max_stars_repo_path
stringlengths
3
269
max_stars_repo_name
stringlengths
4
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.05M
score
float64
0.23
5.13
int_score
int64
0
5
LeetCode/leetcode 691.py
Xi-Plus/OJ-Code
0
12780751
class Solution: def minStickers(self, stickers, target): targetdict = {} for char in target: if char not in targetdict: targetdict[char] = 0 targetdict[char] += 1 pool = [{'cost': 0}] for sticker in stickers: for i in range(len(pool)): print(pool) temp = pool[i].copy() for j in range(1, 16): temp['cost'] += 1 ok = False for char in sticker: if char not in targetdict: continue if char not in temp: temp[char] = 0 temp[char] += 1 if char in targetdict and temp[char] <= targetdict[char]: ok = True if ok: pool.append(temp.copy()) else: break ans = 1e10 for pack in pool: if pack['cost'] >= ans: continue ok = True for char in targetdict: if char not in pack or pack[char] < targetdict[char]: ok = False break if ok: ans = pack['cost'] if ans == 1e10: return -1 return ans if __name__ == "__main__": print(Solution().minStickers(["with", "example", "science"], "thehat")) print(Solution().minStickers(["notice", "possible"], "basicbasic")) # print(Solution().minStickers([ # "control", "heart", "interest", "stream", "sentence", "soil", "wonder", "them", "month", "slip", "table", "miss", "boat", "speak", "figure", "no", "perhaps", "twenty", "throw", "rich", "capital", "save", "method", "store", "meant", "life", "oil", "string", "song", "food", "am", "who", "fat", "if", "put", "path", "come", "grow", "box", "great", "word", "object", "stead", "common", "fresh", "the", "operate", "where", "road", "mean"], "stoodcrease"))
3.453125
3
tests/unit/streaming_hmm/utils.py
cylance/perturbed-sequence-model
4
12780752
import numpy as np import pytest def get_argmax_of_matrix_as_tuple(mat): return np.unravel_index(mat.argmax(), mat.shape)
2.171875
2
client/sdk/python/network/network_pb2_grpc.py
gofortwos/micro
37
12780753
# Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT! """Client and server classes corresponding to protobuf-defined services.""" import grpc from network import network_pb2 as network_dot_network__pb2 class NetworkStub(object): """Network service is usesd to gain visibility into networks """ def __init__(self, channel): """Constructor. Args: channel: A grpc.Channel. """ self.Connect = channel.unary_unary( '/network.Network/Connect', request_serializer=network_dot_network__pb2.ConnectRequest.SerializeToString, response_deserializer=network_dot_network__pb2.ConnectResponse.FromString, ) self.Graph = channel.unary_unary( '/network.Network/Graph', request_serializer=network_dot_network__pb2.GraphRequest.SerializeToString, response_deserializer=network_dot_network__pb2.GraphResponse.FromString, ) self.Nodes = channel.unary_unary( '/network.Network/Nodes', request_serializer=network_dot_network__pb2.NodesRequest.SerializeToString, response_deserializer=network_dot_network__pb2.NodesResponse.FromString, ) self.Routes = channel.unary_unary( '/network.Network/Routes', request_serializer=network_dot_network__pb2.RoutesRequest.SerializeToString, response_deserializer=network_dot_network__pb2.RoutesResponse.FromString, ) self.Services = channel.unary_unary( '/network.Network/Services', request_serializer=network_dot_network__pb2.ServicesRequest.SerializeToString, response_deserializer=network_dot_network__pb2.ServicesResponse.FromString, ) self.Status = channel.unary_unary( '/network.Network/Status', request_serializer=network_dot_network__pb2.StatusRequest.SerializeToString, response_deserializer=network_dot_network__pb2.StatusResponse.FromString, ) class NetworkServicer(object): """Network service is usesd to gain visibility into networks """ def Connect(self, request, context): """Connect to the network """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def Graph(self, request, context): """Returns the entire network graph """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def Nodes(self, request, context): """Returns a list of known nodes in the network """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def Routes(self, request, context): """Returns a list of known routes in the network """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def Services(self, request, context): """Returns a list of known services based on routes """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def Status(self, request, context): """Status returns network status """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def add_NetworkServicer_to_server(servicer, server): rpc_method_handlers = { 'Connect': grpc.unary_unary_rpc_method_handler( servicer.Connect, request_deserializer=network_dot_network__pb2.ConnectRequest.FromString, response_serializer=network_dot_network__pb2.ConnectResponse.SerializeToString, ), 'Graph': grpc.unary_unary_rpc_method_handler( servicer.Graph, request_deserializer=network_dot_network__pb2.GraphRequest.FromString, response_serializer=network_dot_network__pb2.GraphResponse.SerializeToString, ), 'Nodes': grpc.unary_unary_rpc_method_handler( servicer.Nodes, request_deserializer=network_dot_network__pb2.NodesRequest.FromString, response_serializer=network_dot_network__pb2.NodesResponse.SerializeToString, ), 'Routes': grpc.unary_unary_rpc_method_handler( servicer.Routes, request_deserializer=network_dot_network__pb2.RoutesRequest.FromString, response_serializer=network_dot_network__pb2.RoutesResponse.SerializeToString, ), 'Services': grpc.unary_unary_rpc_method_handler( servicer.Services, request_deserializer=network_dot_network__pb2.ServicesRequest.FromString, response_serializer=network_dot_network__pb2.ServicesResponse.SerializeToString, ), 'Status': grpc.unary_unary_rpc_method_handler( servicer.Status, request_deserializer=network_dot_network__pb2.StatusRequest.FromString, response_serializer=network_dot_network__pb2.StatusResponse.SerializeToString, ), } generic_handler = grpc.method_handlers_generic_handler( 'network.Network', rpc_method_handlers) server.add_generic_rpc_handlers((generic_handler,)) # This class is part of an EXPERIMENTAL API. class Network(object): """Network service is usesd to gain visibility into networks """ @staticmethod def Connect(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/network.Network/Connect', network_dot_network__pb2.ConnectRequest.SerializeToString, network_dot_network__pb2.ConnectResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def Graph(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/network.Network/Graph', network_dot_network__pb2.GraphRequest.SerializeToString, network_dot_network__pb2.GraphResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def Nodes(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/network.Network/Nodes', network_dot_network__pb2.NodesRequest.SerializeToString, network_dot_network__pb2.NodesResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def Routes(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/network.Network/Routes', network_dot_network__pb2.RoutesRequest.SerializeToString, network_dot_network__pb2.RoutesResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def Services(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/network.Network/Services', network_dot_network__pb2.ServicesRequest.SerializeToString, network_dot_network__pb2.ServicesResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata) @staticmethod def Status(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/network.Network/Status', network_dot_network__pb2.StatusRequest.SerializeToString, network_dot_network__pb2.StatusResponse.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
2.21875
2
src/steps/step_configure.py
RLogik/phpytex
0
12780754
<gh_stars>0 #!/usr/bin/env python3 # -*- coding: utf-8 -*- # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # IMPORTS # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ from src.local.misc import *; from src.local.system import *; from src.local.typing import *; from src.core.log import *; from src.core.utils import createNewFileName; from src.core.utils import formatPath; from src.core.utils import getAttribute; from src.core.utils import getFilesByPattern; from src.core.utils import lengthOfWhiteSpace; from src.core.utils import readYamlFile; from src.core.utils import restrictDictionary; from src.core.utils import toPythonKeysDict; from src.customtypes.exports import ProjectTree; from src.setup import appconfig; from src.setup.userconfig import setupYamlReader; # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # GLOBAL VARIABLES # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # METHOD: step get config # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ def step(fnameConfig: str): logInfo('READ CONFIG STARTED'); ## get configuration file config = getPhpytexConfig(fnameConfig); ## get main parts of config config_compile = getAttribute(config, 'compile', 'options', expectedtype=dict, default=None) \ or getAttribute(config, 'compile', expectedtype=dict, default={}); config_compile = preProcessCompileConfig({ **restrictDictionary(config, ['ignore']), **config_compile }); config_stamp = getAttribute(config, 'stamp', expectedtype=dict, default={}); config_parameters = getAttribute(config, 'parameters', expectedtype=dict, default={}); ## set app config setCompileConfig(**config_compile); setStampConfig(**toPythonKeysDict(config_stamp)); setParamsConfig(**toPythonKeysDict(config_parameters)); setConfigFilesAndFolders(toPythonKeysDict(config)); logInfo('READ CONFIG COMPLETE'); return; # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # SECONDARY METHODS # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ def getPhpytexConfig(fnameConfig: str) -> Dict[str, Any]: setupYamlReader(); try: if not isinstance(fnameConfig, str) or fnameConfig == '': fnameConfig = getFilesByPattern( path = appconfig.getPathRoot(), filepattern = appconfig.getPatternConfig() )[0]; except: raise Exception('Could not find or read any phpytex configuration files.'); return readYamlFile(fnameConfig); def preProcessCompileConfig(config: Dict[str, Any]) -> Dict[str, Any]: return dict( ignore = getAttribute(config, 'ignore', expectedtype=bool, default=False), legacy = getAttribute(config, 'legacy', expectedtype=bool, default=False), startfile = getAttribute(config, ['root', 'input'], expectedtype=str), outputfile = getAttribute(config, 'output', expectedtype=str, default='main.tex'), debug = getAttribute(config, 'debug', expectedtype=bool, default=False), compile = getAttribute(config, ['compile-latex', 'compile'], expectedtype=bool, default=False), insert_bib = getAttribute(config, 'insert-bib', expectedtype=bool, default=True), comments = getAttribute(config, 'comments', expectedtype=(str,bool), default='auto'), show_tree = getAttribute(config, ['show-structure', 'show-tree'], expectedtype=bool, default=False), max_length = getAttribute(config, 'max-length', expectedtype=int, default=10000), tabs = getAttribute(config, 'tabs', expectedtype=bool, default=False), spaces = getAttribute(config, 'spaces', expectedtype=int, default=4), ## NOTE: Do not force seed to be set if not given. Allow user to decide to NOT seed the rng. seed = getAttribute(config, 'seed', expectedtype=int, default=None), offset = getAttribute(config, 'offset', expectedtype=str, default=''), ); def setCompileConfig( ignore: bool, legacy: bool, startfile: str, outputfile: str, debug: bool, compile: bool, insert_bib: bool, comments: Union[str, bool], show_tree: bool, max_length: int, tabs: bool, spaces: int, seed: Any, offset: str ): root = appconfig.getPathRoot(); appconfig.setOptionLegacy(legacy); appconfig.setOptionIgnore(ignore); appconfig.setOptionDebug(debug); appconfig.setOptionCompileLatex(compile); appconfig.setOptionInsertBib(insert_bib); appconfig.setOptionShowTree(show_tree); if isinstance(comments, str): appconfig.setOptionCommentsAuto(comments in [ 'auto', 'default' ]); appconfig.setOptionCommentsOn(comments in [ 'on', 'default' ] or not comments in [ 'off' ]); else:# elif isinstance(comments, bool): appconfig.setOptionCommentsAuto(False); appconfig.setOptionCommentsOn(comments); if isinstance(seed, int): appconfig.setSeed(seed); appconfig.setOffsetSymbol(offset); appconfig.setMaxLengthOutput(max_length); if tabs: appconfig.setIndentCharacter('\t'); appconfig.setIndentCharacterRe(r'\t'); else: appconfig.setIndentCharacter(' '*spaces); appconfig.setIndentCharacterRe(' '*spaces); indentsymb = appconfig.getIndentCharacter(); if lengthOfWhiteSpace(indentsymb) == 0: raise AttributeError('Indentation symbol cannot be the empty string!'); if legacy: appconfig.setOffsetSymbol(indentsymb); fileStart = formatPath(startfile, root=root, relative=False); fileOutput = formatPath(outputfile, root=root, relative=False, ext_if_empty='.tex'); assert os.path.dirname(fileOutput) == root, 'The output file can only be set to be in the root directory!'; assert not (fileStart == fileOutput), 'The output and start (\'root\'-attribute in config) paths must be different!'; appconfig.setFileStart(fileStart); appconfig.setFileOutput(fileOutput); # file = createNewFileName(dir=root, nameinit='phpytex_transpiled.py', namescheme='phpytex_transpiled_{}.py'); file = 'phpytex_transpiled.py'; appconfig.setFileTranspiled(formatPath(file, root=root, relative=False)); return; def setStampConfig( file: str = '', overwrite: bool = True, options: Dict[str, Any] = dict() ): root = appconfig.getPathRoot(); if not isinstance(file, str) or file == '': file = 'stamp.tex'; file = os.path.relpath(path=file, start=root); if not isinstance(options, dict) or len(options) == 0: appconfig.setWithFileStamp(False); else: appconfig.setWithFileStamp(True); appconfig.setFileStamp(formatPath(file, root=root, relative=False)); appconfig.setOptionOverwriteStamp(overwrite); appconfig.setDictionaryStamp(options); return; def setParamsConfig( file: str = '', overwrite: bool = True, options: Dict[str, Any] = dict(), ): appconfig.setOptionOverwriteParams(overwrite); appconfig.setDictionaryParams(options); root = appconfig.getPathRoot(); modulename = file if isinstance(file, str) else ''; if re.match(r'^[^\.\s]*(\.[^\.\s]*)+$', file): path = re.sub(r'([^\.]+)\.', r'\1/', file) + '.py'; else: logWarn('\033[1mparameters > file\033[0m option must by a python-like import path (relative to the root of the project).'); path = 'parameters.py'; path = os.path.relpath(path, root); modulename = re.sub(r'\/', '.', os.path.splitext(path)[0]); if not isinstance(options, dict) or len(options) == 0: appconfig.setWithFileParamsPy(False); else: appconfig.setWithFileParamsPy(True); appconfig.setImportParamsPy(modulename); appconfig.setFileParamsPy(formatPath(path, root=root, relative=False)); return; def setConfigFilesAndFolders(config: Dict[str, Any]): appconfig.setProjectTree(ProjectTree(**config)); return;
1.570313
2
OpenFOAM-wrapper/beam_solver.py
Lenferd/ANSYS-OpenFOAM
0
12780755
from executor.executor import Executor from argparse import ArgumentParser from configs.mesh import add_mesh_switch_arguments from configs.mesh import SimpleBlockMeshConfig, SimpleBlockMeshArguments from configs.mesh import RailMeshArguments, RailMeshConfig from configs.fragmentation import FragmentationConfig, FragmentationArguments from configs.execution import ExecutionConfig, ExecutionArguments from mesh_generator.simple_generator import SimpleBlockMeshGenerator from mesh_generator.rail_generator import RailMeshGenerator from sys import argv # TODO use subprocess.getoutput() # @brief Beam end load task, only two configurable parameters and two restrictions (3 functions) # @restrictions # 1) Stress is not more than specified value # 2) Deformation is not more than specified value # @criterion # 1) Weight should be minimum class BeamSolver: def __init__(self): self.k_max_deformation = 2.139e-6 self.k_max_stress = 775900 self.k_density = 7850 self.k_mm_to_m = 0.001 # Create default mesh generator config and fragmentation config self.mesh_config = SimpleBlockMeshConfig() self.fragmentation_config = FragmentationConfig() self.execution_config = ExecutionConfig() self.execution_config.execution_folder = "/home/lenferd/OpenFOAM/lenferd-v1906/run/beamEndLoad-20-04-25/" self.execution_config.output_dir = self.execution_config.execution_folder + "out/" self.execution_config.prepare_env_script = "$HOME/prog/OpenFOAM/OpenFOAM-dev/etc/bashrc_modified" def set_plane_sizes(self, height, width): self.mesh_config.length_mm = 1000 self.mesh_config.height_mm = height self.mesh_config.width_mm = width mesh = SimpleBlockMeshGenerator(self.mesh_config, self.fragmentation_config, self.execution_config) mesh.create() mesh.generate() # Deformation not more then def constraint_0(self): deformation_name = "D" # FIXME execution for reproduced constrain. Need to use hash if possible executor = Executor(self.execution_config, self.mesh_config, self.fragmentation_config) executor.run() results = executor.get_results() print("==== D constraint_0") print(results) print(results[deformation_name]) print(results[deformation_name] < self.k_max_deformation) print(results[deformation_name] - self.k_max_deformation) return results[deformation_name] - self.k_max_deformation # Stress not more then def constraint_1(self): stresss_name = "D" executor = Executor(self.execution_config, self.mesh_config, self.fragmentation_config) executor.run() results = executor.get_results() print("==== stress constraint_1") print(results) print(results[stresss_name]) print(results[stresss_name] < self.k_max_stress) print(results[stresss_name] - self.k_max_stress) return results[stresss_name] - self.k_max_stress # Weight (minimum should be) def criterion_0(self): print("==== mass criterion_0") weight = self.k_density * \ self.mesh_config.width_mm * self.k_mm_to_m \ * self.mesh_config.height_mm * self.k_mm_to_m \ * self.mesh_config.length_mm * self.k_mm_to_m print(weight) return weight if __name__ == '__main__': # print("BEAM SOLVER") # print("args: {}".format(argv)) parameters = argv[1] paramList = parameters.split(";") dict = {} for param in paramList: split_result = param.split(":") pair = {split_result[0]: split_result[1]} dict.update(pair) # print(dict) dict["Points"] = dict["Points"].split(",") dict["Points"] = [float(i) for i in dict["Points"]] # print(dict) function = dict["Function"] points = dict["Points"] # Create BeamSolver beamSolver = BeamSolver() # first - height, second - width beamSolver.set_plane_sizes(points[0], points[1]) result = None if function == "constraint.0": result = beamSolver.constraint_0() if function == "constraint.1": result = beamSolver.constraint_1() if function == "criterion.0": result = beamSolver.criterion_0() print("BeamSolver:[{}]".format(result))
2.125
2
apps/tasks/templatetags/taskfilter.py
raiots/CHRDITools
0
12780756
<reponame>raiots/CHRDITools from django import template from datetime import datetime from dateutil.relativedelta import relativedelta register = template.Library() @register.filter(name='quarter_cate') def quarter_cate(value, year_quarter): year_now = datetime.now().strftime('%Y') month = value.deadline.strftime('%m') year = value.deadline.strftime('%Y') month = int(month) # year = int(year) # year_now = int(year) 不知道为什么,如果转整数会把2021和2022认为相同 # print(quarter) req_year = str(year_quarter[1]) quarter = int(year_quarter[0]) # 可能造成性能损失,每次数据库会调出符合“当年”的任务或工作包的全部任务下工作包,并逐个判断 if year == req_year: if quarter == 1 and 1 <= month <= 3: return str(value) + '&#13;&#10;' elif quarter == 2 and 4 <= month <= 6: return str(value) + '&#13;&#10;' elif quarter == 3 and 7 <= month <= 9: return str(value) + '&#13;&#10;' elif quarter == 4 and 10 <= month <= 12: return str(value) + '&#13;&#10;' else: return '' else: return '' @register.filter(name='last_month') def last_month(value): curent_date = datetime.strptime(value, '%Y年%m月') last_date = curent_date - relativedelta(months=+1) last_month = last_date.strftime('%Y/%m') return last_month @register.filter(name='next_month') def next_month(value): curent_date = datetime.strptime(value, '%Y年%m月') next_date = curent_date + relativedelta(months=+1) next_month = next_date.strftime('%Y/%m') return next_month @register.filter(name='this_month') def this_month(value): curent_date = datetime.strptime(value, '%Y年%m月') return curent_date.strftime('%m') @register.filter(name='last_year') def last_year(value): curent_year = value[1] last_year = curent_year - 1 return last_year @register.filter(name='next_year') def next_year(value): curent_year = value[1] next_year = curent_year + 1 return next_year @register.filter(name='this_year') def this_year(value): curent_year = value[1] return curent_year
2.671875
3
tests/test_remix.py
audeering/audresample
2
12780757
from glob import glob from os import path import pytest import audiofile as af import numpy as np import audresample def set_ones(signal, channels): signal[channels, :] = 1 return signal def mixdown(signal): return np.atleast_2d(np.mean(signal, axis=0)) @pytest.mark.parametrize( 'signal, channels, mixdown, upmix, always_copy, expect', [ # empty signal ( np.zeros(0, dtype=np.float32), None, False, None, False, np.zeros((1, 0), dtype=np.float32), ), ( np.zeros((1, 0), dtype=np.float32), None, False, None, False, np.zeros((1, 0), dtype=np.float32), ), ( np.zeros((1, 0), dtype=np.float32), 0, False, None, False, np.zeros((1, 0), dtype=np.float32), ), ( np.zeros((1, 0), dtype=np.float32), 1, False, 'repeat', False, np.zeros((1, 0), dtype=np.float32), ), ( np.zeros((1, 0), dtype=np.float32), 1, False, 'zeros', False, np.zeros((1, 0), dtype=np.float32), ), ( np.zeros((1, 0), dtype=np.float32), [0, 2], False, 'zeros', False, np.zeros((2, 0), dtype=np.float32), ), # single channel ( np.zeros((16000,)), None, False, None, False, np.zeros((1, 16000), dtype=np.float32), ), ( np.zeros((1, 16000), np.float32), None, False, None, False, np.zeros((1, 16000), dtype=np.float32), ), ( np.zeros((1, 16000), np.float32), None, True, None, False, np.zeros((1, 16000), dtype=np.float32), ), ( np.zeros((1, 16000), np.float32), 0, False, None, False, np.zeros((1, 16000), dtype=np.float32), ), ( np.zeros((1, 16000), np.float32), 0, True, None, False, np.zeros((1, 16000), dtype=np.float32), ), ( np.ones((1, 16000), np.float32), 0, True, 'zeros', False, np.ones((1, 16000), dtype=np.float32), ), ( np.ones((1, 16000), np.float32), 1, True, 'repeat', False, np.ones((1, 16000), dtype=np.float32), ), ( np.ones((1, 16000), np.float32), 1, True, 'zeros', False, np.zeros((1, 16000), dtype=np.float32), ), ( np.ones((1, 16000), np.float32), -2, True, 'zeros', False, np.ones((1, 16000), dtype=np.float32), ), ( np.ones((1, 16000), np.float32), [0, 2], False, 'zeros', False, np.concatenate( [ np.ones((1, 16000), dtype=np.float32), np.zeros((1, 16000), dtype=np.float32), ] ), ), ( np.ones((1, 16000), np.float32), [0, 2], True, 'zeros', False, 0.5 * np.ones((1, 16000), dtype=np.float32), ), # multiple channels ( set_ones(np.zeros((4, 16000), np.float32), 2), 2, False, None, False, np.ones((1, 16000), dtype=np.float32), ), ( set_ones(np.zeros((4, 16000), np.float32), -1), -1, False, None, False, np.ones((1, 16000), dtype=np.float32), ), ( set_ones(np.zeros((4, 16000), np.float32), [1, 3]), [1, 3], False, None, False, np.ones((2, 16000), dtype=np.float32), ), ( set_ones(np.zeros((4, 16000), np.float32), [0, 1, 2, 3]), [0, 1, 2, 3], False, None, False, np.ones((4, 16000), dtype=np.float32), ), ( set_ones(np.zeros((4, 16000), np.float32), [0, 1, 2]), range(3), False, None, False, np.ones((3, 16000), dtype=np.float32), ), ( set_ones(np.zeros((3, 16000), np.float32), 0), [1, 0, 0], False, None, False, set_ones(np.zeros((3, 16000), np.float32), [1, 2]), ), ( set_ones(np.zeros((3, 16000), np.float32), 0), [3, 0, 0], False, 'zeros', False, set_ones(np.zeros((3, 16000), np.float32), [1, 2]), ), ( set_ones(np.zeros((3, 16000), np.float32), 0), [3, 0, 0], False, 'repeat', False, np.ones((3, 16000), np.float32), ), ( set_ones(np.zeros((3, 16000), np.float32), 0), [-6, 0, 0], False, 'repeat', False, np.ones((3, 16000), np.float32), ), # multiple channels with mixdown ( audresample.am_fm_synth(16000, 2, 16000), None, True, None, False, mixdown(audresample.am_fm_synth(16000, 2, 16000)), ), ( audresample.am_fm_synth(16000, 3, 16000), [0, 1], True, None, False, mixdown(audresample.am_fm_synth(16000, 2, 16000)), ), # always copy ( np.zeros((1, 16000), dtype=np.float32), None, False, None, True, np.zeros((1, 16000), dtype=np.float32), ), # wrong channel index pytest.param( np.zeros((2, 16000)), 2, False, None, False, None, marks=pytest.mark.xfail(raises=ValueError), ), pytest.param( np.zeros((2, 16000)), [0, 1, 2], False, None, False, None, marks=pytest.mark.xfail(raises=ValueError), ), # wrong input shape pytest.param( np.zeros((16000, 2, 3)), None, False, None, False, None, marks=pytest.mark.xfail(raises=RuntimeError), ), # wrong upmix type pytest.param( np.zeros((2, 16000)), 2, False, 'fancy', False, None, marks=pytest.mark.xfail(raises=ValueError), ), ] ) def test_resample_signal( signal, channels, mixdown, upmix, always_copy, expect, ): result = audresample.remix( signal, channels, mixdown, upmix=upmix, always_copy=always_copy, ) np.testing.assert_equal(result, expect) if signal.size > 0 and\ channels is None and\ not mixdown and\ signal.dtype == np.float32: if always_copy: assert id(signal) != id(result) else: assert id(signal) == id(result)
2.328125
2
notebooks/helpers.py
thomasfrederikhoeck/ml_tooling
7
12780758
<gh_stars>1-10 import numpy as np import re title_map = { "Mr.": "Mr", "Miss.": "Miss", "Mrs.": "Mrs", "Master.": "Master", "Dr.": "Other", "Rev.": "Other", "Major.": "Other", "Col.": "Other", "Mlle.": "Miss", "Lady.": "Other", "Jonkheer.": "Other", "Ms.": "Miss", "Capt.": "Other", "Don.": "Other", "Sir.": "Other", "Countess": "Other", "Mme.": "Mrs", } match = re.compile(r"([A-Z][a-z]*\.)") def binarize_na(series): return np.where(series.isna(), 1, 0) def convert_to_title(series): return series.str.extract(match, expand=False).map(title_map) def create_ticket_letters(series): return ( series.str.extract(r"(.*\s)", expand=False) .str.replace(".", "") .str.replace(" ", "") .str.strip() .fillna("None") ) def consolidate_ticket_letters(series): return series.where(series.isin(["FCC", "PC"]), "Other") def is_missing(series): return series.isna() * 1 def get_cabin_letter(value): if isinstance(value, list): return value[0][0] return "X" def extract_cabin_letter(series): return series.str.split(" ").apply(get_cabin_letter) def get_num_cabins(value): if isinstance(value, list): return len(value) return 0 def extract_num_cabins(series): return series.str.split(" ").apply(get_num_cabins)
2.6875
3
ons_ras_common/ons_rest_exercise.py
ONSdigital/ras-common
1
12780759
<reponame>ONSdigital/ras-common """ Generic Configuration tool for Micro-Service environment discovery License: MIT Copyright (c) 2017 Crown Copyright (Office for National Statistics) ONSCase wraps routines used to access the case service """ class ONSExercise(object): """ This class is designed to take all the work out of accessing the case service. Initially it should be able to validate and log events against the case service and also query the event service for specific combinations of events. (for example to determine case status) """ def __init__(self, env): self._env = env def activate(self): """""" pass def get_by_id(self, exercise_id): """ Recover an exercise by exercise_id :param exercise_id: The id of the exercise in question :return: An exercise record """ exercise = self._env.asyncio.access_endpoint('/collectionexercises/{}'.format(exercise_id)) if not exercise: return 404, {'code': 404, 'text': 'unable to find exercise for this exercise_id'} return 200, {'code': 200, 'case': exercise}
2.40625
2
src/units/_identificator.py
ferrocactus/cellar
7
12780760
<gh_stars>1-10 import json from abc import abstractmethod from functools import reduce import os import numpy as np from scipy.stats import hypergeom from ..log import setup_logger from ..utils.tools import parse from ._unit import Unit this_dir = os.path.dirname(__file__) def join_root(path): return os.path.abspath(os.path.join(this_dir, path)) def _get_dict(path): """ Parameters __________ path: string or array Path to json file. In case a list of paths is provided instead, read them all and merge then into a single dict. Assumes depth two. Returns _______ d: dict Dictionary containing marker information. d = { key: { subkey: [...], ... }, ... } """ # TODO straighten up the spaghetti if isinstance(path, str): with open(path, "r") as f: return json.load(f) else: d = {} for path in path: with open(path, "r") as f: d_part = json.load(f) for key in d_part: if key in d: for subkey in d_part[key]: if subkey in d[key]: # to remove duplicates d[key][subkey] = list(set().union( d[key][subkey], d_part[key][subkey])) else: d[key][subkey] = d_part[key][subkey] else: d[key] = d_part[key] return d class Ide_HyperGeom(Unit): """ Runs hypergeom to find matching populations. Compute for every label in x, the pop in pops where x is most likely to have been drawn from. It is assumed that the dictionary that is passed has two levels of hierarchy of types. First determine the lvl1 type, then the lvl2 subtype. """ def __init__(self, path=join_root('../markers/cell_type_marker.json'), tissue='all'): self.logger = setup_logger("HyperGeom") self.path = path self.tissue = tissue def get(self, x): """ Extended keys are: lvl1_type, lvl1_sv, lvl1_intersec, lvl1_total, lvl2_type, lvl2_sv, lvl2_intersec, lvl2_total type (string): identified type sv (float): survival value from Hypergeometric Test intersec (np.ndarray): array of names that overlap total (int): total number of names in dict[type] Returns the types of cells in x. Args: x (dict): x = { label_1: { outp_names: [name_1, ...], ... }, ... } Returns: (dict): Extends x with new keys (returns copy). """ x = x.copy() lvl2 = _get_dict(self.path) # Construct lvl1 dict by merging all lvl2 dicts lvl1 = {} for pop in lvl2: lvl1[pop] = parse( np.array(reduce(lambda a, b: a+b, lvl2[pop].values())) ) if self.tissue == 'all': self.process_level(x, lvl1, level=1) self.process_level(x, lvl2, level=2) else: self.logger.info( "Running HyperGeom for {0} only.".format(self.tissue)) self.process_tissue(x, tissue=self.tissue, level_dict=lvl2) return x def process_level(self, x, level_dict, level): for key in x: if level > 1 and x[key]['lvl{0}_type'.format(level-1)] == 'None': tp, sv, intersec, total = "None", 1, np.array([]), 0 all_pops = {'svs': np.array([]), 'intersecs': np.array([]), 'lens': np.array([])} else: if level > 1: tp, sv, intersec, total, all_pops = self.find_population( # x[key]['outp_names'], x[key]['lvl{0}_intersec'.format(level-1)], level_dict[x[key]['lvl{0}_type'.format(level-1)]] ) else: tp, sv, intersec, total, all_pops = self.find_population( x[key]['outp_names'], level_dict ) x[key]['lvl{0}_type'.format(level)] = tp x[key]['lvl{0}_sv'.format(level)] = sv x[key]['lvl{0}_intersec'.format(level)] = intersec x[key]['lvl{0}_total'.format(level)] = total x[key]['lvl{0}_all'.format(level)] = all_pops self.logger.info("Finished finding lvl{0} types.".format(level)) def process_tissue(self, x, tissue, level_dict): for key in x: tp, sv, intersec, total, all_pops = self.find_population( x[key]['outp_names'], level_dict[tissue] ) x[key]['lvl1_type'] = "User Defined" x[key]['lvl1_sv'] = 1 x[key]['lvl1_intersec'] = np.array([]) x[key]['lvl1_total'] = 0 x[key]['lvl1_all'] = {} x[key]['lvl2_type'] = tp x[key]['lvl2_sv'] = sv x[key]['lvl2_intersec'] = intersec x[key]['lvl2_total'] = total x[key]['lvl2_all'] = all_pops self.logger.info("Finished finding lvl2 types.") def find_population(self, x, pops): """ See find_populations. Assumes x is a single list. Args: x (np.ndarray): 1D list of names. pops (dict): Dictionary of populations: pops = { type: [name_1, name_2, ...], ... } Returns: (string): population name (float): survival value (np.ndarray): common names (int): total number of names in matched population """ M = sum([len(pops[pop]) for pop in pops]) N = len(x) survival_values = [] intersections = [] lens = [] rsv, rpop, rk = 2, -1, 0 for pop in pops: n = len(pops[pop]) intersec = np.intersect1d(x, pops[pop]) k = len(intersec) sv = hypergeom.sf(k-1, M=M, n=n, N=N) if k > 0 else 1 survival_values.append(sv) intersections.append(intersec) lens.append(len(pops[pop])) if sv <= rsv or (rsv == 2 and k > 0): rsv, rpop, rk = sv, pop, k all_pops = {'svs': np.array(survival_values), 'intersecs': np.array(intersections), 'lens': np.array(lens)} if rk == 0: # in case of no intersection, return -1 return "None", 1, np.array([]), 0, all_pops else: return rpop, rsv, np.intersect1d(x, pops[rpop]), len(pops[rpop]), all_pops
2.53125
3
jass/logic/player.py
gregunz/JassAI
0
12780761
from typing import List, Dict, Optional from jass.agents.agent import Agent from jass.agents.state import PlayCardState, ChooseTrumpState from jass.logic.card import Card, Suit from jass.logic.exceptions import IllegalMoveError from jass.logic.hand import Hand class Player: def __init__(self, name: str, agent: Agent): self.__name: str = name self.__agent: Agent = agent self.__hand: Hand = None @property def hand_cards(self) -> List[Card]: return self.__hand.cards def give(self, hand: Hand) -> None: self.__hand = hand def play(self, trump: Suit, trump_chooser: 'Player', players: List['Player'], trick_cards: Dict['Player', Card], round_tricks: List[Dict['Player', Card]]) -> Card: assert self.__hand is not None assert self == players[0] cards_on_table = [trick_cards[p] for p in players if p in trick_cards] cards_playable = self.__hand.playable_cards(cards_played=cards_on_table, trump=trump) state = PlayCardState( trick_trump=trump, trump_chooser_idx=players.index(trump_chooser), player_hand=self.__hand.cards, playable_cards=cards_playable, trick_history=cards_on_table, round_history=[[trick[p] for p in players] for trick in round_tricks] ) card = self.__agent.play_card(state).card_to_play self.__hand.play(card, cards_played=cards_on_table, trump=trump) return card def choose_trump(self, can_chibre) -> Optional[Suit]: if self.__hand is None: raise IllegalMoveError('Cannot choose trump before having cards') state = ChooseTrumpState(self.__hand.cards, can_chibre=can_chibre) # todo: allow chibre return self.__agent.choose_trump(state).suit def reward(self, points: int, is_last_trick: bool) -> None: self.__agent.trick_end(reward=points, done=is_last_trick) def has_7_diamonds(self) -> bool: return self.__hand.has(Card(7, Suit.diamonds)) def __eq__(self, other: 'Player') -> bool: return self.__name == other.__name def __hash__(self) -> int: return hash(self.__name) def __repr__(self) -> str: return self.__name
2.84375
3
tests/fixtures/abaco.py
SD2E/python-datacatalog
0
12780762
<reponame>SD2E/python-datacatalog<gh_stars>0 import pytest from datacatalog.identifiers import abaco __all__ = ['nonce_id', 'manager_actor_id', 'actor_id', 'exec_id', 'worker_id'] @pytest.fixture(scope='session') def nonce_id(): return abaco.nonceid.generate() @pytest.fixture(scope='session') def manager_actor_id(): return abaco.actorid.generate() @pytest.fixture(scope='session') def actor_id(): return abaco.actorid.generate() @pytest.fixture(scope='session') def exec_id(): return abaco.execid.generate() @pytest.fixture(scope='session') def worker_id(): return abaco.execid.generate()
2.234375
2
next_release_problem/problems.py
mandriv/next-release-problem
0
12780763
<reponame>mandriv/next-release-problem from abc import ABCMeta, abstractmethod from platypus import Problem, Binary, Real, RandomGenerator class NRP_Problem(): __metaclass__ = ABCMeta def __init__(self, requirements, clients, budget_constraint): self.requirements = requirements.copy() self.clients = clients.copy() self.max_budget = self.get_max_budget(budget_constraint) def get_max_budget(self, budget_constraint): sum = 0 for req in self.requirements: sum += req if budget_constraint is None: return sum return sum / budget_constraint def get_requirements_met(self, candidate): requirements_met = [] for i in range(len(candidate)): if candidate[i]: requirements_met.append(i + 1) return requirements_met def get_score(self, candidate): # score is a sum of all customer weighted scores requirements_met = self.get_requirements_met(candidate) score = 0 for requirement_number in requirements_met: for client in self.clients: client_value = client[0] client_requirements = client[1] client_requirement_weight = 0.0 for req in client_requirements: if req[1] == requirement_number: client_requirement_weight = req[0] break score += client_value * client_requirement_weight return score def get_cost(self, candidate): cost = 0; for i in range(len(candidate)): if candidate[i]: cost -= self.requirements[i] return cost @abstractmethod def get_problem_function(self): raise NotImplementedError('Method not implemented') @abstractmethod def generate_problem(self): raise NotImplementedError('Method not implemented') class NRP_MOO(NRP_Problem): def get_problem_function(self, x): score = self.get_score(x[0]) cost = self.get_cost(x[0]) number_of_requirements_met = len(self.get_requirements_met(x[0])) max_budget_constraint = cost - self.max_budget return [score, cost], [number_of_requirements_met, max_budget_constraint] def generate_problem(self): # 1 decision variables, 2 objectives, 2 constraint problem = Problem(1, 2, 2) problem.types[:] = Binary(len(self.requirements)) problem.directions[:] = Problem.MAXIMIZE problem.constraints[0] = "!=0" problem.constraints[1] = "<=0" problem.function = self.get_problem_function return problem class NRP_SOO(NRP_Problem): def __init__(self, requirements, clients, budget_constraint, score_weight, cost_weight): super(NRP_SOO, self).__init__(requirements, clients, budget_constraint) self.score_weight = score_weight self.cost_weight = cost_weight def get_problem_function(self, x): score = self.get_score(x[0]) cost = self.get_cost(x[0]) weighted_score = self.score_weight * score weighted_cost = self.cost_weight * cost fitness = weighted_score + weighted_cost number_of_requirements_met = len(self.get_requirements_met(x[0])) max_budget_constraint = cost - self.max_budget return [fitness], [number_of_requirements_met, max_budget_constraint] def generate_problem(self): # 1 decision variables, 1 objectives, 2 constraints problem = Problem(1, 1, 2) problem.types[:] = Binary(len(self.requirements)) problem.directions[:] = Problem.MAXIMIZE problem.constraints[0] = "!=0" problem.constraints[1] = "<=0" problem.function = self.get_problem_function return problem class NRP_Random(NRP_MOO): def generate_solutions(self): problem = super(NRP_Random, self).generate_problem() random_generator = RandomGenerator() solutions = [] for _ in range(1000): solutions.append(random_generator.generate(problem)) return solutions
2.71875
3
calculator.py
savrus/algory
2
12780764
#!/usr/bin/python import sys all_tokens = dict([ ["_", -1], ["!", 0], ["~", 0], ["^", 1], ["&", 1], ["|", 1], ["**", 2], ["*", 3], ["/", 3], ["%", 3], ["+", 4], ["-", 4], ["&&", 6], ["||", 6], ["==", 7], ["!=", 7], ["<", 7], [">", 7], ["<=", 7], [">=", 7], ["=", 8], ["(", 99], [")", 99]]) unary = set(["!", "~", "_"]) class Token: OPERATOR=0 NUMERIC=1 VARIABLE=2 def __init__(self, kind, token): self.kind = kind self.token = token def __repr__(self): return str(self.token) def make_token(s): if s in all_tokens: return Token(Token.OPERATOR, s) elif s.isdigit(): return Token(Token.NUMERIC, int(s)) elif s.isalpha(): return Token(Token.VARIABLE, s) else: raise Exception("Error: invalid token: '{}'".format(token)) def tokenize(s): tokens = [] e = b = 0 while e < len(s): if s[e] == ' ' or s[e] in all_tokens or s[e:e+2] in all_tokens: if b < e: tokens.append(make_token(s[b:e])) b = e + 1 if s[e:e+2] in all_tokens: tokens.append(make_token(s[e:e+2])) e, b = e + 1, e + 2 elif s[e] in all_tokens: tokens.append(make_token(s[e])) e += 1 if b < len(s): tokens.append(make_token(s[b:])) return tokens def parse(tokens): result = [] stack = [] expectExpr = True for t in tokens: if t.kind == Token.NUMERIC or t.kind == Token.VARIABLE: result.append(t) expectExpr = False else: if t.token == "(": if not expectExpr: raise Exception("Error: expected a binary operator, but got '('") stack.append(t) elif t.token == ")": if expectExpr: raise Exception("Error: expected an expression, but got ')'") while len(stack) > 0 and stack[-1].token != "(": result.append(stack.pop()) if len(stack) == 0 or stack[-1].token != "(": raise Exception("Error: unmatched ')'") stack.pop() expectExpr = False elif t.token in unary: if not expectExpr: raise Exception("Error: expected a binary operator, but got unary operator '{}'". format(t.token)) stack.append(t) elif expectExpr and t.token == "-": stack.append(Token(Token.OPERATOR, "_")) else: if expectExpr: raise Exception("Error: expected an expression, but got binary operator '{}'". format(t.token)) while len(stack) > 0 and all_tokens[stack[-1].token] < all_tokens[t.token]: result.append(stack.pop()) stack.append(t) expectExpr = True while len(stack) > 0 and stack[-1].token != "(": result.append(stack.pop()) if len(stack) > 0: raise Exception("Error: unmatched '('") return result class Calculator: def __init__(self): self.variables = {} def value(self, token): if token.kind == Token.VARIABLE: if token.token not in self.variables: raise Exception("Error: variable '{}' is referenced before assignment".format(token.token)) else: return self.variables[token.token] else: return token.token def execute(self, tokens): stack = [] tmp = {} def append(val): stack.append(Token(Token.NUMERIC, val)) for t in tokens: if t.kind == Token.OPERATOR: if t.token == "=": val = self.value(stack.pop()) v = stack.pop() if v.kind != Token.VARIABLE: raise Exception("Error: left hand of the assignment is not an l-value") tmp[v.token] = val append(val) elif t.token in unary: val = self.value(stack.pop()) if t.token == "!": append(0 if val != 0 else 1) elif t.token == "~": append(~val) elif t.token == "_": append(-val) else: raise Exception("Uknown operator '{}'".format(t.token)) else: rhs = self.value(stack.pop()) lhs = self.value(stack.pop()) if t.token == "+": append(lhs + rhs) elif t.token == "-": append(lhs - rhs) elif t.token == "*": append(lhs * rhs) elif t.token == "/": append(lhs / rhs) elif t.token == "%": append(lhs % rhs) elif t.token == "&": append(lhs & rhs) elif t.token == "|": append(lhs | rhs) elif t.token == "^": append(lhs ^ rhs) elif t.token == "**": append(int(lhs ** rhs)) elif t.token == "&&": append(1 if (lhs != 0 and rhs != 0) else 0) elif t.token == "||": append(0 if (lhs == 0 and rhs == 0) else 1) elif t.token == "==": append(1 if lhs == rhs else 0) elif t.token == "!=": append(0 if lhs == rhs else 1) elif t.token == ">": append(1 if lhs > rhs else 0) elif t.token == "<": append(1 if lhs < rhs else 0) elif t.token == ">=": append(1 if lhs >= rhs else 0) elif t.token == "<=": append(1 if lhs <= rhs else 0) else: raise Exception("Uknown operator '{}'".format(t.token)) else: stack.append(t) if len(stack) > 2: raise Exception("Unfinished expression") self.variables.update(tmp) return self.value(stack[0]) if len(stack) == 1 else 0 if __name__ == "__main__": c = Calculator() while True: try: line = raw_input("> ") tokens = tokenize(line) if len(tokens) > 0: parsed = parse(tokens) result = c.execute(parsed) print result except EOFError: print; break except Exception as e: print e
