max_stars_repo_path
stringlengths
3
269
max_stars_repo_name
stringlengths
4
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.05M
score
float64
0.23
5.13
int_score
int64
0
5
uvicorn/protocols/utils.py
immerrr/uvicorn
0
12780651
import asyncio import time import urllib.parse from typing import Optional, Tuple from asgiref.typing import WWWScope def get_remote_addr(transport: asyncio.Transport) -> Optional[Tuple[str, int]]: socket_info = transport.get_extra_info("socket") if socket_info is not None: try: info = socket_info.getpeername() return (str(info[0]), int(info[1])) if isinstance(info, tuple) else None except OSError: # This case appears to inconsistently occur with uvloop # bound to a unix domain socket. return None info = transport.get_extra_info("peername") if info is not None and isinstance(info, (list, tuple)) and len(info) == 2: return (str(info[0]), int(info[1])) return None def get_local_addr(transport: asyncio.Transport) -> Optional[Tuple[str, int]]: socket_info = transport.get_extra_info("socket") if socket_info is not None: info = socket_info.getsockname() return (str(info[0]), int(info[1])) if isinstance(info, tuple) else None info = transport.get_extra_info("sockname") if info is not None and isinstance(info, (list, tuple)) and len(info) == 2: return (str(info[0]), int(info[1])) return None def is_ssl(transport: asyncio.Transport) -> bool: return bool(transport.get_extra_info("sslcontext")) def get_client_addr(scope: WWWScope) -> str: client = scope.get("client") if not client: return "" return "%s:%d" % client def get_path_with_query_string(scope: WWWScope) -> str: path_with_query_string = urllib.parse.quote( scope.get("root_path", "") + scope["path"] ) if scope["query_string"]: path_with_query_string = "{}?{}".format( path_with_query_string, scope["query_string"].decode("ascii") ) return path_with_query_string class RequestResponseTiming: # XXX: switch to "time.perf_counter" because apparently on windows # time.monotonis is using GetTickCount64 which has ~15ms resolution (it # caused problems in tests on windows) # # ref: https://github.com/python-trio/trio/issues/33#issue-202432431 def __init__(self) -> None: self._request_start_time: Optional[float] = None self._request_end_time: Optional[float] = None self._response_start_time: Optional[float] = None self._response_end_time: Optional[float] = None def request_started(self) -> None: self._request_start_time = time.monotonic() @property def request_start_time(self) -> float: if self._request_start_time is None: raise ValueError("request_started() was not called") return self._request_start_time def request_ended(self) -> None: self._request_end_time = time.monotonic() @property def request_end_time(self) -> float: if self._request_end_time is None: raise ValueError("request_ended() was not called") return self._request_end_time def response_started(self) -> None: self._response_start_time = time.monotonic() @property def response_start_time(self) -> float: if self._response_start_time is None: raise ValueError("response_started() was not called") return self._response_start_time def response_ended(self) -> None: self._response_end_time = time.monotonic() @property def response_end_time(self) -> float: if self._response_end_time is None: raise ValueError("response_ended() was not called") return self._response_end_time def request_duration_seconds(self) -> float: return self.request_end_time - self.request_start_time def response_duration_seconds(self) -> float: return self.response_end_time - self.response_start_time def total_duration_seconds(self) -> float: return self.response_end_time - self.request_start_time
2.5625
3
UTDVN_backend/UTDVN_database/apps.py
NewLuminous/UTDVN
1
12780652
<filename>UTDVN_backend/UTDVN_database/apps.py<gh_stars>1-10 from django.apps import AppConfig class UtdvnDatabaseConfig(AppConfig): name = 'UTDVN_database'
1.21875
1
hardhat/recipes/libsigc++.py
stangelandcl/hardhat
0
12780653
<filename>hardhat/recipes/libsigc++.py from .base import GnuRecipe class LibSigCppRecipe(GnuRecipe): def __init__(self, *args, **kwargs): super(LibSigCppRecipe, self).__init__(*args, **kwargs) self.sha256 = '774980d027c52947cb9ee4fac6ffe2ca' \ '60cc2f753068a89dfd281c83dbff9651' self.name = 'libsigc++' self.version = '2.8.0' short_version = '.'.join(self.version.split('.')[:2]) self.url = 'http://ftp.gnome.org/pub/gnome/sources/$name/' \ '%s/$name-$version.tar.xz' % short_version
1.84375
2
src/controller/dbcontroller.py
gusilva/sdr
0
12780654
<gh_stars>0 from src.model.model import Base, Settings, Report, FolderTracking from sqlalchemy.orm import sessionmaker from sqlalchemy import create_engine from datetime import datetime class Controller(object): """ Controller class to interact with db model data. Methods ------- getActiveProductSettings() retrive the product settings from settings table model. save(productid, pam_source_count, pam_destination_count) save report data to daily report db table. """ def __init__(self, dbengine: create_engine) -> None: """ Parameters ---------- dbengine : create_engine create engine object from sqlalchemy. """ Base.metadata.bind = dbengine DBSession = sessionmaker(bind=dbengine) self.session = DBSession() def getActiveProductSettings(self) -> None: """Get active settings from db settings table. Returns ------- list all active settings. """ products = self.session.query(Settings).filter_by(status=1).all() return [data.serialize for data in products] def save( self, productid: int, pam_source_count: int, pam_destination_count: int ) -> None: """Save daily report to report table. Parameters ---------- productid : int product setting id. pam_source_count: int production asset management source count. pam_destination_count: int production asset management destination count. """ dt = datetime.now() data = { "settings_id": productid, "pam_source_count": pam_source_count, "pam_destination_count": pam_destination_count, "report_date": dt, } report = Report(**data) self.session.add(report) self.session.commit() def saveFolders( self, productid: int, pam_source_missing_count: int, pam_destination_missing_count: int, ) -> None: """Save tracking folders count to foldertracking table. Parameters ---------- productid : int product setting id. pam_source_missing_count: int production asset management source missing count. pam_destination_missing_count: int production asset management destination missing count. """ dt = datetime.now() data = { "settings_id": productid, "pam_source_missing_count": pam_source_missing_count, "pam_destination_missing_count": pam_destination_missing_count, "created_date": dt, } tracking = FolderTracking(**data) self.session.add(tracking) self.session.commit()
2.328125
2
app.py
skullcandy69/Minor-Project
0
12780655
<filename>app.py<gh_stars>0 import time from absl import app, logging import cv2 import numpy as np import tensorflow as tf from yolov3_tf2.models import ( YoloV3, YoloV3Tiny ) from yolov3_tf2.dataset import transform_images, load_tfrecord_dataset from yolov3_tf2.utils import draw_outputs from flask import Flask, request, Response, jsonify, send_from_directory, abort import os #################################### # USAGE # python test_handwriting.py --model handwriting.model --image images/umbc_address.png # import the necessary packages from tensorflow.keras.models import load_model from imutils.contours import sort_contours import numpy as np import argparse import imutils import cv2 ################################ import math import operator # for sorting li def roundup(x): # round to nearest 10 return int(math.ceil(x / 10.0)) * 10 ################################# # load the handwriting OCR model print("[INFO] loading handwriting OCR model...") model = load_model("C:/repos/env/Text-Detection/handwriting.model") ###################################################### # customize your API through the following parameters classes_path = './data/labels/coco.names' weights_path = './weights/yolov3.tf' tiny = False # set to True if using a Yolov3 Tiny model size = 416 # size images are resized to for model output_path = './detections/' # path to output folder where images with detections are saved num_classes = 7 # number of classes in model # load in weights and classes physical_devices = tf.config.experimental.list_physical_devices('GPU') if len(physical_devices) > 0: tf.config.experimental.set_memory_growth(physical_devices[0], True) if tiny: yolo = YoloV3Tiny(classes=num_classes) else: yolo = YoloV3(classes=num_classes) yolo.load_weights(weights_path).expect_partial() print('weights loaded') class_names = [c.strip() for c in open(classes_path).readlines()] print('classes loaded') # Initialize Flask application app = Flask(__name__) class finalList: def __init__(self, name, x, y): self.name = name self.x = x self.y = y # Initialize Flask application app = Flask(__name__) @app.route('/', methods=['GET']) def hello_world(): return '''<html> <body> <p>Click on the "Choose File" button to upload a file:</p> <form action="/detections" method = "POST" enctype = "multipart/form-data"> <input type="file" id="images" name="images"> <input type="submit" value="Upload Image" name="submit"> </form> </body> </html>''' # API that returns JSON with classes found in images @app.route('/detections', methods=['POST']) def get_detections(): raw_images = [] images = request.files.getlist("images") image_names = [] for image in images: image_name = image.filename image_names.append(image_name) image.save(os.path.join(os.getcwd(), image_name)) img_raw = tf.image.decode_image( open(image_name, 'rb').read(), channels=3) raw_images.append(img_raw) num = 0 # create list for final response response = [] li = [] for j in range(len(raw_images)): # create list of responses for current image responses = [] raw_img = raw_images[j] num += 1 img = tf.expand_dims(raw_img, 0) img = transform_images(img, size) t1 = time.time() boxes, scores, classes, nums = yolo(img) t2 = time.time() print('time: {}'.format(t2 - t1)) # print("**",scores) print('detections:') for i in range(nums[0]): # if np.array(scores[0][i])*100>30: print('\t{}, {}, {}'.format(class_names[int(classes[0][i])], np.array(scores[0][i]), np.array(boxes[0][i]))) responses.append({ "class": class_names[int(classes[0][i])], "confidence": float("{0:.2f}".format(np.array(scores[0][i]) * 100)), "co ordinates": str("{}".format((np.array(boxes[0][i])))) }) # print(tuple(np.array(boxes[0][i]))) # img = Image.open("C:\\Repos\\object-Detection-API\\detections\\detection.jpg") # a,b = img.size # print("*****") # print(a,b) x, y, z, h = np.array(boxes[0][i]) p = finalList(class_names[int(classes[0][i])], x, y) li.append(p) # print(x,y,z,h) # crop = img.crop((x*a,y*b,z*a,h*b)) # crop.show() response.append({ "image": image_names[j], "detections": responses }) # note the tuple img = cv2.cvtColor(raw_img.numpy(), cv2.COLOR_RGB2BGR) img = draw_outputs(img, (boxes, scores, classes, nums), class_names) cv2.imwrite(output_path + 'detection' + '.jpg', img) print('output saved to: {}'.format(output_path + 'detection' + str(num) + '.jpg')) st = """ <!DOCTYPE html> <html> <head> <meta name="viewport" content="width=device-width" /> <title>HTML Result</title> <link rel="stylesheet" href="https://stackpath.bootstrapcdn.com/bootstrap/4.1.1/css/bootstrap.min.css" integrity="<KEY>" crossorigin="anonymous"> </head> <body> <div class="container body-content">""" en = """ </div> </body> </html> """ inputf = """ <div class="row justify-content-start" style="padding-top:10px;"> <label>Demo Text: </label> </div> <div class="row justify-content-center" style="padding-top:10px;"> <input class="form-control"></input> </div>""" button = """ <div class="col" style="padding-top:10px;"> <button class="btn btn-primary">Submit</button> </div>""" img = """ <img src="C:/repos/env/Object-Detection-API/img.png" width="150" height="150" alt="Image Here">""" radio = """ <div class="col" style="padding-top:10px;"> <input type="radio" id="male" name="Demo text" value="male"> <label for="male">Demo Text</label><br> </div> """ dropdown = """ <div class="dropdown"> <label for="cars">Dropdown:</label> <select name="cars" id="cars" class="btn btn-primary dropdown-toggle"> <option value="1">Option 1</option> <option value="2">Option 2</option> <option value="3">Option 3</option> <option value="4">Option 4</option> </select> </div>""" checkbox = """ <div class="col" style="padding-top:10px;"> <input type="checkbox" id="vehicle1" name="vehicle1" value="Bike"> <label for="vehicle1"> I have a bike</label><br> </div> """ text = """<div class="col" style="padding-top:10px;"> <p class="text-black-50"> You’ve probably heard of Lorem Ipsum before – it’s the most-used dummy text excerpt out there. People use it because it has a fairly normal distribution of letters and words (making it look like normal English), but it’s also Latin, which means your average reader won’t get distracted by trying to read it. </p> </div> """ sorted_li = sorted(li, key=operator.attrgetter('y')) # print("###########################") # for m in sorted_li: # print(m.name, m.y) # # print("###########################") for i in sorted_li: if i.name == "check box": st += checkbox elif i.name == "radio button": st += radio elif i.name == "dropdown": st += dropdown elif i.name == "input": st += inputf elif i.name == "submit": st += button elif i.name == "text": st += text else: st += img print(i.name, i.x, i.y) print(st + en) f = open("demofile3.html", "w") f.write(st + en) f.close() # remove temporary images for name in image_names: os.remove(name) try: return jsonify({"response": response}), 200 except FileNotFoundError: abort(404) # API that returns image with detections on it # @app.route('/image', methods= ['POST']) # def get_image(): # image = request.files["images"] # image_name = image.filename # image.save(os.path.join(os.getcwd(), image_name)) # img_raw = tf.image.decode_image( # open(image_name, 'rb').read(), channels=3) # img = tf.expand_dims(img_raw, 0) # img = transform_images(img, size) # t1 = time.time() # boxes, scores, classes, nums = yolo(img) # t2 = time.time() # print('time: {}'.format(t2 - t1)) # print('detections:') # for i in range(nums[0]): # print('\t{}, {}, {}'.format(class_names[int(classes[0][i])], # np.array(scores[0][i]), # np.array(boxes[0][i]))) # img = cv2.cvtColor(img_raw.numpy(), cv2.COLOR_RGB2BGR) # img = draw_outputs(img, (boxes, scores, classes, nums), class_names) # cv2.imwrite(output_path + 'detection.jpg', img) # print('output saved to: {}'.format(output_path + 'detection.jpg')) # # prepare image for response # _, img_encoded = cv2.imencode('.png', img) # response = img_encoded.tostring() # #remove temporary image # os.remove(image_name) # try: # return Response(response=response, status=200, mimetype='image/png') # except FileNotFoundError: # abort(404) # API that returns image with detections on it @app.route('/image', methods=['POST']) def get_image(): image = request.files["images"] # print("######### IMG", image) image_name = image.filename image.save(os.path.join(os.getcwd(), image_name)) img_raw = tf.image.decode_image( open(image_name, 'rb').read(), channels=3) img = tf.expand_dims(img_raw, 0) img = transform_images(img, size) t1 = time.time() boxes, scores, classes, nums = yolo(img) t2 = time.time() print('time: {}'.format(t2 - t1)) print('detections:') for i in range(nums[0]): print('\t{}, {}, {}'.format(class_names[int(classes[0][i])], np.array(scores[0][i]), np.array(boxes[0][i]))) img = cv2.cvtColor(img_raw.numpy(), cv2.COLOR_RGB2BGR) img = draw_outputs(img, (boxes, scores, classes, nums), class_names) cv2.imwrite(output_path + 'detection.jpg', img) print('output saved to: {}'.format(output_path + 'detection.jpg')) # prepare image for response _, img_encoded = cv2.imencode('.png', img) response = img_encoded.tostring() ###################################################################### image_path = os.path.join(os.getcwd(), 'detections/detection.jpg') image = cv2.imread(image_path) print(image_path) gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) blurred = cv2.GaussianBlur(gray, (5, 5), 0) # perform edge detection, find contours in the edge map, and sort the # resulting contours from left-to-right edged = cv2.Canny(blurred, 30, 150) cnts = cv2.findContours(edged.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) cnts = imutils.grab_contours(cnts) cnts = sort_contours(cnts, method="left-to-right")[0] # initialize the list of contour bounding boxes and associated # characters that we'll be OCR'ing chars = [] # loop over the contours for c in cnts: # compute the bounding box of the contour (x, y, w, h) = cv2.boundingRect(c) # filter out bounding boxes, ensuring they are neither too small # nor too large if (w >= 5 and w <= 150) and (h >= 15 and h <= 120): # extract the character and threshold it to make the character # appear as white (foreground) on a black background, then # grab the width and height of the thresholded image roi = gray[y:y + h, x:x + w] thresh = cv2.threshold(roi, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1] (tH, tW) = thresh.shape # if the width is greater than the height, resize along the # width dimension if tW > tH: thresh = imutils.resize(thresh, width=32) # otherwise, resize along the height else: thresh = imutils.resize(thresh, height=32) # re-grab the image dimensions (now that its been resized) # and then determine how much we need to pad the width and # height such that our image will be 32x32 (tH, tW) = thresh.shape dX = int(max(0, 32 - tW) / 2.0) dY = int(max(0, 32 - tH) / 2.0) # pad the image and force 32x32 dimensions padded = cv2.copyMakeBorder(thresh, top=dY, bottom=dY, left=dX, right=dX, borderType=cv2.BORDER_CONSTANT, value=(0, 0, 0)) padded = cv2.resize(padded, (32, 32)) # prepare the padded image for classification via our # handwriting OCR model padded = padded.astype("float32") / 255.0 padded = np.expand_dims(padded, axis=-1) # update our list of characters that will be OCR'd chars.append((padded, (x, y, w, h))) # extract the bounding box locations and padded characters boxes = [b[1] for b in chars] chars = np.array([c[0] for c in chars], dtype="float32") # OCR the characters using our handwriting recognition model preds = model.predict(chars) # define the list of label names labelNames = "0123456789" labelNames += "ABCDEFGHIJKLMNOPQRSTUVWXYZ" labelNames = [l for l in labelNames] lst = [] # loop over the predictions and bounding box locations together for (pred, (x, y, w, h)) in zip(preds, boxes): # find the index of the label with the largest corresponding # probability, then extract the probability and label i = np.argmax(pred) prob = pred[i] label = labelNames[i] lst.append(label + ":" + str(prob)) # draw the prediction on the image print("[INFO] {} - {:.2f}%".format(label, prob * 100)) cv2.rectangle(image, (x, y), (x + w, y + h), (0, 255, 0), 2) cv2.putText(image, label, (x - 10, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 1.2, (0, 255, 0), 2) # # show the image # cv2.imshow("Image", image) # cv2.waitKey(0) # remove temporary image os.remove(image_name) cv2.imshow("Image", image) cv2.waitKey(0) try: return jsonify({"response": lst}), 200 except FileNotFoundError: abort(404) if __name__ == '__main__': app.run(debug=True, host = '0.0.0.0', port=5000)
2.328125
2
bin/ominoes/pentominoes-3x20-loop.py
tiwo/puzzler
0
12780656
#!/usr/bin/env python # $Id$ """2 solutions""" import puzzler from puzzler.puzzles.pentominoes import Pentominoes3x20Loop puzzler.run(Pentominoes3x20Loop)
1.171875
1
LeetCode/198-house-robber.py
leaving-voider/LeetCode.cn-Record
0
12780657
############################################################################################### # 直接参考官方方法,经典题型——打家劫舍,采用动态规划 ########### # 时间复杂度:O(n),n为数组长度 # 空间复杂度:O(1),采用滚动数组,复杂度减少到最低 ############################################################################################### class Solution: def rob(self, nums: List[int]) -> int: len_ = len(nums) if len_ == 0: return 0 elif len_ == 1: return nums[0] first = nums[0] # 代表前n-2个最大收益 second = max(nums[0], nums[1]) # 代表n-1即上一个之前最大收益(包括上一个) for i in range(2, len_): # first + nums[i]代表抢,second代表不抢 first, second = second, max((first + nums[i]), second) return second
3.21875
3
MouthMusicModel.py
ahpalmerUNR/mouthMusicStreamer
0
12780658
# -*- coding: utf-8 -*- # @Author: ahpalmerUNR # @Date: 2020-12-21 14:38:59 # @Last Modified by: ahpalmerUNR # @Last Modified time: 2021-05-06 23:10:20 import torch class MouthMusicMouthModel(torch.nn.Module): def __init__(self): super(MouthMusicMouthModel,self).__init__() self.conv1 = torch.nn.Conv2d(3,62,7,stride=2,padding=3,bias=False) self.batch1 = torch.nn.BatchNorm2d(62) self.relu = torch.nn.ReLU(inplace=True) self.maxPool1 = torch.nn.MaxPool2d(3,2,1,1) self.conv2 = torch.nn.Conv2d(62,120,7,stride=2,padding=3,bias=False) self.batch2 = torch.nn.BatchNorm2d(120) self.conv3 = torch.nn.Conv2d(120,120,7,stride=2,padding=3,bias=False) self.batch3 = torch.nn.BatchNorm2d(120) self.maxPool2 = torch.nn.MaxPool2d(3,1,1,1) self.conv4 = torch.nn.Conv2d(120,120,7,stride=1,padding=3,bias=False) self.batch4 = torch.nn.BatchNorm2d(120) self.conv5 = torch.nn.Conv2d(120,120,7,stride=1,padding=3,bias=False) self.batch5 = torch.nn.BatchNorm2d(120) self.conv6 = torch.nn.Conv2d(120,30,7,stride=2,padding=3,bias=False) self.conv7 = torch.nn.Conv2d(30,12,1) self.sigmoid = torch.nn.Sigmoid() def forward(self,x): out = self.relu(self.batch1(self.conv1(x))) out = self.maxPool1(out) out = self.relu(self.batch2(self.conv2(out))) out = self.batch3(self.conv3(out)) out = self.maxPool2(out) out = self.relu(self.batch4(self.conv4(out))) out = self.relu(self.batch5(self.conv5(out))) out = self.relu(self.conv6(out)) out = self.sigmoid(self.conv7(out)) return out class MouthMusicEyeModel(torch.nn.Module): def __init__(self): super(MouthMusicEyeModel,self).__init__() self.conv1 = torch.nn.Conv2d(3,64,7,stride=2,padding=3,bias=False) self.batch1 = torch.nn.BatchNorm2d(64) self.relu = torch.nn.ReLU(inplace=True) self.maxPool1 = torch.nn.MaxPool2d(3,2,1,1) self.conv2 = torch.nn.Conv2d(64,120,7,stride=2,padding=3,bias=False) self.batch2 = torch.nn.BatchNorm2d(120) self.conv3 = torch.nn.Conv2d(120,120,7,stride=2,padding=3,bias=False) self.batch3 = torch.nn.BatchNorm2d(120) self.maxPool2 = torch.nn.MaxPool2d(3,1,1,1) self.conv7 = torch.nn.Conv2d(120,16,1) self.sigmoid = torch.nn.Sigmoid() def forward(self,x): out = self.relu(self.batch1(self.conv1(x))) out = self.maxPool1(out) out = self.relu(self.batch2(self.conv2(out))) out = self.batch3(self.conv3(out)) out = self.maxPool2(out) out = self.sigmoid(self.conv7(out)) return out def loadModelMouth(directory,nameRoot): modelMouth = MouthMusicMouthModel() modelMouth.load_state_dict(torch.load(directory+"mouth_"+nameRoot, map_location="cpu")) return modelMouth def loadModelEyes(directory,nameRoot): modelEyes = MouthMusicEyeModel() modelEyes.load_state_dict(torch.load(directory+"eye_"+nameRoot, map_location="cpu")) return modelEyes def loadModel(directory,nameRoot): eyeModel = loadModelEyes(directory,nameRoot) mouthModel = loadModelMouth(directory,nameRoot) return mouthModel,eyeModel
2.46875
2
lime/util/passwords_test.py
toastwaffle/LiME
0
12780659
<gh_stars>0 """Tests for the password descriptor. Relies on the descriptor existing on the user model. """ from absl.testing import absltest from passlib import context from lime import app from lime.database import models from lime.util import testing class PasswordsTest(absltest.TestCase): """Tests for the password descriptor.""" def test_check(self): """A password can be checked against a known hash.""" with testing.test_setup(): user = models.User(password_hash=( <PASSWORD>')) self.assertFalse(user.password == '<PASSWORD>') self.assertTrue(user.password == 'password') def test_set_and_check(self): """A password can be set and checked against.""" with testing.test_setup(): user = models.User() self.assertEqual(user.password_hash, None) user.password = 'password' self.assertNotEmpty(user.password_hash) self.assertTrue(user.password == 'password') def test_update(self): """The password hash is updated when it uses an old hash algorithm.""" with testing.test_setup(): app.APP.config['PASSLIB_CONTEXT'] = context.CryptContext( schemes=['bcrypt', 'md5_crypt'], deprecated='auto') md5_hash = '$1$7BYN8u/S$OQOqfmrz8B6vSJn0nApt/.' user = models.User(password_hash=md5_hash) self.assertTrue(user.password == 'password') self.assertNotEqual(user.password_hash, md5_hash) if __name__ == '__main__': absltest.main()
2.703125
3
sequence/sea_level.py
sequence-dev/sequence
1
12780660
<gh_stars>1-10 import numpy as np from landlab import Component from scipy import interpolate class SeaLevelTimeSeries(Component): _name = "Sea Level Changer" _time_units = "y" _unit_agnostic = True _info = { "sea_level__elevation": { "dtype": "float", "intent": "out", "optional": False, "units": "m", "mapping": "grid", "doc": "Sea level elevation", } } def __init__(self, grid, filepath, kind="linear", start=0.0, **kwds): """Generate sea level values. Parameters ---------- grid: ModelGrid A landlab grid. filepath: str Name of csv-formatted sea-level file. kind: str, optional Kind of interpolation as a string (one of 'linear', 'nearest', 'zero', 'slinear', 'quadratic', 'cubic'). Default is 'linear'. """ super(SeaLevelTimeSeries, self).__init__(grid, **kwds) self._filepath = filepath self._kind = kind self._sea_level = SeaLevelTimeSeries._sea_level_interpolator( np.loadtxt(self._filepath, delimiter=","), kind=self._kind ) self._time = start @staticmethod def _sea_level_interpolator(data, kind="linear"): return interpolate.interp1d( data[:, 0], data[:, 1], kind=kind, copy=True, assume_sorted=True, bounds_error=True, ) @property def filepath(self): return self._filepath @filepath.setter def filepath(self, new_path): self._filepath = new_path self._sea_level = SeaLevelTimeSeries._sea_level_interpolator( np.loadtxt(self._filepath, delimiter=","), kind=self._kind ) @property def time(self): return self._time def run_one_step(self, dt): self._time += dt self.grid.at_grid["sea_level__elevation"] = self._sea_level(self.time) class SinusoidalSeaLevel(SeaLevelTimeSeries): def __init__( self, grid, wave_length=1.0, amplitude=1.0, phase=0.0, mean=0.0, start=0.0, linear=0.0, **kwds ): """Generate sea level values. Parameters ---------- grid: ModelGrid A landlab grid. """ wave_length /= 2.0 * np.pi super(SeaLevelTimeSeries, self).__init__(grid, **kwds) self._sea_level = ( lambda time: ( np.sin((time - phase) / wave_length) + 0.3 * np.sin((2 * (time - phase)) / wave_length) ) * amplitude + mean + linear * time ) self._time = start def sea_level_type(dictionary): from .sea_level import sea_level_file sl_type = dictionary["sl_type"] if sl_type == "sinusoid": return sea_level_function(dictionary) else: sl_file_name = dictionary["sl_file_name"] return sea_level_file(sl_file_name, dictionary) def sea_level_function(dictionary): # time is an array of x values (ex. arange(0,1000, pi/4)) # amplitude is the amplitude of the sin function # phase is th phase shift # t is the title of the graph (String) # xt is the title of the x axis (string) # xy is the title of the y axis (STRING) # Function starts at 0 or P. # Fs is the period of the function. (10,000) phase = dictionary["sea_level_phase"] amplitude = dictionary["sea_level_amplitude"] slope = dictionary["sea_level_linear"] Fs = dictionary["sea_level_period"] start_time = dictionary["start_time"] run_duration = dictionary["run_duration"] dt = dictionary["dt"] time = np.arange(start_time, start_time + run_duration, dt) sl_array = ( amplitude * ( np.sin((2 * np.pi * (phase + time)) / Fs) + 0.3 * np.sin((2 * np.pi * (2 * phase + 2 * time)) / Fs) ) + slope * time ) return time, sl_array def sea_level_file(filename, dictionary): """ reading in the file above x is an array of x values (ex. x = arange(0, 10)) y is an array of y values (ex. y = np.exp(x/2.0)) start time (default should be 0) dt run duration Note: The array of x values can be pretermined to a set of values. Goes backwards so the start will be at -12500 years There will be a sea level array that stores these values """ start_time = dictionary["start_time"] run_duration = dictionary["run_duration"] dt = dictionary["dt"] xes = [] ys = [] with open(filename) as f: for line in f: x, y = line.split() xes.append(x) ys.append(y) x = [] for item in xes: x.append(float(item)) y = [] for item in ys: y.append(float(item)) f = interpolate.interp1d(x, y, kind="cubic") times = np.arange(start_time, start_time + run_duration, dt) sl_array = f(times) return times, sl_array
2.46875
2
src/speech/spectrogram_model.py
dem123456789/Speech-Emotion-Recognition-with-Dual-Sequence-LSTM-Architecture
6
12780661
import torch import torch.nn as nn import torch.nn.functional as F import pdb class SpectrogramModel(nn.Module): def __init__(self, in_channels, out_channels, kernel_size_cnn, stride_cnn, padding_cnn, kernel_size_pool, stride_pool, hidden_dim, num_layers, dropout_rate, num_labels, batch_size, bidirectional=False): super(SpectrogramModel, self).__init__() self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') self.in_channels = in_channels self.out_channels = out_channels self.kernel_size_cnn = kernel_size_cnn self.stride_cnn = stride_cnn self.padding_cnn = padding_cnn self.kernel_size_pool = kernel_size_pool self.stride_pool = stride_pool self.hidden_dim = hidden_dim self.num_layers = num_layers self.dropout_rate = dropout_rate self.num_labels = num_labels self.batch_size = batch_size self.bidirectional = bidirectional self.num_directions = 1 + self.bidirectional self.cnn1 = nn.Conv2d(self.in_channels, self.out_channels, self.kernel_size_cnn, stride=self.stride_cnn, padding=self.padding_cnn).to(self.device) self.batch1 = nn.BatchNorm2d(self.out_channels) self.cnn2 = nn.Conv2d(self.out_channels, self.out_channels, self.kernel_size_cnn, stride=self.stride_cnn, padding=self.padding_cnn).to(self.device) self.batch2 = nn.BatchNorm2d(self.out_channels) self.cnn3 = nn.Conv2d(self.out_channels, self.out_channels*2, self.kernel_size_cnn, stride=self.stride_cnn, padding=self.padding_cnn).to(self.device) self.batch3 = nn.BatchNorm2d(self.out_channels*2) self.cnn4 = nn.Conv2d(self.out_channels*2, self.out_channels*2, self.kernel_size_cnn, stride=self.stride_cnn, padding=self.padding_cnn).to(self.device) self.batch4 = nn.BatchNorm2d(self.out_channels*2) self.relu = nn.ReLU() self.max_pool1 = nn.MaxPool2d(self.kernel_size_pool//2, stride=self.stride_pool//2) self.max_pool = nn.MaxPool2d(self.kernel_size_pool, stride=self.stride_pool) self.max_pool4 = nn.MaxPool2d(int(self.kernel_size_pool*5/4), stride=int(self.stride_pool*5/4)) self.lstm = nn.LSTM(int(640/160) * int(480/160), self.hidden_dim, self.num_layers, batch_first=True, dropout=self.dropout_rate, bidirectional=self.bidirectional).to(self.device) self.classification = nn.Linear(self.hidden_dim * self.num_directions, self.num_labels).to(self.device) def forward(self, input, target, train=True, multi_gpu=False): input = input.to(self.device) target = target.to(self.device) out = self.cnn1(input) #print(out.shape) out = self.batch1(out) #print(out.shape) out = self.relu(out) #print(out.shape) out = self.max_pool1(out) #print(out.shape) out = self.cnn2(out) #print(out.shape) out = self.batch2(out) #print(out.shape) out = self.relu(out) #print(out.shape) out = self.max_pool(out) #print(out.shape) out = self.cnn3(out) #print(out.shape) out = self.batch3(out) #print(out.shape) out = self.relu(out) #print(out.shape) out = self.max_pool(out) #print(out.shape) out = self.cnn4(out) #print(out.shape) out = self.batch4(out) #print(out.shape) out = self.relu(out) #print(out.shape) out = self.max_pool4(out) #print(out.shape) #out = torch.flatten(out, start_dim=2, end_dim=3) out = out.view(list(out.size())[0], list(out.size())[1], -1) #pdb.set_trace() out, hn = self.lstm(out) # print(out.shape) out = torch.mean(out, dim=1) out = self.classification(out) loss = F.cross_entropy(out, torch.max(target, 1)[1]) if multi_gpu: out=torch.unsqueeze(out, dim=0) loss=torch.unsqueeze(loss,dim=0) return out, loss
2.4375
2
swann/viz/tfr.py
alexrockhill/SwannLabResources
0
12780662
import os import numpy as np import os.path as op import matplotlib.pyplot as plt from matplotlib.colors import BASE_COLORS, SymLogNorm from scipy.stats import ttest_ind from swann.preprocessing import get_info from swann.utils import get_config, derivative_fname from swann.analyses import decompose_tfr, find_bursts, get_bursts from mne.viz import iter_topography from mne.time_frequency import tfr_morlet, EpochsTFR, AverageTFR from mne import Epochs, EvokedArray def plot_spectrogram(rawf, raw, event, events, bl_events, method='raw', baseline='z-score', freqs=np.logspace(np.log(4), np.log(250), 50, base=np.e), n_cycles=7, use_fft=True, ncols=3, plot_erp=True, plot_bursts=False, picks=None, verbose=True, overwrite=False): ''' Plots a bar chart of beta bursts. Parameters ---------- rawf : pybids.BIDSlayout file The object containing the raw data. raw : mne.io.Raw The raw data object. event : str The name of the event (e.g. `Response`). events : np.array(n_events, 3) The events from mne.events_from_annotations or mne.find_events corresponding to the event and trials that are described by the name. bl_events: np.array(n_events, 3) The events from mne.events_from_annotations or mne.find_events corresponding to the baseline for the event and trials that are described by the name. method : `raw` | `phase-locked` | `non-phase-locked` | `total' How to plot the spectrograms: raw -- plot without averaging power (default) phase-locked -- just average the event-related potential (ERP) non-phase-locked -- subtract the ERP from each epoch, do time frequency decomposition (TFR) then average total -- do TFR on each epoch and then average baseline : `z-score` | `gain` How to baseline specrogram data: z-score -- for each frequency, subtract the median and divide by the standard deviation (default) gain -- divide by median freqs : np.array The frequencies over which to compute the spectral data. n_cycles : int, np.array The number of cycles to use in the Morlet transform use_fft : bool Use Fast Fourier Transform see `mne.time_frequency.tfr.cwt`. ncols : int The number of ncols to use in the plot (for `method=raw`). plot_erp : bool Whether to plot the event-related potential on top. plot_bursts : bool Whether to include vertical bars for when the bursts are detected (for `method=raw`). picks : None | list of str The names of the channels to plot ''' config = get_config() raw = raw.copy() raw.load_data() if method not in ('raw', 'phase-locked', 'non-phase-locked', 'total'): raise ValueError('Unrecognized method {}'.format(method)) if picks is None: picks = raw.ch_names else: if isinstance(picks, str): picks = [picks] raw = raw.pick_channels(picks) if method == 'raw' and len(picks) > 1: raise ValueError('Only one channel can be plotted at a time ' 'for raw spectrograms') plotf = derivative_fname(rawf, 'plots/spectrograms', 'event-{}_spectrogram_{}_{}_power'.format( event, method, baseline), config['fig']) if op.isfile(plotf) and not overwrite: print('Spectrogram plot for {} already exists, ' 'use `overwrite=True` to replot'.format(event)) return if method == 'raw' and plot_bursts: bursts = find_bursts(rawf, return_saved=True) if isinstance(n_cycles, np.ndarray) and len(freqs) != len(n_cycles): raise ValueError('Mismatch lengths n_cycles {} to freqs {}'.format( n_cycles, freqs)) epochs = Epochs(raw, events, tmin=config['tmin'] - 1, baseline=None, tmax=config['tmax'] + 1, preload=True) # align baseline events with epochs with enough events bl_events = np.delete(bl_events, [i for i, e in enumerate(bl_events[:, 2]) if e not in epochs.events[:, 2]], axis=0) bl_epochs = Epochs(raw, bl_events, tmin=config['baseline_tmin'] - 1, baseline=None, tmax=config['baseline_tmax'] + 1, preload=True) cropped_epochs = epochs.copy().crop(tmin=config['tmin'], tmax=config['tmax']) cropped_bl_epochs = bl_epochs.copy().crop( tmin=config['baseline_tmin'], tmax=config['baseline_tmax']) if method == 'phase-locked': bl_evoked = EvokedArray(np.median(bl_epochs._data, axis=0), info=bl_epochs.info, tmin=bl_epochs.tmin, nave=len(bl_epochs)) bl_evoked_tfr = tfr_morlet(bl_evoked, freqs, n_cycles=n_cycles, use_fft=use_fft, return_itc=False) bl_evoked_tfr.crop(tmin=config['baseline_tmin'], tmax=config['baseline_tmax']) evoked = EvokedArray(np.median(epochs._data, axis=0), info=epochs.info, tmin=epochs.tmin, nave=len(epochs)) evoked_tfr = tfr_morlet(evoked, freqs, n_cycles=n_cycles, use_fft=use_fft, return_itc=False) evoked_tfr.crop(tmin=config['tmin'], tmax=config['tmax']) evoked_tfr.data = \ evoked_tfr.data - np.median(bl_evoked_tfr.data, axis=2)[:, :, np.newaxis] evoked_tfr.data /= np.std(bl_evoked_tfr.data, axis=2)[:, :, np.newaxis] else: if method == 'non-phase-locked': epochs._data -= np.median(epochs._data, axis=0) epochs_data = np.zeros((len(epochs), len(epochs.ch_names), len(freqs), len(cropped_epochs.times))) bl_epochs_data = np.zeros((len(bl_epochs), len(bl_epochs.ch_names), len(freqs), len(cropped_bl_epochs.times))) epochs_tfr = EpochsTFR(epochs.info, epochs_data, cropped_epochs.times, freqs, verbose=False) bl_epochs_tfr = EpochsTFR(bl_epochs.info, bl_epochs_data, cropped_bl_epochs.times, freqs, verbose=False) if method != 'raw': evoked_tfr_data = np.zeros((len(epochs.ch_names), len(freqs), len(cropped_epochs.times))) evoked_tfr = AverageTFR(epochs.info, evoked_tfr_data, cropped_epochs.times, freqs, nave=len(epochs)) for i, ch in enumerate(epochs.ch_names): if verbose: print('\nComputing TFR ({}/{}) for {}... ' 'Computing frequency'.format(i, len(epochs.ch_names), ch), end=' ', flush=True) # noqa this_epochs = epochs.copy().pick_channels([ch]) this_bl_epochs = bl_epochs.copy().pick_channels([ch]) for j, freq in enumerate(freqs): if verbose: print('{:.2f}'.format(freq), end=' ', flush=True) this_n_cycles = (n_cycles if isinstance(n_cycles, int) else n_cycles[i]) this_bl_epochs_tfr = \ tfr_morlet(this_bl_epochs, [freq], n_cycles=this_n_cycles, use_fft=use_fft, average=False, return_itc=False, verbose=False) this_bl_epochs_tfr = this_bl_epochs_tfr.crop( tmin=config['baseline_tmin'], tmax=config['baseline_tmax']) this_epochs_tfr = \ tfr_morlet(this_epochs, [freq], n_cycles=this_n_cycles, use_fft=use_fft, average=False, return_itc=False, verbose=False) this_epochs_tfr = this_epochs_tfr.crop( tmin=config['tmin'], tmax=config['tmax']) full_data = np.concatenate([this_bl_epochs_tfr.data, this_epochs_tfr.data], axis=3) epochs_tfr.data[:, i:i + 1, j:j + 1, :] = this_epochs_tfr.data epochs_tfr.data[:, i:i + 1, j:j + 1, :] -= \ np.median(full_data, axis=3)[:, :, :, np.newaxis] epochs_tfr.data[:, i:i + 1, j:j + 1, :] /= \ np.std(full_data, axis=3)[:, :, :, np.newaxis] bl_epochs_tfr.data[:, i:i + 1, j:j + 1, :] = \ this_bl_epochs_tfr.data bl_epochs_tfr.data[:, i:i + 1, j:j + 1, :] -= \ np.median(full_data, axis=3)[:, :, :, np.newaxis] bl_epochs_tfr.data[:, i:i + 1, j:j + 1, :] /= \ np.std(full_data, axis=3)[:, :, :, np.newaxis] if method != 'raw': this_evoked_tfr = np.median(epochs_tfr.data[:, i, j], axis=0) this_bl_evoked_tfr = np.median(bl_epochs_tfr.data[:, i, j], axis=0) evoked_tfr.data[i, j] = \ this_evoked_tfr - np.median(this_bl_evoked_tfr) evoked_tfr.data[i, j] /= np.std(this_bl_evoked_tfr) if method == 'raw': ch_name = epochs_tfr.ch_names[0] vmin, vmax = np.min(epochs_tfr.data), np.max(epochs_tfr.data) emin, emax = np.min(cropped_epochs._data), np.max(cropped_epochs._data) if verbose: print('Plotting spectrogram for channel {}'.format(ch_name)) if plot_bursts: n_bursts = len(bursts[bursts['channel'] == ch_name]) print('{} bursts for this channel total'.format(n_bursts)) nrows = int(np.ceil(len(events) / ncols)) fig, axes = plt.subplots(nrows, ncols) fig.set_size_inches(ncols, nrows) axes = axes.flatten() for j, this_tfr in enumerate(epochs_tfr): evoked_data = (cropped_epochs._data[j, 0], emin, emax) cmap = _plot_spectrogram( axes[j], this_tfr[i], epochs_tfr.times, vmin, vmax, freqs, evoked_data, show_xticks=j >= len(events) - ncols, show_yticks=j % ncols == 0, show_ylabel=j == int(nrows / 2) * ncols) if plot_bursts: _plot_bursts(config, events, raw, bursts, j, axes, ch_name) for ax in axes[len(epochs_tfr):]: ax.axis('off') else: if plot_erp: evoked_data = np.median(cropped_epochs._data, axis=0) evoked_data -= np.median(evoked_data, axis=1)[:, np.newaxis] evoked = EvokedArray(evoked_data, info=epochs.info, tmin=epochs.tmin, nave=len(epochs)) emin, emax = np.min(evoked.data), np.max(evoked.data) vmin, vmax = np.min(evoked_tfr.data), np.max(evoked_tfr.data) if raw.info['dig'] is None: nrows = int(len(raw.ch_names) ** 0.5) ncols = int(len(raw.ch_names) / nrows) + 1 fig, axes = plt.subplots(nrows, ncols) fig.set_size_inches(12, 8) axes = axes.flatten() for idx, ax in enumerate(axes): if idx < len(picks): cmap = _plot_spectrogram( ax, evoked_tfr.data[idx], evoked_tfr.times, vmin, vmax, freqs, ((evoked.data[idx], emin, emax) if plot_erp else None), show_xticks=idx >= len(picks) - ncols, show_yticks=idx % ncols == 0, show_ylabel=idx == int(nrows / 2) * ncols) ax.set_title(raw.ch_names[idx]) else: ax.axis('off') else: for ax, idx in iter_topography(raw.info, fig_facecolor='white', axis_facecolor='white', axis_spinecolor='white'): cmap = _plot_spectrogram( ax, this_tfr, evoked_tfr.times, vmin, vmax, freqs, ((evoked.data[idx], emin, emax) if plot_erp else None)) fig.subplots_adjust(right=0.85, hspace=0.3) cax = fig.add_subplot(position=[0.87, 0.1, 0.05, 0.8]) cax = fig.colorbar(cmap, cax=cax, format='{:.2f}', ticks=[vmin, vmin / 10, vmin / 100, vmax / 100, vmax / 10, vmax]) cax.set_label(('Log {} Power {} Normalized'.format(method, baseline) ).title()) fig.suptitle('Time Frequency Decomposition for the {} ' 'Event, {} Power'.format(event, baseline.capitalize())) fig.savefig(plotf, dpi=300) plt.close(fig) def _plot_spectrogram(ax, this_tfr, times, vmin, vmax, freqs, evoked_data, show_yticks=True, show_ylabel=True, show_xticks=True): '''Plot a single spectrogram''' cmap = ax.imshow(this_tfr, cmap='RdYlBu_r', aspect='auto', extent=[0, this_tfr.shape[1], 0, this_tfr.shape[0]], norm=SymLogNorm(linthresh=(vmax - vmin) / 100, vmin=vmin, vmax=vmax)) if evoked_data is not None: evoked, emin, emax = evoked_data ax2 = ax.twinx() ax2.set_yticks([]) ax2.plot(range(this_tfr.shape[1]), evoked, alpha=0.25, color='k') ax2.set_ylim([emin, emax]) ax.invert_yaxis() if show_yticks: ax.set_yticks(np.linspace(0, len(freqs), 5)) ax.set_yticklabels(['{:.2f}'.format(f) for f in freqs[::-int(len(freqs) / 5)]]) else: ax.set_yticklabels([]) if show_ylabel: ax.set_ylabel('Frequency (Hz)') ax.axvline(np.where(times == 0)[0][0], color='k') if show_xticks: ax.set_xlabel('Time (s)') ax.set_xticks(np.linspace(0, len(times), 3)) ax.set_xticklabels(['{:.1f}'.format(t) for t in np.linspace(times[0], times[-1], 3)]) else: ax.set_xticks([]) return cmap def _plot_bursts(config, events, raw, bursts, j, axes, ch_name): '''Plot bursts on a single spectrogram''' min_idx = events[j, 0] + raw.info['sfreq'] * config['tmin'] max_idx = events[j, 0] + raw.info['sfreq'] * config['tmax'] these_bursts = bursts[(bursts['channel'] == ch_name) & (bursts['burst_end'] > min_idx) & (bursts['burst_start'] < max_idx)] if these_bursts.size > 0: for burst_idx in these_bursts.index: for start_stop in ['burst_start', 'burst_end']: if (max_idx > these_bursts.loc[burst_idx, start_stop] > min_idx): axes[j].axvline( x=these_bursts.loc[burst_idx, start_stop] - min_idx, color='green')
