias is not None else 0 # # N x Cout x H x W x (Cin x Kw x Kh + bias) # total_ops = y.nelement() * (m.input_dim * kernel_ops + bias_ops) # m.total_ops += torch.DoubleTensor([int(total_ops)]) class FreeStatisticsPooling(torch.nn.Module): """ An usual mean [+ stddev] poolling layer""" def __init__(self, stddev=True, unbiased=False, eps=1.0e-10): super(FreeStatisticsPooling, self).__init__() self.stddev = stddev self.eps = eps # Used for unbiased estimate of stddev self.unbiased = unbiased def forward(self, inputs): """ @inputs: a 3-dimensional tensor (a batch), including [samples-index, frames-dim-index, frames-index] """ inputs = inputs.reshape(inputs.shape[0], -1, inputs.shape[len(inputs.shape)-1]) # Get the num of frames counts = inputs.shape[2] mean = inputs.sum(dim=2, keepdim=True) / counts if self.stddev : if self.unbiased and counts > 1: counts = counts - 1 # The sqrt (as follows) is deprecated because it results in Nan problem. # std = torch.unsqueeze(torch.sqrt(torch.sum((inputs - mean)**2, dim=2) / counts), dim=2) # There is a eps to solve this problem. # Another method: Var is equal to std in "cat" way, actually. So, just use Var directly. var = torch.sum((inputs - mean)**2, dim=2, keepdim=True) / counts std = torch.sqrt(var.clamp(min=self.eps)) return torch.cat((mean, std), dim=1) else: return mean class LDEPooling(torch.nn.Module): """A novel learnable dictionary encoding layer. Reference: Weicheng Cai, etc., "A NOVEL LEARNABLE DICTIONARY ENCODING LAYER FOR END-TO-END LANGUAGE IDENTIFICATION", icassp, 2018 """ def __init__(self, input_dim, c_num=64, eps=1.0e-10): super(LDEPooling, self).__init__() self.input_dim = input_dim self.output_dim = input_dim * c_num self.eps = eps self.mu = torch.nn.Parameter(torch.randn(input_dim, c_num)) self.s = torch.nn.Parameter(torch.ones(c_num)) self.softmax_for_w = torch.nn.Softmax(dim=3) def forward(self, inputs): """ @inputs: a 3-dimensional tensor (a batch), including [samples-index, frames-dim-index, frames-index] """ assert len(inputs.shape) == 3 assert inputs.shape[1] == self.input_dim r = inputs.transpose(1,2).unsqueeze(3) - self.mu # Make sure beta=self.s**2+self.eps > 0 w = self.softmax_for_w(- (self.s**2 + self.eps) * torch.sum(r**2, dim=2, keepdim=True)) e = torch.mean(w * r, dim=1) return e.reshape(-1, self.output_dim, 1) def get_output_dim(self): return self.output_dim # Attention-based class AttentionAlphaComponent(torch.nn.Module): """Compute the alpha with attention module. alpha = softmax(v'·f(w·x + b) + k) or softmax(v'·x + k) where f is relu here and bias could be lost. Support: 1. Single or Multi-head attention 2. One affine or two affine 3. Share weight (last affine = vector) or un-shared weight (last affine = matrix) 4. Self-attention or time context attention (supported by context parameter of TdnnAffine) 5. Different temperatures for different heads. """ def __init__(self, input_dim, num_head=1, split_input=True, share=True, affine_layers=2, hidden_size=64, context=[0], bias=True, temperature=False, fixed=True): super(AttentionAlphaComponent, self).__init__() assert num_head >= 1 # Multi-head case. if num_head > 1: if split_input: # Make sure fatures/planes with input_dim dims could be splited to num_head parts. assert input_dim % num_head == 0 if temperature: if fixed: t_list = [] for i in range(num_head): t_list.append([[max(1, (i // 2) * 5)]]) # shape [1, num_head, 1, 1] self.register_buffer('t', torch.tensor([t_list])) else: # Different heads have different temperature. # Use 1 + self.t**2 in forward to make sure temperature >= 1. self.t = torch.nn.Parameter(torch.zeros(1, num_head, 1, 1)) self.input_dim = input_dim self.num_head = num_head self.split_input = split_input self.share = share self.temperature = temperature self.fixed = fixed if share: # weight: [input_dim, 1] or [input_dim, hidden_size] -> [hidden_size, 1] final_dim = 1 else: # weight: [input_dim, input_dim] or [input_dim, hidden_size] -> [hidden_size, input_dim] final_dim = input_dim first_groups = 1 last_groups = 1 if affine_layers == 1: last_affine_input_dim = input_dim # (x, 1) for global case and (x, h) for split case. if num_head > 1 and split_input: last_groups = num_head self.relu_affine = False elif affine_layers == 2: last_affine_input_dim = hidden_size * num_head if num_head > 1: # (1, h) for global case and (h, h) for split case. last_groups = num_head if split_input: first_groups = num_head # Add a relu-affine with affine_layers=2. self.relu_affine = True self.first_affine = TdnnAffine(input_dim, last_affine_input_dim, context=context, bias=bias, groups=first_groups) self.relu = torch.nn.ReLU(inplace=True) else: raise ValueError("Expected 1 or 2 affine layers, but got {}.",format(affine_layers)) self.last_affine = TdnnAffine(last_affine_input_dim, final_dim * num_head, context=context, bias=bias, groups=last_groups) # Dim=2 means to apply softmax in different frames-index (batch is a 3-dim tensor in this case). self.softmax = torch.nn.Softmax(dim=2) def forward(self, inputs): """ @inputs: a 3-dimensional tensor (a batch), including [samples-index, frames-dim-index, frames-index] """ assert len(inputs.shape) == 3 assert inputs.shape[1] == self.input_dim if self.temperature: batch_size = inputs.shape[0] chunk_size = inputs.shape[2] x = inputs if self.relu_affine: x = self.relu(self.first_affine(x)) if self.num_head > 1 and self.temperature: if self.fixed: t = self.t else: t = 1 + self.t**2 x = self.last_affine(x).reshape(batch_size, self.num_head, -1, chunk_size) / t return self.softmax(x.reshape(batch_size, -1, chunk_size)) else: return self.softmax(self.last_affine(x)) class AttentiveStatisticsPooling(torch.nn.Module): """ An attentive statistics pooling. Reference: Okabe, Koji, Takafumi Koshinaka, and Koichi Shinoda. 2018. "Attentive Statistics Pooling for Deep Speaker Embedding." ArXiv Preprint ArXiv:1803.10963. """ def __init__(self, input_dim, affine_layers=2, hidden_size=64, context=[0], stddev=True, stddev_attention=True, eps=1.0e-10): super(AttentiveStatisticsPooling, self).__init__() self.stddev = stddev self.input_dim = input_dim if self.stddev : self.output_dim = 2 * input_dim else : self.output_dim = input_dim self.eps = eps self.stddev_attention = stddev_attention self.attention = AttentionAlphaComponent(input_dim, num_head=1, share=True, affine_layers=affine_layers, hidden_size=hidden_size, context=context) def forward(self, inputs): """ @inputs: a 3-dimensional tensor (a batch), including [samples-index, frames-dim-index, frames-index] """ assert len(inputs.shape) == 3 assert inputs.shape[1] == self.input_dim alpha = self.attention(inputs) # Weight avarage mean = torch.sum(alpha * inputs, dim=2, keepdim=True) if self.stddev : if self.stddev_attention: var = torch.sum(alpha * inputs**2, dim=2, keepdim=True) - mean**2 std = torch.sqrt(var.clamp(min=self.eps)) else: var = torch.mean((inputs - mean)**2, dim=2, keepdim=True) std = torch.sqrt(var.clamp(min=self.eps)) return torch.cat((mean, std), dim=1) else : return mean def get_output_dim(self): return self.output_dim class MultiHeadAttentionPooling(torch.nn.Module): """Implement multi-head attention pooling based on AttentionAlphaComponent. Reference: Safari, Pooyan, and Javier Hernando. 2019. “Self Multi-Head Attention for Speaker Recognition.” ArXiv Preprint ArXiv:1906.09890. Note, in this paper, affine_layers is default to 1, and final_dim is 1 which means the weights are shared. """ def __init__(self, input_dim, stddev=True, stddev_attention=True, num_head=4, share=True, affine_layers=1, **options): super(MultiHeadAttentionPooling, self).__init__() self.input_dim = input_dim self.stddev = stddev self.stddev_attention = stddev_attention self.num_head = num_head if self.stddev : self.output_dim = 2 * input_dim else : self.output_dim = input_dim if "split_input" in options.keys(): if not options["split_input"]: raise ValueError("split_input==False is not valid for this MultiHeadAttentionPooling.") options.pop("split_input") # In this pooling, the special point is that inputs will be splited. self.attention = AttentionAlphaComponent(input_dim, num_head=num_head, split_input=True, share=share, affine_layers=affine_layers, bias=False, **options) def forward(self, inputs): """ @inputs: a 3-dimensional tensor (a batch), including [samples-index, frames-dim-index, frames-index] """ assert len(inputs.shape) == 3 assert inputs.shape[1] == self.input_dim batch_size = inputs.shape[0] chunk_size = inputs.shape[2] # a.k.a total frames # alpha: [batch, weight, frames] # When using the conv1d to implement the multi-multiple of multi-head, we can get # the weight distribution of multi-head: [h11, h12, h13, h21, h22, h23, ..., hn1, hn2, ...] # So, just reshape it to split different heads. alpha = self.attention(inputs) # In sharing weight case, the shape of alpha is [batch, head, 1, frames] and [batch, head, splited-features, frames] # for another case. # inputs: [batch, head, splited-features, frames] after_mul = alpha.reshape(batch_size, self.num_head, -1, chunk_size) * \ inputs.reshape(batch_size, self.num_head, -1, chunk_size) # After multi-multipling alpha and inputs for multi-head case, the mean could be got by reshaping back. mean = torch.sum(after_mul.reshape(batch_size, -1, chunk_size), dim=2, keepdim=True) if self.stddev : if self.stddev_attention: after_mul_2 = alpha.reshape(batch_size, self.num_head, -1, chunk_size) * \ inputs.reshape(batch_size, self.num_head, -1, chunk_size)**2 var = torch.sum(after_mul_2.reshape(batch_size, -1, chunk_size), dim=2, keepdim=True) - mean**2 std = torch.sqrt(var.clamp(min=1.0e-10)) else: var = torch.mean((inputs - mean)**2, dim=2, keepdim=True) std = torch.sqrt(var.clamp(min=1.0e-10)) return torch.cat((mean, std), dim=1) else : return mean def get_output_dim(self): return self.output_dim class GlobalMultiHeadAttentionPooling(torch.nn.Module): """Implement global multi-head attention pooling based on AttentionAlphaComponent. Reference: Zhiming Wang, Kaisheng Yao, Xiaolong Li, Shuo Fang. "MULTI-RESOLUTION MULTI-HEAD ATTENTION IN DEEP SPEAKER EMBEDDING." ICASSP, 2020. It is not equivalent to multi-head attention pooling even when input_dim of global multi-head = 1/num_head * input_dim of multi-head. """ def __init__(self, input_dim, stddev=True, stddev_attention=True, num_head=4, share=True, affine_layers=2, **options): super(GlobalMultiHeadAttentionPooling, self).__init__() self.input_dim = input_dim self.num_head = num_head self.stddev = stddev self.stddev_attention = stddev_attention if self.stddev : self.output_dim = 2 * input_dim else : self.output_dim = input_dim if "split_input" in options.keys(): if options["split_input"]: raise ValueError("split_input==True is not valid for GlobalMultiHeadAttentionPooling.") options.pop("split_input") if "temperature" in options.keys(): if options["temperature"]: raise ValueError("temperature==True is not valid for GlobalMultiHeadAttentionPooling.") options.pop("temperature") # In this pooling, the special point is that all (global) features of inputs will be used. self.attention = AttentionAlphaComponent(input_dim, num_head=num_head, split_input=False, share=share, temperature=False, affine_layers=affine_layers, bias=True, **options) def forward(self, inputs): """ @inputs: a 3-dimensional tensor (a batch), including [samples-index, frames-dim-index, frames-index] """ assert len(inputs.shape) == 3 assert inputs.shape[1] == self.input_dim batch_size = inputs.shape[0] chunk_size = inputs.shape[2] # a.k.a total frames # alpha: [batch, weight, frames] # When using the conv1d to implement the multi-multiple of multi-head, we can get # the weight distribution of multi-head: [h11, h12, h13, h21, h22, h23, ..., hn1, hn2, ...] # So, just reshape it to split different heads. alpha = self.attention(inputs) # In sharing weight case, the shape of alpha is [batch, head, 1, frames] and [batch, head, all-features, frames] # for another case. # inputs: [batch, 1, all-features, frames] after_mul = alpha.reshape(batch_size, self.num_head, -1, chunk_size) * \ inputs.reshape(batch_size, 1, -1, chunk_size) # After multi-multipling alpha and inputs for multi-head case, the mean could be got by reshaping back. mean = torch.sum(after_mul.reshape(batch_size, -1, chunk_size), dim=2, keepdim=True) if self.stddev : if self.stddev_attention: after_mul_2 = alpha.reshape(batch_size, self.num_head, -1, chunk_size) * \ inputs.reshape(batch_size, 1, -1, chunk_size)**2 var = torch.sum(after_mul_2.reshape(batch_size, -1, chunk_size), dim=2, keepdim=True) - mean**2 std = torch.sqrt(var.clamp(min=1.0e-10)) else: var = torch.mean((inputs - mean)**2, dim=2, keepdim=True) std = torch.sqrt(var.clamp(min=1.0e-10)) return torch.cat((mean, std), dim=1) else : return mean def get_output_dim(self): return self.output_dim * self.num_head class MultiResolutionMultiHeadAttentionPooling(torch.nn.Module): """Implement multi-resolution global multi-head attention pooling based on AttentionAlphaComponent. Reference: Zhiming Wang, Kaisheng Yao, Xiaolong Li, Shuo Fang. "MULTI-RESOLUTION MULTI-HEAD ATTENTION IN DEEP SPEAKER EMBEDDING." ICASSP, 2020. """ def __init__(self, input_dim, stddev=True, stddev_attention=True, num_head=4, share=True, affine_layers=2, **options): super(MultiResolutionMultiHeadAttentionPooling, self).__init__() self.input_dim = input_dim self.num_head = num_head self.stddev = stddev self.stddev_attention = stddev_attention if self.stddev : self.output_dim = 2 * input_dim else : self.output_dim = input_dim if "split_input" in options.keys(): if options["split_input"]: raise ValueError("split_input==True is not valid for MultiResolutionMultiHeadAttentionPooling.") options.pop("split_input") if "temperature" in options.keys(): if not options["temperature"]: raise ValueError("temperature==False is not valid for MultiResolutionMultiHeadAttentionPooling.") options.pop("temperature") # In this pooling, the special point is that all (global) features of inputs will be used and # the temperature will be added. self.attention = AttentionAlphaComponent(input_dim, num_head=num_head, split_input=False, temperature=True, share=share, affine_layers=affine_layers, bias=True, **options) def forward(self, inputs): """ @inputs: a 3-dimensional tensor (a batch), including [samples-index, frames-dim-index, frames-index] """ assert len(inputs.shape) == 3 assert inputs.shape[1] == self.input_dim batch_size = inputs.shape[0] chunk_size = inputs.shape[2] # a.k.a total frames # alpha: [batch, weight, frames] # When using the conv1d to implement the multi-multiple of multi-head, we can get # the weight distribution of multi-head: [h11, h12, h13, h21, h22, h23, ..., hn1, hn2, ...] # So, just reshape it to split different heads. alpha = self.attention(inputs) # In sharing weight case, the shape of alpha is [batch, head, 1, frames] and [batch, head, all-features, frames] # for another case. # inputs: [batch, 1, all-features, frames] after_mul = alpha.reshape(batch_size, self.num_head, -1, chunk_size) * \ inputs.reshape(batch_size, 1, -1, chunk_size) # After multi-multipling alpha and inputs for multi-head case, the mean could be got by reshaping back. mean = torch.sum(after_mul.reshape(batch_size, -1, chunk_size), dim=2, keepdim=True) if self.stddev : if self.stddev_attention: after_mul_2 = alpha.reshape(batch_size, self.num_head, -1, chunk_size) * \ inputs.reshape(batch_size, 1, -1, chunk_size)**2 var = torch.sum(after_mul_2.reshape(batch_size, -1, chunk_size), dim=2, keepdim=True) - mean**2 std = torch.sqrt(var.clamp(min=1.0e-10)) else: var = torch.mean((inputs - mean)**2, dim=2, keepdim=True) std = torch.sqrt(var.clamp(min=1.0e-10)) return torch.cat((mean, std), dim=1) else : return mean def get_output_dim(self): return self.output_dim * self.num_head
42.054159
130
0.607166
7951fe6aa27fc2693f12d9fa775739e5a722e6ce
1,676
py
Python
lib/googlecloudsdk/compute/subcommands/instances/get_serial_port_output.py
bopopescu/google-cloud-sdk
b34e6a18f1e89673508166acce816111c3421e4b
[ "Apache-2.0" ]
null
null
null
lib/googlecloudsdk/compute/subcommands/instances/get_serial_port_output.py
bopopescu/google-cloud-sdk
b34e6a18f1e89673508166acce816111c3421e4b
[ "Apache-2.0" ]
null
null
null
lib/googlecloudsdk/compute/subcommands/instances/get_serial_port_output.py
bopopescu/google-cloud-sdk
b34e6a18f1e89673508166acce816111c3421e4b
[ "Apache-2.0" ]
1
2020-07-24T20:04:47.000Z
2020-07-24T20:04:47.000Z
# Copyright 2014 Google Inc. All Rights Reserved. """Command for reading the serial port output of an instance.""" from googlecloudapis.compute.v1 import compute_v1_messages as messages from googlecloudsdk.calliope import base from googlecloudsdk.compute.lib import request_helper from googlecloudsdk.core import log class GetSerialPortOutput(base.Command): """Read output from a virtual machine instance's serial port.""" @staticmethod def Args(parser): parser.add_argument( '--zone', help='Specifies the zone of the instance.', required=True) parser.add_argument( 'name', help='The name of the instance.') def Run(self, args): request = (self.context['compute'].instances, 'GetSerialPortOutput', messages.ComputeInstancesGetSerialPortOutputRequest( instance=args.name, project=self.context['project'], zone=args.zone)) objects = list(request_helper.MakeRequests( requests=[request], http=self.context['http'], batch_url=self.context['batch-url'], custom_get_requests=None)) return objects[0].contents def Display(self, _, response): log.out.write(response) GetSerialPortOutput.detailed_help = { 'brief': "Read output from a virtual machine instance's serial port", 'DESCRIPTION': """\ {command} is used to get the output from a Google Compute Engine virtual machine's serial port. The serial port output from the virtual machine will be printed to standard out. This information can be useful for diagnostic purposes. """, }
33.52
73
0.672434
79520327b096fad38e3a574491bb7615fba5b854
2,319
py
Python
databricks/koalas/tests/test_series_conversion.py
harupy/koalas
db2b00a0d57a16d7ccac101607195d2face73572
[ "Apache-2.0" ]
2
2020-06-24T03:19:59.000Z
2020-06-24T03:20:02.000Z
databricks/koalas/tests/test_series_conversion.py
harupy/koalas
db2b00a0d57a16d7ccac101607195d2face73572
[ "Apache-2.0" ]
null
null
null
databricks/koalas/tests/test_series_conversion.py
harupy/koalas
db2b00a0d57a16d7ccac101607195d2face73572
[ "Apache-2.0" ]
null
null
null
# # Copyright (C) 2019 Databricks, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import pandas as pd from databricks import koalas as ks from databricks.koalas.testing.utils import ReusedSQLTestCase, SQLTestUtils class SeriesConversionTest(ReusedSQLTestCase, SQLTestUtils): @property def pser(self): return pd.Series([1, 2, 3, 4, 5, 6, 7], name='x') @property def kser(self): return ks.from_pandas(self.pser) def test_to_clipboard(self): pser = self.pser kser = self.kser self.assert_eq(kser.to_clipboard(), pser.to_clipboard()) self.assert_eq(kser.to_clipboard(excel=False), pser.to_clipboard(excel=False)) self.assert_eq(kser.to_clipboard(sep=',', index=False), pser.to_clipboard(sep=',', index=False)) def test_to_latex(self): pser = self.pser kser = self.kser self.assert_eq(kser.to_latex(), pser.to_latex()) self.assert_eq(kser.to_latex(col_space=2), pser.to_latex(col_space=2)) self.assert_eq(kser.to_latex(header=True), pser.to_latex(header=True)) self.assert_eq(kser.to_latex(index=False), pser.to_latex(index=False)) self.assert_eq(kser.to_latex(na_rep='-'), pser.to_latex(na_rep='-')) self.assert_eq(kser.to_latex(float_format='%.1f'), pser.to_latex(float_format='%.1f')) self.assert_eq(kser.to_latex(sparsify=False), pser.to_latex(sparsify=False)) self.assert_eq(kser.to_latex(index_names=False), pser.to_latex(index_names=False)) self.assert_eq(kser.to_latex(bold_rows=True), pser.to_latex(bold_rows=True)) self.assert_eq(kser.to_latex(encoding='ascii'), pser.to_latex(encoding='ascii')) self.assert_eq(kser.to_latex(decimal=','), pser.to_latex(decimal=','))
39.305085
94
0.692109
795203c86e5cfffbccbb41bacddb3be505884db0
104,331
py
Python
azure/cosmos/cosmos_client.py
nuno-andre/azure-cosmos-python
ea41365b72282823260242ef5dcb3651c4c72ce3
[ "MIT" ]
null
null
null
azure/cosmos/cosmos_client.py
nuno-andre/azure-cosmos-python
ea41365b72282823260242ef5dcb3651c4c72ce3
[ "MIT" ]
null
null
null
azure/cosmos/cosmos_client.py
nuno-andre/azure-cosmos-python
ea41365b72282823260242ef5dcb3651c4c72ce3
[ "MIT" ]
null
null
null
#The MIT License (MIT) #Copyright (c) 2014 Microsoft Corporation #Permission is hereby granted, free of charge, to any person obtaining a copy #of this software and associated documentation files (the "Software"), to deal #in the Software without restriction, including without limitation the rights #to use, copy, modify, merge, publish, distribute, sublicense, and/or sell #copies of the Software, and to permit persons to whom the Software is #furnished to do so, subject to the following conditions: #The above copyright notice and this permission notice shall be included in all #copies or substantial portions of the Software. #THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR #IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, #FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE #AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER #LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, #OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE #SOFTWARE. """Document client class for the Azure Cosmos database service. """ import requests import six import azure.cosmos.base as base import azure.cosmos.documents as documents import azure.cosmos.constants as constants import azure.cosmos.http_constants as http_constants import azure.cosmos.query_iterable as query_iterable import azure.cosmos.runtime_constants as runtime_constants import azure.cosmos.request_object as request_object import azure.cosmos.synchronized_request as synchronized_request import azure.cosmos.global_endpoint_manager as global_endpoint_manager import azure.cosmos.routing.routing_map_provider as routing_map_provider import azure.cosmos.session as session import azure.cosmos.utils as utils class CosmosClient(object): """Represents a document client. Provides a client-side logical representation of the Azure Cosmos service. This client is used to configure and execute requests against the service. The service client encapsulates the endpoint and credentials used to access the Azure Cosmos service. """ class _QueryCompatibilityMode: Default = 0 Query = 1 SqlQuery = 2 # default number precisions _DefaultNumberHashPrecision = 3 _DefaultNumberRangePrecision = -1 # default string precision _DefaultStringHashPrecision = 3 _DefaultStringRangePrecision = -1 def __init__(self, url_connection, auth, connection_policy=None, consistency_level=documents.ConsistencyLevel.Session): """ :param str url_connection: The URL for connecting to the DB server. :param dict auth: Contains 'masterKey' or 'resourceTokens', where auth['masterKey'] is the default authorization key to use to create the client, and auth['resourceTokens'] is the alternative authorization key. :param documents.ConnectionPolicy connection_policy: The connection policy for the client. :param documents.ConsistencyLevel consistency_level: The default consistency policy for client operations. """ self.url_connection = url_connection self.master_key = None self.resource_tokens = None if auth != None: self.master_key = auth.get('masterKey') self.resource_tokens = auth.get('resourceTokens') if auth.get('permissionFeed'): self.resource_tokens = {} for permission_feed in auth['permissionFeed']: resource_parts = permission_feed['resource'].split('/') id = resource_parts[-1] self.resource_tokens[id] = permission_feed['_token'] self.connection_policy = (connection_policy or documents.ConnectionPolicy()) self.partition_resolvers = {} self.partition_key_definition_cache = {} self.default_headers = { http_constants.HttpHeaders.CacheControl: 'no-cache', http_constants.HttpHeaders.Version: http_constants.Versions.CurrentVersion, http_constants.HttpHeaders.UserAgent: utils._get_user_agent(), # For single partition query with aggregate functions we would try to accumulate the results on the SDK. # We need to set continuation as not expected. http_constants.HttpHeaders.IsContinuationExpected: False } if consistency_level != None: self.default_headers[ http_constants.HttpHeaders.ConsistencyLevel] = consistency_level # Keeps the latest response headers from server. self.last_response_headers = None if consistency_level == documents.ConsistencyLevel.Session: '''create a session - this is maintained only if the default consistency level on the client is set to session, or if the user explicitly sets it as a property via setter''' self.session = session.Session(self.url_connection) else: self.session = None self._useMultipleWriteLocations = False self._global_endpoint_manager = global_endpoint_manager._GlobalEndpointManager(self) # creating a requests session used for connection pooling and re-used by all requests self._requests_session = requests.Session() if self.connection_policy.ProxyConfiguration and self.connection_policy.ProxyConfiguration.Host: host = connection_policy.ProxyConfiguration.Host url = six.moves.urllib.parse.urlparse(host) proxy = host if url.port else host + ":" + str(connection_policy.ProxyConfiguration.Port) proxyDict = {url.scheme : proxy} self._requests_session.proxies.update(proxyDict) # Query compatibility mode. # Allows to specify compatibility mode used by client when making query requests. Should be removed when # application/sql is no longer supported. self._query_compatibility_mode = CosmosClient._QueryCompatibilityMode.Default # Routing map provider self._routing_map_provider = routing_map_provider._SmartRoutingMapProvider(self) database_account = self._global_endpoint_manager._GetDatabaseAccount() self._global_endpoint_manager.force_refresh(database_account) @property def Session(self): """ Gets the session object from the client """ return self.session @Session.setter def Session(self, session): """ Sets a session object on the document client This will override the existing session """ self.session = session @property def WriteEndpoint(self): """Gets the curent write endpoint for a geo-replicated database account. """ return self._global_endpoint_manager.get_write_endpoint() @property def ReadEndpoint(self): """Gets the curent read endpoint for a geo-replicated database account. """ return self._global_endpoint_manager.get_read_endpoint() def RegisterPartitionResolver(self, database_link, partition_resolver): """Registers the partition resolver associated with the database link :param str database_link: Database Self Link or ID based link. :param object partition_resolver: An instance of PartitionResolver. """ if not database_link: raise ValueError("database_link is None or empty.") if partition_resolver is None: raise ValueError("partition_resolver is None.") self.partition_resolvers = {database_link.strip('/'): partition_resolver} def GetPartitionResolver(self, database_link): """Gets the partition resolver associated with the database link :param str database_link: Database self link or ID based link. :return: An instance of PartitionResolver. :rtype: object """ if not database_link: raise ValueError("database_link is None or empty.") return self.partition_resolvers.get(database_link.strip('/')) def CreateDatabase(self, database, options=None): """Creates a database. :param dict database: The Azure Cosmos database to create. :param dict options: The request options for the request. :return: The Database that was created. :rtype: dict """ if options is None: options = {} CosmosClient.__ValidateResource(database) path = '/dbs' return self.Create(database, path, 'dbs', None, None, options) def ReadDatabase(self, database_link, options=None): """Reads a database. :param str database_link: The link to the database. :param dict options: The request options for the request. :return: The Database that was read. :rtype: dict """ if options is None: options = {} path = base.GetPathFromLink(database_link) database_id = base.GetResourceIdOrFullNameFromLink(database_link) return self.Read(path, 'dbs', database_id, None, options) def ReadDatabases(self, options=None): """Reads all databases. :param dict options: The request options for the request. :return: Query Iterable of Databases. :rtype: query_iterable.QueryIterable """ if options is None: options = {} return self.QueryDatabases(None, options) def QueryDatabases(self, query, options=None): """Queries databases. :param (str or dict) query: :param dict options: The request options for the request. :return: Query Iterable of Databases. :rtype: query_iterable.QueryIterable """ if options is None: options = {} def fetch_fn(options): return self.__QueryFeed('/dbs', 'dbs', '', lambda r: r['Databases'], lambda _, b: b, query, options), self.last_response_headers return query_iterable.QueryIterable(self, query, options, fetch_fn) def ReadContainers(self, database_link, options=None): """Reads all collections in a database. :param str database_link: The link to the database. :param dict options: The request options for the request. :return: Query Iterable of Collections. :rtype: query_iterable.QueryIterable """ if options is None: options = {} return self.QueryContainers(database_link, None, options) def QueryContainers(self, database_link, query, options=None): """Queries collections in a database. :param str database_link: The link to the database. :param (str or dict) query: :param dict options: The request options for the request. :return: Query Iterable of Collections. :rtype: query_iterable.QueryIterable """ if options is None: options = {} path = base.GetPathFromLink(database_link, 'colls') database_id = base.GetResourceIdOrFullNameFromLink(database_link) def fetch_fn(options): return self.__QueryFeed(path, 'colls', database_id, lambda r: r['DocumentCollections'], lambda _, body: body, query, options), self.last_response_headers return query_iterable.QueryIterable(self, query, options, fetch_fn) def CreateContainer(self, database_link, collection, options=None): """Creates a collection in a database. :param str database_link: The link to the database. :param dict collection: The Azure Cosmos collection to create. :param dict options: The request options for the request. :return: The Collection that was created. :rtype: dict """ if options is None: options = {} CosmosClient.__ValidateResource(collection) path = base.GetPathFromLink(database_link, 'colls') database_id = base.GetResourceIdOrFullNameFromLink(database_link) return self.Create(collection, path, 'colls', database_id, None, options) def ReplaceContainer(self, collection_link, collection, options=None): """Replaces a collection and return it. :param str collection_link: The link to the collection entity. :param dict collection: The collection to be used. :param dict options: The request options for the request. :return: The new Collection. :rtype: dict """ if options is None: options = {} CosmosClient.__ValidateResource(collection) path = base.GetPathFromLink(collection_link) collection_id = base.GetResourceIdOrFullNameFromLink(collection_link) return self.Replace(collection, path, 'colls', collection_id, None, options) def ReadContainer(self, collection_link, options=None): """Reads a collection. :param str collection_link: The link to the document collection. :param dict options: The request options for the request. :return: The read Collection. :rtype: dict """ if options is None: options = {} path = base.GetPathFromLink(collection_link) collection_id = base.GetResourceIdOrFullNameFromLink(collection_link) return self.Read(path, 'colls', collection_id, None, options) def CreateUser(self, database_link, user, options=None): """Creates a user. :param str database_link: The link to the database. :param dict user: The Azure Cosmos user to create. :param dict options: The request options for the request. :return: The created User. :rtype: dict """ if options is None: options = {} database_id, path = self._GetDatabaseIdWithPathForUser(database_link, user) return self.Create(user, path, 'users', database_id, None, options) def UpsertUser(self, database_link, user, options=None): """Upserts a user. :param str database_link: The link to the database. :param dict user: The Azure Cosmos user to upsert. :param dict options: The request options for the request. :return: The upserted User. :rtype: dict """ if options is None: options = {} database_id, path = self._GetDatabaseIdWithPathForUser(database_link, user) return self.Upsert(user, path, 'users', database_id, None, options) def _GetDatabaseIdWithPathForUser(self, database_link, user): CosmosClient.__ValidateResource(user) path = base.GetPathFromLink(database_link, 'users') database_id = base.GetResourceIdOrFullNameFromLink(database_link) return database_id, path def ReadUser(self, user_link, options=None): """Reads a user. :param str user_link: The link to the user entity. :param dict options: The request options for the request. :return: The read User. :rtype: dict """ if options is None: options = {} path = base.GetPathFromLink(user_link) user_id = base.GetResourceIdOrFullNameFromLink(user_link) return self.Read(path, 'users', user_id, None, options) def ReadUsers(self, database_link, options=None): """Reads all users in a database. :params str database_link: The link to the database. :params dict options: The request options for the request. :return: Query iterable of Users. :rtype: query_iterable.QueryIterable """ if options is None: options = {} return self.QueryUsers(database_link, None, options) def QueryUsers(self, database_link, query, options=None): """Queries users in a database. :param str database_link: The link to the database. :param (str or dict) query: :param dict options: The request options for the request. :return: Query Iterable of Users. :rtype: query_iterable.QueryIterable """ if options is None: options = {} path = base.GetPathFromLink(database_link, 'users') database_id = base.GetResourceIdOrFullNameFromLink(database_link) def fetch_fn(options): return self.__QueryFeed(path, 'users', database_id, lambda r: r['Users'], lambda _, b: b, query, options), self.last_response_headers return query_iterable.QueryIterable(self, query, options, fetch_fn) def DeleteDatabase(self, database_link, options=None): """Deletes a database. :param str database_link: The link to the database. :param dict options: The request options for the request. :return: The deleted Database. :rtype: dict """ if options is None: options = {} path = base.GetPathFromLink(database_link) database_id = base.GetResourceIdOrFullNameFromLink(database_link) return self.DeleteResource(path, 'dbs', database_id, None, options) def CreatePermission(self, user_link, permission, options=None): """Creates a permission for a user. :param str user_link: The link to the user entity. :param dict permission: The Azure Cosmos user permission to create. :param dict options: The request options for the request. :return: The created Permission. :rtype: dict """ if options is None: options = {} path, user_id = self._GetUserIdWithPathForPermission(permission, user_link) return self.Create(permission, path, 'permissions', user_id, None, options) def UpsertPermission(self, user_link, permission, options=None): """Upserts a permission for a user. :param str user_link: The link to the user entity. :param dict permission: The Azure Cosmos user permission to upsert. :param dict options: The request options for the request. :return: The upserted permission. :rtype: dict """ if options is None: options = {} path, user_id = self._GetUserIdWithPathForPermission(permission, user_link) return self.Upsert(permission, path, 'permissions', user_id, None, options) def _GetUserIdWithPathForPermission(self, permission, user_link): CosmosClient.__ValidateResource(permission) path = base.GetPathFromLink(user_link, 'permissions') user_id = base.GetResourceIdOrFullNameFromLink(user_link) return path, user_id def ReadPermission(self, permission_link, options=None): """Reads a permission. :param str permission_link: The link to the permission. :param dict options: The request options for the request. :return: The read permission. :rtype: dict """ if options is None: options = {} path = base.GetPathFromLink(permission_link) permission_id = base.GetResourceIdOrFullNameFromLink(permission_link) return self.Read(path, 'permissions', permission_id, None, options) def ReadPermissions(self, user_link, options=None): """Reads all permissions for a user. :param str user_link: The link to the user entity. :param dict options: The request options for the request. :return: Query Iterable of Permissions. :rtype: query_iterable.QueryIterable """ if options is None: options = {} return self.QueryPermissions(user_link, None, options) def QueryPermissions(self, user_link, query, options=None): """Queries permissions for a user. :param str user_link: The link to the user entity. :param (str or dict) query: :param dict options: The request options for the request. :return: Query Iterable of Permissions. :rtype: query_iterable.QueryIterable """ if options is None: options = {} path = base.GetPathFromLink(user_link, 'permissions') user_id = base.GetResourceIdOrFullNameFromLink(user_link) def fetch_fn(options): return self.__QueryFeed(path, 'permissions', user_id, lambda r: r['Permissions'], lambda _, b: b, query, options), self.last_response_headers return query_iterable.QueryIterable(self, query, options, fetch_fn) def ReplaceUser(self, user_link, user, options=None): """Replaces a user and return it. :param str user_link: The link to the user entity. :param dict user: :param dict options: The request options for the request. :return: The new User. :rtype: dict """ if options is None: options = {} CosmosClient.__ValidateResource(user) path = base.GetPathFromLink(user_link) user_id = base.GetResourceIdOrFullNameFromLink(user_link) return self.Replace(user, path, 'users', user_id, None, options) def DeleteUser(self, user_link, options=None): """Deletes a user. :param str user_link: The link to the user entity. :param dict options: The request options for the request. :return: The deleted user. :rtype: dict """ if options is None: options = {} path = base.GetPathFromLink(user_link) user_id = base.GetResourceIdOrFullNameFromLink(user_link) return self.DeleteResource(path, 'users', user_id, None, options) def ReplacePermission(self, permission_link, permission, options=None): """Replaces a permission and return it. :param str permission_link: The link to the permission. :param dict permission: :param dict options: The request options for the request. :return: The new Permission. :rtype: dict """ if options is None: options = {} CosmosClient.__ValidateResource(permission) path = base.GetPathFromLink(permission_link) permission_id = base.GetResourceIdOrFullNameFromLink(permission_link) return self.Replace(permission, path, 'permissions', permission_id, None, options) def DeletePermission(self, permission_link, options=None): """Deletes a permission. :param str permission_link: The link to the permission. :param dict options: The request options for the request. :return: The deleted Permission. :rtype: dict """ if options is None: options = {} path = base.GetPathFromLink(permission_link) permission_id = base.GetResourceIdOrFullNameFromLink(permission_link) return self.DeleteResource(path, 'permissions', permission_id, None, options) def ReadItems(self, collection_link, feed_options=None): """Reads all documents in a collection. :param str collection_link: The link to the document collection. :param dict feed_options: :return: Query Iterable of Documents. :rtype: query_iterable.QueryIterable """ if feed_options is None: feed_options = {} return self.QueryItems(collection_link, None, feed_options) def QueryItems(self, database_or_Container_link, query, options=None, partition_key=None): """Queries documents in a collection. :param str database_or_Container_link: The link to the database when using partitioning, otherwise link to the document collection. :param (str or dict) query: :param dict options: The request options for the request. :param str partition_key: Partition key for the query(default value None) :return: Query Iterable of Documents. :rtype: query_iterable.QueryIterable """ database_or_Container_link = database_or_Container_link.strip('/') if options is None: options = {} if(base.IsDatabaseLink(database_or_Container_link)): # Python doesn't have a good way of specifying an overloaded constructor, and this is how it's generally overloaded constructors are specified(by calling a @classmethod) and returning the 'self' instance return query_iterable.QueryIterable.PartitioningQueryIterable(self, query, options, database_or_Container_link, partition_key) else: path = base.GetPathFromLink(database_or_Container_link, 'docs') collection_id = base.GetResourceIdOrFullNameFromLink(database_or_Container_link) def fetch_fn(options): return self.__QueryFeed(path, 'docs', collection_id, lambda r: r['Documents'], lambda _, b: b, query, options), self.last_response_headers return query_iterable.QueryIterable(self, query, options, fetch_fn, database_or_Container_link) def QueryItemsChangeFeed(self, collection_link, options=None): """Queries documents change feed in a collection. :param str collection_link: The link to the document collection. :param dict options: The request options for the request. options may also specify partition key range id. :return: Query Iterable of Documents. :rtype: query_iterable.QueryIterable """ partition_key_range_id = None if options is not None and 'partitionKeyRangeId' in options: partition_key_range_id = options['partitionKeyRangeId'] return self._QueryChangeFeed(collection_link, "Documents" , options, partition_key_range_id) def _QueryChangeFeed(self, collection_link, resource_type, options=None, partition_key_range_id=None): """Queries change feed of a resource in a collection. :param str collection_link: The link to the document collection. :param str resource_type: The type of the resource. :param dict options: The request options for the request. :param str partition_key_range_id: Specifies partition key range id. :return: Query Iterable of Documents. :rtype: query_iterable.QueryIterable """ if options is None: options = {} options['changeFeed'] = True resource_key_map = {'Documents' : 'docs'} # For now, change feed only supports Documents and Partition Key Range resouce type if resource_type not in resource_key_map: raise NotImplementedError(resource_type + " change feed query is not supported.") resource_key = resource_key_map[resource_type] path = base.GetPathFromLink(collection_link, resource_key) collection_id = base.GetResourceIdOrFullNameFromLink(collection_link) def fetch_fn(options): return self.__QueryFeed(path, resource_key, collection_id, lambda r: r[resource_type], lambda _, b: b, None, options, partition_key_range_id), self.last_response_headers return query_iterable.QueryIterable(self, None, options, fetch_fn, collection_link) def _ReadPartitionKeyRanges(self, collection_link, feed_options=None): """Reads Partition Key Ranges. :param str collection_link: The link to the document collection. :param dict feed_options: :return: Query Iterable of PartitionKeyRanges. :rtype: query_iterable.QueryIterable """ if feed_options is None: feed_options = {} return self._QueryPartitionKeyRanges(collection_link, None, feed_options) def _QueryPartitionKeyRanges(self, collection_link, query, options=None): """Queries Partition Key Ranges in a collection. :param str collection_link: The link to the document collection. :param (str or dict) query: :param dict options: The request options for the request. :return: Query Iterable of PartitionKeyRanges. :rtype: query_iterable.QueryIterable """ if options is None: options = {} path = base.GetPathFromLink(collection_link, 'pkranges') collection_id = base.GetResourceIdOrFullNameFromLink(collection_link) def fetch_fn(options): return self.__QueryFeed(path, 'pkranges', collection_id, lambda r: r['PartitionKeyRanges'], lambda _, b: b, query, options), self.last_response_headers return query_iterable.QueryIterable(self, query, options, fetch_fn) def CreateItem(self, database_or_Container_link, document, options=None): """Creates a document in a collection. :param str database_or_Container_link: The link to the database when using partitioning, otherwise link to the document collection. :param dict document: The Azure Cosmos document to create. :param dict options: The request options for the request. :param bool options['disableAutomaticIdGeneration']: Disables the automatic id generation. If id is missing in the body and this option is true, an error will be returned. :return: The created Document. :rtype: dict """ # Python's default arguments are evaluated once when the function is defined, not each time the function is called (like it is in say, Ruby). # This means that if you use a mutable default argument and mutate it, you will and have mutated that object for all future calls to the function as well. # So, using a non-mutable deafult in this case(None) and assigning an empty dict(mutable) inside the method # For more details on this gotcha, please refer http://docs.python-guide.org/en/latest/writing/gotchas/ if options is None: options = {} # We check the link to be document collection link since it can be database link in case of client side partitioning if(base.IsItemContainerLink(database_or_Container_link)): options = self._AddPartitionKey(database_or_Container_link, document, options) collection_id, document, path = self._GetContainerIdWithPathForItem(database_or_Container_link, document, options) return self.Create(document, path, 'docs', collection_id, None, options) def UpsertItem(self, database_or_Container_link, document, options=None): """Upserts a document in a collection. :param str database_or_Container_link: The link to the database when using partitioning, otherwise link to the document collection. :param dict document: The Azure Cosmos document to upsert. :param dict options: The request options for the request. :param bool options['disableAutomaticIdGeneration']: Disables the automatic id generation. If id is missing in the body and this option is true, an error will be returned. :return: The upserted Document. :rtype: dict """ # Python's default arguments are evaluated once when the function is defined, not each time the function is called (like it is in say, Ruby). # This means that if you use a mutable default argument and mutate it, you will and have mutated that object for all future calls to the function as well. # So, using a non-mutable deafult in this case(None) and assigning an empty dict(mutable) inside the method # For more details on this gotcha, please refer http://docs.python-guide.org/en/latest/writing/gotchas/ if options is None: options = {} # We check the link to be document collection link since it can be database link in case of client side partitioning if(base.IsItemContainerLink(database_or_Container_link)): options = self._AddPartitionKey(database_or_Container_link, document, options) collection_id, document, path = self._GetContainerIdWithPathForItem(database_or_Container_link, document, options) return self.Upsert(document, path, 'docs', collection_id, None, options) PartitionResolverErrorMessage = "Couldn't find any partition resolvers for the database link provided. Ensure that the link you used when registering the partition resolvers matches the link provided or you need to register both types of database link(self link as well as ID based link)." # Gets the collection id and path for the document def _GetContainerIdWithPathForItem(self, database_or_Container_link, document, options): if not database_or_Container_link: raise ValueError("database_or_Container_link is None or empty.") if document is None: raise ValueError("document is None.") CosmosClient.__ValidateResource(document) document = document.copy() if (not document.get('id') and not options.get('disableAutomaticIdGeneration')): document['id'] = base.GenerateGuidId() collection_link = database_or_Container_link if(base.IsDatabaseLink(database_or_Container_link)): partition_resolver = self.GetPartitionResolver(database_or_Container_link) if(partition_resolver != None): collection_link = partition_resolver.ResolveForCreate(document) else: raise ValueError(CosmosClient.PartitionResolverErrorMessage) path = base.GetPathFromLink(collection_link, 'docs') collection_id = base.GetResourceIdOrFullNameFromLink(collection_link) return collection_id, document, path def ReadItem(self, document_link, options=None): """Reads a document. :param str document_link: The link to the document. :param dict options: The request options for the request. :return: The read Document. :rtype: dict """ if options is None: options = {} path = base.GetPathFromLink(document_link) document_id = base.GetResourceIdOrFullNameFromLink(document_link) return self.Read(path, 'docs', document_id, None, options) def ReadTriggers(self, collection_link, options=None): """Reads all triggers in a collection. :param str collection_link: The link to the document collection. :param dict options: The request options for the request. :return: Query Iterable of Triggers. :rtype: query_iterable.QueryIterable """ if options is None: options = {} return self.QueryTriggers(collection_link, None, options) def QueryTriggers(self, collection_link, query, options=None): """Queries triggers in a collection. :param str collection_link: The link to the document collection. :param (str or dict) query: :param dict options: The request options for the request. :return: Query Iterable of Triggers. :rtype: query_iterable.QueryIterable """ if options is None: options = {} path = base.GetPathFromLink(collection_link, 'triggers') collection_id = base.GetResourceIdOrFullNameFromLink(collection_link) def fetch_fn(options): return self.__QueryFeed(path, 'triggers', collection_id, lambda r: r['Triggers'], lambda _, b: b, query, options), self.last_response_headers return query_iterable.QueryIterable(self, query, options, fetch_fn) def CreateTrigger(self, collection_link, trigger, options=None): """Creates a trigger in a collection. :param str collection_link: The link to the document collection. :param dict trigger: :param dict options: The request options for the request. :return: The created Trigger. :rtype: dict """ if options is None: options = {} collection_id, path, trigger = self._GetContainerIdWithPathForTrigger(collection_link, trigger) return self.Create(trigger, path, 'triggers', collection_id, None, options) def UpsertTrigger(self, collection_link, trigger, options=None): """Upserts a trigger in a collection. :param str collection_link: The link to the document collection. :param dict trigger: :param dict options: The request options for the request. :return: The upserted Trigger. :rtype: dict """ if options is None: options = {} collection_id, path, trigger = self._GetContainerIdWithPathForTrigger(collection_link, trigger) return self.Upsert(trigger, path, 'triggers', collection_id, None, options) def _GetContainerIdWithPathForTrigger(self, collection_link, trigger): CosmosClient.__ValidateResource(trigger) trigger = trigger.copy() if trigger.get('serverScript'): trigger['body'] = str(trigger.pop('serverScript', '')) elif trigger.get('body'): trigger['body'] = str(trigger['body']) path = base.GetPathFromLink(collection_link, 'triggers') collection_id = base.GetResourceIdOrFullNameFromLink(collection_link) return collection_id, path, trigger def ReadTrigger(self, trigger_link, options=None): """Reads a trigger. :param str trigger_link: The link to the trigger. :param dict options: The request options for the request. :return: The read Trigger. :rtype: dict """ if options is None: options = {} path = base.GetPathFromLink(trigger_link) trigger_id = base.GetResourceIdOrFullNameFromLink(trigger_link) return self.Read(path, 'triggers', trigger_id, None, options) def ReadUserDefinedFunctions(self, collection_link, options=None): """Reads all user defined functions in a collection. :param str collection_link: The link to the document collection. :param dict options: The request options for the request. :return: Query Iterable of UDFs. :rtype: query_iterable.QueryIterable """ if options is None: options = {} return self.QueryUserDefinedFunctions(collection_link, None, options) def QueryUserDefinedFunctions(self, collection_link, query, options=None): """Queries user defined functions in a collection. :param str collection_link: The link to the collection. :param (str or dict) query: :param dict options: The request options for the request. :return: Query Iterable of UDFs. :rtype: query_iterable.QueryIterable """ if options is None: options = {} path = base.GetPathFromLink(collection_link, 'udfs') collection_id = base.GetResourceIdOrFullNameFromLink(collection_link) def fetch_fn(options): return self.__QueryFeed(path, 'udfs', collection_id, lambda r: r['UserDefinedFunctions'], lambda _, b: b, query, options), self.last_response_headers return query_iterable.QueryIterable(self, query, options, fetch_fn) def CreateUserDefinedFunction(self, collection_link, udf, options=None): """Creates a user defined function in a collection. :param str collection_link: The link to the collection. :param str udf: :param dict options: The request options for the request. :return: The created UDF. :rtype: dict """ if options is None: options = {} collection_id, path, udf = self._GetContainerIdWithPathForUDF(collection_link, udf) return self.Create(udf, path, 'udfs', collection_id, None, options) def UpsertUserDefinedFunction(self, collection_link, udf, options=None): """Upserts a user defined function in a collection. :param str collection_link: The link to the collection. :param str udf: :param dict options: The request options for the request. :return: The upserted UDF. :rtype: dict """ if options is None: options = {} collection_id, path, udf = self._GetContainerIdWithPathForUDF(collection_link, udf) return self.Upsert(udf, path, 'udfs', collection_id, None, options) def _GetContainerIdWithPathForUDF(self, collection_link, udf): CosmosClient.__ValidateResource(udf) udf = udf.copy() if udf.get('serverScript'): udf['body'] = str(udf.pop('serverScript', '')) elif udf.get('body'): udf['body'] = str(udf['body']) path = base.GetPathFromLink(collection_link, 'udfs') collection_id = base.GetResourceIdOrFullNameFromLink(collection_link) return collection_id, path, udf def ReadUserDefinedFunction(self, udf_link, options=None): """Reads a user defined function. :param str udf_link: The link to the user defined function. :param dict options: The request options for the request. :return: The read UDF. :rtype: dict """ if options is None: options = {} path = base.GetPathFromLink(udf_link) udf_id = base.GetResourceIdOrFullNameFromLink(udf_link) return self.Read(path, 'udfs', udf_id, None, options) def ReadStoredProcedures(self, collection_link, options=None): """Reads all store procedures in a collection. :param str collection_link: The link to the document collection. :param dict options: The request options for the request. :return: Query Iterable of Stored Procedures. :rtype: query_iterable.QueryIterable """ if options is None: options = {} return self.QueryStoredProcedures(collection_link, None, options) def QueryStoredProcedures(self, collection_link, query, options=None): """Queries stored procedures in a collection. :param str collection_link: The link to the document collection. :param (str or dict) query: :param dict options: The request options for the request. :return: Query Iterable of Stored Procedures. :rtype: query_iterable.QueryIterable """ if options is None: options = {} path = base.GetPathFromLink(collection_link, 'sprocs') collection_id = base.GetResourceIdOrFullNameFromLink(collection_link) def fetch_fn(options): return self.__QueryFeed(path, 'sprocs', collection_id, lambda r: r['StoredProcedures'], lambda _, b: b, query, options), self.last_response_headers return query_iterable.QueryIterable(self, query, options, fetch_fn) def CreateStoredProcedure(self, collection_link, sproc, options=None): """Creates a stored procedure in a collection. :param str collection_link: The link to the document collection. :param str sproc: :param dict options: The request options for the request. :return: The created Stored Procedure. :rtype: dict """ if options is None: options = {} collection_id, path, sproc = self._GetContainerIdWithPathForSproc(collection_link, sproc) return self.Create(sproc, path, 'sprocs', collection_id, None, options) def UpsertStoredProcedure(self, collection_link, sproc, options=None): """Upserts a stored procedure in a collection. :param str collection_link: The link to the document collection. :param str sproc: :param dict options: The request options for the request. :return: The upserted Stored Procedure. :rtype: dict """ if options is None: options = {} collection_id, path, sproc = self._GetContainerIdWithPathForSproc(collection_link, sproc) return self.Upsert(sproc, path, 'sprocs', collection_id, None, options) def _GetContainerIdWithPathForSproc(self, collection_link, sproc): CosmosClient.__ValidateResource(sproc) sproc = sproc.copy() if sproc.get('serverScript'): sproc['body'] = str(sproc.pop('serverScript', '')) elif sproc.get('body'): sproc['body'] = str(sproc['body']) path = base.GetPathFromLink(collection_link, 'sprocs') collection_id = base.GetResourceIdOrFullNameFromLink(collection_link) return collection_id, path, sproc def ReadStoredProcedure(self, sproc_link, options=None): """Reads a stored procedure. :param str sproc_link: The link to the stored procedure. :param dict options: The request options for the request. :return: The read Stored Procedure. :rtype: dict """ if options is None: options = {} path = base.GetPathFromLink(sproc_link) sproc_id = base.GetResourceIdOrFullNameFromLink(sproc_link) return self.Read(path, 'sprocs', sproc_id, None, options) def ReadConflicts(self, collection_link, feed_options=None): """Reads conflicts. :param str collection_link: The link to the document collection. :param dict feed_options: :return: Query Iterable of Conflicts. :rtype: query_iterable.QueryIterable """ if feed_options is None: feed_options = {} return self.QueryConflicts(collection_link, None, feed_options) def QueryConflicts(self, collection_link, query, options=None): """Queries conflicts in a collection. :param str collection_link: The link to the document collection. :param (str or dict) query: :param dict options: The request options for the request. :return: Query Iterable of Conflicts. :rtype: query_iterable.QueryIterable """ if options is None: options = {} path = base.GetPathFromLink(collection_link, 'conflicts') collection_id = base.GetResourceIdOrFullNameFromLink(collection_link) def fetch_fn(options): return self.__QueryFeed(path, 'conflicts', collection_id, lambda r: r['Conflicts'], lambda _, b: b, query, options), self.last_response_headers return query_iterable.QueryIterable(self, query, options, fetch_fn) def ReadConflict(self, conflict_link, options=None): """Reads a conflict. :param str conflict_link: The link to the conflict. :param dict options: :return: The read Conflict. :rtype: dict """ if options is None: options = {} path = base.GetPathFromLink(conflict_link) conflict_id = base.GetResourceIdOrFullNameFromLink(conflict_link) return self.Read(path, 'conflicts', conflict_id, None, options) def DeleteContainer(self, collection_link, options=None): """Deletes a collection. :param str collection_link: The link to the document collection. :param dict options: The request options for the request. :return: The deleted Collection. :rtype: dict """ if options is None: options = {} path = base.GetPathFromLink(collection_link) collection_id = base.GetResourceIdOrFullNameFromLink(collection_link) return self.DeleteResource(path, 'colls', collection_id, None, options) def ReplaceItem(self, document_link, new_document, options=None): """Replaces a document and returns it. :param str document_link: The link to the document. :param dict new_document: :param dict options: The request options for the request. :return: The new Document. :rtype: dict """ CosmosClient.__ValidateResource(new_document) path = base.GetPathFromLink(document_link) document_id = base.GetResourceIdOrFullNameFromLink(document_link) # Python's default arguments are evaluated once when the function is defined, not each time the function is called (like it is in say, Ruby). # This means that if you use a mutable default argument and mutate it, you will and have mutated that object for all future calls to the function as well. # So, using a non-mutable deafult in this case(None) and assigning an empty dict(mutable) inside the function so that it remains local # For more details on this gotcha, please refer http://docs.python-guide.org/en/latest/writing/gotchas/ if options is None: options = {} # Extract the document collection link and add the partition key to options collection_link = base.GetItemContainerLink(document_link) options = self._AddPartitionKey(collection_link, new_document, options) return self.Replace(new_document, path, 'docs', document_id, None, options) def DeleteItem(self, document_link, options=None): """Deletes a document. :param str document_link: The link to the document. :param dict options: The request options for the request. :return: The deleted Document. :rtype: dict """ if options is None: options = {} path = base.GetPathFromLink(document_link) document_id = base.GetResourceIdOrFullNameFromLink(document_link) return self.DeleteResource(path, 'docs', document_id, None, options) def CreateAttachment(self, document_link, attachment, options=None): """Creates an attachment in a document. :param str document_link: The link to the document. :param dict attachment: The Azure Cosmos attachment to create. :param dict options: The request options for the request. :return: The created Attachment. :rtype: dict """ if options is None: options = {} document_id, path = self._GetItemIdWithPathForAttachment(attachment, document_link) return self.Create(attachment, path, 'attachments', document_id, None, options) def UpsertAttachment(self, document_link, attachment, options=None): """Upserts an attachment in a document. :param str document_link: The link to the document. :param dict attachment: The Azure Cosmos attachment to upsert. :param dict options: The request options for the request. :return: The upserted Attachment. :rtype: dict """ if options is None: options = {} document_id, path = self._GetItemIdWithPathForAttachment(attachment, document_link) return self.Upsert(attachment, path, 'attachments', document_id, None, options) def _GetItemIdWithPathForAttachment(self, attachment, document_link): CosmosClient.__ValidateResource(attachment) path = base.GetPathFromLink(document_link, 'attachments') document_id = base.GetResourceIdOrFullNameFromLink(document_link) return document_id, path def CreateAttachmentAndUploadMedia(self, document_link, readable_stream, options=None): """Creates an attachment and upload media. :param str document_link: The link to the document. :param (file-like stream object) readable_stream: :param dict options: The request options for the request. :return: The created Attachment. :rtype: dict """ if options is None: options = {} document_id, initial_headers, path = self._GetItemIdWithPathForAttachmentMedia(document_link, options) return self.Create(readable_stream, path, 'attachments', document_id, initial_headers, options) def UpsertAttachmentAndUploadMedia(self, document_link, readable_stream, options=None): """Upserts an attachment and upload media. :param str document_link: The link to the document. :param (file-like stream object) readable_stream: :param dict options: The request options for the request. :return: The upserted Attachment. :rtype: dict """ if options is None: options = {} document_id, initial_headers, path = self._GetItemIdWithPathForAttachmentMedia(document_link, options) return self.Upsert(readable_stream, path, 'attachments', document_id, initial_headers, options) def _GetItemIdWithPathForAttachmentMedia(self, document_link, options): initial_headers = dict(self.default_headers) # Add required headers slug and content-type. if options.get('slug'): initial_headers[http_constants.HttpHeaders.Slug] = options['slug'] if options.get('contentType'): initial_headers[http_constants.HttpHeaders.ContentType] = ( options['contentType']) else: initial_headers[http_constants.HttpHeaders.ContentType] = ( runtime_constants.MediaTypes.OctetStream) path = base.GetPathFromLink(document_link, 'attachments') document_id = base.GetResourceIdOrFullNameFromLink(document_link) return document_id, initial_headers, path def ReadAttachment(self, attachment_link, options=None): """Reads an attachment. :param str attachment_link: The link to the attachment. :param dict options: The request options for the request. :return: The read Attachment. :rtype: dict """ if options is None: options = {} path = base.GetPathFromLink(attachment_link) attachment_id = base.GetResourceIdOrFullNameFromLink(attachment_link) return self.Read(path, 'attachments', attachment_id, None, options) def ReadAttachments(self, document_link, options=None): """Reads all attachments in a document. :param str document_link: The link to the document. :param dict options: The request options for the request. :return: Query Iterable of Attachments. :rtype: query_iterable.QueryIterable """ if options is None: options = {} return self.QueryAttachments(document_link, None, options) def QueryAttachments(self, document_link, query, options=None): """Queries attachments in a document. :param str document_link: The link to the document. :param (str or dict) query: :param dict options: The request options for the request. :return: Query Iterable of Attachments. :rtype: query_iterable.QueryIterable """ if options is None: options = {} path = base.GetPathFromLink(document_link, 'attachments') document_id = base.GetResourceIdOrFullNameFromLink(document_link) def fetch_fn(options): return self.__QueryFeed(path, 'attachments', document_id, lambda r: r['Attachments'], lambda _, b: b, query, options), self.last_response_headers return query_iterable.QueryIterable(self, query, options, fetch_fn) def ReadMedia(self, media_link): """Reads a media. When self.connection_policy.MediaReadMode == documents.MediaReadMode.Streamed, returns a file-like stream object; otherwise, returns a str. :param str media_link: The link to the media. :return: The read Media. :rtype: str or file-like stream object """ default_headers = self.default_headers path = base.GetPathFromLink(media_link) media_id = base.GetResourceIdOrFullNameFromLink(media_link) attachment_id = base.GetAttachmentIdFromMediaId(media_id) headers = base.GetHeaders(self, default_headers, 'get', path, attachment_id, 'media', {}) # ReadMedia will always use WriteEndpoint since it's not replicated in readable Geo regions request = request_object._RequestObject('media', documents._OperationType.Read) result, self.last_response_headers = self.__Get(path, request, headers) return result def UpdateMedia(self, media_link, readable_stream, options=None): """Updates a media and returns it. :param str media_link: The link to the media. :param (file-like stream object) readable_stream: :param dict options: The request options for the request. :return: The updated Media. :rtype: str or file-like stream object """ if options is None: options = {} initial_headers = dict(self.default_headers) # Add required headers slug and content-type in case the body is a stream if options.get('slug'): initial_headers[http_constants.HttpHeaders.Slug] = options['slug'] if options.get('contentType'): initial_headers[http_constants.HttpHeaders.ContentType] = ( options['contentType']) else: initial_headers[http_constants.HttpHeaders.ContentType] = ( runtime_constants.MediaTypes.OctetStream) path = base.GetPathFromLink(media_link) media_id = base.GetResourceIdOrFullNameFromLink(media_link) attachment_id = base.GetAttachmentIdFromMediaId(media_id) headers = base.GetHeaders(self, initial_headers, 'put', path, attachment_id, 'media', options) # UpdateMedia will use WriteEndpoint since it uses PUT operation request = request_object._RequestObject('media', documents._OperationType.Update) result, self.last_response_headers = self.__Put(path, request, readable_stream, headers) self._UpdateSessionIfRequired(headers, result, self.last_response_headers) return result def ReplaceAttachment(self, attachment_link, attachment, options=None): """Replaces an attachment and returns it. :param str attachment_link: The link to the attachment. :param dict attachment: :param dict options: The request options for the request. :return: The replaced Attachment :rtype: dict """ if options is None: options = {} CosmosClient.__ValidateResource(attachment) path = base.GetPathFromLink(attachment_link) attachment_id = base.GetResourceIdOrFullNameFromLink(attachment_link) return self.Replace(attachment, path, 'attachments', attachment_id, None, options) def DeleteAttachment(self, attachment_link, options=None): """Deletes an attachment. :param str attachment_link: The link to the attachment. :param dict options: The request options for the request. :return: The deleted Attachment. :rtype: dict """ if options is None: options = {} path = base.GetPathFromLink(attachment_link) attachment_id = base.GetResourceIdOrFullNameFromLink(attachment_link) return self.DeleteResource(path, 'attachments', attachment_id, None, options) def ReplaceTrigger(self, trigger_link, trigger, options=None): """Replaces a trigger and returns it. :param str trigger_link: The link to the trigger. :param dict trigger: :param dict options: The request options for the request. :return: The replaced Trigger. :rtype: dict """ if options is None: options = {} CosmosClient.__ValidateResource(trigger) trigger = trigger.copy() if trigger.get('serverScript'): trigger['body'] = str(trigger['serverScript']) elif trigger.get('body'): trigger['body'] = str(trigger['body']) path = base.GetPathFromLink(trigger_link) trigger_id = base.GetResourceIdOrFullNameFromLink(trigger_link) return self.Replace(trigger, path, 'triggers', trigger_id, None, options) def DeleteTrigger(self, trigger_link, options=None): """Deletes a trigger. :param str trigger_link: The link to the trigger. :param dict options: The request options for the request. :return: The deleted Trigger. :rtype: dict """ if options is None: options = {} path = base.GetPathFromLink(trigger_link) trigger_id = base.GetResourceIdOrFullNameFromLink(trigger_link) return self.DeleteResource(path, 'triggers', trigger_id, None, options) def ReplaceUserDefinedFunction(self, udf_link, udf, options=None): """Replaces a user defined function and returns it. :param str udf_link: The link to the user defined function. :param dict udf: :param dict options: The request options for the request. :return: The new UDF. :rtype: dict """ if options is None: options = {} CosmosClient.__ValidateResource(udf) udf = udf.copy() if udf.get('serverScript'): udf['body'] = str(udf['serverScript']) elif udf.get('body'): udf['body'] = str(udf['body']) path = base.GetPathFromLink(udf_link) udf_id = base.GetResourceIdOrFullNameFromLink(udf_link) return self.Replace(udf, path, 'udfs', udf_id, None, options) def DeleteUserDefinedFunction(self, udf_link, options=None): """Deletes a user defined function. :param str udf_link: The link to the user defined function. :param dict options: The request options for the request. :return: The deleted UDF. :rtype: dict """ if options is None: options = {} path = base.GetPathFromLink(udf_link) udf_id = base.GetResourceIdOrFullNameFromLink(udf_link) return self.DeleteResource(path, 'udfs', udf_id, None, options) def ExecuteStoredProcedure(self, sproc_link, params, options=None): """Executes a store procedure. :param str sproc_link: The link to the stored procedure. :param dict params: List or None :param dict options: The request options for the request. :return: The Stored Procedure response. :rtype: dict """ if options is None: options = {} initial_headers = dict(self.default_headers) initial_headers.update({ http_constants.HttpHeaders.Accept: ( runtime_constants.MediaTypes.Json) }) if params and not type(params) is list: params = [params] path = base.GetPathFromLink(sproc_link) sproc_id = base.GetResourceIdOrFullNameFromLink(sproc_link) headers = base.GetHeaders(self, initial_headers, 'post', path, sproc_id, 'sprocs', options) # ExecuteStoredProcedure will use WriteEndpoint since it uses POST operation request = request_object._RequestObject('sprocs', documents._OperationType.ExecuteJavaScript) result, self.last_response_headers = self.__Post(path, request, params, headers) return result def ReplaceStoredProcedure(self, sproc_link, sproc, options=None): """Replaces a stored procedure and returns it. :param str sproc_link: The link to the stored procedure. :param dict sproc: :param dict options: The request options for the request. :return: The replaced Stored Procedure. :rtype: dict """ if options is None: options = {} CosmosClient.__ValidateResource(sproc) sproc = sproc.copy() if sproc.get('serverScript'): sproc['body'] = str(sproc['serverScript']) elif sproc.get('body'): sproc['body'] = str(sproc['body']) path = base.GetPathFromLink(sproc_link) sproc_id = base.GetResourceIdOrFullNameFromLink(sproc_link) return self.Replace(sproc, path, 'sprocs', sproc_id, None, options) def DeleteStoredProcedure(self, sproc_link, options=None): """Deletes a stored procedure. :param str sproc_link: The link to the stored procedure. :param dict options: The request options for the request. :return: The deleted Stored Procedure. :rtype: dict """ if options is None: options = {} path = base.GetPathFromLink(sproc_link) sproc_id = base.GetResourceIdOrFullNameFromLink(sproc_link) return self.DeleteResource(path, 'sprocs', sproc_id, None, options) def DeleteConflict(self, conflict_link, options=None): """Deletes a conflict. :param str conflict_link: The link to the conflict. :param dict options: The request options for the request. :return: The deleted Conflict. :rtype: dict """ if options is None: options = {} path = base.GetPathFromLink(conflict_link) conflict_id = base.GetResourceIdOrFullNameFromLink(conflict_link) return self.DeleteResource(path, 'conflicts', conflict_id, None, options) def ReplaceOffer(self, offer_link, offer): """Replaces an offer and returns it. :param str offer_link: The link to the offer. :param dict offer: :return: The replaced Offer. :rtype: dict """ CosmosClient.__ValidateResource(offer) path = base.GetPathFromLink(offer_link) offer_id = base.GetResourceIdOrFullNameFromLink(offer_link) return self.Replace(offer, path, 'offers', offer_id, None, None) def ReadOffer(self, offer_link): """Reads an offer. :param str offer_link: The link to the offer. :return: The read Offer. :rtype: dict """ path = base.GetPathFromLink(offer_link) offer_id = base.GetResourceIdOrFullNameFromLink(offer_link) return self.Read(path, 'offers', offer_id, None, {}) def ReadOffers(self, options=None): """Reads all offers. :param dict options: The request options for the request :return: Query Iterable of Offers. :rtype: query_iterable.QueryIterable """ if options is None: options = {} return self.QueryOffers(None, options) def QueryOffers(self, query, options=None): """Query for all offers. :param (str or dict) query: :param dict options: The request options for the request :return: Query Iterable of Offers. :rtype: query_iterable.QueryIterable """ if options is None: options = {} def fetch_fn(options): return self.__QueryFeed('/offers', 'offers', '', lambda r: r['Offers'], lambda _, b: b, query, options), self.last_response_headers return query_iterable.QueryIterable(self, query, options, fetch_fn) def GetDatabaseAccount(self, url_connection=None): """Gets database account info. :return: The Database Account. :rtype: documents.DatabaseAccount """ if url_connection is None: url_connection = self.url_connection initial_headers = dict(self.default_headers) headers = base.GetHeaders(self, initial_headers, 'get', '', # path '', # id '', # type {}) request = request_object._RequestObject('databaseaccount', documents._OperationType.Read, url_connection) result, self.last_response_headers = self.__Get('', request, headers) database_account = documents.DatabaseAccount() database_account.DatabasesLink = '/dbs/' database_account.MediaLink = '/media/' if (http_constants.HttpHeaders.MaxMediaStorageUsageInMB in self.last_response_headers): database_account.MaxMediaStorageUsageInMB = ( self.last_response_headers[ http_constants.HttpHeaders.MaxMediaStorageUsageInMB]) if (http_constants.HttpHeaders.CurrentMediaStorageUsageInMB in self.last_response_headers): database_account.CurrentMediaStorageUsageInMB = ( self.last_response_headers[ http_constants.HttpHeaders.CurrentMediaStorageUsageInMB]) database_account.ConsistencyPolicy = result.get(constants._Constants.UserConsistencyPolicy) # WritableLocations and ReadableLocations fields will be available only for geo-replicated database accounts if constants._Constants.WritableLocations in result: database_account._WritableLocations = result[constants._Constants.WritableLocations] if constants._Constants.ReadableLocations in result: database_account._ReadableLocations = result[constants._Constants.ReadableLocations] if constants._Constants.EnableMultipleWritableLocations in result: database_account._EnableMultipleWritableLocations = result[constants._Constants.EnableMultipleWritableLocations] self._useMultipleWriteLocations = self.connection_policy.UseMultipleWriteLocations and database_account._EnableMultipleWritableLocations return database_account def Create(self, body, path, type, id, initial_headers, options=None): """Creates a Azure Cosmos resource and returns it. :param dict body: :param str path: :param str type: :param str id: :param dict initial_headers: :param dict options: The request options for the request. :return: The created Azure Cosmos resource. :rtype: dict """ if options is None: options = {} initial_headers = initial_headers or self.default_headers headers = base.GetHeaders(self, initial_headers, 'post', path, id, type, options) # Create will use WriteEndpoint since it uses POST operation request = request_object._RequestObject(type, documents._OperationType.Create) result, self.last_response_headers = self.