max_stars_repo_path
stringlengths
3
269
max_stars_repo_name
stringlengths
4
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.05M
score
float64
0.23
5.13
int_score
int64
0
5
setup.py
Pooya448/leap
55
12780951
<gh_stars>10-100 try: from setuptools import setup except ImportError: from distutils.core import setup from distutils.extension import Extension from Cython.Build import cythonize from torch.utils.cpp_extension import BuildExtension import numpy # Get the numpy include directory. numpy_include_dir = numpy.get_include() # efficient mesh extraction (Occupancy networks: Learning 3d reconstruction in function space, CVPR 2019) mise_module = Extension( 'leap.tools.libmise.mise', sources=[ 'leap/tools/libmise/mise.pyx' ], ) # occupancy checks needed for training libmesh_module = Extension( 'leap.tools.libmesh.triangle_hash', sources=[ 'leap/tools/libmesh/triangle_hash.pyx' ], libraries=['m'], # Unix-like specific include_dirs=[numpy_include_dir] ) ext_modules = [ libmesh_module, mise_module, ] setup( name='leap', version='0.0.1', ext_modules=cythonize(ext_modules), cmdclass={ 'build_ext': BuildExtension }, url='https://neuralbodies.github.io/LEAP', license='', author='<NAME>', author_email='<EMAIL>', description='' )
1.445313
1
srcT/DataStruct/PrepDeepFix.py
elishatofunmi/macer
7
12780952
<filename>srcT/DataStruct/PrepDeepFix.py import pandas as pd from srcT.Common import ConfigFile as CF def addDummyCols(cols): df = pd.read_csv(CF.fnameDeepFix_Test, encoding="ISO-8859-1") if 'id' not in df.columns: df['id'] = df['code_id'] del df['code_id'] if 'sourceText' not in df.columns: df['sourceText'] = df['code'] del df['code'] df['targetText'] = "" df['sourceLineText'] = "" df['targetLineText'] = "" df['sourceLineAbs'] = "" df['targetLineAbs'] = "" df['lineNums_Text'] = "" df.to_csv(CF.fnameDeepFix_Test, index=False) # sourceAbs targetAbs sourceLineText targetLineText sourceLineAbs targetLineAbs lineNums_Text lineNums_Abs diffText_ins diffText_del diffText_repl diffAbs_ins diffAbs_del errSet_diffs sourceErrorPrutor sourceErrorClangParse ErrSet class newErrSet if __name__=='__main__': cols = [] addDummyCols(cols)
2.96875
3
PycharmProjects/pythonexercicios/aula015/ex068.py
zmixtv1/cev-Python
0
12780953
from random import randint cont = 0 while True: valor = int(input("Digite um valor: ")) conputador = randint(0, 10) total = conputador + valor tipo = " " while tipo not in "PI": tipo = str(input("Par ou Impar [P/I]")).strip().upper()[0] print(f"você jogou {valor} e o computador {conputador}") print("Deu Par " if total % 2 == 0 else "Deu impar") if tipo == "P": if total % 2 == 0: print("Você venceu!") cont += 1 else: print("Você Perdeu!") break elif tipo == "I": if total % 2 == 1: print("Você Venceu!") cont += 1 else: print("Você Perdeu!") break print("Vamos jogar novamente...") print(f"Você venceu {cont} vezes!")
3.71875
4
2018/spacy/def.py
sematext/activate
11
12780954
<reponame>sematext/activate<gh_stars>10-100 from __future__ import unicode_literals import spacy nlp = spacy.load('en_core_web_sm') print("") print("Doc 10, title: '#bbuzz: Radu Gheorghe JSON Logging with Elasticsearch'") print("-----") doc = nlp(u"#bbuzz: Radu Gheorghe JSON Logging with Elasticsearch") for entity in doc.ents: print(entity.label_, ' | ', entity.text) print("") print("Doc 20:, title: 'How to Run Solr on Docker. And Why. - <NAME> & <NAME>, Sematext'") print("-----") doc = nlp(u"How to Run Solr on Docker. And Why. - <NAME> & <NAME>, Sematext") for entity in doc.ents: print(entity.label_, ' | ', entity.text) print("") print("Doc 37:, title: '#bbuzz 2016: <NAME> - Running High Performance And Fault Tolerant Elasticsearch'") print("-----") doc = nlp(u"#bbuzz 2016: <NAME> - Running High Performance And Fault Tolerant Elasticsearch") for entity in doc.ents: print(entity.label_, ' | ', entity.text)
2.265625
2
ship.py
camargo-advanced/blasteroidspi
0
12780955
from pygame.locals import * from blast import Blast from sound import Sound from wentity import WEntity from pygame.math import Vector2 from utils import * WIDTH = 3 # line thickness SCALE_FACTOR = 5.0 ACCELERATION = 250.0 # pixels per second DAMPING = 0.57 # some damping ANGULAR_SPEED = 180.0 # degrees per second SHIP_WIREFRAME = [ Vector2(0.0, -5.0), Vector2(3.0, 4.0), Vector2(1.5, 2.0), Vector2(-1.5, 2.0), Vector2(-3.0, 4.0) ] THRUST_WIREFRAME = [ Vector2(1.0, 2.0), Vector2(0.0, 5.0), Vector2(-1.0, 2.0) ] class Ship(WEntity): def __init__(self, galaxy): super().__init__(galaxy, "ship", GREEN, SHIP_WIREFRAME, WIDTH) # ship initial position self.position = Vector2(self.galaxy.rect.width/2, self.galaxy.rect.height/2) self.acceleration = ACCELERATION self.damping = DAMPING self.angular_speed = ANGULAR_SPEED self.size = SCALE_FACTOR self.shielded = True self.firing = False self.dying = False def update(self, time_passed, event_list): super().update(time_passed, event_list) if self.galaxy.get_entity_by_name('score').game_status != GAME_RUNNING: return self.process_events(event_list) if self.firing: # build a new blast, set its position to the ship's, # set its velocity vector to ship's orientation # and then add it to the galaxy blast = Blast(self.galaxy, Vector2(self.position), self.angle) self.galaxy.add_entity(blast) for entity in self.galaxy.get_entities_by_name('asteroid'): if not self.shielded and self.collide(entity): # if a rock hit me, I lose a life but I'm shielded for 5 sec! # I also need to be positioned at the center of screen stationary, # and in the same angle I was born. The lives must be reduced by 1 self.dying = True self.shield() pygame.time.set_timer(UNSHIELD_EVENT, 2500, 1) self.position = Vector2(self.galaxy.rect.width/2, self.galaxy.rect.height/2) self.velocity = Vector2(0.0, 0.0) self.angle = 0.0 self.galaxy.get_entity_by_name('score').update_lives(-1) def render(self, surface): super().render(surface) if self.accelerating == FORWARD: Sound().play('thrust') self.wireframe = THRUST_WIREFRAME super().render(surface) self.wireframe = SHIP_WIREFRAME if self.firing: Sound().play('fire') self.firing = False if self.dying: Sound().play('bang') self.dying = False def process_events(self, event_list): for event in event_list: if event.type == KEYDOWN: if event.key == K_LEFT or event.key == K_a: self.start_rotating(CCLOCKWISE) if event.key == K_RIGHT or event.key == K_d: self.start_rotating(CLOCKWISE) if event.key == K_UP or event.key == K_w: self.start_accelerating(FORWARD) if event.key == K_SPACE: self.fire() if event.type == KEYUP: if event.key == K_LEFT or event.key == K_a or \ event.key == K_RIGHT or event.key == K_d: self.stop_rotating() if event.key == K_UP or event.key == K_w: self.stop_accelerating() if event.type == UNSHIELD_EVENT: self.unshield() def fire(self): self.firing = True def unshield(self): self.shielded = False self.galaxy.get_entity_by_name('score').update_ship_shielded(False) def shield(self): self.shielded = True self.galaxy.get_entity_by_name('score').update_ship_shielded(True)
2.984375
3
messenger/admin.py
lucida-no/hdo-quiz-service
0
12780956
from django.contrib import admin from messenger.models import ChatSession class ChatSessionAdmin(admin.ModelAdmin): readonly_fields = ['uuid', 'user_id'] list_display = ['uuid', 'state', 'user_id'] list_filter = ['state'] admin.site.register(ChatSession, ChatSessionAdmin)
1.703125
2
src/trw/datasets/cityscapes.py
civodlu/trw
3
12780957
from typing import Optional, List import torch import torchvision import numpy as np from ..basic_typing import Datasets from ..train import SequenceArray from ..train import SamplerRandom, SamplerSequential import functools import collections import os from ..transforms import Transform from typing_extensions import Literal def image_to_torch(i): return torch.from_numpy(np.array(i).transpose((2, 0, 1))).unsqueeze(0) def segmentation_to_torch(i): return torch.from_numpy(np.array(i)).type(torch.int64).unsqueeze(0).unsqueeze(0) def load_case(batch, dataset, transform): case_ids = batch['case_id'] images = [] segmentations = [] for case_id in case_ids: image, segmentation = dataset[case_id] images.append(image_to_torch(image)) segmentations.append(segmentation_to_torch(segmentation)) data_batch = { 'case_id': case_ids, 'image': torch.cat(images), 'segmentation': torch.cat(segmentations) } if transform is not None: data_batch = transform(data_batch) return data_batch def create_cityscapes_dataset( batch_size: int = 32, root: Optional[str] = None, transform_train: Optional[List[Transform]] = None, transform_valid: Optional[List[Transform]] = None, nb_workers: int = 4, target_type: Literal['semantic'] = 'semantic') -> Datasets: """ Load the cityscapes dataset. This requires to register on their website https://www.cityscapes-dataset.com/ and manually download the dataset. The dataset is composed of 3 parts: gtCoarse, gtFine, leftImg8bit. Download each package and unzip in a folder (e.g., `cityscapes`) Args: batch_size: root: the folder containing the 3 unzipped cityscapes data `gtCoarse`, `gtFine`, `leftImg8bit` transform_train: the transform to apply on the training batches transform_valid: the transform to apply on the validation batches nb_workers: the number of workers for each split allocated to the data loading and processing target_type: the segmentation task Returns: a dict of splits. Each split is a :class:`trw.train.Sequence` """ if root is None: # first, check if we have some environment variables configured root = os.environ.get('TRW_DATA_ROOT') if root is None: # else default a standard folder root = './data' cityscapes_path = os.path.join(root, 'cityscapes') train_dataset = torchvision.datasets.cityscapes.Cityscapes(cityscapes_path, mode='fine', split='train', target_type=target_type) valid_dataset = torchvision.datasets.cityscapes.Cityscapes(cityscapes_path, mode='fine', split='val', target_type=target_type) train_sampler = SamplerRandom(batch_size=batch_size) train_sequence = SequenceArray({'case_id': np.arange(len(train_dataset))}, sampler=train_sampler) train_sequence = train_sequence.map( functools.partial(load_case, dataset=train_dataset, transform=transform_train), nb_workers=nb_workers) valid_sampler = SamplerSequential(batch_size=batch_size) valid_sequence = SequenceArray({'case_id': np.arange(len(valid_dataset))}, sampler=valid_sampler) valid_sequence = valid_sequence.map( functools.partial(load_case, dataset=valid_dataset, transform=transform_valid), nb_workers=nb_workers) dataset = collections.OrderedDict([ ('train', train_sequence), ('valid', valid_sequence) ]) return collections.OrderedDict([ ('cityscapes', dataset) ])
2.65625
3
examples/rtsp_pyqt/client.py
Adancurusul/MaixPy3
93
12780958
import socket from threading import Thread from typing import Union, Optional, List, Tuple from time import sleep from PIL import Image from io import BytesIO import re from typing import Optional class InvalidRTSPRequest(Exception): pass class RTSPPacket: RTSP_VERSION = 'RTSP/1.0' INVALID = -1 SETUP = 'SETUP' PLAY = 'PLAY' PAUSE = 'PAUSE' TEARDOWN = 'TEARDOWN' RESPONSE = 'RESPONSE' def __init__( self, request_type, video_file_path: Optional[str] = None, sequence_number: Optional[int] = None, dst_port: Optional[int] = None, session_id: Optional[str] = None): self.request_type = request_type self.video_file_path = video_file_path self.sequence_number = sequence_number self.session_id = session_id # if request_type SETUP self.rtp_dst_port = dst_port def __str__(self): return (f"RTSPPacket({self.request_type}, " f"{self.video_file_path}, " f"{self.sequence_number}, " f"{self.rtp_dst_port}, " f"{self.session_id})") @classmethod def from_response(cls, response: bytes): # only response format implemented, taken from server class: # """ # <RTSP_VERSION> 200 OK\r\n # CSeq: <SEQUENCE_NUMBER>\r\n # Session: <SESSION_ID>\r\n # """ match = re.match( r"(?P<rtsp_version>RTSP/\d+.\d+) 200 OK\r?\n" r"CSeq: (?P<sequence_number>\d+)\r?\n" r"Session: (?P<session_id>\d+)\r?\n", response.decode() ) if match is None: raise Exception(f"failed to parse RTSP response: {response}") g = match.groupdict() # not used, defaults to 1.0 # rtsp_version = g.get('rtsp_version') sequence_number = g.get('sequence_number') session_id = g.get('session_id') try: sequence_number = int(sequence_number) except (ValueError, TypeError): raise Exception(f"failed to parse sequence number: {response}") if session_id is None: raise Exception(f"failed to parse session id: {response}") return cls( request_type=RTSPPacket.RESPONSE, sequence_number=sequence_number, session_id=session_id ) @classmethod def build_response(cls, sequence_number: int, session_id: str): response = '\r\n'.join(( f"{cls.RTSP_VERSION} 200 OK", f"CSeq: {sequence_number}", f"Session: {session_id}", )) + '\r\n' return response @classmethod def from_request(cls, request: bytes): # loosely follows actual rtsp protocol, considering only SETUP, PLAY, PAUSE, and TEARDOWN # https://en.wikipedia.org/wiki/Real_Time_Streaming_Protocol match = re.match( r"(?P<request_type>\w+) rtsp://(?P<video_file_path>\S+) (?P<rtsp_version>RTSP/\d+.\d+)\r?\n" r"CSeq: (?P<sequence_number>\d+)\r?\n" r"(Range: (?P<play_range>\w+=\d+-\d+\r?\n))?" r"(Transport: .*client_port=(?P<dst_port>\d+).*\r?\n)?" # in case of SETUP request r"(Session: (?P<session_id>\d+)\r?\n)?", request.decode() ) if match is None: raise InvalidRTSPRequest(f"failed to parse request: {request}") g = match.groupdict() request_type = g.get('request_type') if request_type not in (RTSPPacket.SETUP, RTSPPacket.PLAY, RTSPPacket.PAUSE, RTSPPacket.TEARDOWN): raise InvalidRTSPRequest(f"invalid request type: {request}") video_file_path = g.get('video_file_path') # not used, defaults to `RTSPPacket.RTSP_VERSION` # rtsp_version = g.get('rtsp_version') sequence_number = g.get('sequence_number') dst_port = g.get('dst_port') session_id = g.get('session_id') if request_type == RTSPPacket.SETUP: try: dst_port = int(dst_port) except (ValueError, TypeError): raise InvalidRTSPRequest(f"failed to parse RTP port") try: sequence_number = int(sequence_number) except (ValueError, TypeError): raise InvalidRTSPRequest(f"failed to parse sequence number: {request}") return cls( request_type, video_file_path, sequence_number, dst_port, session_id ) def to_request(self) -> bytes: # loosely follows actual rtsp protocol, considering only SETUP, PLAY, PAUSE, and TEARDOWN # https://en.wikipedia.org/wiki/Real_Time_Streaming_Protocol if any((attr is None for attr in (self.request_type, self.sequence_number, self.session_id))): raise InvalidRTSPRequest('missing one attribute of: `request_type`, `sequence_number`, `session_id`') if self.request_type in (self.INVALID, self.RESPONSE): raise InvalidRTSPRequest(f"invalid request type: {self}") request_lines = [ f"{self.request_type} rtsp://{self.video_file_path} {self.RTSP_VERSION}", f"CSeq: {self.sequence_number}", ] if self.request_type == self.SETUP: if self.rtp_dst_port is None: raise InvalidRTSPRequest(f"missing RTP destination port: {self}") request_lines.append( f"Transport: RTP/UDP;client_port={self.rtp_dst_port}" ) else: request_lines.append( f"Session: {self.session_id}" ) request = '\r\n'.join(request_lines) + '\r\n' return request.encode() class InvalidPacketException(Exception): pass class RTPPacket: # default header info HEADER_SIZE = 12 # bytes VERSION = 0b10 # 2 bits -> current version 2 PADDING = 0b0 # 1 bit EXTENSION = 0b0 # 1 bit CC = 0x0 # 4 bits MARKER = 0b0 # 1 bit SSRC = 0x00000000 # 32 bits class TYPE: MJPEG = 26 def __init__( self, payload_type: int = None, sequence_number: int = None, timestamp: int = None, payload: bytes = None): self.payload = payload self.payload_type = payload_type self.sequence_number = sequence_number self.timestamp = timestamp # b0 -> v0 v1 p x c0 c1 c2 c3 zeroth_byte = (self.VERSION << 6) | (self.PADDING << 5) | (self.EXTENSION << 4) | self.CC # b1 -> m pt0 pt1 pt2 pt3 pt4 pt5 pt6 first_byte = (self.MARKER << 7) | self.payload_type # b2 -> s0 s1 s2 s3 s4 s5 s6 s7 second_byte = self.sequence_number >> 8 # b3 -> s8 s9 s10 s11 s12 s13 s14 s15 third_byte = self.sequence_number & 0xFF # b4~b7 -> timestamp fourth_to_seventh_bytes = [ (self.timestamp >> shift) & 0xFF for shift in (24, 16, 8, 0) ] # b8~b11 -> ssrc eigth_to_eleventh_bytes = [ (self.SSRC >> shift) & 0xFF for shift in (24, 16, 8, 0) ] self.header = bytes(( zeroth_byte, first_byte, second_byte, third_byte, *fourth_to_seventh_bytes, *eigth_to_eleventh_bytes, )) @classmethod def from_packet(cls, packet: bytes): if len(packet) < cls.HEADER_SIZE: raise InvalidPacketException(f"The packet {repr(packet)} is invalid") header = packet[:cls.HEADER_SIZE] payload = packet[cls.HEADER_SIZE:] # b1 -> m pt0 ... pt6 # i.e. payload type is whole byte except first bit payload_type = header[1] & 0x7F # b2 -> s0 ~ s7 # b3 -> s8 ~ s15 # i.e. sequence number is b2<<8 | b3 sequence_number = header[2] << 8 | header[3] # b4 ~ b7 -> t0 ~ t31 timestamp = 0 for i, b in enumerate(header[4:8]): timestamp = timestamp | b << (3 - i) * 8 return cls( payload_type, sequence_number, timestamp, payload ) def get_packet(self) -> bytes: return bytes((*self.header, *self.payload)) def print_header(self): # print header without SSRC for i, by in enumerate(self.header[:8]): s = ' '.join(f"{by:08b}") # break line after the third and seventh bytes print(s, end=' ' if i not in (3, 7) else '\n') class Client: DEFAULT_CHUNK_SIZE = 128 * 1024 DEFAULT_RECV_DELAY = 20 # in milliseconds DEFAULT_LOCAL_HOST = '0.0.0.0' RTP_SOFT_TIMEOUT = 5 # in milliseconds # for allowing simulated non-blocking operations # (useful for keyboard break) RTSP_SOFT_TIMEOUT = 1# in milliseconds # if it's present at the end of chunk, client assumes # it's the last chunk for current frame (end of frame) PACKET_HEADER_LENGTH = 5 def __init__( self, file_path: str, remote_host_address: str, remote_host_port: int, rtp_port: int): self._rtsp_connection: Union[None, socket.socket] = None self._rtp_socket: Union[None, socket.socket] = None self._rtp_receive_thread: Union[None, Thread] = None self._frame_buffer: List[Image.Image] = [] self._current_sequence_number = 0 self.session_id = '' self.current_frame_number = -1 self.is_rtsp_connected = False self.is_receiving_rtp = False self.file_path = file_path self.remote_host_address = remote_host_address self.remote_host_port = remote_host_port self.rtp_port = rtp_port def get_next_frame(self) -> Optional[Tuple[Image.Image, int]]: if self._frame_buffer: self.current_frame_number += 1 # skip 5 bytes which contain frame length in bytes return self._frame_buffer.pop(0), self.current_frame_number return None @staticmethod def _get_frame_from_packet(packet: RTPPacket) -> Image.Image: # the payload is already the jpeg raw = packet.payload frame = Image.open(BytesIO(raw)) return frame def _recv_rtp_packet(self, size=DEFAULT_CHUNK_SIZE) -> RTPPacket: recv = bytes() print('Waiting RTP packet...') while True: try: recv += self._rtp_socket.recv(size) print('packet', len(recv)) if recv.endswith(b'\xff\xd9'): # VideoStream.JPEG_EOF = b'\xff\xd9' break except socket.timeout: continue except Exception as e: print(e) # print(f"Received from server: {repr(recv)}") return RTPPacket.from_packet(recv) def _start_rtp_receive_thread(self): self._rtp_receive_thread = Thread(target=self._handle_video_receive) self._rtp_receive_thread.setDaemon(True) self._rtp_receive_thread.start() def _handle_video_receive(self): self._rtp_socket = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) self._rtp_socket.bind((self.DEFAULT_LOCAL_HOST, self.rtp_port)) self._rtp_socket.settimeout(self.RTP_SOFT_TIMEOUT / 1000.) while True: if not self.is_receiving_rtp: sleep(self.RTP_SOFT_TIMEOUT/1000.) # diminish cpu hogging continue packet = self._recv_rtp_packet() frame = self._get_frame_from_packet(packet) self._frame_buffer.append(frame) def establish_rtsp_connection(self): if self.is_rtsp_connected: print('RTSP is already connected.') return print(f"Connecting to {self.remote_host_address}:{self.remote_host_port}...") self._rtsp_connection = socket.socket(socket.AF_INET, socket.SOCK_STREAM) self._rtsp_connection.connect((self.remote_host_address, self.remote_host_port)) self._rtsp_connection.settimeout(self.RTSP_SOFT_TIMEOUT / 1000.) self.is_rtsp_connected = True def close_rtsp_connection(self): if not self.is_rtsp_connected: print('RTSP is not connected.') return self._rtsp_connection.close() self.is_rtsp_connected = False if self._rtp_socket: self._rtp_socket.close() def _send_request(self, request_type=RTSPPacket.INVALID) -> RTSPPacket: if not self.is_rtsp_connected: raise Exception('rtsp connection not established. run `setup_rtsp_connection()`') request = RTSPPacket( request_type, self.file_path, self._current_sequence_number, self.rtp_port, self.session_id ).to_request() print(f"Sending request: {repr(request)}") self._rtsp_connection.send(request) self._current_sequence_number += 1 return self._get_response() def send_setup_request(self) -> RTSPPacket: response = self._send_request(RTSPPacket.SETUP) self._start_rtp_receive_thread() self.session_id = response.session_id return response def send_play_request(self) -> RTSPPacket: response = self._send_request(RTSPPacket.PLAY) self.is_receiving_rtp = True return response def send_pause_request(self) -> RTSPPacket: response = self._send_request(RTSPPacket.PAUSE) self.is_receiving_rtp = False return response def send_teardown_request(self) -> RTSPPacket: response = self._send_request(RTSPPacket.TEARDOWN) self.is_receiving_rtp = False self.is_rtsp_connected = False return response def _get_response(self, size=DEFAULT_CHUNK_SIZE) -> RTSPPacket: rcv = None while True: try: rcv = self._rtsp_connection.recv(size) break except socket.timeout: continue # print(f"Received from server: {repr(rcv)}") response = RTSPPacket.from_response(rcv) return response
2.6875
3
igtagger/atomic_sentences.py
institutional-grammar-pl/ig-tagger
0
12780959
import re import spacy spacy_model_name = 'en_core_web_lg' if not spacy.util.is_package(spacy_model_name): spacy.cli.download(spacy_model_name) nlp = spacy.load(spacy_model_name) def filter_sentence(sentence): def sentence_length(s, min_len=8): if len(s) < min_len: return False else: return True filters = [sentence_length] return all([filter_(sentence) for filter_ in filters]) def gen_atomic_statements(sentence): """ obsługuje sytuację (1) ..., (2) ... :param sentence: :return: """ rex = r"\([abcdefghi123456789]\)([A-z \n,–:;-]+(\(?(?=[A-z]{2,})[A-z]+\)?[A-z \n,-–;]+)+)" splits = re.split(rex, sentence) main_sentence = splits[0] if splits is not None else None subsentences = re.findall(rex, sentence) atomic_statements = [] if main_sentence and subsentences: clean_main_sentence = re.sub(r'\([abcdefgh123456789]\)|\n', ' ', main_sentence).strip() for subsentence in subsentences: clean_subsentence = re.sub(r'\([abcdefgh123456789]\)|\n', ' ', subsentence[0]).strip() atomic_statements.append(clean_main_sentence + ' ' + clean_subsentence + '.') return atomic_statements else: return sentence
2.71875
3
lib/python/treadmill/tests/syscall/__init__.py
vrautela/treadmill
133
12780960
<reponame>vrautela/treadmill """Tests for treadmill's linux direct system call interface."""