3.375
3
build/lib/agent/mapping.py
SAEONData/textfile-harvester
0
12780765
mapping = { "ORIGIN": {"key": "XXXXX", "default": "ZZZZZ"}, "REQUEST_ID": {"key": "XXXXX", "default": "ZZZZZ"}, "LANDSAT_SCENE_ID": {"key": "XXXXX", "default": "ZZZZZ"}, "COLLECTION_NUMBER": {"key": "XXXXX", "default": "ZZZZZ"}, "FILE_DATE": {"key": "publicationYear", "default": "2018", 'slice': (0, 4)}, "STATION_ID": {"key": "XXXXX", "default": "ZZZZZ"}, "PROCESSING_SOFTWARE_VERSION": {"key": "XXXXX", "default": "ZZZZZ"}, "DATA_TYPE": {"key": "XXXXX", "default": "ZZZZZ"}, "COLLECTION_CATEGORY": {"key": "XXXXX", "default": "ZZZZZ"}, "ELEVATION_SOURCE": {"key": "XXXXX", "default": "ZZZZZ"}, "OUTPUT_FORMAT": {"key": "XXXXX", "default": "ZZZZZ"}, "SPACECRAFT_ID": {"key": "XXXXX", "default": "ZZZZZ"}, "SENSOR_ID": {"key": "XXXXX", "default": "ZZZZZ"}, "WRS_PATH": {"key": "XXXXX", "default": "ZZZZZ"}, "WRS_ROW": {"key": "XXXXX", "default": "ZZZZZ"}, "NADIR_OFFNADIR": {"key": "XXXXX", "default": "ZZZZZ"}, "TARGET_WRS_PATH": {"key": "XXXXX", "default": "ZZZZZ"}, "TARGET_WRS_ROW": {"key": "XXXXX", "default": "ZZZZZ"}, "DATE_ACQUIRED": {"key": "XXXXX", "default": "ZZZZZ"}, "SCENE_CENTER_TIME": {"key": "XXXXX", "default": "ZZZZZ"}, "CORNER_UL_LAT_PRODUCT": {"key": "XXXXX", "default": "ZZZZZ"}, "CORNER_UL_LON_PRODUCT": {"key": "XXXXX", "default": "ZZZZZ"}, "CORNER_UR_LAT_PRODUCT": {"key": "XXXXX", "default": "ZZZZZ"}, "CORNER_UR_LON_PRODUCT": {"key": "XXXXX", "default": "ZZZZZ"}, "CORNER_LL_LAT_PRODUCT": {"key": "XXXXX", "default": "ZZZZZ"}, "CORNER_LL_LON_PRODUCT": {"key": "XXXXX", "default": "ZZZZZ"}, "CORNER_LR_LAT_PRODUCT": {"key": "XXXXX", "default": "ZZZZZ"}, "CORNER_LR_LON_PRODUCT": {"key": "XXXXX", "default": "ZZZZZ"}, "CORNER_UL_PROJECTION_X_PRODUCT": {"key": "XXXXX", "default": "ZZZZZ"}, "CORNER_UL_PROJECTION_Y_PRODUCT": {"key": "XXXXX", "default": "ZZZZZ"}, "CORNER_UR_PROJECTION_X_PRODUCT": {"key": "XXXXX", "default": "ZZZZZ"}, "CORNER_UR_PROJECTION_Y_PRODUCT": {"key": "XXXXX", "default": "ZZZZZ"}, "CORNER_LL_PROJECTION_X_PRODUCT": {"key": "XXXXX", "default": "ZZZZZ"}, "CORNER_LL_PROJECTION_Y_PRODUCT": {"key": "XXXXX", "default": "ZZZZZ"}, "CORNER_LR_PROJECTION_X_PRODUCT": {"key": "XXXXX", "default": "ZZZZZ"}, "CORNER_LR_PROJECTION_Y_PRODUCT": {"key": "XXXXX", "default": "ZZZZZ"}, "PANCHROMATIC_LINES": {"key": "XXXXX", "default": "ZZZZZ"}, "PANCHROMATIC_SAMPLES": {"key": "XXXXX", "default": "ZZZZZ"}, "REFLECTIVE_LINES": {"key": "XXXXX", "default": "ZZZZZ"}, "REFLECTIVE_SAMPLES": {"key": "XXXXX", "default": "ZZZZZ"}, "FILE_NAME_BAND_1": {"key": "XXXXX", "default": "ZZZZZ"}, "FILE_NAME_BAND_2": {"key": "XXXXX", "default": "ZZZZZ"}, "FILE_NAME_BAND_3": {"key": "XXXXX", "default": "ZZZZZ"}, "FILE_NAME_BAND_4": {"key": "XXXXX", "default": "ZZZZZ"}, "FILE_NAME_BAND_5": {"key": "XXXXX", "default": "ZZZZZ"}, "FILE_NAME_BAND_6": {"key": "XXXXX", "default": "ZZZZZ"}, "FILE_NAME_BAND_7": {"key": "XXXXX", "default": "ZZZZZ"}, "FILE_NAME_BAND_8": {"key": "XXXXX", "default": "ZZZZZ"}, "FILE_NAME_BAND_9": {"key": "XXXXX", "default": "ZZZZZ"}, "FILE_NAME_BAND_QUALITY": {"key": "XXXXX", "default": "ZZZZZ"}, "METADATA_FILE_NAME": {"key": "XXXXX", "default": "ZZZZZ"}, "CPF_NAME": {"key": "XXXXX", "default": "ZZZZZ"}, "BPF_NAME_OLI": {"key": "XXXXX", "default": "ZZZZZ"}, "RLUT_FILE_NAME": {"key": "XXXXX", "default": "ZZZZZ"}, "CLOUD_COVER": {"key": "XXXXX", "default": "ZZZZZ"}, "CLOUD_COVER_LAND": {"key": "XXXXX", "default": "ZZZZZ"}, "IMAGE_QUALITY_OLI": {"key": "XXXXX", "default": "ZZZZZ"}, "ROLL_ANGLE": {"key": "XXXXX", "default": "ZZZZZ"}, "SUN_AZIMUTH": {"key": "XXXXX", "default": "ZZZZZ"}, "SUN_ELEVATION": {"key": "XXXXX", "default": "ZZZZZ"}, "EARTH_SUN_DISTANCE": {"key": "XXXXX", "default": "ZZZZZ"}, "SATURATION_BAND_1": {"key": "XXXXX", "default": "ZZZZZ"}, "SATURATION_BAND_2": {"key": "XXXXX", "default": "ZZZZZ"}, "SATURATION_BAND_3": {"key": "XXXXX", "default": "ZZZZZ"}, "SATURATION_BAND_4": {"key": "XXXXX", "default": "ZZZZZ"}, "SATURATION_BAND_5": {"key": "XXXXX", "default": "ZZZZZ"}, "SATURATION_BAND_6": {"key": "XXXXX", "default": "ZZZZZ"}, "SATURATION_BAND_7": {"key": "XXXXX", "default": "ZZZZZ"}, "SATURATION_BAND_8": {"key": "XXXXX", "default": "ZZZZZ"}, "SATURATION_BAND_9": {"key": "XXXXX", "default": "ZZZZZ"}, "TRUNCATION_OLI": {"key": "XXXXX", "default": "ZZZZZ"}, "RADIANCE_MAXIMUM_BAND_1": {"key": "XXXXX", "default": "ZZZZZ"}, "RADIANCE_MINIMUM_BAND_1": {"key": "XXXXX", "default": "ZZZZZ"}, "RADIANCE_MAXIMUM_BAND_2": {"key": "XXXXX", "default": "ZZZZZ"}, "RADIANCE_MINIMUM_BAND_2": {"key": "XXXXX", "default": "ZZZZZ"}, "RADIANCE_MAXIMUM_BAND_3": {"key": "XXXXX", "default": "ZZZZZ"}, "RADIANCE_MINIMUM_BAND_3": {"key": "XXXXX", "default": "ZZZZZ"}, "RADIANCE_MAXIMUM_BAND_4": {"key": "XXXXX", "default": "ZZZZZ"}, "RADIANCE_MINIMUM_BAND_4": {"key": "XXXXX", "default": "ZZZZZ"}, "RADIANCE_MAXIMUM_BAND_5": {"key": "XXXXX", "default": "ZZZZZ"}, "RADIANCE_MINIMUM_BAND_5": {"key": "XXXXX", "default": "ZZZZZ"}, "RADIANCE_MAXIMUM_BAND_6": {"key": "XXXXX", "default": "ZZZZZ"}, "RADIANCE_MINIMUM_BAND_6": {"key": "XXXXX", "default": "ZZZZZ"}, "RADIANCE_MAXIMUM_BAND_7": {"key": "XXXXX", "default": "ZZZZZ"}, "RADIANCE_MINIMUM_BAND_7": {"key": "XXXXX", "default": "ZZZZZ"}, "RADIANCE_MAXIMUM_BAND_8": {"key": "XXXXX", "default": "ZZZZZ"}, "RADIANCE_MINIMUM_BAND_8": {"key": "XXXXX", "default": "ZZZZZ"}, "RADIANCE_MAXIMUM_BAND_9": {"key": "XXXXX", "default": "ZZZZZ"}, "RADIANCE_MINIMUM_BAND_9": {"key": "XXXXX", "default": "ZZZZZ"}, "REFLECTANCE_MAXIMUM_BAND_1": {"key": "XXXXX", "default": "ZZZZZ"}, "REFLECTANCE_MINIMUM_BAND_1": {"key": "XXXXX", "default": "ZZZZZ"}, "REFLECTANCE_MAXIMUM_BAND_2": {"key": "XXXXX", "default": "ZZZZZ"}, "REFLECTANCE_MINIMUM_BAND_2": {"key": "XXXXX", "default": "ZZZZZ"}, "REFLECTANCE_MAXIMUM_BAND_3": {"key": "XXXXX", "default": "ZZZZZ"}, "REFLECTANCE_MINIMUM_BAND_3": {"key": "XXXXX", "default": "ZZZZZ"}, "REFLECTANCE_MAXIMUM_BAND_4": {"key": "XXXXX", "default": "ZZZZZ"}, "REFLECTANCE_MINIMUM_BAND_4": {"key": "XXXXX", "default": "ZZZZZ"}, "REFLECTANCE_MAXIMUM_BAND_5": {"key": "XXXXX", "default": "ZZZZZ"}, "REFLECTANCE_MINIMUM_BAND_5": {"key": "XXXXX", "default": "ZZZZZ"}, "REFLECTANCE_MAXIMUM_BAND_6": {"key": "XXXXX", "default": "ZZZZZ"}, "REFLECTANCE_MINIMUM_BAND_6": {"key": "XXXXX", "default": "ZZZZZ"}, "REFLECTANCE_MAXIMUM_BAND_7": {"key": "XXXXX", "default": "ZZZZZ"}, "REFLECTANCE_MINIMUM_BAND_7": {"key": "XXXXX", "default": "ZZZZZ"}, "REFLECTANCE_MAXIMUM_BAND_8": {"key": "XXXXX", "default": "ZZZZZ"}, "REFLECTANCE_MINIMUM_BAND_8": {"key": "XXXXX", "default": "ZZZZZ"}, "REFLECTANCE_MAXIMUM_BAND_9": {"key": "XXXXX", "default": "ZZZZZ"}, "REFLECTANCE_MINIMUM_BAND_9": {"key": "XXXXX", "default": "ZZZZZ"}, "QUANTIZE_CAL_MAX_BAND_1": {"key": "XXXXX", "default": "ZZZZZ"}, "QUANTIZE_CAL_MIN_BAND_1": {"key": "XXXXX", "default": "ZZZZZ"}, "QUANTIZE_CAL_MAX_BAND_2": {"key": "XXXXX", "default": "ZZZZZ"}, "QUANTIZE_CAL_MIN_BAND_2": {"key": "XXXXX", "default": "ZZZZZ"}, "QUANTIZE_CAL_MAX_BAND_3": {"key": "XXXXX", "default": "ZZZZZ"}, "QUANTIZE_CAL_MIN_BAND_3": {"key": "XXXXX", "default": "ZZZZZ"}, "QUANTIZE_CAL_MAX_BAND_4": {"key": "XXXXX", "default": "ZZZZZ"}, "QUANTIZE_CAL_MIN_BAND_4": {"key": "XXXXX", "default": "ZZZZZ"}, "QUANTIZE_CAL_MAX_BAND_5": {"key": "XXXXX", "default": "ZZZZZ"}, "QUANTIZE_CAL_MIN_BAND_5": {"key": "XXXXX", "default": "ZZZZZ"}, "QUANTIZE_CAL_MAX_BAND_6": {"key": "XXXXX", "default": "ZZZZZ"}, "QUANTIZE_CAL_MIN_BAND_6": {"key": "XXXXX", "default": "ZZZZZ"}, "QUANTIZE_CAL_MAX_BAND_7": {"key": "XXXXX", "default": "ZZZZZ"}, "QUANTIZE_CAL_MIN_BAND_7": {"key": "XXXXX", "default": "ZZZZZ"}, "QUANTIZE_CAL_MAX_BAND_8": {"key": "XXXXX", "default": "ZZZZZ"}, "QUANTIZE_CAL_MIN_BAND_8": {"key": "XXXXX", "default": "ZZZZZ"}, "QUANTIZE_CAL_MAX_BAND_9": {"key": "XXXXX", "default": "ZZZZZ"}, "QUANTIZE_CAL_MIN_BAND_9": {"key": "XXXXX", "default": "ZZZZZ"}, "RADIANCE_MULT_BAND_1": {"key": "XXXXX", "default": "ZZZZZ"}, "RADIANCE_MULT_BAND_2": {"key": "XXXXX", "default": "ZZZZZ"}, "RADIANCE_MULT_BAND_3": {"key": "XXXXX", "default": "ZZZZZ"}, "RADIANCE_MULT_BAND_4": {"key": "XXXXX", "default": "ZZZZZ"}, "RADIANCE_MULT_BAND_5": {"key": "XXXXX", "default": "ZZZZZ"}, "RADIANCE_MULT_BAND_6": {"key": "XXXXX", "default": "ZZZZZ"}, "RADIANCE_MULT_BAND_7": {"key": "XXXXX", "default": "ZZZZZ"}, "RADIANCE_MULT_BAND_8": {"key": "XXXXX", "default": "ZZZZZ"}, "RADIANCE_MULT_BAND_9": {"key": "XXXXX", "default": "ZZZZZ"}, "RADIANCE_ADD_BAND_1": {"key": "XXXXX", "default": "ZZZZZ"}, "RADIANCE_ADD_BAND_2": {"key": "XXXXX", "default": "ZZZZZ"}, "RADIANCE_ADD_BAND_3": {"key": "XXXXX", "default": "ZZZZZ"}, "RADIANCE_ADD_BAND_4": {"key": "XXXXX", "default": "ZZZZZ"}, "RADIANCE_ADD_BAND_5": {"key": "XXXXX", "default": "ZZZZZ"}, "RADIANCE_ADD_BAND_6": {"key": "XXXXX", "default": "ZZZZZ"}, "RADIANCE_ADD_BAND_7": {"key": "XXXXX", "default": "ZZZZZ"}, "RADIANCE_ADD_BAND_8": {"key": "XXXXX", "default": "ZZZZZ"}, "RADIANCE_ADD_BAND_9": {"key": "XXXXX", "default": "ZZZZZ"}, "REFLECTANCE_MULT_BAND_1": {"key": "XXXXX", "default": "ZZZZZ"}, "REFLECTANCE_MULT_BAND_2": {"key": "XXXXX", "default": "ZZZZZ"}, "REFLECTANCE_MULT_BAND_3": {"key": "XXXXX", "default": "ZZZZZ"}, "REFLECTANCE_MULT_BAND_4": {"key": "XXXXX", "default": "ZZZZZ"}, "REFLECTANCE_MULT_BAND_5": {"key": "XXXXX", "default": "ZZZZZ"}, "REFLECTANCE_MULT_BAND_6": {"key": "XXXXX", "default": "ZZZZZ"}, "REFLECTANCE_MULT_BAND_7": {"key": "XXXXX", "default": "ZZZZZ"}, "REFLECTANCE_MULT_BAND_8": {"key": "XXXXX", "default": "ZZZZZ"}, "REFLECTANCE_MULT_BAND_9": {"key": "XXXXX", "default": "ZZZZZ"}, "REFLECTANCE_ADD_BAND_1": {"key": "XXXXX", "default": "ZZZZZ"}, "REFLECTANCE_ADD_BAND_2": {"key": "XXXXX", "default": "ZZZZZ"}, "REFLECTANCE_ADD_BAND_3": {"key": "XXXXX", "default": "ZZZZZ"}, "REFLECTANCE_ADD_BAND_4": {"key": "XXXXX", "default": "ZZZZZ"}, "REFLECTANCE_ADD_BAND_5": {"key": "XXXXX", "default": "ZZZZZ"}, "REFLECTANCE_ADD_BAND_6": {"key": "XXXXX", "default": "ZZZZZ"}, "REFLECTANCE_ADD_BAND_7": {"key": "XXXXX", "default": "ZZZZZ"}, "REFLECTANCE_ADD_BAND_8": {"key": "XXXXX", "default": "ZZZZZ"}, "REFLECTANCE_ADD_BAND_9": {"key": "XXXXX", "default": "ZZZZZ"}, "MAP_PROJECTION": {"key": "XXXXX", "default": "ZZZZZ"}, "DATUM": {"key": "XXXXX", "default": "ZZZZZ"}, "ELLIPSOID": {"key": "XXXXX", "default": "ZZZZZ"}, "UTM_ZONE": {"key": "XXXXX", "default": "ZZZZZ"}, "GRID_CELL_SIZE_PANCHROMATIC": {"key": "XXXXX", "default": "ZZZZZ"}, "GRID_CELL_SIZE_REFLECTIVE": {"key": "XXXXX", "default": "ZZZZZ"}, "ORIENTATION": {"key": "XXXXX", "default": "ZZZZZ"}, "RESAMPLING_OPTION": {"key": "XXXXX", "default": "ZZZZZ"}, }
1.515625
2
portfolio/migrations/0008_auto_20190225_1927.py
sarath196/Portfolio-Web-Theme
3
12780766
# Generated by Django 2.0 on 2019-02-25 19:27 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('portfolio', '0007_auto_20190225_1849'), ] operations = [ migrations.AddField( model_name='portfoliopage', name='git_url', field=models.URLField(blank=True, null=True), ), migrations.AddField( model_name='portfoliopage', name='linkedin_url', field=models.URLField(blank=True, null=True), ), migrations.AddField( model_name='portfoliopage', name='source', field=models.CharField(blank=True, max_length=255, null=True), ), ]
1.53125
2
oct_26_2019/myproject.py
SoundBoySelecta/BDT_1160_homework
0
12780767
<filename>oct_26_2019/myproject.py import sys import pandas as pd import matplotlib.pyplot as plt import os file_name = sys.argv[1] #print(file_name) df = pd.read_csv(file_name, sep=',', header=None) df.columns = ['id', 'diagnosis', 'mean radius', 'mean texture', 'mean perimeter', 'mean area', 'mean smoothness', 'mean compactness', 'mean concavity', 'mean concave points', 'mean symmetry', 'mean fractal dimension', 'radius error', 'texture error', 'perimeter error', 'area error', 'smoothness error', 'compactness error', 'concavity error', 'concave points error', 'symmetry error', 'fractal dimension error', 'worst radius', 'worst texture', 'worst perimeter', 'worst area', 'worst smoothness', 'worst compactness', 'worst concavity', 'worst concave points', 'worst symmetry', 'worst fractal dimension'] df.drop('id', axis=1, inplace=True) os.makedirs('plots', exist_ok=True) # Plotting line plot df_mean_area = df['mean area'] plt.plot(df_mean_area) plt.title('Linear Plot') plt.xlabel('Instance') plt.ylabel('Mean Area') plt.savefig('plots/mean_area_by_each_instance_plot.png', dpi=300) plt.show() # Plotting scatterplot df_mean_area = df['mean area'] df_mean_symmetry = df['mean symmetry'] plt.scatter(df_mean_area , df_mean_symmetry, color='b') plt.title('Mean Area vs Mean Symmetry') plt.xlabel('Mean Area') plt.ylabel('Mean Symmetry') plt.savefig('plots/mean_area_vs_mean_symmetry.png', format='png') plt.show() plt.close()
2.84375
3
trainer/rename.py
Originofamonia/pylon
16
12780768
def rename(newname): """define the name of the function""" def decorator(f): f.__name__ = newname return f return decorator
3.640625
4
Mundo1/aula7c.py
OliveiraVasconcelos/Python-CursoemVideo
0
12780769
<gh_stars>0 ### crie um algoritmo que leia um numero e mostre seu dobro, triplo e raizq num = int(input('Digite um valor: ')) dobro = num * 2 triplo = num * 3 raizq = num ** (1/2) print('{} foi recebido, o dobro de num é {}, o triplo é {} e a raiz quadrada é {}'.format(num, dobro, triplo, raizq))
3.90625
4
katachi/tools/assign_landmarks.py
WhoIsJack/data-driven-analysis-lateralline
3
12780770
<gh_stars>1-10 # -*- coding: utf-8 -*- """ Created on Wed Nov 22 11:04:07 2017 @author: <NAME> @ Gilmour group @ EMBL Heidelberg @descript: Generates a sparse 3D point cloud representation for each cell in a segmented stack based on the intensity distribution of a second stack within the cell's segmentation region. """ #------------------------------------------------------------------------------ # IMPORTS # External from __future__ import division import os, pickle import numpy as np import scipy.ndimage as ndi import matplotlib.pyplot as plt from tifffile import imread # Internal from katachi.utilities.ISLA import isla #------------------------------------------------------------------------------ # FUNCTION: ASSIGN LANDMARKS TO EACH CELL OF A SEGMENTATION def assign_landmarks(fpath_seg, fpath_int, num_LMs, save_centroids=False, fpath_out=None, show_cells=None, verbose=False, global_prep_func=None, global_prep_params=None, local_prep_func=None, local_prep_params=None, landmark_func='default', landmark_func_params=None): """Generate a sparse 3D point cloud representation of a segmented cell. For each segmented object (cell) specified by a labeled segmentation stack, a point cloud is generated that represents the intensity distribution of a second stack in that cell's region. Custom preprocessing functions can be applied both to the global image and locally to each cell crop-out. The function used for determining landmark coordinates may also be specified by the user. By default, no preprocessing is done and landmarks are extracted using ISLA (for more information, see `katachi.utilities.ISLA`). The results are written as a .npy file containing an array of shape (N,M,3) where N is the number of cells, M the number of landmarks per cell and 3 are the three spatial dimensions of the input stack. The origin of the coordinate system is set to the centroid of the cell's segmentation region and the axes are scaled according to the specified pixel resolution. Parameters ---------- fpath_seg : string The path (either local from cwd or global) to a tif file containing the single-cell segmentation stack. A point cloud will be generated for each labeled object in this segmentation. fpath_int : string The path (either local from cwd or global) to a tif file containing intensity values. This stack must have the same shape as the fpath_seg stack. The point clouds generated for each cell in the segmentation represent the intensity distribution of this stack within that cell. num_LMs : int The number of landmarks to extract for each cell. save_centroids : bool, optional, default False If True, the centroid coordinates (in the image space) of each labeled object will be added to the stack_metadata file (with key "centroids"). fpath_out : string, optional, default None A path (either local from cwd or global) specifying a file to which the results should be written. If None, fpath_int is used but with the suffix `_LMs.npy` instead of the original suffix `.tif`. show_cells : int, optional, default None If an int `i` is given, a slice from each cell up to `i` is displayed with an overlay of the extracted landmarks. Once `i` cells have been processed, the rest of the cells is processed without displaying. verbose : bool, optional, default False If True, more information is printed. global_prep_func : callable, optional, default None A user-defined function for custom preprocessing. This function will be applied to the entire intensity stack prior to landmark extraction. The callable must accept the intensity stack and the segmentation stack as the first two arguments and it may accept a third argument that packages additional parameters (see just below). The function must return another valid intensity stack that is of the same shape as the original. global_prep_params : any type, optional, default None Third argument (after intensity stack and segmentation stack) to the global_prep_func (see just above). This could be anything, but will usually be a list of additional parameters for the function. local_prep_func : callable, optional, default None A user-defined function for custom preprocessing. This function will be applied to the bounding box crop of each cell just prior to landmark extraction. The callable must accept the crops of the intensity stack and the segmentation stack as well as the cell index as the first three arguments. It may accept a fourth argument that packages additional parameters (see just below). The function must return another valid cropped intensity stack that is of the same shape as the original. local_prep_params : any type, optional, default None 4th argument (after intensity crop, segmentation crop and cell index) to the local_prep_func (see just above). This could be anything, but will usually be a list of additional parameters for the function. landmark_func : callable or 'default', optional, default 'default' Function used to extract landmark coordinates from the bounding box crop of each cell after the region around the cell (outside the cell's segmentation region) have been set to zero. The function must accept the (masked) intensity crop and num_LMs as its first two arguments and may accept a third argument that packages additional parameters (see just below). The function must return an array of shape (M,3), where M is the number of landmarks and 3 are the three spatial dimensions of the input cell. landmark_func_params : any type, optional, default None Third argument (after masked intensity crop and num_LMs) to the landmark_func (see just above). This could be anything, but will usually be a list of additional parameters for the function. """ #-------------------------------------------------------------------------- ### Load data if verbose: print "Loading stacks..." # Try loading the segmentation stack try: img_seg = imread(fpath_seg) except: print "Attempting to load segmentation stack failed with this error:" raise # Check dimensionality if not img_seg.ndim == 3: raise IOError("Expected a 3D segmentation stack, got " + str(img_seg.ndim) + "D instead.") # Try loading the intensity stack try: img_int = imread(fpath_int) except: print "Attempting to load intensity stack failed with this error:" raise # Check dimensionality if not img_int.ndim == 3: raise IOError("Expected a 3D intensity stack, got " + str(img_int.ndim) + "D instead.") # Double-check that show_cells is an integer if show_cells is not None and type(show_cells) != int: raise IOError("Argument show_cells expects int or None, got " + str(type(show_cells))) # Load the metadata and get the resolution from it try: dirpath, fname = os.path.split(fpath_int) fpath_meta = os.path.join(dirpath, fname[:10]+"_stack_metadata.pkl") with open(fpath_meta, 'rb') as metafile: meta_dict = pickle.load(metafile) res = meta_dict['resolution'] except: print "Getting resolution from metadata failed with this error:" raise #-------------------------------------------------------------------------- ### Apply a user-defined global preprocessing function if global_prep_func is not None: if verbose: print "Applying global preprocessing function..." if global_prep_params: img_int = global_prep_func(img_int, img_seg, global_prep_params) else: img_int = global_prep_func(img_int, img_seg) #-------------------------------------------------------------------------- ### Run landmark extraction for each cell if verbose: print "Performing landmark assignments..." # Get bounding boxes bboxes = ndi.find_objects(img_seg) # Prep cell_indices = np.unique(img_seg)[1:] landmarks = np.zeros((cell_indices.size, num_LMs, 3)) if save_centroids: centroids = np.zeros((cell_indices.size, 3)) # For each cell... for c, cell_idx in enumerate(cell_indices): # Crop the cell cell_int = np.copy(img_int[bboxes[c][0], bboxes[c][1], bboxes[c][2]]) cell_seg = img_seg[bboxes[c][0], bboxes[c][1], bboxes[c][2]] # Apply a user-defined local preprocessing function if local_prep_func is not None: if local_prep_params: cell_int = local_prep_func(cell_int, cell_seg, cell_idx, local_prep_params) else: cell_int = local_prep_func(cell_int, cell_seg, cell_idx) # Mask the signal cell_int[cell_seg!=cell_idx] = 0 # Assign landmarks if landmark_func == 'default': landmarks[c,:,:] = isla(cell_int, num_LMs, seed=42) elif landmark_func_params is None: landmarks[c,:,:] = landmark_func(cell_int, num_LMs) else: landmarks[c,:,:] = landmark_func(cell_int, num_LMs, params=landmark_func_params) # Show the first few cells if show_cells is not None: plt.imshow(cell_int[cell_int.shape[0]//2,:,:], interpolation='none', cmap='gray') lms_show = landmarks[c,landmarks[c,:,0]==cell_int.shape[0]//2,:] plt.scatter(lms_show[:,2], lms_show[:,1], c='red', edgecolor='', marker='s', s=5) plt.title("Cell "+str(c+1)) plt.axis('off') plt.show() if c >= show_cells-1: show_cells = None # Center origin on segmentation object's centroid # Note: `centroid==center_of_mass` for uniformly dense bodies. centroid = np.array(ndi.center_of_mass(cell_seg==cell_idx)) landmarks[c,:,:] = landmarks[c,:,:] - centroid # Keep the centroids (relative to image space) as metadata if save_centroids: centroids[c,:] = centroid + np.array( [bboxes[c][d].start for d in range(3)] ) # Scale the axes to the stack's pixel resolution landmarks = landmarks * np.array(res) if save_centroids: centroids = centroids * np.array(res) #-------------------------------------------------------------------------- ### Save, report and return if verbose: print "Saving result..." # Save the landmarks if fpath_out is None: np.save(fpath_int[:-4]+"_LMs", landmarks) else: np.save(fpath_out, landmarks) # Save the centroids to the metadata if save_centroids: dirpath, fname = os.path.split(fpath_int) fpath_meta = os.path.join(dirpath, fname[:10]+"_stack_metadata.pkl") with open(fpath_meta, 'rb') as metafile: meta_dict = pickle.load(metafile) meta_dict["centroids"] = centroids with open(fpath_meta, 'wb') as metafile: pickle.dump(meta_dict, metafile, pickle.HIGHEST_PROTOCOL) # Report and return if verbose: print "Processing complete!" return #------------------------------------------------------------------------------
2.234375
2
livereload/cli.py
andreycizov/python-livereload
0
12780771
<filename>livereload/cli.py import argparse import tornado.log from livereload.server import Server parser = argparse.ArgumentParser(description='Start a `livereload` server') parser.add_argument( '--host', help='Hostname to run `livereload` server on', type=str, default='127.0.0.1' ) parser.add_argument( '-p', '--port', help='Port to run `livereload` server on', type=int, default=35729 ) parser.add_argument( '--port-override', dest='override_port', help='Port at which `livereload` appears to the client', type=int, default=None ) parser.add_argument( 'directory', help='Directory to serve files from', type=str, default='.', nargs='?' ) parser.add_argument( '-t', '--target', help='File or directory to watch for changes', type=str, ) parser.add_argument( '-w', '--wait', help='Time delay in seconds before reloading', type=float, default=0.0 ) parser.add_argument( '-o', '--open-url-delay', help='If set, triggers browser opening <D> seconds after starting', type=float ) parser.add_argument( '-d', '--debug', help='Enable Tornado pretty logging', action='store_true' ) def main(argv=None): args = parser.parse_args() if args.debug: tornado.log.enable_pretty_logging() # Create a new application server = Server() server.watcher.watch(args.target or args.directory, delay=args.wait) server.serve(host=args.host, port=args.port, root=args.directory, open_url_delay=args.open_url_delay, override_port=args.override_port)
2.546875
3
panda/migrations/0001_initial.py
higs4281/panda
72
12780772
# encoding: utf-8 import datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Adding model 'Category' db.create_table('panda_category', ( ('id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('slug', self.gf('django.db.models.fields.SlugField')(max_length=256, db_index=True)), ('name', self.gf('django.db.models.fields.CharField')(max_length=64)), )) db.send_create_signal('panda', ['Category']) # Adding model 'TaskStatus' db.create_table('panda_taskstatus', ( ('id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('task_name', self.gf('django.db.models.fields.CharField')(max_length=255)), ('status', self.gf('django.db.models.fields.CharField')(default='PENDING', max_length=50)), ('message', self.gf('django.db.models.fields.CharField')(max_length=255, blank=True)), ('start', self.gf('django.db.models.fields.DateTimeField')(null=True)), ('end', self.gf('django.db.models.fields.DateTimeField')(null=True)), ('traceback', self.gf('django.db.models.fields.TextField')(default=None, null=True, blank=True)), ('creator', self.gf('django.db.models.fields.related.ForeignKey')(related_name='tasks', null=True, to=orm['auth.User'])), )) db.send_create_signal('panda', ['TaskStatus']) # Adding model 'Dataset' db.create_table('panda_dataset', ( ('id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('slug', self.gf('django.db.models.fields.SlugField')(max_length=256, db_index=True)), ('name', self.gf('django.db.models.fields.CharField')(max_length=256)), ('description', self.gf('django.db.models.fields.TextField')(blank=True)), ('initial_upload', self.gf('django.db.models.fields.related.ForeignKey')(blank=True, related_name='initial_upload_for', null=True, to=orm['panda.DataUpload'])), ('columns', self.gf('panda.fields.JSONField')(default=None, null=True)), ('sample_data', self.gf('panda.fields.JSONField')(default=None, null=True)), ('row_count', self.gf('django.db.models.fields.IntegerField')(null=True, blank=True)), ('current_task', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['panda.TaskStatus'], null=True, blank=True)), ('creation_date', self.gf('django.db.models.fields.DateTimeField')(null=True)), ('creator', self.gf('django.db.models.fields.related.ForeignKey')(related_name='datasets', to=orm['auth.User'])), ('last_modified', self.gf('django.db.models.fields.DateTimeField')(default=None, null=True, blank=True)), ('last_modification', self.gf('django.db.models.fields.TextField')(default=None, null=True, blank=True)), ('last_modified_by', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['auth.User'], null=True, blank=True)), )) db.send_create_signal('panda', ['Dataset']) # Adding M2M table for field categories on 'Dataset' db.create_table('panda_dataset_categories', ( ('id', models.AutoField(verbose_name='ID', primary_key=True, auto_created=True)), ('dataset', models.ForeignKey(orm['panda.dataset'], null=False)), ('category', models.ForeignKey(orm['panda.category'], null=False)) )) db.create_unique('panda_dataset_categories', ['dataset_id', 'category_id']) # Adding model 'DataUpload' db.create_table('panda_dataupload', ( ('id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('filename', self.gf('django.db.models.fields.CharField')(max_length=256)), ('original_filename', self.gf('django.db.models.fields.CharField')(max_length=256)), ('size', self.gf('django.db.models.fields.IntegerField')()), ('creator', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['auth.User'])), ('creation_date', self.gf('django.db.models.fields.DateTimeField')()), ('dataset', self.gf('django.db.models.fields.related.ForeignKey')(related_name='data_uploads', null=True, to=orm['panda.Dataset'])), ('data_type', self.gf('django.db.models.fields.CharField')(max_length=4, null=True, blank=True)), ('encoding', self.gf('django.db.models.fields.CharField')(default='utf-8', max_length=32)), ('dialect', self.gf('panda.fields.JSONField')(null=True)), ('columns', self.gf('panda.fields.JSONField')(null=True)), ('sample_data', self.gf('panda.fields.JSONField')(null=True)), ('imported', self.gf('django.db.models.fields.BooleanField')(default=False)), )) db.send_create_signal('panda', ['DataUpload']) # Adding model 'Export' db.create_table('panda_export', ( ('id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('filename', self.gf('django.db.models.fields.CharField')(max_length=256)), ('original_filename', self.gf('django.db.models.fields.CharField')(max_length=256)), ('size', self.gf('django.db.models.fields.IntegerField')()), ('creator', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['auth.User'])), ('creation_date', self.gf('django.db.models.fields.DateTimeField')()), ('dataset', self.gf('django.db.models.fields.related.ForeignKey')(related_name='exports', to=orm['panda.Dataset'])), )) db.send_create_signal('panda', ['Export']) # Adding model 'Notification' db.create_table('panda_notification', ( ('id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('recipient', self.gf('django.db.models.fields.related.ForeignKey')(related_name='notifications', to=orm['auth.User'])), ('message', self.gf('django.db.models.fields.TextField')()), ('type', self.gf('django.db.models.fields.CharField')(default='Info', max_length=16)), ('sent_at', self.gf('django.db.models.fields.DateTimeField')(auto_now=True, blank=True)), ('read_at', self.gf('django.db.models.fields.DateTimeField')(default=None, null=True, blank=True)), ('related_task', self.gf('django.db.models.fields.related.ForeignKey')(default=None, to=orm['panda.TaskStatus'], null=True)), ('related_dataset', self.gf('django.db.models.fields.related.ForeignKey')(default=None, to=orm['panda.Dataset'], null=True)), )) db.send_create_signal('panda', ['Notification']) # Adding model 'RelatedUpload' db.create_table('panda_relatedupload', ( ('id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('filename', self.gf('django.db.models.fields.CharField')(max_length=256)), ('original_filename', self.gf('django.db.models.fields.CharField')(max_length=256)), ('size', self.gf('django.db.models.fields.IntegerField')()), ('creator', self.gf('django.db.models.fields.related.ForeignKey')(to=orm['auth.User'])), ('creation_date', self.gf('django.db.models.fields.DateTimeField')()), ('dataset', self.gf('django.db.models.fields.related.ForeignKey')(related_name='related_uploads', to=orm['panda.Dataset'])), )) db.send_create_signal('panda', ['RelatedUpload']) # Adding model 'UserProfile' db.create_table('panda_userprofile', ( ('id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('user', self.gf('django.db.models.fields.related.OneToOneField')(to=orm['auth.User'], unique=True)), ('activation_key', self.gf('django.db.models.fields.CharField')(max_length=40)), )) db.send_create_signal('panda', ['UserProfile']) def backwards(self, orm): # Deleting model 'Category' db.delete_table('panda_category') # Deleting model 'TaskStatus' db.delete_table('panda_taskstatus') # Deleting model 'Dataset' db.delete_table('panda_dataset') # Removing M2M table for field categories on 'Dataset' db.delete_table('panda_dataset_categories') # Deleting model 'DataUpload' db.delete_table('panda_dataupload') # Deleting model 'Export' db.delete_table('panda_export') # Deleting model 'Notification' db.delete_table('panda_notification') # Deleting model 'RelatedUpload' db.delete_table('panda_relatedupload') # Deleting model 'UserProfile' db.delete_table('panda_userprofile') models = { 'auth.group': { 'Meta': {'object_name': 'Group'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '80'}), 'permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}) }, 'auth.permission': { 'Meta': {'ordering': "('content_type__app_label', 'content_type__model', 'codename')", 'unique_together': "(('content_type', 'codename'),)", 'object_name': 'Permission'}, 'codename': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'content_type': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['contenttypes.ContentType']"}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '50'}) }, 'auth.user': { 'Meta': {'object_name': 'User'}, 'date_joined': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'email': ('django.db.models.fields.EmailField', [], {'max_length': '75', 'blank': 'True'}), 'first_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'groups': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Group']", 'symmetrical': 'False', 'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'is_active': ('django.db.models.fields.BooleanField', [], {'default': 'True'}), 'is_staff': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'is_superuser': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'last_login': ('django.db.models.fields.DateTimeField', [], {'default': 'datetime.datetime.now'}), 'last_name': ('django.db.models.fields.CharField', [], {'max_length': '30', 'blank': 'True'}), 'password': ('<PASSWORD>.fields.CharField', [], {'max_length': '128'}), 'user_permissions': ('django.db.models.fields.related.ManyToManyField', [], {'to': "orm['auth.Permission']", 'symmetrical': 'False', 'blank': 'True'}), 'username': ('django.db.models.fields.CharField', [], {'unique': 'True', 'max_length': '30'}) }, 'contenttypes.contenttype': { 'Meta': {'ordering': "('name',)", 'unique_together': "(('app_label', 'model'),)", 'object_name': 'ContentType', 'db_table': "'django_content_type'"}, 'app_label': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'model': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}) }, 'panda.category': { 'Meta': {'object_name': 'Category'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '64'}), 'slug': ('django.db.models.fields.SlugField', [], {'max_length': '256', 'db_index': 'True'}) }, 'panda.dataset': { 'Meta': {'ordering': "['-creation_date']", 'object_name': 'Dataset'}, 'categories': ('django.db.models.fields.related.ManyToManyField', [], {'blank': 'True', 'related_name': "'datasets'", 'null': 'True', 'symmetrical': 'False', 'to': "orm['panda.Category']"}), 'columns': ('panda.fields.JSONField', [], {'default': 'None', 'null': 'True'}), 'creation_date': ('django.db.models.fields.DateTimeField', [], {'null': 'True'}), 'creator': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'datasets'", 'to': "orm['auth.User']"}), 'current_task': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['panda.TaskStatus']", 'null': 'True', 'blank': 'True'}), 'description': ('django.db.models.fields.TextField', [], {'blank': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'initial_upload': ('django.db.models.fields.related.ForeignKey', [], {'blank': 'True', 'related_name': "'initial_upload_for'", 'null': 'True', 'to': "orm['panda.DataUpload']"}), 'last_modification': ('django.db.models.fields.TextField', [], {'default': 'None', 'null': 'True', 'blank': 'True'}), 'last_modified': ('django.db.models.fields.DateTimeField', [], {'default': 'None', 'null': 'True', 'blank': 'True'}), 'last_modified_by': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['auth.User']", 'null': 'True', 'blank': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '256'}), 'row_count': ('django.db.models.fields.IntegerField', [], {'null': 'True', 'blank': 'True'}), 'sample_data': ('panda.fields.JSONField', [], {'default': 'None', 'null': 'True'}), 'slug': ('django.db.models.fields.SlugField', [], {'max_length': '256', 'db_index': 'True'}) }, 'panda.dataupload': { 'Meta': {'ordering': "['creation_date']", 'object_name': 'DataUpload'}, 'columns': ('panda.fields.JSONField', [], {'null': 'True'}), 'creation_date': ('django.db.models.fields.DateTimeField', [], {}), 'creator': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['auth.User']"}), 'data_type': ('django.db.models.fields.CharField', [], {'max_length': '4', 'null': 'True', 'blank': 'True'}), 'dataset': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'data_uploads'", 'null': 'True', 'to': "orm['panda.Dataset']"}), 'dialect': ('panda.fields.JSONField', [], {'null': 'True'}), 'encoding': ('django.db.models.fields.CharField', [], {'default': "'utf-8'", 'max_length': '32'}), 'filename': ('django.db.models.fields.CharField', [], {'max_length': '256'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'imported': ('django.db.models.fields.BooleanField', [], {'default': 'False'}), 'original_filename': ('django.db.models.fields.CharField', [], {'max_length': '256'}), 'sample_data': ('panda.fields.JSONField', [], {'null': 'True'}), 'size': ('django.db.models.fields.IntegerField', [], {}) }, 'panda.export': { 'Meta': {'ordering': "['creation_date']", 'object_name': 'Export'}, 'creation_date': ('django.db.models.fields.DateTimeField', [], {}), 'creator': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['auth.User']"}), 'dataset': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'exports'", 'to': "orm['panda.Dataset']"}), 'filename': ('django.db.models.fields.CharField', [], {'max_length': '256'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'original_filename': ('django.db.models.fields.CharField', [], {'max_length': '256'}), 'size': ('django.db.models.fields.IntegerField', [], {}) }, 'panda.notification': { 'Meta': {'ordering': "['-sent_at']", 'object_name': 'Notification'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'message': ('django.db.models.fields.TextField', [], {}), 'read_at': ('django.db.models.fields.DateTimeField', [], {'default': 'None', 'null': 'True', 'blank': 'True'}), 'recipient': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'notifications'", 'to': "orm['auth.User']"}), 'related_dataset': ('django.db.models.fields.related.ForeignKey', [], {'default': 'None', 'to': "orm['panda.Dataset']", 'null': 'True'}), 'related_task': ('django.db.models.fields.related.ForeignKey', [], {'default': 'None', 'to': "orm['panda.TaskStatus']", 'null': 'True'}), 'sent_at': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}), 'type': ('django.db.models.fields.CharField', [], {'default': "'Info'", 'max_length': '16'}) }, 'panda.relatedupload': { 'Meta': {'ordering': "['creation_date']", 'object_name': 'RelatedUpload'}, 'creation_date': ('django.db.models.fields.DateTimeField', [], {}), 'creator': ('django.db.models.fields.related.ForeignKey', [], {'to': "orm['auth.User']"}), 'dataset': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'related_uploads'", 'to': "orm['panda.Dataset']"}), 'filename': ('django.db.models.fields.CharField', [], {'max_length': '256'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'original_filename': ('django.db.models.fields.CharField', [], {'max_length': '256'}), 'size': ('django.db.models.fields.IntegerField', [], {}) }, 'panda.taskstatus': { 'Meta': {'object_name': 'TaskStatus'}, 'creator': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'tasks'", 'null': 'True', 'to': "orm['auth.User']"}), 'end': ('django.db.models.fields.DateTimeField', [], {'null': 'True'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'message': ('django.db.models.fields.CharField', [], {'max_length': '255', 'blank': 'True'}), 'start': ('django.db.models.fields.DateTimeField', [], {'null': 'True'}), 'status': ('django.db.models.fields.CharField', [], {'default': "'PENDING'", 'max_length': '50'}), 'task_name': ('django.db.models.fields.CharField', [], {'max_length': '255'}), 'traceback': ('django.db.models.fields.TextField', [], {'default': 'None', 'null': 'True', 'blank': 'True'}) }, 'panda.userprofile': { 'Meta': {'object_name': 'UserProfile'}, 'activation_key': ('django.db.models.fields.CharField', [], {'max_length': '40'}), 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'user': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['auth.User']", 'unique': 'True'}) } } complete_apps = ['panda']
2.203125
2
Hybrid-P2P_ChatPy/server_users.py
davidcawork/uah-lrss_
0
12780773
<reponame>davidcawork/uah-lrss_<filename>Hybrid-P2P_ChatPy/server_users.py #usr/bin/env python3 import socket import sys import pickle import select import os #PROTOCOL MSGs P2P_CHAT_PY_PROTOCOL_HI = 'ChatPy_Hi' P2P_CHAT_PY_PROTOCOL_HI_ACK = 'ChatPy_Hi_Ack' P2P_CHAT_PY_PROTOCOL_BYE = 'ChatPy_Bye' P2P_CHAT_PY_PROTOCOL_BYE_ACK = 'ChatPy_Bye_Ack' P2P_CHAT_PY_PROTOCOL_UPDATE = 'ChatPy_Update' P2P_CHAT_PY_PROTOCOL_UPDATE_ACK = 'ChatPy_Update_Ack' P2P_CHAT_PY_PROTOCOL_CONN = 'ChatPy_Conn' P2P_CHAT_PY_PROTOCOL_CONN_ACK = 'ChatPy_Conn_Ack' P2P_CHAT_PY_PROTOCOL_DIS = 'ChatPy_Dis' P2P_CHAT_PY_PROTOCOL_DIS_ACK = 'ChatPy_Dis_Ack' P2P_CHAT_PY_PROTOCOL_MSG = 'ChatPy_Msg' #To print all clients connected def print_conn(sock_addr_port): os.system('clear') for clients in sock_addr_port: print('Client: ' + str(clients[1]) + '| Port: '+str(clients[2])) #To remove from list when some client goes out def remove_client_from_list(sock_addr_port,sock_to_remove): for clients in sock_addr_port: if clients[0] is sock_to_remove: sock_addr_port.remove(clients) def getIpFromSocket(sock_addr_port,sock_to_rcv): for clients in sock_addr_port: if clients[0] is sock_to_rcv: return clients[1] if __name__ == "__main__": #Check argv's if len(sys.argv) < 2: print('Error: usage: ./' + sys.argv[0] + ' <Port>') exit() else: port = int(sys.argv[1]) s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.setblocking(0) s.bind(('',port)) s.listen(5) #Sockets to read sockets_rd = [s] #Just for track all conn sock_addr_port = [] #Peer list peer_list = [] id_peer = 1 while True: try: events_rd,events_wr,events_excp = select.select( sockets_rd,[],[]) except KeyboardInterrupt: print('\n\n\nShutdown....') for sock in sockets_rd: sock.close() sys.exit(0) for event in events_rd: if event == s: #Add user into peers list conn, addr = s.accept() sock_addr_port.append([conn,addr[0],addr[1]]) conn.setblocking(0) sockets_rd.append(conn) else: #Handle other conn for sock_to_rcv in sockets_rd: if sock_to_rcv != s and sock_to_rcv is event: data = pickle.loads(sock_to_rcv.recv(4096)) if data: if data[0] == P2P_CHAT_PY_PROTOCOL_HI: #First add him to peer list data[1].append(getIpFromSocket(sock_addr_port,sock_to_rcv)) data[1].append(id_peer) peer_list.append(data[1]) #Second send him peer list sock_to_rcv.sendall(pickle.dumps([P2P_CHAT_PY_PROTOCOL_HI_ACK,peer_list,id_peer])) id_peer += 1 elif data[0] == P2P_CHAT_PY_PROTOCOL_BYE: #First remove the peer from the peer list data[1].append(getIpFromSocket(sock_addr_port,sock_to_rcv)) data[1].append(data[2]) peer_list.remove(data[1]) #Second send to him bye_ack sock_to_rcv.sendall(pickle.dumps([P2P_CHAT_PY_PROTOCOL_BYE_ACK, data[1]])) sockets_rd.remove(sock_to_rcv) remove_client_from_list(sock_addr_port,sock_to_rcv) elif data[0] == P2P_CHAT_PY_PROTOCOL_UPDATE: #Just update our peer with the peer list sock_to_rcv.sendall(pickle.dumps([P2P_CHAT_PY_PROTOCOL_UPDATE_ACK,peer_list])) else: #Remove one Peer sock_to_rcv.close() sockets_rd.remove(sock_to_rcv) remove_client_from_list(sock_addr_port,sock_to_rcv) #Print al active conn print_conn(sock_addr_port)