__Post(path, request, body, headers) # update session for write request self._UpdateSessionIfRequired(headers, result, self.last_response_headers) return result def Upsert(self, body, path, type, id, initial_headers, options=None): """Upserts a Azure Cosmos resource and returns it. :param dict body: :param str path: :param str type: :param str id: :param dict initial_headers: :param dict options: The request options for the request. :return: The upserted Azure Cosmos resource. :rtype: dict """ if options is None: options = {} initial_headers = initial_headers or self.default_headers headers = base.GetHeaders(self, initial_headers, 'post', path, id, type, options) headers[http_constants.HttpHeaders.IsUpsert] = True # Upsert will use WriteEndpoint since it uses POST operation request = request_object._RequestObject(type, documents._OperationType.Upsert) result, self.last_response_headers = self.__Post(path, request, body, headers) # update session for write request self._UpdateSessionIfRequired(headers, result, self.last_response_headers) return result def Replace(self, resource, path, type, id, initial_headers, options=None): """Replaces a Azure Cosmos resource and returns it. :param dict resource: :param str path: :param str type: :param str id: :param dict initial_headers: :param dict options: The request options for the request. :return: The new Azure Cosmos resource. :rtype: dict """ if options is None: options = {} initial_headers = initial_headers or self.default_headers headers = base.GetHeaders(self, initial_headers, 'put', path, id, type, options) # Replace will use WriteEndpoint since it uses PUT operation request = request_object._RequestObject(type, documents._OperationType.Replace) result, self.last_response_headers = self.__Put(path, request, resource, headers) # update session for request mutates data on server side self._UpdateSessionIfRequired(headers, result, self.last_response_headers) return result def Read(self, path, type, id, initial_headers, options=None): """Reads a Azure Cosmos resource and returns it. :param str path: :param str type: :param str id: :param dict initial_headers: :param dict options: The request options for the request. :return: The upserted Azure Cosmos resource. :rtype: dict """ if options is None: options = {} initial_headers = initial_headers or self.default_headers headers = base.GetHeaders(self, initial_headers, 'get', path, id, type, options) # Read will use ReadEndpoint since it uses GET operation request = request_object._RequestObject(type, documents._OperationType.Read) result, self.last_response_headers = self.__Get(path, request, headers) return result def DeleteResource(self, path, type, id, initial_headers, options=None): """Deletes a Azure Cosmos resource and returns it. :param str path: :param str type: :param str id: :param dict initial_headers: :param dict options: The request options for the request. :return: The deleted Azure Cosmos resource. :rtype: dict """ if options is None: options = {} initial_headers = initial_headers or self.default_headers headers = base.GetHeaders(self, initial_headers, 'delete', path, id, type, options) # Delete will use WriteEndpoint since it uses DELETE operation request = request_object._RequestObject(type, documents._OperationType.Delete) result, self.last_response_headers = self.__Delete(path, request, headers) # update session for request mutates data on server side self._UpdateSessionIfRequired(headers, result, self.last_response_headers) return result def __Get(self, path, request, headers): """Azure Cosmos 'GET' http request. :params str url: :params str path: :params dict headers: :return: Tuple of (result, headers). :rtype: tuple of (dict, dict) """ return synchronized_request.SynchronizedRequest(self, request, self._global_endpoint_manager, self.connection_policy, self._requests_session, 'GET', path, None, None, headers) def __Post(self, path, request, body, headers): """Azure Cosmos 'POST' http request. :params str url: :params str path: :params (str, unicode, dict) body: :params dict headers: :return: Tuple of (result, headers). :rtype: tuple of (dict, dict) """ return synchronized_request.SynchronizedRequest(self, request, self._global_endpoint_manager, self.connection_policy, self._requests_session, 'POST', path, body, query_params=None, headers=headers) def __Put(self, path, request, body, headers): """Azure Cosmos 'PUT' http request. :params str url: :params str path: :params (str, unicode, dict) body: :params dict headers: :return: Tuple of (result, headers). :rtype: tuple of (dict, dict) """ return synchronized_request.SynchronizedRequest(self, request, self._global_endpoint_manager, self.connection_policy, self._requests_session, 'PUT', path, body, query_params=None, headers=headers) def __Delete(self, path, request, headers): """Azure Cosmos 'DELETE' http request. :params str url: :params str path: :params dict headers: :return: Tuple of (result, headers). :rtype: tuple of (dict, dict) """ return synchronized_request.SynchronizedRequest(self, request, self._global_endpoint_manager, self.connection_policy, self._requests_session, 'DELETE', path, request_data=None, query_params=None, headers=headers) def QueryFeed(self, path, collection_id, query, options, partition_key_range_id = None): """Query Feed for Document Collection resource. :param str path: Path to the document collection. :param str collection_id: Id of the document collection. :param (str or dict) query: :param dict options: The request options for the request. :param str partition_key_range_id: Partition key range id. :rtype: tuple """ return self.__QueryFeed(path, 'docs', collection_id, lambda r: r['Documents'], lambda _, b: b, query, options, partition_key_range_id), self.last_response_headers def __QueryFeed(self, path, type, id, result_fn, create_fn, query, options=None, partition_key_range_id=None): """Query for more than one Azure Cosmos resources. :param str path: :param str type: :param str id: :param function result_fn: :param function create_fn: :param (str or dict) query: :param dict options: The request options for the request. :param str partition_key_range_id: Specifies partition key range id. :rtype: list :raises SystemError: If the query compatibility mode is undefined. """ if options is None: options = {} if query: __GetBodiesFromQueryResult = result_fn else: def __GetBodiesFromQueryResult(result): if result is not None: return [create_fn(self, body) for body in result_fn(result)] else: # If there is no change feed, the result data is empty and result is None. # This case should be interpreted as an empty array. return [] initial_headers = self.default_headers.copy() # Copy to make sure that default_headers won't be changed. if query is None: # Query operations will use ReadEndpoint even though it uses GET(for feed requests) request = request_object._RequestObject(type, documents._OperationType.ReadFeed) headers = base.GetHeaders(self, initial_headers, 'get', path, id, type, options, partition_key_range_id) result, self.last_response_headers = self.__Get(path, request, headers) return __GetBodiesFromQueryResult(result) else: query = self.__CheckAndUnifyQueryFormat(query) initial_headers[http_constants.HttpHeaders.IsQuery] = 'true' if (self._query_compatibility_mode == CosmosClient._QueryCompatibilityMode.Default or self._query_compatibility_mode == CosmosClient._QueryCompatibilityMode.Query): initial_headers[http_constants.HttpHeaders.ContentType] = runtime_constants.MediaTypes.QueryJson elif self._query_compatibility_mode == CosmosClient._QueryCompatibilityMode.SqlQuery: initial_headers[http_constants.HttpHeaders.ContentType] = runtime_constants.MediaTypes.SQL else: raise SystemError('Unexpected query compatibility mode.') # Query operations will use ReadEndpoint even though it uses POST(for regular query operations) request = request_object._RequestObject(type, documents._OperationType.SqlQuery) headers = base.GetHeaders(self, initial_headers, 'post', path, id, type, options, partition_key_range_id) result, self.last_response_headers = self.__Post(path, request, query, headers) return __GetBodiesFromQueryResult(result) def __CheckAndUnifyQueryFormat(self, query_body): """Checks and unifies the format of the query body. :raises TypeError: If query_body is not of expected type (depending on the query compatibility mode). :raises ValueError: If query_body is a dict but doesn\'t have valid query text. :raises SystemError: If the query compatibility mode is undefined. :param (str or dict) query_body: :return: The formatted query body. :rtype: dict or string """ if (self._query_compatibility_mode == CosmosClient._QueryCompatibilityMode.Default or self._query_compatibility_mode == CosmosClient._QueryCompatibilityMode.Query): if not isinstance(query_body, dict) and not isinstance(query_body, six.string_types): raise TypeError('query body must be a dict or string.') if isinstance(query_body, dict) and not query_body.get('query'): raise ValueError('query body must have valid query text with key "query".') if isinstance(query_body, six.string_types): return {'query': query_body} elif (self._query_compatibility_mode == CosmosClient._QueryCompatibilityMode.SqlQuery and not isinstance(query_body, six.string_types)): raise TypeError('query body must be a string.') else: raise SystemError('Unexpected query compatibility mode.') return query_body @staticmethod def __ValidateResource(resource): id = resource.get('id') if id: if id.find('/') != -1 or id.find('\\') != -1 or id.find('?') != -1 or id.find('#') != -1: raise ValueError('Id contains illegal chars.') if id[-1] == ' ': raise ValueError('Id ends with a space.') # Adds the partition key to options def _AddPartitionKey(self, collection_link, document, options): collection_link = collection_link.strip('/') #TODO: Refresh the cache if partition is extracted automatically and we get a 400.1001 # If the document collection link is present in the cache, then use the cached partitionkey definition if collection_link in self.partition_key_definition_cache: partitionKeyDefinition = self.partition_key_definition_cache.get(collection_link) # Else read the collection from backend and add it to the cache else: collection = self.ReadContainer(collection_link) partitionKeyDefinition = collection.get('partitionKey') self.partition_key_definition_cache[collection_link] = partitionKeyDefinition # If the collection doesn't have a partition key definition, skip it as it's a legacy collection if partitionKeyDefinition: # If the user has passed in the partitionKey in options use that elase extract it from the document if('partitionKey' not in options): partitionKeyValue = self._ExtractPartitionKey(partitionKeyDefinition, document) options['partitionKey'] = partitionKeyValue return options # Extracts the partition key from the document using the partitionKey definition def _ExtractPartitionKey(self, partitionKeyDefinition, document): # Parses the paths into a list of token each representing a property partition_key_parts = base.ParsePaths(partitionKeyDefinition.get('paths')) # Navigates the document to retrieve the partitionKey specified in the paths return self._RetrievePartitionKey(partition_key_parts, document) # Navigates the document to retrieve the partitionKey specified in the partition key parts def _RetrievePartitionKey(self, partition_key_parts, document): expected_matchCount = len(partition_key_parts) matchCount = 0 partitionKey = document for part in partition_key_parts: # At any point if we don't find the value of a sub-property in the document, we return as Undefined if part not in partitionKey: return documents.Undefined else: partitionKey = partitionKey.get(part) matchCount += 1 # Once we reach the "leaf" value(not a dict), we break from loop if not isinstance(partitionKey, dict): break # Match the count of hops we did to get the partitionKey with the length of partition key parts and validate that it's not a dict at that level if ((matchCount != expected_matchCount) or isinstance(partitionKey, dict)): return documents.Undefined return partitionKey def _UpdateSessionIfRequired(self, request_headers, response_result, response_headers): """ Updates session if necessary. :param dict response_result: :param dict response_headers: :param dict response_headers :return: None, but updates the client session if necessary. """ '''if this request was made with consistency level as session, then update the session''' if response_result is None or response_headers is None: return is_session_consistency = False if http_constants.HttpHeaders.ConsistencyLevel in request_headers: if documents.ConsistencyLevel.Session == request_headers[http_constants.HttpHeaders.ConsistencyLevel]: is_session_consistency = True if is_session_consistency: # update session self.session.update_session(response_result, response_headers)
35.498809
293
0.545044
79520480d88a05fb38d18b7816a139e84c110349
82,261
py
Python
tools/wraptypes/yacc.py
AnantTiwari-Naman/pyglet
4774f2889057da95a78785a69372112931e6a620
[ "BSD-3-Clause" ]
1,160
2019-06-13T11:51:40.000Z
2022-03-31T01:55:32.000Z
tools/wraptypes/yacc.py
AnantTiwari-Naman/pyglet
4774f2889057da95a78785a69372112931e6a620
[ "BSD-3-Clause" ]
491
2019-07-14T16:13:11.000Z
2022-03-31T08:04:32.000Z
tools/wraptypes/yacc.py
AnantTiwari-Naman/pyglet
4774f2889057da95a78785a69372112931e6a620
[ "BSD-3-Clause" ]
316
2019-06-14T13:56:48.000Z
2022-03-30T19:26:58.000Z
from __future__ import print_function #----------------------------------------------------------------------------- # ply: yacc.py # # Author(s): David M. Beazley (dave@dabeaz.com) # Modifications for pyglet by Alex Holkner (alex.holkner@gmail.com) (<ah>) # # Copyright (C) 2001-2006, David M. Beazley # # This library is free software; you can redistribute it and/or # modify it under the terms of the GNU Lesser General Public # License as published by the Free Software Foundation; either # version 2.1 of the License, or (at your option) any later version. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this library; if not, write to the Free Software # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA # # See the file COPYING for a complete copy of the LGPL. # # # This implements an LR parser that is constructed from grammar rules defined # as Python functions. The grammer is specified by supplying the BNF inside # Python documentation strings. The inspiration for this technique was borrowed # from John Aycock's Spark parsing system. PLY might be viewed as cross between # Spark and the GNU bison utility. # # The current implementation is only somewhat object-oriented. The # LR parser itself is defined in terms of an object (which allows multiple # parsers to co-exist). However, most of the variables used during table # construction are defined in terms of global variables. Users shouldn't # notice unless they are trying to define multiple parsers at the same # time using threads (in which case they should have their head examined). # # This implementation supports both SLR and LALR(1) parsing. LALR(1) # support was originally implemented by Elias Ioup (ezioup@alumni.uchicago.edu), # using the algorithm found in Aho, Sethi, and Ullman "Compilers: Principles, # Techniques, and Tools" (The Dragon Book). LALR(1) has since been replaced # by the more efficient DeRemer and Pennello algorithm. # # :::::::: WARNING ::::::: # # Construction of LR parsing tables is fairly complicated and expensive. # To make this module run fast, a *LOT* of work has been put into # optimization---often at the expensive of readability and what might # consider to be good Python "coding style." Modify the code at your # own risk! # ---------------------------------------------------------------------------- __version__ = "2.2" #----------------------------------------------------------------------------- # === User configurable parameters === # # Change these to modify the default behavior of yacc (if you wish) #----------------------------------------------------------------------------- yaccdebug = 1 # Debugging mode. If set, yacc generates a # a 'parser.out' file in the current directory debug_file = 'parser.out' # Default name of the debugging file tab_module = 'parsetab' # Default name of the table module default_lr = 'LALR' # Default LR table generation method error_count = 3 # Number of symbols that must be shifted to leave recovery mode import re, types, sys, cStringIO, md5, os.path # Exception raised for yacc-related errors class YaccError(Exception): pass #----------------------------------------------------------------------------- # === LR Parsing Engine === # # The following classes are used for the LR parser itself. These are not # used during table construction and are independent of the actual LR # table generation algorithm #----------------------------------------------------------------------------- # This class is used to hold non-terminal grammar symbols during parsing. # It normally has the following attributes set: # .type = Grammar symbol type # .value = Symbol value # .lineno = Starting line number # .endlineno = Ending line number (optional, set automatically) # .lexpos = Starting lex position # .endlexpos = Ending lex position (optional, set automatically) class YaccSymbol: filename = '' # <ah> def __str__(self): return self.type def __repr__(self): return str(self) # This class is a wrapper around the objects actually passed to each # grammar rule. Index lookup and assignment actually assign the # .value attribute of the underlying YaccSymbol object. # The lineno() method returns the line number of a given # item (or 0 if not defined). The linespan() method returns # a tuple of (startline,endline) representing the range of lines # for a symbol. The lexspan() method returns a tuple (lexpos,endlexpos) # representing the range of positional information for a symbol. class YaccProduction: def __init__(self,s,stack=None): self.slice = s self.pbstack = [] self.stack = stack def __getitem__(self,n): if type(n) == types.IntType: if n >= 0: return self.slice[n].value else: return self.stack[n].value else: return [s.value for s in self.slice[n.start:n.stop:n.step]] def __setitem__(self,n,v): self.slice[n].value = v def __len__(self): return len(self.slice) def lineno(self,n): return getattr(self.slice[n],"lineno",0) def linespan(self,n): startline = getattr(self.slice[n],"lineno",0) endline = getattr(self.slice[n],"endlineno",startline) return startline,endline def lexpos(self,n): return getattr(self.slice[n],"lexpos",0) def lexspan(self,n): startpos = getattr(self.slice[n],"lexpos",0) endpos = getattr(self.slice[n],"endlexpos",startpos) return startpos,endpos def pushback(self,n): if n <= 0: raise ValueError("Expected a positive value") if n > (len(self.slice)-1): raise ValueError("Can't push %d tokens. Only %d are available." % (n,len(self.slice)-1)) for i in range(0,n): self.pbstack.append(self.slice[-i-1]) # The LR Parsing engine. This is defined as a class so that multiple parsers # can exist in the same process. A user never instantiates this directly. # Instead, the global yacc() function should be used to create a suitable Parser # object. class Parser: # <ah> Remove magic (use ParserPrototype) def __init__(self): # Reset internal state self.productions = None # List of productions self.errorfunc = None # Error handling function self.action = { } # LR Action table self.goto = { } # LR goto table self.require = { } # Attribute require table self.method = "Unknown LR" # Table construction method used # <ah> 25 Jan 2007 self.statestackstack = [] self.symstackstack = [] def errok(self): self.errorcount = 0 def restart(self): del self.statestack[:] del self.symstack[:] sym = YaccSymbol() sym.type = '$end' self.symstack.append(sym) self.statestack.append(0) def push_state(self): '''Save parser state and restart it.''' # <ah> 25 Jan 2007 self.statestackstack.append(self.statestack[:]) self.symstackstack.append(self.symstack[:]) self.restart() def pop_state(self): '''Restore saved parser state.''' # <ah> 25 Jan 2007 self.statestack[:] = self.statestackstack.pop() self.symstack[:] = self.symstackstack.pop() def parse(self,input=None,lexer=None,debug=0): lookahead = None # Current lookahead symbol lookaheadstack = [ ] # Stack of lookahead symbols actions = self.action # Local reference to action table goto = self.goto # Local reference to goto table prod = self.productions # Local reference to production list pslice = YaccProduction(None) # Production object passed to grammar rules pslice.parser = self # Parser object self.errorcount = 0 # Used during error recovery # If no lexer was given, we will try to use the lex module if not lexer: import lex lexer = lex.lexer pslice.lexer = lexer # If input was supplied, pass to lexer if input: lexer.input(input) # Tokenize function get_token = lexer.token statestack = [ ] # Stack of parsing states self.statestack = statestack symstack = [ ] # Stack of grammar symbols self.symstack = symstack pslice.stack = symstack # Put in the production errtoken = None # Err token # The start state is assumed to be (0,$end) statestack.append(0) sym = YaccSymbol() sym.type = '$end' symstack.append(sym) while 1: # Get the next symbol on the input. If a lookahead symbol # is already set, we just use that. Otherwise, we'll pull # the next token off of the lookaheadstack or from the lexer if debug > 1: print('state', statestack[-1]) if not lookahead: if not lookaheadstack: lookahead = get_token() # Get the next token else: lookahead = lookaheadstack.pop() if not lookahead: lookahead = YaccSymbol() lookahead.type = '$end' if debug: errorlead = ("%s . %s" % (" ".join([xx.type for xx in symstack][1:]), str(lookahead))).lstrip() # Check the action table s = statestack[-1] ltype = lookahead.type t = actions.get((s,ltype),None) if debug > 1: print('action', t) if t is not None: if t > 0: # shift a symbol on the stack if ltype == '$end': # Error, end of input sys.stderr.write("yacc: Parse error. EOF\n") return statestack.append(t) if debug > 1: sys.stderr.write("%-60s shift state %s\n" % (errorlead, t)) symstack.append(lookahead) lookahead = None # Decrease error count on successful shift if self.errorcount > 0: self.errorcount -= 1 continue if t < 0: # reduce a symbol on the stack, emit a production p = prod[-t] pname = p.name plen = p.len # Get production function sym = YaccSymbol() sym.type = pname # Production name sym.value = None if debug > 1: sys.stderr.write("%-60s reduce %d\n" % (errorlead, -t)) if plen: targ = symstack[-plen-1:] targ[0] = sym try: sym.lineno = targ[1].lineno sym.filename = targ[1].filename sym.endlineno = getattr(targ[-1],"endlineno",targ[-1].lineno) sym.lexpos = targ[1].lexpos sym.endlexpos = getattr(targ[-1],"endlexpos",targ[-1].lexpos) except AttributeError: sym.lineno = 0 del symstack[-plen:] del statestack[-plen:] else: sym.lineno = 0 targ = [ sym ] pslice.slice = targ pslice.pbstack = [] # Call the grammar rule with our special slice object p.func(pslice) # If there was a pushback, put that on the stack if pslice.pbstack: lookaheadstack.append(lookahead) for _t in pslice.pbstack: lookaheadstack.append(_t) lookahead = None symstack.append(sym) statestack.append(goto[statestack[-1],pname]) continue if t == 0: n = symstack[-1] return getattr(n,"value",None) sys.stderr.write(errorlead, "\n") if t == None: if debug: sys.stderr.write(errorlead + "\n") # We have some kind of parsing error here. To handle # this, we are going to push the current token onto # the tokenstack and replace it with an 'error' token. # If there are any synchronization rules, they may # catch it. # # In addition to pushing the error token, we call call # the user defined p_error() function if this is the # first syntax error. This function is only called if # errorcount == 0. if not self.errorcount: self.errorcount = error_count errtoken = lookahead if errtoken.type == '$end': errtoken = None # End of file! if self.errorfunc: global errok,token,restart errok = self.errok # Set some special functions available in error recovery token = get_token restart = self.restart tok = self.errorfunc(errtoken) del errok, token, restart # Delete special functions if not self.errorcount: # User must have done some kind of panic # mode recovery on their own. The # returned token is the next lookahead lookahead = tok errtoken = None continue else: if errtoken: if hasattr(errtoken,"lineno"): lineno = lookahead.lineno else: lineno = 0 if lineno: sys.stderr.write("yacc: Syntax error at line %d, token=%s\n" % (lineno, errtoken.type)) else: sys.stderr.write("yacc: Syntax error, token=%s" % errtoken.type) else: sys.stderr.write("yacc: Parse error in input. EOF\n") return else: self.errorcount = error_count # case 1: the statestack only has 1 entry on it. If we're in this state, the # entire parse has been rolled back and we're completely hosed. The token is # discarded and we just keep going. if len(statestack) <= 1 and lookahead.type != '$end': lookahead = None errtoken = None # Nuke the pushback stack del lookaheadstack[:] continue # case 2: the statestack has a couple of entries on it, but we're # at the end of the file. nuke the top entry and generate an error token # Start nuking entries on the stack if lookahead.type == '$end': # Whoa. We're really hosed here. Bail out return if lookahead.type != 'error': sym = symstack[-1] if sym.type == 'error': # Hmmm. Error is on top of stack, we'll just nuke input # symbol and continue lookahead = None continue t = YaccSymbol() t.type = 'error' if hasattr(lookahead,"lineno"): t.lineno = lookahead.lineno t.value = lookahead lookaheadstack.append(lookahead) lookahead = t else: symstack.pop() statestack.pop() continue # Call an error function here raise RuntimeError("yacc: internal parser error!!!\n") # ----------------------------------------------------------------------------- # === Parser Construction === # # The following functions and variables are used to implement the yacc() function # itself. This is pretty hairy stuff involving lots of error checking, # construction of LR items, kernels, and so forth. Although a lot of # this work is done using global variables, the resulting Parser object # is completely self contained--meaning that it is safe to repeatedly # call yacc() with different grammars in the same application. # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- # validate_file() # # This function checks to see if there are duplicated p_rulename() functions # in the parser module file. Without this function, it is really easy for # users to make mistakes by cutting and pasting code fragments (and it's a real # bugger to try and figure out why the resulting parser doesn't work). Therefore, # we just do a little regular expression pattern matching of def statements # to try and detect duplicates. # ----------------------------------------------------------------------------- def validate_file(filename): base,ext = os.path.splitext(filename) if ext != '.py': return 1 # No idea. Assume it's okay. try: f = open(filename) lines = f.readlines() f.close() except IOError: return 1 # Oh well # Match def p_funcname( fre = re.compile(r'\s*def\s+(p_[a-zA-Z_0-9]*)\(') counthash = { } linen = 1 noerror = 1 for l in lines: m = fre.match(l) if m: name = m.group(1) prev = counthash.get(name) if not prev: counthash[name] = linen else: sys.stderr.write("%s:%d: Function %s redefined. Previously defined on line %d\n" % (filename,linen,name,prev)) noerror = 0 linen += 1 return noerror # This function looks for functions that might be grammar rules, but which don't have the proper p_suffix. def validate_dict(d): for n,v in d.items(): if n[0:2] == 'p_' and type(v) in (types.FunctionType, types.MethodType): continue if n[0:2] == 't_': continue if n[0:2] == 'p_': sys.stderr.write("yacc: Warning. '%s' not defined as a function\n" % n) if 1 and isinstance(v,types.FunctionType) and v.func_code.co_argcount == 1: try: doc = v.__doc__.split(" ") if doc[1] == ':': sys.stderr.write("%s:%d: Warning. Possible grammar rule '%s' defined without p_ prefix.\n" % (v.func_code.co_filename, v.func_code.co_firstlineno,n)) except Exception: pass # ----------------------------------------------------------------------------- # === GRAMMAR FUNCTIONS === # # The following global variables and functions are used to store, manipulate, # and verify the grammar rules specified by the user. # ----------------------------------------------------------------------------- # Initialize all of the global variables used during grammar construction def initialize_vars(): global Productions, Prodnames, Prodmap, Terminals global Nonterminals, First, Follow, Precedence, LRitems global Errorfunc, Signature, Requires Productions = [None] # A list of all of the productions. The first # entry is always reserved for the purpose of # building an augmented grammar Prodnames = { } # A dictionary mapping the names of nonterminals to a list of all # productions of that nonterminal. Prodmap = { } # A dictionary that is only used to detect duplicate # productions. Terminals = { } # A dictionary mapping the names of terminal symbols to a # list of the rules where they are used. Nonterminals = { } # A dictionary mapping names of nonterminals to a list # of rule numbers where they are used. First = { } # A dictionary of precomputed FIRST(x) symbols Follow = { } # A dictionary of precomputed FOLLOW(x) symbols Precedence = { } # Precedence rules for each terminal. Contains tuples of the # form ('right',level) or ('nonassoc', level) or ('left',level) LRitems = [ ] # A list of all LR items for the grammar. These are the # productions with the "dot" like E -> E . PLUS E Errorfunc = None # User defined error handler Signature = md5.new() # Digital signature of the grammar rules, precedence # and other information. Used to determined when a # parsing table needs to be regenerated. Requires = { } # Requires list # File objects used when creating the parser.out debugging file global _vf, _vfc _vf = cStringIO.StringIO() _vfc = cStringIO.StringIO() # ----------------------------------------------------------------------------- # class Production: # # This class stores the raw information about a single production or grammar rule. # It has a few required attributes: # # name - Name of the production (nonterminal) # prod - A list of symbols making up its production # number - Production number. # # In addition, a few additional attributes are used to help with debugging or # optimization of table generation. # # file - File where production action is defined. # lineno - Line number where action is defined # func - Action function # prec - Precedence level # lr_next - Next LR item. Example, if we are ' E -> E . PLUS E' # then lr_next refers to 'E -> E PLUS . E' # lr_index - LR item index (location of the ".") in the prod list. # lookaheads - LALR lookahead symbols for this item # len - Length of the production (number of symbols on right hand side) # ----------------------------------------------------------------------------- class Production: def __init__(self,**kw): for k,v in kw.items(): setattr(self,k,v) self.lr_index = -1 self.lr0_added = 0 # Flag indicating whether or not added to LR0 closure self.lr1_added = 0 # Flag indicating whether or not added to LR1 self.usyms = [ ] self.lookaheads = { } self.lk_added = { } self.setnumbers = [ ] def __str__(self): if self.prod: s = "%s -> %s" % (self.name," ".join(self.prod)) else: s = "%s -> <empty>" % self.name return s def __repr__(self): return str(self) # Compute lr_items from the production def lr_item(self,n): if n > len(self.prod): return None p = Production() p.name = self.name p.prod = list(self.prod) p.number = self.number p.lr_index = n p.lookaheads = { } p.setnumbers = self.setnumbers p.prod.insert(n,".") p.prod = tuple(p.prod) p.len = len(p.prod) p.usyms = self.usyms # Precompute list of productions immediately following try: p.lrafter = Prodnames[p.prod[n+1]] except (IndexError,KeyError) as e: p.lrafter = [] try: p.lrbefore = p.prod[n-1] except IndexError: p.lrbefore = None return p class MiniProduction: pass # regex matching identifiers _is_identifier = re.compile(r'^[a-zA-Z0-9_-]+$') # ----------------------------------------------------------------------------- # add_production() # # Given an action function, this function assembles a production rule. # The production rule is assumed to be found in the function's docstring. # This rule has the general syntax: # # name1 ::= production1 # | production2 # | production3 # ... # | productionn # name2 ::= production1 # | production2 # ... # ----------------------------------------------------------------------------- def add_production(f,file,line,prodname,syms): if Terminals.has_key(prodname): sys.stderr.write("%s:%d: Illegal rule name '%s'. Already defined as a token.\n" % (file,line,prodname)) return -1 if prodname == 'error': sys.stderr.write("%s:%d: Illegal rule name '%s'. error is a reserved word.\n" % (file,line,prodname)) return -1 if not _is_identifier.match(prodname): sys.stderr.write("%s:%d: Illegal rule name '%s'\n" % (file,line,prodname)) return -1 for x in range(len(syms)): s = syms[x] if s[0] in "'\"": try: c = eval(s) if (len(c) > 1): sys.stderr.write("%s:%d: Literal token %s in rule '%s' may only be a single character\n" % (file,line,s, prodname)) return -1 if not Terminals.has_key(c): Terminals[c] = [] syms[x] = c continue except SyntaxError: pass if not _is_identifier.match(s) and s != '%prec': sys.stderr.write("%s:%d: Illegal name '%s' in rule '%s'\n" % (file,line,s, prodname)) return -1 # See if the rule is already in the rulemap map = "%s -> %s" % (prodname,syms) if Prodmap.has_key(map): m = Prodmap[map] sys.stderr.write("%s:%d: Duplicate rule %s.\n" % (file,line, m)) sys.stderr.write("%s:%d: Previous definition at %s:%d\n" % (file,line, m.file, m.line)) return -1 p = Production() p.name = prodname p.prod = syms p.file = file p.line = line p.func = f p.number = len(Productions) Productions.append(p) Prodmap[map] = p if not Nonterminals.has_key(prodname): Nonterminals[prodname] = [ ] # Add all terminals to Terminals i = 0 while i < len(p.prod): t = p.prod[i] if t == '%prec': try: precname = p.prod[i+1] except IndexError: sys.stderr.write("%s:%d: Syntax error. Nothing follows %%prec.\n" % (p.file,p.line)) return -1 prec = Precedence.get(precname,None) if not prec: sys.stderr.write("%s:%d: Nothing known about the precedence of '%s'\n" % (p.file,p.line,precname)) return -1 else: p.prec = prec del p.prod[i] del p.prod[i] continue if Terminals.has_key(t): Terminals[t].append(p.number) # Is a terminal. We'll assign a precedence to p based on this if not hasattr(p,"prec"): p.prec = Precedence.get(t,('right',0)) else: if not Nonterminals.has_key(t): Nonterminals[t] = [ ] Nonterminals[t].append(p.number) i += 1 if not hasattr(p,"prec"): p.prec = ('right',0) # Set final length of productions p.len = len(p.prod) p.prod = tuple(p.prod) # Calculate unique syms in the production p.usyms = [ ] for s in p.prod: if s not in p.usyms: p.usyms.append(s) # Add to the global productions list try: Prodnames[p.name].append(p) except KeyError: Prodnames[p.name] = [ p ] return 0 # Given a raw rule function, this function rips out its doc string # and adds rules to the grammar def add_function(f): line = f.func_code.co_firstlineno file = f.func_code.co_filename error = 0 if isinstance(f,types.MethodType): reqdargs = 2 else: reqdargs = 1 if f.func_code.co_argcount > reqdargs: sys.stderr.write("%s:%d: Rule '%s' has too many arguments.\n" % (file,line,f.__name__)) return -1 if f.func_code.co_argcount < reqdargs: sys.stderr.write("%s:%d: Rule '%s' requires an argument.\n" % (file,line,f.__name__)) return -1 if f.__doc__: # Split the doc string into lines pstrings = f.__doc__.splitlines() lastp = None dline = line for ps in pstrings: dline += 1 p = ps.split() if not p: continue try: if p[0] == '|': # This is a continuation of a previous rule if not lastp: sys.stderr.write("%s:%d: Misplaced '|'.\n" % (file,dline)) return -1 prodname = lastp if len(p) > 1: syms = p[1:] else: syms = [ ] else: prodname = p[0] lastp = prodname assign = p[1] if len(p) > 2: syms = p[2:] else: syms = [ ] if assign != ':' and assign != '::=': sys.stderr.write("%s:%d: Syntax error. Expected ':'\n" % (file,dline)) return -1 e = add_production(f,file,dline,prodname,syms) error += e except Exception: sys.stderr.write("%s:%d: Syntax error in rule '%s'\n" % (file,dline,ps)) error -= 1 else: sys.stderr.write("%s:%d: No documentation string specified in function '%s'\n" % (file,line,f.__name__)) return error # Cycle checking code (Michael Dyck) def compute_reachable(): ''' Find each symbol that can be reached from the start symbol. Print a warning for any nonterminals that can't be reached. (Unused terminals have already had their warning.) ''' Reachable = { } for s in Terminals.keys() + Nonterminals.keys(): Reachable[s] = 0 mark_reachable_from( Productions[0].prod[0], Reachable ) for s in Nonterminals.keys(): if not Reachable[s]: sys.stderr.write("yacc: Symbol '%s' is unreachable.\n" % s) def mark_reachable_from(s, Reachable): ''' Mark all symbols that are reachable from symbol s. ''' if Reachable[s]: # We've already reached symbol s. return Reachable[s] = 1 for p in Prodnames.get(s,[]): for r in p.prod: mark_reachable_from(r, Reachable) # ----------------------------------------------------------------------------- # compute_terminates() # # This function looks at the various parsing rules and tries to detect # infinite recursion cycles (grammar rules where there is no possible way # to derive a string of only terminals). # ----------------------------------------------------------------------------- def compute_terminates(): ''' Raise an error for any symbols that don't terminate. ''' Terminates = {} # Terminals: for t in Terminals.keys(): Terminates[t] = 1 Terminates['$end'] = 1 # Nonterminals: # Initialize to false: for n in Nonterminals.keys(): Terminates[n] = 0 # Then propagate termination until no change: while 1: some_change = 0 for (n,pl) in Prodnames.items(): # Nonterminal n terminates iff any of its productions terminates. for p in pl: # Production p terminates iff all of its rhs symbols terminate. for s in p.prod: if not Terminates[s]: # The symbol s does not terminate, # so production p does not terminate. p_terminates = 0 break else: # didn't break from the loop, # so every symbol s terminates # so production p terminates. p_terminates = 1 if p_terminates: # symbol n terminates! if not Terminates[n]: Terminates[n] = 1 some_change = 1 # Don't need to consider any more productions for this n. break if not some_change: break some_error = 0 for (s,terminates) in Terminates.items(): if not terminates: if not Prodnames.has_key(s) and not Terminals.has_key(s) and s != 'error': # s is used-but-not-defined, and we've already warned of that, # so it would be overkill to say that it's also non-terminating. pass else: sys.stderr.write("yacc: Infinite recursion detected for symbol '%s'.\n" % s) some_error = 1 return some_error # ----------------------------------------------------------------------------- # verify_productions() # # This function examines all of the supplied rules to see if they seem valid. # ----------------------------------------------------------------------------- def verify_productions(cycle_check=1): error = 0 for p in Productions: if not p: continue for s in p.prod: if not Prodnames.has_key(s) and not Terminals.has_key(s) and s != 'error': sys.stderr.write("%s:%d: Symbol '%s' used, but not defined as a token or a rule.\n" % (p.file,p.line,s)) error = 1 continue unused_tok = 0 # Now verify all of the tokens if yaccdebug: _vf.write("Unused terminals:\n\n") for s,v in Terminals.items(): if s != 'error' and not v: sys.stderr.write("yacc: Warning. Token '%s' defined, but not used.\n" % s) if yaccdebug: _vf.write(" %s\n"% s) unused_tok += 1 # Print out all of the productions if yaccdebug: _vf.write("\nGrammar\n\n") for i in range(1,len(Productions)): _vf.write("Rule %-5d %s\n" % (i, Productions[i])) unused_prod = 0 # Verify the use of all productions for s,v in Nonterminals.items(): if not v: p = Prodnames[s][0] sys.stderr.write("%s:%d: Warning. Rule '%s' defined, but not used.\n" % (p.file,p.line, s)) unused_prod += 1 if unused_tok == 1: sys.stderr.write("yacc: Warning. There is 1 unused token.\n") if unused_tok > 1: sys.stderr.write("yacc: Warning. There are %d unused tokens.\n" % unused_tok) if unused_prod == 1: sys.stderr.write("yacc: Warning. There is 1 unused rule.\n") if unused_prod > 1: sys.stderr.write("yacc: Warning. There are %d unused rules.\n" % unused_prod) if yaccdebug: _vf.write("\nTerminals, with rules where they appear\n\n") ks = Terminals.keys() ks.sort() for k in ks: _vf.write("%-20s : %s\n" % (k, " ".join([str(s) for s in Terminals[k]]))) _vf.write("\nNonterminals, with rules where they appear\n\n") ks = Nonterminals.keys() ks.sort() for k in ks: _vf.write("%-20s : %s\n" % (k, " ".join([str(s) for s in Nonterminals[k]]))) if (cycle_check): compute_reachable() error += compute_terminates() # error += check_cycles() return error # ----------------------------------------------------------------------------- # build_lritems() # # This function walks the list of productions and builds a complete set of the # LR items. The LR items are stored in two ways: First, they are uniquely # numbered and placed in the list _lritems. Second, a linked list of LR items # is built for each production. For example: # # E -> E PLUS E # # Creates the list # # [E -> . E PLUS E, E -> E . PLUS E, E -> E PLUS . E, E -> E PLUS E . ] # ----------------------------------------------------------------------------- def build_lritems(): for p in Productions: lastlri = p lri = p.lr_item(0) i = 0 while 1: lri = p.lr_item(i) lastlri.lr_next = lri if not lri: break lri.lr_num = len(LRitems) LRitems.append(lri) lastlri = lri i += 1 # In order for the rest of the parser generator to work, we need to # guarantee that no more lritems are generated. Therefore, we nuke # the p.lr_item method. (Only used in debugging) # Production.lr_item = None # ----------------------------------------------------------------------------- # add_precedence() # # Given a list of precedence rules, add to the precedence table. # ----------------------------------------------------------------------------- def add_precedence(plist): plevel = 0 error = 0 for p in plist: plevel += 1 try: prec = p[0] terms = p[1:] if prec != 'left' and prec != 'right' and prec != 'nonassoc': sys.stderr.write("yacc: Invalid precedence '%s'\n" % prec) return -1 for t in terms: if Precedence.has_key(t): sys.stderr.write("yacc: Precedence already specified for terminal '%s'\n" % t) error += 1 continue Precedence[t] = (prec,plevel) except: sys.stderr.write("yacc: Invalid precedence table.\n") error += 1 return error # ----------------------------------------------------------------------------- # augment_grammar() # # Compute the augmented grammar. This is just a rule S' -> start where start # is the starting symbol. # ----------------------------------------------------------------------------- def augment_grammar(start=None): if not start: start = Productions[1].name Productions[0] = Production(name="S'",prod=[start],number=0,len=1,prec=('right',0),func=None) Productions[0].usyms = [ start ] Nonterminals[start].append(0) # ------------------------------------------------------------------------- # first() # # Compute the value of FIRST1(beta) where beta is a tuple of symbols. # # During execution of compute_first1, the result may be incomplete. # Afterward (e.g., when called from compute_follow()), it will be complete. # ------------------------------------------------------------------------- def first(beta): # We are computing First(x1,x2,x3,...,xn) result = [ ] for x in beta: x_produces_empty = 0 # Add all the non-<empty> symbols of First[x] to the result. for f in First[x]: if f == '<empty>': x_produces_empty = 1 else: if f not in result: result.append(f) if x_produces_empty: # We have to consider the next x in beta, # i.e. stay in the loop. pass else: # We don't have to consider any further symbols in beta. break else: # There was no 'break' from the loop, # so x_produces_empty was true for all x in beta, # so beta produces empty as well. result.append('<empty>') return result # FOLLOW(x) # Given a non-terminal. This function computes the set of all symbols # that might follow it. Dragon book, p. 189. def compute_follow(start=None): # Add '$end' to the follow list of the start symbol for k in Nonterminals.keys(): Follow[k] = [ ] if not start: start = Productions[1].name Follow[start] = [ '$end' ] while 1: didadd = 0 for p in Productions[1:]: # Here is the production set for i in range(len(p.prod)): B = p.prod[i] if Nonterminals.has_key(B): # Okay. We got a non-terminal in a production fst = first(p.prod[i+1:]) hasempty = 0 for f in fst: if f != '<empty>' and f not in Follow[B]: Follow[B].append(f) didadd = 1 if f == '<empty>': hasempty = 1 if hasempty or i == (len(p.prod)-1): # Add elements of follow(a) to follow(b) for f in Follow[p.name]: if f not in Follow[B]: Follow[B].append(f) didadd = 1 if not didadd: break if 0 and yaccdebug: _vf.write('\nFollow:\n') for k in Nonterminals.keys(): _vf.write("%-20s : %s\n" % (k, " ".join([str(s) for s in Follow[k]]))) # ------------------------------------------------------------------------- # compute_first1() # # Compute the value of FIRST1(X) for all symbols # ------------------------------------------------------------------------- def compute_first1(): # Terminals: for t in Terminals.keys(): First[t] = [t] First['$end'] = ['$end'] First['#'] = ['#'] # what's this for? # Nonterminals: # Initialize to the empty set: for n in Nonterminals.keys(): First[n] = [] # Then propagate symbols until no change: while 1: some_change = 0 for n in Nonterminals.keys(): for p in Prodnames[n]: for f in first(p.prod): if f not in First[n]: First[n].append( f ) some_change = 1 if not some_change: break if 0 and yaccdebug: _vf.write('\nFirst:\n') for k in Nonterminals.keys(): _vf.write("%-20s : %s\n" % (k, " ".join([str(s) for s in First[k]]))) # ----------------------------------------------------------------------------- # === SLR Generation === # # The following functions are used to construct SLR (Simple LR) parsing tables # as described on p.221-229 of the dragon book. # ----------------------------------------------------------------------------- # Global variables for the LR parsing engine def lr_init_vars(): global _lr_action, _lr_goto, _lr_method global _lr_goto_cache, _lr0_cidhash _lr_action = { } # Action table _lr_goto = { } # Goto table _lr_method = "Unknown" # LR method used _lr_goto_cache = { } _lr0_cidhash = { } # Compute the LR(0) closure operation on I, where I is a set of LR(0) items. # prodlist is a list of productions. _add_count = 0 # Counter used to detect cycles def lr0_closure(I): global _add_count _add_count += 1 prodlist = Productions # Add everything in I to J J = I[:] didadd = 1 while didadd: didadd = 0 for j in J: for x in j.lrafter: if x.lr0_added == _add_count: continue # Add B --> .G to J J.append(x.lr_next) x.lr0_added = _add_count didadd = 1 return J # Compute the LR(0) goto function goto(I,X) where I is a set # of LR(0) items and X is a grammar symbol. This function is written # in a way that guarantees uniqueness of the generated goto sets # (i.e. the same goto set will never be returned as two different Python # objects). With uniqueness, we can later do fast set comparisons using # id(obj) instead of element-wise comparison. def lr0_goto(I,x): # First we look for a previously cached entry g = _lr_goto_cache.get((id(I),x),None) if g: return g # Now we generate the goto set in a way that guarantees uniqueness # of the result s = _lr_goto_cache.get(x,None) if not s: s = { } _lr_goto_cache[x] = s gs = [ ] for p in I: n = p.lr_next if n and n.lrbefore == x: s1 = s.get(id(n),None) if not s1: s1 = { } s[id(n)] = s1 gs.append(n) s = s1 g = s.get('$end',None) if not g: if gs: g = lr0_closure(gs) s['$end'] = g else: s['$end'] = gs _lr_goto_cache[(id(I),x)] = g return g _lr0_cidhash = { } # Compute the LR(0) sets of item function def lr0_items(): C = [ lr0_closure([Productions[0].lr_next]) ] i = 0 for I in C: _lr0_cidhash[id(I)] = i i += 1 # Loop over the items in C and each grammar symbols i = 0 while i < len(C): I = C[i] i += 1 # Collect all of the symbols that could possibly be in the goto(I,X) sets asyms = { } for ii in I: for s in ii.usyms: asyms[s] = None for x in asyms.keys(): g = lr0_goto(I,x) if not g: continue if _lr0_cidhash.has_key(id(g)): continue _lr0_cidhash[id(g)] = len(C) C.append(g) return C # ----------------------------------------------------------------------------- # ==== LALR(1) Parsing ==== # # LALR(1) parsing is almost exactly the same as SLR except that instead of # relying upon Follow() sets when performing reductions, a more selective # lookahead set that incorporates the state of the LR(0) machine is utilized. # Thus, we mainly just have to focus on calculating the lookahead sets. # # The method used here is due to DeRemer and Pennelo (1982). # # DeRemer, F. L., and T. J. Pennelo: "Efficient Computation of LALR(1) # Lookahead Sets", ACM Transactions on Programming Languages and Systems, # Vol. 4, No. 4, Oct. 1982, pp. 615-649 # # Further details can also be found in: # # J. Tremblay and P. Sorenson, "The Theory and Practice of Compiler Writing", # McGraw-Hill Book Company, (1985). # # Note: This implementation is a complete replacement of the LALR(1) # implementation in PLY-1.x releases. That version was based on # a less efficient algorithm and it had bugs in its implementation. # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- # compute_nullable_nonterminals() # # Creates a dictionary containing all of the non-terminals that might produce # an empty production. # ----------------------------------------------------------------------------- def compute_nullable_nonterminals(): nullable = {} num_nullable = 0 while 1: for p in Productions[1:]: if p.len == 0: nullable[p.name] = 1 continue for t in p.prod: if not nullable.has_key(t): break else: nullable[p.name] = 1 if len(nullable) == num_nullable: break num_nullable = len(nullable) return nullable # ----------------------------------------------------------------------------- # find_nonterminal_trans(C) # # Given a set of LR(0) items, this functions finds all of the non-terminal # transitions. These are transitions in which a dot appears immediately before # a non-terminal. Returns a list of tuples of the form (state,N) where state # is the state number and N is the nonterminal symbol. # # The input C is the set of LR(0) items. # ----------------------------------------------------------------------------- def find_nonterminal_transitions(C): trans = [] for state in range(len(C)): for p in C[state]: if p.lr_index < p.len - 1: t = (state,p.prod[p.lr_index+1]) if Nonterminals.has_key(t[1]): if t not in trans: trans.append(t) state = state + 1 return trans # ----------------------------------------------------------------------------- # dr_relation() # # Computes the DR(p,A) relationships for non-terminal transitions. The input # is a tuple (state,N) where state is a number and N is a nonterminal symbol. # # Returns a list of terminals. # ----------------------------------------------------------------------------- def dr_relation(C,trans,nullable): dr_set = { } state,N = trans terms = [] g = lr0_goto(C[state],N) for p in g: if p.lr_index < p.len - 1: a = p.prod[p.lr_index+1] if Terminals.has_key(a): if a not in terms: terms.append(a) # This extra bit is to handle the start state if state == 0 and N == Productions[0].prod[0]: terms.append('$end') return terms # ----------------------------------------------------------------------------- # reads_relation() # # Computes the READS() relation (p,A) READS (t,C). # ----------------------------------------------------------------------------- def reads_relation(C, trans, empty): # Look for empty transitions rel = [] state, N = trans g = lr0_goto(C[state],N) j = _lr0_cidhash.get(id(g),-1) for p in g: if p.lr_index < p.len - 1: a = p.prod[p.lr_index + 1] if empty.has_key(a): rel.append((j,a)) return rel # ----------------------------------------------------------------------------- # compute_lookback_includes() # # Determines the lookback and includes relations # # LOOKBACK: # # This relation is determined by running the LR(0) state machine forward. # For example, starting with a production "N : . A B C", we run it forward # to obtain "N : A B C ." We then build a relationship between this final # state and the starting state. These relationships are stored in a dictionary # lookdict. # # INCLUDES: # # Computes the INCLUDE() relation (p,A) INCLUDES (p',B). # # This relation is used to determine non-terminal transitions that occur # inside of other non-terminal transition states. (p,A) INCLUDES (p', B) # if the following holds: # # B -> LAT, where T -> epsilon and p' -L-> p # # L is essentially a prefix (which may be empty), T is a suffix that must be # able to derive an empty string. State p' must lead to state p with the string L. # # ----------------------------------------------------------------------------- def compute_lookback_includes(C,trans,nullable): lookdict = {} # Dictionary of lookback relations includedict = {} # Dictionary of include relations # Make a dictionary of non-terminal transitions dtrans = {} for t in trans: dtrans[t] = 1 # Loop over all transitions and compute lookbacks and includes for state,N in trans: lookb = [] includes = [] for p in C[state]: if p.name != N: continue # Okay, we have a name match. We now follow the production all the way # through the state machine until we get the . on the right hand side lr_index = p.lr_index j = state while lr_index < p.len - 1: lr_index = lr_index + 1 t = p.prod[lr_index] # Check to see if this symbol and state are a non-terminal transition if dtrans.has_key((j,t)): # Yes. Okay, there is some chance that this is an includes relation # the only way to know for certain is whether the rest of the # production derives empty li = lr_index + 1 while li < p.len: if Terminals.has_key(p.prod[li]): break # No forget it if not nullable.has_key(p.prod[li]): break li = li + 1 else: # Appears to be a relation between (j,t) and (state,N) includes.append((j,t)) g = lr0_goto(C[j],t) # Go to next set j = _lr0_cidhash.get(id(g),-1) # Go to next state # When we get here, j is the final state, now we have to locate the production for r in C[j]: if r.name != p.name: continue if r.len != p.len: continue i = 0 # This look is comparing a production ". A B C" with "A B C ." while i < r.lr_index: if r.prod[i] != p.prod[i+1]: break i = i + 1 else: lookb.append((j,r)) for i in includes: if not includedict.has_key(i): includedict[i] = [] includedict[i].append((state,N)) lookdict[(state,N)] = lookb return lookdict,includedict # ----------------------------------------------------------------------------- # digraph() # traverse() # # The following two functions are used to compute set valued functions # of the form: # # F(x) = F'(x) U U{F(y) | x R y} # # This is used to compute the values of Read() sets as well as FOLLOW sets # in LALR(1) generation. # # Inputs: X - An input set # R - A relation # FP - Set-valued function # ------------------------------------------------------------------------------ def digraph(X,R,FP): N = { } for x in X: N[x] = 0 stack = [] F = { } for x in X: if N[x] == 0: traverse(x,N,stack,F,X,R,FP) return F def traverse(x,N,stack,F,X,R,FP): stack.append(x) d = len(stack) N[x] = d F[x] = FP(x) # F(X) <- F'(x) rel = R(x) # Get y's related to x for y in rel: if N[y] == 0: traverse(y,N,stack,F,X,R,FP) N[x] = min(N[x],N[y]) for a in F.get(y,[]): if a not in F[x]: F[x].append(a) if N[x] == d: N[stack[-1]] = sys.maxint F[stack[-1]] = F[x] element = stack.pop() while element != x: N[stack[-1]] = sys.maxint F[stack[-1]] = F[x] element = stack.pop() # ----------------------------------------------------------------------------- # compute_read_sets() # # Given a set of LR(0) items, this function computes the read sets. # # Inputs: C = Set of LR(0) items # ntrans = Set of nonterminal transitions # nullable = Set of empty transitions # # Returns a set containing the read sets # ----------------------------------------------------------------------------- def compute_read_sets(C, ntrans, nullable): FP = lambda x: dr_relation(C,x,nullable) R = lambda x: reads_relation(C,x,nullable) F = digraph(ntrans,R,FP) return F # ----------------------------------------------------------------------------- # compute_follow_sets() # # Given a set of LR(0) items, a set of non-terminal transitions, a readset, # and an include set, this function computes the follow sets # # Follow(p,A) = Read(p,A) U U {Follow(p',B) | (p,A) INCLUDES (p',B)} # # Inputs: # ntrans = Set of nonterminal transitions # readsets = Readset (previously computed) # inclsets = Include sets (previously computed) # # Returns a set containing the follow sets # ----------------------------------------------------------------------------- def compute_follow_sets(ntrans,readsets,inclsets): FP = lambda x: readsets[x] R = lambda x: inclsets.get(x,[]) F = digraph(ntrans,R,FP) return F # ----------------------------------------------------------------------------- # add_lookaheads() # # Attaches the lookahead symbols to grammar rules. # # Inputs: lookbacks - Set of lookback relations # followset - Computed follow set # # This function directly attaches the lookaheads to productions contained # in the lookbacks set # ----------------------------------------------------------------------------- def add_lookaheads(lookbacks,followset): for trans,lb in lookbacks.items(): # Loop over productions in lookback for state,p in lb: if not p.lookaheads.has_key(state): p.lookaheads[state] = [] f = followset.get(trans,[]) for a in f: if a not in p.lookaheads[state]: p.lookaheads[state].append(a) # ----------------------------------------------------------------------------- # add_lalr_lookaheads() # # This function does all of the work of adding lookahead information for use # with LALR parsing # ----------------------------------------------------------------------------- def add_lalr_lookaheads(C): # Determine all of the nullable nonterminals nullable = compute_nullable_nonterminals() # Find all non-terminal transitions trans = find_nonterminal_transitions(C) # Compute read sets readsets = compute_read_sets(C,trans,nullable) # Compute lookback/includes relations lookd, included = compute_lookback_includes(C,trans,nullable) # Compute LALR FOLLOW sets followsets = compute_follow_sets(trans,readsets,included) # Add all of the lookaheads add_lookaheads(lookd,followsets) # ----------------------------------------------------------------------------- # lr_parse_table() # # This function constructs the parse tables for SLR or LALR # ----------------------------------------------------------------------------- def lr_parse_table(method): global _lr_method goto = _lr_goto # Goto array action = _lr_action # Action array actionp = { } # Action production array (temporary) _lr_method = method n_srconflict = 0 n_rrconflict = 0 if yaccdebug: sys.stderr.write("yacc: Generating %s parsing table...\n" % method) _vf.write("\n\nParsing method: %s\n\n" % method) # Step 1: Construct C = { I0, I1, ... IN}, collection of LR(0) items # This determines the number of states C = lr0_items() if method == 'LALR': add_lalr_lookaheads(C) # Build the parser table, state by state st = 0 for I in C: # Loop over each production in I actlist = [ ] # List of actions if yaccdebug: _vf.write("\nstate %d\n\n" % st) for p in I: _vf.write(" (%d) %s\n" % (p.number, str(p))) _vf.write("\n") for p in I: try: if p.prod[-1] == ".": if p.name == "S'": # Start symbol. Accept! action[st,"$end"] = 0 actionp[st,"$end"] = p else: # We are at the end of a production. Reduce! if method == 'LALR': laheads = p.lookaheads[st] else: laheads = Follow[p.name] for a in laheads: actlist.append((a,p,"reduce using rule %d (%s)" % (p.number,p))) r = action.get((st,a),None) if r is not None: # Whoa. Have a shift/reduce or reduce/reduce conflict if r > 0: # Need to decide on shift or reduce here # By default we favor shifting. Need to add # some precedence rules here. sprec,slevel = Productions[actionp[st,a].number].prec rprec,rlevel = Precedence.get(a,('right',0)) if (slevel < rlevel) or ((slevel == rlevel) and (rprec == 'left')): # We really need to reduce here. action[st,a] = -p.number actionp[st,a] = p if not slevel and not rlevel: _vfc.write("shift/reduce conflict in state %d resolved as reduce.\n" % st) _vf.write(" ! shift/reduce conflict for %s resolved as reduce.\n" % a) n_srconflict += 1 elif (slevel == rlevel) and (rprec == 'nonassoc'): action[st,a] = None else: # Hmmm. Guess we'll keep the shift if not rlevel: _vfc.write("shift/reduce conflict in state %d resolved as shift.\n" % st) _vf.write(" ! shift/reduce conflict for %s resolved as shift.\n" % a) n_srconflict +=1 elif r < 0: # Reduce/reduce conflict. In this case, we favor the rule # that was defined first in the grammar file oldp = Productions[-r] pp = Productions[p.number] if oldp.line > pp.line: action[st,a] = -p.number actionp[st,a] = p # sys.stderr.write("Reduce/reduce conflict in state %d\n" % st) n_rrconflict += 1 _vfc.write("reduce/reduce conflict in state %d resolved using rule %d (%s).\n" % (st, actionp[st,a].number, actionp[st,a])) _vf.write(" ! reduce/reduce conflict for %s resolved using rule %d (%s).\n" % (a,actionp[st,a].number, actionp[st,a])) else: sys.stderr.write("Unknown conflict in state %d\n" % st) else: action[st,a] = -p.number actionp[st,a] = p else: i = p.lr_index a = p.prod[i+1] # Get symbol right after the "." if Terminals.has_key(a): g = lr0_goto(I,a) j = _lr0_cidhash.get(id(g),-1) if j >= 0: # We are in a shift state actlist.append((a,p,"shift and go to state %d" % j)) r = action.get((st,a),None) if r is not None: # Whoa have a shift/reduce or shift/shift conflict if r > 0: if r != j: sys.stderr.write("Shift/shift conflict in state %d\n" % st) elif r < 0: # Do a precedence check. # - if precedence of reduce rule is higher, we reduce. # - if precedence of reduce is same and left assoc, we reduce. # - otherwise we shift rprec,rlevel = Productions[actionp[st,a].number].prec sprec,slevel = Precedence.get(a,('right',0)) if (slevel > rlevel) or ((slevel == rlevel) and (rprec != 'left')): # We decide to shift here... highest precedence to shift action[st,a] = j actionp[st,a] = p if not rlevel: n_srconflict += 1 _vfc.write("shift/reduce conflict in state %d resolved as shift.\n" % st) _vf.write(" ! shift/reduce conflict for %s resolved as shift.\n" % a) elif (slevel == rlevel) and (rprec == 'nonassoc'): action[st,a] = None else: # Hmmm. Guess we'll keep the reduce if not slevel and not rlevel: n_srconflict +=1 _vfc.write("shift/reduce conflict in state %d resolved as reduce.\n" % st) _vf.write(" ! shift/reduce conflict for %s resolved as reduce.\n" % a) else: sys.stderr.write("Unknown conflict in state %d\n" % st) else: action[st,a] = j actionp[st,a] = p except Exception as e: raise YaccError("Hosed in lr_parse_table", e) # Print the actions associated with each terminal if yaccdebug: _actprint = { } for a,p,m in actlist: if action.has_key((st,a)): if p is actionp[st,a]: _vf.write(" %-15s %s\n" % (a,m)) _actprint[(a,m)] = 1 _vf.write("\n") for a,p,m in actlist: if action.has_key((st,a)): if p is not actionp[st,a]: if not _actprint.has_key((a,m)): _vf.write(" ! %-15s [ %s ]\n" % (a,m)) _actprint[(a,m)] = 1 # Construct the goto table for this state if yaccdebug: _vf.write("\n") nkeys = { } for ii in I: for s in ii.usyms: if Nonterminals.has_key(s): nkeys[s] = None for n in nkeys.keys(): g = lr0_goto(I,n) j = _lr0_cidhash.get(id(g),-1) if j >= 0: goto[st,n] = j if yaccdebug: _vf.write(" %-30s shift and go to state %d\n" % (n,j)) st += 1 if yaccdebug: if n_srconflict == 1: sys.stderr.write("yacc: %d shift/reduce conflict\n" % n_srconflict) if n_srconflict > 1: sys.stderr.write("yacc: %d shift/reduce conflicts\n" % n_srconflict) if n_rrconflict == 1: sys.stderr.write("yacc: %d reduce/reduce conflict\n" % n_rrconflict) if n_rrconflict > 1: sys.stderr.write("yacc: %d reduce/reduce conflicts\n" % n_rrconflict) # ----------------------------------------------------------------------------- # ==== LR Utility functions ==== # ----------------------------------------------------------------------------- # ----------------------------------------------------------------------------- # _lr_write_tables() # # This function writes the LR parsing tables to a file # ----------------------------------------------------------------------------- def lr_write_tables(modulename=tab_module,outputdir=''): filename = os.path.join(outputdir,modulename) + ".py" try: f = open(filename,"w") f.write(""" # %s # This file is automatically generated. Do not edit. _lr_method = %s _lr_signature = %s """ % (filename, repr(_lr_method), repr(Signature.digest()))) # Change smaller to 0 to go back to original tables smaller = 1 # Factor out names to try and make smaller if smaller: items = { } for k,v in _lr_action.items(): i = items.get(k[1]) if not i: i = ([],[]) items[k[1]] = i i[0].append(k[0]) i[1].append(v) f.write("\n_lr_action_items = {") for k,v in items.items(): f.write("%r:([" % k) for i in v[0]: f.write("%r," % i) f.write("],[") for i in v[1]: f.write("%r," % i) f.write("]),") f.write("}\n") f.write(""" _lr_action = { } for _k, _v in _lr_action_items.items(): for _x,_y in zip(_v[0],_v[1]): _lr_action[(_x,_k)] = _y del _lr_action_items """) else: f.write("\n_lr_action = { "); for k,v in _lr_action.items(): f.write("(%r,%r):%r," % (k[0],k[1],v)) f.write("}\n"); if smaller: # Factor out names to try and make smaller items = { } for k,v in _lr_goto.items(): i = items.get(k[1]) if not i: i = ([],[]) items[k[1]] = i i[0].append(k[0]) i[1].append(v) f.write("\n_lr_goto_items = {") for k,v in items.items(): f.write("%r:([" % k) for i in v[0]: f.write("%r," % i) f.write("],[") for i in v[1]: f.write("%r," % i) f.write("]),") f.write("}\n") f.write(""" _lr_goto = { } for _k, _v in _lr_goto_items.items(): for _x,_y in zip(_v[0],_v[1]): _lr_goto[(_x,_k)] = _y del _lr_goto_items """) else: f.write("\n_lr_goto = { "); for k,v in _lr_goto.items(): f.write("(%r,%r):%r," % (k[0],k[1],v)) f.write("}\n"); # Write production table f.write("_lr_productions = [\n") for p in Productions: if p: if (p.func): f.write(" (%r,%d,%r,%r,%d),\n" % (p.name, p.len, p.func.__name__,p.file,p.line)) else: f.write(" (%r,%d,None,None,None),\n" % (p.name, p.len)) else: f.write(" None,\n") f.write("]\n") f.close() except IOError as e: print("Unable to create '%s'" % filename) print(e) return def lr_read_tables(module=tab_module,optimize=0): global _lr_action, _lr_goto, _lr_productions, _lr_method try: exec("import %s as parsetab" % module) global parsetab # declare the name of the imported module if (optimize) or (Signature.digest() == parsetab._lr_signature): _lr_action = parsetab._lr_action _lr_goto = parsetab._lr_goto _lr_productions = parsetab._lr_productions _lr_method = parsetab._lr_method return 1 else: return 0 except (ImportError,AttributeError): return 0 # Available instance types. This is used when parsers are defined by a class. # it's a little funky because I want to preserve backwards compatibility # with Python 2.0 where types.ObjectType is undefined. try: _INSTANCETYPE = (types.InstanceType, types.ObjectType) except AttributeError: _INSTANCETYPE = types.InstanceType # ----------------------------------------------------------------------------- # yacc(module) # # Build the parser module # ----------------------------------------------------------------------------- # <ah> Add parserclass parameter. def yacc(method=default_lr, debug=yaccdebug, module=None, tabmodule=tab_module, start=None, check_recursion=1, optimize=0,write_tables=1,debugfile=debug_file,outputdir='', parserclass=Parser): global yaccdebug yaccdebug = debug initialize_vars() files = { } error = 0 # Add parsing method to signature Signature.update(method) # If a "module" parameter was supplied, extract its dictionary. # Note: a module may in fact be an instance as well. if module: # User supplied a module object. if isinstance(module, types.ModuleType): ldict = module.__dict__ elif isinstance(module, _INSTANCETYPE): _items = [(k,getattr(module,k)) for k in dir(module)] ldict = { } for i in _items: ldict[i[0]] = i[1] else: raise ValueError("Expected a module") else: # No module given. We might be able to get information from the caller. # Throw an exception and unwind the traceback to get the globals try: raise RuntimeError except RuntimeError: e,b,t = sys.exc_info() f = t.tb_frame f = f.f_back # Walk out to our calling function ldict = f.f_globals # Grab its globals dictionary # Add starting symbol to signature if not start: start = ldict.get("start",None) if start: Signature.update(start) # If running in optimized mode. We're going to if (optimize and lr_read_tables(tabmodule,1)): # Read parse table del Productions[:] for p in _lr_productions: if not p: Productions.append(None) else: m = MiniProduction() m.name = p[0] m.len = p[1] m.file = p[3] m.line = p[4] if p[2]: m.func = ldict[p[2]] Productions.append(m) else: # Get the tokens map if (module and isinstance(module,_INSTANCETYPE)): tokens = getattr(module,"tokens",None) else: tokens = ldict.get("tokens",None) if not tokens: raise YaccError("module does not define a list 'tokens'") if not (isinstance(tokens,types.ListType) or isinstance(tokens,types.TupleType)): raise YaccError("tokens must be a list or tuple.") # Check to see if a requires dictionary is defined. requires = ldict.get("require",None) if requires: if not (isinstance(requires,types.DictType)): raise YaccError("require must be a dictionary.") for r,v in requires.items(): try: if not (isinstance(v,types.ListType)): raise TypeError v1 = [x.split(".") for x in v] Requires[r] = v1 except Exception: print("Invalid specification for rule '%s' in require. Expected a list of strings" % r) # Build the dictionary of terminals. We a record a 0 in the # dictionary to track whether or not a terminal is actually # used in the grammar if 'error' in tokens: print("yacc: Illegal token 'error'. Is a reserved word.") raise YaccError("Illegal token name") for n in tokens: if Terminals.has_key(n): print("yacc: Warning. Token '%s' multiply defined." % n) Terminals[n] = [ ] Terminals['error'] = [ ] # Get the precedence map (if any) prec = ldict.get("precedence",None) if prec: if not (isinstance(prec,types.ListType) or isinstance(prec,types.TupleType)): raise YaccError("precedence must be a list or tuple.") add_precedence(prec) Signature.update(repr(prec)) for n in tokens: if not Precedence.has_key(n): Precedence[n] = ('right',0) # Default, right associative, 0 precedence # Look for error handler ef = ldict.get('p_error',None) if ef: if isinstance(ef,types.FunctionType): ismethod = 0 elif isinstance(ef, types.MethodType): ismethod = 1 else: raise YaccError("'p_error' defined, but is not a function or method.") eline = ef.func_code.co_firstlineno efile = ef.func_code.co_filename files[efile] = None if (ef.func_code.co_argcount != 1+ismethod): raise YaccError("%s:%d: p_error() requires 1 argument." % (efile,eline)) global Errorfunc Errorfunc = ef else: print("yacc: Warning. no p_error() function is defined.") # Get the list of built-in functions with p_ prefix symbols = [ldict[f] for f in ldict.keys() if (type(ldict[f]) in (types.FunctionType, types.MethodType) and ldict[f].__name__[:2] == 'p_' and ldict[f].__name__ != 'p_error')] # Check for non-empty symbols if len(symbols) == 0: raise YaccError("no rules of the form p_rulename are defined.") # Sort the symbols by line number symbols.sort(key=lambda func: func.__code__.co_firstlineno) # Add all of the symbols to the grammar for f in symbols: if (add_function(f)) < 0: error += 1 else: files[f.func_code.co_filename] = None # Make a signature of the docstrings for f in symbols: if f.__doc__: Signature.update(f.__doc__) lr_init_vars() if error: raise YaccError("Unable to construct parser.") if not lr_read_tables(tabmodule): # Validate files for filename in files.keys(): if not validate_file(filename): error = 1 # Validate dictionary validate_dict(ldict) if start and not Prodnames.has_key(start): raise YaccError("Bad starting symbol '%s'" % start) augment_grammar(start) error = verify_productions(cycle_check=check_recursion) otherfunc = [ldict[f] for f in ldict.keys() if (type(f) in (types.FunctionType,types.MethodType) and ldict[f].__name__[:2] != 'p_')] if error: raise YaccError("Unable to construct parser.") build_lritems() compute_first1() compute_follow(start) if method in ['SLR','LALR']: lr_parse_table(method) else: raise YaccError("Unknown parsing method '%s'" % method) if write_tables: lr_write_tables(tabmodule,outputdir) if yaccdebug: try: f = open(os.path.join(outputdir,debugfile),"w") f.write(_vfc.getvalue()) f.write("\n\n") f.write(_vf.getvalue()) f.close() except IOError as e: print("yacc: can't create '%s'" % debugfile,e) # Made it here. Create a parser object and set up its internal state. # Set global parse() method to bound method of parser object. g = ParserPrototype("xyzzy") g.productions = Productions g.errorfunc = Errorfunc g.action = _lr_action g.goto = _lr_goto g.method = _lr_method g.require = Requires global parser parser = g.init_parser() global parse parse = parser.parse # Clean up all of the globals we created if (not optimize): yacc_cleanup() return g # <ah> Allow multiple instances of parser class ParserPrototype(object): def __init__(self, magic=None): if magic != "xyzzy": raise YaccError('Use yacc()') def init_parser(self, parser=None): if not parser: parser = Parser() parser.productions = self.productions parser.errorfunc = self.errorfunc parser.action = self.action parser.goto = self.goto parser.method = self.method parser.require = self.require return parser # yacc_cleanup function. Delete all of the global variables # used during table construction def yacc_cleanup(): global _lr_action, _lr_goto, _lr_method, _lr_goto_cache del _lr_action, _lr_goto, _lr_method, _lr_goto_cache global Productions, Prodnames, Prodmap, Terminals global Nonterminals, First, Follow, Precedence, LRitems global Errorfunc, Signature, Requires del Productions, Prodnames, Prodmap, Terminals del Nonterminals, First, Follow, Precedence, LRitems del Errorfunc, Signature, Requires global _vf, _vfc del _vf, _vfc # Stub that raises an error if parsing is attempted without first calling yacc() def parse(*args,**kwargs): raise YaccError("yacc: No parser built with yacc()")
36.6582
192
0.497465
79520499e4c37d51fe5dbc76c69f3a8814269076
8,168
py
Python
helpers/swap_schedule.py
kevindkeogh/qlib.py
a21b08e4a2147025fbd6d64da689c00b4a073196
[ "MIT" ]
1
2020-08-17T05:28:06.000Z
2020-08-17T05:28:06.000Z
helpers/swap_schedule.py
kevindkeogh/qlpy
a21b08e4a2147025fbd6d64da689c00b4a073196
[ "MIT" ]
null
null
null
helpers/swap_schedule.py
kevindkeogh/qlpy
a21b08e4a2147025fbd6d64da689c00b4a073196
[ "MIT" ]
null
null
null