0.886719
1
halotools/utils/__init__.py
aphearin/halotools
0
12780961
<reponame>aphearin/halotools r""" This module contains helper functions used throughout the Halotools package. """ from __future__ import division, print_function, absolute_import, unicode_literals from .spherical_geometry import * from .array_utils import * from .io_utils import * from .table_utils import * from .value_added_halo_table_functions import * from .group_member_generator import group_member_generator from .crossmatch import * from .array_indexing_manipulations import * from .inverse_transformation_sampling import * from .distribution_matching import * from .probabilistic_binning import fuzzy_digitize from .conditional_percentile import sliding_conditional_percentile from .vector_utilities import *
1.109375
1
section2/src/run_ml_pipeline.py
felixglush/HippocampalVolumeSegmentation
0
12780962
""" This file contains code that will kick off training and testing processes """ import os, sys import argparse import json import numpy as np from experiments.UNetExperiment import UNetExperiment from data_prep.HippocampusDatasetLoader import LoadHippocampusData from torch.utils.data import random_split class Config: """ Holds configuration parameters """ def __init__(self): self.name = "Basic_unet" self.root_dir = r"data/" self.n_epochs = 10 self.learning_rate = 0.0002 self.batch_size = 8 self.patch_size = 64 self.test_results_dir = "out/results" self.model_name = "" # the command line provided model name to save network weights in self.weights_name = "" # the command line provided weights file name to load network weights from self.test = False def set_model_name(self, m): self.model_name = m def set_weights_name(self, w): self.weights_name = w def set_test(self, t): self.test = t if __name__ == "__main__": # Get configuration # TASK: Fill in parameters of the Config class and specify directory where the data is stored and # directory where results will go c = Config() parser = argparse.ArgumentParser() parser.add_argument("--weights", "-w", help="file name for saved model weights", action="store") parser.add_argument("--modelname", "-m", help="model weights filename used for saving this model", action="store") parser.add_argument("--testonly", "-t", help="test only, no training", action="store_true") args = parser.parse_args() if args.weights: print("Will load model weights from", args.weights) c.set_weights_name(args.weights) else: print("No pretrained model weights given. Will train a new model.") if args.modelname: print("Will store model weights in", args.modelname) c.set_model_name(args.modelname) if args.testonly: # need to also provide a weights filename if we're only testing print("Testing mode.") c.set_test(True) if not args.weights: print("Please also provide a weights filename through -w") sys.exit() # Load data print("Loading data...") # TASK: LoadHippocampusData is not complete. Go to the implementation and complete it. data = LoadHippocampusData(c.root_dir + "TrainingSet/", y_shape = c.patch_size, z_shape = c.patch_size) # Create test-train-val split # In a real world scenario you would probably do multiple splits for # multi-fold training to improve your model quality data_len = len(data) keys = range(data_len) # Here, random permutation of keys array would be useful in case if we do something like # a k-fold training and combining the results. # TASK: create three keys in the dictionary: "train", "val" and "test". In each key, store # the array with indices of training volumes to be used for training, validation # and testing respectively. train_proportion = 0.7 val_proportion = 0.2 test_proportion = 0.1 splits = [int(np.floor(train_proportion * data_len)), int(np.floor(val_proportion * data_len)), int(np.floor(test_proportion * data_len))] train, val, test = random_split(keys, splits) split = {"train": train, "val": val, "test": test} # Set up and run experiment # TASK: Class UNetExperiment has missing pieces. Go to the file and fill them in exp = UNetExperiment(c, split, data) # You could free up memory by deleting the dataset # as it has been copied into loaders del data if not args.testonly: # run training and validation exp.run() # prep and run testing # TASK: Test method is not complete. Go to the method and complete it results_json = exp.run_test() results_json["config"] = vars(c) with open(os.path.join(exp.out_dir, "results.json"), 'w') as out_file: json.dump(results_json, out_file, indent=2, separators=(',', ': '))
2.640625
3
chrome/test/install_test/theme_updater.py
nagineni/chromium-crosswalk
2
12780963
<filename>chrome/test/install_test/theme_updater.py # Copyright (c) 2012 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Update tests for themes.""" import os import sys _DIRECTORY = os.path.dirname(os.path.abspath(__file__)) sys.path.append(os.path.join(_DIRECTORY, os.path.pardir, os.path.pardir, os.path.pardir, 'build', 'util', 'lib')) from common import util import chrome_options import install_test class ThemeUpdater(install_test.InstallTest): """Theme update tests.""" _DIRECTORY = os.path.dirname(os.path.abspath(__file__)) _EXTENSIONS_DIR = os.path.join(_DIRECTORY, os.path.pardir, 'data', 'extensions') camo_theme = os.path.join(_EXTENSIONS_DIR, 'theme.crx') camo_img = ('chrome://theme/IDR_THEME_NTP_BACKGROUND?' 'iamefpfkojoapidjnbafmgkgncegbkad') def setUp(self): super(ThemeUpdater, self).setUp() self._user_data_dir = util.MakeTempDir() def _CheckThemeApplied(self): """Loads the New Tab Page and asserts that the theme is applied.""" self._driver.get('chrome://newtab') html = self._driver.find_element_by_xpath('html') html_background = html.value_of_css_property('background-image') self.assertTrue(self.camo_img in html_background, msg='Did not find expected theme background-image') def _StartChromeProfile(self, incognito=False): """Start Chrome with a temp profile. Args: incognito: Boolean flag for starting Chrome in incognito. """ options = chrome_options.ChromeOptions() options.SetUserDataDir(self._user_data_dir) if incognito: options.AddSwitch('incognito') self.StartChrome(options.GetCapabilities()) def _StartChromeProfileExtension(self, extension): """Start Chrome with a temp profile and with specified extension. Args: extension: Paths to extension to be installed. """ options = chrome_options.ChromeOptions() options.AddExtension(extension) options.SetUserDataDir(self._user_data_dir) self.StartChrome(options.GetCapabilities()) def testInstallTheme(self): """Install a theme and check it is still applied after update.""" self.Install(self.GetUpdateBuilds()[0]) self._StartChromeProfileExtension(self.camo_theme) self._CheckThemeApplied() # Update and relaunch without extension. self.Install(self.GetUpdateBuilds()[1]) self._StartChromeProfile() self._CheckThemeApplied() def testInstallThemeIncognito(self): """Install a theme and check it still applies to incognito after update.""" self.Install(self.GetUpdateBuilds()[0]) self._StartChromeProfileExtension(self.camo_theme) self._CheckThemeApplied() # Relaunch without extension in incognito. self._driver.quit() self._StartChromeProfile(incognito=True) self._CheckThemeApplied() # Update and relaunch without extension in incognito. self.Install(self.GetUpdateBuilds()[1]) self._StartChromeProfile(incognito=True) self._CheckThemeApplied()
2.171875
2
manager.py
ostapkharysh/Stock-return-predictability
2
12780964
from sqlalchemy import create_engine from sqlalchemy.orm import sessionmaker, Session from sqlalchemy.exc import IntegrityError, InvalidRequestError from db_management.DB import Base, Company, News, db_link def add_company(company): engine = create_engine(db_link) # pool_size=20, max_overflow=0 # Bind the engine to the metadata of the Base class so that the # declaratives can be accessed through a DBSession instance Base.metadata.bind = engine DBSession = sessionmaker(bind=engine) # A DBSession() instance establishes all conversations with the database # and represents a "staging zone" for all the objects loaded into the # database session object. Any change made against the objects in the # session won't be persisted into the database until you call # session.commit(). If you're not happy about the changes, you can # revert all of them back to the last commit by calling # session.rollback() session = DBSession() data = session.query(Company).all() print(data) if company in [el.name for el in data]: return "There is already a Table with such name: {}".format(company) # Insert a company in the Comapny table DBcompany = Company(name=company) session.add(DBcompany) try: session.commit() except: session.rollback() finally: session.close() return "The new table {} is created.".format(company) def add_news(info_dict): # Insert an news in the address table engine = create_engine(db_link) engine.pool_timeout = 60 Base.metadata.bind = engine DBSession = sessionmaker(bind=engine) session = DBSession() company = info_dict['comp_index'] cur_company = session.query(Company).filter_by(name=company).first() if not cur_company: print("Not found. Creating company: {}".format(company)) cur_company = Company(name=company) try: key = info_dict.keys() # WITH SOURCECOLLECTIONIDENTIFIER AND TITLE #new_news = News(DATE=str(info_dict[key[0]]), SOURCECOLLECTIONIDENTIFIER= int(info_dict[key[1]]), SOURCECOMMONNAME=info_dict[key[2]], DOCUMENTIDENTIFIER=info_dict[key[3]], LOCATIONS=info_dict[key[4]], # ORGANIZATIONS=info_dict[key[5]], TONE=info_dict[key[6]], GCAM=info_dict[key[7]], ALLNAMES=info_dict[key[8]], TITLE=info_dict[key[9]], company_id=info_dict[key[10]]) #WITHOUT SOURCECOLLECTIONIDENTIFIER AND TITLE new_news = News(DATE=str(info_dict[key[0]]), SOURCECOMMONNAME=info_dict[key[2]], DOCUMENTIDENTIFIER=info_dict[key[3]], #LOCATIONS=info_dict[key[4]], #TITLE=info_dict[key[9]], ORGANIZATIONS=info_dict[key[5]], TONE=info_dict[key[6]], GCAM=info_dict[key[7]], ALLNAMES=info_dict[key[8]], company_id=cur_company.id) session.add(new_news) session.commit() except IntegrityError: session.rollback() return 'The link provided seems to exist in DB: {}'.format(info_dict[key[3]]) except InvalidRequestError: session.rollback() return 'You are requesting access to the non-existing source' try: #print("COMMITING...") session.commit() except: session.rollback() finally: session.close() #print("The news has been successfully added")
2.921875
3
tests/test_deck.py
House-Rulez/black_jack
0
12780965
<filename>tests/test_deck.py<gh_stars>0 # https://stackoverflow.com/questions/10253826/path-issue-with-pytest-importerror-no-module-named-yadayadayada import sys, os myPath = os.path.dirname(os.path.abspath(__file__)) sys.path.insert(0, myPath + '/../scripts/deck/') sys.path.insert(1, myPath + '/../scripts/dealer/') sys.path.insert(2, myPath + '/../scripts/player/') import pytest ########################################### ## Import the classes from the card and player file ## ########################################### from deck import Deck from player import User, Dealer from card import Card ################################################# ## Test the Imports to see if they are working ## ################################################# @pytest.fixture() def deck(): return Deck() @pytest.fixture() def user(): return User() def test_import(): assert deck def test_deck_size(deck): assert deck.deck_size() == 104 def test_cards_remaining(deck, user): for _ in range(0, 52): deck.deal() expected = 52 actual = deck.cards_remaining() assert expected == actual def test_cards_remaining_two(deck, user): for _ in range(0, 103): deck.deal() expected = 1 actual = deck.cards_remaining() assert expected == actual
2.84375
3
userbot/modules/degi_nehi.py
PratikGoswamiPM/OUB-Remix
1
12780966
#"""Fun pligon...for HardcoreUserbot #\nCode by @Hack12R #type `.degi` and `.nehi` to see the fun. #""" import random, re #from uniborg.util import admin_cmd import asyncio from telethon import events from userbot.events import register from asyncio import sleep import time from userbot import CMD_HELP @register(outgoing=True, pattern="^.degi$") async def _(event): if not event.text[0].isalpha() and event.text[0] not in ("/", "#", "@", "!"): await event.edit("wO") await asyncio.sleep(0.7) await event.edit("dEgI") await asyncio.sleep(1) await event.edit("tUm") await asyncio.sleep(0.8) await event.edit("EkBaR") await asyncio.sleep(0.9) await event.edit("mAnG") await asyncio.sleep(1) await event.edit("kAr") await asyncio.sleep(0.8) await event.edit("ToH") await asyncio.sleep(0.7) await event.edit("dEkHo") await asyncio.sleep(1) await event.edit("`wO dEgI tUm EkBaR mAnG kAr ToH dEkHo`") @register(outgoing=True, pattern="^.nehi$") async def _(event): if not event.text[0].isalpha() and event.text[0] not in ("/", "#", "@", "!"): await event.edit("wO") await asyncio.sleep(0.7) await event.edit("pAkKa") await asyncio.sleep(1) await event.edit("DeGi") await asyncio.sleep(0.8) await event.edit("Tu") await asyncio.sleep(0.9) await event.edit("MaNg") await asyncio.sleep(1) await event.edit("KaR") await asyncio.sleep(0.8) await event.edit("tOh") await asyncio.sleep(0.7) await event.edit("Dekh") await asyncio.sleep(1) await event.edit("`wO pAkKa DeGi Tu MaNg KaR tOh DeKh`") CMD_HELP.update({ "degi": ".degi or .nehi\ \nUsage: Sabka Katega." })
2.234375
2
app/telegram/commands/debug.py
unimarijo/vkmessages
0
12780967
# -*- coding: utf-8 -*- from app import logging from app import config as config import logging def debug(client, message): try: client.send_message( message.from_user.id, "Ниже находится информация, которая может оказаться полезной." "\n\n**Информация о приложении:** \n`Version: {0}`\n`Commit: {1}`\n`Developer Mode: {2}`" "\n\n**Информация о пользователе:** \n`User ID: {3}`\n`Message ID: {4}`\n`Language Code: {5}`".format( config.VERSION, config.COMMIT, config.DEVELOPER_MODE, message.from_user.id, message.message_id, message.from_user.language_code)) except Exception as e: try: client.send_message( message.from_user.id, "❗ Произошла непредвиденная ошибка при выполнении метода. Сообщите об этом администратору для более " "быстрого ее исправления.") except: pass logging.error("Произошла ошибка при попытке выполнения метода.", exc_info=True) return e
2.171875
2
src/model_params.py
madhu121/Image-Driven-Machine-Learning-Approach-for-Microstructure-Classification-and-Segmentation-Ti-6Al-4V
0
12780968
<reponame>madhu121/Image-Driven-Machine-Learning-Approach-for-Microstructure-Classification-and-Segmentation-Ti-6Al-4V width=200 height=200 total_size = 1000 train_size = 800 validation_size = 100 test_size = total_size - train_size - validation_size
1.648438
2
tests/test_k8sobject.py
projectsyn/commodore
39
12780969
import pytest from commodore import k8sobject _test_objs = [ { "apiVersion": "v1", "kind": "ServiceAccount", "metadata": { "name": "test", "namespace": "test", }, }, { "apiVersion": "v1", "kind": "ServiceAccount", "metadata": { "name": "test-sa-2", "namespace": "test", }, }, { "apiVersion": "v1", "kind": "Pod", "metadata": { "name": "test", "namespace": "test", "labels": { "name": "test", }, }, "spec": { "image": "image", "command": "pause", }, }, { "apiVersion": "rbac.authorization.k8s.io/v1", "kind": "Role", "metadata": { "name": "test-role", "namespace": "test", }, }, { "apiVersion": "rbac.authorization.k8s.io/v1", "kind": "Role", "metadata": { "name": "test-role", "namespace": "test-2", }, }, { "apiVersion": "rbac.authorization.k8s.io/v1", "kind": "ClusterRole", "metadata": { "name": "test-cr", }, }, { "apiVersion": "rbac.authorization.k8s.io/v1", "kind": "ClusterRole", "metadata": { "name": "test-cr-2", }, }, { "test": "testing", }, ] @pytest.mark.parametrize( "k8sdict,expected", zip( [None] + _test_objs, [ { "kind": "", "name": "", "namespace": "", }, { "kind": "ServiceAccount", "name": "test", "namespace": "test", }, { "kind": "ServiceAccount", "name": "test-sa-2", "namespace": "test", }, { "kind": "Pod", "name": "test", "namespace": "test", }, { "kind": "Role", "name": "test-role", "namespace": "test", "spec": { "test": "testing", }, }, { "kind": "Role", "name": "test-role", "namespace": "test-2", "spec": { "test": "testing2", }, }, { "kind": "ClusterRole", "namespace": "", "name": "test-cr", }, { "kind": "ClusterRole", "namespace": "", "name": "test-cr-2", }, { "name": "", "namespace": "", "kind": "", }, ], ), ) def test_k8sobject_constructor(k8sdict, expected): o = k8sobject.K8sObject(k8sdict) assert expected["kind"] == o._kind assert expected["name"] == o._name assert expected["namespace"] == o._namespace _cluster_scoped_obj = k8sobject.K8sObject( { "apiVersion": "v1", "kind": "Namespace", "metadata": { "name": "test", "labels": { "name": "test", }, }, } ) _ns_scoped_obj = k8sobject.K8sObject( { "apiVersion": "v1", "kind": "ServiceAccount", "metadata": { "name": "test", "labels": { "name": "test", }, }, } ) @pytest.mark.parametrize( "k8sdict,to_cluster_scoped,to_ns_scoped", zip( _test_objs, [False, False, False, False, False, True, True, True], [False, False, True, True, True, True, True, True], ), ) def test_k8sobject_less_than(k8sdict, to_cluster_scoped, to_ns_scoped): o = k8sobject.K8sObject(k8sdict) assert (o < _cluster_scoped_obj) == to_cluster_scoped assert (o < _ns_scoped_obj) == to_ns_scoped assert (o > _cluster_scoped_obj) == (not to_cluster_scoped) assert (o > _ns_scoped_obj) == (not to_ns_scoped) @pytest.mark.parametrize("k8sdict_a", _test_objs) @pytest.mark.parametrize("k8sdict_b", _test_objs) def test_k8sobject_equal(k8sdict_a, k8sdict_b): a = k8sobject.K8sObject(k8sdict_a) b = k8sobject.K8sObject(k8sdict_b) expect = False if ( k8sdict_a.get("kind", "") == k8sdict_b.get("kind", "") and k8sdict_a.get("metadata", {}).get("namespace", "") == k8sdict_b.get("metadata", {}).get("namespace", "") and k8sdict_a.get("metadata", {}).get("name", "") == k8sdict_b.get("metadata", {}).get("name", "") ): expect = True assert (a == b) == expect
1.953125
2
python/helpers/profiler/prof_util.py
teddywest32/intellij-community
0
12780970
__author__ = 'traff' import threading import os import sys import tempfile from _prof_imports import Stats, FuncStat, Function try: execfile=execfile #Not in Py3k except NameError: #We must redefine it in Py3k if it's not already there def execfile(file, glob=None, loc=None): if glob is None: import sys glob = sys._getframe().f_back.f_globals if loc is None: loc = glob # It seems that the best way is using tokenize.open(): http://code.activestate.com/lists/python-dev/131251/ import tokenize stream = tokenize.open(file) # @UndefinedVariable try: contents = stream.read() finally: stream.close() #execute the script (note: it's important to compile first to have the filename set in debug mode) exec(compile(contents+"\n", file, 'exec'), glob, loc) def save_main_module(file, module_name): sys.modules[module_name] = sys.modules['__main__'] sys.modules[module_name].__name__ = module_name from imp import new_module m = new_module('__main__') sys.modules['__main__'] = m if hasattr(sys.modules[module_name], '__loader__'): setattr(m, '__loader__', getattr(sys.modules[module_name], '__loader__')) m.__file__ = file return m class ProfDaemonThread(threading.Thread): def __init__(self): super(ProfDaemonThread, self).__init__() self.setDaemon(True) self.killReceived = False def run(self): self.OnRun() def OnRun(self): pass def generate_snapshot_filepath(basepath, local_temp_dir=False, extension='.pstat'): basepath = get_snapshot_basepath(basepath, local_temp_dir) n = 0 path = basepath + extension while os.path.exists(path): n+=1 path = basepath + (str(n) if n>0 else '') + extension return path def get_snapshot_basepath(basepath, local_temp_dir): if basepath is None: basepath = 'snapshot' if local_temp_dir: basepath = os.path.join(tempfile.gettempdir(), os.path.basename(basepath.replace('\\', '/'))) return basepath def stats_to_response(stats, m): if stats is None: return ystats = Stats() ystats.func_stats = [] m.ystats = ystats for func, stat in stats.items(): path, line, func_name = func cc, nc, tt, ct, callers = stat func = Function() func_stat = FuncStat() func.func_stat = func_stat ystats.func_stats.append(func) func_stat.file = path func_stat.line = line func_stat.func_name = func_name func_stat.calls_count = nc func_stat.total_time = ct func_stat.own_time = tt func.callers = [] for f, s in callers.items(): caller_stat = FuncStat() func.callers.append(caller_stat) path, line, func_name = f cc, nc, tt, ct = s caller_stat.file = path caller_stat.line = line caller_stat.func_name = func_name caller_stat.calls_count = cc caller_stat.total_time = ct caller_stat.own_time = tt # m.validate()
2.015625
2
migrations/20211128_01_Mn7Ng-create-holdem-game-record-table.py
zw-g/Funny-Nation
126
12780971
""" Create holdem game record table """ from yoyo import step __depends__ = {'20211109_01_xKblp-change-comments-on-black-jack-record'} steps = [ step("CREATE TABLE `holdemGameRecord` ( `userID` BIGINT NOT NULL , `moneyInvested` BIGINT NOT NULL , `status` INT NOT NULL COMMENT '0 represent in progress; 1 represent lose or fold; 2 represent win;' , `tableID` BIGINT NOT NULL , `time` TIMESTAMP NOT NULL , `tableUUID` VARCHAR(64) NOT NULL ) ENGINE = InnoDB;") ]
1.828125
2
django/contrib/gis/geos/io.py
huicheese/Django-test3
2
12780972
""" Module that holds classes for performing I/O operations on GEOS geometry objects. Specifically, this has Python implementations of WKB/WKT reader and writer classes. """ from ctypes import byref, c_size_t from django.contrib.gis.geos.base import GEOSBase from django.contrib.gis.geos.error import GEOSException from django.contrib.gis.geos.geometry import GEOSGeometry from django.contrib.gis.geos.libgeos import GEOM_PTR from django.contrib.gis.geos.prototypes import io as capi class IOBase(GEOSBase): "Base class for GEOS I/O objects." def __init__(self): # Getting the pointer with the constructor. self.ptr = self.constructor() def __del__(self): # Cleaning up with the appropriate destructor. if self._ptr: self.destructor(self._ptr) ### WKT Reading and Writing objects ### # Non-public class for internal use because its `read` method returns # _pointers_ instead of a GEOSGeometry object. class _WKTReader(IOBase): constructor = capi.wkt_reader_create destructor = capi.wkt_reader_destroy ptr_type = capi.WKT_READ_PTR def read(self, wkt): if not isinstance(wkt, basestring): raise TypeError return capi.wkt_reader_read(self.ptr, wkt) class WKTReader(_WKTReader): def read(self, wkt): "Returns a GEOSGeometry for the given WKT string." return GEOSGeometry(super(WKTReader, self).read(wkt)) class WKTWriter(IOBase): constructor = capi.wkt_writer_create destructor = capi.wkt_writer_destroy ptr_type = capi.WKT_WRITE_PTR def write(self, geom): "Returns the WKT representation of the given geometry." return capi.wkt_writer_write(self.ptr, geom.ptr) ### WKB Reading and Writing objects ### # Non-public class for the same reason as _WKTReader above. class _WKBReader(IOBase): constructor = capi.wkb_reader_create destructor = capi.wkb_reader_destroy ptr_type = capi.WKB_READ_PTR def read(self, wkb): "Returns a _pointer_ to C GEOS Geometry object from the given WKB." if isinstance(wkb, buffer): wkb_s = str(wkb) return capi.wkb_reader_read(self.ptr, wkb_s, len(wkb_s)) elif isinstance(wkb, basestring): return capi.wkb_reader_read_hex(self.ptr, wkb, len(wkb)) else: raise TypeError class WKBReader(_WKBReader): def read(self, wkb): "Returns a GEOSGeometry for the given WKB buffer." return GEOSGeometry(super(WKBReader, self).read(wkb)) class WKBWriter(IOBase): constructor = capi.wkb_writer_create destructor = capi.wkb_writer_destroy ptr_type = capi.WKB_WRITE_PTR def write(self, geom): "Returns the WKB representation of the given geometry." return buffer(capi.wkb_writer_write(self.ptr, geom.ptr, byref(c_size_t()))) def write_hex(self, geom): "Returns the HEXEWKB representation of the given geometry." return capi.wkb_writer_write_hex(self.ptr, geom.ptr, byref(c_size_t())) ### WKBWriter Properties ### # Property for getting/setting the byteorder. def _get_byteorder(self): return capi.wkb_writer_get_byteorder(self.ptr) def _set_byteorder(self, order): if not order in (0, 1): raise ValueError('Byte order parameter must be 0 (Big Endian) or 1 (Little Endian).') capi.wkb_writer_set_byteorder(self.ptr, order) byteorder = property(_get_byteorder, _set_byteorder) # Property for getting/setting the output dimension. def _get_outdim(self): return capi.wkb_writer_get_outdim(self.ptr) def _set_outdim(self, new_dim): if not new_dim in (2, 3): raise ValueError('WKB output dimension must be 2 or 3') capi.wkb_writer_set_outdim(self.ptr, new_dim) outdim = property(_get_outdim, _set_outdim) # Property for getting/setting the include srid flag. def _get_include_srid(self): return bool(ord(capi.wkb_writer_get_include_srid(self.ptr))) def _set_include_srid(self, include): if bool(include): flag = chr(1) else: flag = chr(0) capi.wkb_writer_set_include_srid(self.ptr, flag) srid = property(_get_include_srid, _set_include_srid) # Instances of the WKT and WKB reader/writer objects. wkt_r = _WKTReader() wkt_w = WKTWriter() wkb_r = _WKBReader() wkb_w = WKBWriter()
2.234375
2
admin/urls.py
asifhaider/BookKeep
1
12780973
from django.urls import path from admin import views urlpatterns = [ path('manage/', views.AdminPanel.as_view(), name = 'admin-panel'), path('manage/customer-list/', views.AdminCustomerListView.as_view(), name = 'admin-customer-list-view'), path('manage/book-list/', views.AdminBookListView.as_view(), name = 'admin-book-list-view'), path('manage/author-list/', views.AdminAuthorListView.as_view(), name = 'admin-author-list-view'), path('manage/publisher-list/', views.AdminPublisherListView.as_view(), name = 'admin-publisher-list-view'), path('manage/order-log/', views.AdminOrderLogView.as_view(), name = 'admin-order-log-view'), path('manage/offer-list/', views.AdminOfferListView.as_view(), name = 'admin-offer-list-view'), path('manage/borrows/', views.AdminBorrowsView.as_view(), name = 'admin-borrows-view'), path('manage/plan-list/', views.AdminPlanListView.as_view(), name = 'admin-plan-list-view'), # path('test/', views.Test.as_view(), name = 'test'), ]
1.84375
2
cart_pole/cart_pole.py
jeongyoonlee/gym_example
0
12780974
<reponame>jeongyoonlee/gym_example<gh_stars>0 import gym from time import sleep from const import ENV_NAME with gym.make(ENV_NAME) as env: action_space = env.action_space def run(pi, n_episode=1): with gym.make(ENV_NAME) as env: for i_episode in range(n_episode): state = env.reset() done = False t = 0 while not done: env.render() action = pi.next(state) print(state, action) state, reward, done, info = env.step(action) if done: print('Episode finished after {} steps'.format(t + 1)) break t += 1 sleep(1)
3.171875
3
src/test.py
tclements/CS249FINAL
0
12780975
<reponame>tclements/CS249FINAL<gh_stars>0 import glob, os import tensorflow as tf import tensorflow.keras as keras import numpy as np import matplotlib.pyplot as plt import sklearn.metrics def test2input(A,input_dir): 'Convert test data to cc/header file' # files to write cc_file = os.path.join(input_dir,"input_data.cc") h_file = os.path.join(input_dir,"input_data.h") # create header file first h_out = "#ifndef EDE_INPUT_DATA_H_\n" \ "#define EDE_INPUT_DATA_H_\n\n" \ "extern const float input_data[];\n" \ "#endif\n" open(h_file, "w").write(h_out) # write data to cc file A = A.flatten(order="F") cc_out = '#include "input_data.h"\n' \ "static const int input_data_len = 240;\n" \ "static const float input_data[240] = {\n" arrstring = "" for ii in range(A.size-1): arrstring += str(A[ii]) arrstring += ", " arrstring += str(A[-1]) arrstring += "};\n" cc_out += arrstring open(cc_file, "w").write(cc_out) return None def decision_threshold(Y,threshold): Ycop = Y.copy() Ycop[np.where(Ycop[:,0:2] < threshold)] = 0 return np.argmax(Ycop,axis=-1) if __name__ == "__main__": # load test data testdata = np.load("/home/timclements/CS249FINAL/data/test.npz") Xtest = testdata["Xtest"] Ytest = testdata["Ytest"] truth = np.argmax(Ytest,axis=-1) # check that models work on test data modelname = "/home/timclements/CS249FINAL/CNN/models/model_5_4_16.tflite" model = tf.lite.Interpreter(model_name) model.allocate_tensors() model_input_index = model.get_input_details()[0]["index"] model_output_index = model.get_output_details()[0]["index"] x_value_tensor = tf.convert_to_tensor(Xtest[0:1,:,:,:], dtype=np.float32) model.set_tensor(model_input_index, x_value_tensor) model.invoke() model.get_tensor(model_output_index)[0] # convert some test data to data that can be read on the device input_dir = "/home/timclements/CS249FINAL/src/" test2input(Xtest[0:1],input_dir) # test precision, recall and F1 score on range on thresholds CLASSES = ["P-wave","S-wave","Noise"] preds = model.predict(Xtest) thresholds = np.linspace(0.4,0.99,60) reports = {} for ii in range(len(thresholds)): threshpred = decision_threshold(preds,thresholds[ii]) reports[ii] = sklearn.metrics.classification_report(truth,threshpred,target_names=CLASSES,output_dict=True) # extract accuracies accuracy = np.zeros(len(thresholds)) Precall = np.zeros(len(thresholds)) Pprecision = np.zeros(len(thresholds)) Srecall = np.zeros(len(thresholds)) Sprecision = np.zeros(len(thresholds)) Nrecall = np.zeros(len(thresholds)) Nprecision = np.zeros(len(thresholds)) for ii in range(len(thresholds)): accuracy[ii] = reports[ii]["accuracy"] Precall[ii] = reports[ii]["P-wave"]["precision"] Pprecision[ii] = reports[ii]["P-wave"]["recall"] Srecall[ii] = reports[ii]["S-wave"]["precision"] Sprecision[ii] = reports[ii]["S-wave"]["recall"] Nrecall[ii] = reports[ii]["Noise"]["precision"] Nprecision[ii] = reports[ii]["Noise"]["recall"] # plot precision vs recall fig,ax = plt.subplots(figsize=(6,6)) im = ax.scatter(Precall ,Pprecision,100,c=thresholds,alpha=0.85,label="P-wave",edgecolor="k",cmap=plt.cm.inferno) ax.scatter(Srecall ,Sprecision,100,c=thresholds,alpha=0.85,label="S-wave",edgecolor="k",marker="^",cmap=plt.cm.inferno) ax.axhline([0.25],linestyle="--",c="grey",alpha=0.85,label="No skill") ax.legend(loc="center left",fontsize=14,borderpad = 1.) ax.set_xlabel("Recall",fontsize=18) ax.set_ylabel("Precision",fontsize=18) ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.set_ylim([0.18, 0.97]) ax.spines['left'].set_bounds(0.2, 0.97) ax.tick_params(direction='in') ax.spines['bottom'].set_bounds(0.86,1.) ax.tick_params(labelsize=12) c_ax = inset_axes(ax, width="50%", # width = 50% of parent_bbox width height="5%", # height : 5% loc='lower left', borderpad=7.5) cb = fig.colorbar(im, cax=c_ax, orientation="horizontal") cb.ax.xaxis.set_ticks_position("top") cb.ax.set_xlabel('Detection Threshold',fontsize=14) cb.ax.tick_params(labelsize=12) plt.tight_layout() plt.savefig("/home/timclements/CS249FINAL/FIGURES/precision-vs-recall.pdf") plt.close() # plot confusion matrix ind = np.argmax(accuracy) maxpred = decision_threshold(preds,thresholds[ind]) confusion = tf.math.confusion_matrix(truth,maxpred) plt.figure(figsize=(6, 6)) ax = sns.heatmap(np.round(confusion / np.sum(confusion,axis=0),decimals=2), xticklabels=CLASSES, yticklabels=CLASSES, annot=True,cmap="Blues",linewidths=.5,cbar=False) ax.set_xticklabels(ax.get_xmajorticklabels(), fontsize = 16) ax.set_yticklabels(ax.get_ymajorticklabels(), fontsize = 16) plt.xlabel('Prediction',fontsize=18) plt.ylabel('Label',fontsize=18) plt.tight_layout() plt.savefig("/home/timclements/CS249FINAL/FIGURES/confusion-matrix.pdf") plt.close()
2.34375
2
Python/236.py
JWang169/LintCodeJava
1
12780976
<reponame>JWang169/LintCodeJava # April 14 class Solution: def lowestCommonAncestor(self, root: 'TreeNode', p: 'TreeNode', q: 'TreeNode') -> 'TreeNode': self.lca = None self.dfs(root, p, q) return self.lca def dfs(self, root, p, q): if not root: return False, False hasP, hasQ = False, False leftP, leftQ = self.dfs(root.left, p, q) rightP, rightQ = self.dfs(root.right, p, q) if leftP or rightP or root.val == p.val: hasP = True if leftQ or rightQ or root.val == q.val: hasQ = True if hasP and hasQ and self.lca == None: self.lca = root return hasP, hasQ # Mar 25 class Solution: def lowestCommonAncestor(self, root: 'TreeNode', p: 'TreeNode', q: 'TreeNode') -> 'TreeNode': if p.val == q.val: return p self.lca = None self.search(root, p, q) return self.lca def search(self, node, p, q): if not node: return False left = self.search(node.left, p, q) right = self.search(node.right, p, q) if node.val == p.val or node.val == q.val: cur = True else: cur = False if not self.lca: if left and right: self.lca = node if (left or right) and cur: self.lca = node return left or right or cur class Solution: def lowestCommonAncestor(self, root: 'TreeNode', p: 'TreeNode', q: 'TreeNode') -> 'TreeNode': if not root: return None self.result = None self.search(root, p, q) return self.result def search(self, root, p, q): if not root: return None, None leftp, leftq = self.search(root.left, p, q) rightp, rightq = self.search(root.right, p, q) rootp = leftp or rightp or root.val == p.val rootq = leftq or rightq or root.val == q.val if not self.result and rootp and rootq: self.result = root return rootp, rootq
3.375
3
src/data/yt_data_scrapping.py
love-bits/site
2
12780977