2.421875
2
klotski/image_recognition.py
Strivingperson/store
0
12780774
import requests import json import base64 import numpy as np import matplotlib.pyplot as plt import pickle import imageio def get_jsonstr(url): url = "http://172.16.58.3:8089/api/problem?stuid=031804104" response = requests.get(url) jsonstr = json.loads(response.text) return jsonstr def split_image(img): # 输入为图像矩阵np '''分割图像''' imgs = [] for i in range(0,900,300): for j in range(0,900,300): imgs.append(img[i:i+300,j:j+300].tolist()) return (imgs) # 返回值是九块图像矩阵的列表 def encode_image(title_image,store_image): '''图像编码为数字''' current_table = [] # 图像对应的表数字编码 ans_type = list(range(1,10)) # 答案类型 for ls_title in title_image: try: pos_code = store_image.index(ls_title)+1 current_table.append(pos_code) ans_type.remove(pos_code) except: current_table.append(0) # IndexError:空格匹配不到 return current_table,ans_type[0] # 返回表编码和答案类型 def main(json_image): # 读取无框字符分割成9份后的图像列表 save_name = 'ls_img.pkl' pkl_file = open(save_name, 'rb') store_images = pickle.load(pkl_file) pkl_file.close() # 获取题给图像 bs64_img = base64.b64decode(json_image) # 图像是base64编码 np_img = imageio.imread(bs64_img) title_image = split_image(np_img) for ls_store in store_images: # 遍历存储的所有无框字符 count = 0 for ls_title in title_image: # 遍历题给图像块 if (np.array(ls_title) == 255).all() == True: # 被挖去的空白 continue # 跳过 if ls_title in ls_store: # 该图块在无框字符中 count += 1 else: break if count == 8: # 除空白块外都相同,则判就是该无框字符,对题给图块进行编码 current_table, ans_type = encode_image(title_image, ls_store) return current_table,ans_type if __name__ == "__main__": # 读取无框字符分割成9份后的图像列表 save_name = 'ls_img.pkl' pkl_file = open(save_name,'rb') store_images = pickle.load(pkl_file) pkl_file.close() # 获取题给图像 url = "http://47.102.118.1:8089/api/problem?stuid=031804104" response = requests.get(url) jsonstr = json.loads(response.text) bs64_img = base64.b64decode(jsonstr['img']) #图像是base64编码 np_img = imageio.imread(bs64_img) title_image = split_image(np_img) plt.imshow(np_img) plt.show() for ls_store in store_images: #遍历存储的所存储的无框字符 count = 0 for ls_title in title_image: #遍历题给图像块 if (np.array(ls_title) == 255).all() == True: # 被挖去的空白 continue # 跳过 if ls_title in ls_store: # 该图块在无框字符中 count += 1 else: break if count == 8: # 除空白块外都相同,则判就是该无框字符,对题给图块进行编码 current_table,ans_type = encode_image(title_image,ls_store) print(current_table, ans_type) ls = [331,332,333,334,335,336,337,338,339] for i in range(9): plt.subplot(ls[i]) plt.imshow(np.array(ls_store[i])) plt.show() for i in range(9): plt.subplot(ls[i]) plt.imshow(np.array(title_image[i])) plt.show() break
2.953125
3
Python/zzz_training_challenge/Python_Challenge/solutions/tests/ch03_recursion/ex09_pascal_test.py
Kreijeck/learning
0
12780775
<gh_stars>0 # Beispielprogramm für das Buch "Python Challenge" # # Copyright 2020 by <NAME> import pytest from ch03_recursion.solutions.ex09_pascal_triangle import calc_pascal_with_action @pytest.mark.parametrize("n, expected", [(1, [1]), (2, [1, 1]), (3, [1, 2, 1]), (4, [1, 3, 3, 1]), (5, [1, 4, 6, 4, 1]), (6, [1, 5, 10, 10, 5, 1]), (7, [1, 6, 15, 20, 15, 6, 1])]) def test_calc_pascal_with_action(n, expected): assert calc_pascal_with_action(n, None) == expected
3.0625
3
setup.py
IPASC/IPASC_DataConversionTool
3
12780776
import setuptools with open('README.md', 'r') as readme_file: long_description = readme_file.read() with open('requirements.txt', 'r') as requirements_file: requirements = requirements_file.read().splitlines() setuptools.setup( name="ipasc_tool", version="0.1.3", author="International Photoacoustic Standardisation Consortium (IPASC)", description="Standardised Data Access Tool of IPASC", long_description=long_description, long_description_content_type="text/markdown", license="MIT", packages=setuptools.find_packages(include=["ipasc_tool", "ipasc_tool.*"]), install_requires=requirements, python_requires=">=3.7" )
1.5625
2
pyxing/res.py
sharebook-kr/pyxing
12
12780777
<reponame>sharebook-kr/pyxing # RES file parser ''' {'trcode': "CSPAT00600", 'inblock': [ {'CSPAT00600InBlock1': [ ]} ], 'outblock': [ {'CSPAT00600OutBlock1': [ ]} {'CSPAT00600OutBlock2': [ ]} } ''' # res 파일 정보 라인 파싱 함수 def parse_info(data): tokens = data.split(',') return tokens[2].strip() # InBlock/OutBlock 파싱 함수 def parse_block(data): # block 코드, 타입 block_info = data[0] tokens = block_info.split(",") block_code, block_type = tokens[0], tokens[-1][:-1] # block fields field_codes = [] fields = data[2:] for line in fields: if len(line) > 0: field_code = line.split(',')[1].strip() field_codes.append(field_code) ret_data = {} ret_data[block_code] = field_codes return block_type, ret_data def parse_res(lines): lines = [line.strip() for line in lines] info_index = [i for i,x in enumerate(lines) if x.startswith((".Func", ".Feed"))][0] begin_indices = [i-1 for i,x in enumerate(lines) if x == "begin"] end_indices = [i for i,x in enumerate(lines) if x == "end"] block_indices = zip(begin_indices, end_indices) ret_data = {"trcode": None, "inblock": [], "outblock": []} # TR Code tr_code = parse_info(lines[info_index]) ret_data["trcode"] = tr_code # Block for start, end in block_indices: block_type, block_data= parse_block(lines[start:end]) if block_type == "input": ret_data["inblock"].append(block_data) else: ret_data["outblock"].append(block_data) return ret_data if __name__ == "__main__": # TR(t8340) f = open("c:/eBEST/xingAPI/Res/t8430.res", encoding="euc-kr") lines = f.readlines() f.close() # f = open("c:/eBEST/xingAPI/Res/CSPAT00600.res", encoding="euc-kr") # lines = f.readlines() # f.close() # Real #f = open("c:/eBEST/xingAPI/Res/NWS.res", encoding="euc-kr") #lines = f.readlines() #f.close() import pprint data = parse_res(lines) pprint.pprint(data)
2.609375
3
Scripts/simulation/retail/retail_elements.py
velocist/TS4CheatsInfo
0
12780778
<reponame>velocist/TS4CheatsInfo # uncompyle6 version 3.7.4 # Python bytecode 3.7 (3394) # Decompiled from: Python 3.7.9 (tags/v3.7.9:13c94747c7, Aug 17 2020, 18:58:18) [MSC v.1900 64 bit (AMD64)] # Embedded file name: T:\InGame\Gameplay\Scripts\Server\retail\retail_elements.py # Compiled at: 2016-03-08 02:17:38 # Size of source mod 2**32: 6140 bytes from interactions import ParticipantTypeSingleSim from interactions.utils.interaction_elements import XevtTriggeredElement from retail.retail_utils import RetailUtils from sims4.tuning.tunable import TunableEnumEntry, AutoFactoryInit, TunableVariant, TunableRange, TunableList, HasTunableSingletonFactory import sims4.log logger = sims4.log.Logger('Retail', default_owner='trevor') class RetailCustomerAdjustBrowseTime(HasTunableSingletonFactory, AutoFactoryInit): FACTORY_TUNABLES = {'time_multiplier': TunableRange(description='\n The remaining time the customer has to browse will be multiplied by\n this number. A value of 2.0 will double the remaining time, causing\n the customer to spend more time browsing. A value of 0.5 will cut\n the remaining browse time in half, causing the customer to move on\n to the next state sooner. A value of 0 will instantly push the\n customer to go to the next state. If the customer is not currently\n in the browse state, this element will do nothing.\n ', tunable_type=float, default=1, minimum=0)} def apply_action(self, sim, situation): situation.adjust_browse_time(self.time_multiplier) class RetailCustomerAdjustTotalShopTime(HasTunableSingletonFactory, AutoFactoryInit): FACTORY_TUNABLES = {'time_multiplier': TunableRange(description='\n The remaining time the customer has to shop will be multiplied by\n this number. A value of 2.0 will double the remaining time, causing\n the customer to shop more. A value of 0.5 will cut the remaining\n browse time in half, causing the customer to shop less. A value of\n 0 will cause the customer to leave.\n ', tunable_type=float, default=1, minimum=0)} def apply_action(self, sim, situation): situation.adjust_total_shop_time(self.time_multiplier) class RetailCustomerAdjustPriceRange(HasTunableSingletonFactory, AutoFactoryInit): FACTORY_TUNABLES = {'min_price_adjustment_multiplier':TunableRange(description='\n The amount to multiply the minimum price range for this customer.\n ', tunable_type=float, default=1, minimum=0), 'max_price_adjustment_multiplier':TunableRange(description='\n The amount to multiply the maximum price range for this customer.\n ', tunable_type=float, default=1, minimum=0)} def apply_action(self, sim, situation): situation.adjust_price_range(min_multiplier=(self.min_price_adjustment_multiplier), max_multiplier=(self.max_price_adjustment_multiplier)) class RetailCustomerAction(XevtTriggeredElement): FACTORY_TUNABLES = {'customer':TunableEnumEntry(description='\n The customer participant to which the action is applied.\n ', tunable_type=ParticipantTypeSingleSim, default=ParticipantTypeSingleSim.TargetSim), 'actions':TunableList(description='\n The actions to apply to the customer.\n ', tunable=TunableVariant(description='\n The action to apply to the customer.\n ', adjust_browse_time=RetailCustomerAdjustBrowseTime.TunableFactory(description="\n Change the browse time of the customer by some multiple of the\n remaining browse time. This does nothing if the customer isn't\n already browsing. (i.e. loitering customers won't be affected)\n "), adjust_total_shop_time=RetailCustomerAdjustTotalShopTime.TunableFactory(description='\n Change the total shop time of the customer by some multiple of\n the remaining shop time.\n '), adjust_min_max_price_range=RetailCustomerAdjustPriceRange.TunableFactory(description='\n Change the min and/or max price range of this customer.\n ')))} def _do_behavior(self): customer = self.interaction.get_participant(self.customer) if customer is None: logger.error('Got a None customer trying to run a RetailCustomerAction element.') return False situation = RetailUtils.get_retail_customer_situation_from_sim(customer) if situation is None: logger.warn("Trying to run a customer action on a sim that isn't running a retail situation.") return False for action in self.actions: action.apply_action(customer, situation)
1.945313
2
views/login.py
vug/personalwebapp
0
12780779
<reponame>vug/personalwebapp """ This Blueprint gives the ability of user logins, and login_required functionality using Flask-Login extension. """ from flask import Blueprint, render_template, request, flash, redirect, url_for from flask_login import login_required, logout_user, login_user from extensions import login_manager from models import User login = Blueprint('login', __name__) login_manager.login_view = 'login.login_page' # redirect to this when arrived a login_required view without logged in @login_manager.user_loader def load_user(user_id): """Get the User object given the user_id stored in the session. This is a callback function to reload the user object from the user ID stored in the session. :rtype: User :return: A User if user_id exists, else None.""" return User.query.get(int(user_id)) @login.route('/login', methods=['GET', 'POST']) def login_page(): if request.method == 'GET': return render_template('login.html') elif request.method == 'POST': email = request.form['email'] password = request.form['password'] user = User.query.filter_by(email=email).first() if user is not None and user.password == password: login_user(user, remember=True) fullname = user.fullname redirect_url = request.args.get('next') html = 'Logged in as email: {}, fullname: {}<br><a href="/">Home</a> '.format(email, fullname) if redirect_url: html += '<a href="{}">Redirect</a>'.format(redirect_url) return html else: flash('Username or Password is invalid', 'error') return redirect(url_for('login.login_page')) @login.route("/logout") def logout_page(): logout_user() return render_template('logout.html')
2.703125
3
aggcat/tests/test_parser.py
djedi/python-aggcat
1
12780780
<reponame>djedi/python-aggcat<gh_stars>1-10 from __future__ import absolute_import from ..parser import Objectify class TestParser(object): """Test XML Objectification""" @classmethod def setup_class(self): self.o = None with open('aggcat/tests/data/sample_xml.xml', 'r') as f: self.o = Objectify(f.read()).get_object() def test_lists(self): """Parser Test: Lists object added are correct""" assert hasattr(self.o, '_list') assert isinstance(self.o._list, list) == True assert len(self.o) == 2 assert len(self.o[0].ingredients) == 2 assert len(self.o[1].ingredients) == 3 def test_attributes(self): """Parser Test: object attributes created have correct value""" assert hasattr(self.o[0], 'name') assert hasattr(self.o[0], 'ingredients') assert hasattr(self.o[0], 'cook_time') assert self.o[0].name == 'Fried Pickles' assert self.o[0].ingredients[0].name == 'Flour' assert self.o[1].name == 'Smoked Bacon' assert self.o[1].ingredients[0].name == 'Bacon'
2.78125
3
quex/engine/analyzer/door_id_address_label.py
smmckay/quex-mirror
0
12780781
import quex.engine.state_machine.index as sm_index from quex.engine.misc.tools import print_callstack, \ TypedSet from quex.blackboard import Lng from quex.constants import E_IncidenceIDs, \ E_StateIndices, \ E_DoorIdIndex from collections import namedtuple import itertools #______________________________________________________________________________ # # Address: # # Numeric representation of a 'goto target'. Using an address a variable may # contain the information of what target to go, and the goto is then executed # by a code fragment as # # switch( address_variable ) { # ... # case 0x4711: goto _4711; # ... # } #______________________________________________________________________________ # # TransitionID: # # Identifies a transition from one source to target state. There may be # multiple transitions for the same source-target pair. Each one identified by # an additional 'trigger_id'. TransitionIDs are connected with OpList-s # at entry into a state; But # # n 1 # TransitionID <--------------> OpList # # That is, there may be multiple TransitionID-s with the same OpList. # TransitionID-s are useful during the construction of entries. #______________________________________________________________________________ #______________________________________________________________________________ # # DoorID: # # Marks an entrance into a 'Processor', an FSM_State for example. A # Processor can have multiple entries, each entry has a different DoorID. A # DoorID identifies distinctly a OpList to be executed upon entry. # No two OpList-s # are the same except that their DoorID is the same. # #______________________________________________________________________________ class DoorID(namedtuple("DoorID_tuple", ("state_index", "door_index", "related_address"))): def __new__(self, StateIndex, DoorIndex, dial_db=None): assert isinstance(StateIndex, (int, long)) or StateIndex in E_StateIndices or StateIndex == E_IncidenceIDs.MATCH_FAILURE assert isinstance(dial_db, DialDB) # 'DoorIndex is None' --> right after the entry commands (targetted after reload). assert isinstance(DoorIndex, (int, long)) or DoorIndex is None or DoorIndex in E_DoorIdIndex, "%s" % DoorIndex # If the DoorID object already exists, than do not generate a second one. result = dial_db.find_door_id(StateIndex, DoorIndex) if result is not None: return result # Any created DoorID must be properly registered. address = dial_db.new_address() result = super(DoorID, self).__new__(self, StateIndex, DoorIndex, address) dial_db.register_door_id(result) return result @staticmethod def drop_out(StateIndex, dial_db): return DoorID(E_StateIndices.DROP_OUT, StateIndex, dial_db=dial_db) @staticmethod def transition_block(StateIndex, dial_db): return DoorID(StateIndex, E_DoorIdIndex.TRANSITION_BLOCK, dial_db=dial_db) @staticmethod def incidence(IncidenceId, dial_db): return DoorID(dial_db.map_incidence_id_to_state_index(IncidenceId), E_DoorIdIndex.ACCEPTANCE, dial_db=dial_db) @staticmethod def bipd_return(IncidenceId, dial_db): return DoorID(dial_db.map_incidence_id_to_state_index(IncidenceId), E_DoorIdIndex.BIPD_RETURN, dial_db=dial_db) @staticmethod def state_machine_entry(SM_Id, dial_db): return DoorID(SM_Id, E_DoorIdIndex.STATE_MACHINE_ENTRY, dial_db=dial_db) @staticmethod def global_state_router(dial_db): return DoorID(0L, E_DoorIdIndex.GLOBAL_STATE_ROUTER, dial_db=dial_db) @staticmethod def global_end_of_pre_context_check(dial_db): return DoorID(0L, E_DoorIdIndex.GLOBAL_END_OF_PRE_CONTEXT_CHECK, dial_db=dial_db) @staticmethod def global_reentry(dial_db): return DoorID(0L, E_DoorIdIndex.GLOBAL_REENTRY, dial_db=dial_db) @staticmethod def return_with_on_after_match(dial_db): return DoorID(0L, E_DoorIdIndex.RETURN_WITH_ON_AFTER_MATCH, dial_db=dial_db) @staticmethod def continue_with_on_after_match(dial_db): return DoorID(0L, E_DoorIdIndex.CONTINUE_WITH_ON_AFTER_MATCH, dial_db=dial_db) @staticmethod def continue_without_on_after_match(dial_db): return DoorID(0L, E_DoorIdIndex.CONTINUE_WITHOUT_ON_AFTER_MATCH, dial_db=dial_db) def drop_out_f(self): return self.state_index == E_StateIndices.DROP_OUT def last_acceptance_f(self): return self.door_index == E_DoorIdIndex.ACCEPTANCE \ and self.state_index == E_IncidenceIDs.VOID def __repr__(self): return "DoorID(s=%s, d=%s)" % (self.state_index, self.door_index) #______________________________________________________________________________ # DialDB: DoorID, Address - Database # # A DoorID of a state entry is distincly linked to an 'address', i.e something # a 'goto' can go to. The language's dictionary later relates an 'address' to # a 'label' (i.e. something that the language uses as target of 'goto'). # # 1 n 1 1 # StateIndex <-------> DoorID <---------> Address # # '---------------------._.-----------------------' # ' # DialDB # # The DialDB maps from DoorID to Address and vice versa. Additionally, it # keeps track of 'goto-ed' addresses. Thus, addresses that are never goto-ed, # may not have to be instantiated. #______________________________________________________________________________ # Globally Unique Incidence Id ________________________________________________ # # (For ease: make it globally unique, not only mode-unique) # def new_incidence_id(): """Incidence ids are used as DFA-ids => they MUST be aligned. TODO: They are actually the same. Replace 'state_machine_id' by 'incidence_id'. """ return sm_index.get_state_machine_id() class DialDB(object): __slots__ = ("__door_id_db", "__gotoed_address_set", "__routed_address_set", "__address_i", "__map_incidence_id_to_state_index" ) def __init__(self): # Track all generated DoorID objects with 2d-dictionary that maps: # # StateIndex --> ( DoorSubIndex --> DoorID ) # # Where the DoorID has the 'state_index' and 'door_index' equal to # 'StateIndex' and 'DoorSubIndex'. # self.__door_id_db = {} # TypedDict(long, dict) # Track addresses which are subject to 'goto' and those which need to # be routed. self.__gotoed_address_set = TypedSet(long) self.__routed_address_set = TypedSet(long) # Address counter to generate unique addresses self.__address_i = itertools.count(start=0) # Mapping from incidence_id to terminal state index self.__map_incidence_id_to_state_index = {} def __debug_address_generation(self, DoorId, Address, *SuspectAdrList): """Prints the callstack if an address of SuspectAdrList is generated. """ if Address not in SuspectAdrList: return print "#DoorID %s <-> Address %s" % (DoorId, Address) print_callstack() def __debug_incidence_generation(self, IncidenceId, StateIndex): print "#Generated: %s -> state: %s" % (IncidenceId, StateIndex) print_callstack() def __debug_gotoed_address(self, Address, *SuspectAdrList): if Address not in SuspectAdrList: return print "#Gotoed Address: %s" % Address print_callstack() def routed_address_set(self): return self.__routed_address_set def address_is_gotoed(self, Adr): return Adr in self.__gotoed_address_set def new_door_id(self, StateIndex=None): """Create a new entry in the database. First, a DoorID is generated. Then a new address is linked to it. A list of existing DoorID-s is maintained in '.__door_id_db'. RETURNS: New DoorID """ state_index = StateIndex if StateIndex is not None \ else sm_index.get() door_sub_index = self.max_door_sub_index(state_index) + 1 assert self.find_door_id(state_index, door_sub_index) is None return DoorID(state_index, door_sub_index, dial_db=self) def new_address(self): return long(next(self.__address_i)) def max_door_sub_index(self, StateIndex): """RETURN: The greatest door sub index for a given StateIndex. '-1' if not index has been used yet. """ result = - 1 sub_db = self.__door_id_db.get(StateIndex) if sub_db is None: return result for dsi in (x for x in sub_db.iterkeys() if isinstance(x, (int, long))): if dsi > result: result = dsi return result def register_door_id(self, DoorId): if False: # True/False activates debug messages self.__debug_address_generation(DoorId, DoorId.related_address, 326) sub_db = self.__door_id_db.get(DoorId.state_index) if sub_db is None: sub_db = {} self.__door_id_db[DoorId.state_index] = sub_db assert DoorId.door_index not in sub_db # Otherwise, it would not be new sub_db[DoorId.door_index] = DoorId def find_door_id(self, StateIndex, DoorSubIndex): """Try to get a DoorID from the set of existing DoorID-s. If a DoorID with 'StateIndex' and 'DoorSubIndex' does not exist yet, then create it. """ sub_db = self.__door_id_db.get(StateIndex) if sub_db is None: return None door_id = sub_db.get(DoorSubIndex) if door_id is None: return None return door_id def mark_address_as_gotoed(self, Address): if False: self.__debug_gotoed_address(Address, 39) self.__gotoed_address_set.add(Address) def mark_address_as_routed(self, Address): self.__routed_address_set.add(Address) # Any address which is subject to routing is 'gotoed', at least inside # the router (e.g. "switch( ... ) ... case AdrX: goto LabelX; ..."). self.mark_address_as_gotoed(Address) def map_incidence_id_to_state_index(self, IncidenceId): assert isinstance(IncidenceId, (int, long)) \ or IncidenceId in E_IncidenceIDs, \ "Found <%s>" % IncidenceId index = self.__map_incidence_id_to_state_index.get(IncidenceId) if index is None: index = sm_index.get() self.__map_incidence_id_to_state_index[IncidenceId] = index if False: self.__debug_incidence_generation(IncidenceId, index) return index class DoorID_Scheme(tuple): """A TargetByStateKey maps from a index, i.e. a state_key to a particular target (e.g. a DoorID). It is implemented as a tuple which can be identified by the class 'TargetByStateKey'. """ def __new__(self, DoorID_List): return tuple.__new__(self, DoorID_List) @staticmethod def concatinate(This, That): door_id_list = list(This) door_id_list.extend(list(That)) return DoorID_Scheme(door_id_list) __routed_address_set = set([]) class IfDoorIdReferencedCode: def __init__(self, DoorId, Code=None, dial_db=None): """LabelType, LabelTypeArg --> used to access __address_db. Code = Code that is to be generated, supposed that the address is actually referred (by goto). (May be empty, so that that only the address is not printed.) """ assert isinstance(Code, list) or Code is None self.address = DoorId.related_address self.door_id = DoorId if Code is None: self.code = [ Lng.LABEL(self.door_id) ] else: self.code = Code class IfDoorIdReferencedLabel(IfDoorIdReferencedCode): def __init__(self, DoorId, dial_db): IfDoorIdReferencedCode.__init__(self, DoorId, dial_db=dial_db) def get_plain_strings(txt_list, dial_db): """-- Replaces unreferenced 'CodeIfLabelReferenced' objects by empty strings. -- Replaces integers by indentation, i.e. '1' = 4 spaces. """ size = len(txt_list) i = -1 while i < size - 1: i += 1 elm = txt_list[i] if type(elm) in [int, long]: # Indentation: elm = number of indentations txt_list[i] = " " * elm elif not isinstance(elm, IfDoorIdReferencedCode): # Text is left as it is pass elif dial_db.address_is_gotoed(elm.address): # If an address is referenced, the correspondent code is inserted. txt_list[i:i+1] = elm.code # print "#elm.code:", elm.code # txt_list = txt_list[:i] + elm.code + txt_list[i+1:] size += len(elm.code) - 1 i -= 1 else: # If an address is not referenced, the it is replaced by an empty string txt_list[i] = "" return txt_list def __nice(SM_ID): assert isinstance(SM_ID, (long, int)) return repr(SM_ID).replace("L", "").replace("'", "")
1.65625
2
software/utils/drc_utils/python/atlas_pressure_monitor.py
liangfok/oh-distro
92
12780782
import lcm import drc as lcmdrc import atlas as lcmatlas import numpy as np import time class AtlasPressureCommander(object): def __init__(self, desired_rpm=5000, max_psi=2500, min_psi=1500): self.desired_rpm = desired_rpm self.max_psi = max_psi self.min_psi = min_psi self.lc = lcm.LCM() self.desired_psi = self.min_psi self.last_published_psi = None def publish_pump_command(self): print "Publishing new desired pump pressure: {:d} PSI".format(self.desired_psi) msg = lcmatlas.pump_command_t() msg.desired_psi = self.desired_psi msg.desired_rpm = self.desired_rpm msg.cmd_max = 60.0 msg.utime = int(time.time() * 1e6) self.lc.publish('ATLAS_PUMP_COMMAND', msg.encode()) self.last_published_psi = self.desired_psi def run(self): while True: time.sleep(0.01) self.lc.handle() class AutoPressureCommander(AtlasPressureCommander): def __init__(self, default_offset_psi=300, eta=0.001, publish_threshold_psi=100, **kwargs): super(AtlasPressureCommander, self).__init__(**kwargs) self.default_offset_psi = default_offset_psi self.eta = eta self.publish_threshold_psi = publish_threshold_psi self._setup_subscriptions() def _setup_subscriptions(self): self.lc.subscribe('ATLAS_STATE_EXTRA', self.handle_atlas_state_extra) def handle_atlas_state_extra(self, channel, msg): if isinstance(msg, str): msg = lcmatlas.state_extra_t.decode(msg) max_joint_psi = max(np.max(msg.psi_pos), np.max(msg.psi_neg)) self.desired_psi = max(self.desired_psi * (1-self.eta), max_joint_psi + self.default_offset_psi) self.desired_psi = max(self.desired_psi, self.min_psi) self.desired_psi = min(self.desired_psi, self.max_psi) if self.desired_psi > self.last_published_psi + 5 or self.desired_psi - self.last_published_psi < -self.publish_threshold_psi: self.publish_pump_command() DEFAULT_PLAN_PRESSURE_MAP = {lcmdrc.controller_status_t.MANIPULATING: 2650, lcmdrc.controller_status_t.WALKING: 2000} DEFAULT_BEHAVIOR_PRESSURE_MAP = {'prep': 1500, 'stand': 2000, 'calibrate_null_bias': 1500, 'calibrate_electric_arms': 1500} class PlanPressureCommander(AtlasPressureCommander): def __init__(self, plan_map=DEFAULT_PLAN_PRESSURE_MAP, behavior_map=DEFAULT_BEHAVIOR_PRESSURE_MAP, **kwargs): super(PlanPressureCommander, self).__init__(**kwargs) self.plan_map = plan_map self.behavior_map = behavior_map self._setup_subscriptions() def _setup_subscriptions(self): self.lc.subscribe('CONTROLLER_STATUS', self.handle_controller_status) self.lc.subscribe('ATLAS_BEHAVIOR_COMMAND', self.handle_behavior) def handle_controller_status(self, channel, msg): if isinstance(msg, str): msg = lcmdrc.controller_status_t.decode(msg) if msg.state in self.plan_map: self.desired_psi = self.plan_map[msg.state] self.publish_pump_command() def handle_behavior(self, channel, msg): if isinstance(msg, str): msg = lcmdrc.behavior_command_t.decode(msg) s = msg.command.lower() if s in self.behavior_map: self.desired_psi = self.behavior_map[s] self.publish_pump_command() def run(self): while True: time.sleep(0.1) self.lc.handle() def main(): mon = PlanPressureCommander() print "Pressure Command: ready" mon.run() if __name__ == '__main__': main()
2.296875
2
git_sentry/handlers/git_team.py
git-sentry/git-sentry
0
12780783
from git_sentry.handlers.access_controlled_git_object import AccessControlledGitObject from git_sentry.handlers.git_repo import GitRepo from git_sentry.handlers.git_user import GitUser class GitTeam(AccessControlledGitObject): def __init__(self, git_object): super().__init__(git_object) def name(self): return self._git_object.name def login(self): return self.name() def as_dict(self): return self._git_object.as_json() def add_to_repo(self, repository_name, permission): self._git_object.add_repository(repository_name, permission) def repositories(self): return [GitRepo(r) for r in self._git_object.repositories()] def grant_access(self, user, role='member'): if self.permission_for(user) != 'maintainer': self._git_object.add_or_update_membership(user, role) def revoke_access(self, username): super().revoke_access(username) def members(self, role=None): return [GitUser(u) for u in self._git_object.members(role)] def permission_for(self, username): if any(m.login() == username for m in self.members('maintainer')): return 'maintainer' if any(m.login() == username for m in self.members('member')): return 'member' return None def __eq__(self, other): return self.name() == other.name() def __repr__(self): return f'GitTeam[{self.name()}]' def __str__(self): return f'GitTeam[{self.name()}]'
2.265625
2
framework/openCV/pyimagesearch_ppao/ch6_image_processing.py
friendlyantz/learning
1
12780784
import numpy as np import argparse import imutils import cv2 ap = argparse.ArgumentParser() ap.add_argument("-i", "--image", required = True, help = "Path to the image") ap.add_argument("-i2", "--image2", required = True, help = "Path to the image 2") ap.add_argument("-i3", "--image3", required = True, help = "Path to the image 3") args = vars(ap.parse_args()) image = cv2.imread(args["image"]) # NOTE: CHAPTER 6 cv2.imshow("Original", image) # 6.1 translation Left(-ve)/right(+ve) followed by up(-ve)/down(+ve) M = np.float32([[1, 0, 25], [0, 1, 50]]) shifted = cv2.warpAffine(image, M, (image.shape[1], image.shape[0])) cv2.imshow("Shifted Down and Right", shifted) # 6.1 translation M = np.float32([[1, 0, -50], [0, 1, -90]]) shifted = cv2.warpAffine(image, M, (image.shape[0], image.shape[0])) cv2.imshow("Shifted Up and Left", shifted) # 6.2 in imutils.py # 6.3 translate using imutils shifted = imutils.translate(image, 0, 100) cv2.imshow("Shifted Down", shifted) cv2.waitKey(0) cv2.destroyAllWindows() # 6.4 rotate counter-clockwise by default (h, w) = image.shape[:2] center = (w // 2, h // 2) M = cv2.getRotationMatrix2D(center, 45, 1.0) rotated = cv2.warpAffine(image, M, (w, h)) cv2.imshow("rotated by 45 degrees", rotated) # 6.4 rotate -ve to rotate clockwise M = cv2.getRotationMatrix2D(center, -90, 1.0) rotated = cv2.warpAffine(image, M, (w, h)) cv2.imshow("rotated by -90 degrees", rotated) # 6.5 move rotate to imutils.py # 6.6 rotate using imutils.py rotated = imutils.rotate(image, 180) cv2.imshow("Rotated by 180 Degrees", rotated) cv2.waitKey(0) cv2.destroyAllWindows() # 6.7 resize r = 150.0 / image.shape[1] # ratio - width = 150px dim = (150, int(image.shape[0] * r)) resized = cv2.resize(image, dim, interpolation = cv2.INTER_AREA) # could also use INTER_LINEAR # INTER_CUBIC or INTER_NEAREST cv2.imshow("Resized (Width)", resized) # 6.8 resize r = 50.0 / image.shape[1] # ratio - height = 50px dim = (50, int(image.shape[0] * r)) resized = cv2.resize(image, dim, interpolation = cv2.INTER_AREA) cv2.imshow("Resized (Height)", resized) # 6.11 # 6.9 resize in imutils.py resized = imutils.resize(image, width = 66) print("shape: {} pixels".format(resized.shape)) # NOTE: height width order not width height cv2.imshow("Resized via Function", resized) # 6.10 resize height via imutils.py resized = imutils.resize(image, height = 110) print("shape: {} pixels".format(resized.shape)) # NOTE: height width order not width height cv2.imshow("Resized via Function height 50", resized) cv2.waitKey(0) cv2.destroyAllWindows() # 6.12 flipping flipped = cv2.flip(image, 1) cv2.imshow("Flipped Horizontally", flipped) flipped = cv2.flip(image, 0) cv2.imshow("Flipped Vertically", flipped) flipped = cv2.flip(image, -1) cv2.imshow("Flipped Horizontally & Vertically", flipped) cv2.waitKey(0) # 6.13 crop [y_start:y_end, x_start:x_end] cropped = image[30:120, 240:335] cv2.imshow("T-Rex Face", cropped) cv2.waitKey(0) cv2.destroyAllWindows() # 6.14 arithmetic # cv2 uses max and min print(" max of 255: {}".format(cv2.add(np.uint8([200]), np.uint8([100])))) print(" min of 0: {}".format(cv2.add(np.uint8([ 50]), np.uint8([100])))) # np wraps around print("wrap around: {}".format(np.uint8([200]) + np.uint8([100]))) print("wrap around: {}".format(np.uint8([ 50]) + np.uint8([100]))) # 6.17 arithmetic on images M = np.ones(image.shape, dtype = "uint8") * 100 added = cv2.add(image, M) cv2.imshow("Added", added) M = np.ones(image.shape, dtype = "uint8") *50 subtracted = cv2.subtract(image, M) cv2.imshow("Subtracted", subtracted) cv2.waitKey(0) # 6.18 bitwise operations rectangle = np.zeros((300, 300), dtype = "uint8") cv2.rectangle(rectangle, (25, 25), (275, 275), 255, -1) cv2.imshow("Rectangle", rectangle) circle = np.zeros((300, 300), dtype = "uint8") cv2.circle(circle, (150, 150), 150, 255, -1) cv2.imshow("Circle", circle) cv2.waitKey(0) # 6.19 bitwise AND bitwiseAnd = cv2.bitwise_and(rectangle, circle) cv2.imshow("AND", bitwiseAnd) cv2.waitKey(0) # 6.19 bitwise OR bitwiseOr = cv2.bitwise_or(rectangle, circle) cv2.imshow("OR", bitwiseOr) cv2.waitKey(0) # 6.19 bitwise XOR bitwiseXor = cv2.bitwise_xor(rectangle, circle) cv2.imshow("XOR", bitwiseXor) cv2.waitKey(0) # 6.19 bitwise NOT bitwiseNot = cv2.bitwise_not(circle) cv2.imshow("NOT", bitwiseNot) cv2.waitKey(0) cv2.destroyAllWindows() # 6.20 masking image2 = cv2.imread(args["image2"]) cv2.imshow("Original2", image2) mask = np.zeros(image2.shape[:2], dtype = "uint8") (cX, cY) = (image2.shape[1] // 2, image2.shape[0] // 2) cv2.rectangle(mask, (cX - 75, cY -75), (cX + 75, cY +75), 255, -1) cv2.imshow("Mask", mask) masked = cv2.bitwise_and(image2, image2, mask = mask) cv2.imshow("Mask Applied to Image", masked) cv2.waitKey(0) # 6.21 masking circle mask = np.zeros(image2.shape[:2], dtype = "uint8") cv2.circle(mask, (cX, cY), 100, 255, -1) masked = cv2.bitwise_and(image2, image2, mask = mask) cv2.imshow("Mask", mask) cv2.imshow("Mask Applied to Image", masked) cv2.waitKey(0) # 6.22 splitting and merging channels image3 = cv2.imread(args["image3"]) (B, G, R) = cv2.split(image3) cv2.imshow("Red", R) cv2.imshow("Green", G) cv2.imshow("Blue", B) merged = cv2.merge([B, G, R]) cv2.imshow("Merged", merged) cv2.waitKey(0) cv2.destroyAllWindows() # 6.23 merge only colour channel zeros = np.zeros(image3.shape[:2], dtype = "uint8") cv2.imshow("Red", cv2.merge([zeros, zeros, R])) cv2.imshow("Green", cv2.merge([zeros, G, zeros])) cv2.imshow("Blue", cv2.merge([B, zeros, zeros])) cv2.waitKey(0) cv2.destroyAllWindows() # 6.24 colorspaces cv2.imshow("Original", image2) gray = cv2.cvtColor(image2, cv2.COLOR_BGR2GRAY) cv2.imshow("Gray", gray) hsv = cv2.cvtColor(image2, cv2.COLOR_BGR2HSV) cv2.imshow("HSV", hsv) lab = cv2.cvtColor(image2, cv2.COLOR_BGR2LAB) cv2.imshow("L*a*b*", lab) cv2.waitKey(0)
2.96875
3
users/factories.py
bllli/Django-China-API
187
12780785
# factories that automatically create user data import factory from users.models import User class UserFactory(factory.DjangoModelFactory): class Meta: model = User username = factory.Sequence(lambda n: 'user%s' % n) email = factory.LazyAttribute(lambda o: <EMAIL>' % o.username) password = 'password' mugshot = factory.django.ImageField() @classmethod def _create(cls, model_class, *args, **kwargs): manager = cls._get_manager(model_class) return manager.create_user(*args, **kwargs)
2.59375
3
Array/Easy/busyStudent.py
pavi-ninjaac/leetcode
0
12780786
# -*- coding: utf-8 -*- """ Created on Wed Dec 30 22:57:38 2020 @author: ninjaac """ """ Given two integer arrays startTime and endTime and given an integer queryTime. The ith student started doing their homework at the time startTime[i] and finished it at time endTime[i]. Return the number of students doing their homework at time queryTime. More formally, return the number of students where queryTime lays in the interval [startTime[i], endTime[i]] inclusive. Example 1: Input: startTime = [1,2,3], endTime = [3,2,7], queryTime = 4 Output: 1 Explanation: We have 3 students where: The first student started doing homework at time 1 and finished at time 3 and wasn't doing anything at time 4. The second student started doing homework at time 2 and finished at time 2 and also wasn't doing anything at time 4. The third student started doing homework at time 3 and finished at time 7 and was the only student doing homework at time 4. """ class Solution: @staticmethod def busyStudent(startTime ,endTime ,queryTime): res = 0 for i,j in zip(startTime,endTime): if i<=queryTime and j>=queryTime: res+=1 return res print(Solution.busyStudent([5], [5], 5))
3.421875
3
TEP/lista7/D.py
GuilhermeBraz/unb-workflow
0
12780787
<filename>TEP/lista7/D.py<gh_stars>0 # You've got a rectangular parallelepiped with integer edge lengths. You know the areas of its three faces that have a common vertex. # Your task is to find the sum of lengths of all 12 edges of this parallelepiped. from math import sqrt x, y, z = map(int, input().split()) perimeter = (4*sqrt((x*y)/z)) * (1+z/x+z/y) print(round(perimeter))
3.671875
4
api/algo.py
unithmallavaram/TeamFormationAssistant_V2
3
12780788
import sys f = open("success.txt", "w")
1.40625
1
home/views.py
apoorvanand/tweet-search
51
12780789
import datetime import random import csv import json # TODO: Fix * imports from django.shortcuts import * from django.contrib.auth.decorators import login_required, user_passes_test from django.contrib.auth import logout as auth_logout from social.apps.django_app.default.models import UserSocialAuth from gnip_search.gnip_search_api import QueryError as GNIPQueryError from chart import Chart from timeframe import Timeframe from frequency import Frequency from tweets import Tweets from home.utils import * # import twitter KEYWORD_RELEVANCE_THRESHOLD = .1 # Only show related terms if > 10% TWEET_QUERY_COUNT = 10 # For real identification, > 100. Max of 500 via Search API. DEFAULT_TIMEFRAME = 1 # When not specified or needed to constrain, this # of days lookback TIMEDELTA_DEFAULT_TIMEFRAME = datetime.timedelta(days=DEFAULT_TIMEFRAME) TIMEDELTA_DEFAULT_30 = datetime.timedelta(days=30) DATE_FORMAT = "%Y-%m-%d %H:%M" DATE_FORMAT_JSON = "%Y-%m-%dT%H:%M:%S" def login(request): """ Returns login page for given request """ context = {"request": request} return render_to_response('login.html', context, context_instance=RequestContext(request)) @login_required # @user_passes_test(lambda u: u.is_staff or u.is_superuser, login_url='/') def home(request): """ Returns home page for given request """ query = request.GET.get("query", "") context = {"request": request, "query0": query} tweets = [] return render_to_response('home.html', context, context_instance=RequestContext(request)) @login_required def query_chart(request): """ Returns query chart for given request """ # TODO: Move this to one line e.g. queries to query query = request.GET.get("query", None) queries = request.GET.getlist("queries[]") if query: queries = [query] request_timeframe = Timeframe(start = request.GET.get("start", None), end = request.GET.get("end", None), interval = request.GET.get("interval", "hour")) response_chart = None try: response_chart = Chart(queries = queries, start = request_timeframe.start, end = request_timeframe.end, interval = request_timeframe.interval) except GNIPQueryError as e: return handleQueryError(e) response_data = {} response_data['days'] = request_timeframe.days response_data['start'] = request_timeframe.start.strftime(DATE_FORMAT_JSON) response_data['end'] = request_timeframe.end.strftime(DATE_FORMAT_JSON) response_data['columns'] = response_chart.columns response_data['total'] = response_chart.total return HttpResponse(json.dumps(response_data), content_type="application/json") @login_required def query_frequency(request): query = request.GET.get("query", None) response_data = {} sample = 500 if query is not None: # Get Timeframe e.g. process time from request request_timeframe = Timeframe(start = request.GET.get("start", None), end = request.GET.get("end", None), interval = request.GET.get("interval", "hour")) data = None try: # Query GNIP and get frequency data = Frequency(query = query, sample = sample, start = request_timeframe.start, end = request_timeframe.end) except GNIPQueryError as e: return handleQueryError(e) response_data["frequency"] = data.freq response_data["sample"] = sample return HttpResponse(json.dumps(response_data), content_type="application/json") @login_required def query_tweets(request): """ Returns tweet query """ request_timeframe = Timeframe(start = request.GET.get("start", None), end = request.GET.get("end", None), interval = request.GET.get("interval", "hour")) query_count = int(request.GET.get("embedCount", TWEET_QUERY_COUNT)) export = request.GET.get("export", None) query = request.GET.get("query", "") try: tweets = Tweets(query=query, query_count=query_count, start=request_timeframe.start, end=request_timeframe.end, export=export) except GNIPQueryError as e: return handleQueryError(e) response_data = {} if export == "csv": response = HttpResponse(content_type='text/csv') response['Content-Disposition'] = 'attachment; filename="export.csv"' writer = csv.writer(response, delimiter=',', quotechar="'", quoting=csv.QUOTE_ALL) writer.writerow(['count','time','id','user_screen_name','user_id','status','retweet_count','favorite_count','is_retweet','in_reply_to_tweet_id','in_reply_to_screen_name']) count = 0; for t in tweets.get_data(): count = count + 1 body = t['body'].encode('ascii', 'replace') status_id = t['id'] status_id = status_id[status_id.rfind(':')+1:] user_id = t['actor']['id'] user_id = user_id[user_id.rfind(':')+1:] writer.writerow([count, t['postedTime'], status_id, t['actor']['preferredUsername'], user_id, body, t['retweetCount'], t['favoritesCount'], 'X', 'X', 'X']) return response else: response_data['tweets'] = tweets.get_data() return HttpResponse(json.dumps(response_data), content_type="application/json") def logout(request): """ Returns a redirect response and logs out user """ auth_logout(request) return HttpResponseRedirect('/')