''' ''' import dateutil.relativedelta import numpy as np class Schedule: '''Swap fixing, accrual, and payment dates The Schedule class can be used to generate the details for periods for swaps. Arguments: effective (datetime): effective date of the swap maturity (datetime): maturity date of the swap length (int): length of the period that the accrual lasts kwargs ------ second (datetime, optional): second accrual date of the swap penultimate (datetime, optional): penultimate accrual date of the swap period_adjustment (str, optional): date adjustment type for the accrual dates default: unadjusted available: following, modified following, preceding payment_adjustment (str, optional): date adjustment type for the payment dates default: unadjusted available: following, modified following, preceding fixing_lag (int, optional): fixing lag for fixing dates default: 2 period_length (str, optional): period type for the length default: months available: weeks, days Attributes: periods (np.recarray): numpy record array of period data takes the form [fixing_date, accrual_start, accrual_end, payment_date] ''' def __init__(self, effective, maturity, length, second=False, penultimate=False, period_adjustment='unadjusted', payment_adjustment='unadjusted', fixing_lag=2, period_length='months'): # variable assignment self.effective = effective self.maturity = maturity self.length = length self.period_delta = self._timedelta(length, period_length) self.period_adjustment = period_adjustment self.payment_adjustment = payment_adjustment self.second = second self.penultimate = penultimate self.fixing_lag = fixing_lag self.period_length = period_length # date generation routine self._gen_periods() self._create_schedule() def _gen_periods(self): '''Private method to generate the date series ''' if bool(self.second) ^ bool(self.penultimate): raise Exception('If specifying second or penultimate dates,' 'must select both') if self.second: self._period_ends = self._gen_dates(self.second, self.penultimate, self.period_delta, 'unadjusted') self._period_ends = [self.second] + self._period_ends + [self.maturity] self._adjusted_period_ends = self._gen_dates(self.second, self.penultimate, self.period_delta, self.period_adjustment) self._adjusted_period_ends = [self.second] + \ self._adjusted_period_ends + \ [self.maturity] else: self._period_ends = self._gen_dates(self.effective, self.maturity, self.period_delta, 'unadjusted') self._adjusted_period_ends = self._gen_dates(self.effective, self.maturity, self.period_delta, self.period_adjustment) self._period_starts = [self.effective] + self._adjusted_period_ends[:-1] self._fixing_dates = self._gen_date_adjustments(self._period_starts, -self.fixing_lag, adjustment='preceding') self._payment_dates = self._gen_date_adjustments(self._period_ends, 0, adjustment=self.payment_adjustment) def _create_schedule(self): ''' ''' self.periods = np.rec.fromarrays(self._np_dtarrays(self._fixing_dates, self._period_starts, self._adjusted_period_ends, self._payment_dates), dtype=[('fixing_date', 'datetime64[D]'), ('accrual_start', 'datetime64[D]'), ('accrual_end', 'datetime64[D]'), ('payment_date', 'datetime64[D]')]) if bool(self.second) ^ bool(self.penultimate): raise Exception('If specifying second or penultimate dates,' 'must select both') def _timedelta(self, delta, period_length): if period_length == 'months': return dateutil.relativedelta.relativedelta(months=delta) elif period_length == 'weeks': return dateutil.relativedelta.relativedelta(weeks=delta) elif period_length == 'days': return dateutil.relativedelta.relativedelta(days=delta) else: raise Exception('Period length {period_length} not ' 'recognized'.format(**locals())) def _gen_dates(self, effective, maturity, delta, adjustment): dates = [] current = maturity counter = 1 while current > effective: dates.append(self._date_adjust(current, adjustment)) counter += 1 current = maturity - (delta * counter) return dates[::-1] def _date_adjust(self, date, adjustment): if adjustment == 'unadjusted': return date elif adjustment == 'following': if date.weekday() < 5: return date else: return date + self._timedelta(7 - date.weekday(), 'days') elif adjustment == 'preceding': if date.weekday() < 5: return date else: return date - self._timedelta(max(0, date.weekday() - 5), 'days') elif adjustment == 'modified following': if date.month == self._date_adjust(date, 'following').month: return self._date_adjust(date, 'following') else: return date - self._timedelta(7 - date.weekday(), 'days') else: raise Exception('Adjustment period not recognized') def _gen_date_adjustments(self, dates, delta, adjustment='unadjusted'): adjusted_dates = [] for date in dates: adjusted_date = date + self._timedelta(delta, 'days') adjusted_date = self._date_adjust(adjusted_date, adjustment) adjusted_dates.append(adjusted_date) return adjusted_dates def _np_dtarrays(self, *args): fmt = '%Y-%m-%d' arrays = [] for arg in args: arrays.append(np.asarray([np.datetime64(date.strftime(fmt)) for date in arg])) return tuple(arrays)
44.63388
92
0.483105
795205f7d6ffb935a725da9d72e08c20092e5543
321
py
Python
markdown_external_link_finder/extract.py
MatMoore/markdown-external-link-finder
bb04d2573e150d8efe61063deafa3119c5f2ef3f
[ "MIT" ]
null
null
null
markdown_external_link_finder/extract.py
MatMoore/markdown-external-link-finder
bb04d2573e150d8efe61063deafa3119c5f2ef3f
[ "MIT" ]
4
2019-06-04T22:36:17.000Z
2021-06-25T15:34:31.000Z
markdown_external_link_finder/extract.py
MatMoore/markdown-external-link-finder
bb04d2573e150d8efe61063deafa3119c5f2ef3f
[ "MIT" ]
null
null
null
import mistune from .util import LinkRenderer def extract_markdown_links(markdown_files): impl = LinkRenderer() renderer = mistune.Markdown(renderer=impl) for markdown_file in markdown_files: with open(markdown_file) as f: text = f.read() renderer(text) yield from impl.urls
24.692308
46
0.694704
795206831faef22fcc39baa50c1cf26f43878106
4,641
py
Python
samples/oauth/oauth_on_appengine/appengine_utilities/flash.py
dorosh/gdata-python-client
eb6826ba1e6046a202158d4fefa672150efa0ca5
[ "Apache-2.0" ]
2,293
2015-01-02T12:46:10.000Z
2022-03-29T09:45:43.000Z
samples/oauth/oauth_on_appengine/appengine_utilities/flash.py
dorosh/gdata-python-client
eb6826ba1e6046a202158d4fefa672150efa0ca5
[ "Apache-2.0" ]
315
2015-05-31T11:55:46.000Z
2022-01-12T08:36:37.000Z
samples/oauth/oauth_on_appengine/appengine_utilities/flash.py
dorosh/gdata-python-client
eb6826ba1e6046a202158d4fefa672150efa0ca5
[ "Apache-2.0" ]
1,033
2015-01-04T07:48:40.000Z
2022-03-24T09:34:37.000Z
""" Copyright (c) 2008, appengine-utilities project All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: - Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. - Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. - Neither the name of the appengine-utilities project nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ import os import sys import Cookie import pickle from time import strftime from django.utils import simplejson COOKIE_NAME = 'appengine-utilities-flash' class Flash(object): """ Send messages to the user between pages. When you instantiate the class, the attribute 'msg' will be set from the cookie, and the cookie will be deleted. If there is no flash cookie, 'msg' will default to None. To set a flash message for the next page, simply set the 'msg' attribute. Example psuedocode: if new_entity.put(): flash = Flash() flash.msg = 'Your new entity has been created!' return redirect_to_entity_list() Then in the template on the next page: {% if flash.msg %} <div class="flash-msg">{{ flash.msg }}</div> {% endif %} """ def __init__(self, cookie=None): """ Load the flash message and clear the cookie. """ self.no_cache_headers() # load cookie if cookie is None: browser_cookie = os.environ.get('HTTP_COOKIE', '') self.cookie = Cookie.SimpleCookie() self.cookie.load(browser_cookie) else: self.cookie = cookie # check for flash data if self.cookie.get(COOKIE_NAME): # set 'msg' attribute cookie_val = self.cookie[COOKIE_NAME].value # we don't want to trigger __setattr__(), which creates a cookie try: self.__dict__['msg'] = simplejson.loads(cookie_val) except: # not able to load the json, so do not set message. This should # catch for when the browser doesn't delete the cookie in time for # the next request, and only blanks out the content. pass # clear the cookie self.cookie[COOKIE_NAME] = '' self.cookie[COOKIE_NAME]['path'] = '/' self.cookie[COOKIE_NAME]['expires'] = 0 print self.cookie[COOKIE_NAME] else: # default 'msg' attribute to None self.__dict__['msg'] = None def __setattr__(self, name, value): """ Create a cookie when setting the 'msg' attribute. """ if name == 'cookie': self.__dict__['cookie'] = value elif name == 'msg': self.__dict__['msg'] = value self.__dict__['cookie'][COOKIE_NAME] = simplejson.dumps(value) self.__dict__['cookie'][COOKIE_NAME]['path'] = '/' print self.cookie else: raise ValueError('You can only set the "msg" attribute.') def no_cache_headers(self): """ Adds headers, avoiding any page caching in the browser. Useful for highly dynamic sites. """ print "Expires: Tue, 03 Jul 2001 06:00:00 GMT" print strftime("Last-Modified: %a, %d %b %y %H:%M:%S %Z") print "Cache-Control: no-store, no-cache, must-revalidate, max-age=0" print "Cache-Control: post-check=0, pre-check=0" print "Pragma: no-cache"
38.675
82
0.653307
795206a94949cc474a0065dbbb27278c303d0864
6,820
py
Python
cli/browser.py
windperson/private-docker-registry
23f2c0d7ecd507486c9979d0e2e9b69a1780839f
[ "Apache-2.0" ]
null
null
null
cli/browser.py
windperson/private-docker-registry
23f2c0d7ecd507486c9979d0e2e9b69a1780839f
[ "Apache-2.0" ]
null
null
null
cli/browser.py
windperson/private-docker-registry
23f2c0d7ecd507486c9979d0e2e9b69a1780839f
[ "Apache-2.0" ]
null
null
null
import json import requests import sys ''' Disable Warnings when using verify=False''' '''requests.packages.urllib3.disable_warnings()''' def get_reqistry_request(url, username=None, password=None, ssl=False): req = None if ssl==True: proto="https://" else: proto="http://" url_endpoint = proto + url s = requests.Session() if(username!=None): s.auth = (username, password) try: req = s.get(url_endpoint, verify=False) except requests.ConnectionError: print 'Cannot connect to Registry' return req def get_registry_catalog_request(url, username=None, password=None, ssl=False): requrl = url+"/v2/_catalog" req = get_reqistry_request(requrl, username, password, ssl) return req def get_registry_tag_request(url, repo, username=None, password=None, ssl=False): requrl = url + "/v2/" + repo + "/tags/list" req = get_reqistry_request(requrl, username, password, ssl) return req ''' Extracts the username and password from the url specified in case of Basic Authentication enabled for a Docker registry Example:- If the url specified is like exampleuser:exampleuser@docker_registry_host:port then, the username is exampleuser, password is exampleuser and url is docker_registry_host:port ''' def extract_url(url): uname_pwd_delimeter=":" auth_ip_delimeter="@" position_ip_delimeter=url.find(auth_ip_delimeter) if position_ip_delimeter==-1: return None, None, url else: delimiter_uname_pwd_pos = url.find(uname_pwd_delimeter) delimeter_auth_ip_pos = position_ip_delimeter username = url[:delimiter_uname_pwd_pos] password = url[delimiter_uname_pwd_pos+1:delimeter_auth_ip_pos] url_endpoint = url[delimeter_auth_ip_pos+1:] return username, password, url_endpoint def get_all_repos(url, ssl=False): username, password, url_endpoint = extract_url(url) req = get_registry_catalog_request(url_endpoint, username, password, ssl) if(req!=None): parsed_json = json.loads(req.text) repo_array = parsed_json['repositories'] else: return None return repo_array def search_for_repo(url, repo_search_name, ssl=False) : repo_array = get_all_repos(url, ssl); repo_dict_search = {} if repo_search_name in repo_array: parsed_repo_tag_req_resp = get_tags_for_repo(url, repo_search_name, ssl) repo_dict_search[repo_search_name] = parsed_repo_tag_req_resp else: ''' Get all the repos ''' repo_dict = get_all_repo_dict(url, repo_array, ssl) if any(False if key.find(repo_search_name)==-1 else True for key in repo_dict) == True: print "available options:- " for key in repo_dict: if(key.find(repo_search_name)!=-1): repo_dict_search[key] = get_tags_for_repo(url, key, ssl) return repo_dict_search def get_tags_for_repo(url, repo, ssl=False): username, password, url_endpoint = extract_url(url) repo_tag_url_req = get_registry_tag_request(url_endpoint, repo, username, password, ssl) parsed_repo_tag_req_resp = json.loads(repo_tag_url_req.text) return parsed_repo_tag_req_resp["tags"] ''' Gets the entire repository dictionary ''' def get_all_repo_dict(url, repo_array,ssl=False): repo_dict = {} if (repo_array!=None): for repo in repo_array: parsed_repo_tag_req_resp = get_tags_for_repo(url, repo, ssl) repo_dict[repo] = parsed_repo_tag_req_resp return repo_dict ''' Decorates the search results to be printed on the screen ''' def decorate_list(repo_dict): decorated_list_values = "" if(len(repo_dict)==0): return "No results!" counter = 1; for repo_key in repo_dict: decorated_list_values += "\n-----------" + "\n" + str(counter) + ") Name: " + repo_key decorated_list_values += "\nTags: " counter+=1; for tag in repo_dict[repo_key]: decorated_list_values += tag + '\t' decorated_list_values += "\n\n" + str(counter-1) + " images found !" return decorated_list_values ''' Decorates the search results to be printed on the screen ''' def decorate_html(repo_dict, regurl): decorated_list_values = "<html><head><title>Docker Registry Listing</title>\ <script src='http://cdnjs.cloudflare.com/ajax/libs/list.js/1.1.1/list.min.js'></script> \ <link rel='stylesheet' type='text/css' href='/css/browser_web.css'></head> \ <body><h1>Docker Registry Listing</h1> \ <div id='users'>\ <input class='search' placeholder='Search' />\ <button class='sort' data-sort='name'>\ Sort by name </button>" if(len(repo_dict)==0): decorated_list_values += "<p><h2>No results!</h2></p></body></html>" return decorated_list_values counter = 1; decorated_list_values += "<p><ul class='list'>" for repo_key in repo_dict: decorated_list_values += "<li><h2 class='name'>" + str(counter) + ". " + repo_key +"</h2>" counter+=1; for tag in repo_dict[repo_key]: decorated_list_values += "<p class='born'><b>[" + tag + "]</b>: docker pull " + regurl + "/" + repo_key + ":" + tag + "</p><br />" decorated_list_values += "</li>" decorated_list_values += "</ul>"; '''decorated_list_values += "<p><h2>" + + " images found !" + "</h2></p>"''' decorated_list_values += "<script>var options = { valueNames: [ 'name', 'born' ]}; var userList = new List('users', options);</script></body></html>" return decorated_list_values def usage(): return "Usage: browser.py <registry_endpoint> <keyword> <value> <ssl>\ \nValid keywords : search, list \ \nValid values:- \ \nFor keyword search, use the value as the image name. For eg:- search redis\ \nFor keyword list, use the value 'all' without quotes to get a list of all the docker image repos. For eg:- list all\ \nFor eg:- python browser.py uname:pwd@registry_endpoint:port search busybox\ \nIf you use SSL, then specify 'ssl'\ \nFor eg:- python browser.py uname:pwd@registry_endpoint:port search busybox ssl\ \nFor more information, visit:- https://github.com/vivekjuneja/docker_registry_cli/" if __name__ == "__main__": len_sys_argv = len(sys.argv[1:]) if len_sys_argv < 3: print usage() elif len_sys_argv >= 3: commandlineargs = sys.argv[1:] regurl = commandlineargs[0] keyword = commandlineargs[1] repo_to_search = commandlineargs[2] ssl_flag = False if len_sys_argv == 4: ssl = commandlineargs[3] if ssl == "ssl": ssl_flag = True search_results = None if keyword=="search": search_results = search_for_repo(regurl, repo_to_search, ssl_flag) print decorate_list(search_results) elif keyword=="list": all_repos = get_all_repos(regurl, ssl_flag) search_results = get_all_repo_dict(regurl, all_repos, ssl_flag) print decorate_list(search_results) elif keyword=="html": all_repos = get_all_repos(regurl, ssl_flag) search_results = get_all_repo_dict(regurl, all_repos, ssl_flag) print decorate_html(search_results, regurl) else: print usage() sys.exit(1)
27.063492
151
0.71437
795206db4d172f7270f394e8951e6628a0493cf1
9,871
py
Python
hostscripts/rpm-packaging/createproject.py
dirkmueller/automation
a2c3f6ce5c1642d70e46812929f7b18c42d785d7
[ "Apache-2.0" ]
61
2015-02-01T04:43:09.000Z
2021-12-10T08:34:02.000Z
hostscripts/rpm-packaging/createproject.py
dirkmueller/automation
a2c3f6ce5c1642d70e46812929f7b18c42d785d7
[ "Apache-2.0" ]
2,297
2015-01-05T12:23:32.000Z
2022-03-21T09:23:26.000Z
hostscripts/rpm-packaging/createproject.py
dirkmueller/automation
a2c3f6ce5c1642d70e46812929f7b18c42d785d7
[ "Apache-2.0" ]
162
2015-01-13T12:30:44.000Z
2022-02-21T12:12:41.000Z
#!/usr/bin/python3 # vim: sw=4 et # Copyright (c) 2016 SUSE LINUX GmbH, Nuernberg, Germany. # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License along # with this program; if not, write to the Free Software Foundation, Inc., # 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. from __future__ import print_function import argparse import glob import os import platform import shutil import sys import tempfile import time import pymod2pkg import sh from sh import Command def pymodule2pkg(spectemplate): specname = os.path.splitext(spectemplate)[0] modulename = os.path.splitext(os.path.basename(specname))[0] pkgname = pymod2pkg.module2package( modulename, platform.linux_distribution()[0] or 'suse') if modulename == 'openstack-macros': pkgname = modulename return pkgname def get_osc_user(): import osc.conf osc.conf.get_config() return osc.conf.get_apiurl_usr(osc.conf.config['apiurl']) def upload_meta(project, build_repository, linkproject): projectlink = '' if linkproject: projectlink = '<link project="%s"/>\n' % linkproject description = '' if linkproject: if 'ZUUL_UUID' in os.environ: description = """ This project tests the following Zuul Change IDs: %(ZUUL_CHANGE_IDS)s\n Branch used: %(ZUUL_BRANCH)s\n Project used: %(ZUUL_PROJECT)s """ % (os.environ) templ = """ <project name="%(project)s"> <title>Autogenerated CI project</title> <description> %(description)s </description> <url> %(url)s </url> %(projectlink)s <person userid="%(user)s" role="maintainer"/> <publish> <disable/> </publish> %(build_repository)s </project>""" % ({'project': project, 'user': get_osc_user(), 'description': description, 'url': os.environ.get('BUILD_URL'), 'projectlink': projectlink, 'build_repository': build_repository}) with tempfile.NamedTemporaryFile() as meta: meta.write(templ.encode('UTF-8')) meta.flush() print('Updating meta for ', project) # work around build service bug that forgets the publish flag # https://github.com/openSUSE/open-build-service/issues/7126 for success_counter in range(2): # work around build service bug that triggers a database deadlock for fail_counter in range(1, 5): try: sh.osc('api', '-T', meta.name, '/source/%s/_meta' % project) break except sh.ErrorReturnCode_1: # Sleep a bit and try again. This has not been # scientifically proven to be the correct sleep factor, # but it seems to work time.sleep(2) continue # wait for the source service to catch up with creation if success_counter == 0: # Sleep a bit and try again. This has not been scientifically # proven to be the correct sleep factor, but it seems to work time.sleep(3) def upload_meta_enable_repository(project, linkproject): repository = """ <repository name="standard" %(repoflags)s> <path project="%(linkproject)s" repository="standard"/> <arch>x86_64</arch> </repository> """ % ({'linkproject': linkproject, 'repoflags': 'rebuild="direct" block="local" linkedbuild="localdep"'}) upload_meta(project, repository, linkproject) def freeze_project(project): """Generate a _frozenlink file for the project""" result = sh.osc('api', '-X', 'POST', '/source/%s?cmd=freezelink' % project) if '<status code="ok" />' not in result: print('WARNING: freeze the project fails: %s' % result) def create_new_build_project(workdir, project, linkproject): sh.mkdir('-p', workdir) olddir = os.getcwd() try: os.chdir(workdir) if linkproject: upload_meta_enable_repository(project, linkproject) freeze_project(project) sh.osc('init', project) finally: os.chdir(olddir) def generate_pkgspec(pkgoutdir, spectemplate, pkgname): obsservicedir = '/usr/lib/obs/service/' outdir = ('--outdir', pkgoutdir) olddir = os.getcwd() try: os.chdir(pkgoutdir) renderspec = Command(os.path.join(obsservicedir, 'renderspec')) renderspec( '--input-template', os.path.join(olddir, spectemplate), '--output-name', pkgname + '.spec', *outdir) format_spec_file = Command( os.path.join(obsservicedir, 'format_spec_file')) format_spec_file(*outdir) # configure a download cache to avoid downloading the same files download_env = os.environ.copy() download_env["CACHEDIRECTORY"] = os.path.join( os.path.expanduser("~"), ".cache", "download_files") download_files = Command(os.path.join(obsservicedir, 'download_files')) download_files(_env=download_env, *outdir) finally: os.chdir(olddir) def osc_mkpac(workdir, packagename): olddir = os.getcwd() try: os.chdir(workdir) sh.osc('mkpac', packagename) finally: os.chdir(olddir) def spec_is_modified(pkgoutdir, project, pkgname): specname = pkgname + ".spec" cached_spec = os.path.join(pkgoutdir, '.osc', specname) cleanup = False if not os.path.exists(cached_spec): cleanup = True sh.osc('api', '/source/%s/%s/%s.spec' % ( project, pkgname, pkgname), _out=cached_spec) r = sh.cmp( '-s', os.path.join(pkgoutdir, specname), cached_spec, _ok_code=[0, 1]) if cleanup: os.remove(cached_spec) return r.exit_code == 1 def osc_detachbranch(workdir, project, pkgname): olddir = os.getcwd() try: os.chdir(os.path.join(workdir)) sh.osc('detachbranch', project, pkgname) os.mkdir(pkgname + '.b') for f in glob.glob(os.path.join(pkgname, '*')): os.rename(f, os.path.join(pkgname + '.b', os.path.basename(f))) sh.rm('-rf', pkgname) sh.osc('co', pkgname) for f in glob.glob(os.path.join(pkgname + '.b', '*')): dst = os.path.basename(f) try: os.unlink(os.path.join(pkgname, dst)) except OSError: pass os.rename(f, os.path.join(pkgname, dst)) os.rmdir(pkgname + '.b') finally: os.chdir(olddir) def osc_commit_all(workdir, packagename): olddir = os.getcwd() try: os.chdir(os.path.join(workdir, packagename)) sh.osc('addremove') for o in sh.osc('service', 'localrun', 'source_validator'): if o.startswith('###ASK'): sh.osc('rm', '--force', o.strip().split()[1]) sh.osc('commit', '--noservice', '-n') finally: os.chdir(olddir) def copy_extra_sources(specdir, pkgoutdir): for f in glob.glob(os.path.join(specdir, '*')): if f.endswith(".j2"): continue shutil.copy2(f, pkgoutdir) def create_project(worktree, project, linkproject): workdir = os.path.join(os.getcwd(), 'out') sh.rm('-rf', workdir) create_new_build_project(workdir, project, linkproject) try: existing_pkgs = [x.strip() for x in sh.osc('ls', '-e', project, _iter=True)] except Exception: existing_pkgs = [] alive_pkgs = set() worktree_pattern = os.path.join(worktree, 'openstack', '*', '*.spec.j2') for spectemplate in sorted(glob.glob(worktree_pattern)): pkgname = pymodule2pkg(spectemplate) alive_pkgs.add(pkgname) print(pkgname) sys.stdout.flush() pkgoutdir = os.path.join(workdir, pkgname) osc_mkpac(workdir, pkgname) copy_extra_sources(os.path.dirname(spectemplate), pkgoutdir) generate_pkgspec( pkgoutdir, spectemplate, pkgname) if pkgname in existing_pkgs: if spec_is_modified(pkgoutdir, project, pkgname): osc_detachbranch(workdir, project, pkgname) print("Committing update to %s" % pkgname) osc_commit_all(workdir, pkgname) else: print("Adding new pkg %s" % pkgname) osc_commit_all(workdir, pkgname) if not alive_pkgs: print("Worktree does not contain any packages?") sys.exit(1) # remove no longer alive pkgs for i in existing_pkgs: if not linkproject and i not in alive_pkgs: print("Removing outdated ", i) sh.osc('rdelete', '-m', 'x', project, i) def main(): parser = argparse.ArgumentParser( description='Build a testproject for a given rpm-packaging checkout') parser.add_argument('worktree', help='directory with a rpm-packaging checkout') parser.add_argument('project', help='name of the destination buildservice project') parser.add_argument('--linkproject', help='create project link to given project') args = parser.parse_args() sh.ErrorReturnCode.truncate_cap = 9000 create_project(args.worktree, args.project, args.linkproject) if __name__ == '__main__': main()
31.944984
79
0.618884
7952079764248876b692a1d715776a333831446d
24,134
py
Python
Quad_Code_share/Main_Code_Automous.py
EvanHope/SeniorProject
0980f7187d49988d2d81e34506fa97e7c8cca3a4
[ "MIT" ]
null
null
null
Quad_Code_share/Main_Code_Automous.py
EvanHope/SeniorProject
0980f7187d49988d2d81e34506fa97e7c8cca3a4
[ "MIT" ]
null
null
null
Quad_Code_share/Main_Code_Automous.py
EvanHope/SeniorProject
0980f7187d49988d2d81e34506fa97e7c8cca3a4
[ "MIT" ]
1
2021-12-02T21:39:18.000Z
2021-12-02T21:39:18.000Z
import time import spidev import math import argparse import sys import navio.util #import AccelGyroMag import navio.mpu9250 # For magnetometer calibration only import madgwickahrs.madgwickahrs as attitude import navio.pwm import navio.adc import navio.leds #import GPS import numpy as np import navio.ms5611 import os import navio.rcinput from transforms3d.euler import quat2euler import filterShawn import bufferShawn import numIntegration import kalmanFilterPython # ---------------------------------------------------------------------- # Nic and Shawn's variables -------------------------------START-------- # ---------------------------------------------------------------------- convFact = 180/math.pi def rad2Deg(rad): return rad*convFact def deg2Rad(deg): return deg/convFact def rangeCoeff(xLims, yLims): coeffRange = [0,0] # calc slope and y intercept coeffRange[0] = float(yLims[1]-yLims[0])/float(xLims[1]-xLims[0]) coeffRange[1] = float(yLims[1]-xLims[1]*coeffRange[0]) #print(coeffRange) return coeffRange def rangeD(inputD,rangeCoeff): return inputD*rangeCoeff[0] + rangeCoeff[1] rc0in = [1065,1962] rc1in = [1065,1960] rc2in = [1065,1970] #rc0in = [1068, 1930] # roll, ailerons #rc1in = [1067, 1930] # pitch, elevators #rc2in = [1073, 1925] # throttle #rc3in = [1072, 1922] # yaw, rudder #rc4in = [1065, 1933] # 3 pos flight mode switch, C #rc5in = [1065, 1933] # extra sliders, can be used for tuning #rc6in = [1065, 1933] # extra sliders, can be used for tuning #rc7in = [1065, 1933] # 3 position switch, E #rc8in = [1065, 1933] # 2 position switch, A #prollIn = [-1000,1000] rc0out = [-30,30] rc1out = [.250,.500] #rc0outI = [.16,1.6] rc2out = [.99,1.75] #rc5out = [.001,.01] #rc6out = [.01,1] throttle = 1.1 prollOut = [-.15,.15] rc0c = rangeCoeff(rc0in,rc0out) rc1c = rangeCoeff(rc1in,rc1out) #rc0cI = rangeCoeff(rc0in,rc0outI) rc2c = rangeCoeff(rc2in,rc2out) #rc5c = rangeCoeff(rc5in,rc5out) #rc6c = rangeCoeff(rc6in,rc6out) # set this flag to true to run the freq sweep, otherwise disable excitation = False zeroed = False # set this flag to run the rc calibration (output all values to record max/min) # rcCal = false # yaw gains kpy = 19.39823 kiy = .387965 kdy = 7.525825 # ZN tuning kp = .12057 ki = .321092 kd = .011319 # Disnmore Herrington Tuning #kp = .508 #ki = .00001 #kd = .0897 # Disnmore Herrington Tuning kp = .210 ki = .015 kd = .044 # Kevin Tuning kp = .295 ki = .0015 kd = 3.2 # Disnmore Herrington Tuning RollSimp #kp = .05 #ki = .0 #kd = .000 # no overshoot kpz = .04019 kiz = .107031 kdz = .010061 # debug message flag dbgmsg = True # turn on for specific messages dbgmsg2 = False # both true to turn on all messages # filter cutoff frequency and sampling rate fc = 6 fs = 100.0 order = 2 # run these only once to calculate the coefficients coeffGyro = filterShawn.butterworth(order,"HPF",fc,fs) coeffAcc = filterShawn.butterworth(order,"LPF",fc,fs) kalmanObj = kalmanFilterPython.kalmanFilterShawn() # create input buffers for gyro raw and accel roll data gyroRawBuffer = bufferShawn.bufferShawn(order+1) accelRollBuffer = bufferShawn.bufferShawn(order+1) # create output buffers for filtered gyro raw and filtered accel roll data gyroFiltBuffer = bufferShawn.bufferShawn(order+2) accelFiltBuffer = bufferShawn.bufferShawn(order) # create roll error buffer rollErrorCurr = 0 rollErrorPrev = 0 rollErrorSum = 0 pitchErrorPrev = 0 pitchErrorSum = 0 timeStep = .01 # seconds (at 100 Hz) # initialize vars for Simpsons rule integration evenRoll = 0 oddRoll = 0 rollGyroSimp = 0 sinr1 = 0 sinr2 = 0 sinr3 = 0 sinr4 = 0 rollKalman = 0 rollGyro = 0 rollGyroRaw = 0 currentGyro = 0 previousGyro = 0 rollAccel = 0 Pyaw = 0 yawStep = False yawRel = 0 yawOffset = 0 stepInput = False counter = 0 # set up encoder variables, encoder0 is used to set the starting position to 0 degrees rollEnc = 0 encoder0 = 0 if(excitation): n = 0 A = .04 wn = 1 zeta = 1 kp = wn**2 kd = 2*zeta*wn else: zeta = 1 wn = 1 #B = 51.3341 # experimentally determined, in radians B = 2941.2 # experimentally determined, in degrees A = -1.5856 # experimental wn = 4.96 # experimental #kp = wn**2.0 #kd = 2.0*zeta*wn # ---------------------------------------------------------------------- # Nic and Shawn's variables --------------------------------END--------- # ---------------------------------------------------------------------- # current_alt has been zeroed out to prevent the code from wigging out current_alt = 0; # Getting next available log file number and creating header# gg = 0 while os.path.exists("Log_Files/datalog%s.csv" % gg): gg+=1 #header_string = "rates, motor right, motoro left\n" header_string = "Time, roll, rollr,motor right,motor left,msn1,msn2\n" fh = open("Log_Files/datalog%s.csv" % gg,"a") fh.write(header_string) fh.close() print ("Initializing ADC") navio.util.check_apm() adc = navio.adc.ADC() analog = [0] * adc.channel_count print ("Initializing Sensors") imu = navio.mpu9250.MPU9250() imu.initialize() rcin = navio.rcinput.RCInput() AHRS_data = attitude.AHRS(0.01) #100Hz sensor attitude estimation FIXED ## GPS Disabled #GPS = GPS.U_blox() #for ind in range(0, 10): # GPS.enable_posllh() led = navio.leds.Led() baro = navio.ms5611.MS5611() baro.initialize() time.sleep(0.25) baro.refreshPressure() time.sleep(0.01) # Waiting for pressure data ready 10ms baro.readPressure() baro.refreshTemperature() time.sleep(0.01) # Waiting for temperature data ready 10ms baro.readTemperature() baro.calculatePressureAndTemperature() ground_alt = 0 target_alt = 1 #target alt experimentation. if baro.PRES < 1013: # small check in case barometer pressure is invalid ground_alt = 44330.77*(1-(baro.PRES*100/101326)**0.1902632) print("altitude ground?:") print(ground_alt) target_alt = target_alt print("altitude target?:") print(target_alt) #ground_alt = 0 led.setColor('Red') time.sleep(1) if imu.testConnection(): print ("Connection established: True") else: sys.exit("Connection established: False") accels, rates, m9m = imu.getMotion9() if m9m[0] == 0: print ("WARNING: Mag reading zeros, try rebooting Navio") led.setColor('Magenta') mag_calibration_flag = False # True means run calibration, # otherwise use data in # mag_calibration_constants.txt # Run Magnetometer calibration if flag is TRUE if mag_calibration_flag == True: led.setColor('Yellow') imu.mag_calibrate() # Configure servo output motor_front_pin = 0 motor_back_pin = 1 motor_left_pin = 2 motor_right_pin = 3 motor_front_pwm = navio.pwm.PWM(motor_front_pin) motor_back_pwm = navio.pwm.PWM(motor_back_pin) motor_left_pwm = navio.pwm.PWM(motor_left_pin) motor_right_pwm = navio.pwm.PWM(motor_right_pin) motor_front_pwm.initialize() motor_back_pwm.initialize() motor_left_pwm.initialize() motor_right_pwm.initialize() motor_front_pwm.set_period(200) motor_back_pwm.set_period(200) motor_left_pwm.set_period(200) motor_right_pwm.set_period(200) # Cycling the pwm commands to initialize the devices motor_front_pwm.set_duty_cycle(1.000) motor_back_pwm.set_duty_cycle(1.000) motor_left_pwm.set_duty_cycle(1.000) motor_right_pwm.set_duty_cycle(1.000) time.sleep(0.5) motor_front_pwm.set_duty_cycle(2.000) motor_back_pwm.set_duty_cycle(2.000) motor_left_pwm.set_duty_cycle(2.000) motor_right_pwm.set_duty_cycle(2.000) time.sleep(0.5) motor_front_pwm.set_duty_cycle(1.000) motor_back_pwm.set_duty_cycle(1.000) motor_left_pwm.set_duty_cycle(1.000) motor_right_pwm.set_duty_cycle(1.000) time.sleep(0.5) # Timers to maintain constant cycle times timein = time.time() prev_time = (time.time()-timein)*1000.0 timer_1hz = prev_time timer_10hz = prev_time timer_25hz = prev_time timer_50hz = prev_time timer_100hz = prev_time baro_timer = 0 # Declaring variables for use in main loop rc_data = rcin.read_all() motor_front = 1.000 motor_back = 1.000 motor_left = 1.000 motor_right = 1.000 gyro_2 = 0 gyro_1 = 0 gyro_0 = 0 cur_time = 0 roll_angle_gyro = 0 gyro_2p = 0 gyro_1p = 0 gyro_0p = 0 pitch_angle_gyro = 0 rates2= [0, 0, 0] accels2 = [0,0,0] #------------------------------------------------# ### Declare global variables here ### # ----------------------------perform RC calibration------------------------------ #doOver = True #rcCal = int(input("RC Calibration, 1 or 0\n")) #if(rcCal): # while(doOver): # doOver = False # print("Calibrate RC Inputs") # print("Minimum Values") # print("rc_data[0]",rc_data[0],"rc_data[1]",rc_data[1],"rc_data[2]",rc_data[2],"rc_data[3]",rc_data[3],"rc_data[4]",rc_data[4]) # rc0[0] = rc_data[0] # rc1[0] = rc_data[1] # rc2[0] = rc_data[2] # rc3[0] = rc_data[3] # rc4[0] = rc_data[4] # print("put all sticks in max position") # dummy = int(input("press enter\n")) # print("Maximum Values") # print("rc_data[0]",rc_data[0],"rc_data[1]",rc_data[1],"rc_data[2]",rc_data[2],"rc_data[3]",rc_data[3],"rc_data[4]",rc_data[4]) # rc0[1] = rc_data[0] # rc1[1] = rc_data[1] # rc2[1] = rc_data[2] # rc3[1] = rc_data[3] # rc4[1] = rc_data[4] # # these are the output limits for the RC inputs # rc0out = [-90,90] # rc1out = [0,1] # rc2out = [1,10] # rc3out = [0,1] # rc4out = [0,1] # # these are the coefficients for the RC input ranges # rc0c = rangeCoeff(rc0,rc0out) # rc1c = rangeCoeff(rc1,rc1out) # rc2c = rangeCoeff(rc2,rc2out) # rc3c = rangeCoeff(rc3,rc3out) # rc4c = rangeCoeff(rc4,rc4out) # doOver = int(input("THIS WILL ERASE ALL VALS\nto redo, type 1, otherwise type 0, then press enter\n")) alts = 0 altitudeErrorSum = 0 altitudeErrorPrev = 0 print ("Starting main loop: here we go!") while True: current_time = (time.time()-timein)*1000.0 if m9m[0] == 0: led.setColor('Magenta') else: led.setColor('Green') if (current_time - timer_100hz) >=10.0: # 10 ms = 100Hz #print ("In 100Hz loop!") #### IMU/Attitude and GPS estimation: DO NOT TOUCH #### for i in range (0, adc.channel_count): analog[i] = adc.read(i)*0.001 accels, rates, m9m = imu.getMotion9() accels2[0] = -accels[1] accels2[1] = -accels[0] accels2[2] = accels[2] rates2[0] = rates[1] rates2[1] = rates[0] rates2[2] = -rates[2] AHRS_data.update_imu(rates2, accels2) yaw,roll,pitch = quat2euler(AHRS_data.quaternion,axes='rzxy') baro_timer = baro_timer + 1 if (baro_timer == 1): baro.refreshPressure() elif (baro_timer == 2): baro.readPressure() elif (baro_timer == 3): baro.refreshTemperature() elif (baro_timer == 4): baro.readTemperature() elif (baro_timer == 5): baro.calculatePressureAndTemperature() baro_timer = 0 #print baro.PRES if baro.PRES < 1013: # Only update if barometer is valid alts = 44330.77*(1-(baro.PRES*100/101326)**0.1902632) #print "altitude?:" #print alts #alts = 0 current_alt = alts - ground_alt #print current_alt #buffer = GPS.bus.xfer2([100]) ## GPS is disabled ## #for byt in buffer: # GPS.scan_ubx(byt) # if(GPS.mess_queue.empty() != True): # GPS_data = GPS.parse_ubx() #### End DO NOT TOUCH #### #----------------------------------------------------# #### BEGIN STUDENT SECTION #### # This section runs at 100Hz. You can add things for executation # at other speeds. See the 1Hz loop for display examples. SD # logging occurs at 10Hz. See the 10Hz if statement for details # Output commands # motor_front, motor_back, motor_left, motor_right are the 4 motor commands # motor range is from 1.000 to 2.000 (1.000 is 0% power) # R/C Input # rc_data variable stores all RC inputs (range is [0]-[5]) # each rc_data channel varies between 1000 and 2000 # Sensor data # yaw, roll, and pitch contain attitude info (float) # rates[0 to 2] stores the three angular velocity components (rad/s) # accels[0 to 2] stores the three linear accelerations # analog[4] and [5] are the two analog inputs (value is in Volts) # current_alt contains the current altitude (relatively to # start up) in meters (from the barometer) # -------------------------ENCODER ROLL----------------------------------------- # if encoder0 == 0: # encoder0 = analog[4] # rollEnc = (analog[4]-encoder0)*(360/5) # rollEnc = analog[4]*(360.0/5.0) # -------------------------ENCODER ROLL----------------------------------------- rc_data = rcin.read_all() # -------------------------ATTITUDE EST----------------------------------------- # put current gyro raw data on the head of the gyro input buffer #gyroRawBuffer.put(rates[1]) #print(gyroRawBuffer.prev(0),rates[1]) #rollKalman = kalmanObj.kalmanFilt(rad2Deg(-math.atan2(accels[0], accels[2])),rad2Deg(rates[1]),timeStep) # put the roll accelerometer angle on the head of the accel roll input buffer #accelRollBuffer.put(-math.atan2(accels[0], accels[2])) # filter gyro data #gyroFiltBuffer.put(filterShawn.filterEval(coeffGyro,order,gyroRawBuffer,gyroFiltBuffer)) # apply trapezoid rule to the filtered gyro data #rollGyro = rollGyro + numIntegration.numIntegration("Trap",timeStep,gyroFiltBuffer) # apply trapezoid rule to the filtered gyro data #rollGyroRaw = rollGyroRaw + numIntegration.numIntegration("Trap",timeStep,gyroRawBuffer) # apply simpson's rule to the filtered gyro data #if((-1.0)**i >=0): # evenRoll = evenRoll + numIntegration.numIntegration("Simp",timeStep,gyroFiltBuffer) # rollGyroSimp = evenRoll #else: # oddRoll = oddRoll + numIntegration.numIntegration("Simp",timeStep,gyroFiltBuffer) # rollGyroSimp = oddRoll # filter acc data using coefficients found earlier #accelFiltBuffer.put(filterShawn.filterEval(coeffAcc,order,accelRollBuffer,accelFiltBuffer)) #rollAccel = accelFiltBuffer.prev(0) # -------------------------ATTITUDE EST----------------------------------------- # -------------------------STABILIZATION----------------------------------------- # read desired roll from RC stick #rollDes = rangeD(float(rc_data[0]),rc0c) #pitchDes = rangeD(float(rc_data[1]),rc0c) rollDes = 0 pitchDes = 0 #throttle = rangeD(float(rc_data[2]),rc2c) #uncomment for manual control throttle = 1.0 #for testing Paltitude #yawRateDes = rangeD(float(rc_data[4]),rc4c) if rollDes < 7 and rollDes >-7: rollDes = 0 if pitchDes < 7 and pitchDes > -7: pitchDes = 0 if throttle < 1.1: throttle = 1.0 if(yawStep and counter > 300): Pyaw = 0.05 #### what is Pyaw? if(stepInput and counter>500): #print("this is happening") rollDes = 0 if(stepInput and counter-1000 > 0): rollDes = 0 if(stepInput and counter-1500 > 0): rollDes = 0 if(stepInput and counter-2000 > 0): rollDes = 0 counter = 0 # uncomment for Kalman roll #rollError = rollDes - rollKalman #print rollKalman # uncomment for simpsons rule roll #rollError = rollDes - rad2Deg(rollAccel-rollGyro) # uncomment for onboard roll/pitch rollError = rollDes - rad2Deg(roll) pitchError = pitchDes - rad2Deg(pitch) altitudeError = target_alt - current_alt #print(current_alt) #print(altitudeError) #print(rc_data) #wn = rangeD(float(rc_data[2]),rc2c) # recalculate at each time step to account for changing wn #kp = wn**2.0 #kd = 2.0*zeta*wn #kd = rangeD(float(rc_data[2]),rc2c) #print kd #kd = rangeD(float(rc_data[5]),rc5c) #kp = rangeD(float(rc_data[6]),rc6c) #print kp, kd if(not excitation): # NDI control #Proll = (kd*rad2Deg(float(-rates[1])))/(B*1.8)+(kp*(rollError))/B-(A*rad2Deg(float(rates[1])))/(B*1.4) #yawProportional = kpy * rates[2] #derivative = kd * deg2Rad((rollError - rollErrorPrev)/timeStep) #yawDerivative = kdy * -rates[2] #print(deg2Rad((rollError - rollErrorPrev)/timeStep)) #yawErrorSum = yawErrorSum + (yawError + yawErrorPrev)*(timeStep/2.0) #print(rollErrorSum) #yawIntegral = ki * deg2Rad(yawErrorSum) rollProportional = kp * deg2Rad(rollError) #derivative = kd * deg2Rad((rollError - rollErrorPrev)/timeStep) rollDerivative = kd * -deg2Rad(rates[1]) #print(deg2Rad((rollError - rollErrorPrev)/timeStep)) rollErrorSum = rollErrorSum + (rollError + rollErrorPrev)*(timeStep/2.0) #print(rollErrorSum) rollIntegral = ki * deg2Rad(rollErrorSum) pitchProportional = kp * deg2Rad(pitchError) #derivative = kd * deg2Rad((rollError - rollErrorPrev)/timeStep) pitchDerivative = kd * -deg2Rad(rates[0]) #print(deg2Rad((rollError - rollErrorPrev)/timeStep)) pitchErrorSum = pitchErrorSum + (pitchError + pitchErrorPrev)*(timeStep/2.0) #print(rollErrorSum) pitchIntegral = ki * deg2Rad(pitchErrorSum) altitudePorportional = kpz * altitudeError altitudeDerivative = kdz * -current_alt #NOT SURE IF THIS IS CORRECT altitudeErrorSum = altitudeErrorSum + (altitudeError + altitudeErrorPrev)*(timeStep/2.0) altitudeIntegral = kiz * altitudeErrorSum # -------------------------Kill Switch------------------------------------ # eveyrthing in here only happens when the switch is on (up) if(float(rc_data[4]) > 1700.0): #what is rc_data[4] on controller? #if(1): timer = time.time() - timein #sinr1=0.1*(.37*math.sin(1.5713+2*math.pi*0.2*timer) + .37*math.sin(4.5717+2*0.6*math.pi*timer) + .37*math.sin(1.2140+2*1.0*math.pi*timer) + .37*math.sin(1.0478+2*1.4*math.pi*timer) + .37*math.sin(3.9204+2*math.pi*1.8*timer) + .37*math.sin(4.0099+2*2.2*math.pi*timer) + .37*math.sin(3.4966+2*2.6*math.pi*timer)) #sinr2=0.1*(.37*math.sin(1.6146+2*math.pi*0.3*timer) + .37*math.sin(4.6867+2*0.7*math.pi*timer) + .37*math.sin(1.2267+2*1.1*math.pi*timer) + .37*math.sin(1.0671+2*1.5*math.pi*timer) + .37*math.sin(3.9664+2*math.pi*1.9*timer) + .37*math.sin(3.8699+2*2.3*math.pi*timer) + .37*math.sin(3.5712+2*2.7*math.pi*timer)) #sinr3=(.37*math.sin(1.9535+2*math.pi*0.4*timer) + .37*math.sin(5.2646+2*0.8*math.pi*timer) + .37*math.sin(2.0651+2*1.2*math.pi*timer) + .37*math.sin(2.4636+2*1.6*math.pi*timer) + .37*math.sin(5.6716+2*math.pi*2.0*timer) + .37*math.sin(5.7265+2*2.4*math.pi*timer) + .37*math.sin(5.7810+2*2.8*math.pi*timer)) #sinr4=(.37*math.sin(3.2771+2*math.pi*0.5*timer) + .37*math.sin(1.3417+2*0.9*math.pi*timer) + .37*math.sin(5.5561+2*1.3*math.pi*timer) + .37*math.sin(0.5030+2*1.7*math.pi*timer) + .37*math.sin(4.7331+2*math.pi*2.1*timer) + .37*math.sin(5.9415+2*2.5*math.pi*timer) + .37*math.sin(0.7460+2*2.9*math.pi*timer)) if(rollErrorSum > .5): rollErrorSum = 0 if(not zeroed): rollErrorSum = 0 yawOffset = yaw Proll = rollProportional+rollIntegral+rollDerivative Ppitch = pitchProportional+pitchIntegral+pitchDerivative Paltitude = altitudePorportional+altitudeIntegral+altitudeDerivative #print("this is Paltitude:" + Paltitude) #print rad2Deg(yawRel) counter = counter + 1 if(excitation): timer=(time.time()-timein) frequencySweep = math.sin(2*math.pi*timer*(.2+.001*n)) n=n+1 motor_right = throttle - A * frequencySweep motor_left = throttle + A * frequencySweep else: #motor_right = 1.4 + sinr1 #motor_left = 1.4 + sinr2 #motor_front = 0 #motor_back = 0 #motor_right = throttle - Proll motor_right = 0 #motor_right = Paltitude - Proll #might have to add 1.0 for Paltitude?? #print (motor_right) #motor_left = throttle + Proll motor_left = 0 #motor_left = Paltitude + Proll #print (motor_left) #motor_front = throttle + Ppitch motor_front = 0 #motor_front = Paltitude + Ppitch #print (motor_front) #motor_back = throttle - Ppitch motor_back = 0 #motor_back = Paltitude - Ppitch #use this for altitude control #print (motor_back) zeroed = True else: motor_right = 0 motor_left = 0 motor_front = 0 motor_back = 0 zeroed = False Pyaw = 0 counter = 0 pitchErrorPrev = pitchError rollErrorPrev = rollError #altitudeErrorPrev = altitudeError # LOG DATA # RC Controller INPUT # #print (x[4]*(180/math.pi),rollGyro*180/math.pi,x1[4]*(180/math.pi),rollAccel*180/math.pi) ### Data logging feature ### # GPS is disabled, tab in fh and below to re-enable #try: # GPS_data #except NameError: # GPS_data = None #if GPS_data is not None: #fh = open("Log_Files/datalog%s.csv" % gg,"a") #log_data = np.array([time.clock(), GPS_data.lat/10000000.0, GPS_data.lon/10000000.0, #### LOGGING #### # This is the data to be logged. The header (text at top of file) is edited at the top # of the program. Add/subtract variables as needed. #log_data = np.array([time.time()-timein,roll,rates[1],motor_right,motor_left,sinr1,sinr2]) #np.savetxt(fh, log_data.reshape(1,log_data.shape[0]), delimiter=',', fmt='%.6f') #fh.close() #### END STUDENT SECTION #### #---------------------------------------------------# motor_front_pwm.set_duty_cycle(motor_front) motor_back_pwm.set_duty_cycle(motor_back) motor_left_pwm.set_duty_cycle(motor_left) motor_right_pwm.set_duty_cycle(motor_right) timer_100hz = current_time # reset timer flag # end of 100Hz section if (current_time - timer_50hz) >= 20.0: timer_50hz = current_time # End of 50Hz section if (current_time - timer_25hz) >= 40.0: timer_25hz = current_time # End of 25Hz section if (current_time - timer_10hz) >= 100.0: # # RC Controller INPUT # # rc_data = rcin.read_all() # #if(dbgmsg and dbgmsg2): # print("Gyro Filter Buffer Contents") # print(gyroFiltBuffer) #print(rad2Deg(rollAccel+rollGyroSimp)) #print(rad2Deg(accelRollBuffer.prev(0)),rad2Deg(accelFiltBuffer.prev(0))) #print(rad2Deg(rollGyroRaw),rad2Deg(gyroFiltBuffer.prev(0))) #print rc_data #print(wn) #print(rollError) #print(float(rc_data[2])) #print(rollAccel*(180/math.pi)) #print((rollGyro+rollAccel)*(180.0/math.pi),(rollGyroSimp+rollAccel)*(180/math.pi)) #print(rollEnc) # # #print (x[4]*(180/math.pi),rollGyro*180/math.pi,x1[4]*(180/math.pi),rollAccel*180/math.pi) # # ### Data logging feature ### # # GPS is disabled, tab in fh and below to re-enable # #try: # # GPS_data # #except NameError: # # GPS_data = None # #if GPS_data is not None: # fh = open("Log_Files/datalog%s.csv" % gg,"a") # #log_data = np.array([time.clock(), GPS_data.lat/10000000.0, GPS_data.lon/10000000.0, # #### LOGGING #### # # This is the data to be logged. The header (text at top of file) is edited at the top # # of the program. Add/subtract variables as needed. # log_data = np.array([time.clock(),current_alt, yaw, pitch, roll, # accels[0], accels[1], accels[2], rates[0], rates[1], rates[2], # m9m[0], m9m[1], m9m[2], rates[0], rates[1], rates[2],accels[0],accels[1],accels[2],rollGyro, rollAccel, rollEnc, (rollGyro+rollAccel)*(180/math.pi)]) # np.savetxt(fh, log_data.reshape(1,log_data.shape[0]), delimiter=',', fmt='%.6f') # # fh.close() # #### END LOGGING #### # timer_10hz = current_time # End of 10Hz section if (current_time - timer_1hz) >= 1000.0: # Customizable display message # #print "Angles:", "{:+3.2f}".format(roll*57.32), "{:+3.2f}".format(pitch*57.32), "{:+3.2f}".format(yaw*57.32) print('current alt:') print(current_alt) print('target alt:') print(target_alt) print('Ground alt:') print(ground_alt) print('Altitude Error:') print(altitudeError) print('rc_data[4] aka kill switch value:') print(float(rc_data[4])) print('Paltitude aka what we would replace throttle with if autonomous') print(Paltitude) #print "Analogs:", analog[0], analog[1], analog[2], analog[3], analog[4] #print "Altitude:", current_alt #print pitch_angle_gyro #print roll_angle_acc #print roll_angle_gyro #if GPS_data is not None: # print "Location:", "{:+3.6f}".format(GPS_data.lat/10000000.0), "{:+3.6f}".format(GPS_data.lon/10000000.0), "{:+4.1f}".format(GPS_data.heightSea/1000.0) # print "Loc Accuracy:", "{:+3.3f}".format(GPS_data.horAcc/1000.0), "{:+3.3f}".format(GPS_data.verAcc/1000.0) #print pitch_angle_gyro #print accels timer_1hz = current_time # End of 1Hz section
29.467643
314
0.662758
7952083c0f33e4e80dd5e3eb10385a6f5c5a3e51
4,479
py
Python
lib/BatchNorm.py
bcrafton/ssdfa
661f9059184fde6ba7ad1ca710c5b5a1954c5ea6
[ "MIT" ]
10
2019-01-23T17:07:59.000Z
2021-07-13T10:18:10.000Z
lib/BatchNorm.py
bcrafton/ssdfa
661f9059184fde6ba7ad1ca710c5b5a1954c5ea6
[ "MIT" ]
1
2019-07-30T00:55:58.000Z
2019-09-17T13:31:48.000Z
lib/BatchNorm.py
bcrafton/ssdfa
661f9059184fde6ba7ad1ca710c5b5a1954c5ea6
[ "MIT" ]
1
2019-07-28T17:28:30.000Z
2019-07-28T17:28:30.000Z
import tensorflow as tf import numpy as np import math from tensorflow.python.ops import gen_nn_ops from lib.Layer import Layer class BatchNorm(Layer): def __init__(self, input_size, name=None, load=None, train=True, eps=1e-3): self.input_size = list(input_size) if len(self.input_size) == 2: self.dims = [0] elif len(self.input_size) == 4: self.dims = [0, 1, 2] else: assert(False) self.size = self.input_size[-1] self.name = name self._train = train self.eps = eps self.num_parameters = np.prod(self.size) * 2 if load: print ("Loading Weights: " + self.name) weight_dict = np.load(load).item() gamma = weight_dict[self.name + '_gamma'] beta = weight_dict[self.name + '_beta'] if np.shape(gamma) != (self.size,): print (np.shape(gamma), self.size) assert(np.shape(gamma) == (self.size,)) if np.shape(beta) != (self.size,): print (np.shape(beta), self.size) assert(np.shape(beta) == (self.size,)) else: gamma = np.ones(shape=self.size) beta = np.zeros(shape=self.size) self.gamma = tf.Variable(gamma, dtype=tf.float32) self.beta = tf.Variable(beta, dtype=tf.float32) ################################################################### def get_weights(self): return [(self.name + '_gamma', self.gamma), (self.name + '_beta', self.beta)] def num_params(self): return self.num_parameters def output_shape(self): if len(self.input_size) == 2: return self.input_size[1] elif len(self.input_size) == 4: return self.input_size[1:4] else: assert(False) ################################################################### def forward(self, X): mean = tf.reduce_mean(X, axis=self.dims) _, var = tf.nn.moments(X - mean, axes=self.dims) A = tf.nn.batch_normalization(x=X, mean=mean, variance=var, offset=self.beta, scale=self.gamma, variance_epsilon=self.eps) return {'aout':A, 'cache':{}} def backward(self, AI, AO, DO, cache=None): mean = tf.reduce_mean(AI, axis=self.dims) _, var = tf.nn.moments(AI - mean, axes=self.dims) ivar = 1. / tf.sqrt(self.eps + var) if len(self.input_size) == 2: AI = tf.reshape(AI, (self.input_size[0], 1, 1, self.input_size[1])) DO = tf.reshape(AI, (self.input_size[0], 1, 1, self.size)) [DI, dgamma, dbeta, _, _] = gen_nn_ops.fused_batch_norm_grad_v2(y_backprop=DO, x=AI, scale=self.gamma, reserve_space_1=mean, reserve_space_2=ivar, epsilon=self.eps, is_training=True) if len(self.input_size) == 2: DI = tf.reshape(DI, (self.input_size[0], self.size)) return {'dout':DI, 'cache':{}} def gv(self, AI, AO, DO, cache=None): if not self._train: return [] mean = tf.reduce_mean(AI, axis=self.dims) _, var = tf.nn.moments(AI - mean, axes=self.dims) ivar = 1. / tf.sqrt(self.eps + var) if len(self.input_size) == 2: AI = tf.reshape(AI, (self.input_size[0], 1, 1, self.input_size[1])) DO = tf.reshape(AI, (self.input_size[0], 1, 1, self.size)) [DI, dgamma, dbeta, _, _] = gen_nn_ops.fused_batch_norm_grad_v2(y_backprop=DO, x=AI, scale=self.gamma, reserve_space_1=mean, reserve_space_2=ivar, epsilon=self.eps, is_training=True) if len(self.input_size) == 2: DI = tf.reshape(DI, (self.input_size[0], self.size)) return [(dgamma, self.gamma), (dbeta, self.beta)] ################################################################### def dfa_backward(self, AI, AO, E, DO): return self.backward(AI, AO, DO) def dfa_gv(self, AI, AO, E, DO): return self.gv(AI, AO, DO) ################################################################### def lel_backward(self, AI, AO, E, DO, Y, cache): return self.backward(AI, AO, DO, cache) def lel_gv(self, AI, AO, E, DO, Y, cache): return self.gv(AI, AO, DO, cache) ###################################################################
34.992188
190
0.509935
79520917eee40acaee7419bedfd4ffadcac052f8
11,327
py
Python
app.py
khanzaifa37/HR_Help
8c010e8f369028f306b5aa396137c1036af872f6
[ "MIT" ]
null
null
null
app.py
khanzaifa37/HR_Help
8c010e8f369028f306b5aa396137c1036af872f6
[ "MIT" ]
null
null
null
app.py
khanzaifa37/HR_Help
8c010e8f369028f306b5aa396137c1036af872f6
[ "MIT" ]
null
null
null
import os, sys, shutil, time import pickle from flask import Flask, request, jsonify, render_template,send_from_directory import pandas as pd from sklearn.externals import joblib from sklearn.ensemble import RandomForestClassifier import numpy as np import urllib.request import json from geopy.geocoders import Nominatim from flask_mail import Mail,Message import matplotlib.pyplot as plt import seaborn as sns from sklearn.neighbors import KNeighborsClassifier from sklearn.ensemble import RandomForestClassifier app = Flask(__name__) app.config['MAIL_SERVER']='smtp.gmail.com' app.config['MAIL_PORT'] = 465 app.config['MAIL_USERNAME'] = 'anantisdumb@gmail.com' app.config['MAIL_PASSWORD'] = '1fuckanant' app.config['MAIL_USE_TLS'] = False app.config['MAIL_USE_SSL'] = True mail=Mail(app) def func(X_res): import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt import seaborn as sns from scipy import stats from scipy.stats import randint # prep from sklearn.model_selection import train_test_split from sklearn import preprocessing from sklearn.datasets import make_classification from sklearn.preprocessing import binarize, LabelEncoder, MinMaxScaler # models from sklearn.linear_model import LogisticRegression from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier, ExtraTreesClassifier # Validation libraries from sklearn import metrics from sklearn.metrics import accuracy_score, mean_squared_error, precision_recall_curve from sklearn.model_selection import cross_val_score #Neural Network from sklearn.neural_network import MLPClassifier from sklearn.model_selection import learning_curve from sklearn.model_selection import GridSearchCV from sklearn.model_selection import RandomizedSearchCV #Bagging from sklearn.ensemble import BaggingClassifier, AdaBoostClassifier from sklearn.neighbors import KNeighborsClassifier #Naive bayes from sklearn.naive_bayes import GaussianNB #Stacking from sklearn.preprocessing import LabelEncoder #reading in CSV's from a file path train_df = pd.read_csv('trainms.csv') #missing data total = train_df.isnull().sum().sort_values(ascending=False) percent = (train_df.isnull().sum()/train_df.isnull().count()).sort_values(ascending=False) missing_data = pd.concat([total, percent], axis=1, keys=['Total', 'Percent']) #missing_data.head(20) #print(missing_data) train_df = train_df.drop(['comments'], axis= 1) train_df = train_df.drop(['state'], axis= 1) train_df = train_df.drop(['Timestamp'], axis= 1) train_df.isnull().sum().max() #just checking that there's no missing data missing... #train_df.head(5) # Assign default values for each data type defaultInt = 0 defaultString = 'NaN' defaultFloat = 0.0 # Create lists by data tpe intFeatures = ['Age'] stringFeatures = ['Gender', 'Country', 'self_employed', 'family_history', 'treatment', 'work_interfere', 'no_employees', 'remote_work', 'tech_company', 'anonymity', 'leave', 'mental_health_consequence', 'phys_health_consequence', 'coworkers', 'supervisor', 'mental_health_interview', 'phys_health_interview', 'mental_vs_physical', 'obs_consequence', 'benefits', 'care_options', 'wellness_program', 'seek_help'] floatFeatures = [] # Clean the NaN's for feature in train_df: if feature in intFeatures: train_df[feature] = train_df[feature].fillna(defaultInt) elif feature in stringFeatures: train_df[feature] = train_df[feature].fillna(defaultString) elif feature in floatFeatures: train_df[feature] = train_df[feature].fillna(defaultFloat) # else: # #print('Error: Feature %s not recognized.' % feature) ########################################### #clean 'Gender' #Slower case all columm's elements gender = train_df['Gender'].str.lower() #print(gender) #Select unique elements gender = train_df['Gender'].unique() #Made gender groups male_str = ["male", "m", "male-ish", "maile", "mal", "male (cis)", "make", "male ", "man","msle", "mail", "malr","cis man", "Cis Male", "cis male"] trans_str = ["trans-female", "something kinda male?", "queer/she/they", "non-binary","nah", "all", "enby", "fluid", "genderqueer", "androgyne", "agender", "male leaning androgynous", "guy (-ish) ^_^", "trans woman", "neuter", "female (trans)", "queer", "ostensibly male, unsure what that really means"] female_str = ["cis female", "f", "female", "woman", "femake", "female ","cis-female/femme", "female (cis)", "femail"] for (row, col) in train_df.iterrows(): if str.lower(col.Gender) in male_str: train_df['Gender'].replace(to_replace=col.Gender, value='male', inplace=True) if str.lower(col.Gender) in female_str: train_df['Gender'].replace(to_replace=col.Gender, value='female', inplace=True) if str.lower(col.Gender) in trans_str: train_df['Gender'].replace(to_replace=col.Gender, value='trans', inplace=True) #Get rid of bullshit stk_list = ['A little about you', 'p'] train_df = train_df[~train_df['Gender'].isin(stk_list)] ############################################### #complete missing age with mean train_df['Age'].fillna(train_df['Age'].median(), inplace = True) # Fill with media() values < 18 and > 120 s = pd.Series(train_df['Age']) s[s<18] = train_df['Age'].median() train_df['Age'] = s s = pd.Series(train_df['Age']) s[s>120] = train_df['Age'].median() train_df['Age'] = s #Ranges of Age train_df['age_range'] = pd.cut(train_df['Age'], [0,20,30,65,100], labels=["0-20", "21-30", "31-65", "66-100"], include_lowest=True) train_df = train_df.drop(['Country'], axis= 1) ######################################################## #missing data total = train_df.isnull().sum().sort_values(ascending=False) percent = (train_df.isnull().sum()/train_df.isnull().count()).sort_values(ascending=False) missing_data = pd.concat([total, percent], axis=1, keys=['Total', 'Percent']) #missing_data.head(20) #print(missing_data) ###################################################### # # Scaling Age # scaler = MinMaxScaler() # train_df['Age'] = scaler.fit(train_df[['Age']]) # train_df['Age'] = scaler.transform(train_df[['Age']]) # X_res['Age']= scaler.transform(X_res[['Age']]) # Scaling Age scaler = MinMaxScaler() train_df['Age'] = scaler.fit_transform(train_df[['Age']]) X_res['Age']=scaler.transform(X_res[['Age']]) ###################################################3 # define X and y feature_cols = ['Age', 'Gender', 'family_history', 'benefits', 'care_options', 'anonymity', 'leave', 'work_interfere'] X = train_df[feature_cols] y = train_df.treatment # split X and y into training and testing sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30, random_state=0) le=LabelEncoder() # Iterating over all the common columns in train and test for col in X_test.columns.values: # Encoding only categorical variables if X_test[col].dtypes=='object': # Using whole data to form an exhaustive list of levels data=X_train[col].append(X_test[col]) le.fit(data.values) X_train[col]=le.transform(X_train[col]) X_test[col]=le.transform(X_test[col]) X_res[col]=le.transform(X_res[col]) def tuningRandomizedSearchCV(model, param_dist): #Searching multiple parameters simultaneously # n_iter controls the number of searches rand = RandomizedSearchCV(model, param_dist, cv=10, scoring='accuracy', n_iter=10, random_state=5) rand.fit(X, y) #rand.grid_scores_ # examine the best model #print('Rand. Best Score: ', rand.best_score_) #print('Rand. Best Params: ', rand.best_params_) # run RandomizedSearchCV 20 times (with n_iter=10) and record the best score best_scores = [] for _ in range(20): rand = RandomizedSearchCV(model, param_dist, cv=10, scoring='accuracy', n_iter=10) rand.fit(X, y) best_scores.append(round(rand.best_score_, 3)) #print(best_scores) #################################################def treeClassifier(): def treeClassifier(): # Calculating the best parameters tree = DecisionTreeClassifier() featuresSize = feature_cols.__len__() param_dist = {"max_depth": [3, None], "max_features": randint(1, featuresSize), "min_samples_split": randint(2, 9), "min_samples_leaf": randint(1, 9), "criterion": ["gini", "entropy"]} #tuningRandomizedSearchCV(tree, param_dist) # train a decision tree model on the training set tree = DecisionTreeClassifier(max_depth=3, min_samples_split=8, max_features=6, criterion='entropy', min_samples_leaf=7) tree.fit(X_train, y_train) #make class predictions for the testing set y_pred = tree.predict(X_res) print(y_pred) return y_pred #print('########### Tree classifier ###############') #accuracy_score = evalClassModel(tree, y_test, y_pred_class, True) #Data for final graph #methodDict['Tree clas.'] = accuracy_score * 100 return treeClassifier() '''*************************END*******************************''' @app.route('/') def root(): msg=Message('Hello',sender='anantisdumb@gmail.com',recipients=['anantisdumb@gmail.com']) msg.body="This is the email body" mail.send(msg) return render_template('home.html') @app.route('/form1') def form1(): return render_template('form1.html') @app.route('/form2') def form2(): return render_template('form2.html') @app.route('/form3') def form3(): return render_template('form3.html') @app.route('/form4') def form4(): return render_template('form4.html') @app.route('/images/<Paasbaan>') def download_file(Paasbaan): return send_from_directory(app.config['images'], Paasbaan) @app.route('/index.html') def index(): return render_template('index.html') @app.route('/work.html') def work(): return render_template('work.html') @app.route('/about.html') def about(): return render_template('about.html') @app.route('/contact.html') def contact(): return render_template('contact.html') @app.route('/result.html', methods = ['POST']) def predict(): if request.method == 'POST': age=request.form['age'] gender=request.form['gender'] history=request.form['History'] benefits=request.form['seek_help'] care_opt=request.form['care_options'] anonymity=request.form['anonymity'] leave=request.form['leave'] work=request.form['intf'] # print(age) # print(gender) # print(history) # print(benefits) # print(care_opt) # print(anonymity) # print(leave) # print(work) X_res= pd.DataFrame({"Age": [age], "Gender":[gender], "family_history":[history], "benefits":[benefits], "care_options":[care_opt], "anonymity":[anonymity], "leave":[leave], "work_interfere":[work]}) # print(X_res) y_res=func(X_res) print("**********************************") print("**********************************") print(y_res) print("**********************************") print("**********************************") if y_res == "Yes": my_prediction='Treatment is required.Sanction Leave' #print("ROBBERY") else: my_prediction='Treatment not Needed' #print("SAFE") return render_template('result.html', prediction = my_prediction) if __name__ == '__main__': app.run(debug = True)
29.420779
314
0.681204
795209d2a1286ede6451d2143d46df546a1ec775
20,163
py
Python
du/denv/SshConfigManager.py
spiricn/DevUtils
58a035a08a7c58035c25f992c1b8aa33cc997cd2
[ "MIT" ]
1
2021-12-21T13:18:08.000Z
2021-12-21T13:18:08.000Z
du/denv/SshConfigManager.py
spiricn/DevUtils
58a035a08a7c58035c25f992c1b8aa33cc997cd2
[ "MIT" ]
null
null
null
du/denv/SshConfigManager.py
spiricn/DevUtils
58a035a08a7c58035c25f992c1b8aa33cc997cd2
[ "MIT" ]
null
null
null
import logging import re import os import sys from subprocess import CalledProcessError from du.denv.Command import Command logger = logging.getLogger(__name__.split(".")[-1]) class SshConfigManager: """ Manages ssh configuration files on host and client side for given user """ # Path to the scp executable for both Linux and Win32 host platfrom SCP_BINARY = ( "scp" if sys.platform == Command.PLATFORM_OS_LINUX else os.path.join(Command.WIN32_SYSTEM_PATH, "OpenSSH\\scp.exe") ) # Path to the ssh-keygen executable for both Linux and Win32 host platfrom SSH_KEYGEN_BINARY = ( "ssh-keygen -N '' -f {}" if sys.platform == Command.PLATFORM_OS_LINUX else os.path.join( Command.WIN32_SYSTEM_PATH, 'OpenSSH\\ssh-keygen.exe -P "" -f {}' ) ) # Path to ssh program data folder on Windows platform WIN32_SSH_PROGRAM_DATA_PATH = ( os.path.join( os.environ["AllUsersProfile"], "ssh", ) if sys.platform == Command.PLATFORM_OS_WIN32 else "" ) # System ssh config file on Win32 OS WIN32_SYSTEM_SSH_CONFIG_FILE = os.path.join( WIN32_SSH_PROGRAM_DATA_PATH + os.sep, "ssh_config" ) # Local user SSH root folder LOCAL_USER_SSH_ROOT_FOLDER = os.path.join(os.path.expanduser("~") + os.sep, ".ssh") # Local user SSH config file location on Linux OS LOCAL_LINUX_USER_SSH_CONFIG_FILE = os.path.join( LOCAL_USER_SSH_ROOT_FOLDER + os.sep, "config" ) # Local user SSH config file location on Win32 OS LOCAL_WIN32_USER_SSH_CONFIG_FILE = os.path.join( LOCAL_USER_SSH_ROOT_FOLDER + os.sep, "config_overlay" ) # Local user public and private key files LOCAL_USER_SSH_IDENTITY_FILE_PUBLIC = os.path.join( LOCAL_USER_SSH_ROOT_FOLDER + os.sep, "id_rsa.pub" ) LOCAL_USER_SSH_IDENTITY_FILE_PRIVATE = os.path.join( LOCAL_USER_SSH_ROOT_FOLDER + os.sep, "id_rsa" ) # Remote side authorized_keys file location (Linux OS only for now) REMOTE_LINUX_AUTH_KEYS_FILE = "/home/{}/.ssh/authorized_keys" # Remote user SSH config file location (Linux OS only for now) REMOTE_LINUX_USER_SSH_CONFIG_FILE = "/home/{}/.ssh/config" # Docker container SSH config file location DOCKER_CONTAINER_SSH_CONFIG_FILE = "/home/{}/.ssh/{}" # OpenSSH default binary location on Windows 10 OPENSSH_WIN10_FILE_LOCATION = re.escape( r"C:\\Windows\\System32\\{}".format( re.escape(Command.WIN32_SSH_RELATIVE_EXE_PATH) ) ) # Command string that is passed to remote shell in order to get the list of active_containers SSH_DOCKER_CONTAINER_LIST_CMDLINE = 'active_containers=$(docker ps --format "{{ .Names }}" --filter "name=%(filter)s")' # Line which is prepended to the user's ssh config file on Windows platform SSH_CONFIG_OVERLAY_INCLUDE_STRING = "Include config_overlay" # Default container template name CONTAINER_NAME_TEMPLATE = "{}-denv" # Windows host system ssh_config file template WIN32_SSH_CONFIG_FILE_TEMPLATE = """Host *{}* StrictHostKeyChecking no UserKnownHostsFile NUL """.format( CONTAINER_NAME_TEMPLATE.format("") ) def __init__(self, command): """ Constructor @param command Command instance to be used """ self.__command = command # Check if the system ssh_config is patched on Windows host platform self.__sshWinConfigPatcher() def sanitizeUserSshConfig(self, filter): """ Syncrhronize user's ssh config file with active docker containers hosts and generate global ssh configs for both Linux and Windows platforms @param filter Filter string used to filter current user's docker containers @return stdout of bash executed script """ # Set ssh config files for given user configFileLinux = self.REMOTE_LINUX_USER_SSH_CONFIG_FILE.format( self.__command.getUsername() ) configFileWin = configFileLinux + "{}".format("_windows") logger.debug( "Sanitizing container ssh configs:\n\thost:\t{}\n\tuser:\t{}".format( self.__command.getHost(), self.__command.getUsername() ) ) cmdRet = None # Prepare bash shell command which will update user ssh config # files based on currently active docker containers cmd = """ rm -rf %(configLinux)s rm -rf %(configWin)s %(dockerListContCommand)s delete=1 for file in /home/%(username)s/.ssh/%(filter)s* do for container in $active_containers; do if [ \"${file##*/\"$container\"}\" ]; then delete=1 else delete=0 break fi done if [ "$delete" = "1" ]; then rm -rf $file else cat $file >> /home/%(username)s/.ssh/config fi done if [ -f "%(configLinux)s" ]; then sed -e 's/localhost/jump-box/g' -e 's#/dev/null#NUL#g' \ -e %(winSshBinPath)s %(configLinux)s > %(configWin)s fi """ % { "configLinux": configFileLinux, "configWin": configFileWin, "dockerListContCommand": self.__command.sshCommandStringConvert( self.SSH_DOCKER_CONTAINER_LIST_CMDLINE % {"filter": filter} ), "filter": filter, "username": self.__command.getUsername(), "winSshBinPath": "s/ssh/" + self.OPENSSH_WIN10_FILE_LOCATION + "/g", } # If host is local and Win32, skip this step if not ( self.__command.getHostPlatform() is Command.PLATFORM_OS_WIN32 and self.__command.getHost() is None ): cmdRet = self.__command.runCommand(cmd) if not cmdRet: # Copy final ssh config file back to host self.__copyDockerSshConfigToHost() return cmdRet def createDockerContainerSshConfig(self, containerAddress, containerName): """ Creates a ssh config for given docker container name and IP address This config is created with host acting as a jump-box for the spawned docker container's ssh connection Generated config also disables Host Key Cheking for those ssh connections @param containerAddress IP address of the docker container @param containerName Name of the docker container @return stdout of bash executed script """ # Set ssh docker container config file dockerSshConfig = self.DOCKER_CONTAINER_SSH_CONFIG_FILE.format( self.__command.getUsername(), containerName ) logger.debug( "Creating ssh config for:\n\tuser:\t{}\n\tcontainer:\t{}".format( self.__command.getUsername(), containerName ) ) # Prepare bash shell command which will create ssh config for given user and docker container cmd = """ if [ ! -d "/home/%(username)s/.ssh" ]; then mkdir "/home/%(username)s/.ssh" fi echo "Host localhost" | tee -a %(dockerConfig)s > /dev/null echo " HostName %(host)s" | tee -a %(dockerConfig)s > /dev/null echo " User %(username)s" | tee -a %(dockerConfig)s > /dev/null echo " Port 22" | tee -a %(dockerConfig)s > /dev/null echo | tee -a %(dockerConfig)s > /dev/null echo "Host %(dockerName)s" | tee -a %(dockerConfig)s > /dev/null echo " HostName %(dockerIp)s" | tee -a %(dockerConfig)s > /dev/null echo " User %(username)s" | tee -a %(dockerConfig)s > /dev/null echo " StrictHostKeyChecking no" | tee -a %(dockerConfig)s > /dev/null echo " UserKnownHostsFile /dev/null" | tee -a %(dockerConfig)s > /dev/null echo " ProxyCommand ssh -q -W %%h:%%p localhost" | tee -a %(dockerConfig)s > /dev/null echo | tee -a %(dockerConfig)s > /dev/null """ % { "username": self.__command.getUsername(), "dockerConfig": dockerSshConfig, "dockerIp": containerAddress, "dockerName": containerName, "host": self.__command.getHost() if self.__command.getHost() else "localhost", } return self.__command.runCommand(cmd) def copyLocalSshPubKeyToRemote(self): """ Copies local user's identity file (eg. ~/.ssh/id_rsa.pub) to the remote host authorized_keys file If local identity file is not presnet new one will be generated @return stdout of the executed remote command """ # 1. Check if local user has a generated local identity # Usually it is id_rsa.pub file located in ~/.ssh folder # If not present try to generate one if not os.path.exists(self.LOCAL_USER_SSH_IDENTITY_FILE_PUBLIC): logger.info( "There is no local user's identity on this machine, we will create one" ) # If we are on Windows host check if .ssh folder exists in local user's # home directory and create it since the ssh keygeneration will fail otherwise if ( self.__command.getHostPlatform() is Command.PLATFORM_OS_WIN32 and not os.path.exists(self.LOCAL_USER_SSH_ROOT_FOLDER) ): logger.info( "There is no .ssh folder in user's home direcotry on Windows host, we will creat one." ) os.makedirs(self.LOCAL_USER_SSH_ROOT_FOLDER) crateLocalUserPublicKeyCommand = self.SSH_KEYGEN_BINARY.format( self.LOCAL_USER_SSH_IDENTITY_FILE_PRIVATE ) self.__command.runCommand(crateLocalUserPublicKeyCommand, True) # Also on Windows platform we need to create config file if it does not exist # This file which will include config_overlay file which consists of container # ssh jump-host configs if self.__command.getHostPlatform() is Command.PLATFORM_OS_WIN32: if not os.path.exists(self.LOCAL_LINUX_USER_SSH_CONFIG_FILE): logger.info( "There is no ssh config file, we will create one and patch it" ) self.__fileLinePrepender( self.LOCAL_LINUX_USER_SSH_CONFIG_FILE, self.SSH_CONFIG_OVERLAY_INCLUDE_STRING, True, ) # If it exists we need to check if the config_overlay is already included # If not, add that line at the begining of the file else: if not self.__fileLineSearch( self.LOCAL_LINUX_USER_SSH_CONFIG_FILE, self.SSH_CONFIG_OVERLAY_INCLUDE_STRING, ): logger.info("ssh config file found but it will be patched") self.__fileLinePrepender( self.LOCAL_LINUX_USER_SSH_CONFIG_FILE, self.SSH_CONFIG_OVERLAY_INCLUDE_STRING, ) # Get the public key from the id_rsa.pub file with open(self.LOCAL_USER_SSH_IDENTITY_FILE_PUBLIC, "r") as file: publicKey = file.read().replace("\n", "") logger.debug("User's public key: " + publicKey) # 2. Check if authorized_keys file exists on remote side # and create it if missing, check if user's public key # is already there and append it if necessery logger.debug("Transfering local user's public key to remote side if needed") # Prepare bash shell command which will do the job cmd = """ if [ ! -d "/home/%(username)s/.ssh" ]; then mkdir "/home/%(username)s/.ssh" fi if [ -f "%(remoteAuthKeysFile)s" ]; then echo "File authorized_keys exists, checking if user public key is already there" if grep -Fxq "%(localUserPublicKey)s" "%(remoteAuthKeysFile)s"; then echo "User public key found, do nothing" else echo "User public key not found, append it" echo "%(localUserPublicKey)s" | tee -a "%(remoteAuthKeysFile)s" > /dev/null fi else echo "File authorized_keys does not exist, create one and append user public key" echo "%(localUserPublicKey)s" | tee -a "%(remoteAuthKeysFile)s" > /dev/null fi chmod 600 "%(remoteAuthKeysFile)s" """ % { "username": self.__command.getUsername(), "remoteAuthKeysFile": self.REMOTE_LINUX_AUTH_KEYS_FILE.format( self.__command.getUsername() ), "localUserPublicKey": publicKey if self.__command.getHostPlatform() is Command.PLATFORM_OS_LINUX or Command.PLATFORM_OS_MACOS else re.escape(publicKey), } return self.__command.runCommand(cmd) def __copyDockerSshConfigToHost(self): """ Copies remote ssh config files to the local host After this step the local host has the ssh config with jump-host configuration to the remote docker containers @return stdout of the executed commands """ # Set ssh config files for given user remoteConfigFileLinux = self.REMOTE_LINUX_USER_SSH_CONFIG_FILE.format( self.__command.getUsername() ) localConfigFileLinux = self.LOCAL_LINUX_USER_SSH_CONFIG_FILE remoteConfigFileWin = remoteConfigFileLinux + "{}".format("_windows") # Determine local host and prepare copy commands accordingly if ( self.__command.getHostPlatform() == Command.PLATFORM_OS_LINUX or self.__command.getHostPlatform() == Command.PLATFORM_OS_MACOS ): logger.debug("Prepare SSH config sync from remote to Linux host") scpSshConfigCopyCommand = self.SCP_BINARY + " %(username)s@%(remoteHost)s:%(remoteConfigLinux)s %(localConfigLinux)s > \/dev\/null 2>&1" % { "username": self.__command.getUsername(), "userLocalWindowsSshConfig": self.LOCAL_WIN32_USER_SSH_CONFIG_FILE, "remoteHost": self.__command.getHost(), "remoteConfigLinux": remoteConfigFileLinux, "localConfigLinux": localConfigFileLinux, } localSshConfigPath = localConfigFileLinux elif self.__command.getHostPlatform() == Command.PLATFORM_OS_WIN32: logger.debug("Prepare SSH config sync from remote to Win32 host") scpSshConfigCopyCommand = self.SCP_BINARY + " %(remotePort)s %(username)s@%(remoteHost)s:%(configWin)s %(userLocalWindowsSshConfig)s" % { "username": self.__command.getUsername(), "userLocalWindowsSshConfig": self.LOCAL_WIN32_USER_SSH_CONFIG_FILE, "remoteHost": self.__command.getHost(), "remotePort": "-p {}".format(self.__command.getPort()) if self.__command.getPort() else "", "configWin": remoteConfigFileWin, } localSshConfigPath = self.LOCAL_WIN32_USER_SSH_CONFIG_FILE # Copy the remote ssh config files to local host scpSshCopyCmdParams = {"command": scpSshConfigCopyCommand, "local": True} localSshConfigPathParams = {"path": localSshConfigPath} command_list = [ (self.__command.runCommand, scpSshCopyCmdParams, CalledProcessError), (os.remove, localSshConfigPathParams, FileNotFoundError), ] result = None for action, params, ex in command_list: try: result = action(**params) break except CalledProcessError as ex: logger.debug( "Remote SSH config file missing or some other error - do local cleanup. Return code is {}".format( ex.returncode ) ) continue except FileNotFoundError as ex: logger.debug( "Local SSH config file missing or some other error. Strerror: {}, error number: {}".format( ex.strerror, ex.errno ) ) return result def __sshWinConfigPatcher(self): """ Patches the ssh_config file on Win32 platform to disable StrictHostChecking option for containers started by this tool Call to this function needs to be done from within administrative context This patching is not needed on Linux platform """ # Check if system ssh_config file exists if self.__command.getHostPlatform() is Command.PLATFORM_OS_WIN32: if not os.path.exists(self.WIN32_SYSTEM_SSH_CONFIG_FILE): logger.info("There is no system ssh_config on this Windows host") # Chek for admin rights if not self.__command.checkAdmin()[1]: # Inform user that in order to patch the system ssh_config file # the tool needs to be restarted from shell with admin privileges logger.info( "Please restart this tool from shell with admin privileges, so we can create and patch it" ) sys.exit() else: # Create the file and apply the patch to the begining of the file self.__fileLinePrepender( self.WIN32_SYSTEM_SSH_CONFIG_FILE, self.WIN32_SSH_CONFIG_FILE_TEMPLATE, True, ) logger.info( "We have admin rights... file is crated and patched successfully" ) else: if not self.__fileLineSearch( self.WIN32_SYSTEM_SSH_CONFIG_FILE, # Do search on the first line only, it is good enough self.WIN32_SSH_CONFIG_FILE_TEMPLATE.partition("\n")[0], ): logger.info( "System ssh_config file found but it needs to be patched" ) # Chek for admin rights if not self.__command.checkAdmin()[1]: # Inform user that in order to patch the system ssh_config file # the tool needs to be restarted from shell with admin privileges logger.info( "Please restart this tool from shell with admin privileges, so we can patch it" ) sys.exit() else: # Append the patch to the begining of the file self.__fileLinePrepender( self.WIN32_SYSTEM_SSH_CONFIG_FILE, self.WIN32_SSH_CONFIG_FILE_TEMPLATE, ) logger.info( "We have admin rights... patching is finished successfully" ) return def __fileLinePrepender(self, filename, line, newFile=False): """ Adds string line to the begining of the file @param filename File which will be modified (line prepended) @param line String line @param newFile If True it will create/overwrite the file. If False it will patch existing file """ with open(filename, "w+" if newFile else "r+") as f: content = f.read() f.seek(0, 0) f.write(line.rstrip("\r\n") + "\n\n" + content) def __fileLineSearch(self, filename, searchLine): """ Searches a string line in the file @param filename File which will be used for serach @param searchLine String line that is beeing searched @return True if line is found, False otherwise """ with open(filename, "r") as f: for line in f: line = line.rstrip() # remove '\n' at end of line if searchLine == line: return True return False
40.487952
152
0.605118
79520c495cc5c2afa45dc2248247c7cc96790088
4,774
py
Python
simplesigner/simple_signer.py
Chainfire/simple-signer
86f85f8c17cc21586e6510d9ad7880bfbdd18761
[ "MIT" ]
5
2021-03-29T23:12:08.000Z
2021-12-24T19:44:10.000Z
simplesigner/simple_signer.py
Chainfire/simple-signer
86f85f8c17cc21586e6510d9ad7880bfbdd18761
[ "MIT" ]
null
null
null
simplesigner/simple_signer.py
Chainfire/simple-signer
86f85f8c17cc21586e6510d9ad7880bfbdd18761
[ "MIT" ]
2
2021-05-08T19:06:24.000Z
2021-05-20T07:25:27.000Z