<gh_stars>1-10 import re import json import pytz import pandas as pd from bs4 import BeautifulSoup as soup from urllib.request import urlopen as uReq from datetime import datetime, timezone, timedelta def getBSHtml(url): uClient = uReq(url) page_html = uClient.read() uClient.close() page_soup = soup(page_html, 'html.parser') return page_soup def getDate(link): #get the date and done status page_soup = getBSHtml(link) date = re.findall(r'meta content="(.+?)".+?startDate"', page_soup.prettify())[0] date = re.split('[T+]', date) date = date[0] + ' ' + date[1] date = datetime.strptime(date, '%Y-%m-%d %H:%M:%S') localtimezone = pytz.timezone('UTC') date = localtimezone.localize(date, is_dst=None) diff = timedelta(0,0,0,0,0,-3) fuse = timezone(diff) date = date.astimezone(fuse) now = localtimezone.localize(datetime.now(), is_dst=None) done = now > date return date, done def getDict(url): #return a dictonary with the links, image links, date, titles of the videos and done status of the videos data_frame = pd.DataFrame(columns=['img','date','title','link', 'done']) page_soup = getBSHtml(url) #find video id after_id = ',"playlistId":"PLa_Eeh4hhoGc_yIrmXWaWhnv5yLc9Ttab","index":' video_ids = re.findall(r'"videoId":"(.{,20})"'+after_id, page_soup.prettify()) #find video title titles = re.findall(r'"title":.+?":"(.+?) Love Bits', page_soup.prettify()) #find video image link imgs = re.findall(r'138},{"url":"(.+?)\?sqp.+?', page_soup.prettify()) #find link and date, and create dictonary for count, video_id in enumerate(video_ids): link = 'https://www.youtube.com/watch?v='+video_id date, done = getDate(link) data_frame.loc[count] = [imgs[count], date, titles[count], link, done] #order data frame by date data_frame.sort_values(by='date', ascending=False, inplace=True) #convert date to DD/MM/AAAA às hh:mm horas data_frame['date'] = data_frame['date'].apply(lambda date : re.split('[ :-]',str(date))) data_frame['date'] = data_frame['date'].apply(lambda date : date[2]+'/'+date[1]+'/'+date[0]+' às '+date[3]+':'+date[4]+' horas') data_list = data_frame.to_dict('records') return {'meetings':data_list} url = 'https://www.youtube.com/playlist?list=PLa_Eeh4hhoGc_yIrmXWaWhnv5yLc9Ttab' data_dict = getDict(url) with open('./src/data/meetings.json', 'w') as fp: json.dump(data_dict, fp)
2.78125
3
courses/migrations/0032_add_course_edx_key.py
Wassaf-Shahzad/micromasters
32
12780978
<reponame>Wassaf-Shahzad/micromasters # Generated by Django 2.1.10 on 2019-08-15 18:15 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('courses', '0031_electives_set_releated_name'), ] operations = [ migrations.AddField( model_name='course', name='edx_key', field=models.CharField(max_length=50, null=True), ), ]
1.609375
2
tekis/board/migrations/0002_auto_20160221_1643.py
TKOaly/tkoaly-new-service
0
12780979
<gh_stars>0 # -*- coding: utf-8 -*- # Generated by Django 1.9.1 on 2016-02-21 14:43 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('board', '0001_initial'), ] operations = [ migrations.AlterModelOptions( name='board', options={'get_latest_by': 'year', 'ordering': ('year',), 'verbose_name': 'Board', 'verbose_name_plural': 'Boards'}, ), migrations.AlterModelOptions( name='boardmember', options={'ordering': ('role',), 'verbose_name': 'Board Member', 'verbose_name_plural': 'Board Members'}, ), migrations.AlterField( model_name='boardmember', name='contact', field=models.CharField(default='firstname.lastname(at)cs.helsinki.fi', max_length=100, verbose_name='Contact'), ), migrations.AlterField( model_name='boardmember', name='face', field=models.ImageField(upload_to='board_faces/%Y/', verbose_name='Mugshot'), ), migrations.AlterField( model_name='boardmember', name='name', field=models.CharField(max_length=100, verbose_name='Name'), ), migrations.AlterField( model_name='boardmember', name='role', field=models.IntegerField(choices=[(0, 'Chairman'), (1, 'Treasurer'), (2, 'Secretary'), (3, 'Vice chairman'), (4, 'Board Member'), (5, 'Study affairs'), (6, 'Communications'), (7, 'Corporate affairs'), (8, 'RV affairs'), (9, 'Freshman affairs'), (20, 'First deputy board member'), (21, 'Second deputy board member'), (22, 'Third deputy board member'), (23, 'Fourth deputy board member')], verbose_name='Role'), ), ]
1.632813
2
pymerge.py
l0o0/bio-analysis-kit
3
12780980
<gh_stars>1-10 #!/usr/bin/python # create by linxzh at 2014-8-19 import argparse import re import sys parser = argparse.ArgumentParser('pymerge') parser.add_argument('-A', type=argparse.FileType('r')) parser.add_argument('-B', type=argparse.FileType('r')) parser.add_argument('-Aby', type=int, default=1, help='key col of -A file, default is 1') parser.add_argument('-Bby', type=int, default=1, help='key col of -B file, default is 1') parser.add_argument('-Acol', type=str, help ='to be merged cols') parser.add_argument('-Bcol', type=str, help ='to be merged cols') parser.add_argument('-s', type=str, choices=['all','a','b','ab'], default='all', help ="all = union, a = by -A items,\ b = by -B items, ab = a intersect with b, default is \ all(union). None exits field is filled with '--'") parser.add_argument('-Out', type=argparse.FileType('w')) parser.add_argument('-Sep', type=str, default='\t', help='field delimiter, default is TAB') parser.add_argument('-H', type=int, default=1, help='line num of head line, default is 1') parser.add_argument('-F', type=argparse.FileType('r'), help='file contains a filelist to be merged') args=parser.parse_args() def get_col(flist, cols): colslist = re.split(',|-', cols) if '' in colslist: out = flist[int(colslist[0])-1:] elif '-' in cols: out = flist[int(colslist[0])-1:int(colslist[1])] else: out = [flist[int(x)-1] for x in colslist] return out # read data to dict def read_data(infile, bycol, cols, sep, h): '''bycol is the arg specified by -Aby / -Bby cols specified by -Acol / -Bcol return a dict: {bycol : [target cols] ... }''' if isinstance(infile, str): infile = open(infile) D = {} c = 1 for f in infile: flist = f.strip().split(sep) k = flist[bycol-1] v = get_col(flist, cols) if c == h: hk = 'header' D[hk] = v else: D[k] = v c += 1 return D # def merge_dict(D1, D2, s): '''D1 as primary''' D = {} D1len = len(D1[D1.keys()[0]]) D2len = len(D2[D2.keys()[0]]) if s == 'all': kset = set(D1.keys()) | set(D2.keys()) elif s == 'a': kset = D1.keys() elif s == 'b': kset = D2.keys() elif s == 'ab': kset = set(D1.keys()) & set(D2.keys()) for k in kset: if k in D1 and k in D2 and k != 'header': v = D1[k] + D2[k] elif k in D1 and k not in D2: empty = ['--']*D2len v = D1[k] + empty elif k not in D1 and k in D2: empty = ['--'] * D1len v = empty + D2[k] D[k] = v D['header'] = D1['header'] + D2['header'] return D # def reduce_merge_dict(F, bycol, cols, sep, h, s): filelist = F.readlines() filelist = [x.strip() for x in filelist] tmp = map(lambda x : read_data(x, bycol, cols, sep, h), filelist) D = reduce(lambda x, y : merge_dict(x, y, s), tmp) return D if __name__ == '__main__': if args.F: D = reduce_merge_dict(args.F, args.Aby, args.Acol, args.Sep, args.H, args.s) else: D1 = read_data(args.A, args.Aby, args.Acol, args.Sep, args.H) D2 = read_data(args.B, args.Bby, args.Bcol, args.Sep, args.H) D = merge_dict(D1,D2, args.s) outline = [] header = 'Name\t%s\n' % ('\t'.join(D['header'])) outline.append(header) del D['header'] for k in D: line = '%s\t%s\n' % (k, '\t'.join(D[k])) outline.append(line) args.Out.writelines(outline)
2.828125
3
hcap_geo/models/__init__.py
fabiommendes/capacidade_hospitalar
0
12780981
from .region import Region
1.101563
1
basic/module/custom/createModule/importModuleDemo.py
gwaysoft/python
0
12780982
<gh_stars>0 import sys import createModuleDemo as mo, os from createModuleDemo01 import add as a from createModuleDemo02 import * # import default path print(sys.path) print(mo.add(3, 4.555)) print(a(30, 4)) print(add(34, 4)) # show method print(dir())
2.015625
2
server/kvls/lang.py
Antyos/kvlang-vscode
10
12780983
<reponame>Antyos/kvlang-vscode """Module import kivy Parser is available. Otherwise fake class is created.""" from __future__ import absolute_import import os # Disable stdout printout from kivy os.environ["KIVY_NO_FILELOG"] = "1" os.environ["KIVY_NO_CONSOLELOG"] = "1" # Import Kivy parser # Disable pylint warning, because environment variables must be set # before import of module kivy. Create fake classes when import error appear "Duck typing" KIVY_IMPORTED = True KIVY_IMPORT_MSG = """KvLint was not able import kivy module. Please check if module is installed under currently used Kvlang: Python Path. """ try: from kivy.lang import Parser, ParserException # pylint: disable=unused-import except ImportError: KIVY_IMPORTED = False class Parser(object): """Fake class when import can't be done of kivy module.""" def __init__(self, content): """Fake initialization.""" pass class ParserException(BaseException): """Fake class when import can't be done of kivy module.""" pass
2.40625
2
calliope_app/api/migrations/0010_auto_20190730_1726.py
jmorrisnrel/engage
3
12780984
# Generated by Django 2.1.4 on 2019-07-30 17:26 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('api', '0009_auto_20190710_2235'), ] operations = [ migrations.RemoveField( model_name='carrier', name='model', ), migrations.DeleteModel( name='Carrier', ), ]
1.398438
1
code/python/src/utility/logger.py
manurare/360monodepth
0
12780985
import logging import traceback import colorama from colorama import Fore, Back, Style colorama.init() class CustomFormatter(logging.Formatter): """Logging Formatter to add colors and count warning / errors reference: https://stackoverflow.com/questions/384076/how-can-i-color-python-logging-output/ """ import platform if platform.system() == 'Windows': grey = "\x1b[38;21m" yellow = "\x1b[33;21m" magenta = "\x1b[35;21m" red = "\x1b[31;21m" reset = "\x1b[0m" else: grey = Style.DIM yellow = Fore.YELLOW magenta = Fore.MAGENTA red = Fore.RED reset = Style.RESET_ALL # format = "%(asctime)s - %(name)s - %(levelname)s - %(message)s (%(filename)s:%(lineno)d)" format = "%(asctime)s - %(name)s - %(levelname)s - %(message)s" FORMATS = { logging.DEBUG: grey + format + reset, logging.INFO: grey + format + reset, logging.WARNING: yellow + format + reset, logging.ERROR: red + format + reset, logging.CRITICAL: red + format + reset } def format(self, record): log_fmt = self.FORMATS.get(record.levelno) formatter = logging.Formatter(log_fmt) return formatter.format(record) class Logger: def __init__(self, name=None): # create logger self.logger = logging.getLogger(name) self.logger.setLevel(logging.DEBUG) # create console handler and set level to debug handler = logging.StreamHandler() handler.setLevel(logging.DEBUG) # add formatter handler.setFormatter(CustomFormatter()) # add handler to logger self.logger.addHandler(handler) def debug(self, message): self.logger.debug(message) def info(self, message): self.logger.info(message) def warn(self, message): self.logger.warning(message) def print_stack(self): print("---traceback---") for line in traceback.format_stack(): print(line.strip()) def error(self, message): self.logger.error(message) self.print_stack() exit() def critical(self, message): self.logger.critical(message) self.print_stack()
3.171875
3
tests/apimodels/UserResource_test.py
j-000/ezresbackend
0
12780986
import requests from . import UserModel, db, DEVELOPMENT base_url = 'http://localhost:5000/api/user' if not DEVELOPMENT: raise SystemError('Not in development mode!') exit() def prepare_db(): db.drop_all() db.create_all() test_email = UserModel.fetch(email='<EMAIL>') if test_email: UserModel.delete(test_email) def test_prepare_db(): prepare_db() assert UserModel.fetch(email='<EMAIL>') is None def test_get_request(): req = requests.get(base_url) json_response = req.json() # status code 200 assert req.status_code == 200 # usersRegistered as a property of response object assert 'usersRegistered' in json_response.keys() # usersRegistered value is a number assert type(json_response['usersRegistered']) is int def test_create_user(): test_user = {'name': 'test', 'email': '<EMAIL>', 'password':'<PASSWORD>'} req = requests.post(base_url, json=test_user) # status code 200 assert req.status_code == 200 # assert properties contain: # 'message', 'success', 'user' assert 'message' in req.json().keys() assert 'success' in req.json().keys() assert 'user' in req.json().keys() # assert 'user' response object only contains 'email','id','is_admin' and 'name' excepted_response = { "message": "User created.", "success": True, "user": { "email": "<EMAIL>", "id": 1, "is_admin": False, "name": "test" } } # assert response matches expected response assert excepted_response.items() == req.json().items() def test_user_in_db(): test_user = UserModel.fetch(email='<EMAIL>') # assert user is created assert test_user is not None # assert user object properties in db match assert test_user.name == 'test' assert test_user.id == 1 assert test_user.email == '<EMAIL>' assert test_user.check_password('<PASSWORD>') == True assert test_user.is_admin == False def test_missing_params(): test_user = {'name': 'test'} req = requests.post(base_url, json=test_user) # assert status code assert req.status_code == 200 # assert response object mathes expecteds expected_response = {'error':'Missing email field.'} assert expected_response.items() == req.json().items() def test_missing_payload(): req = requests.post(base_url, json=None) # assert status code assert req.status_code == 200 # assert response object mathes expecteds expected_response = {'error':'No data was sent with the request.'} assert expected_response.items() == req.json().items() def test_already_exists(): test_user = {'name': 'test', 'email': '<EMAIL>', 'password':'<PASSWORD>'} req = requests.post(base_url, json=test_user) # status code 200 assert req.status_code == 200 # assert response object mathes expecteds expected_response = {'error':'Email is already registered.'} assert expected_response.items() == req.json().items() def test_methods_not_allowed(): put_req = requests.put(base_url) delete_req = requests.delete(base_url) # same response is expected for both expected_response = {'error':'Method not allowed.'} # status code 200 assert put_req.status_code == 200 assert delete_req.status_code == 200 # assert expected response matched assert put_req.json().items() == expected_response.items() assert delete_req.json().items() == expected_response.items() def test_clear_db(): prepare_db() assert UserModel.fetch(email='<EMAIL>') is None
2.59375
3
The improved SMDS.py
0AnonymousSite0/Social-media-data-to-Interrelated-informtion-to-Parameters-of-virtual-road-model
1
12780987
import tweepy import re import os, logging, datetime, argparse from logging.handlers import RotatingFileHandler import json from prepare_data_for_labeling_infer import prepare_data_for_subject_object_labeling_infer from produce_submit_json_file import Sorted_relation_and_entity_list_Management from DataInteroperability import SPO2KG_Function import sys import subprocess from py2neo import Graph, Node, Relationship,NodeMatcher CONSUMER_KEY = "1LBqUbcbBOAD6LKsq2f49yHVM" CONSUMER_SECRET = "<KEY>" OAUTH_TOKEN = "<KEY>" OAUTH_TOKEN_SECRET = "<KEY>" auth = tweepy.OAuthHandler(CONSUMER_KEY, CONSUMER_SECRET) auth.set_access_token(OAUTH_TOKEN, OAUTH_TOKEN_SECRET) api = tweepy.API(auth) graph = Graph('http://localhost:7474', username='neo4j', password='<PASSWORD>') def classify_tweets_related_or_not(Id): data_dir=r"--data_dir=file directory of classification model\bin/predicate_classifiction/classification_data/"+Id output_dir=r" --output_dir=file directory of classification model/output/predicate_classification_model/epochs1700/"+Id+r"/" os.makedirs("file directory of classification model/output/predicate_classification_model/epochs1700/"+Id+r"/") classification_command=r"C:\Users\CivilIM\Anaconda3\envs\TF115P37\python.exe file directory of classification model\run_predicate_classification.py "+data_dir+output_dir print (data_dir) os.system(classification_command) def check_classification_result(Id): f = open(r"file directory of classification model/output/predicate_classification_model/epochs1700/"+Id+r"/predicate_predict.txt") classification_result=f.read() classification_result=classification_result.replace("\n", "") print(classification_result) if classification_result=="traffic": return True else: return False def infer_relations(Id): data_dir = r"--data_dir=file directory of classification model\bin/predicate_classifiction/classification_data/" + Id output_dir = r" --output_dir=file directory of models for inferring interrelations and recognizing subject/objects/output/predicate_classification_model/epochs700/" + Id + r"/" os.makedirs("file directory of models for inferring interrelations and recognizing subject/objects/output/predicate_classification_model/epochs700/"+Id+r"/") infer_relations_command = r"C:\Users\CivilIM\Anaconda3\envs\TF115P37\python.exe file directory of models for inferring interrelations and recognizing subject/objects\run_predicate_classification.py " + data_dir + output_dir os.system(infer_relations_command) print("finish infer_relations") def check_inferred_relations(Id): f = open(r"file directory of models for inferring interrelations and recognizing subject/objects/output/predicate_classification_model/epochs700/"+Id+r"/predicate_predict.txt") relations_result=f.read() relations_result=relations_result.replace("\n", "") str_list = relations_result.split(" ") print("check_inferred_relations",str_list) if ("Road_status" in str_list) and ( "Road_position" in str_list) and ("Lane_of_Road" not in str_list) : return True elif ("Road_status" in str_list) and ( "Road_position" in str_list) and ("Lane_of_Road" in str_list) and ("Lane_status" in str_list) and (( "Lane_position" in str_list) or ("Lane_direction" in str_list)): return True else: return False def prepare_data_for_extracting_SO(Id): data_dir = r"file directory of classification model\bin/predicate_classifiction/classification_data/" + Id+"/test" predicate_classifiction_infer_file_dir=r"file directory of models for inferring interrelations and recognizing subject/objects\output\predicate_classification_model\epochs700/"+Id+"/" output_dir = r"file directory of models for inferring interrelations and recognizing subject/objects\bin\subject_object_labeling\sequence_labeling_data/" + Id + r"/test" os.makedirs(r"file directory of models for inferring interrelations and recognizing subject/objects\bin\subject_object_labeling\sequence_labeling_data/" + Id + r"/test/") prepare_data_for_subject_object_labeling_infer(data_dir,predicate_classifiction_infer_file_dir,output_dir) def extract_SO(Id): data_dir = r"--data_dir=file directory of models for inferring interrelations and recognizing subject/objects\bin\subject_object_labeling\sequence_labeling_data/" + Id output_dir = r" --output_dir=file directory of models for inferring interrelations and recognizing subject/objects\output/sequnce_infer_out/epochs700/ckpt12415/" + Id os.makedirs(r"file directory of models for inferring interrelations and recognizing subject/objects\output/sequnce_infer_out/epochs700/ckpt12415/"+Id+r"/") extract_SO_command = r"C:\Users\CivilIM\Anaconda3\envs\TF115P37\python.exe file directory of models for inferring interrelations and recognizing subject/objects\run_sequnce_labeling.py " + data_dir + output_dir os.system(extract_SO_command) def generate_json_result(Id): spo_list_manager = Sorted_relation_and_entity_list_Management( r"file directory of models for inferring interrelations and recognizing subject/objects\bin\subject_object_labeling\sequence_labeling_data/"+Id+"/test", r"file directory of models for inferring interrelations and recognizing subject/objects\output\sequnce_infer_out\epochs700\ckpt12415/"+Id+"/", Competition_Mode=True) spo_list_manager.produce_output_file( OUT_RESULTS_DIR=r"file directory of models for inferring interrelations and recognizing subject/objects/output/final_text_spo_list_result/"+Id, keep_empty_spo_list=True) #override tweepy.StreamListener to add logic to on_status class MyStreamListener(tweepy.StreamListener): def on_data(self, data): #print data with open('fetched_tweets.json','a') as tf: tf.write(data) data = json.loads(data) print (data) tweet=data['text'] tweet=re.sub("[\s+\.\!\/_,$%^*(+\"\']+|[+——!,。?、~@#¥%……&*()]+", " ", tweet) tweet=tweet.replace(" "," ") tweet = tweet.replace(" ", " ") tweet = tweet.replace(" ", " ") tweet = tweet.replace(" ", " ") tweet = tweet.replace(" ", " ") print(tweet) print(data['id']) tweet_storage=r"file directory of classification model\bin/predicate_classifiction/classification_data/"+str(data['id'])+r"/test/" os.makedirs(tweet_storage) with open(tweet_storage+"text.txt",'w') as tf: tf.write(tweet) with open(tweet_storage+"token_in.txt",'w') as tf: tf.write(tweet) with open(tweet_storage+"token_in_not_UNK.txt",'w') as tf: tf.write(tweet) if str(data['user']['id'])=="1348585566040772609": # only for test classify_tweets_related_or_not(str(data['id'])) print("check_classification_result(str(data['id']))",check_classification_result(str(data['id']))) if check_classification_result(str(data['id']))==True: infer_relations(str(data['id'])) print("check_inferred_relations(str(data['id']))", check_inferred_relations(str(data['id']))) if check_inferred_relations(str(data['id']))==True: prepare_data_for_extracting_SO(str(data['id'])) print("prepare_data_for_extracting_SO finish") extract_SO(str(data['id'])) print("extract_SO finish") generate_json_result(str(data['id'])) print("generate_json_result finish") SPO2KG_Function(r"file directory of models for inferring interrelations and recognizing subject/objects/output/final_text_spo_list_result/"+str(data['id'])+r"\keep_empty_spo_list_subject_predicate_object_predict_output.json",graph) print("Tweet2KnowledgeGraph finish") subprocess.Popen([r"C:\Program Files\ArcGIS\Pro/bin\Python\envs/arcgispro-py3\python.exe", r"D:/ZHOUSHENGHUA/PythonNeo4j/Convert_Information_triplets to_VRM_parameters.py"]) return True def on_error(self, status): print (status) def on_status(self, status): print(status.text) myStreamListener = MyStreamListener() myStream = tweepy.Stream(auth=api.auth, listener=myStreamListener) #api.verify_credentials() myStream.filter(track=["keywords for searching tweets"], filter_level="low",locations=["depends on the city"], is_async=True) print (myStream) #print (myStreamListener.on_status()) #myStream.disconnect() print ("OK")
2.265625
2
packages/weevely/modules/sql/dump.py
ZooAtmosphereGroup/HelloPackages
0
12780988
<reponame>ZooAtmosphereGroup/HelloPackages from core.vectors import PhpFile, ShellCmd from core.module import Module from core.loggers import log from core import messages import tempfile import os class Dump(Module): """Multi dbms mysqldump replacement.""" def init(self): self.register_info( { 'author': [ '<NAME>' ], 'license': 'GPLv3' } ) self.register_vectors( [ ShellCmd( payload="mysqldump -h ${host} -u${user} -p${passwd} ${db} ${table} --single-transaction", name='mysqldump_sh' ), PhpFile( payload_path=os.path.join(self.folder, 'mysqldump.tpl'), name='mysqldump_php', ) ] ) self.register_arguments([ {'name': 'db', 'help': 'Db to dump'}, {'name': 'user', 'help': 'SQL username'}, # Using passwd instead of pass to avoid rendering the `pass` keyword {'name': 'passwd', 'help': 'SQL password'}, {'name': '-dbms', 'help': 'Db type. Vector \'mysqldump_sh\' supports only \'mysql\'.', 'choices': ('mysql', 'pgsql', 'sqlite', 'dblib'), 'default': 'mysql'}, {'name': '-host', 'help': 'Db host or host:port', 'nargs': '?', 'default': '127.0.0.1'}, {'name': '-lpath', 'help': 'Dump to local path (default: temporary file)'}, {'name': '-vector', 'choices': self.vectors.get_names(), 'default': 'mysqldump_php'} ]) def run(self): self.args['table'] = self.args.get('table', '') if self.args['vector'] == 'mysqldump_sh' and self.args['dbms'] != 'mysql': log.warn(messages.module.vector_s_not_support_arg_s_s % ( self.args['vector'], 'dbms', self.args['dbms']) ) return vector_name, result = self.vectors.find_first_result( names=[self.args.get('vector')], format_args=self.args, condition=lambda r: r and '-- Dumping data for table' in r ) if not vector_name: log.warn(messages.module_sql_dump.sql_dump_failed_check_credentials) return # Get a temporary file name if not specified lpath = self.args.get('lpath') if not lpath: temp_file = tempfile.NamedTemporaryFile( suffix='_%s_%s_%s_%s.sqldump' % ( self.args['user'], self.args['passwd'], self.args['host'], self.args['db'] ), delete=False ) lpath = temp_file.name if not os.path.isabs(lpath): if lpath.startswith('~'): lpath = os.path.expanduser('~') + os.path.join('/', lpath.replace('~/', '')) else: lpath = os.path.join(os.getcwd(), lpath) path, filename = os.path.split(lpath) if not os.path.exists(path): os.makedirs(path) try: open(lpath, 'w').write(result) except Exception as e: log.warn( messages.generic.error_creating_file_s_s % (lpath, e) ) return log.info(messages.module_sql_dump.sql_dump_saved_s % lpath)
2.265625
2
MindLink-Eumpy/test/xmlAnalyzer.py
Breeze1in1drizzle/MindLink-Exploring
7
12780989
<reponame>Breeze1in1drizzle/MindLink-Exploring ''' XML文件接卸 最初用于提取valence和arousal的值 ''' import xml.dom.minidom def read_xml(filepath): dom = xml.dom.minidom.parse(filepath) session = dom.documentElement arousal = float(session.getAttribute("feltArsl")) print("arousal: ", arousal, " (type: ", type(arousal), ")") valence = session.getAttribute("feltVlnc") print("valence: ", valence, " (type: ", type(valence), ")") def test(filepath): dom = xml.dom.minidom.parse(filepath) print('read xml successfully.') root = dom.documentElement itemList = root.getElementsByTagName('login') item = itemList[0] un = item.getAttribute("username") print(un) pd = item.getAttribute("passwd") print(pd) ii = root.getElementsByTagName('item') i1 = ii[0] i = i1.getAttribute("id") print(i) i2 = ii[1] i = i2.getAttribute("id") print(i) if __name__ == '__main__': read_xml('session.xml') # test(filepath='abc.xml')
3.078125
3
datasets/coco_merger.py
scheckmedia/centernet-uda
19
12780990
<reponame>scheckmedia/centernet-uda<filename>datasets/coco_merger.py import logging import numpy as np import hydra from torch.utils import data log = logging.getLogger(__name__) class Dataset(data.Dataset): def __init__(self, datasets, max_samples=None, **defaults): self.max_sampels = max_samples self.datasets = {} self.num_samples = 0 for ds in datasets: coco = hydra.utils.get_class( f'datasets.{ds.name}.Dataset') params = {**defaults, **ds.params} coco = coco(**params) self.num_samples += len(coco) self.datasets[self.num_samples] = coco self.intervals = np.array(list(self.datasets.keys())) log.info( f"merged {len(self.datasets)} datasets with a total " f"number of {self.num_samples} samples") def __len__(self): return self.num_samples def __getitem__(self, index): interval_idx = np.argmax(index < self.intervals) interval = self.intervals[interval_idx] offset = self.intervals[interval_idx - 1] if interval_idx > 0 else 0 return self.datasets[interval].__getitem__(index - offset)
2.15625
2
specify/result.py
Einenlum/spyec
0
12780991
<gh_stars>0 from typing import List class ResultLine: ''' A result is made of several result lines ''' def __init__(self, spec_class, test_name, exception=None): ''' Take the spec_class (object_behavior), the test name (it_…), and the exception if any ''' self.spec_class = spec_class self.test_name = test_name self.exception = exception class Result: ''' The final Result object that will contain the whole results ''' def __init__(self, result_lines: List[ResultLine]): self.result_lines = result_lines def _prettify_test_name(self, test_name): ''' "it_works_correctly" becomes "it works correctly" ''' return test_name.replace('_', ' ') def _print_line(self, num: int, line: ResultLine): ''' Take an index and a result line, and transform it to a valid TAP line ("ok 1 - Test name…") ''' if line.exception is None: prefix = 'ok' else: prefix = 'not ok' desc = f"{line.spec_class.__qualname__}: {self._prettify_test_name(line.test_name)}" text = f"{prefix} {num} - {desc}" if line.exception is not None: text = text + "\n ---" text = text + "\n " + line.exception text = text + "\n ..." return text def export(self): ''' Export the final output for a valid TAP result ''' text = "TAP version 13\n" last_elem = len(self.result_lines) text = text + f"1..{last_elem}\n" for index, line in enumerate(self.result_lines): text = text + "\n" + self._print_line(index+1, line) return text
3.328125
3
progSnips/boundingBox/openCam.py
PhilTKamp/SDMinesLabDisplay
0
12780992
from cb import drawBox import cb import cv2 import numpy as np def dynamicColorMask(): # Begins reading from the default webcam cap = cv2.VideoCapture(0) ret, frame = cap.read() cv2.namedWindow('Feed') cv2.setMouseCallback('Feed', drawBox) while(1): # Reads the next frame from the camera ret, frame = cap.read() if ret == False: break cv2.rectangle(frame, (cb.ix, cb.iy), (cb.fx, cb.fy), (255, 204, 51), 1) cv2.imshow('Feed', frame) # Use 'Q' to exit program if cv2.waitKey(1) & 0xFF == ord('q'): break cv2.destroyAllWindows() cap.release() dynamicColorMask()
2.8125
3
show_parametrization_map.py
luca-morreale/neural_surface_maps
36
12780993
import torch from models import SurfaceMapModel from models import InterMapModel from utils import show_mesh from utils import show_mesh_2D SURFACE_PATH = '/SET/HERE/YOUR/PATH' CHECKPOINT_PATH = '/SET/HERE/YOUR/PATH' def main() -> None: torch.set_grad_enabled(False) device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') meta = SurfaceMapModel() net = InterMapModel() data = torch.load(SURFACE_PATH) source = data['grid'].to(device).float() faces = data['faces'].long() weights = data['weights'] net.load_state_dict(torch.load(CHECKPOINT_PATH)) net = net.to(device) for k in weights.keys(): weights[k] = weights[k].to(device).detach() # generate mesh at GT vertices surface = meta(source, weights) param = net(source) show_mesh_2D('param.png', param, faces) show_mesh('param_small.ply', param, surface, faces) # generate mesh at sample vertices source = data['visual_grid'].to(device).float() faces = data['visual_faces'].long() surface = meta(source, weights) param = net(source) show_mesh_2D('param_big.png', param, faces) show_mesh('neural_surface_big.ply', param, surface, faces) if __name__ == '__main__': main()
2.296875
2
Scraper/templatetags/tags.py
FadedCoder/AnimeScraperGUI
3
12780994
<filename>Scraper/templatetags/tags.py from django import template APP_NAME = "Anime Scraper" register = template.Library() @register.simple_tag def app_name(request): return APP_NAME @register.assignment_tag(takes_context=False) def user_logged_in(request): if request.user.is_authenticated: return True return False @register.simple_tag def user_name(request): if request.user.is_authenticated: if request.user.first_name: return request.user.first_name elif request.user.last_name: return request.user.last_name else: return request.user.username return "Hacker alert"
2.484375
2
model.py
rahulrajeev21/PointNet
0
12780995
from __future__ import print_function import torch import torch.nn as nn import torch.nn.parallel import torch.utils.data from torch.autograd import Variable import numpy as np import torch.nn.functional as F class TNet(nn.Module): def __init__(self, k=64): super(TNet, self).__init__() self.k = k # Each layer has batchnorm and relu on it # conv 3 64 self.conv1 = nn.Sequential(nn.Conv1d(k, 64, 1), nn.BatchNorm1d(64), nn.ReLU(inplace=True)) # conv 64 128 self.conv2 = nn.Sequential(nn.Conv1d(64, 128, 1), nn.BatchNorm1d(128), nn.ReLU(inplace=True)) # conv 128 1024 self.conv3 = nn.Sequential(nn.Conv1d(128, 1024, 1), nn.BatchNorm1d(1024), nn.ReLU(inplace=True)) # max pool self.mpool = nn.Sequential(nn.AdaptiveMaxPool1d(1)) # fc 1024 512 self.fc1 = nn.Sequential(nn.Linear(1024, 512), nn.BatchNorm1d(512), nn.ReLU(inplace=True)) # fc 512 256 self.fc2 = nn.Sequential(nn.Linear(512, 256), nn.BatchNorm1d(256), nn.ReLU(inplace=True)) # fc 256 k*k (no batchnorm, no relu) self.fc3 = nn.Linear(256, k * k) # add bias self.fc3.bias = torch.nn.Parameter(torch.eye(k).view(-1)) # reshape def forward(self, x): batch_size = x.size()[0] x = self.conv1(x) x = self.conv2(x) x = self.conv3(x) x = self.mpool(x) x = x.view(x.shape[:-1]) x = self.fc1(x) x = self.fc2(x) x = self.fc3(x) x = x.view(batch_size, self.k, self.k) return x class PointNetfeat(nn.Module): def __init__(self, global_feat=True, feature_transform=False): super(PointNetfeat, self).__init__() self.feature_transform = feature_transform # Use TNet to apply transformation on input and multiply the input points with the transformation self.tnet1 = TNet(k=3) # conv 3 64 self.conv1 = nn.Sequential(nn.Conv1d(3, 64, 1), nn.BatchNorm1d(64), nn.ReLU(inplace=True)) # Use TNet to apply transformation on features and multiply the input features with the transformation # (if feature_transform is true) # conv 64 128 self.conv2 = nn.Sequential(nn.Conv1d(64, 128, 1), nn.BatchNorm1d(128), nn.ReLU(inplace=True)) # conv 128 1024 (no relu) self.conv3 = nn.Sequential(nn.Conv1d(128, 1024, 1), nn.BatchNorm1d(1024)) # max pool self.mpool = nn.Sequential(nn.AdaptiveMaxPool1d(1)) self.global_feat = global_feat self.feature_transform = feature_transform if self.feature_transform: self.tnet2 = TNet(k=64) def forward(self, x): n_pts = x.size()[2] # You will need these extra outputs: # trans = output of applying TNet function to input # trans_feat = output of applying TNet function to features (if feature_transform is true) trans = self.tnet1(x) x = x.transpose(2, 1) x = torch.bmm(x, trans) x = x.transpose(2, 1) x = self.conv1(x) if self.feature_transform: trans_feat = self.tnet2(x) x = x.transpose(2, 1) x = torch.bmm(x, trans_feat) x = x.transpose(2, 1) else: trans_feat = None pointfeat = x x = self.conv2(x) x = self.conv3(x) x = self.mpool(x) x = x.view(x.shape[:-1]) if self.global_feat: # This shows if we're doing classification or segmentation return x, trans, trans_feat else: x = x.view(-1, 1024, 1).repeat(1, 1, n_pts) return torch.cat([x, pointfeat], 1), trans, trans_feat class PointNetCls(nn.Module): def __init__(self, k=2, feature_transform=False): super(PointNetCls, self).__init__() self.feature_transform = feature_transform self.feat = PointNetfeat(global_feat=True, feature_transform=feature_transform) self.fc1 = nn.Linear(1024, 512) self.fc2 = nn.Linear(512, 256) self.fc3 = nn.Linear(256, k) self.dropout = nn.Dropout(p=0.3) self.bn1 = nn.BatchNorm1d(512) self.bn2 = nn.BatchNorm1d(256) self.relu = nn.ReLU() def forward(self, x): x, trans, trans_feat = self.feat(x) x = F.relu(self.bn1(self.fc1(x))) x = F.relu(self.bn2(self.dropout(self.fc2(x)))) x = self.fc3(x) return F.log_softmax(x, dim=1), trans, trans_feat class PointNetDenseCls(nn.Module): def __init__(self, k=2, feature_transform=False): super(PointNetDenseCls, self).__init__() self.k = k self.feature_transform = feature_transform # get global features + point features from PointNetfeat self.pointNetFeat = PointNetfeat(global_feat=False, feature_transform=feature_transform) # conv 1088 512 self.conv1 = nn.Sequential(nn.Conv1d(1088, 512, 1), nn.BatchNorm1d(512), nn.ReLU(inplace=True)) # conv 512 256 self.conv2 = nn.Sequential(nn.Conv1d(512, 256, 1), nn.BatchNorm1d(256), nn.ReLU(inplace=True)) # conv 256 128 self.conv3 = nn.Sequential(nn.Conv1d(256, 128, 1), nn.BatchNorm1d(128), nn.ReLU(inplace=True)) # conv 128 k self.conv4 = torch.nn.Conv1d(128, self.k, 1) # softmax def forward(self, x): # You will need these extra outputs: # trans = output of applying TNet function to input # trans_feat = output of applying TNet function to features (if feature_transform is true) # (you can directly get them from PointNetfeat) batch_size = x.size()[0] n_pts = x.size()[2] x, trans, trans_feat = self.pointNetFeat(x) x = self.conv1(x) x = self.conv2(x) x = self.conv3(x) x = self.conv4(x) x = x.transpose(2, 1) x = x.reshape(-1, self.k) x = F.log_softmax(x, dim=-1) x = x.view(batch_size, n_pts, self.k) return x, trans, trans_feat def feature_transform_regularizer(trans): # compute |((trans * trans.transpose) - I)|^2 I_matrix = torch.eye(trans.size()[1])[None, :, :] AAT = torch.bmm(trans, trans.transpose(2, 1)) diffMat = AAT - I_matrix.cuda() loss = torch.norm(diffMat, dim=(1, 2)) loss = torch.mean(loss) return loss if __name__ == '__main__': sim_data = Variable(torch.rand(32, 3, 2500)) print('Input data dimensions:', sim_data.size()) trans = TNet(k=3) out = trans(sim_data) print('TNet', out.size()) print('loss', feature_transform_regularizer(out.cuda())) feat_trans_reg_testmat = Variable(torch.rand(16, 64, 3)) print('Input Matrix for FT Regularizer:', feat_trans_reg_testmat.size()) print('Feature Transform Regularizer Output: ', feature_transform_regularizer(feat_trans_reg_testmat.cuda())) sim_data_64d = Variable(torch.rand(32, 64, 2500)) trans = TNet(k=64) out = trans(sim_data_64d) print('TNet 64d', out.size()) print('loss', feature_transform_regularizer(out.cuda())) pointfeat = PointNetfeat(global_feat=True) print('Input data dimensions:', sim_data.size()) out, _, _ = pointfeat(sim_data) print('global feat', out.size()) pointfeat = PointNetfeat(global_feat=False) print('Input data dimensions:', sim_data.size()) out, _, _ = pointfeat(sim_data) print('point feat', out.size()) cls = PointNetCls(k=5) print('Input data dimensions:', sim_data.size()) out, _, _ = cls(sim_data) print('class', out.size()) seg = PointNetDenseCls(k=3) print('Input data dimensions:', sim_data.size()) out, _, _ = seg(sim_data) print('seg', out.size())
