hexsha
stringlengths
40
40
size
int64
1
1.03M
ext
stringclasses
10 values
lang
stringclasses
1 value
max_stars_repo_path
stringlengths
3
239
max_stars_repo_name
stringlengths
5
130
max_stars_repo_head_hexsha
stringlengths
40
78
max_stars_repo_licenses
listlengths
1
10
max_stars_count
int64
1
191k
max_stars_repo_stars_event_min_datetime
stringlengths
24
24
max_stars_repo_stars_event_max_datetime
stringlengths
24
24
max_issues_repo_path
stringlengths
3
239
max_issues_repo_name
stringlengths
5
130
max_issues_repo_head_hexsha
stringlengths
40
78
max_issues_repo_licenses
listlengths
1
10
max_issues_count
int64
1
67k
max_issues_repo_issues_event_min_datetime
stringlengths
24
24
max_issues_repo_issues_event_max_datetime
stringlengths
24
24
max_forks_repo_path
stringlengths
3
239
max_forks_repo_name
stringlengths
5
130
max_forks_repo_head_hexsha
stringlengths
40
78
max_forks_repo_licenses
listlengths
1
10
max_forks_count
int64
1
105k
max_forks_repo_forks_event_min_datetime
stringlengths
24
24
max_forks_repo_forks_event_max_datetime
stringlengths
24
24
content
stringlengths
1
1.03M
avg_line_length
float64
1
958k
max_line_length
int64
1
1.03M
alphanum_fraction
float64
0
1
7953453e9cd7dc9fc203cac750bddd82b5cb145d
82,725
py
Python
Engine/Extras/Maya_AnimationRiggingTools/ArtToolsOSX/MayaTools/General/Scripts/ART_importMotion.py
windystrife/UnrealEngine_NVIDIAGameWork
b50e6338a7c5b26374d66306ebc7807541ff815e
[ "MIT" ]
1
2022-01-29T18:36:12.000Z
2022-01-29T18:36:12.000Z
Engine/Extras/Maya_AnimationRiggingTools/ArtToolsOSX/MayaTools/General/Scripts/ART_importMotion.py
windystrife/UnrealEngine_NVIDIAGameWork
b50e6338a7c5b26374d66306ebc7807541ff815e
[ "MIT" ]
2
2015-06-21T17:38:11.000Z
2015-06-22T20:54:42.000Z
Engine/Extras/Maya_AnimationRiggingTools/ArtToolsOSX/MayaTools/General/Scripts/ART_importMotion.py
PopCap/GameIdea
201e1df50b2bc99afc079ce326aa0a44b178a391
[ "BSD-2-Clause" ]
1
2021-04-27T08:48:33.000Z
2021-04-27T08:48:33.000Z
import maya.cmds as cmds import maya.mel as mel from functools import partial import os, cPickle import math class ImportMotionUI(): def __init__(self): #create class variables self.widgets = {} #find out which project we are in references = cmds.ls(type = "reference") for ref in references: try: self.project = cmds.referenceQuery(ref, filename = True).rpartition("Projects/")[2].partition("/")[0] except: pass #get access to our maya tools toolsPath = os.path.join(cmds.internalVar(usd = True), "mayaTools.txt") if os.path.exists(toolsPath): f = open(toolsPath, 'r') self.mayaToolsDir = f.readline() f.close() #check to see if window exists, if so, delete if cmds.window("importMotionUI", exists = True): cmds.deleteUI("importMotionUI") #build window self.widgets["window"] = cmds.window("importMotionUI", w = 700, h = 400, title = "Import Motion", sizeable = False) #create the main layout self.widgets["topLevelLayout"] = cmds.columnLayout() #create the rowColumnLayout (left side for the different ways one can import motion, the right side with that method's settings self.widgets["rowColumnLayout"] = cmds.rowColumnLayout(w = 700, h = 400, nc = 2, cw = [(1, 150), (2, 550)], parent = self.widgets["topLevelLayout"]) #create the columnLayout for the left side self.widgets["leftSideButtonColumn"] = cmds.columnLayout(w = 150, h = 400, parent = self.widgets["rowColumnLayout"], cat = ["both", 5], rs = 5) #and create the frame layout for the right side self.widgets["rightSideFrame"] = cmds.frameLayout(w = 550, h = 400, collapsable = False, borderStyle = "etchedIn", labelVisible = False, parent = self.widgets["rowColumnLayout"]) #create the buttons for the different methods of importing motion self.widgets["importMotionMethods"] = cmds.iconTextRadioCollection() self.widgets["importMotion_mocap"] = cmds.iconTextRadioButton(select = True, w = 140, h = 50, parent = self.widgets["leftSideButtonColumn"], image = os.path.join(self.mayaToolsDir, "General", "Icons", "ART", "importMocap_off.bmp"), selectionImage = os.path.join(self.mayaToolsDir, "General", "Icons", "ART", "importMocap_on.bmp")) self.widgets["importMotion_anims"] = cmds.iconTextRadioButton(select = False, w = 140, h = 50, parent = self.widgets["leftSideButtonColumn"], image = os.path.join(self.mayaToolsDir, "General", "Icons", "ART", "importAnim_off.bmp"), selectionImage = os.path.join(self.mayaToolsDir, "General", "Icons", "ART", "importAnim_on.bmp")) #create the elements for the right column # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #IMPORT MOCAP self.widgets["importMocapForm"] = cmds.formLayout(w = 500, h = 400, parent = self.widgets["rightSideFrame"]) #text labels fbxLabel = cmds.text(label = "FBX File:", font = "boldLabelFont") importMethodLabel = cmds.text(label = "Import Method:", font = "boldLabelFont") frameOffsetLabel = cmds.text(label = "Frame Offset:", font = "boldLabelFont") cmds.formLayout(self.widgets["importMocapForm"], edit = True, af = [(fbxLabel, "top", 13), (fbxLabel, "left", 10)]) cmds.formLayout(self.widgets["importMocapForm"], edit = True, af = [(importMethodLabel, "top", 140), (importMethodLabel, "left", 10)]) cmds.formLayout(self.widgets["importMocapForm"], edit = True, af = [(frameOffsetLabel, "top", 210), (frameOffsetLabel, "left", 10)]) #fbxImport self.widgets["fbxImportTextField"] = cmds.textField(w = 400, text = "", enable = True) self.widgets["fbxImportBrowseButton"] = cmds.symbolButton(w = 30, h = 30, image = os.path.join(self.mayaToolsDir, "General", "Icons", "ART", "browse.bmp"), c = self.fbxBrowse) cmds.formLayout(self.widgets["importMocapForm"], edit = True, af = [(self.widgets["fbxImportTextField"], "top", 10), (self.widgets["fbxImportTextField"], "left", 70)]) cmds.formLayout(self.widgets["importMocapForm"], edit = True, af = [(self.widgets["fbxImportBrowseButton"], "top", 5), (self.widgets["fbxImportBrowseButton"], "left", 475)]) #character list self.widgets["importMocap_characterList"] = cmds.optionMenu(w = 240, h = 50) self.widgets["importMocap_characterThumb"] = cmds.image(w = 50, h = 50) cmds.formLayout(self.widgets["importMocapForm"], edit = True, af = [(self.widgets["importMocap_characterList"], "top", 45), (self.widgets["importMocap_characterList"], "left", 10)]) cmds.formLayout(self.widgets["importMocapForm"], edit = True, af = [(self.widgets["importMocap_characterThumb"], "top", 45), (self.widgets["importMocap_characterThumb"], "left", 255)]) #import method self.widgets["importMethodRadioCollection"] = cmds.radioCollection() self.widgets["importMethod_FK"] = cmds.radioButton(label = "FK", select = True) self.widgets["importMethod_IK"] = cmds.radioButton(label = "IK") self.widgets["importMethod_Both"] = cmds.radioButton(label = "Both") cmds.formLayout(self.widgets["importMocapForm"], edit = True, af = [(self.widgets["importMethod_FK"], "top", 165), (self.widgets["importMethod_FK"], "left", 10)]) cmds.formLayout(self.widgets["importMocapForm"], edit = True, af = [(self.widgets["importMethod_IK"], "top", 165), (self.widgets["importMethod_IK"], "left", 80)]) cmds.formLayout(self.widgets["importMocapForm"], edit = True, af = [(self.widgets["importMethod_Both"], "top", 165), (self.widgets["importMethod_Both"], "left", 150)]) #frame offset self.widgets["frameOffsetField"] = cmds.intField(value=0, w = 100) cmds.formLayout(self.widgets["importMocapForm"], edit = True, af = [(self.widgets["frameOffsetField"], "top", 235), (self.widgets["frameOffsetField"], "left", 10)]) #apply motion to parts self.widgets["importMotionTo_Frame"] = cmds.frameLayout( w= 220, h = 350, label = "Apply To Which Parts:", bs = "etchedIn", collapsable = False) cmds.formLayout(self.widgets["importMocapForm"], edit = True, af = [(self.widgets["importMotionTo_Frame"], "top", 40), (self.widgets["importMotionTo_Frame"], "right", 10)]) self.widgets["importMotionTo_Form"] = cmds.formLayout( w= 240, h = 280, parent = self.widgets["importMotionTo_Frame"]) self.widgets["importMotionTo_HeadButton"] = cmds.iconTextCheckBox(w = 55, h = 55, image = os.path.join(self.mayaToolsDir, "General", "Icons", "ART", "importMotion_head.bmp"), selectionImage = os.path.join(self.mayaToolsDir, "General", "Icons", "ART", "importMotion_head_on.bmp"), value = True) self.widgets["importMotionTo_SpineButton"] = cmds.iconTextCheckBox(w = 55, h = 100, image = os.path.join(self.mayaToolsDir, "General", "Icons", "ART", "importMotion_torso.bmp"), selectionImage = os.path.join(self.mayaToolsDir, "General", "Icons", "ART", "importMotion_torso_on.bmp"), value = True) self.widgets["importMotionTo_lArmButton"] = cmds.iconTextCheckBox(w = 30, h = 100, image = os.path.join(self.mayaToolsDir, "General", "Icons", "ART", "importMotion_arm.bmp"), selectionImage = os.path.join(self.mayaToolsDir, "General", "Icons", "ART", "importMotion_arm_on.bmp"), value = True) self.widgets["importMotionTo_rArmButton"] = cmds.iconTextCheckBox(w = 30, h = 100, image = os.path.join(self.mayaToolsDir, "General", "Icons", "ART", "importMotion_arm_r.bmp"), selectionImage = os.path.join(self.mayaToolsDir, "General", "Icons", "ART", "importMotion_arm_r_on.bmp"), value = True) self.widgets["importMotionTo_lLegButton"] = cmds.iconTextCheckBox(w = 30, h = 110, image = os.path.join(self.mayaToolsDir, "General", "Icons", "ART", "importMotion_leg.bmp"), selectionImage = os.path.join(self.mayaToolsDir, "General", "Icons", "ART", "importMotion_leg_on.bmp"), value = True) self.widgets["importMotionTo_rLegButton"] = cmds.iconTextCheckBox(w = 30, h = 110, image = os.path.join(self.mayaToolsDir, "General", "Icons", "ART", "importMotion_leg.bmp"), selectionImage = os.path.join(self.mayaToolsDir, "General", "Icons", "ART", "importMotion_leg_on.bmp"), value = True) cmds.formLayout(self.widgets["importMotionTo_Form"], edit = True, af = [(self.widgets["importMotionTo_HeadButton"], "top", 25), (self.widgets["importMotionTo_HeadButton"], "right", 100)]) cmds.formLayout(self.widgets["importMotionTo_Form"], edit = True, af = [(self.widgets["importMotionTo_SpineButton"], "top", 80), (self.widgets["importMotionTo_SpineButton"], "right", 100)]) cmds.formLayout(self.widgets["importMotionTo_Form"], edit = True, af = [(self.widgets["importMotionTo_lArmButton"], "top", 80), (self.widgets["importMotionTo_lArmButton"], "right", 70)]) cmds.formLayout(self.widgets["importMotionTo_Form"], edit = True, af = [(self.widgets["importMotionTo_rArmButton"], "top", 80), (self.widgets["importMotionTo_rArmButton"], "right", 155)]) cmds.formLayout(self.widgets["importMotionTo_Form"], edit = True, af = [(self.widgets["importMotionTo_lLegButton"], "top", 180), (self.widgets["importMotionTo_lLegButton"], "right", 98)]) cmds.formLayout(self.widgets["importMotionTo_Form"], edit = True, af = [(self.widgets["importMotionTo_rLegButton"], "top", 180), (self.widgets["importMotionTo_rLegButton"], "right", 125)]) #import button self.widgets["importMocap_importButton"] = cmds.symbolButton(c = self.importMocap, w = 300, h = 50, image = os.path.join(self.mayaToolsDir, "General", "Icons", "ART", "importMotion_importButton.bmp"), parent = self.widgets["importMocapForm"]) cmds.formLayout(self.widgets["importMocapForm"], edit = True, af = [(self.widgets["importMocap_importButton"], "bottom", 10), (self.widgets["importMocap_importButton"], "left", 10)]) #heel solve checkbox self.widgets["heelSolverCB"] = cmds.checkBox(label = "Solve Foot Roll", v = False, parent = self.widgets["importMocapForm"]) self.widgets["kneeSolverCB"] = cmds.checkBox(label = "Solve Knee Vectors", v = True, parent = self.widgets["importMocapForm"]) cmds.formLayout(self.widgets["importMocapForm"], edit = True, af = [(self.widgets["heelSolverCB"], "bottom", 110), (self.widgets["heelSolverCB"], "left", 10)]) cmds.formLayout(self.widgets["importMocapForm"], edit = True, af = [(self.widgets["kneeSolverCB"], "bottom", 110), (self.widgets["kneeSolverCB"], "left", 140)]) # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #IMPORT ANIMATION self.widgets["importAnimationFormLayout"] = cmds.formLayout(w = 500, h = 400, parent = self.widgets["rightSideFrame"], visible = False) #character list self.widgets["importAnim_characterList"] = cmds.optionMenu(w = 200, h = 30) self.widgets["importAnim_characterThumb"] = cmds.image(w = 50, h = 50) cmds.formLayout(self.widgets["importAnimationFormLayout"], edit = True, af = [(self.widgets["importAnim_characterList"], "top", 30), (self.widgets["importAnim_characterList"], "left", 275)]) cmds.formLayout(self.widgets["importAnimationFormLayout"], edit = True, af = [(self.widgets["importAnim_characterThumb"], "top", 30), (self.widgets["importAnim_characterThumb"], "right", 10)]) #create the projects drop down label = cmds.text(label = "Projects:", align = 'right') self.widgets["importAnimProjectsList"] = cmds.optionMenu(w = 250,h = 30, parent = self.widgets["importAnimationFormLayout"], cc = self.getProjCategories) cmds.formLayout(self.widgets["importAnimationFormLayout"], edit = True, af = [(label, "top", 10), (label, "left", 10)]) cmds.formLayout(self.widgets["importAnimationFormLayout"], edit = True, af = [(self.widgets["importAnimProjectsList"], "top", 30), (self.widgets["importAnimProjectsList"], "left", 10)]) #create the categories layout self.widgets["categoriesList_topLayout"] = cmds.frameLayout(w = 250, h = 300, bs = "etchedIn", cll = False, cl = False, lv = False, parent = self.widgets["importAnimationFormLayout"]) cmds.formLayout(self.widgets["importAnimationFormLayout"], edit = True, af = [(self.widgets["categoriesList_topLayout"], "bottom", 10), (self.widgets["categoriesList_topLayout"], "left", 10)]) self.widgets["categoriesList_scrollLayout"] = cmds.scrollLayout(w = 240, h = 300, hst = 0, parent = self.widgets["categoriesList_topLayout"]) self.widgets["categoriesList_columnLayout"] = cmds.columnLayout(w = 220, parent = self.widgets["categoriesList_scrollLayout"]) #create the animation list layout self.widgets["animList_topLayout"] = cmds.frameLayout(w = 260, h = 300, bs = "etchedIn", cll = False, cl = False, lv = False, parent = self.widgets["importAnimationFormLayout"], bgc = [.2, .2, .2]) cmds.formLayout(self.widgets["importAnimationFormLayout"], edit = True, af = [(self.widgets["animList_topLayout"], "bottom", 10), (self.widgets["animList_topLayout"], "right", 10)]) self.widgets["animList_scrollLayout"] = cmds.scrollLayout(w = 260, h = 300, hst = 0, parent = self.widgets["animList_topLayout"], bgc = [.2, .2, .2]) self.widgets["animList_columnLayout"] = cmds.columnLayout(w = 220, parent = self.widgets["animList_scrollLayout"], bgc = [.2, .2, .2]) # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #Edit radio button commands cmds.iconTextRadioButton(self.widgets["importMotion_mocap"], edit = True, onc = partial(self.switchMode, "fbx")) cmds.iconTextRadioButton(self.widgets["importMotion_anims"], edit = True, onc = partial(self.switchMode, "anim")) #show the window cmds.showWindow(self.widgets["window"]) #populate the dropdown with the characters self.getCharacters() self.changeActiveCharacter() #populate the import animations project list self.getProjects() # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # def getProjects(self, *args): projectPath = os.path.join(self.mayaToolsDir, "General", "ART", "Projects") projects = os.listdir(projectPath) for proj in projects: cmds.menuItem(label = proj, parent = self.widgets["importAnimProjectsList"]) #set to favorite if it exists settingsLocation = os.path.join(self.mayaToolsDir, "General", "Scripts", "projectSettings.txt") if os.path.exists(settingsLocation): f = open(settingsLocation, 'r') settings = cPickle.load(f) favoriteProject = settings.get("FavoriteProject") try: cmds.optionMenu(self.widgets["importAnimProjectsList"], edit = True, v = favoriteProject) except: pass self.getProjCategories() # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # def getProjCategories(self, *args): #clear out all children first children = cmds.columnLayout(self.widgets["categoriesList_columnLayout"], q = True, childArray = True) if children != None: for child in children: cmds.deleteUI(child) selectedProj = cmds.optionMenu(self.widgets["importAnimProjectsList"], q = True, v = True) categoryPath = os.path.join(self.mayaToolsDir, "General", "ART", "Projects", selectedProj, "Animations") if not os.path.exists(categoryPath): os.makedirs(categoryPath) categories = os.listdir(categoryPath) self.widgets["animationCategories"] = cmds.iconTextRadioCollection() for item in categories: self.createCategoryEntry(item, selectedProj) # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # def createCategoryEntry(self, categoryName, project, *args): cmds.iconTextRadioButton(onc = partial(self.getAnimations, categoryName, project), parent = self.widgets["categoriesList_columnLayout"], image = "menuIconFile.png", w = 220, h = 30, style = "iconAndTextHorizontal", label = categoryName, cl = self.widgets["animationCategories"], sl =True) #get animations for seleted category self.getAnimations(categoryName, project) # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # def getAnimations(self, categoryName, project, *args): #clear out all animation files first children = cmds.columnLayout(self.widgets["animList_columnLayout"], q = True, childArray = True) if children != None: for child in children: cmds.deleteUI(child) #get animations and populate UI animFiles = os.listdir(os.path.join(self.mayaToolsDir, "General", "ART", "Projects", project, "Animations", categoryName)) for file in animFiles: niceName = file.partition(".")[0] button = cmds.iconTextButton( parent = self.widgets["animList_columnLayout"], image = "ghostOff.png", w = 220, h = 30, bgc = [.2, .2, .2], style = "iconAndTextHorizontal", label = niceName, ann = (project + ", " + categoryName)) #create the popup menu for the button menu = cmds.popupMenu(b = 1, parent =button) cmds.menuItem(label = "Import Options for " + file.partition(".")[0] + " animation:", parent = menu, enable = False) cmds.menuItem(divider = True, parent = menu) cmds.menuItem(label = "Import All Data", parent = menu, c = partial(self.importAnimation, file, project, categoryName)) cmds.menuItem(label = "Import Onto Selected Controls", parent = menu, c = partial(self.importAnimationOnSelection, file, project, categoryName)) # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # def importAnimationOnSelection(self, animationName, project, categoryName, *args): selected = cmds.ls(sl = True) animPath = os.path.join(self.mayaToolsDir, "General", "ART", "Projects", project, "Animations", categoryName, animationName) character = cmds.optionMenu(self.widgets["importAnim_characterList"], q = True, v = True) f = open(animPath, 'r') animData = cPickle.load(f) f.close() #create a progress window progressWindow = cmds.progressWindow(title='Importing Animation', progress = 10, status='Importing...', isInterruptable=True ) progressIncrement = 100/len(animData) #go through all of the animData ([layer, control, [curves and key pairings]]) for data in animData: #cmds.progressWindow(edit = True, progress = progressIncrement, status='Importing...') #sort out the incoming data control = data[0] keyInfo = data[1:] layers = [] for info in keyInfo: for i in info: layer = i[0] if layer != None: layers.append(layer) #if an object did have layers, we need to sort out the information if layers != []: #create needed layers for layer in layers: if layer != "BaseAnimation": #see if our layer exists, if not create and select try: cmds.select(character + ":" + control) if cmds.animLayer(layer, q = True, exists = True) == False: cmds.animLayer(layer, addSelectedObjects = True) else: cmds.animLayer(layer, edit = True, addSelectedObjects = True) except: pass #first setup base animation before other layers animationLayersAll = cmds.ls(type = "animLayer") for l in animationLayersAll: cmds.animLayer(l, edit = True, selected = False) cmds.animLayer("BaseAnimation", edit = True, selected = True) for info in keyInfo: for i in info: layer = i[0] if layer == None: layer = "BaseAnimation" attrs = i[1] for attr in attrs: attribute = attr[0] if cmds.objExists(character + ":" + control + "." + attribute): keys = attr[1] for key in keys: frame = key[0] value = key[1] #grab tangent info if there was any try: tangentInfo = key[2] except: tangentInfo = [None, None, None, None, None, None] pass if cmds.objExists(character + ":" + control): if character + ":" + control in selected: cmds.setKeyframe(character + ":" + control, animLayer = layer, at = attribute, t = frame, value = value, noResolve = True) if tangentInfo[1] != None: cmds.keyTangent(character + ":" + control + "." + attribute, t = (frame, frame), itt = tangentInfo[1]) if tangentInfo[1] != None: cmds.keyTangent(character + ":" + control + "." + attribute, t = (frame, frame), ott = tangentInfo[1]) if tangentInfo[2] != None: cmds.keyTangent(character + ":" + control + "." + attribute, t = (frame, frame), a = True, ia = tangentInfo[2]) if tangentInfo[3] != None: cmds.keyTangent(character + ":" + control + "." + attribute, t = (frame, frame), a = True, oa = tangentInfo[3]) if tangentInfo[4] != None: cmds.keyTangent(character + ":" + control + "." + attribute, t = (frame, frame), iw = tangentInfo[4]) if tangentInfo[5] != None: cmds.keyTangent(character + ":" + control + "." + attribute, t = (frame, frame), ow = tangentInfo[5]) #refresh scene cmds.select(character + ":" + control) cmds.setToolTo('moveSuperContext') cmds.select(clear = True) else: for info in keyInfo: for i in info: attrs = i[1] for attr in attrs: attribute = attr[0] if cmds.objExists(character + ":" + control + "." + attribute): keys = attr[1] for key in keys: frame = key[0] value = key[1] #grab tangent info if there was any try: tangentInfo = key[2] except: tangentInfo = [None, None, None, None, None, None] pass if cmds.objExists(character + ":" + control): if character + ":" + control in selected: if cmds.animLayer("BaseAnimation", q = True, exists = True): cmds.setKeyframe(character + ":" + control, animLayer = "BaseAnimation", at = attribute, t = frame, value = value, noResolve = True) if tangentInfo[1] != None: cmds.keyTangent(character + ":" + control + "." + attribute, t = (frame, frame), itt = tangentInfo[1]) if tangentInfo[1] != None: cmds.keyTangent(character + ":" + control + "." + attribute, t = (frame, frame), ott = tangentInfo[1]) if tangentInfo[2] != None: cmds.keyTangent(character + ":" + control + "." + attribute, t = (frame, frame), a = True, ia = tangentInfo[2]) if tangentInfo[3] != None: cmds.keyTangent(character + ":" + control + "." + attribute, t = (frame, frame), a = True, oa = tangentInfo[3]) if tangentInfo[4] != None: cmds.keyTangent(character + ":" + control + "." + attribute, t = (frame, frame), iw = tangentInfo[4]) if tangentInfo[5] != None: cmds.keyTangent(character + ":" + control + "." + attribute, t = (frame, frame), ow = tangentInfo[5]) else: cmds.setKeyframe(character + ":" + control, at = attribute, t = frame, value = value) if tangentInfo[1] != None: cmds.keyTangent(character + ":" + control + "." + attribute, t = (frame, frame), itt = tangentInfo[1]) if tangentInfo[1] != None: cmds.keyTangent(character + ":" + control + "." + attribute, t = (frame, frame), ott = tangentInfo[1]) if tangentInfo[2] != None: cmds.keyTangent(character + ":" + control + "." + attribute, t = (frame, frame), a = True, ia = tangentInfo[2]) if tangentInfo[3] != None: cmds.keyTangent(character + ":" + control + "." + attribute, t = (frame, frame), a = True, oa = tangentInfo[3]) if tangentInfo[4] != None: cmds.keyTangent(character + ":" + control + "." + attribute, t = (frame, frame), iw = tangentInfo[4]) if tangentInfo[5] != None: cmds.keyTangent(character + ":" + control + "." + attribute, t = (frame, frame), ow = tangentInfo[5]) cmds.progressWindow(progressWindow, endProgress=1) # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # def importAnimation(self, animationName, project, categoryName, *args): animPath = os.path.join(self.mayaToolsDir, "General", "ART", "Projects", project, "Animations" , categoryName, animationName) character = cmds.optionMenu(self.widgets["importAnim_characterList"], q = True, v = True) f = open(animPath, 'r') animData = cPickle.load(f) f.close() #create a progress window progressWindow = cmds.progressWindow(title='Importing Animation', progress = 10, status='Importing...', isInterruptable=True ) progressIncrement = 100/len(animData) #go through all of the animData ([layer, control, [curves and key pairings]]) for data in animData: #sort out the incoming data control = data[0] keyInfo = data[1:] layers = [] for info in keyInfo: for i in info: layer = i[0] if layer != None: layers.append(layer) #if an object did have layers, we need to sort out the information if layers != []: #create needed layers for layer in layers: if layer != "BaseAnimation": #see if our layer exists, if not create and select try: cmds.select(character + ":" + control) if cmds.animLayer(layer, q = True, exists = True) == False: cmds.animLayer(layer, addSelectedObjects = True) else: cmds.animLayer(layer, edit = True, addSelectedObjects = True) except: pass #first setup base animation before other layers animationLayersAll = cmds.ls(type = "animLayer") for l in animationLayersAll: cmds.animLayer(l, edit = True, selected = False) cmds.animLayer("BaseAnimation", edit = True, selected = True) for info in keyInfo: #info is the array that includes all of the information for a control per layer. if info > 0, that means that control has animation on more than 1 layer. for i in info: #i is the array that has 2 pieces. the first element is the layer, the 2nd element is all of the keyframe data layer = i[0] if layer == None: layer = "BaseAnimation" attrs = i[1] for attr in attrs: #print layer, attr attribute = attr[0] if cmds.objExists(character + ":" + control + "." + attribute): keys = attr[1] for key in keys: frame = key[0] value = key[1] #grab tangent info if there was any try: tangentInfo = key[2] except: tangentInfo = [None, None, None, None, None, None] pass if cmds.objExists(character + ":" + control): cmds.setKeyframe(character + ":" + control, animLayer = layer, at = attribute, t = frame, value = value, noResolve = True) if tangentInfo[1] != None: cmds.keyTangent(character + ":" + control + "." + attribute, t = (frame, frame), itt = tangentInfo[1]) if tangentInfo[1] != None: cmds.keyTangent(character + ":" + control + "." + attribute, t = (frame, frame), ott = tangentInfo[1]) if tangentInfo[2] != None: cmds.keyTangent(character + ":" + control + "." + attribute, t = (frame, frame), a = True, ia = tangentInfo[2]) if tangentInfo[3] != None: cmds.keyTangent(character + ":" + control + "." + attribute, t = (frame, frame), a = True, oa = tangentInfo[3]) if tangentInfo[4] != None: cmds.keyTangent(character + ":" + control + "." + attribute, t = (frame, frame), iw = tangentInfo[4]) if tangentInfo[5] != None: cmds.keyTangent(character + ":" + control + "." + attribute, t = (frame, frame), ow = tangentInfo[5]) #refresh scene cmds.select(character + ":" + control) cmds.setToolTo('moveSuperContext') cmds.select(clear = True) else: for info in keyInfo: for i in info: attrs = i[1] for attr in attrs: attribute = attr[0] if cmds.objExists(character + ":" + control + "." + attribute): keys = attr[1] for key in keys: frame = key[0] value = key[1] #grab tangent info if there was any try: tangentInfo = key[2] except: tangentInfo = [None, None, None, None, None, None] pass if cmds.objExists(character + ":" + control): if cmds.animLayer("BaseAnimation", q = True, exists = True): cmds.setKeyframe(character + ":" + control, at = attribute, t = frame, value = value, animLayer = "BaseAnimation") if tangentInfo[1] != None: cmds.keyTangent(character + ":" + control + "." + attribute, t = (frame, frame), itt = tangentInfo[1]) if tangentInfo[1] != None: cmds.keyTangent(character + ":" + control + "." + attribute, t = (frame, frame), ott = tangentInfo[1]) if tangentInfo[2] != None: cmds.keyTangent(character + ":" + control + "." + attribute, t = (frame, frame), a = True, ia = tangentInfo[2]) if tangentInfo[3] != None: cmds.keyTangent(character + ":" + control + "." + attribute, t = (frame, frame), a = True, oa = tangentInfo[3]) if tangentInfo[4] != None: cmds.keyTangent(character + ":" + control + "." + attribute, t = (frame, frame), iw = tangentInfo[4]) if tangentInfo[5] != None: cmds.keyTangent(character + ":" + control + "." + attribute, t = (frame, frame), ow = tangentInfo[5]) else: cmds.setKeyframe(character + ":" + control, at = attribute, t = frame, value = value) if tangentInfo[1] != None: cmds.keyTangent(character + ":" + control + "." + attribute, t = (frame, frame), itt = tangentInfo[1]) if tangentInfo[1] != None: cmds.keyTangent(character + ":" + control + "." + attribute, t = (frame, frame), ott = tangentInfo[1]) if tangentInfo[2] != None: cmds.keyTangent(character + ":" + control + "." + attribute, t = (frame, frame), a = True, ia = tangentInfo[2]) if tangentInfo[3] != None: cmds.keyTangent(character + ":" + control + "." + attribute, t = (frame, frame), a = True, oa = tangentInfo[3]) if tangentInfo[4] != None: cmds.keyTangent(character + ":" + control + "." + attribute, t = (frame, frame), iw = tangentInfo[4]) if tangentInfo[5] != None: cmds.keyTangent(character + ":" + control + "." + attribute, t = (frame, frame), ow = tangentInfo[5]) cmds.progressWindow(progressWindow, endProgress=1) # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # def switchMode(self, mode, *args): if mode == "fbx": cmds.formLayout(self.widgets["importMocapForm"], edit = True, visible = True) cmds.formLayout(self.widgets["importAnimationFormLayout"], edit = True, visible = False) if mode == "anim": cmds.formLayout(self.widgets["importMocapForm"], edit = True, visible = False) cmds.formLayout(self.widgets["importAnimationFormLayout"], edit = True, visible = True) # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # def fbxBrowse(self, *args): path = cmds.fileDialog2(fm = 1, fileFilter = "*.fbx", okc = "Select")[0] #edit the text field with the above path passed in cmds.textField(self.widgets["fbxImportTextField"], edit = True, text = path) # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # def ikHeelSolve(self, character, start, end, *args): lValues = [] rValues = [] cmds.progressWindow(self.progWindow, edit=True, progress= 60, status= "Solving IK Foot Roll" ) for i in range(int(start), int(end + 1)): cmds.currentTime(i) if cmds.objExists("ball_l"): lBallVal = cmds.getAttr("ball_l.rz") lValues.append(lBallVal) if cmds.objExists("ball_r"): rBallVal = cmds.getAttr("ball_r.rz") rValues.append(rBallVal) cmds.progressWindow(self.progWindow, edit=True, progress= 80, status= "Solving IK Foot Roll" ) x = 0 for i in range(int(start), int(end + 1)): cmds.currentTime(i) if cmds.objExists("ball_l"): if lValues[x] > 10: cmds.setAttr(character + ":ik_foot_anim_l.rx", 0) cmds.setAttr(character + ":ik_foot_anim_l.ry", 0) cmds.setAttr(character + ":ik_foot_anim_l.rz", 0) cmds.setKeyframe(character + ":ik_foot_anim_l") cmds.setAttr(character + ":heel_ctrl_l.rz", lValues[x] * -1) cmds.setKeyframe(character + ":heel_ctrl_l.rz") footPos = cmds.xform("foot_l", q = True, ws = True, t = True) ikFootPos = cmds.xform(character + ":ik_leg_foot_l", q = True, ws = True, t = True) yDiff = footPos[1] - ikFootPos[1] zDiff = footPos[2] - ikFootPos[2] cmds.xform(character + ":ik_foot_anim_l", r = True, t = [0, yDiff, zDiff]) cmds.setKeyframe(character + ":ik_foot_anim_l") else: cmds.setAttr(character + ":heel_ctrl_l.rz", 0) cmds.setKeyframe(character + ":heel_ctrl_l.rz") if cmds.objExists("ball_r"): if rValues[x] > 10: cmds.setAttr(character + ":ik_foot_anim_r.rx", 0) cmds.setAttr(character + ":ik_foot_anim_r.ry", 0) cmds.setAttr(character + ":ik_foot_anim_r.rz", 0) cmds.setKeyframe(character + ":ik_foot_anim_r") cmds.setAttr(character + ":heel_ctrl_r.rz", rValues[x] * -1) cmds.setKeyframe(character + ":heel_ctrl_r.rz") footPos = cmds.xform("foot_r", q = True, ws = True, t = True) ikFootPos = cmds.xform(character + ":ik_leg_foot_r", q = True, ws = True, t = True) yDiff = footPos[1] - ikFootPos[1] zDiff = footPos[2] - ikFootPos[2] cmds.xform(character + ":ik_foot_anim_r", r = True, t = [0, yDiff, zDiff]) cmds.setKeyframe(character + ":ik_foot_anim_r") else: cmds.setAttr(character + ":heel_ctrl_r.rz", 0) cmds.setKeyframe(character + ":heel_ctrl_r.rz") #iterate x x = x + 1 # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # def ikKneeSolve(self, character, start, end, *args): #Hide all the things panels = cmds.getPanel(type = 'modelPanel') for panel in panels: editor = cmds.modelPanel(panel, q = True, modelEditor = True) try: cmds.modelEditor(editor, edit = True, interactive = False, displayTextures = False, textures = False, allObjects = False ) except: pass startPointR = cmds.xform(character + ":ik_leg_calf_r", q = True, ws = True, t = True) endPointR = cmds.xform("calf_r", q = True, ws = True, t = True) distR = cmds.distanceDimension( sp=(startPointR[0],startPointR[1],startPointR[2]), ep=(endPointR[0], endPointR[1], endPointR[2]) ) distRParent = cmds.listRelatives(distR, parent = True)[0] locsR = cmds.listConnections(distR) startLocR = locsR[0] endLocR = locsR[1] cmds.pointConstraint(character + ":ik_leg_calf_r", startLocR) cmds.pointConstraint("calf_r", endLocR) startPointL = cmds.xform(character + ":ik_leg_calf_l", q = True, ws = True, t = True) endPointL = cmds.xform("calf_l", q = True, ws = True, t = True) distL = cmds.distanceDimension( sp=(startPointL[0],startPointL[1],startPointL[2]), ep=(endPointL[0], endPointL[1], endPointL[2]) ) distLParent = cmds.listRelatives(distL, parent = True)[0] locsL = cmds.listConnections(distL) startLocL = locsL[0] endLocL = locsL[1] cmds.pointConstraint(character + ":ik_leg_calf_l", startLocL) cmds.pointConstraint("calf_l", endLocL) cmds.currentTime(int(start)) #get distance between rig knees and mocap knees for i in range(int(start), int(end) + 1): cmds.currentTime(i) distanceR = cmds.getAttr(distR + ".distance") distanceL = cmds.getAttr(distL + ".distance") self.checkDistance(character, distL, distanceL, distanceL, "l") self.checkDistance(character, distR, distanceR, distanceR, "r") #clean up cmds.delete([locsL[0], locsL[1], locsR[0], locsR[1], distL, distR, distRParent, distLParent]) #Show all the things panels = cmds.getPanel(type = 'modelPanel') for panel in panels: editor = cmds.modelPanel(panel, q = True, modelEditor = True) try: cmds.modelEditor(editor, edit = True, interactive = True, displayTextures = True, textures = True, allObjects = True ) except: pass # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # def checkDistance(self, character, distanceNode, distanceAttr, originalValue, side): if distanceAttr > 1: currentAttr = cmds.getAttr(character + ":ik_foot_anim_" + side + ".knee_twist") try: cmds.setAttr(character + ":ik_foot_anim_" + side + ".knee_twist", currentAttr + 1) cmds.setKeyframe(character + ":ik_foot_anim_" + side + ".knee_twist") newDist = cmds.getAttr(distanceNode + ".distance") if newDist < originalValue: self.checkDistance(character, distanceNode, newDist, newDist, side) cmds.progressWindow(self.progWindow, edit=True, progress= (cmds.progressWindow(q = True, progress = True) + 3), status= "Solving IK Pole Vectors" ) if newDist > originalValue: cmds.setAttr(character + ":ik_foot_anim_" + side + ".knee_twist", currentAttr - 2) cmds.setKeyframe(character + ":ik_foot_anim_" + side + ".knee_twist") newDist = cmds.getAttr(distanceNode + ".distance") self.checkDistance(character, distanceNode, newDist, newDist, side) cmds.progressWindow(self.progWindow, edit=True, progress= (cmds.progressWindow(q = True, progress = True) + 3), status= "Solving IK Pole Vectors" ) except: pass #if adding 1 makes dist get smaller, continue adding 1 until the overall distance is less than 1 #if subtracting 1 makes dist get smaller, continue subtracting 1 until the overall distance is less than 1 # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # def importMocap(self, *args): #get the fbx file filePath = cmds.textField(self.widgets["fbxImportTextField"], q = True, text = True) if not os.path.exists(filePath): cmds.warning("The given file path is not a valid path.") return else: #get the active character character = cmds.optionMenu(self.widgets["importMocap_characterList"], q = True, value = True) #duplicate that character's root if cmds.objExists("root"): cmds.warning("There is already a skeleton in the scene with the name \"root\". Aborting") return newSkeleton = cmds.duplicate(character + ":root") #find import method selectedRadioButton = cmds.radioCollection(self.widgets["importMethodRadioCollection"], q = True, select = True) importMethod = cmds.radioButton(selectedRadioButton, q = True, label = True) #find parts that motion will be applied to head = cmds.iconTextCheckBox(self.widgets["importMotionTo_HeadButton"], q = True, value = True) body = cmds.iconTextCheckBox(self.widgets["importMotionTo_SpineButton"], q = True, value = True) leftArm = cmds.iconTextCheckBox(self.widgets["importMotionTo_lArmButton"], q = True, value = True) rightArm = cmds.iconTextCheckBox(self.widgets["importMotionTo_rArmButton"], q = True, value = True) leftLeg = cmds.iconTextCheckBox(self.widgets["importMotionTo_lLegButton"], q = True, value = True) rightLeg = cmds.iconTextCheckBox(self.widgets["importMotionTo_rLegButton"], q = True, value = True) if importMethod == "FK": extraControls = self.importMocap_FK(character, head, body, leftArm, rightArm, leftLeg, rightLeg) if importMethod == "IK": extraControls = self.importMocap_IK(character, head, body, leftArm, rightArm, leftLeg, rightLeg) if importMethod == "Both": extraControls = self.importMocap_FK(character, head, body, leftArm, rightArm, leftLeg, rightLeg) self.importMocap_IK(character, head, body, leftArm, rightArm, leftLeg, rightLeg) print extraControls #fingers self.importMocap_Fingers(character, leftArm, rightArm) #ensure that the scene is in 30fps cmds.currentUnit(time = 'ntsc') cmds.playbackOptions(min = 0, max = 100, animationStartTime = 0, animationEndTime = 100) cmds.currentTime(0) #import the FBX file string = "FBXImportMode -v \"exmerge\";" mel.eval(string) cmds.file(filePath, i = True, prompt = False, force = True) animLayers = cmds.ls(type = "animLayer") if animLayers != []: for layer in animLayers: cmds.animLayer(layer, edit = True, selected = False) cmds.animLayer("BaseAnimation", edit = True, selected = True, preferred = True) #snap timeline to length of imported animation firstFrame = cmds.findKeyframe("pelvis", which = 'first') lastFrame = cmds.findKeyframe("pelvis", which = 'last') if lastFrame == firstFrame: lastFrame = lastFrame + 1 cmds.playbackOptions(min = firstFrame, max = lastFrame, animationStartTime = firstFrame, animationEndTime = lastFrame) #bake the animation down onto the controls cmds.select(clear = True) if importMethod == "FK": if body == True: cmds.select(character + ":body_anim", add = True) cmds.select(character + ":spine_01_anim", add = True) cmds.select(character + ":spine_02_anim", add = True) if cmds.objExists(character + ":spine_03_anim"): cmds.select(character + ":spine_03_anim", add = True) if cmds.objExists(character + ":spine_04_anim"): cmds.select(character + ":spine_04_anim", add = True) if cmds.objExists(character + ":spine_05_anim"): cmds.select(character + ":spine_05_anim", add = True) if head == True: cmds.select(character + ":head_fk_anim", add = True) if cmds.objExists(character + ":neck_01_fk_anim"): cmds.select(character + ":neck_01_fk_anim", add = True) if cmds.objExists(character + ":neck_02_fk_anim"): cmds.select(character + ":neck_02_fk_anim", add = True) if cmds.objExists(character + ":neck_03_fk_anim"): cmds.select(character + ":neck_03_fk_anim", add = True) if leftArm == True: cmds.select(character + ":clavicle_l_anim", add = True) cmds.select(character + ":fk_arm_l_anim", add = True) cmds.select(character + ":fk_elbow_l_anim", add = True) cmds.select(character + ":fk_wrist_l_anim", add = True) if rightArm == True: cmds.select(character + ":clavicle_r_anim", add = True) cmds.select(character + ":fk_arm_r_anim", add = True) cmds.select(character + ":fk_elbow_r_anim", add = True) cmds.select(character + ":fk_wrist_r_anim", add = True) if leftLeg: cmds.select(character + ":fk_thigh_l_anim", add = True) cmds.select(character + ":fk_calf_l_anim", add = True) cmds.select(character + ":fk_foot_l_anim", add = True) if cmds.objExists("ball_l"): cmds.select(character + ":fk_ball_l_anim", add = True) if rightLeg: cmds.select(character + ":fk_thigh_r_anim", add = True) cmds.select(character + ":fk_calf_r_anim", add = True) cmds.select(character + ":fk_foot_r_anim", add = True) if cmds.objExists("ball_r"): cmds.select(character + ":fk_ball_r_anim", add = True) if importMethod == "IK": if body == True: cmds.select(character + ":body_anim", add = True) cmds.select(character + ":chest_ik_anim", add = True) cmds.select(character + ":mid_ik_anim", add = True) if head == True: cmds.select(character + ":head_fk_anim", add = True) if cmds.objExists(character + ":neck_01_fk_anim"): cmds.select(character + ":neck_01_fk_anim", add = True) if cmds.objExists(character + ":neck_02_fk_anim"): cmds.select(character + ":neck_02_fk_anim", add = True) if cmds.objExists(character + ":neck_03_fk_anim"): cmds.select(character + ":neck_03_fk_anim", add = True) if leftArm == True: cmds.select(character + ":ik_wrist_l_anim", add = True) cmds.select(character + ":ik_elbow_l_anim", add = True) if rightArm == True: cmds.select(character + ":ik_wrist_r_anim", add = True) cmds.select(character + ":ik_elbow_r_anim", add = True) if leftLeg == True: cmds.select(character + ":ik_foot_anim_l", add = True) if rightLeg == True: cmds.select(character + ":ik_foot_anim_r", add = True) if importMethod == "Both": if body == True: cmds.select(character + ":body_anim", add = True) cmds.select(character + ":chest_ik_anim", add = True) cmds.select(character + ":mid_ik_anim", add = True) cmds.select(character + ":body_anim", add = True) cmds.select(character + ":spine_01_anim", add = True) cmds.select(character + ":spine_02_anim", add = True) if cmds.objExists(character + ":spine_03_anim"): cmds.select(character + ":spine_03_anim", add = True) if cmds.objExists(character + ":spine_04_anim"): cmds.select(character + ":spine_04_anim", add = True) if cmds.objExists(character + ":spine_05_anim"): cmds.select(character + ":spine_05_anim", add = True) if head == True: cmds.select(character + ":head_fk_anim", add = True) if cmds.objExists(character + ":neck_01_fk_anim"): cmds.select(character + ":neck_01_fk_anim", add = True) if cmds.objExists(character + ":neck_02_fk_anim"): cmds.select(character + ":neck_02_fk_anim", add = True) if cmds.objExists(character + ":neck_03_fk_anim"): cmds.select(character + ":neck_03_fk_anim", add = True) if leftArm == True: cmds.select(character + ":ik_wrist_l_anim", add = True) cmds.select(character + ":ik_elbow_l_anim", add = True) cmds.select(character + ":clavicle_l_anim", add = True) cmds.select(character + ":fk_arm_l_anim", add = True) cmds.select(character + ":fk_elbow_l_anim", add = True) cmds.select(character + ":fk_wrist_l_anim", add = True) if rightArm == True: cmds.select(character + ":ik_wrist_r_anim", add = True) cmds.select(character + ":ik_elbow_r_anim", add = True) cmds.select(character + ":clavicle_r_anim", add = True) cmds.select(character + ":fk_arm_r_anim", add = True) cmds.select(character + ":fk_elbow_r_anim", add = True) cmds.select(character + ":fk_wrist_r_anim", add = True) if leftLeg == True: cmds.select(character + ":ik_foot_anim_l", add = True) cmds.select(character + ":fk_thigh_l_anim", add = True) cmds.select(character + ":fk_calf_l_anim", add = True) cmds.select(character + ":fk_foot_l_anim", add = True) if cmds.objExists("ball_l"): cmds.select(character + ":fk_ball_l_anim", add = True) if rightLeg == True: cmds.select(character + ":ik_foot_anim_r", add = True) cmds.select(character + ":fk_thigh_r_anim", add = True) cmds.select(character + ":fk_calf_r_anim", add = True) cmds.select(character + ":fk_foot_r_anim", add = True) if cmds.objExists("ball_r"): cmds.select(character + ":fk_ball_r_anim", add = True) #select fingers: for side in ["l", "r"]: for finger in ["index", "middle", "ring", "pinky", "thumb"]: if cmds.objExists(character + ":" + finger + "_finger_fk_ctrl_1_" + side): cmds.select(character + ":" + finger + "_finger_fk_ctrl_1_" + side, add = True) if cmds.objExists(character + ":" + finger + "_finger_fk_ctrl_2_" + side): cmds.select(character + ":" + finger + "_finger_fk_ctrl_2_" + side, add = True) if cmds.objExists(character + ":" + finger + "_finger_fk_ctrl_3_" + side): cmds.select(character + ":" + finger + "_finger_fk_ctrl_3_" + side, add = True) #select exttra controls if len(extraControls) > 0: for ctrl in extraControls: cmds.select(ctrl, add = True) #bake simulation cmds.bakeResults(simulation = True, t = (firstFrame, lastFrame)) #fix ik knee solve if importMethod == "IK" or importMethod == "Both": if leftLeg == True or rightLeg == True: self.progWindow = cmds.progressWindow(title = "Import Mocap", progress = 10, status = "Solving IK Pole Vectors") val = cmds.checkBox(self.widgets["kneeSolverCB"], q = True, v = True) if val == True: self.ikKneeSolve(character, firstFrame, lastFrame) val = cmds.checkBox(self.widgets["heelSolverCB"], q = True, v = True) if val == True: self.ikHeelSolve(character, firstFrame, lastFrame) cmds.progressWindow(self.progWindow, endProgress=True) #apply frame offset offset = cmds.intField(self.widgets["frameOffsetField"], q = True, value = True) cmds.select(clear = True) for control in ["head_fk_anim", "neck_01_fk_anim", "neck_02_fk_anim", "neck_03_fk_anim", "spine_01_anim", "spine_02_anim", "spine_03_anim", "spine_04_anim", "spine_05_anim", "mid_ik_anim", "chest_ik_anim", "body_anim", "hip_anim", "clavicle_l_anim", "clavicle_r_anim", "fk_arm_l_anim", "fk_arm_r_anim", "fk_elbow_l_anim", "fk_elbow_r_anim", "fk_wrist_l_anim", "fk_wrist_r_anim", "ik_elbow_l_anim", "ik_elbow_r_anim", "ik_wrist_l_anim", "ik_wrist_r_anim", "fk_thigh_l_anim", "fk_thigh_r_anim", "fk_calf_l_anim", "fk_calf_r_anim", "fk_foot_l_anim", "fk_foot_r_anim", "fk_ball_l_anim", "fk_ball_r_anim","ik_knee_anim_l", "ik_knee_anim_r", "ik_foot_anim_l", "ik_foot_anim_r", "index_finger_fk_ctrl_1_r", "index_finger_fk_ctrl_2_r", "index_finger_fk_ctrl_3_r", "index_finger_fk_ctrl_1_l", "index_finger_fk_ctrl_2_l", "index_finger_fk_ctrl_3_l", "middle_finger_fk_ctrl_1_r", "middle_finger_fk_ctrl_2_r", "middle_finger_fk_ctrl_3_r", "middle_finger_fk_ctrl_1_l", "middle_finger_fk_ctrl_2_l", "middle_finger_fk_ctrl_3_l", "ring_finger_fk_ctrl_1_r", "ring_finger_fk_ctrl_2_r", "ring_finger_fk_ctrl_3_r", "ring_finger_fk_ctrl_1_l", "ring_finger_fk_ctrl_2_l", "ring_finger_fk_ctrl_3_l", "pinky_finger_fk_ctrl_1_r", "pinky_finger_fk_ctrl_2_r", "pinky_finger_fk_ctrl_3_r", "pinky_finger_fk_ctrl_1_l", "pinky_finger_fk_ctrl_2_l", "pinky_finger_fk_ctrl_3_l", "thumb_finger_fk_ctrl_1_r", "thumb_finger_fk_ctrl_2_r", "thumb_finger_fk_ctrl_3_r", "thumb_finger_fk_ctrl_1_l", "thumb_finger_fk_ctrl_2_l", "thumb_finger_fk_ctrl_3_l"]: if cmds.objExists(character + ":" + control): cmds.select(character + ":" + control, add = True) cmds.selectKey() cmds.keyframe(edit = True, r = True, tc = offset) firstFrame = cmds.findKeyframe("pelvis", which = 'first') lastFrame = cmds.findKeyframe("pelvis", which = 'last') cmds.playbackOptions(min = firstFrame, max = lastFrame, animationStartTime = firstFrame, animationEndTime = lastFrame) #clean up cmds.select(clear = True) #delete the old skeleton cmds.delete("root") # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # def importMocap_IK(self, character, head, body, leftArm, rightArm, leftLeg, rightLeg): if body == True: #switch to IK mode cmds.setAttr(character + ":Rig_Settings.spine_ik", 1) cmds.setAttr(character + ":Rig_Settings.spine_fk", 0) #constraints cmds.parentConstraint("pelvis", character + ":body_anim") if cmds.objExists(character + ":chest_ik_anim"): #find highest spine joint numSpineBones = cmds.getAttr(character + ":Skeleton_Settings.numSpineBones") if numSpineBones == 5: endSpine = "spine_05" midSpine = ["spine_03"] if numSpineBones == 4: endSpine = "spine_04" midSpine = ["spine_02", "spine_03"] if numSpineBones == 3: endSpine = "spine_03" midSpine = ["spine_02"] cmds.parentConstraint(endSpine, character + ":chest_ik_anim") for each in midSpine: cmds.parentConstraint(each, character + ":mid_ik_anim") if head == True: cmds.orientConstraint("neck_01", character + ":neck_01_fk_anim") if cmds.objExists(character + ":neck_02_fk_anim"): cmds.orientConstraint("neck_02", character + ":neck_02_fk_anim") if cmds.objExists(character + ":neck_03_fk_anim"): cmds.orientConstraint("neck_03", character + ":neck_03_fk_anim") cmds.orientConstraint("head", character + ":head_fk_anim") if leftArm == True: #switch to IK mode cmds.setAttr(character + ":Rig_Settings.lArmMode", 1) #constraints cmds.parentConstraint("hand_l", character + ":ik_wrist_l_anim", mo = True) cmds.pointConstraint("lowerarm_l", character + ":ik_elbow_l_anim") if rightArm == True: #switch to IK mode cmds.setAttr(character + ":Rig_Settings.rArmMode", 1) #constraints cmds.parentConstraint("hand_r", character + ":ik_wrist_r_anim", mo = True) cmds.pointConstraint("lowerarm_r", character + ":ik_elbow_r_anim") if leftLeg == True: print "hooking up left leg" #switch to IK mode cmds.setAttr(character + ":Rig_Settings.lLegMode", 1) #constraints cmds.pointConstraint("foot_l", character + ":ik_foot_anim_l") constraint = cmds.orientConstraint("foot_l", character + ":ik_foot_anim_l")[0] cmds.setAttr(constraint + ".offsetY", 90) if rightLeg == True: print "hooking up right leg" #switch to IK mode cmds.setAttr(character + ":Rig_Settings.rLegMode", 1) #constraints cmds.pointConstraint("foot_r", character + ":ik_foot_anim_r", mo = True) constraint = cmds.orientConstraint("foot_r", character + ":ik_foot_anim_r")[0] cmds.setAttr(constraint + ".offsetX", 180) cmds.setAttr(constraint + ".offsetY", 90) coreJoints = ["root", "pelvis", "spine_01", "spine_02", "spine_03", "spine_04", "spine_05", "neck_01", "neck_02", "neck_03", "upperarm_l", "clavicle_l", "lowerarm_l", "hand_l", "upperarm_r", "clavicle_r", "lowerarm_r", "hand_r", "thigh_l", "calf_l", "foot_l", "ball_l", "thigh_r", "calf_r", "foot_r", "ball_r"] cmds.select("root", hi = True) allJoints = cmds.ls(sl = True) extraControls = [] for joint in allJoints: if joint not in coreJoints: if cmds.objExists(character + ":" + joint + "_anim"): try: constraint = cmds.parentConstraint(joint, character + ":" + joint + "_anim") extraControls.append(character + ":" + joint + "_anim") except: pass return extraControls # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # def importMocap_FK(self, character, head, body, leftArm, rightArm, leftLeg, rightLeg): #setup constraints to FK controls if body == True: #switch to FK mode cmds.setAttr(character + ":Rig_Settings.spine_ik", 0) cmds.setAttr(character + ":Rig_Settings.spine_fk", 1) #constraints cmds.parentConstraint("pelvis", character + ":body_anim") cmds.orientConstraint("spine_01", character + ":spine_01_anim") cmds.orientConstraint("spine_02", character + ":spine_02_anim") if cmds.objExists(character + ":spine_03_anim"): cmds.orientConstraint("spine_03", character + ":spine_03_anim") if cmds.objExists(character + ":spine_04_anim"): cmds.orientConstraint("spine_04", character + ":spine_04_anim") if cmds.objExists(character + ":spine_05_anim"): cmds.orientConstraint("spine_05", character + ":spine_05_anim") if head == True: cmds.orientConstraint("neck_01", character + ":neck_01_fk_anim") if cmds.objExists(character + ":neck_02_fk_anim"): cmds.orientConstraint("neck_02", character + ":neck_02_fk_anim") if cmds.objExists(character + ":neck_03_fk_anim"): cmds.orientConstraint("neck_03", character + ":neck_03_fk_anim") cmds.orientConstraint("head", character + ":head_fk_anim") if leftArm == True: #switch to FK mode cmds.setAttr(character + ":Rig_Settings.lArmMode", 0) cmds.pointConstraint("upperarm_l", character + ":clavicle_l_anim") cmds.orientConstraint("upperarm_l", character + ":fk_arm_l_anim") cmds.orientConstraint("lowerarm_l", character + ":fk_elbow_l_anim") cmds.orientConstraint("hand_l", character + ":fk_wrist_l_anim") if rightArm == True: #switch to FK mode cmds.setAttr(character + ":Rig_Settings.rArmMode", 0) cmds.pointConstraint("upperarm_r", character + ":clavicle_r_anim") cmds.orientConstraint("upperarm_r", character + ":fk_arm_r_anim") cmds.orientConstraint("lowerarm_r", character + ":fk_elbow_r_anim") cmds.orientConstraint("hand_r", character + ":fk_wrist_r_anim") if leftLeg == True: #switch to FK mode cmds.setAttr(character + ":Rig_Settings.lLegMode", 0) cmds.orientConstraint("thigh_l", character + ":fk_thigh_l_anim") cmds.orientConstraint("calf_l", character + ":fk_calf_l_anim") cmds.orientConstraint("foot_l", character + ":fk_foot_l_anim") if cmds.objExists("ball_l"): cmds.orientConstraint("ball_l", character + ":fk_ball_l_anim") if rightLeg == True: #switch to FK mode cmds.setAttr(character + ":Rig_Settings.rLegMode", 0) cmds.orientConstraint("thigh_r", character + ":fk_thigh_r_anim") cmds.orientConstraint("calf_r", character + ":fk_calf_r_anim") cmds.orientConstraint("foot_r", character + ":fk_foot_r_anim") if cmds.objExists("ball_r"): cmds.orientConstraint("ball_r", character + ":fk_ball_r_anim") coreJoints = ["root", "pelvis", "spine_01", "spine_02", "spine_03", "spine_04", "spine_05", "neck_01", "neck_02", "neck_03", "upperarm_l", "clavicle_l", "lowerarm_l", "hand_l", "upperarm_r", "clavicle_r", "lowerarm_r", "hand_r", "thigh_l", "calf_l", "foot_l", "ball_l", "thigh_r", "calf_r", "foot_r", "ball_r"] cmds.select("root", hi = True) allJoints = cmds.ls(sl = True) extraControls = [] for joint in allJoints: if joint not in coreJoints: if cmds.objExists(character + ":" + joint + "_anim"): try: constraint = cmds.parentConstraint(joint, character + ":" + joint + "_anim") extraControls.append(character + ":" + joint + "_anim") except: pass return extraControls # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # def importMocap_Fingers(self, character, leftArm, rightArm): if leftArm == True: for finger in ["index", "middle", "ring", "pinky", "thumb"]: #switch to FK mode try: cmds.setAttr(character + ":" + finger + "_finger_l_mode_anim.FK_IK", 0) except: pass #setup constraints if cmds.objExists(character + ":" + finger + "_finger_fk_ctrl_1_l"): cmds.orientConstraint(finger + "_01_l", character + ":" + finger + "_finger_fk_ctrl_1_l") if cmds.objExists(character + ":" + finger + "_finger_fk_ctrl_2_l"): cmds.orientConstraint(finger + "_02_l", character + ":" + finger + "_finger_fk_ctrl_2_l") if cmds.objExists(character + ":" + finger + "_finger_fk_ctrl_3_l"): cmds.orientConstraint(finger + "_03_l", character + ":" + finger + "_finger_fk_ctrl_3_l") if rightArm == True: for finger in ["index", "middle", "ring", "pinky", "thumb"]: #switch to FK mode try: cmds.setAttr(character + ":" + finger + "_finger_r_mode_anim.FK_IK", 0) except: pass #setup constraints if cmds.objExists(character + ":" + finger + "_finger_fk_ctrl_1_r"): cmds.orientConstraint(finger + "_01_r", character + ":" + finger + "_finger_fk_ctrl_1_r") if cmds.objExists(character + ":" + finger + "_finger_fk_ctrl_2_r"): cmds.orientConstraint(finger + "_02_r", character + ":" + finger + "_finger_fk_ctrl_2_r") if cmds.objExists(character + ":" + finger + "_finger_fk_ctrl_3_r"): cmds.orientConstraint(finger + "_03_r", character + ":" + finger + "_finger_fk_ctrl_3_r") # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # def getCharacters(self): referenceNodes = [] references = cmds.ls(type = "reference") for reference in references: niceName = reference.rpartition("RN")[0] suffix = reference.rpartition("RN")[2] if suffix != "": if cmds.objExists(niceName + suffix + ":" + "Skeleton_Settings"): referenceNodes.append(niceName + suffix) else: if cmds.objExists(niceName + ":" + "Skeleton_Settings"): referenceNodes.append(niceName) for node in referenceNodes: cmds.menuItem(label = node, parent = self.widgets["importMocap_characterList"]) cmds.menuItem(label = node, parent = self.widgets["importAnim_characterList"]) # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # def changeActiveCharacter(self): characterName = cmds.optionMenu(self.widgets["importMocap_characterList"], q = True, value = True) thumbnailPath = os.path.join(self.mayaToolsDir, "General", "Icons", "ART", "Thumbnails", self.project) thumbs = os.listdir(thumbnailPath) for thumb in thumbs: if thumb.find("_small") != -1: if thumb.find(characterName) == 0: cmds.image(self.widgets["importMocap_characterThumb"], edit = True, image = thumbnailPath + thumb, ann = characterName) cmds.image(self.widgets["importAnim_characterThumb"], edit = True, image = thumbnailPath + thumb, ann = characterName)
82,725
82,725
0.473388
7953463774785daa6d20c22092ea902dcf1af37d
825
py
Python
src/test/python/test_servo.py
SmartDogHouse/SmartDogHouse-Software
00caf23e3fe8dae2d30c339f801d7c1a7ddca0c2
[ "MIT" ]
4
2021-05-17T10:42:48.000Z
2021-08-09T15:51:28.000Z
src/test/python/test_servo.py
SmartDogHouse/SmartDogHouse-Software
00caf23e3fe8dae2d30c339f801d7c1a7ddca0c2
[ "MIT" ]
148
2021-05-17T10:03:52.000Z
2021-07-25T15:44:10.000Z
src/test/python/test_servo.py
SmartDogHouse/SmartDogHouse-Software
00caf23e3fe8dae2d30c339f801d7c1a7ddca0c2
[ "MIT" ]
1
2021-06-27T17:25:20.000Z
2021-06-27T17:25:20.000Z
import unittest from src.main.python.servo import Servo class TestServo(unittest.TestCase): servo = Servo(99) def test_create(self): s2 = Servo(34) self.assertEqual(self.servo.get_angle(), s2.get_angle()) def test_angle(self): s3 = Servo(3, range_min=30, range_max=130, frequency=50) self.assertEqual(self.servo.get_angle(), s3.get_angle()) self.assertEqual(self.servo.get_angle(), 0) # move self.assertTrue(s3.angle(50)) self.assertTrue(s3.angle(110)) # out of range self.assertFalse(s3.angle(0)) self.assertFalse(s3.angle(200)) def test_printSensor(self): s4 = Servo(3, range_min=50, range_max=7, frequency=50) print(s4) print(self.servo) if __name__ == '__main__': unittest.main()
25
64
0.630303
7953463e6242e16dea715f8815d795b86f30ac37
24,953
py
Python
efficientdet/inference.py
vincent7293/automl
34279e956ec30877beaec0fc73acd5071ad0a8fd
[ "Apache-2.0" ]
null
null
null
efficientdet/inference.py
vincent7293/automl
34279e956ec30877beaec0fc73acd5071ad0a8fd
[ "Apache-2.0" ]
null
null
null
efficientdet/inference.py
vincent7293/automl
34279e956ec30877beaec0fc73acd5071ad0a8fd
[ "Apache-2.0" ]
null
null
null
# Copyright 2020 Google Research. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== r"""Inference related utilities.""" from __future__ import absolute_import from __future__ import division # gtype import from __future__ import print_function import copy import os import time from absl import logging import numpy as np from PIL import Image import tensorflow.compat.v1 as tf from typing import Text, Dict, Any, List, Tuple, Union import anchors import dataloader import det_model_fn import hparams_config import utils from visualize import vis_utils coco_id_mapping = { 1: 'person', 2: 'bicycle', 3: 'car', 4: 'motorcycle', 5: 'airplane', 6: 'bus', 7: 'train', 8: 'truck', 9: 'boat', 10: 'traffic light', 11: 'fire hydrant', 13: 'stop sign', 14: 'parking meter', 15: 'bench', 16: 'bird', 17: 'cat', 18: 'dog', 19: 'horse', 20: 'sheep', 21: 'cow', 22: 'elephant', 23: 'bear', 24: 'zebra', 25: 'giraffe', 27: 'backpack', 28: 'umbrella', 31: 'handbag', 32: 'tie', 33: 'suitcase', 34: 'frisbee', 35: 'skis', 36: 'snowboard', 37: 'sports ball', 38: 'kite', 39: 'baseball bat', 40: 'baseball glove', 41: 'skateboard', 42: 'surfboard', 43: 'tennis racket', 44: 'bottle', 46: 'wine glass', 47: 'cup', 48: 'fork', 49: 'knife', 50: 'spoon', 51: 'bowl', 52: 'banana', 53: 'apple', 54: 'sandwich', 55: 'orange', 56: 'broccoli', 57: 'carrot', 58: 'hot dog', 59: 'pizza', 60: 'donut', 61: 'cake', 62: 'chair', 63: 'couch', 64: 'potted plant', 65: 'bed', 67: 'dining table', 70: 'toilet', 72: 'tv', 73: 'laptop', 74: 'mouse', 75: 'remote', 76: 'keyboard', 77: 'cell phone', 78: 'microwave', 79: 'oven', 80: 'toaster', 81: 'sink', 82: 'refrigerator', 84: 'book', 85: 'clock', 86: 'vase', 87: 'scissors', 88: 'teddy bear', 89: 'hair drier', 90: 'toothbrush', } # pyformat: disable def image_preprocess(image, image_size: Union[int, Tuple[int, int]]): """Preprocess image for inference. Args: image: input image, can be a tensor or a numpy arary. image_size: single integer of image size for square image or tuple of two integers, in the format of (image_height, image_width). Returns: (image, scale): a tuple of processed image and its scale. """ input_processor = dataloader.DetectionInputProcessor(image, image_size) input_processor.normalize_image() input_processor.set_scale_factors_to_output_size() image = input_processor.resize_and_crop_image() image_scale = input_processor.image_scale_to_original return image, image_scale def build_inputs(image_path_pattern: Text, image_size: Union[int, Tuple[int, int]]): """Read and preprocess input images. Args: image_path_pattern: a path to indicate a single or multiple files. image_size: single integer of image size for square image or tuple of two integers, in the format of (image_height, image_width). Returns: (raw_images, images, scales): raw images, processed images, and scales. Raises: ValueError if image_path_pattern doesn't match any file. """ raw_images, images, scales = [], [], [] for f in tf.io.gfile.glob(image_path_pattern): image = Image.open(f) raw_images.append(image) image, scale = image_preprocess(image, image_size) images.append(image) scales.append(scale) if not images: raise ValueError( 'Cannot find any images for pattern {}'.format(image_path_pattern)) return raw_images, tf.stack(images), tf.stack(scales) def build_model(model_name: Text, inputs: tf.Tensor, **kwargs): """Build model for a given model name. Args: model_name: the name of the model. inputs: an image tensor or a numpy array. **kwargs: extra parameters for model builder. Returns: (class_outputs, box_outputs): the outputs for class and box predictions. Each is a dictionary with key as feature level and value as predictions. """ model_arch = det_model_fn.get_model_arch(model_name) class_outputs, box_outputs = model_arch(inputs, model_name, **kwargs) return class_outputs, box_outputs def restore_ckpt(sess, ckpt_path, enable_ema=True, export_ckpt=None): """Restore variables from a given checkpoint. Args: sess: a tf session for restoring or exporting models. ckpt_path: the path of the checkpoint. Can be a file path or a folder path. enable_ema: whether reload ema values or not. export_ckpt: whether to export the restored model. """ sess.run(tf.global_variables_initializer()) if tf.io.gfile.isdir(ckpt_path): ckpt_path = tf.train.latest_checkpoint(ckpt_path) if enable_ema: ema = tf.train.ExponentialMovingAverage(decay=0.0) ema_vars = utils.get_ema_vars() var_dict = ema.variables_to_restore(ema_vars) ema_assign_op = ema.apply(ema_vars) else: var_dict = utils.get_ema_vars() ema_assign_op = None tf.train.get_or_create_global_step() sess.run(tf.global_variables_initializer()) saver = tf.train.Saver(var_dict, max_to_keep=1) saver.restore(sess, ckpt_path) if export_ckpt: print('export model to {}'.format(export_ckpt)) if ema_assign_op is not None: sess.run(ema_assign_op) saver = tf.train.Saver(max_to_keep=1, save_relative_paths=True) saver.save(sess, export_ckpt) def det_post_process(params: Dict[Any, Any], cls_outputs: Dict[int, tf.Tensor], box_outputs: Dict[int, tf.Tensor], scales: List[float], min_score_thresh, max_boxes_to_draw): """Post preprocessing the box/class predictions. Args: params: a parameter dictionary that includes `min_level`, `max_level`, `batch_size`, and `num_classes`. cls_outputs: an OrderDict with keys representing levels and values representing logits in [batch_size, height, width, num_anchors]. box_outputs: an OrderDict with keys representing levels and values representing box regression targets in [batch_size, height, width, num_anchors * 4]. scales: a list of float values indicating image scale. min_score_thresh: A float representing the threshold for deciding when to remove boxes based on score. max_boxes_to_draw: Max number of boxes to draw. Returns: detections_batch: a batch of detection results. Each detection is a tensor with each row representing [image_id, x, y, width, height, score, class]. """ # TODO(tanmingxing): refactor the code to make it more explicity. outputs = { 'cls_outputs_all': [None], 'box_outputs_all': [None], 'indices_all': [None], 'classes_all': [None] } det_model_fn.add_metric_fn_inputs( params, cls_outputs, box_outputs, outputs, -1) # Create anchor_label for picking top-k predictions. eval_anchors = anchors.Anchors(params['min_level'], params['max_level'], params['num_scales'], params['aspect_ratios'], params['anchor_scale'], params['image_size']) anchor_labeler = anchors.AnchorLabeler(eval_anchors, params['num_classes']) # Add all detections for each input image. detections_batch = [] for index in range(params['batch_size']): cls_outputs_per_sample = outputs['cls_outputs_all'][index] box_outputs_per_sample = outputs['box_outputs_all'][index] indices_per_sample = outputs['indices_all'][index] classes_per_sample = outputs['classes_all'][index] detections = anchor_labeler.generate_detections( cls_outputs_per_sample, box_outputs_per_sample, indices_per_sample, classes_per_sample, image_id=[index], image_scale=[scales[index]], min_score_thresh=min_score_thresh, max_boxes_to_draw=max_boxes_to_draw, disable_pyfun=params.get('disable_pyfun')) detections_batch.append(detections) return tf.stack(detections_batch, name='detections') def visualize_image(image, boxes, classes, scores, id_mapping, min_score_thresh=anchors.MIN_SCORE_THRESH, max_boxes_to_draw=anchors.MAX_DETECTIONS_PER_IMAGE, line_thickness=2, **kwargs): """Visualizes a given image. Args: image: a image with shape [H, W, C]. boxes: a box prediction with shape [N, 4] ordered [ymin, xmin, ymax, xmax]. classes: a class prediction with shape [N]. scores: A list of float value with shape [N]. id_mapping: a dictionary from class id to name. min_score_thresh: minimal score for showing. If claass probability is below this threshold, then the object will not show up. max_boxes_to_draw: maximum bounding box to draw. line_thickness: how thick is the bounding box line. **kwargs: extra parameters. Returns: output_image: an output image with annotated boxes and classes. """ category_index = {k: {'id': k, 'name': id_mapping[k]} for k in id_mapping} img = np.array(image) vis_utils.visualize_boxes_and_labels_on_image_array( img, boxes, classes, scores, category_index, min_score_thresh=min_score_thresh, max_boxes_to_draw=max_boxes_to_draw, line_thickness=line_thickness, **kwargs) return img class ServingDriver(object): """A driver for serving single or batch images. This driver supports serving with image files or arrays, with configurable batch size. Example 1. Serving streaming image contents: driver = inference.ServingDriver( 'efficientdet-d0', '/tmp/efficientdet-d0', batch_size=1) driver.build() for m in image_iterator(): predictions = driver.serve_files([m]) driver.visualize(m, predictions[0]) # m is the new image with annotated boxes. Example 2. Serving batch image contents: imgs = [] for f in ['/tmp/1.jpg', '/tmp/2.jpg']: imgs.append(np.array(Image.open(f))) driver = inference.ServingDriver( 'efficientdet-d0', '/tmp/efficientdet-d0', batch_size=len(imgs)) driver.build() predictions = driver.serve_images(imgs) for i in range(len(imgs)): driver.visualize(imgs[i], predictions[i]) Example 3: another way is to use SavedModel: # step1: export a model. driver = inference.ServingDriver('efficientdet-d0', '/tmp/efficientdet-d0') driver.build() driver.export('/tmp/saved_model_path') # step2: Serve a model. with tf.Session() as sess: tf.saved_model.load(sess, ['serve'], self.saved_model_dir) raw_images = [] for f in tf.io.gfile.glob('/tmp/images/*.jpg'): raw_images.append(np.array(PIL.Image.open(f))) detections = sess.run('detections:0', {'image_arrays:0': raw_images}) driver = inference.ServingDriver( 'efficientdet-d0', '/tmp/efficientdet-d0') driver.visualize(raw_images[0], detections[0]) PIL.Image.fromarray(raw_images[0]).save(output_image_path) """ def __init__(self, model_name: Text, ckpt_path: Text, image_size: Union[int, Tuple[int, int]] = None, batch_size: int = 1, num_classes: int = None, enable_ema: bool = True, label_id_mapping: Dict[int, Text] = None, use_xla: bool = False, data_format: Text = None, min_score_thresh: float = None, max_boxes_to_draw: float = None, line_thickness: int = None): """Initialize the inference driver. Args: model_name: target model name, such as efficientdet-d0. ckpt_path: checkpoint path, such as /tmp/efficientdet-d0/. image_size: single integer of image size for square image or tuple of two integers, in the format of (image_height, image_width). If None, use the default image size defined by model_name. batch_size: batch size for inference. num_classes: number of classes. If None, use the default COCO classes. enable_ema: whether to enable moving average. label_id_mapping: a dictionary from id to name. If None, use the default coco_id_mapping (with 90 classes). use_xla: Whether run with xla optimization. data_format: data format such as 'channel_last'. min_score_thresh: minimal score threshold for filtering predictions. max_boxes_to_draw: the maximum number of boxes per image. line_thickness: the line thickness for drawing boxes. """ self.model_name = model_name self.ckpt_path = ckpt_path self.batch_size = batch_size self.label_id_mapping = label_id_mapping or coco_id_mapping self.params = hparams_config.get_detection_config(self.model_name).as_dict() self.params.update(dict(is_training_bn=False, use_bfloat16=False)) if image_size: self.params.update(dict(image_size=image_size)) if num_classes: self.params.update(dict(num_classes=num_classes)) if data_format: self.params.update(dict(data_format=data_format)) self.signitures = None self.sess = None self.disable_pyfun = True self.enable_ema = enable_ema self.use_xla = use_xla self.min_score_thresh = min_score_thresh or anchors.MIN_SCORE_THRESH self.max_boxes_to_draw = ( max_boxes_to_draw or anchors.MAX_DETECTIONS_PER_IMAGE) self.line_thickness = line_thickness def __del__(self): if self.sess: self.sess.close() def _build_session(self): sess_config = tf.ConfigProto() if self.use_xla: sess_config.graph_options.optimizer_options.global_jit_level = ( tf.OptimizerOptions.ON_2) return tf.Session(config=sess_config) def build(self, params_override=None): """Build model and restore checkpoints.""" params = copy.deepcopy(self.params) if params_override: params.update(params_override) if not self.sess: self.sess = self._build_session() with self.sess.graph.as_default(): image_files = tf.placeholder(tf.string, name='image_files', shape=[None]) image_size = params['image_size'] raw_images = [] for i in range(self.batch_size): image = tf.io.decode_image(image_files[i]) image.set_shape([None, None, None]) raw_images.append(image) raw_images = tf.stack(raw_images, name='image_arrays') scales, images = [], [] for i in range(self.batch_size): image, scale = image_preprocess(raw_images[i], image_size) scales.append(scale) images.append(image) scales = tf.stack(scales) images = tf.stack(images) if params['data_format'] == 'channels_first': images = tf.transpose(images, [0, 3, 1, 2]) class_outputs, box_outputs = build_model(self.model_name, images, **params) params.update( dict(batch_size=self.batch_size, disable_pyfun=self.disable_pyfun)) detections = det_post_process( params, class_outputs, box_outputs, scales, self.min_score_thresh, self.max_boxes_to_draw) restore_ckpt( self.sess, self.ckpt_path, enable_ema=self.enable_ema, export_ckpt=None) self.signitures = { 'image_files': image_files, 'image_arrays': raw_images, 'prediction': detections, } return self.signitures def visualize(self, image, predictions, **kwargs): """Visualize predictions on image. Args: image: Image content in shape of [height, width, 3]. predictions: a list of vector, with each vector has the format of [image_id, x, y, width, height, score, class]. **kwargs: extra parameters for vistualization, such as min_score_thresh, max_boxes_to_draw, and line_thickness. Returns: annotated image. """ boxes = predictions[:, 1:5] classes = predictions[:, 6].astype(int) scores = predictions[:, 5] # This is not needed if disable_pyfun=True # convert [x, y, width, height] to [ymin, xmin, ymax, xmax] # TODO(tanmingxing): make this convertion more efficient. if not self.disable_pyfun: boxes[:, [0, 1, 2, 3]] = boxes[:, [1, 0, 3, 2]] boxes[:, 2:4] += boxes[:, 0:2] return visualize_image(image, boxes, classes, scores, self.label_id_mapping, **kwargs) def serve_files(self, image_files: List[Text]): """Serve a list of input image files. Args: image_files: a list of image files with shape [1] and type string. Returns: A list of detections. """ if not self.sess: self.build() predictions = self.sess.run( self.signitures['prediction'], feed_dict={self.signitures['image_files']: image_files}) return predictions def benchmark(self, image_arrays, trace_filename=None): """Benchmark inference latency/throughput. Args: image_arrays: a numpy array of image content. trace_filename: If None, specify the filename for saving trace. """ if not self.sess: self.build() # init session self.sess.run( self.signitures['prediction'], feed_dict={self.signitures['image_arrays']: image_arrays}) start = time.perf_counter() for _ in range(10): self.sess.run( self.signitures['prediction'], feed_dict={self.signitures['image_arrays']: image_arrays}) end = time.perf_counter() inference_time = (end-start) / 10 print('Inference time: ', inference_time) print('FPS: ', 1 / inference_time) if trace_filename: run_options = tf.RunOptions() run_options.trace_level = tf.RunOptions.FULL_TRACE run_metadata = tf.RunMetadata() self.sess.run( self.signitures['prediction'], feed_dict={self.signitures['image_arrays']: image_arrays}, options=run_options, run_metadata=run_metadata) with tf.io.gfile.GFile(trace_filename, 'w') as trace_file: from tensorflow.python.client import timeline # pylint: disable=g-direct-tensorflow-import,g-import-not-at-top trace = timeline.Timeline(step_stats=run_metadata.step_stats) trace_file.write( trace.generate_chrome_trace_format(show_memory=True)) def serve_images(self, image_arrays): """Serve a list of image arrays. Args: image_arrays: A list of image content with each image has shape [height, width, 3] and uint8 type. Returns: A list of detections. """ if not self.sess: self.build() predictions = self.sess.run( self.signitures['prediction'], feed_dict={self.signitures['image_arrays']: image_arrays}) return predictions def load(self, saved_model_dir): if not self.sess: self.sess = self._build_session() self.signitures = { 'image_files': 'image_files:0', 'image_arrays': 'image_arrays:0', 'prediction': 'detections:0', } return tf.saved_model.load(self.sess, ['serve'], saved_model_dir) def export(self, output_dir): """Export a saved model.""" signitures = self.signitures signature_def_map = { 'serving_default': tf.saved_model.predict_signature_def( {signitures['image_arrays'].name: signitures['image_arrays']}, {signitures['prediction'].name: signitures['prediction']}), 'serving_base64': tf.saved_model.predict_signature_def( {signitures['image_files'].name: signitures['image_files']}, {signitures['prediction'].name: signitures['prediction']}), } b = tf.saved_model.Builder(output_dir) b.add_meta_graph_and_variables( self.sess, tags=['serve'], signature_def_map=signature_def_map, assets_collection=tf.get_collection(tf.GraphKeys.ASSET_FILEPATHS), clear_devices=True) b.save() logging.info('Model saved at %s', output_dir) class InferenceDriver(object): """A driver for doing batch inference. Example usage: driver = inference.InferenceDriver('efficientdet-d0', '/tmp/efficientdet-d0') driver.inference('/tmp/*.jpg', '/tmp/outputdir') """ def __init__(self, model_name: Text, ckpt_path: Text, image_size: Union[int, Tuple[int, int]] = None, num_classes: int = None, enable_ema: bool = True, data_format: Text = None, label_id_mapping: Dict[int, Text] = None): """Initialize the inference driver. Args: model_name: target model name, such as efficientdet-d0. ckpt_path: checkpoint path, such as /tmp/efficientdet-d0/. image_size: user specified image size. If None, use the default image size defined by model_name. num_classes: number of classes. If None, use the default COCO classes. enable_ema: whether to enable moving average. data_format: data format such as 'channel_last'. label_id_mapping: a dictionary from id to name. If None, use the default coco_id_mapping (with 90 classes). """ self.model_name = model_name self.ckpt_path = ckpt_path self.label_id_mapping = label_id_mapping or coco_id_mapping self.params = hparams_config.get_detection_config(self.model_name).as_dict() self.params.update(dict(is_training_bn=False, use_bfloat16=False)) if image_size: self.params.update(dict(image_size=image_size)) if num_classes: self.params.update(dict(num_classes=num_classes)) if data_format: self.params.update(dict(data_format=data_format)) self.disable_pyfun = True self.enable_ema = enable_ema def inference(self, image_path_pattern: Text, output_dir: Text, **kwargs): """Read and preprocess input images. Args: image_path_pattern: Image file pattern such as /tmp/img*.jpg output_dir: the directory for output images. Output images will be named as 0.jpg, 1.jpg, .... **kwargs: extra parameters for for vistualization, such as min_score_thresh, max_boxes_to_draw, and line_thickness. Returns: Annotated image. """ params = copy.deepcopy(self.params) with tf.Session() as sess: # Buid inputs and preprocessing. raw_images, images, scales = build_inputs(image_path_pattern, params['image_size']) if params['data_format'] == 'channels_first': images = tf.transpose(images, [0, 3, 1, 2]) # Build model. class_outputs, box_outputs = build_model(self.model_name, images, **self.params) restore_ckpt( sess, self.ckpt_path, enable_ema=self.enable_ema, export_ckpt=None) # for postprocessing. params.update( dict(batch_size=len(raw_images), disable_pyfun=self.disable_pyfun)) # Build postprocessing. detections_batch = det_post_process( params, class_outputs, box_outputs, scales, min_score_thresh=kwargs.get('min_score_thresh', anchors.MIN_SCORE_THRESH), max_boxes_to_draw=kwargs.get('max_boxes_to_draw', anchors.MAX_DETECTIONS_PER_IMAGE)) outputs_np = sess.run(detections_batch) # Visualize results. for i, output_np in enumerate(outputs_np): # output_np has format [image_id, y, x, height, width, score, class] boxes = output_np[:, 1:5] classes = output_np[:, 6].astype(int) scores = output_np[:, 5] # This is not needed if disable_pyfun=True # convert [x, y, width, height] to [ymin, xmin, ymax, xmax] # TODO(tanmingxing): make this convertion more efficient. if not self.disable_pyfun: boxes[:, [0, 1, 2, 3]] = boxes[:, [1, 0, 3, 2]] boxes[:, 2:4] += boxes[:, 0:2] img = visualize_image(raw_images[i], boxes, classes, scores, self.label_id_mapping, **kwargs) output_image_path = os.path.join(output_dir, str(i) + '.jpg') Image.fromarray(img).save(output_image_path) logging.info('writing file to %s', output_image_path) return outputs_np
37.187779