2.359375
2
tests/test_data_models.py
datarevenue-berlin/omigami
7
12780790
<reponame>datarevenue-berlin/omigami<filename>tests/test_data_models.py from py_muvr.data_structures import SelectedFeatures def test_n_features(dataset): assert dataset.n_features == 12 def test_input_data_slice(dataset): assert dataset[:5, 3:7].X.shape == (5, 4) assert dataset[[1, 2, 5], [3, 4, 7]].X.shape == (3, 3) assert dataset[1:3, :].X.shape == (2, 12) assert dataset[:, :].X.shape == dataset.X.shape def test_selected_features(): sf = SelectedFeatures(min="min", mid="mid", max="max") assert sf["mid"]
2.15625
2
yapylib/helpers.py
twocucao/YaPyLib
2
12780791
<filename>yapylib/helpers.py<gh_stars>1-10 import os def get_load_dotenv(default=True): val = os.environ.get('YAPYLIB_SKIP_DOTENV') if not val: return default return val.lower() in ('0', 'false', 'no')
2.375
2
exp/data_processing/get_cropped_image.py
dangxuanvuong98/pineapples_harvester
0
12780792
<reponame>dangxuanvuong98/pineapples_harvester<gh_stars>0 import cv2 import os import xml.etree.ElementTree as ET from tqdm import tqdm data_directory_path = '/media/trivu/data/DataScience/ComputerVision/dua/new_data/train' result_path = '/media/trivu/data/DataScience/ComputerVision/dua/new_data/cropped_pineapple' labels_path = os.listdir(data_directory_path) labels_path = [label_path for label_path in labels_path if label_path.endswith('.xml')] _id = 0 for label_path in tqdm(labels_path): tree = ET.parse(os.path.join(data_directory_path, label_path)) root = tree.getroot() filename = root.find('filename').text img_path = os.path.join(data_directory_path, filename) if not os.path.exists(img_path): continue img = cv2.imread(img_path) for obj in root.findall('object'): obj_name = obj.find('name').text # if not obj_name.startswith('full'): if not obj_name in ['body ripe pineapple', 'full ripe pineapple']: continue bndbox = obj.find('bndbox') xmin = int(bndbox.find('xmin').text) ymin = int(bndbox.find('ymin').text) ymax = int(bndbox.find('ymax').text) xmax = int(bndbox.find('xmax').text) img_cropped = img[ymin:ymax, xmin:xmax] _id += 1 cv2.imwrite(os.path.join(result_path, obj_name+str(_id)+'.jpg'), img_cropped) # break
2.421875
2
logistic_regression.py
AbChatt/Final-Project-C11-Part-2-Python
0
12780793
<gh_stars>0 """ CSCC11 - Introduction to Machine Learning, Winter 2020, Exam <NAME>, <NAME> =========================================================== COMPLETE THIS TEXT BOX: Student Name: <NAME> Student number: 1004820615 UtorID: chatt114 I hereby certify that the work contained here is my own _<NAME>_ (sign with your name) =========================================================== """ import numpy as np from utils import softmax class LogisticRegression: def __init__(self, num_features, num_classes, rng=np.random): """ This class represents a multi-class logistic regression model. NOTE: We assume the labels are 0 to K-1, where K is number of classes. self.parameters contains the vector of model weights. NOTE: the bias term is assume to be the B first element of the vecto TODO: You will need to implement one method of this class: - _compute_loss_and_gradient: ndarray, ndarray -> float, ndarray Implementation description will be provided under each method. For the following: - N: Number of samples. - D: Dimension of input features. - K: Number of classes. Args: - num_features (int): The dimension of feature vectors for input data. - num_classes (int): The number of classes in the task. - rng (RandomState): The random number generator to initialize weights. """ self.num_features = num_features self.num_classes = num_classes self.rng = rng # Initialize parameters self.parameters = np.zeros(shape=(num_classes, self.num_features + 1)) def init_weights(self, factor=1, bias=0): """ This initializes the model weights with random values. Args: - factor (float): A constant scale factor for the initial weights. - bias (float): The bias value """ self.parameters[:, 1:] = factor * self.rng.rand(self.num_classes, self.num_features) self.parameters[:, 0] = bias def _compute_loss_and_gradient(self, X, y): """ This computes the training loss and its gradient. That is, the negative log likelihood (NLL) and the gradient of NLL. Args: - X (ndarray (shape: (N, D))): A NxD matrix containing N D-dimensional inputs. - y (ndarray (shape: (N, 1))): A N-column vector containing N scalar outputs (labels). Output: - nll (float): The NLL of the training inputs and outputs. - grad (ndarray (shape: (K, D + 1))): A Kx(D+1) weight matrix (including bias) containing the gradient of NLL (i.e. partial derivatives of NLL w.r.t. self.parameters). """ (N, D) = X.shape # ==================================================== # TODO: Implement your solution within the box unique_labels = np.unique(y) y_i_k = np.zeros(shape=(N, self.num_classes)) # (N, K) -> [[size K each, N of these]] nll = 0 grad = np.ndarray(shape = (self.num_classes, D + 1)) # (K, D+1) -> [[size D + 1 each, K of these]] print(np.shape(self.parameters)) # Representing one_hot_decoder from handout as a matrix for i in range(N): index = np.where(unique_labels == y[i]) y_i_k[i][index] = 1 # nested summations are like matrix multiplication # multiply -1 at end nll = nll + y_i_k * np.log(softmax(np.matmul(X, (np.delete(self.parameters, 0, axis=1).T)))) # remove bias term nll = -1 * nll grad_w_k = np.ndarray(shape = (self.num_classes, D)) # calculate gradient using equation 10 in handout # multiple -1 at end grad_w_k = np.matmul((y_i_k - softmax(np.matmul(X, (np.delete(self.parameters, 0, axis=1).T)))).T, X) bias_terms = ((self.parameters).T)[0] for i in range(self.num_classes): np.append(grad[i], bias_terms[i]) for j in range(len(grad_w_k[i])): np.append(grad[i], grad_w_k[i][j]) grad = -1 * grad # ==================================================== return nll, grad def learn(self, train_X, train_y, num_epochs=1000, step_size=1e-3, check_grad=False, verbose=False, eps=np.finfo(np.float).eps): """ This performs gradient descent to find the optimal model parameters given the training data. NOTE: This method mutates self.parameters Args: - train_X (ndarray (shape: (N, D))): A NxD matrix containing N D-dimensional training inputs. - train_y (ndarray (shape: (N, 1))): A N-column vector containing N scalar training outputs (labels). - num_epochs (int): Number of gradient descent steps NOTE: 1 <= num_epochs - step_size (float): Gradient descent step size - check_grad (bool): Whether or not to check gradient using finite difference. - verbose (bool): Whether or not to print gradient information for every step. - eps (float): Machine epsilon ASIDE: The design for applying gradient descent to find local minimum is usually different from this. You should think about a better way to do this! Scipy is a good reference for such design. """ assert len(train_X.shape) == len(train_y.shape) == 2, f"Input/output pairs must be 2D-arrays. train_X: {train_X.shape}, train_y: {train_y.shape}" (N, D) = train_X.shape assert N == train_y.shape[0], f"Number of samples must match for input/output pairs. train_X: {N}, train_y: {train_y.shape[0]}" assert D == self.num_features, f"Expected {self.num_features} features. Got: {D}" assert train_y.shape[1] == 1, f"train_Y must be a column vector. Got: {train_y.shape}" assert 1 <= num_epochs, f"Must take at least 1 gradient step. Got: {num_epochs}" nll, grad = self._compute_loss_and_gradient(train_X, train_y) # Check gradient using finite difference if check_grad: original_parameters = np.copy(self.parameters) grad_approx = np.zeros(shape=(self.num_classes, self.num_features + 1)) h = 1e-8 # Compute finite difference w.r.t. each weight vector component for ii in range(self.num_classes): for jj in range(self.num_features + 1): self.parameters = np.copy(original_parameters) self.parameters[ii][jj] += h grad_approx[ii][jj] = (self._compute_loss_and_gradient(train_X, train_y)[0] - nll) / h # Reset parameters back to original self.parameters = np.copy(original_parameters) print(f"Negative Log Likelihood: {nll}") print(f"Analytic Gradient: {grad.T}") print(f"Numerical Gradient: {grad_approx.T}") print("The gradients should be nearly identical.") # Perform gradient descent for epoch_i in range(num_epochs): original_parameters = np.copy(self.parameters) # Check gradient flow if np.linalg.norm(grad) < eps: print(f"Gradient is close to 0: {eps}. Terminating gradient descent.") break # Determine the suitable step size. step_size *= 2 self.parameters = original_parameters - step_size * grad E_new, grad_new = self._compute_loss_and_gradient(train_X, train_y) assert np.isfinite(E_new), f"Error is NaN/Inf" while E_new >= nll and step_size > 0: step_size /= 2 self.parameters = original_parameters - step_size * grad E_new, grad_new = self._compute_loss_and_gradient(train_X, train_y) assert np.isfinite(E_new), f"Error is NaN/Inf" if step_size <= eps: print(f"Infinitesimal step: {step_size}. Terminating gradient descent.") break if verbose: print(f"Epoch: {epoch_i}, Step size: {step_size}, Gradient Norm: {np.linalg.norm(grad)}, NLL: {nll}") # Update next loss and next gradient grad = grad_new nll = E_new def predict(self, X): """ This computes the probability of the K labels given the input X. Args: - X (ndarray (shape: (N, D))): A NxD matrix consisting N D-dimensional inputs. Output: - probs (ndarray (shape: (N, K))): A NxK matrix consisting N K-probabilities for each input. """ (N, D) = X.shape assert D == self.num_features, f"Expected {self.num_features} features. Got: {D}" # Pad 1's for bias term X = np.hstack((np.ones(shape=(N, 1), dtype=np.float), X)) # This receives the probabilities of class 1 given inputs probs = softmax(X @ self.parameters.T) return probs
3.96875
4
testing/distributions/gamma_test.py
jnkm/MXFusion
0
12780794
import pytest import mxnet as mx import numpy as np from mxfusion.components.variables.runtime_variable import add_sample_dimension, is_sampled_array, get_num_samples from mxfusion.components.distributions import Gamma, GammaMeanVariance from mxfusion.util.testutils import numpy_array_reshape from mxfusion.util.testutils import MockMXNetRandomGenerator @pytest.mark.usefixtures("set_seed") class TestGammaDistribution(object): @pytest.mark.parametrize("dtype, mean, mean_isSamples, variance, variance_isSamples, rv, rv_isSamples, num_samples", [ (np.float64, np.random.uniform(0,10,size=(5,2)), True, np.random.uniform(1,10,size=(2)), False, np.random.uniform(1,10,size=(5,3,2)), True, 5), (np.float64, np.random.uniform(0,10,size=(5,2)), True, np.random.uniform(1,10,size=(2)), False, np.random.uniform(1,10,size=(3,2)), False, 5), (np.float64, np.random.uniform(0,10,size=(2)), False, np.random.uniform(1,10,size=(2)), False, np.random.uniform(1,10,size=(3,2)), False, 5), (np.float64, np.random.uniform(0,10,size=(5,2)), True, np.random.uniform(1,10,size=(5,3,2)), True, np.random.uniform(1,10,size=(5,3,2)), True, 5), (np.float32, np.random.uniform(0,10,size=(5,2)), True, np.random.uniform(1,10,size=(2)), False, np.random.uniform(1,10,size=(5,3,2)), True, 5), ]) def test_log_pdf_mean_variance(self, dtype, mean, mean_isSamples, variance, variance_isSamples, rv, rv_isSamples, num_samples): import scipy as sp isSamples_any = any([mean_isSamples, variance_isSamples, rv_isSamples]) rv_shape = rv.shape[1:] if rv_isSamples else rv.shape n_dim = 1 + len(rv.shape) if isSamples_any and not rv_isSamples else len(rv.shape) mean_np = numpy_array_reshape(mean, mean_isSamples, n_dim) variance_np = numpy_array_reshape(variance, variance_isSamples, n_dim) rv_np = numpy_array_reshape(rv, rv_isSamples, n_dim) beta_np = mean_np / variance_np alpha_np = mean_np * beta_np log_pdf_np = sp.stats.gamma.logpdf(rv_np, a=alpha_np, loc=0, scale=1./beta_np) mean_mx = mx.nd.array(mean, dtype=dtype) if not mean_isSamples: mean_mx = add_sample_dimension(mx.nd, mean_mx) variance_mx = mx.nd.array(variance, dtype=dtype) if not variance_isSamples: variance_mx = add_sample_dimension(mx.nd, variance_mx) rv_mx = mx.nd.array(rv, dtype=dtype) if not rv_isSamples: rv_mx = add_sample_dimension(mx.nd, rv_mx) gamma = GammaMeanVariance.define_variable(mean=mean_mx, variance=variance_mx, shape=rv_shape, dtype=dtype).factor variables = {gamma.mean.uuid: mean_mx, gamma.variance.uuid: variance_mx, gamma.random_variable.uuid: rv_mx} log_pdf_rt = gamma.log_pdf(F=mx.nd, variables=variables) assert np.issubdtype(log_pdf_rt.dtype, dtype) assert is_sampled_array(mx.nd, log_pdf_rt) == isSamples_any if isSamples_any: assert get_num_samples(mx.nd, log_pdf_rt) == num_samples if np.issubdtype(dtype, np.float64): rtol, atol = 1e-7, 1e-10 else: rtol, atol = 1e-4, 1e-5 assert np.allclose(log_pdf_np, log_pdf_rt.asnumpy(), rtol=rtol, atol=atol) @pytest.mark.parametrize( "dtype, mean, mean_isSamples, variance, variance_isSamples, rv_shape, num_samples",[ (np.float64, np.random.rand(5,2), True, np.random.rand(2)+0.1, False, (3,2), 5), (np.float64, np.random.rand(2), False, np.random.rand(5,2)+0.1, True, (3,2), 5), (np.float64, np.random.rand(2), False, np.random.rand(2)+0.1, False, (3,2), 5), (np.float64, np.random.rand(5,2), True, np.random.rand(5,3,2)+0.1, True, (3,2), 5), (np.float32, np.random.rand(5,2), True, np.random.rand(2)+0.1, False, (3,2), 5), ]) def test_draw_samples_mean_variance(self, dtype, mean, mean_isSamples, variance, variance_isSamples, rv_shape, num_samples): n_dim = 1 + len(rv_shape) out_shape = (num_samples,) + rv_shape mean_np = mx.nd.array(np.broadcast_to(numpy_array_reshape(mean, mean_isSamples, n_dim), shape=out_shape), dtype=dtype) variance_np = mx.nd.array(np.broadcast_to(numpy_array_reshape(variance, variance_isSamples, n_dim), shape=out_shape), dtype=dtype) gamma = GammaMeanVariance.define_variable(shape=rv_shape, dtype=dtype).factor mean_mx = mx.nd.array(mean, dtype=dtype) if not mean_isSamples: mean_mx = add_sample_dimension(mx.nd, mean_mx) variance_mx = mx.nd.array(variance, dtype=dtype) if not variance_isSamples: variance_mx = add_sample_dimension(mx.nd, variance_mx) variables = {gamma.mean.uuid: mean_mx, gamma.variance.uuid: variance_mx} mx.random.seed(0) rv_samples_rt = gamma.draw_samples( F=mx.nd, variables=variables, num_samples=num_samples) mx.random.seed(0) beta_np = mean_np / variance_np alpha_np = mean_np * beta_np rv_samples_mx = mx.nd.random.gamma(alpha=alpha_np, beta=beta_np, dtype=dtype) assert np.issubdtype(rv_samples_rt.dtype, dtype) assert is_sampled_array(mx.nd, rv_samples_rt) assert get_num_samples(mx.nd, rv_samples_rt) == num_samples if np.issubdtype(dtype, np.float64): rtol, atol = 1e-7, 1e-10 else: rtol, atol = 1e-4, 1e-5 assert np.allclose(rv_samples_mx.asnumpy(), rv_samples_rt.asnumpy(), rtol=rtol, atol=atol) @pytest.mark.parametrize("dtype, alpha, alpha_isSamples, beta, beta_isSamples, rv, rv_isSamples, num_samples", [ (np.float64, np.random.uniform(0,10,size=(5,2)), True, np.random.uniform(1,10,size=(2)), False, np.random.uniform(1,10,size=(5,3,2)), True, 5), (np.float64, np.random.uniform(0,10,size=(5,2)), True, np.random.uniform(1,10,size=(2)), False, np.random.uniform(1,10,size=(3,2)), False, 5), (np.float64, np.random.uniform(0,10,size=(2)), False, np.random.uniform(1,10,size=(2)), False, np.random.uniform(1,10,size=(3,2)), False, 5), (np.float64, np.random.uniform(0,10,size=(5,2)), True, np.random.uniform(1,10,size=(5,3,2)), True, np.random.uniform(1,10,size=(5,3,2)), True, 5), (np.float32, np.random.uniform(0,10,size=(5,2)), True, np.random.uniform(1,10,size=(2)), False, np.random.uniform(1,10,size=(5,3,2)), True, 5), ]) def test_log_pdf(self, dtype, alpha, alpha_isSamples, beta, beta_isSamples, rv, rv_isSamples, num_samples): import scipy as sp isSamples_any = any([alpha_isSamples, beta_isSamples, rv_isSamples]) rv_shape = rv.shape[1:] if rv_isSamples else rv.shape n_dim = 1 + len(rv.shape) if isSamples_any and not rv_isSamples else len(rv.shape) alpha_np = numpy_array_reshape(alpha, alpha_isSamples, n_dim) beta_np = numpy_array_reshape(beta, beta_isSamples, n_dim) rv_np = numpy_array_reshape(rv, rv_isSamples, n_dim) log_pdf_np = sp.stats.gamma.logpdf(rv_np, a=alpha_np, loc=0, scale=1./beta_np) gamma = Gamma.define_variable(shape=rv_shape, dtype=dtype).factor alpha_mx = mx.nd.array(alpha, dtype=dtype) if not alpha_isSamples: alpha_mx = add_sample_dimension(mx.nd, alpha_mx) beta_mx = mx.nd.array(beta, dtype=dtype) if not beta_isSamples: beta_mx = add_sample_dimension(mx.nd, beta_mx) rv_mx = mx.nd.array(rv, dtype=dtype) if not rv_isSamples: rv_mx = add_sample_dimension(mx.nd, rv_mx) variables = {gamma.alpha.uuid: alpha_mx, gamma.beta.uuid: beta_mx, gamma.random_variable.uuid: rv_mx} log_pdf_rt = gamma.log_pdf(F=mx.nd, variables=variables) assert np.issubdtype(log_pdf_rt.dtype, dtype) assert is_sampled_array(mx.nd, log_pdf_rt) == isSamples_any if isSamples_any: assert get_num_samples(mx.nd, log_pdf_rt) == num_samples if np.issubdtype(dtype, np.float64): rtol, atol = 1e-7, 1e-10 else: rtol, atol = 1e-4, 1e-5 assert np.allclose(log_pdf_np, log_pdf_rt.asnumpy(), rtol=rtol, atol=atol) @pytest.mark.parametrize( "dtype, alpha, alpha_isSamples, beta, beta_isSamples, rv_shape, num_samples",[ (np.float64, np.random.rand(5,2), True, np.random.rand(2)+0.1, False, (3,2), 5), (np.float64, np.random.rand(2), False, np.random.rand(5,2)+0.1, True, (3,2), 5), (np.float64, np.random.rand(2), False, np.random.rand(2)+0.1, False, (3,2), 5), (np.float64, np.random.rand(5,2), True, np.random.rand(5,3,2)+0.1, True, (3,2), 5), (np.float32, np.random.rand(5,2), True, np.random.rand(2)+0.1, False, (3,2), 5), ]) def test_draw_samples(self, dtype, alpha, alpha_isSamples, beta, beta_isSamples, rv_shape, num_samples): n_dim = 1 + len(rv_shape) out_shape = (num_samples,) + rv_shape alpha_np = mx.nd.array(np.broadcast_to(numpy_array_reshape(alpha, alpha_isSamples, n_dim), shape=out_shape), dtype=dtype) beta_np = mx.nd.array(np.broadcast_to(numpy_array_reshape(beta, beta_isSamples, n_dim), shape=out_shape), dtype=dtype) gamma = Gamma.define_variable(shape=rv_shape, dtype=dtype).factor alpha_mx = mx.nd.array(alpha, dtype=dtype) if not alpha_isSamples: alpha_mx = add_sample_dimension(mx.nd, alpha_mx) beta_mx = mx.nd.array(beta, dtype=dtype) if not beta_isSamples: beta_mx = add_sample_dimension(mx.nd, beta_mx) variables = {gamma.alpha.uuid: alpha_mx, gamma.beta.uuid: beta_mx} mx.random.seed(0) rv_samples_rt = gamma.draw_samples( F=mx.nd, variables=variables, num_samples=num_samples) mx.random.seed(0) rv_samples_mx = mx.nd.random.gamma(alpha=alpha_np, beta=beta_np, dtype=dtype) assert np.issubdtype(rv_samples_rt.dtype, dtype) assert is_sampled_array(mx.nd, rv_samples_rt) assert get_num_samples(mx.nd, rv_samples_rt) == num_samples if np.issubdtype(dtype, np.float64): rtol, atol = 1e-7, 1e-10 else: rtol, atol = 1e-4, 1e-5 assert np.allclose(rv_samples_mx.asnumpy(), rv_samples_rt.asnumpy(), rtol=rtol, atol=atol)
2.046875
2
server/danesfield_server/loader.py
Kitware/Danesfield-App
25
12780795
<reponame>Kitware/Danesfield-App #!/usr/bin/env python # -*- coding: utf-8 -*- ############################################################################### # Copyright Kitware Inc. and Contributors # Distributed under the Apache License, 2.0 (apache.org/licenses/LICENSE-2.0) # See accompanying Copyright.txt and LICENSE files for details ############################################################################### from girder import events from girder.utility.config import getServerMode from .rest import dataset, workingSet, processing, filter from .event_handlers import onFinalizeUpload, onJobUpdate from .workflow import DanesfieldWorkflow from .workflow_manager import DanesfieldWorkflowManager from .client_webroot import ClientWebroot from .workflow_steps import RunDanesfieldImageless def createWorkflow(): """ Configure Danesfield Workflow. """ workflow = DanesfieldWorkflow() for step in [ RunDanesfieldImageless, ]: workflow.addStep(step()) return workflow def load(info): # Install event handlers events.bind( "model.file.finalizeUpload.after", "danesfield-after-upload", onFinalizeUpload ) events.bind("jobs.job.update", "danesfield-job-update", onJobUpdate) # Set workflow on workflow manager # TODO: On each request to /process, set this to either the normal or point-cloud starting workflow? DanesfieldWorkflowManager.instance().workflow = createWorkflow() if getServerMode() == "production": # Serve client from / # Relocate girder to serve from /girder info["serverRoot"], info["serverRoot"].girder = ( ClientWebroot(), info["serverRoot"], ) info["serverRoot"].api = info["serverRoot"].girder.api # Add API routes info["apiRoot"].dataset = dataset.DatasetResource() info["apiRoot"].workingSet = workingSet.WorkingSetResource() info["apiRoot"].filter = filter.FilterResource() info["apiRoot"].processing = processing.ProcessingResource()
1.78125
2
file_builder/test/hash_dirs_test.py
btrekkie/file-builder
1
12780796
import hashlib import os from .. import FileBuilder from .file_builder_test import FileBuilderTest class HashDirsTest(FileBuilderTest): """Tests a hash directory build operation. The build operation computes SHA-256 hashes for all of the files and directories in a given root directory. A directory's hash incorporates the hashes and names of the files and directories in the directory. This tests nested subbuilds, as each directory and file hash operation has its own subbuild. """ def setUp(self): super().setUp() self._build_number = 0 self._input_dir = os.path.join(self._temp_dir, 'Input') os.mkdir(self._input_dir) def _hash_file(self, builder, filename): """Build file function that computes a file's hash.""" digest = hashlib.sha256() with builder.read_binary(filename) as file_: bytes_ = file_.read(1024) while len(bytes_) > 0: digest.update(bytes_) bytes_ = file_.read(1024) hash_ = digest.hexdigest() return { 'build': self._build_number, 'hash': hash_, } def _hash_dirs(self, builder, dir_): """Subbuild function that computes a directory's hash.""" digest = hashlib.sha256() subfile_results = {} for subfile in sorted(builder.list_dir(dir_)): digest.update(subfile.encode()) absolute_subfile = os.path.join(dir_, subfile) if builder.is_file(absolute_subfile): subfile_result = builder.subbuild( 'hash_file', self._hash_file, absolute_subfile) else: subfile_result = builder.subbuild( 'hash_dirs', self._hash_dirs, absolute_subfile) subfile_results[subfile] = subfile_result digest.update(subfile_result['hash'].encode()) hash_ = digest.hexdigest() return { 'build': self._build_number, 'hash': hash_, 'subfiles': subfile_results, } def _build(self): """Execute the "hash dirs" build operation.""" self._build_number += 1 return FileBuilder.build( self._cache_filename, 'hash_dirs_test', self._hash_dirs, self._input_dir) def _file_hash(self, hashes, *components): """Return the item in ``hashes`` for the specified file. Return the ``'build'`` and ``'hash'`` entries of the item in ``hashes`` for ``os.path.join(self._input_dir, *components)``, if any. Returns: dict<str, object>: The result. """ subhashes = hashes for component in components: if ('subfiles' not in subhashes or component not in subhashes['subfiles']): return None subhashes = subhashes['subfiles'][component] return { 'build': subhashes['build'], 'hash': subhashes['hash'], } def test_hash_dirs(self): """Test ``FileBuilder`` with the hash directory build operation.""" os.makedirs(os.path.join(self._input_dir, 'Book', 'Bus', 'Apple')) os.mkdir(os.path.join(self._input_dir, 'Yarn')) os.mkdir(os.path.join(self._input_dir, 'Window')) self._write( os.path.join(self._input_dir, 'Book', 'Cartwheel.txt'), 'Circle') self._write(os.path.join(self._input_dir, 'Book', 'Igloo.txt'), 'Wide') self._write( os.path.join(self._input_dir, 'Book', 'Bus', 'Apple', 'Leaf.txt'), 'Alphabet') self._write( os.path.join(self._input_dir, 'Window', 'Cabinet.txt'), 'Orange') hashes1 = self._build() root_hash1 = self._file_hash(hashes1) book_hash1 = self._file_hash(hashes1, 'Book') bus_hash1 = self._file_hash(hashes1, 'Book', 'Bus') apple_hash1 = self._file_hash(hashes1, 'Book', 'Bus', 'Apple') yarn_hash1 = self._file_hash(hashes1, 'Yarn') window_hash1 = self._file_hash(hashes1, 'Window') cartwheel_hash1 = self._file_hash(hashes1, 'Book', 'Cartwheel.txt') igloo_hash1 = self._file_hash(hashes1, 'Book', 'Igloo.txt') leaf_hash1 = self._file_hash( hashes1, 'Book', 'Bus', 'Apple', 'Leaf.txt') cabinet_hash1 = self._file_hash(hashes1, 'Window', 'Cabinet.txt') self.assertIsNotNone(root_hash1) self.assertIsNotNone(book_hash1) self.assertIsNotNone(bus_hash1) self.assertIsNotNone(apple_hash1) self.assertIsNotNone(yarn_hash1) self.assertIsNotNone(window_hash1) self.assertIsNotNone(cartwheel_hash1) self.assertIsNotNone(igloo_hash1) self.assertIsNotNone(leaf_hash1) self.assertIsNotNone(cabinet_hash1) self._write( os.path.join(self._input_dir, 'Window', 'Cabinet.txt'), 'Bicycle') hashes2 = self._build() root_hash2 = self._file_hash(hashes2) book_hash2 = self._file_hash(hashes2, 'Book') bus_hash2 = self._file_hash(hashes2, 'Book', 'Bus') apple_hash2 = self._file_hash(hashes2, 'Book', 'Bus', 'Apple') yarn_hash2 = self._file_hash(hashes2, 'Yarn') window_hash2 = self._file_hash(hashes2, 'Window') cartwheel_hash2 = self._file_hash(hashes2, 'Book', 'Cartwheel.txt') igloo_hash2 = self._file_hash(hashes2, 'Book', 'Igloo.txt') leaf_hash2 = self._file_hash( hashes2, 'Book', 'Bus', 'Apple', 'Leaf.txt') cabinet_hash2 = self._file_hash(hashes2, 'Window', 'Cabinet.txt') self.assertNotEqual(root_hash1['hash'], root_hash2['hash']) self.assertEqual(2, root_hash2['build']) self.assertNotEqual(window_hash1['hash'], window_hash2['hash']) self.assertEqual(2, window_hash2['build']) self.assertNotEqual(cabinet_hash1['hash'], cabinet_hash2['hash']) self.assertEqual(2, cabinet_hash2['build']) self.assertEqual(book_hash1, book_hash2) self.assertEqual(bus_hash1, bus_hash2) self.assertEqual(apple_hash1, apple_hash2) self.assertEqual(yarn_hash1, yarn_hash2) self.assertEqual(cartwheel_hash1, cartwheel_hash2) self.assertEqual(igloo_hash1, igloo_hash2) self.assertEqual(leaf_hash1, leaf_hash2) self._write( os.path.join(self._input_dir, 'Book', 'Bus', 'Clock.txt'), 'Flower') self._write(os.path.join(self._input_dir, 'Yarn', 'Road.txt'), 'Sky') os.mkdir(os.path.join(self._input_dir, 'Fruit')) os.remove(os.path.join(self._input_dir, 'Window', 'Cabinet.txt')) hashes3 = self._build() root_hash3 = self._file_hash(hashes3) book_hash3 = self._file_hash(hashes3, 'Book') bus_hash3 = self._file_hash(hashes3, 'Book', 'Bus') apple_hash3 = self._file_hash(hashes3, 'Book', 'Bus', 'Apple') yarn_hash3 = self._file_hash(hashes3, 'Yarn') window_hash3 = self._file_hash(hashes3, 'Window') fruit_hash3 = self._file_hash(hashes3, 'Fruit') cartwheel_hash3 = self._file_hash(hashes3, 'Book', 'Cartwheel.txt') igloo_hash3 = self._file_hash(hashes3, 'Book', 'Igloo.txt') leaf_hash3 = self._file_hash( hashes3, 'Book', 'Bus', 'Apple', 'Leaf.txt') cabinet_hash3 = self._file_hash(hashes3, 'Window', 'Cabinet.txt') clock_hash3 = self._file_hash(hashes3, 'Book', 'Bus', 'Clock.txt') road_hash3 = self._file_hash(hashes3, 'Yarn', 'Road.txt') self.assertNotEqual(root_hash2['hash'], root_hash3['hash']) self.assertEqual(3, root_hash3['build']) self.assertNotEqual(book_hash2['hash'], book_hash3['hash']) self.assertEqual(3, book_hash3['build']) self.assertNotEqual(bus_hash2['hash'], bus_hash3['hash']) self.assertEqual(3, bus_hash3['build']) self.assertNotEqual(yarn_hash2['hash'], yarn_hash3['hash']) self.assertEqual(3, yarn_hash3['build']) self.assertNotEqual(window_hash2['hash'], window_hash3['hash']) self.assertEqual(3, window_hash3['build']) self.assertIsNone(cabinet_hash3) self.assertEqual(apple_hash2, apple_hash3) self.assertEqual(cartwheel_hash2, cartwheel_hash3) self.assertEqual(igloo_hash2, igloo_hash3) self.assertEqual(leaf_hash2, leaf_hash3) self.assertEqual(3, fruit_hash3['build']) self.assertEqual(3, clock_hash3['build']) self.assertEqual(3, road_hash3['build']) hashes4 = self._build() root_hash4 = self._file_hash(hashes4) book_hash4 = self._file_hash(hashes4, 'Book') bus_hash4 = self._file_hash(hashes4, 'Book', 'Bus') apple_hash4 = self._file_hash(hashes4, 'Book', 'Bus', 'Apple') yarn_hash4 = self._file_hash(hashes4, 'Yarn') window_hash4 = self._file_hash(hashes4, 'Window') fruit_hash4 = self._file_hash(hashes4, 'Fruit') cartwheel_hash4 = self._file_hash(hashes4, 'Book', 'Cartwheel.txt') igloo_hash4 = self._file_hash(hashes4, 'Book', 'Igloo.txt') leaf_hash4 = self._file_hash( hashes4, 'Book', 'Bus', 'Apple', 'Leaf.txt') clock_hash4 = self._file_hash(hashes4, 'Book', 'Bus', 'Clock.txt') road_hash4 = self._file_hash(hashes4, 'Yarn', 'Road.txt') self.assertNotEqual(root_hash3, root_hash4) self.assertEqual(book_hash3, book_hash4) self.assertEqual(bus_hash3, bus_hash4) self.assertEqual(apple_hash3, apple_hash4) self.assertEqual(yarn_hash3, yarn_hash4) self.assertEqual(window_hash3, window_hash4) self.assertEqual(fruit_hash3, fruit_hash4) self.assertEqual(cartwheel_hash3, cartwheel_hash4) self.assertEqual(igloo_hash3, igloo_hash4) self.assertEqual(leaf_hash3, leaf_hash4) self.assertEqual(clock_hash3, clock_hash4) self.assertEqual(road_hash3, road_hash4) hashes5 = self._build() self.assertEqual(5, hashes5['build']) self.assertEqual(3, hashes5['subfiles']['Book']['build']) hashes6 = self._build() self.assertEqual(6, hashes6['build']) self.assertEqual(3, hashes6['subfiles']['Book']['build'])
3.109375
3
2019/02_ProgramAlarm/aoc_pa.py
deanearlwright/AdventOfCode
1
12780797
# ====================================================================== # Program Alarm # Advent of Code 2019 Day 02 -- <NAME> -- https://adventofcode.com # # Computer simulation by Dr. <NAME> III # ====================================================================== # ====================================================================== # a o c _ p a . p y # ====================================================================== "Solve the Program Alarm problem for Advent of Code 2019 day 03" # ---------------------------------------------------------------------- # import # ---------------------------------------------------------------------- import argparse import sys import intcode # ---------------------------------------------------------------------- # constants # ---------------------------------------------------------------------- # ---------------------------------------------------------------------- # parse_commnd_line # ---------------------------------------------------------------------- def parse_command_line(): "Parse the command line options" # 1. Create the command line parser desc = 'Program Alarm - day 02 of Advent of Code 2019' sample = 'sample: python aoc_pa.py input.txt' parser = argparse.ArgumentParser(description=desc, epilog=sample) parser.add_argument('-v', '--verbose', action='store_true', default=False, dest='verbose', help='Print status messages to stdout') parser.add_argument('-p', '--part', action='store', default=1, type=int, dest='part', help='Puzzle Part (1 or 2)') parser.add_argument('-t', '--max-time', action='store', default=0, type=int, dest='maxtime', help='Maximum timer ticks before quitting') parser.add_argument('filepath', metavar='FILENAME', action='store', type=str, help="Location of puzzle input") # 2. Get the options and arguments return parser.parse_args() # ---------------------------------------------------------------------- # part_one # ---------------------------------------------------------------------- def part_one(args, input_lines): "Process part one of the puzzle" # 1. Optionally select fixex noun = None verb = None if len(input_lines[0]) > 100: print("Fixing up input at 1 and 2 to be 12 and 2") noun = 12 verb = 2 # 3. Create the computer with fixes computer = intcode.IntCode(text=input_lines[0], noun=noun, verb=verb) if args.verbose: print("The computer has %d positions" % len(computer.positions)) print(computer.instructions()) # 3. Run the computer until it stops solution = computer.run(max_steps=args.maxtime, watch=args.verbose) # 4. Check it ran out of time if solution is None: print("No solution found after %d steps" % args.maxtime) # 5. Check it stopped with an error elif solution != intcode.STOP_HLT: print("Computer alarm %d" % solution) solution = None # 6. The solution is at position 0 else: solution = computer.fetch(intcode.ADDR_RSLT) print("The solution is %d" % (solution)) # 7. Return result return solution is not None # ---------------------------------------------------------------------- # part_two # ---------------------------------------------------------------------- def part_two(args, input_lines): "Process part two of the puzzle" # 1. Set target target = 19690720 if args.verbose: print("The target is %d" % target) # 2. Loop over possible nouns for noun in range(100): # 3. Loop over possible verbs if args.verbose: print("Checking noun = %d" % noun) for verb in range(100): # 4. Create the computer computer = intcode.IntCode(text=input_lines[0], noun=noun, verb=verb) # 5. Run the computer until it stops solution = computer.run(max_steps=args.maxtime) # 6. Check it ran out of time if solution is None: print("No solution found after %d steps for noun = %d and verb = %d" % (args.maxtime, noun, verb)) return False # 7. Check it stopped with an error if solution != intcode.STOP_HLT: print("Computer alarm %d with noun = %d and verb = %d" % (solution, noun, verb)) return False # 8. The solution is at position 0 solution = computer.fetch(intcode.ADDR_RSLT) if solution == target: print("Target of %d found with noun = %d and verb = %d" % (solution, noun, verb)) print("Solution = %d" % (100 * noun + verb)) return True # 9. Unsuccessful print("Target of %d not found" % target) return False # ---------------------------------------------------------------------- # from_file # ---------------------------------------------------------------------- def from_file(filepath): "Read the file" return from_text(open(filepath).read()) # ---------------------------------------------------------------------- # from_text # ---------------------------------------------------------------------- def from_text(text): "Break the text into trimed, non-comment lines" # 1. We start with no lines lines = [] # 2. Loop for lines in the text for line in text.split('\n'): # 3. But ignore blank and non-claim lines line = line.rstrip(' \r') if not line: continue if line.startswith('#'): continue # 4. Add the line lines.append(line) # 5. Return a list of clean lines return lines # ---------------------------------------------------------------------- # main # ---------------------------------------------------------------------- def main(): """Read Program Alarm and solve it""" # 1. Get the command line options args = parse_command_line() # 2. Read the puzzle file input_text = from_file(args.filepath) # 3. Process the appropiate part of the puzzle if args.part == 1: result = part_one(args, input_text) else: result = part_two(args, input_text) # 5. Set return code (0 if solution found, 2 if not) if result: sys.exit(0) sys.exit(2) # ---------------------------------------------------------------------- # module initialization # ---------------------------------------------------------------------- if __name__ == '__main__': main() # ====================================================================== # end a o c _ p a . p y end # ======================================================================
2.5
2
timm/version.py
chilung/pytorch-image-models
0
12780798
<reponame>chilung/pytorch-image-models __version__ = '0.4.13.22'
0.941406
1
lib/solutions/checkout.py
DPNT-Sourcecode/CHK-hqvw01
0
12780799
# Basic price table, without offers PRICES = {"A": 50, "B": 30, "C": 20, "D": 15, "E": 40, "F": 10, "G": 20, "H": 10, "I": 35, "J": 60, "K": 70, "L": 90, "M": 15, "N": 40, "O": 10, "P": 50, "Q": 30, "R": 50, "S": 20, "T": 20, "U": 40, "V": 50, "W": 20, "X": 17, "Y": 20, "Z": 21} #------------------------------------------------------------------------------ # Offer Functions # - The names of the functions should make their purpose fairly clear. #------------------------------------------------------------------------------ def x_for_y(sku_to_count, cost, product, number, item_cost): if sku_to_count[product] >= number: cost += item_cost * (sku_to_count[product] // number) sku_to_count[product] = sku_to_count[product] % number return (sku_to_count, cost) def x_get_one_y_free(sku_to_count, buy_prod, number_of_buy, free_prod): if sku_to_count[buy_prod] >= number_of_buy: if sku_to_count[free_prod] > sku_to_count[buy_prod] // number_of_buy: sku_to_count[free_prod] -= (sku_to_count[buy_prod] // number_of_buy) else: sku_to_count[free_prod] = 0 return sku_to_count def x_get_x_free(sku_to_count, product, number): if sku_to_count[product] >= 3: sku_to_count[product] -= sku_to_count[product] // number return sku_to_count def any_3_stxyz_45(sku_to_count, cost): # note that the following is in order of increasing price. products = ["X", "T", "S", "Y", "Z"] list_of_items = [sku_to_count[item] for item in products \ if item in sku_to_count] number_of_items = 0 for item in list_of_items: number_of_items += item to_remove = {item: 0 for item in products} current_item = products.pop() count_to_3 = 0 while (number_of_items + count_to_3) // 3 != 0: while current_item not in sku_to_count and products: current_item = products.pop() if not products: break if sku_to_count[current_item] - to_remove[current_item] > 0: to_remove[current_item] += 1 count_to_3 += 1 number_of_items -= 1 if count_to_3 % 3 == 0: # We actually remove them now, and add the cost for item in to_remove: sku_to_count[item] -= to_remove[item] cost += 45 print sku_to_count print to_remove return sku_to_count, cost #------------------------------------------------------------------------------ # End offer functions #------------------------------------------------------------------------------ # noinspection PyUnusedLocal # skus = unicode string def checkout(skus): if not isinstance(skus, unicode): return -1 for item in skus: if item not in PRICES: return -1 skus = str(skus) cost = 0 sku_to_count = {} for sku in PRICES: sku_to_count[sku] = skus.count(sku) # Apply special offers. # We always start with E - it should be applied before B's as it's the # cheaper way. sku_to_count = x_get_one_y_free(sku_to_count, "E", 2, "B") # As above for R. sku_to_count = x_get_one_y_free(sku_to_count, "R", 3, "Q") # Begin remaining offers in order. sku_to_count, cost = x_for_y(sku_to_count, cost, "A", 5, 200) sku_to_count, cost = x_for_y(sku_to_count, cost, "A", 3, 130) sku_to_count, cost = x_for_y(sku_to_count, cost, "B", 2, 45) sku_to_count = x_get_x_free(sku_to_count, "F", 3) sku_to_count, cost = x_for_y(sku_to_count, cost, "H", 10, 80) sku_to_count, cost = x_for_y(sku_to_count, cost, "H", 5, 45) sku_to_count, cost = x_for_y(sku_to_count, cost, "K", 2, 120) sku_to_count = x_get_one_y_free(sku_to_count, "N", 3, "M") sku_to_count, cost = x_for_y(sku_to_count, cost, "P", 5, 200) sku_to_count, cost = x_for_y(sku_to_count, cost, "Q", 3, 80) sku_to_count = x_get_x_free(sku_to_count, "U", 4) sku_to_count, cost = x_for_y(sku_to_count, cost, "V", 3, 130) sku_to_count, cost = x_for_y(sku_to_count, cost, "V", 2, 90) # Now iterate over and add the remaining prices for item in PRICES: cost += (sku_to_count[item] * PRICES[item]) return cost
3.90625
4
make.py
kagu/kunquat
13
12780800