2.734375
3
cgat/tools/bam2depth.py
cgat-developers/cgat-apps
19
12780996
'''output depth statistics for a BAM file. ''' import collections import subprocess import re import os import shlex import cgatcore.experiment as E import cgatcore.iotools as iotools def main(argv=None): """script main. parses command line options in sys.argv, unless *argv* is given. """ if not argv: argv = sys.argv # setup command line parser parser = E.ArgumentParser(description=__doc__) parser.add_argument( "--input-filename-fasta", dest="input_filename_fasta", type=str, help="filename with reference sequence in fasta format ") parser.add_argument( "--counting-mode", dest="counting_mode", type=str, choices=("all", "pileup_defaults"), help="counting mode. all=all reads/bases. pileup-defaults= " "use default pileup thresholds. Options will be added to " "--mpileup-options. .") parser.add_argument( "--mpileup-options", dest="mpileup_options", type=str, help="pileup options to use ") parser.set_defaults( mpileup_options="", counting_mode="all", input_filename_fasta=None, report_step=1000000, ) # add common options (-h/--help, ...) and parse command line (args) = E.start(parser, argv=argv, add_output_options=True) bamfile = args[0] mpileup_options = args.mpileup_options if args.counting_mode == "all": mpileup_options += " -Q 0 -B -A" read_depth_histogram = collections.defaultdict(int) base_depth_histogram = collections.defaultdict(int) # deletions are marked by something like -2AA at the first # position and a '*' for subsequent positions rx_deletions = re.compile("([-][0-9]+|[*])") report_step = args.report_step npositions = 0 samtools = iotools.which("samtools") statement = ( "{samtools} mpileup " "-f {reference_fasta} " "{mpileup_options} " "{bamfile} ".format( samtools=samtools, reference_fasta=args.input_filename_fasta, mpileup_options=mpileup_options, bamfile=os.path.abspath(bamfile))) E.info("running the following statement: {}".format(statement)) cmd_args = shlex.split(statement) proc = subprocess.Popen( cmd_args, shell=False, stderr=subprocess.PIPE, stdout=subprocess.PIPE, cwd=os.path.abspath(os.curdir)) for line in proc.stdout: line = line.decode("utf-8") contig, pos, base, read_depth, info, qualities = line[:-1].split("\t") read_depth = int(read_depth) pos = int(pos) if pos % report_step == 0: E.info("working on {}: {}".format(contig, pos)) ndeletions = len(rx_deletions.findall(info)) base_depth = read_depth - ndeletions read_depth_histogram[read_depth] += 1 base_depth_histogram[base_depth] += 1 for line in proc.stderr: E.warn(line) keys = sorted(set(read_depth_histogram.keys()).union( base_depth_histogram.keys())) args.stdout.write("depth\tread_depth_positions\tbase_depth_positions\n") for key in keys: args.stdout.write("{}\t{}\t{}\n".format( key, read_depth_histogram[key], base_depth_histogram[key])) E.info("positions tested: {}".format(sum(read_depth_histogram.values()))) E.stop()
2.375
2
presqt/api_v1/utilities/validation/get_process_info_data.py
craig-willis/presqt
0
12780997
<gh_stars>0 from rest_framework import status from presqt.utilities import read_file from presqt.utilities import PresQTValidationError def get_process_info_data(action, ticket_number): """ Get the JSON from process_info.json in the requested ticket number directory. Parameters ---------- action : str The action directory we should look in for the ticket_number directory ticket_number : str Requested ticket_number directory the JSON should live in Returns ------- JSON dictionary representing the process_info.json data. """ try: return read_file('mediafiles/{}/{}/process_info.json'.format(action, ticket_number), True) except FileNotFoundError: raise PresQTValidationError("PresQT Error: Invalid ticket number, '{}'.".format(ticket_number), status.HTTP_404_NOT_FOUND)
2.5
2
simple_monitor_alert/tests/base.py
Nekmo/simple-monitor-alert
33
12780998
import os import sys from configparser import NoSectionError from simple_monitor_alert.alerts import Alerts from simple_monitor_alert.lines import Observable, ItemLine from simple_monitor_alert.monitor import Monitors from simple_monitor_alert.sma import Results, Config, MonitorsInfo from simple_monitor_alert.utils.files import JSONFile BASE_DIR = os.path.dirname(os.path.abspath(__file__)) MONITORS_DIR = os.path.join(BASE_DIR, 'assets', 'monitors') class FakeJSONFile(JSONFile): def __init__(self, data): super(FakeJSONFile, self).__init__('/Fake-JSON-File', create=False) self.update(data) def read(self): pass def write(self): pass class FakeObservableResults(FakeJSONFile, Results): monitor = None def __init__(self, data=None, sma=None): data = data or {'monitors': {}} super(FakeObservableResults, self).__init__(data) self.sma = sma def get_observable_result(self, observable): monitor = self['monitors'].get(getattr(observable, 'monitor', self.monitor), {}) result = monitor.get(observable.name, self.get_default_observable_result()) monitor[observable.name] = result self['monitors'][getattr(observable, 'monitor', self.monitor)] = monitor return result class FakeMonitorsInfo(FakeJSONFile, MonitorsInfo): pass class FakeMonitors(Monitors): pass class FakeSMA(object): def __init__(self, config=None, monitors_info=None, monitors_dir=MONITORS_DIR): self.results = FakeObservableResults() self.monitors_info = monitors_info or FakeMonitorsInfo({}) self.config = config self.monitors = FakeMonitors(monitors_dir, sma=self) class FakeAlert(object): executions = 0 def __init__(self, section): self.section = section def send(self, *args, **kwargs): self.executions += 1 return True class FakeConfig(Config): def __init__(self, data): if sys.version_info >= (3, 0): super().__init__('/Fake-Config-File') else: # Old Style Class Config.__init__(self, '/Fake-Config-File') self._data = data def items(self, section=None, **kwargs): try: return self._data[section] except KeyError: raise NoSectionError(section) class TestBase(object): def get_observable(self): observable = Observable('test') observable.add_line(ItemLine('test.expected', '20')) observable.add_line(ItemLine('test.value', '19')) return observable def get_alerts(self, section, sma): alerts_modules = [FakeAlert(section)] alerts = Alerts(sma, '/Fake-Alerts-Dir', alerts_modules, [section]) return alerts def get_results(self, data=None, monitors_info=None): return FakeObservableResults(data, FakeSMA(monitors_info=monitors_info).monitors_info) def get_sma(self, section=None, monitors_info=None): config = FakeConfig({section: ()}) sma = FakeSMA(config, monitors_info=monitors_info) return sma
2.34375
2
command_safe/safe.py
omar-ozgur/Command-Safe
0
12780999
import click import pickle from subprocess import call class Safe: update = False def __init__(self, safe_file): self.safe_file = safe_file def load(self): try: with open(self.safe_file, 'rb') as input: try: self.safe = pickle.load(input) except EOFError: self.safe = {} except IOError: self.safe = {} def save(self): with open(self.safe_file, 'wb') as output: pickle.dump(self.safe, output, 2) def clear(self): self.safe = {} self.update = True def delete(self, alias): if alias in self.safe: del self.safe[alias] self.update = True def get_command(self, alias): if alias in self.safe: return self.safe[alias] else: return None def set_command(self, alias, command): self.safe[alias] = command self.update = True def execute(self, alias): call(self.safe[alias], shell=True) def show(self): table = [('alias:', 'command:')] for key, value in self.safe.items(): table.append((key, value)) column_size = [max(map(len, column)) for column in zip(*table)] format_string = ' | '.join(["{{:<{}}}".format(i) for i in column_size]) table.insert(1, ['-' * i for i in column_size]) for row in table: click.echo('{}'.format(format_string.format(*row)))
3.015625
3
scripts/setup_demo.py
ki-tools/kitools-py
4
12781000
#!/usr/bin/env python3 import argparse import sys import os import uuid import tempfile import random import synapseclient as syn script_dir = os.path.dirname(__file__) sys.path.append(os.path.join(script_dir, '..', 'src')) try: from kitools import KiProject, DataUri, SysPath, DataTypeTemplate except Exception as ex: print('WARNING: Failed to load kitools: {0}'.format(ex)) def gen_id(): return str(uuid.uuid4())[:8] def mk_dirs(*args): path = os.path.join(*args) if not os.path.exists(path): os.makedirs(path) return path def write_random_data_to_file(file_path): with open(file_path, mode='w') as f: for _ in range(1, random.randrange(2, 10)): f.write(str(uuid.uuid4())) def mk_local_files_and_folders(start_path, prefix='', depth=3, file_count=3, folder_count=3, current_depth=0, syn_client=None, syn_parent=None): current_depth += 1 local_results = [] remote_results = [] for _ in range(0, file_count): filename = '{0}test_file_{1}_{2}.dat'.format(prefix, current_depth, gen_id()) file_path = os.path.join(start_path, filename) # Fill the file with random data. write_random_data_to_file(file_path) local_results.append(file_path) # Store the file in Synapse if syn_parent: syn_file = syn_client.store(syn.File(path=file_path, parent=syn_parent)) remote_results.append(syn_file) if current_depth < depth: # Create the folders. for _ in range(0, folder_count): foldername = '{0}test_folder_{1}_{2}'.format(prefix, current_depth, gen_id()) folder_path = mk_dirs(start_path, foldername) local_results.append(folder_path) # Create the folder in Synapse if syn_parent: syn_folder = syn_client.store(syn.Folder(name=foldername, parent=syn_parent)) remote_results.append(syn_folder) more_locals, more_remotes = mk_local_files_and_folders(folder_path, prefix=prefix, depth=depth, current_depth=current_depth, syn_client=syn_client, syn_parent=syn_folder) local_results += more_locals remote_results += more_remotes return local_results, remote_results def create_demo_curator(): """ 1. Creates a new Synapse Project. 2. Creates the data/[core, artifacts, discovered] folders in Synapse. 3. Creates and uploads files and folders into Synapse. 4. Creates a new KiProject. 5. data_adds each of the root data folders (core, artifacts, discovered) that were created in Synapse. 6. data_pulls all the remote files and folders from Synapse. 7. Creates one new file in each of the local data/[core, artifacts, discovered] folders. 8. data_pushes each of the newly added local files. 9. Changes 3 of the files that were pulled from the Synapse Project and data_pushes them to Synapse. 10. Prints out the commands to load the project, data_add/data_pull the new and changed files. """ print('Creating Demo for curator...') demo_id = gen_id() demo_commands = [] demo_commands.append('') demo_commands.append('# Import the KiProject class:') demo_commands.append('from kitools import KiProject') kiproject_path = mk_dirs(tempfile.gettempdir(), 'demo_curator_{0}'.format(demo_id)) syn_client = syn.login(silent=True) # Create the Synapse project syn_project = syn_client.store(syn.Project(name='Ki Tools Curator Demo - {0}'.format(demo_id))) kiproject = KiProject(kiproject_path, no_prompt=True, title='Demo KiProject {0}'.format(demo_id), project_uri=DataUri('syn', syn_project.id).uri, data_type_template=DataTypeTemplate.default().name) demo_commands.append('') demo_commands.append('# Open the KiProject:') demo_commands.append( 'kiproject = KiProject({0}"{1}")'.format(('r' if os.sep == '\\' else ''), kiproject.local_path)) # Add the synapse project files/folders. syn_temp_dir = mk_dirs(kiproject_path, '.demo-data') # Create files and folders in each DataType directory. for data_type in kiproject.data_types: parent = syn_project dt_folder_path = mk_dirs(os.path.join(syn_temp_dir, data_type.rel_path)) for name in SysPath(data_type.rel_path).rel_parts: parent = syn_client.store(syn.Folder(name=name, parent=parent)) kiproject.data_add(DataUri('syn', parent.id).uri, name=parent.name) mk_local_files_and_folders(dt_folder_path, depth=3, prefix='{0}_'.format(data_type.name), syn_client=syn_client, syn_parent=parent) kiproject.data_pull() # Create some new files for data_add/data_push demo_commands.append('') demo_commands.append('# Add some new files and push them:') for data_type in kiproject.data_types: dt_folder_path = mk_dirs(data_type.abs_path) local_results, _ = mk_local_files_and_folders(dt_folder_path, prefix='new_study_file_', depth=0, file_count=1) for new_filename in local_results: demo_commands.append('kiproject.data_add({0}"{1}")'.format( ('r' if os.sep == '\\' else ''), SysPath(new_filename, rel_start=kiproject.local_path).rel_path)) demo_commands.append('kiproject.data_push()') # Create a change in some files for data_push demo_commands.append('') demo_commands.append('# Push some changed files:') change_count = 0 for resource in kiproject.resources: if change_count >= 3: break if resource.abs_path and resource.abs_path.endswith('.dat'): change_count += 1 file_path = resource.abs_path write_random_data_to_file(file_path) demo_commands.append('kiproject.data_push("{0}")'.format(os.path.basename(resource.name))) print('') print('Demo project created in: {0}'.format(kiproject_path)) print('Synapse Project: {0} ({1})'.format(syn_project.name, syn_project.id)) print('') print('Python Script:') for command in demo_commands: print(command) def main(): parser = argparse.ArgumentParser() parser.add_argument('demo', nargs='?', help='Which demo to create.', choices=['curator'], default='curator') args = parser.parse_args() if args.demo == 'curator': create_demo_curator() if __name__ == "__main__": main()
1.976563
2
rtamt/spec/io_stl_ct/offline.py
BentleyJOakes/rtamt
0
12781001
<gh_stars>0 import operator from rtamt.spec.stl_ct.offline import STLCTOffline from rtamt.spec.io_stl.io_interpretation import IOInterpretation class STLIOCTOffline(STLCTOffline): def __init__(self, spec): super(STLIOCTOffline, self).__init__(spec) def visitPredicate(self, element, args): out_sample = super(STLIOCTOffline, self).visitPredicate(element, args) out = [] if (self.spec.iosem == 'output-robustness' and not element.out_vars): for tuple in out_sample: ntuple = [tuple[0], tuple[1]*float('inf')] out.append(ntuple) elif(self.spec.iosem == 'input-vacuity' and not element.in_vars): for tuple in out_sample: ntuple = [tuple[0], 0] out.append(ntuple) elif(self.spec.iosem == 'input-robustness' and not element.in_vars): for tuple in out_sample: ntuple = [tuple[0], tuple[1]*float('inf')] out.append(ntuple) elif(self.spec.iosem == 'output-vacuity' and not element.in_vars): for tuple in out_sample: ntuple = [tuple[0], 0] out.append(ntuple) else: out = out_sample return out
2.078125
2
TASSELpy/net/maizegenetics/dna/snp/CoreGenotypeTable.py
er432/TASSELpy
1
12781002
from TASSELpy.net.maizegenetics.dna.snp.GenotypeTable import GenotypeTable from TASSELpy.utils.helper import make_sig from TASSELpy.utils.Overloading import javaConstructorOverload import javabridge ## Dictionary to hold java imports java_imports = {'AlleleDepth':'net/maizegenetics/dna/snp/depth/AlleleDepth', 'BitSet':'net/maizegenetics/util/BitSet', 'Chromosome':'net/maizegenetics/dna/map/Chromosome', 'CoreGenotypeTable':'net/maizegenetics/dna/snp/CoreGenotypeTable', 'GenotypeTable':'net.maizegenetics.dna.snp.GenotypeTable', 'GenotypeCallTable':'net/maizegenetics/dna/snp/genotypecall/GenotypeCallTable', 'PositionList':'net/maizegenetics/dna/map/PositionList', 'SiteScore':'net/maizegenetics/dna/snp/score/SiteScore', 'TaxaList':'net/maizegenetics/taxa/TaxaList'} class CoreGenotypeTable(GenotypeTable): _java_name = java_imports['CoreGenotypeTable'] @javaConstructorOverload(java_imports['CoreGenotypeTable'], (make_sig([java_imports['GenotypeCallTable'],java_imports['PositionList'], java_imports['TaxaList']],'void'),(object,object,object)), (make_sig([java_imports['GenotypeCallTable'],java_imports['PositionList'], java_imports['TaxaList'],java_imports['SiteScore'], java_imports['AlleleDepth']],'void'),(object,object,object,object,object))) def __init__(self,*args,**kwargs): """ Instantiates a CoreGenotypeTable Signatures: CoreGenotypeTable(GenotypeCallTable genotype, PositionList positionList, TaxaList taxaList, SiteScore siteScore, AlleleDepth alleleDepth) CoreGenotypeTable(GenotypeCallTable genotype, PositionList positionList, TaxaList taxaList) """ pass
2.265625
2
drfxios/context_processors.py
milano-slesarik/django-drfxios
2
12781003
import json from django.conf import settings from django.core.exceptions import ImproperlyConfigured from django.utils.module_loading import import_string def drfxios(request): DRFXIOS_ROUTER_PATH = getattr(settings, 'DRFXIOS_ROUTER_PATH', None) if not DRFXIOS_ROUTER_PATH: raise ImproperlyConfigured("No DRFXIOS_ROUTER_PATH attr inside settings.py") router = import_string(DRFXIOS_ROUTER_PATH) r = router.registry models_list = [x[0] for x in r] return { 'DRFXIOS': { 'MODELS_LIST': json.dumps(models_list) } }
2.15625
2
build-support/editor_setup.py
msilvey/grapl
0
12781004
#!/usr/bin/env python3 """Encapsulates logic for generating and updating editor configuration files to make it easy to work with Grapl code. Provided as a self-documenting Click app for discoverability and ease of maintenance. """ import json from typing import Dict, List, Union import click import toml from typing_extensions import TypedDict # NOTE: This is essentially to silence the typechecker (and help us # not shoot ourselves in the foot). It's not making any attempt to be # a complete and faithful typing of Pyright configuration documents; # it's just typing what we're currently using. Feel free to update # this as this code develops and matures. class PyrightConfig(TypedDict): pythonVersion: str pythonPlatform: str venvPath: str venv: str verboseOutput: bool reportMissingImports: bool exclude: List[str] executionEnvironments: List[Dict[str, Union[str, List[str]]]] BASE_PYRIGHTCONFIG: PyrightConfig = { "pythonVersion": "3.7", "pythonPlatform": "Linux", "venvPath": "build-support", "venv": "grapl-venv", "verboseOutput": True, "reportMissingImports": True, "exclude": [ "src/js/**", "src/rust/**", ], "executionEnvironments": [ {"root": "pulumi"}, {"root": "pants-plugins"}, # NOTE: We will augment this with the src/python root in the # code below ], } PANTS_TOML = "pants.toml" PYRIGHTCONFIG_JSON = "pyrightconfig.json" def src_python_execution_environment() -> Dict[str, Union[str, List[str]]]: """Generate a pyright "executionEnvironments" entry for code in our `src/python` directory. Since this code is all interrelated, we need to provide the appropriate "extraPaths" for Pyright to properly resolve imports, types, etc. In general, this amounts to adding our Pants source roots, with a few caveats: 1) not all the roots are required for Python code in that directory 2) Our Pants configuration explicitly provides absolute paths, not patterns that may be matched anywhere As such, we first filter out what we don't need, and then "relativize" the paths, since this is what Pyright need. """ pants = toml.load(PANTS_TOML) source_roots = pants["source"]["root_patterns"] if any(not r.startswith("/") for r in source_roots): raise click.ClickException( "Expected all Pants source roots to be absolute, but at least one was not!" ) # We don't care about these source roots for things that are in src/python filtered = [ root for root in source_roots if root not in ( "/3rdparty", "/build-support", "/pants-plugins", "/pulumi", "/src/js/grapl-cdk", "/src/proto", ) ] relativized = [root.lstrip("/") for root in filtered] return {"root": "src/python", "extraPaths": relativized} def write_or_echo(output: str, path: str, write_file: bool) -> None: """ Consolidate logic for whether to write `output` to the file at `path`, or to send it to standard output instead.""" if write_file: with click.open_file(path, "w") as f: f.write(output) click.echo(f"Wrote content to {path} file") else: click.echo(output) @click.command(name="generate") @click.option( "--write-file/--no-write-file", is_flag=True, default=True, show_default=True, help="Controls whether or not to write the generated output to disk, or to standard output.", ) def generate_pyrightconfig(write_file: bool) -> None: """Generate a pyrightconfig.json file from pants.toml. Do this if you have no existing pyrightconfig.json file that you are using. If you already have one, on the other hand, please see the `update` command instead. """ pyrightconfig = BASE_PYRIGHTCONFIG pyrightconfig["executionEnvironments"].append(src_python_execution_environment()) output = json.dumps(pyrightconfig, indent=4) write_or_echo(output, PYRIGHTCONFIG_JSON, write_file) @click.command(name="update") @click.option( "--write-file/--no-write-file", is_flag=True, default=True, show_default=True, help="Controls whether or not to write the generated output to disk, or to standard output.", ) def update_pyrightconfig(write_file: bool) -> None: """Update an existing pyrightconfig.json file. In particular, the `extraPaths` entries for various `executionEnvironments` must be kept in-sync with what we declare in our pants.toml file. Any other changes you may have made to your file will be preserved. """ with click.open_file(PYRIGHTCONFIG_JSON, "r") as f: pyright = json.load(f) execution_environments = pyright["executionEnvironments"] # Preserve other environments; we're only concerned about the # src/python one here new_execution_environments = [ e for e in execution_environments if e["root"] != "src/python" ] new_execution_environments.append(src_python_execution_environment()) pyright.update({"executionEnvironments": new_execution_environments}) output = json.dumps(pyright, indent=4) write_or_echo(output, PYRIGHTCONFIG_JSON, write_file) @click.group(name="pyright") def configure_pyright() -> None: """ Set up Pyright for Python IDE integration. """ configure_pyright.add_command(generate_pyrightconfig) configure_pyright.add_command(update_pyrightconfig) @click.group() def editor_setup() -> None: """A utility for helping to configure IDEs and editors for working with Grapl code.""" editor_setup.add_command(configure_pyright) if __name__ == "__main__": editor_setup()
1.953125
2
monasca_analytics/spark/driver.py
daisuke-fujita/monsaca-analytics_20181107
1
12781005
#!/usr/bin/env python # Copyright (c) 2016 Hewlett Packard Enterprise Development Company, L.P. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import logging import pyspark import monasca_analytics.config.config as config import monasca_analytics.ingestor.base as bi import monasca_analytics.ldp.base as mldp import monasca_analytics.sink.base as msink import monasca_analytics.sml.base as bml import monasca_analytics.spark.aggregator as agg import monasca_analytics.spark.streaming_context as streamingctx import monasca_analytics.voter.base as mvoter logger = logging.getLogger(__name__) class DriverExecutor(object): """Driver part of the job submitted to spark. This is where we control what is submitted to workers, what is driver specific and how the pipeline is constructed. We also execute the pipeline from here. """ def __init__(self, _config): self._links = None self._sources = None self._orchestrator = None self.set_links(config.instantiate_components(_config)) def restart_spark(): self._ssc = streamingctx.create_streaming_context( self._sc, _config) self._restart_spark = restart_spark self._sc = pyspark.SparkContext( appName=_config["spark_config"]["appName"]) self._ssc = streamingctx.create_streaming_context(self._sc, _config) def set_links(self, links): """Set new set of links This function has no effect on the current pipeline. In order to use them, you need to restart the pipeline. """ self._links = links logger.debug("Collect sources...") self._sources = config.collect_sources(self._links) logger.debug("New list of sources: {}".format(self._sources)) self._orchestrator = agg.Aggregator(self) logger.debug("Propagating feature list...") self._propagate_feature_list() def start_pipeline(self): """Start the pipeline""" # Start by connecting the source if self._phase1_required(): logger.info("Phase 1 required, ldp won't produce data until" " smls have finished.") # Connect sources to ingestors self._prepare_phase(self._connect_dependents_phase1) # Preparation step for the orchestrator: # Accumulate everything from the sources self._orchestrator.prepare_final_accumulate_stream_step() # Then prepare the orchestrator self._prepare_orchestrator() else: # Connect sources to ldps logger.info("Phase 1 was not required, skipping it.") self._prepare_phase(self._connect_dependents_phase2) logger.info("Start the streaming context") self._ssc.start() def stop_pipeline(self): logger.debug("Stop spark context.") self._ssc.stop(False, False) logger.debug("Terminate sources.") self._terminate_sources() logger.debug("Restart spark context.") self._restart_spark() def move_to_phase2(self): if self._ssc is not None: logger.debug("Phase 2: Stop SparkStreamingContext.") self._ssc.stop(False, False) logger.debug("Phase 2: Stop sources") self._terminate_sources() logger.debug("Phase 2: Restart streaming...") self._restart_spark() logger.debug("Phase 2: Create new connections") self._prepare_phase(self._connect_dependents_phase2) self._ssc.start() # ? self._ssc.awaitTermination() def _terminate_sources(self): """Terminates the sources.""" for source in self._sources: source.terminate_source() def _phase1_required(self): for src in self._sources: if any(isinstance(el, bi.BaseIngestor) for el in self._links[src]): return True return False def _prepare_orchestrator(self): """ This is a part of phase 1. The orchestrator collects input from all ingestors and then orchestrate the sml pipeline to solve it and provide to LDPs the learned data structure. """ smls = filter(lambda c: isinstance(c, bml.BaseSML), self._links.keys()) sml_with_no_dependents = filter( lambda c: set(self._links[c]).isdisjoint(smls), smls) for sml in sml_with_no_dependents: logger.debug("Append {} to orchestrator".format(sml)) self._orchestrator.append_sml(sml) self._connect_sml_dependents(sml) def _prepare_phase(self, connect_dependent): """Prepare given phase by starting sources. :type connect_dependent: (pyspark.streaming.DStream, monasca_analytics.source.base.BaseSource) -> None :param connect_dependent: Callback that is going to selectively connect the appropriate dependencies of each sources. """ for src in self._sources: logger.debug("Prepare source {}".format(src)) dstream = src.create_dstream(self._ssc) connect_dependent(dstream, src) def _connect_sml_dependents(self, from_component): """Connect an sml component with all its dependencies. During phase 1 this code is running exclusively by the driver at the moment. :type from_component: bml.BaseSML | mvoter.BaseVoter :param from_component: Where we came from. """ for connected_node in self._links[from_component]: # SML can, for now, only be connected to voter. if isinstance(connected_node, mvoter.BaseVoter) and \ isinstance(from_component, bml.BaseSML): logger.debug("Set {} to {}" .format(connected_node, from_component)) from_component.set_voter(connected_node) # Voter can only be connected to LDPs if isinstance(from_component, mvoter.BaseVoter) and \ isinstance(connected_node, mldp.BaseLDP): logger.debug("Append {} to {}" .format(connected_node, from_component)) from_component.append_ldp(connected_node) # We don't connect LDP to anything continue # Only SML can be connected to a sink if isinstance(connected_node, msink.BaseSink): logger.debug("Sink {} into {}" .format(from_component, connected_node)) connected_node.sink_ml(from_component) # Sink can't be connected to anything continue self._connect_sml_dependents(connected_node) def _connect_dependents_phase2(self, dstream, from_component): """Connect a component to its dependencies. During phase 2, only live data processors are considered. All ingestors are shutdown. :type dstream: pyspark.streaming.DStream | None :param dstream: Dstream that will be modified by dependent. It can be None, only if from_component is aggregator, sml or voter. :type from_component: monasca_analytics.component.base.BaseComponent :param from_component: Where we came from. """ for connected_node in self._links[from_component]: # Live data processors are also doing a map, they add # the causality bit to each element in the stream. if isinstance(connected_node, mldp.BaseLDP): logger.debug("Connecting {} to {}".format(from_component, connected_node)) new_dstream = connected_node.map_dstream(dstream) self._connect_dependents_phase2(new_dstream, connected_node) # Sink are at the end of the branch! if isinstance(connected_node, msink.BaseSink): logger.debug("Sink {} into {}".format(from_component, connected_node)) connected_node.sink_dstream(dstream) def _connect_dependents_phase1(self, dstream, from_component): """Connect a component to its dependencies for phase 1. All live data processors are ignored during that phase. :type dstream: pyspark.streaming.DStream | None :param dstream: Dstream that will be modified by dependent. It can be None, only if from_component is aggregator, sml or voter. :type from_component: monasca_analytics.component.base.BaseComponent -- :param from_component: Where we came from. """ for connected_node in self._links[from_component]: # Ingestors "map" the dstream. They are mainly doing worker # specific transformation. Like parsing and vectorizing the # data. if isinstance(connected_node, bi.BaseIngestor): logger.debug("Stream from {} to {}" .format(from_component, connected_node)) new_dstream = connected_node.map_dstream(dstream) # We then connect directly this stream to the orchestrator self._orchestrator.accumulate_dstream_samples(new_dstream) # And we look for sink if any self._connect_dependents_phase1(new_dstream, connected_node) # Sink are at the end of the branch! if isinstance(connected_node, msink.BaseSink): logger.debug("Sink {} into {}" .format(from_component, connected_node)) connected_node.sink_dstream(dstream) def _propagate_feature_list(self): """Set the appropriate features list on each live data processor.""" for source in self._sources: features = source.get_feature_list() for connected_node in self._links[source]: propagated = False if isinstance(connected_node, bi.BaseIngestor): connected_node.set_feature_list(features) propagated = True if isinstance(connected_node, mldp.BaseLDP): connected_node.set_feature_list(features) propagated = True if propagated: logger.info("Feature list {} propagated from {} to {}" .format(features, source, connected_node))
2.09375
2
fw-rde/mnist/rde_new.py
morgankohler/FrankWolfe.jl
0
12781006