119
0.658999
795347be61aeb59ccc4ff862b0c0d71efc5e0dfb
2,387
py
Python
setup.py
dmontaner/pandas_save_profiler
2bda6174a901caaeb30046ab5ebac9d78308ce9a
[ "MIT" ]
null
null
null
setup.py
dmontaner/pandas_save_profiler
2bda6174a901caaeb30046ab5ebac9d78308ce9a
[ "MIT" ]
null
null
null
setup.py
dmontaner/pandas_save_profiler
2bda6174a901caaeb30046ab5ebac9d78308ce9a
[ "MIT" ]
null
null
null
import os from setuptools import setup here = os.path.abspath(os.path.dirname(__file__)) with open(os.path.join(here, 'README.md'), encoding='utf-8') as f: long_description = f.read() with open(os.path.join(here, 'src', 'pandas_save_profiler', '__init__.py'), encoding='utf-8') as f: init_lines = f.readlines() init_version = [x for x in init_lines if x.startswith('__version__')][0] init_version = init_version.split('=')[1].replace('"', '').replace("'", "").strip() setup( name='pandas_save_profiler', license='MIT', description='Tools to evaluate pandas performance when saving dataframes in different file formats.', version=init_version, long_description=long_description, long_description_content_type='text/markdown', author='David Montaner', author_email='david.montaner@gmail.com', url='https://github.com/dmontaner/pandas_save_profiler', packages=['pandas_save_profiler'], package_dir={'': 'src'}, project_urls={ 'Source Code' : 'https://github.com/dmontaner/pandas_save_profiler', 'Documentation': 'https://github.com/dmontaner/pandas_save_profiler', 'Issue Tracker': 'https://github.com/dmontaner/pandas_save_profiler/issues', }, classifiers=[ 'Development Status :: 3 - Alpha', 'Intended Audience :: Developers', 'License :: OSI Approved :: MIT License', 'Operating System :: Unix', 'Operating System :: POSIX', 'Operating System :: MacOS', 'Operating System :: Microsoft :: Windows', 'Programming Language :: Python', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', 'Programming Language :: Python :: 3.8', 'Programming Language :: Python :: Implementation :: CPython', 'Programming Language :: Python :: Implementation :: PyPy', 'Topic :: Utilities', 'Topic :: Scientific/Engineering', 'Intended Audience :: Developers', 'Intended Audience :: Science/Research', ], keywords=[ 'pandas', 'save', 'profile', ], python_requires='>=3.6', install_requires=[ 'pandas', 'humanize', 'memory_profiler>=0.57.0', 'pyarrow', 'SQLAlchemy', 'xlwt', 'xlrd', 'openpyxl', ], )
36.723077
105
0.623377
7953480ae0a491a9c97c11777c966a853bcb7580
1,501
py
Python
appengine/findit/infra_api_clients/isolate/isolate_util.py
allaparthi/monorail
e18645fc1b952a5a6ff5f06e0c740d75f1904473
[ "BSD-3-Clause" ]
2
2021-04-13T21:22:18.000Z
2021-09-07T02:11:57.000Z
appengine/findit/infra_api_clients/isolate/isolate_util.py
allaparthi/monorail
e18645fc1b952a5a6ff5f06e0c740d75f1904473
[ "BSD-3-Clause" ]
21
2020-09-06T02:41:05.000Z
2022-03-02T04:40:01.000Z
appengine/findit/infra_api_clients/isolate/isolate_util.py
allaparthi/monorail
e18645fc1b952a5a6ff5f06e0c740d75f1904473
[ "BSD-3-Clause" ]
null
null
null
# Copyright 2018 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Client library to interact with isolate API.""" import base64 import json import zlib from infra_api_clients import http_client_util def FetchFileFromIsolatedServer(digest, name_space, isolated_server, http_client): """Sends retrieve request to isolated server and returns response content. Args: digest(str): Hash to file for retrieve request. name_space(str): Name space info for retrieve request. isolated_server(str): Host to isolate server. http_client(RetryHttpClient): http client to send the request. """ post_data = {'digest': digest, 'namespace': {'namespace': name_space}} url = '%s/_ah/api/isolateservice/v1/retrieve' % isolated_server content, error = http_client_util.SendRequestToServer( url, http_client, post_data=post_data) if error: return None, error json_content = json.loads(content) file_url = json_content.get('url') error = None assert file_url or json_content.get( 'content'), 'Response from isolate is missing both url and content.' if file_url: compressed_content, error = http_client_util.SendRequestToServer( file_url, http_client) else: compressed_content = base64.b64decode(json_content['content']) return zlib.decompress( compressed_content) if compressed_content else None, error
34.113636
76
0.734843
7953487d46fb5d2ae1081d6b9e98d1f8e9e90990
27,653
py
Python
sdk/network/azure-mgmt-network/azure/mgmt/network/v2018_12_01/aio/operations_async/_express_route_ports_operations_async.py
LianwMS/azure-sdk-for-python
612d7bca9de86ee1bd1fa59291d7bf897ba9213f
[ "MIT" ]
2
2019-05-17T21:24:53.000Z
2020-02-12T11:13:42.000Z
sdk/network/azure-mgmt-network/azure/mgmt/network/v2018_12_01/aio/operations_async/_express_route_ports_operations_async.py
LianwMS/azure-sdk-for-python
612d7bca9de86ee1bd1fa59291d7bf897ba9213f
[ "MIT" ]
15
2019-07-12T18:18:04.000Z
2019-07-25T20:55:51.000Z
sdk/network/azure-mgmt-network/azure/mgmt/network/v2018_12_01/aio/operations_async/_express_route_ports_operations_async.py
LianwMS/azure-sdk-for-python
612d7bca9de86ee1bd1fa59291d7bf897ba9213f
[ "MIT" ]
2
2020-05-21T22:51:22.000Z
2020-05-26T20:53:01.000Z
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import Any, AsyncIterable, Callable, Dict, Generic, Optional, TypeVar, Union import warnings from azure.core.async_paging import AsyncItemPaged, AsyncList from azure.core.exceptions import HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse, HttpRequest from azure.core.polling import AsyncLROPoller, AsyncNoPolling, AsyncPollingMethod from azure.mgmt.core.exceptions import ARMErrorFormat from azure.mgmt.core.polling.async_arm_polling import AsyncARMPolling from ... import models T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class ExpressRoutePortsOperations: """ExpressRoutePortsOperations async operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.network.v2018_12_01.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = models def __init__(self, client, config, serializer, deserializer) -> None: self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config async def _delete_initial( self, resource_group_name: str, express_route_port_name: str, **kwargs ) -> None: cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = {404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop('error_map', {})) api_version = "2018-12-01" # Construct URL url = self._delete_initial.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'expressRoutePortName': self._serialize.url("express_route_port_name", express_route_port_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] # Construct and send request request = self._client.delete(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202, 204]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) _delete_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/ExpressRoutePorts/{expressRoutePortName}'} # type: ignore async def begin_delete( self, resource_group_name: str, express_route_port_name: str, **kwargs ) -> None: """Deletes the specified ExpressRoutePort resource. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param express_route_port_name: The name of the ExpressRoutePort resource. :type express_route_port_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: None, or the result of cls(response) :rtype: None :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[None] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._delete_initial( resource_group_name=resource_group_name, express_route_port_name=express_route_port_name, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): if cls: return cls(pipeline_response, None, {}) if polling is True: polling_method = AsyncARMPolling(lro_delay, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_delete.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/ExpressRoutePorts/{expressRoutePortName}'} # type: ignore async def get( self, resource_group_name: str, express_route_port_name: str, **kwargs ) -> "models.ExpressRoutePort": """Retrieves the requested ExpressRoutePort resource. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param express_route_port_name: The name of ExpressRoutePort. :type express_route_port_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: ExpressRoutePort, or the result of cls(response) :rtype: ~azure.mgmt.network.v2018_12_01.models.ExpressRoutePort :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.ExpressRoutePort"] error_map = {404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop('error_map', {})) api_version = "2018-12-01" # Construct URL url = self.get.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'expressRoutePortName': self._serialize.url("express_route_port_name", express_route_port_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = 'application/json' # Construct and send request request = self._client.get(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('ExpressRoutePort', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/ExpressRoutePorts/{expressRoutePortName}'} # type: ignore async def _create_or_update_initial( self, resource_group_name: str, express_route_port_name: str, parameters: "models.ExpressRoutePort", **kwargs ) -> "models.ExpressRoutePort": cls = kwargs.pop('cls', None) # type: ClsType["models.ExpressRoutePort"] error_map = {404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop('error_map', {})) api_version = "2018-12-01" content_type = kwargs.pop("content_type", "application/json") # Construct URL url = self._create_or_update_initial.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'expressRoutePortName': self._serialize.url("express_route_port_name", express_route_port_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = 'application/json' # Construct and send request body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(parameters, 'ExpressRoutePort') body_content_kwargs['content'] = body_content request = self._client.put(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 201]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = None if response.status_code == 200: deserialized = self._deserialize('ExpressRoutePort', pipeline_response) if response.status_code == 201: deserialized = self._deserialize('ExpressRoutePort', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _create_or_update_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/ExpressRoutePorts/{expressRoutePortName}'} # type: ignore async def begin_create_or_update( self, resource_group_name: str, express_route_port_name: str, parameters: "models.ExpressRoutePort", **kwargs ) -> "models.ExpressRoutePort": """Creates or updates the specified ExpressRoutePort resource. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param express_route_port_name: The name of the ExpressRoutePort resource. :type express_route_port_name: str :param parameters: Parameters supplied to the create ExpressRoutePort operation. :type parameters: ~azure.mgmt.network.v2018_12_01.models.ExpressRoutePort :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: ExpressRoutePort, or the result of cls(response) :rtype: ~azure.mgmt.network.v2018_12_01.models.ExpressRoutePort :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["models.ExpressRoutePort"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._create_or_update_initial( resource_group_name=resource_group_name, express_route_port_name=express_route_port_name, parameters=parameters, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('ExpressRoutePort', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized if polling is True: polling_method = AsyncARMPolling(lro_delay, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_create_or_update.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/ExpressRoutePorts/{expressRoutePortName}'} # type: ignore async def _update_tags_initial( self, resource_group_name: str, express_route_port_name: str, parameters: "models.TagsObject", **kwargs ) -> "models.ExpressRoutePort": cls = kwargs.pop('cls', None) # type: ClsType["models.ExpressRoutePort"] error_map = {404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop('error_map', {})) api_version = "2018-12-01" content_type = kwargs.pop("content_type", "application/json") # Construct URL url = self._update_tags_initial.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'expressRoutePortName': self._serialize.url("express_route_port_name", express_route_port_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = 'application/json' # Construct and send request body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(parameters, 'TagsObject') body_content_kwargs['content'] = body_content request = self._client.patch(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) deserialized = self._deserialize('ExpressRoutePort', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _update_tags_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/ExpressRoutePorts/{expressRoutePortName}'} # type: ignore async def begin_update_tags( self, resource_group_name: str, express_route_port_name: str, parameters: "models.TagsObject", **kwargs ) -> "models.ExpressRoutePort": """Update ExpressRoutePort tags. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param express_route_port_name: The name of the ExpressRoutePort resource. :type express_route_port_name: str :param parameters: Parameters supplied to update ExpressRoutePort resource tags. :type parameters: ~azure.mgmt.network.v2018_12_01.models.TagsObject :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: ExpressRoutePort, or the result of cls(response) :rtype: ~azure.mgmt.network.v2018_12_01.models.ExpressRoutePort :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["models.ExpressRoutePort"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._update_tags_initial( resource_group_name=resource_group_name, express_route_port_name=express_route_port_name, parameters=parameters, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('ExpressRoutePort', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized if polling is True: polling_method = AsyncARMPolling(lro_delay, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_update_tags.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/ExpressRoutePorts/{expressRoutePortName}'} # type: ignore def list_by_resource_group( self, resource_group_name: str, **kwargs ) -> AsyncIterable["models.ExpressRoutePortListResult"]: """List all the ExpressRoutePort resources in the specified resource group. :param resource_group_name: The name of the resource group. :type resource_group_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either ExpressRoutePortListResult or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.network.v2018_12_01.models.ExpressRoutePortListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.ExpressRoutePortListResult"] error_map = {404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop('error_map', {})) api_version = "2018-12-01" def prepare_request(next_link=None): if not next_link: # Construct URL url = self.list_by_resource_group.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') else: url = next_link query_parameters = {} # type: Dict[str, Any] # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = 'application/json' # Construct and send request request = self._client.get(url, query_parameters, header_parameters) return request async def extract_data(pipeline_response): deserialized = self._deserialize('ExpressRoutePortListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list_by_resource_group.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/ExpressRoutePorts'} # type: ignore def list( self, **kwargs ) -> AsyncIterable["models.ExpressRoutePortListResult"]: """List all the ExpressRoutePort resources in the specified subscription. :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either ExpressRoutePortListResult or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.network.v2018_12_01.models.ExpressRoutePortListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["models.ExpressRoutePortListResult"] error_map = {404: ResourceNotFoundError, 409: ResourceExistsError} error_map.update(kwargs.pop('error_map', {})) api_version = "2018-12-01" def prepare_request(next_link=None): if not next_link: # Construct URL url = self.list.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') else: url = next_link query_parameters = {} # type: Dict[str, Any] # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = 'application/json' # Construct and send request request = self._client.get(url, query_parameters, header_parameters) return request async def extract_data(pipeline_response): deserialized = self._deserialize('ExpressRoutePortListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list.metadata = {'url': '/subscriptions/{subscriptionId}/providers/Microsoft.Network/ExpressRoutePorts'} # type: ignore
48.599297
203
0.67103
795348a3139d9167a31a49489ab19707a24593b5
705
py
Python
cone_detector/bluetooth_communication/bluetooth_client.py
Art31/trekking-pro-cefetrj
37ab58759b42978cbd8d950bd75c487e1292cb2b
[ "Apache-1.1" ]
null
null
null
cone_detector/bluetooth_communication/bluetooth_client.py
Art31/trekking-pro-cefetrj
37ab58759b42978cbd8d950bd75c487e1292cb2b
[ "Apache-1.1" ]
null
null
null
cone_detector/bluetooth_communication/bluetooth_client.py
Art31/trekking-pro-cefetrj
37ab58759b42978cbd8d950bd75c487e1292cb2b
[ "Apache-1.1" ]
null
null
null
# --------------------------------------------------------------------------- # # Title: Bluetooth communication client script # Author: Arthur Telles # Date: 02/07/2018 (DD/MM/YYYY) # Description: This function opens up a port for bluetooth communication # and send a message to the server. # --------------------------------------------------------------------------- # # Taken from http://blog.kevindoran.co/bluetooth-programming-with-python-3/ import bluetooth serverMACAddress = '4C:34:88:32:82:68' port = 5 s = bluetooth.BluetoothSocket(bluetooth.RFCOMM) s.connect((serverMACAddress, port)) while 1: text = "trekking works" if text == "quit": break s.send(text) sock.close()
30.652174
79
0.560284
795348d900c86491b7f8c25521aad6105ade0c0e
14,602
py
Python
tests/components/synology_dsm/test_config_flow.py
thomasloven/home-assistant
90fbb150e75f564045fb598c13bc23cb92e9f0da
[ "Apache-2.0" ]
2
2022-01-24T18:59:56.000Z
2022-02-04T22:12:48.000Z
tests/components/synology_dsm/test_config_flow.py
thomasloven/home-assistant
90fbb150e75f564045fb598c13bc23cb92e9f0da
[ "Apache-2.0" ]
null
null
null
tests/components/synology_dsm/test_config_flow.py
thomasloven/home-assistant
90fbb150e75f564045fb598c13bc23cb92e9f0da
[ "Apache-2.0" ]
null
null
null
"""Tests for the Synology DSM config flow.""" import logging from unittest.mock import MagicMock, Mock, patch import pytest from synology_dsm.exceptions import ( SynologyDSMException, SynologyDSMLogin2SAFailedException, SynologyDSMLogin2SARequiredException, SynologyDSMLoginInvalidException, SynologyDSMRequestException, ) from homeassistant import data_entry_flow, setup from homeassistant.components import ssdp from homeassistant.components.synology_dsm.config_flow import CONF_OTP_CODE from homeassistant.components.synology_dsm.const import ( CONF_VOLUMES, DEFAULT_PORT, DEFAULT_PORT_SSL, DEFAULT_SSL, DOMAIN, ) from homeassistant.config_entries import SOURCE_IMPORT, SOURCE_SSDP, SOURCE_USER from homeassistant.const import ( CONF_DISKS, CONF_HOST, CONF_MAC, CONF_PASSWORD, CONF_PORT, CONF_SSL, CONF_USERNAME, ) from homeassistant.helpers.typing import HomeAssistantType from tests.common import MockConfigEntry _LOGGER = logging.getLogger(__name__) HOST = "nas.meontheinternet.com" SERIAL = "mySerial" HOST_2 = "nas.worldwide.me" SERIAL_2 = "mySerial2" PORT = 1234 SSL = True USERNAME = "Home_Assistant" PASSWORD = "password" DEVICE_TOKEN = "Dév!cè_T0k€ñ" MACS = ["00-11-32-XX-XX-59", "00-11-32-XX-XX-5A"] @pytest.fixture(name="service") def mock_controller_service(): """Mock a successful service.""" with patch( "homeassistant.components.synology_dsm.config_flow.SynologyDSM" ) as service_mock: service_mock.return_value.information.serial = SERIAL service_mock.return_value.utilisation.cpu_user_load = 1 service_mock.return_value.storage.disks_ids = ["sda", "sdb", "sdc"] service_mock.return_value.storage.volumes_ids = ["volume_1"] service_mock.return_value.network.macs = MACS yield service_mock @pytest.fixture(name="service_2sa") def mock_controller_service_2sa(): """Mock a successful service with 2SA login.""" with patch( "homeassistant.components.synology_dsm.config_flow.SynologyDSM" ) as service_mock: service_mock.return_value.login = Mock( side_effect=SynologyDSMLogin2SARequiredException(USERNAME) ) service_mock.return_value.information.serial = SERIAL service_mock.return_value.utilisation.cpu_user_load = 1 service_mock.return_value.storage.disks_ids = ["sda", "sdb", "sdc"] service_mock.return_value.storage.volumes_ids = ["volume_1"] service_mock.return_value.network.macs = MACS yield service_mock @pytest.fixture(name="service_failed") def mock_controller_service_failed(): """Mock a failed service.""" with patch( "homeassistant.components.synology_dsm.config_flow.SynologyDSM" ) as service_mock: service_mock.return_value.information.serial = None service_mock.return_value.utilisation.cpu_user_load = None service_mock.return_value.storage.disks_ids = [] service_mock.return_value.storage.volumes_ids = [] service_mock.return_value.network.macs = [] yield service_mock async def test_user(hass: HomeAssistantType, service: MagicMock): """Test user config.""" result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": SOURCE_USER}, data=None ) assert result["type"] == data_entry_flow.RESULT_TYPE_FORM assert result["step_id"] == "user" # test with all provided result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": SOURCE_USER}, data={ CONF_HOST: HOST, CONF_PORT: PORT, CONF_SSL: SSL, CONF_USERNAME: USERNAME, CONF_PASSWORD: PASSWORD, }, ) assert result["type"] == data_entry_flow.RESULT_TYPE_CREATE_ENTRY assert result["result"].unique_id == SERIAL assert result["title"] == HOST assert result["data"][CONF_HOST] == HOST assert result["data"][CONF_PORT] == PORT assert result["data"][CONF_SSL] == SSL assert result["data"][CONF_USERNAME] == USERNAME assert result["data"][CONF_PASSWORD] == PASSWORD assert result["data"][CONF_MAC] == MACS assert result["data"].get("device_token") is None assert result["data"].get(CONF_DISKS) is None assert result["data"].get(CONF_VOLUMES) is None service.return_value.information.serial = SERIAL_2 # test without port + False SSL result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": SOURCE_USER}, data={ CONF_HOST: HOST, CONF_SSL: False, CONF_USERNAME: USERNAME, CONF_PASSWORD: PASSWORD, }, ) assert result["type"] == data_entry_flow.RESULT_TYPE_CREATE_ENTRY assert result["result"].unique_id == SERIAL_2 assert result["title"] == HOST assert result["data"][CONF_HOST] == HOST assert result["data"][CONF_PORT] == DEFAULT_PORT assert not result["data"][CONF_SSL] assert result["data"][CONF_USERNAME] == USERNAME assert result["data"][CONF_PASSWORD] == PASSWORD assert result["data"][CONF_MAC] == MACS assert result["data"].get("device_token") is None assert result["data"].get(CONF_DISKS) is None assert result["data"].get(CONF_VOLUMES) is None async def test_user_2sa(hass: HomeAssistantType, service_2sa: MagicMock): """Test user with 2sa authentication config.""" result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": SOURCE_USER}, data={CONF_HOST: HOST, CONF_USERNAME: USERNAME, CONF_PASSWORD: PASSWORD}, ) assert result["type"] == data_entry_flow.RESULT_TYPE_FORM assert result["step_id"] == "2sa" # Failed the first time because was too slow to enter the code service_2sa.return_value.login = Mock( side_effect=SynologyDSMLogin2SAFailedException ) result = await hass.config_entries.flow.async_configure( result["flow_id"], {CONF_OTP_CODE: "000000"} ) assert result["type"] == data_entry_flow.RESULT_TYPE_FORM assert result["step_id"] == "2sa" assert result["errors"] == {CONF_OTP_CODE: "otp_failed"} # Successful login with 2SA code service_2sa.return_value.login = Mock(return_value=True) service_2sa.return_value.device_token = DEVICE_TOKEN result = await hass.config_entries.flow.async_configure( result["flow_id"], {CONF_OTP_CODE: "123456"} ) assert result["type"] == data_entry_flow.RESULT_TYPE_CREATE_ENTRY assert result["result"].unique_id == SERIAL assert result["title"] == HOST assert result["data"][CONF_HOST] == HOST assert result["data"][CONF_PORT] == DEFAULT_PORT_SSL assert result["data"][CONF_SSL] == DEFAULT_SSL assert result["data"][CONF_USERNAME] == USERNAME assert result["data"][CONF_PASSWORD] == PASSWORD assert result["data"][CONF_MAC] == MACS assert result["data"].get("device_token") == DEVICE_TOKEN assert result["data"].get(CONF_DISKS) is None assert result["data"].get(CONF_VOLUMES) is None async def test_import(hass: HomeAssistantType, service: MagicMock): """Test import step.""" # import with minimum setup result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": SOURCE_IMPORT}, data={CONF_HOST: HOST, CONF_USERNAME: USERNAME, CONF_PASSWORD: PASSWORD}, ) assert result["type"] == data_entry_flow.RESULT_TYPE_CREATE_ENTRY assert result["result"].unique_id == SERIAL assert result["title"] == HOST assert result["data"][CONF_HOST] == HOST assert result["data"][CONF_PORT] == DEFAULT_PORT_SSL assert result["data"][CONF_SSL] == DEFAULT_SSL assert result["data"][CONF_USERNAME] == USERNAME assert result["data"][CONF_PASSWORD] == PASSWORD assert result["data"][CONF_MAC] == MACS assert result["data"].get("device_token") is None assert result["data"].get(CONF_DISKS) is None assert result["data"].get(CONF_VOLUMES) is None service.return_value.information.serial = SERIAL_2 # import with all result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": SOURCE_IMPORT}, data={ CONF_HOST: HOST_2, CONF_PORT: PORT, CONF_SSL: SSL, CONF_USERNAME: USERNAME, CONF_PASSWORD: PASSWORD, CONF_DISKS: ["sda", "sdb", "sdc"], CONF_VOLUMES: ["volume_1"], }, ) assert result["type"] == data_entry_flow.RESULT_TYPE_CREATE_ENTRY assert result["result"].unique_id == SERIAL_2 assert result["title"] == HOST_2 assert result["data"][CONF_HOST] == HOST_2 assert result["data"][CONF_PORT] == PORT assert result["data"][CONF_SSL] == SSL assert result["data"][CONF_USERNAME] == USERNAME assert result["data"][CONF_PASSWORD] == PASSWORD assert result["data"][CONF_MAC] == MACS assert result["data"].get("device_token") is None assert result["data"][CONF_DISKS] == ["sda", "sdb", "sdc"] assert result["data"][CONF_VOLUMES] == ["volume_1"] async def test_abort_if_already_setup(hass: HomeAssistantType, service: MagicMock): """Test we abort if the account is already setup.""" MockConfigEntry( domain=DOMAIN, data={CONF_HOST: HOST, CONF_USERNAME: USERNAME, CONF_PASSWORD: PASSWORD}, unique_id=SERIAL, ).add_to_hass(hass) # Should fail, same HOST:PORT (import) result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": SOURCE_IMPORT}, data={CONF_HOST: HOST, CONF_USERNAME: USERNAME, CONF_PASSWORD: PASSWORD}, ) assert result["type"] == data_entry_flow.RESULT_TYPE_ABORT assert result["reason"] == "already_configured" # Should fail, same HOST:PORT (flow) result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": SOURCE_USER}, data={CONF_HOST: HOST, CONF_USERNAME: USERNAME, CONF_PASSWORD: PASSWORD}, ) assert result["type"] == data_entry_flow.RESULT_TYPE_ABORT assert result["reason"] == "already_configured" async def test_login_failed(hass: HomeAssistantType, service: MagicMock): """Test when we have errors during login.""" service.return_value.login = Mock( side_effect=(SynologyDSMLoginInvalidException(USERNAME)) ) result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": SOURCE_USER}, data={CONF_HOST: HOST, CONF_USERNAME: USERNAME, CONF_PASSWORD: PASSWORD}, ) assert result["type"] == data_entry_flow.RESULT_TYPE_FORM assert result["errors"] == {CONF_USERNAME: "login"} async def test_connection_failed(hass: HomeAssistantType, service: MagicMock): """Test when we have errors during connection.""" service.return_value.login = Mock( side_effect=SynologyDSMRequestException(IOError("arg")) ) result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": SOURCE_USER}, data={CONF_HOST: HOST, CONF_USERNAME: USERNAME, CONF_PASSWORD: PASSWORD}, ) assert result["type"] == data_entry_flow.RESULT_TYPE_FORM assert result["errors"] == {CONF_HOST: "connection"} async def test_unknown_failed(hass: HomeAssistantType, service: MagicMock): """Test when we have an unknown error.""" service.return_value.login = Mock(side_effect=SynologyDSMException) result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": SOURCE_USER}, data={CONF_HOST: HOST, CONF_USERNAME: USERNAME, CONF_PASSWORD: PASSWORD}, ) assert result["type"] == data_entry_flow.RESULT_TYPE_FORM assert result["errors"] == {"base": "unknown"} async def test_missing_data_after_login( hass: HomeAssistantType, service_failed: MagicMock ): """Test when we have errors during connection.""" result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": SOURCE_USER}, data={CONF_HOST: HOST, CONF_USERNAME: USERNAME, CONF_PASSWORD: PASSWORD}, ) assert result["type"] == data_entry_flow.RESULT_TYPE_FORM assert result["errors"] == {"base": "missing_data"} async def test_form_ssdp_already_configured( hass: HomeAssistantType, service: MagicMock ): """Test ssdp abort when the serial number is already configured.""" await setup.async_setup_component(hass, "persistent_notification", {}) MockConfigEntry( domain=DOMAIN, data={ CONF_HOST: HOST, CONF_USERNAME: USERNAME, CONF_PASSWORD: PASSWORD, CONF_MAC: MACS, }, unique_id=SERIAL, ).add_to_hass(hass) result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": SOURCE_SSDP}, data={ ssdp.ATTR_SSDP_LOCATION: "http://192.168.1.5:5000", ssdp.ATTR_UPNP_FRIENDLY_NAME: "mydsm", ssdp.ATTR_UPNP_SERIAL: "001132XXXX59", # Existing in MACS[0], but SSDP does not have `-` }, ) assert result["type"] == data_entry_flow.RESULT_TYPE_ABORT async def test_form_ssdp(hass: HomeAssistantType, service: MagicMock): """Test we can setup from ssdp.""" await setup.async_setup_component(hass, "persistent_notification", {}) result = await hass.config_entries.flow.async_init( DOMAIN, context={"source": SOURCE_SSDP}, data={ ssdp.ATTR_SSDP_LOCATION: "http://192.168.1.5:5000", ssdp.ATTR_UPNP_FRIENDLY_NAME: "mydsm", ssdp.ATTR_UPNP_SERIAL: "001132XXXX99", # MAC address, but SSDP does not have `-` }, ) assert result["type"] == data_entry_flow.RESULT_TYPE_FORM assert result["step_id"] == "link" assert result["errors"] == {} result = await hass.config_entries.flow.async_configure( result["flow_id"], {CONF_USERNAME: USERNAME, CONF_PASSWORD: PASSWORD} ) assert result["type"] == data_entry_flow.RESULT_TYPE_CREATE_ENTRY assert result["title"] == "192.168.1.5" assert result["data"][CONF_HOST] == "192.168.1.5" assert result["data"][CONF_PORT] == 5001 assert result["data"][CONF_SSL] == DEFAULT_SSL assert result["data"][CONF_USERNAME] == USERNAME assert result["data"][CONF_PASSWORD] == PASSWORD assert result["data"][CONF_MAC] == MACS assert result["data"].get("device_token") is None assert result["data"].get(CONF_DISKS) is None assert result["data"].get(CONF_VOLUMES) is None
36.873737
101
0.683673
79534994cbe8034b70020631d35d06d2c05c928d
16,861
py
Python
plugins/modules/oracle_user.py
blaf-cgi/ansible-oracle-modules
37905c6ad91808a96f0085c9c1069e166f2e17b4
[ "MIT" ]
null
null
null
plugins/modules/oracle_user.py
blaf-cgi/ansible-oracle-modules
37905c6ad91808a96f0085c9c1069e166f2e17b4
[ "MIT" ]
null
null
null
plugins/modules/oracle_user.py
blaf-cgi/ansible-oracle-modules
37905c6ad91808a96f0085c9c1069e166f2e17b4
[ "MIT" ]
null
null
null
#!/usr/bin/python # -*- coding: utf-8 -*- # Copyright: (c) 2014 Mikael Sandström <oravirt@gmail.com> # Copyright: (c) 2021, Ari Stark <ari.stark@netcourrier.com> # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import absolute_import, division, print_function __metaclass__ = type DOCUMENTATION = ''' module: oracle_user short_description: Manages Oracle user/schema. description: - This module manages Oracle user/schema. - It can create, alter or drop users. - It can empty schemas (droping all its content). - It can change password of users ; lock/unlock and expire/unexpire accounts. - It can't be used to give privileges (refer to oracle_grant). version_added: "0.8.0" author: - Mikael Sandström (@oravirt) - Ari Stark (@ari-stark) options: authentication_type: description: - Type of authentication for the user. - If not specified for a new user and no I(schema_password) is specified, there won't be authentication. - If not specified and I(schema_password) is specified, value will be forced to I(password). required: false type: str choices: ['external', 'global', 'no_authentication', 'password'] default_tablespace: description: - Default tablespace for the user. - Tablespace must exist. - If not specified for a new user, Oracle default will be used. required: false type: str expired: description: - Expire or unexpire account. - If not specified for a new user, Oracle default will be used. required: false type: bool hostname: description: - Specify the host name or IP address of the database server computer. default: localhost type: str locked: description: - Lock or unlock account. - If not specified for a new user, Oracle default will be used. required: false type: bool mode: description: - This option is the database administration privileges. default: normal type: str choices: ['normal', 'sysdba'] oracle_home: description: - Define the directory into which all Oracle software is installed. - Define ORACLE_HOME environment variable if set. type: str password: description: - Set the password to use to connect the database server. - Must not be set if using Oracle wallet. type: str port: description: - Specify the listening port on the database server. default: 1521 type: int profile: description: - Profile of the user. - Profile must exist. - If not specified for a new user, Oracle default will be used. required: false type: str schema_name: description: - Name of the user to manage. required: true type: str aliases: - name schema_password: description: - Password of the user account. - Required if I(authentication_type) is I(password). required: false type: str service_name: description: - Specify the service name of the database you want to access. required: true type: str state: description: - Specify the state of the user/schema. - If I(state=empty), the schema will be purged, but not dropped. - If I(state=absent), the tablespace will be droped, including all datafiles. default: present type: str choices: ['absent', 'empty', 'present'] temporary_tablespace: description: - Default temporary tablespace for the user. - Tablespace must exist. - If not specified for a new user, Oracle default will be used. required: false type: str username: description: - Set the login to use to connect the database server. - Must not be set if using Oracle wallet. type: str aliases: - user requirements: - Python module cx_Oracle - Oracle basic tools. notes: - Check mode and diff mode are supported. - Changes made by @ari-stark broke previous module interface. ''' EXAMPLES = ''' - name: Create a new schema on a remote db by running the module on the controlmachine oracle_user: hostname: "remote-db-server" service_name: "orcl" username: "system" password: "manager" schema_name: "myschema" schema_password: "mypass" default_tablespace: "test" state: "present" - name: Drop a user on a remote db oracle_user: hostname: "remote-db-server" service_name: "orcl" username: "system" password: "manager" schema_name: "myschema" state: "absent" - name: Empty a schema on a remote db oracle_user: hostname: "remote-db-server" service_name: "orcl" username: "system" password: "manager" schema_name: "myschema" state: "empty" ''' RETURN = ''' ddls: description: Ordered list of DDL requests executed during module execution. returned: always type: list elements: str ''' from ansible.module_utils.basic import AnsibleModule from ansible_collections.ari_stark.ansible_oracle_modules.plugins.module_utils.ora_db import OraDB def get_existing_user(schema_name): """Check if the user/schema exists""" data = ora_db.execute_select('select username,' ' account_status,' ' default_tablespace,' ' temporary_tablespace,' ' profile,' ' authentication_type,' ' oracle_maintained' ' from dba_users' ' where username = upper(:schema_name)', {'schema_name': schema_name}) if data: row = data[0] state = 'present' expired = 'EXPIRED' in row[1] locked = 'LOCKED' in row[1] default_tablespace = row[2] temporary_tablespace = row[3] profile = row[4] authentication_type = {'EXTERNAL': 'external', 'GLOBAL': 'global', 'NONE': None, 'PASSWORD': 'password'}[row[5]] oracle_maintained = row[6] == 'Y' diff['before']['state'] = state diff['before']['expired'] = expired diff['before']['locked'] = locked diff['before']['default_tablespace'] = default_tablespace diff['before']['temporary_tablespace'] = temporary_tablespace diff['before']['profile'] = profile diff['before']['authentication_type'] = authentication_type if authentication_type == 'password': diff['before']['schema_password'] = '**' return {'username': schema_name, 'state': state, 'expired': expired, 'locked': locked, 'default_tablespace': default_tablespace, 'temporary_tablespace': temporary_tablespace, 'profile': profile, 'authentication_type': authentication_type, 'oracle_maintained': oracle_maintained} else: diff['before']['state'] = 'absent' return None def has_password_changed(schema_name, schema_password): """Check if password has changed.""" expected_error = 1017 # invalid username/password; logon denied return ora_db.try_connect(schema_name, schema_password) == expected_error def ensure_present(schema_name, authentication_type, schema_password, default_tablespace, temporary_tablespace, profile, locked, expired, empty): """Create or modify the user""" prev_user = get_existing_user(schema_name) if prev_user: changed = False emptied = False # Values are not changed by default, so after should be same as before diff['after']['authentication_type'] = diff['before']['authentication_type'] diff['after']['default_tablespace'] = diff['before']['default_tablespace'] diff['after']['expired'] = diff['before']['expired'] diff['after']['locked'] = diff['before']['locked'] diff['after']['profile'] = diff['before']['profile'] diff['after']['temporary_tablespace'] = diff['before']['temporary_tablespace'] sql = 'alter user %s ' % schema_name if authentication_type and authentication_type != prev_user['authentication_type']: if authentication_type == 'external': sql += 'identified externally ' elif authentication_type == 'global': sql += 'identified globally ' elif authentication_type == 'password': sql += 'identified by "%s" ' % schema_password diff['after']['schema_password'] = '*' else: sql += 'no authentication ' diff['after']['authentication_type'] = authentication_type changed = True if default_tablespace and default_tablespace.lower() != prev_user['default_tablespace'].lower(): sql += 'default tablespace %s quota unlimited on %s ' % (default_tablespace, default_tablespace) diff['after']['default_tablespace'] = default_tablespace changed = True if temporary_tablespace and temporary_tablespace.lower() != prev_user['temporary_tablespace'].lower(): sql += 'temporary tablespace %s ' % temporary_tablespace diff['after']['temporary_tablespace'] = temporary_tablespace changed = True if profile and profile.lower() != prev_user['profile'].lower(): sql += 'profile %s ' % profile diff['after']['profile'] = profile changed = True if locked is not None and locked != prev_user['locked']: sql += 'account %s ' % ('lock' if locked else 'unlock') diff['after']['locked'] = locked changed = True if expired is True and expired != prev_user['expired']: sql += 'password expire ' diff['after']['expired'] = expired changed = True # If a password is defined and authentication type hasn't changed, we have to check : # - if account must be unexpire # - if password has changed if schema_password and authentication_type == prev_user['authentication_type']: # Unexpire account by defining a password if expired is False and expired != prev_user['expired']: sql += 'identified by "%s" ' % schema_password diff['after']['expired'] = expired diff['after']['password'] = '*' changed = True elif has_password_changed(schema_name, schema_password): sql += 'identified by "%s" ' % schema_password diff['after']['password'] = '*' changed = True if empty: rows = ora_db.execute_select( "select ao.object_name, ao.object_type" " from all_objects ao" " where ao.object_type in('TABLE', 'VIEW', 'PACKAGE', 'PROCEDURE', 'FUNCTION', 'SEQUENCE'," " 'SYNONYM', 'TYPE', 'DATABASE LINK', 'TABLE PARTITION')" " and ao.owner = '%s' and ao.generated = 'N' and not exists(" "select 1 from all_objects sq" " where ao.object_name = sq.object_name" " and sq.owner = '%s'" " and ao.object_type = 'TABLE'" " and sq.object_type = 'MATERIALIZED VIEW')" " UNION" " select ao.object_name, ao.object_type" " from all_objects ao" " where ao.object_type in('MATERIALIZED VIEW')" " and ao.owner = '%s' and ao.generated = 'N'" % (schema_name.upper(),schema_name.upper(),schema_name.upper())) for row in rows: object_name = row[0] object_type = row[1] ora_db.execute_ddl('drop %s %s."%s" %s' % ( object_type, schema_name, object_name, 'cascade constraints' if object_type == 'TABLE' else '')) if len(rows) != 0: emptied = True if changed or emptied: if changed: ora_db.execute_ddl(sql) module.exit_json(msg='User %s changed and/or schema emptied.' % schema_name, changed=True, diff=diff, ddls=ora_db.ddls) else: module.exit_json(msg='User %s already exists.' % schema_name, changed=False, diff=diff, ddls=ora_db.ddls) else: sql = 'create user %s ' % schema_name if authentication_type == 'external': sql += 'identified externally ' elif authentication_type == 'global': sql += 'identified globally ' elif authentication_type == 'password': sql += 'identified by "%s" ' % schema_password else: sql += 'no authentication ' if default_tablespace: sql += 'default tablespace %s quota unlimited on %s ' % (default_tablespace, default_tablespace) if temporary_tablespace: sql += 'temporary tablespace %s ' % temporary_tablespace if profile: sql += 'profile %s ' % profile if locked: sql += 'account lock ' if expired: sql += 'password expire ' ora_db.execute_ddl(sql) module.exit_json(msg='User %s has been created.' % schema_name, changed=True, diff=diff, ddls=ora_db.ddls) def ensure_absent(schema_name): """Drop the user if it exists""" prev_user = get_existing_user(schema_name) if prev_user and prev_user['oracle_maintained']: module.fail_json(msg='Cannot drop a system user.', changed=False) elif prev_user: ora_db.execute_ddl('drop user %s cascade' % schema_name) module.exit_json(msg='User %s dropped.' % schema_name, changed=True, diff=diff, ddls=ora_db.ddls) else: module.exit_json(msg="User %s doesn't exist." % schema_name, changed=False, diff=diff, ddls=ora_db.ddls) def main(): global module global ora_db global diff module = AnsibleModule( argument_spec=dict( authentication_type=dict(type='str', required=False, choices=['external', 'global', 'no_authentication', 'password']), default_tablespace=dict(type='str', default=None), expired=dict(type='bool', default=None), hostname=dict(type='str', default='localhost'), locked=dict(type='bool', default=None), mode=dict(type='str', default='normal', choices=['normal', 'sysdba']), oracle_home=dict(type='str', required=False), password=dict(type='str', required=False, no_log=True), port=dict(type='int', default=1521), profile=dict(type='str', default=None), schema_name=dict(type='str', required=True, aliases=['name']), schema_password=dict(type='str', default=None, no_log=True), service_name=dict(type='str', required=True), state=dict(type='str', default='present', choices=['absent', 'empty', 'present']), temporary_tablespace=dict(type='str', default=None), username=dict(type='str', required=False, aliases=['user']), ), required_together=[['username', 'password']], supports_check_mode=True, ) authentication_type = module.params['authentication_type'] default_tablespace = module.params['default_tablespace'] expired = module.params['expired'] locked = module.params['locked'] profile = module.params['profile'] schema_name = module.params['schema_name'] schema_password = module.params['schema_password'] state = module.params['state'] temporary_tablespace = module.params['temporary_tablespace'] # Transforming parameters if schema_password: authentication_type = 'password' ora_db = OraDB(module) diff = {'before': {'schema_name': schema_name}, 'after': {'state': state, 'schema_name': schema_name, }} if state in ['empty', 'present']: ensure_present(schema_name, authentication_type, schema_password, default_tablespace, temporary_tablespace, profile, locked, expired, state == 'empty') elif state == 'absent': ensure_absent(schema_name) if __name__ == '__main__': main()
39.672941
129
0.594864
795349bef189292795edc182cb3031ca8fa26be4
1,911
py
Python
cli/check.py
sysdiglabs/syscli
f72f476f7b555ce8be4d1b6d6ce21c53400aeb08
[ "Apache-2.0" ]
null
null
null
cli/check.py
sysdiglabs/syscli
f72f476f7b555ce8be4d1b6d6ce21c53400aeb08
[ "Apache-2.0" ]
3
2019-01-30T12:32:13.000Z
2019-01-30T12:37:38.000Z
cli/check.py
sysdiglabs/syscli
f72f476f7b555ce8be4d1b6d6ce21c53400aeb08
[ "Apache-2.0" ]
2
2019-01-21T11:05:09.000Z
2021-04-19T21:57:57.000Z
# Copyright 2018 Sysdig # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from sdc.sdc_config import load_config_env from sdc.sdc_extend import SdMonitorClient, SdSecureClient from sdc.sdc_method_check import check_monitor, check_secure from . import subparser def check(args): if not os.path.isdir(args.path): raise NotADirectoryError(f"{args.path} is not a correct directory") print("Checking if there are remote changes...") config = load_config_env(args.file, args.env) token = config["token"] kind = config["kind"] url = config["url"] if token is None or token == "": raise Exception("Token not provided, can't perform check") if kind == "monitor": something_changed = check_monitor(SdMonitorClient(token, url), args.path) exit(0 if not something_changed else 1) if kind == "secure": something_changed = check_secure(SdSecureClient(token, url), args.path) exit(0 if not something_changed else 1) print(f"unknown kind of remote environment: {kind}") exit(2) _check_parser = subparser.add_parser("check", description="Checks if something has changed in the remote environment " "comparing it with the backed up version") _check_parser.add_argument("path", help="Path of the backup.") _check_parser.set_defaults(func=check)
36.75
118
0.70225
795349f704b71b651d80f5faaaa1f1976e164ccc
1,089
py
Python
convert/widgets.py
aino/aino-convert
f3bd773f02a9645c75bfbd773e747dd8dc6e08f4
[ "BSD-3-Clause" ]
1
2015-07-15T07:40:19.000Z
2015-07-15T07:40:19.000Z
convert/widgets.py
aino/aino-convert
f3bd773f02a9645c75bfbd773e747dd8dc6e08f4
[ "BSD-3-Clause" ]
null
null
null
convert/widgets.py
aino/aino-convert
f3bd773f02a9645c75bfbd773e747dd8dc6e08f4
[ "BSD-3-Clause" ]
null
null
null
from django import forms from django.forms.util import flatatt from django.utils.safestring import mark_safe from django.utils.encoding import force_unicode from base import MediaFile class AdminMediaFileWidget(forms.TextInput): """ This is just the core of a widget, how it get the actual imput value is left to the user, javascript hint. """ def __init__(self, attrs=None): final_attrs = {'class': 'mediafile'} if attrs is not None: final_attrs.update(attrs) super(AdminMediaFileWidget, self).__init__(attrs=final_attrs) def render(self, name, value, attrs=None): if value is None: value = '' final_attrs = self.build_attrs(attrs, type=self.input_type, name=name) img_tag = '' if value != '': # Only add the 'value' attribute if a value is non-empty. final_attrs['value'] = force_unicode(value) img_tag = MediaFile(value).thumbnail('100x100>').tag return mark_safe(u'%s<input%s />' % (img_tag, flatatt(final_attrs)))
36.3
79
0.645546
79534a10dc30dfdde4c81c528df02c72113a0d37
256
py
Python
gamefixes/397540.py
manueliglesiasgarcia/protonfixes
d676b6bf39f6e4268b4791d3d71c6d74e2127121
[ "BSD-2-Clause" ]
54
2019-06-21T22:03:45.000Z
2022-03-20T19:24:36.000Z
gamefixes/397540.py
manueliglesiasgarcia/protonfixes
d676b6bf39f6e4268b4791d3d71c6d74e2127121
[ "BSD-2-Clause" ]
21
2020-06-13T22:49:18.000Z
2022-03-20T08:28:39.000Z
gamefixes/397540.py
manueliglesiasgarcia/protonfixes
d676b6bf39f6e4268b4791d3d71c6d74e2127121
[ "BSD-2-Clause" ]
53
2019-09-11T15:23:25.000Z
2022-03-20T08:18:49.000Z
""" Game fix for Borderlands 3 """ #pylint: disable=C0103 from protonfixes import util def main(): """ Borderlands 3 vcrun2019 fix """ # Fixes the startup process. util.protontricks('vcrun2019_ge') util.protontricks('d3dcompiler_47')
19.692308
39
0.6875
79534a308f6182969b48d37463b5faab47b3623f
4,355
py
Python
artificial_detection/utils.py
MaratSaidov/artificial-text-detection
74b2100294232ec361db84fdc3a24fdeba1fce49
[ "MIT" ]
12
2021-11-15T08:59:46.000Z
2022-03-06T15:42:24.000Z
artificial_detection/utils.py
MaratSaidov/artificial-text-detection
74b2100294232ec361db84fdc3a24fdeba1fce49
[ "MIT" ]
2
2021-11-14T15:50:00.000Z
2021-11-20T12:17:29.000Z
artificial_detection/utils.py
MaratSaidov/artificial-text-detection
74b2100294232ec361db84fdc3a24fdeba1fce49
[ "MIT" ]
null
null
null
import os import pickle import random import zlib from os import path from typing import List, Optional import pandas as pd import torch from transformers import DistilBertTokenizerFast import wandb from artificial_detection.data.data import BinaryDataset, TextDetectionDataset class MockDataset: """ Mock dataset for testing. """ dataset = [ {"ru": "добрый день", "en": "good evening",}, {"ru": "извините", "en": "i am sorry",}, ] _translations = ["good evening", "i am sorry"] dataset_name = "mock" @classmethod def targets(cls) -> List[str]: return [sample["en"] for sample in cls.dataset] @classmethod def translations(cls) -> List[str]: return cls._translations @classmethod def list(cls) -> List[str]: dataset_list = [] for dct in cls.dataset: dataset_list.extend([dct["ru"], dct["en"]]) return dataset_list def get_dvc_storage_path() -> str: """ Get the full path to the DVC storage. Returns ------- str Path to the DVC Storage. """ dir_path = path.dirname(path.dirname(path.realpath(__file__))) return path.join(dir_path, "resources/data") def get_dataset_path(dataset_name: str, langs: Optional[List[str]] = None, ext: str = "bin") -> str: dvc_path = get_dvc_storage_path() if langs: dataset_real_name = f"{dataset_name}.{langs[0]}-{langs[1]}.{ext}" else: dataset_real_name = f"{dataset_name}.{ext}" return path.join(dvc_path, dataset_real_name) def load_binary_dataset(dataset_name: str, langs: Optional[List[str]] = None, ext: str = "bin") -> BinaryDataset: dataset_path = get_dataset_path(dataset_name, langs=langs, ext=ext) with open(dataset_path, "rb") as file: compressed_dataset = file.read() dumped_dataset = zlib.decompress(compressed_dataset) dataset = pickle.loads(dumped_dataset) return dataset def save_binary_dataset( dataset: BinaryDataset, dataset_name: str, langs: Optional[List[str]] = None, ext: str = "bin" ) -> None: dataset_path = get_dataset_path(dataset_name, langs=langs, ext=ext) with open(dataset_path, "wb") as file: dumped_dataset = pickle.dumps(dataset, protocol=pickle.HIGHEST_PROTOCOL) compressed_dataset = zlib.compress(dumped_dataset) file.write(compressed_dataset) def translations_to_torch_dataset( targets: List[str], translations: List[str], easy_nmt_offline: Optional[bool] = None, device: Optional[str] = None ) -> TextDetectionDataset: corpus = TextDetectionDataset.get_corpus(targets, translations) labels = torch.FloatTensor([0, 1] * len(targets)) tokenizer_path = "resources/data/tokenizer" if easy_nmt_offline else "distilbert-base-uncased" tokenizer = DistilBertTokenizerFast.from_pretrained(tokenizer_path) encodings = tokenizer(corpus, truncation=True, padding=True) encodings, labels = TextDetectionDataset.to_device(encodings, labels, device=device) dataset = TextDetectionDataset(encodings, labels, device=device) return dataset def save_translations_texts( sources: List[str], targets: List[str], translations: List[str], dataset_name: str, src_lang: str, trg_lang: str ) -> None: """ Saves data to csv. """ print("Saving sources/translations in csv...") df_data = list(zip(sources, targets, translations)) df = pd.DataFrame(data=df_data, columns=["sources", "targets", "translations"]) csv_path = get_dataset_path(f"{dataset_name}.{src_lang}-{trg_lang}", ext="csv") df.to_csv(csv_path, index=False) def ord_cyrillic(c: str) -> int: if "а" <= c <= "я": return ord(c) - ord("а") + ord("a") # - cyrillic + latinic if "А" <= c <= "Я": return ord(c) - ord("А") + ord("A") return ord(c) def setup_experiment_tracking(run_name: str) -> None: os.environ["WANDB_MODE"] = "offline" token = os.environ.get("WANDB_TOKEN", None) wandb.login(key=token) wandb.init(project="artificial-text-detection", name=run_name) def stop_experiment_tracking() -> None: wandb.finish() def fix_random_seed(seed: int = 42) -> None: """ Fixing a random seed. """ torch.backends.cudnn.deterministic = True torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) random.seed(seed)
31.107143
118
0.676005
79534b01e98eb8b9e3bb04bf5095a778e1671674
10,862
py
Python
genqr.py
mamewotoko/podcast_spider
1e505413ccbb0a7b6c33048e25a42bce55624974
[ "Apache-2.0" ]
null
null
null
genqr.py
mamewotoko/podcast_spider
1e505413ccbb0a7b6c33048e25a42bce55624974
[ "Apache-2.0" ]
null
null
null
genqr.py
mamewotoko/podcast_spider
1e505413ccbb0a7b6c33048e25a42bce55624974
[ "Apache-2.0" ]
null
null
null
# coding:utf-8 data = [ { "station": "Tokyo FM", "data": [{"url": "http://www.tfm.co.jp/podcasts/tfmvoice/podcast.xml", "link": "http://www.tfm.co.jp/podcasts/tfmvoice/", "title": "Voice of TOKYO FM"}, {"url": "http://www.tfm.co.jp/podcasts/future/podcast.xml", "link": "http://www.tfm.co.jp/podcasts/future/", "title": "\u672a\u6765\u6388\u696d"}, {"url": "http://www.tfm.co.jp/podcasts/museum/podcast.xml", "link": "http://www.tfm.co.jp/podcasts/museum/", "title": "Tokyo Midtown presents The Lifestyle MUSEUM"}, {"url": "http://www.tfm.co.jp/podcasts/dojo/podcast.xml", "link": "http://www.tfm.co.jp/podcasts/dojo/", "title": "\u30a8\u30d5\u30a8\u30e0\u82b8\u8853\u9053\u5834"}, {"url": "http://www.tfm.co.jp/podcasts/matsuda/podcast.xml", "link": "http://www.tfm.co.jp/lock/matsuda4/", "title": "JASRAC presents \u677e\u7530LOCKS!"}, {"url": "http://www.tfm.co.jp/podcasts/hr/podcast.xml", "link": "http://www.tfm.co.jp/podcasts/hr/", "title": "\u30a4\u30aa\u30f3 presents \u30cf\u30fc\u30c8\u30d5\u30eb\u30fb\u30ea\u30af\u30a8\u30b9\u30c8"}, {"url": "http://www.tfm.co.jp/podcasts/avanti/podcast.xml", "link": "http://www.avanti-web.com/", "title": "SUNTORY SATURDAY WAITING BAR AVANTI"}, {"url": "http://www.tfm.co.jp/podcasts/yuka/podcast.xml", "link": "http://www.tfm.co.jp/yuka/", "title": "\u512a\u9999\u306e\u30b3\u30b3\u30ed\u30fb\u30ab\u30e9\u30c0\u30fb\u30b2\u30f3\u30ad\u3002"}, {"url": "http://www.tfm.co.jp/podcasts/kando/podcast.xml", "link": "http://www.tfm.co.jp/podcasts/kando/", "title": "\u6bce\u65e5\u306b\u5922\u4e2d\u3000\u611f\u52d5\u30d7\u30ed\u30c7\u30e5\u30fc\u30b5\u30fc\u30fb\u5c0f\u6797\u7ae0\u4e00"}, {"url": "http://www.tfm.co.jp/podcasts/ya/podcast.xml", "link": "http://www.tfm.co.jp/podcasts/ya/", "title": "\u58f0\u512a\u587e\u3000Presents \u3042\u3079\u306a\u304c\u306e\u91ce\u671b\uff5e\u4ed6\u529b\u672c\u9858\u306e\u5909\uff5e"}, {"url": "http://www.tfm.co.jp/podcasts/job/podcast.xml", "link": "http://www.tfm.co.jp/podcasts/job/", "title": "\u30b7\u30e5\u30fc\u30ab\u30c4\u306e\u738b"}, {"url": "http://www.tfm.co.jp/podcasts/premium/podcast.xml", "link": "http://www.tfm.co.jp/podcasts/premium/", "title": "TOKYO FM Premium Podcasts"}]}, { "station": "ニッポン放送", "data": [{"url": "http://podcast.1242.com/tsurube/index.xml", "link": "http://podcast.1242.com", "title": "\u7b11\u798f\u4ead\u9db4\u74f6 \u65e5\u66dc\u65e5\u306e\u305d\u308c PODCAST"}, {"url": "http://podcast.1242.com/sanshiro/index.xml", "link": "http://podcast.1242.com/", "title": "\u4e09\u56db\u90ce\u306e\u30aa\u30fc\u30eb\u30ca\u30a4\u30c8\u30cb\u30c3\u30dd\u30f30"}, {"url": "http://podcast.1242.com/kikimasu/index.xml", "link": "http://podcast.1242.com/", "title": "\u5927\u8c37\u30ce\u30d6\u5f66\u30ad\u30ad\u30de\u30b9\uff01"}, {"url": "http://podcast.1242.com/aruko2/index.xml", "link": "http://podcast.1242.com/", "title": "\u30a2\u30eb\u30b3\uff06\u30d4\u30fc\u30b9\u306e\u30aa\u30fc\u30eb\u30ca\u30a4\u30c8\u30cb\u30c3\u30dd\u30f30(ZERO)"}, {"url": "http://podcast.1242.com/zoom/index.xml", "link": "http://podcast.1242.com/", "title": "\u8f9b\u574a\u6cbb\u90ce\u3000\u30ba\u30fc\u30e0\u3000\u305d\u3053\u307e\u3067\u8a00\u3046\u304b\uff01"}, {"url": "http://podcast.1242.com/keiko/index.xml", "link": "http://podcase.1242.com/", "title": "\u30df\u30c3\u30c4\u30fb\u30de\u30f3\u30b0\u30ed\u30fc\u30d6\u306e\u30aa\u30fc\u30eb\u30ca\u30a4\u30c8\u30cb\u30c3\u30dd\u30f3GOLD"}, {"url": "http://podcast.1242.com/takada/index.xml", "link": "http://podcast.1242.com", "title": "\u9ad8\u7530\u6587\u592b\u306e\u30e9\u30b8\u30aa\u30d3\u30d0\u30ea\u30fc\u663c\u30baPodcast"}, {"url": "http://podcast.1242.com/uchu/index.xml", "link": "http://podcast.1242.com/", "title": "\u300c\u306f\u3084\u3076\u30552\u300d\u5fdc\u63f4\u30ad\u30e3\u30f3\u30da\u30fc\u30f3\u3000\u5b87\u5b99\u306e\u9b45\u529b\u30ad\u30ad\u30de\u30b9\uff01"}, {"url": "http://podcast.1242.com/wage/index.xml", "link": "http://podcast.1242.com/", "title": "\u5c0f\u5cf6\u3088\u3057\u304a\u3068\u304b\u3082\u3081\u3093\u305f\u308b\u306e\u30aa\u30fc\u30eb\u30ca\u30a4\u30c8\u30cb\u30c3\u30dd\u30f3\u30e2\u30d0\u30a4\u30eb"}, {"url": "http://podcast.1242.com/voice/index.xml", "link": "http://podcast.1242.com", "title": "\u30b6\u30fb\u30dc\u30a4\u30b9\u3000\u305d\u3053\u307e\u3067\u8a00\u3046\u304b\uff01"}, {"url": "http://podcast.1242.com/sand/index.xml", "link": "http://podcast.1242.com", "title": "\u30b5\u30f3\u30c9\u30a6\u30a3\u30c3\u30c1\u30de\u30f3\u306e\u6771\u5317\u9b42"}, {"url": "http://podcast.1242.com/otona/index.xml", "link": "http://podcast.1242.com/", "title": "\u304c\u3093\u691c\u8a3a\u306bGO!GO!\u30aa\u30c8\u30ca\u306e\u5065\u5eb7\u30e9\u30b8\u30aa"}, {"url": "http://podcast.1242.com/an/index.xml", "link": "http://podcast.1242.com", "title": "\u674f\u306eanytime andante podcast"}, {"url": "http://podcast.1242.com/hoppy/index.xml", "link": "http://podcast.1242.com/", "title": "\u770b\u677f\u5a18\u30db\u30c3\u30d4\u30fc\u30fb\u30df\u30fc\u30ca\u306eHOPPY HAPPY BAR"}, {"url": "http://podcast.1242.com/fairies/index.xml", "link": "http://podcast.1242.com/", "title": "\u6771\u4eac\u30a8\u30ec\u30af\u30c8\u30ed\u30f3\u30d7\u30ec\u30bc\u30f3\u30c4\u3000\u30d5\u30a7\u30a2\u30ea\u30fc\u30ba\u306eFly to the World \u30b0\u30ed\u30fc\u30d0\u30fc\u5148\u751f\u306e\u30ef\u30f3\u30dd\u30a4\u30f3\u30c8\u30ec\u30c3\u30b9\u30f3"}, {"url": "http://podcast.1242.com/buzz/index.xml", "link": "http://podcast.1242.com/", "title": "BUZZ\u3000SHANGHAI"}, {"url": "http://podcast.1242.com/bengoshi/index.xml", "link": "http://www.allnightnippon.com/bengoshi/", "title": "\u89d2\u7530\u9f8d\u5e73\u306e\u30aa\u30fc\u30eb\u30ca\u30a4\u30c8\u30cb\u30c3\u30dd\u30f3\u30dd\u30c3\u30c9\u30ad\u30e3\u30b9\u30c8"}, {"url": "http://podcast.1242.com/scoop/index.xml", "link": "http://podcast.1242.com/", "title": "\u30c6\u30ea\u30fc\u4f0a\u85e4\u306e\u30d5\u30e9\u30a4\u30c7\u30fc\u30b9\u30af\u30fc\u30d7\u3000\u305d\u3053\u307e\u3067\u8a00\u3046\u304b\uff01"}, {"url": "http://podcast.1242.com/toda/index.xml", "link": "http://podcast.1242.com", "title": "\u6238\u7530\u6075\u5b50\u306e\u30aa\u30c8\u30ca\u30af\u30aa\u30ea\u30c6\u30a3"}, {"url": "http://podcast.1242.com/ps/index.xml", "link": "http://podcast.1242.com", "title": "\u30cb\u30c3\u30dd\u30f3\u653e\u9001 Podcasting STATION"}]}, { "station": "FMとやま", "data": [{"url": "http://www.fmtoyama.co.jp/contents/podcast/podcast_9.xml", "link": "http://www.fmtoyama.co.jp/contents/podcast_9.html", "title": "\u30c7\u30a4\u30ea\u30fc\u30fb\u30b3\u30e9\u30e0"}, {"url": "http://www.fmtoyama.co.jp/contents/podcast/podcast_13.xml", "link": "http://www.fmtoyama.co.jp/contents/podcast_13.html", "title": "\u300cgrace\u300d\u3000\u30ad\u30ce\u30b3\u30ec"}, {"url": "http://www.fmtoyama.co.jp/contents/podcast/podcast_38.xml", "link": "http://www.fmtoyama.co.jp/contents/podcast_38.html", "title": "\u30a2\u30af\u30b7\u30e7\u30f3 \u30ec\u30c7\u30a3\u3000\u30b4\u30fc\u301c\u6642\u4ee3\u3092\u62d3\u304f\u5973\u6027\u305f\u3061\u301c"}, {"url": "http://www.fmtoyama.co.jp/contents/podcast/podcast_18.xml", "link": "http://www.fmtoyama.co.jp/contents/podcast_18.html", "title": "\u5b50\u3069\u3082\u306b\u4f1d\u3048\u305f\u3044\u3000\u5bcc\u5c71\u306e\u6c11\u8a71"}, {"url": "http://www.fmtoyama.co.jp/contents/podcast/podcast_42.xml", "link": "http://www.fmtoyama.co.jp/contents/podcast_42.html", "title": "\u30ec\u30c7\u30a3\u30aa\u30fb\u30b8\u30e3\u30fc\u30ca\u30eb\u301c\u304c\u3093\u3070\u308b\u5bcc\u5c71\u306e\u5143\u6c17\u4f01\u696d"}, {"url": "http://www.fmtoyama.co.jp/contents/podcast/podcast_24.xml", "link": "http://www.fmtoyama.co.jp/contents/podcast_24.html", "title": "\u30bb\u30f3\u30c6\u30a3\u30a2\u3000\u30c6\u30cb\u30b9\u30b9\u30c8\u30fc\u30ea\u30fc\uff06\u30e8\u30ac\u30b9\u30bf\u30b8\u30aa\u30e6\u30cb\u30aa\u30f3"}, {"url": "http://www.fmtoyama.co.jp/contents/podcast/podcast_41.xml", "link": "http://www.fmtoyama.co.jp/contents/podcast_41.html", "title": "KUROBE THE TRY\uff01\u3000\u301c\u884c\u3063\u3066\u307f\u3088\u3046\uff01\u3084\u3063\u3066\u307f\u3088\u3046\uff01\u301c"}, {"url": "http://www.fmtoyama.co.jp/contents/podcast/podcast_2.xml", "link": "http://www.fmtoyama.co.jp/contents/podcast_2.html", "title": "BOUSAI\u3000RADIO"}, {"url": "http://www.fmtoyama.co.jp/contents/podcast/podcast_40.xml", "link": "http://www.fmtoyama.co.jp/contents/podcast_40.html", "title": "\u30ad\u30e9\u30ea\u3000\u30ad\u30c8\u30ad\u30c8\u30b3\u30e9\u30e0"}, {"url": "http://www.fmtoyama.co.jp/contents/podcast/podcast_21.xml", "link": "http://www.fmtoyama.co.jp/contents/podcast_21.html", "title": "grace\u3000\u3086\u3063\u304d\u301c\u306efirst\u3000report"}, {"url": "http://www.fmtoyama.co.jp/contents/podcast/podcast_32.xml", "link": "http://www.fmtoyama.co.jp/contents/podcast_32.html", "title": "\u30b8\u30e5\u30fc\u30d7\u30e9\u30b9\u66ae\u3089\u3057\u306b\u7b11\u9854\u30d7\u30e9\u30b9\uff01\uff01"}, {"url": "http://www.fmtoyama.co.jp/contents/podcast/podcast_30.xml", "link": "http://www.fmtoyama.co.jp/contents/podcast_30.html", "title": "\u30e9\u30b8\u30aa\u30c9\u30e9\u30de\u300e\u3075\u305f\u308a\u306f\u304d\u3063\u3068\u3064\u306a\u304c\u3063\u3066\u3044\u308b\u300f"}, {"url": "http://www.fmtoyama.co.jp/contents/podcast/podcast_37.xml", "link": "http://www.fmtoyama.co.jp/contents/podcast_37.html", "title": "\u306a\u308b\u307b\u3069\u30de\u30cd\u30fc\u30e9\u30a4\u30d5"}, {"url": "http://www.fmtoyama.co.jp/contents/podcast/podcast_4.xml", "link": "http://www.fmtoyama.co.jp/contents/podcast_4.html", "title": "\u77e5\u4e8b\u306e\u770c\u653f\u3056\u3063\u304f\u3070\u3089\u3093"}, {"url": "http://www.fmtoyama.co.jp/contents/podcast/podcast_26.xml", "link": "http://www.fmtoyama.co.jp/contents/podcast_26.html", "title": "\u3055\u304f\u3089\u3000\u8033\u304b\u3089\u306e\u4f4f\u5b85\u30fb\u30ea\u30d5\u30a9\u30fc\u30e0\u6700\u65b0\u60c5\u5831"}, {"url": "http://www.fmtoyama.co.jp/contents/podcast/podcast_8.xml", "link": "http://www.fmtoyama.co.jp/contents/podcast_8.html", "title": "\u6749\u672c\u82f1\u4e16\u306e\u30b4\u30eb\u30d5\u30fb\u30af\u30ea\u30cb\u30c3\u30af"}, {"url": "http://www.fmtoyama.co.jp/contents/podcast/podcast_33.xml", "link": "http://www.fmtoyama.co.jp/contents/podcast_33.html", "title": "KUROBE\u3000\u301cTHE\u3000FUTURE\u301c"}]} ]; import json, subprocess, os TEXT2QR = "/Users/tak/dev/text2qr/bin/text2qr.sh" OUTDIR = "qrcode" if not os.path.exists(OUTDIR): os.makedirs(OUTDIR) station_id = 1 for station in data: podcast_id = 1 for podcast in station['data']: filename = "%s/qrcode%03d_%03d.png" % (OUTDIR, station_id, podcast_id) p = subprocess.Popen([TEXT2QR, podcast["url"], filename]) p.wait() if p.returncode != 0: print "qrcode error: $s, %s" %(filename, podcast["url"]) else: podcast["qrcode"] = filename podcast_id += 1 station_id += 1 print json.dumps(data)
132.463415
353
0.715154
79534cb265d44260cde83715f111c446ef4a91a3
11,719
py
Python
ztf_viewer/figures.py
snad-space/ztf-viewer
a0152d415beb11095134d0e407956ea088db1684
[ "MIT" ]
2
2020-11-14T02:24:57.000Z
2021-06-04T06:13:42.000Z
ztf_viewer/figures.py
snad-space/ztf-viewer
a0152d415beb11095134d0e407956ea088db1684
[ "MIT" ]
74
2020-07-13T09:38:41.000Z
2022-03-31T15:58:04.000Z
ztf_viewer/figures.py
snad-space/ztf-viewer
a0152d415beb11095134d0e407956ea088db1684
[ "MIT" ]
null
null
null
