max_stars_repo_path
stringlengths
3
269
max_stars_repo_name
stringlengths
4
119
max_stars_count
int64
0
191k
id
stringlengths
1
7
content
stringlengths
6
1.05M
score
float64
0.23
5.13
int_score
int64
0
5
ci/delete_old_binaries.py
NoahR02/Odin
2,690
12775751
import subprocess import sys import json import datetime import urllib.parse import sys def main(): files_by_date = {} bucket = sys.argv[1] days_to_keep = int(sys.argv[2]) print(f"Looking for binaries to delete older than {days_to_keep} days") files_lines = execute_cli(f"b2 ls --long --versions {bucket} nightly").split("\n") for x in files_lines: parts = [y for y in x.split(' ') if y] if parts and parts[0]: date = datetime.datetime.strptime(parts[2], '%Y-%m-%d').replace(hour=0, minute=0, second=0, microsecond=0) now = datetime.datetime.utcnow().replace(hour=0, minute=0, second=0, microsecond=0) delta = now - date if delta.days > days_to_keep: print(f'Deleting {parts[5]}') execute_cli(f'b2 delete-file-version {parts[0]}') def execute_cli(command): sb = subprocess.Popen(command, shell=True, stdout=subprocess.PIPE) return sb.stdout.read().decode("utf-8"); if __name__ == '__main__': sys.exit(main())
2.703125
3
newrelic/core/custom_event.py
newrelic/newrelic-python-agen
92
12775752
# Copyright 2010 New Relic, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import re import time from newrelic.core.attribute import (check_name_is_string, check_name_length, process_user_attribute, NameIsNotStringException, NameTooLongException, MAX_NUM_USER_ATTRIBUTES) _logger = logging.getLogger(__name__) EVENT_TYPE_VALID_CHARS_REGEX = re.compile(r'^[a-zA-Z0-9:_ ]+$') class NameInvalidCharactersException(Exception): pass def check_event_type_valid_chars(name): regex = EVENT_TYPE_VALID_CHARS_REGEX if not regex.match(name): raise NameInvalidCharactersException() def process_event_type(name): """Perform all necessary validation on a potential event type. If any of the validation checks fail, they will raise an exception which we catch, so we can log a message, and return None. Args: name (str): The type (name) of the custom event. Returns: name, if name is OK. NONE, if name isn't. """ FAILED_RESULT = None try: check_name_is_string(name) check_name_length(name) check_event_type_valid_chars(name) except NameIsNotStringException: _logger.debug('Event type must be a string. Dropping ' 'event: %r', name) return FAILED_RESULT except NameTooLongException: _logger.debug('Event type exceeds maximum length. Dropping ' 'event: %r', name) return FAILED_RESULT except NameInvalidCharactersException: _logger.debug('Event type has invalid characters. Dropping ' 'event: %r', name) return FAILED_RESULT else: return name def create_custom_event(event_type, params): """Creates a valid custom event. Ensures that the custom event has a valid name, and also checks the format and number of attributes. No event is created, if the name is invalid. An event is created, if any of the attributes are invalid, but the invalid attributes are dropped. Args: event_type (str): The type (name) of the custom event. params (dict): Attributes to add to the event. Returns: Custom event (list of 2 dicts), if successful. None, if not successful. """ name = process_event_type(event_type) if name is None: return None attributes = {} try: for k, v in params.items(): key, value = process_user_attribute(k, v) if key: if len(attributes) >= MAX_NUM_USER_ATTRIBUTES: _logger.debug('Maximum number of attributes already ' 'added to event %r. Dropping attribute: %r=%r', name, key, value) else: attributes[key] = value except Exception: _logger.debug('Attributes failed to validate for unknown reason. ' 'Check traceback for clues. Dropping event: %r.', name, exc_info=True) return None intrinsics = { 'type': name, 'timestamp': int(1000.0 * time.time()), } event = [intrinsics, attributes] return event
2.265625
2
tract_querier/tractography/__init__.py
gabknight/tract_querier
21
12775753
from .tractography import Tractography from .trackvis import tractography_from_trackvis_file, tractography_to_trackvis_file from warnings import warn import numpy __all__ = [ 'Tractography', 'tractography_from_trackvis_file', 'tractography_to_trackvis_file', 'tractography_from_files', 'tractography_from_file', 'tractography_to_file', ] try: __all__ += [ 'tractography_from_vtk_files', 'tractography_to_vtk_file', 'vtkPolyData_to_tracts', 'tracts_to_vtkPolyData' ] from .vtkInterface import ( tractography_from_vtk_files, tractography_to_vtk_file, vtkPolyData_to_tracts, tracts_to_vtkPolyData ) except ImportError: warn( 'VTK support not installed in this python distribution, ' 'VTK files will not be read or written' ) def tractography_from_files(filenames): if isinstance(filenames, str): filenames = [filenames] tracts = tractography_from_file(filenames[0]) for filename in filenames[1:]: tracts_ = tractography_from_file(filename) tracts.append(tracts_.tracts(), tracts_.tracts_data()) return tracts def tractography_from_file(filename): if filename.endswith('trk'): return tractography_from_trackvis_file(filename) elif filename.endswith('vtk') or filename.endswith('vtp'): if 'tractography_from_vtk_files' in __all__: return tractography_from_vtk_files(filename) else: raise IOError("No VTK support installed, VTK files could not be read") else: raise IOError("File format not supported") def tractography_to_file(filename, tractography, **kwargs): if filename.endswith('trk'): if 'affine' not in kwargs or kwargs['affine'] is None: if ( hasattr(tractography, 'affine') and tractography.affine is not None ): kwargs['affine'] = tractography.affine else: warn('Setting affine of trk file to the identity') kwargs['affine'] = numpy.eye(4) if ( 'image_dimensions' not in kwargs or kwargs['image_dimensions'] is None ): if ( hasattr(tractography, 'image_dims') and tractography.image_dims is not None ): kwargs['image_dimensions'] = tractography.image_dims else: warn('Setting image_dimensions of trk file to: 1 1 1') kwargs['image_dimensions'] = numpy.ones(3) return tractography_to_trackvis_file(filename, tractography, **kwargs) elif filename.endswith('vtk') or filename.endswith('vtp'): if 'tractography_from_vtk_files' in __all__: return tractography_to_vtk_file(filename, tractography, **kwargs) else: raise IOError("No VTK support installed, VTK files could not be read") else: raise IOError("File format not supported")
2.3125
2
setup.py
carletes/mock-ssh-server
42
12775754
import os from setuptools import find_packages, setup def read_requirements(): ret = [] fname = os.path.join(os.path.dirname(__file__), "requirements.txt") with open(fname, "r") as f: for line in f: line = line.strip() if line and not line.startswith("#"): ret.append(line) return ret def read_long_description(): with open("README.rst", "r") as f: return f.read() setup( name="mock-ssh-server", version="0.9.1", description="Mock SSH server for testing purposes", long_description=read_long_description(), url="https://github.com/carletes/mock-ssh-server", author="<NAME>", author_email="<EMAIL>", license="MIT", classifiers=[ "Development Status :: 4 - Beta", "Environment :: Console", "Intended Audience :: Developers", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", "Topic :: Software Development :: Testing", "Programming Language :: Python :: 2.7", "Programming Language :: Python :: 3.5", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "Programming Language :: Python :: 3.9", ], package_dir={ "mockssh": "mockssh", }, packages=find_packages(), package_data={ "mockssh": [ "sample-user-key", "sample-user-key.pub", "server-key", "server-key.pub", ] }, install_requires=read_requirements(), zip_safe=False, )
1.921875
2
pybitcoin/transactions/scripts.py
sea212/pybitcoin
220
12775755
<filename>pybitcoin/transactions/scripts.py # -*- coding: utf-8 -*- """ pybitcoin ~~~~~ :copyright: (c) 2014 by Halfmoon Labs :license: MIT, see LICENSE for more details. """ from .opcodes import * from .utils import count_bytes from ..constants import MAX_BYTES_AFTER_OP_RETURN from ..b58check import b58check_decode, b58check_encode from binascii import hexlify, unhexlify from utilitybelt import is_hex def script_to_hex(script): """ Parse the string representation of a script and return the hex version. Example: "OP_DUP OP_HASH160 c629...a6db OP_EQUALVERIFY OP_CHECKSIG" """ hex_script = '' parts = script.split(' ') for part in parts: if part[0:3] == 'OP_': try: hex_script += '%0.2x' % eval(part) except: raise Exception('Invalid opcode: %s' % part) elif isinstance(part, (int)): hex_script += '%0.2x' % part elif is_hex(part): hex_script += '%0.2x' % count_bytes(part) + part else: raise Exception('Invalid script - only opcodes and hex characters allowed.') return hex_script def make_pay_to_address_script(address): """ Takes in an address and returns the script """ hash160 = hexlify(b58check_decode(address)) script_string = 'OP_DUP OP_HASH160 %s OP_EQUALVERIFY OP_CHECKSIG' % hash160 return script_to_hex(script_string) def make_op_return_script(data, format='bin'): """ Takes in raw ascii data to be embedded and returns a script. """ if format == 'hex': assert(is_hex(data)) hex_data = data elif format == 'bin': hex_data = hexlify(data) else: raise Exception("Format must be either 'hex' or 'bin'") num_bytes = count_bytes(hex_data) if num_bytes > MAX_BYTES_AFTER_OP_RETURN: raise Exception('Data is %i bytes - must not exceed 40.' % num_bytes) script_string = 'OP_RETURN %s' % hex_data return script_to_hex(script_string)
2.53125
3
Code/GraphMol/Descriptors/Wrap/test3D.py
docking-org/rdk
0
12775756
<filename>Code/GraphMol/Descriptors/Wrap/test3D.py from rdkit import Chem from rdkit import rdBase from rdkit import RDConfig import os from rdkit.Chem import rdMolDescriptors as rdMD from rdkit.Chem import AllChem haveDescrs3D = hasattr(rdMD,'CalcAUTOCORR3D') import time,unittest def _gen3D(m,is3d,calculator): if not is3d: m = Chem.AddHs(m) ps = AllChem.ETKDG() ps.randomSeed = 0xf00d AllChem.EmbedMolecule(m,ps) return calculator(m) class TestCase(unittest.TestCase): def setUp(self): self.dataDir = os.path.join(RDConfig.RDBaseDir,'Code','GraphMol', 'Descriptors','test_data') self.suppl = Chem.SDMolSupplier(os.path.join(self.dataDir,'PBF_egfr.sdf'),removeHs=False) @unittest.skipIf(not haveDescrs3D,"3d descriptors not present") def test1AUTOCORR2D(self): # not really a 3D descriptor, but this was added at the same time with open(os.path.join(self.dataDir,'auto2D.out')) as refFile: for i,m in enumerate(self.suppl): if i>10: break nm = m.GetProp('_Name') inl = refFile.readline() split = inl.split('\t') self.assertEqual(split[0],nm) split.pop(0) vs = rdMD.CalcAUTOCORR2D(m) for rv,nv in zip(split,vs): self.assertAlmostEqual(float(rv),nv,delta=0.05) @unittest.skipIf(not haveDescrs3D,"3d descriptors not present") def test2AUTOCORR3D(self): with open(os.path.join(self.dataDir,'auto3D_dragon.out')) as refFile: for i,m in enumerate(self.suppl): if i>10: break nm = m.GetProp('_Name') inl = refFile.readline() split = inl.split('\t') self.assertEqual(split[0],nm) split.pop(0) vs = _gen3D(m,True,rdMD.CalcAUTOCORR3D) for rv,nv in zip(split,vs): self.assertAlmostEqual(float(rv),nv,delta=0.05) @unittest.skipIf(not haveDescrs3D,"3d descriptors not present") def test3GETAWAY(self): with open(os.path.join(self.dataDir,'GETAWAY.new.out')) as refFile: for i,m in enumerate(self.suppl): if i>10: break nm = m.GetProp('_Name') inl = refFile.readline() split = inl.split('\t') self.assertEqual(split[0],nm) split.pop(0) vs = _gen3D(m,True,rdMD.CalcGETAWAY) for rv,nv in zip(split,vs): self.assertAlmostEqual(float(rv),nv,delta=0.05) @unittest.skipIf(not haveDescrs3D,"3d descriptors not present") def test4MORSE(self): with open(os.path.join(self.dataDir,'MORSE.out')) as refFile: for i,m in enumerate(self.suppl): if i>10: break nm = m.GetProp('_Name') inl = refFile.readline() split = inl.split('\t') self.assertEqual(split[0],nm) split.pop(0) vs = _gen3D(m,True,rdMD.CalcMORSE) for rv,nv in zip(split,vs): ref = float(rv) self.assertTrue(ref < 1 or abs(ref - nv) / ref < 0.02) @unittest.skipIf(not haveDescrs3D,"3d descriptors not present") def test5RDF(self): with open(os.path.join(self.dataDir,'RDF.out')) as refFile: for i,m in enumerate(self.suppl): if i>10: break nm = m.GetProp('_Name') inl = refFile.readline() split = inl.split('\t') self.assertEqual(split[0],nm) split.pop(0) vs = _gen3D(m,True,rdMD.CalcRDF) for rv,nv in zip(split,vs): ref = float(rv) self.assertTrue(ref < 0.5 or abs(ref - nv) / ref < 0.02) @unittest.skipIf(not haveDescrs3D,"3d descriptors not present") def test6WHIM(self): with open(os.path.join(self.dataDir,'whim.new.out')) as refFile: for i,m in enumerate(self.suppl): if i>10: break nm = m.GetProp('_Name') inl = refFile.readline() split = inl.split('\t') self.assertEqual(split[0],nm) split.pop(0) vs = _gen3D(m,True,lambda x:rdMD.CalcWHIM(x,thresh=0.01)) for rv,nv in zip(split,vs): self.assertAlmostEqual(float(rv),nv,delta=0.01) if(__name__=='__main__'): unittest.main()
1.960938
2
Bin/model_vdsr.py
MingSun-Tse/pytorch-vdsr
1
12775757
<filename>Bin/model_vdsr.py<gh_stars>1-10 import numpy as np import os import torch.nn as nn import torch # Load param from model1 to model2 # For each layer of model2, if model1 has the same layer, then copy the params. def load_param(model1_path, model2): dict_param1 = torch.load(model1_path) # model1_path: .pth model path dict_param2 = dict(model2.named_parameters()) for name2 in dict_param2: if name2 in dict_param1: # print("tensor '%s' found in both models, so copy it from model 1 to model 2" % name2) dict_param2[name2].data.copy_(dict_param1[name2].data) model2.load_state_dict(dict_param2) return model2 # Original VDSR model class VDSR(nn.Module): def __init__(self, model=False, fixed=False): super(VDSR, self).__init__() self.fixed = fixed self.conv1 = nn.Conv2d( 1,64,3,1,1,bias=False) self.conv2 = nn.Conv2d(64,64,3,1,1,bias=False) self.conv3 = nn.Conv2d(64,64,3,1,1,bias=False) self.conv4 = nn.Conv2d(64,64,3,1,1,bias=False) self.conv5 = nn.Conv2d(64,64,3,1,1,bias=False) self.conv6 = nn.Conv2d(64,64,3,1,1,bias=False) self.conv7 = nn.Conv2d(64,64,3,1,1,bias=False) self.conv8 = nn.Conv2d(64,64,3,1,1,bias=False) self.conv9 = nn.Conv2d(64,64,3,1,1,bias=False) self.conv10 = nn.Conv2d(64,64,3,1,1,bias=False) self.conv11 = nn.Conv2d(64,64,3,1,1,bias=False) self.conv12 = nn.Conv2d(64,64,3,1,1,bias=False) self.conv13 = nn.Conv2d(64,64,3,1,1,bias=False) self.conv14 = nn.Conv2d(64,64,3,1,1,bias=False) self.conv15 = nn.Conv2d(64,64,3,1,1,bias=False) self.conv16 = nn.Conv2d(64,64,3,1,1,bias=False) self.conv17 = nn.Conv2d(64,64,3,1,1,bias=False) self.conv18 = nn.Conv2d(64,64,3,1,1,bias=False) self.conv19 = nn.Conv2d(64,64,3,1,1,bias=False) self.conv20 = nn.Conv2d(64, 1,3,1,1,bias=False) self.relu = nn.ReLU(inplace=True) if model: load_param(model, self) # self.load_state_dict(torch.load(model, map_location=lambda storage, location: storage)) if fixed: for param in self.parameters(): param.requires_grad = False def forward(self, y): y = self.relu(self.conv1(y)) y = self.relu(self.conv2(y)) y = self.relu(self.conv3(y)) y = self.relu(self.conv4(y)) y = self.relu(self.conv5(y)) y = self.relu(self.conv6(y)) y = self.relu(self.conv7(y)) y = self.relu(self.conv8(y)) y = self.relu(self.conv9(y)) y = self.relu(self.conv10(y)) y = self.relu(self.conv11(y)) y = self.relu(self.conv12(y)) y = self.relu(self.conv13(y)) y = self.relu(self.conv14(y)) y = self.relu(self.conv15(y)) y = self.relu(self.conv16(y)) y = self.relu(self.conv17(y)) y = self.relu(self.conv18(y)) y = self.relu(self.conv19(y)) y = self.conv20(y) # note there is no relu in the output layer return y def forward_stem(self, y): y = self.relu(self.conv1(y)); out1 = y y = self.relu(self.conv2(y)) y = self.relu(self.conv3(y)); out3 = y y = self.relu(self.conv4(y)) y = self.relu(self.conv5(y)); out5 = y y = self.relu(self.conv6(y)) y = self.relu(self.conv7(y)); out7 = y y = self.relu(self.conv8(y)) y = self.relu(self.conv9(y)); out9 = y y = self.relu(self.conv10(y)) y = self.relu(self.conv11(y)); out11 = y y = self.relu(self.conv12(y)) y = self.relu(self.conv13(y)); out13 = y y = self.relu(self.conv14(y)) y = self.relu(self.conv15(y)); out15 = y y = self.relu(self.conv16(y)) y = self.relu(self.conv17(y)); out17 = y y = self.relu(self.conv18(y)) y = self.relu(self.conv19(y)); out19 = y y = self.conv20(y) # return out1, out3, out5, out7, out9, \ # out11, out13, out15, out17, out19, y return out1, out5, out9, out13, out17, y # the last element of return is the residual def forward_dense(self, y): y = self.relu(self.conv1(y)); out1 = y y = self.relu(self.conv2(y)); out2 = y y = self.relu(self.conv3(y)); out3 = y y = self.relu(self.conv4(y)); out4 = y y = self.relu(self.conv5(y)); out5 = y y = self.relu(self.conv6(y)); out6 = y y = self.relu(self.conv7(y)); out7 = y y = self.relu(self.conv8(y)); out8 = y y = self.relu(self.conv9(y)); out9 = y y = self.relu(self.conv10(y)); out10 = y y = self.relu(self.conv11(y)); out11 = y y = self.relu(self.conv12(y)); out12 = y y = self.relu(self.conv13(y)); out13 = y y = self.relu(self.conv14(y)); out14 = y y = self.relu(self.conv15(y)); out15 = y y = self.relu(self.conv16(y)); out16 = y y = self.relu(self.conv17(y)); out17 = y y = self.relu(self.conv18(y)); out18 = y y = self.relu(self.conv19(y)); out19 = y y = self.conv20(y); out20 = y return out1, out2, out3, out4, out5, out6, out7, out8, out9, out10, \ out11, out12, out13, out14, out15, out16, out17, out18, out19, out20 class SmallVDSR_16x(nn.Module): def __init__(self, model=False, fixed=False): super(SmallVDSR_16x, self).__init__() self.fixed = fixed self.conv1 = nn.Conv2d( 1,16,3,1,1,bias=False) self.conv2 = nn.Conv2d(16,16,3,1,1,bias=False) self.conv3 = nn.Conv2d(16,16,3,1,1,bias=False) self.conv4 = nn.Conv2d(16,16,3,1,1,bias=False) self.conv5 = nn.Conv2d(16,16,3,1,1,bias=False) self.conv6 = nn.Conv2d(16,16,3,1,1,bias=False) self.conv7 = nn.Conv2d(16,16,3,1,1,bias=False) self.conv8 = nn.Conv2d(16,16,3,1,1,bias=False) self.conv9 = nn.Conv2d(16,16,3,1,1,bias=False) self.conv10 = nn.Conv2d(16,16,3,1,1,bias=False) self.conv11 = nn.Conv2d(16,16,3,1,1,bias=False) self.conv12 = nn.Conv2d(16,16,3,1,1,bias=False) self.conv13 = nn.Conv2d(16,16,3,1,1,bias=False) self.conv14 = nn.Conv2d(16,16,3,1,1,bias=False) self.conv15 = nn.Conv2d(16,16,3,1,1,bias=False) self.conv16 = nn.Conv2d(16,16,3,1,1,bias=False) self.conv17 = nn.Conv2d(16,16,3,1,1,bias=False) self.conv18 = nn.Conv2d(16,16,3,1,1,bias=False) self.conv19 = nn.Conv2d(16,16,3,1,1,bias=False) self.conv20 = nn.Conv2d(16, 1,3,1,1,bias=False) self.prelu = nn.PReLU() self.relu = nn.ReLU() self.conv1_aux = nn.Conv2d(16,64,1,1,0,bias=False) self.conv3_aux = nn.Conv2d(16,64,1,1,0,bias=False) self.conv5_aux = nn.Conv2d(16,64,1,1,0,bias=False) self.conv7_aux = nn.Conv2d(16,64,1,1,0,bias=False) self.conv9_aux = nn.Conv2d(16,64,1,1,0,bias=False) self.conv11_aux = nn.Conv2d(16,64,1,1,0,bias=False) self.conv13_aux = nn.Conv2d(16,64,1,1,0,bias=False) self.conv15_aux = nn.Conv2d(16,64,1,1,0,bias=False) self.conv17_aux = nn.Conv2d(16,64,1,1,0,bias=False) self.conv19_aux = nn.Conv2d(16,64,1,1,0,bias=False) if model: load_param(model, self) if fixed: for param in self.parameters(): param.requires_grad = False def forward_aux(self, y): y = self.relu(self.conv1(y)); out1_aux = self.prelu(self.conv1_aux(y)) y = self.relu(self.conv2(y)); out2_aux = self.prelu(self.conv2_aux(y)) y = self.relu(self.conv3(y)); out3_aux = self.prelu(self.conv3_aux(y)) y = self.relu(self.conv4(y)); out4_aux = self.prelu(self.conv4_aux(y)) y = self.relu(self.conv5(y)); out5_aux = self.prelu(self.conv5_aux(y)) y = self.relu(self.conv6(y)); out5_aux = self.prelu(self.conv5_aux(y)) y = self.relu(self.conv7(y)); out7_aux = self.prelu(self.conv7_aux(y)) y = self.relu(self.conv8(y)); out5_aux = self.prelu(self.conv5_aux(y)) y = self.relu(self.conv9(y)); out9_aux = self.prelu(self.conv9_aux(y)) y = self.relu(self.conv10(y)); out10_aux = self.prelu(self.conv10_aux(y)) y = self.relu(self.conv11(y)); out11_aux = self.prelu(self.conv11_aux(y)) y = self.relu(self.conv12(y)); out12_aux = self.prelu(self.conv12_aux(y)) y = self.relu(self.conv13(y)); out13_aux = self.prelu(self.conv13_aux(y)) y = self.relu(self.conv14(y)); out14_aux = self.prelu(self.conv14_aux(y)) y = self.relu(self.conv15(y)); out15_aux = self.prelu(self.conv15_aux(y)) y = self.relu(self.conv16(y)); out16_aux = self.prelu(self.conv16_aux(y)) y = self.relu(self.conv17(y)); out17_aux = self.prelu(self.conv17_aux(y)) y = self.relu(self.conv18(y)); out18_aux = self.prelu(self.conv18_aux(y)) y = self.relu(self.conv19(y)); out19_aux = self.prelu(self.conv19_aux(y)) y = self.conv20(y) # return out1_aux, out3_aux, out5_aux, out7_aux, out9_aux, \ # out11_aux, out13_aux, out15_aux, out17_aux, out19_aux, y return out1_aux, out5_aux, out9_aux, out13_aux, out17_aux, y # the last element of return is the residual def forward_dense(self, y): y = self.relu(self.conv1(y)); out1 = y y = self.relu(self.conv2(y)); out2 = y y = self.relu(self.conv3(y)); out3 = y y = self.relu(self.conv4(y)); out4 = y y = self.relu(self.conv5(y)); out5 = y y = self.relu(self.conv6(y)); out6 = y y = self.relu(self.conv7(y)); out7 = y y = self.relu(self.conv8(y)); out8 = y y = self.relu(self.conv9(y)); out9 = y y = self.relu(self.conv10(y)); out10 = y y = self.relu(self.conv11(y)); out11 = y y = self.relu(self.conv12(y)); out12 = y y = self.relu(self.conv13(y)); out13 = y y = self.relu(self.conv14(y)); out14 = y y = self.relu(self.conv15(y)); out15 = y y = self.relu(self.conv16(y)); out16 = y y = self.relu(self.conv17(y)); out17 = y y = self.relu(self.conv18(y)); out18 = y y = self.relu(self.conv19(y)); out19 = y y = self.conv20(y); out20 = y return out1, out2, out3, out4, out5, out6, out7, out8, out9, out10, \ out11, out12, out13, out14, out15, out16, out17, out18, out19, out20 def forward(self, y): y = self.relu(self.conv1(y)) y = self.relu(self.conv2(y)) y = self.relu(self.conv3(y)) y = self.relu(self.conv4(y)) y = self.relu(self.conv5(y)) y = self.relu(self.conv6(y)) y = self.relu(self.conv7(y)) y = self.relu(self.conv8(y)) y = self.relu(self.conv9(y)) y = self.relu(self.conv10(y)) y = self.relu(self.conv11(y)) y = self.relu(self.conv12(y)) y = self.relu(self.conv13(y)) y = self.relu(self.conv14(y)) y = self.relu(self.conv15(y)) y = self.relu(self.conv16(y)) y = self.relu(self.conv17(y)) y = self.relu(self.conv18(y)) y = self.relu(self.conv19(y)) y = self.conv20(y) return y class KTSmallVDSR_16x(nn.Module): def __init__(self, e1, e2): super(KTSmallVDSR_16x, self).__init__() self.e1 = VDSR(e1, fixed=True) self.e2 = SmallVDSR_16x(e2) def forward(self, LR): feats_1 = self.e1.forward_stem(LR); predictedHR_1 = torch.add(feats_1[-1], LR) feats_2 = self.e1.forward_stem(predictedHR_1); predictedHR_2 = torch.add(feats_2[-1], predictedHR_1) feats_3 = self.e1.forward_stem(predictedHR_2); predictedHR_3 = torch.add(feats_3[-1], predictedHR_2) feats2_1 = self.e2.forward_aux(LR); predictedHR2_1 = torch.add(feats2_1[-1], LR) feats2_2 = self.e2.forward_aux(predictedHR2_1); predictedHR2_2 = torch.add(feats2_2[-1], predictedHR2_1) feats2_3 = self.e2.forward_aux(predictedHR2_2); predictedHR2_3 = torch.add(feats2_3[-1], predictedHR2_2) return feats_1, feats2_1, predictedHR_1, predictedHR2_1, \ feats_2, feats2_2, predictedHR_2, predictedHR2_2, \ feats_3, feats2_3, predictedHR_3, predictedHR2_3 Autoencoders = { "16x": KTSmallVDSR_16x, }
2.28125
2
pinax/projects/temp_group_project/apps/temp_tribes/admin.py
skabber/pinax
2
12775758
from django.contrib import admin from temp_tribes.models import Tribe class TribeAdmin(admin.ModelAdmin): list_display = ('name', 'slug', 'creator', 'created', 'deleted') admin.site.register(Tribe, TribeAdmin)
1.773438
2
stone/common/errors.py
Coderhypo/booklib
0
12775759
class BaseError(Exception): error_id = "" error_msg = "" def __repr__(self): return "<{err_id}>: {err_msg}".format( err_id=self.error_id, err_msg=self.error_msg, ) def render(self): return dict( error_id=self.error_id, error_msg=self.error_msg, ) class ClientError(BaseError): error_id = "Third_Party_Dependent_Error" def __init__(self, error_msg): self.error_msg = error_msg class BookNotFound(BaseError): error_id = "Book_Not_Found" def __init__(self, error_msg): self.error_msg = error_msg class UserNotFound(BaseError): error_id = "User_Not_Found" def __init__(self, error_msg): self.error_msg = error_msg class RecommendedNotFound(BaseError): error_id = "Recommended_Not_Found" def __init__(self, error_msg): self.error_msg = error_msg
2.75
3
src/euler_python_package/euler_python/medium/p374.py
wilsonify/euler
0
12775760
<reponame>wilsonify/euler def problem374(): pass
0.84375
1
links/views.py
RuijiaX/w3hacks
1
12775761
from django.shortcuts import render from django.http import HttpResponseRedirect, HttpResponse from app.models import ResourceLink def index(request): links = ResourceLink.objects.all() return render(request, "links/index.html", context={ "links": links }) def link(request, url_extension): # Link exists if ResourceLink.objects.filter(url_extension=url_extension).exists(): resource_link = ResourceLink.objects.get(url_extension=url_extension) return HttpResponseRedirect(resource_link.link) # Link doesn't exist else: return HttpResponse("That link doesn't exist.")
2.15625
2
app/main.py
lauralex/DSBD_csv_gen
0
12775762
<gh_stars>0 from fastapi import FastAPI from app.kafka import consumers, producers from app.utils.advanced_scheduler import init_scheduler app = FastAPI() @app.on_event("startup") def run_consumers_producers(): init_scheduler() consumers.init_consumers() producers.init_producers() @app.on_event("shutdown") def close_consumers(): consumers.close_consumers() producers.close_producers()
2.171875
2
test/test_model.py
vkazei/deepwave
73
12775763
<reponame>vkazei/deepwave<filename>test/test_model.py<gh_stars>10-100 import torch import pytest import deepwave.base.model def test_init_scalar(): """Init model with scalars""" properties = {'a': torch.ones(3, 4), 'b': torch.zeros(3, 4)} dx = 5.0 model = deepwave.base.model.Model(properties, dx, pad_width=1, origin=2.0) assert model.properties == properties assert model.device == properties['a'].device assert model.ndim == 2 assert (model.shape == torch.Tensor([3, 4, 1]).long()).all() assert (model.dx == dx * torch.ones(2)).all() assert (model.pad_width == torch.Tensor([1, 1, 1, 1, 0, 0]).long()).all() assert (model.origin == torch.Tensor([2.0, 2.0])).all() assert model.interior == [slice(1, 2), slice(1, 3)] def test_init_list(): """Init model with lists""" properties = {'a': torch.ones(3, 4), 'b': torch.zeros(3, 4)} dx = [5.0, 5.0] pad_width = [1, 1, 1, 1, 0, 0] origin = [2.0, 2.0] model = deepwave.base.model.Model(properties, dx, pad_width=pad_width, origin=origin) assert model.properties == properties assert model.device == properties['a'].device assert model.ndim == 2 assert (model.shape == torch.Tensor([3, 4, 1]).long()).all() assert (model.dx == torch.Tensor(dx)).all() assert (model.pad_width == torch.Tensor([1, 1, 1, 1, 0, 0]).long()).all() assert (model.origin == torch.Tensor([2.0, 2.0])).all() assert model.interior == [slice(1, 2), slice(1, 3)] def test_not_tensor(): """One of the properties is not a Tensor""" properties = {'a': torch.ones(3, 4), 'b': [0, 1]} with pytest.raises(TypeError): deepwave.base.model.Model(properties, 5.0, pad_width=1, origin=2.0) def test_different_types(): """Properties have different types""" properties = {'a': torch.ones(3, 4), 'b': torch.zeros(3, 4, dtype=torch.double)} with pytest.raises(RuntimeError): deepwave.base.model.Model(properties, 5.0, pad_width=1, origin=2.0) def test_different_sizes1(): """Properties have different sizes (same ndim)""" properties = {'a': torch.ones(3, 4), 'b': torch.zeros(3, 5)} with pytest.raises(RuntimeError): deepwave.base.model.Model(properties, 5.0, pad_width=1, origin=2.0) def test_different_sizes2(): """Properties have different sizes (different ndim)""" properties = {'a': torch.ones(3, 4), 'b': torch.zeros(3, 4, 1)} with pytest.raises(RuntimeError): deepwave.base.model.Model(properties, 5.0, pad_width=1, origin=2.0) def test_nonpositive_dx1(): """Nonpositive dx (scalar)""" properties = {'a': torch.ones(3, 4), 'b': torch.zeros(3, 4)} with pytest.raises(RuntimeError): deepwave.base.model.Model(properties, -5.0, pad_width=1, origin=2.0) def test_nonpositive_dx2(): """Nonpositive dx (list)""" properties = {'a': torch.ones(3, 4), 'b': torch.zeros(3, 4)} dx = [5.0, 0.0] with pytest.raises(RuntimeError): deepwave.base.model.Model(properties, dx, pad_width=1, origin=2.0) def test_negative_pad1(): """Negative pad (scalar)""" properties = {'a': torch.ones(3, 4), 'b': torch.zeros(3, 4)} with pytest.raises(RuntimeError): deepwave.base.model.Model(properties, 5.0, pad_width=-1, origin=2.0) def test_negative_pad2(): """Negative pad (list)""" properties = {'a': torch.ones(3, 4), 'b': torch.zeros(3, 4)} pad_width = [1, 1, -1, 1, 0, 0] with pytest.raises(RuntimeError): deepwave.base.model.Model(properties, 5.0, pad_width=pad_width, origin=2.0) def test_integer_origin(): """Origin is int instead of float""" properties = {'a': torch.ones(3, 4), 'b': torch.zeros(3, 4)} with pytest.raises(TypeError): deepwave.base.model.Model(properties, 5.0, pad_width=1, origin=2) def test_extract(): """Extract portion of model""" properties = {'a': torch.ones(3, 4), 'b': torch.zeros(3, 4)} model = deepwave.base.model.Model(properties, 5.0, pad_width=1, origin=2.0) model_extract = model[:, 1:2] assert (model_extract.shape == torch.Tensor([3, 3, 1]).long()).all() assert model_extract.properties['a'].shape == torch.Size([3, 3]) assert model_extract.properties['b'].shape == torch.Size([3, 3]) assert model_extract.ndim == 2 assert (model_extract.pad_width == torch.Tensor([1, 1, 1, 1, 0, 0]).long()).all() assert (model_extract.origin == torch.Tensor([2.0, 7.0])).all() assert model_extract.interior == [slice(1, 2), slice(1, 2)] def test_pad1(): """Change pad_width from 1 to 2""" properties = {'a': torch.ones(3, 4), 'b': torch.zeros(3, 4)} model = deepwave.base.model.Model(properties, 5.0, pad_width=1, origin=2.0) model_pad = model.pad(2) assert (model_pad.shape == torch.Tensor([5, 6, 1]).long()).all() assert model_pad.properties['a'].shape == torch.Size([5, 6]) assert model_pad.properties['b'].shape == torch.Size([5, 6]) assert model_pad.ndim == 2 assert (model_pad.pad_width == torch.Tensor([2, 2, 2, 2, 0, 0]).long()).all() assert (model_pad.origin == torch.Tensor([2.0, 2.0])).all() assert model_pad.interior == [slice(2, 3), slice(2, 4)] def test_pad2(): """Add two pad_widths""" properties = {'a': torch.ones(3, 4), 'b': torch.zeros(3, 4)} model = deepwave.base.model.Model(properties, 5.0, pad_width=1, origin=2.0) model_pad = model.pad(1, 1) assert (model_pad.shape == torch.Tensor([5, 6, 1]).long()).all() assert model_pad.properties['a'].shape == torch.Size([5, 6]) assert model_pad.properties['b'].shape == torch.Size([5, 6]) assert model_pad.ndim == 2 assert (model_pad.pad_width == torch.Tensor([2, 2, 2, 2, 0, 0]).long()).all() assert (model_pad.origin == torch.Tensor([2.0, 2.0])).all() assert model_pad.interior == [slice(2, 3), slice(2, 4)] def test_pad3(): """Verify that padded model has correct values""" properties = {'a': torch.arange(6).float().reshape(2, 3)} model = deepwave.base.model.Model(properties, 5.0) model_pad = model.pad([1,0,0,0,0,0]) assert (model_pad.properties['a'] == torch.tensor([[0.0, 1.0, 2.0], [0.0, 1.0, 2.0], [3.0, 4.0, 5.0]])).all()
2.359375
2
fitseq/fitseq.py
darachm/PyFitSeq
1
12775764
<reponame>darachm/PyFitSeq #!/usr/bin/env python3 import numpy as np import pandas as pd import math import argparse import itertools import sys from scipy.stats import linregress from scipy.optimize import minimize from scipy.optimize import Bounds from tqdm import tqdm from scipy.misc import derivative from multiprocessing import Pool import itertools x0_global = None read_num_measure_global = None kappa_global = None read_depth_seq_global = None t_seq_global = None seq_num_global = None sum_term_global = None fitness_type_global = None def estimate_parameters(x,processes,total_reads,max_chunk_size): """Estimate parameters? This copied over from the old old old PyFitSeq - dunno if still relevant but it's missing in this version !!! A SUB-FUNCTION CALLED BY MAIN FUNCTION main() TO CALCULATE THE LOG LIKELIHOOD VALUE OF EACH GENOTYPE GIVEN ITS FITNESS, THE ESTIMATED READ NUMBER PER GENOTYPE PER SEQUENCING TIME-POINT, AND THE ESTIMATED MEAN FITNESS PER SEQUENCING TIME-POINT INPUTS ( NOT ANY more apparently....) * x: fitness of each genotype, [x1, x2, ...] * read_num_seq: read number per genotype at each sequencing time-point * t_seq: sequenced time-points in number of generations, [0, t1, t2, ...] * kappa: a noise parameter that characterizes the total noise introduced by growth, cell transfer, DNA extraction, PCR, and sequencing (To measure kappa empirically, see the reference: [<NAME>, et al. Quantitative Evolutionary Dynamics Using High-resolution Lineage Tracking. Nature, 519: 181â186 (2015)]. ) . (default: 2.5) * fitness_type: type of fitness: Wrightian fitness (w), or Malthusian fitness (m)' (default: m) OUTPUTS * estimate_parameters_output: log likelihood value of each genotype, estimated reads number per genotype per sequencing time-point, estimated mean fitness per sequencing time-point, [x_mean(t0),x_mean(t1),...] """ global read_num_measure_global global read_num_measure_original global read_depth_seq_global global t_seq_global global kappa_global global fitness_type_global global seq_num_global global fitness_type_global read_num_theory = 1e-1*np.ones(read_num_measure_global.shape, dtype=float) read_num_theory[:,0] = read_num_measure_global[:,0] x_mean = np.zeros(seq_num_global, dtype=float) sum_term = np.zeros(seq_num_global, dtype=float) if fitness_type_global == 'm': for k in range(1, seq_num_global): freq_of_lineage = ( read_num_measure_original[:, k] / np.sum(read_num_measure_original[:, k]) ) x_mean[k] = np.average(x, weights=freq_of_lineage) sum_term[k] = ( (t_seq_global[k]-t_seq_global[k-1]) * (x_mean[k]+x_mean[k-1]) / 2 ) tempt = ( read_num_measure_original[:, k-1] * np.exp( (t_seq_global[k]-t_seq_global[k-1]) * x - sum_term[k] ) ) read_num_theory[:,k] = ( tempt / read_depth_seq_global[k-1]*read_depth_seq_global[k] ) elif fitness_type_global == 'w': for k in range(1, seq_num_global): freq_of_lineage = ( read_num_measure_global[:, k] / np.sum(read_num_measure_global[:, k]) ) x_mean[k] = np.maximum( np.average(x, weights=freq_of_lineage) , 0) if x_mean[k] != x_mean[k-1]: sum_term[k] = ((x_mean[k]+1)*np.log(x_mean[k]+1) - (x_mean[k-1]+1)*np.log(x_mean[k-1]+1) - (x_mean[k]-x_mean[k-1])) * (t_seq_global[k]-t_seq_global[k-1])/(x_mean[k]-x_mean[k-1]) else: sum_term[k] = (t_seq_global[k] - t_seq_global[k-1]) * np.log(1 + x_mean[k-1]) tempt = ( read_num_measure_global[:,k-1] * np.exp( (t_seq_global[k]-t_seq_global[k-1]) * np.log(1+x) - sum_term[k] ) ) read_num_theory[:,k] = tempt/read_depth_seq_global[k-1]*read_depth_seq_global[k] #x_mean[k] = np.maximum(np.dot(x, read_num_theory[:, k]) / np.sum(read_num_theory[:, k]),0) if x_mean[k] != x_mean[k-1]: sum_term[k] = ((x_mean[k]+1)*np.log(x_mean[k]+1) - (x_mean[k-1]+1)*np.log(x_mean[k-1]+1) - (x_mean[k]-x_mean[k-1])) * (t_seq_global[k]-t_seq_global[k-1])/(x_mean[k]-x_mean[k-1]) else: sum_term[k] = (t_seq_global[k] - t_seq_global[k-1]) * np.log(1 + x_mean[k-1]) if processes > 1: pool_obj = Pool(processes) other_result = pool_obj.starmap( calculate_likelihood_of_fitness_vector, tqdm( [ (x0_global[i],read_num_measure_global[i,:],kappa_global,total_reads,sum_term) for i in range(read_num_measure_global.shape[0]) ] ) , chunksize=np.minimum( max_chunk_size, int(len(x)/processes)+1 ) ) else: other_result = list(itertools.starmap( calculate_likelihood_of_fitness_vector, tqdm( [ (x0_global[i],read_num_measure_global[i,:],kappa_global,total_reads,sum_term) for i in range(read_num_measure_global.shape[0]) ] ) )) parameter_output = {'Likelihood_Log': other_result, 'Estimated_Read_Number': read_num_theory, 'Estimated_Mean_Fitness': x_mean, 'Sum_Term': sum_term} return parameter_output ################################################## def predict_counts(fitness,observations,total_reads,sum_term): """predict expected counts? """ global t_seq_global global seq_num_global global fitness_type_global number_of_timepoints = len(observations) read_num_lineage_theory = 1e-1 * np.ones(number_of_timepoints, dtype=float) read_num_lineage_theory[0] = observations[0] if fitness_type_global == 'm': for k in range(1, number_of_timepoints): tempt = ( observations[k-1] * np.exp( (t_seq_global[k]-t_seq_global[k-1]) * fitness - sum_term[k] ) ) # wait a sec, so this is predicting from the observed previous timepoint at every step????? that seems odd,maybe wrong read_num_lineage_theory[k] = ( tempt / total_reads[k-1] * total_reads[k] ) elif fitness_type_global == 'w': for k in range(1, number_of_timepoints): tempt = observations[k-1] * np.exp((t_seq_global[k]-t_seq_global[k-1])*np.log(1+fitness) - sum_term[k]) read_num_lineage_theory[k] = tempt/total_reads[k-1]*total_reads[k] return read_num_lineage_theory def calculate_likelihood_of_fitness_vector(fitness,observations,kappa, total_reads,sum_term): """given a fitness value, calculate the likelihood of that Arguments: fitness -- fitness to calc likelihood for observations -- the counts to calc likelihood for kappa -- that kappa parameter for noise """ # generate expected counts expected_counts = predict_counts(fitness,observations, total_reads,sum_term) number_of_timepoints = len(observations) likelihood_log_seq_lineage = np.zeros(number_of_timepoints, dtype=float) read_threshold = 20 read_threshold_2 = 10 positions_to_consider = np.where(observations[:-1] >= read_threshold)[0] likelihood_log_seq_lineage[positions_to_consider + 1] = ( 0.25 * np.log(expected_counts[positions_to_consider + 1]) - 0.5 * np.log(4 * np.pi * kappa) - 0.75 * np.log(observations[positions_to_consider + 1]) - ( np.sqrt(observations[positions_to_consider + 1]) - np.sqrt(expected_counts[positions_to_consider + 1]) ) ** 2 / kappa ) pos = np.where(observations[:-1] < read_threshold)[0] pos_p1 = np.where( observations[pos + 1] >= read_threshold_2 )[0] pos_p2 = np.where( observations[pos + 1] < read_threshold_2 )[0] pos2 = pos[pos_p1] pos3 = pos[pos_p2] likelihood_log_seq_lineage[pos2 + 1] = ( np.multiply( observations[pos2 + 1], np.log(expected_counts[pos2 + 1]) ) - expected_counts[pos2 + 1] - np.multiply( observations[pos2 + 1], np.log(observations[pos2 + 1]) ) + observations[pos2 + 1] - 0.5 * np.log(2 * np.pi * observations[pos2 + 1]) ) factorial_tempt = [ float(math.factorial(i)) for i in observations[pos3 + 1].astype(int) ] likelihood_log_seq_lineage[pos3 + 1] = ( np.multiply( observations[pos3 + 1], np.log(expected_counts[pos3 + 1]) ) - expected_counts[pos3 + 1] - np.log(factorial_tempt) ) likelihood_log_lineage = np.sum(likelihood_log_seq_lineage) return -likelihood_log_lineage ################################################## def fun_x_est_lineage(i,tolerance): global x0_global global read_num_measure_global global kappa_global global read_depth_seq_global global t_seq_global global seq_num_global global sum_term_global global fitness_type_global # x0_global is the currently worked on fitnesses optimization_result = minimize( fun=calculate_likelihood_of_fitness_vector, x0=x0_global[i], args=( read_num_measure_global[i,:] , kappa_global, read_depth_seq_global, sum_term_global ), method='BFGS', options={'gtol':tolerance} ) return optimization_result['x'][0] ################################################## def main(): """ """ global x0_global global read_num_measure_global global read_num_measure_original global kappa_global global read_depth_seq_global global t_seq_global global seq_num_global global sum_term_global global fitness_type_global parser = argparse.ArgumentParser(description='Estimate fitness of each genotype in a competitive pooled growth experiment', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('-p', '--processes', type=int, default=1, help='Number of processes to launch with multiprocessing') parser.add_argument('--max-chunk-size', type=int, default=None, help=('The max chunksize for parallelism, automatically set to ' 'a roughly even split of lineages per chunk. Tune if you want to.') ) parser.add_argument('-i', '--input', type=str, required=True, help=('The path to a header-less CSV file, where each column ' 'contains the count of each lineage (each row is a lineage) ' 'at that sample/timepoint.') ) parser.add_argument('--t-seq', '-t', nargs='*', required=True, type=float, help=('The estimated "generations" of growth elapse at each sampled ' 'timepoint. This is useful for scaling the fitness or using ' 'unevenly spaced timepoints') ) parser.add_argument('-o', '--output', type=str, default=sys.stdout, help='The path (default STDOUT) from which to output the fitnesses ' 'and errors and likelihoods and estimated reads. CSV format.') parser.add_argument('--output-mean-fitness','-om', type=str, default=None, help='The path (default None) to which to write the mean fitnesses' 'calculated per sample.') parser.add_argument('--min-iter', type=int, default=10, help='Force FitSeq to run at least this many iterations in the ' 'optimization') parser.add_argument('--max-iter-num', '-m', type=int, default=100, help=('Maximum number of iterations in the optimization ' '(of optimizing population average fitness)') ) parser.add_argument('--minimum-step-size', '--min-step', type=float, default=0.0001, help=('Set a minimum fracitonal step size for improvement, if below ' 'this then the optimization iterations terminate.') ) parser.add_argument('--fitness-type', '-f', type=str, default='m', choices = ['m', 'w'], help=('SORRY no choice, only Malthusian fitness (m) works. ' 'But in later verions, ' 'maybe we\'ll re-implement Wrightian fitness (w).') ) parser.add_argument('-k', '--kappa', type=float, default=2.5, help=('a noise parameter that characterizes the total ' 'noise introduced. For estimateion, see doi:10.1038/nature14279') ) parser.add_argument('--gtol', type=float, default=1e-5, help='The gradient tolerance parameter for the BFGS opitmization, ' 'default (from SciPy) is 1e-5') parser.add_argument('-g', '--regression-num', type=int, default=2, help='number of points used in the initial ' 'linear-regression-based fitness estimate') args = parser.parse_args() read_num_measure_global = np.array(pd.read_csv(args.input, header=None), dtype=float) t_seq_global = np.array(args.t_seq, dtype=float) max_iter_num = args.max_iter_num min_iter = args.min_iter kappa_global = args.kappa regression_num = args.regression_num fitness_type_global = args.fitness_type minimum_step_size = args.minimum_step_size lineages_num, seq_num_global = read_num_measure_global.shape max_chunk_size = args.max_chunk_size if max_chunk_size is None: max_chunk_size = int(lineages_num/args.processes)+1 else: max_chunk_size = int(np.minimum(max_chunk_size,lineages_num)) if fitness_type_global == 'w': exit("Wrightian fitness does not yet work in this version") print('Estimating Wrightian fitness for %d lineages...' %lineages_num,file=sys.stderr) elif fitness_type_global == 'm': print('Estimating Malthusian fitness for %d lineages...' %lineages_num,file=sys.stderr) read_num_measure_original = read_num_measure_global read_num_measure_global[read_num_measure_global < 1] = 0.1 # This is where the minimum read is set to 0.1, so that later # log values do not error out read_depth_seq_global = np.sum(read_num_measure_original, axis=0) read_freq_seq = read_num_measure_global / read_depth_seq_global if fitness_type_global == 'm': if regression_num == 2: x0_tempt = np.true_divide(read_freq_seq[:, 1] - read_freq_seq[:, 0], t_seq_global[1] - t_seq_global[0]) else: x0_tempt = [regression_output.slope for i in range(lineages_num) for regression_output in [linregress(t_seq[0:regression_num], np.log(read_freq_seq[i, 0:regression_num]))]] x0 = x0_tempt #- np.dot(read_freq_seq[:, 0], x0_tempt) # normalization elif fitness_type_global == 'w': if regression_num == 2: x0_tempt = np.power(np.true_divide(read_freq_seq[:, 1], read_freq_seq[:, 0]), 1 / (t_seq_global[1] - t_seq_global[0])) - 1 else: x0_tempt = np.exp([regression_output.slope for i in range(lineages_num) for regression_output in [linregress(t_seq_global[0:regression_num], np.log(read_freq_seq[i, 0:regression_num]))]]) - 1 x0 = (1 + x0_tempt) / (1 + np.dot(read_freq_seq[:, 0], x0_tempt)) - 1 # normalization x0_global = x0 print(r'-- Estimating initial guesses of global parameters ',file=sys.stderr) parameter_output = estimate_parameters(x0_global,args.processes, read_depth_seq_global, max_chunk_size ) x_mean_global = parameter_output['Estimated_Mean_Fitness'] sum_term_global = parameter_output['Sum_Term'] likelihood_log = parameter_output['Likelihood_Log'] likelihood_log_sum_iter = [np.sum(likelihood_log)] for k_iter in range(max_iter_num): if fitness_type_global == 'w': x0_global[x0_global <= -1] = -1 + 1e-7 print(r'-- Optimizing fitness for every lineage with global parms',file=sys.stderr) if args.processes > 1: with Pool(args.processes) as pool_obj: x0_global = np.array( pool_obj.starmap( fun_x_est_lineage, tqdm([ (i,args.gtol) for i in range(lineages_num) ]), chunksize=np.minimum( max_chunk_size, int(len(x0_global)/args.processes)+1 ) ) ) else: x0_global = np.array( list( itertools.starmap(fun_x_est_lineage, tqdm([ (i,args.gtol) for i in range(lineages_num) ]) ) ) ) print(r'-- Re-estimating global parms',file=sys.stderr) parameter_output = estimate_parameters(x0_global,args.processes, read_depth_seq_global, max_chunk_size ) x_mean_global = parameter_output['Estimated_Mean_Fitness'] sum_term_global = parameter_output['Sum_Term'] likelihood_log = parameter_output['Likelihood_Log'] print(r'-- Average fitnesses ', x_mean_global,file=sys.stderr) likelihood_log_sum_iter.append(np.sum(likelihood_log)) print(r'-- log likelihood after iteration %i: %.4f' %(k_iter+1, likelihood_log_sum_iter[-1]) , file=sys.stderr) if ( k_iter >= min_iter and (likelihood_log_sum_iter[-2] / likelihood_log_sum_iter[-1]) - 1 <= minimum_step_size ): break print(r'-- Calculating second derivatives around final fitness estimates',file=sys.stderr) # estimation error if args.processes > 1: with Pool(args.processes) as pool_obj: second_derivative = pool_obj.starmap( derivative, tqdm( [ ( calculate_likelihood_of_fitness_vector, x0_global[i], 1e-6, 2, ( read_num_measure_global[i,:], kappa_global, read_depth_seq_global, sum_term_global ) ) for i in range(lineages_num) ] ) , chunksize=np.minimum( max_chunk_size, int(lineages_num/args.processes)+1 ) ) else: second_derivative = list(itertools.starmap( derivative, tqdm( [ ( calculate_likelihood_of_fitness_vector, x0_global[i], 1e-6, 2, ( read_num_measure_global[i,:], kappa_global, read_depth_seq_global, sum_term_global ) ) for i in range(lineages_num) ] ) ) ) estimation_error = np.array( [ 1/np.sqrt(i) if type(i) is np.double and i > 0 and np.sqrt(i) is not None else np.nan for i in second_derivative ] ) print(r'-- Writing outputs',file=sys.stderr) read_num_theory = parameter_output['Estimated_Read_Number'] if fitness_type_global == 'm': x_opt = x0_global #- np.dot(read_num_theory[:, 0], x0_global) / np.sum(read_num_theory[:, 0]) # normalization elif fitness_type_global == 'w': x_opt = (1 + x0_global) / (1 + np.dot(read_num_theory[:, 0], x0_global)) - 1 # normalization fitseq_output = {'Estimated_Fitness': x_opt, 'Estimation_Error': estimation_error, 'Likelihood_Log': likelihood_log} for k in range(seq_num_global): fitseq_output['Estimated_Read_Number_t%d' % k] = read_num_theory[:, k].astype(float) pd.DataFrame(fitseq_output).to_csv(args.output,index=False) pd.DataFrame( {'Samples':list(range(seq_num_global)), 'Estimate_Mean_Fitness':x_mean_global} ).to_csv(args.output_mean_fitness,index=False) print('Finished!',file=sys.stderr) if __name__ == "__main__": main()
2.515625
3
data processing/deleteJudge.py
xiameng552180/SeqDynamics_V0
0
12775765
<filename>data processing/deleteJudge.py<gh_stars>0 import MongoProcessor connection = MongoProcessor.Processor() collection = connection.loadCollections('mega_authors') collection2 = connection.loadCollections('sequences') """ collection.delete_many({"author":{"$regex": "judge"}}) collection.delete_many({"author":{"$regex": "nlgx"}}) """ """ collection2.delete_many({"author":{"$regex": "judge"}}) collection2.delete_many({"author":{"$regex": "nlgx"}}) """ delete = [] with open("peoplelist.txt", "r") as file: for line in file: #print(line) delete.append(line) result = [x.strip() for x in delete[0].split(',')] for name in result: collection.delete_one({"author":{"$regex": name}}) collection2.delete_one({"author":{"$regex": name}})
2.953125
3
python-package/arboretum/core.py
sh1ng/arboretum
67
12775766
<filename>python-package/arboretum/core.py # coding: utf-8 # pylint: disable=too-many-arguments, too-many-branches """Core Arboretum Library.""" from __future__ import absolute_import import os import ctypes from ctypes import * import numpy as np import scipy.sparse import json from sklearn.metrics import mean_squared_error from sklearn.metrics import roc_auc_score class ArboretumError(Exception): pass def _load_lib(): curr_path = os.path.dirname(os.path.abspath(os.path.expanduser(__file__))) lib_path = os.path.join(curr_path, 'libarboretum.so') lib = ctypes.cdll.LoadLibrary(lib_path) lib.ACreateFromDenseMatrix.restype = ctypes.c_char_p lib.ASetY.restype = ctypes.c_char_p lib.AInitGarden.restype = ctypes.c_char_p lib.AGrowTree.restype = ctypes.c_char_p lib.APredict.restype = ctypes.c_char_p lib.AFreeDMatrix.restype = ctypes.c_char_p lib.AFreeGarden.restype = ctypes.c_char_p lib.AAppendLastTree.restype = ctypes.c_char_p lib.AGetY.restype = ctypes.c_char_p lib.ADeleteArray.restype = ctypes.c_char_p lib.ASetLabel.restype = ctypes.c_char_p lib.ASetWeights.restype = ctypes.c_char_p lib.ADumpModel.restype = ctypes.c_char_p lib.ADumpModel.argtypes = [POINTER(c_char_p), c_void_p] lib.ALoadModel.restype = ctypes.c_char_p return lib _LIB = _load_lib() def _call_and_throw_if_error(ret): if ret is not None: raise ArboretumError(ValueError(ret)) class DMatrix(object): def __init__(self, data, data_category=None, y=None, labels=None, weights=None, missing=0.0): self.labels_count = 1 self.rows = data.shape[0] self.columns = data.shape[1] self._init_from_npy2d(data, missing, category=data_category) if y is not None and labels is not None: raise ValueError( 'y and labels both are not None. Specify labels only for multi label classification') if y is not None: assert data.shape[0] == len(y) self._init_y(y) elif labels is not None: self.labels_count = np.max(labels) + 1 assert data.shape[0] == len(labels) self._init_labels(labels) if weights is not None: assert weights.shape[0] == self.rows assert weights.size == self.rows self._set_weight(weights) def __del__(self): _call_and_throw_if_error(_LIB.AFreeDMatrix(self.handle)) def _set_weight(self, weights): data = np.array(weights.reshape(self.rows), dtype=np.float32) _call_and_throw_if_error(_LIB.ASetWeights(self.handle, data.ctypes.data_as(ctypes.POINTER(ctypes.c_float)))) def _init_from_npy2d(self, mat, missing, category=None): if len(mat.shape) != 2: raise ValueError('Input numpy.ndarray must be 2 dimensional') if category is not None and category.dtype not in [np.uint8, np.uint16, np.uint32, np.int8, np.int16, np.int32, np.int]: raise ValueError('Categoty''s type must be int like') data = np.array(mat.reshape(mat.size), dtype=np.float32) self.handle = ctypes.c_void_p() if category is None: data_category = None columns = 0 else: columns = category.shape[1] data_category = np.array(category.reshape( category.size), dtype=np.uint32) _call_and_throw_if_error(_LIB.ACreateFromDenseMatrix(data.ctypes.data_as(ctypes.POINTER(ctypes.c_float)), None if data_category is None else data_category.ctypes.data_as( ctypes.POINTER(ctypes.c_uint)), ctypes.c_int( mat.shape[0]), ctypes.c_int( mat.shape[1]), ctypes.c_int( columns), ctypes.c_float( missing), ctypes.byref(self.handle))) def _init_y(self, y): data = np.array(y.reshape(self.rows), dtype=np.float32) _call_and_throw_if_error(_LIB.ASetY(self.handle, data.ctypes.data_as(ctypes.POINTER(ctypes.c_float)))) def _init_labels(self, labels): data = np.array(labels.reshape(self.rows), dtype=np.uint8) _call_and_throw_if_error(_LIB.ASetLabel(self.handle, data.ctypes.data_as(ctypes.POINTER(ctypes.c_ubyte)))) class Garden(object): """Low level object to work with arboretum """ def __init__(self, config, data=None): """Initialize arboretum Parameters ---------- config : str Configuration as a json. data : DMatrix, optional Data used for training, by default None """ self.config = config self.data = data self._init = False if 'labels_count' in config['tree']: self.labels_count = config['tree']['labels_count'] else: self.labels_count = self.labels_count = 1 self.config_str = json.dumps(config) def __del__(self): _call_and_throw_if_error(_LIB.AFreeGarden(self.handle)) if hasattr(self, 'data'): del self.data def load(self, json_model_str): """Load model from json Parameters ---------- json_model_str : str Json representation """ json_model = json.loads(json_model_str) self.handle = ctypes.c_void_p() _call_and_throw_if_error(_LIB.AInitGarden(ctypes.c_char_p(self.config_str.encode('UTF-8')), ctypes.byref(self.handle))) self._init = True _call_and_throw_if_error(_LIB.ALoadModel( c_char_p(json_model_str.encode('UTF-8')), self.handle)) def grow_tree(self, grad=None): """Grows single tree Parameters ---------- grad : numpy array, optional Gradient(not supported yet), by default None """ if not self._init: self.handle = ctypes.c_void_p() _call_and_throw_if_error(_LIB.AInitGarden(ctypes.c_char_p(self.config_str.encode('UTF-8')), ctypes.byref(self.handle))) self._init = True if grad: assert len(grad) == self.data.rows data = np.array(grad.reshape(self.data.rows), dtype=np.float32) _call_and_throw_if_error(_LIB.AGrowTree(self.handle, self.data.handle, data.ctypes.data_as(ctypes.POINTER(ctypes.c_float)))) else: _call_and_throw_if_error(_LIB.AGrowTree(self.handle, self.data.handle, ctypes.c_void_p(grad))) def append_last_tree(self, data): """Appends last tree for ``data`` and updated prediction stored in Y. Parameters ---------- data : DMatrix Data to be used to propagate through the last tree. """ _call_and_throw_if_error(_LIB.AAppendLastTree(self.handle, data.handle)) def get_y(self, data): """Return prediction Y previously computed with calling ``append_last_tree`` multiple times. Parameters ---------- data : DMatrix data input Returns ------- numpy array y Raises ------ RuntimeError [description] """ length = int(data.rows) preds = ctypes.POINTER(ctypes.c_float)() _call_and_throw_if_error(_LIB.AGetY(self.handle, data.handle, ctypes.byref(preds))) if not isinstance(preds, ctypes.POINTER(ctypes.c_float)): raise RuntimeError('expected float pointer') if self.labels_count == 1: res = np.copy(np.ctypeslib.as_array(preds, shape=(length,))) else: res = np.copy(np.ctypeslib.as_array( preds, shape=(length, self.labels_count))) _call_and_throw_if_error(_LIB.ADeleteArray(preds)) return res def predict(self, data, n_rounds=-1): """Predict Parameters ---------- data : DMatrix Data input n_rounds : int, optional [description], by default -1 Returns ------- numpy array prediction Raises ------ RuntimeError [description] """ length = int(data.rows) preds = ctypes.POINTER(ctypes.c_float)() _call_and_throw_if_error(_LIB.APredict(self.handle, data.handle, ctypes.byref(preds), n_rounds)) if not isinstance(preds, ctypes.POINTER(ctypes.c_float)): raise RuntimeError('expected float pointer') if self.labels_count == 1: res = np.copy(np.ctypeslib.as_array(preds, shape=(length,))) else: res = np.copy(np.ctypeslib.as_array( preds, shape=(length, self.labels_count))) _call_and_throw_if_error(_LIB.ADeleteArray(preds)) return res def dump(self): """Dumps the model as a json Returns ------- str json """ json_p = c_char_p() _call_and_throw_if_error(_LIB.ADumpModel( ctypes.byref(json_p), self.handle)) return json_p.value.decode('utf-8') def train(config, data, num_round): """Train model according to the parameters Parameters ---------- config : str configuration as a json data : DMatrix Data to be trained on. num_round : int Number of boosting rounds Returns ------- Garden The trained model. """ model = Garden(config) model.data = data model.labels_count = data.labels_count for _ in range(num_round): model.grow_tree(None) return model def load(json_model_str): """load model from json Parameters ---------- json_model_str : str json model representation Returns ------- self : object Returns self. """ json_model = json.loads(json_model_str) config = json_model['configuration'] model = Garden(config) model.load(json_model_str) return model class ArboretumRegression(object): """Scikit-learn API like implementation for regression. """ def __init__(self, max_depth=6, learning_rate=0.1, n_estimators=100, verbosity=1, gamma_absolute=0.0, gamma_relative=0.0, min_child_weight=1.0, min_leaf_size=0, max_leaf_weight=0.0, colsample_bytree=0.8, colsample_bylevel=1.0, l1=1.0, l2=1.0, scale_pos_weight=1.0, initial_y=0.5, seed=0, double_precision=False, method='hist', hist_size=255, **kwargs): """[summary] Parameters ---------- max_depth : int, optional Maximum tree depth, by default 6 learning_rate : float, optional Learning rate, by default 0.1 n_estimators : int, optional Number of boosted trees to fit, by default 100 verbosity : int, optional verbosity, by default 1 gamma_absolute : float, optional Minimum absolute gain required to make a further partition on a leaf, by default 0.0 gamma_relative : float, optional Minimum relative(split vs constant) gain required to make a further partition on a leaf, by default 0.0, by default 0.0 min_child_weight : float, optional Minimum sum of hessing to allow split, by default 1.0 min_leaf_size : int, optional Minimum number of samples in a leaf, by default 0 max_leaf_weight : float, optional Maximum weight of a leaf (values less than ``-max_leaf_weight`` and greater than ``max_leaf_weight`` will be tranceted to ``max_leaf_weight`` and ``max_leaf_weight`` respectively). Zero value is ignored, by default 0.0 colsample_bytree : float, optional Subsample ratio of columns when constructing each tree., by default 0.8 colsample_bylevel : float, optional Subsample ratio of columns when constructing each tree's level., by default 1.0 l1 : float, optional L1 or alpha regularization, by default 1.0 l2 : float, optional L2 or lambda regularization, by default 1.0 scale_pos_weight : float, optional Scaling ratio for positive , by default 1.0 initial_y : float, optional Initial value to start from, by default 0.5 seed : int, optional Seed for random number generator., by default 0 double_precision : bool, optional Use double precision to summation. Makes result run-to-run reproducible, but reduces performance a bit(~10%)., by default False method : str, optional Algorithm to grow trees. 'exact' or 'hist'., by default 'hist' hist_size : int, optional Histogram size, only used by when ``method`` is 'hist', by default 255 """ config = {'objective': 0, 'method': 1 if method == 'hist' else 0, 'internals': { 'double_precision': double_precision, 'compute_overlap': 2, 'use_hist_subtraction_trick': True, 'dynamic_parallelism': True, 'upload_features': True, 'hist_size': hist_size, 'seed': seed, }, 'verbose': { 'gpu': True if verbosity > 0 else False, 'booster': True if verbosity > 0 else False, 'data': True if verbosity > 0 else False, }, 'tree': { 'eta': learning_rate, 'max_depth': max_depth, 'gamma_absolute': gamma_absolute, 'gamma_relative': gamma_relative, 'min_child_weight': min_child_weight, 'min_leaf_size': min_leaf_size, 'colsample_bytree': colsample_bytree, 'colsample_bylevel': colsample_bylevel, 'max_leaf_weight': max_leaf_weight, 'lambda': l2, 'alpha': l1 }} self._config = config self.n_estimators = n_estimators self._garden = Garden(self._config) self.verbosity = verbosity def fit(self, X, y=None, eval_set=None, eval_labels=None, early_stopping_rounds=5, eval_metric=mean_squared_error): """Fit gradient boosting model. Parameters ---------- X : DMatrix or numpy array Data to fit y : numpy array, optional labels, by default None eval_set : DMatrix or numpy_array, optional Evaluation set data used for early stopping., by default None eval_labels : numpy array, optional Evaluation set labels, by default None early_stopping_rounds : int, optional Stop fitting process if there's no improvement for ``eval_set`` during ``early_stopping_rounds`` rounds., by default 5 Returns ------- self [description] Raises ------ ArgumentError [description] ArgumentError [description] """ data = None if isinstance(X, DMatrix): data = X elif isinstance(X, np.ndarray) and isinstance(y, np.ndarray): data = DMatrix(X, y=y) else: raise ArgumentError("Only DMatrix and numpy array are supported") self._garden.data = data eval_data = None if eval_set is not None: if isinstance(eval_set, DMatrix): eval_data = X elif isinstance(eval_set, np.ndarray): eval_data = DMatrix(eval_set) else: raise ArgumentError( "Only DMatrix and numpy array are supported") self.best_round = -1 self.best_score = np.inf for i in range(self.n_estimators): self._garden.grow_tree() if eval_data is not None: self._garden.append_last_tree(eval_data) pred = self._garden.get_y(eval_data) score = eval_metric(eval_labels, pred) if score < self.best_score: print( "improved score {0} {1}->{2}".format(i, self.best_score, score)) self.best_score = score self.best_round = i if early_stopping_rounds + self.best_round < i: print("early stopping at {0} score {1}, use 'best_round' and 'best_score' to get it".format( self.best_round, self.best_score)) break return self def predict(self, X, n_rounds=-1): """Predict with ``X``. Parameters ---------- X : DMatrix or numpy array Data n_rounds : int, optional Number of trees to use, -1 - use all, by default -1 Returns ------- numpy array Prediction Raises ------ ArgumentError [description] """ data = None if isinstance(X, DMatrix): data = X elif isinstance(X, np.ndarray): data = DMatrix(X) else: raise ArgumentError("Only DMatrix and numpy array are supported") return self._garden.predict(data, n_rounds) class ArboretumClassifier(object): """Scikit-learn API like implementation for regression. """ def __init__(self, max_depth=6, learning_rate=0.1, n_estimators=100, verbosity=1, gamma_absolute=0.0, gamma_relative=0.0, min_child_weight=1.0, min_leaf_size=0, max_leaf_weight=0.0, colsample_bytree=0.8, colsample_bylevel=1.0, l1=1.0, l2=1.0, scale_pos_weight=1.0, initial_y=0.5, seed=0, double_precision=False, method='hist', hist_size=255, **kwargs): """[summary] Parameters ---------- max_depth : int, optional Maximum tree depth, by default 6 learning_rate : float, optional Learning rate, by default 0.1 n_estimators : int, optional Number of boosted trees to fit, by default 100 verbosity : int, optional verbosity, by default 1 gamma_absolute : float, optional Minimum absolute gain required to make a further partition on a leaf, by default 0.0 gamma_relative : float, optional Minimum relative(split vs constant) gain required to make a further partition on a leaf, by default 0.0, by default 0.0 min_child_weight : float, optional Minimum sum of hessing to allow split, by default 1.0 min_leaf_size : int, optional Minimum number of samples in a leaf, by default 0 max_leaf_weight : float, optional Maximum weight of a leaf (values less than ``-max_leaf_weight`` and greater than ``max_leaf_weight`` will be tranceted to ``max_leaf_weight`` and ``max_leaf_weight`` respectively). Zero value is ignored, by default 0.0 colsample_bytree : float, optional Subsample ratio of columns when constructing each tree., by default 0.8 colsample_bylevel : float, optional Subsample ratio of columns when constructing each tree's level., by default 1.0 l1 : float, optional L1 or alpha regularization, by default 1.0 l2 : float, optional L2 or lambda regularization, by default 1.0 scale_pos_weight : float, optional Scaling ratio for positive , by default 1.0 initial_y : float, optional Initial value to start from, by default 0.5 seed : int, optional Seed for random number generator., by default 0 double_precision : bool, optional Use double precision to summation. Makes result run-to-run reproducible, but reduces performance a bit(~10%)., by default False method : str, optional Algorithm to grow trees. 'exact' or 'hist'., by default 'hist' hist_size : int, optional Histogram size, only used by when ``method`` is 'hist', by default 255 """ config = {'objective': 1, 'method': 1 if method == 'hist' else 0, 'internals': { 'double_precision': double_precision, 'compute_overlap': 2, 'use_hist_subtraction_trick': True, 'dynamic_parallelism': True, 'upload_features': True, 'hist_size': hist_size, 'seed': seed, }, 'verbose': { 'gpu': True if verbosity > 0 else False, 'booster': True if verbosity > 0 else False, 'data': True if verbosity > 0 else False, }, 'tree': { 'eta': learning_rate, 'max_depth': max_depth, 'gamma_absolute': gamma_absolute, 'gamma_relative': gamma_relative, 'min_child_weight': min_child_weight, 'min_leaf_size': min_leaf_size, 'colsample_bytree': colsample_bytree, 'colsample_bylevel': colsample_bylevel, 'max_leaf_weight': max_leaf_weight, 'lambda': l2, 'alpha': l1 }} self._config = config self.n_estimators = n_estimators self._garden = Garden(self._config) self.verbosity = verbosity def fit(self, X, y=None, eval_set=None, eval_labels=None, early_stopping_rounds=5, eval_metric=lambda a, b: -roc_auc_score(a, b)): """Fit gradient boosting model. Parameters ---------- X : DMatrix or numpy array Data to fit y : numpy array, optional labels, by default None eval_set : DMatrix or numpy_array, optional Evaluation set data used for early stopping., by default None eval_labels : numpy array, optional Evaluation set labels, by default None early_stopping_rounds : int, optional Stop fitting process if there's no improvement for ``eval_set`` during ``early_stopping_rounds`` rounds., by default 5 Returns ------- self [description] Raises ------ ArgumentError [description] ArgumentError [description] """ data = None if isinstance(X, DMatrix): data = X elif isinstance(X, np.ndarray) and isinstance(y, np.ndarray): data = DMatrix(X, y=y) else: raise ArgumentError("Only DMatrix and numpy array are supported") self._garden.data = data eval_data = None if eval_set is not None: if isinstance(eval_set, DMatrix): eval_data = X elif isinstance(eval_set, np.ndarray): eval_data = DMatrix(eval_set) else: raise ArgumentError( "Only DMatrix and numpy array are supported") self.best_round = -1 self.best_score = np.inf for i in range(self.n_estimators): self._garden.grow_tree() if eval_data is not None: from sklearn.metrics import mean_squared_error self._garden.append_last_tree(eval_data) pred = self._garden.get_y(eval_data) score = eval_metric(eval_labels, pred) if score < self.best_score: print( "improved score {0} {1}->{2}".format(i, self.best_score, score)) self.best_score = score self.best_round = i if early_stopping_rounds + self.best_round < i: print("early stopping at {0} score {1}, use 'best_round' and 'best_score' to get it".format( self.best_round, self.best_score)) break return self def predict(self, X, n_rounds=-1): """Predict with ``X``. Parameters ---------- X : DMatrix or numpy array Data n_rounds : int, optional Number of trees to use, -1 - use all, by default -1 Returns ------- numpy array Positive class probability Raises ------ ArgumentError [description] """ data = None if isinstance(X, DMatrix): data = X elif isinstance(X, np.ndarray): data = DMatrix(X) else: raise ArgumentError("Only DMatrix and numpy array are supported") return self._garden.predict(data, n_rounds)
1.90625
2
profiles/migrations/0031_populate_mail_id.py
Wassaf-Shahzad/micromasters
32
12775767
# -*- coding: utf-8 -*- # Generated by Django 1.10.5 on 2017-04-06 20:14 from __future__ import unicode_literals import uuid from django.db import migrations, models def gen_uuid(apps, schema_editor): """Generate unique UUID values""" Profile = apps.get_model('profiles', 'Profile') for profile in Profile.objects.all(): profile.mail_id = uuid.uuid4() profile.save() class Migration(migrations.Migration): dependencies = [ ('profiles', '0030_create_mail_id'), ] operations = [ migrations.RunPython(gen_uuid, reverse_code=migrations.RunPython.noop), ]
2.25
2
gesture_recognition/models.py
JoshBClemons/gesture_recognition
0
12775768
import pdb import binascii import os from flask import g from werkzeug.security import generate_password_hash, check_password_hash from . import db from .utils import timestamp class User(db.Model): """The User model Attributes: __tablename__ (str): Table name for user model in database id (SQLAlchemy table column, int): User ID created_at (SQLAlchemy table column, int): Timestamp at which user was first created updated_at (SQLAlchemy table column, int): Timestamp of last time user profile was updated last_seen_at (SQLAlchemy table column, int): Timestamp of last time user was active username (SQLAlchemy table column, str): User username password_hash (SQLAlchemy table column, str): User password hash string token (SQLAlchemy table column, str): User authentication token online (SQLAlchemy table column, bool): Boolean that captures whether user is online num_logins (SQLAlchemy table column, int): Number of user logins to page frames (SQLAlchemy table relationship): Relationship property linking "user" model table to this one """ __tablename__ = 'users' id = db.Column(db.Integer, primary_key=True) created_at = db.Column(db.Integer, default=timestamp) updated_at = db.Column(db.Integer, default=timestamp, onupdate=timestamp) last_seen_at = db.Column(db.Integer, default=timestamp) username = db.Column(db.String(32), nullable=False, unique=True) password_hash = db.Column(db.String(256), nullable=False) token = db.Column(db.String(64), nullable=True, unique=True) online = db.Column(db.Boolean, default=False) num_logins = db.Column(db.Integer, default=1) frames = db.relationship('Frame', lazy='dynamic', backref='user') @property def password(self): """Returns attribute error if user password is not readable""" raise AttributeError('password is not a readable attribute') @password.setter def password(self, password): """Generates password hash string and authentication token from user password Args: password (str): User password """ self.password_hash = generate_password_hash(password) self.token = None # if user is changing passwords, also revoke token def verify_password(self, password): """Verify password matches stored password hash string Args: password (str): Inputted user password Returns: (bool): True if password matches password hash string """ return check_password_hash(self.password_hash, password) def generate_token(self): """Creates a 64 character long randomly generated token Returns: self.token (str): Generated token """ self.token = binascii.hexlify(os.urandom(32)).decode('utf-8') return self.token def ping(self): """Marks the user as recently seen and online""" self.last_seen_at = timestamp() self.online = True def new_login(self): """Increments number of times user has logged in.""" self.num_logins += 1 @staticmethod def create(data): """Create a new user Args: data (dict): Dictionary containing user's username and password Returns: user (object): Newly created user """ user = User() user.from_dict(data) return user def from_dict(self, data): """Import user data from a dictionary Args: data (dict): Dictionary containing user's username and password """ for field in ['username', 'password']: try: setattr(self, field, data[field]) except KeyError: print(f'Key {key} not valid.') def to_dict(self): """Export user to a dictionary""" return { 'username': self.username, 'online': self.online, } @staticmethod def find_offline_users(): """Find users that haven't been active and mark them as offline Returns: users (list): List of offline users """ users = User.query.filter(User.last_seen_at < timestamp() - 60, User.online == True).all() for user in users: user.online = False db.session.add(user) db.session.commit() return users class Frame(db.Model): """The Frames model Attributes: __tablename__ (str): Table name for user model in database instance (SQLAlchemy table column, str): Unique ID for processed frame date (SQLAlchemy table column, datetime): Date that frame is processed session_id (SQLAlchemy table column, int): User's login count frame_count (SQLAlchemy table column, int): Frame number for user's current session ip_address (SQLAlchemy table column, str): User's IP address root_dir (SQLAlchemy table column, str): Root directory of user's image folder raw_path (SQLAlchemy table column, str): Path for original image processed_path (SQLAlchemy table column, str): Path for processed image true_gest (SQLAlchemy table column, str): Ground-truth gesture inputted by user pred_gest (SQLAlchemy table column, str): Predicted gesture pred_conf (SQLAlchemy table column, float): Prediction confidence, percent pred_time (SQLAlchemy table column, float): Prediction time, seconds user_id (SQLAlchemy table column, int): User ID """ __tablename__ = 'frames' instance = db.Column(db.String(), primary_key=True, nullable=False) date = db.Column(db.DateTime(), nullable=False) session_id = db.Column(db.Integer(), nullable=False) frame_count = db.Column(db.Integer(), nullable=False) ip_address = db.Column(db.String()) root_dir = db.Column(db.String(), nullable=False) raw_path = db.Column(db.String(), nullable=False) processed_path = db.Column(db.String()) true_gest = db.Column(db.String(), nullable=False) pred_gest = db.Column(db.String(), nullable=False) pred_conf = db.Column(db.Numeric(), nullable=False) pred_time = db.Column(db.Numeric(), nullable=False) user_id = db.Column(db.Integer, db.ForeignKey('users.id')) @staticmethod def create(data, user=None): """Create a new frame. The user is obtained from the context unless provided explicitly. Args: data (dict): Dictionary containing values for some or all class attributes listed above Returns: frame (object): Newly generated frame """ frame = Frame(user=user or g.current_user) frame.from_dict(data) return frame def from_dict(self, data): """Import frame data from a dictionary Args: data (dict): Dictionary containing values for some or all class attributes listed above """ for key in list(data.keys()): try: setattr(self, key, data[key]) except KeyError: print(f'Key {key} not valid.')