import os import tensorflow as tf import numpy as np import matplotlib.pyplot as plt import tensorflow.keras.backend as K from models import load_model, load_adfmodel import instances # GENERAL PARAMETERS MODE = 'joint_untargeted' IMG_SHAPE = [28, 28] # LOAD MODEL model = load_model() generator = instances.load_generator() def get_data_sample(index): return ( generator[index], os.path.splitext(os.path.split(generator.filenames[index])[1])[0], ) def store_single_result(mapping, name, fname, rate, d, subdir): savedir = os.path.join('results', subdir, fname) os.makedirs(savedir, exist_ok=True) # print(mapping.shape) mapping = np.reshape(mapping, IMG_SHAPE) # for line in mapping: # print(line) # raise Exception # for row in mapping: # print(row) # np.save(f'/home/Morgan/fw-rde/mnist/results/{name}.npy', mapping) # print(np.max(mapping)) # print(np.min(mapping)) # mapping = mapping - np.min(mapping) # mapping = mapping / np.max(mapping) # for row in mapping: # print(row) plt.imsave( os.path.join( savedir, f'{name}_rate-{rate}_d-{d}.png' ), mapping.squeeze(), cmap='Greys', vmin=np.min(mapping), vmax=np.max(mapping), format='png', ) def store_pert_img(x, s, p, name, fname, rate, d, subdir): savedir = os.path.join('results', subdir, fname) os.makedirs(savedir, exist_ok=True) # print(mapping.shape) x = np.reshape(x, IMG_SHAPE) s = np.reshape(s, IMG_SHAPE) p = np.reshape(p, IMG_SHAPE) x = x + s*p # for line in mapping: # print(line) # raise Exception # np.save(f'/home/Morgan/fw-rde/mnist/results/{name}.npy', x) plt.imsave( os.path.join( savedir, f'{name}_rate-{rate}_d-{d}.png' ), x.squeeze(), cmap='Greys', vmin=np.min(x), vmax=np.max(x), format='jpg', ) def get_distortion(x, model=model, mode=MODE): x_tensor = tf.constant(x, dtype=tf.float32) s_flat = tf.placeholder(tf.float32, (np.prod(x_tensor.shape),)) s_tensor = tf.reshape(s_flat, x.shape) p_flat = tf.placeholder(tf.float32, (np.prod(x_tensor.shape),)) p_tensor = tf.reshape(p_flat, x.shape) pred = model.predict(x) node = np.argpartition(pred[0, ...], -2)[-1] # target = pred[0, node] unprocessed = x + s_tensor * p_tensor # network_input = (tf.tanh((unprocessed + 37.96046)/255 * 2 - 1) + 1) / 2 * 255 - 37 network_input = tf.clip_by_value(unprocessed, clip_value_min=np.min(x), clip_value_max=np.max(x)) out = model(network_input) if mode == 'joint_untargeted': loss = tf.squeeze(out[..., node]) gradient = K.gradients(loss, [s_flat, p_flat]) f_out = K.function([s_flat, p_flat], [loss]) f_gradient = K.function([s_flat, p_flat], [gradient]) # a = tf.random.uniform(shape=s_flat.shape) # b = tf.random.uniform(shape=s_flat.shape) # # c = f_out([a, b]) # d = f_gradient([a, b]) return lambda s, p: f_out([s, p])[0], lambda s, p: f_gradient([s, p])[0][0], lambda s, p: f_gradient([s, p])[0][1], node, pred def print_model_prediction(x, s, p): print('\n------------------------\n') print(np.max(x)) print(np.min(x)) print('\n------------------------\n') print(np.max(s)) print(np.min(s)) print('\n------------------------\n') print(np.max(p)) print(np.min(p)) print('\n------------------------\n') s = np.reshape(s, x.shape) p = np.reshape(p, x.shape) pert_input = x + s * p print(np.max(pert_input)) print(np.min(pert_input)) print('\n------------------------\n') # for t in [x, pert_input]: # print('\n\n\n\n') # for row in t: # print(row) # raise(Exception) # s = tf.reshape(s, x.shape) # p = tf.reshape(p, x.shape) # pert_input = x+s*p pert_input = tf.convert_to_tensor(pert_input) # pert_input = (tf.tanh((pert_input + 37.96046) / 255 * 2 - 1) + 1) / 2 * 255 - 37 pert_input = tf.clip_by_value(pert_input, clip_value_min=np.min(x), clip_value_max=np.max(x)) sess = tf.Session() with sess.as_default(): pert_input = pert_input.eval() print('\n------------------------\n') print(pert_input.shape) print(np.max(pert_input)) print(np.min(pert_input)) print('\n------------------------\n') # pert_input[pert_input < -37.96046] = -37.96046 # pert_input[pert_input > 255-37.96046] = 255-37.96046 pred0 = model.predict(x, steps=1) pred1 = model.predict(pert_input, steps=1) print(f'orig pred: {pred0}') print(f'pert pred: {pred1}') # x, fname = get_data_sample(0) # # f, gs, gp, n, p = get_distortion(x) # # a = tf.random.uniform(shape=[28*28]) # b = tf.random.uniform(shape=[28*28]) # # out = f(a,b) # # # _=0
2.15625
2
12_find the output/03_In Python/01_GeeksForGeeks/02_Set two/problem_3.py
Magdyedwar1996/python-level-one-codes
1
12781007
values = [1, 2, 3, 4,5,6] numbers = set(values) def checknums(num): if num in numbers: return True else: return False for i in filter(checknums, values): print(i)
3.84375
4
src/minerl/herobraine/hero/handlers/actionable.py
imatge-upc/pixelcoordEDL
1
12781008
from abc import ABC, abstractmethod import gym import numpy as np from minerl.herobraine.hero import AgentHandler from minerl.herobraine.hero import KEYMAP from minerl.herobraine.hero import spaces from minerl.herobraine.hero.spaces import DiscreteRange class CommandAction(AgentHandler): """ An action handler based on commands # Todo: support blacklisting commands. (note this has to work with mergeing somehow) """ def __init__(self, command: str, space: gym.Space): """ Initializes the space of the handler with a gym.spaces.Dict of all of the spaces for each individual command. """ self._command = command super().__init__(space) @property def command(self): return self._command def to_string(self): return self._command def to_hero(self, x): """ Returns a command string for the multi command action. :param x: :return: """ cmd = "" verb = self.command if isinstance(x, np.ndarray): flat = x.flatten().tolist() flat = [str(y) for y in flat] adjective = " ".join(flat) elif isinstance(x, list): adjective = " ".join([str(y) for y in x]) else: adjective = str(x) cmd += "{} {}".format( verb, adjective) return cmd def __or__(self, other): if not self.command == other.command: raise ValueError("Command must be the same between {} and {}".format(self.command, other.command)) return self class ItemListCommandAction(CommandAction): """ An action handler based on a list of items The action space is determiend by the length of the list plus one """ def __init__(self, command: str, items: list): """ Initializes the space of the handler with a gym.spaces.Dict of all of the spaces for each individual command. """ # TODO must check that the first element is 'none' and last elem is 'other' self._command = command self._items = items self._univ_items = ['minecraft:' + item for item in items] assert 'none' in self._items self._default = 'none' super().__init__(self._command, spaces.Enum(*self._items, default=self._default)) @property def items(self): return self._items @property def universal_items(self): return self._univ_items @property def default(self): return self._default def to_hero(self, x): """ Returns a command string for the multi command action. :param x: :return: """ cmd = "" verb = self._command if isinstance(x, np.ndarray): raise NotImplementedError elif isinstance(x, list): raise NotImplementedError elif 0 < x < len(self._items): adjective = self._items[x] cmd += "{} {}".format( verb, adjective) else: cmd += "{} NONE".format( verb) return cmd def from_universal(self, x): raise NotImplementedError() def __or__(self, other): """ Merges two ItemListCommandActions into one by unioning their items. Assert that the commands are the same. """ if not isinstance(other, self.__class__): raise TypeError("other must be an instance of ItemListCommandAction") if self._command != other._command: raise ValueError("Command must be the same for merging") new_items = list(set(self._items) | set(other._items)) return self.__class__(new_items) def __eq__(self, other): """ Asserts equality betwen item list command actions. """ if not isinstance(other, ItemListCommandAction): return False if self._command != other._command: return False # Check that all items are in self._items if not all(x in self._items for x in other._items): return False # Check that all items are in other._items if not all(x in other._items for x in self._items): return False return True class CraftItem(ItemListCommandAction): """ An action handler for crafting items Note when used along side Craft Item Nearby, block lists must be disjoint or from_universal will fire multiple times """ _command = "craft" def to_string(self): return "craft" def __init__(self, items: list): """ Initializes the space of the handler to be one for each item in the list plus one for the default no-craft action (command 0) Items are minecraft resource ID's """ super().__init__(self._command, items) def from_universal(self, obs): if 'diff' in obs and 'crafted' in obs['diff'] and len(obs['diff']['crafted']) > 0: try: x = self._univ_items.index(obs['diff']['crafted'][0]['item']) return obs['diff']['crafted'][0]['item'].split('minecraft:')[-1] except ValueError: return self._default # return self._items.index('other') else: return self._default class CraftItemNearby(CraftItem): """ An action handler for crafting items when agent is in view of a crafting table Note when used along side Craft Item, item lists must be disjoint or from_universal will fire multiple times """ _command = "craftNearby" def to_string(self): return 'nearbyCraft' class SmeltItem(CraftItem): def from_universal(self, obs): if 'diff' in obs and 'smelted' in obs['diff'] and len(obs['diff']['smelted']) > 0: try: x = self._univ_items.index(obs['diff']['smelted'][0]['item']) return obs['diff']['smelted'][0]['item'].split('minecraft:')[-1] except ValueError: return self._default # return self._items.index('other') else: return self._default class SmeltItemNearby(SmeltItem): """ An action handler for crafting items when agent is in view of a crafting table Note when used along side Craft Item, block lists must be disjoint or from_universal will fire multiple times """ _command = 'smeltNearby' def to_string(self): return 'nearbySmelt' class PlaceBlock(ItemListCommandAction): """ An action handler for placing a specific block """ def to_string(self): return 'place' def __init__(self, blocks: list): """ Initializes the space of the handler to be one for each item in the list Requires 0th item to be 'none' and last item to be 'other' coresponding to no-op and non-listed item respectively """ self._items = blocks self._command = 'place' super().__init__(self._command, self._items) self._prev_inv = None # print(self._items) # print(self._univ_items) def from_universal(self, obs): try: for action in obs['custom_action']['actions'].keys(): try: if int(action) == -99 and self._prev_inv is not None: item_name = self._prev_inv[int(-10 + obs['hotbar'])]['name'].split("minecraft:")[-1] if item_name not in self._items: raise ValueError() else: return item_name except ValueError: return self._default except TypeError: print('Saw a type error in PlaceBlock') raise TypeError except KeyError: return self._default finally: try: self._prev_inv = obs['slots']['gui']['slots'] except KeyError: self._prev_inv = None return self._default class EquipItem(ItemListCommandAction): """ An action handler for observing a list of equipped items """ def to_string(self): return 'equip' def __init__(self, items: list): """ Initializes the space of the handler to be one for each item in the list plus one for the default no-craft action """ self._items = items self._command = 'equip' super().__init__(self._command, self._items) self.previous = self._default # print(self._items) # print(self._univ_items) def from_universal(self, obs): try: if obs['slots']['gui']['type'] == 'class net.minecraft.inventory.ContainerPlayer': hotbar_index = int(obs['hotbar']) item = self._univ_items.index(obs['slots']['gui']['slots'][-10 + hotbar_index]['name']) if item != self.previous: self.previous = item return obs['slots']['gui']['slots'][-10 + hotbar_index]['name'].split('minecraft:')[-1] except KeyError: return self._default except ValueError: return self._default # return self._items.index('other') return self._default def reset(self): self.previous = self._default class ContinuousMovementAction(CommandAction, ABC): """ Handles player control actions """ def add_to_mission_spec(self, mission_spec): mission_spec.allowAllContinuousMovementCommands() pass class Camera(ContinuousMovementAction): """ Uses <delta_pitch, delta_yaw> vector in degrees to rotate the camera. pitch range [-180, 180], yaw range [-180, 180] """ def to_string(self): return 'camera' def __init__(self): self._command = 'camera' super().__init__(self.command, spaces.Box(low=-180, high=180, shape=[2], dtype=np.float32)) def from_universal(self, x): if 'custom_action' in x and 'cameraYaw' in x['custom_action'] and 'cameraPitch' in x['custom_action']: delta_pitch = x['custom_action']['cameraPitch'] delta_yaw = x['custom_action']['cameraYaw'] assert not np.isnan(np.sum(x['custom_action']['cameraYaw'])), "NAN in action!" assert not np.isnan(np.sum(x['custom_action']['cameraPitch'])), "NAN in action!" return np.array([-delta_pitch, -delta_yaw], dtype=np.float32) else: return np.array([0.0, 0.0], dtype=np.float32) class KeyboardAction(ContinuousMovementAction): """ Handles keyboard actions. """ def to_string(self): return self.command def __init__(self, command, *keys): if len(keys) == 2: # Like move or strafe. Example: -1 for left, 1 for right super().__init__(command, DiscreteRange(-1, 2)) else: # Its a n-key action with discrete items. # Eg hotbar actions super().__init__(command, spaces.Discrete(len(keys) + 1)) self.keys = keys def from_universal(self, x): actions_mapped = list(x['custom_action']['actions'].keys()) # actions_mapped is just the raw key codes. # for action in x['custom_action']['actions'].keys(): # try: # actions_mapped += [KEYMAP[action]] # except KeyError: # pass offset = self.space.begin if isinstance(self.space, DiscreteRange) else 0 default = 0 for i, key in enumerate(self.keys): if key in actions_mapped: if isinstance(self.space, DiscreteRange): return i * 2 + offset else: return i + 1 + offset # if "BUTTON1" in actions_mapped: # print("BUTTON1") # If no key waspressed. return default class SingleKeyboardAction(ContinuousMovementAction): """ Handles keyboard actions. """ def to_string(self): return self.command def __init__(self, command, key): super().__init__(command, spaces.Discrete(2)) self.key = key def from_universal(self, x): if 'custom_action' in x and 'actions' in x['custom_action']: if self.key in x['custom_action']['actions'].keys(): return 1 else: return 0 def __or__(self, other): """ Combines two keyboard actions into one by unioning their keys. """ if not isinstance(other, KeyboardAction): raise TypeError("other must be an instance of KeyboardAction") new_keys = list(set(self.keys + other.keys)) return KeyboardAction(self._command, new_keys) def __eq__(self, other): """ Tests for equality between two keyboard actions. """ if not isinstance(other, KeyboardAction): return False return self._command == other._command and self.keys == other.keys
2.71875
3
PulseView_C2_decoder/c2/__init__.py
debug-silicon/C8051F34x_Glitch
34
12781009
''' This is a decoder for SiLabs C2 debug protocol. ''' from .pd import Decoder
0.945313
1
backend/core/urls.py
open-contracting/pelican-frontend
0
12781010
<filename>backend/core/urls.py from django.urls import include, path urlpatterns = [ path("", include("dqt.urls"), name="api"), path("datasets/", include("controller.urls"), name="controller"), path("", include("exporter.urls"), name="exporter"), ]
1.765625
2
test/crop_image_partial.py
mskim99/Pix2Vox_modify
0
12781011
<gh_stars>0 import cv2 import numpy as np f_index = 6 m_index = 57 c_index = 276 s_index = 298 a_index = 1010 c_x = 136 c_y = 720 s_x = 116 s_y = 692 a_x = 132 a_y = 134 resolution = 256 ''' c_img = cv2.imread('I:/DK_Data_Process/i_1-2_Slices/f_' + str(f_index).zfill(3) + '/coronal/f_' + str(f_index).zfill(3) + '_Coronal_' + str(c_index).zfill(5) + '.bmp') if type(c_img) is np.ndarray: c_cropped_img = c_img[c_y: c_y + resolution, c_x: c_x + resolution] cv2.imwrite('I:/DK_Data_Process/i_1-2_Slices_Cropped/f_' + str(f_index).zfill(3) + '_Coronal_cropped.bmp', c_cropped_img) ''' ''' c_img = cv2.imread('I:/DK_Data_Process/i_1-2_Slices/f_' + str(f_index).zfill(3) + '/coronal/f_' + str(f_index).zfill(2) + '_Coronal_' + str(c_index).zfill(5) + '.bmp') if type(c_img) is np.ndarray: c_cropped_img = c_img[c_y: c_y + resolution, c_x: c_x + resolution] cv2.imwrite('I:/DK_Data_Process/i_1-2_Slices_Cropped/f_' + str(f_index).zfill(3) + '_Coronal_cropped.bmp', c_cropped_img) ''' ''' a_img = cv2.imread('I:/DK_Data_Process/i_1-2_Slices/f_' + str(f_index).zfill(3) + '/axial/f_' + str(f_index).zfill(3) + '_Axial_' + str(a_index).zfill(5) + '.bmp') if type(a_img) is np.ndarray: a_cropped_img = a_img[a_y: a_y + resolution, a_x: a_x + resolution] cv2.imwrite('I:/DK_Data_Process/i_1-2_Slices_Cropped/f_' + str(f_index).zfill(3) + '_Axial_cropped.bmp', a_cropped_img) ''' ''' a_img = cv2.imread('I:/DK_Data_Process/i_1-2_Slices/f_' + str(f_index).zfill(3) + '/axial/f_' + str(f_index).zfill(3) + '_Axial_' + str(a_index).zfill(5) + '.bmp') if type(a_img) is np.ndarray: a_cropped_img = a_img[a_y: a_y + resolution, a_x: a_x + resolution] cv2.imwrite('I:/DK_Data_Process/i_1-2_Slices_Cropped/f_' + str(f_index).zfill(3) + '_Axial_cropped.bmp', a_cropped_img) ''' s_img = cv2.imread('I:/DK_Data_Process/i_1-2_Slices/f_' + str(f_index).zfill(3) + '/sagittal/f_' + str(f_index).zfill(3) + '_Sagittal_' + str(s_index).zfill(5) + '.bmp') if type(s_img) is np.ndarray: s_cropped_img = s_img[s_y: s_y + resolution, s_x: s_x + resolution] cv2.imwrite('I:/DK_Data_Process/i_1-2_Slices_Cropped/f_' + str(f_index).zfill(3) + '_Sagittal_cropped.bmp', s_cropped_img) ''' s_img = cv2.imread('I:/DK_Data_Process/i_1-2_Slices/m_' + str(m_index).zfill(3) + '/sagittal/m_' + str(m_index).zfill(2) + '_Sagittal_' + str(s_index).zfill(5) + '.bmp') if type(s_img) is np.ndarray: s_cropped_img = s_img[s_y: s_y + resolution, s_x: s_x + resolution] cv2.imwrite('I:/DK_Data_Process/i_1-2_Slices_Cropped/m_' + str(m_index).zfill(3) + '_Sagittal_cropped.bmp', s_cropped_img) ''' ''' c_img = cv2.imread('I:/DK_Data_Process/i_1-2_Slices/m_' + str(m_index).zfill(3) + '/coronal/m_' + str(m_index).zfill(2) + '_Coronal_' + str(c_index).zfill(5) + '.bmp') if type(c_img) is np.ndarray: c_cropped_img = c_img[c_y: c_y + resolution, c_x: c_x + resolution] cv2.imwrite('I:/DK_Data_Process/i_1-2_Slices_Cropped/m_' + str(m_index).zfill(3) + '_Coronal_cropped.bmp', c_cropped_img) ''' ''' a_img = cv2.imread('I:/DK_Data_Process/i_1-2_Slices/m_' + str(m_index).zfill(3) + '/axial/m_' + str(m_index).zfill(2) + '_Axial_' + str(a_index).zfill(5) + '.bmp') if type(a_img) is np.ndarray: a_cropped_img = a_img[a_y: a_y + resolution, a_x: a_x + resolution] cv2.imwrite('I:/DK_Data_Process/i_1-2_Slices_Cropped/m_' + str(m_index).zfill(3) + '_Axial_cropped.bmp', a_cropped_img) '''
2.171875
2
tests/settings.py
hadizakialqattan/simple-api
0
12781012
from app import crud, database, schemas from .IO import URLs def create_users(): """ create test users: - username: admin, password: <PASSWORD>, isadmin: "true" - username: user2, password: <PASSWORD>, isadmin: "false" """ if not crud.get_user( db=database.SessionLocal(), username="admin" ) and not crud.get_admins(db=database.SessionLocal()): user = schemas.UserCreate( **{"username": "admin", "password": "<PASSWORD>", "isadmin": "true"} ) crud.create_user(db=database.SessionLocal(), user=user) if not crud.get_user(db=database.SessionLocal(), username="user2"): user = schemas.UserCreate( **{"username": "user2", "password": "<PASSWORD>", "isadmin": "false"} ) crud.create_user(db=database.SessionLocal(), user=user) def create_configs(): """ create test configs """ # admin default config for testing config1 = schemas.ConfigCreate( **{ "owner": "admin", "name": "api-1", "metadata": { "name": "SimpleAPI", "url": "http://127.0.0.1:5057", "database": { "name": "apidb", "type": "sql", "ms": "postgresql", "host": "0.0.0.0", "port": "5432", "enabled": "true", "running": "true", }, "enabled": "true", "running": "true", }, "note": "The api has been enabled.", } ) # user2 default config for testing config2 = schemas.ConfigCreate( **{ "owner": "user2", "name": "api-2", "metadata": { "name": "SimpleAPI", "url": "http://127.0.0.1:5057", "database": { "name": "apidb", "type": "sql", "ms": "postgresql", "host": "0.0.0.0", "port": "5432", "enabled": "true", "running": "false", }, "enabled": "true", "running": "false", }, "note": "The api has been enabled without the DB!", } ) # create admin config if not crud.get_config(db=database.SessionLocal(), name="api-1", owner="admin"): crud.create_config(db=database.SessionLocal(), config=config1, owner="admin") # create user2 config if not crud.get_config(db=database.SessionLocal(), name="api-2", owner="user2"): crud.create_config(db=database.SessionLocal(), config=config2, owner="user2")
2.703125
3
minydra/__init__.py
pg2455/minydra
0
12781013
from .parser import Parser __version__ = "0.1.2" def parse_args( verbose=0, allow_overwrites=True, warn_overwrites=True, parse_env=True, warn_env=True, ): def decorator(function): def wrapper(*args, **kwargs): parser = Parser( verbose=verbose, allow_overwrites=allow_overwrites, warn_overwrites=warn_overwrites, parse_env=parse_env, warn_env=warn_env, ) result = function(parser.args) return result return wrapper return decorator
3.078125
3
but/trades/views/goods_modify.py
yevgnenll/but
4
12781014
<reponame>yevgnenll/but from django.views.generic.edit import UpdateView from django.contrib.auth.mixins import LoginRequiredMixin from trades.models import Sell from .base import GoodsSellBase class SellUpdateView(LoginRequiredMixin, GoodsSellBase, UpdateView): fields = [ 'title', 'sub_title', 'goods_name', 'is_public', 'stock', 'price', 'sub_image', 'welcome_image', 'second_image', 'goods_description', ] template_name = "trades/goods_modify.html" slug_field = "hash_id" def form_valid(self, form): return super(SellUpdateView, self).form_valid(form)
1.882813
2
Algorithms/exponent.py
Sinchiguano/codingProblems_Python
2
12781015
#! /usr/bin/env python # -*- coding: utf-8 -*- # vim:fenc=utf-8 # # Copyright © 2018 <NAME> <<EMAIL>> # # Distributed under terms of the BSD license. """ """ #We've started a recursive function below called #exponent_calc(). It takes in two integer parameters, base #and expo. It should return the mathematical answer to #base^expo. For example, exponent_calc(5, 3) should return #125: 5^3 = 125. # #The code is almost done - we have our base case written. #We know to stop recursing when we've reached the simplest #form. When the exponent is 0, we return 1, because anything #to the 0 power is 1. But we are missing our recursive call! # #Fill in the marked line with the recursive call necessary #to complete the function. Do not use the double-asterisk #operator for exponentiation. Do not use any loops. # #Hint: Notice the similarity between exponentiation and #factorial: # 4! = 4! = 4 * 3!, 3! = 3 * 2!, 2! = 2 * 1 # 2^4 = 2 * 2^3, 2^3 = 2 * 2^2, 2^2 = 2 * 2^1, 2^1 = 2 * 2^0 def exponent_calc(base, expo): if expo == 0: return 1 else: return base*exponent_calc(base,expo-1) #Complete this line! #Below are some lines of code that will test your function. #You can change the value of the variable(s) to test your #function with different inputs. # #If your function works correctly, this will originally #print: 125 print(exponent_calc(5, 3)) def countDown(start): if start <= 0: print(start) else: countDown(start - 1) print(start) countDown(5) ''' That's right! If we print after the call, then all the recursive calls will be performed before a print statement is ever run. So, the first print statement will be when start is 0. Then, after that, it will climb back up the tree, printing for start = 1, then 2, then 3, then 4, then 5. '''
4.625
5
scytale/crypto/rsa.py
MarcoYLyu/scytale
0
12781016
<reponame>MarcoYLyu/scytale<gh_stars>0 from .. import algorithm as algo from .pkc_template import PKC import numpy as np __all__ = ['RSA'] class RSA(PKC): def __init__(self, e, p, q): assert(algo.gcd(e, (p - 1) * (q - 1)) == 1) self.e = e self.p = p self.q = q self.d = algo.inverse_mod(e, (p - 1) * (q - 1)) self.N = p * q def encrypt(self, text): return super().encrypt(text) def decrypt(self, carr): return super().decrypt(carr) def _encrypt(self, m): return pow(m, self.e) % self.N def _decrypt(self, c): return pow(c, self.d) % self.N
2.75
3
CodingBat/Python/List-2/sum13.py
Togohogo1/pg
0
12781017
<filename>CodingBat/Python/List-2/sum13.py<gh_stars>0 ''' Return the sum of the numbers in the array, returning 0 for an empty array. Except the number 13 is very unlucky, so it does not count and numbers that come immediately after a 13 also do not count. ''' def sum13(nums): nums.append(0) count = 0 for i in range(len(nums)): if nums[i] == 13 and nums[i + 1] != 13: count -= (nums[i] + nums[i + 1]) elif nums[i] == 13: count -= nums[i] count += nums[i] return count
3.953125
4
main_animal.py
ObamaBinHiding/den
0
12781018
#!/usr/bin/python3 #Classes for side project with Gabe #Authors: # <NAME> <<EMAIL>> # ... #imports needed from random import randint #classes class Animal: """ This is the main animal class of the mini-game, all other animal classes come from this one """ def __init__(self): #agility attributes self.speed = 0 #damage attributes self.attack = 0 #health attributes self.health = 0 self.defense = 0 self.defenseFactor = 0 def animalSound(self): return '' def attackDamage(self): #Simple method that returns the total damage this animal will do return(self.speed*self.attack)#'*' is times, 3*4=12 def defensePadding(self, damageIn): #Simple method that will be run uppon receiving damage, helps negate some of the damage comming in return(damageIn-(self.defense+(randint(1, self.defenseFactor))))#Gabe, randint(x, y) gives us a random number in between those two points def takeDamage(self, damage): #Simple method that removes health self.health -= damage """ TODO - Gabe: Create these classes in this file: class Reptile(Animal): <- the Animal inside the parenthesis means we are inheriting from the Animal class, if you read you know what it means. If you didn't, go read it. {...} class Mammal(Animal): {...} class Bird(Animal): {...} START THESE BY TONIGHT, use the default one I made to help you. add your name to the authors(replace the '...') when you work on it. """
4.0625
4
contraste/examples/example.py
gmilare/ser-347
0
12781019
# # This file is part of Contraste. # Copyright (C) 2021 INPE. # # Contraste is free software; you can redistribute it and/or modify it # under the terms of the MIT License; see LICENSE file for more details. # ##Instalação do pacote gdal como pré-requisito do pacote from osgeo import gdal ##instalação do pacote pip install contraste-1.0.tar.gz ##importar a função de contrastre raiz quadrada do pacote #outras funções disponíveis: QUADRATICO, MINMAX, LINEAR, NEGATIVO e EQUALIZACAO from contraste.RaizQuadrada import RAIZQUADRADA ##Chamada da função RAIZQUADRADA() # A função listará os arquivos .tif do diretório raiz. Selecionar a imagem (Landsat 8) de acordo com a numeração. # O contraste será aplicado na imagem selecionada ####importar a função de contrastre por classe from contraste.PorClasse import PORCLASSE ##Chamada da função PORCLASSE() # A função listará os arquivos .tif do diretório raiz. Selecionar a imagem (Landsat 8) de acordo com a numeração e, posteriormente, a imagem classificada (Mapbiomas). # Escolha se o contraste será otimizado (1) ou personalizado (2)
2.25
2
invenio_app_ils/records/resolver/jsonresolver/document_series.py
lauren-d/invenio-app-ils
0
12781020
# -*- coding: utf-8 -*- # # Copyright (C) 2018-2019 CERN. # # invenio-app-ils is free software; you can redistribute it and/or modify it # under the terms of the MIT License; see LICENSE file for more details. """Resolve the referred Series for a Document.""" import jsonresolver from invenio_pidstore.errors import PIDDoesNotExistError from werkzeug.routing import Rule from ...api import Document, Series from ..resolver import get_field_value_for_record as get_field_value # Note: there must be only one resolver per file, # otherwise only the last one is registered @jsonresolver.hookimpl def jsonresolver_loader(url_map): """Resolve the referred Series for a Document record.""" from flask import current_app def series_resolver(document_pid): """Resolve the referred Series for a Document record.""" try: series_objs = get_field_value(Document, document_pid, "series_objs") series = [] for obj in series_objs: record = Series.get_record_by_pid(obj["pid"]) keep_keys = ("series_pid", "mode_of_issuance", "issn", "title") for key in list(record): if key not in keep_keys: del record[key] record["volume"] = obj["volume"] series.append(record) return series except (KeyError, PIDDoesNotExistError): return {} url_map.add( Rule( "/api/resolver/documents/<document_pid>/series", endpoint=series_resolver, host=current_app.config.get("JSONSCHEMAS_HOST"), ) )
2.03125
2
nsd1804/python/day08/tcpclient.py
MrWangwf/nsd1806
0
12781021
import socket host = '192.168.4.254' port = 12345 addr = (host, port) # 指定要连接的服务器 c = socket.socket() c.connect(addr) while True: data = input('> ') + '\r\n' data = data.encode() c.send(data) if data.strip() == b'quit': break rdata = c.recv(1024).decode() # 将bytes转成str类型 print(rdata, end='') c.close()
3.0625
3
python/lfmmexample.py
ejyoo921/FMM3D
71
12781022
#!/usr/bin/env python import fmm3dpy as fmm import numpy as np # # This is a sample code to demonstrate how to use # the fmm libraries # # sample with one density, sources to sources, # charge interactions, and potential only # n = 200000 nd = 1 sources = np.random.uniform(0,1,(3,n)) eps = 10**(-5) charges = np.random.uniform(0,1,n) out = fmm.lfmm3d(eps=eps,sources=sources,charges=charges,pg=1) # sample with a vector of densities, sources to # sources and targets, dipole interactions, # potential and gradietns nd = 3 nt = 1870 targ = np.random.uniform(0,1,(3,nt)) dipvecs = np.random.uniform(0,1,(nd,3,n)) out = fmm.lfmm3d(eps=eps,sources=sources,dipvec=dipvecs,\ targets=targ,nd=nd,pg=2,pgt=2)
1.992188
2
Project/data/game.py
Nikurkel/4InARow
0
12781023
<filename>Project/data/game.py<gh_stars>0 import random import time import threading class Game: def __init__(self, id): self.id = id self.wins = [0,0] self.ready = False self.nextPlayer = random.randint(1,2) self.state = [([0]*7) for i in range(5)] self.chat = ['2,The Chat starts here', '2,type /help for commands'] self.debug = False # testing self.waitBetweenRounds = 3 self.roundDone = False self.userNames = ["Player 1", "Player 2"] self.colors = { "player1_1": (50,50,150), "player2_1": (150,50,50), "player1_2": (150,150,150), "player2_2": (150,150,150)} def move(self, player, number): if self.debug: print(f"player {player} trys a move at x = {number - 1}") if not self.roundDone: if player + 1 == self.nextPlayer: for e in reversed(self.state): if e[number - 1] == 0: print(f"player {player} makes move at x = {number - 1}") e[number - 1] = self.nextPlayer if self.nextPlayer == 1: self.nextPlayer = 2 else: self.nextPlayer = 1 break self.checkState() def checkState(self): if self.debug: print("checking State") for player in range(1,3): if self.checkHorizontals(player): self.winner(player) break elif self.checkVerticals(player): self.winner(player) break elif self.checkDiagonals(player): self.winner(player) break if self.checkNoMoreMoves(): self.winner(-1) def checkHorizontals(self, player): if self.debug: print("checking Horizontals, Player", player) for x in range(len(self.state[0]) - 3): for y in range(len(self.state)): if self.state[y][x] == player and self.state[y][x + 1] == player and self.state[y][x + 2] == player and self.state[y][x + 3] == player: self.state[y][x] = player + 2 self.state[y][x + 1] = player + 2 self.state[y][x + 2] = player + 2 self.state[y][x + 3] = player + 2 return True return False def checkVerticals(self, player): if self.debug: print("checking Verticals, Player", player) for x in range(len(self.state[0])): for y in range(len(self.state) - 3): if self.state[y][x] == player and self.state[y + 1][x] == player and self.state[y + 2][x] == player and self.state[y + 3][x] == player: self.state[y][x] = player + 2 self.state[y + 1][x] = player + 2 self.state[y + 2][x] = player + 2 self.state[y + 3][x] = player + 2 return True return False def checkDiagonals(self, player): if self.debug: print("checking Diagonals, Player", player) for x in range(len(self.state[0])): for y in range(len(self.state) - 3): if x >= 3: if self.state[y][x] == player and self.state[y + 1][x - 1] == player and self.state[y + 2][x - 2] == player and self.state[y + 3][x - 3] == player: self.state[y][x] = player + 2 self.state[y + 1][x - 1] = player + 2 self.state[y + 2][x - 2] = player + 2 self.state[y + 3][x - 3] = player + 2 return True if x <= 3: if self.state[y][x] == player and self.state[y + 1][x + 1] == player and self.state[y + 2][x + 2] == player and self.state[y + 3][x + 3] == player: self.state[y][x] = player + 2 self.state[y + 1][x + 1] = player + 2 self.state[y + 2][x + 2] = player + 2 self.state[y + 3][x + 3] = player + 2 return True return False def checkNoMoreMoves(self): if self.debug: print("checking for possible moves") for a in self.state[0]: if a == 0: return False return True def winner(self, player): if self.debug: print(self.state[0]) print(self.state[1]) print(self.state[2]) print(self.state[3]) print(self.state[4]) if player == -1: print("no winner") else: print(f"winner is Player {player}") self.wins[player - 1] += 1 self.roundDone = True self.newMsg(f"2,game restarts in {self.waitBetweenRounds} seconds") timer = threading.Timer(self.waitBetweenRounds, self.restart) timer.start() def restart(self): nxt = random.randint(1, 2) self.newMsg(f"{nxt - 1},Player {nxt} starts") self.nextPlayer = nxt self.state = [([0] * 7) for i in range(5)] self.roundDone = False def newMsg(self, msg): self.chat.append(msg) def newCmd(self, msg): self.chat.append(f"{msg[0]},{msg[2:]}") if msg[3:] == "reset wins": self.wins = [0,0] self.chat.append(f"2,Player {int(msg[0]) + 1} has reset the wins") elif msg[3:] == "reset state": self.newMsg(f"2,game restarts in {self.waitBetweenRounds} seconds") timer = threading.Timer(self.waitBetweenRounds, self.restart) timer.start() elif msg[3:] == "reset chat": self.chat = [] self.chat.append(f"2,Player {int(msg[0]) + 1} has reset the chat") elif msg[3:7] == "say ": self.chat.append(f"2,Player {int(msg[0]) + 1} {msg[7:]}") elif msg[3:7] == "roll": if msg[8:].isnumeric() and int(msg[8:]) > 0: self.chat.append(f"2,Player {int(msg[0]) + 1} rolls {random.randint(1, int(msg[8:]))} (custom)") else: self.chat.append(f"2,Player {int(msg[0]) + 1} rolls {random.randint(1,6)} (normal)") elif msg[3:9] == "delay " and msg[9:].isnumeric(): self.chat.append(f"2,Player {int(msg[0]) + 1} has set delay to {msg[9:]} s") self.waitBetweenRounds = int(msg[9:]) elif msg[3:] == "help": self.chat.append("2,/help | server commands") self.chat.append("2,/help 2 | client commands") self.chat.append("2,/reset wins | wins = 0 - 0") self.chat.append("2,/reset state | reset board") self.chat.append("2,/reset chat | reset chat") self.chat.append("2,/say x | Sys: Player x (text)") self.chat.append("2,/roll | random 1 - 6") self.chat.append("2,/roll x | random 1 - x (number)") self.chat.append("2,/delay x | x sec between rounds") self.chat.append("2,/name x | username = x") self.chat.append("2,/close | close game") elif msg[3:] == "help 2": self.chat.append("2,//color Element Hex-Value") self.chat.append("2,Element: me1, me2, text,") self.chat.append("2,background, buttons, chat") self.chat.append("2,Hex-Value: 000000 - ffffff") self.chat.append("2,//save x| save theme x (name)") self.chat.append("2,//load x | load theme x (name)") self.chat.append("2,//themes | list your themes") self.chat.append("2,//scale x | width = x (pixels)") self.chat.append("2,//ping | roundtrip time to server (ms)") elif msg[3:14] == "color this ": c1 = msg[14:20] c2 = msg[21:27] if msg[0] == "0": self.colors["player1_1"] = tuple(int(c1[i:i + 2], 16) for i in (0, 2, 4)) # rgb hex -> tuple self.colors["player1_2"] = tuple(int(c2[i:i + 2], 16) for i in (0, 2, 4)) elif msg[0] == "1": self.colors["player2_1"] = tuple(int(c1[i:i + 2], 16) for i in (0, 2, 4)) self.colors["player2_2"] = tuple(int(c2[i:i + 2], 16) for i in (0, 2, 4)) elif msg[3:8] == "name ": self.userNames[int(msg[0])] = msg[8:] else: self.chat.append(f"2,Command {msg} not found")