from datetime import datetime from io import BytesIO, StringIO import matplotlib import matplotlib.backends.backend_pgf import matplotlib.figure import numpy as np import pandas as pd from astropy.time import Time from flask import Response, request, send_file from immutabledict import immutabledict from matplotlib.ticker import AutoMinorLocator from ztf_viewer.app import app from ztf_viewer.cache import cache from ztf_viewer.catalogs import find_ztf_oid from ztf_viewer.exceptions import NotFound from ztf_viewer.util import FILTER_COLORS, FILTERS_ORDER, parse_json_to_immutable, ZTF_FILTERS, flip MJD_OFFSET = 58000 @cache() def get_plot_data(cur_oid, dr, other_oids=frozenset(), min_mjd=None, max_mjd=None, additional_data=immutabledict()): """Get plot data additional_data format is: { 'id1': [ { 'mjd': 58800.3, 'mag': 18.1, 'magerr': 0.34, 'filter': 'r', }, ... ], ... } """ oids = [cur_oid] oids.extend(sorted(other_oids, key=int)) lcs = {} for oid in oids: if oid == cur_oid: size = 3 else: size = 1 lc = find_ztf_oid.get_lc(oid, dr, min_mjd=min_mjd, max_mjd=max_mjd) meta = find_ztf_oid.get_meta(oid, dr) for obs in lc: obs['oid'] = oid obs['fieldid'] = meta['fieldid'] obs['rcid'] = meta['rcid'] obs['filter'] = meta['filter'] obs['mark_size'] = size lcs[oid] = lc for identifier, lc in additional_data.items(): list_lc = [] for obs in lc: obs = dict(obs) obs['oid'] = identifier obs['mark_size'] = 3 list_lc.append(obs) lcs[identifier] = list_lc for oid, lc in lcs.items(): mjd = np.array([obs['mjd'] for obs in lc]) time = Time(mjd, format='mjd') for t, obs in zip(time, lc): obs[f'mjd_{MJD_OFFSET}'] = obs['mjd'] - MJD_OFFSET obs['date'] = t.strftime('%Y-%m-%d') obs['cur_oid'] = cur_oid return lcs @cache() def get_folded_plot_data(cur_oid, dr, period, offset=None, other_oids=frozenset(), min_mjd=None, max_mjd=None, additional_data=immutabledict()): if offset is None: offset = MJD_OFFSET lcs = get_plot_data(cur_oid, dr, other_oids=other_oids, min_mjd=min_mjd, max_mjd=max_mjd, additional_data=additional_data) for lc in lcs.values(): for obs in lc: obs['folded_time'] = (obs['mjd'] - offset) % period obs['phase'] = obs['folded_time'] / period return lcs MIMES = { 'pdf': 'application/pdf', 'png': 'image/png', } def save_fig(fig, fmt): bytes_io = BytesIO() if fmt == 'pdf': canvas = matplotlib.backends.backend_pgf.FigureCanvasPgf(fig) canvas.print_pdf(bytes_io) else: fig.savefig(bytes_io, format=fmt) return bytes_io def plot_data(oid, dr, data, fmt='png', caption=True): usetex = fmt == 'pdf' lcs = {} seen_filters = set() for lc_oid, lc in data.items(): if len(lc) == 0: continue first_obs = lc[0] fltr = first_obs['filter'] marker = 's' if lc_oid == oid: marker = 'o' if fltr not in ZTF_FILTERS: marker = 'd' marker_size = 12 if lc_oid == oid: marker_size = 24 if fltr not in ZTF_FILTERS: marker_size = 36 zorder = 1 if lc_oid == oid: zorder = 2 if fltr not in ZTF_FILTERS: zorder = 3 lcs[lc_oid] = { 'filter': fltr, 't': [obs['mjd'] for obs in lc], 'm': [obs['mag'] for obs in lc], 'err': [obs['magerr'] for obs in lc], 'color': FILTER_COLORS[fltr], 'marker_size': marker_size, 'label_errorbar': '' if fltr in seen_filters or fltr not in ZTF_FILTERS else fltr, 'label_scatter': '' if fltr in seen_filters or fltr in ZTF_FILTERS else fltr, 'marker': marker, 'zorder': zorder, } seen_filters.add(fltr) fig = matplotlib.figure.Figure(dpi=300, figsize=(6.4, 4.8), constrained_layout=True) if caption: fig.text( 0.50, 0.005, f'Generated with the SNAD ZTF viewer on {datetime.now().date()}', ha='center', fontdict=dict(size=8, color='grey', usetex=usetex), ) ax = fig.subplots() ax.invert_yaxis() ax.set_title(str(oid), usetex=usetex) ax.set_xlabel('MJD', usetex=usetex) ax.set_ylabel('magnitude', usetex=usetex) ax.xaxis.set_minor_locator(AutoMinorLocator(2)) ax.yaxis.set_minor_locator(AutoMinorLocator(2)) ax.tick_params(which='major', direction='in', length=6, width=1.5) ax.tick_params(which='minor', direction='in', length=4, width=1) for lc in lcs.values(): ax.errorbar( lc['t'], lc['m'], lc['err'], c=lc['color'], label=lc['label_errorbar'], marker='', zorder=lc['zorder'], ls='', alpha=0.7, ) ax.scatter( lc['t'], lc['m'], c=lc['color'], label=lc['label_scatter'], marker=lc['marker'], s=lc['marker_size'], linewidths=0.5, edgecolors='black', zorder=lc['zorder'], alpha=0.7, ) legend_anchor_y = -0.026 if usetex else -0.032 handles, labels = zip(*sorted(zip(*ax.get_legend_handles_labels()), key=lambda hl: FILTERS_ORDER[hl[1]])) ax.legend( flip(handles, 3), flip(labels, 3), bbox_to_anchor=(1, legend_anchor_y), ncol=min(3, len(seen_filters)), columnspacing=0.5, frameon=False, handletextpad=0.0, ) bytes_io = save_fig(fig, fmt) return bytes_io.getvalue() def plot_folded_data(oid, dr, data, period, offset=None, repeat=None, fmt='png', caption=True): if repeat is None: repeat = 2 usetex = fmt == 'pdf' lcs = {} seen_filters = set() for lc_oid, lc in data.items(): if len(lc) == 0: continue first_obs = lc[0] fltr = first_obs['filter'] lcs[lc_oid] = { 'filter': fltr, 'folded_time': np.array([obs['folded_time'] for obs in lc]), 'phase': np.array([obs['phase'] for obs in lc]), 'm': np.array([obs['mag'] for obs in lc]), 'err': np.array([obs['magerr'] for obs in lc]), 'color': FILTER_COLORS[fltr], 'marker_size': 24 if lc_oid == oid else 12, 'label': '' if fltr in seen_filters else fltr, 'marker': 'o' if lc_oid == oid else 's', 'zorder': 2 if lc_oid == oid else 1, } seen_filters.add(fltr) fig = matplotlib.figure.Figure(dpi=300, figsize=(6.4, 4.8), constrained_layout=True) if caption: fig.text( 0.50, 0.005, f'Generated with the SNAD ZTF viewer on {datetime.now().date()}', ha='center', fontdict=dict(size=8, color='grey', usetex=usetex), ) ax = fig.subplots() ax.invert_yaxis() ax.set_title(f'{oid}, P = {period:.4g} days', usetex=usetex) ax.set_xlabel('phase', usetex=usetex) ax.set_ylabel('magnitude', usetex=usetex) ax.xaxis.set_minor_locator(AutoMinorLocator(2)) ax.yaxis.set_minor_locator(AutoMinorLocator(2)) ax.tick_params(which='major', direction='in', length=6, width=1.5) ax.tick_params(which='minor', direction='in', length=4, width=1) for lc_oid, lc in sorted(lcs.items(), key=lambda item: FILTERS_ORDER[item[1]['filter']]): for i in range(-1, repeat + 1): label = '' if i == 0: label = lc['label'] ax.errorbar( lc['phase'] + i, lc['m'], lc['err'], c=lc['color'], label=label, marker='', zorder=lc['zorder'], ls='', alpha=0.7, ) ax.scatter( lc['phase'] + i, lc['m'], c=lc['color'], label='', marker=lc['marker'], s=lc['marker_size'], linewidths=0.5, edgecolors='black', zorder=lc['zorder'], alpha=0.7, ) ax.set_xlim([-0.1, repeat + 0.1]) secax = ax.secondary_xaxis('top', functions=(lambda x: x * period, lambda x: x / period)) secax.set_xlabel('Folded time, days') secax.minorticks_on() secax.tick_params(direction='in', which='both') legend_anchor_y = -0.026 if usetex else -0.032 ax.legend( bbox_to_anchor=(1, legend_anchor_y), ncol=min(3, len(seen_filters)), columnspacing=0.5, frameon=False, handletextpad=0.0, ) bytes_io = save_fig(fig, fmt) return bytes_io.getvalue() def parse_figure_args_helper(args, data=None): fmt = args.get('format', 'png') other_oids = frozenset(args.getlist('other_oid')) min_mjd = args.get('min_mjd', None) if min_mjd is not None: min_mjd = float(min_mjd) max_mjd = args.get('max_mjd', None) if max_mjd is not None: max_mjd = float(max_mjd) caption = args.get('copyright', 'yes') != 'no' if fmt not in MIMES: return '', 404 if data: data = parse_json_to_immutable(data) else: data = immutabledict() return dict(fmt=fmt, other_oids=other_oids, min_mjd=min_mjd, max_mjd=max_mjd, caption=caption, additional_data=data) @app.server.route('/<dr>/figure/<int:oid>', methods=['GET', 'POST']) def response_figure(dr, oid): kwargs = parse_figure_args_helper(request.args, request.get_data(cache=False)) fmt = kwargs.pop('fmt') caption = kwargs.pop('caption') data = get_plot_data(oid, dr, **kwargs) img = plot_data(oid, dr, data, fmt=fmt, caption=caption) return Response( img, mimetype=MIMES[fmt], headers={'Content-disposition': f'attachment; filename={oid}.{fmt}'}, ) @app.server.route('/<dr>/figure/<int:oid>/folded/<float:period>') def response_figure_folded(dr, oid, period): kwargs = parse_figure_args_helper(request.args) fmt = kwargs.pop('fmt') caption = kwargs.pop('caption') repeat = request.args.get('repeat', None) if repeat is not None: repeat = int(repeat) data = get_folded_plot_data(oid, dr, period=period, **kwargs) img = plot_folded_data(oid, dr, data, period=period, repeat=repeat, fmt=fmt, caption=caption) return Response( img, mimetype=MIMES[fmt], headers={'Content-disposition': f'attachment; filename={oid}.{fmt}'}, ) def get_csv(dr, oid): lc = find_ztf_oid.get_lc(oid, dr) if lc is None: raise NotFound df = pd.DataFrame.from_records(lc) string_io = StringIO() df.to_csv(string_io, index=False) return string_io.getvalue() @app.server.route('/<dr>/csv/<int:oid>') def response_csv(dr, oid): try: csv = get_csv(dr, oid) except NotFound: return '', 404 return Response( csv, mimetype='text/csv', headers={'Content-disposition': f'attachment; filename={oid}.csv'}, ) @app.server.route('/favicon.ico') def favicon(): return send_file('static/img/logo.svg', mimetype='image/svg+xml')
30.920844
120
0.55986
79534d99ab7f86f334c6dd2fdffca3e1a007ae1b
8,521
py
Python
docs/source/conf.py
mtoothman/botocore
dc09517fac9f6c68d0a8dd1f9c1c08ae3ae64b08
[ "Apache-2.0" ]
null
null
null
docs/source/conf.py
mtoothman/botocore
dc09517fac9f6c68d0a8dd1f9c1c08ae3ae64b08
[ "Apache-2.0" ]
null
null
null
docs/source/conf.py
mtoothman/botocore
dc09517fac9f6c68d0a8dd1f9c1c08ae3ae64b08
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # # botocore documentation build configuration file, created by # sphinx-quickstart on Sun Dec 2 07:26:23 2012. # # This file is execfile()d with the current directory set to its containing dir. # # Note that not all possible configuration values are present in this # autogenerated file. # # All configuration values have a default; values that are commented out # serve to show the default. import sys, os from botocore.session import get_session from botocore.docs import generate_docs generate_docs(os.path.dirname(os.path.abspath(__file__)), get_session()) # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. #sys.path.insert(0, os.path.abspath('.')) # -- General configuration ----------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be extensions # coming with Sphinx (named 'sphinx.ext.*') or your custom ones. extensions = ['sphinx.ext.autodoc'] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix of source filenames. source_suffix = '.rst' # The encoding of source files. #source_encoding = 'utf-8-sig' # The master toctree document. master_doc = 'index' # General information about the project. project = u'botocore' copyright = u'2013, Mitch Garnaat' # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. # # The short X.Y version. version = '1.16.' # The full version, including alpha/beta/rc tags. release = '1.16.22' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. #language = None # There are two options for replacing |today|: either, you set today to some # non-false value, then it is used: #today = '' # Else, today_fmt is used as the format for a strftime call. #today_fmt = '%B %d, %Y' # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns = [] # The reST default role (used for this markup: `text`) to use for all documents. #default_role = None # If true, '()' will be appended to :func: etc. cross-reference text. #add_function_parentheses = True # If true, the current module name will be prepended to all description # unit titles (such as .. function::). #add_module_names = True # If true, sectionauthor and moduleauthor directives will be shown in the # output. They are ignored by default. #show_authors = False # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # A list of ignored prefixes for module index sorting. #modindex_common_prefix = [] # -- Options for HTML output --------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. html_theme = 'default' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. #html_theme_options = {} # Add any paths that contain custom themes here, relative to this directory. #html_theme_path = [] # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". #html_title = None # A shorter title for the navigation bar. Default is the same as html_title. #html_short_title = None # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = None # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. #html_favicon = None # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '%b %d, %Y' # If true, SmartyPants will be used to convert quotes and dashes to # typographically correct entities. #html_use_smartypants = True # Custom sidebar templates, maps document names to template names. html_show_sourcelink = False html_sidebars = { '**': ['logo-text.html', 'globaltoc.html', 'localtoc.html', 'searchbox.html'] } # Additional templates that should be rendered to pages, maps page names to # template names. #html_additional_pages = {} # If false, no module index is generated. #html_domain_indices = True # If false, no index is generated. #html_use_index = True # If true, the index is split into individual pages for each letter. #html_split_index = False # If true, links to the reST sources are added to the pages. #html_show_sourcelink = True # If true, "Created using Sphinx" is shown in the HTML footer. Default is True. #html_show_sphinx = True # If true, "(C) Copyright ..." is shown in the HTML footer. Default is True. #html_show_copyright = True # If true, an OpenSearch description file will be output, and all pages will # contain a <link> tag referring to it. The value of this option must be the # base URL from which the finished HTML is served. #html_use_opensearch = '' # This is the file name suffix for HTML files (e.g. ".xhtml"). #html_file_suffix = None # Output file base name for HTML help builder. htmlhelp_basename = 'botocoredoc' import guzzle_sphinx_theme extensions.append("guzzle_sphinx_theme") html_translator_class = 'guzzle_sphinx_theme.HTMLTranslator' html_theme_path = guzzle_sphinx_theme.html_theme_path() html_theme = 'guzzle_sphinx_theme' # Guzzle theme options (see theme.conf for more information) html_theme_options = { # hack to add tracking "google_analytics_account": os.getenv('TRACKING', False), "base_url": "http://docs.aws.amazon.com/aws-sdk-php/guide/latest/" } # -- Options for LaTeX output -------------------------------------------------- latex_elements = { # The paper size ('letterpaper' or 'a4paper'). #'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). #'pointsize': '10pt', # Additional stuff for the LaTeX preamble. #'preamble': '', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass [howto/manual]). latex_documents = [ ('index', 'botocore.tex', u'botocore Documentation', u'Mitch Garnaat', 'manual'), ] # The name of an image file (relative to this directory) to place at the top of # the title page. #latex_logo = None # For "manual" documents, if this is true, then toplevel headings are parts, # not chapters. #latex_use_parts = False # If true, show page references after internal links. #latex_show_pagerefs = False # If true, show URL addresses after external links. #latex_show_urls = False # Documents to append as an appendix to all manuals. #latex_appendices = [] # If false, no module index is generated. #latex_domain_indices = True # -- Options for manual page output -------------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ ('index', 'botocore', u'botocore Documentation', [u'Mitch Garnaat'], 3) ] # If true, show URL addresses after external links. #man_show_urls = False # -- Options for Texinfo output ------------------------------------------------ # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ ('index', 'botocore', u'botocore Documentation', u'Mitch Garnaat', 'botocore', 'One line description of project.', 'Miscellaneous'), ] # Documents to append as an appendix to all manuals. #texinfo_appendices = [] # If false, no module index is generated. #texinfo_domain_indices = True # How to display URL addresses: 'footnote', 'no', or 'inline'. #texinfo_show_urls = 'footnote'
32.033835
80
0.717169
79534e3802dfc7e7ea11d15d061631af0aa355ad
2,229
py
Python
posthog/api/cohort.py
Kacppian/posthog
faa0696e3219f9162a3fd59501e126a7cd79ec8c
[ "MIT" ]
null
null
null
posthog/api/cohort.py
Kacppian/posthog
faa0696e3219f9162a3fd59501e126a7cd79ec8c
[ "MIT" ]
null
null
null
posthog/api/cohort.py
Kacppian/posthog
faa0696e3219f9162a3fd59501e126a7cd79ec8c
[ "MIT" ]
null
null
null
from rest_framework import request, response, serializers, viewsets from posthog.models import Cohort from typing import Dict, Any, Optional from posthog.api.user import UserSerializer from posthog.tasks.calculate_cohort import calculate_cohort from django.db.models import QuerySet, Count class CohortSerializer(serializers.ModelSerializer): created_by = UserSerializer(required=False, read_only=True) count = serializers.SerializerMethodField() class Meta: model = Cohort fields = [ "id", "name", "groups", "deleted", "is_calculating", "created_by", "created_at", "last_calculation", "count", ] def create(self, validated_data: Dict, *args: Any, **kwargs: Any) -> Cohort: request = self.context["request"] validated_data["created_by"] = request.user validated_data["is_calculating"] = True cohort = Cohort.objects.create(team=request.user.team_set.get(), **validated_data) calculate_cohort.delay(cohort_id=cohort.pk) return cohort def update(self, cohort: Cohort, validated_data: Dict, *args: Any, **kwargs: Any) -> Cohort: # type: ignore cohort.name = validated_data.get("name", cohort.name) cohort.groups = validated_data.get("groups", cohort.groups) cohort.deleted = validated_data.get("deleted", cohort.deleted) cohort.is_calculating = True cohort.save() calculate_cohort.delay(cohort_id=cohort.pk) return cohort def get_count(self, action: Cohort) -> Optional[int]: if hasattr(action, "count"): return action.count # type: ignore return None class CohortViewSet(viewsets.ModelViewSet): queryset = Cohort.objects.all() serializer_class = CohortSerializer def get_queryset(self) -> QuerySet: queryset = super().get_queryset() if self.action == "list": # type: ignore queryset = queryset.filter(deleted=False) queryset = queryset.annotate(count=Count("people")) return queryset.filter(team=self.request.user.team_set.get()).select_related("created_by").order_by("id")
36.540984
113
0.656797
79534e4eed99d7cfd0a40a3bbba16462f6f1d956
374
py
Python
lbworkflow/tests/permissions.py
wearypossum4770/django-lb-workflow
8db36c7a8c5cf3aa2492048cad9fbf26d895c8c7
[ "MIT" ]
194
2017-04-24T15:28:16.000Z
2021-12-29T03:35:28.000Z
lbworkflow/tests/permissions.py
wearypossum4770/django-lb-workflow
8db36c7a8c5cf3aa2492048cad9fbf26d895c8c7
[ "MIT" ]
17
2018-05-31T07:45:42.000Z
2021-12-16T08:55:44.000Z
lbworkflow/tests/permissions.py
wearypossum4770/django-lb-workflow
8db36c7a8c5cf3aa2492048cad9fbf26d895c8c7
[ "MIT" ]
67
2017-05-18T02:28:28.000Z
2022-01-20T02:05:10.000Z
from lbworkflow.views.permissions import BasePermission class TestPermission(BasePermission): def has_permission(self, request, view): if request.user.username == "hr": return False return True def has_object_permission(self, request, view, obj): if request.user.username == "tom": return False return True
26.714286
56
0.657754
79534ef1e683c584299ffe5f2256bd25202e55ec
3,708
py
Python
contrib/macdeploy/custom_dsstore.py
catracoin/catracoin
0ecd8ec316e2bdb180325e26ff6bcb857ceea6c9
[ "MIT" ]
1
2021-01-23T19:25:39.000Z
2021-01-23T19:25:39.000Z
contrib/macdeploy/custom_dsstore.py
catracoin/catracoin
0ecd8ec316e2bdb180325e26ff6bcb857ceea6c9
[ "MIT" ]
1
2021-01-23T19:29:09.000Z
2021-01-25T03:58:45.000Z
contrib/macdeploy/custom_dsstore.py
catracoin/catracoin
0ecd8ec316e2bdb180325e26ff6bcb857ceea6c9
[ "MIT" ]
null
null
null
#!/usr/bin/env python3 # Copyright (c) 2013-2017 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. import biplist from ds_store import DSStore from mac_alias import Alias import sys output_file = sys.argv[1] package_name_ns = sys.argv[2] ds = DSStore.open(output_file, 'w+') ds['.']['bwsp'] = { 'ShowStatusBar': False, 'WindowBounds': '{{300, 280}, {500, 343}}', 'ContainerShowSidebar': False, 'SidebarWidth': 0, 'ShowTabView': False, 'PreviewPaneVisibility': False, 'ShowToolbar': False, 'ShowSidebar': False, 'ShowPathbar': True } icvp = { 'gridOffsetX': 0.0, 'textSize': 12.0, 'viewOptionsVersion': 1, 'backgroundImageAlias': b'\x00\x00\x00\x00\x02\x1e\x00\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xd1\x94\\\xb0H+\x00\x05\x00\x00\x00\x98\x0fbackground.tiff\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x99\xd19\xb0\xf8\x00\x00\x00\x00\x00\x00\x00\x00\xff\xff\xff\xff\x00\x00\r\x02\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x0b.background\x00\x00\x10\x00\x08\x00\x00\xd1\x94\\\xb0\x00\x00\x00\x11\x00\x08\x00\x00\xd19\xb0\xf8\x00\x00\x00\x01\x00\x04\x00\x00\x00\x98\x00\x0e\x00 \x00\x0f\x00b\x00a\x00c\x00k\x00g\x00r\x00o\x00u\x00n\x00d\x00.\x00t\x00i\x00f\x00f\x00\x0f\x00\x02\x00\x00\x00\x12\x00\x1c/.background/background.tiff\x00\x14\x01\x06\x00\x00\x00\x00\x01\x06\x00\x02\x00\x00\x0cMacintosh HD\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xce\x97\xab\xc3H+\x00\x00\x01\x88[\x88\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x02u\xab\x8d\xd1\x94\\\xb0devrddsk\xff\xff\xff\xff\x00\x00\t \x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x07bitcoin\x00\x00\x10\x00\x08\x00\x00\xce\x97\xab\xc3\x00\x00\x00\x11\x00\x08\x00\x00\xd1\x94\\\xb0\x00\x00\x00\x01\x00\x14\x01\x88[\x88\x00\x16\xa9\t\x00\x08\xfaR\x00\x08\xfaQ\x00\x02d\x8e\x00\x0e\x00\x02\x00\x00\x00\x0f\x00\x1a\x00\x0c\x00M\x00a\x00c\x00i\x00n\x00t\x00o\x00s\x00h\x00 \x00H\x00D\x00\x13\x00\x01/\x00\x00\x15\x00\x02\x00\x14\xff\xff\x00\x00\xff\xff\x00\x00', 'backgroundColorBlue': 1.0, 'iconSize': 96.0, 'backgroundColorGreen': 1.0, 'arrangeBy': 'none', 'showIconPreview': True, 'gridSpacing': 100.0, 'gridOffsetY': 0.0, 'showItemInfo': False, 'labelOnBottom': True, 'backgroundType': 2, 'backgroundColorRed': 1.0 } alias = Alias.from_bytes(icvp['backgroundImageAlias']) alias.volume.name = package_name_ns alias.volume.posix_path = '/Volumes/' + package_name_ns alias.volume.disk_image_alias.target.filename = package_name_ns + '.temp.dmg' alias.volume.disk_image_alias.target.carbon_path = 'Macintosh HD:Users:\x00bitcoinuser:\x00Documents:\x00bitcoin:\x00bitcoin:\x00' + package_name_ns + '.temp.dmg' alias.volume.disk_image_alias.target.posix_path = 'Users/bitcoinuser/Documents/bitcoin/bitcoin/' + package_name_ns + '.temp.dmg' alias.target.carbon_path = package_name_ns + ':.background:\x00background.tiff' icvp['backgroundImageAlias'] = biplist.Data(alias.to_bytes()) ds['.']['icvp'] = icvp ds['.']['vSrn'] = ('long', 1) ds['Applications']['Iloc'] = (370, 156) ds['Catra-Qt.app']['Iloc'] = (128, 156) ds.flush() ds.close()
61.8
1,817
0.72411
79534f755a8caf7e1bb1b2866cb130753d1c4cd5
1,344
py
Python
similar_images_AE/src/clustering/KNN.py
somaliz/artificio
2279d1fd8d5e8f931e23cafb0b9cfbb802a9d36e
[ "Apache-2.0" ]
11
2019-12-19T08:55:52.000Z
2021-10-01T13:07:13.000Z
clustering/artificio/similar_images_AE/src/clustering/KNN.py
amitbcp/Scikit_Learn_TensorFlow_Examples
37dda063e316503d53ac45f3b104a5cf1aaa4d78
[ "MIT" ]
5
2019-10-09T01:41:19.000Z
2022-02-10T00:19:01.000Z
clustering/artificio/similar_images_AE/src/clustering/KNN.py
amitbcp/Scikit_Learn_TensorFlow_Examples
37dda063e316503d53ac45f3b104a5cf1aaa4d78
[ "MIT" ]
7
2019-10-08T06:10:14.000Z
2020-12-01T07:49:21.000Z
''' KNN.py (author: Anson Wong / github: ankonzoid) General kNN model class object using sklearn library. ''' from sklearn.neighbors import NearestNeighbors class KNearestNeighbours(object): def __init__(self): # Parameters from training/test data set self.n_train = None # number of training examples self.n_test = None # number of test examples self.d = None # number of features # Parameters for kNN model self.n_neighbours = None self.algorithm = None self.metric = None self.model = None super().__init__() def compile(self, n_neighbors, algorithm, metric): self.n_neighbors = n_neighbors self.algorithm = algorithm self.metric = metric self.model = NearestNeighbors(n_neighbors=n_neighbors, algorithm=algorithm, metric=metric) def fit(self, x_train): self.n_train = x_train.shape[0] self.d = x_train.shape[1] self.model.fit(x_train) # fit kNN def predict(self, x_test): self.n_test = x_test.shape[0] if x_test.shape[1] != self.d: raise Exception("Inconsistent feature dimensions between training and test data!") distances, indices = self.model.kneighbors(x_test, return_distance=True) # predict kNN return distances, indices
33.6
98
0.65625
795350f77e289effdecbdc0147896e4a644f5e84
3,219
py
Python
python/Command.py
Sbte/hymls
75cb1e70eb0b3d71085e481cc9d418bdfada1a35
[ "Apache-2.0" ]
null
null
null
python/Command.py
Sbte/hymls
75cb1e70eb0b3d71085e481cc9d418bdfada1a35
[ "Apache-2.0" ]
17
2019-03-12T15:26:53.000Z
2021-02-02T20:07:02.000Z
python/Command.py
Sbte/hymls
75cb1e70eb0b3d71085e481cc9d418bdfada1a35
[ "Apache-2.0" ]
2
2019-07-03T14:29:05.000Z
2022-02-21T12:44:40.000Z
"""This file contains classes that implement a thread that runs a command. The process can then be killed after a certain time. """ import subprocess import threading import datetime import os from collections import OrderedDict def git_command(command, suppress_errors=False): p = None if suppress_errors: p = subprocess.Popen('git ' + command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) else: p = subprocess.Popen('git ' + command, stdout=subprocess.PIPE, shell=True) (out, err) = p.communicate() errno = p.poll() if errno != 0 and not suppress_errors: raise Exception('Command git ' + command + ' failed') return out class Command(object): def __init__(self, cmd, env=None): self.cmd = cmd self.process = None self.out = '' self.err = '' self.env = env if self.env is not None: self.env.update(os.environ) def run(self, timeout=600): def target(): self.out += 'Thread started\n' self.out += 'Running ' + self.cmd + '\n' self.process = subprocess.Popen(self.cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True, executable="/bin/bash", env=self.env) (out, err) = self.process.communicate() if out: self.out += out if err: self.err += err self.out += 'Thread finished at ' + str(datetime.datetime.now()) + '\n' thread = threading.Thread(target=target) thread.start() thread.join(timeout) killed = False if thread.is_alive(): self.kill() thread.join() killed = True if self.process is None: return (-1, killed) self.out += 'Returncode is ' + str(self.process.returncode) + '\n' return (self.process.returncode, killed) def kill(self): self.out += 'Terminating process\n' subprocess.call('killall -9 '+self.cmd.partition(' ')[0], shell=True) class ParallelCommand(Command): def __init__(self, cmd, env=None, procs=1, nodes=1): Command.__init__(self, cmd, env) self.procs = procs self.nodes = nodes np = procs // nodes self.mpis = OrderedDict([('mpiexec', 'mpiexec -n %d -npernode %d' % (self.procs, np)), ('mpirun', 'mpirun -n %d -npernode %d' % (self.procs, np)), ('srun', 'srun --nodes=%d --ntasks=%d --ntasks-per-node=%d' % (self.nodes, self.procs, np))]) self.orig_cmd = cmd self.mpi = None for mpi in self.mpis.iterkeys(): p = subprocess.Popen(mpi+' --help', stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True, executable="/bin/bash", env=self.env) p.communicate() if p.returncode == 0: self.cmd = self.mpis[mpi] + ' ' + cmd self.mpi = mpi break def kill(self): super(ParallelCommand, self).kill() if self.mpi: subprocess.call('killall -9 '+self.mpi, shell=True) if self.orig_cmd: subprocess.call('killall -9 '+self.orig_cmd.partition(' ')[0], shell=True)
34.98913
248
0.574713
7953516139c48c15aa2a542890a5affe123f3e87
3,707
py
Python
Non-React Stuff/alexa/lambda/skill_env/ask_sdk_model/interfaces/amazonpay/model/v1/provider_credit.py
ReciPull/reciprogram
b8c7e4610f95c5beafad3c9880fc5beceec523e7
[ "MIT" ]
1
2019-09-16T19:13:13.000Z
2019-09-16T19:13:13.000Z
Non-React Stuff/alexa/lambda/skill_env/ask_sdk_model/interfaces/amazonpay/model/v1/provider_credit.py
ReciPull/reciprogram
b8c7e4610f95c5beafad3c9880fc5beceec523e7
[ "MIT" ]
5
2021-03-09T03:30:14.000Z
2022-02-26T10:42:17.000Z
alexa/reciPullLambda/ask_sdk_model/interfaces/amazonpay/model/v1/provider_credit.py
ReciPull/recipull.github.io
e6b800af02658bb7948297c4ddc1b7af6d978839
[ "MIT" ]
null
null
null
# coding: utf-8 # # Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file # except in compliance with the License. A copy of the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for # the specific language governing permissions and limitations under the License. # import pprint import re # noqa: F401 import six import typing from enum import Enum if typing.TYPE_CHECKING: from typing import Dict, List, Optional from datetime import datetime from ask_sdk_model.interfaces.amazonpay.model.v1.price import Price class ProviderCredit(object): """ :param provider_id: This is required only for Ecommerce provider (Solution provider) use cases. :type provider_id: (optional) str :param credit: :type credit: (optional) ask_sdk_model.interfaces.amazonpay.model.v1.price.Price """ deserialized_types = { 'provider_id': 'str', 'credit': 'ask_sdk_model.interfaces.amazonpay.model.v1.price.Price' } # type: Dict attribute_map = { 'provider_id': 'providerId', 'credit': 'credit' } # type: Dict def __init__(self, provider_id=None, credit=None): # type: (Optional[str], Optional[Price]) -> None """ :param provider_id: This is required only for Ecommerce provider (Solution provider) use cases. :type provider_id: (optional) str :param credit: :type credit: (optional) ask_sdk_model.interfaces.amazonpay.model.v1.price.Price """ self.__discriminator_value = None # type: str self.provider_id = provider_id self.credit = credit def to_dict(self): # type: () -> Dict[str, object] """Returns the model properties as a dict""" result = {} # type: Dict for attr, _ in six.iteritems(self.deserialized_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x.value if isinstance(x, Enum) else x, value )) elif isinstance(value, Enum): result[attr] = value.value elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else (item[0], item[1].value) if isinstance(item[1], Enum) else item, value.items() )) else: result[attr] = value return result def to_str(self): # type: () -> str """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): # type: () -> str """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): # type: (object) -> bool """Returns true if both objects are equal""" if not isinstance(other, ProviderCredit): return False return self.__dict__ == other.__dict__ def __ne__(self, other): # type: (object) -> bool """Returns true if both objects are not equal""" return not self == other
32.517544
103
0.596439
795352afe007d411067caa41e58b4c96efc917ea
392
py
Python
GPy/mappings/__init__.py
ekalosak/GPy
ff82f12c3d321bfc3ce6615447fad25aea9de6bd
[ "BSD-3-Clause" ]
1,685
2015-01-03T14:46:25.000Z
2022-03-30T02:41:35.000Z
GPy/mappings/__init__.py
ekalosak/GPy
ff82f12c3d321bfc3ce6615447fad25aea9de6bd
[ "BSD-3-Clause" ]
778
2015-01-15T18:21:25.000Z
2022-03-30T14:52:32.000Z
GPy/mappings/__init__.py
ekalosak/GPy
ff82f12c3d321bfc3ce6615447fad25aea9de6bd
[ "BSD-3-Clause" ]
584
2015-01-06T06:30:43.000Z
2022-03-29T13:05:33.000Z
# Copyright (c) 2013, 2014 GPy authors (see AUTHORS.txt). # Licensed under the BSD 3-clause license (see LICENSE.txt) from .kernel import Kernel from .linear import Linear from .mlp import MLP from .mlpext import MLPext from .additive import Additive from .compound import Compound from .constant import Constant from .identity import Identity from .piecewise_linear import PiecewiseLinear
28
59
0.80102
795355213abf7605ca18cb432dd3cf95f191ca63
884
py
Python
api/admin.py
codydeny/PlaceMe-Backend
6d89e5384bcefbebf6bd1cc37415f405f9502988
[ "MIT" ]
2
2020-09-29T02:51:33.000Z
2020-10-06T09:38:11.000Z
api/admin.py
codydeny/PlaceMe-Backend
6d89e5384bcefbebf6bd1cc37415f405f9502988
[ "MIT" ]
null
null
null
api/admin.py
codydeny/PlaceMe-Backend
6d89e5384bcefbebf6bd1cc37415f405f9502988
[ "MIT" ]
1
2020-09-29T09:40:32.000Z
2020-09-29T09:40:32.000Z
from django.contrib import admin from .models import UserProfile, Department, Course, Branch, Faculty, Student, HighSchool, Intermediate, Diploma, Graduation, PostGraduation, Project, PrevSemesterData, HR, Company, JobNotification, JNeligibleCourse, AppliedJobNotification # Register your models here. admin.site.register(UserProfile) admin.site.register(Department) admin.site.register(Course) admin.site.register(Branch) admin.site.register(Faculty) admin.site.register(Student) admin.site.register(HighSchool) admin.site.register(Intermediate) admin.site.register(Diploma) admin.site.register(Graduation) admin.site.register(PostGraduation) admin.site.register(Project) admin.site.register(PrevSemesterData) admin.site.register(HR) admin.site.register(Company) admin.site.register(JNeligibleCourse) admin.site.register(JobNotification) admin.site.register(AppliedJobNotification)
38.434783
239
0.839367
7953562e78bc5e1654617becc2a5d66ae6ccdef6
4,372
py
Python
scripts/payload2generator.py
TheOddZer0/MiShell32
3ea9187ba73cf1efe5396df48aae95a34be370bb
[ "Apache-2.0" ]
5
2021-07-01T19:18:11.000Z
2022-02-23T00:36:08.000Z
scripts/payload2generator.py
TheOddZer0/MiShell32
3ea9187ba73cf1efe5396df48aae95a34be370bb
[ "Apache-2.0" ]
1
2021-09-26T16:23:57.000Z
2021-09-28T15:04:50.000Z
scripts/payload2generator.py
TheOddZer0/MiShell32
3ea9187ba73cf1efe5396df48aae95a34be370bb
[ "Apache-2.0" ]
null
null
null
#!/usr/bin/env python3 """ Generate a generator.py from currently built payload """ import os import sys import os.path as path import shutil import subprocess import shlex # Configs # Used to change some usual settings # What will the file name of the backup of generator.py will BACKUP_NAME = "generator.py.old" # Wait, What will the name of the generator be GENERATOR_NAME = "generator.py" # Where of bin/ should we expect the payload PAYLOAD_NAME = "payload.out" # Where should objcopy put the result OBJCOPY_RESULT = "payload" ROOT = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) TEMPLATE = r'''#!/usr/bin/env python3 """ generator.py, Generate a payload with any need to compile anything. See the original repo for more info: https://github.com/TheOddZer0/mishell32 """ import sys import struct def ready_port(num: str): chunks = [num[i:i+2] for i in range(0, len(num), 2)] return "\\x".join(chunks) def ensure_length(num: str): if len(num) % 2 != 0: num = "0" + num return num shellcode = "{first_line}" {more_lines} try: ip = sys.argv[1] port = int(sys.argv[2]) except IndexError: print(f"Usage: {sys.argv[0]} IP PORT") raise SystemExit(1) except ValueError: print(f"port must be an integer") raise SystemExit(1) if port not in range(65536): print(f"Invalid port '{port}'") raise SystemExit(1) parts = ip.split(".") ip_parts = [] offset = [] for part in parts: try: part = int(part) except ValueError: print(f"Invalid IP '{ip}'") raise SystemExit(1) if part not in range(256): print(f"Invalid IP '{ip}'") raise SystemExit(1) if part == 255: print("This method will not work on your IP") raise SystemExit(1) _hexed = ensure_length(hex(part + 1)[2:]) if not ("00" in _hexed): ip_parts.append(str(_hexed)) offset.append("01") else: ip_parts.append(str(ensure_length(hex(part + 2)[2:]))) offset.append("02") # Replace the IP with the new ip shellcode = shellcode.replace("\\x80\\x01\\x01\\x02", "\\x".join(["", *ip_parts])) # The offset may need to change, Taken care now shellcode = shellcode.replace("\\x01\\x01\\x01\\x01", "\\x".join(["", *offset])) # Now replacing the port, then we are done shellcode = shellcode.replace("\\x11\\x5c", "\\x" + ready_port(ensure_length(hex(port)[2:]))) print(shellcode) ''' LINE_TEMPLATE = 'shellcode += "{}"\n' def ensure_length(num: str): if len(num) % 2 != 0: num = "0" + num return num # Well, A programmer is a app generator, so, # I'm a generator of a generator which generates a generator which # that generator generates a payload... print("Generating the generator itself...") try: subprocess.call("objcopy --dump-section .text={} {}".format( shlex.quote(path.join(ROOT, "build", OBJCOPY_RESULT)), shlex.quote(path.join(ROOT, "bin", PAYLOAD_NAME))).split(), shell=False) except Exception as e: sys.stderr.write(f"objcopy call failed: {e}\n") raise SystemExit(1) with open(os.path.join(ROOT, "build", OBJCOPY_RESULT), "rb") as p: data = p.read() try: os.remove(os.path.join(ROOT, "build", OBJCOPY_RESULT)) except Exception as e: sys.stderr.write(f"Failed to remove objcopy output: {e} Ignoring...\n") chunks = [data[i:i+12] for i in range(0, len(data), 12)] generator = TEMPLATE.replace("{first_line}", "".join( ["\\\\x" + ensure_length(hex(i)[2:]) for i in chunks[0]])) generator = generator.replace("{more_lines}", "".join( [LINE_TEMPLATE.format( "".join(["\\\\x" + ensure_length(hex(i)[2:]) for i in chunk])) for chunk in chunks[1:]])) sys.stderr.write("Taking backup of current generator...\n") try: if path.exists(path.join(ROOT, "scripts", BACKUP_NAME)): os.remove(path.join(ROOT, "scripts", BACKUP_NAME)) shutil.copy(path.join(ROOT, "scripts", GENERATOR_NAME), path.join(ROOT, "scripts", BACKUP_NAME)) except FileNotFoundError: sys.stderr.write("No generator to take backup from, Ignoring...\n") except PermissionError as e: sys.stderr.write(f"Cannot take backup ({e.strerror})\n") raise SystemExit(1) if input( "Should we continue [y/n]").lower().strip() != "y" else None with open(path.join(ROOT, "scripts", GENERATOR_NAME), "w") as gen: gen.write(generator)
28.575163
97
0.653477
795356a9717bfbc87d40b3f4c8ab1c4c21917c2b
8,377
py
Python
tools/train.py
dyabel/wsod-mmdet
60fc1993ea298f992b160b5599a6134702ac0d4f
[ "Apache-2.0" ]
6
2021-10-09T05:34:04.000Z
2022-03-31T00:36:55.000Z
tools/train.py
dyabel/wsod-mmdet
60fc1993ea298f992b160b5599a6134702ac0d4f
[ "Apache-2.0" ]
null
null
null
tools/train.py
dyabel/wsod-mmdet
60fc1993ea298f992b160b5599a6134702ac0d4f
[ "Apache-2.0" ]
null
null
null
import argparse import copy import os import os.path as osp import time import warnings import mmcv import torch from mmcv import Config, DictAction from mmcv.runner import get_dist_info, init_dist from mmcv.utils import get_git_hash from mmdet import __version__ from mmdet.apis import set_random_seed, train_detector from mmdet.datasets import build_dataset from mmdet.models import build_detector from mmdet.utils import collect_env, get_root_logger import wandb.sdk.internal.datastore def parse_args(): parser = argparse.ArgumentParser(description='Train a detector') parser.add_argument('config', help='train config file path') parser.add_argument('--work-dir', help='the dir to save logs and models') parser.add_argument('--name',default='wsod-mmdet') parser.add_argument( '--resume-from', help='the checkpoint file to resume from') parser.add_argument( '--no-validate', action='store_true', help='whether not to evaluate the checkpoint during training') group_gpus = parser.add_mutually_exclusive_group() group_gpus.add_argument( '--gpus', type=int, help='number of gpus to use ' '(only applicable to non-distributed training)') group_gpus.add_argument( '--gpu-ids', type=int, nargs='+', help='ids of gpus to use ' '(only applicable to non-distributed training)') parser.add_argument('--seed', type=int, default=None, help='random seed') parser.add_argument( '--deterministic', action='store_true', help='whether to set deterministic options for CUDNN backend.') parser.add_argument( '--options', nargs='+', action=DictAction, help='override some settings in the used config, the key-value pair ' 'in xxx=yyy format will be merged into config file (deprecate), ' 'change to --cfg-options instead.') parser.add_argument( '--cfg-options', nargs='+', action=DictAction, help='override some settings in the used config, the key-value pair ' 'in xxx=yyy format will be merged into config file. If the value to ' 'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' 'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' 'Note that the quotation marks are necessary and that no white space ' 'is allowed.') parser.add_argument( '--launcher', choices=['none', 'pytorch', 'slurm', 'mpi'], default='none', help='job launcher') parser.add_argument('--local_rank', type=int, default=0) args = parser.parse_args() if 'LOCAL_RANK' not in os.environ: os.environ['LOCAL_RANK'] = str(args.local_rank) if args.options and args.cfg_options: raise ValueError( '--options and --cfg-options cannot be both ' 'specified, --options is deprecated in favor of --cfg-options') if args.options: warnings.warn('--options is deprecated in favor of --cfg-options') args.cfg_options = args.options return args def main(): timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime()) os.environ["WANDB_RUN_GROUP"] = "experiment-" + wandb.util.generate_id() args = parse_args() wandb.init(project=args.name) # hyperparameter_defaults = dict( # oam_max_num=10, # score_thr1=0.3, # score_thr2=0.7, # empty_cf=30, # lr=0.001, # ) wandb.config.oam_max_num = 20 wandb.config.score_thr2 = 0.05 wandb.config.empty_cf = 30 wandb.config.ss_cf_thr = 50 # wandb.config.lr = 0.008 wandb.config.warm_iter = -1 wandb.config.strong_shot = 26 # wandb.init(config=hyperparameter_defaults) wandb.config.config_file = args.config wandb.config.work_dir = args.work_dir wandb.config.max_map = 0 wandb.config.map = 0 wandb.config.loss_weak_scale = 1.0 cfg = Config.fromfile(args.config) if args.cfg_options is not None: cfg.merge_from_dict(args.cfg_options) # import modules from string list. if cfg.get('custom_imports', None): from mmcv.utils import import_modules_from_strings import_modules_from_strings(**cfg['custom_imports']) # set cudnn_benchmark if cfg.get('cudnn_benchmark', False): torch.backends.cudnn.benchmark = True # work_dir is determined in this priority: CLI > segment in file > filename if args.work_dir is not None: # update configs according to CLI args if args.work_dir is not None cfg.work_dir = args.work_dir elif cfg.get('work_dir', None) is None: # use config filename as default work_dir if cfg.work_dir is None cfg.work_dir = osp.join('./work_dirs', osp.splitext(osp.basename(args.config))[0]) if args.resume_from is not None: cfg.resume_from = args.resume_from if args.gpu_ids is not None: cfg.gpu_ids = args.gpu_ids else: cfg.gpu_ids = range(1) if args.gpus is None else range(args.gpus) # init distributed env first, since logger depends on the dist info. if args.launcher == 'none': distributed = False else: distributed = True init_dist(args.launcher, **cfg.dist_params) # re-set gpu_ids with distributed training mode _, world_size = get_dist_info() cfg.gpu_ids = range(world_size) # create work_dir mmcv.mkdir_or_exist(osp.abspath(cfg.work_dir)) # dump config cfg.dump(osp.join(cfg.work_dir, osp.basename(args.config))) # init the logger before other steps wandb.config.time = timestamp log_file = osp.join(cfg.work_dir, f'{timestamp}.log') wandb.config.logfile = log_file logger = get_root_logger(log_file=log_file, log_level=cfg.log_level) # init the meta dict to record some important information such as # environment info and seed, which will be logged meta = dict() # log env info env_info_dict = collect_env() env_info = '\n'.join([(f'{k}: {v}') for k, v in env_info_dict.items()]) dash_line = '-' * 60 + '\n' logger.info('Environment info:\n' + dash_line + env_info + '\n' + dash_line) meta['env_info'] = env_info meta['config'] = cfg.pretty_text # log some basic info logger.info(f'Distributed training: {distributed}') logger.info(f'Config:\n{cfg.pretty_text}') # set random seeds if args.seed is not None: logger.info(f'Set random seed to {args.seed}, ' f'deterministic: {args.deterministic}') set_random_seed(args.seed, deterministic=args.deterministic) cfg.seed = args.seed meta['seed'] = args.seed meta['exp_name'] = osp.basename(args.config) model = build_detector( cfg.model, train_cfg=cfg.get('train_cfg'), test_cfg=cfg.get('test_cfg')) wandb.config.val_data = cfg.data.val['ann_file'] if cfg.data.train['type'] == 'RepeatDataset': wandb.config.train_data_type = cfg.data.train['dataset']['type'] wandb.config.repeat_times = cfg.data.train['times'] wandb.config.ann_file = cfg.data.train['dataset']['ann_file'] else: wandb.config.train_data_type = cfg.data.train['type'] wandb.config.repeat_times = 1 wandb.config.ann_file = cfg.data.train['ann_file'] datasets = [build_dataset(cfg.data.train)] if len(cfg.workflow) == 2: val_dataset = copy.deepcopy(cfg.data.val) val_dataset.pipeline = cfg.data.train.pipeline datasets.append(build_dataset(val_dataset)) if cfg.checkpoint_config is not None: # save mmdet version, config file content and class names in # checkpoints as meta data cfg.checkpoint_config.meta = dict( mmdet_version=__version__ + get_git_hash()[:7], CLASSES=datasets[0].CLASSES) # add an attribute for visualization convenience model.CLASSES = datasets[0].CLASSES train_detector( model, datasets, cfg, distributed=distributed, validate=(not args.no_validate), timestamp=timestamp, meta=meta) # wandb.save(os.path.join(wandb.config.work_dir,'mymodel.h5')) # fitlog.finish() wandb.save("mymodel.h5") if __name__ == '__main__': main()
36.903084
79
0.653337
7953574f7e114520f8da618835e7bcfc4bb03f5b
222
py
Python
dadmatools/datasets/datasets/Wikipedia/info.py
njzr/DadmaTools
64ff407d5d818d5a9216340cccf0d1cc909d3b1b
[ "Apache-2.0" ]
25
2021-12-01T15:19:36.000Z
2022-03-12T12:50:28.000Z
dadmatools/datasets/datasets/Wikipedia/info.py
ebad84/DadmaTools
b26ad8aa834f642d49bd120bd7cf1fdf40741be1
[ "Apache-2.0" ]
3
2021-12-14T06:34:52.000Z
2022-02-17T08:23:20.000Z
dadmatools/datasets/datasets/Wikipedia/info.py
ebad84/DadmaTools
b26ad8aa834f642d49bd120bd7cf1fdf40741be1
[ "Apache-2.0" ]
6
2021-10-12T13:44:17.000Z
2022-03-07T13:54:17.000Z
{ "name": "WikipediaCorpus", "version": "20211201", "task": "Corpus", "description": "fawiki dump progress on 20211201 / All pages, current versions only.", "size": 2184117, "filenames": ["cleaned_wiki.txt"] }
24.666667
88
0.653153
79535888e88f0de0b0d2c00d787ad624cfc5d8cc
1,749
py
Python
install_texlive/__init__.py
maxnoe/texlive-batch-installation
13bfdadd9fa951c5edd5830e6da07708bdce43e6
[ "MIT" ]
null
null
null
install_texlive/__init__.py
maxnoe/texlive-batch-installation
13bfdadd9fa951c5edd5830e6da07708bdce43e6
[ "MIT" ]
null
null
null
install_texlive/__init__.py
maxnoe/texlive-batch-installation
13bfdadd9fa951c5edd5830e6da07708bdce43e6
[ "MIT" ]
null
null
null
import logging import subprocess as sp import os import pexpect import re import requests from io import BytesIO import tarfile __version__ = '0.3.0' log = logging.getLogger(__name__) has_curl = sp.call(['which', 'curl'], stdout=sp.PIPE) == 0 has_wget = sp.call(['which', 'wget'], stdout=sp.PIPE) == 0 URL = 'http://mirror.ctan.org/systems/texlive/tlnet/' OLDURL = 'http://ftp.math.utah.edu/pub/tex/historic/systems/texlive/{v}/tlnet-final/' def is_current(version): r = requests.get('https://tug.org/texlive/') r.raise_for_status() m = re.search(r'Current release: TeX Live ([0-9]{4})', r.text) if not m: raise ValueError('Could not determine current TeX Live version') current_version = int(m.groups()[0]) log.debug('Current version of TeX Live is {}'.format(current_version)) return current_version == version def download(version=None, outdir='.'): os.makedirs(outdir, exist_ok=True) if version is None or is_current(version): url = URL + 'install-tl-unx.tar.gz' else: url = OLDURL.format(v=version) + 'install-tl-unx.tar.gz' log.debug('Downloading from {}'.format(url)) ret = requests.get(url) ret.raise_for_status() tar = tarfile.open(fileobj=BytesIO(ret.content), mode='r:gz') tar.extractall(outdir) def command(process, pattern, send, **kwargs): process.expect(pattern, **kwargs) process.sendline(send) def get_size(process): timeout = process.timeout process.timeout = 1 lines = '' try: while True: lines += process.readline().decode() except pexpect.TIMEOUT: pass size = re.findall(r'disk space required: ([0-9]+ MB)', lines)[-1] process.timeout = timeout return size
25.347826
85
0.661521
795358e0f166153b511c0ff13074ec2c6b5dac38
217
py
Python
play/cosmocalc.py
tamarastro/tastro
76f9175531652a86dc938f4fdaf296a9d6f422bc
[ "MIT" ]
null
null
null
play/cosmocalc.py
tamarastro/tastro
76f9175531652a86dc938f4fdaf296a9d6f422bc
[ "MIT" ]
null
null
null
play/cosmocalc.py
tamarastro/tastro
76f9175531652a86dc938f4fdaf296a9d6f422bc
[ "MIT" ]
null
null
null
import numpy as np from astropy.cosmology import FlatLambdaCDM as cosmo cosmo1 = cosmo(H0=70, Om0=0.3) print cosmo1 cosmo2 = cosmo(H0=72, Om0=0.28) print cosmo2 print('But this might be better.... editing master.')
21.7
53
0.746544
79535aa210d61d3739686ab4f0a268719390e451
2,841
py
Python
setup/setup.py
Ordiel/brython
58d9372dd338a6a258df8e867caeb8097002d876
[ "BSD-3-Clause" ]
1
2019-07-28T09:04:44.000Z
2019-07-28T09:04:44.000Z
setup/setup.py
Ordiel/brython
58d9372dd338a6a258df8e867caeb8097002d876
[ "BSD-3-Clause" ]
null
null
null
setup/setup.py
Ordiel/brython
58d9372dd338a6a258df8e867caeb8097002d876
[ "BSD-3-Clause" ]
null
null
null
# Always prefer setuptools over distutils from setuptools import setup, find_packages import os import shutil import sys with open('README.rst', encoding='utf-8') as fobj: LONG_DESCRIPTION = fobj.read() command = sys.argv[1] if command == "sdist": # before creating the distribution, copy files from other locations in # the repository print("copying files...") this_dir = os.getcwd() root_dir = os.path.dirname(this_dir) src_dir = os.path.join(root_dir, "www", "src") data_dir = os.path.join(this_dir, "data") # copy files from /www/src for fname in ["brython.js", "brython_stdlib.js", "unicode.txt"]: shutil.copyfile(os.path.join(src_dir, fname), os.path.join(data_dir, fname)) # copy demo.html with open(os.path.join(root_dir, 'www', 'demo.html'), encoding="utf-8") as f: demo = f.read() start_tag = "<!-- start copy -->" end_tag = "<!-- end copy -->" start = demo.find(start_tag) if start == -1: raise Exception("No tag <!-- start copy --> in demo.html") end = demo.find(end_tag) if end == -1: raise Exception("No tag <!-- end copy --> in demo.html") body = demo[start + len(start_tag) : end].strip() with open(os.path.join(data_dir, "demo.tmpl"), encoding="utf-8") as f: template = f.read() demo = template.replace("{{body}}", body) with open(os.path.join(data_dir, "demo.html"), "w", encoding="utf-8") as out: out.write(demo) setup( name='brython', version='3.7.3', description='Brython is an implementation of Python 3 running in the browser', long_description=LONG_DESCRIPTION, # The project's main homepage. url='http://brython.info', # Author details author='Pierre Quentel', author_email='quentel.pierre@orange.fr', packages = ['data', 'data.tools'], # Choose your license license='BSD', # See https://pypi.python.org/pypi?%3Aaction=list_classifiers classifiers=[ # Indicate who your project is intended for 'Intended Audience :: Developers', 'Topic :: Software Development :: Interpreters', 'Operating System :: OS Independent', # Pick your license as you wish (should match "license" above) 'License :: OSI Approved :: BSD License', # Specify the Python versions you support here. In particular, ensure # that you indicate whether you support Python 2, Python 3 or both. 'Programming Language :: Python :: 3', ], # What does your project relate to? keywords='Python browser', py_modules=["brython", "list_modules"], package_data={ 'data': [ 'README.txt', 'demo.html', 'brython.js', 'brython_stdlib.js', 'unicode.txt' ] } )
28.128713
82
0.612812
79535af131ff427b006c3e04558d8214ccb87881
355
py
Python
tests/parser/syntax/test_string.py
leonprou/vyper
8228395a9f4d4b55dbb8dcded3f4eb1ccfbbbe4b
[ "MIT" ]
null
null
null
tests/parser/syntax/test_string.py
leonprou/vyper
8228395a9f4d4b55dbb8dcded3f4eb1ccfbbbe4b
[ "MIT" ]
null
null
null
tests/parser/syntax/test_string.py
leonprou/vyper
8228395a9f4d4b55dbb8dcded3f4eb1ccfbbbe4b
[ "MIT" ]
null
null
null
import pytest from vyper import ( compiler, ) valid_list = [ """ @public def foo() -> string[10]: return "badminton" """, """ @public def foo(): x: string[11] = "¡très bien!" """ ] @pytest.mark.parametrize('good_code', valid_list) def test_string_success(good_code): assert compiler.compile_code(good_code) is not None
14.791667
55
0.630986
79535bbf2b96668d1adec23c505225ae38a07f08
757
py
Python
tests/test_sqlalchemy.py
tackle-io/woodchipper
d2d92f7c79c940b5263795c0b18b3b46386fbc53
[ "MIT" ]
3
2022-02-04T16:21:00.000Z
2022-02-28T22:33:05.000Z
tests/test_sqlalchemy.py
tackle-io/woodchipper
d2d92f7c79c940b5263795c0b18b3b46386fbc53
[ "MIT" ]
3
2022-01-10T16:53:40.000Z
2022-03-03T13:12:58.000Z
tests/test_sqlalchemy.py
tackle-io/woodchipper
d2d92f7c79c940b5263795c0b18b3b46386fbc53
[ "MIT" ]
null
null
null
import sqlalchemy import woodchipper from woodchipper.configs import DevLogToStdout from woodchipper.context import LoggingContext from woodchipper.monitors.sqlalchemy import SQLAlchemyMonitor engine = sqlalchemy.create_engine("sqlite:///:memory:") def connect(sa_monitor): sa_monitor.engine = engine SQLAlchemyMonitor.instance_setup_cb = connect woodchipper.configure(config=DevLogToStdout, facilities={"": "INFO"}, monitors=[SQLAlchemyMonitor]) def test_sqlalchemy(): logger = woodchipper.get_logger(__name__) with LoggingContext(test="sqlalchemy"): with engine.connect() as conn: rows = conn.execute("SELECT 1") logger.info("SQL result.", row=rows.fetchone()) # FIXME: Actually test something here
29.115385
99
0.752972
79535be8f2bf5eb6cc1c2a724758f30cc8995338
5,382
py
Python
website/drawquest/apps/brushes/migrations/0016_paintbucket_copy.py
bopopescu/drawquest-web
8d8f9149b6efeb65202809a5f8916386f58a1b3b
[ "BSD-3-Clause" ]
19
2015-11-10T17:36:20.000Z
2021-04-12T07:36:00.000Z
website/drawquest/apps/brushes/migrations/0016_paintbucket_copy.py
bopopescu/drawquest-web
8d8f9149b6efeb65202809a5f8916386f58a1b3b
[ "BSD-3-Clause" ]
1
2021-06-09T03:45:34.000Z
2021-06-09T03:45:34.000Z
website/drawquest/apps/brushes/migrations/0016_paintbucket_copy.py
bopopescu/drawquest-web
8d8f9149b6efeb65202809a5f8916386f58a1b3b
[ "BSD-3-Clause" ]
6
2015-11-11T00:38:38.000Z
2020-07-25T20:10:08.000Z
# -*- coding: utf-8 -*- import datetime from south.db import db from south.v2 import DataMigration from django.db import models class Migration(DataMigration): def forwards(self, orm): brush = orm.Brush.objects.get(canonical_name='paintbucket') brush.description = "Need to color the whole canvas? Patty is always happy to help out. She'll fill the entire screen with a single color." brush.save() def backwards(self, orm): "Write your backwards methods here." models = { u'auth.group': { 'Meta': {'object_name': 'Group'}, u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '80'}), 'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}) }, u'auth.permission': { 'Meta': {'ordering': "(u'content_type__app_label', u'content_type__model', u'codename')", 'unique_together': "((u'content_type', u'codename'),)", 'object_name': 'Permission'}, 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': u"orm['contenttypes.ContentType']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, u'auth.user': { 'Meta': {'object_name': 'User'}, 'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '254', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'related_name': "u'user_set'", 'blank': 'True', 'to': u"orm['auth.Group']"}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'password': ('django.db.models.fields.CharField', [], {'max_length': '128'}), 'user_permissions': ('django.db.models.fields.related.ManyToManyField', [], {'symmetrical': 'False', 'related_name': "u'user_set'", 'blank': 'True', 'to': u"orm['auth.Permission']"}), 'username': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '30'}) }, u'brushes.brush': { 'Meta': {'ordering': "['ordinal']", 'object_name': 'Brush'}, 'blue': ('django.db.models.fields.IntegerField', [], {}), 'canonical_name': ('django.db.models.fields.CharField', [], {'max_length': '50'}), 'cost': ('django.db.models.fields.IntegerField', [], {}), 'description': ('django.db.models.fields.CharField', [], {'max_length': '300', 'blank': 'True'}), 'green': ('django.db.models.fields.IntegerField', [], {}), 'iap_product_id': ('django.db.models.fields.CharField', [], {'max_length': '100', 'blank': 'True'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'iphone_label': ('django.db.models.fields.CharField', [], {'max_length': '50'}), 'is_for_sale': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_new': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'label': ('django.db.models.fields.CharField', [], {'max_length': '50'}), 'ordinal': ('django.db.models.fields.IntegerField', [], {}), 'owned_by_default': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'owners': ('django.db.models.fields.related.ManyToManyField', [], {'to': u"orm['canvas_auth.User']", 'symmetrical': 'False'}), 'red': ('django.db.models.fields.IntegerField', [], {}) }, u'canvas_auth.user': { 'Meta': {'object_name': 'User', 'db_table': "u'auth_user'", '_ormbases': [u'auth.User'], 'proxy': 'True'} }, u'contenttypes.contenttype': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), u'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) } } complete_apps = ['brushes'] symmetrical = True
68.126582
195
0.570977
79535bfa6ae14371d5b3330bd32c252ae803f203
758
py
Python
pddlrl/validate.py
IBM/pddlrl
e057cc67426c91c9180286a67acad5b9a1ba7fc6
[ "MIT" ]
5
2022-03-24T16:47:21.000Z
2022-03-25T16:04:04.000Z
pddlrl/validate.py
IBM/pddlrl
e057cc67426c91c9180286a67acad5b9a1ba7fc6
[ "MIT" ]
null
null
null
pddlrl/validate.py
IBM/pddlrl
e057cc67426c91c9180286a67acad5b9a1ba7fc6
[ "MIT" ]
null
null
null
# This file is a part of PDDLRL project. # Copyright (c) 2020 Clement Gehring (clement@gehring.io) # Copyright (c) 2021 Masataro Asai (guicho2.71828@gmail.com, masataro.asai@ibm.com), IBM Corporation import os.path import subprocess directory, basename = os.path.split(__file__) VAL = os.path.join(directory, "../VAL/build/linux64/Release/bin/Validate") def validate(domainfile=None, problemfile=None, planfile=None): args = [VAL, domainfile, problemfile, planfile] args = [ arg for arg in args if arg ] return subprocess.run(args) def arrival(domainfile=None, problemfile=None, planfile=None): args = ["arrival", domainfile, problemfile, planfile, "/dev/null"] args = [ arg for arg in args if arg ] return subprocess.run(args)
34.454545
100
0.726913
79535c65adca6a84d9e8254147d8830acc7e0335
3,772
py
Python
models/position_encoding.py
miranmanesh/ConditionalDETR
b3ab2ea01208a1c7f4a1668a9c7682d13e59bc45
[ "Apache-2.0" ]
186
2021-08-16T02:53:25.000Z
2022-03-31T14:27:30.000Z
models/position_encoding.py
encounter1997/DE-CondDETR
c7d24c221125daa6322adc9915af77701240f063
[ "Apache-2.0" ]
18
2021-08-24T07:01:18.000Z
2022-03-29T12:53:10.000Z
models/position_encoding.py
encounter1997/DE-CondDETR
c7d24c221125daa6322adc9915af77701240f063
[ "Apache-2.0" ]
19
2021-08-16T06:45:55.000Z
2022-03-20T12:53:57.000Z
# ------------------------------------------------------------------------ # Conditional DETR # Copyright (c) 2021 Microsoft. All Rights Reserved. # Licensed under the Apache License, Version 2.0 [see LICENSE for details] # ------------------------------------------------------------------------ # Copied from DETR (https://github.com/facebookresearch/detr) # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. # ------------------------------------------------------------------------ """ Various positional encodings for the transformer. """ import math import torch from torch import nn from util.misc import NestedTensor class PositionEmbeddingSine(nn.Module): """ This is a more standard version of the position embedding, very similar to the one used by the Attention is all you need paper, generalized to work on images. """ def __init__(self, num_pos_feats=64, temperature=10000, normalize=False, scale=None): super().__init__() self.num_pos_feats = num_pos_feats self.temperature = temperature self.normalize = normalize if scale is not None and normalize is False: raise ValueError("normalize should be True if scale is passed") if scale is None: scale = 2 * math.pi self.scale = scale def forward(self, tensor_list: NestedTensor): x = tensor_list.tensors mask = tensor_list.mask assert mask is not None not_mask = ~mask y_embed = not_mask.cumsum(1, dtype=torch.float32) x_embed = not_mask.cumsum(2, dtype=torch.float32) if self.normalize: eps = 1e-6 y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device) dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats) pos_x = x_embed[:, :, :, None] / dim_t pos_y = y_embed[:, :, :, None] / dim_t pos_x = torch.stack((pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3) pos_y = torch.stack((pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3) pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2) return pos class PositionEmbeddingLearned(nn.Module): """ Absolute pos embedding, learned. """ def __init__(self, num_pos_feats=256): super().__init__() self.row_embed = nn.Embedding(50, num_pos_feats) self.col_embed = nn.Embedding(50, num_pos_feats) self.reset_parameters() def reset_parameters(self): nn.init.uniform_(self.row_embed.weight) nn.init.uniform_(self.col_embed.weight) def forward(self, tensor_list: NestedTensor): x = tensor_list.tensors h, w = x.shape[-2:] i = torch.arange(w, device=x.device) j = torch.arange(h, device=x.device) x_emb = self.col_embed(i) y_emb = self.row_embed(j) pos = torch.cat([ x_emb.unsqueeze(0).repeat(h, 1, 1), y_emb.unsqueeze(1).repeat(1, w, 1), ], dim=-1).permute(2, 0, 1).unsqueeze(0).repeat(x.shape[0], 1, 1, 1) return pos def build_position_encoding(args): N_steps = args.hidden_dim // 2 if args.position_embedding in ('v2', 'sine'): # TODO find a better way of exposing other arguments position_embedding = PositionEmbeddingSine(N_steps, normalize=True) elif args.position_embedding in ('v3', 'learned'): position_embedding = PositionEmbeddingLearned(N_steps) else: raise ValueError(f"not supported {args.position_embedding}") return position_embedding
38.489796
103
0.593849
79535e6f9ec8b54d1c30e03a35fae9edea3be7d0
8,583
py
Python
env/lib/python3.8/site-packages/plotly/graph_objs/layout/ternary/aaxis/title/_font.py
acrucetta/Chicago_COVI_WebApp
a37c9f492a20dcd625f8647067394617988de913
[ "MIT", "Unlicense" ]
11,750
2015-10-12T07:03:39.000Z
2022-03-31T20:43:15.000Z
env/lib/python3.8/site-packages/plotly/graph_objs/layout/ternary/aaxis/title/_font.py
acrucetta/Chicago_COVI_WebApp
a37c9f492a20dcd625f8647067394617988de913
[ "MIT", "Unlicense" ]
2,951
2015-10-12T00:41:25.000Z
2022-03-31T22:19:26.000Z
env/lib/python3.8/site-packages/plotly/graph_objs/layout/ternary/aaxis/title/_font.py
acrucetta/Chicago_COVI_WebApp
a37c9f492a20dcd625f8647067394617988de913
[ "MIT", "Unlicense" ]
2,623
2015-10-15T14:40:27.000Z
2022-03-28T16:05:50.000Z
from plotly.basedatatypes import BaseLayoutHierarchyType as _BaseLayoutHierarchyType import copy as _copy class Font(_BaseLayoutHierarchyType): # class properties # -------------------- _parent_path_str = "layout.ternary.aaxis.title" _path_str = "layout.ternary.aaxis.title.font" _valid_props = {"color", "family", "size"} # color # ----- @property def color(self): """ The 'color' property is a color and may be specified as: - A hex string (e.g. '#ff0000') - An rgb/rgba string (e.g. 'rgb(255,0,0)') - An hsl/hsla string (e.g. 'hsl(0,100%,50%)') - An hsv/hsva string (e.g. 'hsv(0,100%,100%)') - A named CSS color: aliceblue, antiquewhite, aqua, aquamarine, azure, beige, bisque, black, blanchedalmond, blue, blueviolet, brown, burlywood, cadetblue, chartreuse, chocolate, coral, cornflowerblue, cornsilk, crimson, cyan, darkblue, darkcyan, darkgoldenrod, darkgray, darkgrey, darkgreen, darkkhaki, darkmagenta, darkolivegreen, darkorange, darkorchid, darkred, darksalmon, darkseagreen, darkslateblue, darkslategray, darkslategrey, darkturquoise, darkviolet, deeppink, deepskyblue, dimgray, dimgrey, dodgerblue, firebrick, floralwhite, forestgreen, fuchsia, gainsboro, ghostwhite, gold, goldenrod, gray, grey, green, greenyellow, honeydew, hotpink, indianred, indigo, ivory, khaki, lavender, lavenderblush, lawngreen, lemonchiffon, lightblue, lightcoral, lightcyan, lightgoldenrodyellow, lightgray, lightgrey, lightgreen, lightpink, lightsalmon, lightseagreen, lightskyblue, lightslategray, lightslategrey, lightsteelblue, lightyellow, lime, limegreen, linen, magenta, maroon, mediumaquamarine, mediumblue, mediumorchid, mediumpurple, mediumseagreen, mediumslateblue, mediumspringgreen, mediumturquoise, mediumvioletred, midnightblue, mintcream, mistyrose, moccasin, navajowhite, navy, oldlace, olive, olivedrab, orange, orangered, orchid, palegoldenrod, palegreen, paleturquoise, palevioletred, papayawhip, peachpuff, peru, pink, plum, powderblue, purple, red, rosybrown, royalblue, rebeccapurple, saddlebrown, salmon, sandybrown, seagreen, seashell, sienna, silver, skyblue, slateblue, slategray, slategrey, snow, springgreen, steelblue, tan, teal, thistle, tomato, turquoise, violet, wheat, white, whitesmoke, yellow, yellowgreen Returns ------- str """ return self["color"] @color.setter def color(self, val): self["color"] = val # family # ------ @property def family(self): """ HTML font family - the typeface that will be applied by the web browser. The web browser will only be able to apply a font if it is available on the system which it operates. Provide multiple font families, separated by commas, to indicate the preference in which to apply fonts if they aren't available on the system. The Chart Studio Cloud (at https://chart- studio.plotly.com or on-premise) generates images on a server, where only a select number of fonts are installed and supported. These include "Arial", "Balto", "Courier New", "Droid Sans",, "Droid Serif", "Droid Sans Mono", "Gravitas One", "Old Standard TT", "Open Sans", "Overpass", "PT Sans Narrow", "Raleway", "Times New Roman". The 'family' property is a string and must be specified as: - A non-empty string Returns ------- str """ return self["family"] @family.setter def family(self, val): self["family"] = val # size # ---- @property def size(self): """ The 'size' property is a number and may be specified as: - An int or float in the interval [1, inf] Returns ------- int|float """ return self["size"] @size.setter def size(self, val): self["size"] = val # Self properties description # --------------------------- @property def _prop_descriptions(self): return """\ color family HTML font family - the typeface that will be applied by the web browser. The web browser will only be able to apply a font if it is available on the system which it operates. Provide multiple font families, separated by commas, to indicate the preference in which to apply fonts if they aren't available on the system. The Chart Studio Cloud (at https://chart-studio.plotly.com or on- premise) generates images on a server, where only a select number of fonts are installed and supported. These include "Arial", "Balto", "Courier New", "Droid Sans",, "Droid Serif", "Droid Sans Mono", "Gravitas One", "Old Standard TT", "Open Sans", "Overpass", "PT Sans Narrow", "Raleway", "Times New Roman". size """ def __init__(self, arg=None, color=None, family=None, size=None, **kwargs): """ Construct a new Font object Sets this axis' title font. Note that the title's font used to be customized by the now deprecated `titlefont` attribute. Parameters ---------- arg dict of properties compatible with this constructor or an instance of :class:`plotly.graph_objs.layout.ternary .aaxis.title.Font` color family HTML font family - the typeface that will be applied by the web browser. The web browser will only be able to apply a font if it is available on the system which it operates. Provide multiple font families, separated by commas, to indicate the preference in which to apply fonts if they aren't available on the system. The Chart Studio Cloud (at https://chart-studio.plotly.com or on- premise) generates images on a server, where only a select number of fonts are installed and supported. These include "Arial", "Balto", "Courier New", "Droid Sans",, "Droid Serif", "Droid Sans Mono", "Gravitas One", "Old Standard TT", "Open Sans", "Overpass", "PT Sans Narrow", "Raleway", "Times New Roman". size Returns ------- Font """ super(Font, self).__init__("font") if "_parent" in kwargs: self._parent = kwargs["_parent"] return # Validate arg # ------------ if arg is None: arg = {} elif isinstance(arg, self.__class__): arg = arg.to_plotly_json() elif isinstance(arg, dict): arg = _copy.copy(arg) else: raise ValueError( """\ The first argument to the plotly.graph_objs.layout.ternary.aaxis.title.Font constructor must be a dict or an instance of :class:`plotly.graph_objs.layout.ternary.aaxis.title.Font`""" ) # Handle skip_invalid # ------------------- self._skip_invalid = kwargs.pop("skip_invalid", False) self._validate = kwargs.pop("_validate", True) # Populate data dict with properties # ---------------------------------- _v = arg.pop("color", None) _v = color if color is not None else _v if _v is not None: self["color"] = _v _v = arg.pop("family", None) _v = family if family is not None else _v if _v is not None: self["family"] = _v _v = arg.pop("size", None) _v = size if size is not None else _v if _v is not None: self["size"] = _v # Process unknown kwargs # ---------------------- self._process_kwargs(**dict(arg, **kwargs)) # Reset skip_invalid # ------------------ self._skip_invalid = False
37.480349
84
0.567401
79535ed1ccd50e1bdb203e7b1c2e87432da63a65
5,485
py
Python
tests/datasets/test_iteration_strategies.py
dk25021999/mmf
218057265a3fc175f656b5ebe8fb44ef5ccca2e9
[ "BSD-3-Clause" ]
1,928
2020-05-07T19:00:53.000Z
2022-03-31T17:02:59.000Z
tests/datasets/test_iteration_strategies.py
dk25021999/mmf
218057265a3fc175f656b5ebe8fb44ef5ccca2e9
[ "BSD-3-Clause" ]
914
2020-05-07T18:36:26.000Z
2022-03-31T05:45:26.000Z
tests/datasets/test_iteration_strategies.py
dk25021999/mmf
218057265a3fc175f656b5ebe8fb44ef5ccca2e9
[ "BSD-3-Clause" ]
490
2020-05-07T20:05:10.000Z
2022-03-31T14:17:23.000Z
# Copyright (c) Facebook, Inc. and its affiliates. import unittest from collections import Counter import numpy as np import torch from mmf.datasets import iteration_strategies from tests.test_utils import NumbersDataset class TestIterationStrategies(unittest.TestCase): NUM_DATALOADERS = 5 def setUp(self): np.random.seed(1234) def _build_dataloaders(self): dataloaders = {} for idx in range(self.NUM_DATALOADERS): dataloaders[f"numbers_{idx}"] = torch.utils.data.DataLoader( dataset=NumbersDataset((idx + 1) * (10 ** idx)), num_workers=0 ) return dataloaders def test_constant_iteration_strategy(self): dataloaders = self._build_dataloaders() strategy = iteration_strategies.ConstantIterationStrategy.from_params( dataloaders=dataloaders ) counter = Counter() count = 100 for _ in range(count): counter[strategy()] += 1 self.assertEqual(counter[0], count) for idx in range(1, self.NUM_DATALOADERS): self.assertEqual(counter[idx], 0) strategy = iteration_strategies.ConstantIterationStrategy.from_params( dataloaders=dataloaders, idx=1 ) counter = Counter() count = 100 for _ in range(count): counter[strategy()] += 1 self.assertEqual(counter[1], count) for idx in range(0, self.NUM_DATALOADERS): if idx != 1: self.assertEqual(counter[idx], 0) def test_round_robin_strategy(self): dataloaders = self._build_dataloaders() strategy = iteration_strategies.RoundRobinIterationStrategy.from_params( dataloaders=dataloaders ) counter = Counter() count = 100 for _ in range(count): counter[strategy()] += 1 for idx in range(0, self.NUM_DATALOADERS): self.assertEqual(counter[idx], count // self.NUM_DATALOADERS) strategy = iteration_strategies.RoundRobinIterationStrategy.from_params( dataloaders=dataloaders, start_idx=2 ) counter = Counter() count = 100 for _ in range(count): counter[strategy()] += 1 for idx in range(0, self.NUM_DATALOADERS): self.assertEqual(counter[idx], count // self.NUM_DATALOADERS) def test_random_strategy(self): dataloaders = self._build_dataloaders() strategy = iteration_strategies.RandomIterationStrategy.from_params( dataloaders=dataloaders ) counter = Counter() count = 10000 for _ in range(count): counter[strategy()] += 1 for idx in range(0, self.NUM_DATALOADERS): self.assertTrue(counter[idx] <= 2100) self.assertTrue(counter[idx] >= 1900) def test_size_proportional_strategy(self): dataloaders = self._build_dataloaders() strategy = iteration_strategies.SizeProportionalIterationStrategy.from_params( dataloaders=dataloaders ) counter = Counter() count = 10000 for _ in range(count): counter[strategy()] += 1 for idx in range(0, self.NUM_DATALOADERS): self.assertTrue(counter[idx] <= 10 ** idx) lower_limit = 10 ** (idx - 1) if idx == 0: lower_limit = 0 self.assertTrue(counter[idx] >= lower_limit) def test_ratios_strategy(self): dataloaders = self._build_dataloaders() sampling_ratios = {} # Constant for idx in range(self.NUM_DATALOADERS): sampling_ratios[f"numbers_{idx}"] = 0 sampling_ratios["numbers_0"] = 1 strategy = iteration_strategies.RatiosIterationStrategy.from_params( dataloaders, sampling_ratios=sampling_ratios ) counter = Counter() count = 10000 for _ in range(count): counter[strategy()] += 1 self.assertEqual(counter[0], count) for idx in range(1, self.NUM_DATALOADERS): self.assertEqual(counter[idx], 0) for idx in range(self.NUM_DATALOADERS): sampling_ratios[f"numbers_{idx}"] = 1.0 / self.NUM_DATALOADERS strategy = iteration_strategies.RatiosIterationStrategy.from_params( dataloaders, sampling_ratios=sampling_ratios ) count = 10000 counter = Counter() for _ in range(count): counter[strategy()] += 1 for idx in range(0, self.NUM_DATALOADERS): self.assertTrue(counter[idx] <= 2100) self.assertTrue(counter[idx] >= 1900) lens = sum(len(loader.dataset) for loader in dataloaders.values()) for idx in range(self.NUM_DATALOADERS): sampling_ratios[f"numbers_{idx}"] = ( len(dataloaders[f"numbers_{idx}"].dataset) / lens ) strategy = iteration_strategies.RatiosIterationStrategy.from_params( dataloaders, sampling_ratios=sampling_ratios ) count = 10000 counter = Counter() for _ in range(count): counter[strategy()] += 1 for idx in range(0, self.NUM_DATALOADERS): self.assertTrue(counter[idx] <= 10 ** idx) lower_limit = 10 ** (idx - 1) if idx == 0: lower_limit = 0 self.assertTrue(counter[idx] >= lower_limit)
32.076023
86
0.606746
79535f80d40456dd7fea9454aae2e12317442684
1,745
py
Python
hermione/module_templates/__IMPLEMENTED_BASE__/src/ml/analysis/vif.py
RodrigoATorres/hermione