2.9375
3
hmm_event_detection.py
Lab-Work/gpsresilience
21
12775769
<filename>hmm_event_detection.py # -*- coding: utf-8 -*- """ Created on Tue May 5 12:31:30 2015 @author: <NAME> (<EMAIL>) """ from hmmlearn.hmm import MultinomialHMM from numpy import array from tools import * from measureOutliers import readGlobalPace, getExpectedPace import csv #Read the time-series outlier scores from file. Note that this file should be generated by measureOutliers.py #Arguments: #filename - the name of the file where outlier scores are saved #Returns: #a dictionary which maps (date, hour, weekday) to the calculated mahalanobis distance def readOutlierScores(filename): r = csv.reader(open(filename, "r")) r.next() mahal_timeseries={} c_timeseries = {} for (date,hour,weekday,mahal5,mahal10,mahal20,mahal50,c_val,gamma,tol,pca_dim, num_guess,hi_pcs,global_pace,expected_pace,sd_pace) in r: hour = int(hour) mahal_timeseries[(date,hour,weekday)] = float(mahal10) c_timeseries[(date,hour,weekday)] = int(c_val) return mahal_timeseries, c_timeseries def get_event_properties(start_id, end_id, dates_list, mahal_list, global_pace_list, expected_pace_list): duration = end_id - start_id pace_devs = [global_pace_list[i] - expected_pace_list[i] for i in xrange(start_id, end_id)] min_pace_dev = min(pace_devs) / 60 max_pace_dev = max(pace_devs) / 60 max_mahal = max(mahal_list[start_id:end_id]) (date, hour, weekday) = dates_list[start_id] start_date = datetime.strptime(date, "%Y-%m-%d") + timedelta(hours = int(hour)) (date, hour, weekday) = dates_list[end_id - 1] end_date = datetime.strptime(date, "%Y-%m-%d") + timedelta(hours = int(hour)) return [start_date, end_date, duration, max_mahal, max_pace_dev, min_pace_dev] def get_all_events(states, dates_list, mahal_list, global_pace_list, expected_pace_list): currently_in_event = False events = [] for i in xrange(len(states)): if(not currently_in_event and states[i]==1): event_start_id = i currently_in_event = True if(currently_in_event and states[i] == 0): event_end_id = i currently_in_event = False event_properties = get_event_properties(event_start_id, event_end_id, dates_list, mahal_list, global_pace_list, expected_pace_list) events.append(event_properties) return events def augment_outlier_scores(in_file, out_file, predictions): with open(in_file, 'r') as in_f: with open(out_file, 'w') as out_f: r = csv.reader(in_f) w = csv.writer(out_f) header = r.next() + ['state'] w.writerow(header) i = 0 for line in r: new_line = line + [predictions[i]] w.writerow(new_line) i += 1 # Set up the hidden markov model. We are modeling the non-event states as "0" # and event states as "1" # Transition matrix with heavy weight on the diagonals ensures that the model # is likely to stick in the same state rather than rapidly switching. In other # words, the predictions will be relatively "smooth" DEFAULT_TRANS_MATRIX = array([[.999, .001], [.001,.999]]) # Emission matrix - state 0 is likely to emit symbol 0, and vice versa # In other words, events are likely to be outliers DEFAULT_EMISSION_MATRIX = array([[.95, .05], [.4, .6]]) def detect_events_hmm(mahal_timeseries, c_timeseries, global_pace_timeseries, threshold_quant=.95, trans_matrix = DEFAULT_TRANS_MATRIX, emission_matrix=DEFAULT_EMISSION_MATRIX, initial_state=None): #Sort the keys of the timeseries chronologically sorted_dates = sorted(mahal_timeseries) (expected_pace_timeseries, sd_pace_timeseries) = getExpectedPace(global_pace_timeseries) #Generate the list of values of R(t) mahal_list = [mahal_timeseries[d] for d in sorted_dates] c_list = [c_timeseries[d] for d in sorted_dates] global_pace_list = [global_pace_timeseries[d] for d in sorted_dates] expected_pace_list = [expected_pace_timeseries[d] for d in sorted_dates] #Use the quantile to determine the threshold sorted_mahal = sorted(mahal_list) threshold = getQuantile(sorted_mahal, threshold_quant) # The symbols array contains "1" if there is an outlier, "0" if there is not symbols = [] for i in range(len(mahal_list)): if(mahal_list[i] > threshold or c_list[i]==1): symbols.append(1) else: symbols.append(0) # Actually set up the hmm model = MultinomialHMM(n_components=2, transmat=trans_matrix, startprob=initial_state) model.emissionprob_ = emission_matrix # Make the predictions lnl, predictions = model.decode(symbols) events = get_all_events(predictions, sorted_dates, mahal_list, global_pace_list, expected_pace_list) # Sort events by duration, starting with the long events events.sort(key = lambda x: x[2], reverse=True) return events, predictions def process_events(outlier_score_file, feature_dir, output_file): mahal_timeseries, c_timeseries = readOutlierScores(outlier_score_file) global_pace_timeseries = readGlobalPace(feature_dir) events, predictions = detect_events_hmm(mahal_timeseries, c_timeseries, global_pace_timeseries) new_scores_file = output_file.split(".")[0] + "_scores.csv" augment_outlier_scores(outlier_score_file, new_scores_file, predictions) with open(output_file, 'w') as f: w = csv.writer(f) w.writerow(['event', 'start_date', 'end_date', 'duration', 'max_mahal', 'max_pace_dev', 'min_pace_dev']) for line in events: w.writerow(['?'] + line) def process_events_multiple_regions(): #k_vals = [7,8,9,10,15,20,25,30,35,40,45,50] k_vals = range(7,51) for k in k_vals: score_file = 'results/coarse_features_imb20_k%d_RPCAtune_10000000pcs_5percmiss_robust_outlier_scores.csv' % k #feature_dir = 'featuers_imb20_k%d' % k feature_dir = '4year_features' out_file = 'results/coarse_events_k%d.csv' % k logMsg('Generating %s' % out_file) process_events(score_file, feature_dir, out_file) if __name__ == "__main__": process_events_multiple_regions() """ process_events('results/coarse_features_imb20_k10_RPCAtune_10000000pcs_5percmiss_robust_outlier_scores.csv', '4year_features', 'results/coarse_events.csv') process_events('results/link_features_imb20_k10_RPCAtune_10000000pcs_5percmiss_robust_outlier_scores.csv', '4year_features', 'results/fine_events.csv') process_events('results/link_features_imb20_k10_PCA_10000000pcs_5percmiss_robust_outlier_scores.csv', '4year_features', 'results/pca_fine_events.csv') """
2.78125
3
python/testData/paramInfo/InitializingDataclassHierarchy/a.py
Sajaki/intellij-community
2
12775770
from dataclasses import dataclass @dataclass class A1: a: int @dataclass class B1(A1): b: str B1(<arg1>) @dataclass(init=False) class A2: a: int @dataclass class B2(A2): b: str B2(<arg2>) @dataclass class A3: a: int @dataclass(init=False) class B3(A3): b: str B3(<arg3>) @dataclass(init=False) class A4: a: int @dataclass(init=False) class B4(A4): b: str B4(<arg4>)
3
3
trodesnetwork-0.0.9/trodesnetwork-0.0.9/trodesnetwork/trodes/trodes.py
JohnLauFoo/clc_packages_Yu
1
12775771
from trodesnetwork import socket from enum import Enum, auto __all__ = ['CurrentScaling', 'GlobalStimulationSettings', 'StimulationCommand', 'TrodesHardware', 'TrodesInfoRequester', 'TrodesAnnotationRequester', 'TrodesAcquisitionRequester', 'TrodesEventSubscriber', 'TrodesAcquisitionSubscriber', 'TrodesSourceStatusSubscriber'] class CurrentScaling(Enum): max10nA = auto() max20nA = auto() max50nA = auto() max100nA = auto() max200nA = auto() max500nA = auto() max1uA = auto() max2uA = auto() max5uA = auto() max10uA = auto() class GlobalStimulationSettings: def setVoltageScale(self, scaleValue): self.scaleValue = scaleValue class StimulationCommand: def setBiphasicPulseShape(self, leadingPulseWidth_Samples, leadingPulseAmplitude, secondPulseWidth_Samples, secondPulseAmplitude, interPhaseDwell_Samples, pulsePeriod_Samples, startDelay_Samples): self.leadingPulseWidth_Samples = leadingPulseWidth_Samples self.leadingPulseAmplitude = leadingPulseAmplitude self.secondPulseWidth_Samples = secondPulseWidth_Samples self.secondPulseAmplitude = secondPulseAmplitude self.interPhaseDwell_Samples = interPhaseDwell_Samples self.pulsePeriod_Samples = pulsePeriod_Samples self.startDelay_Samples = startDelay_Samples def setNumPulsesInTrain(self, numPulsesInTrain): self.numPulsesInTrain = numPulsesInTrain def setChannels(self, cathodeID, cathodeChannel, anodeID, anodeChannel): self.cathodeChannel = cathodeChannel self.anodeChannel = anodeChannel self.cathodeNtrodeID = cathodeID self.anodeNtrodeID = anodeID def setGroup(self, group): self.group = group def setSlot(self, slot): self.slot = slot class TrodesHardware: def __init__(self, *, server_address="tcp://127.0.0.1:49152"): self.service = socket.ServiceConsumer( 'trodes.hardware', server_address=server_address) def settle_command_triggered(self): data = ['tag', 'HRSettle'] return self.service.request(data) def __startstop(self, startstop, slotgroup, number): data = [ 'tag', 'HRStartStopCommand', {'startstop': startstop, 'slotgroup': slotgroup, 'number': number} ] return self.service.request(data) def sendStimulationStartSlot(self, slot): return self.__startstop('START', 'SLOT', slot) def sendStimulationStartGroup(self, group): return self.__startstop('START', 'GROUP', group) def sendStimulationStopSlot(self, slot): return self.__startstop('STOP', 'SLOT', slot) def sendStimulationStopGroup(self, group): return self.__startstop('STOP', 'GROUP', group) def sendStimulationParams(self, params): ''' Takes StimulationCommand params ''' data = [ 'tag', 'HRSet', { '_group': params.group, 'slot': params.slot, 'cathodeChannel': params.cathodeChannel, 'anodeChannel': params.anodeChannel, 'cathodeNtrodeID': params.cathodeNtrodeID, 'anodeNtrodeID': params.anodeNtrodeID, 'leadingPulseWidth_Samples': params.leadingPulseWidth_Samples, 'leadingPulseAmplitude': params.leadingPulseAmplitude, 'secondPulseWidth_Samples': params.secondPulseWidth_Samples, 'secondPulseAmplitude': params.secondPulseAmplitude, 'interPhaseDwell_Samples': params.interPhaseDwell_Samples, 'pulsePeriod_Samples': params.pulsePeriod_Samples, 'startDelay_Samples': params.startDelay_Samples, 'numPulsesInTrain': params.numPulsesInTrain } ] return self.service.request(data) def sendClearStimulationParams(self, slot): ''' clear any existing commands in the given slot ''' data = [ 'tag', 'HRClear', { 'number': slot } ] return self.service.request(data) def sendGlobalStimulationSettings(self, settings): def getScaleValue(scaleValue): if scaleValue == CurrentScaling.max10nA: return 'max10nA' elif scaleValue == CurrentScaling.max20nA: return 'max20nA' elif scaleValue == CurrentScaling.max50nA: return 'max50nA' elif scaleValue == CurrentScaling.max100nA: return 'max100nA' elif scaleValue == CurrentScaling.max200nA: return 'max200nA' elif scaleValue == CurrentScaling.max500nA: return 'max500nA' elif scaleValue == CurrentScaling.max1uA: return 'max1uA' elif scaleValue == CurrentScaling.max2uA: return 'max2uA' elif scaleValue == CurrentScaling.max5uA: return 'max5uA' elif scaleValue == CurrentScaling.max10uA: return 'max10uA' else: raise ValueError("unknown scaleValue enum") data = [ 'tag', 'HRSetGS', { 'scaleValue': getScaleValue(settings.scaleValue) } ] return self.service.request(data) def global_stimulation_command(self, resetSequencerCmd, killStimulationCmd, clearDSPOffsetRemovalCmd, enableStimulation): data = [ 'tag', 'HRSetGC', { 'resetSequencerCmd': resetSequencerCmd, 'killStimulationCmd': killStimulationCmd, 'clearDSPOffsetRemovalCmd': clearDSPOffsetRemovalCmd, 'enableStimulation': enableStimulation, } ] return self.service.request(data) def ecu_shortcut_message(self, fn): data = [ 'tag', 'HRSCTrig', { 'fn': fn } ] return self.service.request(data) class TrodesInfoRequester: def __init__(self, *, server_address="tcp://127.0.0.1:49152"): self.service = socket.ServiceConsumer( 'trodes.info', server_address=server_address) def __request(self, item): data = { 'request': item } return self.service.request(data) def request_time(self): return self.__request('time')[2]['time'] def request_timerate(self): return self.__request('timerate')[2]['timerate'] def request_config(self): return self.__request('config') class TrodesAnnotationRequester: def __init__(self, *, server_address="tcp://127.0.0.1:49152"): self.service = socket.ServiceConsumer( 'trodes.annotation', server_address=server_address) def request_annotation(self, timestamp, sender, event): data = { 'timestamp': timestamp, 'sender': sender, 'event': event } return self.service.request(data) class TrodesAcquisitionRequester: def __init__(self, *, server_address="tcp://127.0.0.1:49152"): self.service = socket.ServiceConsumer( 'trodes.acquisition.service', server_address=server_address) def __request(self, command, timestamp): data = { 'command': command, 'timestamp': timestamp } return self.service.request(data) def request_play(self): return self.__request('play', 0) def request_pause(self): return self.__request('pause', 0) def request_stop(self): return self.__request('stop', 0) def request_seek(self, timestamp): return self.__request('seek', timestamp) class TrodesEventSubscriber: def __init__(self, *, server_address="tcp://127.0.0.1:49152"): self.subscriber = socket.SourceSubscriber( 'trodes.events', server_address=server_address) def receive(self, *, noblock=False): return self.subscriber.receive(noblock=noblock) class TrodesAcquisitionSubscriber: def __init__(self, *, server_address="tcp://127.0.0.1:49152"): self.subscriber = socket.SourceSubscriber( 'trodes.acquisition', server_address=server_address) def receive(self, *, noblock=False): return self.subscriber.receive(noblock=noblock) class TrodesSourceStatusSubscriber: def __init__(self, *, server_address="tcp://127.0.0.1:49152"): self.subscriber = socket.SourceSubscriber( 'trodes.source.pub', server_address=server_address) def receive(self, *, noblock=False): return self.subscriber.receive(noblock=noblock)
2.359375
2
working/roberta_pretrain.py
upura/commonlitreadabilityprize
9
12775772
<filename>working/roberta_pretrain.py<gh_stars>1-10 import warnings import pandas as pd from transformers import ( AutoModelForMaskedLM, AutoTokenizer, DataCollatorForLanguageModeling, LineByLineTextDataset, Trainer, TrainingArguments, ) warnings.filterwarnings("ignore") if __name__ == "__main__": train_data = pd.read_csv("../input/commonlitreadabilityprize/train.csv") test_data = pd.read_csv("../input/commonlitreadabilityprize/test.csv") ext_data = pd.read_csv( "../input/commonlit-external/dump_of_simple_english_wiki.csv" ) data = pd.concat( [train_data[["excerpt"]], test_data[["excerpt"]], ext_data[["excerpt"]]] ) data["excerpt"] = data["excerpt"].apply(lambda x: x.replace("\n", "")) text = "\n".join(data.excerpt.tolist()) with open("text.txt", "w") as f: f.write(text) model_name = "roberta-base" model = AutoModelForMaskedLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) tokenizer.save_pretrained("./clrp_roberta_base") train_dataset = LineByLineTextDataset( tokenizer=tokenizer, file_path="text.txt", # mention train text file here block_size=256, ) valid_dataset = LineByLineTextDataset( tokenizer=tokenizer, file_path="text.txt", # mention valid text file here block_size=256, ) data_collator = DataCollatorForLanguageModeling( tokenizer=tokenizer, mlm=True, mlm_probability=0.15 ) training_args = TrainingArguments( output_dir="./clrp_roberta_base_chk", # select model path for checkpoint overwrite_output_dir=True, num_train_epochs=5, per_device_train_batch_size=16, per_device_eval_batch_size=16, evaluation_strategy="steps", save_total_limit=2, eval_steps=200, metric_for_best_model="eval_loss", greater_is_better=False, load_best_model_at_end=True, prediction_loss_only=True, report_to="none", ) trainer = Trainer( model=model, args=training_args, data_collator=data_collator, train_dataset=train_dataset, eval_dataset=valid_dataset, ) trainer.train() trainer.save_model("./clrp_roberta_base")
2.53125
3
code/message/image_to_text_message.py
ITE-5th/skill-socket
1
12775773
<gh_stars>1-10 from .image_message import ImageMessage class ImageToTextMessage(ImageMessage): pass
1.203125
1
python/trezorlib/transport/bridge.py
Kayuii/trezor-crypto
0
12775774
# This file is part of the Trezor project. # # Copyright (C) 2012-2018 SatoshiLabs and contributors # # This library is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License version 3 # as published by the Free Software Foundation. # # This library is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the License along with this library. # If not, see <https://www.gnu.org/licenses/lgpl-3.0.html>. import logging import struct from io import BytesIO from typing import Any, Dict, Iterable, Optional import requests from .. import mapping, protobuf from . import Transport, TransportException LOG = logging.getLogger(__name__) TREZORD_HOST = "http://127.0.0.1:21325" TREZORD_ORIGIN_HEADER = {"Origin": "https://python.trezor.io"} TREZORD_VERSION_MODERN = (2, 0, 25) CONNECTION = requests.Session() CONNECTION.headers.update(TREZORD_ORIGIN_HEADER) def call_bridge(uri: str, data=None) -> requests.Response: url = TREZORD_HOST + "/" + uri r = CONNECTION.post(url, data=data) if r.status_code != 200: error_str = "trezord: {} failed with code {}: {}".format( uri, r.status_code, r.json()["error"] ) raise TransportException(error_str) return r def is_legacy_bridge() -> bool: config = call_bridge("configure").json() version_tuple = tuple(map(int, config["version"].split("."))) return version_tuple < TREZORD_VERSION_MODERN class BridgeHandle: def __init__(self, transport: "BridgeTransport") -> None: self.transport = transport def read_buf(self) -> bytes: raise NotImplementedError def write_buf(self, buf: bytes) -> None: raise NotImplementedError class BridgeHandleModern(BridgeHandle): def write_buf(self, buf: bytes) -> None: self.transport._call("post", data=buf.hex()) def read_buf(self) -> bytes: data = self.transport._call("read") return bytes.fromhex(data.text) class BridgeHandleLegacy(BridgeHandle): def __init__(self, transport: "BridgeTransport") -> None: super().__init__(transport) self.request = None # type: Optional[str] def write_buf(self, buf: bytes) -> None: if self.request is not None: raise TransportException("Can't write twice on legacy Bridge") self.request = buf.hex() def read_buf(self) -> bytes: if self.request is None: raise TransportException("Can't read without write on legacy Bridge") try: data = self.transport._call("call", data=self.request) return bytes.fromhex(data.text) finally: self.request = None class BridgeTransport(Transport): """ BridgeTransport implements transport through TREZOR Bridge (aka trezord). """ PATH_PREFIX = "bridge" ENABLED = True def __init__( self, device: Dict[str, Any], legacy: bool, debug: bool = False ) -> None: if legacy and debug: raise TransportException("Debugging not supported on legacy Bridge") self.device = device self.session = None # type: Optional[str] self.debug = debug self.legacy = legacy if legacy: self.handle = BridgeHandleLegacy(self) # type: BridgeHandle else: self.handle = BridgeHandleModern(self) def get_path(self) -> str: return "%s:%s" % (self.PATH_PREFIX, self.device["path"]) def find_debug(self) -> "BridgeTransport": if not self.device.get("debug"): raise TransportException("Debug device not available") return BridgeTransport(self.device, self.legacy, debug=True) def _call(self, action: str, data: str = None) -> requests.Response: session = self.session or "null" uri = action + "/" + str(session) if self.debug: uri = "debug/" + uri return call_bridge(uri, data=data) @classmethod def enumerate(cls) -> Iterable["BridgeTransport"]: try: legacy = is_legacy_bridge() return [ BridgeTransport(dev, legacy) for dev in call_bridge("enumerate").json() ] except Exception: return [] def begin_session(self) -> None: data = self._call("acquire/" + self.device["path"]) self.session = data.json()["session"] def end_session(self) -> None: if not self.session: return self._call("release") self.session = None def write(self, msg: protobuf.MessageType) -> None: LOG.debug( "sending message: {}".format(msg.__class__.__name__), extra={"protobuf": msg}, ) buffer = BytesIO() protobuf.dump_message(buffer, msg) ser = buffer.getvalue() header = struct.pack(">HL", mapping.get_type(msg), len(ser)) self.handle.write_buf(header + ser) def read(self) -> protobuf.MessageType: data = self.handle.read_buf() headerlen = struct.calcsize(">HL") msg_type, datalen = struct.unpack(">HL", data[:headerlen]) buffer = BytesIO(data[headerlen : headerlen + datalen]) msg = protobuf.load_message(buffer, mapping.get_class(msg_type)) LOG.debug( "received message: {}".format(msg.__class__.__name__), extra={"protobuf": msg}, ) return msg
1.960938
2
goalboost/blueprints/auth/__init__.py
JohnLockwood/Goalboost
0
12775775
<reponame>JohnLockwood/Goalboost from flask.ext.login import LoginManager from itsdangerous import TimedJSONWebSignatureSerializer as Serializer, SignatureExpired, BadSignature from goalboost.model.auth_models import Role, User from flask.ext.security import Security, MongoEngineUserDatastore from flask.ext.principal import Principal, Permission, RoleNeed from goalboost.model import db login_manager = LoginManager() # Create a permission with a single Need, in this case a RoleNeed. # See #root_permission = Permission(RoleNeed('Root')) #account_admin_permission = Permission(RoleNeed('Account Admin')) #account_user_permission = Permission(RoleNeed('Account User')) """can_access_user_owned_resource Given a principal such as the current user and a resource which must have a user field (such as a timer). Return true if the user can access the resource, else false. """ def can_access_user_owned_resource(principal, resource): role = principal.get_role() if role == Role.ROOT: return True elif role == Role.ACCONT_USER: return principal.id == resource.user.id elif role == Role.ACCOUNT_ADMIN: return principal.account == resource.user.account else: return False def init_flask_security(app): user_datastore = MongoEngineUserDatastore(db, User, Role) security = Security(app, user_datastore) # This step may not be necessary app.security = security @login_manager.user_loader def load_user_by_id(id): try: return User.get(id) except: return None # Work in progress, cf. # http://blog.miguelgrinberg.com/post/restful-authentication-with-flask # http://thecircuitnerd.com/flask-login-tokens/ # See also mongo_models.User.get_auth_token # TODO Duplicate code of user.verify_auth_token. Consolidate! @login_manager.token_loader def verify_auth_token(token): s = Serializer(app.config['SECRET_KEY']) try: data = s.loads(token) except SignatureExpired: return None # valid token, but expired except BadSignature: return None # invalid token user = User.objects(id=data['id']).first() #.query.get(data['id']) return user
2.25
2
dataset/convert_repository_json.py
DevashishX/AbstractClustering
0
12775776
<reponame>DevashishX/AbstractClustering<filename>dataset/convert_repository_json.py import json import numpy as np import pandas as pd from pprint import pprint from preprocessing import AbstractPreprocessor, preproc def simpleSplit(text): return text.split() #reads joson form the repo files. Every line is a valid json but the whole doc is not def repo_read_json(filename, lemma = True): with open(filename, "r") as fd: line = fd.readline() while line != "": if line.find("bibo:abstract") != -1: jsonobj = json.loads(line) # print(jsonobj) id = jsonobj["identifier"] pretitle = jsonobj["bibo:shortTitle"] title = preproc(pretitle, to_lemmatize=lemma) abstract = jsonobj["bibo:abstract"] # print(str(id) + "Type of id: " + str(type(id))) # print(title + "Type of title: " + str(type(title))) # print(abstract + "Type of abstract: " + str(type(abstract))) print(id, pretitle, title, abstract, sep="\n") line = fd.readline() class AbstractExtracter(): def __init__(self, filenames=None, preprocessor=simpleSplit): self.filenames = filenames self.preprocessor = preprocessor self.columns = ["id", "title", "abstract"] self.df = pd.DataFrame(columns=self.columns) self.tempdf = pd.DataFrame(columns=self.columns) def JsonCleaner(self, filename, lemma = True): dataarray = [] idarray = [] with open(filename, "r") as fd: line = fd.readline() while line != "": if line.find("bibo:abstract") != -1: jsonobj = json.loads(line) id = jsonobj["identifier"] if id not in idarray: idarray.append(id) # print(id) title = jsonobj["bibo:shortTitle"] preabstract = jsonobj["bibo:abstract"] abstract = self.preprocessor.preprocess(preabstract, to_lemmatize=lemma) data = {"id":id, "title":title, "abstract":abstract} dataarray.append(data) # print(str(id) + "Type of id: " + str(type(id))) # print(title + "Type of title: " + str(type(title))) # print(abstract + "Type of abstract: " + str(type(abstract))) # print(id, pretitle, title, abstract, sep="\n") line = fd.readline() self.df = self.df.append(dataarray, ignore_index=True) # print(type(self.df.iloc[0, 0])) # print(type(self.df.iloc[0, 1])) # print(type(self.df.iloc[0, 2])) def FilesCleaner(self): for filename in self.filenames: self.JsonCleaner(filename) # csvname = filename.rsplit(".")[0] + ".csv" # self.df.to_csv(csvname, index=False) csvname = "new_" + filename.rsplit(".")[0] + ".pkl" # self.df.to_json(csvname, orient="split") self.df.to_pickle(csvname) # csvname = filename.rsplit(".")[0] + ".pkl" # self.df.to_pickle(csvname) pass if __name__ == "__main__": filenames = ["repository_metadata_9_2013-03-18.json"] op = "repository_metadata_9_2013-03-18.csv" pre = AbstractPreprocessor() AbsExt = AbstractExtracter(filenames,pre) AbsExt.FilesCleaner() csvname = "new_" + filenames[0].rsplit(".")[0] + ".pkl" # df = pd.read_json(csvname, orient="split") df = pd.read_pickle(csvname) print(type(df.iloc[0, 0])) print(type(df.iloc[0, 1])) print(type(df.iloc[0, 2])) print(df.head()) pass
2.53125
3
venv/Lib/site-packages/eyed3/id3/apple.py
shadowstriker15/Online_Ripper
0
12775777
""" Here lies Apple frames, all of which are non-standard. All of these would have been standard user text frames by anyone not being a bastard, on purpose. """ from .frames import Frame, TextFrame PCST_FID = b"PCST" WFED_FID = b"WFED" TKWD_FID = b"TKWD" TDES_FID = b"TDES" TGID_FID = b"TGID" class PCST(Frame): """Indicates a podcast. The 4 bytes of data is undefined, and is typically all 0.""" def __init__(self, id=PCST_FID): super(PCST, self).__init__(PCST_FID) def render(self): self.data = b"\x00" * 4 return super(PCST, self).render() class TKWD(TextFrame): """Podcast keywords.""" def __init__(self, id=TKWD_FID): super(TKWD, self).__init__(TKWD_FID) class TDES(TextFrame): """Podcast description. One encoding byte followed by text per encoding.""" def __init__(self, id=TDES_FID): super(TDES, self).__init__(TDES_FID) class TGID(TextFrame): """Podcast URL of the audio file. This should be a W frame!""" def __init__(self, id=TGID_FID): super(TGID, self).__init__(TGID_FID) class WFED(TextFrame): """Another podcast URL, the feed URL it is said.""" def __init__(self, id=WFED_FID, url=""): super(WFED, self).__init__(WFED_FID, url)
2.75
3
greaze/forms.py
Cian747/awaards
0
12775778
from django import forms from .models import Project,Rate,Profile,DESIGN_CHOICES,USABILITY_CHOICES,CONTENT_CHOICES from django.contrib.auth.models import User from django.contrib.auth.forms import UserCreationForm class GreazeRegistrationForm(UserCreationForm): class Meta: model = User fields = ['first_name', 'last_name', 'email', 'username','<PASSWORD>','<PASSWORD>' ] widgets = { 'first_name':forms.TextInput(attrs = {'class':'form-control names', 'placeholder':"First Name", 'label': 'First Name'}), 'last_name':forms.TextInput(attrs = {'class':'form-control names', 'placeholder':"Second Name", 'label': 'Second Name'}), 'email':forms.TextInput(attrs = {'class':'form-control names', 'placeholder':"Email Address", 'label': 'Email Address'}), 'username':forms.TextInput(attrs = {'class':'form-control names', 'placeholder':"Username", 'label': 'Username'}), 'password1':forms.TextInput(attrs = {'class':'form-control ','type':'password', 'placeholder':"Password", 'label': 'Password'}), 'password2':forms.TextInput(attrs = {'class':'form-control', 'placeholder':"Confirm Password", 'label': 'Confirm Password'}), } class PostProjectForm(forms.ModelForm): class Meta: model = Project fields = ['title','image','description','link'] widgets = { 'title':forms.TextInput(attrs={'class':'form-control','placeholder':'Project Title...'}), 'image':forms.TextInput(attrs= {'class':'form-control ','placeholder':'In a word...','label':'Put a name'}), 'description':forms.Textarea(attrs = {'class':'form-control','placeholder':"Write here..",'label':"Caption"}), 'link':forms.URLInput(attrs={'class':'form-control'}), } class RateForm(forms.ModelForm): design = forms.ChoiceField(choices=DESIGN_CHOICES,widget=forms.Select(),required=True) usability = forms.ChoiceField(choices=USABILITY_CHOICES,widget=forms.Select(),required=True) content = forms.ChoiceField(choices=CONTENT_CHOICES,widget=forms.Select(),required=True) class Meta: model = Rate fields = ['design','usability','content'] # widgets = { # 'design': forms.SelectMultiple(attrs={'class':'form-control','name':'design'}), # 'usability': forms.SelectMultiple(attrs={'class':'form-control','placeholder':'Input value','name':'usability'}), # 'content': forms.SelectMultiple(attrs={'class':'form-control','name':'content'}), # } class EditProfileForm(forms.ModelForm): class Meta: model = Profile fields = ['profile_photo','bio','gender','contact'] widgets = { 'profile_photo':forms.FileInput(attrs={'class':'form-control'}), 'bio':forms.Textarea(attrs={'class':'form-control ','placeholder':'Write here...','label':'Put a name'}), } class UpdateProjectForm(forms.ModelForm): class Meta: model = Project fields = ['title','image','description','link'] widgets = { 'title':forms.TextInput(attrs={'class':'form-control','placeholder':'Project Title...'}), 'image':forms.TextInput(attrs= {'class':'form-control ','placeholder':'In a word...','label':'Put a name'}), 'description':forms.Textarea(attrs = {'class':'form-control','placeholder':"Caption",'label':"Caption"}), 'link':forms.URLInput(attrs={'class':'form-control'}), }
2.328125
2
tests/core/test_optimizers_schedulers.py
jerke123/mridc
0
12775779
# encoding: utf-8 __author__ = "<NAME>" # Taken and adapted from: https://github.com/wdika/NeMo/blob/main/tests/core/test_optimizers_schedulers.py import math import os import random import shutil from abc import ABC import numpy as np import omegaconf import pytest import pytorch_lightning as pl import torch import torch.optim from mridc.core import optim from mridc.core.conf import optimizers from mridc.core.conf.optimizers import NovogradParams, SGDParams from mridc.core.conf.schedulers import CosineAnnealingParams from mridc.core.optim.lr_scheduler import AVAILABLE_SCHEDULERS, SquareRootAnnealing from mridc.core.optim.novograd import Novograd from mridc.core.optim.optimizers import AVAILABLE_OPTIMIZERS, get_optimizer, parse_optimizer_args, register_optimizer from mridc.utils import logging class TempModel(torch.nn.Module): """Create a dummy model for testing.""" def __init__(self): super(TempModel, self).__init__() self.layer = torch.nn.Linear(5, 1) def forward(self, x): """Forward pass.""" x = self.layer(x) return x class OptCounter(torch.optim.SGD): """A simple optimizer that counts the number of calls to step().""" def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) for group in self.param_groups: group.setdefault("count", 0) def step(self, closure=None): """Performs a single optimization step.""" for group in self.param_groups: group["count"] += 1 super().step(closure) class RandomDataset(torch.utils.data.Dataset): """A dataset that returns random tensors.""" def __init__(self, dataset_len): super().__init__() self.__dataset_len = dataset_len def __getitem__(self, *args): return torch.randn(2) def __len__(self): return self.__dataset_len class ExampleModel(pl.LightningModule, ABC): """A dummy model for testing.""" def __init__(self, batch_size, dataset_len, drop_last, max_steps): super().__init__() self.l1 = torch.nn.modules.Linear(in_features=2, out_features=1) self.batch_size = batch_size self.dataset_len = dataset_len self.drop_last = drop_last self.max_steps = max_steps self.my_opt = None def train_dataloader(self): """Return a training data loader.""" dataset = RandomDataset(self.dataset_len) return torch.utils.data.DataLoader(dataset, batch_size=self.batch_size, drop_last=self.drop_last) def training_step(self, batch, batch_idx): """Set training step.""" output = self.l1(batch) output = torch.nn.functional.l1_loss(output, torch.ones(output.size()).to(output.device)) return {"loss": output} def configure_optimizers(self): """Configure optimizers for the model.""" self.my_opt = OptCounter(self.parameters(), lr=0.02) return self.my_opt class Callback(pl.callbacks.Callback): """A dummy callback for testing.""" @pl.utilities.distributed.rank_zero_only def on_train_end(self, trainer, module): """On train end, check that the number of steps is correct""" count = module.my_opt.param_groups[0]["count"] if trainer.global_step != count or trainer.global_step != module.max_steps: logging.debug(f"max_epochs: {trainer.max_epochs}") logging.debug(f"accumulate_grad_batches: {trainer.accumulate_grad_batches}") logging.debug(f"limit_train_batches: {trainer.limit_train_batches}") logging.debug(f"num_processes: {trainer.num_processes}") logging.debug(f"batch_size: {module.batch_size}") logging.debug(f"dataset_len: {module.dataset_len}") logging.debug(f"drop_last: {module.drop_last}") logging.debug(f"{len(trainer.train_dataloader)}") logging.debug(f"{trainer.num_training_batches}") self.assert_counts(trainer, module, count) @staticmethod def assert_counts(trainer, module, count): """Assert that the number of steps is correct""" if trainer.global_step != count: raise AssertionError(f"{trainer.global_step} != {count} != {module.max_steps}") if trainer.global_step != module.max_steps: raise AssertionError(f"{trainer.global_step} != {count} != {module.max_steps}") class SchedulerNoOpCallback(Callback): """A dummy callback for testing.""" @staticmethod def on_train_batch_end(trainer: pl.Trainer, pl_module, outputs, batch, batch_idx): """On each training batch end""" # pl_module.max_steps is "original" max steps without trainer extra steps. if (trainer.global_step + 1) % 3 == 0 and (trainer.global_step + 1) < pl_module.max_steps: schedulers = trainer.lr_schedulers for scheduler in schedulers: # Decrement the counter by 2, then perform a scheduler.step() to perform a no-up # as well as update the optimizer lr in all param groups scheduler["scheduler"].last_epoch -= 2 scheduler["scheduler"].step() # Increase the max step count by 1 trainer.fit_loop.max_steps = trainer.fit_loop.max_steps + 1 def assert_counts(self, trainer, module, count): """This is a no-op callback, so the counts should not change""" num_skips = torch.div(module.max_steps, 3, rounding_mode="trunc") extra_steps = module.max_steps + num_skips if trainer.global_step != count: raise AssertionError(f"{trainer.global_step} != {count} != {extra_steps}") if trainer.global_step != extra_steps: raise AssertionError(f"{trainer.global_step} != {count} != {extra_steps}") class TestOptimizersSchedulers: """Test the optimizers and schedulers.""" INITIAL_LR = 0.1 MIN_LR = 1e-3 MAX_STEPS = 10 # fused_adam is looking for CUDA and this test is being run on CPU only tests @pytest.mark.unit def test_get_optimizer(self): """Test that the optimizer is correctly created""" model = TempModel() for opt_name in AVAILABLE_OPTIMIZERS: if opt_name == "fused_adam" and not torch.cuda.is_available(): continue opt_cls = get_optimizer(opt_name) if opt_name == "adafactor": # Adafactor's default mode uses relative_step without any lr. opt = opt_cls(model.parameters()) else: opt = opt_cls(model.parameters(), lr=self.INITIAL_LR) if not isinstance(opt, AVAILABLE_OPTIMIZERS[opt_name]): raise AssertionError @pytest.mark.unit def test_register_optimizer(self): """Test that we can register a new optimizer""" class TempOpt(torch.optim.SGD): """A dummy optimizer""" class TempOptParams(optimizers.SGDParams): """A dummy optimizer params""" register_optimizer("TempOpt", TempOpt, TempOptParams) model = TempModel() opt_cls = get_optimizer("TempOpt") opt = opt_cls(model.parameters(), lr=self.INITIAL_LR) if not isinstance(opt, TempOpt): raise AssertionError @pytest.mark.unit def test_optim_config_parse_bypass(self): """Test that the optimizer config is parsed correctly when the optimizer is not registered.""" basic_optim_config = {"weight_decay": 0.001, "betas": [0.8, 0.5]} parsed_params = parse_optimizer_args("novograd", basic_optim_config) if parsed_params["weight_decay"] != basic_optim_config["weight_decay"]: raise AssertionError if parsed_params["betas"][0] != basic_optim_config["betas"][0]: raise AssertionError if parsed_params["betas"][1] != basic_optim_config["betas"][1]: raise AssertionError dict_config = omegaconf.OmegaConf.create(basic_optim_config) parsed_params = parse_optimizer_args("novograd", dict_config) if parsed_params["weight_decay"] != dict_config["weight_decay"]: raise AssertionError if parsed_params["betas"][0] != dict_config["betas"][0]: raise AssertionError if parsed_params["betas"][1] != dict_config["betas"][1]: raise AssertionError @pytest.mark.unit def test_optim_config_parse_arg_by_target(self): """Test that the optimizer config is parsed correctly by target.""" basic_optim_config = { "_target_": "mridc.core.conf.optimizers.NovogradParams", "params": {"weight_decay": 0.001, "betas": [0.8, 0.5]}, } basic_optim_config = omegaconf.OmegaConf.create(basic_optim_config) parsed_params = parse_optimizer_args("novograd", basic_optim_config) if parsed_params["weight_decay"] != basic_optim_config["params"]["weight_decay"]: raise AssertionError if parsed_params["betas"][0] != basic_optim_config["params"]["betas"][0]: raise AssertionError if parsed_params["betas"][1] != basic_optim_config["params"]["betas"][1]: raise AssertionError dict_config = omegaconf.OmegaConf.create(basic_optim_config) parsed_params = parse_optimizer_args("novograd", dict_config) if parsed_params["weight_decay"] != dict_config["params"]["weight_decay"]: raise AssertionError if parsed_params["betas"][0] != dict_config["params"]["betas"][0]: raise AssertionError if parsed_params["betas"][1] != dict_config["params"]["betas"][1]: raise AssertionError # Names are ignored when passing class path # This will be captured during optimizer instantiation output_config = parse_optimizer_args("sgd", dict_config) sgd_config = vars(SGDParams()) novograd_config = vars(NovogradParams()) if set(output_config.keys()) == set(sgd_config.keys()): raise AssertionError if set(output_config.keys()) != set(novograd_config): raise AssertionError @pytest.mark.unit def test_get_scheduler(self): """Test that get_scheduler returns the correct scheduler class.""" model = TempModel() optimizer = Novograd(model.parameters(), lr=self.INITIAL_LR) for sched_name in AVAILABLE_SCHEDULERS: sched_cls = optim.lr_scheduler.get_scheduler(sched_name) try: sched = sched_cls(optimizer) if not isinstance(sched, AVAILABLE_SCHEDULERS[sched_name]): raise AssertionError continue except Exception: pass try: sched = sched_cls(optimizer, max_steps=self.MAX_STEPS) if not isinstance(sched, AVAILABLE_SCHEDULERS[sched_name]): raise AssertionError continue except Exception: pass @pytest.mark.unit def test_register_scheduler(self): """Test registering a new scheduler""" class TempSched(optim.lr_scheduler.CosineAnnealing): """Temporary scheduler class.""" class TempSchedParams(CosineAnnealingParams): """Temporary scheduler class.""" optim.lr_scheduler.register_scheduler("TempSched", TempSched, TempSchedParams) model = TempModel() opt_cls = get_optimizer("novograd") opt = opt_cls(model.parameters(), lr=self.INITIAL_LR) sched_cls = optim.lr_scheduler.get_scheduler("TempSched") sched = sched_cls(opt, max_steps=self.MAX_STEPS) if not isinstance(sched, TempSched): raise AssertionError @pytest.mark.unit def test_sched_config_parse_simple(self): """Test that scheduler config is parsed correctly""" model = TempModel() opt_cls = get_optimizer("novograd") opt = opt_cls(model.parameters(), lr=self.INITIAL_LR) basic_sched_config = {"name": "CosineAnnealing", "max_steps": 10} scheduler_setup = optim.lr_scheduler.prepare_lr_scheduler(opt, basic_sched_config) if not isinstance(scheduler_setup["scheduler"], optim.lr_scheduler.CosineAnnealing): raise AssertionError dict_config = omegaconf.OmegaConf.create(basic_sched_config) scheduler_setup = optim.lr_scheduler.prepare_lr_scheduler(opt, dict_config) if not isinstance(scheduler_setup["scheduler"], optim.lr_scheduler.CosineAnnealing): raise AssertionError @pytest.mark.unit def test_sched_config_parse_from_cls(self): """Test that we can parse a scheduler from a class""" model = TempModel() opt_cls = get_optimizer("novograd") opt = opt_cls(model.parameters(), lr=self.INITIAL_LR) basic_sched_config = { "_target_": "mridc.core.conf.schedulers.CosineAnnealingParams", "params": {"min_lr": 0.1}, "max_steps": self.MAX_STEPS, } scheduler_setup = optim.lr_scheduler.prepare_lr_scheduler(opt, basic_sched_config) if not isinstance(scheduler_setup["scheduler"], optim.lr_scheduler.CosineAnnealing): raise AssertionError dict_config = omegaconf.OmegaConf.create(basic_sched_config) scheduler_setup = optim.lr_scheduler.prepare_lr_scheduler(opt, dict_config) if not isinstance(scheduler_setup["scheduler"], optim.lr_scheduler.CosineAnnealing): raise AssertionError @pytest.mark.unit def test_WarmupPolicy(self): """Test WarmupPolicy""" model = TempModel() opt_cls = get_optimizer("novograd") opt = opt_cls(model.parameters(), lr=self.INITIAL_LR) # No warmup case policy = optim.lr_scheduler.WarmupPolicy(opt, max_steps=self.MAX_STEPS, min_lr=self.MIN_LR) initial_lr = policy.get_last_lr()[0] if initial_lr != self.INITIAL_LR: raise AssertionError for _ in range(self.MAX_STEPS): if policy.get_last_lr()[0] != self.INITIAL_LR: raise AssertionError opt.step() policy.step() policy.step() final_lr = policy.get_last_lr()[0] if final_lr != self.MIN_LR: raise AssertionError # Warmup steps available policy = optim.lr_scheduler.WarmupPolicy(opt, warmup_steps=5, max_steps=self.MAX_STEPS, min_lr=self.MIN_LR) initial_lr = policy.get_last_lr()[0] if initial_lr >= self.INITIAL_LR: raise AssertionError for i in range(self.MAX_STEPS): if i <= 4: if policy.get_last_lr()[0] > self.INITIAL_LR: raise AssertionError elif policy.get_last_lr()[0] != self.INITIAL_LR: raise AssertionError opt.step() policy.step() policy.step() final_lr = policy.get_last_lr()[0] if final_lr != self.MIN_LR: raise AssertionError @pytest.mark.unit def test_WarmupHoldPolicy(self): """Test WarmupHoldPolicy""" model = TempModel() opt_cls = get_optimizer("novograd") opt = opt_cls(model.parameters(), lr=self.INITIAL_LR) # No warmup case policy = optim.lr_scheduler.WarmupHoldPolicy(opt, max_steps=self.MAX_STEPS, min_lr=self.MIN_LR) initial_lr = policy.get_last_lr()[0] if initial_lr != self.INITIAL_LR: raise AssertionError for _ in range(self.MAX_STEPS): if policy.get_last_lr()[0] != self.INITIAL_LR: raise AssertionError opt.step() policy.step() policy.step() final_lr = policy.get_last_lr()[0] if final_lr <= self.MIN_LR: raise AssertionError # Warmup steps available policy = optim.lr_scheduler.WarmupHoldPolicy(opt, warmup_steps=5, max_steps=self.MAX_STEPS, min_lr=self.MIN_LR) initial_lr = policy.get_last_lr()[0] if initial_lr >= self.INITIAL_LR: raise AssertionError for i in range(self.MAX_STEPS): if i <= 4: if policy.get_last_lr()[0] > self.INITIAL_LR: raise AssertionError elif policy.get_last_lr()[0] != self.INITIAL_LR: raise AssertionError opt.step() policy.step() policy.step() final_lr = policy.get_last_lr()[0] if final_lr <= self.MIN_LR: raise AssertionError # Warmup + Hold steps available policy = optim.lr_scheduler.WarmupHoldPolicy( opt, warmup_steps=5, hold_steps=3, max_steps=self.MAX_STEPS, min_lr=self.MIN_LR ) initial_lr = policy.get_last_lr()[0] if initial_lr >= self.INITIAL_LR: raise AssertionError for i in range(self.MAX_STEPS): if i <= 4: if policy.get_last_lr()[0] > self.INITIAL_LR: raise AssertionError elif policy.get_last_lr()[0] != self.INITIAL_LR: raise AssertionError opt.step() policy.step() policy.step() final_lr = policy.get_last_lr()[0] if final_lr < self.MIN_LR: raise AssertionError @pytest.mark.unit def test_WarmupAnnealing(self): """Test that the warmup annealing policy works as expected.""" model = TempModel() opt_cls = get_optimizer("novograd") opt = opt_cls(model.parameters(), lr=self.INITIAL_LR) # No warmup case policy = optim.lr_scheduler.WarmupAnnealing(opt, max_steps=self.MAX_STEPS, min_lr=self.MIN_LR) initial_lr = policy.get_last_lr()[0] if initial_lr != self.INITIAL_LR: raise AssertionError for _ in range(self.MAX_STEPS): if policy.get_last_lr()[0] > self.INITIAL_LR: raise AssertionError opt.step() policy.step() policy.step() final_lr = policy.get_last_lr()[0] if final_lr < self.MIN_LR: raise AssertionError # Warmup steps available policy = optim.lr_scheduler.WarmupAnnealing(opt, warmup_steps=5, max_steps=self.MAX_STEPS, min_lr=self.MIN_LR) initial_lr = policy.get_last_lr()[0] if initial_lr >= self.INITIAL_LR: raise AssertionError for i in range(self.MAX_STEPS): if i <= 5: if policy.get_last_lr()[0] > self.INITIAL_LR: raise AssertionError elif policy.get_last_lr()[0] >= self.INITIAL_LR: raise AssertionError opt.step() policy.step() policy.step() final_lr = policy.get_last_lr()[0] if final_lr != self.MIN_LR: raise AssertionError # Warmup + Hold steps available policy = optim.lr_scheduler.WarmupHoldPolicy( opt, warmup_steps=5, hold_steps=3, max_steps=self.MAX_STEPS, min_lr=self.MIN_LR ) initial_lr = policy.get_last_lr()[0] if initial_lr >= self.INITIAL_LR: raise AssertionError for i in range(self.MAX_STEPS): if i <= 4: if policy.get_last_lr()[0] > self.INITIAL_LR: raise AssertionError elif policy.get_last_lr()[0] != self.INITIAL_LR: raise AssertionError opt.step() policy.step() policy.step() final_lr = policy.get_last_lr()[0] if final_lr < self.MIN_LR: raise AssertionError @pytest.mark.unit def test_SquareAnnealing(self): """Test SquareAnnealing""" model = TempModel() opt_cls = get_optimizer("novograd") opt = opt_cls(model.parameters(), lr=self.INITIAL_LR) # No warmup case policy = optim.lr_scheduler.SquareAnnealing(opt, max_steps=self.MAX_STEPS, min_lr=self.MIN_LR) initial_lr = policy.get_last_lr()[0] if initial_lr != self.INITIAL_LR: raise AssertionError for _ in range(self.MAX_STEPS): if policy.get_last_lr()[0] > self.INITIAL_LR: raise AssertionError opt.step() policy.step() policy.step() final_lr = policy.get_last_lr()[0] if final_lr != self.MIN_LR: raise AssertionError # Warmup steps available policy = optim.lr_scheduler.SquareAnnealing(opt, warmup_steps=5, max_steps=self.MAX_STEPS, min_lr=self.MIN_LR) initial_lr = policy.get_last_lr()[0] if initial_lr >= self.INITIAL_LR: raise AssertionError for i in range(self.MAX_STEPS): if i <= 5: if policy.get_last_lr()[0] > self.INITIAL_LR: raise AssertionError elif policy.get_last_lr()[0] >= self.INITIAL_LR: raise AssertionError opt.step() policy.step() policy.step() final_lr = policy.get_last_lr()[0] if final_lr != self.MIN_LR: raise AssertionError @pytest.mark.unit def test_SquareRootAnnealing(self): """Test SquareRootAnnealing""" model = TempModel() opt_cls = get_optimizer("novograd") opt = opt_cls(model.parameters(), lr=self.INITIAL_LR) # No warmup case policy = SquareRootAnnealing(opt, max_steps=self.MAX_STEPS, min_lr=self.MIN_LR) initial_lr = policy.get_last_lr()[0] if initial_lr != self.INITIAL_LR: raise AssertionError for _ in range(self.MAX_STEPS): if policy.get_last_lr()[0] > self.INITIAL_LR: raise AssertionError opt.step() policy.step() policy.step() final_lr = policy.get_last_lr()[0] if final_lr != self.MIN_LR: raise AssertionError # Warmup steps available policy = optim.lr_scheduler.SquareRootAnnealing( opt, warmup_steps=5, max_steps=self.MAX_STEPS, min_lr=self.MIN_LR ) initial_lr = policy.get_last_lr()[0] if initial_lr >= self.INITIAL_LR: raise AssertionError for i in range(self.MAX_STEPS): if i <= 5: if policy.get_last_lr()[0] > self.INITIAL_LR: raise AssertionError elif policy.get_last_lr()[0] >= self.INITIAL_LR: raise AssertionError opt.step() policy.step() policy.step() final_lr = policy.get_last_lr()[0] if final_lr != self.MIN_LR: raise AssertionError @pytest.mark.unit def test_CosineAnnealing(self): """Test CosineAnnealing""" model = TempModel() opt_cls = get_optimizer("novograd") opt = opt_cls(model.parameters(), lr=self.INITIAL_LR) # No warmup case policy = optim.lr_scheduler.CosineAnnealing(opt, max_steps=self.MAX_STEPS, min_lr=self.MIN_LR) initial_lr = policy.get_last_lr()[0] if initial_lr != self.INITIAL_LR: raise AssertionError for _ in range(self.MAX_STEPS): if policy.get_last_lr()[0] > self.INITIAL_LR: raise AssertionError opt.step() policy.step() policy.step() final_lr = policy.get_last_lr()[0] if final_lr != self.MIN_LR: raise AssertionError # Warmup steps available policy = optim.lr_scheduler.CosineAnnealing(opt, warmup_steps=5, max_steps=self.MAX_STEPS, min_lr=self.MIN_LR) initial_lr = policy.get_last_lr()[0] if initial_lr >= self.INITIAL_LR: raise AssertionError for i in range(self.MAX_STEPS): if i <= 5: if policy.get_last_lr()[0] > self.INITIAL_LR: raise AssertionError elif policy.get_last_lr()[0] >= self.INITIAL_LR: raise AssertionError opt.step() policy.step() policy.step() final_lr = policy.get_last_lr()[0] if final_lr != self.MIN_LR: raise AssertionError # Warmup + Constant steps available policy = optim.lr_scheduler.CosineAnnealing( opt, warmup_steps=3, constant_steps=2, max_steps=self.MAX_STEPS, min_lr=self.MIN_LR ) initial_lr = policy.get_last_lr()[0] if initial_lr >= self.INITIAL_LR: raise AssertionError for i in range(self.MAX_STEPS): if i <= 3: if policy.get_last_lr()[0] > self.INITIAL_LR + 1e-5: raise AssertionError elif 3 < i <= 8: if policy.get_last_lr()[0] != policy._get_lr(i)[0]: raise AssertionError elif policy.get_last_lr()[0] != self.MIN_LR: raise AssertionError opt.step() policy.step() policy.step() final_lr = policy.get_last_lr()[0] if final_lr != self.MIN_LR: raise AssertionError @pytest.mark.unit def test_PolynomialDecayAnnealing(self): """Test PolynomialDecayAnnealing""" model = TempModel() opt_cls = get_optimizer("novograd") opt = opt_cls(model.parameters(), lr=self.INITIAL_LR) # No warmup case policy = optim.lr_scheduler.PolynomialDecayAnnealing( opt, power=2, max_steps=self.MAX_STEPS, min_lr=self.MIN_LR ) initial_lr = policy.get_last_lr()[0] if initial_lr != self.INITIAL_LR: raise AssertionError for _ in range(self.MAX_STEPS): if policy.get_last_lr()[0] > self.INITIAL_LR: raise AssertionError opt.step() policy.step() policy.step() final_lr = policy.get_last_lr()[0] if final_lr != self.MIN_LR: raise AssertionError # Warmup steps available policy = optim.lr_scheduler.PolynomialDecayAnnealing( opt, warmup_steps=5, max_steps=self.MAX_STEPS, min_lr=self.MIN_LR ) initial_lr = policy.get_last_lr()[0] if initial_lr >= self.INITIAL_LR: raise AssertionError for i in range(self.MAX_STEPS): if i <= 5: if policy.get_last_lr()[0] > self.INITIAL_LR: raise AssertionError elif policy.get_last_lr()[0] >= self.INITIAL_LR: raise AssertionError opt.step() policy.step() policy.step() final_lr = policy.get_last_lr()[0] if final_lr != self.MIN_LR: raise AssertionError @pytest.mark.unit def test_PolynomialHoldDecayAnnealing(self): """Test PolynomialHoldDecayAnnealing""" model = TempModel() opt_cls = get_optimizer("novograd") opt = opt_cls(model.parameters(), lr=self.INITIAL_LR) # No warmup case policy = optim.lr_scheduler.PolynomialHoldDecayAnnealing( opt, power=2, max_steps=self.MAX_STEPS, min_lr=self.MIN_LR ) initial_lr = policy.get_last_lr()[0] if initial_lr != self.INITIAL_LR: raise AssertionError for _ in range(self.MAX_STEPS): if policy.get_last_lr()[0] > self.INITIAL_LR: raise AssertionError opt.step() policy.step() policy.step() final_lr = policy.get_last_lr()[0] if final_lr <= self.MIN_LR: raise AssertionError # Warmup steps available policy = optim.lr_scheduler.PolynomialHoldDecayAnnealing( opt, power=2, warmup_steps=5, max_steps=self.MAX_STEPS, min_lr=self.MIN_LR ) initial_lr = policy.get_last_lr()[0] if initial_lr >= self.INITIAL_LR: raise AssertionError for _ in range(self.MAX_STEPS): if policy.get_last_lr()[0] > self.INITIAL_LR: raise AssertionError opt.step() policy.step() policy.step() final_lr = policy.get_last_lr()[0] if final_lr < self.MIN_LR: raise AssertionError # Warmup + Hold steps available policy = optim.lr_scheduler.PolynomialHoldDecayAnnealing( opt, warmup_steps=5, hold_steps=3, max_steps=self.MAX_STEPS, min_lr=self.MIN_LR, power=2 ) initial_lr = policy.get_last_lr()[0] if initial_lr >= self.INITIAL_LR: raise AssertionError for i in range(self.MAX_STEPS): if i <= 4: if policy.get_last_lr()[0] > self.INITIAL_LR: raise AssertionError elif i <= 8: if policy.get_last_lr()[0] < self.INITIAL_LR: raise AssertionError elif policy.get_last_lr()[0] > self.INITIAL_LR: raise AssertionError opt.step() policy.step() policy.step() final_lr = policy.get_last_lr()[0] if final_lr < self.MIN_LR: raise AssertionError @pytest.mark.unit def test_InverseSquareRootAnnealing(self): """Test InverseSquareRootAnnealing""" model = TempModel() opt_cls = get_optimizer("novograd") opt = opt_cls(model.parameters(), lr=self.INITIAL_LR) # No warmup case policy = optim.lr_scheduler.InverseSquareRootAnnealing(opt, max_steps=self.MAX_STEPS, min_lr=self.MIN_LR) initial_lr = policy.get_last_lr()[0] if initial_lr != self.INITIAL_LR: raise AssertionError for _ in range(self.MAX_STEPS): if policy.get_last_lr()[0] > self.INITIAL_LR: raise AssertionError opt.step() policy.step() policy.step() final_lr = policy.get_last_lr()[0] if final_lr != self.MIN_LR: raise AssertionError # Warmup steps available policy = optim.lr_scheduler.InverseSquareRootAnnealing( opt, warmup_steps=5, max_steps=self.MAX_STEPS, min_lr=self.MIN_LR ) initial_lr = policy.get_last_lr()[0] if initial_lr >= self.INITIAL_LR: raise AssertionError for i in range(self.MAX_STEPS): if i <= 5: if policy.get_last_lr()[0] > self.INITIAL_LR: raise AssertionError elif policy.get_last_lr()[0] >= self.INITIAL_LR: raise AssertionError opt.step() policy.step() policy.step() final_lr = policy.get_last_lr()[0] if final_lr != self.MIN_LR: raise AssertionError @pytest.mark.unit def test_CosineAnnealing_with_noop_steps(self): """Test CosineAnnealing with noop steps.""" model = TempModel() opt_cls = get_optimizer("novograd") opt = opt_cls(model.parameters(), lr=self.INITIAL_LR) # No warmup case policy = optim.lr_scheduler.CosineAnnealing(opt, max_steps=self.MAX_STEPS, min_lr=self.MIN_LR) initial_lr = policy.get_last_lr()[0] if initial_lr != self.INITIAL_LR: raise AssertionError update_steps = 0 for i in range(self.MAX_STEPS): if policy.get_last_lr()[0] > self.INITIAL_LR: raise AssertionError opt.step() policy.step() # Perform a No-Op for scheduler every 2 steps if i % 2 == 0: policy.last_epoch -= 1 else: update_steps += 1 policy.step() update_steps += 1 if update_steps >= self.MAX_STEPS: raise AssertionError final_lr = policy.get_last_lr()[0] if final_lr <= self.MIN_LR: raise AssertionError # update step = true number of updates performed after some number of skipped steps true_end_lr = policy._get_lr(step=update_steps)[0] if final_lr != true_end_lr: raise AssertionError @pytest.mark.unit @pytest.mark.run_only_on("CPU") def test_max_step_computation(self): """Test that the max_step computation is correct.""" def train( max_epochs, accumulate_grad_batches, limit_train_batches, num_processes, batch_size, dataset_len, drop_last ): """Set up the training environment""" trainer = pl.Trainer( max_epochs=max_epochs, strategy="ddp_spawn", accelerator="cpu", num_processes=num_processes, accumulate_grad_batches=accumulate_grad_batches, limit_train_batches=limit_train_batches, enable_checkpointing=False, progress_bar_refresh_rate=0, weights_summary=None, ) max_steps = optim.lr_scheduler.compute_max_steps( max_epochs, accumulate_grad_batches, limit_train_batches, num_processes, dataset_len, batch_size, drop_last, ) model = ExampleModel(batch_size, dataset_len, drop_last, max_steps) trainer.callbacks.append(Callback()) trainer.fit(model) # This test will break once we and lightning upgrade to pytorch 1.7.0 due to a bug fix in pytorch 1.7.0 train( 31, accumulate_grad_batches=1, limit_train_batches=1.0, num_processes=9, batch_size=60, dataset_len=1613, drop_last=True, ) train( 5, accumulate_grad_batches=1, limit_train_batches=0.17382691901706027, num_processes=4, batch_size=97, dataset_len=498, drop_last=False, ) train( 5, accumulate_grad_batches=8, limit_train_batches=0.1663306588594945, num_processes=4, batch_size=54, dataset_len=629, drop_last=True, ) train( 5, accumulate_grad_batches=1, limit_train_batches=0.2121376533631948, num_processes=1, batch_size=68, dataset_len=488, drop_last=False, ) for _ in range(5): drop_last = bool(random.randint(0, 1)) accumulate_grad_batches = random.randint(1, 10) limit_train_batches_int = random.randint(1, 10) limit_train_batches_float = random.uniform(0, 1) limit_train_batches = random.choice([limit_train_batches_int, limit_train_batches_float]) max_epochs = random.randint(4, 20) num_processes = random.randint(1, 5) dataset_len = random.randint(20, num_processes * 500) batch_size = random.randint( math.ceil(5.0 / num_processes), min(np.floor_divide(dataset_len, num_processes), 128) ) train( max_epochs, accumulate_grad_batches, limit_train_batches, num_processes, batch_size, dataset_len, drop_last, ) @pytest.mark.unit @pytest.mark.run_only_on("CPU") def test_max_step_computation_with_sched_no_ops(self): """Test that max_step is computed correctly when scheduler has no_ops""" def train( max_steps, accumulate_grad_batches, limit_train_batches, num_processes, batch_size, dataset_len, drop_last ): """Set up trainer and model""" trainer = pl.Trainer( max_steps=max_steps, strategy="ddp_spawn", accelerator="cpu", num_processes=num_processes, accumulate_grad_batches=accumulate_grad_batches, limit_train_batches=limit_train_batches, enable_checkpointing=False, progress_bar_refresh_rate=0, weights_summary=None, ) model = ExampleModel(batch_size, dataset_len, drop_last, max_steps) trainer.callbacks.append(SchedulerNoOpCallback()) trainer.fit(model) # This test will break once we and lightning upgrade to pytorch 1.7.0 due to a bug fix in pytorch 1.7.0 train( max_steps=20, accumulate_grad_batches=1, limit_train_batches=1.0, num_processes=4, batch_size=60, dataset_len=2000, drop_last=True, ) @staticmethod def test_remove_logs_left(): """Remove logs left by the trainer.""" if os.path.exists(os.path.join(os.getcwd(), "lightning_logs")): shutil.rmtree(os.path.join(os.getcwd(), "lightning_logs"))
2.3125