3.21875
3
migrations/versions/50701261db54_.py
PaulloClara/Toilter
0
12781024
<reponame>PaulloClara/Toilter """empty message Revision ID: 50701261db54 Revises: Create Date: 2019-03-01 14:34:02.960151 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = '50701261db54' down_revision = None branch_labels = None depends_on = None def upgrade(): # ### commands auto generated by Alembic - please adjust! ### op.create_table('users', sa.Column('id_', sa.Integer(), nullable=False), sa.Column('username', sa.String(), nullable=True), sa.Column('password', sa.String(), nullable=True), sa.Column('name', sa.String(), nullable=True), sa.Column('email', sa.String(), nullable=True), sa.PrimaryKeyConstraint('id_'), sa.UniqueConstraint('email'), sa.UniqueConstraint('username') ) op.create_table('follow', sa.Column('id_', sa.Integer(), nullable=False), sa.Column('userId', sa.Integer(), nullable=True), sa.Column('followId', sa.Integer(), nullable=True), sa.ForeignKeyConstraint(['followId'], ['users.id_'], ), sa.ForeignKeyConstraint(['userId'], ['users.id_'], ), sa.PrimaryKeyConstraint('id_') ) op.create_table('posts', sa.Column('id_', sa.Integer(), nullable=False), sa.Column('content', sa.Text(), nullable=True), sa.Column('userId', sa.Integer(), nullable=True), sa.ForeignKeyConstraint(['userId'], ['users.id_'], ), sa.PrimaryKeyConstraint('id_') ) # ### end Alembic commands ### def downgrade(): # ### commands auto generated by Alembic - please adjust! ### op.drop_table('posts') op.drop_table('follow') op.drop_table('users') # ### end Alembic commands ###
1.882813
2
xeasy_ml/xes_ml_arch/src/tests/feature_enginnering_test/test_discretize.py
jiayanduo456/xeasy-ml
10
12781025
<reponame>jiayanduo456/xeasy-ml # -*-coding:utf-8-*- # @version: 0.0.1 # License: MIT import unittest import sys import pandas as pd import configparser import copy sys.path.append("../../../..") from xes_ml_arch.src.feature_enginnering import feature_discretizer class TestDiscretize(unittest.TestCase): def setUp(self): self._data_path = "../data/test_discretize.txt" self._config = "./conf/test_discretize.conf" self._data = pd.read_csv(self._data_path) self._conf = configparser.ConfigParser() self._conf1 = configparser.ConfigParser() self._conf.read(self._config) self._conf1.read("./conf/test_discretize_try.conf") self._ins = feature_discretizer.FeatureDiscretizer(data=self._data, conf=self._conf, log_path = '../log/log.conf') self._ins_try = feature_discretizer.FeatureDiscretizer(data=None, conf=self._conf1,log_path = '../log/log.conf') def test_excute(self): self.assertTrue(self._ins.excute()) self.assertFalse(self._ins_try.excute()) def test_get_data(self): self._ins.reset(data=self._data, conf=self._conf) tmp_data = copy.copy(self._data) self._ins.excute() data = self._ins.get_data # print data # print tmp_data res = pd.merge(data, tmp_data, on=["userid"], suffixes=["_dis", "_old"]) print("res:\n", res) res_diff = res[res["age_dis"] != res["targ3_dis"]] print("res diff:\n", res_diff) if __name__ == '__main__': unittest.main()
2.265625
2
srcs/sg/objects/rational_number_object.py
pomponchik/computor_v2
0
12781026
from srcs.sg.objects.abstract_object import AbstractObject from srcs.errors import RuntimeASTError class RationalNumberObject(AbstractObject): type_mark = 'r' def __init__(self, number, node): self.number = int(number) if int(number) == number else number self.node = node self.is_real_number = True if isinstance(self.number, float) else False @classmethod def create_from_node(cls, node): source = node.ast_node.tokens[0].source.replace(' ', '').replace('\t', '') number = float(source) if '.' in source else int(source) return cls(number, node) def representation(self, context): return f'{self.number}' def type_representation(self): if self.is_real_number: return 'rational real number' return 'rational number' def real_operation(self, other, operation, operation_node): if other.type_mark == self.type_mark: if operation == '+': number = self.number + other.number return RationalNumberObject(number, self.node) elif operation == '*': number = self.number * other.number return RationalNumberObject(number, self.node) elif operation == '/': if other.number == 0: raise RuntimeASTError('division by 0', other.node) number = self.number / other.number return RationalNumberObject(number, self.node) elif operation == '-': number = self.number - other.number return RationalNumberObject(number, self.node) elif operation == '^': if type(other.number) is float: raise RuntimeASTError('not a whole degree', other.node) if other.number < 0: raise RuntimeASTError('the exponent is less than zero', other.node) number = (self.number)**(other.number) return RationalNumberObject(number, self.node) elif operation == '%': if other.number == 0: raise RuntimeASTError('division by 0', other.node) number = self.number % other.number return RationalNumberObject(number, self.node) elif other.type_mark == 'c': if operation == '-': inverted_other = other.real_operation(type(self)(-1), '*', self.node) new_real_part = inverted_other.real_part + self.number new_imaginary_part = inverted_other.imaginary_part return type(other)(self.node, new_real_part, new_imaginary_part) raise RuntimeASTError(f'the "{operation}" operation between {self.type_representation()} and {other.type_representation()} is not defined', operation_node)
3.015625
3
pytest_cases/tests/cases/legacy/intermediate/test_shared_cases.py
chinghwayu/python-pytest-cases
0
12781027
from ..example_code import super_function_i_want_to_test, super_function_i_want_to_test2 from pytest_cases import test_target, case_tags try: # python 3.5+ from pytest_cases import CaseData except ImportError: pass @test_target(super_function_i_want_to_test) def case_for_function1(): # type: () -> CaseData ins = dict(a=1, b=2) outs = 2, 3 return ins, outs, None @test_target(super_function_i_want_to_test2) def case_for_function2(): # type: () -> CaseData ins = dict(a=1, b=2) outs = 2, 3 return ins, outs, None @case_tags(super_function_i_want_to_test, super_function_i_want_to_test2) def case_for_function_1_and_2(): # type: () -> CaseData ins = dict(a=1, b=2) outs = 2, 3 return ins, outs, None
2.3125
2
examples/DecryptLoginExamples/crawlers/weibolottery/__init__.py
hedou/DecryptLogin
0
12781028
'''initialize''' from .weibolottery import WeiboLottery
0.980469
1
jupyter_docker/kernelspec.py
mariusvniekerk/jupyter_docker_kernel
0
12781029
"""Tools for managing kernel specs""" # Copyright (c) <NAME> # Distributed under the terms of the Modified BSD License. from jupyter_client.kernelspec import KernelSpec, KernelSpecManager from traitlets import Unicode, List, Type from traitlets.config import LoggingConfigurable import os class DockerKernelSpec(KernelSpec): docker_image_name = Unicode() docker_args = List() class DockerKernelSpecManager(KernelSpecManager): kernel_spec_class = Type(DockerKernelSpec, config=True, help="""The kernel spec class. This is configurable to allow subclassing of the KernelSpecManager for customized behavior. """ ) class DockerKernelManagerMixin(LoggingConfigurable): docker_executable = Unicode("docker") docker_default_options = List(["--rm", "--net=host"]) from jupyter_client.ioloop.manager import IOLoopKernelManager class DockerKernelManager(IOLoopKernelManager, DockerKernelManagerMixin): def format_kernel_cmd(self, extra_arguments=None): cmd = super(DockerKernelManager, self).format_kernel_cmd(extra_arguments) # Prepend all the docker stuff. This seems to be sufficient. if self.kernel_spec.docker_image_name: connection_path, _ = os.path.split(self.connection_file) # Right now environment variables are dropped on the floor docker_prefix = [self.docker_executable] \ + self.docker_default_options \ + self.kernel_spec.docker_args \ + ['--user={}:{}'.format(os.getuid(), os.getgid()), '-v', '{c}:{c}'.format(c=connection_path), '-v', '{c}:{c}'.format(c=os.path.expanduser('~')), self.kernel_spec.docker_image_name, ] return docker_prefix + cmd else: return cmd
2.265625
2
Utils/strings.py
furkankykc/AutomatedDocumentMailer
0
12781030
errors = { 'tr': { 'error': 'Hata!', 'authError': 'Email veya sifrenizi yanlış girdiniz', 'connectError': 'Smtp ayarlarını düzgün yaptığınızdan emin olunuz', 'senderRefused': 'Bu mail adresinin email gönderim limiti dolmustur', 'serverDisconnect': 'Server ile bağlantı kesildi', 'listError': 'Liste Dosyası Bulunamadı', 'keyError': 'EMAİL adlı kolon bulunamadı', 'startError': 'Başlangıç değeri epostalardan fazla olamaz', 'spamError': 'Server bu mesaj spam olabileceği için reddetti', 'limitError': '"Tüm postalarınızın limiti dolmustur"', }, 'en': { 'error': 'Error!', 'authError': 'Wrong Password or Email adress', 'connectError': 'Make sure you set Smtp correctly', 'senderRefused': 'You cannot send further mail with this mail', 'serverDisconnect': 'Server Disconnected', 'listError': 'List cannot found', 'keyError': 'Cannot found colon named "EMAİL" in your list', 'startError': 'Initial value cannot be more than emails', 'spamError': 'Server rejected this message because it may be spam ', 'limitError': 'You cannot send Email anymore Limit Exceed', } }
2.21875
2
uproot/interp/jagged.py
guiguem/uproot
0
12781031
#!/usr/bin/env python # Copyright (c) 2017, DIANA-HEP # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import numbers import numpy import uproot.source.source import uproot.source.cursor from uproot.interp.interp import Interpretation from uproot.interp.numerical import asdtype from uproot.interp.numerical import _dimsprod def sizes2offsets(sizes): out = numpy.empty(len(sizes) + 1, dtype=sizes.dtype) out[0] = 0 sizes.cumsum(out=out[1:]) return out def _compactify(fromdata, fromstarts, fromstops, todata, tostarts, tostops): for i in range(len(fromstarts)): todata[tostarts[i]:tostops[i]] = fromdata[fromstarts[i]:fromstops[i]] try: import numba except ImportError: pass else: _compactify = numba.njit(_compactify) class asjagged(Interpretation): # makes __doc__ attribute mutable before Python 3.3 __metaclass__ = type.__new__(type, "type", (Interpretation.__metaclass__,), {}) def __init__(self, asdtype, skip_bytes=0): self.asdtype = asdtype self.skip_bytes = skip_bytes def __repr__(self): if self.skip_bytes == 0: return "asjagged({0})".format(repr(self.asdtype)) else: return "asjagged({0}, skip_bytes={1})".format(repr(self.asdtype), self.skip_bytes) def to(self, todtype=None, todims=None, skip_bytes=None): if skip_bytes is None: skip_bytes = self.skip_bytes return asjagged(self.asdtype.to(todtype, todims), skip_bytes) @property def identifier(self): if self.skip_bytes == 0: return "asjagged({0})".format(self.asdtype.identifier) else: return "asjagged({0}, {1})".format(self.asdtype.identifier, self.skip_bytes) @property def dtype(self): subshape = self.asdtype.dtype.shape sub = self.asdtype.dtype.subdtype if sub is None: tpe = self.asdtype.dtype else: tpe = sub[0] return numpy.dtype((tpe, (0,) + subshape)) def empty(self): return JaggedArray(self.asdtype.empty(), numpy.empty(0, dtype=numpy.int64), numpy.empty(0, dtype=numpy.int64)) def compatible(self, other): return isinstance(other, asjagged) and self.asdtype.compatible(other.asdtype) def numitems(self, numbytes, numentries): return self.asdtype.numitems(numbytes - numentries*self.skip_bytes, numentries) def source_numitems(self, source): return self.asdtype.source_numitems(source.content) def fromroot(self, data, offsets, local_entrystart, local_entrystop): if local_entrystart == local_entrystop: content = self.asdtype.fromroot(data, None, 0, 0) else: itemsize = self.asdtype.fromdtype.itemsize * _dimsprod(self.asdtype.fromdims) if self.skip_bytes == 0: numpy.floor_divide(offsets, itemsize, offsets) starts = offsets[local_entrystart : local_entrystop ] stops = offsets[local_entrystart + 1 : local_entrystop + 1] content = self.asdtype.fromroot(data, None, starts[0], stops[-1]) else: fromstarts = offsets[local_entrystart : local_entrystop ] + self.skip_bytes fromstops = offsets[local_entrystart + 1 : local_entrystop + 1] newoffsets = numpy.empty(1 + local_entrystop - local_entrystart, dtype=offsets.dtype) newoffsets[0] = 0 numpy.cumsum(fromstops - fromstarts, out=newoffsets[1:]) newdata = numpy.empty(newoffsets[-1], dtype=data.dtype) _compactify(data, fromstarts, fromstops, newdata, newoffsets[:-1], newoffsets[1:]) numpy.floor_divide(newoffsets, itemsize, newoffsets) starts = newoffsets[:-1] stops = newoffsets[1:] content = self.asdtype.fromroot(newdata, None, 0, stops[-1]) return JaggedArray(content, starts, stops) def destination(self, numitems, numentries): content = self.asdtype.destination(numitems, numentries) sizes = numpy.empty(numentries, dtype=numpy.int64) return JaggedArray._Prep(content, sizes) def fill(self, source, destination, itemstart, itemstop, entrystart, entrystop): destination.sizes[entrystart:entrystop] = source.stops - source.starts self.asdtype.fill(source.content, destination.content, itemstart, itemstop, entrystart, entrystop) def clip(self, destination, itemstart, itemstop, entrystart, entrystop): destination.content = self.asdtype.clip(destination.content, itemstart, itemstop, entrystart, entrystop) destination.sizes = destination.sizes[entrystart:entrystop] return destination def finalize(self, destination, branch): offsets = sizes2offsets(destination.sizes) starts = offsets[:-1] stops = offsets[1:] content = self.asdtype.finalize(destination.content, branch) leafcount = None if len(branch.fLeaves) == 1: leafcount = branch.fLeaves[0].fLeafCount return JaggedArray(content, starts, stops, leafcount=leafcount) def asstlvector(asdtype): return asjagged(asdtype, skip_bytes=10) def _jaggedarray_getitem(jaggedarray, index): stopslen = len(jaggedarray.stops) if index < 0: index += stopslen if 0 <= index < stopslen: start = jaggedarray.starts[index] stop = jaggedarray.stops[index] return jaggedarray.content[start:stop] else: raise IndexError("index out of range for JaggedArray") class JaggedArray(object): # makes __doc__ attribute mutable before Python 3.3 __metaclass__ = type.__new__(type, "type", (type,), {}) class _Prep(object): def __init__(self, content, sizes): self.content = content self.sizes = sizes @staticmethod def fromlists(lists): offsets = numpy.empty(len(lists) + 1, dtype=numpy.int64) offsets[0] = 0 stop = 0 anybool = False anyint = False anyfloat = False anycomplex = False for i, x in enumerate(lists): offsets[i + 1] = stop = stop + len(x) if isinstance(x, numpy.ndarray): if issubclass(x.dtype.type, (numpy.bool, numpy.bool_)): anybool = True elif issubclass(x.dtype.type, numpy.integer): anyint = True elif issubclass(x.dtype.type, numpy.floating): anyfloat = True elif issubclass(x.dtype.type, numpy.complexfloating): anycomplex = True else: if not anybool and not anyint and not anyfloat and not anycomplex and any(isinstance(y, bool) for y in x): anybool = True if not anyint and not anyfloat and not anycomplex and any(isinstance(y, int) for y in x): anyint = True if not anyfloat and not anycomplex and any(isinstance(y, float) for y in x): anyfloat = True if not anycomplex and any(isinstance(y, complex) for y in x): anycomplex = True if anycomplex: dtype = numpy.dtype(numpy.complex) elif anyfloat: dtype = numpy.dtype(numpy.float64) elif anyint: dtype = numpy.dtype(numpy.int64) elif anybool: dtype = numpy.dtype(numpy.bool) else: raise TypeError("no numerical types found in lists") starts = offsets[:-1] stops = offsets[1:] content = numpy.empty(offsets[-1], dtype=dtype) for i, x in enumerate(lists): content[starts[i]:stops[i]] = x return JaggedArray(content, starts, stops) def __init__(self, content, starts, stops, leafcount=None): assert isinstance(content, numpy.ndarray) assert isinstance(starts, numpy.ndarray) and issubclass(starts.dtype.type, numpy.integer) assert isinstance(stops, numpy.ndarray) and issubclass(stops.dtype.type, numpy.integer) assert len(stops.shape) == 1 assert starts.shape == stops.shape self.content = content self.starts = starts self.stops = stops self.leafcount = leafcount def __getstate__(self): state = self.__dict__.copy() state["leafcount"] = None return state def __setstate__(self, state): self.__dict__.update(state) def __eq__(self, other): return isinstance(other, JaggedArray) and numpy.array_equal(self.content, other.content) and self.aligned(other) def __ne__(self, other): return not self.__eq__(other) @property def offsets(self): if self.starts.base is not None and self.stops.base is not None and self.starts.base is self.stops.base and \ self.starts.ctypes.data == self.starts.base.ctypes.data and \ self.stops.ctypes.data == self.stops.base.ctypes.data + self.starts.dtype.itemsize and \ len(self.starts) == len(self.starts.base) - 1 and \ len(self.stops) == len(self.starts.base) - 1: return self.starts.base elif numpy.array_equal(self.starts[1:], self.stops[:-1]): return numpy.append(self.starts, self.stops[-1]) else: raise ValueError("starts and stops are not compatible; cannot express as offsets") def aligned(self, other): if self.leafcount is not None and other.leafcount is not None and self.leafcount is other.leafcount: return True else: return numpy.array_equal(self.starts, other.starts) and numpy.array_equal(self.stops, other.stops) def __len__(self): return len(self.stops) def __getitem__(self, index): if isinstance(index, numbers.Integral): return _jaggedarray_getitem(self, index) elif isinstance(index, slice): if index.step is not None and index.step != 1: raise NotImplementedError("cannot yet slice a JaggedArray with step != 1 (FIXME: this is possible, should be implemented)") else: return JaggedArray(self.content, self.starts[index], self.stops[index]) else: raise TypeError("JaggedArray index must be an integer or a slice") def __iter__(self): content = self.content starts = self.starts stops = self.stops for i in range(len(stops)): yield content[starts[i]:stops[i]] def __repr__(self, indent="", linewidth=None): if linewidth is None: linewidth = numpy.get_printoptions()["linewidth"] dtypestr = repr(self.content.dtype).replace("(", "=").rstrip(")") linewidth = linewidth - 12 - 2 - len(dtypestr) return "jaggedarray({0})".format(self.__str__(indent=" " * 12, linewidth=linewidth)) def __str__(self, indent="", linewidth=None): if linewidth is None: linewidth = numpy.get_printoptions()["linewidth"] def single(a): if len(a) > 6: return numpy.array_str(a[:3], max_line_width=numpy.inf).rstrip("]") + " ... " + numpy.array_str(a[-3:], max_line_width=numpy.inf).lstrip("[") else: return numpy.array_str(a, max_line_width=numpy.inf) if len(self) > 10: content = [single(self[i]) for i in range(3)] + ["..."] + [single(self[i]) for i in range(-3, 0)] else: content = [single(x) for x in self] if sum(len(x) for x in content) + 2*(len(content) - 1) + 2 <= linewidth: return "[" + ", ".join(content) + "]" else: return "[" + (",\n " + indent).join(content) + "]" def tolist(self): return [x.tolist() for x in self] def __array__(self, dtype=None, copy=False, order="K", subok=False, ndmin=0): if dtype is None: dtype = self.content.dtype elif not isinstance(dtype, numpy.dtype): dtype = numpy.dtype(dtype) if dtype == self.content.dtype and not copy and not subok and ndmin == 0: return self.content else: return numpy.array(self.content, dtype=dtype, copy=copy, order=order, subok=subok, ndmin=ndmin) class asvar(asjagged): def __init__(self, genclass, skip_bytes=0, args=()): self.genclass = genclass super(asvar, self).__init__(asdtype(numpy.dtype(numpy.uint8)), skip_bytes=skip_bytes) self.args = args def __repr__(self): return self.identifier @property def identifier(self): args = [] if self.skip_bytes != 0: args.append(", skip_bytes={0}".format(self.skip_bytes)) return "asvar({0}{1})".format(self.genclass.__name__, "".join(args)) @property def dtype(self): return self.genclass._dtype(self.args) def empty(self): return self.genclass(*((super(asvar, self).empty(),) + self.args)) def compatible(self, other): return isinstance(other, asvar) and self.genclass is other.genclass and super(asvar, self).compatible(other) and self.args == other.args def source_numitems(self, source): return super(asvar, self).source_numitems(source.jaggedarray) def fromroot(self, data, offsets, local_entrystart, local_entrystop): return self.genclass(*((super(asvar, self).fromroot(data, offsets, local_entrystart, local_entrystop),) + self.args)) def fill(self, source, destination, itemstart, itemstop, entrystart, entrystop): return super(asvar, self).fill(source.jaggedarray, destination, itemstart, itemstop, entrystart, entrystop) def finalize(self, destination, branch): return self.genclass(*((super(asvar, self).finalize(destination, branch),) + self.args)) class VariableLength(object): def __init__(self, *args): self.jaggedarray = args[0] assert self.jaggedarray.content.dtype.itemsize == 1 assert len(self.jaggedarray.content.shape) == 1 self.args = args[1:] def __len__(self): return len(self.jaggedarray) def __getitem__(self, index): if isinstance(index, numbers.Integral): return self.interpret(self.jaggedarray[index]) elif isinstance(index, slice): return self.__class__(*((self.jaggedarray[index],) + self.args)) else: raise TypeError("{0} index must be an integer or a slice".format(self.__class__.__name__)) def __iter__(self): for x in self.jaggedarray: yield self.interpret(x) def __str__(self): if len(self) > 6: return "[{0} ... {1}]".format(" ".join(repr(self[i]) for i in range(3)), " ".join(repr(self[i]) for i in range(-3, 0))) else: return "[{0}]".format(" ".join(repr(x) for x in self)) def tolist(self): return list(self) @staticmethod def interpret(item): raise NotImplementedError class asobjs(asvar): def __init__(self, cls, context=None): super(asobjs, self).__init__(JaggedObjects, skip_bytes=0, args=(cls, context)) self.cls = cls self.context = context @property def identifier(self): return "asobjs({0})".format(self.cls.__name__) @property def dtype(self): return numpy.dtype((object, (0,))) def asjaggedobjects(cls, context=None): return asobjs(cls, context=context) class JaggedObjects(VariableLength): indexdtype = numpy.dtype(">i4") def __init__(self, jaggedarray, cls, context): super(JaggedObjects, self).__init__(jaggedarray, cls) self._class = cls self._context = context def interpret(self, item): size, = item[6:10].view(JaggedObjects.indexdtype) source = uproot.source.source.Source(item) cursor = uproot.source.cursor.Cursor(10) out = [None] * size for i in range(size): out[i] = self._class.read(source, cursor, self._context, None) return out def __str__(self): if len(self) > 6: return "[{0}\n ...\n{1}]".format(",\n".join(("" if i == 0 else " ") + repr(self[i]) for i in range(3)), ",\n".join(" " + repr(self[i]) for i in range(-3, 0))) else: return "[{0}]".format(", ".join(repr(x) for x in self)) def __repr__(self): return "<JaggedObjects of {0} at {1:012x}>".format(self._class.__name__, id(self)) def __getitem__(self, index): if isinstance(index, numbers.Integral): return self.interpret(self.jaggedarray[index]) elif isinstance(index, slice): return JaggedObjects(self.jaggedarray[index], self._class, self._context) else: raise TypeError("{0} index must be an integer or a slice".format(self.__class__.__name__)) def asstlvectorvector(fromdtype): return asvar(JaggedJaggedArray, skip_bytes=6, args=(numpy.dtype(fromdtype),)) class JaggedJaggedArray(VariableLength): def __init__(self, jaggedarray, fromdtype): super(JaggedJaggedArray, self).__init__(jaggedarray, fromdtype) self.fromdtype = fromdtype @classmethod def _dtype(cls, args): dtype, = args return numpy.dtype((dtype, (0, 0))) indexdtype = numpy.dtype(">i4") def interpret(self, item): i = 0 size, = item[i : i + 4].view(JaggedJaggedArray.indexdtype) i += 4 out = [] while i < len(item): size, = item[i : i + 4].view(JaggedJaggedArray.indexdtype) i += 4 numbytes = size * self.fromdtype.itemsize out.append(item[i : i + numbytes].view(self.fromdtype)) i += numbytes return out def __str__(self): if len(self) > 6: return "[{0} ... {1}]".format(", ".join(repr([y.tolist() for y in self[i]]) for i in range(3)), ", ".join(repr([y.tolist() for y in self[i]]) for i in range(-3, 0))) else: return "[{0}]".format(", ".join(repr([y.tolist() for y in x]) for x in self)) def __repr__(self): return "jaggedjaggedarray({0})".format(str(self)) def tolist(self): return [[y.tolist() for y in x] for x in self]
1.59375
2
tests/test_medieval_futhork.py
stscoundrel/riimut-py
0
12781032
<filename>tests/test_medieval_futhork.py from src.riimut import medieval_futhork def test_transforms_letters_to_runes(): content = "aábcdðeéfghiíjklmnoóǫpqrstuúvwxyýzåäæœöøþ " expected = "ᛆᛆᛒᚴᚦᚦᚽᚽᚠᚵᚼᛁᛁᛁᚴᛚᛘᚿᚮᚮᚰᛕᚴᚱᛋᛏᚢᚢᚠᚠᛋᛦᛦᛋᚮᛅᛅᚯᚯᚯᚦ:" result = medieval_futhork.letters_to_runes(content) assert result == expected def test_transforms_runes_to_letters(): content = "ᚠᚢᚦᚮᚱᚴᚼᚿᛁᛆᛌᛋᛐᛏᛒᛘᛚᛦᚯᛅᚰᛕᚽ:" expected = "fuþorkhniassttbmlyøæǫᴘe " result = medieval_futhork.runes_to_letters(content) assert result == expected def test_transforms_later_old_norse_to_runes(): # From Lord's Prayer, in Old Norse. content = "Faðer uor som ast i himlüm, halgað warðe þit nama" expected = "ᚠᛆᚦᚽᚱ:ᚢᚮᚱ:ᛋᚮᛘ:ᛆᛋᛏ:ᛁ:ᚼᛁᛘᛚᚢᛘ,:ᚼᛆᛚᚵᛆᚦ:ᚠᛆᚱᚦᚽ:ᚦᛁᛏ:ᚿᛆᛘᛆ" result = medieval_futhork.letters_to_runes(content) assert result == expected def test_transforms_runes_to_later_old_norse(): # From Lord's Prayer, in Old Norse. content = "ᚠᛆᚦᚽᚱ:ᚢᚮᚱ:ᛋᚮᛘ:ᛆᛋᛏ:ᛁ:ᚼᛁᛘᛚᚢᛘ:ᚼᛆᛚᚵᛆᚦ:ᚠᛆᚱᚦᚽ:ᚦᛁᛏ:ᚿᛆᛘᛆ" expected = "faþer uor som ast i himlum halgaþ farþe þit nama" # Wont tell apart eth & thorn in mid sentence. result = medieval_futhork.runes_to_letters(content) assert result == expected
2.8125
3
mlds/my_dataset/my_dataset.py
Conchylicultor/mlds
0
12781033
<filename>mlds/my_dataset/my_dataset.py """MyDataset implementation.""" class MyDataset: pass
1.195313
1
apps/admin/views/achievement.py
panla/kesousou
1
12781034
<reponame>panla/kesousou from django.db.models import Q from rest_framework import generics from rest_framework import status from rest_framework.views import APIView from rest_framework.response import Response from rest_framework_jwt.authentication import JSONWebTokenAuthentication from drf_yasg.utils import swagger_auto_schema from common.page import get_results, page_params from common.order import order_params from common.users import IsAdminUser from model.models import Expert, Achievement from admin.parameters.user import token_parameters from admin.parameters.achievement import achievement_filter_params, achievement_update_params from admin.serializers.achievement import AchievementListSerializer, AchievementDetailSerializer class AchievementsView(APIView): permission_classes = [IsAdminUser] authentication_classes = [JSONWebTokenAuthentication] @swagger_auto_schema( manual_parameters=achievement_filter_params + order_params + page_params + token_parameters, operation_id='achievement_list', responses={200: AchievementListSerializer(many=True)}, tags=['achievements'] ) def get(self, request, *args, **kwargs): """ 查看科技成果列表, 查询参数 text,排序字段 order 模糊查询字段包括 title, keywords, organizations, creators 精准查询字段包括 sn """ text = request.query_params.get('text') order = request.query_params.get('order') queryset = Achievement.objects.all() if text: queryset = queryset.filter( Q(sn=text) | Q(title__contains=text) | Q(keywords__contains=text) | Q(organizations__contains=text) | Q(creators__contains=text) ) if order: queryset = queryset.order_by(order) data = get_results(request, queryset, self, AchievementListSerializer) return Response({'count': queryset.count(), 'achievements': data}, status.HTTP_200_OK) class ExpertAchievementsView(APIView): permission_classes = [IsAdminUser] authentication_classes = [JSONWebTokenAuthentication] @swagger_auto_schema( manual_parameters=order_params + page_params + token_parameters, operation_id='expert_achievement_list', responses={200: AchievementListSerializer(many=True)}, tags=['achievements'] ) def get(self, request, expert_id, *args, **kwargs): """ 查看某一个专家的科技成果列表 路径参数 expert_id,排序参数 order """ order = request.query_params.get('order') queryset = Achievement.filter_by_expert_id(expert_id) if queryset: if order: queryset = queryset.order_by(order) data = get_results(request, queryset, self, AchievementListSerializer) return Response({'count': queryset.count(), 'achievements': data}, status.HTTP_200_OK) else: return Response({'error': 'there is nos such expert'}, status.HTTP_404_NOT_FOUND) class AchievementView(generics.RetrieveUpdateAPIView): permission_classes = [IsAdminUser] authentication_classes = [JSONWebTokenAuthentication] serializer_class = AchievementDetailSerializer queryset = Achievement.objects.all() @swagger_auto_schema( manual_parameters=token_parameters, operation_id='achievement_read', responses={200: AchievementDetailSerializer()}, tags=['achievements'] ) def get(self, request, *args, **kwargs): return self.retrieve(request, *args, **kwargs) @swagger_auto_schema( manual_parameters=token_parameters, request_body=achievement_update_params, operation_id='achievement_update', responses={201: AchievementDetailSerializer()}, tags=['achievements'] ) def put(self, request, *args, **kwargs): return self.update(request, *args, **kwargs) @swagger_auto_schema( manual_parameters=token_parameters, request_body=achievement_update_params, operation_id='achievement_partial_update', responses={201: AchievementDetailSerializer()}, tags=['achievements'] ) def patch(self, request, *args, **kwargs): return self.partial_update(request, *args, **kwargs)
2.015625
2
signatureanalyzer/plotting/_muts.py
getzlab/getzlab-SignatureAnalyzer
5
12781035