from typing import Optional, Any from .exceptions import * from .util import KEY_PRIVATE_TYPES, KEY_PUBLIC_TYPES, KEY_ALL_TYPES, is_private_key, is_public_key class SimpleSigner: VERSION = 2 MAGIC = 'CFSS' class SignResult: def __init__(self, mode: str, bytes_signed: int, signature: str, public_key: KEY_PUBLIC_TYPES, metadata: Optional[Any]): self.mode = mode """Signer mode""" self.bytes_signed = bytes_signed """Number of bytes processed in signature""" self.signature = signature """Base64 of produced signature""" self.public_key = public_key """Public key that can be used to verify the signature""" self.metadata = metadata """Metadata included""" class VerifyResult: def __init__(self, mode: str, bytes_verified: int, signature: str, public_key: KEY_PUBLIC_TYPES, public_key_verified: bool, metadata: Optional[Any]): self.mode = mode """Signer mode""" self.bytes_verified = bytes_verified """Number of bytes processed in signature verification""" self.signature = signature """Base64 of verified signature""" self.public_key = public_key """Public key used to verify signature""" self.public_key_verified = public_key_verified """Whether the public key is verified. If False, the key from the signature itself was used to verify, which only proves the content of the checked bytes have not been modified since signing, this does not prove authenticity as anyone could re-sign the file. If True, the public key from the signature matches the public key provided to the SimpleSigner constructor - if that public key has been retrieved from the original signer through a secondary route from the supplied file, this proves authenticity (provided the original signer's private key has not been leaked and RSA/Ed25519 have not been cracked)""" self.metadata = metadata """Metadata included""" def __init__(self, key_or_fingerprint: Optional[KEY_ALL_TYPES]): """ An xxxPrivateKey is required to sign. To verify properly an xxxPublicKey or fingerprint str needs to be provided; if omitted, the public key stored in the signature is used for verification, which only proves the checked bytes have not been modified since signing, it does not prove the authenticity of the whole. If an xxxPrivateKey is provided, it's public part is also loaded automatically, so passing an xxxPrivateKey allows you to both sign and properly verify. :param key_or_fingerprint: RSAPrivateKey, Ed25519PrivateKey, EllipticCurvePrivateKey, RSAPublicKey, Ed25519PublicKey, EllipticCurvePublicKey, str (fingerprint), or None """ if key_or_fingerprint is None: self._private_key = None # type: Optional[KEY_PRIVATE_TYPES] self._public_key = None # type: Optional[KEY_PUBLIC_TYPES] self._fingerprint = None # type: Optional[str] elif isinstance(key_or_fingerprint, str): self._private_key = None self._public_key = None self._fingerprint = key_or_fingerprint elif is_private_key(key_or_fingerprint): self._private_key = key_or_fingerprint self._public_key = key_or_fingerprint.public_key() self._fingerprint = None elif is_public_key(key_or_fingerprint): self._private_key = None self._public_key = key_or_fingerprint self._fingerprint = None def _check_private_key(self): if self._private_key is None: raise PrivateKeyRequiredException() def _check_public_key(self): if self._public_key is None: raise PublicKeyRequiredException() def mode(self) -> str: raise NotImplementedError() def can_sign(self, infilename: str) -> bool: raise NotImplementedError() def can_verify(self, infilename: str) -> bool: raise NotImplementedError() def sign(self, infilename: str, outfilename: str, metadata: Optional[Any]=None) -> SignResult: """Sign infilename with private key and save to outfilename, the optional metadata should be json serializable. Throws an exception unless successful.""" raise NotImplementedError() def verify(self, infilename: str) -> VerifyResult: """Verify infilename with public key (if set, otherwise it uses the key stored next to the signature). Throws an exception unless successful.""" raise NotImplementedError()
44.616822
176
0.671764
79520c6fd12247ca558a7c69763f901ec63cc9e5
59
py
Python
tests/components/hassio/__init__.py
MrDelik/core
93a66cc357b226389967668441000498a10453bb
[ "Apache-2.0" ]
22,481
2020-03-02T13:09:59.000Z
2022-03-31T23:34:28.000Z
tests/components/hassio/__init__.py
MrDelik/core
93a66cc357b226389967668441000498a10453bb
[ "Apache-2.0" ]
31,101
2020-03-02T13:00:16.000Z
2022-03-31T23:57:36.000Z
tests/components/hassio/__init__.py
MrDelik/core
93a66cc357b226389967668441000498a10453bb
[ "Apache-2.0" ]
11,411
2020-03-02T14:19:20.000Z
2022-03-31T22:46:07.000Z
"""Tests for Hass.io component.""" HASSIO_TOKEN = "123456"
19.666667
34
0.694915
79520e50dfc18af2b7c16a3b39e287584e628651
664
py
Python
adts/variant.py
jasonsbarr/python-adts
0bf079062b1356b2a7e6f044afa0a932340aac65
[ "MIT" ]
null
null
null
adts/variant.py
jasonsbarr/python-adts
0bf079062b1356b2a7e6f044afa0a932340aac65
[ "MIT" ]
null
null
null
adts/variant.py
jasonsbarr/python-adts
0bf079062b1356b2a7e6f044afa0a932340aac65
[ "MIT" ]
null
null
null
from dataclasses import dataclass, astuple from typing import TypeVar, Generic from abc import ABC T = TypeVar("T") @dataclass class Variant(ABC, Generic[T]): def __new__(cls): if cls == Variant: raise TypeError("Cannot instantiate Variant class directly") return super().__new__(cls) def __init__(self, value=None): self.__dict__["_value"] = value @property.getter def value(self): return self._value def __setattr__(self, __name: str, __value: Any) -> None: raise ValueError("Cannot change values on a Variant type") def __iter__(self): return iter(astuple(self.value))
23.714286
72
0.661145
79520e831a30881486726da0d66f1447247b85ab
49,996
py
Python
tests/test_playlist.py
EdwardBetts/pyspotify
851c622e814dee59362d27d978251bd3891c59f7
[ "Apache-2.0" ]
2
2016-11-18T08:49:26.000Z
2018-05-14T13:27:19.000Z
tests/test_playlist.py
EdwardBetts/pyspotify
851c622e814dee59362d27d978251bd3891c59f7
[ "Apache-2.0" ]
null
null
null
tests/test_playlist.py
EdwardBetts/pyspotify
851c622e814dee59362d27d978251bd3891c59f7
[ "Apache-2.0" ]
1
2021-06-24T15:57:12.000Z
2021-06-24T15:57:12.000Z
# encoding: utf-8 from __future__ import unicode_literals import collections import unittest import spotify from spotify.playlist import _PlaylistCallbacks import tests from tests import mock @mock.patch('spotify.playlist.lib', spec=spotify.lib) class PlaylistTest(unittest.TestCase): def setUp(self): self.session = tests.create_session_mock() def test_create_without_uri_or_sp_playlist_fails(self, lib_mock): with self.assertRaises(AssertionError): spotify.Playlist(self.session) @mock.patch('spotify.Link', spec=spotify.Link) def test_create_from_uri(self, link_mock, lib_mock): sp_playlist = spotify.ffi.cast('sp_playlist *', 42) link_instance_mock = link_mock.return_value link_instance_mock._as_sp_playlist.return_value = sp_playlist uri = 'spotify:playlist:foo' result = spotify.Playlist(self.session, uri=uri) link_mock.assert_called_once_with(self.session, uri) link_instance_mock._as_sp_playlist.assert_called_once_with() self.assertEqual(link_instance_mock.as_playlist.call_count, 0) self.assertEqual(lib_mock.sp_playlist_add_ref.call_count, 0) self.assertEqual(result._sp_playlist, sp_playlist) @mock.patch('spotify.Link', spec=spotify.Link) def test_create_from_uri_is_cached(self, link_mock, lib_mock): sp_playlist = spotify.ffi.cast('sp_playlist *', 42) link_instance_mock = link_mock.return_value link_instance_mock._as_sp_playlist.return_value = sp_playlist uri = 'spotify:playlist:foo' result = spotify.Playlist(self.session, uri=uri) self.assertEqual(self.session._cache[sp_playlist], result) @mock.patch('spotify.Link', spec=spotify.Link) def test_create_from_uri_fail_raises_error(self, link_mock, lib_mock): link_instance_mock = link_mock.return_value link_instance_mock._as_sp_playlist.return_value = None uri = 'spotify:playlist:foo' with self.assertRaises(spotify.Error): spotify.Playlist(self.session, uri=uri) def test_life_cycle(self, lib_mock): sp_playlist = spotify.ffi.cast('sp_playlist *', 42) playlist = spotify.Playlist(self.session, sp_playlist=sp_playlist) sp_playlist = playlist._sp_playlist lib_mock.sp_playlist_add_ref.assert_called_with(sp_playlist) # Callbacks are only added when someone registers a Python event # handler on the playlist: lib_mock.sp_playlist_add_callbacks.assert_not_called() playlist.on(spotify.PlaylistEvent.TRACKS_ADDED, lambda *args: None) lib_mock.sp_playlist_add_callbacks.assert_called_with( sp_playlist, mock.ANY, mock.ANY) playlist = None # noqa tests.gc_collect() # Callbacks are removed when the playlist is GC-ed: lib_mock.sp_playlist_remove_callbacks.assert_called_with( sp_playlist, mock.ANY, mock.ANY) # FIXME Won't be called because lib_mock has references to the # sp_playlist object, and it thus won't be GC-ed. # lib_mock.sp_playlist_release.assert_called_with(sp_playlist) def test_cached_playlist(self, lib_mock): sp_playlist = spotify.ffi.cast('sp_playlist *', 42) result1 = spotify.Playlist._cached(self.session, sp_playlist) result2 = spotify.Playlist._cached(self.session, sp_playlist) self.assertIsInstance(result1, spotify.Playlist) self.assertIs(result1, result2) @mock.patch('spotify.Link', spec=spotify.Link) def test_repr(self, link_mock, lib_mock): lib_mock.sp_playlist_is_loaded.return_value = 1 link_instance_mock = link_mock.return_value link_instance_mock.uri = 'foo' sp_playlist = spotify.ffi.cast('sp_playlist *', 42) playlist = spotify.Playlist(self.session, sp_playlist=sp_playlist) result = repr(playlist) self.assertEqual(result, 'Playlist(%r)' % 'foo') @mock.patch('spotify.Link', spec=spotify.Link) def test_repr_if_unloaded(self, link_mock, lib_mock): lib_mock.sp_playlist_is_loaded.return_value = 0 sp_playlist = spotify.ffi.cast('sp_playlist *', 42) playlist = spotify.Playlist(self.session, sp_playlist=sp_playlist) result = repr(playlist) self.assertEqual(result, 'Playlist(<not loaded>)') @mock.patch('spotify.Link', spec=spotify.Link) def test_repr_if_link_creation_fails(self, link_mock, lib_mock): lib_mock.sp_playlist_is_loaded.return_value = 1 link_mock.side_effect = spotify.Error('error message') sp_playlist = spotify.ffi.cast('sp_playlist *', 42) playlist = spotify.Playlist(self.session, sp_playlist=sp_playlist) result = repr(playlist) self.assertEqual(result, 'Playlist(<error: error message>)') def test_eq(self, lib_mock): sp_playlist = spotify.ffi.cast('sp_playlist *', 42) playlist1 = spotify.Playlist(self.session, sp_playlist=sp_playlist) playlist2 = spotify.Playlist(self.session, sp_playlist=sp_playlist) self.assertTrue(playlist1 == playlist2) self.assertFalse(playlist1 == 'foo') def test_ne(self, lib_mock): sp_playlist = spotify.ffi.cast('sp_playlist *', 42) playlist1 = spotify.Playlist(self.session, sp_playlist=sp_playlist) playlist2 = spotify.Playlist(self.session, sp_playlist=sp_playlist) self.assertFalse(playlist1 != playlist2) def test_hash(self, lib_mock): sp_playlist = spotify.ffi.cast('sp_playlist *', 42) playlist1 = spotify.Playlist(self.session, sp_playlist=sp_playlist) playlist2 = spotify.Playlist(self.session, sp_playlist=sp_playlist) self.assertEqual(hash(playlist1), hash(playlist2)) def test_is_loaded(self, lib_mock): lib_mock.sp_playlist_is_loaded.return_value = 1 sp_playlist = spotify.ffi.cast('sp_playlist *', 42) playlist = spotify.Playlist(self.session, sp_playlist=sp_playlist) result = playlist.is_loaded lib_mock.sp_playlist_is_loaded.assert_called_once_with(sp_playlist) self.assertTrue(result) @mock.patch('spotify.utils.load') def test_load(self, load_mock, lib_mock): sp_playlist = spotify.ffi.cast('sp_playlist *', 42) playlist = spotify.Playlist(self.session, sp_playlist=sp_playlist) playlist.load(10) load_mock.assert_called_with(self.session, playlist, timeout=10) @mock.patch('spotify.track.lib', spec=spotify.lib) def test_tracks(self, track_lib_mock, lib_mock): sp_track = spotify.ffi.cast('sp_track *', 43) lib_mock.sp_playlist_num_tracks.return_value = 1 lib_mock.sp_playlist_track.return_value = sp_track sp_playlist = spotify.ffi.cast('sp_playlist *', 42) playlist = spotify.Playlist(self.session, sp_playlist=sp_playlist) self.assertEqual(lib_mock.sp_playlist_add_ref.call_count, 1) result = playlist.tracks self.assertEqual(lib_mock.sp_playlist_add_ref.call_count, 2) self.assertEqual(len(result), 1) lib_mock.sp_playlist_num_tracks.assert_called_with(sp_playlist) item = result[0] self.assertIsInstance(item, spotify.Track) self.assertEqual(item._sp_track, sp_track) self.assertEqual(lib_mock.sp_playlist_track.call_count, 1) lib_mock.sp_playlist_track.assert_called_with(sp_playlist, 0) track_lib_mock.sp_track_add_ref.assert_called_with(sp_track) def test_tracks_if_no_tracks(self, lib_mock): lib_mock.sp_playlist_num_tracks.return_value = 0 sp_playlist = spotify.ffi.cast('sp_playlist *', 42) playlist = spotify.Playlist(self.session, sp_playlist=sp_playlist) result = playlist.tracks self.assertEqual(len(result), 0) lib_mock.sp_playlist_num_tracks.assert_called_with(sp_playlist) self.assertEqual(lib_mock.sp_playlist_track.call_count, 0) def test_tracks_if_unloaded(self, lib_mock): lib_mock.sp_playlist_is_loaded.return_value = 0 sp_playlist = spotify.ffi.cast('sp_playlist *', 42) playlist = spotify.Playlist(self.session, sp_playlist=sp_playlist) result = playlist.tracks lib_mock.sp_playlist_is_loaded.assert_called_with(sp_playlist) self.assertEqual(len(result), 0) def test_tracks_is_a_mutable_sequence(self, lib_mock): sp_playlist = spotify.ffi.cast('sp_playlist *', 42) playlist = spotify.Playlist(self.session, sp_playlist=sp_playlist) self.assertIsInstance(playlist.tracks, collections.MutableSequence) def test_tracks_setitem(self, lib_mock): sp_playlist = spotify.ffi.cast('sp_playlist *', 42) playlist = spotify.Playlist(self.session, sp_playlist=sp_playlist) tracks = playlist.tracks tracks.__len__ = mock.Mock(return_value=5) playlist.remove_tracks = mock.Mock() playlist.add_tracks = mock.Mock() tracks[0] = mock.sentinel.track playlist.add_tracks.assert_called_with(mock.sentinel.track, index=0) playlist.remove_tracks.assert_called_with(1) def test_tracks_setitem_with_slice(self, lib_mock): sp_playlist = spotify.ffi.cast('sp_playlist *', 42) playlist = spotify.Playlist(self.session, sp_playlist=sp_playlist) tracks = playlist.tracks tracks.__len__ = mock.Mock(return_value=5) playlist.remove_tracks = mock.Mock() playlist.add_tracks = mock.Mock() tracks[0:2] = [mock.sentinel.track1, mock.sentinel.track2] playlist.add_tracks.assert_has_calls([ mock.call(mock.sentinel.track1, index=0), mock.call(mock.sentinel.track2, index=1), ], any_order=False) playlist.remove_tracks.assert_has_calls([ mock.call(3), mock.call(2), ], any_order=False) def test_tracks_setittem_with_slice_and_noniterable_value_fails( self, lib_mock): sp_playlist = spotify.ffi.cast('sp_playlist *', 42) playlist = spotify.Playlist(self.session, sp_playlist=sp_playlist) tracks = playlist.tracks tracks.__len__ = mock.Mock(return_value=5) with self.assertRaises(TypeError): tracks[0:2] = mock.sentinel.track def test_tracks_setitem_raises_index_error_on_negative_index( self, lib_mock): sp_playlist = spotify.ffi.cast('sp_playlist *', 42) playlist = spotify.Playlist(self.session, sp_playlist=sp_playlist) tracks = playlist.tracks tracks.__len__ = mock.Mock(return_value=5) with self.assertRaises(IndexError): tracks[-1] = None def test_tracks_setitem_raises_index_error_on_too_high_index( self, lib_mock): sp_playlist = spotify.ffi.cast('sp_playlist *', 42) playlist = spotify.Playlist(self.session, sp_playlist=sp_playlist) tracks = playlist.tracks tracks.__len__ = mock.Mock(return_value=1) with self.assertRaises(IndexError): tracks[1] = None def test_tracks_setitem_raises_type_error_on_non_integral_index( self, lib_mock): sp_playlist = spotify.ffi.cast('sp_playlist *', 42) playlist = spotify.Playlist(self.session, sp_playlist=sp_playlist) tracks = playlist.tracks tracks.__len__ = mock.Mock(return_value=1) with self.assertRaises(TypeError): tracks['abc'] = None def test_tracks_delitem(self, lib_mock): lib_mock.sp_playlist_remove_tracks.return_value = int( spotify.ErrorType.OK) sp_playlist = spotify.ffi.cast('sp_playlist *', 42) playlist = spotify.Playlist(self.session, sp_playlist=sp_playlist) tracks = playlist.tracks tracks.__len__ = mock.Mock(return_value=4) del tracks[3] lib_mock.sp_playlist_remove_tracks.assert_called_with( sp_playlist, [3], 1) def test_tracks_delitem_with_slice(self, lib_mock): lib_mock.sp_playlist_remove_tracks.return_value = int( spotify.ErrorType.OK) sp_playlist = spotify.ffi.cast('sp_playlist *', 42) playlist = spotify.Playlist(self.session, sp_playlist=sp_playlist) tracks = playlist.tracks tracks.__len__ = mock.Mock(return_value=3) del tracks[0:2] # Delete items in reverse order, so the indexes doesn't change lib_mock.sp_playlist_remove_tracks.assert_has_calls([ mock.call(sp_playlist, [1], 1), mock.call(sp_playlist, [0], 1), ], any_order=False) def test_tracks_delitem_raises_index_error_on_negative_index( self, lib_mock): lib_mock.sp_playlist_remove_tracks.return_value = int( spotify.ErrorType.OK) sp_playlist = spotify.ffi.cast('sp_playlist *', 42) playlist = spotify.Playlist(self.session, sp_playlist=sp_playlist) tracks = playlist.tracks tracks.__len__ = mock.Mock(return_value=1) with self.assertRaises(IndexError): del tracks[-1] def test_tracks_delitem_raises_index_error_on_too_high_index( self, lib_mock): lib_mock.sp_playlist_remove_tracks.return_value = int( spotify.ErrorType.OK) sp_playlist = spotify.ffi.cast('sp_playlist *', 42) playlist = spotify.Playlist(self.session, sp_playlist=sp_playlist) tracks = playlist.tracks tracks.__len__ = mock.Mock(return_value=1) with self.assertRaises(IndexError): del tracks[1] def test_tracks_delitem_raises_type_error_on_non_integral_index( self, lib_mock): lib_mock.sp_playlist_remove_tracks.return_value = int( spotify.ErrorType.OK) sp_playlist = spotify.ffi.cast('sp_playlist *', 42) playlist = spotify.Playlist(self.session, sp_playlist=sp_playlist) tracks = playlist.tracks tracks.__len__ = mock.Mock(return_value=1) with self.assertRaises(TypeError): del tracks['abc'] def test_tracks_insert(self, lib_mock): sp_playlist = spotify.ffi.cast('sp_playlist *', 42) playlist = spotify.Playlist(self.session, sp_playlist=sp_playlist) tracks = playlist.tracks tracks.__len__ = mock.Mock(return_value=5) playlist.add_tracks = mock.Mock() tracks.insert(3, mock.sentinel.track) playlist.add_tracks.assert_called_with( mock.sentinel.track, index=3) @mock.patch('spotify.playlist_track.lib', spec=spotify.lib) def test_tracks_with_metadata(self, playlist_track_lib_mock, lib_mock): lib_mock.sp_playlist_num_tracks.return_value = 1 sp_playlist = spotify.ffi.cast('sp_playlist *', 42) playlist = spotify.Playlist(self.session, sp_playlist=sp_playlist) # Created a Playlist with a ref to sp_playlist self.assertEqual(lib_mock.sp_playlist_add_ref.call_count, 1) self.assertEqual( playlist_track_lib_mock.sp_playlist_add_ref.call_count, 0) result = playlist.tracks_with_metadata # Created a Sequence with a ref to sp_playlist self.assertEqual(lib_mock.sp_playlist_add_ref.call_count, 2) self.assertEqual( playlist_track_lib_mock.sp_playlist_add_ref.call_count, 0) self.assertEqual(len(result), 1) lib_mock.sp_playlist_num_tracks.assert_called_with(sp_playlist) item = result[0] self.assertIsInstance(item, spotify.PlaylistTrack) # Created a PlaylistTrack with a ref to sp_playlist self.assertEqual(lib_mock.sp_playlist_add_ref.call_count, 2) self.assertEqual( playlist_track_lib_mock.sp_playlist_add_ref.call_count, 1) def test_tracks_with_metadata_if_no_tracks(self, lib_mock): lib_mock.sp_playlist_num_tracks.return_value = 0 sp_playlist = spotify.ffi.cast('sp_playlist *', 42) playlist = spotify.Playlist(self.session, sp_playlist=sp_playlist) result = playlist.tracks_with_metadata self.assertEqual(len(result), 0) lib_mock.sp_playlist_num_tracks.assert_called_with(sp_playlist) self.assertEqual(lib_mock.sp_playlist_track.call_count, 0) def test_tracks_with_metadata_if_unloaded(self, lib_mock): lib_mock.sp_playlist_is_loaded.return_value = 0 sp_playlist = spotify.ffi.cast('sp_playlist *', 42) playlist = spotify.Playlist(self.session, sp_playlist=sp_playlist) result = playlist.tracks_with_metadata lib_mock.sp_playlist_is_loaded.assert_called_with(sp_playlist) self.assertEqual(len(result), 0) def test_name(self, lib_mock): lib_mock.sp_playlist_name.return_value = spotify.ffi.new( 'char[]', b'Foo Bar Baz') sp_playlist = spotify.ffi.cast('sp_playlist *', 42) playlist = spotify.Playlist(self.session, sp_playlist=sp_playlist) result = playlist.name lib_mock.sp_playlist_name.assert_called_once_with(sp_playlist) self.assertEqual(result, 'Foo Bar Baz') def test_name_is_none_if_unloaded(self, lib_mock): lib_mock.sp_playlist_name.return_value = spotify.ffi.new('char[]', b'') sp_playlist = spotify.ffi.cast('sp_playlist *', 42) playlist = spotify.Playlist(self.session, sp_playlist=sp_playlist) result = playlist.name lib_mock.sp_playlist_name.assert_called_once_with(sp_playlist) self.assertIsNone(result) def test_rename(self, lib_mock): lib_mock.sp_playlist_rename.return_value = int(spotify.ErrorType.OK) sp_playlist = spotify.ffi.cast('sp_playlist *', 42) playlist = spotify.Playlist(self.session, sp_playlist=sp_playlist) playlist.rename('Quux') lib_mock.sp_playlist_rename.assert_called_with(sp_playlist, mock.ANY) self.assertEqual( spotify.ffi.string(lib_mock.sp_playlist_rename.call_args[0][1]), b'Quux') def test_rename_fails_if_error(self, lib_mock): lib_mock.sp_playlist_rename.return_value = int( spotify.ErrorType.BAD_API_VERSION) sp_playlist = spotify.ffi.cast('sp_playlist *', 42) playlist = spotify.Playlist(self.session, sp_playlist=sp_playlist) with self.assertRaises(spotify.Error): playlist.rename('Quux') def test_name_setter(self, lib_mock): sp_playlist = spotify.ffi.cast('sp_playlist *', 42) playlist = spotify.Playlist(self.session, sp_playlist=sp_playlist) playlist.rename = mock.Mock() playlist.name = 'Quux' playlist.rename.assert_called_with('Quux') @mock.patch('spotify.user.lib', spec=spotify.lib) def test_owner(self, user_lib_mock, lib_mock): sp_user = spotify.ffi.cast('sp_user *', 43) lib_mock.sp_playlist_owner.return_value = sp_user sp_playlist = spotify.ffi.cast('sp_playlist *', 42) playlist = spotify.Playlist(self.session, sp_playlist=sp_playlist) result = playlist.owner lib_mock.sp_playlist_owner.assert_called_with(sp_playlist) self.assertIsInstance(result, spotify.User) self.assertEqual(result._sp_user, sp_user) user_lib_mock.sp_user_add_ref.assert_called_with(sp_user) def test_is_collaborative(self, lib_mock): lib_mock.sp_playlist_is_collaborative.return_value = 1 sp_playlist = spotify.ffi.cast('sp_playlist *', 42) playlist = spotify.Playlist(self.session, sp_playlist=sp_playlist) result = playlist.collaborative lib_mock.sp_playlist_is_collaborative.assert_called_with(sp_playlist) self.assertTrue(result) def test_set_collaborative(self, lib_mock): lib_mock.sp_playlist_set_collaborative.return_value = int( spotify.ErrorType.OK) sp_playlist = spotify.ffi.cast('sp_playlist *', 42) playlist = spotify.Playlist(self.session, sp_playlist=sp_playlist) playlist.collaborative = False lib_mock.sp_playlist_set_collaborative.assert_called_with( sp_playlist, 0) def test_set_collaborative_fails_if_error(self, lib_mock): lib_mock.sp_playlist_set_collaborative.return_value = int( spotify.ErrorType.BAD_API_VERSION) sp_playlist = spotify.ffi.cast('sp_playlist *', 42) playlist = spotify.Playlist(self.session, sp_playlist=sp_playlist) with self.assertRaises(spotify.Error): playlist.collaborative = False def test_set_autolink_tracks(self, lib_mock): lib_mock.sp_playlist_set_autolink_tracks.return_value = int( spotify.ErrorType.OK) sp_playlist = spotify.ffi.cast('sp_playlist *', 42) playlist = spotify.Playlist(self.session, sp_playlist=sp_playlist) playlist.set_autolink_tracks(True) lib_mock.sp_playlist_set_autolink_tracks.assert_called_with( sp_playlist, 1) def test_set_autolink_tracks_fails_if_error(self, lib_mock): lib_mock.sp_playlist_set_autolink_tracks.return_value = int( spotify.ErrorType.BAD_API_VERSION) sp_playlist = spotify.ffi.cast('sp_playlist *', 42) playlist = spotify.Playlist(self.session, sp_playlist=sp_playlist) with self.assertRaises(spotify.Error): playlist.set_autolink_tracks(True) def test_description(self, lib_mock): lib_mock.sp_playlist_get_description.return_value = spotify.ffi.new( 'char[]', b'Lorem ipsum') sp_playlist = spotify.ffi.cast('sp_playlist *', 42) playlist = spotify.Playlist(self.session, sp_playlist=sp_playlist) result = playlist.description lib_mock.sp_playlist_get_description.assert_called_with(sp_playlist) self.assertEqual(result, 'Lorem ipsum') def test_description_is_none_if_unset(self, lib_mock): lib_mock.sp_playlist_get_description.return_value = spotify.ffi.NULL sp_playlist = spotify.ffi.cast('sp_playlist *', 42) playlist = spotify.Playlist(self.session, sp_playlist=sp_playlist) result = playlist.description lib_mock.sp_playlist_get_description.assert_called_with(sp_playlist) self.assertIsNone(result) @mock.patch('spotify.Image', spec=spotify.Image) def test_image(self, image_mock, lib_mock): image_id = b'image-id' def func(sp_playlist, sp_image_id): buf = spotify.ffi.buffer(sp_image_id) buf[:len(image_id)] = image_id return 1 lib_mock.sp_playlist_get_image.side_effect = func sp_image = spotify.ffi.cast('sp_image *', 43) lib_mock.sp_image_create.return_value = sp_image sp_playlist = spotify.ffi.cast('sp_playlist *', 42) playlist = spotify.Playlist(self.session, sp_playlist=sp_playlist) image_mock.return_value = mock.sentinel.image callback = mock.Mock() result = playlist.image(callback=callback) self.assertIs(result, mock.sentinel.image) lib_mock.sp_playlist_get_image.assert_called_with( sp_playlist, mock.ANY) lib_mock.sp_image_create.assert_called_with( self.session._sp_session, mock.ANY) self.assertEqual( spotify.ffi.string(lib_mock.sp_image_create.call_args[0][1]), b'image-id') # Since we *created* the sp_image, we already have a refcount of 1 and # shouldn't increase the refcount when wrapping this sp_image in an # Image object image_mock.assert_called_with( self.session, sp_image=sp_image, add_ref=False, callback=callback) def test_image_is_none_if_no_image(self, lib_mock): lib_mock.sp_playlist_get_image.return_value = 0 sp_playlist = spotify.ffi.cast('sp_playlist *', 42) playlist = spotify.Playlist(self.session, sp_playlist=sp_playlist) result = playlist.image() lib_mock.sp_playlist_get_image.assert_called_with( sp_playlist, mock.ANY) self.assertIsNone(result) def test_has_pending_changes(self, lib_mock): lib_mock.sp_playlist_has_pending_changes.return_value = 1 sp_playlist = spotify.ffi.cast('sp_playlist *', 42) playlist = spotify.Playlist(self.session, sp_playlist=sp_playlist) result = playlist.has_pending_changes lib_mock.sp_playlist_has_pending_changes.assert_called_with( sp_playlist) self.assertTrue(result) @mock.patch('spotify.track.lib', spec=spotify.lib) def test_add_tracks(self, track_lib_mock, lib_mock): lib_mock.sp_playlist_add_tracks.return_value = int( spotify.ErrorType.OK) sp_track1 = spotify.ffi.new('int * ') track1 = spotify.Track(self.session, sp_track=sp_track1) sp_track2 = spotify.ffi.new('int * ') track2 = spotify.Track(self.session, sp_track=sp_track2) sp_playlist = spotify.ffi.cast('sp_playlist *', 42) playlist = spotify.Playlist(self.session, sp_playlist=sp_playlist) playlist.add_tracks([track1, track2], index=4) lib_mock.sp_playlist_add_tracks.assert_called_with( sp_playlist, [sp_track1, sp_track2], 2, 4, self.session._sp_session) @mock.patch('spotify.track.lib', spec=spotify.lib) def test_add_tracks_without_index(self, track_lib_mock, lib_mock): lib_mock.sp_playlist_add_tracks.return_value = int( spotify.ErrorType.OK) lib_mock.sp_playlist_num_tracks.return_value = 10 sp_track1 = spotify.ffi.new('int * ') track1 = spotify.Track(self.session, sp_track=sp_track1) sp_track2 = spotify.ffi.new('int * ') track2 = spotify.Track(self.session, sp_track=sp_track2) sp_playlist = spotify.ffi.cast('sp_playlist *', 42) playlist = spotify.Playlist(self.session, sp_playlist=sp_playlist) playlist.add_tracks([track1, track2]) lib_mock.sp_playlist_add_tracks.assert_called_with( sp_playlist, [sp_track1, sp_track2], 2, 10, self.session._sp_session) @mock.patch('spotify.track.lib', spec=spotify.lib) def test_add_tracks_with_a_single_track(self, track_lib_mock, lib_mock): lib_mock.sp_playlist_add_tracks.return_value = int( spotify.ErrorType.OK) sp_track = spotify.ffi.new('int * ') track = spotify.Track(self.session, sp_track=sp_track) sp_playlist = spotify.ffi.cast('sp_playlist *', 42) playlist = spotify.Playlist(self.session, sp_playlist=sp_playlist) playlist.add_tracks(track, index=7) lib_mock.sp_playlist_add_tracks.assert_called_with( sp_playlist, [sp_track], 1, 7, self.session._sp_session) def test_add_tracks_fails_if_error(self, lib_mock): lib_mock.sp_playlist_add_tracks.return_value = int( spotify.ErrorType.PERMISSION_DENIED) lib_mock.sp_playlist_num_tracks.return_value = 0 sp_playlist = spotify.ffi.cast('sp_playlist *', 42) playlist = spotify.Playlist(self.session, sp_playlist=sp_playlist) with self.assertRaises(spotify.Error): playlist.add_tracks([]) @mock.patch('spotify.track.lib', spec=spotify.lib) def test_remove_tracks(self, track_lib_mock, lib_mock): lib_mock.sp_playlist_remove_tracks.return_value = int( spotify.ErrorType.OK) sp_playlist = spotify.ffi.cast('sp_playlist *', 42) playlist = spotify.Playlist(self.session, sp_playlist=sp_playlist) index1 = 13 index2 = 17 playlist.remove_tracks([index1, index2]) lib_mock.sp_playlist_remove_tracks.assert_called_with( sp_playlist, mock.ANY, 2) self.assertIn( index1, lib_mock.sp_playlist_remove_tracks.call_args[0][1]) self.assertIn( index2, lib_mock.sp_playlist_remove_tracks.call_args[0][1]) @mock.patch('spotify.track.lib', spec=spotify.lib) def test_remove_tracks_with_a_single_track(self, track_lib_mock, lib_mock): lib_mock.sp_playlist_remove_tracks.return_value = int( spotify.ErrorType.OK) sp_playlist = spotify.ffi.cast('sp_playlist *', 42) playlist = spotify.Playlist(self.session, sp_playlist=sp_playlist) index = 17 playlist.remove_tracks(index) lib_mock.sp_playlist_remove_tracks.assert_called_with( sp_playlist, [index], 1) @mock.patch('spotify.track.lib', spec=spotify.lib) def test_remove_tracks_with_duplicates(self, track_lib_mock, lib_mock): lib_mock.sp_playlist_remove_tracks.return_value = int( spotify.ErrorType.OK) sp_playlist = spotify.ffi.cast('sp_playlist *', 42) playlist = spotify.Playlist(self.session, sp_playlist=sp_playlist) index = 17 playlist.remove_tracks([index, index]) lib_mock.sp_playlist_remove_tracks.assert_called_with( sp_playlist, [index], 1) @mock.patch('spotify.track.lib', spec=spotify.lib) def test_remove_tracks_fails_if_error(self, track_lib_mock, lib_mock): lib_mock.sp_playlist_remove_tracks.return_value = int( spotify.ErrorType.PERMISSION_DENIED) sp_playlist = spotify.ffi.cast('sp_playlist *', 42) playlist = spotify.Playlist(self.session, sp_playlist=sp_playlist) index = 17 with self.assertRaises(spotify.Error): playlist.remove_tracks(index) @mock.patch('spotify.track.lib', spec=spotify.lib) def test_reorder_tracks(self, track_lib_mock, lib_mock): lib_mock.sp_playlist_reorder_tracks.return_value = int( spotify.ErrorType.OK) sp_playlist = spotify.ffi.cast('sp_playlist *', 42) playlist = spotify.Playlist(self.session, sp_playlist=sp_playlist) position1 = 13 position2 = 17 playlist.reorder_tracks([position1, position2], 17) lib_mock.sp_playlist_reorder_tracks.assert_called_with( sp_playlist, mock.ANY, 2, 17) self.assertIn( position1, lib_mock.sp_playlist_reorder_tracks.call_args[0][1]) self.assertIn( position2, lib_mock.sp_playlist_reorder_tracks.call_args[0][1]) @mock.patch('spotify.track.lib', spec=spotify.lib) def test_reorder_tracks_with_a_single_track( self, track_lib_mock, lib_mock): lib_mock.sp_playlist_reorder_tracks.return_value = int( spotify.ErrorType.OK) sp_playlist = spotify.ffi.cast('sp_playlist *', 42) playlist = spotify.Playlist(self.session, sp_playlist=sp_playlist) position = 13 playlist.reorder_tracks(position, 17) lib_mock.sp_playlist_reorder_tracks.assert_called_with( sp_playlist, [position], 1, 17) @mock.patch('spotify.track.lib', spec=spotify.lib) def test_reorder_tracks_with_duplicates(self, track_lib_mock, lib_mock): lib_mock.sp_playlist_reorder_tracks.return_value = int( spotify.ErrorType.OK) sp_playlist = spotify.ffi.cast('sp_playlist *', 42) playlist = spotify.Playlist(self.session, sp_playlist=sp_playlist) position = 13 playlist.reorder_tracks([position, position], 17) lib_mock.sp_playlist_reorder_tracks.assert_called_with( sp_playlist, [position], 1, 17) @mock.patch('spotify.track.lib', spec=spotify.lib) def test_reorder_tracks_fails_if_error(self, track_lib_mock, lib_mock): lib_mock.sp_playlist_reorder_tracks.return_value = int( spotify.ErrorType.PERMISSION_DENIED) sp_playlist = spotify.ffi.cast('sp_playlist *', 42) playlist = spotify.Playlist(self.session, sp_playlist=sp_playlist) position = 13 with self.assertRaises(spotify.Error): playlist.reorder_tracks(position, 17) def test_num_subscribers(self, lib_mock): lib_mock.sp_playlist_num_subscribers.return_value = 7 sp_playlist = spotify.ffi.cast('sp_playlist *', 42) playlist = spotify.Playlist(self.session, sp_playlist=sp_playlist) result = playlist.num_subscribers lib_mock.sp_playlist_num_subscribers.assert_called_with(sp_playlist) self.assertEqual(result, 7) def test_subscribers(self, lib_mock): sp_subscribers = spotify.ffi.new('sp_subscribers *') sp_subscribers.count = 1 user_alice = spotify.ffi.new('char[]', b'alice') sp_subscribers.subscribers = [user_alice] lib_mock.sp_playlist_subscribers.return_value = sp_subscribers sp_playlist = spotify.ffi.cast('sp_playlist *', 42) playlist = spotify.Playlist(self.session, sp_playlist=sp_playlist) result = playlist.subscribers lib_mock.sp_playlist_subscribers.assert_called_with(sp_playlist) tests.gc_collect() lib_mock.sp_playlist_subscribers_free.assert_called_with( sp_subscribers) self.assertEqual(result, ['alice']) def test_update_subscribers(self, lib_mock): lib_mock.sp_playlist_update_subscribers.return_value = int( spotify.ErrorType.OK) sp_playlist = spotify.ffi.cast('sp_playlist *', 42) playlist = spotify.Playlist(self.session, sp_playlist=sp_playlist) playlist.update_subscribers() lib_mock.sp_playlist_update_subscribers.assert_called_with( self.session._sp_session, sp_playlist) def test_update_subscribers_fails_if_error(self, lib_mock): lib_mock.sp_playlist_update_subscribers.return_value = int( spotify.ErrorType.BAD_API_VERSION) sp_playlist = spotify.ffi.cast('sp_playlist *', 42) playlist = spotify.Playlist(self.session, sp_playlist=sp_playlist) with self.assertRaises(spotify.Error): playlist.update_subscribers() def test_is_in_ram(self, lib_mock): lib_mock.sp_playlist_is_in_ram.return_value = 1 sp_playlist = spotify.ffi.cast('sp_playlist *', 42) playlist = spotify.Playlist(self.session, sp_playlist=sp_playlist) result = playlist.is_in_ram lib_mock.sp_playlist_is_in_ram.assert_called_with( self.session._sp_session, sp_playlist) self.assertTrue(result) def test_set_in_ram(self, lib_mock): lib_mock.sp_playlist_set_in_ram.return_value = int( spotify.ErrorType.OK) sp_playlist = spotify.ffi.cast('sp_playlist *', 42) playlist = spotify.Playlist(self.session, sp_playlist=sp_playlist) playlist.set_in_ram(False) lib_mock.sp_playlist_set_in_ram.assert_called_with( self.session._sp_session, sp_playlist, 0) def test_set_in_ram_fails_if_error(self, lib_mock): lib_mock.sp_playlist_set_in_ram.return_value = int( spotify.ErrorType.BAD_API_VERSION) sp_playlist = spotify.ffi.cast('sp_playlist *', 42) playlist = spotify.Playlist(self.session, sp_playlist=sp_playlist) with self.assertRaises(spotify.Error): playlist.set_in_ram(False) def test_set_offline_mode(self, lib_mock): lib_mock.sp_playlist_set_offline_mode.return_value = int( spotify.ErrorType.OK) sp_playlist = spotify.ffi.cast('sp_playlist *', 42) playlist = spotify.Playlist(self.session, sp_playlist=sp_playlist) playlist.set_offline_mode(False) lib_mock.sp_playlist_set_offline_mode.assert_called_with( self.session._sp_session, sp_playlist, 0) def test_set_offline_mode_fails_if_error(self, lib_mock): lib_mock.sp_playlist_set_offline_mode.return_value = int( spotify.ErrorType.BAD_API_VERSION) sp_playlist = spotify.ffi.cast('sp_playlist *', 42) playlist = spotify.Playlist(self.session, sp_playlist=sp_playlist) with self.assertRaises(spotify.Error): playlist.set_offline_mode(False) def test_offline_status(self, lib_mock): lib_mock.sp_playlist_get_offline_status.return_value = 2 sp_playlist = spotify.ffi.cast('sp_playlist *', 42) playlist = spotify.Playlist(self.session, sp_playlist=sp_playlist) result = playlist.offline_status lib_mock.sp_playlist_get_offline_status.assert_called_with( self.session._sp_session, sp_playlist) self.assertIs(result, spotify.PlaylistOfflineStatus.DOWNLOADING) def test_offline_download_completed(self, lib_mock): lib_mock.sp_playlist_get_offline_status.return_value = 2 lib_mock.sp_playlist_get_offline_download_completed.return_value = 73 sp_playlist = spotify.ffi.cast('sp_playlist *', 42) playlist = spotify.Playlist(self.session, sp_playlist=sp_playlist) result = playlist.offline_download_completed lib_mock.sp_playlist_get_offline_download_completed.assert_called_with( self.session._sp_session, sp_playlist) self.assertEqual(result, 73) def test_offline_download_completed_when_not_downloading(self, lib_mock): lib_mock.sp_playlist_get_offline_status.return_value = 0 lib_mock.sp_playlist_get_offline_download_completed.return_value = 0 sp_playlist = spotify.ffi.cast('sp_playlist *', 42) playlist = spotify.Playlist(self.session, sp_playlist=sp_playlist) result = playlist.offline_download_completed self.assertEqual( lib_mock.sp_playlist_get_offline_download_completed.call_count, 0) self.assertIsNone(result) @mock.patch('spotify.Link', spec=spotify.Link) def test_link_creates_link_to_playlist(self, link_mock, lib_mock): sp_playlist = spotify.ffi.cast('sp_playlist *', 42) playlist = spotify.Playlist(self.session, sp_playlist=sp_playlist) sp_link = spotify.ffi.cast('sp_link *', 43) lib_mock.sp_link_create_from_playlist.return_value = sp_link link_mock.return_value = mock.sentinel.link result = playlist.link link_mock.assert_called_once_with( self.session, sp_link=sp_link, add_ref=False) self.assertEqual(result, mock.sentinel.link) @mock.patch('spotify.Link', spec=spotify.Link) def test_link_fails_if_playlist_not_loaded( self, lik_mock, lib_mock): lib_mock.sp_playlist_is_loaded.return_value = 0 lib_mock.sp_link_create_from_playlist.return_value = spotify.ffi.NULL sp_playlist = spotify.ffi.cast('sp_playlist *', 42) playlist = spotify.Playlist(self.session, sp_playlist=sp_playlist) with self.assertRaises(spotify.Error): playlist.link # Condition is checked before link creation is tried self.assertEqual(lib_mock.sp_link_create_from_playlist.call_count, 0) @mock.patch('spotify.Link', spec=spotify.Link) def test_link_may_fail_if_playlist_has_not_been_in_ram( self, link_mock, lib_mock): lib_mock.sp_playlist_is_loaded.return_value = 1 lib_mock.sp_link_create_from_playlist.return_value = spotify.ffi.NULL sp_playlist = spotify.ffi.cast('sp_playlist *', 42) playlist = spotify.Playlist(self.session, sp_playlist=sp_playlist) with self.assertRaises(spotify.Error): playlist.link # Condition is checked only if link creation returns NULL lib_mock.sp_link_create_from_playlist.assert_called_with(sp_playlist) lib_mock.sp_playlist_is_in_ram.assert_called_with( self.session._sp_session, sp_playlist) def test_first_on_call_adds_ref_to_obj_on_session(self, lib_mock): sp_playlist = spotify.ffi.cast('sp_playlist *', 42) playlist = spotify.Playlist(self.session, sp_playlist=sp_playlist) playlist.on(spotify.PlaylistEvent.TRACKS_ADDED, lambda *args: None) self.assertIn(playlist, self.session._emitters) def test_last_off_call_removes_ref_to_obj_from_session(self, lib_mock): sp_playlist = spotify.ffi.cast('sp_playlist *', 42) playlist = spotify.Playlist(self.session, sp_playlist=sp_playlist) playlist.on(spotify.PlaylistEvent.TRACKS_ADDED, lambda *args: None) playlist.off(spotify.PlaylistEvent.TRACKS_ADDED) self.assertNotIn(playlist, self.session._emitters) def test_other_off_calls_keeps_ref_to_obj_on_session(self, lib_mock): sp_playlist = spotify.ffi.cast('sp_playlist *', 42) playlist = spotify.Playlist(self.session, sp_playlist=sp_playlist) playlist.on(spotify.PlaylistEvent.TRACKS_ADDED, lambda *args: None) playlist.on(spotify.PlaylistEvent.TRACKS_MOVED, lambda *args: None) playlist.off(spotify.PlaylistEvent.TRACKS_ADDED) self.assertIn(playlist, self.session._emitters) playlist.off(spotify.PlaylistEvent.TRACKS_MOVED) self.assertNotIn(playlist, self.session._emitters) @mock.patch('spotify.playlist.lib', spec=spotify.lib) class PlaylistCallbacksTest(unittest.TestCase): def setUp(self): self.session = tests.create_session_mock() spotify._session_instance = self.session def tearDown(self): spotify._session_instance = None @mock.patch('spotify.track.lib', spec=spotify.lib) def test_tracks_added_callback(self, track_lib_mock, lib_mock): callback = mock.Mock() sp_playlist = spotify.ffi.cast('sp_playlist *', 42) playlist = spotify.Playlist._cached( self.session, sp_playlist=sp_playlist) playlist.on(spotify.PlaylistEvent.TRACKS_ADDED, callback) sp_tracks = [ spotify.ffi.cast('sp_track *', 43), spotify.ffi.cast('sp_track *', 44), spotify.ffi.cast('sp_track *', 45), ] index = 7 _PlaylistCallbacks.tracks_added( sp_playlist, sp_tracks, len(sp_tracks), index, spotify.ffi.NULL) callback.assert_called_once_with(playlist, mock.ANY, index) tracks = callback.call_args[0][1] self.assertEqual(len(tracks), len(sp_tracks)) self.assertIsInstance(tracks[0], spotify.Track) self.assertEqual(tracks[0]._sp_track, sp_tracks[0]) track_lib_mock.sp_track_add_ref.assert_has_calls([ mock.call(sp_tracks[0]), mock.call(sp_tracks[1]), mock.call(sp_tracks[2]), ]) def test_tracks_removed_callback(self, lib_mock): callback = mock.Mock() sp_playlist = spotify.ffi.cast('sp_playlist *', 42) playlist = spotify.Playlist._cached( self.session, sp_playlist=sp_playlist) playlist.on(spotify.PlaylistEvent.TRACKS_REMOVED, callback) track_numbers = [43, 44, 45] _PlaylistCallbacks.tracks_removed( sp_playlist, track_numbers, len(track_numbers), spotify.ffi.NULL) callback.assert_called_once_with(playlist, mock.ANY) tracks = callback.call_args[0][1] self.assertEqual(len(tracks), len(track_numbers)) self.assertEqual(tracks[0], 43) def test_tracks_moved_callback(self, lib_mock): callback = mock.Mock() sp_playlist = spotify.ffi.cast('sp_playlist *', 42) playlist = spotify.Playlist._cached( self.session, sp_playlist=sp_playlist) playlist.on(spotify.PlaylistEvent.TRACKS_MOVED, callback) track_numbers = [43, 44, 45] index = 7 _PlaylistCallbacks.tracks_moved( sp_playlist, track_numbers, len(track_numbers), index, spotify.ffi.NULL) callback.assert_called_once_with(playlist, mock.ANY, index) tracks = callback.call_args[0][1] self.assertEqual(len(tracks), len(track_numbers)) self.assertEqual(tracks[0], 43) def test_playlist_renamed_callback(self, lib_mock): callback = mock.Mock() sp_playlist = spotify.ffi.cast('sp_playlist *', 42) playlist = spotify.Playlist._cached( self.session, sp_playlist=sp_playlist) playlist.on(spotify.PlaylistEvent.PLAYLIST_RENAMED, callback) _PlaylistCallbacks.playlist_renamed(sp_playlist, spotify.ffi.NULL) callback.assert_called_once_with(playlist) def test_playlist_state_changed_callback(self, lib_mock): callback = mock.Mock() sp_playlist = spotify.ffi.cast('sp_playlist *', 42) playlist = spotify.Playlist._cached( self.session, sp_playlist=sp_playlist) playlist.on(spotify.PlaylistEvent.PLAYLIST_STATE_CHANGED, callback) _PlaylistCallbacks.playlist_state_changed( sp_playlist, spotify.ffi.NULL) callback.assert_called_once_with(playlist) def test_playlist_update_in_progress_callback(self, lib_mock): callback = mock.Mock() sp_playlist = spotify.ffi.cast('sp_playlist *', 42) playlist = spotify.Playlist._cached( self.session, sp_playlist=sp_playlist) playlist.on( spotify.PlaylistEvent.PLAYLIST_UPDATE_IN_PROGRESS, callback) done = True _PlaylistCallbacks.playlist_update_in_progress( sp_playlist, int(done), spotify.ffi.NULL) callback.assert_called_once_with(playlist, done) def test_playlist_metadata_updated_callback(self, lib_mock): callback = mock.Mock() sp_playlist = spotify.ffi.cast('sp_playlist *', 42) playlist = spotify.Playlist._cached( self.session, sp_playlist=sp_playlist) playlist.on(spotify.PlaylistEvent.PLAYLIST_METADATA_UPDATED, callback) _PlaylistCallbacks.playlist_metadata_updated( sp_playlist, spotify.ffi.NULL) callback.assert_called_once_with(playlist) @mock.patch('spotify.user.lib', spec=spotify.lib) def test_track_created_changed_callback(self, user_lib_mock, lib_mock): callback = mock.Mock() sp_playlist = spotify.ffi.cast('sp_playlist *', 42) playlist = spotify.Playlist._cached( self.session, sp_playlist=sp_playlist) playlist.on(spotify.PlaylistEvent.TRACK_CREATED_CHANGED, callback) index = 7 sp_user = spotify.ffi.cast('sp_user *', 43) time = 123456789 _PlaylistCallbacks.track_created_changed( sp_playlist, index, sp_user, time, spotify.ffi.NULL) callback.assert_called_once_with(playlist, index, mock.ANY, time) user = callback.call_args[0][2] self.assertIsInstance(user, spotify.User) self.assertEqual(user._sp_user, sp_user) user_lib_mock.sp_user_add_ref.assert_called_with(sp_user) def test_track_seen_changed_callback(self, lib_mock): callback = mock.Mock() sp_playlist = spotify.ffi.cast('sp_playlist *', 42) playlist = spotify.Playlist._cached( self.session, sp_playlist=sp_playlist) playlist.on(spotify.PlaylistEvent.TRACK_SEEN_CHANGED, callback) index = 7 seen = True _PlaylistCallbacks.track_seen_changed( sp_playlist, index, int(seen), spotify.ffi.NULL) callback.assert_called_once_with(playlist, index, seen) def test_description_changed_callback(self, lib_mock): callback = mock.Mock() sp_playlist = spotify.ffi.cast('sp_playlist *', 42) playlist = spotify.Playlist._cached( self.session, sp_playlist=sp_playlist) playlist.on(spotify.PlaylistEvent.DESCRIPTION_CHANGED, callback) description = 'foo bar æøå' desc = spotify.ffi.new('char[]', description.encode('utf-8')) _PlaylistCallbacks.description_changed( sp_playlist, desc, spotify.ffi.NULL) callback.assert_called_once_with(playlist, description) @mock.patch('spotify.image.lib', spec=spotify.lib) def test_image_changed_callback(self, image_lib_mock, lib_mock): callback = mock.Mock() sp_playlist = spotify.ffi.cast('sp_playlist *', 42) playlist = spotify.Playlist._cached( self.session, sp_playlist=sp_playlist) playlist.on(spotify.PlaylistEvent.IMAGE_CHANGED, callback) image_id = spotify.ffi.new('char[]', b'image-id') sp_image = spotify.ffi.cast('sp_image *', 43) lib_mock.sp_image_create.return_value = sp_image image_lib_mock.sp_image_add_load_callback.return_value = int( spotify.ErrorType.OK) _PlaylistCallbacks.image_changed( sp_playlist, image_id, spotify.ffi.NULL) callback.assert_called_once_with(playlist, mock.ANY) image = callback.call_args[0][1] self.assertIsInstance(image, spotify.Image) self.assertEqual(image._sp_image, sp_image) lib_mock.sp_image_create.assert_called_once_with( self.session._sp_session, image_id) self.assertEqual(image_lib_mock.sp_image_add_ref.call_count, 0) def test_track_message_changed_callback(self, lib_mock): callback = mock.Mock() sp_playlist = spotify.ffi.cast('sp_playlist *', 42) playlist = spotify.Playlist._cached( self.session, sp_playlist=sp_playlist) playlist.on(spotify.PlaylistEvent.TRACK_MESSAGE_CHANGED, callback) index = 7 message = 'foo bar æøå' msg = spotify.ffi.new('char[]', message.encode('utf-8')) _PlaylistCallbacks.track_message_changed( sp_playlist, index, msg, spotify.ffi.NULL) callback.assert_called_once_with(playlist, index, message) def test_subscribers_changed_callback(self, lib_mock): callback = mock.Mock() sp_playlist = spotify.ffi.cast('sp_playlist *', 42) playlist = spotify.Playlist._cached( self.session, sp_playlist=sp_playlist) playlist.on(spotify.PlaylistEvent.SUBSCRIBERS_CHANGED, callback) _PlaylistCallbacks.subscribers_changed(sp_playlist, spotify.ffi.NULL) callback.assert_called_once_with(playlist) class PlaylistOfflineStatusTest(unittest.TestCase): def test_has_constants(self): self.assertEqual(spotify.PlaylistOfflineStatus.NO, 0) self.assertEqual(spotify.PlaylistOfflineStatus.DOWNLOADING, 2)
41.250825
79
0.696176
79520ed9d5f9fcf41be1b6d0afe1d9d86af3e90c
915
py
Python
oo/pessoa.py
anthonysilvaa/pythonbirds
776ef93ffdb3f3365967e87df6cff54020c1d65c
[ "MIT" ]
null
null
null
oo/pessoa.py
anthonysilvaa/pythonbirds
776ef93ffdb3f3365967e87df6cff54020c1d65c
[ "MIT" ]
null
null
null
oo/pessoa.py
anthonysilvaa/pythonbirds
776ef93ffdb3f3365967e87df6cff54020c1d65c
[ "MIT" ]
null
null
null
class Pessoa: olhos = 2 def __init__(self, *filhos, nome: str, idade=35, peso=35): self.nome = nome self.idade = idade self.peso = peso self.filhos = list(filhos) def cumprimentar(self): return f'Olá {id(self)}' if __name__ == '__main__': usuario= Pessoa(nome='Bam') #usuario.nome = 'Liane' print(f'Nome: {usuario.nome} - Idade: {usuario.idade} - Peso: {usuario.peso}') print(Pessoa.cumprimentar(usuario)) print(id(usuario)) print(usuario.cumprimentar()) amanda = Pessoa(nome='Amanda', idade=32, peso=67.52) luciano = Pessoa(amanda, nome='Luciano') for filho in luciano.filhos: print(filho.nome) luciano.sobrenome = 'Soares' print(luciano.olhos) luciano.olhos = 1 print(luciano.olhos) print(Pessoa.olhos) del luciano.filhos print(luciano.__dict__) print(amanda.__dict__)
20.333333
82
0.622951
79520f2079f590ca21b03e2c73c249d6d57ebac6
927
py
Python
src/zope/app/broken/interfaces.py
zopefoundation/zope.app.broken
828f59742e424871c53a5760851d7ce5a5c2f6cd
[ "ZPL-2.1" ]
null
null
null
src/zope/app/broken/interfaces.py
zopefoundation/zope.app.broken
828f59742e424871c53a5760851d7ce5a5c2f6cd
[ "ZPL-2.1" ]
6
2017-05-15T15:58:48.000Z
2021-05-06T09:00:31.000Z
src/zope/app/broken/interfaces.py
zopefoundation/zope.app.broken
828f59742e424871c53a5760851d7ce5a5c2f6cd
[ "ZPL-2.1" ]
1
2015-04-03T07:30:37.000Z
2015-04-03T07:30:37.000Z
############################################################################## # # Copyright (c) 2007 Zope Foundation and Contributors. # All Rights Reserved. # # This software is subject to the provisions of the Zope Public License, # Version 2.1 (ZPL). A copy of the ZPL should accompany this distribution. # THIS SOFTWARE IS PROVIDED "AS IS" AND ANY AND ALL EXPRESS OR IMPLIED # WARRANTIES ARE DISCLAIMED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF TITLE, MERCHANTABILITY, AGAINST INFRINGEMENT, AND FITNESS # FOR A PARTICULAR PURPOSE. # ############################################################################## """zope.app.broken interfaces. """ from zope.deferredimport import deprecated # BBB zope.app.broken 5.0: Names now moved to ZODB itself. deprecated( 'Please import from ZODB.interfaces.' ' This module will go away in zope.app.broken 5.0.', IBroken='ZODB.interfaces:IBroken', )
37.08
78
0.621359
79520f2fb853c72cc43effea739b93bd0a3b20cc
154
py
Python
library/string_utils/base64/bench/metrics/main.py
HeyLey/catboost
f472aed90604ebe727537d9d4a37147985e10ec2
[ "Apache-2.0" ]
2
2019-07-10T10:49:09.000Z
2020-06-19T11:40:04.000Z
library/string_utils/base64/bench/metrics/main.py
HeyLey/catboost
f472aed90604ebe727537d9d4a37147985e10ec2
[ "Apache-2.0" ]
6
2020-02-18T22:12:29.000Z
2020-02-18T22:31:26.000Z
library/string_utils/base64/bench/metrics/main.py
HeyLey/catboost
f472aed90604ebe727537d9d4a37147985e10ec2
[ "Apache-2.0" ]
1
2018-08-06T14:13:12.000Z
2018-08-06T14:13:12.000Z
import yatest.common as yc def test_export_metrics(metrics): metrics.set_benchmark(yc.execute_benchmark('library/string_utils/base64/bench/bench'))
25.666667
90
0.811688
795210398776484f32f8e6c5b9f3a563a744b5ab
6,671
py
Python
tests/test_auth_by_token.py
fpga-tom/mod_authnz_jwt
9e86777b8679df4f5e0b4ef56a77f57d1613e41a
[ "Apache-2.0" ]
73
2016-09-01T00:01:48.000Z
2022-03-24T03:31:01.000Z
tests/test_auth_by_token.py
fpga-tom/mod_authnz_jwt
9e86777b8679df4f5e0b4ef56a77f57d1613e41a
[ "Apache-2.0" ]
48
2016-10-27T22:01:58.000Z
2022-03-07T07:29:00.000Z
tests/test_auth_by_token.py
fpga-tom/mod_authnz_jwt
9e86777b8679df4f5e0b4ef56a77f57d1613e41a
[ "Apache-2.0" ]
43
2016-10-17T20:53:48.000Z
2022-03-19T13:15:36.000Z
import time import unittest import json from test_jwt import TestJWT class TestAuthByToken(TestJWT): @TestJWT.with_all_algorithms() def test_login_with_urlencoded_should_success(self, alg, public_key, private_key, secured_url, login_url): code, content, headers, cookies = self.http_post(login_url, { self.USERNAME_FIELD: self.USERNAME, self.PASSWORD_FIELD: self.PASSWORD }, headers={"Content-Type": "application/x-www-form-urlencoded"}) self.assertEqual(code, 200) @TestJWT.with_all_algorithms() def test_login_with_json_should_fail(self, alg, public_key, private_key, secured_url, login_url): code, content, headers, cookies = self.http_post(login_url, { self.USERNAME_FIELD: self.USERNAME, self.PASSWORD_FIELD: self.PASSWORD }, headers={"Content-Type": "application/json"}) self.assertEqual(code, 415) @TestJWT.with_all_algorithms() def test_malformed_token_should_fail(self, alg, public_key, private_key, secured_url, login_url): token = self.encode_jwt( {"iss": self.JWT_ISS, "aud": self.JWT_AUD, "user": "toto", "iat": int(time.time()), "nbf": int(time.time()), "exp": int(time.time()) + 1000}, private_key, alg) # we replace . by # for the token to be malformed token = token.replace('.', '#') code, content, headers = self.http_get(secured_url, token=token) self.assertEqual(code, 401) self.assertEqual(headers["WWW-Authenticate"], 'Bearer realm="private area", error="invalid_token", ' 'error_description="Token is malformed or signature is invalid"') @TestJWT.with_all_algorithms() def test_invalid_signature_should_fail(self, alg, public_key, private_key, secured_url, login_url): token = self.encode_jwt( {"iss": self.JWT_ISS, "aud": self.JWT_AUD, "user": "toto", "iat": int(time.time()), "nbf": int(time.time()), "exp": int(time.time()) + 1000}, private_key, alg) # we remove last 10 characters for the signature to be invalid token = token[:-10] code, content, headers = self.http_get(secured_url, token=token) self.assertEqual(code, 401) self.assertEqual(headers["WWW-Authenticate"], 'Bearer realm="private area", error="invalid_token", ' 'error_description="Token is malformed or signature is invalid"') @TestJWT.with_all_algorithms() def test_invalid_iss_should_fail(self, alg, public_key, private_key, secured_url, login_url): token = self.encode_jwt( {"iss": "invalid", "aud": self.JWT_AUD, "user": "toto", "iat": int(time.time()), "nbf": int(time.time()), "exp": int(time.time()) + 1000}, private_key, alg) code, content, headers = self.http_get(secured_url, token=token) self.assertEqual(code, 401) self.assertEqual(headers["WWW-Authenticate"], 'Bearer realm="private area", error="invalid_token", ' 'error_description="Issuer is not valid"') @TestJWT.with_all_algorithms() def test_invalid_aud_should_fail(self, alg, public_key, private_key, secured_url, login_url): token = self.encode_jwt( {"iss": self.JWT_ISS, "aud": "invalid", "user": "toto", "iat": int(time.time()), "nbf": int(time.time()), "exp": int(time.time()) + 1000}, private_key, alg) code, content, headers = self.http_get(secured_url, token=token) self.assertEqual(code, 401) self.assertEqual(headers["WWW-Authenticate"], 'Bearer realm="private area", error="invalid_token", ' 'error_description="Audience is not valid"') @TestJWT.with_all_algorithms() def test_invalid_nbf_should_fail(self, alg, public_key, private_key, secured_url, login_url): token = self.encode_jwt({"iss": self.JWT_ISS, "aud": self.JWT_AUD, "user": "toto", "iat": int(time.time()), "nbf": int(time.time()) + 1000, "exp": int(time.time()) + 1000}, private_key, alg) code, content, headers = self.http_get(secured_url, token=token) self.assertEqual(code, 401) self.assertEqual(headers["WWW-Authenticate"], 'Bearer realm="private area", error="invalid_token", ' 'error_description="Token can\'t be processed now due to nbf field"') @TestJWT.with_all_algorithms() def test_invalid_exp_should_fail(self, alg, public_key, private_key, secured_url, login_url): token = self.encode_jwt( {"iss": self.JWT_ISS, "aud": self.JWT_AUD, "user": "toto", "iat": int(time.time()), "nbf": int(time.time()), "exp": int(time.time()) - 1000}, private_key, alg) code, content, headers = self.http_get(secured_url, token=token) self.assertEqual(code, 401) self.assertEqual(headers["WWW-Authenticate"], 'Bearer realm="private area", error="invalid_token", error_description="Token expired"') @TestJWT.with_all_algorithms() def test_token_exp_missing_should_success(self, alg, public_key, private_key, secured_url, login_url): token = self.encode_jwt({"iss": self.JWT_ISS, "aud": self.JWT_AUD, "user": "toto", "iat": int(time.time()), "nbf": int(time.time())}, private_key, alg) code, content, headers = self.http_get(secured_url, token=token) self.assertEqual(code, 200) @TestJWT.with_all_algorithms() def test_with_leeway_should_success(self, alg, public_key, private_key, secured_url, login_url): token = self.encode_jwt( {"iss": self.JWT_ISS, "aud": self.JWT_AUD, "user": "toto", "iat": int(time.time()) - 1000, "nbf": int(time.time()) - 1000, "exp": int(time.time()) - self.JWT_LEEWAY + 1}, private_key, alg) code, content, headers = self.http_get(secured_url, token=token) self.assertEqual(code, 200) @TestJWT.with_all_algorithms() def test_should_success(self, alg, public_key, private_key, secured_url, login_url): token = self.encode_jwt( {"iss": self.JWT_ISS, "aud": self.JWT_AUD, "user": "toto", "iat": int(time.time()) - 1000, "nbf": int(time.time()) - 1000, "exp": int(time.time()) + 10}, private_key, alg) code, content, headers = self.http_get(secured_url, token=token) self.assertEqual(code, 200)
57.017094
120
0.619997
79521051960b69ba2f821e42f7642af3cae86b74
510
py
Python
docassemble_webapp/docassemble/webapp/alembic/versions/77e8971ffcbf_first_alembic_revision.py
knod/docassemble
bd052b557743d098138a5f2129a9d3c2f68090a6
[ "MIT" ]
568
2016-01-08T19:05:06.000Z
2022-03-30T19:44:47.000Z
docassemble_webapp/docassemble/webapp/alembic/versions/77e8971ffcbf_first_alembic_revision.py
knod/docassemble
bd052b557743d098138a5f2129a9d3c2f68090a6
[ "MIT" ]
348
2016-01-25T02:17:36.000Z
2022-03-27T21:22:43.000Z
docassemble_webapp/docassemble/webapp/alembic/versions/77e8971ffcbf_first_alembic_revision.py
knod/docassemble
bd052b557743d098138a5f2129a9d3c2f68090a6
[ "MIT" ]
262
2016-01-14T23:09:50.000Z
2022-03-23T15:06:08.000Z
"""first alembic revision Revision ID: 77e8971ffcbf Revises: Create Date: 2017-08-13 09:07:33.368044 """ from alembic import op import sqlalchemy as sa from docassemble.webapp.database import dbtableprefix # revision identifiers, used by Alembic. revision = '77e8971ffcbf' down_revision = None branch_labels = None depends_on = None def upgrade(): op.add_column(dbtableprefix + 'user', sa.Column('modified_at', sa.DateTime)) def downgrade(): op.drop_column(dbtableprefix + 'user', 'modified_at')
22.173913
80
0.758824
79521082030489af477e06feab63c1d3f5a6065d
1,307
py
Python
setup.py
hyperair/flake8-expandtab
bf0f5cbd4398145dd8de6892605de4e297be1c17
[ "MIT" ]
null
null
null
setup.py
hyperair/flake8-expandtab
bf0f5cbd4398145dd8de6892605de4e297be1c17
[ "MIT" ]
1
2018-12-17T22:42:38.000Z
2018-12-18T11:33:40.000Z
setup.py
hyperair/flake8-expandtab
bf0f5cbd4398145dd8de6892605de4e297be1c17
[ "MIT" ]
null
null
null
#!/usr/bin/env python from setuptools import setup def get_long_description(): try: import pypandoc return pypandoc.convert("README.md", "rst") except ImportError: with open("README.md") as f: return f.read() setup( name='flake8-expandtab', version='0.3', description='flake8 for tab junkies', long_description=get_long_description(), author='Chow Loong Jin', author_email='hyperair@debian.org', url='https://www.github.com/hyperair/flake8-expandtab', license='MIT', entry_points={ 'flake8.extension': [ 'expandtab = flake8_expandtab:TabExpander', ], }, py_modules=['flake8_expandtab'], data_files=['README.md'], tests_require=['mock', 'flake8'], test_suite='tests', classifiers=[ "Framework :: Flake8", "Intended Audience :: Developers", "Development Status :: 4 - Beta", "License :: OSI Approved :: MIT License", "Programming Language :: Python", "Programming Language :: Python :: 2", "Programming Language :: Python :: 3", "Topic :: Software Development :: Libraries :: Python Modules", "Topic :: Software Development :: Quality Assurance", "Operating System :: OS Independent" ] )
28.413043
71
0.609028
795210e275ea82f35f5b6c1ff50e7f8fc98fe93c
1,020
py
Python
tests/job.py
stamp711/DBx1000
928912dd7e005ce5a63ad94fdcde412ab893e678
[ "ISC" ]
null
null
null
tests/job.py
stamp711/DBx1000
928912dd7e005ce5a63ad94fdcde412ab893e678
[ "ISC" ]
null
null
null
tests/job.py
stamp711/DBx1000
928912dd7e005ce5a63ad94fdcde412ab893e678
[ "ISC" ]
null
null
null
workloads = {} workloads["YCSB+RH"] = { "WORKLOAD": "YCSB", "READ_PERC": 0.9, "WRITE_PERC": 0.1, } workloads["YCSB+RW"] = { "WORKLOAD": "YCSB", "READ_PERC": 0.5, "WRITE_PERC": 0.5, } workloads["YCSB+WH"] = { "WORKLOAD": "YCSB", "READ_PERC": 0.1, "WRITE_PERC": 0.9, } workloads["TPCC+1WH"] = {"WORKLOAD": "TPCC", "NUM_WH": 1} workloads["TPCC+4WH"] = {"WORKLOAD": "TPCC", "NUM_WH": 1} workloads["TPCC+XWH"] = {"WORKLOAD": "TPCC", "NUM_WH": "THREAD_CNT"} threads = {} threads["01"] = {"THREAD_CNT": 1, "NUM_LOGGER": 1} threads["02"] = {"THREAD_CNT": 2, "NUM_LOGGER": 2} threads["04"] = {"THREAD_CNT": 4, "NUM_LOGGER": 4} threads["06"] = {"THREAD_CNT": 6, "NUM_LOGGER": 4} threads["08"] = {"THREAD_CNT": 8, "NUM_LOGGER": 4} threads["10"] = {"THREAD_CNT": 10, "NUM_LOGGER": 4} threads["12"] = {"THREAD_CNT": 12, "NUM_LOGGER": 4} threads["14"] = {"THREAD_CNT": 14, "NUM_LOGGER": 4} threads["16"] = {"THREAD_CNT": 16, "NUM_LOGGER": 4} threads["18"] = {"THREAD_CNT": 18, "NUM_LOGGER": 4}
29.142857
68
0.583333
795210eeb5512c9005fe9124e88e91470d04acdb
3,097
py
Python
ganjoor/spiders/ganjoor.net/roodaki/scrapyrobaeer.py
amirmasoud/ganjoor-crawler
a86fe379955ce854765086ab7ba0a78513d052bd
[ "MIT" ]
null
null
null
ganjoor/spiders/ganjoor.net/roodaki/scrapyrobaeer.py
amirmasoud/ganjoor-crawler
a86fe379955ce854765086ab7ba0a78513d052bd
[ "MIT" ]
null
null
null
ganjoor/spiders/ganjoor.net/roodaki/scrapyrobaeer.py
amirmasoud/ganjoor-crawler
a86fe379955ce854765086ab7ba0a78513d052bd
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- import scrapy class scrapyrobaeerSpider(scrapy.Spider): name = "scrapyrobaeer" allowed_domains = ["ganjoor.net"] if 38 == 1: start_urls = ["https://ganjoor.net/roodaki/robaeer/sh"] else: start_urls = ["https://ganjoor.net/roodaki/robaeer/sh" + "1"] order = 1 def parse(self, response): index = 0 sh = dict() sh["type"] = "robaee" sh["text"] = dict() for i, poem in enumerate(response.css("div.poem>article>div")): if poem.css("p:first-child::text").extract_first() is None: continue if index == 0: if 1 == 1: sh["title"] = "رباعی" + " شماره " + str(self.order) + " - " + ''.join(poem.css("div.m1>p::text").extract()).strip() elif 1 == 2: sh["title"] = "رباعی" + " شماره " + str(self.order) + " - " + ''.join(poem.css("div.m2>p::text").extract()).strip() elif 1 == 3: sh["title"] = "رباعی" + " شماره " + str(self.order) + " - " + ''.join(response.css("div.poem>article>h2>a::text").extract()).strip() + ': ' + ''.join(poem.css("div.m1>p::text").extract()).strip() elif 1 == 4: sh["title"] = "رباعی" + " شماره " + str(self.order) + " - " + ''.join(response.css("div.poem>article>h2>a::text").extract()).strip() + ': ' + ''.join(poem.css("div.m2>p::text").extract()).strip() else: sh["title"] = response.css("div.poem>article>h2>a::text").extract_first() if len(poem.css("div.m1>p")) == 1: if poem.css("div.b"): sh["text"][index] = dict([ ("m1", ''.join(poem.css("div.m1>p::text").extract()).strip()), ("m2", ''.join(poem.css("div.m2>p::text").extract()).strip()), ]) else: sh["text"][index] = dict([ ("t1", ''.join(poem.css("p:first-child::text").extract()).strip()), ("t2", ''.join(poem.css("p:last-child::text").extract()).strip()), ]) else: if poem.css("div.b2"): sh["text"][index] = dict([ ("t1", ''.join(poem.css("p:first-child::text").extract()).strip()), ("t2", ''.join(poem.css("p:last-child::text").extract()).strip()), ]) else: sh['text'][index] = dict([ ('p', ''.join(poem.css('p:first-child::text').extract()).strip()) ]) index = index + 1 sh["order"] = self.order self.order = self.order + 1 yield sh # next_page = response.css("div.navigation>div.navleft>a::attr(href)").extract_first() if self.order < (38 + 1): next_page = response.urljoin("https://ganjoor.net/roodaki/robaeer/sh" + str(self.order)) yield scrapy.Request(next_page, callback=self.parse)
50.770492
215
0.454634
79521104346211d0c8462da6a03bbba73f04ba5d
2,010
py
Python
Electronics/ADC.py
KyleKing/Another_Raspberry_Pi_Guide
c1bf871411e8c51df069ba8374fdec49ad43f02b
[ "MIT" ]
1
2016-06-29T14:12:49.000Z
2016-06-29T14:12:49.000Z
Electronics/ADC.py
KyleKing/Another_Raspberry_Pi_Guide
c1bf871411e8c51df069ba8374fdec49ad43f02b
[ "MIT" ]
2
2016-06-25T16:37:52.000Z
2016-12-07T02:26:16.000Z
Electronics/ADC.py
KyleKing/Another_Raspberry_Pi_Guide
c1bf871411e8c51df069ba8374fdec49ad43f02b
[ "MIT" ]
null
null
null
#!/usr/bin/env python # Written by Limor "Ladyada" Fried for Adafruit Industries, (c) 2015 # This code is released into the public domain # import time # import os import RPi.GPIO as GPIO GPIO.setmode(GPIO.BCM) DEBUG = 1 # read SPI data from MCP3008 chip, 8 possible adc's (0 thru 7) def readadc(adcnum, clockpin, mosipin, misopin, cspin): if ((adcnum > 7) or (adcnum < 0)): return -1 GPIO.output(cspin, True) GPIO.output(clockpin, False) # start clock low GPIO.output(cspin, False) # bring CS low commandout = adcnum commandout |= 0x18 # start bit + single-ended bit commandout <<= 3 # we only need to send 5 bits here for i in range(5): if (commandout & 0x80): GPIO.output(mosipin, True) else: GPIO.output(mosipin, False) commandout <<= 1 GPIO.output(clockpin, True) GPIO.output(clockpin, False) adcout = 0 # read in one empty bit, one null bit and 10 ADC bits for i in range(12): GPIO.output(clockpin, True) GPIO.output(clockpin, False) adcout <<= 1 if (GPIO.input(misopin)): adcout |= 0x1 GPIO.output(cspin, True) adcout >>= 1 # first bit is 'null' so drop it return adcout # change these as desired - they're the pins connected from the # SPI port on the ADC to the Cobbler SPICLK = 18 SPIMISO = 23 SPIMOSI = 24 SPICS = 25 # set up the SPI interface pins GPIO.setup(SPIMOSI, GPIO.OUT) GPIO.setup(SPIMISO, GPIO.IN) GPIO.setup(SPICLK, GPIO.OUT) GPIO.setup(SPICS, GPIO.OUT) while True: # read the analog pin CH0 = readadc(0, SPICLK, SPIMOSI, SPIMISO, SPICS) CH1 = readadc(1, SPICLK, SPIMOSI, SPIMISO, SPICS) CH2 = readadc(2, SPICLK, SPIMOSI, SPIMISO, SPICS) CH3 = readadc(3, SPICLK, SPIMOSI, SPIMISO, SPICS) print '{0},{1},{2},{3}'.format(CH0, CH1, CH2, CH3) if DEBUG: print ">> CH0:", CH0 print " CH1:", CH1 print " CH2:", CH2 print " CH3:", CH3
26.8
68
0.620896
795211b2a4b83601f223170208d015ff06a667e3
1,500
py
Python
tests/core/test_local.py
saucynosoy/opta
e96f335d43c849803c1a588a812ee98f52e3f92a
[ "Apache-2.0" ]
null
null
null
tests/core/test_local.py
saucynosoy/opta
e96f335d43c849803c1a588a812ee98f52e3f92a
[ "Apache-2.0" ]
null
null
null
tests/core/test_local.py
saucynosoy/opta
e96f335d43c849803c1a588a812ee98f52e3f92a
[ "Apache-2.0" ]
null
null
null
import json import os import unittest from opta.core.local import Local from opta.layer import Layer class LocalTests(unittest.TestCase): def setUp(self) -> None: self.layer = Layer( name="testname", org_name="testorg", providers={"local": {"path": "/tmp"}}, modules_data=[], path="/tmp", parent=None, ) self.local = Local(self.layer) self.local.tf_file = "/tmp/tfconfig" self.local.config_file_path = "/tmp/localconfig" with open(self.local.config_file_path, "w") as f: json.dump({"a": "1"}, f) with open(self.local.tf_file, "w") as f: f.write("Some tf state for testing") return super().setUp() def tearDown(self) -> None: if os.path.isfile("/tmp/localconfig"): os.remove("/tmp/localconfig") if os.path.isfile("/tmp/tfconfig"): os.remove("/tmp/tfconfig") return super().tearDown() def test_get_remote_config(self) -> None: assert self.local.get_remote_config() == {"a": "1"} def test_upload_opta_config(self) -> None: self.local.upload_opta_config() dict = json.load(open(self.local.config_file_path, "r")) assert set(dict.keys()) == set(["opta_version", "original_spec", "date"]) def test_delete_local_tf_state(self) -> None: self.local.delete_local_tf_state() assert os.path.isfile(self.local.tf_file) is False
31.25
81
0.592667
79521393a95f0c7642754b16fff3f920549ce635
3,919
py
Python
setup.py
bengranett/pypeline
33aba4dbb9743fb1227f4bfb15f1a97ea22afba4
[ "MIT" ]
null
null
null
setup.py
bengranett/pypeline
33aba4dbb9743fb1227f4bfb15f1a97ea22afba4
[ "MIT" ]
null
null
null
setup.py
bengranett/pypeline
33aba4dbb9743fb1227f4bfb15f1a97ea22afba4
[ "MIT" ]
null
null
null
"""A setuptools based setup module for catstore. See: https://packaging.python.org/en/latest/distributing.html https://github.com/pypa/sampleproject """ # Always prefer setuptools over distutils from setuptools import setup, find_packages # To use a consistent encoding from codecs import open from os import path here = path.abspath(path.dirname(__file__)) # Get the long description from the README file with open(path.join(here, 'README.rst'), encoding='utf-8') as f: long_description = f.read() setup( name='pypeline', # Versions should comply with PEP440. For a discussion on single-sourcing # the version across setup.py and the project code, see # https://packaging.python.org/en/latest/single_source_version.html version='0.0.1', description='configure classes with ease', long_description=long_description, # The project's main homepage. url='https://github.com/bengranett/pypeline', # Author details author='Ben Granett', author_email='ben.granett@brera.inaf.it', # Choose your license license='MIT', # See https://pypi.python.org/pypi?%3Aaction=list_classifiers classifiers=[ # How mature is this project? Common values are # 3 - Alpha # 4 - Beta # 5 - Production/Stable 'Development Status :: 3 - Alpha', # Indicate who your project is intended for 'Intended Audience :: Developers', # Pick your license as you wish (should match "license" above) 'License :: OSI Approved :: MIT License', # Specify the Python versions you support here. In particular, ensure # that you indicate whether you support Python 2, Python 3 or both. 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.7', ], # What does your project relate to? keywords='astronomy', # You can just specify the packages manually here if your project is # simple. Or you can use find_packages(). packages=find_packages(exclude=['contrib', 'docs', 'tests']), # Alternatively, if you want to distribute just a my_module.py, uncomment # this: # py_modules=["my_module"], # List run-time dependencies here. These will be installed by pip when # your project is installed. For an analysis of "install_requires" vs pip's # requirements files see: # https://packaging.python.org/en/latest/requirements.html install_requires=['configargparseb'], dependency_links=[ 'git+https://github.com/bengranett/ConfigArgParseB.git@release#egg=ConfigArgParseB', ] # # List additional groups of dependencies here (e.g. development # # dependencies). You can install these using the following syntax, # # for example: # # $ pip install -e .[dev,test] # extras_require={ # 'dev': ['check-manifest'], # 'test': ['coverage'], # }, # # If there are data files included in your packages that need to be # # installed, specify them here. If using Python 2.6 or less, then these # # have to be included in MANIFEST.in as well. # package_data={ # 'sample': ['package_data.dat'], # }, # # Although 'package_data' is the preferred approach, in some case you may # # need to place data files outside of your packages. See: # # http://docs.python.org/3.4/distutils/setupscript.html#installing-additional-files # noqa # # In this case, 'data_file' will be installed into '<sys.prefix>/my_data' # data_files=[('my_data', ['data/data_file'])], # # To provide executable scripts, use entry points in preference to the # # "scripts" keyword. Entry points provide cross-platform support and allow # # pip to create the appropriate form of executable for the target platform. # entry_points={ # 'console_scripts': [ # 'sample=sample:main', # ], # }, )
34.991071
96
0.667262
795213be0b24d02e4040510687ca1f3b419cc048
1,841
py
Python
nova/compute/task_states.py
russellb/nova
99c2e02b44a1012c8e26fc7658dc40ec4620a1ee
[ "Apache-2.0" ]
1
2015-07-15T08:51:16.000Z
2015-07-15T08:51:16.000Z
nova/compute/task_states.py
russellb/nova
99c2e02b44a1012c8e26fc7658dc40ec4620a1ee
[ "Apache-2.0" ]
1
2020-07-24T14:14:13.000Z
2020-07-24T14:14:13.000Z
nova/compute/task_states.py
russellb/nova
99c2e02b44a1012c8e26fc7658dc40ec4620a1ee
[ "Apache-2.0" ]
2
2019-06-12T00:52:15.000Z
2020-07-24T10:35:29.000Z
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # Copyright 2010 OpenStack LLC. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """Possible task states for instances. Compute instance task states represent what is happening to the instance at the current moment. These tasks can be generic, such as 'spawning', or specific, such as 'block_device_mapping'. These task states allow for a better view into what an instance is doing and should be displayed to users/administrators as necessary. """ SCHEDULING = 'scheduling' BLOCK_DEVICE_MAPPING = 'block_device_mapping' NETWORKING = 'networking' SPAWNING = 'spawning' IMAGE_SNAPSHOT = 'image_snapshot' IMAGE_BACKUP = 'image_backup' UPDATING_PASSWORD = 'updating_password' RESIZE_PREP = 'resize_prep' RESIZE_MIGRATING = 'resize_migrating' RESIZE_MIGRATED = 'resize_migrated' RESIZE_FINISH = 'resize_finish' RESIZE_REVERTING = 'resize_reverting' RESIZE_CONFIRMING = 'resize_confirming' RESIZE_VERIFY = 'resize_verify' REBOOTING = 'rebooting' REBOOTING_HARD = 'rebooting_hard' PAUSING = 'pausing' UNPAUSING = 'unpausing' SUSPENDING = 'suspending' RESUMING = 'resuming' POWERING_OFF = 'powering-off' POWERING_ON = 'powering-on' RESCUING = 'rescuing' UNRESCUING = 'unrescuing' DELETING = 'deleting' STOPPING = 'stopping' STARTING = 'starting'
30.180328
79
0.766431
795213f23d853b29bbb8529a9ac176c93d7888d1
2,605
py
Python
2-9-1.py
WAETW/aima_exercise
63c7e8c4f0e995cd57c6540aa895598b97ade709
[ "MIT" ]
null
null
null
2-9-1.py
WAETW/aima_exercise
63c7e8c4f0e995cd57c6540aa895598b97ade709
[ "MIT" ]
null
null
null
2-9-1.py
WAETW/aima_exercise
63c7e8c4f0e995cd57c6540aa895598b97ade709
[ "MIT" ]
null
null
null
import random import sys '''初始化環境''' def dirt_placing(): loc_A = random.choice(['Clean', 'Dirty']) loc_B = random.choice(['Clean', 'Dirty']) return loc_A,loc_B '''agent初始位置''' def init_loc(): vacuum_init_loc = random.choice(['loc_A','loc_B']) return vacuum_init_loc '''計算分數,agent往左往右扣一分,吸則得十分(參考Github Repo上提供的計算範例)''' def socre(actions,loc_A,loc_B): your_score = 0 vacuum_loc = '' if actions is 'Left': your_score = your_score - 1 vacuum_loc = 'loc_A' elif actions is 'Right': your_score = your_score - 1 vacuum_loc = 'loc_B' elif actions is 'Suck': if loc_A is 'Dirty': your_score = your_score + 10 vacuum_loc = 'loc_A' loc_A = "Clean" elif loc_B is 'Dirty': your_score = your_score + 10 vacuum_loc ='loc_B' loc_B = "Clean" return your_score,vacuum_loc,loc_A,loc_B '''定義規則''' def rule(location,loc_A,loc_B): action = '' enviroment_state = '' if location is 'loc_A': enviroment_state = loc_A elif location is 'loc_B': enviroment_state = loc_B if location is "loc_A": if enviroment_state is "Clean": action = "Right" else: action = "Suck" elif location is "loc_B": if enviroment_state is "Clean": action = "Left" else: action = "Suck" return action,loc_A,loc_B '''建立環境,episodes為執行次數''' def enviroment(episodes): performence_score = 0 vacuum_init_loc = init_loc() vacuum_loc = '' loc_A,loc_B = dirt_placing() print("吸塵器起始位置:"+vacuum_init_loc) print("環境狀態:"+"("+loc_A+","+loc_B+")") for i in range(0,episodes): if i is 0: action,loc_A,loc_B =rule(vacuum_init_loc,loc_A,loc_B) temp_score,vacuum_loc,loc_A,loc_B = socre(action,loc_A,loc_B) print("第"+str(i+1)+"次的動作:"+action) performence_score = performence_score + temp_score else: action,loc_A,loc_B =rule(vacuum_loc,loc_A,loc_B) temp_score,vacuum_loc,loc_A,loc_B = socre(action,loc_A,loc_B) print("第"+str(i+1)+"次的動作:"+action) performence_score = performence_score + temp_score print("總分:"+str(performence_score)) def main(): try: input = sys.argv[1] episodes = int(input[0]) enviroment(episodes) except: print("請輸入參數!!!") if __name__ == "__main__": main() '''執行方法 python3 2-9.py 5,5為要執行的次數可自行更改 '''
31.768293
74
0.575816
7952147a024e5fdf6e83507b6ebd939c1e81db31
21,023
py
Python
huskies-worker-optimize/run.py
dajinchu/battlecode18
688f845b06867b23d60cdeddb6ccb8d0b2e0620a
[ "MIT" ]
null
null
null
huskies-worker-optimize/run.py
dajinchu/battlecode18
688f845b06867b23d60cdeddb6ccb8d0b2e0620a
[ "MIT" ]
null
null
null
huskies-worker-optimize/run.py
dajinchu/battlecode18
688f845b06867b23d60cdeddb6ccb8d0b2e0620a
[ "MIT" ]
null
null
null