6cbed73e309f8025a48f33165d8f29561c6a3cc7
[ "Apache-2.0" ]
183
2020-06-03T22:43:14.000Z
2022-03-17T22:39:07.000Z
hermione/module_templates/__IMPLEMENTED_BASE__/src/ml/analysis/vif.py
RodrigoATorres/hermione
6cbed73e309f8025a48f33165d8f29561c6a3cc7
[ "Apache-2.0" ]
31
2020-06-03T22:55:18.000Z
2022-03-27T20:06:17.000Z
hermione/module_templates/__IMPLEMENTED_BASE__/src/ml/analysis/vif.py
RodrigoATorres/hermione
6cbed73e309f8025a48f33165d8f29561c6a3cc7
[ "Apache-2.0" ]
43
2020-06-03T22:45:03.000Z
2021-12-29T19:43:54.000Z
import pandas as pd from statsmodels.stats.outliers_influence import variance_inflation_factor class VIF: @classmethod def analyze(cls, df: pd.DataFrame, thresh=5.0, verbose=True): """ Multicollinearity analysis Parameters ---------- df : pd.DataFrame Dataframe must have the following columns (x, y, cluster) thresh : int value of cut verbose : bool if true prints possible variables to be removed Return ------- pd.DataFrame """ variables = list(range(df.shape[1])) dropped = True while dropped: dropped = False vif = [variance_inflation_factor(df.iloc[:, variables].values, ix) for ix in range(df.iloc[:, variables].shape[1])] maxloc = vif.index(max(vif)) if max(vif) > thresh: m = max(vif) index_max = [i for i, j in enumerate(vif) if j == m] if verbose: cols_possibles_remove = [str(df.iloc[:, variables].columns[i]) for i in index_max] print("Columns that can be removed -> " + ", ".join(cols_possibles_remove)) print("------") print('dropping \'' + str(df.iloc[:, variables].columns[maxloc]) + '\' at index: ' + str(maxloc)) print("_____________________________________________________________") del variables[maxloc] dropped = True print('Remaining variables:') print(df.columns[variables]) return df.iloc[:, variables]
36.354167
102
0.515186
795360402ea609c7975d15f20573afd238cdcea1
1,661
py
Python
src/harrastuspassi/harrastuspassi/management/commands/import_categories_from_owl.py
seitztimo/harrastuspassi-backend
6933471de644344e1a845e44859112c5b92b0ced
[ "MIT" ]
null
null
null
src/harrastuspassi/harrastuspassi/management/commands/import_categories_from_owl.py
seitztimo/harrastuspassi-backend
6933471de644344e1a845e44859112c5b92b0ced
[ "MIT" ]
null
null
null
src/harrastuspassi/harrastuspassi/management/commands/import_categories_from_owl.py
seitztimo/harrastuspassi-backend
6933471de644344e1a845e44859112c5b92b0ced
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- from django.core.management.base import BaseCommand from owlready2 import get_ontology from harrastuspassi.models import HobbyCategory ROOT_CLASS_LABEL = 'Harrastusmuoto' class Command(BaseCommand): def add_arguments(self, parser): parser.add_argument('path_to_owl_file') def handle(self, *args, **options): ontology = get_ontology(options['path_to_owl_file']).load() root_class = ontology.search_one(label=ROOT_CLASS_LABEL) self.depth = 0 self.add_subclasses_as_categories(root_class) def add_subclasses_as_categories(self, parent_class, parent_hobby_category=None): for subclass in parent_class.subclasses(): [origin_id] = subclass.identifier or [''] if not origin_id: data_source = '' else: data_source = 'yso' labels = subclass.label name_fi, name_sv, name_en = '', '', '' for label in labels: label_lang = getattr(label, 'lang', 'fi') if label_lang == 'fi': name_fi = label elif label_lang == 'sv': name_sv = label elif label_lang == 'en': name_en = label hobby_category, created = HobbyCategory.objects.update_or_create( name_fi=name_fi, parent=parent_hobby_category, defaults={ 'name_sv': name_sv, 'name_en': name_en, 'data_source': data_source, 'origin_id': origin_id } ) indent = '--' * self.depth self.stdout.write(f'{indent}fi_{name_fi}, sv_{name_sv}, en_{name_en}') self.depth += 1 self.add_subclasses_as_categories(subclass, hobby_category) self.depth -= 1
30.2
83
0.646598
795361279438202e862092ff8650d6a835678b33
1,610
py
Python
experimenting/temp_contour.py
Shom770/data-science-projects
a85ef8c73fbee66ac060414716e2b0440772f07f
[ "MIT" ]
null
null
null
experimenting/temp_contour.py
Shom770/data-science-projects
a85ef8c73fbee66ac060414716e2b0440772f07f
[ "MIT" ]
null
null
null
experimenting/temp_contour.py
Shom770/data-science-projects
a85ef8c73fbee66ac060414716e2b0440772f07f
[ "MIT" ]
null
null
null
import logging import cartopy.crs as ccrs import cartopy.feature as cfeature import numpy as np import matplotlib.pyplot as plt from netCDF4 import Dataset logging.basicConfig() logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) data_nam = Dataset( ( f"http://nomads.ncep.noaa.gov/dods/gfs_0p25/" f"gfs20220423/gfs_0p25_12z" ) ) logger.info("Loaded NAM dataset") lons = data_nam.variables["lon"][:] print(lons) lats = data_nam.variables["lat"][:] extent = (-80, -74, 37, 40) slo, elo = extent[:2] sla, ela = extent[2:] fig: plt.Figure = plt.figure() ax: plt.Axes = fig.add_subplot(1, 1, 1, projection=ccrs.PlateCarree()) ax.set_extent(extent) ax.add_feature(cfeature.LAND.with_scale("10m")) ax.add_feature(cfeature.OCEAN.with_scale("10m")) ax.add_feature(cfeature.STATES.with_scale("10m")) home_lat = np.where( np.logical_and(np.greater_equal(lats, sla), np.less_equal(lats, ela)) )[0] all_lats = np.array([lats[lat] for lat in home_lat]) home_lon = np.where( np.logical_and(np.greater_equal(lons, slo), np.less_equal(lons, elo)) )[0] all_lons = np.array([lons[lon] for lon in home_lon]) temp_nam = data_nam.variables["crainsfc"][84 / 3] temps = np.array([[temp_nam[lat, lon] for lon in home_lon] for lat in home_lat]) lons_, lats_ = np.meshgrid(all_lons, all_lats) levels = [0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 1, 2, 3, 4, 5] ticks = levels CS = ax.contourf(lons_, lats_, temps, transform=ccrs.PlateCarree(), levels=levels, cmap="coolwarm") ax.set_title("Temperature on April 15th at 21z") fig.colorbar(CS, ticks=ticks, location="bottom") plt.show()
25.967742
99
0.71118
7953613457162000ddcb7706afba1589d8f2a194
12,710
py
Python
tests/test_build.py
jpmckinney/pydata-sphinx-theme
f54466a646cbc084bd1bb4dacb3f3b196598b495
[ "BSD-3-Clause" ]
1
2021-06-25T03:15:26.000Z
2021-06-25T03:15:26.000Z
tests/test_build.py
jpmckinney/pydata-sphinx-theme
f54466a646cbc084bd1bb4dacb3f3b196598b495
[ "BSD-3-Clause" ]
10
2021-04-16T17:45:06.000Z
2021-06-26T20:59:17.000Z
tests/test_build.py
jpmckinney/pydata-sphinx-theme
f54466a646cbc084bd1bb4dacb3f3b196598b495
[ "BSD-3-Clause" ]
1
2021-04-16T19:48:45.000Z
2021-04-16T19:48:45.000Z
import os from pathlib import Path from shutil import copytree from bs4 import BeautifulSoup from sphinx.testing.util import SphinxTestApp from sphinx.testing.path import path as sphinx_path import sphinx.errors import pytest path_tests = Path(__file__).parent class SphinxBuild: def __init__(self, app: SphinxTestApp, src: Path): self.app = app self.src = src def build(self): self.app.build() assert self.warnings == "", self.status return self @property def status(self): return self.app._status.getvalue() @property def warnings(self): return self.app._warning.getvalue() @property def outdir(self): return Path(self.app.outdir) def html_tree(self, *path): path_page = self.outdir.joinpath(*path) if not path_page.exists(): raise ValueError(f"{path_page} does not exist") return BeautifulSoup(path_page.read_text("utf8"), "html.parser") @pytest.fixture() def sphinx_build_factory(make_app, tmp_path): def _func(src_folder, **kwargs): copytree(path_tests / "sites" / src_folder, tmp_path / src_folder) app = make_app( srcdir=sphinx_path(os.path.abspath((tmp_path / src_folder))), **kwargs ) return SphinxBuild(app, tmp_path / src_folder) yield _func def test_build_html(sphinx_build_factory, file_regression): """Test building the base html template and config.""" sphinx_build = sphinx_build_factory("base") # type: SphinxBuild # Basic build with defaults sphinx_build.build() assert (sphinx_build.outdir / "index.html").exists(), sphinx_build.outdir.glob("*") index_html = sphinx_build.html_tree("index.html") subpage_html = sphinx_build.html_tree("section1/index.html") # Navbar structure navbar = index_html.select("div#navbar-center")[0] file_regression.check(navbar.prettify(), basename="navbar_ix", extension=".html") # Sidebar structure sidebar = index_html.select(".bd-sidebar")[0] file_regression.check(sidebar.prettify(), basename="sidebar_ix", extension=".html") # Sidebar subpage sidebar = subpage_html.select(".bd-sidebar")[0] file_regression.check( sidebar.prettify(), basename="sidebar_subpage", extension=".html" ) def test_toc_visibility(sphinx_build_factory): # Test that setting TOC level visibility works as expected confoverrides = { "html_theme_options.show_toc_level": 2, } sphinx_build = sphinx_build_factory("base", confoverrides=confoverrides).build() index_html = sphinx_build.html_tree("index.html") # The 3rd level headers should be visible, but not the fourth-level assert "visible" in index_html.select(".toc-h2 ul")[0].attrs["class"] assert "visible" not in index_html.select(".toc-h3 ul")[0].attrs["class"] def test_logo(sphinx_build_factory): """Test that the logo is shown by default, project title if no logo.""" sphinx_build = sphinx_build_factory("base").build() # By default logo is shown index_html = sphinx_build.html_tree("index.html") assert index_html.select(".navbar-brand img") assert not index_html.select(".navbar-brand")[0].text.strip() def test_logo_name(sphinx_build_factory): """Test that the logo is shown by default, project title if no logo.""" confoverrides = {"html_logo": ""} sphinx_build = sphinx_build_factory("base", confoverrides=confoverrides).build() # if no logo is specified, use project title instead index_html = sphinx_build.html_tree("index.html") assert "PyData Tests" in index_html.select(".navbar-brand")[0].text.strip() def test_favicons(sphinx_build_factory): """Test that arbitrary favicons are included.""" html_theme_options_favicons = { "favicons": [ { "rel": "icon", "sizes": "16x16", "href": "https://secure.example.com/favicon/favicon-16x16.png", }, { "rel": "icon", "sizes": "32x32", "href": "favicon-32x32.png", }, { "rel": "apple-touch-icon", "sizes": "180x180", "href": "apple-touch-icon-180x180.png", }, ] } confoverrides = {"html_theme_options": html_theme_options_favicons} sphinx_build = sphinx_build_factory("base", confoverrides=confoverrides).build() index_html = sphinx_build.html_tree("index.html") icon_16 = ( '<link href="https://secure.example.com/favicon/favicon-16x16.png" ' 'rel="icon" sizes="16x16"/>' ) icon_32 = '<link href="_static/favicon-32x32.png" rel="icon" sizes="32x32"/>' icon_180 = ( '<link href="_static/apple-touch-icon-180x180.png" ' 'rel="apple-touch-icon" sizes="180x180"/>' ) assert icon_16 in str(index_html.select("head")[0]) assert icon_32 in str(index_html.select("head")[0]) assert icon_180 in str(index_html.select("head")[0]) def test_sidebar_default(sphinx_build_factory): """The sidebar is shrunk when no sidebars specified in html_sidebars.""" sphinx_build = sphinx_build_factory("base").build() index_html = sphinx_build.html_tree("page1.html") assert "col-md-3" in index_html.select(".bd-sidebar")[0].attrs["class"] def test_sidebar_disabled(sphinx_build_factory): """The sidebar is shrunk when no sidebars specified in html_sidebars.""" confoverrides = {"html_sidebars.page1": ""} sphinx_build = sphinx_build_factory("base", confoverrides=confoverrides).build() index_html = sphinx_build.html_tree("page1.html") assert "col-md-1" in index_html.select(".bd-sidebar")[0].attrs["class"] def test_navbar_align_default(sphinx_build_factory): """The navbar items align with the proper part of the page.""" sphinx_build = sphinx_build_factory("base").build() index_html = sphinx_build.html_tree("index.html") assert "col-lg-9" in index_html.select("div#navbar-collapsible")[0].attrs["class"] def test_navbar_align_right(sphinx_build_factory): """The navbar items align with the proper part of the page.""" confoverrides = {"html_theme_options.navbar_align": "right"} sphinx_build = sphinx_build_factory("base", confoverrides=confoverrides).build() # Both the column alignment and the margin should be changed index_html = sphinx_build.html_tree("index.html") assert "col-lg-9" not in index_html.select("div#navbar-center")[0].attrs["class"] assert "ml-auto" in index_html.select("div#navbar-center")[0].attrs["class"] def test_navbar_no_in_page_headers(sphinx_build_factory, file_regression): # https://github.com/pydata/pydata-sphinx-theme/issues/302 sphinx_build = sphinx_build_factory("test_navbar_no_in_page_headers").build() index_html = sphinx_build.html_tree("index.html") navbar = index_html.select("ul#navbar-main-elements")[0] file_regression.check(navbar.prettify(), extension=".html") def test_sidebars_captions(sphinx_build_factory, file_regression): sphinx_build = sphinx_build_factory("sidebars").build() subindex_html = sphinx_build.html_tree("section1/index.html") # Sidebar structure with caption sidebar = subindex_html.select("nav#bd-docs-nav")[0] file_regression.check(sidebar.prettify(), extension=".html") def test_sidebars_nested_page(sphinx_build_factory, file_regression): sphinx_build = sphinx_build_factory("sidebars").build() subindex_html = sphinx_build.html_tree("section1/subsection1/page1.html") # For nested (uncollapsed) page, the label included `checked=""` sidebar = subindex_html.select("nav#bd-docs-nav")[0] file_regression.check(sidebar.prettify(), extension=".html") def test_sidebars_single(sphinx_build_factory, file_regression): confoverrides = {"templates_path": ["_templates_single_sidebar"]} sphinx_build = sphinx_build_factory("sidebars", confoverrides=confoverrides).build() index_html = sphinx_build.html_tree("index.html") # No navbar included assert not index_html.select("nav#navbar-main") assert not index_html.select(".navbar-nav") # Sidebar structure sidebar = index_html.select("nav#bd-docs-nav")[0] file_regression.check(sidebar.prettify(), extension=".html") def test_sidebars_level2(sphinx_build_factory, file_regression): confoverrides = {"templates_path": ["_templates_sidebar_level2"]} sphinx_build = sphinx_build_factory("sidebars", confoverrides=confoverrides).build() subindex_html = sphinx_build.html_tree("section1/subsection1/index.html") # Sidebar structure sidebar = subindex_html.select("nav#bd-docs-nav")[0] file_regression.check(sidebar.prettify(), extension=".html") def test_included_toc(sphinx_build_factory): """Test that Sphinx project containing TOC (.. toctree::) included via .. include:: can be successfully built. """ # Regression test for bug resolved in #347. # Tests mainly makes sure that the sphinx_build.build() does not raise exception. # https://github.com/pydata/pydata-sphinx-theme/pull/347 sphinx_build = sphinx_build_factory("test_included_toc").build() included_page_html = sphinx_build.html_tree("included-page.html") assert included_page_html is not None # html contexts for `show_edit_button` # these are "good" context fragements that should yield a working link good_edits = [ [ { "github_user": "foo", "github_repo": "bar", "github_version": "HEAD", "doc_path": "docs", }, "https://github.com/foo/bar/edit/HEAD/docs/index.rst", ], [ { "gitlab_user": "foo", "gitlab_repo": "bar", "gitlab_version": "HEAD", "doc_path": "docs", }, "https://gitlab.com/foo/bar/-/edit/HEAD/docs/index.rst", ], [ { "bitbucket_user": "foo", "bitbucket_repo": "bar", "bitbucket_version": "HEAD", "doc_path": "docs", }, "https://bitbucket.org/foo/bar/src/HEAD/docs/index.rst?mode=edit", ], ] # copy the "good" ones, ensure `doc_path` is agnostic to trailing slashes slash_edits = [ [ { # add slashes to doc_path: key: f"{value}/" if key == "doc_path" else value for key, value in html_context.items() }, # the URL does not change url, ] for html_context, url in good_edits ] # copy the "good" ones, provide a `<whatever>_url` based off the default providers = [ [ dict( # copy all the values **html_context, # add a provider url **{f"{provider}_url": f"https://{provider}.example.com"}, ), f"""https://{provider}.example.com/foo/{url.split("/foo/")[1]}""", ] for html_context, url in good_edits for provider in ["gitlab", "bitbucket", "github"] if provider in url ] # missing any of the values should fail bad_edits = [ [ { # copy all the values key: value for key, value in html_context.items() # but not `<provider>_version` if "_version" not in key }, None, ] for html_context, url in good_edits ] # a good custom URL template good_custom = [ [ { "edit_page_url_template": ( "https://dvcs.example.com/foo/bar/edit/HEAD/{{ file_name }}" ) }, "https://dvcs.example.com/foo/bar/edit/HEAD/index.rst", ] ] # a bad custom URL template bad_custom = [ [ # it's missing a reference to {{ file_name }} {"edit_page_url_template": "http://has-no-file-name"}, None, ] ] all_edits = [ *good_edits, *slash_edits, *bad_edits, *good_custom, *bad_custom, *providers, ] @pytest.mark.parametrize("html_context,edit_url", all_edits) def test_edit_page_url(sphinx_build_factory, html_context, edit_url): confoverrides = { "html_theme_options.use_edit_page_button": True, "html_context": html_context, } sphinx_build = sphinx_build_factory("base", confoverrides=confoverrides) if edit_url is None: with pytest.raises(sphinx.errors.ThemeError): sphinx_build.build() return sphinx_build.build() index_html = sphinx_build.html_tree("index.html") edit_link = index_html.select(".editthispage a") assert edit_link, "no edit link found" assert edit_link[0].attrs["href"] == edit_url, f"edit link didn't match {edit_link}"
32.757732
88
0.660346
79536246380a091f74e2df341bf9b605acc8dc5b
108,439
py
Python
cvpysdk/job.py
Jayesh-Jain/SDK
5fe5130b1eeacad9944ba34714e583c6c743482f
[ "Apache-2.0" ]
null
null
null
cvpysdk/job.py
Jayesh-Jain/SDK
5fe5130b1eeacad9944ba34714e583c6c743482f
[ "Apache-2.0" ]
null
null
null
cvpysdk/job.py
Jayesh-Jain/SDK
5fe5130b1eeacad9944ba34714e583c6c743482f
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # pylint: disable=W0104, R0205, R1710 # -------------------------------------------------------------------------- # Copyright Commvault Systems, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # -------------------------------------------------------------------------- """Main file for performing operations on a job. JobController: Class for managing jobs on this commcell JobManagement: Class for performing Job Management operations Job: Class for keeping track of a job and perform various operations on it. JobController ============= __init__(commcell_object) -- initializes the instance of JobController class associated with the specified commcell __str__() -- returns the string representation of the active jobs on this commcell __repr__() -- returns the string representation of the object of this class, with the commcell it is associated with _get_jobs_list() -- executes the request, and parses and returns the jobs response _get_jobs_request_json(**options) -- Returns the request json for the jobs request _modify_all_jobs(operation_type=None) -- executes a request on the server to suspend/resume/kill all the jobs on the commserver. all_jobs() -- returns all the jobs on this commcell active_jobs() -- returns the dict of active jobs and their details finished_jobs() -- retutns the dict of finished jobs and their details get() -- returns the Job class instance for the given job id kill_all_jobs() -- Kills all jobs on the commcell resume_all_jobs() -- Resumes all jobs on the commcell suspend_all_jobs() -- Suspends all jobs on the commcell JobManagement ============== __init__(commcell_object) -- initialise object of the JobManagement class _set_jobmanagement_settings() -- sets the jobmanagement settings _refresh() -- refresh the job management settings set_general_settings(settings) -- sets the general settings of job management set_priority_settings(settings) -- sets the priority settings of job management set_restart_settings(settings) -- sets the restart settings of job management set_update_settings(settings) -- sets the update settings of job management job_priority_precedence -- gets the job priority precedence job_priority_precedence(priority_type) -- sets the job priority precedence property start_phase_retry_interval -- gets the start phase retry interval in (minutes) start_phase_retry_interval(minutes) -- sets the start phase retry interval property state_update_interval_for_continuous_data_replicator -- gets the start phase retry interval in (minutes) state_update_interval_for_continuous_data_replicator(minutes) -- sets the state update interval for continuous data replicator allow_running_jobs_to_complete_past_operation_window -- gets the allow running jobs to complete past operation window(True/False) allow_running_jobs_to_complete_past_operation_window(flag) -- sets the allow running jobs to complete past operation window job_alive_check_interval_in_minutes -- gets the job alive check interval in (minutes) job_alive_check_interval_in_minutes(minutes) -- sets the job alive check interval in minutes queue_scheduled_jobs -- gets the queue scheduled jobs(True/False) queue_scheduled_jobs(flags) -- sets the queue scheduled jobs enable_job_throttle_at_client_level -- gets the enable job throttle at client level (True/False) enable_job_throttle_at_client_level(flag) -- sets the enable job throttle at client level enable_multiplexing_for_db_agents -- gets the enable multiplexing for db agents (True/False) enable_multiplexing_for_db_agents(flag) -- sets the enable multiplexing for db agents queue_jobs_if_conflicting_jobs_active -- gets the queue jobs if conflicting jobs active (True/False) queue_jobs_if_conflicting_jobs_active(flag) -- sets the queue jobs if conflicting jobs active queue_jobs_if_activity_disabled -- gets the queue jobs if activity disabled (True/False) queue_jobs_if_activity_disabled(flag) -- sets the queue jobs if activity disabled backups_preempts_auxilary_copy -- gets the backups preempts auxilary copy (True/False) backups_preempts_auxilary_copy(flag) -- sets the backups preempts auxilary copy restore_preempts_other_jobs -- gets the restore preempts other jobs (True/False) restore_preempts_other_jobs(flag) -- sets the restore preempts other jobs enable_multiplexing_for_oracle -- gets the enable multiplexing for oracle (True/False) enable_multiplexing_for_oracle(flag) -- sets the enable multiplexing for oracle job_stream_high_water_mark_level -- gets the job stream high water mark level job_stream_high_water_mark_level(level) -- sets the job stream high water mark level backups_preempts_other_backups -- gets the backups preempts other backups (True/False) backups_preempts_other_backups(flag) -- sets the backups preempts other backups do_not_start_backups_on_disabled_client -- gets the do not start backups on disabled client(True/False) do_not_start_backups_on_disabled_client(flag) -- sets the do not start backups on disabled client get_restart_setting(jobtype) -- gets the restart settings of a specific jobtype get_priority_setting(jobtype) -- gets the priority setting of a specific jobtype get_update_setting(jobtype) -- gets the update settings of a specific jobtype get_restart_settings -- gets the restart settings of job management get_priority_settings -- gets the priority settings of job management get_update_settings -- gets the update settings of job management Job === __init__() -- initializes the instance of Job class associated with the specified commcell of job with id: 'job_id' __repr__() -- returns the string representation of the object of this class, with the job id it is associated with _is_valid_job() -- checks if the job with the given id is a valid job or not _get_job_summary() -- gets the summary of the job with the given job id _get_job_details() -- gets the details of the job with the given job id _initialize_job_properties()-- initializes the properties of the job _wait_for_status() -- waits for 2 minutes or till the job status is changed to given status, whichever is earlier wait_for_completion() -- waits for the job to finish, (job.is_finished == True) is_finished() -- checks for the status of the job. Returns True if finished, else False pause() -- suspend the job resume() -- resumes the job resubmit() -- to resubmit the job kill() -- kills the job refresh() -- refresh the properties of the Job advanced_job_details() -- Returns advanced properties for the job Job instance Attributes ----------------------- **job.is_finished** -- specifies whether the job is finished or not (True / False) **job.client_name** -- returns the name of the client, job is running for **job.agent_name** -- returns the name of the agent, job is running for **job.instance_name** -- returns the name of the instance, job is running for **job.backupset_name** -- returns the name of the backupset, job is running for **job.subclient_name** -- returns the name of the subclient, job is running for **job.status** -- returns the current status of the job (Completed / Suspended / Waiting / ... / etc.) **job.job_id** -- returns the id of the job **job.job_type** -- returns the type of the job **job.backup_level** -- returns the backup level (if applicable), otherwise None **job.start_time** -- returns the start time of the job **job.end_time** -- returns the end time of the job **job.delay_reason** -- reason why the job was delayed **job.pending_reason** -- reason if job went into pending state **job.phase** -- returns the current phase of the job **job.summary** -- returns the dictionary consisting of the full summary of the job **job.username** -- returns the username with which the job started **job.userid** -- returns the userid with which the job started **job.details** -- returns the dictionary consisting of the full details of the job **job.num_of_files_transferred** -- returns the current number of files transferred for the job. **job.state** -- returns the current state of the job. ErrorRule ========= _get_xml_for_rule() -- Returns the XML for a given rule's dictionary of key value pairs. add_error_rule() -- Add new error rules as well as update existing rules. _modify_job_status_on_errors() -- Internally used to enable or disable job status on errors. enable() -- Enable an error rule for a specific iDA using _modify_job_status_on_errors. disable() -- Disable an error rule for a specific iDA using _modify_job_status_on_errors. """ from __future__ import absolute_import from __future__ import unicode_literals import time import copy from .exception import SDKException from .constants import AdvancedJobDetailType, ApplicationGroup class JobController(object): """Class for controlling all the jobs associated with the commcell.""" def __init__(self, commcell_object): """Initialize instance of the JobController class to get the details of Commcell Jobs. Args: commcell_object (object) -- instance of Commcell class to get the jobs of Returns: None """ self._commcell_object = commcell_object self._cvpysdk_object = commcell_object._cvpysdk_object self._services = commcell_object._services self._update_response_ = commcell_object._update_response_ def __str__(self): """Representation string consisting of all active jobs on this commcell. Returns: str - string of all the active jobs on this commcell """ jobs_dict = self.active_jobs() representation_string = '{:^5}\t{:^25}\t{:^20}\t{:^20}\t{:^20}\t{:^20}\t{:^20}\n\n'.format( 'Job ID', 'Operation', 'Status', 'Agent type', 'Job type', 'Progress', 'Pending Reason' ) for job in jobs_dict: sub_str = '{:^5}\t{:25}\t{:20}\t{:20}\t{:20}\t{:20}%\t{:^20}\n'.format( job, jobs_dict[job]['operation'], jobs_dict[job]['status'], jobs_dict[job]['app_type'], jobs_dict[job]['job_type'], jobs_dict[job]['percent_complete'], jobs_dict[job]['pending_reason'] ) representation_string += sub_str return representation_string.strip() def __repr__(self): """Representation string for the instance of the JobController class.""" return "JobController class instance for Commcell: '{0}'".format( self._commcell_object.commserv_name ) def _get_jobs_request_json(self, **options): """Returns the request json for the jobs request Args: options (dict) -- dict of key-word arguments Available Options: category (str) -- category name for which the list of jobs are to be retrieved Valid Values: - ALL - ACTIVE - FINISHED default: ALL limit (int) -- total number of jobs list that are to be returned default: 20 lookup_time (int) -- list of jobs to be retrieved which are specified hours older default: 5 hours show_aged_job (bool) -- boolean specifying whether to include aged jobs in the result or not default: False clients_list (list) -- list of clients to return the jobs for default: [] job_type_list (list) -- list of job operation types default: [] Returns: dict - request json that is to be sent to server """ job_list_category = { 'ALL': 0, 'ACTIVE': 1, 'FINISHED': 2 } for client in options.get('clients_list', []): if not self._commcell_object.clients.has_client(client): raise SDKException('Job', '102', 'No client with name {0} exists.'.format(client)) request_json = { "scope": 1, "category": job_list_category[options.get('category', 'ALL')], "pagingConfig": { "sortDirection": 1, "offset": 0, "sortField": "jobId", "limit": options.get('limit', 20) }, "jobFilter": { "completedJobLookupTime": int(options.get('lookup_time', 5) * 60 * 60), "showAgedJobs": options.get('show_aged_jobs', False), "clientList": [ { "clientId": int(self._commcell_object.clients.all_clients[client.lower()]['id']) } for client in options.get('clients_list', []) ], "jobTypeList": [ job_type for job_type in options.get('job_type_list', []) ] } } return request_json def _get_jobs_list(self, **options): """Executes a request on the server to get the list of jobs. Args: request_json (dict) -- request that is to be sent to server Returns: dict - dict containing details about all the retrieved jobs Raises: SDKException: if response is empty if response is not success """ request_json = self._get_jobs_request_json(**options) flag, response = self._cvpysdk_object.make_request( 'POST', self._services['ALL_JOBS'], request_json ) jobs_dict = {} if flag: try: if response.json(): if 'jobs' in response.json(): all_jobs = response.json()['jobs'] for job in all_jobs: if 'jobSummary' in job and job['jobSummary']['isVisible'] is True: job_summary = job['jobSummary'] job_id = job_summary['jobId'] if options.get('job_summary', '').lower() == 'full': jobs_dict[job_id] = job_summary else: status = job_summary['status'] operation = job_summary['localizedOperationName'] percent_complete = job_summary['percentComplete'] backup_level = job_summary.get('backupLevelName') app_type = '' job_type = '' pending_reason = '' subclient_id = '' if 'appTypeName' in job_summary: app_type = job_summary['appTypeName'] if 'jobType' in job_summary: job_type = job_summary['jobType'] if 'pendingReason' in job_summary: pending_reason = job_summary['pendingReason'] if 'subclient' in job_summary: job_subclient = job_summary['subclient'] if 'subclientId' in job_subclient: subclient_id = job_subclient['subclientId'] jobs_dict[job_id] = { 'operation': operation, 'status': status, 'app_type': app_type, 'job_type': job_type, 'percent_complete': percent_complete, 'pending_reason': pending_reason, 'subclient_id': subclient_id, 'backup_level': backup_level } return jobs_dict else: raise SDKException('Response', '102') except ValueError: raise SDKException('Response', '102', 'Please check the inputs.') else: response_string = self._update_response_(response.text) raise SDKException('Response', '101', response_string) def _modify_all_jobs(self, operation_type=None): """ Executes a request on the server to suspend/resume/kill all the jobs on the commserver Args: operation_type (str) -- All jobs on commcell will be changed to this state. Options: suspend/resume/kill Returns: None Raises: SDKException: - Invalid input is passed to the module - Failed to execute the api to modify jobs - Response is incorrect """ job_map = { 'suspend': 'JOB_SUSPEND', 'resume': 'JOB_RESUME', 'kill': 'JOB_KILL' } if operation_type not in job_map: raise SDKException('Job', '102', 'Invalid input') request_json = { "JobManager_PerformMultiCellJobOpReq": { "jobOpReq": { "operationType": job_map[operation_type] }, "message": "ALL_JOBS", "operationDescription": "All jobs" } } response = self._commcell_object._qoperation_execute(request_json) if 'error' in response: error_code = response['error'].get('errorCode') if error_code != 0: if 'errLogMessage' in response['error']: error_message = "Failed to {0} all jobs with error: [{1}]".format( operation_type, response['error']['errLogMessage'] ) raise SDKException( 'Job', '102', 'Error Code:"{0}"\nError Message: "{1}"'.format(error_code, error_message) ) else: raise SDKException('Job', '102', "Failed to {0} all jobs".format(operation_type)) else: raise SDKException('Response', '102') def all_jobs(self, client_name=None, lookup_time=5, job_filter=None, **options): """Returns the dict consisting of all the jobs executed on the Commcell within the number of hours specified in lookup time value. Args: client_name (str) -- name of the client to filter out the jobs for default: None, get all the jobs lookup_time (int) -- get all the jobs executed within the number of hours default: 5 Hours job_filter (str) -- type of jobs to filter for multiple filters, give the values **comma(,)** separated List of Possible Values: Backup Restore AUXCOPY WORKFLOW etc.. http://documentation.commvault.com/commvault/v11/article?p=features/rest_api/operations/get_job.htm to get the complete list of filters available default: None options (dict) -- dict of key-word arguments Available Options: limit (int) -- total number of jobs list that are to be returned default: 20 show_aged_job (bool) -- boolean specifying whether to include aged jobs in the result or not default: False clients_list (list) -- list of clients to return the jobs for default: [] job_type_list (list) -- list of job operation types default: [] job_summary (str) -- To return the basic job summary or full job summary default: basic accepted values: ['basic', 'full'] Returns: dict - dictionary consisting of the job IDs matching the given criteria as the key, and their details as its value Raises: SDKException: if client name is given, and no client exists with the given name """ options['category'] = 'ALL' options['lookup_time'] = lookup_time if job_filter: options['job_type_list'] = options.get('job_type_list', []) + job_filter.split(',') if client_name: options['clients_list'] = options.get('clients_list', []) + [client_name] return self._get_jobs_list(**options) def active_jobs(self, client_name=None, lookup_time=1, job_filter=None, **options): """Returns the dict consisting of all the active jobs currently being executed on the Commcell within the number of hours specified in lookup time value. Args: client_name (str) -- name of the client to filter out the jobs for default: None, get all the jobs lookup_time (int) -- get all the jobs executed within the number of hours default: 1 Hour(s) job_filter (str) -- type of jobs to filter for multiple filters, give the values **comma(,)** separated List of Possible Values: Backup Restore AUXCOPY WORKFLOW etc.. http://documentation.commvault.com/commvault/v11/article?p=features/rest_api/operations/get_job.htm to get the complete list of filters available default: None options (dict) -- dict of key-word arguments Available Options: limit (int) -- total number of jobs list that are to be returned default: 20 show_aged_job (bool) -- boolean specifying whether to include aged jobs in the result or not default: False clients_list (list) -- list of clients to return the jobs for default: [] job_type_list (list) -- list of job operation types default: [] job_summary (str) -- To return the basic job summary or full job summary default: basic accepted values: ['basic', 'full'] Returns: dict - dictionary consisting of the job IDs matching the given criteria as the key, and their details as its value Raises: SDKException: if client name is given, and no client exists with the given name """ options['category'] = 'ACTIVE' options['lookup_time'] = lookup_time if job_filter: options['job_type_list'] = options.get('job_type_list', []) + job_filter.split(',') if client_name: options['clients_list'] = options.get('clients_list', []) + [client_name] return self._get_jobs_list(**options) def finished_jobs(self, client_name=None, lookup_time=24, job_filter=None, **options): """Returns the dict consisting of all the finished jobs on the Commcell within the number of hours specified in lookup time value. Args: client_name (str) -- name of the client to filter out the jobs for default: None, get all the jobs ir-respective of client lookup_time (int) -- get all the jobs executed within the number of hours default: 24 Hours job_filter (str) -- type of jobs to filter for multiple filters, give the values **comma(,)** separated List of Possible Values: Backup Restore AUXCOPY WORKFLOW etc.. http://documentation.commvault.com/commvault/v11/article?p=features/rest_api/operations/get_job.htm to get the complete list of filters available default: None options (dict) -- dict of key-word arguments Available Options: limit (int) -- total number of jobs list that are to be returned default: 20 show_aged_job (bool) -- boolean specifying whether to include aged jobs in the result or not default: False clients_list (list) -- list of clients to return the jobs for default: [] job_type_list (list) -- list of job operation types default: [] job_summary (str) -- To return the basic job summary or full job summary default: basic accepted values: ['basic', 'full'] Returns: dict - dictionary consisting of the job IDs matching the given criteria as the key, and their details as its value Raises: SDKException: if client name is given, and no client exists with the given name """ options['category'] = 'FINISHED' options['lookup_time'] = lookup_time if job_filter: options['job_type_list'] = options.get('job_type_list', []) + job_filter.split(',') if client_name: options['clients_list'] = options.get('clients_list', []) + [client_name] return self._get_jobs_list(**options) def suspend_all_jobs(self): """ Suspends all the jobs on the commserver """ self._modify_all_jobs('suspend') def resume_all_jobs(self): """ Resumes all the jobs on the commserver """ self._modify_all_jobs('resume') def kill_all_jobs(self): """ Kills all the jobs on the commserver """ self._modify_all_jobs('kill') def get(self, job_id): """Returns the job object for the given job id. Args: job_id (int) -- id of the job to create Job class instance for Returns: object - Job class object for the given job id Raises: SDKException: if no job with specified job id exists """ return Job(self._commcell_object, job_id) class JobManagement(object): """Class for performing job management operations. """ def __init__(self, commcell_object): """ Initialize instance of JobManagement class for performing operations on jon management settings. Args: commcell_object (object) -- instance of Commcell class. Returns: None """ self._comcell = commcell_object self._service = commcell_object._services.get('JOB_MANAGEMENT_SETTINGS') self._cvpysdk_object = commcell_object._cvpysdk_object self._error_rules = None self.refresh() @property def error_rules(self): if not self._error_rules: self._error_rules = _ErrorRule(self._comcell) return self._error_rules def _set_jobmanagement_settings(self): """ Executes a request on the server, to set the job management settings. Returns: None Raises: SDKException: if given inputs are invalid """ flag, response = self._cvpysdk_object.make_request(method='POST', url=self._service, payload=self._settings_dict) if flag: if response and response.json(): if response.json().get('errorCode', 0) != 0: raise SDKException('Job', '102', 'Failed to set job management properties. \nError: {0}'.format( response.json().get('errorMessage', ''))) self.refresh() else: raise SDKException('Response', '101', response.json()["errorMessage"]) def _get_jobmanagement_settings(self): """ Executes a request on the server to get the settings of job management. Returns: None Raises: SDKException if response is empty if response is not success """ flag, response = self._cvpysdk_object.make_request(method='GET', url=self._service) if flag: if response and response.json(): self._settings_dict = response.json() if self._settings_dict.get('errorCode', 0) != 0: raise SDKException('Job', '102', 'Failed to get job management properties. \nError: {0}'.format( self._settings_dict.get('errorMessage', ''))) if 'jobManagementSettings' in self._settings_dict: self._restart_settings = {'jobRestartSettings': self._settings_dict.get( 'jobManagementSettings').get('jobRestartSettings', {})} self._priority_settings = {'jobPrioritySettings': self._settings_dict.get( 'jobManagementSettings').get('jobPrioritySettings', {})} self._general_settings = {'generalSettings': self._settings_dict.get( 'jobManagementSettings').get('generalSettings', {})} self._update_settings = {'jobUpdatesSettings': self._settings_dict.get( 'jobManagementSettings').get('jobUpdatesSettings', {})} else: raise SDKException('Response', '102') else: raise SDKException('Response', '102') else: response_string = self._comcell._update_response_(response.text) raise SDKException('Response', '101', response_string) def refresh(self): """ calls the private method _get_jobmanagement_settings() """ self._restart_settings = None self._general_settings = None self._update_settings = None self._priority_settings = None self._get_jobmanagement_settings() def set_general_settings(self, settings): """ sets general settings of job management. Note : dedicated setters and getters are provided for general settings. Args: settings (dict) -- Following key/value pairs can be set. { "allowRunningJobsToCompletePastOperationWindow": False, "jobAliveCheckIntervalInMinutes": 5, "queueScheduledJobs": False, "enableJobThrottleAtClientLevel": False, "enableMultiplexingForDBAgents": False, "queueJobsIfConflictingJobsActive": False, "queueJobsIfActivityDisabled": False, "backupsPreemptsAuxilaryCopy": False, "restorePreemptsOtherJobs": False, "enableMultiplexingForOracle": False, "jobStreamHighWaterMarkLevel": 500, "backupsPreemptsOtherBackups": False, "doNotStartBackupsOnDisabledClient": False } Returns: None Raises: SDKException: if input is not valid type """ if isinstance(settings, dict): self._general_settings.get('generalSettings').update(settings) self._set_jobmanagement_settings() else: raise SDKException('Job', '108') def set_priority_settings(self, settings): """ sets priority settings for jobs and agents type. Args: settings (list) -- list of dictionaries with following format. [ { "type_of_operation": 1, "combinedPriority": 10, "jobTypeName": "Information Management" }, { "type_of_operation": 2, "combinedPriority": 10, "appTypeName": "Windows File System" }, { "type_of_operation": 1, "combinedPriority": 10, "jobTypeName": "Auxiliary Copy" } ] We have priority settings fro jobtype and agenttype NOTE : for setting, priority for jobtype the 'type_of_operation' must be set to 1 and name of the job type must be specified as below format. ex :- "jobTypeName": "Information Management" NOTE : for setting, priority for agenttype the 'type_of_operation' must be set to 2 and name of the job type must be specified as below format ex :- "appTypeName": "Windows File System" Returns: None Raises: SDKException: if input is not valid type """ if isinstance(settings, list): for job in settings: if job["type_of_operation"] == 1: for job_type in self._priority_settings['jobPrioritySettings']['jobTypePriorityList']: if job_type['jobTypeName'] == job.get("jobTypeName"): job.pop("jobTypeName") job.pop("type_of_operation") job_type.update(job) break elif job["type_of_operation"] == 2: for job_type in self._priority_settings['jobPrioritySettings']['agentTypePriorityList']: if job_type['agentTypeEntity']['appTypeName'] == job.get("appTypeName"): job.pop("appTypeName") job.pop("type_of_operation") job_type.update(job) break self._set_jobmanagement_settings() else: raise SDKException('Job', '108') def set_restart_settings(self, settings): """ sets restart settings for jobs. Args: settings (list) -- list of dictionaries with following format [ { "killRunningJobWhenTotalRunningTimeExpires": False, "maxRestarts": 10, "enableTotalRunningTime": False, "restartable": False, "jobTypeName": "File System and Indexing Based (Data Protection)", "restartIntervalInMinutes": 20, "preemptable": True, "totalRunningTime": 21600, "jobType": 6 }, { "killRunningJobWhenTotalRunningTimeExpires": False, "maxRestarts": 144, "enableTotalRunningTime": False, "restartable": False, "jobTypeName": "File System and Indexing Based (Data Recovery)", "restartIntervalInMinutes": 20, "preemptable": False, "totalRunningTime": 21600, "jobType": 7 } ] Returns: None Raises: SDKException: if input is not valid type """ if isinstance(settings, list): for job in settings: target = {'target': job_type for job_type in self._restart_settings['jobRestartSettings']['jobTypeRestartSettingList'] if job_type['jobTypeName'] == job.get("jobTypeName")} target.get('target').update(job) self._set_jobmanagement_settings() else: raise SDKException('Job', '108') def set_update_settings(self, settings): """ sets update settings for jobs Args: settings (list) -- list of dictionaries with following format [ { "appTypeName": "Windows File System", "recoveryTimeInMinutes": 20, "protectionTimeInMinutes": 20 }, { "appTypeName": "Windows XP 64-bit File System", "recoveryTimeInMinutes": 20, "protectionTimeInMinutes": 20, } ] Returns: None Raises: SDKException: if input is not valid type """ if isinstance(settings, list): for job in settings: for job_type in self._update_settings['jobUpdatesSettings']['agentTypeJobUpdateIntervalList']: if job_type['agentTypeEntity']['appTypeName'] == job.get("appTypeName"): job.pop("appTypeName") job_type.update(job) break self._set_jobmanagement_settings() else: raise SDKException('Job', '108') @property def job_priority_precedence(self): """ gets the job priority precedence Returns: (str) -- type of job priority precedence is set. """ available_priorities = { 1: "client", 2: "agentType" } return available_priorities.get(self._priority_settings["jobPrioritySettings"]["priorityPrecedence"]) @job_priority_precedence.setter def job_priority_precedence(self, priority_type): """ sets job priority precedence Args: priority_type (str) -- type of priority to be set Values: "client" "agentType" """ if isinstance(priority_type, str): available_priorities = { "client": 1, "agentType": 2 } self._priority_settings["jobPrioritySettings"]["priorityPrecedence"] = available_priorities[priority_type] self._set_jobmanagement_settings() else: raise SDKException('Job', '108') @property def start_phase_retry_interval(self): """ gets the start phase retry interval in (minutes) Returns: (int) -- interval in minutes. """ return self._restart_settings["jobRestartSettings"]["startPhaseRetryIntervalInMinutes"] @start_phase_retry_interval.setter def start_phase_retry_interval(self, minutes): """ sets start phase retry interval for jobs Args: minutes (int) -- minutes to be set. Raises: SDKException: if input is not valid type. """ if isinstance(minutes, int): self._restart_settings["jobRestartSettings"]["startPhaseRetryIntervalInMinutes"] = minutes self._set_jobmanagement_settings() else: raise SDKException('Job', '108') @property def state_update_interval_for_continuous_data_replicator(self): """ gets the state update interval for continuous data replicator in (minutes) Returns: (int) -- interval in minutes """ return self._update_settings["jobUpdatesSettings"]["stateUpdateIntervalForContinuousDataReplicator"] @state_update_interval_for_continuous_data_replicator.setter def state_update_interval_for_continuous_data_replicator(self, minutes): """ sets state update interval for continuous data replicator Args: minutes (int) -- minutes to be set. Raises: SDKException: if input is not valid type """ if isinstance(minutes, int): self._update_settings["jobUpdatesSettings"]["stateUpdateIntervalForContinuousDataReplicator"] = minutes self._set_jobmanagement_settings() else: raise SDKException('Job', '108') @property def allow_running_jobs_to_complete_past_operation_window(self): """ Returns True if option is enabled else returns false """ return self._general_settings.get('generalSettings').get("allowRunningJobsToCompletePastOperationWindow") @allow_running_jobs_to_complete_past_operation_window.setter def allow_running_jobs_to_complete_past_operation_window(self, flag): """ enable/disable, allow running jobs to complete past operation window. Args: flag (bool) -- (True/False) to be set. Raises: SDKException: if input is not valid type """ if isinstance(flag, bool): settings = { "allowRunningJobsToCompletePastOperationWindow": flag } self.set_general_settings(settings) else: raise SDKException('Job', '108') @property def job_alive_check_interval_in_minutes(self): """ gets the job alive check interval in (minutes) Returns: (int) -- interval in minutes """ return self._general_settings.get('generalSettings').get("jobAliveCheckIntervalInMinutes") @job_alive_check_interval_in_minutes.setter def job_alive_check_interval_in_minutes(self, minutes): """ sets the job alive check interval in (minutes) Args: minutes -- minutes to be set. Raises: SDKException: if input is not valid type """ if isinstance(minutes, int): settings = { "jobAliveCheckIntervalInMinutes": minutes } self.set_general_settings(settings) else: raise SDKException('Job', '108') @property def queue_scheduled_jobs(self): """ Returns True if option is enabled else returns false """ return self._general_settings.get('generalSettings').get("queueScheduledJobs") @queue_scheduled_jobs.setter def queue_scheduled_jobs(self, flag): """ enable/disable, queue scheduled jobs Args: flag (bool) -- (True/False to be set) Raises: SDKException: if input is not valid type """ if isinstance(flag, bool): settings = { "queueScheduledJobs": flag } self.set_general_settings(settings) else: raise SDKException('Job', '108') @property def enable_job_throttle_at_client_level(self): """ Returns True if option is enabled else returns false """ return self._general_settings.get('generalSettings').get("enableJobThrottleAtClientLevel") @enable_job_throttle_at_client_level.setter def enable_job_throttle_at_client_level(self, flag): """ enable/disable, job throttle at client level Args: flag (bool) -- (True/False) to be set Raises: SDKException: if input is not valid type """ if isinstance(flag, bool): settings = { "enableJobThrottleAtClientLevel": flag } self.set_general_settings(settings) else: raise SDKException('Job', '108') @property def enable_multiplexing_for_db_agents(self): """ Returns True if option is enabled else returns False """ return self._general_settings.get('generalSettings').get("enableMultiplexingForDBAgents") @enable_multiplexing_for_db_agents.setter def enable_multiplexing_for_db_agents(self, flag): """ enable/disable, multiplexing for db agents Args: flag (bool) -- (True/False) to be set Raises: SDKException: if input is not valid type """ if isinstance(flag, bool): settings = { "enableMultiplexingForDBAgents": flag } self.set_general_settings(settings) else: raise SDKException('Job', '108') @property def queue_jobs_if_conflicting_jobs_active(self): """ Returns True if option is enabled else returns false """ return self._general_settings.get('generalSettings').get("queueJobsIfConflictingJobsActive") @queue_jobs_if_conflicting_jobs_active.setter def queue_jobs_if_conflicting_jobs_active(self, flag): """ enable/disable, queue jobs if conflicting jobs active Args; flag (bool) -- (True/False) to be set Raises: SDKException: if input is not valid type """ if isinstance(flag, bool): settings = { "queueJobsIfConflictingJobsActive": flag } self.set_general_settings(settings) else: raise SDKException('Job', '108') @property def queue_jobs_if_activity_disabled(self): """ Returns True if option is enabled else returns False """ return self._general_settings.get('generalSettings').get("queueJobsIfActivityDisabled") @queue_jobs_if_activity_disabled.setter def queue_jobs_if_activity_disabled(self, flag): """ enable/disable, queue jobs if activity disabled Args; flag (bool) -- (True/False) to be set Raises: SDKException: if input is not valid type """ if isinstance(flag, bool): settings = { "queueJobsIfActivityDisabled": flag } self.set_general_settings(settings) else: raise SDKException('Job', '108') @property def backups_preempts_auxilary_copy(self): """ Returns True if option is enabled else returns False """ return self._general_settings.get('generalSettings').get("backupsPreemptsAuxilaryCopy") @backups_preempts_auxilary_copy.setter def backups_preempts_auxilary_copy(self, flag): """ enable/disable, backups preempts auxiliary copy Args: flag (bool) -- (True/False) to be set Raises: SDKException: if input is not valid type """ if isinstance(flag, bool): settings = { "backupsPreemptsAuxilaryCopy": flag } self.set_general_settings(settings) else: raise SDKException('Job', '108') @property def restore_preempts_other_jobs(self): """ Returns True if option is enabled else returns False """ return self._general_settings.get('generalSettings').get("restorePreemptsOtherJobs") @restore_preempts_other_jobs.setter def restore_preempts_other_jobs(self, flag): """ enable/disable, restore preempts other jobs Args: flag (bool) -- (True/False) to be set Raises: SDKException: if input is not valid type """ if isinstance(flag, bool): settings = { "restorePreemptsOtherJobs": flag } self.set_general_settings(settings) else: raise SDKException('Job', '108') @property def enable_multiplexing_for_oracle(self): """ Returns True if option is enabled else returns False """ return self._general_settings.get('generalSettings').get("enableMultiplexingForOracle") @enable_multiplexing_for_oracle.setter def enable_multiplexing_for_oracle(self, flag): """ enable/disable, enable multiplexing for oracle Args: flag (bool) -- (True/False) to be set Raises: SDKException: if input is not valid type """ if isinstance(flag, bool): settings = { "enableMultiplexingForOracle": flag } self.set_general_settings(settings) else: raise SDKException('Job', '108') @property def job_stream_high_water_mark_level(self): """ gets the job stream high water mark level """ return self._general_settings.get('generalSettings').get("jobStreamHighWaterMarkLevel") @job_stream_high_water_mark_level.setter def job_stream_high_water_mark_level(self, level): """ sets, job stream high water mak level Args: level (int) -- number of jobs to be performed at a time Raises: SDKException: if input is not valid type """ if isinstance(level, int): settings = { "jobStreamHighWaterMarkLevel": level } self.set_general_settings(settings) else: raise SDKException('Job', '108') @property def backups_preempts_other_backups(self): """ Returns True if option is enabled else returns False """ return self._general_settings.get('generalSettings').get("backupsPreemptsOtherBackups") @backups_preempts_other_backups.setter def backups_preempts_other_backups(self, flag): """ enable/disable, backups preempts other backups Args: flag (bool) -- (True/False) to be set Raises: SDKException: if input is not a valid type """ if isinstance(flag, bool): settings = { "backupsPreemptsOtherBackups": flag } self.set_general_settings(settings) else: raise SDKException('Job', '108') @property def do_not_start_backups_on_disabled_client(self): """ Returns True if option is enabled else returns False """ return self._general_settings.get('generalSettings').get("doNotStartBackupsOnDisabledClient") @do_not_start_backups_on_disabled_client.setter def do_not_start_backups_on_disabled_client(self, flag): """ enable/disable, do not start backups on disabled client Args: flag (bool) -- (True/False) to be set Raises: SDKException: if input is not a valid type """ if isinstance(flag, bool): settings = { "doNotStartBackupsOnDisabledClient": flag } self.set_general_settings(settings) else: raise SDKException('Job', '108') def get_restart_setting(self, jobtype): """ restart settings associated to particular jobtype can be obtained Args: jobtype (str) -- settings of the jobtype to get Available jobtypes: "Disaster Recovery backup" "Auxiliary Copy" "Data Aging" "Download/Copy Updates" "Offline Content Indexing" "Information Management" "File System and Indexing Based (Data Protection)" "File System and Indexing Based (Data Recovery)" "Exchange DB (Data Protection)" "Exchange DB (Data Recovery)" "Informix DB (Data Protection)" "Informix DB (Data Recovery)" "Lotus Notes DB (Data Protection)" "Lotus Notes DB (Data Recovery)" "Oracle DB (Data Protection)" "Oracle DB (Data Recovery)" "SQL DB (Data Protection)" "SQL DB (Data Recovery)" "MYSQL (Data Protection)" ` "MYSQL (Data Recovery)" "Sybase DB (Data Protection)" "Sybase DB (Data Recovery)" "DB2 (Data Protection)" "DB2 (Data Recovery)" "CDR (Data Management)" "Media Refresh" "Documentum (Data Protection)" "Documentum (Data Recovery)" "SAP for Oracle (Data Protection)" "SAP for Oracle (Data Recovery)" "PostgreSQL (Data Protection)" "PostgreSQL (Data Recovery)" "Other (Data Protection)" "Other (Data Recovery)" "Workflow" "DeDup DB Reconstruction" "CommCell Migration Export" "CommCell Migration Import" "Install Software" "Uninstall Software" "Data Verification" "Big Data Apps (Data Protection)" "Big Data Apps (Data Recovery)" "Cloud Apps (Data Protection)" "Cloud Apps (Data Recovery)" "Virtual Server (Data Protection)" "Virtual Server (Data Recovery)" "SAP for Hana (Data Protection)" "SAP for Hana (Data Recovery)" Returns: dict -- settings of the specific job type as follows { "jobTypeName": "File System and Indexing Based (Data Protection)", "restartable": true, "maxRestarts": 10, "restartIntervalInMinutes": 20, "enableTotalRunningTime": false, "totalRunningTime": 25200, "killRunningJobWhenTotalRunningTimeExpires": false, "preemptable": true, } Raises: SDKException: if input is not valid type """ if isinstance(jobtype, str): for job_type in self._restart_settings['jobRestartSettings']['jobTypeRestartSettingList']: if job_type['jobTypeName'] == jobtype: settings = copy.deepcopy(job_type) return settings else: raise SDKException('Job', '108') def get_priority_setting(self, jobtype): """ priority settings associated to particular jobtype can be obtained Args: jobtype (str) -- settings of jobtype to get Available values: jobtypename: "Information Management" "Auxiliary Copy" "Media Refresh" "Data Verification" "Persistent Recovery" "Synth Full" apptypename: "Windows File System" "Windows XP 64-bit File System" "Windows 2003 32-bit File System" "Windows 2003 64-bit File System" "Active Directory" "Windows File Archiver" "File Share Archiver" "Image Level" "Exchange Mailbox (Classic)" "Exchange Mailbox Archiver" "Exchange Compliance Archiver" "Exchange Public Folder" "Exchange Database" "SharePoint Database" "SharePoint Server Database" "SharePoint Document" "SharePoint Server" "Novell Directory Services" "GroupWise DB" "NDMP" "Notes Document" "Unix Notes Database" "MAC FileSystem" "Big Data Apps" "Solaris File System" "Solaris 64bit File System" "FreeBSD" "HP-UX File System" "HP-UX 64bit File System" "AIX File System" "Unix Tru64 64-bit File System" "Linux File System" "Sybase Database" "Oracle Database" "Oracle RAC" "Informix Database" "DB2" "DB2 on Unix" "SAP for Oracle" "SAP for MAX DB" "ProxyHost on Unix" "ProxyHost" "Image Level On Unix" "OSSV Plug-in on Windows" "OSSV Plug-in on Unix" "Unix File Archiver" "SQL Server" "Data Classification" "OES File System on Linux" "Centera" "Exchange PF Archiver" "Domino Mailbox Archiver" "MS SharePoint Archiver" "Content Indexing Agent" "SRM Agent For Windows File Systems" "SRM Agent For UNIX File Systems" "DB2 MultiNode" "MySQL" "Virtual Server" "SharePoint Search Connector" "Object Link" "PostgreSQL" "Sybase IQ" "External Data Connector" "Documentum" "Object Store" "SAP HANA" "Cloud Apps" "Exchange Mailbox" Returns: dict -- settings of a specific jobtype ex: { "jobTypeName": "Information Management", "combinedPriority": 0, "type_of_operation": 1 } or settings of a specific apptype ex: { "appTypeName": "Windows File System", "combinedPriority": 6, "type_of_operation": 2 } Raises: SDKException: if input is not valid type """ if isinstance(jobtype, str): for job_type in self._priority_settings['jobPrioritySettings']['jobTypePriorityList']: if job_type['jobTypeName'] == jobtype: settings = { 'jobTypeName': job_type.get('jobTypeName'), 'combinedPriority': job_type.get('combinedPriority'), 'type_of_operation': 1 } return settings for job_type in self._priority_settings['jobPrioritySettings']['agentTypePriorityList']: if job_type['agentTypeEntity']['appTypeName'] == jobtype: settings = { 'appTypeName': job_type.get('agentTypeEntity').get('appTypeName'), 'combinedPriority': job_type.get('combinedPriority'), 'type_of_operation': 2 } return settings else: raise SDKException('Job', '108') def get_update_setting(self, jobtype): """ update settings associated to particular jobtype can be obtained Args: jobtype (str) -- settings of jobtype to get Available jobtype Check get_priority_setting(self, jobtype) method documentation. Returns: dict - settings of a jobtype { "appTypeName": "Windows File System", "recoveryTimeInMinutes": 20, "protectionTimeInMinutes": 20 } Raises: SDKException: if input is not valid type """ if isinstance(jobtype, str): for job_type in self._update_settings['jobUpdatesSettings']['agentTypeJobUpdateIntervalList']: if job_type['agentTypeEntity']['appTypeName'] == jobtype: settings = { 'appTypeName': job_type.get('agentTypeEntity').get('appTypeName'), 'recoveryTimeInMinutes': job_type.get('recoveryTimeInMinutes'), 'protectionTimeInMinutes': job_type.get('protectionTimeInMinutes') } return settings else: raise SDKException('Job', '108') @property def general_settings(self): """ gets the general settings. Returns: (dict) -- The general settings """ return self._general_settings @property def restart_settings(self): """ gets the restart settings. Returns: (dict) -- The restart settings. """ return self._restart_settings @property def priority_settings(self): """ gets the priority settings. Returns: (dict) -- The priority settings. """ return self._priority_settings @property def update_settings(self): """ gets the update settings. Returns: (dict) -- The update settings. """ return self._update_settings def set_job_error_threshold(self, error_threshold_dict): """ Args: error_threshold_dict (dict) : A dictionary of following key/value pairs can be set. Returns: None """ raise NotImplementedError("Yet To Be Implemented") class Job(object): """Class for performing client operations for a specific client.""" def __init__(self, commcell_object, job_id): """Initialise the Job class instance. Args: commcell_object (object) -- instance of the Commcell class job_id (str / int) -- id of the job Returns: object - instance of the Job class Raises: SDKException: if job id is not an integer if job is not a valid job, i.e., does not exist in the Commcell """ try: int(job_id) except ValueError: raise SDKException('Job', '101') self._commcell_object = commcell_object self._cvpysdk_object = commcell_object._cvpysdk_object self._services = commcell_object._services self._update_response_ = commcell_object._update_response_ self._job_id = str(job_id) self._JOB = self._services['JOB'] % (self.job_id) if not self._is_valid_job(): raise SDKException('Job', '103') self._JOB_DETAILS = self._services['JOB_DETAILS'] self.ADVANCED_JOB_DETAILS = AdvancedJobDetailType self._SUSPEND = self._services['SUSPEND_JOB'] % self.job_id self._RESUME = self._services['RESUME_JOB'] % self.job_id self._KILL = self._services['KILL_JOB'] % self.job_id self._RESUBMIT = self._services['RESUBMIT_JOB'] % self.job_id self._client_name = None self._agent_name = None self._instance_name = None self._backupset_name = None self._subclient_name = None self._job_type = None self._backup_level = None self._start_time = None self._end_time = None self._delay_reason = None self._pending_reason = None self._status = None self._phase = None self._summary = None self._details = None self.refresh() def __repr__(self): """String representation of the instance of this class. Returns: str - string for instance of this class """ representation_string = 'Job class instance for job id: "{0}"' return representation_string.format(self.job_id) def _is_valid_job(self): """Checks if the job submitted with the job id is a valid job or not. Returns: bool - boolean that represents whether the job is valid or not """ for _ in range(10): try: self._get_job_summary() return True except SDKException as excp: if excp.exception_module == 'Job' and excp.exception_id == '104': time.sleep(1.5) continue else: raise excp return False def _get_job_summary(self): """Gets the properties of this job. Returns: dict - dict that contains the summary of this job Raises: SDKException: if no record found for this job if response is empty if response is not success """ attempts = 3 for _ in range(attempts): # Retrying to ignore the transient case when no jobs are found flag, response = self._cvpysdk_object.make_request('GET', self._JOB) if flag: if response.json(): if response.json().get('totalRecordsWithoutPaging', 0) == 0: time.sleep(3) continue if 'jobs' in response.json(): for job in response.json()['jobs']: return job['jobSummary'] else: raise SDKException('Response', '102') else: response_string = self._update_response_(response.text) raise SDKException('Response', '101', response_string) raise SDKException('Job', '104') def _get_job_details(self): """Gets the detailed properties of this job. Returns: dict - dict consisting of the detailed properties of the job Raises: SDKException: if failed to get the job details if response is empty if response is not success """ payload = { "jobId": int(self.job_id) } flag, response = self._cvpysdk_object.make_request('POST', self._JOB_DETAILS, payload) if flag: if response.json(): if 'job' in response.json(): return response.json()['job'] elif 'error' in response.json(): error_code = response.json()['error']['errList'][0]['errorCode'] error_message = response.json()['error']['errList'][0]['errLogMessage'] raise SDKException( 'Job', '105', 'Error Code: "{0}"\nError Message: "{1}"'.format(error_code, error_message) ) else: raise SDKException('Job', '106', 'Response JSON: {0}'.format(response.json())) else: raise SDKException('Response', '102') else: response_string = self._update_response_(response.text) raise SDKException('Response', '101', response_string) def _initialize_job_properties(self): """Initializes the common properties for the job. Adds the client, agent, backupset, subclient name to the job object. """ self._summary = self._get_job_summary() self._details = self._get_job_details() self._status = self._summary['status'] self._start_time = time.strftime( '%Y-%m-%d %H:%M:%S', time.gmtime(self._summary['jobStartTime']) ) def _wait_for_status(self, status): """Waits for 6 minutes or till the job status is changed to given status, whichever is earlier. Args: status (str) -- Job Status Returns: None """ start_time = time.time() while self.status.lower() != status.lower(): if (self.is_finished is True) or (time.time() - start_time > 360): break time.sleep(3) def wait_for_completion(self, timeout=30): """Waits till the job is not finished; i.e.; till the value of job.is_finished is not True. Kills the job and exits, if the job has been in Pending / Waiting state for more than the timeout value. In case of job failure job status and failure reason can be obtained using status and delay_reason property Args: timeout (int) -- minutes after which the job should be killed and exited, if the job has been in Pending / Waiting state default: 30 Returns: bool - boolean specifying whether the job had finished or not True - if the job had finished successfully False - if the job was killed/failed """ start_time = time.time() pending_time = 0 waiting_time = 0 previous_status = None status_list = ['pending', 'waiting'] while not self.is_finished: time.sleep(30) # get the current status of the job status = self.status.lower() # set the value of start time as current time # if the current status is pending / waiting but the previous status was not # also if the current status is pending / waiting and same as previous, # then don't update the value of start time if status in status_list and previous_status not in status_list: start_time = time.time() if status == 'pending': pending_time = (time.time() - start_time) / 60 else: pending_time = 0 if status == 'waiting': waiting_time = (time.time() - start_time) / 60 else: waiting_time = 0 if pending_time > timeout or waiting_time > timeout: self.kill() break # set the value of previous status as the value of current status previous_status = status else: return self._status.lower() not in ["failed", "killed", "failed to start"] return False @property def is_finished(self): """Checks whether the job has finished or not. Returns: bool - boolean that represents whether the job has finished or not """ self._summary = self._get_job_summary() self._details = self._get_job_details() self._status = self._summary['status'] if self._summary['lastUpdateTime'] != 0: self._end_time = time.strftime( '%Y-%m-%d %H:%M:%S', time.gmtime(self._summary['lastUpdateTime']) ) return ('completed' in self._status.lower() or 'killed' in self._status.lower() or 'failed' in self._status.lower()) @property def client_name(self): """Treats the client name as a read-only attribute.""" if 'clientName' in self._summary['subclient']: return self._summary['subclient']['clientName'] @property def agent_name(self): """Treats the agent name as a read-only attribute.""" if 'appName' in self._summary['subclient']: return self._summary['subclient']['appName'] @property def instance_name(self): """Treats the instance name as a read-only attribute.""" if 'instanceName' in self._summary['subclient']: return self._summary['subclient']['instanceName'] @property def backupset_name(self): """Treats the backupset name as a read-only attribute.""" if 'backupsetName' in self._summary['subclient']: return self._summary['subclient']['backupsetName'] @property def subclient_name(self): """Treats the subclient name as a read-only attribute.""" if 'subclientName' in self._summary['subclient']: return self._summary['subclient']['subclientName'] @property def status(self): """Treats the job status as a read-only attribute.""" self.is_finished return self._status @property def job_id(self): """Treats the job id as a read-only attribute.""" return self._job_id @property def job_type(self): """Treats the job type as a read-only attribute.""" return self._summary['jobType'] @property def backup_level(self): """Treats the backup level as a read-only attribute.""" if 'backupLevelName' in self._summary: return self._summary['backupLevelName'] @property def start_time(self): """Treats the start time as a read-only attribute.""" return self._start_time @property def start_timestamp(self): """Treats the unix start time as a read-only attribute.""" return self._summary['jobStartTime'] @property def end_timestamp(self): """Treats the unix end time as a read-only attribute""" return self._summary['jobEndTime'] @property def end_time(self): """Treats the end time as a read-only attribute.""" return self._end_time @property def delay_reason(self): """Treats the job delay reason as a read-only attribute.""" self.is_finished progress_info = self._details['jobDetail']['progressInfo'] if 'reasonForJobDelay' in progress_info and progress_info['reasonForJobDelay']: return progress_info['reasonForJobDelay'] @property def pending_reason(self): """Treats the job pending reason as a read-only attribute.""" self.is_finished if 'pendingReason' in self._summary and self._summary['pendingReason']: return self._summary['pendingReason'] @property def phase(self): """Treats the job current phase as a read-only attribute.""" self.is_finished if 'currentPhaseName' in self._summary: return self._summary['currentPhaseName'] @property def summary(self): """Treats the job full summary as a read-only attribute.""" self.is_finished return self._summary @property def username(self): """Treats the username as a read-only attribute.""" return self._summary['userName']['userName'] @property def userid(self): """Treats the userid as a read-only attribute.""" return self._summary['userName']['userId'] @property def details(self): """Treats the job full details as a read-only attribute.""" self.is_finished return self._details @property def size_of_application(self): """Treats the size of application as a read-only attribute.""" if 'sizeOfApplication' in self._summary: return self._summary['sizeOfApplication'] @property def num_of_files_transferred(self): """Treats the number of files transferred as a read-only attribute.""" self.is_finished return self._details['jobDetail']['progressInfo']['numOfFilesTransferred'] @property def state(self): """Treats the job state as a read-only attribute.""" self.is_finished return self._details['jobDetail']['progressInfo']['state'] def pause(self, wait_for_job_to_pause=False): """Suspends the job. Args: wait_for_job_to_pause (bool) -- wait till job status is changed to Suspended default: False Raises: SDKException: if failed to suspend job if response is not success """ flag, response = self._cvpysdk_object.make_request('POST', self._SUSPEND) self.is_finished if flag: if response.json() and 'errors' in response.json(): error_list = response.json()['errors'][0]['errList'][0] error_code = error_list['errorCode'] error_message = error_list['errLogMessage'].strip() if error_code != 0: raise SDKException( 'Job', '102', 'Job suspend failed\nError: "{0}"'.format(error_message) ) else: response_string = self._update_response_(response.text) raise SDKException('Response', '101', response_string) if wait_for_job_to_pause is True: self._wait_for_status("SUSPENDED") def resume(self, wait_for_job_to_resume=False): """Resumes the job. Args: wait_for_job_to_resume (bool) -- wait till job status is changed to Running default: False Raises: SDKException: if failed to resume job if response is not success """ flag, response = self._cvpysdk_object.make_request('POST', self._RESUME) self.is_finished if flag: if response.json() and 'errors' in response.json(): error_list = response.json()['errors'][0]['errList'][0] error_code = error_list['errorCode'] error_message = error_list['errLogMessage'].strip() if error_code != 0: raise SDKException( 'Job', '102', 'Job resume failed\nError: "{0}"'.format(error_message) ) else: response_string = self._update_response_(response.text) raise SDKException('Response', '101', response_string) if wait_for_job_to_resume is True: self._wait_for_status("RUNNING") def resubmit(self): """Resubmits the job Returns: object - Job class object for the given job id Raises: SDKException: if job is already running if response is not success """ if not self.is_finished: raise SDKException('Job', '102', 'Cannot resubmit the Job, the Job is still running') flag, response = self._cvpysdk_object.make_request('POST', self._RESUBMIT) if flag: if response.json() and 'errors' in response.json(): error_list = response.json()['errors'][0]['errList'][0] error_code = error_list['errorCode'] error_message = error_list['errLogMessage'].strip() if error_code != 0: raise SDKException( 'Job', '102', 'Resubmitting job failed\nError: "{0}"'.format(error_message) ) return Job(self._commcell_object, response.json()['jobIds'][0]) else: response_string = self._update_response_(response.text) raise SDKException('Response', '101', response_string) def kill(self, wait_for_job_to_kill=False): """Kills the job. Args: wait_for_job_to_kill (bool) -- wait till job status is changed to Killed default: False Raises: SDKException: if failed to kill job if response is not success """ flag, response = self._cvpysdk_object.make_request('POST', self._KILL) self.is_finished if flag: if response.json() and 'errors' in response.json(): error_list = response.json()['errors'][0]['errList'][0] error_code = error_list['errorCode'] error_message = error_list['errLogMessage'].strip() if error_code != 0: raise SDKException( 'Job', '102', 'Job kill failed\nError: "{0}"'.format(error_message) ) else: response_string = self._update_response_(response.text) raise SDKException('Response', '101', response_string) if wait_for_job_to_kill is True: self._wait_for_status("KILLED") def refresh(self): """Refresh the properties of the Job.""" self._initialize_job_properties() self.is_finished def advanced_job_details(self, info_type): """Returns advanced properties for the job Args: infoType (object) -- job detail type to be passed from AdvancedJobDetailType enum from the constants Returns: dict - dictionary with advanced details of the job info type given Raises: SDKException: if response is empty if response is not success """ if not isinstance(info_type, AdvancedJobDetailType): raise SDKException('Response', '107') url = self._services['ADVANCED_JOB_DETAIL_TYPE'] % (self.job_id, info_type.value) flag, response = self._cvpysdk_object.make_request('GET', url) if flag: if response.json(): response = response.json() if response.get('errorCode', 0) != 0: error_message = response.json()['errorMessage'] o_str = 'Failed to fetch details.