<gh_stars>1-10 import itertools import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec import seaborn as sns import pandas as pd from typing import Union import numpy as np import re import sys from ..utils import compl, sbs_annotation_converter from ..context import context96, context78, context83, context1536, context_composite, signature_composite, signature_cosmic, signature_DBS, signature_ID, context_polymerase96 def stacked_bar(H: pd.DataFrame, ref_type: str, figsize: tuple = (8,8)): """ Plot stacked barchart & normalized stacked barchart. -------------------------------------- Args: * H: matrix output from NMF * figsize: size of figure (int,int) Returns: * figure Example usage: plot_bar(H) """ H = H.iloc[:,:-3].copy() # Map signature etiology if ref_type in ['pcawg_COMPOSITE', 'pcawg_COMPOSITE96', 'pcawg_SBS', 'pcawg_SBS96_ID', 'pcawg_SBS_ID']: H.columns = H.columns.map(lambda x: x[x.index('SBS') : x.index('_')]).map(signature_composite) elif ref_type in ['cosmic3', 'cosmic3_exome']: H.columns = H.columns.map(lambda x: x[x.index('SBS'):]).map(signature_cosmic) elif ref_type == 'cosmic3_DBS': H.columns = H.columns.map(lambda x: x[x.index('DBS'):]).map(signature_DBS) elif ref_type == 'cosmic3_ID': H.columns = H.columns.map(lambda x: x[x.index('ID'):]).map(signature_ID) # Sort H matrix by mutation burden for relevant mutation type H['sum'] = H.sum(1) H = H.sort_values('sum', ascending=False) fig,axes = plt.subplots(2,1,figsize=figsize, sharex=True) H.iloc[:,:-1].plot( kind='bar', stacked=True, ax=axes[0], width=1.0, rasterized=True ) axes[0].set_xticklabels([]) axes[0].set_xticks([]) axes[0].set_ylabel('Counts', fontsize=20) H_norm = H.iloc[:,:-1].div(H['sum'].values,axis=0) H_norm.plot( kind='bar', stacked=True, ax=axes[1], width=1.0, rasterized=True ) axes[1].set_xticklabels([]) axes[1].set_xticks([]) axes[1].set_xlabel('Samples', fontsize=16) axes[1].set_ylabel('Fractions', fontsize=20) axes[1].get_legend().remove() axes[1].set_ylim([0,1]) return fig def _map_sbs_sigs_back(df: pd.DataFrame) -> pd.Series: """ Map Back Single-Base Substitution Signatures. ----------------------- Args: * df: pandas.core.frame.DataFrame with index to be mapped Returns: * pandas.core.series.Series with matching indices to context96 """ def _check_to_flip(x, ref): if x in ref: return x else: return compl(x) if df.index.name is None: df.index.name = 'index' df_idx = df.index.name if ">" in df.index[0]: # Already in arrow format context_s = df.reset_index()[df_idx].apply(sbs_annotation_converter) else: # Already in word format context_s = df.reset_index()[df_idx] return context_s.apply(lambda x: _check_to_flip(x, context96.keys())) def _map_id_sigs_back(df: pd.DataFrame) -> pd.Series: """ Map Back Insertion-Deletion Signatures. ----------------------- Args: * df: pandas.core.frame.DataFrame with index to be mapped Returns: * pandas.core.series.Series with matching indices to context83 """ if df.index.name is None: df.index.name = 'index' df_idx = df.index.name context_s = df.reset_index()[df_idx] def _convert_from_cosmic(x): if x in context83: return x i1, i2, i3, i4 = x.split('_') pre = i2 if i3 == '1' else i3 main = i1.lower() + ('m' if i2 == 'MH' else '') if main == 'del': post = str(int(i4[0]) + 1) + i4[1:] else: post = i4 return pre + main + post return context_s.apply(_convert_from_cosmic) def signature_barplot(W: pd.DataFrame, contributions: Union[int, pd.Series] = 1): """ Plots signatures from W-matrix for Single-Base Substitutions -------------------------------------- Args: * W: W-matrix * contributions: Series of total contributions, np.sum(H), from each signature if W is normalized; else, 1 Returns: * fig Example usage: signature_barplot(W, np.sum(H)) """ W = W.copy() W.index = _map_sbs_sigs_back(W) # Fill in any missing contexts for c in context96: if c not in W.index: W.loc[c] = 0 # Sort contexts W.sort_index(inplace=True) # Extract columns corresponding to signatures sig_columns = [c for c in W if c.startswith('S')] # Calculate total number of mutations at each context for every signature if isinstance(contributions, pd.Series): W = W[sig_columns] * contributions[sig_columns] else: W = W[sig_columns] * contributions # Determine number of signatures n_sigs = len(sig_columns) # Initialize SBS C>N and T>N mutations and their contexts # For each context, iterate through C>N and T>N mutations, and take reverse complement # of context for A>N mutations context_label = [] change_map = {'CA': [], 'CG': [], 'CT': [], 'TA': [], 'TC': [], 'TG': []} for p in itertools.product('ACGT', 'ACGT'): context = ''.join(p) # Reverse complement of context compl_context = compl(context, reverse=True) context_label.append('-'.join(context)) for key in change_map: if key.startswith('C'): change_map[key].append(key + context) else: # Complement of mutation + reverse complement of context change_map[key].append(compl(key) + compl_context) color_map = {'CA': 'cyan', 'CG': 'red', 'CT': 'yellow', 'TA': 'purple', 'TC': 'green', 'TG': 'blue'} # Plot contributions x_coords = range(16) fig, axes = plt.subplots(nrows=n_sigs, ncols=6, figsize=(20, 2.5 * n_sigs), sharex='col', sharey='row') for row, sig in enumerate(sig_columns): for col, chg in enumerate(['CA', 'CG', 'CT', 'TA', 'TC', 'TG']): if n_sigs == 1: ax = axes[col] else: ax = axes[row, col] bar_heights = W[sig].loc[change_map[chg]] ax.bar(x_coords, bar_heights, width=.95, linewidth=1.5, edgecolor='gray', color=color_map[chg], rasterized=True) ax.set_xlim(-.55, 15.55) if row == 0: ax.set_title('>'.join(chg), fontsize=18) if col == 0: ax.text(51.2 / 16, 1.3, 'Mutational Signatures', transform=ax.transAxes, horizontalalignment='center', fontsize=24) if row < n_sigs - 1: ax.tick_params(axis='x', length=0) else: ax.set_xticks(x_coords) ax.set_xticklabels(context_label, fontfamily='monospace', rotation='vertical') if col == 0: ax.text(51.2 / 16, -.4, 'Motifs', transform=ax.transAxes, horizontalalignment='center', fontsize=20, fontweight='bold') if col > 0: ax.tick_params(axis='y', length=0) if col == 5: ax.text(1.05, .5, sig, fontsize=14, rotation=270, transform=ax.transAxes, verticalalignment='center') plt.subplots_adjust(wspace=.08, hspace=.15) fig.text(.08, .5, 'Contributions', rotation='vertical', verticalalignment='center', fontsize=20, fontweight='bold') return fig def signature_barplot_DBS(W, contributions): """ Plots signatures from W-matrix for Doublet-Base Substitutions -------------------------------------- Args: * W: W-matrix * contributions: Series of total contributions, np.sum(H), from each signature if W is normalized; else, 1 Returns: * fig Example usage: signature_barplot_DBS(W, np.sum(H)) """ W = W.copy() for c in context78: if c not in W.index: W.loc[c] = 0 W.sort_index(inplace=True) sig_columns = [c for c in W if c.startswith('S')] if isinstance(contributions, pd.Series): W = W[sig_columns] * contributions[sig_columns] else: W = W[sig_columns] * contributions n_sigs = len(sig_columns) ref_map = {'AC': [], 'AT': [], 'CC': [], 'CG': [], 'CT': [], 'GC': [], 'TA': [], 'TC': [], 'TG': [], 'TT': []} for x in W.index: ref_map[x[:2]].append(x) x_coords = {ref: range(len(sigs)) for ref, sigs in ref_map.items()} color_map = {'AC': '#99CCFF', 'AT': '#0000FF', 'CC': '#CCFF99', 'CG': '#00FF00', 'CT': '#FF99CC', 'GC': '#FF0000', 'TA': '#FFCC99', 'TC': '#FF8000', 'TG': '#CC99FF', 'TT': '#8000FF'} fig, axes = plt.subplots(nrows=n_sigs, ncols=10, figsize=(20, 2.5 * n_sigs), sharex='col', sharey='row', gridspec_kw={'width_ratios': (3, 2, 3, 2, 3, 2, 2, 3, 3, 3)}) for row, sig in enumerate(sig_columns): for col, ref in enumerate(ref_map): if n_sigs == 1: ax = axes[col] else: ax = axes[row, col] bar_heights = W[sig].loc[ref_map[ref]] ax.bar(x_coords[ref], bar_heights, width=.95, linewidth=1.5, edgecolor='gray', color=color_map[ref], rasterized=True) ax.set_xlim(-.55, x_coords[ref][-1] + .55) if row == 0: ax.set_title(ref) if col == 0: ax.text(44.5 / 6, 1.2, 'Mutational Signatures', transform=ax.transAxes, horizontalalignment='center', fontsize=24) if row < n_sigs - 1: ax.tick_params(axis='x', length=0) else: xlabels = [x[3:] for x in ref_map[ref]] ax.set_xticks(x_coords[ref]) ax.set_xticklabels(xlabels, fontfamily='monospace', rotation='vertical') if col == 0: ax.text(44.5 / 6, -.3, 'Motifs', transform=ax.transAxes, horizontalalignment='center', fontsize=20, fontweight='bold') if col > 0: ax.tick_params(axis='y', length=0) if col == 9: ax.text(1.05, .5, sig, fontsize=14, rotation=270, transform=ax.transAxes, verticalalignment='center') plt.subplots_adjust(wspace=.08, hspace=.15) fig.text(.08, .5, 'Contributions', rotation='vertical', verticalalignment='center', fontsize=20, fontweight='bold') return fig def signature_barplot_ID(W, contributions): """ Plots signatures from W-matrix for Insertions-Deletions -------------------------------------- Args: * W: W-matrix * contributions: Series of total contributions, np.sum(H), from each signature if W is normalized; else, 1 Returns: * fig Example usage: signature_barplot_ID(W, np.sum(H)) """ W = W.copy() W.index = _map_id_sigs_back(W) for c in context83: if c not in W.index: W.loc[c] = 0 W = W.loc[context83] sig_columns = [c for c in W if c.startswith('S')] if isinstance(contributions, pd.Series): W = W[sig_columns] * contributions[sig_columns] else: W = W[sig_columns] * contributions n_sigs = len(sig_columns) group_map = {'Cdel': [], 'Tdel': [], 'Cins': [], 'Tins': [], '2del': [], '3del': [], '4del': [], '5+del': [], '2ins': [], '3ins': [], '4ins': [], '5+ins': [], '2delm': [], '3delm': [], '4delm': [], '5+delm': []} for x in W.index: group = re.search('.+?(?=[\d])', x).group(0) group_map[group].append(x) x_coords = {group: range(len(sigs)) for group, sigs in group_map.items()} color_map = {'Cdel': '#FFCC99', 'Tdel': '#FF8000', 'Cins': '#00FF00', 'Tins': '#00BB00', '2del': '#FF99CC', '3del': '#FF3377', '4del': '#FF0000', '5+del': '#880000', '2ins': '#99CCFF', '3ins': '#3377FF', '4ins': '#0000FF', '5+ins': '#000088', '2delm': '#CC99FF', '3delm': '#9966FF', '4delm': '#8000FF', '5+delm': '#6000AA'} fig, axes = plt.subplots(nrows=n_sigs, ncols=16, figsize=(20, 2.5 * n_sigs), sharex='col', sharey='row', gridspec_kw={'width_ratios': (6,) * 12 + (1, 2, 3, 5)}) for row, sig in enumerate(sig_columns): for col, group in enumerate(group_map): if n_sigs == 1: ax = axes[col] else: ax = axes[row, col] bar_heights = W[sig].loc[group_map[group]] ax.bar(x_coords[group], bar_heights, width=.95, linewidth=1.5, edgecolor='gray', color=color_map[group], rasterized=True) ax.set_xlim(-.55, x_coords[group][-1] + .55) if row == 0: ax.set_title(re.search('[\d+CT]+', group).group(0), color=color_map[group]) if col == 0: ax.text(44.5 / 6, 1.3, 'Mutational Signatures', transform=ax.transAxes, horizontalalignment='center', fontsize=24) if group == 'Tdel': ax.text(-.02, 1.16, '1bp deletions at repeats', fontsize=10, transform=ax.transAxes, horizontalalignment='center', color=color_map[group]) if group == 'Tins': ax.text(-.02, 1.16, '1bp insertions at repeats', fontsize=10, transform=ax.transAxes, horizontalalignment='center', color=color_map[group]) if group == '4del': ax.text(-.02, 1.16, '>1bp deletions at repeats', fontsize=10, transform=ax.transAxes, horizontalalignment='center', color=color_map[group]) if group == '4ins': ax.text(-.02, 1.16, '>1bp insertions at repeats', fontsize=10, transform=ax.transAxes, horizontalalignment='center', color=color_map[group]) if group == '4delm': ax.text(.8, 1.16, '>1bp deletions with microhomology', fontsize=10, transform=ax.transAxes, horizontalalignment='center', color=color_map[group]) if row < n_sigs - 1: ax.tick_params(axis='x', length=0) else: xlabels = [re.search('[\d+]+$', x).group(0) for x in group_map[group]] ax.set_xticks(x_coords[group]) ax.set_xticklabels(xlabels, fontfamily='monospace') if col == 0: ax.text(44.5 / 6, -.3, 'Motifs', transform=ax.transAxes, horizontalalignment='center', fontsize=20, fontweight='bold') if col > 0: ax.tick_params(axis='y', length=0) if col == 15: ax.text(1.05, .5, sig, fontsize=14, rotation=270, transform=ax.transAxes, verticalalignment='center') plt.subplots_adjust(wspace=.08, hspace=.15) fig.text(.08, .5, 'Contributions', rotation='vertical', verticalalignment='center', fontsize=20, fontweight='bold') return fig def signature_barplot_composite(W: pd.DataFrame, contributions: Union[int, pd.Series] = 1): """ Plot signatures from W-matrix for SBS, DBS, and IDs from composite W matrix -------------------------------------- Args: * W: W-matrix * contributions: Series of total contributions, np.sum(H), from each signature if W is normalized; else, 1 Returns: * fig Example usage: signature_barplot(W, np.sum(H)) """ W = W.copy() # Fill in missing features composite_index = list(context96)+list(context78)+list(context83) for c in composite_index: if c not in list(W.index): W.loc[c] = 0 W = W.reindex(composite_index) # Get signature labels sig_columns = [c for c in W if c.startswith('S')] n_sigs = len(sig_columns) # Evaluate contributions if isinstance(contributions, pd.Series): W = W[sig_columns] * contributions[sig_columns] else: W = W[sig_columns] * contributions #### x coordinates for SBS contributions context_label = [] change_map = {'CA': [], 'CG': [], 'CT': [], 'TA': [], 'TC': [], 'TG': []} for p in itertools.product('ACGT', 'ACGT'): context = ''.join(p) compl_context = compl(context, reverse=True) context_label.append('-'.join(context)) for key in change_map: if key.startswith('C'): change_map[key].append(key + context) else: change_map[key].append(compl(key) + compl_context) color_map_sbs = {'CA': 'cyan', 'CG': 'red', 'CT': 'yellow', 'TA': 'purple', 'TC': 'green', 'TG': 'blue'} x_coords_sbs = range(16) ##### x coordinates for DBS contributions ref_map = {'AC': [], 'AT': [], 'CC': [], 'CG': [], 'CT': [], 'GC': [], 'TA': [], 'TC': [], 'TG': [], 'TT': []} for x in context78: ref_map[x[:2]].append(x) x_coords_dbs = {ref: range(len(sigs)) for ref, sigs in ref_map.items()} color_map_dbs = {'AC': '#99CCFF', 'AT': '#0000FF', 'CC': '#CCFF99', 'CG': '#00FF00', 'CT': '#FF99CC', 'GC': '#FF0000', 'TA': '#FFCC99', 'TC': '#FF8000', 'TG': '#CC99FF', 'TT': '#8000FF'} ##### x coordinates for ID contributions group_map = {'Cdel': [], 'Tdel': [], 'Cins': [], 'Tins': [], '2del': [], '3del': [], '4del': [], '5+del': [], '2ins': [], '3ins': [], '4ins': [], '5+ins': [], '2delm': [], '3delm': [], '4delm': [], '5+delm': []} for x in context83: group = re.search('.+?(?=[\d])', x).group(0) group_map[group].append(x) x_coords_id = {group: range(len(sigs)) for group, sigs in group_map.items()} color_map_id = {'Cdel': '#FFCC99', 'Tdel': '#FF8000', 'Cins': '#00FF00', 'Tins': '#00BB00', '2del': '#FF99CC', '3del': '#FF3377', '4del': '#FF0000', '5+del': '#880000', '2ins': '#99CCFF', '3ins': '#3377FF', '4ins': '#0000FF', '5+ins': '#000088', '2delm': '#CC99FF', '3delm': '#9966FF', '4delm': '#8000FF', '5+delm': '#6000AA'} # Include spaces to separate feature types all_columns = ['CA', 'CG', 'CT', 'TA', 'TC', 'TG'] + ['space'] + list(ref_map) + ['space'] + list(group_map) fig, axes = plt.subplots(nrows=n_sigs, ncols=34, figsize=(60,2.5*n_sigs), sharex='col', gridspec_kw={'width_ratios': (16,)*6 + (1,)+ (9,6,9,6,9,6,6,9,9,9) + (1,) + (6,)*12+(1,2,3,5)}) max_height = 0 # Maximum height for scaling y-axis per feature type per signature # Iterate through signatures, such that each row plots mutational landscape for a signature for row, sig in enumerate(sig_columns): for col, ref in enumerate(all_columns): if n_sigs == 1: ax = axes[col] else: ax = axes[row,col] if col in [6,17]: # Space between feature types...Remove ax and move to next feature (column) ax.remove() continue # For SBS portion, iterate through 6 SNV types (C>A, C>T, C>G, T>A...) if col < 6: bar_heights = W[sig].loc[change_map[ref]] for height in bar_heights: if height > max_height: max_height = height ax.bar(x_coords_sbs, bar_heights, width=.95, linewidth=1.5, edgecolor='gray', color=color_map_sbs[ref], rasterized=True) ax.set_xlim(-.55, 15.55) if row == 0: ax.set_title('>'.join(ref), fontsize=18) if col == 0: ax.text(8.1, 1.3, 'Mutational Signatures', transform=ax.transAxes, horizontalalignment='center', fontsize=24) if row < n_sigs - 1: ax.tick_params(axis='x', length=0, labelbottom=False) else: ax.set_xticks(x_coords_sbs) ax.set_xticklabels(context_label, fontfamily='monospace', rotation='vertical') if col == 0: ax.text(8.1, -.4, 'Motifs', transform = ax.transAxes, horizontalalignment='center', fontsize=20) if col == 5: if n_sigs == 1: for axis in axes[:col+1]: axis.set_ylim(0,max_height + 0.1*max_height+1) else: for axis in axes[row,:col+1]: axis.set_ylim(0,max_height + 0.1*max_height+1) max_height = 0 # For DBS portion elif col < 17: bar_heights = W[sig].loc[ref_map[ref]] for height in bar_heights: if height > max_height: max_height = height ax.bar(x_coords_dbs[ref], bar_heights, width=.95, linewidth=1.5, edgecolor='gray', color=color_map_dbs[ref], rasterized=True) ax.set_xlim(-.55, x_coords_dbs[ref][-1] + .55) if row == 0: ax.set_title(ref) if row < n_sigs - 1: ax.tick_params(axis='x', length=0) else: xlabels = [x[3:] for x in ref_map[ref]] ax.set_xticks(x_coords_dbs[ref]) ax.set_xticklabels(xlabels, fontfamily='monospace', rotation='vertical') if col == 15: if n_sigs == 1: for axis in axes[6:col+1]: axis.set_ylim(0,max_height + 0.1*max_height+1) else: for axis in axes[row,6:col+1]: axis.set_ylim(0,max_height + 0.1*max_height+1) max_height = 0 # For ID portion else: bar_heights = W[sig].loc[group_map[ref]] for height in bar_heights: if height > max_height: max_height = height ax.bar(x_coords_id[ref], bar_heights, width=.95, linewidth=1.5, edgecolor='gray', color=color_map_id[ref], rasterized=True) ax.set_xlim(-.55, x_coords_id[ref][-1] + .55) if row == 0: ax.set_title(re.search('[\d+CT]+', ref).group(0), color=color_map_id[ref]) if ref == 'Tdel': ax.text(-.02, 1.16, '1bp deletions at repeats', fontsize=10, transform=ax.transAxes, horizontalalignment='center', color=color_map_id[ref]) if ref == 'Tins': ax.text(-.02, 1.16, '1bp insertions at repeats', fontsize=10, transform=ax.transAxes, horizontalalignment='center', color=color_map_id[ref]) if ref == '4del': ax.text(-.02, 1.16, '>1bp deletions at repeats', fontsize=10, transform=ax.transAxes, horizontalalignment='center', color=color_map_id[ref]) if ref == '4ins': ax.text(-.02, 1.16, '>1bp insertions at repeats', fontsize=10, transform=ax.transAxes, horizontalalignment='center', color=color_map_id[ref]) if ref == '4delm': ax.text(.8, 1.16, '>1bp deletions with microhomology', fontsize=10, transform=ax.transAxes, horizontalalignment='center', color=color_map_id[ref]) if row < n_sigs - 1: ax.tick_params(axis='x', length=0) else: xlabels = [re.search('[\d+]+$', x).group(0) for x in group_map[ref]] ax.set_xticks(x_coords_id[ref]) ax.set_xticklabels(xlabels, fontfamily='monospace') if col == 33: if n_sigs == 1: for axis in axes[16:col+1]: axis.set_ylim(0,max_height + 0.1*max_height+1) else: for axis in axes[row,16:col+1]: axis.set_ylim(0,max_height + 0.1*max_height+1) max_height = 0 if col not in [0,7,18]: ax.tick_params(axis='y', which='both',length=0, labelleft=False) if col == 33: ax.text(1.05, .5, sig, fontsize=14, rotation=270, transform=ax.transAxes, verticalalignment='center') # Set titles and organize plot plt.subplots_adjust(wspace=.12, hspace=.15) fig.text(.105, .5, 'Contributions', rotation='vertical', verticalalignment='center', fontsize=20, fontweight='bold') return fig def signature_barplot_sbs_id(W: pd.DataFrame, contributions: Union[int, pd.Series] = 1): """ Plot signatures from W-matrix for SBS, DBS, and IDs from composite W matrix -------------------------------------- Args: * W: W-matrix * contributions: Series of total contributions, np.sum(H), from each signature if W is normalized; else, 1 Returns: * fig Example usage: signature_barplot(W, np.sum(H)) """ W = W.copy() # Fill in missing features and sort composite_index = list(context96)+list(context83) for c in composite_index: if c not in list(W.index): W.loc[c] = 0 W = W.reindex(composite_index) # Get signature labels sig_columns = [c for c in W if c.startswith('S')] n_sigs = len(sig_columns) # Evaluate contributions if isinstance(contributions, pd.Series): W = W[sig_columns] * contributions[sig_columns] else: W = W[sig_columns] * contributions #### x coordinates for SBS contributions context_label = [] change_map = {'CA': [], 'CG': [], 'CT': [], 'TA': [], 'TC': [], 'TG': []} for p in itertools.product('ACGT', 'ACGT'): context = ''.join(p) compl_context = compl(context, reverse=True) context_label.append('-'.join(context)) for key in change_map: if key.startswith('C'): change_map[key].append(key + context) else: change_map[key].append(compl(key) + compl_context) color_map_sbs = {'CA': 'cyan', 'CG': 'red', 'CT': 'yellow', 'TA': 'purple', 'TC': 'green', 'TG': 'blue'} x_coords_sbs = range(16) ##### x coordinates for ID contributions group_map = {'Cdel': [], 'Tdel': [], 'Cins': [], 'Tins': [], '2del': [], '3del': [], '4del': [], '5+del': [], '2ins': [], '3ins': [], '4ins': [], '5+ins': [], '2delm': [], '3delm': [], '4delm': [], '5+delm': []} for x in context83: group = re.search('.+?(?=[\d])', x).group(0) group_map[group].append(x) x_coords_id = {group: range(len(sigs)) for group, sigs in group_map.items()} color_map_id = {'Cdel': '#FFCC99', 'Tdel': '#FF8000', 'Cins': '#00FF00', 'Tins': '#00BB00', '2del': '#FF99CC', '3del': '#FF3377', '4del': '#FF0000', '5+del': '#880000', '2ins': '#99CCFF', '3ins': '#3377FF', '4ins': '#0000FF', '5+ins': '#000088', '2delm': '#CC99FF', '3delm': '#9966FF', '4delm': '#8000FF', '5+delm': '#6000AA'} all_columns = ['CA', 'CG', 'CT', 'TA', 'TC', 'TG'] + ['space'] + list(group_map) fig, axes = plt.subplots(nrows=n_sigs, ncols=23, figsize=(60,2.5*n_sigs), sharex='col', gridspec_kw={'width_ratios': (16,)*6 + (1,) + (6,)*12+(1,2,3,5)}) max_height = 0 for row, sig in enumerate(sig_columns): for col, ref in enumerate(all_columns): if n_sigs == 1: ax = axes[col] else: ax = axes[row,col] if col == 6: ax.remove() continue # For SBS portion if col < 6: bar_heights = W[sig].loc[change_map[ref]] for height in bar_heights: if height > max_height: max_height = height ax.bar(x_coords_sbs, bar_heights, width=.95, linewidth=1.5, edgecolor='gray', color=color_map_sbs[ref], rasterized=True) ax.set_xlim(-.55, 15.55) if row == 0: ax.set_title('>'.join(ref), fontsize=18) if col == 0: ax.text(5.5, 1.3, 'Mutational Signatures', transform=ax.transAxes, horizontalalignment='center', fontsize=24) if row < n_sigs - 1: ax.tick_params(axis='x', length=0, labelbottom=False) else: ax.set_xticks(x_coords_sbs) ax.set_xticklabels(context_label, fontfamily='monospace', rotation='vertical') if col == 0: ax.text(5.5, -.4, 'Motifs', transform = ax.transAxes, horizontalalignment='center', fontsize=20) if col == 5: if n_sigs == 1: for axis in axes[:col+1]: axis.set_ylim(0,max_height + 0.1*max_height+1) else: for axis in axes[row,:col+1]: axis.set_ylim(0,max_height + 0.1*max_height+1) max_height = 0 # For ID portion else: bar_heights = W[sig].loc[group_map[ref]] for height in bar_heights: if height > max_height: max_height = height ax.bar(x_coords_id[ref], bar_heights, width=.95, linewidth=1.5, edgecolor='gray', color=color_map_id[ref], rasterized=True) ax.set_xlim(-.55, x_coords_id[ref][-1] + .55) if row == 0: ax.set_title(re.search('[\d+CT]+', ref).group(0), color=color_map_id[ref]) if ref == 'Tdel': ax.text(-.02, 1.16, '1bp deletions at repeats', fontsize=10, transform=ax.transAxes, horizontalalignment='center', color=color_map_id[ref]) if ref == 'Tins': ax.text(-.02, 1.16, '1bp insertions at repeats', fontsize=10, transform=ax.transAxes, horizontalalignment='center', color=color_map_id[ref]) if ref == '4del': ax.text(-.02, 1.16, '>1bp deletions at repeats', fontsize=10, transform=ax.transAxes, horizontalalignment='center', color=color_map_id[ref]) if ref == '4ins': ax.text(-.02, 1.16, '>1bp insertions at repeats', fontsize=10, transform=ax.transAxes, horizontalalignment='center', color=color_map_id[ref]) if ref == '4delm': ax.text(.8, 1.16, '>1bp deletions with microhomology', fontsize=10, transform=ax.transAxes, horizontalalignment='center', color=color_map_id[ref]) if row < n_sigs - 1: ax.tick_params(axis='x', length=0) else: xlabels = [re.search('[\d+]+$', x).group(0) for x in group_map[ref]] ax.set_xticks(x_coords_id[ref]) ax.set_xticklabels(xlabels, fontfamily='monospace') if col == 22: if n_sigs == 1: for axis in axes[6:col+1]: axis.set_ylim(0,max_height + 0.1*max_height+1) else: for axis in axes[row,6:col+1]: axis.set_ylim(0,max_height + 0.1*max_height+1) max_height = 0 if col not in [0,7]: ax.tick_params(axis='y', which='both',length=0, labelleft=False) if col == 22: ax.text(1.05, .5, sig, fontsize=14, rotation=270, transform=ax.transAxes, verticalalignment='center') # Set titles and organize plot plt.subplots_adjust(wspace=.12, hspace=.15) fig.text(.105, .5, 'Contributions', rotation='vertical', verticalalignment='center', fontsize=20, fontweight='bold') return fig def signature_barplot_polymerase(W: pd.DataFrame, contributions: Union[int, pd.Series] = 1): W = W.copy() # Fill in missing features for c in context_polymerase96: if c not in list(W.index): W.loc[c] = 0 W = W.reindex(context_polymerase96) # Get signature labels sig_columns = [c for c in W if c.startswith('S')] n_sigs = len(sig_columns) # Evaluate contributions if isinstance(contributions, pd.Series): W = W[sig_columns] * contributions[sig_columns] else: W = W[sig_columns] * contributions #### X coordinates for SBS contributions context_label = [] change_map = {'CA': [], 'CG': [], 'CT': [], 'TA': [], 'TC': [], 'TG': []} for p in itertools.product('ACGT','ACGT'): context = ''.join(p) compl_context = compl(context, reverse=True) context_label.append('-'.join(context)) for key in change_map: if key.startswith('C'): change_map[key].append(key + context) else: change_map[key].append(compl(key) + compl_context) color_map_sbs = {'CA': 'cyan', 'CG': 'red', 'CT': 'yellow', 'TA': 'purple', 'TC': 'green', 'TG': 'blue'} x_coords_sbs = range(16) #### X coordinates for ID contributions group_map = {'INS': ['INS' + str(i+1) for i in range(4)], 'DEL': ['DEL' + str(i+1) for i in range(4)]} color_map_id = {'INS':'#FFCC99', 'DEL':'#FF8000'} x_coords_id = {'INS':range(0,4), 'DEL':range(0,4)} all_columns = [x for x in change_map.keys()] + ['space', 'INS', 'DEL'] fig, axes = plt.subplots(nrows=n_sigs, ncols=9, figsize=(60,2.5*n_sigs), sharex='col', gridspec_kw={'width_ratios': (16,)*6 + (1,) + (4,)*2}) max_height = 0 # Iterate through signatures for row, sig in enumerate(sig_columns): # iterate through columns for col, ref in enumerate(all_columns): if n_sigs == 1: ax = axes[col] else: ax = axes[row,col] if col == 6: ax.remove() continue # For SBS portion if col < 6: bar_heights = W[sig].loc[change_map[ref]] for height in bar_heights: if height > max_height: max_height = height ax.bar(x_coords_sbs, bar_heights, width=.95, linewidth=1.5, edgecolor='gray', color=color_map_sbs[ref], rasterized=True) ax.set_xlim(-.55, 15.55) if row == 0: ax.set_title('>'.join(ref), fontsize=18) if col == 0: ax.text(4, 1.3, 'Mutational Signatures', transform=ax.transAxes, horizontalalignment='center', fontsize=24) if row < n_sigs - 1: ax.tick_params(axis='x', length=0, labelbottom=False) else: ax.set_xticks(x_coords_sbs) ax.set_xticklabels(context_label, fontfamily='monospace', rotation='vertical') if col == 0: ax.text(4, -.4, 'Motifs', transform = ax.transAxes, horizontalalignment='center', fontsize=20) if col == 5: if n_sigs == 1: for axis in axes[:col+1]: axis.set_ylim(0,max_height + 0.1*max_height+1) else: for axis in axes[row,:col+1]: axis.set_ylim(0,max_height + 0.1*max_height+1) max_height = 0 # For ID portion else: bar_heights = W[sig].loc[group_map[ref]] for height in bar_heights: if height > max_height: max_height = height ax.bar(x_coords_id[ref], bar_heights, width=0.95, linewidth=1.5, edgecolor='gray', color=color_map_id[ref], rasterized=True) ax.set_xlim(-.55, x_coords_id[ref][-1] + 0.55) # Set column titles if row == 0: ax.set_title(ref, color=color_map_id[ref]) if row < n_sigs - 1: ax.tick_params(axis='x', length=0) else: xlabels = ['1','2','3','4+'] ax.set_xticks(x_coords_id[ref]) ax.set_xticklabels(xlabels, fontfamily='monospace') if col == 8: ax.text(1.05, .5, sig, fontsize=14, rotation=270, transform=ax.transAxes, verticalalignment="center") # Set titles and organize plot plt.subplots_adjust(wspace=.12, hspace=0.15) fig.text(0.105, 0.5, 'Contributions', rotation='vertical', verticalalignment='center', fontsize=20, fontweight='bold') return fig
2.28125
2
google/cloud/securitycenter/settings/v1beta1/securitycenter-settings-v1beta1-py/google/cloud/securitycenter/settings_v1beta1/services/security_center_settings_service/transports/__init__.py
googleapis/googleapis-gen
7
12781036
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from collections import OrderedDict from typing import Dict, Type from .base import SecurityCenterSettingsServiceTransport from .grpc import SecurityCenterSettingsServiceGrpcTransport from .grpc_asyncio import SecurityCenterSettingsServiceGrpcAsyncIOTransport # Compile a registry of transports. _transport_registry = OrderedDict() # type: Dict[str, Type[SecurityCenterSettingsServiceTransport]] _transport_registry['grpc'] = SecurityCenterSettingsServiceGrpcTransport _transport_registry['grpc_asyncio'] = SecurityCenterSettingsServiceGrpcAsyncIOTransport __all__ = ( 'SecurityCenterSettingsServiceTransport', 'SecurityCenterSettingsServiceGrpcTransport', 'SecurityCenterSettingsServiceGrpcAsyncIOTransport', )
1.695313
2
deep_daze/deep_daze.py
asigalov61/deep-daze
1
12781037
import os import signal import subprocess import sys import random from datetime import datetime from pathlib import Path from shutil import copy import torch import torch.nn.functional as F from siren_pytorch import SirenNet, SirenWrapper from torch import nn from torch.cuda.amp import GradScaler, autocast from torch.optim import Adam from torchvision.utils import save_image from tqdm import trange, tqdm from deep_daze.clip import load, tokenize assert torch.cuda.is_available(), 'CUDA must be available in order to use Deep Daze' # graceful keyboard interrupt terminate = False def signal_handling(signum, frame): global terminate terminate = True signal.signal(signal.SIGINT, signal_handling) perceptor, normalize_image = load() # Helpers def exists(val): return val is not None def interpolate(image, size): return F.interpolate(image, (size, size), mode='bilinear', align_corners=False) def rand_cutout(image, size): width = image.shape[-1] offsetx = torch.randint(0, width - size, ()) offsety = torch.randint(0, width - size, ()) cutout = image[:, :, offsetx:offsetx + size, offsety:offsety + size] return cutout def open_folder(path): if os.path.isfile(path): path = os.path.dirname(path) if not os.path.isdir(path): return cmd_list = None if sys.platform == 'darwin': cmd_list = ['open', '--', path] elif sys.platform == 'linux2' or sys.platform == 'linux': cmd_list = ['xdg-open', path] elif sys.platform in ['win32', 'win64']: cmd_list = ['explorer', path.replace('/', '\\')] if cmd_list == None: return try: subprocess.check_call(cmd_list) except subprocess.CalledProcessError: pass except OSError: pass def norm_siren_output(img): return ((img + 1) * 0.5).clamp(0, 1) class DeepDaze(nn.Module): def __init__( self, total_batches, batch_size, num_layers=8, image_width=512, loss_coef=100, ): super().__init__() # load clip self.loss_coef = loss_coef self.image_width = image_width self.batch_size = batch_size self.total_batches = total_batches self.num_batches_processed = 0 siren = SirenNet( dim_in=2, dim_hidden=256, num_layers=num_layers, dim_out=3, use_bias=True ) self.model = SirenWrapper( siren, image_width=image_width, image_height=image_width ) self.generate_size_schedule() def forward(self, text, return_loss=True): out = self.model() out = norm_siren_output(out) if not return_loss: return out pieces = [] width = out.shape[-1] size_slice = slice(self.num_batches_processed, self.num_batches_processed + self.batch_size) for size in self.scheduled_sizes[size_slice]: apper = rand_cutout(out, size) apper = interpolate(apper, 224) pieces.append(normalize_image(apper)) image = torch.cat(pieces) with autocast(enabled=False): image_embed = perceptor.encode_image(image) text_embed = perceptor.encode_text(text) self.num_batches_processed += self.batch_size loss = -self.loss_coef * torch.cosine_similarity(text_embed, image_embed, dim=-1).mean() return loss def generate_size_schedule(self): batches = 0 counter = 0 self.scheduled_sizes = [] while batches < self.total_batches: counter += 1 sizes = self.sample_sizes(counter) batches += len(sizes) self.scheduled_sizes.extend(sizes) def sample_sizes(self, counter): pieces_per_group = 4 # 6 piece schedule increasing in context as model saturates if counter < 500: partition = [4, 5, 3, 2, 1, 1] elif counter < 1000: partition = [2, 5, 4, 2, 2, 1] elif counter < 1500: partition = [1, 4, 5, 3, 2, 1] elif counter < 2000: partition = [1, 3, 4, 4, 2, 2] elif counter < 2500: partition = [1, 2, 2, 4, 4, 3] elif counter < 3000: partition = [1, 1, 2, 3, 4, 5] else: partition = [1, 1, 1, 2, 4, 7] dbase = .38 step = .1 width = self.image_width sizes = [] for part_index in range(len(partition)): groups = partition[part_index] for _ in range(groups * pieces_per_group): sizes.append(torch.randint( int((dbase + step * part_index + .01) * width), int((dbase + step * (1 + part_index)) * width), ())) sizes.sort() return sizes class Imagine(nn.Module): def __init__( self, text, *, lr=1e-5, batch_size=4, gradient_accumulate_every=4, save_every=100, image_width=512, num_layers=16, epochs=20, iterations=1050, save_progress=False, seed=None, open_folder=True, save_date_time=False ): super().__init__() if exists(seed): tqdm.write(f'setting seed: {seed}') torch.manual_seed(seed) torch.cuda.manual_seed(seed) random.seed(seed) torch.backends.cudnn.deterministic = True self.epochs = epochs self.iterations = iterations total_batches = epochs * iterations * batch_size * gradient_accumulate_every model = DeepDaze( total_batches=total_batches, batch_size=batch_size, image_width=image_width, num_layers=num_layers ).cuda() self.model = model self.scaler = GradScaler() self.optimizer = Adam(model.parameters(), lr) self.gradient_accumulate_every = gradient_accumulate_every self.save_every = save_every self.save_date_time = save_date_time self.open_folder = open_folder self.save_progress = save_progress self.text = text self.textpath = text.replace(" ", "_") self.filename = self.image_output_path() self.encoded_text = tokenize(text).cuda() def image_output_path(self, current_iteration: int = None) -> Path: """ Returns underscore separated Path. A current timestamp is prepended if `self.save_date_time` is set. Sequence number left padded with 6 zeroes is appended if `save_every` is set. :rtype: Path """ output_path = self.textpath if current_iteration: sequence_number = int(current_iteration / self.save_every) sequence_number_left_padded = str(sequence_number).zfill(6) output_path = f"{output_path}.{sequence_number_left_padded}" if self.save_date_time: current_time = datetime.now().strftime("%y%m%d-%H%M%S_%f") output_path = f"{current_time}_{output_path}" return Path(f"{output_path}.png") def replace_current_img(self): """ Replace the current file at {text_path}.png with the current self.filename """ always_current_img = f"{self.textpath}.png" if os.path.isfile(always_current_img) or os.path.islink(always_current_img): os.remove(always_current_img) # remove the file #copy(str(self.filename), str(self.filename)) def generate_and_save_image(self, custom_filename: Path = None, current_iteration: int = None): """ :param current_iteration: :param custom_filename: A custom filename to use when saving - e.g. "testing.png" """ with torch.no_grad(): img = normalize_image(self.model(self.encoded_text, return_loss=False).cpu()) img.clamp_(0., 1.) self.filename = custom_filename if custom_filename else self.image_output_path(current_iteration=current_iteration) save_image(img, self.filename) self.replace_current_img() tqdm.write(f'image updated at "./{str(self.filename)}"') def train_step(self, epoch, iteration) -> int: total_loss = 0 for _ in range(self.gradient_accumulate_every): with autocast(): loss = self.model(self.encoded_text) loss = loss / self.gradient_accumulate_every total_loss += loss self.scaler.scale(loss).backward() self.scaler.step(self.optimizer) self.scaler.update() self.optimizer.zero_grad() if (iteration % self.save_every == 0) and self.save_progress: self.generate_and_save_image(current_iteration=iteration) return total_loss def forward(self): tqdm.write(f'Imagining "{self.text}" from the depths of my weights...') if self.open_folder: open_folder('./') self.open_folder = False for epoch in trange(self.epochs, desc='epochs'): pbar = trange(self.iterations, desc='iteration') for i in pbar: loss = self.train_step(epoch, i) pbar.set_description(f'loss: {loss.item():.2f}') if terminate: print('interrupted by keyboard, gracefully exiting') return