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # Author: <NAME>, Finland 2014-2018 # # This file is part of Kunquat. # # CC0 1.0 Universal, http://creativecommons.org/publicdomain/zero/1.0/ # # To the extent possible under law, Kunquat Affirmers have waived all # copyright and related or neighboring rights to Kunquat. # from copy import deepcopy from optparse import Option, SUPPRESS_HELP import ast import os import os.path import shutil import subprocess import sys sys.dont_write_bytecode = True import support.fabricate as fabricate import scripts.command as command from scripts.cc import get_cc import scripts.configure as configure from scripts.build_libs import build_libkunquat, build_libkunquatfile from scripts.test_libkunquat import test_libkunquat from scripts.build_examples import build_examples from scripts.install_libs import install_libkunquat, install_libkunquatfile from scripts.install_examples import install_examples from scripts.install_share import install_share import options # Add definitions of options.py as command line switches cmdline_opts = [] opt_vars = [] options_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'options.py') with open(options_path) as f: data = f.read() raw_entries = [e.strip() for e in data.split('\n\n') if e.strip()] type_names = { str: 'string', int: 'int' } for raw_entry in raw_entries: lines = raw_entry.split('\n') desc_lines = lines[:-1] def_line = lines[-1] desc = '\n'.join(dl[1:].strip() for dl in desc_lines) var_name, _, value_str = (s.strip() for s in def_line.partition('=')) name = '--' + var_name.replace('_', '-') value = ast.literal_eval(value_str) opt_vars.append(var_name) if type(value) == bool: first_word = var_name.split('_')[0] if first_word == 'enable': negated_name = name.replace('enable', 'disable', 1) elif first_word == 'with': negated_name = name.replace('with', 'without', 1) else: assert False if value == True: negated_desc = (desc.replace('enable', 'disable', 1) if desc.startswith('enable') else ('do not ' + desc)) full_desc = '{} (default: enabled)'.format(negated_desc) neg_opt = Option( negated_name, action='store_false', dest=var_name, help=full_desc) pos_opt = Option( name, action='store_true', dest=var_name, help=SUPPRESS_HELP) else: full_desc = '{} (default: disabled)'.format(desc) pos_opt = Option( name, action='store_true', dest=var_name, help=full_desc) neg_opt = Option( negated_name, action='store_false', dest=var_name, help=SUPPRESS_HELP) cmdline_opts.extend((neg_opt, pos_opt)) elif value == None: if var_name == 'cc': desc = ('select C compiler' ' (supported values: gcc (default), clang)') option = Option(name, type='choice', choices=['gcc', 'clang'], help=desc) cmdline_opts.append(option) else: assert False else: type_name = type_names[type(value)] full_desc = '{} (default: {})'.format(desc, value) option = Option(name, type=type_name, help=full_desc) cmdline_opts.append(option) def process_cmd_line(): for var_name in opt_vars: override = fabricate.main.options.__dict__[var_name] if override != None: options.__dict__[var_name] = override # Make sure the installation prefix is absolute options.prefix = os.path.abspath(os.path.expanduser(options.prefix)) class PrettyBuilder(fabricate.Builder): def __init__(self, *args, **kwargs): fabricate.Builder.__init__(self, *args, **kwargs) def echo(self, message): '''Suppress printing of an empty string.''' if message: fabricate.Builder.echo(self, message) def build(): process_cmd_line() if options.enable_python_tests and options.enable_long_tests: python_modules = ['scripts', 'kunquat'] fabricate.run('pylint', *python_modules) fabricate.run('flake8', *python_modules) cc = get_cc(options.cc) cc.set_debug(options.enable_debug) if options.enable_debug_asserts: cc.add_define('ENABLE_DEBUG_ASSERTS') #if options.enable_profiling: # compile_flags.append('-pg') # link_flags.append('-pg') if options.enable_native_arch: cc.set_native_arch() if options.optimise not in range(5): print('Unsupported optimisation level: {}'.format(options.optimise), file=sys.stderr) sys.exit(1) cc.set_optimisation(options.optimise) builder = PrettyBuilder() if options.enable_python_bindings: try: python_cmd = command.PythonCommand() except RuntimeError: print('Python bindings were requested but Python 2.7 was not found.', file=sys.stderr) sys.exit(1) if options.enable_tests_mem_debug: try: output = subprocess.check_output( ['valgrind', '--version'], stderr=subprocess.STDOUT) except (OSError, subprocess.CalledProcessError): output = b'' if not output.startswith(b'valgrind'): print('Memory debugging of libkunquat tests was requested' ' but Valgrind was not found.', file=sys.stderr) sys.exit(1) # Check dependencies configure.test_add_common_external_deps(builder, options, cc) # Build libkunquat if options.enable_libkunquat: libkunquat_cc = deepcopy(cc) configure.test_add_libkunquat_external_deps(builder, options, libkunquat_cc) build_libkunquat(builder, options, libkunquat_cc) # Build libkunquatfile if options.enable_libkunquatfile: libkunquatfile_cc = deepcopy(cc) configure.test_add_libkunquatfile_external_deps( builder, options, libkunquatfile_cc) build_libkunquatfile(builder, options, libkunquatfile_cc) # Run tests if options.enable_tests: test_cc = deepcopy(cc) configure.test_add_test_deps(builder, options, test_cc) test_libkunquat(builder, options, test_cc) if options.enable_python_tests: fabricate.run( 'env', 'LD_LIBRARY_PATH=build/src/lib', 'python3', '-m', 'unittest', 'discover', '-v') # Build examples if options.enable_examples: build_examples(builder) def clean(): if os.path.exists('build'): # Remove Python-specific build directories first for name in os.listdir('build'): expected_suffix = '-{}.{}'.format(sys.version_info[0], sys.version_info[1]) if name.endswith(expected_suffix) or name == 'lib': path = os.path.join('build', name) shutil.rmtree(path) fabricate.autoclean() def install(): build() install_builder = None if options.enable_libkunquat: install_libkunquat( install_builder, options.prefix, options.enable_libkunquat_dev) if options.enable_libkunquatfile: install_libkunquatfile( install_builder, options.prefix, options.enable_libkunquatfile_dev) if options.enable_examples: install_examples(install_builder, options.prefix) install_share(install_builder, options.prefix) if options.enable_python_bindings: python_cmd = command.PythonCommand() args = ['py-setup.py', 'install', '--prefix={}'.format(options.prefix)] if not options.enable_export: args.append('--disable-export') if not options.enable_player: args.append('--disable-player') if not options.enable_tracker: args.append('--disable-tracker') try: python_cmd.run(install_builder, *args) except subprocess.CalledProcessError: sys.exit(1) fabricate.main(extra_options=cmdline_opts)
2.109375
2
scraper/urls.py
pekasen/DBoeS-Automatization
0
12780801
""" List of German Wikipedia pages to extract parliamentarian information from. Index points to table indices (running id) where to find information on the page. """ BASE = "https://de.wikipedia.org/wiki/" parliaments = { "sachsen": { "name": "Sachsen", "url": BASE + "Liste_der_Mitglieder_des_S%C3%A4chsischen_Landtags_(6._Wahlperiode)", "index": 2 }, "hamburg": { "name": "Hamburg", "url": BASE + "Liste_der_Mitglieder_der_Hamburgischen_B%C3%BCrgerschaft_(22._Wahlperiode)", "index": 2 }, "bawue": { "name": "Baden-Württemberg", "url": BASE + "Liste_der_Mitglieder_des_Landtags_von_Baden-W%C3%BCrttemberg_(16._Wahlperiode)", "index": 8 }, "mcpomm": { "name": "Mecklenburg-Vorpommern", "url": BASE + "Liste_der_Mitglieder_des_Landtages_Mecklenburg-Vorpommern_(7._Wahlperiode)", "index": 2 }, "brandenburg": { "name": "Brandenburg", "url": BASE + "Liste_der_Mitglieder_des_Landtags_Brandenburg_(7._Wahlperiode)", "index": 1 }, "berlin": { "name": "Berlin", "url": BASE + "Liste_der_Mitglieder_des_Abgeordnetenhauses_von_Berlin_(18._Wahlperiode)", "index": 0 }, "thueringen": { "name": "Thüringen", "url": BASE + "Liste_der_Mitglieder_des_Th%C3%BCringer_Landtags_(7._Wahlperiode)", "index": 2 }, "bremen": { "name": "Bremen", "url": BASE + "Liste_der_Mitglieder_der_Bremischen_B%C3%BCrgerschaft_(20._Wahlperiode)", "index": 0 }, "sachsen-anhalt": { "name": "Sachsen-Anhalt", "url": BASE + "Liste_der_Mitglieder_des_Landtages_Sachsen-Anhalt_(7._Wahlperiode)", "index": 2 }, "bayern": { "name": "Bayern", "url": BASE + "Liste_der_Mitglieder_des_Bayerischen_Landtags_(18._Wahlperiode)", "index": 1 }, "rlp": { "name": "Rheinland-Pfalz", "url": BASE + "Liste_der_Mitglieder_des_Landtages_Rheinland-Pfalz_(17._Wahlperiode)", "index": 2 }, "hessen": { "name": "Hessen", "url": BASE + "Liste_der_Mitglieder_des_Hessischen_Landtags_(20._Wahlperiode)", "index": 2 }, "niedersachsen": { "name": "Niedersachsen", "url": BASE + "Liste_der_Mitglieder_des_Nieders%C3%A4chsischen_Landtages_(18._Wahlperiode)", "index": 2 }, "nrw": { "name": "Nordrhein-Westfalen", "url": BASE + "Liste_der_Mitglieder_des_Landtages_Nordrhein-Westfalen_(17._Wahlperiode)", "index": 4 }, "sh": { "name": "Schleswig-Holstein", "url": BASE + "Liste_der_Mitglieder_des_Landtages_Schleswig-Holstein_(19._Wahlperiode)", "index": 2 }, "saarland": { "name": "Saarland", "url": BASE + "Liste_der_Mitglieder_des_Landtages_des_Saarlandes_(16._Wahlperiode)", "index": 3 }, "bundestag": { "name": "Bundestag", "url": BASE + "Liste_der_Mitglieder_des_Deutschen_Bundestages_(19._Wahlperiode)", "index": 3 }, "eu": { "name": "EU-Parlament", "url": BASE + "Liste_der_deutschen_Abgeordneten_zum_EU-Parlament_(2019%E2%80%932024)", "index": 1 } }
2.921875
3
examples/z_segmenting_accurately.py
thejasvibr/itsfm
1
12780802
""" Segmenting real-world sounds correctly with synthetic sounds ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ It's easy to figure out if a sound is being correcly segmented if the signal at hand is well defined, and repeatable, like in many technological/ engineering applications. However, in bioacoustics, or a more open-ended field recording situation, it can be very hard to know the kind of signal that'll be recorded, or what its parameters are. Just because an output is produced by the package, it doesn't always lead to a meaningful result. Given a set of parameters, any function will produce an output as long as its sensible. This means, with one set of parameters/methods the CF segment might be 10ms long, while with another more lax parameter set it might be 20ms long! Remember, as always, `GIGO <https://en.wikipedia.org/wiki/Garbage_in,_garbage_out>`_ (Garbage In, Garbage Out):P. How to segment a sound into CF and FM segments in an accurate way? Synthetic calls to the rescue >>>>>>>>>>>>>>>>>>>>>>>>>>>>> Synthetic calls are sounds that we know to have specific properties and can be used to test if a parameter set/ segmentation method is capable of correctly segmenting our real-world sounds and uncovering the true underlying properties. The `simulate_calls` module has a bunch of helper functions which allow the creation of FM sweeps, constant frequency tones and silences. In combination, these can be used to get a feeling for which segmentation methods and parameter sets work well for your real-world sound (bat, bird, cat, <insert sound source of choice>) Generating a 'classical' CF-FM bat call >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> """ import matplotlib.pyplot as plt import numpy as np import scipy.signal as signal from itsfm.simulate_calls import make_cffm_call,make_tone, make_fm_chirp, silence from itsfm.view_horseshoebat_call import visualise_call from itsfm.segment_horseshoebat_call import segment_call_into_cf_fm from itsfm.signal_processing import dB, rms fs = 96000 call_props = {'cf':(40000, 0.01), 'upfm':(38000,0.002), 'downfm':(30000,0.003)} cffm_call, freq_profile = make_cffm_call(call_props, fs) cffm_call *= signal.tukey(cffm_call.size, 0.1) w,s = visualise_call(cffm_call, fs, fft_size=128) # %% # Remember, the terminal frequencies and durations of the CF-FM calls can be adjusted to the # calls of your species of interest!! # %% # A multi-component bird call # >>>>>>>>>>>>>>>>>>>>>>>>>>> # # Let's make a sound with two FMs and CFs, and gaps in between fs = 44100 fm1 = make_fm_chirp(1000, 5000, 0.01, fs) cf1 = make_tone(5000, 0.005, fs) fm2 = make_fm_chirp(5500, 9000, 0.01, fs) cf2 = make_tone(8000, 0.005, fs) gap = silence(0.005, fs) synth_birdcall = np.concatenate((gap, fm1, gap, cf1, gap, fm2, gap, cf2, gap)) w, s = visualise_call(synth_birdcall, fs, fft_size=64) # %% # Let there be Noise # >>>>>>>>>>>>>>>>>> # # Any kind of field recording *will* have some form of noise. Each of the # the segmentation methods is differently susceptible to noise, and it's # a good idea to test how well they can tolerate it. For starters, let's # just add white noise and simulate different signal-to-noise ratios (SNR). noisy_bird_call = synth_birdcall.copy() noisy_bird_call += np.random.normal(0,10**(-10/20), noisy_bird_call.size) noisy_bird_call /= np.max(np.abs(noisy_bird_call)) # keep sample values between +/- 1 # %% # Estimate an approximate SNR by looking at the rms of the gaps to that of # a song component level_background = dB(rms(noisy_bird_call[gap.size])) level_song = dB(rms(noisy_bird_call[gap.size:2*gap.size])) snr_approx = level_song-level_background print('The SNR is approximately: %f'%np.around(snr_approx)) w, s = visualise_call(noisy_bird_call, fs, fft_size=64) # %% # We could try to run the segmentation + measurement on a noisy sound straight away, # but this might lead to poor measurements. Now, let's bandpass the audio # to remove the ambient noise outside of the song's range.
2.609375
3
code/cloudmanager/install/hws/hws_util.py
Hybrid-Cloud/cloud_manager
0
12780803
<filename>code/cloudmanager/install/hws/hws_util.py import os from heat.engine.resources.hwcloud.hws_service.hws_client import HWSClient from heat.engine.resources.cloudmanager.util.retry_decorator import RetryDecorator from heat.openstack.common import log as logging from heat.engine.resources.cloudmanager.util.cloud_manager_exception import * from heat.engine.resources.cloudmanager.exception import * import time import heat.engine.resources.cloudmanager.constant as constant from heat.engine.resources.cloudmanager.commonutils import * RSP_STATUS = "status" RSP_BODY = "body" RSP_STATUS_OK = "2" MAX_RETRY = 50 #unit=second SLEEP_TIME = 3 MAX_CHECK_TIMES = 2000 LOG = logging.getLogger(__name__) def start_hws_gateway(host_ip, user, passwd): execute_cmd_without_stdout( host=host_ip, user=user, password=<PASSWORD>, cmd='cd %(dis)s; sh %(script)s start' % {"dis": constant.PatchesConstant.REMOTE_HWS_SCRIPTS_DIR, "script": constant.PatchesConstant.START_HWS_GATEWAY_SCRIPT} ) def stop_hws_gateway(host_ip, user, password): LOG.info("start hws java gateway ...") execute_cmd_without_stdout( host=host_ip, user=user, password=password, cmd='cd %(dis)s; sh %(script)s stop' % {"dis": constant.PatchesConstant.REMOTE_HWS_SCRIPTS_DIR, "script": constant.PatchesConstant.START_HWS_GATEWAY_SCRIPT} ) class HwsInstaller(object): def __init__(self, ak, sk, region, protocol, host, port, project_id): self.hws_client = HWSClient(ak, sk, region, protocol, host, port) self.project_id = project_id @RetryDecorator(max_retry_count=MAX_RETRY, raise_exception=InstallCascadedFailed( current_step="create vm")) def create_vm(self, image_ref, flavor_ref, name, vpcid, nics_subnet_list, root_volume_type,availability_zone, personality_path=None, personality_contents=None, adminPass=None, public_ip_id=None, count=None, data_volumes=None, security_groups=None, key_name=None): result = self.hws_client.ecs.create_server(self.project_id, image_ref, flavor_ref, name, vpcid, nics_subnet_list, root_volume_type, availability_zone, personality_path, personality_contents, adminPass, public_ip_id, count, data_volumes, security_groups, key_name) status = str(result[RSP_STATUS]) if not status.startswith(RSP_STATUS_OK): LOG.error(result) raise InstallCascadedFailed(current_step="create cascaded vm") return result[RSP_BODY]["job_id"] @RetryDecorator(max_retry_count=MAX_RETRY, raise_exception=UninstallCascadedFailed( current_step="delete vm")) def delete_vm(self, server_id_list, delete_public_ip, delete_volume): result = self.hws_client.ecs.delete_server\ (self.project_id, server_id_list, delete_public_ip, delete_volume) status = str(result[RSP_STATUS]) if not status.startswith(RSP_STATUS_OK): LOG.error(result) raise UninstallCascadedFailed(current_step="delete cascaded vm") return result[RSP_BODY]["job_id"] @RetryDecorator(max_retry_count=MAX_RETRY, raise_exception=InstallCascadedFailed( current_step="create vm")) def create_vpc(self, name, cidr): result = self.hws_client.vpc.create_vpc(self.project_id, name, cidr) status = str(result[RSP_STATUS]) if not status.startswith(RSP_STATUS_OK): LOG.error(result) raise InstallCascadedFailed(current_step="create vpc") return result[RSP_BODY]["vpc"]["id"] @RetryDecorator(max_retry_count=MAX_RETRY, raise_exception=UninstallCascadedFailed( current_step="delete vpc")) def delete_vpc(self, vpc_id): result = self.hws_client.vpc.delete_vpc(self.project_id, vpc_id) status = str(result[RSP_STATUS]) if not status.startswith(RSP_STATUS_OK): LOG.error(result) raise UninstallCascadedFailed(current_step="delete vpc") @RetryDecorator(max_retry_count=MAX_RETRY, raise_exception=InstallCascadedFailed( current_step="create subnet")) def create_subnet(self, name, cidr, availability_zone, gateway_ip, vpc_id, dhcp_enable=None, primary_dns=None, secondary_dns=None): result = self.hws_client.vpc.create_subnet(self.project_id, name, cidr, availability_zone, gateway_ip, vpc_id, dhcp_enable, primary_dns, secondary_dns) status = str(result[RSP_STATUS]) if not status.startswith(RSP_STATUS_OK): LOG.error(result) raise InstallCascadedFailed(current_step="create subnet") return result[RSP_BODY]["subnet"]["id"] @RetryDecorator(max_retry_count=MAX_RETRY, raise_exception=UninstallCascadedFailed( current_step="delete subnet")) def delete_subnet(self, vpc_id, subnet_id): result = self.hws_client.vpc.delete_subnet(self.project_id, vpc_id, subnet_id) status = str(result[RSP_STATUS]) if not status.startswith(RSP_STATUS_OK): LOG.error(result) raise UninstallCascadedFailed(current_step="delete subnet") return result[RSP_BODY] @RetryDecorator(max_retry_count=MAX_RETRY, raise_exception=InstallCascadedFailed( current_step="get job detail")) def get_job_detail(self, job_id): result = self.hws_client.vpc.get_job_detail(self.project_id, job_id) status = str(result[RSP_STATUS]) if not status.startswith(RSP_STATUS_OK): LOG.error(result) raise InstallCascadedFailed(current_step="get job detail") return result[RSP_BODY] def block_until_delete_resource_success(self, job_id): for i in range(MAX_CHECK_TIMES): result = self.get_job_detail(job_id) status = result[RSP_STATUS] if status == "FAILED": raise InstallCascadedFailed(current_step="delete resource") elif status == "SUCCESS": return else: time.sleep(3) pass def block_until_create_vm_success(self, job_id): server_id = None for i in range(MAX_CHECK_TIMES): result = self.get_job_detail(job_id) status = result[RSP_STATUS] if status == "FAILED": break elif status == "SUCCESS": server_id = result['entities']['sub_jobs'][0]["entities"]["server_id"] break else: time.sleep(SLEEP_TIME) if server_id is None: raise InstallCascadedFailed(current_step="create vm") return server_id def block_until_create_nic_success(self, job_id): nic_id = None for i in range(MAX_CHECK_TIMES): result = self.get_job_detail(job_id) status = result[RSP_STATUS] if status == "FAILED": break elif status == "SUCCESS": nic_id = result['entities']['sub_jobs'][0]["entities"]["nic_id"] break else: time.sleep(3) if nic_id is None: raise InstallCascadedFailed(current_step="create nic") return nic_id @RetryDecorator(max_retry_count=MAX_RETRY, raise_exception=InstallCascadedFailed( current_step="get server nics info")) def get_all_nics(self, server_id): result = self.hws_client.ecs.get_all_nics(self.project_id, server_id) status = str(result[RSP_STATUS]) if not status.startswith(RSP_STATUS_OK): LOG.error(result) raise UninstallCascadedFailed(current_step="get server incs info") return result[RSP_BODY]["interfaceAttachments"] @RetryDecorator(max_retry_count=MAX_RETRY, raise_exception=InstallCascadedFailed( current_step="get server ips")) def get_server_ips(self, server_id): result = self.hws_client.ecs.get_server_ips(self.project_id, server_id) status = str(result[RSP_STATUS]) if not status.startswith(RSP_STATUS_OK): LOG.error(result) raise UninstallCascadedFailed(current_step="get server ips") return result[RSP_BODY]["interfaceAttachments"]["fixed_ips"] @RetryDecorator(max_retry_count=MAX_RETRY, raise_exception=InstallCascadedFailed( current_step="get free public ip")) def alloc_public_ip(self, name): result = self.hws_client.vpc.list_public_ips(self.project_id) status = str(result[RSP_STATUS]) if not status.startswith(RSP_STATUS_OK): LOG.error(result) raise InstallCascadedFailed(current_step="get free public ip") free_ip = None public_ips = result[RSP_BODY]["publicips"] for ip in public_ips: if ip["status"] == "DOWN": free_ip = ip return free_ip if free_ip is None: publicip = dict() bandwidth = dict() publicip["type"]="5_bgp" bandwidth["name"]=name bandwidth["size"]=100 bandwidth["share_type"]="PER" bandwidth["charge_mode"]= "traffic" result = self.hws_client.vpc.create_public_ip(self.project_id, publicip, bandwidth) status = str(result[RSP_STATUS]) if not status.startswith(RSP_STATUS_OK): LOG.error(result) raise InstallCascadedFailed(current_step="create public ip") free_ip = result[RSP_BODY]["publicip"] return free_ip @RetryDecorator(max_retry_count=MAX_RETRY, raise_exception=UninstallCascadedFailed( current_step="release public ip")) def release_public_ip(self, public_ip_id): result = self.hws_client.vpc.delete_public_ip(self.project_id, public_ip_id) status = str(result[RSP_STATUS]) if not status.startswith(RSP_STATUS_OK): LOG.error(result) raise UninstallCascadedFailed(current_step="release public ip") @RetryDecorator(max_retry_count=MAX_RETRY, raise_exception=InstallCascadedFailed( current_step="get security group")) def get_security_group(self, vpc_id): opts = dict() opts["vpc_id"] = vpc_id result = self.hws_client.vpc.list_security_groups(self.project_id,opts = opts) status = str(result[RSP_STATUS]) if not status.startswith(RSP_STATUS_OK): LOG.error(result) raise InstallCascadedFailed(current_step="get security group") security_groups = result[RSP_BODY]["security_groups"] for security_group in security_groups: if security_group["name"] == "default": return security_group["id"] return security_groups[0]["id"] @RetryDecorator(max_retry_count=MAX_RETRY, raise_exception=InstallCascadedFailed( current_step="create security group rule")) def create_security_group_rule(self, security_group_id, direction, ethertype): result = self.hws_client.vpc.create_security_group_rule( self.project_id, security_group_id, direction, ethertype) status = str(result[RSP_STATUS]) if not status.startswith(RSP_STATUS_OK): LOG.error(result) raise InstallCascadedFailed(current_step="create security group rule") @RetryDecorator(max_retry_count=MAX_RETRY, raise_exception=InstallCascadedFailed( current_step="get_external_api_port_id")) def get_external_api_port_id(self, server_id, external_api_nic_id): result = self.hws_client.ecs.get_nic_info(self.project_id, server_id, external_api_nic_id) status = str(result[RSP_STATUS]) if not status.startswith(RSP_STATUS_OK): LOG.error(result) raise InstallCascadedFailed(current_step="get_external_api_port_id") interfaceAttachment = result[RSP_BODY]["interfaceAttachment"] return interfaceAttachment["port_id"] @RetryDecorator(max_retry_count=MAX_RETRY, raise_exception=InstallCascadedFailed( current_step="bind public ip to cascaded")) def bind_public_ip(self, public_ip_id, port_id): result = self.hws_client.vpc.bind_public_ip( self.project_id, public_ip_id, port_id) status = str(result[RSP_STATUS]) if not status.startswith(RSP_STATUS_OK): LOG.error(result) raise InstallCascadedFailed(current_step="bind public ip to cascaded") @RetryDecorator(max_retry_count=MAX_RETRY, raise_exception=InstallCascadedFailed( current_step="add nics to vm")) def add_nics(self, server_id, subnet_id, security_groups, ip_address = None): nic = dict() nic["subnet_id"] = subnet_id nic["security_groups"] = security_groups if ip_address: nic["ip_address"] = ip_address nics = [nic] result = self.hws_client.ecs.add_nics( self.project_id, server_id, nics) status = str(result[RSP_STATUS]) if not status.startswith(RSP_STATUS_OK): LOG.error(result) raise InstallCascadedFailed(current_step="add nics to cascaded") return result[RSP_BODY]["job_id"] @RetryDecorator(max_retry_count=MAX_RETRY, raise_exception=InstallCascadedFailed( current_step="reboot cascaded")) def reboot(self, server_id, type): result = self.hws_client.ecs.reboot(self.project_id, server_id, type) status = str(result[RSP_STATUS]) if not status.startswith(RSP_STATUS_OK): LOG.error(result) raise InstallCascadedFailed(current_step="reboot cascaded") @RetryDecorator(max_retry_count=MAX_RETRY, raise_exception=InstallCascadedFailed( current_step="unbound vpn ip-mac")) def unbound_ip_mac(self, port_id, mac_address): allowed_address_pairs = [] #allow all ip_addresses to access pair1={"ip_address":"0.0.0.1/1", "mac_address":mac_address} pair2={"ip_address":"172.16.17.32/1", "mac_address":mac_address} allowed_address_pairs.append(pair1) allowed_address_pairs.append(pair2) result = self.hws_client.vpc.update_port(port_id, allowed_address_pairs=allowed_address_pairs) status = str(result[RSP_STATUS]) if not status.startswith(RSP_STATUS_OK): LOG.error(result) raise InstallCascadedFailed(current_step="unbound vpn ip-mac") @RetryDecorator(max_retry_count=MAX_RETRY, raise_exception=InstallCascadedFailed( current_step="get image id")) def get_image_id(self, name): result = self.hws_client.ims.list(name=name) status = str(result[RSP_STATUS]) if not status.startswith(RSP_STATUS_OK): LOG.error(result) raise InstallCascadedFailed(current_step="get image id") image_id = result[RSP_BODY]["images"][0]["id"] return image_id
1.890625
2
tests/conftest.py
eleme/meepo
50
12780804
# -*- coding: utf-8 -*- from __future__ import absolute_import import logging logging.basicConfig(level=logging.DEBUG) import json import os import uuid import pymysql import pytest import redis from meepo._compat import urlparse @pytest.fixture(scope="session") def conf(): """Try load local conf.json """ fname = os.path.join(os.path.dirname(__file__), "conf.json") if os.path.exists(fname): with open(fname) as f: return json.load(f) @pytest.fixture(scope="session") def redis_dsn(request, conf): """Redis server dsn """ redis_dsn = conf["redis_dsn"] if conf else "redis://localhost:6379/1" def fin(): r = redis.Redis.from_url(redis_dsn, socket_timeout=1) r.flushdb() request.addfinalizer(fin) return redis_dsn @pytest.fixture(scope="module") def mysql_dsn(conf): """MySQL server dsn This fixture will init a clean meepo_test database with a 'test' table """ logger = logging.getLogger("fixture_mysql_dsn") dsn = conf["mysql_dsn"] if conf else \ "mysql+pymysql://root@localhost/meepo_test" # init database parsed = urlparse(dsn) db_settings = { "host": parsed.hostname, "port": parsed.port or 3306, "user": parsed.username, "passwd": <PASSWORD> } conn = pymysql.connect(**db_settings) cursor = conn.cursor() conn.begin() cursor.execute("DROP DATABASE IF EXISTS meepo_test") cursor.execute("CREATE DATABASE meepo_test") cursor.execute("DROP TABLE IF EXISTS meepo_test.test") cursor.execute('''CREATE TABLE meepo_test.test ( id INT NOT NULL AUTO_INCREMENT, data VARCHAR (256) NOT NULL, PRIMARY KEY (id) )''') cursor.execute("RESET MASTER") conn.commit() logger.debug("executed") # release conn cursor.close() conn.close() return dsn @pytest.fixture(scope="function") def mock_session(): class MockSession(object): def __init__(self): self.meepo_unique_id = uuid.uuid4().hex self.info = {"name": "mock"} return MockSession()
1.9375
2
examples/e12.py
pepprseed/svgdatashapes
11
12780805
<reponame>pepprseed/svgdatashapes<gh_stars>10-100 import svgdatashapes as s import svgdatashapes_dt as sdt # for date/time support def example12(): # Secchi depth readings plot with reversed Y axis depthdata = [ ('09/21/2016', 6.60), ('09/19/2016', 6.20), ('09/08/2016', 4.85), ('09/01/2016', 6.00), ('08/18/2016', 7.00), ('08/09/2016', 7.60), ('08/03/2016', 7.10), ('07/28/2016', 7.25), ('07/22/2016', 8.10), ('07/14/2016', 8.65), ('07/08/2016', 9.95), ('06/29/2016', 9.60), ('06/22/2016', 9.40), ('06/16/2016', 8.60), ('06/9/2016', 8.40), ('06/02/2016', 8.30), ('05/26/2016', 8.40), ('05/19/2016', 7.85), ('05/11/2016', 7.95), ('05/05/2016', 7.70), ('04/28/2016', 7.85), ('04/19/2016', 7.15), ('03/30/2016', 7.20) ] s.svgbegin( width=800, height=220 ) sdt.dateformat( '%m/%d/%Y' ) s.settext( color='#777', style='font-family: sans-serif; font-weight: bold;' ) s.setline( color='#777' ) # find our date range for X and build some stubs xrange = sdt.daterange( column=0, datarows=depthdata, nearest='month', inc='month', stubformat='%b', inc2='year', stub2format=' %Y' ) # set up X space... s.xspace( svgrange=(100,750), datarange=xrange ) # find Y max and set up reversed Y space (0 at top) for dp in depthdata: s.findrange( testval=dp[1] ) yrange = s.findrange( finish=True, addlpad=1 ) s.yspace( svgrange=(60,180), datarange=(0,yrange.axmax), reverse=True ) # render axes... s.xaxis( stublist=xrange.stublist, tics=8 ) s.setline( color='#cfc' ) s.yaxis( tics=8, grid=True ) s.setline( color='#777' ) s.plotdeco( title='Secchi depth readings indicating water clarity: Stormy Lake', ylabel='Depth (m)', outline=True ) # render the blue depth lines... s.setline( color='#99f', width=2 ) for dp in depthdata: xloc = sdt.toint(dp[0]) s.line( x1=xloc, y1=0.0, x2=xloc, y2=dp[1] ) s.datapoint( x=xloc, y=dp[1], diameter=5, color='#99f' ) # return the svg. The caller could then add it in to the rendered HTML. return s.svgresult()
2.359375
2
ques3.py
shreya643/test_feb_19
0
12780806
<gh_stars>0 '''Q3. Create a Employee class and initialize it with first_name, last_name and salary. Also, it has a derived attribute called email, which is self generated when instance is created. Now, make methods to : a. Display - It should display all information of the employee instance.''' class Employee: def __init__(self,first_name,last_name,salary): self.first_name=first_name self.last_name=last_name self.salary=salary def emailGen(self): self.email=self.first_name+'.'+self.last_name+'<EMAIL>' def display(self): print ("First name: {}".format(self.first_name)) print ("Last Name:{}".format(self.last_name)) print("Salay:{}".format(self.salary)) print ("Email:{}".format(self.email)) emp1=Employee('Shreya','Sapkota',800) emp1.emailGen() emp1.display()
4.3125
4
rebase/api/predicter.py
rebaseenergy/rebase-sdk
0
12780807
import rebase as rb import pickle from datetime import datetime import rebase.util.api_request as api_request class Predicter(): @classmethod def load_data(cls, pred, start_date, end_date): site_config = rb.Site.get(pred.site_id) return pred.load_data(site_config, start_date, end_date) @classmethod def load_latest_data(cls, predicter): Predicter.load_data(predicter) @classmethod def train(cls, pred, params, start_date, end_date): weather_df, observation_df = Predicter.load_data(pred, start_date, end_date) dataset = pred.preprocess(weather_df, observation_df) return pred.train(dataset, params) @classmethod def hyperparam_search(self, pred, params_list): models = [] for p in params_list: model, score = pred.train(dataset, p) @classmethod def deploy(cls, pred): print("Deploying {}".format(pred.name)) path = 'platform/v1/site/train/{}'.format(pred.site_id) response = api_request.post(path) if response.status_code == 200: print("Success!") else: print("Failed") @classmethod def predict(cls, pred): Predicter.load_latest_data() @classmethod def status(cls, pred): path = '/platform/v1/site/train/state/{}'.format(pred.site_id) r = api_request.get(path) status = {'status': None, 'history': []} if r.status_code == 200: data = r.json() if len(data) > 0: status['status'] = data[-1]['state'] status['history'] = data return status class Model(): def setup(self): pass def load_data(self, site_config, start_date, end_date): """This method should load the data for training Args: site_config (dict): config for the site start_date (datetime): the start date for the period end_date (datetime): the end date for the period Returns: - pd.DataFrame: one df - pd.DataFrame: one df """ raise NotImplementedError( 'Your subclass must implement the load_data() method' ) def load_latest_data(self, site_config): """This method should load the predict data for training Args: site_config (dict): config for the site Returns: """ raise NotImplementedError( 'Your subclass must implement the load_data() method' ) def preprocess(self, weather_data, observation_data=None): raise NotImplementedError( 'Your subclass must implement the preprocess() method' ) def train(self, train_set, params={}): raise NotImplementedError( 'Your subclass must implement the train() method' ) # weather_df - weather for a ref time # target_observations - like recent production power, could be used for intraday def predict(self, predict_set): raise NotImplementedError( 'Your subclass must implement the predict() method' ) # serialize() should be overriden with custom serialization # method if @param model can't be pickled def serialize(self, model): return pickle.dumps(model) # deserialize() should be overriden with custom deserialization method # if @param serialized_model can't be loaded from pickle def deserialize(self, serialized_model): return pickle.loads(serialized_model)
2.421875
2
setup.py
MrBurtyyy/yoti-python-sdk
0
12780808
<gh_stars>0 # -*- coding: utf-8 -*- from setuptools import setup, find_packages from yoti_python_sdk import __version__ long_description = ( "This package contains the tools you need to quickly " "integrate your Python back-end with Yoti, so that your " "users can share their identity details with your " "application in a secure and trusted way." ) setup( name="yoti", version=__version__, packages=find_packages(), license="MIT", description="The Yoti Python SDK, providing API support for Login, Verify (2FA) and Age Verification.", long_description=long_description, url="https://github.com/getyoti/yoti-python-sdk", author="Yoti", author_email="<EMAIL>", install_requires=[ "cryptography>=2.2.1", "protobuf>=3.1.0", "requests>=2.11.1", "future>=0.11.0", "asn1==2.2.0", "pyopenssl>=18.0.0", ], extras_require={ "examples": [ "Django>1.11.16", "Flask>=0.10", "python-dotenv>=0.7.1", "django-sslserver>=0.2", "Werkzeug==0.11.15", ] }, classifiers=[ "Development Status :: 5 - Production/Stable", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", "Intended Audience :: Developers", "Programming Language :: Python", "Programming Language :: Python :: 2", "Programming Language :: Python :: 2.6", "Programming Language :: Python :: 2.7", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.3", "Programming Language :: Python :: 3.4", "Programming Language :: Python :: 3.5", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Topic :: Software Development :: Libraries :: Python Modules", ], keywords="yoti sdk 2FA multifactor authentication verification identity login register verify 2Factor", )
1.304688
1
gupb/controller/shallow_mind/utils.py
syforcee/GUPB
0
12780809
from typing import Tuple, List from gupb.model.characters import Action def points_dist(cord1, cord2): return int(((cord1.x - cord2.x) ** 2 + (cord1.y - cord2.y) ** 2) ** 0.5) def get_first_possible_move(moves: List[Tuple[Action, int]]): return next((next_move for next_move in moves if next_move[0] != Action.DO_NOTHING), (Action.DO_NOTHING, -1))
2.640625
3
src/TrussModel.py
somu15/Small_Pf_code
0
12780810
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Dec 17 15:24:18 2020 @author: dhulls """ from anastruct import SystemElements import numpy as np class TrussModel: def HF(self, young1=None, young2=None, area1=None, area2=None, P1=None, P2=None, P3=None, P4=None, P5=None, P6=None): ss = SystemElements() # young1 = 2.1e11 # area1 = 2e-3 # young2 = 2.1e11 # area2 = 1e-3 ss.add_truss_element(location=[[0, 0], [4,0]], EA=(area1*young1)) ss.add_truss_element(location=[[4, 0], [8,0]], EA=(area1*young1)) ss.add_truss_element(location=[[8, 0], [12,0]], EA=(area1*young1)) ss.add_truss_element(location=[[12, 0], [16,0]], EA=(area1*young1)) ss.add_truss_element(location=[[16, 0], [20,0]], EA=(area1*young1)) ss.add_truss_element(location=[[20, 0], [24,0]], EA=(area1*young1)) ss.add_truss_element(location=[[2, 2], [6,2]], EA=(area1*young1)) ss.add_truss_element(location=[[6, 2], [10,2]], EA=(area1*young1)) ss.add_truss_element(location=[[10, 2], [14,2]], EA=(area1*young1)) ss.add_truss_element(location=[[14, 2], [18,2]], EA=(area1*young1)) ss.add_truss_element(location=[[18, 2], [22,2]], EA=(area1*young1)) ss.add_truss_element(location=[[0, 0], [2,2]], EA=(area2*young2)) ss.add_truss_element(location=[[2,2], [4,0]], EA=(area2*young2)) ss.add_truss_element(location=[[4,0], [6,2]], EA=(area2*young2)) ss.add_truss_element(location=[[6,2], [8,0]], EA=(area2*young2)) ss.add_truss_element(location=[[8,0], [10,2]], EA=(area2*young2)) ss.add_truss_element(location=[[10,2], [12,0]], EA=(area2*young2)) ss.add_truss_element(location=[[12,0], [14,2]], EA=(area2*young2)) ss.add_truss_element(location=[[14,2], [16,0]], EA=(area2*young2)) ss.add_truss_element(location=[[16,0], [18,2]], EA=(area2*young2)) ss.add_truss_element(location=[[18,2], [20,0]], EA=(area2*young2)) ss.add_truss_element(location=[[20,0], [22,2]], EA=(area2*young2)) ss.add_truss_element(location=[[22,2], [24,0]], EA=(area2*young2)) ss.add_support_hinged(node_id=1) ss.add_support_roll(node_id=7, direction='x') # P1 = -5e4 # P2 = -5e4 # P3 = -5e4 # P4 = -5e4 # P5 = -5e4 # P6 = -5e4 ss.point_load(node_id=8, Fy=P1) ss.point_load(node_id=9, Fy=P2) ss.point_load(node_id=10, Fy=P3) ss.point_load(node_id=11, Fy=P4) ss.point_load(node_id=12, Fy=P5) ss.point_load(node_id=13, Fy=P6) ss.solve() # ss.show_structure() # ss.show_displacement(factor=10) K = ss.get_node_results_system(node_id=4)['uy'] return np.array(K) def LF(self, young1=None, young2=None, area1=None, area2=None, P1=None, P2=None, P3=None, P4=None, P5=None, P6=None): ss = SystemElements() # young1 = 2.1e11 # area1 = 2e-3 # young2 = 2.1e11 # area2 = 1e-3 ss.add_truss_element(location=[[0, 0], [12,0]], EA=(area1*young1)) ss.add_truss_element(location=[[12, 0], [24,0]], EA=(area1*young1)) ss.add_truss_element(location=[[6, 2], [18,2]], EA=(area1*young1)) ss.add_truss_element(location=[[0, 0], [6,2]], EA=(area2*young2)) ss.add_truss_element(location=[[6,2], [12,0]], EA=(area2*young2)) ss.add_truss_element(location=[[12,0], [18,2]], EA=(area2*young2)) ss.add_truss_element(location=[[18,2], [24,0]], EA=(area2*young2)) ss.add_support_hinged(node_id=1) ss.add_support_roll(node_id=3, direction='x') # P1 = -5e4 # P2 = -5e4 # P3 = -5e4 # P4 = -5e4 # P5 = -5e4 # P6 = -5e4 ss.point_load(node_id=4, Fy=np.sum([P1,P2,P3])) ss.point_load(node_id=5, Fy=np.sum([P4,P5,P6])) ss.solve() # ss.show_structure() # ss.show_displacement(factor=10) K = ss.get_node_results_system(node_id=4)['uy'] return np.array(K)
2.40625
2
research/realty_type_quantities.py
Ramilll/raifhack_ds
0
12780811
<reponame>Ramilll/raifhack_ds<gh_stars>0 import pandas as pd import matplotlib.pyplot as plt import seaborn as sns data_dir = '../data/' train = pd.read_csv(data_dir + 'train.csv') rt = train.realty_type counts = rt.groupby(rt).count().rename('count').reset_index() fig, ax = plt.subplots(figsize=(10, 5)) sns.barplot(data=counts, x='realty_type', y='count', ax=ax) fig.savefig('plot/realty_type_distribution.jpg')
2.515625
3
file/models.py
CaptainMorch/TJU_Cats
0
12780812
from django.db import models from django.urls import reverse from datetime import date # Create your models here. class Photo(models.Model): """猫猫相片的数据库模型""" image = models.ImageField( '图像', upload_to='image/' ) title = models.CharField('标题', blank=True, max_length=8) description = models.TextField('图片描述', blank=True) author = models.ForeignKey( 'campus.User', verbose_name='拍摄者', on_delete=models.SET_NULL, null = True, blank = True, related_name = 'photos', related_query_name = 'photo' ) author_name = models.CharField('拍摄者名称', max_length=16, blank=True) date = models.DateField('拍摄日期', default=date.today, null=True, blank=True) cats = models.ManyToManyField( 'cat.Cat', verbose_name='出镜猫猫们', related_name='photos', related_query_name='photo' ) class Meta: verbose_name = '相片' verbose_name_plural = '相片' def __str__(self): name = '' if self.cats.count() < 3: for cat in self.cats.all(): name = name + str(cat) + '-' else: cats = self.cats.all() name = str(cats[0]) + '-...-' + str(cats[1]) + '-' if self.title: name = name + self.title + '-' if self.date: name = name + str(self.date.year) + '-' return name[:-1] def get_absolute_url(self): return reverse('file:photo', {'pk': self.pk}) def get_author(self): """拍摄者名称""" if self.author: return self.author.username elif self.author_name: return self.author_name else: return '佚名'
2.59375
3
datasets/NIH.py
tnaren3/pytorch-adda
0
12780813
<filename>datasets/NIH.py import os import csv from PIL import Image import numpy as np import torch import torch.utils.data as data from torchvision import datasets, transforms import params class NIH(data.Dataset): def __init__(self, root, train=True, val=False, transform=None): """Init NIH dataset.""" # init params self.root = os.path.expanduser(root) self.train = train self.val = val self.transform = transform self.dataset_size = None self.train_data, self.train_labels = self.load_samples() if self.train: total_num_samples = self.train_labels.shape[0] indices = np.arange(total_num_samples) np.random.shuffle(indices) self.train_data = self.train_data[indices[0:self.dataset_size]] self.train_labels = self.train_labels[indices[0:self.dataset_size]] def __getitem__(self, index): """Get images and target for data loader. Args: index (int): Index Returns: tuple: (image, target) where target is index of the target class. """ img, label = self.train_data[index], self.train_labels[index] if self.transform is not None: img = self.transform(img) label = torch.FloatTensor([np.int64(label[0]).item(), np.int64(label[1]).item(), np.int64(label[2]).item(), np.int64(label[3]).item(), np.int64(label[4]).item()]) return img, label def __len__(self): """Return size of dataset.""" return self.dataset_size def load_samples(self): """Load sample images from dataset.""" numtr = 126 numts = 60 numvl = 14 data_root = os.path.join(self.root, 'NIH') path = os.path.join(data_root, 'images') images = [] labels = [] if self.val: val_info = csv.reader(open(os.path.join(data_root, 'multi-val-split.csv'), 'r')) for count, row in enumerate(val_info): if count == numvl: break image = np.repeat(np.array(Image.open(os.path.join(path, row[0])).convert('L').resize((224, 224)))[..., np.newaxis], 3, -1) images.append(image) #labels.append(row[1]) labels.append(np.array([row[1], row[2], row[3], row[4], row[5]])) elif self.train: train_info = csv.reader(open(os.path.join(data_root, 'multi-train-split.csv'), 'r')) for count, row in enumerate(train_info): if count == numtr: break image = np.repeat(np.array(Image.open(os.path.join(path, row[0])).convert('L').resize((224, 224)))[..., np.newaxis], 3, -1) images.append(image) #labels.append(row[1]) labels.append(np.array([row[1], row[2], row[3], row[4], row[5]])) elif not self.val and not self.train: test_info = csv.reader(open(os.path.join(data_root, 'multi-test-split.csv'), 'r')) for count, row in enumerate(test_info): if count == numts: break image = np.repeat(np.array(Image.open(os.path.join(path, row[0])).convert('L').resize((224, 224)))[..., np.newaxis], 3, -1) images.append(image) #labels.append(row[1]) labels.append(np.array([row[1], row[2], row[3], row[4], row[5]])) images = np.asarray(images) labels = np.asarray(labels) self.dataset_size = labels.shape[0] return images, labels def get_nih(train, val): """Get nih dataset loader.""" # image pre-processing pre_process = transforms.Compose([transforms.ToTensor(), #transforms.Normalize( #mean=params.dataset_mean, #std=params.dataset_std)]) ]) # dataset and data loader nih_dataset = NIH(root=params.data_root, train=train, val=val, transform=pre_process) nih_data_loader = torch.utils.data.DataLoader( dataset=nih_dataset, batch_size=params.batch_size, shuffle=True, drop_last = True) return nih_data_loader
3
3
src/djai/util/cli/_server_files/asgi.py
Django-AI/DjAI
3
12780814
""" ASGI config for DjAI project. It exposes the ASGI callable as a module-level variable named ``application`` For more information on this file, see docs.djangoproject.com/en/dev/howto/deployment/asgi """ # ref: django-configurations.readthedocs.io import os # from django.core.asgi import get_asgi_application from configurations.asgi import get_asgi_application os.environ.setdefault(key='DJANGO_SETTINGS_MODULE', value='settings') os.environ.setdefault(key='DJANGO_CONFIGURATION', value='Default') application = get_asgi_application()
1.546875
2
src/utils.py
carlps/bikeshare
2
12780815
<filename>src/utils.py # Common utils used in different scripts from os import environ from sqlalchemy import create_engine from sqlalchemy.orm import sessionmaker def get_session(env='DEV', echo=False): ''' Create db connection and sqlalchemy engine Return a session to interact with db Echo defaults to False, but if you want for debugging, just pass echo=True and sql statements will print to console''' if env == 'DEV': pg_user = environ['POSTGRES_USER'] pg_pw = environ['POSTGRES_PW'] db = 'bikeshare' elif env == 'TST': pg_user = environ['POSTGRES_USER_TST'] pg_pw = environ['POSTGRES_PW_TST'] db = 'bikeshare_tst' host = 'localhost' port = '5432' engine = create_engine(f'postgres://{pg_user}:{pg_pw}@{host}:{port}/{db}', echo=echo) Session = sessionmaker(bind=engine) return Session() if __name__ == '__main__': print('Why are you running this? It should only be imported.')