2.3125
2
cinderclient/v3/services.py
wmore/openstack_study
0
12780663
<gh_stars>0 # Copyright (c) 2013 OpenStack Foundation # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ service interface """ from cinderclient import api_versions from cinderclient.v2 import services Service = services.Service class ServiceManager(services.ServiceManager): @api_versions.wraps("3.0") def server_api_version(self): """Returns the API Version supported by the server. :return: Returns response obj for a server that supports microversions. Returns an empty list for Liberty and prior Cinder servers. """ try: return self._get_with_base_url("", response_key='versions') except LookupError: return []
1.820313
2
nurbspy/nurbs_surface_bilinear.py
dragonbook/nurbspy
25
12780664
# -------------------------------------------------------------------------------------------------------------------- # # Import packages # -------------------------------------------------------------------------------------------------------------------- # import numpy as np from .nurbs_surface import NurbsSurface # -------------------------------------------------------------------------------------------------------------------- # # Define the bilinear NURBS surface class # -------------------------------------------------------------------------------------------------------------------- # class NurbsSurfaceBilinear: """ Create a NURBS representation of the bilinear patch defined by corners P00, P01, P10, and P11 Create a NURBS representation of the bilinear patch S(u,v) = (1-v)*[(1-u)*P00 + u*P01] + v*[(1-u)*P10 + u*P11] Note that a bilinear patch is a ruled surface with segments (P00, P01) and (P10, P11) as generating curves S(u,v) = (1-v)*C1(u) + v*C2(u) C1(u) = (1-u)*P00 + u*P01 C2(u) = (1-u)*P10 + u*P11 Parameters ---------- P00, P01, P10, P11 : ndarrays with shape (ndim,) Coordinates of the corner points defining the bilinear surface (ndim=3) References ---------- The NURBS book. Chapter 8.2 <NAME> and <NAME> Springer, second edition """ def __init__(self, P00, P01, P10, P11): # Declare input variables as instance variables self.P00 = P00 self.P01 = P01 self.P10 = P10 self.P11 = P11 self.ndim = 3 # Check the number of dimensions of the problem ndims = [np.shape(P00)[0], np.shape(P01)[0], np.shape(P10)[0], np.shape(P11)[0]] if any([ndim != 3 for ndim in ndims]): raise Exception("The input points must be three-dimensional") # Make the bilinear patch NURBS representation self.NurbsSurface = None self.make_nurbs_surface() def make_nurbs_surface(self): """ Make a NURBS surface representation of the bilinear surface """ # Define the array of control points n_dim, n, m = self.ndim, 2, 2 P = np.zeros((n_dim, n, m)) P[:, 0, 0] = self.P00 P[:, 1, 0] = self.P01 P[:, 0, 1] = self.P10 P[:, 1, 1] = self.P11 # Create the NURBS surface self.NurbsSurface = NurbsSurface(control_points=P)
1.765625
2
tests/test_base.py
1xch/fliki
3
12780665
def test_base(app): assert app.extensions['fliki'] is not None def test_has_index(client): r = client.get('/test/', follow_redirects=True) assert b"Title: index\nSummary: base page for wiki" not in r.data assert b"Welcome to your flask-wiki" in r.data def test_new_page(client): r = client.get('/test/test_page/', follow_redirects=True) assert b"Edit Page Content" in r.data def test_edit_page(client): r = client.post('/test/save', data=dict(pagekey='test_page', edit_content='a test_page'), follow_redirects=True) assert b"a test_page" in r.data def test_display_page(client): r = client.get('/test/random_page/', follow_redirects=True) assert b"A random page" in r.data def test_move_page(client): r1 = client.post('/test/move', data=dict(oldkey='random_page', newkey='new/random_page'), follow_redirects=True) r2 = client.get('/test/new/random_page/', follow_redirects=True) r3 = client.get('/test/random_page/', follow_redirects=True) assert b"A random page" in r1.data assert r1.data == r2.data assert b"A random page" not in r3.data def test_delete_page(client): r = client.post('/test/delete', data=dict(delete='random_page'), follow_redirects=True) assert b"index" in r.data
2.4375
2
backpack/extensions/firstorder/batch_grad/batch_grad_base.py
jabader97/backpack
395
12780666
"""Calculates the batch_grad derivative.""" from __future__ import annotations from typing import TYPE_CHECKING, Callable, List, Tuple from torch import Tensor from torch.nn import Module from backpack.core.derivatives.basederivatives import BaseParameterDerivatives from backpack.extensions.firstorder.base import FirstOrderModuleExtension from backpack.utils.subsampling import subsample if TYPE_CHECKING: from backpack.extensions.firstorder import BatchGrad class BatchGradBase(FirstOrderModuleExtension): """Calculates the batch_grad derivative. Passes the calls for the parameters to the derivatives class. Implements functions with method names from params. If child class wants to overwrite these methods - for example to support an additional external module - it can do so using the interface for parameter "param1":: param1(ext, module, g_inp, g_out, bpQuantities): return batch_grads In this case, the method is not overwritten by this class. """ def __init__( self, derivatives: BaseParameterDerivatives, params: List[str] ) -> None: """Initializes all methods. If the param method has already been defined, it is left unchanged. Args: derivatives: Derivatives object used to apply parameter Jacobians. params: List of parameter names. """ self._derivatives = derivatives for param_str in params: if not hasattr(self, param_str): setattr(self, param_str, self._make_param_function(param_str)) super().__init__(params=params) def _make_param_function( self, param_str: str ) -> Callable[[BatchGrad, Module, Tuple[Tensor], Tuple[Tensor], None], Tensor]: """Creates a function that calculates batch_grad w.r.t. param. Args: param_str: Parameter name. Returns: Function that calculates batch_grad wrt param """ def param_function( ext: BatchGrad, module: Module, g_inp: Tuple[Tensor], g_out: Tuple[Tensor], bpQuantities: None, ) -> Tensor: """Calculates batch_grad with the help of derivatives object. Args: ext: extension that is used module: module that performed forward pass g_inp: input gradient tensors g_out: output gradient tensors bpQuantities: additional quantities for second order Returns: Scaled individual gradients """ subsampling = ext.get_subsampling() batch_axis = 0 return self._derivatives.param_mjp( param_str, module, g_inp, g_out, subsample(g_out[0], dim=batch_axis, subsampling=subsampling), sum_batch=False, subsampling=subsampling, ) return param_function
2.65625
3
mapping.py
tlfobe/LAMMPS-SIMR
0
12780667
#!/usr/bin/python # Analysis scripts for mapping same phase energies to each other using signac import signac import numpy as np import subprocess import pdb import os import sys import pandas import mdtraj as md import shutil import yaml #need to make yaml not just enumerate all ts and ps, but give other info like mapping type, nequil etc project = signac.get_project() with open('test.yaml') as fn: schema = yaml.load(fn) nenergies = 3000 # should be read from the files, not hard coded nequil = 1000 nevery = 1 mapping = ['volume','harmonic'] # both harmonic and volume integration = 'direct' ensemble = 'NPT' polys = schema['poly'] T = schema['T'] P = schema['p'] # probably don't need these Tstate Pstates... Tstates = [ list(map(int, T)) for i in range(len(P))] #make an array of all states T,P Tstates = np.array(Tstates).flatten() #flatten into np.arrays for use Pstates = [ list(map(int, str(P[i]).split()*len(T))) for i in range(len(P))] #same thing here Pstates = np.array(Pstates).flatten() states = len(Tstates) Lsizeold = dict() Lsizenew = dict() npoints = ()(nenergies-nequil)/nevery+1 for poly in polys: u_kln = np.zeros([nstatesoldm nstatesnew, npoints], float) print('start running') # Volume Scaling Loop for job in project.find_jobs({'poly':poly}): job_data = json.load(job.fn('vol_eng.json')) volumes = np.array(job_data['volume']) volumes = volumes[nequil:] avg_v = np.mean(volumes) if 'volume' in mapping: Lsizeold[job.workspace()] = avg_v**(1.0/3.0) Lsizenew[job.workspace()] = avg_v**(1.0/3.0) else: Lsizeold[job.workspace()] = 1 Lsizenew[job.workspace()] = 1 with open('old_v.txt', 'a') as fn: fn.write("%4i %4i %10.4f %10.4f +/- %6.4f\n" % (Lsizeold[job.workspace()], avg_v, np.std(volumes) with open('new_v.txt', 'a') as fn: fn.write("%4i %4i %10.4f %10.4f +/- %6.4f\n" % (Lsizenew[job.workspace()], avg_v, np.std(volumes) original_v = np.zeros([states, states], float) original_e = np.zeros([states, states], float) new_v = np.zeros([states,states, npoints]) new_e = np.zeros([states,states, npoints]) lnJcbn = np.zeros([states,states]) for job1 in project.find_jobs({'poly':poly}): for job2 in project.find_jobs({'poly':poly}): # need to remove bc for calculation of volume os.system('babel '+job1.fn('mini.xyz')+' -opdb > '+job1.fn('mini.pdb')) #mdtraj can't read xyz files, quick convert to pdb t = md.load(job1.fn('prod.dcd'), top=job1.fn('mini.pdb')) tnojump = t.image_molecules() print(len(t)) # Extract trajectories as mdtraj.Traj object tscale = tnojump.slice(range(tnojump.n_frames), copy=True) # Conditionals based on type of mapping #if 'NVT' in dirtext: # NVTvolume = tnojump[0].unitcell_volumes[0] #if 'harmonic' in mapping: temperature_scale = np.sqrt(job1.sp.T/job2.sp.T) #else: # temperature_scale = 1 #if 'NPT' in dirtext: # for now make it work for just NPT, Harmonic, can adjust later on tscale.xyz = np.array([ tscale.xyz[s]*np.matrix(ts.unitcell_vectors)**-1 for s, ts in enumerate(tscale)]) # Temperature mapping (So MBAR does can converge) means = np.mean(tsacle.xyz, axis=0) divergences = (tscale.xyz-means)*temperature_scale tscale.xyz = divergences+means tscale.unitcell_vectors *= Lsizenew[job2.workspace()]/Lsizeold[job1.workspace()] #if 'NPT' in dirtext: tscale.xyz = np.array([ tscale.xyz[s]*np.matrix(ts.unitcell_vectors) for s, ts in enumerate(tscale)]) tscale.save(job1.fn('prod_mapped.dcd')) # Need script reruns trajectories here
2.390625
2
venv/lib/python2.7/dist-packages/landscape/lib/bpickle_dbus.py
pengwu/scapy_env
0
12780668
<reponame>pengwu/scapy_env """ Different versions of the Python DBus bindings return different types to represent integers, strings, lists, etc. Older versions return builtin Python types: C{int}, C{str}, C{list}, etc. Newer versions return DBus-specific wrappers: C{Int16}, C{String}, C{Array}, etc. Failures occur when DBus types are used because bpickle doesn't know that an C{Int16} is really an C{int} and that an C{Array} is really a C{list}. L{install} and L{uninstall} can install and remove extensions that make bpickle work with DBus types. """ import dbus from landscape.lib import bpickle def install(): """Install bpickle extensions for DBus types.""" for type, function in get_dbus_types(): bpickle.dumps_table[type] = function def uninstall(): """Uninstall bpickle extensions for DBus types.""" for type, function in get_dbus_types(): del bpickle.dumps_table[type] def dumps_utf8string(obj): """ Convert the specified L{dbus.types.UTF8String} to bpickle's representation for C{unicode} data. """ return "u%s:%s" % (len(obj), obj) def dumps_double(obj): """ Convert a dbus.types.Double into a floating point representation. """ return "f%r;" % float(obj) def get_dbus_types(): """ Generator yields C{(type, bpickle_function)} for available DBus types. """ for (type_name, function) in [("Boolean", bpickle.dumps_bool), ("Int16", bpickle.dumps_int), ("UInt16", bpickle.dumps_int), ("Int32", bpickle.dumps_int), ("UInt32", bpickle.dumps_int), ("Int64", bpickle.dumps_int), ("UInt64", bpickle.dumps_int), ("Double", dumps_double), ("Array", bpickle.dumps_list), ("Dictionary", bpickle.dumps_dict), ("String", bpickle.dumps_unicode), ("UTF8String", dumps_utf8string)]: type = getattr(dbus.types, type_name, None) if type is not None: yield type, function
2.46875
2
chinese-poem/probability.py
MashiMaroLjc/ML-and-DM-in-action
370
12780669
# coding:utf-8 # def two(words): """ :param words: :return: """ new = [] s = len(words) for index in range(s): w = words[index] for next_index in range(index + 1, s): next_w = words[next_index] new.append(frozenset([w, next_w])) return new poemfile = open("five_poem.txt").readlines() feature = [] n = 1 length = len(poemfile) for poemline in poemfile: print("finish:%.5f" % (n / length)) poemline = poemline.strip().replace("\n", "") sentences = poemline.split(".") temp = [] for sen in sentences: if len(sen) != 5: continue temp.append(sen[:2]) feature.append(temp) n += 1 size = len(feature) word_fre = dict() for fea in feature: for word in set(fea): word_fre[word] = word_fre.get(word, 0) + 1 / size two_fre = dict() two_feature = [] # for fea in feature: fea = list(set(fea)) two_feature.append(two(fea)) for fea in two_feature: for word in fea: two_fre[word] = two_fre.get(word, 0) + 1 / size # pro = dict() for k, v in two_fre.items(): event = list(k) # key = event[0] if key not in pro: pro[key] = [] pro[key].append( [event[1], two_fre[k] / word_fre[key]] ) key = event[1] if key not in pro: pro[key] = [] pro[key].append( [event[0], two_fre[k] / word_fre[key]] ) # import json out = open("pro.json", "w") json.dump(pro, out)
2.75
3
CloudRun/Scraper/code/main.py
greavr/easy-golf-booker
0
12780670
<gh_stars>0 import collections import json import logging import os import random import string import sys import time from datetime import date, datetime, timedelta, timezone import google.cloud.logging import pytz import requests from flask import Flask, jsonify from google.cloud import datastore, pubsub_v1 from pytz import reference from golfcourse import golfcourse ## Application Variables LoggingClient = google.cloud.logging.Client() GolfCourseList = [] ## Get Envars project_id = os.environ.get('GCP_PROJECT', '') topic_name = os.environ.get('pubsub_topic', 'golf-bot-notify') # App Config app = Flask(__name__) # Function To Send Ttxt def send_sms(DataTosend): # Publish Message to PubSub Queue to Notify global project_id,topic_name #Set TimeZone NotificationTypes = GetNotificationTimes() timezone = pytz.timezone(NotificationTypes['timezone']) startTime = datetime.combine(date.today(),datetime.strptime(NotificationTypes['start'], '%H:%M').time()) startTime = timezone.localize(startTime) endTime = datetime.combine(date.today(),datetime.strptime(NotificationTypes['end'], '%H:%M').time()) endTime = timezone.localize(endTime) # Notifications Disabled if not NotificationTypes['enabled']: return # Check if now is between notification times RightNow = datetime.now() RightNow = timezone.localize(RightNow) print(f"ST: {startTime}, ET: {endTime}, RN: {RightNow}, RN-NO-TZ: {datetime.now()}, TimeZone: {reference.LocalTimezone().tzname(datetime.now())}") if startTime <= RightNow <= endTime: logging.info("Inside Notification Window") publisher = pubsub_v1.PublisherClient() topic_path = publisher.topic_path(project_id, topic_name) future = publisher.publish(topic_path, DataTosend.encode("utf-8")) else: logging.info("Outside Notification Window") # Send notification of date Found def Notify(NumSlotsFound,FoundRanges,DateFound, Course, Players): # Notification process ## SendSMS validates timeframe for communication ## This function looks for values to notify on if NumSlotsFound == 0: return # Build txt body: Body = f"Found {str(NumSlotsFound)} slot(s) on the following date {str(DateFound)} for {Players} players at {Course}:" Body += "\n" + str(FoundRanges) # Log Txt Body logging.info(f"Sending Txt Message with the following details: {Body}") # Send SMS Notification send_sms(DataTosend=Body) # Function To Build GolfCourse Object def BuildGolfCourseList(): global GolfCourseList # Get Search Times AllSearchTimes = BuildSearchTimes() AllOptions = GetOptions() # Get Course List from Datastore CourseList = GetCourseList() #Build Array Of GolfCourse Objects for aLocation in CourseList: thisGolf = golfcourse(LocationName=aLocation["Name"],CourseURL=aLocation["Location"], CourseNames=aLocation["Course"], SearchTimes=AllSearchTimes, PlayerElement=aLocation["PlayerElement"], DateElement=aLocation["DateElement"], SearchDates=AllOptions["DaysOfWeek"], SearchPlayers=AllOptions["Players"]) GolfCourseList.append(thisGolf) # Function To Get Notification Times from DataStore def GetNotificationTimes(): global project_id # Now try to load the keys from DS: query = datastore.Client(project=project_id,namespace='golf-bot').query(kind="notificationTimes") results = list(query.fetch()) return({"start":results[0]['start'],"end":results[0]['end'], "enabled" : results[0]['enabled'], "timezone" : results[0]['timezone']}) # Function To Get Course List From Datastore def GetCourseList(): global project_id # Now try to load the keys from DS: query = datastore.Client(project=project_id,namespace='golf-bot').query(kind="Locations") datastore_values = list(query.fetch()) results = [] for aSet in datastore_values: aResult = { "Name" : aSet['Name'], "Location": aSet['Location'], "DateElement" : aSet['DateElement'], "Course" : aSet['Course'], "PlayerElement" : aSet['PlayerElement']} results.append(aResult) return results # Function To Get Day Of Week from Datastore def GetOptions(): global project_id # Now try to load the keys from DS: query = datastore.Client(project=project_id,namespace='golf-bot').query(kind="Options") results = list(query.fetch()) return(results[0]) #return({"Days" : list(map(int,results[0]['DaysOfWeek'].split(','))), "Players" : list(map(int,results[0]['Players'].split(','))) }) # Function To Save Times to Datastore def SaveFoundTimesToDataStore(Location, DataToSave): global project_id namespace='golf-bot' kind = "TeeTimesFound" #Create Array of data elements DataToAdd = [] for aDataRow in DataToSave: DataToAdd.append({ 'PlayerCount' : aDataRow["PlayerCount"], "Times": aDataRow['Times'], "Date": aDataRow["Date"] }) try: # Create a Cloud Datastore client. datastore_client = datastore.Client(project=project_id,namespace=namespace) # Create the Cloud Datastore key for the new entity. task_key = datastore_client.key(kind,Location) task = datastore.Entity(key=task_key) task['LocationName'] = Location task['Data'] = DataToAdd task['TimeStamp'] = datetime.now() datastore_client.put(task) except: e = sys.exc_info() logging.error(f"Error Occured: {e}, Project: {project_id}, NameSpace: {namespace}, Kind: {kind}, Name: {Location}, Data: {DataToSave}") # Function To save All Found Times to Datastore def SaveFoundTimesLogs(aGolfCourse): global project_id # DataStore Keys namespace='golf-bot' kind = "TeeTimeLog" # Itterate over values for aCourse in aGolfCourse.FoundTimes: for ThisData in aGolfCourse.FoundTimes[aCourse]: aKey=''.join(random.choice(string.ascii_letters) for i in range(7)) # Try writing data try: # Create a Cloud Datastore client. datastore_client = datastore.Client(project=project_id,namespace=namespace) # Create the Cloud Datastore key for the new entity. task_key = datastore_client.key(kind,aKey) task = datastore.Entity(key=task_key) task['CourseName'] = aCourse task['PlayerCount'] = ThisData["PlayerCount"] task['Date'] = ThisData["Date"] task['Times'] = ThisData["Times"] task['LastUpdateTimeStamp'] = datetime.now() datastore_client.put(task) except: e = sys.exc_info() logging.error(f"Error Occured: {e}, Project: {project_id}, NameSpace: {namespace}, Kind: {kind}, Name: {aKey}") # Get values from Datastore def GetFoundTimes(Location: str): global project_id # Now try to load the keys from DS: client = datastore.Client(project=project_id,namespace='golf-bot') key = client.key("TeeTimesFound", Location) query = client.get(key) if query: return(query['Data']) else: return([]) # Function to build out the search times def BuildSearchTimes(): # Get start and end values from DataStore global project_id # Now try to load the keys from DS: query = datastore.Client(project=project_id,namespace='golf-bot').query(kind="searchTimes") results = list(query.fetch()) SearchTimes = {"start":results[0]['teeTimeStart'],"end":results[0]['teeTimeEnd']} # Create array of times startTime = datetime.strptime(SearchTimes['start'], '%H:%M').time() endTime = datetime.strptime(SearchTimes['end'], '%H:%M').time() # Create array of times between the two step = timedelta(minutes=1) seconds = (datetime.combine(date.today(), endTime) - datetime.combine(date.today(), startTime)).total_seconds() array = [] for i in range(0, int(seconds), int(step.total_seconds())): array.append(datetime.combine(date.today(), startTime) + timedelta(seconds=i)) # Format Array array = [i.strftime('%-I:%M %p') for i in array] return array # Main Loop @app.route("/", methods=['GET']) def Main(): global GolfCourseList # Main Function # Get Search Values from Datastore BuildGolfCourseList() # Itterate through Course for aGolfCourse in GolfCourseList: aGolfCourse.FindSpots() ## Check if any times found if not any(aGolfCourse.FoundTimes): logging.info(f"Not times found for {aGolfCourse.LocationName}.") else: ## Save Values to Log SaveFoundTimesLogs(aGolfCourse) # Ittereate over found for aFoundSet in aGolfCourse.FoundTimes: # Recall last search results looking for changes PreviousFoundData = GetFoundTimes(aFoundSet) ChangesFound = [] # Compare Results if not PreviousFoundData: # No previous results found NewDataSet = aGolfCourse.FoundTimes[aFoundSet] SaveFoundTimesToDataStore(Location=aFoundSet,DataToSave=NewDataSet) # Itterate through sub sets of data for aDataRow in NewDataSet: ChangesFound.append({"Date" : aDataRow["Date"], "Times" : aDataRow["Times"], "NumofSlotsFound" : len(aDataRow["Times"]), "Players" : aDataRow["PlayerCount"]}) else: # Compare results set JustFoundData = aGolfCourse.FoundTimes[aFoundSet] # Itterate over both lists looking for differences for aNewDataSet in JustFoundData: # New datas for aOldDataSet in PreviousFoundData: # Old datas #Check date & player count if (aOldDataSet["PlayerCount"] == aNewDataSet["PlayerCount"]) and (aOldDataSet["Date"] == aNewDataSet["Date"]): # Check Times Found Lists if not collections.Counter(aOldDataSet["Times"]) == collections.Counter(aNewDataSet["Times"]): SaveFoundTimesToDataStore(Location=aFoundSet,DataToSave=aGolfCourse.FoundTimes[aFoundSet]) ChangesFound.append({"Date" : aNewDataSet["Date"], "Times" : aNewDataSet["Times"], "NumofSlotsFound" : len(aNewDataSet["Times"]), "Players" : aNewDataSet["PlayerCount"]}) # If Changes Found Send TXT if len(ChangesFound) > 0: # Itterate over found values for aResultSet in ChangesFound: if aResultSet['NumofSlotsFound'] > 0: logging.info (f"Found {aResultSet['NumofSlotsFound']}, Times: {aResultSet['Times']}, on {aResultSet['Date']} for {aResultSet['Players']} players.") Notify(NumSlotsFound=aResultSet['NumofSlotsFound'], FoundRanges=aResultSet['Times'],DateFound=aResultSet['Date'],Course=aFoundSet, Players=aResultSet['Players'] ) else: # Found Zero Changes logging.info (f"Found {len(ChangesFound)} new times") return jsonify(success=True) if __name__ == "__main__": ## Run APP # Setup the logger LoggingClient.get_default_handler() LoggingClient.setup_logging() app.run(host='0.0.0.0', port=8080)
2.34375
2
sequence_trie.py
JeffreyUrban/count-sequences
0
12780671
<filename>sequence_trie.py from collections import Counter import json # TODO: Index all active nodes within deque (or move to other structure), so updating is faster. """ Sequence Trie: Like a linked list, except each node links to a dictionary (count collection) Each node stores a count of sequences of strings that reached that node Maximum depth is specifiable The tree tracks the present nodes of sequences passing through it The tree accepts a symbol update and advances the present node for all of its sequences, and the count for that node adds a sequence at root, if the symbol matches the root symbol On request, the tree outputs a list of all sequences of a minimum length or greater, with their counts. This is determined by taking the count at each node at depth equal to the minimum length or greater, and tracing back to the root. Does not support: Deletion of nodes Consider later: Adding aging factor for counts, to support sliding window Handle timestamp offsets somehow to decouple potentially overlapping sequences Fuzzy matching among sequences that may include different extra intermediate symbols """ class Node: def __init__(self, trie, symbol, remaining_depth, parent): self.trie = trie self.symbol = symbol self.remaining_depth = remaining_depth self.parent = parent # self.count = 1 self.children = {} self.sequence = [] if parent and parent.symbol is not None: self.sequence = parent.sequence.copy() self.sequence.append(symbol) def increment(self): self.count = self.count + 1 self.trie.next_active_children_by_level[self.remaining_depth].add(self) def update(self, symbol): # Add or update child with symbol, if depth not exceeded if self.remaining_depth: if symbol not in self.children: self.children[symbol] = \ Node(trie=self.trie, symbol=symbol, remaining_depth=self.remaining_depth - 1, parent=self) self.trie.all_child_nodes.add(self.children[symbol]) self.trie.next_active_children_by_level[self.remaining_depth - 1].add(self.children[symbol]) else: self.children[symbol].increment() def structure(self): return {'Node': { 'symbol': self.symbol, 'count': self.count, 'remaining_depth': self.remaining_depth, 'children': [self.children[symbol].structure() for symbol in self.children.keys()] }} def __str__(self): return json.dumps(self.structure(), indent=4) class Trie: def __init__(self, min_length, max_length): self.min_length = min_length self.max_length = max_length # self.root = Node(trie=self, symbol=None, remaining_depth=max_length, parent=None) # active children are grouped by level for update to flow from leaves to root self.present_active_children_by_level = [set() for _ in range(max_length)] self.next_active_children_by_level = [set() for _ in range(max_length)] self.all_child_nodes = set() def update(self, symbol): # Advance all active nodes with this symbol # Update flows up trie (children before parents) self.next_active_children_by_level = [set() for _ in range(self.max_length)] for level in self.present_active_children_by_level: for node in level: node.update(symbol) self.root.update(symbol) for level in range(self.max_length): self.present_active_children_by_level[level] = self.next_active_children_by_level[level] @property def sequences(self) -> Counter: sequences = Counter() for node in self.all_child_nodes: if node.count > 1 and node.remaining_depth < self.max_length - self.min_length + 1: # At least min_length sequences[str(node.sequence)] = node.count return sequences def __str__(self): trie_string = "Trie: min_length: {}, max_length: {} \n{}"\ .format(self.min_length, self.max_length, self.root) return trie_string if __name__ == '__main__': my_trie = Trie(2, 4) my_trie.update('0') my_trie.update('0') my_trie.update('0') my_trie.update('0') print(my_trie) print(my_trie.sequences) # Expected Result: # ['0', '0', '0']: count: 2, remaining_depth: 1 # ['0']: count: 4, remaining_depth: 3 # ['0', '0', '0', '0']: count: 1, remaining_depth: 0 # ['0', '0']: count: 3, remaining_depth: 2 # Counter({"['0', '0']": 3, "['0', '0', '0']": 2})
3.484375
3
mirrors/libs/utils/gql_related.py
likeyiyy/mirrorweb
0
12780672
import json import re from jinja2.loaders import BaseLoader from werkzeug.datastructures import ImmutableMultiDict from jinja2.sandbox import ImmutableSandboxedEnvironment import decimal from mirrors.common.logger import logger class DjangoLoader(BaseLoader): def __init__(self): pass def get_source(self, environment, _): return _, None, None variable_repr_re = re.compile(r'\{\{(.*?)\}\}') def find_used_variable(content): matched = variable_repr_re.findall(content) return [each.split('.')[0] for each in matched] def str_to_obj(str): return json.loads(str) default_jinja_context = { "len": len, 'float': float, 'decimal': decimal.Decimal, 'str_to_obj': str_to_obj, } def jinja_render(content, context): if not content: content = {} from jinja2.runtime import Undefined env = ImmutableSandboxedEnvironment( loader=DjangoLoader(), cache_size=0, undefined=Undefined, ) context.update(default_jinja_context) try: return env.get_template(content).render(context) except Exception as e: logger.debug('----- render content failed -----') logger.debug(content) logger.debug('--------------- end -------------') import traceback traceback.print_exc() raise def jinja_render_many(arr, context): _SPLITER = '^#^#^' content = _SPLITER.join(arr) ret = jinja_render(content, context) return tuple(ret.split(_SPLITER)) def gql_render(str, context=None): return str def parse_gql(gql, model, custom_query_model=None): from mirrors.libs.advance_search.parser import Parser from mirrors.libs.advance_search.advsearch_visitor import AdvSearchVisitor, AdvSearchRewriteVisitor ast = Parser.parse(gql) # 防止前端传错误的gql,进行重写 visitor = AdvSearchRewriteVisitor() ast = ast.accept(visitor) visitor = AdvSearchVisitor(model, custom_query_model) node = ast.accept(visitor) return node def extract_args_or_gql(request_args, key): if key in request_args: return request_args[key] gql = request_args.get('gql') if not gql: return None gql += '&' re_str = r'\b{0}(__eq|__s)?=(-*\w+)\b'.format(key) match = re.search(re_str, gql) if match: return match.group(2) else: return None class TrackerDict(ImmutableMultiDict): def __init__(self, *args, **kwargs): self.keys = set() super(TrackerDict, self).__init__(*args, **kwargs) def tracker(self, func): def wrapper(*args, **kwargs): if len(args): key = args[0] else: key = kwargs.get('key') self.keys.add(key) return func(*args, **kwargs) return wrapper def __getitem__(self, item): self.keys.add(item) return super(TrackerDict, self).__getitem__(item) def __getattribute__(self, item): attr = super(TrackerDict, self).__getattribute__(item) if item in ('get', 'getlist'): attr = self.tracker(attr) return attr
2.078125
2
shell/src/dist/scripts/sibilla_py/sibilla/__init__.py
f-biondi/sibilla
0
12780673
<gh_stars>0 from .plotting_module import SibillaDataPlotter from .profiler_module import Profiler from .sibilla_runtime import SibillaRuntime, Map, SibillaReachabilityResult, SibillaFristPassageTimeResult, SibillaReachabilityResult __all__= ( SibillaRuntime, Map, SibillaReachabilityResult, SibillaFristPassageTimeResult, SibillaReachabilityResult, SibillaDataPlotter, Profiler, ) print('') print('- - - - - - - - - - - - - - - - - - - - -') print('') print('- - - - - - SIBILLA IMPORTED - - - - - -') print('') print('- - - - - - - - - - - - - - - - - - - - -') print('')
1.53125
2
prodrop/exceptions.py
adambeagle/prodrop_project
3
12780674
""" exceptions.py Author: <NAME> PURPOSE: Contains all custom exception classes for the prodrop package. """ ############################################################################### # ParseTreeError and iheritors class ParseTreeError(Exception): """Base class for all parse tree related errors.""" pass class ParseTreeSearchError(ParseTreeError): pass class SearchFlagError(ParseTreeSearchError): pass class CustomCallableError(ParseTreeSearchError): pass class TreeConstructionError(ParseTreeError): pass ############################################################################### # Other class InputPathError(Exception): pass class MissingParseFilesError(Exception): pass class NoTreesFoundError(Exception): pass
2.78125
3
train.py
ardamavi/Vocalize-Sign-Language
65
12780675
# <NAME> import os import numpy from get_dataset import get_dataset from get_model import get_model, save_model from keras.callbacks import ModelCheckpoint, TensorBoard epochs = 15 batch_size = 6 def train_model(model, X, X_test, Y, Y_test): checkpoints = [] if not os.path.exists('Data/Checkpoints/'): os.makedirs('Data/Checkpoints/') checkpoints.append(ModelCheckpoint('Data/Checkpoints/best_weights.h5', monitor='val_loss', verbose=0, save_best_only=True, save_weights_only=True, mode='auto', period=1)) checkpoints.append(TensorBoard(log_dir='Data/Checkpoints/./logs', histogram_freq=1, write_graph=True, write_images=True, embeddings_freq=0, embeddings_layer_names=None, embeddings_metadata=None)) ''' # Creates live data: # For better yield. The duration of the training is extended. from keras.preprocessing.image import ImageDataGenerator generated_data = ImageDataGenerator(rotation_range=30, width_shift_range=0.1, height_shift_range=0.1, zoom_range=0.2) # For include left hand data add: 'horizontal_flip = True' generated_data.fit(X) model.fit_generator(generated_data.flow(X, Y, batch_size=batch_size), steps_per_epoch=X.shape[0]/batch_size, epochs=epochs, validation_data=(X_test, Y_test), callbacks=checkpoints) ''' model.fit(X, Y, batch_size=batch_size, epochs=epochs, validation_data=(X_test, Y_test), shuffle=True, callbacks=checkpoints) return model def main(): X, X_test, Y, Y_test = get_dataset() model = get_model() model = train_model(model, X, X_test, Y, Y_test) save_model(model) return model if __name__ == '__main__': main()
2.390625
2
pytiff/test/test_write.py
ch-schiffer/pytiff
9
12780676
from hypothesis import HealthCheck from hypothesis import given, settings from hypothesis.extra import numpy as hnp from pytiff import * import hypothesis.strategies as st import numpy as np import pytest import subprocess import tifffile from skimage.data import coffee def test_write_rgb(tmpdir_factory): img = coffee() filename = str(tmpdir_factory.mktemp("write").join("rgb_img.tif")) with Tiff(filename, "w") as handle: handle.write(img, method="tile") with Tiff(filename) as handle: data = handle[:] assert np.all(img == data[:, :, :3]) with Tiff(filename, "w") as handle: handle.write(img, method="scanline") with Tiff(filename) as handle: data = handle[:] assert np.all(img == data[:, :, :3]) # scanline integer tests @settings(buffer_size=11000000) @given(data=hnp.arrays(dtype=st.one_of(hnp.integer_dtypes(endianness="="), hnp.unsigned_integer_dtypes(endianness="=")), shape=hnp.array_shapes(min_dims=2, max_dims=2, min_side=10, max_side=50))) def test_write_int_scanline(data, tmpdir_factory): filename = str(tmpdir_factory.mktemp("write").join("int_img.tif")) with Tiff(filename, "w") as handle: handle.write(data, method="scanline") with tifffile.TiffFile(filename) as handle: img = handle.asarray() np.testing.assert_array_equal(data, img) @settings(buffer_size=11000000) @given(data=hnp.arrays(dtype=st.one_of(hnp.integer_dtypes(endianness="="), hnp.unsigned_integer_dtypes(endianness="=")), shape=hnp.array_shapes(min_dims=2, max_dims=2, min_side=10, max_side=50))) def test_write_int_scanline_set_rows_per_strip(data, tmpdir_factory): filename = str(tmpdir_factory.mktemp("write").join("int_img.tif")) rows_per_strip = 1 with Tiff(filename, "w") as handle: handle.write(data, method="scanline", rows_per_strip=rows_per_strip) with tifffile.TiffFile(filename) as handle: img = handle.asarray() np.testing.assert_array_equal(data, img) assert rows_per_strip == handle[0].tags["rows_per_strip"].value @settings(buffer_size=11000000) @given(data=hnp.arrays(dtype=st.one_of(hnp.integer_dtypes(endianness="="), hnp.unsigned_integer_dtypes(endianness="=")), shape=hnp.array_shapes(min_dims=2, max_dims=2, min_side=20, max_side=20))) def test_write_int_slices_scanline(data, tmpdir_factory): filename = str(tmpdir_factory.mktemp("write").join("int_img_scanline.tif")) with Tiff(filename, "w") as handle: handle.write(data[:, :], method="scanline") with tifffile.TiffFile(filename) as handle: img = handle.asarray() np.testing.assert_array_equal(data[:,:], img) # tile integer tests @settings(buffer_size=11000000) @given(data=hnp.arrays(dtype=st.one_of(hnp.integer_dtypes(endianness="="), hnp.unsigned_integer_dtypes(endianness="=")), shape=hnp.array_shapes(min_dims=2, max_dims=2, min_side=10, max_side=50))) def test_write_int_tile(data, tmpdir_factory): filename = str(tmpdir_factory.mktemp("write").join("int_tile_img.tif")) with Tiff(filename, "w") as handle: handle.write(data, method="tile", tile_width=16, tile_length=16) with tifffile.TiffFile(filename) as handle: img = handle.asarray() np.testing.assert_array_equal(data, img) @settings(buffer_size=11000000) @given(data=hnp.arrays(dtype=hnp.floating_dtypes(endianness="="), shape=hnp.array_shapes(min_dims=2, max_dims=2, min_side=10, max_side=50), elements=st.floats(0, 1))) def test_write_float_scanline(data, tmpdir_factory): filename = str(tmpdir_factory.mktemp("write").join("float_img.tif")) with Tiff(filename, "w") as handle: handle.write(data, method="scanline") with tifffile.TiffFile(filename) as handle: img = handle.asarray() np.testing.assert_array_equal(data, img) @settings(buffer_size=11000000) @given(data=hnp.arrays(dtype=hnp.floating_dtypes(endianness="="), shape=hnp.array_shapes(min_dims=2, max_dims=2, min_side=10, max_side=50), elements=st.floats(0, 1))) def test_write_float_tile(data, tmpdir_factory): filename = str(tmpdir_factory.mktemp("write").join("float_tile_img.tif")) with Tiff(filename, "w") as handle: handle.write(data, method="tile", tile_length=16, tile_width=16) with tifffile.TiffFile(filename) as handle: img = handle.asarray() np.testing.assert_array_equal(data, img) @settings(buffer_size=11000000) @given(data=hnp.arrays(dtype=st.one_of(hnp.integer_dtypes(endianness="="), hnp.unsigned_integer_dtypes(endianness="=")), shape=hnp.array_shapes(min_dims=2, max_dims=2, min_side=10, max_side=50))) def test_append_int_tile(data, tmpdir_factory): filename = str(tmpdir_factory.mktemp("write").join("append_img.tif")) with Tiff(filename, "w") as handle: handle.write(data, method="tile", tile_width=16, tile_length=16) with Tiff(filename, "a") as handle: handle.write(data, method="tile", tile_width=16, tile_length=16) with Tiff(filename, "r") as handle: assert handle.number_of_pages == 2 with tifffile.TiffFile(filename) as handle: img = handle.asarray() np.testing.assert_array_equal(data, img[0]) np.testing.assert_array_equal(data, img[1]) def test_write_chunk(tmpdir_factory): filename = str(tmpdir_factory.mktemp("write").join("chunk_img.tif")) filename = "test_chunk.tif" data1 = np.ones((64,64), dtype=np.uint8) * 1 data2 = np.ones((64,64), dtype=np.uint8) * 2 data3 = np.ones((64,64), dtype=np.uint8) * 3 data4 = np.ones((64,64), dtype=np.uint8) * 4 with Tiff(filename, "w") as handle: chunks = [data1, data2, data3, data4] handle.new_page((300, 300), dtype=np.uint8, tile_length=16, tile_width=16) row = 0 col = 0 max_row_end = 0 positions = [] for c in chunks: shape = c.shape row_end, col_end = row + shape[0], col + shape[1] max_row_end = max(max_row_end, row_end) handle[row:row_end, col:col_end] = c # save for reading chunks positions.append([row, row_end, col, col_end]) if col_end >= handle.shape[1]: col = 0 row = max_row_end else: col = col_end handle.save_page() with Tiff(filename) as handle: for pos, chunk in zip(positions, chunks): row, row_end, col, col_end = pos data = handle[row:row_end, col:col_end] assert np.all(data == chunk) with Tiff(filename) as handle: with pytest.raises(ValueError): handle.new_page((50, 50), np.dtype("uint8")) handle[:, :] = np.random.rand(50, 50) handle.save_page() def test_write_chunk_multiple_pages(tmpdir_factory): filename = str(tmpdir_factory.mktemp("write").join("multi_page_chunk_img.tif")) data1 = np.ones((64,64), dtype=np.uint8) * 1 data2 = np.ones((64,64), dtype=np.uint8) * 2 data3 = np.ones((64,64), dtype=np.uint8) * 3 data4 = np.ones((64,64), dtype=np.uint8) * 4 with Tiff(filename, "w")as handle: chunks = [data1, data2, data3, data4] for c in chunks: shape = c.shape handle.new_page(shape, dtype=np.uint8, tile_length=16, tile_width=16) handle[:] = c with Tiff(filename) as handle: for page, chunk in enumerate(chunks): handle.set_page(page) data = handle[:] assert data.shape == chunk.shape assert np.all(data == chunk)