\nError: "{0}"'.format(error_message) raise SDKException('Job', '102', o_str) return response else: raise SDKException('Response', '102') else: raise SDKException('Response', '101', self._update_response_(response.text)) class _ErrorRule: """Class for enabling, disabling, adding, getting and deleting error rules.""" def __init__(self, commcell): self.commcell = commcell self.rule_dict = {} self.xml_body = """ <App_SetJobErrorDecision> <entity _type_="1" commCellId="{commcell_id}" commCellName="{commserv_name}" /> <jobErrorRuleList> <idaRuleList isEnabled="{enable_flag_ida}"> <ida _type_="78" appGroupId="57" appGroupName="{app_group_name}" /> <ruleList>{final_str}<srcEntity _type_="1" commCellId="{commcell_id}" /></ruleList> <osEntity _type_="161" /> </idaRuleList> </jobErrorRuleList> </App_SetJobErrorDecision> """ self.error_rule_str = """ <ruleList blockedFileTypes="0" isEnabled="{is_enabled}" jobDecision="{job_decision}" pattern="{pattern}" skipTLbackups="0" skipofflineDBs="0" skippedFiles="0"> <errorCode allErrorCodes="{all_error_codes}" fromValue="{from_error_code}" skipReportingError="{skip_reporting_error}" toValue="{to_error_code}" /> </ruleList> """ def _get_xml_for_rule(self, rule_dict): """ Returns the XML for a given rule's dictionary of key value pairs. The XML output is used internally when when adding new or updating existing rules. Args: rule_dict (dict) - Dictionary of a rule's key value pairs. Returns: str - The XML output formatted as a string. Raises: None """ return self.error_rule_str.format( pattern=rule_dict['pattern'], all_error_codes=rule_dict['all_error_codes'], from_error_code=rule_dict['from_error_code'], to_error_code=rule_dict['to_error_code'], job_decision=rule_dict['job_decision'], is_enabled=rule_dict['is_enabled'], skip_reporting_error=rule_dict['skip_reporting_error']) def add_error_rule(self, rules_arg): """ Add new error rules as well as update existing rules, each rule is identified by its rule name denoted by key rule_name. Args: rules_arg (dict) -- A dictionary whose key is the application group name and value is a rules list. Supported value(s) for key is all constants under ApplicationGroup(Enum) The value for above key is a list where each item of the list is a dictionary of the following key value pairs. is_enabled (str) -- Specifies whether the rule should be enabled or not. pattern (str) -- Specifies the file pattern for the error rule. all_error_codes (bool) -- Specifies whether all error codes should be enabled. from_error_code (int) -- Error code range's lower value. Valid values are all non negative integers. to_error_code (int) -- Error code range's upper value. Valid values are all non negative integers higher larger the from_ec value. skip_reporting_error (bool) -- Specifies if error codes need to be skipped from being reported. Example: { WINDOWS : { 'rule_1': { 'appGroupName': WINDOWS, 'pattern': "*", 'all_error_codes': False, 'from_error_code': 1, 'to_error_code': 2, 'job_decision': 0, 'is_enabled': True, 'skip_reporting_error': False }, 'rule_2' : { ......} } } Returns: None Raises: Exception in case of invalid key/value pair(s). """ final_str = "" old_values = [] for app_group, rules_dict in rules_arg.items(): assert (app_group.name in [i.name for i in ApplicationGroup]) # FETCH ALL EXISTING RULES ON THE COMMCELL FOR THE APPLICATION # GROUP IN QUESTION existing_error_rules = self._get_error_rules(app_group) for rule_name, rule in rules_dict.items(): assert isinstance( rule['pattern'], str) and isinstance( rule['all_error_codes'], bool) and isinstance( rule['skip_reporting_error'], int) and isinstance( rule['from_error_code'], int) and isinstance( rule['to_error_code'], int) and isinstance( rule['job_decision'], int) and rule['job_decision'] in range( 0, 3) and isinstance( rule['is_enabled'], bool), "Invalid key value pairs provided." rule_dict = {k:v for k,v in rule.items() if k != 'appGroupName'} # GET RULE STRING FOR EACH RULE DICTIONARY PROVIDED IN THE ARGUMENT new_rule_str = self._get_xml_for_rule(rule_dict) # IF RULE NAME NOT PRESENT IN OUR INTERNAL STRUCTURE, IT MEANS USER IS ADDING NEW RULE if rule_name not in list(self.rule_dict.keys()): self.rule_dict[rule_name] = {'new_value': new_rule_str, 'old_value': new_rule_str} final_str = ''.join((final_str, new_rule_str)) # ELSE CHECK IF THE RULE'S VALUE REMAINS SAME AND IF IT DOES, WE SIMPLY CONTINUE AND STORE EXISTING VALUE elif new_rule_str == self.rule_dict[rule_name]['old_value']: final_str = ''.join((final_str, self.rule_dict[rule_name]['old_value'])) # ELSE RULE IS BEING UPDATED, STORE NEW VALUE IN FINAL STRING AND PRESERVE OLD VALUE AS WELL else: self.rule_dict[rule_name]['old_value'] = self.rule_dict[rule_name]['new_value'] self.rule_dict[rule_name]['new_value'] = new_rule_str final_str = ''.join((final_str, new_rule_str)) # NOW GO THROUGH ALL EXISTING RULES ON CS AND EITHER PRESERVE OR UPDATE IT # PREPARE A LIST OF ALL OLD VALUES FIRST for rule_name, values in self.rule_dict.items(): old_values.extend([value for value_type, value in values.items() if value_type == 'old_value']) for existing_error_rule in existing_error_rules: existing_rule_dict = {'pattern': existing_error_rule['pattern'], 'all_error_codes': existing_error_rule['errorCode']['allErrorCodes'], 'skip_reporting_error': existing_error_rule['errorCode']['skipReportingError'], 'from_error_code': existing_error_rule['errorCode']['fromValue'], 'to_error_code': existing_error_rule['errorCode']['toValue'], 'job_decision': existing_error_rule['jobDecision'], 'is_enabled': existing_error_rule['isEnabled']} existing_rule_str = self._get_xml_for_rule(existing_rule_dict) # AN EXISTING RULE THAT HAS NOT BEEN UPDATED AND IS NOT ADDED BY THE TEST CASE OR THROUGH AUTOMATION. # IN OTHER WORDS, AN EXISTING RULE THAT WAS ADDED OUTSIDE OF THE SCOPE OF THE TEST CASE if existing_rule_str not in old_values: final_str = ''.join((final_str, existing_rule_str)) # NEED TO ADD SUPPORT FOR UPDATION OF ERROR RULES FOR MULTIPLE iDAs SIMULTANEOUSLY xml_body = self.xml_body.format(commcell_id=self.commcell.commcell_id, commserv_name=self.commcell.commserv_name, enable_flag_ida=1, app_group_name=app_group, final_str=final_str) xml_body = ''.join(i.lstrip().rstrip() for i in xml_body.split("\n")) self.commcell.qoperation_execute(xml_body) def enable(self, app_group): """Enables the job error control rules for the specified Application Group Type. Args: app_group (str) -- The iDA for which the enable flag needs to be set. Currently supported values are APPGRP_WindowsFileSystemIDA. Returns: None Raises: None """ return self._modify_job_status_on_errors(app_group, enable_flag=True) def disable(self, app_group): """Disables the job error control rules for the specified Application Group Type. Args: app_group (str) -- The iDA for which the enable flag needs to be set. Currently supported values are APPGRP_WindowsFileSystemIDA. Returns: None Raises: None """ return self._modify_job_status_on_errors(app_group, enable_flag=False) def _modify_job_status_on_errors(self, app_group, enable_flag): """To enable or disable job status on errors. Args: app_group (str) -- The iDA for which the enable flag needs to be set. Currently supported values are APPGRP_WindowsFileSystemIDA. enable_flag (bool) -- Enables and disables job status on errors. Returns: None Raises: None """ # FETCHING ALL EXISTING RULES error_rules = self._get_error_rules(app_group) # FOR EVERY RULE IN RULE LIST for rule in error_rules: rule_str = self.error_rule_str.format(pattern=rule['pattern'], all_error_codes=rule['errorCode']['allErrorCodes'], from_error_code=rule['errorCode']['fromValue'], to_error_code=rule['errorCode']['toValue'], job_decision=rule['jobDecision'], is_enabled=rule['isEnabled'], skip_reporting_error=rule['errorCode']['skipReportingError']) final_str = ''.join((final_str, rule_str)) xml_body = self.xml_body.format(commcell_id=self.commcell.commcell_id, commserv_name=self.commcell.commserv_name, enable_flag_ida=1 if enable_flag else 0, final_str=final_str) xml_body = ''.join(i.lstrip().rstrip() for i in xml_body.split("\n")) return self.commcell.qoperation_execute(xml_body) def _get_error_rules(self, app_group): """ Returns the error rules set on the CS in the form of a dictionary. Args: app_group (str) -- The iDA for which the enable flag needs to be set. Currently supported values are APPGRP_WindowsFileSystemIDA. Returns: list - A list of error rules. Each rule will be a dictionary of key value pairs for pattern, error code from value, error code to value etc. Raises: None """ rule_list = [] xml_body = f""" <App_GetJobErrorDecisionReq> <entity _type_="1" commCellId="{self.commcell.commcell_id}" commCellName="{self.commcell.commserv_name}"/> </App_GetJobErrorDecisionReq>""" xml_body = ''.join(i.lstrip().rstrip() for i in xml_body.split("\n")) error_rules = self.commcell.qoperation_execute(xml_body) if any(error_rules): ida_rule_lists = error_rules['jobErrorRuleList']['idaRuleList'] for ida_rule_list in ida_rule_lists: # HARD CODED FOR WINDOWS SUPPORT ONLY if ida_rule_list['ida']['appGroupName'] == app_group: try: rule_list = ida_rule_list['ruleList']['ruleList'] except Exception: pass return rule_list
39.360799
168
0.493964
795363355d9fde49e4a0e234d935c9d6f171812e
3,247
py
Python
examples/contrib/send_more_money_any_base.py
AlohaChina/or-tools
1ece0518104db435593a1a21882801ab6ada3e15
[ "Apache-2.0" ]
8,273
2015-02-24T22:10:50.000Z
2022-03-31T21:19:27.000Z
examples/contrib/send_more_money_any_base.py
AlohaChina/or-tools
1ece0518104db435593a1a21882801ab6ada3e15
[ "Apache-2.0" ]
2,530
2015-03-05T04:27:21.000Z
2022-03-31T06:13:02.000Z
examples/contrib/send_more_money_any_base.py
AlohaChina/or-tools
1ece0518104db435593a1a21882801ab6ada3e15
[ "Apache-2.0" ]
2,057
2015-03-04T15:02:02.000Z
2022-03-30T02:29:27.000Z
# Copyright 2010 Hakan Kjellerstrand hakank@gmail.com # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ SEND+MORE=MONEY in 'any' base in Google CP Solver. Alphametic problem SEND+MORE=MONEY in any base. Examples: Base 10 has one solution: {9, 5, 6, 7, 1, 0, 8, 2} Base 11 has three soltutions: {10, 5, 6, 8, 1, 0, 9, 2} {10, 6, 7, 8, 1, 0, 9, 3} {10, 7, 8, 6, 1, 0, 9, 2} Also, compare with the following models: * Comet : http://www.hakank.org/comet/send_more_money_any_base.co * ECLiPSE : http://www.hakank.org/eclipse/send_more_money_any_base.ecl * Essence : http://www.hakank.org/tailor/send_more_money_any_base.eprime * Gecode : http://www.hakank.org/gecode/send_more_money_any_base.cpp * Gecode/R: http://www.hakank.org/gecode_r/send_more_money_any_base.rb * MiniZinc: http://www.hakank.org/minizinc/send_more_money_any_base.mzn * Zinc: http://www.hakank.org/minizinc/send_more_money_any_base.zinc * SICStus: http://www.hakank.org/sicstus/send_more_money_any_base.pl This model was created by Hakan Kjellerstrand (hakank@gmail.com) Also see my other Google CP Solver models: http://www.hakank.org/google_or_tools/ """ import sys from ortools.constraint_solver import pywrapcp def main(base=10): # Create the solver. solver = pywrapcp.Solver('Send most money') # data print('base:', base) # declare variables s = solver.IntVar(0, base - 1, 's') e = solver.IntVar(0, base - 1, 'e') n = solver.IntVar(0, base - 1, 'n') d = solver.IntVar(0, base - 1, 'd') m = solver.IntVar(0, base - 1, 'm') o = solver.IntVar(0, base - 1, 'o') r = solver.IntVar(0, base - 1, 'r') y = solver.IntVar(0, base - 1, 'y') x = [s, e, n, d, m, o, r, y] # # constraints # solver.Add(solver.AllDifferent(x)) solver.Add( s * base**3 + e * base**2 + n * base + d + m * base**3 + o * base**2 + r * base + e == m * base**4 + o * base**3 + n * base**2 + e * base + y,) solver.Add(s > 0) solver.Add(m > 0) # # solution and search # solution = solver.Assignment() solution.Add(x) collector = solver.AllSolutionCollector(solution) solver.Solve( solver.Phase(x, solver.CHOOSE_FIRST_UNBOUND, solver.ASSIGN_MAX_VALUE), [collector]) num_solutions = collector.SolutionCount() money_val = 0 for s in range(num_solutions): print('x:', [collector.Value(s, x[i]) for i in range(len(x))]) print() print('num_solutions:', num_solutions) print('failures:', solver.Failures()) print('branches:', solver.Branches()) print('WallTime:', solver.WallTime()) print() base = 10 if __name__ == '__main__': # for base in range(10,30): # main(base) if len(sys.argv) > 1: base = int(sys.argv[1]) main(base)
29.252252
78
0.665845
795363884197e2349452d08e6048d23654b01b72
19,395
py
Python
sympy/utilities/tests/test_lambdify.py
oliverlee/sympy
961a75bd0adc40fc1d405ffdae9f49b52d96bed0
[ "BSD-3-Clause" ]
null
null
null
sympy/utilities/tests/test_lambdify.py
oliverlee/sympy
961a75bd0adc40fc1d405ffdae9f49b52d96bed0
[ "BSD-3-Clause" ]
null
null
null
sympy/utilities/tests/test_lambdify.py
oliverlee/sympy
961a75bd0adc40fc1d405ffdae9f49b52d96bed0
[ "BSD-3-Clause" ]
null
null
null
from sympy.utilities.pytest import XFAIL, raises from sympy import ( symbols, lambdify, sqrt, sin, cos, tan, pi, acos, acosh, Rational, Float, Matrix, Lambda, Piecewise, exp, Integral, oo, I, Abs, Function, true, false, And, Or, Not, ITE, Min, Max) from sympy.printing.lambdarepr import LambdaPrinter import mpmath from sympy.utilities.lambdify import implemented_function from sympy.utilities.pytest import skip from sympy.utilities.decorator import conserve_mpmath_dps from sympy.external import import_module import math import sympy MutableDenseMatrix = Matrix numpy = import_module('numpy') numexpr = import_module('numexpr') w, x, y, z = symbols('w,x,y,z') #================== Test different arguments ======================= def test_no_args(): f = lambdify([], 1) raises(TypeError, lambda: f(-1)) assert f() == 1 def test_single_arg(): f = lambdify(x, 2*x) assert f(1) == 2 def test_list_args(): f = lambdify([x, y], x + y) assert f(1, 2) == 3 def test_str_args(): f = lambdify('x,y,z', 'z,y,x') assert f(3, 2, 1) == (1, 2, 3) assert f(1.0, 2.0, 3.0) == (3.0, 2.0, 1.0) # make sure correct number of args required raises(TypeError, lambda: f(0)) def test_own_namespace(): myfunc = lambda x: 1 f = lambdify(x, sin(x), {"sin": myfunc}) assert f(0.1) == 1 assert f(100) == 1 def test_own_module(): f = lambdify(x, sin(x), math) assert f(0) == 0.0 def test_bad_args(): # no vargs given raises(TypeError, lambda: lambdify(1)) # same with vector exprs raises(TypeError, lambda: lambdify([1, 2])) def test_atoms(): # Non-Symbol atoms should not be pulled out from the expression namespace f = lambdify(x, pi + x, {"pi": 3.14}) assert f(0) == 3.14 f = lambdify(x, I + x, {"I": 1j}) assert f(1) == 1 + 1j #================== Test different modules ========================= # high precision output of sin(0.2*pi) is used to detect if precision is lost unwanted @conserve_mpmath_dps def test_sympy_lambda(): mpmath.mp.dps = 50 sin02 = mpmath.mpf("0.19866933079506121545941262711838975037020672954020") f = lambdify(x, sin(x), "sympy") assert f(x) == sin(x) prec = 1e-15 assert -prec < f(Rational(1, 5)).evalf() - Float(str(sin02)) < prec # arctan is in numpy module and should not be available raises(NameError, lambda: lambdify(x, arctan(x), "sympy")) @conserve_mpmath_dps def test_math_lambda(): mpmath.mp.dps = 50 sin02 = mpmath.mpf("0.19866933079506121545941262711838975037020672954020") f = lambdify(x, sin(x), "math") prec = 1e-15 assert -prec < f(0.2) - sin02 < prec raises(TypeError, lambda: f(x)) # if this succeeds, it can't be a python math function @conserve_mpmath_dps def test_mpmath_lambda(): mpmath.mp.dps = 50 sin02 = mpmath.mpf("0.19866933079506121545941262711838975037020672954020") f = lambdify(x, sin(x), "mpmath") prec = 1e-49 # mpmath precision is around 50 decimal places assert -prec < f(mpmath.mpf("0.2")) - sin02 < prec raises(TypeError, lambda: f(x)) # if this succeeds, it can't be a mpmath function @conserve_mpmath_dps @XFAIL def test_number_precision(): mpmath.mp.dps = 50 sin02 = mpmath.mpf("0.19866933079506121545941262711838975037020672954020") f = lambdify(x, sin02, "mpmath") prec = 1e-49 # mpmath precision is around 50 decimal places assert -prec < f(0) - sin02 < prec #================== Test Translations ============================== # We can only check if all translated functions are valid. It has to be checked # by hand if they are complete. def test_math_transl(): from sympy.utilities.lambdify import MATH_TRANSLATIONS for sym, mat in MATH_TRANSLATIONS.items(): assert sym in sympy.__dict__ assert mat in math.__dict__ def test_mpmath_transl(): from sympy.utilities.lambdify import MPMATH_TRANSLATIONS for sym, mat in MPMATH_TRANSLATIONS.items(): assert sym in sympy.__dict__ or sym == 'Matrix' assert mat in mpmath.__dict__ def test_numpy_transl(): if not numpy: skip("numpy not installed.") from sympy.utilities.lambdify import NUMPY_TRANSLATIONS for sym, nump in NUMPY_TRANSLATIONS.items(): assert sym in sympy.__dict__ assert nump in numpy.__dict__ def test_numpy_translation_abs(): if not numpy: skip("numpy not installed.") f = lambdify(x, Abs(x), "numpy") assert f(-1) == 1 assert f(1) == 1 def test_numexpr_printer(): if not numexpr: skip("numexpr not installed.") # if translation/printing is done incorrectly then evaluating # a lambdified numexpr expression will throw an exception from sympy.printing.lambdarepr import NumExprPrinter from sympy import S blacklist = ('where', 'complex', 'contains') arg_tuple = (x, y, z) # some functions take more than one argument for sym in NumExprPrinter._numexpr_functions.keys(): if sym in blacklist: continue ssym = S(sym) if hasattr(ssym, '_nargs'): nargs = ssym._nargs[0] else: nargs = 1 args = arg_tuple[:nargs] f = lambdify(args, ssym(*args), modules='numexpr') assert f(*(1, )*nargs) is not None def test_issue_9334(): if not numexpr: skip("numexpr not installed.") if not numpy: skip("numpy not installed.") expr = sympy.S('b*a - sqrt(a**2)') a, b = sorted(expr.free_symbols, key=lambda s: s.name) func_numexpr = lambdify((a,b), expr, modules=[numexpr], dummify=False) foo, bar = numpy.random.random((2, 4)) func_numexpr(foo, bar) #================== Test some functions ============================ def test_exponentiation(): f = lambdify(x, x**2) assert f(-1) == 1 assert f(0) == 0 assert f(1) == 1 assert f(-2) == 4 assert f(2) == 4 assert f(2.5) == 6.25 def test_sqrt(): f = lambdify(x, sqrt(x)) assert f(0) == 0.0 assert f(1) == 1.0 assert f(4) == 2.0 assert abs(f(2) - 1.414) < 0.001 assert f(6.25) == 2.5 def test_trig(): f = lambdify([x], [cos(x), sin(x)]) d = f(pi) prec = 1e-11 assert -prec < d[0] + 1 < prec assert -prec < d[1] < prec d = f(3.14159) prec = 1e-5 assert -prec < d[0] + 1 < prec assert -prec < d[1] < prec #================== Test vectors =================================== def test_vector_simple(): f = lambdify((x, y, z), (z, y, x)) assert f(3, 2, 1) == (1, 2, 3) assert f(1.0, 2.0, 3.0) == (3.0, 2.0, 1.0) # make sure correct number of args required raises(TypeError, lambda: f(0)) def test_vector_discontinuous(): f = lambdify(x, (-1/x, 1/x)) raises(ZeroDivisionError, lambda: f(0)) assert f(1) == (-1.0, 1.0) assert f(2) == (-0.5, 0.5) assert f(-2) == (0.5, -0.5) def test_trig_symbolic(): f = lambdify([x], [cos(x), sin(x)]) d = f(pi) assert abs(d[0] + 1) < 0.0001 assert abs(d[1] - 0) < 0.0001 def test_trig_float(): f = lambdify([x], [cos(x), sin(x)]) d = f(3.14159) assert abs(d[0] + 1) < 0.0001 assert abs(d[1] - 0) < 0.0001 def test_docs(): f = lambdify(x, x**2) assert f(2) == 4 f = lambdify([x, y, z], [z, y, x]) assert f(1, 2, 3) == [3, 2, 1] f = lambdify(x, sqrt(x)) assert f(4) == 2.0 f = lambdify((x, y), sin(x*y)**2) assert f(0, 5) == 0 def test_math(): f = lambdify((x, y), sin(x), modules="math") assert f(0, 5) == 0 def test_sin(): f = lambdify(x, sin(x)**2) assert isinstance(f(2), float) f = lambdify(x, sin(x)**2, modules="math") assert isinstance(f(2), float) def test_matrix(): A = Matrix([[x, x*y], [sin(z) + 4, x**z]]) sol = Matrix([[1, 2], [sin(3) + 4, 1]]) f = lambdify((x, y, z), A, modules="sympy") assert f(1, 2, 3) == sol f = lambdify((x, y, z), (A, [A]), modules="sympy") assert f(1, 2, 3) == (sol, [sol]) J = Matrix((x, x + y)).jacobian((x, y)) v = Matrix((x, y)) sol = Matrix([[1, 0], [1, 1]]) assert lambdify(v, J, modules='sympy')(1, 2) == sol assert lambdify(v.T, J, modules='sympy')(1, 2) == sol def test_numpy_matrix(): if not numpy: skip("numpy not installed.") A = Matrix([[x, x*y], [sin(z) + 4, x**z]]) sol_arr = numpy.array([[1, 2], [numpy.sin(3) + 4, 1]]) #Lambdify array first, to ensure return to array as default f = lambdify((x, y, z), A, ['numpy']) numpy.testing.assert_allclose(f(1, 2, 3), sol_arr) #Check that the types are arrays and matrices assert isinstance(f(1, 2, 3), numpy.ndarray) def test_numpy_transpose(): if not numpy: skip("numpy not installed.") A = Matrix([[1, x], [0, 1]]) f = lambdify((x), A.T, modules="numpy") numpy.testing.assert_array_equal(f(2), numpy.array([[1, 0], [2, 1]])) def test_numpy_inverse(): if not numpy: skip("numpy not installed.") A = Matrix([[1, x], [0, 1]]) f = lambdify((x), A**-1, modules="numpy") numpy.testing.assert_array_equal(f(2), numpy.array([[1, -2], [0, 1]])) def test_numpy_old_matrix(): if not numpy: skip("numpy not installed.") A = Matrix([[x, x*y], [sin(z) + 4, x**z]]) sol_arr = numpy.array([[1, 2], [numpy.sin(3) + 4, 1]]) f = lambdify((x, y, z), A, [{'ImmutableMatrix': numpy.matrix}, 'numpy']) numpy.testing.assert_allclose(f(1, 2, 3), sol_arr) assert isinstance(f(1, 2, 3), numpy.matrix) def test_numpy_piecewise(): if not numpy: skip("numpy not installed.") pieces = Piecewise((x, x < 3), (x**2, x > 5), (0, True)) f = lambdify(x, pieces, modules="numpy") numpy.testing.assert_array_equal(f(numpy.arange(10)), numpy.array([0, 1, 2, 0, 0, 0, 36, 49, 64, 81])) # If we evaluate somewhere all conditions are False, we should get back NaN nodef_func = lambdify(x, Piecewise((x, x > 0), (-x, x < 0))) numpy.testing.assert_array_equal(nodef_func(numpy.array([-1, 0, 1])), numpy.array([1, numpy.nan, 1])) def test_numpy_logical_ops(): if not numpy: skip("numpy not installed.") and_func = lambdify((x, y), And(x, y), modules="numpy") or_func = lambdify((x, y), Or(x, y), modules="numpy") not_func = lambdify((x), Not(x), modules="numpy") arr1 = numpy.array([True, True]) arr2 = numpy.array([False, True]) numpy.testing.assert_array_equal(and_func(arr1, arr2), numpy.array([False, True])) numpy.testing.assert_array_equal(or_func(arr1, arr2), numpy.array([True, True])) numpy.testing.assert_array_equal(not_func(arr2), numpy.array([True, False])) def test_numpy_matmul(): if not numpy: skip("numpy not installed.") xmat = Matrix([[x, y], [z, 1+z]]) ymat = Matrix([[x**2], [Abs(x)]]) mat_func = lambdify((x, y, z), xmat*ymat, modules="numpy") numpy.testing.assert_array_equal(mat_func(0.5, 3, 4), numpy.array([[1.625], [3.5]])) numpy.testing.assert_array_equal(mat_func(-0.5, 3, 4), numpy.array([[1.375], [3.5]])) # Multiple matrices chained together in multiplication f = lambdify((x, y, z), xmat*xmat*xmat, modules="numpy") numpy.testing.assert_array_equal(f(0.5, 3, 4), numpy.array([[72.125, 119.25], [159, 251]])) def test_numpy_numexpr(): if not numpy: skip("numpy not installed.") if not numexpr: skip("numexpr not installed.") a, b, c = numpy.random.randn(3, 128, 128) # ensure that numpy and numexpr return same value for complicated expression expr = sin(x) + cos(y) + tan(z)**2 + Abs(z-y)*acos(sin(y*z)) + \ Abs(y-z)*acosh(2+exp(y-x))- sqrt(x**2+I*y**2) npfunc = lambdify((x, y, z), expr, modules='numpy') nefunc = lambdify((x, y, z), expr, modules='numexpr') assert numpy.allclose(npfunc(a, b, c), nefunc(a, b, c)) def test_numexpr_userfunctions(): if not numpy: skip("numpy not installed.") if not numexpr: skip("numexpr not installed.") a, b = numpy.random.randn(2, 10) uf = type('uf', (Function, ), {'eval' : classmethod(lambda x, y : y**2+1)}) func = lambdify(x, 1-uf(x), modules='numexpr') assert numpy.allclose(func(a), -(a**2)) uf = implemented_function(Function('uf'), lambda x, y : 2*x*y+1) func = lambdify((x, y), uf(x, y), modules='numexpr') assert numpy.allclose(func(a, b), 2*a*b+1) def test_integral(): f = Lambda(x, exp(-x**2)) l = lambdify(x, Integral(f(x), (x, -oo, oo)), modules="sympy") assert l(x) == Integral(exp(-x**2), (x, -oo, oo)) #================== Test symbolic ================================== def test_sym_single_arg(): f = lambdify(x, x * y) assert f(z) == z * y def test_sym_list_args(): f = lambdify([x, y], x + y + z) assert f(1, 2) == 3 + z def test_sym_integral(): f = Lambda(x, exp(-x**2)) l = lambdify(x, Integral(f(x), (x, -oo, oo)), modules="sympy") assert l(y).doit() == sqrt(pi) def test_namespace_order(): # lambdify had a bug, such that module dictionaries or cached module # dictionaries would pull earlier namespaces into themselves. # Because the module dictionaries form the namespace of the # generated lambda, this meant that the behavior of a previously # generated lambda function could change as a result of later calls # to lambdify. n1 = {'f': lambda x: 'first f'} n2 = {'f': lambda x: 'second f', 'g': lambda x: 'function g'} f = sympy.Function('f') g = sympy.Function('g') if1 = lambdify(x, f(x), modules=(n1, "sympy")) assert if1(1) == 'first f' if2 = lambdify(x, g(x), modules=(n2, "sympy")) # previously gave 'second f' assert if1(1) == 'first f' def test_imps(): # Here we check if the default returned functions are anonymous - in # the sense that we can have more than one function with the same name f = implemented_function('f', lambda x: 2*x) g = implemented_function('f', lambda x: math.sqrt(x)) l1 = lambdify(x, f(x)) l2 = lambdify(x, g(x)) assert str(f(x)) == str(g(x)) assert l1(3) == 6 assert l2(3) == math.sqrt(3) # check that we can pass in a Function as input func = sympy.Function('myfunc') assert not hasattr(func, '_imp_') my_f = implemented_function(func, lambda x: 2*x) assert hasattr(func, '_imp_') # Error for functions with same name and different implementation f2 = implemented_function("f", lambda x: x + 101) raises(ValueError, lambda: lambdify(x, f(f2(x)))) def test_imps_wrong_args(): raises(ValueError, lambda: implemented_function(sin, lambda x: x)) def test_lambdify_imps(): # Test lambdify with implemented functions # first test basic (sympy) lambdify f = sympy.cos assert lambdify(x, f(x))(0) == 1 assert lambdify(x, 1 + f(x))(0) == 2 assert lambdify((x, y), y + f(x))(0, 1) == 2 # make an implemented function and test f = implemented_function("f", lambda x: x + 100) assert lambdify(x, f(x))(0) == 100 assert lambdify(x, 1 + f(x))(0) == 101 assert lambdify((x, y), y + f(x))(0, 1) == 101 # Can also handle tuples, lists, dicts as expressions lam = lambdify(x, (f(x), x)) assert lam(3) == (103, 3) lam = lambdify(x, [f(x), x]) assert lam(3) == [103, 3] lam = lambdify(x, [f(x), (f(x), x)]) assert lam(3) == [103, (103, 3)] lam = lambdify(x, {f(x): x}) assert lam(3) == {103: 3} lam = lambdify(x, {f(x): x}) assert lam(3) == {103: 3} lam = lambdify(x, {x: f(x)}) assert lam(3) == {3: 103} # Check that imp preferred to other namespaces by default d = {'f': lambda x: x + 99} lam = lambdify(x, f(x), d) assert lam(3) == 103 # Unless flag passed lam = lambdify(x, f(x), d, use_imps=False) assert lam(3) == 102 def test_dummification(): t = symbols('t') F = Function('F') G = Function('G') #"\alpha" is not a valid python variable name #lambdify should sub in a dummy for it, and return #without a syntax error alpha = symbols(r'\alpha') some_expr = 2 * F(t)**2 / G(t) lam = lambdify((F(t), G(t)), some_expr) assert lam(3, 9) == 2 lam = lambdify(sin(t), 2 * sin(t)**2) assert lam(F(t)) == 2 * F(t)**2 #Test that \alpha was properly dummified lam = lambdify((alpha, t), 2*alpha + t) assert lam(2, 1) == 5 raises(SyntaxError, lambda: lambdify(F(t) * G(t), F(t) * G(t) + 5)) raises(SyntaxError, lambda: lambdify(2 * F(t), 2 * F(t) + 5)) raises(SyntaxError, lambda: lambdify(2 * F(t), 4 * F(t) + 5)) def test_python_keywords(): # Test for issue 7452. The automatic dummification should ensure use of # Python reserved keywords as symbol names will create valid lambda # functions. This is an additional regression test. python_if = symbols('if') expr = python_if / 2 f = lambdify(python_if, expr) assert f(4.0) == 2.0 def test_lambdify_docstring(): func = lambdify((w, x, y, z), w + x + y + z) assert func.__doc__ == ( "Created with lambdify. Signature:\n\n" "func(w, x, y, z)\n\n" "Expression:\n\n" "w + x + y + z") syms = symbols('a1:26') func = lambdify(syms, sum(syms)) assert func.__doc__ == ( "Created with lambdify. Signature:\n\n" "func(a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15,\n" " a16, a17, a18, a19, a20, a21, a22, a23, a24, a25)\n\n" "Expression:\n\n" "a1 + a10 + a11 + a12 + a13 + a14 + a15 + a16 + a17 + a18 + a19 + a2 + a20 +...") #================== Test special printers ========================== def test_special_printers(): class IntervalPrinter(LambdaPrinter): """Use ``lambda`` printer but print numbers as ``mpi`` intervals. """ def _print_Integer(self, expr): return "mpi('%s')" % super(IntervalPrinter, self)._print_Integer(expr) def _print_Rational(self, expr): return "mpi('%s')" % super(IntervalPrinter, self)._print_Rational(expr) def intervalrepr(expr): return IntervalPrinter().doprint(expr) expr = sympy.sqrt(sympy.sqrt(2) + sympy.sqrt(3)) + sympy.S(1)/2 func0 = lambdify((), expr, modules="mpmath", printer=intervalrepr) func1 = lambdify((), expr, modules="mpmath", printer=IntervalPrinter) func2 = lambdify((), expr, modules="mpmath", printer=IntervalPrinter()) mpi = type(mpmath.mpi(1, 2)) assert isinstance(func0(), mpi) assert isinstance(func1(), mpi) assert isinstance(func2(), mpi) def test_true_false(): # We want exact is comparison here, not just == assert lambdify([], true)() is True assert lambdify([], false)() is False def test_issue_2790(): assert lambdify((x, (y, z)), x + y)(1, (2, 4)) == 3 assert lambdify((x, (y, (w, z))), w + x + y + z)(1, (2, (3, 4))) == 10 assert lambdify(x, x + 1, dummify=False)(1) == 2 def test_ITE(): assert lambdify((x, y, z), ITE(x, y, z))(True, 5, 3) == 5 assert lambdify((x, y, z), ITE(x, y, z))(False, 5, 3) == 3 def test_Min_Max(): # see gh-10375 assert lambdify((x, y, z), Min(x, y, z))(1, 2, 3) == 1 assert lambdify((x, y, z), Max(x, y, z))(1, 2, 3) == 3
32.817259
93
0.588244
795364695f8097ba6259b0e646c765192dd0f96b
1,181
py
Python
snowshu/samplings/sample_sizes/brute_force_sample_size.py
norton120/snowshu
3595972a2ab28350f0283c3703adc1ca4b26bec2
[ "Apache-2.0" ]
null
null
null
snowshu/samplings/sample_sizes/brute_force_sample_size.py
norton120/snowshu
3595972a2ab28350f0283c3703adc1ca4b26bec2
[ "Apache-2.0" ]
28
2020-02-06T18:37:51.000Z
2020-02-06T18:38:34.000Z
snowshu/samplings/sample_sizes/brute_force_sample_size.py
norton120/snowshu
3595972a2ab28350f0283c3703adc1ca4b26bec2
[ "Apache-2.0" ]
null
null
null
import math from snowshu.core.samplings.bases.base_sample_size import BaseSampleSize class BruteForceSampleSize(BaseSampleSize): """Implements a static percentage sample size. Args: percentage: The decimal representation of the desired sample size between 1 and 99% (0.01 to 0.99). """ def __init__(self, percentage:float): self._percentage=percentage @property def percentage(self)->float: return self._percentage @percentage.setter def percentage(self,val:float)->None: """validates percentage between 1 and 99% before setting.""" if (0.01 <= val <= 0.99): self._percentage=val else: raise ValueError(f"Percentage must be between 0.01 and 0.99, is {val}") def size(self,population:int)->int: """Calculates the sample size for a given population size. Args: population: The count of records in the full population. Returns: The minimum whole number of elements for a sample size given the instance margin of error and confidence. """ return math.ceil(population * self.percentage)
30.282051
117
0.651143
795364f421f0374ed701e037313d2d1cd2731a45
858
py
Python
webui/app/controller.py
ahmadika/sce-domain-discovery
034210b5c32fbf364c6501bff5df06f50f63b87c
[ "Apache-2.0" ]
null
null
null
webui/app/controller.py
ahmadika/sce-domain-discovery
034210b5c32fbf364c6501bff5df06f50f63b87c
[ "Apache-2.0" ]
1
2017-06-08T17:53:51.000Z
2017-06-08T17:53:52.000Z
webui/app/controller.py
ahmadika/sce-domain-discovery
034210b5c32fbf364c6501bff5df06f50f63b87c
[ "Apache-2.0" ]
2
2018-07-02T16:31:42.000Z
2018-07-02T16:53:26.000Z
from flask import Blueprint, request, render_template, redirect, url_for, send_from_directory from app import classifier # Define Blueprint(s) mod_app = Blueprint('application', __name__, url_prefix='/explorer') # Define Controller(s) @mod_app.route('/') def index(): return send_from_directory('static/pages', 'index.html') # POST Requests @mod_app.route('/classify/update/', methods=['POST']) def build_model(): annotations = [] data = request.get_data() for item in data.split('&'): annotations.append(int(item.split('=')[1])) accuracy = classifier.update_model(annotations) return accuracy @mod_app.route('/classify/download/', methods=['POST']) def download_model(): return classifier.export_model() @mod_app.route('/classify/exist/', methods=['POST']) def check_model(): return classifier.check_model()
26
93
0.712121
79536533e8b3c75e4208745b506205e451cab722
5,180
py
Python
dlcv/object_detection/tensorflow_detect/core/region_similarity_calculator.py
Loonride/deeplens-cv
9e5b31c1a269d364e4912ba8266415fa04277e11
[ "MIT" ]
11
2019-10-07T22:06:30.000Z
2020-08-26T22:10:53.000Z
dlcv/object_detection/tensorflow_detect/core/region_similarity_calculator.py
Loonride/deeplens-cv
9e5b31c1a269d364e4912ba8266415fa04277e11
[ "MIT" ]
16
2019-11-02T00:32:00.000Z
2022-02-10T00:23:32.000Z
dlcv/object_detection/tensorflow_detect/core/region_similarity_calculator.py
Loonride/deeplens-cv
9e5b31c1a269d364e4912ba8266415fa04277e11
[ "MIT" ]
9
2019-10-07T13:33:13.000Z
2020-09-27T09:50:58.000Z
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Region Similarity Calculators for BoxLists. Region Similarity Calculators compare a pairwise measure of similarity between the boxes in two BoxLists. """ from abc import ABCMeta from abc import abstractmethod import tensorflow as tf from object_detection.tensorflow_detect.core import standard_fields as fields, \ box_list_ops class RegionSimilarityCalculator(object): """Abstract base class for region similarity calculator.""" __metaclass__ = ABCMeta def compare(self, boxlist1, boxlist2, scope=None): """Computes matrix of pairwise similarity between BoxLists. This op (to be overridden) computes a measure of pairwise similarity between the boxes in the given BoxLists. Higher values indicate more similarity. Note that this method simply measures similarity and does not explicitly perform a matching. Args: boxlist1: BoxList holding N boxes. boxlist2: BoxList holding M boxes. scope: Op scope name. Defaults to 'Compare' if None. Returns: a (float32) tensor of shape [N, M] with pairwise similarity score. """ with tf.name_scope(scope, 'Compare', [boxlist1, boxlist2]) as scope: return self._compare(boxlist1, boxlist2) @abstractmethod def _compare(self, boxlist1, boxlist2): pass class IouSimilarity(RegionSimilarityCalculator): """Class to compute similarity based on Intersection over Union (IOU) metric. This class computes pairwise similarity between two BoxLists based on IOU. """ def _compare(self, boxlist1, boxlist2): """Compute pairwise IOU similarity between the two BoxLists. Args: boxlist1: BoxList holding N boxes. boxlist2: BoxList holding M boxes. Returns: A tensor with shape [N, M] representing pairwise iou scores. """ return box_list_ops.iou(boxlist1, boxlist2) class NegSqDistSimilarity(RegionSimilarityCalculator): """Class to compute similarity based on the squared distance metric. This class computes pairwise similarity between two BoxLists based on the negative squared distance metric. """ def _compare(self, boxlist1, boxlist2): """Compute matrix of (negated) sq distances. Args: boxlist1: BoxList holding N boxes. boxlist2: BoxList holding M boxes. Returns: A tensor with shape [N, M] representing negated pairwise squared distance. """ return -1 * box_list_ops.sq_dist(boxlist1, boxlist2) class IoaSimilarity(RegionSimilarityCalculator): """Class to compute similarity based on Intersection over Area (IOA) metric. This class computes pairwise similarity between two BoxLists based on their pairwise intersections divided by the areas of second BoxLists. """ def _compare(self, boxlist1, boxlist2): """Compute pairwise IOA similarity between the two BoxLists. Args: boxlist1: BoxList holding N boxes. boxlist2: BoxList holding M boxes. Returns: A tensor with shape [N, M] representing pairwise IOA scores. """ return box_list_ops.ioa(boxlist1, boxlist2) class ThresholdedIouSimilarity(RegionSimilarityCalculator): """Class to compute similarity based on thresholded IOU and score. This class computes pairwise similarity between two BoxLists based on IOU and a 'score' present in boxlist1. If IOU > threshold, then the entry in the output pairwise tensor will contain `score`, otherwise 0. """ def __init__(self, iou_threshold=0): """Initialize the ThresholdedIouSimilarity. Args: iou_threshold: For a given pair of boxes, if the IOU is > iou_threshold, then the comparison result will be the foreground probability of the first box, otherwise it will be zero. """ self._iou_threshold = iou_threshold def _compare(self, boxlist1, boxlist2): """Compute pairwise IOU similarity between the two BoxLists and score. Args: boxlist1: BoxList holding N boxes. Must have a score field. boxlist2: BoxList holding M boxes. Returns: A tensor with shape [N, M] representing scores threholded by pairwise iou scores. """ ious = box_list_ops.iou(boxlist1, boxlist2) scores = boxlist1.get_field(fields.BoxListFields.scores) scores = tf.expand_dims(scores, axis=1) row_replicated_scores = tf.tile(scores, [1, tf.shape(ious)[-1]]) thresholded_ious = tf.where(ious > self._iou_threshold, row_replicated_scores, tf.zeros_like(ious)) return thresholded_ious
33.419355
80
0.719691
7953654b85f3fdd6f8ea9683baad787e953431b3
304
py
Python
backend/thunder/__init__.py
wikibootup/thunder
d617aa498a2d387c1595ac3f580c4875f05d356b
[ "MIT" ]
null
null
null
backend/thunder/__init__.py
wikibootup/thunder
d617aa498a2d387c1595ac3f580c4875f05d356b
[ "MIT" ]
null
null
null
backend/thunder/__init__.py
wikibootup/thunder
d617aa498a2d387c1595ac3f580c4875f05d356b
[ "MIT" ]
null
null
null
from flask import Flask from flask_sqlalchemy import SQLAlchemy import os app = Flask(__name__, static_url_path='', static_folder='../../front/src/') app.config.from_object(os.environ['APP_SETTINGS']) app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False db = SQLAlchemy(app) from thunder import views
25.333333
75
0.782895
7953660337f78f6e90c2956745551d1d836d429e
1,890
py
Python
pysper/parser/__init__.py
arvy/sperf
c047ae5f3b1daf70cc227784197e4ef37caaf556
[ "Apache-2.0" ]
null
null
null
pysper/parser/__init__.py
arvy/sperf
c047ae5f3b1daf70cc227784197e4ef37caaf556
[ "Apache-2.0" ]
null
null
null
pysper/parser/__init__.py
arvy/sperf
c047ae5f3b1daf70cc227784197e4ef37caaf556
[ "Apache-2.0" ]
null
null
null
# Copyright 2020 DataStax, Inc # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ pysper parser top level. """ from pysper.parser import systemlog, outputlog, block_dev from pysper import env def read_system_log(lines, **extras): """read the system log, yields an iterable set of events of parsed logs""" return read_log(lines, systemlog.capture_line, **extras) def read_output_log(lines, **extras): """read the output log, yields an iterable set of events of parsed logs""" return read_log(lines, outputlog.capture_line, **extras) def read_block_dev(lines, **extras): """consumes a block dev report, yields an iterable set of events of parsed logs""" return read_log(lines, block_dev.capture_line, **extras) def _default_capture(line): """does nothing interesting but will print out lines if debug is on""" if env.DEBUG: print(line) def read_log(lines, capture_line_func=_default_capture, **extras): """ parses an iterable set of lines yielding events """ fields = None for line in lines: next_fields = capture_line_func(line) if next_fields is not None: if fields is not None: fields.update(extras) yield fields fields = next_fields #need to do this one last time to clear out the last update to next_fields if fields is not None: yield fields
38.571429
86
0.710053
79536609758e09b8a3092a07af760bdbf4fcfdbd
1,768
py
Python
Medium/81.py
Hellofafar/Leetcode
7a459e9742958e63be8886874904e5ab2489411a
[ "CNRI-Python" ]
6
2017-09-25T18:05:50.000Z
2019-03-27T00:23:15.000Z
Medium/81.py
Hellofafar/Leetcode
7a459e9742958e63be8886874904e5ab2489411a
[ "CNRI-Python" ]
1
2017-10-29T12:04:41.000Z
2018-08-16T18:00:37.000Z
Medium/81.py
Hellofafar/Leetcode
7a459e9742958e63be8886874904e5ab2489411a
[ "CNRI-Python" ]
null
null
null
# ------------------------------ # 81. Search in Rotated Sorted Array II # # Description: # Follow up for "Search in Rotated Sorted Array": # What if duplicates are allowed? # # Would this affect the run-time complexity? How and why? # # Suppose an array sorted in ascending order is rotated at some pivot unknown to you beforehand. # (i.e., 0 1 2 4 5 6 7 might become 4 5 6 7 0 1 2). # Write a function to determine if a given target is in the array. # The array may contain duplicates. # # Version: 1.0 # 01/27/18 by Jianfa # ------------------------------ class Solution(object): def search(self, nums, target): """ :type nums: List[int] :type target: int :rtype: bool """ if not nums: return False low = 0 high = len(nums) - 1 while low <= high: mid = (low + high) / 2 if nums[mid] == target: return True elif nums[mid] < nums[high]: if nums[mid] < target and target <= nums[high]: low = mid + 1 else: high = mid - 1 elif nums[mid] > nums[high]: if nums[mid] > target and target >= nums[low]: high = mid - 1 else: low = mid + 1 else: high -= 1 return False # Used for testing if __name__ == "__main__": test = Solution() nums = [1] target = 0 print(test.search(nums, target)) # ------------------------------ # Summary: # Follow the idea from https://leetcode.com/problems/search-in-rotated-sorted-array-ii/discuss/28194.
27.625
101
0.478507
7953661c6878a19e5ce9edb68892fc7dadb52410
8,703
py
Python
design2.py
Egor-Iudin/damped_oscillations
fbda2acfd3d6ac6e39315e90cdeb345e263a1f6e
[ "MIT" ]
1
2021-10-31T22:55:48.000Z
2021-10-31T22:55:48.000Z
design2.py
Egor-Iudin/damped_oscillations
fbda2acfd3d6ac6e39315e90cdeb345e263a1f6e
[ "MIT" ]
null
null
null
design2.py
Egor-Iudin/damped_oscillations
fbda2acfd3d6ac6e39315e90cdeb345e263a1f6e
[ "MIT" ]
null
null
null
# -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'design2.ui' # # Created by: PyQt5 UI code generator 5.10.1 # # WARNING! All changes made in this file will be lost! from PyQt5 import QtCore, QtGui, QtWidgets class Ui_MainWindow(object): def setupUi(self, MainWindow): MainWindow.setObjectName("MainWindow") MainWindow.resize(800, 600) MainWindow.setMinimumSize(QtCore.QSize(800, 600)) MainWindow.setMaximumSize(QtCore.QSize(800, 600)) font = QtGui.QFont() font.setFamily("Ubuntu") font.setBold(False) font.setItalic(False) font.setUnderline(False) font.setWeight(50) font.setStrikeOut(False) MainWindow.setFont(font) MainWindow.setContextMenuPolicy(QtCore.Qt.DefaultContextMenu) self.centralwidget = QtWidgets.QWidget(MainWindow) self.centralwidget.setMinimumSize(QtCore.QSize(800, 600)) self.centralwidget.setMaximumSize(QtCore.QSize(800, 600)) font = QtGui.QFont() font.setKerning(True) font.setStyleStrategy(QtGui.QFont.PreferAntialias) self.centralwidget.setFont(font) self.centralwidget.setObjectName("centralwidget") self.graphicsView = PlotWidget(self.centralwidget) self.graphicsView.setGeometry(QtCore.QRect(0, 100, 800, 500)) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.MinimumExpanding, QtWidgets.QSizePolicy.MinimumExpanding) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.graphicsView.sizePolicy().hasHeightForWidth()) self.graphicsView.setSizePolicy(sizePolicy) self.graphicsView.setMinimumSize(QtCore.QSize(800, 500)) self.graphicsView.setMaximumSize(QtCore.QSize(800, 500)) self.graphicsView.setObjectName("graphicsView") self.splitter = QtWidgets.QSplitter(self.centralwidget) self.splitter.setGeometry(QtCore.QRect(0, 0, 800, 100)) self.splitter.setMinimumSize(QtCore.QSize(800, 100)) self.splitter.setMaximumSize(QtCore.QSize(812, 104)) self.splitter.setOrientation(QtCore.Qt.Horizontal) self.splitter.setObjectName("splitter") self.splitter_4 = QtWidgets.QSplitter(self.splitter) self.splitter_4.setOrientation(QtCore.Qt.Vertical) self.splitter_4.setObjectName("splitter_4") self.label_3 = QtWidgets.QLabel(self.splitter_4) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Fixed, QtWidgets.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(200) sizePolicy.setVerticalStretch(40) sizePolicy.setHeightForWidth(self.label_3.sizePolicy().hasHeightForWidth()) self.label_3.setSizePolicy(sizePolicy) self.label_3.setMinimumSize(QtCore.QSize(200, 40)) self.label_3.setMaximumSize(QtCore.QSize(200, 40)) self.label_3.setAlignment(QtCore.Qt.AlignCenter) self.label_3.setObjectName("label_3") self.doubleSpinBox_3 = QtWidgets.QDoubleSpinBox(self.splitter_4) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.MinimumExpanding, QtWidgets.QSizePolicy.MinimumExpanding) sizePolicy.setHorizontalStretch(200) sizePolicy.setVerticalStretch(60) sizePolicy.setHeightForWidth(self.doubleSpinBox_3.sizePolicy().hasHeightForWidth()) self.doubleSpinBox_3.setSizePolicy(sizePolicy) self.doubleSpinBox_3.setObjectName("doubleSpinBox_3") self.splitter_1 = QtWidgets.QSplitter(self.splitter) self.splitter_1.setOrientation(QtCore.Qt.Vertical) self.splitter_1.setObjectName("splitter_1") self.label_1 = QtWidgets.QLabel(self.splitter_1) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.MinimumExpanding, QtWidgets.QSizePolicy.MinimumExpanding) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.label_1.sizePolicy().hasHeightForWidth()) self.label_1.setSizePolicy(sizePolicy) self.label_1.setMinimumSize(QtCore.QSize(200, 40)) self.label_1.setMaximumSize(QtCore.QSize(200, 40)) self.label_1.setAlignment(QtCore.Qt.AlignCenter) self.label_1.setObjectName("label_1") self.doubleSpinBox_1 = QtWidgets.QDoubleSpinBox(self.splitter_1) self.doubleSpinBox_1.setEnabled(True) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Fixed, QtWidgets.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(200) sizePolicy.setVerticalStretch(60) sizePolicy.setHeightForWidth(self.doubleSpinBox_1.sizePolicy().hasHeightForWidth()) self.doubleSpinBox_1.setSizePolicy(sizePolicy) self.doubleSpinBox_1.setMinimumSize(QtCore.QSize(200, 60)) self.doubleSpinBox_1.setMaximumSize(QtCore.QSize(200, 60)) self.doubleSpinBox_1.setObjectName("doubleSpinBox_1") self.splitter_3 = QtWidgets.QSplitter(self.splitter) self.splitter_3.setOrientation(QtCore.Qt.Vertical) self.splitter_3.setObjectName("splitter_3") self.label_4 = QtWidgets.QLabel(self.splitter_3) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.MinimumExpanding, QtWidgets.QSizePolicy.MinimumExpanding) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.label_4.sizePolicy().hasHeightForWidth()) self.label_4.setSizePolicy(sizePolicy) self.label_4.setMinimumSize(QtCore.QSize(200, 40)) self.label_4.setMaximumSize(QtCore.QSize(200, 40)) self.label_4.setAlignment(QtCore.Qt.AlignCenter) self.label_4.setObjectName("label_4") self.doubleSpinBox_4 = QtWidgets.QDoubleSpinBox(self.splitter_3) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.MinimumExpanding, QtWidgets.QSizePolicy.MinimumExpanding) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.doubleSpinBox_4.sizePolicy().hasHeightForWidth()) self.doubleSpinBox_4.setSizePolicy(sizePolicy) self.doubleSpinBox_4.setWrapping(False) self.doubleSpinBox_4.setObjectName("doubleSpinBox_4") self.splitter_2 = QtWidgets.QSplitter(self.splitter) self.splitter_2.setOrientation(QtCore.Qt.Vertical) self.splitter_2.setObjectName("splitter_2") self.label_2 = QtWidgets.QLabel(self.splitter_2) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.MinimumExpanding, QtWidgets.QSizePolicy.MinimumExpanding) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.label_2.sizePolicy().hasHeightForWidth()) self.label_2.setSizePolicy(sizePolicy) self.label_2.setMinimumSize(QtCore.QSize(200, 40)) self.label_2.setMaximumSize(QtCore.QSize(200, 40)) self.label_2.setAlignment(QtCore.Qt.AlignCenter) self.label_2.setObjectName("label_2") self.doubleSpinBox_2 = QtWidgets.QDoubleSpinBox(self.splitter_2) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Fixed, QtWidgets.QSizePolicy.Fixed) sizePolicy.setHorizontalStretch(200) sizePolicy.setVerticalStretch(60) sizePolicy.setHeightForWidth(self.doubleSpinBox_2.sizePolicy().hasHeightForWidth()) self.doubleSpinBox_2.setSizePolicy(sizePolicy) self.doubleSpinBox_2.setMinimumSize(QtCore.QSize(200, 60)) self.doubleSpinBox_2.setMaximumSize(QtCore.QSize(200, 60)) self.doubleSpinBox_2.setObjectName("doubleSpinBox_2") MainWindow.setCentralWidget(self.centralwidget) self.retranslateUi(MainWindow) self.doubleSpinBox_1.editingFinished.connect(self.update_graphics) self.doubleSpinBox_4.editingFinished.connect(self.update_graphics) self.doubleSpinBox_3.editingFinished.connect(self.update_graphics) self.doubleSpinBox_2.editingFinished.connect(self.update_graphics) QtCore.QMetaObject.connectSlotsByName(MainWindow) def retranslateUi(self, MainWindow): _translate = QtCore.QCoreApplication.translate MainWindow.setWindowTitle(_translate("MainWindow", "Затухающие колебания")) self.label_3.setText(_translate("MainWindow", "m - масса тела")) self.label_1.setText(_translate("MainWindow", "A0 - начальная амплитуда")) self.label_4.setText(_translate("MainWindow", "в - коэффицент затухания")) self.label_2.setText(_translate("MainWindow", "k - коэффициент жёсткости")) def update_graphics(self): pass from pyqtgraph import PlotWidget
54.39375
122
0.737102
7953663d3a88141f775fc9c395e30153b40524db
4,770
py
Python
examples/cooperation/cooperation/agents.py
cwhd/mesa
9d43e589831ad3a1afe9cfb64a887fa2bd9e3cec
[ "Apache-2.0" ]
1
2021-04-09T10:55:32.000Z
2021-04-09T10:55:32.000Z
examples/cooperation/cooperation/agents.py
cwhd/mesa
9d43e589831ad3a1afe9cfb64a887fa2bd9e3cec
[ "Apache-2.0" ]
null
null
null
examples/cooperation/cooperation/agents.py
cwhd/mesa
9d43e589831ad3a1afe9cfb64a887fa2bd9e3cec
[ "Apache-2.0" ]
null
null
null
from mesa import Agent from cooperation.random_walk import RandomWalker from cooperation.fcmwrapper import FCMAgent """ A cow that uses a mental model to decide what to do Here are some model ids: #666-99-6969 #123456789 #75-325 """ class FCMCow(RandomWalker): def __init__(self, unique_id, pos, model, moore, fcm_result=None, energy=50, is_greedy=False): super().__init__(unique_id, pos, model, moore=moore) self.energy = energy self.greedy = is_greedy self.fcm_result = fcm_result #this gets called every tick def step(self): #print("FCM RESULT") #print(self.fcm_result) self.random_move() living = True self.energy -= self.model.metabolism # Eat if there is grass eat_chance = self.random.randrange(0, 100) / 100 if self.fcm_result['Food Observation'] > eat_chance: #first check for grass this_cell = self.model.grid.get_cell_list_contents([self.pos]) grass_patch = [obj for obj in this_cell if isinstance(obj, GrassPatch)][0] if grass_patch.fully_grown: #the greedy model always returns 1, same effect as procedural model #cooperative cow eat_amount = grass_patch.countdown * self.fcm_result['Eat'] grass_patch.countdown += eat_amount #this line could be how the cow feels, maybe they feel low energy and it causes other behavior? #self.energy += self.fcm_result['Energy'] * self.model.grass_energy self.energy += self.model.grass_energy grass_patch.fully_grown = False # Death if self.energy < 0: #self.fcm_result['Energy'] self.model.grid._remove_agent(self.pos, self) self.model.schedule.remove(self) living = False # Reproduce if living and self.random.random() < self.model.reproduction_threshold: self.energy -= self.model.reproduction_cost calf = FCMCow(self.model.next_id(), self.pos, self.model, self.moore, self.fcm_result, self.energy, self.greedy) self.model.grid.place_agent(calf, self.pos) self.model.schedule.add(calf) # you can have a greedy cow or a cooperative cow # note that instead of the individual methods in NetLogo everything ends up going into the step function class Cow(RandomWalker): def __init__(self, unique_id, pos, model, moore, energy=None, is_greedy=False): super().__init__(unique_id, pos, model, moore=moore) self.energy = energy self.greedy = is_greedy #this gets called every tick def step(self): self.random_move() living = True self.energy -= self.model.metabolism #Eat if there is grass this_cell = self.model.grid.get_cell_list_contents([self.pos]) grass_patch = [obj for obj in this_cell if isinstance(obj, GrassPatch)][0] if grass_patch.fully_grown: self.energy += self.model.grass_energy grass_patch.fully_grown = False if self.greedy: grass_patch.countdown = 0 else: grass_patch.countdown -= 1 # Death if self.energy < 0: self.model.grid._remove_agent(self.pos, self) self.model.schedule.remove(self) living = False # Reproduce if living and self.random.random() < self.model.reproduction_threshold: self.energy -= self.model.reproduction_cost calf = Cow(self.model.next_id(), self.pos, self.model, self.moore, self.energy) self.model.grid.place_agent(calf, self.pos) self.model.schedule.add(calf) #I borrowed this from the wolf and sheep model. class GrassPatch(Agent): ''' A patch of grass that grows at a fixed rate and it is eaten by sheep ''' def __init__(self, unique_id, pos, model, fully_grown, countdown): ''' Creates a new patch of grass Args: grown: (boolean) Whether the patch of grass is fully grown or not countdown: Time for the patch of grass to be fully grown again ''' super().__init__(unique_id, model) self.fully_grown = fully_grown self.countdown = countdown self.pos = pos def step(self): if not self.fully_grown: if self.countdown <= 0: # Set as fully grown self.fully_grown = True self.countdown = self.model.grass_regrowth_time else: self.countdown -= 1
37.559055
111
0.606709
7953668e6e6ccaf659cdb0a73a69ffc8db3dac02
302
py
Python
config/local.py
uzura8/flaskbird
6f6bfc5c03286809f103d01a20935c9ce5f93e8f
[ "MIT" ]
null
null
null
config/local.py
uzura8/flaskbird
6f6bfc5c03286809f103d01a20935c9ce5f93e8f
[ "MIT" ]
null
null
null
config/local.py
uzura8/flaskbird
6f6bfc5c03286809f103d01a20935c9ce5f93e8f
[ "MIT" ]
null
null
null
from config import BaseConfig class LocalConfig(BaseConfig): TESTING = False DEBUG = True SQLALCHEMY_TRACK_MODIFICATIONS = True SQLALCHEMY_ECHO = True IS_LOGGING_MAIL = True # Request params PARAMS_LIST_DEFAULT = { 'per_page': 3, 'per_page_max': 10, }
20.133333
41
0.662252
7953671b0dab0ca91b4de7a2b056dd9e7141a45a
3,090
py
Python
src/fast_playlist/views.py
dmvieira/gmusic-playlist
d8114c29aa80985bd3a8725bed76449410bb3d0f
[ "Apache-2.0" ]
null
null
null
src/fast_playlist/views.py
dmvieira/gmusic-playlist
d8114c29aa80985bd3a8725bed76449410bb3d0f
[ "Apache-2.0" ]
null
null
null
src/fast_playlist/views.py
dmvieira/gmusic-playlist
d8114c29aa80985bd3a8725bed76449410bb3d0f
[ "Apache-2.0" ]
null
null
null
from django.shortcuts import render # Create your views here. # form for donation #<form action="https://www.paypal.com/cgi-bin/webscr" method="post" target="_top"> #<input type="hidden" name="cmd" value="_s-xclick"> #<input type="hidden" name="encrypted" value="-----BEGIN PKCS7-----MIIHTwYJKoZIhvcNAQcEoIIHQDCCBzwCAQExggEwMIIBLAIBADCBlDCBjjELMAkGA1UEBhMCVVMxCzAJBgNVBAgTAkNBMRYwFAYDVQQHEw1Nb3VudGFpbiBWaWV3MRQwEgYDVQQKEwtQYXlQYWwgSW5jLjETMBEGA1UECxQKbGl2ZV9jZXJ0czERMA8GA1UEAxQIbGl2ZV9hcGkxHDAaBgkqhkiG9w0BCQEWDXJlQHBheXBhbC5jb20CAQAwDQYJKoZIhvcNAQEBBQAEgYAeeAyf+2WQMHuM3Sd51AIq+MBRH7LWKSeir+4wZ+0Py3adpJsDrMjCTS5x7HCXGJ4MspmkkQeueQc8M64nYb+ww7EMNLYVYAr2Vy2+xXzKen2knALdQBcS+1RI4bopzmVDtPq7uUDRJFybNHaMhbvv7RUBYoZq/6IUWlx4zyxGlzELMAkGBSsOAwIaBQAwgcwGCSqGSIb3DQEHATAUBggqhkiG9w0DBwQIyK4MWBeRrniAgaiK31FaGzS1XpvXHsa1P7ZojQpDoXtIJcZyBnyVuubkZmMG08HMLvCZuXGSEYtZsSOauBQxXKhoeajAp/q6d51ndjGAsnR9gjV2bvSkFLuTOM73tbqdEjQClPfv8W7qBHbtM6R9ndbwYqWT/rc4mGSGYxi+yCkxd1UmIy68rqstDCzzXRvv6SpSQsZ2C0pCgDPco1Ggf0LZNbMqXqOUrvXNfFrE3Tmn2dWgggOHMIIDgzCCAuygAwIBAgIBADANBgkqhkiG9w0BAQUFADCBjjELMAkGA1UEBhMCVVMxCzAJBgNVBAgTAkNBMRYwFAYDVQQHEw1Nb3VudGFpbiBWaWV3MRQwEgYDVQQKEwtQYXlQYWwgSW5jLjETMBEGA1UECxQKbGl2ZV9jZXJ0czERMA8GA1UEAxQIbGl2ZV9hcGkxHDAaBgkqhkiG9w0BCQEWDXJlQHBheXBhbC5jb20wHhcNMDQwMjEzMTAxMzE1WhcNMzUwMjEzMTAxMzE1WjCBjjELMAkGA1UEBhMCVVMxCzAJBgNVBAgTAkNBMRYwFAYDVQQHEw1Nb3VudGFpbiBWaWV3MRQwEgYDVQQKEwtQYXlQYWwgSW5jLjETMBEGA1UECxQKbGl2ZV9jZXJ0czERMA8GA1UEAxQIbGl2ZV9hcGkxHDAaBgkqhkiG9w0BCQEWDXJlQHBheXBhbC5jb20wgZ8wDQYJKoZIhvcNAQEBBQADgY0AMIGJAoGBAMFHTt38RMxLXJyO2SmS+Ndl72T7oKJ4u4uw+6awntALWh03PewmIJuzbALScsTS4sZoS1fKciBGoh11gIfHzylvkdNe/hJl66/RGqrj5rFb08sAABNTzDTiqqNpJeBsYs/c2aiGozptX2RlnBktH+SUNpAajW724Nv2Wvhif6sFAgMBAAGjge4wgeswHQYDVR0OBBYEFJaffLvGbxe9WT9S1wob7BDWZJRrMIG7BgNVHSMEgbMwgbCAFJaffLvGbxe9WT9S1wob7BDWZJRroYGUpIGRMIGOMQswCQYDVQQGEwJVUzELMAkGA1UECBMCQ0ExFjAUBgNVBAcTDU1vdW50YWluIFZpZXcxFDASBgNVBAoTC1BheVBhbCBJbmMuMRMwEQYDVQQLFApsaXZlX2NlcnRzMREwDwYDVQQDFAhsaXZlX2FwaTEcMBoGCSqGSIb3DQEJARYNcmVAcGF5cGFsLmNvbYIBADAMBgNVHRMEBTADAQH/MA0GCSqGSIb3DQEBBQUAA4GBAIFfOlaagFrl71+jq6OKidbWFSE+Q4FqROvdgIONth+8kSK//Y/4ihuE4Ymvzn5ceE3S/iBSQQMjyvb+s2TWbQYDwcp129OPIbD9epdr4tJOUNiSojw7BHwYRiPh58S1xGlFgHFXwrEBb3dgNbMUa+u4qectsMAXpVHnD9wIyfmHMYIBmjCCAZYCAQEwgZQwgY4xCzAJBgNVBAYTAlVTMQswCQYDVQQIEwJDQTEWMBQGA1UEBxMNTW91bnRhaW4gVmlldzEUMBIGA1UEChMLUGF5UGFsIEluYy4xEzARBgNVBAsUCmxpdmVfY2VydHMxETAPBgNVBAMUCGxpdmVfYXBpMRwwGgYJKoZIhvcNAQkBFg1yZUBwYXlwYWwuY29tAgEAMAkGBSsOAwIaBQCgXTAYBgkqhkiG9w0BCQMxCwYJKoZIhvcNAQcBMBwGCSqGSIb3DQEJBTEPFw0xNTA0MjYyMjE5MTVaMCMGCSqGSIb3DQEJBDEWBBSW7Du6dcab72VRjet/DzQ3/a/5VDANBgkqhkiG9w0BAQEFAASBgJ1eElllN/KVVfZIIGa6dn97Osl04/DrhbmuQwXKYS/xAnvu4OtgybrP4AVNsi6t1N+/uakC5VYlJ6WIElNyZZAru+QyUnfGhCCqwMV9bEmkk2bSxWWwBCT50Q26ifDz+h7zG73MSFl25qRzxgi9cyIDXErI4KQ9eCXkiQZvNvB+-----END PKCS7----- #"> #<input type="image" src="https://www.paypalobjects.com/en_US/i/btn/btn_donateCC_LG.gif" border="0" name="submit" alt="PayPal - The safer, easier way to pay online!"> #<img alt="" border="0" src="https://www.paypalobjects.com/pt_BR/i/scr/pixel.gif" width="1" height="1"> #</form>
237.692308
2,586
0.928155
7953684caec750d940ed592ddcef574b40d1bfbd
5,400
py
Python
benchmarks/benchmarks.py
jdcourcol/NeuroM
5a654f6fb00b930391035f46bbbc1a39a11551fb
[ "BSD-3-Clause" ]
1
2016-10-25T09:23:16.000Z
2016-10-25T09:23:16.000Z
benchmarks/benchmarks.py
jdcourcol/NeuroM
5a654f6fb00b930391035f46bbbc1a39a11551fb
[ "BSD-3-Clause" ]
null
null
null
benchmarks/benchmarks.py
jdcourcol/NeuroM
5a654f6fb00b930391035f46bbbc1a39a11551fb
[ "BSD-3-Clause" ]
null
null
null
from pathlib import Path import neurom as nm import neurom.io import neurom.fst._core from neurom.check import neuron_checks as nc from neurom.check import structural_checks as sc DATA_DIR = Path(__file__).parent.parent / 'test_data/' class TimeLoadMorphology(object): def time_swc(self): path = Path(DATA_DIR, 'swc/Neuron.swc') nm.load_neuron(path) def time_neurolucida_asc(self): path = Path(DATA_DIR, 'neurolucida/bio_neuron-000.asc') nm.load_neuron(path) def time_h5(self): path = Path(DATA_DIR, 'h5/v1/bio_neuron-000.h5') nm.load_neuron(path) class TimeFeatures(object): def setup(self): path = Path(DATA_DIR, 'h5/v1/bio_neuron-000.h5') self.neuron = nm.load_neuron(path) def time_total_length(self): nm.get('total_length', self.neuron) def time_total_length_per_neurite(self): nm.get('total_length_per_neurite', self.neuron) def time_section_lengths(self): nm.get('section_lengths', self.neuron) def time_section_volumes(self): nm.get('section_volumes', self.neuron) def time_section_areas(self): nm.get('section_areas', self.neuron) def time_section_tortuosity(self): nm.get('section_tortuosity', self.neuron) def time_section_path_distances(self): nm.get('section_path_distances', self.neuron) def time_number_of_sections(self): nm.get('number_of_sections', self.neuron) def time_number_of_sections_per_neurite(self): nm.get('number_of_sections_per_neurite', self.neuron) def time_number_of_neurites(self): nm.get('number_of_neurites', self.neuron) def time_number_of_bifurcations(self): nm.get('number_of_bifurcations', self.neuron) def time_number_of_forking_points(self): nm.get('number_of_forking_points', self.neuron) def time_number_of_terminations(self): nm.get('number_of_terminations', self.neuron) def time_section_branch_orders(self): nm.get('section_branch_orders', self.neuron) def time_section_radial_distances(self): nm.get('section_radial_distances', self.neuron) def time_local_bifurcation_angles(self): nm.get('local_bifurcation_angles', self.neuron) def time_remote_bifurcation_angles(self): nm.get('remote_bifurcation_angles', self.neuron) def time_partition(self): nm.get('partition', self.neuron) def time_number_of_segments(self): nm.get('number_of_segments', self.neuron) def time_segment_lengths(self): nm.get('segment_lengths', self.neuron) def time_segment_radii(self): nm.get('segment_radii', self.neuron) def time_segment_midpoints(self): nm.get('segment_midpoints', self.neuron) def time_segment_taper_rates(self): nm.get('segment_taper_rates', self.neuron) def time_segment_radial_distances(self): nm.get('segment_radial_distances', self.neuron) def time_segment_meander_angles(self): nm.get('segment_meander_angles', self.neuron) def time_principal_direction_extents(self): nm.get('principal_direction_extents', self.neuron) def time_sholl_frequency(self): nm.get('sholl_frequency', self.neuron) class TimeChecks: def setup(self): path = Path(DATA_DIR, 'h5/v1/bio_neuron-000.h5') self.data_wrapper = neurom.io.load_data(path) self.neuron = neurom.fst._core.FstNeuron(self.data_wrapper) def time_has_sequential_ids(self): sc.has_sequential_ids(self.data_wrapper) def time_no_missing_parents(self): sc.no_missing_parents(self.data_wrapper) def time_is_single_tree(self): sc.is_single_tree(self.data_wrapper) def time_has_increasing_ids(self): sc.has_increasing_ids(self.data_wrapper) def time_has_soma_points(self): sc.has_soma_points(self.data_wrapper) def time_has_all_finite_radius_neurites(self): sc.has_all_finite_radius_neurites(self.data_wrapper, threshold=0.0) def time_has_valid_soma(self): sc.has_valid_soma(self.data_wrapper) def time_has_valid_neurites(self): sc.has_valid_neurites(self.data_wrapper) def time_has_axon(self): nc.has_axon(self.neuron) def time_has_apical_dendrite(self): nc.has_apical_dendrite(self.neuron, min_number=1) def time_has_basal_dendrite(self): nc.has_basal_dendrite(self.neuron, min_number=1) def time_has_no_flat_neurites(self): nc.has_no_flat_neurites(self.neuron, tol=0.1, method='ratio') def time_has_all_monotonic_neurites(self): nc.has_all_monotonic_neurites(self.neuron, tol=1e-6) def time_has_all_nonzero_segment_lengths(self): nc.has_all_nonzero_segment_lengths(self.neuron, threshold=0.0) def time_has_all_nonzero_section_lengths(self): nc.has_all_nonzero_section_lengths(self.neuron, threshold=0.0) def time_has_all_nonzero_neurite_radii(self): nc.has_all_nonzero_neurite_radii(self.neuron, threshold=0.0) def time_has_nonzero_soma_radius(self): nc.has_nonzero_soma_radius(self.neuron, threshold=0.0) def time_has_no_jumps(self): nc.has_no_jumps(self.neuron, max_distance=30.0, axis='z') def time_has_no_fat_ends(self): nc.has_no_fat_ends(self.neuron, multiple_of_mean=2.0, final_point_count=5)
30.857143
82
0.717222
7953687e022ac7c464f3d4f3cb3b26dc37fa332c
2,646
py
Python
app.py
tjdaley/twitterswitch
861ec1ae821d6c445bdcf89e40a78fa76fc5973d
[ "BSD-2-Clause" ]
null
null
null
app.py
tjdaley/twitterswitch
861ec1ae821d6c445bdcf89e40a78fa76fc5973d
[ "BSD-2-Clause" ]
null
null
null
app.py
tjdaley/twitterswitch
861ec1ae821d6c445bdcf89e40a78fa76fc5973d
[ "BSD-2-Clause" ]
null
null
null
import RPi.GPIO as GPIO import json import time import twitter # TODO: Turn these into command line arguments OR config file parameters HASHTAG = "%23avianaart" QUERY = f'q={HASHTAG}&result_type=recent&since_id=' PINS = [11, 13, 15, 16] # physical locations on the GPIO strip def setup_gpio(pins: list): """ Set up the GPIO. This will elect to address pins by physical location number. Args: pins (list): List of pin numbers connected to the relay board. """ # Supress warnings GPIO.setwarnings(False) # Reference channels by physical pin number. GPIO.setmode(GPIO.BOARD) # Set the pins to output mode. for pin in pins: GPIO.setup(pin, GPIO.OUT) def lights_on(pins: list): """ Turn the lights on. """ for pin in pins: GPIO.output(pin, GPIO.LOW) def lights_off(pins: list): """ Turn the lights off. """ for pin in pins: GPIO.output(pin, GPIO.HIGH) def cleanup(): """ Clean up before exiting. """ GPIO.cleanup() def load_keys(): with open ("../keys.json", "r") as key_file: keys = json.load(key_file) return keys def connect_twitter(config): """ Connect to Twitter. Args: config (tuple): Contains the parameters needed to authenticate and authorize with Twitter. Returns: Reference to connected Twitter service. """ api = twitter.Api(consumer_key=config["CONSUMER_KEY"], consumer_secret=config["CONSUMER_SECRET"], access_token_key=config["ACCESS_TOKEN_KEY"], access_token_secret=config["ACCESS_TOKEN_SECRET"], sleep_on_rate_limit=True) verified_credentials = api.VerifyCredentials() # print("Screen name:", verified_credentials.screen_name) # print("Last Tweet:", verified_credentials.status.text) return api def search_twitter(api, last_id: str): results = [] try: results = api.GetSearch(raw_query=QUERY+last_id) except twitter.error.TwitterError as e: print(str(e)) print(QUERY) return results def log_tweet(tweet: dict): message = f"{tweet.created_at} - {tweet.user.name} at {tweet.user.location}" print(message) def main(args): api = connect_twitter(load_keys()) setup_gpio(PINS) last_id = "0" while True: results = search_twitter(api, last_id) if len(results) > 0: # print(results[0].text) last_id = results[0].id_str log_tweet(results[0]) lights_on(PINS) time.sleep(60) lights_off(PINS) time.sleep(4) if __name__ == "__main__": try: main(None) except Exception as e: print(str(e)) cleanup() exit()
22.05
94
0.656085
795369001d764709b2e4e2794f021be7214c719d
12,826
py
Python
tensorforce/agents/double_dqn.py
DLPerf/tensorforce
33a2d84fa850e8842dfe2cef3901de32cf7cd221
[ "Apache-2.0" ]
1
2021-12-25T16:54:16.000Z
2021-12-25T16:54:16.000Z
tensorforce/agents/double_dqn.py
DLPerf/tensorforce
33a2d84fa850e8842dfe2cef3901de32cf7cd221
[ "Apache-2.0" ]
null
null
null
tensorforce/agents/double_dqn.py
DLPerf/tensorforce
33a2d84fa850e8842dfe2cef3901de32cf7cd221
[ "Apache-2.0" ]
null
null
null