2.5625
3
shared/management/commands/settings.py
dArignac/shared
0
12780816
from django.conf import settings from django.core.management.base import BaseCommand, CommandError from pprint import pformat class Command(BaseCommand): args = '<setting>' help = 'Outputs the value of the given setting name' def handle(self, *args, **options): if len(args) != 1: raise CommandError('Please enter exactly one setting name!') name = args[0] if hasattr(settings, name): self.stdout.write(pformat(getattr(settings, name), indent=4, width=160)) else: self.stderr.write('no setting with name %s available!' % name)
2.609375
3
model.py
pedrocarvalhoaguiar/ProjetoP2-Braga-Alessandra
0
12780817
from estruturadedados.avltree import AVL from estruturadedados.queue import Queue from biometria.biometria import Biometria as Bio from bancodedados.paths import * import json from os import listdir, remove class GerenciadorPrincipal(): def __init__(self): self.gerVacina = GerenciadorVacina() self.gerPessoas = GerenciadorPessoas() self.gerBiometria = GerenciadorBiometria() def cadastrarVacina(self, vacina): self.gerVacina.cadastrarVacina(vacina) def cadastrarPessoa(self, pessoa): self.gerPessoas.cadastrarPessoa(pessoa=pessoa) def retornarPessoa(self, chave, tipo): return self.gerPessoas.procurarPessoa(chave, tipo) def retornarBioNova(self): return self.gerBiometria.cadastrarBiometria() def vacinarPessoa(self, pessoa, vacina): self.gerPessoas.vacinarPessoa(pessoa, vacina) self.gerVacina.diminuirEstoque(vacina.getLote()) def retornarVacinaValida(self, fab=None): vacina = self.gerVacina.getVacina(fab=fab) return vacina def retornarQuantidadeEstoque(self): return self.gerVacina.retornarEstoque() def retornarPessoaBio(self, path): nomeBio = self.gerBiometria.compararBiometria(path) if nomeBio: pessoaB = self.retornarPessoa(nomeBio, 'bio') return pessoaB return False def excluirCadastro(self, pessoa): self.gerPessoas.excluirPessoa(pessoa) try: self.gerBiometria.excluirBiometria(pessoa.getBiometria()) except: pass def retornarArvoreVacinas(self): return self.gerVacina.arvoreVacinas def retornarArvoreCPF(self): return self.gerPessoas.arvorePessoasCPF def retornarArvoreBio(self): return self.gerPessoas.arvorePessoasBiometria class GerenciadorPessoas(): def __init__(self): self.arvorePessoasCPF = AVL() self.arvorePessoasBiometria = AVL() self._carregarArvore(VACBIO) self._carregarArvore(VACCPF) def _carregarArvore(self, caminho): arvore, tipoPessoa, lastAtt = self._chooseType(caminho) try: with open(f'{caminho}', 'r') as nomeArquivo: listaPessoas = json.load(nomeArquivo) for k, v in listaPessoas.items(): chave = k pessoa = tipoPessoa(v['nome'], v['idade'], v['dose'], v['vacina'], v[f'{lastAtt}']) arvore.insert(chave, valor=pessoa) except: with open(f'{caminho}', 'w') as f: data = {} json.dump(data, f, indent=4, ensure_ascii=False) def cadastrarPessoa(self, pessoa): arvore, chave, caminho = self._chooseArvore(pessoa=pessoa) arvore.insert(chave, valor=pessoa) with open(f'{caminho}', 'r+', encoding='UTF-8') as nomeArquivo: listaPessoa = json.load(nomeArquivo) listaPessoa[chave] = pessoa.lineRegistry() with open(f'{caminho}', 'w', encoding='UTF-8') as nomeArquivo: json.dump(listaPessoa, nomeArquivo, indent=4, ensure_ascii=False) def vacinarPessoa(self, pessoa, vacina): arvore, chave, caminho = self._chooseArvore(pessoa=pessoa) pArvore = arvore.search(chave) pArvore.getValor().setDose(1) pArvore.getValor().setVacina(vacina.fabricante) with open(f'{caminho}', 'r+', encoding='UTF-8') as nomeArquivo: listaPessoas = json.load(nomeArquivo) p = listaPessoas[chave] p['vacina'] = vacina.getFabricante() p['dose'] += 1 with open(f'{caminho}', 'w', encoding='UTF-8') as nomeArquivo: json.dump(listaPessoas, nomeArquivo, indent=4, ensure_ascii=False) def excluirPessoa(self, pessoa): arvore, chave, caminho = self._chooseArvore(pessoa=pessoa) arvore.delete(chave) with open(f'{caminho}', 'r+', encoding='UTF-8') as nomeArquivo: listaPessoas = json.load(nomeArquivo) listaPessoas.pop(chave) with open(f'{caminho}', 'w', encoding='UTF-8') as nomeArquivo: json.dump(listaPessoas, nomeArquivo, indent=4, ensure_ascii=False) def procurarPessoa(self, chave, tipo): arvore = self._chooseArvore(tipo=tipo) pessoa = arvore.search(chave) return pessoa.getValor() def _chooseType(self, caminho): arvore = self.arvorePessoasCPF if caminho == VACCPF else self.arvorePessoasBiometria tipoPessoa = PessoaCPF if caminho == VACCPF else PessoaBiometria lastAtt = 'cpf' if caminho == VACCPF else 'biometria' return arvore, tipoPessoa, lastAtt def _chooseArvore(self, tipo=None, pessoa=None): if tipo: arvore = self.arvorePessoasCPF if tipo == 'cpf' else self.arvorePessoasBiometria return arvore if pessoa: arvore = self.arvorePessoasCPF if pessoa.__class__.__name__ == 'PessoaCPF' else self.arvorePessoasBiometria chave = pessoa.getCpf() if arvore == self.arvorePessoasCPF else pessoa.getBiometria() path = VACCPF if arvore == self.arvorePessoasCPF else VACBIO return arvore, chave, path class Pessoa: def __init__(self, nome, idade, dose=0, vacina=None): self.nome = nome self.idade = idade self.dose = dose self.vacina = self.setVacina(vacina) def isVac(self): if self.dose > 1: return True return False def getNomeVacina(self): if self.vacina == 'N/A': return self.vacina return self.vacina def setVacina(self, valor): if valor == None: return 'N/A' else: return valor def getDose(self): return self.dose def setDose(self, valor): self.dose += valor def __repr__(self): return f'| NOME:{self.nome} \n| IDADE: {self.idade}\n| DOSE VACINA: {self.dose}' class PessoaCPF(Pessoa): def __init__(self, nome, idade, dose=0, vacina=None, cpf=0): super().__init__(nome, idade, dose, vacina) self.cpf = cpf def getCpf(self): return self.cpf def lineRegistry(self): return {'nome': self.nome, 'idade': self.idade, 'vacina': self.getNomeVacina(), 'dose': self.dose, 'cpf': self.cpf} class PessoaBiometria(Pessoa): def __init__(self, nome, idade, dose=0, vacina=None, biom=0): super().__init__(nome, idade, dose, vacina) self.biometria = biom def getBiometria(self): return self.biometria def associarBiometria(self, biometria): self.biometria = biometria def lineRegistry(self): return {'nome': self.nome, 'idade': self.idade, 'vacina': self.getNomeVacina(), 'dose': self.dose, 'biometria': self.biometria} class GerenciadorBiometria(): def __init__(self): self.arvoreBiometrias = AVL() self._carregarArvore() def cadastrarBiometria(self): biometria = Bio.criar('_') self.arvoreBiometrias.insert(str(biometria)) return biometria def compararBiometria(self, path): nome = nameFromPath(path) caminho = caminhoFromPath(path) biometriaBD = self._procurarBiometria(nome) if biometriaBD: biometriaTeste = Bio.leArquivo(nome, path=caminho) biometriaBD = Bio.leArquivo(biometriaBD.getChave()) arvoreTeste = self._carregarArvoreTeste(biometriaTeste) arvoreBD = self._carregarArvoreTeste(biometriaBD) if self._igual(arvoreBD.getRoot(), arvoreTeste.getRoot()): return nome return False def _pegarNomes(self): nomes = [".".join(f.split(".")[:-1]) for f in listdir(path=BIO) if f.endswith('.json')] return nomes def excluirBiometria(self, nome): remove(f'{BIO}{nome}.json') self.arvoreBiometrias.delete(nome) def _carregarArvore(self): nomes = self._pegarNomes() self.arvoreBiometrias.inserirLista(nomes) def _carregarArvoreTeste(self, lista): arvore = AVL() arvore.inserirLista(lista) return arvore def _procurarBiometria(self, chave): try: biometria = self.arvoreBiometrias.search(chave) except: return False return biometria def _igual(self, p1, p2): if p1 == None and p2 == None: return True if p1 == None or p2 == None: return False fila1 = Queue() fila2 = Queue() fila1.push(p1) fila2.push(p2) count = 0 while not fila1.isEmpty() and not fila2.isEmpty(): pos1 = fila1.first.valor pos2 = fila2.first.valor if pos1.getChave() != pos2.getChave(): return False fila1.pop() fila2.pop() count +=1 if count > 40: return True if pos1.getLeft() and pos2.getLeft(): fila1.push(pos1.getLeft()) fila2.push(pos2.getLeft()) elif pos1.getLeft() or pos2.getLeft(): return False if pos1.getRight() and pos2.getRight(): fila1.push(pos1.getRight()) fila2.push(pos2.getRight()) elif pos1.getRight() or pos2.getRight(): return False return True class GerenciadorVacina(): def __init__(self): self.arvoreVacinas = AVL() self.estoque = 0 self._carregarArvore() def _carregarArvore(self): try: with open(f'{VACI}', 'r', encoding='UTF-8') as nomeArquivo: listaVacinas = json.load(nomeArquivo) for k, v in listaVacinas.items(): if v['quantidade'] == 0: continue vacina = Vacina(v['fabricante'], v['lote'], v['quantidade']) self.setEstoque(v['quantidade']) self.arvoreVacinas.insert(k, valor=vacina) except: with open(f'{VACI}', 'w', encoding='UTF-8') as nomeArquivo: data = {} json.dump(data, nomeArquivo, indent=4, ensure_ascii=False) def cadastrarVacina(self, vacina): self.arvoreVacinas.insert(vacina.getLote(), valor=vacina) self.setEstoque(vacina.quantidade) with open(f'{VACI}', 'r+', encoding='UTF-8') as nomeArquivo: listaVacinas = json.load(nomeArquivo) listaVacinas[f'{vacina.getLote()}'] = vacina.lineRegistry() with open(f'{VACI}', 'w', encoding='UTF-8') as nomeArquivo: json.dump(listaVacinas, nomeArquivo, indent=4, ensure_ascii=False) def diminuirEstoque(self, lote): vacina = self.arvoreVacinas.search(lote) vacina.getValor().setQuantidade(-1) self.setEstoque(-1) if not vacina.valor.temVacina(): self.arvoreVacinas.delete(lote) with open(f'{VACI}', 'r+', encoding='UTF-8') as nomeArquivo: listaVacinas = json.load(nomeArquivo) vacina = listaVacinas[lote] vacina['quantidade'] -= 1 with open(f'{VACI}', 'w', encoding='UTF-8') as nomeArquivo: json.dump(listaVacinas, nomeArquivo, indent=4, ensure_ascii=False) def getVacina(self, fab=None): if self.arvoreVacinas.isEmpty(): return None if fab == 'N/A': return self.arvoreVacinas.getRoot().getValor() for node in self.arvoreVacinas: if node.getValor().getFabricante() == fab and node.getValor().temVacina(): return node.getValor() def retornarEstoque(self): return self.estoque def setEstoque(self, qnt): if qnt > 0: self.estoque += qnt elif qnt < 0: self.estoque = self.estoque - 1 else: self.estoque = 0 class Vacina: def __init__(self, fab, lote, quantidade=0): self.fabricante = fab self.lote = lote self.quantidade = quantidade def setQuantidade(self, qnt): if self.quantidade == 0: self.quantidade = 0 elif qnt > 0: self.quantidade += qnt elif qnt < 0: self.quantidade = self.quantidade - 1 else: self.quantidade = 0 def temVacina(self): if self.quantidade == 0: return False return True def getLote(self): return self.lote def getFabricante(self): return self.fabricante def lineRegistry(self): return {'fabricante': self.fabricante, 'lote': self.lote, 'quantidade': self.quantidade} def __repr__(self): return f'| Fabricante: {self.fabricante}\n| Quantidade: {self.quantidade}\n| Lote: {self.lote}'
2.484375
2
icevision/models/rcnn/mask_rcnn/fastai/__init__.py
lee00286/icevision
0
12780818
<filename>icevision/models/rcnn/mask_rcnn/fastai/__init__.py from icevision.models.rcnn.mask_rcnn.fastai.callbacks import * from icevision.models.rcnn.mask_rcnn.fastai.learner import *
1.148438
1
Unet/threshold_analysis.py
prediction2020/unet-vessel-segmentation
23
12780819
<reponame>prediction2020/unet-vessel-segmentation # -*- coding: utf-8 -*- """ File name: threshold_analysis.py Author: <NAME> Date created: 06/12/2018 The goal of this script is to: 1) Display calibration plots of the pulled Unet and half-Unet output 2) Assuming the output is not calibrated, Find the optimal threshold on the classifier output to yield best F1-score (based on the validation-set) """ # Import the relevant modules: import os, glob, sys import numpy as np np.random.seed(0) import matplotlib.pyplot as plt import nibabel as nib from sklearn.metrics import average_precision_score from sklearn.metrics import precision_recall_curve from sklearn import datasets from sklearn.naive_bayes import GaussianNB from sklearn.linear_model import LogisticRegression from sklearn.ensemble import RandomForestClassifier from sklearn.svm import LinearSVC from sklearn.calibration import calibration_curve # Define helper functions: def calc_opt_f1(labels,probs): # The function gets the classifier's labels(=ground truth), probs (=scores, i.e. classifier output) and possible thresholds # And returns the best possible F1-score and the threshold that yielded it from sklearn.metrics import f1_score thresholds = np.linspace(0.,1.,110) # downsample to avoid long calc. times opt_f1 = 0 # we assume the classifier can do better than this... for thresh in (thresholds): pred_class = probs>thresh F1 = f1_score(labels,pred_class) if F1>opt_f1: opt_f1 = F1 opt_thresh = thresh return opt_f1,opt_thresh # Config the tested architecture: Unet of half-Unet full_architecture = False # True = Unet / False = half-Unet # set path to the data, based on the used architecture: os.chdir('C:\\Users\\livnem\\OneDrive\\Charite\\Projects\\Jana_segmentation\\for_calibration') if full_architecture: arctype = 'full' path = 'C:\\Users\\livnem\\OneDrive\\Charite\\Projects\\Jana_segmentation\\for_calibration\\full_architecture\\results\\val' else: arctype = 'half' path = 'C:\\Users\\livnem\\OneDrive\\Charite\\Projects\\Jana_segmentation\\for_calibration\\half_architecture\\results\\val' full_path = 'C:\\Users\\livnem\\OneDrive\\Charite\\Projects\\Jana_segmentation\\for_calibration\\full_architecture\\results\\val' # set path to the data, extract the relevant data-filenames val_labels_path = 'C:\\Users\\livnem\\OneDrive\\Charite\\Projects\\Jana_segmentation\\for_calibration\\ground_truth_for _calibration\\val' test_labels_path = 'C:\\Users\\livnem\\OneDrive\\Charite\\Projects\\Jana_segmentation\\for_calibration\\ground_truth_for _calibration\\test' val_label_files = sorted(os.listdir(val_labels_path)) test_label_files = sorted(os.listdir(test_labels_path)) val_all_files = sorted(os.listdir(path)) val_prob_files = os.listdir(path) # Get the model filenames based on the extracted data-filenames. The models-filenames consist of the used hyperparameters for that calculated model models = val_all_files[0:24] # Take only the first 24 files, because after 24, the models repeat for different validation sets models[:] = [model[15:] for model in models] # extract the models names. Ignore the first 15 characters, that contain the validation-set pt. numbering # For each model: concatenate flatten validation ground-truth labels to one vector os.chdir(path) model = models[0] # start at the first model val_prob_files = glob.glob('*'+model) # take all the validation-set probability files calculated for this model labels_full_vec = np.ndarray(0) # initiate the flatten vector for [i,file] in enumerate(val_prob_files): # for each model, pull (cocatenate) all probability maps into one vector (=prob_full_vec) and pull (concatenate) all labels into one vector (=labels_full_vec) # concatenate flatten validation ground-truth labels to one vector for the specific model (classifier) os.chdir(val_labels_path) label_file = val_label_files[i] label_img = nib.load(label_file) label_mat = label_img.get_data() label_vec = label_mat.flatten() labels_full_vec = np.append(labels_full_vec, label_vec, axis=0) lables_full_vec = labels_full_vec.round() # Make sure the labels are binary # Loop over the different models and make calibration plots for the pulled validation-sets per-model os.chdir(path) best_f1=0 prob_full_vec = np.ndarray(0) # initiate the flatten vector for [i,model] in enumerate(models): # For each model, calculate and plot the calibration plots and calculate best thresh based on precision-recall curves val_prob_files = glob.glob('*'+model) prob_full_vec = np.ndarray(0) for [i,file] in enumerate(val_prob_files): prob = nib.load(file) prob_mat = prob.get_data() prob_vec = prob_mat.flatten() prob_full_vec = np.append(prob_full_vec, prob_vec, axis=0) # Sanity-check: make sure that the range of scores is [0,1] if max(prob_full_vec)>1 or min(prob_full_vec)<0: sys.exit('The probability range of the validation set for the model was in the wrong range',min(prob_full_vec),max(prob_full_vec)) # Make precision-recall plot for the model: average_precision = average_precision_score(labels_full_vec,prob_full_vec) precision,recall,_ = precision_recall_curve(labels_full_vec,prob_full_vec) opt_f1,opt_thresh = calc_opt_f1(labels_full_vec,prob_full_vec) if opt_f1>best_f1: best_f1 = opt_f1 best_thresh = opt_thresh best_model = model print('For the architecture:',arctype) print('The best F1 score on the validation set was:',best_f1, 'with threshold:',best_thresh) print('Model:',best_model) plt.step(recall, precision, color='b', alpha=0.2, where='post') plt.fill_between(recall, precision, step='post', alpha=0.2, color='b') plt.xlabel('Recall') plt.ylabel('Precision') plt.ylim([0.0, 1.05]) plt.xlim([0.0, 1.0]) plt.title('2-class Precision-Recall curve: AP={0:0.2f}'.format( average_precision)) # Make calibration plots: plt.figure(i) ax1 = plt.subplot2grid((3,1),(0,0),rowspan=2) ax2 = plt.subplot2grid((3,1),(2,0)) ax1.plot([0,1],[0,1],"k:",label="Perfectly calibrated") fraction_of_positives, mean_predicted_value = \ calibration_curve(labels_full_vec.round(), prob_full_vec, n_bins=10) ax1.plot(mean_predicted_value, fraction_of_positives, "s-") ax2.hist(prob_full_vec, range=(0, 1), bins=10, histtype="step", lw=2) ax1.set_ylabel("Fraction of positives") ax1.set_ylim([-0.05, 1.05]) ax1.legend(loc="lower right") ax1.set_title('Calibration plots (reliability curve)') ax2.set_xlabel("Mean predicted value") ax2.set_ylabel("Count") ax2.legend(loc="upper center", ncol=2) plt.tight_layout() plt.show() ## Since the classifier is clearly not calibrated, the threshold is found empirically on each validation set (pulled analysis) # plot precision-recall curves for each model, and extract optimal threshold for maximal F1 score: # extract best threshold for maximal Hausdorff distance*** ??? --> classify using best thresh --> calc Hausdorff dist. --> take best # Take the model with best F1 score
2.71875
3
simulations/simulation.py
Jackil1993/metainventory
3
12780820
<filename>simulations/simulation.py import numpy as np import matplotlib.pyplot as plt # create a .txt file to write down all the discrete events for further tracing) file = open("protocol.txt","w") # a static class containing all the utilized random number generators class Generator: def normal(self, mu, sigma): return np.random.normal(mu, sigma) def exponential(self, betta): return np.random.exponential(betta) # the "Warehouse" includes the parameters shared by all the operable products class Warehouse: def __init__(self, adjustments, parameters, costs, strategy, total_capacity=300): self.total_capacity = total_capacity self.free_capacity = total_capacity self.time = 0.0 self.products = [] self.to_report = bool(adjustments[0][1]) # we generate the operable products for product in range(len(parameters)): self.products.append(Product(product, adjustments[product], parameters[product], costs[product], strategy[product], total_capacity)) def check_free_capacity(self): used = 0.0 for product in range(len(self.products)): used += sum(self.products[product].lots) self.free_capacity = self.total_capacity - used if self.free_capacity < 0.0: self.free_capacity = 0.0 if self.to_report is True: file.write('\nFree capacity = {}'.format(round(self.free_capacity, 2))) def advance_time(self): demands = list(map(lambda x: x.next_demand, self.products)) replenishments = list(map(lambda x: x.next_rep, self.products)) self.check_free_capacity() if min(demands) <= min(replenishments): self.time = self.products[np.argmin(demands)].handle_demand(self.time) else: self.time = self.products[np.argmin(replenishments)].handle_replenishment(self.time, self.free_capacity) class Product: def __init__(self, id, adjustments, parameters, costs, strategy, total_capacity): self.g = Generator() self.id = id self.interarrivals = parameters[0] self.demand = parameters[1] self.replenishment_lead = parameters[2] self.expiry = parameters[3] self.lots = [strategy[0]] self.expiry_date = [self.g.normal(parameters[3][0], parameters[3][1])] self.status = False self.next_demand = self.g.exponential(self.interarrivals) self.next_rep = float('inf') self.next_event = self.next_demand self.reorder_point = strategy[1] self.reorder_size = strategy[0] #counters self.backorders = 0.0 self.overflows = 0.0 self.expired = 0.0 #costs self.purchase_prise = costs[0] #includes delivery self.sales_prise = costs[1] self.total_capacity = total_capacity # needed to calculate return to scale self.purchase_prise = self.purchase_prise if self.reorder_size < 0.5*self.total_capacity else 0.7*self.purchase_prise self.handling_cost = costs[2] self.backorder_fee = costs[3] self.overflow_fee = costs[4] self.recycle_fee = costs[5] self.income = 0.0 self.costs = 0.0 self.to_plot = bool(adjustments[0]) self.to_report = bool(adjustments[1]) if self.to_plot == True: self.stats = Statistics(self.reorder_point, self.reorder_size) def check_expiry(self, time): for lot in range(len(self.expiry_date)): if self.expiry_date[lot] <= 0.0 and self.lots[lot] > 0: if self.to_report is True: file.write('\nThe lot № {} of product {} is expired. {} pieces will be recycled'.format(lot, self.id, round(float(self.lots[lot]), 2))) try: self.stats.expires.append(time) self.stats.expires_time.append(sum(self.lots)) except AttributeError: pass if len(self.lots) > 1: self.expiry_date.pop(lot) tmp = self.lots.pop(lot) self.expired += tmp self.costs += self.recycle_fee * tmp else: self.expiry_date[0] = 0 self.expired += self.lots[0] self.costs += self.recycle_fee * self.lots[0] self.lots[0] = 0 break def handle_demand(self, time): to_handle = abs(self.g.normal(self.demand[0], self.demand[1])) self.expiry_date = list(map(lambda x: x - (self.next_demand - time), self.expiry_date)) self.check_expiry(time) self.costs += (self.next_demand - time)*sum(self.lots)*self.handling_cost #handling costs time = self.next_demand self.next_demand = time + self.g.exponential(self.interarrivals) if self.to_report is True: file.write('\ntime {}: {} pieces of product {} have been demanded'.format(round(time, 2), round(to_handle, 2), self.id)) empty_lots = 0 for lot in range(len(self.lots)): if self.lots[lot] >= to_handle > 0.0: self.lots[lot] -= to_handle self.income += to_handle * self.sales_prise if self.to_report is True: file.write('\nNo backorder arose') break else: to_handle -= self.lots[lot] self.income += self.lots[lot] * self.sales_prise self.backorders += to_handle empty_lots += 1 try: self.stats.backorders.append(time) except AttributeError: pass if self.to_report is True: file.write('\nBackorder of {} arose'.format(round(to_handle, 2))) if empty_lots != 0.0 and len(self.lots) > 1: for i in range(empty_lots): self.lots.pop(i) self.expiry_date.pop(i) break empty_lots = 0.0 if self.to_report is True: file.write('\nStorge {} is {}. Backorder is {}'.format(self.id, [round(element) for element in self.lots], round(self.backorders))) if sum(self.lots) <= self.reorder_point and self.status == False: self.replenish(time) self.costs += self.purchase_prise * self.reorder_size #product is orderd try: self.stats.update_storage(time, sum(self.lots), (self.income - self.costs)) #gather stats except AttributeError: pass return time def replenish(self, time): self.status = True self.next_rep = time + self.g.normal(self.replenishment_lead[0], self.replenishment_lead[1]) if self.to_report is True: file.write('\n{} pieces of product {} have been ordered'.format(round(self.reorder_size, 2), self.id)) def handle_replenishment(self, time, free_capacity): self.expiry_date = list(map(lambda x: x - (self.next_rep - time), self.expiry_date)) self.check_expiry(time) if free_capacity >= self.reorder_size: self.lots.append(self.reorder_size) self.expiry_date.append(self.g.normal(self.expiry[0], self.expiry[1])) if self.to_report is True: file.write('\ntime {}: {} pieces of product {} have been replehished'.format(round(time, 2), round(self.reorder_size, 2), self.id)) else: self.lots.append(free_capacity) self.expiry_date.append(self.g.normal(self.expiry[0], self.expiry[1])) self.overflows += (self.reorder_size - free_capacity) self.costs += (self.reorder_size - free_capacity) * self.overflow_fee #fee for overflow if self.to_report is True: file.write('\nStorage overflow {} pieces of product {} are sent back'.format((self.reorder_size - free_capacity), self.id)) self.costs += (self.next_rep - time) * sum(self.lots) * self.handling_cost #handling costs time = self.next_rep self.status = False self.next_rep = float('inf') if free_capacity < self.reorder_size or free_capacity < 0.0: free_capacity = 0.0 return time class Statistics: def __init__(self, reorder_line, size_line): self.time = [] self.storage = [] self.profit = [] self.reorder_line = reorder_line self.size_line = size_line self.backorders = [] self.expires = [] self.expires_time =[] self.overflows = [] def update_storage(self, time, storage, profit): self.time.append(time) self.storage.append(storage) self.profit.append(profit) def plot_storage(self): storage_dynamics = plt.figure() plt.plot(self.time, self.storage, color='orange', label='storage') plt.axhline(self.reorder_line, color='red', linestyle='--', label='reorder point') plt.axhline(self.size_line, color='black', linestyle='--', label='reorder size') plt.scatter(self.expires, self.expires_time, color='black', marker='x', label='goods are expired') plt.scatter(self.backorders, [0 for i in range(len(self.backorders))], color='red', s=2, label='backorders') plt.legend() plt.xlabel('modeling time') plt.ylabel('inventory') plt.show() def plot_profit(self): money_dynamics = plt.figure() plt.plot(self.time, self.profit, color='orange') plt.axhline(self.reorder_line, color='red', linestyle='--', label='break-even point') plt.legend() plt.xlabel('modeling time') plt.ylabel('net profit') plt.show() def plot_phase(self): phase = plt.figure() #plt.plot(self.storage, self.profit) plt.plot(self.storage[0:-1], self.storage[1:], color='blue') #plt.plot(self.profit[0:-1], self.profit[1:]) plt.title('Pseudo phase portait') plt.xlabel('I(t)') plt.ylabel('I(t+1)') plt.show() class Simulation: def __init__(self, adjustments, parameters, costs, strategy, horizon=660.0): #np.random.seed(seed) self.w = Warehouse(adjustments, parameters, costs, strategy) self.horizon = horizon def simulate(self): while self.w.time < self.horizon: self.w.advance_time() try: self.w.products[0].stats.plot_storage() self.w.products[0].stats.plot_profit() self.w.products[0].stats.plot_phase() except AttributeError: pass total_cost = 0.0 for i in range(len(self.w.products)): total_cost += (self.w.products[i].income - self.w.products[i].costs - self.w.products[i].backorders*self.w.products[i].backorder_fee) return total_cost
3.53125
4
AML/HW3/utils/utils.py
ZRZ-Unknow/20fall-CourseNote
0
12780821
<filename>AML/HW3/utils/utils.py<gh_stars>0 import numpy as np import os from bidict import bidict def load_data(shared_nums): """ Return: data: list, each of it is a numpy array of shape (k,321) label: list, each of it is a numpy array of shape (k,) """ train_path, test_path = './Dataset/train/', './Dataset/test/' train_data, train_data_label = [], [] test_data, test_data_label = [], [] label_dict = bidict() label_num = 0 for file in os.listdir(train_path): with open(train_path+file,'r') as f: p = f.read().split('\n') if '' in p: p.remove('') label_string = p[0] tmp_x, tmp_y = [], [] for i in range(1,len(p)): label = label_string[i-1] if label not in label_dict.keys(): label_dict[label] = label_num label_num += 1 tmp_y.append(label_dict[label]) nums = [int(j) for j in p[i].split()] nums = nums[1:] nums_ = [] for i in range(0, len(nums), shared_nums): nums_.append( sum(nums[i:i+shared_nums])) tmp_x.append(nums_) train_data.append(np.array(tmp_x,dtype=int)) train_data_label.append(np.array(tmp_y,dtype=int)) for file in os.listdir(test_path): with open(test_path+file,'r') as f: p = f.read().split('\n') if '' in p: p.remove('') assert len(p[0])==len(p)-1 label_string = p[0] tmp_x, tmp_y = [], [] for i in range(1,len(p)): label = label_string[i-1] tmp_y.append(label_dict[label]) nums = [int(j) for j in p[i].split()] nums = nums[1:] nums_ = [] for i in range(0, len(nums), shared_nums): nums_.append( sum(nums[i:i+shared_nums])) tmp_x.append(nums_) test_data.append(np.array(tmp_x,dtype=int)) test_data_label.append(np.array(tmp_y,dtype=int)) return train_data, train_data_label, test_data, test_data_label, label_dict def load_data_c(shared_nums): train_path, test_path = './Dataset/train/', './Dataset/test/' train_data, train_data_label = [], [] test_data, test_data_label = [], [] label_dict = bidict() label_num = 0 for file in os.listdir(train_path): with open(train_path+file,'r') as f: p = f.read().split('\n') if '' in p: p.remove('') label_string = p[0] tmp_x, tmp_y = [], [] for i in range(1,len(p)): label = label_string[i-1] if label not in label_dict.keys(): label_dict[label] = label_num label_num += 1 tmp_y.append(label_dict[label]) nums = [int(j) for j in p[i].split()] nums = nums[1:] nums_ = [] for i in range(0, len(nums), shared_nums): nums_.append( sum(nums[i:i+shared_nums])) nums = nums_ add = np.zeros(10) add[label_dict[label]] = 1 nums = np.hstack([nums,add]) tmp_x.append(nums) train_data.append(np.array(tmp_x,dtype=int)) train_data_label.append(np.array(tmp_y,dtype=int)) for file in os.listdir(test_path): with open(test_path+file,'r') as f: p = f.read().split('\n') if '' in p: p.remove('') assert len(p[0])==len(p)-1 label_string = p[0] tmp_x, tmp_y = [], [] for i in range(1,len(p)): label = label_string[i-1] tmp_y.append(label_dict[label]) nums = [int(j) for j in p[i].split()] nums = nums[1:] nums_ = [] for i in range(0, len(nums), shared_nums): nums_.append( sum(nums[i:i+shared_nums])) nums = nums_ add = np.zeros(10) add[label_dict[label]] = 1 nums = np.hstack([nums,add]) tmp_x.append(nums) test_data.append(np.array(tmp_x,dtype=int)) test_data_label.append(np.array(tmp_y,dtype=int)) return train_data, train_data_label, test_data, test_data_label, label_dict
2.25
2
utils/sampling.py
PranavPai/Dissertation
0
12780822
import numpy as np import pandas as pd from sklearn import datasets from sklearn.model_selection import train_test_split test_size = 0.25 def sampling(**kwargs): if kwargs['dataset'] == 'moons': X, y = datasets.make_moons(n_samples=kwargs['sample_size'], noise=kwargs['noise'], random_state=5) return train_test_split(X, y.astype(str), test_size=kwargs['test_size'], random_state=5), X, y elif kwargs['dataset'] == 'circles': X, y = datasets.make_circles(n_samples=kwargs['sample_size'], noise=kwargs['noise'], factor=0.5, random_state=1) return train_test_split(X, y.astype(str), test_size=kwargs['test_size'], random_state=5), X, y elif kwargs['dataset'] == 'LS': X, y = datasets.make_classification(n_samples=kwargs['sample_size'], n_features=2, n_redundant=0, n_informative=2, random_state=2, n_clusters_per_class=1) rng = np.random.RandomState(2) X += kwargs['noise'] * rng.uniform(size=X.shape) return train_test_split(X, y.astype(str), test_size=kwargs['test_size'], random_state=5), X, y else: return ValueError('error!') def df_split(**kwargs): _df = kwargs['df'] return train_test_split( _df[['x', 'y']].to_numpy(), _df['c'].to_numpy().astype(str), test_size=kwargs['test_size'], random_state=5), _df[['x', 'y']].to_numpy(), _df['c'].to_numpy() def data_split(**kwargs): return train_test_split(kwargs['X'], kwargs['y'].astype(str), test_size=kwargs['test_size'], random_state=5), kwargs['X'], kwargs['y']
2.953125
3
app/grandchallenge/algorithms/migrations/0020_auto_20200214_0912.py
njmhendrix/grand-challenge.org
1
12780823
# Generated by Django 3.0.2 on 2020-02-14 09:12 import django.contrib.postgres.fields.jsonb import django.db.models.deletion from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ("cases", "0019_auto_20200120_0604"), ("algorithms", "0019_auto_20200210_0523"), ] operations = [ migrations.RenameField( model_name="algorithm", old_name="visible_to_public", new_name="public", ), migrations.AddField( model_name="result", name="comment", field=models.TextField(blank=True, default=""), ), migrations.AddField( model_name="result", name="public", field=models.BooleanField( default=False, help_text="If True, allow anyone to view this result along with the input image. Otherwise, only the job creator and algorithm editor will have permission to view this result.", ), ), migrations.AlterField( model_name="result", name="images", field=models.ManyToManyField( editable=False, related_name="algorithm_results", to="cases.Image", ), ), migrations.AlterField( model_name="result", name="job", field=models.OneToOneField( editable=False, on_delete=django.db.models.deletion.CASCADE, to="algorithms.Job", ), ), migrations.AlterField( model_name="result", name="output", field=django.contrib.postgres.fields.jsonb.JSONField( default=dict, editable=False ), ), ]
1.953125