import battlecode as bc import random import sys import traceback import collections as fast import time import math print("pystarting") # A GameController is the main type that you talk to the game with. # Its constructor will connect to a running game. gc = bc.GameController() print("pystarted") # It's a good idea to try to keep your bots deterministic, to make debugging easier. # determinism isn't required, but it means that the same things will happen in every thing you run, # aside from turns taking slightly different amounts of time due to noise. random.seed(6137) # let's start off with some research! # we can queue as much as we want. # gc.queue_research(bc.UnitType.Rocket) gc.queue_research(bc.UnitType.Ranger) gc.queue_research(bc.UnitType.Ranger) gc.queue_research(bc.UnitType.Ranger) # disable timing logs for production code TIMING_DISABLED = False # SPEC CONSTANTS REPLICATE_COST = 15 # CODING CONSTANTS MY_TEAM = gc.team() ENEMY_TEAM = bc.Team.Red if MY_TEAM == bc.Team.Blue else bc.Team.Blue ALL_DIRS = list(bc.Direction) MOVE_DIRS = list(bc.Direction) MOVE_DIRS.remove(bc.Direction.Center) EARTHMAP = gc.starting_map(bc.Planet.Earth) MARSMAP = gc.starting_map(bc.Planet.Mars) THIS_PLANETMAP = gc.starting_map(gc.planet()) HEIGHT = THIS_PLANETMAP.height WIDTH = THIS_PLANETMAP.width MARS_WIDTH = MARSMAP.width MARS_HEIGHT = MARSMAP.height EARTH_WIDTH = EARTHMAP.width EARTH_HEIGHT = EARTHMAP.height # Instead of instantiating new MapLocations constantly, we make them ALL at the start and recycle them # I AM NOT SURE IF THIS ACTUALLY SAVES TIME, (doesn't appear to hurt though) EARTH_MAPLOCATIONS = [bc.MapLocation(bc.Planet.Earth,i%EARTH_WIDTH,int(i/EARTH_WIDTH)) for i in range(EARTH_WIDTH*EARTH_HEIGHT)] MARS_MAPLOCATIONS = [bc.MapLocation(bc.Planet.Mars,i%MARS_WIDTH,int(i/MARS_WIDTH)) for i in range(MARS_WIDTH*MARS_HEIGHT)] def MapLocation(planetEnum,x,y): if planetEnum == bc.Planet.Earth: return EARTH_MAPLOCATIONS[y*EARTH_WIDTH+x] else: return MARS_MAPLOCATIONS[y*MARS_WIDTH+x] def getWalls(planetmap): impass = set() for x in range(planetmap.width): for y in range(planetmap.height): if not planetmap.is_passable_terrain_at(MapLocation(planetmap.planet,x,y)): impass.add(y*planetmap.width+x) return impass WATER = getWalls(EARTHMAP) ROCKY = getWalls(MARSMAP) THIS_PLANET_WALLS = WATER if gc.planet()==bc.Planet.Earth else ROCKY def occupiableDirections(loc): ret = [] for d in MOVE_DIRS: l = loc.add(d) if 0<=l.x<WIDTH and 0<=l.y<HEIGHT and gc.is_occupiable(l): ret.append(d) return ret def randMoveDir(unit): dirs = occupiableDirections(unit.location.map_location()) if dirs: return random.choice(dirs) else: return bc.Direction.Center def wander(unit): # pick a random movable direction: d = randMoveDir(unit) tryMove(unit,d) def tryMove(unit, d): if gc.is_move_ready(unit.id) and gc.can_move(unit.id, d): gc.move_robot(unit.id, d) def senseEnemies(loc,radius2): return gc.sense_nearby_units_by_team(loc, radius2, ENEMY_TEAM) def senseAdjacentEnemies(loc): return senseEnemies(loc,2) def senseAllEnemies(planet): return senseEnemies(MapLocation(planet,0,0),1000) def senseAllByType(planet,unitType): return gc.sense_nearby_units_by_type(MapLocation(planet,0,0),1000,unitType) # For worker try place factory blueprint # spaces out the factories intelligently def tryBlueprintFactory(unit): if gc.karbonite() > bc.UnitType.Factory.blueprint_cost(): dirs = MOVE_DIRS for d in dirs: loc = unit.location.map_location().add(d) # check that the place we're thinking about blueprinting is not adjacent to existing factories adjacent = gc.sense_nearby_units_by_type(loc, 2, bc.UnitType.Factory) if not adjacent and gc.can_blueprint(unit.id, bc.UnitType.Factory, d): gc.blueprint(unit.id, bc.UnitType.Factory, d) return True return False # For Worker, try to build on nearby factory blueprints. # return true if we built and build is still in progress def tryBuildFactory(unit): # First try to build directly adjacent factories adjacent = gc.sense_nearby_units_by_type(unit.location.map_location(), 2, bc.UnitType.Factory) factoryToBuild = None highestFactoryHealth = 0 for factory in adjacent: # Build the factory if it isn't already finished if not factory.structure_is_built() and factory.health > highestFactoryHealth: factoryToBuild = factory highestFactoryHealth = factory.health if factoryToBuild and gc.can_build(unit.id,factory.id): gc.build(unit.id, factoryToBuild.id) # return true only if factory build is still in progress return not factory.structure_is_built() else: return False # For Worker, try to mine nearby karbonite # return true if we mined and there is still more karbonite nearby def tryMineKarbonite(unit): karbs = [] for loc in gc.all_locations_within(unit.location.map_location(), 2): if gc.karbonite_at(loc) > 0: karbs.append(loc) if karbs: dirTo = unit.location.map_location().direction_to(karbs[0]) if gc.can_harvest(unit.id, dirTo): gc.harvest(unit.id, dirTo) if len(karbs)>1 or gc.karbonite_at(karbs[0]) > 0: return True return False # @param goals is a list of MapLocations denoting goal locations (to be set to 0) # @param walls is a Set denoting the places that can't be walked through def dijkstraMap(goals,walls): flen = 0 # instantiate initial grid with "infinite" values grid = [[100 for i in range(HEIGHT)] for k in range(WIDTH)] frontier = fast.deque() for g in goals: frontier.append(g) grid[g[0]][g[1]] = g[2] flen +=1 while flen: # pop the first curr = frontier.popleft() flen -= 1 # set the value in the grid grid[curr[0]][curr[1]]=curr[2] # check cardinal directions for locations with higher v # add the locations to frontier if they have higher v = curr[2] x = curr[0]+1 y = curr[1] if 0<=x<WIDTH and 0<=y<HEIGHT and grid[x][y] > v+1 and not (y*WIDTH+x in walls): grid[x][y]=v+1 frontier.append([x,y,v+1]) flen += 1 x = curr[0]-1 y = curr[1] if 0<=x<WIDTH and 0<=y<HEIGHT and grid[x][y] > v+1 and not (y*WIDTH+x in walls): grid[x][y]=v+1 frontier.append([x,y,v+1]) flen += 1 x = curr[0] y = curr[1]+1 if 0<=x<WIDTH and 0<=y<HEIGHT and grid[x][y] > v+1 and not (y*WIDTH+x in walls): grid[x][y]=v+1 frontier.append([x,y,v+1]) flen += 1 x = curr[0] y = curr[1]-1 if 0<=x<WIDTH and 0<=y<HEIGHT and grid[x][y] > v+1 and not (y*WIDTH+x in walls): grid[x][y]=v+1 frontier.append([x,y,v+1]) flen += 1 return grid # Move unit down a dijkstraMap def walkDownMap(unit, grid): l = unit.location.map_location() x = l.x y = l.y smallestLoc = [x,y] smallest = grid[x][y] adjacents = [[x+1,y+1],[x+1,y],[x+1,y-1],[x,y-1],[x-1,y-1],[x-1,y],[x-1,y+1],[x,y+1]] for loc in adjacents: if 0<=loc[0]<WIDTH and 0<=loc[1]<HEIGHT and grid[loc[0]][loc[1]] <= smallest and gc.is_occupiable(MapLocation(l.planet,loc[0],loc[1])): smallest = grid[loc[0]][loc[1]] smallestLoc = loc tryMove(unit,l.direction_to(MapLocation(l.planet,smallestLoc[0],smallestLoc[1]))) # Move unit up a dijkstraMap def walkUpMap(unit,grid): l = unit.location.map_location() x = l.x y = l.y biggestLoc = [x,y] biggest = grid[x][y] adjacents = [[x+1,y+1],[x+1,y],[x+1,y-1],[x,y-1],[x-1,y-1],[x-1,y],[x-1,y+1],[x,y+1]] for loc in adjacents: if 0<=loc[0]<WIDTH and 0<=loc[1]<HEIGHT and grid[loc[0]][loc[1]] >= biggest and gc.is_occupiable(MapLocation(l.planet,loc[0],loc[1])): biggest = grid[loc[0]][loc[1]] biggestLoc = loc tryMove(unit,l.direction_to(MapLocation(l.planet,biggestLoc[0],biggestLoc[1]))) # Move unit towards goal value on dijkstraMap def walkToValue(unit,grid,goalValue): loc = unit.location.map_location() x = loc.x y = loc.y if grid[x][y]>goalValue: walkDownMap(unit,grid) elif grid[x][y]<goalValue: walkUpMap(unit,grid) #if currvalue is goalvalue, just don't move # Takes list of maplocations, makes map to all spots adjacent to those locations # useful for pathing buildings into places where they can work on blueprints def adjacentToMap(mapLocs): goals = [] for loc in mapLocs: adjacent = gc.all_locations_within(loc,2) for adjLoc in adjacent: if not adjLoc.x*WIDTH+adjLoc.y in THIS_PLANET_WALLS:# and not gc.is_occupiable(MapLocation(THIS_PLANETMAP.planet,adjLoc.x,adjLoc.y)): goals.append([adjLoc.x,adjLoc.y,0]) return dijkstraMap(goals,THIS_PLANET_WALLS) # Build map towards enemy def mapToEnemy(planetMap): s = time.time() enemies = senseAllEnemies(planetMap.planet) enemyLocs = [] walls = set() for f in senseAllByType(planetMap.planet, bc.UnitType.Factory): walls.add(f.location.map_location().y*WIDTH+f.location.map_location().x) walls.update(THIS_PLANET_WALLS) for e in enemies: loc = e.location.map_location() enemyLocs.append([loc.x,loc.y,0]) if not enemies: enemyLocs=[[unit.location.map_location().x,unit.location.map_location().y,0] for unit in THIS_PLANETMAP.initial_units if unit.team!=MY_TEAM] m = dijkstraMap(enemyLocs,walls) # print('\n'.join([''.join(['{:4}'.format(item) for item in row])for row in m])) # print("build enemy map took " + str(time.time()-s)) return m # Build map for rangers where goals are in range def rangerMap(planetMap, atkRange): enemies = senseAllEnemies(planetMap.planet) enemyLocs = [] walls = set() for f in senseAllByType(planetMap.planet, bc.UnitType.Factory): walls.add(f.location.map_location().x*WIDTH+f.location.map_location().y) walls.update(THIS_PLANET_WALLS) for e in enemies: loc = e.location.map_location() enemyLocs.append([loc.x,loc.y,0]) # find distances to enemy, ignoring walls, because rangers can shoot over distMap = dijkstraMap(enemyLocs,[]) goalLocs = [] realAtkRange = int(math.sqrt(atkRange)) # now find where the distance is right for rangers for x,col in enumerate(distMap): for y,cell in enumerate(col): if cell == realAtkRange: goalLocs.append([x,y,0]) # now pathfind to those sweet spot rangerMap = dijkstraMap(goalLocs,walls) return rangerMap TOTAL_EARTH_KARBONITE = 0 KARBONITE_LOCS = [] EARTH_KARBONITE_MAP = [] # Iterate through all spots to find karbonite # count total karbonite and record their locations and amounts def initKarbonite(): global TOTAL_EARTH_KARBONITE for x in range(WIDTH): for y in range(HEIGHT): k = EARTHMAP.initial_karbonite_at(MapLocation(bc.Planet.Earth,x,y)) if k >= 5: KARBONITE_LOCS.append([x,y,int(-k/4)]) TOTAL_EARTH_KARBONITE += k initKarbonite() # Build a Dijkstra Map for earth's karbonite using vision and initial def updateKarbonite(): global TOTAL_EARTH_KARBONITE KARBONITE_LOCS[:] = [k for k in KARBONITE_LOCS if not gc.can_sense_location(MapLocation(bc.Planet.Earth,k[0],k[1])) or gc.karbonite_at(MapLocation(bc.Planet.Earth,k[0],k[1]))] for k in KARBONITE_LOCS: TOTAL_EARTH_KARBONITE += k[2] return dijkstraMap(KARBONITE_LOCS,WATER) class Benchmark: canStart = True def __init__(self, name): self.name = name def start(self): if TIMING_DISABLED: return if self.canStart: self.canStart = False self.startt = time.time() else: print("CALLED BENCHMARK.START AGAIN BEFORE CALLING .END()") def end(self): if TIMING_DISABLED: return print(self.name, "took ", 1000*(time.time()-self.startt), "ms") self.canStart = True # Create benchmarks for different parts turnBench = Benchmark("Full turn") enemyMapBench = Benchmark("Creating enemy map") rangerMapBench = Benchmark("Creating ranger map") healerMapBench = Benchmark("Creating healer map") factoryMapBench = Benchmark("Creating factory map") karboniteMapBench = Benchmark("Creating karbonite map") rangerBench = Benchmark("Handling rangers") healerBench = Benchmark("Handling healers") factoryBench = Benchmark("Handling factories") workerBench = Benchmark("Handling workers") while True: ROUND = gc.round() # We only support Python 3, which means brackets around print() print('pyround:', gc.round(), 'time left:', gc.get_time_left_ms(), 'ms') turnBench.start() # frequent try/catches are a good idea try: # sort our units factories = [] factoryBlueprints = [] workers = [] rangers = [] knights = [] mages = [] healers = [] for unit in gc.my_units(): type = unit.unit_type if type == bc.UnitType.Factory: factories.append(unit) if not unit.structure_is_built(): factoryBlueprints.append(unit) elif type == bc.UnitType.Worker: workers.append(unit) elif type == bc.UnitType.Ranger: rangers.append(unit) elif type == bc.UnitType.Knight: knights.append(unit) elif type == bc.UnitType.Mage: mages.append(unit) elif type == bc.UnitType.Healer: healers.append(unit) numWorkers = len(workers) numFactories = len(factories) + len(factoryBlueprints) numRangers = len(rangers) numHealers = len(healers) # update the ranger atkRange, because it can change with research. # SLIGHTLY BETTER TO UPDATE THIS JUST WHEN RESEARCH FINISHES INSTEAD OF POLLING EVERY TURN rangerAtkRange = 0 # This is dumb, but you need at least one ranger to find the atk range of the ranger if rangers: rangerAtkRange = rangers[0].attack_range() # Refresh enemy map enemyMapBench.start() ENEMY_MAP = mapToEnemy(THIS_PLANETMAP) enemyMapBench.end() RANGER_MAP = [] if rangers: rangerMapBench.start() RANGER_MAP = rangerMap(THIS_PLANETMAP,rangerAtkRange) rangerMapBench.end() # Healer map. Directs healers to get near rangers to heal them HEALER_MAP = [] HURT_ALLIES = [] if healers: healerMapBench.start() goals = [] for ally in rangers: if ally.health < ally.max_health: loc = ally.location.map_location() goals.append([loc.x, loc.y, ally.health - ally.max_health]) HURT_ALLIES.append(ally.id) HEALER_MAP = dijkstraMap(goals, THIS_PLANET_WALLS) healerMapBench.end() # refresh units_wanted WORKERS_WANTED = 8 + int(TOTAL_EARTH_KARBONITE/300) FACTORIES_WANTED = 3 + int(gc.karbonite()/500) # refresh factory map FACTORY_MAP = [] if factoryBlueprints: factoryMapBench.start() factLocs = [f.location.map_location() for f in factoryBlueprints] FACTORY_MAP = adjacentToMap(factLocs) factoryMapBench.end() # refresh karbonite map if ROUND % 10 == 1: EARTH_KARBONITE_MAP = updateKarbonite() rangerBench.start() for unit in rangers: # Ranger logic if unit.location.is_on_map(): walkDownMap(unit,RANGER_MAP) enemies = senseEnemies(unit.location.map_location(),unit.attack_range()) for e in enemies: if gc.is_attack_ready(unit.id) and gc.can_attack(unit.id,e.id): gc.attack(unit.id,e.id) rangerBench.end() healerBench.start() for unit in healers: # Ranger logic if unit.location.is_on_map(): walkDownMap(unit, HEALER_MAP) if gc.is_heal_ready(unit.id): for ally_id in HURT_ALLIES: if gc.can_heal(unit.id, ally_id): gc.heal(unit.id,ally_id) healerBench.end() factoryBench.start() # Factory logic for unit in factories: garrison = unit.structure_garrison() if len(garrison) > 0: d = randMoveDir(unit) if gc.can_unload(unit.id, d): #print('unloaded a knight!') gc.unload(unit.id, d) continue elif numWorkers == 0 and gc.can_produce_robot(unit.id, bc.UnitType.Worker): gc.produce_robot(unit.id, bc.UnitType.Worker) numWorkers += 1 #elif numRangers > (1+numHealers) * 8 and gc.can_produce_robot(unit.id,bc.UnitType.Healer): # gc.produce_robot(unit.id, bc.UnitType.Healer) # numHealers += 1 elif gc.can_produce_robot(unit.id, bc.UnitType.Ranger): gc.produce_robot(unit.id, bc.UnitType.Ranger) numRangers += 1 continue factoryBench.end() workerBench.start() # Worker logic for unit in workers: if unit.location.is_on_map(): d = randMoveDir(unit) # 1. Replicate if needed if numWorkers < WORKERS_WANTED and gc.karbonite() > REPLICATE_COST and gc.can_replicate(unit.id,d): gc.replicate(unit.id,d) numWorkers += 1 # 2. look for and work on blueprints elif tryBuildFactory(unit): # if we worked on factory, move on to next unit #print("worked on factory") continue elif FACTORY_MAP and FACTORY_MAP[unit.location.map_location().x][unit.location.map_location().y]<4: walkDownMap(unit,FACTORY_MAP) continue # 0. Place blueprints if needed elif numFactories < FACTORIES_WANTED and tryBlueprintFactory(unit): #print('blueprinted') numFactories += 1 continue # 3. Look for and mine Karbonite elif tryMineKarbonite(unit): #print("mined") # we mined and there's still more, stay in place and move on continue # 4. Walk towards karbonite elif EARTH_KARBONITE_MAP[unit.location.map_location().x][unit.location.map_location().y]<5: #print("walked down") walkDownMap(unit, EARTH_KARBONITE_MAP) # 5. Wander else: #print("wandered") tryMove(unit,d) workerBench.end() for unit in knights: if unit.location.is_on_map(): # Attack in range enemies adjacent = senseAdjacentEnemies(unit.location.map_location()) for other in adjacent: if gc.is_attack_ready(unit.id) and gc.can_attack(unit.id, other.id): #print('attacked a thing!') gc.attack(unit.id, other.id) break # Move towards enemies walkDownMap(unit, ENEMY_MAP) '''nearby = gc.sense_nearby_units_by_team(unit.location.map_location(), 50, ENEMY_TEAM) for other in nearby: tryMove(unit,unit.location.map_location().direction_to(other.location.map_location())) wander(unit.id) ''' # okay, there weren't any dudes around # wander(unit.id) except Exception as e: print('Error:', e) # use this to show where the error was traceback.print_exc() turnBench.end() # send the actions we've performed, and wait for our next turn. gc.next_turn() # these lines are not strictly necessary, but it helps make the logs make more sense. # it forces everything we've written this turn to be written to the manager. sys.stdout.flush() sys.stderr.flush()
36.882456
148
0.615754
795214ac1b0f6c954937dce3570a81e56050b498
2,424
py
Python
aliyun-python-sdk-adb/aliyunsdkadb/request/v20190315/ModifyAuditLogConfigRequest.py
yndu13/aliyun-openapi-python-sdk
12ace4fb39fe2fb0e3927a4b1b43ee4872da43f5
[ "Apache-2.0" ]
1,001
2015-07-24T01:32:41.000Z
2022-03-25T01:28:18.000Z
aliyun-python-sdk-adb/aliyunsdkadb/request/v20190315/ModifyAuditLogConfigRequest.py
yndu13/aliyun-openapi-python-sdk
12ace4fb39fe2fb0e3927a4b1b43ee4872da43f5
[ "Apache-2.0" ]
363
2015-10-20T03:15:00.000Z
2022-03-08T12:26:19.000Z
aliyun-python-sdk-adb/aliyunsdkadb/request/v20190315/ModifyAuditLogConfigRequest.py
yndu13/aliyun-openapi-python-sdk
12ace4fb39fe2fb0e3927a4b1b43ee4872da43f5
[ "Apache-2.0" ]
682
2015-09-22T07:19:02.000Z
2022-03-22T09:51:46.000Z
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # # http://www.apache.org/licenses/LICENSE-2.0 # # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from aliyunsdkcore.request import RpcRequest from aliyunsdkadb.endpoint import endpoint_data class ModifyAuditLogConfigRequest(RpcRequest): def __init__(self): RpcRequest.__init__(self, 'adb', '2019-03-15', 'ModifyAuditLogConfig','ads') self.set_method('POST') if hasattr(self, "endpoint_map"): setattr(self, "endpoint_map", endpoint_data.getEndpointMap()) if hasattr(self, "endpoint_regional"): setattr(self, "endpoint_regional", endpoint_data.getEndpointRegional()) def get_ResourceOwnerId(self): return self.get_query_params().get('ResourceOwnerId') def set_ResourceOwnerId(self,ResourceOwnerId): self.add_query_param('ResourceOwnerId',ResourceOwnerId) def get_ResourceOwnerAccount(self): return self.get_query_params().get('ResourceOwnerAccount') def set_ResourceOwnerAccount(self,ResourceOwnerAccount): self.add_query_param('ResourceOwnerAccount',ResourceOwnerAccount) def get_DBClusterId(self): return self.get_query_params().get('DBClusterId') def set_DBClusterId(self,DBClusterId): self.add_query_param('DBClusterId',DBClusterId) def get_OwnerAccount(self): return self.get_query_params().get('OwnerAccount') def set_OwnerAccount(self,OwnerAccount): self.add_query_param('OwnerAccount',OwnerAccount) def get_OwnerId(self): return self.get_query_params().get('OwnerId') def set_OwnerId(self,OwnerId): self.add_query_param('OwnerId',OwnerId) def get_AuditLogStatus(self): return self.get_query_params().get('AuditLogStatus') def set_AuditLogStatus(self,AuditLogStatus): self.add_query_param('AuditLogStatus',AuditLogStatus)
35.647059
79
0.775578
795214fd3ec7d8c8571e0714c2a1aab5aa52d3c8
6,096
py
Python
workspace/models/train_classifier.py
s-arora-1987/Disaster-Response-App
2c2a74bea481d4c52520b35d92f9344d63528ee3
[ "MIT" ]
null
null
null
workspace/models/train_classifier.py
s-arora-1987/Disaster-Response-App
2c2a74bea481d4c52520b35d92f9344d63528ee3
[ "MIT" ]
null
null
null
workspace/models/train_classifier.py
s-arora-1987/Disaster-Response-App
2c2a74bea481d4c52520b35d92f9344d63528ee3
[ "MIT" ]
null
null
null
import sys import pandas as pd from sqlalchemy import create_engine import time import pickle # for tokenizing import nltk nltk.download(['punkt', 'wordnet']) import re from nltk.tokenize import word_tokenize from nltk.stem import WordNetLemmatizer url_regex = 'http[s]?://(?:[a-zA-Z]|[0-9]|[$-_@.&+]|[!*\(\),]|(?:%[0-9a-fA-F][0-9a-fA-F]))+' # for feature extraction and modeling from sklearn.model_selection import train_test_split from sklearn.feature_extraction.text import CountVectorizer from sklearn.feature_extraction.text import TfidfTransformer from sklearn.ensemble import RandomForestClassifier from sklearn.multioutput import MultiOutputClassifier from sklearn.pipeline import Pipeline from xgboost import XGBClassifier from sklearn.metrics import classification_report def load_data(database_filepath): """ Read the input database to create and return separate numpy arrays for messages, category values, and names of categories respectively """ # creating sqlite engine to interact with database engine = create_engine('sqlite:///'+database_filepath) df = pd.read_sql_table("disaster_message_categories",engine) # separating training and labels data and list of category names X = df.message.values Y_df = df[['related', 'request', 'offer', 'aid_related', 'medical_help', \ 'medical_products', 'search_and_rescue', 'security', 'military',\ 'child_alone', 'water', 'food', 'shelter', 'clothing', 'money', \ 'missing_people', 'refugees', 'death', 'other_aid', \ 'infrastructure_related', 'transport', 'buildings', 'electricity'\ , 'tools', 'hospitals', 'shops', 'aid_centers', \ 'other_infrastructure', 'weather_related', 'floods', 'storm', \ 'fire', 'earthquake', 'cold', 'other_weather', 'direct_report'\ ]] Y = Y_df.values category_names=Y_df.columns return X,Y,category_names def tokenize(text): """ Perform following steps for tokeninzing input text string: - get list of all urls using regex - replace each url in text string with placeholder - tokenize text using nltk - for each token, lemmatize, normalize case, and remove leading/trailing white space """ detected_urls = re.findall(url_regex, text) for url in detected_urls: text = text.replace(url, "urlplaceholder") tokens = word_tokenize(text) lemmatizer = WordNetLemmatizer() clean_tokens = [] for tok in tokens: clean_tok = lemmatizer.lemmatize(tok).lower().strip() clean_tokens.append(clean_tok) return clean_tokens def build_model(): """ Create a ML pipeline with a tokenizer, a feature constructor, and a multi output classifier with either Random Forest or XGBoost. Commenting RandomForest pipeline because XGBoost pipeline is quicker in training. """ # create pipeline with desired transformers and ML methods # pipeline = Pipeline([ # ('vect', CountVectorizer(tokenizer=tokenize, # max_df=0.75, # ngram_range=(1, 2))), # ('tfidf', TfidfTransformer()), # ('clf', MultiOutputClassifier(\ # RandomForestClassifier(max_features=500, # n_estimators=100)) # ) # ]) # alternative for faster training pipeline = Pipeline([ ('vect', CountVectorizer(tokenizer=tokenize)), ('tfidf', TfidfTransformer()), ('clf', MultiOutputClassifier(\ XGBClassifier(max_depth = 4, n_estimators = 100, min_child_weight = 1, gamma = 1, subsample = 1.0, colsample_bytree = 1.0) )) ]) return pipeline def evaluate_model(model, X_test, Y_test, category_names): """ Using input testing data X_test and groundtruth Y_test: - Report f1 score, precision and recall of input model for each output category. - Report overall acuuracy of the model. """ # make predictions for test set y_pred = model.predict(X_test) for i in range(0,len(Y_test[0,:])): print(classification_report(Y_test[:,i], y_pred[:,i])) print("...............................................................") print("Overall Accuracy: %.3f" %((y_pred == Y_test).mean().mean())) return None def save_model(model, model_filepath): """ save the model at a desired location """ pickle.dump(model, open(model_filepath, 'wb')) return None def main(): if len(sys.argv) == 3: database_filepath, model_filepath = sys.argv[1:] print('Loading data...\n DATABASE: {}'.format(database_filepath)) X, Y, category_names = load_data(database_filepath) X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2) print('Building model...') model = build_model() print('Training model...') start_time = time.time() model.fit(X_train, Y_train) print("--- Training finished in %s seconds ---" % (time.time() - start_time)) print('Evaluating model...') evaluate_model(model, X_test, Y_test, category_names) print('Saving model...\n MODEL: {}'.format(model_filepath)) save_model(model, model_filepath) print('Trained model saved!') else: print('Please provide the filepath of the disaster messages database '\ 'as the first argument and the filepath of the pickle file to '\ 'save the model to as the second argument. \n\nExample: python '\ 'train_classifier.py ../data/DisasterResponse.db classifier.pkl') if __name__ == '__main__': main()
36.285714
92
0.605479
7952153ee706807605f76c0c40838fa537f241c2
477
py
Python
Test_TagParser.py
whaleygeek/pyparsers
41e6e5c807959ff18c2f625f3d9b67e669132390
[ "MIT" ]
null
null
null
Test_TagParser.py
whaleygeek/pyparsers
41e6e5c807959ff18c2f625f3d9b67e669132390
[ "MIT" ]
null
null
null
Test_TagParser.py
whaleygeek/pyparsers
41e6e5c807959ff18c2f625f3d9b67e669132390
[ "MIT" ]
1
2020-07-23T14:41:12.000Z
2020-07-23T14:41:12.000Z
# Test_TagParser.py (c) 2014 D.J.Whale # # A TagParser is a helper for SAXP (Simple Api For XML Processing) # that makes it much easier to use for beginners. # Just call the parse() method to parse a file. # # See other test and demo programs in this folder to find out # how to actually process data using a TagParser import sys import parsers.TagParser as TagParser FILENAME = "cars.xml" if len(sys.argv) > 1: FILENAME = sys.argv[1] TagParser.parse(FILENAME) # END
23.85
66
0.731656
79521580a244cc266d7f33807bf1aa6d35cb3070
10,651
py
Python
ndm/model_cnn12_bn_w2targs.py
oplatek/ndm
d32bd9d685902d9da52b7e7abd286fb5d9c7274a
[ "Apache-2.0" ]
2
2016-01-26T15:29:30.000Z
2016-12-07T23:36:23.000Z
ndm/model_cnn12_bn_w2targs.py
oplatek/ndm
d32bd9d685902d9da52b7e7abd286fb5d9c7274a
[ "Apache-2.0" ]
1
2018-05-10T08:03:32.000Z
2018-05-10T08:03:32.000Z
ndm/model_cnn12_bn_w2targs.py
oplatek/ndm
d32bd9d685902d9da52b7e7abd286fb5d9c7274a
[ "Apache-2.0" ]
1
2016-02-25T14:35:47.000Z
2016-02-25T14:35:47.000Z
#!/usr/bin/env python3 import tensorflow as tf from tfx.bricks import embedding, dense_to_one_hot, linear, dropout, reduce_max, batch_norm_lin, conv2d_bn, \ pow_1, softmax_2d from model import ModelW2TArgs class Model(ModelW2TArgs): def __init__(self, data, FLAGS): super(Model, self).__init__(data, FLAGS) conv_mul = 2 histories_embedding_size = 16 histories_vocabulary_length = len(data.idx2word_history) history_length = data.train_set['histories'].shape[1] action_templates_vocabulary_length = len(data.idx2word_action_template) action_templates_embedding_size = 8 num_actions_arguments = data.batch_actions_arguments.shape[2] actions_arguments_vocabulary_length = len(data.idx2word_action_arguments) with tf.name_scope('data'): batch_histories = tf.Variable(data.batch_histories, name='histories', trainable=False) batch_actions_template = tf.Variable(data.batch_actions_template, name='actions', trainable=False) batch_action_arguments = tf.Variable(data.batch_actions_arguments, name='actions_arguments', trainable=False) histories = tf.gather(batch_histories, self.batch_idx) actions_template = tf.gather(batch_actions_template, self.batch_idx) actions_arguments = tf.gather(batch_action_arguments, self.batch_idx) with tf.name_scope('model'): encoder_embedding = embedding( input=histories, length=histories_vocabulary_length, size=histories_embedding_size, name='encoder_embedding' ) with tf.name_scope("UtterancesEncoder"): conv3 = encoder_embedding # conv3 = dropout(conv3, pow_1(self.dropout_keep_prob, 2)) conv3 = conv2d_bn( input=conv3, filter=[1, 3, conv3.size, conv3.size * conv_mul], phase_train=self.phase_train, name='conv_utt_size_3_layer_1' ) encoded_utterances = reduce_max(conv3, [2], keep_dims=True) with tf.name_scope("HistoryEncoder"): conv3 = encoded_utterances conv3 = dropout(conv3, pow_1(self.dropout_keep_prob, 2)) conv3 = conv2d_bn( input=conv3, filter=[3, 1, conv3.size, conv3.size * conv_mul], phase_train=self.phase_train, name='conv_hist_size_3_layer_1' ) conv3 = dropout(conv3, pow_1(self.dropout_keep_prob, 2)) conv3 = conv2d_bn( input=conv3, filter=[3, 1, conv3.size, conv3.size * conv_mul], phase_train=self.phase_train, name='conv_hist_size_3_layer_2' ) encoded_history = reduce_max(conv3, [1, 2]) with tf.name_scope("Decoder"): second_to_last_user_utterance = encoded_utterances[:, history_length - 3, 0, :] last_system_utterance = encoded_utterances[:, history_length - 2, 0, :] last_user_utterance = encoded_utterances[:, history_length - 1, 0, :] dialogue_state = tf.concat( 1, [ encoded_history, last_user_utterance, last_system_utterance, second_to_last_user_utterance, ], name='dialogue_state' ) dialogue_state_size = conv3.size + \ 3 * histories_embedding_size * conv_mul dialogue_state = tf.nn.relu(dialogue_state) dialogue_state = dropout(dialogue_state, self.dropout_keep_prob) # action prediction projection = linear( input=dialogue_state, input_size=dialogue_state_size, output_size=dialogue_state_size, name='linear_projection_1' ) projection = batch_norm_lin(projection, dialogue_state_size, self.phase_train, name='linear_projection_1_bn') activation = tf.nn.relu(projection) activation = dropout(activation, self.dropout_keep_prob) projection = linear( input=activation, input_size=dialogue_state_size, output_size=dialogue_state_size, name='linear_projection_2' ) projection = batch_norm_lin(projection, dialogue_state_size, self.phase_train, name='linear_projection_2_bn') activation = tf.nn.relu(projection) activation = dropout(activation, self.dropout_keep_prob) projection = linear( input=activation, input_size=dialogue_state_size, output_size=action_templates_vocabulary_length, name='linear_projection_3_predictions_action' ) self.predictions_action = tf.nn.softmax(projection, name="softmax_output_prediction_action") # argument prediction # first encode decoded action template and teh true action template choice = tf.floor(tf.random_uniform([1], self.use_inputs_prob, 1 + self.use_inputs_prob, tf.float32)) prediction_action_argmax = tf.stop_gradient(tf.argmax(self.predictions_action, 1)) predicted_action_templates_embedding = embedding( input=prediction_action_argmax, length=action_templates_vocabulary_length, size=action_templates_embedding_size, name='action_templates_embedding' ) true_action_template_embedding = tf.gather(predicted_action_templates_embedding.embedding_table, actions_template) predicted_action_templates_embedding = tf.stop_gradient(predicted_action_templates_embedding) action_templates_embedding = choice * true_action_template_embedding + (1.0 - choice) * predicted_action_templates_embedding dialogue_state_action_template = tf.concat( 1, [ dialogue_state, action_templates_embedding ], name='dialogue_state_action_template' ) dialogue_state_action_template_size = ( dialogue_state_size + action_templates_embedding_size ) # condition on the dialogue state and the decoded template projection = linear( input=dialogue_state_action_template, input_size=dialogue_state_action_template_size, output_size=dialogue_state_action_template_size, name='linear_projection_1_predictions_arguments' ) projection = batch_norm_lin(projection, dialogue_state_action_template_size, self.phase_train, name='linear_projection_1_predictions_arguments_bn') activation = tf.nn.relu(projection) activation = dropout(activation, self.dropout_keep_prob) projection = linear( input=activation, input_size=dialogue_state_action_template_size, output_size=dialogue_state_action_template_size, name='linear_projection_2_predictions_arguments' ) projection = batch_norm_lin(projection, dialogue_state_action_template_size, self.phase_train, name='linear_projection_2_predictions_arguments_bn') activation = tf.nn.relu(projection) activation = dropout(activation, self.dropout_keep_prob) projection = linear( input=activation, input_size=dialogue_state_action_template_size, output_size=num_actions_arguments * actions_arguments_vocabulary_length, name='linear_projection_3_predictions_arguments' ) self.predictions_arguments = softmax_2d( input=projection, n_classifiers=num_actions_arguments, n_classes=actions_arguments_vocabulary_length, name="softmax_2d_predictions_arguments") if FLAGS.print_variables: for v in tf.trainable_variables(): print(v.name) with tf.name_scope('loss'): one_hot_labels_action = dense_to_one_hot(actions_template, action_templates_vocabulary_length) one_hot_labels_arguments = dense_to_one_hot(actions_arguments, actions_arguments_vocabulary_length) loss_action = tf.reduce_mean( - one_hot_labels_action * tf.log(tf.clip_by_value(self.predictions_action, 1e-10, 1.0)), name='loss' ) loss_arguments = tf.reduce_mean( - one_hot_labels_arguments * tf.log(tf.clip_by_value(self.predictions_arguments, 1e-10, 1.0)), name='loss' ) self.loss = loss_action + loss_arguments tf.scalar_summary('loss', self.loss) with tf.name_scope('accuracy'): correct_prediction_action = tf.equal( tf.argmax(one_hot_labels_action, 1), tf.argmax(self.predictions_action, 1) ) self.accuracy_action = tf.reduce_mean(tf.cast(correct_prediction_action, 'float')) tf.scalar_summary('accuracy_action', self.accuracy_action) correct_prediction_arguments = tf.equal(tf.argmax(one_hot_labels_arguments, 2), tf.argmax(self.predictions_arguments, 2)) self.accuracy_arguments = tf.reduce_mean(tf.cast(correct_prediction_arguments, 'float')) tf.scalar_summary('accuracy_arguments', self.accuracy_arguments)
46.714912
140
0.579007
795216003cde59d0016ce71e1c30b2cc72b7e0e2
1,404
py
Python
poretools/fasta.py
orivej/poretools
567e8cd99aa5112bc77f7ee8ebdd3bfbfa142a09
[ "MIT" ]
null
null
null
poretools/fasta.py
orivej/poretools
567e8cd99aa5112bc77f7ee8ebdd3bfbfa142a09
[ "MIT" ]
null
null
null
poretools/fasta.py
orivej/poretools
567e8cd99aa5112bc77f7ee8ebdd3bfbfa142a09
[ "MIT" ]
null
null
null
import Fast5File import sys def run(parser, args): for fast5 in Fast5File.Fast5FileSet(args.files, args.group, args.basecaller_name): if args.start_time or args.end_time: read_start_time = fast5.get_start_time() read_end_time = fast5.get_end_time() if args.start_time and args.start_time > read_start_time: fast5.close() continue if args.end_time and args.end_time < read_end_time: fast5.close() continue fas = fast5.get_fastas(args.type) # high quality 2D: means there are more nanopore events on the # complement strand than on the template strand. We also # require there to be a 2D base-called sequence from Metrichor. if args.high_quality: if (fast5.get_complement_events_count() <= \ fast5.get_template_events_count()) or not fast5.has_2D(): fast5.close() continue # norem quality 2D : means there are less (or equal) nanopore # events on the complement strand than on the template strand. # We also require there to be a 2D base-called sequence from Metrichor. if args.normal_quality: if (fast5.get_complement_events_count() > \ fast5.get_template_events_count()) or not fast5.has_2D(): fast5.close() continue for fa in fas: if fa is None or \ len(fa.seq) < args.min_length or \ (len(fa.seq) > args.max_length and \ args.max_length > 0): continue print fa fast5.close()
28.653061
83
0.708689
79521738195a4d45f5ab5cefe43ea3797d2ac9eb
17,636
py
Python
src/SettingsWidget.py
Essyer/PoETiS
94560dcb2de6bb87523ed7ec08c5dffcba136315
[ "MIT" ]
22
2020-06-13T14:08:31.000Z
2022-01-02T10:52:56.000Z
src/SettingsWidget.py
Essyer/PoETiS
94560dcb2de6bb87523ed7ec08c5dffcba136315
[ "MIT" ]
9
2020-06-14T09:21:12.000Z
2022-02-14T07:44:32.000Z
src/SettingsWidget.py
Essyer/PoETiS
94560dcb2de6bb87523ed7ec08c5dffcba136315
[ "MIT" ]
6
2020-06-13T17:03:16.000Z
2022-02-12T10:09:01.000Z
import os import xml.etree.ElementTree as ElementTree from PyQt5.QtCore import * from PyQt5.QtGui import * from PyQt5.QtWidgets import * from src.PainterWidget import PainterWidget from src.DragWidget import DragWidget from src.Slider import Slider from src.utils import log_method_name, prepare_cfg, load_styles, default_league_name, xml_indent from src.ModsContainer import CONFIG_PATH, FILTER_DIR, DEFAULT_FILTER_PATH slider_colors = ["brown", "green", "blue", "yellow", "white"] stash_default_text = "Add your stash here..." class SettingsWidget(DragWidget): configuration_changed = pyqtSignal(dict) stash_item_change_already_called = False # No idea what's going on... If I don't check it like that when you modify # text of last (default) row, program ends up in infinite loop between _process_stash_item_changed and # _add_stash_item_to_table. It is probably because in the latter insertRow() triggers signal of changed item. # I don't have better solution right now and league starts in 2 days. active_stash = ["", 0, "normal"] def __init__(self, painter_widget: PainterWidget): self.painter_geometry = None super(SettingsWidget, self).__init__() log_method_name() self.painter_widget = painter_widget self.painter_widget.colors = slider_colors self._create_slider() # Need to create if before loading configuration file to set tiles colors self._load_cfg() self._setup_ui() self.painter_widget.geometry_changed.connect(self.painter_geometry_changed) def painter_geometry_changed(self, geometry: QRect) -> None: self.painter_geometry = geometry self.save_cfg() def _setup_ui(self) -> None: log_method_name() self.setWindowFlags(Qt.FramelessWindowHint | Qt.WindowStaysOnTopHint) load_styles(self) layout_main = QVBoxLayout() button_stashes = QPushButton("Add/remove stashes") layout_main.addWidget(button_stashes) self._prepare_stashes_window() button_stashes.clicked.connect(self.window_stashes.show) label_mod_config = QLabel("Mod Filter") layout_main.addWidget(label_mod_config) self.combo_mod_file = QComboBox() self._update_mod_file_combo() self.combo_mod_file.activated.connect(self.save_cfg) self.combo_mod_file.installEventFilter(self) layout_main.addWidget(self.combo_mod_file) label_base_league_name = QLabel("League base name") layout_main.addWidget(label_base_league_name) self.edit_base_league_name = QLineEdit(self.league_base_name) self.edit_base_league_name.textChanged.connect(self._update_leagues_combo) self.edit_base_league_name.textChanged.connect(self.save_cfg) layout_main.addWidget(self.edit_base_league_name) label_league = QLabel("League") layout_main.addWidget(label_league) self.combo_league = QComboBox() self._update_leagues_combo() self.combo_league.currentTextChanged.connect(self.save_cfg) layout_main.addWidget(self.combo_league) self.button_show_account_session = QPushButton("Show/hide account name and session") layout_main.addWidget(self.button_show_account_session) self.label_account_name = QLabel("Account name") layout_main.addWidget(self.label_account_name) self.edit_account_name = QLineEdit(self.account_name) self.edit_account_name.textChanged.connect(self.save_cfg) layout_main.addWidget(self.edit_account_name) self.label_session = QLabel("Session ID") layout_main.addWidget(self.label_session) self.edit_session = QLineEdit(self.session_id) self.edit_session.textChanged.connect(self.save_cfg) layout_main.addWidget(self.edit_session) # Hide account name and session ID if any of them was provided before if self.account_name or self.session_id: self.hide_account_session(True) self.button_show_account_session.clicked.connect(self.hide_account_session) btn_adjust_net = QPushButton("Adjust net position and size") btn_adjust_net.clicked.connect(self.painter_widget.show_hide_config) layout_main.addWidget(btn_adjust_net) label_session = QLabel("Item tiers to detect") layout_main.addWidget(label_session) layout_slider = QHBoxLayout() self.slider.set_range(1, 5) self.slider.set_value(self.slider_value) load_styles(self.slider) layout_slider.addWidget(self.slider) layout_main.addLayout(layout_slider) self.slider.on_value_changed_call(self.save_cfg) self.btn_hide = QPushButton("Close") self.btn_hide.clicked.connect(self.close) layout_main.addWidget(self.btn_hide) self.setLayout(layout_main) def _prepare_stashes_window(self): self.window_stashes = DragWidget() self.window_stashes.setWindowFlags(Qt.WindowStaysOnTopHint | Qt.FramelessWindowHint) load_styles(self.window_stashes) self.window_stashes.setFixedWidth(400) # maybe some day I will make it to resize to columns width... self.widget_stashes = QTableWidget(0, 2) self.widget_stashes.itemChanged.connect(self._process_stash_item_changed) self.widget_stashes.setHorizontalHeaderLabels(["Name", "Normal/Quad"]) self.widget_stashes.verticalHeader().hide() header = self.widget_stashes.horizontalHeader() header.setSectionResizeMode(0, QHeaderView.ResizeToContents) header.setSectionResizeMode(1, QHeaderView.ResizeToContents) self.widget_stashes.adjustSize() self.stashes_ui = [] for stash in self.stashes: if stash["name"]: self._add_stash_item_to_table(stash["name"], stash["type"]) self._add_stash_item_to_table(stash_default_text, "normal") load_styles(self.widget_stashes) layout = QVBoxLayout() layout.addWidget(self.widget_stashes) close_button = QPushButton("Close") close_button.clicked.connect(self.window_stashes.hide) layout.addWidget(close_button) self.window_stashes.setLayout(layout) # I miss C++ lambdas def _add_stash_item_to_table(self, name: str, stash_type: str) -> None: row = self.widget_stashes.rowCount() self.widget_stashes.insertRow(row) table_item = QTableWidgetItem(name) self.widget_stashes.setItem(row, 0, table_item) group_box = QGroupBox() box_layout = QHBoxLayout() radio1 = QRadioButton() radio2 = QRadioButton() if stash_type == "normal": radio1.setChecked(True) else: radio2.setChecked(True) radio1.clicked.connect(self._process_stash_item_changed) radio2.clicked.connect(self._process_stash_item_changed) box_layout.addWidget(radio1) box_layout.addStretch(1) box_layout.addWidget(radio2) group_box.setLayout(box_layout) self.widget_stashes.setCellWidget(row, 1, group_box) self.stashes_ui.append([table_item, radio1, radio2]) def _process_stash_item_changed(self): if hasattr(self, "edit_account_name"): # verify if _setup_ui finished self.stashes = [] stashes_to_remove = [] for index, item in enumerate(self.stashes_ui): name = item[0].text() stash_type = "normal" if item[1].isChecked() else "quad" if name == "": stashes_to_remove.append(index) if name != stash_default_text and name != "": self.stashes.append({"name": name, "type": stash_type}) for index in stashes_to_remove: self.stashes_ui.remove(self.stashes_ui[index]) self.widget_stashes.removeRow(index) if len(self.stashes_ui) == 2: self.active_stash = [self.stashes_ui[0][0].text(), 0, "normal" if self.stashes_ui[0][1].isChecked() else "quad"] if self.stashes_ui: stash_text = self.stashes_ui[-1][0].text() if stash_text != stash_default_text and not self.stash_item_change_already_called: self.stash_item_change_already_called = True self._add_stash_item_to_table(stash_default_text, "normal") self.stash_item_change_already_called = False self.save_cfg() def eventFilter(self, target, event) -> bool: if target == self.combo_mod_file and event.type() == QEvent.MouseButtonPress: self._update_mod_file_combo() return False def _create_slider(self) -> None: self.slider = Slider() def close(self) -> None: self.hide() self.painter_widget.hide_modification_mode() def _update_leagues_combo(self) -> None: self.combo_league.clear() main_name = self.edit_base_league_name.text() index = 0 for name in [main_name, main_name + " HC", "SSF " + main_name, "SSF " + main_name + " HC", "Standard", "Hardcore", "SSF Hardcore", "SSF Standard"]: self.combo_league.insertItem(index, name) index += 1 self.combo_league.setCurrentText(self.league) def _update_mod_file_combo(self) -> None: text_bak = None if self.combo_mod_file.currentText(): text_bak = self.combo_mod_file.currentText() self.combo_mod_file.clear() filters = os.listdir(FILTER_DIR) # there is probably a better way to exclude gitignore... ignore = ["mods_empty.xml", ".gitignore"] for f in filters: if f not in ignore and os.path.isfile(FILTER_DIR + f): self.combo_mod_file.addItem(f) if text_bak: print(text_bak) self.combo_mod_file.setCurrentText(os.path.basename(text_bak)) else: self.combo_mod_file.setCurrentText(os.path.basename(self.mod_file)) def _load_cfg(self) -> None: log_method_name() if not os.path.isfile(CONFIG_PATH): prepare_cfg(CONFIG_PATH) tree = ElementTree.parse(CONFIG_PATH) root = tree.getroot() self.account_name = self._cfg_load_or_default(root, "account_name") stashes_nodes = self._cfg_load_stashes(root) self.stashes = [] for stash in stashes_nodes: self.stashes.append(stash) if self.stashes: self.active_stash = [self.stashes[0]["name"], 0, self.stashes[0]["type"]] # mod_file should probably be validated upon loading (for existence) self.mod_file = self._cfg_load_or_default(root, "mod_file", DEFAULT_FILTER_PATH) self.league = self._cfg_load_or_default(root, "league") self.league_base_name = self._cfg_load_or_default(root, "league_base_name", default_league_name) self.session_id = self._cfg_load_or_default(root, "session_id") self.stash_type = self._cfg_load_or_default(root, "stash_type", "quad") self.painter_widget.stash_type = self.stash_type self._set_values_from_cfg() def _set_values_from_cfg(self) -> None: tree = ElementTree.parse(CONFIG_PATH) root = tree.getroot() slider_color1 = self._cfg_load_or_default(root, "slider_color1", "brown") slider_color2 = self._cfg_load_or_default(root, "slider_color2", "blue") slider_color3 = self._cfg_load_or_default(root, "slider_color3", "green") slider_color4 = self._cfg_load_or_default(root, "slider_color4", "yellow") slider_color5 = self._cfg_load_or_default(root, "slider_color5", "white") colors = [slider_color1, slider_color2, slider_color3, slider_color4, slider_color5] self.painter_widget.colors = colors self.slider.set_colors(colors) self.slider_value = int(self._cfg_load_or_default(root, "slider_value", "1")) # maybe just read this from settings widget at run time? self.painter_widget.number_of_mods_to_draw = self.slider_value self.main_widget_y = int(self._cfg_load_or_default(root, "main_widget_y", "0")) painter_x = int(self._cfg_load_or_default(root, "painter_x", "250")) painter_y = int(self._cfg_load_or_default(root, "painter_y", "250")) painter_w = int(self._cfg_load_or_default(root, "painter_w", "500")) painter_h = int(self._cfg_load_or_default(root, "painter_h", "500")) painter_geometry = QRect(painter_x, painter_y, painter_w, painter_h) self.painter_widget.setGeometry(painter_geometry) self.painter_widget.setFixedWidth(painter_geometry.width()) self.painter_widget.setFixedHeight(painter_geometry.height()) def save_cfg(self) -> None: log_method_name() tree = ElementTree.parse(CONFIG_PATH) root = tree.getroot() self._cfg_set_or_create(root, "account_name", self.edit_account_name.text()) self._cfg_save_stashes(root) self._cfg_set_or_create(root, "mod_file", FILTER_DIR + self.combo_mod_file.currentText()) self._cfg_set_or_create(root, "league_base_name", self.edit_base_league_name.text()) self._cfg_set_or_create(root, "league", self.combo_league.currentText()) self._cfg_set_or_create(root, "session_id", self.edit_session.text()) self._cfg_set_or_create(root, "main_widget_y", str(self.main_widget_y)) if hasattr(self, "slider"): self._cfg_set_or_create(root, "slider_value", str(self.slider.value)) if self.painter_geometry: self._cfg_set_or_create(root, "painter_x", str(self.painter_geometry.x())) self._cfg_set_or_create(root, "painter_y", str(self.painter_geometry.y())) self._cfg_set_or_create(root, "painter_w", str(self.painter_geometry.width())) self._cfg_set_or_create(root, "painter_h", str(self.painter_geometry.height())) xml_indent(root) tree.write(CONFIG_PATH) # Painter already notifies us about size/position changes through signal, # I don't know how to do bidirectional signaling so I'm setting values by reference self.painter_widget.stash_type = self.stashes[0]["type"] if self.stashes else "normal" if hasattr(self, "slider"): self.painter_widget.number_of_mods_to_draw = self.slider.value self.painter_widget.update() if self.stashes and not self.active_stash[0]: self.active_stash = [self.stashes[0]["name"], 0, self.stashes[0]["type"]] self.configuration_changed.emit(self.get_settings_for_requester()) # Notify Requester @staticmethod def _cfg_set_or_create(root: ElementTree, match: str, new_value: str) -> None: ele = root.find(match) if ele is None: ele = ElementTree.SubElement(root, match) ele.text = new_value @staticmethod def _cfg_load_or_default(root: ElementTree, match: str, default="") -> str: ele = root.find(match) if ele is None: return default return ele.text @staticmethod def _cfg_load_stashes(root: ElementTree) -> list: stashes = root.find('stashes') if stashes is None: return [{'name': "", 'type': "normal"}] return [{'name': x.text, 'type': x.attrib['type']} for x in list(stashes)] def _cfg_save_stashes(self, root: ElementTree) -> None: stashes = root.find('stashes') if stashes is None: stashes = ElementTree.SubElement(root, "stashes") for child in list(stashes): stashes.remove(child) for stash in self.stashes: if stash["name"]: node = ElementTree.SubElement(stashes, "stash") node.text = stash["name"] node.set("type", stash["type"]) def get_settings_for_requester(self) -> dict: return { "account_name": self.edit_account_name.text(), "stash_name": self.active_stash[0], "league": self.combo_league.currentText(), "session_id": self.edit_session.text(), "mod_file": FILTER_DIR + self.combo_mod_file.currentText() } def hide_account_session(self, force_hide=False): if self.edit_account_name.isVisible() or force_hide: self.edit_account_name.hide() self.label_account_name.hide() self.edit_session.hide() self.label_session.hide() self.adjustSize() else: self.edit_account_name.show() self.label_account_name.show() self.edit_session.show() self.label_session.show() self.adjustSize() def set_next_active_stash(self): index = self.active_stash[1]+1 if index < len(self.stashes): self.active_stash = [self.stashes[index]["name"], index, self.stashes[index]["type"]] else: self.active_stash = [self.stashes[0]["name"], 0, self.stashes[0]["type"]] self.painter_widget.stash_type = self.active_stash[2] def set_prev_active_stash(self): index = self.active_stash[1] - 1 if index >= 0: self.active_stash = [self.stashes[index]["name"], index, self.stashes[index]["type"]] else: index = len(self.stashes) - 1 self.active_stash = [self.stashes[index]["name"], index, self.stashes[index]["type"]] self.painter_widget.stash_type = self.active_stash[2]
44.761421
120
0.668009
79521858b55aa4286dd34289236842bf4db7125b
392
py
Python
espnApi/wsgi.py
thexdesk/ESPN-API
debaf328d385c688f90dbb96703244f87da3c100
[ "MIT" ]
null
null
null
espnApi/wsgi.py
thexdesk/ESPN-API
debaf328d385c688f90dbb96703244f87da3c100
[ "MIT" ]
3
2020-06-05T17:12:59.000Z
2021-06-10T18:09:18.000Z
espnApi/wsgi.py
thexdesk/ESPN-API
debaf328d385c688f90dbb96703244f87da3c100
[ "MIT" ]
1
2020-02-09T08:17:18.000Z
2020-02-09T08:17:18.000Z
""" WSGI config for espnApi project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/1.11/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault("DJANGO_SETTINGS_MODULE", "espnApi.settings") application = get_wsgi_application()
23.058824
78
0.785714
79521861e9154a4b637c14aaedcd2a85bfae066d
6,834
py
Python
muddery/worlddata/editor/form_view.py
noahzaozao/muddery
294da6fb73cb04c62e5ba6eefe49b595ca76832a
[ "BSD-3-Clause" ]
null
null
null
muddery/worlddata/editor/form_view.py
noahzaozao/muddery
294da6fb73cb04c62e5ba6eefe49b595ca76832a
[ "BSD-3-Clause" ]
null
null
null
muddery/worlddata/editor/form_view.py
noahzaozao/muddery
294da6fb73cb04c62e5ba6eefe49b595ca76832a
[ "BSD-3-Clause" ]
null
null
null
""" This file checks user's edit actions and put changes into db. """ from django import http from django.shortcuts import render from django.http import HttpResponseRedirect from django.conf import settings from evennia.utils import logger from muddery.utils.exception import MudderyError from worlddata import forms class FormView(object): """ This object deal with common forms and views. """ def __init__(self, form_name, request): """ Set form name and request. Args: form_name: model form's name request: http request Returns: None """ self.form_name = form_name self.request = request # get request data if self.request.POST: self.request_data = self.request.POST else: self.request_data = self.request.GET self.files = self.request.FILES # initialize values self.valid = None self.form_class = None self.form = None self.page = None self.record = None self.key = None self.template_file = None self.error = None def is_valid(self): """ Validate the request. Returns: boolean: is valid """ if self.valid is None: # If the request has not been parsed, parse it. self.valid = self.parse_request() return self.valid def parse_request(self): """ Parse request data. Returns: boolean: Parse success. """ # record's page and id self.page = self.request_data.get("_page", None) self.record = self.request_data.get("_record", None) # Get form's class. try: self.form_class = forms.Manager.get_form(self.form_name) except Exception, e: logger.log_tracemsg("Invalid form %s: %s." % (self.form_name, e)) self.error = "Invalid form: %s." % self.form_name return False # Get template file's name. self.template_file = getattr(self.form_class.Meta, "form_template", settings.DEFUALT_FORM_TEMPLATE) return True def query_view_data(self): """ Get db instance for view. Returns: None """ if not self.valid: raise MudderyError("Invalid form: %s." % self.form_name) self.form = None self.key = None if self.record: try: # Query record's data. instance = self.form_class.Meta.model.objects.get(pk=self.record) self.form = self.form_class(instance=instance) self.key = getattr(instance, "key", None) except Exception, e: self.form = None if not self.form: # Get empty data. self.form = self.form_class() def get_context(self): """ Get render context. Returns: context """ if not self.valid: raise MudderyError("Invalid form: %s." % self.form_name) # Query data. if not self.form: self.query_view_data() verbose_name = self.form_class.Meta.model._meta.verbose_name_plural context = {"data": self.form, "title": verbose_name, "desc": getattr(self.form_class.Meta, "desc", verbose_name), "can_delete": (self.record is not None)} if self.record: context["record"] = self.record if self.page: context["page"] = self.page return context def view_form(self): """ Show the edit form of a record. Returns: HttpResponse """ if not self.valid: raise MudderyError("Invalid form: %s." % self.form_name) context = self.get_context() return render(self.request, self.template_file, context) def query_submit_data(self): """ Get db instance to submit a record. Returns: None """ if not self.valid: raise MudderyError("Invalid form: %s." % self.form_name) self.form = None self.key = None if self.record: try: # Query existing record's data. instance = self.form_class.Meta.model.objects.get(pk=self.record) self.form = self.form_class(self.request_data, self.files, instance=instance) self.key = getattr(instance, "key", None) except Exception, e: self.form = None if not self.form: # Create new data. self.form = self.form_class(self.request_data, self.files) def submit_form(self): """ Edit a record. Returns: HttpResponse """ if not self.is_valid(): raise MudderyError("Invalid form: %s." % self.form_name) # Query data. if not self.form: self.query_submit_data() # Save data if self.form.is_valid(): instance = self.form.save() self.record = instance.pk try: self.key = instance.key except Exception, e: pass if "_save" in self.request_data: # Save and quit. return self.quit_form() # Save and continue editing. return self.view_form() def add_form(self): """ Add a record. Returns: HttpResponse """ return self.view_form() def quit_form(self): """ Quit a form without saving. Returns: HttpResponse """ self.parse_request() try: # Back to record list. # Parse list's url from the request path. pos = self.request.path.rfind("/") if pos > 0: url = self.request.path[:pos] + "/list.html" if self.page: url += "?_page=" + str(self.page) return HttpResponseRedirect(url) except Exception, e: logger.log_tracemsg("Quit form error: %s" % e) raise http.Http404 def delete_form(self): """ Delete a record. Returns: HttpResponse """ if not self.is_valid(): raise MudderyError("Invalid form: %s." % self.form_name) # Delete record. if self.record: try: instance = self.form_class.Meta.model.objects.get(pk=self.record) instance.delete() except Exception, e: pass return self.quit_form()
25.984791
107
0.530436
79521937d550d38bcbb25bfdfcfbad0eca232ff5
47
py
Python
exercicio9.py
llucaslopes/infosatc-lp-avaliativo-02
91708c7ec519bbde591ccd713002f80d37ec77c5
[ "MIT" ]
null
null
null
exercicio9.py
llucaslopes/infosatc-lp-avaliativo-02
91708c7ec519bbde591ccd713002f80d37ec77c5
[ "MIT" ]
null
null
null
exercicio9.py
llucaslopes/infosatc-lp-avaliativo-02
91708c7ec519bbde591ccd713002f80d37ec77c5
[ "MIT" ]
null
null
null
lista = [9,2,3,4,7,10,66] print(sorted(lista))
15.666667
25
0.638298
795219e1ad630d9943a74dae1b73450301411b15
607
py
Python
examples/ColorExample.py
melopero/Melopero_APDS-9960
9006454704abb7bea47435b58448133dc888d34f
[ "MIT" ]
null
null
null
examples/ColorExample.py
melopero/Melopero_APDS-9960
9006454704abb7bea47435b58448133dc888d34f
[ "MIT" ]
null
null
null
examples/ColorExample.py
melopero/Melopero_APDS-9960
9006454704abb7bea47435b58448133dc888d34f
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ @author: Leonardo La Rocca """ import time import melopero_apds9960 as mp def main(): device = mp.APDS_9960() device.reset() device.enable_als_engine() device.set_als_integration_time(450) saturation = device.get_saturation() device.wake_up() while True: time.sleep(.5) color = device.get_color_data() color = map(lambda val : val / saturation * 255, color) print(f"Alfa: {next(color)} Red: {next(color)} Green: {next(color)} Blue: {next(color)}") if __name__ == "__main__": main()
20.931034
100
0.62603
79521ada66eaa6fade9aac51bed690b64154e3dc
4,387
py
Python
source/libLinear.py
networkdynamics/attribution-extraction
5f4420769ea74f1c358ff8a2423fa8ca9083b4fc
[ "MIT" ]
3
2018-03-08T21:38:42.000Z
2020-05-01T14:14:22.000Z
source/libLinear.py
networkdynamics/attribution-extraction
5f4420769ea74f1c358ff8a2423fa8ca9083b4fc
[ "MIT" ]
null
null
null
source/libLinear.py
networkdynamics/attribution-extraction
5f4420769ea74f1c358ff8a2423fa8ca9083b4fc
[ "MIT" ]
null
null
null
import numpy as np import pandas as pd import os from sklearn import linear_model from sklearn.cross_validation import train_test_split from time import time from sklearn.metrics import classification_report from sklearn.metrics import confusion_matrix import operator from sklearn.externals import joblib import sys data_dir = os.path.abspath(os.path.join(os.path.dirname( __file__ ), '..', 'data/')) def testData(): logreg = joblib.load('sourceTrainer2.pkl') #df = pd.read_csv(os.path.join(data_dir, "sourceEntityTrainingSet1.csv"), header=None, usecols=range(34)) #df = pd.read_csv(os.path.join(data_dir, "PARCdevSourceSpanFeatures.csv"), header=None, usecols=range(34)) df = pd.read_csv(os.path.join(data_dir, "testSpanFeatures7.csv"), header=None, usecols=range(35)) #df = pd.read_csv(os.path.join(data_dir, "sourceEntityMatchDev1.csv"), header=None, usecols=range(38)) #df = pd.read_csv(os.path.join(data_dir, "xab"), header=None, usecols=range(38)) labels = 'containsPerson,featNextPunctE,featNextPunctQ,featNextQuoteE,featNextSpeakerE,featNextSpeakerQ,featNextVerbE,featNextVerbQ,featPrevPunctE,featPrevPunctQ,featPrevQuoteE,featPrevSpeakerE,featPrevSpeakerQ,featPrevVerbE,featPrevVerbQ,isNSubj,isNSubjVC,numEntityBetween,numMentionsPrevPar,numMentionsThisPar,numQuotesAttributed,numQuotesBetween,numQuotesOtherSpeakers,numQuotesParag,numQuotesPrev9Parag,numWordsBetween,numWordsParag,numWordsPrev9Parag,otherSpeakerMentioned,quoteDistanceFromParag,sameSentence,thisSpeakerMentioned,wordLengthQuote' df[0] = pd.Categorical(df[0]).codes df[1] = df[1].map({'Y': 1, 'N': 0}) print labels print df df = df.sort_values(by = 0, ascending=False) df = df.values newFeats = np.split(df, np.where(np.diff(df[:,0]))[0]+1) y_test = [[feat[:, 1]] for feat in newFeats] x_test = newFeats print logreg.coef_ maxcoef = np.argmax(logreg.coef_[0]) print maxcoef labels = labels.split(',') print "most important feat" print labels[maxcoef] print "all feats sorted" indicesSorted = np.argsort(logreg.coef_[0]) print indicesSorted for index in indicesSorted: print labels[index] flatXtest = np.array([item for sublist in x_test for item in sublist]) print flatXtest[:3] flatYtest = flatXtest[:,1] flatXtest = np.delete(flatXtest, [0,1], 1) t0 = time() print("Predicting entity") y_pred = logreg.predict(flatXtest) print y_pred[:10] print("done in %0.3fs" % (time() - t0)) print(classification_report(flatYtest, y_pred)) print(confusion_matrix(flatYtest, y_pred)) print x_test[0] print y_test[0] print len(x_test[0]) print len(y_test[0]) total = 0 correct = 0 for i, elem in enumerate(x_test): elem = np.delete(elem, [0,1], 1) arrayProbas = logreg.predict_proba(elem) # ... compute some result based on item ... positics = np.delete(arrayProbas, 0, 1) maxval = np.argmax(positics) pred = y_test[i][0][maxval] if pred == 1: correct = correct + 1 total = total + 1 print correct print total print float(correct)/float(total) #find a way to print actual prediction score #for how many quotes is the top prediction score correct def trainData(): #df = pd.read_csv(os.path.join(data_dir, "sourceEntityTrainingSet1.csv"), header=None, usecols=range(34)) #df = pd.read_csv(os.path.join(data_dir, "PARCtrainSourceSpanFeatures.csv"), header=None, usecols=range(34)) df = pd.read_csv(os.path.join(data_dir, "trainSpanFeatures7.csv"), header=None, usecols=range(35)) #df = pd.read_csv(os.path.join(data_dir, "xaa"), header=None, usecols=range(38)) df[0] = pd.Categorical(df[0]).codes print 'here' df[1] = df[1].map({'Y': 1, 'N': 0}) print df df = df.sort_values(by = 0, ascending=False) df = df.values newFeats = np.split(df, np.where(np.diff(df[:,0]))[0]+1) y_train = [[feat[:, 1]] for feat in newFeats] x_train = newFeats flatXtrain = np.array([item for sublist in x_train for item in sublist]) flatYtrain = flatXtrain[:,1] flatXtrain = np.delete(flatXtrain, [0,1], 1) logreg = linear_model.LogisticRegression() logreg = logreg.fit(flatXtrain, flatYtrain) joblib.dump(logreg, 'sourceTrainer2.pkl') def main(): print sys.argv if sys.argv[1] == '-test': testData() elif sys.argv[1] == '-train': trainData() else: print 'Use of this command line is: python source/libLinearTests.py -test or -train' #labelData() if __name__ == '__main__': main()
26.75
552
0.731707
79521aee37539c48a19e90939a05815c894b46e4
270
py
Python
ExamBankSpider/ExamBankSpider/items.py
Cary123/ExamSimulation
2d3f475457fed817063f7ab1c2b347a2dd2f0b07
[ "MIT" ]
null
null
null
ExamBankSpider/ExamBankSpider/items.py
Cary123/ExamSimulation
2d3f475457fed817063f7ab1c2b347a2dd2f0b07
[ "MIT" ]
null
null
null
ExamBankSpider/ExamBankSpider/items.py
Cary123/ExamSimulation
2d3f475457fed817063f7ab1c2b347a2dd2f0b07
[ "MIT" ]
null
null
null
# Define here the models for your scraped items # # See documentation in: # https://docs.scrapy.org/en/latest/topics/items.html import scrapy class ExambankspiderItem(scrapy.Item): # define the fields for your item here like: # name = scrapy.Field() pass
20.769231
53
0.722222
79521b2f6ec460168c86a05be6eef2befb906eae
1,284
py
Python
sandbox/compare_hypnograms_second_rater.py
skjerns/NT1-HRV
cb6de312f6b2710c4d059bb2a4638b053617c2f7
[ "MIT" ]
1
2022-03-06T03:32:15.000Z
2022-03-06T03:32:15.000Z
sandbox/compare_hypnograms_second_rater.py
skjerns/NT1-HRV
cb6de312f6b2710c4d059bb2a4638b053617c2f7
[ "MIT" ]
null
null
null
sandbox/compare_hypnograms_second_rater.py
skjerns/NT1-HRV
cb6de312f6b2710c4d059bb2a4638b053617c2f7
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ Created on Wed Apr 1 14:48:42 2020 @author: skjerns """ import config as cfg import ospath import shutil import sleep_utils import numpy as np from sklearn.metrics import cohen_kappa_score import matplotlib.pyplot as plt files = ospath.list_files(cfg.folder_edf, exts=['hypno']) accuracy = [] kohen = [] a=[] b=[] for file in files: if ospath.exists(file.replace('.hypno', '.txt')): hypno1 = sleep_utils.read_hypnogram(file) hypno2 = sleep_utils.read_hypnogram(file.replace('.hypno', '.txt')) minlen = min(len(hypno1), len(hypno2)) hypno1 = hypno1[:minlen] hypno2 = hypno2[:minlen] accuracy.append(np.mean(hypno1==hypno2)) kohen.append(cohen_kappa_score(hypno1, hypno2)) hypno1[0]=5 labels = {0: 'W', 4: 'REM', 1: 'S1', 2: 'S2', 3: 'SWS', 5: 'A'} if accuracy[-1]>0.65:continue a.append(accuracy[-1]) b.append(kohen[-1]) fig, axs = plt.subplots(2,1) sleep_utils.plot_hypnogram(hypno1, ax=axs[0], labeldict=labels) sleep_utils.plot_hypnogram(hypno2, ax=axs[1], labeldict=labels) plt.title('Second rater') plt.suptitle(f'{file} acc {accuracy[-1]:.2f}, kohen {kohen[-1]:.2f}, {ospath.basename(file)}')
27.913043
102
0.623832
79521b3e91a75839a6404eae8d5077983c23d7e9
152
py
Python
packages/core/minos-microservice-common/minos/common/injections/__init__.py
bhardwajRahul/minos-python
bad7a280ad92680abdeab01d1214688279cf6316
[ "MIT" ]
247
2022-01-24T14:55:30.000Z
2022-03-25T12:06:17.000Z
packages/core/minos-microservice-common/minos/common/injections/__init__.py
bhardwajRahul/minos-python
bad7a280ad92680abdeab01d1214688279cf6316
[ "MIT" ]
168
2022-01-24T14:54:31.000Z
2022-03-31T09:31:09.000Z
packages/core/minos-microservice-common/minos/common/injections/__init__.py
bhardwajRahul/minos-python
bad7a280ad92680abdeab01d1214688279cf6316
[ "MIT" ]
21
2022-02-06T17:25:58.000Z
2022-03-27T04:50:29.000Z
from .decorators import ( Inject, Injectable, ) from .injectors import ( DependencyInjector, ) from .mixins import ( InjectableMixin, )
13.818182
25
0.684211
79521be3865602edec02b7c9f4447ca2d6e364e4
686
py
Python
app/core/migrations/0003_ingredient.py
aadnekar/recipe-app-api
c1c524a7dbd3fb73e00e90effc455c3fc66155fe
[ "MIT" ]
null
null
null
app/core/migrations/0003_ingredient.py
aadnekar/recipe-app-api
c1c524a7dbd3fb73e00e90effc455c3fc66155fe
[ "MIT" ]
null
null
null
app/core/migrations/0003_ingredient.py
aadnekar/recipe-app-api
c1c524a7dbd3fb73e00e90effc455c3fc66155fe
[ "MIT" ]
null
null
null
# Generated by Django 2.1.15 on 2019-12-30 00:23 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('core', '0002_tag'), ] operations = [ migrations.CreateModel( name='Ingredient', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=255)), ('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), ]
28.583333
118
0.618076
79521c64a3cca8100e056ee252d71787844a41f0
1,458
py
Python
src/perf/data_pipe_perf/py_curio_queue_perf.py
random-python/data_pipe
e64fbbdb04f9cd43f7f3e58688c4ac1e2c2bbb45
[ "Apache-2.0" ]
14
2020-02-08T06:27:09.000Z
2021-06-02T07:35:09.000Z
src/perf/data_pipe_perf/py_curio_queue_perf.py
random-python/data_pipe
e64fbbdb04f9cd43f7f3e58688c4ac1e2c2bbb45
[ "Apache-2.0" ]
null
null
null
src/perf/data_pipe_perf/py_curio_queue_perf.py
random-python/data_pipe
e64fbbdb04f9cd43f7f3e58688c4ac1e2c2bbb45
[ "Apache-2.0" ]
null
null
null
""" """ import gc import time import curio count = int(1e5) # number of objects to transfer async def buffer_perf(): gc.collect() # start with clean memory source = [index for index in range(count)] # pre-allocate data source target = [None for index in range(count)] # pre-allocate data target async def producer(queue): for value in source: await queue.put(value) await queue.put(None) async def consumer(queue): index = 0 while True: value = await queue.get() if value is None: break target[index] = value index += 1 async def transfer(): queue = curio.Queue(maxsize=256) writer = await curio.spawn(producer, queue) reader = await curio.spawn(consumer, queue) await writer.join() await reader.join() time_start = time.time() await transfer() time_finish = time.time() time_diff = time_finish - time_start assert source == target # verify data integrity return time_diff def invoke_perf(session_size:int=3): for session in range(session_size): print(f"--- session={session} ---") time_diff = curio.run(buffer_perf) # total test time time_unit = int(1e6 * time_diff / count) # per-unit test time, microseconds print(f"count={count} time_diff={time_diff:.3f} time_unit={time_unit} micro") invoke_perf()
25.137931
85
0.616598
79521cc5e4138c18652fe17a25095056ea6ce387
2,025
py
Python
platformio/builder/scripts/frameworks/energia.py
eiginn/platformio
33502f82f26e731f5bdc38c1ea6b17d1565dedd3
[ "Apache-2.0" ]
null
null
null
platformio/builder/scripts/frameworks/energia.py
eiginn/platformio
33502f82f26e731f5bdc38c1ea6b17d1565dedd3
[ "Apache-2.0" ]
null
null
null
platformio/builder/scripts/frameworks/energia.py
eiginn/platformio
33502f82f26e731f5bdc38c1ea6b17d1565dedd3
[ "Apache-2.0" ]
null
null
null
# Copyright 2014-2016 Ivan Kravets <me@ikravets.com> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Energia Energia framework enables pretty much anyone to start easily creating microcontroller-based projects and applications. Its easy-to-use libraries and functions provide developers of all experience levels to start blinking LEDs, buzzing buzzers and sensing sensors more quickly than ever before. http://energia.nu/reference/ """ from os.path import join from SCons.Script import DefaultEnvironment env = DefaultEnvironment() env.Replace( PLATFORMFW_DIR=join("$PIOPACKAGES_DIR", "framework-energia${PLATFORM[2:]}") ) ENERGIA_VERSION = int( open(join(env.subst("$PLATFORMFW_DIR"), "version.txt")).read().replace(".", "").strip()) # include board variant env.VariantDirWrap( join("$BUILD_DIR", "FrameworkEnergiaVariant"), join("$PLATFORMFW_DIR", "variants", "${BOARD_OPTIONS['build']['variant']}") ) env.Append( CPPDEFINES=[ "ARDUINO=101", "ENERGIA=%d" % ENERGIA_VERSION ], CPPPATH=[ join("$BUILD_DIR", "FrameworkEnergia"), join("$BUILD_DIR", "FrameworkEnergiaVariant") ] ) if env.get("BOARD_OPTIONS", {}).get("build", {}).get("core") == "lm4f": env.Append( LINKFLAGS=["-Wl,--entry=ResetISR"] ) # # Target: Build Core Library # libs = [] libs.append(env.BuildLibrary( join("$BUILD_DIR", "FrameworkEnergia"), join("$PLATFORMFW_DIR", "cores", "${BOARD_OPTIONS['build']['core']}") )) env.Append(LIBS=libs)
27
79
0.700741
79521e2c42f18ed882ceaf860c93f1b40b871469
10,746
py
Python
pyscf/cc/gccsd_rdm.py
azag0/pyscf
1e3e27b61b3cfd22c9679d2c9851c13b3ebc5a1b
[ "Apache-2.0" ]
null
null
null
pyscf/cc/gccsd_rdm.py
azag0/pyscf
1e3e27b61b3cfd22c9679d2c9851c13b3ebc5a1b
[ "Apache-2.0" ]
null
null
null
pyscf/cc/gccsd_rdm.py
azag0/pyscf
1e3e27b61b3cfd22c9679d2c9851c13b3ebc5a1b
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python # Copyright 2014-2020 The PySCF Developers. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # Author: Qiming Sun <osirpt.sun@gmail.com> # Jun Yang <junyang4711@gmail.com> # import time import numpy from pyscf import lib from pyscf.lib import logger #einsum = numpy.einsum einsum = lib.einsum def _gamma1_intermediates(mycc, t1, t2, l1, l2): doo =-einsum('ie,je->ij', l1, t1) doo -= einsum('imef,jmef->ij', l2, t2) * .5 dvv = einsum('ma,mb->ab', t1, l1) dvv += einsum('mnea,mneb->ab', t2, l2) * .5 xt1 = einsum('mnef,inef->mi', l2, t2) * .5 xt2 = einsum('mnfa,mnfe->ae', t2, l2) * .5 xt2 += einsum('ma,me->ae', t1, l1) dvo = einsum('imae,me->ai', t2, l1) dvo -= einsum('mi,ma->ai', xt1, t1) dvo -= einsum('ie,ae->ai', t1, xt2) dvo += t1.T dov = l1 return doo, dov, dvo, dvv # gamma2 intermediates in Chemist's notation # When computing intermediates, the convention # dm2[q,p,s,r] = <p^\dagger r^\dagger s q> is assumed in this function. # It changes to dm2[p,q,r,s] = <p^\dagger r^\dagger s q> in _make_rdm2 def _gamma2_intermediates(mycc, t1, t2, l1, l2): tau = t2 + einsum('ia,jb->ijab', t1, t1) * 2 miajb = einsum('ikac,kjcb->iajb', l2, t2) goovv = 0.25 * (l2.conj() + tau) tmp = einsum('kc,kica->ia', l1, t2) goovv += einsum('ia,jb->ijab', tmp, t1) tmp = einsum('kc,kb->cb', l1, t1) goovv += einsum('cb,ijca->ijab', tmp, t2) * .5 tmp = einsum('kc,jc->kj', l1, t1) goovv += einsum('kiab,kj->ijab', tau, tmp) * .5 tmp = numpy.einsum('ldjd->lj', miajb) goovv -= einsum('lj,liba->ijab', tmp, tau) * .25 tmp = numpy.einsum('ldlb->db', miajb) goovv -= einsum('db,jida->ijab', tmp, tau) * .25 goovv -= einsum('ldia,ljbd->ijab', miajb, tau) * .5 tmp = einsum('klcd,ijcd->ijkl', l2, tau) * .25**2 goovv += einsum('ijkl,klab->ijab', tmp, tau) goovv = goovv.conj() gvvvv = einsum('ijab,ijcd->abcd', tau, l2) * 0.125 goooo = einsum('klab,ijab->klij', l2, tau) * 0.125 gooov = einsum('jkba,ib->jkia', tau, l1) * -0.25 gooov += einsum('iljk,la->jkia', goooo, t1) tmp = numpy.einsum('icjc->ij', miajb) * .25 gooov -= einsum('ij,ka->jkia', tmp, t1) gooov += einsum('icja,kc->jkia', miajb, t1) * .5 gooov = gooov.conj() gooov += einsum('jkab,ib->jkia', l2, t1) * .25 govvo = einsum('ia,jb->ibaj', l1, t1) govvo += numpy.einsum('iajb->ibaj', miajb) govvo -= einsum('ikac,jc,kb->ibaj', l2, t1, t1) govvv = einsum('ja,ijcb->iacb', l1, tau) * .25 govvv += einsum('bcad,id->iabc', gvvvv, t1) tmp = numpy.einsum('kakb->ab', miajb) * .25 govvv += einsum('ab,ic->iacb', tmp, t1) govvv += einsum('kaib,kc->iabc', miajb, t1) * .5 govvv = govvv.conj() govvv += einsum('ijbc,ja->iabc', l2, t1) * .25 dovov = goovv.transpose(0,2,1,3) - goovv.transpose(0,3,1,2) dvvvv = gvvvv.transpose(0,2,1,3) - gvvvv.transpose(0,3,1,2) doooo = goooo.transpose(0,2,1,3) - goooo.transpose(0,3,1,2) dovvv = govvv.transpose(0,2,1,3) - govvv.transpose(0,3,1,2) dooov = gooov.transpose(0,2,1,3) - gooov.transpose(1,2,0,3) dovvo = govvo.transpose(0,2,1,3) dovov =(dovov + dovov.transpose(2,3,0,1)) * .5 dvvvv = dvvvv + dvvvv.transpose(1,0,3,2).conj() doooo = doooo + doooo.transpose(1,0,3,2).conj() dovvo =(dovvo + dovvo.transpose(3,2,1,0).conj()) * .5 doovv = None # = -dovvo.transpose(0,3,2,1) dvvov = None return (dovov, dvvvv, doooo, doovv, dovvo, dvvov, dovvv, dooov) def make_rdm1(mycc, t1, t2, l1, l2, ao_repr=False): r''' One-particle density matrix in the molecular spin-orbital representation (the occupied-virtual blocks from the orbital response contribution are not included). dm1[p,q] = <q^\dagger p> (p,q are spin-orbitals) The convention of 1-pdm is based on McWeeney's book, Eq (5.4.20). The contraction between 1-particle Hamiltonian and rdm1 is E = einsum('pq,qp', h1, rdm1) ''' d1 = _gamma1_intermediates(mycc, t1, t2, l1, l2) return _make_rdm1(mycc, d1, with_frozen=True, ao_repr=ao_repr) def make_rdm2(mycc, t1, t2, l1, l2, ao_repr=False): r''' Two-particle density matrix in the molecular spin-orbital representation dm2[p,q,r,s] = <p^\dagger r^\dagger s q> where p,q,r,s are spin-orbitals. p,q correspond to one particle and r,s correspond to another particle. The contraction between ERIs (in Chemist's notation) and rdm2 is E = einsum('pqrs,pqrs', eri, rdm2) ''' d1 = _gamma1_intermediates(mycc, t1, t2, l1, l2) d2 = _gamma2_intermediates(mycc, t1, t2, l1, l2) return _make_rdm2(mycc, d1, d2, with_dm1=True, with_frozen=True, ao_repr=ao_repr) def _make_rdm1(mycc, d1, with_frozen=True, ao_repr=False): r''' One-particle density matrix in the molecular spin-orbital representation (the occupied-virtual blocks from the orbital response contribution are not included). dm1[p,q] = <q^\dagger p> (p,q are spin-orbitals) The convention of 1-pdm is based on McWeeney's book, Eq (5.4.20). The contraction between 1-particle Hamiltonian and rdm1 is E = einsum('pq,qp', h1, rdm1) ''' doo, dov, dvo, dvv = d1 nocc, nvir = dov.shape nmo = nocc + nvir dm1 = numpy.empty((nmo,nmo), dtype=doo.dtype) dm1[:nocc,:nocc] = doo + doo.conj().T dm1[:nocc,nocc:] = dov + dvo.conj().T dm1[nocc:,:nocc] = dm1[:nocc,nocc:].conj().T dm1[nocc:,nocc:] = dvv + dvv.conj().T dm1 *= .5 dm1[numpy.diag_indices(nocc)] += 1 if with_frozen and not (mycc.frozen is 0 or mycc.frozen is None): nmo = mycc.mo_occ.size nocc = numpy.count_nonzero(mycc.mo_occ > 0) rdm1 = numpy.zeros((nmo,nmo), dtype=dm1.dtype) rdm1[numpy.diag_indices(nocc)] = 1 moidx = numpy.where(mycc.get_frozen_mask())[0] rdm1[moidx[:,None],moidx] = dm1 dm1 = rdm1 if ao_repr: mo = mycc.mo_coeff dm1 = lib.einsum('pi,ij,qj->pq', mo, dm1, mo.conj()) return dm1 def _make_rdm2(mycc, d1, d2, with_dm1=True, with_frozen=True, ao_repr=False): r''' dm2[p,q,r,s] = <p^\dagger r^\dagger s q> Note the contraction between ERIs (in Chemist's notation) and rdm2 is E = einsum('pqrs,pqrs', eri, rdm2) ''' dovov, dvvvv, doooo, doovv, dovvo, dvvov, dovvv, dooov = d2 nocc, nvir = dovov.shape[:2] nmo = nocc + nvir dm2 = numpy.empty((nmo,nmo,nmo,nmo), dtype=doooo.dtype) dovov = numpy.asarray(dovov) dm2[:nocc,nocc:,:nocc,nocc:] = dovov dm2[nocc:,:nocc,nocc:,:nocc] = dm2[:nocc,nocc:,:nocc,nocc:].transpose(1,0,3,2).conj() dovov = None dovvo = numpy.asarray(dovvo) dm2[:nocc,:nocc,nocc:,nocc:] =-dovvo.transpose(0,3,2,1) dm2[nocc:,nocc:,:nocc,:nocc] =-dovvo.transpose(2,1,0,3) dm2[:nocc,nocc:,nocc:,:nocc] = dovvo dm2[nocc:,:nocc,:nocc,nocc:] = dovvo.transpose(1,0,3,2).conj() dovvo = None dm2[nocc:,nocc:,nocc:,nocc:] = dvvvv dm2[:nocc,:nocc,:nocc,:nocc] = doooo dovvv = numpy.asarray(dovvv) dm2[:nocc,nocc:,nocc:,nocc:] = dovvv dm2[nocc:,nocc:,:nocc,nocc:] = dovvv.transpose(2,3,0,1) dm2[nocc:,nocc:,nocc:,:nocc] = dovvv.transpose(3,2,1,0).conj() dm2[nocc:,:nocc,nocc:,nocc:] = dovvv.transpose(1,0,3,2).conj() dovvv = None dooov = numpy.asarray(dooov) dm2[:nocc,:nocc,:nocc,nocc:] = dooov dm2[:nocc,nocc:,:nocc,:nocc] = dooov.transpose(2,3,0,1) dm2[:nocc,:nocc,nocc:,:nocc] = dooov.transpose(1,0,3,2).conj() dm2[nocc:,:nocc,:nocc,:nocc] = dooov.transpose(3,2,1,0).conj() if with_frozen and not (mycc.frozen is 0 or mycc.frozen is None): nmo, nmo0 = mycc.mo_occ.size, nmo nocc = numpy.count_nonzero(mycc.mo_occ > 0) rdm2 = numpy.zeros((nmo,nmo,nmo,nmo), dtype=dm2.dtype) moidx = numpy.where(mycc.get_frozen_mask())[0] idx = (moidx.reshape(-1,1) * nmo + moidx).ravel() lib.takebak_2d(rdm2.reshape(nmo**2,nmo**2), dm2.reshape(nmo0**2,nmo0**2), idx, idx) dm2 = rdm2 if with_dm1: dm1 = _make_rdm1(mycc, d1, with_frozen) dm1[numpy.diag_indices(nocc)] -= 1 for i in range(nocc): # Be careful with the convention of dm1 and the transpose of dm2 at the end dm2[i,i,:,:] += dm1 dm2[:,:,i,i] += dm1 dm2[:,i,i,:] -= dm1 dm2[i,:,:,i] -= dm1.T for i in range(nocc): for j in range(nocc): dm2[i,i,j,j] += 1 dm2[i,j,j,i] -= 1 # dm2 was computed as dm2[p,q,r,s] = < p^\dagger r^\dagger s q > in the # above. Transposing it so that it be contracted with ERIs (in Chemist's # notation): # E = einsum('pqrs,pqrs', eri, rdm2) dm2 = dm2.transpose(1,0,3,2) if ao_repr: from pyscf.cc import ccsd_rdm dm2 = ccsd_rdm._rdm2_mo2ao(dm2, mycc.mo_coeff) return dm2 if __name__ == '__main__': from functools import reduce from pyscf import gto from pyscf import scf from pyscf import ao2mo from pyscf.cc import gccsd from pyscf.cc import addons mol = gto.Mole() mol.atom = [ [8 , (0. , 0. , 0.)], [1 , (0. , -0.757 , 0.587)], [1 , (0. , 0.757 , 0.587)]] mol.basis = '631g' mol.spin = 2 mol.build() mf = scf.UHF(mol).run(conv_tol=1.) mf = scf.addons.convert_to_ghf(mf) mycc = gccsd.GCCSD(mf) ecc, t1, t2 = mycc.kernel() l1, l2 = mycc.solve_lambda() dm1 = make_rdm1(mycc, t1, t2, l1, l2) dm2 = make_rdm2(mycc, t1, t2, l1, l2) nao = mol.nao_nr() mo_a = mf.mo_coeff[:nao] mo_b = mf.mo_coeff[nao:] nmo = mo_a.shape[1] eri = ao2mo.kernel(mf._eri, mo_a+mo_b, compact=False).reshape([nmo]*4) orbspin = mf.mo_coeff.orbspin sym_forbid = (orbspin[:,None] != orbspin) eri[sym_forbid,:,:] = 0 eri[:,:,sym_forbid] = 0 hcore = scf.RHF(mol).get_hcore() h1 = reduce(numpy.dot, (mo_a.T.conj(), hcore, mo_a)) h1+= reduce(numpy.dot, (mo_b.T.conj(), hcore, mo_b)) e1 = numpy.einsum('ij,ji', h1, dm1) e1+= numpy.einsum('ijkl,ijkl', eri, dm2) * .5 e1+= mol.energy_nuc() print(e1 - mycc.e_tot) #TODO: test 1pdm, 2pdm against FCI