2
DatabaseServer/procserv_utils.py
GustavLero/EPICS-inst_servers
1
12775780
from __future__ import print_function, absolute_import, division, unicode_literals # This file is part of the ISIS IBEX application. # Copyright (C) 2012-2016 Science & Technology Facilities Council. # All rights reserved. # # This program is distributed in the hope that it will be useful. # This program and the accompanying materials are made available under the # terms of the Eclipse Public License v1.0 which accompanies this distribution. # EXCEPT AS EXPRESSLY SET FORTH IN THE ECLIPSE PUBLIC LICENSE V1.0, THE PROGRAM # AND ACCOMPANYING MATERIALS ARE PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES # OR CONDITIONS OF ANY KIND. See the Eclipse Public License v1.0 for more details. # # You should have received a copy of the Eclipse Public License v1.0 # along with this program; if not, you can obtain a copy from # https://www.eclipse.org/org/documents/epl-v10.php or # http://opensource.org/licenses/eclipse-1.0.php from server_common.channel_access import ChannelAccess from server_common.utilities import print_and_log class ProcServWrapper(object): """A wrapper for ProcSev to allow for control of IOCs""" @staticmethod def generate_prefix(prefix: str, ioc: str) -> str: """Creates a PV based on the given prefix and IOC name Args: prefix: The prefix of the instrument the IOC is being run on ioc: The name of the requested IOC """ return "{}CS:PS:{}".format(prefix, ioc) def start_ioc(self, prefix: str, ioc: str) -> None: """Starts the specified IOC Args: prefix: The prefix of the instrument the IOC is being run on ioc: The name of the IOC to start """ print_and_log("Starting IOC {}".format(ioc)) ChannelAccess.caput(self.generate_prefix(prefix, ioc) + ":START", 1) def stop_ioc(self, prefix: str, ioc: str) -> None: """Stops the specified IOC Args: prefix: The prefix of the instrument the IOC is being run on ioc: The name of the IOC to stop """ print_and_log("Stopping IOC {}".format(ioc)) ChannelAccess.caput(self.generate_prefix(prefix, ioc) + ":STOP", 1) def restart_ioc(self, prefix: str, ioc: str) -> None: """Restarts the specified IOC Args: prefix: The prefix of the instrument the IOC is being run on ioc: The name of the IOC to restart """ print_and_log("Restarting IOC {}".format(ioc)) ChannelAccess.caput(self.generate_prefix(prefix, ioc) + ":RESTART", 1) def get_ioc_status(self, prefix: str, ioc: str) -> str: """Gets the status of the specified IOC Args: prefix: The prefix of the instrument the IOC is being run on ioc: The name of the IOC Returns: The status of the requested IOC """ pv = self.generate_prefix(prefix, ioc) + ":STATUS" ans = ChannelAccess.caget(pv, as_string=True) if ans is None: raise IOError("Could not find IOC (%s)" % pv) return ans.upper() def ioc_exists(self, prefix: str, ioc: str) -> bool: """Checks if the IOC exists on ProcServ Args: prefix: The prefix of the instrument the IOC is being run on ioc: The name of the IOC Returns: True if IOC exists, False otherwise """ try: self.get_ioc_status(prefix, ioc) return True except: return False
1.96875
2
00_STARTUP/09_UPDATE_USER_PROFILE/orm_databases/blog/models.py
CrispenGari/python-and-django
0
12775781
<gh_stars>0 from django.db import models from django.utils import timezone from django.contrib.auth.models import User # Create your models here. class Post(models.Model): title = models.CharField(max_length=50, null=False) content = models.TextField(null=False) created_at = models.DateTimeField(default=timezone.now) user = models.ForeignKey(User, on_delete=models.CASCADE) def __str__(self) -> str: return self.title
2.359375
2
trace_data/filter.py
kanishkarj/Distributed-Systems
0
12775782
#!/usr/bin/python import csv import os def find_headers(lines) : host_headers = ['host'] for line in lines : if(line.count("State") > 0 and line.count("rank-1") > 0) : t = line.split(",") host_headers.append(t[7]) return host_headers def print_data(file_name) : f = open("./dump_files/" + file_name + ".dump", "r") lines = f.readlines() links_data = [['source', 'dest', 'hopcount']] hosts_map = {} hosts_data = [] for line in lines : if(line.count("MPI_LINK") > 0) : t = line.split(",")[9].split("_") src = (int(t[0])) dst = (int(t[1])) count = (int(t[3])) links_data.append([src,dst,count]) if(line.count("State") > 0) : t = line.split(",") t[1] = t[1].strip() t[7] = t[7].strip() if( t[1] not in hosts_map.keys()) : hosts_map[t[1]] = {} hosts_map[t[1]][t[7]] = max(t[3:7]) # hosts_data.append([t[1] ]) # host_map to host_data x = list(hosts_map['rank-1'].keys()) x.insert(0,"host") hosts_data.append(x) for x in hosts_map.keys() : t = [] t.append(x) for y in hosts_map[x].keys() : t.append(hosts_map[x][y]) hosts_data.append(t) with open('./csv/link_data/' + file_name + '.csv', 'w') as csvFile: writer = csv.writer(csvFile) writer.writerows(links_data) with open('./csv/host_data/' + file_name + '.csv', 'w') as csvFile: writer = csv.writer(csvFile) writer.writerows(hosts_data) f.close() for filename in os.listdir("./dump_files/"): filename = (filename[0:-5]) print_data(filename)
2.6875
3
MPLearn/experimental_design/hill_model.py
momeara/MPLearn
5
12775783
# -*- tab-width:4;indent-tabs-mode:nil;show-trailing-whitespace:t;rm-trailing-spaces:t -*- # vi: set ts=4 noet: import math from contextlib import ExitStack # pytorch libraries import torch from torch.distributions import constraints from torch import nn ggg# pyro libraries import pyro import pyro.distributions as dist from pyro.contrib.util import iter_plates_to_shape from pyro.contrib.util import lexpand, rmv from . import dose_response_model from . import methods class PosteriorGuide(nn.Module): def __init__( self, observation_dim, batching): super(PosteriorGuide, self).__init__() n_hidden = 64 self.linear1 = methods.TensorLinear(*batching, observation_dim, n_hidden) self.linear2 = methods.TensorLinear(*batching, n_hidden, n_hidden) self.output_layer = methods.TensorLinear(*batching, n_hidden, 2 + 2 + 2 + 2 + 1) self.softplus = nn.Softplus() self.relu = nn.ReLU() def forward( self, observation_dict, design_prototype, observation_labels, target_labels): y = observation_dict[observation_labels[0]] - .5 x = self.relu(self.linear1(y)) x = self.relu(self.linear2(x)) final = self.output_layer(x) top_mu = final[..., 0] top_sigma = self.softplus(final[..., 1]) bottom_mu = final[..., 2] bottom_sigma = self.softplus(final[..., 3]) mid_mu = final[..., 4] mid_sigma = self.softplus(final[..., 5]) slope_mu = final[..., 6] slope_sigma = self.softplus(final[..., 7]) response_sigma = self.softplus(final[..., 8]) pyro.module("posterior_guide", self) batch_shape = design_prototype.shape[:-1] with ExitStack() as stack: for plate in iter_plates_to_shape(batch_shape): stack.enter_context(plate) pyro.sample("top", dist.Normal(top_mu, top_sigma)) pyro.sample("bottom", dist.Normal(bottom_mu, bottom_sigma)) pyro.sample("mid", dist.Normal(mid_mu, mid_sigma)) pyro.sample("slope", dist.Normal(slope_mu, slope_sigma)) pyro.sample("response", dist.Normal(0, response_sigma)) class HillModel(dose_response_model.DoseResponseExperimentalDesignModel): def __init__(self, hparams): super(HillModel, self).__init__(hparams) @staticmethod def add_model_specific_args(parent_parser, root_dir): parser = dose_response_model.DoseResponseExperimentalDesignModel.add_model_specific_args( parent_parser, root_dir) parser.add_argument('--design_size', default=10, type=int) parser.add_argument('--design_range', default=[-9, -4], type=float, nargs=2) parser.add_argument('--init_range', default=[-9, -4], type=float, nargs=2) parser.add_argument('--top_prior_mu', default=100., type=float) parser.add_argument('--top_prior_sd', default=100., type=float) parser.add_argument('--bottom_prior_mu', default=100., type=float) parser.add_argument('--bottom_prior_sd', default=100., type=float) parser.add_argument('--mid_prior_mu', default=50., type=float) parser.add_argument('--mid_prior_sd', default=15., type=float) parser.add_argument('--slope_prior_mu', default=-.15, type=float) parser.add_argument('--slope_prior_sd', default=0.1, type=float) parser.add_argument('--response_prior_sd', default=5., type=float) parser.add_argument('--observation_label', default="observation", type=str) parser.add_argument('--target_labels', default=["top", "bottom", "mid", "slope", "response"], nargs=5) return parser def sigmoid(self, x, top, bottom, mid, slope): return (top - bottom) * torch.sigmoid((x - mid) * slope) + bottom def model(self, design_prototype): design_init = lexpand( torch.linspace( *self.hparams.init_range, self.hparams.design_size, device=self.hparams.device), self.hparams.num_parallel) design_constraint = constraints.interval(*self.hparams.design_range) design = pyro.param("design", design_init, constraint=design_constraint) design = design.expand(design_prototype.shape) with pyro.plate_stack("plate_stack", design_prototype.shape[:-1]) # define the prior distribution for the parameters for the model top_distribution = dist.Normal( torch.tensor(self.hparams.top_prior_mu, device=self.hparams.device), torch.tensor(self.hparams.top_prior_sd, device=self.hparams.device)) bottom_distribution = dist.Normal( torch.tensor(self.hparams.bottom_prior_mu, device=self.hparams.device), torch.tensor(self.hparams.bottom_prior_sd, device=self.hparams.device)) mid_distribution = dist.Normal( torch.tensor(self.hparams.mid_prior_mu, device=self.hparams.device), torch.tensor(self.hparams.mid_prior_sd, device=self.hparams.device)) slope_distribution = dist.Normal( torch.tensor(self.hparams.slope_prior_mu, device=self.hparams.device), torch.tensor(self.hparams.slope_prior_sd, device=self.hparams.device)) # sample top = pyro.sample("top", top_distribution).unsqueeze(-1) bottom = pyro.sample("bottom", bottom_distribution).unsqueeze(-1) mid = pyro.sample("mid", mid_distribution).unsqueeze(-1) slope = pyro.sample("slope", slope_distribution).unsqueeze(-1) response = pyro.sample("response", response_distribution).unsqueeze(-1) # define the response distribution for each sample point response_distribution = dist.Normal( torch.zeros(design_size, device=self.hparams.device), torch.tensor( self.hparams.response_prior_sd, device=self.hparams.device).expand(design_size)) # combine the model and the response into the observation distribution # the .to_event(1) indicates the design points are depenent observation_distribution = dist.Delta( self.sigmoid(design, top, bottom, mid, slope) + response).to_event(1) # sample observations for each design point # observation.shape = [<batch_dims>, <design_size>] observation = pyro.sample( self.hparams.observation_label, observation_distribution) return observation def build_guide(self): guide = PosteriorGuide( self.hparams.design_size, (self.hparams.num_parallel,)) guide.to(self.hparams.device) return guide
2.046875
2
profiles/mxq/mxq-status.py
giesselmann/nanopype
87
12775784
#!/usr/bin/env python3 # \HEADER\------------------------------------------------------------------------- # # CONTENTS : snakemake mxq status script # # DESCRIPTION : none # # RESTRICTIONS : none # # REQUIRES : none # # --------------------------------------------------------------------------------- # Copyright (c) 2018-2021, <NAME>, Max Planck Institute for Molecular Genetics # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # # Written by <NAME> # --------------------------------------------------------------------------------- import sys, subprocess if __name__ == '__main__': job_id = sys.argv[1] # mxqdump for job id try: ret = subprocess.run('mxqdump --job-id {job_id}'.format(job_id=job_id), check=True, shell=True, stdout=subprocess.PIPE) except subprocess.CalledProcessError as e: raise e # parse nxqdump output to dictionary out = ret.stdout.decode() status = {key:value for key, value in [line.split('=') for line in out.strip().split(' ')]} # summarize mxq status to snakemake codes if 'status' in status: status_code = status['status'] if 'inq' in status_code or 'running' in status_code or 'loaded' in status_code or 'assigned' in status_code: print('running') elif 'finished' in status_code: print('success') else: print('failed')
1.390625
1
usaspending_api/references/constants.py
Violet26/usaspending-api
0
12775785
TOTAL_BUDGET_AUTHORITY = 8361447130497.72 TOTAL_OBLIGATIONS_INCURRED = 4690484214947.31 WEBSITE_AWARD_BINS = { "<1M": {"lower": None, "upper": 1000000}, "1M..25M": {"lower": 1000000, "upper": 25000000}, "25M..100M": {"lower": 25000000, "upper": 100000000}, "100M..500M": {"lower": 100000000, "upper": 500000000}, ">500M": {"lower": 500000000, "upper": None}, } DOD_CGAC = "097" # DoD's toptier identifier. DOD_SUBSUMED_CGAC = ["017", "021", "057"] # Air Force, Army, and Navy are to be reported under DoD. DOD_ARMED_FORCES_CGAC = [DOD_CGAC] + DOD_SUBSUMED_CGAC # The list of ALL agencies reported under DoD. DOD_ARMED_FORCES_TAS_CGAC_FREC = [("011", "1137"), ("011", "DE00")] # TAS (CGAC, FREC)s for additional DoD agencies. DOD_FEDERAL_ACCOUNTS = [ ("011", "1081"), ("011", "1082"), ("011", "1085"), ("011", "4116"), ("011", "4121"), ("011", "4122"), ("011", "4174"), ("011", "8238"), ("011", "8242"), ] # Federal Account (AID, MAIN)s that are to be reported under DoD. # Agencies which should be excluded from dropdowns. EXCLUDE_CGAC = ["000", "067"]
1.578125
2
pyrai/dispatcher/structures/notification_data.py
routable-ai/pyrai
0
12775786
<reponame>routable-ai/pyrai class NotificationData(object): """ Class used to represent notification data. Attributes: veh_id (int): The vehicle ID. req_id (int): The request ID. waiting_duration (str): The waiting duration. assigned (bool): True if assigned, false if not. """ def __init__(self, veh_id, req_id, waiting_duration, assigned): """ Initializes a NotificationData object. Args: veh_id (int): The vehicle ID. req_id (int): The request ID. waiting_duration (str): The waiting duration. assigned (bool): True if assigned, false if not. """ self.veh_id = veh_id self.req_id = req_id self.waiting_duration = waiting_duration self.assigned = assigned @staticmethod def fromdict(d): """ Converts a python dictionary to a NotificationData object. Args: d (dict): The dictionary to convert. Returns: NotificationData: A NotificationData object with the attributes set by values in d. """ return NotificationData( d.get('veh_id'), d.get('req_id'), d.get('waiting_duration'), d.get('assigned') ) def todict(self): """ Converts a NotificationData object to a python dictionary. Returns: dict: A dictionary representation of self. """ return { 'veh_id': self.veh_id, 'req_id': self.req_id, 'waiting_duration': self.waiting_duration, 'assigned': self.assigned } def __str__(self): return str(self.todict())
3.109375
3
tests/errors/test_assign5.py
akshanshbhatt/lpython
31
12775787
<reponame>akshanshbhatt/lpython def f(): x: list[list[i32]] x = [[1, 2, 3]] y: list[list[str]] y = [['a', 'b']] x = y
2.9375
3
basic_python/encapsulation.py
ravic499/blog-tips
0
12775788
"""Module to explain Encapsulation in Python """ class SeeMe(): """Class grouping the public, private varaibles and methods """ def __init__(self): """Constructor """ self.see_me = 'See Me' # public variable self._still_see_me = 'Still See Me !' # private varaible self.__cant_see_me = 'Cant See Me !!' # strictly private def can_see_me(self): """Public Method """ return 'Can See Me' def __cant_see_me_method(self): """Private Method """ return 'Cant See Me !!' """ Output: check = SeeMe() print(check.see_me) See Me print(check._still_see_me) Still See Me print(check.__cant_see_me) #AttributeError: 'SeeMee' object has no attribute '__cant_see_me' check.can_see_me() Can See Me check.__cant_see_me_method() #AttributeError: 'SeeMee' object has no attribute '__cant_see_me_method' """ # Getters and Setters, Name Mangling - Explained class Circle(): """Class to calculate area of a circle """ def __init__(self): """Constructor """ self.__radius = 3 def get_radius(self): """To get radius of a circle """ return self.__radius def set_radius(self, radius): """To set radius of a circle """ self.__radius = radius def calculate_area(self): """To calculate area of a circle """ return 3.14 * self.__radius * self.__radius """ Output c = Circle() # Name Mangling print(_Circle__radius) 3 # Getters and Setters c.get_radius() 3 c.calculate_area() 28.26 c.set_radius(4) c.get_radius() 4 c.calculate_area() 50.24 """
4.59375
5
homework/03/hw-03-youens-clark/model_bias_variance.py
kyclark/info521
0
12775789
#!/usr/bin/env python3 # Author: <NAME> # INFO521 Homeword 3 Problem 6 import numpy as np import matplotlib.pyplot as plt # -------------------------------------------------- def true_function(x): """$t = 5x+x^2-0.5x^3$""" return (5 * x) + x**2 - (0.5 * x**3) # -------------------------------------------------- def sample_from_function(N=100, noise_var=1000, xmin=-5., xmax=5.): """ Sample data from the true function. N: Number of samples Returns a noisy sample t_sample from the function and the true function t. """ x = np.random.uniform(xmin, xmax, N) t = true_function(x) # add standard normal noise using np.random.randn # (standard normal is a Gaussian N(0, 1.0) (i.e., mean 0, variance 1), # so multiplying by np.sqrt(noise_var) make it N(0,standard_deviation)) t = t + np.random.randn(x.shape[0]) * np.sqrt(noise_var) return x, t # -------------------------------------------------- def main(): xmin = -4. xmax = 5. noise_var = 6 orders = [1, 3, 5, 9] N = 25 num_samples = 20 # Make a set of N evenly-spaced x values between xmin and xmax test_x = np.linspace(xmin, xmax, N) true_y = true_function(test_x) for i in orders: plt.figure(0) for _ in range(0, num_samples): x, t = sample_from_function( N=25, xmin=xmin, xmax=xmax, noise_var=noise_var) X = np.zeros(shape=(x.shape[0], i + 1)) testX = np.zeros(shape=(test_x.shape[0], i + 1)) for k in range(i + 1): X[:, k] = np.power(x, k) testX[:, k] = np.power(test_x, k) # fit model parameters w = np.dot(np.linalg.inv(np.dot(X.T, X)), np.dot(X.T, t)) # calculate predictions prediction_t = np.dot(testX, w) plt.plot(test_x, prediction_t, color='blue') # Plot the true function in red so it will be visible plt.plot(test_x, true_y, color='red', linewidth=3) plt.xlabel('x') plt.ylabel('t') plt.title('Model order {} prediction of {}, $x \in [{},{}]$'.format( i, true_function.__doc__, xmin, xmax)) plt.pause(.1) # required on some systems so that rendering can happen outfile = 'model_bias-{}.png'.format(i) plt.savefig(outfile, format='png') plt.show() # -------------------------------------------------- if __name__ == '__main__': main()
3.984375
4
modules/batt_health/tools/auto_test/auto_test.py
namagi/android_device_motorola_qcom-common
1
12775790
<reponame>namagi/android_device_motorola_qcom-common import os import struct import time import random import traceback import re state = dict() nvm_state = dict() def adb_command(sub_cmd): rsp ='' cmd = 'adb ' + sub_cmd res = os.popen(cmd, "r") while 1: line = res.readline() if not line: break rsp += line return rsp def adb_wait_for_device(): print "--- Waiting for device" adb_command('wait-for-device') def adb_reboot(): print "--- Rebooting phone" adb_command('reboot') adb_wait_for_device() def adb_clear_bhd_data(): print "--- Clearing battery health PDS data" adb_command('shell rm /pds/batt_health/*') def adb_pull_bhd_data(local_path): print "--- Pulling battery health PDS data" adb_command('pull /pds/batt_health ' + local_path) def adb_stop_bhd(): adb_command('shell stop batt_health') def adb_start_bhd(): adb_command('shell start batt_health') def adb_update_charge_state(): global state string = struct.pack('<7i', state['ph_is_charging'], state['ph_soc'], state['ph_cc_uah'], state['ph_real_fcc_batt_temp'], state['ph_real_fcc'], state['ph_ocv'], state['ph_rbatt']) string = '\\x' + '\\x'.join('%02x' % ord(b) for b in string) string = 'shell \"echo -e \'' + string + '\' > /sys/devices/platform/msm_ssbi.0/pm8921-core/pm8921-bms/override.bin\"' rsp = adb_command(string) if rsp != '': raise RuntimeError('Invalid response from phone = ' + rsp) def state_init(): global state state['ph_is_charging'] = 0 state['ph_soc'] = 100 state['ph_cc_uah'] = -22 state['ph_real_fcc_batt_temp'] = -22 state['ph_real_fcc'] = -22 state['ph_ocv'] = -22 state['ph_rbatt'] = -22 state['charge_cycles'] = 0 state['charge_inc'] = 0 state['file_write_count'] = 0 state['aged_begin_cc_uah'] = -22 state['aged_begin_ocv'] = -22 state['aged_begin_percent'] = -22 state['aged_end_cc_uah'] = -22 state['aged_end_ocv'] = -22 state['aged_end_percent'] = -22 def nvm_state_copy(): global state global nvm_state nvm_state['charge_cycles'] = state['charge_cycles'] nvm_state['charge_inc'] = state['charge_inc'] nvm_state['file_write_count'] = state['file_write_count'] if (state['ph_real_fcc_batt_temp'] != -22): nvm_state['ph_real_fcc_batt_temp'] = state['ph_real_fcc_batt_temp'] if (state['ph_real_fcc'] != -22): nvm_state['ph_real_fcc'] = state['ph_real_fcc'] if (state['ph_soc'] != -22): nvm_state['ph_soc'] = state['ph_soc'] if (state['ph_ocv'] != -22): nvm_state['ph_ocv'] = state['ph_ocv'] if (state['ph_rbatt'] != -22): nvm_state['ph_rbatt'] = state['ph_rbatt'] if (state['aged_begin_cc_uah'] != -22): nvm_state['aged_begin_cc_uah'] = state['aged_begin_cc_uah'] if (state['aged_begin_percent'] != -22): nvm_state['aged_begin_percent'] = state['aged_begin_percent'] if (state['aged_begin_ocv'] != -22): nvm_state['aged_begin_ocv'] = state['aged_begin_ocv'] if (state['aged_begin_cc_uah'] != -22): nvm_state['aged_begin_cc_uah'] = state['aged_begin_cc_uah'] if (state['aged_end_percent'] != -22): nvm_state['aged_end_percent'] = state['aged_end_percent'] if (state['aged_end_ocv'] != -22): nvm_state['aged_end_ocv'] = state['aged_end_ocv'] if (state['aged_end_cc_uah'] != -22): nvm_state['aged_end_cc_uah'] = state['aged_end_cc_uah'] def update_nvm_state(): global state global nvm_state if (nvm_state['charge_cycles'] != state['charge_cycles']): print "--- NVM state updated due to charge cycles" state['file_write_count'] = state['file_write_count'] + 1 nvm_state_copy() elif ( (state['charge_inc'] - nvm_state['charge_inc']) >= 50): print "--- NVM state updated due to charge increase" state['file_write_count'] = state['file_write_count'] + 1 nvm_state_copy() def execute_batt_health_reset(): adb_stop_bhd() adb_clear_bhd_data() adb_reboot() adb_stop_bhd() adb_clear_bhd_data() adb_update_charge_state() adb_start_bhd() def execute_discharge_cycle(target_soc, interval, sleep): global state print "--- Discharging from",state['ph_soc'],"to",target_soc state['ph_is_charging'] = 0 adb_update_charge_state() time.sleep(sleep) while state['ph_soc'] > target_soc: state['ph_soc'] -= interval if (state['ph_soc'] < target_soc): state['ph_soc'] = target_soc adb_update_charge_state() time.sleep(sleep) def execute_charge_cycle(target_soc, interval, sleep): global state print "--- Charging from",state['ph_soc'],"to",target_soc start_soc = state['ph_soc'] state['ph_is_charging'] = 1 if (0 <= state['ph_soc'] <= 5): state['ph_cc_uah'] = random.randint(1500000, 1766000) state['ph_ocv'] = random.randint(3200000, 4300000) begin_cc_uah = state['ph_cc_uah'] begin_ocv = state['ph_ocv'] adb_update_charge_state() time.sleep(sleep) while state['ph_soc'] < target_soc: state['ph_soc'] += interval if (state['ph_soc'] > target_soc): state['ph_soc'] = target_soc if ((95 <= state['ph_soc'] <= 100) and (state['ph_soc'] == target_soc)): state['ph_cc_uah'] = random.randint(0, 10000) state['ph_ocv'] = random.randint(3200000, 4300000) end_cc_uah = state['ph_cc_uah'] end_ocv = state['ph_ocv'] adb_update_charge_state() time.sleep(sleep) state['ph_is_charging'] = 0 adb_update_charge_state() state['charge_inc'] += (target_soc - start_soc) if (state['charge_inc'] > 100): state['charge_cycles'] = state['charge_cycles'] + 1 state['charge_inc'] = state['charge_inc'] % 100 if ( (0 <= start_soc <= 5) and (95 <= target_soc <= 100)): print "--- Aged event occurred!" state['aged_begin_cc_uah'] = begin_cc_uah state['aged_begin_ocv'] = begin_ocv state['aged_begin_percent'] = start_soc state['aged_end_cc_uah'] = end_cc_uah state['aged_end_ocv'] = end_ocv state['aged_end_percent'] = target_soc update_nvm_state() def test_case_random_event(): global state global nvm_state i = random.randint(0, 100) if (i == 0): temp_soc = state['ph_soc'] state = nvm_state.copy() state['ph_is_charging'] = 0 state['ph_soc'] = temp_soc state['ph_cc_uah'] = -22 state['ph_real_fcc_batt_temp'] = -22 state['ph_real_fcc'] = -22 state['ph_ocv'] = -22 state['ph_rbatt'] = -22 state['aged_begin_cc_uah'] = -22 state['aged_begin_percent'] = -22 state['aged_begin_ocv'] = -22 state['aged_begin_cc_uah'] = -22 state['aged_end_percent'] = -22 state['aged_end_ocv'] = -22 state['aged_end_cc_uah'] = -22 adb_reboot() adb_update_charge_state() elif (i == 1): state['ph_real_fcc_batt_temp'] = random.randint(0, 50) print "--- Setting real_fcc_batt_temp =",state['ph_real_fcc_batt_temp'] adb_update_charge_state() elif (i == 2): state['ph_real_fcc'] = random.randint(0, 4000000) print "--- Setting real_fcc =",state['ph_real_fcc'] adb_update_charge_state() elif (i == 3): state['ph_ocv'] = random.randint(3200000, 4300000) print "--- Setting ocv =",state['ph_ocv'] adb_update_charge_state() elif (i == 4): state['ph_rbatt'] = random.randint(1000, 2000) print "--- Setting rbatt =",state['ph_rbatt'] adb_update_charge_state() def test_case_random(): global state global nvm_state pds_save_path = "random/" state_init() nvm_state = state.copy() max_cycle = input('Please enter number of cycles to execute: ') print "- Start random test case" adb_wait_for_device() execute_batt_health_reset() random.seed() for i in range(1, max_cycle): target_discharge = random.randint(0, state['ph_soc']) target_charge = random.randint(target_discharge, 100) print "- Executing cycle",i,"/",max_cycle execute_discharge_cycle(target_discharge, 10, 0.1) test_case_random_event() execute_charge_cycle(target_charge, 10, 0.1) test_case_random_event() adb_pull_bhd_data(pds_save_path) print "- Random test case completed!" print "- PDS data files saved in " + pds_save_path print "- Expected NVM State:" print "\tFile Write Count:\t\t",nvm_state['file_write_count'] print "\tCharge Cycle Count:\t\t",nvm_state['charge_cycles'] print "\tCharge Increase:\t\t",nvm_state['charge_inc'] print "\tReal FCC Batt Temp:\t\t",nvm_state['ph_real_fcc_batt_temp'] print "\tReal FCC:\t\t\t",nvm_state['ph_real_fcc'] print "\tState of charge:\t\t",nvm_state['ph_soc'] print "\tOCV:\t\t\t\t",nvm_state['ph_ocv'] print "\tRbatt:\t\t\t\t",nvm_state['ph_rbatt'] if (nvm_state['aged_begin_cc_uah'] != -22): print "\tAged Values:" print "\t\tBOC - Percent:\t\t",nvm_state['aged_begin_percent'] print "\t\tBOC - OCV:\t\t",nvm_state['aged_begin_ocv'] print "\t\tBOC - CC:\t\t",nvm_state['aged_begin_cc_uah'] print "\t\tEOC - Percent:\t\t",nvm_state['aged_end_percent'] print "\t\tEOC - OCV:\t\t",nvm_state['aged_end_ocv'] print "\t\tEOC - CC:\t\t",nvm_state['aged_end_cc_uah'] print def test_case_charge_by_1_step(): global state global nvm_state state_init() nvm_state = state.copy() print "- Start charge by 1 step test" adb_wait_for_device() execute_batt_health_reset() for i in range (0,5): execute_discharge_cycle(0, 1, 0.1) for j in range (0, 101): execute_charge_cycle(j, 1, 0.1) pds_save_path = "by_1/" adb_pull_bhd_data(pds_save_path) print "- Charge by 1 step test case completed!" print "- PDS data files saved in " + pds_save_path print "- Expected NVM State:" print "\tFile Write Count:\t\t",nvm_state['file_write_count'] print "\tCharge Cycle Count:\t\t",nvm_state['charge_cycles'] print "\tCharge Increase:\t\t",nvm_state['charge_inc'] def test_case_reboots(): global state global nvm_state state_init() nvm_state = state.copy() print "- Start reboots test case" adb_wait_for_device() execute_batt_health_reset() execute_discharge_cycle(0, 10, 0.1) state['ph_real_fcc_batt_temp'] = 50 execute_charge_cycle(50, 1, 0.1) adb_reboot() execute_discharge_cycle(50, 1, 0.1) state['ph_real_fcc'] = 1500000 execute_charge_cycle(100, 1, 0.1) adb_reboot() execute_discharge_cycle(0, 1, 0.1) state['ph_ocv'] = 4000001 execute_charge_cycle(50, 1, 0.1) adb_reboot() execute_discharge_cycle(50, 1, 0.1) state['ph_rbatt'] = 1400 execute_charge_cycle(99, 1, 0.1) adb_reboot() pds_save_path = "reboots/" adb_pull_bhd_data(pds_save_path) print "- Reboots test case completed!" print "- PDS data files saved in " + pds_save_path print "- Expected NVM State:" print "\tFile Write Count:\t\t",nvm_state['file_write_count'] print "\tCharge Cycle Count:\t\t",nvm_state['charge_cycles'] print "\tCharge Increase:\t\t",nvm_state['charge_inc'] print "\tReal FCC Batt Temp:\t\t",nvm_state['ph_real_fcc_batt_temp'] print "\tReal FCC:\t\t\t",nvm_state['ph_real_fcc'] print "\tState of charge:\t\t",nvm_state['ph_soc'] print "\tOCV:\t\t\t\t",nvm_state['ph_ocv'] print "\tRbatt:\t\t\t\t",nvm_state['ph_rbatt'] print def handle_force_nvm_write(): global state global nvm_state #To force NVM write, just do a quick 1 -> 100 charge cycle state_init() nvm_state = state.copy() print "- Forcing NVM write" execute_discharge_cycle(1, 100, 0.1) state['ph_real_fcc_batt_temp'] = 50 execute_charge_cycle(100, 100, 0.1) def handle_manual_basic_entry(): global state global nvm_state state_init() nvm_state = state.copy() print "- Manual entry, actions: " print "\t'=##' = charge/discharge to ##" print "\t'-##' = discharge by ##" print "\t'+##' = charge by ##" print "\tx = exit" exit_manual_entry = 0 while not exit_manual_entry: choice = raw_input('Please enter action: ') if choice == 'x': exit_manual_entry = 1; else: soc = state['ph_soc']; choice.replace(' ', '') m = re.match('(=|-|\+)(\d*)', choice) if m: delta = eval(m.group(2)) if (delta > 100): delta = 100 if (delta < 0): delta = 0 if (m.group(1) == '-'): soc = soc - delta if (soc < 0): soc = 0 execute_discharge_cycle(soc, 5, 0.1) elif (m.group(1) == '+'): soc = soc + delta if (soc > 100): soc = 100 execute_charge_cycle(soc, 5, 0.1) else: if (soc < delta): execute_charge_cycle(delta, 5, 0.1) else: execute_discharge_cycle(delta, 5, 0.1) else: print "Invalid input" def handle_main_menu(): exit_requested = 0 print print "Battery Health Daemon Tester" print "============================" print "1) Execute 'Random' test" print "2) Execute 'Charge By 1' test" print "3) Execute 'Reboots' test" print "f) Force NVM write" print "m) Manual basic entry" print "r) Reset phone battery health data" print "x) Exit" choice = raw_input('Please enter a value: ') print if choice == '1': test_case_random() elif choice == '2': test_case_charge_by_1_step() elif choice == '3': test_case_reboots() elif choice == 'r': adb_wait_for_device() adb_stop_bhd() adb_clear_bhd_data() adb_reboot() elif choice == 'f': handle_force_nvm_write() elif choice == 'm': handle_manual_basic_entry() elif choice == 'x': exit_requested = 1 else: print "Invalid value" return exit_requested def main(): try: exit_app = 0 while (exit_app != 1): exit_app = handle_main_menu() except Exception, err: print 'ERROR: ' + str(err) traceback.print_exc() if __name__ == '__main__': main()
2.125
2
framework/components/gen_dataset.py
HXX97/rng-kbqa
37
12775791
<filename>framework/components/gen_dataset.py """ Copyright (c) 2021, salesforce.com, inc. All rights reserved. SPDX-License-Identifier: BSD-3-Clause For full license text, see the LICENSE file in the repo root or https://opensource.org/licenses/BSD-3-Clause """ from components.utils import * import os from components.dataset_utils import LFCandidate from executor.sparql_executor import get_label from tqdm import tqdm from transformers import BartTokenizer class GenerationExample: def __init__(self, qid, query, gt, candidates, entity_label_map, answers=[]): self.qid = qid self.query = query self.gt = gt self.candidates = candidates self.entity_label_map = entity_label_map self.answers = answers def __str__(self): return '{}\n\t->{}\n'.format(self.query, self.gt.normed_expr) def __repr__(self): return self.__str__() class GenerationFeature: def __init__(self, ex, src_input_ids, tgt_input_ids): self.ex = ex self.src_input_ids = src_input_ids self.tgt_input_ids = tgt_input_ids def _vanilla_linearization_method(expr, entity_label_map): expr = expr.replace('(', ' ( ') expr = expr.replace(')', ' ) ') toks = expr.split(' ') toks = [x for x in toks if len(x)] norm_toks = [] for t in toks: # normalize entity if t.startswith('m.'): if t in entity_label_map: t = entity_label_map[t] else: name = get_label(t) if name is not None: entity_label_map[t] = name t = name elif 'XMLSchema' in t: format_pos = t.find('^^') t = t[:format_pos] elif t == 'ge': t = 'GREATER EQUAL' elif t == 'gt': t = 'GREATER THAN' elif t == 'le': t = 'LESS EQUAL' elif t == 'lt': t = 'LESS THAN' else: if '_' in t: t = t.replace('_', ' ') if '.' in t: t = t.replace('.', ' , ') # normalize type norm_toks.append(t) return ' '.join(norm_toks) def proc_webqsp_gen_exs(candidates_info, data_bank): qid = candidates_info['qid'] raw_data = data_bank[qid] query = raw_data['RawQuestion'] gt_expr = candidates_info['genation_target'] entity_label_map = {} # resolve_entity_label(qid, gt, candidates) norm_gt = _vanilla_linearization_method(gt_expr, entity_label_map) # print('normed gt', norm_gt) gt = LFCandidate(gt_expr, norm_gt, True, 1.0, 0.0) top_candidates = candidates_info['top_candidates'] candidates = [] for c in top_candidates: c_expr = c['logical_form'] normed_c_expr = _vanilla_linearization_method(c_expr, entity_label_map) # print('normed c_expr', normed_c_expr) c_ex = c['ex'] lf_candidate = LFCandidate(c_expr, normed_c_expr, c_ex) candidates.append(lf_candidate) return GenerationExample(qid, query, gt, candidates, entity_label_map, answers=[]) def webqsp_read_gen_examples_from_json(dataset_file, candidate_file, is_eval=False): data_bank = load_json(dataset_file) data_bank = dict([(str(x['QuestionId']), x) for x in data_bank]) lines = load_json(candidate_file) examples = [] for l in tqdm(lines, desc='Reading', total=len(lines)): ex = proc_webqsp_gen_exs(l, data_bank) if ex is None: continue examples.append(ex) return examples def proc_grail_gen_exs(candidates_info, data_bank): qid = candidates_info['qid'] raw_data = data_bank[qid] query = raw_data['question'] gt_expr = candidates_info['genation_target'] entity_label_map = {} # resolve_entity_label(qid, gt, candidates) norm_gt = _vanilla_linearization_method(gt_expr, entity_label_map) # print('normed gt', norm_gt) gt = LFCandidate(gt_expr, norm_gt, True, 1.0, 0.0) top_candidates = candidates_info['top_candidates'] candidates = [] for c in top_candidates: c_expr = c['logical_form'] normed_c_expr = _vanilla_linearization_method(c_expr, entity_label_map) # print('normed c_expr', normed_c_expr) c_ex = c['ex'] lf_candidate = LFCandidate(c_expr, normed_c_expr, c_ex) candidates.append(lf_candidate) return GenerationExample(qid, query, gt, candidates, entity_label_map, answers=[]) def grail_read_gen_examples_from_json(dataset_file, candidate_file, is_eval=False): data_bank = load_json(dataset_file) data_bank = dict([(str(x['qid']), x) for x in data_bank]) lines = load_json(candidate_file) examples = [] for l in tqdm(lines, desc='Reading', total=len(lines)): ex = proc_grail_gen_exs(l, data_bank) if ex is None: continue examples.append(ex) return examples def _extract_gen_feature_from_example(args, tokenizer, ex, add_prefix_space=False): # gt_input_ids, gt_token_type_ids, candidates_input_ids, candidates_token_type_ids qid = ex.qid q = ex.query gt_lf = ex.gt.normed_expr if args.do_lower_case: q = q.lower() gt_lf = gt_lf.lower() candidate_lfs = [] for c in ex.candidates[:args.top_k_candidates]: c_lf = c.normed_expr if args.do_lower_case: c_lf = c_lf.lower() candidate_lfs.append(c_lf) src_text = ' ; '.join([q] + candidate_lfs) dst_text = gt_lf if add_prefix_space: batch_encoding = tokenizer.prepare_seq2seq_batch( [src_text], [dst_text], max_length=args.max_source_length, max_target_length=args.max_target_length, return_tensors="pt", add_prefix_space=add_prefix_space, ).data else: batch_encoding = tokenizer.prepare_seq2seq_batch( [src_text], [dst_text], max_length=args.max_source_length, max_target_length=args.max_target_length, return_tensors="pt", ).data # batch_encoding["ids"] = torch.tensor([x["id"] for x in batch]) # return batch_encoding # return GrailRankingFeature(qid, ex, gt_input_ids, gt_token_type_ids, candidate_input_ids, candidate_token_type_ids) input_ids, labels = batch_encoding['input_ids'][0], batch_encoding['labels'][0] # encoded = tokenizer.pad({'input_ids': [input_ids, input_ids[:20]]},return_tensors='pt') # encoded = tokenizer.pad({'input_ids': [labels, labels[:5]]},return_tensors='pt') return GenerationFeature(ex, input_ids, labels) def generation_collate_fn(data, tokenizer): all_input_ids = [] all_labels = [] for feat in data: all_input_ids.append(feat.src_input_ids) all_labels.append(feat.tgt_input_ids) src_encoded = tokenizer.pad({'input_ids': all_input_ids},return_tensors='pt') tgt_encoded = tokenizer.pad({'input_ids': all_labels},return_tensors='pt') return { 'input_ids': src_encoded['input_ids'], 'attention_mask': src_encoded['attention_mask'], 'labels': tgt_encoded['input_ids'] } def extract_gen_features_from_examples(args, tokenizer, examples): features = [] add_prefix_space = isinstance(tokenizer, BartTokenizer) for ex in tqdm(examples, desc='Indexing', total=len(examples)): feat = _extract_gen_feature_from_example(args, tokenizer, ex, add_prefix_space=add_prefix_space) features.append(feat) return features
1.960938
2
plot/plot_results_tests.py
biomac-lab/COVID_schools_dashboard
0
12775792
import sys sys.path.append('../') from matplotlib import figure import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import os from tqdm import tqdm from models import model ### Config folders config_data = pd.read_csv('config.csv', sep=',', header=None, index_col=0) figures_path = config_data.loc['figures_dir'][1] results_path = config_data.loc['results_test_dir'][1] ages_data_path = config_data.loc['bogota_age_data_dir'][1] houses_data_path = config_data.loc['bogota_houses_data_dir'][1] ### Arguments import argparse parser = argparse.ArgumentParser(description='Dynamics visualization.') parser.add_argument('--population', default=10000, type=int, help='Speficy the number of individials') parser.add_argument('--type_sim', default='intervention', type=str, help='Speficy the type of simulation to plot') args = parser.parse_args() number_nodes = args.population pop = number_nodes ### Read functions def load_results_ints(type_res,n,int_effec,schl_occup,layer,path=results_path): read_path = os.path.join(path,'{}_layerInt_{}_inter_{}_schoolcap_{}_{}.csv'.format(str(n),str(layer),str(int_effec), str(schl_occup),type_res)) read_file = pd.read_csv(read_path) return read_file ### Read file results_path = os.path.join(results_path,str(pop)) ###------------------------------------------------------------------------------------------------------------------------------------------------------ ### Bar plots intervention_effcs = [0.0,0.2,0.4] school_cap = [1.0] #,0.35] layers_test = ['work','community','all'] layers_labels = ['Intervention over work','Intervention over community','Intervention over-all'] layers_labels = dict(zip(layers_test,layers_labels)) df_list = [] for l, layer_ in enumerate(layers_test): for i, inter_ in enumerate(intervention_effcs): for j, schl_cap_ in enumerate(school_cap): res_read = load_results_ints('soln_cum',args.population,inter_,schl_cap_,layer_,results_path) for itr_ in range(10): res_read_i = res_read['iter'] == itr_ res_read_i = pd.DataFrame(res_read[res_read_i]) end_cases = res_read_i['E'].iloc[-1] df_res_i = pd.DataFrame(columns=['iter','Inter.Layer','interven_eff','end_cases']) df_res_i['iter'] = [int(itr_)] df_res_i['Inter.Layer'] = layers_labels[layer_] df_res_i['interven_eff'] = r'{}%'.format(int(inter_*100)) df_res_i['end_cases'] = end_cases*pop df_list.append(df_res_i) df_final_E = pd.concat(df_list) fig,ax = plt.subplots(1,1,figsize=(9, 6)) sns.catplot(ax=ax, data=df_final_E, y='interven_eff', x='end_cases', hue='Inter.Layer',kind='bar',palette='winter',alpha=0.7,legend=False) #ax.legend(bbox_to_anchor=(1.02,1)).set_title('') plt.legend(bbox_to_anchor=(1.02,0.6),title='',frameon=False, fontsize=16) #plt.setp(ax.get_legend().get_texts(), fontsize='17') # for legend text plt.ylabel(r'Intervention efficiency ($\%$)',fontsize=17) plt.xlabel(r'Infections per 10,000',fontsize=17) plt.title(r'Total infections | schools at {}%'.format(str(int(school_cap[0]*100))),fontsize=17) plt.xticks(size=16) plt.yticks(size=16) save_path = os.path.join(figures_path,'bar_plots','layersInter_totalInfections_n_{}_schoolcap_{}_.png'.format(str(pop),str(school_cap[0]))) plt.savefig(save_path,dpi=400, transparent=False, bbox_inches='tight', pad_inches=0.1 ) # Deaths school_cap = [0.35] #,0.35] layers_test = ['work','community','all'] layers_labels = ['Intervention over work','Intervention over community','Intervention over-all'] layers_labels = dict(zip(layers_test,layers_labels)) df_list = [] for l, layer_ in enumerate(layers_test): for i, inter_ in enumerate(intervention_effcs): for j, schl_cap_ in enumerate(school_cap): res_read = load_results_ints('soln_cum',args.population,inter_,schl_cap_,layer_,results_path) for itr_ in range(10): res_read_i = res_read['iter'] == itr_ res_read_i = pd.DataFrame(res_read[res_read_i]) end_dead = res_read_i['D'].iloc[-1] df_res_i = pd.DataFrame(columns=['iter','Inter.Layer','interven_eff','end_dead']) df_res_i['iter'] = [int(itr_)] df_res_i['Inter.Layer'] = layers_labels[layer_] df_res_i['interven_eff'] = r'{}%'.format(int(inter_*100)) df_res_i['end_dead'] = end_dead*pop df_list.append(df_res_i) df_final_D = pd.concat(df_list) fig,ax = plt.subplots(1,1,figsize=(9, 6)) sns.catplot(ax=ax, data=df_final_D, y='interven_eff', x='end_dead', hue='Inter.Layer',kind='bar',palette='winter',alpha=0.7,legend=False) #ax.legend(bbox_to_anchor=(1.02,1)).set_title('') plt.legend(bbox_to_anchor=(1.02,0.6),title='',frameon=False, fontsize=16) #plt.setp(ax.get_legend().get_texts(), fontsize='17') # for legend text plt.ylabel(r'Intervention efficiency ($\%$)',fontsize=17) plt.xlabel(r'Deaths per 10,000',fontsize=17) plt.title(r'Total deaths | schools at {}%'.format(str(int(school_cap[0]*100))),fontsize=17) plt.xticks(size=16) plt.yticks(size=16) plt.xlim([0,141]) save_path = os.path.join(figures_path,'bar_plots','layersInter_totalDeaths_n_{}_schoolcap_{}_.png'.format(str(pop),str(school_cap[0]))) plt.savefig(save_path,dpi=400, transparent=False, bbox_inches='tight', pad_inches=0.1 )
2.328125
2
choi/object_search/webcam_train.py
HDNua/kwin
2
12775793
""" webcam_train Developer: <NAME>, <NAME> Version: 0.1.0 Release Date: 2017-09-30 """ import numpy as np import cv2 import tensorflow as tf import sys from kwin import * import time import webcam import dataset import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' ######################################################################## # ######################################################################## # while True: target_name = input("무엇을 학습할까요? (종료하려면 exit) ") target_name=target_name.strip() target_dir = "%s/%s" %(dataset.train_data_path(), target_name) if target_name == 'exit': break if os.path.exists(target_dir) is False: os.mkdir(target_dir) webcam.record_avi(target_name=target_name, target_dir=target_dir) print("[%s]에 대한 동영상 촬영이 완료되었습니다." %target_name) # print("학습을 시작합니다. 종료 메시지가 나타날 때까지 잠시 기다리십시오.") # import retrain retrain.do_train() # print("학습이 종료되었습니다. bottleneck을 확인하십시오.")