# Copyright 2020 Tensorforce Team. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from collections import OrderedDict from tensorforce import TensorforceError from tensorforce.agents import TensorforceAgent class DoubleDQN(TensorforceAgent): """ [Double DQN](https://arxiv.org/abs/1509.06461) agent (specification key: `double_dqn` or `ddqn`). Args: states (specification): States specification (<span style="color:#C00000"><b>required</b></span>, better implicitly specified via `environment` argument for `Agent.create(...)`), arbitrarily nested dictionary of state descriptions (usually taken from `Environment.states()`) with the following attributes: <ul> <li><b>type</b> (<i>"bool" | "int" | "float"</i>) &ndash; state data type (<span style="color:#00C000"><b>default</b></span>: "float").</li> <li><b>shape</b> (<i>int | iter[int]</i>) &ndash; state shape (<span style="color:#C00000"><b>required</b></span>).</li> <li><b>num_values</b> (<i>int > 0</i>) &ndash; number of discrete state values (<span style="color:#C00000"><b>required</b></span> for type "int").</li> <li><b>min_value/max_value</b> (<i>float</i>) &ndash; minimum/maximum state value (<span style="color:#00C000"><b>optional</b></span> for type "float").</li> </ul> actions (specification): Actions specification (<span style="color:#C00000"><b>required</b></span>, better implicitly specified via `environment` argument for `Agent.create(...)`), arbitrarily nested dictionary of action descriptions (usually taken from `Environment.actions()`) with the following attributes: <ul> <li><b>type</b> (<i>"bool" | "int" | "float"</i>) &ndash; action data type (<span style="color:#C00000"><b>required</b></span>).</li> <li><b>shape</b> (<i>int > 0 | iter[int > 0]</i>) &ndash; action shape (<span style="color:#00C000"><b>default</b></span>: scalar).</li> <li><b>num_values</b> (<i>int > 0</i>) &ndash; number of discrete action values (<span style="color:#C00000"><b>required</b></span> for type "int").</li> <li><b>min_value/max_value</b> (<i>float</i>) &ndash; minimum/maximum action value (<span style="color:#00C000"><b>optional</b></span> for type "float").</li> </ul> max_episode_timesteps (int > 0): Upper bound for numer of timesteps per episode (<span style="color:#00C000"><b>default</b></span>: not given, better implicitly specified via `environment` argument for `Agent.create(...)`). memory (int > 0): Replay memory capacity, has to fit at least maximum batch_size + maximum network/estimator horizon + 1 timesteps (<span style="color:#C00000"><b>required</b></span>). batch_size (<a href="../modules/parameters.html">parameter</a>, int > 0): Number of timesteps per update batch (<span style="color:#C00000"><b>required</b></span>). network ("auto" | specification): Policy network configuration, see the [networks documentation](../modules/networks.html) (<span style="color:#00C000"><b>default</b></span>: "auto", automatically configured network). update_frequency ("never" | <a href="../modules/parameters.html">parameter</a>, int > 0 | 0.0 < float <= 1.0): Frequency of updates, relative to batch_size if float (<span style="color:#00C000"><b>default</b></span>: 0.25 * batch_size). start_updating (<a href="../modules/parameters.html">parameter</a>, int >= batch_size): Number of timesteps before first update (<span style="color:#00C000"><b>default</b></span>: none). learning_rate (<a href="../modules/parameters.html">parameter</a>, float > 0.0): Optimizer learning rate (<span style="color:#00C000"><b>default</b></span>: 1e-3). huber_loss (<a href="../modules/parameters.html">parameter</a>, float > 0.0): Huber loss threshold (<span style="color:#00C000"><b>default</b></span>: no huber loss). horizon (<a href="../modules/parameters.html">parameter</a>, int >= 1): n-step DQN, horizon of discounted-sum reward estimation before target network estimate (<span style="color:#00C000"><b>default</b></span>: 1). discount (<a href="../modules/parameters.html">parameter</a>, 0.0 <= float <= 1.0): Discount factor for future rewards of discounted-sum reward estimation (<span style="color:#00C000"><b>default</b></span>: 0.99). return_processing (specification): Return processing as layer or list of layers, see the [preprocessing documentation](../modules/preprocessing.html) (<span style="color:#00C000"><b>default</b></span>: no return processing). predict_terminal_values (bool): Whether to predict the value of terminal states, usually not required since max_episode_timesteps terminals are handled separately (<span style="color:#00C000"><b>default</b></span>: false). target_update_weight (<a href="../modules/parameters.html">parameter</a>, 0.0 < float <= 1.0): Target network update weight (<span style="color:#00C000"><b>default</b></span>: 1.0). target_sync_frequency (<a href="../modules/parameters.html">parameter</a>, int >= 1): Interval between target network updates (<span style="color:#00C000"><b>default</b></span>: every update). l2_regularization (<a href="../modules/parameters.html">parameter</a>, float >= 0.0): L2 regularization loss weight (<span style="color:#00C000"><b>default</b></span>: no L2 regularization). entropy_regularization (<a href="../modules/parameters.html">parameter</a>, float >= 0.0): Entropy regularization loss weight, to discourage the policy distribution from being "too certain" (<span style="color:#00C000"><b>default</b></span>: no entropy regularization). state_preprocessing (dict[specification]): State preprocessing as layer or list of layers, see the [preprocessing documentation](../modules/preprocessing.html), specified per state-type or -name (<span style="color:#00C000"><b>default</b></span>: linear normalization of bounded float states to [-2.0, 2.0]). reward_preprocessing (specification): Reward preprocessing as layer or list of layers, see the [preprocessing documentation](../modules/preprocessing.html) (<span style="color:#00C000"><b>default</b></span>: no reward preprocessing). exploration (<a href="../modules/parameters.html">parameter</a> | dict[<a href="../modules/parameters.html">parameter</a>], float >= 0.0): Exploration, defined as the probability for uniformly random output in case of `bool` and `int` actions, and the standard deviation of Gaussian noise added to every output in case of `float` actions, specified globally or per action-type or -name (<span style="color:#00C000"><b>default</b></span>: no exploration). variable_noise (<a href="../modules/parameters.html">parameter</a>, float >= 0.0): Add Gaussian noise with given standard deviation to all trainable variables, as alternative exploration mechanism (<span style="color:#00C000"><b>default</b></span>: no variable noise).<br/><br/> >>>: For arguments below, see the [Tensorforce agent documentation](tensorforce.html). parallel_interactions (int > 0) config (specification) saver (path | specification) summarizer (path | specification) tracking ("all" | iter[string]) recorder (path | specification) """ def __init__( # Required self, states, actions, memory, batch_size, # Environment max_episode_timesteps=None, # Network network='auto', # Optimization update_frequency=0.25, start_updating=None, learning_rate=1e-3, huber_loss=None, # Reward estimation horizon=1, discount=0.99, return_processing=None, predict_terminal_values=False, # Target network target_update_weight=1.0, target_sync_frequency=1, # Preprocessing state_preprocessing='linear_normalization', reward_preprocessing=None, # Exploration exploration=0.0, variable_noise=0.0, # Regularization l2_regularization=0.0, entropy_regularization=0.0, # Parallel interactions parallel_interactions=1, # Config, saver, summarizer, tracking, recorder config=None, saver=None, summarizer=None, tracking=None, recorder=None, # Deprecated **kwargs ): if 'estimate_terminal' in kwargs: raise TensorforceError.deprecated( name='DoubleDQN', argument='estimate_terminal', replacement='predict_terminal_values' ) self.spec = OrderedDict( agent='dqn', states=states, actions=actions, memory=memory, batch_size=batch_size, max_episode_timesteps=max_episode_timesteps, network=network, update_frequency=update_frequency, start_updating=start_updating, learning_rate=learning_rate, huber_loss=huber_loss, horizon=horizon, discount=discount, return_processing=return_processing, predict_terminal_values=predict_terminal_values, target_update_weight=target_update_weight, target_sync_frequency=target_sync_frequency, state_preprocessing=state_preprocessing, reward_preprocessing=reward_preprocessing, exploration=exploration, variable_noise=variable_noise, l2_regularization=l2_regularization, entropy_regularization=entropy_regularization, parallel_interactions=parallel_interactions, config=config, saver=saver, summarizer=summarizer, tracking=tracking, recorder=recorder ) policy = dict( type='parametrized_value_policy', network=network, state_value_mode='implicit' ) memory = dict(type='replay', capacity=memory) update = dict( unit='timesteps', batch_size=batch_size, frequency=update_frequency, start=start_updating ) optimizer = dict(type='adam', learning_rate=learning_rate) objective = dict(type='action_value', huber_loss=huber_loss) reward_estimation = dict( horizon=horizon, discount=discount, predict_horizon_values='late', estimate_advantage=False, predict_action_values=True, return_processing=return_processing, predict_terminal_values=predict_terminal_values ) baseline = policy baseline_optimizer = dict( type='synchronization', update_weight=target_update_weight, sync_frequency=target_sync_frequency ) baseline_objective = None super().__init__( # Agent states=states, actions=actions, max_episode_timesteps=max_episode_timesteps, parallel_interactions=parallel_interactions, config=config, recorder=recorder, # TensorforceModel policy=policy, memory=memory, update=update, optimizer=optimizer, objective=objective, reward_estimation=reward_estimation, baseline=baseline, baseline_optimizer=baseline_optimizer, baseline_objective=baseline_objective, l2_regularization=l2_regularization, entropy_regularization=entropy_regularization, state_preprocessing=state_preprocessing, reward_preprocessing=reward_preprocessing, exploration=exploration, variable_noise=variable_noise, saver=saver, summarizer=summarizer, tracking=tracking, **kwargs )
55.52381
146
0.641587
7953692b8e474a55cc21e4fc71752d4ce6d819e9
8,538
py
Python
experiments_koord/app_krd_py/dist_delivery_w_markers.krd.py
lyg1597/CyPhyHouseExperiments
7a2604a4c086bb86e10b4188f0b114d31ccdfa37
[ "NCSA" ]
4
2020-08-09T01:34:29.000Z
2021-12-24T18:08:03.000Z
experiments_koord/app_krd_py/dist_delivery_w_markers.krd.py
lyg1597/CyPhyHouseExperiments
7a2604a4c086bb86e10b4188f0b114d31ccdfa37
[ "NCSA" ]
2
2020-01-14T03:23:39.000Z
2020-11-12T17:51:09.000Z
experiments_koord/app_krd_py/dist_delivery_w_markers.krd.py
cyphyhouse/CyPhyHouse-Dev
b72bfc1a2beb379a1c3e429bb979815a82242707
[ "NCSA" ]
3
2021-06-16T22:13:28.000Z
2022-02-16T13:10:58.000Z
import numpy as np import rospy from cym_gazebo import marker_builder from cym_marker.msg import Marker from src.config.configs import AgentConfig, MoatConfig from src.harness.agentThread import AgentThread from src.motion.deconflict import clear_path from src.motion.rectobs import RectObs from src.motion.cylobs import CylObs from src.objects.udt import Task from src.motion.pos_types import pos3d, Pos MARKER_Z = 0.05 class TaskApp(AgentThread): TASKS = [ Task(pos3d(pos[0], pos[1], pos[2]), i, False, None) for i, pos in enumerate([ # Drones' tasks (+3.0, 1.8, 4.0), (-3.0, 0.2, 2.6), (+2.5, 6.3, 4.0), (-2.5, -4.5, 2.6), (+3.0, -4.5, 4.0), (-1.5, 6.3, 1.3), (-3.0, 1.8, 2.6), (+3.0, 0.2, 1.3), (-2.5, 6.3, 2.6), (-2.5, -6.0, 2.6), (+3.0, -6.0, 4.0), ]) ] SHELVE_SCALE = np.array([5.4, 2.0, 6.0]) OBSTACLES = [ CylObs(Pos(np.array([3.8239, 3.403029, 0])), radius=0.5, height=1.6), RectObs(Pos(np.array([1.0, 3.4, 3.0])), SHELVE_SCALE), RectObs(Pos(np.array([-4.13394, 3.4, 3.0])), SHELVE_SCALE), RectObs(Pos(np.array([1.0, 4.7, 3.0])), SHELVE_SCALE), RectObs(Pos(np.array([-4.13394, 4.7, 3.0])), SHELVE_SCALE), RectObs(Pos(np.array([1.0, -1.5, 3.0])), SHELVE_SCALE), RectObs(Pos(np.array([-4.13394, -1.5, 3.0])), SHELVE_SCALE), RectObs(Pos(np.array([1.0, -2.8, 3.0])), SHELVE_SCALE), RectObs(Pos(np.array([-4.13394, -2.8, 3.0])), SHELVE_SCALE), RectObs(Pos(np.array([1.0, -7.8, 3.0])), SHELVE_SCALE), RectObs(Pos(np.array([-4.13394, -7.8, 3.0])), SHELVE_SCALE), RectObs(Pos(np.array([1.0, -9.1, 3.0])), SHELVE_SCALE), RectObs(Pos(np.array([-4.13394, -9.1, 3.0])), SHELVE_SCALE), RectObs(Pos(np.array([-8.34545, 0.0, 1.6])), np.array([0.4, 7.8, 3.2])), RectObs(Pos(np.array([-3.5, 9.0, 1.6])), np.array([7.8, 0.4, 3.2])) ] def __init__(self, agent_config: AgentConfig, moat_config: MoatConfig): super(TaskApp, self).__init__(agent_config, moat_config) self._pub_marker = rospy.Publisher("/cym_marker", Marker, queue_size=10, latch=True) if self.agent_gvh.is_leader: self.init_all_task_markers() self.init_all_obstacle_markers() self.moat.planner.min_rand = -10.0 self.moat.planner.max_rand = 10.0 self.moat.planner.min_zrand = 0.0 self.moat.planner.max_zrand = 4.5 self.moat.planner.expand_dis = 3.0 self.moat.planner.max_iter = 200 def initialize_vars(self): self.initialize_lock('pick_route') self.agent_gvh.create_aw_var('tasks', list, TaskApp.TASKS) self.agent_gvh.create_ar_var('route', list, [self.moat.position]) self.locals['my_task'] = None self.locals['test_route'] = None self.locals['doing'] = False self.locals['tasks'] = [] self.locals['obstacles'] = self.OBSTACLES def loop_body(self): if not self.locals['doing']: if sum([int(a.assigned) for a in self.read_from_shared('tasks', None)]) == len( self.read_from_shared('tasks', None)): self.trystop() return if self.lock('pick_route'): self.locals['tasks'] = self.read_from_shared('tasks', None) print("Agent", self.pid(), "at", self.moat.position, "has lock. Remaining tasks:", [t.id for t in self.locals['tasks'] if not t.assigned]) for i in range(len(self.locals['tasks'])): if not self.locals['tasks'][i].assigned: self.locals['my_task'] = self.locals['tasks'][i] self.locals['test_route'] = self.moat.planner.find_path(self.moat.position, self.locals['my_task'].location, self.locals['obstacles']) if clear_path([path for path in [self.read_from_shared('route', pid) for pid in range(self.num_agents())]], self.locals['test_route'], self.pid(), tolerance=1.0): self.locals['doing'] = True self.locals['my_task'].assign(self.pid()) self.assign_task_marker() # Add a visual marker in simulator self.locals['tasks'][i] = self.locals['my_task'] self.agent_gvh.put('tasks', self.locals['tasks']) self.agent_gvh.put('route', self.locals['test_route'], self.pid()) print("Agent", self.pid(), "is going to task", i, "at", self.locals['my_task'].location) self.moat.follow_path(self.locals['test_route']) else: self.agent_gvh.put('route', [self.moat.position], self.pid()) self.locals['my_task'] = None self.locals['doing'] = False continue break if not self.locals['doing']: print("Agent", self.pid(), "didnt find a clear path") self.unlock('pick_route') rospy.sleep(0.05) else: if self.moat.reached: if self.locals['my_task'] is not None: self.finish_task_marker() self.locals['my_task'] = None self.locals['doing'] = False rospy.sleep(1.0) # Wait at the task for a while return def assign_task_marker(self): marker = add_target_marker(self.locals['my_task']) self._pub_marker.publish(marker) def finish_task_marker(self): marker = add_reached_marker(self.locals['my_task']) self._pub_marker.publish(marker) def init_all_task_markers(self): for task in TaskApp.TASKS: rospy.sleep(0.4) marker = add_init_marker(task) if marker: self._pub_marker.publish(marker) def init_all_obstacle_markers(self): for i, obs in enumerate(self.OBSTACLES): rospy.sleep(0.4) marker = add_obstacle_marker("obstacle", i, obs) if marker: self._pub_marker.publish(marker) def task_marker_builder(task: Task): pos = task.location if pos.z == 0: # Ground tasks builder = marker_builder.PutCylinder() builder.scale.z = 0.01 builder.pose.position.z = pos.z + MARKER_Z else: builder = marker_builder.PutSphere() builder.scale.z = 1.0 builder.pose.position.z = pos.z builder.ns = "tasks" builder.id = task.id builder.pose.position.x = pos.x builder.pose.position.y = pos.y builder.scale.x = 1.0 builder.scale.y = 1.0 return builder def add_obstacle_marker(ns: str, m_id: int, obs): if isinstance(obs, RectObs): builder = marker_builder.PutBox() builder.scale.x = obs.size[0] builder.scale.y = obs.size[1] builder.scale.z = obs.size[2] elif isinstance(obs, CylObs): builder = marker_builder.PutCylinder() builder.scale.x = obs.diameter builder.scale.y = obs.diameter builder.scale.z = obs.size[2] else: return None builder.ns = ns builder.id = m_id builder.pose.position.x = obs.position.x builder.pose.position.y = obs.position.y builder.pose.position.z = obs.position.z builder.use_material("Gazebo/YellowTransparent") return builder.build() def add_init_marker(task: Task): builder = task_marker_builder(task) builder.use_material("Gazebo/BlackTransparent") return builder.build() def add_target_marker(task: Task): builder = task_marker_builder(task) builder.use_material("Gazebo/RedTransparent") return builder.build() def add_reached_marker(task: Task): builder = task_marker_builder(task) builder.use_material("Gazebo/GreenTransparent") return builder.build()
39.527778
116
0.544273
79536a5549e67dd22565fe42a5ca2c8048956069
4,080
py
Python
setup/python_scripts/config.py
CIRCUSPi/ROSKY2
7df75cba4562424c1af5bd0b73597bb78ebaca3c
[ "Apache-2.0" ]
null
null
null
setup/python_scripts/config.py
CIRCUSPi/ROSKY2
7df75cba4562424c1af5bd0b73597bb78ebaca3c
[ "Apache-2.0" ]
null
null
null
setup/python_scripts/config.py
CIRCUSPi/ROSKY2
7df75cba4562424c1af5bd0b73597bb78ebaca3c
[ "Apache-2.0" ]
1
2021-09-10T01:17:02.000Z
2021-09-10T01:17:02.000Z
#!/bin/usr/python3 # #Copyright (c) 2021 Wei-Chih Lin(weichih.lin@protonmail.com) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import os, sys, re from ruamel.yaml import YAML import argparse, getpass class CONFIG_YAML(object): ''' Default configuration: - project: ROSKY - ros_version: 2 ''' def __init__(self, ros_version=1): # get project self.project = re.split('/', os.getcwd()) self.project = self.project[len(self.project) - 3] # find project name # set common function self.yaml = YAML() #setup argument self.shell = os.popen("echo $SHELL | awk -F '/' '{print $NF}'").readlines()[0].rstrip("\n") self.home_path = os.popen("echo $HOME").readlines()[0].rstrip("\n") #print(self.home_path ) self.ubuntu = os.popen("grep RELEASE /etc/lsb-release | awk -F '=' '{print $2}'").readlines()[0].rstrip("\n") ## use inter function self.ros_distro = self.get_ros_distro(ros_version=ros_version) def read(self, _file): with open(_file) as _file: content = self.yaml.load(_file) return content def write(self, content, _file): """ write(content, _file) """ with open(_file, "w") as outfile: self.yaml.preserve_quotes = False self.yaml.dump(content, outfile) print(f"Done! Now you can open \"{_file}\" to check out!") def get_ros_distro(self, ros_version=1): ros_distro_list = self.read(self.get_path(folder="/setup/env_variables", _file="ros_distro.yaml")) return f"ROS {ros_version} " + ros_distro_list[f"ROS{ros_version}"][self.ubuntu] def get_path(self, project="", folder="setup", _file="environment.sh"): """ Return: (file path) -> String Args: progect: String, Top folder name folder: String, middle folder path _file: String, File Name get_path(project=String, folder=String, _file=String) """ project = self.project if project == "" else project return f"{self.home_path}/{project}/{folder}/{_file}".replace("//", "/") if __name__ == '__main__': # call class config = CONFIG_YAML() #test_file = config.get_path(_file="test.yaml") parser = argparse.ArgumentParser() ## ros version parser.add_argument("--ros-version", type=int, help=f"Please set ros version that you want to add command.", default=2) ## cmd parser.add_argument("--cmd", type=str, help="source environment.sh", default="source ~/ROSKY2/setup/shell_scripts/environment.sh") args = parser.parse_args() # set config.ros_distro config.ros_distro = config.get_ros_distro(ros_version=args.ros_version) # configure argument file_path = { "ros_menu": config.get_path(project="ros_menu", folder="", _file="config.yaml"), } # read content content = { "ros_menu": config.read(file_path["ros_menu"]), } # configure cmd cmd = args.cmd if content["ros_menu"]["Menu"][config.ros_distro]["cmds"] is None: content["ros_menu"]["Menu"][config.ros_distro]["cmds"] = [cmd] else: content["ros_menu"]["Menu"][config.ros_distro]["cmds"].insert(0, cmd) # write content config.write(content["ros_menu"], file_path["ros_menu"])
32.64
117
0.601961
79536adfc7068ace3f4850126f7e62b0fb5d2d30
8,543
py
Python
receptor-kv/components/inputform.py
vallemrv/django-tpv
75f738f13ffb7b4ca53a06d79ea6c4aef6eb12aa
[ "Apache-2.0" ]
2
2018-07-12T23:03:11.000Z
2018-07-16T19:09:01.000Z
receptor-kv/components/inputform.py
vallemrv/django-tpv
75f738f13ffb7b4ca53a06d79ea6c4aef6eb12aa
[ "Apache-2.0" ]
null
null
null
receptor-kv/components/inputform.py
vallemrv/django-tpv
75f738f13ffb7b4ca53a06d79ea6c4aef6eb12aa
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # @Author: Manuel Rodriguez <valle> # @Date: 16-Jul-2017 # @Email: valle.mrv@gmail.com # @Filename: imputform.py # @Last modified by: valle # @Last modified time: 09-Feb-2018 # @License: Apache license vesion 2.0 from kivy.uix.relativelayout import RelativeLayout from kivy.uix.anchorlayout import AnchorLayout from kivy.uix.boxlayout import BoxLayout from kivy.uix.behaviors import ButtonBehavior from kivy.properties import (StringProperty, ObjectProperty, OptionProperty, ListProperty, DictProperty, BooleanProperty, AliasProperty) from kivy.lang import Builder from kivy.animation import Animation from kivy.metrics import dp import components.resources as res Builder.load_file(res.get_kv('inputform')) tipo = [ 'CharField', 'DecimalField', 'DateField', 'DateTimeField', 'BooleanField', 'IntegerField', 'FloatField', 'TextField' ] def get_type_control(tipo): if tipo in ['CharField', 'EmailField']: return "text" elif tipo in ["TextField"]: return "text_edit" elif tipo in ['IntegerField']: return "number" elif tipo in ['DateField',]: return "date" elif tipo in ['DateTimeField',]: return "datetime" elif tipo in ['DecimalField', 'FloatField',]: return "float" elif tipo in ['BooleanField',]: return "boolean" class FloatTextInput(AnchorLayout): focus = BooleanProperty(False) text = StringProperty("") label = StringProperty("") controller = ObjectProperty(None) input = ObjectProperty(None) active = BooleanProperty(False) def __init__(self, **kargs): super(FloatTextInput, self).__init__(**kargs) def on_focus(self, w, l): if not self.focus and self.input and self.active: self.controller.hide(self.input) class FloatColorInput(BoxLayout): active = BooleanProperty(False) def __init__(self, **kargs): super(FloatColorInput, self).__init__(**kargs) class FloatControl(RelativeLayout): controller = ObjectProperty(None) input = ObjectProperty(None) text = StringProperty('') focus = BooleanProperty(False) label = StringProperty("") content = ObjectProperty(None) type_control = OptionProperty("text", options=('text', 'color', 'password', 'date', 'number', "float", "text_edit", "boolean", "select")) def __init__(self, **kargs): super(FloatControl, self).__init__(**kargs) self.textinput = FloatTextInput() self.bind(focus=self.textinput.setter('focus')) self.colorinput = FloatColorInput() def on_controller(self, w, l): self.textinput.controller = l self.colorinput.controller = l def collide_point(self, x, y): return (x > self.x and x < self.x +self.width) and (y > self.y and y < self.y +self.height) def on_touch_down(self, touch, *args): super(FloatControl, self).on_touch_down(touch) if self.collide_point(touch.x, touch.y): return True def print_type(self): if self.content: self.content.clear_widgets() self.textinput.active = False self.colorinput.active = False input_control = None if self.type_control in ('text', 'password'): input_control = self.textinput self.textinput.ids._input.password = (self.type_control == "password") if self.type_control == 'color': input_control = self.colorinput input_control.text = self.text input_control.label = self.label input_control.input = self.input input_control.active = True self.content.add_widget(input_control) def on_input(self, w, val): self.text = val.text self.label = val.label self.type_control = val.type_control self.print_type() #This is how de control see it class FormControl(RelativeLayout): label = StringProperty("") text = StringProperty("") color = StringProperty("#000000") bg_color = StringProperty("#ffffff") font_size = StringProperty("30dp") controller = ObjectProperty(None) name = StringProperty("") def __init__(self, model=None, **kargs): self.isFormControl = True kargs = {} if model: for k in model: kargs[k] = model[k] super(FormControl, self).__init__(**kargs) def add_widget(self, widget): if len(self.children) < 1: super(FormControl,self).add_widget(widget) else: self.content.add_widget(widget) class InputTextControl(ButtonBehavior, FormControl): def set_text(self, value): self.__text__ = value def get_text(self): if self.type_control == "password": return "*" * len(self.__text__) else: return self.__text__ text = AliasProperty(get_text, set_text, bind=['__text__']) __text__ = StringProperty("") type_control = OptionProperty("text", options=('text', 'color', 'password', 'date')) def on_release(self): if self.controller: self.controller.show_text_input(self) class CheckBoxControl(FormControl): def set_text(self, value): self.active = value def get_text(self): return self.active text = AliasProperty(get_text, set_text, bind=['active']) active = BooleanProperty(False) def on_active(self, w, l): if self.controller: self.controller.on_model_chage(self) class InputForm(RelativeLayout): bg_color = StringProperty("#ffffff") model = DictProperty({}) form_content = ObjectProperty(None) on_press = ObjectProperty(None) plantilla = DictProperty({ "all":{ 'font_size': '20dp', 'size_hint': (1, None), 'height': '50dp', 'type_control': 'text' } }) def __init__(self, **kargs): super(InputForm, self).__init__(**kargs) def __clear_model__(self): self.model = {} self.form_content.clear_widgets() def on_model_chage(self, form_control): self.model[form_control.name] = unicode(form_control.__text__) def hide(self, input): self.float_input.focus = False ani = Animation(x=self.width*2, duration=0.05) ani.start(self.float_input) self.on_model_chage(input) def show_text_input(self, input): ani = Animation(x=0, duration=0.05) ani.bind(on_complete=self.on_complete) self.float_input.input = input ani.start(self.float_input) def on_complete(self, ani, w): self.float_input.focus = True def add_widget(self, widget): if len(self.children) < 3: super(InputForm, self).add_widget(widget) else: if hasattr(widget, 'isFormControl'): self.model[widget.name] = widget.text height = self.form_content.parent.height + widget.height + dp(25) self.form_content.parent.height = height self.form_content.add_widget(widget, 0) def add_model(self, model, columns=None, tmpl=None): self.__clear_model__() self.model = model columns = columns if columns else model.keys() for k in columns: if tmpl and k in tmpl: plantilla = self.plantilla.get("all").copy() plantilla.update(tmpl[k]) elif k in self.plantilla: plantilla = self.plantilla.get(k).copy() else: plantilla = self.plantilla.get("all").copy() plantilla["name"] = k plantilla["text"] = unicode(model[k]) plantilla["controller"] = self if not "label" in plantilla: plantilla["label"] = k.title() if 'type_control' in plantilla and plantilla['type_control'] != 'text': type_control = plantilla['type_control'] if type_control == 'checkbox': input = CheckBoxControl(model=plantilla) else: input = InputTextControl(model=plantilla) else: input = InputTextControl(model=plantilla) self.add_widget(input) def form_check(self): if self.on_press: self.on_press(self.model)
31.996255
99
0.609388
79536b02902fc734538f9b915077e5d79fce36be
15,369
py
Python
inference.py
banr1jnts/Earthquake_Prediction
13757e3498ef26e8db261fa04c0437f0f1d2e884
[ "Apache-2.0" ]
1
2019-02-28T10:49:00.000Z
2019-02-28T10:49:00.000Z
inference.py
banr1jnts/earthquake_prediction
13757e3498ef26e8db261fa04c0437f0f1d2e884
[ "Apache-2.0" ]
null
null
null
inference.py
banr1jnts/earthquake_prediction
13757e3498ef26e8db261fa04c0437f0f1d2e884
[ "Apache-2.0" ]
null
null
null
import tensorflow as tf import numpy as np import pandas as pd import os import glob import datetime import random import keras.optimizers import keras.backend as K from keras.callbacks import ReduceLROnPlateau, ModelCheckpoint, CSVLogger from params import args import models, naives, losses if __name__ == '__main__': mdl_name = args.model ver = args.version opt_name = args.optimizer learning_rate = args.learning_rate decay = args.decay ls_name = args.loss stateful = args.stateful lb = args.lookback batch_size = args.batch_size epochs = args.epochs num_filters = args.num_filters dropouts = args.dropouts recurrent_dropouts = args.recurrent_dropouts random_seed = args.random_seed naive_period = args.naive_period st_day = args.start_day sp1_day = args.split_day_1 sp2_day = args.split_day_2 ed_day = args.end_day input_raw_dir = args.input_raw_dir input_preprocessed_dir = args.input_preprocessed_dir log_dir = args.log_dir vb = args.verbose record = args.record fmt = '%Y-%m-%d' os.environ['PYTHONHASHSEED'] = '0' np.random.seed(random_seed) random.seed(random_seed) tf.set_random_seed(random_seed) def list_to_str(list): return ' '.join(map(str, list)) def get_default_lr(optimizer_name): dict = {'SGD': 0.01, 'RMSprop':0.001, 'Adagrad': 0.01, 'Adadelta':1.0, 'Adam': 0.001, 'Nadam': 0.002} return dict[optimizer_name] def get_period(start_day, split_day_1, split_day_2, end_day): train_st = start_day train_ed = split_day_1 - datetime.timedelta(days=1) train_period = (train_ed - train_st).days + 1 val_st = split_day_1 val_ed = split_day_2 - datetime.timedelta(days=1) val_period = (val_ed - val_st).days + 1 test_st = split_day_2 test_ed = end_day test_period = (test_ed - test_st).days + 1 print('train period: {} ~ {} ({:0=4}days)'.format(train_st.strftime(fmt), train_ed.strftime(fmt), train_period)) print('validate period: {} ~ {} ({:0=4}days)'.format(val_st.strftime(fmt), val_ed.strftime(fmt), val_period)) print('test period: {} ~ {} ({:0=4}days)'.format(test_st.strftime(fmt), test_ed.strftime(fmt), test_period)) return train_period, val_period, test_period def find_class(name, modules): modules = [getattr(module, name, None) for module in modules] return next(a for a in modules if a) def raw_to_csv(raw_files, csv_file): with open(csv_file, 'w') as csv: header = "year,month,day,longitude,latitude,depth,magnitude\n" csv.writelines(header) for raw_file in raw_files: with open(raw_file, 'r') as raw: raw_lines = raw.readlines() for raw_line in raw_lines: if raw_line[0] != 'J': continue elif raw_line[52] in [' ', '-', 'A', 'B', 'C']: continue year = raw_line[1:5] month = raw_line[5:7] day = raw_line[7:9] latitude = raw_line[22:24] longitude = raw_line[33:36] depth = raw_line[45:49].strip() magnitude = raw_line[52:54] csv_list = [year, month, day, longitude, latitude, depth, magnitude] csv_line = ", ".join(csv_list) + "\n" csv.writelines(csv_line) def get_grid_data(df): df['latlon'] = df['latitude'].astype(str) + '-' \ + df['longitude'].astype(str) df_area = pd.read_table(input_raw_dir + 'mainland.forecast.nodes.dat', names=('lon', 'lat'), delim_whitespace=True,) df_area['latlon'] = df_area['lat'].astype(str).str[:2] + '-' \ + df_area['lon'].astype(str).str[:3] area = list(df_area['latlon'].unique()) df = df[df['latlon'].isin(area)] df = df[['year', 'month', 'day', 'latlon']] df = df.set_index('latlon') df = df.reset_index() return df def get_daily_data(df, start, end, dummy_col): start = str(start) end = str(end) df['time'] = df['year'].astype(str) + '-' \ + df['month'].astype(str) + '-' + df['day'].astype(str) df['time'] = pd.to_datetime(df['time']) df = df[['time', 'latlon']] df = pd.get_dummies(df, columns=['latlon'], prefix='', prefix_sep='') col = pd.DataFrame(columns=dummy_col) df = pd.concat([col, df], join='outer', sort=False) df = df.fillna(0) df = df.groupby('time').sum() df = df[start: end] idx = pd.DataFrame(index=pd.date_range(start, end)) df = pd.merge(idx, df, how='outer', left_index=True, right_index=True) df = df.fillna(0) df = df.astype(int) return df def get_test_true(test_gen, test_steps): for step in range(test_steps): _, target = next(test_gen) day_target = np.mean(target, axis=1) if step == 0: bin_targets = target day_targets = day_target else: bin_targets = np.vstack((bin_targets, target)) day_targets = np.hstack((day_targets, day_target)) return np.mean(bin_targets, axis=0), day_targets def model_evaluate(test_gen, test_steps, pre_mean_loss, target_length, model): for step in range(test_steps): sample, target = next(test_gen) pred = model.predict(sample) day_pred = np.mean(pred, axis=1) bin_error = pre_mean_loss(target, pred) day_error = np.mean(bin_error, axis=1) if step == 0: bin_preds = pred day_preds = day_pred bin_errors = bin_error day_errors = day_error else: bin_preds = np.vstack((bin_preds, pred)) day_preds = np.hstack((day_preds, day_pred)) bin_errors = np.vstack((bin_errors, bin_error)) day_errors = np.hstack((day_errors, day_error)) return (np.mean(bin_preds, axis=0), day_preds, np.mean(bin_errors, axis=0), day_errors) def generator(data, lookback, min_idx, max_idx, batch_size, target_length): if max_idx is None: max_idx = len(data) - 1 i = min_idx + lookback while 1: if i + batch_size > max_idx + 1: i = min_idx + lookback rows = np.arange(i, min(i + batch_size, max_idx + 1)) i += len(rows) samples = np.zeros((len(rows), lookback, data.shape[-1])) targets = np.zeros((len(rows), target_length)) for j, row in enumerate(rows): idxs = range(rows[j] - lookback, rows[j]) samples[j] = data[idxs] targets[j] = data[rows[j]][-target_length:] yield samples, targets def main(): session_conf = tf.ConfigProto( intra_op_parallelism_threads=1, inter_op_parallelism_threads=1 ) sess = tf.Session(graph=tf.get_default_graph(), config=session_conf) K.set_session(sess) train_period, val_period, test_period = get_period( st_day, sp1_day, sp2_day, ed_day) raw_files = sorted(glob.glob(input_raw_dir + 'h????')) csv_file = input_preprocessed_dir + 'df.csv' if not os.path.exists(csv_file): raw_to_csv(raw_files, csv_file) df = pd.read_csv(csv_file, low_memory=False) df_m2 = df[df['magnitude'] >= 20] df_m2 = get_grid_data(df_m2) latlon = np.sort(df_m2['latlon'].unique()) df_m2 = get_daily_data(df_m2, start=st_day, end=ed_day, dummy_col=latlon) df_m4 = df[df['magnitude'] >= 40] df_m4 = get_grid_data(df_m4) df_m4 = get_daily_data(df_m4, start=st_day, end=ed_day, dummy_col=latlon) data_m2 = df_m2.values.astype(np.float64) data_m4 = df_m4.values.astype(np.float64) max_m2 = data_m2.max(axis=(0,1)) max_m4 = data_m4.max(axis=(0,1)) data_m2 = data_m2 * max_m4 / max_m2 target_length = data_m4.shape[1] data = np.hstack([data_m2, data_m4]) print('data shape: {}'.format(data.shape)) lr = learning_rate if learning_rate else get_default_lr(opt_name) optimizer = find_class(opt_name, [keras.optimizers])(lr=lr, decay=decay) loss = find_class(ls_name, [losses, keras.losses]) pre_mean_loss = find_class(ls_name.replace('mean_', ''), [losses]) train_gen = generator(data, lookback=lb, min_idx=0, max_idx=train_period - 1, batch_size=batch_size, target_length=target_length) val_gen = generator(data, lookback=lb, min_idx=train_period, max_idx=train_period + val_period - 1, batch_size=batch_size, target_length=target_length) test_gen = generator(data, lookback=lb, min_idx=train_period + val_period, max_idx=None, batch_size=batch_size, target_length=target_length) train_steps = (train_period - lb) // batch_size val_steps = (val_period - lb) // batch_size test_steps = (len(data) - (train_period + val_period) - lb) // batch_size naive_class = find_class('Poissonnaive', [naives])() model_class = find_class(mdl_name, [models])() naive = naive_class.build_naive(data, batch_size=batch_size, target_length=target_length) model = model_class.build_model(data, lookback=lb, batch_size=batch_size, stateful=stateful, target_length=target_length, num_filters=num_filters, dropouts=dropouts, recurrent_dropouts=recurrent_dropouts) model.compile(optimizer=optimizer, loss=loss) model.summary() print('optimizer: {} (lr={})\nloss: {}\n'.format(opt_name, lr, ls_name)) callbacks = [ ModelCheckpoint(filepath=log_dir + 'ckpt_{}{}.h5'.format(mdl_name, ver), monitor='val_loss', save_best_only=True, verbose=vb), ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=10, verbose=vb), CSVLogger(log_dir + 'history_{}{}.csv'.format(mdl_name, ver)), ] print('【training】') history = model.fit_generator(train_gen, steps_per_epoch=train_steps, epochs=epochs, validation_data=val_gen, validation_steps=val_steps, callbacks=callbacks, verbose=vb) print('【evaluation】') bin_true, day_true = get_test_true(test_gen, test_steps) true = np.mean(bin_true) nv_bin_pred, nv_day_pred, nv_bin_eval, nv_day_eval = model_evaluate( test_gen, test_steps, pre_mean_loss, target_length, naive) nv_pred = np.mean(nv_bin_pred) nv_eval = np.mean(nv_bin_eval) md_bin_pred, md_day_pred, md_bin_eval, md_day_eval = model_evaluate( test_gen, test_steps, pre_mean_loss, target_length, model) md_pred = np.mean(md_bin_pred) md_eval = np.mean(md_bin_eval) print('Naivemodel: {}'.format(nv_eval)) print('{}{}: {}'.format(mdl_name, ver, md_eval)) df_day_true = pd.DataFrame(day_true, index=pd.date_range(end=ed_day, periods=93), columns=['True value']) df_nv_day_pred = pd.DataFrame(nv_day_pred, index=pd.date_range(end=ed_day, periods=93), columns=['Naive predicton']) df_md_day_pred = pd.DataFrame(md_day_pred, index=pd.date_range(end=ed_day, periods=93), columns=['{} prediction'.format(mdl_name)]) df_nv_day_eval = pd.DataFrame(nv_day_eval, index=pd.date_range(end=ed_day, periods=93), columns=['Naive error']) df_md_day_eval = pd.DataFrame(md_day_eval, index=pd.date_range(end=ed_day, periods=93), columns=['{} error'.format(mdl_name)]) df_day_eval = pd.concat([df_nv_day_pred, df_md_day_pred, df_day_true, df_nv_day_eval, df_md_day_eval], axis=1) df_day_eval.to_csv(log_dir + 'eval_day_{}{}.csv'.format(mdl_name, ver)) df_bin_true = pd.DataFrame(bin_true, index=latlon, columns=['True value']) df_nv_bin_pred = pd.DataFrame(nv_bin_pred, index=latlon, columns=['Naive predicton']) df_md_bin_pred = pd.DataFrame(md_bin_pred, index=latlon, columns=['{} prediction'.format(mdl_name)]) df_nv_bin_eval = pd.DataFrame(nv_bin_eval, index=latlon, columns=['Naive error']) df_md_bin_eval = pd.DataFrame(md_bin_eval, index=latlon, columns=['{} error'.format(mdl_name)]) df_bin_eval = pd.concat([df_nv_bin_pred, df_md_bin_pred, df_bin_true, df_nv_bin_eval, df_md_bin_eval], axis=1) df_bin_eval.to_csv(log_dir + 'eval_bin_{}{}.csv'.format(mdl_name, ver)) if not record: return now = datetime.datetime.now().strftime(fmt) record_file = log_dir + 'record.csv' str_num_filters = list_to_str(num_filters) str_dropouts = list_to_str(dropouts) str_recurrent_dropouts = list_to_str(recurrent_dropouts) if os.path.exists(record_file): with open(log_dir + 'record.csv', 'a') as f: f.write('{},{},{}{},{},{},{},{},{},{},{},{}\n' .format(now, md_eval, mdl_name, ver, str_num_filters, opt_name, lr, decay, str_dropouts, str_recurrent_dropouts, epochs,random_seed)) else: with open(log_dir + 'record.csv', 'a') as f: f.write('date,eval,model,filt,optm,lr,' \ 'decay,drpout,r_drpout,epch,seed\n') f.write('{},{},Naivemodel'.format(now, nv_eval) + ',None'*8 + '\n') f.write('{},{},{}{},{},{},{},{},{},{},{},{}\n' .format(now, md_eval, mdl_name, ver, str_num_filters, opt_name, lr, decay, str_dropouts, str_recurrent_dropouts, epochs,random_seed)) if __name__ == '__main__': main()
43.171348
80
0.554298
79536bbac3905f6519f5644bac1cdb6409632429
9,887
py
Python
saleor/discount/models.py
saurabhsingla15/himichain
f7e446c89951a60383632907fed14bde5c3ad6b5
[ "CC-BY-4.0" ]
null
null
null
saleor/discount/models.py
saurabhsingla15/himichain
f7e446c89951a60383632907fed14bde5c3ad6b5
[ "CC-BY-4.0" ]
16
2020-02-12T03:06:29.000Z
2022-02-10T20:29:25.000Z
saleor/discount/models.py
saurabhsingla15/himichain
f7e446c89951a60383632907fed14bde5c3ad6b5
[ "CC-BY-4.0" ]
null
null
null
from decimal import Decimal from functools import partial from django.conf import settings from django.db import models from django.db.models import F, Q from django.utils import timezone from django.utils.translation import pgettext, pgettext_lazy from django_countries.fields import CountryField from django_prices.models import MoneyField from django_prices.templatetags.prices import amount from prices import Money, fixed_discount, percentage_discount from ..core.utils.translations import TranslationProxy from . import DiscountValueType, VoucherType class NotApplicable(ValueError): """Exception raised when a discount is not applicable to a checkout. The error is raised if the order value is below the minimum required price or the order quantity is below the minimum quantity of items. Minimum price will be available as the `min_spent` attribute. Minimum quantity will be available as the `min_checkout_items_quantity` attribute. """ def __init__(self, msg, min_spent=None, min_checkout_items_quantity=None): super().__init__(msg) self.min_spent = min_spent self.min_checkout_items_quantity = min_checkout_items_quantity class VoucherQueryset(models.QuerySet): def active(self, date): return self.filter( Q(usage_limit__isnull=True) | Q(used__lt=F("usage_limit")), Q(end_date__isnull=True) | Q(end_date__gte=date), start_date__lte=date, ) def expired(self, date): return self.filter( Q(used__gte=F("usage_limit")) | Q(end_date__lt=date), start_date__lt=date ) class Voucher(models.Model): type = models.CharField( max_length=20, choices=VoucherType.CHOICES, default=VoucherType.ENTIRE_ORDER ) name = models.CharField(max_length=255, null=True, blank=True) code = models.CharField(max_length=12, unique=True, db_index=True) usage_limit = models.PositiveIntegerField(null=True, blank=True) used = models.PositiveIntegerField(default=0, editable=False) start_date = models.DateTimeField(default=timezone.now) end_date = models.DateTimeField(null=True, blank=True) # this field indicates if discount should be applied per order or # individually to every item apply_once_per_order = models.BooleanField(default=False) apply_once_per_customer = models.BooleanField(default=False) discount_value_type = models.CharField( max_length=10, choices=DiscountValueType.CHOICES, default=DiscountValueType.FIXED, ) discount_value = models.DecimalField( max_digits=settings.DEFAULT_MAX_DIGITS, decimal_places=settings.DEFAULT_DECIMAL_PLACES, ) discount = MoneyField(amount_field="discount_value", currency_field="currency") # not mandatory fields, usage depends on type countries = CountryField(multiple=True, blank=True) currency = models.CharField( max_length=settings.DEFAULT_CURRENCY_CODE_LENGTH, default=settings.DEFAULT_CURRENCY, ) min_spent_amount = models.DecimalField( max_digits=settings.DEFAULT_MAX_DIGITS, decimal_places=settings.DEFAULT_DECIMAL_PLACES, blank=True, null=True, ) min_spent = MoneyField(amount_field="min_spent_amount", currency_field="currency") #min_checkout_items_quantity = models.PositiveIntegerField(null=True, blank=True) min_checkout_items_quantity = models.DecimalField(max_digits=12,decimal_places=2,null=True, blank=True) products = models.ManyToManyField("product.Product", blank=True) collections = models.ManyToManyField("product.Collection", blank=True) categories = models.ManyToManyField("product.Category", blank=True) objects = VoucherQueryset.as_manager() translated = TranslationProxy() def __str__(self): if self.name: return self.name discount = "%s %s" % ( self.discount_value, self.get_discount_value_type_display(), ) if self.type == VoucherType.SHIPPING: if self.is_free: return pgettext("Voucher type", "Free shipping") return pgettext("Voucher type", "%(discount)s off shipping") % { "discount": discount } if self.type == VoucherType.SPECIFIC_PRODUCT: return pgettext("Voucher type", "%(discount)s off specific products") % { "discount": discount } return pgettext("Voucher type", "%(discount)s off") % {"discount": discount} @property def is_free(self): return ( self.discount_value == Decimal(100) and self.discount_value_type == DiscountValueType.PERCENTAGE ) def get_discount(self): if self.discount_value_type == DiscountValueType.FIXED: discount_amount = Money(self.discount_value, settings.DEFAULT_CURRENCY) return partial(fixed_discount, discount=discount_amount) if self.discount_value_type == DiscountValueType.PERCENTAGE: return partial(percentage_discount, percentage=self.discount_value) raise NotImplementedError("Unknown discount type") def get_discount_amount_for(self, price: Money): discount = self.get_discount() after_discount = discount(price) if after_discount.amount < 0: return price return price - after_discount def validate_min_spent(self, value: Money): if self.min_spent and value < self.min_spent: msg = pgettext( "Voucher not applicable", "This offer is only valid for orders over %(amount)s.", ) raise NotApplicable( msg % {"amount": amount(self.min_spent)}, min_spent=self.min_spent ) def validate_min_checkout_items_quantity(self, quantity): min_checkout_items_quantity = self.min_checkout_items_quantity if min_checkout_items_quantity and min_checkout_items_quantity > quantity: msg = pgettext( "Voucher not applicable", ( "This offer is only valid for orders with a minimum of " "%(min_checkout_items_quantity)d quantity." ), ) raise NotApplicable( msg % {"min_checkout_items_quantity": min_checkout_items_quantity}, min_checkout_items_quantity=min_checkout_items_quantity, ) def validate_once_per_customer(self, customer_email): voucher_customer = VoucherCustomer.objects.filter( voucher=self, customer_email=customer_email ) if voucher_customer: msg = pgettext( "Voucher not applicable", "This offer is valid only once per customer." ) raise NotApplicable(msg) class VoucherCustomer(models.Model): voucher = models.ForeignKey( Voucher, related_name="customers", on_delete=models.CASCADE ) customer_email = models.EmailField() class Meta: unique_together = (("voucher", "customer_email"),) class SaleQueryset(models.QuerySet): def active(self, date=None): if date is None: date = timezone.now() return self.filter( Q(end_date__isnull=True) | Q(end_date__gte=date), start_date__lte=date ) def expired(self, date=None): if date is None: date = timezone.now() return self.filter(end_date__lt=date, start_date__lt=date) class VoucherTranslation(models.Model): language_code = models.CharField(max_length=10) name = models.CharField(max_length=255, null=True, blank=True) voucher = models.ForeignKey( Voucher, related_name="translations", on_delete=models.CASCADE ) class Meta: unique_together = (("language_code", "voucher"),) class Sale(models.Model): name = models.CharField(max_length=255) type = models.CharField( max_length=10, choices=DiscountValueType.CHOICES, default=DiscountValueType.FIXED, ) value = models.DecimalField( max_digits=settings.DEFAULT_MAX_DIGITS, decimal_places=settings.DEFAULT_DECIMAL_PLACES, default=0, ) products = models.ManyToManyField("product.Product", blank=True) categories = models.ManyToManyField("product.Category", blank=True) collections = models.ManyToManyField("product.Collection", blank=True) start_date = models.DateTimeField(default=timezone.now) end_date = models.DateTimeField(null=True, blank=True) objects = SaleQueryset.as_manager() translated = TranslationProxy() class Meta: app_label = "discount" permissions = ( ( "manage_discounts", pgettext_lazy("Permission description", "Manage sales and vouchers."), ), ) def __repr__(self): return "Sale(name=%r, value=%r, type=%s)" % ( str(self.name), self.value, self.get_type_display(), ) def __str__(self): return self.name def get_discount(self): if self.type == DiscountValueType.FIXED: discount_amount = Money(self.value, settings.DEFAULT_CURRENCY) return partial(fixed_discount, discount=discount_amount) if self.type == DiscountValueType.PERCENTAGE: return partial(percentage_discount, percentage=self.value) raise NotImplementedError("Unknown discount type") class SaleTranslation(models.Model): language_code = models.CharField(max_length=10) name = models.CharField(max_length=255, null=True, blank=True) sale = models.ForeignKey( Sale, related_name="translations", on_delete=models.CASCADE ) class Meta: unique_together = (("language_code", "sale"),)
37.309434
107
0.67432
79536ca01ebc2a141ccaac78dc01b0d69fb0903b
998
py
Python
python/pyopenGL/ogl2/ogl_14_plot_2.py
SayanGhoshBDA/code-backup
8b6135facc0e598e9686b2e8eb2d69dd68198b80
[ "MIT" ]
16
2018-11-26T08:39:42.000Z
2019-05-08T10:09:52.000Z
python/pyopenGL/ogl2/ogl_14_plot_2.py
SayanGhoshBDA/code-backup
8b6135facc0e598e9686b2e8eb2d69dd68198b80
[ "MIT" ]
8
2020-05-04T06:29:26.000Z
2022-02-12T05:33:16.000Z
python/pyopenGL/ogl2/ogl_14_plot_2.py
SayanGhoshBDA/code-backup
8b6135facc0e598e9686b2e8eb2d69dd68198b80
[ "MIT" ]
5
2020-02-11T16:02:21.000Z
2021-02-05T07:48:30.000Z
#// last done till 43 pg no do the graph inequalities the next day. from OpenGL.GL import * from OpenGL.GLU import * from OpenGL.GLUT import * import sys #from numpy import * import numpy as np import math def init(): glClearColor(1.0,1.0,1.0,1.0) gluOrtho2D(-5.0,5.0,-5.0,5.0) def plotfunc(): glClear(GL_COLOR_BUFFER_BIT) glColor3f(0.0,0.0,0.0) # color glPointSize(1.0) for a in np.arange(1.0,3.0,0.1): for t in np.arange(-4.4,4.4,0.01): x = 0.3*a*(t*t-3) y = 0.1*a*t*(t*t-3) glBegin(GL_POINTS) glVertex2f(x,y) glEnd() glFlush() def main(): glutInit(sys.argv) # tells the python we are going to be displaying GLUT style graphics glutInitDisplayMode(GLUT_SINGLE | GLUT_RGB) glutCreateWindow("Plot Points") glutInitWindowSize(400,400) glutInitWindowPosition(50,50) glutDisplayFunc(plotfunc) init() glutMainLoop() main()
25.589744
120
0.602204
79536caa54b0faf0ec6e56ee22ec98ad6ea8876f
484
py
Python
jp.atcoder/abc047/abc047_a/8143659.py
kagemeka/atcoder-submissions
91d8ad37411ea2ec582b10ba41b1e3cae01d4d6e
[ "MIT" ]
1
2022-02-09T03:06:25.000Z
2022-02-09T03:06:25.000Z
jp.atcoder/abc047/abc047_a/8143659.py
kagemeka/atcoder-submissions
91d8ad37411ea2ec582b10ba41b1e3cae01d4d6e
[ "MIT" ]
1
2022-02-05T22:53:18.000Z
2022-02-09T01:29:30.000Z
jp.atcoder/abc047/abc047_a/8143659.py
kagemeka/atcoder-submissions
91d8ad37411ea2ec582b10ba41b1e3cae01d4d6e
[ "MIT" ]
null
null
null
packs = [int(candies) for candies in input().split()] N = int(len(packs)) X = 2 if sum(packs) % X == 0: A = int(sum(packs) / X) else: print("No") exit() dp = [[False] * (A + 1)] * (N + 1) dp[0][0] = True for i in range(N): for j in range(A + 1): if dp[i][j]: dp[i + 1][j] = dp[i][j] elif j >= packs[i]: dp[i + 1][j] = dp[i][j - packs[i]] if dp[N][A]: ans = "Yes" else: ans = "No" print(ans)
18.615385
54
0.423554
79536ce5d70033439fc5f14ce5a1d2dce405941c
674
py
Python
tests/unit/multi_dimensional_RNN/_test_mdgru_on_2d_grid.py
X-rayLaser/multi-directional-mdrnn
70b0e1c2e07b5f476c264c6700e8d34d41a2ce10
[ "MIT" ]
12
2020-02-27T08:34:44.000Z
2022-03-15T12:22:32.000Z
tests/unit/multi_dimensional_RNN/_test_mdgru_on_2d_grid.py
X-rayLaser/multi-directional-mdrnn
70b0e1c2e07b5f476c264c6700e8d34d41a2ce10
[ "MIT" ]
1
2021-02-23T16:29:05.000Z
2021-05-07T15:05:54.000Z
tests/unit/multi_dimensional_RNN/_test_mdgru_on_2d_grid.py
X-rayLaser/multi-directional-mdrnn
70b0e1c2e07b5f476c264c6700e8d34d41a2ce10
[ "MIT" ]
2
2020-03-31T15:44:06.000Z
2021-05-10T15:26:35.000Z
from .test_mdrnn_on_2d_grid import Degenerate2DInputToMDRNNTests, \ OutputShapeGiven2DTests, OutputShapeGiven6DInputTests import tensorflow as tf from mdrnn import MDGRU class Degenerate2DInputToMDGRUTests(Degenerate2DInputToMDRNNTests): def create_mdrnn(self, **kwargs): return MDGRU(**kwargs) def create_keras_rnn(self, **kwargs): return tf.keras.layers.GRU(implementation=1, reset_after=False, **kwargs) class MDGRUOutputShapeGiven2DTests(OutputShapeGiven2DTests): def get_rnn_class(self): return MDGRU class MDGRUOutputShapeGiven6DInputTests(OutputShapeGiven6DInputTests): def get_rnn_class(self): return MDGRU
29.304348
81
0.783383
79536d7f5ed5fa48a58aa5c4db4b24f01ec8935b
7,231
py
Python
v3/disentangled training/lib.py
biboamy/instrument-disentangle
bdf6e7d36ce36e6abe0249712cc9b853e77e7a36
[ "MIT" ]
19
2019-05-28T01:11:03.000Z
2021-12-31T01:38:47.000Z
v3/disentangled training/lib.py
biboamy/instrument-disentangle
bdf6e7d36ce36e6abe0249712cc9b853e77e7a36
[ "MIT" ]
3
2020-03-27T03:34:37.000Z
2020-10-04T11:32:17.000Z
v3/disentangled training/lib.py
biboamy/instrument-disentangle
bdf6e7d36ce36e6abe0249712cc9b853e77e7a36
[ "MIT" ]
6
2019-08-23T09:58:25.000Z
2022-02-09T09:35:10.000Z
import librosa, torch #from pypianoroll import Multitrack, Track import numpy as np import torch.nn.init as init from torch.utils.data import Dataset import torch.nn as nn from torch.autograd import Variable import torch.nn.functional as F from random import randint def griffin_lim(mag_spec, n_fft, hop, iterations): """Reconstruct an audio signal from a magnitude spectrogram. Args: mag_spec (2D numpy array): The magnitude spectrogram. (row: frame, col: frequency) n_fft (int): The FFT size, which should be a power of 2. hop (int): The hope size in samples. iterations (int): Number of iterations for the Griffin-Lim algorithm. (typically a few hundred is sufficien) Returns: The reconstructed time domain signal as a 1D numpy array. """ # Reconstruct the signal for the "size/length" of desired audio signal. time_sample = librosa.istft(mag_spec, hop_length=hop, win_length=n_fft, window='hanning') # Initialize the reconstructed signal to noise. x_reconstruct = np.random.randn(time_sample.shape[0]) n = iterations # number of iterations of Griffin-Lim algorithm. while n > 0: n -= 1 reconstruction_spectrogram = librosa.stft(x_reconstruct, n_fft=n_fft, hop_length=hop, window='hanning') reconstruction_angle = np.angle(reconstruction_spectrogram) # Discard magnitude part of the reconstruction and use the supplied magnitude spectrogram instead. proposal_spectrogram = mag_spec * np.exp(1.0j * reconstruction_angle) prev_x = x_reconstruct x_reconstruct = librosa.istft(proposal_spectrogram, hop_length=hop, win_length=n_fft, window='hanning') diff = sqrt(sum((x_reconstruct - prev_x)**2) / x_reconstruct.size) print('Reconstruction iteration: {}/{} RMSE: {} '.format(iterations - n, iterations, diff)) return x_reconstruct def write_midi(filepath, pianorolls, program_nums=None, is_drums=None, track_names=None, velocity=100, tempo=40.0, beat_resolution=24): if not os.path.exists(filepath): os.makedirs(filepath) if not np.issubdtype(pianorolls.dtype, np.bool_): raise TypeError("Support only binary-valued piano-rolls") if isinstance(program_nums, int): program_nums = [program_nums] if isinstance(is_drums, int): is_drums = [is_drums] if pianorolls.shape[2] != len(program_nums): raise ValueError("`pianorolls` and `program_nums` must have the same" "length") if pianorolls.shape[2] != len(is_drums): raise ValueError("`pianorolls` and `is_drums` must have the same" "length") if program_nums is None: program_nums = [0] * len(pianorolls) if is_drums is None: is_drums = [False] * len(pianorolls) multitrack = Multitrack(beat_resolution=beat_resolution, tempo=tempo) for idx in range(pianorolls.shape[2]): #plt.subplot(10,1,idx+1) #plt.imshow(pianorolls[..., idx].T,cmap=plt.cm.binary, interpolation='nearest', aspect='auto') if track_names is None: track = Track(pianorolls[..., idx], program_nums[idx], is_drums[idx]) else: track = Track(pianorolls[..., idx], program_nums[idx], is_drums[idx], track_names[idx]) multitrack.append_track(track) #plt.savefig(cf.MP3Name) multitrack.write(filepath) def get_weight(Ytr): mp = Ytr[:].sum(0).sum(1) mmp = mp.astype(np.float32) / mp.sum() cc=((mmp.mean() / mmp) * ((1-mmp)/(1 - mmp.mean())))**0.3 cc[3]=1 inverse_feq = torch.from_numpy(cc) return inverse_feq class Data2Torch(Dataset): def __init__(self, data): self.X = data[0] self.YI = data[1] self.YP = data[2] self.YS = data[3] self.XM = data[4] def __getitem__(self, index): rint = randint(0, len(self.XM)-1) mX = torch.from_numpy(self.X[index]+self.XM[rint]).float() mYI = torch.from_numpy(self.YI[index]).float() mYP = torch.from_numpy(self.YP[index]).float() mYS = torch.from_numpy(self.YS[index]).float() return mX, mYI, mYP, mYS def __len__(self): return len(self.X) def loss_func(pred, tar, gwe, name, isAdv): we = gwe[0].cuda() wwe = 10 we *= wwe loss = 0 def inst_loss(inst_pred, inst_tar): loss_i = 0 for idx, (out, fl_target) in enumerate(zip(inst_pred,inst_tar)): twe = we.view(-1,1).repeat(1,fl_target.size(1)).type(torch.cuda.FloatTensor) ttwe = twe * fl_target.data + (1 - fl_target.data) * 1 loss_fn = nn.BCEWithLogitsLoss(weight=ttwe, size_average=True) loss_i += loss_fn(torch.squeeze(out), fl_target) return loss_i def pitch_loss(pit_pred, pit_tar): loss_p = 0 for idx, (out, fl_target) in enumerate(zip(pit_pred,pit_tar)): ttwe = 10 * fl_target.data + (1 - fl_target.data) * 1 loss_fn = nn.BCEWithLogitsLoss(weight=ttwe, size_average=True) loss_p += loss_fn(out, fl_target) return loss_p def stream_loss(str_pred, str_tar): loss_s = 0 for idx, (out, fl_target) in enumerate(zip(str_pred,str_tar)): ttwe = 10 * fl_target.data + (1 - fl_target.data) * 1 loss_fn = nn.BCEWithLogitsLoss(weight=ttwe, size_average=True) los = loss_fn(out, fl_target) loss_s += los return loss_s l0,l1,l2,l3,l4=torch.zeros(1),torch.zeros(1),torch.zeros(1),torch.zeros(1),torch.zeros(1) if 'Unet' in name: if not isAdv: l4 = stream_loss(pred[4],tar[2])*90 if 'preIP' in name: l0 = inst_loss(pred[0],tar[0]) if 'prePP' in name: l1 = pitch_loss(pred[1],tar[1])*9 else: l3 = pitch_loss(pred[3],Variable(torch.zeros(pred[3].size())).cuda())*9 if 'Duo' in name: if 'preIP' in name and not isAdv: l0 = inst_loss(pred[0],F.max_pool1d(tar[0],2)) if 'prePP' in name and not isAdv: l1 = pitch_loss(pred[1],F.max_pool1d(tar[1],2)) if 'preINZ' in name and isAdv: l2 = inst_loss(pred[2],Variable(torch.zeros(pred[2].size())).cuda())*9 if 'prePNZ' in name and isAdv: l3 = pitch_loss(pred[3],Variable(torch.zeros(pred[3].size())).cuda())*9 if 'preRoll' in name and not isAdv: l4 = stream_loss(pred[4],F.max_pool2d(tar[2],(1,2)))*90 return l0,l1,l2,l3,l4 def model_init(m): classname = m.__class__.__name__ if classname.find('Conv') != -1: init.xavier_uniform_(m.weight, gain=np.sqrt(2)) init.constant_(m.bias, 0) elif classname.find('BatchNorm') != -1: init.constant_(m.weight, 1) init.constant_(m.bias, 0) elif classname.find('Linear') != -1: init.xavier_uniform_(m.weight, gain=np.sqrt(2))
38.462766
106
0.604204
79536ef63f58198cea811c93cdfdcd69cee9ecf6
6,303
py
Python
venv/lib/python3.8/site-packages/dateparser/data/date_translation_data/be.py
yuta-komura/vishnu
67173b674d5f4f3be189474103612447ef69ab44
[ "MIT" ]
1
2021-11-17T04:55:14.000Z
2021-11-17T04:55:14.000Z
dateparser/data/date_translation_data/be.py
cool-RR/dateparser
c38336df521cc57d947dc2c9111539a72f801652
[ "BSD-3-Clause" ]
null
null
null
dateparser/data/date_translation_data/be.py
cool-RR/dateparser
c38336df521cc57d947dc2c9111539a72f801652
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- info = { "name": "be", "date_order": "DMY", "january": [ "студзень", "сту", "студзеня", "Стд" ], "february": [ "люты", "лют", "лютага" ], "march": [ "сакавік", "сак", "сакавіка" ], "april": [ "красавік", "кра", "красавіка", "Крс" ], "may": [ "май", "мая", "Траўня", "Тра" ], "june": [ "чэрвень", "чэр", "чэрвеня" ], "july": [ "ліпень", "ліп", "ліпеня" ], "august": [ "жнівень", "жні", "жніўня", "Жнівеня", "Жнв" ], "september": [ "верасень", "вер", "верасня", "Врс" ], "october": [ "кастрычнік", "кас", "кастрычніка", "Кст" ], "november": [ "лістапад", "ліс", "лістапада", "Ліс" ], "december": [ "снежань", "сне", "снежня", "Снж" ], "monday": [ "панядзелак", "пн", "Пнд" ], "tuesday": [ "аўторак", "аў", "Аўт" ], "wednesday": [ "серада", "ср" ], "thursday": [ "чацвер", "чц", "Чцв", "Чв" ], "friday": [ "пятніца", "пт", "Пят" ], "saturday": [ "субота", "сб", "Суб" ], "sunday": [ "нядзеля", "нд", "Няд" ], "am": [ "am" ], "pm": [ "pm" ], "year": [ "год", "г", "гады", "года", "гадоў" ], "month": [ "месяц", "мес", "месяца", "месяцы", "месяцаў" ], "week": [ "тыд", "тыдзень", "тыдня", "тыдні", "тыдняў" ], "day": [ "дзень", "д", "дні", "дзён", "дзен" ], "hour": [ "гадзіна", "гадз", "гадзіны", "гадзіну", "гадзін" ], "minute": [ "хвіліна", "хв", "хвілін", "хвіліны", "хвіліну", "хвіл" ], "second": [ "секунда", "с", "секунды", "секунду", "секунд", "сек" ], "relative-type": { "1 year ago": [ "у мінулым годзе" ], "0 year ago": [ "у гэтым годзе" ], "in 1 year": [ "у наступным годзе" ], "1 month ago": [ "у мінулым месяцы" ], "0 month ago": [ "у гэтым месяцы" ], "in 1 month": [ "у наступным месяцы" ], "1 week ago": [ "на мінулым тыдні" ], "0 week ago": [ "на гэтым тыдні" ], "in 1 week": [ "на наступным тыдні" ], "1 day ago": [ "учора", "ўчора" ], "0 day ago": [ "сёння", "сення" ], "in 1 day": [ "заўтра" ], "0 hour ago": [ "у гэту гадзіну" ], "0 minute ago": [ "у гэту хвіліну" ], "0 second ago": [ "цяпер" ], "2 day ago": [ "пазаўчора" ] }, "relative-type-regex": { "in \\1 year": [ "праз (\\d+) год", "праз (\\d+) года", "праз (\\d+) г" ], "\\1 year ago": [ "(\\d+) год таму", "(\\d+) года таму", "(\\d+) г таму" ], "in \\1 month": [ "праз (\\d+) месяц", "праз (\\d+) месяца", "праз (\\d+) мес" ], "\\1 month ago": [ "(\\d+) месяц таму", "(\\d+) месяца таму", "(\\d+) мес таму" ], "in \\1 week": [ "праз (\\d+) тыдзень", "праз (\\d+) тыдня", "праз (\\d+) тыд" ], "\\1 week ago": [ "(\\d+) тыдзень таму", "(\\d+) тыдня таму", "(\\d+) тыд таму" ], "in \\1 day": [ "праз (\\d+) дзень", "праз (\\d+) дня", "праз (\\d+) д" ], "\\1 day ago": [ "(\\d+) дзень таму", "(\\d+) дня таму", "(\\d+) д таму" ], "in \\1 hour": [ "праз (\\d+) гадзіну", "праз (\\d+) гадзіны", "праз (\\d+) гадз" ], "\\1 hour ago": [ "(\\d+) гадзіну таму", "(\\d+) гадзіны таму", "(\\d+) гадз таму" ], "in \\1 minute": [ "праз (\\d+) хвіліну", "праз (\\d+) хвіліны", "праз (\\d+) хв" ], "\\1 minute ago": [ "(\\d+) хвіліну таму", "(\\d+) хвіліны таму", "(\\d+) хв таму" ], "in \\1 second": [ "праз (\\d+) секунду", "праз (\\d+) секунды", "праз (\\d+) с" ], "\\1 second ago": [ "(\\d+) секунду таму", "(\\d+) секунды таму", "(\\d+) с таму" ] }, "locale_specific": {}, "skip": [ "каля", "у", "ў", "і", " ", ".", ",", ";", "-", "/", "'", "|", "@", "[", "]", "," ], "sentence_splitter_group": 1, "ago": [ "таму назад", "таму", "назад" ], "in": [ "на працягу" ], "simplifications": [ { "^гадзіна": "1 гадзіна" }, { "гадзіну": "1 гадзіну" }, { "^хвіліну": "1 хвіліну" }, { "^секунду": "1 секунду" }, { "некалькі секунд": "44 секунды" }, { "некалькі хвілін": "2 хвіліны" }, { "(\\d+)\\s*гадзін\\s(\\d+)\\s*хвілін": "\\1:\\2" } ] }
18.429825
60
0.282088
79536fe6d23d9300fef187569f1e3dd1c238fd63
87
py
Python
test/run/t539.py
timmartin/skulpt
2e3a3fbbaccc12baa29094a717ceec491a8a6750
[ "MIT" ]
2,671
2015-01-03T08:23:25.000Z
2022-03-31T06:15:48.000Z
test/run/t539.py
timmartin/skulpt
2e3a3fbbaccc12baa29094a717ceec491a8a6750
[ "MIT" ]
972
2015-01-05T08:11:00.000Z
2022-03-29T13:47:15.000Z
test/run/t539.py
timmartin/skulpt
2e3a3fbbaccc12baa29094a717ceec491a8a6750
[ "MIT" ]
845
2015-01-03T19:53:36.000Z
2022-03-29T18:34:22.000Z
print type(int(3999999999.0)) print int(3999999999.0) # print type(int(pow(2,53) + 2))
21.75
32
0.701149
7953700fbabb98154bdc153f27e306bee672e00e
5,864
py
Python
docs/source/conf.py
blakeboswell/valence
0256489804b4c4344bcdbe0de3632896b3d12d5d
[ "BSD-3-Clause" ]
1
2019-07-01T07:27:13.000Z
2019-07-01T07:27:13.000Z
docs/source/conf.py
blakeboswell/valence
0256489804b4c4344bcdbe0de3632896b3d12d5d
[ "BSD-3-Clause" ]
15
2017-07-16T07:14:49.000Z
2017-08-28T04:26:40.000Z
docs/source/conf.py
blakeboswell/valence
0256489804b4c4344bcdbe0de3632896b3d12d5d
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- # # Configuration file for the Sphinx documentation builder. # # This file does only contain a selection of the most common options. For a # full list see the documentation: # http://www.sphinx-doc.org/en/stable/config # -- Path setup -------------------------------------------------------------- # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # # import os # import sys # sys.path.insert(0, os.path.abspath('.')) # -- Project information ----------------------------------------------------- project = 'pyvalence' copyright = '2018, audere-labs' author = 'audere-labs' # The short X.Y version version = '' # The full version, including alpha/beta/rc tags release = '0.0.1.2' # -- General configuration --------------------------------------------------- # If your documentation needs a minimal Sphinx version, state it here. # # needs_sphinx = '1.0' # Add any Sphinx extension module names here, as strings. They can be # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # ones. extensions = [ 'sphinx.ext.autodoc', 'sphinx.ext.intersphinx', 'sphinx.ext.todo', 'sphinx.ext.coverage', 'sphinx.ext.ifconfig', 'sphinx.ext.viewcode', 'sphinx.ext.githubpages', ] # Add any paths that contain templates here, relative to this directory. templates_path = ['_templates'] # The suffix(es) of source filenames. # You can specify multiple suffix as a list of string: # # source_suffix = ['.rst', '.md'] source_suffix = '.rst' # The master toctree document. master_doc = 'index' # The language for content autogenerated by Sphinx. Refer to documentation # for a list of supported languages. # # This is also used if you do content translation via gettext catalogs. # Usually you set "language" from the command line for these cases. language = None # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. # This pattern also affects html_static_path and html_extra_path . exclude_patterns = [] # The name of the Pygments (syntax highlighting) style to use. pygments_style = 'sphinx' # -- Options for HTML output ------------------------------------------------- # The theme to use for HTML and HTML Help pages. See the documentation for # a list of builtin themes. # html_theme = 'alabaster' # Theme options are theme-specific and customize the look and feel of a theme # further. For a list of options available for each theme, see the # documentation. # # html_theme_options = {} # Add any paths that contain custom static files (such as style sheets) here, # relative to this directory. They are copied after the builtin static files, # so a file named "default.css" will overwrite the builtin "default.css". html_static_path = ['_static'] # Custom sidebar templates, must be a dictionary that maps document names # to template names. # # The default sidebars (for documents that don't match any pattern) are # defined by theme itself. Builtin themes are using these templates by # default: ``['localtoc.html', 'relations.html', 'sourcelink.html', # 'searchbox.html']``. # # html_sidebars = {} # -- Options for HTMLHelp output --------------------------------------------- # Output file base name for HTML help builder. htmlhelp_basename = 'pyvalencedoc' # -- Options for LaTeX output ------------------------------------------------ latex_elements = { # The paper size ('letterpaper' or 'a4paper'). # # 'papersize': 'letterpaper', # The font size ('10pt', '11pt' or '12pt'). # # 'pointsize': '10pt', # Additional stuff for the LaTeX preamble. # # 'preamble': '', # Latex figure (float) alignment # # 'figure_align': 'htbp', } # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, # author, documentclass [howto, manual, or own class]). latex_documents = [ (master_doc, 'pyvalence.tex', 'pyvalence Documentation', 'audere-labs', 'manual'), ] # -- Options for manual page output ------------------------------------------ # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [ (master_doc, 'pyvalence', 'pyvalence Documentation', [author], 1) ] # -- Options for Texinfo output ---------------------------------------------- # Grouping the document tree into Texinfo files. List of tuples # (source start file, target name, title, author, # dir menu entry, description, category) texinfo_documents = [ (master_doc, 'pyvalence', 'pyvalence Documentation', author, 'pyvalence', 'One line description of project.', 'Miscellaneous'), ] # -- Options for Epub output ------------------------------------------------- # Bibliographic Dublin Core info. epub_title = project epub_author = author epub_publisher = author epub_copyright = copyright # The unique identifier of the text. This can be a ISBN number # or the project homepage. # # epub_identifier = '' # A unique identification for the text. # # epub_uid = '' # A list of files that should not be packed into the epub file. epub_exclude_files = ['search.html'] # -- Extension configuration ------------------------------------------------- # -- Options for intersphinx extension --------------------------------------- # Example configuration for intersphinx: refer to the Python standard library. intersphinx_mapping = {'https://docs.python.org/': None} # -- Options for todo extension ---------------------------------------------- # If true, `todo` and `todoList` produce output, else they produce nothing. todo_include_todos = True
29.918367
79
0.644952
795370adc0852c94152e62abae7c2675ad5d9490
6,733
py
Python
utils/lda.py
czyczyyzc/WeiboSpider
41b9c97cb01d41cb4a62efdd452451b5ef25bdbc
[ "MIT" ]
2
2021-03-26T03:02:52.000Z
2021-04-01T11:08:46.000Z
utils/lda.py
czyczyyzc/WeiboSpider
41b9c97cb01d41cb4a62efdd452451b5ef25bdbc
[ "MIT" ]
null
null
null
utils/lda.py
czyczyyzc/WeiboSpider
41b9c97cb01d41cb4a62efdd452451b5ef25bdbc
[ "MIT" ]
null
null
null
# -*- coding:utf-8 -*- import os import csv import random import numpy as np from collections import OrderedDict class Document(object): def __init__(self): self.words = [] self.length = 0 class StatisticalData(object): def __init__(self): self.docs_count = 0 self.words_count = 0 self.docs = [] self.word2id = OrderedDict() self.id2word = OrderedDict() class LDAModel(object): def __init__(self, file_dir, K=10, alpha=0.5, beta=0.1, iter_times=1000, top_words_num=20): self.K = K self.beta = beta self.alpha = alpha self.iter_times = iter_times self.top_words_num = top_words_num self.train_data_file = os.path.join(file_dir, 'keywords.txt') self.topic_word_file = os.path.join(file_dir, 'topic_word_file.csv') self.topic_docs_file = os.path.join(file_dir, 'topic_docs_file.csv') self.topic_docs_word = os.path.join(file_dir, 'topic_docs_word.txt') self.data = self.preprocessing() self.p = np.zeros(self.K) self.nw = np.zeros((self.data.words_count, self.K), dtype='int') self.nd = np.zeros((self.data.docs_count, self.K), dtype='int') self.nwsum = np.zeros(self.K, dtype='int') self.ndsum = np.zeros(self.data.docs_count, dtype='int') self.Z = np.array([[0 for y in range(self.data.docs[x].length)] for x in range(self.data.docs_count)], dtype=object) for x in range(len(self.Z)): self.ndsum[x] = self.data.docs[x].length for y in range(self.data.docs[x].length): topic = random.randint(0, self.K - 1) self.Z[x][y] = topic self.nw[self.data.docs[x].words[y]][topic] += 1 self.nd[x][topic] += 1 self.nwsum[topic] += 1 self.theta = np.array([[0.0 for y in range(self.K)] for x in range(self.data.docs_count)]) self.phi = np.array([[0.0 for y in range(self.data.words_count)] for x in range(self.K)]) self.top_words_num = min(self.top_words_num, self.data.words_count) def preprocessing(self): print("Loading data for lda analysis ...") with open(self.train_data_file, 'r', encoding='utf-8-sig', newline='') as f: lines = f.readlines() lines = [line.strip().split() for line in lines] print("Data loading is finished!") print("Generating the statistical data ...") data = StatisticalData() items_idx = 0 for line in lines: if len(line) == 0: continue doc = Document() for item in line: if item in data.word2id: doc.words.append(data.word2id[item]) else: data.word2id[item] = items_idx doc.words.append(items_idx) items_idx += 1 doc.length = len(line) data.docs.append(doc) print("Data generation is finished!") data.id2word = OrderedDict({value: key for key, value in data.word2id.items()}) data.docs_count = len(data.docs) data.words_count = len(data.word2id) print("There are total {:d} documents in total.".format(data.docs_count)) return data def sampling(self, i, j): topic = self.Z[i][j] word = self.data.docs[i].words[j] self.nw[word][topic] -= 1 self.nd[i][topic] -= 1 self.nwsum[topic] -= 1 self.ndsum[i] -= 1 Vbeta = self.data.words_count * self.beta Kalpha = self.K * self.alpha self.p = (self.nw[word] + self.beta) / (self.nwsum + Vbeta) * \ (self.nd[i] + self.alpha) / (self.ndsum[i] + Kalpha) p = np.squeeze(np.asarray(self.p / np.sum(self.p))) topic = np.argmax(np.random.multinomial(1, p)) self.nw[word][topic] += 1 self.nd[i][topic] += 1 self.nwsum[topic] += 1 self.ndsum[i] += 1 return topic def __call__(self): print("Training for LDA ...") for x in range(self.iter_times): if x % 1 == 0: print("Iteration {:d}".format(x)) for i in range(self.data.docs_count): for j in range(self.data.docs[i].length): topic = self.sampling(i, j) self.Z[i][j] = topic print("Training is finished!") print("Calculating the distribution of documents and topics ...") for i in range(self.data.docs_count): self.theta[i] = (self.nd[i] + self.alpha) / (self.ndsum[i] + self.K * self.alpha) print("Calculating the distribution of words and topics ...") for i in range(self.K): self.phi[i] = (self.nw.T[i] + self.beta) / (self.nwsum[i] + self.data.words_count * self.beta) print("Calculation is Finished!") print("The distribution of topics and top {:d} words are saving to {:s}".format(self.K, self.topic_word_file)) with open(self.topic_word_file, 'w', encoding='utf-8-sig', newline='') as f: topic_word_writer = csv.writer(f, dialect='excel') for x in range(self.K): topic_words = [(n, self.phi[x][n]) for n in range(self.data.words_count)] topic_words.sort(key=lambda word: word[1], reverse=True) topic_words = [(self.data.id2word[topic_words[y][0]], str(topic_words[y][1])) for y in range(self.top_words_num)] topic_words = list(zip(*topic_words)) topic_word_writer.writerow(['主题{:d}'.format(x)] + list(topic_words[0])) topic_word_writer.writerow(['概率'] + list(topic_words[1])) print("The distribution of topics and documents are saving to {:s}".format(self.topic_docs_file)) with open(self.topic_docs_file, 'w', encoding='utf-8-sig', newline='') as f: topic_docs_writer = csv.writer(f, dialect='excel') topic_docs_writer.writerow([''] + ['主题{:d}'.format(y) for y in range(self.K)]) for x in range(self.data.docs_count): topic_docs = [str(self.theta[x][y]) for y in range(self.K)] topic_docs_writer.writerow(['文档{:d}'.format(x)] + topic_docs) with open(self.topic_docs_word, 'w', encoding='utf-8-sig', newline='') as f: for x in range(self.data.docs_count): for y in range(self.data.docs[x].length): f.write(self.data.id2word[self.data.docs[x].words[y]] + ':' + '主题{:d}'.format(self.Z[x][y]) + ' ') f.write('\n') print("Saving is finished!")