36.181818
89
0.605807
79521f077daf92d426584dd12f539ddb5231bf52
42,493
py
Python
pycqed/instrument_drivers/physical_instruments/ZurichInstruments/ZI_HDAWG8.py
ZW7436/PycQED_py3
dcc19dbaedd226112a2f98a7985dcf2bab2c9734
[ "MIT" ]
1
2019-07-05T13:41:51.000Z
2019-07-05T13:41:51.000Z
pycqed/instrument_drivers/physical_instruments/ZurichInstruments/ZI_HDAWG8.py
ball199578/PycQED_py3
dcc19dbaedd226112a2f98a7985dcf2bab2c9734
[ "MIT" ]
null
null
null
pycqed/instrument_drivers/physical_instruments/ZurichInstruments/ZI_HDAWG8.py
ball199578/PycQED_py3
dcc19dbaedd226112a2f98a7985dcf2bab2c9734
[ "MIT" ]
null
null
null
import time import logging import os import numpy as np from . import zishell_NH as zs from qcodes.utils import validators as vals from .ZI_base_instrument import ZI_base_instrument from qcodes.instrument.parameter import ManualParameter from zlib import crc32 import ctypes from ctypes.wintypes import MAX_PATH class ZI_HDAWG8(ZI_base_instrument): """ This is PycQED/QCoDeS driver driver for the Zurich Instruments HD AWG-8. Parameter files are generated from the python API of the instrument using the "create_parameter_file" method in the ZI_base_instrument class. These are used to add parameters to the instrument. """ def __init__(self, name, device: str, server: str='localhost', port=8004, num_codewords: int = 32, **kw): ''' Input arguments: name: (str) name of the instrument as seen by the user device (str) the name of the device e.g., "dev8008" server (str) the ZI data server port (int) the port to connect to ''' t0 = time.time() self._num_codewords = num_codewords if os.name == 'nt': dll = ctypes.windll.shell32 buf = ctypes.create_unicode_buffer(MAX_PATH + 1) if dll.SHGetSpecialFolderPathW(None, buf, 0x0005, False): _basedir = buf.value else: logging.warning('Could not extract my documents folder') else: _basedir = os.path.expanduser('~') self.lab_one_webserver_path = os.path.join( _basedir, 'Zurich Instruments', 'LabOne', 'WebServer') super().__init__(name=name, **kw) self._devname = device self._dev = zs.ziShellDevice() self._dev.connect_server(server, port) print("Trying to connect to device {}".format(self._devname)) self._dev.connect_device(self._devname, '1GbE') dir_path = os.path.dirname(os.path.abspath(__file__)) base_fn = os.path.join(dir_path, 'zi_parameter_files') try: self.add_parameters_from_file( filename=os.path.join(base_fn, 'node_doc_HDAWG8.json')) except FileNotFoundError: logging.warning("parameter file for data parameters" " {} not found".format(self._d_file_name)) self.add_ZIshell_device_methods_to_instrument() dev_type = self.get('features_devtype') if dev_type == 'HDAWG8': self._num_channels = 8 elif dev_type == 'HDAWG4': self._num_channels = 4 else: self._num_channels = 8 logging.warning('Unknown device type. Assuming eight channels.') self._add_codeword_parameters() self._add_extra_parameters() self.connect_message(begin_time=t0) def _add_extra_parameters(self): self.add_parameter('timeout', unit='s', initial_value=10, parameter_class=ManualParameter) self.add_parameter( 'cfg_num_codewords', label='Number of used codewords', docstring=( 'This parameter is used to determine how many codewords to ' 'upload in "self.upload_codeword_program".'), initial_value=self._num_codewords, # N.B. I have commentd out numbers larger than self._num_codewords # see also issue #358 vals=vals.Enum(2, 4, 8, 16, 32), # , 64, 128, 256, 1024), parameter_class=ManualParameter) self.add_parameter( 'cfg_codeword_protocol', initial_value='identical', vals=vals.Enum('identical', 'microwave', 'flux'), docstring=( 'Used in the configure codeword method to determine what DIO' ' pins are used in for which AWG numbers.'), parameter_class=ManualParameter) for i in range(4): self.add_parameter( 'awgs_{}_sequencer_program_crc32_hash'.format(i), parameter_class=ManualParameter, initial_value=0, vals=vals.Ints()) def snapshot_base(self, update=False, params_to_skip_update=None): if params_to_skip_update is None: params_to_skip_update = self._params_to_skip_update snap = super().snapshot_base( update=update, params_to_skip_update=params_to_skip_update) return snap def add_ZIshell_device_methods_to_instrument(self): """ Some methods defined in the zishell are convenient as public methods of the instrument. These are added here. """ self.reconnect = self._dev.reconnect self.restart_device = self._dev.restart_device self.poll = self._dev.poll self.sync = self._dev.sync self.read_from_scope = self._dev.read_from_scope self.restart_scope_module = self._dev.restart_scope_module self.restart_awg_module = self._dev.restart_awg_module def configure_awg_from_string(self, awg_nr: int, program_string: str, timeout: float=15): """ Uploads a program string to one of the AWGs of the AWG8. Also """ self._dev.configure_awg_from_string(awg_nr=awg_nr, program_string=program_string, timeout=timeout) hash = crc32(program_string.encode('utf-8')) self.set('awgs_{}_sequencer_program_crc32_hash'.format(awg_nr), hash) def get_idn(self): # FIXME, update using new parameters for this purpose idn_dict = {'vendor': 'ZurichInstruments', 'model': self._dev.daq.getByte( '/{}/features/devtype'.format(self._devname)), 'serial': self._devname, 'firmware': self._dev.geti('system/fwrevision'), 'fpga_firmware': self._dev.geti('system/fpgarevision') } return idn_dict def stop(self): """ Stops the program on all AWG's part of this AWG8 unit """ for i in range(int(self._num_channels/2)): self.set('awgs_{}_enable'.format(i), 0) def start(self): """ Starts the program on all AWG's part of this AWG8 unit """ for i in range(int(self._num_channels/2)): self.set('awgs_{}_enable'.format(i), 1) # def _check_protocol(self, awg): # # TODO: Add docstrings and make this more clear (Oct 2017) # mask = self._dev.geti('awgs/' + str(awg) + '/dio/mask/value') << self._dev.geti( # 'awgs/' + str(awg) + '/dio/mask/shift') # strobe = 1 << self._dev.geti('awgs/' + str(awg) + '/dio/strobe/index') # valid = 1 << self._dev.geti('awgs/' + str(awg) + '/dio/valid/index') # #print('Codeword mask: {:08x}'.format(mask)) # #print('Strobe mask : {:08x}'.format(strobe)) # #print('Valid mask : {:08x}'.format(valid)) # got_bits = 0 # got_strobe_re = False # got_strobe_fe = False # got_valid_re = False # got_valid_fe = False # last_strobe = None # last_valid = None # strobe_low = 0 # strobe_high = 0 # count_low = False # count_high = False # count_ok = True # ok = 0 # data = self._dev.getv('awgs/' + str(awg) + '/dio/data') # for n, d in enumerate(data): # curr_strobe = (d & strobe) != 0 # curr_valid = (d & valid) != 0 # if count_high: # if curr_strobe: # strobe_high += 1 # else: # if (strobe_low > 0) and (strobe_low != strobe_high): # count_ok = False # if count_low: # if not curr_strobe: # strobe_low += 1 # else: # if (strobe_high > 0) and (strobe_low != strobe_high): # count_ok = False # if (last_strobe != None): # if (curr_strobe and not last_strobe): # got_strobe_re = True # strobe_high = 0 # count_high = True # count_low = False # index_high = n # elif (not curr_strobe and last_strobe): # got_strobe_fe = True # strobe_low = 0 # count_low = True # count_high = False # index_low = n # if (last_valid != None) and (curr_valid and not last_valid): # got_valid_re = True # if (last_valid != None) and (not curr_valid and last_valid): # got_valid_fe = True # got_bits |= (d & mask) # last_strobe = curr_strobe # last_valid = curr_valid # if got_bits != mask: # ok |= 1 # if not got_strobe_re or not got_strobe_fe: # ok |= 2 # if not got_valid_re or not got_valid_fe: # ok |= 4 # if not count_ok: # ok |= 8 # return ok # def _print_check_protocol_error_message(self, ok): # if ok & 1: # print('Did not see all codeword bits toggling') # if ok & 2: # print('Did not see toggle bit toggling') # if ok & 4: # print('Did not see valid bit toggling') # if ok & 8: # print('Toggle bit is not symmetrical') # def calibrate_dio(self): # # TODO: add docstrings to make it more clear # ok = True # print("Switching to internal clock") # self.set('system_extclk', 0) # time.sleep(1) # print("Switching to external clock") # self.set('system_extclk', 1) # time.sleep(1) # print("Calibrating internal DIO delays...") # for i in [1, 0, 2, 3]: # strange order is necessary # print(' Calibrating AWG {} '.format(i), end='') # self._dev.seti('raw/awgs/*/dio/calib/start', 2) # time.sleep(1) # status = self._dev.geti('raw/awgs/' + str(i) + '/dio/calib/status') # if (status != 0): # print('[FAILURE]') # ok = False # else: # print('[SUCCESS]') # return ok # def calibrate_dio_protocol(self): # # TODO: add docstrings to make it more clear # print("Checking DIO protocol...") # done = 4*[False] # timeout = 5 # while not all(done): # ok = True # for i in range(4): # print(' Checking AWG {} '.format(i), end='') # protocol = self._check_protocol(i) # if protocol != 0: # ok = False # done[i] = False # print('[FAILURE]') # self._print_check_protocol_error_message(protocol) # else: # done[i] = True # print('[SUCCESS]') # if not ok: # print( # " A problem was detected with the protocol. Will try to reinitialize the clock as it sometimes helps.") # self._dev.seti('awgs/*/enable', 0) # self._dev.seti('system/extclk', 0) # time.sleep(1) # self._dev.seti('system/extclk', 1) # time.sleep(1) # self._dev.seti('awgs/*/enable', 1) # timeout -= 1 # if timeout <= 0: # print(" Too many retries, aborting!") # return False # ok = True # print("Calibrating DIO protocol delays...") # for i in range(4): # print(' Calibrating AWG {} '.format(i), end='') # self._dev.seti('raw/awgs/' + str(i) + '/dio/calib/start', 1) # time.sleep(1) # status = self._dev.geti('raw/awgs/' + str(i) + '/dio/calib/status') # protocol = self._check_protocol(i) # if (status != 0) or (protocol != 0): # print('[FAILURE]') # self._print_check_protocol_error_message(protocol) # ok = False # else: # print('[SUCCESS]') # return ok def _add_codeword_parameters(self): """ Adds parameters parameters that are used for uploading codewords. It also contains initial values for each codeword to ensure that the "upload_codeword_program" """ docst = ('Specifies a waveform to for a specific codeword. ' + 'The waveforms must be uploaded using ' + '"upload_codeword_program". The channel number corresponds' + ' to the channel as indicated on the device (1 is lowest).') self._params_to_skip_update = [] for ch in range(self._num_channels): for cw in range(self._num_codewords): parname = 'wave_ch{}_cw{:03}'.format(ch+1, cw) self.add_parameter( parname, label='Waveform channel {} codeword {:03}'.format( ch+1, cw), vals=vals.Arrays(), # min_value, max_value = unknown set_cmd=self._gen_write_csv(parname), get_cmd=self._gen_read_csv(parname), docstring=docst) self._params_to_skip_update.append(parname) def _gen_write_csv(self, wf_name): def write_func(waveform): # The lenght of AWG8 waveforms should be a multiple of 8 samples. if (len(waveform) % 8) != 0: extra_zeros = 8-(len(waveform) % 8) waveform = np.concatenate([waveform, np.zeros(extra_zeros)]) return self._write_csv_waveform( wf_name=wf_name, waveform=waveform) return write_func def _gen_read_csv(self, wf_name): def read_func(): return self._read_csv_waveform( wf_name=wf_name) return read_func def _write_csv_waveform(self, wf_name: str, waveform): filename = os.path.join( self.lab_one_webserver_path, 'awg', 'waves', self._devname+'_'+wf_name+'.csv') with open(filename, 'w') as f: np.savetxt(filename, waveform, delimiter=",") def _read_csv_waveform(self, wf_name: str): filename = os.path.join( self.lab_one_webserver_path, 'awg', 'waves', self._devname+'_'+wf_name+'.csv') try: return np.genfromtxt(filename, delimiter=',') except OSError as e: # if the waveform does not exist yet dont raise exception logging.warning(e) print(e) return None # Note: This was added for debugging by NielsH. # If we do not need it for a few days we should remove it. (2/10/2017) # def stop_awg(self): # test_program = """ # // 'Counting' waveform # const N = 80; # setWaveDIO(0, ones(N), -ones(N)); # setWaveDIO(1, ones(N), -ones(N)); # setWaveDIO(2, -ones(N), ones(N)); # setWaveDIO(3, ones(N), ones(N)); # setWaveDIO(4, -blackman(N, 1.0, 0.2), -blackman(N, 1.0, 0.2)); # setWaveDIO(5, blackman(N, 1.0, 0.2), -blackman(N, 1.0, 0.2)); # setWaveDIO(6, -blackman(N, 1.0, 0.2), blackman(N, 1.0, 0.2)); # setWaveDIO(7, blackman(N, 1.0, 0.2), blackman(N, 1.0, 0.2)); # """ # for awg_nr in range(4): # print('Configuring AWG {} with dummy program'.format(awg_nr)) # # disable all AWG channels # self.set('awgs_{}_enable'.format(awg_nr), 0) # self.configure_awg_from_string(awg_nr, test_program, self.timeout()) # self.set('awgs_{}_single'.format(awg_nr), 0) # self.set('awgs_{}_enable'.format(awg_nr), 1) # print('Waiting...') # time.sleep(1) # for awg_nr in range(4): # # disable all AWG channels # self.set('awgs_{}_enable'.format(awg_nr), 0) def initialze_all_codewords_to_zeros(self): """ Generates all zeros waveforms for all codewords """ t0 = time.time() wf = np.zeros(32) waveform_params = [value for key, value in self.parameters.items() if 'wave_ch' in key.lower()] for par in waveform_params: par(wf) t1 = time.time() print('Set all zeros waveforms in {:.1f} s'.format(t1-t0)) def upload_waveform_realtime(self, w0, w1, awg_nr: int, wf_nr: int =1): """ Warning! This method should be used with care. Uploads a waveform to the awg in realtime, note that this get's overwritten if a new program is uploaded. Arguments: w0 (array): waveform for ch0 of the awg pair. w1 (array): waveform for ch1 of the awg pair. awg_nr (int): awg_nr indicating what awg pair to use. wf_nr (int): waveform in memory to overwrite, default is 1. There are a few important notes when using this method - w0 and w1 must be of the same length - any parts of a waveform longer than w0/w1 will not be overwritten. - loading speed depends on the size of w0 and w1 and is ~80ms for 20us. """ # these two attributes are added for debugging purposes. # they allow checking what the realtime loaded waveforms are. self._realtime_w0 = w0 self._realtime_w1 = w1 c = np.vstack((w0, w1)).reshape((-2,), order='F') self._dev.seti('awgs/{}/waveform/index'.format(awg_nr), wf_nr) self._dev.setv('awgs/{}/waveform/data'.format(awg_nr), c) self._dev.seti('awgs/{}/enable'.format(awg_nr), wf_nr) def upload_codeword_program(self, awgs=np.arange(4)): """ Generates a program that plays the codeword waves for each channel. awgs (array): the awg numbers to which to upload the codeword program. By default uploads to all channels but can be specific to speed up the process. """ # Type conversion to ensure lists do not produce weird results awgs = np.array(awgs) # because awg_channels come in pairs and are numbered from 1-8 in API awg_channels = awgs*2+1 for awg_nr in awgs: # disable all AWG channels self.set('awgs_{}_enable'.format(int(awg_nr)), 0) codeword_mode_snippet = ( 'while (1) { \n ' '\t// Wait for a trigger on the DIO interface\n' '\twaitDIOTrigger();\n' '\t// Play a waveform from the table based on the DIO code-word\n' '\tplayWaveDIO(); \n' '}') if self.cfg_codeword_protocol() != 'flux': for ch in awg_channels: waveform_table = '// Define the waveform table\n' for cw in range(self.cfg_num_codewords()): wf0_name = '{}_wave_ch{}_cw{:03}'.format( self._devname, ch, cw) wf1_name = '{}_wave_ch{}_cw{:03}'.format( self._devname, ch+1, cw) waveform_table += 'setWaveDIO({}, "{}", "{}");\n'.format( cw, wf0_name, wf1_name) program = waveform_table + codeword_mode_snippet # N.B. awg_nr in goes from 0 to 3 in API while in LabOne # it is 1 to 4 awg_nr = ch//2 # channels are coupled in pairs of 2 self.configure_awg_from_string(awg_nr=int(awg_nr), program_string=program, timeout=self.timeout()) else: # if protocol is flux for ch in awg_channels: waveform_table = '//Flux mode\n// Define the waveform table\n' mask_0 = 0b000111 # AWGx_ch0 uses lower bits for CW mask_1 = 0b111000 # AWGx_ch1 uses higher bits for CW # for cw in range(2**6): for cw in range(8): cw0 = cw & mask_0 cw1 = (cw & mask_1) >> 3 # FIXME: this is a hack because not all AWG8 channels support # amp mode. It forces all AWG8's of a pair to behave identical. cw1 = cw0 # if both wfs are triggered play both if (cw0 != 0) and (cw1 != 0): # if both waveforms exist, upload wf0_cmd = '"{}_wave_ch{}_cw{:03}"'.format( self._devname, ch, cw0) wf1_cmd = '"{}_wave_ch{}_cw{:03}"'.format( self._devname, ch+1, cw1) # if single wf is triggered fill the other with zeros elif (cw0 == 0) and (cw1 != 0): wf0_cmd = 'zeros({})'.format(len(self.get( 'wave_ch{}_cw{:03}'.format(ch, cw1)))) wf1_cmd = '"{}_wave_ch{}_cw{:03}"'.format( self._devname, ch+1, cw1) elif (cw0 != 0) and (cw1 == 0): wf0_cmd = '"{}_wave_ch{}_cw{:03}"'.format( self._devname, ch, cw0) wf1_cmd = 'zeros({})'.format(len(self.get( 'wave_ch{}_cw{:03}'.format(ch, cw0)))) # if no wfs are triggered play only zeros else: wf0_cmd = 'zeros({})'.format(42) wf1_cmd = 'zeros({})'.format(42) waveform_table += 'setWaveDIO({}, {}, {});\n'.format( cw, wf0_cmd, wf1_cmd) program = waveform_table + codeword_mode_snippet # N.B. awg_nr in goes from 0 to 3 in API while in LabOne it # is 1 to 4 awg_nr = ch//2 # channels are coupled in pairs of 2 self.configure_awg_from_string(awg_nr=int(awg_nr), program_string=program, timeout=self.timeout()) self.configure_codeword_protocol() def configure_codeword_protocol(self, default_dio_timing: bool=False): """ This method configures the AWG-8 codeword protocol. It includes specifying what bits are used to specify codewords as well as setting the delays on the different bits. The protocol uses several parts to specify the These parameters are specific to each AWG-8 channel and depend on the the function the AWG8 has in the setup. The parameter "cfg_codeword_protocol" defines what protocol is used. There are three options: identical : all AWGs have the same configuration microwave : AWGs 0 and 1 share bits flux : Each AWG pair is responsible for 2 flux channels. this also affects the "codeword_program" and setting "wave_chX_cwXXX" parameters. Protocol definition: protocol - mask/value -> some bits are masked to allow using only a few bits to specify a codeword. - mask/shift -> all acquired bits are shifted to allow specifying which bits should be used. The parameters below are global to all AWG channels. - strobe/index -> this specifies which bit is the toggle/strobe bit - strobe/slope -> check for codewords on rissing/falling or both edges of the toggle bit. - valid/index -> specifies the codeword valid bit - valid/slope -> specifies the slope of the valid bit Delay configuration In this part the DIO delay indices are set. These should be identical for each AWG channel. - dio/delay/index -> selects which delay to change next - dio/delay/value -> specifies an individual delay Trun on device The final step enablse the signal output of each AWG and sets it to the right mode. """ #################################################### # Protocol definition #################################################### # Configure the DIO interface for triggering on for awg_nr in range(int(self._num_channels/2)): # This is the bit index of the valid bit, self.set('awgs_{}_dio_valid_index'.format(awg_nr), 31) # Valid polarity is 'high' (hardware value 2), # 'low' (hardware value 1), 'no valid needed' (hardware value 0) self.set('awgs_{}_dio_valid_polarity'.format(awg_nr), 2) # This is the bit index of the strobe signal (toggling signal), self.set('awgs_{}_dio_strobe_index'.format(awg_nr), 30) # Configure the DIO interface for triggering on the both edges of # the strobe/toggle bit signal. # 1: rising edge, 2: falling edge or 3: both edges self.set('awgs_{}_dio_strobe_slope'.format(awg_nr), 3) # the mask determines how many bits will be used in the protocol # e.g., mask 3 will mask the bits with bin(3) = 00000011 using # only the 2 Least Significant Bits. # N.B. cfg_num_codewords must be a power of 2 self.set('awgs_{}_dio_mask_value'.format(awg_nr), self.cfg_num_codewords()-1) if self.cfg_codeword_protocol() == 'identical': # In the identical protocol all bits are used to trigger # the same codewords on all AWG's # N.B. The shift is applied before the mask # The relevant bits can be selected by first shifting them # and then masking them. self.set('awgs_{}_dio_mask_shift'.format(awg_nr), 0) # In the mw protocol bits [0:7] -> CW0 and bits [(8+1):15] -> CW1 # N.B. DIO bit 8 (first of 2nd byte) not connected in AWG8! elif self.cfg_codeword_protocol() == 'microwave': if awg_nr in [0, 1]: self.set('awgs_{}_dio_mask_shift'.format(awg_nr), 0) elif awg_nr in [2, 3]: self.set('awgs_{}_dio_mask_shift'.format(awg_nr), 9) elif self.cfg_codeword_protocol() == 'flux': # bits[0:3] for awg0_ch0, bits[4:6] for awg0_ch1 etc. # self.set('awgs_{}_dio_mask_value'.format(awg_nr), 2**6-1) # self.set('awgs_{}_dio_mask_shift'.format(awg_nr), awg_nr*6) # FIXME: this is a protocol that does identical flux pulses # on each channel. self.set('awgs_{}_dio_mask_value'.format(awg_nr), 2**3-1) # self.set('awgs_{}_dio_mask_shift'.format(awg_nr), 3) self.set('awgs_{}_dio_mask_shift'.format(awg_nr), 0) #################################################### # Turn on device #################################################### time.sleep(.05) self._dev.daq.setInt('/' + self._dev.device + '/awgs/*/enable', 1) # Turn on all outputs self._dev.daq.setInt('/' + self._dev.device + '/sigouts/*/on', 1) # Disable all function generators self._dev.daq.setInt('/' + self._dev.device + '/sigouts/*/enables/*', 0) # when doing flux pulses, set everything to amp mode if self.cfg_codeword_protocol() == 'flux': for ch in range(8): self.set('sigouts_{}_direct'.format(ch), 0) self.set('sigouts_{}_range'.format(ch), 5) # Switch all outputs into direct mode when not using flux pulses else: for ch in range(8): self.set('sigouts_{}_direct'.format(ch), 1) self.set('sigouts_{}_range'.format(ch), .8) def _find_valid_delays(self, awg, expected_sequence, verbose=False): """ The function loops through the possible delay settings on the DIO interface and records and analyzes DIO data for each setting. It then determines whether a given delay setting results in valid DIO protocol data being recorded. In order for data to be correct, two conditions must be satisfied: First, no timing violations are allowed, and, second, the sequence of codewords detected on the interface must match the expected sequence. """ if verbose: print("INFO : Finding valid delays for AWG {}".format(awg)) vld_mask = 1 << self._dev.geti('awgs/{}/dio/valid/index'.format(awg)) vld_polarity = self._dev.geti('awgs/{}/dio/valid/polarity'.format(awg)) strb_mask = 1 << self._dev.geti('awgs/{}/dio/strobe/index'.format(awg)) strb_slope = self._dev.geti('awgs/{}/dio/strobe/slope'.format(awg)) cw_mask = self._dev.geti('awgs/{}/dio/mask/value'.format(awg)) cw_shift = self._dev.geti('awgs/{}/dio/mask/shift'.format(awg)) if verbose: print('INFO : vld_mask = 0x{:08x}'.format(vld_mask)) print('INFO : vld_polarity =', vld_polarity) print('INFO : strb_mask = 0x{:08x}'.format(strb_mask)) print('INFO : strb_slope =', strb_slope) print('INFO : cw_mask = 0x{:08x}'.format(cw_mask)) print('INFO : cw_shift =', cw_shift) valid_delays = [] for delay in range(0, 7): if verbose: print("INFO : Testing delay {} on AWG {}...".format(delay, awg)) self._set_dio_delay(awg, strb_mask, (cw_mask << cw_shift) | vld_mask, delay) data = self._dev.getv('awgs/' + str(awg) + '/dio/data') codewords, timing_violations = _analyze_dio_data( data, strb_mask, strb_slope, vld_mask, vld_polarity, cw_mask, cw_shift) timeout_cnt = 0 while (cw_mask != 0) and len(codewords) == 0: if timeout_cnt > 5: break if verbose: print("WARNING: No codewords detected, trying again!") data = self._dev.getv('awgs/' + str(awg) + '/dio/data') codewords, timing_violations = _analyze_dio_data( data, strb_mask, strb_slope, vld_mask, vld_polarity, cw_mask, cw_shift) timeout_cnt += 1 # Compare codewords against sequence if (cw_mask != 0) and len(codewords) == 0: if verbose: print( "WARNING: No codewords detected on AWG {} for delay {}".format(awg, delay)) continue # Can't do nothing with timing violations if timing_violations: if verbose: print("WARNING: Timing violation detected on AWG {} for delay {}!".format( awg, delay)) continue # Check against expected sequence valid_sequence = True for n, codeword in enumerate(codewords): if n == 0: if codeword not in expected_sequence: if verbose: print("WARNING: Codeword {} with value {} not in expected sequence {}!".format( n, codeword, expected_sequence)) if verbose: print( "INFO : Detected codeword sequence: {}".format(codewords)) valid_sequence = False break else: index = expected_sequence.index(codeword) else: last_index = index index = (index + 1) % len(expected_sequence) if codeword != expected_sequence[index]: if verbose: print("WARNING: Codeword {} with value {} not expected to follow codeword {} in expected sequence {}!".format( n, codeword, expected_sequence[last_index], expected_sequence)) if verbose: print( "INFO : Detected codeword sequence: {}".format(codewords)) valid_sequence = False break # If we get to this point the delay is valid if valid_sequence: valid_delays.append(delay) if verbose: print("INFO : Found valid delays of {}".format(list(valid_delays))) return set(valid_delays) def _set_dio_delay(self, awg, strb_mask, data_mask, delay): """ The function sets the DIO delay for a given FPGA. The valid delay range is 0 to 6. The delays are created by either delaying the data bits or the strobe bit. The data_mask input represents all bits that are part of the codeword or the valid bit. The strb_mask input represents the bit that define the strobe. """ if delay < 0: print('WARNING: Clamping delay to 0') if delay > 6: print('WARNING: Clamping delay to 6') delay = 6 strb_delay = 0 data_delay = 0 if delay > 3: strb_delay = delay-3 else: data_delay = 3-delay for i in range(32): self._dev.seti('awgs/{}/dio/delay/index'.format(awg), i) if strb_mask & (1 << i): self._dev.seti( 'awgs/{}/dio/delay/value'.format(awg), strb_delay) elif data_mask & (1 << i): self._dev.seti( 'awgs/{}/dio/delay/value'.format(awg), data_delay) else: self._dev.seti('awgs/{}/dio/delay/value'.format(awg), 0) def ensure_symmetric_strobe(self, verbose=False): done = False good_shots = 0 bad_shots = 0 strb_bits = [] for awg in range(0, 4): strb_bits.append(self._dev.geti( 'awgs/{}/dio/strobe/index'.format(awg))) strb_bits = list(set(strb_bits)) if verbose: print('INFO : Analyzing strobe bits {}'.format(strb_bits)) while not done: data = self._dev.getv('raw/dios/0/data') if _is_dio_strb_symmetric(data, strb_bits): if verbose: print('INFO : Found good shot') bad_shots = 0 good_shots += 1 if good_shots > 5: done = True else: if verbose: print('INFO : Strobe bit(s) are not sampled symmetrically') if verbose: print("INFO : Disabling AWG's") enables = 4*[0] for awg in range(0, 4): enables[awg] = self._dev.geti('awgs/{}/enable'.format(awg)) self._dev.seti('awgs/{}/enable'.format(awg), 0) if verbose: print("INFO : Switching to internal clock") self.system_clocks_referenceclock_source(0) time.sleep(5) if verbose: print("INFO : Switching to external clock") self.system_clocks_referenceclock_source(1) time.sleep(5) if verbose: print("INFO : Enabling AWG's") for awg in range(0, 4): self._dev.seti('awgs/{}/enable'.format(awg), enables[awg]) good_shots = 0 bad_shots += 1 if bad_shots > 5: done = True return (good_shots > 0) and (bad_shots == 0) def calibrate_dio_protocol(self, awgs_and_sequences, verbose=False): if verbose: print("INFO : Calibrating DIO delays") if not self.ensure_symmetric_strobe(verbose): if verbose: print("ERROR : Strobe is not symmetric!") return False else: if verbose: print("INFO : Strobe is symmetric") all_valid_delays = [] for awg, sequence in awgs_and_sequences: valid_delays = self._find_valid_delays(awg, sequence, verbose) if valid_delays: all_valid_delays.append(valid_delays) else: if verbose: print( "ERROR : Unable to find valid delays for AWG {}!".format(awg)) return False # Figure out which delays are valid combined_valid_delays = set.intersection(*all_valid_delays) max_valid_delay = max(combined_valid_delays) # Print information if verbose: print("INFO : Valid delays are {}".format(combined_valid_delays)) if verbose: print("INFO : Setting delay to {}".format(max_valid_delay)) # And configure the delays for awg, _ in awgs_and_sequences: vld_mask = 1 << self._dev.geti( 'awgs/{}/dio/valid/index'.format(awg)) strb_mask = 1 << self._dev.geti( 'awgs/{}/dio/strobe/index'.format(awg)) cw_mask = self._dev.geti('awgs/{}/dio/mask/value'.format(awg)) cw_shift = self._dev.geti('awgs/{}/dio/mask/shift'.format(awg)) if verbose: print("INFO : Setting delay of AWG {}".format(awg)) self._set_dio_delay( awg, strb_mask, (cw_mask << cw_shift) | vld_mask, max_valid_delay) return True ############################################################################## # ############################################################################## def _get_edges(value, last_value, mask): """ Given two integer values representing a current and a past value, and a bit mask, this function will return two integer values representing the bits with rising (re) and falling (fe) edges. """ changed = value ^ last_value re = changed & value & mask fe = changed & ~value & mask return re, fe def _is_dio_strb_symmetric(data, bits): count_ok = True for bit in bits: strobe_mask = 1 << bit count_low = False count_high = False strobe_low = 0 strobe_high = 0 last_strobe = None for n, d in enumerate(data): curr_strobe = (d & strobe_mask) != 0 if count_high: if curr_strobe: strobe_high += 1 else: if (strobe_low > 0) and (strobe_low != strobe_high): count_ok = False break if count_low: if not curr_strobe: strobe_low += 1 else: if (strobe_high > 0) and (strobe_low != strobe_high): count_ok = False break if (last_strobe != None): if (curr_strobe and not last_strobe): strobe_high = 0 count_high = True count_low = False elif (not curr_strobe and last_strobe): strobe_low = 0 count_low = True count_high = False last_strobe = curr_strobe if not count_ok: break return count_ok def _analyze_dio_data(data, strb_mask, strb_slope, vld_mask, vld_polarity, cw_mask, cw_shift): """ Analyzes a list of integer values that represent samples recorded on the DIO interface. The function needs information about the protocol used on the DIO interface. Based on this information the function will return two lists: the detected codewords and the positions where 'timing violations' are found. The codewords are sampled according to the protocol configuration. Timing violations occur when a codeword bit or the valid bit changes value at the same time as the strobe signal. """ timing_violations = [] codewords = [] last_d = None for n, d in enumerate(data): if n > 0: strb_re = False strb_fe = False if strb_slope == 0: strb_re = True strb_fe = True elif strb_slope == 1: strb_re, _ = _get_edges(d, last_d, strb_mask) elif strb_slope == 2: _, strb_fe = _get_edges(d, last_d, strb_mask) else: strb_re, strb_fe = _get_edges(d, last_d, strb_mask) vld_re = False vld_fe = False if vld_polarity != 0: vld_re, vld_fe = _get_edges(d, last_d, vld_mask) d_re = False d_fe = False if cw_mask != 0: d_re, d_fe = _get_edges(d, last_d, cw_mask << cw_shift) vld_active = ((vld_polarity & 1) and ((d & vld_mask) == 0)) or ( (vld_polarity & 2) and ((d & vld_mask) != 0)) codeword = (d >> cw_shift) & cw_mask # Check for timing violation on vld if (strb_re or strb_fe) and (vld_re or vld_fe): timing_violations.append(n) elif (strb_re or strb_fe) and (d_re or d_fe): timing_violations.append(n) # Get the codewords if (strb_re or strb_fe) and vld_active: codewords.append(codeword) last_d = d return codewords, timing_violations
41.98913
138
0.528911
79521fcbfb967e650cb7e2059d63cc45c8045a9e
1,202
py
Python
config.py
marcdjulien/govindex
18740206e54aecfb4193e910e5076ee504229779
[ "MIT" ]
null
null
null
config.py
marcdjulien/govindex
18740206e54aecfb4193e910e5076ee504229779
[ "MIT" ]
null
null
null
config.py
marcdjulien/govindex
18740206e54aecfb4193e910e5076ee504229779
[ "MIT" ]
null
null
null
# -*- encoding: utf-8 -*- """ Copyright (c) 2019 - present AppSeed.us """ import os from decouple import config class Config(object): basedir = os.path.abspath(os.path.dirname(__file__)) SECRET_KEY = config('SECRET_KEY', default='sdnfogui3wn') SQLALCHEMY_DATABASE_URI = config('SQLALCHEMY_DATABASE_URI', default='sqlite:///test-3.db') SQLALCHEMY_TRACK_MODIFICATIONS = False class ProductionConfig(Config): DEBUG = False # Security SESSION_COOKIE_HTTPONLY = True REMEMBER_COOKIE_HTTPONLY = True REMEMBER_COOKIE_DURATION = 3600 # PostgreSQL database SQLALCHEMY_DATABASE_URI = '{}://{}:{}@{}:{}/{}'.format( config('DB_ENGINE' , default='postgresql' ), config('DB_USERNAME' , default='appseed' ), config('DB_PASS' , default='pass' ), config('DB_HOST' , default='localhost' ), config('DB_PORT' , default=5432 ), config('DB_NAME' , default='appseed-flask' ) ) class DebugConfig(Config): DEBUG = True SQLALCHEMY_ECHO = True # Load all possible configurations config_dict = { 'Production': ProductionConfig, 'Debug' : DebugConfig }
28.619048
94
0.633943
79521fcd997a54511714792481bb583f27065d3a
4,103
py
Python
grr/server/grr_response_server/rdfvalues/hunts.py
billstackpole/grr
203a0a99990a2d4004aed84a5cd822cbda2b418c
[ "Apache-2.0" ]
1
2019-03-28T07:09:41.000Z
2019-03-28T07:09:41.000Z
grr/server/grr_response_server/rdfvalues/hunts.py
gingogo/grr
203a0a99990a2d4004aed84a5cd822cbda2b418c
[ "Apache-2.0" ]
null
null
null
grr/server/grr_response_server/rdfvalues/hunts.py
gingogo/grr
203a0a99990a2d4004aed84a5cd822cbda2b418c
[ "Apache-2.0" ]
1
2018-08-30T14:50:24.000Z
2018-08-30T14:50:24.000Z
#!/usr/bin/env python """RDFValue implementations for hunts.""" from grr_response_core import config from grr_response_core.lib import rdfvalue from grr_response_core.lib import registry from grr_response_core.lib.rdfvalues import client as rdf_client from grr_response_core.lib.rdfvalues import client_stats as rdf_client_stats from grr_response_core.lib.rdfvalues import stats as rdf_stats from grr_response_core.lib.rdfvalues import structs as rdf_structs from grr_response_proto import flows_pb2 from grr_response_proto import jobs_pb2 from grr_response_server import foreman_rules from grr_response_server.rdfvalues import flow_runner as rdf_flow_runner from grr_response_server.rdfvalues import objects as rdf_objects from grr_response_server.rdfvalues import output_plugin as rdf_output_plugin class HuntNotification(rdf_structs.RDFProtoStruct): protobuf = jobs_pb2.HuntNotification rdf_deps = [ rdf_client.ClientURN, rdfvalue.SessionID, ] class HuntContext(rdf_structs.RDFProtoStruct): protobuf = flows_pb2.HuntContext rdf_deps = [ rdf_client_stats.ClientResources, rdf_stats.ClientResourcesStats, rdfvalue.RDFDatetime, rdfvalue.SessionID, ] class FlowLikeObjectReference(rdf_structs.RDFProtoStruct): """A reference to a flow or a hunt.""" protobuf = flows_pb2.FlowLikeObjectReference rdf_deps = [ rdf_objects.FlowReference, rdf_objects.HuntReference, ] @classmethod def FromHuntId(cls, hunt_id): res = FlowLikeObjectReference() res.object_type = "HUNT_REFERENCE" res.hunt_reference = rdf_objects.HuntReference(hunt_id=hunt_id) return res @classmethod def FromFlowIdAndClientId(cls, flow_id, client_id): res = FlowLikeObjectReference() res.object_type = "FLOW_REFERENCE" res.flow_reference = rdf_objects.FlowReference( flow_id=flow_id, client_id=client_id) return res class HuntRunnerArgs(rdf_structs.RDFProtoStruct): """Hunt runner arguments definition.""" protobuf = flows_pb2.HuntRunnerArgs rdf_deps = [ rdfvalue.Duration, foreman_rules.ForemanClientRuleSet, rdf_output_plugin.OutputPluginDescriptor, rdfvalue.RDFURN, FlowLikeObjectReference, ] def __init__(self, initializer=None, **kwargs): super(HuntRunnerArgs, self).__init__(initializer=initializer, **kwargs) if initializer is None: if not self.HasField("crash_limit"): self.crash_limit = config.CONFIG["Hunt.default_crash_limit"] if not self.HasField("avg_results_per_client_limit"): self.avg_results_per_client_limit = config.CONFIG[ "Hunt.default_avg_results_per_client_limit"] if not self.HasField("avg_cpu_seconds_per_client_limit"): self.avg_cpu_seconds_per_client_limit = config.CONFIG[ "Hunt.default_avg_cpu_seconds_per_client_limit"] if not self.HasField("avg_network_bytes_per_client_limit"): self.avg_network_bytes_per_client_limit = config.CONFIG[ "Hunt.default_avg_network_bytes_per_client_limit"] def Validate(self): if self.HasField("client_rule_set"): self.client_rule_set.Validate() class HuntError(rdf_structs.RDFProtoStruct): """An RDFValue class representing a hunt error.""" protobuf = jobs_pb2.HuntError rdf_deps = [ rdf_client.ClientURN, ] class GenericHuntArgs(rdf_structs.RDFProtoStruct): """Arguments to the generic hunt.""" protobuf = flows_pb2.GenericHuntArgs rdf_deps = [ rdf_flow_runner.FlowRunnerArgs, rdf_output_plugin.OutputPluginDescriptor, ] def Validate(self): self.flow_runner_args.Validate() self.flow_args.Validate() def GetFlowArgsClass(self): if self.flow_runner_args.flow_name: flow_cls = registry.AFF4FlowRegistry.FlowClassByName( self.flow_runner_args.flow_name) # The required protobuf for this class is in args_type. return flow_cls.args_type class CreateGenericHuntFlowArgs(rdf_structs.RDFProtoStruct): protobuf = flows_pb2.CreateGenericHuntFlowArgs rdf_deps = [ GenericHuntArgs, HuntRunnerArgs, ]
31.083333
76
0.763344
79521fd588437a1051879e55297993fc552cd60a
7,143
py
Python
checkout/views.py
lucaslamounier/django-ecommerce
c988909f0e1eb7e8de533fde141c14947de116fe
[ "CC0-1.0" ]
null
null
null
checkout/views.py
lucaslamounier/django-ecommerce
c988909f0e1eb7e8de533fde141c14947de116fe
[ "CC0-1.0" ]
null
null
null
checkout/views.py
lucaslamounier/django-ecommerce
c988909f0e1eb7e8de533fde141c14947de116fe
[ "CC0-1.0" ]
null
null
null
# coding=utf-8 import logging import json from pagseguro import PagSeguro from paypal.standard.forms import PayPalPaymentsForm from paypal.standard.models import ST_PP_COMPLETED from paypal.standard.ipn.signals import valid_ipn_received from django.views.decorators.csrf import csrf_exempt from django.shortcuts import get_object_or_404, redirect from django.views.generic import ( RedirectView, TemplateView, ListView, DetailView, View ) from django.forms import modelformset_factory from django.contrib import messages from django.contrib.auth.mixins import LoginRequiredMixin from django.core.urlresolvers import reverse from django.conf import settings from django.http import HttpResponse from catalog.models import Product from .models import CartItem, Order # create logging logger = logging.getLogger('checkout.views') class CreateCartItemView(View): def get(self, request, *args, **kwargs): product = get_object_or_404(Product, slug=self.kwargs['slug']) # create message log logger.debug('Produto %s adicionado ao carrinho' % product) if self.request.session.session_key is None: self.request.session.save() cart_item, created = CartItem.objects.add_item( self.request.session.session_key, product ) if created: message = 'Produto adicionado com sucesso' else: message = 'Produto atualizado com sucesso' # if request is ajax, return json if request.is_ajax(): return HttpResponse( json.dumps({'message': message}), content_type='application/javascript' ) messages.success(request, message) return redirect('checkout:cart_item') class CartItemView(TemplateView): template_name = 'checkout/cart.html' def get_formset(self, clear=False): CartItemFormSet = modelformset_factory( CartItem, fields=('quantity',), can_delete=True, extra=0 ) session_key = self.request.session.session_key if session_key: if clear: formset = CartItemFormSet( queryset=CartItem.objects.filter(cart_key=session_key) ) else: formset = CartItemFormSet( queryset=CartItem.objects.filter(cart_key=session_key), data=self.request.POST or None ) else: formset = CartItemFormSet(queryset=CartItem.objects.none()) return formset def get_context_data(self, **kwargs): context = super(CartItemView, self).get_context_data(**kwargs) context['formset'] = self.get_formset() return context def post(self, request, *args, **kwargs): formset = self.get_formset() context = self.get_context_data(**kwargs) if formset.is_valid(): formset.save() messages.success(request, 'Carrinho atualizado com sucesso') context['formset'] = self.get_formset(clear=True) return self.render_to_response(context) class CheckoutView(LoginRequiredMixin, TemplateView): template_name = 'checkout/checkout.html' def get(self, request, *args, **kwargs): session_key = request.session.session_key if session_key and CartItem.objects.filter(cart_key=session_key).exists(): cart_items = CartItem.objects.filter(cart_key=session_key) order = Order.objects.create_order( user=request.user, cart_items=cart_items ) cart_items.delete() else: messages.info(request, 'Não há itens no carrinho de compras') return redirect('checkout:cart_item') response = super(CheckoutView, self).get(request, *args, **kwargs) response.context_data['order'] = order return response class OrderListView(LoginRequiredMixin, ListView): template_name = 'checkout/order_list.html' paginate_by = 10 def get_queryset(self): return Order.objects.filter(user=self.request.user).order_by('-pk') class OrderDetailView(LoginRequiredMixin, DetailView): template_name = 'checkout/order_detail.html' def get_queryset(self): return Order.objects.filter(user=self.request.user) class PagSeguroView(LoginRequiredMixin, RedirectView): def get_redirect_url(self, *args, **kwargs): order_pk = self.kwargs.get('pk') order = get_object_or_404( Order.objects.filter(user=self.request.user), pk=order_pk ) pg = order.pagseguro() pg.redirect_url = self.request.build_absolute_uri( reverse('checkout:order_detail', args=[order.pk]) ) pg.notification_url = self.request.build_absolute_uri( reverse('checkout:pagseguro_notification') ) response = pg.checkout() return response.payment_url class PaypalView(LoginRequiredMixin, TemplateView): template_name = 'checkout/paypal.html' def get_context_data(self, **kwargs): context = super(PaypalView, self).get_context_data(**kwargs) order_pk = self.kwargs.get('pk') order = get_object_or_404( Order.objects.filter(user=self.request.user), pk=order_pk ) paypal_dict = order.paypal() paypal_dict['return_url'] = self.request.build_absolute_uri( reverse('checkout:order_list') ) paypal_dict['cancel_return'] = self.request.build_absolute_uri( reverse('checkout:order_list') ) paypal_dict['notify_url'] = self.request.build_absolute_uri( reverse('paypal-ipn') ) context['form'] = PayPalPaymentsForm(initial=paypal_dict) return context @csrf_exempt def pagseguro_notification(request): notification_code = request.POST.get('notificationCode', None) if notification_code: pg = PagSeguro( email=settings.PAGSEGURO_EMAIL, token=settings.PAGSEGURO_TOKEN, config={'sandbox': settings.PAGSEGURO_SANDBOX} ) notification_data = pg.check_notification(notification_code) status = notification_data.status reference = notification_data.reference try: order = Order.objects.get(pk=reference) except Order.DoesNotExist: pass else: order.pagseguro_update_status(status) return HttpResponse('OK') def paypal_notification(sender, **kwargs): ipn_obj = sender if ipn_obj.payment_status == ST_PP_COMPLETED and \ ipn_obj.receiver_email == settings.PAYPAL_EMAIL: try: order = Order.objects.get(pk=ipn_obj.invoice) order.complete() except Order.DoesNotExist: pass valid_ipn_received.connect(paypal_notification) create_cartitem = CreateCartItemView.as_view() cart_item = CartItemView.as_view() checkout = CheckoutView.as_view() order_list = OrderListView.as_view() order_detail = OrderDetailView.as_view() pagseguro_view = PagSeguroView.as_view() paypal_view = PaypalView.as_view()
33.535211
82
0.667087
7952201b41df41d08ba357edeaf6269d29692f02
4,637
py
Python
demo/python/rhino_demo_file.py
hellow554/rhino
bbea49a0671841e4577902c4455904572b49612f
[ "Apache-2.0" ]
472
2018-10-29T16:51:52.000Z
2022-03-29T05:45:29.000Z
demo/python/rhino_demo_file.py
hellow554/rhino
bbea49a0671841e4577902c4455904572b49612f
[ "Apache-2.0" ]
89
2018-12-24T04:13:56.000Z
2022-03-25T17:18:07.000Z
demo/python/rhino_demo_file.py
hellow554/rhino
bbea49a0671841e4577902c4455904572b49612f
[ "Apache-2.0" ]
70
2018-11-03T02:39:11.000Z
2022-03-17T00:05:38.000Z
# # Copyright 2018-2021 Picovoice Inc. # # You may not use this file except in compliance with the license. A copy of the license is located in the "LICENSE" # file accompanying this source. # # Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on # an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the # specific language governing permissions and limitations under the License. # import argparse import struct import wave import pvrhino def read_file(file_name, sample_rate): wav_file = wave.open(file_name, mode="rb") channels = wav_file.getnchannels() num_frames = wav_file.getnframes() if wav_file.getframerate() != sample_rate: raise ValueError("Audio file should have a sample rate of %d. got %d" % (sample_rate, wav_file.getframerate())) samples = wav_file.readframes(num_frames) wav_file.close() frames = struct.unpack('h' * num_frames * channels, samples) if channels == 2: print("Picovoice processes single-channel audio but stereo file is provided. Processing left channel only.") return frames[::channels] def main(): parser = argparse.ArgumentParser() parser.add_argument('--input_audio_path', help='Absolute path to input audio file.', required=True) parser.add_argument('--access_key', help='AccessKey obtained from Picovoice Console (https://picovoice.ai/console/)', required=True) parser.add_argument('--context_path', help="Absolute path to context file.", required=True) parser.add_argument('--library_path', help='Absolute path to dynamic library.', default=pvrhino.LIBRARY_PATH) parser.add_argument( '--model_path', help='Absolute path to the file containing model parameters.', default=pvrhino.MODEL_PATH) parser.add_argument( '--sensitivity', help="Inference sensitivity. It should be a number within [0, 1]. A higher sensitivity value results in " + "fewer misses at the cost of (potentially) increasing the erroneous inference rate.", type=float, default=0.5) parser.add_argument( '--require_endpoint', help="If set to `False`, Rhino does not require an endpoint (chunk of silence) before finishing inference.", default='True', choices=['True', 'False']) args = parser.parse_args() if args.require_endpoint.lower() == 'false': require_endpoint = False else: require_endpoint = True try: rhino = pvrhino.create( access_key=args.access_key, library_path=args.library_path, model_path=args.model_path, context_path=args.context_path, sensitivity=args.sensitivity, require_endpoint=require_endpoint) except pvrhino.RhinoInvalidArgumentError as e: print(f"One or more arguments provided to Rhino is invalid: {args}") print(f"If all other arguments seem valid, ensure that '{args.access_key}' is a valid AccessKey") raise e except pvrhino.RhinoActivationError as e: print("AccessKey activation error") raise e except pvrhino.RhinoActivationLimitError as e: print(f"AccessKey '{args.access_key}' has reached it's temporary device limit") raise e except pvrhino.RhinoActivationRefusedError as e: print(f"AccessKey '{args.access_key}' refused") raise e except pvrhino.RhinoActivationThrottledError as e: print(f"AccessKey '{args.access_key}' has been throttled") raise e except pvrhino.RhinoError as e: print(f"Failed to initialize Rhino") raise e audio = read_file(args.input_audio_path, rhino.sample_rate) num_frames = len(audio) // rhino.frame_length for i in range(num_frames): frame = audio[i * rhino.frame_length:(i + 1) * rhino.frame_length] is_finalized = rhino.process(frame) if is_finalized: inference = rhino.get_inference() if inference.is_understood: print('{') print(" intent : '%s'" % inference.intent) print(' slots : {') for slot, value in inference.slots.items(): print(" %s : '%s'" % (slot, value)) print(' }') print('}') else: print("Didn't understand the command.") break rhino.delete() if __name__ == '__main__': main()
35.669231
119
0.64848
795221a12826c986c883c95a2eec38675fca1169
948
py
Python
iaso/utils/models/soft_deletable.py
ekhalilbsq/iaso
e6400c52aeb4f67ce1ca83b03efa3cb11ef235ee
[ "MIT" ]
29
2020-12-26T07:22:19.000Z
2022-03-07T13:40:09.000Z
iaso/utils/models/soft_deletable.py
ekhalilbsq/iaso
e6400c52aeb4f67ce1ca83b03efa3cb11ef235ee
[ "MIT" ]
150
2020-11-09T15:03:27.000Z
2022-03-07T15:36:07.000Z
iaso/utils/models/soft_deletable.py
ekhalilbsq/iaso
e6400c52aeb4f67ce1ca83b03efa3cb11ef235ee
[ "MIT" ]
4
2020-11-09T10:38:13.000Z
2021-10-04T09:42:47.000Z
from django.db import models from django.db.models.functions import Now class DefaultSoftDeletableManager(models.Manager): def get_queryset(self): return super().get_queryset().filter(deleted_at=None) class IncludeDeletedSoftDeletableManager(models.Manager): def get_queryset(self): return super().get_queryset() class OnlyDeletedSoftDeletableManager(models.Manager): def get_queryset(self): return super().get_queryset().filter(deleted_at__isnull=False) class SoftDeletableModel(models.Model): class Meta: abstract = True deleted_at = models.DateTimeField(default=None, blank=True, null=True) def delete_hard(self, using=None, keep_parents=False): return super().delete(using, keep_parents) def delete(self, using=None, keep_parents=False): self.deleted_at = Now() self.save() def restore(self): self.deleted_at = None self.save()
26.333333
74
0.712025
7952222427b78b6a8fc84cf31d52ce6d433b0f22
288
py
Python
PacoteDownload/Mundo 3 do curso Parte 2/numeros.py
Gabriel-ER/CursoEmVideodoYoutube-Python-
0733ce05f28f8f87603270ef5ab7cb51c8f2c5ac
[ "MIT" ]
null
null
null
PacoteDownload/Mundo 3 do curso Parte 2/numeros.py
Gabriel-ER/CursoEmVideodoYoutube-Python-
0733ce05f28f8f87603270ef5ab7cb51c8f2c5ac
[ "MIT" ]
null
null
null
PacoteDownload/Mundo 3 do curso Parte 2/numeros.py
Gabriel-ER/CursoEmVideodoYoutube-Python-
0733ce05f28f8f87603270ef5ab7cb51c8f2c5ac
[ "MIT" ]
null
null
null
import uteis #O meu módulo uteis está na minha pasta ''' Todo arquivo python é considerado um módulo Toda pasta é considerada um pacote Sintaxe especiais para pacotes ''' num = int(input('Número: ')) print(f'O fatorial de {num} é {uteis.fatorial(num)} e o dobro é {uteis.dobro(num)}.')
26.181818
85
0.729167
79522315f193b903ef3bbd29728cc41d8fe3599d
16,936
py
Python
cloningR.py
yketa/active_work
99107a0d4935296b673f67469c1e2bd258954b9b
[ "MIT" ]
1
2022-01-19T14:24:46.000Z
2022-01-19T14:24:46.000Z
cloningR.py
yketa/active_work
99107a0d4935296b673f67469c1e2bd258954b9b
[ "MIT" ]
null
null
null
cloningR.py
yketa/active_work
99107a0d4935296b673f67469c1e2bd258954b9b
[ "MIT" ]
1
2021-02-09T16:36:15.000Z
2021-02-09T16:36:15.000Z
""" Module cloningR launches cloning simulations of rotors and provides classes to read output data files from these simulations. Bias is chosen with environment variable `CLONING_BIAS': (0) order parameter, (1) squared order parameter. (see https://yketa.github.io/DAMTP_MSC_2019_Wiki/#Brownian%20rotors%20cloning%20algorithm) """ import numpy as np from numpy import random from os import path from shutil import rmtree as rmr from shutil import move import sys from subprocess import Popen, DEVNULL, PIPE import pickle from active_work.read import _Read from active_work.init import get_env, get_env_list, mkdir from active_work.exponents import float_to_letters from active_work.maths import mean_sterr # FUNCTIONS AND CLASSES class CloningOutput: """ Read and analyse aggregated data from cloning simulations launched with active_work.cloningR. """ def __init__(self, filename): """ Get data. Parameters ---------- filename : string Path to data file. """ self.filename = filename with open(self.filename, 'rb') as input: (self.exec_path, # executable path (can help discriminate controlled dynamics method) self.tmax, # dimensionless time simulated self.nc, # number of clones self.nRuns, # number of different runs self.initSim, # number of initial elementary number of iterations to "randomise" self.bias, # cloning bias self.sValues, # biasing parameters self.seed, # master random seed of master random seeds self.seeds, # master random seeds self.N, # number of rotors in the system self.Dr, # rotational diffusivity self._tau, # elementary number of steps self.dt, # time step self.tSCGF, # array of different measurements of the time scaled CGF per value of the biasing parameter self.orderParameter, # array of different measurements of the order parameter per value of the biasing parameter self.orderParameterSq, # array of different measurements of the squared order parameter per value of the biasing parameter self.walltime # array of different running time per value of the biasing parameter ) = pickle.load(input) self.order = [self.orderParameter, self.orderParameterSq][self.bias] # order parameter which bias the trajectories self.SCGF = self.tSCGF/self.N # scaled cumulant generating function self.tau = self._tau*self.dt # dimensionless elementary time self.tinit = self.tau*self.initSim # dimensionless initial simulation time self.I = np.empty((self.sValues.size, self.nRuns, 2)) # rate function for i in range(self.sValues.size): sValue = self.sValues[i] for j, SCGF, order in zip( range(self.nRuns), self.SCGF[i], self.order[i]): self.I[i, j, 0] = order self.I[i, j, 1] = -sValue*order - SCGF def meanSterr(self, remove=False, max=None): """ Returns array of mean and standard error of measured data. Parameters ---------- remove : bool Remove inf and -inf as well as nan. (default: False) NOTE: A warning will be issued if remove == False and such objects are encountered. max : float or None Remove data which is strictly above max in absolute value. (default: None) NOTE: max != None will trigger remove = True. Returns ------- SCGF : (self.sValues.size, 3) float Numpy array Scaled cumulant generating function. orderParameter : (self.sValues.size, 3) float Numpy array. Order parameter. orderParameterSq : (self.sValues.size, 3) float Numpy array. Squared order parameter. NOTE: (0) Biasing parameter. (1) Mean. (2) Standard error. I : (self.sValues.size, 4) float Numpy array Rate function. NOTE: (0) (Squared) order parameter. (1) Standard error on (squared) order parameter. (2) Rate function. (3) Standard error on rate function. """ SCGF = np.empty((self.sValues.size, 3)) orderParameter = np.empty((self.sValues.size, 3)) orderParameterSq = np.empty((self.sValues.size, 3)) I = np.empty((self.sValues.size, 4)) for i in range(self.sValues.size): SCGF[i] = [ self.sValues[i], *mean_sterr(self.SCGF[i], remove=remove, max=max)] orderParameter[i] = [ self.sValues[i], *mean_sterr(self.orderParameter[i], remove=remove, max=max)] orderParameterSq[i] = [ self.sValues[i], *mean_sterr(self.orderParameterSq[i], remove=remove, max=max)] I[i] = [ *mean_sterr(self.I[i, :, 0], remove=remove, max=max), *mean_sterr(self.I[i, :, 1], remove=remove, max=max)] return SCGF, orderParameter, orderParameterSq, I class _CloningOutput(_Read): """ Read data from a single cloning simulation. """ def __init__(self, filename): """ Get data. Parameters ---------- filename : string Path to data file. """ # FILE super().__init__(filename) # HEADER INFORMATION self.tmax = self._read('d') # dimensionless time simulated self.nc = self._read('i') # number of clones self.sValue = self._read('d') # biasing parameter self.seed = self._read('i') # master random seed self.nRuns = self._read('i') # number of different runs self.cloneMethod = self._read('i') # cloning method self.initSim = self._read('i') # number of initial elementary number of iterations to "randomise" the systems self.N = self._read('i') # number of rotors in the system self.Dr = self._read('d') # rotational diffusivity self.tau = self._read('i') # elementary number of steps self.dt = self._read('d') # time step self.bias = self._read('i') # cloning bias # FILE PARTS LENGTHS self.headerLength = self.file.tell() # length of header in bytes self.runLength = 4*self._bpe('d') # length the data of a run takes # FILE CORRUPTION CHECK if self.fileSize != self.headerLength + self.nRuns*self.runLength: raise ValueError("Invalid data file size.") # MEASUREMENTS self.tSCGF = np.empty((self.nRuns,)) # time scaled cumulant generating function self.orderParameter = np.empty((self.nRuns,)) # order parameter self.orderParameterSq = np.empty((self.nRuns,)) # squared order parameter self.walltime = np.empty((self.nRuns,)) # time taken for each run for i in range(self.nRuns): self.tSCGF[i] = self._read('d') self.orderParameter[i] = self._read('d') self.orderParameterSq[i] = self._read('d') self.walltime[i] = self._read('d') def filename(N, Dr, nc, bias, launch): """ Name of simulation output directory. Parameters ---------- N : int Number of rotors in the system. Dr : float Rotational diffusivity. nc : int Number of clones. bias : int Cloning bias. launch : int Launch identifier. Returns ------- name : str File name. """ return 'N%s_R%s_NC%s_B%s_E%s' % tuple(map(float_to_letters, (N, Dr, nc, bias, launch))) # DEFAULT PARAMETERS _tmax = 1 # default dimensionless time to simulate _nc = 10 # default number of clones _seed = random.randint(1e7) # default master random seed _nRuns = 1 # default number of different runs _initSim = 1 # default number of initial elementary number of iterations to "randomise" the systems _bias = 0 # default cloning bias _sMin = -0.1 # default minimum value of the biasing parameter _sMax = 0.1 # default maximum value of the biasing parameter _sNum = 10 # default number of values of the biasing parameter _threads = -1 # [openMP] default number of threads _N = 100 # default number of rotors in the system _Dr = 1./2. # default rotational diffusivity _tau = 100 # default elementary number of steps _dt = 0.001 # default time step _launch = 0 # default launch identifier _exec_dir = path.join(path.dirname(path.realpath(__file__)), 'build') # default executable directory _exec_name = { # default executable name 0: ('cloningR_B0', 'cloningR_B0'), # cloning bias `0' without and with control 1: ('cloningR_B1', 'cloningR_B1_C')} # cloning bias `1' without and with control _slurm_path = path.join(path.dirname(path.realpath(__file__)), 'slurm.sh') # Slurm submitting script _out_dir = _exec_dir # default simulation output directory # SCRIPT if __name__ == '__main__': # VARIABLE DEFINITIONS # CLONING PARAMETERS tmax = get_env('TMAX', default=_tmax, vartype=float) # dimensionless time to simulate nc = get_env('NC', default=_nc, vartype=int) # number of clones nRuns = get_env('NRUNS', default=_nRuns, vartype=int) # number of different runs initSim = get_env('INITSIM', default=_initSim, vartype=int) # number of initial elementary number of iterations to "randomise" the systems bias = get_env('CLONING_BIAS', default=_bias, vartype=int) # cloning bias # BIASING PARAMETERS sMin = get_env('SMIN', default=_sMin, vartype=float) # minimum value of the biasing parameter sMax = get_env('SMAX', default=_sMax, vartype=float) # maximum value of the biasing parameter sNum = get_env('SNUM', default=_sNum, vartype=int) # number of values of the biasing parameter sValues = np.linspace(sMin, sMax, sNum, endpoint=True) # array of values of the biasing parameter # RANDOM SEEDS seed = get_env('SEED', default=_seed, vartype=int) # master random seed of master random seeds random.seed(seed) # set seed seeds = random.randint(1e7, size=(sNum,)) # master random seeds # OPENMP PARAMETERS threads = get_env('THREADS', default=_threads, vartype=int) # number of threads # SLURM PARAMETERS slurm = get_env('SLURM', default=False, vartype=bool) # use Slurm job scheduler (see active_work/slurm.sh) slurm_partition = get_env('SLURM_PARTITION', vartype=str) # partition for the ressource allocation slurm_ntasks = get_env('SLURM_NTASKS', vartype=int) # number of MPI ranks running per node slurm_time = get_env('SLURM_TIME', vartype=str) # required time slurm_chain = get_env_list('SLURM_CHAIN', vartype=int) # execute after these jobs ID have completed (order has to be the same as sValues) # PHYSICAL PARAMETERS N = get_env('N', default=_N, vartype=int) # number of rotors in the system Dr = get_env('DR', default=_Dr, vartype=float) # rotational diffusivity # SIMULATION PARAMETERS tau = get_env('TAU', default=_tau, vartype=int) # elementary number of steps dt = get_env('DT', default=_dt, vartype=float) # time step # EXECUTABLE PARAMETERS exec_dir = get_env('EXEC_DIR', default=_exec_dir, vartype=str) # executable directory exec_name = get_env('EXEC_NAME', # executable name default=_exec_name[bias][ get_env('CONTROLLED_DYNAMICS', default=False, vartype=bool)], vartype=str) exec_path = path.join(exec_dir, exec_name) # executable path # OUTPUT FILES PARAMETERS launch = get_env('LAUNCH', default=_launch, vartype=float) # launch identifier out_dir = get_env('OUT_DIR', default=_out_dir, vartype=str) # output directory sim_name = filename(N, Dr, nc, bias, launch) # simulation output name sim_dir = path.join(out_dir, sim_name) # simulation output directory name mkdir(sim_dir, replace=True) tmp_dir = path.join(sim_dir, 'tmp') # temporary files directory mkdir(tmp_dir, replace=True) tmp_template = '%010d.cloning.out' # template of temporary files out_file = path.join(sim_dir, sim_name + '.cloR') # simulation output file name # LAUNCH env = lambda i: { # environment variables for cloning executables as function of sValues index 'TMAX': str(tmax), 'NC': str(nc), 'SVALUE': str(sValues[i]), 'SEED': str(seeds[i]), 'NRUNS': str(nRuns), 'INITSIM': str(initSim), 'THREADS': str(threads), 'N': str(N), 'DR': str(Dr), 'TAU': str(tau), 'DT': str(dt), 'FILE': path.join(tmp_dir, tmp_template % i)} if slurm: # using Slurm job scheduler slurm_launch = ['bash', _slurm_path, '-w'] # commands to submit Slurm job if slurm_partition != None: slurm_launch += ['-p', slurm_partition] if slurm_ntasks != None: slurm_launch += ['-r', str(slurm_ntasks)] if slurm_time != None: slurm_launch += ['-t', slurm_time] # LAUNCH procs, jobsID = [], [] for i in range(sNum): procs += [ Popen( ['%s \"{ %s %s; }\"' % (str(' ').join(slurm_launch # Slurm submitting script + ['-j', '\'' + exec_path.split('/')[-1] + ' %04i %s\'' % (i, env(i)['SVALUE'])] + ([] if slurm_chain == [] else ['-c', str(slurm_chain[i])])), str(' ').join(['%s=%s' % (key, env(i)[key]) # environment variables for key in env(i)]), exec_path)], # cloning executable stdout=PIPE, shell=True)] getJobID = Popen( # get submitted job ID ['head', '-n1'], stdin=procs[-1].stdout, stdout=PIPE) getJobID.wait() jobID = getJobID.communicate()[0].decode().split() if jobID[:-1] == ['Submitted', 'batch', 'job']: # job has been succesfully submitted to Slurm jobsID += [jobID[-1]] else: # failed to submit job raise ValueError("Job ID not returned.") sys.stdout.write(':'.join(jobsID) + '\n') # print jobs ID to stdout with syntax compatible with active_work.init.get_env_list sys.stdout.flush() else: # not using Slurm job scheduler # LAUNCH procs = [ Popen(['{ %s; }' % exec_path], stdout=DEVNULL, shell=True, env=env(i)) for i in range(sNum)] for proc in procs: proc.wait() # wait for them to finish # CLONING OUTPUT FILE # LOAD TEMPORARY FILES tmp_out = [] for i in range(sNum): tmp_out += [_CloningOutput( path.join(tmp_dir, tmp_template % i))] # ARRAYS OF DATA tSCGF = np.array( [tmp_out[i].tSCGF for i in range(sNum)]) orderParameter = np.array( [tmp_out[i].orderParameter for i in range(sNum)]) orderParameterSq = np.array( [tmp_out[i].orderParameterSq for i in range(sNum)]) walltime = np.array( [tmp_out[i].walltime for i in range(sNum)]) # OUT with open(out_file, 'wb') as output: pickle.dump([ exec_path, tmax, nc, nRuns, initSim, bias, sValues, seed, seeds, N, Dr, tau, dt, tSCGF, orderParameter, orderParameterSq, walltime], output) # CLEAN if get_env('CLEAN', default=True, vartype=bool): move(out_file, path.join(out_dir, sim_name + '.cloR')) # move output file to output directory rmr(sim_dir, ignore_errors=True) # delete simulation directory
42.34
146
0.57676
79522389fec074014b75e90887d3a346720ca616
8,639
py
Python
open-hackathon-server/src/hackathon/hack/azure_cert_manager.py
pcwl/open-hackathon
cbd0afbbf0b4047af17086a0d9c0a9c031bd3595
[ "MIT" ]
null
null
null
open-hackathon-server/src/hackathon/hack/azure_cert_manager.py
pcwl/open-hackathon
cbd0afbbf0b4047af17086a0d9c0a9c031bd3595
[ "MIT" ]
null
null
null
open-hackathon-server/src/hackathon/hack/azure_cert_manager.py
pcwl/open-hackathon
cbd0afbbf0b4047af17086a0d9c0a9c031bd3595
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- """ This file is covered by the LICENSING file in the root of this project. """ import sys sys.path.append('..') import os from os.path import dirname, realpath, abspath, isfile import commands from hackathon.hazure.cloud_service_adapter import CloudServiceAdapter from hackathon.hmongo.models import Hackathon, AzureKey, Experiment from hackathon import RequiredFeature, Component, Context, internal_server_error from hackathon.hackathon_response import ok, bad_request from hackathon.constants import FILE_TYPE __all__ = ["AzureCertManager"] class AzureCertManager(Component): """Manage azure/mooncake certificates for the hackathon Note that certificate is actually certificate pair: a cer file and a pem file. The cer file is for user to download from our site and then upload to the azure/mooncake account. The pem file is for azure python SDK. Everytime request from OHP to azure should include the pem cert. cer file will be saved in different places according to the implementation of storage. But pem file will be saved """ storage = RequiredFeature("storage") def create_certificate(self, subscription_id, management_host, hackathon): """Create certificate for specific subscription and hackathon 1. check certificate dir 2. generate pem file 3. generate cert file 4. add azure key to db 5. add hackathon azure key to db :param subscription_id: :param management_host: :param hackathon: :return: """ base_url = '%s/%s' % (self.CERT_BASE, subscription_id) pem_url = base_url + '.pem' cert_url = base_url + '.cer' # avoid duplicate pem generation if not os.path.isfile(pem_url): pem_command = 'openssl req -x509 -nodes -days 365 -newkey rsa:2048 -keyout %s -out %s -batch' % \ (pem_url, pem_url) commands.getstatusoutput(pem_command) else: self.log.debug('%s exists' % pem_url) # avoid duplicate cert generation if not os.path.isfile(cert_url): cert_command = 'openssl x509 -inform pem -in %s -outform der -out %s' % (pem_url, cert_url) commands.getstatusoutput(cert_command) else: self.log.debug('%s exists' % cert_url) azure_key = AzureKey.objects(subscription_id=subscription_id, management_host=management_host).first() if azure_key is None: azure_key = AzureKey( cert_url=base_url + '.cer', pem_url=base_url + '.pem', subscription_id=subscription_id, management_host=management_host, verified=False ) azure_key.save() hackathon.azure_keys.append(azure_key) hackathon.save() else: self.log.debug('azure key exists') if not (azure_key in hackathon.azure_keys): hackathon.azure_keys.append(azure_key) hackathon.save() else: self.log.debug('hackathon azure key exists') # store cer file cer_context = Context( hackathon_name=hackathon.name, file_name=subscription_id + '.cer', file_type=FILE_TYPE.AZURE_CERT, content=file(cert_url) ) self.log.debug("saving cerf file [%s] to azure" % cer_context.file_name) cer_context = self.storage.save(cer_context) azure_key.cert_url = cer_context.url # store pem file # encrypt certification file before upload to storage encrypted_pem_url = self.__encrypt_content(pem_url) pem_contex = Context( hackathon_name=hackathon.name, file_name=subscription_id + '.pem', file_type=FILE_TYPE.AZURE_CERT, content=file(encrypted_pem_url) ) self.log.debug("saving pem file [%s] to azure" % pem_contex.file_name) pem_contex = self.storage.save(pem_contex) os.remove(encrypted_pem_url) azure_key.pem_url = pem_contex.url azure_key.save() return azure_key.dic() def get_certificates_by_expr(self, expr_id): """Get certificates by experiment id """ # expr = self.db.get_object(Experiment, expr_id) expr = Experiment.objects(id=expr_id) # hak = self.db.find_all_objects_by(HackathonAzureKey, hackathon_id=expr.hackathon_id) hak = Hackathon.objects(id=expr.hackathon_id).first().azure_keys[0] if not hak: raise Exception("no azure key configured") return map(lambda key: self.db.get_object(AzureKey, key.azure_key_id), hak) def get_certificates(self, hackathon): """Get certificates by hackathon :type hackathon: Hackathon :param hackathon: instance of hackathon to search certificates :rtype list :return a list of AzureKey """ hackathon_azure_keys = [a.dic() for a in hackathon.azure_keys] if len(hackathon_azure_keys) == 0: # if no certificates added before, return 404 return [] return hackathon_azure_keys def delete_certificate(self, certificate_id, hackathon): """Delete certificate by azureKey.id and hackathon Delete the hackathon-azureKey relationship first. If the auzreKey is not needed any more, delete the azureKey too :type certificate_id: int :param certificate_id: id of AzureKey :type hackathon: Hackathon :param hackathon: instance of Hackathon """ # delete all hackathon-azureKey relationships first azure_key = AzureKey.objects(id=certificate_id).first() # if no relations left, delete the azureKey itself if azure_key in hackathon.azure_keys: try: if isfile(azure_key.cert_url): os.remove(azure_key.cert_url) else: self.storage.delete(azure_key.cert_url) if isfile(azure_key.pem_url): os.remove(azure_key.pem_url) else: self.storage.delete(azure_key.pem_url) except Exception as e: self.log.error(e) hackathon.azure_keys.remove(azure_key) hackathon.save() return ok(True) def check_sub_id(self, subscription_id): azure_key = AzureKey.objects(subscription_id=subscription_id).first() if self.util.is_local(): if azure_key is not None: azure_key.verified = True azure_key.save() return ok("success") if azure_key is None: return internal_server_error("No available azure key on the server side.") sms = CloudServiceAdapter(azure_key.subscription_id, azure_key.get_local_pem_url(), host=azure_key.management_host) if sms.ping(): azure_key.verified = True azure_key.save() else: return bad_request("Subscription id is not valid, check whether subscription id is valid and upload the right cer file to azure") return ok("success") def __init__(self): self.CERT_BASE = self.util.get_config('azure.cert_base') self.__ensure_certificates_dir() def __ensure_certificates_dir(self): """Ensure that the directory to store azure certificate exists""" if not self.CERT_BASE: self.CERT_BASE = abspath("%s/../certificates" % dirname(realpath(__file__))) if not os.path.exists(self.CERT_BASE): os.makedirs(self.CERT_BASE) def __encrypt_content(self, pem_url): encrypted_pem_url = pem_url + ".encrypted" cryptor = RequiredFeature("cryptor") cryptor.encrypt(pem_url, encrypted_pem_url) return encrypted_pem_url def get_local_pem_url(self, pem_url): local_pem_url = self.CERT_BASE + "/" + pem_url.split("/")[-1] if not isfile(local_pem_url): self.log.debug("Recover local %s.pem file from azure storage %s" % (local_pem_url, pem_url)) cryptor = RequiredFeature("cryptor") cryptor.recover_local_file(pem_url, local_pem_url) return local_pem_url # recover a pem file from azure def get_local_pem_url(azureKey): azure_cert_manager = RequiredFeature("azure_cert_manager") return azure_cert_manager.get_local_pem_url(azureKey.pem_url) AzureKey.get_local_pem_url = get_local_pem_url
35.405738
141
0.639079
795223919443326b228d8bfb883162b8a1c06e84
23,553
py
Python
python/ray/tune/syncer.py
andenrx/ray
0ad4113e22aa4ec40f87d4a16e474a452f9c8af7
[ "Apache-2.0" ]
null
null
null
python/ray/tune/syncer.py
andenrx/ray
0ad4113e22aa4ec40f87d4a16e474a452f9c8af7
[ "Apache-2.0" ]
null
null
null
python/ray/tune/syncer.py
andenrx/ray
0ad4113e22aa4ec40f87d4a16e474a452f9c8af7
[ "Apache-2.0" ]
null
null
null