2.4375
2
videoToAudio.py
anthonyattard/video-to-audio
2
12775794
#!/usr/bin/env python3 import os import subprocess sourceDir = "/Video/File/Directory" #Choose the file formats below. See https://ffmpeg.org/ffmpeg.html for supported file types. videoFormat = ".mp4" audioFormat = ".mp3" for file in os.listdir(sourceDir): name = file[:file.rfind(".")] subprocess.call(["ffmpeg", "-i", sourceDir+"/"+name+".MP4", sourceDir+"/"+name+".mp3"])sourceDir+"/"+name+videoFormat, sourceDir+"/"+name+audioFormat])
2.515625
3
posts/admin.py
lakshaykhatter/djangox-project-attempt
0
12775795
from django.contrib.auth import get_user_model from django.contrib import admin # Register your models here. from .models import Post, Link User = get_user_model() class LinkInline(admin.StackedInline): model = Link extra = 0 # readonly_fields = ['url',] fields = ['url'] class PostAdmin(admin.ModelAdmin): inlines = [LinkInline] list_display = ['title', 'description'] readonly_fields = ['date',] raw_id_fields = ['author'] admin.site.register(Post, PostAdmin)
2.015625
2
app/gws/lib/test.py
gbd-consult/gbd-websuite
3
12775796
<reponame>gbd-consult/gbd-websuite """Support tests""" import datetime import http.cookies import inspect import os.path import shutil import sys import time import psycopg2 import psycopg2.extras import pytest import werkzeug.test import werkzeug.wrappers import gws import gws.base.web.web_app import gws.config import gws.core.tree import gws.lib.feature import gws.lib.json2 import gws.lib.net import gws.lib.os2 import gws.lib.password import gws.lib.vendor.slon import gws.lib.mpx.config import gws.server.control import gws.spec.runtime fixture = pytest.fixture # configuration for tests, see bin/_test.py CONFIG = {} TEMP_DIR = '/tmp' MANIFEST_PATH = TEMP_DIR + '/gws_test_manifest.json' DEFAULT_MANIFEST = { 'withStrictConfig': True, 'withFallbackConfig': False, } # GWS configuration defaults SESSION_STORE_PATH = '/tmp/gws_test_session_store.sqlite' GWS_CONFIG_PATH = '/gws-var/gws_test_gws_config.json' GWS_CONFIG_DEFAULTS = { 'server': { 'log': {'level': 'DEBUG'}, 'mapproxy': {'forceStart': True}, }, 'auth': { 'sessionStore': 'sqlite', 'sessionStorePath': SESSION_STORE_PATH, }, } # test runner def main(args): CONFIG.update(gws.lib.json2.from_path('/gws-var/TEST_CONFIG.json')) gws.lib.json2.to_path(MANIFEST_PATH, CONFIG.get('MANIFEST', DEFAULT_MANIFEST)) rootdir = gws.APP_DIR + '/gws' files = list(gws.lib.os2.find_files(rootdir, r'_test\.py')) spec = True if args and not args[0].startswith('-'): pattern = args.pop(0) if pattern.startswith('nospec:'): pattern = pattern.split(':')[1] spec = False if pattern: files = [f for f in files if pattern in f] if not files: gws.log.error(f'no files to test') return _sort_order = ['/core/', '/lib/', '/base/', '/plugin/'] def _sort_key(path): for n, s in enumerate(_sort_order): if s in path: return n, path return 99, path files.sort(key=_sort_key) if spec: gws.spec.runtime.create_and_store() pytest_args = ['-c', CONFIG['PYTEST_INI_PATH'], '--rootdir', rootdir] pytest_args.extend(args) pytest_args.extend(files) gws.log.debug(f'running pytest with args: {pytest_args}') pytest.main(pytest_args) ## def setup(): gws.log.debug(f'TEST:setup') pass def teardown(): gws.log.debug(f'TEST:teardown') gws.lib.os2.unlink(SESSION_STORE_PATH) gws.base.web.web_app.reload() gws.core.tree.unregister_ext() gws.config.deactivate() web_server_command('reset') ## def configure(config, parse=True): def _dct2cfg(d): if isinstance(d, dict): return gws.Config({k: _dct2cfg(v) for k, v in d.items()}) if isinstance(d, (list, tuple)): return [_dct2cfg(v) for v in d] return d gws.log.debug(f'TEST:configure') if isinstance(config, str): config = gws.lib.vendor.slon.parse(config, as_object=True) dct = gws.deep_merge(GWS_CONFIG_DEFAULTS, config) config = _dct2cfg(dct) gws.lib.json2.to_path(GWS_CONFIG_PATH, config, pretty=True) if parse: r = gws.config.configure(manifest_path=MANIFEST_PATH, config_path=GWS_CONFIG_PATH) else: r = gws.config.configure(manifest_path=MANIFEST_PATH, config=config) gws.config.activate(r) gws.config.store(r) return r def configure_and_reload(config, parse=True): def _wait_for_port(service): while 1: port = CONFIG[f'service.gws.{service}_port'] url = 'http://' + CONFIG['runner.host_name'] + ':' + str(port) res = gws.lib.net.http_request(url) if res.ok: return gws.log.debug(f'TEST:waiting for {service}:{port}') sleep(2) r = configure(config, parse) gws.server.control.reload(['mapproxy', 'web']) for service in 'http', 'mpx': _wait_for_port(service) return r def root(): return gws.config.root() # requests and responses def local_request(url, **kwargs): """Perform a get request to the local server.""" return gws.lib.net.http_request('http://127.0.0.1' + '/' + url, **kwargs) class ClientCmdResponse(gws.Data): status: int json: dict cookies: dict response: werkzeug.wrappers.BaseResponse def client_cmd_request(cmd, params, cookies=None, headers=None) -> ClientCmdResponse: gws.log.debug(f'TEST:client_cmd_request {cmd}') client = _prepare_client(cookies) resp = client.open( method='POST', path='/_/' + cmd, data=gws.lib.json2.to_string({'params': params}), content_type='application/json', headers=headers, ) js = None try: js = gws.lib.json2.from_string(resp.data) except: pass cookie_headers = ';'.join(v for k, v in resp.headers if k == 'Set-Cookie') response_cookies = {} mor: http.cookies.Morsel for k, mor in http.cookies.SimpleCookie(cookie_headers).items(): response_cookies[k] = dict(mor) response_cookies[k]['value'] = mor.value return ClientCmdResponse( status=resp.status_code, json=js, cookies=response_cookies, response=resp, ) def _prepare_client(cookies): client = werkzeug.test.Client( gws.base.web.web_app.application, werkzeug.wrappers.BaseResponse) if cookies: for k, v in cookies.items(): if not v: client.delete_cookie('localhost', k) elif isinstance(v, str): client.set_cookie('localhost', k, v) else: client.set_cookie('localhost', k, **v) return client # web server def web_server_command(cmd, params=None): base_url = f"http://{CONFIG['runner.host_name']}:{CONFIG['service.web.port']}" params = params or {} params['cmd'] = cmd res = gws.lib.net.http_request( base_url, data=gws.lib.json2.to_string(params), method='post' ) return gws.lib.json2.from_string(res.text) def web_server_poke(pattern, response): return web_server_command('poke', {'pattern': pattern, 'response': response}) def web_server_begin_capture(): return web_server_command('begin_capture') def web_server_end_capture(): res = web_server_command('end_capture') return [gws.lib.net.parse_url('http://host' + u) for u in res['urls']] def web_server_create_wms(config): web_server_command('create_wms', {'config': config}) def web_server_url(url): base_url = f"http://{CONFIG['runner.host_name']}:{CONFIG['service.web.port']}" return base_url + '/' + url # features def make_features(name, geom_type, columns, crs, xy, rows, cols, gap): features = [] sx, sy = xy for r in range(rows): for c in range(cols): uid = r * cols + (c + 1) atts = [] for k, v in columns.items(): val = '' if v == 'int': val = uid * 100 if v == 'float': val = uid * 200.0 if v in ('varchar', 'text'): val = f"{name}/{uid}" if v == 'date': val = datetime.datetime(2019, 1, 1) + datetime.timedelta(days=uid - 1) atts.append(gws.Attribute(name=k, value=val)) x = sx + c * gap y = sy + r * gap geom = None if geom_type == 'point': geom = { 'type': 'Point', 'coordinates': [x, y] } if geom_type == 'square': w = h = gap / 2 geom = { 'type': 'Polygon', 'coordinates': [[ [x, y], [x + w, y], [x + w, y + h], [x, y + h], [x, y], ]] } features.append(gws.lib.feature.from_props(gws.Data( uid=uid, attributes=atts, shape={'crs': crs, 'geometry': geom} if geom else None ))) return features def geojson_make_features(path, geom_type, columns, crs, xy, rows, cols, gap): name = gws.lib.os2.parse_path(path)['name'] features = make_features(name, geom_type, columns, crs, xy, rows, cols, gap) text = gws.lib.json2.to_pretty_string({ 'type': 'FeatureCollection', 'crs': {'type': 'name', 'properties': {'name': crs}}, 'features': [f.to_geojson() for f in features], }) write_file_if_changed(path, text) # postgres def postgres_connect_params(): return { 'database': CONFIG['service.postgres.database'], 'user': CONFIG['service.postgres.user'], 'password': CONFIG['service.postgres.password'], 'port': CONFIG['service.postgres.port'], 'host': CONFIG['runner.host_name'], } def postgres_connection(): return psycopg2.connect(**postgres_connect_params()) def postgres_make_features(name, geom_type, columns, crs, xy, rows, cols, gap): colnames = list(columns) coldefs = [f'{c} {columns[c]}' for c in colnames] features = make_features(name, geom_type, columns, crs, xy, rows, cols, gap) shape = features[0].shape if shape: colnames.append('p_geom') coldefs.append(f'p_geom GEOMETRY({shape.geometry_type},{shape.srid})') data = [] for f in features: rec = [a.value for a in f.attributes] if f.shape: rec.append(f.shape.ewkb_hex) data.append(rec) conn = postgres_connection() cur = conn.cursor() cur.execute(f'BEGIN') cur.execute(f'DROP TABLE IF EXISTS {name}') cur.execute(f''' CREATE TABLE {name} ( id SERIAL PRIMARY KEY, {','.join(coldefs)} ) ''') cur.execute(f'COMMIT') cur.execute(f'BEGIN') ins = f'''INSERT INTO {name} ({','.join(colnames)}) VALUES %s''' psycopg2.extras.execute_values(cur, ins, data) cur.execute(f'COMMIT') conn.close() def postgres_drop_table(name): conn = postgres_connection() cur = conn.cursor() cur.execute(f'BEGIN') cur.execute(f'DROP TABLE IF EXISTS {name}') cur.execute(f'COMMIT') conn.close() # utilities def make_users_json(lst): path = '/tmp/gws_test_users.json' if lst is None: gws.lib.os2.unlink(path) return None for v in lst: v['password'] = <PASSWORD>.lib.password.encode(v['password']) gws.lib.json2.to_path(path, lst) return path def register_ext(class_name, cls): gws.core.tree.register_ext(class_name, cls) def write_file(path, text): pp = gws.lib.os2.parse_path(path) if pp['dirname'].startswith(TEMP_DIR): gws.ensure_dir(pp['dirname']) with open(path, 'wt', encoding='utf8') as fp: fp.write(text) def read_file(path): with open(path, 'rt', encoding='utf8') as fp: return fp.read() def write_file_if_changed(path, text): curr = read_file(path) if text != curr: write_file(path, text) def copy_file(path, dir): shutil.copy(path, dir) def rel_path(path): f = inspect.stack(2)[1].filename return os.path.join(os.path.dirname(f), path) def sleep(n): time.sleep(n) def raises(exc): return pytest.raises(exc) def dict_of(x): if gws.is_data_object(x): # noinspection PyTypeChecker return dict(sorted(vars(x).items())) return x # div. geodata class POINTS: # PT Passy paris = [254451, 6250716] # PT Maxplatz dus = [753834, 6660874] # Linden x Birken Str dus1 = [756871, 6661810] # PT Wehrhahn dus2 = [756766, 6661801] # Linden x Mendelssohn Str dus3 = [757149, 6661832] # PT Neßler Str. dus4 = [765513, 6648529] # PT Gärdet stockholm = [2014778, 8255502] # PT Ustinksy Most moscow = [4189555, 7508535] # PT Cho Ba Chieu / <NAME> vietnam = [11877461, 1209716] # PT Flemington Racecourse / Melbourne australia = [16131032, -4549421] # Yarawa Rd x Namara Rd fiji = [19865901, -2052085] # Main Road Y junction pitcairn = [-14482452, -2884039] # PT Allende mexico = [-11035867, 2206279] # Park Av x Carson St memphis = [-10014603, 4178550] # PT Broadway & West 3rd ny = [-8237102, 4972223] # PT Lime Str liverpool = [-331463, 7058753] # PT East India Dock Rd london = [-48, 6712663] # PT Tema Harbour ghana = [201, 627883]
1.625
2
app/comm/psql_wrapper.py
viaacode/teamleader2db
0
12775797
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # @Author: <NAME> # # app/comm/psql_wrapper.py # # PostgresqlWrapper that wraps postgres connection # and also allows for our unit and integration tests to more # easily mock it. # import psycopg2 from functools import wraps class PostgresqlWrapper: """Allows for executing SQL statements to a postgresql database""" def __init__(self, params: dict): self.params_postgresql = params def _connect_curs_postgresql(function): """Wrapper function that connects and authenticates to the PostgreSQL DB. The passed function will receive the open cursor. """ @wraps(function) def wrapper_connect(self, *args, **kwargs): with psycopg2.connect(**self.params_postgresql) as conn: with conn.cursor() as curs: val = function(self, cursor=curs, *args, **kwargs) return val return wrapper_connect @_connect_curs_postgresql def execute(self, query: str, vars=None, cursor=None): """Connects to the postgresql DB and executes the statement. Returns all results of the statement if applicable. """ cursor.execute(query, vars) if cursor.description is not None: return cursor.fetchall() @_connect_curs_postgresql def executemany(self, query: str, vars_list: list, cursor=None): """Connects to the postgresql DB and executes the many statement""" cursor.executemany(query, vars_list)
3.015625
3
vectorhub/encoders/video/sampler.py
boba-and-beer/vectorhub
385
12775798
<gh_stars>100-1000 from math import ceil import numpy as np import os import tempfile from ...import_utils import * if is_all_dependency_installed('encoders-video'): import librosa import soundfile as sf from cv2 import cv2 from moviepy.video.io.ffmpeg_reader import ffmpeg_parse_infos from moviepy.video.io.VideoFileClip import VideoFileClip class FrameSamplingFilter(): def __init__(self, every=None, hertz=None, top_n=None): if every is None and hertz is None and top_n is None: raise ValueError("When initializing the FrameSamplingFilter, " "one of the 'every', 'hertz', or 'top_n' must " "be specified.") self.every = every self.hertz = hertz self.top_n = top_n def get_audio_sampling_rate(self, filename: str): infos = ffmpeg_parse_infos(filename) fps = infos.get('audio_fps', 44100) if fps == 'unknown': fps = 44100 return fps def load_clip(self, filename: str): audio_fps = self.get_audio_sampling_rate(filename) self.clip = VideoFileClip(filename, audio_fps) def initialize_video(self, filename: str): self.filename = filename self.load_clip(filename) self.fps = self.clip.fps self.width = self.clip.w self.height = self.clip.h self.frame_index = range(int(ceil(self.fps * self.clip.duration))) self.duration = self.clip.duration self.n_frames = len(self.frame_index) def get_audio_vector(self, new_sampling_rate: int = 16000): fd, fp = tempfile.mkstemp() audio = f'{fp}.wav' self.clip.audio.to_audiofile(audio) data, sampling_rate = sf.read(audio, dtype='float32') os.close(fd) os.remove(audio) return np.array(librosa.resample(data.T, sampling_rate, new_sampling_rate)) def transform(self, filename: str): self.initialize_video(filename) if (self.every is not None): new_idx = range(self.n_frames)[::self.every] elif (self.hertz is not None): interval = self.fps / float(self.hertz) new_idx = np.arange(0, self.n_frames, interval).astype(int) new_idx = list(new_idx) elif self.top_n is not None: diffs = [] for i, img in enumerate(range(self.n_frames)): if i == 0: last = img continue pixel_diffs = cv2.sumElems(cv2.absdiff( self.get_frame(last), self.get_frame(img))) diffs.append(sum(pixel_diffs)) last = img new_idx = sorted(range(len(diffs)), key=lambda i: diffs[i], reverse=True)[:self.top_n] result = [] for index in new_idx: result.append(self.get_frame(index)) return result def get_frame(self, index: int): return self.clip.get_frame(index) def iter_frames(self): for i, f in enumerate(self.frame_index): yield self.get_frame(f)
2.625
3
gigbackend/about/migrations/0002_auto_20201225_1328.py
sourabhmandal/goofygig
0
12775799
<gh_stars>0 # Generated by Django 3.1.4 on 2020-12-25 07:58 from django.db import migrations import wagtail.core.blocks import wagtail.core.fields import wagtail.images.blocks class Migration(migrations.Migration): dependencies = [ ('about', '0001_initial'), ] operations = [ migrations.AddField( model_name='aboutpage', name='about_section', field=wagtail.core.fields.StreamField([('Section_Block', wagtail.core.blocks.StructBlock([('section_pictue', wagtail.images.blocks.ImageChooserBlock(blank=True, null=True, required=False)), ('section_title', wagtail.core.blocks.CharBlock(blank=True, max_lenght=500, null=True, required=True)), ('section_description', wagtail.core.blocks.RichTextBlock(blank=True, max_lenght=500, null=True, required=True))]))], blank=True, null=True), ), migrations.AlterField( model_name='aboutpage', name='hero_about', field=wagtail.core.fields.StreamField([('Title', wagtail.core.blocks.CharBlock()), ('subtitle', wagtail.core.blocks.CharBlock()), ('profile_image', wagtail.images.blocks.ImageChooserBlock())], blank=True, null=True), ), ]
1.835938
2
upcfcardsearch/c246.py
ProfessorSean/Kasutamaiza
0
12775800
<filename>upcfcardsearch/c246.py<gh_stars>0 import discord from discord.ext import commands from discord.utils import get class c246(commands.Cog, name="c246"): def __init__(self, bot: commands.Bot): self.bot = bot @commands.command(name='Magia_Dance_Sacramentum', aliases=['c246', 'Magia_11']) async def example_embed(self, ctx): embed = discord.Embed(title='Magia Dance Sacramentum', color=0xBC5A84) embed.set_thumbnail(url='https://www.duelingbook.com/images/custom-pics/2300000/2359467.jpg') embed.add_field(name='Status (Archetype)', value='Casual:3/Tournament:3 (Magia)', inline=True) embed.add_field(name='Type', value='Trap/Counter', inline=False) embed.add_field(name='Card Effect', value='When a card or effect is activated: Banish 2 "Magia" cards from your GY; negate the activation, and if you do, place that card on the bottom of the Deck. You can only activate 1 "Magia Dance Sacramentum" per turn.', inline=False) embed.set_footer(text='Set Code: ANCF') await ctx.send(embed=embed) def setup(bot: commands.Bot): bot.add_cog(c246(bot))
2.90625
3
config.py
durbar/AllSpark
1
12775801
PORT=5000 HOST='127.0.0.1' DEBUG=True
1.117188
1
tree_classifier.py
kubapok/human-motion-classification
2
12775802
import csv from sklearn import tree class tree_classifier(): classes_dict = {0: 'going_left', 1: 'going_right', 2: 'falling', 3: 'just_sitting', 4: 'just_standing', 5: 'just_lying', 6: 'sitting_down', 7: 'standing_up'} def train(): going_left = tree_classifier.load_class('going_left') going_left_value = [0 for _ in range(len(going_left))] going_right = tree_classifier.load_class('going_right') going_right_value = [1 for _ in range(len(going_right))] falling = tree_classifier.load_class('falling') falling_value = [2 for _ in range(len(falling))] just_sitting = tree_classifier.load_class('just_sitting') just_sitting_value = [3 for _ in range(len(just_sitting))] just_standing = tree_classifier.load_class('just_standing') just_standing_value = [4 for _ in range(len(just_standing))] lying_down = tree_classifier.load_class('lying_down') lying_down_value = [5 for _ in range(len(lying_down))] sitting_down = tree_classifier.load_class('sitting_down') sitting_down_value = [6 for _ in range(len(sitting_down))] standing_up = tree_classifier.load_class('standing_up') standing_up_value = [7 for _ in range(len(standing_up))] X = going_left + going_right + falling + just_sitting + \ just_standing + lying_down + sitting_down + standing_up Y = going_left_value + going_right_value + falling_value + just_sitting_value + \ just_standing_value + lying_down_value + sitting_down_value + standing_up_value tree_classifier.clf = tree.DecisionTreeClassifier(max_depth = 10) tree_classifier.clf.fit(X, Y) return tree_classifier.clf.predict([[43.48047639929654, 4.3354936021207635, 3.59]]) def predict(sample): return tree_classifier.clf.predict([sample])[0] def load_class(class_name): l2 = [] with open(class_name + '.tsv', 'r') as tsv: for line in csv.reader(tsv, quotechar='\t'): l2.append(line[0].split()) l = [] for x in l2: l.append([float(r) for r in x]) return l print(tree_classifier.train())
3
3
examples/example_egscollabE2.py
GeoDesignTool/GeoDT
0
12775803
<gh_stars>0 # **************************************************************************** #### EGS collab example # **************************************************************************** # **************************************************************************** #### standard imports # **************************************************************************** import numpy as np import matplotlib.pyplot as plt import GeoDT as gt import pylab import copy import math deg = gt.deg MPa = gt.MPa GPa = gt.GPa yr = gt.yr cP = gt.cP mD = gt.mD mLmin = 1.66667e-8 #m3/s gal = 1.0/264.172 #m3 # **************************************************************************** #### model setup # **************************************************************************** #full randomizer for i in range(0,100): #create model object geom = [] geom = gt.mesh() # #rock properties geom.rock.size = 140.0 #m #!!! geom.rock.ResDepth = np.random.uniform(1250.0,1250.0) #6000.0 # m #!!! geom.rock.ResGradient = np.random.uniform(34.0,36.0) #50.0 #56.70 # C/km; average = 25 C/km #!!! geom.rock.ResRho = np.random.uniform(2925.0,3040.0) #2700.0 # kg/m3 #!!! geom.rock.ResKt = np.random.uniform(2.55,3.81) #2.5 # W/m-K #!!! geom.rock.ResSv = np.random.uniform(1900.0,2200.0) #2063.0 # kJ/m3-K geom.rock.AmbTempC = np.random.uniform(20.0,20.0) #25.0 # C #!!! geom.rock.AmbPres = 0.101 #Example: 0.01 MPa #Atmospheric: 0.101 # MPa geom.rock.ResE = np.random.uniform(89.0,110.0)*GPa #50.0*GPa #!!! geom.rock.Resv = np.random.uniform(0.17,0.28) #0.3 #!!! geom.rock.Ks3 = 0.26197 #np.random.uniform(0.5,0.5) #0.5 #!!! geom.rock.Ks2 = 1.05421 #geom.rock.Ks3 + np.random.uniform(0.4,0.6) # 0.75 #!!! geom.rock.s3Azn = 14.4*deg #!!! geom.rock.s3AznVar = 5.0*deg #!!! geom.rock.s3Dip = 27.0*deg #!!! geom.rock.s3DipVar = 5.0*deg #!!! #fracture orientation parameters #[i,:] set, [0,0:2] min, max --or-- nom, std # geom.rock.fNum = np.asarray([int(np.random.uniform(0,30)), # int(np.random.uniform(0,30)), # int(np.random.uniform(0,30))],dtype=int) #count # r1 = np.random.uniform(50.0,800.0) # r2 = np.random.uniform(50.0,800.0) # r3 = np.random.uniform(50.0,800.0) # geom.rock.fDia = np.asarray([[r1,r1+np.random.uniform(100.0,800.0)], # [r2,r2+np.random.uniform(100.0,800.0)], # [r3,r3+np.random.uniform(100.0,800.0)]],dtype=float) #m # geom.rock.fStr = np.asarray([[np.random.uniform(0.0,360.0)*deg,np.random.uniform(0.0,90.0)*deg], # [np.random.uniform(0.0,360.0)*deg,np.random.uniform(0.0,90.0)*deg], # [np.random.uniform(0.0,360.0)*deg,np.random.uniform(0.0,90.0)*deg]],dtype=float) #m # geom.rock.fDip = np.asarray([[np.random.uniform(0.0,90.0)*deg,np.random.uniform(0.0,45.0)*deg], # [np.random.uniform(0.0,90.0)*deg,np.random.uniform(0.0,45.0)*deg], # [np.random.uniform(0.0,90.0)*deg,np.random.uniform(0.0,45.0)*deg]],dtype=float) #m geom.rock.fNum = np.asarray([int(np.random.uniform(0,30)), int(np.random.uniform(0,30)), int(np.random.uniform(0,30))],dtype=int) #count geom.rock.fDia = np.asarray([[50.0,180.0], [50.0,180.0], [50.0,180.0]],dtype=float) #m #EGS Collab #!!! geom.rock.fStr = np.asarray([[15.0*deg,7.0*deg], [260.0*deg,7.0*deg], [120.0*deg,7.0*deg,]],dtype=float) #m geom.rock.fDip = np.asarray([[35.0*deg,7.0*deg], [69.0*deg,7.0*deg,], [35.0*deg,7.0*deg]],dtype=float) #m #fracture hydraulic parameters geom.rock.gamma = np.asarray([10.0**-3.0,10.0**-2.0,10.0**-1.2]) geom.rock.n1 = np.asarray([1.0,1.0,1.0]) geom.rock.a = np.asarray([0.000,0.200,0.800]) geom.rock.b = np.asarray([0.999,1.0,1.001]) geom.rock.N = np.asarray([0.0,0.6,2.0]) geom.rock.alpha = np.asarray([2.0e-9,2.9e-8,10.0e-8]) geom.rock.bh = np.asarray([0.00000001,0.00005,0.0001]) #np.asarray([0.00005,0.00010,0.00020]) #!!! # #fracture hydraulic parameters # # r = np.random.exponential(scale=0.25,size=2) # # r[r>1.0] = 1.0 # # r[r<0] = 0.0 # # r = r*(0.100/MPa-0.001/MPa)+0.001/MPa # # u1 = -np.min(r) # # u2 = -np.max(r) # # u3 = 0.5*(u1+u2) # # geom.rock.alpha = np.asarray([u1,u3,u2]) # geom.rock.alpha = np.asarray([-0.028/MPa,-0.028/MPa,-0.028/MPa]) # # r = np.random.exponential(scale=0.25,size=2) # # r[r>1.0] = 1.0 # # r[r<0] = 0.0 # # r = r*(0.1-0.001)+0.001 # # u1 = np.min(r) # # u2 = np.max(r) # # u3 = 0.5*(u1+u2) # # geom.rock.gamma = np.asarray([u1,u3,u2]) # geom.rock.gamma = np.asarray([0.01,0.01,0.01]) # geom.rock.n1 = np.asarray([1.0,1.0,1.0]) # # r = np.random.exponential(scale=0.25,size=2) # # r[r>1.0] = 1.0 # # r[r<0] = 0.0 # # r = r*(0.2-0.012)+0.012 # # u1 = np.min(r) # # u2 = np.max(r) # # u3 = 0.5*(u1+u2) # # geom.rock.a = np.asarray([u1,u3,u2]) # geom.rock.a = np.asarray([0.05,0.05,0.05]) # # u1 = np.random.uniform(0.7,0.9) # # u2 = np.random.uniform(0.7,0.9) # # u3 = 0.5*(u1+u2) # # geom.rock.b = np.asarray([np.min([u1,u2]),u3,np.max([u1,u2])]) # geom.rock.b = np.asarray([0.8,0.8,0.8]) # # u1 = np.random.uniform(0.2,1.2) # # u2 = np.random.uniform(0.2,1.2) # # u3 = 0.5*(u1+u2) # # geom.rock.N = np.asarray([np.min([u1,u2]),u3,np.max([u1,u2])]) # geom.rock.N = np.asarray([0.2,0.5,1.2]) # # u1 = np.random.uniform(0.00005,0.00015) # # u2 = np.random.uniform(0.00005,0.00015) # # u3 = 0.5*(u1+u2) # # geom.rock.bh = np.asarray([np.min([u1,u2]),u3,np.max([u1,u2])]) # geom.rock.bh = np.asarray([0.00005,0.0001,0.003]) geom.rock.bh_min = 0.00000005 #m #!!! geom.rock.bh_max = 0.0001 #0.02000 #m #!!! # geom.rock.bh_bound = np.random.uniform(0.001,0.005) geom.rock.bh_bound = np.random.uniform(0.00000005,0.0001) #!!! geom.rock.f_roughness = np.random.uniform(0.25,1.0) #0.8 #well parameters geom.rock.w_count = 4 #2 #wells geom.rock.w_spacing = 30.0 #np.random.uniform(100.0,800.0) #300.0 #m geom.rock.w_length = 60.0 #1500.0 #800.0 #m geom.rock.w_azimuth = 60.0*deg #geom.rock.s3Azn + np.random.uniform(-15.0,15.0)*deg #rad geom.rock.w_dip = 20.0*deg #geom.rock.s3Dip + np.random.uniform(-15.0,15.0)*deg #rad geom.rock.w_proportion = 0.8 #m/m geom.rock.w_phase = 15.0*deg #rad geom.rock.w_toe = -35.0*deg #rad geom.rock.w_skew = 0.0*deg #rad geom.rock.w_intervals = 2 #int(np.random.uniform(1,3)) #3 #breaks in well length geom.rock.ra = 0.1*0.0191 #limited by a_max, actual is 0.096 m #!!! geom.rock.rgh = 80.0 #!!! #cement properties geom.rock.CemKt = 2.0 # W/m-K geom.rock.CemSv = 2000.0 # kJ/m3-K #thermal-electric power parameters geom.rock.GenEfficiency = 0.85 # kWe/kWt geom.rock.LifeSpan = 1.0*yr/2 #years #!!! geom.rock.TimeSteps = 41 #steps geom.rock.p_whp = 1.0*MPa #Pa geom.rock.Tinj = 10.0 #95.0 #C #!!! geom.rock.H_ConvCoef = 3.0 #kW/m2-K geom.rock.dT0 = 1.0 #K #!!! geom.rock.dE0 = 50.0 #kJ/m2 #!!! #water base parameters geom.rock.PoreRho = 980.0 #kg/m3 starting guess geom.rock.Poremu = 0.9*cP #Pa-s geom.rock.Porek = 0.1*mD #m2 geom.rock.Frack = 100.0*mD #m2 #stimulation parameters if geom.rock.w_intervals == 1: geom.rock.perf = int(np.random.uniform(1,1)) else: geom.rock.perf = 1 geom.rock.r_perf = 5.0 #m #!!! geom.rock.sand = 0.3 #sand ratio in frac fluid geom.rock.leakoff = 0.0 #Carter leakoff # geom.rock.dPp = -1.0*np.random.uniform(1.0,10.0)*MPa #-2.0*MPa #production well pressure drawdown geom.rock.dPp = -2.0*MPa #production well pressure drawdown geom.rock.dPi = 0.1*MPa #!!! geom.rock.stim_limit = 5 # geom.rock.Qinj = 0.01 #m3/s # geom.rock.Qstim = 0.01 #0.08 #m3/s # geom.rock.Vstim = 1000.0 #100000.0 #m3 geom.rock.bval = 1.0 #Gutenberg-Richter magnitude scaling # u1 = np.random.uniform(20.0,55.0)*deg # u2 = np.random.uniform(20.0,55.0)*deg # u3 = 0.5*(u1+u2) # geom.rock.phi = np.asarray([np.min([u1,u2]),u3,np.max([u1,u2])]) #rad geom.rock.phi = np.asarray([20.0*deg,35.0*deg,45.0*deg]) #rad #!!! # u1 = np.random.uniform(5.0,20.0)*MPa # u2 = np.random.uniform(5.0,20.0)*MPa # u3 = 0.5*(u1+u2) # geom.rock.mcc = np.asarray([np.min([u1,u2]),u3,np.max([u1,u2])]) #Pa geom.rock.mcc = np.asarray([2.0,10.0,15.0])*MPa #Pa #!!! geom.rock.hfmcc = np.random.uniform(0.0,0.2)*MPa #0.1*MPa #!!! geom.rock.hfphi = np.random.uniform(15.0,35.0)*deg #30.0*deg #!!! #********************************** #recalculate base parameters geom.rock.re_init() #generate domain geom.gen_domain() #generate natural fractures geom.gen_joint_sets() # **************************************************************************** #### placed fractures # **************************************************************************** data = np.recfromcsv('Well Geometry Info.csv',delimiter=',',filling_values=np.nan,deletechars='()',case_sensitive=True,names=True) dia = 5.0 for i in range(0,len(data)): if data['type'][i] == 1: c0 = [data['x_m'][i],data['y_m'][i],data['z_m'][i]] dia = dia strike = data['azn_deg'][i]*deg dip = data['dip_deg'][i]*deg geom.gen_fixfrac(False,c0,dia,strike,dip) # **************************************************************************** #### common well geometry # **************************************************************************** #generate wells # wells = [] # geom.gen_wells(True,wells) # well geometry using gyro log for E2-TC and centered on kickoff point of E2-TC, other wells based on original design Jan 2021 #gt.line(x0=0.0,y0=0.0,z0=0.0,length=1.0,azn=0.0*deg,dip=0.0*deg,w_type='pipe',dia=0.0254*3.0,rough=80.0) wells = [] #monitoring wells += [gt.line(5.0282856,51.9184128,-0.931164,49.9872,0,1.570796327,'producer',geom.rock.ra, geom.rock.rgh)] wells += [gt.line(8.019288,53.2199088,0.2785872,10.668,0.788888822,0.093724181,'producer',geom.rock.ra, geom.rock.rgh)] wells += [gt.line(9.0034872,51.1996944,-0.3691128,59.436,1.752310569,0.67718775,'producer',geom.rock.ra, geom.rock.rgh)] wells += [gt.line(9.1452192,51.3560568,0.001524,59.436,1.761037215,0.151843645,'producer',geom.rock.ra, geom.rock.rgh)] wells += [gt.line(-1.00584,41.0135832,-0.3447288,54.864,2.138028334,0.616101226,'producer',geom.rock.ra, geom.rock.rgh)] wells += [gt.line(-1.0107168,41.192196,0.185928,54.864,2.038544566,0.02443461,'producer',geom.rock.ra, geom.rock.rgh)] #injector #wells += [gt.line(0,0,0,77.10353424,0.832584549,0.257981302,'injector',geom.rock.ra, geom.rock.rgh)] #producers wells += [gt.line(-0.6257544,0.4255008,-0.0356616,76.2,0.740019603,0.230383461,'producer',geom.rock.ra, geom.rock.rgh)] wells += [gt.line(-0.7824216,0.4474464,-0.3249168,76.2,0.841248699,0.390953752,'producer',geom.rock.ra, geom.rock.rgh)] wells += [gt.line(0.1679448,-0.4300728,0.0917448,76.2,0.900589894,0.132645023,'producer',geom.rock.ra, geom.rock.rgh)] wells += [gt.line(0.2505456,-0.760476,-0.1063752,80.772,1.007054978,0.287979327,'producer',geom.rock.ra, geom.rock.rgh)] #drift wells += [gt.line(-4.3290744,-70.1844672,-0.077724,155.7528,0.019024089,0,'producer',geom.rock.ra, geom.rock.rgh)] wells += [gt.line(-2.1954744,51.7355328,-0.077724,11.5824,1.584060829,0,'producer',geom.rock.ra, geom.rock.rgh)] #wells += [gt.line(-1.9211544,85.5073728,-0.077724,77.724,6.119124357,0,'producer',geom.rock.ra, geom.rock.rgh)] #wells += [gt.line(-8.5657944,125.4056928,-0.077724,25.908,0.944223125,0,'producer',geom.rock.ra, geom.rock.rgh)] #wells += [gt.line(12.4958856,140.6456928,-0.077724,29.8704,5.246459731,0,'producer',geom.rock.ra, geom.rock.rgh)] #split injector in different locations for s in range(0,5): #copy natural fracture geometry comm = [] comm = copy.deepcopy(geom) wells2 = [] wells2 = copy.deepcopy(wells) #select interval zone_leg = 1.5 #packer interval length comm.rock.sand = zone_leg #!!! rati_leg = np.random.uniform(0.3,0.95) #interval center depth comm.rock.leakoff = rati_leg #!!! azn = 0.832584549 dip = 0.257981302 leg = 77.10353424 vAxi = np.asarray([math.sin(azn)*math.cos(-dip), math.cos(azn)*math.cos(-dip), math.sin(-dip)]) x0 = np.asarray([0.0, 0.0, 0.0]) x1 = x0 + vAxi*(rati_leg*leg - 0.5*zone_leg) x2 = x0 + vAxi*(rati_leg*leg + 1.0*zone_leg) wells2 += [gt.line(x0[0],x0[1],x0[2],rati_leg*leg - 1.0*zone_leg,0.832584549,0.257981302,'producer',comm.rock.ra, comm.rock.rgh)] wells2 += [gt.line(x1[0],x1[1],x1[2],1.0*zone_leg,0.832584549,0.257981302,'injector',comm.rock.ra, comm.rock.rgh)] wells2 += [gt.line(x2[0],x2[1],x2[2],leg-(rati_leg*leg + 1.0*zone_leg),0.832584549,0.257981302,'producer',comm.rock.ra, comm.rock.rgh)] #install comm.wells = wells2 #stimulate comm.rock.Qstim = np.random.uniform(500.0*mLmin, 10000.0*mLmin) #0.08 #m3/s comm.rock.Vstim = np.random.uniform(100.0*gal, 10000.0*gal) #100000.0 #m3 comm.dyn_stim(Vinj=comm.rock.Vstim,Qinj=comm.rock.Qstim,target=[], visuals=False,fname='stim') #test multiple randomly selected flow rates rates = np.random.uniform(100.0*mLmin,10000.0*mLmin,5) for r in rates: #copy base parameter set base = [] base = copy.deepcopy(comm) #set rate base.rock.Qinj = r base.rock.re_init() #random identifier (statistically should be unique) pin = np.random.randint(100000000,999999999,1)[0] try: # if True: # #single rate long term flow # base.dyn_flow(target=[],visuals=False,fname='run_%i' %(pin)) # #stim then flow # base.stim_and_flow(target=[],visuals=False,fname='run_%i' %(pin)) #Solve production base.dyn_stim(Vinj=base.rock.Vinj,Qinj=base.rock.Qinj,target=[], visuals=False,fname='run_%i' %(pin)) #calculate heat transfer base.get_heat(plot=True) plt.savefig('plt_%i.png' %(pin), format='png') plt.close() except: print( 'solver failure!') #show flow model base.build_vtk(fname='fin_%i' %(pin)) if False: #3D temperature visual base.build_pts(spacing=50.0,fname='fin_%i' %(pin)) #save primary inputs and outputs x = base.save('inputs_results_collabE2.txt',pin) #show plots pylab.show()
2.046875
2
dev/mixtures/TableA7_to_JSON.py
tarment10/CoolProp
0
12775804
from CoolProp.CoolProp import get_fluid_param_string lines = open('KunzWagner2012_TableA7.txt','r').read() template = """{{"Name1" : "{Name1:s}", "Name2" : "{Name2:s}", "CAS1" : "{CAS1:s}", "CAS2" : "{CAS2:s}", "d" : {d:s}, "t" : {t:s}, "n" : {n:s}, "eta" : {eta:s}, "epsilon" : {epsilon:s}, "beta": {beta:s}, "gamma": {gamma:s} }},""" chunks = lines.split('\n\n') for chunk in chunks: lines = chunk.split('\n') D,T,N,ETA,EPSILON,BETA,GAMMA = [0],[0],[0],[0],[0],[0],[0] names = lines.pop(0) for line in lines: vals = line.strip().split(' ') if len(vals) == 4: i, d, t, n = vals eta = 0 epsilon = 0 beta = 0 gamma = 0 else: i, d, t, n, eta, epsilon, beta, gamma = vals D.append(int(d)) T.append(float(t)) N.append(float(n)) ETA.append(float(eta)) EPSILON.append(float(epsilon)) BETA.append(float(beta)) GAMMA.append(float(gamma)) name1,name2 = names.split('/') CAS1 = get_fluid_param_string(name1,'CAS') CAS2 = get_fluid_param_string(name2,'CAS') print(template.format(Name1 = name1, Name2 = name2, CAS1 = CAS1, CAS2 = CAS2, d = str(D), t = str(T), n = str(N), eta = str(ETA), epsilon= str(EPSILON), beta = str(BETA), gamma = str(GAMMA) ))
2.3125
2
graph_generation/attribute_generator.py
googleinterns/data-dependency-graph-analysis
4
12775805
""" This module implements methods for generating random attributes from nodes in a graph based on distribution and range. Method generate() will create all the necessary attributes for the graph: Collection: name. Dataset collection: name. System collection: name. System: system criticality, environment, description, name, regex grouping. Dataset: slo, environment, description, name, regex grouping. Data integrity: reconstruction time, volatility, regeneration time, restoration time. Dataset processing: impact, freshness. """ import random class AttributeGenerator: """ A class to generate random attributes for nodes based on distribution or range of values. ... Attributes: collection_params: Instance of CollectionParams. dataset_params: Instance of DatasetParams. system_params: Instance of SystemParams. data_integrity_params: Instance of DataIntegrityParams. processing_params: Instance of ProcessingParams. connection_params: Instance of ConnectionParams. dataset_attributes: Dictionary with keys as attribute type, and value lists of generated attributes. system_attributes: Dictionary with keys as attribute type, and value lists of generated attributes. dataset_processing_attributes: Dictionary with keys as attribute type, and value lists of generated attributes. data_integrity_attributes: Dictionary with keys as attribute type, and value lists of generated attributes. Methods: _generate_time() Generates time strings from given range in seconds. _generate_from_proba() Generates value from given probability map. _generate_dataset_attributes() Generates all necessary dataset attributes. _generate_system_attributes() Generates all necessary system attributes. _generate_processing_attributes() Generates all dataset processing attributes. _generate_data_integrity_attributes() Generates all data integrity attributes. generate() Generates all the needed attributes for data dependency mapping graph. """ def __init__(self, collection_params, dataset_params, system_params, data_integrity_params, processing_params, connection_params): self.collection_params = collection_params self.dataset_params = dataset_params self.system_params = system_params self.data_integrity_params = data_integrity_params self.processing_params = processing_params self.connection_params = connection_params self.collection_attributes = {} self.dataset_collection_attributes = {} self.system_collection_attributes = {} self.dataset_attributes = {} self.system_attributes = {} self.dataset_processing_attributes = {} self.data_integrity_attributes = {} @staticmethod def _generate_time(n=1): """Generates n random time strings in format 1d / 25h / 121m / 46s""" generated_time = [] time_ranges = { "d": (1, 30), "h": (1, 120), "m": (1, 720), "s": (1, 360) } for i in range(n): time_metric = random.choice(list(time_ranges.keys())) time_value = random.randint(time_ranges[time_metric][0], time_ranges[time_metric][1]) generated_time.append(f"{time_value}{time_metric}") return generated_time @staticmethod def _generate_from_proba(proba_map, n=1): """Generates n random values with replacement from map using their probability.""" population = list(proba_map.keys()) probability = list(proba_map.values()) # Normalise probability probability = [i / sum(probability) for i in probability] return random.choices(population, probability, k=n) @staticmethod def _generate_description(node_type, node_id): """Generates random description for a node (ex. Dataset number 1.).""" return f"{node_type.capitalize()} number {node_id}." @staticmethod def _generate_regex(node_type, node_id): """Generates random regex grouping.""" return f"{node_type}.{node_id}.*" @staticmethod def _generate_name(node_type, node_id): """Generates random node name.""" return f"{node_type}.{node_id}" def _generate_collection_attributes(self): """Generates name for collections.""" collection_names = [self._generate_name("collection", i) for i in range(self.collection_params.collection_count)] self.collection_attributes["names"] = collection_names def _generate_dataset_collection_attributes(self): """Generates name for dataset collections.""" dataset_collection_names = [self._generate_name("dataset collection", i) for i in range(self.collection_params.dataset_collection_count)] self.dataset_collection_attributes["names"] = dataset_collection_names def _generate_system_collection_attributes(self): """Generates name for system collections.""" system_collection_names = [self._generate_name("system collection", i) for i in range(self.collection_params.system_collection_count)] self.system_collection_attributes["names"] = system_collection_names def _generate_dataset_attributes(self): """Generates slo, environments, regex groupings and names for datasets.""" dataset_descriptions = [self._generate_description("dataset", i) for i in range(self.dataset_params.dataset_count)] dataset_regexs = [self._generate_regex("dataset", i) for i in range(self.dataset_params.dataset_count)] dataset_names = [self._generate_name("dataset", i) for i in range(self.dataset_params.dataset_count)] dataset_slos = self._generate_time(n=self.dataset_params.dataset_count) # View counts as probability of being picked dataset_environments = self._generate_from_proba(self.dataset_params.dataset_env_count_map, n=self.dataset_params.dataset_count) self.dataset_attributes["descriptions"] = dataset_descriptions self.dataset_attributes["names"] = dataset_names self.dataset_attributes["regex_groupings"] = dataset_regexs self.dataset_attributes["dataset_slos"] = dataset_slos self.dataset_attributes["dataset_environments"] = dataset_environments def _generate_system_attributes(self): """Generates system criticality, system environments, regex groupings, names and descriptions for systems.""" system_descriptions = [self._generate_description("system", i) for i in range(self.system_params.system_count)] system_regexs = [self._generate_regex("system", i) for i in range(self.system_params.system_count)] system_names = [self._generate_name("system", i) for i in range(self.system_params.system_count)] system_criticalities = self._generate_from_proba(self.system_params.system_criticality_proba_map, n=self.system_params.system_count) # View counts as probability of being picked system_environments = self._generate_from_proba(self.system_params.system_env_count_map, n=self.system_params.system_count) self.system_attributes["regex_groupings"] = system_regexs self.system_attributes["names"] = system_names self.system_attributes["descriptions"] = system_descriptions self.system_attributes["system_criticalities"] = system_criticalities self.system_attributes["system_environments"] = system_environments def _generate_processing_attributes(self): """Generates dataset impacts and dataset freshness.""" dataset_impacts = self._generate_from_proba(self.processing_params.dataset_impact_proba_map, n=self.connection_params.dataset_system_connection_count) dataset_freshness = self._generate_from_proba(self.processing_params.dataset_criticality_proba_map, n=self.connection_params.dataset_system_connection_count) self.dataset_processing_attributes["dataset_impacts"] = dataset_impacts self.dataset_processing_attributes["dataset_freshness"] = dataset_freshness def _generate_data_integrity_attributes(self): """Generates restoration, regeneration, reconstruction times and volatility for each dataset collection.""" data_restoration_time = self._generate_time(n=self.collection_params.dataset_collection_count) data_regeneration_time = self._generate_time(n=self.collection_params.dataset_collection_count) data_reconstruction_time = self._generate_time(n=self.collection_params.dataset_collection_count) data_volatility = self._generate_from_proba(self.data_integrity_params.data_volatility_proba_map, n=self.collection_params.dataset_collection_count) self.data_integrity_attributes["data_restoration_time"] = data_restoration_time self.data_integrity_attributes["data_regeneration_time"] = data_regeneration_time self.data_integrity_attributes["data_reconstruction_time"] = data_reconstruction_time self.data_integrity_attributes["data_volatility"] = data_volatility def generate(self): """Generates all needed attributes.""" self._generate_collection_attributes() self._generate_dataset_collection_attributes() self._generate_system_collection_attributes() self._generate_dataset_attributes() self._generate_system_attributes() self._generate_processing_attributes() self._generate_data_integrity_attributes()
3.546875
4
tests/models/test_vtk_sphere_model.py
NMontanaBrown/scikit-surgeryvtk
1
12775806
<filename>tests/models/test_vtk_sphere_model.py # -*- coding: utf-8 -*- # -*- coding: utf-8 -*- import pytest import vtk import six import numpy as np import sksurgeryvtk.widgets.vtk_overlay_window as ow import sksurgeryvtk.models.vtk_sphere_model as sm def test_sphere_model_invalid_because_null_points(): with pytest.raises(ValueError): sm.VTKSphereModel(None, 0.5) def test_sphere_model_invalid_because_points_not_numpy_array(): with pytest.raises(TypeError): sm.VTKSphereModel(1, 0.5) def test_sphere_model_invalid_because_points_not_got_3_columns(): with pytest.raises(ValueError): sm.VTKSphereModel(np.ones((1, 2)), 0.5) def test_sphere_model_invalid_because_no_points(): with pytest.raises(ValueError): sm.VTKSphereModel(np.ones((0, 3)), 0.5) def test_sphere_model_invalid_because_points_not_float(): with pytest.raises(TypeError): sm.VTKSphereModel(np.ones((1, 3), dtype=np.int), 0.5) def test_sphere_model_invalid_because_radius_not_positive(): with pytest.raises(ValueError): sm.VTKSphereModel(np.eye(3), -1) def test_sphere_model_3_points(setup_vtk_overlay_window): points = np.eye(3, dtype=np.float) vtk_model = sm.VTKSphereModel(points, 0.5) widget, _, _, app = setup_vtk_overlay_window widget = ow.VTKOverlayWindow() widget.add_vtk_actor(vtk_model.actor) widget.show() #app.exec_()
2.09375
2
main/__init__.py
MrDrache333/InformatiCup2021-spe_ed-Python-Bot
0
12775807
<gh_stars>0 import asyncio import copy import json import logging import os import sys import time from datetime import datetime import pygame import websockets as websockets from JsonInterpreter import JsonInterpreter from game.Playground import Playground from game.graphic.PlaygroundPresenter import PlaygroundPresenter logging.basicConfig(stream=sys.stderr, level=logging.INFO) logger = logging.getLogger() sys.setrecursionlimit(1000000) def createFolderIfNotExist(path): path = path[0: path.rindex('/')] if not os.path.isdir(path): try: os.makedirs(path) return True except Exception: logger.error("Could not create Folder \"" + path + "\"") return False return False def saveGameFieldBeforeDeath(path, json): """ Saves the current Gamefield as a file to debug them later :param json: The JSON String to store :param path: The path where to store the file :return: Nothing """ if json is None: logger.info("JOSN is None: No GameField JSon will be stored.") return try: created = createFolderIfNotExist(path) if created: with open(path, "w") as text_file: n = text_file.write("[" + json + "]") if n != len(json): logger.info("Could not completely write GameField in \"" + path + "\"") return False else: return True else: return False except Exception: logger.info("Could not store GameField in \"" + path + "\"") def saveImage(path): """ Saves an image of the game after a win/draw/loose :param path: path to the save location """ try: if createFolderIfNotExist(path): pygame.image.save(game.playgroundPresenter.gameWindow, path) except pygame.error: logger.info("Can't store image at \"" + path + "\"") class Game(object): def __init__(self, docker=False, url="", key=""): self.ownPlayer = None self.URL = url self.KEY = key self.width = 0 self.height = 0 self.clock = pygame.time.Clock() self.interpreter = JsonInterpreter() self.playground = None self.playgroundPresenter = None self.printedStatistics = False self.gameStartTime = 0 self.oldData = None self.oldStateJson = None if docker: os.environ["SDL_VIDEODRIVER"] = "dummy" def printInfo(self, data): """ Prints the converted json data :param data: data loaded out of json """ logger.info("Playfield: " + str(self.width) + " x " + str(self.height)) for p in data[0]['players']: if data[0]['players'][p]['active']: logger.info("Player " + p + " is on [" + str(data[0]['players'][p]['x']) + "] [" + str( data[0]['players'][p]['y']) + "], looking " + str( data[0]['players'][p]['direction']) + " at speed " + str( data[0]['players'][p]['speed'])) else: logger.info("Player " + p + " is out.") logger.info("Your are Player " + str(data[0]['you'])) async def playOffline(self, PlaygroundPath): """ Run the simulation offline with x players with the same strategy :param PlaygroundPath: Path to the playground json file """ with open(PlaygroundPath) as f: data = json.load(f) self.width = data[0]['width'] self.height = data[0]['height'] self.playground = Playground(self.interpreter.getCellsFromLoadedJson(data), self.interpreter.getPlayersFromLoadedJson(data)) # Den eigenen Spieler heraussuchen self.ownPlayer = self.playground.players[int(data[0]['you']) - 1] self.playgroundPresenter = PlaygroundPresenter(self.playground, self.width, self.height) self.playgroundPresenter.generateGameField() running = True self.printInfo(data) self.gameStartTime = time.time() while running: self.clock.tick(20) # Check if pressed Key to interrupt keys = pygame.key.get_pressed() if keys[pygame.K_q]: pygame.quit() active = 0 for player in self.playground.players: if player.active: active += 1 logger.info("Player " + str(player.id)) player.tryToSurvive(self.playground) logger.info("Turn: " + player.choosenTurn) logger.info("Chosen by " + player.turnSetFrom) logger.info("") player.fitness += 1 if active == 0 and not self.printedStatistics: self.printStatistics() self.printedStatistics = True else: self.playground.movePlayer() self.playgroundPresenter.playground = self.playground self.playground.addTurn() self.playgroundPresenter.updateGameField() for event in pygame.event.get(): if event.type == pygame.QUIT: running = False pygame.quit() async def playOnline(self): """ Run the simulation offline with x players with the same strategy """ wslogger = logging.getLogger('websockets') wslogger.setLevel(logging.ERROR) wslogger.addHandler(logging.StreamHandler()) # Wait for the Client to connect to server async with websockets.connect(f"{self.URL}?key={self.KEY}") as websocket: logger.info("Connected to server. Waiting in lobby...This can take up to 5 min.!") self.clock.tick(1000) while True: # Wait for the servers response state_json = await websocket.recv() if self.gameStartTime == 0: self.gameStartTime = time.time() # Store the current time to calculate the time needed for a turn startTime = time.time_ns() data = json.loads(state_json) data = [data] # If game was just created, create needed objects too if self.playground is None: self.width = data[0]['width'] self.height = data[0]['height'] self.printInfo(data) self.playground = Playground(self.interpreter.getCellsFromLoadedJson(data), self.interpreter.getPlayersFromLoadedJson(data)) # Get own player out of the Data self.ownPlayer = self.playground.players[int(data[0]['you']) - 1] else: self.playground.update(self.interpreter.getCellsFromLoadedJson(data), self.interpreter.getPlayersFromLoadedJson(data)) self.playgroundPresenter = PlaygroundPresenter(self.playground, self.width, self.height) self.playgroundPresenter.generateGameField() for player in self.playground.players: if player.active: player.fitness += 1 # Compare if a player died from last round if self.oldData is not None: for player in self.oldData: if player.active != self.playground.players[player.id - 1].active: logger.info("The Player " + str(player.id) + "[" + self.playgroundPresenter.getColorName( player.id) + "]" + " died!" + (" <-- WE" if self.ownPlayer.id == player.id else "")) logger.info("") # If our player is active and the game is running, try to Survive if self.ownPlayer.active and data[0]['running']: self.ownPlayer.tryToSurvive(self.playground) logger.info("Turn: " + self.ownPlayer.choosenTurn) logger.info("Chosen by " + self.ownPlayer.turnSetFrom) self.playground.addTurn() self.playgroundPresenter.update(self.playground) self.playgroundPresenter.updateGameField() self.oldData = copy.deepcopy(self.playground.players) # If game is running an we're still active, print out our Turn, duration and send choosen turn to server if self.ownPlayer.active and data[0]['running']: action = self.ownPlayer.choosenTurn action_json = json.dumps({"action": action}) logger.info("Our turn took " + str((time.time_ns() - startTime) // 1000000) + " milliseconds!") logger.info("") await websocket.send(action_json) self.oldStateJson = copy.deepcopy(state_json) else: return def printStatistics(self): """ Prints statistics of the played game How long did it take, who won? """ if self.playground is None or self.playground.players is None: logger.info("Playground must not be None!") return # Sort playes based on their fitness value players = sorted(self.playground.players, key=lambda p: p.fitness, reverse=True) logger.info("---------Game OVER---------") logger.info("The game lasts " + str(round(time.time() - game.gameStartTime, 1)) + " Seconds!") logger.info("Average turntime was about " + str( round(float((time.time() - game.gameStartTime) / players[0].fitness), 2)) + " Seconds") if self.ownPlayer.active: logger.info("WE WON !!! PS: Because we can ;)") # Store Scrrenshot of the Gamefield saveImage("results/won/result_" + str(datetime.timestamp(datetime.now())) + ".jpg") elif self.ownPlayer.fitness == players[0].fitness: logger.info("It's a draw. Your tried your best...but hey...he died too") # Store Scrrenshot of the Gamefield saveImage("results/draw/result_" + str(datetime.timestamp(datetime.now())) + ".jpg") saveGameFieldBeforeDeath("results/draw/result_" + str(datetime.timestamp(datetime.now())) + ".json", self.oldStateJson) else: logger.info("We lost... :/ Maybe they're hacking...") # Store Scrrenshot of the Gamefield saveImage("results/lost/result_" + str(datetime.timestamp(datetime.now())) + ".jpg") saveGameFieldBeforeDeath("results/lost/result_" + str(datetime.timestamp(datetime.now())) + ".json", self.oldStateJson) logger.info("---------Stats---------") for player in players: logger.info("Player " + str(player.id) + ": " + str(player.fitness) + " State: " + str( "ALIVE" if player.active else "DEAD") + " Color: " + self.playgroundPresenter.getColorName( player.id) + (" <---WE" if self.ownPlayer.id == player.id else "")) logger.info("-------------------------------") def sleep(secs): """ Wait for x seconds :param secs: seconds """ for i in range(secs, 0, -1): if i <= 3 or i % 10 == 0: logger.info("WAIT " + str(i) + " SECONDS TO START AGAIN!") try: time.sleep(1) except KeyboardInterrupt: logger.info("---PROGRAM INTERRUPTED!---") exit() docker = False ONLINE = True OfflinePath = "" url = "" key = "" try: ONLINE = os.environ["Online"] == "True" except KeyError: logger.info("Online Parameter is not set. DEFAULT=True") if not ONLINE: try: OfflinePath = os.environ["Playground"] except KeyError: logger.info("Playground Parameter is not set but Online was set to FALSE") logger.info("Please set the needed environment variables. Please take a look at our " "documentation to ensure the proper use of our program") exit(-1) else: try: url = os.environ["URL"] key = os.environ["KEY"] except KeyError: logger.info("URL or KEY Parameter is not set but Online was set to TRUE") logger.info("Please set the needed environment variables. Please take a look at our " "documentation to ensure the proper use of our program") exit(-1) try: docker = os.environ["Docker"] == "True" except KeyError: logger.info("Docker Parameter is not set. DEFAULT=FALSE") if ONLINE: logger.info("API-SERVER-URL: " + url) logger.info("API-KEY: " + key) logger.info("DOCKER: " + str(docker)) while True: game = Game(docker, url, key) try: asyncio.get_event_loop().run_until_complete(game.playOnline()) game.printStatistics() sleep(5) except websockets.InvalidStatusCode as e: if e.status_code == 429: logger.info("TOO MANY REQUESTS") sleep(30) else: logger.debug(e) except websockets.ConnectionClosedOK as e: if e.code == 1000: logger.debug("Server Closed with Code: 1000 OK") game.printStatistics() sleep(5) except websockets.ConnectionClosedError as e: if e.code == 1006: logger.debug("Server Closed with Code: 1006 ERROR") game.printStatistics() sleep(5) except KeyboardInterrupt: logger.info("\n---Programm wurde unterbrochen!---") exit() else: game = Game(docker) try: asyncio.get_event_loop().run_until_complete(game.playOffline(OfflinePath)) while True: time.sleep(1) except KeyboardInterrupt: logger.info("\n---Programm wurde unterbrochen!---")
2.65625
3
Signatures/train_classifier.py
angelos-c/OCR-with-Neural-Networks-and-Support-Vector-Machines
0
12775808
import numpy as np import os import itertools import operator import random import matplotlib.pyplot as plt import matplotlib.cm as cm from skimage.feature import hog from skimage import color, exposure from scipy.misc import imread,imsave,imresize import numpy.random as nprnd from sklearn.svm import SVC from sklearn import linear_model from sklearn.svm import LinearSVC import matplotlib import pickle if __name__ == '__main__': #paths for the training samples path_angelos = './training/angelos/' path_tim = './training/tim/' path_hank = './training/hank/' angelos_filenames = sorted([filename for filename in os.listdir(path_angelos) if (filename.endswith('.jpg') or filename.endswith('.png') or (filename.endswith('.bmp'))) ]) tim_filenames = sorted([filename for filename in os.listdir(path_tim) if (filename.endswith('.jpg') or filename.endswith('.png') or (filename.endswith('.bmp'))) ]) hank_filenames = sorted([filename for filename in os.listdir(path_hank) if (filename.endswith('.jpg') or filename.endswith('.png') or (filename.endswith('.bmp'))) ]) #add the full path to all the filenames angelos_filenames = [path_angelos+filename for filename in angelos_filenames] tim_filenames = [path_tim+filename for filename in tim_filenames] hank_filenames = [path_hank+filename for filename in hank_filenames] print 'Number of training images -> angelos: ' + str(len(angelos_filenames)) print 'Number of training images -> tim: ' + str(len(tim_filenames)) print 'Number of training images -> hank: ' + str(len(hank_filenames)) total = len(angelos_filenames) + len(tim_filenames) + len(hank_filenames) print 'Total Number of samples: ' + str(total) #create the list that will hold ALL the data and the labels #the labels are needed for the classification task: # 0 = angelos # 1 = tim # 2 = hank data = [] labels = [] for filename in angelos_filenames: #read the images image = imread(filename,1) #flatten it image = imresize(image, (200,200)) hog_features = hog(image, orientations=12, pixels_per_cell=(16, 16), cells_per_block=(1, 1)) data.append(hog_features) labels.append(0) print 'Finished adding angelos samples to dataset' for filename in tim_filenames: image = imread(filename,1) image = imresize(image, (200,200)) hog_features = hog(image, orientations=12, pixels_per_cell=(16, 16), cells_per_block=(1, 1)) data.append(hog_features) labels.append(1) print 'Finished adding tim samples to dataset' for filename in hank_filenames: image = imread(filename,1) image = imresize(image, (200,200)) hog_features = hog(image, orientations=12, pixels_per_cell=(16, 16), cells_per_block=(1, 1)) data.append(hog_features) labels.append(2) print 'Finished adding hank samples to dataset' print 'Training the SVM' #create the SVC clf = LinearSVC(dual=False,verbose=1) #train the svm clf.fit(data, labels) #pickle it - save it to a file pickle.dump( clf, open( "place.detector", "wb" ) ) data_shape = np.array(data) print "shape of data: " + str(data_shape.shape) hog_shape = np.array(hog_features) print "shape of hog_features: " + str(hog_shape.shape)