2
Final Project/new_clrs/clrs/_src/algorithms/strings_graph_structures.py
mohammedElfatihSalah/string-experiments
0
12780824
import numpy as np def get_predecessor(T,P): # copy the inputs T = np.copy(T) P = np.copy(P) P_size = P.shape[0] T_size = T.shape[0] adj = np.zeros((P_size + T_size,P_size + T_size)) # predecessor for Text for i in range(1,T_size): adj[i, i-1] = 1 # predecessor for Pattern for i in range(1,P_size): adj[T_size+i, T_size+i-1] = 1 return adj def get_graph_struct(T, P, h_i, h_j, h_s): # copy the inputs T = np.copy(T) P = np.copy(P) P_size = P.shape[0] T_size = T.shape[0] adj = np.zeros((P_size + T_size,P_size + T_size)) for i in range(h_s+1, h_i): adj[i, h_i] = 1 adj[T_size, T_size + h_j] = 1 for i in range(T_size): adj[i, T_size+h_j] = 1 for i in range(P_size): adj[i+T_size, h_i] = 1 return adj def get_seq_mat(T,P): n = T.shape[0] m = P.shape[0] mat = np.eye((n+m)) # connect each character to its previous for i in range(1,n+m): if i == n: # don't do it for the start of the pattern continue mat[i, i-1] = 1 # connect each character in text to its equal charcter in the pattern for i in range(n): for j in range(m): if T[i] == P[j]: mat[i, j+n] = 1 mat[j+n, i] = 1 # connect the start of the pattern with all character upfront mat[n, n+1:] = 1 return mat def get_t(T, P, s): i = s j = 0 N = T.shape[0] M = P.shape[0] while i < N: if T[i] != P[j]: return i j +=1 i +=1 if j >= M: return i return N - 1 def get_bipartite_mat(T, P, s, num_classes=3): ''' args ----------------------------- T: the text P: the pattern s: current hint s returns ----------------------------- mat: constructed mat as the following: 1- all irrelevant edges will have a value of 0 2- relevant edges will have a value of 1 if they are equal, otherwise they will have a value of 2 ''' # length of the text N = T.shape[0] # length of the pattern M = P.shape[0] mat = np.zeros((N+M, N+M), dtype=np.int) t = get_t(T, P, s) for i in range(M): p_char = P[i] for j in range(s,t): t_char = T[j] if t_char == p_char: mat[j, i+N] = 1 mat[i+N, j] = 1 else: mat[j, i+N] = 2 mat[i+N, j] = 2 one_hot_mat = np.zeros((N+M, N+M, num_classes), dtype=np.int) for i in range(len(mat)): for j in range(len(mat[0])): class_id = mat[i, j] one_hot_mat[i, j, class_id] = 1 return one_hot_mat #=== *** ===# def get_everything_matched_to_this_point(T, P, s): ''' return a binary mask for the pattern ''' result = np.zeros(T.shape[0] + P.shape[0],dtype=np.int) i = s j = 0 while j < P.shape[0]: if T[i] == P[j]: result[T.shape[0]+j] = 1 i+=1 j+=1 else: break return result def get_bipartite_mat_from_pattern_to_text(T, P, s): # length of the text N = T.shape[0] # length of the pattern M = P.shape[0] mat = np.zeros((N+M, N+M), dtype=np.int) for i in range(M): p_char = P[i] for j in range(s,N): t_char = T[j] if t_char == p_char: mat[j, i+N] = 1 mat[i+N, j] = 1 else: mat[j, i+N] = 2 mat[i+N, j] = 2 def get_seq_mat_i_j(T, P , i ,j, s): n = T.shape[0] m = P.shape[0] mat = np.zeros((n+m, n+m)) # connect each character to its previous # for i in range(1,n+m): # if i == n: # # don't do it for the start of the pattern # continue # mat[i, i-1] = 1 # connect node i with node j mat[i, j+n] = 1 mat[j+n, i] = 1 # connect node s with i mat[s, i] = 1 mat[i,s] = 1 # connect first node in P with node mat[n,n+j] = 1 return mat def get_edge_mat(T, P, start, end): ''' edge between start and end ''' mat = np.zeros((n+m,n+m)) mat[start, end] = 1 return mat
3.171875
3
model/BFS_Agent.py
cogtoolslab/tools_block_construction
0
12780825
import os import sys proj_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) sys.path.insert(0,proj_dir) import random from itertools import repeat import utils.blockworld as blockworld from model.utils.Search_Tree import * class BFS_Agent: """An agent performing exhaustive BFS search. This can take a long time to finish.""" def __init__(self, world=None,shuffle=False,random_seed=None): self.world = world self.shuffle = shuffle self.random_seed = random_seed def __str__(self): """Yields a string representation of the agent""" return self.__class__.__name__+' shuffle:'+str(self.shuffle)+' random seed: '+str(self.random_seed) def set_world(self,world): self.world = world def get_parameters(self): """Returns dictionary of agent parameters.""" return { 'agent_type':self.__class__.__name__, 'random_seed':self.random_seed } def search(self,current_nodes): """Performs one expansion of the nodes in current nodes. Returns either list of expanded nodes, found solution node or empty list. To introduce randomness, the current nodes can be shuffled.""" cost = 0 #track number of states that are evaluated if self.shuffle: random.seed(self.random_seed) #fix random seed random.shuffle(current_nodes) next_nodes = [] #holds the nodes we get from the current expansion step for node in current_nodes: #expand current nodes possible_actions = node.state.possible_actions() children = [] for action in possible_actions: child = Node(node.state.transition(action),node.actions+[action]) #generate new node #check if child node is winning cost += 1 if child.state.is_win(): #we've found a winning state return "Winning", child, cost next_nodes.append(child) return "Ongoing",next_nodes, cost def act(self, steps = None, verbose = False): """Makes the agent act, including changing the world state.""" #Ensure that we have a random seed if none is set states_evaluated = 0 if self.random_seed is None: self.random_seed = random.randint(0,99999) #check if we even can act if self.world.status()[0] != 'Ongoing': print("Can't act with world in status",self.world.status()) return [],{'states_evaluated':states_evaluated} # if steps is not None: # print("Limited number of steps selected. This is not lookahead, are you sure?") #perform BFS search current_nodes = [Node(self.world.current_state,[])] #initialize root node result = "Ongoing" while current_nodes != [] and result == "Ongoing": #keep expanding until solution is found or there are no further states to expand result, out, cost = self.search(current_nodes) #run expansion step states_evaluated += cost if result != "Winning": current_nodes = out #we have no solution, just the next states to expand if verbose: print("Found",len(current_nodes),"to evaluate at cost",cost) #if we've found a solution if result == "Winning": actions = out.actions actions = actions[0:steps] #extract the steps to take. None gives complete list if verbose: print("Found solution with ",len(actions),"actions") #apply steps to world for action in actions: self.world.apply_action(action) if verbose: print("Done, reached world status: ",self.world.status()) #only returns however many steps we actually acted, not the entire sequence else: actions = [] if verbose: print("Found no solution") return actions,{'states_evaluated':states_evaluated}
2.96875
3
scalation_kernel/__init__.py
KevinBonanno/scalation_kernel
0
12780826
<reponame>KevinBonanno/scalation_kernel """A Scala+ScalaTionkernel for Jupyter""" __version__ = '1.0' from .kernel import ScalaTionKernel
1.015625
1
rf_optimizer.py
bGhorbani/linearized_neural_networks
0
12780827
<gh_stars>0 """This file implements functionalities that allow fitting large random feature models with conjugate gradient type algorithms. """ import tensorflow as tf import numpy as np import sys sys.path.insert(0, './linear_algebra/') from tensor_utils import AssignmentHelper class RF_Optimizer(object): def __init__(self, model, sess, initializer, sess_dict, optim_reg, n, y_place_holder, penalize_const=False): self._N = np.int(model._variables[0].shape[0]) self._n = n self._assignment_obj = AssignmentHelper(model._variables) self._sess = sess self._init = initializer self._dict = sess_dict self._Y = np.copy(sess_dict[y_place_holder]) self._ph = y_place_holder # Model Quantities self._loss = model._loss labels = model._labels if len(labels.shape) < 2: modified_labels = tf.expand_dims(labels, 1) else: modified_labels = labels self._weighted_sum = tf.matmul(tf.transpose(modified_labels), model._phi) self._ws = model._wsum self._pten = model._pten self._assign_op = model._assign_op ShapeList = [np.prod(g.shape) for g in model._variables] self._params = np.int(np.sum(ShapeList)) assert self._params == self._N + 1 self._pen_const = penalize_const self._reg = optim_reg self._ave = self.AtxGPU(np.ones((self._n, 1)) / np.sqrt(self._n)) self._ave = self._ave.T temp = self.AtxGPU(self._Y) self._aty = np.zeros((self._params,), dtype=np.float64) self._aty[:-1] = temp[0, :] self._aty[-1] = np.sum(self._Y) / np.sqrt(self._n) self._aty = self._aty.astype(np.float32) def fun(self, x): self._sess.run(self._init, feed_dict=self._dict) total_loss = 0.0 # initialize the data end_of_data = False count = 0.0 self._assignment_obj.assign(x, self._sess) while not end_of_data: try: loss = self._sess.run(self._loss) total_loss += loss count += 1.0 except tf.errors.OutOfRangeError: end_of_data = True val = total_loss / (count + 0.0) # Taking the intercept into account if self._pen_const: reg = self._reg * (np.linalg.norm(x) ** 2) else: reg = self._reg * (np.linalg.norm(x[:-1]) ** 2) return val + reg def Atx(self): return self._aty def AtxGPU(self, x): x = x.reshape((self._n, 1)) x = x.astype(np.float32) self._dict[self._ph] = x end_of_data = False result = np.zeros((1, self._N), dtype=np.float64) # initialize the data self._sess.run(self._init, feed_dict=self._dict) while not end_of_data: try: temp = self._sess.run(self._weighted_sum) temp = temp.astype(np.float64) result += temp / np.sqrt(self._n + 0.0) except tf.errors.OutOfRangeError: end_of_data = True self._dict[self._ph] = self._Y return result def Hv(self, x): """Warning: This function assume that the Hessian is constant.""" x = x.reshape((self._params, 1)) x0 = x[:-1] c0 = x[-1] self._sess.run(self._init, feed_dict=self._dict) end_of_data = False total = np.zeros((self._params, 1), dtype=np.float64) count = 0.0 self._sess.run(self._assign_op, {self._pten: x0}) while not end_of_data: try: temp = self._sess.run(self._ws) temp = temp.astype(np.float64) total[:-1, 0] += temp * 2.0 count += 1 except tf.errors.OutOfRangeError: end_of_data = True total = total / (count + 0.0) total[:-1] += self._ave * c0 * 2 total[-1] = 2 * (c0 + np.dot(self._ave.T, x0)) if self._pen_const: total += 2 * self._reg * x else: total[:-1, :] += 2 * self._reg * x0 return total[:, 0].astype(np.float32) def num_params(self): return self._params
2.171875
2
mrsketch/__init__.py
Simonl07/mrsketch
0
12780828
<reponame>Simonl07/mrsketch<filename>mrsketch/__init__.py import threading import types from copy import copy, deepcopy from functools import reduce import json import pickle supported_graph_serialization = { 'json': json, 'pickle': pickle } class StateDescriptor(object): def __init__(self, constructor, updater, merger, serializer, deserializer, extractor=lambda s: s): self.constructor = constructor self.updater = updater self.merger = merger self.serializer = serializer self.deserializer = deserializer self.extractor = extractor class Path(object): ''' Represents an immutable unbounded path (sequence of values) along certain dimension Keys (level-names) can be provided to each level for accessing by name Without names, levels can be accessed by index - Length of a path is the length of its sequence of values - Path1 is extendable_by Path2 if Path2 is longer than Path1 - Path1.extend_by_one(Path2) returns a new Path where Path1 is extended by one level towards Path2 ''' def __init__(self, values=tuple(), keys=tuple()): self.keys = keys self.values = values def __len__(self): return len(self.values) def __getitem__(self, key): return self.values[self.keys.index(key) if key in self.keys else key] def subpath(self, i, j): return Path(self.values[i:j]) def extendable_by(self, other): return len(other) > len(self) def extend_by_one(self, target): assert len(target) > len(self) return Path(self.values + [target.values[len(self)]]) def pathstring(self): return '/' + '/'.join([str(v) for v in self.values]) def __repr__(self): return f'Path(values={self.values}, keys={self.keys})' def __str__(self): return self.pathstring() def __hash__(self): return hash(self.pathstring()) def __eq__(self, other): return all([self[i] == None or self[i] == other[i] for i in range(len(other))]) class NDPath(object): ''' N-dimensional path is a mapping of keys (dimension names) to paths ''' def __init__(self, paths): self.paths = paths def __len__(self): return sum([len(path) for path in self.paths.values()]) def __getitem__(self, key): return self.paths[key] def __contains__(self, key): return key in self.paths def __iter__(self): return iter(self.paths) def items(self): return self.paths.items() def with_path(self, key, path): newpaths = self.paths.copy() newpaths[key] = path return NDPath(newpaths) def dimensions(self): return self.paths.keys() def extendable_by(self, other): return self.dimensions() == other.dimensions() and any([self[key].extendable_by(other[key]) for key in self.paths]) def pathextend(self, other): if not self.extendable_by(other): raise BaseException(f'{self} is not extendable by {other}') return [self.with_path(key, path.extend_by_one(other[key])) for key, path in self.items() if path.extendable_by(other[key])] def __str__(self): output = '' for key in self: output += f'{key}={self[key]} ' return output def __repr__(self): return str(self) def __eq__(self, other): return self.dimensions() == other.dimensions() and all([self[key] == other[key] for key in self]) def __hash__(self): return hash(str(self)) def to_hex(self): return pickle.dumps([(name, path) for name, path in self.paths.items()]).hex() def from_hex(hex): paths = {} for t in pickle.loads(bytes.fromhex(hex)): paths[t[0]] = t[1] return NDPath(paths) class Graph(object): def __init__(self, state_descriptors, path_extractor): self.adjlist = {} self.path_extractor = lambda x: NDPath({ key: Path(value) for key, value in path_extractor(x).items() }) self.state_descriptors = state_descriptors self.lock = threading.Lock() self.size = 0 def __newnode(self): node = types.SimpleNamespace() node.states = {name: descriptor.constructor() for name, descriptor in self.state_descriptors.items()} node.lock = threading.Lock() node.children = set() return node def push(self, record): target = self.path_extractor(record) visited = set() for dimension, path in target.items(): root = NDPath({ d: Path([]) if d != dimension else path.subpath(0,1) for d, p in target.items() }) # Lock adjlist self.lock.acquire() if root not in self.adjlist: self.adjlist[root] = self.__newnode() self.lock.release() self.__insert(root, target, visited, record) def __insert(self, currpath, target, visited, record): # Put currpath in visited to prevent re-visits visited.add(currpath) node = self.adjlist[currpath] # Lock node & Update all states with record node.lock.acquire() for name, state in node.states.items(): self.state_descriptors[name].updater(record, state) node.lock.release() if currpath.extendable_by(target): ndpaths = currpath.pathextend(target) for ndpath in ndpaths: # Lock adjlist for new nodes self.lock.acquire() if ndpath not in self.adjlist: self.adjlist[ndpath] = self.__newnode() self.lock.release() # Lock node for modifying children node.lock.acquire() if ndpath not in node.children: node.children.add(ndpath) node.lock.release() if ndpath not in visited: self.__insert(ndpath, target, visited, record) def combinedstate(self, nodes): states = {} # group by states for node in nodes: # Lock nodes for state access node.lock.acquire() for name, state in node.states.items(): if name not in states: states[name] = [] states[name].append(state) node.lock.release() # reduce by states # Note: At this point states can still be mutated for name, availiable_states in states.items(): states[name] = reduce(self.state_descriptors[name].merger, availiable_states) return states def get(self, ndpath): ndpath = NDPath({ key: Path(value) for key, value in ndpath.items() }) if len(ndpath) == 0: return self.combinedstate([node for ndpath, node in self.adjlist.items() if len(ndpath) == 1]) if ndpath in self.adjlist: return {name: self.state_descriptors[name].extractor(state) for name, state in self.adjlist[ndpath].states.items()} return {name: sd.constructor() for name, sd in self.state_descriptors.items()} def edges(self): output = [] for ndpath, node in self.adjlist.items(): if len(node.children) == 0: output.append((str(ndpath), "None")) for children in node.children: output.append((str(ndpath), str(children))) return output def merge(self, other): # Lock the whole graph for state_descriptors updated self.lock.acquire() # Merge state descriptors for name, descriptor in other.state_descriptors.items(): if name not in self.state_descriptors: self.state_descriptors[name] = descriptor self.lock.release() # Merge nodes for ndpath, node in other.adjlist.items(): if ndpath not in self.adjlist: self.adjlist[ndpath] = self.__newnode() self.adjlist[ndpath].states = deepcopy(node.states) continue # If nodes with same ndpath exists, merge their states using merge function mystates = self.adjlist[ndpath].states otherstates = node.states for name, otherstate in otherstates.items(): if name in mystates: # --merge() must create a new state from the two instead of mutate mystates[name] = self.state_descriptors[name].merger(mystates[name], otherstate) else: mystates[name] = deepcopy(otherstate) def serialize(self, encoding='json'): if encoding not in supported_graph_serialization: raise BaseException(f'{encoding} is not a valid encoding option (options: json, pickle)') output = {} self.lock.acquire() for ndpath, node in self.adjlist.items(): node.lock.acquire() encoded_node_states = {} for name, state in node.states.items(): encoded_node_states[name] = self.state_descriptors[name].serializer(state) encoded_children = [] for children in node.children: encoded_children.append(children.to_hex()) node.lock.release() output[ndpath.to_hex()] = (encoded_node_states, encoded_children) self.lock.release() return supported_graph_serialization[encoding].dumps(output, indent=4) def from_serialization(self, bytes, encoding='json'): if encoding not in supported_graph_serialization: raise BaseException(f'{encoding} is not a valid encoding option (options: json, pickle)') tuple_dict = supported_graph_serialization[encoding].loads(bytes) self.lock.acquire() for ndpath_hex, encoded_node in tuple_dict.items(): ndpath = NDPath.from_hex(ndpath_hex) self.adjlist[ndpath] = self.__newnode() self.adjlist[ndpath].lock.acquire() self.adjlist[ndpath].states = { name: self.state_descriptors[name].deserializer(encoded_state) for name, encoded_state in encoded_node[0].items() } self.adjlist[ndpath].children = [NDPath.from_hex(c) for c in encoded_node[1]] self.adjlist[ndpath].lock.release() self.lock.release()
2.5
2
main.py
biogui/royal-flush-telegram-bot
0
12780829
from telegram.ext import Updater, CommandHandler, ConversationHandler, MessageHandler, Filters, CallbackQueryHandler from env import TOKEN from commands import show_challs, choose_chall_to_show, SHOWS_CHOSEN_CHALL from commands import try_answer, choose_chall_to_answer, check_answer, CHOOSE_CHALL_TO_ANSWER def start(update, context): welcome_txt = ['Hello, welcome to RoyalFlushBot!'] welcome_txt.append( 'The bot of "Royal Flush: A Puzzle Story", a puzzle hunt game about \ playing cards, poker hands, kings, queens and brain challenges. \ [Early Access Version]' ) update.message.reply_text('\n'.join(welcome_txt)) def main(): updater = Updater(token=TOKEN, use_context=True) dp = updater.dispatcher dp.add_handler(CommandHandler('start', start)) dp.add_handler(ConversationHandler( entry_points=[CommandHandler('show', show_challs)], states={ SHOWS_CHOSEN_CHALL: [CallbackQueryHandler(choose_chall_to_show)], }, fallbacks=[] )) dp.add_handler(ConversationHandler( entry_points=[CommandHandler('try', try_answer)], states={ CHOOSE_CHALL_TO_ANSWER: [ CallbackQueryHandler(choose_chall_to_answer), MessageHandler(Filters.text, check_answer) ] }, fallbacks=[] )) updater.start_polling() updater.idle() if __name__ == '__main__': print('=== BOT ATIVADO ===') print('Digite Ctrl + C para desativar.') main() print('=== BOT DESATIVADO ===')
2.453125
2
main.py
KevHg/tictactoe-cli
0
12780830
import random from copy import deepcopy def print_board(board, max_width): for row in range(len(board)): for col in range(len(board)): print("{:>{}}".format(board[row][col], max_width), end='') print() def win_check(board, player, n, row, col): horizontal, vertical, diagonal_down, diagonal_up = True, True, True, True # Check for horizontal win for i in range(n): if board[row][i] != player: horizontal = False # Check for vertical win for i in range(n): if board[i][col] != player: vertical = False # check for downwards diagonal (i.e. top left to bottom right) for i in range(n): if board[i][i] != player: diagonal_down = False # Check for upwards diagonal (i.e. bottom left to top right) for i in range(n): if board[i][n - 1 - i] != player: diagonal_up = False return horizontal or vertical or diagonal_down or diagonal_up def vs_bot(board, n, possible_moves, difficulty): max_width = len(str(n ** 2)) + 1 while True: print_board(board, max_width) num = int(input("Player - Input location: ")) if num < 0 or num >= (n ** 2): print("Please choose a valid location!") continue row = num // n col = num % n if board[row][col] == 'O' or board[row][col] == 'X': print("Cannot replace a player's piece!") continue board[row][col] = 'O' possible_moves.remove(num) if win_check(board, 'O', n, row, col): print_board(board, max_width) print("You win!") break if not possible_moves: print_board(board, max_width) print("Draw! Board is full.") break # Bot move begins here print("Bot is thinking...") bot_num = -1 check = random.randint(0, 100) # Medium difficulty - 50% chance of bot being easy, 50% chance being abyssal if difficulty == 2: if check <= 50: difficulty = 0 else: difficulty = 4 # Hard difficulty - 20% chance of bot being easy, 80% chance being abyssal elif difficulty == 3: if check <= 20: difficulty = 0 else: difficulty = 4 print(possible_moves) # Easy difficulty - Bot selects a random move if difficulty == 1: bot_num = random.choice(possible_moves) # Abyssal difficulty - Bot utilizes minimax to find optimal move elif difficulty == 4: temp, bot_num = minimax(board, n, possible_moves, True) if bot_num == -1: print("Bot has forfeited! You won!") break row = bot_num // n col = bot_num % n board[row][col] = 'X' possible_moves.remove(bot_num) if win_check(board, 'X', n, row, col): print_board(board, max_width) print("You lost!") break if not possible_moves: print_board(board, max_width) print("Draw! Board is full.") break # Returns winning player (O or X), or D if draw def find_winner(board, n): for i in range(n): horizontal = True for j in range(0, n - 1): if board[i][j] == '.': break if board[i][j] != board[i][j + 1]: horizontal = False if horizontal: return board[i][0] for i in range(n): vertical = True for j in range(0, n - 1): if board[j][i] == '.': break if board[j][i] != board[j + 1][i]: vertical = False if vertical: return board[0][i] diagonal_down = True for i in range(0, n - 1): if board[i][i] == '.': break if board[i][i] != board[i + 1][i + 1]: diagonal_down = False if diagonal_down: return board[0][0] diagonal_up = True for i in range(0, n - 1): if board[i][n - 1 - i] == '.': break if board[i][n - 1 - i] != board[i + 1][n - 2 - i]: diagonal_up = False if diagonal_up: return board[0][n - 1] return 'D' def minimax(board, n, possible_moves, maximizing_player): best_move = -1 if not possible_moves: winner = find_winner(board, n) if winner == 'O': return -1, best_move elif winner == 'X': return 1, best_move else: return 0, best_move if maximizing_player: value = -10 for move in possible_moves: new_board = deepcopy(board) new_possible = deepcopy(possible_moves) row = move // n col = move % n new_board[row][col] = 'X' new_possible.remove(move) new_value, new_move = minimax(new_board, n, new_possible, False) if new_value > value: value = new_value best_move = move return value, best_move else: value = 10 for move in possible_moves: new_board = deepcopy(board) new_possible = deepcopy(possible_moves) row = move // n col = move % n new_board[row][col] = 'O' new_possible.remove(move) new_value, new_move = minimax(new_board, n, new_possible, True) if new_value < value: value = new_value best_move = move return value, best_move def vs_player(board, n, possible_moves): max_width = len(str(n ** 2)) + 1 player = 'O' while True: print_board(board, max_width) num = int(input("Player " + player + " - Input location: ")) if num < 0 or num >= (n ** 2): print("Please choose a valid location!") continue row = num // n col = num % n if board[row][col] == 'O' or board[row][col] == 'X': print("Cannot replace a player's piece!") continue board[row][col] = player possible_moves.remove(num) if not possible_moves: print_board(board, max_width) print("Draw! Board is full.") break if win_check(board, player, n, row, col): print_board(board, max_width) print("Player " + player + " wins!") break if player == 'O': player = 'X' else: player = 'O' def main(): while True: n = int(input("Input size of tic-tac-toe board: ")) if n > 1: break else: print("Board cannot be smaller than size 2!") board = [] possible_moves = [] for i in range(n): new_row = [] for j in range(n): new_row.append(i * n + j) possible_moves.append(i * n + j) board.append(new_row) print("Select game mode:") while True: print("1 - Easy bot") print("2 - Medium bot") print("3 - Hard bot") print("4 - Abyssal bot (You're not expected to win!)") print("5 - Multiplayer") play_type = int(input("Your choice: ")) if play_type == 1: vs_bot(board, n, possible_moves, 1) break elif play_type == 2: vs_bot(board, n, possible_moves, 2) break elif play_type == 3: vs_bot(board, n, possible_moves, 3) break elif play_type == 4: vs_bot(board, n, possible_moves, 4) break elif play_type == 5: vs_player(board, n, possible_moves) break else: print("Invalid option!") print("Game over! Press return to close...") input() main()
4.03125
4
faker_GB.py
bogordon86/Python_Faker
0
12780831
<gh_stars>0 #Import Dependencies from faker import Faker import pandas as pd #For generating fake ID import random #Great Britain fake data (why not?) fake = Faker('en_GB') # dictionary dict_data = { "name":[], "address":[], "dob":[], "gender":[], "phone_number":[], "imei":[] } #Loop through fake data for x in range(100): dict_data["name"].append(fake.name()) dict_data["address"].append(fake.address()) dict_data["dob"].append(fake.date_of_birth()) dict_data["gender"].append(fake.random.choice(['male', 'female'])) dict_data["phone_number"].append(fake.phone_number()) dict_data["imei"].append(fake.random_number(15)) # using pandas to create a data frame makes it into a more presentable format output_data = pd.DataFrame(dict_data) output_data.to_csv("fake_data.csv", header=["name", "address", "dob", "gender", "phone_number", "imei"], index=False)
3.203125
3
2task1.py
inwk6312fall2018/programmingtask2-Adityapuni
0
12780832
file=open('Crime.csv') lineA=[] lineB=[] dict={} #take crime id as key and crime name as value def histogram(s): """to check s in string""" d={} for c in s: d[c]=1+d.get(c,0) return d """make list of all words""" for line in file: line.strip() for i in line.split(','): lineA.append(i) """all crime ID""" i=16 while i<len(lineA): lineB.append(lineA[i]) i+=9 dic=histogram(lineB) # dict of crime ID , and repetation of it """make dict of Crime Id vs Crime name""" lineD=line(dic.keys()) for i in range(len(lineA)): if lineA[i] in lineD: dict[lineA[i]]=lineA[i+1].strip() """print table""" print("{0:25s} {1:25s} {2:1s}".format('Crime type','Crime ID','Crime Count')) for key,value in dic.items(): if key in dict.keys(): print("{0:25} {1:25} {2:1}".format(dict[key],key,dic[key]))
3.25
3
pages/quitPage.py
amalthomas-exe/Windown-Installer-GUI
0
12780833
<filename>pages/quitPage.py # -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'quitPage.ui' # # Created by: PyQt5 UI code generator 5.15.4 # # WARNING: Any manual changes made to this file will be lost when pyuic5 is # run again. Do not edit this file unless you know what you are doing. from PyQt5 import QtCore, QtGui, QtWidgets class Ui_Dialog(object): def setupUi(self, Dialog): Dialog.setObjectName("Dialog") Dialog.resize(691, 557) Dialog.setStyleSheet("QDialog{\n" " background-color: white\n" "}") self.label = QtWidgets.QLabel(Dialog) self.label.setGeometry(QtCore.QRect(10, 20, 81, 61)) self.label.setStyleSheet("QLabel{\n" " background-image: url(:/newPrefix/win11.png);\n" "}") self.label.setText("") self.label.setPixmap(QtGui.QPixmap(":/newPrefix/win11.png")) self.label.setScaledContents(True) self.label.setObjectName("label") self.label_2 = QtWidgets.QLabel(Dialog) self.label_2.setGeometry(QtCore.QRect(80, 30, 331, 41)) font = QtGui.QFont() font.setFamily("Noto Sans") font.setPointSize(32) font.setItalic(False) self.label_2.setFont(font) self.label_2.setStyleSheet("QLabel{\n" " color : rgb(47, 47, 212) \n" "}") self.label_2.setObjectName("label_2") self.label_3 = QtWidgets.QLabel(Dialog) self.label_3.setGeometry(QtCore.QRect(10, 510, 141, 31)) self.label_3.setStyleSheet("QLabel{\n" " \n" " background-image: url(:/newPrefix/microsoft.png);\n" "}") self.label_3.setText("") self.label_3.setPixmap(QtGui.QPixmap(":/newPrefix/microsoft.png")) self.label_3.setScaledContents(True) self.label_3.setObjectName("label_3") self.label_4 = QtWidgets.QLabel(Dialog) self.label_4.setGeometry(QtCore.QRect(170, 510, 71, 31)) font = QtGui.QFont() font.setPointSize(12) self.label_4.setFont(font) self.label_4.setObjectName("label_4") self.label_5 = QtWidgets.QLabel(Dialog) self.label_5.setGeometry(QtCore.QRect(250, 510, 71, 31)) font = QtGui.QFont() font.setPointSize(12) self.label_5.setFont(font) self.label_5.setObjectName("label_5") self.pushButtonNext = QtWidgets.QPushButton(Dialog) self.pushButtonNext.setGeometry(QtCore.QRect(590, 510, 91, 31)) font = QtGui.QFont() font.setFamily("Noto Sans") font.setPointSize(13) self.pushButtonNext.setFont(font) self.pushButtonNext.setStyleSheet("QPushButton{\n" " background-color: rgb(255, 254, 226);\n" " border-radius: 0px;\n" " color: black;\n" " border: 1px dotted rgb(60,96,255)\n" "}\n" "\n" "QPushButton:hover{\n" " color: rgb(60, 96, 255)\n" "}") self.pushButtonNext.setObjectName("pushButtonNext") self.label_6 = QtWidgets.QLabel(Dialog) self.label_6.setGeometry(QtCore.QRect(30, 100, 341, 41)) font = QtGui.QFont() font.setPointSize(15) self.label_6.setFont(font) self.label_6.setStyleSheet("QLabel{\n" " color: black\n" "}") self.label_6.setObjectName("label_6") self.label_7 = QtWidgets.QLabel(Dialog) self.label_7.setGeometry(QtCore.QRect(30, 160, 551, 161)) font = QtGui.QFont() font.setPointSize(15) self.label_7.setFont(font) self.label_7.setStyleSheet("QLabel{\n" " color: black\n" "}") self.label_7.setWordWrap(True) self.label_7.setObjectName("label_7") self.retranslateUi(Dialog) QtCore.QMetaObject.connectSlotsByName(Dialog) def retranslateUi(self, Dialog): _translate = QtCore.QCoreApplication.translate Dialog.setWindowTitle(_translate("Dialog", "Dialog")) self.label_2.setText(_translate("Dialog", "Windows 11")) self.label_4.setText(_translate("Dialog", "<a style=\"color:black; text-decoration:none\" href=\"https://www.aka.ms/support\">Support</a>")) self.label_5.setText(_translate("Dialog", "<a style=\"color:black; text-decoration:none\" href=\"https://www.microsoft/en-us/legal\">Legal</a>")) self.pushButtonNext.setText(_translate("Dialog", "OK")) self.label_6.setText(_translate("Dialog", "Exiting...")) self.label_7.setText(_translate("Dialog", "Thank you for using Windows 11 installer.<br><br>In case you desire a refund, please visit <a href=\"https://aka.ms/refund\" style=\"text-decoration:none\">aka.ms/refund</a> to get more info regarding refund policy."))