from typing import Any, Callable, Dict, List, TYPE_CHECKING, Type, Union, Optional import distutils import logging import os import time from dataclasses import dataclass import warnings from inspect import isclass from shlex import quote import ray import yaml from ray.tune import TuneError from ray.tune.callback import Callback from ray.tune.checkpoint_manager import _TuneCheckpoint from ray.tune.result import NODE_IP from ray.util import get_node_ip_address from ray.util.debug import log_once from ray.tune.cluster_info import get_ssh_key, get_ssh_user from ray.tune.sync_client import ( CommandBasedClient, get_sync_client, get_cloud_sync_client, NOOP, SyncClient, ) from ray.util.annotations import PublicAPI if TYPE_CHECKING: from ray.tune.trial import Trial logger = logging.getLogger(__name__) # Syncing period for syncing checkpoints between nodes or to cloud. SYNC_PERIOD = 300 CLOUD_CHECKPOINTING_URL = ( "https://docs.ray.io/en/master/tune/user-guide.html#using-cloud-storage" ) _log_sync_warned = False _syncers = {} def wait_for_sync(): for syncer in _syncers.values(): syncer.wait() def set_sync_periods(sync_config: "SyncConfig"): """Sets sync period from config.""" global SYNC_PERIOD SYNC_PERIOD = int(sync_config.sync_period) def validate_sync_config(sync_config: "SyncConfig"): if sync_config.node_sync_period >= 0 or sync_config.cloud_sync_period >= 0: # Until fully deprecated, try to consolidate if sync_config.node_sync_period >= 0 and sync_config.cloud_sync_period >= 0: sync_period = min( sync_config.node_sync_period, sync_config.cloud_sync_period ) else: sync_period = max( sync_config.node_sync_period, sync_config.cloud_sync_period ) sync_config.sync_period = sync_period sync_config.node_sync_period = -1 sync_config.cloud_sync_period = -1 warnings.warn( "The `node_sync_period` and " "`cloud_sync_period` properties of `tune.SyncConfig` are " "deprecated. Pass the `sync_period` property instead. " "\nFor now, the lower of the two values (if provided) will " f"be used as the sync_period. This value is: {sync_period}", DeprecationWarning, ) if sync_config.sync_to_cloud or sync_config.sync_to_driver: if bool(sync_config.upload_dir): syncer = sync_config.sync_to_cloud help = "set" else: syncer = sync_config.sync_to_driver help = "not set" sync_config.syncer = syncer sync_config.sync_to_cloud = None sync_config.sync_to_driver = None warnings.warn( "The `sync_to_cloud` and `sync_to_driver` properties of " "`tune.SyncConfig` are deprecated. Pass the `syncer` property " "instead. Presence of an `upload_dir` decides if checkpoints " "are synced to cloud or not. Syncing to driver is " "automatically disabled if an `upload_dir` is given." f"\nFor now, as the upload dir is {help}, the respective " f"syncer is used. This value is: {syncer}", DeprecationWarning, ) def log_sync_template(options: str = ""): """Template enabling syncs between driver and worker when possible. Requires ray cluster to be started with the autoscaler. Also requires rsync to be installed. Args: options: Additional rsync options. Returns: Sync template with source and target parameters. None if rsync unavailable. """ if not distutils.spawn.find_executable("rsync"): if log_once("tune:rsync"): logger.error("Log sync requires rsync to be installed.") return None global _log_sync_warned ssh_key = get_ssh_key() if ssh_key is None: if not _log_sync_warned: logger.debug("Log sync requires cluster to be setup with `ray up`.") _log_sync_warned = True return None rsh = "ssh -i {ssh_key} -o ConnectTimeout=120s -o StrictHostKeyChecking=no" rsh = rsh.format(ssh_key=quote(ssh_key)) options += " --exclude='checkpoint_tmp*'" template = "rsync {options} -savz -e {rsh} {{source}} {{target}}" return template.format(options=options, rsh=quote(rsh)) @PublicAPI @dataclass class SyncConfig: """Configuration object for syncing. If an ``upload_dir`` is specified, both experiment and trial checkpoints will be stored on remote (cloud) storage. Synchronization then only happens via this remote storage. Args: upload_dir: Optional URI to sync training results and checkpoints to (e.g. ``s3://bucket``, ``gs://bucket`` or ``hdfs://path``). Specifying this will enable cloud-based checkpointing. syncer: Function for syncing the local_dir to and from remote storage. If string, then it must be a string template that includes ``{source}`` and ``{target}`` for the syncer to run. If not provided, it defaults to rsync for non cloud-based storage, and to standard S3, gsutil or HDFS sync commands for cloud-based storage. If set to ``None``, no syncing will take place. Defaults to ``"auto"`` (auto detect). sync_on_checkpoint: Force sync-down of trial checkpoint to driver (only non cloud-storage). If set to False, checkpoint syncing from worker to driver is asynchronous and best-effort. This does not affect persistent storage syncing. Defaults to True. sync_period: Syncing period for syncing between nodes. """ upload_dir: Optional[str] = None syncer: Union[None, str] = "auto" sync_on_checkpoint: bool = True sync_period: int = 300 # Deprecated arguments sync_to_cloud: Any = None sync_to_driver: Any = None node_sync_period: int = -1 cloud_sync_period: int = -1 def __post_init__(self): validate_sync_config(self) class Syncer: def __init__(self, local_dir: str, remote_dir: str, sync_client: SyncClient = NOOP): """Syncs between two directories with the sync_function. Arguments: local_dir: Directory to sync. Uniquely identifies the syncer. remote_dir: Remote directory to sync with. sync_client: Client for syncing between local_dir and remote_dir. Defaults to a Noop. """ self._local_dir = os.path.join(local_dir, "") if local_dir else local_dir self._remote_dir = remote_dir self.last_sync_up_time = float("-inf") self.last_sync_down_time = float("-inf") self.sync_client = sync_client def sync_up_if_needed(self, sync_period: int, exclude: Optional[List] = None): """Syncs up if time since last sync up is greather than sync_period. Args: sync_period: Time period between subsequent syncs. exclude: Pattern of files to exclude, e.g. ``["*/checkpoint_*]`` to exclude trial checkpoints. """ if time.time() - self.last_sync_up_time > sync_period: self.sync_up(exclude) def sync_down_if_needed(self, sync_period: int, exclude: Optional[List] = None): """Syncs down if time since last sync down is greather than sync_period. Args: sync_period: Time period between subsequent syncs. exclude: Pattern of files to exclude, e.g. ``["*/checkpoint_*]`` to exclude trial checkpoints. """ if time.time() - self.last_sync_down_time > sync_period: self.sync_down(exclude) def sync_up(self, exclude: Optional[List] = None): """Attempts to start the sync-up to the remote path. Args: exclude: Pattern of files to exclude, e.g. ``["*/checkpoint_*]`` to exclude trial checkpoints. Returns: Whether the sync (if feasible) was successfully started. """ result = False if self.validate_hosts(self._local_dir, self._remote_path): try: result = self.sync_client.sync_up( self._local_dir, self._remote_path, exclude=exclude ) self.last_sync_up_time = time.time() except Exception: logger.exception("Sync execution failed.") return result def sync_down(self, exclude: Optional[List] = None): """Attempts to start the sync-down from the remote path. Args: exclude: Pattern of files to exclude, e.g. ``["*/checkpoint_*]`` to exclude trial checkpoints. Returns: Whether the sync (if feasible) was successfully started. """ result = False if self.validate_hosts(self._local_dir, self._remote_path): try: result = self.sync_client.sync_down( self._remote_path, self._local_dir, exclude=exclude ) self.last_sync_down_time = time.time() except Exception: logger.exception("Sync execution failed.") return result def validate_hosts(self, source, target): if not (source and target): logger.debug( "Source or target is empty, skipping log sync for " "{}".format(self._local_dir) ) return False return True def wait(self): """Waits for the sync client to complete the current sync.""" self.sync_client.wait() def reset(self): self.last_sync_up_time = float("-inf") self.last_sync_down_time = float("-inf") self.sync_client.reset() def close(self): self.sync_client.close() @property def _remote_path(self): return self._remote_dir class CloudSyncer(Syncer): """Syncer for syncing files to/from the cloud.""" def __init__(self, local_dir, remote_dir, sync_client): super(CloudSyncer, self).__init__(local_dir, remote_dir, sync_client) def sync_up_if_needed(self, exclude: Optional[List] = None): return super(CloudSyncer, self).sync_up_if_needed(SYNC_PERIOD, exclude=exclude) def sync_down_if_needed(self, exclude: Optional[List] = None): return super(CloudSyncer, self).sync_down_if_needed( SYNC_PERIOD, exclude=exclude ) class NodeSyncer(Syncer): """Syncer for syncing files to/from a remote dir to a local dir.""" def __init__(self, local_dir, remote_dir, sync_client): self.local_ip = get_node_ip_address() self.worker_ip = None super(NodeSyncer, self).__init__(local_dir, remote_dir, sync_client) def set_worker_ip(self, worker_ip): """Sets the worker IP to sync logs from.""" self.worker_ip = worker_ip def has_remote_target(self): """Returns whether the Syncer has a remote target.""" if not self.worker_ip: logger.debug("Worker IP unknown, skipping sync for %s", self._local_dir) return False if self.worker_ip == self.local_ip: logger.debug("Worker IP is local IP, skipping sync for %s", self._local_dir) return False return True def sync_up_if_needed(self, exclude: Optional[List] = None): if not self.has_remote_target(): return True return super(NodeSyncer, self).sync_up_if_needed(SYNC_PERIOD, exclude=exclude) def sync_down_if_needed(self, exclude: Optional[List] = None): if not self.has_remote_target(): return True return super(NodeSyncer, self).sync_down_if_needed(SYNC_PERIOD, exclude=exclude) def sync_up_to_new_location(self, worker_ip): if worker_ip != self.worker_ip: logger.debug("Setting new worker IP to %s", worker_ip) self.set_worker_ip(worker_ip) self.reset() if not self.sync_up(): logger.warning( "Sync up to new location skipped. This should not occur." ) else: logger.warning("Sync attempted to same IP %s.", worker_ip) def sync_up(self, exclude: Optional[List] = None): if not self.has_remote_target(): return True return super(NodeSyncer, self).sync_up(exclude=exclude) def sync_down(self, exclude: Optional[List] = None): if not self.has_remote_target(): return True logger.debug("Syncing from %s to %s", self._remote_path, self._local_dir) return super(NodeSyncer, self).sync_down(exclude=exclude) @property def _remote_path(self): ssh_user = get_ssh_user() global _log_sync_warned if not self.has_remote_target(): return None if ssh_user is None: if not _log_sync_warned: logger.error("Syncer requires cluster to be setup with `ray up`.") _log_sync_warned = True return None return "{}@{}:{}/".format(ssh_user, self.worker_ip, self._remote_dir) def get_cloud_syncer( local_dir: str, remote_dir: Optional[str] = None, sync_function: Optional[Union[Callable, str]] = None, ) -> CloudSyncer: """Returns a Syncer. This syncer is in charge of syncing the local_dir with upload_dir. If no ``remote_dir`` is provided, it will return a no-op syncer. If a ``sync_function`` is provided, it will return a CloudSyncer using a custom SyncClient initialized by the sync function. Otherwise it will return a CloudSyncer with default templates for s3/gs/hdfs. Args: local_dir: Source directory for syncing. remote_dir: Target directory for syncing. If not provided, a no-op Syncer is returned. sync_function: Function for syncing the local_dir to remote_dir. If string, then it must be a string template for syncer to run. If not provided, it defaults to standard S3, gsutil or HDFS sync commands. Raises: ValueError if malformed remote_dir. """ key = (local_dir, remote_dir) if key in _syncers: return _syncers[key] if not remote_dir: _syncers[key] = CloudSyncer(local_dir, remote_dir, NOOP) return _syncers[key] if sync_function == "auto": sync_function = None # Auto-detect # Maybe get user-provided sync client here client = get_sync_client(sync_function) if client: # If the user provided a sync template or function _syncers[key] = CloudSyncer(local_dir, remote_dir, client) else: # Else, get default cloud sync client (e.g. S3 syncer) sync_client = get_cloud_sync_client(remote_dir) _syncers[key] = CloudSyncer(local_dir, remote_dir, sync_client) return _syncers[key] def get_node_syncer( local_dir: str, remote_dir: Optional[str] = None, sync_function: Optional[Union[Callable, str, bool]] = None, ): """Returns a NodeSyncer. Args: local_dir: Source directory for syncing. remote_dir: Target directory for syncing. If not provided, a noop Syncer is returned. sync_function: Function for syncing the local_dir to remote_dir. If string, then it must be a string template for syncer to run. If True or not provided, it defaults rsync. If False, a noop Syncer is returned. """ if sync_function == "auto": sync_function = None # Auto-detect key = (local_dir, remote_dir) if key in _syncers: return _syncers[key] elif isclass(sync_function) and issubclass(sync_function, Syncer): _syncers[key] = sync_function(local_dir, remote_dir, None) return _syncers[key] elif not remote_dir or sync_function is False: sync_client = NOOP elif sync_function and sync_function is not True: sync_client = get_sync_client(sync_function) else: sync = log_sync_template() if sync: sync_client = CommandBasedClient(sync, sync) sync_client.set_logdir(local_dir) else: sync_client = NOOP _syncers[key] = NodeSyncer(local_dir, remote_dir, sync_client) return _syncers[key] class SyncerCallback(Callback): def __init__(self, sync_function: Union[None, bool, Callable]): self._sync_function = sync_function self._syncers: Dict["Trial", NodeSyncer] = {} def _get_trial_syncer(self, trial: "Trial"): if trial not in self._syncers: self._syncers[trial] = self._create_trial_syncer(trial) return self._syncers[trial] def _create_trial_syncer(self, trial: "Trial"): return get_node_syncer( trial.logdir, remote_dir=trial.logdir, sync_function=self._sync_function ) def _sync_trial_checkpoint(self, trial: "Trial", checkpoint: _TuneCheckpoint): if checkpoint.storage == _TuneCheckpoint.MEMORY: return trial_syncer = self._get_trial_syncer(trial) # If the sync_function is False, syncing to driver is disabled. # In every other case (valid values include None, True Callable, # NodeSyncer) syncing to driver is enabled. if trial.sync_on_checkpoint and self._sync_function is not False: try: # Wait for any other syncs to finish. We need to sync again # after this to handle checkpoints taken mid-sync. trial_syncer.wait() except TuneError as e: # Errors occurring during this wait are not fatal for this # checkpoint, so it should just be logged. logger.error( f"Trial {trial}: An error occurred during the " f"checkpoint pre-sync wait: {e}" ) # Force sync down and wait before tracking the new checkpoint. try: if trial_syncer.sync_down(): trial_syncer.wait() else: logger.error( f"Trial {trial}: Checkpoint sync skipped. " f"This should not happen." ) except TuneError as e: if trial.uses_cloud_checkpointing: # Even though rsync failed the trainable can restore # from remote durable storage. logger.error(f"Trial {trial}: Sync error: {e}") else: # If the trainable didn't have remote storage to upload # to then this checkpoint may have been lost, so we # shouldn't track it with the checkpoint_manager. raise e if not trial.uses_cloud_checkpointing: if not os.path.exists(checkpoint.value): raise TuneError( "Trial {}: Checkpoint path {} not " "found after successful sync down. " "Are you running on a Kubernetes or " "managed cluster? rsync will not function " "due to a lack of SSH functionality. " "You'll need to use cloud-checkpointing " "if that's the case, see instructions " "here: {} .".format( trial, checkpoint.value, CLOUD_CHECKPOINTING_URL ) ) def on_trial_start( self, iteration: int, trials: List["Trial"], trial: "Trial", **info ): self._get_trial_syncer(trial) def on_trial_result( self, iteration: int, trials: List["Trial"], trial: "Trial", result: Dict, **info, ): trial_syncer = self._get_trial_syncer(trial) trial_syncer.set_worker_ip(result.get(NODE_IP)) trial_syncer.sync_down_if_needed() def on_trial_complete( self, iteration: int, trials: List["Trial"], trial: "Trial", **info ): trial_syncer = self._get_trial_syncer(trial) if NODE_IP in trial.last_result: trainable_ip = trial.last_result[NODE_IP] else: trainable_ip = ray.get(trial.runner.get_current_ip.remote()) trial_syncer.set_worker_ip(trainable_ip) trial_syncer.sync_down_if_needed() trial_syncer.close() def on_checkpoint( self, iteration: int, trials: List["Trial"], trial: "Trial", checkpoint: _TuneCheckpoint, **info, ): self._sync_trial_checkpoint(trial, checkpoint) def detect_cluster_syncer( sync_config: Optional[SyncConfig], cluster_config_file: str = "~/ray_bootstrap_config.yaml", ) -> Union[bool, Type, NodeSyncer]: """Detect cluster Syncer given SyncConfig. Returns False if cloud checkpointing is enabled (when upload dir is set). Else, returns sync config syncer if manually specified. Else, detects cluster environment (e.g. Docker, Kubernetes) and returns syncer accordingly. """ from ray.tune.integration.docker import DockerSyncer sync_config = sync_config or SyncConfig() if bool(sync_config.upload_dir) or sync_config.syncer is None: # No sync to driver for cloud checkpointing or if manually disabled return False _syncer = sync_config.syncer if _syncer == "auto": _syncer = None if isinstance(_syncer, Type): return _syncer # Else: True or None. Auto-detect. cluster_config_file = os.path.expanduser(cluster_config_file) if not os.path.exists(cluster_config_file): return _syncer with open(cluster_config_file, "rt") as fp: config = yaml.safe_load(fp.read()) if config.get("docker"): logger.debug( "Detected docker autoscaling environment. Using `DockerSyncer` " "as sync client. If this is not correct or leads to errors, " "please pass a `syncer` parameter in the `SyncConfig` to " "`tune.run().` to manually configure syncing behavior." ) return DockerSyncer if config.get("provider", {}).get("type", "") == "kubernetes": from ray.tune.integration.kubernetes import ( NamespacedKubernetesSyncer, try_import_kubernetes, ) if not try_import_kubernetes(): logger.warning( "Detected Ray autoscaling environment on Kubernetes, " "but Kubernetes Python CLI is not installed. " "Checkpoint syncing may not work properly across " "multiple pods. Be sure to install 'kubernetes' on " "each container." ) namespace = config["provider"].get("namespace", "ray") logger.debug( f"Detected Ray autoscaling environment on Kubernetes. Using " f"`NamespacedKubernetesSyncer` with namespace `{namespace}` " f"as sync client. If this is not correct or leads to errors, " f"please pass a `syncer` parameter in the `SyncConfig` " f"to `tune.run()` to manually configure syncing behavior.." ) return NamespacedKubernetesSyncer(namespace) return _syncer
36.179724
88
0.627691
795224271191eb5321529833cfb1cc0dba6aa105
557
py
Python
src/parse_md.py
peter88213/yw2md
0a8ffa4ac9aed4d7e7abb0b22ac41fcbde86ccd1
[ "MIT" ]
null
null
null
src/parse_md.py
peter88213/yw2md
0a8ffa4ac9aed4d7e7abb0b22ac41fcbde86ccd1
[ "MIT" ]
null
null
null
src/parse_md.py
peter88213/yw2md
0a8ffa4ac9aed4d7e7abb0b22ac41fcbde86ccd1
[ "MIT" ]
null
null
null
"""Save the result of Markdown-to-yWriter conversion Just an auxiliary script for development, to see the result of MdFile.convert_to_yw. """ from md_yw import MdFile import sys if __name__ == '__main__': sourceFile = sys.argv[1] with open(sourceFile, encoding='utf-8') as f: mdText = f.read() dummy = MdFile('', False, False) text = MdFile.convert_to_yw(dummy, mdText) lines = (text).split('\n') text = '\n'.join(lines) with open('test.md', 'w', encoding='utf-8') as f: f.write(text)
24.217391
54
0.621185
795224f070a6535185cfa557cb11a443eccda961
1,459
py
Python
indra/tools/live_curation/util.py
djinnome/indra
382b7f236e0b1422c96a268ef873530b5e92d48f
[ "BSD-2-Clause" ]
null
null
null
indra/tools/live_curation/util.py
djinnome/indra
382b7f236e0b1422c96a268ef873530b5e92d48f
[ "BSD-2-Clause" ]
null
null
null
indra/tools/live_curation/util.py
djinnome/indra
382b7f236e0b1422c96a268ef873530b5e92d48f
[ "BSD-2-Clause" ]
null
null
null
import json import logging from indra.statements import Statement logger = logging.getLogger(__name__) def _json_loader(fpath): logger.info('Loading json file %s' % fpath) with open(fpath, 'r') as f: return json.load(f) def _json_dumper(jsonobj, fpath): try: logger.info('Saving json object to file %s' % fpath) with open(fpath, 'w') as f: json.dump(obj=jsonobj, fp=f, indent=1) return True except Exception as e: logger.error('Could not save json') logger.exception(e) return False def _json_to_stmts_dict(stmt_jsons): """Return dict of statements keyed by uuid's from json statements This function is the inverse of _stmts_dict_to_json() Parameters ---------- stmt_jsons : list(json) A list of json statements Returns ------- dict Dict with statements keyed by their uuid's: {uuid: stmt} """ loaded_stmts = [Statement._from_json(s) for s in stmt_jsons] return {s.uuid: s for s in loaded_stmts} def _stmts_dict_to_json(stmt_dict): """Make a json representation from dict of statements This function is the inverse of _json_to_stmts_dict() Parameters ---------- stmt_dict : dict Dict with statements keyed by their uuid's: {uuid: stmt} Returns ------- list(json) A list of json statements """ return [s.to_json() for _, s in stmt_dict.items()]
23.918033
69
0.638108
7952285817860c2caf36ae8c14a47dc5b74e783b
27,023
py
Python
sdk/python/pulumi_aws/ec2/volume_attachment.py
rapzo/pulumi-aws
390a098221315d98a54ba97d1559e750dc3053b7
[ "ECL-2.0", "Apache-2.0" ]
260
2018-06-18T14:57:00.000Z
2022-03-29T11:41:03.000Z
sdk/python/pulumi_aws/ec2/volume_attachment.py
rapzo/pulumi-aws
390a098221315d98a54ba97d1559e750dc3053b7
[ "ECL-2.0", "Apache-2.0" ]
1,154
2018-06-19T20:38:20.000Z
2022-03-31T19:48:16.000Z
sdk/python/pulumi_aws/ec2/volume_attachment.py
rapzo/pulumi-aws
390a098221315d98a54ba97d1559e750dc3053b7
[ "ECL-2.0", "Apache-2.0" ]
115
2018-06-28T03:20:27.000Z
2022-03-29T11:41:06.000Z
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from .. import _utilities __all__ = ['VolumeAttachmentArgs', 'VolumeAttachment'] @pulumi.input_type class VolumeAttachmentArgs: def __init__(__self__, *, device_name: pulumi.Input[str], instance_id: pulumi.Input[str], volume_id: pulumi.Input[str], force_detach: Optional[pulumi.Input[bool]] = None, skip_destroy: Optional[pulumi.Input[bool]] = None, stop_instance_before_detaching: Optional[pulumi.Input[bool]] = None): """ The set of arguments for constructing a VolumeAttachment resource. :param pulumi.Input[str] device_name: The device name to expose to the instance (for example, `/dev/sdh` or `xvdh`). See [Device Naming on Linux Instances](https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/device_naming.html#available-ec2-device-names) and [Device Naming on Windows Instances](https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/device_naming.html#available-ec2-device-names) for more information. :param pulumi.Input[str] instance_id: ID of the Instance to attach to :param pulumi.Input[str] volume_id: ID of the Volume to be attached :param pulumi.Input[bool] force_detach: Set to `true` if you want to force the volume to detach. Useful if previous attempts failed, but use this option only as a last resort, as this can result in **data loss**. See [Detaching an Amazon EBS Volume from an Instance](https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-detaching-volume.html) for more information. :param pulumi.Input[bool] skip_destroy: Set this to true if you do not wish to detach the volume from the instance to which it is attached at destroy time, and instead just remove the attachment from this provider state. This is useful when destroying an instance which has volumes created by some other means attached. :param pulumi.Input[bool] stop_instance_before_detaching: Set this to true to ensure that the target instance is stopped before trying to detach the volume. Stops the instance, if it is not already stopped. """ pulumi.set(__self__, "device_name", device_name) pulumi.set(__self__, "instance_id", instance_id) pulumi.set(__self__, "volume_id", volume_id) if force_detach is not None: pulumi.set(__self__, "force_detach", force_detach) if skip_destroy is not None: pulumi.set(__self__, "skip_destroy", skip_destroy) if stop_instance_before_detaching is not None: pulumi.set(__self__, "stop_instance_before_detaching", stop_instance_before_detaching) @property @pulumi.getter(name="deviceName") def device_name(self) -> pulumi.Input[str]: """ The device name to expose to the instance (for example, `/dev/sdh` or `xvdh`). See [Device Naming on Linux Instances](https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/device_naming.html#available-ec2-device-names) and [Device Naming on Windows Instances](https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/device_naming.html#available-ec2-device-names) for more information. """ return pulumi.get(self, "device_name") @device_name.setter def device_name(self, value: pulumi.Input[str]): pulumi.set(self, "device_name", value) @property @pulumi.getter(name="instanceId") def instance_id(self) -> pulumi.Input[str]: """ ID of the Instance to attach to """ return pulumi.get(self, "instance_id") @instance_id.setter def instance_id(self, value: pulumi.Input[str]): pulumi.set(self, "instance_id", value) @property @pulumi.getter(name="volumeId") def volume_id(self) -> pulumi.Input[str]: """ ID of the Volume to be attached """ return pulumi.get(self, "volume_id") @volume_id.setter def volume_id(self, value: pulumi.Input[str]): pulumi.set(self, "volume_id", value) @property @pulumi.getter(name="forceDetach") def force_detach(self) -> Optional[pulumi.Input[bool]]: """ Set to `true` if you want to force the volume to detach. Useful if previous attempts failed, but use this option only as a last resort, as this can result in **data loss**. See [Detaching an Amazon EBS Volume from an Instance](https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-detaching-volume.html) for more information. """ return pulumi.get(self, "force_detach") @force_detach.setter def force_detach(self, value: Optional[pulumi.Input[bool]]): pulumi.set(self, "force_detach", value) @property @pulumi.getter(name="skipDestroy") def skip_destroy(self) -> Optional[pulumi.Input[bool]]: """ Set this to true if you do not wish to detach the volume from the instance to which it is attached at destroy time, and instead just remove the attachment from this provider state. This is useful when destroying an instance which has volumes created by some other means attached. """ return pulumi.get(self, "skip_destroy") @skip_destroy.setter def skip_destroy(self, value: Optional[pulumi.Input[bool]]): pulumi.set(self, "skip_destroy", value) @property @pulumi.getter(name="stopInstanceBeforeDetaching") def stop_instance_before_detaching(self) -> Optional[pulumi.Input[bool]]: """ Set this to true to ensure that the target instance is stopped before trying to detach the volume. Stops the instance, if it is not already stopped. """ return pulumi.get(self, "stop_instance_before_detaching") @stop_instance_before_detaching.setter def stop_instance_before_detaching(self, value: Optional[pulumi.Input[bool]]): pulumi.set(self, "stop_instance_before_detaching", value) @pulumi.input_type class _VolumeAttachmentState: def __init__(__self__, *, device_name: Optional[pulumi.Input[str]] = None, force_detach: Optional[pulumi.Input[bool]] = None, instance_id: Optional[pulumi.Input[str]] = None, skip_destroy: Optional[pulumi.Input[bool]] = None, stop_instance_before_detaching: Optional[pulumi.Input[bool]] = None, volume_id: Optional[pulumi.Input[str]] = None): """ Input properties used for looking up and filtering VolumeAttachment resources. :param pulumi.Input[str] device_name: The device name to expose to the instance (for example, `/dev/sdh` or `xvdh`). See [Device Naming on Linux Instances](https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/device_naming.html#available-ec2-device-names) and [Device Naming on Windows Instances](https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/device_naming.html#available-ec2-device-names) for more information. :param pulumi.Input[bool] force_detach: Set to `true` if you want to force the volume to detach. Useful if previous attempts failed, but use this option only as a last resort, as this can result in **data loss**. See [Detaching an Amazon EBS Volume from an Instance](https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-detaching-volume.html) for more information. :param pulumi.Input[str] instance_id: ID of the Instance to attach to :param pulumi.Input[bool] skip_destroy: Set this to true if you do not wish to detach the volume from the instance to which it is attached at destroy time, and instead just remove the attachment from this provider state. This is useful when destroying an instance which has volumes created by some other means attached. :param pulumi.Input[bool] stop_instance_before_detaching: Set this to true to ensure that the target instance is stopped before trying to detach the volume. Stops the instance, if it is not already stopped. :param pulumi.Input[str] volume_id: ID of the Volume to be attached """ if device_name is not None: pulumi.set(__self__, "device_name", device_name) if force_detach is not None: pulumi.set(__self__, "force_detach", force_detach) if instance_id is not None: pulumi.set(__self__, "instance_id", instance_id) if skip_destroy is not None: pulumi.set(__self__, "skip_destroy", skip_destroy) if stop_instance_before_detaching is not None: pulumi.set(__self__, "stop_instance_before_detaching", stop_instance_before_detaching) if volume_id is not None: pulumi.set(__self__, "volume_id", volume_id) @property @pulumi.getter(name="deviceName") def device_name(self) -> Optional[pulumi.Input[str]]: """ The device name to expose to the instance (for example, `/dev/sdh` or `xvdh`). See [Device Naming on Linux Instances](https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/device_naming.html#available-ec2-device-names) and [Device Naming on Windows Instances](https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/device_naming.html#available-ec2-device-names) for more information. """ return pulumi.get(self, "device_name") @device_name.setter def device_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "device_name", value) @property @pulumi.getter(name="forceDetach") def force_detach(self) -> Optional[pulumi.Input[bool]]: """ Set to `true` if you want to force the volume to detach. Useful if previous attempts failed, but use this option only as a last resort, as this can result in **data loss**. See [Detaching an Amazon EBS Volume from an Instance](https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-detaching-volume.html) for more information. """ return pulumi.get(self, "force_detach") @force_detach.setter def force_detach(self, value: Optional[pulumi.Input[bool]]): pulumi.set(self, "force_detach", value) @property @pulumi.getter(name="instanceId") def instance_id(self) -> Optional[pulumi.Input[str]]: """ ID of the Instance to attach to """ return pulumi.get(self, "instance_id") @instance_id.setter def instance_id(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "instance_id", value) @property @pulumi.getter(name="skipDestroy") def skip_destroy(self) -> Optional[pulumi.Input[bool]]: """ Set this to true if you do not wish to detach the volume from the instance to which it is attached at destroy time, and instead just remove the attachment from this provider state. This is useful when destroying an instance which has volumes created by some other means attached. """ return pulumi.get(self, "skip_destroy") @skip_destroy.setter def skip_destroy(self, value: Optional[pulumi.Input[bool]]): pulumi.set(self, "skip_destroy", value) @property @pulumi.getter(name="stopInstanceBeforeDetaching") def stop_instance_before_detaching(self) -> Optional[pulumi.Input[bool]]: """ Set this to true to ensure that the target instance is stopped before trying to detach the volume. Stops the instance, if it is not already stopped. """ return pulumi.get(self, "stop_instance_before_detaching") @stop_instance_before_detaching.setter def stop_instance_before_detaching(self, value: Optional[pulumi.Input[bool]]): pulumi.set(self, "stop_instance_before_detaching", value) @property @pulumi.getter(name="volumeId") def volume_id(self) -> Optional[pulumi.Input[str]]: """ ID of the Volume to be attached """ return pulumi.get(self, "volume_id") @volume_id.setter def volume_id(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "volume_id", value) class VolumeAttachment(pulumi.CustomResource): @overload def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, device_name: Optional[pulumi.Input[str]] = None, force_detach: Optional[pulumi.Input[bool]] = None, instance_id: Optional[pulumi.Input[str]] = None, skip_destroy: Optional[pulumi.Input[bool]] = None, stop_instance_before_detaching: Optional[pulumi.Input[bool]] = None, volume_id: Optional[pulumi.Input[str]] = None, __props__=None): """ Provides an AWS EBS Volume Attachment as a top level resource, to attach and detach volumes from AWS Instances. > **NOTE on EBS block devices:** If you use `ebs_block_device` on an `ec2.Instance`, this provider will assume management over the full set of non-root EBS block devices for the instance, and treats additional block devices as drift. For this reason, `ebs_block_device` cannot be mixed with external `ebs.Volume` + `aws_ebs_volume_attachment` resources for a given instance. ## Example Usage ```python import pulumi import pulumi_aws as aws web = aws.ec2.Instance("web", ami="ami-21f78e11", availability_zone="us-west-2a", instance_type="t2.micro", tags={ "Name": "HelloWorld", }) example = aws.ebs.Volume("example", availability_zone="us-west-2a", size=1) ebs_att = aws.ec2.VolumeAttachment("ebsAtt", device_name="/dev/sdh", volume_id=example.id, instance_id=web.id) ``` ## Import EBS Volume Attachments can be imported using `DEVICE_NAME:VOLUME_ID:INSTANCE_ID`, e.g. ```sh $ pulumi import aws:ec2/volumeAttachment:VolumeAttachment example /dev/sdh:vol-049df61146c4d7901:i-12345678 ``` [1]https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/device_naming.html#available-ec2-device-names [2]https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/device_naming.html#available-ec2-device-names [3]https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-detaching-volume.html :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] device_name: The device name to expose to the instance (for example, `/dev/sdh` or `xvdh`). See [Device Naming on Linux Instances](https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/device_naming.html#available-ec2-device-names) and [Device Naming on Windows Instances](https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/device_naming.html#available-ec2-device-names) for more information. :param pulumi.Input[bool] force_detach: Set to `true` if you want to force the volume to detach. Useful if previous attempts failed, but use this option only as a last resort, as this can result in **data loss**. See [Detaching an Amazon EBS Volume from an Instance](https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-detaching-volume.html) for more information. :param pulumi.Input[str] instance_id: ID of the Instance to attach to :param pulumi.Input[bool] skip_destroy: Set this to true if you do not wish to detach the volume from the instance to which it is attached at destroy time, and instead just remove the attachment from this provider state. This is useful when destroying an instance which has volumes created by some other means attached. :param pulumi.Input[bool] stop_instance_before_detaching: Set this to true to ensure that the target instance is stopped before trying to detach the volume. Stops the instance, if it is not already stopped. :param pulumi.Input[str] volume_id: ID of the Volume to be attached """ ... @overload def __init__(__self__, resource_name: str, args: VolumeAttachmentArgs, opts: Optional[pulumi.ResourceOptions] = None): """ Provides an AWS EBS Volume Attachment as a top level resource, to attach and detach volumes from AWS Instances. > **NOTE on EBS block devices:** If you use `ebs_block_device` on an `ec2.Instance`, this provider will assume management over the full set of non-root EBS block devices for the instance, and treats additional block devices as drift. For this reason, `ebs_block_device` cannot be mixed with external `ebs.Volume` + `aws_ebs_volume_attachment` resources for a given instance. ## Example Usage ```python import pulumi import pulumi_aws as aws web = aws.ec2.Instance("web", ami="ami-21f78e11", availability_zone="us-west-2a", instance_type="t2.micro", tags={ "Name": "HelloWorld", }) example = aws.ebs.Volume("example", availability_zone="us-west-2a", size=1) ebs_att = aws.ec2.VolumeAttachment("ebsAtt", device_name="/dev/sdh", volume_id=example.id, instance_id=web.id) ``` ## Import EBS Volume Attachments can be imported using `DEVICE_NAME:VOLUME_ID:INSTANCE_ID`, e.g. ```sh $ pulumi import aws:ec2/volumeAttachment:VolumeAttachment example /dev/sdh:vol-049df61146c4d7901:i-12345678 ``` [1]https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/device_naming.html#available-ec2-device-names [2]https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/device_naming.html#available-ec2-device-names [3]https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-detaching-volume.html :param str resource_name: The name of the resource. :param VolumeAttachmentArgs args: The arguments to use to populate this resource's properties. :param pulumi.ResourceOptions opts: Options for the resource. """ ... def __init__(__self__, resource_name: str, *args, **kwargs): resource_args, opts = _utilities.get_resource_args_opts(VolumeAttachmentArgs, pulumi.ResourceOptions, *args, **kwargs) if resource_args is not None: __self__._internal_init(resource_name, opts, **resource_args.__dict__) else: __self__._internal_init(resource_name, *args, **kwargs) def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, device_name: Optional[pulumi.Input[str]] = None, force_detach: Optional[pulumi.Input[bool]] = None, instance_id: Optional[pulumi.Input[str]] = None, skip_destroy: Optional[pulumi.Input[bool]] = None, stop_instance_before_detaching: Optional[pulumi.Input[bool]] = None, volume_id: Optional[pulumi.Input[str]] = None, __props__=None): if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = VolumeAttachmentArgs.__new__(VolumeAttachmentArgs) if device_name is None and not opts.urn: raise TypeError("Missing required property 'device_name'") __props__.__dict__["device_name"] = device_name __props__.__dict__["force_detach"] = force_detach if instance_id is None and not opts.urn: raise TypeError("Missing required property 'instance_id'") __props__.__dict__["instance_id"] = instance_id __props__.__dict__["skip_destroy"] = skip_destroy __props__.__dict__["stop_instance_before_detaching"] = stop_instance_before_detaching if volume_id is None and not opts.urn: raise TypeError("Missing required property 'volume_id'") __props__.__dict__["volume_id"] = volume_id super(VolumeAttachment, __self__).__init__( 'aws:ec2/volumeAttachment:VolumeAttachment', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None, device_name: Optional[pulumi.Input[str]] = None, force_detach: Optional[pulumi.Input[bool]] = None, instance_id: Optional[pulumi.Input[str]] = None, skip_destroy: Optional[pulumi.Input[bool]] = None, stop_instance_before_detaching: Optional[pulumi.Input[bool]] = None, volume_id: Optional[pulumi.Input[str]] = None) -> 'VolumeAttachment': """ Get an existing VolumeAttachment resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[str] device_name: The device name to expose to the instance (for example, `/dev/sdh` or `xvdh`). See [Device Naming on Linux Instances](https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/device_naming.html#available-ec2-device-names) and [Device Naming on Windows Instances](https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/device_naming.html#available-ec2-device-names) for more information. :param pulumi.Input[bool] force_detach: Set to `true` if you want to force the volume to detach. Useful if previous attempts failed, but use this option only as a last resort, as this can result in **data loss**. See [Detaching an Amazon EBS Volume from an Instance](https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-detaching-volume.html) for more information. :param pulumi.Input[str] instance_id: ID of the Instance to attach to :param pulumi.Input[bool] skip_destroy: Set this to true if you do not wish to detach the volume from the instance to which it is attached at destroy time, and instead just remove the attachment from this provider state. This is useful when destroying an instance which has volumes created by some other means attached. :param pulumi.Input[bool] stop_instance_before_detaching: Set this to true to ensure that the target instance is stopped before trying to detach the volume. Stops the instance, if it is not already stopped. :param pulumi.Input[str] volume_id: ID of the Volume to be attached """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = _VolumeAttachmentState.__new__(_VolumeAttachmentState) __props__.__dict__["device_name"] = device_name __props__.__dict__["force_detach"] = force_detach __props__.__dict__["instance_id"] = instance_id __props__.__dict__["skip_destroy"] = skip_destroy __props__.__dict__["stop_instance_before_detaching"] = stop_instance_before_detaching __props__.__dict__["volume_id"] = volume_id return VolumeAttachment(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter(name="deviceName") def device_name(self) -> pulumi.Output[str]: """ The device name to expose to the instance (for example, `/dev/sdh` or `xvdh`). See [Device Naming on Linux Instances](https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/device_naming.html#available-ec2-device-names) and [Device Naming on Windows Instances](https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/device_naming.html#available-ec2-device-names) for more information. """ return pulumi.get(self, "device_name") @property @pulumi.getter(name="forceDetach") def force_detach(self) -> pulumi.Output[Optional[bool]]: """ Set to `true` if you want to force the volume to detach. Useful if previous attempts failed, but use this option only as a last resort, as this can result in **data loss**. See [Detaching an Amazon EBS Volume from an Instance](https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-detaching-volume.html) for more information. """ return pulumi.get(self, "force_detach") @property @pulumi.getter(name="instanceId") def instance_id(self) -> pulumi.Output[str]: """ ID of the Instance to attach to """ return pulumi.get(self, "instance_id") @property @pulumi.getter(name="skipDestroy") def skip_destroy(self) -> pulumi.Output[Optional[bool]]: """ Set this to true if you do not wish to detach the volume from the instance to which it is attached at destroy time, and instead just remove the attachment from this provider state. This is useful when destroying an instance which has volumes created by some other means attached. """ return pulumi.get(self, "skip_destroy") @property @pulumi.getter(name="stopInstanceBeforeDetaching") def stop_instance_before_detaching(self) -> pulumi.Output[Optional[bool]]: """ Set this to true to ensure that the target instance is stopped before trying to detach the volume. Stops the instance, if it is not already stopped. """ return pulumi.get(self, "stop_instance_before_detaching") @property @pulumi.getter(name="volumeId") def volume_id(self) -> pulumi.Output[str]: """ ID of the Volume to be attached """ return pulumi.get(self, "volume_id")
52.067437
382
0.667913
79522904f8f6e4268e91e7b9a8ad17fb96273750
3,241
py
Python
test/functional/wallet_create_tx.py
bvbfan/ain
71e3b3456f90a858d1325f612bd44393789d74d2
[ "MIT" ]
null
null
null
test/functional/wallet_create_tx.py
bvbfan/ain
71e3b3456f90a858d1325f612bd44393789d74d2
[ "MIT" ]
null
null
null
test/functional/wallet_create_tx.py
bvbfan/ain
71e3b3456f90a858d1325f612bd44393789d74d2
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) 2018-2019 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. from test_framework.test_framework import DefiTestFramework from test_framework.util import ( assert_equal, assert_raises_rpc_error, ) from test_framework.blocktools import ( TIME_GENESIS_BLOCK, ) class CreateTxWalletTest(DefiTestFramework): def set_test_params(self): self.setup_clean_chain = True self.num_nodes = 1 def skip_test_if_missing_module(self): self.skip_if_no_wallet() def run_test(self): self.log.info('Create some old blocks') self.nodes[0].setmocktime(TIME_GENESIS_BLOCK+1) self.nodes[0].generate(200) self.nodes[0].setmocktime(0) self.test_anti_fee_sniping() self.test_tx_size_too_large() def test_anti_fee_sniping(self): self.log.info('Check that we have some (old) blocks and that anti-fee-sniping is disabled') assert_equal(self.nodes[0].getblockchaininfo()['blocks'], 200) txid = self.nodes[0].sendtoaddress(self.nodes[0].getnewaddress(), 1) tx = self.nodes[0].decoderawtransaction(self.nodes[0].gettransaction(txid)['hex']) assert_equal(tx['locktime'], 0) self.log.info('Check that anti-fee-sniping is enabled when we mine a recent block') self.nodes[0].generate(1) txid = self.nodes[0].sendtoaddress(self.nodes[0].getnewaddress(), 1) tx = self.nodes[0].decoderawtransaction(self.nodes[0].gettransaction(txid)['hex']) assert 0 < tx['locktime'] <= 201 def test_tx_size_too_large(self): # More than 10kB of outputs, so that we hit -maxtxfee with a high feerate outputs = {self.nodes[0].getnewaddress(address_type='bech32'): 0.000025 for i in range(400)} raw_tx = self.nodes[0].createrawtransaction(inputs=[], outputs=outputs) for fee_setting in ['-minrelaytxfee=0.01', '-mintxfee=0.01', '-paytxfee=0.01']: self.log.info('Check maxtxfee in combination with {}'.format(fee_setting)) self.restart_node(0, extra_args=[fee_setting]) assert_raises_rpc_error( -6, "Fee exceeds maximum configured by -maxtxfee", lambda: self.nodes[0].sendmany(dummy="", amounts=outputs), ) assert_raises_rpc_error( -4, "Fee exceeds maximum configured by -maxtxfee", lambda: self.nodes[0].fundrawtransaction(hexstring=raw_tx), ) self.log.info('Check maxtxfee in combination with settxfee') self.restart_node(0) self.nodes[0].settxfee(0.01) assert_raises_rpc_error( -6, "Fee exceeds maximum configured by -maxtxfee", lambda: self.nodes[0].sendmany(dummy="", amounts=outputs), ) assert_raises_rpc_error( -4, "Fee exceeds maximum configured by -maxtxfee", lambda: self.nodes[0].fundrawtransaction(hexstring=raw_tx), ) self.nodes[0].settxfee(0) if __name__ == '__main__': CreateTxWalletTest().main()
39.048193
100
0.650108
795229277f998b8ce46733de9c5726d940c18fc1
641
py
Python
acrobot.py
patrick-kidger/FasterNeuralDiffEq
510ca2aa3f9864d0190640d8d8c37b3f208cdfc9
[ "Apache-2.0" ]
67
2020-09-22T10:17:53.000Z
2022-02-16T10:24:17.000Z
acrobot.py
patrick-kidger/FasterNeuralDiffEq
510ca2aa3f9864d0190640d8d8c37b3f208cdfc9
[ "Apache-2.0" ]
1
2021-11-02T06:51:09.000Z
2021-11-02T17:55:42.000Z
acrobot.py
patrick-kidger/FasterNeuralDiffEq
510ca2aa3f9864d0190640d8d8c37b3f208cdfc9
[ "Apache-2.0" ]
6
2020-09-30T08:21:18.000Z
2022-03-02T20:17:14.000Z
import datasets import models import train def main(device, norm, rtol=1e-4, atol=1e-4): batch_size = 256 name = 'acrobot/' + '-'.join(map(str, [norm, rtol, atol])).replace('.', '-') save = True max_epochs = 50 lr = 1e-3 weight_decay = 0.01 times, train_dataloader, val_dataloader, test_dataloader = datasets.acrobot(batch_size) model = models.SymODE(times, norm, rtol, atol) return train.main(name, train_dataloader, val_dataloader, test_dataloader, device, model, save, max_epochs, lr, weight_decay) def full(device, norm): for _ in range(5): main(device, norm)
25.64
115
0.648986
795229bc0a4a461da005a7d053801f77c20f2e01
144
py
Python
isc_dhcp_leases/__init__.py
cacoyle/python-isc-dhcp-leases
dc513ea124565d77a7a5bde742ec0a8ffb877fd4
[ "MIT" ]
111
2015-02-11T21:36:40.000Z
2022-03-18T13:36:12.000Z
isc_dhcp_leases/__init__.py
cacoyle/python-isc-dhcp-leases
dc513ea124565d77a7a5bde742ec0a8ffb877fd4
[ "MIT" ]
36
2015-05-05T12:04:07.000Z
2021-06-17T12:58:30.000Z
isc_dhcp_leases/__init__.py
cacoyle/python-isc-dhcp-leases
dc513ea124565d77a7a5bde742ec0a8ffb877fd4
[ "MIT" ]
52
2015-05-02T19:31:20.000Z
2022-03-18T13:36:29.000Z
from __future__ import absolute_import from .iscdhcpleases import IscDhcpLeases, Lease, Lease6 __author__ = 'Martijn Braam <martijn@brixit.nl>'
36
55
0.826389
79522a218258c8f22606988d269a2f2892659528
4,152
py
Python
scripts/floyd/floyd_distance_nb_cuda.py
linyuehzzz/hedetniemi_distance
e1e3378f7f7013e0e36f4026da1342beac725a98
[ "Apache-2.0" ]
1
2020-08-03T11:30:28.000Z
2020-08-03T11:30:28.000Z
scripts/floyd/floyd_distance_nb_cuda.py
linyuehzzz/hedetniemi_distance
e1e3378f7f7013e0e36f4026da1342beac725a98
[ "Apache-2.0" ]
null
null
null
scripts/floyd/floyd_distance_nb_cuda.py
linyuehzzz/hedetniemi_distance
e1e3378f7f7013e0e36f4026da1342beac725a98
[ "Apache-2.0" ]
null
null
null
from timeit import default_timer from numba import cuda, njit, float32 import numpy as np import math import timeout_decorator ##******** Read graph data ********## ## Number of nodes (100/1,000/10,000/100,000/1,000,000) nodes = [100, 1000, 10000, 100000, 1000000] print('Nodes: ', nodes) ## Total degree degree = [3, 4, 5] print('Degree: ', degree) for i in nodes: for j in degree: locals()['data_n' + str(i) + '_d' + str(j)] = [] with open('graph_n' + str(i) + '_d' + str(j) + '.txt', 'r') as f: lines = f.read().splitlines() for line in lines: l = line.split() item = [int(l[0]), int(l[1]), float(l[2])] locals()['data_n' + str(i) + '_d' + str(j)].append(item) ##******** Configure CUDA ********## # number of threads per block: 4*4, 8*8, 16*16, 32*32 NUM_THREADS = [4, 8, 16, 32] def get_cuda_execution_config(n, tpb): dimBlock = (tpb, tpb) dimGrid = (math.ceil(n / tpb), math.ceil(n / tpb)) return dimGrid, dimBlock ##******** Construct distance matrix ********## @cuda.jit def graph2dist(graph, dist_mtx, n): stride = cuda.gridDim.x * cuda.blockDim.x ## initialize distance matrix x, y = cuda.grid(2) if x < n and y < n: dist_mtx[x,y] = np.inf ## calculate distance matrix for i in range(x, graph.shape[0], stride): a = int(graph[i,0]) - 1 b = int(graph[i,1]) - 1 d = graph[i,2] dist_mtx[a,b] = d dist_mtx[b,a] = d ## set diagonal to 0 if x < n: dist_mtx[x,x] = 0.0 @timeout_decorator.timeout(10800) def distance_matrix(graph, n): ## copy data to device graph_device = cuda.to_device(graph) dist_mtx_device = cuda.device_array(shape=(n,n)) ## calculate distance matrix graph2dist[dimGrid, dimBlock](graph_device, dist_mtx_device, n) ## copy data to host dist_mtx_host = dist_mtx_device.copy_to_host() return dist_mtx_host ##******** Floyd–Warshall distance ********## @cuda.jit def all_pair_floyd(matrix, k, n): x, y = cuda.grid(2) if x < n and y < n: matrix[x,y] = min(matrix[x,y], matrix[x,k] + matrix[k,y]) @timeout_decorator.timeout(10800) def floyd_distance(matrix, n): ## copy data to device matrix_device = cuda.to_device(matrix) ## calculate hedetniemi distance for k in range(n): all_pair_floyd[dimGrid, dimBlock](matrix_device, k, n) ## copy data to host matrix_host = matrix_device.copy_to_host() return matrix_host ##******** Compile ********## d = [[1, 2, 30], [1, 4, 30], [1, 9, 40], [2, 3, 25], [2, 4, 40], [3, 4, 50], [4, 5, 30], [4, 6, 20], [5, 7, 25], [6, 7, 20], [6, 9, 20], [7, 8, 25], [8, 9, 20]] n = 9 dimGrid, dimBlock = get_cuda_execution_config(n, 3) dist_mtx = distance_matrix(np.array(d), n) mtx_a_t = floyd_distance(dist_mtx, n) ##******** Main ********## with open('floyd_results_nb_cuda.csv', 'w') as fw: fw.write('bpg,tpb,nodes,degree,nb_cuda_t1,nb_cuda_t2\n') fw.flush() for k in NUM_THREADS: for i in nodes: dimGrid, dimBlock = get_cuda_execution_config(i, k) if dimGrid[0] > 65535: continue for j in degree: data = locals()['data_n' + str(i) + '_d' + str(j)] ## distance matrix try: start = default_timer() dist_mtx = distance_matrix(np.array(data), i) stop = default_timer() cuda_t1 = stop - start except: cuda_t1 = float('inf') ## floyd distance try: start = default_timer() mtx_a_t_floyd = floyd_distance(dist_mtx, i) stop = default_timer() cuda_floyd_t2 = stop - start ## print shortest path matrix with open('floyd_dist_nb_cuda' + '_n' + str(i) + '_d' + str(j) + '_tpb' + str(k) + '.txt', 'w') as f: f.write('\n'.join(['\t'.join([str(round(cell,2)) for cell in row]) for row in mtx_a_t_floyd.tolist()])) except: cuda_floyd_t2 = float('inf') fw.write(str(dimGrid) + ',' + str(dimBlock) + ',' + str(i) + ',' + str(j) + ',' + str(cuda_t1) + ',' + str(cuda_floyd_t2) + '\n') fw.flush()
25.95
137
0.570568
79522a5bb5e8c3f38baa9fae104ace2cce30cc55
67,697
py
Python
mmtbx/refinement/tst_occupancy_selections.py
mphancock/cctbx_project
ec8a239c5bcee9c9b2d1c6c95dc3fff2580bbb85
[ "BSD-3-Clause-LBNL" ]
2
2021-03-18T12:31:57.000Z
2022-03-14T06:27:06.000Z
mmtbx/refinement/tst_occupancy_selections.py
mphancock/cctbx_project
ec8a239c5bcee9c9b2d1c6c95dc3fff2580bbb85
[ "BSD-3-Clause-LBNL" ]
null
null
null
mmtbx/refinement/tst_occupancy_selections.py
mphancock/cctbx_project
ec8a239c5bcee9c9b2d1c6c95dc3fff2580bbb85
[ "BSD-3-Clause-LBNL" ]
1
2021-03-26T12:52:30.000Z
2021-03-26T12:52:30.000Z
from __future__ import absolute_import, division, print_function from mmtbx.monomer_library import pdb_interpretation from mmtbx.refinement.occupancies import occupancy_selections from mmtbx.command_line import fmodel import mmtbx.model from iotbx import file_reader import iotbx.pdb import iotbx.phil from libtbx.test_utils import approx_equal, Exception_expected from libtbx.utils import format_cpu_times, null_out, Sorry import libtbx.load_env from six.moves import cStringIO as StringIO import os import sys from six.moves import zip def extract_serials(atoms, occ_groups): r = [] # for atom in atoms: # assert atom.serial == atom.i_seq, "%s %d" % (atom.serial, atom.i_seq) for i in occ_groups: ri = [] for j in i: ri.append([int(atoms[k].serial) for k in j]) r.append(ri) return r def make_up_other_constrained_groups_obj(selections): result = [] class foo: def __init__(self, selection): self.selection=selection for sel in selections: result.append( foo(selection = sel) ) return result def get_model(file_name, log): pdb_interpretation_params = iotbx.phil.parse( input_string=pdb_interpretation.grand_master_phil_str, process_includes=True).extract() pdb_interpretation_params.pdb_interpretation.sort_atoms=False pdb_inp = iotbx.pdb.input(file_name=file_name) return mmtbx.model.manager( model_input = pdb_inp, process_input = True, pdb_interpretation_params=pdb_interpretation_params, stop_for_unknowns = False, log=log) def get_model_str(strings, log): pdb_interpretation_params = iotbx.phil.parse( input_string=pdb_interpretation.grand_master_phil_str, process_includes=True).extract() pdb_interpretation_params.pdb_interpretation.sort_atoms=False pdb_inp = iotbx.pdb.input(lines=strings, source_info=None) return mmtbx.model.manager( model_input = pdb_inp, process_input = True, pdb_interpretation_params=pdb_interpretation_params, stop_for_unknowns = False, log=log) def exercise_00(verbose): pdb_file = libtbx.env.find_in_repositories( relative_path="phenix_regression/pdb/gocr.pdb", test=os.path.isfile) if (verbose): log = sys.stdout else: log = StringIO() model = get_model(pdb_file, log) base = [ [[2],[3]], [[6,7,8,9,10],[11,12,13,14,15]], [[16],[17]], [[24,25,26,27],[28,29,30,31]] ] # default res = occupancy_selections( model = model, as_flex_arrays = False) res = extract_serials(model.pdb_atoms, res) target = base[:] target.insert(3, [[21]]) target.insert(4, [[23]]) assert approx_equal(res, target) # default + add water res = occupancy_selections( model = model, add_water = True, as_flex_arrays = False) res = extract_serials(model.pdb_atoms, res) base_21_23 = target[:] target.extend([[[18]], [[19]], [[20]], [[22]]]) assert approx_equal(res, target) # 1 res = occupancy_selections( model = model, as_flex_arrays = False, other_individual_selection_strings = ['resseq 0 and not (altloc A or altloc B)']) res = extract_serials(model.pdb_atoms, res) target = base_21_23[:] target.extend([[[0]], [[1]], [[4]], [[5]]]) assert approx_equal(res, target) res = occupancy_selections( model = model, add_water = True, as_flex_arrays = False, other_individual_selection_strings = ['resseq 0 and not (altloc A or altloc B)']) res = extract_serials(model.pdb_atoms, res) target.extend([[[18]], [[19]], [[20]], [[22]]]) assert approx_equal(res, target) # 2 other_constrained_groups = make_up_other_constrained_groups_obj( selections = [ ['resseq 0 and (name S or name O1)'], ['resseq 0 and (name O3 or name O4)'] ]) res = occupancy_selections( model = model, as_flex_arrays = False, other_constrained_groups = other_constrained_groups) res = extract_serials(model.pdb_atoms, res) target = base_21_23[:] target.extend([[[0, 1]], [[4, 5]]]) assert approx_equal(res, target) other_constrained_groups = make_up_other_constrained_groups_obj( selections = [ ['resseq 0 and (name S or name O1)'], ['resseq 0 and (name O3 or name O4)'] ]) res = occupancy_selections( model = model, add_water = True, as_flex_arrays = False, other_constrained_groups = other_constrained_groups) res = extract_serials(model.pdb_atoms, res) target.extend([[[18]], [[19]], [[20]], [[22]]]) assert approx_equal(res, target) # 3 other_constrained_groups = make_up_other_constrained_groups_obj( selections = [ ['resseq 0 and (name O3 or name O4)'] ]) res = occupancy_selections( model = model, as_flex_arrays = False, other_individual_selection_strings = ['resseq 0 and (name S or name O1)'], other_constrained_groups = other_constrained_groups) res = extract_serials(model.pdb_atoms, res) target = base_21_23[:] target.extend([[[0]], [[1]], [[4, 5]]]) assert approx_equal(res, target) def exercise_01(verbose): pdb_file = libtbx.env.find_in_repositories( relative_path="phenix_regression/pdb/ala_h.pdb", test=os.path.isfile) if (verbose): log = sys.stdout else: log = StringIO() model = get_model(pdb_file, log) # base = [ [[0,1,2,3,4,10,12,14,16,18,20,22], [5,6,7,8,9,11,13,15,17,19,21,23]] ] res = occupancy_selections( model = model, as_flex_arrays = False) res = extract_serials(model.pdb_atoms, res) assert approx_equal(res, base) def exercise_02(verbose): pdb_file = libtbx.env.find_in_repositories( relative_path="phenix_regression/pdb/occ_mix1.pdb", test=os.path.isfile) if (verbose): log = sys.stdout else: log = StringIO() model = get_model(pdb_file, log) # base = [ [[0,1,2,3,4,5,6,7,8,9,10,11,12], [14,15,16,17,18,19,20,21,22,23,24,25,26]], [[13],[27]] ] res = occupancy_selections( model = model, as_flex_arrays = False) res = extract_serials(model.pdb_atoms, res) assert approx_equal(res, base) def exercise_03(verbose): pdb_file = libtbx.env.find_in_repositories( relative_path="phenix_regression/pdb/ala_hd.pdb", test=os.path.isfile) if (verbose): log = sys.stdout else: log = StringIO() model = get_model(pdb_file, log) # base = [ [[7]], [[8]], [[9],[12]], [[10],[13]], [[11],[14]] ] res = occupancy_selections( model = model, as_flex_arrays = False) res = extract_serials(model.pdb_atoms, res) assert approx_equal(res, base) def exercise_05(verbose): pdb_file = libtbx.env.find_in_repositories( relative_path="phenix_regression/pdb/ala_lys_arg_ser_tyr_neutron_hd.pdb", test=os.path.isfile) if (verbose): log = sys.stdout else: log = StringIO() model = get_model(pdb_file, log) # base = [ [[9],[12]], [[10],[13]], [[11],[14]], [[33],[37]], [[34],[38]], [[35],[39]], [[36],[40]], [[59],[65]], [[60],[66]], [[61],[67]], [[62],[68]], [[63],[69]], [[64],[70]], [[80],[82]], [[81],[83]], [[103],[105]], [[104],[106]]] res = occupancy_selections( model = model, as_flex_arrays = False) res = extract_serials(model.pdb_atoms, res) assert approx_equal(res, base) def exercise_06(verbose): pdb_file = libtbx.env.find_in_repositories( relative_path="phenix_regression/pdb/NAD_594_HD.pdb", test=os.path.isfile) if (verbose): log = sys.stdout else: log = StringIO() model = get_model(pdb_file, log) # base = [ [[62]], [[113]], [[65],[77]], [[66],[78]], [[67],[79]], [[68],[80]], [[69],[81]], [[70],[82]], [[71],[83]], [[72],[84]], [[73],[85]], [[74],[86]], [[75],[87]], [[76],[88]], [[124],[127]],[[125],[128]],[[126],[129]]] res = occupancy_selections( model = model, as_flex_arrays = False) assert approx_equal(res, base) def exercise_07(verbose): pdb_file = libtbx.env.find_in_repositories( relative_path="phenix_regression/pdb/gocr_1.pdb", test=os.path.isfile) if (verbose): log = sys.stdout else: log = StringIO() model = get_model(pdb_file, log) answer = [ [[0, 1, 2, 3, 4]] ] other_constrained_groups = make_up_other_constrained_groups_obj( selections = [ ['resseq 0'] ]) result = occupancy_selections( model = model, other_constrained_groups = other_constrained_groups, as_flex_arrays = False) assert approx_equal(result, answer) def exercise_08(verbose): pdb_file = libtbx.env.find_in_repositories( relative_path="phenix_regression/pdb/gocr_2.pdb", test=os.path.isfile) if (verbose): log = sys.stdout else: log = StringIO() model = get_model(pdb_file, log) answers = [ [ [[6,7,8,9,10],[11,12,13,14,15]], [[16],[17]], [[21]], [[23]], [[24,25,26,27],[28,29,30,31]], [[0,1,2,3,4,5]] ], [ [[4],[5]], [[16],[17]], [[21]], [[23]], [[24,25,26,27],[28,29,30,31]], [[6,7,8,9,10,11,12,13,14,15]] ], [ [[4],[5]], [[6,7,8,9,10],[11,12,13,14,15]], [[21]], [[23]], [[24,25,26,27],[28,29,30,31]], [[16,17]] ], [ [[4],[5]], [[6,7,8,9,10],[11,12,13,14,15]], [[16],[17]], [[21]], [[23]], [[24,25,26,27],[28,29,30,31]], [[18,19,20]] ], [ [[4],[5]], [[6,7,8,9,10],[11,12,13,14,15]], [[16],[17]], [[23]], [[24,25,26,27],[28,29,30,31]], [[21]] ], [ [[4],[5]], [[6,7,8,9,10],[11,12,13,14,15]], [[16],[17]], [[21]], [[23]], [[24,25,26,27],[28,29,30,31]], [[22]] ], [ [[4],[5]], [[6,7,8,9,10],[11,12,13,14,15]], [[16],[17]], [[21]], [[23,24,25,26,27,28,29,30,31]] ], [ [[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31]] ] ] group_selections = ['resseq 0', 'resseq 1', 'resseq 2', 'resseq 3', 'resseq 4', 'resseq 5', 'resseq 6', 'resseq 0:6'] for group_selection, answer in zip(group_selections, answers): other_constrained_groups = make_up_other_constrained_groups_obj( selections = [ [group_selection] ]) result = occupancy_selections( model = model, other_constrained_groups = other_constrained_groups, as_flex_arrays = False) assert approx_equal(result, answer) def exercise_09(verbose): pdb_file = libtbx.env.find_in_repositories( relative_path="phenix_regression/pdb/gocr_2.pdb", test=os.path.isfile) if (verbose): log = sys.stdout else: log = StringIO() model = get_model(pdb_file, log) answers = [ [ [[6,7,8,9,10],[11,12,13,14,15]], [[16],[17]], [[21]], [[23]], [[24,25,26,27],[28,29,30,31]], [[0]], [[1]], [[2]], [[3]], [[4]], [[5]] ], [ [[4],[5]], [[16],[17]], [[21]], [[23]], [[24,25,26,27],[28,29,30,31]], [[6]], [[7]], [[8]], [[9]], [[10]], [[11]], [[12]], [[13]], [[14]], [[15]] ], [ [[4],[5]], [[6,7,8,9,10],[11,12,13,14,15]], [[21]], [[23]], [[24,25,26,27],[28,29,30,31]], [[16]], [[17]] ], [ [[4],[5]], [[6,7,8,9,10],[11,12,13,14,15]], [[16],[17]], [[21]], [[23]], [[24,25,26,27],[28,29,30,31]], [[18]], [[19]], [[20]] ], [ [[4],[5]], [[6,7,8,9,10],[11,12,13,14,15]], [[16],[17]], [[23]], [[24,25,26,27],[28,29,30,31]], [[21]] ], [ [[4],[5]], [[6,7,8,9,10],[11,12,13,14,15]], [[16],[17]], [[21]], [[23]], [[24,25,26,27],[28,29,30,31]], [[22]] ], [ [[4],[5]], [[6,7,8,9,10],[11,12,13,14,15]], [[16],[17]], [[21]], [[23]], [[24]], [[25]], [[26]], [[27]], [[28]], [[29]], [[30]], [[31]] ] ] individual_selections = ['resseq 0', 'resseq 1', 'resseq 2', 'resseq 3', 'resseq 4', 'resseq 5', 'resseq 6', 'resseq 0:6'] for individual_selection, answer in zip(individual_selections, answers): result = occupancy_selections( model = model, other_individual_selection_strings = [individual_selection], as_flex_arrays = False) assert approx_equal(result, answer) def exercise_10(verbose): pdb_file = libtbx.env.find_in_repositories( relative_path="phenix_regression/pdb/gocr.pdb", test=os.path.isfile) if (verbose): log = sys.stdout else: log = StringIO() model = get_model(pdb_file, log) e = None try: other_constrained_groups = make_up_other_constrained_groups_obj( selections = [ ['resseq 0'] ]) result = occupancy_selections( model = model, other_constrained_groups = other_constrained_groups, other_individual_selection_strings = ['resseq 0'], as_flex_arrays = False) except Exception as e: assert str(e) == "Duplicate selection: same atoms selected for individual and group occupancy refinement." def exercise_11(verbose): pdb_file = libtbx.env.find_in_repositories( relative_path="phenix_regression/pdb/gocr.pdb", test=os.path.isfile) if (verbose): log = sys.stdout else: log = StringIO() model = get_model(pdb_file, log) e = None try: result = occupancy_selections( model = model, remove_selection = ['resseq 0'], other_individual_selection_strings = ['resseq 0'], as_flex_arrays = False) except Exception as e: assert str(e) == "Duplicate selection: occupancies of same atoms selected to be fixed and to be refined." e = None try: other_constrained_groups = make_up_other_constrained_groups_obj( selections = [ ['resseq 0'] ]) result = occupancy_selections( model = model, other_constrained_groups = other_constrained_groups, remove_selection = ['resseq 0'], as_flex_arrays = False) except Exception as e: assert str(e) == "Duplicate selection: occupancies of same atoms selected to be fixed and to be refined." def exercise_12(verbose): pdb_file = libtbx.env.find_in_repositories( relative_path="phenix_regression/pdb/gocr_2.pdb", test=os.path.isfile) if (verbose): log = sys.stdout else: log = StringIO() model = get_model(pdb_file, log) answer = [ [[4],[5]], [[16],[17]], [[21]], [[23,24,25,26,27,28,29,30,31]] ] other_constrained_groups = make_up_other_constrained_groups_obj( selections = [ ['resseq 6'] ]) result = occupancy_selections( model = model, remove_selection = ['resseq 1'], other_constrained_groups = other_constrained_groups, as_flex_arrays = False) assert approx_equal(result, answer) # answer = [ [[4],[5]], [[16],[17]], [[21]], [[23]], [[24]], [[25]], [[26]], [[27]], [[28]], [[29]], [[30]], [[31]] ] result = occupancy_selections( model = model, remove_selection = ['resseq 1'], other_individual_selection_strings = ['resseq 6'], as_flex_arrays = False) assert approx_equal(result, answer) def exercise_13(verbose): pdb_file = libtbx.env.find_in_repositories( relative_path="phenix_regression/pdb/lys_1.pdb", test=os.path.isfile) if (verbose): log = sys.stdout else: log = StringIO() model = get_model(pdb_file, log) answer = [ [[8],[9]], [[10]], [[0],[1]], [[2],[3]] ] other_constrained_groups = make_up_other_constrained_groups_obj( selections = [ ['chain A and resseq 1 and name N','chain A and resseq 1 and name CA'], ['chain A and resseq 1 and name C','chain A and resseq 1 and name O'] ] ) result = occupancy_selections( model = model, other_constrained_groups = other_constrained_groups, as_flex_arrays = False) assert approx_equal(result, answer) def exercise_14(verbose): pdb_file = libtbx.env.find_in_repositories( relative_path="phenix_regression/pdb/lys_1.pdb", test=os.path.isfile) if (verbose): log = sys.stdout else: log = StringIO() model = get_model(pdb_file, log) answer = [ [[8],[9]], [[10]], [[0,1,2],[3,4]], [[5],[6]], [[7]] ] other_constrained_groups = make_up_other_constrained_groups_obj( selections = [ ['chain A and resseq 1 and (name N or name CA or name C)', 'chain A and resseq 1 and (name O or name CB)'], ['chain A and resseq 1 and name CG','chain A and resseq 1 and name CD'], ['chain A and resseq 1 and name CE'] ] ) result = occupancy_selections( model = model, other_constrained_groups = other_constrained_groups, as_flex_arrays = False) assert approx_equal(result, answer) def exercise_15(verbose): pdb_file = libtbx.env.find_in_repositories( relative_path="phenix_regression/pdb/lys_1.pdb", test=os.path.isfile) if (verbose): log = sys.stdout else: log = StringIO() model = get_model(pdb_file, log) answer = [ [[8],[9]], [[0,1,2],[10]], [[5,7]] ] other_constrained_groups = make_up_other_constrained_groups_obj( selections = [ ['chain A and resseq 1 and (name N or name CA or name C)', 'chain S and resseq 1'], ['chain A and resseq 1 and name CG or chain A and resseq 1 and name CE'] ] ) result = occupancy_selections( model = model, other_constrained_groups = other_constrained_groups, as_flex_arrays = False) assert approx_equal(result, answer) def exercise_16(verbose): pdb_file = libtbx.env.find_in_repositories( relative_path="phenix_regression/pdb/lys_1.pdb", test=os.path.isfile) if (verbose): log = sys.stdout else: log = StringIO() model = get_model(pdb_file, log) answer = [ [[8],[9],[10]] ] other_constrained_groups = make_up_other_constrained_groups_obj( selections = [ ['chain A and resseq 1 and name NZ and altloc A', 'chain A and resseq 1 and name NZ and altloc B', 'chain S and resseq 1'] ] ) result = occupancy_selections( model = model, other_constrained_groups = other_constrained_groups, as_flex_arrays = False) assert approx_equal(result, answer) def exercise_17(verbose): pdb_file = libtbx.env.find_in_repositories( relative_path="phenix_regression/pdb/lys_1.pdb", test=os.path.isfile) if (verbose): log = sys.stdout else: log = StringIO() model = get_model(pdb_file, log) answer = [ [[8,9,10]] ] other_constrained_groups = make_up_other_constrained_groups_obj( selections = [ ['chain A and resseq 1 and name NZ and altloc A or chain A and resseq 1 and name NZ and altloc B or chain S and resseq 1'] ] ) result = occupancy_selections( model = model, other_constrained_groups = other_constrained_groups, as_flex_arrays = False) assert approx_equal(result, answer) def exercise_18(verbose): pdb_file = libtbx.env.find_in_repositories( relative_path="phenix_regression/pdb/lys_2.pdb", test=os.path.isfile) if (verbose): log = sys.stdout else: log = StringIO() model = get_model(pdb_file, log) answer = [ [[8],[9],[10]] ] other_constrained_groups = make_up_other_constrained_groups_obj( selections = [ ['chain A and resseq 1 and name NZ and altloc A','chain A and resseq 1 and name NZ and altloc B','chain S and resseq 1 and altloc C']] ) result = occupancy_selections( model = model, other_constrained_groups = other_constrained_groups, as_flex_arrays = False) assert approx_equal(result, answer) def exercise_19(verbose): pdb_file = libtbx.env.find_in_repositories( relative_path="phenix_regression/pdb/lys_1.pdb", test=os.path.isfile) if (verbose): log = sys.stdout else: log = StringIO() model = get_model(pdb_file, log) answer = [ [[8],[9],[10]] ] tmp = "chain A and resseq 1 and name XX and altloc A" other_constrained_groups = make_up_other_constrained_groups_obj( selections = [[ tmp, 'chain A and resseq 1 and name NZ and altloc B', 'chain S and resseq 1']]) try: result = occupancy_selections( model = model, other_constrained_groups = other_constrained_groups, as_flex_arrays = False) except Exception as e: assert str(e) == \ 'Selection string results in empty selection (selects no atoms): "%s"' \ % tmp def exercise_20(verbose): pdb_file = libtbx.env.find_in_repositories( relative_path="phenix_regression/pdb/ile_2conf_h.pdb", test=os.path.isfile) if (verbose): log = sys.stdout else: log = StringIO() model = get_model(pdb_file, log) answer = [ [[4,5,6,7,8,9,10,11,12,13,14,15,16,17,18], [19,20,21,22,23,24,25,26,27,28,29,30,31,32,33]] ] result = occupancy_selections( model = model, as_flex_arrays = False) assert approx_equal(result, answer) def exercise_21(verbose): pdb_file = libtbx.env.find_in_repositories( relative_path="phenix_regression/pdb/gocr_3.pdb", test=os.path.isfile) if (verbose): log = sys.stdout else: log = StringIO() model = get_model(pdb_file, log) # base = [[[2], [3]], [[6, 7, 8, 9, 10], [11, 12, 13, 14, 15]], [[16], [17]], [[21]], [[23]], [[24, 25, 26, 27], [28, 29, 30, 31]], [[36]], [[47]], [[48]], [[49]], [[50]], [[51]], [[53]], [[56, 57, 58, 59]], [[60, 61, 62, 63]], [[64, 65, 66, 67, 68]], [[37], [40]], [[38], [41]], [[39], [42]], [[43, 44, 45, 46]]] res = occupancy_selections( model = model, as_flex_arrays = False) res = extract_serials(model.pdb_atoms, res) assert approx_equal(res, base) def exercise_22(verbose): pdb_file = libtbx.env.find_in_repositories( relative_path="phenix_regression/pdb/gocr_4.pdb", test=os.path.isfile) if (verbose): log = sys.stdout else: log = StringIO() model = get_model(pdb_file, log) # base = [[[0, 1, 2, 3, 8, 9, 10, 11, 12], [4, 5, 6, 7, 13, 14, 15, 16, 17]]] res = occupancy_selections( model = model, as_flex_arrays = False) res = extract_serials(model.pdb_atoms, res) assert approx_equal(res, base) def exercise_23(verbose): pdb_file = libtbx.env.find_in_repositories( relative_path="phenix_regression/pdb/gocr_5.pdb", test=os.path.isfile) if (verbose): log = sys.stdout else: log = StringIO() model = get_model(pdb_file, log) # base = [[[1, 2, 3, 4, 5, 6]], [[7, 8, 9, 10, 11], [12, 13, 14, 15, 16]]] res = occupancy_selections( model = model, as_flex_arrays = False) res = extract_serials(model.pdb_atoms, res) assert approx_equal(res, base) def exercise_24(verbose): pdb_str1="""\ CRYST1 10.707 11.101 13.552 90.00 90.00 90.00 P 1 ATOM 0 N AALA A 9 3.452 6.807 3.508 0.19 9.33 A N ATOM 1 CA AALA A 9 4.572 6.204 4.211 0.19 9.82 A C ATOM 2 C AALA A 9 4.165 5.990 5.664 0.19 10.34 A C ATOM 3 O AALA A 9 3.000 6.165 6.021 0.19 10.96 A O ATOM 4 CB AALA A 9 5.792 7.098 4.116 0.19 10.31 A C ATOM 5 H AALA A 9 3.466 7.667 3.487 0.19 8.78 A H ATOM 6 HA AALA A 9 4.802 5.351 3.810 0.19 9.23 A H ATOM 7 HB1AALA A 9 6.533 6.686 4.588 0.19 9.91 A H ATOM 8 HB2AALA A 9 6.031 7.221 3.184 0.19 9.91 A H ATOM 9 HB3AALA A 9 5.594 7.960 4.515 0.19 9.91 A H ATOM 10 N BALA A 9 3.348 6.697 3.518 0.28 8.28 A N ATOM 11 CA BALA A 9 4.461 6.052 4.195 0.28 9.14 A C ATOM 12 C BALA A 9 4.138 5.964 5.683 0.28 9.84 A C ATOM 13 O BALA A 9 3.003 6.215 6.089 0.28 10.68 A O ATOM 14 CB BALA A 9 5.726 6.829 3.952 0.28 9.20 A C ATOM 15 H BALA A 9 3.422 7.551 3.454 0.28 8.78 A H ATOM 16 HA BALA A 9 4.597 5.156 3.849 0.28 9.23 A H ATOM 17 HB1BALA A 9 6.465 6.395 4.406 0.28 9.91 A H ATOM 18 HB2BALA A 9 5.907 6.863 3.000 0.28 9.91 A H ATOM 19 HB3BALA A 9 5.623 7.731 4.294 0.28 9.91 A H ATOM 20 N CALA A 9 3.608 6.763 3.402 0.28 8.32 A N ATOM 21 CA CALA A 9 4.617 6.060 4.177 0.28 9.56 A C ATOM 22 C CALA A 9 4.219 6.081 5.651 0.28 10.15 A C ATOM 23 O CALA A 9 3.126 6.528 6.006 0.28 10.64 A O ATOM 24 CB CALA A 9 5.981 6.684 3.973 0.28 10.39 A C ATOM 25 H CALA A 9 3.801 7.579 3.210 0.28 8.78 A H ATOM 26 HA CALA A 9 4.671 5.139 3.876 0.28 9.23 A H ATOM 27 HB1CALA A 9 6.639 6.202 4.497 0.28 9.91 A H ATOM 28 HB2CALA A 9 6.220 6.639 3.034 0.28 9.91 A H ATOM 29 HB3CALA A 9 5.959 7.611 4.257 0.28 9.91 A H ATOM 30 N DALA A 9 3.518 6.930 3.530 0.25 8.78 A N ATOM 31 CA DALA A 9 4.639 6.333 4.232 0.25 9.23 A C ATOM 32 C DALA A 9 4.203 6.093 5.674 0.25 10.10 A C ATOM 33 O DALA A 9 3.051 6.346 6.031 0.25 10.72 A O ATOM 34 CB DALA A 9 5.837 7.255 4.177 0.25 9.91 A C ATOM 35 H DALA A 9 3.490 7.789 3.568 0.25 8.78 A H ATOM 36 HA DALA A 9 4.898 5.494 3.819 0.25 9.23 A H ATOM 37 HB1DALA A 9 6.581 6.848 4.648 0.25 9.91 A H ATOM 38 HB2DALA A 9 6.086 7.408 3.252 0.25 9.91 A H ATOM 39 HB3DALA A 9 5.614 8.101 4.595 0.25 9.91 A H ATOM 40 N VAL A 10 5.119 5.606 6.502 1.00 11.13 A N ATOM 41 CA VAL A 10 4.846 5.470 7.925 1.00 12.50 A C ATOM 42 C VAL A 10 4.347 6.801 8.520 1.00 11.26 A C ATOM 43 O VAL A 10 4.763 7.871 8.095 1.00 11.53 A O ATOM 44 HA VAL A 10 4.118 4.835 8.017 1.00 12.50 A H ATOM 45 CB AVAL A 10 5.994 4.806 8.722 0.21 14.17 A C ATOM 46 CG1AVAL A 10 6.640 3.699 7.889 0.21 14.17 A C ATOM 47 CG2AVAL A 10 7.005 5.815 9.197 0.21 15.20 A C ATOM 48 H AVAL A 10 5.926 5.421 6.269 0.19 11.13 A H ATOM 49 HB AVAL A 10 5.616 4.404 9.520 0.21 14.91 A H ATOM 50 HG11AVAL A 10 7.358 3.289 8.396 0.21 16.29 A H ATOM 51 HG12AVAL A 10 5.975 3.028 7.671 0.21 16.29 A H ATOM 52 HG13AVAL A 10 6.998 4.077 7.070 0.21 16.29 A H ATOM 53 HG21AVAL A 10 7.707 5.363 9.691 0.21 15.63 A H ATOM 54 HG22AVAL A 10 7.391 6.271 8.433 0.21 15.63 A H ATOM 55 HG23AVAL A 10 6.570 6.462 9.774 0.21 15.63 A H ATOM 56 CB BVAL A 10 6.135 4.987 8.645 0.79 14.91 A C ATOM 57 CG1BVAL A 10 6.081 5.228 10.144 0.79 16.28 A C ATOM 58 CG2BVAL A 10 6.351 3.507 8.360 0.79 15.63 A C ATOM 59 H BVAL A 10 5.928 5.441 6.263 0.28 11.13 A H ATOM 60 HB BVAL A 10 6.879 5.504 8.299 0.79 14.91 A H ATOM 61 HG11BVAL A 10 6.902 4.913 10.552 0.79 16.29 A H ATOM 62 HG12BVAL A 10 5.978 6.177 10.316 0.79 16.29 A H ATOM 63 HG13BVAL A 10 5.328 4.748 10.522 0.79 16.29 A H ATOM 64 HG21BVAL A 10 7.156 3.205 8.809 0.79 15.63 A H ATOM 65 HG22BVAL A 10 5.590 3.000 8.685 0.79 15.63 A H ATOM 66 HG23BVAL A 10 6.445 3.372 7.404 0.79 15.63 A H ATOM 67 H CVAL A 10 5.907 5.353 6.270 0.28 11.13 A H ATOM 68 H DVAL A 10 5.903 5.349 6.260 0.25 11.13 A H TER END """ pdb_str2="""\ CRYST1 10.707 11.101 13.552 90.00 90.00 90.00 P 1 ATOM 0 N AALA A 9 3.452 6.807 3.508 0.19 9.33 A N ATOM 1 CA AALA A 9 4.572 6.204 4.211 0.19 9.82 A C ATOM 2 C AALA A 9 4.165 5.990 5.664 0.19 10.34 A C ATOM 3 O AALA A 9 3.000 6.165 6.021 0.19 10.96 A O ATOM 4 CB AALA A 9 5.792 7.098 4.116 0.19 10.31 A C ATOM 5 D AALA A 9 3.466 7.667 3.487 0.19 8.78 A D ATOM 6 DA AALA A 9 4.802 5.351 3.810 0.19 9.23 A D ATOM 7 DB1AALA A 9 6.533 6.686 4.588 0.19 9.91 A D ATOM 8 DB2AALA A 9 6.031 7.221 3.184 0.19 9.91 A D ATOM 9 DB3AALA A 9 5.594 7.960 4.515 0.19 9.91 A D ATOM 10 N BALA A 9 3.348 6.697 3.518 0.28 8.28 A N ATOM 11 CA BALA A 9 4.461 6.052 4.195 0.28 9.14 A C ATOM 12 C BALA A 9 4.138 5.964 5.683 0.28 9.84 A C ATOM 13 O BALA A 9 3.003 6.215 6.089 0.28 10.68 A O ATOM 14 CB BALA A 9 5.726 6.829 3.952 0.28 9.20 A C ATOM 15 D BALA A 9 3.422 7.551 3.454 0.28 8.78 A D ATOM 16 DA BALA A 9 4.597 5.156 3.849 0.28 9.23 A D ATOM 17 DB1BALA A 9 6.465 6.395 4.406 0.28 9.91 A D ATOM 18 DB2BALA A 9 5.907 6.863 3.000 0.28 9.91 A D ATOM 19 DB3BALA A 9 5.623 7.731 4.294 0.28 9.91 A D ATOM 20 N CALA A 9 3.608 6.763 3.402 0.28 8.32 A N ATOM 21 CA CALA A 9 4.617 6.060 4.177 0.28 9.56 A C ATOM 22 C CALA A 9 4.219 6.081 5.651 0.28 10.15 A C ATOM 23 O CALA A 9 3.126 6.528 6.006 0.28 10.64 A O ATOM 24 CB CALA A 9 5.981 6.684 3.973 0.28 10.39 A C ATOM 25 D CALA A 9 3.801 7.579 3.210 0.28 8.78 A D ATOM 26 DA CALA A 9 4.671 5.139 3.876 0.28 9.23 A D ATOM 27 DB1CALA A 9 6.639 6.202 4.497 0.28 9.91 A D ATOM 28 DB2CALA A 9 6.220 6.639 3.034 0.28 9.91 A D ATOM 29 DB3CALA A 9 5.959 7.611 4.257 0.28 9.91 A D ATOM 30 N DALA A 9 3.518 6.930 3.530 0.25 8.78 A N ATOM 31 CA DALA A 9 4.639 6.333 4.232 0.25 9.23 A C ATOM 32 C DALA A 9 4.203 6.093 5.674 0.25 10.10 A C ATOM 33 O DALA A 9 3.051 6.346 6.031 0.25 10.72 A O ATOM 34 CB DALA A 9 5.837 7.255 4.177 0.25 9.91 A C ATOM 35 D DALA A 9 3.490 7.789 3.568 0.25 8.78 A D ATOM 36 DA DALA A 9 4.898 5.494 3.819 0.25 9.23 A D ATOM 37 DB1DALA A 9 6.581 6.848 4.648 0.25 9.91 A D ATOM 38 DB2DALA A 9 6.086 7.408 3.252 0.25 9.91 A D ATOM 39 DB3DALA A 9 5.614 8.101 4.595 0.25 9.91 A D ATOM 40 N VAL A 10 5.119 5.606 6.502 1.00 11.13 A N ATOM 41 CA VAL A 10 4.846 5.470 7.925 1.00 12.50 A C ATOM 42 C VAL A 10 4.347 6.801 8.520 1.00 11.26 A C ATOM 43 O VAL A 10 4.763 7.871 8.095 1.00 11.53 A O ATOM 44 HA VAL A 10 4.118 4.835 8.017 1.00 12.50 A D ATOM 45 CB AVAL A 10 5.994 4.806 8.722 0.21 14.17 A C ATOM 46 CG1AVAL A 10 6.640 3.699 7.889 0.21 14.17 A C ATOM 47 CG2AVAL A 10 7.005 5.815 9.197 0.21 15.20 A C ATOM 48 D AVAL A 10 5.926 5.421 6.269 0.19 11.13 A D ATOM 49 DB AVAL A 10 5.616 4.404 9.520 0.21 14.91 A D ATOM 50 DG11AVAL A 10 7.358 3.289 8.396 0.21 16.29 A D ATOM 51 DG12AVAL A 10 5.975 3.028 7.671 0.21 16.29 A D ATOM 52 DG13AVAL A 10 6.998 4.077 7.070 0.21 16.29 A D ATOM 53 DG21AVAL A 10 7.707 5.363 9.691 0.21 15.63 A D ATOM 54 DG22AVAL A 10 7.391 6.271 8.433 0.21 15.63 A D ATOM 55 DG23AVAL A 10 6.570 6.462 9.774 0.21 15.63 A D ATOM 56 CB BVAL A 10 6.135 4.987 8.645 0.79 14.91 A C ATOM 57 CG1BVAL A 10 6.081 5.228 10.144 0.79 16.28 A C ATOM 58 CG2BVAL A 10 6.351 3.507 8.360 0.79 15.63 A C ATOM 59 D BVAL A 10 5.928 5.441 6.263 0.28 11.13 A D ATOM 60 DB BVAL A 10 6.879 5.504 8.299 0.79 14.91 A D ATOM 61 DG11BVAL A 10 6.902 4.913 10.552 0.79 16.29 A D ATOM 62 DG12BVAL A 10 5.978 6.177 10.316 0.79 16.29 A D ATOM 63 DG13BVAL A 10 5.328 4.748 10.522 0.79 16.29 A D ATOM 64 DG21BVAL A 10 7.156 3.205 8.809 0.79 15.63 A D ATOM 65 DG22BVAL A 10 5.590 3.000 8.685 0.79 15.63 A D ATOM 66 DG23BVAL A 10 6.445 3.372 7.404 0.79 15.63 A D ATOM 67 D CVAL A 10 5.907 5.353 6.270 0.28 11.13 A D ATOM 68 D DVAL A 10 5.903 5.349 6.260 0.25 11.13 A D TER END """ if (verbose): log = sys.stdout else: log = StringIO() for pdb_str in [pdb_str1, pdb_str2]: model = get_model_str(pdb_str, log) res = occupancy_selections( model = model, as_flex_arrays = False) answer = \ [[[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 48], [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 59], [20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 67], [30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 68]], [[45, 46, 47, 49, 50, 51, 52, 53, 54, 55], [56, 57, 58, 60, 61, 62, 63, 64, 65, 66]]] assert approx_equal(res, answer) def exercise_25(verbose): pdb_str="""\ CRYST1 10.707 11.101 13.552 90.00 90.00 90.00 P 1 ATOM 0 N ALA A 9 3.452 6.807 3.508 1.00 9.33 A N ATOM 1 CA ALA A 9 4.572 6.204 4.211 1.00 9.82 A C ATOM 2 C ALA A 9 4.165 5.990 5.664 1.00 10.34 A C ATOM 3 O ALA A 9 3.000 6.165 6.021 1.00 10.96 A O ATOM 4 CB ALA A 9 5.792 7.098 4.116 1.00 10.31 A C ATOM 5 HA ALA A 9 4.802 5.351 3.810 1.00 9.23 A H ATOM 6 HB1 ALA A 9 6.533 6.686 4.588 1.00 9.91 A H ATOM 7 HB2 ALA A 9 6.031 7.221 3.184 1.00 9.91 A H ATOM 8 HB3 ALA A 9 5.594 7.960 4.515 1.00 9.91 A H ATOM 9 H AALA A 9 3.466 7.667 3.487 0.40 8.78 A H ATOM 10 D BALA A 9 3.466 7.667 3.487 0.60 8.78 A D ATOM 11 N VAL A 10 5.119 5.606 6.502 1.00 11.13 A N ATOM 12 CA VAL A 10 4.846 5.470 7.925 1.00 12.50 A C ATOM 13 C VAL A 10 4.347 6.801 8.520 1.00 11.26 A C ATOM 14 O VAL A 10 4.763 7.871 8.095 1.00 11.53 A O ATOM 15 HA VAL A 10 4.118 4.835 8.017 1.00 12.50 A H ATOM 16 CB VAL A 10 5.994 4.806 8.722 1.00 14.17 A C ATOM 17 CG1 VAL A 10 6.640 3.699 7.889 1.00 14.17 A C ATOM 18 CG2 VAL A 10 7.005 5.815 9.197 1.00 15.20 A C ATOM 19 HB VAL A 10 5.616 4.404 9.520 1.00 14.91 A H ATOM 20 HG11 VAL A 10 7.358 3.289 8.396 1.00 16.29 A H ATOM 21 HG12 VAL A 10 5.975 3.028 7.671 1.00 16.29 A H ATOM 22 HG13 VAL A 10 6.998 4.077 7.070 1.00 16.29 A H ATOM 23 HG21 VAL A 10 7.707 5.363 9.691 1.00 15.63 A H ATOM 24 HG22 VAL A 10 7.391 6.271 8.433 1.00 15.63 A H ATOM 25 HG23 VAL A 10 6.570 6.462 9.774 1.00 15.63 A H ATOM 26 H AVAL A 10 5.926 5.421 6.269 0.30 11.13 A H ATOM 27 D BVAL A 10 5.926 5.421 6.269 0.70 11.13 A D TER END """ if (verbose): log = sys.stdout else: log = StringIO() model = get_model_str(pdb_str, log) res = occupancy_selections( model = model, as_flex_arrays = False) answer = [ [[9],[10]], [[26],[27]] ] assert