2.21875
2
prime.py
koen1711/pythongportfolio
0
12775809
<gh_stars>0 import math first = 1 last = 500 prime_numbers = [] if last == 1: print("Not a prime number.") else: for i in range(first, last): prime_flag = 0 for x in range(2, int(math.sqrt(i)) + 1): if (i % x == 0): prime_flag = 1 break if (prime_flag == 0) and (i != 1): prime_numbers.append(i) print(set(prime_numbers))
3.546875
4
src/fuckbot/db.py
Zer0-One/fuckbot
0
12775810
<gh_stars>0 from sqlalchemy import create_engine from .config import Config config = Config() def db_init(): engine = create_engine("sqlite+pysqlite:///" + config["WORKING_DIR"] + "/" + config["SQLITE_DB"], future=True) with engine.connect() as con: res = con.execute(text("CREATE TABLE trigger")) # engine.connect()
2.515625
3
tqt/function/adder.py
guohao-fly/TQT
2
12775811
""" Provide quantilized form of Adder2d, https://arxiv.org/pdf/1912.13200.pdf """ import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Function import math from . import extra as ex from .number import qsigned class Adder2d(ex.Adder2d): def __init__(self, input_channel, output_channel, kernel_size, stride=1, padding=0, bias=False, weight_bit_width=8, bias_bit_width=16, inter_bit_width=32, acti_bit_width=8, retrain=True, quant=False): super().__init__(input_channel, output_channel, kernel_size, stride=stride, padding=padding, bias=bias) self.weight_bit_width = weight_bit_width self.bias_bit_width = bias_bit_width self.inter_bit_width = inter_bit_width self.acti_bit_width = acti_bit_width self.retrain = retrain self.quant = quant if retrain is True: self.weight_log2_t = nn.Parameter(torch.Tensor(1)) self.acti_log2_t = nn.Parameter(torch.Tensor(1)) if self.bias is not None: self.bias_log2_t = nn.Parameter(torch.Tensor(1)) else: self.weight_log2_t = torch.Tensor(1) self.acti_log2_t = torch.Tensor(1) if self.bias is not None: self.bias_log2_t = torch.Tensor(1) def static(self): self.retrain = False if isinstance(self.bias_log2_t, nn.Parameter): self.bias_log2_t.requires_grad_(False) if isinstance(self.weight_log2_t, nn.Parameter): self.weight_log2_t.requires_grad_(False) if isinstance(self.acti_log2_t, nn.Parameter): self.acti_log2_t.requires_grad_(False) def quantilize(self): self.quant = True def floatilize(self): self.quant = False def adder_forward(self, input): input_log2_t = input.abs().max().log2() weight = qsigned(self.weight, self.weight_log2_t, self.weight_bit_width) inter = qsigned( ex.adder2d_function(input, weight, None, stride=self.stride, padding=self.padding), self.weight_log2_t + input_log2_t + math.log2(self.weight.numel()), self.inter_bit_width) if self.bias is not None: inter += qsigned( self.bias, self.bias_log2_t, self.bias_bit_width).unsqueeze(1).unsqueeze(2).unsqueeze(0) return qsigned(inter, self.acti_log2_t, self.acti_bit_width) def adder_forward_unquant(self, input): return ex.adder2d_function(input, self.weight, self.bias, stride=self.stride, padding=self.padding) def forward(self, input): return self.adder_forward( input) if self.quant else self.adder_forward_unquant(input) if __name__ == '__main__': add = Adder2d(3, 4, 3, bias=True) x = torch.rand(10, 3, 10, 10) print(add(x).shape)
2.765625
3
src/server.py
benob/howto-app
0
12775812
import sys import asyncio import uvloop asyncio.set_event_loop_policy(uvloop.EventLoopPolicy()) from aiohttp import web from aiohttp_session import get_session, setup from aiohttp_session.cookie_storage import EncryptedCookieStorage import aiohttp_jinja2 import jinja2 import user import search #import personal import friend import share import comment import notification import playlists import history import export import speech if '-debug' in sys.argv[1:]: print('WARNING: running in debug mode') import debug import secrets from util import routes, get_user, add_globals, error_middleware ssl_context = None if secrets.USE_SSL: import ssl ssl_context = ssl.create_default_context(ssl.Purpose.CLIENT_AUTH) ssl_context.load_cert_chain(secrets.SSL_CRT, secrets.SSL_KEY) async def update_certificate(): while True: # let's encrypt certificate is updated every 3 months, we need to reload it # TODO: only do it if certificate changed print('reloading SSL certificate') ssl_context.load_cert_chain(secrets.SSL_CRT, secrets.SSL_KEY) await asyncio.sleep(3600 * 24) # once a day async def run_web_app(): app = web.Application(middlewares=[error_middleware]) setup(app, EncryptedCookieStorage(secrets.SERVER_COOKIE_KEY)) aiohttp_jinja2.setup(app, loader=jinja2.FileSystemLoader('templates/'), context_processors=[add_globals]) # warning from doc: in production, /static should be handled by apache/nginx routes.static('/static', 'static', append_version=True) routes.static('/pictures', 'data/pictures') routes.static('/qrcodes', 'data/qrcodes') routes.static('/export', 'data/export') routes.static('/', 'static/favicon') app.add_routes(routes) if secrets.USE_SSL: asyncio.get_event_loop().create_task(update_certificate()) return app app = asyncio.get_event_loop().run_until_complete(run_web_app()) print('Running app at http%s://%s:%d' % ('s' if secrets.USE_SSL else '', secrets.HOST, secrets.PORT)) web.run_app(app, ssl_context=ssl_context, host=secrets.HOST, port=secrets.PORT)
1.875
2
plugins/custom_operators.py
FrankSchleyCBA/docker-airflow
0
12775813
import logging from airflow.models import BaseOperator from airflow.operators.sensors import BaseSensorOperator from airflow.plugins_manager import AirflowPlugin from airflow.utils.decorators import apply_defaults log = logging.getLogger(__name__) #Test comment class CustomOperator(BaseOperator): @apply_defaults def __init__(self, my_operator_param, *args, **kwargs): self.operator_param = my_operator_param super(CustomOperator, self).__init__(*args, **kwargs) def execute(self, context): log.info("Hello World!") log.info('operator_param: %s', self.operator_param) class CustomSensor(BaseOperator): @apply_defaults def __init__(self, *args, **kwargs): super(CustomSensor, self).__init__(*args, **kwargs) def poke(self, context): """Determines whether the task is successful or not if True: continue with the dag if False: call poke again if Exception: call poke again until the max number of retries has been reached """ current_minute = datetime.now().minute if current_minute % 3 != 0: log.info("Current minute (%s) not is divisible by 3, sensor will retry.", current_minute) return False log.info("Current minute (%s) is divisible by 3, sensor finishing.", current_minute) return True class MyFirstPlugin(AirflowPlugin): name = "my_first_plugin" operators = [CustomOperator, CustomSensor]
2.375
2
pilight2mqtt/core.py
mcdeck/pilight2mqtt
6
12775814
<gh_stars>1-10 #!/usr/bin/env python # -*- coding: utf-8 -*- """ core module of pilight2mqtt """ from __future__ import print_function import socket import sys import re import json import signal import logging import paho.mqtt.client as mqtt from pilight2mqtt.discover import discover __all__ = ['Pilight2MQTT', 'PilightServer'] DISCOVER_SCHEMA = "urn:schemas-upnp-org:service:pilight:1" DELIM = b'\n\n' class ConnectionLostException(Exception): """Connection lost exception""" class Loggable: # pylint: disable=too-few-public-methods """base class for objects that need logging""" @property def log(self): """log message to a logger named like the class""" return logging.getLogger(self.__class__.__name__) class PilightServer(Loggable): """class to interact with pilight""" @classmethod def discover(cls): """discover pilight servers in the network""" log = logging.getLogger('PilightAutoDiscover') log.debug('trying to discover servers') responses = discover(DISCOVER_SCHEMA) if not responses: log.error('failed to locate any servers - terminating') sys.exit(1) locationsrc = re.search('Location:([0-9.]+):([0-9.]+)', str(responses[0]), re.IGNORECASE) if locationsrc: location = locationsrc.group(1) port = locationsrc.group(2) else: log.error("Whoops, could not find any servers") sys.exit(1) log.info('Found server at %s:%d', location, int(port)) return PilightServer(location, int(port)) def __init__(self, address, port): """initialize""" self.log.debug('__init__(%s, %s)', address, port) self._address = address self._port = port self._socket = None self._should_terminate = True self._event_handler = None def _readlines(self): buffer = b'' while not self._should_terminate: try: data = self._socket.recv(1024) buffer += data self.log.debug('_readlines buffer is %s', buffer) while buffer.find(DELIM) != -1: line, buffer = buffer.split(DELIM, 1) self.log.debug('_readlines yield line %s', line) yield line except socket.timeout: continue def _read(self): """read data from socket""" self.log.debug('read') lines_generator = self._readlines() text = next(lines_generator) self.log.debug('_read received %s', text) return text def send_check_success(self, msg_dct): """send message and check that it was successfull""" self.log.debug('_send_check_success') response = self.send_json(msg_dct) if response.get('status', '') == 'success': return True return False def send_json(self, msg_dct): """send json data and read response, which is also json""" self.log.debug('_send_json') msg = bytes(json.dumps(msg_dct)+'\n', 'utf-8') response = self.send_raw(msg) if self._should_terminate: return {} return json.loads(response.decode("utf-8")) def send_raw(self, msg): """send and read raw data""" self.log.debug('_send_raw') self._socket.send(msg) response = self._read() return response def _open_socket(self): """open a socket to pilight""" self.log.debug('open socket') self._socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) self._socket.settimeout(1) self._socket.connect((self._address, int(self._port))) self._should_terminate = False def connect(self, cb_recv=None): """initialize connection progress. registers handlers as well. """ self.log.info('connect') if cb_recv: self._event_handler = cb_recv self._open_socket() suc = self.send_check_success({ 'action': 'identify', 'options': { 'receiver': 1, 'core': 0, 'config': 1, 'forward': 1 }, 'uuid': '0000-d0-63-00-000000', 'media': 'all' }) return suc def reconnect(self): """try to reconnect if the connection got lost""" try: connected = False while not self._should_terminate and not connected: connected = self.connect() return connected except Exception: # pylint: disable=broad-except pass return False def disconnect(self): """disconnect from pilight""" self.log.info('disconnect') self._should_terminate = True if self._socket: self._socket.close() self._socket = None def process_events(self, callback): """process incoming events from pilight""" self.log.info('process_events') while not self._should_terminate: response = self._read() if not self._should_terminate: self.log.debug('call callback') callback(response) def terminate(self): """indicate that the system should shut down""" self.log.info('terminate') self._should_terminate = True def heartbeat(self): """send and read heart beat to/from pilight""" response = self.send_raw(b'HEART') if response == b'BEAT': return True return False def set_device_state(self, device, state): """update the state of a device in pilight""" self.log.info('set_device_state: "%s" to "%s"', device, state) msg = { 'action': 'control', 'code': { 'device': device, 'state': state } } return self.send_check_success(msg) class Pilight2MQTT(Loggable): """translate between pilight events and mqtt messages""" def __init__(self, # pylint: disable=too-many-arguments server, mqtt_host, mqtt_username=None, mqtt_password=<PASSWORD>, mqtt_port=1883, mqtt_topic='PILIGHT'): """initialize""" self.log.debug('__init__') self._mqtt_host = mqtt_host self._mqtt_port = mqtt_port self._mqtt_topic = mqtt_topic self._server = server self._mqtt_username = mqtt_username self._mqtt_password = <PASSWORD> def on_connect(client, userdata, flags, result_code): # pylint: disable=missing-docstring return self._on_connect(client, userdata, flags, result_code) def on_message(client, userdata, msg): # pylint: disable=missing-docstring return self._on_message(client, userdata, msg) self._mqtt_client = mqtt.Client() self._mqtt_client.on_connect = on_connect self._mqtt_client.on_message = on_message def _on_connect(self, client, userdata, flags, result_code): """execute setup of mqtt, i.e. subscribe to a channel""" if result_code == 5: self.log.debug( "Connection failed: %s: possible authentication failure", str(result_code)) else: self.log.debug( "Connected with result code %s", str(result_code)) # Subscribing in on_connect() means that if we lose the connection and # reconnect then subscriptions will be renewed. self.log.info('MQTT Subscribe %s', self._mqtt_topic) client.subscribe("%s/#" % self._mqtt_topic) def _on_message(self, client, userdata, msg): """process messages received from MQTT""" self.log.debug("%s %s", msg.topic, str(msg.payload)) match = re.search('%s/set/(.*?)/STATE' % self._mqtt_topic, msg.topic) if match: device = match.group(1) state = msg.payload self._server.set_device_state(device, state.decode('utf-8')) def _send_mqtt_msg(self, device, topic, payload): self.log.info( 'Update for device "%s" on topic "%s", new value "%s"', device, topic, payload) # flake8: NOQA (result, mid) = self._mqtt_client.publish(topic, payload=payload, qos=0, retain=False) assert result == mqtt.MQTT_ERR_SUCCESS, ( "Failed to send message (%s)" % str(result)) self.log.debug('Message send with id %d', mid) def _mktopic(self, device, reading): return '%s/status/%s/%s' % (self._mqtt_topic, device, reading) def _handle_event(self, evt): """event handling for message from pilight""" self.log.debug(evt) try: evt_dct = json.loads(evt.decode('utf-8')) if evt_dct.get('origin', '') == 'update': evt_type = evt_dct.get('type', None) if evt_type == 1: # switch for device in evt_dct.get('devices', []): self._send_mqtt_msg( device, self._mktopic(device, 'STATE'), evt_dct['values']['state']) elif evt_type == 3: for device in evt_dct.get('devices', []): self._send_mqtt_msg( device, self._mktopic(device, 'HUMIDITY'), evt_dct['values']['humidity']) self._send_mqtt_msg( device, self._mktopic(device, 'TEMPERATURE'), evt_dct['values']['temperature']) else: raise RuntimeError('Unsupported event type %d' % evt_type) except Exception as ex: # pylint: disable=broad-except self.log.error('%s: %s', ex.__class__.__name__, ex) def run(self): """main run method""" self.log.debug('run') def stop_server(signum, frame): # pylint: disable=missing-docstring self.log.debug("SIGINT") self._server.terminate() signal.signal(signal.SIGINT, stop_server) self.log.info('MQTT Connect %s:%d', self._mqtt_host, self._mqtt_port) try: if (self._mqtt_username is not None and self._mqtt_password is not None): self._mqtt_client.username_pw_set( self._mqtt_username, self._mqtt_password) self._mqtt_client.connect(self._mqtt_host, self._mqtt_port, 60) except Exception as ex: # pylint: disable=broad-except self.log.error('Failed to connect to MQTT server: %s', str(ex)) return 1 self._mqtt_client.loop_start() suc = self._server.connect() if not suc: self.log.error('Could not connect to server') return 1 assert self._server.heartbeat() def callback(event): # pylint: disable=missing-docstring self._handle_event(event) self._server.process_events(callback) self._server.disconnect() self.log.info('disconnect MQTT') self._mqtt_client.loop_stop(force=False) self._mqtt_client.disconnect() return 0
2.40625
2
SparkAutoML/utils/models_dict_file.py
brainalysis/sparkify
0
12775815
# make a dictionary of available models in pyspark from pyspark.ml.classification import ( LogisticRegression, GBTClassifier, RandomForestClassifier, DecisionTreeClassifier, MultilayerPerceptronClassifier, LinearSVC, NaiveBayes, FMClassifier, ) from pyspark.ml.regression import ( LinearRegression, GeneralizedLinearRegression, DecisionTreeRegressor, RandomForestRegressor, GBTRegressor, AFTSurvivalRegression, IsotonicRegression, FMRegressor, ) model_dict_classifier = { "lr": LogisticRegression, "rfc": RandomForestClassifier, "gbc": GBTClassifier, "dtc": DecisionTreeClassifier, "mlpc": MultilayerPerceptronClassifier, "svc": LinearSVC, "nbc": NaiveBayes, "fmc": FMClassifier, } model_dict_regression = { "lr": LinearRegression, "glr": GeneralizedLinearRegression, "dtr": DecisionTreeRegressor, "rfr": RandomForestRegressor, "gbr": GBTRegressor, "sr": AFTSurvivalRegression, "isor": IsotonicRegression, "fmr": FMRegressor, }
2.65625
3
load_affnist.py
YuZiHanorz/stacked_capsule_autoencoders
0
12775816
<filename>load_affnist.py import numpy as np import tensorflow as tf import scipy.io as sio from glob import glob import os from monty.collections import AttrDict def load_data_from_mat(path): data = sio.loadmat(path, struct_as_record=False, squeeze_me=True) for key in data: if isinstance(data[key], sio.matlab.mio5_params.mat_struct): data[key] = _todict(data[key]) return data def _todict(matobj): # A recursive function which constructs from matobjects nested dictionaries dict = {} for strg in matobj._fieldnames: elem = matobj.__dict__[strg] if isinstance(elem, sio.matlab.mio5_params.mat_struct): dict[strg] = _todict(elem) else: dict[strg] = elem return dict def affnist_reader(batch_size): test_path = glob(os.path.join('../data/affnist/', "test.mat")) print(test_path) test_data = load_data_from_mat(test_path[0]) testX = test_data['affNISTdata']['image'].transpose() testY = test_data['affNISTdata']['label_int'] testX = testX.reshape((320000, 40, 40, 1)).astype(np.float32) testY = testY.reshape((320000)).astype(np.int32) X = tf.convert_to_tensor(testX, dtype=tf.float32) / 255. Y = tf.convert_to_tensor(testY, dtype=tf.int64) input_queue = tf.train.slice_input_producer([X, Y], shuffle=True) images = tf.image.resize_images(input_queue[0], [40, 40]) labels = input_queue[1] X, Y = tf.train.batch([images, labels], batch_size=batch_size) testset = AttrDict(image=X, label=Y) return testset
2.265625
2
project_name/settings/prod.py
wearespindle/Estrada
2
12775817
from {{ project_name }}.settings.base import * # noqa DEBUG = boolean(os.environ.get('DEBUG', 0)) TEMPLATE_DEBUG = boolean(os.environ.get('DEBUG', DEBUG)) ALLOWED_HOSTS = ['.example.com'] # Use the cached template loader so template is compiled once and read from # memory instead of reading from disk on each load. TEMPLATES[0]['OPTIONS']['loaders'] = [ ('django.template.loaders.cached.Loader', [ 'django.template.loaders.filesystem.Loader', 'django.template.loaders.app_directories.Loader', ]), ] # HTTPS and Security Settings SECURE_HSTS_SECONDS = 31536000 # Future requests for the next year should use HTTPS only SECURE_HSTS_INCLUDE_SUBDOMAINS = True SECURE_CONTENT_TYPE_NOSNIFF = True SECURE_BROWSER_XSS_FILTER = True SECURE_SSL_REDIRECT = True SESSION_COOKIE_SECURE = True CSRF_COOKIE_SECURE = True CSRF_COOKIE_HTTPONLY = True X_FRAME_OPTIONS = 'DENY'
1.71875
2
phjokes/jokes/jokes.py
Tmpts21/phjokes
0
12775818
pinoy_jokes = { 1: {'dialect': 'bisaya', 'joke': ['Teban: Dok, ngano gasakit man akong dughan kada inum nakug ' 'tuba, pero kung libre gani dili mosakit??', 'Doktor: Ah kabalo nako ana, nipis imong BAGA, pero BAGA IMONG ' 'NAWONG']}, 2: {'dialect': 'bisaya', 'joke': ['Teacher: How many liters does a Coke litro have?', 'Pupil: Four liters Ma’am!', 'Teacher: Are you sure?', 'Pupil: Yes ma’am! Liter C, Liter O, Liter K, and Liter E!']}, 3: {'dialect': 'bisaya', 'joke': ['Kumpisalan!', 'Tulume: Bindisyoni ako padre kay ako makakasala.', 'Pari: Unsa man nang imong sala?', 'Tulume: Nangawat ko ug lima ka hiniktang igtataring manok ' 'padre.', 'Pari: Ah… Mag-ampo ka ug lima ka Amahan Namo', 'Tulume: Padre. Waloon na lang nako ka Amahan Namo', 'Pari: Ngano man iho?', 'Tulume: Tua pa man guy tulo sweater-hatch ra ba to pang derby ' 'ako balikan unyang gabii……']}, 4: {'dialect': 'bisaya', 'joke': ['Bon: Day, usa ka basong HOT MILK ang ako beh.', 'Tindera: Atong butangan og gatas Sir?', 'Bon: Ayaw kay luod !', 'Gi-ahak!']}, 5: {'dialect': 'bisaya', 'joke': ['Konsehal: Paki acknowledge si Mayor. Late dumating, hayun ' 'kararaan lang!', 'Pedro (Emcee): I wud like to acknowledge the late mayor who ' 'just passed away.']}, 6: {'dialect': 'bisaya', 'joke': ['Correct Pronounciation', 'Anak: Tay, paliti ko bi ug Jucyfruwet', 'Tatay: Anak, dili magbinulok, dili man na jucyfruwet', 'Anak: Unsa man diay na tay?', 'Tatay: BAGOLBAM…']}, 7: {'dialect': 'bisaya', 'joke': ['Apo Ug Lolo', 'Apo: Lo, ngano nag kaang2x man kag lakaw?', 'Lolo: Aw, ayaw nagud ni pansina apo oi', 'Apo: ngano lagi na lo?', 'Lolo: ingon mn gud sa akong Doktor na likayan ang itlog kay ' 'taas ug kolesterol', 'unsaon na lang kaha kung giingnan si Lolo nga likayan ang ' 'hotdog.']}, 8: {'dialect': 'bisaya', 'joke': ['Andir-di-saya', 'Kulas: Bay Tasyo, matod sa mga silingan andir-di-saya man kuno ' 'ka.', 'Tasyo: Unsay andir-di-saya nga bag-o lang nakong gikasab-an ang ' 'akong Misis!', 'Kulas: Ngano man?', 'Tasyo: Gisugo man ko niya sa pamalantsa. Mao nga akong ' 'gisinghagan ug UNYA RA KAY MAGLUTO PA KO!!!']}, 9: {'dialect': 'bisaya', 'joke': ['Sud-an', 'Bata: Nay, unsay atong sud-an?', 'Inahan: Christmas tree ug lansang, Dong.', 'Bata: Ha, christmas tree ug lansang?', 'Inahan: Kamunggay ba, nga gisubakan ug buwad bulinaw']}, 10: {'dialect': 'bisaya', 'joke': ['Kinsay Mas Brayt?', 'Bata: Kinsay mas brayt Pa, ang Amerikano o Pilipino?', 'Amahan: Mas brayt ang Amerikano Dong, kay ang mga Bata didto ' 'sa Amerika, gagmay pa gani, maayo na kaayo mo-ininglis.']}, 11: {'dialect': 'bisaya', 'joke': ['Gidamgo', 'Caloy: Doc, unsa man nga kada gabii damgohon man ko nga NBA ' 'player kuno ko. Ako ang point guard sa Lakers.', 'Doctor: Buweno, tagaan tika ug reseta aron dili ka na ' 'damgohon.', 'Caloy: Ayaw lang sa Doc kay championship ron namong gabii.']}, 12: {'dialect': 'bisaya', 'joke': ['Flashlight', 'Sa usa ka diskortal, nakigsayaw si Kulas ug gwapa. Tungod kay ' 'gwapa man kaayo iyang paris, puwerteng gakus ni Kulas.', 'Daga: Unsa may sulod sa imong bulsa, Dong?', 'Kulas: Ahhh.. .kanang, flashlight ni Day.', 'Daga: Nganong init man?', 'Kulas: Nagsiga man gud!']}, 13: {'dialect': 'bisaya', 'joke': ['Ngitngit', 'Anak: Nay, pirme lang kong sugsugon sa akong mga classmates ' 'nga anak kuno ko sa liking kawayan. Kinsa man ang akong ' 'amahan, Nay?', 'Inahan: Wa gayud ko kahibalo, Dong, kay puwerteng ngitngita ' 'adtong gabhiona.']}, 14: {'dialect': 'bisaya', 'joke': ['Inday', 'MC: Unsa’y kantahon nimo, Miss?', 'Contestant: Inday.', 'MC: Inday? Wala may kanta nga “Inday”.', 'Contestant: Naa uy! Katong kang <NAME>’g kanta ba nga ' '“INDAAAAY WILL ALWAYS LOVE YOU.”']}, 15: {'dialect': 'bisaya', 'joke': ['Anak: Unsay escalator, Tay?', 'Tatay: Hagdan saka kanaog.', 'Anak: Kanang elevator?', 'Tatay: Kahon sakyan saka kanaog.', 'Anak: Calculator, Tay?', 'Tatay: Kana, wa pa ko kasakay']}, 16: {'dialect': 'bisaya', 'joke': ['2 ka Misis nangamote…', 'Misis 1: mahinumdon gyug ko sa ITLOG sa akong BANA aning ' 'KAMOTEHA.', 'Misis 2: sa KADAK-ON?', 'Misis 1: Dili… sa KABULINGON!']}, 17: {'dialect': 'bisaya', 'joke': ['English / Bisaya', '1) Aspect – Pangbuak Sa Yelo', '2) City – Bag-o Mag-otso', '3) Deduct – Ang Itik', '4) Defeat – Ang Tiil', '5) Deposit – Ang Gripo', '6) Detail – Ang Ikog', '7) Devastation – Stasyonan Ug Bus', '8) Effort – Tugpahanan Ug Eroplano', '9) Persuading – Unang Kasal', '10) Depress – Pari', '11) Predicate – Buhian Ang Iring', '12) Protestant – Tindahan Ug Prutas', '13) Statue – Ikaw Ba Na?']}, 18: {'dialect': 'bisaya', 'joke': ['Usaka bisaya miadto sa Manila…', 'Bisaya: Pabili nga ng lemoncito.', 'Tindera: Anong lemoncito?', 'Bisaya: Lemoncito gud… Yong maliit na buongon!']}, 19: {'dialect': 'bisaya', 'joke': ['Teacher: give me a tag question.', 'Pupil: My teacher is beautiful, isn’t she?', 'Teacher: Very good! Ibinisaya dong.', 'Pupil: Ang akong maestra gwapa, wa sya kuyapi?']}, 20: {'dialect': 'bisaya', 'joke': ['Teacher: Class what are the different colors of bananas?', 'Juan: Mam! Mam! brown!', 'Teacher: Tanga! May brown ba na saging?', 'Juan: Ay op kors mam! Nilung-ag diay?']}, 21: {'dialect': 'bisaya', 'joke': ['Kano: (Gisumbag ang pinoy ug nahayang) Take it easy men, take ' 'it easy!', 'Pinoy: (Mibakod ug mibalos. Nahayang ang kano) Kisikisi men! ' 'Kisikisi!']}, 22: {'dialect': 'bisaya', 'joke': ['Customer: Day, kape.', 'Tindera: Tag P10 na ra ba.', 'Customer: Diba tag P8 ra na?', 'Tindera: Nimahal naman gud ang gasolina.', 'Customer: Ah, ayaw na lang butangig gasolina!']}, 23: {'dialect': 'bisaya', 'joke': ['Juan: (gikan sa iskwelahan) Tay, akong mga klasmeyt puro zero.', 'Amahan: Hahaha! Ka-brayt jud sa akong anak. Unya ikaw dong?', 'Juan: Aw palupig ba diay ko? Zero pud!']}, 24: {'dialect': 'bisaya', 'joke': ['Anak: Tay unsay English sa otot?', 'Tatay: Wind of Change', 'Anak: Ug Otot nga wa tingog?', 'Tatay: Sound of Silence', 'Anak: Ug Otot nga dalang tae tay?', 'Tatay: Dust in the wind', 'Anak: Pag ka bright dyod ning tatay, Liwat dyod ko nimo!']}, 25: {'dialect': 'bisaya', 'joke': ['Botyok: Pre, ngano ingon ka nawong kog unggoy?', 'Bruno: Wa ko ga-ingon nawong kag unggoy, akong giingon ang ' 'unggoy parihag nawong nimo.', 'Botyok: aw lagi, klaroha!']}, 26: {'dialect': 'bisaya', 'joke': ['Tatay: Nak,imo ng gpainom ang kabaw?', 'Anak: Oo tay pro dli mn muinom..', 'Tatay: Ha?Asa mn diay nmo gpainum?', 'Anak: sa baso.. Tatay: buang! sa sunod butangig straw!']}, 27: {'dialect': 'bisaya', 'joke': ['Studyante nsakpan may kodigo…', 'Teacher: unsa ni?', 'Student: prayer nakomam!', 'Teacher: unya nganong answers man ang nakasulat?', 'Student: hala, gitubag ang akong prayers!!']}, 28: {'dialect': 'bisaya', 'joke': ['Balemtyms prayer', 'Lord,', 'kung dili ko nimo hatagan ug ka date, karong balemtymes ' 'palihog be,make all my friends wa pud ka date! tablahay na ni ' 'Lord.. tinuuray na ni! huhuhuhuhu ug iapil ang nagbasa.', 'Amen', 'Sugod na ampo ha para makatabla! hehehehehee']}, 29: {'dialect': 'bisaya', 'joke': ['Warning: Kung unsa mahitabo nimo di nako sala… lingaw lingaw ' 'ra ning ako.', 'Isend ni sa imong mga prends o sa tanan contacts nimo:', 'Kung wala koy uyab karon,kinsa imong ihatag nako nga uyab, ug ' 'ngano? (name ha..)', 'Ilang tubag will determine your future hahahahahaha']}, 30: {'dialect': 'bisaya', 'joke': ['Dodong: Tay, hain akon grief?', 'Tatay: kaw Bata ka, dili ka gihapon kabalo. Brief lagi dili ' 'grief. ge nak dili be.', 'Dodong: Aw, hain man tay?', 'Tatay: Tua sa kwarto. Gi hammer!']}, 31: {'dialect': 'bisaya', 'joke': ['Pinaskuhan nga Bahaw', 'It is almost 3 weeks already since Christmas and isa ra akong ' 'pinaskuhan nga nadawat. I can’t bilibit! hehehehehehhe Last ' 'Christmas is the only Christmas that I have received only 1 ' 'gift…just imagine ISA LANG! sounds bitter hahahahaha pero sige ' 'lang mudawat man gihapon ko sa pinaskuhan nga bahaw…sige na ' 'kay pay day baya 2 days ago hahahahahha….', 'Sa usa ka tawo nga nihatag pasalamat ko. Pasalamat pud ko kay ' 'duna manito manita sa office kay ikaw ra intawon ang naghatag ' 'nako ug kalipay.. hahahahaha you are my hero.. kung wala imong ' 'gift….zero jud uy…so consider yourself blessed! hahahahahaha ' 'bahaw nga pinaskuhan still accepted.']}, 32: {'dialect': 'bisaya', 'joke': ['Tatay: Unsa imo gusto nak?', 'Anak: Ay superman tay..', 'Tatay: sa hunahuna (hay maayo kay dili Barbie) Nilakaw ang ' 'Tatay nga lipay..nibalik gihatag ang dulaan nga superman sa ' 'anak.', 'Anak: ay si superman! gwapo lagi ka uy! Bugdo kaayo!', 'Ang Tatay na heart atak! Hayang!']}, 33: {'dialect': 'bisaya', 'joke': ['Hubog 1: Kabalo ka pre, ako man uyab imo mama sa una.', 'Hibog2 2: (hilom, naminaw lang)', 'Hubog1: naminaw ba ka fre? ingon ko ba uyab nako imo mama sha ' 'una!', 'Hubog 2: Hilom na Pa uy! Hubog na kaayo ka…']}, 34: {'dialect': 'bisaya', 'joke': ['Si Dodong nikarga ug kanding sa bus. Nagutana ang conduktor, ' 'Kinsa Ning kanding diri? Tubag si Dodong “Akua nang kanding ' 'bai”. Ug ingon ang conduktor, “plitihan ta ni ha bai”…tubag si ' 'Dodong “OO bai sige, pangutan-a lang na sya kung duna na sya ' 'kawarta bai”.', 'Anak: Nay nagtambling tambling mi sa among P.E. sa skul ganiha ' 'ba.', 'Nanay: ingon baya ko nga ayaw jud ug pag tambling tambling nak ' 'kay makita imo panti. Kaulaw pud.', 'Anak: Nay wala man nakita akong panti kay ako man gisulod sa ' 'akong bag akong panti.']}, 35: {'dialect': 'bisaya', 'joke': ['Osa ka pirata gi interview sa reporter.', 'Reporter: Nganong imong pikas tiil kahoy man?', 'Pirata: Ah, naigo ni sa bala unya giputul giilisan na lang ug ' 'kahoy.', 'Reporter: Imong toong kamot naa may hook?', 'Pirata: Ah, naputol ni sa espada diha nga duna kuy kaaway.', 'Reporter: Unya imong pikas mata duna man nai itum nga tabon? ' '(eye patch).', 'Pirata: Ah, naithan ni ug langgam unya nabuta.', 'Reporter: Ha? Makabuta diay nang iti sa langgam?', 'Pirata: Gilugud man gud nako sa akong toong kamut.']}, 36: {'dialect': 'bisaya', 'joke': ['Anak: Mama, Mama, dili nako mokaun og itlog kay manimaho ko og ' 'iti ingon atong silingan', 'Mama: motoo man ka nila na botbot mana', 'Anak: tinood no na mama', 'Mama: so og mukaon ka og itlog manimaho ka og iti,so kaon ' 'nalang iti para maniho ka og itlog']}, 37: {'dialect': 'bisaya', 'joke': ['Si Danilo niadto sa simbahan kay magpabunyag sa iya anak.', 'Danilo: Padre, magpabunyag ko sa akong anak', 'Pari: Unsay may gusto mong pangalan sa imong anak', 'Danilo: Toyota, dre.', 'Pari: Di na mahimo, ngan nag awto.', 'Danilo: Mercedes, lagi dre ngan man nag awto mahimo man.', 'Pari: O sigi sugot ko pero unsa may gusto nimong ibendita nato ' 'sa imong anak , crudo o gasolina?']}, 38: {'dialect': 'bisaya', 'joke': ['Laki: Kuhaon ko ang mga bitoon og ihatag ko kanimo.', 'Babae: saba diha! wa man gali ka kakuha anang kugmo gatambisay ' 'sa imong ilong…', 'Laki: Aw! sorry day ha..wala man gud ko nasayod nga gusto sad ' 'ka ani…..']}, 39: {'dialect': 'bisaya', 'joke': ['Atty: Iha, mahimo bang ihulagway namo sa korte ang naglugos ' 'nimo.', 'Biktima: Itumon, bugason, pislat ilong, pangag, putot iya nga ' 'pisut…', 'Suspek: Bwesiit… Sigeee… Panaway gyud!']}, 40: {'dialect': 'bisaya', 'joke': ['Killer: Padre mngumpsal ko', 'Pari: Unsa imu sala?', 'Killer: Nagpatay ko 20 ka tao bisaya joke, binisaya jokes ' 'bisayan jokes, binisaya', 'Pari: Unsa!Ngano!?', 'Killer: Mutu-o man gud sila GINOO! kaw Padre Tuo baka GINOO?', 'Pari: Ha…Aw Sauna,karon JAM2X nalang.']}, 41: {'dialect': 'bisaya', 'joke': ['Tindero: Uy, dia tay gold nga relo, palit na mo! Kon moputi ' 'ni, white gold! Kon mourong, stopwatch!']}, 42: {'dialect': 'bisaya', 'joke': ['Kustomer: I-hard lang ang masahe Day.', 'Masahista: Sir baya, pa-hard-hard unya pa-soft-soft ra gihapon ' 'diay.']}, 43: {'dialect': 'bisaya', 'joke': ['Negrense: Sa amo gid sa Bacolod, kada pusod may pulis.', 'Sugboanon: Sa amo sa Sugbo, kada pulis may pusod!']}, 44: {'dialect': 'bisaya', 'joke': ['Dad: Anak, bili mo ko softdrinx!', 'Anak: Coke o Pepsi?', 'Dad: Coke', 'Anak: Diet o regular?', 'Dad: Regular', 'Anak: Bote o can?', 'Dad: Bote', 'Anak: 8 oz o litro?', 'Dad: PUNYETA! tubig na lang! binisaya, bisaya joke, bisaya ' 'jokes', 'Anak: natural o mineral?', 'Dad: mineral', 'Anak: bugnaw o dili?', 'Dad: lambusan ta man ka aning silhig ron…', 'Anak: lanot o tukog?', 'Dad: animal man cguro ka!', 'Anak: baka o baBoy?', 'Dad: LAYAS!!!!', 'Anak: karon o ugma?', 'Dad: karon na!!!', 'Anak: alas 11 o alas 12?', 'Dad: Yawa!!!', 'Anak: lake o baye?', 'Dad: letche!!', 'Anak: liquid o powder?', 'Dad: kanang powder ilambos sa imong dagway!', 'Anak: sa agtang o aping?', 'Heart attack ang amahan, patay buhi? Buhi….baskog ' 'dili….paralize…hol body hap body? asus!']}, 45: {'dialect': 'bisaya', 'joke': ['Pare 1: Asa ka gikan Pre?', 'Pare 2: Sa lubong sa akong ugangan Pre.', 'Pare 1: Unya nganong daghan man kaayo kang kinawrasan ug ' 'bun-og?', 'Pare 2: Misukol man.']}, 46: {'dialect': 'bisaya', 'joke': ['Lalaki nga boarder: Miga, excuse sa bi, kuhaon nako ang akong ' 'brief diha sa banyo.', 'Babaye nga boarder: Taym sa kay nag-panty pa ko.', 'Lalaki: Okey, hulat lang ko.', 'Babaye: Okey na, wa nako mag-panty. bisaya joke, bisaya jokes, ' 'binisaya, binisaya jokes, binisaya joke']}, 47: {'dialect': 'bisaya', 'joke': ['Patient: Doc, regular lagi ko malibang kada alas 7 sa buntag.', 'Doc: o di maau nuon! Unsay problema ana?', 'Patient: Alas 8 man ko mahigmata doc!']}, 48: {'dialect': 'bisaya', 'joke': ['Lalake: Dong, mabaw ning suba?', 'Bata: Oo nong!', 'Lalake: (nilukso sa suba) Pisti tabang! Kalalum, ingon ka dong ' 'mabaw!', 'Bata: Mabaw bitaw nong nitabok gani ang itik ganina!']}, 49: {'dialect': 'bisaya', 'joke': ['Mag Uyab', 'Nag-istoryahanay sila ug dugay ug taod taod nihilum silang ' 'duha ug niingon si babae.', 'Girl: nihilom lagi ka, ngano man?', 'Boy: nihilom lang!', 'Girl: unsa diay imong gihuna-huna?', 'Boy: akong gihuna huna? pareho lang sa imong gihuna-huna.', 'Girl: Aaaaaaaay Bastos…']}, 50: {'dialect': 'bisaya', 'joke': ['Guwapo', 'Photgrapher: Dia ra imong letrato boss. binisaya joke', 'Customer: Di ko ani uy! Bati kaayo akong nawong aning ' 'letratoha.', 'Photographer: <NAME>ud. Tan-awa ang imong back view morag si ' '<NAME>, ang side view, Paquito Diaz', 'Customer: Unya ang front view?', 'Photographer: Aw, <NAME>!']}, 51: {'dialect': 'bisaya', 'joke': ['Egypt', 'Maestra: Miguel, where is Egypt? bisaya jokes', 'Miguel: Egypt is parked across the street.']}, 52: {'dialect': 'bisaya', 'joke': ['Asawa: Hon, bisan taas na imong edad, nakapaanak pa ka.', 'Bana: Super engine gud ni', 'Asawa: Ipa check-up na.', 'Bana: Ngano man?', 'Asawa: Smoke belching! Itom kaayong Bata.']}, 53: {'dialect': 'bisaya', 'joke': ['Sir: Inday, si Sir mo ito. Bangga kotse ko and I needd cash!', 'Inday: Aru!!! Dugo-dugo gang ka anoh!', 'Sir: Gaga! Si Sir mo talaga to!', 'Inday: Gago! Si Sir ang tawag saken CUPCAKE!!!!']}, 54: {'dialect': 'bisaya', 'joke': ['Inday: koya, karamehan pala nakalebeng sa simintiryu…. ' 'GENAHASA!!!', 'Kuya: Pano mo nalaman???', 'Inday: eh kase, nakalagay sa lafeda nela… RIP!!!!']}, 55: {'dialect': 'bisaya', 'joke': ['In a restaurant…', 'Man: Waiter? Bakit ng inorder ko?ilan ba ang cook ninyo rito?', 'Waiter: Ay suri sir, la man kami cuk, pipsi lang.']}, 56: {'dialect': 'bisaya', 'joke': ['Teacher: Class, Draw a fish.', 'Class: Yeeesss maam!', 'Teacher: Ruby! Kahigko higko kag ka itom gid na ya sang ' 'drawing mo haw?', 'Ruby: kalma bala maam! Daw manul ka! Kita mo sinugba ni!']}, 57: {'dialect': 'bisaya', 'joke': ['Anak: Tay unsa nang naga Lopad sa ibabaw sa langit nga mura ug ' 'Krus na dako?', 'Tatay: Baw linti ka na Bata ano gali na tun-an mo sa ' 'iskwelahan nyo?', 'Anak: Ano gani na tay??!!', 'Tatay: Amo na ginatawag na Temprano!! 🙂']}, 58: {'dialect': 'bisaya', 'joke': ['Tawo: Padre, nganong naa man ka’y daghan hinayhay nga bra, ' 'panty, ug blouses? Naa ka’y asawa?', 'Pari: Sus! Kung and inyong limos ug amot ra ang akong saligan, ' 'dili ko mabuhi. Nanglabada ko no!!!!!!!!!']}, 59: {'dialect': 'bisaya', 'joke': ['Sa hospital…', 'Mrs: Dok, komosta na man ang akong bana? binisaya nga joke, ' 'visayan jokes, visayan joke', 'Dok: Amoa na gyod giputol ang iyang tiil ug kamot.', 'Mrs: Ha? Dok, dili nako madawat!', 'Dok: Joke, joke, joke! Patay na bitaw uy.']}, 60: {'dialect': 'bisaya', 'joke': ['Pari: Ang maigo ning bola maoy labing dakog sala nato! ' '(Miuntol ang bola og naigo ang pari.)', 'Pari: Uy, praktis pa to ha!']}, 61: {'dialect': 'bisaya', 'joke': ['Sa hospital…', 'Doktor: Mrs. kinahanglan na jud samentuhon ang tiil sa imong ' 'anak! grabe na ang diperensya!', 'Mrs: Hala oi! mga pila kaha ka sako dok kay palit na ko ' 'hardware? Karon dayon aron mauga na ugma.', 'Anak: Nay oi! pakauwaw ra man ka! sagulan pa gani ug balas!', 'Doktor: Ayaw kalimti ang hollow block ha!!']}, 62: {'dialect': 'bisaya', 'joke': ['Mrs: Sir,pwede ko manawagan s akong bna s radyo? Gidala among ' 'lima ka anak.', 'Announcer: Go ahed, Mrs!', 'Mrs: Hoy, amaw! I-uli ang mga bta,usa ra imo ana!']}, 63: {'dialect': 'bisaya', 'joke': ['Helper: Padre, gi texan ko sa akong amo nga naa ron sa abroad ' 'nga pamisahan kunu ang ilang iro nga namatay.', 'Pari: Inday, tawo ra intawon ang misahan walay labot ang iro! ' 'Nabuang na sila?', 'Helper: Na! Unya unsaon ta man ni rong gi padala nga $10,000 ' 'para sa misa?', 'Pari: Aw! Wala man ka mo ingon nga katoliko diay ning inyong ' 'IRO! Dad-a dire!']}, 64: {'dialect': 'bisaya', 'joke': ['Apo: Lola, attend ako tipar ha.', 'Lola: Unsa ng tipar bah?', 'Apo: Tipar gud party bah, sa binali..', 'Lola: Puro sturya istambay! Mga PS mo tanan!', 'Apo: Unsa ng PS la?', 'Lola: Pakeng shet!']}, 65: {'dialect': 'bisaya', 'joke': ['Q: Unsa ang ginaingon sa Americano kon nakautot?', 'A: Excuse me', 'Q: British?', 'A: Pardon me', 'Q: Pinoy?', 'A: Not me!']}, 66: {'dialect': 'bisaya', 'joke': ['Unsaun nimo mahibal-an kon ang siopao dunay karne sa iring, ' 'ilaga o iro?', 'Ipasimhot gamay ang karne sa iring. Kon ganahan ang iring ' 'ilaga ni, kon dili iring ni, kon mudagan karne sa iro.']}, 67: {'dialect': 'bisaya', 'joke': ['HOLIDAYS:', 'Sa mga inahan >>> MOTHERS DAY', 'Sa mga Amahan >>>> FATHERS DAY', 'SA MGA BabayeNG GASABAK >>> LABOR DAY', 'SA MGA ULITAWO >>>> PALM SUNDAY']}, 68: {'dialect': 'bisaya', 'joke': ['Anak: ‘Tay, unsay kalainan sa Supper ug Dinner?', 'Tatay: Anak, kon mukaun ta sa gawas mao na ang Dinner. Kon ' 'mukaon ta sa luto sa imo inahan mao na ang Suffer.']}, 69: {'dialect': 'bisaya', 'joke': ['Ngano halos tanan nga ginakidnap instsik? Kay kung', 'Pinoy – hulugan!', 'kon Bumbay – 5-6!', 'kon Kano – credit card!', 'kon Intsik – C.O.D.!!!! Bongga talaga…Cash on delivery.', 'hala panago na mo nga Instsik!']}, 70: {'dialect': 'bisaya', 'joke': ['Question: Unsa ang lahi sa corruption sa US ug sa Pinas?', 'Answwer: Sa US maPriso ang corrupt, sa Pinas ang corrupt ' 'ga-adto sa US. pinoy jokes, bisaya jokes']}, 71: {'dialect': 'bisaya', 'joke': ['Nanay: Grabe man ka mukaun nak uy!Di naka masugo.', 'Anak: Nay ang atong baBoy kung kusog mukaon ganahan kaayo ka. ' 'Kinsa ba gyud imong anak ako o ang baBoy?']}, 72: {'dialect': 'bisaya', 'joke': ['Lalaki: Love mao na siya akong ex Girlfriend.', 'Babae: Kamaut man sa iyang nawong love uy!', 'Lalaki: Wala koy mahimo love, mao gyud na akong weakness ' 'sukad..']}, 73: {'dialect': 'bisaya', 'joke': ['Bob: Pila pud imong kita sa usa ka adlaw nong?', 'Manlilimos: Sugod ko limos ala ocho sa buntag. Karon alas ' 'nuEve duna na koy 80 pesos.', 'Bob: uy ok man diay pud no? Unsa pud imong palitun ana?', 'Manlilimos: aw palit lang ko espresso macchiato sa ' 'starbucks.']}, 74: {'dialect': 'bisaya', 'joke': ['Divorcees', 'X bana: Anak pag-uli nimo ihatag ang tseke sa iya ug ingna nga ' 'mao na ang last nga tseke nga madawat niya kay 18 naka ha. Ug ' 'ayaw kalimot ug ta-awa iyang expression.', 'Anak: (pagabot) Nay ingon tatay mao na ni ang last nga tseke ' 'madawat nimo para child child support kay 18 nako ug lantawon ' 'daw nako imo expression.', 'X Asawa: Aw diay, ingna imo tatay pagkita ninyo nga salamat sa ' 'iyang suporta maskin dili siya imo tatay ha. Tapos tan-awa ' 'gyud ang expression sa iynag nawong.']}, 75: {'dialect': 'bisaya', 'joke': ['Ungo Napangag', 'Ungo #1: Mare, nganong napangag ka man?', 'Ungo #2: Unsaon mare nga nangabat man gud ko gabii.', 'Ungo #1: Pero nganong napangag ka man?', 'Ungo #2: Ang liog nga akong napaak sa estatuwa man gud ni ' 'Bonifacio.']}, 76: {'dialect': 'bisaya', 'joke': ['<NAME>', 'Maestra: Nganong nag-away man mo?', 'Pedro: Si Juan man gud Maam, iya kong gihapak sa Scrub The ' 'Floor.', 'Juan: Si Pedro: biyay nanguna ha. Iya kong gilabayan sa Erase ' 'The Board.', 'Maestra: Kung dili gani mo mopoyong duha, bitayon ta mong duha ' 'sa Bayang']}, 77: {'dialect': 'bisaya', 'joke': ['Bukol', 'Kulas: Nganong nabukol man na imong ulo, Bay?', 'Badoy: Nangharana man gud ko gabii didto sa ilang Marilou, Bay ' 'Kulas. Pagsugod nako’g kanta, giitsahan dayon ko ni Marilou ug ' 'buwak.', 'Kulas: Pero nganong nabukol man ka?', 'Badoy: Ang buwak gisud man gud ug kaang. bisaya joke, bisaya ' 'jokes, bisayan, bisaya']}, 78: {'dialect': 'bisaya', 'joke': ['<NAME>', 'Si Bosyo, nga primero pang sakay og eroplano, kuyog ni Onyot ' 'nga iyang amigo, diha nilingkud sa window seat', 'Bosyo: Bay Onyot, taas na gyud tag giluparan no? Tan-awa gud ' 'nang mga tao sa ubosgagmay kaayo morag holmigas.', 'Onyot: Holmigas na sila nga tinooray, Bay. Wala pa gani ' 'molupad ang eroplano.']}, 79: {'dialect': 'bisaya', 'joke': ['Shy', 'Pasing: Mare, naunsa man na imong son-in-law nga pila ka tuig ' 'na mang walay klarong trabaho?', 'Claring: Unsaon nga shy man gud na kaayo siya.', 'Pasing: Shy gud nga tabian man kaayo na!', 'Claring: Shy tiglaba ba, shy tiglimpyo sa balay, shy say ' 'tigluto.']}, 80: {'dialect': 'bisaya', 'joke': ['Panawagan Sa Radio', 'Mrs : Sir, pwede ko manawag sa akong bana sa radyo, gidala ' 'among lima ka anak', 'Announcer : Go ahead, Mrs.', 'Mrs : Hoy, amaw! I-uli ang mga Bata! Usa ra imo ana! Bagag ' 'nawong!']}, 81: {'dialect': 'bisaya', 'joke': ['Away sa Pamilya', 'Husband: Pastilan sige ta ug away; magbuwag ta!', 'Wife: Sige! Ato bahinon atong anak!', 'Husband: Ako ang gwapo ug gwapa!', 'Wife: Nah! Gipili pa gyod ang dili iya!']}, 82: {'dialect': 'bisaya', 'joke': ['Padulungan', 'Pare 1: pre ug mamatay ta unsa kaha mahitabo sa ato?', 'Pare 2: pre, ayaw lang ug kabalaka kay duha ray atong ' 'padulngan, ikaw unsa imo pili-on? magpaabot ra sa paghukom o ' 'mabuhi pag-usab?', 'P1: aw, mabuhi pag-usab', 'P2: kung mao na, duha ra pud imong padulngan. Mamahimong hayop ' 'o mamahimong punuan sa kahoy.', 'P1: aw, mamahimong punuan nga kahoy. bisaya joke, bisaya ' 'jokes, binisaya', 'P2: pero ug kahoy imong pili-on ayaw ug kabalaka kay duha ray ' 'imong padulngan. Ang mamahimong gamit nga salog o gamit nga ' 'haligi sa balay.', 'P1: aw, mamahimong gamit nga haligi.', 'P2: Apan ug ikaw mamahimong haligi, ayaw ug kabalaka kay duha ' 'ray imong padulngan. Ang mamahimong papel nga sulatanan o ' 'gamit sa kaselyasan.', 'P1: aw, mamahimong gamit sa kaselyasan.', 'P2: Apan ug ikaw mamahimong gamit sa kaselyasan, ayaw ug ' 'kabalaka pare kay duha ra ang imong padulngan. Gamiton ka sa ' 'kaselyasan sa kaLalakihan o kaselyasan sa kababaihan.', 'P1: aw, mamahimong gamit kaselyas sa kababaihan(hehe)', 'P2: Apan ug ikaw mamahimong gamit sa kaselyasan sa kababaihan, ' 'pare ayaw ug kabalaka kay duha ray imong padulngan. pangpahid ' 'gamit para sa ibabaw o gamit sa ubos.', 'P1: aw, mamahimong gamit sa ubos (hehehe)', 'P2: Apan ug ikaw mamahimong gamit pangpahid sa ubos, pare ayaw ' 'ug kabalaka kay duha ra imong padulngan. Gamit sa likod o ' 'gamit sa atubangan.', 'P1: aw, mamahimong gamit sa atubangan (hehehehehehe)', 'P2: Apan ug ikaw mamahimong gamit sa atubagan, pare ayaw ' 'kabalaka kay duha ray imong padulngan. Ang mamahimong gamit sa ' 'bangag ihi-anan o bangag sudlanan', 'P1: aw, mamahimong gamit sa bangag sudlanan. ' '(hehehehehehehehehe)', 'P2: Apan ug ikaw mamahimong gamit sa bangag sudlanan, pare ' 'ayaw kabalaka kay duha ray imong padulngan. ITAGO KAY TIPIGAN ' 'O ILABAY SA BASURAHAN.']}, 83: {'dialect': 'bisaya', 'joke': ['Luis: bay tonyo, sigurado na jud nga lalake ang mahimong sunod ' 'nga presidente sa pilipinas', 'Tonyo: ngano nakasulti man ka ana bay luis?', 'Luis: klaro naman kaayo na bay oi. syaro ug wala ka kadungog ' 'sa balita sa radyo.', 'Tonyo: gibalita na diay daan nga layo pa ang eleksyon? sunod ' 'tuig pa gani.', 'Luis: gibalita lagi. ingon ang balita ay. presidentiables for ' 'twenty o ten (2010). lalake ra man ang naay oten. di lalake ' 'jud ang presidente nato sunod. alangan man ug Babaye nga wala ' 'man na silayu oten.']}, 84: {'dialect': 'bisaya', 'joke': ['Teban: Kinsa imo idol Goliath?', 'Goliath: Si <NAME>.', 'Teban: Sige e spell kono ang Schwarzenegger.', 'Goliath: Joke ra bitaw nong Teban, si Jet Li bitaw…']}, 85: {'dialect': 'bisaya', 'joke': ['Dodong: Tay,bakasyon naman. Magpatuli ko Tay kay free man sa ' 'barangay health center.', 'Nanay: Hulata si Tatay dong aron mag-uban mo.', 'Dodong: Kita lang Nay……', 'Nanay: Dili….,kamo ang mag-uban aron magdungan mo ug patuli sa ' 'imong Tatay.', 'Dodong : he..he… he… Roll Eyes']}, 86: {'dialect': 'bisaya', 'joke': ['Wa Kaabot', 'Usa ka gwapa kaayo nga Dalaga ang milingkod sa front seat ' 'tupad sa Driver. Mibyahe sila gikan sa Alcoy. Pagkataud-taod ' 'naglain ang tiyan sa Dalaga tungod sa iyang gikaon nga kamote ' 'sa probinsya. Kusog ang pag padagan sa drayber busa nag-ampo ' 'ang Dalaga nga moagi sila ug libaong. (Nagpasalamat siya sa ' 'hilom nga gisira ang SRP).', 'Dalaga: (Naghuna-huna: Pastang paita uy. Naa na pod mogawas na ' 'pod. Pls. naa untay libaong sa unahan)', 'Tuod man dunay libaong ug nasalbar ang Dalaga. Mipahiyum siya ' 'sa Driver sama nga way nahitabo.', 'Dalaga: (Naghuna-huna: Sus, maayo gani. Sakpan unta ko. Kauwaw ' 'gyud)', 'Apan duna na po’y dautan nga hangin nga nakigbisog nga ' 'mogawas. Busa nag-ampo na usab ang Dalaga nga aduna na usa’y ' 'libaong ug tuod man nasalbar siya. Iyang gikihatan ang Driver ' 'susama nga way nahitabo.', 'Dalaga: (Naghuna-huna: Sus, hapit gyud ko mabisto da. Maayo ' 'gani wa kabantay ang Driver.)', 'Sa ikatulong higayon, gisakit na sab sa kapalaran ang Dalaga, ' 'kay mogawas na usab ang di maayong hangin. Nag-ampo na usab ' 'siya nga moagi ug libaong. Ug tuod man dunay libaong sa unahan ' 'apan halayo pa. Miutong ang Dalaga aron lang gyud mapug-ngan ' 'ang paghuyop sa dautang hangin. Gipaningot nga nagpamaak sa ' 'ngabil. Gamay na lay kulang apan wa damha sa makusog nga ' 'tingog mibulhot kini, POOOOOOT!', 'Driver: WA NA KA KAABOT SA LIBAONG NO!']}, 87: {'dialect': 'bisaya', 'joke': ['Gusto ng Magka-anak', 'Naay magtiayon nga gusto na gyud ug anak, kay sa ilang ' 'probinsya daku kaayo sila ug kayotaan, unya gusto na sila nga ' 'anak nga Lalaki para naay maka ugmad sa ilang yuta.', 'Asawa: Hon daku na gyud ang akung tiyan.', 'Bana: hapit na gyud ka manganak day', 'Asawa: Maayo unta Lalaki ni atong anak hon. kay atong ' 'padaruhon.', 'Bana: maayo unta dya uy kay atong padaruhon.', '(naglabay ang pila ka buwan ug nilapas na sa iyam ka bulan ang ' 'tiyan sa asawa)', 'Asawa: Hon lapas naman sa bulan akong tiyan pero wala pa ko ' 'manganak', 'Bana: Bitaw day no lapas naman kaayo. hay mas maayo day nga ' 'ako ning bulikaton.', '(Tuod man gibulikat sa bana iyang asawa)', 'nagyawyaw ang Bata nga nagkanayon…. PWEEEE, di ko mugawas kay ' 'inyo kung padarohun.']}, 88: {'dialect': 'bisaya', 'joke': ['Collector', 'Estoria ni sa usa ka Collector sa floorwax: usa ka adlaw ana ' 'sa dihang nanguleksyon ang usa ka Collector ngadto sa naka ' 'utang ug floorwax:', 'Collector: Ayo…ayo..naay tawo maningil unta ko.', '(Sa dihang gitunga ang BABAE nga naka utang labihan ka sexy ' 'nag short pants ra ug mobo pa kaayo ang blouse)', 'Babae: Uy… nong, unsay ato?', 'Collector: Maningil unta ko mam sa floorwax.', 'Babae: Agoy nong balik nalang ugma kay wala ang akong Bana.', 'Collector: Sigilang balik rako ugma', '(Pag ka ugma gibalik ang Collector)', 'Collector: Ayooo.. mam nia na pud ko kay maningil sa floorwax', '( Sa dihang gi tunga ang BABAE ng naka utang, nag soot lang ug ' 'night gown askang nipisa murag halos makita na ang kalag)', 'Babae: Uy nong, pastilan wala pa gyud ako bana niuli. balik ' 'nalang ka ugma.', 'Collector: Sigilang mam balik lang ko ugma.', '( Ang Collector nakahuna huna ug dautan sa Babae, kay sa ' 'pirmiro nga paningil nag short ug mobo kaayo, unya sa ikaduha ' 'nag night gown, namasin ang Collector nga sa ikatulo niya nga ' 'balik MAG HUBO na giyud, nag hinam hinam ang Collector bahala ' 'dili siya bayaran maka TARI lang, tuod man gibalik siya ug ' 'paningil)', 'Collector: (Huna huna) Ah karon hubo-on nako sa gisoot wala ' 'giyuy mabilin para kay sayod ko mo tunga si MAM HUBO na gyud ' 'tanan. Tood man wala nay sanina ang Collector unya gabitay ' 'bitay ra ang iyang pikoy)', 'Collector: Ayooo…. mam…yohooo….mam balik nasad ko kay maningil ' 'sa floorwax…ayooo… yohooo….nakadungog ang Collector nga naa ' 'nay mo abri sa pultahan…..sobra kaayo ka excited ang ' 'Collector…ana kay pag abri sa pultahan ang BANA man sa BABAE!)', 'Bana sa Babae: Hoy!!! nag unsa man ka diha nanuman nag hubo ' 'ka!', 'Collector: Unsa man, mo bayad mo o dili? kay ako IHIAN inyo ' 'balay.']}, 89: {'dialect': 'bisaya', 'joke': ['SelBoy: Lo, sa tanang mga lolo ug lola kamo ra jud ang sweet ' 'kaayo.', 'Lolo: Nganong nakaingon man ka ana dong?', 'SelBoy: Gatusan na gud mo katuig nag-uban pero hangtod ron ' 'honey pa gihapon inyo tawagan.', 'Lolo: Ayaw saba dong. Secret lang nato. Nakalimot man gud ko ' 'sa ngalan sa imong lola.']}, 90: {'dialect': 'bisaya', 'joke': ['usahay kung maghilak ka, way nakakita sa imong mga luha…', 'kung malipayon ka, way nakakita sa imong pahiyom…', 'kung nasakitan ka, way nakakita sa imong kasakit…', 'pero testingig PANGUTOT, lingi lagi na sila tanan!']}, 91: {'dialect': 'bisaya', 'joke': ['Mama: Iha, di maayo dugay ka muuli, mga Lalaki ra ba imo ' 'kuyog.', 'Doter: Yaw lang kabalaka ma, semenarista man akong mga kauban.', 'Mama: Uy! basig nalimot ka, imong Papa obispo!']}, 92: {'dialect': 'bisaya', 'joke': ['Bisyo', 'Girl: Kun kasal nata makabiya ka sa sigarilyo?', 'Boy: Yes!', 'Girl: Sa laag?', 'Boy: Yes!', 'Girl: Unsa pa may imong biyaan?', 'Boy: Ikaw!']}, 93: {'dialect': 'bisaya', 'joke': ['Maestra: Mokyo, naa koy lima ka mansanas sa tu-o nga kamot og ' 'napo sa wala. sa ato pa naa koy…..?', 'Mokyo: mam, naa kay dako nga kamot, mam!']}, 94: {'dialect': 'bisaya', 'joke': ['ETC', 'Judge: tinood ba nga ikaw ang nagkawat sa alahas, tV, CD, DVD ' ', MP3 ug ETC?', 'Juan: angkonon nako ang tanan pero wala jud ko nikawat sa ETC! ' 'wala ko kakita ana', 'sa ilanga balay..']}, 95: {'dialect': 'bisaya', 'joke': ['Pupil: Ma’am, unsa ng chicken fox?', 'Teacher: English na sa manok gikaon sa irong buang.', 'Pupil: Kanang birdflu?', 'Teacher: Ka bugo gyud nmo oi, past tense na sa fly!']}, 96: {'dialect': 'bisaya', 'joke': ['Sa math class', 'Teacher: Juan, kung ako aduna’y 5 ka anak sa una ka bana, 11 ' 'sa ika duha, ug 8 sa ika tulo, aduna ko’y?', 'Juan: PAGKAUWAGAN MA’AM!.']}, 97: {'dialect': 'bisaya', 'joke': ['Doktor: Pedro, nganong hinay-hinay man jud ka anang pagdala ' 'anang kahon nga tambal raman nah.', 'Pedro: perte jud nkong amping ani dok kay basin makamata ang ' 'mga sleeping pills!!!']}, 98: {'dialect': 'bisaya', 'joke': ['Husband: Love, nganong gahilak man ka?', 'Wife: Hon, gibugal-bugalan ko sa mga silingan. doberman kuno ' 'kog nawong…huhuhuhu!!!', 'Husband: yawa! nganong wa nimo paaka!!!']}, 99: {'dialect': 'bisaya', 'joke': ['Jeep puno kaayo ug karga na-flat ang ligid.', 'Lalaki ngadto sa drayber: Noy, flat lagi na imong ligid!', 'Drayber: Natural ra na dong, bug-at gud ug karga. flat gani ' 'nang imong ilong nga kugmo ray gidala!']}, 100: {'dialect': 'bisaya', 'joke': ['I thought Im sad until I saw a man without both', 'arms shaking his shoulders happily, I asked why', 'he’s happy. He replied “Dili ko hapi dong! Katol akong', 'itlog dili nako makalot!']}, 101: {'dialect': 'bisaya', 'joke': ['Samtang naligo, si ERAP mitawag ni LOI', 'ERAP: Wala bay shampoo?', 'LOI: Daghang shampoo diha!', 'ERAP: Puros mani para dry hair basa na akong buhok!', 'Bisdak na diay si Erap karon?']}, 102: {'dialect': 'bisaya', 'joke': ['Teacher: Kitang tanan descendants ni adan & Eve', 'Mokyo: Di na tinood mam! ingon si tatay descendants man ta sa ' 'UNGGOY!', 'Teacher: Mokyo, wa man ta naghisgot diri sa imong pamilya!']}, 103: {'dialect': 'bisaya', 'joke': ['Atty: Iha, mahimo bang ihulagway nimo sa korte ang itsura sa ' 'naglugos nimo?', 'Biktima: Itumon, bugason, pislat ug ilong, pangag ug putot.', 'Suspek: Sigeee… Panaway gyud!']}, 104: {'dialect': 'bisaya', 'joke': ['Titser: unsay past tense sa “hikap?”', 'Boy1: nahikapan mam', 'Titser: present tense?', 'Boy2: gihikap-hikap mam.', 'Titser: future tense?', 'Boy3: jer-jer na jud na mam ba!']}, 105: {'dialect': 'bisaya', 'joke': ['G1: Haaay, pagka thoughtful sa akong BF! ispoko mo na, ' 'kada-adlaw manawag, way sipyat!', 'G2: Unsa man sad inyo istoryahan?', 'G1: Ay dah, mangutana kung ge-dugo na ba ko!']}, 106: {'dialect': 'bisaya', 'joke': ['Mister: Hon, asa man tong cheese nga giPapalit nako nimo?', 'Misis: Naa sa lamesa.', 'Mister: Floorwax man lagi ni?!', 'Misis: Cheese na oi. Ako lang gibutangan ug ‘Floorwax’ para ' 'dili kitkiton sa ilaga. Wais sa?']}, 107: {'dialect': 'bisaya', 'joke': ['Girl: Love, unsa diay imung mindle name?', 'Boy: Buloka pud nimu oi! Middle name man na! Buwag na ta kay ' 'bulok man ka…', 'Girl: Ayaw pag ingon ana, love!', 'Boy: Buwag na gyud lagi ta! Ambi to ang welding ring!']}, 108: {'dialect': 'bisaya', 'joke': ['2 ka buang sa mental hospital…', 'Buang1: Oi! Unsaon diay pag-ikyas diri?', 'Buang2: Gamit lang ta ug flashlight. Latay ta sa suga…', 'Buang1: Palungun pa lang nimo ang suga, mahulog ko! Unsay ' 'pagtuo nimo nako, buang?']}, 109: {'dialect': 'bisaya', 'joke': ['Usa ka bayot namatay. Gi istorya ni <NAME>:.', '<NAME>: Dili man ka pwede diri sa langit.', 'Bayot: Hah? Ngano man <NAME>:?', '<NAME>: Basta dili gyud pwede ang mga bayot diri sa ' 'langit.', 'Bayot: Aw cge gud. Adto nlng ko sa rainbow mag slide2x.']}, 110: {'dialect': 'bisaya', 'joke': ['Kustomer: Day, pila man ang kilo aning imong kamatis?', 'Tindera: ay, tag biente ang kilo ani Sir.', 'Kustomer: brato ra diay ba?', 'Tindera: Oo, brato ra gayod ni kay panahon man karon sa ' 'kamatis.', 'Kustomer: Kung mao kana, ako na pakyawon tanan.', 'Tindera: Ayaw lang pud tawon Sir…', 'Kustomer: kay ngano man dili puwede?', 'Tindera: Nah… walay nakoy itinda?', 'Pastilan!']}, 111: {'dialect': 'bisaya', 'joke': ['Apo: Lola, kaon na diha ba .. bisan duha ra ka kutsara..', 'Lola: Mga buang man cguro mo. Lugaw gani dli nako matulon, ' 'kutsara pa kaha?!']}, 112: {'dialect': 'bisaya', 'joke': ['Petra: Kaayo buwagan ani akong bana!', 'Takya: Why man?', 'Petra: Nakadaug siyag free trip to Hongkong for 2..', 'Takya: Unya?', 'Petra: Ang amaw nilargag kaduha. Wa jud ko paubana!']}, 113: {'dialect': 'bisaya', 'joke': ['Doc: Paghubo na dai, ayaw kahadlok, i’ll not take advantage ' 'of u. General check-up ra ni.', 'Girl: Asa nako ibutang akong panty?', 'Doc: Dinha lang tapad sa akong brief!']}, 114: {'dialect': 'bisaya', 'joke': ['When the clerk of court read the case… The accused ' 'shouted…………', 'Buang mong tanan. Usa ra akong gi-rape!!!', 'Nganong People of the Philippines man akong kontra.']}, 115: {'dialect': 'bisaya', 'joke': ['Girl: asa ang inyong vibrator dire?', 'Clerk: naa sa bubong nakAdikit maam.', 'Girl.ok,cge paliton ko nang pula nga dako.', 'Clerk: maam FIRE EXTINGISHER mana.']}, 116: {'dialect': 'bisaya', 'joke': ['Teban: Tigulanga nang Tatay Goliat sakop na sa pirata.', 'Goliat: Unsay pirata?', 'Teban: Nagpirat pirat nang mata.', 'Goliat: Ngeeeeek.']}, 117: {'dialect': 'bisaya', 'joke': ['Jeep puno kaayo ug karga na-flat ang ligid.', 'Lalaki ngadto sa drayber: noy, flat lagi na imong ligid!', 'Drayber: Natural ra na dong, bug-at gud ug karga. flat gani ' 'nang imong ilong nga kugmo ray gidala!']}, 118: {'dialect': 'bisaya', 'joke': ['Pasyente: Dok, ngano man ni nga kong malibang ko naa may ' 'plima?', 'Doktor:Ok lang na sya. Ang delikado kong inig sikma nimo naay ' 'tae!']}, 119: {'dialect': 'bisaya', 'joke': ['Lawyer: Who stabbed you?', 'Client: Mahimo binisay-on imo pangutana, Sir?', 'Judge: Interpreter, translate the question.', 'Interpreter: Kinsa kuno si Tabyo?']}, 120: {'dialect': 'bisaya', 'joke': ['In the Paradise of Eden…', 'Eve: Adam, do you really love me?', 'Adam: Gaga! Naa pa ba diay lain!?']}, 121: {'dialect': 'bisaya', 'joke': ['Operator: AT&T, How may I help you?', 'Pinoy: Heyloow. Ay wud like to long distans da Pilipins, ' 'plis.', 'Operator: Name of the party you’re calling?', 'Pinoy: Aybegurpardon? Can you repit agen plis?', 'Operator: What is the name of the person you are calling?', 'Pinoy: Ah, yes, tenkyu and sori. Da name of my calling is ' '<NAME>. Sori and tenkyu.', 'Operator: Please spell out the name of the person you’re ' 'calling phonetically.', 'Pinoy: Yes, tenkyu. What is foneticali?', 'Operator: Please spell out the letters comprising the name a ' 'letter at a time and citing a word for each letter.', 'Pinoy: Ah, yes, tenkyu. Da name of <NAME> is ' '<NAME>.', 'I will spell his name foneticali, Elpidio: E as in Elpidio, L ' 'as in lpidio, p as in pidio, i as in idio, d as in dio, i as ' 'in io, and o as in o.', 'Operator: Sir, can you please use English words.', 'Pinoy: Ah, yes, tenkyu. Abanquel: A as in Airport agen, B as ' 'in Because, A as in airport agen, N as in enemy, Q as in ' 'Cuba, U as in Europe, E as in important, and L as in ' 'elephant.']}, 122: {'dialect': 'bisaya', 'joke': ['Anak nangayo ug money para pang Dota…..', 'Anak: Ma, ngau ta kug 500', 'Mama: Unsa? 400? Dakoa pud anang 300!', 'unsaon mana nimong 200?.', 'Abi nimog saun ra mangitag 100?', '50 gani lisod kitaon.', '20 pa kaha?…..', 'niay 5 oh!…….', 'Nice strategy!']}, 123: {'dialect': 'bisaya', 'joke': ['Si Meyor ug Pito nya ka mga konsehal nangadto sa usa ka ' 'imnanan/hubo2x….', 'sa wala pa sila nka sulod, nabasahan nila ang karatola na ' 'naga-ingon…..', 'BELOW 18 NOT ALLOWED …', 'Meyor : ATRAS!…Di nalang ta madayun.', 'Mga konsehal : Ngano man Meyor?', 'Meyor : Walo ra ta!…']}, 124: {'dialect': 'bisaya', 'joke': ['Teacher: Class, pagdala mo ug chip ahoy ha.', 'Student: Mam may “s” to and spelling maam…', 'Teacher: Ah, sorry. Chip ahoys!']}, 125: {'dialect': 'bisaya', 'joke': ['Teacher: What is ur name?', 'Student: Dell.', 'Teacher: What is ur old?', 'intawon nibudlat ang mata sa Student kay wa to sa lesson']}, 126: {'dialect': 'bisaya', 'joke': ['Inday gikan nag pa check-up sa Doktor', 'Ma’am: Inday unsa na may balita sa imong check up?', 'Inday : grabe ma’am kay kanser man', 'Ma’am: Ha, kanser unsa man imong balak karon?', 'Inday : Ay ako na lang pahibalu-on si ser kay kan’ Ser man ' 'ning Bata.']