2.03125
2
Server/tests/v2/views/student/report/t_facility_report.py
moreal/DMS-Backend
27
12780677
from app.models.report import FacilityReportModel from tests.v2.views import TCBase class TestFacilityReport(TCBase): """ 시설 고장 신고를 테스트합니다. """ def __init__(self, *args, **kwargs): super(TestFacilityReport, self).__init__(*args, **kwargs) self.method = self.client.post self.target_uri = '/student/report/facility' self.content = 'hello' self.room = 311 def setUp(self): super(TestFacilityReport, self).setUp() # --- self._request = lambda *, token=self.student_access_token, content=self.content, room=self.room: self.request( self.method, self.target_uri, token, json={ 'content': content, 'room': room } ) def testReportSuccess(self): # (1) 시설고장 신고 resp = self._request() # (2) status code 201 self.assertEqual(resp.status_code, 201) # (3) response data data = resp.json self.assertIn('id', data) id = data['id'] self.assertIsInstance(id, str) self.assertEqual(len(id), 24) # (4) 데이터베이스 확인 self.assertTrue(FacilityReportModel.objects(id=id, content=self.content, room=self.room)) def testForbidden(self): self.assertEqual(self._request(token=self.admin_access_token).status_code, 403)
2.296875
2
fudbyte/apps/core/urls.py
niieq/fudbyte
0
12780678
from django.conf.urls import url from .views import index, food_detail, post_food_comment urlpatterns = [ url(r'^$', index), url(r'^food/(?P<food_slug>[-\w]+)$', food_detail), url(r'^food/(?P<food_slug>[-\w]+)/add_comment$', post_food_comment) ]
1.726563
2
MyVisuApp.py
HaikoKrais/HomeDataViewer
1
12780679
<filename>MyVisuApp.py # -*- coding: utf-8 -*- ''' Visualizes temperature and humidity in rooms and provides a weather forecast. Classes: MyScreens: Used to switch between the screens which provide the different contents Scrn1: Start screen of the app. Provides navigation to the other screens Scrn2: Shows temperatrue and humidity. Uses Two_Scales_Widget Two_Scales_Widget: Widget providing functions to get temperature and humidity of a room and to visualize it Scrn3: Shows the current weather at a selectable location as well as a five day forecast. Uses Weather_Widget Weather_Widget: Widget providing functions to get and visualize the weather and forecast for a location Scrn4: Shows the temperature and humidity graph of the last 24 hours. Uses TwoPlotWidgets TwoPlotsWidget: Matplotlib Backend visualizing two graphs with shared x-Axis Scrn5: Shows a corona widget displaying current and cumulative infections Scrn6: Shows a widget representing the most common pollen for a chosen region including a forecast See details and more explanations at: http://kraisnet.de/index.php/gebaeudedaten-erfassen-und-mit-kivy-visualisieren-2/18-gebaeudedaten-erfassen-und-mit-kivy-visualisieren ''' import json import os from datetime import datetime from time import mktime, strptime from kivy.app import App from kivy.clock import Clock from kivy.properties import ListProperty from kivy.uix.screenmanager import ScreenManager, Screen from kivy.uix.settings import SettingsWithSidebar from TwoScalesWidgetApp import TwoScalesWidget as TwoScalesWidget from WeatherWidgetApp import WeatherWidget as WeatherWidget from TwoPlotsSharedXWidgetApp import TwoPlotsSharedXWidget as TwoPlotsSharedXWidget from CoronaWidgetApp import CoronaWidget as CoronaWidget from PollenWidgetApp import PollenWidget as PollenWidget from kivy.resources import resource_add_path class MyScreens(ScreenManager): ''' The ScreenManager MyScreens takes care of changing between the available screens The functions goto_screen_1 .... can be called by all elements on the screens ''' def __init__(self, **kwargs): '''__init__() can perform actions on instantiation. None so far''' super(MyScreens, self).__init__(**kwargs) def goto_scrn1(self): '''Switches to screen 1''' self.current = 'scrn1' def goto_scrn2(self): '''switches to screen 2''' self.current = 'scrn2' def goto_scrn3(self): '''switches to screen 3''' self.current = 'scrn3' def goto_scrn4(self): '''switches to screen 4''' self.current = 'scrn4' def goto_scrn5(self): '''switches to screen 5''' self.current = 'scrn5' def goto_scrn6(self): '''switches to screen 6''' self.current = 'scrn6' class Scrn1(Screen): ''' Shows the start screen Attributes: None ''' pass class Scrn2(Screen): ''' Shows the screen containing the temperature and humidity widget Attributes: None ''' timestamp = ListProperty([]) temperature = ListProperty([]) humidity = ListProperty([]) def __init__(self, **kwargs): ''' Start updating the screen regularly. A clock will call the update function in a selectable interval. Put all functions you want to update into the update function Args: **kwargs (): not used. For further development. Returns: Nothing. ''' super(Scrn2, self).__init__(**kwargs) Clock.schedule_interval(self.update_scales, 60) Clock.schedule_once(self.update_scales) Clock.schedule_interval(self.update_graph, 60) Clock.schedule_once(self.update_graph) def update_scales(self, dt): ''' updates the scales Args: dt (int): interval in seconds in which the funtion will be called Returns: nothing ''' low1 = float(App.get_running_app().config.get('Two Scales Widget', 'temp_lower_limit')) high1 = float(App.get_running_app().config.get('Two Scales Widget', 'temp_upper_limit')) low2 = float(App.get_running_app().config.get('Two Scales Widget', 'humidity_lower_limit')) high2 = float(App.get_running_app().config.get('Two Scales Widget', 'humidity_upper_limit')) filename = App.get_running_app().config.get('Two Scales Widget', 'data_source_scales') self.ids.widget1.show_data(filename=filename, low1=low1, high1=high1, low2=low2, high2=high2) def update_graph(self, dt): ''' updates the plot Args: dt (int): interval in seconds in which the funtion will be called Returns: nothing ''' # Read the data to show from a file and store it filename = App.get_running_app().config.get('Two Scales Widget', 'data_source_graph') try: with open(filename, 'r') as read_file: data = json.load(read_file) print(data) except FileNotFoundError: print('File not found for temperature and humidity graph') return self.timestamp.clear() self.temperature.clear() self.humidity.clear() for item in data: self.timestamp.append(datetime.fromtimestamp(mktime(strptime(item['time_code'], '%Y-%m-%d %H:%M:%S')))) self.temperature.append(float(item['temperature'])) self.humidity.append(float(item['humidity'])) self.ids.widget2.update_plot() class Scrn3(Screen): def __init__(self, **kwargs): ''' Start updating the screen regularly. A clock will call the update function in a selectable interval. Put all functions you want to update into the update function Args: **kwargs (): not used. For further development. Returns: Nothing. ''' super(Scrn3, self).__init__(**kwargs) Clock.schedule_interval(self.update, 1800) Clock.schedule_once(self.update) def update(self, dt): ''' calls funtions to update the screen. Args: dt (int): interval in seconds in which the funtion will be called Returns: (float): Scaled value. ''' city = App.get_running_app().config.get('Weather Widget', 'city') self.ids.widget1.download_current_weather(city=city) self.ids.widget1.download_forecast(city=city) class Scrn5(Screen): def __init__(self, **kwargs): super(Scrn5, self).__init__(**kwargs) ''' Shows the corona widget. A clock will call the update function in a selectable interval. Put all functions you want to update into the update function. During init is the update() function called. This will download the current dataset from the ECDC. The data ist updated once a day. So the interval should be large enough. Args: **kwargs (): not used. For further development. Returns: Nothing. ''' Clock.schedule_interval(self.update, 86400) Clock.schedule_once(self.update) def update(self, dt): ''' calls funtions to update the screen. Args: dt (int): interval in seconds in which the funtion will be called Returns: (float): Scaled value. ''' self.ids['wdgt1'].download_data_infection() self.ids['wdgt1'].download_data_vaccination() class Scrn6(Screen): def __init__(self, **kwargs): super(Scrn6, self).__init__(**kwargs) ''' Shows the pollen widget. A clock will call the update function in a selectable interval. Put all functions you want to update into the update function. During init is the update() function called. This will download the current dataset from the DWD. The data ist updated once a day. So the interval should be large enough. Args: **kwargs (): not used. For further development. Returns: Nothing. ''' Clock.schedule_interval(self.update, 86400) Clock.schedule_once(self.update) def update(self, dt): ''' calls funtions to update the screen. Args: dt (int): interval in seconds in which the funtion will be called Returns: (float): Scaled value. ''' self.ids['wdgt1'].download_dataset(url='https://opendata.dwd.de/climate_environment/health/alerts/s31fg.json') class MyVisuApp(App): def build(self): ''' overwrites the build() function. The appearance of the settings is set here. Choose from the available layouts: https://kivy.org/doc/stable/api-kivy.uix.settings.html#different-panel-layouts The preset values for the settings are loaded by the config.read() function Args: None Returns: class MyScreens(). ''' self.settings_cls = SettingsWithSidebar fileDir = os.path.dirname(os.path.abspath(__file__)) absFilename = os.path.join(fileDir, 'mysettings.ini') self.config.read(absFilename) return MyScreens() def build_settings(self, settings): ''' overwrites the build_settings() function. Add all necessary panels here by loading from the corresponding file. Args: settings Returns: Nothing. ''' fileDir = os.path.dirname(os.path.abspath(__file__)) absFilename1 = os.path.join(fileDir, 'settings_weather_widget.json') absFilename2 = os.path.join(fileDir, 'settings_two_scales_widget.json') settings.add_json_panel('Weather Widget', self.config, absFilename1) settings.add_json_panel('Two Scales Widget', self.config, absFilename2) def on_config_change(self, config, section, key, value): ''' overwrites the on_config_change() function. define actions that shall happen when specific entries in the configuration change here. Args: config (kivy.config.ConfigParser): current configuration. section (str): name of the section where the key belongs to. key (str): key as specified in the json panels. value (): value of the key. return value depending on the type of variable. Returns: class MyScreens(). ''' app = self.get_running_app() if key == 'city': app.root.ids['scrn3'].update(1) if section == 'Two Scales Widget': app.root.ids['scrn2'].update_plots(1) app.root.ids['scrn2'].update_graph(1) if __name__ == '__main__': resource_add_path(r'C:\Users\49172\PycharmProjects') MyVisuApp().run()
2.5625
3
data_steward/cdr_cleaner/cleaning_rules/deid/geolocation_concept_suppression.py
lrwb-aou/curation
16
12780680
""" Sandbox and record suppress all records with a concept_id or concept_code relating to Geo Location information. Original Issue: DC-1385 suppress all records associated with a GeoLocation identifier concepts in PPI vocabulary The concept_ids to suppress can be determined from the vocabulary with the following regular expressions. REGEXP_CONTAINS(concept_code, r'(SitePairing)|(City)|(ArizonaSpecific)|(Michigan)|(_Country)| \ (ExtraConsent_[A-Za-z]+((Care)|(Registered)))')AND concept_class_id = 'Question') and also covers all the mapped standard concepts for non standard concepts that the regex filters. """ # Python Imports import logging # Third Party Imports from google.cloud.exceptions import GoogleCloudError # Project Imports from common import OBSERVATION from common import JINJA_ENV import constants.cdr_cleaner.clean_cdr as cdr_consts from cdr_cleaner.cleaning_rules.deid.concept_suppression import \ AbstractBqLookupTableConceptSuppression LOGGER = logging.getLogger(__name__) ISSUE_NUMBERS = ['DC1385'] GEO_LOCATION_SUPPRESSION_CONCEPT_TABLE = '_geolocation_identifier_concepts' GEO_LOCATION_CONCEPT_SUPPRESSION_LOOKUP_QUERY = JINJA_ENV.from_string(""" CREATE OR REPLACE TABLE `{{project_id}}.{{sandbox_dataset_id}}.{{lookup_table}}` as( WITH geolocation_concept_ids AS ( SELECT DISTINCT * FROM `{{project_id}}.{{dataset_id}}.concept` WHERE REGEXP_CONTAINS(concept_code, r'(SitePairing)|(City)|(ArizonaSpecific)|(Michigan)|(_Country)|(ExtraConsent_[A-Za-z]+((Care)|(Registered)))')AND concept_class_id = 'Question') SELECT DISTINCT * FROM geolocation_concept_ids UNION DISTINCT SELECT DISTINCT * FROM `{{project_id}}.{{dataset_id}}.concept` WHERE concept_id IN( SELECT cr.concept_id_2 FROM geolocation_concept_ids AS c JOIN `{{project_id}}.{{dataset_id}}.concept_relationship` AS cr ON c.concept_id = cr.concept_id_1 WHERE cr.relationship_id = 'Maps to') ) """) class GeoLocationConceptSuppression(AbstractBqLookupTableConceptSuppression): def __init__(self, project_id, dataset_id, sandbox_dataset_id): """ Initialize the class with proper info. Set the issue numbers, description and affected datasets. As other tickets may affect this SQL, append them to the list of Jira Issues. DO NOT REMOVE ORIGINAL JIRA ISSUE NUMBERS! """ desc = ( 'Sandbox and record suppress all records with a concept_id or concept_code ' 'relating to Geo Location information. ') super().__init__(issue_numbers=ISSUE_NUMBERS, description=desc, affected_datasets=[cdr_consts.CONTROLLED_TIER_DEID], project_id=project_id, dataset_id=dataset_id, sandbox_dataset_id=sandbox_dataset_id, affected_tables=[OBSERVATION], concept_suppression_lookup_table= GEO_LOCATION_SUPPRESSION_CONCEPT_TABLE) def create_suppression_lookup_table(self, client): """ :param client: Bigquery client :return: None raises google.cloud.exceptions.GoogleCloudError if a QueryJob fails """ concept_suppression_lookup_query = GEO_LOCATION_CONCEPT_SUPPRESSION_LOOKUP_QUERY.render( project_id=self.project_id, dataset_id=self.dataset_id, sandbox_dataset_id=self.sandbox_dataset_id, lookup_table=self.concept_suppression_lookup_table) query_job = client.query(concept_suppression_lookup_query) result = query_job.result() if hasattr(result, 'errors') and result.errors: LOGGER.error(f"Error running job {result.job_id}: {result.errors}") raise GoogleCloudError( f"Error running job {result.job_id}: {result.errors}") def setup_validation(self, client, *args, **keyword_args): pass def validate_rule(self, client, *args, **keyword_args): pass if __name__ == '__main__': import cdr_cleaner.args_parser as parser from utils import pipeline_logging import cdr_cleaner.clean_cdr_engine as clean_engine pipeline_logging.configure(level=logging.DEBUG, add_console_handler=True) ARGS = parser.default_parse_args() if ARGS.list_queries: clean_engine.add_console_logging() query_list = clean_engine.get_query_list( ARGS.project_id, ARGS.dataset_id, ARGS.sandbox_dataset_id, [(GeoLocationConceptSuppression,)]) for query in query_list: LOGGER.info(query) else: clean_engine.add_console_logging(ARGS.console_log) clean_engine.clean_dataset(ARGS.project_id, ARGS.dataset_id, ARGS.sandbox_dataset_id, [(GeoLocationConceptSuppression,)])
1.90625
2
11/solution1.py
msagi/advent-of-code-2021
0
12780681
# https://adventofcode.com/2021/day/11 def increase_energy_level(arr, arr_len_x, arr_len_y, increase_step): for x in range(arr_len_x): for y in range(arr_len_y): arr[x][y] += increase_step def flash_octopus(arr, arr_len_x, arr_len_y, x, y): if arr[x][y] <= 9: # no flash for this octopus return 0 arr[x][y] = -1 # register that this octopus has JUST flashed number_of_flashes = 1 x_coords = [x-1, x, x+1] y_coords = [y-1, y, y+1] for x_coord in x_coords: for y_coord in y_coords: if 0 <= x_coord < arr_len_x and 0 <= y_coord < arr_len_y: if -1 == arr[x_coord][y_coord]: # this neighbour has been flashed BEFORE continue arr[x_coord][y_coord] += 1 number_of_flashes += flash_octopus(arr, arr_len_x, arr_len_y, x_coord, y_coord) # cascade flashing return number_of_flashes def flash(arr, arr_len_x, arr_len_y): number_of_flashes = 0 for x in range(arr_len_x): for y in range(arr_len_y): number_of_flashes += flash_octopus(arr, arr_len_x, arr_len_y, x, y) return number_of_flashes def clean_up(arr, arr_len_x, arr_len_y): for x in range(arr_len_x): for y in range(arr_len_y): if arr[x][y] == -1: arr[x][y] = 0 def dump_arr(arr, arr_len_x, arr_len_y): for y in range(arr_len_y): print(arr[y]) # load file infile = open('11/input.txt', 'r') lines = infile.readlines() infile.close() arr = [] # parse input for line in lines: line = line.strip() line_values = [int(char) for char in line] arr.append(line_values) arr_len_x = len(arr[0]) arr_len_y = len(arr) arr_size = arr_len_x * arr_len_y dump_arr(arr, arr_len_x, arr_len_y) max_step = 100 answer = 0 for step in range(max_step): increase_energy_level(arr, arr_len_x, arr_len_y, 1) number_of_flashes = flash(arr, arr_len_x, arr_len_y) clean_up(arr, arr_len_x, arr_len_y) answer += number_of_flashes print(answer) # 1749 print('OK')
3.296875
3
app/index_tags.py
patrickhoefler/secta
0
12780682
#!/usr/bin/env python3 import codecs from collections import defaultdict import errno import json import os def tree(): """ http://recursive-labs.com/blog/2012/05/31/one-line-python-tree-explained/ """ return defaultdict(tree) def index_tags(): """ Iterate through all locally saved JSON files and generate the Stack Exchange Cross Tag index """ # Get the script directory SCRIPT_DIR = os.path.dirname(os.path.realpath(__file__)) # Let's make our index a defaultdict with autovivification index = tree() # Iterate through all files in the data directory for file in os.listdir(os.path.join(SCRIPT_DIR, '../data')): # Load the JSON file containing the tags for a site with codecs.open( os.path.join(SCRIPT_DIR, '../data/' + file), 'r', encoding='utf-8' ) as input_file: tags = json.load(input_file) # The site ID is the filename minus the (.json) at the end site_id = file[:-5] # Iterate through all tags and add them to the index for tag in tags['items']: index[tag['name']][site_id] = tag['count'] # Autovivification ftw! # Create the index directory try: os.makedirs(os.path.join(SCRIPT_DIR, '../index')) # If the directory already exists, ignore the error, otherwise report it except OSError as exception: if exception.errno != errno.EEXIST: raise # Save the tag index to a local JSON file with codecs.open( os.path.join(SCRIPT_DIR, '../index/index_tags.json'), 'w', encoding='utf-8' ) as output_file: json.dump(index, output_file, ensure_ascii=False) # Some status information for the console print('Successfully created the tag index.') # If the script is called directly, execute the index_tags() function if __name__ == '__main__': index_tags()
3.078125
3
src/cms/templatetags/offer_filters.py
digitalfabrik/coldaid-backend
4
12780683
from django import template register = template.Library() @register.filter def active_since(region_offers, offer_template): return region_offers.filter(template=offer_template).first().created_date
1.765625
2
rbfmorph/rbf_func.py
utkarshmech/rbfmorph
2
12780684
import numpy as np def rd(c1, c2): return np.sqrt((c1[0]-c2[0])**2+(c1[1]-c2[1])**2+(c1[2]-c2[2])**2) #rbf as global support spline type #Gaussian Spline def rbf(r): return np.exp(-r**2) #Spline polynomial def rbf1(r,deg): return r**deg # Global def rbf2(r): return np.exp(-r**2) # %% codecell
2.796875
3
saltverifier/server.py
virtru-ops/salt-verifier
1
12780685
<reponame>virtru-ops/salt-verifier """ A simple challenge response server Request: encrypted-message-of-challenge Response: status-code;body-of-response Good response: 200-299;base64 of rsa-sha256 of challenge Bad response: 400-599;error-message """ import os import sys import argparse import time import hashlib import zmq import M2Crypto import logging import pwd # Setup the logging to be json logging.basicConfig( format='{"message": "%(message)s", "level": "%(levelname)s", timestamp: "%(asctime)s"}', level=logging.INFO, stream=sys.stderr ) DESCRIPTION = 'A simple challenge response server for this salt minions key' parser = argparse.ArgumentParser(description=DESCRIPTION) parser.add_argument('--port', type=int, default=4533, help='Port to run the server') parser.add_argument('--run-as', help='Username to run process as') parser.add_argument('--private-key-path', default='/etc/salt/pki/minion/minion.pem', help="The path to the minion's key") parser.add_argument('--private-key-load-timeout', default=900.0, type=float, help="Time in seconds to wait to load the private key") parser.add_argument('--private-key-load-interval', default=0.1, type=float, help="Interval in seconds to check for private key during loading") class PrivateKeyDoesNotExist(Exception): pass class ChallengeResponseServer(): def __init__(self, port, private_key): self._port = port self._private_key = private_key def serve(self): logging.info('Starting salt-verifier challenge response server') try: self._server_loop() except KeyboardInterrupt: logging.info('Shutting down salt-verifier challenge response server') def _server_loop(self): context = zmq.Context() socket = context.socket(zmq.REP) socket.bind('tcp://0.0.0.0:%s' % self._port) while True: # Wait a little to start a bit... for good measure time.sleep(1) # Wait for the next request from the client encrypted_challenge_message = socket.recv() logging.info('received message') logging.debug(encrypted_challenge_message) # Attempt to decrypt the message try: challenge_message = self.decrypt(encrypted_challenge_message) except M2Crypto.RSA.RSAError, e: logging.exception('Exception occured decrypting') socket.send('400;Cannot Decrypt message') continue except Exception, e: logging.exception('Internal server error occurred') socket.send('500;Internal server error') continue signed_challenge = self.sign(challenge_message) socket.send('200;%s' % signed_challenge.encode('base64')) def decrypt(self, base64_cipher_message): """Decrypt a message""" cipher_message = base64_cipher_message.decode('base64') return self._private_key.private_decrypt( cipher_message, M2Crypto.RSA.pkcs1_oaep_padding ) def sign(self, message): """RSASSA-PSS sign the sha256 digest of a message""" message_digest = hashlib.sha256() message_digest.update(message) return self._private_key.sign_rsassa_pss(message_digest.digest()) def load_private_key(private_key_path, timeout, interval): current_time = time.time() ready = False count = 0 while current_time + timeout > time.time(): # Report to the logs that we're waiting for the private key... but # don't always do it. It'll get too noisy unnecessarily. With the # default settings this will run every 2 seconds if count % 20 == 0: logging.info('Checking for private key @ "%s"' % private_key_path) if os.path.exists(private_key_path): ready = True break count += 1 time.sleep(interval) if not ready: raise PrivateKeyDoesNotExist( 'No private key exists @ %s\n' % private_key_path ) logging.info('Private key found @ "%s"' % private_key_path) # Load the private key private_key = M2Crypto.RSA.load_key(private_key_path) return private_key def run(args=None): args = args or sys.argv[1:] parsed_args = parser.parse_args(args) port = parsed_args.port private_key_path = os.path.abspath(parsed_args.private_key_path) try: private_key = load_private_key( private_key_path, parsed_args.private_key_load_timeout, parsed_args.private_key_load_interval ) except PrivateKeyDoesNotExist, e: logging.info(e.message) sys.exit(1) except KeyboardInterrupt: logging.info('Shutting down. Was waiting for private key.') sys.exit(1) # Downgrade user to the setuid if --run-as is set on command line run_as = parsed_args.run_as if run_as: try: passwd = pwd.getpwnam(run_as) except KeyError: logging.error('No user called %s. Exiting' % run_as) return os.setuid(passwd.pw_uid) server = ChallengeResponseServer(port, private_key) server.serve()
2.96875
3
AlphaRemover.py
partywithemanuel/alpha_remover
0
12780686
import wx import matplotlib.pyplot as plt import os import sys import subprocess from PIL import Image class App(wx.Frame): def __init__(self, parent, title): super(App, self).__init__(parent, title = title,size = (640,300)) panel = wx.Panel(self) sizer = wx.GridBagSizer(5, 4) #description text = wx.StaticText(panel, label="Folder path") sizer.Add(text, pos=(0, 0), flag=wx.TOP|wx.LEFT, border=10) #input field self.path = wx.TextCtrl(panel) sizer.Add(self.path, pos=(1, 0), span=(1, 4), flag=wx.EXPAND|wx.LEFT|wx.RIGHT, border=10) self.path.Bind(wx.EVT_TEXT,self.OnKeyTyped) #hint text2 = wx.StaticText(panel, style = wx.TE_MULTILINE, label=" Hint: hold Option after right-click on folder to show option to copy its path.") sizer.Add(text2, pos=(2, 0), span=(1, 3), flag=wx.BOTTOM|wx.TOP|wx.LEFT, border=5) #button open folder button_open = wx.Button(panel, label="Choose folder", size=(140, 24)) button_open.Bind(wx.EVT_BUTTON, self.onDir) sizer.Add(button_open, pos=(1, 4), flag=wx.ALIGN_RIGHT|wx.RIGHT, border=10) #button execute button_execute = wx.Button(panel, label="Remove Alpha", size=(140, 24)) self.Bind(wx.EVT_BUTTON, self.OnClickedExecute, button_execute) sizer.Add(button_execute, pos=(2, 4), flag=wx.ALIGN_RIGHT|wx.RIGHT|wx.BOTTOM, border=10) #output line = wx.TextCtrl(panel, wx.ID_ANY,style = wx.TE_MULTILINE|wx.TE_READONLY|wx.HSCROLL|wx.TE_RICH2) sizer.Add(line, pos=(3, 0), span=(1, 5), flag=wx.EXPAND|wx.LEFT|wx.RIGHT|wx.BOTTOM, border=10) sys.stdout = line sizer.AddGrowableCol(1) sizer.AddGrowableCol(3) sizer.AddGrowableRow(3) panel.SetSizer(sizer) def OnKeyTyped(self, event): self.path = event.GetString() def OnClickedExecute(self, event): button_execute = event.GetEventObject().GetLabel() program(self.path) def OnClickedOpen(self, event): button_open = event.GetEventObject().GetLabel() onDir(self.path) #open folder modal def onDir(self, event): dlg = wx.DirDialog(self, "Choose a directory:", style=wx.DD_DEFAULT_STYLE | wx.DD_DIR_MUST_EXIST) if dlg.ShowModal() == wx.ID_OK: print ("Selected folder is %s" % dlg.GetPath()) self.path = dlg.GetPath() def remove_alpha(image): color=(255, 255, 255) image.load() # treba za split() background = Image.new('RGB', image.size, color) background.paste(image, mask=image.split()[3]) # 3 je alpha channel return background def program(path): for subdir, dirs, files in os.walk(path): for filename in files: if filename.endswith(".png"): pic_path = path+filename pic = Image.open(os.path.join(subdir, filename)) if pic.mode in ('RGBA', 'LA') or (pic.mode == 'P' and 'transparency' in pic.info): pic=remove_alpha(pic) pic.save(os.path.join(subdir, filename)) print(os.path.join(subdir, filename)) proc = subprocess.Popen("ping %s", shell=True, stdout=subprocess.PIPE) line = proc.stdout.readline() app = wx.App(redirect=True) ex = App(None, 'PNG Alpha remover') ex.Show() app.MainLoop()
2.46875
2
chapter4/pizza.py
sharad16j/Expert-Python-Programming-Third-Edition
112
12780687
<filename>chapter4/pizza.py class Pizza: def __init__(self, toppings): self.toppings = toppings def __repr__(self): return "Pizza with " + " and ".join(self.toppings) @classmethod def recommend(cls): """Recommend some pizza with arbitrary toppings,""" return cls(['spam', 'ham', 'eggs']) class VikingPizza(Pizza): @classmethod def recommend(cls): """Use same recommendation as super but add extra spam""" recommended = super(VikingPizza).recommend() recommended.toppings += ['spam'] * 5 return recommended if __name__ == "__main__": print("Ordinary pizza recomendation:", Pizza.recommend()) print("Viking pizza recomendation:", VikingPizza.recommend())
3.875
4
examples/nlp/bert/test_glue_pytorch_bert.py
AFDWang/Hetu
82
12780688
<reponame>AFDWang/Hetu<filename>examples/nlp/bert/test_glue_pytorch_bert.py from tqdm import tqdm import os import math import logging import torch import torch.nn as nn from torch.optim import Adam from torch.optim import SGD import numpy as np from pytorch_bert import BertForSequenceClassification from bert_config import BertConfig from load_data import DataLoaderForGlue import time import argparse def params_from_official_pytorch_pretrained_model(state_dict): weights_path = './pretrained_params/bert-base-uncased/pytorch_model.bin' pretrained_state_dict = torch.load(weights_path, map_location='cpu' if not torch.cuda.is_available() else None) # Load from a PyTorch state_dict old_keys = [] new_keys = [] for key in pretrained_state_dict.keys(): new_key = None if 'gamma' in key: new_key = key.replace('gamma', 'weight') if 'beta' in key: new_key = key.replace('beta', 'bias') if 'intermediate.dense' in key: new_key = key.replace('intermediate.dense', 'intermediate.dense_act.Linear') if 'pooler.dense' in key: new_key = key.replace('pooler.dense', 'pooler.dense_act.Linear') if new_key: old_keys.append(key) new_keys.append(new_key) for old_key, new_key in zip(old_keys, new_keys): pretrained_state_dict[new_key] = pretrained_state_dict.pop(old_key) for key in state_dict.keys(): if 'bert.' in key: state_dict[key] = pretrained_state_dict[key] print("Successfully loaded pretrained parameters from %s"%weights_path) return state_dict def params_from_pytorch_pretrained_model(state_dict, model_path): pytorch_state_dict = torch.load(model_path, map_location='cpu' if not torch.cuda.is_available() else None) for key in state_dict.keys(): if 'bert.' in key: state_dict[key] = pytorch_state_dict[key] return state_dict def setup_seed(seed): torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) np.random.seed(seed) torch.backends.cudnn.deterministic = True setup_seed(123) def finetune(args): cuda_condition = torch.cuda.is_available() device = torch.device("cuda:%d"%args.gpu_id if cuda_condition else "cpu") task_name = args.task_name if task_name in ['sst-2','cola', 'mrpc']: num_labels = 2 elif task_name in ['mnli']: num_labels = 3 num_epochs = args.epochs lr = args.lr config = BertConfig(vocab_size=args.vocab_size, hidden_size=args.hidden_size, num_hidden_layers=args.num_hidden_layers, num_attention_heads=args.num_attention_heads, intermediate_size=args.hidden_size*4, max_position_embeddings=args.seq_length, attention_probs_dropout_prob=args.dropout_prob, hidden_dropout_prob=args.dropout_prob, batch_size=args.train_batch_size, hidden_act=args.hidden_act) model = BertForSequenceClassification(config=config, num_labels=num_labels) model.to(device) dataloader = DataLoaderForGlue(task_name=task_name, batch_size = config.batch_size) dataloader_dev = DataLoaderForGlue(task_name=task_name, batch_size = config.batch_size, datatype='dev') #initialize parameters for m in model.modules(): if isinstance(m, (nn.Linear, nn.Embedding)): nn.init.xavier_normal_(m.weight) # #save parameters # params = model.state_dict() # for key, val in params.items(): # params[key] = val.cpu().numpy() # torch.save(params, "pytorch_params_glue.file") start_model = 'random' # load parameters of BERT from official pretrained pytorch model # state_dict = params_from_official_pytorch_pretrained_model(model.state_dict()) # start_model = 'pytorch_official' # load parameters of BERT from pretrained pytorch model # load_ep, load_i = 2, 145000 # #pytorch_model_path = './pretrained_params/pytorch_pretrained_params/epoch_%d_iter_%d.params'%(load_ep,load_i) # pytorch_model_path = './pretrained_params/pytorch_pretrained_params_adam/epoch_%d_iter_%d.params'%(load_ep,load_i) # state_dict= params_from_pytorch_pretrained_model(model.state_dict(), pytorch_model_path) # start_model = 'pytorch_ep%d_iter%d'%(load_ep, load_i) # model.load_state_dict(state_dict) opt = Adam(model.parameters(), lr=lr, betas=(0.9,0.999), eps=1e-8, weight_decay = args.adam_weight_decay) opt_name = 'Adam' # opt = SGD(model.parameters(), lr=lr) # opt_name = 'SGD' for ep in range(num_epochs): for i in range(dataloader.batch_num): start_time = time.time() batch_data = dataloader.get_batch(i) input_ids = torch.LongTensor(batch_data['input_ids']).to(device) token_type_ids = torch.LongTensor(batch_data['token_type_ids']).to(device) attention_mask = torch.LongTensor(batch_data['attention_mask']).to(device) label_ids = torch.LongTensor(batch_data['label_ids']).to(device) model.train() opt.zero_grad() loss, logits = model(input_ids, token_type_ids, attention_mask, label_ids) loss.backward() opt.step() loss_out = loss.item() pred = logits.argmax(dim=1) acc = torch.eq(pred, label_ids).float().mean().item() end_time = time.time() print('[Epoch %d] (Iteration %d): Loss = %.3f, Accuracy = %.4f Time = %.3f'%(ep,i,loss_out, acc, end_time-start_time)) # # validate model on dev set # acc_list=[] # for i in range(dataloader_dev.batch_num): # batch_data = dataloader_dev.get_batch(i) # input_ids = torch.LongTensor(batch_data['input_ids']).to(device) # token_type_ids = torch.LongTensor(batch_data['token_type_ids']).to(device) # attention_mask = torch.LongTensor(batch_data['attention_mask']).to(device) # label_ids = torch.LongTensor(batch_data['label_ids']).to(device) # model.eval() # start_time = time.time() # loss, logits = model(input_ids, token_type_ids, attention_mask, label_ids) # end_time = time.time() # loss_out = loss.item() # pred = logits.argmax(dim=1) # acc = torch.eq(pred, label_ids).float().mean().item() # acc_list.append(acc) # print('[Validate] (Iteration %d): Loss = %.3f, Accuracy = %.4f Time = %.3f'%(i,loss_out, acc, end_time-start_time)) # print('\tDev accuracy after epoch %d is %.4f'%(ep, np.mean(np.array(acc_list)))) save_path = './finetuned_params/pytorch_finetuned_params/%s/'%start_model # save_path = './finetuned_params/pytorch_finetuned_params_adam_pretrain/%s/'%start_model save_file = '%s_epoch_%d_%s.params'%(task_name,ep,opt_name) if not os.path.exists(save_path): os.makedirs(save_path) torch.save(model.state_dict(), save_path+save_file) print('Saved model to %s.'%(save_path+save_file)) def validate(args): cuda_condition = torch.cuda.is_available() device = torch.device("cuda:%d"%args.gpu_id if cuda_condition else "cpu") task_name = args.task_name if task_name in ['sst-2','cola', 'mrpc']: num_labels = 2 elif task_name in ['mnli']: num_labels = 3 config = BertConfig(vocab_size=args.vocab_size, hidden_size=args.hidden_size, num_hidden_layers=args.num_hidden_layers, num_attention_heads=args.num_attention_heads, intermediate_size=args.hidden_size*4, max_position_embeddings=args.seq_length, attention_probs_dropout_prob=0.0, hidden_dropout_prob=0.0, batch_size=args.train_batch_size, hidden_act=args.hidden_act) model = BertForSequenceClassification(config=config, num_labels=num_labels) model.to(device) dataloader = DataLoaderForGlue(task_name=task_name, batch_size = config.batch_size, datatype='dev') start_model = 'random' # start_model = 'pytorch_official' # load_ep, load_i =2, 145000 # start_model = 'pytorch_ep%d_iter%d'%(load_ep, load_i) load_finetune_ep = 3 opt_name = 'Adam' # opt_name = 'SGD' save_path = './finetuned_params/pytorch_finetuned_params/%s/'%start_model #save_path = './finetuned_params/pytorch_finetuned_params_adam_pretrain/%s/'%start_model save_file = '%s_epoch_%d_%s.params'%(task_name,load_finetune_ep,opt_name) state_dict = torch.load(save_path+save_file, map_location='cpu' if not torch.cuda.is_available() else None) model.load_state_dict(state_dict) # validate model on dev set acc_list=[] for i in range(dataloader.batch_num): start_time = time.time() batch_data = dataloader.get_batch(i) input_ids = torch.LongTensor(batch_data['input_ids']).to(device) token_type_ids = torch.LongTensor(batch_data['token_type_ids']).to(device) attention_mask = torch.LongTensor(batch_data['attention_mask']).to(device) label_ids = torch.LongTensor(batch_data['label_ids']).to(device) model.eval() loss, logits = model(input_ids, token_type_ids, attention_mask, label_ids) loss_out = loss.item() pred = logits.argmax(dim=1) acc = torch.eq(pred, label_ids).float().mean().item() acc_list.append(acc) end_time = time.time() print('[Validate] (Iteration %d): Loss = %.3f, Accuracy = %.4f Time = %.3f'%(i,loss_out, acc, end_time-start_time)) print('\tDev accuracy after epoch %d is %.4f'%(load_finetune_ep, np.mean(np.array(acc_list)))) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument( '--gpu_id', type=int, default=0, help='Id of GPU to run.' ) parser.add_argument( "--train_batch_size", type=int, default=16, help="Training batch size" ) parser.add_argument( "--task_name", type=str, default='sst-2', help="Glue task to finetune." ) parser.add_argument( "--vocab_size", type=int, default=30522, help="Total number of vocab" ) parser.add_argument( "--hidden_size", type=int, default=768, help="Hidden size of transformer model", ) parser.add_argument( "--num_hidden_layers", type=int, default=12, help="Number of layers" ) parser.add_argument( "-a", "--num_attention_heads", type=int, default=12, help="Number of attention heads", ) parser.add_argument( "-s", "--seq_length", type=int, default=128, help="Maximum sequence len" ) parser.add_argument("-e", "--epochs", type=int, default=10, help="Number of epochs") parser.add_argument("--lr", type=float, default=1e-5, help="Learning rate of adam") parser.add_argument( "--adam_weight_decay", type=float, default=0.01, help="Weight_decay of adam" ) parser.add_argument( "--hidden_act", type=str, default='gelu', help="Hidden activation to use." ) parser.add_argument( "--dropout_prob", type=float, default=0.1, help="Dropout rate." ) args = parser.parse_args() finetune(args) #validate(args)
2.1875
2
config.py
Johnsoneer/The-Quote-Book
0
12780689
from app.env import env ''' Uses environment variables to secure secrets whilst giving our server the ability to access certain key parameters for things like emailing users managing csrf tokens. ''' class Config(object): SECRET_KEY = env.SECRET_KEY DATABASE_USER = env.DATABASE_USER DATABASE_PASSWORD = env.DATABASE_PASSWORD SQLALCHEMY_DATABASE_URI = 'postgresql://{username}:{password}@quot<EMAIL>:5432/postgres'.format(username = DATABASE_USER, password = DATABASE_PASSWORD) SQLALCHEMY_TRACK_MODIFICATIONS = False QUOTES_PER_PAGE = 6 MAIL_SERVER = env.MAIL_SERVER MAIL_PORT = int(env.MAIL_PORT or 25) MAIL_USE_TLS = env.MAIL_USE_TLS is not None MAIL_USERNAME = env.MAIL_USERNAME MAIL_PASSWORD = env.MAIL_PASSWORD ADMINS = ['<EMAIL>']
2.546875
3
index.py