43.720779
128
0.56379
795370b181690b35191cf045255cd57b67b51efd
953
py
Python
python/p010.py
josola/project-euler
3ef2366af5575806b2e0e604989b0f3e59538475
[ "MIT" ]
null
null
null
python/p010.py
josola/project-euler
3ef2366af5575806b2e0e604989b0f3e59538475
[ "MIT" ]
6
2021-08-03T20:09:29.000Z
2021-08-03T20:55:09.000Z
python/p010.py
josola/project-euler
3ef2366af5575806b2e0e604989b0f3e59538475
[ "MIT" ]
null
null
null
# Project Euler # Problem 10 - Summation of primes # (c) 2020-2022 Jordan Sola. All rights reserved. (MIT License) # Written by Jordan Sola 2020-2021 def compute(LIMIT): # - Uses Sieve of Eratosthenes to eliminate composite # numbers up to the limit. # - The sieve tracks previously marked primes without increasing # the computation time unnecessarily. This allows the sieve to # jump ahead to the square of the current prime and # remove all the factors of the current prime. prime = [True] * LIMIT i = 2 while (i * i) <= LIMIT: if prime[i] == True: j = i * i while j <= LIMIT - 1: prime[j] = False j += i i += 1 sum = 0 for i in range(2, LIMIT): if prime[i] == True: sum += i return sum if __name__ == "__main__": print(compute(2000000)) # Answer: 142'913'828'922 # Asymptotic complexity: O(N LogN) # M1 (3.2 GHz CPU) ARMv8-A64 (64 bit): 1 loop, best of 5: 314 msec per loop
22.162791
85
0.644281
79537175e8ba0d7e97ff14e054f2b5ef8c8154c6
1,529
py
Python
scripts/odp_s3.py
CCI-Tools/zarr-cache
23c873966e06440b65406fd633b0c8fe63ca70a1
[ "MIT" ]
null
null
null
scripts/odp_s3.py
CCI-Tools/zarr-cache
23c873966e06440b65406fd633b0c8fe63ca70a1
[ "MIT" ]
null
null
null
scripts/odp_s3.py
CCI-Tools/zarr-cache
23c873966e06440b65406fd633b0c8fe63ca70a1
[ "MIT" ]
null
null
null
import s3fs import os.path import xarray as xr from xcube_cci.cciodp import CciOdp from xcube_cci.chunkstore import CciChunkStore from zarr_cache import CachedStore, S3StoreOpener from zarr_cache import IndexedCacheStorage from zarr_cache import MemoryStoreIndex odp = CciOdp() dataset_names_path = 'dataset_names.txt' if not os.path.exists(dataset_names_path): with open(dataset_names_path, 'w') as fp: fp.writelines(map(lambda s: s + '\n', sorted(odp.dataset_names))) bucket_name = "cciodp-cache-v1" # with open('jasmin-os-credentials.json') as fp: # credentials = json.load(fp) # s3 = s3fs.S3FileSystem(anon=False, # key=credentials['aws_access_key_id'], # secret=credentials['aws_secret_access_key'], # client_kwargs=dict(endpoint_url=credentials['endpoint_url'])) s3 = s3fs.S3FileSystem() if not s3.isdir(bucket_name): s3.mkdir(bucket_name) store_index = MemoryStoreIndex() store_cache = IndexedCacheStorage(store_index=store_index, store_opener=S3StoreOpener(bucket_name + "/{store_id}.zarr", s3=s3)) def open_cached_dataset(ds_id): original_store = CciChunkStore(odp, ds_id) cached_store = CachedStore(original_store, ds_id, store_cache) return xr.open_zarr(cached_store) # ds = open_cached_dataset('esacci.OZONE.mon.L3.NP.multi-sensor.multi-platform.MERGED.fv0002.r1') # ds = open_cached_dataset('esacci.CLOUD.mon.L3C.CLD_PRODUCTS.multi-sensor.multi-platform.AVHRR-PM.3-0.r1')
36.404762
107
0.725311
7953719b935ddf911aad3f2db415a5b801c27415
444
py
Python
resource-3/banking-card-pin/same-pin-digits/random.py
dragonwolverines/Datastructures-Python
a3feb13107736e1dab4c5a2e8dc137a6befc2e1b
[ "BSD-2-Clause" ]
null
null
null
resource-3/banking-card-pin/same-pin-digits/random.py
dragonwolverines/Datastructures-Python
a3feb13107736e1dab4c5a2e8dc137a6befc2e1b
[ "BSD-2-Clause" ]
null
null
null
resource-3/banking-card-pin/same-pin-digits/random.py
dragonwolverines/Datastructures-Python
a3feb13107736e1dab4c5a2e8dc137a6befc2e1b
[ "BSD-2-Clause" ]
null
null
null
# What is the probability of one specific person to have the same pin digits with the person next to him? # Assume that the pin is four digits # Generating a random process from random import randint def rand_pin_digits(): a = '{0:04}'.format(randint(0, 10000)) a = set(a) return a match = 0 for i in range(10**6): a = rand_pin_digits() b = rand_pin_digits() if a == b: match += 1 print(match)
20.181818
105
0.637387
795373012cb217f71abbabe62f60c733a7c26ff8
980
py
Python
src/python/QueryParquetFile.py
397090770/learning-spark
42fd8baefc4ee215d6acd826b8999b525b7669a6
[ "MIT" ]
null
null
null
src/python/QueryParquetFile.py
397090770/learning-spark
42fd8baefc4ee215d6acd826b8999b525b7669a6
[ "MIT" ]
null
null
null
src/python/QueryParquetFile.py
397090770/learning-spark
42fd8baefc4ee215d6acd826b8999b525b7669a6
[ "MIT" ]
2
2017-09-28T06:54:58.000Z
2018-10-14T06:37:14.000Z
# Finds the names of people who like pandas from a parquet file # consisting of name & favouriteAnimal. # For input you can use the result of MakeParquetFile from pyspark import SparkContext from pyspark.sql import SQLContext import json import sys if __name__ == "__main__": if len(sys.argv) != 3: print "Error usage: QueryParquetFile [sparkmaster] [parquetfile]" sys.exit(-1) master = sys.argv[1] parquetFile = sys.argv[2] sc = SparkContext(master, "QueryParquetFile") sqlCtx = SQLContext(sc) # Load some data in from a Parquet file of name & favouriteAnimal rows = sqlCtx.parquetFile(parquetFile) names = rows.map(lambda row: row.name) print "Everyone" print names.collect() # Find the panda lovers tbl = rows.registerAsTable("people") pandaFriends = sqlCtx.sql("SELECT name FROM people WHERE favouriteAnimal = \"panda\"") print "Panda Friends" print pandaFriends.map(lambda row: row.name).collect()
36.296296
90
0.708163
795373ba27f60e4e5b06aaf0acc6497fb20ff6c4
12,726
py
Python
pysnmp/ERI-DNX-PERF-MONT-MIB.py
agustinhenze/mibs.snmplabs.com
1fc5c07860542b89212f4c8ab807057d9a9206c7
[ "Apache-2.0" ]
11
2021-02-02T16:27:16.000Z
2021-08-31T06:22:49.000Z
pysnmp/ERI-DNX-PERF-MONT-MIB.py
agustinhenze/mibs.snmplabs.com
1fc5c07860542b89212f4c8ab807057d9a9206c7
[ "Apache-2.0" ]
75
2021-02-24T17:30:31.000Z
2021-12-08T00:01:18.000Z
pysnmp/ERI-DNX-PERF-MONT-MIB.py
agustinhenze/mibs.snmplabs.com
1fc5c07860542b89212f4c8ab807057d9a9206c7
[ "Apache-2.0" ]
10
2019-04-30T05:51:36.000Z
2022-02-16T03:33:41.000Z
# # PySNMP MIB module ERI-DNX-PERF-MONT-MIB (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/ERI-DNX-PERF-MONT-MIB # Produced by pysmi-0.3.4 at Mon Apr 29 18:51:47 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # Integer, ObjectIdentifier, OctetString = mibBuilder.importSymbols("ASN1", "Integer", "ObjectIdentifier", "OctetString") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") ValueRangeConstraint, SingleValueConstraint, ConstraintsIntersection, ConstraintsUnion, ValueSizeConstraint = mibBuilder.importSymbols("ASN1-REFINEMENT", "ValueRangeConstraint", "SingleValueConstraint", "ConstraintsIntersection", "ConstraintsUnion", "ValueSizeConstraint") LinkPortAddress, dnx = mibBuilder.importSymbols("ERI-DNX-SMC-MIB", "LinkPortAddress", "dnx") eriMibs, = mibBuilder.importSymbols("ERI-ROOT-SMI", "eriMibs") NotificationGroup, ModuleCompliance = mibBuilder.importSymbols("SNMPv2-CONF", "NotificationGroup", "ModuleCompliance") ObjectIdentity, NotificationType, Bits, Integer32, MibScalar, MibTable, MibTableRow, MibTableColumn, MibIdentifier, Unsigned32, ModuleIdentity, TimeTicks, Counter64, Gauge32, Counter32, IpAddress, iso = mibBuilder.importSymbols("SNMPv2-SMI", "ObjectIdentity", "NotificationType", "Bits", "Integer32", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "MibIdentifier", "Unsigned32", "ModuleIdentity", "TimeTicks", "Counter64", "Gauge32", "Counter32", "IpAddress", "iso") DisplayString, TextualConvention = mibBuilder.importSymbols("SNMPv2-TC", "DisplayString", "TextualConvention") eriDNXLinkPMStatsMIB = ModuleIdentity((1, 3, 6, 1, 4, 1, 644, 3, 7)) if mibBuilder.loadTexts: eriDNXLinkPMStatsMIB.setLastUpdated('200204110000Z') if mibBuilder.loadTexts: eriDNXLinkPMStatsMIB.setOrganization('Eastern Research, Inc.') performanceMonitoring = MibIdentifier((1, 3, 6, 1, 4, 1, 644, 2, 4, 4)) dsx1Esf = MibIdentifier((1, 3, 6, 1, 4, 1, 644, 2, 4, 4, 1)) dsx1G826 = MibIdentifier((1, 3, 6, 1, 4, 1, 644, 2, 4, 4, 2)) dsx1EsfCurrTable = MibTable((1, 3, 6, 1, 4, 1, 644, 2, 4, 4, 1, 1), ) if mibBuilder.loadTexts: dsx1EsfCurrTable.setStatus('current') dsx1EsfCurrEntry = MibTableRow((1, 3, 6, 1, 4, 1, 644, 2, 4, 4, 1, 1, 1), ).setIndexNames((0, "ERI-DNX-PERF-MONT-MIB", "dsx1EsfCurrLinkAddr")) if mibBuilder.loadTexts: dsx1EsfCurrEntry.setStatus('current') dsx1EsfCurrLinkAddr = MibTableColumn((1, 3, 6, 1, 4, 1, 644, 2, 4, 4, 1, 1, 1, 1), LinkPortAddress()).setMaxAccess("readonly") if mibBuilder.loadTexts: dsx1EsfCurrLinkAddr.setStatus('current') dsx1EsfCurrResrcId = MibTableColumn((1, 3, 6, 1, 4, 1, 644, 2, 4, 4, 1, 1, 1, 2), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dsx1EsfCurrResrcId.setStatus('current') dsx1EsfCurrESs = MibTableColumn((1, 3, 6, 1, 4, 1, 644, 2, 4, 4, 1, 1, 1, 3), Gauge32().subtype(subtypeSpec=ValueRangeConstraint(0, 900))).setMaxAccess("readonly") if mibBuilder.loadTexts: dsx1EsfCurrESs.setStatus('current') dsx1EsfCurrUASs = MibTableColumn((1, 3, 6, 1, 4, 1, 644, 2, 4, 4, 1, 1, 1, 4), Gauge32().subtype(subtypeSpec=ValueRangeConstraint(0, 900))).setMaxAccess("readonly") if mibBuilder.loadTexts: dsx1EsfCurrUASs.setStatus('current') dsx1EsfCurrSESs = MibTableColumn((1, 3, 6, 1, 4, 1, 644, 2, 4, 4, 1, 1, 1, 5), Gauge32().subtype(subtypeSpec=ValueRangeConstraint(0, 900))).setMaxAccess("readonly") if mibBuilder.loadTexts: dsx1EsfCurrSESs.setStatus('current') dsx1EsfCurrBESs = MibTableColumn((1, 3, 6, 1, 4, 1, 644, 2, 4, 4, 1, 1, 1, 6), Gauge32().subtype(subtypeSpec=ValueRangeConstraint(0, 900))).setMaxAccess("readonly") if mibBuilder.loadTexts: dsx1EsfCurrBESs.setStatus('current') dsx1EsfCurrLOFs = MibTableColumn((1, 3, 6, 1, 4, 1, 644, 2, 4, 4, 1, 1, 1, 7), Gauge32().subtype(subtypeSpec=ValueRangeConstraint(0, 900))).setMaxAccess("readonly") if mibBuilder.loadTexts: dsx1EsfCurrLOFs.setStatus('current') dsx1EsfCurrSeconds = MibTableColumn((1, 3, 6, 1, 4, 1, 644, 2, 4, 4, 1, 1, 1, 8), Gauge32().subtype(subtypeSpec=ValueRangeConstraint(0, 900))).setMaxAccess("readonly") if mibBuilder.loadTexts: dsx1EsfCurrSeconds.setStatus('current') dsx1EsfCurrIntervals = MibTableColumn((1, 3, 6, 1, 4, 1, 644, 2, 4, 4, 1, 1, 1, 9), Gauge32().subtype(subtypeSpec=ValueRangeConstraint(0, 96))).setMaxAccess("readonly") if mibBuilder.loadTexts: dsx1EsfCurrIntervals.setStatus('current') dsx1EsfCurrStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 644, 2, 4, 4, 1, 1, 1, 10), DisplayString().subtype(subtypeSpec=ValueSizeConstraint(8, 8)).setFixedLength(8)).setMaxAccess("readonly") if mibBuilder.loadTexts: dsx1EsfCurrStatus.setStatus('current') dsx1Esf24HrTable = MibTable((1, 3, 6, 1, 4, 1, 644, 2, 4, 4, 1, 2), ) if mibBuilder.loadTexts: dsx1Esf24HrTable.setStatus('current') dsx1Esf24HrEntry = MibTableRow((1, 3, 6, 1, 4, 1, 644, 2, 4, 4, 1, 2, 1), ).setIndexNames((0, "ERI-DNX-PERF-MONT-MIB", "dsx1Esf24HrLinkAddr")) if mibBuilder.loadTexts: dsx1Esf24HrEntry.setStatus('current') dsx1Esf24HrLinkAddr = MibTableColumn((1, 3, 6, 1, 4, 1, 644, 2, 4, 4, 1, 2, 1, 1), LinkPortAddress()).setMaxAccess("readonly") if mibBuilder.loadTexts: dsx1Esf24HrLinkAddr.setStatus('current') dsx1Esf24HrResrcId = MibTableColumn((1, 3, 6, 1, 4, 1, 644, 2, 4, 4, 1, 2, 1, 2), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dsx1Esf24HrResrcId.setStatus('current') dsx1Esf24HrESs = MibTableColumn((1, 3, 6, 1, 4, 1, 644, 2, 4, 4, 1, 2, 1, 3), Gauge32().subtype(subtypeSpec=ValueRangeConstraint(0, 65535))).setMaxAccess("readonly") if mibBuilder.loadTexts: dsx1Esf24HrESs.setStatus('current') dsx1Esf24HrUASs = MibTableColumn((1, 3, 6, 1, 4, 1, 644, 2, 4, 4, 1, 2, 1, 4), Gauge32().subtype(subtypeSpec=ValueRangeConstraint(0, 65535))).setMaxAccess("readonly") if mibBuilder.loadTexts: dsx1Esf24HrUASs.setStatus('current') dsx1Esf24HrSESs = MibTableColumn((1, 3, 6, 1, 4, 1, 644, 2, 4, 4, 1, 2, 1, 5), Gauge32().subtype(subtypeSpec=ValueRangeConstraint(0, 65535))).setMaxAccess("readonly") if mibBuilder.loadTexts: dsx1Esf24HrSESs.setStatus('current') dsx1Esf24HrBESs = MibTableColumn((1, 3, 6, 1, 4, 1, 644, 2, 4, 4, 1, 2, 1, 6), Gauge32().subtype(subtypeSpec=ValueRangeConstraint(0, 65535))).setMaxAccess("readonly") if mibBuilder.loadTexts: dsx1Esf24HrBESs.setStatus('current') dsx1Esf24HrLOFs = MibTableColumn((1, 3, 6, 1, 4, 1, 644, 2, 4, 4, 1, 2, 1, 7), Gauge32().subtype(subtypeSpec=ValueRangeConstraint(0, 65535))).setMaxAccess("readonly") if mibBuilder.loadTexts: dsx1Esf24HrLOFs.setStatus('current') dsx1Esf96RegTable = MibTable((1, 3, 6, 1, 4, 1, 644, 2, 4, 4, 1, 3), ) if mibBuilder.loadTexts: dsx1Esf96RegTable.setStatus('current') dsx1Esf96RegEntry = MibTableRow((1, 3, 6, 1, 4, 1, 644, 2, 4, 4, 1, 3, 1), ).setIndexNames((0, "ERI-DNX-PERF-MONT-MIB", "dsx1Esf96RegLinkAddr"), (0, "ERI-DNX-PERF-MONT-MIB", "dsx1Esf96RegInterval")) if mibBuilder.loadTexts: dsx1Esf96RegEntry.setStatus('current') dsx1Esf96RegLinkAddr = MibTableColumn((1, 3, 6, 1, 4, 1, 644, 2, 4, 4, 1, 3, 1, 1), LinkPortAddress()).setMaxAccess("readonly") if mibBuilder.loadTexts: dsx1Esf96RegLinkAddr.setStatus('current') dsx1Esf96RegInterval = MibTableColumn((1, 3, 6, 1, 4, 1, 644, 2, 4, 4, 1, 3, 1, 2), Integer32().subtype(subtypeSpec=ValueRangeConstraint(1, 96))).setMaxAccess("readonly") if mibBuilder.loadTexts: dsx1Esf96RegInterval.setStatus('current') dsx1Esf96RegESs = MibTableColumn((1, 3, 6, 1, 4, 1, 644, 2, 4, 4, 1, 3, 1, 3), Gauge32().subtype(subtypeSpec=ValueRangeConstraint(0, 900))).setMaxAccess("readonly") if mibBuilder.loadTexts: dsx1Esf96RegESs.setStatus('current') dsx1Esf96RegUASs = MibTableColumn((1, 3, 6, 1, 4, 1, 644, 2, 4, 4, 1, 3, 1, 4), Gauge32().subtype(subtypeSpec=ValueRangeConstraint(0, 900))).setMaxAccess("readonly") if mibBuilder.loadTexts: dsx1Esf96RegUASs.setStatus('current') dsx1Esf96RegSESs = MibTableColumn((1, 3, 6, 1, 4, 1, 644, 2, 4, 4, 1, 3, 1, 5), Gauge32().subtype(subtypeSpec=ValueRangeConstraint(0, 900))).setMaxAccess("readonly") if mibBuilder.loadTexts: dsx1Esf96RegSESs.setStatus('current') dsx1Esf96RegBESs = MibTableColumn((1, 3, 6, 1, 4, 1, 644, 2, 4, 4, 1, 3, 1, 6), Gauge32().subtype(subtypeSpec=ValueRangeConstraint(0, 900))).setMaxAccess("readonly") if mibBuilder.loadTexts: dsx1Esf96RegBESs.setStatus('current') dsx1G826Table = MibTable((1, 3, 6, 1, 4, 1, 644, 2, 4, 4, 2, 1), ) if mibBuilder.loadTexts: dsx1G826Table.setStatus('current') dsx1G826Entry = MibTableRow((1, 3, 6, 1, 4, 1, 644, 2, 4, 4, 2, 1, 1), ).setIndexNames((0, "ERI-DNX-PERF-MONT-MIB", "dsx1G826LinkAddr")) if mibBuilder.loadTexts: dsx1G826Entry.setStatus('current') dsx1G826LinkAddr = MibTableColumn((1, 3, 6, 1, 4, 1, 644, 2, 4, 4, 2, 1, 1, 1), LinkPortAddress()).setMaxAccess("readonly") if mibBuilder.loadTexts: dsx1G826LinkAddr.setStatus('current') dsx1G826ResrcId = MibTableColumn((1, 3, 6, 1, 4, 1, 644, 2, 4, 4, 2, 1, 1, 2), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dsx1G826ResrcId.setStatus('current') dsx1G826TotalTime = MibTableColumn((1, 3, 6, 1, 4, 1, 644, 2, 4, 4, 2, 1, 1, 3), Integer32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: dsx1G826TotalTime.setStatus('current') dsx1G826ESs = MibTableColumn((1, 3, 6, 1, 4, 1, 644, 2, 4, 4, 2, 1, 1, 4), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dsx1G826ESs.setStatus('current') dsx1G826ErrFSs = MibTableColumn((1, 3, 6, 1, 4, 1, 644, 2, 4, 4, 2, 1, 1, 5), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dsx1G826ErrFSs.setStatus('current') dsx1G826SESs = MibTableColumn((1, 3, 6, 1, 4, 1, 644, 2, 4, 4, 2, 1, 1, 6), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dsx1G826SESs.setStatus('current') dsx1G826ConsecSESs = MibTableColumn((1, 3, 6, 1, 4, 1, 644, 2, 4, 4, 2, 1, 1, 7), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dsx1G826ConsecSESs.setStatus('current') dsx1G826ConsecErrFSs = MibTableColumn((1, 3, 6, 1, 4, 1, 644, 2, 4, 4, 2, 1, 1, 8), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dsx1G826ConsecErrFSs.setStatus('current') dsx1G826BGErrBlocks = MibTableColumn((1, 3, 6, 1, 4, 1, 644, 2, 4, 4, 2, 1, 1, 9), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dsx1G826BGErrBlocks.setStatus('current') dsx1G826ESRatio = MibTableColumn((1, 3, 6, 1, 4, 1, 644, 2, 4, 4, 2, 1, 1, 10), DisplayString()).setMaxAccess("readonly") if mibBuilder.loadTexts: dsx1G826ESRatio.setStatus('current') dsx1G826SESRatio = MibTableColumn((1, 3, 6, 1, 4, 1, 644, 2, 4, 4, 2, 1, 1, 11), DisplayString()).setMaxAccess("readonly") if mibBuilder.loadTexts: dsx1G826SESRatio.setStatus('current') dsx1G826BgBERRatio = MibTableColumn((1, 3, 6, 1, 4, 1, 644, 2, 4, 4, 2, 1, 1, 12), DisplayString()).setMaxAccess("readonly") if mibBuilder.loadTexts: dsx1G826BgBERRatio.setStatus('current') dsx1G826UASs = MibTableColumn((1, 3, 6, 1, 4, 1, 644, 2, 4, 4, 2, 1, 1, 13), Gauge32()).setMaxAccess("readonly") if mibBuilder.loadTexts: dsx1G826UASs.setStatus('current') mibBuilder.exportSymbols("ERI-DNX-PERF-MONT-MIB", dsx1G826Table=dsx1G826Table, dsx1EsfCurrStatus=dsx1EsfCurrStatus, eriDNXLinkPMStatsMIB=eriDNXLinkPMStatsMIB, dsx1G826ESs=dsx1G826ESs, dsx1EsfCurrLOFs=dsx1EsfCurrLOFs, dsx1Esf96RegLinkAddr=dsx1Esf96RegLinkAddr, dsx1G826ConsecSESs=dsx1G826ConsecSESs, dsx1EsfCurrEntry=dsx1EsfCurrEntry, dsx1Esf24HrResrcId=dsx1Esf24HrResrcId, dsx1EsfCurrTable=dsx1EsfCurrTable, dsx1G826BGErrBlocks=dsx1G826BGErrBlocks, dsx1EsfCurrESs=dsx1EsfCurrESs, dsx1Esf24HrSESs=dsx1Esf24HrSESs, dsx1Esf=dsx1Esf, dsx1Esf96RegSESs=dsx1Esf96RegSESs, performanceMonitoring=performanceMonitoring, dsx1Esf24HrLOFs=dsx1Esf24HrLOFs, dsx1G826ESRatio=dsx1G826ESRatio, dsx1G826LinkAddr=dsx1G826LinkAddr, dsx1EsfCurrSESs=dsx1EsfCurrSESs, dsx1EsfCurrSeconds=dsx1EsfCurrSeconds, dsx1Esf24HrTable=dsx1Esf24HrTable, dsx1Esf24HrLinkAddr=dsx1Esf24HrLinkAddr, dsx1G826ErrFSs=dsx1G826ErrFSs, dsx1G826UASs=dsx1G826UASs, dsx1EsfCurrResrcId=dsx1EsfCurrResrcId, dsx1G826Entry=dsx1G826Entry, dsx1G826SESRatio=dsx1G826SESRatio, dsx1EsfCurrBESs=dsx1EsfCurrBESs, dsx1Esf96RegEntry=dsx1Esf96RegEntry, dsx1G826=dsx1G826, dsx1Esf96RegTable=dsx1Esf96RegTable, dsx1Esf96RegInterval=dsx1Esf96RegInterval, dsx1Esf96RegESs=dsx1Esf96RegESs, dsx1EsfCurrIntervals=dsx1EsfCurrIntervals, dsx1EsfCurrUASs=dsx1EsfCurrUASs, dsx1G826ConsecErrFSs=dsx1G826ConsecErrFSs, dsx1Esf24HrESs=dsx1Esf24HrESs, dsx1G826TotalTime=dsx1G826TotalTime, dsx1Esf96RegUASs=dsx1Esf96RegUASs, PYSNMP_MODULE_ID=eriDNXLinkPMStatsMIB, dsx1EsfCurrLinkAddr=dsx1EsfCurrLinkAddr, dsx1Esf24HrBESs=dsx1Esf24HrBESs, dsx1G826ResrcId=dsx1G826ResrcId, dsx1Esf24HrEntry=dsx1Esf24HrEntry, dsx1G826SESs=dsx1G826SESs, dsx1Esf24HrUASs=dsx1Esf24HrUASs, dsx1G826BgBERRatio=dsx1G826BgBERRatio, dsx1Esf96RegBESs=dsx1Esf96RegBESs)
114.648649
1,758
0.753968
795375074c4ccb8577eac3bb4f3649a6bcc6c595
3,706
py
Python
scripts/config.py
rohankumardubey/ramcloud
3a30ba5edc4a81d5e12ab20fda0360cb9bacf50f
[ "0BSD" ]
5
2015-11-14T16:49:06.000Z
2019-09-03T13:21:30.000Z
scripts/config.py
rohankumardubey/ramcloud
3a30ba5edc4a81d5e12ab20fda0360cb9bacf50f
[ "0BSD" ]
null
null
null
scripts/config.py
rohankumardubey/ramcloud
3a30ba5edc4a81d5e12ab20fda0360cb9bacf50f
[ "0BSD" ]
1
2018-02-25T11:16:27.000Z
2018-02-25T11:16:27.000Z
#!/usr/bin/env python # Copyright (c) 2011 Stanford University # # Permission to use, copy, modify, and distribute this software for any # purpose with or without fee is hereby granted, provided that the above # copyright notice and this permission notice appear in all copies. # # THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR(S) DISCLAIM ALL WARRANTIES # WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF # MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL AUTHORS BE LIABLE FOR # ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES # WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN # ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF # OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. """ This module defines a collection of variables that specify site-specific configuration information such as names of RAMCloud hosts and the location of RAMCloud binaries. This should be the only file you have to modify to run RAMCloud scripts at your site. """ from common import captureSh import os import re import subprocess import sys __all__ = ['coordinator_port', 'default_disk1','default_disk2', 'git_branch', 'hosts', 'obj_dir', 'obj_path', 'scripts_path', 'second_backup_port', 'server_port', 'top_path'] # git_branch is the name of the current git branch, which is used # for purposes such as computing objDir. try: git_branch = re.search('^refs/heads/(.*)$', captureSh('git symbolic-ref -q HEAD 2>/dev/null')) except subprocess.CalledProcessError: git_branch = None obj_dir = 'obj' else: git_branch = git_branch.group(1) obj_dir = 'obj.%s' % git_branch # obj_dir is the name of the directory containing binaries for the current # git branch (it's just a single name such as "obj.master", not a full path) if git_branch == None: obj_dir = 'obj' else: obj_dir = 'obj.%s' % git_branch # The full path name of the directory containing this script file. scripts_path = os.path.dirname(os.path.abspath(__file__)) # The full pathname of the parent of scriptsPath (the top-level directory # of a RAMCloud source tree). top_path = os.path.abspath(scripts_path + '/..') # Add /usr/local/lib to LD_LIBARY_PATH it isn't already there (this was # needed for CentOS 5.5, but should probably be deleted now). try: ld_library_path = os.environ['LD_LIBRARY_PATH'].split(':') except KeyError: ld_library_path = [] if '/usr/local/lib' not in ld_library_path: ld_library_path.insert(0, '/usr/local/lib') os.environ['LD_LIBRARY_PATH'] = ':'.join(ld_library_path) # All of the hosts available for servers or clients; each entry # consists of a name for the host (for ssh), an IP address # to use for creating service locators. and an id for generating # Ethernet addresses. hosts = [] for i in range(1, 61): hosts.append(('rc%02d' % i, '192.168.1.%d' % (100 + i), i)) # Host on which old master is run for running recoveries. # Need not be a member of hosts old_master_host = ('rcmaster', '192.168.1.1', 81) # Full path to the directory containing RAMCloud executables. obj_path = '%s/%s' % (top_path, obj_dir) # Ports (for TCP, etc.) to use for each kind of server. coordinator_port = 12246 server_port = 12247 second_backup_port = 12248 # Command-line argument specifying where the first backup on each # server should storage the segment replicas. default_disk1 = '-f /dev/sda2' # Command-line argument specifying where the second backup should # store its segment replicas. default_disk2 = '-f /dev/sdb2' # Try to include local overrides. try: from localconfig import * except: pass
35.295238
77
0.726929
795377ac4369812cc266aa4a1ff27f0cf1692128
4,453
py
Python
examples/demo_bandits/plot_compare_index_bandits.py
TimotheeMathieu/rlberry
a351ead4209d3f95c1327e8140a83d6bc0214d40
[ "MIT" ]
null
null
null
examples/demo_bandits/plot_compare_index_bandits.py
TimotheeMathieu/rlberry
a351ead4209d3f95c1327e8140a83d6bc0214d40
[ "MIT" ]
null
null
null
examples/demo_bandits/plot_compare_index_bandits.py
TimotheeMathieu/rlberry
a351ead4209d3f95c1327e8140a83d6bc0214d40
[ "MIT" ]
null
null
null
""" ============================================================= Comparison subplots of various index based bandits algorithms ============================================================= This script Compare several bandits agents and as a sub-product also shows how to use subplots in with `plot_writer_data` """ import numpy as np import matplotlib.pyplot as plt from rlberry.envs.bandits import BernoulliBandit from rlberry.manager import AgentManager, plot_writer_data from rlberry.wrappers import WriterWrapper from rlberry.agents.bandits import ( IndexAgent, RandomizedAgent, makeBoundedIMEDIndex, makeBoundedMOSSIndex, makeBoundedNPTSIndex, makeBoundedUCBIndex, makeETCIndex, makeEXP3Index, ) # Agents definition # sphinx_gallery_thumbnail_number = 2 # Parameters of the problem means = np.array([0.6, 0.6, 0.6, 0.9]) # means of the arms A = len(means) T = 2000 # Horizon M = 10 # number of MC simu # Construction of the experiment env_ctor = BernoulliBandit env_kwargs = {"p": means} class UCBAgent(IndexAgent): name = "UCB" def __init__(self, env, **kwargs): index, _ = makeBoundedUCBIndex() IndexAgent.__init__(self, env, index, **kwargs) self.env = WriterWrapper( self.env, self.writer, write_scalar="action_and_reward" ) class ETCAgent(IndexAgent): name = "ETC" def __init__(self, env, m=20, **kwargs): index, _ = makeETCIndex(A, m) IndexAgent.__init__(self, env, index, **kwargs) self.env = WriterWrapper( self.env, self.writer, write_scalar="action_and_reward" ) class MOSSAgent(IndexAgent): name = "MOSS" def __init__(self, env, **kwargs): index, _ = makeBoundedMOSSIndex(T, A) IndexAgent.__init__(self, env, index, **kwargs) self.env = WriterWrapper( self.env, self.writer, write_scalar="action_and_reward" ) class IMEDAgent(IndexAgent): name = "IMED" def __init__(self, env, **kwargs): index, tracker_params = makeBoundedIMEDIndex() IndexAgent.__init__(self, env, index, tracker_params=tracker_params, **kwargs) self.env = WriterWrapper( self.env, self.writer, write_scalar="action_and_reward" ) class NPTSAgent(IndexAgent): name = "NPTS" def __init__(self, env, **kwargs): index, tracker_params = makeBoundedNPTSIndex() IndexAgent.__init__(self, env, index, tracker_params=tracker_params, **kwargs) self.env = WriterWrapper( self.env, self.writer, write_scalar="action_and_reward" ) class EXP3Agent(RandomizedAgent): name = "EXP3" def __init__(self, env, **kwargs): prob, tracker_params = makeEXP3Index() RandomizedAgent.__init__( self, env, prob, tracker_params=tracker_params, **kwargs ) self.env = WriterWrapper( self.env, self.writer, write_scalar="action_and_reward" ) Agents_class = [ ETCAgent, EXP3Agent, IMEDAgent, MOSSAgent, NPTSAgent, UCBAgent, ] agents = [ AgentManager( Agent, (env_ctor, env_kwargs), fit_budget=T, n_fit=M, parallelization="process", mp_context="fork", ) for Agent in Agents_class ] # these parameters should give parallel computing even in notebooks # Agent training for agent in agents: agent.fit() # Compute and plot regret def compute_regret(rewards): return np.cumsum(np.max(means) - rewards) # Compute and plot (pseudo-)regret def compute_pseudo_regret(actions): return np.cumsum(np.max(means) - means[actions.astype(int)]) output = plot_writer_data( agents, tag="action", preprocess_func=compute_pseudo_regret, title="Cumulative Pseudo-Regret", ) output = plot_writer_data( agents, tag="reward", preprocess_func=compute_regret, title="Cumulative Regret", ) # Compute and plot number of times each arm was selected def compute_na(actions, a): return np.cumsum(actions == a) fig, axes = plt.subplots(2, 2, sharey=True, figsize=(6, 6)) axes = axes.ravel() for arm in range(A): output = plot_writer_data( agents, tag="action", preprocess_func=lambda actions: compute_na(actions, arm), title="Na for arm " + str(arm) + ", mean=" + str(means[arm]), ax=axes[arm], show=False, ) fig.tight_layout() plt.show()
24.60221
86
0.644285
79537817fb6a1dad4804313f694f55a7c60f370c
8,935
py
Python
powerline_shell/__init__.py
damageboy/powerline-shell
9395706d82a4073b0c2bf210ebf4953674813d17
[ "MIT" ]
null
null
null
powerline_shell/__init__.py
damageboy/powerline-shell
9395706d82a4073b0c2bf210ebf4953674813d17
[ "MIT" ]
null
null
null
powerline_shell/__init__.py
damageboy/powerline-shell
9395706d82a4073b0c2bf210ebf4953674813d17
[ "MIT" ]
null
null
null
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import print_function import argparse import os import sys import importlib import json from .utils import warn, py3, import_file import re def _current_dir(): """Returns the full current working directory as the user would have used in their shell (ie. without following symbolic links). With the introduction of Bash for Windows, we can't use the PWD environment variable very easily. `os.sep` for windows is `\` but the PWD variable will use `/`. So just always use the `os` functions for dealing with paths. This also is fine because the use of PWD below is done to avoid following symlinks, which Windows doesn't have. For non-Windows systems, prefer the PWD environment variable. Python's `os.getcwd` function follows symbolic links, which is undesirable.""" if os.name == "nt": return os.getcwd() return os.getenv("PWD") or os.getcwd() def get_valid_cwd(): """Determine and check the current working directory for validity. Typically, an directory arises when you checkout a different branch on git that doesn't have this directory. When an invalid directory is found, a warning is printed to the screen, but the directory is still returned as-is, since this is what the shell considers to be the cwd.""" try: cwd = _current_dir() except: warn("Your current directory is invalid. If you open a ticket at " + "https://github.com/milkbikis/powerline-shell/issues/new " + "we would love to help fix the issue.") sys.stdout.write("> ") sys.exit(1) parts = cwd.split(os.sep) up = cwd while parts and not os.path.exists(up): parts.pop() up = os.sep.join(parts) if cwd != up: warn("Your current directory is invalid. Lowest valid directory: " + up) return cwd class Powerline(object): symbols = { 'compatible': { 'lock': 'RO', 'network': 'SSH', 'separator': u'\u25B6', 'separator_thin': u'\u276F' }, 'patched': { 'lock': u'\uE0A2', 'network': 'SSH', 'separator': u'\uE0B0', 'separator_thin': u'\uE0B1' }, 'flat': { 'lock': u'\uE0A2', 'network': 'SSH', 'separator': '', 'separator_thin': '' }, 'angly1': { 'lock': u'\uE0A2', 'network': u'\uf983', 'separator': u'\uE0B8', 'separator_thin': u'\uE0B9' }, 'angly2': { 'lock': u'\uE0A2', 'network': u'\uf983', 'separator': u'\uE0BC', 'separator_thin': u'\uE0BD' }, 'curvy': { 'lock': u'\uE0A2', 'network': u'\uE0A2', 'separator': u'\uE0B4', 'separator_thin': u'\uE0B5' }, 'flames': { 'lock': u'\uE0A2', 'network': u'\uE0A2', 'separator': u'\uE0C0', 'separator_thin': u'\uE0C1' }, 'lego': { 'lock': u'\uE0A2', 'network': u'\uE0A2', 'separator': u'\uE0CE', 'separator_thin': u'\uE0CF' }, 'pixelated': { 'lock': u'\uE0A2', 'network': u'\uE0A2', 'separator': u'\uE0C6', 'separator_thin': u'\uE0C6' } } color_templates = { 'bash': r'\[\e%s\]', 'tcsh': r'%%{\e%s%%}', 'zsh': '%%{%s%%}', 'bare': '%s', } def __init__(self, args, config, theme): self.args = args self.config = config self.theme = theme self.cwd = get_valid_cwd() mode = config.get("mode", "patched") self.color_template = self.color_templates[args.shell] self.reset = self.color_template % '[0m' self.lock = Powerline.symbols[mode]['lock'] self.network = Powerline.symbols[mode]['network'] self.separator = Powerline.symbols[mode]['separator'] self.separator_thin = Powerline.symbols[mode]['separator_thin'] self.segments = [] def segment_conf(self, seg_name, key, default=None): return self.config.get(seg_name, {}).get(key, default) def color(self, prefix, code): if code is None: return '' elif code == self.theme.RESET: return self.reset else: return self.color_template % ('[%s;5;%sm' % (prefix, code)) def fgcolor(self, code): return self.color('38', code) def bgcolor(self, code): return self.color('48', code) def append(self, content, fg, bg, separator=None, separator_fg=None, sanitize=True): if self.args.shell == "bash" and sanitize: content = re.sub(r"([`$])", r"\\\1", content) self.segments.append((content, fg, bg, separator if separator is not None else self.separator, separator_fg if separator_fg is not None else bg)) def draw(self): text = (''.join(self.draw_segment(i) for i in range(len(self.segments))) + self.reset) + ' ' if py3: return text else: return text.encode('utf-8') def draw_segment(self, idx): segment = self.segments[idx] next_segment = self.segments[idx + 1] if idx < len(self.segments)-1 else None return ''.join(( self.fgcolor(segment[1]), self.bgcolor(segment[2]), segment[0], self.bgcolor(next_segment[2]) if next_segment else self.reset, self.fgcolor(segment[4]), segment[3])) def find_config(): for location in [ "powerline-shell.json", "~/.powerline-shell.json", os.path.join(os.environ.get("XDG_CONFIG_HOME", "~/.config"), "powerline-shell", "config.json"), ]: full = os.path.expanduser(location) if os.path.exists(full): return full DEFAULT_CONFIG = { "segments": [ 'virtual_env', 'username', 'hostname', 'ssh', 'cwd', 'git', 'hg', 'jobs', 'root', ] } class ModuleNotFoundException(Exception): pass class CustomImporter(object): def __init__(self): self.file_import_count = 0 def import_(self, module_prefix, module_or_file, description): try: mod = importlib.import_module(module_prefix + module_or_file) except ImportError: try: module_name = "_custom_mod_{0}".format(self.file_import_count) mod = import_file(module_name, os.path.expanduser(module_or_file)) self.file_import_count += 1 except (ImportError, IOError): msg = "{0} {1} cannot be found".format(description, module_or_file) raise ModuleNotFoundException( msg) return mod def main(): arg_parser = argparse.ArgumentParser() arg_parser.add_argument('--generate-config', action='store_true', help='Generate the default config and print it to stdout') arg_parser.add_argument('--shell', action='store', default='bash', help='Set this to your shell type', choices=['bash', 'tcsh', 'zsh', 'bare']) arg_parser.add_argument('prev_error', nargs='?', type=int, default=0, help='Error code returned by the last command') args = arg_parser.parse_args() if args.generate_config: print(json.dumps(DEFAULT_CONFIG, indent=2)) return 0 config_path = find_config() if config_path: with open(config_path) as f: try: config = json.loads(f.read()) except Exception as e: warn("Config file ({0}) could not be decoded! Error: {1}" .format(config_path, e)) config = DEFAULT_CONFIG else: config = DEFAULT_CONFIG custom_importer = CustomImporter() theme_mod = custom_importer.import_( "powerline_shell.themes.", config.get("theme", "default"), "Theme") theme = getattr(theme_mod, "Color") powerline = Powerline(args, config, theme) segments = [] for seg_conf in config["segments"]: if not isinstance(seg_conf, dict): seg_conf = {"type": seg_conf} seg_name = seg_conf["type"] seg_mod = custom_importer.import_( "powerline_shell.segments.", seg_name, "Segment") segment = getattr(seg_mod, "Segment")(powerline, seg_conf) segment.start() segments.append(segment) for segment in segments: segment.add_to_powerline() sys.stdout.write(powerline.draw()) return 0
32.02509
103
0.556128
79537a9523e9503864dfcfcf4413e5ea30661356
3,589
py
Python
detectors/all_rules_generator.py
stworekAsiorek/CRDiS
bb95860bbe75f84d7bac0b7ff982855ebaddf287
[ "MIT" ]
1
2021-09-07T11:17:38.000Z
2021-09-07T11:17:38.000Z
detectors/all_rules_generator.py
KayJay624/SequenceGenerator
bb95860bbe75f84d7bac0b7ff982855ebaddf287
[ "MIT" ]
null
null
null
detectors/all_rules_generator.py
KayJay624/SequenceGenerator
bb95860bbe75f84d7bac0b7ff982855ebaddf287
[ "MIT" ]
1
2019-01-17T18:32:45.000Z
2019-01-17T18:32:45.000Z
# The MIT License # Copyright (c) 2018 Kamil Jurek # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. import numpy as np from rules_generator import RulesGenerator from rule_component import RuleComponent from utils import * class AllRulesGenerator(RulesGenerator): def __init__(self, target_seq_index, window_size=0, round_to=100, combined=False): super(AllRulesGenerator, self).__init__() self.target_seq_index = target_seq_index self.round_to = round_to self.window_size = window_size self.combined = combined self.simulator = None def generate_rules(self, window_begin, window_end, current_index): generated_rules = [[] for i in range(len(self.simulator.sequences))] for seq_index, change_point_list in enumerate(self.simulator.detected_change_points): # if seq_index == self.target_seq_index: # continue generated_lhss = [] generated_rhss = [] points_before_window, points_in_window, points_after_window = \ self.get_change_points_in_window(seq_index, window_begin, window_end) if not points_in_window: generated_lhss = self.generate_lhss_for_empty_window(seq_index, points_before_window, window_begin, window_end) else: generated_lhss = self.generate_lhss(points_in_window, window_begin, window_end) generated_rhss = self.generate_rhss() if generated_lhss: self.update_discovered_lhss(seq_index, current_index, generated_lhss) self.generate_and_update_rules(seq_index, current_index, generated_lhss, generated_rhss, generated_rules) if self.combined: combined_rule = [] #[self.simulator.combined_rules.add((x,y,z)) if x.rhs == y.rhs and x.rhs == z.rhs # else None for x in generated_rules[0] for y in generated_rules[1] for z in generated_rules[2]] for seq_rules in generated_rules: if seq_rules: combined_rule.append(seq_rules[-1]) # print("seq_rule:", seq_rules[-1]) # for gr in seq_rules: # print(gr) # print("==============================================") if len(combined_rule) > 0: # print("Adding to combined rules") self.simulator.combined_rules.add(tuple(combined_rule))
47.223684
127
0.656172
79537aee41e62f3c25efb16021971447f37811b5
2,475
py
Python
yt/frontends/moab/io.py
Xarthisius/yt
321643c3abff64a6f132d98d0747f3558f7552a3
[ "BSD-3-Clause-Clear" ]
360
2017-04-24T05:06:04.000Z
2022-03-31T10:47:07.000Z
yt/frontends/moab/io.py
Xarthisius/yt
321643c3abff64a6f132d98d0747f3558f7552a3
[ "BSD-3-Clause-Clear" ]
2,077
2017-04-20T20:36:07.000Z
2022-03-31T16:39:43.000Z
yt/frontends/moab/io.py
stonnes/yt
aad3cfa3b4ebab7838352ab467275a27c26ff363
[ "BSD-3-Clause-Clear" ]
257
2017-04-19T20:52:28.000Z
2022-03-29T12:23:52.000Z
import numpy as np from yt.funcs import mylog from yt.utilities.io_handler import BaseIOHandler def field_dname(field_name): return f"/tstt/elements/Hex8/tags/{field_name}" # TODO all particle bits were removed class IOHandlerMoabH5MHex8(BaseIOHandler): _dataset_type = "moab_hex8" def __init__(self, ds): super().__init__(ds) self._handle = ds._handle def _read_fluid_selection(self, chunks, selector, fields, size): chunks = list(chunks) assert len(chunks) == 1 fhandle = self._handle rv = {} for field in fields: ftype, fname = field rv[field] = np.empty(size, dtype=fhandle[field_dname(fname)].dtype) ngrids = sum(len(chunk.objs) for chunk in chunks) mylog.debug( "Reading %s cells of %s fields in %s blocks", size, [fname for ft, fn in fields], ngrids, ) for field in fields: ftype, fname = field ds = np.array(fhandle[field_dname(fname)][:], dtype="float64") ind = 0 for chunk in chunks: for g in chunk.objs: ind += g.select(selector, ds, rv[field], ind) # caches return rv class IOHandlerMoabPyneHex8(BaseIOHandler): _dataset_type = "moab_hex8_pyne" def _read_fluid_selection(self, chunks, selector, fields, size): chunks = list(chunks) assert len(chunks) == 1 rv = {} pyne_mesh = self.ds.pyne_mesh for field in fields: rv[field] = np.empty(size, dtype="float64") ngrids = sum(len(chunk.objs) for chunk in chunks) mylog.debug( "Reading %s cells of %s fields in %s blocks", size, [fname for ftype, fname in fields], ngrids, ) for field in fields: ftype, fname = field if pyne_mesh.structured: tag = pyne_mesh.mesh.tag_get_handle("idx") hex_list = [ent for ent in pyne_mesh.structured_iterate_hex()] indices = pyne_mesh.mesh.tag_get_data(tag, hex_list).flatten() else: indices = slice(None) ds = np.asarray(getattr(pyne_mesh, fname)[indices], "float64") ind = 0 for chunk in chunks: for g in chunk.objs: ind += g.select(selector, ds, rv[field], ind) # caches return rv
32.565789
79
0.564848
79537b4a0340de993843bcb755e46d14cdb672b9
1,173
py
Python
setup.py
tuxpiper/raduga
e63bdd8f9d4154c0ac0a72a1182da5d137e38514
[ "MIT" ]
null
null
null
setup.py
tuxpiper/raduga
e63bdd8f9d4154c0ac0a72a1182da5d137e38514
[ "MIT" ]
null
null
null
setup.py
tuxpiper/raduga
e63bdd8f9d4154c0ac0a72a1182da5d137e38514
[ "MIT" ]
null
null
null
''' @author: David Losada Carballo <david@tuxpiper.com> ''' from setuptools import setup, find_packages setup( name = "raduga", version = "0.0.7", packages = find_packages(), description = ("Infrastructure-as-code framework for AWS"), author = "David Losada Carballo", author_email = "david@tuxpiper.com", install_requires = ['cloudcast>=0.1.1', 'docopt>=0.6.1', 'boto>=2.26.1', 'setuptools>=3.3', 'json_tools==0.3.3'], license = 'MIT', keywords = "aws internet cloud infrastructure deployment automation", long_description = open('README.md').read(), url = "http://github.com/tuxpiper/raduga", zip_safe = False, entry_points = { 'console_scripts': [ 'raduga = raduga.main:main', ] }, package_data = { # Script files that contain initial bootstrap sequences 'raduga': ['cfn/*'] }, classifiers=[ "Development Status :: 2 - Pre-Alpha", "Topic :: System", "Environment :: Console", "Intended Audience :: System Administrators", "License :: OSI Approved :: MIT License", "Programming Language :: Python" ], )
30.076923
117
0.602728
79537bd4942df06473aa6d5f69c9e89612983b58
9,966
py
Python
tests/test_losses.py
blazejdolicki/vissl
9c10748a19fb1c637f32687142c8cd685f2410ff
[ "MIT" ]
2,512
2021-01-27T18:44:44.000Z
2022-03-31T19:33:49.000Z
tests/test_losses.py
blazejdolicki/vissl
9c10748a19fb1c637f32687142c8cd685f2410ff
[ "MIT" ]
361
2021-01-27T20:12:09.000Z
2022-03-31T12:39:34.000Z
tests/test_losses.py
blazejdolicki/vissl
9c10748a19fb1c637f32687142c8cd685f2410ff
[ "MIT" ]
277
2021-01-29T08:09:02.000Z
2022-03-31T07:57:35.000Z
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import logging import unittest from collections import namedtuple import torch import torch.nn as nn from classy_vision.generic.distributed_util import set_cpu_device from parameterized import param, parameterized from vissl.config import AttrDict from vissl.losses.barlow_twins_loss import BarlowTwinsCriterion from vissl.losses.cross_entropy_multiple_output_single_target import ( CrossEntropyMultipleOutputSingleTargetCriterion, CrossEntropyMultipleOutputSingleTargetLoss, ) from vissl.losses.multicrop_simclr_info_nce_loss import MultiCropSimclrInfoNCECriterion from vissl.losses.simclr_info_nce_loss import SimclrInfoNCECriterion from vissl.losses.swav_loss import SwAVCriterion logger = logging.getLogger("__name__") set_cpu_device() BATCH_SIZE = 2048 EMBEDDING_DIM = 128 NUM_CROPS = 2 BUFFER_PARAMS_STRUCT = namedtuple( "BUFFER_PARAMS_STRUCT", ["effective_batch_size", "world_size", "embedding_dim"] ) BUFFER_PARAMS = BUFFER_PARAMS_STRUCT(BATCH_SIZE, 1, EMBEDDING_DIM) class TestLossesForward(unittest.TestCase): """ Minimal testing of the losses: ensure that a forward pass with believable dimensions succeeds. This does not make them correct per say. """ @staticmethod def _get_embedding(): return torch.ones([BATCH_SIZE, EMBEDDING_DIM]) def test_simclr_info_nce_loss(self): loss_layer = SimclrInfoNCECriterion( buffer_params=BUFFER_PARAMS, temperature=0.1 ) _ = loss_layer(self._get_embedding()) def test_multicrop_simclr_info_nce_loss(self): loss_layer = MultiCropSimclrInfoNCECriterion( buffer_params=BUFFER_PARAMS, temperature=0.1, num_crops=NUM_CROPS ) embedding = torch.ones([BATCH_SIZE * NUM_CROPS, EMBEDDING_DIM]) _ = loss_layer(embedding) def test_swav_loss(self): loss_layer = SwAVCriterion( temperature=0.1, crops_for_assign=[0, 1], num_crops=2, num_iters=3, epsilon=0.05, use_double_prec=False, num_prototypes=[3000], local_queue_length=0, embedding_dim=EMBEDDING_DIM, temp_hard_assignment_iters=0, output_dir="", ) _ = loss_layer(scores=self._get_embedding(), head_id=0) def test_barlow_twins_loss(self): loss_layer = BarlowTwinsCriterion( lambda_=0.0051, scale_loss=0.024, embedding_dim=EMBEDDING_DIM ) _ = loss_layer(self._get_embedding()) class TestBarlowTwinsCriterion(unittest.TestCase): """ Specific tests on Barlow Twins going further than just doing a forward pass """ def test_barlow_twins_backward(self): EMBEDDING_DIM = 3 criterion = BarlowTwinsCriterion( lambda_=0.0051, scale_loss=0.024, embedding_dim=EMBEDDING_DIM ) embeddings = torch.randn((4, EMBEDDING_DIM), requires_grad=True) self.assertTrue(embeddings.grad is None) criterion(embeddings).backward() self.assertTrue(embeddings.grad is not None) with torch.no_grad(): next_embeddings = embeddings - embeddings.grad # gradient descent self.assertTrue(criterion(next_embeddings) < criterion(embeddings)) class TestSimClrCriterion(unittest.TestCase): """ Specific tests on SimCLR going further than just doing a forward pass """ def test_simclr_info_nce_masks(self): BATCH_SIZE = 4 WORLD_SIZE = 2 buffer_params = BUFFER_PARAMS_STRUCT( BATCH_SIZE * WORLD_SIZE, WORLD_SIZE, EMBEDDING_DIM ) criterion = SimclrInfoNCECriterion(buffer_params=buffer_params, temperature=0.1) self.assertTrue( criterion.pos_mask.equal( torch.tensor( [ [0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0], [1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], ] ) ) ) self.assertTrue( criterion.neg_mask.equal( torch.tensor( [ [0.0, 1.0, 0.0, 1.0, 1.0, 1.0, 1.0, 1.0], [1.0, 0.0, 1.0, 0.0, 1.0, 1.0, 1.0, 1.0], [0.0, 1.0, 0.0, 1.0, 1.0, 1.0, 1.0, 1.0], [1.0, 0.0, 1.0, 0.0, 1.0, 1.0, 1.0, 1.0], ] ) ) ) def test_simclr_backward(self): EMBEDDING_DIM = 3 BATCH_SIZE = 4 WORLD_SIZE = 1 buffer_params = BUFFER_PARAMS_STRUCT( BATCH_SIZE * WORLD_SIZE, WORLD_SIZE, EMBEDDING_DIM ) criterion = SimclrInfoNCECriterion(buffer_params=buffer_params, temperature=0.1) embeddings = torch.tensor( [[1.0, 0.0, 1.0], [0.0, 1.0, 0.0], [1.0, 0.0, 1.0], [0.0, 1.0, 0.0]], requires_grad=True, ) self.assertTrue(embeddings.grad is None) criterion(embeddings).backward() self.assertTrue(embeddings.grad is not None) print(embeddings.grad) with torch.no_grad(): next_embeddings = embeddings - embeddings.grad # gradient descent self.assertTrue(criterion(next_embeddings) < criterion(embeddings)) class TestCrossEntropyMultipleOutputSingleTargetLoss(unittest.TestCase): @parameterized.expand( [param(batch_size=1, target_count=2), param(batch_size=16, target_count=10)] ) def test_single_input_single_target(self, batch_size: int, target_count: int): torch.random.manual_seed(0) logits = torch.randn(size=(batch_size, target_count)) target = torch.randint(0, target_count, size=(batch_size,)) ref_criterion = nn.CrossEntropyLoss() criterion = CrossEntropyMultipleOutputSingleTargetCriterion() self.assertEqual(criterion(logits, target), ref_criterion(logits, target)) @parameterized.expand( [ param(batch_size=1, target_count=2, input_count=1), param(batch_size=16, target_count=10, input_count=2), ] ) def test_multiple_inputs_single_target( self, batch_size: int, target_count: int, input_count: int ): torch.random.manual_seed(0) logits = [ torch.randn(size=(batch_size, target_count)) for _ in range(input_count) ] target = torch.randint(0, target_count, size=(batch_size,)) ref_criterion = nn.CrossEntropyLoss() ref_loss = sum(ref_criterion(logits[i], target) for i in range(input_count)) criterion = CrossEntropyMultipleOutputSingleTargetCriterion() self.assertEqual(criterion(logits, target), ref_loss) def test_multiple_targets_for_label_smoothing(self): targets = torch.tensor([[0.8, 0.1, 0.1], [0.1, 0.8, 0.1], [0.1, 0.1, 0.8]]) logits = torch.tensor([[10.0, 0.0, 0.0], [0.0, 10.0, 0.0], [0.0, 0.0, 10.0]]) criterion = CrossEntropyMultipleOutputSingleTargetCriterion() expected = ( (-torch.log(nn.Softmax(dim=-1)(logits)) * targets).sum(dim=1).mean().item() ) self.assertAlmostEqual(criterion(logits, targets).item(), expected) def test_label_smoothing_target_transformation(self): target = torch.tensor([0, 1, 2], dtype=torch.int64) smoothed = ( CrossEntropyMultipleOutputSingleTargetCriterion.apply_label_smoothing( target=target, num_labels=4, label_smoothing=0.1 ) ) expected = torch.tensor( [ [0.9250, 0.0250, 0.0250, 0.0250], [0.0250, 0.9250, 0.0250, 0.0250], [0.0250, 0.0250, 0.9250, 0.0250], ] ) self.assertTrue(torch.allclose(expected, smoothed)) @parameterized.expand( [param(batch_size=1, target_count=2), param(batch_size=16, target_count=10)] ) def test_single_target_label_smoothing(self, batch_size: int, target_count: int): torch.random.manual_seed(0) logits = torch.randn(size=(batch_size, target_count)) target = torch.randint(0, target_count, size=(batch_size,)) # Verify that label smoothing is supported in forward pass criterion = CrossEntropyMultipleOutputSingleTargetCriterion(label_smoothing=0.1) loss = criterion(logits, target) self.assertTrue(loss.item() > 0.0) @parameterized.expand( [ param(temperature=0.1, normalize_output=False, label_smoothing=0.0), param(temperature=1.0, normalize_output=True, label_smoothing=0.0), param(temperature=2.0, normalize_output=False, label_smoothing=0.5), ] ) def test_configuration( self, temperature: float, normalize_output: bool, label_smoothing: float, batch_size: int = 16, target_count: int = 10, ): torch.random.manual_seed(0) logits = torch.randn(size=(batch_size, target_count)) target = torch.randint(0, target_count, size=(batch_size,)) criterion_ref = CrossEntropyMultipleOutputSingleTargetCriterion( temperature=temperature, normalize_output=normalize_output, label_smoothing=label_smoothing, ) config = AttrDict( { "temperature": temperature, "normalize_output": normalize_output, "label_smoothing": label_smoothing, } ) criterion = CrossEntropyMultipleOutputSingleTargetLoss(config) self.assertEqual(criterion(logits, target), criterion_ref(logits, target))
37.466165
88
0.630544
79537c47b0d41b0be1a92a3b9d8e1f8fa41b8e09
1,141
py
Python
setup.py
acpaquette/pysis
c0d84e6e5a803e11844a866ef5e30c6eee63b01b
[ "BSD-3-Clause" ]
11
2015-05-13T01:02:59.000Z
2021-12-24T02:27:02.000Z
setup.py
acpaquette/pysis
c0d84e6e5a803e11844a866ef5e30c6eee63b01b
[ "BSD-3-Clause" ]
20
2015-04-19T23:43:34.000Z
2020-07-31T23:22:06.000Z
setup.py
acpaquette/pysis
c0d84e6e5a803e11844a866ef5e30c6eee63b01b
[ "BSD-3-Clause" ]
8
2016-07-19T20:51:25.000Z
2020-03-24T04:58:25.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- from setuptools import setup, find_packages readme = open('README.rst').read() history = open('HISTORY.rst').read().replace('.. :changelog:', '') setup( name='pysis', version='0.6.1', description='Toolkit for using USGS Isis in Python.', long_description=readme + '\n\n' + history, author='Trevor Olson', author_email='trevor@heytrevor.com', url='https://github.com/wtolson/pysis', packages=find_packages(exclude=["tests"]), include_package_data=True, license='BSD', zip_safe=False, keywords='pysis', classifiers=[ 'Development Status :: 2 - Pre-Alpha', 'Intended Audience :: Developers', 'License :: OSI Approved :: BSD License', 'Natural Language :: English', "Programming Language :: Python :: 2", 'Programming Language :: Python :: 2.6', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.6' ] )
31.694444
66
0.607362
79537c81f1ed0b2781f20d041444a1222898ba98
2,235
py
Python
gym_minigrid/envs/lavagap.py
floringogianu/gym-minigrid
0403f4dc003c393db8111434e58678ccb023eb8d
[ "BSD-3-Clause" ]
null
null
null
gym_minigrid/envs/lavagap.py
floringogianu/gym-minigrid
0403f4dc003c393db8111434e58678ccb023eb8d
[ "BSD-3-Clause" ]
null
null
null
gym_minigrid/envs/lavagap.py
floringogianu/gym-minigrid
0403f4dc003c393db8111434e58678ccb023eb8d
[ "BSD-3-Clause" ]
null
null
null
from gym_minigrid.minigrid import * from gym_minigrid.register import register class LavaGapEnv(MiniGridEnv): """ Environment with one wall of lava with a small gap to cross through This environment is similar to LavaCrossing but simpler in structure. """ def __init__(self, size, obstacle_type=Lava, seed=None): self.obstacle_type = obstacle_type super().__init__( grid_size=size, max_steps=4*size*size, # Set this to True for maximum speed see_through_walls=False, seed=None ) def _gen_grid(self, width, height): assert width >= 5 and height >= 5 # Create an empty grid self.grid = Grid(width, height) # Generate the surrounding walls self.grid.wall_rect(0, 0, width, height) # Place the agent in the top-left corner self.agent_pos = (1, 1) self.agent_dir = 0 # Place a goal square in the bottom-right corner self.goal_pos = np.array((width - 2, height - 2)) self.grid.set(*self.goal_pos, Goal()) # Generate and store random gap position self.gap_pos = np.array(( self._rand_int(2, width - 2), self._rand_int(1, height - 1), )) # Place the obstacle wall self.grid.vert_wall(self.gap_pos[0], 1, height - 2, self.obstacle_type) # Put a hole in the wall self.grid.set(*self.gap_pos, None) self.mission = ( "avoid the lava and get to the green goal square" if self.obstacle_type == Lava else "find the opening and get to the green goal square" ) class LavaGapS5Env(LavaGapEnv): def __init__(self): super().__init__(size=5) class LavaGapS6Env(LavaGapEnv): def __init__(self): super().__init__(size=6) class LavaGapS7Env(LavaGapEnv): def __init__(self): super().__init__(size=7) register( id='MiniGrid-LavaGapS5-v0', entry_point='gym_minigrid.envs:LavaGapS5Env' ) register( id='MiniGrid-LavaGapS6-v0', entry_point='gym_minigrid.envs:LavaGapS6Env' ) register( id='MiniGrid-LavaGapS7-v0', entry_point='gym_minigrid.envs:LavaGapS7Env' )
27.592593
79
0.624609
79537d8f1a33508e311f0c1c3b9ec001ea8b57cf
13,996
py
Python
django_lazifier/utils/builtin_types/list.py
hotmit/django-lazifier
a2914b7ced955fa91b1961025e1d3ccc7ac3702a
[ "MIT" ]
1
2017-04-27T19:25:34.000Z
2017-04-27T19:25:34.000Z
django_lazifier/utils/builtin_types/list.py
hotmit/django-lazifier
a2914b7ced955fa91b1961025e1d3ccc7ac3702a
[ "MIT" ]
null
null
null
django_lazifier/utils/builtin_types/list.py
hotmit/django-lazifier
a2914b7ced955fa91b1961025e1d3ccc7ac3702a
[ "MIT" ]
null
null
null
from collections import OrderedDict import random from django_lazifier.utils.builtin_types.obj import Obj from django_lazifier.utils.builtin_types.str import Str from django_lazifier.utils.utils import log_exception class Lst: @classmethod def get_random(cls, the_list: list, pop=False, default_value=None): """ Get one item at random in the specified list. :param the_list: :param pop: :param default_value: :return: """ if not the_list: return default_value length = len(the_list) rand_index = random.randint(0, length-1) if pop: return the_list.pop(rand_index) return the_list[rand_index] @classmethod def casefold(cls, str_list): """ Pass each string element through str.casefold() :param str_list: :return: """ return [str(x).casefold() for x in str_list] @classmethod def convert_to_int(cls, str_list): """ Convert a list of string into a list of int :param str_list: ["1", "2.99", "0.11"] => [1, 3, 0] :return: [] """ if not str_list: return [] int_list = [] for s in str_list: val = Str.int_val(s, None) if val is not None: int_list.append(val) return int_list @classmethod def convert_to_str(cls, the_list): """ Convert a list of object into a list of string :return: [] """ if not the_list: return [] result = [] for s in the_list: if s is not None: result.append(s.__str__()) return result @classmethod def strip_string(cls, the_list, chars=None): """ Trim the list of strings. :param the_list: :param chars: :return: """ the_list = Lst.convert_to_str(the_list) return [elm.strip(chars) for elm in the_list] @classmethod def group_by(cls, the_list, group, none_value_label='None', flat=False): """ Group the list by the group specified. eg. Lst.group_by(seats, 'zone.name', 'do not belong to a zone') => { 'zone1': [seat1, seat2] 'zone2': [seat7, seat8] 'do not belong to a zone': [seat3, seat4, seat5] } :param the_list: :param group: {str|def} name of the attribute, support dot notation group_by(persons, 'contact.phone') :param none_value_label: the value of the column specified is None then use this label as the key. :param flat: if true only take the last item for each group and put it in the result dict :rtype: dict """ result = OrderedDict() for row in the_list: if callable(group): col_value = group(row) else: col_value = Obj.getattr(row, group, None) if col_value is None: col_value = none_value_label if not flat and col_value not in result: result[col_value] = [] if flat: result[col_value] = row else: result[col_value].append(row) return result @classmethod def multi_group_by(cls, the_list, none_value_label, group_names: list): """ Provide a drilled down version of the data. eg. Lst.multi_group_by(sensors, _('Unassigned'), ['facility__id', 'zone__id']) return { facility_1 : [ {zone_1 : [ {sensor_1}, {sensor_2} ], {zone_2 : [ {sensor_3}, {sensor_4} ] :type the_list: list|QuerySet|ValuesQuerySet :param the_list: list, QuerySet or ValuesQuerySet :type none_value_label: str|None|object :param none_value_label: the value to use if the column value is None :param group_names: the list of columns to group by :return: List """ if type(group_names) == str: group_names = [group_names] if not isinstance(group_names, list): raise ValueError('The argument group_names must be a list of all the columns you want to group.') group_names = group_names.copy() if group_names: col = group_names.pop(0) result = Lst.group_by(the_list, col, none_value_label) if group_names: for col, rows in result.items(): result[col] = Lst.multi_group_by(rows, none_value_label, group_names) return result return OrderedDict() @classmethod def tuple_multi_group_by(cls, the_list, none_value_label, group_names: list): """ Similarly to multi_group_by but instead of use the value of the specified columns as a key it combine all the keys together in one tuple as key. eg. sensors = Sensor.objects.values(**columns) Lst.tuple_multi_group_by(sensors, 'None', ['facility__id', 'zone__id']) return { (facility_1, zone_1): [ sensor1, sensor2 ], (facility_1, zone_2): [ sensor3 ], (facility_2, zone_3): [ sensor4 ]) :type the_list: list|QuerySet|ValuesQuerySet :param the_list: list, QuerySet or ValuesQuerySet :param none_value_label: the value to use if the column value is None :param group_names: the list of columns to group by :return: List """ if type(group_names) == str: group_names = [group_names] if not isinstance(group_names, list): raise ValueError('The argument group_names must be a list of all the fields you want to group.') group_names = group_names.copy() if group_names: result = OrderedDict() first_grp_val = group_names.pop(0) # pop at the start first_group_by = Lst.group_by(the_list, first_grp_val, none_value_label) if group_names: for col, rows in first_group_by.items(): tuple_list = Lst.tuple_multi_group_by(rows, none_value_label, group_names) for k, t in tuple_list.items(): result[(col,) + k] = t else: for k, v in first_group_by.items(): result[(k,)] = v return result return OrderedDict() @classmethod def all(cls, the_list, func, **kwargs): """ Return True if all is True, else False. Similar to all() but its accept a lambda. :param the_list: :param func: lambda that return bool :param kwargs: any additional params for func :return: """ for i in the_list: if not func(i, **kwargs): return False return True @classmethod def any(cls, the_list, func, **kwargs): """ Return True if any is True, else False. Similar to any() but its accept a lambda. :param the_list: :param func: lambda that return bool :param kwargs: any additional params for func :return: """ for i in the_list: if func(i, **kwargs): return True return False @classmethod def prep_select_optgroups(cls, the_list, opt_groups: list, value_attr, display_attr, none_value_label, sort_result=False): """ Prep list to be use as a choice for the ChoiceField eg. sensor_choices = Lst.prep_select_optgroups(sensors, ['facility.name', 'zone.name'], 'id', 'sensor_name', _('Unassigned Sensors')) :param the_list: ValueQuerySet, QuerySet or list :param opt_groups: the group column/attr name or index :param value_attr: the option value :param display_attr: the option display text :return: """ groups = Lst.tuple_multi_group_by(the_list, none_value_label, opt_groups) if groups: result = [] for tp, arr in groups.items(): og_header = ' > '.join(tp) og_list = [] for row in arr: og_list.append((Obj.getattr(row, value_attr), Obj.getattr(row, display_attr),)) result.append((og_header, tuple(og_list),)) return tuple(result) if sort_result: return sorted(groups) return groups @classmethod def get_unique(cls, the_list, default_value=None, unique_attr=None): """ Get a list of unique values in the list, default_value is [] if default_value is set to None. :param the_list: :param default_value: if none value is [] :param unique_attr: select your own unique attribute (in case when the object is unhashable or you want your own attr) :rtype list """ if default_value is None: default_value = [] if not the_list: return default_value try: # Src: http://stackoverflow.com/questions/480214 # /how-do-you-remove-duplicates-from-a-list-in-python-whilst-preserving-order # Src: http://www.peterbe.com/plog/uniqifiers-benchmark if unique_attr is None: added_list = set() add_to_added_list = added_list.add # this static ref for performance reason return [x for x in the_list if not (x in added_list or add_to_added_list(x))] result = [] existed_item = {} # dict is much faster than list when checking existence of a key for itm in the_list: key = Obj.getattr(itm, unique_attr) if key not in existed_item: result.append(itm) existed_item[key] = None return result except Exception as ex: log_exception(ex) return default_value @classmethod def reverse(cls, the_list: list): """ Reverse the order of the items in the list. :param the_list: :return: """ if not list: return [] # return list(reversed(the_list)) return the_list[::-1] @classmethod def contains_all(cls, the_list, *args): """ Check to see if the_list contains all of the args :param the_list: the haystack :param args: the needle :return: """ return Lst.all(args, lambda x: x in the_list) @classmethod def contains_any(cls, the_list, *args): """ Check to see if the_list contains any of the args :param the_list: the haystack :param args: the needle :return: """ return Lst.any(args, lambda x: x in the_list) @classmethod def unordered_list_equals(cls, lst_a, lst_b): if not isinstance(lst_a, list) or not isinstance(lst_b, list): return False if lst_a == lst_b: return True if len(lst_a) != len(lst_b): return False return set(lst_a) == set(lst_b) @classmethod def str_join(cls, lst, separator=', ', value_attr: str=None): if not lst: return '' str_list = [] for itm in lst: if value_attr is not None: itm = Obj.getattr(itm, value_attr) itm = str(itm) str_list.append(itm) return separator.join(str_list) @classmethod def chunks(cls, lst, chunk_size, pad_with=None): """ Split the list into chunks. eg. [1, 2, 3, 4, 5] (chunk == 2) => result [ [1, 2], [3, 4], [5] ] """ result = [] for i in range(0, len(lst), chunk_size): result.append(lst[i:i + chunk_size]) if result and pad_with is not None and len(result[-1]) != chunk_size: result[-1] = result[-1] + ([pad_with] * (chunk_size - len(result[-1]))) return result @classmethod def get_first(cls, the_list, default_value=None): """ Get the first item of the list. :param the_list: :param default_value: :return: """ if the_list: for itm in the_list: return itm return default_value @classmethod def map_to(cls, the_list, attribs: list, default_value=None, execute_callable=True): """ Go through the list and extract the specified attributes :param the_list: :param attribs: :type default_value: object|dict :param default_value: either a value for all fields default or pass a dict to supply specific default value. :return: List of value lists """ result = [] if not the_list: return result for itm in the_list: row = [] for att in attribs: specific_default = default_value if isinstance(default_value, dict) and att in default_value: specific_default = default_value.get(att, default_value) value = Obj.getattr(itm, att, specific_default, execute_callable=execute_callable) row.append(value) result.append(row) return result
33.88862
127
0.544656
79537e4fbaed0761f44fac8c9b5ffbaaa531a12b
820
py
Python
python/y2019/d01/day01.py
luke-dixon/aoc
94851a5866a1ef29e3ba10098160cba883882683
[ "MIT" ]
1
2021-01-12T20:04:01.000Z
2021-01-12T20:04:01.000Z
python/y2019/d01/day01.py
luke-dixon/aoc
94851a5866a1ef29e3ba10098160cba883882683
[ "MIT" ]
null
null
null
python/y2019/d01/day01.py
luke-dixon/aoc
94851a5866a1ef29e3ba10098160cba883882683
[ "MIT" ]
null
null
null
from typing import List from lib import puzzle def calc_fuel(x: int, recursive: bool = False): fuel_required = x // 3 fuel_required -= 2 if recursive and fuel_required > 0: more_fuel = calc_fuel(fuel_required, recursive=recursive) if more_fuel > 0: fuel_required += more_fuel return fuel_required def part1(data: List[int]) -> int: return sum(calc_fuel(x) for x in data) def part2(data: List[int]) -> int: return sum(calc_fuel(x, recursive=True) for x in data) class Day01(puzzle.Puzzle): year = '2019' day = '1' def get_data(self) -> List[int]: return [int(x) for x in self.input_data.splitlines()] def run(self): print(f'Answer part 1: {part1(self.get_data())}') print(f'Answer part 2: {part2(self.get_data())}')
22.777778
65
0.635366
79537ffea4d5375276bfc704c798294f6a262693
113
py
Python
functions.py
rickyu/zspam
f8fffff197c4ed877eafe59ab2f3b9a6d9d7a203
[ "MIT" ]
null
null
null
functions.py
rickyu/zspam
f8fffff197c4ed877eafe59ab2f3b9a6d9d7a203
[ "MIT" ]
null
null
null
functions.py
rickyu/zspam
f8fffff197c4ed877eafe59ab2f3b9a6d9d7a203
[ "MIT" ]
null
null
null
#encoding:utf-8 from datetime import datetime def user_register_time(mid): return datetime.now().toordinal()
22.6
37
0.778761
79538060073eb0974c1a87c7e7ddf25ac2814e61
159
py
Python
exercises/while_loops.py
gaya19-meet/y2s18-python_review
d867248bc15c4c61fd0ee4535b3c8cb0a6c47eaa
[ "MIT" ]
null
null
null
exercises/while_loops.py
gaya19-meet/y2s18-python_review
d867248bc15c4c61fd0ee4535b3c8cb0a6c47eaa
[ "MIT" ]
null
null
null
exercises/while_loops.py
gaya19-meet/y2s18-python_review
d867248bc15c4c61fd0ee4535b3c8cb0a6c47eaa
[ "MIT" ]
null
null
null
# Write your solution for 1.3 here! counter = 0 sum = 0 while sum < 10000: counter = counter + 1 sum = sum + counter print (sum) print (counter)
7.571429
35
0.622642
795380d85781f0b183dae973c1626b2ffe6f1fea
3,205
py
Python
trello/member.py
dmwyatt/py-trello
2ad38e7da8b2ed2b57cc589c6886bf891a0c6a20
[ "BSD-3-Clause" ]
2
2021-12-02T11:41:02.000Z
2021-12-27T12:01:53.000Z
trello/member.py
dmwyatt/py-trello
2ad38e7da8b2ed2b57cc589c6886bf891a0c6a20
[ "BSD-3-Clause" ]
null
null
null
trello/member.py
dmwyatt/py-trello
2ad38e7da8b2ed2b57cc589c6886bf891a0c6a20
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- from __future__ import with_statement, print_function, absolute_import from trello import TrelloBase from trello.compat import force_str class Member(TrelloBase): """ Class representing a Trello member. """ def __init__(self, client, member_id, full_name=''): super(Member, self).__init__() self.client = client self.id = member_id self.full_name = full_name def __repr__(self): return force_str(u'<Member %s>' % self.id) def fetch(self): """Fetch all attributes for this member""" json_obj = self.client.fetch_json( '/members/' + self.id, query_params={'badges': False}) self.status = json_obj['status'] self.id = json_obj.get('id', '') self.bio = json_obj.get('bio', '') self.url = json_obj.get('url', '') self.username = json_obj['username'] self.full_name = json_obj['fullName'] self.initials = json_obj['initials'] return self def fetch_comments(self): if self.badges['comments'] > 0: comments = self.client.fetch_json( '/members/' + self.id + '/actions', query_params={'filter': 'commentCard'}) return sorted(comments, key=lambda comment: comment['date']) return [] def fetch_cards(self): """ Fetches all the cards for this member """ cards = self.client.fetch_json( '/members/' + self.id + '/cards', query_params={'filter': 'visible'}) return sorted(cards, key=lambda card: card['dateLastActivity']) def fetch_notifications(self, filters = []): """ Fetches all the notifications for this member """ notifications = self.client.fetch_json( '/members/' + self.id + '/notifications', query_params={'filter': ",".join(filters)}) return sorted(notifications, key=lambda notification: notification['date']) def get_boards(self, list_filter): """Get boards using filter :rtype: list of Board """ from trello.board import Board from trello.organization import Organization json_obj = self.client.fetch_json( '/members/' + self.id + '/boards', query_params={'lists': 'none', 'filter': list_filter}) organizations = {obj['idOrganization']: self.client.get_organization(obj['idOrganization']) for obj in json_obj if obj['idOrganization']} return [Board.from_json(trello_client=self.client, organization=organizations.get(obj['idOrganization']), json_obj=obj) for obj in json_obj] @classmethod def from_json(cls, trello_client, json_obj): """ Deserialize the organization json object to a member object :trello_client: the trello client :json_obj: the member json object """ member = Member(trello_client, json_obj['id'], full_name=json_obj['fullName']) member.username = json_obj.get('username', '') member.initials = json_obj.get('initials', '') # cannot close an organization # organization.closed = json_obj['closed'] return member