approx_equal(res, answer) def exercise_26(verbose): pdb_str="""\ CRYST1 71.040 72.017 72.362 90.00 100.48 90.00 C 1 2 1 ATOM 96 N PRO L 5 2.689 13.877 15.387 1.00 13.65 N ATOM 97 CA PRO L 5 1.824 14.762 14.572 1.00 17.31 C ATOM 98 C PRO L 5 0.338 14.432 14.641 1.00 20.79 C ATOM 99 O PRO L 5 -0.466 15.376 14.642 1.00 20.37 O ATOM 100 CB PRO L 5 2.330 14.534 13.143 1.00 20.71 C ATOM 101 CG PRO L 5 3.772 14.184 13.326 1.00 20.25 C ATOM 102 CD PRO L 5 3.871 13.403 14.633 1.00 16.57 C ATOM 103 HA PRO L 5 1.981 15.805 14.846 1.00 17.31 H ATOM 104 HB2 PRO L 5 1.780 13.709 12.691 1.00 20.71 H ATOM 105 HB3 PRO L 5 2.220 15.447 12.558 1.00 20.71 H ATOM 106 HG2 PRO L 5 4.103 13.567 12.492 1.00 20.25 H ATOM 107 HG3 PRO L 5 4.363 15.098 13.382 1.00 20.25 H ATOM 108 HD2 PRO L 5 3.805 12.331 14.446 1.00 16.57 H ATOM 109 HD3 PRO L 5 4.791 13.666 15.154 1.00 16.57 H ATOM 110 N LEU L 6 -0.052 13.175 14.677 1.00 13.93 N ATOM 111 CA LEU L 6 -1.446 12.769 14.667 1.00 15.53 C ATOM 112 C LEU L 6 -2.079 12.634 16.029 1.00 17.57 C ATOM 113 O LEU L 6 -3.268 12.311 16.111 1.00 18.17 O ATOM 114 CB LEU L 6 -1.648 11.435 13.889 1.00 17.76 C ATOM 115 CG LEU L 6 -1.291 11.544 12.396 1.00 18.22 C ATOM 116 CD1 LEU L 6 -1.474 10.257 11.651 1.00 18.93 C ATOM 117 CD2 LEU L 6 -2.125 12.629 11.689 1.00 22.55 C ATOM 118 HA LEU L 6 -2.017 13.534 14.144 1.00 15.53 H ATOM 119 HB2 LEU L 6 -1.011 10.669 14.331 1.00 17.76 H ATOM 120 HB3 LEU L 6 -2.693 11.135 13.959 1.00 17.76 H ATOM 121 HG LEU L 6 -0.242 11.827 12.310 1.00 18.22 H ATOM 122 HD11 LEU L 6 -0.750 10.210 10.838 1.00 18.93 H ATOM 123 HD12 LEU L 6 -1.319 9.426 12.338 1.00 18.93 H ATOM 124 HD13 LEU L 6 -2.488 10.221 11.252 1.00 18.93 H ATOM 125 HD21 LEU L 6 -2.084 12.462 10.613 1.00 22.55 H ATOM 126 HD22 LEU L 6 -3.156 12.565 12.037 1.00 22.55 H ATOM 127 HD23 LEU L 6 -1.712 13.609 11.929 1.00 22.55 H ATOM 128 H ALEU L 6 0.595 12.387 14.715 0.50 13.93 H ATOM 129 D BLEU L 6 0.595 12.387 14.715 0.50 13.93 D """ if (verbose): log = sys.stdout else: log = StringIO() model = get_model_str(pdb_str, log) res = occupancy_selections( model = model, as_flex_arrays = False) answer = [ [[32], [33]] ] assert approx_equal(res, answer) def exercise_27(verbose): pdb_str="""\ CRYST1 64.714 39.225 38.645 90.00 117.38 90.00 C 1 2 1 ATOM 0 N SER A -1 20.605 9.913 24.660 1.00 32.98 N ATOM 1 CA SER A -1 21.415 10.057 23.431 1.00 25.22 C ATOM 2 C SER A -1 20.514 10.247 22.233 1.00 25.05 C ATOM 3 O SER A -1 19.332 9.926 22.266 1.00 28.08 O ATOM 4 CB SER A -1 22.253 8.810 23.194 1.00 28.97 C ATOM 5 OG SER A -1 21.417 7.708 22.900 1.00 37.21 O ATOM 6 H1 SER A -1 19.896 10.449 24.612 1.00 38.17 H ATOM 7 H2 SER A -1 20.335 9.069 24.737 1.00 27.38 H ATOM 8 H3 SER A -1 21.098 10.134 25.368 1.00 38.75 H ATOM 9 HA SER A -1 21.997 10.829 23.514 1.00 12.22 H ATOM 10 HB2 SER A -1 22.844 8.970 22.440 1.00 22.78 H ATOM 11 HB3 SER A -1 22.771 8.614 23.990 1.00 30.47 H ATOM 12 HG SER A -1 21.872 7.007 22.826 1.00 42.35 H ATOM 13 N AMET A 0 21.097 10.723 21.147 0.49 20.67 N ATOM 14 CA AMET A 0 20.340 10.870 19.929 0.49 21.49 C ATOM 15 C AMET A 0 21.236 10.795 18.720 0.49 18.70 C ATOM 16 O AMET A 0 22.394 11.216 18.750 0.49 19.47 O ATOM 17 CB AMET A 0 19.569 12.183 19.945 0.49 22.62 C ATOM 18 CG AMET A 0 20.423 13.414 20.138 0.49 24.87 C ATOM 19 SD AMET A 0 19.580 14.932 19.650 0.49 29.00 S ATOM 20 CE AMET A 0 17.946 14.760 20.377 0.49 36.23 C ATOM 21 H AMET A 0 21.920 10.964 21.095 0.49 28.25 H ATOM 22 HA AMET A 0 19.697 10.146 19.870 0.49 7.25 H ATOM 23 HB2AMET A 0 19.093 12.280 19.105 0.49 13.51 H ATOM 24 HB3AMET A 0 18.941 12.141 20.681 0.49 7.62 H ATOM 25 HG2AMET A 0 20.671 13.490 21.072 0.49 26.02 H ATOM 26 HG3AMET A 0 21.219 13.333 19.589 0.49 30.87 H ATOM 27 HE1AMET A 0 17.284 14.819 19.669 0.49 20.79 H ATOM 28 HE2AMET A 0 17.863 13.908 20.829 0.49 8.45 H ATOM 29 HE3AMET A 0 17.812 15.481 21.012 0.49 30.25 H ATOM 30 N BMET A 0 21.082 10.809 21.171 0.51 21.19 N ATOM 31 CA BMET A 0 20.368 11.023 19.923 0.51 23.13 C ATOM 32 C BMET A 0 21.273 10.654 18.766 0.51 21.10 C ATOM 33 O BMET A 0 22.496 10.703 18.893 0.51 19.93 O ATOM 34 CB BMET A 0 19.961 12.488 19.782 0.51 27.15 C ATOM 35 CG BMET A 0 19.070 12.993 20.889 0.51 29.67 C ATOM 36 SD BMET A 0 18.685 14.739 20.684 0.51 41.63 S ATOM 37 CE BMET A 0 17.734 15.043 22.171 0.51 35.23 C ATOM 38 HA BMET A 0 19.568 10.476 19.897 0.51 36.28 H ATOM 39 HB2BMET A 0 20.762 13.035 19.778 0.51 8.59 H ATOM 40 HB3BMET A 0 19.485 12.602 18.945 0.51 27.25 H ATOM 41 HG2BMET A 0 18.236 12.497 20.877 0.51 21.33 H ATOM 42 HG3BMET A 0 19.519 12.877 21.741 0.51 34.36 H ATOM 43 HE1BMET A 0 17.141 15.795 22.018 0.51 42.08 H ATOM 44 HE2BMET A 0 17.217 14.249 22.380 0.51 22.21 H ATOM 45 HE3BMET A 0 18.343 15.241 22.899 0.51 40.99 H """ if (verbose): log = sys.stdout else: log = StringIO() model = get_model_str(pdb_str, log) res = occupancy_selections( model = model, as_flex_arrays = False) answer = [[[13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29], [30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45]]] assert approx_equal(res, answer) def exercise_28(verbose): pdb_str="""\ CRYST1 64.360 64.360 46.038 90.00 90.00 120.00 P 63 ATOM 0 N ASP A 48 8.896 25.394 -7.791 1.00 8.05 N ATOM 1 CA ASP A 48 8.495 26.452 -6.936 1.00 8.42 C ATOM 2 C ASP A 48 8.287 26.047 -5.477 1.00 8.20 C ATOM 3 O ASP A 48 8.309 26.881 -4.579 1.00 10.68 O ATOM 4 CB ASP A 48 7.216 27.151 -7.426 1.00 9.40 C ATOM 5 CG ASP A 48 7.457 27.744 -8.791 1.00 10.91 C ATOM 6 OD1 ASP A 48 8.234 28.729 -8.836 1.00 16.64 O ATOM 7 OD2 ASP A 48 6.845 27.293 -9.764 1.00 12.53 O ATOM 8 HA ASP A 48 9.193 27.122 -6.935 1.00 8.42 H ATOM 9 HB2 ASP A 48 6.494 26.507 -7.490 1.00 9.40 H ATOM 10 HB3 ASP A 48 6.981 27.867 -6.815 1.00 9.40 H ATOM 11 H AASP A 48 8.303 25.156 -8.367 0.50 8.04 H ATOM 12 H BASP A 48 8.242 25.041 -8.223 0.50 8.04 H ATOM 13 N ALEU A 49 8.083 24.740 -5.245 0.79 7.34 N ATOM 14 CA ALEU A 49 7.817 24.239 -3.906 0.79 6.67 C ATOM 15 C ALEU A 49 8.124 22.738 -3.941 0.79 5.81 C ATOM 16 O ALEU A 49 7.880 22.074 -4.958 0.79 6.71 O ATOM 17 CB ALEU A 49 6.385 24.559 -3.494 0.79 7.19 C ATOM 18 CG ALEU A 49 5.914 24.092 -2.111 0.79 7.07 C ATOM 19 CD1ALEU A 49 4.885 25.059 -1.536 0.79 8.84 C ATOM 20 CD2ALEU A 49 5.323 22.713 -2.192 0.79 7.46 C ATOM 21 H ALEU A 49 8.095 24.131 -5.852 0.79 7.25 H ATOM 22 HA ALEU A 49 8.421 24.661 -3.275 0.79 7.14 H ATOM 23 HB2ALEU A 49 6.277 25.523 -3.518 0.79 9.16 H ATOM 24 HB3ALEU A 49 5.791 24.158 -4.147 0.79 9.16 H ATOM 25 HG ALEU A 49 6.673 24.062 -1.508 0.79 6.91 H ATOM 26 HD11ALEU A 49 4.592 24.730 -0.672 0.79 9.95 H ATOM 27 HD12ALEU A 49 5.294 25.933 -1.437 0.79 9.95 H ATOM 28 HD13ALEU A 49 4.130 25.113 -2.143 0.79 9.95 H ATOM 29 HD21ALEU A 49 4.960 22.476 -1.324 0.79 8.29 H ATOM 30 HD22ALEU A 49 4.616 22.710 -2.856 0.79 8.29 H ATOM 31 HD23ALEU A 49 6.015 22.082 -2.442 0.79 8.29 H ATOM 32 N BLEU A 49 7.975 24.768 -5.242 0.21 7.25 N ATOM 33 CA BLEU A 49 7.654 24.205 -3.941 0.21 7.15 C ATOM 34 C BLEU A 49 8.003 22.716 -3.887 0.21 7.83 C ATOM 35 O BLEU A 49 7.689 22.025 -4.858 0.21 5.06 O ATOM 36 CB BLEU A 49 6.162 24.365 -3.605 0.21 9.16 C ATOM 37 CG BLEU A 49 5.681 23.652 -2.331 0.21 6.91 C ATOM 38 CD1BLEU A 49 6.301 24.276 -1.095 0.21 9.95 C ATOM 39 CD2BLEU A 49 4.156 23.640 -2.248 0.21 8.29 C ATOM 40 H BLEU A 49 7.943 24.178 -5.867 0.21 7.25 H ATOM 41 HA BLEU A 49 8.173 24.662 -3.262 0.21 7.14 H ATOM 42 HB2BLEU A 49 5.975 25.310 -3.494 0.21 9.16 H ATOM 43 HB3BLEU A 49 5.645 24.021 -4.346 0.21 9.16 H ATOM 44 HG BLEU A 49 5.963 22.725 -2.358 0.21 6.91 H ATOM 45 HD11BLEU A 49 6.470 23.579 -0.443 0.21 9.95 H ATOM 46 HD12BLEU A 49 7.132 24.697 -1.346 0.21 9.95 H ATOM 47 HD13BLEU A 49 5.691 24.937 -0.731 0.21 9.95 H ATOM 48 HD21BLEU A 49 3.888 23.174 -1.441 0.21 8.29 H ATOM 49 HD22BLEU A 49 3.834 24.555 -2.225 0.21 8.29 H ATOM 50 HD23BLEU A 49 3.802 23.184 -3.027 0.21 8.29 H ATOM 51 N VAL A 50 8.616 22.239 -2.807 1.00 5.93 N ATOM 52 CA VAL A 50 8.845 20.793 -2.609 1.00 5.53 C ATOM 53 C VAL A 50 7.981 20.307 -1.457 1.00 5.75 C ATOM 54 O VAL A 50 7.971 20.912 -0.389 1.00 6.63 O ATOM 55 CB VAL A 50 10.325 20.527 -2.343 1.00 6.31 C ATOM 56 CG1 VAL A 50 10.556 19.043 -2.072 1.00 7.62 C ATOM 57 CG2 VAL A 50 11.170 20.998 -3.512 1.00 7.52 C ATOM 58 HA VAL A 50 8.593 20.305 -3.404 1.00 5.53 H ATOM 59 HB VAL A 50 10.599 21.022 -1.555 1.00 6.31 H ATOM 60 HG11 VAL A 50 11.507 18.860 -2.118 1.00 7.62 H ATOM 61 HG12 VAL A 50 10.221 18.824 -1.188 1.00 7.62 H ATOM 62 HG13 VAL A 50 10.087 18.523 -2.744 1.00 7.62 H ATOM 63 HG21 VAL A 50 12.097 20.765 -3.345 1.00 7.52 H ATOM 64 HG22 VAL A 50 10.860 20.562 -4.321 1.00 7.52 H ATOM 65 HG23 VAL A 50 11.081 21.960 -3.600 1.00 7.52 H ATOM 66 H AVAL A 50 8.830 22.718 -2.125 0.79 5.93 H ATOM 67 H BVAL A 50 8.914 22.729 -2.166 0.21 5.93 H TER END """ if (verbose): log = sys.stdout else: log = StringIO() model = get_model_str(pdb_str, log) res = occupancy_selections( model = model, as_flex_arrays = False) answer = [ [[11],[12]], [[13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,66], [32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,67]]] assert approx_equal(res, answer) def exercise_29(verbose): pdb_str="""\ CRYST1 148.270 44.010 47.390 90.00 101.57 90.00 C 1 2 1 ATOM 0 N GLY A 285 -41.269 16.430 -4.458 1.00 18.77 N ATOM 1 CA GLY A 285 -41.021 16.772 -5.854 1.00 20.45 C ATOM 2 H GLY A 285 -42.080 16.182 -4.313 1.00 22.53 H ATOM 3 C AGLY A 285 -41.133 18.291 -6.119 0.85 20.52 C ATOM 4 O AGLY A 285 -41.030 18.770 -7.258 0.85 22.89 O ATOM 5 HA2AGLY A 285 -40.130 16.482 -6.104 0.85 24.54 H ATOM 6 HA3AGLY A 285 -41.663 16.314 -6.418 0.85 24.54 H ATOM 7 C BGLY A 285 -40.556 18.155 -6.113 0.15 20.45 C ATOM 8 O BGLY A 285 -39.925 18.445 -7.127 0.15 21.06 O ATOM 9 HA2BGLY A 285 -40.352 16.166 -6.208 0.15 24.54 H ATOM 10 HA3BGLY A 285 -41.839 16.638 -6.357 0.15 24.54 H ATOM 11 N AASN A 286 -41.375 19.070 -5.066 0.75 20.63 N ATOM 12 CA AASN A 286 -41.558 20.524 -5.179 0.75 21.34 C ATOM 13 C AASN A 286 -40.921 21.176 -3.941 0.75 19.76 C ATOM 14 O AASN A 286 -41.136 20.695 -2.825 0.75 18.94 O ATOM 15 CB AASN A 286 -43.061 20.822 -5.246 0.75 23.19 C ATOM 16 CG AASN A 286 -43.390 22.293 -5.087 0.75 24.76 C ATOM 17 OD1AASN A 286 -43.580 22.784 -3.975 0.75 25.15 O ATOM 18 ND2AASN A 286 -43.491 22.996 -6.206 0.75 26.38 N ATOM 19 H AASN A 286 -41.441 18.778 -4.260 0.75 24.76 H ATOM 20 HA AASN A 286 -41.121 20.863 -5.988 0.75 25.61 H ATOM 21 HB2AASN A 286 -43.400 20.532 -6.107 0.75 27.82 H ATOM 22 HB3AASN A 286 -43.509 20.338 -4.535 0.75 27.82 H ATOM 23 HD21AASN A 286 -43.371 22.614 -6.967 0.75 31.65 H ATOM 24 HD22AASN A 286 -43.677 23.835 -6.171 0.75 31.65 H ATOM 25 N BASN A 286 -40.878 19.026 -5.184 0.25 20.30 N ATOM 26 CA BASN A 286 -40.589 20.401 -5.396 0.25 20.20 C ATOM 27 C BASN A 286 -40.224 21.016 -4.085 0.25 18.88 C ATOM 28 O BASN A 286 -40.136 20.364 -3.047 0.25 18.65 O ATOM 29 CB BASN A 286 -41.798 21.088 -6.023 0.25 22.27 C ATOM 30 CG BASN A 286 -42.950 21.238 -5.058 0.25 23.28 C ATOM 31 OD1BASN A 286 -42.781 21.720 -3.938 0.25 23.18 O ATOM 32 ND2BASN A 286 -44.137 20.828 -5.491 0.25 24.35 N ATOM 33 H BASN A 286 -41.259 18.841 -4.435 0.25 24.36 H ATOM 34 HA BASN A 286 -39.828 20.488 -6.007 0.25 24.24 H ATOM 35 HB2BASN A 286 -41.538 21.974 -6.321 0.25 26.72 H ATOM 36 HB3BASN A 286 -42.105 20.561 -6.777 0.25 26.72 H ATOM 37 HD21BASN A 286 -44.216 20.499 -6.282 0.25 29.22 H ATOM 38 HD22BASN A 286 -44.826 20.891 -4.981 0.25 29.22 H ATOM 39 CA GLU A 287 -39.388 22.905 -3.000 1.00 16.67 C ATOM 40 C GLU A 287 -40.376 23.372 -1.952 1.00 15.65 C ATOM 41 O GLU A 287 -40.132 23.201 -0.755 1.00 14.31 O ATOM 42 CB GLU A 287 -38.514 24.074 -3.481 1.00 17.80 C ATOM 43 CG GLU A 287 -37.273 23.645 -4.302 1.00 19.41 C ATOM 44 CD GLU A 287 -36.290 24.789 -4.558 1.00 20.84 C ATOM 45 OE1 GLU A 287 -36.554 25.925 -4.128 1.00 21.26 O ATOM 46 OE2 GLU A 287 -35.220 24.552 -5.185 1.00 22.93 O ATOM 47 HB2 GLU A 287 -39.052 24.654 -4.041 1.00 21.36 H ATOM 48 HB3 GLU A 287 -38.200 24.566 -2.707 1.00 21.36 H ATOM 49 HG2 GLU A 287 -36.801 22.949 -3.818 1.00 23.29 H ATOM 50 HG3 GLU A 287 -37.568 23.308 -5.163 1.00 23.29 H ATOM 51 N AGLU A 287 -40.109 22.235 -4.122 0.02 18.26 N ATOM 52 H AGLU A 287 -39.954 22.592 -4.889 0.02 21.91 H ATOM 53 HA AGLU A 287 -38.796 22.250 -2.576 0.02 20.01 H ATOM 54 N BGLU A 287 -40.017 22.305 -4.119 0.98 18.44 N ATOM 55 H BGLU A 287 -40.228 22.836 -4.762 0.98 22.13 H ATOM 56 HA BGLU A 287 -38.799 22.245 -2.580 0.98 20.01 H TER END """ if (verbose): log = sys.stdout else: log = StringIO() model = get_model_str(pdb_str, log) res = occupancy_selections( model = model, as_flex_arrays = False) answer = [ [[3,4,5,6,19], [7,8,9,10,33]], [[11,12,13,14,15,16,17,18,20,21,22,23,24,52], [25,26,27,28,29,30,31,32,34,35,36,37,38,55]], [[51,53], [54,56]]] assert approx_equal(res, answer) def exercise_30(verbose): pdb_str="""\ CRYST1 42.198 121.958 37.277 90.00 90.00 90.00 P 21 21 2 ATOM 0 CG GLU A 115 30.700 22.521 0.401 0.55 25.56 C ATOM 1 CD GLU A 115 31.809 23.320 -0.265 1.00 25.96 C ATOM 2 OE1 GLU A 115 32.842 22.797 -0.723 1.00 24.92 O ATOM 3 OE2 GLU A 115 31.621 24.544 -0.376 1.00 27.30 O ATOM 4 N AGLU A 115 27.819 20.841 -1.012 0.44 19.61 N ATOM 5 CA AGLU A 115 28.757 21.222 -0.004 0.44 20.79 C ATOM 6 C AGLU A 115 28.192 21.930 1.203 0.44 19.50 C ATOM 7 O AGLU A 115 27.475 22.922 1.098 0.44 20.38 O ATOM 8 CB AGLU A 115 29.799 22.079 -0.601 0.44 23.59 C ATOM 9 N BGLU A 115 27.018 20.969 -0.446 0.56 27.49 N ATOM 10 CA BGLU A 115 28.194 21.387 0.311 0.56 26.06 C ATOM 11 C BGLU A 115 27.541 21.859 1.611 0.56 25.00 C ATOM 12 O BGLU A 115 26.660 22.715 1.640 0.56 26.43 O ATOM 13 CB BGLU A 115 29.189 22.459 -0.356 0.56 26.03 C ATOM 14 N AVAL A 116 28.585 21.407 2.363 0.53 19.29 N ATOM 15 CA AVAL A 116 28.181 21.931 3.670 0.53 18.27 C ATOM 16 C AVAL A 116 29.427 21.990 4.589 0.53 17.81 C ATOM 17 O AVAL A 116 30.464 21.420 4.280 0.53 17.67 O ATOM 18 CB AVAL A 116 27.090 21.046 4.342 0.53 20.31 C ATOM 19 CG1AVAL A 116 25.743 21.168 3.633 0.53 22.78 C ATOM 20 CG2AVAL A 116 27.498 19.598 4.395 0.53 20.85 C ATOM 21 H AVAL A 116 29.104 20.724 2.421 0.53 23.15 H ATOM 22 HA AVAL A 116 27.827 22.838 3.564 0.53 21.92 H ATOM 23 HB AVAL A 116 26.967 21.353 5.264 0.53 24.37 H ATOM 24 N BVAL A 116 27.987 21.231 2.690 0.47 21.87 N ATOM 25 CA BVAL A 116 27.614 21.560 4.041 0.47 19.86 C ATOM 26 C BVAL A 116 28.915 21.857 4.746 0.47 19.34 C ATOM 27 O BVAL A 116 29.983 21.603 4.213 0.47 18.81 O ATOM 28 CB BVAL A 116 26.938 20.336 4.707 0.47 19.81 C ATOM 29 CG1BVAL A 116 25.591 20.061 4.058 0.47 21.33 C ATOM 30 CG2BVAL A 116 27.825 19.086 4.627 0.47 19.25 C ATOM 31 H BVAL A 116 28.539 20.573 2.651 0.47 26.24 H ATOM 32 HA BVAL A 116 27.021 22.340 4.070 0.47 23.83 H ATOM 33 HB BVAL A 116 26.782 20.535 5.654 0.47 23.76 H TER END """ if (verbose): log = sys.stdout else: log = StringIO() model = get_model_str(pdb_str, log) res = occupancy_selections( model = model, as_flex_arrays = False) answer = [ [[0]], [[4, 5, 6, 7, 8, 21], [9, 10, 11, 12, 13, 31]], [[14, 15, 16, 17, 18, 19, 20, 22, 23], [24, 25, 26, 27, 28, 29, 30, 32, 33]] ] assert approx_equal(res, answer) def prepare_correlated_occupancy_inputs( prefix="tst_group_correlated_occupancy", create_mtz=False, d_min=1.0): pdb_raw = """\ CRYST1 21.937 4.866 23.477 90.00 107.08 90.00 P 1 21 1 SCALE1 0.045585 0.000000 0.014006 0.00000 SCALE2 0.000000 0.205508 0.000000 0.00000 SCALE3 0.000000 0.000000 0.044560 0.00000 ATOM 1 N GLY A 1 -9.056 4.638 6.050 1.00 16.77 N ATOM 2 CA GLY A 1 -9.058 4.194 4.668 1.00 16.57 C ATOM 3 C GLY A 1 -7.993 3.144 4.430 1.00 16.16 C ATOM 4 O GLY A 1 -7.521 2.511 5.374 1.00 16.78 O ATOM 5 N ASN A 2 -7.616 2.953 3.169 1.00 15.02 N ATOM 6 CA ASN A 2 -6.526 2.044 2.840 1.00 14.10 C ATOM 7 C ASN A 2 -5.216 2.527 3.434 1.00 13.13 C ATOM 8 O ASN A 2 -4.943 3.727 3.466 1.00 11.91 O ATOM 9 CB ASN A 2 -6.382 1.888 1.330 1.00 15.38 C ATOM 10 CG ASN A 2 -7.632 1.344 0.685 1.00 14.08 C ATOM 11 OD1 ASN A 2 -8.042 0.216 0.957 1.00 17.46 O ATOM 12 ND2 ASN A 2 -8.247 2.142 -0.178 1.00 11.72 N ATOM 13 N ASN A 3 -4.405 1.583 3.898 1.00 12.26 N ATOM 14 CA ASN A 3 -3.172 1.915 4.595 1.00 11.74 C ATOM 15 C ASN A 3 -1.922 1.362 3.915 1.00 11.10 C ATOM 16 O ASN A 3 -1.816 0.158 3.672 1.00 10.42 O ATOM 17 CB ASN A 3 -3.243 1.409 6.039 1.00 12.15 C ATOM 18 CG ASN A 3 -2.000 1.749 6.841 1.00 12.82 C ATOM 19 OD1 ASN A 3 -1.705 2.920 7.082 1.00 15.05 O ATOM 20 ND2 ASN A 3 -1.272 0.724 7.270 1.00 13.48 N ATOM 21 N GLN A 4 -0.987 2.256 3.598 1.00 10.29 N ATOM 22 CA GLN A 4 0.361 1.860 3.201 1.00 10.53 C ATOM 23 C GLN A 4 1.398 2.605 4.031 1.00 10.24 C ATOM 24 O GLN A 4 1.454 3.834 4.025 1.00 8.86 O ATOM 25 CB GLN A 4 0.626 2.117 1.712 1.00 9.80 C ATOM 26 CG GLN A 4 1.924 1.459 1.221 1.00 10.25 C ATOM 27 CD GLN A 4 2.465 2.050 -0.073 1.00 12.43 C ATOM 28 OE1 GLN A 4 2.674 3.260 -0.178 1.00 14.62 O ATOM 29 NE2 GLN A 4 2.708 1.192 -1.059 1.00 9.05 N ATOM 30 N AGLN A 5 2.202 1.848 4.775 0.62 10.38 N ATOM 31 CA AGLN A 5 3.288 2.419 5.569 0.62 11.39 C ATOM 32 C AGLN A 5 4.638 1.844 5.123 0.62 11.52 C ATOM 33 O AGLN A 5 4.824 0.625 5.095 0.62 12.05 O ATOM 34 CB AGLN A 5 3.046 2.170 7.063 0.62 11.96 C ATOM 35 CG AGLN A 5 1.854 2.946 7.622 0.62 10.81 C ATOM 36 CD AGLN A 5 1.361 2.406 8.951 0.62 13.10 C ATOM 37 OE1AGLN A 5 0.800 1.312 9.019 0.62 10.65 O ATOM 38 NE2AGLN A 5 1.562 3.175 10.016 0.62 12.30 N ATOM 39 N BGLN A 5 2.239 1.858 4.725 0.38 10.38 N ATOM 40 CA BGLN A 5 3.326 2.476 5.450 0.38 11.39 C ATOM 41 C BGLN A 5 4.639 1.850 5.057 0.38 11.52 C ATOM 42 O BGLN A 5 4.814 0.627 5.020 0.38 12.05 O ATOM 43 CB BGLN A 5 3.110 2.331 6.919 0.38 11.96 C ATOM 44 CG BGLN A 5 2.695 0.980 7.141 0.38 10.81 C ATOM 45 CD BGLN A 5 2.882 0.618 8.479 0.38 13.10 C ATOM 46 OE1BGLN A 5 2.538 1.369 9.406 0.38 10.65 O ATOM 47 NE2BGLN A 5 3.380 -0.597 8.664 0.38 12.30 N ATOM 48 N ASN A 6 5.565 2.732 4.753 1.00 11.99 N ATOM 49 CA ASN A 6 6.868 2.339 4.280 1.00 12.30 C ATOM 50 C ASN A 6 7.881 2.785 5.302 1.00 13.40 C ATOM 51 O ASN A 6 8.262 3.954 5.351 1.00 13.92 O ATOM 52 CB ASN A 6 7.133 2.954 2.915 1.00 12.13 C ATOM 53 CG ASN A 6 5.988 2.721 1.955 1.00 12.77 C ATOM 54 OD1 ASN A 6 5.795 1.608 1.466 1.00 14.27 O ATOM 55 ND2 ASN A 6 5.211 3.764 1.690 1.00 10.07 N ATOM 56 N ATYR A 7 8.304 1.849 6.146 0.59 14.70 N ATOM 57 CA ATYR A 7 9.167 2.166 7.280 0.59 15.18 C ATOM 58 C ATYR A 7 10.622 2.326 6.868 0.59 15.91 C ATOM 59 O ATYR A 7 11.054 1.799 5.844 0.59 15.76 O ATOM 60 CB ATYR A 7 9.044 1.086 8.356 0.59 15.35 C ATOM 61 CG ATYR A 7 7.640 0.946 8.887 0.59 14.45 C ATOM 62 CD1ATYR A 7 6.759 0.027 8.335 0.59 15.68 C ATOM 63 CD2ATYR A 7 7.187 1.750 9.924 0.59 14.80 C ATOM 64 CE1ATYR A 7 5.469 -0.098 8.810 0.59 13.46 C ATOM 65 CE2ATYR A 7 5.899 1.633 10.407 0.59 14.33 C ATOM 66 CZ ATYR A 7 5.044 0.707 9.845 0.59 15.09 C ATOM 67 OH ATYR A 7 3.759 0.583 10.319 0.59 14.39 O ATOM 68 OXTATYR A 7 11.394 2.990 7.558 0.59 17.49 O ATOM 70 N BTYR A 7 8.323 1.843 6.116 0.41 14.70 N ATOM 71 CA BTYR A 7 9.149 2.183 7.247 0.41 15.18 C ATOM 72 C BTYR A 7 10.629 2.316 6.861 0.41 15.91 C ATOM 73 O BTYR A 7 11.084 1.756 5.864 0.41 15.76 O ATOM 74 CB BTYR A 7 8.954 1.147 8.348 0.41 15.35 C ATOM 75 CG BTYR A 7 9.942 1.356 9.417 0.41 14.45 C ATOM 76 CD1BTYR A 7 9.807 2.381 10.320 0.41 15.68 C ATOM 77 CD2BTYR A 7 11.054 0.580 9.473 0.41 14.80 C ATOM 78 CE1BTYR A 7 10.746 2.569 11.248 0.41 13.46 C ATOM 79 CE2BTYR A 7 11.968 0.749 10.405 0.41 14.33 C ATOM 80 CZ BTYR A 7 11.858 1.724 11.252 0.41 15.09 C ATOM 81 OH BTYR A 7 12.921 1.747 12.113 0.41 14.39 O ATOM 82 OXTBTYR A 7 11.408 3.001 7.529 0.41 17.49 O TER HETATM 83 O HOH A 8 -6.471 5.227 7.124 1.00 22.62 O HETATM 84 O HOH A 9 10.431 1.858 3.216 1.00 19.71 O HETATM 85 O HOH A 10 -11.286 1.756 -1.468 1.00 17.08 O HETATM 86 O AHOH A 11 11.808 4.179 9.970 0.60 23.99 O HETATM 87 O HOH A 12 13.605 1.327 9.198 1.00 26.17 O HETATM 88 O HOH A 13 -2.749 3.429 10.024 1.00 39.15 O HETATM 89 O HOH A 14 -1.500 0.682 10.967 1.00 43.49 O TER """ pdb_in = "%s_in.pdb" % prefix open(pdb_in, "w").write(pdb_raw) if (create_mtz): args = [ pdb_in, "high_resolution=%g" % d_min, "type=real", "label=F", "add_sigmas=True", "r_free_flags_fraction=0.1", "random_seed=12345", "output.file_name=%s.mtz" % prefix, ] fmodel.run(args=args, log=null_out()) pdb_file = file_reader.any_file(pdb_in) hierarchy = pdb_file.file_object.hierarchy xrs = pdb_file.file_object.xray_structure_simple() for atom in hierarchy.atoms(): atom.b = 5 if (atom.occ < 1.0): atom.occ = 0.5 open("%s_start.pdb" % prefix, "w").write( hierarchy.as_pdb_string(crystal_symmetry=xrs)) def exercise_regroup_3d(verbose): if (verbose): log = sys.stdout else: log = StringIO() prepare_correlated_occupancy_inputs() # File #1 (with homogenized occupancies) should work # File #2 should fail due to inconsistent occupancies pdb_files = [ "tst_group_correlated_occupancy_start.pdb", "tst_group_correlated_occupancy_in.pdb", ] for i_file, pdb_file in enumerate(pdb_files): model = get_model(pdb_file, log) try : constraint_groups = occupancy_selections( model = model, constrain_correlated_3d_groups=True, log=null_out()) except Sorry as s : if (i_file == 0): raise else : assert ("Inconsistent occupancies" in str(s)), str(s) else : if (i_file == 1): raise Exception_expected else : assert (len(constraint_groups) == 1) def run(): verbose = "--verbose" in sys.argv[1:] exercise_00(verbose=verbose) exercise_01(verbose=verbose) exercise_02(verbose=verbose) exercise_03(verbose=verbose) exercise_05(verbose=verbose) exercise_06(verbose=verbose) exercise_07(verbose=verbose) exercise_08(verbose=verbose) exercise_09(verbose=verbose) exercise_10(verbose=verbose) exercise_11(verbose=verbose) exercise_12(verbose=verbose) exercise_13(verbose=verbose) exercise_14(verbose=verbose) exercise_15(verbose=verbose) exercise_16(verbose=verbose) exercise_17(verbose=verbose) exercise_18(verbose=verbose) exercise_19(verbose=verbose) exercise_20(verbose=verbose) exercise_21(verbose=verbose) exercise_22(verbose=verbose) exercise_23(verbose=verbose) exercise_24(verbose=verbose) exercise_25(verbose=verbose) exercise_26(verbose=verbose) exercise_27(verbose=verbose) exercise_28(verbose=verbose) exercise_29(verbose=verbose) exercise_30(verbose=verbose) exercise_regroup_3d(verbose=verbose) print(format_cpu_times()) if (__name__ == "__main__"): run()
51.994624
154
0.525326
79522ab9346408865a82ade12f54cd00c6577a2a
2,339
py
Python
kaggledatasets/structured/newyork_airbnb_opendata.py
kaggledatasets/kaggledatasets
685d16590667443546f7ad2c31dfac8ad6be6ca2
[ "Apache-2.0" ]
48
2019-11-23T17:39:42.000Z
2022-02-11T16:38:12.000Z
kaggledatasets/structured/newyork_airbnb_opendata.py
kaggledatasets/kaggledatasets
685d16590667443546f7ad2c31dfac8ad6be6ca2
[ "Apache-2.0" ]
5
2019-11-30T14:20:18.000Z
2019-12-10T12:07:54.000Z
kaggledatasets/structured/newyork_airbnb_opendata.py
kaggledatasets/kaggledatasets
685d16590667443546f7ad2c31dfac8ad6be6ca2
[ "Apache-2.0" ]
6
2019-11-30T15:44:43.000Z
2022-02-11T16:38:14.000Z
# Copyright 2019 Omkar Prabhu # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """New York City Airbnb Open Dataset""" from kaggledatasets.core.dataset import Dataset class NewYorkAirbnbOpenData(Dataset): r""" New York City Airbnb Open Dataset Airbnb listings and metrics in NYC, NY, USA (2019) """ author = "dgomonov" slug = "new-york-city-airbnb-open-data" title = "New York City Airbnb Open Data" files = ["AB_NYC_2019.csv"] def __init__(self, root=None, download=False): r""" Initializer for the New York City Airbnb Open Dataset """ super(NewYorkAirbnbOpenData, self).__init__(author=self.author, slug=self.slug, \ title=self.title, root=root, download=download) def __getitem__(self, idx): r""" This will return one sample of data """ raise NotImplementedError def __len__(self): r""" This denotes the total number of samples """ raise NotImplementedError def data_frame(self): r""" This will return pandas data frame for using in Scikit Learn or raw processing """ import pandas as pd # pylint: disable=import-error location = self.get_files() return pd.read_csv(location[0]) def load(self, batch_size=1): r""" This will return tf dataset for Tensorflow 2.0 """ import tensorflow as tf # pylint: disable=import-error location = self.get_files() return tf.data.experimental.make_csv_dataset( location[0], batch_size=batch_size, num_epochs=1, ignore_errors=True) def data_loader(self): r""" This will return data loader for PyTorch """ # import torch # pylint: disable=import-error
28.180723
89
0.64814
79522bf319980d74a78c34c31426ca3fa49ec229
988
py
Python
login/login/urls.py
fga-eps-mds/2018.2-FGAPP-login
942ba0e7b3164733f9a9e2a9c1c601f22289e65c
[ "MIT" ]
1
2020-07-26T03:28:55.000Z
2020-07-26T03:28:55.000Z
login/login/urls.py
bonfimjustino7/2018.2-FGAPP-login
942ba0e7b3164733f9a9e2a9c1c601f22289e65c
[ "MIT" ]
13
2018-09-21T22:52:48.000Z
2018-12-11T14:50:07.000Z
login/login/urls.py
bonfimjustino7/2018.2-FGAPP-login
942ba0e7b3164733f9a9e2a9c1c601f22289e65c
[ "MIT" ]
1
2020-05-10T13:18:03.000Z
2020-05-10T13:18:03.000Z
from django.contrib import admin from django.urls import include, path from django.conf.urls import url from rest_framework_jwt.views import obtain_jwt_token from rest_framework_jwt.views import refresh_jwt_token from rest_framework_jwt.views import verify_jwt_token from django.contrib.auth import views as auth_views from django.contrib.sites.models import Site from login.settings.development import LOGIN_DEFAULT_DOMAIN from .views import status urlpatterns = [ path('', status), path('admin/', admin.site.urls), path('api/', include('api.urls')), url(r'^api/auth-token/', obtain_jwt_token), url(r'^api/token-refresh/', refresh_jwt_token), url(r'^api/token-verify/', verify_jwt_token), url('^', include('django.contrib.auth.urls')), ] try: site = Site.objects.get(id=1) site.name = LOGIN_DEFAULT_DOMAIN site.domain = LOGIN_DEFAULT_DOMAIN site.save() current_domain = LOGIN_DEFAULT_DOMAIN except: print('please re-run the server')
32.933333
59
0.752024
79522cac960717d425fa70c0e6ff58239437a81f
1,064
py
Python
var/spack/repos/builtin/packages/r-affxparser/package.py
HaochengLIU/spack
26e51ff1705a4d6234e2a0cf734f93f7f95df5cb
[ "ECL-2.0", "Apache-2.0", "MIT" ]
2
2018-11-27T03:39:44.000Z
2021-09-06T15:50:35.000Z
var/spack/repos/builtin/packages/r-affxparser/package.py
HaochengLIU/spack
26e51ff1705a4d6234e2a0cf734f93f7f95df5cb
[ "ECL-2.0", "Apache-2.0", "MIT" ]
1
2019-01-11T20:11:52.000Z
2019-01-11T20:11:52.000Z
var/spack/repos/builtin/packages/r-affxparser/package.py
HaochengLIU/spack
26e51ff1705a4d6234e2a0cf734f93f7f95df5cb
[ "ECL-2.0", "Apache-2.0", "MIT" ]
1
2020-10-14T14:20:17.000Z
2020-10-14T14:20:17.000Z
# Copyright 2013-2018 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class RAffxparser(RPackage): """Package for parsing Affymetrix files (CDF, CEL, CHP, BPMAP, BAR). It provides methods for fast and memory efficient parsing of Affymetrix files using the Affymetrix' Fusion SDK. Both ASCII- and binary-based files are supported. Currently, there are methods for reading chip definition file (CDF) and a cell intensity file (CEL). These files can be read either in full or in part. For example, probe signals from a few probesets can be extracted very quickly from a set of CEL files into a convenient list structure.""" homepage = "https://www.bioconductor.org/packages/affxparser/" git = "https://git.bioconductor.org/packages/affxparser.git" version('1.48.0', commit='2461ea88f310b59c4a9a997a4b3dadedbd65a4aa') depends_on('r@3.4.0:3.4.9', when='@1.48.0')
42.56
75
0.734023
79522cec803b3145ececdde954556c68e18686dc
4,206
py
Python
patent_system/settings.py
zypangpang/patent_management_system
5c9307359ac2fbb7fdfa2beff63f58f441932f86
[ "Apache-2.0" ]
null
null
null
patent_system/settings.py
zypangpang/patent_management_system
5c9307359ac2fbb7fdfa2beff63f58f441932f86
[ "Apache-2.0" ]
null
null
null
patent_system/settings.py
zypangpang/patent_management_system
5c9307359ac2fbb7fdfa2beff63f58f441932f86
[ "Apache-2.0" ]
null
null
null
""" Django settings for patent_system project. Generated by 'django-admin startproject' using Django 2.1.1. For more information on this file, see https://docs.djangoproject.com/en/2.1/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/2.1/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/2.1/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'r*%p^!_ynvi!qxow&ca($l8w92-qw0*4twc$sg2+hi-xp2v73u' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = ['127.0.0.1','localhost','166.111.83.46','10.0.2.4'] # Application definition INSTALLED_APPS = [ 'account.apps.AccountConfig', 'main.apps.MainConfig', 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'patent_system.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'patent_system.wsgi.application' # Database # https://docs.djangoproject.com/en/2.1/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.mysql', #'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), 'NAME': 'mydatabase', 'USER': 'django', 'PASSWORD': '123456', 'HOST': '127.0.0.1', 'PORT': '3306', } } # Password validation # https://docs.djangoproject.com/en/2.1/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/2.1/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'Asia/Shanghai' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/2.1/howto/static-files/ STATIC_URL = '/static/' STATIC_ROOT = os.path.join(BASE_DIR, 'static') MEDIA_ROOT='/var/media/' LOGGING = { 'version': 1, 'disable_existing_loggers': False, 'handlers': { 'django_file': { 'level': 'INFO', 'class': 'logging.FileHandler', 'filename': '/var/log/django_log/info.log', }, 'main_file': { 'level': 'INFO', 'class': 'logging.FileHandler', 'filename': '/var/log/django_log/main_info.log', }, }, 'loggers': { ## Enabel this handler when deploying #'django': { # 'handlers': ['django_file'], # 'level': 'INFO', # 'propagate': True, #}, 'main':{ 'handlers': ['main_file'], 'level': 'INFO', 'propagate': True, }, }, }
26.124224
91
0.638849
79522e7fac28cbf45ac1cb1a9fec3f0eaea6c8e7
5,179
py
Python
instances/fcn/voc.fcn32s.R101_v1c/train.py
dontLoveBugs/MyTorch
d14bd1a231bde7f2e05282f86c640bcce4a55baf
[ "MIT" ]
1
2020-02-25T00:35:00.000Z
2020-02-25T00:35:00.000Z
instances/fcn/voc.fcn32s.R101_v1c/train.py
dontLoveBugs/MyTorch
d14bd1a231bde7f2e05282f86c640bcce4a55baf
[ "MIT" ]
null
null
null
instances/fcn/voc.fcn32s.R101_v1c/train.py
dontLoveBugs/MyTorch
d14bd1a231bde7f2e05282f86c640bcce4a55baf
[ "MIT" ]
null
null
null
from __future__ import division import os.path as osp import sys import argparse from tqdm import tqdm import torch import torch.nn as nn import torch.distributed as dist import torch.backends.cudnn as cudnn from torch.nn.parallel import DistributedDataParallel from config import config from dataloader import get_train_loader from network import FCN from datasets import VOC from utils.init_func import init_weight, group_weight from engine.lr_policy import PolyLR from engine.engine import Engine from seg_opr.sync_bn import DataParallelModel, Reduce, BatchNorm2d try: from third_libs.parallel import SyncBatchNorm except ImportError: raise ImportError( "Please install apex from https://www.github.com/nvidia/apex .") torch.manual_seed(config.seed) if torch.cuda.is_available(): torch.cuda.manual_seed(config.seed) parser = argparse.ArgumentParser() with Engine(custom_parser=parser) as engine: args = parser.parse_args() cudnn.benchmark = True if engine.distributed: torch.cuda.set_device(engine.local_rank) # data loader train_loader, train_sampler = get_train_loader(engine, VOC) # config network and criterion criterion = nn.CrossEntropyLoss(reduction='mean', ignore_index=255) if engine.distributed: BatchNorm2d = SyncBatchNorm else: BatchNorm2d = BatchNorm2d model = FCN(config.num_classes, criterion=criterion, pretrained_model=config.pretrained_model, norm_layer=BatchNorm2d) init_weight(model.business_layer, nn.init.kaiming_normal_, BatchNorm2d, config.bn_eps, config.bn_momentum, mode='fan_out', nonlinearity='relu') # group weight and config optimizer base_lr = config.lr if engine.distributed: base_lr = config.lr * engine.world_size params_list = [] params_list = group_weight(params_list, model, BatchNorm2d, base_lr) optimizer = torch.optim.SGD(params_list, lr=base_lr, momentum=config.momentum, weight_decay=config.weight_decay) # config lr policy total_iteration = config.nepochs * config.niters_per_epoch lr_policy = PolyLR(base_lr, config.lr_power, total_iteration) if engine.distributed: if torch.cuda.is_available(): model.cuda() model = DistributedDataParallel(model, device_ids=[engine.local_rank], output_device=engine.local_rank) else: device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = DataParallelModel(model, engine.devices) model.to(device) engine.register_state(dataloader=train_loader, model=model, optimizer=optimizer) if engine.continue_state_object: engine.restore_checkpoint() optimizer.zero_grad() model.train() for epoch in range(engine.state.epoch, config.nepochs): if engine.distributed: train_sampler.set_epoch(epoch) bar_format = '{desc}[{elapsed}<{remaining},{rate_fmt}]' pbar = tqdm(range(config.niters_per_epoch), file=sys.stdout, bar_format=bar_format) dataloader = iter(train_loader) for idx in pbar: engine.update_iteration(epoch, idx) minibatch = dataloader.next() imgs = minibatch['data'] gts = minibatch['label'] imgs = imgs.cuda(non_blocking=True) gts = gts.cuda(non_blocking=True) loss = model(imgs, gts) # reduce the whole loss over multi-gpu if engine.distributed: dist.all_reduce(loss, dist.ReduceOp.SUM) loss = loss / engine.world_size else: loss = Reduce.apply(*loss) / len(loss) optimizer.zero_grad() current_idx = epoch * config.niters_per_epoch + idx lr = lr_policy.get_lr(current_idx) for i in range(0, len(optimizer.param_groups)): optimizer.param_groups[i]['lr'] = lr loss.backward() optimizer.step() print_str = 'Epoch{}/{}'.format(epoch, config.nepochs) \ + ' Iter{}/{}:'.format(idx + 1, config.niters_per_epoch) \ + ' lr=%.2e' % lr \ + ' loss=%.2f' % loss.item() pbar.set_description(print_str, refresh=False) if epoch % config.snapshot_iter == 0: if engine.distributed and (engine.local_rank == 0): engine.save_and_link_checkpoint(config.snapshot_dir, config.log_dir, config.log_dir_link) elif not engine.distributed: engine.save_and_link_checkpoint(config.snapshot_dir, config.log_dir, config.log_dir_link)
35.231293
82
0.603591
79522f1372f3cd0428507a0a68a60f9495aa571a
1,220
py
Python
models/G2G.py
GCL-staging/PyGCL
6cf2f4475053c631c6db1b8a2412bd811b586275
[ "Apache-2.0" ]
null
null
null
models/G2G.py
GCL-staging/PyGCL
6cf2f4475053c631c6db1b8a2412bd811b586275
[ "Apache-2.0" ]
null
null
null
models/G2G.py
GCL-staging/PyGCL
6cf2f4475053c631c6db1b8a2412bd811b586275
[ "Apache-2.0" ]
null
null
null
import torch import GCL.augmentors as A from torch import nn from typing import Optional, Tuple from torch_geometric.nn import global_add_pool class G2G(nn.Module): def __init__(self, encoder: torch.nn.Module, augmentor: Tuple[A.Augmentor, A.Augmentor], loss, hidden_dim: int, proj_dim: int): super(G2G, self).__init__() self.encoder = encoder self.augmentor = augmentor self.loss = loss self.num_hidden = hidden_dim def forward(self, x: torch.Tensor, batch: torch.Tensor, edge_index: torch.Tensor, edge_weight: Optional[torch.Tensor] = None)\ -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: aug1, aug2 = self.augmentor x1, edge_index1, edge_weight1 = aug1(x, edge_index, edge_weight) x2, edge_index2, edge_weight2 = aug2(x, edge_index, edge_weight) z = self.encoder(x, edge_index, edge_weight) z1 = self.encoder(x1, edge_index1, edge_weight1) z2 = self.encoder(x2, edge_index2, edge_weight2) g1 = global_add_pool(z1, batch) g2 = global_add_pool(z2, batch) return z, z1, z2, g1, g2
34.857143
91
0.641803
7952305a3f519ed35602ba78cda5315c43f22312
2,355
py
Python
debug_cqlnml_converter.py
garrettwrong/cql3d_f90
15ad9094ff2e2a29f6f5c3810b5b8c4fc724f2f8
[ "DOC" ]
1
2019-06-23T12:11:16.000Z
2019-06-23T12:11:16.000Z
debug_cqlnml_converter.py
garrettwrong/cql3d_f90
15ad9094ff2e2a29f6f5c3810b5b8c4fc724f2f8
[ "DOC" ]
38
2019-06-06T20:30:25.000Z
2019-12-13T17:05:56.000Z
debug_cqlnml_converter.py
garrettwrong/cql3d_f90
15ad9094ff2e2a29f6f5c3810b5b8c4fc724f2f8
[ "DOC" ]
null
null
null
#!/usr/bin/env python ''' In the process of running TRANSP, it can dump a debug nml. At the time of writing this dump is enabled for MPI runs, to assist transition. Developers may make this optional, perhaps only for debugging, in the future. This namelist comes _from within cql3d_f90_ and so uses f90 derived type syntax. The standalone xcql3d expects the legacy f77 syntax NML by request of Bob@CompX. You can use this tool to convet to the legacy style. Note, methods to read, write, and print both styles are implimented in the code. Future developers may change to the new style if they wish. You convert like so, assuming your dump is called debug_new: ./debug_cqlnml_converter.py debug_new cqlinput I would also recomend that you set VERBOSE = 1, to re-enable debug prints. Good luck. ''' from __future__ import print_function import sys NML_SECTIONS = ['SETUP0%', 'SETUP%', 'TRSETUP%', 'SOUSETUP%', 'EQSETUP%', 'RFSETUP%', 'FRSETUP%'] def convert(in_fn, out_fn=None): if not out_fn: out_fn = in_fn with open(in_fn, 'r') as f: lines = f.readlines() res = [] missing_freya = True for line in lines: # if we dont have freya section, we will need to add it later if 'frsetup' in line.lower(): missing_freya = False # remove the _NML from section name line = line.replace('_NML','') # remove the dertype prefix for sec in NML_SECTIONS: # though we could just partition, # this check is slightly more robust, since # we could conceivably have % in a txt field if sec.lower() in line.lower(): _,_,line = line.partition('%') break # only going to be one nml section... res.append(line) if missing_freya: #add an empty freya block res.append('\n\n') res.append('&FRSETUP\n') res.append('&END\n\n') with open(out_fn, 'w') as f: f.write(''.join(res)) if __name__ == "__main__": out_fn = None if len(sys.argv)==3: out_fn = sys.argv[2] elif len(sys.argv) != 2: print("{x} input_filename <output_filename>".format(x=sys.argv[0])) exit(1) convert(sys.argv[1], out_fn)
27.383721
80
0.613588
795231b20e223ea6419a12a5d89fa53b912efe92
149
py
Python
test/test_login.py
DmitriyNeurov/python_training_mantis
db94fad4e01e7d29a962d80791c984ddcacf1033
[ "Apache-2.0" ]
null
null
null
test/test_login.py
DmitriyNeurov/python_training_mantis
db94fad4e01e7d29a962d80791c984ddcacf1033
[ "Apache-2.0" ]
null
null
null
test/test_login.py
DmitriyNeurov/python_training_mantis
db94fad4e01e7d29a962d80791c984ddcacf1033
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- def test_login(app): app.session.login("administrator", "root") assert app.session.is_logget_in_as("administrator")
24.833333
55
0.684564
795231d674d2da24e3def8b22bf4ddf5c425e00c
9,667
py
Python
style_transfer.py
Ashiroes/flask_api_dl
2a39b653ad2de7fd5da48735b4711d791ce62053
[ "Apache-2.0" ]
null
null
null
style_transfer.py
Ashiroes/flask_api_dl
2a39b653ad2de7fd5da48735b4711d791ce62053
[ "Apache-2.0" ]
null
null
null
style_transfer.py
Ashiroes/flask_api_dl
2a39b653ad2de7fd5da48735b4711d791ce62053
[ "Apache-2.0" ]
null
null
null
# ======================================================================================================================= # TRANSFERT DE STYLE # ======================================================================================================================= import base64 import json import time from io import BytesIO import IPython.display as display import PIL.Image import matplotlib.pyplot as plt import numpy as np import tensorflow as tf from keras import backend as K tf.config.experimental_run_functions_eagerly(True) # +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ # FONCTIONS UTILES # +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def chargement_image(chemin_image): max_dim = 512 # Chargement de l'image image = tf.io.read_file(chemin_image) # Recherche du type d'image (jpg, png...) et transformation en Tensor image = tf.image.decode_image(image, channels=3) print(" Dimensions originales de l'image (w, h, canaux) : " + str(image.shape)) # Convertion de chaque pixel en type décimal image = tf.image.convert_image_dtype(image, tf.float32) # Transformation de l'image en espace vectoriel (tensor) ayant une longueur de 512 pixels shape = tf.cast(tf.shape(image)[:-1], tf.float32) long_dim = max(shape) scale = max_dim / long_dim new_shape = tf.cast(shape * scale, tf.int32) image = tf.image.resize(image, new_shape) image = image[tf.newaxis, :] print(" Vecteurs Tensorflow de l'image (nbImages, w , h, canaux) : " + str(image.shape)) return image def conversion_tenseur_vers_image(tenseur): tenseur = tenseur * 255 # Transformation des valeur du tenseur en tableau d'entier de 8 bytes tenseur = np.array(tenseur, dtype=np.uint8) if (np.ndim(tenseur) > 3): assert tenseur.shape[0] == 1 tenseur = tenseur[0] pil_img = PIL.Image.fromarray(tenseur) buff = BytesIO() pil_img.save(buff, format="JPEG") new_image_string = base64.b64encode(buff.getvalue()).decode("utf-8") # utilisation de la librairie Pillow pour transformer le tableau en image return (new_image_string) def affichage_image(image, titre=None): # Si l'image comporte plus de 3 dimensions, on supprime l'axe 0 if (len(image.shape) > 3): image = tf.squeeze(image, axis=0) # Affichage avec matplotlib plt.imshow(image) if titre: plt.title(titre) def clip_0_1(image): return tf.clip_by_value(image, clip_value_min=0.0, clip_value_max=1.0) # +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ # FONCTIONS POUR LA GENERATION # +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def creation_nouveau_modele(modele, couches_selectionnees): modele.trainable = False couches = [modele.get_layer(name).output for name in couches_selectionnees] # On crée un modele avec pour entrée, le format à VGG (image de 224 x 224) # Mais ne contenant que les couches selectionnées modele = tf.keras.Model([modele.input], couches) return modele def matrice_de_Gram(tenseur): resultat = tf.linalg.einsum('bijc,bijd->bcd', tenseur, tenseur) format = tf.shape(tenseur) nombre_positions = tf.cast(format[1] * format[2], tf.float32) return resultat / (nombre_positions) class Extracteur_Style_Contenu(tf.keras.models.Model): def __init__(self, modele, couches_style, couches_contenu): super(Extracteur_Style_Contenu, self).__init__() # On crée un modele VGG comportant les couches de styles et les couches de contenu self.vgg = creation_nouveau_modele(modele, couches_style + couches_contenu) self.couches_styles = couches_style self.couches_contenu = couches_contenu self.nb_couches_style = len(couches_style) # On n'accepte pas la mise à jour des poids lors de la rétropropagation self.vgg.trainable = False # Extraction des valeurs des couches sur une image (input) def call(self, inputs): "Expects float input in [0,1]" inputs = inputs * 255.0 # Les images sont converties de RVB en BGR, puis chaque canal de couleur est centré sur zéro par rapport à l'ensemble de données ImageNet. preprocessed_input = tf.keras.applications.vgg19.preprocess_input(inputs) # On utilise le réseau VGG avec les couches paramétrées pour en calculer leur valeurs valeurs_couches = self.vgg(preprocessed_input) # On dispatch les valeurs des couches. valeurs_couches_style, valeurs_couches_contenu = ( valeurs_couches[:self.nb_couches_style], valeurs_couches[self.nb_couches_style:]) # Calcul de la matrice de Gram pour chaque couche de style. Cette matrice vient remplacer les valeurs des couches # de sorties du style valeurs_couches_style = [matrice_de_Gram(valeur_couche_style) for valeur_couche_style in valeurs_couches_style] contenu_dictionnaire = {content_name: value for content_name, value in zip(self.couches_contenu, valeurs_couches_contenu)} style_dictionnaire = {style_name: value for style_name, value in zip(self.couches_styles, valeurs_couches_style)} return {'contenu': contenu_dictionnaire, 'style': style_dictionnaire} def calcul_du_cout(valeurs_couches, cible_contenu, cible_style, poids_style, nb_couches_style, poids_contenu, nb_couches_contenu): valeurs_couches_style = valeurs_couches['style'] valeurs_couches_contenu = valeurs_couches['contenu'] # -- COUT SUR LE STYLE # Erreur (La génération par rapport à la cible) = MSE fonction_cout_style = tf.add_n([tf.reduce_mean((valeurs_couches_style[name] - cible_style[name]) ** 2) for name in valeurs_couches_style.keys()]) # Utilisation d'un poids fonction_cout_style *= poids_style / nb_couches_style # -- COUT SUR LE CONTENU # Erreur sur le contenu (La génération par rapport à la cible) = MSE fonction_cout_contenu = tf.add_n([tf.reduce_mean((valeurs_couches_contenu[name] - cible_contenu[name]) ** 2) for name in valeurs_couches_contenu.keys()]) fonction_cout_contenu *= poids_contenu / nb_couches_contenu cout = fonction_cout_style + fonction_cout_contenu return cout @tf.function() def etape_generation(image, optimiseur, extracteur, cible_contenu, cible_style, poids_style, nb_couches_style, poids_contenu, nb_couches_contenu, poids_filtres_hf): # Creation d'un pipeline d'execution with tf.GradientTape() as pipeline: # Calcul des valeurs des couches de contenu et de style valeurs_couches = extracteur(image) # Calcul du cout total cout = calcul_du_cout(valeurs_couches, cible_contenu, cible_style, poids_style, nb_couches_style, poids_contenu, nb_couches_contenu) # Reduction des hautes frequences de l'image (diminution des contours) cout += poids_filtres_hf * tf.image.total_variation(image) # Calcul du gradient grad = pipeline.gradient(cout, image) optimiseur.apply_gradients([(grad, image)]) # Conversion des valeur de l'image entre 0 et 1 # On remplace l'image reçue en parametre... image.assign(clip_0_1(image)) return image # +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ # APPLICATION # +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ def style_transfer(chemin_image_source, chemin_image_style) -> str: chemin_image_composite = "generation-image-"+str(time.time())+".jpg" image_source = chargement_image(chemin_image_source) image_style = chargement_image(chemin_image_style) couche_VGG19_contenu = ['block5_conv2'] nombre_couches_contenu = len(couche_VGG19_contenu) couche_VGG19_style = ['block1_conv2', 'block2_conv2', 'block3_conv2', 'block4_conv2', 'block5_conv2'] nombre_couches_style = len(couche_VGG19_style) optimiseur = tf.optimizers.Adam(learning_rate=0.02, beta_1=0.99, epsilon=1e-1) poids_du_style_beta = 1e-2 poids_du_contenu_alpha = 1e4 # suppression des hautes frequences poids_filtres_hf = 30 # chargement du modele vgg10 sans sa tete vgg19 = tf.keras.applications.VGG19(include_top=False, weights='imagenet') # definition des cibles a atteindre extracteur = Extracteur_Style_Contenu(modele=vgg19, couches_contenu=couche_VGG19_contenu, couches_style=couche_VGG19_style) cible_style = extracteur(image_style)['style'] cible_contenu = extracteur(image_source)['contenu'] image = tf.Variable(image_source) epochs = 1 etapes_generation_epoch = 2 # Generarion de l'image DEBUT = time.time() step = 0 for n in range(epochs): print("Epoch :" + str(n)) for n in range(etapes_generation_epoch): step += 1 etape_generation(image, optimiseur, extracteur, cible_contenu, cible_style, poids_du_style_beta, nombre_couches_style, poids_du_contenu_alpha, nombre_couches_contenu, poids_filtres_hf) print(".", end="") display.clear_output(wait=True) FIN = time.time() #conversion_tenseur_vers_image(image).save(chemin_image_composite) K.clear_session() return conversion_tenseur_vers_image(image)
38.059055
146
0.642702
795232c30179af89fbb4c7c519cdd51a417c7b5d
602
py
Python
site-root/.py/model/map.py
TED-996/krait-twostones
51b27793b9cd536d680fb9a6785c57473d35cac1
[ "MIT" ]
null
null
null
site-root/.py/model/map.py
TED-996/krait-twostones
51b27793b9cd536d680fb9a6785c57473d35cac1
[ "MIT" ]
null
null
null
site-root/.py/model/map.py
TED-996/krait-twostones
51b27793b9cd536d680fb9a6785c57473d35cac1
[ "MIT" ]
null
null
null
import json import krait import os class Map(object): def __init__(self, mapId, source_file): self.id = mapId self.source_file = source_file self.height = 0 self.width = 0 self.data = [] self.parse_map() def parse_map(self): fd = open(os.path.join(krait.site_root, self.source_file or "map/medievil.json")) map_json = json.load(fd) self.height = map_json['height'] self.width = map_json['width'] self.data = map_json['layers'][0]['data'] self.data = [d-1 for d in self.data] fd.close()
25.083333
89
0.586379
7952340753498b4f82d22f5cf08643b00e4f23cb
244
py
Python
src/ps_collector/__init__.py
djw8605/ps-collector
34d5fe8bd3db231157140f3fbfee7dd46f35be2a
[ "Apache-2.0" ]
null
null
null
src/ps_collector/__init__.py
djw8605/ps-collector
34d5fe8bd3db231157140f3fbfee7dd46f35be2a
[ "Apache-2.0" ]
null
null
null
src/ps_collector/__init__.py
djw8605/ps-collector
34d5fe8bd3db231157140f3fbfee7dd46f35be2a
[ "Apache-2.0" ]
null
null
null
import sharedrabbitmq # Shared RabbitMQ shared_rabbitmq = None def get_rabbitmq_connection(cp): global shared_rabbitmq if shared_rabbitmq == None: shared_rabbitmq = sharedrabbitmq.SharedRabbitMQ(cp) return shared_rabbitmq
22.181818
59
0.77459
79523424bd4038cb5a99d435355827070b1c0505
643
py
Python
backend/manage.py
crowdbotics-apps/morning-waterfall-30060
45d08f37cc5bd66fb3b494a3162bb2273523f91c
[ "FTL", "AML", "RSA-MD" ]
null
null
null
backend/manage.py
crowdbotics-apps/morning-waterfall-30060
45d08f37cc5bd66fb3b494a3162bb2273523f91c
[ "FTL", "AML", "RSA-MD" ]
32
2021-08-23T23:51:20.000Z
2022-03-20T15:31:58.000Z
backend/manage.py
crowdbotics-apps/morning-waterfall-30060
45d08f37cc5bd66fb3b494a3162bb2273523f91c
[ "FTL", "AML", "RSA-MD" ]
null
null
null
#!/usr/bin/env python """Django's command-line utility for administrative tasks.""" import os import sys def main(): os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'morning_waterfall_30060.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv) if __name__ == '__main__': main()
29.227273
87
0.690513
79523499776726250bf489f010945bdb7bc69d4b
4,571
py
Python
autodist/kernel/synchronization/synchronizer.py
big-data-lab-umbc/autodist
c8514b27cf5608f35254b63c4ac8093c7295a8e7
[ "Apache-2.0" ]
null
null
null
autodist/kernel/synchronization/synchronizer.py
big-data-lab-umbc/autodist
c8514b27cf5608f35254b63c4ac8093c7295a8e7
[ "Apache-2.0" ]
null
null
null
autodist/kernel/synchronization/synchronizer.py
big-data-lab-umbc/autodist
c8514b27cf5608f35254b63c4ac8093c7295a8e7
[ "Apache-2.0" ]
null
null
null
# Copyright 2020 Petuum. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Synchronizer.""" from abc import ABC, abstractmethod from tensorflow.python import ops from autodist.kernel.common.utils import get_op_name, update_consumers, update_control_consumers, replica_prefix, \ strip_replica_prefix, get_index_from_tensor_name class Synchronizer(ABC): """ Synchronizer. Given a variable, can modify the TF Graph to synchronize its gradients in either an in-graph or a between-graph fashion. - In-graph means the synchronization happens in one `tf.Graph` - Between-graph means the synchronization happens across multiple `tf.Graphs` (e.g., each worker has its own graph) """ def __init__(self): self.num_workers = None self.num_replicas = None self.worker_device = None self.worker_id = None self.var_op_to_agg_grad = None self.var_op_to_accum_apply_op = None self.is_chief = None self.all_canonical_replica_devices = None # pylint: disable=too-many-arguments def assign_cluster_information(self, num_workers, num_replicas, worker_device, worker_id, canonical_replica_devices, is_chief=False): """Store cluster information in the synchronizer.""" self.num_workers = num_workers self.num_replicas = num_replicas self.worker_device = worker_device # local worker device self.worker_id = worker_id # local worker id self.all_canonical_replica_devices = canonical_replica_devices self.is_chief = is_chief return self @abstractmethod def in_graph_apply(self, graph_item, var_name): """ Apply in-graph synchronization to the grad and target in the graph. Args: graph_item (graph_item.GraphItem): The graph to put the new ops in. var_name (str): The variable name w/o the replica prefix. Returns: graph_item.GraphItem """ return @abstractmethod def between_graph_apply(self, graph_item, var_name): """ Apply between-graph synchronization to the target ops in the graph. Args: graph_item (graph_item.GraphItem): The graph to put the new ops in. var_name (str): The variable name w/o the replica prefix. Returns: graph_item.GraphItem """ return @classmethod def create(cls, name, *args, **kwargs): """ Create new Synchronizer instance given subclass name. Args: name: Name of the Synchronizer subclass (e.g. PSSynchronizer). *args: Any args for the subclass constructor. **kwargs: Any kwargs for the subclass constructor. Returns: Synchronizer """ subclass = next(subclass for subclass in cls.__subclasses__() if subclass.__name__ == name) return subclass(*args, **kwargs) @staticmethod def _update_gradient_consumers(new_graph_item, consumer_ops, control_consumer_ops, old_tensor_name, new_tensor): """Make gradient's consumers consume the aggregated gradient instead of the original one of replica_0.""" # Get the original tensor (the one from replica 0) to replace old_op_name = strip_replica_prefix(get_op_name(old_tensor_name)) replica_0_op_name = ops.prepend_name_scope(old_op_name, replica_prefix(0)) replica_0_op = new_graph_item.graph.get_operation_by_name(replica_0_op_name) output_idx = get_index_from_tensor_name(old_tensor_name) replica_0_tensor = replica_0_op.outputs[output_idx] update_consumers(consumer_ops, replica_0_tensor, new_tensor) update_control_consumers(control_consumer_ops, replica_0_tensor.op, new_tensor.op)
38.411765
115
0.660906
795234a535a4b848e922d273d92232252bd9ca5b
666
py
Python
test/unit/test_utils.py
kzawisto/arima_python
251b3ce28dedfe3118befeb7b008c4e7c91e33cf
[ "MIT" ]
4
2020-04-07T07:18:07.000Z
2021-12-13T10:09:13.000Z
test/unit/test_utils.py
kzawisto/arima_python
251b3ce28dedfe3118befeb7b008c4e7c91e33cf
[ "MIT" ]
null
null
null
test/unit/test_utils.py
kzawisto/arima_python
251b3ce28dedfe3118befeb7b008c4e7c91e33cf
[ "MIT" ]
2
2021-12-02T15:06:09.000Z
2022-01-15T18:09:30.000Z
from nose.tools import * from arima.utils import * from hamcrest import * def test_np_shift(): assert_that(np_shift([1, 2, 3, 4], 2, -1), only_contains(-1, -1, 1, 2)) assert_that(np_shift([1, 2, 3, 4], -2, -1), only_contains(3, 4, -1, -1)) assert_that(np_shift([1, 2, 3, 4], 0, -1), only_contains(1, 2, 3, 4)) def test_shift_stack(): assert_that(shift_and_stack([1, 2, 3, 4], 2)[ :, 0], only_contains(0, 1, 2, 3)) assert_that(shift_and_stack([1, 2, 3, 4], 2)[ :, 1], only_contains(0, 0, 1, 2)) def test_ols(): assert_that(ols_0dim([1, 2, 3, 4, 5], [1, 0, 2, 1, 3]), close_to(0.47, 0.01))
30.272727
76
0.555556
795234d3acc9261e8dd3b2994c4e3a04b7105bf0
8,187
py
Python
statsig.py
jensengroup/statsig
f59754c66eb6c12de3e6563c08d4e12a2ec0d6ee
[ "MIT" ]
2
2017-02-19T10:55:03.000Z
2018-01-09T11:57:49.000Z
statsig.py
jensengroup/statsig
f59754c66eb6c12de3e6563c08d4e12a2ec0d6ee
[ "MIT" ]
2
2017-01-09T18:49:18.000Z
2017-02-21T20:08:20.000Z
statsig.py
jensengroup/statsig
f59754c66eb6c12de3e6563c08d4e12a2ec0d6ee
[ "MIT" ]
3
2016-12-15T08:16:46.000Z
2021-04-24T10:54:01.000Z
import numpy as np check = "rmse" #check = "pearson" def correl(X,Y): N, = X.shape if N < 9: print "not enough points. {} datapoints given. at least 9 is required".format(n) return r = np.corrcoef(X,Y)[0][1] r_sig = 1.96/np.sqrt(n-2+1.96**2) F_plus = 0.5*np.log((1+r)/(1-r))+r_sig F_minus = 0.5*np.log((1+r)/(1-r))-r_sig le = r - (np.exp(2*F_minus)-1)/(np.exp(2*F_minus)+1) ue = (np.exp(2*F_plus)-1)/(np.exp(2*F_plus)+1) - r return r, le, ue def rmse(X, Y): """ Root-Mean-Square Error Lower Error = RMSE \left( 1- \sqrt{ 1- \frac{1.96\sqrt{2}}{\sqrt{N-1}} } \right ) Upper Error = RMSE \left( \sqrt{ 1+ \frac{1.96\sqrt{2}}{\sqrt{N-1}} } - 1 \right ) This only works for N >= 8.6832, otherwise the lower error will be imaginary. Parameters: X -- One dimensional Numpy array of floats Y -- One dimensional Numpy array of floats Returns: rmse -- Root-mean-square error between X and Y le -- Lower error on the RMSE value ue -- Upper error on the RMSE value """ N, = X.shape if N < 9: print "Not enough points. {} datapoints given. At least 9 is required".format(N) return diff = X - Y diff = diff**2 rmse = np.sqrt(diff.mean()) le = rmse * (1.0 - np.sqrt(1-1.96*np.sqrt(2.0)/np.sqrt(N-1))) ue = rmse * (np.sqrt(1 + 1.96*np.sqrt(2.0)/np.sqrt(N-1))-1) return rmse, le, ue def mae(X, Y): """ Mean Absolute Error (MAE) Lower Error = MAE_X \left( 1- \sqrt{ 1- \frac{1.96\sqrt{2}}{\sqrt{N-1}} } \right ) Upper Error = MAE_X \left( \sqrt{ 1+ \frac{1.96\sqrt{2}}{\sqrt{N-1}} }-1 \right ) Parameters: X -- One dimensional Numpy array of floats Y -- One dimensional Numpy array of floats Returns: mae -- Mean-absolute error between X and Y le -- Lower error on the MAE value ue -- Upper error on the MAE value """ N, = X.shape mae = np.abs(X - Y) mae = mae.mean() le = mae * (1 - np.sqrt(1 - 1.96*np.sqrt(2)/np.sqrt(N-1) ) ) ue = mae * ( np.sqrt(1 + 1.96*np.sqrt(2)/np.sqrt(N-1) ) -1 ) return mae, le, ue def me(X, Y): """ mean error (ME) L_X = U_X = \frac{1.96 s_N}{\sqrt{N}} where sN is the standard population deviation (e.g. STDEVP in Excel). Parameters: X -- One dimensional Numpy array of floats Y -- One dimensional Numpy array of floats Returns: mae -- Mean error between X and Y e -- Upper and Lower error on the ME """ N, = X.shape error = X - Y me = error.mean() s_N = stdevp(error, me, N) e = 1.96*s_N/np.sqrt(N) return me, e def stdevp(X, X_hat, N): """ Parameters: X -- One dimensional Numpy array of floats X_hat -- Float N -- Integer Returns: Calculates standard deviation based on the entire population given as arguments. The standard deviation is a measure of how widely values are dispersed from the average value (the mean). """ return np.sqrt(np.sum((X-X_hat)**2)/N) if __name__ == '__main__': import sys import numpy as np import matplotlib.pyplot as plt if len(sys.argv) < 2: exit("usage: python example.py example_input.csv") filename = sys.argv[1] f = open(filename, "r") data = np.genfromtxt(f, delimiter=',', names=True) f.close() try: ref = data['REF'] except: ref = data['\xef\xbb\xbfREF'] n = len(ref) methods = data.dtype.names methods = methods[1:] nm = len(methods) rmse_list = [] rmse_lower = [] rmse_upper = [] mae_list = [] mae_lower = [] mae_upper = [] me_list = [] me_lower = [] me_upper = [] r_list = [] r_lower = [] r_upper = [] for method in methods: mdata = data[method] # RMSE mrmse, mle, mue = rmse(mdata, ref) rmse_list.append(mrmse) rmse_lower.append(mle) rmse_upper.append(mue) # MAD mmae, maele, maeue = mae(mdata, ref) mae_list.append(mmae) mae_lower.append(maele) mae_upper.append(maeue) # ME mme, mmee = me(mdata, ref) me_list.append(mme) me_lower.append(mmee) me_upper.append(mmee) # r r, rle, rue = correl(mdata, ref) r_list.append(r) r_lower.append(rle) r_upper.append(rue) print "Method_A Method_B RMSE_A RMSE_B RMSE_A-RMSE_B Comp Err same?" ps = "{:10s} "*2 + "{:8.3f} "*2 + "{:8.3f}" + "{:15.3f}" + " {:}" if check == "pearson": measure = r_list upper_error = r_upper lower_error = r_lower else: measure = rmse_list upper_error = rmse_upper lower_error = rmse_lower # measure = mae_list # upper_error = mae_upper # lower_error = mae_lower for i in xrange(nm): for j in xrange(i+1, nm): m_i = methods[i] m_j = methods[j] rmse_i = measure[i] rmse_j = measure[j] r_ij = np.corrcoef(data[m_i], data[m_j])[0][1] if rmse_i > rmse_j: lower = lower_error[i] upper = upper_error[j] else: lower = lower_error[j] upper = upper_error[i] comp_error = np.sqrt(upper**2 + lower**2 - 2.0*r_ij*upper*lower) significance = abs(rmse_i - rmse_j) < comp_error print ps.format(m_i, m_j, rmse_i, rmse_j, rmse_i-rmse_j, comp_error, significance) print print "\\begin{table}[]" print "\centering" print "\caption{}" print "\label{}" print "\\begin{tabular}{l" + nm*"c" + "}" print "\midrule" print "& " + " & ".join(methods) + "\\\\" print "\midrule" # for i in xrange(nm-1): # print '%.1f $\pm$ %.1f/%.1f &'%(rmse_list[i],lower_error[i],rmse_upper[i]), # print '%.1f $\pm$ %.1f/%.1f'%(rmse_list[-1],lower_error[-1],rmse_upper[-1]) print "RMSE & " + " & ".join(format(x, "3.1f") for x in rmse_list) + "\\\\" temp_list = [ i+"/"+j for i,j in zip([format(x, "3.1f") for x in rmse_upper],[format(x, "3.1f") for x in rmse_lower])] print "95 \% conf & $\pm$ " + " & $\pm$ ".join(temp_list) + "\\\\" temp_list = [ i+" $\pm$ "+j for i,j in zip([format(x, "3.1f") for x in me_list],[format(x, "3.1f") for x in me_upper])] print "ME & " + " & ".join(temp_list) + "\\\\" print "$r$ & " + " & ".join(format(x, "3.2f") for x in r_list) + "\\\\" temp_list = [ i+"/"+j for i,j in zip([format(x, "3.2f") for x in r_upper],[format(x, "3.2f") for x in r_lower])] print "95 \% conf & $\pm$ " + " & $\pm$ ".join(temp_list) + "\\\\" print "\midrule" print "\end{tabular}" print "\end{table}" # Create x-axis x = range(len(methods)) # Errorbar (upper and lower) asymmetric_error = [rmse_lower, rmse_upper] # Add errorbar for RMSE plt.errorbar(x, rmse_list, yerr=asymmetric_error, fmt='o') # change x-axis to method names and rotate the ticks 30 degrees plt.xticks(x, methods, rotation=30) # Pad margins so that markers don't get clipped by the axes plt.margins(0.2) # Tweak spacing to prevent clipping of tick-labels plt.subplots_adjust(bottom=0.15) # Add grid to plot plt.grid(True) # Set plot title plt.title('Root-mean-sqaure error') # Save plot to PNG format plt.savefig('example_rmsd.png') # Clear figure plt.clf() # MAE plot asymmetric_error = [mae_lower, mae_upper] plt.errorbar(x, mae_list, yerr=asymmetric_error, fmt='o') plt.xticks(x, methods, rotation=30) plt.margins(0.2) plt.subplots_adjust(bottom=0.15) plt.grid(True) plt.title('Mean Absolute Error') plt.savefig('example_mae.png') # Clear figure plt.clf() # ME plot asymmetric_error = [me_lower, me_upper] plt.errorbar(x, me_list, yerr=asymmetric_error, fmt='o') plt.xticks(x, methods, rotation=30) plt.margins(0.2) plt.subplots_adjust(bottom=0.15) plt.grid(True) plt.title('Mean Error') plt.savefig('example_me.png')
25.425466
123
0.562233
7952366c676a7a29d90e5013ad86e14768a5dd11
2,023
py
Python
L-System.py
Moonire/L-system_python
b21f2d7a7b9dd571f47c95fda3cad5e8cff2e00b
[ "MIT" ]
null
null
null
L-System.py
Moonire/L-system_python
b21f2d7a7b9dd571f47c95fda3cad5e8cff2e00b
[ "MIT" ]
null
null
null
L-System.py
Moonire/L-system_python
b21f2d7a7b9dd571f47c95fda3cad5e8cff2e00b
[ "MIT" ]
null
null
null
import matplotlib.pyplot as plt import numpy as np """ Non Stochastic Context free L-system implementation for python 3.x Conformaly to the description given in 'The Algorithmic Beauty of Plants' by Lindenmayer (algorithmicbotany.org/papers/abop/abop.pdf) i.e : the angles are in degrees and grow clockwise supports edge and node rewriting supports branching all lower cases : forward line all upper cases : ignored in the drawing prosses _ : forward without drawing [ , ] : respectively saving and popping a state h : initial heading, for manual correction of the orientation of the figure (in degrees) Displayed using matplotlib (quicker and smoother than turtle) """ def L_system( axiom, rule , angle, iterations=2, h=0 ): d, h, axiom_ = angle*np.pi/180, h*np.pi/180, axiom R = { '-': [ [np.cos( d), -np.sin( d)],[np.sin( d), np.cos( d)] ] , '+': [ [np.cos(-d), -np.sin(-d)],[np.sin(-d), np.cos(-d)] ] } for i in range(iterations): sequence ='' for i in axiom_ : try : sequence += rule[i] except : sequence += i axiom_ = sequence print(axiom_) a, k = (0,0), [] r = [ [np.cos(h), -np.sin(h)],[np.sin(h), np.cos(h)] ] for i in axiom_ : if i.islower() : b = np.transpose(np.add(a, np.matmul(r, np.transpose([0,1]) ))) plt.plot([ a[0],b[0] ], [ a[1],b[1] ], color='g') a = b elif i in R: r = np.transpose(np.matmul(R[i], np.transpose(r) )) elif i=='_': a = np.transpose(np.add(a, np.matmul(r, np.transpose([0,1]) ))) elif i=='[': k.extend([a,r]) elif i==']': r, a = k.pop(), k.pop() plt.suptitle("n=%s, angle=%s°, axiom=%s" %(iterations, angle, axiom)) plt.title(str(rule).replace("'","")) #exemple (d) page 25 axiom = 'X' rule = { 'f':'ff' , 'X':'f[+X]f[-X]+X' } angle = 20 iterations = 7 L_system(axiom, rule, angle, iterations) plt.axis('off') plt.axis('equal') plt.savefig( '%s_%s' %(axiom,iterations) ) plt.show()
30.651515
134
0.587741
7952367810c53905c83c957437db2994c42cb727
17,004
py
Python
pymatgen/io/abinitio/abiinspect.py
ctoher/pymatgen
54df358f61fbe60417e90850811b75c1a9e2e230
[ "MIT" ]
null
null
null
pymatgen/io/abinitio/abiinspect.py
ctoher/pymatgen
54df358f61fbe60417e90850811b75c1a9e2e230
[ "MIT" ]
null
null
null
pymatgen/io/abinitio/abiinspect.py
ctoher/pymatgen
54df358f61fbe60417e90850811b75c1a9e2e230
[ "MIT" ]
null
null
null
# coding: utf-8 """ This module provides objects to inspect the status of the Abinit tasks at run-time. by extracting information from the main output file (text format). """ from __future__ import unicode_literals, division, print_function import collections import numpy as np import yaml import six from six.moves import cStringIO, map, zip from prettytable import PrettyTable from pymatgen.util.plotting_utils import add_fig_kwargs def straceback(): """Returns a string with the traceback.""" import traceback return traceback.format_exc() def _magic_parser(stream, magic): """ Parse the section with the SCF cycle Returns: dict where the key are the name of columns and the values are list of numbers. Note if no section was found. .. warning:: The parser is very fragile and should be replaced by YAML. """ #Example (SCF cycle, similar format is used for phonons): # # iter Etot(hartree) deltaE(h) residm vres2 # ETOT 1 -8.8604027880849 -8.860E+00 2.458E-02 3.748E+00 # At SCF step 5 vres2 = 3.53E-08 < tolvrs= 1.00E-06 =>converged. in_doc, fields = 0, None for line in stream: line = line.strip() if line.startswith(magic): keys = line.split() fields = collections.OrderedDict((k, []) for k in keys) if fields is not None: #print(line) in_doc += 1 if in_doc == 1: continue # End of the section. if not line: break tokens = list(map(float, line.split()[1:])) assert len(tokens) == len(keys) for l, v in zip(fields.values(), tokens): l.append(v) return fields def plottable_from_outfile(filepath): """ Factory function that returns a plottable object by inspecting the main output file of abinit Returns None if it is not able to detect the class to instantiate. """ # TODO # Figure out how to detect the type of calculations # without having to parse the input. Possible approach: YAML doc #with YamlTokenizer(filepath) as r: # doc = r.next_doc_with_tag("!CalculationType") # d = yaml.load(doc.text_notag) # calc_type = d["calculation_type"] #ctype2class = { # "Ground State": GroundStateScfCycle, # "Phonon": PhononScfCycle, # "Relaxation": Relaxation, #} #obj = ctype2class.get(calc_type, None) obj = GroundStateScfCycle if obj is not None: return obj.from_file(filepath) else: return None class ScfCycle(collections.Mapping): """ It essentially consists of a dictionary mapping string to list of floats containing the data at the different iterations. """ def __init__(self, fields): self.fields = fields #print(fields) all_lens = [len(lst) for lst in self.values()] self.num_iterations = all_lens[0] assert all(n == self.num_iterations for n in all_lens) def __getitem__(self, slice): return self.fields.__getitem__(slice) def __iter__(self): return self.fields.__iter__() def __len__(self): return len(self.fields) def __str__(self): """String representation.""" table = PrettyTable([list(self.fields.keys())]) for it in range(self.num_iterations): row = list(map(str, (self[k][it] for k in self.keys()))) table.add_row(row) stream = cStringIO() print(table, out=stream) stream.seek(0) return "".join(stream) @property def last_iteration(self): """Returns a dictionary with the values of the last iteration.""" return {k: v[-1] for k, v in self.items()} @classmethod def from_file(cls, filepath): """Read the first occurrence of ScfCycle from file.""" with open(filepath, "r") as stream: return cls.from_stream(stream) @classmethod def from_stream(cls, stream): """ Read the first occurrence of ScfCycle from stream. Returns: None if no `ScfCycle` entry is found. """ fields = _magic_parser(stream, magic=cls.MAGIC) if fields: fields.pop("iter") return cls(fields) else: return None @add_fig_kwargs def plot(self, **kwargs): """ Uses matplotlib to plot the evolution of the SCF cycle. Return `matplotlib` figure """ import matplotlib.pyplot as plt # Build grid of plots. num_plots, ncols, nrows = len(self), 1, 1 if num_plots > 1: ncols = 2 nrows = (num_plots//ncols) + (num_plots % ncols) fig, ax_list = plt.subplots(nrows=nrows, ncols=ncols, sharex=True, squeeze=False) ax_list = ax_list.ravel() iter_num = np.array(list(range(self.num_iterations))) for ((key, values), ax) in zip(self.items(), ax_list): ax.grid(True) ax.set_xlabel('Iteration') ax.set_xticks(iter_num, minor=False) ax.set_ylabel(key) xx, yy = iter_num, values if self.num_iterations > 1: # Don't show the first iteration since it's not very useful. xx, yy = xx[1:] + 1, values[1:] #print("xx ",xx, "yy ",yy) ax.plot(xx, yy, "-o", lw=2.0) # Get around a bug in matplotlib. if (num_plots % ncols) != 0: ax_list[-1].plot(xx, yy, lw=0.0) ax_list[-1].axis('off') return fig class GroundStateScfCycle(ScfCycle): """Result of the Ground State self-consistent cycle.""" #yaml_tag = '!GroundStateScfCycle' MAGIC = "iter Etot(hartree)" @property def last_etotal(self): """The total energy at the last iteration.""" return self["Etot(hartree)"][-1] class PhononScfCycle(ScfCycle): """Result of the Phonon self-consistent cycle.""" #yaml_tag = '!PhononScfCycle' MAGIC = "iter 2DEtotal(Ha)" @property def last_etotal(self): """The 2-nd order derivative of the energy at the last iteration.""" return self["2DEtotal(Ha)"][-1] class Relaxation(collections.Iterable): """ A list of :class:`GroundStateScfCycle` objects. .. note:: Forces, stresses and crystal structures are missing. Solving this problem would require the standardization of the Abinit output file (YAML). """ def __init__(self, cycles): self.cycles = cycles def __iter__(self): return self.cycles.__iter__() def __len__(self): return self.cycles.__len__() def __str__(self): """String representation.""" lines = [] app = lines.append for i, cycle in enumerate(self): app("") app("RELAXATION STEP: %d" % i) app(str(cycle)) app("") return "\n".join(lines) @classmethod def from_file(cls, filepath): """Initialize the object from the Abinit main output file.""" with open(filepath, "r") as stream: return cls.from_stream(stream) @classmethod def from_stream(cls, stream): """ Extract data from stream. Returns None if some error occurred. """ cycles = [] while True: scf_cycle = GroundStateScfCycle.from_stream(stream) if scf_cycle is None: break cycles.append(scf_cycle) return cls(cycles) if cycles else None @property def history(self): """ Dictionary of lists with the evolution of the data as function of the relaxation step. """ try: return self._history except AttributeError: self._history = history = collections.defaultdict(list) for cycle in self: d = cycle.last_iteration for k, v in d.items(): history[k].append(v) return self._history @add_fig_kwargs def plot(self, **kwargs): """ Uses matplotlib to plot the evolution of the structural relaxation. Returns: `matplotlib` figure """ import matplotlib.pyplot as plt history = self.history #print(history) relax_step = list(range(len(self))) # Build grid of plots. num_plots, ncols, nrows = len(list(history.keys())), 1, 1 if num_plots > 1: ncols = 2 nrows = (num_plots//ncols) + (num_plots % ncols) fig, ax_list = plt.subplots(nrows=nrows, ncols=ncols, sharex=True, squeeze=False) ax_list = ax_list.ravel() if (num_plots % ncols) != 0: ax_list[-1].axis('off') for (key, values), ax in zip(history.items(), ax_list): ax.grid(True) ax.set_xlabel('Relaxation Step') ax.set_xticks(relax_step, minor=False) ax.set_ylabel(key) ax.plot(relax_step, values, "-o", lw=2.0) return fig # TODO #class HaydockIterations(collections.Iterable): # """This object collects info on the different steps of the Haydock technique used in the Bethe-Salpeter code""" # @classmethod # def from_file(cls, filepath): # """Initialize the object from file.""" # with open(filepath, "r") as stream: # return cls.from_stream(stream) # # @classmethod # def from_stream(cls, stream): # """Extract data from stream. Returns None if some error occurred.""" # cycles = [] # while True: # scf_cycle = GroundStateScfCycle.from_stream(stream) # if scf_cycle is None: break # cycles.append(scf_cycle) # # return cls(cycles) if cycles else None # # #def __init__(self): # # def plot(self, **kwargs): # """ # Uses matplotlib to plot the evolution of the structural relaxation. # ============== ============================================================== # kwargs Meaning # ============== ============================================================== # title Title of the plot (Default: None). # how True to show the figure (Default). # savefig 'abc.png' or 'abc.eps'* to save the figure to a file. # ============== ============================================================== # Returns: # `matplotlib` figure # """ # import matplotlib.pyplot as plt # title = kwargs.pop("title", None) # show = kwargs.pop("show", True) # savefig = kwargs.pop("savefig", None) # if title: fig.suptitle(title) # if savefig is not None: fig.savefig(savefig) # if show: plt.show() # return fig class YamlTokenizerError(Exception): """Exceptions raised by :class:`YamlTokenizer`.""" class YamlTokenizer(collections.Iterator): """ Provides context-manager support so you can use it in a with statement. """ Error = YamlTokenizerError def __init__(self, filename): # The position inside the file. self.linepos = 0 self.stream = open(filename, "r") def __iter__(self): return self def __enter__(self): return self def __exit__(self, type, value, traceback): self.close() def __del__(self): self.close() def close(self): try: self.stream.close() except: print("Exception in YAMLTokenizer.close()") print(straceback()) def seek(self, offset, whence=0): """ seek(offset[, whence]) -> None. Move to new file position. Argument offset is a byte count. Optional argument whence defaults to 0 (offset from start of file, offset should be >= 0); other values are 1 (move relative to current position, positive or negative), and 2 (move relative to end of file, usually negative, although many platforms allow seeking beyond the end of a file). If the file is opened in text mode, only offsets returned by tell() are legal. Use of other offsets causes undefined behavior. Note that not all file objects are seekable. """ assert offset == 0 self.linepos = 0 return self.stream.seek(offset, whence) # Python 3 compatibility def __next__(self): return self.next() def next(self): """ Returns the first YAML document in stream. .. warning:: Assume that the YAML document are closed explicitely with the sentinel '...' """ in_doc, lines, doc_tag = None, [], None for i, line in enumerate(self.stream): self.linepos += 1 #print(i, line) if line.startswith("---"): # Include only lines in the form: # "--- !tag" # "---" # Other lines are spurious. in_doc = False l = line[3:].strip().lstrip() if l.startswith("!"): # "--- !tag" doc_tag = l in_doc = True elif not l: # "---" in_doc = True doc_tag = None if in_doc: lineno = self.linepos if in_doc: lines.append(line) if in_doc and line.startswith("..."): return YamlDoc(text="".join(lines), lineno=lineno, tag=doc_tag) raise StopIteration("Cannot find next YAML document") def all_yaml_docs(self): """ Returns a list with all the YAML docs found in stream. Seek the stream before returning. .. warning:: Assume that all the YAML docs (with the exception of the last one) are closed explicitely with the sentinel '...' """ docs = [doc for doc in self] self.seek(0) return docs def next_doc_with_tag(self, doc_tag): """ Returns the next document with the specified tag. Empty string is no doc is found. """ while True: try: doc = six.advance_iterator(self) if doc.tag == doc_tag: return doc except StopIteration: raise def all_docs_with_tag(self, doc_tag): """ Returns all the documents with the specified tag. """ docs = [] while True: try: doc = self.next_doc_with(doc_tag) docs.append(doc) except StopIteration: break self.seek(0) return docs def yaml_read_kpoints(filename, doc_tag="!Kpoints"): """Read the K-points from file.""" with YamlTokenizer(filename) as r: doc = r.next_doc_with_tag(doc_tag) d = yaml.load(doc.text_notag) return np.array(d["reduced_coordinates_of_qpoints"]) def yaml_read_irred_perts(filename, doc_tag="!IrredPerts"): """Read the list of irreducible perturbations from file.""" with YamlTokenizer(filename) as r: doc = r.next_doc_with_tag(doc_tag) d = yaml.load(doc.text_notag) return d["irred_perts"] class YamlDoc(object): """ Handy object that stores that YAML document, its main tag and the position inside the file. """ __slots__ = [ "text", "lineno", "tag", ] def __init__(self, text, lineno, tag=None): """ Args: text: String with the YAML document. lineno: The line number where the document is located. tag: The YAML tag associate to the document. """ # Sanitize strings: use "ignore" to skip invalid characters in .encode/.decode like if isinstance(text, bytes): text = text.decode("utf-8", "ignore") text = text.rstrip().lstrip() self.text = text self.lineno = lineno if isinstance(tag, bytes): tag = tag.decode("utf-8", "ignore") self.tag = tag def __str__(self): return self.text def __eq__(self, other): if other is None: return False return (self.text == other.text and self.lineno == other.lineno and self.tag == other.tag) def __ne__(self, other): return not self == other @property def text_notag(self): """ Returns the YAML text without the tag. Useful if we don't have any constructor registered for the tag (we used the tag just to locate the document). """ if self.tag is not None: return self.text.replace(self.tag, "") else: return self.text
29.317241
116
0.563985