n-schilling/datadog-synthetic-scheduler
1
12780690
import json import logging import os import sys import boto3 import urllib3 urllib3.disable_warnings() logger = logging.getLogger() logger.setLevel(logging.INFO) http_pool = urllib3.PoolManager() secretsmanager_client = boto3.client('secretsmanager') def changeSyntheticStatus(new_status): logger.info(f"Start changing Datadog Synthetic status to {new_status}") try: datadog_secret_name = os.getenv('datadogSecretName', 'Datadog_API_Key') except: logger.error("One of the environmet variable is missing") raise try: get_secret_value_response = secretsmanager_client.get_secret_value( SecretId=datadog_secret_name ) if 'SecretString' in get_secret_value_response: secret_value_str = get_secret_value_response['SecretString'] else: logger.error( f"Could not extract secret {datadog_secret_name} from Secrets Manager") raise secret_value = json.loads(secret_value_str) dd_api_key = secret_value['datadog']['api_key'] dd_app_key = secret_value['datadog']['app_key'] except: logger.error( "There was an error while getting the parameter from the parameter store") raise synthetic_public_id = os.getenv('syntheticPublicId') datadog_api_endpoint = os.getenv('datadogApiEndpoint') datadog_endpoint_url = datadog_api_endpoint + \ 'synthetics/tests/' + synthetic_public_id + '/status' logger.info( f"Changing status to {new_status} for Datadog Synthetic with ID {synthetic_public_id} against endpoint {datadog_endpoint_url}") body_json = json.dumps({ "new_status": new_status, }) put_response = http_pool.request('PUT', datadog_endpoint_url, headers={ 'Content-Type': 'application/json', 'DD-API-KEY': dd_api_key, 'DD-APPLICATION-KEY': dd_app_key }, body=body_json) if (put_response.status) != 200: logger.error( f"HTTP Call to change the status of Datadog Synthetic {synthetic_public_id} to {new_status} failed.") logger.error(f"HTTP status is {put_response.status}") raise else: decoded_response = json.loads(put_response.data.decode('utf-8')) if decoded_response: # HTTP response is either true or false logger.info( f"Status of Datadog Synthetic {synthetic_public_id} was successfully changed to {new_status}") else: logger.error( f"HTTP Call was successfull but the status of Datadog Synthetic {synthetic_public_id} was NOT changed to {new_status}. Response was {decoded_response}") raise def handler(event, context): logger.info("Start with Datadog Synthetic Scheduler") try: synthetic_set_status = event['syntheticSetStatus'] except: logger.error("Could not extract Synthetic destination status from event") raise changeSyntheticStatus(synthetic_set_status) logger.info("End of Datadog Synthetic Scheduler") if __name__ == "__main__": handler(0, 0)
2.078125
2
orders/migrations/0007_auto_20191223_1502.py
yun-mh/uniwalk
0
12780691
# Generated by Django 2.2.5 on 2019-12-23 06:02 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('orders', '0006_auto_20191222_2318'), ] operations = [ migrations.AlterField( model_name='order', name='order_date', field=models.DateTimeField(auto_now_add=True, verbose_name='注文日時'), ), migrations.CreateModel( name='OrderItem', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('product', models.CharField(max_length=250)), ('quantity', models.IntegerField()), ('price', models.IntegerField()), ('order', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='orders.Order')), ], ), ]
1.640625
2
python/test/lib/sibra/state/bandwidth_test.py
cschutijser/scion
1
12780692
<gh_stars>1-10 # Copyright 2016 ETH Zurich # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ :mod:`bandwidth_test` --- lib.sibra.state.bandwidth unit tests ============================================================== """ # External packages import nose import nose.tools as ntools # SCION from lib.sibra.state.bandwidth import LinkBandwidth from lib.sibra.util import BWSnapshot class TestLinkBandwidthUpdate(object): """ Unit tests for lib.sibra.state.bandwidth.LinkBandwidth.update Note: these tests do not mock out BWSnapshot, as it would make testing too complex to be useful. """ def test(self): inst = LinkBandwidth("owner", BWSnapshot(100, 100)) for i, bw in enumerate([50, 0, -10, -20, 0, 0, -20]): inst.resvs[i] = BWSnapshot(bw, bw) updates = [] for idx, bw in [(0, -10), (1, -10), (2, +10), (6, 10)]: updates.append((idx, BWSnapshot(bw, bw))) # Call inst.update(updates) # Tests for i, bw in enumerate([40, -10, 0, -20, 0, 0, -10]): tick = BWSnapshot(bw, bw) ntools.eq_(inst.resvs[i], tick) if __name__ == "__main__": nose.run(defaultTest=__name__)
1.960938
2
napalm_eltex/__init__.py
noc-uac-ssc/napalm-eltex
1
12780693
"""napalm-eltex package.""" from napalm_eltex.eltex import CEDriver __all__ = ('CEDriver',)
1.046875
1
test/unit/test_arn.py
robin-aws/aws-encryption-sdk-python
0
12780694
# Copyright 2017 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You # may not use this file except in compliance with the License. A copy of # the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is # distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific # language governing permissions and limitations under the License. """Unit test suite for aws_encryption_sdk.internal.arn functions.""" import pytest from aws_encryption_sdk.exceptions import MalformedArnError from aws_encryption_sdk.internal.arn import Arn class TestArn(object): def test_malformed_arn_missing_arn(self): arn = "aws:kms:us-east-1:222222222222:key/aaaaaaaa-1111-2222-3333-bbbbbbbbbbbb" with pytest.raises(MalformedArnError) as excinfo: Arn.from_str(arn) excinfo.match("Resource {} could not be parsed as an ARN".format(arn)) def test_malformed_arn_missing_service(self): arn = "aws:us-east-1:222222222222:key/aaaaaaaa-1111-2222-3333-bbbbbbbbbbbb" with pytest.raises(MalformedArnError) as excinfo: Arn.from_str(arn) excinfo.match("Resource {} could not be parsed as an ARN".format(arn)) def test_malformed_arn_missing_region(self): arn = "arn:aws:222222222222:key/aaaaaaaa-1111-2222-3333-bbbbbbbbbbbb" with pytest.raises(MalformedArnError) as excinfo: Arn.from_str(arn) excinfo.match("Resource {} could not be parsed as an ARN".format(arn)) def test_malformed_arn_missing_account(self): arn = "arn:aws:us-east-1:key/aaaaaaaa-1111-2222-<KEY>" with pytest.raises(MalformedArnError) as excinfo: Arn.from_str(arn) excinfo.match("Resource {} could not be parsed as an ARN".format(arn)) def test_malformed_arn_missing_resource_type(self): arn = "arn:aws:us-east-1:222222222222" with pytest.raises(MalformedArnError) as excinfo: Arn.from_str(arn) excinfo.match("Resource {} could not be parsed as an ARN".format(arn)) def test_parse_key_arn_success(self): arn_str = "arn:aws:kms:us-east-1:222222222222:key/aaaaaaaa-1111-2222-3333-<KEY>" arn = Arn.from_str(arn_str) assert arn.partition == "aws" assert arn.service == "kms" assert arn.region == "us-east-1" assert arn.account_id == "222222222222" assert arn.resource_type == "key" assert arn.resource_id == "aaaaaaaa-1111-2222-3333-bbbbbbbbbbbb" def test_parse_alias_arn_success(self): arn_str = "arn:aws:kms:us-east-1:222222222222:alias/aws/service" arn = Arn.from_str(arn_str) assert arn.partition == "aws" assert arn.service == "kms" assert arn.region == "us-east-1" assert arn.account_id == "222222222222" assert arn.resource_type == "alias" assert arn.resource_id == "aws/service"
2.109375
2
myapp/models.py
tainanpopo/Django-PostgreSQL
0
12780695
from django.db import models # Create your models here. class Student(models.Model): name = models.CharField(max_length = 20, null = False)#建立字串長度最大為20,且欄位不可空白。 sex = models.CharField(max_length = 2, default = 'M', null = False) birthday = models.DateField(null = False) phone = models.CharField(max_length = 20, null = False) class Meta: db_table = "student"
2.78125
3
meg_runtime/ui/manager.py
ibedard16/Runtime
0
12780696
<gh_stars>0 """MEG UI Manager """ from PyQt5 import QtWidgets, uic from os.path import dirname import pkg_resources import sys from meg_runtime.ui.mainmenupanel import MainMenuPanel from meg_runtime.ui.clonepanel import ClonePanel from meg_runtime.ui.repopanel import RepoPanel from meg_runtime.logger import Logger class UIManager(QtWidgets.QStackedWidget): """Main UI manager for the MEG system.""" PANELS = [ ClonePanel, MainMenuPanel, RepoPanel, ] def __init__(self, **kwargs): """UI manager constructor.""" super().__init__(**kwargs) for panel in self.PANELS: self.addWidget(panel(self)) self.change_view(MainMenuPanel) def open_clone_panel(self): """"Download" or clone a project.""" # TODO self.change_view(ClonePanel) def clone(self): """Clone a repository.""" # TODO self.change_view(RepoPanel) def return_to_main_menu(self): """Return to the main menu screen""" self.change_view(MainMenuPanel) def change_view(self, panel): """Change the current panel being viewed. """ self.setCurrentIndex(self.PANELS.index(panel)) # TODO: Add more menu opening/closing methods here def ui_run(**kwargs): """Start the UI loop.""" app = QtWidgets.QApplication([]) manager = UIManager(**kwargs) manager.show() return app.exec_()
2.34375
2
mathutils/gram.py
saridut/FloriPy
0
12780697
#!/usr/bin/env python '''This module contains routines to perform Gram-Schmidt orthonormalization on a sequence of vectors. ''' import numpy as np import numpy.linalg as la def gso(A, overwrite=False, out=None): '''Performs Gram-Schmidt orthonormalization on a sequence of vectors. Parameters ---------- A : ndarray (M x N) ndarray with M <= N. The rows of A contain the sequence of vectors. overwrite : bool, optional If `True`, the matrix A is overwritten. out : ndarray, optional (M x N) ndarray with M <= N. The rows of `out` contain the sequence of orthonormal vectors. If `overwrite = True`, `out` is neglected. Returns ------- output : ndarray (M x N) ndarray with M <= N. The rows of `out` contain the sequence of orthonormal vectors. Notes ----- See <NAME> <NAME>, Matrix Computations, 3rd edition, Section 5.2.8, Algorithm 5.2.5, p. 231. ''' assert A.shape[0] <= A.shape[1] M = A.shape[0] if overwrite: output = A else: if out is not None: output = out else: output = np.zeros_like(A) output[:,:] = A for i in range(M): output[i,:] = output[i,:]/la.norm(output[i,:]) for j in range(i+1, M): output[j,:] = output[j,:] - np.dot(output[j,:], output[i,:])*output[i,:] return output if __name__ == '__main__': A = np.random.random((6,6)) print('A') print(A) out = gso(A) print('\n') print(out) print('\n') print(np.dot(out.T, out)) for i in range(A.shape[0]): for j in range(A.shape[0]): print(i, j, np.dot(out[i,:], out[j,:])) print('\n')
3.671875
4
src/train_spp.py
atreyasha/spp-explainability
1
12780698
<reponame>atreyasha/spp-explainability<gh_stars>1-10 #!/usr/bin/env python3 # -*- coding: utf-8 -*- from tqdm import tqdm from glob import glob from math import ceil from functools import partial from collections import OrderedDict from tensorboardX import SummaryWriter from torch.optim import Adam from torch.nn import NLLLoss, Module, Embedding from torch.nn.functional import log_softmax from torch.optim.lr_scheduler import ReduceLROnPlateau from sklearn.metrics import accuracy_score from sklearn.model_selection import ParameterGrid from typing import List, Union, Tuple, cast, Any, Callable, Optional from .utils.parser_utils import ArgparseFormatter from .utils.data_utils import (vocab_from_text, read_labels, read_docs, read_embeddings, Vocab, PAD_TOKEN_INDEX) from .utils.model_utils import (shuffled_chunked_sorted, chunked_sorted, to_cuda, enable_gradient_clipping, timestamp, Batch, Semiring, LogSpaceMaxProductSemiring, MaxSumSemiring) from .utils.logging_utils import (stdout_root_logger, add_file_handler, remove_all_file_handlers) from .arg_parser import (spp_arg_parser, train_arg_parser, logging_arg_parser, tqdm_arg_parser, hardware_arg_parser, grid_train_arg_parser) from .torch_module_spp import SoftPatternClassifier import numpy as np import argparse import logging import signal import torch import copy import json import sys import os # get root LOGGER in case script is called by another LOGGER = logging.getLogger(__name__) # define exit-codes FINISHED_EPOCHS = 0 PATIENCE_REACHED = 1 INTERRUPTION = 2 def signal_handler(filename: str, *args): save_exit_code(filename, INTERRUPTION) sys.exit() def save_exit_code(filename: str, code: int) -> None: with open(filename, "w") as output_file_stream: output_file_stream.write("%s\n" % code) def get_exit_code(filename: str) -> int: with open(filename, "r") as input_file_stream: exit_code = int(input_file_stream.readline().strip()) return exit_code def parse_configs_to_args(args: argparse.Namespace, prefix: str = "", training: bool = True) -> argparse.Namespace: # make copy of existing argument namespace args = copy.deepcopy(args) # check for json configs and add them to list json_files = [] json_files.append( os.path.join(args.model_log_directory, prefix + "model_config.json")) if training: json_files.append( os.path.join(args.model_log_directory, prefix + "training_config.json")) # raise error if any of them are missing for json_file in json_files: if not os.path.exists(json_file): raise FileNotFoundError("File not found: %s" % json_file) # update argument namespace with information from json files for json_file in json_files: with open(json_file, "r") as input_file_stream: args.__dict__.update(json.load(input_file_stream)) return args def set_hardware(args: argparse.Namespace) -> Optional[torch.device]: # set torch number of threads if args.torch_num_threads is None: LOGGER.info("Using default number of CPU threads: %s" % torch.get_num_threads()) else: torch.set_num_threads(args.torch_num_threads) LOGGER.info("Using specified number of CPU threads: %s" % args.torch_num_threads) # specify gpu device if relevant if args.gpu: gpu_device: Optional[torch.device] gpu_device = torch.device(args.gpu_device) LOGGER.info("Using GPU device: %s" % args.gpu_device) else: gpu_device = None LOGGER.info("Using CPU device") # return device return gpu_device def get_grid_config(args: argparse.Namespace) -> dict: with open(args.grid_config, "r") as input_file_stream: grid_dict = json.load(input_file_stream) return grid_dict def get_grid_args_superset( args: argparse.Namespace, param_grid_mapping: dict) -> List[argparse.Namespace]: args_superset = [] # ensure param_grid_mapping keys are integers param_grid_mapping = { int(key): value for key, value in param_grid_mapping.items() } for i in sorted(param_grid_mapping.keys()): param_grid_instance = param_grid_mapping[i] args_copy = copy.deepcopy(args) for key in param_grid_instance: if key in args.__dict__: setattr(args_copy, key, param_grid_instance[key]) args_superset.append(args_copy) return args_superset def get_pattern_specs(args: argparse.Namespace) -> 'OrderedDict[int, int]': # convert pattern_specs string in OrderedDict pattern_specs: 'OrderedDict[int, int]' = OrderedDict( sorted( ( [int(y) for y in x.split("-")] # type: ignore for x in args.patterns.split("_")), key=lambda t: t[0])) # log diagnositc information on input patterns LOGGER.info("Patterns: %s" % pattern_specs) # return final objects return pattern_specs def set_random_seed(args: argparse.Namespace) -> None: # set global random seed if specified np.random.seed(args.seed) torch.manual_seed(args.seed) def get_vocab(args: argparse.Namespace) -> Vocab: # read valid and train vocabularies train_vocab = vocab_from_text(args.train_data) LOGGER.info("Training vocabulary size: %s" % len(train_vocab)) valid_vocab = vocab_from_text(args.valid_data) LOGGER.info("Validation vocabulary size: %s" % len(valid_vocab)) # combine valid and train vocabularies into combined object vocab_combined = valid_vocab | train_vocab LOGGER.info("Combined vocabulary size: %s" % len(vocab_combined)) # return final Vocab object return vocab_combined def get_embeddings(args: argparse.Namespace, vocab_combined: Vocab) -> Tuple[Vocab, torch.Tensor, int]: # read embeddings file and output intersected vocab vocab, embeddings, word_dim = read_embeddings(args.embeddings, vocab_combined) # convert embeddings to torch FloatTensor embeddings = np.vstack(embeddings).astype(np.float32) embeddings = torch.from_numpy(embeddings) # return final tuple return vocab, embeddings, word_dim def get_vocab_diagnostics(vocab: Vocab, vocab_combined: Vocab, word_dim: int) -> None: # show output of tokens lost during vocabulary extraction missing = [ token for token in vocab_combined.names if token not in vocab.names ] LOGGER.info("GloVe embedding dimensions: %s" % word_dim) LOGGER.info("GloVe-intersected vocabulary size: %s" % len(vocab)) LOGGER.info("Number of tokens not found in GloVe vocabulary: %s" % len(missing)) LOGGER.info("Lost tokens: %s" % missing) def get_train_valid_data( args: argparse.Namespace, vocab: Vocab ) -> Tuple[List[List[str]], List[List[str]], List[Tuple[List[int], int]], List[Tuple[List[int], int]], int]: # read train data train_input, train_text = read_docs(args.train_data, vocab) LOGGER.info("Sample training text: %s" % train_text[:10]) train_input = cast(List[List[int]], train_input) train_text = cast(List[List[str]], train_text) train_labels = read_labels(args.train_labels) num_classes = len(set(train_labels)) train_data = list(zip(train_input, train_labels)) # read validation data valid_input, valid_text = read_docs(args.valid_data, vocab) LOGGER.info("Sample validation text: %s" % valid_text[:10]) valid_input = cast(List[List[int]], valid_input) valid_text = cast(List[List[str]], valid_text) valid_labels = read_labels(args.valid_labels) valid_data = list(zip(valid_input, valid_labels)) # truncate data if necessary if args.max_train_instances is not None: train_data = train_data[:args.max_train_instances] valid_data = valid_data[:args.max_train_instances] train_text = train_text[:args.max_train_instances] valid_text = valid_text[:args.max_train_instances] # log diagnostic information LOGGER.info("Number of classes: %s" % num_classes) LOGGER.info("Training instances: %s" % len(train_data)) LOGGER.info("Validation instances: %s" % len(valid_data)) # return final tuple object return train_text, valid_text, train_data, valid_data, num_classes def get_semiring(args: argparse.Namespace) -> Semiring: # define semiring as per argument provided and log if args.semiring == "MaxSumSemiring": semiring = MaxSumSemiring elif args.semiring == "MaxProductSemiring": semiring = LogSpaceMaxProductSemiring LOGGER.info("Semiring: %s" % args.semiring) return semiring def dump_configs(args: argparse.Namespace, model_log_directory: str, prefix: str = "") -> None: # create dictionaries to fill up spp_args_dict = {} train_args_dict = {} # extract real arguments and fill up model dictionary for action in spp_arg_parser()._actions: spp_args_dict[action.dest] = getattr(args, action.dest) # extract real arguments and fill up training dictionary for action in train_arg_parser()._actions: train_args_dict[action.dest] = getattr(args, action.dest) # dump soft patterns model arguments for posterity with open(os.path.join(model_log_directory, prefix + "model_config.json"), "w") as output_file_stream: json.dump(spp_args_dict, output_file_stream, ensure_ascii=False) # dump training arguments for posterity with open( os.path.join(model_log_directory, prefix + "training_config.json"), "w") as output_file_stream: json.dump(train_args_dict, output_file_stream, ensure_ascii=False) def save_checkpoint(epoch: int, update: int, samples_seen: int, model: torch.nn.Module, optimizer: torch.optim.Optimizer, scheduler: Optional[ReduceLROnPlateau], numpy_epoch_random_state: Tuple, train_loss: float, best_valid_loss: float, best_valid_loss_index: int, best_valid_acc: float, filename: str) -> None: torch.save( { "epoch": epoch, "update": update, "samples_seen": samples_seen, "model_state_dict": model.state_dict(), "optimizer_state_dict": optimizer.state_dict(), "scheduler_state_dict": scheduler.state_dict() if scheduler is not None else None, "train_loss": train_loss, "best_valid_loss": best_valid_loss, "best_valid_loss_index": best_valid_loss_index, "best_valid_acc": best_valid_acc, "numpy_epoch_random_state": numpy_epoch_random_state, "numpy_last_random_state": np.random.get_state(), "torch_last_random_state": torch.random.get_rng_state() }, filename) def train_batch(model: Module, batch: Batch, num_classes: int, gold: List[int], optimizer: torch.optim.Optimizer, loss_function: torch.nn.modules.loss._Loss, gpu_device: Optional[torch.device] = None) -> torch.Tensor: # set optimizer gradients to zero optimizer.zero_grad() # compute model loss loss = compute_loss(model, batch, num_classes, gold, loss_function, gpu_device) # compute loss gradients for all parameters loss.backward() # perform a single optimization step optimizer.step() # detach loss from computational graph and return tensor data return loss.detach() def compute_loss(model: Module, batch: Batch, num_classes: int, gold: List[int], loss_function: torch.nn.modules.loss._Loss, gpu_device: Optional[torch.device]) -> torch.Tensor: # compute model outputs given batch output = model.forward(batch) # return loss over output and gold return loss_function( log_softmax(output, dim=1).view(batch.size(), num_classes), to_cuda(gpu_device)(torch.LongTensor(gold))) def evaluate_metric(model: Module, data: List[Tuple[List[int], int]], batch_size: int, gpu_device: Optional[torch.device], metric: Callable[[List[int], List[int]], Any], max_doc_len: Optional[int] = None) -> Any: # instantiate local storage variable predicted = [] aggregate_gold = [] # chunk data into sorted batches and iterate for batch in chunked_sorted(data, batch_size): # create batch and parse gold output batch, gold = Batch( # type: ignore [x for x, y in batch], model.embeddings, # type: ignore to_cuda(gpu_device), 0., max_doc_len), [y for x, y in batch] # get raw output using model output = model.forward(batch) # type: ignore # get predicted classes from raw output predicted.extend(torch.argmax(output, 1).tolist()) aggregate_gold.extend(gold) # return output of metric return metric(aggregate_gold, predicted) def train_inner(train_data: List[Tuple[List[int], int]], valid_data: List[Tuple[List[int], int]], model: Module, num_classes: int, epochs: int, evaluation_period: int, only_epoch_eval: bool, model_log_directory: str, learning_rate: float, batch_size: int, disable_scheduler: bool = False, scheduler_patience: int = 10, scheduler_factor: float = 0.1, gpu_device: Optional[torch.device] = None, clip_threshold: Optional[float] = None, max_doc_len: Optional[int] = None, word_dropout: float = 0, patience: int = 30, resume_training: bool = False, disable_tqdm: bool = False, tqdm_update_period: int = 1) -> None: # create signal handlers in case script receives termination signals # adapted from: https://stackoverflow.com/a/31709094 for specific_signal in [ signal.SIGINT, signal.SIGTERM, signal.SIGHUP, signal.SIGQUIT ]: signal.signal( specific_signal, partial(signal_handler, os.path.join(model_log_directory, "exit_code"))) # initialize general local variables updates_per_epoch = ceil(len(train_data) / batch_size) patience_reached = False # load model checkpoint if training is being resumed if resume_training and len( glob(os.path.join(model_log_directory, "*last*.pt"))) > 0: model_checkpoint = torch.load(glob( os.path.join(model_log_directory, "*last*.pt"))[0], map_location=torch.device("cpu")) model.load_state_dict( model_checkpoint["model_state_dict"]) # type: ignore if (model_checkpoint["update"] + # type: ignore 1) == updates_per_epoch: # type: ignore current_epoch: int = model_checkpoint["epoch"] + 1 # type: ignore current_update: int = 0 else: current_epoch: int = model_checkpoint["epoch"] # type: ignore current_update: int = model_checkpoint["update"] + 1 # type: ignore best_valid_loss: float = model_checkpoint[ # type: ignore "best_valid_loss"] # type: ignore best_valid_loss_index: int = model_checkpoint[ # type: ignore "best_valid_loss_index"] # type: ignore best_valid_acc: float = model_checkpoint[ # type: ignore "best_valid_acc"] # type: ignore # check for edge-case failures if current_epoch >= epochs: # log information at the end of training LOGGER.info("%s training epoch(s) previously completed, exiting" % epochs) # save exit-code and final processes save_exit_code(os.path.join(model_log_directory, "exit_code"), FINISHED_EPOCHS) return None elif best_valid_loss_index >= patience: LOGGER.info("Patience threshold previously reached, exiting") # save exit-code and final processes save_exit_code(os.path.join(model_log_directory, "exit_code"), PATIENCE_REACHED) return None else: resume_training = False current_epoch = 0 current_update = 0 best_valid_loss_index = 0 best_valid_loss = float("inf") best_valid_acc = float("-inf") # send model to correct device if gpu_device is not None: LOGGER.info("Transferring model to GPU device: %s" % gpu_device) model.to(gpu_device) # instantiate Adam optimizer LOGGER.info("Initializing Adam optimizer with LR: %s" % learning_rate) optimizer = Adam(model.parameters(), lr=learning_rate) # load optimizer state dictionary if resume_training: optimizer.load_state_dict( model_checkpoint["optimizer_state_dict"]) # type: ignore # instantiate negative log-likelihood loss which is summed over batch LOGGER.info("Using NLLLoss with sum reduction") loss_function = NLLLoss(weight=None, reduction="sum") # enable gradient clipping in-place if provided if clip_threshold is not None and clip_threshold > 0: LOGGER.info("Enabling gradient clipping with threshold: %s" % clip_threshold) enable_gradient_clipping(model, clip_threshold) # initialize learning rate scheduler if relevant if not disable_scheduler: LOGGER.info(("Initializing learning rate scheduler with " "factor=%s and patience=%s") % (scheduler_factor, scheduler_patience)) scheduler: Optional[ReduceLROnPlateau] scheduler = ReduceLROnPlateau(optimizer, mode='min', factor=scheduler_factor, patience=scheduler_patience, verbose=True) if resume_training: scheduler.load_state_dict( model_checkpoint["scheduler_state_dict"]) # type: ignore else: scheduler = None # initialize tensorboard writer if provided LOGGER.info("Initializing tensorboard writer in directory: %s" % os.path.join(model_log_directory, "events")) writer = SummaryWriter(os.path.join(model_log_directory, "events")) # set numpy and torch RNG back to previous states before training if resume_training: if current_update == 0: np.random.set_state( model_checkpoint["numpy_last_random_state"]) # type: ignore else: np.random.set_state( model_checkpoint["numpy_epoch_random_state"]) # type: ignore torch.random.set_rng_state( model_checkpoint["torch_last_random_state"]) # type: ignore # loop over epochs for epoch in range(current_epoch, epochs): # set model on train mode and enable autograd model.train() torch.autograd.set_grad_enabled(True) # initialize loop variables if resume_training and epoch == current_epoch and current_update != 0: train_loss: Union[float, torch.Tensor] = model_checkpoint[ # type: ignore "train_loss"] # type: ignore samples_seen: int = model_checkpoint[ # type: ignore "samples_seen"] # type: ignore else: train_loss = 0. samples_seen = 0 # cache numpy random state for model checkpoint numpy_epoch_random_state = np.random.get_state() # main training loop LOGGER.info("Training SoPa++ model") with tqdm(shuffled_chunked_sorted(train_data, batch_size), position=0, mininterval=0.05, disable=disable_tqdm, unit="batch", desc="Training [Epoch %s/%s]" % (epoch + 1, epochs)) as train_tqdm_batches: # loop over train batches for update, batch in enumerate(train_tqdm_batches): # return to previous update and random state, if relevant if (resume_training and epoch == current_epoch and current_update != 0): if update < current_update: continue elif update == current_update: np.random.set_state(model_checkpoint[ # type: ignore "numpy_last_random_state"]) # type: ignore # create batch object and parse out gold labels batch, gold = Batch( [x[0] for x in batch], model.embeddings, # type: ignore to_cuda(gpu_device), word_dropout, max_doc_len), [x[1] for x in batch] # find aggregate loss across samples in batch train_batch_loss = train_batch(model, batch, num_classes, gold, optimizer, loss_function, gpu_device) # add batch loss to train_loss train_loss += train_batch_loss # type: ignore # increment samples seen samples_seen += batch.size() # update tqdm progress bar if (update + 1) % tqdm_update_period == 0 or ( update + 1) == len(train_tqdm_batches): train_tqdm_batches.set_postfix( batch_loss=train_batch_loss.item() / batch.size()) # start evaluation routine if (not only_epoch_eval and (update + 1) % evaluation_period == 0) or (update + 1) == len(train_tqdm_batches): # update tqdm batches counter train_tqdm_batches.update() # set valid loss to zero update_number = (epoch * updates_per_epoch) + (update + 1) valid_loss: Union[float, torch.Tensor] = 0. # set model on eval mode and disable autograd model.eval() torch.autograd.set_grad_enabled(False) # compute mean train loss over updates and accuracy # NOTE: mean_train_loss contains stochastic noise LOGGER.info("Evaluating SoPa++ on training set") train_loss = cast(torch.Tensor, train_loss) mean_train_loss = train_loss.item() / samples_seen train_acc = evaluate_metric(model, train_data, batch_size, gpu_device, accuracy_score, max_doc_len) # add training loss data writer.add_scalar("loss/train_loss", mean_train_loss, update_number) writer.add_scalar("accuracy/train_accuracy", train_acc, update_number) # add named parameter data for name, param in model.named_parameters(): writer.add_scalar("parameter_mean/" + name, param.detach().mean(), update_number) writer.add_scalar("parameter_std/" + name, param.detach().std(), update_number) if param.grad is not None: writer.add_scalar("gradient_mean/" + name, param.grad.detach().mean(), update_number) writer.add_scalar("gradient_std/" + name, param.grad.detach().std(), update_number) # loop over static valid set LOGGER.info("Evaluating SoPa++ on validation set") with tqdm(chunked_sorted(valid_data, batch_size), position=0, mininterval=0.05, disable=disable_tqdm, unit="batch", desc="Validating [Epoch %s/%s] [Batch %s/%s]" % (epoch + 1, epochs, update + 1, updates_per_epoch)) as valid_tqdm_batches: for valid_update, batch in enumerate( valid_tqdm_batches): # create batch object and parse out gold labels batch, gold = Batch( [x[0] for x in batch], model.embeddings, # type: ignore to_cuda(gpu_device), 0., max_doc_len), [x[1] for x in batch] # find aggregate loss across valid samples in batch valid_batch_loss = compute_loss( model, batch, num_classes, gold, loss_function, gpu_device) # add batch loss to valid_loss valid_loss += valid_batch_loss # type: ignore if (valid_update + 1) % tqdm_update_period == 0 or ( valid_update + 1) == len(valid_tqdm_batches): valid_tqdm_batches.set_postfix( batch_loss=valid_batch_loss.item() / batch.size()) # compute mean valid loss and accuracy valid_loss = cast(torch.Tensor, valid_loss) mean_valid_loss = valid_loss.item() / len(valid_data) valid_acc = evaluate_metric(model, valid_data, batch_size, gpu_device, accuracy_score, max_doc_len) # set model on train mode and enable autograd model.train() torch.autograd.set_grad_enabled(True) # add valid loss data to tensorboard writer.add_scalar("loss/valid_loss", mean_valid_loss, update_number) writer.add_scalar("accuracy/valid_accuracy", valid_acc, update_number) # log out report of current evaluation state LOGGER.info("Epoch: {}/{}, Batch: {}/{}".format( epoch + 1, epochs, (update + 1), updates_per_epoch)) LOGGER.info("Mean training loss: {:.3f}, " "Training accuracy: {:.3f}%".format( mean_train_loss, train_acc * 100)) LOGGER.info("Mean validation loss: {:.3f}, " "Validation accuracy: {:.3f}%".format( mean_valid_loss, valid_acc * 100)) # apply learning rate scheduler after evaluation if scheduler is not None: scheduler.step(valid_loss) # check for loss improvement and save model if necessary # optionally increment patience counter or stop training # NOTE: loss values are summed over all data (not mean) if valid_loss.item() < best_valid_loss: # log information and update records LOGGER.info("New best validation loss") if valid_acc > best_valid_acc: best_valid_acc = valid_acc LOGGER.info("New best validation accuracy") # update patience related diagnostics best_valid_loss = valid_loss.item() best_valid_loss_index = 0 LOGGER.info("Patience counter: %s/%s" % (best_valid_loss_index, patience)) # find previous best checkpoint(s) legacy_checkpoints = glob( os.path.join(model_log_directory, "*_best_*.pt")) # save new best checkpoint model_save_file = os.path.join( model_log_directory, "spp_checkpoint_best_{}_{}.pt".format( epoch, (update + 1))) LOGGER.info("Saving best checkpoint: %s" % model_save_file) save_checkpoint(epoch, update, samples_seen, model, optimizer, scheduler, numpy_epoch_random_state, train_loss.item(), best_valid_loss, best_valid_loss_index, best_valid_acc, model_save_file) # delete previous best checkpoint(s) for legacy_checkpoint in legacy_checkpoints: os.remove(legacy_checkpoint) else: # update patience related diagnostics best_valid_loss_index += 1 LOGGER.info("Patience counter: %s/%s" % (best_valid_loss_index, patience)) # create hook to exit training if patience reached if best_valid_loss_index == patience: patience_reached = True # find previous last checkpoint(s) legacy_checkpoints = glob( os.path.join(model_log_directory, "*_last_*.pt")) # save latest checkpoint model_save_file = os.path.join( model_log_directory, "spp_checkpoint_last_{}_{}.pt".format( epoch, (update + 1))) LOGGER.info("Saving last checkpoint: %s" % model_save_file) save_checkpoint(epoch, update, samples_seen, model, optimizer, scheduler, numpy_epoch_random_state, train_loss.item(), best_valid_loss, best_valid_loss_index, best_valid_acc, model_save_file) # delete previous last checkpoint(s) for legacy_checkpoint in legacy_checkpoints: os.remove(legacy_checkpoint) # hook to stop training in case patience was reached # if it was reached strictly before last epoch and update if patience_reached: if not (epoch == max(range(epochs)) and (update + 1) == len(train_tqdm_batches)): LOGGER.info("Patience threshold reached, " "stopping training") # save exit-code and final processes save_exit_code( os.path.join(model_log_directory, "exit_code"), PATIENCE_REACHED) return None # log information at the end of training LOGGER.info("%s training epoch(s) completed, stopping training" % epochs) # save exit-code and final processes save_exit_code(os.path.join(model_log_directory, "exit_code"), FINISHED_EPOCHS) def train_outer(args: argparse.Namespace, resume_training=False) -> None: # create model log directory os.makedirs(args.model_log_directory, exist_ok=True) # execute code while catching any errors try: # update LOGGER object with file handler global LOGGER add_file_handler(LOGGER, os.path.join(args.model_log_directory, "session.log")) # check for configs and exit codes, decide next steps conditionally if resume_training: try: args = parse_configs_to_args(args) exit_code_file = os.path.join(args.model_log_directory, "exit_code") if not os.path.exists(exit_code_file): LOGGER.info( "Exit-code file not found, continuing training") else: exit_code = get_exit_code(exit_code_file) if exit_code == 0: LOGGER.info( ("Exit-code 0: training epochs have already " "been reached")) return None elif exit_code == 1: LOGGER.info( ("Exit-code 1: patience threshold has already " "been reached")) return None elif exit_code == 2: LOGGER.info( ("Exit-code 2: interruption during previous " "training, continuing training")) except FileNotFoundError: if args.grid_training: resume_training = False else: raise # log namespace arguments and model directory LOGGER.info(args) LOGGER.info("Model log directory: %s" % args.model_log_directory) # set gpu and cpu hardware gpu_device = set_hardware(args) # get relevant patterns pattern_specs = get_pattern_specs(args) # set initial random seeds set_random_seed(args) # get input vocab vocab_combined = get_vocab(args) # get final vocab, embeddings and word_dim vocab, embeddings, word_dim = get_embeddings(args, vocab_combined) # add word_dim into arguments args.word_dim = word_dim # show vocabulary diagnostics get_vocab_diagnostics(vocab, vocab_combined, word_dim) # get embeddings as torch Module embeddings = Embedding.from_pretrained(embeddings, freeze=args.static_embeddings, padding_idx=PAD_TOKEN_INDEX) # get training and validation data _, _, train_data, valid_data, num_classes = get_train_valid_data( args, vocab) # get semiring semiring = get_semiring(args) # create SoftPatternClassifier model = SoftPatternClassifier( pattern_specs, num_classes, embeddings, # type:ignore vocab, semiring, args.tau_threshold, args.no_wildcards, args.bias_scale, args.wildcard_scale, args.dropout) # log information about model LOGGER.info("Model: %s" % model) # print model diagnostics and dump files LOGGER.info("Total model parameters: %s" % sum(parameter.nelement() for parameter in model.parameters())) dump_configs(args, args.model_log_directory) vocab.dump(args.model_log_directory) # execute inner train function train_inner(train_data, valid_data, model, num_classes, args.epochs, args.evaluation_period, args.only_epoch_eval, args.model_log_directory, args.learning_rate, args.batch_size, args.disable_scheduler, args.scheduler_patience, args.scheduler_factor, gpu_device, args.clip_threshold, args.max_doc_len, args.word_dropout, args.patience, resume_training, args.disable_tqdm, args.tqdm_update_period) finally: # update LOGGER object to remove file handler remove_all_file_handlers(LOGGER) def main(args: argparse.Namespace) -> None: # depending on training type, create appropriate argparse namespaces if args.grid_training: # redefine models log directory args.models_directory = os.path.join(args.models_directory, "spp_grid_train_" + timestamp()) os.makedirs(args.models_directory, exist_ok=True) # dump current training configs dump_configs(args, args.models_directory, "base_") # get grid config and add random iterations to it grid_dict = get_grid_config(args) # add random seed into grid if necessary if args.num_random_iterations > 1: seed = list(range(0, args.num_random_iterations)) grid_dict["seed"] = seed # dump parameter grid to file for re-use param_grid_mapping = { i: param_grid_instance for i, param_grid_instance in enumerate(ParameterGrid(grid_dict)) } with open(os.path.join(args.models_directory, "grid_config.json"), "w") as output_file_stream: json.dump(param_grid_mapping, output_file_stream, ensure_ascii=False) # process new args superset args_superset = get_grid_args_superset(args, param_grid_mapping) else: # make trivial superset args_superset = [args] # loop and train for i, args in enumerate(args_superset): args.model_log_directory = os.path.join( args.models_directory, "spp_single_train_" + timestamp() if not args.grid_training else "spp_single_train_" + str(i)) train_outer(args, resume_training=False) if __name__ == '__main__': parser = argparse.ArgumentParser(formatter_class=ArgparseFormatter, parents=[ train_arg_parser(), grid_train_arg_parser(), spp_arg_parser(), hardware_arg_parser(), logging_arg_parser(), tqdm_arg_parser() ]) LOGGER = stdout_root_logger( logging_arg_parser().parse_known_args()[0].logging_level) main(parser.parse_args())
1.90625
2
mopack/builders/bfg9000.py
jimporter/mopack
0
12780699
import os from . import Builder, BuilderOptions from .. import types from ..environment import get_cmd from ..freezedried import FreezeDried from ..log import LogFile from ..path import pushd from ..shell import ShellArguments _known_install_types = ('prefix', 'exec-prefix', 'bindir', 'libdir', 'includedir') @FreezeDried.fields(rehydrate={'extra_args': ShellArguments}) class Bfg9000Builder(Builder): type = 'bfg9000' _version = 1 _path_bases = ('srcdir', 'builddir') class Options(BuilderOptions): type = 'bfg9000' _version = 1 @staticmethod def upgrade(config, version): return config def __init__(self): self.toolchain = types.Unset def __call__(self, *, toolchain=types.Unset, config_file, _symbols, _child_config=False): if not _child_config and self.toolchain is types.Unset: T = types.TypeCheck(locals(), _symbols) config_dir = os.path.dirname(config_file) T.toolchain(types.maybe_raw(types.path_string(config_dir))) @staticmethod def upgrade(config, version): return config def __init__(self, name, *, extra_args=None, submodules, **kwargs): super().__init__(name, **kwargs) T = types.TypeCheck(locals(), self._expr_symbols) T.extra_args(types.shell_args(none_ok=True)) def set_usage(self, usage=None, **kwargs): if usage is None: usage = 'pkg_config' super().set_usage(usage, **kwargs) def _toolchain_args(self, toolchain): return ['--toolchain', toolchain] if toolchain else [] def _install_args(self, deploy_paths): args = [] for k, v in deploy_paths.items(): if k in _known_install_types: args.extend(['--' + k, v]) return args def build(self, pkgdir, srcdir): builddir = self._builddir(pkgdir) bfg9000 = get_cmd(self._common_options.env, 'BFG9000', 'bfg9000') ninja = get_cmd(self._common_options.env, 'NINJA', 'ninja') with LogFile.open(pkgdir, self.name) as logfile: with pushd(srcdir): logfile.check_call( bfg9000 + ['configure', builddir] + self._toolchain_args(self._this_options.toolchain) + self._install_args(self._common_options.deploy_paths) + self.extra_args.fill(srcdir=srcdir, builddir=builddir) ) with pushd(builddir): logfile.check_call(ninja) def deploy(self, pkgdir, srcdir): ninja = get_cmd(self._common_options.env, 'NINJA', 'ninja') with LogFile.open(pkgdir, self.name, kind='deploy') as logfile: with pushd(self._builddir(pkgdir)): logfile.check_call(ninja + ['install'])