37.267442
148
0.615913
795381ebf8db57bdd4e29dfeb2a9c96e74f0fa48
6,589
py
Python
_unittests/ut_special/test_rue_paris.py
mohamedelkansouli/Ensae_py
8bc867bd2081c259c793fadfa8be5dcc7bd1400b
[ "MIT" ]
null
null
null
_unittests/ut_special/test_rue_paris.py
mohamedelkansouli/Ensae_py
8bc867bd2081c259c793fadfa8be5dcc7bd1400b
[ "MIT" ]
null
null
null
_unittests/ut_special/test_rue_paris.py
mohamedelkansouli/Ensae_py
8bc867bd2081c259c793fadfa8be5dcc7bd1400b
[ "MIT" ]
null
null
null
""" @brief test log(time=25s) """ import os import sys import unittest from pyquickhelper.loghelper import fLOG from pyquickhelper.pycode import fix_tkinter_issues_virtualenv from pyensae.datasource import download_data try: import src except ImportError: path = os.path.normpath( os.path.abspath( os.path.join( os.path.split(__file__)[0], "..", ".."))) if path not in sys.path: sys.path.append(path) import src from src.ensae_teaching_cs.special.rues_paris import get_data, bellman, kruskal, possible_edges, distance_haversine, graph_degree from src.ensae_teaching_cs.special.rues_paris import eulerien_extension, distance_paris, euler_path, connected_components class TestRueParis (unittest.TestCase): def test_get_data(self): fLOG( __file__, self._testMethodName, OutputPrint=__name__ == "__main__") folder = os.path.join( os.path.abspath( os.path.dirname(__file__)), "temp_rues") if not os.path.exists(folder): os.mkdir(folder) for ext in [".txt", ".zip"]: f = os.path.join(folder, "paris_54000" + ext) if os.path.exists(f): os.remove(f) try: data = get_data(whereTo=folder, fLOG=fLOG, timeout=60) except Exception as e: if "unable to retrieve data" in str(e): return else: raise Exception("*****" + str(e) + "*****") from e fLOG(len(data)) assert len(data) > 0 total = sum(_[-1] for _ in data) fLOG("total length", total) def test_algo(self): fLOG( __file__, self._testMethodName, OutputPrint=__name__ == "__main__") folder = os.path.join( os.path.abspath( os.path.dirname(__file__)), "temp_algo") if not os.path.exists(folder): os.mkdir(folder) edges = get_data(whereTo=folder, fLOG=fLOG) edges = edges[:1000] max_segment = max(e[-1] for e in edges) possibles = possible_edges(edges, max_segment / 8, fLOG=fLOG) init = bellman(edges, fLOG=fLOG, allow=lambda e: e in possibles) fLOG("---") init = bellman( edges, fLOG=fLOG, allow=lambda e: e in possibles, init=init) fLOG("---") added = kruskal(edges, init, fLOG=fLOG) d = graph_degree(edges + added) allow = sorted([k for k, v in d.items() if v % 2 == 1]) fLOG("degrees", allow) allow = set(allow) fLOG("---") init = bellman(edges, fLOG=fLOG, allow=lambda e: e in possibles or e[ 0] in allow or e[1] in allow, init=init) fLOG("---") added = kruskal(edges, init, fLOG=fLOG) d = graph_degree(edges + added) allow = sorted([k for k, v in d.items() if v % 2 == 1]) fLOG("degrees", allow) def test_algo2(self): fLOG( __file__, self._testMethodName, OutputPrint=__name__ == "__main__") folder = os.path.join( os.path.abspath( os.path.dirname(__file__)), "temp_algo2") if not os.path.exists(folder): os.mkdir(folder) edges = get_data(whereTo=folder, fLOG=fLOG) edges = edges[:1000] added = eulerien_extension(edges, fLOG=fLOG, alpha=1 / 8) assert len(added) > 0 fLOG("nb added", len(added)) def test_euler(self): fLOG( __file__, self._testMethodName, OutputPrint=__name__ == "__main__") folder = os.path.join( os.path.abspath( os.path.dirname(__file__)), "temp_rues_euler") if not os.path.exists(folder): os.mkdir(folder) edges = get_data(whereTo=folder, fLOG=fLOG) data = download_data("added.zip", whereTo=folder, fLOG=fLOG) with open(data[0], "r") as f: text = f.read() added_edges = eval(text) path = euler_path(edges, added_edges) fLOG(len(path), len(edges) + len(added_edges)) for p in path[:5]: fLOG(len(p), p) for p in path[-5:]: fLOG(len(p), p) def test_algo_euler4(self): fLOG( __file__, self._testMethodName, OutputPrint=__name__ == "__main__") folder = os.path.join( os.path.abspath( os.path.dirname(__file__)), "temp_algo_euler4") if not os.path.exists(folder): os.mkdir(folder) edges = get_data(whereTo=folder, fLOG=fLOG) edges = edges[:3] vertices = {} for e in edges: for i in range(0, 2): _ = e[i] p = e[i + 3] vertices[_] = p connex = connected_components(edges) v = [v for k, v in connex.items()] mi, ma = min(v), max(v) while mi != ma: edges.append((mi, ma, 2, vertices[mi], vertices[ma], distance_haversine(* (vertices[mi] + vertices[ma])))) connex = connected_components(edges) v = [v for k, v in connex.items()] mi, ma = min(v), max(v) fix_tkinter_issues_virtualenv() import matplotlib.pyplot as plt import networkx as nx plt.figure() G = nx.Graph() for e in edges: a, b = e[:2] G.add_edge(a, b) pos = nx.spring_layout(G) nx.draw(G, pos, node_color='#A0CBE2') plt.savefig(os.path.join(folder, "graph1.png")) plt.close('all') added = eulerien_extension(edges, fLOG=lambda *l: None, distance=distance_paris) for e in added: a, b = e[:2] G.add_edge(a, b) plt.figure() pos = nx.spring_layout(G) graph_degree(edges + added) #labels={ v:"{0}".format(deg[v]) for v in G.nodes() } nx.draw(G, pos, node_color='#A0CBE2' # ,labels=labels ) plt.savefig(os.path.join(folder, "graph2.png")) plt.close('all') path = euler_path(edges, added) alls = edges + added fLOG(len(alls), len(path)) #assert len(alls) == len(path) if __name__ == "__main__": unittest.main()
31.830918
129
0.524814
7953825265a3c45861364ddfb5d30170f362a594
1,890
py
Python
alipay/aop/api/domain/AlipaySocialQuestionnareGrayUpgradeModel.py
antopen/alipay-sdk-python-all
8e51c54409b9452f8d46c7bb10eea7c8f7e8d30c
[ "Apache-2.0" ]
213
2018-08-27T16:49:32.000Z
2021-12-29T04:34:12.000Z
alipay/aop/api/domain/AlipaySocialQuestionnareGrayUpgradeModel.py
antopen/alipay-sdk-python-all
8e51c54409b9452f8d46c7bb10eea7c8f7e8d30c
[ "Apache-2.0" ]
29
2018-09-29T06:43:00.000Z
2021-09-02T03:27:32.000Z
alipay/aop/api/domain/AlipaySocialQuestionnareGrayUpgradeModel.py
antopen/alipay-sdk-python-all
8e51c54409b9452f8d46c7bb10eea7c8f7e8d30c
[ "Apache-2.0" ]
59
2018-08-27T16:59:26.000Z
2022-03-25T10:08:15.000Z
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.constant.ParamConstants import * class AlipaySocialQuestionnareGrayUpgradeModel(object): def __init__(self): self._ext_info = None self._gray_percent = None self._qstn_id = None @property def ext_info(self): return self._ext_info @ext_info.setter def ext_info(self, value): self._ext_info = value @property def gray_percent(self): return self._gray_percent @gray_percent.setter def gray_percent(self, value): self._gray_percent = value @property def qstn_id(self): return self._qstn_id @qstn_id.setter def qstn_id(self, value): self._qstn_id = value def to_alipay_dict(self): params = dict() if self.ext_info: if hasattr(self.ext_info, 'to_alipay_dict'): params['ext_info'] = self.ext_info.to_alipay_dict() else: params['ext_info'] = self.ext_info if self.gray_percent: if hasattr(self.gray_percent, 'to_alipay_dict'): params['gray_percent'] = self.gray_percent.to_alipay_dict() else: params['gray_percent'] = self.gray_percent if self.qstn_id: if hasattr(self.qstn_id, 'to_alipay_dict'): params['qstn_id'] = self.qstn_id.to_alipay_dict() else: params['qstn_id'] = self.qstn_id return params @staticmethod def from_alipay_dict(d): if not d: return None o = AlipaySocialQuestionnareGrayUpgradeModel() if 'ext_info' in d: o.ext_info = d['ext_info'] if 'gray_percent' in d: o.gray_percent = d['gray_percent'] if 'qstn_id' in d: o.qstn_id = d['qstn_id'] return o
26.619718
75
0.58836
7953835e57754eaed5e1936da17007e7cc0bf6a8
129
py
Python
backend/user/urls.py
pennlabs/student-life
aaac7109b9bd2617787cb3aa813e5f736abb24a5
[ "MIT" ]
7
2019-12-25T04:11:24.000Z
2021-10-11T05:00:17.000Z
backend/user/urls.py
pennlabs/student-life
aaac7109b9bd2617787cb3aa813e5f736abb24a5
[ "MIT" ]
41
2019-12-25T18:37:35.000Z
2021-10-10T19:50:21.000Z
backend/user/urls.py
pennlabs/student-life
aaac7109b9bd2617787cb3aa813e5f736abb24a5
[ "MIT" ]
null
null
null
from django.urls import path from user import views urlpatterns = [ path("me/", views.UserView.as_view(), name="user"), ]
14.333333
55
0.682171
7953835effae21ee459a7cf919d6afbd67ec969d
43,798
py
Python
sympy/mpmath/libmp/libelefun.py
benjaminmcdonald/sympy
dc44dcc6d6d5f2d0a7ede35eff5f421ab4b11a3e
[ "BSD-3-Clause" ]
1
2016-07-13T04:30:25.000Z
2016-07-13T04:30:25.000Z
sympy/mpmath/libmp/libelefun.py
jegerjensen/sympy
3a43310f1957a21a6f095fe2801cc05b5268a2c7
[ "BSD-3-Clause" ]
null
null
null
sympy/mpmath/libmp/libelefun.py
jegerjensen/sympy
3a43310f1957a21a6f095fe2801cc05b5268a2c7
[ "BSD-3-Clause" ]
null
null
null
""" This module implements computation of elementary transcendental functions (powers, logarithms, trigonometric and hyperbolic functions, inverse trigonometric and hyperbolic) for real floating-point numbers. For complex and interval implementations of the same functions, see libmpc and libmpi. """ import math from bisect import bisect from backend import MPZ, MPZ_ZERO, MPZ_ONE, MPZ_TWO, MPZ_FIVE, BACKEND from libmpf import ( round_floor, round_ceiling, round_down, round_up, round_nearest, round_fast, ComplexResult, bitcount, bctable, lshift, rshift, giant_steps, sqrt_fixed, from_int, to_int, from_man_exp, to_fixed, to_float, from_float, from_rational, normalize, fzero, fone, fnone, fhalf, finf, fninf, fnan, mpf_cmp, mpf_sign, mpf_abs, mpf_pos, mpf_neg, mpf_add, mpf_sub, mpf_mul, mpf_div, mpf_shift, mpf_rdiv_int, mpf_pow_int, mpf_sqrt, reciprocal_rnd, negative_rnd, mpf_perturb, isqrt_fast ) from libintmath import ifib #------------------------------------------------------------------------------- # Tuning parameters #------------------------------------------------------------------------------- # Cutoff for computing exp from cosh+sinh. This reduces the # number of terms by half, but also requires a square root which # is expensive with the pure-Python square root code. if BACKEND == 'python': EXP_COSH_CUTOFF = 600 else: EXP_COSH_CUTOFF = 400 # Cutoff for using more than 2 series EXP_SERIES_U_CUTOFF = 1500 # Also basically determined by sqrt if BACKEND == 'python': COS_SIN_CACHE_PREC = 400 else: COS_SIN_CACHE_PREC = 200 COS_SIN_CACHE_STEP = 8 cos_sin_cache = {} # Number of integer logarithms to cache (for zeta sums) MAX_LOG_INT_CACHE = 2000 log_int_cache = {} LOG_TAYLOR_PREC = 2500 # Use Taylor series with caching up to this prec LOG_TAYLOR_SHIFT = 9 # Cache log values in steps of size 2^-N log_taylor_cache = {} # prec/size ratio of x for fastest convergence in AGM formula LOG_AGM_MAG_PREC_RATIO = 20 ATAN_TAYLOR_PREC = 3000 # Same as for log ATAN_TAYLOR_SHIFT = 7 # steps of size 2^-N atan_taylor_cache = {} # ~= next power of two + 20 cache_prec_steps = [22,22] for k in xrange(1, bitcount(LOG_TAYLOR_PREC)+1): cache_prec_steps += [min(2**k,LOG_TAYLOR_PREC)+20] * 2**(k-1) #----------------------------------------------------------------------------# # # # Elementary mathematical constants # # # #----------------------------------------------------------------------------# def constant_memo(f): """ Decorator for caching computed values of mathematical constants. This decorator should be applied to a function taking a single argument prec as input and returning a fixed-point value with the given precision. """ f.memo_prec = -1 f.memo_val = None def g(prec, **kwargs): memo_prec = f.memo_prec if prec <= memo_prec: return f.memo_val >> (memo_prec-prec) newprec = int(prec*1.05+10) f.memo_val = f(newprec, **kwargs) f.memo_prec = newprec return f.memo_val >> (newprec-prec) g.__name__ = f.__name__ g.__doc__ = f.__doc__ return g def def_mpf_constant(fixed): """ Create a function that computes the mpf value for a mathematical constant, given a function that computes the fixed-point value. Assumptions: the constant is positive and has magnitude ~= 1; the fixed-point function rounds to floor. """ def f(prec, rnd=round_fast): wp = prec + 20 v = fixed(wp) if rnd in (round_up, round_ceiling): v += 1 return normalize(0, v, -wp, bitcount(v), prec, rnd) f.__doc__ = fixed.__doc__ return f def bsp_acot(q, a, b, hyperbolic): if b - a == 1: a1 = MPZ(2*a + 3) if hyperbolic or a&1: return MPZ_ONE, a1 * q**2, a1 else: return -MPZ_ONE, a1 * q**2, a1 m = (a+b)//2 p1, q1, r1 = bsp_acot(q, a, m, hyperbolic) p2, q2, r2 = bsp_acot(q, m, b, hyperbolic) return q2*p1 + r1*p2, q1*q2, r1*r2 # the acoth(x) series converges like the geometric series for x^2 # N = ceil(p*log(2)/(2*log(x))) def acot_fixed(a, prec, hyperbolic): """ Compute acot(a) or acoth(a) for an integer a with binary splitting; see http://numbers.computation.free.fr/Constants/Algorithms/splitting.html """ N = int(0.35 * prec/math.log(a) + 20) p, q, r = bsp_acot(a, 0,N, hyperbolic) return ((p+q)<<prec)//(q*a) def machin(coefs, prec, hyperbolic=False): """ Evaluate a Machin-like formula, i.e., a linear combination of acot(n) or acoth(n) for specific integer values of n, using fixed- point arithmetic. The input should be a list [(c, n), ...], giving c*acot[h](n) + ... """ extraprec = 10 s = MPZ_ZERO for a, b in coefs: s += MPZ(a) * acot_fixed(MPZ(b), prec+extraprec, hyperbolic) return (s >> extraprec) # Logarithms of integers are needed for various computations involving # logarithms, powers, radix conversion, etc @constant_memo def ln2_fixed(prec): """ Computes ln(2). This is done with a hyperbolic Machin-type formula, with binary splitting at high precision. """ return machin([(18, 26), (-2, 4801), (8, 8749)], prec, True) @constant_memo def ln10_fixed(prec): """ Computes ln(10). This is done with a hyperbolic Machin-type formula. """ return machin([(46, 31), (34, 49), (20, 161)], prec, True) """ For computation of pi, we use the Chudnovsky series: oo ___ k 1 \ (-1) (6 k)! (A + B k) ----- = ) ----------------------- 12 pi /___ 3 3k+3/2 (3 k)! (k!) C k = 0 where A, B, and C are certain integer constants. This series adds roughly 14 digits per term. Note that C^(3/2) can be extracted so that the series contains only rational terms. This makes binary splitting very efficient. The recurrence formulas for the binary splitting were taken from ftp://ftp.gmplib.org/pub/src/gmp-chudnovsky.c Previously, Machin's formula was used at low precision and the AGM iteration was used at high precision. However, the Chudnovsky series is essentially as fast as the Machin formula at low precision and in practice about 3x faster than the AGM at high precision (despite theoretically having a worse asymptotic complexity), so there is no reason not to use it in all cases. """ # Constants in Chudnovsky's series CHUD_A = MPZ(13591409) CHUD_B = MPZ(545140134) CHUD_C = MPZ(640320) CHUD_D = MPZ(12) def bs_chudnovsky(a, b, level, verbose): """ Computes the sum from a to b of the series in the Chudnovsky formula. Returns g, p, q where p/q is the sum as an exact fraction and g is a temporary value used to save work for recursive calls. """ if b-a == 1: g = MPZ((6*b-5)*(2*b-1)*(6*b-1)) p = b**3 * CHUD_C**3 // 24 q = (-1)**b * g * (CHUD_A+CHUD_B*b) else: if verbose and level < 4: print " binary splitting", a, b mid = (a+b)//2 g1, p1, q1 = bs_chudnovsky(a, mid, level+1, verbose) g2, p2, q2 = bs_chudnovsky(mid, b, level+1, verbose) p = p1*p2 g = g1*g2 q = q1*p2 + q2*g1 return g, p, q @constant_memo def pi_fixed(prec, verbose=False, verbose_base=None): """ Compute floor(pi * 2**prec) as a big integer. This is done using Chudnovsky's series (see comments in libelefun.py for details). """ # The Chudnovsky series gives 14.18 digits per term N = int(prec/3.3219280948/14.181647462 + 2) if verbose: print "binary splitting with N =", N g, p, q = bs_chudnovsky(0, N, 0, verbose) sqrtC = isqrt_fast(CHUD_C<<(2*prec)) v = p*CHUD_C*sqrtC//((q+CHUD_A*p)*CHUD_D) return v def degree_fixed(prec): return pi_fixed(prec)//180 def bspe(a, b): """ Sum series for exp(1)-1 between a, b, returning the result as an exact fraction (p, q). """ if b-a == 1: return MPZ_ONE, MPZ(b) m = (a+b)//2 p1, q1 = bspe(a, m) p2, q2 = bspe(m, b) return p1*q2+p2, q1*q2 @constant_memo def e_fixed(prec): """ Computes exp(1). This is done using the ordinary Taylor series for exp, with binary splitting. For a description of the algorithm, see: http://numbers.computation.free.fr/Constants/ Algorithms/splitting.html """ # Slight overestimate of N needed for 1/N! < 2**(-prec) # This could be tightened for large N. N = int(1.1*prec/math.log(prec) + 20) p, q = bspe(0,N) return ((p+q)<<prec)//q @constant_memo def phi_fixed(prec): """ Computes the golden ratio, (1+sqrt(5))/2 """ prec += 10 a = isqrt_fast(MPZ_FIVE<<(2*prec)) + (MPZ_ONE << prec) return a >> 11 mpf_phi = def_mpf_constant(phi_fixed) mpf_pi = def_mpf_constant(pi_fixed) mpf_e = def_mpf_constant(e_fixed) mpf_degree = def_mpf_constant(degree_fixed) mpf_ln2 = def_mpf_constant(ln2_fixed) mpf_ln10 = def_mpf_constant(ln10_fixed) @constant_memo def ln_sqrt2pi_fixed(prec): wp = prec + 10 # ln(sqrt(2*pi)) = ln(2*pi)/2 return to_fixed(mpf_log(mpf_shift(mpf_pi(wp), 1), wp), prec-1) @constant_memo def sqrtpi_fixed(prec): return sqrt_fixed(pi_fixed(prec), prec) mpf_sqrtpi = def_mpf_constant(sqrtpi_fixed) mpf_ln_sqrt2pi = def_mpf_constant(ln_sqrt2pi_fixed) #----------------------------------------------------------------------------# # # # Powers # # # #----------------------------------------------------------------------------# def mpf_pow(s, t, prec, rnd=round_fast): """ Compute s**t. Raises ComplexResult if s is negative and t is fractional. """ ssign, sman, sexp, sbc = s tsign, tman, texp, tbc = t if ssign and texp < 0: raise ComplexResult("negative number raised to a fractional power") if texp >= 0: return mpf_pow_int(s, (-1)**tsign * (tman<<texp), prec, rnd) # s**(n/2) = sqrt(s)**n if texp == -1: if tman == 1: if tsign: return mpf_div(fone, mpf_sqrt(s, prec+10, reciprocal_rnd[rnd]), prec, rnd) return mpf_sqrt(s, prec, rnd) else: if tsign: return mpf_pow_int(mpf_sqrt(s, prec+10, reciprocal_rnd[rnd]), -tman, prec, rnd) return mpf_pow_int(mpf_sqrt(s, prec+10, rnd), tman, prec, rnd) # General formula: s**t = exp(t*log(s)) # TODO: handle rnd direction of the logarithm carefully c = mpf_log(s, prec+10, rnd) return mpf_exp(mpf_mul(t, c), prec, rnd) def int_pow_fixed(y, n, prec): """n-th power of a fixed point number with precision prec Returns the power in the form man, exp, man * 2**exp ~= y**n """ if n == 2: return (y*y), 0 bc = bitcount(y) exp = 0 workprec = 2 * (prec + 4*bitcount(n) + 4) _, pm, pe, pbc = fone while 1: if n & 1: pm = pm*y pe = pe+exp pbc += bc - 2 pbc = pbc + bctable[int(pm >> pbc)] if pbc > workprec: pm = pm >> (pbc-workprec) pe += pbc - workprec pbc = workprec n -= 1 if not n: break y = y*y exp = exp+exp bc = bc + bc - 2 bc = bc + bctable[int(y >> bc)] if bc > workprec: y = y >> (bc-workprec) exp += bc - workprec bc = workprec n = n // 2 return pm, pe # froot(s, n, prec, rnd) computes the real n-th root of a # positive mpf tuple s. # To compute the root we start from a 50-bit estimate for r # generated with ordinary floating-point arithmetic, and then refine # the value to full accuracy using the iteration # 1 / y \ # r = --- | (n-1) * r + ---------- | # n+1 n \ n r_n**(n-1) / # which is simply Newton's method applied to the equation r**n = y. # With giant_steps(start, prec+extra) = [p0,...,pm, prec+extra] # and y = man * 2**-shift one has # (man * 2**exp)**(1/n) = # y**(1/n) * 2**(start-prec/n) * 2**(p0-start) * ... * 2**(prec+extra-pm) * # 2**((exp+shift-(n-1)*prec)/n -extra)) # The last factor is accounted for in the last line of froot. def nthroot_fixed(y, n, prec, exp1): start = 50 try: y1 = rshift(y, prec - n*start) r = MPZ(int(y1**(1.0/n))) except OverflowError: y1 = from_int(y1, start) fn = from_int(n) fn = mpf_rdiv_int(1, fn, start) r = mpf_pow(y1, fn, start) r = to_int(r) extra = 10 extra1 = n prevp = start for p in giant_steps(start, prec+extra): pm, pe = int_pow_fixed(r, n-1, prevp) r2 = rshift(pm, (n-1)*prevp - p - pe - extra1) B = lshift(y, 2*p-prec+extra1)//r2 r = (B + (n-1) * lshift(r, p-prevp))//n prevp = p return r def mpf_nthroot(s, n, prec, rnd=round_fast): """nth-root of a positive number Use the Newton method when faster, otherwise use x**(1/n) """ sign, man, exp, bc = s if sign: raise ComplexResult("nth root of a negative number") if not man: if s == fnan: return fnan if s == fzero: if n > 0: return fzero if n == 0: return fone return finf # Infinity if not n: return fnan if n < 0: return fzero return finf flag_inverse = False if n < 2: if n == 0: return fone if n == 1: return mpf_pos(s, prec, rnd) if n == -1: return mpf_div(fone, s, prec, rnd) # n < 0 rnd = reciprocal_rnd[rnd] flag_inverse = True extra_inverse = 5 prec += extra_inverse n = -n if n > 20 and (n >= 20000 or prec < int(233 + 28.3 * n**0.62)): prec2 = prec + 10 fn = from_int(n) nth = mpf_rdiv_int(1, fn, prec2) r = mpf_pow(s, nth, prec2, rnd) s = normalize(r[0], r[1], r[2], r[3], prec, rnd) if flag_inverse: return mpf_div(fone, s, prec-extra_inverse, rnd) else: return s # Convert to a fixed-point number with prec2 bits. prec2 = prec + 2*n - (prec%n) # a few tests indicate that # for 10 < n < 10**4 a bit more precision is needed if n > 10: prec2 += prec2//10 prec2 = prec2 - prec2%n # Mantissa may have more bits than we need. Trim it down. shift = bc - prec2 # Adjust exponents to make prec2 and exp+shift multiples of n. sign1 = 0 es = exp+shift if es < 0: sign1 = 1 es = -es if sign1: shift += es%n else: shift -= es%n man = rshift(man, shift) extra = 10 exp1 = ((exp+shift-(n-1)*prec2)//n) - extra rnd_shift = 0 if flag_inverse: if rnd == 'u' or rnd == 'c': rnd_shift = 1 else: if rnd == 'd' or rnd == 'f': rnd_shift = 1 man = nthroot_fixed(man+rnd_shift, n, prec2, exp1) s = from_man_exp(man, exp1, prec, rnd) if flag_inverse: return mpf_div(fone, s, prec-extra_inverse, rnd) else: return s def mpf_cbrt(s, prec, rnd=round_fast): """cubic root of a positive number""" return mpf_nthroot(s, 3, prec, rnd) #----------------------------------------------------------------------------# # # # Logarithms # # # #----------------------------------------------------------------------------# def log_int_fixed(n, prec, ln2=None): """ Fast computation of log(n), caching the value for small n, intended for zeta sums. """ if n in log_int_cache: value, vprec = log_int_cache[n] if vprec >= prec: return value >> (vprec - prec) wp = prec + 10 if wp <= LOG_TAYLOR_SHIFT: if ln2 is None: ln2 = ln2_fixed(wp) r = bitcount(n) x = n << (wp-r) v = log_taylor_cached(x, wp) + r*ln2 else: v = to_fixed(mpf_log(from_int(n), wp+5), wp) if n < MAX_LOG_INT_CACHE: log_int_cache[n] = (v, wp) return v >> (wp-prec) def agm_fixed(a, b, prec): """ Fixed-point computation of agm(a,b), assuming a, b both close to unit magnitude. """ i = 0 while 1: anew = (a+b)>>1 if i > 4 and abs(a-anew) < 8: return a b = isqrt_fast(a*b) a = anew i += 1 return a def log_agm(x, prec): """ Fixed-point computation of -log(x) = log(1/x), suitable for large precision. It is required that 0 < x < 1. The algorithm used is the Sasaki-Kanada formula -log(x) = pi/agm(theta2(x)^2,theta3(x)^2). [1] For faster convergence in the theta functions, x should be chosen closer to 0. Guard bits must be added by the caller. HYPOTHESIS: if x = 2^(-n), n bits need to be added to account for the truncation to a fixed-point number, and this is the only significant cancellation error. The number of bits lost to roundoff is small and can be considered constant. [1] Richard P. Brent, "Fast Algorithms for High-Precision Computation of Elementary Functions (extended abstract)", http://wwwmaths.anu.edu.au/~brent/pd/RNC7-Brent.pdf """ x2 = (x*x) >> prec # Compute jtheta2(x)**2 s = a = b = x2 while a: b = (b*x2) >> prec a = (a*b) >> prec s += a s += (MPZ_ONE<<prec) s = (s*s)>>(prec-2) s = (s*isqrt_fast(x<<prec))>>prec # Compute jtheta3(x)**2 t = a = b = x while a: b = (b*x2) >> prec a = (a*b) >> prec t += a t = (MPZ_ONE<<prec) + (t<<1) t = (t*t)>>prec # Final formula p = agm_fixed(s, t, prec) return (pi_fixed(prec) << prec) // p def log_taylor(x, prec, r=0): """ Fixed-point calculation of log(x). It is assumed that x is close enough to 1 for the Taylor series to converge quickly. Convergence can be improved by specifying r > 0 to compute log(x^(1/2^r))*2^r, at the cost of performing r square roots. The caller must provide sufficient guard bits. """ for i in xrange(r): x = isqrt_fast(x<<prec) one = MPZ_ONE << prec v = ((x-one)<<prec)//(x+one) sign = v < 0 if sign: v = -v v2 = (v*v) >> prec v4 = (v2*v2) >> prec s0 = v s1 = v//3 v = (v*v4) >> prec k = 5 while v: s0 += v // k k += 2 s1 += v // k v = (v*v4) >> prec k += 2 s1 = (s1*v2) >> prec s = (s0+s1) << (1+r) if sign: return -s return s def log_taylor_cached(x, prec): """ Fixed-point computation of log(x), assuming x in (0.5, 2) and prec <= LOG_TAYLOR_PREC. """ n = x >> (prec-LOG_TAYLOR_SHIFT) cached_prec = cache_prec_steps[prec] dprec = cached_prec - prec if (n, cached_prec) in log_taylor_cache: a, log_a = log_taylor_cache[n, cached_prec] else: a = n << (cached_prec - LOG_TAYLOR_SHIFT) log_a = log_taylor(a, cached_prec, 8) log_taylor_cache[n, cached_prec] = (a, log_a) a >>= dprec log_a >>= dprec u = ((x - a) << prec) // a v = (u << prec) // ((MPZ_TWO << prec) + u) v2 = (v*v) >> prec v4 = (v2*v2) >> prec s0 = v s1 = v//3 v = (v*v4) >> prec k = 5 while v: s0 += v//k k += 2 s1 += v//k v = (v*v4) >> prec k += 2 s1 = (s1*v2) >> prec s = (s0+s1) << 1 return log_a + s def mpf_log(x, prec, rnd=round_fast): """ Compute the natural logarithm of the mpf value x. If x is negative, ComplexResult is raised. """ sign, man, exp, bc = x #------------------------------------------------------------------ # Handle special values if not man: if x == fzero: return fninf if x == finf: return finf if x == fnan: return fnan if sign: raise ComplexResult("logarithm of a negative number") wp = prec + 20 #------------------------------------------------------------------ # Handle log(2^n) = log(n)*2. # Here we catch the only possible exact value, log(1) = 0 if man == 1: if not exp: return fzero return from_man_exp(exp*ln2_fixed(wp), -wp, prec, rnd) mag = exp+bc abs_mag = abs(mag) #------------------------------------------------------------------ # Handle x = 1+eps, where log(x) ~ x. We need to check for # cancellation when moving to fixed-point math and compensate # by increasing the precision. Note that abs_mag in (0, 1) <=> # 0.5 < x < 2 and x != 1 if abs_mag <= 1: # Calculate t = x-1 to measure distance from 1 in bits tsign = 1-abs_mag if tsign: tman = (MPZ_ONE<<bc) - man else: tman = man - (MPZ_ONE<<(bc-1)) tbc = bitcount(tman) cancellation = bc - tbc if cancellation > wp: t = normalize(tsign, tman, abs_mag-bc, tbc, tbc, 'n') return mpf_perturb(t, tsign, prec, rnd) else: wp += cancellation # TODO: if close enough to 1, we could use Taylor series # even in the AGM precision range, since the Taylor series # converges rapidly #------------------------------------------------------------------ # Another special case: # n*log(2) is a good enough approximation if abs_mag > 10000: if bitcount(abs_mag) > wp: return from_man_exp(exp*ln2_fixed(wp), -wp, prec, rnd) #------------------------------------------------------------------ # General case. # Perform argument reduction using log(x) = log(x*2^n) - n*log(2): # If we are in the Taylor precision range, choose magnitude 0 or 1. # If we are in the AGM precision range, choose magnitude -m for # some large m; benchmarking on one machine showed m = prec/20 to be # optimal between 1000 and 100,000 digits. if wp <= LOG_TAYLOR_PREC: m = log_taylor_cached(lshift(man, wp-bc), wp) if mag: m += mag*ln2_fixed(wp) else: optimal_mag = -wp//LOG_AGM_MAG_PREC_RATIO n = optimal_mag - mag x = mpf_shift(x, n) wp += (-optimal_mag) m = -log_agm(to_fixed(x, wp), wp) m -= n*ln2_fixed(wp) return from_man_exp(m, -wp, prec, rnd) def mpf_log_hypot(a, b, prec, rnd): """ Computes log(sqrt(a^2+b^2)) accurately. """ # If either a or b is inf/nan/0, assume it to be a if not b[1]: a, b = b, a # a is inf/nan/0 if not a[1]: # both are inf/nan/0 if not b[1]: if a == b == fzero: return fninf if fnan in (a, b): return fnan # at least one term is (+/- inf)^2 return finf # only a is inf/nan/0 if a == fzero: # log(sqrt(0+b^2)) = log(|b|) return mpf_log(mpf_abs(b), prec, rnd) if a == fnan: return fnan return finf # Exact a2 = mpf_mul(a,a) b2 = mpf_mul(b,b) extra = 20 # Not exact h2 = mpf_add(a2, b2, prec+extra) cancelled = mpf_add(h2, fnone, 10) mag_cancelled = cancelled[2]+cancelled[3] # Just redo the sum exactly if necessary (could be smarter # and avoid memory allocation when a or b is precisely 1 # and the other is tiny...) if cancelled == fzero or mag_cancelled < -extra//2: h2 = mpf_add(a2, b2, prec+extra-min(a2[2],b2[2])) return mpf_shift(mpf_log(h2, prec, rnd), -1) #---------------------------------------------------------------------- # Inverse tangent # def atan_newton(x, prec): if prec >= 100: r = math.atan((x>>(prec-53))/2.0**53) else: r = math.atan(x/2.0**prec) prevp = 50 r = MPZ(int(r * 2.0**53) >> (53-prevp)) extra_p = 50 for wp in giant_steps(prevp, prec): wp += extra_p r = r << (wp-prevp) cos, sin = cos_sin_fixed(r, wp) tan = (sin << wp) // cos a = ((tan-rshift(x, prec-wp)) << wp) // ((MPZ_ONE<<wp) + ((tan**2)>>wp)) r = r - a prevp = wp return rshift(r, prevp-prec) def atan_taylor_get_cached(n, prec): # Taylor series with caching wins up to huge precisions # To avoid unnecessary precomputation at low precision, we # do it in steps # Round to next power of 2 prec2 = (1<<(bitcount(prec-1))) + 20 dprec = prec2 - prec if (n, prec2) in atan_taylor_cache: a, atan_a = atan_taylor_cache[n, prec2] else: a = n << (prec2 - ATAN_TAYLOR_SHIFT) atan_a = atan_newton(a, prec2) atan_taylor_cache[n, prec2] = (a, atan_a) return (a >> dprec), (atan_a >> dprec) def atan_taylor(x, prec): n = (x >> (prec-ATAN_TAYLOR_SHIFT)) a, atan_a = atan_taylor_get_cached(n, prec) d = x - a s0 = v = (d << prec) // ((a**2 >> prec) + (a*d >> prec) + (MPZ_ONE << prec)) v2 = (v**2 >> prec) v4 = (v2 * v2) >> prec s1 = v//3 v = (v * v4) >> prec k = 5 while v: s0 += v // k k += 2 s1 += v // k v = (v * v4) >> prec k += 2 s1 = (s1 * v2) >> prec s = s0 - s1 return atan_a + s def atan_inf(sign, prec, rnd): if not sign: return mpf_shift(mpf_pi(prec, rnd), -1) return mpf_neg(mpf_shift(mpf_pi(prec, negative_rnd[rnd]), -1)) def mpf_atan(x, prec, rnd=round_fast): sign, man, exp, bc = x if not man: if x == fzero: return fzero if x == finf: return atan_inf(0, prec, rnd) if x == fninf: return atan_inf(1, prec, rnd) return fnan mag = exp + bc # Essentially infinity if mag > prec+20: return atan_inf(sign, prec, rnd) # Essentially ~ x if -mag > prec+20: return mpf_perturb(x, 1-sign, prec, rnd) wp = prec + 30 + abs(mag) # For large x, use atan(x) = pi/2 - atan(1/x) if mag >= 2: x = mpf_rdiv_int(1, x, wp) reciprocal = True else: reciprocal = False t = to_fixed(x, wp) if sign: t = -t if wp < ATAN_TAYLOR_PREC: a = atan_taylor(t, wp) else: a = atan_newton(t, wp) if reciprocal: a = ((pi_fixed(wp)>>1)+1) - a if sign: a = -a return from_man_exp(a, -wp, prec, rnd) # TODO: cleanup the special cases def mpf_atan2(y, x, prec, rnd=round_fast): xsign, xman, xexp, xbc = x ysign, yman, yexp, ybc = y if not yman: if y == fzero and x != fnan: if mpf_sign(x) >= 0: return fzero return mpf_pi(prec, rnd) if y in (finf, fninf): if x in (finf, fninf): return fnan # pi/2 if y == finf: return mpf_shift(mpf_pi(prec, rnd), -1) # -pi/2 return mpf_neg(mpf_shift(mpf_pi(prec, negative_rnd[rnd]), -1)) return fnan if ysign: return mpf_neg(mpf_atan2(mpf_neg(y), x, prec, negative_rnd[rnd])) if not xman: if x == fnan: return fnan if x == finf: return fzero if x == fninf: return mpf_pi(prec, rnd) if y == fzero: return fzero return mpf_shift(mpf_pi(prec, rnd), -1) tquo = mpf_atan(mpf_div(y, x, prec+4), prec+4) if xsign: return mpf_add(mpf_pi(prec+4), tquo, prec, rnd) else: return mpf_pos(tquo, prec, rnd) def mpf_asin(x, prec, rnd=round_fast): sign, man, exp, bc = x if bc+exp > 0 and x not in (fone, fnone): raise ComplexResult("asin(x) is real only for -1 <= x <= 1") # asin(x) = 2*atan(x/(1+sqrt(1-x**2))) wp = prec + 15 a = mpf_mul(x, x) b = mpf_add(fone, mpf_sqrt(mpf_sub(fone, a, wp), wp), wp) c = mpf_div(x, b, wp) return mpf_shift(mpf_atan(c, prec, rnd), 1) def mpf_acos(x, prec, rnd=round_fast): # acos(x) = 2*atan(sqrt(1-x**2)/(1+x)) sign, man, exp, bc = x if bc + exp > 0: if x not in (fone, fnone): raise ComplexResult("acos(x) is real only for -1 <= x <= 1") if x == fnone: return mpf_pi(prec, rnd) wp = prec + 15 a = mpf_mul(x, x) b = mpf_sqrt(mpf_sub(fone, a, wp), wp) c = mpf_div(b, mpf_add(fone, x, wp), wp) return mpf_shift(mpf_atan(c, prec, rnd), 1) def mpf_asinh(x, prec, rnd=round_fast): wp = prec + 20 sign, man, exp, bc = x mag = exp+bc if mag < -8: if mag < -wp: return mpf_perturb(x, 1-sign, prec, rnd) wp += (-mag) # asinh(x) = log(x+sqrt(x**2+1)) # use reflection symmetry to avoid cancellation q = mpf_sqrt(mpf_add(mpf_mul(x, x), fone, wp), wp) q = mpf_add(mpf_abs(x), q, wp) if sign: return mpf_neg(mpf_log(q, prec, negative_rnd[rnd])) else: return mpf_log(q, prec, rnd) def mpf_acosh(x, prec, rnd=round_fast): # acosh(x) = log(x+sqrt(x**2-1)) wp = prec + 15 if mpf_cmp(x, fone) == -1: raise ComplexResult("acosh(x) is real only for x >= 1") q = mpf_sqrt(mpf_add(mpf_mul(x,x), fnone, wp), wp) return mpf_log(mpf_add(x, q, wp), prec, rnd) def mpf_atanh(x, prec, rnd=round_fast): # atanh(x) = log((1+x)/(1-x))/2 sign, man, exp, bc = x if (not man) and exp: if x in (fzero, fnan): return x raise ComplexResult("atanh(x) is real only for -1 <= x <= 1") mag = bc + exp if mag > 0: if mag == 1 and man == 1: return [finf, fninf][sign] raise ComplexResult("atanh(x) is real only for -1 <= x <= 1") wp = prec + 15 if mag < -8: if mag < -wp: return mpf_perturb(x, sign, prec, rnd) wp += (-mag) a = mpf_add(x, fone, wp) b = mpf_sub(fone, x, wp) return mpf_shift(mpf_log(mpf_div(a, b, wp), prec, rnd), -1) def mpf_fibonacci(x, prec, rnd=round_fast): sign, man, exp, bc = x if not man: if x == fninf: return fnan return x # F(2^n) ~= 2^(2^n) size = abs(exp+bc) if exp >= 0: # Exact if size < 10 or size <= bitcount(prec): return from_int(ifib(to_int(x)), prec, rnd) # Use the modified Binet formula wp = prec + size + 20 a = mpf_phi(wp) b = mpf_add(mpf_shift(a, 1), fnone, wp) u = mpf_pow(a, x, wp) v = mpf_cos_pi(x, wp) v = mpf_div(v, u, wp) u = mpf_sub(u, v, wp) u = mpf_div(u, b, prec, rnd) return u #------------------------------------------------------------------------------- # Exponential-type functions #------------------------------------------------------------------------------- def exponential_series(x, prec, type=0): """ Taylor series for cosh/sinh or cos/sin. type = 0 -- returns exp(x) (slightly faster than cosh+sinh) type = 1 -- returns (cosh(x), sinh(x)) type = 2 -- returns (cos(x), sin(x)) """ if x < 0: x = -x sign = 1 else: sign = 0 r = int(0.5*prec**0.5) xmag = bitcount(x) - prec r = max(0, xmag + r) extra = 10 + 2*max(r,-xmag) wp = prec + extra x <<= (extra - r) one = MPZ_ONE << wp alt = (type == 2) if prec < EXP_SERIES_U_CUTOFF: x2 = a = (x*x) >> wp x4 = (x2*x2) >> wp s0 = s1 = MPZ_ZERO k = 2 while a: a //= (k-1)*k; s0 += a; k += 2 a //= (k-1)*k; s1 += a; k += 2 a = (a*x4) >> wp s1 = (x2*s1) >> wp if alt: c = s1 - s0 + one else: c = s1 + s0 + one else: u = int(0.3*prec**0.35) x2 = a = (x*x) >> wp xpowers = [one, x2] for i in xrange(1, u): xpowers.append((xpowers[-1]*x2)>>wp) sums = [MPZ_ZERO] * u k = 2 while a: for i in xrange(u): a //= (k-1)*k if alt and k & 2: sums[i] -= a else: sums[i] += a k += 2 a = (a*xpowers[-1]) >> wp for i in xrange(1, u): sums[i] = (sums[i]*xpowers[i]) >> wp c = sum(sums) + one if type == 0: s = isqrt_fast(c*c - (one<<wp)) if sign: v = c - s else: v = c + s for i in xrange(r): v = (v*v) >> wp return v >> extra else: # Repeatedly apply the double-angle formula # cosh(2*x) = 2*cosh(x)^2 - 1 # cos(2*x) = 2*cos(x)^2 - 1 pshift = wp-1 for i in xrange(r): c = ((c*c) >> pshift) - one # With the abs, this is the same for sinh and sin s = isqrt_fast(abs((one<<wp) - c*c)) if sign: s = -s return (c>>extra), (s>>extra) def exp_basecase(x, prec): """ Compute exp(x) as a fixed-point number. Works for any x, but for speed should have |x| < 1. For an arbitrary number, use exp(x) = exp(x-m*log(2)) * 2^m where m = floor(x/log(2)). """ if prec > EXP_COSH_CUTOFF: return exponential_series(x, prec, 0) r = int(prec**0.5) prec += r s0 = s1 = (MPZ_ONE << prec) k = 2 a = x2 = (x*x) >> prec while a: a //= k; s0 += a; k += 1 a //= k; s1 += a; k += 1 a = (a*x2) >> prec s1 = (s1*x) >> prec s = s0 + s1 u = r while r: s = (s*s) >> prec r -= 1 return s >> u def exp_expneg_basecase(x, prec): """ Computation of exp(x), exp(-x) """ if prec > EXP_COSH_CUTOFF: cosh, sinh = exponential_series(x, prec, 1) return cosh+sinh, cosh-sinh a = exp_basecase(x, prec) b = (MPZ_ONE << (prec+prec)) // a return a, b def cos_sin_basecase(x, prec): """ Compute cos(x), sin(x) as fixed-point numbers, assuming x in [0, pi/2). For an arbitrary number, use x' = x - m*(pi/2) where m = floor(x/(pi/2)) along with quarter-period symmetries. """ if prec > COS_SIN_CACHE_PREC: return exponential_series(x, prec, 2) precs = prec - COS_SIN_CACHE_STEP t = x >> precs n = int(t) if n not in cos_sin_cache: w = t<<(10+COS_SIN_CACHE_PREC-COS_SIN_CACHE_STEP) cos_t, sin_t = exponential_series(w, 10+COS_SIN_CACHE_PREC, 2) cos_sin_cache[n] = (cos_t>>10), (sin_t>>10) cos_t, sin_t = cos_sin_cache[n] offset = COS_SIN_CACHE_PREC - prec cos_t >>= offset sin_t >>= offset x -= t << precs cos = MPZ_ONE << prec sin = x k = 2 a = -((x*x) >> prec) while a: a //= k; cos += a; k += 1; a = (a*x) >> prec a //= k; sin += a; k += 1; a = -((a*x) >> prec) return ((cos*cos_t-sin*sin_t) >> prec), ((sin*cos_t+cos*sin_t) >> prec) def mpf_exp(x, prec, rnd=round_fast): sign, man, exp, bc = x if man: mag = bc + exp wp = prec + 14 if sign: man = -man # TODO: the best cutoff depends on both x and the precision. if prec > 600 and exp >= 0: # Need about log2(exp(n)) ~= 1.45*mag extra precision e = mpf_e(wp+int(1.45*mag)) return mpf_pow_int(e, man<<exp, prec, rnd) if mag < -wp: return mpf_perturb(fone, sign, prec, rnd) # |x| >= 2 if mag > 1: # For large arguments: exp(2^mag*(1+eps)) = # exp(2^mag)*exp(2^mag*eps) = exp(2^mag)*(1 + 2^mag*eps + ...) # so about mag extra bits is required. wpmod = wp + mag offset = exp + wpmod if offset >= 0: t = man << offset else: t = man >> (-offset) lg2 = ln2_fixed(wpmod) n, t = divmod(t, lg2) n = int(n) t >>= mag else: offset = exp + wp if offset >= 0: t = man << offset else: t = man >> (-offset) n = 0 man = exp_basecase(t, wp) return from_man_exp(man, n-wp, prec, rnd) if not exp: return fone if x == fninf: return fzero return x def mpf_cosh_sinh(x, prec, rnd=round_fast, tanh=0): """Simultaneously compute (cosh(x), sinh(x)) for real x""" sign, man, exp, bc = x if (not man) and exp: if tanh: if x == finf: return fone if x == fninf: return fnone return fnan if x == finf: return (finf, finf) if x == fninf: return (finf, fninf) return fnan, fnan mag = exp+bc wp = prec+14 if mag < -4: # Extremely close to 0, sinh(x) ~= x and cosh(x) ~= 1 if mag < -wp: if tanh: return mpf_perturb(x, 1-sign, prec, rnd) cosh = mpf_perturb(fone, 0, prec, rnd) sinh = mpf_perturb(x, sign, prec, rnd) return cosh, sinh # Fix for cancellation when computing sinh wp += (-mag) # Does exp(-2*x) vanish? if mag > 10: if 3*(1<<(mag-1)) > wp: # XXX: rounding if tanh: return mpf_perturb([fone,fnone][sign], 1-sign, prec, rnd) c = s = mpf_shift(mpf_exp(mpf_abs(x), prec, rnd), -1) if sign: s = mpf_neg(s) return c, s # |x| > 1 if mag > 1: wpmod = wp + mag offset = exp + wpmod if offset >= 0: t = man << offset else: t = man >> (-offset) lg2 = ln2_fixed(wpmod) n, t = divmod(t, lg2) n = int(n) t >>= mag else: offset = exp + wp if offset >= 0: t = man << offset else: t = man >> (-offset) n = 0 a, b = exp_expneg_basecase(t, wp) # TODO: optimize division precision cosh = a + (b>>(2*n)) sinh = a - (b>>(2*n)) if sign: sinh = -sinh if tanh: man = (sinh << wp) // cosh return from_man_exp(man, -wp, prec, rnd) else: cosh = from_man_exp(cosh, n-wp-1, prec, rnd) sinh = from_man_exp(sinh, n-wp-1, prec, rnd) return cosh, sinh def mod_pi2(man, exp, mag, wp): # Reduce to standard interval if mag > 0: i = 0 while 1: cancellation_prec = 20 << i wpmod = wp + mag + cancellation_prec pi2 = pi_fixed(wpmod-1) pi4 = pi2 >> 1 offset = wpmod + exp if offset >= 0: t = man << offset else: t = man >> (-offset) n, y = divmod(t, pi2) if y > pi4: small = pi2 - y else: small = y if small >> (wp+mag-10): n = int(n) t = y >> mag wp = wpmod - mag break i += 1 else: wp += (-mag) offset = exp + wp if offset >= 0: t = man << offset else: t = man >> (-offset) n = 0 return t, n, wp def mpf_cos_sin(x, prec, rnd=round_fast, which=0, pi=False): """ which: 0 -- return cos(x), sin(x) 1 -- return cos(x) 2 -- return sin(x) 3 -- return tan(x) if pi=True, compute for pi*x """ sign, man, exp, bc = x if not man: if exp: c, s = fnan, fnan else: c, s = fone, fzero if which == 0: return c, s if which == 1: return c if which == 2: return s if which == 3: return s mag = bc + exp wp = prec + 10 # Extremely small? if mag < 0: if mag < -wp: if pi: x = mpf_mul(x, mpf_pi(wp)) c = mpf_perturb(fone, 1, prec, rnd) s = mpf_perturb(x, 1-sign, prec, rnd) if which == 0: return c, s if which == 1: return c if which == 2: return s if which == 3: return mpf_perturb(x, sign, prec, rnd) if pi: if exp >= -1: if exp == -1: c = fzero s = (fone, fnone)[bool(man & 2) ^ sign] elif exp == 0: c, s = (fnone, fzero) else: c, s = (fone, fzero) if which == 0: return c, s if which == 1: return c if which == 2: return s if which == 3: return mpf_div(s, c, prec, rnd) # Subtract nearest half-integer (= mod by pi/2) n = ((man >> (-exp-2)) + 1) >> 1 man = man - (n << (-exp-1)) mag2 = bitcount(man) + exp wp = prec + 10 - mag2 offset = exp + wp if offset >= 0: t = man << offset else: t = man >> (-offset) t = (t*pi_fixed(wp)) >> wp else: t, n, wp = mod_pi2(man, exp, mag, wp) c, s = cos_sin_basecase(t, wp) m = n & 3 if m == 1: c, s = -s, c elif m == 2: c, s = -c, -s elif m == 3: c, s = s, -c if sign: s = -s if which == 0: c = from_man_exp(c, -wp, prec, rnd) s = from_man_exp(s, -wp, prec, rnd) return c, s if which == 1: return from_man_exp(c, -wp, prec, rnd) if which == 2: return from_man_exp(s, -wp, prec, rnd) if which == 3: return from_rational(s, c, prec, rnd) def mpf_cos(x, prec, rnd=round_fast): return mpf_cos_sin(x, prec, rnd, 1) def mpf_sin(x, prec, rnd=round_fast): return mpf_cos_sin(x, prec, rnd, 2) def mpf_tan(x, prec, rnd=round_fast): return mpf_cos_sin(x, prec, rnd, 3) def mpf_cos_sin_pi(x, prec, rnd=round_fast): return mpf_cos_sin(x, prec, rnd, 0, 1) def mpf_cos_pi(x, prec, rnd=round_fast): return mpf_cos_sin(x, prec, rnd, 1, 1) def mpf_sin_pi(x, prec, rnd=round_fast): return mpf_cos_sin(x, prec, rnd, 2, 1) def mpf_cosh(x, prec, rnd=round_fast): return mpf_cosh_sinh(x, prec, rnd)[0] def mpf_sinh(x, prec, rnd=round_fast): return mpf_cosh_sinh(x, prec, rnd)[1] def mpf_tanh(x, prec, rnd=round_fast): return mpf_cosh_sinh(x, prec, rnd, tanh=1) # Low-overhead fixed-point versions def cos_sin_fixed(x, prec, pi2=None): if pi2 is None: pi2 = pi_fixed(prec-1) n, t = divmod(x, pi2) n = int(n) c, s = cos_sin_basecase(t, prec) m = n & 3 if m == 0: return c, s if m == 1: return -s, c if m == 2: return -c, -s if m == 3: return s, -c def exp_fixed(x, prec, ln2=None): if ln2 is None: ln2 = ln2_fixed(prec) n, t = divmod(x, ln2) n = int(n) v = exp_basecase(t, prec) if n >= 0: return v << n else: return v >> (-n) if BACKEND == 'sage': try: import sage.libs.mpmath.ext_libmp as _lbmp mpf_sqrt = _lbmp.mpf_sqrt mpf_exp = _lbmp.mpf_exp mpf_log = _lbmp.mpf_log mpf_cos = _lbmp.mpf_cos mpf_sin = _lbmp.mpf_sin mpf_pow = _lbmp.mpf_pow exp_fixed = _lbmp.exp_fixed cos_sin_fixed = _lbmp.cos_sin_fixed log_int_fixed = _lbmp.log_int_fixed except (ImportError, AttributeError): print "Warning: Sage imports in libelefun failed"
30.670868
83
0.515161
795383a8f9813d81dd05f4ea27a42f59068dd891
383
py
Python
wagtail/migrations/0009_remove_auto_now_add_from_pagerevision_created_at.py
stevedya/wagtail
52e5abfe62547cdfd90ea7dfeb8bf5a52f16324c
[ "BSD-3-Clause" ]
1
2022-02-09T05:25:30.000Z
2022-02-09T05:25:30.000Z
wagtail/migrations/0009_remove_auto_now_add_from_pagerevision_created_at.py
stevedya/wagtail
52e5abfe62547cdfd90ea7dfeb8bf5a52f16324c
[ "BSD-3-Clause" ]
null
null
null
wagtail/migrations/0009_remove_auto_now_add_from_pagerevision_created_at.py
stevedya/wagtail
52e5abfe62547cdfd90ea7dfeb8bf5a52f16324c
[ "BSD-3-Clause" ]
null
null
null
# -*- coding: utf-8 -*- from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ("wagtailcore", "0008_populate_latest_revision_created_at"), ] operations = [ migrations.AlterField( model_name="pagerevision", name="created_at", field=models.DateTimeField(), ), ]
21.277778
68
0.600522
795383c5fae3be3d56413c08a117c1d36503a16a
6,125
py
Python
ccnpy/Packet.py
mmosko/ccnpy
20d982e2e3845818fde7f3facdc8cbcdff323dbb
[ "Apache-2.0" ]
1
2020-12-23T14:17:25.000Z
2020-12-23T14:17:25.000Z
ccnpy/Packet.py
mmosko/ccnpy
20d982e2e3845818fde7f3facdc8cbcdff323dbb
[ "Apache-2.0" ]
1
2019-07-01T18:19:05.000Z
2019-07-02T05:35:52.000Z
ccnpy/Packet.py
mmosko/ccnpy
20d982e2e3845818fde7f3facdc8cbcdff323dbb
[ "Apache-2.0" ]
null
null
null
# Copyright 2019 Marc Mosko # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import array import hashlib import ccnpy class Packet: @classmethod def create_interest(cls, body, hop_limit): # TODO: Hard-coding the 8 is not good fh = ccnpy.FixedHeader.create_interest(packet_length=8 + len(body), hop_limit=hop_limit) return cls(header=fh, body=body) @classmethod def create_content_object(cls, body): # TODO: Hard-coding the 8 is not good fh = ccnpy.FixedHeader.create_content_object(packet_length=8 + len(body)) return cls(header=fh, body=body) @classmethod def create_signed_interest(cls, body, hop_limit, validation_alg, validation_payload): # TODO: Hard-coding the 8 is not good packet_length = 8 + len(body) + len(validation_alg) + len(validation_payload) fh = ccnpy.FixedHeader.create_interest(packet_length=packet_length, hop_limit=hop_limit) return cls(header=fh, body=body, validation_alg=validation_alg, validation_payload=validation_payload) @classmethod def create_signed_content_object(cls, body, validation_alg, validation_payload): # TODO: Hard-coding the 8 is not good packet_length = 8 + len(body) + len(validation_alg) + len(validation_payload) fh = ccnpy.FixedHeader.create_content_object(packet_length=packet_length) return cls(header=fh, body=body, validation_alg=validation_alg, validation_payload=validation_payload) def __init__(self, header, body, validation_alg=None, validation_payload=None): if not isinstance(header, ccnpy.FixedHeader): raise TypeError("header is not ccnpy.FixedHeader") if not (isinstance(body, ccnpy.Interest) or isinstance(body, ccnpy.ContentObject)): raise TypeError("body is not ccnpy.Interest or ccnpy.ContentObject") if validation_alg is not None and not isinstance(validation_alg, ccnpy.ValidationAlg): raise TypeError("validation_alg must be ccnpy.ValidationAlg") if validation_payload is not None and not isinstance(validation_payload, ccnpy.ValidationPayload): raise TypeError("validation_payload must be ccnpy.ValidationPayload") if (validation_alg is not None and validation_payload is None) or \ (validation_alg is None and validation_payload is not None): raise TypeError("validation_alg and validation_payload must both be None or not None, not mixed") self._header = header self._body = body self._validation_alg = validation_alg self._validation_payload = validation_payload self._wire_format = self.__serialize() def __serialize(self): byte_list = self._header.serialize() byte_list.extend(self._body.serialize()) if self._validation_alg is not None: byte_list.extend(self._validation_alg.serialize()) if self._validation_payload is not None: byte_list.extend(self._validation_payload.serialize()) return array.array("B", byte_list) def __eq__(self, other): return self.__dict__ == other.__dict__ def __repr__(self): return "{Packet: {%r, %r, %r, %r}}" % (self._header, self._body, self._validation_alg, self._validation_payload) def __len__(self): return len(self._wire_format) @classmethod def deserialize(cls, buffer): header = body = val_alg = val_payload = None offset = 0 header = ccnpy.FixedHeader.deserialize(buffer) offset += header.header_length() while offset < len(buffer): tlv = ccnpy.Tlv.deserialize(buffer[offset:]) offset += len(tlv) if tlv.type() == ccnpy.ContentObject.class_type(): assert body is None body = ccnpy.ContentObject.parse(tlv) elif tlv.type() == ccnpy.Interest.class_type(): assert body is None body = ccnpy.Interest.parse(tlv) elif tlv.type() == ccnpy.ValidationAlg.class_type(): assert val_alg is None val_alg = ccnpy.ValidationAlg.parse(tlv) elif tlv.type() == ccnpy.ValidationPayload.class_type(): assert val_alg is not None assert val_payload is None val_payload = ccnpy.ValidationPayload.parse(tlv) else: raise RuntimeError("Unsupported packet TLV type %r" % tlv.type()) return cls(header=header, body=body, validation_alg=val_alg, validation_payload=val_payload) @classmethod def load(cls, filename): with open(filename, 'rb') as infile: return cls.deserialize(array.array("B", infile.read())) def serialize(self): return self._wire_format def save(self, filename): with open(filename, 'wb') as outfile: outfile.write(self.serialize().tobytes()) def header(self): return self._header def body(self): return self._body def validation_alg(self): return self._validation_alg def validation_payload(self): return self._validation_payload def content_object_hash(self): h = hashlib.sha256() h.update(self.body().serialize()) if self.validation_alg() is not None: h.update(self.validation_alg().serialize()) if self.validation_payload() is not None: h.update(self.validation_payload().serialize()) digest = h.digest() tlv = ccnpy.HashValue.create_sha256(array.array("B", digest)) return tlv
39.772727
120
0.670531
795383ee3762bf5346f3509cda4bcc55f6988034
705
py
Python
msgvis/apps/corpus/migrations/0003_auto_20150210_1903.py
hds-lab/textvis-drg
bfb136b6105df84fb6c1c89cc595bf9e9f22c5fe
[ "MIT" ]
10
2015-12-04T07:43:11.000Z
2021-01-23T00:44:56.000Z
msgvis/apps/corpus/migrations/0003_auto_20150210_1903.py
hds-lab/textvis-drg
bfb136b6105df84fb6c1c89cc595bf9e9f22c5fe
[ "MIT" ]
200
2015-02-11T05:41:57.000Z
2015-11-13T03:47:25.000Z
msgvis/apps/corpus/migrations/0003_auto_20150210_1903.py
hds-lab/textvis-drg
bfb136b6105df84fb6c1c89cc595bf9e9f22c5fe
[ "MIT" ]
6
2015-10-02T18:01:09.000Z
2021-01-23T00:44:58.000Z
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('corpus', '0002_auto_20150210_1903'), ] operations = [ migrations.AlterField( model_name='person', name='full_name', field=models.CharField(default=None, max_length=250, null=True, blank=True), preserve_default=True, ), migrations.AlterField( model_name='person', name='username', field=models.CharField(default=None, max_length=150, null=True, blank=True), preserve_default=True, ), ]
26.111111
88
0.6
795384eb087f5d16802dbc960fa5567de8cc2757
9,392
py
Python
src/fiz_lernmodule/word2vec.py
gingergenius/patent-embedding-visualization
6c7d34dd5de097fbaafac9f6e837fcbc233563b5
[ "Apache-2.0" ]
2
2021-04-29T08:53:43.000Z
2022-02-17T11:54:52.000Z
src/fiz_lernmodule/word2vec.py
gingergenius/patent-embedding-visualization
6c7d34dd5de097fbaafac9f6e837fcbc233563b5
[ "Apache-2.0" ]
null
null
null
src/fiz_lernmodule/word2vec.py
gingergenius/patent-embedding-visualization
6c7d34dd5de097fbaafac9f6e837fcbc233563b5
[ "Apache-2.0" ]
1
2019-09-20T08:55:14.000Z
2019-09-20T08:55:14.000Z
""" Used for patent landscaping use-case. """ import os import pandas as pd import tensorflow as tf from sklearn.manifold import TSNE import matplotlib.pyplot as plt from scipy.spatial import distance import seaborn as sns; sns.set() class Word2Vec(object): """ Word2Vec embedding. """ def __init__(self, train_graph, index_to_word, word_to_index, embedding_weights, normed_embedding_weights): """ Args: train_graph (tf.Graph): Graph that contains embeddings. index_to_word (dict): maps from embedding idxs to words. word_to_index (dict): maps from words to embedding idxs. embedding_weights (np.array): embedding weights. normed_embedding_weights (np.array): normalized embedding weights. """ self.train_graph = train_graph self.index_to_word = index_to_word self.word_to_index = word_to_index self.embedding_weights = embedding_weights self.normed_embedding_weights = normed_embedding_weights def visualize_embeddings(self, word, num_words=100): """ Creates a matplotlib plot based on similar words to `word`. Function identifies `num_words` most similar words of `word` in embedding space. Performs a dimensionality reduction with TSNE and displays the words in a plot. Since TNSE uses SGD visualisations might differ even with identical inputs. Args: word (str): reference word. num_words (int): Specifies number of words that is considered. Returns: Nothing, but creates a seaborn plot. """ similar_words = self.find_similar(word, num_words) tsne = TSNE() word1_index = self.word_to_index[word] idxs = [] words = [] similarities = [] # appends the indexes of all similar words for index in range(0, num_words): idxs.append(similar_words[index]['index']) words.append(similar_words[index]['word']) similarities.append(similar_words[index]['distance']) # appends index of `word` itself idxs.append(word1_index) words.append(word) similarities.append(1) embed_tsne = tsne.fit_transform(self.normed_embedding_weights[idxs, :]) fig, ax = plt.subplots(figsize=(14, 14)) data = { "x": embed_tsne[:, 0], "y": embed_tsne[:, 1], "word": words, "sim": similarities } plot_data = pd.DataFrame(data) ax = sns.scatterplot(x="x", y="y", data = plot_data) color = "black" for idx in range(plot_data.shape[0]): if idx == plot_data.shape[0]-1: color = "red" ax.text(plot_data.x[idx]+1, plot_data.y[idx], plot_data.word[idx], horizontalalignment='left', size="large", color=color) def find_similar(self, word, top_k=10): """ Finds the `top_k` most similar words to a reference (cosine distance). Note: method is really slow! Args: word (str): reference word. top_k (int): Specifies how many similar words will be retrieved. Returns: Ordered list of dictionaries. Each dictionary corresponds to a single word. """ distances = {} if word in self.word_to_index: word1_index = self.word_to_index[word] word1_embed = self.embedding_weights[word1_index] #print('Vocabulary size: {}'.format(len(self.embedding_weights))) for index in range(0, len(self.embedding_weights)): if index != word1_index: word2_embed = self.embedding_weights[index] word_dist = distance.cosine(word1_embed, word2_embed) distances[index] = word_dist top_k_similar = sorted(distances.items(), key=lambda x: x[1])[:top_k] similar_words = [] for i in range(0, len(top_k_similar)): similar_word_index = top_k_similar[i][0] similar_word_dist = top_k_similar[i][1] similar_word = self.index_to_word[similar_word_index] similar_words.append( {'word': similar_word, 'index': similar_word_index, 'distance': similar_word_dist}) return similar_words else: print("Couldn't find {}".format(word)) return [] def get_embedding(self, word, normed=True, verbose=False): """ Returns the normalized embedding of a given word. Args: word (str): reference word. Returns: Embedding vector within a numpy array. """ if word in self.word_to_index: word_idx = self.word_to_index[word] else: if (verbose): print("Couldn't find {}. Using UNK instead. If this sounds wrong, consider normalizing text.".format(word)) word_idx = self.word_to_index['UNK'] if normed: return self.normed_embedding_weights[word_idx] else: return self.embedding_weights[word_idx] class Word2VecReader(object): """ This class loads pre-trained word embeddings from Tensorflow checkpoints.""" def __init__(self, src_dir, vocab_size=50000): """ Args: src_dir (str): specifies source directory of data. vocab_size: vocabulary size """ self.src_dir = src_dir if not os.path.exists(self.src_dir): raise Exception('Datapath does not exist:\n "{}"'.format(self.src_dir)) self.model_name = '5.9m' self.vocab_size = vocab_size self.checkpoints_path = os.path.join(self.src_dir, self.model_name, 'checkpoints') self.checkpoints_file = os.path.join(self.checkpoints_path, '{}.ckpt'.format(self.model_name)) self.vocab_dir = os.path.join(self.src_dir, self.model_name, 'vocab') self.vocab_file = os.path.join(self.vocab_dir, 'vocab.csv') self.config_file = os.path.join(self.vocab_dir, 'config.csv') self.train_words_path = os.path.join(self.src_dir, self.model_name, 'train_words.pkl') def load_mappings(self): """ Loads mappings (index word-pairs) from CSV into two dictionaries. Returns: First dictionary maps indexes to words. Second dict maps vice versa. """ print("Load mappings from {}".format(self.vocab_file)) index_to_word = pd.read_csv(self.vocab_file, keep_default_na=False, na_values=[], encoding='latin-1') word_to_index = pd.read_csv(self.vocab_file, index_col='word', keep_default_na=False, na_values=[], encoding='latin-1') word_to_index.columns = ['index'] return index_to_word.to_dict()['word'], word_to_index.to_dict()['index'] def load_model_config(self): """ Load loss-sampling-size and embedding size from config file. Returns: Dictionary with config settings. """ print("Load config from {}".format(self.config_file)) config = pd.read_csv(self.config_file) config.columns = ['name', 'value'] config = config.set_index(config['name'])['value'] return config.to_dict() def create_graph(self, vocab_size, embedding_size): """ Creates a Tensorflow graph. Args: vocab_size: number of words in the vocabulary. embedding_size: dimensionality of the word embedding. Returns: tf-graph, embeddings, normalized embeddings """ train_graph = tf.Graph() n_vocab = vocab_size n_embedding = embedding_size with train_graph.as_default(): # create embedding weight matrix embedding = tf.Variable(tf.random_uniform([n_vocab, n_embedding], minval=-1, maxval=1)) # normalize embeddings norm = tf.sqrt(tf.reduce_sum(tf.square(embedding), 1, keepdims=True)) normalized_embedding = tf.div(embedding, norm) return train_graph, embedding, normalized_embedding def load_word_embeddings(self): """ Loads word embeddings from the checkpoint specified during instantiation. Returns: Pre-trained Word2Vec instance """ index_to_word, word_to_index = self.load_mappings() model_config = self.load_model_config() embedding_size = int(model_config['embedding_size']) train_graph, embedding, normalized_embedding = self.create_graph(len(index_to_word), embedding_size) with tf.Session(graph=train_graph) as sess: saver = tf.train.Saver() saver.restore(sess, tf.train.latest_checkpoint(self.checkpoints_path)) embedding_weights, normed_embedding_weights = sess.run([embedding, normalized_embedding]) return Word2Vec(train_graph, index_to_word, word_to_index, embedding_weights, normed_embedding_weights)
38.024291
133
0.603599
79538500a99cd40a2b82f4832367a7e3706ca3b0
57
py
Python
conn.py
TechNoteGit/pywebview_example
be8268542fff7c3a415b74c7bf7943d82a5d81c1
[ "MIT" ]
null
null
null
conn.py
TechNoteGit/pywebview_example
be8268542fff7c3a415b74c7bf7943d82a5d81c1
[ "MIT" ]
null
null
null
conn.py
TechNoteGit/pywebview_example
be8268542fff7c3a415b74c7bf7943d82a5d81c1
[ "MIT" ]
2
2021-09-11T01:26:30.000Z
2021-11-30T16:24:56.000Z
""" For Global variable """ parent = None child = None
9.5
21
0.631579
795385336d7a2d15af8fba034862c7ccffce9dd8
9,021
py
Python
tensorpack/tfutils/sessinit.py
awesome-archive/tensorpack
55f640f70e19d538e5082a4712241ee966fcb201
[ "Apache-2.0" ]
2
2021-01-31T11:18:49.000Z
2021-02-24T14:42:16.000Z
tensorpack/tfutils/sessinit.py
yangxue0827/tensorpack
e5e54e07bb47f85fc7efe9c78bde3e153ef0d49b
[ "Apache-2.0" ]
null
null
null
tensorpack/tfutils/sessinit.py
yangxue0827/tensorpack
e5e54e07bb47f85fc7efe9c78bde3e153ef0d49b
[ "Apache-2.0" ]
null
null
null
# -*- coding: utf-8 -*- # File: sessinit.py import numpy as np import six import tensorflow as tf from ..utils import logger from .common import get_op_tensor_name from .varmanip import SessionUpdate, get_checkpoint_path, get_savename_from_varname, is_training_name __all__ = ['SessionInit', 'ChainInit', 'SaverRestore', 'SaverRestoreRelaxed', 'DictRestore', 'JustCurrentSession', 'get_model_loader'] class SessionInit(object): """ Base class for utilities to load variables to a (existing) session. """ def init(self, sess): """ Initialize a session Args: sess (tf.Session): the session """ self._setup_graph() self._run_init(sess) def _setup_graph(self): pass def _run_init(self, sess): pass class JustCurrentSession(SessionInit): """ This is a no-op placeholder""" pass class CheckpointReaderAdapter(object): """ An adapter to work around old checkpoint format, where the keys are op names instead of tensor names (with :0). """ def __init__(self, reader): self._reader = reader m = self._reader.get_variable_to_shape_map() self._map = {k if k.endswith(':0') else k + ':0': v for k, v in six.iteritems(m)} def get_variable_to_shape_map(self): return self._map def get_tensor(self, name): if self._reader.has_tensor(name): return self._reader.get_tensor(name) if name in self._map: assert name.endswith(':0'), name name = name[:-2] return self._reader.get_tensor(name) def has_tensor(self, name): return name in self._map # some checkpoint might not have ':0' def get_real_name(self, name): if self._reader.has_tensor(name): return name assert self.has_tensor(name) return name[:-2] class MismatchLogger(object): def __init__(self, exists, nonexists): self._exists = exists self._nonexists = nonexists self._names = [] def add(self, name): self._names.append(get_op_tensor_name(name)[0]) def log(self): if len(self._names): logger.warn("The following variables are in the {}, but not found in the {}: {}".format( self._exists, self._nonexists, ', '.join(self._names))) class SaverRestore(SessionInit): """ Restore a tensorflow checkpoint saved by :class:`tf.train.Saver` or :class:`ModelSaver`. """ def __init__(self, model_path, prefix=None, ignore=[]): """ Args: model_path (str): a model name (model-xxxx) or a ``checkpoint`` file. prefix (str): during restore, add a ``prefix/`` for every variable in this checkpoint. ignore (list[str]): list of tensor names that should be ignored during loading, e.g. learning-rate """ if model_path.endswith('.npy') or model_path.endswith('.npz'): logger.warn("SaverRestore expect a TF checkpoint, but got a model path '{}'.".format(model_path) + " To load from a dict, use 'DictRestore'.") model_path = get_checkpoint_path(model_path) self.path = model_path # attribute used by AutoResumeTrainConfig! self.prefix = prefix self.ignore = [i if i.endswith(':0') else i + ':0' for i in ignore] def _setup_graph(self): dic = self._get_restore_dict() self.saver = tf.train.Saver(var_list=dic, name=str(id(dic))) def _run_init(self, sess): logger.info("Restoring checkpoint from {} ...".format(self.path)) self.saver.restore(sess, self.path) @staticmethod def _read_checkpoint_vars(model_path): """ return a set of strings """ reader = tf.train.NewCheckpointReader(model_path) reader = CheckpointReaderAdapter(reader) # use an adapter to standardize the name ckpt_vars = reader.get_variable_to_shape_map().keys() return reader, set(ckpt_vars) def _match_vars(self, func): reader, chkpt_vars = SaverRestore._read_checkpoint_vars(self.path) graph_vars = tf.global_variables() chkpt_vars_used = set() mismatch = MismatchLogger('graph', 'checkpoint') for v in graph_vars: name = get_savename_from_varname(v.name, varname_prefix=self.prefix) if name in self.ignore and reader.has_tensor(name): logger.info("Variable {} in the graph will not be loaded from the checkpoint!".format(name)) else: if reader.has_tensor(name): func(reader, name, v) chkpt_vars_used.add(name) else: # use tensor name (instead of op name) for logging, to be consistent with the reverse case if not is_training_name(v.name): mismatch.add(v.name) mismatch.log() mismatch = MismatchLogger('checkpoint', 'graph') if len(chkpt_vars_used) < len(chkpt_vars): unused = chkpt_vars - chkpt_vars_used for name in sorted(unused): if not is_training_name(name): mismatch.add(name) mismatch.log() def _get_restore_dict(self): var_dict = {} def f(reader, name, v): name = reader.get_real_name(name) assert name not in var_dict, "Restore conflict: {} and {}".format(v.name, var_dict[name].name) var_dict[name] = v self._match_vars(f) return var_dict class SaverRestoreRelaxed(SaverRestore): """ Same as :class:`SaverRestore`, but has more relaxed constraints. It allows upcasting certain variables, or reshape certain variables when there is a mismatch that can be fixed. Another advantage is that it doesn't add any new ops to the graph. But it is also slower than :class:`SaverRestore`. """ def _run_init(self, sess): logger.info( "Restoring checkpoint from {} ...".format(self.path)) def f(reader, name, v): val = reader.get_tensor(name) SessionUpdate.load_value_to_var(v, val) with sess.as_default(): self._match_vars(f) class DictRestore(SessionInit): """ Restore variables from a dictionary. """ def __init__(self, variable_dict): """ Args: variable_dict (dict): a dict of {name: value} """ assert isinstance(variable_dict, dict), type(variable_dict) # use varname (with :0) for consistency self._prms = {get_op_tensor_name(n)[1]: v for n, v in six.iteritems(variable_dict)} def _run_init(self, sess): variables = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES) variable_names = set([k.name for k in variables]) param_names = set(six.iterkeys(self._prms)) intersect = variable_names & param_names logger.info("Variables to restore from dict: {}".format(', '.join(map(str, intersect)))) mismatch = MismatchLogger('graph', 'dict') for k in sorted(variable_names - param_names): if not is_training_name(k): mismatch.add(k) mismatch.log() mismatch = MismatchLogger('dict', 'graph') for k in sorted(param_names - variable_names): mismatch.add(k) mismatch.log() upd = SessionUpdate(sess, [v for v in variables if v.name in intersect]) logger.info("Restoring {} variables from dict ...".format(len(intersect))) upd.update({name: value for name, value in six.iteritems(self._prms) if name in intersect}) class ChainInit(SessionInit): """ Initialize a session by a list of :class:`SessionInit` instance, executed one by one. This can be useful for, e.g., loading several models from different files to form a composition of models. """ def __init__(self, sess_inits): """ Args: sess_inits (list[SessionInit]): list of :class:`SessionInit` instances. """ self.inits = sess_inits def _setup_graph(self): for i in self.inits: i._setup_graph() def _run_init(self, sess): for i in self.inits: i._run_init(sess) def get_model_loader(filename): """ Get a corresponding model loader by looking at the file name. Returns: SessInit: either a :class:`DictRestore` (if name ends with 'npy/npz') or :class:`SaverRestore` (otherwise). """ assert isinstance(filename, six.string_types), filename if filename.endswith('.npy'): assert tf.gfile.Exists(filename), filename return DictRestore(np.load(filename, encoding='latin1').item()) elif filename.endswith('.npz'): assert tf.gfile.Exists(filename), filename obj = np.load(filename) return DictRestore(dict(obj)) else: return SaverRestore(filename)
34.431298
110
0.618778
795385d37bf562e4cfb8a28c5c03bb672276b768
401
py
Python
sfaira/unit_tests/conftest.py
johnmous/sfaira
c50240a74530e614ab7681bf9c63b04cb815b361
[ "BSD-3-Clause" ]
110
2020-09-08T07:47:15.000Z
2022-03-29T03:33:56.000Z
sfaira/unit_tests/conftest.py
johnmous/sfaira
c50240a74530e614ab7681bf9c63b04cb815b361
[ "BSD-3-Clause" ]
405
2020-09-15T15:05:46.000Z
2022-03-16T14:44:23.000Z
sfaira/unit_tests/conftest.py
johnmous/sfaira
c50240a74530e614ab7681bf9c63b04cb815b361
[ "BSD-3-Clause" ]
20
2021-03-30T15:30:14.000Z
2022-03-07T12:52:58.000Z
from pytest import fixture def pytest_addoption(parser): parser.addoption( "--doi_sfaira_repr", action="store" ) parser.addoption( "--test_data", action="store" ) @fixture() def doi_sfaira_repr(request): return request.config.getoption("--doi_sfaira_repr") @fixture() def test_data(request): return request.config.getoption("--test_data")
17.434783
56
0.653367