1.796875
2
tests/credentials/credentials.py
Acidburn0zzz/dfvfs
1
12781038
#!/usr/bin/env python # -*- coding: utf-8 -*- """Tests for the credentials interface.""" from __future__ import unicode_literals import unittest from dfvfs.credentials import credentials from tests import test_lib as shared_test_lib class Credentials(shared_test_lib.BaseTestCase): """Tests the credentials interface.""" def testInitialize(self): """Tests the __init__ function.""" with self.assertRaises(ValueError): credentials.Credentials() if __name__ == '__main__': unittest.main()
2.359375
2
xfeeds/parser/tasks.py
rubeon/django-xfeeds
0
12781039
import logging import os import ssl import urllib.request import feedparser from datetime import datetime from time import mktime, localtime from pprint import pprint, pformat from bs4 import BeautifulSoup as soup from django.core.exceptions import ObjectDoesNotExist, ValidationError from ..models import Feed from ..models import FeedItem from ..models import TaggedItem from ..models import CachedImage LOGGER = logging.getLogger(__name__) FAKE_AGENT = 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_3) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/35.0.1916.47 Safari/537.36' feedparser.USER_AGENT = FAKE_AGENT def get_cached_image(url): """ Utility to cache images """ # first, see if the URL has already been cached try: cimage = CachedImage.objects.get(url=url) except CachedImage.DoesNotExist: cimage = CachedImage(url=url) cimage.save() cimage.cache() return cimage def url_to_feed(url): """ takes a URL, returns the feed object or None """ # pprint"Url to feed entered") LOGGER.debug("%s.url_to_feed entered" % __name__) res = parse_feed(url) # minor kluge here parsed_feed = res['feed'] parsed_feed['etag'] = getattr(res, 'etag', None) parsed_feed['last_modified'] = getattr(res, 'last_modified', None) # pprintparsed_feed) # some minor validation... for required_key in ['title',]: if required_key not in parsed_feed: return None feed = add_feed(parsed_feed, url) # ok, now add the items feed_items = update_items(feed) return feed def update_items(feed, force=False): """ might be an instance method? """ if feed.needs_update or force: LOGGER.debug("%s.update_items entered" % __name__) items = parse_feed(feed.feed_url, etag=feed.etag, modified=feed.last_update)['items'] res = add_items(feed, items) else: print("Skipping (update not needed)") res = 0 return res def get_feed_image(parsed_feed): """ Figures out how this precious little snowflake defines its image returns it as a django File object """ image = None for key in ['image']: if hasattr(parsed_feed, key): image_struct = parsed_feed[key] LOGGER.info("Found image key %s: %s" % (key, image_struct)) image = get_cached_image(image_struct.url) if image: continue return image def get_feed_icon(parsed_feed): if hasattr(parsed_feed, 'icon'): image_url = parsed_feed['icon'] LOGGER.info("Found icon: %s" % icon_url) def add_feed(parsed_feed, feed_url): """ Takes a feed dictionary, and adds it to the database if exists, returns the original """ LOGGER.debug("%s.add_feed entered" % __name__) LOGGER.debug("feed_url: %s" % feed_url) LOGGER.debug("feed: \n%s" % pformat(parsed_feed)) if 'links' in parsed_feed: for link in parsed_feed['links']: if 'self' in list(link.values()): # self-declared feed_url takes precendence # FIXME: let's see how that works out in practice... feed_url = link['href'] # else: # # pprintparsed_feed) # raise ValidationError # check if this is a known feed # if 'title' not in parsed_feed: # # pprintparsed_feed) # try: f = Feed.objects.get(feed_url=feed_url) f.etag = parsed_feed['etag'] f.last_modified = parsed_feed['last_modified'] f.save() except Feed.DoesNotExist: # needs to be added if parsed_feed.get('updated', None): updated = datetime.fromtimestamp(mktime(parsed_feed['updated_parsed'])) else: updated = datetime.now() struct = { 'feed_title': parsed_feed['title'], 'language': parsed_feed.get('language', 'en'), 'copyright': parsed_feed.get('copyright',''), 'generator': parsed_feed.get('generator', ''), 'link': parsed_feed['link'], 'last_update': datetime.now(), 'pubDate': updated, 'lastBuildDate': updated, 'skipHours': parsed_feed.get('skipHours', 1), 'feed_url' : feed_url, 'etag' : parsed_feed['etag'], } struct['image'] = get_feed_image(parsed_feed) LOGGER.debug(struct) f = Feed(**struct) f.save() return f def add_items(feed, parsed_items): # feed: Feed object # parsed_items: list of items from the feedparser count = 0 for item in parsed_items: # check of this has already been indexed # pprintitem['id']) # pprint(item) if not id in item: item['id'] = item['link'] pubDate = localtime() try: FeedItem.objects.get(guid=item['id']) continue # except KeyError as e: # # item doesn't have a guid, for shame! # item['id'] = item['link'] except FeedItem.DoesNotExist: # figure out the pub_date if 'published_parsed' in item: pubDate = item['published_parsed'] elif item.has_key('updated_parsed'): pubDate = item['updated_parsed'] pubDate = datetime.fromtimestamp(mktime(pubDate)) # ok, it's new # need to figure out content # pprintitem) # if not item.has_key('description'): # print "DOH!" # LOGGER.debug('description empty, look for content') # description = item['content'][0]['value'] # wordpress weirdness # else: # description = item['description'] description = item['description'] struct = { 'source': feed, 'guid': item['id'], 'pubDate': pubDate, 'title': item.get('title', 'Untitled'), 'description': description, 'link': item['link'], 'author': item.get('author', feed.author), 'comments': item.get('comments',''), } # pprintstruct) i = FeedItem(**struct) i.save() count = count + 1 return count def find_feed(site): """ Parses a page, and returns a list of atom / RSS feeds """ parsed_url = urllib.parse.urlparse(site) if not parsed_url.scheme: site = 'http://' + site parsed_url = urllib.parse.urlparse(site) req = urllib.request.Request( site, data=None, headers={ 'User-Agent': FAKE_AGENT } ) raw = urllib.request.urlopen(req).read() result = [] possible_feeds = [] html = soup(raw, features='html.parser') feed_urls = html.findAll("link", rel="alternate") for f in feed_urls: t = f.get("type",None) if t: if "rss" in t or "xml" in t: href = f.get("href",None) if href: possible_feeds.append(href) parsed_url = urllib.parse.urlparse(site) if not parsed_url.scheme: parsed_url = urllib.parse.urlparse('http://' + site) base = parsed_url.scheme+"://"+parsed_url.hostname atags = html.findAll("a") for a in atags: href = a.get("href",None) if href: if "xml" in href or "rss" in href or "feed" in href: possible_feeds.append(base+href) for url in list(set(possible_feeds)): f = feedparser.parse(url) if len(f.entries) > 0: if url not in result: result.append(url) return(result) def parse_feed(url, etag=None, modified=None): # use urllib to get the text d = feedparser.parse(url, etag=etag, modified=modified) # pprintd) return d
2.46875
2
0657.GCBA-supermarket_sales.py
alphacastio/connectors-gcba
1
12781040
#!/usr/bin/env python # coding: utf-8 # In[1]: import requests import pandas as pd from lxml import etree from bs4 import BeautifulSoup import datetime import io import numpy as np from alphacast import Alphacast from dotenv import dotenv_values API_KEY = dotenv_values(".env").get("API_KEY") alphacast = Alphacast(API_KEY) # In[2]: url1 = "https://www.estadisticaciudad.gob.ar/eyc/wp-content/uploads/2020/10/AC_S_AX05.xlsx" df1 = pd.read_excel(url1) df1.columns = df1.iloc[1] df1 = df1.drop(index=1) df1 = df1.dropna(subset = ['Bebidas']) df1 = df1[~df1.iloc[:, 0].astype(str).str.isdigit()] df1 = df1.drop(df1.columns[[0]], axis=1) df1.index = pd.date_range(start='1/1/2013', periods=len(df1), freq = "MS") df1.index.name = "Date" df1.columns = "Índice a valores constantes Base 2013=100 de ventas en supermercados - " + df1.columns df1 # In[3]: url2 = "https://www.estadisticaciudad.gob.ar/eyc/wp-content/uploads/2019/05/AC_S_AX04.xlsx" df2 = pd.read_excel(url2) df2.columns = df2.iloc[0] df2.columns = "Ventas totales en supermercados (miles de pesos) - " + df2.columns df2 = df2.drop(index=0) df2 = df2.drop(index=1) df2 = df2.drop(index=2) df2 = df2.dropna(subset = ['Ventas totales en supermercados (miles de pesos) - Bebidas']) df2 = df2[~df2.iloc[:, 0].astype(str).str.isdigit()] df2 = df2.drop(df2.columns[[0, 1]], axis=1) df2.index = pd.date_range(start='1/1/2007', periods=len(df2), freq = "MS") df2.index.name = "Date" df2 = df2.rename(columns={np.nan: "Ventas totales en supermercados (miles de pesos) - Otros"}) # In[4]: url3 = "https://www.estadisticaciudad.gob.ar/eyc/wp-content/uploads/2019/05/AC_S_AX02.xlsx" df3 = pd.read_excel(url3) df3.columns = df3.iloc[1] #df3.columns = "Ventas totales en supermercados (miles de pesos) - " + df3.columns df3 = df3.drop(index=0) df3 = df3.drop(index=1) #df3 = df3.drop(index=2) df3 = df3.dropna(subset = ['Operaciones']) df3 = df3[~df3.iloc[:, 0].astype(str).str.isdigit()] df3 = df3.drop(df3.columns[[0, 1]], axis=1) df3.index = pd.date_range(start='1/1/2007', periods=len(df3), freq = "MS") df3.index.name = "Date" #df3 = df3.rename(columns={np.nan: "Ventas totales en supermercados (miles de pesos) - Otros"}) df3 # In[5]: df4 = df1.merge(df2, right_index = True, left_index=True, how = "right").merge(df3, right_index = True, left_index=True) # In[6]: for col in df4.columns: df4[col] = pd.to_numeric(df4[col], errors="coerce") # In[7]: df4["country"] = "CABA" alphacast.datasets.dataset(657).upload_data_from_df(df4, deleteMissingFromDB = True, onConflictUpdateDB = True, uploadIndex=True)
3.015625
3
openmdao.gui/src/openmdao/gui/test/functional/files/model_vartree.py
swryan/OpenMDAO-Framework
0
12781041
""" This model is used by test_valueeditors to test expand/collapse on the object and parameter panes. """ from openmdao.main.api import Component, Assembly, VariableTree from openmdao.lib.datatypes.api import Float, Slot class DumbVT3(VariableTree): def __init__(self): super(DumbVT3, self).__init__() self.add('a', Float(1., units='ft')) self.add('b', Float(12., units='inch')) class DumbVT2(VariableTree): vt3 = Slot(DumbVT3, iotype='in') def __init__(self): super(DumbVT2, self).__init__() self.add('x', Float(-1.)) self.add('y', Float(-2.)) self.add('vt3', DumbVT3()) class DumbVT(VariableTree): vt2 = Slot(DumbVT2, iotype='in') def __init__(self): super(DumbVT, self).__init__() self.add('vt2', DumbVT2()) self.add('v1', Float(1., desc='vv1')) self.add('v2', Float(2., desc='vv2')) class SimpleComp(Component): cont_in = Slot(DumbVT, iotype='in') cont_out = Slot(DumbVT, iotype='out') def __init__(self): super(SimpleComp, self).__init__() self.add('cont_in', DumbVT()) self.add('cont_out', DumbVT()) class Topp(Assembly): def configure(self): self.add('p1', SimpleComp())
1.992188
2
neural_network.py
amrkh97/Arabic-OCR-Using-Python
1
12781042
import numpy as np import torch import torch.nn.functional as F import dataset_creator as DC from torch import nn from torch import optim # import keras def createNN(_inputSize): input_size = _inputSize hidden_sizes = [15,10] # 12 nodes in first hidden layer output_size = 29 # Number of possible outputs model = nn.Sequential(nn.Linear(input_size, hidden_sizes[0]), nn.ReLU(), #nn.Dropout(0.2), #nn.Linear(hidden_sizes[0], hidden_sizes[1]), #nn.ReLU(), #nn.Dropout(0.3), nn.Linear(hidden_sizes[0], output_size)) return model def convert2tensor(x): x = torch.FloatTensor(x) return x def convert2long(x): x = torch.LongTensor(x) return x def switchLoader(e,it1,it2,it3,it4,it5): switcher={ 0:it1, 1:it2, 2:it3, 3:it4, 4:it5 } return switcher.get(e,"Invalid Iterator") def TrainNN(model,t1,t2,t3,t4,t5): criterion = nn.CrossEntropyLoss() #criterion = nn.CTCLoss() #optimizer = optim.SGD(model.parameters(), lr=0.01) optimizer = optim.Adam(model.parameters(), lr=1e-5) epochs = 5 print_every = 1000 steps = 0 correct_train = 0 for e in range(epochs): running_loss = 0 loaderForData = switchLoader(e,t1,t2,t3,t4,t5) for images, labels in iter(loaderForData): steps += 1 images = convert2tensor(images) actual_label = labels labels = [labels,] labels = convert2long(labels) labels = torch.LongTensor(labels) optimizer.zero_grad() # Clear the gradients as gradients are accumulated # Forward and backward passes output = model.forward(images) output = F.softmax(output, dim=0) output = output.unsqueeze(dim=0) loss = criterion(output, labels) # Calculate the loss loss.backward() # backpropagate to get values of the new weights optimizer.step() # Take a step to update the newly calculated weights _, predicted = torch.max(output.data, 1) correct_train += predicted.eq(labels.data).sum().item() running_loss += loss.item() if steps % print_every == 0: print(predicted) print(labels.data) print("Epoch: {}/{}... ".format(e+1, epochs), "Loss: {:.4f}".format(running_loss/print_every)) print("Ended Epoch.",str(e+1)) #Saving the model after training: train_accuracy = 100 * correct_train / 5000 print("Train Accuracy on 1000 Elements: {}%".format(train_accuracy)) PATH = 'trained_model.pth' torch.save(model.state_dict(), PATH) def TestNN(model,testloader): images = torch.FloatTensor(testloader[:17]) logits = model.forward(images) ps = F.softmax(logits, dim=0) ps = ps.data.numpy().squeeze() prediction = np.argmax(ps) print(ps) D = DC.returnToArabicDictionary() return D[prediction] # def PrepareLabels(): def load_checkpoint(filepath): model = torch.load('trained_model.pth') return model
2.78125
3
lib/models/__init__.py
simonwey/DecoupleNet
0
12781043
# ------------------------------------------------------------------------------ # Copyright (c) Microsoft # Licensed under the MIT License. # Written by <NAME> (<EMAIL>) # ------------------------------------------------------------------------------ from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import absolute_import from __future__ import division from __future__ import print_function import lib.models.pose_resnet import lib.models.pose_hrnet import lib.models.pose_hrnet_se import lib.models.pose_hrnet_se_lambda import lib.models.pose_hrnet_se_lambda_visualize import lib.models.pose_hrnet_multi_task_lambda import lib.models.pose_resnet_se import lib.models.pose_resnet_se_lambda import lib.models.pose_hrnet_SEIgn_lambda import lib.models.pose_hrnet_ss_lambda import lib.models.pose_hrnet_decouple_gcn import lib.models.pose_hrnet_IgnSE12_lambda import lib.models.pose_hrnet_decouple_cnn import lib.models.pose_hrnet_decouple_naive import lib.models.pose_hrnet_decouple_naive_withdp import lib.models.pose_hrnet_decouple_stupid import lib.models.pose_hrnet_decouple_ia import lib.models.pose_hrnet_dcp_skt import lib.models.pose_hrnet_decomp_align import lib.models.pose_hrnet_four_arm import lib.models.pose_hrnet_twohead import lib.models.pose_cnn_two_arm import lib.models.pose_hrnet_ori import lib.models.pose_two_two import lib.models.pose_two_catt
1.789063
2
1_stroop.py
kalenkovich/nengo_stroop
0
12781044
# coding: utf-8 # In[1]: import nengo import nengo_spa as spa import numpy as np # In[2]: from matplotlib import pyplot as plt # In[3]: #create semantic pointers words = [ 'CAT', 'BLUE', 'RED'] colors = ['RED', 'BLUE'] fingers = ['INDEX', 'MIDDLE'] D = 16 #we reduced it from 32 cause of capacity of our computers vocab = spa.Vocabulary(D) vocab.populate(';'.join(words)) vocab.populate('COLOR; WORD') vocab.populate(';'.join(fingers)) stimuli = [] for i in range(10): w = np.random.choice(colors) c = np.random.choice(colors) stimuli.append((w,c)) # # No recurrent connections # In[4]: model = spa.Network() with model: t_stim = 0.5 t_isi = 0.5 def word_func(t): index = int (t / (t_stim + t_isi)) t = t % (t_stim + t_isi) if t < t_isi: return '0' else: return stimuli[index%len(stimuli)][0] def color_func(t): index = int (t / (t_stim + t_isi)) t = t % (t_stim + t_isi) if t < t_isi: return '0' else: return stimuli[index%len(stimuli)][1] stim_w = spa.Transcode(word_func, output_vocab=vocab) #create node for pre processing color to mimic delay pre_stim_c = spa.Transcode(color_func, output_vocab=vocab) stim_c = spa.State(vocab) #reduced amount of neurons to increase volatility of attention attention = spa.State(vocab, neurons_per_dimension=10) spa.sym.WORD * 0.45 + spa.sym.COLOR * 0.55 >> attention wm = spa.State(vocab) nengo.Connection(pre_stim_c.output, stim_c.input, synapse=0.3) #added gain for action selection to be triggered (spa.sym.COLOR*stim_c+spa.sym.WORD*stim_w)*~attention*2 >> wm finger = spa.State(vocab) with spa.ActionSelection(): spa.ifmax( spa.dot(wm, spa.sym.BLUE), spa.sym.INDEX >> finger) spa.ifmax(spa.dot(wm, spa.sym.RED), spa.sym.MIDDLE >> finger) spa.ifmax(0.5, spa.semantic_pointer.Zero(D) >> finger) # In[5]: with model: p_input_word = nengo.Probe(stim_w.output) p_input_color = nengo.Probe(pre_stim_c.output) p_wm = nengo.Probe(wm.output) p_finger = nengo.Probe(finger.output) # In[6]: with nengo.Simulator(model) as sim: sim.run(5) # In[7]: figuge, axs = plt.subplots(ncols=1, nrows=4, figsize=(10, 10)) axs[0].plot(sim.trange(), spa.similarity(sim.data[p_input_word], vocab)) axs[0].legend(vocab.keys(), loc='right') axs[1].plot(sim.trange(), spa.similarity(sim.data[p_input_color], vocab)) axs[1].legend(vocab.keys(), loc='right') axs[2].plot(sim.trange(), spa.similarity(sim.data[p_wm], vocab)) axs[2].legend(vocab.keys(), loc='right') axs[3].plot(sim.trange(), spa.similarity(sim.data[p_finger], vocab)) axs[3].legend(vocab.keys(), loc='right') # The delay in processing 'color' vs 'word' was successful. However the model without recurrent wm always responds incorrectly (to 'word'), as it responds to the first input to wm. Thus we decided to add recurrent feedback to the wm nodes, to achive accumulation of evidence. # # Yes recurrent connections # In[4]: model_rec = spa.Network() with model_rec: #we changed durations, to avoid intertrial effects (wm overlap) t_stim = 0.3 t_isi = 0.7 def word_func(t): index = int (t / (t_stim + t_isi)) t = t % (t_stim + t_isi) if t < t_isi: return '0' else: return stimuli[index%len(stimuli)][0] def color_func(t): #instead of achieving delay via additional node, for better control we present 'color' later than 'word' t -= 0.1 index = int (t / (t_stim + t_isi)) t = t % (t_stim + t_isi) if t < t_isi: return '0' else: return stimuli[index%len(stimuli)][1] stim_w = spa.Transcode(word_func, output_vocab=vocab) stim_c = spa.Transcode(color_func, output_vocab=vocab) rec_weight_input = 1 rec_weight_feedback = 0.5 wm_w = spa.State(vocab, feedback=rec_weight_feedback) wm_c = spa.State(vocab, feedback=rec_weight_feedback) stim_w * rec_weight_input >> wm_w stim_c * rec_weight_input >> wm_c attention = spa.State(vocab, neurons_per_dimension=10) #we reduced attentional difference to give higher chance to'word' spa.sym.WORD * 0.48 + spa.sym.COLOR * 0.52 >> attention wm = spa.State(vocab, feedback=rec_weight_feedback) (spa.sym.COLOR * wm_c + spa.sym.WORD * wm_w) * ~attention * rec_weight_input * 2 >> wm finger = spa.State(vocab) with spa.ActionSelection(): spa.ifmax( spa.dot(wm, spa.sym.BLUE), spa.sym.INDEX >> finger) spa.ifmax(spa.dot(wm, spa.sym.RED), spa.sym.MIDDLE >> finger) spa.ifmax(0.5, spa.semantic_pointer.Zero(D) >> finger) # In[5]: with model_rec: p_input_word = nengo.Probe(stim_w.output) p_input_color = nengo.Probe(stim_c.output) p_wm_word = nengo.Probe(wm_w.output) p_wm_color = nengo.Probe(wm_c.output) p_wm = nengo.Probe(wm.output) p_finger = nengo.Probe(finger.output) # In[11]: stimuli = [] for i in range(10): w = np.random.choice(colors) c = np.random.choice(colors) stimuli.append((w,c)) # In[12]: with nengo.Simulator(model_rec) as sim_rec: sim_rec.run(10) # In[13]: figuge, axs = plt.subplots(ncols=1, nrows=6, figsize=(10, 10)) axs[0].plot(sim_rec.trange(), spa.similarity(sim_rec.data[p_input_word], vocab)) axs[0].legend(vocab.keys(), loc='right') axs[1].plot(sim_rec.trange(), spa.similarity(sim_rec.data[p_input_color], vocab)) axs[1].legend(vocab.keys(), loc='right') axs[2].plot(sim_rec.trange(), spa.similarity(sim_rec.data[p_wm_word], vocab)) axs[2].legend(vocab.keys(), loc='right') axs[3].plot(sim_rec.trange(), spa.similarity(sim_rec.data[p_wm_color], vocab)) axs[3].legend(vocab.keys(), loc='right') axs[4].plot(sim_rec.trange(), spa.similarity(sim_rec.data[p_wm], vocab)) axs[4].legend(vocab.keys(), loc='right') axs[5].plot(sim_rec.trange(), spa.similarity(sim_rec.data[p_finger], vocab)) axs[5].legend(vocab.keys(), loc='right') # This is the closest result that shows mistakes (at least we can interpret it that way): 4,5,7 & 8 timepoints where both fingers are selected (wrong finger is the first one)
2.5625
3
modules/fucking_dinner.py
CHCMATT/Code
15
12781045
import re from util.hook import * from util import web uri = 'http://www.whatthefuckshouldimakefordinner.com' re_mark = re.compile(r'<dt><a href="(.*?)" target="_blank">(.*?)</a></dt>') @hook(cmds=['fucking_dinner', 'fd', 'dinner'], priority='low') def dinner(code, input): """fd -- WHAT DO YOU WANT FOR FUCKING DINNER?""" err = '{red}EAT LEFT OVER PIZZA FOR ALL I CARE.' try: data = web.text(uri) results = re_mark.findall(data) if not results: return code.say(err) url, food = results[0][0], web.escape(results[0][1]) code.say('WHY DON\'T YOU EAT SOME FUCKING {b}%s{b}. HERE IS THE RECIPE: %s' % ( food.upper(), url)) except: return code.say(err)
2.59375
3
chariot/transformer/text/lower_normalizer.py
Y-Kuro-u/chariot
134
12781046
<reponame>Y-Kuro-u/chariot<gh_stars>100-1000 from chariot.transformer.text.base import TextNormalizer class LowerNormalizer(TextNormalizer): def __init__(self, copy=True): super().__init__(copy) def apply(self, text): return text.lower()
2.265625
2
edf/scripts/test.py
ktfm2/Kai_updates
1
12781047
<reponame>ktfm2/Kai_updates import aa_py import sys sys.path.append('../py/') import edf_py import json import numpy as np import matplotlib.pyplot as plt try: import seaborn except: pass with open('../config.json') as data_file: data = json.load(data_file) pot = aa_py.GalPot(str(data['potential'])) acts = aa_py.Actions_AxisymmetricFudge_InterpTables(pot,str(data['actions']),False,0.2,20.) edf = edf_py.edf(pot,acts) edf.readParams(str(data['edf_params'])) X = np.array([8.,2.,1.,0.1,0.1,0.1]) age = 1. metal = -0.5 vr = np.linspace(-100.,100.,1000) R = np.sqrt(X[0]**2+X[1]**2) ct,st = X[0]/R, X[1]/R vp=220. fvr = np.array([edf(np.append(X[:3],np.array([v*ct-vp*st,v*st+vp*ct,X[-1]])), age,metal) for v in vr]) fvp = np.array([edf(np.append(X[:3],np.array([-(v+vp)*st,(vp+v)*ct,X[-1]])), age,metal) for v in vr]) fvz = np.array([edf(np.append(X[:3],np.array([-vp*st,vp*ct,v])), age,metal) for v in vr]) plt.plot(vr,fvr,label=r'$v_R$') plt.plot(vr,fvp,label=r'$v_\phi$') plt.plot(vr,fvz,label=r'$v_z$') plt.xlabel(r'$v_r,v_\phi-220,v_z/\,\mathrm{km\,s}^{-1}$') plt.ylabel(r'$f(v_i)$') plt.legend() plt.show()
1.984375
2
project/apps/blog/tests/test_models.py
slaily/pypublisher
0
12781048
from django.test import SimpleTestCase from project.apps.blog import models class AuthorTest(SimpleTestCase): def test_str_dunder(self): author = models.Author(id=1) author_dunder_str_format = '<Author: ID - {id}>'.format(id=author.id) self.assertMultiLineEqual( author.__str__(), author_dunder_str_format ) class ArticleTest(SimpleTestCase): def test_str_dunder(self): article = models.Article(id=1) article_dunder_str_format = '<Article: ID - {id}>'.format(id=article.id) self.assertMultiLineEqual( article.__str__(), article_dunder_str_format )
2.8125
3
openmdao.gui/src/openmdao/gui/test/functional/pageobjects/dataflow.py
swryan/OpenMDAO-Framework
0
12781049
<reponame>swryan/OpenMDAO-Framework import logging import time from selenium.webdriver import ActionChains from selenium.webdriver.common.by import By from selenium.common.exceptions import StaleElementReferenceException from basepageobject import BasePageObject, TMO from elements import GenericElement, ButtonElement, TextElement from component import ComponentPage, DriverPage, PropertiesPage, AssemblyPage from connections import ConnectionsPage class DataflowFigure(BasePageObject): """ Represents elements within a dataflow figure. """ name = TextElement((By.CLASS_NAME, 'DataflowFigureHeader')) top_left = GenericElement((By.CLASS_NAME, 'DataflowFigureTopLeft')) header = GenericElement((By.CLASS_NAME, 'DataflowFigureHeader')) top_right = ButtonElement((By.CLASS_NAME, 'DataflowFigureTopRight')) content_area = GenericElement((By.CLASS_NAME, 'DataflowFigureContentArea')) bottom_left = GenericElement((By.CLASS_NAME, 'DataflowFigureBottomLeft')) bottom_right = GenericElement((By.CLASS_NAME, 'DataflowFigureBottomRight')) footer = GenericElement((By.CLASS_NAME, 'DataflowFigureFooter')) # Context menu. edit_button = ButtonElement((By.XPATH, "../div/a[text()='Edit']")) properties_button = ButtonElement((By.XPATH, "../div/a[text()='Properties']")) run_button = ButtonElement((By.XPATH, "../div/a[text()='Run']")) connections_button = ButtonElement((By.XPATH, "../div/a[text()='Edit Data Connections']")) show_dataflows = ButtonElement((By.XPATH, "../div/a[text()='Show Data Connections']")) hide_dataflows = ButtonElement((By.XPATH, "../div/a[text()='Hide Data Connections']")) show_driverflows = ButtonElement((By.XPATH, "../div/a[text()='Show Driver Connections']")) hide_driverflows = ButtonElement((By.XPATH, "../div/a[text()='Hide Driver Connections']")) disconnect_button = ButtonElement((By.XPATH, "../div/a[text()='Disconnect']")) remove_button = ButtonElement((By.XPATH, "../div/a[text()='Remove']")) # Port context menus. edit_connections = ButtonElement((By.XPATH, "../div/a[text()='Edit Connections']")) edit_passthroughs = ButtonElement((By.XPATH, "../div/a[text()='Edit Passthroughs']")) edit_driver = ButtonElement((By.XPATH, "../div/a[text()='Edit Driver']")) def __init__(self, browser, port, root): super(DataflowFigure, self).__init__(browser, port, root) self._pathname = None @property def pathname(self): """ Pathname of this component. """ if self._pathname is None: # Much slower than if explicitly set. parent = self('header').find_element_by_xpath('..') fig_id = parent.get_attribute('id') script = "return jQuery('#" + fig_id + "').data('pathname')" self._pathname = self.browser.execute_script(script) return self._pathname @pathname.setter def pathname(self, path): self._pathname = path @property def input_port(self): """ Input port element, `pathname` must be set previously. """ return self.root.find_element_by_id(self.pathname + '-input') @property def output_port(self): """ Output port element, `pathname` must be set previously. """ return self.root.find_element_by_id(self.pathname + '-output') @property def border(self): """ Figure border property. """ return self.root.value_of_css_property('border') @property def background_color(self): """ Figure background-color property. """ return self.root.value_of_css_property('background-color') @property def coords(self): """ Figure (left, top). """ left = self.root.value_of_css_property('left') left = int(left[0:-2]) # Drop 'px'. top = self.root.value_of_css_property('top') top = int(top[0:-2]) # Drop 'px'. return (left, top) def editor_page(self, double_click=True, base_type='Component'): """ Return :class:`ComponentPage` for this component. """ chain = ActionChains(self.browser) if double_click: chain.double_click(self.root).perform() else: self._context_click('edit_button') editor_id = 'CE-%s' % self.pathname.replace('.', '-') if base_type == 'Assembly': return AssemblyPage(self.browser, self.port, (By.ID, editor_id)) elif base_type == 'Driver': return DriverPage(self.browser, self.port, (By.ID, editor_id)) else: return ComponentPage(self.browser, self.port, (By.ID, editor_id)) def properties_page(self): """ Return :class:`PropertiesPage` for this component. """ self._context_click('properties_button') props_id = '%s-properties' % self.pathname.replace('.', '-') return PropertiesPage(self.browser, self.port, (By.ID, props_id)) def connections_page(self): """ Return :class:`ConnectionsPage` for this component. """ self._context_click('connections_button') frame_id = 'ConnectionsFrame-%s' % self.pathname.replace('.', '-') return ConnectionsPage(self.browser, self.port, (By.ID, frame_id)) def input_edit_driver(self, driver_pathname): """ Return :class:`DriverPage` associated with the input port. """ chain = ActionChains(self.browser) chain.context_click(self.input_port).perform() time.sleep(0.5) self('edit_driver').click() editor_id = 'CE-%s' % driver_pathname.replace('.', '-') return DriverPage(self.browser, self.port, (By.ID, editor_id)) def output_edit_driver(self, driver_pathname): """ Return :class:`DriverPage` associated with the output port. """ # FIXME: can't get response from context click. chain = ActionChains(self.browser) chain.context_click(self.output_port).perform() time.sleep(0.5) self('edit_driver').click() editor_id = 'CE-%s' % driver_pathname.replace('.', '-') return DriverPage(self.browser, self.port, (By.ID, editor_id)) def run(self): """ Run this component. """ self._context_click('run_button') def disconnect(self): """ Disconnect this component. """ self._context_click('disconnect_button') def remove(self): """ Remove this component. """ self._context_click('remove_button') def display_dataflows(self, show): """ Show/hide data flows. """ if show: self._context_click('show_dataflows') else: self._context_click('hide_dataflows') def display_driverflows(self, show): """ Show/hide driver flows. """ if show: self._context_click('show_driverflows') else: self._context_click('hide_driverflows') def _context_click(self, name): """ Display context menu. """ chain = ActionChains(self.browser) # Default is centered which causes problems in some contexts. # Offset is apparently limited, (20, 20) had problems. chain.move_to_element_with_offset(self.root, 15, 15) chain.context_click(None) chain.perform() time.sleep(0.5) self(name).click() def find_dataflow_figures(page): """ Return dataflow figure elements in `page`. """ root = page.root or page.browser time.sleep(0.5) # Pause for stable display. return root.find_elements_by_class_name('DataflowFigure') def find_dataflow_figure(page, name, prefix=None, retries=5): """ Return :class:`DataflowFigure` for `name` in `page`. """ root = page.root or page.browser for retry in range(retries): time.sleep(0.5) # Pause for stable display. figures = root.find_elements_by_class_name('DataflowFigure') if not figures: continue fig_name = None for figure in figures: page.browser.implicitly_wait(1) try: header = figure.find_elements_by_class_name('DataflowFigureHeader') if len(header) == 0: # the outermost figure (globals) has no header or name if name == '' and prefix is None: fig = DataflowFigure(page.browser, page.port, figure) return fig else: continue fig_name = figure.find_elements_by_class_name('DataflowFigureHeader')[0].text except StaleElementReferenceException: logging.warning('get_dataflow_figure:' ' StaleElementReferenceException') else: if fig_name == name: fig = DataflowFigure(page.browser, page.port, figure) if prefix is not None: if prefix: fig.pathname = '%s.%s' % (prefix, name) else: fig.pathname = name return fig finally: page.browser.implicitly_wait(TMO) return None def find_dataflow_component_names(page): """ Return names of dataflow components in `page`. """ root = page.root or page.browser names = [] # Assume there should be at least 1, wait for number to not change. n_found = 0 for retry in range(10): time.sleep(0.5) # Pause for stable display. dataflow_component_headers = \ root.find_elements_by_class_name('DataflowFigureHeader') if dataflow_component_headers: n_headers = len(dataflow_component_headers) if n_found: if n_headers == n_found: return [h.text for h in dataflow_component_headers] n_found = n_headers else: logging.error('get_dataflow_component_names: n_found %s', n_found) return names #for i in range(len(dataflow_component_headers)): #for retry in range(10): # This has had issues... #try: #names.append(root.find_elements_by_class_name('DataflowFigureHeader')[i].text) #except StaleElementReferenceException: #logging.warning('get_dataflow_component_names:' #' StaleElementReferenceException') #except IndexError: #logging.warning('get_dataflow_component_names:' #' IndexError for i=%s, headers=%s', #i, len(dataflow_component_headers)) #else: #break #if len(names) != len(dataflow_component_headers): #logging.error('get_dataflow_component_names:' #' expecting %d names, got %s', #len(dataflow_component_headers), names) #return names
2.0625
2
CCPD/lista-1/questao1.py
Dowsley/CESAR2
2
12781050
from multiprocessing import Pool, cpu_count import time flatten = lambda t: [item for sublist in t for item in sublist] def load_list(f): pre_list = f.read().splitlines() return [int(e) for e in pre_list] def dump_list(f, num_list): for i in num_list: f.write("%d\n" % i) def split_list(seq, num): avg = len(seq) / float(num) out = [] last = 0.0 while last < len(seq): out.append(seq[int(last):int(last + avg)]) last += avg return out def remove_duplicates(segment): seen = set() seen_add = seen.add return [e for e in segment if not (e in seen or seen_add(e))] def task(num_list): num_cpus = cpu_count() with Pool(num_cpus) as pool: segments = split_list(num_list, num_cpus) return flatten(pool.map_async(remove_duplicates, segments).get()) if __name__ == '__main__': with open('out.txt', 'r') as input_file: num_list = load_list(input_file) # Test with multithreading start = time.time() result = remove_duplicates(task(num_list)) end = time.time() print(f"With multithreading: {(end - start) * 1000} milisseconds") with open('result.txt', 'w') as output_file: dump_list(output_file, result) # Test without multithreading start = time.time() result = remove_duplicates(num_list) end = time.time() print(f"Without multithreading: {(end - start) * 1000} milisseconds")
3.203125
3