1.976563
2
LeetCode/LeetCode_Python-master/LeetCode_Python-master/Algorithm-Easy/443_String_Compression.py
Sycamore-City-passerby/ML
0
12780700
<gh_stars>0 class Solution: def compress(self, chars): """ :type chars: List[str] :rtype: int """ n = len(chars) i , count = 0 , 1 for j in range(1,n+1): if j < n and chars[j] == chars[j-1]: count += 1 else: chars[i] = chars[j-1] i += 1 if count > 1: for m in str(count): chars[i] = m i += 1 count = 1 return i """ Given an array of characters, compress it in-place. The length after compression must always be smaller than or equal to the original array. Every element of the array should be a character (not int) of length 1. After you are done modifying the input array in-place, return the new length of the array. Follow up: Could you solve it using only O(1) extra space? Example 1: Input: ["a","a","b","b","c","c","c"] Output: Return 6, and the first 6 characters of the input array should be: ["a","2","b","2","c","3"] Explanation: "aa" is replaced by "a2". "bb" is replaced by "b2". "ccc" is replaced by "c3". """
3.796875
4
statsmodels/examples/tsa/ex_var_reorder.py
yarikoptic/statsmodels
20
12780701
from __future__ import print_function import statsmodels.api as sm from statsmodels.tsa.vector_ar.tests.test_var import TestVARResults test_VAR = TestVARResults() test_VAR.test_reorder()
1.304688
1
pypei/utils.py
dwu402/pyDD
2
12780702
<filename>pypei/utils.py from matplotlib import dates as mdates from matplotlib import pyplot as plt def form_xmonths(ax: plt.Axes, dspec=r'1 %b %Y', majors=1, minors=15, mindspec=r'15 %b'): """Formats an pyplot axis with ticks and labels at the first of each Month""" date_format = mdates.DateFormatter(dspec) min_date_format = mdates.DateFormatter(mindspec) major_format = mdates.DayLocator(majors) minor_format = mdates.DayLocator(minors) ax.xaxis.set_major_locator(major_format) ax.xaxis.set_minor_locator(minor_format) ax.xaxis.set_major_formatter(date_format) ax.xaxis.set_minor_formatter(min_date_format)
3.0625
3
Main/migrations/0069_auto_20210502_1223.py
Muhammet-Yildiz/Ecommerce_Website-HepsiOrada
10
12780703
# Generated by Django 3.1.4 on 2021-05-02 09:23 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('Main', '0068_remove_product_discount'), ] operations = [ migrations.RenameField( model_name='product', old_name='advantage', new_name='generalTitle', ), ]
1.53125
2
python/vision/error_functions.py
Oilgrim/ivs_sim
0
12780704
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Wed Aug 2 14:58:01 2017 @author: lracuna """ import autograd.numpy as np def validation_points_error(Xi, Xo, Hestimated): Xi = np.copy(Xi) Xo = np.copy(Xo) sum = 0 for i in range(Xo.shape[1]): sum += geometric_distance(Xo[:,i],Xi[:,i],Hestimated) return sum/Xo.shape[1] def homography_matrix_error(Htrue, Hestimated): return np.sqrt(np.sum((Htrue - Hestimated)**2)) def h_norm2d(x): #Normalize points for i in range(3): x[i] = x[i]/x[2] return x def d(x1, x2): return np.linalg.norm(h_norm2d(x1)-h_norm2d(x2)) def sym_transfer_error(Xo,Xi,H): """Symetric transfer error Xo: Object points in 2D Homogeneous Coordinates (3xn) Xi: Image points in 2D Homogeneous Coordinates (3xn) """ Xo = np.copy(Xo) Xi = np.copy(Xi) H = np.copy(H) error1 = d(Xi,np.dot(H,Xo)) error2 = d(Xo,np.dot(np.linalg.inv(H),Xi)) return error1 + error2 def transfer_error(Xo,Xi,H): """transfer error including normalization Xo: Object points in 2D Homogeneous Coordinates (3xn) Xi: Image points in 2D Homogeneous Coordinates (3xn) """ Xo = np.copy(Xo) Xi = np.copy(Xi) H = np.copy(H) return d(Xi,np.dot(H,Xo)) def algebraic_distance(Xo,Xi,H): """ Xi point measured in the image Xo real value of the model point H an estimated homography as defined in Multiple View Geometry in Computer vision """ Xo = np.copy(Xo) Xi = np.copy(Xi) H = np.copy(H) Xio = np.dot(H,Xo) return (Xio[0]*Xi[2]-Xi[0]*Xio[2])**2 + (Xi[1]*Xio[2] - Xi[2]*Xio[1])**2 def geometric_distance(Xo,Xi,H): """ Xi point measured in the image Xo real value of the model point H an estimated homography as defined in Multiple View Geometry in Computer vision """ Xo = np.copy(Xo) Xi = np.copy(Xi) H = np.copy(H) Xio = np.dot(H,Xo) return np.sqrt((Xi[0]/Xi[2] - Xio[0]/Xio[2])**2+(Xi[1]/Xi[2] - Xio[1]/Xio[2])**2) def geometric_distance_points(Xo,Xi,H): geom_distances = list() for i in range(Xo.shape[1]): geom_distances.append(geometric_distance(Xo[:,i],Xi[:,i],H)) return np.mean(geom_distances) def volker_metric(A): A = np.copy(A) # nomarlize each row #A = A/np.linalg.norm(A,axis=1, ord = 1, keepdims=True) for i in range(A.shape[0]): squared_sum = 0 for j in range(A.shape[1]): squared_sum += np.sqrt(A[i,j]**2) A[i,:] = A[i,:] / squared_sum # compute the dot product As = np.dot(A,A.T) # we are interested only on the upper top triangular matrix coefficients metric = 0 start = 1 for i in range(As.shape[0]): for j in range(start,As.shape[0]): metric = metric + As[i,j]**2 start = start +1 #An alternative would be to use only the coefficients which correspond # to different points. #metric = np.sqrt(np.sum(As[[0,2,4,6],[1,3,5,7]]**2)) #X vs X #metric = np.sum(As[[0,0,0,2,2,4],[2,4,6,4,6,6]]**2) #Y vs Y #metric = metric + np.sum(As[[1,1,1,3,3,5],[3,5,7,5,7,7]]**2) return metric def calculate_A_matrix(Xo, Xi): """ Calculate the A matrix for the DLT algorithm: A.H = 0 Inputs: Xo: Object points in 3D Homogeneous Coordinates (3xn), Z coorinate removed since the points should be on a plane Xi: Image points in 2D Homogeneous Coordinates (3xn) """ Xo = np.copy(Xo) Xi = np.copy(Xi) Npts = Xo.shape[1] A = np.zeros((2*Npts,9)) O = np.zeros(3) for i in range(0, Npts): X = Xo[:,i].T u = Xi[0,i] v = Xi[1,i] w = Xi[2,i] A[2*i,:] = np.array([O, -w*X, v*X]).reshape(1, 9) A[2*i+1,:] = np.array([w*X, O, -u*X]).reshape(1, 9) return A def get_matrix_conditioning_number(M): #return np.linalg.norm(M,2)*np.linalg.norm(np.linalg.pinv(M),2) return np.linalg.cond(M) def get_matrix_pnorm_condition_number(M): #https://de.mathworks.com/help/symbolic/cond.html?requestedDomain=www.<EMAIL> return np.linalg.norm(M,2)*np.linalg.norm(np.linalg.pinv(M),2) def condition_number(A): U, s, V = np.linalg.svd(A,full_matrices=False) greatest_singular_value = s[0] smallest_singular_value = s[-2] return greatest_singular_value/smallest_singular_value def rot_matrix_error(R0, R1, method = 'unit_quaternion_product'): """ R0, R1 are 3x3 or 4x4 homogeneous Rotation matrixes returns: the value of the error depending on the method """ if ((R0.shape != (4,4)) and (R0.shape != (3,3))): print ("Error in the R0 input rotation matrix shape, must be 3x3 or 4x4") print R0 return -1 if ((R1.shape != (4,4)) and (R1.shape != (3,3))): print ("Error in the R1 input rotation matrix shape, must be 3x3 or 4x4") print R1 return -1 if R0.shape == (3,3): R = np.eye(4) R[:3,:3] = R0 R0 = R if R1.shape == (3,3): R = np.eye(4) R[:3,:3] = R1 R1 = R if(method == 'unit_quaternion_product' ): ## From the paper "Metrics for 3D Rotations: Comparison and Analysis" <NAME> # The 3D rotation error is computed using the inner product of unit quaterions #We use the ros library TF to convert rotation matrix into unit quaternions from tf import transformations q0 = transformations.quaternion_from_matrix(R0) q1 = transformations.quaternion_from_matrix(R1) # We convert into unit quaternions q0 = q0 / np.linalg.norm(q0) q1 = q1 / np.linalg.norm(q1) #Find the error as defined in the paper rot_error = 1 - np.linalg.norm(np.dot(q0,q1)) if(method == 'angle'): #option 2 find the angle of this rotation. In particular, the above is invalid #for very large error angles (error > 90 degrees) and is imprecise for large #error angles (angle > 45 degrees). E = R1.dot(R0.T) from cv2 import Rodrigues rot_vector, J = Rodrigues(E[:3,:3]) angle = np.linalg.norm(rot_vector) rot_error = np.rad2deg(angle) return rot_error def calc_estimated_pose_error(tvec_ref, rmat_ref, tvec_est, rmat_est): # Translation error percentual tvec_error = np.linalg.norm(tvec_est[:3] - tvec_ref[:3])/np.linalg.norm(tvec_ref[:3])*100. #Rotation matrix error rmat_error = rot_matrix_error(rmat_ref,rmat_est, method = 'angle') return tvec_error, rmat_error def low_upper_bound_homography_error(cam, ObjectPoints): """ param cam: Camera object, has the current pose of the camera and the camera intrinsics. param ObjectPoints: Set of 4 different object points in 3D homogeneous coordinates (4x4) """ # We dont care about the Z coordinate Xo = ObjectPoints[[0,1,3],:] # Lets project the points using the simulated camera imagePoints = np.array(cam.project(ObjectPoints, False)) # Calculate the A matrix of the homography A_true = ef.calculate_A_matrix(Xo, imagePoints) A_noisy_list = [] H_noisy_list = [] A_noisy_norm_list = [] H_noisy_norm_list = [] for i in range(1000): imagePoints_noisy = cam.addnoise_imagePoints(imagePoints, mean = 0, sd = 4) A_noisy = ef.calculate_A_matrix(Xo, imagePoints_noisy) #DLT TRANSFORM Xi = imagePoints_noisy Hnoisy_dlt,_,_ = homo2d.homography2d(Xo,Xi) Hnoisy_dlt = Hnoisy_dlt/Hnoisy_dlt[2,2] A_noisy_list.append(A_noisy) H_noisy_list.append(Hnoisy_dlt) # WE calculate norms A_noisy_norm_list.append(np.linalg.norm(A_noisy)) H_noisy_norm_list.append(np.linalg.norm(Hnoisy_dlt)) A_noise_mean = np.mean(A_noisy_norm_list, axis=0) H_noisy_mean = np.mean(H_noisy_norm_list, axis=0) i_max = A_noisy_norm_list.index(max(A_noisy_norm_list)) A_noise_mean = A_noisy_list[i_max] H_noisy_mean = H_noisy_list[i_max] # TRUE VALUE OF HOMOGRAPHY OBTAINED FROM CAMERA PARAMETERS H_true = cam.homography_from_Rt() H_noisy_norm = np.linalg.norm(H_noisy_mean) H_true_norm = np.linalg.norm(H_true) A_noisy_norm = np.linalg.norm(A_noise_mean) A_true_norm = np.linalg.norm(A_true) cond = condition_number(A_true) rel_error = np.linalg.norm(H_true-H_noisy_mean)/H_true_norm Upper = cond*(np.linalg.norm(A_true-A_noise_mean))/A_true_norm e1 = np.dot(A_true,H_true.reshape(9,1)) e2 = np.dot(A_noise_mean,H_noisy_mean.reshape(9,1)) lower = np.linalg.norm(e1-e2)/(H_noisy_norm*A_noisy_norm) return rel_error, lower, Upper def lower_bound_homography_error(cam, ObjectPoints): pass
2.828125
3
ordia/app/__init__.py
nyurik/ordia
0
12780705
<reponame>nyurik/ordia """app.""" from __future__ import absolute_import, division, print_function from flask import Flask from ..base import Base def create_app(max_ids=None): """Create webapp. Factory for webapp. Returns ------- app : flask.app.Flask Flask app object. """ app = Flask(__name__) from .views import main as main_blueprint app.register_blueprint(main_blueprint) app.base = Base(max_ids=max_ids) return app
2.34375
2
caldp/sysexit.py
spacetelescope/caldp
2
12780706
"""This module defines context managers which are used to trap exceptions and exit Python cleanly with specific exit_codes which are then seen as the numerical exit status of the process and ultimately Batch job. The exit_on_exception() context manager is used to bracket a block of code by mapping all exceptions onto some log output and a call to sys.exit(): with exit_on_exception(exit_codes.SOME_CODE, "Parts of the ERROR", "message output", "on exception."): ... the code you're trapping to SOME_CODE when things go wrong ... The exit_on_exception() manager also enables simulating errors by defining the CALDP_SIMULATE_ERROR=N environment variable. When the manager is called with a code matching CALDP_SIMULATE_ERROR, instead of running the code block it fakes an exception by performing the corresponding log output and sys.exit() call. A few error codes are simulated more directly, particularly memory errors. The exit_receiver() manager is used to bracket the top level of your code, nominally main(), and land the CaldpExit() exception raised by exit_on_exception() after the stack has been unwound and cleanup functions performed. exit_receiver() then exits Python with the error code originally passed into exit_on_exception(). >>> from caldp import log >>> log.set_test_mode() >>> log.reset() """ import sys import os import contextlib import traceback import resource import time import random from caldp import log from caldp import exit_codes # ============================================================================== class CaldpExit(SystemExit): """Handle like SystemExit, but we definitely threw it.""" class SubprocessFailure(Exception): """A called subprocess failed and may require signal reporting. In Python, a negative subprocess returncode indicates that the absolete value of the returncode is a signal number which killed the subprocess. For completeness, in Linux, the program exit_code is a byte value. If the sign bit is set, a signal and/or core dump occurred. The byte reported as exit_code may be unsigned. The lower bits of the returncode define either the program's exit status or a signum identifying the signal which killed the process. """ def __init__(self, returncode): self.returncode = returncode @contextlib.contextmanager def exit_on_exception(exit_code, *args): """exit_on_exception is a context manager which issues an error message based on *args and then does sys.exit(exit_code) if an exception is raised within the corresponding "with block". >>> with exit_on_exception(1, "As expected", "it did not fail."): ... print("do it.") do it. >>> try: #doctest: +ELLIPSIS ... with exit_on_exception(2, "As expected", "it failed."): ... raise Exception("It failed!") ... print("do it.") ... except SystemExit: ... log.divider() ... print("Trapping SystemExit normally caught by exit_reciever() at top level.") ERROR - ----------------------------- Fatal Exception ----------------------------- ERROR - As expected it failed. ERROR - Traceback (most recent call last): ERROR - File ".../sysexit.py", line ..., in exit_on_exception ERROR - yield ERROR - File "<doctest ...exit_on_exception[1]>", line ..., in <module> ERROR - raise Exception("It failed!") ERROR - Exception: It failed! EXIT - CMDLINE_ERROR[2]: The program command line invocation was incorrect. INFO - --------------------------------------------------------------------------- Trapping SystemExit normally caught by exit_reciever() at top level. Never printed 'do it.' SystemExit is caught for testing. If CALDP_SIMULATE_ERROR is set to one of exit_codes, it will cause the with exit_on_exception() block to act as if a failure has occurred: >>> os.environ["CALDP_SIMULATE_ERROR"] = "2" >>> try: #doctest: +ELLIPSIS ... with exit_on_exception(2, "As expected a failure was simulated"): ... print("should not see this") ... except SystemExit: ... pass ERROR - ----------------------------- Fatal Exception ----------------------------- ERROR - As expected a failure was simulated ERROR - Traceback (most recent call last): ERROR - File ".../sysexit.py", line ..., in exit_on_exception ERROR - raise RuntimeError(f"Simulating error = {simulated_code}") ERROR - RuntimeError: Simulating error = 2 EXIT - CMDLINE_ERROR[2]: The program command line invocation was incorrect. >>> os.environ["CALDP_SIMULATE_ERROR"] = str(exit_codes.CALDP_MEMORY_ERROR) >>> try: #doctest: +ELLIPSIS ... with exit_on_exception(2, "Memory errors don't have to match"): ... print("Oh unhappy day.") ... except SystemExit: ... pass ERROR - ----------------------------- Fatal Exception ----------------------------- ERROR - Memory errors don't have to match ERROR - Traceback (most recent call last): ERROR - File ".../sysexit.py", line ..., in exit_on_exception ERROR - raise MemoryError("Simulated CALDP MemoryError.") ERROR - MemoryError: Simulated CALDP MemoryError. EXIT - CALDP_MEMORY_ERROR[32]: CALDP generated a Python MemoryError during processing or preview creation. >>> os.environ["CALDP_SIMULATE_ERROR"] = str(exit_codes.OS_MEMORY_ERROR) >>> try: #doctest: +ELLIPSIS ... with exit_on_exception(2, "Memory errors don't have to match"): ... print("Oh unhappy day.") ... except SystemExit: ... pass ERROR - ----------------------------- Fatal Exception ----------------------------- ERROR - Memory errors don't have to match ERROR - Traceback (most recent call last): ERROR - File ".../sysexit.py", line ..., in exit_on_exception ERROR - raise OSError("Cannot allocate memory...") ERROR - OSError: Cannot allocate memory... EXIT - OS_MEMORY_ERROR[34]: Python raised OSError(Cannot allocate memory...), possibly fork failure. >>> os.environ["CALDP_SIMULATE_ERROR"] = "999" >>> with exit_on_exception(3, "Only matching error codes are simulated."): ... print("should print normally") should print normally >>> del os.environ["CALDP_SIMULATE_ERROR"] >>> saved, os._exit = os._exit, lambda x: print(f"os._exit({x})") >>> with exit_receiver(): #doctest: +ELLIPSIS ... with exit_on_exception(exit_codes.STAGE1_ERROR, "Failure running processing stage1."): ... raise SubprocessFailure(-8) ERROR - ----------------------------- Fatal Exception ----------------------------- ERROR - Failure running processing stage1. ERROR - Traceback (most recent call last): ERROR - File ".../caldp/sysexit.py", line ..., in exit_on_exception ERROR - yield ERROR - File "<doctest caldp.sysexit.exit_on_exception[...]>", line ..., in <module> ERROR - raise SubprocessFailure(-8) ERROR - caldp.sysexit.SubprocessFailure: -8 EXIT - Killed by UNIX signal SIGFPE[8]: 'Floating-point exception (ANSI).' EXIT - STAGE1_ERROR[23]: An error occurred in this instrument's stage1 processing step. e.g. calxxx os._exit(23) >>> with exit_receiver(): #doctest: +ELLIPSIS ... with exit_on_exception(exit_codes.STAGE1_ERROR, "Failure running processing stage1."): ... raise OSError("Something other than memory") ERROR - ----------------------------- Fatal Exception ----------------------------- ERROR - Failure running processing stage1. ERROR - Traceback (most recent call last): ERROR - File ".../sysexit.py", line ..., in exit_on_exception ERROR - yield ERROR - File "<doctest ...sysexit.exit_on_exception[...]>", line ..., in <module> ERROR - raise OSError("Something other than memory") ERROR - OSError: Something other than memory EXIT - STAGE1_ERROR[23]: An error occurred in this instrument's stage1 processing step. e.g. calxxx os._exit(23) >>> os._exit = saved """ simulated_code = int(os.environ.get("CALDP_SIMULATE_ERROR", "0")) try: if simulated_code == exit_codes.CALDP_MEMORY_ERROR: raise MemoryError("Simulated CALDP MemoryError.") elif simulated_code == exit_codes.OS_MEMORY_ERROR: raise OSError("Cannot allocate memory...") elif simulated_code == exit_codes.SUBPROCESS_MEMORY_ERROR: print("MemoryError", file=sys.stderr) # Output to process log determines final program exit status raise RuntimeError("Simulated subprocess memory error with subsequent generic program exception.") elif simulated_code == exit_codes.CONTAINER_MEMORY_ERROR: log.info("Simulating hard memory error by allocating memory") _ = bytearray(1024 * 2 ** 30) # XXXX does not trigger container limit as intended elif exit_code == simulated_code: raise RuntimeError(f"Simulating error = {simulated_code}") yield # don't mask memory errors or nested exit_on_exception handlers except MemoryError: _report_exception(exit_codes.CALDP_MEMORY_ERROR, args) raise CaldpExit(exit_codes.CALDP_MEMORY_ERROR) except OSError as exc: if "Cannot allocate memory" in str(exc) + repr(exc): _report_exception(exit_codes.OS_MEMORY_ERROR, args) raise CaldpExit(exit_codes.OS_MEMORY_ERROR) else: _report_exception(exit_code, args) raise CaldpExit(exit_code) except CaldpExit: raise # below as always exit_code defines what will be CALDP's program exit status. # in contrast, exc.returncode is the subprocess exit status of a failed subprocess which may # define an OS signal that killed the process. except SubprocessFailure as exc: _report_exception(exit_code, args, exc.returncode) raise CaldpExit(exit_code) except Exception: _report_exception(exit_code, args) raise CaldpExit(exit_code) def _report_exception(exit_code, args=None, returncode=None): """Issue trigger output for exit_on_exception, including `exit_code` and error message defined by `args`, as well as traceback. """ log.divider("Fatal Exception", func=log.error) if args: log.error(*args) for line in traceback.format_exc().splitlines(): if line != "NoneType: None": log.error(line) if returncode and returncode < 0: print(exit_codes.explain_signal(-returncode)) print(exit_codes.explain(exit_code)) @contextlib.contextmanager def exit_receiver(): """Use this contextmanager to bracket your top level code and land the sys.exit() exceptions thrown by _raise_exit_exception() and exit_on_exception(). This program structure enables sys.exit() to fully unwind the stack doing cleanup, then calls the low level os._exit() function which does no cleanup as the "last thing". If SystemExit is not raised by the code nested in the "with" block then exit_receiver() essentially does nothing. The program is exited with the numerical code passed to sys.exit(). >>> saved, os._exit = os._exit, lambda x: print(f"os._exit({x})") >>> with exit_receiver(): #doctest: +ELLIPSIS ... print("Oh happy day.") Oh happy day. os._exit(0) Generic unhandled exceptions are mapped to GENERIC_ERROR (1): >>> def foo(): ... print("foo!") ... bar() >>> def bar(): ... print("bar!") ... raise RuntimeError() >>> with exit_receiver(): #doctest: +ELLIPSIS ... foo() foo! bar! ERROR - ----------------------------- Fatal Exception ----------------------------- ERROR - Untrapped non-memory exception. ERROR - Traceback (most recent call last): ERROR - File ".../caldp/sysexit.py", line ..., in exit_receiver ERROR - yield # go off and execute the block ERROR - File "<doctest caldp.sysexit.exit_receiver[...]>", line ..., in <module> ERROR - foo() ERROR - File "<doctest caldp.sysexit.exit_receiver[...]>", line ..., in foo ERROR - bar() ERROR - File "<doctest caldp.sysexit.exit_receiver[...]>", line ..., in bar ERROR - raise RuntimeError() ERROR - RuntimeError EXIT - GENERIC_ERROR[1]: An error with no specific CALDP handling occurred somewhere. os._exit(1) MemoryError is remapped to CALDP_MEMORY_ERROR (32) inside exit_on_exception or not: >>> with exit_receiver(): #doctest: +ELLIPSIS ... raise MemoryError("CALDP used up all memory directly.") ERROR - ----------------------------- Fatal Exception ----------------------------- ERROR - Untrapped memory exception. ERROR - Traceback (most recent call last): ERROR - File ".../caldp/sysexit.py", line ..., in exit_receiver ERROR - yield # go off and execute the block ERROR - File "<doctest caldp.sysexit.exit_receiver[...]>", line ..., in <module> ERROR - raise MemoryError("CALDP used up all memory directly.") ERROR - MemoryError: CALDP used up all memory directly. EXIT - CALDP_MEMORY_ERROR[32]: CALDP generated a Python MemoryError during processing or preview creation. os._exit(32) Inside exit_on_exception, exit status is remapped to the exit_code parameter of exit_on_exception(): >>> with exit_receiver(): #doctest: +ELLIPSIS ... raise OSError("Cannot allocate memory...") ERROR - ----------------------------- Fatal Exception ----------------------------- ERROR - Untrapped OSError cannot callocate memory ERROR - Traceback (most recent call last): ERROR - File ".../sysexit.py", line ..., in exit_receiver ERROR - yield # go off and execute the block ERROR - File "<doctest ...sysexit.exit_receiver[...]>", line ..., in <module> ERROR - raise OSError("Cannot allocate memory...") ERROR - OSError: Cannot allocate memory... EXIT - OS_MEMORY_ERROR[34]: Python raised OSError(Cannot allocate memory...), possibly fork failure. os._exit(34) >>> with exit_receiver(): #doctest: +ELLIPSIS ... raise OSError("Some non-memory os error.") ERROR - ----------------------------- Fatal Exception ----------------------------- ERROR - Untrapped OSError, generic. ERROR - Traceback (most recent call last): ERROR - File ".../sysexit.py", line ..., in exit_receiver ERROR - yield # go off and execute the block ERROR - File "<doctest ...sysexit.exit_receiver[...]>", line ..., in <module> ERROR - raise OSError("Some non-memory os error.") ERROR - OSError: Some non-memory os error. EXIT - GENERIC_ERROR[1]: An error with no specific CALDP handling occurred somewhere. os._exit(1) >>> with exit_receiver(): #doctest: +ELLIPSIS ... with exit_on_exception(exit_codes.STAGE1_ERROR, "Stage1 processing failed for <ippssoot>"): ... raise RuntimeError("Some obscure error") ERROR - ----------------------------- Fatal Exception ----------------------------- ERROR - Stage1 processing failed for <ippssoot> ERROR - Traceback (most recent call last): ERROR - File ".../sysexit.py", line ..., in exit_on_exception ERROR - yield ERROR - File "<doctest ...sysexit.exit_receiver[...]>", line ..., in <module> ERROR - raise RuntimeError("Some obscure error") ERROR - RuntimeError: Some obscure error EXIT - STAGE1_ERROR[23]: An error occurred in this instrument's stage1 processing step. e.g. calxxx os._exit(23) >>> os._exit = saved """ try: # log.info("Container memory limit is: ", get_linux_memory_limit()) yield # go off and execute the block code = exit_codes.SUCCESS except CaldpExit as exc: code = exc.code # Already reported deeper except MemoryError: code = exit_codes.CALDP_MEMORY_ERROR _report_exception(code, ("Untrapped memory exception.",)) except OSError as exc: if "Cannot allocate memory" in str(exc) + repr(exc): code = exit_codes.OS_MEMORY_ERROR args = ("Untrapped OSError cannot callocate memory",) else: code = exit_codes.GENERIC_ERROR args = ("Untrapped OSError, generic.",) _report_exception(code, args) except BaseException: # Catch absolutely everything. code = exit_codes.GENERIC_ERROR _report_exception(code, ("Untrapped non-memory exception.",)) os._exit(code) def get_linux_memory_limit(): # pragma: no cover """This generally shows the full address space by default. >> limit = get_linux_memory_limit() >> assert isinstance(limit, int) """ if os.path.isfile("/sys/fs/cgroup/memory/memory.limit_in_bytes"): with open("/sys/fs/cgroup/memory/memory.limit_in_bytes") as limit: mem = int(limit.read()) return mem else: raise RuntimeError("get_linux_memory_limit() failed.") # pragma: no cover def set_process_memory_limit(mem_in_bytes): """This can be used to limit the available address space / memory to something less than is allocated to the container. Potentially that will cause Python to generate a MemoryError rather than forcing a container memory limit kill. """ resource.setrlimit(resource.RLIMIT_AS, (mem_in_bytes, mem_in_bytes)) # pragma: no cover # ============================================================================== def retry(func, max_retries=3, min_sleep=1, max_sleep=60, backoff=2, exceptions=(Exception, SystemExit)): """a decorator for retrying a function call on exception max_retries: number of times to retry min_sleep: starting value for backing off, in seconds max_sleep: sleep value not to exceed, in seconds backoff: the exponential factor exceptions: tuple of exceptions to catch and retry """ def decor(*args, **kwargs): tried = 0 while tried < max_retries: try: return func(*args, **kwargs) except exceptions as e: # otherwise e is lost to the namespace cleanup, # and we may need to raise it later exc = e tried += 1 sleep = exponential_backoff(tried) log.warning( f"{func.__name__} raised exception, using retry {tried} of {max_retries}, sleeping for {sleep} seconds " ) time.sleep(sleep) # if we're here, no attempt to call func() succeeded raise exc return decor def exponential_backoff(iteration, min_sleep=1, max_sleep=64, backoff=2): """given the current number of attempts, return a sleep time using an exponential backoff algorithm iteration: the current amount of retries used min_sleep: minimum value to wait before retry, in seconds max_sleep: maximum value to wait before retry, in seconds note: if you allow too many retries that cause the backoff to exceed max_sleep, you will lose the benefit of jitter see i.e. https://aws.amazon.com/blogs/architecture/exponential-backoff-and-jitter/ """ # random uniform number(0.5,1) * backoff^iteration, but clip to min_backoff, max_backoff return max(min(random.uniform(0.5, 1) * backoff ** iteration, max_sleep), min_sleep) # ============================================================================== def test(): # pragma: no cover from doctest import testmod import caldp.sysexit temp, os._exit = os._exit, lambda x: print(f"os._exit({x})") test_result = testmod(caldp.sysexit) os._exit = temp return test_result if __name__ == "__main__": # pragma: no cover print(test())
3.65625
4
migrations/0004_auto_20180503_0115.py
contraslash/authentication-django
0
12780707
# -*- coding: utf-8 -*- # Generated by Django 1.11 on 2018-05-03 01:15 from __future__ import unicode_literals from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('authentication', '0003_auto_20161030_0401'), ] operations = [ migrations.RemoveField( model_name='permission', name='role', ), migrations.RemoveField( model_name='userprofile', name='image', ), migrations.RemoveField( model_name='userprofile', name='role', ), migrations.DeleteModel( name='Permission', ), migrations.DeleteModel( name='Role', ), ]
1.632813
2
particle/__init__.py
mikolasan/pyroguelike
0
12780708
''' https://github.com/Mekire/pygame-particles ''' from .particle import Emitter
1.148438
1
iatransfer/research/transfer/utils.py
KamilPiechowiak/iatransfer
4
12780709
<filename>iatransfer/research/transfer/utils.py from typing import Dict def get_transfer_method_name(transfer_method: Dict) -> str: name = [transfer_method["transfer"]] if "matching" in transfer_method: name.append(transfer_method["matching"]) if "standardization" in transfer_method: name.append(transfer_method["standardization"]) if "score" in transfer_method: name.append(transfer_method["score"]) return "-".join(name)
2.9375
3
moya/context/sortmodifiers.py
moyaproject/moya
129
12780710
<reponame>moyaproject/moya """Hacked up script to sort modifiers""" # Couldn't find a tool for this """ import io with io.open('modifiers.py', 'rt') as f: iter_lines = iter(f) while 1: line = next(iter_lines, None) if line.startswith('class ExpressionModifiers('): break defs = [] while 1: line = next(iter_lines, None) if line is None: break if line.lstrip().startswith('def'): defs.append([]) if defs: defs[-1].append(line) for d in sorted(defs, key=lambda m: m[0]): print ''.join(d), """
2.6875
3
app/__init__.py
fauzaanirsyaadi/belajar-full-stack
0
12780711
#ini adalah file pertama yang akan dibaca from flask import Flask from config import Config from flask_sqlalchemy import SQLAlchemy from flask_migrate import Migrate app = Flask(__name__) app.config.from_object(Config) db = SQLAlchemy(app) migrate = Migrate(app, db) from .models.users import User
1.8125
2
duconv/src/lr_schedule.py
kingcong/MindSpore_Code
77
12780712
<filename>duconv/src/lr_schedule.py # Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ Noam """ import mindspore.ops as P import mindspore.common.dtype as mstype from mindspore.nn.learning_rate_schedule import LearningRateSchedule from mindspore import Tensor class Noam(LearningRateSchedule): """ Noam learning_rate """ def __init__(self, d_model, warmup_steps, learning_rate=1.0): super().__init__() self.d_model = d_model self.warmup_steps = warmup_steps self.learning_rate = learning_rate self.pow = P.Pow() self.min = P.Minimum() self.cast = P.Cast() self.const0 = Tensor(-0.5, mstype.float32) self.const1 = Tensor(-1.5, mstype.float32) def construct(self, global_step): """ construct """ p = self.cast(self.min( self.pow(global_step, self.const0), self.pow(self.warmup_steps, self.const1)*global_step), mstype.float32) return self.learning_rate * self.pow(self.d_model, self.const0) * p
2.046875
2
metastudio/lib/ext/meta-jython/metastudio.py
tovganesh/metastudio
4
12780713
<gh_stars>1-10 # # metastudio.py # # Wrappers for accessing MeTA Studio APIs. Where ever possible these # wrappers are consistent with the ones provided in BeanShell (the default # scripting interface for MeTA Studio). # However, due to some restriction in Python, like no support for function # overloading, certain functions may be missing all together! # # @author <NAME> # 25 March, 2009 # # updated: 27 May, 2009 ; updated to reflect few additions to BeanShell # updated: 20 March, 2011 ; updated to reflect few additions to BeanShell # import string from java.io import File from java.util import ArrayList from java.io import BufferedReader,InputStreamReader,FileInputStream,\ BufferedWriter,OutputStreamWriter,FileOutputStream from javax.swing import JFileChooser from org.meta.molecule import Molecule, MoleculeBuilder, Atom from org.meta.moleculereader import MoleculeFileReaderFactory from org.meta.common import Utility from org.meta.common.resource import StringResource from org.meta.math.geom import Point3D, BoundingBox from org.meta.math import Vector3D, Matrix3D from org.meta.net import FederationServiceDiscovery from org.meta.shell.idebeans import MoleculeViewerFrame, IDEFileChooser, MoleculeListDialog, IDEWidget from org.meta.shell.idebeans.eventhandlers import MainMenuEventHandlers from org.meta.shell.idebeans.viewers.impl.moleculeviewer import MoleculeScene from org.meta.config.impl import AtomInfo from org.meta.math.qm.property import ElectronDensity, MODensity from org.meta.molecule.property.electronic import GridProperty def getIDEInstance(): return MainMenuEventHandlers.getInstance(None).getIdeInstance() def molecule(title): mol = Utility.getDefaultImplFor(Molecule).newInstance() mol.setTitle(title) return mol def atom(sym, charge, center): return Atom(sym, charge, center) def point(x, y, z): return Point3D(x, y, z) def boundingbox(upperLeft, bottomRight): return BoundingBox(upperLeft, bottomRight) def vector3d(*args): if (len(args) == 3): return Vector3D(args[0], args[1], args[2]) else: return Vector3D(args[0]) def matrix3d(): return Matrix3D() def atomInfo(): return AtomInfo.getInstance(); def buildConnectivity(mol, makeZMatrix="true", copyConnectivity="false"): mb = Utility.getDefaultImplFor(MoleculeBuilder).newInstance() if (copyConnectivity == "false"): try: if (makeZMatrix == "false"): for i in range(0, len(mol)): mb.makeConnectivity(mol[i]) else: for i in range(0, len(mol)): mb.makeZMatrix(mol[i]) except: if (makeZMatrix == "false"): mb.makeConnectivity(mol) else: mb.makeZMatrix(mol) else: try: if (makeZMatrix == "false"): mb.makeConnectivity(mol[0]) else: mb.makeZMatrix(mol[0]) for i in range(1, len(mol)): atms = mol[0].getAtoms(); iatms = mol[i].getAtoms(); while (atms.hasNext() and iatms.hasNext()): iatms.next().setConnectedList(atms.next().getConnectedList()) except: if (makeZMatrix == "false"): mb.makeConnectivity(mol) else: mb.makeZMatrix(mol) def buildSimpleConnectivity(mol): mb = Utility.getDefaultImplFor(MoleculeBuilder).newInstance() try: for i in range(0, len(mol)): mb.makeSimpleConnectivity(mol) except: mb.makeSimpleConnectivity(mol) def showMolecule(mol): ideInstance = getIDEInstance() mvf = MoleculeViewerFrame(ideInstance) mvf.getMoleculeViewer().disableUndo() try: for i in range(0, len(mol)): mvf.addScene(MoleculeScene(mol[i])) except: mvf.addScene(MoleculeScene(mol)) mvf.getMoleculeViewer().enableUndo() ideInstance.getWorkspaceDesktop().addInternalFrame(mvf) def showFileDialog(title="Open", type="open"): type = type.lower() if type == "open": fileChooser = IDEFileChooser() fileChooser.setDialogTitle(title) if (fileChooser.showOpenDialog(getIDEInstance()) == JFileChooser.APPROVE_OPTION): return fileChooser.getSelectedFile().getAbsolutePath() else: return None elif type == "save": fileChooser = IDEFileChooser() fileChooser.setDialogTitle(title) if (fileChooser.showSaveDialog(getIDEInstance()) == JFileChooser.APPROVE_OPTION): return fileChooser.getSelectedFile().getAbsolutePath() else: return None else: fileChooser = IDEFileChooser() fileChooser.setDialogTitle(title) if (fileChooser.showOpenDialog(getIDEInstance()) == JFileChooser.APPROVE_OPTION): return fileChooser.getSelectedFile().getAbsolutePath() else: return None def arraylistToPylist(arlist): list = [] for i in range(0, arlist.size()): list.append(arlist.get(i)) return list def arraylist(): return ArrayList() def discover_meta(ipExpression=None, timeout=100): if ipExpression == None: nl = FederationServiceDiscovery.getInstance().discoverMeTA() else: inst = FederationServiceDiscovery.getInstance() inst.setTimeout(timeout) nl = inst.discoverMeTA(ipExpression) return arraylistToPylist(nl) def list_meta(timeout=100): inst = FederationServiceDiscovery.getInstance() inst.setTimeout(timeout) return arraylistToPylist(inst.listMeTA()) def readMoleculeFile(file): mfr = Utility.getDefaultImplFor(MoleculeFileReaderFactory).newInstance() typ = file[file.index(".")+1:len(file)] rdr = mfr.getReader(typ) return rdr.readMoleculeFile(file) def openFile(fileName, mode): if mode=="r": return BufferedReader(InputStreamReader(FileInputStream(fileName))) elif mode=="w": return BufferedWriter(OutputStreamWriter(FileOutputStream(fileName))) def readMultiMoleculeFile(file, makeZMatrix="true", copyConnectivity="false"): mfr = Utility.getDefaultImplFor(MoleculeFileReaderFactory).newInstance() typ = file[file.index(".")