}, 127: {'dialect': 'bisaya', 'joke': ['Gitudluan sa akong sister kung unsaon siya pagtawag sa akong ' '2-year-old na pag-umangkon.', 'Sister: Mom<NAME> lagi. Dili kay Nene lang. Sige, sunod nako ' 'ha. Mo–mmy. Ikaw.', 'Bata: Mo–mmy.', 'Sister: Ne–ne.', 'Bata: Ne–ne.', 'Sister: Mo–mmy Ne–ne.', 'Bata: ‘My Ne–ne.', 'Sister: Very good. Sige, tawaga daw ko beh.', 'Bata: Psssst!']}, 128: {'dialect': 'bisaya', 'joke': ['Colegiala inside passenger jeepney. Covering her mouth with a ' 'very dainty hanky. She appears really sossy and ' 'sophisticated. Guy beside her trying to start a conversation.', 'Guy: Taga-Sanjo (San Jose) ka miga?', 'Colegiala: (irked, almost shouting): Of course ba?', '(Nisiga ang mata sa passengers. Quiet chuckles ensued.)']}, 129: {'dialect': 'bisaya', 'joke': ['In a youth gathering:', 'Guy 1: (catching his breath) Hahahaha! du^! Ay na sig katawa ' 'du^! Di na ko kaginhawa du! Hahaha!', 'Guy 2: Gi lang du^! Tagaan lang tikag mouth to mouth breath!', 'Guy 1: HAHAHA! Bogo! Unsay mouth to mouth breath? Mouth to ' 'mouth RECITATION na oi!']}, 130: {'dialect': 'bisaya', 'joke': ['Me: Bai, naa lagi leak ang elbow sa tubo nga gitaod.', 'Plumber from MCWD: Factory effect na, sir.', 'Me: Factory defect siguro na, bai.', 'Plumber: Dili, sir, factory effect gyud na cya.']}, 131: {'dialect': 'bisaya', 'joke': ['Ang akong 3 years old na pag-umangkon, iya jud gipugos ang ' 'akong Auntie mo tan-aw ug TV.', 'Bata: Ma, tan-aw na lagi ta TV ba kay Lobo na.', 'Auntie: Unsa ba na ang Lobo ba?', 'Bata: Kana gud mahimo ug dog ang Babaye.', 'Auntie: Kinsa man na ang artista diha?', 'Bata: Si Angel Locsin.', 'Auntie: Unya, kinsa iya pares?', 'Bata: Si Lolo Pascual.']}, 132: {'dialect': 'bisaya', 'joke': ['Nadawat nga text message gikan sa trabahante sa akong amiga ' 'nga gisugo Papalit ug ticket para Bohol:', '“Helo mam okey na mam alas syes sa bontag man adto sa pear ' 'ono mam back and port nato mam unya inig abot nato sa ' 'tagbilaran adto lang pa bock didto mam ang teket to a ni elvi ' 'mam alas sayes mam.“']}, 133: {'dialect': 'bisaya', 'joke': ['Girl 1: Sa imong tan-aw, naa pa siya’y na-feel sa ako?', 'Girl 2: He do! He do!', 'hahahahahha mao na jud ni!']}, 134: {'dialect': 'bisaya', 'joke': ['Titser: Class, what are the different colors of bananas?', 'Juan: Mam, green, yellow, red, and brown.', 'Titser: Gago jud ka, naa bay brown nga saging?', 'Juan: Gaga sad ka, ang linung-ag diay piki na!?']}, 135: {'dialect': 'bisaya', 'joke': ['Sexy Girl nangumpisal…', 'Pari: Iha, unsa may imong sala?', 'Girl: Father, ug makabati kog Lalaki nga mamalikas, di nako ' 'mapugngan makig-sex niya!', 'Pari: Buang, ka leche gud anang sala-a, peste! Ataya nuh!']}, 136: {'dialect': 'bisaya', 'joke': ['Si Pedro naulahig sulod sa klase.', 'Titser: Pedro, ulahi na pod ka..', 'Pedro: Ulahi man god ang akong relo Ma’am.', 'Titser: Problema ba na? i-adbans god.', 'Pedro: Sige Ma’am.', 'Taudtaod…', 'Titser: O, Pedro, asa man ka?', 'Pedro: Ting-uli na Ma’am!']}, 137: {'dialect': 'bisaya', 'joke': ['Pulis gidakop ang prostitute', 'Prosti: Wala ko nagabaligya og sex oi', 'Police: Unsa man diay ng ginabuhat nimo?', 'Prosti: Saleswoman ko oi..nagabaligya og condom w/ free ' 'demo.']}, 138: {'dialect': 'bisaya', 'joke': ['Tindero: Oi suki! palit na og gatas sa baka tag dyes pesos ' 'lng.', 'Manong: Ah! mahala gud! wala kay tagpiso lang diha?', 'Tindero: Naa man, pero ikaw pa ang mo supsop sa baka.']}, 139: {'dialect': 'bisaya', 'joke': ['Unsay English sa cat?', 'Mitubag si Dodong,” cat”', 'nganong cat man ang english sa iring Ma.?', 'Mituba si Mama, “kay mocatcat man sa bongbong”', 'Nganong dog man ang English sa iro, Ma?', 'Kay mo dog man ang mga itoy sa inahan.', 'Bright diay ka ma', 'Ikaw bright pod ka Dong?', 'O, kay liwat man ka.']}, 140: {'dialect': 'bisaya', 'joke': ['First day of work ni Huling as secretary sa office ni Atty. ' 'Bukdoy', 'Diay mi abot nga ambongang laki.', 'Wait sa sir ha. dayon punit si Huling sa telepono. Pa cute ' 'cute dayon ang baje, pa as if nga naay gika-istorya…', 'Hulat lang tawon ang laki, hilom nga naglingkod.', 'Pagkataod-taod, gibutang ni Huling ang phone. Lami kaayog ' 'smile.', 'What can I do for you sir?', 'Ah, wala mam. Taoran lang unta nkug linya inyong telepono!']}, 141: {'dialect': 'bisaya', 'joke': ['Naay pilosopo nga Lalaki ni palit og siopao', 'Kulas: Miss, isa ka siopao… kanang babae.', 'Waitress: Babae nga siopao?', 'Kulas: Oo. kanang naay papel nga hapin.. murag napkin..haha', 'Waitress: Ahh, mao ba? Lalaki mani nga siopao', 'Kulas: Lalaki?', 'Waitress:naa man gud niy itlog sa sulog sir.']}, 142: {'dialect': 'bisaya', 'joke': ['Bugo: Pre tagnaa unsa akong kinaiya, nagsugod sa letter A', 'Pare: Approachable?', 'Bugo: Mali', 'Pare: Amiable', 'Bugo: Hehe mali japun', 'Pare: O sige na sirit na', 'Bugo: Anest pre.']}, 143: {'dialect': 'bisaya', 'joke': ['Asawa: Dong, maunsa ka kng ma2tay ko?', 'Bana: Tingalig mamatay sad ko!', 'Asawa: Ha! ngano man?', 'Bana: Usahay makapatay baya nang sobra sa KALIPAY!..ahaha']}, 144: {'dialect': 'bisaya', 'joke': ['2 ka mg amiga nagpasikatay…', 'Girl1: Our family spent d whole summer in Europe, it was ' 'great! jw bout u? wr dd u spend ur summer vcation?', 'Girl2: I just spnt it hir n d philippines..', 'Girl1: Rilly? uggghh! wer? hw poor!', 'Girl2: At ur Boyfrnd’s house..he was great! =)']}, 145: {'dialect': 'bisaya', 'joke': ['Tagalog vs Cebuano… Mas grabe gyud ta!', 'Kon sa tagalog ang LIBANG nalingaw pa, diri sa ato pwerte ' 'nang baho-a!', 'Kon sa tagalog ang LANGGAM nagkamang pa, diri sa ato naglupad ' 'na!', 'Pero ang pinakagrabe gyud…', 'Kon sa tagalog ang BUNGI ang ngipon nangatangtang ra ' '(pangag), diri sa ato ang ngabil nangawaksi na!', 'Chino: kahinay ba sa akong kita sa akong nigosyo uy!', 'Janno: unsaman diay imong nigosyo bai?', 'Chino: Bay and Sil ra uy..', 'Janno: aw diay! Kusog mana bai nga nigosyo.', 'Chino: BAYabas and SILi bah….', 'Janno: butangi…..']}, 146: {'dialect': 'bisaya', 'joke': ['Tatay: Anak pa ningkamut dyud ug iskwila.. unsa man d ay ' 'imung corz na kuhaun anak?', 'Anak: Gusto ko mag seaman tay!', 'Tatay: Kana jud anak.. puhun puhun makla human ka sa imung ' 'kurso anak. Naa ku barkada nga pwede mag pasakay sa imuha', 'Anak: Tinuud tay kinsa mana imung barkada tay.', 'Tatay: Akung barkada nga ukoy anak pa sakyun ka niya sa iyang ' 'buko buko puhun puhun.', 'Anak: Nyahahaha tatay jud ohhh']}, 147: {'dialect': 'bisaya', 'joke': ['Donya: Kay bag-o man ka dinhi, gusto ko masayod ka nga ang ' 'pamahaw diri alas sais impunto!', 'Katabang: Way problema Sinyora! Kung tulog pa ko anang orasa, ' 'una nalang mo og ka-on!!']}, 148: {'dialect': 'bisaya', 'joke': ['Tulokumare ang nag-istorya.', 'Mare1: Sus, ako mare pwerte gyud nako ka limtanon kay ang ' 'akong pustiso ako mang isud sa ref.', 'Mare2: Ay wala ra ka nako mare. Mas limtanon pa ko nimo kay ' 'kon moagi gani ko sa hagdan, inig abot nako sa tunga-tunga ' 'makalimot ko kon pasaka ba ko o panaog.', 'Mare3: (Dang pangyam-id) Sus, ako mga mare, simbako lang ' 'gyud(dang tuktok sa bungbong as in ‘knock-on-wood’ effect) di ' 'ra gyud pod ko intawon limtanon! (Dayong talikod). Kadyot usa ' 'mga mare ha, kay ako usang ablihan ang pultahan kay naay ' 'nanuktok.']}, 149: {'dialect': 'bisaya', 'joke': ['Iro1: Pre, ingon sila kaning atong laway naay rabies, ang ' 'rabies makamatay.', 'Iro2: Unya, unsay problema?', 'Iro1: Gitulon naku akong laway. Kulbaan ko!']}, 150: {'dialect': 'bisaya', 'joke': ['Ang una namatay c “DA KING”..', 'Sunod namatay c “DA Boy”', 'sunod nsad c “DA MASTERRAPPER”..', 'wala kaha ma kulbaan si..', 'DAGUL? AHAHA….']}, 151: {'dialect': 'bisaya', 'joke': ['Dear Tay,', 'Padad-i ko ug brief ky akong brief buslot na.', 'ang 2bag:', 'Anak, agwantahi lng usa ky ako gani garter nlng! 😀']}, 152: {'dialect': 'bisaya', 'joke': ['Lolo: Kaniadto, akong 5 pesos inig adto nako sa department ' 'st0re,makadala nakog gatas, pan, medyas, polo, ug pantalon.', 'Apo: Karon diay lo?', 'Lolo: Lisod na karon kay naay survelance CAMERA.:>']}, 153: {'dialect': 'bisaya', 'joke': ['One day… sa tindahan..', 'Bata: Ayooh!', 'Tindera: Unsa man?', 'Bata: Naa moyload?', 'Tindera: Oh! naa!', 'Bata: Pateksa ko beh!…ehehe']}, 154: {'dialect': 'bisaya', 'joke': ['Pari: Muapil ka sa Army of God ?', 'Juan: Member naku ana, Padre .', 'Pari: Ngano wla man ka sa misa permi ?', 'Juan: Secret Agent man gud koh pader .!', 'Pari: Atay rah !']}, 155: {'dialect': 'bisaya', 'joke': ['Apo: Lo kaon na intawon, bisag duha lang ka kutsara.', 'Lolo: Atay! Giango-ango na mo? Lugaw gani maglisod? kog ' 'tulon, kutsara pa kaha? Duha pa jud kabook!']}, 156: {'dialect': 'bisaya', 'joke': ['Nag conduct og evaluation ang Doctor aron mahibal-an kung ' 'duna bay improvement sa iyang mga Pasyente sa Mental ' 'Hospital…', 'Ang doctor nag drawing og purtahan sa pader. Ni ingon dayon ' 'ang doctor.', 'O kinsa tong na nga ayo na hala pwede na mo gawas ablihi lang ' 'ninyo ning purtahan…', 'So ang mga boang nga ganahan na mo uli nag inilugay og adto ' 'sa pader unya namatikdan sa doctor nga naay usa nga wla ni ' 'duol sa gi drawing nga purtahan sa pader. Naka ingon ang ' 'doctor nga arang-arang naa gyuy usa nga tarong. Gipa ngutana ' 'sya sa doctor…', 'Ngano wla mn ka ni duol sa pader dli ka gnahan mo gawas diri?', 'Og kalit nga gi tubag sa buang ang maong Doctor…', 'Ayaw ko ilara doc…kabalo ko oi….nga naa nimo ang yabi…', 'Dakong dismaya sa Doctor kay buang lang diay gihapon…']}, 157: {'dialect': 'bisaya', 'joke': ['Samtang nagklase si Maam Isyat, siya nagkanayon…', 'Maam Isyat: Kinsa ninyo ganahan muadto sa langit?!', '…Ug ang tanang mga estudyante niisa sa ilang tuong kamot, ' 'gawas lang kang Pedro…', 'Maam Isyat: O Pedro, nganong dili man ka ganahan muadto sa ' 'langit?!', 'Pedro: Maam, nitugon man gud ‘to si mama nga paulion ko niya ' 'ug sayo!']}, 158: {'dialect': 'bisaya', 'joke': ['Mga Pinoy, Intsek ug Hapon sa Saudi nag pustahay kon', 'kinsa ang maka pronawns sa pulong nga “Bulaklak at Paroparo”. ' 'Ang mga', 'Pinoy mipusta ug dako Sa ilang paisano.', 'Intsek: “Bulaklak at Palopalo”, ang intsek pildi kay dili ' 'maka pronawns ug litra nga “R”.', 'Hapon: “Burakrak at Paruparu”, ang hapon pildi kay dili ' 'makalitok ug litra nga “L”.', 'Pinoy: “Buyakyak at Payopayo”, labaw pang napildi, kay taga ' 'Surigao man diay ang kontestant.']}, 159: {'dialect': 'bisaya', 'joke': ['Babaye: Naglagot ko sa photographer !', 'Lalaki: Ngano man??', 'Babaye: Kay nagpapicture ko nagsandig lubi.', 'Lalaki: Unya?', 'Babaye: Kalagot oy ko… Kay pagkadevelop… Nagkagod naman ko ug ' 'lubi!']}, 160: {'dialect': 'bisaya', 'joke': ['Nakit an sa ko barkada ang iyang ex-boyfriend …', 'Ge pangutana sya sa iyang ex-boyfriend na…', 'Love pa ba kaha ko nimo??', 'Gi butang sa iyang ex-boyfriend ang kamot sa ako barkada sa ' 'doghan…', 'Gi sagpa bitaw sa sa ko barkada kay naa nay boobs ang ' 'inatay!!!!']}, 161: {'dialect': 'bisaya', 'joke': ['Inahan: Daghana og lung-ag, apila ang iring ug iro..', 'Anak: OK, Ma.', '(pagkataud-taud)', 'Inahan: Hoi Inatay! Nganong duna’y iring sa nilung-ag?', 'Anak: Apil gani unta ang iro, wala lang jud masud..']}, 162: {'dialect': 'bisaya', 'joke': ['Lets learn Japanese!', 'rice-HUKARA,', '…lubi-KAGURA,', 'pagka0n-KUTSARAA,', 'cute-AKURA,', 'pangit-GABASA', 'Ehehe']}, 163: {'dialect': 'bisaya', 'joke': ['Manager: Dawat kana. unang buwan nimo nga sweldo Php.5k. ' 'After 6 mos. 15k na.', 'Applicant: Sir tenk yu kaayo! Sir, after 6 mos. Na lng ko ' 'sulod?? Hahaha…']}, 164: {'dialect': 'bisaya', 'joke': ['Anak: Tay.. Tay… Urine Test nako ugma…', 'Tatay: Ahw… Maayo na nak', 'Anak: Unsa man buhaton nako ana tay??…', 'Tatay: Bulok… Unsa pa man diay? Pag study na didto']}, 165: {'dialect': 'bisaya', 'joke': ['Grabe ang ilongo kon manghagad og kaon “KAON TA ANAY”', 'Kng d ka mo sogot ingnon ka “KAON KA BALA”', 'Unia ug mo sugot ka “CGE KAON TA-E”', 'Nia kng nagkaon nka ingnon ka “KAON KA BALA”', '…hahaha…unsa man gyud???']}, 166: {'dialect': 'bisaya', 'joke': ['Boy: Naay pilok natagak oh! Make a wish dayon.', 'Girl: Sana magkaroon ako ng maraming wishes!', 'Tentenenen……', 'Natagak tanang pilok! 😀']}, 167: {'dialect': 'bisaya', 'joke': ['Nanay: Hagbong na sad ka??? Ngano di man nimo sundon si ' 'Pedro:. Permanente honor!', 'Anak: Unfair sad kaayo nay kung imo ming ikompara.', 'Nanay: Kay ngano man?…', 'Anak: Bright baya to iyang inahan.']}, 168: {'dialect': 'bisaya', 'joke': ['Bata: Pa2x,naay man0k sa kusina dli magpabugaw..', 'Papa: Hadloka dong!', 'Bata: Hala ka manok!naay kalaha dha!!']}, 169: {'dialect': 'bisaya', 'joke': ['3 kah vampire nisod ug bar ug ni order', 'v1: Ahmmmm fresh blood lang ako beh', 'Waiter:ok heres your fresh blood', 'v2:dugo-dugo lang ako beh kay kuwang ako kwatra kung mag ' 'fresh bolld pah koh!!', 'Waiter: w8 for ah minute giluto pah ikaw sir unsa man imo???', 'v3:tubig init lang ako beh kay nakapunit kug napkin mag tea ' 'lang ko………..lolxD? bisaya jokes, bisaya, binisaya']}, 170: {'dialect': 'bisaya', 'joke': ['Kinutlo sa basahon ni EMPERADOR BRANDY kapitulo GENEROSO ' 'BEERsikulo KULAFO hangtod REDHORSE…', 'Ang tawo nga dili mosubay sa matarong nga dalan…..', '.”HUBOG”.. . oH yeah!.']}, 171: {'dialect': 'bisaya', 'joke': ['Ang TAGAY murag salida..', 'Kung naay Mohilak, DRAMA.', 'Kung naay Magsumbagay, ACTION.', 'Kung naay Mangatawa, COMEDY.', 'Kung naay Mawa, SUSPENSE.', 'Kung naay Moligid, HORROR.', 'Kung naay Magchula, ROMANCE.', 'Kung naay Magkwarto? Aw wai lain, SCANDAL nana.', 'Nya kung manguli na ang tanan']}, 172: {'dialect': 'bisaya', 'joke': ['Usa ka Foreigner nasakpan sa Citom naay traffic violation.', 'Citom: (nag gunit ug ballpen ug ticket, pinaisog) name sir!', 'Foreigner: <NAME>', 'Citom: ahhh… cge next time, be careful ha….']}, 173: {'dialect': 'bisaya', 'joke': ['Singing Contest', '1st contestant: Akong kantahun “dahong laya”', '2nd contestant: Akong kantahun “d falling leaves”', '3rd contestant: Dli ko mukanta!', 'Judges: Nganu man..?', '3rd contestant: manilhig nalang ko kay daghan sagbot!']}, 174: {'dialect': 'bisaya', 'joke': ['Sa mall of Asia naay foreinger na nag shopping ug mga tshirt, ' 'tapos gi duol daun cya sa usa ka bisayang dakong saleslady', 'Foreigner: How much is this hatton shirt Miss?', 'SalesladyWa katubag) Ahhh, uuuhmmmmm', 'Foreigner: How much is this?', 'Saleslady: Wait sa sir, ill think the match first! (nag ' 'huna2x kng unsa pasabot sa amerikano)', 'Foreigner: How much?', 'Saleslady: Yes is it is no match for our bokser manny pakyaw ' 'sir, hatton no much (match) with manny pram gen san sir.']}, 175: {'dialect': 'bisaya', 'joke': ['Anak: Tay, tinuod ba ang ” FIRST LOVE NEveR DIES” ?', 'Tatay: Korek! ka jan nak! tan-awa nang imong NANAY hantud ' 'karon wala pajud namatay ang ANIMAL!!']}, 176: {'dialect': 'bisaya', 'joke': ['Mare 1: Grabe na jud ko ka kalimtanon oi, misaka gani ko ug ' 'hagdan, mo-hunong ko kay malimot ko kung paingon bako taas o ' 'sa ubos.', 'Mare 2: Ako? Simbako lang…(with matching knock 3 times on ' 'wood), dili jud ko limtanon. Excuse me sa ha kai murag naay ' 'nanuktok!!!']}, 177: {'dialect': 'bisaya', 'joke': ['After sex with a college Girl…', 'Mayor: Hmmmmm how much?', 'Girl: P200 pesos lang sir.', 'Mayor: What? how can you live with P200 pesos?', 'Girl: Ay sir, sideline ra ni nako, blackmail man jud ako ' 'business…bantay ka ni mam ha?']}, 178: {'dialect': 'bisaya', 'joke': ['Kapayason 1: Pre, grabe kau na akong Papa.. kabalo ka anang ' 'Pacific Ocean? sya nag kalot ana!!!', 'Kapayason 2: Layo rana sa akong Papa pre.. kabalo ka anang ' 'Dead Sea? sya nag patay ana!!']}, 179: {'dialect': 'bisaya', 'joke': ['Adik: will u marry me?', 'Burikat: YES! i do! madawat ra nimo nga naa koi past?', 'Adik: cge lang.. wala man sad koi future..']}, 180: {'dialect': 'bisaya', 'joke': ['GF: Leche ka! kit-an taka naa kuyog ug nag holding hands ' 'pamo! kiss daun! gi binuangan rako nimo..', 'BF: nah! basta.. wala jud taka binuangi.. kato akong kauban ' 'ako gi binuangan.']}, 181: {'dialect': 'bisaya', 'joke': ['Sa usa ka layo nga baryo…', 'Bata: Tang, asa man paingon ni nga dalan?', 'Lolo: Ambot Dong, sukad2 wala man ko kakita nga nilakw ng ' 'dalana.']}, 182: {'dialect': 'bisaya', 'joke': ['Studyante: Noy, plete oh.', 'Driver: Asa gikan.', 'Studyante: Gikan nako.', 'Driver: Asa padong.', 'Studyante: Padong nimo bogo!']}, 183: {'dialect': 'bisaya', 'joke': ['Pare 1: Pre, dakoag ngisi nimu gud?', 'Pare 2: Nagdamgo ko gabie pre! Nagkuyog kuno ta!', 'Pare 1: Nya unsa may naa ana?', 'Pare 2: Wa ra gud! GIKILIG RA KO!', 'wahahaha! 😀']}, 184: {'dialect': 'bisaya', 'joke': ['BF: Naa koy ihatag nga gift sa imo, pero tag-ana sa kung ' 'unsa!GF: Sige, gai ko ug clue…', 'BF: Kinahanglan ni sa imong liog….', 'GF: Kwintas?', 'BF: Dili… LUGOD!!!']}, 185: {'dialect': 'bisaya', 'joke': ['Teacher: what s d capital of d phils?Chinese', 'Student: mam, kahit ako intsik, ako alam pilipinas,pilipinas, ' 'wala capital, pulo utang! ahahahha…']}, 186: {'dialect': 'bisaya', 'joke': ['ANg bana nitok2 sa pultahan:', 'Mr:Luv abot nko! ablihing pultahan!', 'Mrs: dko. wla koy gisuot. naghubo ko.', 'Mr: Ok rah. wla btaw koh uban…..Mrs: ikaw wla. ako naa!']}, 187: {'dialect': 'bisaya', 'joke': ['Pasyente : Dok! naga’cremate pa ba mo ug patay diri?', 'Dok : Oo, pero 30 thousand amo singil.', 'Pasyente : Ha? Unya kay 15 thousand ra mani akong dala na ' 'kwarta dok?', 'Dok : Puede man gihapon, i’half cook lang na nato. Ikaw na ' 'lang human sa inyong oven.']}, 188: {'dialect': 'bisaya', 'joke': ['Anak: Nay gipa.tumbling ko sa skwelahan ganiha', 'nanay: Gaga,gusto ra nila makit.an imung panty!', 'Anak: Kahibawu ko,mao bitaw ahu gitaguan sa bag akong panty']}, 189: {'dialect': 'bisaya', 'joke': ['Dok : Mam, naa man diay ka breast cancer.', 'Pasyente : Ha? taka ka diha dok uy, I’m healthy! I’m healthy! ' 'Basig naa pa kay lain option dok?', 'Dok : Bati pa jud ka ug nawong! tuo ka o dili?']}, 190: {'dialect': 'bisaya', 'joke': ['Teacher: Class, use DERMATOLOGIST in a sentence.', 'Juan: <NAME>, TOLO DIYES na karon ang itlog sa manok, upat ' 'diyes kung gagmay.', 'Teacher: Juan…get out!!!!!!!!!']}, 191: {'dialect': 'bisaya', 'joke': ['Anak: Tay, magpalit ta ug de lata tay.', 'Tatay: Anak, ayaw ra gud pag’ingon ug de lata kay mura ka ug ' 'taga bukid ana.', 'Anak: Aw, unsa man diay na tay?', 'Tatay: KANGGUDS!']}, 192: {'dialect': 'bisaya', 'joke': ['Baye : Dok, unsa may akong buhaton na niwang man ko kaayo?', 'Dok : Pag’maintain lang ug 3 meals kada adlaw day, tapos ' 'after 1 month, balik ka diria sa ako.', '(after 1 month, nibalik ang babae sa Doktor)', 'Dok : Hoy! Naunsa na man hinuon ka na perte naman hinuon ' 'nimong niwanga!', 'Baye : Alangan dok, nag’ingon man ka na mag’maintain ko ug 3 ' 'ka Lalaki kada adlaw.', 'Dok : Nabuang nah! Kaon akong pasabot dili Lalaki! Kinsa may ' 'dili mag’niwang ana labi na ug makasugat ka ug Lalaki na ' 'dagkug karga!', 'ay yay yay!']}, 193: {'dialect': 'bisaya', 'joke': ['Titser: Kitang tanan descendants ta ni ADAN & EVA.', 'Juan: D na tinuod mam uy, ingon ni tatay descendants daw ta ' 'sa UNGGOY!']}, 194: {'dialect': 'bisaya', 'joke': ['Boy1: Bai, itom man kaayo ka sa una bai, pero karon puti na ' 'man kaayo ka! unsa may sekreto nimo bai??', 'Boy2: Aw sayon rah! Wala ra naq gitambalan aq ap-ap bai! ' 'hek3….']}, 195: {'dialect': 'bisaya', 'joke': ['Tatay: Bogo ka anaka ka! Tan’awa ng card nimo puro F and ' 'nakabutang!!! FAILED KA!!!! BAGSAK KA! BAGSAK KA!', 'Anak: Pataka raman ka diha tay uy! FASAR man tawon ng F sa ' 'CARD… bogo jud!']}, 196: {'dialect': 'bisaya', 'joke': ['Nagpa-blood test si Jose…. Gikuha-an xa ug sample sa nurse….. ' 'kay wala may coton, gisup’sup sa nurse ang tudlo niya…', 'Ingon ni Jose: Magpa’Urine test nalang pud ko daUn mam… ' 'hehehe']}, 197: {'dialect': 'bisaya', 'joke': ['Cus2mer: AyoOoO! Papalita ko ug safeguard!!!!!!!!', 'Tindero: Ayaw cgeg syagit syagit dihaA dong kay di ko bungol! ' 'Unsa man na simkard? Globe o Smart?']}, 198: {'dialect': 'bisaya', 'joke': ['Carlo: Hoy yaku! nganung cge man ka ug katawa diha?', 'Yaku: Hehehehe… kabalo naq sa imo pin number. hehehe…', 'Carlo: Unsa man aq pin number b?', 'Yaku: Upat ka asterisk… hehehe']}, 199: {'dialect': 'bisaya', 'joke': ['2 ka mg amigo:', 'Boy1: Pre ngano ng hilaka ka man?', 'Boy2: Huhu kay gibiya.an ko sakong uyab pre.', 'Boy1: Aw mao bah? asa man diay paingon emu uyab pre?']}, 200: {'dialect': 'bisaya', 'joke': ['Warden: Karong adlawa, kamong tnan naay BAG-ONG BRIEF!', 'Priso: Yeheeey! pagka buotan ba lamang ni Warden oi!', 'Warden: Ok..Selda A and Selda B.. EXCHANGE BRIEF!', 'hahahahahhahahhaha']}, 201: {'dialect': 'tagalog', 'joke': ['Boy: Tandaan mo lahat ng sasabihin ko dahil importante ito?', 'Girl: Ok! ano ba sasabhin mo?', 'Boy: Mahal na mahal kita lagi mong tandaan na nandito lang ' 'ako, lagi sa tabi mo!', 'Boy: ano natandaan mo ba?', 'Girl: (kinilig) ah oo naman', 'Boy: Good! pakisabi yan sa bestfriend mo ah. Thank You! ' 'Wahahaha']}, 202: {'dialect': 'tagalog', 'joke': ['Teacher: Ang unang maka sagot ng tanong ko, makakauwi agad.', 'Juan: (hinagis ang bag sa labas)', 'Teacher: Kaninong bag yon?', 'Juan: Sa akin po mam! Bye guys!']}, 203: {'dialect': 'tagalog', 'joke': ['Pakiusap huwag mo na akong BILUGIN ~ Kulangot', '']}, 204: {'dialect': 'tagalog', 'joke': ['Isang araw si Pedro umuwi ng bahay.', 'Pedro: Itay, (padabog) pinapatawag daw po kayo sa school!', 'Itay: Bakit Pedro? may ginawa kananamang kalokohan noh?', 'Pedro: Ako po ba? baka po kayo Itay, ikaw nga po pinapatawag ' 'di ba? lagot ka']}, 205: {'dialect': 'tagalog', 'joke': ['Ang gulo, change number na naman ako.', 'Nakakabadtrip, sinong namigay ng number ko?', 'May laging nagtetext at nagmessage sa akin at tinawagan ko..', 'Ang sinagot lang ay. “hello, ako budoy!”.']}, 206: {'dialect': 'tagalog', 'joke': ['Gwapong nagtext: Hi babe, paload naman P100.', 'Beking Jowa: Ok Babe', '(nagmamadaling maghanap ng loading area)', 'Beking Jowa: nareceive mo na babe?', 'Gwapong nagtext: Hu U? nyahahaha']}, 207: {'dialect': 'tagalog', 'joke': ['Hindi ko naman hinahangad na ipagmalaki mo ko!', 'Ang kinasasama lang nang loob ko...', 'ay sa harap ng ibang tao ganun mo na ako kung itanaggi! ~ ' 'Utot', '', '']}, 208: {'dialect': 'tagalog', 'joke': ['Teacher: Juan?', 'Juan: yes ma’am?', 'Teacher: 1+3?', 'Juan: 4 ma’am..', 'Teacher: very good! How about you Pedro?', 'Pedro: yes ma’am?', 'Teacher: 3+1?', 'Pedro: ayan ka na naman Ma’am, kapag mahirap yung tanong, ako ' 'ipapasagot niyo!']}, 209: {'dialect': 'tagalog', 'joke': ['Sa party, nilapitan ng isang gwapong lalaki ang isang babaeng ' 'nkaupo sa isang tabi:', 'Lalaki : sasayaw ka ba ?', '(tuwang tuwa ang babae at tumayo)', 'babae : oo, sasayaw ako!', 'lalaki : hay salamat! paupo ako ah! XD Hahaha', '']}, 210: {'dialect': 'tagalog', 'joke': ['Dionisia: Manny anak, sabi ng mga tambay sa labas, pangit daw ' 'ako.', 'Manny: Ma, alam mo ang kagandahan ay nasa loob. Kaya huwag ka ' 'ng labas ng labas! XD', 'Hahaha']}, 211: {'dialect': 'tagalog', 'joke': ['boy:may pick up ako sayo', 'babae:ano..? (kinikilig)', 'boy:gus2 ko lng ngayong pasko PSP mo', 'babae:bkit...?', 'boy:Pasko Sa Piling mo']}, 212: {'dialect': 'tagalog', 'joke': ['sperm1 : pag nkalabas aq d2. ang kukunin kong course ay ' 'doctor.', 'sperm2 : ako nmn pag nkalabas ako d2 ang kukunin kong course ' 'ay seaman.', 'sperm3 : asa pa kau na ma22pad yan mga pangarap nyu. eh nsa ' 'bunganga kau...']}, 213: {'dialect': 'tagalog', 'joke': ['Teacher: ano ang ating pambansang hayop? Nagsisimula sa ' 'letter K ', 'Student: Kuto?', 'Teacher: mali, nagtatapos sa letter W!', 'Student: Kutow!', 'Teacher: mali, may sungay to.', 'Student: Demonyong kutow!', 'Teacher: GET OUT!']}, 214: {'dialect': 'tagalog', 'joke': ['ANAK: nay! nay! si kuya nagbigti sa cr!', '(tumakbo ang nanay sa cr ngunit wala ang kuya).', 'NANAY: nako anak wag kang magbibiro ng ganyan!', 'ANAK: hehe joke joke sa sala siya nagbigti.', '']}, 215: {'dialect': 'tagalog', 'joke': ['Nanay : Anak, bumili ka nga ng asin sa kanto.', 'Anak : Yoko nga! Ang dilim kaya. Nakakatakot na lumabas.', 'Nanay : Wag ka mag-alala, kasama mo naman angel mo e.', 'Anak : Eh di siya na lang utusan mo! WALANJO, dalawa pa kame? ' 'Parang asin lang bibilhin?', 'Nanay : Aba! Bastos kang bata ka ah?', 'Anak : Ang bastos nakahubad!', 'Nanay : *hinimatay*.', 'Anak : Yan ang bastos! Kinakausap mo, tutulugan ka. Umayos ka ' 'nay ah? Baka di kita matantiya! Argghhhh!']}, 216: {'dialect': 'tagalog', 'joke': ['NANAY: Anak ang bait mo naman simula ng makalabas ka sa ' 'Mental Hospital pinuno mo na ng tanim itong bakuran natin. ' 'Bakit mo nga pala pinupuno ng halaman ang bakuran natin?', 'ANAK: A HUGE WAVE OF ZOMBIES IS APPROACHING!', '']}, 217: {'dialect': 'tagalog', 'joke': ['sa farm my manok na manyakis kahit kabayu kambing patu ' 'kalabaw lahat ay kanyang kinakastahan (isang araw nangingisay ' 'ang manok sa lupa) o yan buti nga sayu manyakis ka kasi,, ' 'nalasun ka mamatay kana karma mayakis (sabi ng ni pabo) ' 'manok; anung pinag sasabi mong mamatay ha? lason mag hintay ' 'ka ha pag natapus ako dito sa bulati ikaw nanaman wag kang ' 'lalayu']}, 218: {'dialect': 'tagalog', 'joke': ['The Japan’s prime minister, Yoshihiko Noda was poor in ' 'English language. Hence one month before going to USA,to ' 'visit President Obama, he was given some Basic English ' 'Conversation training.', 'The instructor told Yoshihiko, “ Prime Minister, when you ' 'shake hands with President Obama, please say, ‘How are you?’', 'Then Mr. Obama will say, ‘I’m fine, and you?’', 'Now you should say, ‘Me too.’', 'Afterwards we, translators, will do all the work for you.”', 'It looked quite simple and Yoshihikio was quite confident.', 'When he met Obama, he mistakenly said, “Who are you?”', 'Mr.Obama was obviously shocked but still managed to react ' 'with humor: “Well, I am Michele’s husband, hahahahaha…..”', 'Then Yoshihiko replied confidently, “Me too, hahahaha…. ' 'hahaha….”', 'Then there was a long silence in the meeting room.']}, 219: {'dialect': 'tagalog', 'joke': ["BOY: Miss,pwde ko bng ipasok ang 'MATIGAS' kong", "'Pag-ibig'", 'sa MADULAS at MALAWAK na butas ng iyong', "'pagmamahal'", '', 'at isagad ang aking pagka', "'seryoso'", 'at handa aqng iputok at isabog sa loob nang NAPAKALAKI mong', "'PUSO'", 'ang KATAS ng aking', "'PAG-IBIG'", 'GIRL: Sobra ka naman kung manligaw, nakakabuntis :', '']}, 220: {'dialect': 'tagalog', 'joke': ['Girl: Ano ba yang Boyfriend mo ang Pangit eh ikaw ang ganda ' 'mo!', 'Gf: Hindi ka ba nanonood ng Beauty and the Beast?? Magiging ' 'Gwapo din yan!!', '(Nainis si Bf at sumagot)', '', "Bf: Hindi ka rin ba nanonood ng 'shrek' ??? Papangit ka " 'rin!!']}, 221: {'dialect': 'tagalog', 'joke': ['AMA: Hoy Brando! Huwag kang babakla-bakla ha!', 'ANAK: Di po itay. Punta nga ako sa basketball court ngayon.', 'AMA: Yan, astig!', 'ANAK: Mama, nakita mo pompoms ko?']}, 222: {'dialect': 'tagalog', 'joke': ['LASING 1: Pare,ang bilog ng buwan!', 'LASING 2: Di yan buwan, araw yan!Tanungin natin sa ale.Ms, ' 'araw ba', '', 'yan araw o buwan?', 'GIRL:Di po ako tagarito!!']}, 223: {'dialect': 'tagalog', 'joke': ['GURO: Imagine na kayo ay MILYONARYO. Isulat ang iyong ' 'activities.', 'ALL: Yes mam!', 'GURO: Juan bat di ka nagsusulat?', 'JUAN: Intay ko po ang SECRETARY ko']}, 224: {'dialect': 'tagalog', 'joke': ['PEDRO: Dear pwede k b ngayon?', 'SEXY: Di pwede pagod ako!', 'PEDRO: Is that your final answer?', 'SEXY: Final answer!', 'JUAN:Ok, can i call a friend?']}, 225: {'dialect': 'tagalog', 'joke': ['KILLER: Pangalan mo Mrs?', 'MRS: Inday po!', 'KILLER: Kapangalan mo inay ko, di na kita papatayin! Ikaw ' 'Mr?']}, 226: {'dialect': 'tagalog', 'joke': ['TELEPONO: Krrringg! Krrringg!', 'AMO:Inday sagutin mo ang telepono baka yung chicks na naman ' 'ng sir mo yan!', 'INDAY: Si Maam talaga, pinapagselos ako!', 'MR: Juan po, but my friends call me Inday!']}, 227: {'dialect': 'tagalog', 'joke': ['JUAN: Tuwing magdadala ako ng GF s bahay,di nagugustuhan ni ' 'inay!', 'PEDRO:Mgdala ka ng kamukha ng inay mo!', 'JUAN: Natry ko na,ayaw naman ni itay!']}, 228: {'dialect': 'tagalog', 'joke': ['JUAN:Nay,ako lang po nakakuha ng line of 9 sa test namin!', 'NANAY:Wow, yan ang anak ko! Ilan b nakuha ng mga klasmeyts ' 'mo?', 'JUAN: Lahat po 100!']}, 229: {'dialect': 'tagalog', 'joke': ['JUAN: Alam mo, ayaw na ayaw kong makakita ng nakatayong babae ' 'sa bus', 'habang ako eh nakaupo!', 'PEDRO: Kaya pinapaupo mo?', 'JUAN: Hindi, natutulog ako!']}, 230: {'dialect': 'tagalog', 'joke': ['JUAN: Dok, ako po yung pasyente nyo LAST YEAR!', 'DOC: Oo naaalala ko! may problema ba?', 'JUAN: Itatanong ko lng po sana kung pwede na akong maligo!']}, 231: {'dialect': 'tagalog', 'joke': ['Maitim na nga,grabe pa mag pulbo..tsk crinkles kaba?']}, 232: {'dialect': 'tagalog', 'joke': ['Mga uri ng gamot sa mga broken💔', 'OPTIEN - Para Sa Nabulag Na Pag-Ibig', 'PLEMEX - Para Sa Mga Alaalang Bumabara Sayong Isip', 'ALAXAN - Para Sa Sakit Na Nararamdaman', 'BIOFLU - Para Muling Makabangon', 'MEFENAMIC - Para Sa Pusong Kumikirot', 'NEOZEP - Para Sa Naipong Sipon Dahil Sa Pag Iyak', 'At Higit Sa Lahat', 'BIOGESIC - Para Kung Mag Mamahal Ka Ulit Kailangan Mo Ng Mag ' "'INGAT'"]}, 233: {'dialect': 'tagalog', 'joke': ['Wag ka maghanap ng', 'taong makakaintindi', 'sayo. Ang hanapin mo', 'yung taong kahit hindi', 'ka naiintindihan, hindi', 'ka pa rin iniiwan.', '']}, 234: {'dialect': 'tagalog', 'joke': ['DAPAT PALITAN NA', "YUNG 'SEEN' NG", "'IGNORED'", '', 'Para magising ako sa', 'katotohanang', 'binabalewala lang ako :(', '', '']}, 235: {'dialect': 'tagalog', 'joke': ['Nag simula kami. sa simpleng asaran.', '', 'Hindi nagtagal,', '', 'SINAPAK KO NA']}, 236: {'dialect': 'tagalog', 'joke': ['Peralyzed', '', 'walang pera at di makagala dahil walang ipon', '']}, 237: {'dialect': 'tagalog', 'joke': ['Kahit hindi mo na', 'tuparin yung peksman.', 'n” mamatay ka nalang']}, 238: {'dialect': 'tagalog', 'joke': ['‘Alam mo ba kung bakit', 'hindi ka niya type?', 'Una, hindi ka keyboard.', 'Pangalawa, mukha kang mouse. ', '']}, 239: {'dialect': 'tagalog', 'joke': ['May nakapagsabi', 'na ba sayo na', 'ang CUTE mo?..', 'Kung wala pa,', '', 'Eh wala tayong', '', 'magagawa', 'ganun talaga']}, 240: {'dialect': 'tagalog', 'joke': ['“Saan tayo kakain?!”', '“KAHIT SAAN.”', '', 'Pag ako naging mayaman, papagawa ako ng', 'fast food chain na “Kahit Saan”', '', '“Bahala na.” “Yung mura.” “Kahit ano.”', 'Benta siguro ‘yon ‘no?', '']}, 241: {'dialect': 'tagalog', 'joke': ['Anong goat ang pinaka maliit ? Edi kapirangGOAT ! ']}, 242: {'dialect': 'tagalog', 'joke': ['Sementeryo nasunog lahat patay! ']}, 243: {'dialect': 'tagalog', 'joke': ['Barko lumubog di nakatiis lumutang !']}, 244: {'dialect': 'tagalog', 'joke': ['MAY DALAWANG MAGKASINTAHANG PIPI ANG NAG-AAWAY.', 'BF:', 'GF:', 'BF:', 'GF:', 'BF:', 'GF:', 'HOW SAD..BREAK NA SILA..XD']}, 245: {'dialect': 'tagalog', 'joke': ['PROF: CLASS DO YOU SEE GOD?', 'CLASS: NO.', 'PROF: HAVE YOU TOUCHED GOD?', 'CLASS: NO.', "PROF: THAT'S WHY THERE IS NO GOD.", 'JUAN: BUT SIR!', 'PROF: YES JUAN.', 'JUAN: DO YOU SEE YOUR BRAIN?', 'PROF: NO.', 'JUAN: HAVE YOU TOUCHED YOUR BRAIN?', 'PROF: NO', "JUAN: OK CLASSMATES LET'S GO HOME. OUR PROF HAS NO BRAIN.", 'NGANGA SI PROF..']}, 246: {'dialect': 'tagalog', 'joke': ['DAUTHER: dad pwede n po b ako mgkabf?', 'DAD: no , ur to YOUNG to have a boy friend.', 'DAU:hmm.. Ok dad', '--------------------------------', 'brown out', 'DAU: dad im scared, samahan m k sa room.', 'Dad: ano k b nmn ang LAKILAKI mo nA tkot k p sa dlim', 'DAU: :3']}, 247: {'dialect': 'tagalog', 'joke': ['Juan:Pedro, anong pangalan mo?', 'Pedro:Pedro.', 'Juan:Ah akala ko Pedro.', 'Haha ano daw?']}, 248: {'dialect': 'tagalog', 'joke': ["'Hindi ko pa naranasang magmahal kahit minsan!' -FISHBALL. " 'Php 0.50 since 1992.', '']}, 249: {'dialect': 'tagalog', 'joke': ['Pera ka ba? Naghihirap ksi ako pag wla ka.']}, 250: {'dialect': 'tagalog', 'joke': ["May ishe'share lang ako. Nung", 'nakaraan galing ako sa isang Mall.', 'Nakakita ako stuff toy na pokemon,', "life-size 'yon. Tinanong ko agad yung", 'nasa counter. Miss, magkano yung', "Pokemon'g malaki? Nagalit na", "naman sa'kin. Ano bang ginawa ko??"]}, 251: {'dialect': 'tagalog', 'joke': ['JUAN, NAGPA-VULCANIZE NG GULONG..', 'VULCANIZER: NAKU JUAN, WLA NA AKONG PANTAPAL NG BUTAS PARA SA ' 'GULONG MO.', 'JUAN: AKO NALANG ANG IPANTAPAL NYO. TUTAL PANAKIP-BUTAS LANG ' 'NAMAN AKO.']}, 252: {'dialect': 'tagalog', 'joke': ['(Kidnaper, tumawag kay Juan)..', 'Kidnaper: Juan, hawak ko ang anak mo! Kung gusto mo siyang ' 'makuha, bigyan mo muna ako ng ransom!', 'Juan: Ah Eh.. 500,000 , pwede na?', 'Kidnaper: Hndi! Gusto ko ung may milyon!', 'Juan: Kalahating milyon.', 'Kidnaper: Cge. Salamat!']}, 253: {'dialect': 'tagalog', 'joke': ['When the tears begins to fall,', 'Sipon will follow...']}, 254: {'dialect': 'tagalog', 'joke': ['Boyfriend : Mahal, nakikita mo ba', 'yung babaeng yun?', 'Girlfriend : Oo, bakit?', 'Boyfriend : Iyan ang ex-girlfriend ko.', 'Girlfriend : Hindi naman sexy, at ang', 'pangit-pangit!', 'Boyfriend : Talagang ganun, ganyan', 'talaga ang kahinaan ko noon pa', 'man…']}, 255: {'dialect': 'tagalog', 'joke': ['Mare 1: Ayoko na uminom, mare.', 'Mare 2: Bakit naman?', 'Mare 1: Kasi nakakalaki ng tiyan ang', 'alak.', 'Mare 2: Hindi naman ata, mare.', 'Mare 1: Oo mare, huling beses na', 'nalasing ako, nabuntis ako.']}, 256: {'dialect': 'tagalog', 'joke': ['Judge:Ano ba talaga nangyari?', 'Erap : ?????? (di nagsasalita)', 'Judge: Sumagot ka sa tanong.', 'Erap: Naman eh!!! Kala ko ba hearing', 'lang to? Bakit may speaking?']}, 257: {'dialect': 'tagalog', 'joke': ['Dahil sa hirap ng buhay,', 'Pasahero: Mamang tsuper, may', 'bayad po ba kapag bata?', 'Driver: Wala', 'Pasahero: Kapag kandong?', 'Driver: Wala din', 'Pasahero: Ok anak umupo kana at kakandong ako.']}, 258: {'dialect': 'tagalog', 'joke': ['BOY: I LOVE U.', 'GIRL: SHUT UP.', 'BOY: I MISS U.', 'GIRL: SHUT UP!', 'BOY: YOURE SO BEAUTIFUL.', 'GIRL: OH? REALLY? 🙂', 'BOY: SHUT UP!']}, 259: {'dialect': 'tagalog', 'joke': ['Ang pag-ibig ay parang utot, kahit anung gawin mo ay ' 'napakahirap itago. At pag –ibinuga mo ang kinimkim na ' 'damdamin, maamoy ng lahat kahit hindi ka man umaamin,']}, 260: {'dialect': 'tagalog', 'joke': ['Mahal mo kasi maputi? It’s not love, it’s Dove!']}, 261: {'dialect': 'tagalog', 'joke': ['Niligawan ka sa text tapos sinagot mo, asan yung love dun? ' 'Nasa simcard?']}, 262: {'dialect': 'tagalog', 'joke': ['Kung tinanong ka ng manliligaw mo kung chocolates o flowers… ' 'Be practical! Bigas men, bigas!']}, 263: {'dialect': 'tagalog', 'joke': ['Pag may mahal ka ipaglaban mo. Pag dalawa naman mahal mo ' 'paglabanin mo, matira matibay kamo.']}, 264: {'dialect': 'tagalog', 'joke': ['Mahal ka niya, mahal mo siya. Pero mas mahal ang tuition, ' 'ga-graduate ka ba?']}, 265: {'dialect': 'tagalog', 'joke': ['Pag gusto may paraan, pag ayaw ilibre mo muna, sasama na ' 'yan!']}, 266: {'dialect': 'tagalog', 'joke': ['Para kang dessert. Ang sweet mo sakin, ang sweet mo sa kanya, ' 'ang sweet mo sa lahat. Anong flavor ka?', 'Crema de Puta?']}, 267: {'dialect': 'tagalog', 'joke': ['Ang bilis ng panahon no? Parang last year lang nene ka pa, ' 'ngayon nanay ka na? Landi mo talagang bata ka eh!']}, 268: {'dialect': 'tagalog', 'joke': ['Sa panahon ngayon mas tumatagal pa ang UTANG kesa sa ' 'RELASYON.']}, 269: {'dialect': 'tagalog', 'joke': ['Once there was an angel who wants to take everything away ' 'from me, then nakita ko sya tumingin sayo…”Oist”', 'Pag yan ginalaw mo gagawin ko shuttlecock ang pakpak mo!']}, 270: {'dialect': 'tagalog', 'joke': ['Kung wala kang maisip na iregalo sa taong mahal mo', 'Halikan mo na lang. Tapos sabihin mo… “Kung ayaw mo, ibalik ' 'mo na lang.’']}, 271: {'dialect': 'tagalog', 'joke': ['Bakit pag umiinom tayo ng isang basong tubig', 'parang ang hirap? Pero pag umiinom tayo ng redhorse', 'kahit isang case parang kulang pa? Bakit ganon?']}, 272: {'dialect': 'tagalog', 'joke': ['Ang pagmamahal ko sa mga EX ko ay parang ulam', 'namin kanina… UBOS NA!']}, 273: {'dialect': 'tagalog', 'joke': ['Masakit sabihin ang “I hate you”', 'Mahirap sabihin ang “I’m sorry”', 'Lalo na ang “I love you”', 'Pero pinakamahirap sabihin ang…', '“iskibiritsiboooop', 'iskiribaaboap', 'blooopikiribitkiribit””', 'Ikaw nga?']}, 274: {'dialect': 'tagalog', 'joke': ['Nag-aaway na naman ang utak at pusoa.. Sabi ng utak sa puso, ' 'Kalimutan mo na sya.. “”T@ng@ mo talaga!”” sagot ng puso… ' '“”Kala ko ba matalino ka? Paano ko kakalimutan eh lagi mong ' 'iniisip!”””']}, 275: {'dialect': 'tagalog', 'joke': ['Ang PAG-IBIG ay parang utot. Kahit anong gawin ay napakahirap ' 'itago. At pag-ibinuga mo ang kimkim na damdamin, maaamoy ng ' 'lahat kahit hind ka man umamin!']}, 276: {'dialect': 'tagalog', 'joke': ['Kung ayaw mong mainlove ng todo', 'Ay huwag mo ng susubukang tingnan pa ako,', 'dahil baka mabaliw ka ng husto!!!']}, 277: {'dialect': 'tagalog', 'joke': ['Lahat naman tayo may kapintasan,', 'Lahat tayo hindi perpekto…', 'Kaya wag kang mag-alala kung ganyan', 'ka pinanganak…', 'Normal lang yan…', 'Hindi mo naman kasalanan na maging kamukha mo si…', 'KOKEY.']}, 278: {'dialect': 'tagalog', 'joke': ['Dahan-dahan ka sa pagpili', 'ng MAMAHALIN mo ..', 'Baka kasi MALAGPASAN mo ako!']}, 279: {'dialect': 'tagalog', 'joke': ['Nakakainis kayo lagi niyo na lang ako tinatapakan.', 'Hindi na ba magbabago ang pagtingin niyo sakin? -Doormat']}, 280: {'dialect': 'tagalog', 'joke': ['Bakit pag late ka, pumapasok yung prof mo?', 'Pero pag hindi ka late wala naman yung prof mo?', 'Bakit ganon???']}, 281: {'dialect': 'tagalog', 'joke': ['Wala naman talagang taong panget,', 'nagkataon lang na ang mukha nila ay di pa', 'uso sa panahon ngayon.']}, 282: {'dialect': 'tagalog', 'joke': ['Paano ba nasusukat ang ang pag-ibig?', 'Paano ba malalaman kung mahal mo ang isang tao?', 'Pano ko malalaman kung siya na ba talaga?', 'Hindi ko alam pero dapat tandaan mo na wag kang', 'sisigaw pag nakasalubong mo si Sadako.']}, 283: {'dialect': 'tagalog', 'joke': ['Pag masaya ka, masaya rin ako.. pag badtrip ka, badtrip din ' 'ako,', 'Pag malungkot ka, malungkot din ako..pag nasa2ktan ka, ' 'nasa2ktan dn ako..', 'wala lang….gusto lang kitang gayahin ahihihi…']}, 284: {'dialect': 'tagalog', 'joke': ['Ang bawat piso ay pinaghihirapan', 'Dugo’t pawis ang puhunan.', 'Mahalaga ang bawat piraso', 'kaya sana…', 'Magreply ka naman pag nagtetext ako!', 'Mahiya ka sa parents ko na nagtitiyagang magload saken!']}, 285: {'dialect': 'tagalog', 'joke': ['Tom, nagitim ka ha, nag-outing ka siguro no?', 'Hindi po, nagsimento po ako maghapon.', 'Ang sipag ah! Ano naman sinimento mo?', 'Relasyon po namin, baka sakaling tumibay.']}, 286: {'dialect': 'tagalog', 'joke': ['bakit laging challenging ang pasko? kase laging may hamon ']}, 287: {'dialect': 'tagalog', 'joke': ['Anong tawag sa babaeng cowboy ? edi I-HAAAAAAA! ']}, 288: {'dialect': 'tagalog', 'joke': ['Q: Bakit laging nakayuko ang mga biik ? ', 'A: Kase ang taba ng nanay nila ']}, 289: {'dialect': 'tagalog', 'joke': ['May Joke ako about sa mayonnaise! , Kaso ayaw ko baka ' 'i-spread nyo eh ']}, 290: {'dialect': 'tagalog', 'joke': ['Kapitan : Lulubog na ang barko kumapit kayo ', 'Pasahero: (Lumapit lahat sa kapitan) ', 'Kapitan : Oh bat lahat kayo nalapit sakin ? ', 'Pasahero: Wow diba kapitan ka ? ']}, 291: {'dialect': 'tagalog', 'joke': ['Q: Anong tawag sa damit na maraming bulaklak ?', 'A: Floral', 'Q: Paano naman tawag sa damit na isa lang bulaklak?', 'A: Singular']}, 292: {'dialect': 'tagalog', 'joke': ['May joke ako about unemployment, Kaso baka di mag work']}, 293: {'dialect': 'tagalog', 'joke': ['May joke ako about business, Kaso baka di bumenta']}, 294: {'dialect': 'tagalog', 'joke': ['May joke ako about basura, Kaso baka ikalat mo']}, 295: {'dialect': 'tagalog', 'joke': ['May joke ako about sa medyas, But it really socks']}, 296: {'dialect': 'tagalog', 'joke': ['May joke ako about sa slow, Kaso baka tamaan PLDT.']}, 297: {'dialect': 'tagalog', 'joke': ['May joke ako about Tito Sotto, Kaso baka kopyahin niya.']}, 298: {'dialect': 'tagalog', 'joke': ['may joke ako about sa grades ko, kaso baka hindi pumasa']}, 299: {'dialect': 'tagalog', 'joke': ['May joke ako about pizza, Kaso baka di ko ma-deliver']}, 300: {'dialect': 'tagalog', 'joke': ['may joke ako about chemistry, kaso baka walang mag react']}, 301: {'dialect': 'tagalog', 'joke': ['Boy: miss taga saan ka:', 'Girl: bakit:', 'boy: gusto ko lang malaman kung saan ka nakatira,ibig kitang ' 'haranahin mamayang gabi...', 'Girl: naku hindi na uso yun....', 'Boy: ano na uso ngayun:', 'Girl: halika hatid mo ako sa sogo..']}, 302: {'dialect': 'tagalog', 'joke': ['GIRL: Hubarin mo na bra ko...', 'BOY: O, ayan...', 'GIRL: Hubarin mo na panty ko...', 'BOY: O, ayan, hinubad na...', "GIRL: Sige, next time, 'wag mo na isusuot mga gamit ko ha!"]}, 303: {'dialect': 'tagalog', 'joke': ['Si Pedro bumili ako ng cond0m sa mini stop.', 'Cashier(girl): Sir, ipaplastik ko pa po ba?', 'Pedro: Hindi na, susuotin ko na e.']}, 304: {'dialect': 'tagalog', 'joke': ['Ayoko nang madidi-dikit sa pintuan...', 'sawang-sawa na akong tawaging boy next door.']}, 305: {'dialect': 'tagalog', 'joke': ['Boy: alam mo, para kang albatros deodorizer.', 'Girl: bakit naman?', 'Boy: kasi binigyan mu ng halimuyak ang mala-inodoro kong ' 'buhay..']}, 306: {'dialect': 'tagalog', 'joke': ['Pedro: Nakabili na ko ng hearing aid. Grabe! ang linaw na ng ' 'pandinig ko!', 'Juan: Talaga?! Magkano bili mo?', 'Pedro: Kahapon lang']}, 307: {'dialect': 'tagalog', 'joke': ['Banat ng nanay sa anak', 'Aanuhin mo pa ang alak kung sa akin pa lang tatamaan ka ' 'na!!!']}, 308: {'dialect': 'tagalog', 'joke': ['Girl: Hatid mo ko.', 'Boy: Ayoko. Wala ako pera ngayon.', 'Girl: Ayaw mo?! Bahala ka! Wala pa naman tao sa bahay ngayon.', 'Boy: Aba! Tingnan mo nga naman. May naipit pa pala akong ' 'bente sa wallet.']}, 309: {'dialect': 'tagalog', 'joke': ['Q: Ano ang similarity ang UTOT at TULA?', 'A: Pareho silang nagmula sa POET']}, 310: {'dialect': 'tagalog', 'joke': ['Q: Ano ang pwede mong gawin sa GABI na hindi mo pwedeng gawin ' 'sa UMAGA?', 'A: eh di MAGPUYAT.']}, 311: {'dialect': 'tagalog', 'joke': ['Q: Ano ang pagkakaiba ng Biology at Sociology?', 'A: ‘Pag ang sanggol kamukha ng tatay Biology yun, Pag kamukha ' 'naman ng kapitbahay ninyo ang sanggol, sociology yun.']}, 312: {'dialect': 'tagalog', 'joke': ['Q: May tatlong lalake ang tumalon sa tubig, ilan ang nabasa ' 'ang buhok?', 'A: eh di..,,wala kalbo silang lahat eh..,,ngeekkkk..!!!']}, 313: {'dialect': 'tagalog', 'joke': ['Q: Ano ang maraming sakay jeepney o ambulansya?', 'A: Syempre ang ambulansya! Kasi, ang jeepney ay 10-10 lang ' 'ang bawat side; samantalang sa ambulansya, madalas na 50-50 ' 'ang sakay.']}, 314: {'dialect': 'tagalog', 'joke': ['Q: Bakit gising magdamag ang mga bampira?', 'A: Kasi nag-aaral sila para sa kanilang blood test!']}, 315: {'dialect': 'tagalog', 'joke': ['Q: Ano ang makukuha mo sa baboy na magaling mag karate?', 'A: Eh di PORK CHOP!']}, 316: {'dialect': 'tagalog', 'joke': ['Q: Bakit kailangang lagyan ng gulong ang rocking chair ni ' 'lola?', 'A: Para makapag-rock and roll siya!']}, 317: {'dialect': 'tagalog', 'joke': ['Q: Ano ang binibigay ng doctor sa ibon na may sakit?', 'A: Eh di TWEETMENT!']}, 318: {'dialect': 'tagalog', 'joke': ['Q: Ano ang mas nakakadiri sa uod na nakita mo sa iyong ' 'prutas?', 'A; Eh di yung kalahating uod nalang! pwe! pwe!pwe!']}, 319: {'dialect': 'tagalog', 'joke': ['Knock knock', 'Whos there', 'Meatloaf', 'Meatloaf who', 'Sa yong ngiti akoy nahuhu MALING']}, 320: {'dialect': 'tagalog', 'joke': ['Knock knock', 'Whos there?', 'UST', 'UST who?', 'UST call me on my cellphone late night when you need my ' 'love']}, 321: {'dialect': 'tagalog', 'joke': ['Knock knock', 'Whos there?', 'This guy’s in love with you pare', 'If ever your in my arms again, this guy’s in love with you ' 'pare']}, 322: {'dialect': 'tagalog', 'joke': ['Knock knock', 'Whos there?', 'My thoughts', 'My thoughts who?', 'My thoughts.. my knees.. my shoulder.. my head.']}, 323: {'dialect': 'tagalog', 'joke': ['Knock knock', 'Whos there?', 'Angono', 'Angono who?', 'Angono swing from the chandelieeeeeer']}, 324: {'dialect': 'tagalog', 'joke': ['Knock knock', 'Whos there?', 'Silver swan', 'Silver swan who', 'My mama dont like you, she likes silver swan']}, 325: {'dialect': 'tagalog', 'joke': ['Knock knock', 'Whos there?', 'Nanay ni wally', 'Nanay ni wally who?', 'Nanay ni wally na ko sa forever.']}, 326: {'dialect': 'tagalog', 'joke': ['Knock knock', 'Whos there?', 'Bwisit to!', 'Bwisit to! Who', 'Bwisit to! Late now to say sorry']}, 327: {'dialect': 'tagalog', 'joke': ['Knock knock', 'Whos there?', 'Yemen', 'Yemen who', 'What do yemen when you nod your head yes but you wanna say ' 'no']}, 328: {'dialect': 'tagalog', 'joke': ['Knock knock', 'Whos there?', 'ginabi sa road', 'Ginabi sa road who?', 'why you ginabi sa road? Dont you know im human too.']}, 329: {'dialect': 'tagalog', 'joke': ['Knock knock', 'Whos there?', 'Gangbang who', 'Gangbang into the room i know you want it lol SPG']}, 330: {'dialect': 'tagalog', 'joke': ['Knock knock', 'Whos there?', 'pekpek', 'Pekpek who', 'You look so pekpek standing there in my american apparel ' 'underwear hhahaha mukhang pekpek ampota']}, 331: {'dialect': 'tagalog', 'joke': ['Knock knock', 'Whos there?', 'Mayonnaise', 'Mayonnaise who?', 'My toes, mayonnaise, my shoulder, my head hahahaha okey']}, 332: {'dialect': 'tagalog', 'joke': ['Q: Bakit maswerte ang kalendaryo?', 'A: Dahil marami siyang date.']}, 333: {'dialect': 'tagalog', 'joke': ['Question: Kung ang suka ay vinegar, ano naman ang Inggles ng ' 'toyo?', 'Answer: Baliw! XD']}, 334: {'dialect': 'tagalog', 'joke': ['Q: Bakit malungkot ang kalendaryo?', 'A: Kasi bilang na ang araw niya.']}, 335: {'dialect': 'tagalog', 'joke': ['Q: Anong puno ang hindi pwedeng akyatin?', 'A: eh di yung nakatumba!']}, 336: {'dialect': 'tagalog', 'joke': ['Q: Anong isda ang bumabaril ', 'A: Edi BANG-us!!']}, 337: {'dialect': 'tagalog', 'joke': ['Q: Ano ang maraming sakay jeepney o ambulansya?', 'A: Syempre ang ambulansya! Kasi, ang jeepney ay 10-10 lang ' 'ang bawat side; samantalang sa ambulansya, madalas na 50-50 ' 'ang sakay.']}, 338: {'dialect': 'tagalog', 'joke': ['Question: Ano ang karaniwang kasunod ng kidlat?', 'Answer: Sunog! XD']}, 339: {'dialect': 'tagalog', 'joke': ['Question: Kung vegetarian ang tawag sa kumakain ng gulay, ano ' 'ang tawag sa kumakain ng tao?', 'Answer: Humanitarian? XD']}, 340: {'dialect': 'tagalog', 'joke': ['Question: Kung vegetarian ang tawag sa kumakain ng gulay, ano ' 'ang tawag sa kumakain ng tao?', 'Answer: Humanitarian? XD']}, 341: {'dialect': 'tagalog', 'joke': ['Question: Ano ang tinatanggal sa itlog bago ito kainin?', 'Answer: Buhok? XD']}, 342: {'dialect': 'tagalog', 'joke': ['Question: Ano ang tawag mo sa anak ng taong grasa?', 'Answer: Baby oil? XD']}, 343: {'dialect': 'tagalog', 'joke': ['Question: Saan nakukuha ang sakit na AIDS?', 'Answer: Sa motel? XD']}, 344: {'dialect': 'tagalog', 'joke': ['Question: Saan karaniwang ginagawa ang mga sweets na ' 'ginagamit sa halu-halo?', 'Answer: Sweetserland? XXD']}, 345: {'dialect': 'tagalog', 'joke': ['Question: Sinong cartoon charcater ang sumisigaw ng yabba ' 'dabba doo?', 'Answer: Si scooby dooby doo? XD']}, 346: {'dialect': 'tagalog', 'joke': ['Q: Anong fish ang may lahing insecto?', 'A: eh di i-FISH (Ipis)']}, 347: {'dialect': 'tagalog', 'joke': ['Q: Anong buwan ang fiesta ng mga fish?', 'A: eh di May 1, kasi FISH-tang Dagat.']}, 348: {'dialect': 'tagalog', 'joke': ['Q: Sinong fish ang pumapalit pag wala ang Boss?', 'A: eh di Ang o-FISH-er in charge']}, 349: {'dialect': 'tagalog', 'joke': ['Q: Saang bansa ang paboritong pasyalan ng mga fish?', 'A: eh di FIN-land']}, 350: {'dialect': 'tagalog', 'joke': ['Q: Bakit pumupunta ang mga fish sa pari?', 'A: eh di Para magkum-FISH-al']}, 351: {'dialect': 'tagalog', 'joke': ['Q: Anong tawag sa fish na peke?', 'A: eh di Arti-FISH-al']}, 352: {'dialect': 'tagalog', 'joke': ['Patient: Doc tulungan niyo po ako kasi naiisip ko po I’m a ' 'king ', 'Doc: Talaga anong pangalan mo!!! ', 'Patient: JOE po bakit doc? ', 'Doc: Ha!!? You’re must be JOEking.']}, 353: {'dialect': 'tagalog', 'joke': ['Inday: Mam, lahat pu pala ng nakalibing ditu.. Ginahasa.. ', 'Amo: Pano mo naman nalaman Inday? ', 'Inday: Tegnan nyu pu ung Lapeda.. Nakasulat.. RIP']}, 354: {'dialect': 'tagalog', 'joke': ['Tatay : Anak! anu tong F sa card mo ha! Anak : (*nag-iisip*) ' 'Tatay… Fasado po ibig sabihin nyan. . . . . . . . . ', 'Tatay : Ahh… kala ko Ferpect! ']}, 355: {'dialect': 'tagalog', 'joke': ['BIRD OF PRIEST', 'Isang araw nawala ang bird ng pari, dahil sa sobrang mahal ' 'niya ito nanawagan siya sa kanyang misa.', 'Pari : Anyone got a bird?', 'Lahat ng mga lalaki tumayo.', 'Pari : I mean, anyone seen a bird?', 'Lahat ng babae tumayo.', 'Pari : I mean anyone seen my bird?', 'Lahat ng madre tumayo.', ' ']}, 356: {'dialect': 'tagalog', 'joke': ['THERMOMETER', 'Nars : Doc bakit po may thermometer kayo sa tenga?', 'Doktor : Naku! Kaninong pwet kaya ng pasyente naiwan ko ang ' 'ballpen ko.', 'Nyahahahahaha.', ' ']}, 357: {'dialect': 'tagalog', 'joke': ['YAYA AT ANG ALAGA', 'Alaga : Yaya look, boats!', 'Yaya : Dows are not boats, dey’re yatchts.', 'Alaga : Yaya, spell yatch', 'Yaya : Yor rayt, they are boats.', ' ']}, 358: {'dialect': 'tagalog', 'joke': ['<NAME>', 'Barbero : Sir, anong klase gupit po?', 'Lalaki : Yung uka-uka, masagwa at hindi pantay.', 'Barbero : Sir anu po yun? Hindo ko alam yun.', 'Lalaki : Anung hindi, ganun ang ginupit mo sa akin last ' 'time!!!', ' ']}, 359: {'dialect': 'tagalog', 'joke': ['<NAME>', 'Mister : Honey, pwede ka ba ngayon?', 'Misis : Hindi, pagod ako!', 'Mister : Is that your final answer?', 'Misis : Final answer!', 'Mister : Can i call a friend?', ' ']}, 360: {'dialect': 'tagalog', 'joke': ['JUAN IN ENGLISH SUBJECT', 'Teacher : Juan, give me a sentence.', 'Juan : My teacher is beautiful, isn’t she?', 'Teacher : Very good!! Please translate in Tagalog.', 'Juan : Ang aking guro ay maganda, hindi naman di ba?', ' ']}, 361: {'dialect': 'tagalog', 'joke': ['JUAN NAKAKUHA NG 99% SA EXAM', 'Teacher : Ang score ni Juan sa exam ay 99%.', 'Juan : Ohh anu!!! Kaya niyo yan? Hindi pa ako nag-rereview ' 'nyan. Huwag na kayo mag-aral kung ako sa inyo umuwi na lang ' 'kayo. Low IQ!! Mga utak manok kayo! Nangingitlog na naman ' 'kayo, sinasayang niyo lang tuition niyo. (mayabang na sabi ni ' 'Juan sa kanyang mga kaklase).', 'Teacher : The rest 100%', ' ']}, 362: {'dialect': 'tagalog', 'joke': ['ANAK SA LABAS (pinoy jokes)', 'Pedro : pare anung gagawin mo kapag nalaman mong may anak ka ' 'sa labas?', 'Juan : huh?? Anung klaseng tanung yan pare? Syempre papasukin ' 'ko sa loob ng bahay.', ' ']}, 363: {'dialect': 'tagalog', 'joke': ['NAWALANG BATA', 'Nanay : Oh! Anak kahit anu mangyari huwag kang bumitaw sa ' 'pagkakapit sa palda ko.', 'Mahigit ng isang oras ng mapansin ng nanay na wala na ang ' 'kanyang anak.', 'Nanay : Manong may nakita po ba kayong bata?', 'Sekyu : Ano po ba ang itsura.', 'Nanay : May dalang palda po.', ' ']}, 364: {'dialect': 'tagalog', 'joke': ['YAYA NAGPAALAM SA AMO', 'Yaya : Ma’am magpapaalam po sana akong magbaksayon sa aming ' 'probinsiya.', 'Amo : Oh sige, nakapagpaalam kana ba sa sir mo?', 'Yaya : Nauna na po siya, doon na lang daw po kami magkikita.', ' ']}, 365: {'dialect': 'tagalog', 'joke': ['GLOBE', 'Lalaki : Miss, Globe ka ba?', 'Babae : Ay alam ko na yan, kasi ako lang ang mundo mo.', 'Lalaki : Makikitext lang ako! Tanga! ang landi mo.', ' ']}, 366: {'dialect': 'tagalog', 'joke': ['<NAME>KE', 'Pedro : Tara pare, harlem shake tayo.', 'Juan : Ay!! Ayoko.', 'Pedro : bakit naman?', 'Juan : baka mahal eh, coke float na lang.', ' ']}, 367: {'dialect': 'tagalog', 'joke': ['PIZZA TIME', 'Si Juan umorder ng pizza', 'Clerk : Sir ilang slice po ang gagawin naming sa pizza mo, 6 ' 'or 8?', 'Juan : 6 slice na lang, baka hindi ko maubos kapag 8 kasi.', ' ']}, 368: {'dialect': 'tagalog', 'joke': ['SIKAT NA SI MANNY PACQUIAO', 'Pedro : Alam mo pare sobrang sikat na talaga sa Manny ' 'Pacquiao noh?', 'Juan : Bakit naman pare?', 'Pedro : bumili kasi ako ng brand new cellphone, may option na ' 'send to many.', 'Juan : Ang bobo mo talaga, matagal nay an ngayon mo lang ' 'napansin? Hindi naman nagrereply yan eh.', ' ']}, 369: {'dialect': 'tagalog', 'joke': ['<NAME>', 'Bf : Kainis si Juan, mukha daw akong magsasaka kapag katabi ' 'kita.', 'Gf : Hahaha, huwag muna pansinin,nag bibiro lang yun. Bakit ' 'niya naman daw nasabi?', 'Bf : Kasi mukha ka daw kalabaw.', ' ']}, 370: {'dialect': 'tagalog', 'joke': ['MILYONARYO', 'Teacher : Class imagine niyo na kayo ay MILYONARYO, isulat ' 'niyo sa papel ang inyong mga activities.', 'Students : Yes Ma’am...', 'Teacher : Juan bakit hindi ka pa nagsusulat?', 'Juan : Ma’am, inaantay ko pa po ang secretary ko.', ' ']}, 371: {'dialect': 'tagalog', 'joke': ['JUAN SA BUS', 'Juan : Nay alam niyo pinatayo ako ni itay sa bus kanina kasi ' 'may pinaupo siyang babae.', 'Nanay : Anak magandang asal yun.', 'Juan : Kahit nakakandong po ako kay itay?', ' ']}, 372: {'dialect': 'tagalog', 'joke': ['SAD STORY', 'Gf : Babe, mamaya na tayo magchat kasi ingungudngod na daw ni ' 'papa ang mukha ko kapag hindi pa ako umalis dito.', 'Bf : Ayoko pa gusto pa kita kausap.', 'Gf : Babe mamaya na, baka ingudngod na ako dito ni tatay ' 'sa...mawdjkhsh vldhfdeifcjcisjlo hsdhhdhcliosdhjklj ' 'klhsdhldhkdshcjkdshd bbmbmbnmbbbbm bbbwbeakbdjbj ' 'bmbmuuwa,mabm', ' ']}, 373: {'dialect': 'tagalog', 'joke': ['<NAME> (pinoy jokes)', 'Dalawang magka officemate nag-uusap sa loob ng opisina.', 'Juan : Mauna na akong umuwi pare at gustong-gusto ko na ' 'HUBARIN ANG PANTY ng misis ko.', 'Pedro : Wow! Pare, sobrang hot na hot ka ngayon ah.', 'Juan : Hindi noh! Sobrang masikip sa akin eh!', ' ']}, 374: {'dialect': 'tagalog', 'joke': ['<NAME>', 'Dear Diary,', 'I’m so happy talaga. Nahuli kasi ako ng crush ko nakatingin ' 'sa kanya. Minura niya ako, oh my gosh! Narinig ko na din ang ' 'boses niya. Ang gwapo niya talaga, minsan nga tinulak niya ' 'ako, dumugo ang ilong ko kasi sinadya ko siyang banggain, ' 'nakakakilig diba? At least nagkadikit ang aming katawan. ' 'Lumapit siya sa akin at humingi ng picture ko, ipapasalvage ' 'niya daw ako, so sweet!! At ang pinaka the best pa, sabi ko ' 'sa kanya “love you”, sagot niya “puck you”, shet na-horny ' 'ako. Hahahaha', ' ']}, 375: {'dialect': 'tagalog', 'joke': ['ANG MADRE AT ANG SAKRISTAN', 'Madre: Iho, anu ang apelyido mo?', 'Sakristan : Alam niyo na po yun sister, ang lagi niyo ' 'hinahawakan.', 'Madre : Susmaryosep! BAYAG ba ang apelyido mo?', 'Sakristan : Sister naman, Rosario po.', ' ']}, 376: {'dialect': 'tagalog', 'joke': ['BATANG MATIGAS ANG ULO', 'Isang araw may isang batang lalaki na ubod ng kulit. Kahit ' 'Anung gawin ng ama hindi pa din ito tumitino. Sa sobrang ' 'galit ng ama pinasok sa sako ang anak at binitin sa sanga ng ' 'puno.', 'Bata : Tay!', 'Tatay : Ano? (naawa sa anak)', 'Bata : Taaaaayyy!!!', 'Tatay : (Lumapit sa sakong nakabitin) Ano??? Magbabago kana ' 'ba?', 'Bata : Paki swing naman...', ' ']}, 377: {'dialect': 'tagalog', 'joke': ['<NAME> SA MISTER', 'Misis : Hon, wala na akong bra, bilhan mo naman ako', 'Mister : Hon, huwag kana magbra kasi maliit lang naman ang ' 'dede mo.', 'Misis : Eh! Bakit ikaw nagbebrief??', ' ']}, 378: {'dialect': 'tagalog', 'joke': ['KURTINA', 'Tindera : Sir, bili na po kayo ng kurtina..', 'Juan : Ale, pabili nga ako ng isa, para sa computer ko.', 'Tindera : Sir, bakit po para sa computer niyo?', 'Juan : Ang computer ko kasi may windows eh!!', ' ']}, 379: {'dialect': 'tagalog', 'joke': ['ANTIQUE VASE', 'Si Juan nakabasag ng malaking vase sa museum, nataranta ang ' 'attendant.', 'Attendant : Naku po sir, more 50years na po ang vase na yan.', 'Juan : Hay! Salamat naman, akala ko kasi bago eh!!', ' ']}, 380: {'dialect': 'tagalog', 'joke': ['BOOBS (pinoy jokes)', 'Misis : Sweety, may mga kaibigan ako na nagpa-enhance ng ' 'boobs, gusto mo magpadagdag din ako?', 'Mister : Ewan ko, parang hindi ata bagay sayo ang tatlong ' 'suso.', ' ']}, 381: {'dialect': 'tagalog', 'joke': ['DALAWANG ESTUDYANTE SA LOOB NG CLASSROOM', 'Naiwan sa classroom ang dalawang estudyante (babae at lalaki)', 'Lalaki : Wala na ang mga classmate natin, tayo na lang ang ' 'naiwan dito. Anu tara?', 'Babae : Anong tara?', 'Lalaki : Sus!! Anu bay an bilisan mo na!!', 'Babae : Ahhh, ganun! Bakit dito? Sige na nga! (nagmamadaling ' 'nagtanggal ng uniporme). Tara na....', 'Lalaki : Ohhh!! Bakit ka nakahubad?? Tara uwi na din tayo!! ' 'Tanga!!!', ' ']}, 382: {'dialect': 'tagalog', 'joke': ['SEX WITH GHOSTS', 'Teacher : Sino sa inyo nakaexperience having sex with GHOSTS?', 'Itinaas ni Pedro ang kanyang kamay..', 'Teacher : Talaga!?? Ano feeling having sex with ghosts??', 'Pedro : Ay Putcha!!! Akala ko goats.', ' ']}, 383: {'dialect': 'tagalog', 'joke': ['GF KINAPKAPAN NG BF', 'Isang gabi habang naglalakad sa park ang magsyota.', 'Girlfriend : Love, ihi muna ako ha.', 'Boyfriend : Dyan ka na lang sa damuhan umihi, madilim naman ' 'eh.', 'Habang umiihi kinapkap ni boyfriend ang legs ni girlfriend, ' 'nang may makapang mahaba sa gitna nito.', 'Boyfriend : Putcha!!! Bakla ka??', 'Girlfriend : Sira!!! Nagbago na ang isip ko..Tumatae na ako.', ' ']}, 384: {'dialect': 'tagalog', 'joke': ['VAMPIRE IN RESTO (pinoy jokes)', 'Rich Vampire : Waiter, order ako ng fresh blood.', 'Ordinary Vampire : Sa akin isang order ng dinuguan.', 'Poor Vampire : Waiter, sa akin hot water na lang.', 'Waiter : Huh! Bakit hot water lang po?', 'Poor Vampire : Nakapulot kasi ako ng napkin sa kanto, ' 'mag-tsaa na lang ako.', ' ']}, 385: {'dialect': 'tagalog', 'joke': ['<NAME>', 'Misis : Love, malapit na tayong maging tatlo dito sa bahay.', 'Mister : Talaga love?? Magiging daddy na ako?', 'Misis : Hindi love, dito na titira nanay ko.', ' ']}, 386: {'dialect': 'tagalog', 'joke': ['<NAME>', 'Girl : <NAME>', 'Boy : Ganun ba', 'Girl : May gusto ka ba sa akin?', 'Boy : Wala.', 'Umiyak si girl habang paalis, hinabol siya ni boy at niyakap.', 'Boy : Hindi mo pa nga tinatanung kung mahal kita.', 'Girl : (nabuhayan) Bakit? Mahal mo ba ako?', 'Boy : Hindi rin! Sige iyak kana ulit.', ' ']}, 387: {'dialect': 'tagalog', 'joke': ['HULI KA!!!', 'Girl : Sweety, nasaan ka?', 'Boy : Dito lang sa haws sweety nagpapahinga, patulog na din. ' 'Ikaw?', 'Girl : Nandito sa BAR, pinagmamasdan ka. Sige sayaw pa kayo ' 'ng babae mo.', ' ']}, 388: {'dialect': 'tagalog', 'joke': ['WRONG SEND', 'Juan : (tinext ang syota) Break na tayo!', 'Tikla : (reply kay Juan) Huh? Bakit love? Huhuhuhu', 'Juan : Ayyy!! Sorry love wrong send lang. Love you', 'Tikla : ayyy! Akala ko ako! Hehehe.. okay lang love, love u ' 'more.', ' ']}, 389: {'dialect': 'tagalog', 'joke': ['PICK UP LINE', 'Simon : Miss, talon ka na dyan!', 'Ana : Bakit naman?', 'Simon : Para mahulog ka sa akin', 'Ana : Ahhh!!! Ganun!!! Alam mo para kang manhole.', 'Simon : Naks!! Gumaganti ah. Bakit naman?', 'Ana : Tanga lang ang mahuhulog sayo.', ' ']}, 390: {'dialect': 'tagalog', 'joke': ['ULAM SA LAMESA', 'Juan : Alam mo pare ang bait ng pusa namin.', 'Simon : Bakit naman pare??', 'Juan : Kahit na pinapabayaan lang namin ang ulam sa lamesa, ' 'hindi ginagalaw.', 'Simon : Wow! Ang bait nga, ano ba ulam niyo?', 'Juan : Asin..', ' ']}, 391: {'dialect': 'tagalog', 'joke': ['TRANSLATE TO ENGLISH', 'Teacher : Juan, itranslate mo ito sa English.', 'Juan : Wat ma’am?', 'Teacher : Ang uwak ay hinang hinang naglakad.', 'Juan : The wak wak..weak weak...wok wok...', ' ']}, 392: {'dialect': 'tagalog', 'joke': ['MABAIT NA ANAK', 'Nanay : Mare, swerte ko sa anak kong lalaki, ang bait.', 'Kapitbahay : Naninigarilyo ba sya?', 'Nanay : Hindi, mare.', 'Kapitbahay : Umiinom ba sya ng alak?', 'Nanay : Hindi din.', 'Kapitbahay : Pero umuuwi siya ng late?', 'Nanay : Hindi eh.', 'Kapitbahay : Tama ka nga, ang bait ng anak mo. Ilan taon na ' 'ba siya mare?', 'Nanay : Mag pitong buwan na siya bukas.', ' ']}, 393: {'dialect': 'tagalog', 'joke': ['MASAKIT SA BUONG KATAWAN', 'Pasyente : Dok, kahit saan ako humawak masakit po.', 'Doktor : Anong ibig mo sabihin?', 'Pasyente : Kapag hinawakan ko ang balikat ko, ang sakit. ' 'Kapag sa tuhod ko, araayyy ang sakit din, kahit pos a ulo ko ' 'sobrang sakit.', 'Doktor : alam ko na kung ano ang problema, nabali ang kamay ' 'mo.', ' ']}, 394: {'dialect': 'tagalog', 'joke': ['INIWAN', 'Pedro : Ang sakit sakit tol!! Iniwan niya ako.', 'Juan : Bakit? Saan ba dapat kayo pupunta?', ' ']}, 395: {'dialect': 'tagalog', 'joke': ['MASAKIT ANG MATA', 'Pasyente : Doctor sa tuwing iinom po ako ng kape, ang sakit ' 'ng mata ko.', 'Doktor : Tanggalin mo muna ang kutsara sa tasa mo, bago ka ' 'humigop.', ' ']}, 396: {'dialect': 'tagalog', 'joke': ['UMIIYAK DAHIL SA ELEPANTE', 'Pedro : Bakit ka umiiyak?', 'Juan : Namatay kasi ang elepante.', 'Pedro : Bakit alaga mo ba yon?', 'Juan : Hindi, pero ako ang huhukay para sa libingan niya.', ' ']}, 397: {'dialect': 'tagalog', 'joke': ['TAMAD MAG-ARAL', 'Nanay : Anak, kamusta ang first day mo sa school?', 'Anak : Ibig sabihin po nay, babalik pa ako bukas????', ' ']}, 398: {'dialect': 'tagalog', 'joke': ['SAAN GALING ANG ASUKAL', 'Teacher : Juan, saan probinsya ka galing?', 'Juan : Negros po ma’am', 'Teacher : Anung produkto meron sa negros?', 'Juan : Hindi ko po alam.', 'Teacher : Siyempre alam mo yun, saan kayo kumukuha ng asukal?', 'Juan : Humihingi lang po kami sa kapitbahay.', ' ']}, 399: {'dialect': 'tagalog', 'joke': ['GOOD NEWS AT BAD NEWS', 'Si Juan nakatanggap ng tawag galing sa doctor.', 'Doktor : Meron akong ibalita sayong good news at bad news.', 'Juan : Anu po ang good news?', 'Doktor : May 24 hours ka pa na mabuhay.', 'Juan : Huh!! Good news na ba yan? Anu po ang bad news.', 'Doktor : Ang bad news, nakalimutan kitang tawagan kahapon ' 'tungkol dito.', ' ']}, 400: {'dialect': 'tagalog', 'joke': ['MAPA NG PILIPINAS', 'Teacher : Jose, ituro mo sa mapa ang Pilipinas.', 'Jose : Ito po ma’am (sabay turo ng Pilipinas).', 'Teacher : magaling, mga bata sino ang nakatagpo ng Pilipinas?', 'Mga bata : Si Jose po ma’am.', ' ']}, 401: {'dialect': 'tagalog', 'joke': ['TUMAMBLING SA SKOL', 'Anak : Tay, tumambling po ako sa skol.', 'Tatay : Di ba sinabi ko sayo na huwag kang tumambling kasi ' 'makita panty mo.', 'Anak : Hindi naman eh!! Nilagay ko kaya sa bag ang panty ko.', ' ']}, 402: {'dialect': 'tagalog', 'joke': ['PAUTANG', 'Juan : Tol pahiram naman dyan 200 pesos.', 'Jose : 100 pesos lang dala ko tol.', 'Juan : Ohh sige!! 100 pesos na lang muna, basta may utang ka ' 'pa sa akin 100 pesos ha.', ' ']}, 403: {'dialect': 'tagalog', 'joke': ['GUMAWA NG EKSENA', 'Nabalitaan ni Juan na may namatay sa kanto, dali dali siyang ' 'pumunta pero hindi niya makita ang namatay dahil sa dami ng ' 'tao. Gumawa si Juan ng eksena.', 'Juan: Tabi...tabi...tumabi kayo, kapatid ko ang namatay.', 'Agad na nagsitabi ang mga tao, hanggang sa nakita na ni Juan ' 'ang namatay...', '...isang duguang unggoy...', ' ']}, 404: {'dialect': 'tagalog', 'joke': ['DUMALAW SI GMA', 'Isang araw dumalaw si GMA sa mental hospital, pagdating na ' 'pagdating ni GMA pumalakpak agad ang mga pasyente maliban sa ' 'isa na nasa sulok.', 'GMA : Anung nangyari sa isang pasyente bakit hindi siya ' 'pumalakpak?', 'Doktor : Magaling na po kasi siya.', 'More top best pinoy jokes:']}, 405: {'dialect': 'tagalog', 'joke': ["Binata: Tandaan mo ang mga sasabihin ko sa iyo ha. 