2.15625
2
quotes/routes.py
vsgobbi/Quotes-Pyramid-REST-API
0
12780834
def includeme(config): config.add_route('index', '/') config.add_route('home', '/home') config.add_route('quotes', '/quotes') config.add_route('random_quote', '/quotes/random') config.add_route('get_quote', '/quotes/{id}') config.add_route('delete_quote', '/delete/{id}') config.add_route('get_sessions', '/sessions') config.add_route('get_session', '/sessions/{id}')
1.703125
2
examples/root_std_map.py
jjacob/DailyPythonScripts
0
12780835
import rootpy.stl as stl import ROOT # Create a vector type StrVector = stl.vector(stl.string) # Instantiate strvector = StrVector() strvector.push_back("Hello") # etc. MapStrRoot = stl.map(stl.string, ROOT.TH1D) MapStrRootPtr = stl.map(stl.string, "TH1D*") StrHist = stl.pair(stl.string, "TH1*") m = MapStrRootPtr() a = ROOT.TH1D('t1', 't1', 10, 0, 1) m.insert(StrHist("test", a)) print m
3.203125
3
selseq/selseq_clustering.py
GrigoriiPechkovskii/selseq
0
12780836
print('start identity_percent') import os import pandas as pd import numpy as np from sklearn.cluster import KMeans import subprocess from selseq_main import *#all? from selseq_constant import * def clustering_kmeans_aln(aln_file,itself=True): '''input file the aligned sequence output clustering by kmeans files ''' aln_file = calculate_identity_percent(aln_file,itself=True) if any((aln_file.identity_matrix<60).any()): kmeans = KMeans(n_clusters=2) kmeans.fit(aln_file.identity_matrix) y_kmeans = kmeans.predict(aln_file.identity_matrix) for kmeans_index in range(len(y_kmeans)): name_aln_file_0 = aln_file.file_dir[0:-4] + '_0' name_aln_file_1 = aln_file.file_dir[0:-4] + '_1' if y_kmeans[kmeans_index] == 0: with open(name_aln_file_0,'a') as aln_clustered: aln_clustered.write(aln_file.name_lst[kmeans_index] + aln_file.seq_lst[kmeans_index].replace('-','').replace('\n','') + '\n') if y_kmeans[kmeans_index] == 1: with open(name_aln_file_1,'a') as aln_clustered: aln_clustered.write(aln_file.name_lst[kmeans_index] + aln_file.seq_lst[kmeans_index].replace('-','').replace('\n','') + '\n') subprocess.call('muscle ' + '-in ' +name_aln_file_0 + ' -out ' + name_aln_file_0 + '.aln 2>' + HOME_DIRECTORY + '111',shell = True) subprocess.call('muscle ' + '-in ' +name_aln_file_1 + ' -out ' + name_aln_file_1 + '.aln 2>' + HOME_DIRECTORY + '111',shell = True) clustering_kmeans_aln(name_aln_file_0 + '.aln',itself=True) clustering_kmeans_aln(name_aln_file_1 + '.aln',itself=True) os.remove(name_aln_file_0) os.remove(name_aln_file_1) os.remove(aln_file.file_dir) else: return aln_file def calculate_identity_percent(aln_file,itself=True): '''input file the aligned sequence output SequenceFasta with identity_percent and identity_matrix itself - parametr for calculate identity percent the alone sequence ''' aln_file = SequenceFasta(aln_file) aln_file.seq_process(strip=False) data_persent = pd.Series() identity_matrix = pd.DataFrame() if itself and len(aln_file.seq_lst) == 1: data_persent[find_tag('seq_id',aln_file.name_lst[0])+'and'+find_tag('seq_id',aln_file.name_lst[0])] = 110 aln_file.data_persent = data_persent identity_matrix = pd.DataFrame([]) aln_file.identity_matrix = identity_matrix return aln_file else: name_lst_seq_id = [] for name_seq in aln_file.name_lst: name_lst_seq_id.append(find_tag('seq_id',name_seq)) array_100 = np.zeros((len(aln_file.name_lst), len(aln_file.name_lst))) +100 identity_matrix = pd.DataFrame(array_100,columns=name_lst_seq_id,index=name_lst_seq_id) n=0 identical = 0 for seq_id_1 in range(len(aln_file.seq_lst)): n += 1 for seq_id_2 in range(n,len(aln_file.seq_lst)): for character1, character2 in zip(aln_file.seq_lst[seq_id_1],aln_file.seq_lst[seq_id_2]): if character1 == character2: identical +=1 seq_1 = find_tag('seq_id',aln_file.name_lst[seq_id_1]) seq_2 = find_tag('seq_id',aln_file.name_lst[seq_id_2]) persent_identical = identical / len(aln_file.seq_lst[seq_id_1]) * 100 data_persent[seq_1+'and'+seq_2] = persent_identical identity_matrix[seq_1][seq_2] = persent_identical identity_matrix[seq_2][seq_1] = persent_identical identical = 0 aln_file.data_persent = data_persent aln_file.identity_matrix = identity_matrix return aln_file def clustering_aln(directory): directory_files = os.listdir(directory) for file in directory_files: if file.endswith('.aln'): clustering_kmeans_aln(ALNDATA_DIRECTORY + file,itself=True) def enumeration_identity_percent(directory): '''Just for plot''' data_persent_for_plot = pd.Series() directory_files = os.listdir(directory) for file in directory_files: if file.endswith('.aln'): aln_file = calculate_identity_percent(ALNDATA_DIRECTORY + file,itself=True) data_persent_for_plot = data_persent_for_plot.append(aln_file.data_persent) return data_persent_for_plot print('end indentity_persent')
2.703125
3
zeee_bot/cogs/test.py
zeee2/ZEEE-Discord-Bot
1
12780837
from os import name import pathlib from discord.ext import commands import discord from dislash import InteractionClient, ActionRow, Button, ButtonStyle, SelectMenu, SelectOption from colored import fore, back, style from PIL import Image, ImageFont, ImageDraw, ImageEnhance from zeee_bot.common import glob class Test(commands.Cog): def __init__(self, bot): self.bot = bot @commands.command(name="test") async def ___test(self, ctx): row = ActionRow( Button( style=ButtonStyle.green, label="sexy bread", custom_id="bread_btn" ) ) msg = await ctx.send("마 눌러바라 게이야", components=[row]) on_click = msg.create_click_listener(timeout=5) @on_click.matching_id("bread_btn") async def on_bread_button(inter): await inter.reply("헤으응 부끄러웟", delete_after=2.5) @on_click.timeout async def on_timeout(): await msg.delete() await ctx.send("응애 타임아웃!") def drawProgressBar(self, d, x, y, w, h, progress, bg="black", fg="red"): # draw background d.ellipse((x+w, y, x+h+w, y+h), fill=bg, outline=None) d.ellipse((x, y, x+h, y+h), fill=bg, outline=None) d.rectangle((x+(h/2), y, x+w+(h/2), y+h), fill=bg, outline=None) # draw progress bar w *= progress d.ellipse((x+w, y, x+h+w, y+h),fill=fg, outline=None) d.ellipse((x, y, x+h, y+h),fill=fg, outline=None) d.rectangle((x+(h/2), y, x+w+(h/2), y+h),fill=fg, outline=None) return d @commands.command(name='ㅅ') async def testtest(self, ctx): a = 'get base img.' msg = await ctx.send(a) base_img = Image.open(f"{pathlib.Path(__file__).parent.parent}/images/now_base.png").convert("RGBA") draw = ImageDraw.Draw(base_img) color = (96, 197, 241) draw = self.drawProgressBar(draw, 15, 11, 572.5, 29, 0.5, bg=color, fg=color) # ImageDraw.floodfill(base_img, xy=(14,24), value=color, thresh=40) a += "\nwriting image." await msg.edit(content=a) base_img.save('test2.png') a += "\nDone." await msg.delete() await ctx.send(file=discord.File("test2.png")) @commands.command(name="test2") async def __test2(self, ctx): msg = await ctx.send( "마 한번 골라바라 게이야", components=[ SelectMenu( custom_id = "bread_sexy", placeholder="골라바라 게이야 낄낄", max_values=2, options=[ SelectOption("빵", "빵"), SelectOption("빵빵", "빵빵"), SelectOption("빵빵빵", "빵빵빵") ] ) ] ) inter = await msg.wait_for_dropdown() labels = [option.value for option in inter.select_menu.selected_options] await msg.edit(content="골라부럇구만!", components=[]) await inter.reply(f"{''.join(labels)}") def setup(bot: commands.Bot): bot.add_cog(Test(bot))
2.5
2
setup.py
gabrielfern/automated-leda-tasks
9
12780838
#!/usr/bin/env python # -*- coding: utf-8 -*- # <NAME> <<EMAIL>> # <NAME> <<EMAIL>> try: from setuptools import setup except ImportError: from os import system system('pip install --user setuptools') from setuptools import setup setup( name='automated', version='1.3.2', description='Automatizador de tarefas - LEDA', license='MIT', classifiers=[ 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 3', ], url='https://github.com/gabrielfern/automated-leda-tasks', author='<NAME>', author_email='<EMAIL>', packages=['automated'], install_requires=['requests', 'python-crontab'], )
1.5625
2
example.py
JustEdro/appstoreconnectapi
0
12780839
<reponame>JustEdro/appstoreconnectapi #!/usr/bin/env python import sys from appstoreconnect import Api if __name__ == "__main__": key_id = sys.argv[1] key_file = sys.argv[2] issuer_id = sys.argv[3] api = Api(key_id, key_file, issuer_id) apps = api.apps() for app in apps["data"]: print(app["attributes"]["name"])
2.15625
2
computeFeatures/seqStep/seqToolManagers/conservationTools/Al2coManager.py
rsanchezgarc/BIPSPI
5
12780840
from __future__ import absolute_import, print_function import os import numpy as np from subprocess import Popen, PIPE from Bio.PDB.Polypeptide import aa1 as AA_STANDARD from ....featuresComputer import FeatureComputerException from ...seqToolManager import SeqToolManager from .al2coWorkers.parsePsiBlast import parsePsiBlast from utils import myMakeDir, tryToRemove class Al2coManager(SeqToolManager): ''' Computes al2co and processes their outputs. Extends class seqToolManager ''' VAR_LIST= ["al2coScore", "al2coScoreNorm"] BAD_SCORE_CONSERVATION = "-1048576" #Something went wrong tag def __init__(self, computedFeatsRootDir, winSize=None, statusManager=None): ''' :param computedFeatsRootDir: str. root path where results will be saved :param winSize: int>=1 or None. The size of the windows for sliding window if desired :param statusManager: class that implements .setStatus(msg) to communicate ''' SeqToolManager.__init__(self, computedFeatsRootDir, winSize) self.al2coOutPath= myMakeDir(self.computedFeatsRootDir,"al2co") if winSize: self.al2coPathWindowed= myMakeDir(self.computedFeatsRootDir,"al2co_wSize"+str(winSize)) else: self.al2coPathWindowed= None def getFinalPath(self): ''' returns path where results are saved :return al2coOutPath: str ''' return self.al2coOutPath def getFNames(self, prefixExtended): ''' Returns a dict that contains the fnames that will be used by al2co :param prefixExtended. prefix for output fnames. :return list of fnames: [ fname1, fnam2, ...] ''' al2coProc= os.path.join(self.al2coOutPath, prefixExtended+".al2co.gz") fNames=[al2coProc] if not self.winSize is None: al2coWindowedOutName= os.path.join(self.al2coPathWindowed, prefixExtended+".wsize"+str(self.winSize)+".al2co.gz") fNames+= [al2coWindowedOutName] return fNames def computeFromSeqStructMapper(self, seqStructMap, prefixExtended, psiblastOutName, pssmOutNameRaw): ''' Computes al2co for the sequence seqStr, that is contained at fastaInFname. This sequence is associated with prefixExtended as an unambiguous id :param seqStructMap: computeFeatures.seqStep.seqToolManagers.seqExtraction.SeqStructMapper :param prefixExtended: str. unambiguous id of the sequence that will be the prefix of output names :param psiblastOutName: str. Path to psiblast aligments results :param pssmOutNameRaw: str. Path to psiblast pssms results ''' msaFname= None prefix, chainType, chainId= self.splitExtendedPrefix(prefixExtended)[:3] seqStr, fastaFname= seqStructMap.getSeq(chainType, chainId) # repeat as psiBlastManager can modify seqs seqStructMap.setCurrentSeq(seqStr, chainType, chainId) if self.checkAlreayComputed(prefixExtended): print("Al2co already computed for %s"%prefixExtended) return 0 fNames= self.getFNames(prefixExtended) print("launching al2co over %s"%prefixExtended) al2coProcName= fNames[0] al2coRawName= os.path.join(self.al2coOutPath, prefixExtended+".fasta.csv") try: if os.path.isfile(psiblastOutName): alignedSeqsDict= parsePsiBlast( inputSeq=seqStr, psiBlastOut=psiblastOutName) filteredSeqsFname= self.runCdHit(alignedSeqsDict, inputSeq=seqStr, psiBlastOut=psiblastOutName) msaFname= self.runClustalW(filteredSeqsFname, psiBlastOut=psiblastOutName) cmd= [self.al2coBin, "-i", msaFname,"-m", "0", "-f", "2", "-a", "F", "-b", "50", "-g", "0.50", "-w", "1", "-c", "0", "-o", al2coRawName, "-t", al2coProcName] print(" ".join(cmd)) process= Popen(cmd, stdout=PIPE, stderr=PIPE) processOut= process.communicate() if len(processOut[1])>0: print("Error computing al2co. Caught stdin/stderr:\n",processOut[0],processOut[1]) else: print("Error computing al2co. Psiout does not exists for %s"%(prefixExtended)) al2coRawName=None dataList= self.processAl2co(seqStr, seqStructMap, prefixExtended, al2coRawName, al2coProcName) if self.winSize: self.makeWindowed( dataList, ["al2co", "al2coNorm"], [Al2coManager.BAD_SCORE_CONSERVATION]*2, [None]*2, fNames[1]) except (Exception, KeyboardInterrupt): self.tryToRemoveAllFnames(prefixExtended) raise finally: if msaFname: tryToRemove(msaFname) def processAl2co(self, seq, seqStructMap, prefixExtended, al2coRaw, al2coProc): ''' Reads al2co output file and writes another one with tabulated format, headers and some error checking. :param: seq: str. Sequence of the chain :param prefixExtended: str. unambiguous id of the sequence that will be the prefix of output names :param al2coRaw: str. Path to al2co results :param al2coProc: str. Path where formatted results will be saved. ''' if al2coRaw is None: conserData = [(letter, Al2coManager.BAD_SCORE_CONSERVATION) for letter in seq] else: try: conserData = self.loadRawAl2co(al2coRaw) except IOError: conserData= [ (letter, Al2coManager.BAD_SCORE_CONSERVATION) for letter in seq] prefix, chainType, chainId= self.splitExtendedPrefix(prefixExtended)[:3] # print(len(conserData)); raw_input("enter") try: alcoIx=0 seqIx=0 seqLen= len(seq) letters, conserVals = zip(* conserData) conserVals= [float(elem) for elem in conserVals] alcoLen= len(conserData) dataList=[] listOfRowsToPrint=[] mean_val= np.mean(conserVals) std_val= np.std(conserVals) while seqIx<seqLen and alcoIx<alcoLen: letter= seq[seqIx] letterAl2co, consVal= conserData[alcoIx] if letterAl2co== letter or (letterAl2co=="-" and letter=="X"): structIndex= seqStructMap.seqToStructIndex(chainType, chainId, seqIx, asString= True) # print(seqIx, letter, alcoIx, structIndex) if structIndex: if self.filterOutLabels and structIndex[-1].isalpha(): continue else: structIndex=str(seqIx)+"?" if std_val!=0: consValNormalized= (float(consVal)- mean_val)/std_val else: consValNormalized=float(consVal) dataList.append( ( (chainId, structIndex,letter), ( [consVal], [str(consValNormalized)],) ) ) listOfRowsToPrint.append( "%s %s %s %s %s"%( chainId, structIndex, letter, consVal, consValNormalized) ) alcoIx+=1 seqIx+=1 elif not letter in AA_STANDARD and letterAl2co=="-": alcoIx+=1 seqIx+=1 elif letterAl2co=="-": alcoIx+=1 else: print(conserData) print(alcoIx, seqIx) raise ValueError("Al2co mismatch %s %s "%(letterAl2co, letter)) # print(len(listOfRowsToPrint)); raw_input("enter to continue") self.writeResultsFromDataDictSingleChain( {chainId: listOfRowsToPrint }, outName= al2coProc) return dataList except (KeyboardInterrupt, Exception): print("Exception happend computing %s"%al2coProc) tryToRemove(al2coProc) raise finally: if al2coRaw is not None: tryToRemove(al2coRaw) pass def loadRawAl2co(self, filename): ''' Loads an al2co file :param fname: str. Path to al2co file. :return list of strings. ["row0_Al2co","row1Al2co"...] ''' conserv= [] for line in open(filename): lineArray=line.split() if lineArray[0][0].isdigit(): conserv.append(lineArray[1:3]) else: break return conserv def runCdHit(self, allHits, inputSeq, psiBlastOut, pairSeqIdThr=0.95): tmpName= os.path.basename(psiBlastOut).split(".")[0] tmpName= os.path.join(self.tmp, tmpName) cdhitInName= tmpName+".in-cdhit" cdhitOutName= tmpName+".out-cdhit" try: with open(cdhitInName, "w") as f: for hit in allHits: f.write("> %s\n"%(hit["target_full_id"])) f.write("%s\n"%(hit["targetSeq"].replace("-","")) ) if(pairSeqIdThr > .70 and pairSeqIdThr <= 1.00): n=5 elif (pairSeqIdThr <= .70 and pairSeqIdThr >= .55): n=4 elif (pairSeqIdThr < .55 and pairSeqIdThr >= .50): n=3 elif (pairSeqIdThr < .50 and pairSeqIdThr >= .40): n=2 else: raise ValueError("Error, just .4<=pairSeqIdThr<=1.00 allowed") cdhitCmd= [self.cdHitBin, "-i", cdhitInName, "-o", cdhitOutName, "-n", str(n), "-c", str(pairSeqIdThr), "-T", str(self.psiBlastNThrs)] print(" ".join(cdhitCmd)) proc = Popen(cdhitCmd, stdin= PIPE, stdout=PIPE, stderr=PIPE) output= proc.communicate() if output== None or output[1]!="" or "There was an error cd-hit psiblast" in output[0]: print(output) print ("Error when parsing %s for al2Co"%psiBlastOut) raise FeatureComputerException("Error when cd-hit %s for al2Co"%psiBlastOut) with open(cdhitOutName, "r+") as f: fileData = f.read() f.seek(0, 0) f.write("> InputSeq\n") f.write("%s\n"%(inputSeq.replace("-","")) ) f.write(fileData+"\n") return cdhitOutName except (Exception, KeyboardInterrupt): tryToRemove(cdhitOutName) raise finally: tryToRemove(cdhitInName) def runClustalW(self, filteredSeqsFname, psiBlastOut, clustalWOutName=None): tmpFnameCommon= ".".join(filteredSeqsFname.split(".")[:-1]) if clustalWOutName is None: clustalWOutName= tmpFnameCommon+".clustalw" clustalCommand=[self.clustalW, "-infile=%s"%filteredSeqsFname, "-outfile=%s"%clustalWOutName, "-outorder=INPUT"] print(" ".join(clustalCommand)) try : proc = Popen(clustalCommand, stdin= PIPE, stdout=PIPE, stderr=PIPE) output= proc.communicate() if output== None or output[1]!="" or "There was an error parsing psiblast, clustalw" in output[0]: print(output) print ("Error when clustalw %s for al2Co"%psiBlastOut) raise FeatureComputerException("Error when clustalw %s for al2Co"%psiBlastOut) return clustalWOutName except (Exception, KeyboardInterrupt): tryToRemove(clustalWOutName) raise finally: tryToRemove(filteredSeqsFname) tryToRemove(filteredSeqsFname+".clstr") tryToRemove( tmpFnameCommon+".dnd")
2.28125
2
data.py
nikhilroxtomar/Polyp-Segmentation-using-UNET-in-TensorFlow-2.0
45
12780841
import os import numpy as np import cv2 from glob import glob import tensorflow as tf from sklearn.model_selection import train_test_split def load_data(path, split=0.1): images = sorted(glob(os.path.join(path, "images/*"))) masks = sorted(glob(os.path.join(path, "masks/*"))) total_size = len(images) valid_size = int(split * total_size) test_size = int(split * total_size) train_x, valid_x = train_test_split(images, test_size=valid_size, random_state=42) train_y, valid_y = train_test_split(masks, test_size=valid_size, random_state=42) train_x, test_x = train_test_split(train_x, test_size=test_size, random_state=42) train_y, test_y = train_test_split(train_y, test_size=test_size, random_state=42) return (train_x, train_y), (valid_x, valid_y), (test_x, test_y) def read_image(path): path = path.decode() x = cv2.imread(path, cv2.IMREAD_COLOR) x = cv2.resize(x, (256, 256)) x = x/255.0 return x def read_mask(path): path = path.decode() x = cv2.imread(path, cv2.IMREAD_GRAYSCALE) x = cv2.resize(x, (256, 256)) x = x/255.0 x = np.expand_dims(x, axis=-1) return x def tf_parse(x, y): def _parse(x, y): x = read_image(x) y = read_mask(y) return x, y x, y = tf.numpy_function(_parse, [x, y], [tf.float64, tf.float64]) x.set_shape([256, 256, 3]) y.set_shape([256, 256, 1]) return x, y def tf_dataset(x, y, batch=8): dataset = tf.data.Dataset.from_tensor_slices((x, y)) dataset = dataset.map(tf_parse) dataset = dataset.batch(batch) dataset = dataset.repeat() return dataset
2.609375
3
reddit/posts/urls.py
Arnman16/reddirt
0
12780842
<gh_stars>0 from django.urls import include, path from .views import PostView, SubredditView, AllSubredditsView, FrontPageView app_name = 'reddit' urlpatterns = [ path("frontpage/", FrontPageView.as_view()), path("all/", AllSubredditsView.as_view(), name='all' ), path(route='<slug:slug>/', view=SubredditView.as_view(), name='subreddit'), path(route='<slug:subreddit_slug>/<slug:slug>', view=PostView.as_view(), name='post'), ]
2.046875
2
baseline/CLIP-zero-shot/detection/sliding_params.py
Wuziyi616/slot_attention
0
12780843
<filename>baseline/CLIP-zero-shot/detection/sliding_params.py from typing import Tuple import attr @attr.s(auto_attribs=True) class SlidingParams: # model configs resolution: Tuple[int, int] = (256, 256) # since we not using ViT num_slots: int = 7 # at most 6 obj per image/video # architecture of CLIP pre-trained model clip_arch: str = 'ViT-B/32' # data # data_root: str = "/scratch/ssd004/scratch/ziyiwu/data/CLEVR_viewpoint_video" data_root: str = "/scratch/ssd004/scratch/jiaqixi/data/clevr_video/train/" shuffle_obj: bool = False # Normalization for natural img or original slot attention one simple_normalize: bool = False # since we not using ViT
2.046875
2
day23/lib.py
heijp06/AoC-2021
0
12780844
from queue import PriorityQueue from burrow import Burrow, parse def part1(rows: list[str]) -> int | None: return go(rows) def part2(rows: list[str]) -> int | None: new_rows = list(rows[:3]) + [ " #D#C#B#A#", " #D#B#A#C#", ] + list(rows[3:]) return go(new_rows) def go(rows: list[str]) -> int | None: burrow = parse(rows) burrows: PriorityQueue = PriorityQueue() burrows.put((burrow.min_cost_to_solution(), burrow)) seen = {burrow: 0} min_cost = 0 if burrow.final() else None while burrows.qsize(): min_cost_to_solution, burrow = burrows.get() if min_cost and min_cost <= min_cost_to_solution: break old_cost = seen[burrow] for extra_cost, new_burrow in move(burrow): new_cost = old_cost + extra_cost if ( (not min_cost or new_cost < min_cost) and (new_burrow not in seen or new_cost < seen[new_burrow]) ): seen[new_burrow] = new_cost if new_burrow.final(): min_cost = new_cost else: burrows.put((new_cost + new_burrow.min_cost_to_solution(), new_burrow)) return min_cost def move(burrow: Burrow) -> list[tuple[int, Burrow]]: for amphipod in burrow.amphipods: new_burrow = amphipod.move_home(burrow) if new_burrow: return [new_burrow] return [ new_burrow for amphipod in burrow.amphipods for new_burrow in amphipod.move_hallway(burrow) ] def dump(burrow: Burrow) -> None: for row in range(burrow.height): for column in range(13 if row < 3 else 11): amphipod = burrow[row, column] if amphipod: print(amphipod.kind, end='') continue if ( row == 0 or column in (0, 12) and row == 1 or column in (0, 1, 2, 4, 6, 8, 10, 11, 12) and row == 2 or column in (2, 4, 6, 8, 10) and 2 < row < burrow.height - 1 or column in (2, 3, 4, 5, 6, 7, 8, 9, 10) and row == burrow.height - 1 ): print('#', end='') continue if row > 2 and (column < 2 or column > 10): print(' ', end='') continue print('.', end='') print()
3.625
4
InterviewBit/Trees/postorder_traversal.py
codervikash/online-courses
0
12780845
""" Given a binary tree, return the postorder traversal of its nodes’ values. Example : Given binary tree 1 \ 2 / 3 return [3,2,1]. Using recursion is not allowed. """ # Definition for a binary tree node # class TreeNode: # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution: def peek(self, stack): if len(stack) > 0: return stack[-1] return None # @param A : root node of tree # @return a list of integers def postorderTraversal(self, root): ans = [] if root is None: return stack = [] while(True): while (root): if root.right is not None: stack.append(root.right) stack.append(root) root = root.left root = stack.pop() if (root.right is not None and self.peek(stack) == root.right): stack.pop() stack.append(root) root = root.right else: ans.append(root.val) root = None if (len(stack) <= 0): break return ans
4.0625
4
hits_per_minute.py
nathan242/sysadmin-tools
0
12780846
<gh_stars>0 #!/usr/bin/python import sys import os import time count = {} total = 0 highest = 0 average = 0 log = open(sys.argv[1], "r") for line in log: datestring = line.split()[3].replace("[", "")[:-3] if datestring in count: count[datestring] += 1 else: count[datestring] = 1 for i in sorted(count.keys()): print i+" : "+str(count[i]) total += count[i] if count[i] > highest: highest = count[i] average = total/len(count) print "TOTAL: "+str(total) print "HIGHEST: "+str(highest) print "AVERAGE: "+str(average)
3.515625
4
Easy/Codeland Username Validation.py
edaaydinea/Coderbyte
6
12780847
import re def CodelandUsernameValidation(strParam): # code goes here valid = "false" if strParam[0].isalpha(): if 4 < len(strParam) < 25: if strParam[-1] != '_': if re.match('^[a-zA-Z0-9_]+$', strParam): valid = "true" # code goes here return valid # keep this function call here print(CodelandUsernameValidation(input()))
3.34375
3
inject_version.py
Open-Security-Tools/security_model_tw_plugin
1
12780848
#!/usr/bin/env python import os import subprocess TID_FILE = "src/tiddlers/system/plugins/security_tools/twsm.tid" VERSION_FILE = "VERSION" def get_commit_count(): return int(subprocess.check_output(["git", "rev-list", "--count", "HEAD"]).decode('utf-8')) def main(): with open(VERSION_FILE, "r") as f: version = f.read().strip() # Some sanity mm = version.split(".") assert len(mm) == 2, "Expected version format MAJOR.MINOR" assert int(mm[0]) + int(mm[1]), "Expected version integers MAJOR.MINOR" ls = list() with open(TID_FILE, "r") as f: version_string = "version: {}.{}".format(version, get_commit_count()) for l in f: if l.startswith("version:"): print("Injecting version: {}".format(version_string)) ls.append(version_string + "\n") else: ls.append(l) with open(TID_FILE, "w") as f: f.write("".join(ls)) print("Finished") if __name__ == "__main__": main()
2.625
3
image_viewer.py
juu7g/Python-Image-Viewer
0
12780849
""" 画像ビューワー """ import itertools, os, sys import tkinter as tk import tkinter.ttk as ttk import tkinter.font as tkFont from tkinter import filedialog from tkinterdnd2 import * from typing import Tuple # 関数アノテーション用 from PIL import Image, ImageTk # Pillow from PIL.ExifTags import TAGS, GPSTAGS # Exifタグ情報 class ListView(ttk.Frame): """ 画像をリストビューで表示する """ check_str = {"uncheck":"☐", "checked":"☑"} # ☐☑☒チェックボックス用文字 def __init__(self, master): """ 画面の作成 上のFrame: 入力用 下のFrame: 出力用 """ super().__init__(master) self.image_op = ImageOp() self.u_frame = tk.Frame(bg="white") # 背景色を付けて配置を見る self.b_frame = tk.Frame(bg="green") # 背景色を付けて配置を見る self.u_frame.pack(fill=tk.X) self.b_frame.pack(fill=tk.BOTH, expand=True) self.create_input_frame(self.u_frame) self.treeview1 = self.create_tree_frame(self.b_frame) # bind self.treeview1.bind("<Button 1>", self.togle_checkbox) # マウスを左クリックしたときの動作 # self.treeview1.bind("<Double 1>", self.preview_image) # マウスをダブルクリックしたときの動作 self.treeview1.bind("<Double 3>", self.preview_image) # マウスを右ダブルクリックしたときの動作 # マウスのクリックとダブルクリックを併用する場合 # self.double_click_flag =False # self.treeview1.bind("<Button 1>", self.mouse_click) # マウスを左クリックしたときの動作 # self.treeview1.bind("<Double 1>", self.double_click) # マウスをダブルクリックしたときの動作 def fixed_map(self, option): # Fix for setting text colour for Tkinter 8.6.9 # From: https://core.tcl.tk/tk/info/509cafafae # # Returns the style map for 'option' with any styles starting with # ('!disabled', '!selected', ...) filtered out. # style.map() returns an empty list for missing options, so this # should be future-safe. return [elm for elm in self.style.map('Treeview', query_opt=option) if elm[:2] != ('!disabled', '!selected')] def create_input_frame(self, parent): """ 入力項目の画面の作成 上段:ファイル選択ボタン、すべて選択、選択解除、プレビューボタン 下段:メッセージ """ self.btn_f_sel = tk.Button(parent, text="ファイル選択", command=self.select_files) self.btn_select_all = tk.Button(parent, text="すべて選択", command=self.select_all) self.btn_deselection = tk.Button(parent, text="選択解除", command=self.deselection) self.btn_preview = tk.Button(parent, text="プレビュー", command=self.preview_images) self.msg = tk.StringVar(value="msg") self.lbl_msg = tk.Label(parent , textvariable=self.msg , justify=tk.LEFT , font=("Fixedsys", 11) , relief=tk.RIDGE , anchor=tk.W) # pack self.lbl_msg.pack(side=tk.BOTTOM, fill=tk.BOTH, expand=True) # 先にpackしないと下に配置されない self.btn_preview.pack(side=tk.RIGHT, padx=5) self.btn_deselection.pack(side=tk.RIGHT, padx=5) self.btn_select_all.pack(side=tk.RIGHT, padx=5) self.btn_f_sel.pack(side=tk.RIGHT, padx=5) # bind def create_tree_frame(self, parent:tk.Frame) -> ttk.Treeview: """ Treeviewとスクロールバーを持つframeを作成する。 frameは、Treeviewとスクロールバーをセットする Treeviewは、ツリーと表形式、ツリーに画像、行は縞模様 Args: Frame: 親Frame Returns: Treeview: ツリービュー """ # tagを有効にするためstyleを更新 tkinter8.6?以降必要みたい # 表の文字色、背景色の設定に必要 self.style = ttk.Style() self.style.map('Treeview', foreground=self.fixed_map('foreground') , background=self.fixed_map('background')) # スタイルの設定 self.style.configure("Treeview", rowheight = 150) # 画像を150pxで表示するので初期設定する # frameの作成。frameにTreeviewとScrollbarを配置する frame4tree = tk.Frame(parent, bg="pink") frame4tree.pack(side=tk.TOP, fill=tk.BOTH, expand=True, padx=2, pady=2) # Treeviewの作成 treeview1 = ttk.Treeview(frame4tree, style="Treeview") # treeview1["show"] = "headings" # デフォルトは treeとheadingsなので設定しない treeview1.tag_configure("odd", background="ivory2") # 奇数行の背景色を指定するtagを作成 # 水平スクロールバーの作成 h_scrollbar = tk.Scrollbar(frame4tree, orient=tk.HORIZONTAL, command=treeview1.xview) treeview1.configure(xscrollcommand=h_scrollbar.set) # 垂直スクロールバーの作成 v_scrollbar = tk.Scrollbar(frame4tree, orient=tk.VERTICAL, command=treeview1.yview) treeview1.configure(yscrollcommand=v_scrollbar.set) # pack expandがある方を後にpackしないと他が見えなくなる h_scrollbar.pack(side=tk.BOTTOM, fill=tk.X) # 先にパックしないと表示されない v_scrollbar.pack(side=tk.RIGHT, fill=tk.Y) # 先にパックしないと表示されない treeview1.pack(side=tk.TOP, fill=tk.BOTH, expand=True, padx=2, pady=2) treeview1.column("#0", width=200, stretch=False) # ツリー列の幅の設定 return treeview1 def update_tree_column(self, tree1:ttk.Treeview, columns:list): """ TreeViewの列定義と見出しを設定 見出しの文字長で列幅を初期設定 Args: Treeview: treeviewオブジェクト list: 列名のリスト """ tree1["columns"] = columns # treeviewの列定義を設定 font1 = tkFont.Font() for col_name in columns: tree1.heading(col_name, text=col_name) # 見出しの設定 width1 = font1.measure(col_name) # 見出しの文字幅をピクセルで取得 tree1.column(col_name, width=width1) # 見出し幅の設定 def update_tree_by_result(self, tree1:ttk.Treeview, rows:list, images:list): """ rows(表データ)、images(画像のデータ)をTreeViewに設定 要素の文字幅が見出しの文字幅より長い場合は、列幅を変更する。 奇数列の背景色を変更 Args: Treeview: Treeviewインスタンス list: 行データ(行リストの列リスト) list: 画像データ """ if not rows: # 要素が無ければ戻る return font1 = tkFont.Font() # 要素の長さにより列幅を修正 for i, _ in enumerate(rows[0]): # 列数分回す(1行目の要素数分) # 同じ列のデータをリストにし列の値の長さを求め、最大となる列のデータを求める。 # 値は数字もあるので文字に変換し長さを求める。また、Noneは'None'となるので' 'とする。 max_str = max([x[i] for x in rows], key=lambda x:len(str(x))) or " " # 求めたものが文字列だったら、改行された状態での最大となるデータを求める。 # 厳密にはこの状態で最大となるデータを探さなければならないが割愛 if type(max_str) is str: max_str = max(max_str.split("\n"), key=len) width1 = font1.measure(max_str) # 文字幅をピクセルで取得 curent_width = tree1.column(tree1['columns'][i], width=None) # 現在の幅を取得 # 設定済みの列幅より列データの幅の方が大きいなら列幅を再設定 if width1 > curent_width: tree1.column(tree1['columns'][i], width=width1) # 見出し幅の再設定 # print(f"幅の再設定 幅:{width1}、値:{max_str}") # debug用 tree1.delete(*tree1.get_children()) # Treeviewをクリア # 要素の追加 for i, row in enumerate(rows): tags1 = [] # tag設定値の初期化 if i & 1: # 奇数か? i % 2 == 1: tags1.append("odd") # 奇数番目(treeviewは0始まりなので偶数行)だけ背景色を変える(oddタグを設定) # 要素の追加(image=はツリー列の画像、text=はツリー列の文字(疑似チェックボックス)) iid = tree1.insert("", tk.END, values=row, tags=tags1, image=images[i], text=self.check_str["uncheck"]) # Treeviewに1行分のデータを設定 def open_file_and_get_data(self, event=None): """ self.file_pathsのパスからファイル情報、画像サムネイルを作成 Treeviewに情報追加 データの幅でTreeviewの列の幅を設定する データの行数でTreeviewの行の高さを設定する(行ごとにはできないので一番高い行に合わせる) """ self.image_op.msg = "" # DnD対応 if event: # DnDのファイル情報はevent.dataで取得 # "{空白を含むパス名1} 空白を含まないパス名1"が返る # widget.tk.splitlistでパス名のタプルに変換 self.file_paths = self.u_frame.tk.splitlist(event.data) # 取得したパスから拡張子がself.extentiosのkeyに含まれるものだけにする file_paths2 = tuple(path for path in self.file_paths if os.path.splitext(path)[1].lower() in self.image_op.extensions) if len(file_paths2) == 0: self.image_op.msg = "対象のファイルがありません" self.msg.set(self.image_op.msg) return if file_paths2 != self.file_paths: self.image_op.msg = "対象外のファイルは除きました" self.file_paths = file_paths2 # 取得したパスから表示データと画像を作成 columns1, rows1, images1, msg1 = self.image_op.get_images(self.file_paths) self.d_images = [] # ダイアログ表示用画像初期化 self.msg.set(self.image_op.msg) # エラーメッセージの表示 # 見出しの文字長で列幅を初期設定、treeviewのカラム幅を文字長に合わせて調整 self.update_tree_column(self.treeview1, columns1) # 列項目を右寄せ # self.treeview1.column("#0", anchor=tk.E) # 列項目を右寄せ(ツリー)#0には働かないみたい self.treeview1.column("#2", anchor=tk.E) # 列項目を右寄せ(幅) self.treeview1.column("#3", anchor=tk.E) # 列項目を右寄せ(高さ) self.treeview1.column("#4", anchor=tk.E) # 列項目を右寄せ(サイズ) # rows、画像をTreeViewに設定 # 要素の文字幅が見出しの文字幅より長い場合は、列幅を変更する。偶数列の背景色を変更 self.update_tree_by_result(self.treeview1, rows1, images1) # 一番行数の多い行に合わせて高さを設定する # 2次元のデータを平坦化しstr型だけを抽出する cells = [s for s in itertools.chain.from_iterable(rows1) if type(s) is str] if cells: # 抽出したリストの要素の中で改行の数の最も多い要素を取得 longest_cell = max(cells, key=lambda x:x.count("\n")) max_row_lines = longest_cell.count("\n") + 1 # 改行の数を数える # Treeviewの行の高さを変更 # タブごとのスタイルの設定 if max_row_lines * 18 > 150: self.style.configure("Treeview", rowheight = 18 * max_row_lines) def select_files(self, event=None): """ ファイル選択ダイアログを表示。選択したファイルパスを取得 ファイル情報や画像を取得して表示 """ # 拡張子の辞書からfiletypes用のデータを作成 # 辞書{".csv":"CSV", ".tsv":"TSV"}、filetypes=[("CSV",".csv"), ("TSV",".tsv")] self.file_paths = filedialog.askopenfilenames( filetypes=[(value, key) for key, value in self.image_op.extensions.items()]) self.open_file_and_get_data() # ファイル情報や画像を取得して表示 # マウスのクリックとダブルクリックを併用する場合 # 反応が鈍いので未使用。参考に残す。 def mouse_click(self, event=None): """ マウスのシングルクリック時の処理 シングルクリックとダブルクリックイベントは両方発生するので シングルクリックイベントでダブルクリックイベントの発生を待ち、 ダブルクリックが発生してから共通の処理(中身は分ける)を実行する """ self.treeview1.after(200, self.mouse_action, event) # マウスのクリックとダブルクリックを併用する場合 def double_click(self,event=None): """ マウスのダブルクリック時の処理 ダブルマリックの発生をフラグに設定 """ self.double_click_flag = True # マウスのクリックとダブルクリックを併用する場合 def mouse_action(self, event=None): """ マウスクリック時の処理 ダブルクリック発生フラグを確認して処理を実行 ダブルクリック用処理実行後はフラグをクリア """ if self.double_click_flag: self.preview_image(event) self.double_click_flag =False else: self.togle_checkbox(event) def togle_checkbox(self, event=None): """ チェックボックスの状態を反転 """ rowid = self.treeview1.identify_row(event.y) # マウスの座標から対象の行を取得する if self.treeview1.item(rowid, text=None) == self.check_str["uncheck"]: self.treeview1.item(rowid, text=self.check_str["checked"]) else: self.treeview1.item(rowid, text=self.check_str["uncheck"]) def preview_image(self, event=None, path=""): """ 画像のプレビュー ダイアログ表示 Args: string: ファイルパス(ない場合もある) """ # マウスのクリックとダブルクリックを併用する場合 # マウスクリックイベントが先に動いているので打ち消す # クリックとダブルクリックを左ボタンで実装する時の考慮 # self.togle_checkbox(event) if event: rowid = self.treeview1.identify_row(event.y) # マウスの座標から対象の行を取得する path1 = self.treeview1.item(rowid)["values"][0].replace("\n", "") # ファイル名取得 else: path1 = path # ダイアログ表示 dialog = tk.Toplevel(self) # モードレスダイアログの作成 dialog.title("Preview") # タイトル self.d_images.append(ImageTk.PhotoImage(file=path1)) # 複数表示する時のために画像を残す label1 = tk.Label(dialog, image=self.d_images[-1]) # 最後のものを表示 label1.pack() def preview_images(self, event=None): """ 選択された画像のプレビュー """ self.msg.set("") # Treeviewのチェックボックスがオンの行のファイル名列(1列)を取得。改行してあるので除く。 paths = [self.treeview1.item(x)["values"][0].replace("\n", "") for x in self.treeview1.get_children() if self.treeview1.item(x)["text"] == self.check_str["checked"]] for path1 in paths: self.preview_image(path=path1) if not paths: self.msg.set("選択された画像がありません") def select_all(self, event=None): """ Treeviewの要素をすべて選択する """ self.set_all_checkbox("checked") def deselection(self, event=None): """ Treeviewの要素をすべて選択解除する """ self.set_all_checkbox("uncheck") def set_all_checkbox(self, check_stat:str): """ Treeviewのチェックボックスをすべて設定する Args: str: "checked" または "uncheck" """ for iid in self.treeview1.get_children(): self.treeview1.item(iid, text=self.check_str[check_stat]) class ImageOp(): """ 画像データの操作を行う """ def __init__(self): self.msg = "" # メッセージ受渡し用 # 対象拡張子 辞書(key:拡張子、値:表示文字) self.extensions = {".png .jpg .gif .webp":"画像", ".png":"PNG", ".jpg":"JPEG", ".gif":"GIF", ".webp":"WebP"} def get_images(self, file_names:tuple) -> Tuple[list, str]: """ 画像ファイルを読みデータを返す Args: str: ファイル名 Returns: columns1(list): 列名 rows1(list): 行データ(行リストの列リスト) self.images(list): 画像データ msg1(str): エラーメッセージ(空文はエラーなし) """ msg1 = "" columns1 = ["ファイル名", "幅(px)", "高さ(px)", "サイズ(kB)", "画像情報 EXIF", "位置情報 GPS"] try: self.images = [] # selfでないとうまくいかない。理由はローカル変数だと関数終了後gcされるため rows1 = [] for file_name in file_names: # パス名で回す # basename = os.path.basename(file_name) f = os.path.normpath(file_name) wrap_file_name = f.replace("\\", "\\\n") # 画像のサイズ file_size = os.path.getsize(file_name) # 画像の取得 image1 = Image.open(file_name) # ファイルサイズの取得 image_size = image1.size # Exif情報の取得 exif_dict = image1.getexif() exif = [TAGS.get(k, "Unknown")+ f": {str(v)}" for k, v in exif_dict.items()] exif_str = "\n".join(exif) # GPS情報の取得 gps_dict = exif_dict.get_ifd(34853) gps = [GPSTAGS.get(k, "Unknown") + f": {str(v)}" for k, v in gps_dict.items()] gps_str = "\n".join(gps) # 縮小 image1.thumbnail((150, 150), Image.BICUBIC) # サムネイルの大きさを統一(そうしないとチェックボックスの位置がまちまちになるため) # ベース画像の作成と縮小画像の貼り付け(中央寄せ) # base_image = Image.new(image1.mode, (160, 160), "#ffffff") base_image = Image.new('RGBA', (160, 160), (255, 0, 0, 0)) # 透明なものにしないとgifの色が変わる horizontal = int((base_image.size[0] - image1.size[0]) / 2) vertical = int((base_image.size[1] - image1.size[1]) / 2) # print(f"size:{image1.size} h,v:{horizontal},{vertical}, base:{base_image.size}") # debug base_image.paste(image1, (horizontal, vertical)) image1 = base_image # PhotoImageへ変換 image1 = ImageTk.PhotoImage(image1) # 列データと画像データを追加 self.images.append(image1) rows1.append([wrap_file_name, image_size[0], image_size[1], "{:.1f}".format(file_size/1024), exif_str, gps_str]) except Exception as e: msg1 = e print(f"error:{e}") finally: return columns1, rows1, self.images, msg1 if __name__ == '__main__': root = TkinterDnD.Tk() # トップレベルウィンドウの作成 tkinterdnd2の適用 root.title("画像 viewer") # タイトル root.geometry("800x710") # サイズ listview = ListView(root) # ListViewクラスのインスタンス作成 root.drop_target_register(DND_FILES) # ドロップ受け取りを登録 root.dnd_bind("<<Drop>>", listview.open_file_and_get_data) # ドロップ後に実行するメソッドを登録 # コマンドライン引数からドラッグ&ドロップされたファイル情報を取得 if len(sys.argv) > 1: listview.file_paths = tuple(sys.argv[1:]) listview.open_file_and_get_data() # オープン処理の実行 root.mainloop()
3.296875
3
envs_agents/cartpole/dqn_cartpole_minimal_example.py
dertilo/reinforcement-learning
0
12780850
<reponame>dertilo/reinforcement-learning<filename>envs_agents/cartpole/dqn_cartpole_minimal_example.py import os import time from typing import Iterator, Dict, NamedTuple, Generator import gym import torch import torch.nn as nn import numpy as np from gym.envs.classic_control import CartPoleEnv from gym.wrappers import Monitor from torch import optim from torch.optim.rmsprop import RMSprop import torch.nn.functional as F from tqdm import tqdm def mix_in_some_random_actions(policy_actions, eps, num_actions): if eps > 0.0: random_actions = torch.randint_like(policy_actions, num_actions) selector = torch.rand_like(random_actions, dtype=torch.float32) actions = torch.where(selector > eps, policy_actions, random_actions) else: actions = policy_actions return actions class CartPoleAgent(nn.Module): def __init__(self, obs_space, action_space): super().__init__() self.num_actions = action_space.n self.nn = nn.Sequential( *[ nn.Linear(obs_space.shape[0], 24), nn.ReLU(), nn.Linear(24, 24), nn.ReLU(), nn.Linear(24, self.num_actions), ] ) def calc_q_values(self, obs_batch): observation_tensor = torch.tensor(obs_batch, dtype=torch.float) q_values = self.nn(observation_tensor) return q_values def step_batch(self, obs_batch, eps=0.001): q_values = self.calc_q_values(obs_batch) policy_actions = q_values.argmax(dim=1) actions = mix_in_some_random_actions(policy_actions, eps, self.num_actions) return actions def step(self, obs, eps=0.001): obs_batch = np.expand_dims(obs, 0) actions = self.step_batch(obs_batch, eps) return int(actions.numpy()[0]) def visualize_it(env: gym.Env, agent: CartPoleAgent, max_steps=1000): while True: obs = env.reset() for steps in range(max_steps): is_open = env.render() if not is_open: return action = agent.step(obs) obs, reward, done, info = env.step(action) if done: break if steps < max_steps - 1: print("only %d steps" % steps) class Experience(NamedTuple): obs: np.ndarray next_obs: np.ndarray action: int next_reward: float next_done: bool class ExperienceArrays(NamedTuple): obs: np.ndarray next_obs: np.ndarray action: np.ndarray next_reward: np.ndarray next_done: np.ndarray def experience_generator(agent, env: gym.Env) -> Generator[Experience, None, None]: while True: obs = env.reset() for it in range(1000): action = agent.step(obs) next_obs, _, next_done, info = env.step(action) yield Experience( **{ "obs": obs, "next_obs": next_obs, "action": action, "next_reward": -10.0 if next_done else 1.0, "next_done": next_done, } ) obs = next_obs if next_done: break def gather_experience( experience_iter: Iterator, batch_size: int = 32 ) -> ExperienceArrays: experience_batch = [next(experience_iter) for _ in range(batch_size)] exp_arrays = { key: np.array([getattr(exp, key) for exp in experience_batch]) for key in Experience._fields } return ExperienceArrays(**exp_arrays) def calc_estimated_return(agent: CartPoleAgent, exp: ExperienceArrays, discount=0.99): next_q_values = agent.calc_q_values(exp.next_obs) max_next_value, _ = next_q_values.max(dim=1) mask = torch.tensor((1 - exp.next_done), dtype=torch.float) next_reward = torch.tensor(exp.next_reward, dtype=torch.float) estimated_return = next_reward + discount * max_next_value * mask return estimated_return def calc_loss(agent, estimated_return, observation, action): q_values = agent.calc_q_values(observation) actions_tensor = torch.tensor(action).unsqueeze(1) q_selected = q_values.gather(1, actions_tensor).squeeze(1) loss_value = F.mse_loss(q_selected, estimated_return) return loss_value def train(agent: CartPoleAgent, env: gym.Env, num_batches=3_000, batch_size=32): optimizer = optim.Adam(agent.parameters(), lr=1e-2) exp_iter = iter(experience_generator(agent, env)) for it in tqdm(range(num_batches)): with torch.no_grad(): agent.eval() exp: ExperienceArrays = gather_experience(exp_iter, batch_size=batch_size) estimated_return = calc_estimated_return(agent, exp) agent.train() loss_value = calc_loss(agent, estimated_return, exp.obs, exp.action) optimizer.zero_grad() loss_value.backward() optimizer.step() def run_cartpole_dqn(num_batches=1000, batch_size=32, log_dir="./logs/dqn",seed=0): os.makedirs(log_dir, exist_ok=True) env = CartPoleEnv() env.seed(seed) torch.manual_seed(seed) agent = CartPoleAgent(env.observation_space, env.action_space) from baselines.bench import Monitor as BenchMonitor env = BenchMonitor(env, log_dir, allow_early_resets=True) train(agent, env, num_batches=num_batches, batch_size=batch_size) return agent, env if __name__ == "__main__": agent, env = run_cartpole_dqn() from baselines.common import plot_util as pu from matplotlib import pyplot as plt results = pu.load_results("logs") f, ax = pu.plot_results(results) f.savefig("logs/dqn_cartpole.png") env = Monitor(env, "./vid", video_callable=lambda episode_id: True, force=True) visualize_it(env, agent)
2.28125
2