+1:len(file)] rdr = mfr.getReader(typ) br = openFile(file, "r") molList = [] try: i = 0 while 1: mol = rdr.readMolecule(br) if mol.getNumberOfAtoms() == 0: break if ((mol.getTitle()==None) or (mol.getTitle()=="") \ or (mol.getTitle()=="Untitled") \ or (mol.getTitle().index("Molecule")==0)): mol.setTitle(Utility.getFileNamesSansExtension(File(file)) + "-" + repr(i)) molList.append(mol) i += 1 except: print "Warning: Could not read the complete file " + file br.close() buildConnectivity(molList, makeZMatrix, copyConnectivity) return molList def showMoleculeListDialog(): ml = MoleculeListDialog(getIDEInstance()) return ml.showListDialog() def play(fileName): from javazoom.jl.player import Player Player(FileInputStream(fileName)).play() def getDefaultClass(theClass): return Utility.getDefaultImplFor(theClass) def getDesktopInstance(): ideInstance = getIDEInstance() if (ideInstance == None): return None else: return ideInstance.getWorkspaceDesktop() def getActiveFrame(): wd = getDesktopInstance() if (wd == None): return None else: wd.getActiveFrame() def getLoadedMoleculeScenes(): ideInstance = getIDEInstance() if (ideInstance == None): return None wd = getDesktopInstance() if (wd == None): return None frameList = wd.getFrameList() sceneList = [] for frame in frameList: try: scenes = frame.getSceneList() for scene in scenes: sceneList.append(scene) except: pass return sceneList def getLoadedMolecules(): ideInstance = getIDEInstance() if (ideInstance == None): return None currentWorkspace = ideInstance.getCurrentWorkspace() if (currentWorkspace == None): return None workspaceItems = currentWorkspace.getWorkspaceItems() moleculeList = [] for item in workspaceItems: try: item.getItemData().getData().getNumberOfAtoms() # just a way to see that this molecule object moleculeList.append(item.getItemData().getData()) except: pass return moleculeList def getMolecule(index): return getLoadedMoleculeScenes()[index].getMolecule() def getSelectionStack(vframe): sal = [] for scene in vframe.getSelectionList(): for sa in scene.getSelectionStack(): sal.append(sa) return sa def messageBox(msg, title="", type="normal"): from javax.swing import JOptionPane if type == "normal": JOptionPane.showMessageDialog(getIDEInstance(), msg, title, JOptionPane.INFORMATION_MESSAGE) elif type == "warning": JOptionPane.showMessageDialog(getIDEInstance(), msg, title, JOptionPane.WARNING_MESSAGE) elif type == "warn": JOptionPane.showMessageDialog(getIDEInstance(), msg, title, JOptionPane.WARNING_MESSAGE) elif type == "error": JOptionPane.showMessageDialog(getIDEInstance(), msg, title, JOptionPane.ERROR_MESSAGE) else: JOptionPane.showMessageDialog(getIDEInstance(), msg, title, JOptionPane.INFORMATION_MESSAGE) def color(*args): from java.awt import Color if (len(args) == 1): return Color.decode(args[0]) else: c = args return Color(c[0], c[1], c[2]) def button(text, isToggle, bg): from javax.swing import JButton, JToggleButton if isToggle: tb = JToggleButton(text) bg.add(tb) return tb else: return JButton(text) def buttongroup(): from javax.swing import ButtonGroup return ButtonGroup() def checkbox(text): from javax.swing import JCheckBox return javax.swing.JCheckBox(text) def combobox(values): from javax.swing import JComboBox return JComboBox(values) def frame(txtTitle=""): from javax.swing import JFrame return JFrame(txtTitle) def label(txt): from javax.swing import JLabel return JLabel(txt) def listbox(values): from javax.swing import JList return JList(values) def panel(): from javax.swing import JPanel return JPanel() def radiobutton(text, bg): from javax.swing import JRadioButton rb = JRadioButton(text) bg.add(rb) return rb def scratchpad(): from org.meta.shell.idebeans import ScratchPad ideInstance = getIDEInstance() sp = ScratchPad(ideInstance) ideInstance.getWorkspaceDesktop().addInternalFrame(sp) return sp def degrees(radian): from org.meta.math import MathUtil return MathUtil.toDegrees(radian) def radians(degree): from org.meta.math import MathUtil return MathUtil.toRadians(degree) def diagonalize(mat): from org.meta.math.la import DiagonalizerFactory d = DiagonalizerFactory.getInstance().getDefaultDiagonalizer() d.diagonalize(mat) return d def getRemoteAppDir(): return StringResource.getInstance().getRemoteAppDir() def getWidgetsPanel(): return getIDEInstance().getWorkspaceExplorer().getWidgetsPanel() def widget(id): return IDEWidget(id) def moleculeScene(mol): return MoleculeScene(mol) def hfscf(molecule, basisSet): from java.text import DecimalFormat from java.lang import System from org.meta.math.qm import * print("Starting computation for " + repr(molecule) + " at " + repr(basisSet) + " basis") t1 = System.currentTimeMillis() bfs = BasisFunctions(molecule, basisSet) t2 = System.currentTimeMillis() print("Number of basis functions : " + repr(bfs.getBasisFunctions().size())) print("Time till setting up basis : " + repr(t2-t1) + " ms") oneEI = OneElectronIntegrals(bfs, molecule) t2 = System.currentTimeMillis() print("Time till 1EI evaluation : " + repr(t2-t1) + " ms") twoEI = TwoElectronIntegrals(bfs) t2 = System.currentTimeMillis() print("Time till 2EI evaluation : " + repr(t2-t1) + " ms") scfm = SCFMethodFactory.getInstance().getSCFMethod(molecule, oneEI, twoEI, SCFType.HARTREE_FOCK) scfm.scf() print("Final Energy : " + repr(scfm.getEnergy())) return scfm.getEnergy() def mp2scf(molecule, basisSet): from java.text import DecimalFormat from java.lang import System from org.meta.math.qm import * print("Starting computation for " + repr(molecule) + " at " + repr(basisSet) + " basis") t1 = System.currentTimeMillis() bfs = BasisFunctions(molecule, basisSet) t2 = System.currentTimeMillis() print("Number of basis functions : " + repr(bfs.getBasisFunctions().size())) print("Time till setting up basis : " + repr(t2-t1) + " ms") oneEI = OneElectronIntegrals(bfs, molecule) t2 = System.currentTimeMillis() print("Time till 1EI evaluation : " + repr(t2-t1) + " ms") twoEI = TwoElectronIntegrals(bfs) t2 = System.currentTimeMillis() print("Time till 2EI evaluation : " + repr(t2-t1) + " ms") scfm = SCFMethodFactory.getInstance().getSCFMethod(molecule, oneEI, twoEI, SCFType.MOLLER_PLESSET) scfm.scf() print("Final Energy : " + repr(scfm.getEnergy())) return scfm.getEnergy() def mmEnergy(molecule): from org.meta.math.mm import * from java.lang import System print("Starting MM Energy for " + repr(molecule)) mm = MMEnergyMethodFactory.getInstance().getMMEnergyMethod(molecule) t1 = System.currentTimeMillis() energy = mm.getEnergy() t2 = System.currentTimeMillis() print("Energy = " + repr(energy) + " a.u.") print("Total Time : " + repr(t2-t1) + " ms") return energy def federationode(nodeName, noOfProcessors=1): from java.net import InetAddress from org.meta.net import FederationNode fNode = FederationNode(InetAddress.getByName(nodeName)) fNode.setNoOfProcessors(noOfProcessors) return fNode def generateBshScript(pyScript, funName): bshScript = "import org.meta.common.resource.StringResource; import java.io.File; import org.python.util.PythonInterpreter;\n" bshScript = bshScript + funName + "() { \n" bshScript = bshScript + "File pluginDir = new File(StringResource.getInstance().getPluginDir());" bshScript = bshScript + "Properties props = new Properties();" bshScript = bshScript + "props.setProperty(\"python.home\", \"../lib/ext/meta-jython\");" bshScript = bshScript + "props.setProperty(\"python.cachedir\", StringResource.getInstance().getRemoteAppDir());" bshScript = bshScript + "props.setProperty(\"python.path\", \"../lib/ext/meta-jython\" " bshScript = bshScript + " + File.pathSeparatorChar + pluginDir.getName());" bshScript = bshScript + "PythonInterpreter.initialize(System.getProperties(), props, new String[] {\"\"});" bshScript = bshScript + "PythonInterpreter pyInterpreter = new PythonInterpreter();" bshScript = bshScript + "pyInterpreter.setOut(System.out);" bshScript = bshScript + "pyInterpreter.setErr(System.err);" bshScript = bshScript + "data = getData(); pyInterpreter.set(\"__data\", data);" pyf = open(pyScript, "r") lines = pyf.readlines() pyf.close() pyl = "\\ndef getData():\\n\\t return __data\\n\\ndef setData(data):\\n\\tglobal __data\\n\\t__data=data\\n\\n" for line in lines: pyl += line.strip("\n").replace("\"", "\\\"") + "\\n" bshScript = bshScript + "pyInterpreter.exec(\"" + pyl + "\");\n" bshScript = bshScript + "setData(pyInterpreter.get(\"__data\", java.util.ArrayList.class));" bshScript = bshScript + " } \n " + funName + "();\n" return bshScript def mapreduce(mapScript, reduceScript, data): from org.meta.net.mapreduce.impl import MapFunctionScriptHelper, ReduceFunctionScriptHelper, MapReduceControllerFederationImpl # every thing is BeanShell, so we need to generate stub code here mf = MapFunctionScriptHelper(mapScript) mf.setBshScript(generateBshScript(mapScript, "pymap")) rf = ReduceFunctionScriptHelper(reduceScript) rf.setBshScript(generateBshScript(reduceScript, "pyreduce")) mapReduceController = MapReduceControllerFederationImpl() mapReduceController.executeTask(mf, rf, data) return mapReduceController.getTaskData() def getDefaultMoleculeGrid(mol): bb = mol.getBoundingBox().expand(5) # 5 angstroms in each direction return GridProperty(bb, 100) def moDensity(scfm, gp, monumber=None): if (monumber == None): MODensity(scfm).compute(gp) else: MODensity(scfm, monumber).compute(gp) def electronDensity(scfm, gp): ElectronDensity(scfm).compute(gp)
1.835938
2
mesService/modules/AngularInterface/planmanage/plan_schedule.py
mabotech/mes_sv
2
12780714
# @createTime : 2019/10/30 9:13 # @author : Mou # @fileName: plan-schedule.py # 计划排产部分前端接口 import json from flask import current_app from flask import request from mesService import config_dict from mesService.lib.pgwrap.db import connection class PlanSchedule(object): def getsortlist(self): reqparam = request.data try: reqparam = json.loads(reqparam) count = reqparam['count'] wipordertype = reqparam['wipordertype'] base_sql = "select get_wipsortlist(%d,%d);"%(count,wipordertype) result = current_app.db.query_one(base_sql) except: result = { "status":"server error", "message":"search error" } res = json.dumps(result) return res if result: return result[0] else: result = { "status":"error", "message":"search error" } res = json.dumps(result) return res
2.421875
2
python/baekjoon/step/15-greedy/ATM.py
bum12ark/algorithm
1
12780715
<gh_stars>1-10 """ 출처: https://www.acmicpc.net/problem/11399 """ # param size = int(input()) p_times = list(map(int, input().split())) # solution p_times.sort() prev = result = 0 for t in p_times: prev += t result += prev # result print(result)
2.8125
3
contract_analysis.py
jasonrubenstein18/MLB_FA
0
12780716
import pandas as pd import numpy as np from statsmodels.formula.api import ols import plotly_express import plotly.graph_objs as go from plotly.subplots import make_subplots # Read in data batter_data = pd.read_csv("~/Desktop/MLB_FA/Data/fg_bat_data.csv") del batter_data['Age'] print(len(batter_data)) print(batter_data.head()) pitcher_data = pd.read_csv("~/Desktop/MLB_FA/Data/fg_pitch_data.csv") del pitcher_data['Age'] print(len(pitcher_data)) print(pitcher_data.head()) salary_data = pd.read_csv("~/Desktop/MLB_FA/Data/salary_data.csv") print(len(salary_data)) injury_data = pd.read_csv("~/Desktop/MLB_FA/Data/injury_data_use.csv") # Check for whether there is overlap between injury data and the salary data players # injury_data_players = injury_data['Player'].unique() # mutual = salary_data[salary_data['Player'].isin(injury_data_players)] # 945 out of 1135 players included # excl = salary_data[~salary_data['Player'].isin(injury_data_players)] # print(len(excl['Player'].unique())) # 129 unique players injury data omitted; use mlb.com trans for these # Define inflation def npv(df, rate): r = rate df['Salary'] = pd.to_numeric(df['Salary']) df['AAV'] = salary_data['Salary'] / df['Years'] df['NPV'] = 0 df['NPV'] = round(df['AAV'] * (1 - (1 / ((1 + r) ** df['Years']))) / r, 2) return df salary_data = npv(salary_data, 0.05) # Lagged metrics to see if there is carryover value / value in continuity class Metrics: def lagged_batter(df): df['WAR'] = pd.to_numeric(df['WAR']) df['y_n1_war'] = df.groupby("Name")['WAR'].shift(1) df['y_n2_war'] = df.groupby("Name")['y_n1_war'].shift(1) df['y_n3_war'] = df.groupby("Name")['y_n2_war'].shift(1) df['y_n4_war'] = df.groupby("Name")['y_n3_war'].shift(1) df['y_n5_war'] = df.groupby("Name")['y_n4_war'].shift(1) df['y_n6_war'] = df.groupby("Name")['y_n5_war'].shift(1) df['wOBA'] = pd.to_numeric(df['wOBA']) df['y_n1_wOBA'] = df.groupby("Name")['wOBA'].shift(1) df['y_n2_wOBA'] = df.groupby("Name")['y_n1_wOBA'].shift(1) df['y_n3_wOBA'] = df.groupby("Name")['y_n2_wOBA'].shift(1) df['y_n4_wOBA'] = df.groupby("Name")['y_n3_wOBA'].shift(1) df['wRC+'] = pd.to_numeric(df['wRC+']) df['y_n1_wRC+'] = df.groupby("Name")['wRC+'].shift(1) df['y_n2_wRC+'] = df.groupby("Name")['y_n1_wRC+'].shift(1) df['y_n1_war_pa'] = df.groupby("Name")['WAR_PA'].shift(1) df['y_n2_war_pa'] = df.groupby("Name")['y_n1_war_pa'].shift(1) df['y_n3_war_pa'] = df.groupby("Name")['y_n2_war_pa'].shift(1) df['y_n4_war_pa'] = df.groupby("Name")['y_n3_war_pa'].shift(1) df['y_n5_war_pa'] = df.groupby("Name")['y_n4_war_pa'].shift(1) df['y_n6_war_pa'] = df.groupby("Name")['y_n5_war_pa'].shift(1) df["BB%"] = df["BB%"].apply(lambda x: x.replace("%", "")) df['BB%'] = pd.to_numeric(df['BB%']) df["K%"] = df["K%"].apply(lambda x: x.replace("%", "")) df['K%'] = pd.to_numeric(df['K%']) df.rename(columns={'BB%': 'BBpct', 'K%': 'Kpct'}, inplace=True) return df def lagged_pitcher(df): df['WAR'] = pd.to_numeric(df['WAR']) df['y_n1_war'] = df.groupby("Name")['WAR'].shift(1) df['y_n2_war'] = df.groupby("Name")['y_n1_war'].shift(1) df['y_n3_war'] = df.groupby("Name")['y_n2_war'].shift(1) df['y_n4_war'] = df.groupby("Name")['y_n3_war'].shift(1) df['y_n5_war'] = df.groupby("Name")['y_n4_war'].shift(1) df['y_n6_war'] = df.groupby("Name")['y_n5_war'].shift(1) # df['ERA-'] = pd.to_numeric(df['ERA-']) # df['y_n1_ERA-'] = df.groupby("Name")['ERA-'].shift(1) # df['y_n2_ERA-'] = df.groupby("Name")['y_n1_ERA-'].shift(1) df['xFIP'] = pd.to_numeric(df['xFIP']) df['y_n1_xFIP'] = df.groupby("Name")['xFIP'].shift(1) df['y_n2_xFIP'] = df.groupby("Name")['y_n1_xFIP'].shift(1) df['y_n1_war_tbf'] = df.groupby("Name")['WAR_TBF'].shift(1) df['y_n2_war_tbf'] = df.groupby("Name")['y_n1_war_tbf'].shift(1) df['y_n3_war_tbf'] = df.groupby("Name")['y_n2_war_tbf'].shift(1) df['y_n4_war_tbf'] = df.groupby("Name")['y_n3_war_tbf'].shift(1) df['y_n5_war_tbf'] = df.groupby("Name")['y_n4_war_tbf'].shift(1) df['y_n6_war_tbf'] = df.groupby("Name")['y_n5_war_tbf'].shift(1) df['BB%'] = df['BB%'].astype(str) df["BB%"] = df["BB%"].apply(lambda x: x.replace("%", "")) df['BB%'] = pd.to_numeric(df['BB%']) df['K%'] = df['K%'].astype(str) df["K%"] = df["K%"].apply(lambda x: x.replace("%", "")) df['K%'] = pd.to_numeric(df['K%']) df['K-BB%'] = df['K-BB%'].astype(str) df["K-BB%"] = df["K-BB%"].apply(lambda x: x.replace("%", "")) df['K-BB%'] = pd.to_numeric(df['K-BB%']) df['SwStr%'] = df['SwStr%'].astype(str) df["SwStr%"] = df["SwStr%"].apply(lambda x: x.replace("%", "")) df['SwStr%'] = pd.to_numeric(df['SwStr%']) df['LOB%'] = df['LOB%'].astype(str) df["LOB%"] = df["LOB%"].apply(lambda x: x.replace("%", "")) df['LOB%'] = pd.to_numeric(df['LOB%']) # df['CB%'] = df['CB%'].astype(str) # df["CB%"] = df["CB%"].apply(lambda x: x.replace("%", "")) # df['CB%'] = pd.to_numeric(df['CB%']) df.rename(columns={'BB%': 'BBpct', 'K%': 'Kpct', 'K-BB%': 'K_minus_BBpct', 'CB%': 'CBpct', 'SwStr%': 'Swstrpct'}, inplace=True) return df def fix_position(df): df['Position'] = np.where(df['Position'] == "OF", "CF", df['Position']) df['Position'] = np.where((df['Position'] == "LF") | (df['Position'] == "RF"), "Corner Outfield", df['Position']) df['Position'] = np.where(df['Position'] == "P", "RP", df['Position']) # df['Position'] = np.where(df['Position'] == "SP", 1, df['Position']) # df['Position'] = np.where(df['Position'] == "C", 2, df['Position']) # df['Position'] = np.where(df['Position'] == "1B", 3, df['Position']) # df['Position'] = np.where(df['Position'] == "2B", 4, df['Position']) # df['Position'] = np.where(df['Position'] == "3B", 5, df['Position']) # df['Position'] = np.where(df['Position'] == "SS", 6, df['Position']) # df['Position'] = np.where(df['Position'] == "Corner Outfield", 7, df['Position']) # df['Position'] = np.where(df['Position'] == "CF", 8, df['Position']) # df['Position'] = np.where(df['Position'] == "RP", 9, df['Position']) # df['Position'] = np.where(df['Position'] == "DH", 10, df['Position']) return df def rate_stats_batter(df): df['WAR_PA'] = df['WAR'] / df['PA'] # add in rate based WAR (per PA, game played, etc) df['oWAR_PA'] = df['oWAR'] / df['PA'] df['WAR_PA'] = round(df['WAR_PA'], 3) df['oWAR_PA'] = round(df['oWAR_PA'], 3) return df def rate_stats_pitcher(df): df['WAR_TBF'] = df['WAR'] / df['TBF'] # add in rate based WAR (per IP, etc) # df['WAR_IP'] = df['WAR'] / df['IP'] df['wFB_TBF'] = df['wFB'] / df['TBF'] df['WAR_TBF'] = round(df['WAR_TBF'], 3) # df['WAR_IP'] = round(df['WAR_IP'], 3) df['wFB_TBF'] = round(df['wFB_TBF'], 3) return df def injury_engineering(df): df['two_year_inj_avg'] = 0 df.loc[:, "two_year_inj_avg"] = ( df.groupby("Player")["injury_duration"].shift(1) / df.groupby("Player")["injury_duration"].shift( 2) - 1) df['Injury'] = df['Injury'].fillna("None") df['injury_duration'] = df['injury_duration'].fillna(0) return df def short_season_fix_batter(df): df['WAR_162'] = np.where(df['Year'] == 2021, df['WAR']*2.3, df['WAR']) df['PA_162'] = np.where(df['Year'] == 2021, df['PA']*2.3, df['PA']) df['oWAR_162'] = np.where(df['Year'] == 2021, df['oWAR'] * 2.3, df['oWAR']) df['dWAR_162'] = np.where(df['Year'] == 2021, df['dWAR'] * 2.3, df['dWAR']) return df def short_season_fix_pitcher(df): df['WAR_162'] = np.where(df['Year'] == 2021, df['WAR']*2.3, df['WAR']) df['IP_162'] = np.where(df['Year'] == 2021, df['IP']*2.3, df['IP']) return df class NonLinearVars(): def fg_batter_vars(df): df['WAR_sq'] = np.where(df['WAR'] > 0, df['WAR'] ** 2, df['WAR'] * 2) df['y_n1_war_sq'] = np.where(df['y_n1_war'] > 0, df['y_n1_war'] ** 2, df['y_n1_war'] * 2) df['y_n2_war_sq'] = np.where(df['y_n2_war'] > 0, df['y_n2_war'] ** 2, df['y_n2_war'] * 2) df['y_n3_war_sq'] = np.where(df['y_n3_war'] > 0, df['y_n3_war'] ** 2, df['y_n3_war'] * 2) df['y_n4_war_sq'] = np.where(df['y_n4_war'] > 0, df['y_n4_war'] ** 2, df['y_n4_war'] * 2) df['y_n5_war_sq'] = np.where(df['y_n5_war'] > 0, df['y_n5_war'] ** 2, df['y_n5_war'] * 2) df['y_n6_war_sq'] = np.where(df['y_n6_war'] > 0, df['y_n6_war'] ** 2, df['y_n6_war'] * 2) df['y_n1_wOBA_sq'] = df['y_n1_wOBA'] ** 2 df['y_n2_wOBA_sq'] = df['y_n2_wOBA'] ** 2 df['y_n1_wRC+_sq'] = df['y_n1_wRC+'] ** 2 df['y_n2_wRC+_sq'] = df['y_n2_wRC+'] ** 2 return df def fg_pitcher_vars(df): df['WAR_sq'] = df['WAR'] **2 df['y_n1_war_sq'] = np.where(df['y_n1_war'] > 0, df['y_n1_war'] ** 2, df['y_n1_war'] * 2) df['y_n2_war_sq'] = np.where(df['y_n2_war'] > 0, df['y_n2_war'] ** 2, df['y_n2_war'] * 2) df['y_n3_war_sq'] = np.where(df['y_n3_war'] > 0, df['y_n3_war'] ** 2, df['y_n3_war'] * 2) df['y_n4_war_sq'] = np.where(df['y_n4_war'] > 0, df['y_n4_war'] ** 2, df['y_n4_war'] * 2) df['y_n5_war_sq'] = np.where(df['y_n5_war'] > 0, df['y_n5_war'] ** 2, df['y_n5_war'] * 2) df['y_n6_war_sq'] = np.where(df['y_n6_war'] > 0, df['y_n6_war'] ** 2, df['y_n6_war'] * 2) # df['ERA-_sq'] = df['ERA-'] **2 # df['y_n1_ERA-_sq'] = df['y_n1_ERA-'] **2 # df['y_n2_ERA-_sq'] = df['y_n2_ERA-'] **2 df['xFIP_sq'] = df['xFIP'] **2 df['y_n1_xFIP_sq'] = df['y_n1_xFIP'] **2 df['y_n2_xFIP_sq'] = df['y_n2_xFIP'] **2 return df def salary_vars(df): # df['Age'] = df['Age'].astype('int') df['Age_sq'] = df['Age'] ** 2 df['Age_log'] = np.log(df['Age']) return df # Attach the injury data to the players, merge on player and year def merge_injuries(salary_df, injury_df): merged_df = pd.merge(salary_df, injury_df, how='left', left_on=['Player', 'Season'], right_on=['Player', 'Year']) del merged_df['Year'] return merged_df # MA print(len(salary_data)) salary_data = merge_injuries(salary_data, injury_data) print(len(salary_data)) salary_data['injury_duration'] = salary_data['injury_duration'].fillna(0) salary_data = Metrics.injury_engineering(salary_data) # Lag batter_data = Metrics.short_season_fix_batter(batter_data) batter_data = Metrics.rate_stats_batter(batter_data) batter_data = Metrics.lagged_batter(batter_data) pitcher_data = Metrics.short_season_fix_pitcher(pitcher_data) pitcher_data = Metrics.rate_stats_pitcher(pitcher_data) pitcher_data = Metrics.lagged_pitcher(pitcher_data) # Position fix salary_data = Metrics.fix_position(salary_data) # Non Linears batter_data = NonLinearVars.fg_batter_vars(batter_data) pitcher_data = NonLinearVars.fg_pitcher_vars(pitcher_data) salary_data = NonLinearVars.salary_vars(salary_data) # Merge data sets (one pitcher, one batter) batter_merged = pd.merge(batter_data, salary_data, left_on=['Name', 'Year'], right_on=['Player', 'Season']) batter_merged = batter_merged[(batter_merged['Position'] != "SP") & (batter_merged['Position'] != "RP")] # remove P's print(len(batter_merged)) pitcher_merged = pd.merge(pitcher_data, salary_data, left_on=['Name', 'Year'], right_on=['Player', 'Season']) pitcher_merged = pitcher_merged[(pitcher_merged['Position'] == "SP") | (pitcher_merged['Position'] == "RP")] # keep P's print(len(pitcher_merged)) # Begin modeling # train_data_batter = batter_merged[(batter_merged['Year'] != max(batter_merged['Year']))] # train_data_pitcher = pitcher_merged[(pitcher_merged['Year'] != max(pitcher_merged['Year']))] train_data_batter = batter_merged.loc[~batter_merged['NPV'].isnull()] train_data_pitcher = pitcher_merged.loc[~pitcher_merged['NPV'].isnull()] test_data_batter = batter_merged[ # (batter_merged['Year'] == max(batter_merged['Year'])) # & (np.isnan(batter_merged['NPV']))] test_data_pitcher = pitcher_merged[ # (pitcher_merged['Year'] == max(pitcher_merged['Year'])) # & (np.isnan(pitcher_merged['NPV']))] train_data_batter.to_csv('~/Desktop/MLB_FA/Data/train_data_batter.csv', index=False) train_data_pitcher.to_csv('~/Desktop/MLB_FA/Data/train_data_pitcher.csv', index=False) test_data_batter.to_csv('~/Desktop/MLB_FA/Data/test_data_batter.csv', index=False) test_data_pitcher.to_csv('~/Desktop/MLB_FA/Data/test_data_pitcher.csv', index=False) fit = ols('NPV ~ C(Position) + WAR_sq + WAR + Age', data=train_data_batter).fit() fit.summary() # 0.597 r-sq, 0.587 adj r-sq # Plot NPV / WAR to see nonlinear relationship plot_data = train_data_batter[(train_data_batter['Year'] > 2010)] fig = plotly_express.scatter(plot_data, x="dWAR", y="NPV", color='Position', hover_data=['Player', 'Position', 'Year', 'Prev Team'], title="dWAR, NPV Colored By Position (since {})".format(min(plot_data['Year']))) fig.show() # Plot WAR / Rate WAR plot_data = batter_data[(batter_data['Year'] == 2021) & (batter_data['PA'] > 100)] fig = plotly_express.scatter(plot_data, x="PA", y="dWAR", color='Name') fig.update_layout( hoverlabel=dict( bgcolor="white", font_size=10, font_family="Arial" ) ) fig.show() # remove linear WAR # Let's add a season factor and qualifying offer fit = ols('NPV ~ C(Position) + C(Season) + WAR_sq + Age + Qual + WAR_PA', data=train_data_batter).fit() fit.summary() # Getting better, but there's more unexplained variance. Let's try log of Age and prior season's WAR # Log Age fit = ols('NPV ~ C(Position) + C(Season) + y_n1_war_sq + WAR_sq + Age_log + Qual + WAR_PA + y_n1_war_pa', data=train_data_batter).fit() fit.summary() # Still marginally improving. Up to around 50% of the variance explained. # WAR is a counting stat, let's add in base-running UBR, non-log Age # UBR fit = ols('NPV ~ C(Position) + y_n1_war_sq + WAR_sq + Age + UBR + Qual', data=train_data_batter).fit() fit.summary() # Try some new variables (e.g. OPS, ISO, wRC+, wOBA, y_n2_war_sq, etc) fit = ols('NPV ~ C(Position) + y_n2_war_sq + y_n1_war_sq + WAR_sq + Age + UBR + Qual + wOBA + ISO', data=train_data_batter).fit() fit.summary() # Now let's consider only deals signed for multiple-years train_data_batter_multiyear = train_data_batter[(train_data_batter['Years'] > 1)] fit = ols('NPV ~ C(Position) + y_n1_war_sq + WAR_sq + Age + UBR + Qual', data=train_data_batter_multiyear).fit() fit.summary() # Single year only train_data_batter_single = train_data_batter[(train_data_batter['Years'] == 1)] fit = ols('NPV ~ C(Position) + y_n1_war_sq + WAR_sq + Age + Qual', data=train_data_batter_single).fit() fit.summary() # So what are team's using to assess these single year contracts? fit = ols('NPV ~ ISO + WAR_sq + y_n1_war_sq + y_n2_war_sq + wGDP + BABIP + Qual', data=train_data_batter_single).fit() fit.summary() # Now add injury duration fit = ols('NPV ~ ISO + WAR_sq + y_n1_war_sq + y_n2_war_sq + injury_duration + Qual', data=train_data_batter).fit() fit.summary() # Kitchen sink fit_rate = ols('NPV ~ BBpct + Kpct + AVG + OBP + SLG + OPS + ISO + Spd + BABIP + UBR + wGDP + wSB + wRC + ' 'wRAA + wOBA + WAR + dWAR + oWAR + Year + WAR_PA + oWAR_PA + y_n1_war + y_n2_war + y_n3_war + ' 'y_n4_war + y_n5_war + y_n6_war + y_n1_wOBA + y_n2_wOBA + y_n3_wOBA + y_n4_wOBA + ' 'y_n1_war_pa + y_n2_war_pa + y_n3_war_pa + y_n4_war_pa + y_n5_war_pa + y_n6_war_pa +' 'WAR_sq + y_n1_war_sq + y_n2_war_sq + y_n3_war_sq + y_n4_war_sq + y_n5_war_sq + y_n6_war_sq + ' 'y_n1_wOBA_sq + y_n2_wOBA_sq + Position + Age + Qual + injury_duration', data=train_data_batter).fit() fit_rate.summary() # Remove unwanted vars fit_rate = ols('NPV ~ Kpct + Year + y_n1_war +' 'y_n1_wOBA + y_n2_war_pa + WAR_sq + y_n1_war_sq +' 'Age + Qual', data=train_data_batter).fit() fit_rate.summary() # PITCHERS train_data_pitcher['pos_dummy'] = np.where(train_data_pitcher['Position'] == "SP", 1, 0) fit = ols('NPV ~ WAR_sq + Age + Qual + pos_dummy + FBv + Kpct + y_n1_war_sq', data=train_data_pitcher).fit() fit.summary() # Predict WAR fit = ols('WAR ~ FBv + Kpct + BBpct + FIP + IP + wFB + pos_dummy', data=train_data_pitcher).fit() fit.summary() # Let's add in injury duration train_data_pitcher['injury_duration_log'] = np.log(train_data_pitcher['injury_duration']) fit = ols('NPV ~ WAR_sq + Age + Qual + injury_duration + pos_dummy', data=train_data_pitcher).fit() fit.summary() # Add FBv fit = ols('NPV ~ WAR_sq + Age + Qual + injury_duration + FBv + pos_dummy', data=train_data_pitcher).fit() fit.summary() # Kpct fit = ols('NPV ~ WAR_sq + Age + Qual + injury_duration + FBv + Kpct + pos_dummy + BBpct', data=train_data_pitcher).fit() fit.summary() # CBv fit = ols('NPV ~ Age + Qual + injury_duration + FBv + Kpct + CBv + pos_dummy', data=train_data_pitcher).fit() fit.summary() # Rate stats fit_rate = ols( 'NPV ~ Age + WAR_TBF + y_n1_war_tbf + y_n2_war_tbf + FBv + xFIP_sq + pos_dummy + injury_duration + Qual', data=train_data_pitcher).fit() fit_rate.summary() multi_year_pitcher = train_data_pitcher[(train_data_pitcher['Years'] > 1)] fit_rate_multi = ols( 'NPV ~ Age + WAR_TBF + y_n1_war_tbf + y_n2_war_tbf + FBv + xFIP_sq + pos_dummy + injury_duration', data=multi_year_pitcher).fit() fit_rate_multi.summary() # Change position and Season to random effect batter_grp = batter_merged.groupby(['Season']).agg({ 'NPV': sum, 'WAR': sum, 'Name': 'nunique' }).reset_index() batter_grp['NPV'] = batter_grp['NPV'] / 1000000 fig = plotly_express.bar(batter_grp, x="Season", y="NPV", color_continuous_scale=plotly_express.colors.qualitative.D3, title="Yearly total NPV and total WAR") fig.add_trace(go.Scatter(x=batter_grp['Season'], y=batter_grp['WAR'], line=dict(color='red'), name='WAR'), row=1, col=1) fig.show() # Create figure with secondary y-axis fig = make_subplots(specs=[[{"secondary_y": True}]]) # Add traces fig.add_trace( go.Bar(x=batter_grp['Season'], y=batter_grp['NPV'], name="NPV total"), secondary_y=False, ) fig.add_trace( go.Scatter(x=batter_grp['Season'], y=batter_grp['WAR'], name="WAR total"), secondary_y=True, ) # Add figure title fig.update_layout( title_text="Yearly total NPV and total WAR" ) # Set x-axis title fig.update_xaxes(title_text="Off-Season Year") # Set y-axes titles fig.update_yaxes(title_text="<b>NPV</b> total ($ Millions)", secondary_y=False) fig.update_yaxes(title_text="<b>WAR</b> total", secondary_y=True) fig.show()
2.9375
3
16/main.py
DVRodri8/advent-of-code-2019
0
12780717
<reponame>DVRodri8/advent-of-code-2019<filename>16/main.py pattern = [0,1,0,-1] simple = "59768092839927758565191298625215106371890118051426250855924764194411528004718709886402903435569627982485301921649240820059827161024631612290005106304724846680415690183371469037418126383450370741078684974598662642956794012825271487329243583117537873565332166744128845006806878717955946534158837370451935919790469815143341599820016469368684893122766857261426799636559525003877090579845725676481276977781270627558901433501565337409716858949203430181103278194428546385063911239478804717744977998841434061688000383456176494210691861957243370245170223862304663932874454624234226361642678259020094801774825694423060700312504286475305674864442250709029812379" offset = int(simple[:7]) simple *= 10000 print(len(simple)) simple = simple[offset:] seq = [int(i) for i in simple] cpy = seq[:] F = 100 print(len(seq)) # Part 2 # we can eliminate left part # offset is bigger than sequence length / 2 # so pos i is sum from i to end for phase in range(F): neg = 0 suma = sum(seq) new_seq = [] print(phase) for i in range(len(seq)): new_seq.append( int(str(suma-neg)[-1]) ) neg += seq[i] seq = new_seq naseq = seq[:] seq = cpy[:] ''' # Trivial part 1 apats = [] for c in range(1,len(seq)+1): apat = [] for i in pattern: apat.extend([i]*c) apats.append(apat) for phase in range(1,F+1): new_seq = [] for c in range(1,len(seq)+1): apat = apats[c-1] sa = 1 digits = [] for n in seq: digits.append( n*(apat[sa]) ) sa = (sa+1) % len(apat) # if c==2: print(digits) new_seq.append(int(str(sum(digits))[-1])) seq = new_seq print(*seq[:8], sep='') ''' print(*naseq[:8], sep='')
3.0625
3
logs/main_stringio.py
nekomaruh/Rendimiento_Escolar_en_Chile_2010-2019
0
12780718
# Libraries import pandas as pd import numpy as np import interface import time def get_dataframes(start_time, year=2010): dataframes = None columns_to_drop = interface.get_columns_to_drop() amount_csv = interface.get_amount_of_csv() for year in range(year, year+amount_csv): print('------------------------------------------------------------') path = "datasets/Rendimiento por estudiante "+str(year)+".csv" # Leemos los datos y separamos por ; porque algunos nombres de establecimientos poseen comas y dan error encoding = 'utf-8' if year == 2014 or year == 2015: encoding = 'latin' if year == 2016 or year == 2018 or year == 2019: encoding += '-sig' print('Reading: '+path+' ('+encoding+')') interface.get_time(start_time) df = pd.read_csv(path, sep=';', low_memory=False, encoding=encoding) interface.get_ram(info='File loaded') interface.get_time(start_time) df.columns = map(str.upper, df.columns) drop = [] df_columns = df.columns.values.tolist() for column in columns_to_drop: if column in df_columns: drop.append(column) #print('Dropped tables:', drop) df.drop(columns=drop, inplace=True, axis=1) # Limpiar datos: Están en todos los años df.fillna({'SIT_FIN': '-'}, inplace=True) df['SIT_FIN'] = df['SIT_FIN'].replace([' '], '-') df['COD_SEC'] = df['COD_SEC'].replace([' '], 0) df['COD_ESPE'] = df['COD_ESPE'].replace([' '], 0) df["PROM_GRAL"] = df["PROM_GRAL"].str.replace(',', ".").astype(float) # Faltan estos datos, rellenar vacios if year <= 2012: df["COD_PRO_RBD"] = np.nan # Está en 2013+ df["COD_JOR"] = np.nan # Está en 2013+ if year <= 2013: # Esta solo en los años 2010-2013 df['INT_ALU'] = df['INT_ALU'].replace(['.'], 2) df['INT_ALU'] = df['INT_ALU'].replace([' '], 2) df["COD_ENSE2"] = np.nan # Está en 2014+ if year >= 2014: # Rellenar con vacíos df['INT_ALU'] = np.nan #print('Cantidad de datos:', len(df)) if dataframes is None: dataframes = df else: dataframes = pd.concat([dataframes, df], ignore_index=True) #print(df.dtypes) del df #print(dataframes.columns.values.tolist()) interface.get_ram(info='Added year to dataframe: ' + str(year)) interface.get_time(start_time) print('------------------------------------------------------------') interface.get_ram(info='Instance dataframe 2010-2019') interface.get_time(start_time) return dataframes if __name__ == "__main__": # Inicio del programa interface.get_ram(info='Starting program') start_time = time.time() # Cargar los datos base a la base de datos interface.drop_dimensions() interface.create_dimensions() interface.insert_static_dimensions() interface.get_time(start_time) # Instanciar todos los dataframes en uno general ya limpiados df = get_dataframes(start_time) # Convertir la variable MRUN interface.get_ram(info='Converting dataframe types') interface.get_time(start_time) df['MRUN'] = df['MRUN'].astype('string') interface.get_ram(info='Types converted') interface.get_time(start_time) # Crear comunas de establecimiento y alumno, estan en todos los años (no está en la documentación) headers_com = ["COD_COM", "NOM_COM"] # Comunas donde están los establecimientos data_com_rbd = [df["COD_COM_RBD"], df["NOM_COM_RBD"]] df_com_rbd = pd.concat(data_com_rbd, axis=1, keys=headers_com) # Comunas donde provienen los alumnos data_com_alu = [df["COD_COM_ALU"], df["NOM_COM_ALU"]] df_com_alu = pd.concat(data_com_alu, axis=1, keys=headers_com) # Concatenamos las columnas df_com = pd.concat([df_com_rbd,df_com_alu]) df_com = df_com.drop_duplicates(subset=['COD_COM']) df_com = df_com.reset_index(drop=True) # Insertamos datos a la dimensión comuna interface.insert_dim_comuna(df_com.values.tolist()) interface.get_time(start_time) # Elimina residuales ram del headers_com, data_com_rbd, df_com_rbd, data_com_alu, df_com_alu, df_com df.drop(columns=['NOM_COM_RBD','NOM_COM_ALU'], inplace=True, axis=1) interface.get_ram(info='Dispose columns "comuna"') interface.get_time(start_time) # Agregar establecimientos data_establecimiento = [df["RBD"], df["DGV_RBD"], df["NOM_RBD"], df["RURAL_RBD"], df["COD_DEPE"], df["COD_REG_RBD"], df["COD_SEC"], df["COD_COM_RBD"]] headers_establecimiento = ['rbd', 'dgv_rbd', 'nom_rbd', 'rural_rbd', 'cod_depe', 'cod_reg_rbd', 'cod_sec', 'cod_com'] interface.copy_from_stringio(table_name='establecimiento', data=data_establecimiento, headers=headers_establecimiento, remove_duplicates=['rbd','dgv_rbd']) del data_establecimiento, headers_establecimiento df.drop(columns=['NOM_RBD','RURAL_RBD','COD_DEPE','COD_REG_RBD','COD_SEC','COD_COM_RBD'], inplace=True, axis=1) interface.get_ram(info='Dispose columns "establecimiento"') interface.get_time(start_time) # Agregar alumnos data_alumno = [df["MRUN"], df["FEC_NAC_ALU"], df["GEN_ALU"], df["COD_COM_ALU"], df["INT_ALU"]] headers_alumno = ["mrun", "fec_nac_alu", "gen_alu", "cod_com", "int_alu"] interface.copy_from_stringio(table_name='alumno', data=data_alumno, headers=headers_alumno, remove_duplicates=['mrun']) del data_alumno, headers_alumno df.drop(columns=['FEC_NAC_ALU','GEN_ALU','COD_COM_ALU','INT_ALU'], inplace=True, axis=1) interface.get_ram(info='Dispose columns "alumnos"') interface.get_time(start_time) """ ### TESTING ### print('DROP TESTING') df.drop(columns=['NOM_COM_RBD','NOM_COM_ALU','NOM_RBD','RURAL_RBD','COD_DEPE','COD_REG_RBD','COD_SEC','COD_COM_RBD','FEC_NAC_ALU','GEN_ALU','COD_COM_ALU','INT_ALU'], inplace=True, axis=1) print('TESTING DROPPED') ### TESTING ### """ # Agregar notas data_notas = [df["AGNO"], df["MRUN"], df["RBD"], df["DGV_RBD"], df["PROM_GRAL"], df["SIT_FIN"], df['ASISTENCIA'], df['LET_CUR'], df["COD_ENSE"], df["COD_ENSE2"], df["COD_JOR"]] head_notas = ['agno', 'mrun', 'rbd', 'dgv_rbd', 'prom_gral', 'sit_fin', 'asistencia', 'let_cur', 'cod_ense', 'cod_ense2', 'cod_jor'] interface.copy_from_stringio(table_name='notas', data=data_notas, headers=head_notas, remove_duplicates=['agno','mrun']) del data_notas, head_notas interface.get_ram(info='Inserted all data to database') interface.get_time(start_time) del df interface.get_ram(info='Dispose dataframe and finish program') interface.get_time(start_time)
3.203125
3
DeepLib/Nvidia/NvOsd.py
bluetiger9/DeepEye
57
12780719
<reponame>bluetiger9/DeepEye<filename>DeepLib/Nvidia/NvOsd.py<gh_stars>10-100 ## Copyright (c) 2020 <NAME> (<EMAIL>). All rights reserved. ## Licence: MIT from DeepLib import * import pyds PGIE_CLASS_ID_VEHICLE = 0 PGIE_CLASS_ID_BICYCLE = 1 PGIE_CLASS_ID_PERSON = 2 PGIE_CLASS_ID_ROADSIGN = 3 def osd_sink_pad_buffer_probe(pad,info,u_data): frame_number=0 #Intiallizing object counter with 0. obj_counter = { PGIE_CLASS_ID_VEHICLE:0, PGIE_CLASS_ID_PERSON:0, PGIE_CLASS_ID_BICYCLE:0, PGIE_CLASS_ID_ROADSIGN:0 } num_rects=0 gst_buffer = info.get_buffer() if not gst_buffer: print("Unable to get GstBuffer ") return # Retrieve batch metadata from the gst_buffer # Note that pyds.gst_buffer_get_nvds_batch_meta() expects the # C address of gst_buffer as input, which is obtained with hash(gst_buffer) batch_meta = pyds.gst_buffer_get_nvds_batch_meta(hash(gst_buffer)) l_frame = batch_meta.frame_meta_list while l_frame is not None: try: # Note that l_frame.data needs a cast to pyds.NvDsFrameMeta # The casting is done by pyds.glist_get_nvds_frame_meta() # The casting also keeps ownership of the underlying memory # in the C code, so the Python garbage collector will leave # it alone. frame_meta = pyds.glist_get_nvds_frame_meta(l_frame.data) except StopIteration: break frame_number=frame_meta.frame_num num_rects = frame_meta.num_obj_meta l_obj=frame_meta.obj_meta_list while l_obj is not None: try: # Casting l_obj.data to pyds.NvDsObjectMeta obj_meta=pyds.glist_get_nvds_object_meta(l_obj.data) except StopIteration: break obj_counter[obj_meta.class_id] += 1 try: l_obj=l_obj.next except StopIteration: break # Acquiring a display meta object. The memory ownership remains in # the C code so downstream plugins can still access it. Otherwise # the garbage collector will claim it when this probe function exits. display_meta=pyds.nvds_acquire_display_meta_from_pool(batch_meta) display_meta.num_labels = 1 py_nvosd_text_params = display_meta.text_params[0] # Setting display text to be shown on screen # Note that the pyds module allocates a buffer for the string, and the # memory will not be claimed by the garbage collector. # Reading the display_text field here will return the C address of the # allocated string. Use pyds.get_string() to get the string content. py_nvosd_text_params.display_text = "Frame Number={} Number of Objects={} Vehicle_count={} Person_count={}".format(frame_number, num_rects, obj_counter[PGIE_CLASS_ID_VEHICLE], obj_counter[PGIE_CLASS_ID_PERSON]) # Now set the offsets where the string should appear py_nvosd_text_params.x_offset = 10 py_nvosd_text_params.y_offset = 12 # Font , font-color and font-size py_nvosd_text_params.font_params.font_name = "Serif" py_nvosd_text_params.font_params.font_size = 10 # set(red, green, blue, alpha); set to White py_nvosd_text_params.font_params.font_color.set(1.0, 1.0, 1.0, 1.0) # Text background color py_nvosd_text_params.set_bg_clr = 1 # set(red, green, blue, alpha); set to Black py_nvosd_text_params.text_bg_clr.set(0.0, 0.0, 0.0, 1.0) # Using pyds.get_string() to get display_text as string print(pyds.get_string(py_nvosd_text_params.display_text)) pyds.nvds_add_display_meta_to_frame(frame_meta, display_meta) try: l_frame=l_frame.next except StopIteration: break return Gst.PadProbeReturn.OK
2.40625
2
web/premises/migrations/0030_report_reason.py
mehrdad-shokri/arguman.org
1
12780720
<filename>web/premises/migrations/0030_report_reason.py # -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('premises', '0029_contention_related_nouns'), ] operations = [ migrations.AddField( model_name='report', name='reason', field=models.TextField(help_text='Please explain that why the premise is a fallacy.', null=True, verbose_name='Reason'), preserve_default=True, ), ]
1.75
2
tests/test_log_format.py
jnbellinger/lta
1
12780721
# test_log_format.py """Unit tests for lta/log_format.py.""" import sys from requests.exceptions import HTTPError from .test_util import ObjectLiteral from lta.log_format import StructuredFormatter class LiteralRecord(ObjectLiteral): """ LiteralRecord is a literal LogRecord. This class creates an ObjectLiteral that also implements the (getMessage) method which is often called on LogRecord objects. This is useful for creating LogRecord literals to be used as return values from mocked API calls. """ def getMessage(self): """Format the log message.""" return self.msg % self.args def test_constructor_default() -> None: """Test that StructuredFormatter can be created without any parameters.""" sf = StructuredFormatter() assert sf.component_type is None assert sf.component_name is None assert sf.indent is None assert sf.separators == (',', ':') def test_constructor_supplied() -> None: """Test that StructuredFormatter can be created with parameters.""" sf = StructuredFormatter(component_type="Picker", component_name="test-picker", ndjson=False) assert sf.component_type == "Picker" assert sf.component_name == "test-picker" assert sf.indent == 4 assert sf.separators == (', ', ': ') def test_format_default() -> None: """Test that StructuredFormatter (no params) provides proper output.""" sf = StructuredFormatter() log_record = LiteralRecord( name="lta.picker", msg="ConnectionError trying to PATCH /status/picker with heartbeat", args=[], levelname="ERROR", levelno=40, pathname="/home/pmeade/github/lta/lta/picker.py", filename="picker.py", module="picker", exc_info=None, exc_text=None, stack_info=None, lineno=102, funcName="patch_status_heartbeat", created=1547003161.046467, msecs=46.46706581115723, relativeCreated=93.13035011291504, thread=140013641434880, threadName="MainThread", processName="MainProcess", process=8147 ) json_text = sf.format(log_record) assert json_text.startswith("{") assert json_text.endswith("}") assert json_text.find("\n") == -1 assert json_text.find("component_type") == -1 assert json_text.find("component_name") == -1 assert json_text.find("timestamp") != -1 def test_format_supplied() -> None: """Test that StructuredFormatter (with params) provides proper output.""" sf = StructuredFormatter(component_type="Picker", component_name="test-picker", ndjson=False) log_record = LiteralRecord( name="lta.picker", msg="ConnectionError trying to PATCH /status/picker with heartbeat", args=[], levelname="ERROR", levelno=40, pathname="/home/pmeade/github/lta/lta/picker.py", filename="picker.py", module="picker", exc_info=None, exc_text=None, stack_info=None, lineno=102, funcName="patch_status_heartbeat", created=1547003161.046467, msecs=46.46706581115723, relativeCreated=93.13035011291504, thread=140013641434880, threadName="MainThread", processName="MainProcess", process=8147 ) json_text = sf.format(log_record) assert json_text.startswith("{") assert json_text.endswith("}") assert json_text.find("\n") != -1 assert json_text.find("component_type") != -1 assert json_text.find("component_name") != -1 assert json_text.find("timestamp") != -1 def test_missing_exc_info() -> None: """Test that StructuredFormatter (no params) provides proper output.""" sf = StructuredFormatter() log_record = LiteralRecord( name="lta.picker", msg="ConnectionError trying to PATCH /status/picker with heartbeat", args=[], levelname="ERROR", levelno=40, pathname="/home/pmeade/github/lta/lta/picker.py", filename="picker.py", module="picker", exc_text=None, stack_info=None, lineno=102, funcName="patch_status_heartbeat", created=1547003161.046467, msecs=46.46706581115723, relativeCreated=93.13035011291504, thread=140013641434880, threadName="MainThread", processName="MainProcess", process=8147 ) json_text = sf.format(log_record) assert json_text.startswith("{") assert json_text.endswith("}") assert json_text.find("\n") == -1 assert json_text.find("component_type") == -1 assert json_text.find("component_name") == -1 assert json_text.find("timestamp") != -1 def test_exc_info_tuple() -> None: """Test that StructuredFormatter (no params) provides proper output.""" sf = StructuredFormatter() log_record = LiteralRecord( name="lta.picker", msg="ConnectionError trying to PATCH /status/picker with heartbeat", args=[], levelname="ERROR", levelno=40, pathname="/home/pmeade/github/lta/lta/picker.py", filename="picker.py", module="picker", exc_text=None, stack_info=None, lineno=102, funcName="patch_status_heartbeat", created=1547003161.046467, msecs=46.46706581115723, relativeCreated=93.13035011291504, thread=140013641434880, threadName="MainThread", processName="MainProcess", process=8147 ) try: raise HTTPError("451 Unavailable For Legal Reasons") except HTTPError: log_record.exc_info = sys.exc_info() json_text = sf.format(log_record) assert json_text.startswith("{") assert json_text.endswith("}") assert json_text.find("\n") == -1 assert json_text.find("component_type") == -1 assert json_text.find("component_name") == -1 assert json_text.find("timestamp") != -1
3.09375