'Wag mong " 'kalimutan, importante.', 'Dalada: Ah, bakit ano ba ang sasabihin mo?', 'Binata: Ah, mahal na mahal kita, lagi mong tandaan yan. ' 'Andito lang ako para sa iyo. Dito lang ako sa tabi mo palagi.', 'Binata: Ano natandaan mo ba? ', 'Dalaga: (kinikilig) Oo naman...', 'Binata: Mabuti naman. Paki sabi yan sa best friend mo ha. ' 'Salamat!']}, 406: {'dialect': 'tagalog', 'joke': ["Pedro: Ah di ko po alam ma'am e. ", 'Guro: Ay sus, bata ka, simpleng English word lang di mo ' 'alam... Ang aso may 4 nito at ako may 2 nito.', 'Pedro: Ahhh.... Dede?']}, 407: {'dialect': 'tagalog', 'joke': ['Mare1: Alam mo mars kapag nakita ko ang patatas, naaalala ko ' 'ang bayag ng mister ko.', 'Mare2: Ohh talaga!! Bakit kasinglaki ba ng patatas ang bayag ' 'ng mister mo?', 'Mare1: Hindi mars, ganyan kalibag!!!', ' ']}, 408: {'dialect': 'tagalog', 'joke': ['Teacher: Class, sino sa inyo nakakilala kay Jose Rizal? Ikaw ' 'Pedro?', 'Pedro: Hindi po teacher.', 'Teacher: Eh! Ikaw Simon, kialla mob a si <NAME>?', 'Simon: Hindi din po Teacher.', 'Juan: Baka nasa kabilang section yan teacher!', ' ']}, 409: {'dialect': 'tagalog', 'joke': ['Juan: Tao ba to?', 'Pedro: Hindi.', 'Juan: Lugar ba to?', 'Pedro: Hindi.', 'Juan: Bagay ba to?', 'Pedro: Oo..oo', 'Juan: Ginagamit sa loob ng bahay?', 'Pedro: Oo..oo', 'Juan: Makikita sa kusina?', 'Pedro: Oo..', 'Juan: Matalim bai to?', 'Pedro: Oo..oo', 'Juan: Ginagamit pang-hiwa sa sibuyas, bawang at mga gulay?', 'Pedro: Oo…oo…oo', 'Juan: Pass!!!', 'Toink…..', ' ']}, 410: {'dialect': 'tagalog', 'joke': ['Pedro: Pabili ng apo…', 'Juan: Ano?', 'Pedro: Kendi ng apo.', 'Juan: Wala.', 'Pedro: May softdrinks kayo?', 'Juan: Wala!!! Nakita mong Ice for sale lang ang tinda naming, ' 'kung anu-ano pa binibili mo. Tanga mo talaga..', 'Pedro: Ikaw ang tanga!! Alam mo naman na yelo lang pala tinda ' 'niyo nagtanong kapa kung ano bibilhin ko.', ' ']}, 411: {'dialect': 'tagalog', 'joke': ['Amo: Inday huwag mong pakialaman ang condom naming ni sir mo ' 'ha!', 'Inday: Ma’am huwag po kayo mag-alala hindi po kami sanay ' 'gumamit ni sir ng condom.', 'Ouch….', ' ']}, 412: {'dialect': 'tagalog', 'joke': ['Pulis: Hoy! Umuwi kana lasing ka..', 'Lasing: Hindi pa ako lasing noh!!', 'Pulis: Kilala mob a kung sino ako??', 'Lasing: Oo naman, pulis ka. Oh di ba kilala kita. Eh ako ' 'kilala mob a?', 'Pulis: Hindi..', 'Lasing: Ikaw ang umuwi, ikaw pala ang lasing eh…', ' ']}, 413: {'dialect': 'tagalog', 'joke': [' Pedro: Grabe ang sakit tol, iniwan niya ako.', 'Juan: Huh! Bakit saan ba dapat kayo pupunta?', ' ']}, 414: {'dialect': 'tagalog', 'joke': ['Pedro: Pre, bakit ka pala nakabraces?', 'Juan: Ah! Ba tol, pangait kasi ang ngipin ko kaya kailangan ' 'ayusin.', 'Pedro: Bakit ngipin mo lang nakabraces? Hindi ang buong mukha ' 'mo??', ' ']}, 415: {'dialect': 'tagalog', 'joke': ['Juan: Pre, mauna na akong umuwi sayo at gusting-gusto ko nang ' 'hubarin ang panty ng misis ko.', 'Pedro: Wow!!! Pare libog na libog kana noh!!!', 'Juan: Hindi pre, masyadong masikip kasi sa akin eh!!', ' ']}, 416: {'dialect': 'tagalog', 'joke': ['Gf: Hindi na nagwo-work ang relationship natin, mas mabuting ' 'pang maghiwalay na tayo.', 'Bf: Huwag mo akong iwan parang awa mon a..', 'Gf: Sorry, pero break na tayo.', 'Bf: Sige! Kapag iniwan mo ako maglalaslas ako.', 'Gf: Sus!!! Magpatuli nga hindi mo kaya, maglaslas pa kaya!!! ', ' ']}, 417: {'dialect': 'tagalog', 'joke': ['Si Juan at ang Kumpare niyang Unano', 'Juan: Pre, bakit hindi ka pala lumaki?', 'Unano: Baby pa lang ako ng mamatay ang mga magulang ko.', 'Juan: Huh!!! Anong koneksyon non?', 'Unano: Pre naman, wag ka naman tanga. Natural walang ' 'nagpalaki sa akin.', ' ']}, 418: {'dialect': 'tagalog', 'joke': ['Balut Box', 'Juan: Tay, ano po ba ang balut box?', 'Tatay: Nak naman! Simple simple hindi mo Alam? Eh di lagayan ' 'ng balut.', ' ']}, 419: {'dialect': 'tagalog', 'joke': ['Love na Love ako ni Tatay', 'Pedro: Tay sino ang mas mahal niyo? Ako o si nanay?', 'Tatay: Syempre, ikaw anak!', 'Pedro: Sabi ko na nga ba ako eh!', 'Tatay: Bakit mo naman nahulaan anak?', 'Pedro: Tuwing madaling araw nilalagyan moa ko ng kumot. ' 'Samantala si inay hinuhubaran niyo.', ' ']}, 420: {'dialect': 'tagalog', 'joke': ['Bintana', 'Tanong: Bakit binubuksan ang bintana tuwing umaga?', 'Sagot: Natural na buksan kasi sarado. Magulat ka kung bukas ' 'na tapos buksan pa!', ' ']}, 421: {'dialect': 'tagalog', 'joke': ['Marka sa Grado', 'Tatay: Nak, ano ang ibig sabihin ng “F” sa card mo?', 'Anak: fasado yan tay!', 'Tatay: Ah! Akala ko Ferpect eh!!', ' ']}, 422: {'dialect': 'tagalog', 'joke': ['Sino si <NAME>', 'Teacher: Juan, kilala mo ba si j<NAME>al?', 'Juan: Hindi po mam.', 'Teacher: Ikaw! Pedro kilala mob a si <NAME>?', 'Hindi din po mam eh.', 'Teacher: Simon, siguro naman kilala mo si <NAME>.', 'Simon: Naku! Mam hindi din po eh. Baka nasa kabilang seksyon ' 'po siya mam.', ' ']}, 423: {'dialect': 'tagalog', 'joke': ['Ano ang Gagawin kapag Milyonaryo', 'Mam: Class, isipin niyo isa kayong milyonaryo. Isulat niyo ' 'ang mga gagawin niyo kapag sobrang yaman kayo.', 'Nagsimula ng magsulat ang mga estudyante, maliban kay Juan na ' 'nakatunganga pa din.', 'Mam: Juan, bakit hindi ka nagsusulat?', 'Juan: Inaantay ko pa kasi mam ang secretary ko.', ' ']}, 424: {'dialect': 'tagalog', 'joke': ['Nanay Pinatawag sa Skul', 'Simon: Nay, punta ka daw sa skul bukas.', 'Nanay: Huh! Ano na naman bang kalokohan ang ginawa mo doon?', 'Simon: Ano??? Bakit ako tanungin mo? Baka ikaw, kasi ikaw ang ' 'pinatawag eh!', ' ']}, 425: {'dialect': 'tagalog', 'joke': ['Pasahero sa Loob ng Dyip', 'Juan: Kuya magkano po ang pamasahe?', 'Tsuper: Otso pesos.', 'Juan: Naku patay limang piso lang ang pera ko dito. Ano kaya ' 'dapat ko gawin? ( Sa loob loob ni Juan, halatang kinakabahan ' 'na).', 'Maya-maya napansin ni Juan na duling pala ang drayber.', 'Juan: Aha! Alam ko. Ibibigay ko sa kanya ang apat nap iso ' 'kasi sigurado doble ang bilang niya. ( Tuwang-tuwa saad ni ' 'Juan sa sarili).', 'Ibinayad n ani Juan ang apat nap iso.', 'Drayber: Boos, kulang ang pamasahe mo.', 'Juan: Ha? Paano kulang? Ots pesos naman yan ah.', 'Drayber: Otso pesos nga. Dalawa kayo eh!!!', ' ']}, 426: {'dialect': 'tagalog', 'joke': ['Late na naman si Pedro', 'Titser: Aba! Pedro anong oras na. Lagi ka na lang huli sa ' 'klase.', 'Pedro: Pasensya na po mam, trapik po kasi.', 'Titser: Feeling mo kasi ang tali-talino mo. Sino ang ' 'Pambansang Bayani natin, sige nga?', 'Pedro: Si Jose Rizal po.', 'Titser: Himala! Nakatsamba ka ah.', 'Pedro: Ikaw mam, kilala mo ba si ' 'Tanya? ', 'Titser: Hindi, sino yon?', 'Pedro: Yan puro ka kasi turo at aral. Kabit yon ng asawa mo!', ' ']}, 427: {'dialect': 'tagalog', 'joke': ['Unang Makasagot, Unang Makauwi', 'Titser: Kung sinuman sa inyo ang unang makasagot sa tanong ' 'ko. Maaari ng umuwi.', 'Bigla tinapon ni Juan ang kanyang bag sa labas ng pinto.', 'Titser: Kaninong bag yon?', 'Juan: Sa akin po mam. Bye mam, bye klasmeyt. See you ' 'tomorrow.', ' ']}, 428: {'dialect': 'tagalog', 'joke': ['Teacher at ang Nanay', 'Titser: Misis, pinatawag ko kayo kasi salbahe ang anak niyo.', 'Misis: Alam niyo po, salbahe din yan sa bahay. Pero kahit ' 'kelan hindi ko naman kayo pinatawag.', ' ']}, 429: {'dialect': 'tagalog', 'joke': ['Natinik si Pedro', 'Pedro: Nay natinik po ako.', 'Nanay: Ano?? Itong saging kainin mo.', 'Pedro: Nay, ganun pa din po eh. Ayaw matanggal po.', 'Nanay: Oh! Eto pa ang saging, ubusin mo yan.', 'Pedro: Andyan pa rin nay, kumakapit pa din.', 'Nanay: Halika nga dito. Ngumanga ka para masilip ko.', 'Pedro: Dito po nay sa paa ko!', ' ']}, 430: {'dialect': 'tagalog', 'joke': ['Ang Lamok', 'Ben: Tay! Ang daming lamok', 'Tatay: Patayin mo ang ilaw para hindi ka makita.', 'Pinatay ni Ben ang ilaw. Bigla naman dumating ang mga ' 'alitaptap.', 'Ben: Tay!!! Andyan na naman ang mga lamok may dalang ' 'flashlight.', ' ']}, 431: {'dialect': 'tagalog', 'joke': ['Huli sa Balita', 'Misis: Walanghiya ka! May kabit ka pala na 18 years old? Ang ' 'kapal din ng mukha mo.', 'Mister: Naku! Huli kana sa balita, 25 years old na siya ' 'ngayon.', ' ']}, 432: {'dialect': 'tagalog', 'joke': ['Pari o Judge', 'Pedro: Ana, oras na ikinasal tayo. Saan mo gusto sa pari o sa ' 'judge.', 'Ana: Ay ang ingot mo naman Pedro. Syempre sayo, bakit irereto ' 'mo pa ako sa iba???', ' ']}, 433: {'dialect': 'tagalog', 'joke': ['Sa work..', '<NAME> ako', 'Tamarind', 'Gusto mo ba ng tamarind?', 'Ayoko baka tamarind ako !']}, 434: {'dialect': 'tagalog', 'joke': ['saan nakakabili ng lip stick joke', 'boy sablay:Saan ba nakakabili ng lipstick?', 'girl:Sa HBC try mo', 'boy sablay:Ano HBC, di ba bangko yun? yung may mga credit ' 'cards', 'girl: HBC pre, HBC hinde HSBC. HSBC bangko nga yun', 'boy sablay: Ahhh.. nagtitinda na din pala ng lipstick dun. ' 'Akala ko nagdedeliver lang sila sa LBC', 'girl: grrr']}, 435: {'dialect': 'tagalog', 'joke': ['Saan lumiliko ang spacehip?', 'Sa universe ']}, 436: {'dialect': 'tagalog', 'joke': ['Magkano ang Kilo', 'Lalaki: Ate magakano po sa lansones', 'Tindera: Trenta ang kalahating kilo', 'Lalaki: Pwede bang 30 na lang ang isang kilo', 'Tindera: kuya siguro makasalanan kayo', 'Lalaki: huh, bakit naman? (medyo galit)', 'Tindera: Eh ang laki nyo kasi humingi ng tawad eh. ']}, 437: {'dialect': 'tagalog', 'joke': ['[Baliw tumawag sa mental]', ': Hello, may tao pa po ba sa ROOM 1043?', ': Wala na, bakit?', ': Wala naman, chineck ko lang kung nakatakas talaga ko. ', ': sh*t']}, 438: {'dialect': 'tagalog', 'joke': ['*Naharangan yung Blackboard* ', 'America: Excuse me.', 'Philippines: Tanginang ulo yan.']}, 439: {'dialect': 'tagalog', 'joke': ['Chechekan daw yung test paper pero pagbalik sakin puro ekis ' 'parang tanga lang e.']}, 440: {'dialect': 'tagalog', 'joke': ['Mama: Nak, may facebook na ako', 'Me:HAHAHA edi congrats ma', 'Mama: Iaccept moko para friends tayo at makita ko mga post mo', 'Me: WTF', 'Mama: Anong WTF?', 'Me: Welcome To Facebook ma.']}, 441: {'dialect': 'tagalog', 'joke': ['Nakita ni pedro si juan sa gilid ng kalsada na may ' 'streetlight.', 'Pedro: juan anong ginagawa mo jan?', 'Juan: hinahanap ko kasi yung nahulog kong pera.', 'Pedro: saan ba nahulog?', 'Juan: dun sa madilim.', 'Pedro: e bat ka jan naghahanap?', 'Juan: e kasi dto maliwanag! Kung dun ako maghahanap madilim e ' 'kaysa dto may ilaw.']}, 442: {'dialect': 'tagalog', 'joke': ['Pedro: Pare kamusta na kayo ng gf mo?', 'Juan: Yun Last month pinakilala ko sya sa lolo kong ' 'milyonaryo', 'Pedro: Oh boto ba nman lolo mo?', 'Juan: Oo, Ayun Lola kona sya ngayon ']}, 443: {'dialect': 'tagalog', 'joke': ['PEDRO: Kapag natulog ba ako sa tabi ng misis mo, mag kumpare ' 'pa rin tayo?', 'JUAN: Hmmm...Hindi.', 'PEDRO: Mag kaaway na?', 'JUAN: Hindi din.', 'PEDRO: Eh, ano na?', 'JUAN: Quits na tayo!']}, 444: {'dialect': 'tagalog', 'joke': ['Nasa restaurant', 'Waiter: Are you done, sir?', "Ako: No, i'm a singer."]}, 445: {'dialect': 'tagalog', 'joke': ['BARBER SHOP', 'Barbero : Sir, anong klase gupit po?', 'Lalaki : Yung uka-uka, masagwa at hindi pantay.', 'Barbero : Sir anu po yun? Hindo ko alam yun.', 'Lalaki : Anung hindi, ganun ang ginupit mo sa akin last ' 'time!!!']}, 446: {'dialect': 'tagalog', 'joke': ['Nasa restaurant', 'Waiter: Are you done, sir?', "Ako: No, i'm a singer."]}, 447: {'dialect': 'tagalog', 'joke': ['Girl: May sasabihin ako sayo babe.', 'Boy: ano yun babe ?', 'Girl: Christian ako dati.', 'Boy: okay lang babe , kahit anong relihiyon mo.', 'Girl : Ano ? hindi pangalan ko yun dati.']}, 448: {'dialect': 'tagalog', 'joke': ['Juan: Mga kaibigan mag ingat kayo sa pag kain ng balot!', 'Pedro: Bakit naman?', 'Juan: kasi yung kaibigan ko nung kumain ng balot nabulag', 'Pedro: Nabulag?!', 'Juan: oo!', 'Pedro: paano nangyari yon? ikwento mo nga.', 'Juan: ganito kasi yon, bumili siya ng balot.', 'Pedro: o bumili siya.', 'Juan: binasag niya.', 'Pedro: binasag.', 'Juan: hinigop ung sabaw', 'Pedro: hinigop', 'Juan: sinilip,tinuka ayon bulag']}, 449: {'dialect': 'tagalog', 'joke': ['HOLDAPAN', 'Parent: magkano ba ang kailangan nyo para maibalik lang ang ' 'anak ko??', 'Holdaper: kahit ilan', 'Parent: 500,000 pesos', 'Holdaper: hindi pwede..dapat may million..', 'Parent: kalahating MILLION', 'Holdaper: sige pwede na.']}, 450: {'dialect': 'tagalog', 'joke': ['Boy: password ka ba?', 'Girl: alam ko na yan kasi Hindi mo ako makakalimutan ?', 'Boy : Mali.. Kasi papalitan na kita']}, 451: {'dialect': 'tagalog', 'joke': ['KAMATAYAN: hawakan mo ang kamay ko', 'BOY: ayoko, Alam kung ikaw si kamatayan, and i know that if i ' "touch your hand I'll die ", 'KAMATAYAN: wow ang talino mo maman!', 'BOY: ako pa !', 'KAMATAYAN: apir !', 'BOY: apir !']}, 452: {'dialect': 'bisaya', 'joke': ['Sa sementeryo usa ka gabie…', 'Gard: sus! Maryusep..abi kog kalag ka. unsa imong gitiltil sa ' 'lapida?', 'Nagtiltil: Ang amaw! wrong spelling ako pangalan.', 'Ang kalag sa gard nidagan sa kahadlok!']}, 453: {'dialect': 'bisaya', 'joke': ['Unsay may eningles sa saging ma.', 'Mitubag ang inahan,” ardaba”', 'Mitubag ang Bata, ” dili uy ingon ni Mam.', 'Unsa man?', 'Banana tubag sa Bata', 'Ang tinuod Dong ang banana kanang hinog nga saging.']}, 454: {'dialect': 'bisaya', 'joke': ['Boy: Bindesyoni ko padre kai ako nakasala', 'Padre: Unsa mai imong sala?', 'Boy: Nanglili ko padre', 'Padre: Hah!! unya pagkahuman??', 'Boy: Naghubo siya sa iyang blouse padre. puti kaayo padre. ' 'unya naghukas syaa sa iyang b**.. uhhmm. dako kaayo og b***s ' 'padre. unya iya n pod gihubo ang p***y……………..', 'Padre: Hah!!! (excited kaayo) unya naunsa man?????', 'Boy: Na ningkalit man og brown out padre..', 'Padre: Letse lage ning meralco…..']}, 455: {'dialect': 'bisaya', 'joke': ['Babae: nong! Sakay ko!', 'Driver: cge! Asa man ka?', 'Babae: diha lang sa kanto! Naay bayad ang Bata?', 'Driver: ay libre lang kay duol man.', 'Babae: ah, ang mosabak naay bayad?', 'Driver: wala gihapon!', 'Babae: sige anak! Sabaka ko…']}, 456: {'dialect': 'bisaya', 'joke': ['Asawa: Nganong gidala man nimo dre sa balay kanang trabaho ' 'nimo', 'Bana: Rush man gud ni pangga mao nga gidala ko dre sa balay', 'Asawa: A pisti ba uy ! ikaw ray embalsamador nga nagdala ug ' 'trabaho sa balay']}, 457: {'dialect': 'bisaya', 'joke': ['Pasahero: n0y! dha ra [textspelling] ihun0ng tapad anang iro!', 'Driver: ok sir!', 'Pasahero: wla mn lage ka ninghun0ng n0y?', 'Driver: Unsa0n pghun0ng ngcge mn nglakaw ang iro!']}, 458: {'dialect': 'bisaya', 'joke': ['Blood donation', '(Mag-uyab ng-away)', 'BF: Wala kay utang kabubot-on, abi kay naulian nka human ka ' 'naaksidente, ngdonate pa ko ug dugo nimo pra lng mabuhi ka.. ' 'Unya kron kusog nka mangaway. Bawi-on nko tong akong dugo ' 'gidonate beh..', 'GF: I-uli lagih nko pero installment lang.. O, dawata ning ' 'Napkin, sakto ky gidugo ko kron….. Modess pa rba na.']}, 459: {'dialect': 'bisaya', 'joke': ['Bana: Magbuwag ta?!Pastilan wala tay anak…', 'Asawa: O, ako pay hadlokon!', 'Bana: Sige tungaon nato ang APLIANCES', 'Imo ning NIGO ako ning KAGURAN…']}, 460: {'dialect': 'bisaya', 'joke': ['Once there was a fr0g.', 'He jumped into the lake.', 'nlang0y', 'nilang0y palau..', 'layo na kaau ang baki..', 'ma0 2..', 'babay baki.. !', 'hehe']}, 461: {'dialect': 'bisaya', 'joke': ['Mag-asawa nag-away…', '(suko kaayo ang bana)', 'Bana: Wla nako kasabot aning kahimtanga, pag-uli nako gikan ' 'sa trabaho walay linung-ag, walay hinlo ang balay, sige lang ' 'ka panirang sa silingan.', 'Asawa: Sori na gud luv.', 'Bana: Ah! Di na matabang ug sorisori. Di na nako kaya! Mypa ' 'mgbulag ta, dad-on nako ning duha nato ka anak.', '(nakagawas na sa balay ang bana ug duha kaanak nila, ' 'hingkalit ug singgit ang asawa…)', 'Asawa: Hoy! Imo man ng gihurot ug dala ng duha kaBata, nga ' 'isa ra may imo ana.']}, 462: {'dialect': 'bisaya', 'joke': ['Anak: Ma, 18th b-day na nko ugma, December 15. !, himo-e baya ' 'ko ug message ha, kanang makahilak ko.', '(Pagka-ugma)', 'Mama: Nak! adopted ra bya ka..hapi brthday!', 'ning-tuwad ug hilak uy!']}, 463: {'dialect': 'bisaya', 'joke': ['Bata: Nay, unsay atong sud-an?', 'Inahan: Christmas tree ug lansang, Dong.', 'Bata: Ha, christmas tree ug lansang?', 'Inahan: Kamunggay ba, nga gisubakan ug buwad bulinaw. Meri ' 'krismas nak!']}, 464: {'dialect': 'bisaya', 'joke': ['Mama: (knock knock)', 'Anak: (excited kaayo) Basi si Santa Klaus na ni! Who’s there?', 'Mama: Mama nimo!', 'Anak: Mama nimo who?', 'Mama: Leche! Ablihi ko uy! Pa-who who pa ka diha!! Bunalan ' 'tika ron!']}, 465: {'dialect': 'bisaya', 'joke': ['Inday1: day, kuyugi ko be kay mangita kog ka chat karon sa ' 'internetan. Hapit na human 2011 wa pako uyab nga merkano.', 'Inday2: manglaba paman ko unya day oie..', 'Inday1: koyugi ko kay mas kamao man ka mo english kay sa ' 'nako.']}, 466: {'dialect': 'bisaya', 'joke': ['Sa internetan…', 'Inday1: Kani, dai makadagit na jud kog amerikano karon', 'Inday2: Cegeg tabi oi, ingni na kuno na ug hi..', 'Inday1:(ni chat sa amerikano) Hi', 'Inday2: Nawa mo baws mana ug hello', 'Amerikano: Hello beautiful, can i see your tits?', 'Inday1: Biliba gyud nimo day oi, kabalo man ka mo ingon sya ' 'ug hello, nya ingon pa jud gwapa ko, pero usa maning tits ' 'day?', 'Inday2: Ai mo tan. Aw daw sya sa imong ngipon, bogo.a sad ' 'anang amerikanoha oie..di kabalo mo spelling. Plural na gani ' 'nang tit butangan pa jud og s..']}, 467: {'dialect': 'bisaya', 'joke': ['Sa usa ka krismas party sa kanto…', 'Juan: Se, tikasan ka da, sige lang ka imoha. Ako na poy ' 'tagayi.', 'Jose: O sige, para patas ta. Imoha ning baso. Akoa ning ' 'pitser!']}, 468: {'dialect': 'bisaya', 'joke': ['Pinoy sakay sa eroplano para mag krismas tour sa Europe may ' 'kaabay siya nga duha ka Asian, Japon ug Insik. Sa ilang ' 'biyahe nagkaila silang tulo, naghisgot sila sa mga bag-ong ' 'teknolohiya nga gikan sa ilang nasod. bisaya, bisdak, ' 'binisaya, bisaya jokes', 'Matod pas Japon – “kining akong ball pen camera ni”,', 'Ingon sab ang Insik – “kini sab ako sing-sing alarm watch ni,', 'Sus, kay ang Pinoy na-atol man sab nga nagda-ut iyang tiyan ' 'ug nangutot ug may turbo sound pa gyod [purrrrorrrrrot].', 'Nakurat Japon ug Insik ug nagdungan pag-ingon – “unsa man ' 'ron?” Tubag pas Pinoy – “mao toy bag-ong teknolohiya nga ' 'bag-ong produkto sa Pilipinas ang paks masin na-a sa sulod sa ' 'human body.”']}, 469: {'dialect': 'bisaya', 'joke': ['Exam sadto nga adlaw sa isa ke pre-school…', 'Teacher: Leofil, what are the different parts of a tree?', 'Pupill: Ma’am leaf, uhm… fruit…trunk, roots…', 'Teacher: One last part? What is it?', 'Pupil: (daw indi makadumdum) uhmm… Ano gani man???', 'Teacher: Ok.gaan ta ka clue ha sang beginning sound.It begins ' 'with [b]…The teacher pronounces the beginning letter b but ' 'still the pupil couldn’t get it. So the teacher continued by ' 'saying the consonant cluster ” br”. But still there was no ' 'answer from the child. So the teacher proceeded …” [brrr…a..] ' '(the sound of a is slightly pronounced as in short vowel/shwa ' 'sound.', 'Pupil: (Laughs maliciously covering his mouth)He he he… Miss ' 'ang kahoy may bra?', 'Teacher: (Amazed and confused but disclosing her laughter). ' 'No… it’s not that. The other part of the tree is branch.']}, 470: {'dialect': 'bisaya', 'joke': ['Gikarga ni Juan ang baboy likod sa jeep dipsayroan ug dayon ' 'lingkod sa front sit..', 'Pag abot sa iyang destinasyon, dayon kining plete sa ' 'conduktor..', 'Conduktor; Juan, kulang man ning imong plete?', 'Juan: (tingala ug dala kasuko mood)… unsay kulang, pagtarong ' 'dha ha?', 'Conduktor: Kulang lagi Juan, apil bya ang baBoy pletehan…', 'Juan: (tingala ug dala kasuko mood napud)… ha? unsay apil ' 'pletehan ang baBoy?.. sus, kung kabalo pa lang ko nga apil ' 'pletehan ang baBoy, mypa ako nalang nang gipaFRONT SIT..', 'hahahahahahaha…']}, 471: {'dialect': 'bisaya', 'joke': ['Usa ka adlaw ni reklamo ang iyang amahan sa iyang ' 'anak..Tungod sa tanum:', 'Amahan: Anak pag ka daghan ba nimong gi tanum sa atubangan sa ' 'atong balay..dili man ta farmville nak..', 'Anak: Eh..di mani farmville tay..gud..', 'Amahan: Unya..unsa man diay ni??…', 'Anak: ehehehe…Tay..” A HUGE WAVE OF ZOMBIES ARE ' 'APPROACHING..”']}, 472: {'dialect': 'bisaya', 'joke': ['Genie: Ihatag nako usa sa imong mga wishes!', 'Aling Dionisia: Ay Diay! Sige, gusto nako ma byutipol ko.', 'Genie: Abrehi palihug ang botilya?', 'Aling Dionisia: ug ma byutipol nako? Aaaaaaaaaaaaaaay!', 'Genie: Di. Mubalik na lang ko sulod sa botilya.']}, 473: {'dialect': 'bisaya', 'joke': ['Manny: ngutana titser, ngano daw ang eggplant walay egg?', 'Aling Dionisia: Ingna imo titser ha nga kung dunay egg, turta ' 'na. TURTA!']}, 474: {'dialect': 'bisaya', 'joke': ['Reporter: Manny ngayon panalo ka na naman, anong pasalubong ' 'mo kay jinky?', 'Manny: syempre ibon. Mahilig sya doon.', 'Reporter: Ibon? Anong klaseng ibon?', 'Manny: Yung mga lipstek, pangmik up ba. Mga ibon prodaks yo ' 'know.']}, 475: {'dialect': 'bisaya', 'joke': ['Dionisia: Doktor gusto magpabutang ug brest.', 'Doctor: (nakuratan) Magpaseksi ka na?', 'Dionisia: Brest sa ngipon ba. Para magnindot akong ngipon! De ' 'ba uso na karon?']}, 476: {'dialect': 'bisaya', 'joke': ['Pacquiao: Wala, pildi ka na maskin unsa pay imong buhaton!', 'Hatton: Panindutay tag inahan!', 'Pacquiao: aaaaaaaaaaaaaah way ing-anaay! I mean yo now…']}, 477: {'dialect': 'bisaya', 'joke': ['Jinky: Kung manganak napud ko, unsay ipangan nato sa atong ' 'anak?', 'Manny: Aaaaaah eh di ikumbayn nato atong ngalan! ' '….”MANKY”…..']}, 478: {'dialect': 'bisaya', 'joke': ['Si Kurdapya ug ang iyang mga amiga nangadto sa bar…', 'dayon kita siya sa sign na nakabutang:', 'below 18 not allowed', 'ingun si kurdapya ngehhhh……uli nalang ta oiiiii,,,,,,,,,,,', '10 raman ta kabook,,,,,,,,,,,,,,,']}, 479: {'dialect': 'bisaya', 'joke': ['Katabang: padre, ge texan ko sa akong amo nga naa ron sa ' 'abroad, nga pamisahan kuno ang ilang iro nga namatay,', 'Pari: inday, tawo ra intawon ang misahan, walay labot ang ' 'iro! naboang na sila?', 'Katabang: na! unya unsaon ta man ni rong gipadala nga $10,000 ' 'para sa misa?', 'Pari: aw! wala manka moingon nga katoliko diay ning iro!,, ' 'dad a dire!']}, 480: {'dialect': 'bisaya', 'joke': ['Different color of banana', 'Teacher: Class what are the different colors of bananas?', 'Boknoy: Green, yellow, pula og brown mam!', 'Teacher: Boang! naa ba diay brown ba saging?', 'Boknoy: Bogok man ka mam? ang nilung ag diay peke na?']}, 481: {'dialect': 'bisaya', 'joke': ['Toknoy: Noy, unsa manang sulat na imong gi-basa,', 'Nonoy: Gikan ni sa akong tatay Boknoy,', 'Toknoy: Basaha kuno,', 'Nonoy: Dear Nonoy, gi sulat ko kini ug lunes nahuman pagka ' 'martes, gipadala ko ni pagka myerkules arun madawat nimo inig ' 'ka huwebes, maski pagka byernes arun mabasa ko nimu inig ka ' 'sabado, imong amahan dominggo.']}, 482: {'dialect': 'bisaya', 'joke': ['Mama: Anak, mao nang ako kang gi hampak kay mahal ka naku,', 'Anak: Ana diay na nay?(gi sagpa ang mama)', 'Mama: Way Batasan ning Bataa, ngano imo man kong gi sagpa?', 'Anak: I love you to nay! hehehhehehe']}, 483: {'dialect': 'bisaya', 'joke': ['Interviewer: unsay imong buhaton pag mata nimu na naay usa ka ' 'million dollar?', 'Kano: go on a world tour………..', 'Hapon: put up a business……….', 'Pinoy: tulog napud para mahimong $2M!! 🙂']}, 484: {'dialect': 'bisaya', 'joke': ['Amerkano: Is this house for rent?', 'Guard: Tinuod gyud ka mao ni ang balay ni poren,', 'Amerkano: What did you say?', 'Guard: kana si jose igsoon na ni poren pero una siyang ' 'namatay,', 'Amerkano: Are you foolish?', 'Guard: nah! nayabag na ni ron, security ra ta himoon tang ' 'pulis,', 'Amekano: tommorow i’ll be back,', 'Guard: tinood jud ka ang gikamatyan ni poren tumor og hubak! ' 'ehehehehe']}, 485: {'dialect': 'bisaya', 'joke': ['Boy: Miss pwd mangutana?.unsa ng orasa?', 'Girl: Mangutana ka unsa nang orasa? Unya mangutana ka sa ' 'ak0ng ngalan, unya mangayo ka sa ak0ng #, unya manguyab ka, ' 'unya after 1 m0nth sugt0n taka, unya manghagad ka og date, ' 'unya dad-on day0n ko nim0 bsan asa, unya naay mahitabo nato ' 'mabuntis day0n ko!.unya pakasal ta, unya kulatah0n ko ' 'nim0!.di ko m0hatag ui!', 'Boy: Ahhhhh!.ka advance ba anang RELOHA!']}, 486: {'dialect': 'bisaya', 'joke': ['Boy: Nganong di man ka nko? bati ba ko ug dagway?', 'Girl: D man. gwapo man ka, GKAN LAPALAPA HANGTOD LIOG!!']}, 487: {'dialect': 'bisaya', 'joke': ['Boy: Maypa ID na lang ka Miss!', 'Girl: (natingala mode) Ngano man?', 'Boy: Para kung mawala ko, kahibaw sila nga aku ka.']}, 488: {'dialect': 'bisaya', 'joke': ['Boy: Mura man ka ug kabayo Miss?!!!', 'Girl: (angry mode) Ha?!!! Kay ngano man?!!', 'Boy: Kada makakita ko nimo, mu-tigidig ang heart nako!']}, 489: {'dialect': 'bisaya', 'joke': ['Boy: Mura man kag kaldero bayota ka!!!', 'Bayot: Ngano man?!!!', 'Boy: Lagum kaayo ka ug lubot!!!']}, 490: {'dialect': 'bisaya', 'joke': ['Boy: Mura man ka ug ampalaya Miss…', 'Girl: Ngano man?!!!', 'Boy: Bisag pait kaayo ka, ikaw gihapon gahatag ug sustansiya ' 'sa akong kinabuhi!']}, 491: {'dialect': 'bisaya', 'joke': ['Tatay: Pangayo ug asin sa pikas nga balay', 'Anak: Oo tay…..', 'Tatay: Kadugay man lageh nimo.', 'Anak: Amaw man diay ka tay..nalibot najud nko tibuok baryo ' 'wala man ko kita ug pikas nga balay pulos man jud tibuok…']}, 492: {'dialect': 'bisaya', 'joke': ['nak: Tay, herbal ang makahiya?', 'Tatay: Oo, herbal na nak.', 'Anak: Sa asa man na nga tambal tay?', 'Tatay: Tambal na sa mga Baga’g nawong…. 😉']}, 493: {'dialect': 'bisaya', 'joke': ['In a job interview the employer ask the applicant…', 'Employer: What can you contribute to our company?', 'Applicant: Aw naa diay amutan sir?']}, 494: {'dialect': 'bisaya', 'joke': ['Tatay: Dong, sak-a ang mangga ug hikapa kung hinog na ba.', 'Anak: (nisaka) Tay, hinog na!', 'Tatay: Na hala, kanaog na diha kay atong sunkiton.']}, 495: {'dialect': 'bisaya', 'joke': ['Girl: I nid space!', 'Boy: Cge, irog ko gamay aron naay space.', 'Girl: I mean, magbuwag ta!', 'Boy: Cge, diha ka agi sa left, dri ko sa right.', 'Girl: Si mama nako di ganahan nimo.', 'Boy: Labaw pakong di ganahan niya, di ko mupatol ug tiguwang ' 'oy.', 'Girl: Hahay, BREAK nata ba!', 'Boy: Ah maypa kay gutom nasad ko. 🙂', 'Nah, wa juy buwag mahitabo. 😀']}, 496: {'dialect': 'bisaya', 'joke': ['Duha ka irong buang nag-istoryahanay:', 'Iro 1: Brad, tinuod ba nga ang laway nato naa’y RABIES ug ' 'makamatay?', 'Iro 2: O, ngano diay? Unsa’y problema?', 'Iro 1: Natulon man gud nako. Nakulbaan ko. (^_^)']}, 497: {'dialect': 'bisaya', 'joke': ['Pupil 1: Bay, nakahimo kag assignment?', 'Pupil 2: Wala lage. Papel ra ako gi-pass kay lisod. Ikaw?', 'Pupil 1: Nah! Papel ra pud akong gi-pass.', 'Pupil 2: Hala! Ingnon na pud ta ani nga nagkinupyahanay! ' 'Tsk!']}, 498: {'dialect': 'bisaya', 'joke': ['Teacher: Class if basura ko asa man ko ninyo ilabay, ' 'nabubulok o di nabubulok?', 'Dingdong: Ay sa di nabubulok ma’am.', 'Teacher: Ngano man DD?', 'Dingdong: Ay, alangan kay plastic man ka ma’am.']}, 499: {'dialect': 'bisaya', 'joke': ['Mama: Nak, nganung ngkabulingit man ka?', 'Anak: kabantay ka anang kanal dri ma?', 'Mama: Oo nak, kbantay ko. Nganu man?', 'Anak: ako wla.']}, 500: {'dialect': 'bisaya', 'joke': ['Boy: Nganu mura man kag nhadlok?', 'Girl: Hapit kako ma rape diha sa unahan, may gani koy kwarta.', 'Boy: Unya emu na lang gihatag imung kwarta?', 'Girl: Wala ui ng hotel mi. lain sad kau diha rmmi sa ' 'daplin.']}, 501: {'dialect': 'bisaya', 'joke': ['Judge: Pedro, unsa man jud ang nahitabo?', 'Pedro: (wala ni tingog)', 'Judge: Tubaga ang question!', 'Pedro: Ingon hearing lang ni! Ngano naay Speaking?']}}
2.15625
2
raids/urls.py
SvenStahlmann/Early-Bird
0
12775819
from django.urls import path from raids import views urlpatterns = [ path('encounter', views.encounter, name='raids_encounter'), path('dispatch', views.dispatch_loot_system, name='raids_dispatch'), path('search', views.search, name='raids_search'), # Ajax path('ajax/autocomplete', views.ajax_autocomplete_search, name='raids_autocomplete_search'), ]
1.53125
2
scopes/assignment_operator.py
padmacho/pythontutorial
0
12775820
a = 0 def fun1(): print("fun1: a=", a) def fun2(): a = 10 # By default, the assignment statement creates variables in the local scope print("fun2: a=", a) def fun3(): global a # refer global variable a = 5 print("fun3: a=", a) fun1() fun2() fun1() fun3() fun1()
4.15625
4
doc/source/user/plots/matplotlib3.py
leonarduschen/numpy
5
12775821
<gh_stars>1-10 import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D fig = plt.figure() ax = Axes3D(fig) X = np.arange(-5, 5, 0.15) Y = np.arange(-5, 5, 0.15) X, Y = np.meshgrid(X, Y) R = np.sqrt(X**2 + Y**2) Z = np.sin(R) ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap='viridis') plt.show()
2.640625
3
osg_configure/configure_modules/siteinformation.py
mmascher/osg-configure
0
12775822
""" Module to handle attributes related to the site location and details """ import re import logging from osg_configure.modules import utilities from osg_configure.modules import configfile from osg_configure.modules import validation from osg_configure.modules.baseconfiguration import BaseConfiguration __all__ = ['SiteInformation'] # convenience MANDATORY = configfile.Option.MANDATORY MANDATORY_ON_CE = configfile.Option.MANDATORY_ON_CE OPTIONAL = configfile.Option.OPTIONAL class SiteInformation(BaseConfiguration): """Class to handle attributes related to site information such as location and contact information """ # The wlcg_* options are read by GIP directly IGNORE_OPTIONS = ['wlcg_tier', 'wlcg_parent', 'wlcg_name', 'wlcg_grid'] def __init__(self, *args, **kwargs): # pylint: disable-msg=W0142 super(SiteInformation, self).__init__(*args, **kwargs) self.logger = logging.getLogger(__name__) self.log('SiteInformation.__init__ started') self.options = {'group': configfile.Option(name='group', required=MANDATORY, default_value='OSG', mapping='OSG_GROUP'), 'host_name': configfile.Option(name='host_name', required=MANDATORY_ON_CE, default_value='', mapping='OSG_HOSTNAME'), 'site_name': configfile.Option(name='site_name', required=OPTIONAL, default_value='', mapping='OSG_SITE_NAME'), 'sponsor': configfile.Option(name='sponsor', required=MANDATORY_ON_CE, mapping='OSG_SPONSOR'), 'site_policy': configfile.Option(name='site_policy', required=OPTIONAL, default_value='', mapping='OSG_SITE_INFO'), 'contact': configfile.Option(name='contact', required=MANDATORY_ON_CE, mapping='OSG_CONTACT_NAME'), 'email': configfile.Option(name='email', required=MANDATORY_ON_CE, mapping='OSG_CONTACT_EMAIL'), 'city': configfile.Option(name='city', required=MANDATORY_ON_CE, mapping='OSG_SITE_CITY'), 'country': configfile.Option(name='country', required=MANDATORY_ON_CE, mapping='OSG_SITE_COUNTRY'), 'longitude': configfile.Option(name='longitude', opt_type=float, required=MANDATORY_ON_CE, mapping='OSG_SITE_LONGITUDE'), 'latitude': configfile.Option(name='latitude', opt_type=float, required=MANDATORY_ON_CE, mapping='OSG_SITE_LATITUDE'), 'resource': configfile.Option(name='resource', required=OPTIONAL, default_value='', mapping='OSG_SITE_NAME'), 'resource_group': configfile.Option(name='resource_group', default_value='', required=OPTIONAL)} self.config_section = "Site Information" self.enabled = True self.log('SiteInformation.__init__ completed') def parse_configuration(self, configuration): """Try to get configuration information from ConfigParser or SafeConfigParser object given by configuration and write recognized settings to attributes dict """ self.log('SiteInformation.parse_configuration started') self.check_config(configuration) if not configuration.has_section(self.config_section): self.enabled = False self.log("%s section not in config file" % self.config_section) self.log('SiteInformation.parse_configuration completed') return self.get_options(configuration, ignore_options=self.IGNORE_OPTIONS) self.log('SiteInformation.parse_configuration completed') # pylint: disable-msg=W0613 def check_attributes(self, attributes): """Check attributes currently stored and make sure that they are consistent""" self.log('SiteInformation.check_attributes started') attributes_ok = True if not self.enabled: self.log('Not enabled, returning True') self.log('SiteInformation.check_attributes completed') return attributes_ok # OSG_GROUP must be either OSG or OSG-ITB group = self.opt_val("group") if group not in ('OSG', 'OSG-ITB'): self.log("The group setting must be either OSG or OSG-ITB, got: %s" % group, option='group', section=self.config_section, level=logging.ERROR) attributes_ok = False host_name = self.opt_val("host_name") # host_name must be a valid dns name, check this by getting it's ip adddress if not utilities.blank(host_name) and not validation.valid_domain(host_name, True): self.log("hostname %s can't be resolved" % host_name, option='host_name', section=self.config_section, level=logging.ERROR) attributes_ok = False if not utilities.blank(self.opt_val("site_name")): self.log("The site_name setting has been deprecated in favor of the" " resource and resource_group settings and will be removed", section=self.config_section, option="site_name", level=logging.WARNING) latitude = self.opt_val("latitude") if not utilities.blank(latitude) and not -90 < latitude < 90: self.log("Latitude must be between -90 and 90, got %s" % latitude, section=self.config_section, option='latitude', level=logging.ERROR) attributes_ok = False longitude = self.opt_val("longitude") if not utilities.blank(longitude) and not -180 < longitude < 180: self.log("Longitude must be between -180 and 180, got %s" % longitude, section=self.config_section, option='longitude', level=logging.ERROR) attributes_ok = False email = self.opt_val("email") # make sure the email address has the correct format if not utilities.blank(email) and not validation.valid_email(email): self.log("Invalid email address in site information: %s" % email, section=self.config_section, option='email', level=logging.ERROR) attributes_ok = False sponsor = self.opt_val("sponsor") if not utilities.blank(sponsor): attributes_ok &= self.check_sponsor(sponsor) self.log('SiteInformation.check_attributes completed') return attributes_ok def check_sponsor(self, sponsor): attributes_ok = True percentage = 0 vo_names = utilities.get_vos(None) if vo_names == []: map_file_present = False else: map_file_present = True vo_names.append('usatlas') # usatlas is a valid vo name vo_names.append('uscms') # uscms is a valid vo name vo_names.append('local') # local is a valid vo name cap_vo_names = [vo.upper() for vo in vo_names] for vo in re.split(r'\s*,?\s*', sponsor): vo_name = vo.split(':')[0] if vo_name not in vo_names: if vo_name.upper() in cap_vo_names: self.log("VO name %s has the wrong capitialization" % vo_name, section=self.config_section, option='sponsor', level=logging.WARNING) vo_mesg = "Valid VO names are as follows:\n" for name in vo_names: vo_mesg += name + "\n" self.log(vo_mesg, level=logging.WARNING) else: if map_file_present: self.log("In %s section, problem with sponsor setting" % \ self.config_section) self.log("VO name %s not found" % vo_name, section=self.config_section, option='sponsor', level=logging.ERROR) vo_mesg = "Valid VO names are as follows:\n" for name in vo_names: vo_mesg += name + "\n" self.log(vo_mesg, level=logging.ERROR) attributes_ok = False else: self.log("Can't currently check VOs in sponsor setting because " + "the /var/lib/osg/user-vo-map is empty. If you are " + "configuring osg components, this may be resolved when " + "osg-configure runs the appropriate script to generate " + "this file later in the configuration process", section=self.config_section, option='sponsor', level=logging.WARNING) if len(vo.split(':')) == 1: percentage += 100 elif len(vo.split(':')) == 2: vo_percentage = vo.split(':')[1] try: percentage += int(vo_percentage) except ValueError: self.log("VO percentage (%s) in sponsor field (%s) not an integer" \ % (vo_percentage, vo), section=self.config_section, option='sponsor', level=logging.ERROR, exception=True) attributes_ok = False else: self.log("VO sponsor field is not formated correctly: %s" % vo, section=self.config_section, option='sponsor', level=logging.ERROR) self.log("Sponsors should be given as sponsor:percentage " "separated by a space or comma") if percentage != 100: self.log("VO percentages in sponsor field do not add up to 100, got %s" \ % percentage, section=self.config_section, option='sponsor', level=logging.ERROR) attributes_ok = False return attributes_ok def module_name(self): """Return a string with the name of the module""" return "SiteInformation" def separately_configurable(self): """Return a boolean that indicates whether this module can be configured separately""" return True def get_attributes(self, converter=str): """ Get attributes for the osg attributes file using the dict in self.options Returns a dictionary of ATTRIBUTE => value mappings Need to override parent class method since two options may map to OSG_SITE_NAME """ self.log("%s.get_attributes started" % self.__class__) attributes = BaseConfiguration.get_attributes(self, converter) if attributes == {}: self.log("%s.get_attributes completed" % self.__class__) return attributes if ('OSG_SITE_NAME' in attributes and self.options['resource'].value is not None and not utilities.blank(self.options['resource'].value)): attributes['OSG_SITE_NAME'] = self.options['resource'].value self.log("%s.get_attributes completed" % self.__class__) return attributes
2.21875
2
covid_berlin_scraper/utils/parse_utils.py
jakubvalenta/covid-berlin-scraper
1
12775823
import datetime from typing import Dict, Optional import dateparser import regex def get_element_text(el) -> str: return ''.join(el.strings).strip() def parse_int( s: str, numbers_map: Dict[str, int], thousands_separator: str ) -> int: m = regex.search(r'\d+', s.strip().replace(thousands_separator, '')) if not m: s_clean = s.lower() for substr, value in numbers_map.items(): if substr == s_clean: return value raise Exception(f'Failed to parse number "{s}"') return int(m[0]) def parse_int_or_none( s: str, regex_none: regex.Regex, *args, **kwargs ) -> Optional[int]: if regex_none.search(s): return None return parse_int(s, *args, **kwargs) def parse_datetime(s: str, default_tz: datetime.tzinfo) -> datetime.datetime: dt = dateparser.parse(s) if not dt: raise Exception(f'Failed to parse datetime "{s}"') if not dt.tzinfo: return dt.replace(tzinfo=default_tz) return dt
3.515625
4
sroka/api/athena/athena_api.py
jacekbj/sroka
66
12775824
<reponame>jacekbj/sroka<filename>sroka/api/athena/athena_api.py from configparser import NoOptionError from urllib.parse import urlparse import boto3 from botocore.exceptions import ClientError, EndpointConnectionError import sroka.config.config as config from sroka.api.athena.athena_api_helpers import poll_status, download_file, return_on_exception, \ input_check def query_athena(query, filename=None): if not input_check(query, [str]): return return_on_exception(filename) if not input_check(filename, [str, type(None)]): return return_on_exception(filename) if filename == '': print('Filename cannot be empty') return return_on_exception(filename) try: s3_bucket = config.get_value('aws', 's3bucket_name') key_id = config.get_value('aws', 'aws_access_key_id') access_key = config.get_value('aws', 'aws_secret_access_key') region = config.get_value('aws', 'aws_region') except (KeyError, NoOptionError) as e: print('No credentials were provided. Error message:') print(e) return return_on_exception(filename) session = boto3.Session( aws_access_key_id=key_id, aws_secret_access_key=access_key ) athena = session.client('athena', region_name=region) s3 = session.resource('s3') if not s3_bucket.startswith('s3://'): output_s3_bucket = 's3://' + s3_bucket else: output_s3_bucket = s3_bucket s3_bucket = s3_bucket.replace('s3://', '') try: result = athena.start_query_execution( QueryString=query, ResultConfiguration={ 'OutputLocation': output_s3_bucket, } ) except ClientError as e: if e.response['Error']['Code'] == 'InvalidRequestException': print("Please check your query. Error message:") else: print('Please check your credentials including s3_bucket in config.ini file. Error message:') print(e) return return_on_exception(filename) except EndpointConnectionError as e: print('Please check your credentials including aws_region in config.ini file and Internet connection.', 'Error message:') print(e) return return_on_exception(filename) query_id = result['QueryExecutionId'] result = poll_status(athena, query_id) if result is None: return return_on_exception(filename) elif result['QueryExecution']['Status']['State'] == 'SUCCEEDED': s3_key = query_id + '.csv' return download_file(s3, s3_bucket, s3_key, filename) else: print('Query did not succeed. Reason:') print(result['QueryExecution']['Status']['StateChangeReason']) return return_on_exception(filename) def done_athena(query_id, filename=None): if not input_check(query_id, [str]): return return_on_exception(filename) if not input_check(filename, [str, type(None)]): return return_on_exception(filename) try: s3_bucket = config.get_value('aws', 's3bucket_name') key_id = config.get_value('aws', 'aws_access_key_id') access_key = config.get_value('aws', 'aws_secret_access_key') region = config.get_value('aws', 'aws_region') except (KeyError, NoOptionError) as e: print('All or part of credentials were not provided. Please verify config.ini file. Error message:') print(e) return return_on_exception(filename) if s3_bucket.startswith('s3://'): s3_bucket = s3_bucket.replace('s3://', '') session = boto3.Session( aws_access_key_id=key_id, aws_secret_access_key=access_key ) s3 = session.resource('s3') athena = session.client('athena', region_name=region) result = poll_status(athena, query_id) if result is None: return return_on_exception(filename) if result['QueryExecution']['Status']['State'] == 'SUCCEEDED': s3_key = urlparse(result['QueryExecution']['ResultConfiguration']['OutputLocation']).path[1:] return download_file(s3, s3_bucket, s3_key, filename) else: print('Query did not succeed. Reason:') print(result['QueryExecution']['Status']['StateChangeReason']) return return_on_exception(filename)
2.15625
2
django_project/blog/migrations/0007_add_snippet_to_post_model.py
jsolly/shower-thought-blog
1
12775825
# Generated by Django 3.2.7 on 2022-03-07 15:25 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('blog', '0006_change_content_field_to_richtextuploading'), ] operations = [ migrations.AddField( model_name='post', name='snippet', field=models.CharField(blank=True, max_length=500, null=True), ), ]
1.578125
2
django_formset_vuejs/threads.py
fatse/django-formsets-vuejs
11
12775826
import threading import time from django_formset_vuejs.models import Book def start_cleanup_job(): def cleanup_db(): while True: time.sleep(60*60) print('hello') Book.objects.all().delete() thread1 = threading.Thread(target=cleanup_db) thread1.start()
1.867188
2
tools/DeployTool/python/generatesdkmodule.py
stepanp/luna2d
30
12775827
#----------------------------------------------------------------------------- # luna2d DeployTool # This is part of luna2d engine # Copyright 2014-2017 <NAME> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to # deal in the Software without restriction, including without limitation the # rights to use, copy, modify, merge, publish, distribute, sublicense, and/or # sell copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS # IN THE SOFTWARE. #----------------------------------------------------------------------------- import argparse import shutil import os import utils import sdkmodule_android def main(args): if args.debug_clear_project == "true": shutil.rmtree(args.project_path, ignore_errors=True) elif os.path.exists(args.project_path): print("Cannot create project in \"" + args.project_path + "\". Directory already exists.") exit(1) luna2d_path = utils.get_luna2d_path() template_path = luna2d_path + "/templates/" + args.template constants = { "LUNA_SDKMODULE_TYPE" : args.module_type, "LUNA_SDKMODULE_NAME" : args.name, "LUNA_PACKAGE_NAME" : args.package_name, "LUNA_CLASS_NAME" : args.class_name, "LUNA2D_PATH" : luna2d_path, } ignored_files = [] if args.platform == "android": sdkmodule_android.apply_constants(args, constants) ignored_files = sdkmodule_android.get_ignored_files(args, template_path) utils.make_from_template(template_path, args.project_path, constants, ignored_files) def parse_args(): parser = argparse.ArgumentParser() parser.add_argument("--project_path", required=True) parser.add_argument("--module_type", required=True) parser.add_argument("--template", required=True) parser.add_argument("--name", required=True) parser.add_argument("--platform", required=True) parser.add_argument("--package_name", default="") parser.add_argument("--class_name", default="") parser.add_argument("--strip_git", default=False) parser.add_argument("--debug_clear_project", default=False) return parser.parse_args() main(parse_args())
1.648438
2
question_bank/binary-tree-zigzag-level-order-traversal/binary-tree-zigzag-level-order-traversal.py
yatengLG/leetcode-python
9
12775828
<filename>question_bank/binary-tree-zigzag-level-order-traversal/binary-tree-zigzag-level-order-traversal.py # -*- coding: utf-8 -*- # @Author : LG """ 执行用时:36 ms, 在所有 Python3 提交中击败了91.91% 的用户 内存消耗:13.8 MB, 在所有 Python3 提交中击败了5.59% 的用户 解题思路: 深度优先搜索 然后进行翻转 """ class Solution: def zigzagLevelOrder(self, root: TreeNode) -> List[List[int]]: record = {} def dfs(root, d): # 深度优先,使用字典记录每层的节点值 if root: if d in record: record[d].append(root.val) else: record[d] = [root.val] dfs(root.left, d + 1) dfs(root.right, d + 1) dfs(root, 0) result = [] reverse = False for d in range(len(record)): # 隔一层翻转一次 if reverse: result.append(record[d][::-1]) else: result.append(record[d]) reverse = not reverse return result
3.875
4
tests/test_522.py
sungho-joo/leetcode2github
0
12775829
<filename>tests/test_522.py #!/usr/bin/env python import pytest """ Test 522. Longest Uncommon Subsequence II """ @pytest.fixture(scope="session") def init_variables_522(): from src.leetcode_522_longest_uncommon_subsequence_ii import Solution solution = Solution() def _init_variables_522(): return solution yield _init_variables_522 class TestClass522: def test_solution_0(self, init_variables_522): assert init_variables_522().findLUSlength(["aba", "cdc", "eae"]) == 3 def test_solution_1(self, init_variables_522): assert init_variables_522().findLUSlength(["aaa", "aaa", "aa"]) == -1
2.6875
3
Code/utils.py
sirebellum/catz_contest
4
12775830
<filename>Code/utils.py<gh_stars>1-10 import tensorflow as tf import numpy as np from PIL import Image from scipy.ndimage import imread from glob import glob import os import random import cv2 import constants as c from tfutils import log10 ## # Data ## def normalize_frames(frames): """ Convert frames from int8 [0, 255] to float32 [-1, 1]. @param frames: A numpy array. The frames to be converted. @return: The normalized frames. """ new_frames = frames.astype(np.float32) new_frames /= (255 / 2) new_frames -= 1 return new_frames def denormalize_frames(frames): """ Performs the inverse operation of normalize_frames. @param frames: A numpy array. The frames to be converted. @return: The denormalized frames. """ new_frames = frames + 1 new_frames *= (255 / 2) # noinspection PyUnresolvedReferences new_frames = new_frames.astype(np.uint8) return new_frames def clip_l2_diff(clip): """ @param clip: A numpy array of shape [c.TRAIN_HEIGHT, c.TRAIN_WIDTH, (3 * (c.HIST_LEN + 1))]. @return: The sum of l2 differences between the frame pixels of each sequential pair of frames. """ diff = 0 for i in range(c.HIST_LEN): frame = clip[:, :, 3 * i:3 * (i + 1)] next_frame = clip[:, :, 3 * (i + 1):3 * (i + 2)] # noinspection PyTypeChecker diff += np.sum(np.square(next_frame - frame)) return diff class data(): """ Loads all train data into numpy arrays in memory. """ def __init__(self, path): # Set up image dirs cat_dirs = glob(path + "*") random.shuffle(cat_dirs) # load all images self.images = np.zeros( (len(cat_dirs), c.FULL_HEIGHT, c.FULL_WIDTH, 3 * (c.HIST_LEN + 1))) for i in range(0, len(cat_dirs)): input_imgs = glob(cat_dirs[i] + "/cat_*") imgs = [imread(img, mode='RGB') for img in sorted(input_imgs)] self.images[i] = normalize_frames(np.concatenate(imgs, axis=2)) self.instances = len(self.images) # datset self.mode = 'test' if 'train' in path: self.mode = 'train' self.i = 0 def get_batch(self, batch_size=None): # Get all images if no batch_size supplied if batch_size is None: batch_size = self.instances # Shuffle if we've gone through the database once if self.i >= self.instances: self.i = 0 np.random.shuffle(self.images) i = self.i self.i += batch_size batch = np.take(self.images, range(i, i+batch_size), axis=0, mode='wrap') # perform random data alterations if self.mode == 'train': # horizontal flip indices = np.random.randint(0, batch_size, (batch_size//3)) batch[indices] = np.fliplr(batch[indices]) # crop and resize indices = np.random.randint(0, batch_size, (batch_size//3)) lcrops = np.random.randint( 0, int(c.FULL_HEIGHT*0.2), (batch_size//2)) hcrops = np.random.randint( int(c.FULL_HEIGHT*0.8), c.FULL_HEIGHT, (batch_size//2)) for x, i in enumerate(indices): new = batch[i, lcrops[x]:hcrops[x], lcrops[x]:hcrops[x], :] new = cv2.resize(new, (c.FULL_HEIGHT, c.FULL_WIDTH)).copy() if np.amax(new) > 1 or np.amin(new) < -1: # If we get a bad image, discard continue batch[i] = new return batch ## # Error calculation ## # TODO: Add SSIM error http://www.cns.nyu.edu/pub/eero/wang03-reprint.pdf # TODO: Unit test error functions. def perceptual_distance(gen_frames, gt_frames): # Preprocess back to normal images y_pred = gen_frames + 1 y_true = gt_frames + 1 y_pred *= (255 / 2) y_true *= (255 / 2) rmean = (y_true[:, :, :, 0] + y_pred[:, :, :, 0]) / 2 r = y_true[:, :, :, 0] - y_pred[:, :, :, 0] g = y_true[:, :, :, 1] - y_pred[:, :, :, 1] b = y_true[:, :, :, 2] - y_pred[:, :, :, 2] return tf.reduce_mean(tf.sqrt((((512+rmean)*r*r)/256) + 4*g*g + (((767-rmean)*b*b)/256))) def psnr_error(gen_frames, gt_frames): """ Computes the Peak Signal to Noise Ratio error between the generated images and the ground truth images. @param gen_frames: A tensor of shape [batch_size, height, width, 3]. The frames generated by the generator model. @param gt_frames: A tensor of shape [batch_size, height, width, 3]. The ground-truth frames for each frame in gen_frames. @return: A scalar tensor. The mean Peak Signal to Noise Ratio error over each frame in the batch. """ shape = tf.shape(gen_frames) num_pixels = tf.to_float(shape[1] * shape[2] * shape[3]) square_diff = tf.square(gt_frames - gen_frames) batch_errors = 10 * log10(1 / ((1 / num_pixels) * tf.reduce_sum(square_diff, [1, 2, 3]))) return tf.reduce_mean(batch_errors) def sharp_diff_error(gen_frames, gt_frames): """ Computes the Sharpness Difference error between the generated images and the ground truth images. @param gen_frames: A tensor of shape [batch_size, height, width, 3]. The frames generated by the generator model. @param gt_frames: A tensor of shape [batch_size, height, width, 3]. The ground-truth frames for each frame in gen_frames. @return: A scalar tensor. The Sharpness Difference error over each frame in the batch. """ shape = tf.shape(gen_frames) num_pixels = tf.to_float(shape[1] * shape[2] * shape[3]) # gradient difference # create filters [-1, 1] and [[1],[-1]] for diffing to the left and down respectively. # TODO: Could this be simplified with one filter [[-1, 2], [0, -1]]? pos = tf.constant(np.identity(3), dtype=tf.float32) neg = -1 * pos filter_x = tf.expand_dims(tf.stack([neg, pos]), 0) # [-1, 1] filter_y = tf.stack([tf.expand_dims(pos, 0), tf.expand_dims(neg, 0)]) # [[1],[-1]] strides = [1, 1, 1, 1] # stride of (1, 1) padding = 'SAME' gen_dx = tf.abs(tf.nn.conv2d(gen_frames, filter_x, strides, padding=padding)) gen_dy = tf.abs(tf.nn.conv2d(gen_frames, filter_y, strides, padding=padding)) gt_dx = tf.abs(tf.nn.conv2d(gt_frames, filter_x, strides, padding=padding)) gt_dy = tf.abs(tf.nn.conv2d(gt_frames, filter_y, strides, padding=padding)) gen_grad_sum = gen_dx + gen_dy gt_grad_sum = gt_dx + gt_dy grad_diff = tf.abs(gt_grad_sum - gen_grad_sum) batch_errors = 10 * log10(1 / ((1 / num_pixels) * tf.reduce_sum(grad_diff, [1, 2, 3]))) return tf.reduce_mean(batch_errors)
2.59375
3
Lib/glyphNameFormatter/rangeProcessors/latin_extended_b.py
peterennis/glyphNameFormatter
69
12775831