3
StructuralCausalModels/structural_equation.py
Black-Swan-ICL/PySCMs
1
12780722
<reponame>Black-Swan-ICL/PySCMs # TODO add string representation of Structural Equation class StructuralEquation: """A class to represent structural equations. Structural Equations are assignments of the sort .. math:: X_{i} := g((X_j)_{j ~\in ~J}, U_i), where :math:`U_i` is an exogenous (random) variable. Parameters ---------- index_lhs : int The index of the structural variable on the left-hand side of the structural equation (the ":math:`i`"). indices_rhs : list The indices of the structural variables on the right-hand side of the structural equation (the ":math:`j`'s in :math:`J`"). exogenous_variable : scipy.stats.rv_continuous or scipy.stats.rv_discrete The exogenous variable (the ":math:`U_i`"). function : callable The function defining the functional form of the assignment in the structural equation (the ":math:`g`"). """ def __init__(self, index_lhs, indices_rhs, exogenous_variable, function): self.index_lhs = index_lhs self.indices_rhs = indices_rhs self.exogenous_variable = exogenous_variable self.function = function def generate_data(self, data): """Generates samples from a structural equation. Parameters ---------- data : pandas.DataFrame A dataframe containing data at least for the structural variables on the right-hand side of the structural equation. If it contains data for the structural variable on the left-hand side of the structural equation, that data will be overwritten. Returns ------- pandas.DataFrame The samples. """ sample_size = data.shape[0] inputs = [data.loc[:, i].values for i in self.indices_rhs] data.loc[:, self.index_lhs] = self.function( self.exogenous_variable.rvs(size=sample_size), *inputs ) return data
3.15625
3
RobotFramework/inventories/production/connectivity_check_v2.py
dmmar/netascode
36
12780723
# Example # ------- # # connectivity_check_v2.py from pyats import aetest import re import logging # get your logger for your script logger = logging.getLogger(__name__) class CommonSetup(aetest.CommonSetup): # CommonSetup-SubSec1 @aetest.subsection def check_topology( self, testbed, HQ_C1_name = 'HQ-C1', HQ_C2_name = 'HQ-C2', HQ_C3_name = 'HQ-C3', HQ_C4_name = 'HQ-C4', BR1_C1_name = 'BR1-C1', BR2_C1_name = 'BR2-C1'): HQ_C1 = testbed.devices[HQ_C1_name] HQ_C2 = testbed.devices[HQ_C2_name] HQ_C3 = testbed.devices[HQ_C3_name] HQ_C4 = testbed.devices[HQ_C4_name] BR1_C1 = testbed.devices[BR1_C1_name] BR2_C1 = testbed.devices[BR2_C1_name] # add them to testscript parameters self.parent.parameters.update( HQ_C1 = HQ_C1, HQ_C2 = HQ_C2, HQ_C3 = HQ_C3, HQ_C4 = HQ_C4, BR1_C1 = BR1_C1, BR2_C1 = BR2_C1) # CommonSetup-SubSec @aetest.subsection def establish_connections(self, steps, HQ_C1, HQ_C2, HQ_C3, HQ_C4, BR1_C1, BR2_C1): with steps.start('Connecting to %s' % HQ_C1.name): HQ_C1.connect() with steps.start('Connecting to %s' % HQ_C2.name): HQ_C2.connect() with steps.start('Connecting to %s' % HQ_C3.name): HQ_C3.connect() with steps.start('Connecting to %s' % HQ_C4.name): HQ_C4.connect() with steps.start('Connecting to %s' % BR1_C1.name): BR1_C1.connect() with steps.start('Connecting to %s' % BR2_C1.name): BR2_C1.connect() @aetest.subsection def setup_ip_addresses(self, steps, HQ_C1, HQ_C2, HQ_C3, HQ_C4, BR1_C1, BR2_C1): with steps.start('Setup static IPv4 to %s' % HQ_C1.name): HQ_C1.execute('ip 10.255.100.10/27 10.255.100.1') with steps.start('Setup static IPv4 to %s' % HQ_C2.name): HQ_C2.execute('ip 10.255.100.40/27 10.255.100.33') with steps.start('Setup static IPv4 to %s' % HQ_C3.name): HQ_C3.execute('ip 10.255.100.70/27 10.255.100.65') with steps.start('Setup static IPv4 to %s' % HQ_C4.name): HQ_C4.execute('ip 10.255.100.100/27 10.255.100.97') with steps.start('Setup static IPv4 to %s' % BR1_C1.name): BR1_C1.execute('ip 10.1.100.10/27 10.1.100.1') with steps.start('Setup static IPv4 to %s' % BR2_C1.name): BR2_C1.execute('ip 10.2.100.10/27 10.2.100.1') # TestCases class TESTCASE_1_PING_FROM_HQ_CLIENTS_TO_ISP(aetest.Testcase): @aetest.test def T1_PING_FROM_HQ_C1_TO_ISP(self, HQ_C1): try: result = HQ_C1.execute('ping 8.8.8.8 -c 5') except Exception as e: self.failed('Something go wrong'.format(str(e)), goto = ['exit']) else: match = re.search('timeout', result) or re.search('not reachable|unreachable', result) print('################') print('Result is =>', result) print('Math is =>', match) print('################') if match: print('Math is => FIND', match) print('################') self.failed() else: print('Math is => NOT FIND') print('################') @aetest.test def T2_PING_FROM_HQ_C2_TO_ISP(self, HQ_C2): try: result = HQ_C2.execute('ping 8.8.8.8 -c 5') except Exception as e: self.failed('Something go wrong'.format(str(e)), goto = ['exit']) else: match = re.search('timeout', result) or re.search('not reachable|unreachable', result) print('################') print('Result is =>', result) print('Math is =>', match) print('################') if match: print('Math is => FIND', match) print('################') self.failed() else: print('Math is => NOT FIND') print('################') @aetest.test def T3_PING_FROM_HQ_C3_TO_ISP(self, HQ_C3): try: result = HQ_C3.execute('ping 8.8.8.8 -c 5') except Exception as e: self.failed('Something go wrong'.format(str(e)), goto=['exit']) else: match = re.search('timeout', result) or re.search('not reachable|unreachable', result) print('################') print('Result is =>', result) print('Math is =>', match) print('################') if match: print('Math is => FIND', match) print('################') self.failed() else: print('Math is => NOT FIND') print('################') @aetest.test def T4_PING_FROM_HQ_C4_TO_ISP(self, HQ_C4): try: result = HQ_C4.execute('ping 8.8.8.8 -c 5') except Exception as e: self.failed('Something go wrong'.format(str(e)), goto=['exit']) else: match = re.search('timeout', result) or re.search('not reachable|unreachable', result) print('################') print('Result is =>', result) print('Math is =>', match) print('################') if match: print('Math is => FIND', match) print('################') self.failed() else: print('Math is => NOT FIND') print('################') class TESTCASE_2_PING_FROM_BR1_CLIENTS_TO_ISP(aetest.Testcase): @aetest.test def T1_PING_FROM_BR1_C1_TO_ISP(self, BR1_C1): try: result = BR1_C1.execute('ping 8.8.8.8 -c 5') except Exception as e: self.failed('Something go wrong'.format(str(e)), goto = ['exit']) else: match = re.search('timeout', result) or re.search('not reachable|unreachable', result) print('################') print('Result is =>', result) print('Math is =>', match) print('################') if match: print('Math is => FIND', match) print('################') self.failed() else: print('Math is => NOT FIND') print('################') class TESTCASE_3_PING_FROM_BR2_CLIENTS_TO_ISP(aetest.Testcase): @aetest.test def T1_PING_FROM_BR2_C1_TO_ISP(self, BR2_C1): try: result = BR2_C1.execute('ping 8.8.8.8 -c 5') except Exception as e: self.failed('Something go wrong'.format(str(e)), goto = ['exit']) else: match = re.search('timeout', result) or re.search('not reachable|unreachable', result) print('################') print('Result is =>', result) print('Math is =>', match) print('################') if match: print('Math is => FIND', match) print('################') self.failed() else: print('Math is => NOT FIND') print('################') class TESTCASE_4_PING_FROM_HQ_CLIENTS_TO_HQ_S1(aetest.Testcase): @aetest.test def T1_PING_FROM_HQ_C1_TO_HQ_S1(self, HQ_C1): try: result = HQ_C1.execute('ping 10.255.255.2 -c 5') except Exception as e: self.failed('Something go wrong'.format(str(e)), goto = ['exit']) else: match = re.search('timeout', result) or re.search('not reachable|unreachable', result) print('################') print('Result is =>', result) print('Math is =>', match) print('################') if match: print('Math is => FIND', match) print('################') self.failed() else: print('Math is => NOT FIND') print('################') @aetest.test def T2_PING_FROM_HQ_C2_TO_HQ_S1(self, HQ_C2): try: result = HQ_C2.execute('ping 10.255.255.2 -c 5') except Exception as e: self.failed('Something go wrong'.format(str(e)), goto = ['exit']) else: match = re.search('timeout', result) or re.search('not reachable|unreachable', result) print('################') print('Result is =>', result) print('Math is =>', match) print('################') if match: print('Math is => FIND', match) print('################') self.failed() else: print('Math is => NOT FIND') print('################') @aetest.test def T3_PING_FROM_HQ_C3_TO_HQ_S1(self, HQ_C3): try: result = HQ_C3.execute('ping 10.255.255.2 -c 5') except Exception as e: self.failed('Something go wrong'.format(str(e)), goto=['exit']) else: match = re.search('timeout', result) or re.search('not reachable|unreachable', result) print('################') print('Result is =>', result) print('Math is =>', match) print('################') if match: print('Math is => FIND', match) print('################') self.failed() else: print('Math is => NOT FIND') print('################') @aetest.test def T4_PING_FROM_HQ_C4_TO_HQ_S1(self, HQ_C4): try: result = HQ_C4.execute('ping 10.255.255.2 -c 5') except Exception as e: self.failed('Something go wrong'.format(str(e)), goto=['exit']) else: match = re.search('timeout', result) or re.search('not reachable|unreachable', result) print('################') print('Result is =>', result) print('Math is =>', match) print('################') if match: print('Math is => FIND', match) print('################') self.failed() else: print('Math is => NOT FIND') print('################') class TESTCASE_5_PING_FROM_BR1_CLIENTS_TO_HQ_S1(aetest.Testcase): @aetest.test def T1_PING_FROM_BR1_C1_TO_HQ_S1(self, BR1_C1): try: result = BR1_C1.execute('ping 10.255.255.2 -c 5') except Exception as e: self.failed('Something go wrong'.format(str(e)), goto = ['exit']) else: match = re.search('timeout', result) or re.search('not reachable|unreachable', result) print('################') print('Result is =>', result) print('Math is =>', match) print('################') if match: print('Math is => FIND', match) print('################') self.failed() else: print('Math is => NOT FIND') print('################') class TESTCASE_6_PING_FROM_BR2_CLIENTS_TO_HQ_S1(aetest.Testcase): @aetest.test def T1_PING_FROM_BR2_C1_TO_HQ_S1(self, BR2_C1): try: result = BR2_C1.execute('ping 10.255.255.2 -c 5') except Exception as e: self.failed('Something go wrong'.format(str(e)), goto = ['exit']) else: match = re.search('timeout', result) or re.search('not reachable|unreachable', result) print('################') print('Result is =>', result) print('Math is =>', match) print('################') if match: print('Math is => FIND', match) print('################') self.failed() else: print('Math is => NOT FIND') print('################') class TESTCASE_7_TRACEROUTE_FROM_HQ_CLIENTS_TO_ISP(aetest.Testcase): @aetest.test def T1_TRACE_FROM_HQ_C1_TO_ISP(self, HQ_C1): try: result = HQ_C1.execute('trace 8.8.8.8 -P 6') except Exception as e: self.failed('Something go wrong'.format(str(e)), goto = ['exit']) else: match = re.search('\* \* \*', result) or re.search('Destination host unreachable', result) print('################') print('Result is =>', result) print('Math is =>', match) print('################') if match: print('Math is => FIND', match) print('################') self.failed() else: print('Math is => NOT FIND') print('################') @aetest.test def T2_TRACE_FROM_HQ_C2_TO_ISP(self, HQ_C2): try: result = HQ_C2.execute('trace 8.8.8.8 -P 6') except Exception as e: self.failed('Something go wrong'.format(str(e)), goto = ['exit']) else: match = re.search('\* \* \*', result) or re.search('Destination host unreachable', result) print('################') print('Result is =>', result) print('Math is =>', match) print('################') if match: print('Math is => FIND', match) print('################') self.failed() else: print('Math is => NOT FIND') print('################') @aetest.test def T3_TRACE_FROM_HQ_C3_TO_ISP(self, HQ_C3): try: result = HQ_C3.execute('trace 8.8.8.8 -P 6') except Exception as e: self.failed('Something go wrong'.format(str(e)), goto = ['exit']) else: match = re.search('\* \* \*', result) or re.search('Destination host unreachable', result) print('################') print('Result is =>', result) print('Math is =>', match) print('################') if match: print('Math is => FIND', match) print('################') self.failed() else: print('Math is => NOT FIND') print('################') @aetest.test def T4_TRACE_FROM_HQ_C4_TO_ISP(self, HQ_C4): try: result = HQ_C4.execute('trace 8.8.8.8 -P 6') except Exception as e: self.failed('Something go wrong'.format(str(e)), goto = ['exit']) else: match = re.search('\* \* \*', result) or re.search('Destination host unreachable', result) print('################') print('Result is =>', result) print('Math is =>', match) print('################') if match: print('Math is => FIND', match) print('################') self.failed() else: print('Math is => NOT FIND') print('################') # CommonCleanup class CommonCleanup(aetest.CommonCleanup): @aetest.subsection def disconnect(self, steps, HQ_C1, HQ_C2, HQ_C3, HQ_C4, BR1_C1, BR2_C1): with steps.start('Disconnecting from %s' % HQ_C1.name): HQ_C1.disconnect() with steps.start('Disconnecting from %s' % HQ_C2.name): HQ_C2.disconnect() with steps.start('Disconnecting from %s' % HQ_C3.name): HQ_C3.disconnect() with steps.start('Disconnecting from %s' % HQ_C4.name): HQ_C4.disconnect() with steps.start('Disconnecting from %s' % BR1_C1.name): BR1_C1.disconnect() with steps.start('Disconnecting from %s' % BR2_C1.name): BR2_C1.disconnect() if __name__ == '__main__': import argparse from pyats.topology import loader parser = argparse.ArgumentParser() parser.add_argument('--testbed', dest = 'testbed', type = loader.load) args, unknown = parser.parse_known_args() aetest.main(**vars(args))
2.296875
2
Scripts/chardetect-script.py
linshenping/Python27
0
12780724
<filename>Scripts/chardetect-script.py #!C:\Python27\python.exe # EASY-INSTALL-ENTRY-SCRIPT: 'chardet==3.0.4','console_scripts','chardetect' __requires__ = 'chardet==3.0.4' import sys from pkg_resources import load_entry_point if __name__ == '__main__': sys.exit( load_entry_point('chardet==3.0.4', 'console_scripts', 'chardetect')() )
1.789063
2
wxpythonopengl.py
aole/boilerplate
1
12780725
import wx import numpy as np import time from wx import glcanvas from OpenGL.GL import * from OpenGL.GLU import * from OpenGL.arrays import vbo from OpenGL.GL import shaders from readobj import Obj3D __author__ = '<NAME>' __version__ = '0.1.0' vertexShader = """ #version 120 void main() { gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex; } """ fragmentShader = """ #version 120 void main() { gl_FragColor = vec4( .9, .9, .9, 1 ); } """ class GLFrame( glcanvas.GLCanvas ): """A simple class for using OpenGL with wxPython.""" near_plane = 0.1 far_plane = 100 world_pos = (0, 0, -6) world_rot = (0, 0, 0) def __init__(self, parent): self.GLinitialized = False attribList = (glcanvas.WX_GL_RGBA, # RGBA glcanvas.WX_GL_DOUBLEBUFFER, # Double Buffered glcanvas.WX_GL_DEPTH_SIZE, 24) # 24 bit super(GLFrame, self).__init__( parent, attribList=attribList ) # # Create the canvas self.context = glcanvas.GLContext( self ) self.left_down = False # # Set the event handlers. self.Bind(wx.EVT_ERASE_BACKGROUND, self.processEraseBackgroundEvent) self.Bind(wx.EVT_SIZE, self.processSizeEvent) self.Bind(wx.EVT_PAINT, self.processPaintEvent) self.Bind(wx.EVT_MOUSEWHEEL, self.processWheelEvent) self.Bind(wx.EVT_MOTION, self.processMotion) self.Bind(wx.EVT_LEFT_DOWN, self.processLeftDown) self.Bind(wx.EVT_LEFT_UP, self.processLeftUp) # # Canvas Proxy Methods def GetGLExtents(self): """Get the extents of the OpenGL canvas.""" return self.GetClientSize() # # wxPython Window Handlers def processLeftDown( self, event ): self.last_pos = event.GetPosition() self.left_down = True def processLeftUp( self, event ): self.left_down = False def processMotion( self, event ): if self.left_down: pos = event.GetPosition() diff = (pos-self.last_pos) self.world_rot = ( self.world_rot[0]+diff[1], self.world_rot[1]+diff[0], self.world_rot[2] ) # print( ) self.last_pos = pos self.Refresh( False ) def processWheelEvent( self, event ): delta = event.GetWheelRotation() / 100 self.world_pos = ( self.world_pos[0], self.world_pos[1], self.world_pos[2]+delta ) self.Refresh( False ) def processEraseBackgroundEvent( self, event ): """Process the erase background event.""" pass # Do nothing, to avoid flashing on MSWin def processSizeEvent( self, event ): self.Show() self.SetCurrent( self.context ) size = self.GetGLExtents() self.OnReshape( size.width, size.height ) self.Refresh( False ) event.Skip() def processPaintEvent(self, event): self.SetCurrent( self.context ) # This is a 'perfect' time to initialize OpenGL ... only if we need to if not self.GLinitialized: self.OnInitGL() self.GLinitialized = True self.OnDraw() event.Skip() # # GLFrame OpenGL Event Handlers def OnInitGL(self): """Initialize OpenGL for use in the window.""" glClearColor(1, 1, 1, 1) VERTEX_SHADER = shaders.compileShader( vertexShader, GL_VERTEX_SHADER ) FRAGMENT_SHADER = shaders.compileShader( fragmentShader, GL_FRAGMENT_SHADER ) self.shader = shaders.compileProgram( VERTEX_SHADER, FRAGMENT_SHADER ) cube = Obj3D( 'testdata\cube.obj' ) data = cube.getVerticesFlat() self.vbo = vbo.VBO( np.array( data, 'f' ) ) def OnReshape( self, width, height ): """Reshape the OpenGL viewport based on the dimensions of the window.""" glViewport( 0, 0, width, height ) glMatrixMode( GL_PROJECTION ) glLoadIdentity() # glOrtho( -0.5, 0.5, -0.5, 0.5, -1, 1 ) gluPerspective( 45.0, width/height, self.near_plane, self.far_plane ) glMatrixMode(GL_MODELVIEW) glLoadIdentity() def OnDraw( self ): glPushMatrix() glTranslate( self.world_pos[0], self.world_pos[1], self.world_pos[2] ) glRotated( self.world_rot[1], 0, 1, 0 ) glRotated( self.world_rot[0], 1, 0, 0 ) glClear( GL_COLOR_BUFFER_BIT ) shaders.glUseProgram( self.shader ) self.vbo.bind() glEnableClientState( GL_VERTEX_ARRAY ); glVertexPointerf( self.vbo ) glDrawArrays( GL_TRIANGLES, 0, len( self.vbo ) ) self.vbo.unbind() glDisableClientState( GL_VERTEX_ARRAY ); shaders.glUseProgram( 0 ) glPopMatrix() self.SwapBuffers() class Window( wx.Frame ): def __init__( self, *args, **kwargs ): super().__init__( *args, **kwargs ) self.initUI() def initUI( self ): panel = GLFrame(self) panel.Bind(wx.EVT_RIGHT_DOWN, self.OnRightDown) wx.StaticText( panel, label='Boilerplate Code', pos=( 10, 10 ) ) fmenu = wx.Menu() self.popupMenu = wx.Menu() fitem = fmenu.Append( wx.ID_OPEN, '&Open\tCtrl+O', 'Open file' ) self.popupMenu.Append( wx.ID_OPEN, '&Open\tCtrl+O', 'Open file' ) self.Bind( wx.EVT_MENU, self.onOpen, fitem ) fmenu.AppendSeparator() fitem = fmenu.Append( wx.ID_EXIT, 'E&xit\tCtrl+Q', 'Exit Application' ) self.popupMenu.Append( wx.ID_EXIT, 'E&xit\tCtrl+Q', 'Exit Application' ) self.Bind(wx.EVT_MENU, self.onQuit, fitem) mbar = wx.MenuBar() mbar.Append( fmenu, '&File' ) self.SetMenuBar( mbar ) self.Show() def OnRightDown(self, event): self.PopupMenu( self.popupMenu, event.GetPosition() ) def onQuit( self, event ): self.Close() def onOpen( self, event ): print( 'open' ) class Application( wx.App ): def run( self ): frame = Window(None, -1, 'Boilerplate Window', size=(400,300)) frame.Show() self.MainLoop() self.Destroy() Application().run()
2.375
2
backend/error_handlers.py
UIC-InDeXLab/CovidInsights
0
12780726
<reponame>UIC-InDeXLab/CovidInsights from backend import app from flask import jsonify invalid_country_msg = "Invalid country name. Please check using /list/countries to see valid country names." invalid_region_msg = "Invalid region name. Please check using /list/regions to see names of regions." invalid_country_or_no_regions_msg = "Country name invalid or this country doesn't have regional data. " \ "Refer to /list/countries and /list/regions" invalid_window_msg = "A GET parameter 'window' must be provided such that: "\ "1 <= window <= (number of days available in data)" invalid_type_msg = "GET parameter 'type' should be one of: 'deaths', 'recovered', 'cases'. Default is 'cases'." invalid_date_fmt = "GET parameter 'date' either invalid or not in format YYYY-MM-DD." date_out_of_range = "Provided date is out of range of data available." data_type_invalid_for_region = "The requested data type is not available for the given location." invalid_similarity_measure = "Similarity measure not understood. Choose from: euclidean, normalized." similarity_measure_not_available = "Similarity measure not available for this location because population data " \ "unavailable." @app.errorhandler(400) def bad_request(error): return {'error': { 'code': 400, 'message': error.description }}, 400 @app.errorhandler(404) def not_found(error): return {'error': { 'code': 404, 'message': error.description }}, 404 @app.errorhandler(405) def server_error(error): return {'error': { 'code': 405, 'message': error.description }}, 405 @app.errorhandler(500) def server_error(error): return {'error': { 'code': 500, 'message': error.description }}, 500
2.359375
2
app/config.py
Tiebe/EarnApp-Earning-Monitor
0
12780727
<gh_stars>0 import os import io import json from time import sleep class Configuration: def __init__(self) -> None: self.check_for_existing_config() # Delay before checking env. Solves docker issues. sleep(2) # if config doesn't exist if self.config_file_exists: self.__want_to_reset_config() if self.__reuse_config == True: self.load_config() else: self.ask_config() else: self.ask_config() self.fix_bugs() def fix_bugs(self): self.__fix_delay_bug() def ask_config(self): self.AUTH = (input("Enter the oauth-refresh-token from EarnApp dashboard\n\t: ") if os.environ.get("AUTH") is None else os.environ.get("AUTH")) # 10 Minutes recommended by Vita self.DELAY = (10 if os.environ.get("DELAY") is None else int(os.environ.get("DELAY"))) self.INTERVAL = (60 if os.environ.get("INTERVAL") is None else int(os.environ.get("INTERVAL"))) self.WEBHOOK_URL = (input("Enter the Discord WebHook URL\n\t: ") if os.environ.get( "WEBHOOK_URL") is None else os.environ.get("WEBHOOK_URL")) self.AUTOMATIC_REDEEM = (input("Do you want to use automatic redeeming?\n\t[i] This helps getting your " "money faster.\n\t[i] If you don't want to use this feature just put 0 here else put the belance that has to be exceeted here [>2.5]\n\t: ")) if os.environ.get("AUTOMATIC_REDEEM") is None \ else os.environ.get("AUTOMATIC_REDEEM") self.create_config() def __want_to_reset_config(self): if os.environ.get('container', False) == 'docker': self.__reuse_config = True return got_response = False while(not got_response): response = input("Want to use existing configuration? (yes/no): ") if response.lower() == "yes": got_response = True self.__reuse_config = True elif response.lower() == "no": got_response = True self.__reuse_config = False else: print("Didn't quite understand, try again!") def check_for_existing_config(self): self.home_directory = os.path.expanduser("~") self.program_data_folder = ".earnapp-earning-monitor" self.config_file_name = "config.json" self.program_directory = os.path.join(self.home_directory, self.program_data_folder) self.config_file_path = os.path.join(self.program_directory, self.config_file_name) self.config_file_exists = os.path.exists(self.config_file_path) def create_config(self): if os.environ.get('container', False) == 'docker': print("Detected container runtime.") else: # If config file doesn't exist if not self.config_file_exists: # If direcotry doesn't exist, create dir if not os.path.exists(self.program_directory): os.mkdir(self.program_directory) config = { "AUTH": self.AUTH, "DELAY": self.DELAY, "INTERVAL": self.INTERVAL, "WEBHOOK_URL": self.WEBHOOK_URL, "AUTOMATIC_REDEEM": self.AUTOMATIC_REDEEM, } with io.open(self.config_file_path, "w", encoding="utf-8") as stream: json.dump(config, stream, indent=2) def load_config(self): with io.open(self.config_file_path, "r", encoding="utf-8") as stream: try: config_data = json.load(stream) self.AUTH = config_data["AUTH"] self.DELAY = config_data["DELAY"] self.INTERVAL = config_data["INTERVAL"] self.WEBHOOK_URL = config_data["WEBHOOK_URL"] self.AUTOMATIC_REDEEM = config_data["AUTOMATIC_REDEEM"] except: print("Looks like your config file is missing paramters... Please reconfigure.") exit(1) def __fix_delay_bug(self): if self.DELAY < 0 or self.DELAY >= 60: print('Found invalid delay configuration. Fixing..!') self.DELAY = 10 # Standart self.create_config() if __name__ == "__main__": config = Configuration()
2.359375
2
django_monitor/price_monitor/urls/__init__.py
jasonljc/enterprise-price-monitor
0
12780728
from django.conf.urls import url from .. import views urlpatterns = [ url(r'^$', views.index, name='index'), url(r'^add/$', views.request_add) ]
1.492188
1
writeFullVP.py
maq18/TopoScope
0
12780729
<filename>writeFullVP.py import copy, random, os from collections import defaultdict from hierarchy import Hierarchy class GetFullVP(object): def __init__(self, groupSize, dirs): self.groupSize = groupSize self.dir = dirs if not os.path.exists(self.dir): os.mkdir(self.dir) self.VP2AS = defaultdict(set) self.VP2path = defaultdict(set) self.fullVP = set() self.partialVP = set() self.VPGroup = list() self.fileNum = -1 self.tier = Hierarchy('asrel.txt') def getFullVP(self): with open('aspaths.txt') as f: for line in f: ASes = line.strip().split('|') for AS in ASes: self.VP2AS[ASes[0]].add(AS) self.VP2path[ASes[0]].add(line.strip()) for VP in self.VP2AS.keys(): if 65000*0.8 < len(self.VP2AS[VP]): self.fullVP.add(VP) else: self.partialVP.add(VP) def fullVPGroup(self): VP_copy1, VP_copy2 = list(), list() for VP in self.fullVP: if VP in self.tier.clique or VP in self.tier.high: VP_copy1.append(VP) else: VP_copy2.append(VP) while len(VP_copy1) >= self.groupSize: tmp = list() for _ in range(self.groupSize): index = random.randint(0, len(VP_copy1) - 1) tmp.append(VP_copy1.pop(index)) self.VPGroup.append(tmp) while len(VP_copy2) >= self.groupSize: tmp = list() for _ in range(self.groupSize): index = random.randint(0, len(VP_copy2) - 1) tmp.append(VP_copy2.pop(index)) self.VPGroup.append(tmp) tmp = [] for VP in VP_copy2 + VP_copy1: tmp.append(VP) if len(tmp) > self.groupSize: self.VPGroup.append(tmp[:self.groupSize]) tmp = tmp[self.groupSize:] for VP in self.partialVP: tmp.append(VP) self.VPGroup.append(tmp) self.fileNum = len(self.VPGroup) def writeFullVPPath(self): for i in range(self.fileNum): f = open(self.dir + 'fullVPPath' + str(i) + '.txt', 'w') for VP in self.VPGroup[i]: for path in self.VP2path[VP]: f.write(path + '\n') f.close() def inferTopo(self): for i in range(self.fileNum): os.system("perl asrank.pl " + self.dir + "fullVPPath" + str(i) + ".txt > " + self.dir + "fullVPRel" + str(i) + ".txt") def run(self): self.getFullVP() self.fullVPGroup() self.writeFullVPPath() self.inferTopo()
2.546875
3
setup.py
chrisbarr/bilious-rutabaga
0
12780730
<filename>setup.py<gh_stars>0 from setuptools import setup, find_packages setup( name = 'bucket_lister', packages = find_packages(), version = '0.2.3', description = 'List S3 buckets for an account', author = '<NAME>', author_email = '<EMAIL>', url = 'https://github.com/chrisbarr/bilious-rutabaga', download_url = 'https://github.com/chrisbarr/bilious-rutabaga/tarball/0.1', keywords = ['aws', 's3'], classifiers = [], install_requires = ['boto>=2.38.0'], )
1.507813
2
PP.py
Mukela12/philosophical
1
12780731
from flask import Flask, render_template, url_for, request, redirect,flash from flask_sqlalchemy import SQLAlchemy from datetime import datetime app = Flask(__name__) @app.route("/", methods=["POST", "GET"]) def Base(): if request.method == "POST": name = request.form["name"] email = request.form["email"] message = request.form["message"] return redirect(url_for('Thankyou')) else: return render_template('index.html') @app.route('/Thankyou', methods=["POST", "GET"]) def Thankyou(): return render_template('Thankyou2.html') if __name__ == "__main__": app.run(debug=True)
2.796875
3
esteira/pipeline/stage.py
guilhermewebdev/esteira
0
12780732
<filename>esteira/pipeline/stage.py from .task import Task class Stage(Task): before_script = [] script = [] repo_dir = '' def __init__(self, repo_dir, image=None, external_envs={}): self.repo_dir = repo_dir super().__init__(external_envs=external_envs, image=image) def each_script(self, scripts): image = self.client.images.get(self.image) for script in scripts: print(f'> {script}') self.container = self.client.containers.run( image, command=script, stderr=True, stdin_open=False, working_dir='/builds', volumes={ self.repo_dir: { 'bind': '/builds', 'mode': 'rw' } }, environment=self.variables, detach=True, hostname=f'{self.__class__.__name__}'.lower() ) for log in self.container.logs(stream=True, stderr=True, follow=True): print(log.decode('utf-8')) response = self.container.wait() assert response.get('StatusCode') == 0, 'Code returned ' + str(response.get('StatusCode')) assert response.get('Error') == None, str(response.get('Error')) image = self.container.commit(f'{self.__class__.__name__}'.lower()) def run(self): self.each_script(self.before_script) self.each_script(self.script) self.destroy()
2.265625
2
__init__.py
IBM/alchemy-config
0
12780733
<filename>__init__.py #*****************************************************************# # (C) Copyright IBM Corporation 2020. # # # # The source code for this program is not published or otherwise # # divested of its trade secrets, irrespective of what has been # # deposited with the U.S. Copyright Office. # #*****************************************************************# from .aconfig import *
1.414063
1
Pomodoro-GUI/main.py
twbm/Git-Learning-Thingy
1
12780734
from tkinter import * import time # ---------------------------- CONSTANTS ------------------------------- # PINK = "#e2979c" RED = "#e7305b" GREEN = "#9bdeac" YELLOW = "#f7f5dd" FONT_NAME = "Courier" WORK_MIN = 25 SHORT_BREAK_MIN = 5 LONG_BREAK_MIN = 20 # ---------------------------- TIMER RESET ------------------------------- # # ---------------------------- TIMER MECHANISM ------------------------------- # # ---------------------------- COUNTDOWN MECHANISM ------------------------------- # # ---------------------------- UI SETUP ------------------------------- # window = Tk() window.title("Work Timer") window.config(padx=100, pady=50, bg=YELLOW) title_label = Label(text="Timer",bg=YELLOW, fg=GREEN, font=(FONT_NAME, 35, 'bold')) title_label.grid(column=1, row=0) canvs = Canvas(width=200, height=224, bg=YELLOW, highlightthickness=0) tomato = PhotoImage(file='tomato.png') canvs.create_image(100, 112, image=tomato) canvs.create_text(100, 130, text='00:00', fill='white', font=(FONT_NAME, 36, 'bold')) canvs.grid(row=1, column=1) start = Button(text='Start',highlightthickness=0, command=None) start.grid(column=0, row=2) reset = Button(text='Reset', highlightthickness=0,command=None) reset.grid(column=2, row=2) check_marks = Label(text="✓", bg=YELLOW, fg=GREEN, font=(FONT_NAME, 35, 'bold')) check_marks.grid(column=1, row=3) window.mainloop()
3.09375
3
test/run.py
mcr/uoscore-uedhoc
0
12780735
#!/usr/bin/env python3 # Copyright (c) 2021 Fraunhofer AISEC. See the COPYRIGHT # file at the top-level directory of this distribution. # Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or # http://www.apache.org/licenses/LICENSE-2.0> or the MIT license # <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your # option. This file may not be copied, modified, or distributed # except according to those terms. import shutil import os import subprocess import tarfile from pathlib import Path from collections import namedtuple arc = namedtuple("arc", "board, cpu_arc") build_path = 'build' build_lib_test_path = 'build_lib_test' results_path = 'packaged' def remove_folder(path): """ Removes a folder. """ if os.path.exists(path): shutil.rmtree(path) def clean_all(): """ Removes all build artefacts and the already saved static libraries in folder packaged/. """ print("\nClean all!\n") clean() remove_folder(results_path) def clean(): """ Removes all build artefacts. """ remove_folder(build_path) remove_folder(build_lib_test_path) def execute_ext(cmd): """ Executes an external program. cmd: program with arguments """ process = subprocess.Popen( cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE) process.wait() for line in process.stdout: print(line) if "FAIL" in str(line): exit() def build(name, opt, arc): """ Builds a static library. name: name of the library -- libuoscore.a or libuedhoc.a opt: optimization level arc: the name of the architecture (the Zephyr OS board name) """ # crate a file containing make variable indicating the optimization level # and the library which we want to build -- osocre or edhoc print("\n") print("===================================================================") print("\nBuilding " + name + " for architecture " + arc.cpu_arc + " with optimization " + opt + "\n") print("===================================================================") os.mkdir(build_lib_test_path) f = open(build_lib_test_path + "/opt", "x") f.write("OPT = " + opt + "\n") f.write("LIB_NAME = " + name + "\n") f.close() m = open("src/main.h", "w+") if (name == 'libuoscore.a'): m.write("#define OSCORE_TESTS") if (name == 'libuedhoc.a'): m.write("#define EDHOC_TESTS") m.close # build with west execute_ext(['west', 'build', '-b='+arc.board]) def save(name, arc): """ Saves a oscore or edhoc library for a specific architecture in folder packaged. name: name of the library -- libuoscore.a or libuedhoc.a arc: the name of the architecture (the Zephyr OS board name) """ print("\nSaving!\n") Path(results_path).mkdir(parents=True, exist_ok=True) name_only = os.path.splitext(os.path.basename(name))[0] t = tarfile.open(results_path + '/' + name_only + '_' + arc.cpu_arc + '.tar.gz', 'x') t.add(build_lib_test_path + '/' + 'libtest.a', arcname=name) if (name == 'libuedhoc.a'): t.add('../modules/edhoc/edhoc.h', arcname='edhoc.h') if (name == 'libuoscore.a'): t.add('../modules/oscore/oscore.h', arcname='oscore.h') t.close() def test(arc): """ Tests a static library agains the test vectors. arc: architecture """ if ( (arc.board == 'native_posix_64') | (arc.board == 'native_posix')): print("\nTesting!\n") execute_ext(['west', 'build', '-t', 'run']) else: execute_ext(['west', 'flash']) input( "Examine the results printed over the debugger and press Enter to continue...") def run_tests(name, arc): """ Builds, tests and saves an oscore or an edhoc static library for a specific architecture. The tests are executed for libraries build with different optimizations. name: name of the library -- libuoscore.a or libuedhoc.a arc: the name of the architecture (the Zephyr OS board name) """ opt = ("-O0", "-O1", "-O2", "-O3") for o in opt: clean() build(name, o, arc) test(arc) save(name, arc) def main(): """ Builds static libraries from uOSCORE and uEDHOC for different architectures, tests the libraries agains the test vectors and saves the tested libraries in the folder packaged """ clean_all() # x86 #run_tests('libuoscore.a', arc('native_posix', 'x86')) run_tests('libuedhoc.a', arc('native_posix', 'x86')) # x86-64 #run_tests('libuoscore.a', arc('native_posix_64', 'x86-64')) #run_tests('libuedhoc.a', arc('native_posix_64', 'x86-64')) # to run the following tests a real hardware must be connect to the PC # executing this script. The results of the test can be examined over a serial consol such as GTKterm # Cortex M0 #run_tests('libuoscore.a', arc('nrf51dk_nrf51422', 'cortex-m0')) #run_tests('libuedhoc.a', arc('nrf51dk_nrf51422', 'cortex-m0')) # Cortex M3 #run_tests('libuoscore.a', arc('nucleo_l152re', 'cortex-m3')) #run_tests('libuedhoc.a', arc('nucleo_l152re', 'cortex-m3')) # Cortex M4 #run_tests('libuoscore.a', arc('nrf52dk_nrf52832','cortex-m4')) #run_tests('libuedhoc.a', arc('nrf52dk_nrf52832','cortex-m4')) #run_tests('libuoscore.a', arc('nrf52840dk_nrf52840','cortex-m4')) #run_tests('libuedhoc.a', arc('nrf52840dk_nrf52840','cortex-m4')) # Cortex M33 #run_tests('libuoscore.a', arc('nrf9160dk_nrf9160', 'cortex-m33')) #run_tests('libuedhoc.a', arc('nrf9160dk_nrf9160', 'cortex-m33')) if __name__ == "__main__": main()
2.4375
2
src/gamesbyexample/fizzbuzzgame.py
asweigart/gamesbyexample
83
12780736
"""FizzBuzz Game, by <NAME> <EMAIL> A number game where you also race against the clock. Tags: tiny, beginner, game, math""" __version__ = 0 import sys, time print('''Fizz Buzz Game, by <NAME> <EMAIL> Starting with 1, enter increasing numbers. However, if the number is a multiple of 3, type "fizz" instead of the number. If the number is a multiple of 5, type "buzz". If the the number of is a multiple of 3 and 5, type "fizzbuzz". So the pattern is: 1 2 fizz 4 buzz fizz 7 8 fizz buzz 11 fizz 13 14 fizzbuzz 16... A doom clock is counting down. Entering correct responses gives you more time. How long can you keep entering the correct pattern?''') input('Press Enter to begin...') number = 1 doomClock = time.time() + 10 # Player starts with 10 seconds. while True: # Main game loop. # Determine the correct response for the current number: if number % 3 == 0 and number % 5 == 0: correctResponse = 'fizzbuzz' elif number % 3 == 0: correctResponse = 'fizz' elif number % 5 == 0: correctResponse = 'buzz' else: correctResponse = str(number) # For the first 16 responses, give them the answer: if number <= 16: hint = '(Enter ' + correctResponse + ') ' elif number == 17: hint = '(You are on your own now!) ' else: hint = '' # Get the player's response: response = input('Next response: ' + hint) response = response.lower().replace(' ', '') # See if the player has lost: if response != correctResponse: print('NOOOOO! Correct response: ' + correctResponse) print('Thanks for playing!') sys.exit() elif time.time() > doomClock: print('NOOOOO! You have run out of time!') print('Thanks for playing!') sys.exit() # If the player was right, add 2 seconds to the doom clock. doomClock += 2 secondsRemaining = round(doomClock - time.time(), 1) print('DOOM CLOCK: ' + str(secondsRemaining) + ' seconds remaining') print() number += 1 # Proceed to the next number to enter.