def process(self): self.edit("LATIN") self.replace("CAPITAL LETTER D WITH SMALL LETTER Z", "Dz") self.replace("CAPITAL LETTER DZ", "DZ") self.edit("AFRICAN", "african") self.edit("WITH LONG RIGHT LEG", "long", "right", "leg") self.edit('LETTER YR', "yr") self.edit("CAPITAL LETTER O WITH MIDDLE TILDE", "Obar") self.edit("CAPITAL LETTER SMALL Q WITH HOOK TAIL", "Qsmallhooktail") self.edit("LETTER REVERSED ESH LOOP", "eshreversedloop") self.edit("CAPITAL LETTER L WITH SMALL LETTER J", "Lj") self.edit("CAPITAL LETTER N WITH SMALL LETTER J", "Nj") self.edit("LETTER INVERTED GLOTTAL STOP WITH STROKE", "glottalinvertedstroke") self.edit("LETTER TWO WITH STROKE", "twostroke") self.edit("CAPITAL LETTER LJ", "LJ") self.edit("CAPITAL LETTER NJ", "NJ") self.edit("CAPITAL LETTER AE WITH", "AE") self.edit("CAPITAL LETTER WYNN", "Wynn") self.edit("LETTER WYNN", "wynn") self.edit("WITH PALATAL", "palatal") self.edit("DENTAL", "dental") self.edit("LATERAL", "lateral") self.edit("ALVEOLAR", "alveolar") self.edit("RETROFLEX", "retroflex") self.replace("LETTER CLICK", "click") self.forceScriptPrefix("latin", "CAPITAL LETTER GAMMA", "Gamma") self.forceScriptPrefix("latin", "CAPITAL LETTER IOTA", "Iota") self.forceScriptPrefix("latin", "CAPITAL LETTER UPSILON", "Upsilon") self.processAs("Helper Diacritics") self.processAs("Helper Shapes") self.handleCase() self.compress() if __name__ == "__main__": from glyphNameFormatter.exporters import printRange printRange("Latin Extended-B")
3.078125
3
location_parsers/kern.py
rajbot/vaccinebot
2
12775832
<gh_stars>1-10 # Parse vaccination site locations for Kern County # Run manually: python3 -m location_parsers.kern import csv import os import re import tempfile import time from . import County, Location from . import driver_start, driver_stop from . import debug_print, validate from selenium.webdriver.common.by import By from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support import expected_conditions as EC county = County( name="Kern", url="https://phweb.kerncounty.com/Html5Viewer/index.html?viewer=COVID19Vaccination#", ) def address_fixup(a): """ Some Kern Co. addresses have typos. """ d = { "2901 Silent Ave Suite 201, Bakersfield, CA 93308": "2901 Sillect Ave Suite 201, Bakersfield, CA 93308", "3300 BUENA VISTA RD A, Bakersfield, CA 93311": "3300 Buena Vista Rd Bldg A, Bakersfield, CA 93311", "8000 WHITE LANE, Bakersfield, CA 93301": "8000 WHITE LANE, BAKERSFIELD, CA 93309", "Rite Aid Store 06303, Bakersfield, CA 93313": "3225 PANAMA LANE, BAKERSFIELD, CA 93313", "3500 Stine Rd Bakersfield, Bakersfield, CA 93309": "3500 Stine Rd, Bakersfield, CA 93309", } return d.get(a, a) # Returns a list of Location objects def run(): dir = tempfile.TemporaryDirectory() driver, display = driver_start(download_dir=dir.name) driver.get(county.url) WebDriverWait(driver, 10).until( EC.presence_of_element_located((By.XPATH, "//button[contains(.,'OK')]")) ) time.sleep(2) # We wait for an OK button to get past the splash screen, but we actually # need to click the offscreen submit input instead.. driver.execute_script( "(function() {var i = document.getElementsByTagName('input'); i.item(i.length-1).click();})();" ) time.sleep(1) # Open the toolbar driver.execute_script("$('.flyout-menu-active-tool').click();") time.sleep(1) # Click the button to open the table view driver.execute_script("$('button.toolbar-item')[0].click();") WebDriverWait(driver, 10).until( EC.presence_of_element_located( (By.XPATH, "//strong[contains(.,'Vaccination Locations')]") ) ) # Open the options menu driver.execute_script("$('button[data-tab-context-menu-button]')[0].click()") time.sleep(1) # Click the export to CSV button WebDriverWait(driver, 10).until( EC.presence_of_element_located( (By.XPATH, "//strong[contains(., 'Export to CSV')]") ) ) e = driver.find_element_by_xpath("//strong[contains(., 'Export to CSV')]") button = e.find_element_by_xpath("..") driver.execute_script("arguments[0].click();", button) time.sleep(1) # Click the OK button to download CSV to `dir/Export.csv` WebDriverWait(driver, 10).until( EC.presence_of_element_located((By.XPATH, "//p[contains(., 'Confirm?')]")) ) p = driver.find_element_by_xpath("//p[contains(., 'Confirm?')]") driver.execute_script("console.log(arguments[0]);", p) div = p.find_element_by_xpath(".//following-sibling::div") driver.execute_script("console.log(arguments[0]);", div) button = div.find_element_by_xpath(".//button[contains(.,'OK')]") driver.execute_script("console.log(arguments[0]);", button) driver.execute_script("arguments[0].click();", button) time.sleep(5) # How do we know if the download is done? csv_path = os.path.join(dir.name, "Export.csv") locations = [] with open(csv_path, newline="") as csvfile: reader = csv.DictReader(csvfile) for row in reader: url = None if row["Online Registration"] != "": url = row["Online Registration"].strip() address = f'{row["Address"].strip()}, {row["City"].strip()}, CA {row["Zip Code"].strip()}' address = address_fixup(address) locations.append( Location( name=row["Facility Name"].strip(), address=address, url=url, phone=row["Phone Number"].strip(), hours=row["Hours"].strip(), county=county.name, ) ) validate(locations) return locations if __name__ == "__main__": locations = run() debug_print(locations)
3.09375
3
results/gafqmc_info.py
wirawan0/pyqmc
0
12775833
# $Id: gafqmc_info.py,v 1.3 2011-03-09 15:44:47 wirawan Exp $ # # gafqmc_info.py # Tools to parse GAFQMC INFO file # # <NAME> # Created: 20101025 # # IMPORTANT: Try to make field names consistent with those in pwqmc_info. # Python standard modules import math import os import os.path import re import sys import time import numpy from wpylib.iofmt.text_input import text_input, head, tail from wpylib.db.result_base import result_base from wpylib.sugar import ifelse from wpylib.regexps import regex from wpylib.text_tools import str_grep class gafqmc_info(result_base): '''Structure to represent the metadata contained in INFO file (GAFQMC version). Available information: * info_file * start_time * info_mtime * calc_time (defined as info_mtime - start_time in seconds) * nbasis * Evar_noconst Evar H0 * Etrial_noconst Etrial * deltau betablk nblkstep * nwlk nwlkmax nwlkmin * itv_Em itv_pc itv_pc_eq ''' meas_dtype = numpy.dtype([('beta',float), ('overlap',float), ('Etotal',float), ('Eproj',float)]) runtype_map = { # fields: constraint, projector # DO NOT EDIT strings below (and they are case sensitive); # other codes may depend on these exact names, # so any edit can screw up those user codes. 0: ('none', 'hybrid'), 1: ('phaseless cosine', 'Elocal'), } def parse_INFO(self, INFO): '''Gets all the necessary info (calculation parameters) from a GAFQMC INFO file. This is a very old routine. We use this as temporary starting point.''' from pyqmc import PyqmcParseError info_file = text_input(INFO) self.clear() rslt = self rslt['info_file'] = INFO rslt['info_mtime'] = time.localtime(os.path.getmtime(INFO)) rx_iflg_constraint = regex(r'^\s*iflg_constraint\s*=\s*([0-9]+)') for L in info_file: Ls = L.strip() flds = Ls.split() if len(flds) == 0: continue elif Ls.startswith("Number of particles:"): # Add special exception for silly Cray fortran output: if flds[3].startswith('2*'): # Cray rslt["nup"] = rslt["ndn"] = int(flds[3][2:]) elif flds[3].endswith(','): # Cray rslt["nup"] = int(flds[3].rstrip(',')) rslt["ndn"] = int(flds[4].rstrip(',')) else: rslt["nup"] = int(flds[3]) rslt["ndn"] = int(flds[4]) elif Ls.startswith("Majority and minority det are independent"): rslt["udet"] = True elif Ls.startswith("Majority and minority det are coupled"): rslt["udet"] = False elif flds[0] == "Variational": if flds[1] == "energy": rslt["Evar"] = float(flds[3]) elif flds[1] == "energy=": rslt["Evar"] = float(flds[2]) elif flds[0] == "nbasis": rslt["nbasis"] = int(flds[2]) elif flds[0] == "Energy_N_QMC": rslt["H0"] = float(flds[1]) elif flds[0] == "deltau=": rslt["deltau"] = float(flds[1]) elif flds[0] == "beta=": rslt["betablk"] = float(flds[1]) elif Ls.startswith("input etrial="): rslt["Etrial_noconst"] = float(flds[2]) # no H0 yet # anorm is also available on the same line: rslt["anorm"] = float(flds[5]) elif Ls.startswith("New etrial to be used in El_bound:"): rslt["Etrial_noconst"] = float(flds[8]) # H0 specified below elif Ls.startswith("nblk="): rslt["nblk"] = int(flds[1]) elif Ls.startswith("neq="): rslt["neq"] = int(flds[1]) elif Ls.startswith("ngrth="): rslt["ngrth"] = int(flds[1]) elif Ls.startswith("No Growth phase:"): rslt["ngrth"] = 0 elif Ls.startswith("itv_em="): rslt["itv_em"] = int(flds[1]) elif Ls.startswith("itv_pc="): rslt["itv_pc"] = int(flds[1]) elif Ls.startswith("itv_pc_eq="): rslt["itv_pc_eq"] = int(flds[1]) elif Ls.startswith("nblkstep="): rslt["nblkstep"] = int(flds[1]) elif Ls.startswith("nwlk="): rslt["nwlk"] = int(flds[1]) elif Ls.startswith("nwlkmax="): rslt["nwlkmax"] = int(flds[1]) elif Ls.startswith("nwlkmin="): rslt["nwlkmin"] = int(flds[1]) elif rx_iflg_constraint % Ls: runtype = int(rx_iflg_constraint[1]) rslt["iflg_constraint"] = runtype rslt["runtype"] = runtype # keyword uniformity with PWQMC (recommended) runtype_rec = self.runtype_map[runtype] rslt["constraint"], rslt["projector"] \ = runtype_rec[:2] # ---runtime info below--- elif Ls.startswith("Using OpenMP with number of threads = "): rslt["num_threads"] = int(flds[7]) elif Ls.startswith("Parallel version of GAFQMC, using NProc = "): rslt["code_name"] = "gafqmc" rslt["code_branch"] = "mpi" rslt["num_tasks"] = int(flds[7]) elif Ls.startswith("Host:"): rslt["run_host"] = flds[1] elif Ls.startswith("Program was run on"): # CAVEAT: start_time can be off by several hour if the local time # zone is different from the time zone where the calculation # was done. # FIXME this! rslt['start_time'] = \ time.strptime(flds[4] + " " + flds[6], "%Y/%m/%d %H:%M:%S") elif Ls.startswith("Program was ended on"): rslt['end_time'] = \ time.strptime(flds[4] + " " + flds[6], "%Y/%m/%d %H:%M:%S") # measurement and other complex data capture elif Ls.startswith("Measurement") and flds[1].startswith("phase...."): #print "found meas!" self.locate_text_marker(info_file, (lambda S : S.startswith("Output:")), max_try=30, errmsg="Cannot locate the beginning of measurement data") self.parse_measurement0(info_file, rslt) rslt.setdefault("nwlkmax", rslt.nwlk * 2) rslt.setdefault("nwlkmin", max(rslt.nwlk / 2, 1)) # fall back to original defaults: rslt.setdefault("iflg_constraint", 1) rslt.setdefault("runtype", 1) rslt.setdefault("constraint", "phaseless cosine") rslt.setdefault("projector", "Elocal") rslt["Evar_noconst"] = rslt["Evar"] - rslt["H0"] rslt["Etrial"] = rslt["Etrial_noconst"] + rslt["H0"] rslt["calc_time"] = time.mktime(rslt[ifelse("end_time" in rslt, "end_time", "info_mtime")]) \ - time.mktime(rslt["start_time"]) rslt["run_mpi"] = ("num_tasks" in rslt) rslt["run_openmp"] = ("num_threads" in rslt) return rslt def locate_text_marker(self, info_file, match_func, max_try, errmsg): """Seeks the text lines until a given marker is found. An exception is raised if after max_try read attempts, the marker is not found.""" for i in xrange(max_try): Ls = info_file.next().strip() if match_func(Ls): return True raise PyqmcParseError, errmsg def parse_measurement0(self, info_file, rslt): """Internal routine to parse only the measurement results of the file. info_file is an open file-like object. The last line read must have been 'Measurement phase...' TODO: - add stand-alone parse_measurement routine? """ from pyqmc import PyqmcParseError # FIXME: Add beginning marker detection (previous text line must be # "Output:") for_D2E = lambda s : s.replace("D","E").replace("d","e") EOS = re.compile(r"^\s*Final Results:\s*$") # end-of-stream marker RS = re.compile(r"^\s*-+\s*$") # record separator # Special handling in case the parsing was stalled by "BugStop" output BUGSTOP = regex(r"^\s*BugStop\s*:\s*(?P<msg1>.*)") meas = [] for L in info_file: Ls_orig = L.strip() Ls = for_D2E(Ls_orig) flds = Ls.split() if EOS.search(Ls): break # end-of-stream detected elif len(flds) == 3: # special case to handle wrapped Fortran output Ls2 = for_D2E(info_file.next().strip()) flds2 = Ls2.split() if len(flds2) == 0: raise PyqmcParseError, \ "Invalid format in GAFQMC measurement text (INFO)" flds.append(flds2[0]) elif len(flds) < 4: if BUGSTOP % Ls_orig: self.store_bug_info0(rslt, info_file, BUGSTOP['msg1']) break else: raise PyqmcParseError, \ "Invalid format in GAFQMC measurement text (INFO)" try: rec = tuple(map((lambda x: float(x.rstrip(','))), flds[:4])) except: if BUGSTOP % Ls_orig: self.store_bug_info0(rslt, info_file, BUGSTOP['msg1']) break else: raise PyqmcParseError, \ "Error parsing GAFQMC measurement text (INFO)"+str(Ls) meas.append(rec) try: self.locate_text_marker(info_file, (lambda S : RS.search(S)), max_try=20, errmsg="Cannot locate a valid record separator in GAFQMC measurement text (INFO)") except StopIteration: from warnings import warn info = self['info_file'] warn("StopIteration caught in file %s; stop scanning file." % (info,)) break dtype = self.meas_dtype rslt["meas_energy"] = numpy.array(meas, dtype=dtype) def store_bug_info0(self, rslt, info_file, msg1): """Mark the run as buggy (by the existence of BUGSTOP field). msg1 is the text that follows the `BugStop:' printout. Caveat: the second line message may or may not be right, but hopefully it can give us a clue on what's happening.""" rslt['BUGSTOP'] = True try: msg2 = info_file.next().strip() msgs = (msg1, msg2) except: msgs = (msg1,) rslt['BUGSTOP_msgs'] = msgs parse_file_ = parse_INFO def is_gafqmc_info(filename): """Detects whether a file is a GAFQMC info file. """ # TODO: This is a placeholder routine (API) for what could be more advanced # in the future. # Copied from gafqmc_quick_dirty. snippet = head(filename, 400) if str_grep("GAFQMC - Generic auxiliary-field quantum Monte Carlo", snippet): return True elif str_grep("Generic Auxiliary field Quantum Monte Carlo (GAFQMC)", snippet): # gen76 and gen79 has this return True else: return False def is_gafqmc_info_finished(filename): # TODO: This is a placeholder routine (API) for what could be more advanced # in the future. # Copied from gafqmc_quick_dirty. if is_gafqmc_info(filename): snippet = tail(filename, 400) if str_grep("Summary of energies:", snippet): return True return False
2.28125
2
bus_monitor/plotter/start_live_streaming.py
mxl00474/Yokohama_bus_navi
0
12775834
import os from PlotterBokeh import PlotterBokeh from BusInfo import BusInfo def start_live_streaming(doc): if doc is None: raise NotImplementedError() # Set the initial location as Yokohama station lat=35.46591430126525 lng=139.62125644093177 apiKey = os.getenv('GMAP_TOKEN') plotter = PlotterBokeh(lat, lng, apiKey, doc) bus_list = BusInfo.update() plotter.init_buslocation(bus_list) plotter.loop()
2.734375
3
invertendo_sequencia.py
isaberamos/Programinhas
1
12775835
<reponame>isaberamos/Programinhas<filename>invertendo_sequencia.py<gh_stars>1-10 seq = [] n = 1 while n: n = int(input(print("Digite um número: "))) if n != 0: seq.append(n) print(seq) print(seq[:-1])
3.5625
4
tpp/models/encoders/base/recurrent.py
dqmis/neuralTPPs-1
17
12775836
import torch as th import torch.nn as nn import torch.nn.functional as F from typing import Dict, List, Optional, Tuple from tpp.models.encoders.base.variable_history import VariableHistoryEncoder from tpp.pytorch.models import MLP from tpp.utils.events import Events class RecurrentEncoder(VariableHistoryEncoder): """Abstract classes for recurrent encoders. The encoding has a variable history size. Args: name: The name of the encoder class. rnn: RNN encoder function. units_mlp: List of hidden layers sizes for MLP. activations: MLP activation functions. Either a list or a string. emb_dim: Size of the embeddings. Defaults to 1. embedding_constraint: Constraint on the weights. Either `None`, 'nonneg' or 'softplus'. Defaults to `None`. temporal_scaling: Scaling parameter for temporal encoding padding_id: Id of the padding. Defaults to -1. encoding: Way to encode the events: either times_only, marks_only, concatenate or temporal_encoding. Defaults to times_only marks: The distinct number of marks (classes) for the process. Defaults to 1. """ def __init__( self, name: str, rnn: nn.Module, # MLP args units_mlp: List[int], activation_mlp: Optional[str] = "relu", dropout_mlp: Optional[float] = 0., constraint_mlp: Optional[str] = None, activation_final_mlp: Optional[str] = None, # Other args emb_dim: Optional[int] = 1, embedding_constraint: Optional[str] = None, temporal_scaling: Optional[float] = 1., encoding: Optional[str] = "times_only", time_encoding: Optional[str] = "relative", marks: Optional[int] = 1, **kwargs): super(RecurrentEncoder, self).__init__( name=name, output_size=units_mlp[-1], emb_dim=emb_dim, embedding_constraint=embedding_constraint, temporal_scaling=temporal_scaling, encoding=encoding, time_encoding=time_encoding, marks=marks, **kwargs) self.rnn = rnn self.mlp = MLP( units=units_mlp, activations=activation_mlp, constraint=constraint_mlp, dropout_rates=dropout_mlp, input_shape=self.rnn.hidden_size, activation_final=activation_final_mlp) def forward(self, events: Events) -> Tuple[th.Tensor, th.Tensor, Dict]: """Compute the (query time independent) event representations. Args: events: [B,L] Times and labels of events. Returns: representations: [B,L+1,M+1] Representations of each event. representations_mask: [B,L+1] Mask indicating which representations are well-defined. """ histories, histories_mask = self.get_events_representations( events=events) # [B,L+1,D] [B,L+1] representations, _ = self.rnn(histories) representations = F.normalize(representations, dim=-1, p=2) representations = self.mlp(representations) # [B,L+1,M+1] return (representations, histories_mask, dict()) # [B,L+1,M+1], [B,L+1], Dict
2.6875
3
vision/datasets/utils.py
tamnguyenvan/pytorch-ssd
0
12775837
import os import glob import numpy as np from datetime import datetime from scipy.io import loadmat from PIL import Image np.random.seed(42) def calc_age(taken, dob): birth = datetime.fromordinal(max(int(dob) - 366, 1)) # assume the photo was taken in the middle of the year if birth.month < 7: return taken - birth.year else: return taken - birth.year - 1 def get_meta(mat_path, db): meta = loadmat(mat_path) full_path = meta[db][0, 0]["full_path"][0] dob = meta[db][0, 0]["dob"][0] # Matlab serial date number gender = meta[db][0, 0]["gender"][0] photo_taken = meta[db][0, 0]["photo_taken"][0] # year face_score = meta[db][0, 0]["face_score"][0] second_face_score = meta[db][0, 0]["second_face_score"][0] age = [calc_age(photo_taken[i], dob[i]) for i in range(len(dob))] return full_path, dob, gender, photo_taken, face_score, second_face_score, age def load_data(data_dir, db='imdb', split=0.1): out_paths = [] out_ages = [] out_genders = [] db_names = db.split(',') # Load utkface if need. if 'utk' in db_names: utk_dir = os.path.join(data_dir, 'utkface-new') utk_paths, utk_ages, utk_genders = load_utk(utk_dir) out_paths += utk_paths out_ages += utk_ages out_genders += utk_genders for d in db_names: image_dir = os.path.join(data_dir, '{}_crop'.format(d)) mat_path = os.path.join(image_dir, '{}.mat'.format(d)) full_path, dob, gender, photo_taken, face_score, second_face_score, age = get_meta(mat_path, d) sample_num = len(face_score) min_score = 1. for i in range(sample_num): if face_score[i] < min_score: continue if (~np.isnan(second_face_score[i])) and second_face_score[i] > 0.0: continue if ~(0 <= age[i] <= 100): continue if np.isnan(gender[i]): continue out_genders.append(int(gender[i])) out_ages.append(age[i]) out_paths.append(os.path.join(image_dir, str(full_path[i][0]))) indices = np.arange(len(out_paths)) np.random.shuffle(indices) out_paths = list(np.asarray(out_paths)[indices]) out_ages = list(np.asarray(out_ages)[indices]) out_genders = list(np.asarray(out_genders)[indices]) num_train = int(len(out_paths) * (1 - split)) train_paths, train_ages, train_genders = out_paths[:num_train], out_ages[:num_train], out_genders[:num_train] val_paths, val_ages, val_genders = out_paths[num_train:], out_ages[num_train:], out_genders[num_train:] return (train_paths, train_ages, train_genders), (val_paths, val_ages, val_genders) def load_utk(data_dir): """Load UTKFace dataset.""" out_paths = [] out_ages = [] out_genders = [] paths = glob.glob(os.path.join(data_dir, 'crop_part1', '*')) for path in paths: filename = os.path.basename(path) out_paths.append(path) age, gender = filename.split('_')[:2] age = int(age) gender = 1 if int(gender) == 0 else 0 out_ages.append(age) out_genders.append(gender) return out_paths, out_ages, out_genders def load_appa(data_dir, ignore_list_filename=None): """Load APPA-real dataset.""" out_paths = [] out_ages = [] ignore_filenames = set() if ignore_list_filename is not None: ignore_list_path = os.path.join(data_dir, ignore_list_filename) ignore_filenames = set(x.strip() for x in open(ignore_list_path)) data_file = os.path.join(data_dir, 'gt_avg_train.csv') image_dir = os.path.join(data_dir, 'train') with open(data_file) as f: lines = [x.strip() for x in f] for line in lines[1:]: filename, _, _, _, age = line.strip().split(',') if filename in ignore_filenames: continue image_path = os.path.join(image_dir, filename + '_face.jpg') age = int(age) out_paths.append(image_path) out_ages.append(age) return out_paths, out_ages def load_aligned_data(data_dir, split=0.1): out_paths = [] out_ages = [] out_genders = [] paths = glob.glob(os.path.join(data_dir, '*')) for path in paths: filename = os.path.basename(path) age, gender = filename.split('_')[-2:] gender = gender.split('.')[0] age = int(age) gender = int(gender) out_paths.append(path) out_ages.append(age) out_genders.append(gender) indices = np.arange(len(out_paths)) np.random.shuffle(indices) out_paths = np.asarray(out_paths)[indices] out_ages = np.asarray(out_ages)[indices] out_genders = np.asarray(out_genders)[indices] num_train = int(len(out_paths) * (1 - split)) train_paths, train_ages, train_genders = out_paths[:num_train], out_ages[:num_train], out_genders[:num_train] val_paths, val_ages, val_genders = out_paths[num_train:], out_ages[num_train:], out_genders[num_train:] return (train_paths, train_ages, train_genders), (val_paths, val_ages, val_genders)
2.453125
2
signup/migrations/0001_initial.py
harry-7/django-trial
0
12775838
<gh_stars>0 # -*- coding: utf-8 -*- # Generated by Django 1.9.7 on 2016-06-12 21:35 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Signup', fields=[ ('email', models.EmailField(max_length=254, primary_key=True, serialize=False)), ('full_name', models.CharField(max_length=80)), ('date_joined', models.DateTimeField(auto_now_add=True)), ('password', models.CharField(max_length=20)), ], ), ]
1.59375
2
settings.py
fastent/fastent
8
12775839
import couchdb def init(username = None, password = <PASSWORD>): """ Global Initialization of settings Return the list of words closer to word1 in comparison with word2 Args: word1 (str): first word word2 (str): second word Returns: void: As it is global settings init nothing is returned """ global couchDB if username is None: couchDB = couchdb.Server("http://127.0.0.1:5984/") else: couchDB = couchdb.Server("http://%s:%s@127.0.0.1:5984/" % (username, password)) def db_initialize(dbname): """ Return of single db from cauchDB server if present or creates if not present Args: dbname (str): The designated database name Returns: db (Database object): the created or retrieved database """ try: if dbname in couchDB: db = couchDB[dbname] else: db = couchDB.create(dbname) except Exception as e: print(e) return None return db
3.015625
3
Mediante_Kid_day5_act2.py
RomartM/PythonSeminarActivities
0
12775840
<gh_stars>0 def reverse_string(string): reversed_letters = list() index = 1 for letter in string: reversed_letters.append(string[ len(string) - index ]) index += 1 return "".join(reversed_letters) word_input = str(input("Input a word: ")) print(f"INPUT: {word_input}") print("OUTPUT: %s (%d characters)" % (reverse_string(word_input).upper(), len(word_input)))
4.03125
4
simulation/dm_control_cur/ddpg/ddpg_classes/simulator_residual.py
Cambridge-University-Robotics/cur_policy_learning_research
0
12775841
from simulation.dm_control_cur.utility_classes.simulator import Simulation class ResidualSimulation(Simulation): def __init__( self, controller_load_model=True, controller_num_episodes=50, **kwargs ): super().__init__(**kwargs) self.controller = Simulation( load_model=controller_load_model, label='controller', name_model=self.NAME_MODEL, task=self.TASK, num_episodes=controller_num_episodes, batch_size=self.BATCH_SIZE, duration=self.DURATION, ) def train_controller(self): self.controller.train() def show_controller_simulation(self): self.controller.show_simulation() def modify_action(self, action, state, t): return self.controller.get_action(state, t)
2.671875
3
phy_sx127x/phy_sx127x_ahsm.py
dwhall/phy_sx127x
1
12775842
""" Copyright 2020 <NAME>. See LICENSE for details. """ import logging import time import farc from . import phy_sx127x class PhySX127xAhsm(farc.Ahsm): """The physical layer (PHY) state machine for a Semtech SX127x device. Automates the behavior of the Semtech SX127x family of radio transceivers. For now, all behavior and operations are for LoRa mode. """ # Special time values to use when posting an action TM_NOW = 0 # Use normally for "do it now" TM_IMMEDIATE = -1 # Use sparingly to jump the queue def __init__(self, lstn_by_dflt): """Class intialization Listen by default means the radio enters continuous-rx mode when it is not doing anything else. If lstn_by_dflt is False, the radio enters sleep mode when it is not doing anything else. """ super().__init__() self.sx127x = phy_sx127x.PhySX127x() self._lstn_by_dflt = lstn_by_dflt self._dflt_stngs = () self._dflt_rx_stngs = () def get_stngs(self,): """Returns the current settings""" return self._dflt_stngs def post_rx_action(self, rx_time, rx_stngs, rx_durxn, rx_clbk): """Posts the _PHY_RQST event to this state machine with the container-ized arguments as the value. """ assert not self._lstn_by_dflt, \ """post_rx_action() should not be used when the PHY is listen-by-default. Use set_dflt_rx_clbk() once, instead.""" # Convert NOW to an actual time if rx_time == PhySX127xAhsm.TM_NOW: rx_time = farc.Framework._event_loop.time() # The order MUST begin: (action, stngs, ...) rx_action = ("rx", rx_stngs, rx_durxn, rx_clbk) self.post_fifo(farc.Event(farc.Signal._PHY_RQST, (rx_time, rx_action))) def post_tx_action(self, tx_time, tx_stngs, tx_bytes): """Posts the _PHY_RQST event to this state machine with the container-ized arguments as the value. """ assert type(tx_bytes) is bytes # Convert NOW to an actual time if tx_time == PhySX127xAhsm.TM_NOW: tx_time = farc.Framework._event_loop.time() # The order MUST begin: (action, stngs, ...) tx_action = ("tx", tx_stngs, tx_bytes) self.post_fifo(farc.Event(farc.Signal._PHY_RQST, (tx_time, tx_action))) def set_dflt_rx_clbk(self, rx_clbk): """Stores the default RX callback for the PHY. The default RX callback is used when this state machine is initialized with listen-by-default set to True. This state machine calls the default RX callback when a frame is received and there are no reception errors. """ assert self._lstn_by_dflt, \ """set_dflt_rx_clbk() should not be used when the PHY is sleep-by-default. Pass a callback in post_rx_action() instead. """ self._dflt_rx_clbk = rx_clbk def set_dflt_stngs(self, dflt_stngs): """Stores the default settings for the PHY. This must be called before start() so they can be written to the device during initilizing. """ self._dflt_stngs = dflt_stngs def start_stack(self, ahsm_prio): """PHY is the bottom of the protocol stack, so just start this Ahsm""" self.start(ahsm_prio) # State machine @farc.Hsm.state def _initial(self, event): """Pseudostate: _initial State machine framework initialization """ # Self-signaling farc.Signal.register("_ALWAYS") farc.Signal.register("_PHY_RQST") # DIO Signal table (DO NOT CHANGE ORDER) # This table is dual maintenance with phy_sx127x.PhySX127x.DIO_* self._dio_sig_lut = ( farc.Signal.register("_DIO_MODE_RDY"), farc.Signal.register("_DIO_CAD_DETECTED"), farc.Signal.register("_DIO_CAD_DONE"), farc.Signal.register("_DIO_FHSS_CHG_CHNL"), farc.Signal.register("_DIO_RX_TMOUT"), farc.Signal.register("_DIO_RX_DONE"), farc.Signal.register("_DIO_CLK_OUT"), farc.Signal.register("_DIO_PLL_LOCK"), farc.Signal.register("_DIO_VALID_HDR"), farc.Signal.register("_DIO_TX_DONE"), farc.Signal.register("_DIO_PAYLD_CRC_ERR"), ) # Self-signaling events self._evt_always = farc.Event(farc.Signal._ALWAYS, None) # Time events self.tmout_evt = farc.TimeEvent("_PHY_TMOUT") self.prdc_evt = farc.TimeEvent("_PHY_PRDC") return self.tran(self._initializing) @farc.Hsm.state def _initializing(self, event): """"State: _initializing Application initialization. Opens and verifies the SPI driver. Sets default application values. Transitions to the _scheduling state if the SPI Comms and SX127x are good; otherwise, remains in this state and periodically retries opening the SX127x. """ sig = event.signal if sig == farc.Signal.ENTRY: logging.debug("PHY._initializing") self.tmout_evt.post_in(self, 0.0) # Init data # We use two queues for a hybrid time-sorted queue: # One for frames that sort by time. # It's actually a dict object where the keys are the time value. self._tm_queue = {} # Another for frames that need to be sent immediately. # This should be used sparingly. self._im_queue = [] return self.handled(event) elif sig == farc.Signal._PHY_TMOUT: if self.sx127x.open(self._dio_isr_clbk): assert len(self._dflt_stngs) > 0, \ "Default settings must be set before initializing" self.sx127x.set_flds(self._dflt_stngs) self.sx127x.write_stngs(False) return self.tran(self._scheduling) logging.warning("_initializing: no SX127x or SPI") self.tmout_evt.post_in(self, 1.0) return self.handled(event) elif sig == farc.Signal.EXIT: self.tmout_evt.disarm() return self.handled(event) return self.super(self.top) @farc.Hsm.state def _scheduling(self, event): """"State: _scheduling Writes any outstanding settings and always transitions to _txing, _sleeping or _listening """ sig = event.signal if sig == farc.Signal.ENTRY: logging.debug("PHY._scheduling") # TODO: remove unecessary read once sm design is proven assert self.sx127x.OPMODE_STBY == self.sx127x.read_opmode() self.post_fifo(farc.Event(farc.Signal._ALWAYS, None)) return self.handled(event) elif sig == farc.Signal._ALWAYS: # If the next action is soon, go to its state next_action = self._top_soon_action() self._default_action = not bool(next_action) if next_action: _, action = next_action if action[0] == "rx": st = self._listening elif action[0] == "tx": st = self._txing else: # Placeholder for CAD, sleep assert True, "Got here by accident" # Otherwise, go to the default elif self._lstn_by_dflt: st = self._listening else: st = self._sleeping return self.tran(st) elif sig == farc.Signal._PHY_RQST: tm, action = event.value self._enqueue_action(tm, action) return self.handled(event) return self.super(self.top) @farc.Hsm.state def _lingering(self, event): """"State: _scheduling This state is for shared behavior between the _listening and _sleeping states. On entry, optionally starts a timer for when to exit to go handle the next action. """ sig = event.signal if sig == farc.Signal.ENTRY: logging.debug("PHY._lingering") return self.handled(event) elif sig == farc.Signal._PHY_RQST: tm, action = event.value self._enqueue_action(tm, action) # If lingering because of default action # transition to scheduling if self._default_action: return self.tran(self._scheduling) # If lingering because of intentional action # remain in current state return self.handled(event) elif sig == farc.Signal._PHY_TMOUT: return self.tran(self._scheduling) elif sig == farc.Signal.EXIT: self.tmout_evt.disarm() # Changing modes from rx or sleep to STBY is # "near instantaneous" per SX127x datasheet # so don't bother awaiting a _DIO_MODE_RDY self.sx127x.write_opmode(self.sx127x.OPMODE_STBY, False) return self.handled(event) return self.super(self.top) @farc.Hsm.state def _listening(self, event): """"State: _lingering:_listening Puts the device into receive mode either because of a receive action or listen-by-default. Transitions to _rxing if a valid header is received. """ sig = event.signal if sig == farc.Signal.ENTRY: logging.debug("PHY._lingering._listening") action = self._pop_soon_action() if action: rx_time, rx_action = action (action_str, rx_stngs, rx_durxn, rx_clbk) = rx_action assert action_str == "rx" self._rx_clbk = rx_clbk else: rx_stngs = self._dflt_rx_stngs self._rx_clbk = self._dflt_rx_clbk # Convert given settings to a mutable list if rx_stngs: stngs = list(rx_stngs) else: # Accept "None" as an argument for rx_stngs stngs = [] # Combine and write RX settings stngs.extend((("FLD_RDO_DIO0", 0), # _DIO_RX_DONE ("FLD_RDO_DIO1", 0), # _DIO_RX_TMOUT ("FLD_RDO_DIO3", 1))) # _DIO_VALID_HDR self.sx127x.set_flds(stngs) self.sx127x.write_stngs(True) # Prep interrupts for RX self.sx127x.write_lora_irq_mask( self.sx127x.IRQ_FLAGS_ALL, self.sx127x.IRQ_FLAGS_RXDONE | self.sx127x.IRQ_FLAGS_PAYLDCRCERROR | self.sx127x.IRQ_FLAGS_VALIDHEADER ) self.sx127x.write_lora_irq_flags( self.sx127x.IRQ_FLAGS_RXDONE | self.sx127x.IRQ_FLAGS_PAYLDCRCERROR | self.sx127x.IRQ_FLAGS_VALIDHEADER ) self.sx127x.write_fifo_ptr(0x00) # Start periodic event for update_rng() self.prdc_evt.post_every(self, 0.100) # 100ms # No action means listen-by-default; receive-continuosly if not action: self.sx127x.write_opmode(self.sx127x.OPMODE_RXCONT, False) # An explicit action means do a receive-once else: # Perform a short blocking sleep until rx_time # to obtain more accurate rx execution time on Linux. now = farc.Framework._event_loop.time() tiny_sleep = rx_time - now assert tiny_sleep > 0.0, \ "didn't beat action time, need to increase _TM_SVC_MARGIN" if tiny_sleep > PhySX127xAhsm._TM_BLOCKING_MAX: tiny_sleep = PhySX127xAhsm._TM_BLOCKING_MAX if tiny_sleep > PhySX127xAhsm._TM_BLOCKING_MIN: time.sleep(tiny_sleep) self.sx127x.write_opmode(self.sx127x.OPMODE_RXONCE, False) # Start the rx duration timer if rx_durxn > 0: self.tmout_evt.post_in(self, rx_durxn) return self.handled(event) elif sig == farc.Signal._PHY_PRDC: self.sx127x.updt_rng() return self.handled(event) elif sig == farc.Signal._DIO_VALID_HDR: self._rxd_hdr_time = event.value return self.tran(self._rxing) elif sig == farc.Signal._DIO_PAYLD_CRC_ERR: logging.info("PHY:_listening@_DIO_PAYLD_CRC_ERR") # TODO: incr phy_data stats crc err cnt return self.tran(self._scheduling) elif sig == farc.Signal._DIO_RX_TMOUT: logging.info("PHY:_listening@_DIO_RX_TMOUT") # TODO: incr phy_data stats rx tmout return self.tran(self._scheduling) elif sig == farc.Signal.EXIT: self.prdc_evt.disarm() return self.handled(event) return self.super(self._lingering) @farc.Hsm.state def _rxing(self, event): """"State: _lingering:_listening:_rxing Continues a reception in progress. Protects reception by NOT transitioning upon a _PHY_RQST event. Transitions to _scheduling after reception ends. """ sig = event.signal if sig == farc.Signal.ENTRY: logging.debug("PHY._rxing") return self.handled(event) elif sig == farc.Signal._DIO_RX_DONE: self._on_lora_rx_done() return self.tran(self._scheduling) elif sig == farc.Signal._PHY_RQST: # Overrides _lingering's _PHY_RQST handler because we want to # remain in this state even if we were listening-by-default tm, action = event.value self._enqueue_action(tm, action) return self.handled(event) return self.super(self._listening) @farc.Hsm.state def _sleeping(self, event): """"State: _lingering:_sleeping Puts the device into sleep mode. Timer and timeout handling is performed by the parent state, _lingering() """ sig = event.signal if sig == farc.Signal.ENTRY: logging.debug("PHY._lingering._sleeping") self.sx127x.write_opmode(self.sx127x.OPMODE_SLEEP, False) return self.handled(event) return self.super(self._lingering) @farc.Hsm.state def _txing(self, event): """"State: _txing Prepares for transmission, transmits, awaits DIO_TX_DONE event from radio, then transitions to the _scheduling state. """ sig = event.signal if sig == farc.Signal.ENTRY: logging.debug("PHY._txing") action = self._pop_soon_action() assert action is not None, "Mutation between top() and pop()" (tx_time, tx_action) = action assert tx_action[0] == "tx", "Mutation between top() and pop()" (_, tx_stngs, tx_bytes) = tx_action # Convert given settings to a mutable list if tx_stngs: stngs = list(tx_stngs) else: # Accept "None" as an argument for tx_stngs stngs = [] # Write TX settings from higher layer and # one setting needed for this PHY operation stngs.append(("FLD_RDO_DIO0", 1)) # _DIO_TX_DONE self.sx127x.set_flds(stngs) self.sx127x.write_stngs(False) # Prep interrupts for TX self.sx127x.write_lora_irq_mask( self.sx127x.IRQ_FLAGS_ALL, # disable these self.sx127x.IRQ_FLAGS_TXDONE # enable these ) # Write payload into radio's FIFO self.sx127x.write_fifo_ptr(0x00) self.sx127x.write_fifo(tx_bytes) self.sx127x.write_lora_payld_len(len(tx_bytes)) # Blocking sleep until tx_time (assuming a short amount) now = farc.Framework._event_loop.time() tiny_sleep = tx_time - now if tiny_sleep > PhySX127xAhsm._TM_BLOCKING_MAX: tiny_sleep = PhySX127xAhsm._TM_BLOCKING_MAX if tiny_sleep > 0.001: time.sleep(tiny_sleep) # Start software timer for backstop self.tmout_evt.post_in(self, 1.0) # TODO: calc soft timeout delta # Start transmission and await DIO_TX_DONE self.sx127x.write_opmode(self.sx127x.OPMODE_TX, False) return self.handled(event) elif sig == farc.Signal._DIO_TX_DONE: # TODO: phy stats TX_DONE return self.tran(self._scheduling) elif sig == farc.Signal._PHY_RQST: tm, action = event.value self._enqueue_action(tm, action) return self.handled(event) elif sig == farc.Signal._PHY_TMOUT: logging.warning("PHY._txing@_PHY_TMOUT") if self.sx127x.in_sim_mode(): # Sim-radio will never emit DIO events # so go straight to _scheduling return self.tran(self._scheduling) else: # SX127x takes time to change modes from TX to STBY. # Use DIO5/ModeReady here so we don't transition # to _scheduling and try to do stuff before the # chip is in STBY mode. Await _DIO_MODE_RDY. self.sx127x.write_opmode(self.sx127x.OPMODE_STBY, True) return self.handled(event) elif sig == farc.Signal._DIO_MODE_RDY: return self.tran(self._scheduling) elif sig == farc.Signal.EXIT: self.tmout_evt.disarm() return self.handled(event) return self.super(self.top) # Private # The margin within which the Ahsm will transition to # the action's state if there is an entry in the action queue; # otherwise, transitions to the default state, listening or sleeping. _TM_SOON = 0.040 # The amount of time it takes to get from the _lingering state # through _scheduling and to the next action's state. # This is used so we can set a timer to exit _lingering # and make it to the deisred state before the designated time. _TM_SVC_MARGIN = 0.020 # assert _TM_SVC_MARGIN < _TM_SOON # Blocking times are used around the time.sleep() operation # to obtain more accurate tx/rx execution times on Linux. _TM_BLOCKING_MAX = 0.100 _TM_BLOCKING_MIN = 0.001 def _dio_isr_clbk(self, dio): """A callback given to the PHY for when a DIO pin event occurs. The Rpi.GPIO's thread calls this procedure (like an interrupt). This procedure posts an Event to this state machine corresponding to the DIO pin that transitioned. The pin edge's arrival time is the value of the Event. """ now = farc.Framework._event_loop.time() self.post_fifo(farc.Event(self._dio_sig_lut[dio], now)) def _enqueue_action(self, tm, action_args): """Enqueues the action at the given time""" IOTA = 0.000_000_1 # a small amount of time # IMMEDIATELY means this frame jumps to the front of the line # put it in the immediate queue (which is serviced before the tm_queue) if tm == PhySX127xAhsm.TM_IMMEDIATE: self._im_queue.append(action_args) else: # Ensure this tx time doesn't overwrite an existing one # by adding an iota of time if there is a duplicate. # This results in FIFO for frames scheduled at the same time. tm_orig = tm while tm in self._tm_queue: tm += IOTA # Protect against infinite while-loop if tm == tm_orig: IOTA *= 10.0 self._tm_queue[tm] = action_args def _on_lora_rx_done(self,): """Reads received bytes and meta data from the radio. Checks and logs any errors. Passes the rx_data to the next layer higher via callback. """ frame_bytes, rssi, snr, flags = self.sx127x.read_lora_rxd() if flags == 0: # TODO: incr phy_data stats rx done self._rx_clbk(self._rxd_hdr_time, frame_bytes, rssi, snr) elif flags & self.sx127x.IRQ_FLAGS_RXTIMEOUT: logging.info("PHY._rxing@RXTMOUT") # TODO: incr phy_data stats rx tmout elif flags & self.sx127x.IRQ_FLAGS_PAYLDCRCERROR: logging.info("PHY._rxing@CRCERR") # TODO: incr phy_data stats rx payld crc err def _pop_soon_action(self,): """Returns the next (time, action) pair from the queue and removes it. Returns None if the queue is empty. """ if self._im_queue: tm = farc.Framework._event_loop.time() action = self._im_queue.pop() return (tm, action) elif self._tm_queue: tm = min(self._tm_queue.keys()) now = farc.Framework._event_loop.time() if tm < now + PhySX127xAhsm._TM_SOON: action = self._tm_queue[tm] del self._tm_queue[tm] return (tm, action) return None def _top_soon_action(self,): """Returns the next (time, action) pair from the queue without removal. Returns None if the queue is empty. """ if self._im_queue: tm = PhySX127xAhsm.TM_IMMEDIATE action = self._im_queue[-1] return (tm, action) elif self._tm_queue: tm = min(self._tm_queue.keys()) now = farc.Framework._event_loop.time() if tm < now + PhySX127xAhsm._TM_SOON: action = self._tm_queue[tm] return (tm, action) return None
2.671875
3
data_tools/__init__.py
erik-grabljevec/Tennis-Modelling
4
12775843
__author__ = 'riko' from handle_data import *
1.078125
1
search_operation/icde/views.py
youyinnn/COEN6311_super
0
12775844
from common.http_response import json_response_builder as response from common.jwt import get_user_id as get_id_from_request from common.jwt import auth_require from common.project_const import const from icde.capture import icde_capture from . import access as icde_access @auth_require @icde_capture(const.PAPER_SHARE) def share_paper(request): return response(0) @icde_capture(const.PAPER_SEARCH) def search_paper(request): return response(0) @icde_capture(const.PAPER_ORIGIN_CLICK) def go_paper_origin(request): return response(0) @icde_capture(const.PAPER_DETAIL_CLICK) def go_paper_detail_page(request): return response(0) def get_paper_share_count(request): getParams = request.GET.dict() paper_id = getParams.get('paper_id') return response(0, body=icde_access.access_paper_share_count(paper_id)) @auth_require def get_paper_team_share_records(request): getParams = request.GET.dict() user_id = get_id_from_request(request) paper_id = getParams.get('paper_id') return response(0, body=icde_access.access_paper_team_share_records(user_id, paper_id)) @auth_require def get_user_activities(request): user_id = get_id_from_request(request) return response(0, body=icde_access.access_user_activities(user_id)) @auth_require def get_team_member_activities(request): getParams = request.GET.dict() team_id = getParams.get('team_id') return response(0, body=icde_access.access_team_member_activities(team_id)) def get_all_trending_list(request): searh_term_trending = icde_access.access_search_term_trending_list() click_rate_trending = icde_access.access_click_rate_trending_list() like_trending = icde_access.access_like_trending_list() dislike_trending = icde_access.access_dislike_trending_list() share_trending = icde_access.access_share_trending_list() return response(0, body={ 'tranding_list': [ searh_term_trending, click_rate_trending, like_trending, dislike_trending, share_trending ] })
2.25
2
build/android/xwalkcore_library_template/prepare_r_java.py
shawngao5/crosswalk
1
12775845
<filename>build/android/xwalkcore_library_template/prepare_r_java.py #!/usr/bin/env python # # Copyright (c) 2013 Intel Corporation. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. """Copy the generated R.java to additional packages under gen. Besides copying, the script will change the fixed value in new created R.javas to references to the generated R.java. The generated R.java looks like: package app_package; public final class R { public static final class attr { public static int value=0x70000001; } } After modified, it will be: package additional_package; public final class R { public static final class attr { public static int value=app_package.R.attr.value; } } """ import optparse import os import re import sys # To match line "package app_package;". RE_PACKAGE = re.compile('^package ([a-zA-Z_]+(?:|\.[a-zA-Z_]+)*);$') # To match line " public static final class attr {". RE_CLASS = re.compile('^(?:|[ ]*)public static final class ([a-zA-Z_]+) {$') # To match line " public static int value=0x70000001;". RE_VALUE = re.compile('^([ ]*)public static int ([a-zA-Z_]+)=(0x[0-9a-f]{8});$') def PlaceRJavaInPackage(gen_path, app_package, target_package): r_java = os.path.join(gen_path, app_package.replace('.', os.sep), 'R.java') if not os.path.isfile(r_java): print '%s does not exist' % r_java sys.exit(1) target_folder = os.path.join(gen_path, target_package.replace('.', os.sep)) if not os.path.isdir(target_folder): os.makedirs(target_folder) target_java_file = open(os.path.join(target_folder, 'R.java'), 'w') current_class = None got_package = False for line in open(r_java, 'r').readlines(): if not got_package: # Looking for package declaration. match_package = RE_PACKAGE.match(line) if match_package and match_package.groups()[0] == app_package: got_package = True target_java_file.write('package %s;\n' % target_package) else: target_java_file.write(line) continue # Trying to match class pattern first. match_class = RE_CLASS.match(line) if match_class: current_class = match_class.groups()[0] target_java_file.write(line) continue if current_class: match_value = RE_VALUE.match(line) if match_value: target_java_file.write( '%spublic static int %s=%s.R.%s.%s;\n' % (match_value.groups()[0], match_value.groups()[1], app_package, current_class, match_value.groups()[1])) continue target_java_file.write(line) target_java_file.close() def main(): option_parser = optparse.OptionParser() option_parser.add_option('--app-package', default=None, help='The package which provides R.java') option_parser.add_option('--packages', default=None, help='The additional packages which R.java to be placed in, ' 'delimited by semicolon') option_parser.add_option('--gen-path', default=None, help='Path of the gen folder') opts, _ = option_parser.parse_args() if opts.packages == None or opts.packages.strip() == '': return 0 if opts.gen_path == None: print 'gen path not specified' return 1 if opts.app_package == None: print 'app package not specified' return 1 for package in opts.packages.strip().split(';'): PlaceRJavaInPackage(opts.gen_path, opts.app_package, package) return 0 if '__main__' == __name__: sys.exit(main())
2.25
2
trial_of_the_stones/the_trial_of_the_stones.py
ikostan/ElegantBrowserAutomationWithPythonAndSelenium
3
12775846
from trial_of_the_stones.models.page_model import PageModel import selenium import unittest import time def trial_of_the_stones_automation(): ''' Source web page: https://techstepacademy.com/trial-of-the-stones :return: ''' # open web page page = PageModel(selenium.webdriver.Chrome()) page.open_page() password = solve_riddle_of_stone(page) solve_riddle_of_secrets(password, page) solve_the_two_merchants(page) final_check(page) # close web page time.sleep(2) page.close() def solve_riddle_of_stone(page): # type answer and click on answer button page.riddle_of_stone_field.send_keys('rock') unittest.TestCase().assertFalse(page.password.is_displayed()) page.riddle_of_stone_button.click() # verify is password displayed unittest.TestCase().assertTrue(page.password.is_displayed()) password = page.password.text unittest.TestCase().assertEqual('<PASSWORD>', password) return password def solve_riddle_of_secrets(password, page): # type password and click on Answer button page.password_field.send_keys(password) unittest.TestCase().assertFalse(page.password_success.is_displayed()) page.password_answer_button.click() unittest.TestCase().assertEqual('Success!', page.password_success.text) unittest.TestCase().assertTrue(page.password_success.is_displayed()) def solve_the_two_merchants(page): # compare wealth and type the richest merchant name page.richest_merchant_field.send_keys(page.bernard_name if int(page.bernard_wealth) > int(page.jessica_wealth) else page.jessica_name) unittest.TestCase().assertFalse(page.merchant_success.is_displayed()) page.richest_merchant_button.click() unittest.TestCase().assertTrue(page.merchant_success.is_displayed()) unittest.TestCase().assertEqual('Success!', page.merchant_success.text) def final_check(page): # final check unittest.TestCase().assertFalse(page.trial_complete.is_displayed()) page.check_answers_button.click() unittest.TestCase().assertTrue(page.trial_complete.is_displayed()) unittest.TestCase().assertEqual('Trial Complete', page.trial_complete.text) if __name__ == '__main__': trial_of_the_stones_automation()
3.046875
3
data-structures/sorting/quicksort/quicksort-randomized.py
andrenbrandao/algorithm-problems
0
12775847
from random import randint """ For an array of size 10^6 the execution time of the randomized version was 10x faster. I used an already sorted array, which is an example of a worst case scenario. The algorithm by selection always the smallest element as the pivot makes n recursive calls and because the partition step is O(n), it takes O(n^2) to execute. Avg Quicksort: 47.597230195999146 Avg Quicksort Randomized: 4.145071268081665 """ def quicksort_randomized(arr): def swap(arr, j, i): arr[i], arr[j] = arr[j], arr[i] def partition(arr, left, right): pivot = left j = left for i in range(left + 1, right + 1): if arr[i] <= arr[pivot]: j += 1 swap(arr, j, i) new_pivot_pos = j swap(arr, pivot, new_pivot_pos) return new_pivot_pos def random_partition(arr, left, right): pivot = randint(left, right) swap(arr, left, pivot) return partition(arr, left, right) def sort(arr, left, right): if left < right: m = random_partition(arr, left, right) sort(arr, left, m - 1) sort(arr, m + 1, right) sort(arr, 0, len(arr) - 1) if __name__ == "__main__": arr = [int(i) for i in input().split()] quicksort_randomized(arr) print(arr)
4.09375
4
src/evaluation/krippendorffalpha.py
anbasile/arxiv2018-bayesian-ensembles
21
12775848
<reponame>anbasile/arxiv2018-bayesian-ensembles ''' Created on 10 May 2016 @author: simpson ''' import numpy as np def alpha(U, C, L): ''' U - units of analysis, i.e. the data points being labelled C - a list of classification labels L - a list of labeller IDs ''' N = float(np.unique(U).shape[0]) Uids = np.unique(U) Dobs = 0.0 Dexpec = 0.0 for i, u in enumerate(Uids): uidxs = U==u Lu = L[uidxs] m_u = Lu.shape[0] if m_u < 2: continue Cu = C[uidxs] #for cuj in Cu: # Dobs += 1.0 / (m_u - 1.0) * np.sum(np.abs(cuj - Cu)) Dobs += 1.0 / (m_u - 1.0) * np.sum(np.abs(Cu[:, np.newaxis] - Cu[np.newaxis, :])) # too much memory required # Dexpec = np.sum(np.abs(C.flatten()[:, np.newaxis] - C.flatten()[np.newaxis, :])) for i in range(len(U)): if np.sum(U==U[i]) < 2: continue Dexpec += np.sum(np.abs(C[i] - C)) # sum up all differences regardless of user and data unit Dobs = 1 / N * Dobs Dexpec = Dexpec / (N * (N-1)) alpha = 1 - Dobs / Dexpec return alpha
2.296875
2
bioimageit_core/dataset.py
bioimageit/bioimageit_core
2
12775849
# -*- coding: utf-8 -*- """BioImagePy dataset metadata definitions. This module contains classes that allows to describe the metadata of scientific dataset Classes ------- DataSet RawDataSet ProcessedDataSet """ import re from bioimageit_core.config import ConfigAccess from bioimageit_core.data import RawData, ProcessedData from bioimageit_core.metadata.run import Run from bioimageit_core.metadata.factory import metadataServices from bioimageit_core.metadata.query import query_list_single class RawDataSet: """Class that store a dataset metadata for RawDataSet Parameters ---------- md_uri URI of the metadata in the database or file system depending on backend Attributes ---------- md_uri List of the URIs of the data metadata """ def __init__(self, md_uri: str = ''): self.md_uri = md_uri self.metadata = None # DataSetContainer() config = ConfigAccess.instance().config['metadata'] self.service = metadataServices.get(config["service"], **config) self.read() def read(self): """Read the metadata from database The data base connection is managed by the configuration object """ self.metadata = self.service.read_rawdataset(self.md_uri) def write(self): """Write the metadata to database The data base connection is managed by the configuration object """ self.service.write_rawdataset(self.metadata, self.md_uri) def size(self): """get the size of the dataser Returns ------- The number of data in the dataset """ return len(self.metadata.uris) def get(self, i: int) -> RawData: """get one data information Parameters ---------- i Index of the data in the dataset Returns ---------- RawData The data common information """ return RawData(self.metadata.uris[i]) def to_search_containers(self): """Convert RawDataSet into a list of SearchContainer Returns ------- list List of data as list of SearchContainer """ search_list = [] for i in range(self.size()): data = RawData(self.metadata.uris[i]) search_list.append(data.to_search_container()) return search_list def get_data(self, query: str) -> list: """query on tags In this verion only AND queries are supported (ex: tag1=value1 AND tag2=value2) and performed on the RawData set Parameters ---------- query String query with the key=value format. Returns ------- list List of selected data (md.json files urls are returned) """ queries = re.split(' AND ', query) # initially all the raw data are selected selected_list = self.to_search_containers() if query == '': return selected_list # run all the AND queries on the preselected dataset for q in queries: selected_list = query_list_single(selected_list, q) # convert SearchContainer list to uri list out = [] for d in selected_list: out.append(d.uri()) return out def add_data(self, data: RawData): """Add one data to the dataset Parameters ---------- data data to add """ data.write() self.metadata.uris.append(data.md_uri) self.service.write_rawdataset(self.metadata, self.md_uri) def get_data_list(self) -> list: """Get the metadata information as a list Returns ------- list List of the data metadata stored in BiRawData objects """ data_list = [] for i in range(self.size()): data_list.append(RawData(self.metadata.uris[i])) return data_list class ProcessedDataSet: """Class that store a dataset metadata for ProcessedDataSet Parameters ---------- md_uri URI of the metadata in the database or file system depending on backend Attributes ---------- md_uri List of the URIs of the data metadata """ def __init__(self, md_uri: str = ''): self.md_uri = md_uri self.metadata = None # DataSetContainer() config = ConfigAccess.instance().config['metadata'] self.service = metadataServices.get(config["service"], **config) self.read() def read(self): """Read the metadata from database The data base connection is managed by the configuration object """ self.metadata = self.service.read_processeddataset(self.md_uri) def write(self): """Write the metadata to database The data base connection is managed by the configuration object """ self.service.write_processeddataset(self.metadata, self.md_uri) def add_run(self, run: Run): """Add Run to the dataset The input Run URI is created by this method Parameters ---------- run Run to add """ run.md_uri = self.service.add_run_processeddataset(run.metadata, self.md_uri) def create_data(self, data: ProcessedData): """create a new data metadata in the dataset The input data object must contain only the metadata (ie no uri and no md_uri). This method generate the uri and the md_uri and save all the metadata Parameters ---------- data metadata of the processed data to create """ self.service.create_data_processeddataset(data.metadata, self.md_uri) def size(self): """get the size of the dataser Returns ------- The number of data in the dataset """ return len(self.metadata.uris) def get(self, i: int) -> ProcessedData: """get one data information Parameters ---------- i Index of the data in the dataset Returns ---------- RawData The data common information """ return ProcessedData(self.metadata.uris[i]) def to_search_containers(self): """Convert RawDataSet into a list of SearchContainer Returns ------- list List of data as list of SearchContainer """ search_list = [] for i in range(self.size()): data = ProcessedData(self.metadata.uris[i]) search_list.append(data.to_search_container()) return search_list def get_data(self, query: str, origin_output_name: str = '') -> list: """Run a query on a BiProcessedDataSet Parameters ---------- query Query on tags (ex: 'Population'='population1') origin_output_name Filter only the process output with the given name if origin_output_name is empty, it gets all the processed data Returns ------- list List of the data URIs """ # get all the tags per data pre_list = self.to_search_containers() # remove the data where output origin is not the asked one selected_list = [] if origin_output_name != '': for pdata in pre_list: data = ProcessedData(pdata.uri()) if data.metadata.output["name"] == origin_output_name: selected_list.append(pdata) else: selected_list = pre_list if query == '': return selected_list # query on tags queries = re.split(' AND ', query) # run all the AND queries on the preselected dataset for q in queries: selected_list = query_list_single(selected_list, q) # convert SearchContainer list to uri list out = [] for d in selected_list: out.append(d.uri()) return out def add_data(self, data: ProcessedData): """Add one data to the dataset Parameters ---------- data data to add """ data.write() self.metadata.uris.append(data.md_uri) self.service.write_processeddataset(self.metadata, self.md_uri) def get_data_list(self) -> list: """Get the metadata information as a list Returns ------- list List of the data metadata stored in BiRawData objects """ data_list = [] for i in range(self.size()): data_list.append(ProcessedData(self.metadata.uris[i])) return data_list
2.640625
3
Handout/09.Strings e Fatiamento/02ex.py
pedroivoal/Dessoft
0
12775850
def conta_a(palavra): c = 0 for letra in palavra: if letra == 'a': c += 1 return c s = 'Insper' r = s[::-2] print(r)
3.5625
4