4.0625
4
review_ladder/models.py
miri64/review_ladder
0
12780737
<reponame>miri64/review_ladder<filename>review_ladder/models.py<gh_stars>0 from django.db import models, transaction from django.db.models import Q, Count from django.conf import settings from django.core import validators import datetime import dateutil.parser GITHUB_REPO = "%s/%s" % (settings.GITHUB_REPO_USER, settings.GITHUB_REPO_NAME) if hasattr(settings, "GITHUB_SINCE"): START_DATE = dateutil.parser.parse(settings.GITHUB_SINCE) else: START_DATE = datetime.datetime.fromtimestamp(0) # Create your models here. class User(models.Model): id = models.IntegerField(primary_key=True, unique=True) avatar_url = models.URLField() name = models.CharField(max_length=30, unique=True, db_index=True) def __str__(self): return self.name def _filtered_stats(self, since=None, until=None): comments = self.comments.exclude(pr__author=self) merges = self.merges if since: comments = comments.filter(date__gte=since) merges = merges.filter(date__gte=since) if until: comments = comments.filter(date__lte=until) merges = merges.filter(date__lte=until) return comments, merges def score(self, since=None, until=None): comments, merges = self._filtered_stats(since, until) return sum(c.type for c in comments) + (Comment.MRG * merges.count()) def stats(self, since=None, until=None): comments, merges = self._filtered_stats(since, until) return { "approvals": comments.filter(type=Comment.ACK).count(), "change_requests": comments.filter(type=Comment.CRQ).count(), "comments": comments.filter(type=Comment.COM).count(), "merges": merges.count(), } @classmethod def get_ranking(cls, limit=20, since=None, until=None): maintainers_query = sorted(cls.objects .annotate(comments_num=Count("comments")) .annotate(merges_num=Count("merges")) .filter(Q(comments_num__gt=0) | Q(merges_num__gt=0)), key=lambda u: u.score(since, until), reverse=True) maintainers = [] for maintainer in maintainers_query: if maintainer.score(since, until): maintainers.append({ "name": maintainer.name, "avatar_url": maintainer.avatar_url, "score": maintainer.score(since, until), "stats": maintainer.stats(since, until) }) if len(maintainers) == limit: break return maintainers @classmethod def from_github_json(cls, json_user): return cls.objects.get_or_create( id=json_user["id"], avatar_url=json_user["avatar_url"], name=json_user["login"] ) class PullRequest(models.Model): class Meta: unique_together = (("repo", "number"), ) indexes = [ models.Index(fields=["repo", "number"]), ] repo = models.CharField(max_length=100, validators=[validators.RegexValidator("[^/]+/[^/]+")]) number = models.IntegerField() author = models.ForeignKey("User", null=True, blank=True, on_delete=models.SET_NULL) assignees = models.ManyToManyField("User", related_name="assignments") def __str__(self): return "%s#%d" % (self.repo, self.number) @classmethod def from_github_json(cls, json_pr, json_events=[]): with transaction.atomic(): author, _ = User.from_github_json(json_pr["user"]) pr, created = cls.objects.update_or_create( repo=GITHUB_REPO, number=json_pr["number"], author=author, ) for json_event in json_events: assignee = None op = lambda user: None if json_event["event"] == "review_requested": assignee, _ = User.from_github_json(json_event["requested_reviewer"]) op = pr.assignees.add elif json_event["event"] == "assigned": assignee, _ = User.from_github_json(json_event["assignee"]) op = pr.assignees.add elif json_event["event"] == "review_request_removed": assignee, _ = User.from_github_json(json_event["requested_reviewer"]) op = pr.assignees.remove elif json_event["event"] == "assigned": assignee, _ = User.from_github_json(json_event["assignee"]) op = pr.assignees.remove op(assignee) pr.save() return pr, created class Comment(models.Model): COM = .1 # comment CRQ = 4.0 # change request ACK = 5.0 # approval MRG = 5.0 # merge (not a comment, but to keep the scores together it is here) JSON_COMMENT_LOT = { "commented": COM, "dismissed": COM, "changes_requested": CRQ, "approved": ACK } id = models.IntegerField(primary_key=True, unique=True) pr = models.ForeignKey("PullRequest", on_delete=models.CASCADE, related_name="comments") user = models.ForeignKey("User", on_delete=models.CASCADE, related_name="comments") type = models.FloatField(choices=((COM, "comment"), (CRQ, "change Request"), (ACK, "approval")), default=COM) date = models.DateTimeField() @classmethod def from_github_json(cls, json_comment, pr, type=COM): date = dateutil.parser.parse(json_comment["created_at"]) if date >= START_DATE: user, _ = User.from_github_json(json_comment["user"]) return cls.objects.update_or_create( id=json_comment["id"], pr=pr, user=user, defaults={"type": type, "date": date} ) @classmethod def from_github_review_json(cls, json_review, pr): if json_review["state"].lower() not in cls.JSON_COMMENT_LOT: # we don't count "pending" etc. return None, False json_review["created_at"] = json_review["submitted_at"] return cls.from_github_json(json_review, pr, cls.JSON_COMMENT_LOT[json_review["state"].lower()]) class Merge(models.Model): sha = models.CharField(max_length=40, validators=[validators.RegexValidator("[a-f0-9A-F]+")], primary_key=True, unique=True) pr = models.OneToOneField("PullRequest") author = models.ForeignKey("User", related_name="merges") date = models.DateTimeField() def __str__(self): return self.sha[:7] @classmethod def from_github_json(cls, json_commit, pr): date = dateutil.parser.parse(json_commit["commit"]["author"]["date"]) if date >= START_DATE: author, _ = User.from_github_json(json_commit["author"]) return cls.objects.update_or_create( sha=json_commit["sha"], author=author, pr=pr, defaults={"date": date} )
2.296875
2
unit_tests/glhe/profiles/test_external_base.py
stianchris/GLHE
2
12780738
<gh_stars>1-10 import os import tempfile import unittest from glhe.profiles.external_base import ExternalBase class TestExternalBase(unittest.TestCase): @staticmethod def add_instance(): temp_dir = tempfile.mkdtemp() temp_csv = os.path.join(temp_dir, 'temp.csv') with open(temp_csv, 'w') as f: f.write(',b,c\n1/1/2018 0:00,1,4\n1/1/2018 0:02,2,3\n1/1/2018 0:04,3,6\n') return ExternalBase(temp_csv, 0) def test_get_value(self): tst = self.add_instance() self.assertAlmostEqual(tst.get_value(0), 1.0, delta=0.001) self.assertAlmostEqual(tst.get_value(60), 1.5, delta=0.001) self.assertAlmostEqual(tst.get_value(120), 2.0, delta=0.001)
2.28125
2
example_evaluate_with_diff.py
ducha-aiki/manifold-diffusion
118
12780739
<gh_stars>100-1000 # EXAMPLE_EVALUATE Code to evaluate example results on ROxford and RParis datasets. # Revisited protocol has 3 difficulty setups: Easy (E), Medium (M), and Hard (H), # and evaluates the performance using mean average precision (mAP), as well as mean precision @ k (mP@k) # # More details about the revisited annotation and evaluation can be found in: # <NAME>., <NAME>., <NAME>., <NAME>., <NAME>., Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking, CVPR 2018 # # Authors: <NAME>., <NAME>., <NAME>., <NAME>., <NAME>., 2018 # Added diffusion: <NAME>. import os import numpy as np from scipy.io import loadmat from dataset import configdataset from download import download_datasets, download_features from evaluate import compute_map #--------------------------------------------------------------------- # Set data folder and testing parameters #--------------------------------------------------------------------- # Set data folder, change if you have downloaded the data somewhere else data_root = os.path.join(os.path.dirname(os.path.dirname(os.path.realpath(__file__))), 'data') # Check, and, if necessary, download test data (Oxford and Pairs), # revisited annotation, and example feature vectors for evaluation download_datasets(data_root) download_features(data_root) # Set test dataset: roxford5k | rparis6k test_dataset = 'roxford5k' #--------------------------------------------------------------------- # Evaluate #--------------------------------------------------------------------- print('>> {}: Evaluating test dataset...'.format(test_dataset)) # config file for the dataset # separates query image list from database image list, when revisited protocol used cfg = configdataset(test_dataset, os.path.join(data_root, 'datasets')) # load query and database features print('>> {}: Loading features...'.format(test_dataset)) features = loadmat(os.path.join(data_root, 'features', '{}_resnet_rsfm120k_gem.mat'.format(test_dataset))) Q = features['Q'] X = features['X'] K = 100 # approx 50 mutual nns QUERYKNN = 10 R = 2000 alpha = 0.9 from diffussion import * # perform search print('>> {}: Retrieval...'.format(test_dataset)) sim = np.dot(X.T, Q) qsim = sim_kernel(sim).T sortidxs = np.argsort(-qsim, axis = 1) for i in range(len(qsim)): qsim[i,sortidxs[i,QUERYKNN:]] = 0 qsim = sim_kernel(qsim) A = np.dot(X.T, X) W = sim_kernel(A).T W = topK_W(W, K) Wn = normalize_connection_graph(W) plain_ranks = np.argsort(-sim, axis=0) cg_ranks = cg_diffusion(qsim, Wn, alpha) cg_trunk_ranks = dfs_trunk(sim, A, alpha = alpha, QUERYKNN = QUERYKNN ) fast_spectral_ranks = fsr_rankR(qsim, Wn, alpha, R) alg_names = ['Plain', 'Diffusion cg', 'Diffusion trunkated', 'Spectral R=2000'] alg_ranks = [plain_ranks, cg_ranks,cg_trunk_ranks, fast_spectral_ranks ] for rn in range(len(alg_names)): ranks = alg_ranks[rn] name = alg_names[rn] # revisited evaluation gnd = cfg['gnd'] # evaluate ranks ks = [1, 5, 10] # search for easy gnd_t = [] for i in range(len(gnd)): g = {} g['ok'] = np.concatenate([gnd[i]['easy']]) g['junk'] = np.concatenate([gnd[i]['junk'], gnd[i]['hard']]) gnd_t.append(g) mapE, apsE, mprE, prsE = compute_map(ranks, gnd_t, ks) # search for easy & hard gnd_t = [] for i in range(len(gnd)): g = {} g['ok'] = np.concatenate([gnd[i]['easy'], gnd[i]['hard']]) g['junk'] = np.concatenate([gnd[i]['junk']]) gnd_t.append(g) mapM, apsM, mprM, prsM = compute_map(ranks, gnd_t, ks) # search for hard gnd_t = [] for i in range(len(gnd)): g = {} g['ok'] = np.concatenate([gnd[i]['hard']]) g['junk'] = np.concatenate([gnd[i]['junk'], gnd[i]['easy']]) gnd_t.append(g) mapH, apsH, mprH, prsH = compute_map(ranks, gnd_t, ks) print(name) print('>> {}: mAP E: {}, M: {}, H: {}'.format(test_dataset, np.around(mapE*100, decimals=2), np.around(mapM*100, decimals=2), np.around(mapH*100, decimals=2))) print('>> {}: mP@k{} E: {}, M: {}, H: {}'.format(test_dataset, np.array(ks), np.around(mprE*100, decimals=2), np.around(mprM*100, decimals=2), np.around(mprH*100, decimals=2)))
2.34375
2
leads/views.py
beniman8/django_crm
0
12780740
from django.core.mail import send_mail from django.contrib.auth.mixins import LoginRequiredMixin from django.shortcuts import render,redirect,reverse from django.http import HttpResponse from .models import Lead,Agent,Category from .forms import LeadForm, LeadModelForm,CustomUserCreationForm,AssignAgentForm,LeadCategoryUpdateForm from django.views import generic from agents.mixins import OrganizerAndLoginRequiredMixin #CRUD+L - Create, Retrieve, Update and Delete + List class SignupView(generic.CreateView): template_name='registration/signup.html' form_class=CustomUserCreationForm def get_success_url(self): return reverse("login") class LandingPageView(generic.TemplateView): template_name='landing.html' def landing_page(request): return render(request, 'landing.html') class HomePageView(LoginRequiredMixin,generic.ListView): template_name='leads/home.html' context_object_name = "leads" def get_queryset(self): user = self.request.user # initial queryset of the leads for the entire organisation if user.is_organizer: queryset=Lead.objects.filter(organisation=user.userprofile, agent__isnull=False) else: queryset=Lead.objects.filter(organisation=user.agent.organisation, agent__isnull=False) # filter for the agent that is logged in queryset = queryset.filter(agent__user=user) return queryset def get_context_data(self,**kwargs): context = super(HomePageView,self).get_context_data(**kwargs) user = self.request.user if user.is_organizer: queryset=Lead.objects.filter(organisation=user.userprofile, agent__isnull=True) context.update({ "unassigned_leads":queryset }) return context def home_page(request): leads = Lead.objects.all() context={ 'leads':leads, } return render(request, 'leads/home.html', context) class LeadDetailView(LoginRequiredMixin,generic.DetailView): template_name='leads/detail.html' context_object_name = "lead" def get_queryset(self): user = self.request.user # initial queryset of the leads for the entire organisation if user.is_organizer: queryset=Lead.objects.filter(organisation=user.userprofile) else: queryset=Lead.objects.filter(organisation=user.agent.organisation) # filter for the agent that is logged in queryset = queryset.filter(agent__user=user) return queryset def lead_detail(request,pk): lead = Lead.objects.get(id=pk) context = { 'lead':lead, } return render(request, 'leads/detail.html', context) class LeadCreateView(OrganizerAndLoginRequiredMixin,generic.CreateView): template_name='leads/create.html' form_class=LeadModelForm def get_success_url(self): return reverse("leads:home") def form_valid(self,form): lead = form.save(commit=False) lead.organisation = self.request.user.userprofile lead.save() send_mail( subject="A lead has been created", message="Go to the site to check it out", from_email='<EMAIL>', recipient_list=['<EMAIL>'] ) return super(LeadCreateView,self).form_valid(form) def lead_create(request): form = LeadModelForm() if request.method == "POST": form = LeadModelForm(request.POST) if form.is_valid(): form.save() return redirect("/") context = { 'form':form } return render(request, 'leads/create.html', context) class LeadUpdateView(OrganizerAndLoginRequiredMixin,generic.UpdateView): template_name='leads/update.html' form_class=LeadModelForm def get_queryset(self): user = self.request.user # initial queryset of the leads for the entire organisation return Lead.objects.filter(organisation=user.userprofile) def get_success_url(self): return reverse("leads:home") def lead_update(request,pk): lead = Lead.objects.get(id=pk) form = LeadModelForm(instance=lead) if request.method == "POST": form = LeadModelForm(request.POST,instance=lead) if form.is_valid(): form.save() return redirect("/") context = { 'form':form } return render(request, 'leads/update.html', context) class LeadDeleteView(OrganizerAndLoginRequiredMixin,generic.DeleteView): template_name='leads/delete.html' def get_queryset(self): user = self.request.user # initial queryset of the leads for the entire organisation return Lead.objects.filter(organisation=user.userprofile) def get_success_url(self): return reverse("leads:home") def lead_delete(request,pk): lead = Lead.objects.get(id=pk) lead.delete() return redirect('/') class AssignAgentView(OrganizerAndLoginRequiredMixin,generic.FormView): template_name='leads/assign_agent.html' form_class=AssignAgentForm def get_form_kwargs(self,**kwargs): kwargs = super(AssignAgentView,self).get_form_kwargs(**kwargs) kwargs.update({"request":self.request}) return kwargs def get_success_url(self): return reverse("leads:home") def form_valid(self,form): agent = form.cleaned_data["agent"] lead = Lead.objects.get(id=self.kwargs["pk"]) lead.agent = agent lead.save() return super(AssignAgentView,self).form_valid(form) class CategoryListView(LoginRequiredMixin,generic.ListView): template_name = "leads/category_list.html" context_object_name = "category_list" def get_context_data(self,**kwargs): context = super(CategoryListView,self).get_context_data(**kwargs) user = self.request.user # initial queryset of the leads for the entire organisation if user.is_organizer: queryset=Lead.objects.filter(organisation=user.userprofile) else: queryset=Lead.objects.filter(organisation=user.agent.organisation) context.update({ "unassigned_lead_count":queryset.filter(category__isnull=True).count() }) return context def get_queryset(self): user = self.request.user # initial queryset of the leads for the entire organisation if user.is_organizer: queryset=Category.objects.filter(organisation=user.userprofile) else: queryset=Category.objects.filter(organisation=user.agent.organisation) return queryset class CategoryDetailView(LoginRequiredMixin,generic.DetailView): template_name="leads/category_detail.html" context_object_name = "category" # def get_context_data(self,**kwargs): # context = super(CategoryDetailView,self).get_context_data(**kwargs) # # qs = Lead.objects.filter(category=self.get_object()) this is kind of the same as the leads variable # leads = self.get_object().leads.all() # # self.get_object().lead_set.all() this is how to call all the leads related to the category when it is beig used as a foreing key # # if you have a related name set in the model you can use self.get_object()./**Insert Realated name**//.all() -> self.get_object().leads.all() # context.update({ # "leads":leads # }) # return context def get_queryset(self): user = self.request.user # initial queryset of the leads for the entire organisation if user.is_organizer: queryset=Category.objects.filter(organisation=user.userprofile) else: queryset=Category.objects.filter(organisation=user.agent.organisation) return queryset class LeadCategoryUpdateView(LoginRequiredMixin,generic.UpdateView): template_name='leads/category_update.html' form_class=LeadCategoryUpdateForm def get_queryset(self): user = self.request.user # initial queryset of the leads for the entire organisation if user.is_organizer: queryset=Lead.objects.filter(organisation=user.userprofile) else: queryset=Lead.objects.filter(organisation=user.agent.organisation) queryset = queryset.filter(agent__user=user) return queryset def get_success_url(self): return reverse("leads:detail-view",kwargs={"pk":self.get_object().id}) # def lead_create(request): # form = LeadForm() # if request.method == "POST": # form = LeadForm(request.POST) # if form.is_valid(): # first_name=form.cleaned_data['first_name'] # last_name=form.cleaned_data['last_name'] # age=form.cleaned_data['age'] # agent = Agent.objects.first() # Lead.objects.create( # first_name=first_name, # last_name=last_name, # age=age, # agent=agent) # return redirect("/") # context = { # 'form':form # } # return render(request, 'leads/create.html', context) # def lead_update(request,pk): # lead = Lead.objects.get(id=pk) # form = LeadForm() # if request.method == "POST": # form = LeadForm(request.POST) # if form.is_valid(): # first_name=form.cleaned_data['first_name'] # last_name=form.cleaned_data['last_name'] # age=form.cleaned_data['age'] # agent = Agent.objects.first() # lead.first_name=first_name, # lead.last_name=last_name, # lead.age=age, # lead.agent=agent # lead.save() # return redirect("/") # context = { # 'form':form # } # return render(request, 'leads/update.html', context)
1.984375
2
test/test_loss_metrics/test_loss.py
imabackstabber/segment-with-nn
0
12780741
# coding=utf-8 ''' test case for loss ''' import tensorflow as tf from segelectri.loss_metrics.loss import FocalLoss, LovaszLoss, DiceLoss, BoundaryLoss class TestLoss(tf.test.TestCase): def setUp(self): self.y_true = tf.random.uniform((2, 512, 512), minval=0, maxval=3, dtype=tf.int64) self.y_pred = tf.random.uniform((2, 512, 512, 3), minval=0, maxval=1, dtype=tf.float32) def test_focal_loss(self): focall = FocalLoss() loss = focall(self.y_true, self.y_pred) self.assertAllEqual(loss.shape, ()) def test_lovasz_loss(self): lovaszl = LovaszLoss() loss = lovaszl(self.y_true, self.y_pred) self.assertAllEqual(loss.shape, ()) def test_cross_entropy_loss(self): scce = tf.keras.losses.SparseCategoricalCrossentropy() loss = scce(self.y_true, self.y_pred) self.assertAllEqual(loss.shape, ()) def test_dice_loss(self): dicel = DiceLoss() loss = dicel(self.y_true, self.y_pred) self.assertAllEqual(loss.shape, ()) def test_boundary_loss(self): boundaryl = BoundaryLoss() loss = boundaryl(self.y_true, self.y_pred) self.assertAllEqual(loss.shape, ())
2.265625
2
miplearn/solvers/tests/test_internal_solver.py
GregorCH/MIPLearn
0
12780742
<filename>miplearn/solvers/tests/test_internal_solver.py<gh_stars>0 # MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization # Copyright (C) 2020, UChicago Argonne, LLC. All rights reserved. # Released under the modified BSD license. See COPYING.md for more details. import logging from io import StringIO import pyomo.environ as pe from miplearn import BasePyomoSolver, GurobiSolver from miplearn.solvers import RedirectOutput from . import _get_instance, _get_internal_solvers logger = logging.getLogger(__name__) def test_redirect_output(): import sys original_stdout = sys.stdout io = StringIO() with RedirectOutput([io]): print("Hello world") assert sys.stdout == original_stdout assert io.getvalue() == "Hello world\n" def test_internal_solver_warm_starts(): for solver_class in _get_internal_solvers(): logger.info("Solver: %s" % solver_class) instance = _get_instance(solver_class) model = instance.to_model() solver = solver_class() solver.set_instance(instance, model) solver.set_warm_start( { "x": { 0: 1.0, 1: 0.0, 2: 0.0, 3: 1.0, } } ) stats = solver.solve(tee=True) assert stats["Warm start value"] == 725.0 solver.set_warm_start( { "x": { 0: 1.0, 1: 1.0, 2: 1.0, 3: 1.0, } } ) stats = solver.solve(tee=True) assert stats["Warm start value"] is None solver.fix( { "x": { 0: 1.0, 1: 0.0, 2: 0.0, 3: 1.0, } } ) stats = solver.solve(tee=True) assert stats["Lower bound"] == 725.0 assert stats["Upper bound"] == 725.0 def test_internal_solver(): for solver_class in _get_internal_solvers(): logger.info("Solver: %s" % solver_class) instance = _get_instance(solver_class) model = instance.to_model() solver = solver_class() solver.set_instance(instance, model) stats = solver.solve_lp() assert round(stats["Optimal value"], 3) == 1287.923 solution = solver.get_solution() assert round(solution["x"][0], 3) == 1.000 assert round(solution["x"][1], 3) == 0.923 assert round(solution["x"][2], 3) == 1.000 assert round(solution["x"][3], 3) == 0.000 stats = solver.solve(tee=True) assert len(stats["Log"]) > 100 assert stats["Lower bound"] == 1183.0 assert stats["Upper bound"] == 1183.0 assert stats["Sense"] == "max" assert isinstance(stats["Wallclock time"], float) assert isinstance(stats["Nodes"], int) solution = solver.get_solution() assert solution["x"][0] == 1.0 assert solution["x"][1] == 0.0 assert solution["x"][2] == 1.0 assert solution["x"][3] == 1.0 # Add a brand new constraint if isinstance(solver, BasePyomoSolver): model.cut = pe.Constraint(expr=model.x[0] <= 0.0, name="cut") solver.add_constraint(model.cut) elif isinstance(solver, GurobiSolver): x = model.getVarByName("x[0]") solver.add_constraint(x <= 0.0, name="cut") else: raise Exception("Illegal state") # New constraint should affect solution and should be listed in # constraint ids assert solver.get_constraint_ids() == ["eq_capacity", "cut"] stats = solver.solve() assert stats["Lower bound"] == 1030.0 if isinstance(solver, GurobiSolver): # Extract the new constraint cobj = solver.extract_constraint("cut") # New constraint should no longer affect solution and should no longer # be listed in constraint ids assert solver.get_constraint_ids() == ["eq_capacity"] stats = solver.solve() assert stats["Lower bound"] == 1183.0 # New constraint should not be satisfied by current solution assert not solver.is_constraint_satisfied(cobj) # Re-add constraint solver.add_constraint(cobj) # Constraint should affect solution again assert solver.get_constraint_ids() == ["eq_capacity", "cut"] stats = solver.solve() assert stats["Lower bound"] == 1030.0 # New constraint should now be satisfied assert solver.is_constraint_satisfied(cobj) # Relax problem and make cut into an equality constraint solver.relax() solver.set_constraint_rhs("cut", 0.5) solver.set_constraint_sense("cut", "=") stats = solver.solve() assert round(stats["Lower bound"]) == 1179.0 def test_iteration_cb(): for solver_class in _get_internal_solvers(): logger.info("Solver: %s" % solver_class) instance = _get_instance(solver_class) solver = solver_class() solver.set_instance(instance) count = 0 def custom_iteration_cb(): nonlocal count count += 1 return count < 5 solver.solve(iteration_cb=custom_iteration_cb) assert count == 5
2.234375
2
serialize/dynamo.py
thorwhalen/ut
4
12780743
"""Dynamo access""" import os from time import sleep import boto.dynamodb2 from .khan_logger import KhanLogger __author__ = 'mattjmorris' class Dynamo(object): def __init__(self, access_key=None, secret=None): """ If access_key and/or secret are not passed in, assumes we are accessing erenev's aws account and that the access info is stored as environment variables on the current server. Connection and Table are available to clients via self properties, in case clients wish to use those objects directly. """ access_key = access_key or os.getenv('VEN_S3_ACCESS_KEY') secret = secret or os.getenv('VEN_S3_SECRET') self.connection = boto.dynamodb2.connect_to_region(region_name='eu-west-1', aws_access_key_id=access_key, aws_secret_access_key=secret) self.logger = KhanLogger(origin=self.__class__.__name__) def modify_throughput(self, requested_read, requested_write, table): """ Used to change the throughput of a specific table """ read, write, num_dec_today, table_status = self.get_table_info(table) while requested_read != read or requested_write != write: self.logger.info(msg="Modifying {} from {}, {} to {}, {}".format(table.table_name, read, write, requested_read, requested_write)) new_read, new_write = self._new_read_write(read, requested_read, write, requested_write) self.logger.info(msg="going to request read {} and write {}".format(new_read, new_write)) if (new_read < read or new_write < write) and num_dec_today >= 4: # Todo - replace with custom error and handle in client code raise ValueError("Sorry, can't do any more decreases today.") table.update(throughput={'read': new_read, 'write': new_write}) sleep_secs = 30 table_status = 'UPDATING' self.logger.info(msg="Sleeping for {} secs before starting".format(sleep_secs)) sleep(sleep_secs) while table_status == 'UPDATING': self.logger.info(msg="Sleeping for {} secs".format(sleep_secs)) sleep(sleep_secs) read, write, num_dec_today, table_status = self.get_table_info(table) return read, write def _new_read_write(self, read, requested_read, write, requested_write): """ Ensures that we change throughput in the correct amounts so as to not cause DDB to yell at us. """ if requested_read == 0: read_change_prop = 0 else: read_change_prop = requested_read / float(read) # max increase allowed is a doubling if read_change_prop > 2: new_read = read * 2 else: new_read = requested_read if requested_write == 0: write_change_prop = 0 else: write_change_prop = requested_write / float(write) if write_change_prop > 2: new_write = write * 2 else: new_write = requested_write return new_read, new_write def get_table_info(self, table): """ Returns meta information about the table, such as read speed, write speed, current status, and number of decreases today. Useful for figuring out how to change throughput. """ desc = table.describe() status = desc['Table']['TableStatus'] throughput = desc['Table']['ProvisionedThroughput'] num_decreases = throughput['NumberOfDecreasesToday'] read = throughput['ReadCapacityUnits'] write = throughput['WriteCapacityUnits'] return read, write, num_decreases, status
2.875
3
scripts/python/road_segments/add_dicast_ids.py
OSADP/Pikalert-Vehicle-Data-Translator-
2
12780744
<filename>scripts/python/road_segments/add_dicast_ids.py #!/usr/bin/env python """Add dicast site ids to road segment file""" # ============================================================================== # # # # (c) Copyright, 2015 University Corporation for Atmospheric Research (UCAR). # # All rights reserved. # # # # File: $RCSfile: fileheader,v $ # # Version: $Revision: 1.1 $ Dated: $Date: 2010/10/04 14:44:18 $ # # # # ============================================================================== # import log_msg import os import shutil import sys from optparse import OptionParser from netCDF4 import Dataset def add_dicast_ids(road_segment_nc_file, dicast_site_file, out_file): r"""Add dicast ids to road segment nc file Parameters ---------- road_segment_nc_file : string dicast_site_file : string out_file : string Returns ------- 0 : success 1 : error """ # copy road_segment_nc_file to out_file try: shutil.copyfile(road_segment_nc_file, out_file) except: return 1 # open out_file for updating netcdf_file = Dataset(out_file,"a") # extract aux_id values aux_id = netcdf_file.variables["aux_id"] aux_id_string = [] for ind in range(aux_id.shape[0]): aux_id_string.append(aux_id[ind].tostring().rstrip('\x00')) # create map from aux_id to dicast numbers dicast_dict = {} for line in open(dicast_site_file): spl = line.strip().split(";") if spl[0] == "site_num": # skip csv header continue (site_num, n, site_id, lat, lon, elev, n, desc, state, co, site_type) = spl dicast_dict[site_id] = site_num # find dicast ids for aux_id values dicast_ids = [] for aux_string in aux_id_string: dicast_ids.append(dicast_dict[aux_string]) netcdf_file.createDimension('dicast_id_len', size=8) dicast_ids_var = netcdf_file.createVariable('dicast_id', 'c', ('point_num', 'dicast_id_len')) dicast_ids_var[:] = dicast_ids netcdf_file.close() # open out_file and append dicast id values return 0 def main(): #/d2/vii/data/static/config/CO_logicast_road_sites_extended.asc usage_str = "%prog road_segment_file dicast_file out_file" parser = OptionParser(usage = usage_str) (options, args) = parser.parse_args() if len(args) < 3: parser.print_help() sys.exit(2) road_segment_file = args[0] dicast_file = args[1] out_file = args[2] add_dicast_ids(road_segment_file, dicast_file, out_file) if __name__ == "__main__": main()
2.234375
2
pji/service/section/info/__init__.py
HansBug/pji
0
12780745
<filename>pji/service/section/info/__init__.py from .base import SectionInfoTemplate, SectionInfo from .general import SectionInfoType, load_info_template from .local import LocalSectionInfoTemplate, LocalSectionInfo from .mapping import SectionInfoMappingTemplate, SectionInfoMapping from .static import StaticSectionInfoTemplate, StaticSectionInfo from .tag import TagSectionInfoTemplate, TagSectionInfo
1.28125
1
Main.py
dixantmittal/CS5242-CNN-implementation
0
12780746
# A bit of setup from __future__ import print_function import Models import code_base.solver as slvr from code_base.data_utils import * from code_base.layers import * from code_base.solver import Solver settings.time_analysis['logger_enabled'] = False # for auto-reloading external modules # see http://stackoverflow.com/questions/1907993/autoreload-of-modules-in-ipython def rel_error(x, y): """ returns relative error """ return np.max(np.abs(x - y) / (np.maximum(1e-8, np.abs(x) + np.abs(y)))) def getSolver(model, data, alpha, alpha_decay, epoch=10, batch_size=128): return Solver(model, data, num_epochs=epoch, batch_size=batch_size, update_rule='adam', optim_config={ 'learning_rate': alpha, }, lr_decay=alpha_decay, verbose=True, print_every=1) def train_model(model_key): slvr._file.write('\n\n>>>> MODEL - ' + model_key + ' <<<<') model = Models.Models[model_key] solver = getSolver(model=model, data=data, alpha=3e-3, alpha_decay=0.5, epoch=15) start = datetime.datetime.now() solver.train() end = datetime.datetime.now() slvr._file.write('\nTotal time taken: ' + str(end - start)) slvr._file.flush() model_key = model_key + '_alpha3e-3' save_metrics(solver,model_key) save_model(model, './models/cnn_model_' + model_key + '.p') def save_metrics(solver, model_key): pickle.dump(solver.loss_history,open('./metrics/'+model_key+'_loss_history.p','wb')) pickle.dump(solver.train_acc_history,open('./metrics/'+model_key+'_train_acc_history.p','wb')) pickle.dump(solver.val_acc_history,open('./metrics/'+model_key+'_val_acc_history.p','wb')) data = pickle.load(open('./data.p', 'rb'), encoding='latin1') # create augmented data - mirror image # aug_X_train = np.flip(data['X_train'], 3) # data['X_train'] = np.concatenate((data['X_train'], aug_X_train), 0) # data['y_train'] = np.concatenate((data['y_train'], data['y_train']), 0) for k, v in data.items(): print('%s: ' % k, v.shape) train_model('conv32_filter7_fc256_drop0') train_model('conv32_filter7_fc256_drop02') # train_model('conv64_filter5_fc512_drop0') # train_model('conv64_filter5_fc512_drop03') # train_model('conv128_filter3_fc1024_drop0') # train_model('conv128_filter3_fc1024_drop04')
2.109375
2
ds/lru.py
haandol/algorithm_in_python
0
12780747
class LRUCache(object): def __init__(self, size): self.size = size self.lru = {} self.cache = {} self.counter = 0 def put(self, key, value): if key not in self.cache: if len(self.lru) >= self.size: k, _ = min(self.lru.iteritems(), key=lambda x: x[1]) self.lru.pop(k) self.cache.pop(k) self.counter += 1 self.lru[key] = self.counter self.cache[key] = value def get(self, key): if key in self.cache: self.counter += 1 self.lru[key] = self.counter return self.cache[key] return None if "__main__" == __name__: cache = LRUCache(3) cache.put('a', 1) cache.put('b', 2) cache.put('c', 3) assert 3 == len(cache.cache) print cache.cache cache.put('d', 4) cache.put('a', 5) assert 3 == len(cache.cache) assert None is cache.get('b') assert 4 == cache.get('d') assert 5 == cache.get('a')
3.609375
4
app/speech.py
liliangbin/webBot
2
12780748
<gh_stars>1-10 # -*- coding: utf-8 -*- from aip import AipSpeech # 语音识别模块。。 # baidu app use my tel to login class Speech(object): def __init__(self): self.APP_ID = '16250780' self.APP_KEY = 'xcnrNwkhe61iYGoaZVRNpnma' self.SECRET_KEY = '<KEY>' self.client = AipSpeech(self.APP_ID, self.APP_KEY, self.SECRET_KEY) def get_file_content(self, filePath='audio.pcm'): with open(filePath, 'rb') as fp: return fp.read() def asr(self, filepath): back = self.client.asr(self.get_file_content(filepath), 'pcm', 16000, { 'dev_pid': 1536, }) print back return back.get('result')[0].encode('utf-8')
3.03125
3
2020_Challenge/submissions/Andres_Duque/functions.py
UCHIC/CIWS-VisChallenge
2
12780749
<filename>2020_Challenge/submissions/Andres_Duque/functions.py """ <NAME> """ import matplotlib import matplotlib.pyplot as plt import seaborn as sns import numpy as np import scipy from sklearn.decomposition import PCA import pandas as pd from matplotlib.patches import Rectangle, Circle import matplotlib as mpl import matplotlib.colors as clr cmap = matplotlib.cm.get_cmap('Set2') def summarize_df(df, feature): ''' This function summarizes the dataframe by one of the features (feature) by each of the uses, by day and hour ''' # Get all the possible uses uses = np.unique(df.Label) # Find the accumulated volume consumption for all the uses df_use = pd.DataFrame(0, index=np.arange(len(df)), columns = uses) for i in range(df.shape[0]): use = df.Label[i] df_use.loc[i, use] = df[feature].loc[i] df_use['Dates'] = df['EndTime'] df_use['Days'] = df_use['Dates'].str.partition(" ")[0].str.partition("-")[2] df_use['Hours'] = df_use['Dates'].str.partition(" ")[2].str.partition(":")[0] df_use['Hours_float'] = df_use['Hours'].astype(np.float) days = np.unique(df_use['Days']) # Compute the accumulated use by each day Accumulated_days_use = pd.DataFrame(0, index=np.arange(len(days)), columns = uses) for i in range(Accumulated_days_use.shape[0]): dayuse = df_use[df_use['Days'] == days[i]][uses] Accumulated_days_use.loc[i] = dayuse.sum() Accumulated_days_use.plot(subplots=True) Accumulated_days_use['Total'] = Accumulated_days_use.sum(axis= 1) Accumulated_days_use['Days'] = days Accumulated = df_use[uses].cumsum() Accumulated['Total'] = Accumulated.sum(axis= 1) Accumulated['Dates'] = df_use['Dates'] Accumulated['Days'] = df_use['Days'] Accumulated_hours = pd.DataFrame(0, index=np.arange(24), columns = uses) for i in range(24): houruse = df_use[df_use['Hours_float'] == i][uses] Accumulated_hours.loc[i] = houruse.sum() Accumulated_hours['Total'] = Accumulated_hours.sum(axis= 1) Accumulated_hours['Hours'] = np.arange(0,24) return df_use, Accumulated, Accumulated_days_use, Accumulated_hours # df_use, Accumulated, Accumulated_days = summarize_df(df, 'Volume(gal)') def day_hour_use(df_use, use, colorm): '''This function plots the combined days and hours in a colormap plot''' cmap = clr.LinearSegmentedColormap.from_list('custom blue', ['#ffffff',colorm], N=256) days = np.unique(df_use['Days']) df_day_hour = pd.DataFrame(0, index=np.arange(0,24), columns = days) for i in days: for j in range(24): houruse = df_use[(df_use['Days'] == i) & (df_use['Hours_float'] == j)][use] df_day_hour.loc[j, i] = houruse.sum() fig = plt.figure() plt.matshow(df_day_hour, cmap = cmap) plt.xticks(range(len(days)), days, fontsize = 5, rotation = 90) plt.yticks(range(24), range(24), fontsize = 10) plt.xlabel('Days') plt.ylabel('Hours') plt.title('Volume consumption by day and hour {}'.format(use)) plt.colorbar(shrink = 0.5) def plot_daily_use(Accumulated_days, uses): '''This function plots the daily consumption by each of the (uses) input in the argument''' colors = plt.cm.Set2(range(len(uses))) fig, ax = plt.subplots(len(uses),1, figsize = (20,20)) days = Accumulated_days['Days'] # plot color map to identify days and hours of use for k in range(len(uses)): cmap = clr.LinearSegmentedColormap.from_list('custom blue', ['#ffffff',colors[k]], N=256) ax[k].matshow(np.array(Accumulated_days[uses[k]]).reshape(1,-1), cmap = cmap) ax[k].set_xticks(range(len(days))) ax[k].set_xticklabels(days, fontsize=18) ax[k].set_yticks([]) ax[k].xaxis.set_ticks_position('bottom') # Extract the major use by day for (i, j), z in np.ndenumerate(np.array(Accumulated_days[uses[k]]).reshape(1,-1)): ax[k].text(j, i, '{:0.1f}'.format(z), ha='center', va='center', fontsize=20) ax[k].set_title("Daily use {} (Volume(gal))".format(uses[k]), fontsize=30) def plot_hour_use(Accumulated_hours, uses): '''This function plots the hourly agregatted consumption by each of the (uses) input in the argument''' colors = plt.cm.Set2(range(len(uses))) fig, ax = plt.subplots(len(uses),1, figsize = (30,20)) hours = Accumulated_hours['Hours'] # plot color map to identify days and hours of use for k in range(len(uses)): cmap = clr.LinearSegmentedColormap.from_list('custom blue', ['#ffffff',colors[k]], N=256) ax[k].matshow(np.array(Accumulated_hours[uses[k]]).reshape(1,-1), cmap = cmap) ax[k].set_xticks(range(len(hours))) ax[k].set_xticklabels(hours, fontsize=18) ax[k].set_yticks([]) ax[k].xaxis.set_ticks_position('bottom') # Extract the major use by day for (i, j), z in np.ndenumerate(np.array(Accumulated_hours[uses[k]]).reshape(1,-1)): ax[k].text(j, i, '{:0.1f}'.format(z), ha='center', va='center', fontsize=20) ax[k].set_title("Hourly use {} (Volume(gal))".format(uses[k]), fontsize=30) def plot_accumulated_use(Accumulated, uses): days = Accumulated['Days'] fig, ax = plt.subplots(figsize = (10,10)) colors = plt.cm.Set2(range(len(uses))) uses_sum = uses[uses != 'Total'] end = Accumulated[uses_sum].iloc[-1] for k in range(len(uses)): ax.plot(Accumulated[uses[k]], label = uses[k], color = colors[k]) if uses[k] == 'Total': ax.annotate('Percentage = {:.2%}' .format(1), fontsize=9, fontweight='bold', xy=(len(days), Accumulated[uses[k]].iloc[-1]), xycoords='data', xytext=(-150, -30), textcoords='offset points', arrowprops=dict(arrowstyle="->"), bbox=dict(boxstyle="round4, pad=0.1", fc="red", ec="red", alpha =0.2, lw=1)) else: ax.annotate('Percentage = {:.2%}' .format(Accumulated[uses[k]].iloc[-1]/end.sum()), fontsize=9, fontweight='bold', xy=(len(days), Accumulated[uses[k]].iloc[-1]), xycoords='data', xytext=(100, 0), textcoords='offset points', arrowprops=dict(arrowstyle="->"), bbox=dict(boxstyle="round4, pad=0.1", fc="red",alpha =0.2, ec="red", lw=1)) ax.legend() ax.set_xticks(np.arange(0,len(days),100)) ax.set_xticklabels(days.iloc[np.arange(0,len(days),100)]) ax.set_xlabel('Days', fontsize = 15) ax.set_ylabel('Accumulated consumption Volume(gal)', fontsize = 15) ax.set_title('Consumption progression over time', fontsize = 20) def plot_feature_use(df, use, q, colorm, feature): data = np.array(df[feature][df['Label'] == use]) dates = df['StartTime'][df['Label'] == use] Qv = np.quantile(data, q) indices = np.where(data > Qv)[0] fig, ax = plt.subplots(figsize = (20,10)) ax.plot(data, color = colorm) for k in indices: ax.annotate('Date = {}' .format(dates.iloc[k]), fontsize=9, fontweight='bold', xy=(k, data[k]), xycoords='data', xytext=(0, 10), textcoords='offset points', arrowprops=dict(arrowstyle="->"), bbox=dict(boxstyle="round4, pad=0.1", fc="red", ec="red", alpha =0.2, lw=1)) ax.set_ylim(0,) ax.set_ylabel('Volume(gal)', fontsize = 15) ax.set_xlabel('Number of each time it is used', fontsize = 15) # ax.set_xticks(np.arange(0,len(data),20)) # ax.set_xticklabels(dates.iloc[np.arange(0,len(data),20)]) ax.set_title("Total uses of {}, {} with the observaitons above the {} percentile annotated by date".format(use, feature, q*100), fontsize = 20)
2.859375
3
tests/test_config_debug.py
nmichlo/eunomia
3
12780750
<reponame>nmichlo/eunomia import re from eunomia.config.nodes import SubNode from tests.test_backend_obj import _make_config_group from tests.util import temp_capture_stdout # ========================================================================= # # Test Config Objects # # ========================================================================= # def test_debug_groups(): root = _make_config_group(suboption='suboption1') with temp_capture_stdout() as out: root.debug_tree_print() color_out = out.getvalue() assert color_out == ' \x1b[90m\x1b[0m\x1b[35m/\x1b[0m\n \x1b[90m├\x1b[93m╌\x1b[0m \x1b[90m/:\x1b[0m \x1b[33mdefault\x1b[0m\n \x1b[90m├\x1b[95m─\x1b[0m \x1b[90m\x1b[0m\x1b[35m/subgroup\x1b[0m\n \x1b[90m│\x1b[0m \x1b[90m├\x1b[93m╌\x1b[0m \x1b[90m/subgroup:\x1b[0m \x1b[33msuboption1\x1b[0m\n \x1b[90m│\x1b[0m \x1b[90m╰\x1b[93m╌\x1b[0m \x1b[90m/subgroup:\x1b[0m \x1b[33msuboption2\x1b[0m\n \x1b[90m╰\x1b[95m─\x1b[0m \x1b[90m\x1b[0m\x1b[35m/subgroup2\x1b[0m\n \x1b[90m╰\x1b[95m─\x1b[0m \x1b[90m/subgroup2\x1b[0m\x1b[35m/subgroup3\x1b[0m\n \x1b[90m├\x1b[93m╌\x1b[0m \x1b[90m/subgroup2/subgroup3:\x1b[0m \x1b[33msuboption1\x1b[0m\n \x1b[90m╰\x1b[93m╌\x1b[0m \x1b[90m/subgroup2/subgroup3:\x1b[0m \x1b[33msuboption2\x1b[0m\n' with temp_capture_stdout() as out: root.debug_tree_print(colors=False) normal_out = out.getvalue() assert normal_out == ' /\n ├╌ /: default\n ├─ /subgroup\n │ ├╌ /subgroup: suboption1\n │ ╰╌ /subgroup: suboption2\n ╰─ /subgroup2\n ╰─ /subgroup2/subgroup3\n ├╌ /subgroup2/subgroup3: suboption1\n ╰╌ /subgroup2/subgroup3: suboption2\n' # https://stackoverflow.com/questions/14693701/how-can-i-remove-the-ansi-escape-sequences-from-a-string-in-python assert normal_out == re.sub(r'\x1B(?:[@-Z\\-_]|\[[0-?]*[ -/]*[@-~])', '', color_out) with temp_capture_stdout() as out: root.debug_tree_print(colors=False, show_defaults=True) normal_out_defaults = out.getvalue() assert normal_out_defaults == ' /\n ├╌ /: default [subgroup: suboption1]\n ├─ /subgroup\n │ ├╌ /subgroup: suboption1\n │ ╰╌ /subgroup: suboption2\n ╰─ /subgroup2\n ╰─ /subgroup2/subgroup3\n ├╌ /subgroup2/subgroup3: suboption1\n ╰╌ /subgroup2/subgroup3: suboption2\n' root = _make_config_group(suboption=SubNode('suboption${=1}')) with temp_capture_stdout() as out: root.debug_tree_print(colors=False, show_defaults=True) normal_out_defaults_special = out.getvalue() assert normal_out_defaults_special == ' /\n ├╌ /: default [subgroup: suboption${=1}]\n ├─ /subgroup\n │ ├╌ /subgroup: suboption1\n │ ╰╌ /subgroup: suboption2\n ╰─ /subgroup2\n ╰─ /subgroup2/subgroup3\n ├╌ /subgroup2/subgroup3: suboption1\n ╰╌ /subgroup2/subgroup3: suboption2\n' # TODO: test other flags and suboption cases # ========================================================================= # # END # # ========================================================================= #
2.171875
2